From db0b3f37baab9747886430015adb89f3f3ad24a9 Mon Sep 17 00:00:00 2001 From: Simon Date: Mon, 10 Aug 2020 20:00:25 +0100 Subject: [PATCH 1/9] pca gradient taken etc. --- pca_nc_maker.py | 130 ++++++++++ test-loading.ipynb | 607 +++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 737 insertions(+) create mode 100644 pca_nc_maker.py create mode 100644 test-loading.ipynb diff --git a/pca_nc_maker.py b/pca_nc_maker.py new file mode 100644 index 0000000..13f27d2 --- /dev/null +++ b/pca_nc_maker.py @@ -0,0 +1,130 @@ +import numpy as np +import xarray as xr +xr.set_options(keep_attrs=True) +import pyxpcm +from pyxpcm.models import pcm +# ln -s /Volumes/BSOSE-DISC/bsose_monthly bsose_monthly + +def pcm_pca_out(time_i=42, K=4, maxvar=2, min_depth=300, interp=False): + # Define features to use + # Instantiate the PCM + main_dir = '/Users/simon/bsose_monthly/' + salt = main_dir + 'bsose_i106_2008to2012_monthly_Salt.nc' + theta = main_dir + 'bsose_i106_2008to2012_monthly_Theta.nc' + + max_depth = 2000 + z = np.arange(-min_depth, -max_depth, -10.) + features_pcm = {'THETA': z, 'SALT': z} + features = {'THETA': 'THETA', 'SALT': 'SALT'} + salt_nc = xr.open_dataset(salt).isel(time=time_i) + theta_nc = xr.open_dataset(theta).isel(time=time_i) + big_nc = xr.merge([salt_nc, theta_nc]) + both_nc = big_nc.where(big_nc.coords['Depth'] > + max_depth).drop(['iter', 'Depth', + 'rA', 'drF', 'hFacC']) + + attr_d = {} + + for coord in both_nc.coords: + attr_d[coord] = both_nc.coords[coord].attrs + + lons_new = np.linspace(both_nc.XC.min(), both_nc.XC.max(), 60*4) + lats_new = np.linspace(both_nc.YC.min(), both_nc.YC.max(), 60) + # ds = both_nc # .copy(deep=True) + if interp: + ds = both_nc.interp(coords={'YC': lats_new, 'XC': lons_new})#, method='cubic') + else: + ds = both_nc + + m = pcm(K=K, features=features_pcm, + maxvar=maxvar, + timeit=True, timeit_verb=1) + ds = m.add_pca_to_xarray(ds, features=features, dim='Z', inplace=True) + + #m.fit(ds, features=features, dim='Z') #, inplace=True) + #m.predict(ds, features=features, dim='Z', inplace=True) + #m.predict_proba(ds, features=features, dim='Z', inplace=True) + #m.find_i_metric(ds, inplace=True) + + def sanitize(): + # del ds.PCM_LABELS.attrs['_pyXpcm_cleanable'] + # del ds.PCM_POST.attrs['_pyXpcm_cleanable'] + # del ds.PCM_RANK.attrs['_pyXpcm_cleanable'] + del ds.PCA_VALUES.attrs['_pyXpcm_cleanable'] + + for coord in attr_d: + ds.coords[coord].attrs = attr_d[coord] + + sanitize() + + ds = ds.drop(['SALT', 'THETA']) + + ds = ds.expand_dims(dim='time', axis=None) + + ds = ds.assign_coords({"time": + ("time", [salt_nc.coords['time'].values])}) + + ds.coords['time'].attrs = salt_nc.coords['time'].attrs + + + ds.to_netcdf('nc/pca/'+str(time_i)+'.nc', format='NETCDF4') + m.to_netcdf('nc/m_pca/'+str(time_i)+'.nc') + + +def run_through_pca(): + for time_i in range(60): + pcm_pca_out(time_i=time_i) + + +def merge_whole_density_netcdf(): + + pca_ds = xr.open_mfdataset('nc/pca/*.nc', + concat_dim="time", + combine='by_coords', + chunks={'time': 1}, + data_vars='minimal', + #parallel=True, + coords='minimal', compat='override') + # this is too intense for memory + + return pca_ds + + +def save_density_netcdf(pca_ds): + + xr.save_mfdataset([pca_ds], ['nc/pcm_pca.nc'], format='NETCDF4') + +def take_derivative_pca(dimension="YC", typ='float32'): + + chunk_d = {'time': 1, 'YC': 588, 'XC': 2160} + + density_ds = xr.open_mfdataset('nc/pcm_pca.nc', + # engine=engine, + # decode_cf=False, + chunks=chunk_d, + combine='by_coords', + data_vars='minimal', + coords='minimal', + compat='override', + parallel=True + ).astype(typ) + + grad_da = density_ds.PCA_VALUES.differentiate(dimension) + #.astype(typ).chunk(chunks=chunk_d) + + name = 'PC_Gradient_' + dimension + grad_ds = grad_da.to_dataset().rename_vars({'PCA_VALUES': name}) + grad_ds[name].attrs['long_name'] = 'PC Gradient ' + dimension + grad_ds[name].attrs['units'] = 'box-1' + + # .astype(typ).chunk(chunks=chunk_d) + xr.save_mfdataset([grad_ds], + ['nc/pc_grad_' + dimension + '.nc'], + format='NETCDF4') + +def go_through_all(): + run_through_pca() + pca_ds = merge_whole_density_netcdf() + save_density_netcdf(pca_ds) + take_derivative_pca() + take_derivative_pca(dimension="XC") diff --git a/test-loading.ipynb b/test-loading.ipynb new file mode 100644 index 0000000..2f9dab4 --- /dev/null +++ b/test-loading.ipynb @@ -0,0 +1,607 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import xarray as xr\n", + "xr.set_options(keep_attrs=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "pca_ds = xr.open_mfdataset('nc/pca/*.nc',\n", + " concat_dim=\"time\",\n", + " combine='by_coords',\n", + " chunks={'time': 1},\n", + " data_vars='minimal',\n", + " #parallel=True,\n", + " coords='minimal', compat='override')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "Show/Hide data repr\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Show/Hide attributes\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
xarray.Dataset
    • XC: 2160
    • YC: 588
    • Z: 52
    • pca: 4
    • time: 60
    • XC
      (XC)
      float64
      0.08333 0.25 0.4167 ... 359.8 359.9
      coordinate :
      YC XC
      units :
      degrees_east
      standard_name :
      longitude
      long_name :
      longitude
      axis :
      X
      array([8.333334e-02, 2.500000e-01, 4.166667e-01, ..., 3.595833e+02,\n",
      +       "       3.597500e+02, 3.599167e+02])
    • Z
      (Z)
      float32
      -2.1 -6.7 ... -5400.0 -5800.0
      units :
      m
      positive :
      down
      standard_name :
      depth
      long_name :
      vertical coordinate of cell center
      axis :
      Z
      array([-2.100e+00, -6.700e+00, -1.215e+01, -1.855e+01, -2.625e+01, -3.525e+01,\n",
      +       "       -4.500e+01, -5.500e+01, -6.500e+01, -7.500e+01, -8.500e+01, -9.500e+01,\n",
      +       "       -1.050e+02, -1.150e+02, -1.250e+02, -1.350e+02, -1.465e+02, -1.615e+02,\n",
      +       "       -1.800e+02, -2.000e+02, -2.200e+02, -2.400e+02, -2.600e+02, -2.800e+02,\n",
      +       "       -3.010e+02, -3.270e+02, -3.610e+02, -4.025e+02, -4.500e+02, -5.000e+02,\n",
      +       "       -5.515e+02, -6.140e+02, -7.000e+02, -8.000e+02, -9.000e+02, -1.000e+03,\n",
      +       "       -1.100e+03, -1.225e+03, -1.400e+03, -1.600e+03, -1.800e+03, -2.010e+03,\n",
      +       "       -2.270e+03, -2.610e+03, -3.000e+03, -3.400e+03, -3.800e+03, -4.200e+03,\n",
      +       "       -4.600e+03, -5.000e+03, -5.400e+03, -5.800e+03], dtype=float32)
    • YC
      (YC)
      float64
      -77.98 -77.95 ... -29.87 -29.72
      coordinate :
      YC XC
      units :
      degrees_north
      standard_name :
      latitude
      long_name :
      latitude
      axis :
      Y
      array([-77.982651, -77.947899, -77.913048, ..., -30.017181, -29.870987,\n",
      +       "       -29.715317])
    • time
      (time)
      datetime64[ns]
      2008-01-31T10:24:00 ... 2012-12-31
      long_name :
      Time
      standard_name :
      time
      axis :
      T
      array(['2008-01-31T10:24:00.000000000', '2008-03-01T20:48:00.000000000',\n",
      +       "       '2008-04-01T07:12:00.000000000', '2008-05-01T17:36:00.000000000',\n",
      +       "       '2008-06-01T04:00:00.000000000', '2008-07-01T14:24:00.000000000',\n",
      +       "       '2008-08-01T00:48:00.000000000', '2008-08-31T11:12:00.000000000',\n",
      +       "       '2008-09-30T21:36:00.000000000', '2008-10-31T08:00:00.000000000',\n",
      +       "       '2008-11-30T18:24:00.000000000', '2008-12-31T04:48:00.000000000',\n",
      +       "       '2009-01-30T15:12:00.000000000', '2009-03-02T01:36:00.000000000',\n",
      +       "       '2009-04-01T12:00:00.000000000', '2009-05-01T22:24:00.000000000',\n",
      +       "       '2009-06-01T08:48:00.000000000', '2009-07-01T19:12:00.000000000',\n",
      +       "       '2009-08-01T05:36:00.000000000', '2009-08-31T16:00:00.000000000',\n",
      +       "       '2009-10-01T02:24:00.000000000', '2009-10-31T12:48:00.000000000',\n",
      +       "       '2009-11-30T23:12:00.000000000', '2009-12-31T09:36:00.000000000',\n",
      +       "       '2010-01-30T20:00:00.000000000', '2010-03-02T06:24:00.000000000',\n",
      +       "       '2010-04-01T16:48:00.000000000', '2010-05-02T03:12:00.000000000',\n",
      +       "       '2010-06-01T13:36:00.000000000', '2010-07-02T00:00:00.000000000',\n",
      +       "       '2010-08-01T10:24:00.000000000', '2010-08-31T20:48:00.000000000',\n",
      +       "       '2010-10-01T07:12:00.000000000', '2010-10-31T17:36:00.000000000',\n",
      +       "       '2010-12-01T04:00:00.000000000', '2010-12-31T14:24:00.000000000',\n",
      +       "       '2011-01-31T00:48:00.000000000', '2011-03-02T11:12:00.000000000',\n",
      +       "       '2011-04-01T21:36:00.000000000', '2011-05-02T08:00:00.000000000',\n",
      +       "       '2011-06-01T18:24:00.000000000', '2011-07-02T04:48:00.000000000',\n",
      +       "       '2011-08-01T15:12:00.000000000', '2011-09-01T01:36:00.000000000',\n",
      +       "       '2011-10-01T12:00:00.000000000', '2011-10-31T22:24:00.000000000',\n",
      +       "       '2011-12-01T08:48:00.000000000', '2011-12-31T19:12:00.000000000',\n",
      +       "       '2012-01-31T05:36:00.000000000', '2012-03-01T16:00:00.000000000',\n",
      +       "       '2012-04-01T02:24:00.000000000', '2012-05-01T12:48:00.000000000',\n",
      +       "       '2012-05-31T23:12:00.000000000', '2012-07-01T09:36:00.000000000',\n",
      +       "       '2012-07-31T20:00:00.000000000', '2012-08-31T06:24:00.000000000',\n",
      +       "       '2012-09-30T16:48:00.000000000', '2012-10-31T03:12:00.000000000',\n",
      +       "       '2012-11-30T13:36:00.000000000', '2012-12-31T00:00:00.000000000'],\n",
      +       "      dtype='datetime64[ns]')
    • PCA_VALUES
      (time, pca, YC, XC)
      float64
      dask.array<chunksize=(1, 4, 588, 2160), meta=np.ndarray>
      long_name :
      PCA Values
      n_features :
      ['THETA_0' 'THETA_1' 'SALT_0' 'SALT_1']
      \n",
      +       "\n",
      +       "\n",
      +       "\n",
      +       "\n",
      +       "
      \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      Array Chunk
      Bytes 2.44 GB 40.64 MB
      Shape (60, 4, 588, 2160) (1, 4, 588, 2160)
      Count 180 Tasks 60 Chunks
      Type float64 numpy.ndarray
      \n", + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 60\n", + " 1\n", + "\n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 2160\n", + " 588\n", + " 4\n", + "\n", + "
" + ], + "text/plain": [ + "\n", + "Dimensions: (XC: 2160, YC: 588, Z: 52, pca: 4, time: 60)\n", + "Coordinates:\n", + " * XC (XC) float64 0.08333 0.25 0.4167 0.5833 ... 359.6 359.8 359.9\n", + " * Z (Z) float32 -2.1 -6.7 -12.15 -18.55 ... -5000.0 -5400.0 -5800.0\n", + " * YC (YC) float64 -77.98 -77.95 -77.91 ... -30.02 -29.87 -29.72\n", + " * time (time) datetime64[ns] 2008-01-31T10:24:00 ... 2012-12-31\n", + "Dimensions without coordinates: pca\n", + "Data variables:\n", + " PCA_VALUES (time, pca, YC, XC) float64 dask.array" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pca_ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From faac6548da4fad46fc31e5f381bafeb39202000a Mon Sep 17 00:00:00 2001 From: Simon Date: Wed, 12 Aug 2020 12:22:33 +0100 Subject: [PATCH 2/9] running through with gmm --- a.py | 2 + gmm_big_train.py | 0 pca_nc_maker.py | 9 +- train_on_year.ipynb | 4625 +++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 4634 insertions(+), 2 deletions(-) create mode 100644 a.py create mode 100644 gmm_big_train.py create mode 100644 train_on_year.ipynb diff --git a/a.py b/a.py new file mode 100644 index 0000000..a9c9dbf --- /dev/null +++ b/a.py @@ -0,0 +1,2 @@ +import pyxpcm.transformations as tran +tran.y_grad() diff --git a/gmm_big_train.py b/gmm_big_train.py new file mode 100644 index 0000000..e69de29 diff --git a/pca_nc_maker.py b/pca_nc_maker.py index 13f27d2..2ee0c9d 100644 --- a/pca_nc_maker.py +++ b/pca_nc_maker.py @@ -83,8 +83,10 @@ def merge_whole_density_netcdf(): combine='by_coords', chunks={'time': 1}, data_vars='minimal', - #parallel=True, - coords='minimal', compat='override') + # parallel=True, + coords='minimal', + compat='override') + # this is too intense for memory return pca_ds @@ -94,6 +96,7 @@ def save_density_netcdf(pca_ds): xr.save_mfdataset([pca_ds], ['nc/pcm_pca.nc'], format='NETCDF4') + def take_derivative_pca(dimension="YC", typ='float32'): chunk_d = {'time': 1, 'YC': 588, 'XC': 2160} @@ -122,7 +125,9 @@ def take_derivative_pca(dimension="YC", typ='float32'): ['nc/pc_grad_' + dimension + '.nc'], format='NETCDF4') + def go_through_all(): + run_through_pca() pca_ds = merge_whole_density_netcdf() save_density_netcdf(pca_ds) diff --git a/train_on_year.ipynb b/train_on_year.ipynb new file mode 100644 index 0000000..c6afbf1 --- /dev/null +++ b/train_on_year.ipynb @@ -0,0 +1,4625 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "main_dir = '/Users/simon/bsose_monthly/'\n", + "salt = main_dir + 'bsose_i106_2008to2012_monthly_Salt.nc'\n", + "theta = main_dir + 'bsose_i106_2008to2012_monthly_Theta.nc'\n", + "density = main_dir + 'density.nc'\n", + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/simon/pyxpcm/pyxpcm/plot.py:45: UserWarning: pyXpcm requires seaborn installed for full plotting functionality\n", + " warnings.warn(\"pyXpcm requires seaborn installed for full plotting functionality\")\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import xarray as xr\n", + "xr.set_options(keep_attrs=True)\n", + "import matplotlib.pyplot as plt\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature\n", + "import matplotlib.path as mpath\n", + "import pyxpcm\n", + "from pyxpcm.models import pcm\n", + "\n", + "\n", + "def pcm_fit_and_post(time_i=42, K=4, maxvar=2): \n", + " # Define features to use\n", + " # Instantiate the PCM\n", + " \n", + " max_depth = 2000\n", + " z = np.arange(-300, -max_depth, -10.)\n", + " features_pcm = {'THETA': z, 'SALT': z}\n", + " features = {'THETA': 'THETA', 'SALT': 'SALT'}\n", + " salt_nc = xr.open_dataset(salt).isel(time=slice(42,54))#time_i)#\n", + " theta_nc = xr.open_dataset(theta).isel(time=slice(42,54))#time_i)\n", + " big_nc = xr.merge([salt_nc, theta_nc])\n", + " both_nc = big_nc.where(big_nc.coords['Depth'] > \n", + " max_depth).drop(['iter', 'Depth', \n", + " 'rA', 'drF', 'hFacC']) \n", + " \n", + " attr_d = {}\n", + "\n", + " for coord in both_nc.coords:\n", + " attr_d[coord] = both_nc.coords[coord].attrs\n", + " \n", + " lons_new = np.linspace(both_nc.XC.min(), both_nc.XC.max(), 60*4)\n", + " lats_new = np.linspace(both_nc.YC.min(), both_nc.YC.max(), 60)\n", + " # ds = both_nc # .copy(deep=True)\n", + " ds = both_nc.interp(coords={'YC': lats_new, \n", + " 'XC': lons_new})#, method='cubic')\n", + " \n", + " m = pcm(K=K, \n", + " features=features_pcm, \n", + " maxvar=maxvar, \n", + " timeit=True, \n", + " timeit_verb=1)\n", + " m.fit(ds, features=features, dim='Z') #, inplace=True)\n", + " m.predict(ds, features=features, \n", + " dim='Z', inplace=True)\n", + " m.predict_proba(ds, features=features, \n", + " dim='Z', inplace=True)\n", + " m.find_i_metric(ds, inplace=True)\n", + " \n", + " def sanitize():\n", + " del ds.PCM_LABELS.attrs['_pyXpcm_cleanable']\n", + " del ds.PCM_POST.attrs['_pyXpcm_cleanable']\n", + " del ds.PCM_RANK.attrs['_pyXpcm_cleanable']\n", + " \n", + " for coord in attr_d:\n", + " ds.coords[coord].attrs = attr_d[coord]\n", + " \n", + " sanitize()\n", + " return ds, m\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " fit.1-preprocess.1-mask: 197 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " fit.1-preprocess.2-feature_THETA.1-ravel: 332 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " fit.1-preprocess.2-feature_THETA.2-interp: 17 ms\n", + " fit.1-preprocess.2-feature_THETA.3-scale_fit: 1282 ms\n", + " fit.1-preprocess.2-feature_THETA.4-scale_transform: 942 ms\n", + " fit.1-preprocess.2-feature_THETA.5-reduce_fit: 1032 ms\n", + " fit.1-preprocess.2-feature_THETA.6-reduce_transform: 140 ms\n", + " fit.1-preprocess.2-feature_THETA.total: 3747 ms\n", + " fit.1-preprocess: 3747 ms\n", + " fit.1-preprocess.3-homogeniser: 4 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " fit.1-preprocess.2-feature_SALT.1-ravel: 277 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " fit.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", + " fit.1-preprocess.2-feature_SALT.3-scale_fit: 1337 ms\n", + " fit.1-preprocess.2-feature_SALT.4-scale_transform: 916 ms\n", + " fit.1-preprocess.2-feature_SALT.5-reduce_fit: 881 ms\n", + " fit.1-preprocess.2-feature_SALT.6-reduce_transform: 148 ms\n", + " fit.1-preprocess.2-feature_SALT.total: 3570 ms\n", + " fit.1-preprocess: 3570 ms\n", + " fit.1-preprocess.3-homogeniser: 3 ms\n", + " fit.1-preprocess.4-xarray: 16 ms\n", + " fit.1-preprocess: 7558 ms\n", + " fit.fit: 8540 ms\n", + " fit.score: 40 ms\n", + " fit: 16139 ms\n", + " predict.1-preprocess.1-mask: 86 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 291 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 982 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 141 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 1421 ms\n", + " predict.1-preprocess: 1421 ms\n", + " predict.1-preprocess.3-homogeniser: 2 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 296 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 6 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 917 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 140 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 1361 ms\n", + " predict.1-preprocess: 1361 ms\n", + " predict.1-preprocess.3-homogeniser: 2 ms\n", + " predict.1-preprocess.4-xarray: 15 ms\n", + " predict.1-preprocess: 2892 ms\n", + " predict.predict: 38 ms\n", + " predict.score: 40 ms\n", + " predict.xarray: 1700 ms\n", + " predict: 4673 ms\n", + " predict_proba.1-preprocess.1-mask: 92 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 306 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 951 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 139 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 1404 ms\n", + " predict_proba.1-preprocess: 1404 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 3 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 288 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 4 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 979 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 141 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 1414 ms\n", + " predict_proba.1-preprocess: 1414 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", + " predict_proba.1-preprocess.4-xarray: 14 ms\n", + " predict_proba.1-preprocess: 2935 ms\n", + " predict_proba.predict: 55 ms\n", + " predict_proba.score: 43 ms\n", + " predict_proba.xarray: 7818 ms\n", + " predict_proba: 10853 ms\n", + "[(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]\n", + " predict_proba.1-preprocess.1-mask: 100 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 307 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 986 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 143 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 1443 ms\n", + " predict_proba.1-preprocess: 1443 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 279 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 984 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 134 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 1404 ms\n", + " predict_proba.1-preprocess: 1404 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", + " predict_proba.1-preprocess.4-xarray: 14 ms\n", + " predict_proba.1-preprocess: 2970 ms\n", + "(125244, 4)\n", + "(125244, 5)\n", + " predict_proba.predict: 70 ms\n", + " predict_proba.xarray: 7516 ms\n", + " add_rank.xarray: 7531 ms\n", + " predict_prob: 18090 ms\n" + ] + } + ], + "source": [ + "ds, m = pcm_fit_and_post(K=5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "Show/Hide data repr\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Show/Hide attributes\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
xarray.Dataset
    • XC: 240
    • YC: 60
    • Z: 52
    • pcm_class: 5
    • time: 12
    • time
      (time)
      datetime64[ns]
      2011-08-01T15:12:00 ... 2012-07-01T09:36:00
      long_name :
      Time
      standard_name :
      time
      axis :
      T
      array(['2011-08-01T15:12:00.000000000', '2011-09-01T01:36:00.000000000',\n",
      +       "       '2011-10-01T12:00:00.000000000', '2011-10-31T22:24:00.000000000',\n",
      +       "       '2011-12-01T08:48:00.000000000', '2011-12-31T19:12:00.000000000',\n",
      +       "       '2012-01-31T05:36:00.000000000', '2012-03-01T16:00:00.000000000',\n",
      +       "       '2012-04-01T02:24:00.000000000', '2012-05-01T12:48:00.000000000',\n",
      +       "       '2012-05-31T23:12:00.000000000', '2012-07-01T09:36:00.000000000'],\n",
      +       "      dtype='datetime64[ns]')
    • Z
      (Z)
      float32
      -2.1 -6.7 ... -5400.0 -5800.0
      units :
      m
      positive :
      down
      standard_name :
      depth
      long_name :
      vertical coordinate of cell center
      axis :
      Z
      array([-2.100e+00, -6.700e+00, -1.215e+01, -1.855e+01, -2.625e+01, -3.525e+01,\n",
      +       "       -4.500e+01, -5.500e+01, -6.500e+01, -7.500e+01, -8.500e+01, -9.500e+01,\n",
      +       "       -1.050e+02, -1.150e+02, -1.250e+02, -1.350e+02, -1.465e+02, -1.615e+02,\n",
      +       "       -1.800e+02, -2.000e+02, -2.200e+02, -2.400e+02, -2.600e+02, -2.800e+02,\n",
      +       "       -3.010e+02, -3.270e+02, -3.610e+02, -4.025e+02, -4.500e+02, -5.000e+02,\n",
      +       "       -5.515e+02, -6.140e+02, -7.000e+02, -8.000e+02, -9.000e+02, -1.000e+03,\n",
      +       "       -1.100e+03, -1.225e+03, -1.400e+03, -1.600e+03, -1.800e+03, -2.010e+03,\n",
      +       "       -2.270e+03, -2.610e+03, -3.000e+03, -3.400e+03, -3.800e+03, -4.200e+03,\n",
      +       "       -4.600e+03, -5.000e+03, -5.400e+03, -5.800e+03], dtype=float32)
    • YC
      (YC)
      float64
      -77.98 -77.16 ... -30.53 -29.72
      coordinate :
      YC XC
      units :
      degrees_north
      standard_name :
      latitude
      long_name :
      latitude
      axis :
      Y
      array([-77.982651, -77.16456 , -76.34647 , -75.52838 , -74.710289, -73.892199,\n",
      +       "       -73.074108, -72.256018, -71.437928, -70.619837, -69.801747, -68.983656,\n",
      +       "       -68.165566, -67.347475, -66.529385, -65.711295, -64.893204, -64.075114,\n",
      +       "       -63.257023, -62.438933, -61.620843, -60.802752, -59.984662, -59.166571,\n",
      +       "       -58.348481, -57.530391, -56.7123  , -55.89421 , -55.076119, -54.258029,\n",
      +       "       -53.439939, -52.621848, -51.803758, -50.985667, -50.167577, -49.349487,\n",
      +       "       -48.531396, -47.713306, -46.895215, -46.077125, -45.259034, -44.440944,\n",
      +       "       -43.622854, -42.804763, -41.986673, -41.168582, -40.350492, -39.532402,\n",
      +       "       -38.714311, -37.896221, -37.07813 , -36.26004 , -35.44195 , -34.623859,\n",
      +       "       -33.805769, -32.987678, -32.169588, -31.351498, -30.533407, -29.715317])
    • XC
      (XC)
      float64
      0.08333 1.589 3.094 ... 358.4 359.9
      coordinate :
      YC XC
      units :
      degrees_east
      standard_name :
      longitude
      long_name :
      longitude
      axis :
      X
      array([8.333334e-02, 1.588912e+00, 3.094491e+00, ..., 3.569055e+02,\n",
      +       "       3.584111e+02, 3.599167e+02])
    • SALT
      (time, Z, YC, XC)
      float64
      nan nan nan nan ... 0.0 0.0 0.0 0.0
      units :
      psu
      long_name :
      Salinity
      standard_name :
      SALT
      array([[[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.76241635, 35.69724222, 35.69800239, ..., 35.66702453,\n",
      +       "          35.72830786, 35.78210389],\n",
      +       "         [35.80910656, 35.7278929 ,         nan, ..., 35.92798663,\n",
      +       "          35.94565591, 35.82460342],\n",
      +       "         [35.88534927, 35.83552407, 35.89943901, ..., 35.94890202,\n",
      +       "          36.02223367, 35.87853622]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.76245369, 35.69726089, 35.69800094, ..., 35.66722655,\n",
      +       "          35.72839551, 35.78213623],\n",
      +       "         [35.80910656, 35.72788364,         nan, ..., 35.92803851,\n",
      +       "          35.94566214, 35.82460342],\n",
      +       "         [35.88534164, 35.8354741 , 35.89938586, ..., 35.948915  ,\n",
      +       "          36.02224104, 35.87853622]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.76246604, 35.69726589, 35.69799823, ..., 35.66740227,\n",
      +       "          35.72845882, 35.78214477],\n",
      +       "         [35.80910274, 35.72787431,         nan, ..., 35.92806007,\n",
      +       "          35.9456524 , 35.82460184],\n",
      +       "         [35.8853302 , 35.83543964, 35.89935585, ..., 35.94890432,\n",
      +       "          36.02223341, 35.87853241]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.37136438, ...,  0.        ,\n",
      +       "          24.41002681,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43770223,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.86512099,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.63153536, 35.62039165, 35.64449005, ..., 35.69096633,\n",
      +       "          35.72263463, 35.63859279],\n",
      +       "         [35.66364736, 35.63127634,         nan, ..., 35.81719152,\n",
      +       "          35.85205042, 35.6771551 ],\n",
      +       "         [35.81845474, 35.86110124, 35.84925603, ..., 35.8691245 ,\n",
      +       "          35.90933032, 35.81701279]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.63154681, 35.6204565 , 35.6445155 , ..., 35.69100229,\n",
      +       "          35.72265011, 35.63859516],\n",
      +       "         [35.66365341, 35.63133363,         nan, ..., 35.81718441,\n",
      +       "          35.85205365, 35.67713511],\n",
      +       "         [35.81845474, 35.86106665, 35.84907725, ..., 35.86910084,\n",
      +       "          35.90927704, 35.81700134]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.63154417, 35.62049346, 35.64454427, ..., 35.69102861,\n",
      +       "          35.72264932, 35.63858608],\n",
      +       "         [35.66364736, 35.63137305,         nan, ..., 35.81722329,\n",
      +       "          35.85209196, 35.67710841],\n",
      +       "         [35.81847   , 35.86103905, 35.84898595, ..., 35.86908482,\n",
      +       "          35.90925034, 35.81699753]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.37191021, ...,  0.        ,\n",
      +       "          24.40455849,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43715064,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.86434037,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.57771775, 35.62958334, 35.634694  , ..., 35.67246189,\n",
      +       "          35.61208839, 35.57656904],\n",
      +       "         [35.60968571, 35.60290064,         nan, ..., 35.78957223,\n",
      +       "          35.79000331, 35.61714411],\n",
      +       "         [35.77298355, 35.9060301 , 35.72839755, ..., 35.85950911,\n",
      +       "          35.84601257, 35.73907852]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.57766671, 35.62945376, 35.63447976, ..., 35.67342093,\n",
      +       "          35.61206652, 35.57652299],\n",
      +       "         [35.60960784, 35.60281105,         nan, ..., 35.78962206,\n",
      +       "          35.78979841, 35.61705322],\n",
      +       "         [35.7727356 , 35.90563617, 35.72810431, ..., 35.85932575,\n",
      +       "          35.84568082, 35.73877716]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.57774118, 35.62936751, 35.63439511, ..., 35.67425361,\n",
      +       "          35.6119825 , 35.57658983],\n",
      +       "         [35.60957757, 35.60285536,         nan, ..., 35.79008755,\n",
      +       "          35.78981466, 35.61702189],\n",
      +       "         [35.77256012, 35.9052922 , 35.72910775, ..., 35.85915002,\n",
      +       "          35.84534537, 35.73818588]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.37159638, ...,  0.        ,\n",
      +       "          24.40260196,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43667111,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.85900813,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       ...,\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.98237897, 35.87974845, 35.8382837 , ..., 36.08352673,\n",
      +       "          36.27401942, 36.00175261],\n",
      +       "         [36.31365124, 35.91352032,         nan, ..., 36.15868134,\n",
      +       "          36.31333652, 36.3340218 ],\n",
      +       "         [36.3681221 , 36.03393384, 35.98517382, ..., 36.39303467,\n",
      +       "          36.33557099, 36.36808014]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.98236989, 35.87973244, 35.83826761, ..., 36.08347514,\n",
      +       "          36.27403476, 36.00171365],\n",
      +       "         [36.31363665, 35.91349514,         nan, ..., 36.15862233,\n",
      +       "          36.31327249, 36.33399062],\n",
      +       "         [36.36803436, 36.03389429, 35.98509015, ..., 36.39299983,\n",
      +       "          36.33550627, 36.3679924 ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.98234174, 35.87971501, 35.83824389, ..., 36.08340621,\n",
      +       "          36.27403049, 36.00165654],\n",
      +       "         [36.31360969, 35.91346231,         nan, ..., 36.15859068,\n",
      +       "          36.31322115, 36.33394037],\n",
      +       "         [36.36796951, 36.03390331, 35.98502937, ..., 36.39296854,\n",
      +       "          36.33547944, 36.36793137]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.37034194, ...,  0.        ,\n",
      +       "          24.40671967,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43563264,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.8592111 ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [36.04147855, 35.93299125, 35.90688039, ..., 36.20309483,\n",
      +       "          36.13624562, 36.04513799],\n",
      +       "         [36.08131305, 35.86977392,         nan, ..., 36.24807896,\n",
      +       "          36.25092737, 36.13202753],\n",
      +       "         [36.26810455, 35.96870446, 35.88701325, ..., 36.34807429,\n",
      +       "          36.24608378, 36.28655243]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [36.04151143, 35.93302397, 35.90688267, ..., 36.20319111,\n",
      +       "          36.1363091 , 36.04516179],\n",
      +       "         [36.08129174, 35.86975637,         nan, ..., 36.248129  ,\n",
      +       "          36.25094487, 36.13199701],\n",
      +       "         [36.26808929, 35.96863198, 35.88695222, ..., 36.34807073,\n",
      +       "          36.24609497, 36.28654099]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [36.04153168, 35.93304905, 35.90688031, ..., 36.20323805,\n",
      +       "          36.13634951, 36.04517678],\n",
      +       "         [36.08127266, 35.86973956,         nan, ..., 36.24813829,\n",
      +       "          36.25095697, 36.13197031],\n",
      +       "         [36.26807785, 35.96859739, 35.88689169, ..., 36.34805573,\n",
      +       "          36.24609865, 36.28653717]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.3711223 , ...,  0.        ,\n",
      +       "          24.40489158,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43526343,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.86048989,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.91009074, 35.85078865, 35.56787134, ..., 36.01311612,\n",
      +       "          36.17003994, 35.92407302],\n",
      +       "         [35.89411574, 35.78211632,         nan, ..., 36.19896649,\n",
      +       "          36.17886866, 35.89889772],\n",
      +       "         [35.91335678, 35.88604971, 35.90896348, ..., 36.31337611,\n",
      +       "          36.15632375, 35.97971725]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.91009455, 35.85078369, 35.56787755, ..., 36.01312739,\n",
      +       "          36.17003727, 35.92407683],\n",
      +       "         [35.89411193, 35.78212255,         nan, ..., 36.19899752,\n",
      +       "          36.17886877, 35.89889391],\n",
      +       "         [35.9133606 , 35.88604208, 35.90896679, ..., 36.31337992,\n",
      +       "          36.15633901, 35.97971725]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [35.91009455, 35.85078259, 35.56788894, ..., 36.01314129,\n",
      +       "          36.17003723, 35.92408065],\n",
      +       "         [35.89410811, 35.78213432,         nan, ..., 36.19901899,\n",
      +       "          36.17886343, 35.89889009],\n",
      +       "         [35.91336441, 35.88603814, 35.90897339, ..., 36.31339493,\n",
      +       "          36.15634244, 35.97972488]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        , 12.37093988, ...,  0.        ,\n",
      +       "          24.40287463,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ..., 13.43539876,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ..., 34.85941624,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]]])
    • THETA
      (time, Z, YC, XC)
      float64
      nan nan nan nan ... 0.0 0.0 0.0 0.0
      units :
      degC
      long_name :
      Potential Temperature
      standard_name :
      THETA
      array([[[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [16.91224107, 16.43401331, 16.42829744, ..., 16.73668129,\n",
      +       "          16.96183119, 17.00106982],\n",
      +       "         [17.10594605, 16.58357543,         nan, ..., 17.78552694,\n",
      +       "          17.77893846, 17.15627046],\n",
      +       "         [17.39700127, 17.41902259, 17.57648229, ..., 18.07164888,\n",
      +       "          18.36557512, 17.36038017]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [16.91124901, 16.43339274, 16.42752858, ..., 16.73595127,\n",
      +       "          16.96102677, 17.00007724],\n",
      +       "         [17.10549598, 16.58310654,         nan, ..., 17.78463126,\n",
      +       "          17.77757912, 17.15569575],\n",
      +       "         [17.39632988, 17.41838157, 17.57571519, ..., 18.07098448,\n",
      +       "          18.36467935, 17.35962105]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [16.91069974, 16.43307493, 16.42718746, ..., 16.73555945,\n",
      +       "          16.96057151, 16.99951095],\n",
      +       "         [17.1052305 , 16.58282718,         nan, ..., 17.78415165,\n",
      +       "          17.77679681, 17.15536903],\n",
      +       "         [17.39597893, 17.41795374, 17.57531644, ..., 18.07053892,\n",
      +       "          18.36411567, 17.35921097]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.29702708, ...,  0.        ,\n",
      +       "           1.16704883,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.6565437 ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.83060692,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.89069814, 15.76181684, 15.89840287, ..., 16.44942962,\n",
      +       "          16.56734141, 15.94874111],\n",
      +       "         [16.13006655, 15.89555083,         nan, ..., 17.036224  ,\n",
      +       "          17.1782732 , 16.22621958],\n",
      +       "         [16.70259666, 17.01188631, 17.06705913, ..., 17.43715272,\n",
      +       "          17.60336049, 16.71893692]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.88913707, 15.76080923, 15.89665007, ..., 16.44842801,\n",
      +       "          16.56579091, 15.94713175],\n",
      +       "         [16.12838799, 15.89416679,         nan, ..., 17.03497527,\n",
      +       "          17.17648679, 16.22431982],\n",
      +       "         [16.7002182 , 17.01003893, 17.06219751, ..., 17.43649808,\n",
      +       "          17.6021119 , 16.71636581]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.88794984, 15.76027278, 15.89519715, ..., 16.44774835,\n",
      +       "          16.56482414, 15.945908  ],\n",
      +       "         [16.12726023, 15.89323523,         nan, ..., 17.03415077,\n",
      +       "          17.17539446, 16.22303326],\n",
      +       "         [16.69836044, 17.00858524, 17.05901256, ..., 17.43597785,\n",
      +       "          17.60123911, 16.71436882]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.30226034, ...,  0.        ,\n",
      +       "           1.1250131 ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.65156626,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.82422417,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.89146396, 16.15703468, 16.04892193, ..., 16.7815255 ,\n",
      +       "          16.12083001, 15.89285111],\n",
      +       "         [16.15193515, 15.92419877,         nan, ..., 17.11573892,\n",
      +       "          17.22915213, 16.2472134 ],\n",
      +       "         [16.66711235, 17.30045687, 16.72286264, ..., 17.41147523,\n",
      +       "          17.31941569, 16.53580475]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.86767751, 16.13215815, 16.02232301, ..., 16.75726348,\n",
      +       "          16.09193845, 15.86873212],\n",
      +       "         [16.13131033, 15.89946013,         nan, ..., 17.09048474,\n",
      +       "          17.20340934, 16.22558555],\n",
      +       "         [16.64841461, 17.28325961, 16.69129931, ..., 17.39253236,\n",
      +       "          17.29853115, 16.51442146]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [15.84073713, 16.10348326, 15.99361797, ..., 16.72856295,\n",
      +       "          16.06003446, 15.84078202],\n",
      +       "         [16.11149937, 15.86871882,         nan, ..., 17.06221211,\n",
      +       "          17.17609587, 16.20354663],\n",
      +       "         [16.63266754, 17.27010797, 16.63590641, ..., 17.37590884,\n",
      +       "          17.28214781, 16.49468422]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.29881732, ...,  0.        ,\n",
      +       "           1.10802169,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.64741502,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.78184456,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       ...,\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [21.14409822, 20.96436484, 20.75297437, ..., 21.18240809,\n",
      +       "          21.54358519, 21.21397466],\n",
      +       "         [21.65378157, 21.05900875,         nan, ..., 21.74607111,\n",
      +       "          21.5058723 , 21.68643593],\n",
      +       "         [21.94439888, 21.26546943, 21.14656008, ..., 22.19396074,\n",
      +       "          21.64629067, 21.88305473]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [21.14300832, 20.96346514, 20.75234254, ..., 21.17949319,\n",
      +       "          21.54259634, 21.21285325],\n",
      +       "         [21.65290507, 21.05830386,         nan, ..., 21.74469514,\n",
      +       "          21.50424635, 21.68546763],\n",
      +       "         [21.94305801, 21.26423684, 21.1454809 , ..., 22.19314555,\n",
      +       "          21.6445972 , 21.88154984]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [21.14203368, 20.96285773, 20.75182057, ..., 21.17725054,\n",
      +       "          21.54186632, 21.21190019],\n",
      +       "         [21.65209048, 21.05775345,         nan, ..., 21.74367884,\n",
      +       "          21.50281964, 21.68456136],\n",
      +       "         [21.94205666, 21.26332227, 21.14446391, ..., 22.19236023,\n",
      +       "          21.64341839, 21.88048553]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.28053007, ...,  0.        ,\n",
      +       "           1.14097363,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.63832426,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.77766945,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [19.87881288, 19.5058598 , 19.64530254, ..., 20.21927977,\n",
      +       "          19.7003759 , 19.87653837],\n",
      +       "         [19.9390046 , 19.54309536,         nan, ..., 21.04037799,\n",
      +       "          20.13836374, 20.03864856],\n",
      +       "         [20.3325901 , 19.95626958, 19.77373081, ..., 21.13741078,\n",
      +       "          19.99432985, 20.26995277]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [19.87858456, 19.50577469, 19.64513394, ..., 20.21864426,\n",
      +       "          19.70005327, 19.87626814],\n",
      +       "         [19.93859005, 19.54278627,         nan, ..., 21.03912981,\n",
      +       "          20.13775996, 20.03820612],\n",
      +       "         [20.33231354, 19.95519968, 19.77166228, ..., 21.13551196,\n",
      +       "          19.99345838, 20.26960945]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [19.87845142, 19.50573441, 19.64498721, ..., 20.21783183,\n",
      +       "          19.69963656, 19.87611375],\n",
      +       "         [19.93836104, 19.54255955,         nan, ..., 21.03843996,\n",
      +       "          20.13723931, 20.03796472],\n",
      +       "         [20.33216095, 19.95460209, 19.7702522 , ..., 21.13440724,\n",
      +       "          19.99291241, 20.2694149 ]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.2907989 , ...,  0.        ,\n",
      +       "           1.12643214,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.63553041,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.78789808,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [18.38371987, 18.24232259, 17.84496257, ..., 18.45165848,\n",
      +       "          18.86684491, 18.42292331],\n",
      +       "         [18.37659771, 18.25798402,         nan, ..., 19.36286805,\n",
      +       "          18.89680308, 18.3856939 ],\n",
      +       "         [18.60637283, 18.64279679, 17.8711554 , ..., 19.96116897,\n",
      +       "          18.62246283, 18.72884178]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [18.38369994, 18.24229113, 17.84491162, ..., 18.4510271 ,\n",
      +       "          18.86683927, 18.42290338],\n",
      +       "         [18.37658179, 18.25794145,         nan, ..., 19.36225805,\n",
      +       "          18.89655844, 18.38566956],\n",
      +       "         [18.60629463, 18.6427196 , 17.87032178, ..., 19.9610909 ,\n",
      +       "          18.62198324, 18.72875977]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [18.383685  , 18.24226979, 17.84489254, ..., 18.45064394,\n",
      +       "          18.86684156, 18.42289416],\n",
      +       "         [18.37657114, 18.2579273 ,         nan, ..., 19.36194077,\n",
      +       "          18.89641489, 18.38565252],\n",
      +       "         [18.60628319, 18.64262512, 17.86984978, ..., 19.96097277,\n",
      +       "          18.62170431, 18.72874069]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.28873393, ...,  0.        ,\n",
      +       "           1.10971121,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.63680143,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  1.77871314,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]],\n",
      +       "\n",
      +       "        [[        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         [        nan,         nan,         nan, ...,         nan,\n",
      +       "                  nan,         nan],\n",
      +       "         ...,\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      +       "           0.        ,  0.        ],\n",
      +       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      +       "           0.        ,  0.        ]]]])
    • PCM_LABELS
      (time, YC, XC)
      float64
      nan nan nan nan ... 4.0 4.0 4.0 4.0
      long_name :
      PCM labels
      units :
      valid_min :
      0
      valid_max :
      4
      llh :
      0.5171744047844992
      array([[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "       ...,\n",
      +       "\n",
      +       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "        ...,\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]]])
    • PCM_POST
      (pcm_class, time, YC, XC)
      float64
      nan nan nan nan ... 1.0 1.0 1.0 1.0
      long_name :
      PCM posteriors
      units :
      valid_min :
      0
      valid_max :
      1
      llh :
      0.5171744047844992
      array([[[[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.86049014e-015, 3.33708360e-015, 1.41625978e-016, ...,\n",
      +       "          1.69035667e-011, 1.04929429e-012, 1.21017398e-014],\n",
      +       "         [5.79001171e-014, 3.40441441e-014,             nan, ...,\n",
      +       "          7.48629036e-012, 5.76864363e-013, 8.80395130e-014],\n",
      +       "         [4.67843894e-014, 1.62828994e-014, 4.04108056e-016, ...,\n",
      +       "          4.06041196e-014, 7.53617904e-015, 2.97203454e-014]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [7.61309616e-015, 1.70745582e-014, 4.83896791e-017, ...,\n",
      +       "          5.47345072e-011, 3.10884669e-014, 7.44187530e-015],\n",
      +       "         [3.40616553e-014, 5.27618682e-014,             nan, ...,\n",
      +       "          2.13903936e-012, 1.96908625e-013, 4.46331164e-014],\n",
      +       "         [3.02390959e-014, 8.39235916e-015, 1.01168015e-016, ...,\n",
      +       "          1.07191242e-013, 2.82808316e-015, 2.62565417e-014]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [4.13539278e-014, 2.48959187e-016, 1.04322359e-016, ...,\n",
      +       "          3.14961011e-011, 6.02246953e-015, 1.42578966e-013],\n",
      +       "         [2.50893715e-014, 2.26873006e-014,             nan, ...,\n",
      +       "          2.28719425e-012, 1.55657580e-013, 3.03921060e-014],\n",
      +       "         [5.68828221e-014, 4.57694366e-015, 1.03906741e-016, ...,\n",
      +       "          8.31761631e-014, 2.94608401e-015, 3.98407130e-014]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [7.02434350e-016, 2.13172202e-017, 1.57117717e-016, ...,\n",
      +       "          1.30375738e-015, 2.59370587e-015, 5.62908053e-016],\n",
      +       "         [1.01686776e-014, 2.32759256e-017,             nan, ...,\n",
      +       "          3.54713749e-013, 1.97238387e-014, 1.03377935e-014],\n",
      +       "         [9.59754437e-015, 5.40915426e-016, 6.95196478e-018, ...,\n",
      +       "          3.20715034e-015, 1.19249953e-016, 6.88350920e-015]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [4.71742977e-016, 7.56480650e-018, 1.09282618e-015, ...,\n",
      +       "          7.08454133e-016, 3.77633107e-015, 7.29076327e-016],\n",
      +       "         [3.52448254e-015, 3.97376086e-017,             nan, ...,\n",
      +       "          5.44712560e-014, 2.01222607e-014, 5.52853754e-015],\n",
      +       "         [7.60806662e-015, 5.76724077e-017, 8.47993256e-018, ...,\n",
      +       "          2.24603102e-015, 1.85231510e-016, 1.24201397e-014]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [4.93352849e-017, 1.48944205e-018, 6.17509294e-016, ...,\n",
      +       "          9.90088513e-016, 2.80438266e-015, 1.29993461e-016],\n",
      +       "         [1.83448404e-016, 1.59971841e-015,             nan, ...,\n",
      +       "          1.02769724e-014, 1.88247438e-014, 2.72841785e-016],\n",
      +       "         [1.21749222e-015, 1.38035683e-017, 4.80071550e-017, ...,\n",
      +       "          2.14114647e-015, 8.38338632e-016, 3.99067237e-015]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [1.03959090e-316, 8.32272198e-245, 4.44042171e-230, ...,\n",
      +       "          1.70452648e-321, 4.86421939e-283, 3.74611440e-314],\n",
      +       "         [1.28466478e-272, 1.28823729e-255,             nan, ...,\n",
      +       "          5.50751792e-275, 9.14331715e-269, 1.22896216e-264],\n",
      +       "         [5.27363600e-248, 1.62815049e-233, 6.03045445e-246, ...,\n",
      +       "          1.10099419e-272, 1.85758400e-299, 3.86355183e-244]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [7.14324041e-262, 1.56956671e-240, 4.55169994e-278, ...,\n",
      +       "          3.62114230e-304, 1.42518041e-296, 4.59498889e-281],\n",
      +       "         [8.99694858e-280, 1.12673909e-252,             nan, ...,\n",
      +       "          9.97286040e-266, 8.64711367e-257, 8.24402470e-276],\n",
      +       "         [9.75055735e-244, 2.20917118e-256, 1.13280736e-257, ...,\n",
      +       "          2.06244602e-279, 1.38716532e-266, 2.04751886e-233]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [4.11867636e-241, 4.61384761e-301, 1.73582896e-270, ...,\n",
      +       "          1.18345841e-297, 2.10325291e-304, 4.20509016e-240],\n",
      +       "         [1.90217574e-277, 2.77236263e-279,             nan, ...,\n",
      +       "          1.63701275e-266, 4.83740719e-256, 4.71362774e-272],\n",
      +       "         [2.59890201e-243, 1.13146094e-285, 2.98278325e-238, ...,\n",
      +       "          4.80392085e-292, 7.92038514e-240, 8.83737100e-237]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          2.63829079e-318, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [4.94065646e-324, 6.92304893e-305, 1.47516899e-283, ...,\n",
      +       "          2.93475488e-318, 0.00000000e+000, 1.68476385e-320]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [8.48745492e-319, 6.97952170e-312, 1.49780372e-276, ...,\n",
      +       "          3.49798477e-321, 0.00000000e+000, 5.63116211e-316]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 1.81735625e-318,             nan, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      +       "         [0.00000000e+000, 7.88642047e-303, 1.43554493e-255, ...,\n",
      +       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [2.15175050e-007, 2.29902867e-009, 8.71589768e-010, ...,\n",
      +       "          5.36749612e-005, 9.76891528e-008, 6.04314735e-007],\n",
      +       "         [2.30682644e-007, 4.74142561e-010,             nan, ...,\n",
      +       "          3.37348740e-006, 5.89954508e-008, 3.70935814e-007],\n",
      +       "         [9.14500820e-009, 2.22790163e-010, 4.88579586e-010, ...,\n",
      +       "          1.00111647e-007, 2.38212092e-007, 1.39907766e-008]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [6.31000039e-009, 1.33588786e-009, 2.52871546e-007, ...,\n",
      +       "          6.15402735e-006, 6.04365000e-008, 2.14992343e-008],\n",
      +       "         [3.56648753e-009, 4.07720882e-010,             nan, ...,\n",
      +       "          6.21742263e-007, 4.57456336e-008, 1.25020339e-008],\n",
      +       "         [1.68086521e-009, 2.17638938e-009, 1.56568788e-009, ...,\n",
      +       "          5.13813072e-007, 4.05961798e-008, 4.16743112e-009]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [1.05572973e-009, 3.97755634e-007, 3.23197134e-008, ...,\n",
      +       "          3.48749181e-006, 9.92817984e-008, 8.88232235e-010],\n",
      +       "         [4.36419089e-009, 1.16596120e-008,             nan, ...,\n",
      +       "          4.04900959e-007, 5.45702428e-008, 5.36108283e-009],\n",
      +       "         [4.65166465e-009, 1.44521576e-008, 2.69793346e-010, ...,\n",
      +       "          2.33825361e-007, 8.05062111e-009, 6.65823459e-009]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [1.12535049e-005, 2.35238527e-005, 9.42991097e-005, ...,\n",
      +       "          4.11315656e-006, 1.18374444e-005, 7.88185110e-006],\n",
      +       "         [3.83975255e-006, 1.19527936e-006,             nan, ...,\n",
      +       "          1.78399156e-006, 3.12016281e-006, 3.27259621e-006],\n",
      +       "         [2.00697214e-006, 2.35744486e-008, 4.84545984e-009, ...,\n",
      +       "          6.17265160e-007, 1.83006954e-007, 1.68947610e-006]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [4.05297174e-005, 1.47781889e-004, 1.21582471e-004, ...,\n",
      +       "          2.76537697e-005, 1.36629065e-005, 3.35528010e-005],\n",
      +       "         [9.34405019e-006, 5.55475188e-006,             nan, ...,\n",
      +       "          4.51315478e-006, 6.64800814e-006, 7.19884624e-006],\n",
      +       "         [9.92789250e-007, 1.68793278e-008, 8.31777635e-009, ...,\n",
      +       "          6.99373183e-007, 1.76408986e-007, 9.11419603e-007]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [1.67204834e-004, 5.91334181e-005, 1.99297052e-005, ...,\n",
      +       "          6.48291900e-005, 4.35373803e-005, 2.12574078e-004],\n",
      +       "         [1.29041989e-005, 5.40683748e-006,             nan, ...,\n",
      +       "          1.27151902e-005, 9.01937940e-006, 1.24795245e-005],\n",
      +       "         [3.29265028e-007, 2.55307006e-008, 4.46427269e-009, ...,\n",
      +       "          1.16233223e-006, 1.00061012e-007, 4.47067583e-007]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99999785e-001, 9.99999998e-001, 9.99999999e-001, ...,\n",
      +       "          9.99946325e-001, 9.99999902e-001, 9.99999396e-001],\n",
      +       "         [9.99999769e-001, 1.00000000e+000,             nan, ...,\n",
      +       "          9.99996627e-001, 9.99999941e-001, 9.99999629e-001],\n",
      +       "         [9.99999991e-001, 1.00000000e+000, 1.00000000e+000, ...,\n",
      +       "          9.99999900e-001, 9.99999762e-001, 9.99999986e-001]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99999994e-001, 9.99999999e-001, 9.99999747e-001, ...,\n",
      +       "          9.99993846e-001, 9.99999940e-001, 9.99999979e-001],\n",
      +       "         [9.99999996e-001, 1.00000000e+000,             nan, ...,\n",
      +       "          9.99999378e-001, 9.99999954e-001, 9.99999987e-001],\n",
      +       "         [9.99999998e-001, 9.99999998e-001, 9.99999998e-001, ...,\n",
      +       "          9.99999486e-001, 9.99999959e-001, 9.99999996e-001]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99999999e-001, 9.99999602e-001, 9.99999968e-001, ...,\n",
      +       "          9.99996512e-001, 9.99999901e-001, 9.99999999e-001],\n",
      +       "         [9.99999996e-001, 9.99999988e-001,             nan, ...,\n",
      +       "          9.99999595e-001, 9.99999945e-001, 9.99999995e-001],\n",
      +       "         [9.99999995e-001, 9.99999986e-001, 1.00000000e+000, ...,\n",
      +       "          9.99999766e-001, 9.99999992e-001, 9.99999993e-001]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99988746e-001, 9.99976476e-001, 9.99905701e-001, ...,\n",
      +       "          9.99995887e-001, 9.99988163e-001, 9.99992118e-001],\n",
      +       "         [9.99996160e-001, 9.99998805e-001,             nan, ...,\n",
      +       "          9.99998216e-001, 9.99996880e-001, 9.99996727e-001],\n",
      +       "         [9.99997993e-001, 9.99999976e-001, 9.99999995e-001, ...,\n",
      +       "          9.99999383e-001, 9.99999817e-001, 9.99998311e-001]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99959470e-001, 9.99852218e-001, 9.99878418e-001, ...,\n",
      +       "          9.99972346e-001, 9.99986337e-001, 9.99966447e-001],\n",
      +       "         [9.99990656e-001, 9.99994445e-001,             nan, ...,\n",
      +       "          9.99995487e-001, 9.99993352e-001, 9.99992801e-001],\n",
      +       "         [9.99999007e-001, 9.99999983e-001, 9.99999992e-001, ...,\n",
      +       "          9.99999301e-001, 9.99999824e-001, 9.99999089e-001]],\n",
      +       "\n",
      +       "        [[            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         [            nan,             nan,             nan, ...,\n",
      +       "                      nan,             nan,             nan],\n",
      +       "         ...,\n",
      +       "         [9.99832795e-001, 9.99940867e-001, 9.99980070e-001, ...,\n",
      +       "          9.99935171e-001, 9.99956463e-001, 9.99787426e-001],\n",
      +       "         [9.99987096e-001, 9.99994593e-001,             nan, ...,\n",
      +       "          9.99987285e-001, 9.99990981e-001, 9.99987520e-001],\n",
      +       "         [9.99999671e-001, 9.99999974e-001, 9.99999996e-001, ...,\n",
      +       "          9.99998838e-001, 9.99999900e-001, 9.99999553e-001]]]])
    • PCM_RANK
      (pcm_class, time, YC, XC)
      float64
      nan nan nan nan ... 2.0 2.0 2.0 2.0
      long_name :
      PCM Rank
      units :
      valid_min :
      0
      valid_max :
      5
      array([[[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      +       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      +       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      +       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0., nan, ...,  2.,  0.,  0.],\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  0.,  2.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  0.,  2.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  2., nan, ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  2.,  2., ...,  0.,  0.,  0.]]],\n",
      +       "\n",
      +       "\n",
      +       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      +       "\n",
      +       "        ...,\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2., nan, ...,  0.,  2.,  2.],\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  2.,  0.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      +       "         [ 0.,  0.,  0., ...,  0.,  2.,  0.]],\n",
      +       "\n",
      +       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      +       "         ...,\n",
      +       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  0., nan, ...,  2.,  2.,  2.],\n",
      +       "         [ 2.,  0.,  0., ...,  2.,  2.,  2.]]]])
" + ], + "text/plain": [ + "\n", + "Dimensions: (XC: 240, YC: 60, Z: 52, pcm_class: 5, time: 12)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2011-08-01T15:12:00 ... 2012-07-01T09:36:00\n", + " * Z (Z) float32 -2.1 -6.7 -12.15 -18.55 ... -5000.0 -5400.0 -5800.0\n", + " * YC (YC) float64 -77.98 -77.16 -76.35 ... -31.35 -30.53 -29.72\n", + " * XC (XC) float64 0.08333 1.589 3.094 4.6 ... 355.4 356.9 358.4 359.9\n", + "Dimensions without coordinates: pcm_class\n", + "Data variables:\n", + " SALT (time, Z, YC, XC) float64 nan nan nan nan ... 0.0 0.0 0.0 0.0\n", + " THETA (time, Z, YC, XC) float64 nan nan nan nan ... 0.0 0.0 0.0 0.0\n", + " PCM_LABELS (time, YC, XC) float64 nan nan nan nan nan ... 4.0 4.0 4.0 4.0\n", + " PCM_POST (pcm_class, time, YC, XC) float64 nan nan nan ... 1.0 1.0 1.0\n", + " PCM_RANK (pcm_class, time, YC, XC) float64 nan nan nan ... 2.0 2.0 2.0" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "ds.to_netcdf('nc/trained_on_year.nc')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def label_and_save(m, time_i):\n", + " # Define features to use\n", + " # Instantiate the PCM\n", + " \n", + " max_depth = 2000\n", + " z = np.arange(-300, -max_depth, -10.)\n", + " features_pcm = {'THETA': z, 'SALT': z}\n", + " features = {'THETA': 'THETA', 'SALT': 'SALT'}\n", + " salt_nc = xr.open_dataset(salt).isel(time=time_i)\n", + " theta_nc = xr.open_dataset(theta).isel(time=time_i)\n", + " big_nc = xr.merge([salt_nc, theta_nc])\n", + " both_nc = big_nc.where(big_nc.coords['Depth'] > \n", + " max_depth).drop(['iter', 'Depth', \n", + " 'rA', 'drF', 'hFacC']) \n", + " \n", + " attr_d = {}\n", + "\n", + " for coord in both_nc.coords:\n", + " attr_d[coord] = both_nc.coords[coord].attrs\n", + " \n", + " ds = both_nc\n", + " \n", + " m.predict(ds, features=features, \n", + " dim='Z', inplace=True)\n", + " m.predict_proba(ds, features=features, \n", + " dim='Z', inplace=True)\n", + " \n", + " def sanitize():\n", + " del ds.PCM_LABELS.attrs['_pyXpcm_cleanable']\n", + " del ds.PCM_POST.attrs['_pyXpcm_cleanable']\n", + " \n", + " for coord in attr_d:\n", + " ds.coords[coord].attrs = attr_d[coord]\n", + " \n", + " sanitize()\n", + " ds = ds.drop(['SALT', 'THETA']).astype('float32')\n", + " \n", + " ds = ds.expand_dims(dim='time', axis=None)\n", + "\n", + " ds = ds.assign_coords({\"time\":\n", + " (\"time\", [salt_nc.coords['time'].values])})\n", + "\n", + " ds.coords['time'].attrs = salt_nc.coords['time'].attrs\n", + " ds.to_netcdf('nc/labels/'+str(time_i)+'.nc')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.1-mask: 177 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 658 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6050 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 958 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7674 ms\n", + " predict.1-preprocess: 7674 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1214 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5869 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 913 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 8007 ms\n", + " predict.1-preprocess: 8007 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 100 ms\n", + " predict.1-preprocess: 16041 ms\n", + " predict.predict: 249 ms\n", + " predict.score: 270 ms\n", + " predict.xarray: 3368 ms\n", + " predict: 19935 ms\n", + " predict_proba.1-preprocess.1-mask: 359 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 994 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6238 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 946 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 8186 ms\n", + " predict_proba.1-preprocess: 8187 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1111 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 7608 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 997 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 9734 ms\n", + " predict_proba.1-preprocess: 9736 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 16 ms\n", + " predict_proba.1-preprocess.4-xarray: 97 ms\n", + " predict_proba.1-preprocess: 18462 ms\n", + " predict_proba.predict: 385 ms\n", + " predict_proba.score: 286 ms\n", + " predict_proba.xarray: 16622 ms\n", + " predict_proba: 35761 ms\n", + " predict.1-preprocess.1-mask: 181 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 769 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6860 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 967 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8605 ms\n", + " predict.1-preprocess: 8605 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1331 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 10 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 9178 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 2043 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 12566 ms\n", + " predict.1-preprocess: 12568 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + " predict.1-preprocess.4-xarray: 99 ms\n", + " predict.1-preprocess: 21537 ms\n", + " predict.predict: 277 ms\n", + " predict.score: 348 ms\n", + " predict.xarray: 3378 ms\n", + " predict: 25545 ms\n", + " predict_proba.1-preprocess.1-mask: 563 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1015 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5203 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 971 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7197 ms\n", + " predict_proba.1-preprocess: 7197 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 17 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1261 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 28 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3992 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 944 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 6228 ms\n", + " predict_proba.1-preprocess: 6228 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 94 ms\n", + " predict_proba.1-preprocess: 14166 ms\n", + " predict_proba.predict: 403 ms\n", + " predict_proba.score: 292 ms\n", + " predict_proba.xarray: 16308 ms\n", + " predict_proba: 31175 ms\n", + " predict.1-preprocess.1-mask: 189 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 671 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 8453 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1028 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 10160 ms\n", + " predict.1-preprocess: 10160 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1231 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4461 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 918 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 6621 ms\n", + " predict.1-preprocess: 6621 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + " predict.1-preprocess.4-xarray: 97 ms\n", + " predict.1-preprocess: 17113 ms\n", + " predict.predict: 257 ms\n", + " predict.score: 298 ms\n", + " predict.xarray: 3400 ms\n", + " predict: 21073 ms\n", + " predict_proba.1-preprocess.1-mask: 388 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1021 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 7436 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 996 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 9460 ms\n", + " predict_proba.1-preprocess: 9461 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1176 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 6643 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 940 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 8774 ms\n", + " predict_proba.1-preprocess: 8775 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + " predict_proba.1-preprocess.4-xarray: 102 ms\n", + " predict_proba.1-preprocess: 18807 ms\n", + " predict_proba.predict: 408 ms\n", + " predict_proba.score: 316 ms\n", + " predict_proba.xarray: 15959 ms\n", + " predict_proba: 35496 ms\n", + " predict.1-preprocess.1-mask: 170 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 646 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 14192 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 3411 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 18265 ms\n", + " predict.1-preprocess: 18265 ms\n", + " predict.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1455 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 16 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5382 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 2115 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 8970 ms\n", + " predict.1-preprocess: 8971 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + " predict.1-preprocess.4-xarray: 99 ms\n", + " predict.1-preprocess: 27564 ms\n", + " predict.predict: 301 ms\n", + " predict.score: 351 ms\n", + " predict.xarray: 3770 ms\n", + " predict: 31991 ms\n", + " predict_proba.1-preprocess.1-mask: 483 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1051 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 8442 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 954 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 10456 ms\n", + " predict_proba.1-preprocess: 10457 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1140 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 13 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3622 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 903 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 5680 ms\n", + " predict_proba.1-preprocess: 5681 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + " predict_proba.1-preprocess.4-xarray: 94 ms\n", + " predict_proba.1-preprocess: 16791 ms\n", + " predict_proba.predict: 367 ms\n", + " predict_proba.score: 281 ms\n", + " predict_proba.xarray: 16954 ms\n", + " predict_proba: 34397 ms\n", + " predict.1-preprocess.1-mask: 266 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 749 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6394 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 908 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8058 ms\n", + " predict.1-preprocess: 8058 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1197 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3737 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 1001 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 5945 ms\n", + " predict.1-preprocess: 5946 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 96 ms\n", + " predict.1-preprocess: 14406 ms\n", + " predict.predict: 286 ms\n", + " predict.score: 281 ms\n", + " predict.xarray: 3464 ms\n", + " predict: 18442 ms\n", + " predict_proba.1-preprocess.1-mask: 360 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1087 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5775 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 998 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7868 ms\n", + " predict_proba.1-preprocess: 7868 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1254 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 19 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 7628 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 923 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 9828 ms\n", + " predict_proba.1-preprocess: 9829 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + " predict_proba.1-preprocess.4-xarray: 98 ms\n", + " predict_proba.1-preprocess: 18250 ms\n", + " predict_proba.predict: 356 ms\n", + " predict_proba.score: 304 ms\n", + " predict_proba.xarray: 15696 ms\n", + " predict_proba: 34611 ms\n", + " predict.1-preprocess.1-mask: 173 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 702 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5625 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 916 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7251 ms\n", + " predict.1-preprocess: 7252 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1262 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 16 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3622 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 885 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 5788 ms\n", + " predict.1-preprocess: 5789 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 93 ms\n", + " predict.1-preprocess: 13348 ms\n", + " predict.predict: 253 ms\n", + " predict.score: 267 ms\n", + " predict.xarray: 3425 ms\n", + " predict: 17298 ms\n", + " predict_proba.1-preprocess.1-mask: 365 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1057 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5574 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 885 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7525 ms\n", + " predict_proba.1-preprocess: 7526 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 664 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 10010 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 888 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 11580 ms\n", + " predict_proba.1-preprocess: 11580 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 15 ms\n", + " predict_proba.1-preprocess.4-xarray: 94 ms\n", + " predict_proba.1-preprocess: 19650 ms\n", + " predict_proba.predict: 350 ms\n", + " predict_proba.score: 297 ms\n", + " predict_proba.xarray: 15462 ms\n", + " predict_proba: 35766 ms\n", + " predict.1-preprocess.1-mask: 175 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 730 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 10 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6826 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 918 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8492 ms\n", + " predict.1-preprocess: 8492 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1420 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 22 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5157 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 937 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 7538 ms\n", + " predict.1-preprocess: 7539 ms\n", + " predict.1-preprocess.3-homogeniser: 11 ms\n", + " predict.1-preprocess.4-xarray: 98 ms\n", + " predict.1-preprocess: 16399 ms\n", + " predict.predict: 246 ms\n", + " predict.score: 285 ms\n", + " predict.xarray: 3386 ms\n", + " predict: 20322 ms\n", + " predict_proba.1-preprocess.1-mask: 409 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1127 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 9770 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 1198 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 12105 ms\n", + " predict_proba.1-preprocess: 12106 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1408 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5130 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 883 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 7439 ms\n", + " predict_proba.1-preprocess: 7439 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 92 ms\n", + " predict_proba.1-preprocess: 20088 ms\n", + " predict_proba.predict: 349 ms\n", + " predict_proba.score: 272 ms\n", + " predict_proba.xarray: 15805 ms\n", + " predict_proba: 36521 ms\n", + " predict.1-preprocess.1-mask: 190 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 641 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5716 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1095 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7458 ms\n", + " predict.1-preprocess: 7458 ms\n", + " predict.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1313 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 10 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4967 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 907 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 7203 ms\n", + " predict.1-preprocess: 7203 ms\n", + " predict.1-preprocess.3-homogeniser: 11 ms\n", + " predict.1-preprocess.4-xarray: 94 ms\n", + " predict.1-preprocess: 15034 ms\n", + " predict.predict: 243 ms\n", + " predict.score: 271 ms\n", + " predict.xarray: 3433 ms\n", + " predict: 18988 ms\n", + " predict_proba.1-preprocess.1-mask: 344 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1055 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5928 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7904 ms\n", + " predict_proba.1-preprocess: 7905 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1167 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 17 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5593 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 880 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 7659 ms\n", + " predict_proba.1-preprocess: 7659 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 92 ms\n", + " predict_proba.1-preprocess: 16040 ms\n", + " predict_proba.predict: 354 ms\n", + " predict_proba.score: 275 ms\n", + " predict_proba.xarray: 15805 ms\n", + " predict_proba: 32480 ms\n", + " predict.1-preprocess.1-mask: 173 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 636 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6385 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1011 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8042 ms\n", + " predict.1-preprocess: 8043 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1150 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 7 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 6142 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 890 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 8191 ms\n", + " predict.1-preprocess: 8191 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 98 ms\n", + " predict.1-preprocess: 16586 ms\n", + " predict.predict: 252 ms\n", + " predict.score: 268 ms\n", + " predict.xarray: 3469 ms\n", + " predict: 20580 ms\n", + " predict_proba.1-preprocess.1-mask: 364 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1054 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5363 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7334 ms\n", + " predict_proba.1-preprocess: 7334 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1094 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5100 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 873 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 7084 ms\n", + " predict_proba.1-preprocess: 7085 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 91 ms\n", + " predict_proba.1-preprocess: 14960 ms\n", + " predict_proba.predict: 356 ms\n", + " predict_proba.score: 275 ms\n", + " predict_proba.xarray: 15345 ms\n", + " predict_proba: 30941 ms\n", + " predict.1-preprocess.1-mask: 171 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 656 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6813 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 898 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8374 ms\n", + " predict.1-preprocess: 8375 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1326 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 6864 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 893 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 9090 ms\n", + " predict.1-preprocess: 9090 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 104 ms\n", + " predict.1-preprocess: 17809 ms\n", + " predict.predict: 276 ms\n", + " predict.score: 369 ms\n", + " predict.xarray: 3510 ms\n", + " predict: 21969 ms\n", + " predict_proba.1-preprocess.1-mask: 174 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 693 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6013 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7627 ms\n", + " predict_proba.1-preprocess: 7627 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1215 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3452 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 900 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 5584 ms\n", + " predict_proba.1-preprocess: 5585 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + " predict_proba.1-preprocess.4-xarray: 94 ms\n", + " predict_proba.1-preprocess: 13520 ms\n", + " predict_proba.predict: 361 ms\n", + " predict_proba.score: 278 ms\n", + " predict_proba.xarray: 15695 ms\n", + " predict_proba: 29859 ms\n", + " predict.1-preprocess.1-mask: 181 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 659 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5222 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 976 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 6867 ms\n", + " predict.1-preprocess: 6868 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1255 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5336 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 888 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 7490 ms\n", + " predict.1-preprocess: 7490 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 95 ms\n", + " predict.1-preprocess: 14725 ms\n", + " predict.predict: 253 ms\n", + " predict.score: 278 ms\n", + " predict.xarray: 3496 ms\n", + " predict: 18756 ms\n", + " predict_proba.1-preprocess.1-mask: 432 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1038 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6462 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 928 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 8444 ms\n", + " predict_proba.1-preprocess: 8445 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1067 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 20 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 4383 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 955 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 6428 ms\n", + " predict_proba.1-preprocess: 6428 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 98 ms\n", + " predict_proba.1-preprocess: 15445 ms\n", + " predict_proba.predict: 397 ms\n", + " predict_proba.score: 271 ms\n", + " predict_proba.xarray: 15562 ms\n", + " predict_proba: 31682 ms\n", + " predict.1-preprocess.1-mask: 170 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 630 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 7107 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 947 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 8691 ms\n", + " predict.1-preprocess: 8692 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1345 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3716 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 896 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 5970 ms\n", + " predict.1-preprocess: 5970 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + " predict.1-preprocess.4-xarray: 93 ms\n", + " predict.1-preprocess: 14967 ms\n", + " predict.predict: 250 ms\n", + " predict.score: 275 ms\n", + " predict.xarray: 3548 ms\n", + " predict: 19044 ms\n", + " predict_proba.1-preprocess.1-mask: 361 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1066 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 7339 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 895 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 9307 ms\n", + " predict_proba.1-preprocess: 9308 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1260 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 12 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3652 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 870 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 5797 ms\n", + " predict_proba.1-preprocess: 5798 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 96 ms\n", + " predict_proba.1-preprocess: 15607 ms\n", + " predict_proba.predict: 357 ms\n", + " predict_proba.score: 273 ms\n", + " predict_proba.xarray: 15698 ms\n", + " predict_proba: 31940 ms\n", + " predict.1-preprocess.1-mask: 175 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 661 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5322 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 920 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 6911 ms\n", + " predict.1-preprocess: 6911 ms\n", + " predict.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1353 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4647 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 890 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 6901 ms\n", + " predict.1-preprocess: 6902 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 95 ms\n", + " predict.1-preprocess: 14132 ms\n", + " predict.predict: 269 ms\n", + " predict.score: 291 ms\n", + " predict.xarray: 3488 ms\n", + " predict: 18185 ms\n", + " predict_proba.1-preprocess.1-mask: 425 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 800 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6032 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 888 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7726 ms\n", + " predict_proba.1-preprocess: 7726 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 650 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 14 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 6344 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 892 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 7901 ms\n", + " predict_proba.1-preprocess: 7902 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 96 ms\n", + " predict_proba.1-preprocess: 16194 ms\n", + " predict_proba.predict: 350 ms\n", + " predict_proba.score: 294 ms\n", + " predict_proba.xarray: 15559 ms\n", + " predict_proba: 32402 ms\n", + " predict.1-preprocess.1-mask: 184 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 659 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 7 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5627 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 948 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7245 ms\n", + " predict.1-preprocess: 7246 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1294 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4177 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 861 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 6345 ms\n", + " predict.1-preprocess: 6346 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + " predict.1-preprocess.4-xarray: 96 ms\n", + " predict.1-preprocess: 13948 ms\n", + " predict.predict: 253 ms\n", + " predict.score: 271 ms\n", + " predict.xarray: 3632 ms\n", + " predict: 18107 ms\n", + " predict_proba.1-preprocess.1-mask: 389 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1027 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5197 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 876 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7108 ms\n", + " predict_proba.1-preprocess: 7108 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 623 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 14 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5324 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 873 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 6836 ms\n", + " predict_proba.1-preprocess: 6836 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 91 ms\n", + " predict_proba.1-preprocess: 14465 ms\n", + " predict_proba.predict: 360 ms\n", + " predict_proba.score: 279 ms\n", + " predict_proba.xarray: 15614 ms\n", + " predict_proba: 30723 ms\n", + " predict.1-preprocess.1-mask: 175 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 655 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5942 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 896 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7502 ms\n", + " predict.1-preprocess: 7502 ms\n", + " predict.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1256 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 7 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 7034 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 885 ms\n", + " predict.1-preprocess.2-feature_SALT.total: 9184 ms\n", + " predict.1-preprocess: 9184 ms\n", + " predict.1-preprocess.3-homogeniser: 13 ms\n", + " predict.1-preprocess.4-xarray: 96 ms\n", + " predict.1-preprocess: 17007 ms\n", + " predict.predict: 244 ms\n", + " predict.score: 268 ms\n", + " predict.xarray: 3547 ms\n", + " predict: 21070 ms\n", + " predict_proba.1-preprocess.1-mask: 295 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 828 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5998 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 886 ms\n", + " predict_proba.1-preprocess.2-feature_THETA.total: 7719 ms\n", + " predict_proba.1-preprocess: 7719 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 841 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict_proba.1-preprocess.2-feature_SALT.2-interp: 13 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5661 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 864 ms\n", + " predict_proba.1-preprocess.2-feature_SALT.total: 7382 ms\n", + " predict_proba.1-preprocess: 7383 ms\n", + " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", + " predict_proba.1-preprocess.4-xarray: 93 ms\n", + " predict_proba.1-preprocess: 15536 ms\n", + " predict_proba.predict: 398 ms\n", + " predict_proba.score: 295 ms\n", + " predict_proba.xarray: 15455 ms\n", + " predict_proba: 31689 ms\n", + " predict.1-preprocess.1-mask: 194 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.1-ravel: 655 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", + " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5853 ms\n", + " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", + " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 912 ms\n", + " predict.1-preprocess.2-feature_THETA.total: 7429 ms\n", + " predict.1-preprocess: 7430 ms\n", + " predict.1-preprocess.3-homogeniser: 12 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.1-ravel: 1271 ms\n", + "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", + " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", + " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", + " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", + " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", + " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", + " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", + " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", + " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", + " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", + " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", + " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4863 ms\n", + " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n" + ] + } + ], + "source": [ + "for time_i in range(0, 60):\n", + " label_and_save(m, time_i)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "Number of class: 5\n", + "Number of feature: 2\n", + "Feature names: odict_keys(['THETA', 'SALT'])\n", + "Fitted: True\n", + "Feature: 'THETA'\n", + "\t Interpoler: \n", + "\t Scaler: 'normal', \n", + "\t Reducer: True, \n", + "Feature: 'SALT'\n", + "\t Interpoler: \n", + "\t Scaler: 'normal', \n", + "\t Reducer: True, \n", + "Classifier: 'gmm', \n", + "\t log likelihood of the training set: -1.584785" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "m" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 71149e4d273aa6454ef74de4959820b2316648fc Mon Sep 17 00:00:00 2001 From: "Simon D.A. Thomas" <30407294+sdat2@users.noreply.github.com> Date: Mon, 17 Aug 2020 12:00:14 +0100 Subject: [PATCH 3/9] Delete a.py --- a.py | 2 -- 1 file changed, 2 deletions(-) delete mode 100644 a.py diff --git a/a.py b/a.py deleted file mode 100644 index a9c9dbf..0000000 --- a/a.py +++ /dev/null @@ -1,2 +0,0 @@ -import pyxpcm.transformations as tran -tran.y_grad() From f604da8390c2a61d54d49c40790f779e95c49a67 Mon Sep 17 00:00:00 2001 From: "Simon D.A. Thomas" <30407294+sdat2@users.noreply.github.com> Date: Mon, 17 Aug 2020 12:00:35 +0100 Subject: [PATCH 4/9] Delete test-loading.ipynb --- test-loading.ipynb | 607 --------------------------------------------- 1 file changed, 607 deletions(-) delete mode 100644 test-loading.ipynb diff --git a/test-loading.ipynb b/test-loading.ipynb deleted file mode 100644 index 2f9dab4..0000000 --- a/test-loading.ipynb +++ /dev/null @@ -1,607 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import xarray as xr\n", - "xr.set_options(keep_attrs=True)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ds = xr.open_mfdataset('nc/pca/*.nc',\n", - " concat_dim=\"time\",\n", - " combine='by_coords',\n", - " chunks={'time': 1},\n", - " data_vars='minimal',\n", - " #parallel=True,\n", - " coords='minimal', compat='override')" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "Show/Hide data repr\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "Show/Hide attributes\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
xarray.Dataset
    • XC: 2160
    • YC: 588
    • Z: 52
    • pca: 4
    • time: 60
    • XC
      (XC)
      float64
      0.08333 0.25 0.4167 ... 359.8 359.9
      coordinate :
      YC XC
      units :
      degrees_east
      standard_name :
      longitude
      long_name :
      longitude
      axis :
      X
      array([8.333334e-02, 2.500000e-01, 4.166667e-01, ..., 3.595833e+02,\n",
      -       "       3.597500e+02, 3.599167e+02])
    • Z
      (Z)
      float32
      -2.1 -6.7 ... -5400.0 -5800.0
      units :
      m
      positive :
      down
      standard_name :
      depth
      long_name :
      vertical coordinate of cell center
      axis :
      Z
      array([-2.100e+00, -6.700e+00, -1.215e+01, -1.855e+01, -2.625e+01, -3.525e+01,\n",
      -       "       -4.500e+01, -5.500e+01, -6.500e+01, -7.500e+01, -8.500e+01, -9.500e+01,\n",
      -       "       -1.050e+02, -1.150e+02, -1.250e+02, -1.350e+02, -1.465e+02, -1.615e+02,\n",
      -       "       -1.800e+02, -2.000e+02, -2.200e+02, -2.400e+02, -2.600e+02, -2.800e+02,\n",
      -       "       -3.010e+02, -3.270e+02, -3.610e+02, -4.025e+02, -4.500e+02, -5.000e+02,\n",
      -       "       -5.515e+02, -6.140e+02, -7.000e+02, -8.000e+02, -9.000e+02, -1.000e+03,\n",
      -       "       -1.100e+03, -1.225e+03, -1.400e+03, -1.600e+03, -1.800e+03, -2.010e+03,\n",
      -       "       -2.270e+03, -2.610e+03, -3.000e+03, -3.400e+03, -3.800e+03, -4.200e+03,\n",
      -       "       -4.600e+03, -5.000e+03, -5.400e+03, -5.800e+03], dtype=float32)
    • YC
      (YC)
      float64
      -77.98 -77.95 ... -29.87 -29.72
      coordinate :
      YC XC
      units :
      degrees_north
      standard_name :
      latitude
      long_name :
      latitude
      axis :
      Y
      array([-77.982651, -77.947899, -77.913048, ..., -30.017181, -29.870987,\n",
      -       "       -29.715317])
    • time
      (time)
      datetime64[ns]
      2008-01-31T10:24:00 ... 2012-12-31
      long_name :
      Time
      standard_name :
      time
      axis :
      T
      array(['2008-01-31T10:24:00.000000000', '2008-03-01T20:48:00.000000000',\n",
      -       "       '2008-04-01T07:12:00.000000000', '2008-05-01T17:36:00.000000000',\n",
      -       "       '2008-06-01T04:00:00.000000000', '2008-07-01T14:24:00.000000000',\n",
      -       "       '2008-08-01T00:48:00.000000000', '2008-08-31T11:12:00.000000000',\n",
      -       "       '2008-09-30T21:36:00.000000000', '2008-10-31T08:00:00.000000000',\n",
      -       "       '2008-11-30T18:24:00.000000000', '2008-12-31T04:48:00.000000000',\n",
      -       "       '2009-01-30T15:12:00.000000000', '2009-03-02T01:36:00.000000000',\n",
      -       "       '2009-04-01T12:00:00.000000000', '2009-05-01T22:24:00.000000000',\n",
      -       "       '2009-06-01T08:48:00.000000000', '2009-07-01T19:12:00.000000000',\n",
      -       "       '2009-08-01T05:36:00.000000000', '2009-08-31T16:00:00.000000000',\n",
      -       "       '2009-10-01T02:24:00.000000000', '2009-10-31T12:48:00.000000000',\n",
      -       "       '2009-11-30T23:12:00.000000000', '2009-12-31T09:36:00.000000000',\n",
      -       "       '2010-01-30T20:00:00.000000000', '2010-03-02T06:24:00.000000000',\n",
      -       "       '2010-04-01T16:48:00.000000000', '2010-05-02T03:12:00.000000000',\n",
      -       "       '2010-06-01T13:36:00.000000000', '2010-07-02T00:00:00.000000000',\n",
      -       "       '2010-08-01T10:24:00.000000000', '2010-08-31T20:48:00.000000000',\n",
      -       "       '2010-10-01T07:12:00.000000000', '2010-10-31T17:36:00.000000000',\n",
      -       "       '2010-12-01T04:00:00.000000000', '2010-12-31T14:24:00.000000000',\n",
      -       "       '2011-01-31T00:48:00.000000000', '2011-03-02T11:12:00.000000000',\n",
      -       "       '2011-04-01T21:36:00.000000000', '2011-05-02T08:00:00.000000000',\n",
      -       "       '2011-06-01T18:24:00.000000000', '2011-07-02T04:48:00.000000000',\n",
      -       "       '2011-08-01T15:12:00.000000000', '2011-09-01T01:36:00.000000000',\n",
      -       "       '2011-10-01T12:00:00.000000000', '2011-10-31T22:24:00.000000000',\n",
      -       "       '2011-12-01T08:48:00.000000000', '2011-12-31T19:12:00.000000000',\n",
      -       "       '2012-01-31T05:36:00.000000000', '2012-03-01T16:00:00.000000000',\n",
      -       "       '2012-04-01T02:24:00.000000000', '2012-05-01T12:48:00.000000000',\n",
      -       "       '2012-05-31T23:12:00.000000000', '2012-07-01T09:36:00.000000000',\n",
      -       "       '2012-07-31T20:00:00.000000000', '2012-08-31T06:24:00.000000000',\n",
      -       "       '2012-09-30T16:48:00.000000000', '2012-10-31T03:12:00.000000000',\n",
      -       "       '2012-11-30T13:36:00.000000000', '2012-12-31T00:00:00.000000000'],\n",
      -       "      dtype='datetime64[ns]')
    • PCA_VALUES
      (time, pca, YC, XC)
      float64
      dask.array<chunksize=(1, 4, 588, 2160), meta=np.ndarray>
      long_name :
      PCA Values
      n_features :
      ['THETA_0' 'THETA_1' 'SALT_0' 'SALT_1']
      \n",
      -       "\n",
      -       "\n",
      -       "\n",
      -       "\n",
      -       "
      \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
      Array Chunk
      Bytes 2.44 GB 40.64 MB
      Shape (60, 4, 588, 2160) (1, 4, 588, 2160)
      Count 180 Tasks 60 Chunks
      Type float64 numpy.ndarray
      \n", - "
      \n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " 60\n", - " 1\n", - "\n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - "\n", - " \n", - " 2160\n", - " 588\n", - " 4\n", - "\n", - "
" - ], - "text/plain": [ - "\n", - "Dimensions: (XC: 2160, YC: 588, Z: 52, pca: 4, time: 60)\n", - "Coordinates:\n", - " * XC (XC) float64 0.08333 0.25 0.4167 0.5833 ... 359.6 359.8 359.9\n", - " * Z (Z) float32 -2.1 -6.7 -12.15 -18.55 ... -5000.0 -5400.0 -5800.0\n", - " * YC (YC) float64 -77.98 -77.95 -77.91 ... -30.02 -29.87 -29.72\n", - " * time (time) datetime64[ns] 2008-01-31T10:24:00 ... 2012-12-31\n", - "Dimensions without coordinates: pca\n", - "Data variables:\n", - " PCA_VALUES (time, pca, YC, XC) float64 dask.array" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pca_ds" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From dce0f64cbfbd0d99c2c78d2e5543e92fdcb49f14 Mon Sep 17 00:00:00 2001 From: "Simon D.A. Thomas" <30407294+sdat2@users.noreply.github.com> Date: Mon, 17 Aug 2020 12:00:52 +0100 Subject: [PATCH 5/9] Delete train_on_year.ipynb --- train_on_year.ipynb | 4625 ------------------------------------------- 1 file changed, 4625 deletions(-) delete mode 100644 train_on_year.ipynb diff --git a/train_on_year.ipynb b/train_on_year.ipynb deleted file mode 100644 index c6afbf1..0000000 --- a/train_on_year.ipynb +++ /dev/null @@ -1,4625 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "main_dir = '/Users/simon/bsose_monthly/'\n", - "salt = main_dir + 'bsose_i106_2008to2012_monthly_Salt.nc'\n", - "theta = main_dir + 'bsose_i106_2008to2012_monthly_Theta.nc'\n", - "density = main_dir + 'density.nc'\n", - "%load_ext autoreload\n", - "%autoreload 2" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/simon/pyxpcm/pyxpcm/plot.py:45: UserWarning: pyXpcm requires seaborn installed for full plotting functionality\n", - " warnings.warn(\"pyXpcm requires seaborn installed for full plotting functionality\")\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import xarray as xr\n", - "xr.set_options(keep_attrs=True)\n", - "import matplotlib.pyplot as plt\n", - "import cartopy.crs as ccrs\n", - "import cartopy.feature\n", - "import matplotlib.path as mpath\n", - "import pyxpcm\n", - "from pyxpcm.models import pcm\n", - "\n", - "\n", - "def pcm_fit_and_post(time_i=42, K=4, maxvar=2): \n", - " # Define features to use\n", - " # Instantiate the PCM\n", - " \n", - " max_depth = 2000\n", - " z = np.arange(-300, -max_depth, -10.)\n", - " features_pcm = {'THETA': z, 'SALT': z}\n", - " features = {'THETA': 'THETA', 'SALT': 'SALT'}\n", - " salt_nc = xr.open_dataset(salt).isel(time=slice(42,54))#time_i)#\n", - " theta_nc = xr.open_dataset(theta).isel(time=slice(42,54))#time_i)\n", - " big_nc = xr.merge([salt_nc, theta_nc])\n", - " both_nc = big_nc.where(big_nc.coords['Depth'] > \n", - " max_depth).drop(['iter', 'Depth', \n", - " 'rA', 'drF', 'hFacC']) \n", - " \n", - " attr_d = {}\n", - "\n", - " for coord in both_nc.coords:\n", - " attr_d[coord] = both_nc.coords[coord].attrs\n", - " \n", - " lons_new = np.linspace(both_nc.XC.min(), both_nc.XC.max(), 60*4)\n", - " lats_new = np.linspace(both_nc.YC.min(), both_nc.YC.max(), 60)\n", - " # ds = both_nc # .copy(deep=True)\n", - " ds = both_nc.interp(coords={'YC': lats_new, \n", - " 'XC': lons_new})#, method='cubic')\n", - " \n", - " m = pcm(K=K, \n", - " features=features_pcm, \n", - " maxvar=maxvar, \n", - " timeit=True, \n", - " timeit_verb=1)\n", - " m.fit(ds, features=features, dim='Z') #, inplace=True)\n", - " m.predict(ds, features=features, \n", - " dim='Z', inplace=True)\n", - " m.predict_proba(ds, features=features, \n", - " dim='Z', inplace=True)\n", - " m.find_i_metric(ds, inplace=True)\n", - " \n", - " def sanitize():\n", - " del ds.PCM_LABELS.attrs['_pyXpcm_cleanable']\n", - " del ds.PCM_POST.attrs['_pyXpcm_cleanable']\n", - " del ds.PCM_RANK.attrs['_pyXpcm_cleanable']\n", - " \n", - " for coord in attr_d:\n", - " ds.coords[coord].attrs = attr_d[coord]\n", - " \n", - " sanitize()\n", - " return ds, m\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " fit.1-preprocess.1-mask: 197 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " fit.1-preprocess.2-feature_THETA.1-ravel: 332 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " fit.1-preprocess.2-feature_THETA.2-interp: 17 ms\n", - " fit.1-preprocess.2-feature_THETA.3-scale_fit: 1282 ms\n", - " fit.1-preprocess.2-feature_THETA.4-scale_transform: 942 ms\n", - " fit.1-preprocess.2-feature_THETA.5-reduce_fit: 1032 ms\n", - " fit.1-preprocess.2-feature_THETA.6-reduce_transform: 140 ms\n", - " fit.1-preprocess.2-feature_THETA.total: 3747 ms\n", - " fit.1-preprocess: 3747 ms\n", - " fit.1-preprocess.3-homogeniser: 4 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " fit.1-preprocess.2-feature_SALT.1-ravel: 277 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " fit.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", - " fit.1-preprocess.2-feature_SALT.3-scale_fit: 1337 ms\n", - " fit.1-preprocess.2-feature_SALT.4-scale_transform: 916 ms\n", - " fit.1-preprocess.2-feature_SALT.5-reduce_fit: 881 ms\n", - " fit.1-preprocess.2-feature_SALT.6-reduce_transform: 148 ms\n", - " fit.1-preprocess.2-feature_SALT.total: 3570 ms\n", - " fit.1-preprocess: 3570 ms\n", - " fit.1-preprocess.3-homogeniser: 3 ms\n", - " fit.1-preprocess.4-xarray: 16 ms\n", - " fit.1-preprocess: 7558 ms\n", - " fit.fit: 8540 ms\n", - " fit.score: 40 ms\n", - " fit: 16139 ms\n", - " predict.1-preprocess.1-mask: 86 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 291 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 982 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 141 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 1421 ms\n", - " predict.1-preprocess: 1421 ms\n", - " predict.1-preprocess.3-homogeniser: 2 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 296 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 6 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 917 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 140 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 1361 ms\n", - " predict.1-preprocess: 1361 ms\n", - " predict.1-preprocess.3-homogeniser: 2 ms\n", - " predict.1-preprocess.4-xarray: 15 ms\n", - " predict.1-preprocess: 2892 ms\n", - " predict.predict: 38 ms\n", - " predict.score: 40 ms\n", - " predict.xarray: 1700 ms\n", - " predict: 4673 ms\n", - " predict_proba.1-preprocess.1-mask: 92 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 306 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 951 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 139 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 1404 ms\n", - " predict_proba.1-preprocess: 1404 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 3 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 288 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 4 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 979 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 141 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 1414 ms\n", - " predict_proba.1-preprocess: 1414 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", - " predict_proba.1-preprocess.4-xarray: 14 ms\n", - " predict_proba.1-preprocess: 2935 ms\n", - " predict_proba.predict: 55 ms\n", - " predict_proba.score: 43 ms\n", - " predict_proba.xarray: 7818 ms\n", - " predict_proba: 10853 ms\n", - "[(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]\n", - " predict_proba.1-preprocess.1-mask: 100 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 307 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 986 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 143 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 1443 ms\n", - " predict_proba.1-preprocess: 1443 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 279 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 984 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 134 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 1404 ms\n", - " predict_proba.1-preprocess: 1404 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 2 ms\n", - " predict_proba.1-preprocess.4-xarray: 14 ms\n", - " predict_proba.1-preprocess: 2970 ms\n", - "(125244, 4)\n", - "(125244, 5)\n", - " predict_proba.predict: 70 ms\n", - " predict_proba.xarray: 7516 ms\n", - " add_rank.xarray: 7531 ms\n", - " predict_prob: 18090 ms\n" - ] - } - ], - "source": [ - "ds, m = pcm_fit_and_post(K=5)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "Show/Hide data repr\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "Show/Hide attributes\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
xarray.Dataset
    • XC: 240
    • YC: 60
    • Z: 52
    • pcm_class: 5
    • time: 12
    • time
      (time)
      datetime64[ns]
      2011-08-01T15:12:00 ... 2012-07-01T09:36:00
      long_name :
      Time
      standard_name :
      time
      axis :
      T
      array(['2011-08-01T15:12:00.000000000', '2011-09-01T01:36:00.000000000',\n",
      -       "       '2011-10-01T12:00:00.000000000', '2011-10-31T22:24:00.000000000',\n",
      -       "       '2011-12-01T08:48:00.000000000', '2011-12-31T19:12:00.000000000',\n",
      -       "       '2012-01-31T05:36:00.000000000', '2012-03-01T16:00:00.000000000',\n",
      -       "       '2012-04-01T02:24:00.000000000', '2012-05-01T12:48:00.000000000',\n",
      -       "       '2012-05-31T23:12:00.000000000', '2012-07-01T09:36:00.000000000'],\n",
      -       "      dtype='datetime64[ns]')
    • Z
      (Z)
      float32
      -2.1 -6.7 ... -5400.0 -5800.0
      units :
      m
      positive :
      down
      standard_name :
      depth
      long_name :
      vertical coordinate of cell center
      axis :
      Z
      array([-2.100e+00, -6.700e+00, -1.215e+01, -1.855e+01, -2.625e+01, -3.525e+01,\n",
      -       "       -4.500e+01, -5.500e+01, -6.500e+01, -7.500e+01, -8.500e+01, -9.500e+01,\n",
      -       "       -1.050e+02, -1.150e+02, -1.250e+02, -1.350e+02, -1.465e+02, -1.615e+02,\n",
      -       "       -1.800e+02, -2.000e+02, -2.200e+02, -2.400e+02, -2.600e+02, -2.800e+02,\n",
      -       "       -3.010e+02, -3.270e+02, -3.610e+02, -4.025e+02, -4.500e+02, -5.000e+02,\n",
      -       "       -5.515e+02, -6.140e+02, -7.000e+02, -8.000e+02, -9.000e+02, -1.000e+03,\n",
      -       "       -1.100e+03, -1.225e+03, -1.400e+03, -1.600e+03, -1.800e+03, -2.010e+03,\n",
      -       "       -2.270e+03, -2.610e+03, -3.000e+03, -3.400e+03, -3.800e+03, -4.200e+03,\n",
      -       "       -4.600e+03, -5.000e+03, -5.400e+03, -5.800e+03], dtype=float32)
    • YC
      (YC)
      float64
      -77.98 -77.16 ... -30.53 -29.72
      coordinate :
      YC XC
      units :
      degrees_north
      standard_name :
      latitude
      long_name :
      latitude
      axis :
      Y
      array([-77.982651, -77.16456 , -76.34647 , -75.52838 , -74.710289, -73.892199,\n",
      -       "       -73.074108, -72.256018, -71.437928, -70.619837, -69.801747, -68.983656,\n",
      -       "       -68.165566, -67.347475, -66.529385, -65.711295, -64.893204, -64.075114,\n",
      -       "       -63.257023, -62.438933, -61.620843, -60.802752, -59.984662, -59.166571,\n",
      -       "       -58.348481, -57.530391, -56.7123  , -55.89421 , -55.076119, -54.258029,\n",
      -       "       -53.439939, -52.621848, -51.803758, -50.985667, -50.167577, -49.349487,\n",
      -       "       -48.531396, -47.713306, -46.895215, -46.077125, -45.259034, -44.440944,\n",
      -       "       -43.622854, -42.804763, -41.986673, -41.168582, -40.350492, -39.532402,\n",
      -       "       -38.714311, -37.896221, -37.07813 , -36.26004 , -35.44195 , -34.623859,\n",
      -       "       -33.805769, -32.987678, -32.169588, -31.351498, -30.533407, -29.715317])
    • XC
      (XC)
      float64
      0.08333 1.589 3.094 ... 358.4 359.9
      coordinate :
      YC XC
      units :
      degrees_east
      standard_name :
      longitude
      long_name :
      longitude
      axis :
      X
      array([8.333334e-02, 1.588912e+00, 3.094491e+00, ..., 3.569055e+02,\n",
      -       "       3.584111e+02, 3.599167e+02])
    • SALT
      (time, Z, YC, XC)
      float64
      nan nan nan nan ... 0.0 0.0 0.0 0.0
      units :
      psu
      long_name :
      Salinity
      standard_name :
      SALT
      array([[[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.76241635, 35.69724222, 35.69800239, ..., 35.66702453,\n",
      -       "          35.72830786, 35.78210389],\n",
      -       "         [35.80910656, 35.7278929 ,         nan, ..., 35.92798663,\n",
      -       "          35.94565591, 35.82460342],\n",
      -       "         [35.88534927, 35.83552407, 35.89943901, ..., 35.94890202,\n",
      -       "          36.02223367, 35.87853622]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.76245369, 35.69726089, 35.69800094, ..., 35.66722655,\n",
      -       "          35.72839551, 35.78213623],\n",
      -       "         [35.80910656, 35.72788364,         nan, ..., 35.92803851,\n",
      -       "          35.94566214, 35.82460342],\n",
      -       "         [35.88534164, 35.8354741 , 35.89938586, ..., 35.948915  ,\n",
      -       "          36.02224104, 35.87853622]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.76246604, 35.69726589, 35.69799823, ..., 35.66740227,\n",
      -       "          35.72845882, 35.78214477],\n",
      -       "         [35.80910274, 35.72787431,         nan, ..., 35.92806007,\n",
      -       "          35.9456524 , 35.82460184],\n",
      -       "         [35.8853302 , 35.83543964, 35.89935585, ..., 35.94890432,\n",
      -       "          36.02223341, 35.87853241]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.37136438, ...,  0.        ,\n",
      -       "          24.41002681,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43770223,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.86512099,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.63153536, 35.62039165, 35.64449005, ..., 35.69096633,\n",
      -       "          35.72263463, 35.63859279],\n",
      -       "         [35.66364736, 35.63127634,         nan, ..., 35.81719152,\n",
      -       "          35.85205042, 35.6771551 ],\n",
      -       "         [35.81845474, 35.86110124, 35.84925603, ..., 35.8691245 ,\n",
      -       "          35.90933032, 35.81701279]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.63154681, 35.6204565 , 35.6445155 , ..., 35.69100229,\n",
      -       "          35.72265011, 35.63859516],\n",
      -       "         [35.66365341, 35.63133363,         nan, ..., 35.81718441,\n",
      -       "          35.85205365, 35.67713511],\n",
      -       "         [35.81845474, 35.86106665, 35.84907725, ..., 35.86910084,\n",
      -       "          35.90927704, 35.81700134]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.63154417, 35.62049346, 35.64454427, ..., 35.69102861,\n",
      -       "          35.72264932, 35.63858608],\n",
      -       "         [35.66364736, 35.63137305,         nan, ..., 35.81722329,\n",
      -       "          35.85209196, 35.67710841],\n",
      -       "         [35.81847   , 35.86103905, 35.84898595, ..., 35.86908482,\n",
      -       "          35.90925034, 35.81699753]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.37191021, ...,  0.        ,\n",
      -       "          24.40455849,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43715064,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.86434037,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.57771775, 35.62958334, 35.634694  , ..., 35.67246189,\n",
      -       "          35.61208839, 35.57656904],\n",
      -       "         [35.60968571, 35.60290064,         nan, ..., 35.78957223,\n",
      -       "          35.79000331, 35.61714411],\n",
      -       "         [35.77298355, 35.9060301 , 35.72839755, ..., 35.85950911,\n",
      -       "          35.84601257, 35.73907852]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.57766671, 35.62945376, 35.63447976, ..., 35.67342093,\n",
      -       "          35.61206652, 35.57652299],\n",
      -       "         [35.60960784, 35.60281105,         nan, ..., 35.78962206,\n",
      -       "          35.78979841, 35.61705322],\n",
      -       "         [35.7727356 , 35.90563617, 35.72810431, ..., 35.85932575,\n",
      -       "          35.84568082, 35.73877716]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.57774118, 35.62936751, 35.63439511, ..., 35.67425361,\n",
      -       "          35.6119825 , 35.57658983],\n",
      -       "         [35.60957757, 35.60285536,         nan, ..., 35.79008755,\n",
      -       "          35.78981466, 35.61702189],\n",
      -       "         [35.77256012, 35.9052922 , 35.72910775, ..., 35.85915002,\n",
      -       "          35.84534537, 35.73818588]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.37159638, ...,  0.        ,\n",
      -       "          24.40260196,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43667111,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.85900813,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       ...,\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.98237897, 35.87974845, 35.8382837 , ..., 36.08352673,\n",
      -       "          36.27401942, 36.00175261],\n",
      -       "         [36.31365124, 35.91352032,         nan, ..., 36.15868134,\n",
      -       "          36.31333652, 36.3340218 ],\n",
      -       "         [36.3681221 , 36.03393384, 35.98517382, ..., 36.39303467,\n",
      -       "          36.33557099, 36.36808014]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.98236989, 35.87973244, 35.83826761, ..., 36.08347514,\n",
      -       "          36.27403476, 36.00171365],\n",
      -       "         [36.31363665, 35.91349514,         nan, ..., 36.15862233,\n",
      -       "          36.31327249, 36.33399062],\n",
      -       "         [36.36803436, 36.03389429, 35.98509015, ..., 36.39299983,\n",
      -       "          36.33550627, 36.3679924 ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.98234174, 35.87971501, 35.83824389, ..., 36.08340621,\n",
      -       "          36.27403049, 36.00165654],\n",
      -       "         [36.31360969, 35.91346231,         nan, ..., 36.15859068,\n",
      -       "          36.31322115, 36.33394037],\n",
      -       "         [36.36796951, 36.03390331, 35.98502937, ..., 36.39296854,\n",
      -       "          36.33547944, 36.36793137]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.37034194, ...,  0.        ,\n",
      -       "          24.40671967,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43563264,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.8592111 ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [36.04147855, 35.93299125, 35.90688039, ..., 36.20309483,\n",
      -       "          36.13624562, 36.04513799],\n",
      -       "         [36.08131305, 35.86977392,         nan, ..., 36.24807896,\n",
      -       "          36.25092737, 36.13202753],\n",
      -       "         [36.26810455, 35.96870446, 35.88701325, ..., 36.34807429,\n",
      -       "          36.24608378, 36.28655243]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [36.04151143, 35.93302397, 35.90688267, ..., 36.20319111,\n",
      -       "          36.1363091 , 36.04516179],\n",
      -       "         [36.08129174, 35.86975637,         nan, ..., 36.248129  ,\n",
      -       "          36.25094487, 36.13199701],\n",
      -       "         [36.26808929, 35.96863198, 35.88695222, ..., 36.34807073,\n",
      -       "          36.24609497, 36.28654099]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [36.04153168, 35.93304905, 35.90688031, ..., 36.20323805,\n",
      -       "          36.13634951, 36.04517678],\n",
      -       "         [36.08127266, 35.86973956,         nan, ..., 36.24813829,\n",
      -       "          36.25095697, 36.13197031],\n",
      -       "         [36.26807785, 35.96859739, 35.88689169, ..., 36.34805573,\n",
      -       "          36.24609865, 36.28653717]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.3711223 , ...,  0.        ,\n",
      -       "          24.40489158,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43526343,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.86048989,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.91009074, 35.85078865, 35.56787134, ..., 36.01311612,\n",
      -       "          36.17003994, 35.92407302],\n",
      -       "         [35.89411574, 35.78211632,         nan, ..., 36.19896649,\n",
      -       "          36.17886866, 35.89889772],\n",
      -       "         [35.91335678, 35.88604971, 35.90896348, ..., 36.31337611,\n",
      -       "          36.15632375, 35.97971725]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.91009455, 35.85078369, 35.56787755, ..., 36.01312739,\n",
      -       "          36.17003727, 35.92407683],\n",
      -       "         [35.89411193, 35.78212255,         nan, ..., 36.19899752,\n",
      -       "          36.17886877, 35.89889391],\n",
      -       "         [35.9133606 , 35.88604208, 35.90896679, ..., 36.31337992,\n",
      -       "          36.15633901, 35.97971725]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [35.91009455, 35.85078259, 35.56788894, ..., 36.01314129,\n",
      -       "          36.17003723, 35.92408065],\n",
      -       "         [35.89410811, 35.78213432,         nan, ..., 36.19901899,\n",
      -       "          36.17886343, 35.89889009],\n",
      -       "         [35.91336441, 35.88603814, 35.90897339, ..., 36.31339493,\n",
      -       "          36.15634244, 35.97972488]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        , 12.37093988, ...,  0.        ,\n",
      -       "          24.40287463,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ..., 13.43539876,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ..., 34.85941624,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]]])
    • THETA
      (time, Z, YC, XC)
      float64
      nan nan nan nan ... 0.0 0.0 0.0 0.0
      units :
      degC
      long_name :
      Potential Temperature
      standard_name :
      THETA
      array([[[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [16.91224107, 16.43401331, 16.42829744, ..., 16.73668129,\n",
      -       "          16.96183119, 17.00106982],\n",
      -       "         [17.10594605, 16.58357543,         nan, ..., 17.78552694,\n",
      -       "          17.77893846, 17.15627046],\n",
      -       "         [17.39700127, 17.41902259, 17.57648229, ..., 18.07164888,\n",
      -       "          18.36557512, 17.36038017]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [16.91124901, 16.43339274, 16.42752858, ..., 16.73595127,\n",
      -       "          16.96102677, 17.00007724],\n",
      -       "         [17.10549598, 16.58310654,         nan, ..., 17.78463126,\n",
      -       "          17.77757912, 17.15569575],\n",
      -       "         [17.39632988, 17.41838157, 17.57571519, ..., 18.07098448,\n",
      -       "          18.36467935, 17.35962105]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [16.91069974, 16.43307493, 16.42718746, ..., 16.73555945,\n",
      -       "          16.96057151, 16.99951095],\n",
      -       "         [17.1052305 , 16.58282718,         nan, ..., 17.78415165,\n",
      -       "          17.77679681, 17.15536903],\n",
      -       "         [17.39597893, 17.41795374, 17.57531644, ..., 18.07053892,\n",
      -       "          18.36411567, 17.35921097]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.29702708, ...,  0.        ,\n",
      -       "           1.16704883,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.6565437 ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.83060692,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.89069814, 15.76181684, 15.89840287, ..., 16.44942962,\n",
      -       "          16.56734141, 15.94874111],\n",
      -       "         [16.13006655, 15.89555083,         nan, ..., 17.036224  ,\n",
      -       "          17.1782732 , 16.22621958],\n",
      -       "         [16.70259666, 17.01188631, 17.06705913, ..., 17.43715272,\n",
      -       "          17.60336049, 16.71893692]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.88913707, 15.76080923, 15.89665007, ..., 16.44842801,\n",
      -       "          16.56579091, 15.94713175],\n",
      -       "         [16.12838799, 15.89416679,         nan, ..., 17.03497527,\n",
      -       "          17.17648679, 16.22431982],\n",
      -       "         [16.7002182 , 17.01003893, 17.06219751, ..., 17.43649808,\n",
      -       "          17.6021119 , 16.71636581]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.88794984, 15.76027278, 15.89519715, ..., 16.44774835,\n",
      -       "          16.56482414, 15.945908  ],\n",
      -       "         [16.12726023, 15.89323523,         nan, ..., 17.03415077,\n",
      -       "          17.17539446, 16.22303326],\n",
      -       "         [16.69836044, 17.00858524, 17.05901256, ..., 17.43597785,\n",
      -       "          17.60123911, 16.71436882]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.30226034, ...,  0.        ,\n",
      -       "           1.1250131 ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.65156626,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.82422417,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.89146396, 16.15703468, 16.04892193, ..., 16.7815255 ,\n",
      -       "          16.12083001, 15.89285111],\n",
      -       "         [16.15193515, 15.92419877,         nan, ..., 17.11573892,\n",
      -       "          17.22915213, 16.2472134 ],\n",
      -       "         [16.66711235, 17.30045687, 16.72286264, ..., 17.41147523,\n",
      -       "          17.31941569, 16.53580475]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.86767751, 16.13215815, 16.02232301, ..., 16.75726348,\n",
      -       "          16.09193845, 15.86873212],\n",
      -       "         [16.13131033, 15.89946013,         nan, ..., 17.09048474,\n",
      -       "          17.20340934, 16.22558555],\n",
      -       "         [16.64841461, 17.28325961, 16.69129931, ..., 17.39253236,\n",
      -       "          17.29853115, 16.51442146]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [15.84073713, 16.10348326, 15.99361797, ..., 16.72856295,\n",
      -       "          16.06003446, 15.84078202],\n",
      -       "         [16.11149937, 15.86871882,         nan, ..., 17.06221211,\n",
      -       "          17.17609587, 16.20354663],\n",
      -       "         [16.63266754, 17.27010797, 16.63590641, ..., 17.37590884,\n",
      -       "          17.28214781, 16.49468422]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.29881732, ...,  0.        ,\n",
      -       "           1.10802169,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.64741502,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.78184456,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       ...,\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [21.14409822, 20.96436484, 20.75297437, ..., 21.18240809,\n",
      -       "          21.54358519, 21.21397466],\n",
      -       "         [21.65378157, 21.05900875,         nan, ..., 21.74607111,\n",
      -       "          21.5058723 , 21.68643593],\n",
      -       "         [21.94439888, 21.26546943, 21.14656008, ..., 22.19396074,\n",
      -       "          21.64629067, 21.88305473]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [21.14300832, 20.96346514, 20.75234254, ..., 21.17949319,\n",
      -       "          21.54259634, 21.21285325],\n",
      -       "         [21.65290507, 21.05830386,         nan, ..., 21.74469514,\n",
      -       "          21.50424635, 21.68546763],\n",
      -       "         [21.94305801, 21.26423684, 21.1454809 , ..., 22.19314555,\n",
      -       "          21.6445972 , 21.88154984]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [21.14203368, 20.96285773, 20.75182057, ..., 21.17725054,\n",
      -       "          21.54186632, 21.21190019],\n",
      -       "         [21.65209048, 21.05775345,         nan, ..., 21.74367884,\n",
      -       "          21.50281964, 21.68456136],\n",
      -       "         [21.94205666, 21.26332227, 21.14446391, ..., 22.19236023,\n",
      -       "          21.64341839, 21.88048553]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.28053007, ...,  0.        ,\n",
      -       "           1.14097363,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.63832426,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.77766945,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [19.87881288, 19.5058598 , 19.64530254, ..., 20.21927977,\n",
      -       "          19.7003759 , 19.87653837],\n",
      -       "         [19.9390046 , 19.54309536,         nan, ..., 21.04037799,\n",
      -       "          20.13836374, 20.03864856],\n",
      -       "         [20.3325901 , 19.95626958, 19.77373081, ..., 21.13741078,\n",
      -       "          19.99432985, 20.26995277]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [19.87858456, 19.50577469, 19.64513394, ..., 20.21864426,\n",
      -       "          19.70005327, 19.87626814],\n",
      -       "         [19.93859005, 19.54278627,         nan, ..., 21.03912981,\n",
      -       "          20.13775996, 20.03820612],\n",
      -       "         [20.33231354, 19.95519968, 19.77166228, ..., 21.13551196,\n",
      -       "          19.99345838, 20.26960945]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [19.87845142, 19.50573441, 19.64498721, ..., 20.21783183,\n",
      -       "          19.69963656, 19.87611375],\n",
      -       "         [19.93836104, 19.54255955,         nan, ..., 21.03843996,\n",
      -       "          20.13723931, 20.03796472],\n",
      -       "         [20.33216095, 19.95460209, 19.7702522 , ..., 21.13440724,\n",
      -       "          19.99291241, 20.2694149 ]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.2907989 , ...,  0.        ,\n",
      -       "           1.12643214,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.63553041,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.78789808,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [18.38371987, 18.24232259, 17.84496257, ..., 18.45165848,\n",
      -       "          18.86684491, 18.42292331],\n",
      -       "         [18.37659771, 18.25798402,         nan, ..., 19.36286805,\n",
      -       "          18.89680308, 18.3856939 ],\n",
      -       "         [18.60637283, 18.64279679, 17.8711554 , ..., 19.96116897,\n",
      -       "          18.62246283, 18.72884178]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [18.38369994, 18.24229113, 17.84491162, ..., 18.4510271 ,\n",
      -       "          18.86683927, 18.42290338],\n",
      -       "         [18.37658179, 18.25794145,         nan, ..., 19.36225805,\n",
      -       "          18.89655844, 18.38566956],\n",
      -       "         [18.60629463, 18.6427196 , 17.87032178, ..., 19.9610909 ,\n",
      -       "          18.62198324, 18.72875977]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [18.383685  , 18.24226979, 17.84489254, ..., 18.45064394,\n",
      -       "          18.86684156, 18.42289416],\n",
      -       "         [18.37657114, 18.2579273 ,         nan, ..., 19.36194077,\n",
      -       "          18.89641489, 18.38565252],\n",
      -       "         [18.60628319, 18.64262512, 17.86984978, ..., 19.96097277,\n",
      -       "          18.62170431, 18.72874069]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.28873393, ...,  0.        ,\n",
      -       "           1.10971121,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.63680143,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  1.77871314,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]],\n",
      -       "\n",
      -       "        [[        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         [        nan,         nan,         nan, ...,         nan,\n",
      -       "                  nan,         nan],\n",
      -       "         ...,\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,         nan, ...,  0.        ,\n",
      -       "           0.        ,  0.        ],\n",
      -       "         [ 0.        ,  0.        ,  0.        , ...,  0.        ,\n",
      -       "           0.        ,  0.        ]]]])
    • PCM_LABELS
      (time, YC, XC)
      float64
      nan nan nan nan ... 4.0 4.0 4.0 4.0
      long_name :
      PCM labels
      units :
      valid_min :
      0
      valid_max :
      4
      llh :
      0.5171744047844992
      array([[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "       ...,\n",
      -       "\n",
      -       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "       [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "        ...,\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "        [ 4.,  4.,  4., ...,  4.,  4.,  4.]]])
    • PCM_POST
      (pcm_class, time, YC, XC)
      float64
      nan nan nan nan ... 1.0 1.0 1.0 1.0
      long_name :
      PCM posteriors
      units :
      valid_min :
      0
      valid_max :
      1
      llh :
      0.5171744047844992
      array([[[[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.86049014e-015, 3.33708360e-015, 1.41625978e-016, ...,\n",
      -       "          1.69035667e-011, 1.04929429e-012, 1.21017398e-014],\n",
      -       "         [5.79001171e-014, 3.40441441e-014,             nan, ...,\n",
      -       "          7.48629036e-012, 5.76864363e-013, 8.80395130e-014],\n",
      -       "         [4.67843894e-014, 1.62828994e-014, 4.04108056e-016, ...,\n",
      -       "          4.06041196e-014, 7.53617904e-015, 2.97203454e-014]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [7.61309616e-015, 1.70745582e-014, 4.83896791e-017, ...,\n",
      -       "          5.47345072e-011, 3.10884669e-014, 7.44187530e-015],\n",
      -       "         [3.40616553e-014, 5.27618682e-014,             nan, ...,\n",
      -       "          2.13903936e-012, 1.96908625e-013, 4.46331164e-014],\n",
      -       "         [3.02390959e-014, 8.39235916e-015, 1.01168015e-016, ...,\n",
      -       "          1.07191242e-013, 2.82808316e-015, 2.62565417e-014]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [4.13539278e-014, 2.48959187e-016, 1.04322359e-016, ...,\n",
      -       "          3.14961011e-011, 6.02246953e-015, 1.42578966e-013],\n",
      -       "         [2.50893715e-014, 2.26873006e-014,             nan, ...,\n",
      -       "          2.28719425e-012, 1.55657580e-013, 3.03921060e-014],\n",
      -       "         [5.68828221e-014, 4.57694366e-015, 1.03906741e-016, ...,\n",
      -       "          8.31761631e-014, 2.94608401e-015, 3.98407130e-014]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [7.02434350e-016, 2.13172202e-017, 1.57117717e-016, ...,\n",
      -       "          1.30375738e-015, 2.59370587e-015, 5.62908053e-016],\n",
      -       "         [1.01686776e-014, 2.32759256e-017,             nan, ...,\n",
      -       "          3.54713749e-013, 1.97238387e-014, 1.03377935e-014],\n",
      -       "         [9.59754437e-015, 5.40915426e-016, 6.95196478e-018, ...,\n",
      -       "          3.20715034e-015, 1.19249953e-016, 6.88350920e-015]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [4.71742977e-016, 7.56480650e-018, 1.09282618e-015, ...,\n",
      -       "          7.08454133e-016, 3.77633107e-015, 7.29076327e-016],\n",
      -       "         [3.52448254e-015, 3.97376086e-017,             nan, ...,\n",
      -       "          5.44712560e-014, 2.01222607e-014, 5.52853754e-015],\n",
      -       "         [7.60806662e-015, 5.76724077e-017, 8.47993256e-018, ...,\n",
      -       "          2.24603102e-015, 1.85231510e-016, 1.24201397e-014]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [4.93352849e-017, 1.48944205e-018, 6.17509294e-016, ...,\n",
      -       "          9.90088513e-016, 2.80438266e-015, 1.29993461e-016],\n",
      -       "         [1.83448404e-016, 1.59971841e-015,             nan, ...,\n",
      -       "          1.02769724e-014, 1.88247438e-014, 2.72841785e-016],\n",
      -       "         [1.21749222e-015, 1.38035683e-017, 4.80071550e-017, ...,\n",
      -       "          2.14114647e-015, 8.38338632e-016, 3.99067237e-015]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [1.03959090e-316, 8.32272198e-245, 4.44042171e-230, ...,\n",
      -       "          1.70452648e-321, 4.86421939e-283, 3.74611440e-314],\n",
      -       "         [1.28466478e-272, 1.28823729e-255,             nan, ...,\n",
      -       "          5.50751792e-275, 9.14331715e-269, 1.22896216e-264],\n",
      -       "         [5.27363600e-248, 1.62815049e-233, 6.03045445e-246, ...,\n",
      -       "          1.10099419e-272, 1.85758400e-299, 3.86355183e-244]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [7.14324041e-262, 1.56956671e-240, 4.55169994e-278, ...,\n",
      -       "          3.62114230e-304, 1.42518041e-296, 4.59498889e-281],\n",
      -       "         [8.99694858e-280, 1.12673909e-252,             nan, ...,\n",
      -       "          9.97286040e-266, 8.64711367e-257, 8.24402470e-276],\n",
      -       "         [9.75055735e-244, 2.20917118e-256, 1.13280736e-257, ...,\n",
      -       "          2.06244602e-279, 1.38716532e-266, 2.04751886e-233]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [4.11867636e-241, 4.61384761e-301, 1.73582896e-270, ...,\n",
      -       "          1.18345841e-297, 2.10325291e-304, 4.20509016e-240],\n",
      -       "         [1.90217574e-277, 2.77236263e-279,             nan, ...,\n",
      -       "          1.63701275e-266, 4.83740719e-256, 4.71362774e-272],\n",
      -       "         [2.59890201e-243, 1.13146094e-285, 2.98278325e-238, ...,\n",
      -       "          4.80392085e-292, 7.92038514e-240, 8.83737100e-237]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          2.63829079e-318, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [4.94065646e-324, 6.92304893e-305, 1.47516899e-283, ...,\n",
      -       "          2.93475488e-318, 0.00000000e+000, 1.68476385e-320]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 0.00000000e+000,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [8.48745492e-319, 6.97952170e-312, 1.49780372e-276, ...,\n",
      -       "          3.49798477e-321, 0.00000000e+000, 5.63116211e-316]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [0.00000000e+000, 0.00000000e+000, 0.00000000e+000, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 1.81735625e-318,             nan, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000],\n",
      -       "         [0.00000000e+000, 7.88642047e-303, 1.43554493e-255, ...,\n",
      -       "          0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [2.15175050e-007, 2.29902867e-009, 8.71589768e-010, ...,\n",
      -       "          5.36749612e-005, 9.76891528e-008, 6.04314735e-007],\n",
      -       "         [2.30682644e-007, 4.74142561e-010,             nan, ...,\n",
      -       "          3.37348740e-006, 5.89954508e-008, 3.70935814e-007],\n",
      -       "         [9.14500820e-009, 2.22790163e-010, 4.88579586e-010, ...,\n",
      -       "          1.00111647e-007, 2.38212092e-007, 1.39907766e-008]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [6.31000039e-009, 1.33588786e-009, 2.52871546e-007, ...,\n",
      -       "          6.15402735e-006, 6.04365000e-008, 2.14992343e-008],\n",
      -       "         [3.56648753e-009, 4.07720882e-010,             nan, ...,\n",
      -       "          6.21742263e-007, 4.57456336e-008, 1.25020339e-008],\n",
      -       "         [1.68086521e-009, 2.17638938e-009, 1.56568788e-009, ...,\n",
      -       "          5.13813072e-007, 4.05961798e-008, 4.16743112e-009]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [1.05572973e-009, 3.97755634e-007, 3.23197134e-008, ...,\n",
      -       "          3.48749181e-006, 9.92817984e-008, 8.88232235e-010],\n",
      -       "         [4.36419089e-009, 1.16596120e-008,             nan, ...,\n",
      -       "          4.04900959e-007, 5.45702428e-008, 5.36108283e-009],\n",
      -       "         [4.65166465e-009, 1.44521576e-008, 2.69793346e-010, ...,\n",
      -       "          2.33825361e-007, 8.05062111e-009, 6.65823459e-009]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [1.12535049e-005, 2.35238527e-005, 9.42991097e-005, ...,\n",
      -       "          4.11315656e-006, 1.18374444e-005, 7.88185110e-006],\n",
      -       "         [3.83975255e-006, 1.19527936e-006,             nan, ...,\n",
      -       "          1.78399156e-006, 3.12016281e-006, 3.27259621e-006],\n",
      -       "         [2.00697214e-006, 2.35744486e-008, 4.84545984e-009, ...,\n",
      -       "          6.17265160e-007, 1.83006954e-007, 1.68947610e-006]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [4.05297174e-005, 1.47781889e-004, 1.21582471e-004, ...,\n",
      -       "          2.76537697e-005, 1.36629065e-005, 3.35528010e-005],\n",
      -       "         [9.34405019e-006, 5.55475188e-006,             nan, ...,\n",
      -       "          4.51315478e-006, 6.64800814e-006, 7.19884624e-006],\n",
      -       "         [9.92789250e-007, 1.68793278e-008, 8.31777635e-009, ...,\n",
      -       "          6.99373183e-007, 1.76408986e-007, 9.11419603e-007]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [1.67204834e-004, 5.91334181e-005, 1.99297052e-005, ...,\n",
      -       "          6.48291900e-005, 4.35373803e-005, 2.12574078e-004],\n",
      -       "         [1.29041989e-005, 5.40683748e-006,             nan, ...,\n",
      -       "          1.27151902e-005, 9.01937940e-006, 1.24795245e-005],\n",
      -       "         [3.29265028e-007, 2.55307006e-008, 4.46427269e-009, ...,\n",
      -       "          1.16233223e-006, 1.00061012e-007, 4.47067583e-007]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99999785e-001, 9.99999998e-001, 9.99999999e-001, ...,\n",
      -       "          9.99946325e-001, 9.99999902e-001, 9.99999396e-001],\n",
      -       "         [9.99999769e-001, 1.00000000e+000,             nan, ...,\n",
      -       "          9.99996627e-001, 9.99999941e-001, 9.99999629e-001],\n",
      -       "         [9.99999991e-001, 1.00000000e+000, 1.00000000e+000, ...,\n",
      -       "          9.99999900e-001, 9.99999762e-001, 9.99999986e-001]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99999994e-001, 9.99999999e-001, 9.99999747e-001, ...,\n",
      -       "          9.99993846e-001, 9.99999940e-001, 9.99999979e-001],\n",
      -       "         [9.99999996e-001, 1.00000000e+000,             nan, ...,\n",
      -       "          9.99999378e-001, 9.99999954e-001, 9.99999987e-001],\n",
      -       "         [9.99999998e-001, 9.99999998e-001, 9.99999998e-001, ...,\n",
      -       "          9.99999486e-001, 9.99999959e-001, 9.99999996e-001]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99999999e-001, 9.99999602e-001, 9.99999968e-001, ...,\n",
      -       "          9.99996512e-001, 9.99999901e-001, 9.99999999e-001],\n",
      -       "         [9.99999996e-001, 9.99999988e-001,             nan, ...,\n",
      -       "          9.99999595e-001, 9.99999945e-001, 9.99999995e-001],\n",
      -       "         [9.99999995e-001, 9.99999986e-001, 1.00000000e+000, ...,\n",
      -       "          9.99999766e-001, 9.99999992e-001, 9.99999993e-001]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99988746e-001, 9.99976476e-001, 9.99905701e-001, ...,\n",
      -       "          9.99995887e-001, 9.99988163e-001, 9.99992118e-001],\n",
      -       "         [9.99996160e-001, 9.99998805e-001,             nan, ...,\n",
      -       "          9.99998216e-001, 9.99996880e-001, 9.99996727e-001],\n",
      -       "         [9.99997993e-001, 9.99999976e-001, 9.99999995e-001, ...,\n",
      -       "          9.99999383e-001, 9.99999817e-001, 9.99998311e-001]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99959470e-001, 9.99852218e-001, 9.99878418e-001, ...,\n",
      -       "          9.99972346e-001, 9.99986337e-001, 9.99966447e-001],\n",
      -       "         [9.99990656e-001, 9.99994445e-001,             nan, ...,\n",
      -       "          9.99995487e-001, 9.99993352e-001, 9.99992801e-001],\n",
      -       "         [9.99999007e-001, 9.99999983e-001, 9.99999992e-001, ...,\n",
      -       "          9.99999301e-001, 9.99999824e-001, 9.99999089e-001]],\n",
      -       "\n",
      -       "        [[            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         [            nan,             nan,             nan, ...,\n",
      -       "                      nan,             nan,             nan],\n",
      -       "         ...,\n",
      -       "         [9.99832795e-001, 9.99940867e-001, 9.99980070e-001, ...,\n",
      -       "          9.99935171e-001, 9.99956463e-001, 9.99787426e-001],\n",
      -       "         [9.99987096e-001, 9.99994593e-001,             nan, ...,\n",
      -       "          9.99987285e-001, 9.99990981e-001, 9.99987520e-001],\n",
      -       "         [9.99999671e-001, 9.99999974e-001, 9.99999996e-001, ...,\n",
      -       "          9.99998838e-001, 9.99999900e-001, 9.99999553e-001]]]])
    • PCM_RANK
      (pcm_class, time, YC, XC)
      float64
      nan nan nan nan ... 2.0 2.0 2.0 2.0
      long_name :
      PCM Rank
      units :
      valid_min :
      0
      valid_max :
      5
      array([[[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4., nan, ...,  4.,  4.,  4.],\n",
      -       "         [ 4.,  4.,  4., ...,  4.,  4.,  4.]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3., nan, ...,  3.,  3.,  3.],\n",
      -       "         [ 3.,  3.,  3., ...,  3.,  3.,  3.]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1., nan, ...,  1.,  1.,  1.],\n",
      -       "         [ 1.,  1.,  1., ...,  1.,  1.,  1.]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0., nan, ...,  2.,  0.,  0.],\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  0.,  2.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  0.,  2.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  2., nan, ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  2.,  2., ...,  0.,  0.,  0.]]],\n",
      -       "\n",
      -       "\n",
      -       "       [[[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0., nan, ...,  0.,  0.,  0.],\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  0.,  0.]],\n",
      -       "\n",
      -       "        ...,\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2., nan, ...,  0.,  2.,  2.],\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  2.,  0.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  2., nan, ...,  2.,  2.,  2.],\n",
      -       "         [ 0.,  0.,  0., ...,  0.,  2.,  0.]],\n",
      -       "\n",
      -       "        [[nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         [nan, nan, nan, ..., nan, nan, nan],\n",
      -       "         ...,\n",
      -       "         [ 2.,  2.,  2., ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  0., nan, ...,  2.,  2.,  2.],\n",
      -       "         [ 2.,  0.,  0., ...,  2.,  2.,  2.]]]])
" - ], - "text/plain": [ - "\n", - "Dimensions: (XC: 240, YC: 60, Z: 52, pcm_class: 5, time: 12)\n", - "Coordinates:\n", - " * time (time) datetime64[ns] 2011-08-01T15:12:00 ... 2012-07-01T09:36:00\n", - " * Z (Z) float32 -2.1 -6.7 -12.15 -18.55 ... -5000.0 -5400.0 -5800.0\n", - " * YC (YC) float64 -77.98 -77.16 -76.35 ... -31.35 -30.53 -29.72\n", - " * XC (XC) float64 0.08333 1.589 3.094 4.6 ... 355.4 356.9 358.4 359.9\n", - "Dimensions without coordinates: pcm_class\n", - "Data variables:\n", - " SALT (time, Z, YC, XC) float64 nan nan nan nan ... 0.0 0.0 0.0 0.0\n", - " THETA (time, Z, YC, XC) float64 nan nan nan nan ... 0.0 0.0 0.0 0.0\n", - " PCM_LABELS (time, YC, XC) float64 nan nan nan nan nan ... 4.0 4.0 4.0 4.0\n", - " PCM_POST (pcm_class, time, YC, XC) float64 nan nan nan ... 1.0 1.0 1.0\n", - " PCM_RANK (pcm_class, time, YC, XC) float64 nan nan nan ... 2.0 2.0 2.0" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ds" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "ds.to_netcdf('nc/trained_on_year.nc')" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def label_and_save(m, time_i):\n", - " # Define features to use\n", - " # Instantiate the PCM\n", - " \n", - " max_depth = 2000\n", - " z = np.arange(-300, -max_depth, -10.)\n", - " features_pcm = {'THETA': z, 'SALT': z}\n", - " features = {'THETA': 'THETA', 'SALT': 'SALT'}\n", - " salt_nc = xr.open_dataset(salt).isel(time=time_i)\n", - " theta_nc = xr.open_dataset(theta).isel(time=time_i)\n", - " big_nc = xr.merge([salt_nc, theta_nc])\n", - " both_nc = big_nc.where(big_nc.coords['Depth'] > \n", - " max_depth).drop(['iter', 'Depth', \n", - " 'rA', 'drF', 'hFacC']) \n", - " \n", - " attr_d = {}\n", - "\n", - " for coord in both_nc.coords:\n", - " attr_d[coord] = both_nc.coords[coord].attrs\n", - " \n", - " ds = both_nc\n", - " \n", - " m.predict(ds, features=features, \n", - " dim='Z', inplace=True)\n", - " m.predict_proba(ds, features=features, \n", - " dim='Z', inplace=True)\n", - " \n", - " def sanitize():\n", - " del ds.PCM_LABELS.attrs['_pyXpcm_cleanable']\n", - " del ds.PCM_POST.attrs['_pyXpcm_cleanable']\n", - " \n", - " for coord in attr_d:\n", - " ds.coords[coord].attrs = attr_d[coord]\n", - " \n", - " sanitize()\n", - " ds = ds.drop(['SALT', 'THETA']).astype('float32')\n", - " \n", - " ds = ds.expand_dims(dim='time', axis=None)\n", - "\n", - " ds = ds.assign_coords({\"time\":\n", - " (\"time\", [salt_nc.coords['time'].values])})\n", - "\n", - " ds.coords['time'].attrs = salt_nc.coords['time'].attrs\n", - " ds.to_netcdf('nc/labels/'+str(time_i)+'.nc')\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.1-mask: 177 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 658 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6050 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 958 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7674 ms\n", - " predict.1-preprocess: 7674 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1214 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5869 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 913 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 8007 ms\n", - " predict.1-preprocess: 8007 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 100 ms\n", - " predict.1-preprocess: 16041 ms\n", - " predict.predict: 249 ms\n", - " predict.score: 270 ms\n", - " predict.xarray: 3368 ms\n", - " predict: 19935 ms\n", - " predict_proba.1-preprocess.1-mask: 359 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 994 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6238 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 946 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 8186 ms\n", - " predict_proba.1-preprocess: 8187 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1111 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 7608 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 997 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 9734 ms\n", - " predict_proba.1-preprocess: 9736 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 16 ms\n", - " predict_proba.1-preprocess.4-xarray: 97 ms\n", - " predict_proba.1-preprocess: 18462 ms\n", - " predict_proba.predict: 385 ms\n", - " predict_proba.score: 286 ms\n", - " predict_proba.xarray: 16622 ms\n", - " predict_proba: 35761 ms\n", - " predict.1-preprocess.1-mask: 181 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 769 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6860 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 967 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8605 ms\n", - " predict.1-preprocess: 8605 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1331 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 10 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 9178 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 2043 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 12566 ms\n", - " predict.1-preprocess: 12568 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - " predict.1-preprocess.4-xarray: 99 ms\n", - " predict.1-preprocess: 21537 ms\n", - " predict.predict: 277 ms\n", - " predict.score: 348 ms\n", - " predict.xarray: 3378 ms\n", - " predict: 25545 ms\n", - " predict_proba.1-preprocess.1-mask: 563 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1015 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5203 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 971 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7197 ms\n", - " predict_proba.1-preprocess: 7197 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 17 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1261 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 28 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3992 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 944 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 6228 ms\n", - " predict_proba.1-preprocess: 6228 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 94 ms\n", - " predict_proba.1-preprocess: 14166 ms\n", - " predict_proba.predict: 403 ms\n", - " predict_proba.score: 292 ms\n", - " predict_proba.xarray: 16308 ms\n", - " predict_proba: 31175 ms\n", - " predict.1-preprocess.1-mask: 189 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 671 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 8453 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1028 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 10160 ms\n", - " predict.1-preprocess: 10160 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1231 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4461 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 918 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 6621 ms\n", - " predict.1-preprocess: 6621 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - " predict.1-preprocess.4-xarray: 97 ms\n", - " predict.1-preprocess: 17113 ms\n", - " predict.predict: 257 ms\n", - " predict.score: 298 ms\n", - " predict.xarray: 3400 ms\n", - " predict: 21073 ms\n", - " predict_proba.1-preprocess.1-mask: 388 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1021 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 7436 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 996 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 9460 ms\n", - " predict_proba.1-preprocess: 9461 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1176 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 6643 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 940 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 8774 ms\n", - " predict_proba.1-preprocess: 8775 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - " predict_proba.1-preprocess.4-xarray: 102 ms\n", - " predict_proba.1-preprocess: 18807 ms\n", - " predict_proba.predict: 408 ms\n", - " predict_proba.score: 316 ms\n", - " predict_proba.xarray: 15959 ms\n", - " predict_proba: 35496 ms\n", - " predict.1-preprocess.1-mask: 170 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 646 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 14192 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 3411 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 18265 ms\n", - " predict.1-preprocess: 18265 ms\n", - " predict.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1455 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 16 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5382 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 2115 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 8970 ms\n", - " predict.1-preprocess: 8971 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - " predict.1-preprocess.4-xarray: 99 ms\n", - " predict.1-preprocess: 27564 ms\n", - " predict.predict: 301 ms\n", - " predict.score: 351 ms\n", - " predict.xarray: 3770 ms\n", - " predict: 31991 ms\n", - " predict_proba.1-preprocess.1-mask: 483 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1051 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 8442 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 954 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 10456 ms\n", - " predict_proba.1-preprocess: 10457 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1140 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 13 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3622 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 903 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 5680 ms\n", - " predict_proba.1-preprocess: 5681 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - " predict_proba.1-preprocess.4-xarray: 94 ms\n", - " predict_proba.1-preprocess: 16791 ms\n", - " predict_proba.predict: 367 ms\n", - " predict_proba.score: 281 ms\n", - " predict_proba.xarray: 16954 ms\n", - " predict_proba: 34397 ms\n", - " predict.1-preprocess.1-mask: 266 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 749 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6394 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 908 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8058 ms\n", - " predict.1-preprocess: 8058 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1197 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3737 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 1001 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 5945 ms\n", - " predict.1-preprocess: 5946 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 96 ms\n", - " predict.1-preprocess: 14406 ms\n", - " predict.predict: 286 ms\n", - " predict.score: 281 ms\n", - " predict.xarray: 3464 ms\n", - " predict: 18442 ms\n", - " predict_proba.1-preprocess.1-mask: 360 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1087 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5775 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 998 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7868 ms\n", - " predict_proba.1-preprocess: 7868 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1254 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 19 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 7628 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 923 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 9828 ms\n", - " predict_proba.1-preprocess: 9829 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - " predict_proba.1-preprocess.4-xarray: 98 ms\n", - " predict_proba.1-preprocess: 18250 ms\n", - " predict_proba.predict: 356 ms\n", - " predict_proba.score: 304 ms\n", - " predict_proba.xarray: 15696 ms\n", - " predict_proba: 34611 ms\n", - " predict.1-preprocess.1-mask: 173 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 702 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5625 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 916 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7251 ms\n", - " predict.1-preprocess: 7252 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1262 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 16 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3622 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 885 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 5788 ms\n", - " predict.1-preprocess: 5789 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 93 ms\n", - " predict.1-preprocess: 13348 ms\n", - " predict.predict: 253 ms\n", - " predict.score: 267 ms\n", - " predict.xarray: 3425 ms\n", - " predict: 17298 ms\n", - " predict_proba.1-preprocess.1-mask: 365 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1057 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5574 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 885 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7525 ms\n", - " predict_proba.1-preprocess: 7526 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 664 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 10010 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 888 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 11580 ms\n", - " predict_proba.1-preprocess: 11580 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 15 ms\n", - " predict_proba.1-preprocess.4-xarray: 94 ms\n", - " predict_proba.1-preprocess: 19650 ms\n", - " predict_proba.predict: 350 ms\n", - " predict_proba.score: 297 ms\n", - " predict_proba.xarray: 15462 ms\n", - " predict_proba: 35766 ms\n", - " predict.1-preprocess.1-mask: 175 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 730 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 10 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6826 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 918 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8492 ms\n", - " predict.1-preprocess: 8492 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1420 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 22 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5157 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 937 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 7538 ms\n", - " predict.1-preprocess: 7539 ms\n", - " predict.1-preprocess.3-homogeniser: 11 ms\n", - " predict.1-preprocess.4-xarray: 98 ms\n", - " predict.1-preprocess: 16399 ms\n", - " predict.predict: 246 ms\n", - " predict.score: 285 ms\n", - " predict.xarray: 3386 ms\n", - " predict: 20322 ms\n", - " predict_proba.1-preprocess.1-mask: 409 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1127 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 9770 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 1198 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 12105 ms\n", - " predict_proba.1-preprocess: 12106 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1408 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5130 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 883 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 7439 ms\n", - " predict_proba.1-preprocess: 7439 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 92 ms\n", - " predict_proba.1-preprocess: 20088 ms\n", - " predict_proba.predict: 349 ms\n", - " predict_proba.score: 272 ms\n", - " predict_proba.xarray: 15805 ms\n", - " predict_proba: 36521 ms\n", - " predict.1-preprocess.1-mask: 190 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 641 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5716 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1095 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7458 ms\n", - " predict.1-preprocess: 7458 ms\n", - " predict.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1313 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 10 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4967 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 907 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 7203 ms\n", - " predict.1-preprocess: 7203 ms\n", - " predict.1-preprocess.3-homogeniser: 11 ms\n", - " predict.1-preprocess.4-xarray: 94 ms\n", - " predict.1-preprocess: 15034 ms\n", - " predict.predict: 243 ms\n", - " predict.score: 271 ms\n", - " predict.xarray: 3433 ms\n", - " predict: 18988 ms\n", - " predict_proba.1-preprocess.1-mask: 344 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1055 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5928 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7904 ms\n", - " predict_proba.1-preprocess: 7905 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1167 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 17 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5593 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 880 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 7659 ms\n", - " predict_proba.1-preprocess: 7659 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 92 ms\n", - " predict_proba.1-preprocess: 16040 ms\n", - " predict_proba.predict: 354 ms\n", - " predict_proba.score: 275 ms\n", - " predict_proba.xarray: 15805 ms\n", - " predict_proba: 32480 ms\n", - " predict.1-preprocess.1-mask: 173 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 636 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6385 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 1011 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8042 ms\n", - " predict.1-preprocess: 8043 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1150 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 7 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 6142 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 890 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 8191 ms\n", - " predict.1-preprocess: 8191 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 98 ms\n", - " predict.1-preprocess: 16586 ms\n", - " predict.predict: 252 ms\n", - " predict.score: 268 ms\n", - " predict.xarray: 3469 ms\n", - " predict: 20580 ms\n", - " predict_proba.1-preprocess.1-mask: 364 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1054 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5363 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7334 ms\n", - " predict_proba.1-preprocess: 7334 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1094 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5100 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 873 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 7084 ms\n", - " predict_proba.1-preprocess: 7085 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 91 ms\n", - " predict_proba.1-preprocess: 14960 ms\n", - " predict_proba.predict: 356 ms\n", - " predict_proba.score: 275 ms\n", - " predict_proba.xarray: 15345 ms\n", - " predict_proba: 30941 ms\n", - " predict.1-preprocess.1-mask: 171 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 656 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 6813 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 898 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8374 ms\n", - " predict.1-preprocess: 8375 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1326 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 6864 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 893 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 9090 ms\n", - " predict.1-preprocess: 9090 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 104 ms\n", - " predict.1-preprocess: 17809 ms\n", - " predict.predict: 276 ms\n", - " predict.score: 369 ms\n", - " predict.xarray: 3510 ms\n", - " predict: 21969 ms\n", - " predict_proba.1-preprocess.1-mask: 174 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 693 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6013 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 909 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7627 ms\n", - " predict_proba.1-preprocess: 7627 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1215 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 15 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3452 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 900 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 5584 ms\n", - " predict_proba.1-preprocess: 5585 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - " predict_proba.1-preprocess.4-xarray: 94 ms\n", - " predict_proba.1-preprocess: 13520 ms\n", - " predict_proba.predict: 361 ms\n", - " predict_proba.score: 278 ms\n", - " predict_proba.xarray: 15695 ms\n", - " predict_proba: 29859 ms\n", - " predict.1-preprocess.1-mask: 181 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 659 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5222 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 976 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 6867 ms\n", - " predict.1-preprocess: 6868 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1255 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 9 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 5336 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 888 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 7490 ms\n", - " predict.1-preprocess: 7490 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 95 ms\n", - " predict.1-preprocess: 14725 ms\n", - " predict.predict: 253 ms\n", - " predict.score: 278 ms\n", - " predict.xarray: 3496 ms\n", - " predict: 18756 ms\n", - " predict_proba.1-preprocess.1-mask: 432 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1038 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6462 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 928 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 8444 ms\n", - " predict_proba.1-preprocess: 8445 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1067 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 20 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 4383 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 955 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 6428 ms\n", - " predict_proba.1-preprocess: 6428 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 98 ms\n", - " predict_proba.1-preprocess: 15445 ms\n", - " predict_proba.predict: 397 ms\n", - " predict_proba.score: 271 ms\n", - " predict_proba.xarray: 15562 ms\n", - " predict_proba: 31682 ms\n", - " predict.1-preprocess.1-mask: 170 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 630 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 7107 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 947 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 8691 ms\n", - " predict.1-preprocess: 8692 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1345 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 3716 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 896 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 5970 ms\n", - " predict.1-preprocess: 5970 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - " predict.1-preprocess.4-xarray: 93 ms\n", - " predict.1-preprocess: 14967 ms\n", - " predict.predict: 250 ms\n", - " predict.score: 275 ms\n", - " predict.xarray: 3548 ms\n", - " predict: 19044 ms\n", - " predict_proba.1-preprocess.1-mask: 361 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1066 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 7339 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 895 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 9307 ms\n", - " predict_proba.1-preprocess: 9308 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 1260 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 12 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 3652 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 870 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 5797 ms\n", - " predict_proba.1-preprocess: 5798 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 96 ms\n", - " predict_proba.1-preprocess: 15607 ms\n", - " predict_proba.predict: 357 ms\n", - " predict_proba.score: 273 ms\n", - " predict_proba.xarray: 15698 ms\n", - " predict_proba: 31940 ms\n", - " predict.1-preprocess.1-mask: 175 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 661 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5322 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 920 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 6911 ms\n", - " predict.1-preprocess: 6911 ms\n", - " predict.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1353 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 8 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4647 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 890 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 6901 ms\n", - " predict.1-preprocess: 6902 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 95 ms\n", - " predict.1-preprocess: 14132 ms\n", - " predict.predict: 269 ms\n", - " predict.score: 291 ms\n", - " predict.xarray: 3488 ms\n", - " predict: 18185 ms\n", - " predict_proba.1-preprocess.1-mask: 425 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 800 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 6032 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 888 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7726 ms\n", - " predict_proba.1-preprocess: 7726 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 650 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 14 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 6344 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 892 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 7901 ms\n", - " predict_proba.1-preprocess: 7902 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 96 ms\n", - " predict_proba.1-preprocess: 16194 ms\n", - " predict_proba.predict: 350 ms\n", - " predict_proba.score: 294 ms\n", - " predict_proba.xarray: 15559 ms\n", - " predict_proba: 32402 ms\n", - " predict.1-preprocess.1-mask: 184 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 659 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 7 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5627 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 948 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7245 ms\n", - " predict.1-preprocess: 7246 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1294 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4177 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 861 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 6345 ms\n", - " predict.1-preprocess: 6346 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - " predict.1-preprocess.4-xarray: 96 ms\n", - " predict.1-preprocess: 13948 ms\n", - " predict.predict: 253 ms\n", - " predict.score: 271 ms\n", - " predict.xarray: 3632 ms\n", - " predict: 18107 ms\n", - " predict_proba.1-preprocess.1-mask: 389 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 1027 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5197 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 876 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7108 ms\n", - " predict_proba.1-preprocess: 7108 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 623 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 14 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5324 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 873 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 6836 ms\n", - " predict_proba.1-preprocess: 6836 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 91 ms\n", - " predict_proba.1-preprocess: 14465 ms\n", - " predict_proba.predict: 360 ms\n", - " predict_proba.score: 279 ms\n", - " predict_proba.xarray: 15614 ms\n", - " predict_proba: 30723 ms\n", - " predict.1-preprocess.1-mask: 175 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 655 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 5 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5942 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 896 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7502 ms\n", - " predict.1-preprocess: 7502 ms\n", - " predict.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1256 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 7 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 7034 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.6-reduce_transform: 885 ms\n", - " predict.1-preprocess.2-feature_SALT.total: 9184 ms\n", - " predict.1-preprocess: 9184 ms\n", - " predict.1-preprocess.3-homogeniser: 13 ms\n", - " predict.1-preprocess.4-xarray: 96 ms\n", - " predict.1-preprocess: 17007 ms\n", - " predict.predict: 244 ms\n", - " predict.score: 268 ms\n", - " predict.xarray: 3547 ms\n", - " predict: 21070 ms\n", - " predict_proba.1-preprocess.1-mask: 295 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.1-ravel: 828 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_THETA.2-interp: 4 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.4-scale_transform: 5998 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.6-reduce_transform: 886 ms\n", - " predict_proba.1-preprocess.2-feature_THETA.total: 7719 ms\n", - " predict_proba.1-preprocess: 7719 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 14 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.1-ravel: 841 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict_proba.1-preprocess.2-feature_SALT.2-interp: 13 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " predict_proba.1-preprocess.2-feature_SALT.4-scale_transform: 5661 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.6-reduce_transform: 864 ms\n", - " predict_proba.1-preprocess.2-feature_SALT.total: 7382 ms\n", - " predict_proba.1-preprocess: 7383 ms\n", - " predict_proba.1-preprocess.3-homogeniser: 12 ms\n", - " predict_proba.1-preprocess.4-xarray: 93 ms\n", - " predict_proba.1-preprocess: 15536 ms\n", - " predict_proba.predict: 398 ms\n", - " predict_proba.score: 295 ms\n", - " predict_proba.xarray: 15455 ms\n", - " predict_proba: 31689 ms\n", - " predict.1-preprocess.1-mask: 194 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.1-ravel: 655 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_THETA.2-interp: 6 ms\n", - " predict.1-preprocess.2-feature_THETA.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.4-scale_transform: 5853 ms\n", - " predict.1-preprocess.2-feature_THETA.5-reduce_fit: 0 ms\n", - " predict.1-preprocess.2-feature_THETA.6-reduce_transform: 912 ms\n", - " predict.1-preprocess.2-feature_THETA.total: 7429 ms\n", - " predict.1-preprocess: 7430 ms\n", - " predict.1-preprocess.3-homogeniser: 12 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.1-ravel: 1271 ms\n", - "[-2.100e+00 -6.700e+00 -1.215e+01 -1.855e+01 -2.625e+01 -3.525e+01\n", - " -4.500e+01 -5.500e+01 -6.500e+01 -7.500e+01 -8.500e+01 -9.500e+01\n", - " -1.050e+02 -1.150e+02 -1.250e+02 -1.350e+02 -1.465e+02 -1.615e+02\n", - " -1.800e+02 -2.000e+02 -2.200e+02 -2.400e+02 -2.600e+02 -2.800e+02\n", - " -3.010e+02 -3.270e+02 -3.610e+02 -4.025e+02 -4.500e+02 -5.000e+02\n", - " -5.515e+02 -6.140e+02 -7.000e+02 -8.000e+02 -9.000e+02 -1.000e+03\n", - " -1.100e+03 -1.225e+03 -1.400e+03 -1.600e+03 -1.800e+03 -2.010e+03\n", - " -2.270e+03 -2.610e+03 -3.000e+03 -3.400e+03 -3.800e+03 -4.200e+03\n", - " -4.600e+03 -5.000e+03 -5.400e+03 -5.800e+03]\n", - " predict.1-preprocess.2-feature_SALT.2-interp: 11 ms\n", - " predict.1-preprocess.2-feature_SALT.3-scale_fit: 0 ms\n", - " predict.1-preprocess.2-feature_SALT.4-scale_transform: 4863 ms\n", - " predict.1-preprocess.2-feature_SALT.5-reduce_fit: 0 ms\n" - ] - } - ], - "source": [ - "for time_i in range(0, 60):\n", - " label_and_save(m, time_i)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "\n", - "Number of class: 5\n", - "Number of feature: 2\n", - "Feature names: odict_keys(['THETA', 'SALT'])\n", - "Fitted: True\n", - "Feature: 'THETA'\n", - "\t Interpoler: \n", - "\t Scaler: 'normal', \n", - "\t Reducer: True, \n", - "Feature: 'SALT'\n", - "\t Interpoler: \n", - "\t Scaler: 'normal', \n", - "\t Reducer: True, \n", - "Classifier: 'gmm', \n", - "\t log likelihood of the training set: -1.584785" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "m" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From 3add758c62567a9c328ef178c9709f92e76ecc02 Mon Sep 17 00:00:00 2001 From: "Simon D.A. Thomas" <30407294+sdat2@users.noreply.github.com> Date: Mon, 17 Aug 2020 12:01:06 +0100 Subject: [PATCH 6/9] Delete pca_nc_maker.py --- pca_nc_maker.py | 135 ------------------------------------------------ 1 file changed, 135 deletions(-) delete mode 100644 pca_nc_maker.py diff --git a/pca_nc_maker.py b/pca_nc_maker.py deleted file mode 100644 index 2ee0c9d..0000000 --- a/pca_nc_maker.py +++ /dev/null @@ -1,135 +0,0 @@ -import numpy as np -import xarray as xr -xr.set_options(keep_attrs=True) -import pyxpcm -from pyxpcm.models import pcm -# ln -s /Volumes/BSOSE-DISC/bsose_monthly bsose_monthly - -def pcm_pca_out(time_i=42, K=4, maxvar=2, min_depth=300, interp=False): - # Define features to use - # Instantiate the PCM - main_dir = '/Users/simon/bsose_monthly/' - salt = main_dir + 'bsose_i106_2008to2012_monthly_Salt.nc' - theta = main_dir + 'bsose_i106_2008to2012_monthly_Theta.nc' - - max_depth = 2000 - z = np.arange(-min_depth, -max_depth, -10.) - features_pcm = {'THETA': z, 'SALT': z} - features = {'THETA': 'THETA', 'SALT': 'SALT'} - salt_nc = xr.open_dataset(salt).isel(time=time_i) - theta_nc = xr.open_dataset(theta).isel(time=time_i) - big_nc = xr.merge([salt_nc, theta_nc]) - both_nc = big_nc.where(big_nc.coords['Depth'] > - max_depth).drop(['iter', 'Depth', - 'rA', 'drF', 'hFacC']) - - attr_d = {} - - for coord in both_nc.coords: - attr_d[coord] = both_nc.coords[coord].attrs - - lons_new = np.linspace(both_nc.XC.min(), both_nc.XC.max(), 60*4) - lats_new = np.linspace(both_nc.YC.min(), both_nc.YC.max(), 60) - # ds = both_nc # .copy(deep=True) - if interp: - ds = both_nc.interp(coords={'YC': lats_new, 'XC': lons_new})#, method='cubic') - else: - ds = both_nc - - m = pcm(K=K, features=features_pcm, - maxvar=maxvar, - timeit=True, timeit_verb=1) - ds = m.add_pca_to_xarray(ds, features=features, dim='Z', inplace=True) - - #m.fit(ds, features=features, dim='Z') #, inplace=True) - #m.predict(ds, features=features, dim='Z', inplace=True) - #m.predict_proba(ds, features=features, dim='Z', inplace=True) - #m.find_i_metric(ds, inplace=True) - - def sanitize(): - # del ds.PCM_LABELS.attrs['_pyXpcm_cleanable'] - # del ds.PCM_POST.attrs['_pyXpcm_cleanable'] - # del ds.PCM_RANK.attrs['_pyXpcm_cleanable'] - del ds.PCA_VALUES.attrs['_pyXpcm_cleanable'] - - for coord in attr_d: - ds.coords[coord].attrs = attr_d[coord] - - sanitize() - - ds = ds.drop(['SALT', 'THETA']) - - ds = ds.expand_dims(dim='time', axis=None) - - ds = ds.assign_coords({"time": - ("time", [salt_nc.coords['time'].values])}) - - ds.coords['time'].attrs = salt_nc.coords['time'].attrs - - - ds.to_netcdf('nc/pca/'+str(time_i)+'.nc', format='NETCDF4') - m.to_netcdf('nc/m_pca/'+str(time_i)+'.nc') - - -def run_through_pca(): - for time_i in range(60): - pcm_pca_out(time_i=time_i) - - -def merge_whole_density_netcdf(): - - pca_ds = xr.open_mfdataset('nc/pca/*.nc', - concat_dim="time", - combine='by_coords', - chunks={'time': 1}, - data_vars='minimal', - # parallel=True, - coords='minimal', - compat='override') - - # this is too intense for memory - - return pca_ds - - -def save_density_netcdf(pca_ds): - - xr.save_mfdataset([pca_ds], ['nc/pcm_pca.nc'], format='NETCDF4') - - -def take_derivative_pca(dimension="YC", typ='float32'): - - chunk_d = {'time': 1, 'YC': 588, 'XC': 2160} - - density_ds = xr.open_mfdataset('nc/pcm_pca.nc', - # engine=engine, - # decode_cf=False, - chunks=chunk_d, - combine='by_coords', - data_vars='minimal', - coords='minimal', - compat='override', - parallel=True - ).astype(typ) - - grad_da = density_ds.PCA_VALUES.differentiate(dimension) - #.astype(typ).chunk(chunks=chunk_d) - - name = 'PC_Gradient_' + dimension - grad_ds = grad_da.to_dataset().rename_vars({'PCA_VALUES': name}) - grad_ds[name].attrs['long_name'] = 'PC Gradient ' + dimension - grad_ds[name].attrs['units'] = 'box-1' - - # .astype(typ).chunk(chunks=chunk_d) - xr.save_mfdataset([grad_ds], - ['nc/pc_grad_' + dimension + '.nc'], - format='NETCDF4') - - -def go_through_all(): - - run_through_pca() - pca_ds = merge_whole_density_netcdf() - save_density_netcdf(pca_ds) - take_derivative_pca() - take_derivative_pca(dimension="XC") From 12cef854c365a82303c478c5d5d5e9c5e19dad52 Mon Sep 17 00:00:00 2001 From: "Simon D.A. Thomas" <30407294+sdat2@users.noreply.github.com> Date: Mon, 17 Aug 2020 12:01:21 +0100 Subject: [PATCH 7/9] Delete gmm_big_train.py --- gmm_big_train.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 gmm_big_train.py diff --git a/gmm_big_train.py b/gmm_big_train.py deleted file mode 100644 index e69de29..0000000 From 8d13d9508dbf09e06437882ba28f671d37cd23c7 Mon Sep 17 00:00:00 2001 From: Simon Date: Mon, 17 Aug 2020 12:12:29 +0100 Subject: [PATCH 8/9] adding pca output method --- pyxpcm/models.py | 57 ++++++++++++++++++++++++++++++++++++++++-------- 1 file changed, 48 insertions(+), 9 deletions(-) diff --git a/pyxpcm/models.py b/pyxpcm/models.py index 0fb38dd..826e8ad 100644 --- a/pyxpcm/models.py +++ b/pyxpcm/models.py @@ -129,11 +129,11 @@ def __init__(self, elif scaling==1: with_scaler = 'normal'; with_mean=True; with_std = True elif scaling==2: with_scaler = 'center'; with_mean=True; with_std = False else: raise NameError('scaling must be 0, 1 or 2') - + if reduction==0: with_reducer = False elif reduction==1: with_reducer = True else: raise NameError('reduction must be 0 or 1') - + if classif=='gmm': with_classifier = 'gmm'; else: raise NameError("classifier must be 'gmm' (no other methods implemented at this time)") @@ -246,11 +246,11 @@ def __empty_context(self, name, *args, **kargs): def __call__(self, **kwargs): self.__init__(**kwargs) - + def __iter__(self): self.__i = 0 return self - + def __next__(self): if self.__i < self.K: i = self.__i @@ -522,7 +522,7 @@ def display(self, deep=False): summary = [("")%(self._props['with_classifier'], self._props['K'], len(self._props['features']))] - + # PCM core properties: prop_info = ('Number of class: %i') % self._props['K'] summary.append(prop_info) @@ -535,7 +535,7 @@ def display(self, deep=False): # prop_info = ('Feature axis: [%s, ..., %s]') % (repr(self._props['features'][0]), # repr(self._props['feature_axis'][-1])) # summary.append(prop_info) - + prop_info = ('Fitted: %r') % hasattr(self, 'fitted') summary.append(prop_info) @@ -572,12 +572,12 @@ def display(self, deep=False): if (hasattr(self,'fitted')): prop_info = ('\t log likelihood of the training set: %f') % self._props['llh'] summary.append(prop_info) - + if (deep): summary.append("\t Classifier properties:") d = self._classifier.get_params(deep=deep) for p in d: summary.append(("\t\t %s: %r")%(p,d[p])) - + # Done return '\n'.join(summary) @@ -1004,6 +1004,45 @@ def fit_predict(self, ds, features=None, dim=None, inplace=False, name='PCM_LABE else: return da + def add_pca_to_xarray(self, ds, features=None, + dim=None, action='fit', + mask=None, inplace=False): + """ + A function to preprocess the fields, fit the PCs, + and output the pca coefficients to an xarray dataarray object. + + :param ds: :class:`xarray.Dataset` to process + :param features: dictionary with features inside e.g.: {'SALT': 'SALT'} + :param dim: string for dimension along which the model is fitted (e.g. Z) + :param action: string to be forwarded to preprocessing function + :param mask: mask over dataset + :param inplace: whether to add the dataarray to the existing dataset, + or just to return the datarray on its own. + + """ + with self._context('fit', self._context_args): + X, sampling_dims = self.preprocessing(ds, features=features, dim=dim, + action=action, mask=mask) + pca_values = X.values + n_features = str(X.coords['n_features'].values) + + with self._context('add_pca.xarray', self._context_args): + P = list() + for k in range(np.shape(pca_values)[1]): + X = pca_values[:, k] + x = self.unravel(ds, sampling_dims, X) + P.append(x) + + da = xr.concat(P, dim='pca').rename('PCA_VALUES') + da.attrs['long_name'] = 'PCA Values' + da.attrs['n_features'] = n_features + + # Add posteriors to the dataset: + if inplace: + return ds.pyxpcm.add(da) + else: + return da + def predict_proba(self, ds, features=None, dim=None, inplace=False, name='PCM_POST', classdimname='pcm_class'): """Predict posterior probability of each components given the data @@ -1173,4 +1212,4 @@ def _n_parameters(_classifier): N_samples = X.shape[0] bic = (-2 * llh * N_samples + _n_parameters(self._classifier) * np.log(N_samples)) - return bic \ No newline at end of file + return bic From e1e9495c368f9b92c7aaa45c7da9ef5034d29d0c Mon Sep 17 00:00:00 2001 From: Simon Date: Mon, 17 Aug 2020 12:15:09 +0100 Subject: [PATCH 9/9] moving to right place --- pyxpcm/models.py | 78 ++++++++++++++++++++++++------------------------ 1 file changed, 39 insertions(+), 39 deletions(-) diff --git a/pyxpcm/models.py b/pyxpcm/models.py index 826e8ad..763e827 100644 --- a/pyxpcm/models.py +++ b/pyxpcm/models.py @@ -808,6 +808,45 @@ def preprocessing(self, ds, features=None, dim=None, action='?', mask=None): " and sampling dimensions:", sampling_dims) return X, sampling_dims + def add_pca_to_xarray(self, ds, features=None, + dim=None, action='fit', + mask=None, inplace=False): + """ + A function to preprocess the fields, fit the PCs, + and output the pca coefficients to an xarray dataarray object. + + :param ds: :class:`xarray.Dataset` to process + :param features: dictionary with features inside e.g.: {'SALT': 'SALT'} + :param dim: string for dimension along which the model is fitted (e.g. Z) + :param action: string to be forwarded to preprocessing function + :param mask: mask over dataset + :param inplace: whether to add the dataarray to the existing dataset, + or just to return the datarray on its own. + + """ + with self._context('fit', self._context_args): + X, sampling_dims = self.preprocessing(ds, features=features, dim=dim, + action=action, mask=mask) + pca_values = X.values + n_features = str(X.coords['n_features'].values) + + with self._context('add_pca.xarray', self._context_args): + P = list() + for k in range(np.shape(pca_values)[1]): + X = pca_values[:, k] + x = self.unravel(ds, sampling_dims, X) + P.append(x) + + da = xr.concat(P, dim='pca').rename('PCA_VALUES') + da.attrs['long_name'] = 'PCA Values' + da.attrs['n_features'] = n_features + + # Add posteriors to the dataset: + if inplace: + return ds.pyxpcm.add(da) + else: + return da + def fit(self, ds, features=None, dim=None): """Estimate PCM parameters @@ -1004,45 +1043,6 @@ def fit_predict(self, ds, features=None, dim=None, inplace=False, name='PCM_LABE else: return da - def add_pca_to_xarray(self, ds, features=None, - dim=None, action='fit', - mask=None, inplace=False): - """ - A function to preprocess the fields, fit the PCs, - and output the pca coefficients to an xarray dataarray object. - - :param ds: :class:`xarray.Dataset` to process - :param features: dictionary with features inside e.g.: {'SALT': 'SALT'} - :param dim: string for dimension along which the model is fitted (e.g. Z) - :param action: string to be forwarded to preprocessing function - :param mask: mask over dataset - :param inplace: whether to add the dataarray to the existing dataset, - or just to return the datarray on its own. - - """ - with self._context('fit', self._context_args): - X, sampling_dims = self.preprocessing(ds, features=features, dim=dim, - action=action, mask=mask) - pca_values = X.values - n_features = str(X.coords['n_features'].values) - - with self._context('add_pca.xarray', self._context_args): - P = list() - for k in range(np.shape(pca_values)[1]): - X = pca_values[:, k] - x = self.unravel(ds, sampling_dims, X) - P.append(x) - - da = xr.concat(P, dim='pca').rename('PCA_VALUES') - da.attrs['long_name'] = 'PCA Values' - da.attrs['n_features'] = n_features - - # Add posteriors to the dataset: - if inplace: - return ds.pyxpcm.add(da) - else: - return da - def predict_proba(self, ds, features=None, dim=None, inplace=False, name='PCM_POST', classdimname='pcm_class'): """Predict posterior probability of each components given the data