Skip to content

内存超限了,在哪设置report_tensor_allocations_upon_oom #8

@iE-zhi

Description

@iE-zhi

ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[16,12,300,300] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[node bert/encoder/layer_5/attention/self/Softmax (defined at /home/tf/bert_classification/modeling.py:722) = SoftmaxT=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

     [[{{node loss/Mean/_4053}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_3657_loss/Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions