Skip to content

How to deal with LightGBM model with lineartree=True ? #807

@Shanxce

Description

@Shanxce

I am using lightgbm4.6.0, and i use linear_tree=True to train a model

`
from hummingbird.ml import convert
import numpy as np
import lightgbm as lgb
from sklearn.model_selection import train_test_split

np.random.seed(42)
n_samples = 5000
X = np.random.rand(n_samples, 5) * 10
y = 1.5 * X[:, 0] + 0.8 * X[:, 1] - 2.0 * X[:, 2] + np.sin(X[:, 3]) + 0.1 * np.random.randn(n_samples)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

params = {
'objective': 'regression',
'linear_tree': True,
'num_leaves': 31,
'learning_rate': 0.05,
'verbose': -1
}

train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)

model = lgb.train(
params,
train_data,
num_boost_round=200
)
onnx_model = convert(model, "onnx", test_input=X_train[:1])
onnx_model.save("linear_tree_model.onnx")
`

Thus, the output is different, how to deal it?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions