Skip to content

Why only 4 layers? #95

@VincentXWD

Description

@VincentXWD

Hello developers,
I'm inspecting smoothquant and use the script below to check the quantized model parameter sizes:

from smoothquant.opt import Int8OPTForCausalLM
from transformers.models.opt.modeling_opt import OPTForCausalLM
import torch

model_name = "mit-han-lab/opt-2.7b-smoothquant"

model_smoothquant = Int8OPTForCausalLM.from_pretrained(model_name, device_map='auto')

for name, param in model_smoothquant.named_parameters():
    print(f"Parameter Name: {name}, Parameter Shape: {param.shape}")

I noticed that there are only 4 layers collected by the inner-loop.

Parameter Name: model.decoder.embed_tokens.weight, Parameter Shape: torch.Size([50272, 2560])
Parameter Name: model.decoder.embed_positions.weight, Parameter Shape: torch.Size([2050, 2560])
Parameter Name: model.decoder.final_layer_norm.weight, Parameter Shape: torch.Size([2560])
Parameter Name: model.decoder.final_layer_norm.bias, Parameter Shape: torch.Size([2560])

Could some one explain this phenomenon? Thanks!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions