Skip to content

I got ValueError: cannot reshape array of size 20 into shape (6) when I started custom training. What you think? #14

@mgultekin

Description

@mgultekin

!sh /content/FairMOT/experiments/all_dla34.sh
#!sh /content/FairMOT/experiments/ft_mot15_dla34.sh
/content/FairMOT/experiments/all_dla34.sh: 1: cd: can't cd to src
Using tensorboardX
Fix size testing.
training chunk_sizes: [8]
The output will be saved to /content/FairMOT/src/lib/../../exp/mot/all_dla34
Setting up data...

dataset summary
OrderedDict([('safety', 1.9113280000000001)])
total # identities: 2
start index
OrderedDict([('safety', 0)])

heads {'hm': 1, 'wh': 2, 'id': 512, 'reg': 2}
Namespace(K=128, arch='dla_34', batch_size=8, cat_spec_wh=False, chunk_sizes=[8], conf_thres=0.6, data_cfg='/content/FairMOT/src/lib/cfg/data.json', data_dir='/data/yfzhang/MOT/JDE', dataset='jde', debug_dir='/content/FairMOT/src/lib/../../exp/mot/all_dla34/debug', dense_wh=False, det_thres=0.3, down_ratio=4, exp_dir='/content/FairMOT/src/lib/../../exp/mot', exp_id='all_dla34', fix_res=True, gpus=[0], gpus_str='0', head_conv=256, heads={'hm': 1, 'wh': 2, 'id': 512, 'reg': 2}, hide_data_time=False, hm_weight=1, id_loss='ce', id_weight=1, img_size=(1088, 608), input_h=1088, input_res=1088, input_video='../videos/MOT16-03.mp4', input_w=608, keep_res=False, load_model='/content/drive/MyDrive/fairmot_dla34.pth', lr=0.0001, lr_step=[20, 27], master_batch_size=8, mean=None, metric='loss', min_box_area=200, mse_loss=False, nID=2, nms_thres=0.4, norm_wh=False, not_cuda_benchmark=False, not_prefetch_test=False, not_reg_offset=False, num_classes=1, num_epochs=30, num_iters=-1, num_stacks=1, num_workers=8, off_weight=1, output_format='video', output_h=272, output_res=272, output_root='../results', output_w=152, pad=31, print_iter=0, reg_loss='l1', reg_offset=True, reid_dim=512, resume=False, root_dir='/content/FairMOT/src/lib/../..', save_all=False, save_dir='/content/FairMOT/src/lib/../../exp/mot/all_dla34', seed=317, std=None, task='mot', test=False, test_mot15=False, test_mot16=False, test_mot17=False, test_mot20=False, track_buffer=30, trainval=False, val_intervals=5, val_mot15=False, val_mot16=False, val_mot17=False, val_mot20=False, vis_thresh=0.5, wh_weight=0.1)
Creating model...
loaded /content/drive/MyDrive/fairmot_dla34.pth, epoch 30
Skip loading parameter wh.2.weight, required shapetorch.Size([2, 256, 1, 1]), loaded shapetorch.Size([4, 256, 1, 1]). If you see this, your model does not fully load the pre-trained weight. Please make sure you have correctly specified --arch xxx or set the correct --num_classes for your own dataset.
Skip loading parameter wh.2.bias, required shapetorch.Size([2]), loaded shapetorch.Size([4]). If you see this, your model does not fully load the pre-trained weight. Please make sure you have correctly specified --arch xxx or set the correct --num_classes for your own dataset.
Skip loading parameter id.2.weight, required shapetorch.Size([512, 256, 1, 1]), loaded shapetorch.Size([128, 256, 1, 1]). If you see this, your model does not fully load the pre-trained weight. Please make sure you have correctly specified --arch xxx or set the correct --num_classes for your own dataset.
Skip loading parameter id.2.bias, required shapetorch.Size([512]), loaded shapetorch.Size([128]). If you see this, your model does not fully load the pre-trained weight. Please make sure you have correctly specified --arch xxx or set the correct --num_classes for your own dataset.
Starting training...
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00211.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00211.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00481.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00481.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00076.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00076.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00661.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00661.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00931.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00931.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00811.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00811.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00556.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00556.txt
okay on image
/content/drive/MyDrive/safety-quipmentColab/images/val/z00766.jpg
/content/drive/MyDrive/safety-quipmentColab/labels_with_ids/val/z00766.txt
Traceback (most recent call last):
File "train.py", line 102, in
main(opt)
File "train.py", line 73, in main
log_dict_train, _ = trainer.train(epoch, train_loader)
File "/content/FairMOT/src/lib/trains/base_trainer.py", line 124, in train
return self.run_epoch('train', epoch, data_loader)
File "/content/FairMOT/src/lib/trains/base_trainer.py", line 67, in run_epoch
for iter_id, batch in enumerate(data_loader):
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py", line 345, in next
data = self._next_data()
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py", line 856, in _next_data
return self._process_data(data)
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py", line 881, in _process_data
data.reraise()
File "/usr/local/lib/python3.7/dist-packages/torch/_utils.py", line 394, in reraise
raise self.exc_type(msg)
ValueError: Caught ValueError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
data = fetcher.fetch(index)
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/content/FairMOT/src/lib/datasets/dataset/jde.py", line 427, in getitem
imgs, labels, img_path, (input_h, input_w) = self.get_data(img_path, label_path)
File "/content/FairMOT/src/lib/datasets/dataset/jde.py", line 194, in get_data
labels0 = np.loadtxt(label_path, dtype=np.float32).reshape(-1, 6)
ValueError: cannot reshape array of size 20 into shape (6)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions