-
Notifications
You must be signed in to change notification settings - Fork 16
Open
Description
Is your feature request related to a problem? Please describe.
The cuda-version generalised_geodesic3d has shown non-deterministic behaviour. Given the same inputs, it returns different output (geodesic map) at different runs. This is not ideal for reproducibility.
Please use the following code to reproduce the output I've observed.
"""
Demo of randomness from cuda-version generalised_geodesic3d.
"""
from typing import Tuple
import numpy as np
import torch
import FastGeodis
def torch_seed(seed: int = 42):
# Pytorch seeding:
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
def demo_geodesic_distance3d(
input_image: torch.Tensor,
seed_map: torch.Tensor,
spacing: Tuple[float, float, float],
device: str,
):
"""
Demo of 3d geodesic distance.
"""
# Compute geodesic map using cuda-version FastGeodis
device = "cuda"
input_image_pt = input_image.to(device)
seed_image_pt = (1 - seed_map).to(device)
fastgeodis_output = np.squeeze(
FastGeodis.generalised_geodesic3d(
input_image_pt, seed_image_pt, spacing, 1e10, 1.0
)
.cpu()
.numpy()
)
print(f"Sum of fastGeodis output: {np.sum(fastgeodis_output)}")
if __name__ == "__main__":
torch_seed()
image: torch.Tensor = torch.randint(
low=0, high=256, size=(1, 1, 150, 150, 150)
).to(torch.float32)
spacing: Tuple[int, int, int] = (1.0, 1.0, 1.0)
seed_map: torch.Tensor = torch.full_like(image, 0)
seed_map[0, 0, 4, 100, 50] = 1
device: str = "cuda"
# Compute geodesic map for multiple times using the same inputs
for i in range(3):
demo_geodesic_distance3d(
input_image=image,
spacing=spacing,
seed_map=seed_map,
device=device,
)Output - the output from generalised_geodesic3d is different at three runs:
Sum of fastGeodis output: 2537535232.0
Sum of fastGeodis output: 2542801664.0
Sum of fastGeodis output: 2540248320.0Describe the solution you'd like
I'm not sure where the randomness comes from, but It would be nice to seed everything in the cuda-version implementation.
Additional context
FastGeodis==1.0.3
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels