diff --git a/demo.py b/demo.py index 2f75e4b..55024dd 100644 --- a/demo.py +++ b/demo.py @@ -8,7 +8,7 @@ # #fetch data and format it -data = fetch_movielens(min_rating=4.0) +data = fetch_movielens(data_home='', min_rating=4.0) #print training and testing data print(repr(data['train'])) @@ -41,8 +41,13 @@ def sample_recommendation(model, data, user_ids): #movies our model predicts they will like scores = model.predict(user_id, np.arange(n_items)) + + #remove the movie that user has seen + unseen_mask = np.in1d(scores, data['train'].tocsr()[user_id].toarray(), assume_unique=True, invert=True) + unseen_scores = scores[unseen_mask] + #rank them in order of most liked to least - top_items = data['item_labels'][np.argsort(-scores)] + top_items = data['item_labels'][np.argsort(-unseen_scores)] #print out the results print("User %s" % user_id)