Skip to content

why do you do evaluation before training ? #2

@Starry-lei

Description

@Starry-lei

Hi ,thanks for sharing the code! I am wondering why do you do "
else:
ldj = self.log_likelihood(z)
return z, ldj
" in the following code.

if not reverse:

        ldj = z.new_zeros(batch_size, )
        z = z.reshape((batch_size, self.d_in))
        device = z.device
        print("checking z ssssshape", z.shape) # [1, 192])
        print("checking self.training ", self.training) #  False
        
        if self.training:
            t = th.randint(0, self.T, (batch_size, ), device=device).long()
            print("checking t", t)
            # loss mark
            ldj = -self.training_losses(z, t, x_cat, **kwargs)['loss']
            z = z.reshape((batch_size, set_size, hidden_dim))
            return z, ldj
        else:
            ldj = self.log_likelihood(z)

            return z, ldj

    else:
        ldj = self.nll(z)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions