From 63c8b6fa0fd265d12af82b5dc29cf90198473c99 Mon Sep 17 00:00:00 2001 From: alessiamarcolini <98marcolini@gmail.com> Date: Thu, 2 May 2019 17:44:00 +0200 Subject: [PATCH 1/2] Fixed image path --- 1.5 Introduction to Numpy.ipynb | 2891 +---------------------- resources/imgs/ndarray_with_details.png | Bin 0 -> 52230 bytes 2 files changed, 111 insertions(+), 2780 deletions(-) create mode 100644 resources/imgs/ndarray_with_details.png diff --git a/1.5 Introduction to Numpy.ipynb b/1.5 Introduction to Numpy.ipynb index 066f991d..2e322a38 100644 --- a/1.5 Introduction to Numpy.ipynb +++ b/1.5 Introduction to Numpy.ipynb @@ -36,10 +36,8 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": true - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "import numpy as np" @@ -47,10 +45,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "a = np.arange(10).reshape(2, 5)\n", @@ -59,23 +55,9 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[120, 130, 140, 150],\n", - " [320, 355, 390, 425]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "a @ b # Python 3.5+" ] @@ -127,9 +109,8 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -187,9 +168,8 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -212,134 +192,21 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Search results for 'create array'\n", - "---------------------------------\n", - "numpy.array\n", - " Create an array.\n", - "numpy.memmap\n", - " Create a memory-map to an array stored in a *binary* file on disk.\n", - "numpy.diagflat\n", - " Create a two-dimensional array with the flattened input as a diagonal.\n", - "numpy.fromiter\n", - " Create a new 1-dimensional array from an iterable object.\n", - "numpy.partition\n", - " Return a partitioned copy of an array.\n", - "numpy.ma.diagflat\n", - " Create a two-dimensional array with the flattened input as a diagonal.\n", - "numpy.ctypeslib.as_array\n", - " Create a numpy array from a ctypes array or a ctypes POINTER.\n", - "numpy.ma.make_mask\n", - " Create a boolean mask from an array.\n", - "numpy.ctypeslib.as_ctypes\n", - " Create and return a ctypes object from a numpy array. Actually\n", - "numpy.ma.mrecords.fromarrays\n", - " Creates a mrecarray from a (flat) list of masked arrays.\n", - "numpy.ma.mvoid.__new__\n", - " Create a new masked array from scratch.\n", - "numpy.lib.format.open_memmap\n", - " Open a .npy file as a memory-mapped array.\n", - "numpy.ma.MaskedArray.__new__\n", - " Create a new masked array from scratch.\n", - "numpy.lib.arrayterator.Arrayterator\n", - " Buffered iterator for big arrays.\n", - "numpy.ma.mrecords.fromtextfile\n", - " Creates a mrecarray from data stored in the file `filename`.\n", - "numpy.asarray\n", - " Convert the input to an array.\n", - "numpy.ndarray\n", - " ndarray(shape, dtype=float, buffer=None, offset=0,\n", - "numpy.recarray\n", - " Construct an ndarray that allows field access using attributes.\n", - "numpy.chararray\n", - " chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0,\n", - "numpy.pad\n", - " Pads an array.\n", - "numpy.asanyarray\n", - " Convert the input to an ndarray, but pass ndarray subclasses through.\n", - "numpy.copy\n", - " Return an array copy of the given object.\n", - "numpy.diag\n", - " Extract a diagonal or construct a diagonal array.\n", - "numpy.load\n", - " Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files.\n", - "numpy.sort\n", - " Return a sorted copy of an array.\n", - "numpy.array_equiv\n", - " Returns True if input arrays are shape consistent and all elements equal.\n", - "numpy.dtype\n", - " Create a data type object.\n", - "numpy.choose\n", - " Construct an array from an index array and a set of arrays to choose from.\n", - "numpy.nditer\n", - " Efficient multi-dimensional iterator object to iterate over arrays.\n", - "numpy.swapaxes\n", - " Interchange two axes of an array.\n", - "numpy.ma.mrecords.MaskedRecords.__new__\n", - " Create a new masked array from scratch.\n", - "numpy.full_like\n", - " Return a full array with the same shape and type as a given array.\n", - "numpy.ones_like\n", - " Return an array of ones with the same shape and type as a given array.\n", - "numpy.empty_like\n", - " Return a new array with the same shape and type as a given array.\n", - "numpy.zeros_like\n", - " Return an array of zeros with the same shape and type as a given array.\n", - "numpy.asarray_chkfinite\n", - " Convert the input to an array, checking for NaNs or Infs.\n", - "numpy.diag_indices\n", - " Return the indices to access the main diagonal of an array.\n", - "numpy.ma.choose\n", - " Use an index array to construct a new array from a set of choices.\n", - "numpy.chararray.tolist\n", - " a.tolist()\n", - "numpy.matlib.rand\n", - " Return a matrix of random values with given shape.\n", - "numpy.savez_compressed\n", - " Save several arrays into a single file in compressed ``.npz`` format.\n", - "numpy.ma.empty_like\n", - " Return a new array with the same shape and type as a given array.\n", - "numpy.ma.make_mask_none\n", - " Return a boolean mask of the given shape, filled with False.\n", - "numpy.ma.mrecords.fromrecords\n", - " Creates a MaskedRecords from a list of records.\n", - "numpy.around\n", - " Evenly round to the given number of decimals.\n", - "numpy.source\n", - " Print or write to a file the source code for a Numpy object.\n", - "numpy.diagonal\n", - " Return specified diagonals.\n", - "numpy.histogram2d\n", - " Compute the bi-dimensional histogram of two data samples.\n", - "numpy.fft.ifft\n", - " Compute the one-dimensional inverse discrete Fourier Transform.\n", - "numpy.fft.ifftn\n", - " Compute the N-dimensional inverse discrete Fourier Transform.\n", - "numpy.busdaycalendar\n", - " A business day calendar object that efficiently stores information" - ] - } - ], + "outputs": [], "source": [ "np.lookfor('create array')" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -373,2209 +240,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { - "collapsed": false, "scrolled": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Help on class ndarray in module numpy:\n", - "\n", - "class ndarray(builtins.object)\n", - " | ndarray(shape, dtype=float, buffer=None, offset=0,\n", - " | strides=None, order=None)\n", - " | \n", - " | An array object represents a multidimensional, homogeneous array\n", - " | of fixed-size items. An associated data-type object describes the\n", - " | format of each element in the array (its byte-order, how many bytes it\n", - " | occupies in memory, whether it is an integer, a floating point number,\n", - " | or something else, etc.)\n", - " | \n", - " | Arrays should be constructed using `array`, `zeros` or `empty` (refer\n", - " | to the See Also section below). The parameters given here refer to\n", - " | a low-level method (`ndarray(...)`) for instantiating an array.\n", - " | \n", - " | For more information, refer to the `numpy` module and examine the\n", - " | the methods and attributes of an array.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | (for the __new__ method; see Notes below)\n", - " | \n", - " | shape : tuple of ints\n", - " | Shape of created array.\n", - " | dtype : data-type, optional\n", - " | Any object that can be interpreted as a numpy data type.\n", - " | buffer : object exposing buffer interface, optional\n", - " | Used to fill the array with data.\n", - " | offset : int, optional\n", - " | Offset of array data in buffer.\n", - " | strides : tuple of ints, optional\n", - " | Strides of data in memory.\n", - " | order : {'C', 'F'}, optional\n", - " | Row-major (C-style) or column-major (Fortran-style) order.\n", - " | \n", - " | Attributes\n", - " | ----------\n", - " | T : ndarray\n", - " | Transpose of the array.\n", - " | data : buffer\n", - " | The array's elements, in memory.\n", - " | dtype : dtype object\n", - " | Describes the format of the elements in the array.\n", - " | flags : dict\n", - " | Dictionary containing information related to memory use, e.g.,\n", - " | 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.\n", - " | flat : numpy.flatiter object\n", - " | Flattened version of the array as an iterator. The iterator\n", - " | allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for\n", - " | assignment examples; TODO).\n", - " | imag : ndarray\n", - " | Imaginary part of the array.\n", - " | real : ndarray\n", - " | Real part of the array.\n", - " | size : int\n", - " | Number of elements in the array.\n", - " | itemsize : int\n", - " | The memory use of each array element in bytes.\n", - " | nbytes : int\n", - " | The total number of bytes required to store the array data,\n", - " | i.e., ``itemsize * size``.\n", - " | ndim : int\n", - " | The array's number of dimensions.\n", - " | shape : tuple of ints\n", - " | Shape of the array.\n", - " | strides : tuple of ints\n", - " | The step-size required to move from one element to the next in\n", - " | memory. For example, a contiguous ``(3, 4)`` array of type\n", - " | ``int16`` in C-order has strides ``(8, 2)``. This implies that\n", - " | to move from element to element in memory requires jumps of 2 bytes.\n", - " | To move from row-to-row, one needs to jump 8 bytes at a time\n", - " | (``2 * 4``).\n", - " | ctypes : ctypes object\n", - " | Class containing properties of the array needed for interaction\n", - " | with ctypes.\n", - " | base : ndarray\n", - " | If the array is a view into another array, that array is its `base`\n", - " | (unless that array is also a view). The `base` array is where the\n", - " | array data is actually stored.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | array : Construct an array.\n", - " | zeros : Create an array, each element of which is zero.\n", - " | empty : Create an array, but leave its allocated memory unchanged (i.e.,\n", - " | it contains \"garbage\").\n", - " | dtype : Create a data-type.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | There are two modes of creating an array using ``__new__``:\n", - " | \n", - " | 1. If `buffer` is None, then only `shape`, `dtype`, and `order`\n", - " | are used.\n", - " | 2. If `buffer` is an object exposing the buffer interface, then\n", - " | all keywords are interpreted.\n", - " | \n", - " | No ``__init__`` method is needed because the array is fully initialized\n", - " | after the ``__new__`` method.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | These examples illustrate the low-level `ndarray` constructor. Refer\n", - " | to the `See Also` section above for easier ways of constructing an\n", - " | ndarray.\n", - " | \n", - " | First mode, `buffer` is None:\n", - " | \n", - " | >>> np.ndarray(shape=(2,2), dtype=float, order='F')\n", - " | array([[ -1.13698227e+002, 4.25087011e-303],\n", - " | [ 2.88528414e-306, 3.27025015e-309]]) #random\n", - " | \n", - " | Second mode:\n", - " | \n", - " | >>> np.ndarray((2,), buffer=np.array([1,2,3]),\n", - " | ... offset=np.int_().itemsize,\n", - " | ... dtype=int) # offset = 1*itemsize, i.e. skip first element\n", - " | array([2, 3])\n", - " | \n", - " | Methods defined here:\n", - " | \n", - " | __abs__(self, /)\n", - " | abs(self)\n", - " | \n", - " | __add__(self, value, /)\n", - " | Return self+value.\n", - " | \n", - " | __and__(self, value, /)\n", - " | Return self&value.\n", - " | \n", - " | __array__(...)\n", - " | a.__array__(|dtype) -> reference if type unchanged, copy otherwise.\n", - " | \n", - " | Returns either a new reference to self if dtype is not given or a new array\n", - " | of provided data type if dtype is different from the current dtype of the\n", - " | array.\n", - " | \n", - " | __array_prepare__(...)\n", - " | a.__array_prepare__(obj) -> Object of same type as ndarray object obj.\n", - " | \n", - " | __array_wrap__(...)\n", - " | a.__array_wrap__(obj) -> Object of same type as ndarray object a.\n", - " | \n", - " | __bool__(self, /)\n", - " | self != 0\n", - " | \n", - " | __contains__(self, key, /)\n", - " | Return key in self.\n", - " | \n", - " | __copy__(...)\n", - " | a.__copy__([order])\n", - " | \n", - " | Return a copy of the array.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | order : {'C', 'F', 'A'}, optional\n", - " | If order is 'C' (False) then the result is contiguous (default).\n", - " | If order is 'Fortran' (True) then the result has fortran order.\n", - " | If order is 'Any' (None) then the result has fortran order\n", - " | only if the array already is in fortran order.\n", - " | \n", - " | __deepcopy__(...)\n", - " | a.__deepcopy__() -> Deep copy of array.\n", - " | \n", - " | Used if copy.deepcopy is called on an array.\n", - " | \n", - " | __delitem__(self, key, /)\n", - " | Delete self[key].\n", - " | \n", - " | __divmod__(self, value, /)\n", - " | Return divmod(self, value).\n", - " | \n", - " | __eq__(self, value, /)\n", - " | Return self==value.\n", - " | \n", - " | __float__(self, /)\n", - " | float(self)\n", - " | \n", - " | __floordiv__(self, value, /)\n", - " | Return self//value.\n", - " | \n", - " | __ge__(self, value, /)\n", - " | Return self>=value.\n", - " | \n", - " | __getitem__(self, key, /)\n", - " | Return self[key].\n", - " | \n", - " | __gt__(self, value, /)\n", - " | Return self>value.\n", - " | \n", - " | __iadd__(self, value, /)\n", - " | Return self+=value.\n", - " | \n", - " | __iand__(self, value, /)\n", - " | Return self&=value.\n", - " | \n", - " | __ifloordiv__(self, value, /)\n", - " | Return self//=value.\n", - " | \n", - " | __ilshift__(self, value, /)\n", - " | Return self<<=value.\n", - " | \n", - " | __imatmul__(self, value, /)\n", - " | Return self@=value.\n", - " | \n", - " | __imod__(self, value, /)\n", - " | Return self%=value.\n", - " | \n", - " | __imul__(self, value, /)\n", - " | Return self*=value.\n", - " | \n", - " | __index__(self, /)\n", - " | Return self converted to an integer, if self is suitable for use as an index into a list.\n", - " | \n", - " | __int__(self, /)\n", - " | int(self)\n", - " | \n", - " | __invert__(self, /)\n", - " | ~self\n", - " | \n", - " | __ior__(self, value, /)\n", - " | Return self|=value.\n", - " | \n", - " | __ipow__(self, value, /)\n", - " | Return self**=value.\n", - " | \n", - " | __irshift__(self, value, /)\n", - " | Return self>>=value.\n", - " | \n", - " | __isub__(self, value, /)\n", - " | Return self-=value.\n", - " | \n", - " | __iter__(self, /)\n", - " | Implement iter(self).\n", - " | \n", - " | __itruediv__(self, value, /)\n", - " | Return self/=value.\n", - " | \n", - " | __ixor__(self, value, /)\n", - " | Return self^=value.\n", - " | \n", - " | __le__(self, value, /)\n", - " | Return self<=value.\n", - " | \n", - " | __len__(self, /)\n", - " | Return len(self).\n", - " | \n", - " | __lshift__(self, value, /)\n", - " | Return self<>self.\n", - " | \n", - " | __rshift__(self, value, /)\n", - " | Return self>>value.\n", - " | \n", - " | __rsub__(self, value, /)\n", - " | Return value-self.\n", - " | \n", - " | __rtruediv__(self, value, /)\n", - " | Return value/self.\n", - " | \n", - " | __rxor__(self, value, /)\n", - " | Return value^self.\n", - " | \n", - " | __setitem__(self, key, value, /)\n", - " | Set self[key] to value.\n", - " | \n", - " | __setstate__(...)\n", - " | a.__setstate__(version, shape, dtype, isfortran, rawdata)\n", - " | \n", - " | For unpickling.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | version : int\n", - " | optional pickle version. If omitted defaults to 0.\n", - " | shape : tuple\n", - " | dtype : data-type\n", - " | isFortran : bool\n", - " | rawdata : string or list\n", - " | a binary string with the data (or a list if 'a' is an object array)\n", - " | \n", - " | __sizeof__(...)\n", - " | __sizeof__() -> int\n", - " | size of object in memory, in bytes\n", - " | \n", - " | __str__(self, /)\n", - " | Return str(self).\n", - " | \n", - " | __sub__(self, value, /)\n", - " | Return self-value.\n", - " | \n", - " | __truediv__(self, value, /)\n", - " | Return self/value.\n", - " | \n", - " | __xor__(self, value, /)\n", - " | Return self^value.\n", - " | \n", - " | all(...)\n", - " | a.all(axis=None, out=None, keepdims=False)\n", - " | \n", - " | Returns True if all elements evaluate to True.\n", - " | \n", - " | Refer to `numpy.all` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.all : equivalent function\n", - " | \n", - " | any(...)\n", - " | a.any(axis=None, out=None, keepdims=False)\n", - " | \n", - " | Returns True if any of the elements of `a` evaluate to True.\n", - " | \n", - " | Refer to `numpy.any` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.any : equivalent function\n", - " | \n", - " | argmax(...)\n", - " | a.argmax(axis=None, out=None)\n", - " | \n", - " | Return indices of the maximum values along the given axis.\n", - " | \n", - " | Refer to `numpy.argmax` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.argmax : equivalent function\n", - " | \n", - " | argmin(...)\n", - " | a.argmin(axis=None, out=None)\n", - " | \n", - " | Return indices of the minimum values along the given axis of `a`.\n", - " | \n", - " | Refer to `numpy.argmin` for detailed documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.argmin : equivalent function\n", - " | \n", - " | argpartition(...)\n", - " | a.argpartition(kth, axis=-1, kind='introselect', order=None)\n", - " | \n", - " | Returns the indices that would partition this array.\n", - " | \n", - " | Refer to `numpy.argpartition` for full documentation.\n", - " | \n", - " | .. versionadded:: 1.8.0\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.argpartition : equivalent function\n", - " | \n", - " | argsort(...)\n", - " | a.argsort(axis=-1, kind='quicksort', order=None)\n", - " | \n", - " | Returns the indices that would sort this array.\n", - " | \n", - " | Refer to `numpy.argsort` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.argsort : equivalent function\n", - " | \n", - " | astype(...)\n", - " | a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)\n", - " | \n", - " | Copy of the array, cast to a specified type.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | dtype : str or dtype\n", - " | Typecode or data-type to which the array is cast.\n", - " | order : {'C', 'F', 'A', 'K'}, optional\n", - " | Controls the memory layout order of the result.\n", - " | 'C' means C order, 'F' means Fortran order, 'A'\n", - " | means 'F' order if all the arrays are Fortran contiguous,\n", - " | 'C' order otherwise, and 'K' means as close to the\n", - " | order the array elements appear in memory as possible.\n", - " | Default is 'K'.\n", - " | casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional\n", - " | Controls what kind of data casting may occur. Defaults to 'unsafe'\n", - " | for backwards compatibility.\n", - " | \n", - " | * 'no' means the data types should not be cast at all.\n", - " | * 'equiv' means only byte-order changes are allowed.\n", - " | * 'safe' means only casts which can preserve values are allowed.\n", - " | * 'same_kind' means only safe casts or casts within a kind,\n", - " | like float64 to float32, are allowed.\n", - " | * 'unsafe' means any data conversions may be done.\n", - " | subok : bool, optional\n", - " | If True, then sub-classes will be passed-through (default), otherwise\n", - " | the returned array will be forced to be a base-class array.\n", - " | copy : bool, optional\n", - " | By default, astype always returns a newly allocated array. If this\n", - " | is set to false, and the `dtype`, `order`, and `subok`\n", - " | requirements are satisfied, the input array is returned instead\n", - " | of a copy.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | arr_t : ndarray\n", - " | Unless `copy` is False and the other conditions for returning the input\n", - " | array are satisfied (see description for `copy` input parameter), `arr_t`\n", - " | is a new array of the same shape as the input array, with dtype, order\n", - " | given by `dtype`, `order`.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Starting in NumPy 1.9, astype method now returns an error if the string\n", - " | dtype to cast to is not long enough in 'safe' casting mode to hold the max\n", - " | value of integer/float array that is being casted. Previously the casting\n", - " | was allowed even if the result was truncated.\n", - " | \n", - " | Raises\n", - " | ------\n", - " | ComplexWarning\n", - " | When casting from complex to float or int. To avoid this,\n", - " | one should use ``a.real.astype(t)``.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([1, 2, 2.5])\n", - " | >>> x\n", - " | array([ 1. , 2. , 2.5])\n", - " | \n", - " | >>> x.astype(int)\n", - " | array([1, 2, 2])\n", - " | \n", - " | byteswap(...)\n", - " | a.byteswap(inplace)\n", - " | \n", - " | Swap the bytes of the array elements\n", - " | \n", - " | Toggle between low-endian and big-endian data representation by\n", - " | returning a byteswapped array, optionally swapped in-place.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | inplace : bool, optional\n", - " | If ``True``, swap bytes in-place, default is ``False``.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | out : ndarray\n", - " | The byteswapped array. If `inplace` is ``True``, this is\n", - " | a view to self.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> A = np.array([1, 256, 8755], dtype=np.int16)\n", - " | >>> map(hex, A)\n", - " | ['0x1', '0x100', '0x2233']\n", - " | >>> A.byteswap(True)\n", - " | array([ 256, 1, 13090], dtype=int16)\n", - " | >>> map(hex, A)\n", - " | ['0x100', '0x1', '0x3322']\n", - " | \n", - " | Arrays of strings are not swapped\n", - " | \n", - " | >>> A = np.array(['ceg', 'fac'])\n", - " | >>> A.byteswap()\n", - " | array(['ceg', 'fac'],\n", - " | dtype='|S3')\n", - " | \n", - " | choose(...)\n", - " | a.choose(choices, out=None, mode='raise')\n", - " | \n", - " | Use an index array to construct a new array from a set of choices.\n", - " | \n", - " | Refer to `numpy.choose` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.choose : equivalent function\n", - " | \n", - " | clip(...)\n", - " | a.clip(min=None, max=None, out=None)\n", - " | \n", - " | Return an array whose values are limited to ``[min, max]``.\n", - " | One of max or min must be given.\n", - " | \n", - " | Refer to `numpy.clip` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.clip : equivalent function\n", - " | \n", - " | compress(...)\n", - " | a.compress(condition, axis=None, out=None)\n", - " | \n", - " | Return selected slices of this array along given axis.\n", - " | \n", - " | Refer to `numpy.compress` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.compress : equivalent function\n", - " | \n", - " | conj(...)\n", - " | a.conj()\n", - " | \n", - " | Complex-conjugate all elements.\n", - " | \n", - " | Refer to `numpy.conjugate` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.conjugate : equivalent function\n", - " | \n", - " | conjugate(...)\n", - " | a.conjugate()\n", - " | \n", - " | Return the complex conjugate, element-wise.\n", - " | \n", - " | Refer to `numpy.conjugate` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.conjugate : equivalent function\n", - " | \n", - " | copy(...)\n", - " | a.copy(order='C')\n", - " | \n", - " | Return a copy of the array.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | order : {'C', 'F', 'A', 'K'}, optional\n", - " | Controls the memory layout of the copy. 'C' means C-order,\n", - " | 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,\n", - " | 'C' otherwise. 'K' means match the layout of `a` as closely\n", - " | as possible. (Note that this function and :func:numpy.copy are very\n", - " | similar, but have different default values for their order=\n", - " | arguments.)\n", - " | \n", - " | See also\n", - " | --------\n", - " | numpy.copy\n", - " | numpy.copyto\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([[1,2,3],[4,5,6]], order='F')\n", - " | \n", - " | >>> y = x.copy()\n", - " | \n", - " | >>> x.fill(0)\n", - " | \n", - " | >>> x\n", - " | array([[0, 0, 0],\n", - " | [0, 0, 0]])\n", - " | \n", - " | >>> y\n", - " | array([[1, 2, 3],\n", - " | [4, 5, 6]])\n", - " | \n", - " | >>> y.flags['C_CONTIGUOUS']\n", - " | True\n", - " | \n", - " | cumprod(...)\n", - " | a.cumprod(axis=None, dtype=None, out=None)\n", - " | \n", - " | Return the cumulative product of the elements along the given axis.\n", - " | \n", - " | Refer to `numpy.cumprod` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.cumprod : equivalent function\n", - " | \n", - " | cumsum(...)\n", - " | a.cumsum(axis=None, dtype=None, out=None)\n", - " | \n", - " | Return the cumulative sum of the elements along the given axis.\n", - " | \n", - " | Refer to `numpy.cumsum` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.cumsum : equivalent function\n", - " | \n", - " | diagonal(...)\n", - " | a.diagonal(offset=0, axis1=0, axis2=1)\n", - " | \n", - " | Return specified diagonals. In NumPy 1.9 the returned array is a\n", - " | read-only view instead of a copy as in previous NumPy versions. In\n", - " | a future version the read-only restriction will be removed.\n", - " | \n", - " | Refer to :func:`numpy.diagonal` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.diagonal : equivalent function\n", - " | \n", - " | dot(...)\n", - " | a.dot(b, out=None)\n", - " | \n", - " | Dot product of two arrays.\n", - " | \n", - " | Refer to `numpy.dot` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.dot : equivalent function\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.eye(2)\n", - " | >>> b = np.ones((2, 2)) * 2\n", - " | >>> a.dot(b)\n", - " | array([[ 2., 2.],\n", - " | [ 2., 2.]])\n", - " | \n", - " | This array method can be conveniently chained:\n", - " | \n", - " | >>> a.dot(b).dot(b)\n", - " | array([[ 8., 8.],\n", - " | [ 8., 8.]])\n", - " | \n", - " | dump(...)\n", - " | a.dump(file)\n", - " | \n", - " | Dump a pickle of the array to the specified file.\n", - " | The array can be read back with pickle.load or numpy.load.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | file : str\n", - " | A string naming the dump file.\n", - " | \n", - " | dumps(...)\n", - " | a.dumps()\n", - " | \n", - " | Returns the pickle of the array as a string.\n", - " | pickle.loads or numpy.loads will convert the string back to an array.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | None\n", - " | \n", - " | fill(...)\n", - " | a.fill(value)\n", - " | \n", - " | Fill the array with a scalar value.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | value : scalar\n", - " | All elements of `a` will be assigned this value.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([1, 2])\n", - " | >>> a.fill(0)\n", - " | >>> a\n", - " | array([0, 0])\n", - " | >>> a = np.empty(2)\n", - " | >>> a.fill(1)\n", - " | >>> a\n", - " | array([ 1., 1.])\n", - " | \n", - " | flatten(...)\n", - " | a.flatten(order='C')\n", - " | \n", - " | Return a copy of the array collapsed into one dimension.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | order : {'C', 'F', 'A', 'K'}, optional\n", - " | 'C' means to flatten in row-major (C-style) order.\n", - " | 'F' means to flatten in column-major (Fortran-\n", - " | style) order. 'A' means to flatten in column-major\n", - " | order if `a` is Fortran *contiguous* in memory,\n", - " | row-major order otherwise. 'K' means to flatten\n", - " | `a` in the order the elements occur in memory.\n", - " | The default is 'C'.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | y : ndarray\n", - " | A copy of the input array, flattened to one dimension.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | ravel : Return a flattened array.\n", - " | flat : A 1-D flat iterator over the array.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([[1,2], [3,4]])\n", - " | >>> a.flatten()\n", - " | array([1, 2, 3, 4])\n", - " | >>> a.flatten('F')\n", - " | array([1, 3, 2, 4])\n", - " | \n", - " | getfield(...)\n", - " | a.getfield(dtype, offset=0)\n", - " | \n", - " | Returns a field of the given array as a certain type.\n", - " | \n", - " | A field is a view of the array data with a given data-type. The values in\n", - " | the view are determined by the given type and the offset into the current\n", - " | array in bytes. The offset needs to be such that the view dtype fits in the\n", - " | array dtype; for example an array of dtype complex128 has 16-byte elements.\n", - " | If taking a view with a 32-bit integer (4 bytes), the offset needs to be\n", - " | between 0 and 12 bytes.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | dtype : str or dtype\n", - " | The data type of the view. The dtype size of the view can not be larger\n", - " | than that of the array itself.\n", - " | offset : int\n", - " | Number of bytes to skip before beginning the element view.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.diag([1.+1.j]*2)\n", - " | >>> x[1, 1] = 2 + 4.j\n", - " | >>> x\n", - " | array([[ 1.+1.j, 0.+0.j],\n", - " | [ 0.+0.j, 2.+4.j]])\n", - " | >>> x.getfield(np.float64)\n", - " | array([[ 1., 0.],\n", - " | [ 0., 2.]])\n", - " | \n", - " | By choosing an offset of 8 bytes we can select the complex part of the\n", - " | array for our view:\n", - " | \n", - " | >>> x.getfield(np.float64, offset=8)\n", - " | array([[ 1., 0.],\n", - " | [ 0., 4.]])\n", - " | \n", - " | item(...)\n", - " | a.item(*args)\n", - " | \n", - " | Copy an element of an array to a standard Python scalar and return it.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | \\*args : Arguments (variable number and type)\n", - " | \n", - " | * none: in this case, the method only works for arrays\n", - " | with one element (`a.size == 1`), which element is\n", - " | copied into a standard Python scalar object and returned.\n", - " | \n", - " | * int_type: this argument is interpreted as a flat index into\n", - " | the array, specifying which element to copy and return.\n", - " | \n", - " | * tuple of int_types: functions as does a single int_type argument,\n", - " | except that the argument is interpreted as an nd-index into the\n", - " | array.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | z : Standard Python scalar object\n", - " | A copy of the specified element of the array as a suitable\n", - " | Python scalar\n", - " | \n", - " | Notes\n", - " | -----\n", - " | When the data type of `a` is longdouble or clongdouble, item() returns\n", - " | a scalar array object because there is no available Python scalar that\n", - " | would not lose information. Void arrays return a buffer object for item(),\n", - " | unless fields are defined, in which case a tuple is returned.\n", - " | \n", - " | `item` is very similar to a[args], except, instead of an array scalar,\n", - " | a standard Python scalar is returned. This can be useful for speeding up\n", - " | access to elements of the array and doing arithmetic on elements of the\n", - " | array using Python's optimized math.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.random.randint(9, size=(3, 3))\n", - " | >>> x\n", - " | array([[3, 1, 7],\n", - " | [2, 8, 3],\n", - " | [8, 5, 3]])\n", - " | >>> x.item(3)\n", - " | 2\n", - " | >>> x.item(7)\n", - " | 5\n", - " | >>> x.item((0, 1))\n", - " | 1\n", - " | >>> x.item((2, 2))\n", - " | 3\n", - " | \n", - " | itemset(...)\n", - " | a.itemset(*args)\n", - " | \n", - " | Insert scalar into an array (scalar is cast to array's dtype, if possible)\n", - " | \n", - " | There must be at least 1 argument, and define the last argument\n", - " | as *item*. Then, ``a.itemset(*args)`` is equivalent to but faster\n", - " | than ``a[args] = item``. The item should be a scalar value and `args`\n", - " | must select a single item in the array `a`.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | \\*args : Arguments\n", - " | If one argument: a scalar, only used in case `a` is of size 1.\n", - " | If two arguments: the last argument is the value to be set\n", - " | and must be a scalar, the first argument specifies a single array\n", - " | element location. It is either an int or a tuple.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Compared to indexing syntax, `itemset` provides some speed increase\n", - " | for placing a scalar into a particular location in an `ndarray`,\n", - " | if you must do this. However, generally this is discouraged:\n", - " | among other problems, it complicates the appearance of the code.\n", - " | Also, when using `itemset` (and `item`) inside a loop, be sure\n", - " | to assign the methods to a local variable to avoid the attribute\n", - " | look-up at each loop iteration.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.random.randint(9, size=(3, 3))\n", - " | >>> x\n", - " | array([[3, 1, 7],\n", - " | [2, 8, 3],\n", - " | [8, 5, 3]])\n", - " | >>> x.itemset(4, 0)\n", - " | >>> x.itemset((2, 2), 9)\n", - " | >>> x\n", - " | array([[3, 1, 7],\n", - " | [2, 0, 3],\n", - " | [8, 5, 9]])\n", - " | \n", - " | max(...)\n", - " | a.max(axis=None, out=None)\n", - " | \n", - " | Return the maximum along a given axis.\n", - " | \n", - " | Refer to `numpy.amax` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.amax : equivalent function\n", - " | \n", - " | mean(...)\n", - " | a.mean(axis=None, dtype=None, out=None, keepdims=False)\n", - " | \n", - " | Returns the average of the array elements along given axis.\n", - " | \n", - " | Refer to `numpy.mean` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.mean : equivalent function\n", - " | \n", - " | min(...)\n", - " | a.min(axis=None, out=None, keepdims=False)\n", - " | \n", - " | Return the minimum along a given axis.\n", - " | \n", - " | Refer to `numpy.amin` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.amin : equivalent function\n", - " | \n", - " | newbyteorder(...)\n", - " | arr.newbyteorder(new_order='S')\n", - " | \n", - " | Return the array with the same data viewed with a different byte order.\n", - " | \n", - " | Equivalent to::\n", - " | \n", - " | arr.view(arr.dtype.newbytorder(new_order))\n", - " | \n", - " | Changes are also made in all fields and sub-arrays of the array data\n", - " | type.\n", - " | \n", - " | \n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | new_order : string, optional\n", - " | Byte order to force; a value from the byte order specifications\n", - " | below. `new_order` codes can be any of:\n", - " | \n", - " | * 'S' - swap dtype from current to opposite endian\n", - " | * {'<', 'L'} - little endian\n", - " | * {'>', 'B'} - big endian\n", - " | * {'=', 'N'} - native order\n", - " | * {'|', 'I'} - ignore (no change to byte order)\n", - " | \n", - " | The default value ('S') results in swapping the current\n", - " | byte order. The code does a case-insensitive check on the first\n", - " | letter of `new_order` for the alternatives above. For example,\n", - " | any of 'B' or 'b' or 'biggish' are valid to specify big-endian.\n", - " | \n", - " | \n", - " | Returns\n", - " | -------\n", - " | new_arr : array\n", - " | New array object with the dtype reflecting given change to the\n", - " | byte order.\n", - " | \n", - " | nonzero(...)\n", - " | a.nonzero()\n", - " | \n", - " | Return the indices of the elements that are non-zero.\n", - " | \n", - " | Refer to `numpy.nonzero` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.nonzero : equivalent function\n", - " | \n", - " | partition(...)\n", - " | a.partition(kth, axis=-1, kind='introselect', order=None)\n", - " | \n", - " | Rearranges the elements in the array in such a way that value of the\n", - " | element in kth position is in the position it would be in a sorted array.\n", - " | All elements smaller than the kth element are moved before this element and\n", - " | all equal or greater are moved behind it. The ordering of the elements in\n", - " | the two partitions is undefined.\n", - " | \n", - " | .. versionadded:: 1.8.0\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | kth : int or sequence of ints\n", - " | Element index to partition by. The kth element value will be in its\n", - " | final sorted position and all smaller elements will be moved before it\n", - " | and all equal or greater elements behind it.\n", - " | The order all elements in the partitions is undefined.\n", - " | If provided with a sequence of kth it will partition all elements\n", - " | indexed by kth of them into their sorted position at once.\n", - " | axis : int, optional\n", - " | Axis along which to sort. Default is -1, which means sort along the\n", - " | last axis.\n", - " | kind : {'introselect'}, optional\n", - " | Selection algorithm. Default is 'introselect'.\n", - " | order : str or list of str, optional\n", - " | When `a` is an array with fields defined, this argument specifies\n", - " | which fields to compare first, second, etc. A single field can\n", - " | be specified as a string, and not all fields need be specified,\n", - " | but unspecified fields will still be used, in the order in which\n", - " | they come up in the dtype, to break ties.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.partition : Return a parititioned copy of an array.\n", - " | argpartition : Indirect partition.\n", - " | sort : Full sort.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | See ``np.partition`` for notes on the different algorithms.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([3, 4, 2, 1])\n", - " | >>> a.partition(a, 3)\n", - " | >>> a\n", - " | array([2, 1, 3, 4])\n", - " | \n", - " | >>> a.partition((1, 3))\n", - " | array([1, 2, 3, 4])\n", - " | \n", - " | prod(...)\n", - " | a.prod(axis=None, dtype=None, out=None, keepdims=False)\n", - " | \n", - " | Return the product of the array elements over the given axis\n", - " | \n", - " | Refer to `numpy.prod` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.prod : equivalent function\n", - " | \n", - " | ptp(...)\n", - " | a.ptp(axis=None, out=None)\n", - " | \n", - " | Peak to peak (maximum - minimum) value along a given axis.\n", - " | \n", - " | Refer to `numpy.ptp` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.ptp : equivalent function\n", - " | \n", - " | put(...)\n", - " | a.put(indices, values, mode='raise')\n", - " | \n", - " | Set ``a.flat[n] = values[n]`` for all `n` in indices.\n", - " | \n", - " | Refer to `numpy.put` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.put : equivalent function\n", - " | \n", - " | ravel(...)\n", - " | a.ravel([order])\n", - " | \n", - " | Return a flattened array.\n", - " | \n", - " | Refer to `numpy.ravel` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.ravel : equivalent function\n", - " | \n", - " | ndarray.flat : a flat iterator on the array.\n", - " | \n", - " | repeat(...)\n", - " | a.repeat(repeats, axis=None)\n", - " | \n", - " | Repeat elements of an array.\n", - " | \n", - " | Refer to `numpy.repeat` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.repeat : equivalent function\n", - " | \n", - " | reshape(...)\n", - " | a.reshape(shape, order='C')\n", - " | \n", - " | Returns an array containing the same data with a new shape.\n", - " | \n", - " | Refer to `numpy.reshape` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.reshape : equivalent function\n", - " | \n", - " | resize(...)\n", - " | a.resize(new_shape, refcheck=True)\n", - " | \n", - " | Change shape and size of array in-place.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | new_shape : tuple of ints, or `n` ints\n", - " | Shape of resized array.\n", - " | refcheck : bool, optional\n", - " | If False, reference count will not be checked. Default is True.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | None\n", - " | \n", - " | Raises\n", - " | ------\n", - " | ValueError\n", - " | If `a` does not own its own data or references or views to it exist,\n", - " | and the data memory must be changed.\n", - " | \n", - " | SystemError\n", - " | If the `order` keyword argument is specified. This behaviour is a\n", - " | bug in NumPy.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | resize : Return a new array with the specified shape.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | This reallocates space for the data area if necessary.\n", - " | \n", - " | Only contiguous arrays (data elements consecutive in memory) can be\n", - " | resized.\n", - " | \n", - " | The purpose of the reference count check is to make sure you\n", - " | do not use this array as a buffer for another Python object and then\n", - " | reallocate the memory. However, reference counts can increase in\n", - " | other ways so if you are sure that you have not shared the memory\n", - " | for this array with another Python object, then you may safely set\n", - " | `refcheck` to False.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | Shrinking an array: array is flattened (in the order that the data are\n", - " | stored in memory), resized, and reshaped:\n", - " | \n", - " | >>> a = np.array([[0, 1], [2, 3]], order='C')\n", - " | >>> a.resize((2, 1))\n", - " | >>> a\n", - " | array([[0],\n", - " | [1]])\n", - " | \n", - " | >>> a = np.array([[0, 1], [2, 3]], order='F')\n", - " | >>> a.resize((2, 1))\n", - " | >>> a\n", - " | array([[0],\n", - " | [2]])\n", - " | \n", - " | Enlarging an array: as above, but missing entries are filled with zeros:\n", - " | \n", - " | >>> b = np.array([[0, 1], [2, 3]])\n", - " | >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple\n", - " | >>> b\n", - " | array([[0, 1, 2],\n", - " | [3, 0, 0]])\n", - " | \n", - " | Referencing an array prevents resizing...\n", - " | \n", - " | >>> c = a\n", - " | >>> a.resize((1, 1))\n", - " | Traceback (most recent call last):\n", - " | ...\n", - " | ValueError: cannot resize an array that has been referenced ...\n", - " | \n", - " | Unless `refcheck` is False:\n", - " | \n", - " | >>> a.resize((1, 1), refcheck=False)\n", - " | >>> a\n", - " | array([[0]])\n", - " | >>> c\n", - " | array([[0]])\n", - " | \n", - " | round(...)\n", - " | a.round(decimals=0, out=None)\n", - " | \n", - " | Return `a` with each element rounded to the given number of decimals.\n", - " | \n", - " | Refer to `numpy.around` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.around : equivalent function\n", - " | \n", - " | searchsorted(...)\n", - " | a.searchsorted(v, side='left', sorter=None)\n", - " | \n", - " | Find indices where elements of v should be inserted in a to maintain order.\n", - " | \n", - " | For full documentation, see `numpy.searchsorted`\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.searchsorted : equivalent function\n", - " | \n", - " | setfield(...)\n", - " | a.setfield(val, dtype, offset=0)\n", - " | \n", - " | Put a value into a specified place in a field defined by a data-type.\n", - " | \n", - " | Place `val` into `a`'s field defined by `dtype` and beginning `offset`\n", - " | bytes into the field.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | val : object\n", - " | Value to be placed in field.\n", - " | dtype : dtype object\n", - " | Data-type of the field in which to place `val`.\n", - " | offset : int, optional\n", - " | The number of bytes into the field at which to place `val`.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | None\n", - " | \n", - " | See Also\n", - " | --------\n", - " | getfield\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.eye(3)\n", - " | >>> x.getfield(np.float64)\n", - " | array([[ 1., 0., 0.],\n", - " | [ 0., 1., 0.],\n", - " | [ 0., 0., 1.]])\n", - " | >>> x.setfield(3, np.int32)\n", - " | >>> x.getfield(np.int32)\n", - " | array([[3, 3, 3],\n", - " | [3, 3, 3],\n", - " | [3, 3, 3]])\n", - " | >>> x\n", - " | array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],\n", - " | [ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],\n", - " | [ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])\n", - " | >>> x.setfield(np.eye(3), np.int32)\n", - " | >>> x\n", - " | array([[ 1., 0., 0.],\n", - " | [ 0., 1., 0.],\n", - " | [ 0., 0., 1.]])\n", - " | \n", - " | setflags(...)\n", - " | a.setflags(write=None, align=None, uic=None)\n", - " | \n", - " | Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.\n", - " | \n", - " | These Boolean-valued flags affect how numpy interprets the memory\n", - " | area used by `a` (see Notes below). The ALIGNED flag can only\n", - " | be set to True if the data is actually aligned according to the type.\n", - " | The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE\n", - " | can only be set to True if the array owns its own memory, or the\n", - " | ultimate owner of the memory exposes a writeable buffer interface,\n", - " | or is a string. (The exception for string is made so that unpickling\n", - " | can be done without copying memory.)\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | write : bool, optional\n", - " | Describes whether or not `a` can be written to.\n", - " | align : bool, optional\n", - " | Describes whether or not `a` is aligned properly for its type.\n", - " | uic : bool, optional\n", - " | Describes whether or not `a` is a copy of another \"base\" array.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Array flags provide information about how the memory area used\n", - " | for the array is to be interpreted. There are 6 Boolean flags\n", - " | in use, only three of which can be changed by the user:\n", - " | UPDATEIFCOPY, WRITEABLE, and ALIGNED.\n", - " | \n", - " | WRITEABLE (W) the data area can be written to;\n", - " | \n", - " | ALIGNED (A) the data and strides are aligned appropriately for the hardware\n", - " | (as determined by the compiler);\n", - " | \n", - " | UPDATEIFCOPY (U) this array is a copy of some other array (referenced\n", - " | by .base). When this array is deallocated, the base array will be\n", - " | updated with the contents of this array.\n", - " | \n", - " | All flags can be accessed using their first (upper case) letter as well\n", - " | as the full name.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> y\n", - " | array([[3, 1, 7],\n", - " | [2, 0, 0],\n", - " | [8, 5, 9]])\n", - " | >>> y.flags\n", - " | C_CONTIGUOUS : True\n", - " | F_CONTIGUOUS : False\n", - " | OWNDATA : True\n", - " | WRITEABLE : True\n", - " | ALIGNED : True\n", - " | UPDATEIFCOPY : False\n", - " | >>> y.setflags(write=0, align=0)\n", - " | >>> y.flags\n", - " | C_CONTIGUOUS : True\n", - " | F_CONTIGUOUS : False\n", - " | OWNDATA : True\n", - " | WRITEABLE : False\n", - " | ALIGNED : False\n", - " | UPDATEIFCOPY : False\n", - " | >>> y.setflags(uic=1)\n", - " | Traceback (most recent call last):\n", - " | File \"\", line 1, in \n", - " | ValueError: cannot set UPDATEIFCOPY flag to True\n", - " | \n", - " | sort(...)\n", - " | a.sort(axis=-1, kind='quicksort', order=None)\n", - " | \n", - " | Sort an array, in-place.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | axis : int, optional\n", - " | Axis along which to sort. Default is -1, which means sort along the\n", - " | last axis.\n", - " | kind : {'quicksort', 'mergesort', 'heapsort'}, optional\n", - " | Sorting algorithm. Default is 'quicksort'.\n", - " | order : str or list of str, optional\n", - " | When `a` is an array with fields defined, this argument specifies\n", - " | which fields to compare first, second, etc. A single field can\n", - " | be specified as a string, and not all fields need be specified,\n", - " | but unspecified fields will still be used, in the order in which\n", - " | they come up in the dtype, to break ties.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.sort : Return a sorted copy of an array.\n", - " | argsort : Indirect sort.\n", - " | lexsort : Indirect stable sort on multiple keys.\n", - " | searchsorted : Find elements in sorted array.\n", - " | partition: Partial sort.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | See ``sort`` for notes on the different sorting algorithms.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([[1,4], [3,1]])\n", - " | >>> a.sort(axis=1)\n", - " | >>> a\n", - " | array([[1, 4],\n", - " | [1, 3]])\n", - " | >>> a.sort(axis=0)\n", - " | >>> a\n", - " | array([[1, 3],\n", - " | [1, 4]])\n", - " | \n", - " | Use the `order` keyword to specify a field to use when sorting a\n", - " | structured array:\n", - " | \n", - " | >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])\n", - " | >>> a.sort(order='y')\n", - " | >>> a\n", - " | array([('c', 1), ('a', 2)],\n", - " | dtype=[('x', '|S1'), ('y', '>> x = np.array([[0, 1], [2, 3]])\n", - " | >>> x.tobytes()\n", - " | b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00'\n", - " | >>> x.tobytes('C') == x.tobytes()\n", - " | True\n", - " | >>> x.tobytes('F')\n", - " | b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00'\n", - " | \n", - " | tofile(...)\n", - " | a.tofile(fid, sep=\"\", format=\"%s\")\n", - " | \n", - " | Write array to a file as text or binary (default).\n", - " | \n", - " | Data is always written in 'C' order, independent of the order of `a`.\n", - " | The data produced by this method can be recovered using the function\n", - " | fromfile().\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | fid : file or str\n", - " | An open file object, or a string containing a filename.\n", - " | sep : str\n", - " | Separator between array items for text output.\n", - " | If \"\" (empty), a binary file is written, equivalent to\n", - " | ``file.write(a.tobytes())``.\n", - " | format : str\n", - " | Format string for text file output.\n", - " | Each entry in the array is formatted to text by first converting\n", - " | it to the closest Python type, and then using \"format\" % item.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | This is a convenience function for quick storage of array data.\n", - " | Information on endianness and precision is lost, so this method is not a\n", - " | good choice for files intended to archive data or transport data between\n", - " | machines with different endianness. Some of these problems can be overcome\n", - " | by outputting the data as text files, at the expense of speed and file\n", - " | size.\n", - " | \n", - " | tolist(...)\n", - " | a.tolist()\n", - " | \n", - " | Return the array as a (possibly nested) list.\n", - " | \n", - " | Return a copy of the array data as a (nested) Python list.\n", - " | Data items are converted to the nearest compatible Python type.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | none\n", - " | \n", - " | Returns\n", - " | -------\n", - " | y : list\n", - " | The possibly nested list of array elements.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | The array may be recreated, ``a = np.array(a.tolist())``.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([1, 2])\n", - " | >>> a.tolist()\n", - " | [1, 2]\n", - " | >>> a = np.array([[1, 2], [3, 4]])\n", - " | >>> list(a)\n", - " | [array([1, 2]), array([3, 4])]\n", - " | >>> a.tolist()\n", - " | [[1, 2], [3, 4]]\n", - " | \n", - " | tostring(...)\n", - " | a.tostring(order='C')\n", - " | \n", - " | Construct Python bytes containing the raw data bytes in the array.\n", - " | \n", - " | Constructs Python bytes showing a copy of the raw contents of\n", - " | data memory. The bytes object can be produced in either 'C' or 'Fortran',\n", - " | or 'Any' order (the default is 'C'-order). 'Any' order means C-order\n", - " | unless the F_CONTIGUOUS flag in the array is set, in which case it\n", - " | means 'Fortran' order.\n", - " | \n", - " | This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | order : {'C', 'F', None}, optional\n", - " | Order of the data for multidimensional arrays:\n", - " | C, Fortran, or the same as for the original array.\n", - " | \n", - " | Returns\n", - " | -------\n", - " | s : bytes\n", - " | Python bytes exhibiting a copy of `a`'s raw data.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([[0, 1], [2, 3]])\n", - " | >>> x.tobytes()\n", - " | b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00'\n", - " | >>> x.tobytes('C') == x.tobytes()\n", - " | True\n", - " | >>> x.tobytes('F')\n", - " | b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00'\n", - " | \n", - " | trace(...)\n", - " | a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)\n", - " | \n", - " | Return the sum along diagonals of the array.\n", - " | \n", - " | Refer to `numpy.trace` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.trace : equivalent function\n", - " | \n", - " | transpose(...)\n", - " | a.transpose(*axes)\n", - " | \n", - " | Returns a view of the array with axes transposed.\n", - " | \n", - " | For a 1-D array, this has no effect. (To change between column and\n", - " | row vectors, first cast the 1-D array into a matrix object.)\n", - " | For a 2-D array, this is the usual matrix transpose.\n", - " | For an n-D array, if axes are given, their order indicates how the\n", - " | axes are permuted (see Examples). If axes are not provided and\n", - " | ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then\n", - " | ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | axes : None, tuple of ints, or `n` ints\n", - " | \n", - " | * None or no argument: reverses the order of the axes.\n", - " | \n", - " | * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s\n", - " | `i`-th axis becomes `a.transpose()`'s `j`-th axis.\n", - " | \n", - " | * `n` ints: same as an n-tuple of the same ints (this form is\n", - " | intended simply as a \"convenience\" alternative to the tuple form)\n", - " | \n", - " | Returns\n", - " | -------\n", - " | out : ndarray\n", - " | View of `a`, with axes suitably permuted.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | ndarray.T : Array property returning the array transposed.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> a = np.array([[1, 2], [3, 4]])\n", - " | >>> a\n", - " | array([[1, 2],\n", - " | [3, 4]])\n", - " | >>> a.transpose()\n", - " | array([[1, 3],\n", - " | [2, 4]])\n", - " | >>> a.transpose((1, 0))\n", - " | array([[1, 3],\n", - " | [2, 4]])\n", - " | >>> a.transpose(1, 0)\n", - " | array([[1, 3],\n", - " | [2, 4]])\n", - " | \n", - " | var(...)\n", - " | a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)\n", - " | \n", - " | Returns the variance of the array elements, along given axis.\n", - " | \n", - " | Refer to `numpy.var` for full documentation.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.var : equivalent function\n", - " | \n", - " | view(...)\n", - " | a.view(dtype=None, type=None)\n", - " | \n", - " | New view of array with the same data.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | dtype : data-type or ndarray sub-class, optional\n", - " | Data-type descriptor of the returned view, e.g., float32 or int16. The\n", - " | default, None, results in the view having the same data-type as `a`.\n", - " | This argument can also be specified as an ndarray sub-class, which\n", - " | then specifies the type of the returned object (this is equivalent to\n", - " | setting the ``type`` parameter).\n", - " | type : Python type, optional\n", - " | Type of the returned view, e.g., ndarray or matrix. Again, the\n", - " | default None results in type preservation.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | ``a.view()`` is used two different ways:\n", - " | \n", - " | ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view\n", - " | of the array's memory with a different data-type. This can cause a\n", - " | reinterpretation of the bytes of memory.\n", - " | \n", - " | ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just\n", - " | returns an instance of `ndarray_subclass` that looks at the same array\n", - " | (same shape, dtype, etc.) This does not cause a reinterpretation of the\n", - " | memory.\n", - " | \n", - " | For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of\n", - " | bytes per entry than the previous dtype (for example, converting a\n", - " | regular array to a structured array), then the behavior of the view\n", - " | cannot be predicted just from the superficial appearance of ``a`` (shown\n", - " | by ``print(a)``). It also depends on exactly how ``a`` is stored in\n", - " | memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus\n", - " | defined as a slice or transpose, etc., the view may give different\n", - " | results.\n", - " | \n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])\n", - " | \n", - " | Viewing array data using a different type and dtype:\n", - " | \n", - " | >>> y = x.view(dtype=np.int16, type=np.matrix)\n", - " | >>> y\n", - " | matrix([[513]], dtype=int16)\n", - " | >>> print(type(y))\n", - " | \n", - " | \n", - " | Creating a view on a structured array so it can be used in calculations\n", - " | \n", - " | >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])\n", - " | >>> xv = x.view(dtype=np.int8).reshape(-1,2)\n", - " | >>> xv\n", - " | array([[1, 2],\n", - " | [3, 4]], dtype=int8)\n", - " | >>> xv.mean(0)\n", - " | array([ 2., 3.])\n", - " | \n", - " | Making changes to the view changes the underlying array\n", - " | \n", - " | >>> xv[0,1] = 20\n", - " | >>> print(x)\n", - " | [(1, 20) (3, 4)]\n", - " | \n", - " | Using a view to convert an array to a recarray:\n", - " | \n", - " | >>> z = x.view(np.recarray)\n", - " | >>> z.a\n", - " | array([1], dtype=int8)\n", - " | \n", - " | Views share data:\n", - " | \n", - " | >>> x[0] = (9, 10)\n", - " | >>> z[0]\n", - " | (9, 10)\n", - " | \n", - " | Views that change the dtype size (bytes per entry) should normally be\n", - " | avoided on arrays defined by slices, transposes, fortran-ordering, etc.:\n", - " | \n", - " | >>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)\n", - " | >>> y = x[:, 0:2]\n", - " | >>> y\n", - " | array([[1, 2],\n", - " | [4, 5]], dtype=int16)\n", - " | >>> y.view(dtype=[('width', np.int16), ('length', np.int16)])\n", - " | Traceback (most recent call last):\n", - " | File \"\", line 1, in \n", - " | ValueError: new type not compatible with array.\n", - " | >>> z = y.copy()\n", - " | >>> z.view(dtype=[('width', np.int16), ('length', np.int16)])\n", - " | array([[(1, 2)],\n", - " | [(4, 5)]], dtype=[('width', '>> x = np.array([[1.,2.],[3.,4.]])\n", - " | >>> x\n", - " | array([[ 1., 2.],\n", - " | [ 3., 4.]])\n", - " | >>> x.T\n", - " | array([[ 1., 3.],\n", - " | [ 2., 4.]])\n", - " | >>> x = np.array([1.,2.,3.,4.])\n", - " | >>> x\n", - " | array([ 1., 2., 3., 4.])\n", - " | >>> x.T\n", - " | array([ 1., 2., 3., 4.])\n", - " | \n", - " | __array_finalize__\n", - " | None.\n", - " | \n", - " | __array_interface__\n", - " | Array protocol: Python side.\n", - " | \n", - " | __array_priority__\n", - " | Array priority.\n", - " | \n", - " | __array_struct__\n", - " | Array protocol: C-struct side.\n", - " | \n", - " | base\n", - " | Base object if memory is from some other object.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | The base of an array that owns its memory is None:\n", - " | \n", - " | >>> x = np.array([1,2,3,4])\n", - " | >>> x.base is None\n", - " | True\n", - " | \n", - " | Slicing creates a view, whose memory is shared with x:\n", - " | \n", - " | >>> y = x[2:]\n", - " | >>> y.base is x\n", - " | True\n", - " | \n", - " | ctypes\n", - " | An object to simplify the interaction of the array with the ctypes\n", - " | module.\n", - " | \n", - " | This attribute creates an object that makes it easier to use arrays\n", - " | when calling shared libraries with the ctypes module. The returned\n", - " | object has, among others, data, shape, and strides attributes (see\n", - " | Notes below) which themselves return ctypes objects that can be used\n", - " | as arguments to a shared library.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | None\n", - " | \n", - " | Returns\n", - " | -------\n", - " | c : Python object\n", - " | Possessing attributes data, shape, strides, etc.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.ctypeslib\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Below are the public attributes of this object which were documented\n", - " | in \"Guide to NumPy\" (we have omitted undocumented public attributes,\n", - " | as well as documented private attributes):\n", - " | \n", - " | * data: A pointer to the memory area of the array as a Python integer.\n", - " | This memory area may contain data that is not aligned, or not in correct\n", - " | byte-order. The memory area may not even be writeable. The array\n", - " | flags and data-type of this array should be respected when passing this\n", - " | attribute to arbitrary C-code to avoid trouble that can include Python\n", - " | crashing. User Beware! The value of this attribute is exactly the same\n", - " | as self._array_interface_['data'][0].\n", - " | \n", - " | * shape (c_intp*self.ndim): A ctypes array of length self.ndim where\n", - " | the basetype is the C-integer corresponding to dtype('p') on this\n", - " | platform. This base-type could be c_int, c_long, or c_longlong\n", - " | depending on the platform. The c_intp type is defined accordingly in\n", - " | numpy.ctypeslib. The ctypes array contains the shape of the underlying\n", - " | array.\n", - " | \n", - " | * strides (c_intp*self.ndim): A ctypes array of length self.ndim where\n", - " | the basetype is the same as for the shape attribute. This ctypes array\n", - " | contains the strides information from the underlying array. This strides\n", - " | information is important for showing how many bytes must be jumped to\n", - " | get to the next element in the array.\n", - " | \n", - " | * data_as(obj): Return the data pointer cast to a particular c-types object.\n", - " | For example, calling self._as_parameter_ is equivalent to\n", - " | self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a\n", - " | pointer to a ctypes array of floating-point data:\n", - " | self.data_as(ctypes.POINTER(ctypes.c_double)).\n", - " | \n", - " | * shape_as(obj): Return the shape tuple as an array of some other c-types\n", - " | type. For example: self.shape_as(ctypes.c_short).\n", - " | \n", - " | * strides_as(obj): Return the strides tuple as an array of some other\n", - " | c-types type. For example: self.strides_as(ctypes.c_longlong).\n", - " | \n", - " | Be careful using the ctypes attribute - especially on temporary\n", - " | arrays or arrays constructed on the fly. For example, calling\n", - " | ``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory\n", - " | that is invalid because the array created as (a+b) is deallocated\n", - " | before the next Python statement. You can avoid this problem using\n", - " | either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will\n", - " | hold a reference to the array until ct is deleted or re-assigned.\n", - " | \n", - " | If the ctypes module is not available, then the ctypes attribute\n", - " | of array objects still returns something useful, but ctypes objects\n", - " | are not returned and errors may be raised instead. In particular,\n", - " | the object will still have the as parameter attribute which will\n", - " | return an integer equal to the data attribute.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> import ctypes\n", - " | >>> x\n", - " | array([[0, 1],\n", - " | [2, 3]])\n", - " | >>> x.ctypes.data\n", - " | 30439712\n", - " | >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))\n", - " | \n", - " | >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents\n", - " | c_long(0)\n", - " | >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents\n", - " | c_longlong(4294967296L)\n", - " | >>> x.ctypes.shape\n", - " | \n", - " | >>> x.ctypes.shape_as(ctypes.c_long)\n", - " | \n", - " | >>> x.ctypes.strides\n", - " | \n", - " | >>> x.ctypes.strides_as(ctypes.c_longlong)\n", - " | \n", - " | \n", - " | data\n", - " | Python buffer object pointing to the start of the array's data.\n", - " | \n", - " | dtype\n", - " | Data-type of the array's elements.\n", - " | \n", - " | Parameters\n", - " | ----------\n", - " | None\n", - " | \n", - " | Returns\n", - " | -------\n", - " | d : numpy dtype object\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.dtype\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x\n", - " | array([[0, 1],\n", - " | [2, 3]])\n", - " | >>> x.dtype\n", - " | dtype('int32')\n", - " | >>> type(x.dtype)\n", - " | \n", - " | \n", - " | flags\n", - " | Information about the memory layout of the array.\n", - " | \n", - " | Attributes\n", - " | ----------\n", - " | C_CONTIGUOUS (C)\n", - " | The data is in a single, C-style contiguous segment.\n", - " | F_CONTIGUOUS (F)\n", - " | The data is in a single, Fortran-style contiguous segment.\n", - " | OWNDATA (O)\n", - " | The array owns the memory it uses or borrows it from another object.\n", - " | WRITEABLE (W)\n", - " | The data area can be written to. Setting this to False locks\n", - " | the data, making it read-only. A view (slice, etc.) inherits WRITEABLE\n", - " | from its base array at creation time, but a view of a writeable\n", - " | array may be subsequently locked while the base array remains writeable.\n", - " | (The opposite is not true, in that a view of a locked array may not\n", - " | be made writeable. However, currently, locking a base object does not\n", - " | lock any views that already reference it, so under that circumstance it\n", - " | is possible to alter the contents of a locked array via a previously\n", - " | created writeable view onto it.) Attempting to change a non-writeable\n", - " | array raises a RuntimeError exception.\n", - " | ALIGNED (A)\n", - " | The data and all elements are aligned appropriately for the hardware.\n", - " | UPDATEIFCOPY (U)\n", - " | This array is a copy of some other array. When this array is\n", - " | deallocated, the base array will be updated with the contents of\n", - " | this array.\n", - " | FNC\n", - " | F_CONTIGUOUS and not C_CONTIGUOUS.\n", - " | FORC\n", - " | F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).\n", - " | BEHAVED (B)\n", - " | ALIGNED and WRITEABLE.\n", - " | CARRAY (CA)\n", - " | BEHAVED and C_CONTIGUOUS.\n", - " | FARRAY (FA)\n", - " | BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``),\n", - " | or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag\n", - " | names are only supported in dictionary access.\n", - " | \n", - " | Only the UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by\n", - " | the user, via direct assignment to the attribute or dictionary entry,\n", - " | or by calling `ndarray.setflags`.\n", - " | \n", - " | The array flags cannot be set arbitrarily:\n", - " | \n", - " | - UPDATEIFCOPY can only be set ``False``.\n", - " | - ALIGNED can only be set ``True`` if the data is truly aligned.\n", - " | - WRITEABLE can only be set ``True`` if the array owns its own memory\n", - " | or the ultimate owner of the memory exposes a writeable buffer\n", - " | interface or is a string.\n", - " | \n", - " | Arrays can be both C-style and Fortran-style contiguous simultaneously.\n", - " | This is clear for 1-dimensional arrays, but can also be true for higher\n", - " | dimensional arrays.\n", - " | \n", - " | Even for contiguous arrays a stride for a given dimension\n", - " | ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``\n", - " | or the array has no elements.\n", - " | It does *not* generally hold that ``self.strides[-1] == self.itemsize``\n", - " | for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for\n", - " | Fortran-style contiguous arrays is true.\n", - " | \n", - " | flat\n", - " | A 1-D iterator over the array.\n", - " | \n", - " | This is a `numpy.flatiter` instance, which acts similarly to, but is not\n", - " | a subclass of, Python's built-in iterator object.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | flatten : Return a copy of the array collapsed into one dimension.\n", - " | \n", - " | flatiter\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.arange(1, 7).reshape(2, 3)\n", - " | >>> x\n", - " | array([[1, 2, 3],\n", - " | [4, 5, 6]])\n", - " | >>> x.flat[3]\n", - " | 4\n", - " | >>> x.T\n", - " | array([[1, 4],\n", - " | [2, 5],\n", - " | [3, 6]])\n", - " | >>> x.T.flat[3]\n", - " | 5\n", - " | >>> type(x.flat)\n", - " | \n", - " | \n", - " | An assignment example:\n", - " | \n", - " | >>> x.flat = 3; x\n", - " | array([[3, 3, 3],\n", - " | [3, 3, 3]])\n", - " | >>> x.flat[[1,4]] = 1; x\n", - " | array([[3, 1, 3],\n", - " | [3, 1, 3]])\n", - " | \n", - " | imag\n", - " | The imaginary part of the array.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.sqrt([1+0j, 0+1j])\n", - " | >>> x.imag\n", - " | array([ 0. , 0.70710678])\n", - " | >>> x.imag.dtype\n", - " | dtype('float64')\n", - " | \n", - " | itemsize\n", - " | Length of one array element in bytes.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([1,2,3], dtype=np.float64)\n", - " | >>> x.itemsize\n", - " | 8\n", - " | >>> x = np.array([1,2,3], dtype=np.complex128)\n", - " | >>> x.itemsize\n", - " | 16\n", - " | \n", - " | nbytes\n", - " | Total bytes consumed by the elements of the array.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Does not include memory consumed by non-element attributes of the\n", - " | array object.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.zeros((3,5,2), dtype=np.complex128)\n", - " | >>> x.nbytes\n", - " | 480\n", - " | >>> np.prod(x.shape) * x.itemsize\n", - " | 480\n", - " | \n", - " | ndim\n", - " | Number of array dimensions.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([1, 2, 3])\n", - " | >>> x.ndim\n", - " | 1\n", - " | >>> y = np.zeros((2, 3, 4))\n", - " | >>> y.ndim\n", - " | 3\n", - " | \n", - " | real\n", - " | The real part of the array.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.sqrt([1+0j, 0+1j])\n", - " | >>> x.real\n", - " | array([ 1. , 0.70710678])\n", - " | >>> x.real.dtype\n", - " | dtype('float64')\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.real : equivalent function\n", - " | \n", - " | shape\n", - " | Tuple of array dimensions.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | May be used to \"reshape\" the array, as long as this would not\n", - " | require a change in the total number of elements\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.array([1, 2, 3, 4])\n", - " | >>> x.shape\n", - " | (4,)\n", - " | >>> y = np.zeros((2, 3, 4))\n", - " | >>> y.shape\n", - " | (2, 3, 4)\n", - " | >>> y.shape = (3, 8)\n", - " | >>> y\n", - " | array([[ 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " | [ 0., 0., 0., 0., 0., 0., 0., 0.],\n", - " | [ 0., 0., 0., 0., 0., 0., 0., 0.]])\n", - " | >>> y.shape = (3, 6)\n", - " | Traceback (most recent call last):\n", - " | File \"\", line 1, in \n", - " | ValueError: total size of new array must be unchanged\n", - " | \n", - " | size\n", - " | Number of elements in the array.\n", - " | \n", - " | Equivalent to ``np.prod(a.shape)``, i.e., the product of the array's\n", - " | dimensions.\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> x = np.zeros((3, 5, 2), dtype=np.complex128)\n", - " | >>> x.size\n", - " | 30\n", - " | >>> np.prod(x.shape)\n", - " | 30\n", - " | \n", - " | strides\n", - " | Tuple of bytes to step in each dimension when traversing an array.\n", - " | \n", - " | The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a`\n", - " | is::\n", - " | \n", - " | offset = sum(np.array(i) * a.strides)\n", - " | \n", - " | A more detailed explanation of strides can be found in the\n", - " | \"ndarray.rst\" file in the NumPy reference guide.\n", - " | \n", - " | Notes\n", - " | -----\n", - " | Imagine an array of 32-bit integers (each 4 bytes)::\n", - " | \n", - " | x = np.array([[0, 1, 2, 3, 4],\n", - " | [5, 6, 7, 8, 9]], dtype=np.int32)\n", - " | \n", - " | This array is stored in memory as 40 bytes, one after the other\n", - " | (known as a contiguous block of memory). The strides of an array tell\n", - " | us how many bytes we have to skip in memory to move to the next position\n", - " | along a certain axis. For example, we have to skip 4 bytes (1 value) to\n", - " | move to the next column, but 20 bytes (5 values) to get to the same\n", - " | position in the next row. As such, the strides for the array `x` will be\n", - " | ``(20, 4)``.\n", - " | \n", - " | See Also\n", - " | --------\n", - " | numpy.lib.stride_tricks.as_strided\n", - " | \n", - " | Examples\n", - " | --------\n", - " | >>> y = np.reshape(np.arange(2*3*4), (2,3,4))\n", - " | >>> y\n", - " | array([[[ 0, 1, 2, 3],\n", - " | [ 4, 5, 6, 7],\n", - " | [ 8, 9, 10, 11]],\n", - " | [[12, 13, 14, 15],\n", - " | [16, 17, 18, 19],\n", - " | [20, 21, 22, 23]]])\n", - " | >>> y.strides\n", - " | (48, 16, 4)\n", - " | >>> y[1,1,1]\n", - " | 17\n", - " | >>> offset=sum(y.strides * np.array((1,1,1)))\n", - " | >>> offset/y.itemsize\n", - " | 17\n", - " | \n", - " | >>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)\n", - " | >>> x.strides\n", - " | (32, 4, 224, 1344)\n", - " | >>> i = np.array([3,5,2,2])\n", - " | >>> offset = sum(i * x.strides)\n", - " | >>> x[3,5,2,2]\n", - " | 813\n", - " | >>> offset / x.itemsize\n", - " | 813\n", - " | \n", - " | ----------------------------------------------------------------------\n", - " | Data and other attributes defined here:\n", - " | \n", - " | __hash__ = None\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# For example, try \n", "help(np.ndarray)" @@ -2617,7 +289,7 @@ } }, "source": [ - "" + "" ] }, { @@ -2669,25 +341,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 2, 3, 4])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "v = np.array([1,2,3,4])\n", "v" @@ -2695,26 +355,13 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 2],\n", - " [3, 4]])" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "M = np.array([[1, 2], [3, 4]])\n", "M" @@ -2733,23 +380,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Type of v: \n", - "Type of M: \n" - ] - } - ], + "outputs": [], "source": [ "print('Type of v: ', type(v))\n", "print('Type of M: ', type(M))" @@ -2770,23 +407,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of v: (4,)\n", - "Size of M: (2, 2)\n" - ] - } - ], + "outputs": [], "source": [ "print('Shape of v: ', np.shape(v))\n", "print('Shape of M: ', np.shape(M))" @@ -2805,25 +432,13 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "((4,), (2, 2))" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "v.shape, M.shape" ] @@ -2841,23 +456,13 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of v: 4\n", - "Size of M: 4\n" - ] - } - ], + "outputs": [], "source": [ "print('Size of v:', v.size)\n", "print('Size of M:', M.size)" @@ -2876,75 +481,39 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "8" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "M.itemsize # bytes per element" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "32" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "M.nbytes # number of bytes" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "M.ndim # number of dimensions" ] @@ -2999,22 +568,13 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0 1 2 3 4 5 6 7 8 9]\n" - ] - } - ], + "outputs": [], "source": [ "x = np.arange(0, 10, 1) \n", "print(x)" @@ -3022,26 +582,13 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ -1.00000000e+00 -9.00000000e-01 -8.00000000e-01 -7.00000000e-01\n", - " -6.00000000e-01 -5.00000000e-01 -4.00000000e-01 -3.00000000e-01\n", - " -2.00000000e-01 -1.00000000e-01 -2.22044605e-16 1.00000000e-01\n", - " 2.00000000e-01 3.00000000e-01 4.00000000e-01 5.00000000e-01\n", - " 6.00000000e-01 7.00000000e-01 8.00000000e-01 9.00000000e-01]\n" - ] - } - ], + "outputs": [], "source": [ "# floating point step-wise range generatation\n", "x = np.arange(-1, 1, 0.1) \n", @@ -3061,30 +608,13 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0. , 0.41666667, 0.83333333, 1.25 ,\n", - " 1.66666667, 2.08333333, 2.5 , 2.91666667,\n", - " 3.33333333, 3.75 , 4.16666667, 4.58333333,\n", - " 5. , 5.41666667, 5.83333333, 6.25 ,\n", - " 6.66666667, 7.08333333, 7.5 , 7.91666667,\n", - " 8.33333333, 8.75 , 9.16666667, 9.58333333, 10. ])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# using linspace, both end points **ARE included**\n", "np.linspace(0, 10, 25)" @@ -3092,28 +622,13 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.00000000e+00, 2.27278564e+00, 5.16555456e+00,\n", - " 1.17401982e+01, 2.66829540e+01, 6.06446346e+01,\n", - " 1.37832255e+02, 3.13263169e+02, 7.11980032e+02,\n", - " 1.61817799e+03])" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "np.logspace(0, np.e**2, 10, base=np.e)" ] @@ -3131,9 +646,8 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -3145,58 +659,26 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 0, 0, 0, 0],\n", - " [1, 1, 1, 1, 1],\n", - " [2, 2, 2, 2, 2],\n", - " [3, 3, 3, 3, 3],\n", - " [4, 4, 4, 4, 4]])" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "x" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 2, 3, 4],\n", - " [0, 1, 2, 3, 4],\n", - " [0, 1, 2, 3, 4],\n", - " [0, 1, 2, 3, 4],\n", - " [0, 1, 2, 3, 4]])" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "y" ] @@ -3214,29 +696,13 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.33658948, 0.28564552, 0.73183017, 0.7395105 , 0.66427382],\n", - " [ 0.25942094, 0.43844615, 0.48250402, 0.24063916, 0.90171053],\n", - " [ 0.51114245, 0.49587249, 0.61832302, 0.71996951, 0.22064571],\n", - " [ 0.38625609, 0.44313367, 0.74975323, 0.57600147, 0.80771956],\n", - " [ 0.84511666, 0.6064582 , 0.62365173, 0.62766319, 0.80129396]])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# uniform random numbers in [0,1]\n", "np.random.rand(5,5)" @@ -3244,29 +710,13 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.65782724, 0.65168367, 0.58525852, 0.33781734, -0.00700978],\n", - " [ 0.61574011, 0.59150639, -0.33797592, -0.2509655 , 0.77237429],\n", - " [-0.15693266, -0.38377945, -0.28140147, 0.90558314, 0.25437408],\n", - " [-1.136108 , 2.43964939, 0.28583627, -0.27540796, -0.57253111],\n", - " [-0.79080395, 0.50525127, 2.1113386 , -0.33769711, -0.64914575]])" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# standard normal distributed random numbers\n", "np.random.randn(5,5)" @@ -3285,27 +735,13 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[1, 0, 0],\n", - " [0, 2, 0],\n", - " [0, 0, 3]])" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# a diagonal matrix\n", "np.diag([1,2,3])" @@ -3313,28 +749,13 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0, 1, 0, 0],\n", - " [0, 0, 2, 0],\n", - " [0, 0, 0, 3],\n", - " [0, 0, 0, 0]])" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# diagonal with offset from the main diagonal\n", "np.diag([1,2,3], k=1) " @@ -3353,27 +774,13 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1., 0., 0.],\n", - " [ 0., 1., 0.],\n", - " [ 0., 0., 1.]])" - ] - }, - "execution_count": 50, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# a diagonal matrix with ones on the main diagonal\n", "np.eye(3) # 3 is the " @@ -3392,54 +799,26 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0., 0., 0.],\n", - " [ 0., 0., 0.],\n", - " [ 0., 0., 0.]])" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "np.zeros((3,3))" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "subslide" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1., 1., 1.],\n", - " [ 1., 1., 1.],\n", - " [ 1., 1., 1.]])" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "np.ones((3, 3))" ] @@ -3471,72 +850,27 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0., 0., 0., 0.],\n", - " [ 0., 0., 0., 0.],\n", - " [ 0., 0., 0., 0.]])" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "np.zeros((3, 4))" ] }, { "cell_type": "code", - "execution_count": 24, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[6, 7, 6, 7, 6, 7],\n", - " [8, 9, 8, 9, 8, 9],\n", - " [6, 7, 6, 7, 6, 7],\n", - " [8, 9, 8, 9, 8, 9]])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "np.tile(np.array([[6, 7], [8, 9]]), (2,3))" ] }, { "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.00000000e+000, 1.49166824e-154, 2.12299954e-314],\n", - " [ 2.15856291e-314, 0.00000000e+000, 0.00000000e+000]])" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "np.empty((2,3))" ] @@ -3592,10 +926,8 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": true - }, + "execution_count": null, + "metadata": {}, "outputs": [], "source": [ "import numpy as np" @@ -3603,9 +935,8 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "subslide" } @@ -3617,31 +948,21 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1000 loops, best of 3: 524 µs per loop\n" - ] - } - ], + "outputs": [], "source": [ "%timeit [i**2 for i in L]" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": { - "collapsed": true, "slideshow": { "slide_type": "fragment" } @@ -3653,48 +974,29 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": { - "collapsed": false, "slideshow": { "slide_type": "fragment" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The slowest run took 55.95 times longer than the fastest. This could mean that an intermediate result is being cached.\n", - "100000 loops, best of 3: 2.22 µs per loop\n" - ] - } - ], + "outputs": [], "source": [ "%timeit a**2" ] }, { "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1000 loops, best of 3: 342 µs per loop\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "%timeit [element**2 for element in a]" ] } ], "metadata": { + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -3710,7 +1012,36 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.3" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, diff --git a/resources/imgs/ndarray_with_details.png b/resources/imgs/ndarray_with_details.png new file mode 100644 index 0000000000000000000000000000000000000000..de26804f55a53728058e68e6a8cf2e1d13264d0c GIT binary patch literal 52230 zcmd42^7 zds$fxWm#E(hKH+-y^}Qzj9z4hKJq()U*ArbmS9G|ZRdNYj^Q!v<@3S49TzF1m8SoU z0v8v8#)`s9qD0GxfGdYU$PK{5peH2IK-k8V{_}VmbOyeB$S3XiT3dbJTGJX32OAQe zL4k`KR*DGVXJ;H4(1>0bUWz2X#gc-7--pHB7+Rac{jH;8v+==sR5nI%y6~;b!^8UZ z%b>y@g!}{(#wyZ`tH|z513?HT#O5|BCJq*6CV2>P%aT^`oHmTK3?~f6j76~FkKpb~ zpUJYG&D+6o1>$ah7!91EZRQU!F?lb35b!guWFJa-vcwn@H-_dfsro2im?dPG8!S0n zT|2uw#zMvV&kLP*=YL!!+Fu^%)1LoqoisQJptX1H$KZHu{qY38oDq@XJ?@b{4auX# z@P1pO;Nx{A4)0YJ;(_gUHa8*4M5$1OmPr+HJgYtd0rNw_iXX;B4Ty92x-ekS?ozH* za1+KD;zR@&O#+ZdKbHM;!VOB7H%n+(#kz?@Yg#%_j=M~pZ+Z@g4@~^!6KE3|srS@f z`3#4dfSX`NR!zgwHSV6rR87Y@*$vk%hj6QiyqtTwpUjB3Z}2n~8`rqB%^tHM-^mQ0 z=S-O`!2dAOY{uexL4>S>;Mk9_Nb0=Yqt-E{X7i!>{_gO=)iWe0u=m(kxL3*NVDWg- zMj=A)WWTpENEXBS=N@SX8Kv#x;Eg^;s@d`-j5@+c)h|Eqdq;73bbOXqChg3Syh5oq z5F3Ve5PPI?P>%B)3uS|yZ%JTyW8hx8h?P#2Ui5@rt|MrC4O0*#=!S^p{xr@k9bO~4 z#{@ptc|CHXKK=BE{A3U7Rz!#{U78}Z6Zk>uu^_`K@`Kl4Cz+D#S5c+Kb%Vbi-4|G$ zV=iph2yYY*`OvOE>Ccw2_c5ehDrQJLmf5;p1P9mh1K?rq(QAXZ08p)_$`Za_h%{LcvY4Oje! z-HY|2rr|Tw!Dc$9IDBPMcJRx^!gI~_nTgjQ>!iSx&Wb;^sJ7ig8=Q9%E0|5)ze0#R z(3`s2p(m@E6CX0mXp{>-Q@H_5+VBB z*qPm|2-3naWELTd04gPv)R1j}wG#Yv^caAAi1Z@jsf3%E=r{T&*%l30FSP0qhhoP` z)qROsOiZb|Vs|^T2c&12Zf3YR-2O;B1?94I&EL%0>68xGBh-YkZ)B{ClSSlmZ+! zP)a%pwo|5;Oq{&2bM>P4mwe!UAb6l{MO_UIPNGtrDEnafnJ1qFHGy@21QKyR*k{Sh z)1S?%LRW#WuSv~4s>hy5$`Gxjt=?fdXqVDy^#u!tQQm zgu#ig8`hT479SAx81kqrE#ECmqi8O*DTAx>fPrrRd7{U8U^L8 zZ?0n;@*N_j)Nz>h@m5e8BFZ8hdc=F!dVC!m9Lya!9EcA|4$Ec*X0bmjR(-%DjnR^` zEXC%D)O+JZD?t}rQc{jvI#uCbsa(oZ(IS1BZj+Rms*|mgm8sHJ^fUd2@r3&Xj}pFs zy@0`(dDXntpw*?7#h;>`yIrCkI|%7nM4-Q-{>;eP9bA)*yo7GZWYmXA^JZ@)NJH zfs~<*IG<9!X@pFomT;C(_t5qv^+ZSHMOMn`$tTFC%5laf#AwAk#3{t-#C72G#<9dB z#%IJ|$CvdfZ^3ST+EQoGz>C8R#oNJyZ{u!z=M#BSy&}M_oHCo4kOrm~;p}I(X3Sum zW51R+(D*G6G;MwR(1fAPD7On9BiHxW$6w-K(phr#*z#EO_~gO0UA2R`t-WoyO-w*f z5J;%T2Bzmp8B>l{Iw|*-XXt0{2lm@DNHeH^;{9Z9tzgZz(>s#7?!P=~US}*!!D*F?FjTNrV zloKj@B1f`eMci4#KxcBI2&K==p4Tq?TN;Q~+OKXynF;#rdA|ZS6y?d@c2gl1q+@Y=GPi{qcd1 ztuMBF=ZQ2#`lfj^_T200%e4`mVJh43Tay73Ym>{h)-@)uZP1TEw4jQhxghjF$@{8D z!aLRbnn&u}BCJUaW~^-VSxhm)W*jR5FUEbvdTTdts6vdTQV_HJXWRW>+z<5|^+|50 z&twbl1oO7^3FL(s4Z3ZqN?w||2KYrix{%Fp8&XU-f(`S}>Zg$pVe%DyWIIf*P zXz9e`4`DkShj*$s;q};ci*EPaVh!JdSRJOZQ2Sc2?7f0Gqfa&)erS^`8MhI{h}T zHsqtd6-_Jc_sXJ?u&KT5eOH6ZUp{{|Y<#py_E5jH>>pHZFJBvADrZUziVIRz&nWzP zRddyZbxhTKsdBmWyyrhb-N7Av4w|%ZGaCxt->F}QF1{_w(yo&+;Q%KEv_I^2q1e#x zahxn~X^u~g_*$GD4iXHyBp)T-sx7L4bFK>WgQ%Z_PhWy{lqfaWgEywZuSy6QcrU82eyOQj398Q6vPX#9d*QGrckEwIh`yTrjhspUx zPLf=;%ynMR9#7Zy0>PL~J|4zS?bl5QXCD(M6BAK92>g!T!zgg37g58kSHl+jAceqI zL7;sn4~~`HlQv7RA@JqN(@_~yUr59<;h1DMRdSL#-*#!G#s2yMYQ=e=Qoz$DMK{B= zIf7_xiwy{jmi6Zi3IRfh-{E=?VG*GcdgIUF?%|oHfSPOMc=g^G=Ndc|sI(u$ia7d7 z+)tnhDI*hp%@EFzU|y)A|Ljn+IahebseL=O_~~5ryS`)H&m=7Ay@FH9c7tb+@W9?@ z1uIKce4RAJ8I$k8OOJT8QNbEz@&t}N$~N(@@W=JL&4(C9%*L@UvjLL*vKWz^Wkr2rn@ih=^h>f%j)RMEWHx}5PN5z#_Ve*ip5(d-E$&x4i=zM z#vR9fRoBbs=im|hq+P99p~d;Z;3DBpKL>4Qmkx{XLC|9sOi zeUi#}u!|2B(^_DM;0tajL$`Ga=_V8Ho?KZUe;-SqsZ#zDA-!_y6UVj2!{>xD_T*!x z7T~=wqBox0;kz--Z|`h0sI*u#z28H$$fdt^sfMds>Rm=;*8Hr$sU9yr6=?5$=s;@2 zJiw47Ya}Jk>C1V@^~*uli!h8b@Y6T^{dp;F*?ke8QUhx=sVF}xpSpRrC9`$sSlI*n z%I#v7?rlJWzw8>HM0f{faN^5**#1yb>CNtO8iNvA^I0Xv1jPgePKC>UP+w->YVwC1 z?i}H)AK$VZsBeR(2-e^i;m@?lXD+78cvrB0+X5-k#@Y zZ-2Y*aVeRE{-J6H{=1haZ;`TTMCWwiv&bKJ^E<w%v=-Y*z#q>Vy*gzPOZA(!LN$WcF1~xE|KG zLUTv6vu#k{eaaD$FQPhJ9o89F$K_MS(|0)iFxs#anNu0Io=93=TJh2s3*iO_ce-UU+*{mZ(*xE4pyhRtSvq^<@t;7wXocKA-Y5orDEEvofqRJYw=yo^L|P#9r@y~ ztZI0&P=69O1i9*(cMgXB+KjX;O#3(!{%_JrGq< z#K9^=XYkg=*x9iq=t%8$_0wb2iIAw1XjW@n+fIPV71hDzu~2Zuvy3hCHle$fPw6X% z<8ICOviv7{*-1|xCaIE^(18)=CKqPg7vQ}M(DL1atuICDQbR0`c!r6aLA$_K8Y+!JM4OUXkN4w~<*FZiEsWhWtr_G>aqDLo{q0$gb$2N|l zlBU+wOJ^RzAWURcJOpEw*T#pt_H<4~?L+oa6T}$NFR^OkIJ#?T33ad|@#F; z3r`Pwu9GpfRljo-889sqoqk(c2-;XXSh8OJdaw5oyQtkCTE8b5Jypk|I1aWX>AVaT zZuHf8^n6~JbB&8f8oi@d48HlI^88T$;PBP_dC|2FGw18GCEts%6wFl!CKT2kfISNS{t`1o1psvm#cvA+Yt(d&7N9)syR0^dzh@ zeO>Jtz8N7tVeUYimB9#G;4u5}N-y5{NRNLqM@qrRXDUVEO28h9E@~4#HroW-nui2+ zFexkmDg#Z`h^o(vfzulO6>}Z8E~VBWHtbc^KF!0s_RYWpp+(}J0#O?e-Cp`ULo3T8 z?aik{^TzU3_roPJj$FwfJKlj_p4Zh^c^EFFYrL(_E6%(wQM|-WZuMezb57#6Y<7F* zrl;J8ePah$|b|$M%CGU!0cZ!uf}q ziYkR_pj;1xzGJ(&{rORuWlvjV8jTN%oW{5JZD$ZWt zQ_JCjscjAG&Ui-ApLYyely2t^9HXDUu^oCB)nyv#woEN3xfnQCIW@Y#H#wf>t{U1& z&TL+5T;rNzKb)sAxvMuki%g(Qupx^_{W6UNR|P-XC)oBJ1|1HH&ai(U>_C~2yft9qlrlN?==P@!_@ev~e?*{HZ*}(0F3Cd9Q zOwlUJIrdY~x@ zP0BI}$a`(=?~Ldyqoea$f~r2PH?m13Z=TK97LQgHM!cW$7o(~slWZj{7S ztX`{!^Jk=|s{3iD(a5_+>X=vs?CXq4mHHLyikBP7X@_U8CCPk_*Ueaz;^-WS&m8ZmCYLj?M@B=aIX) z_BTe2#^MdXI~5u#8Z+yCoSpp(Tvz?t&Dw2)o|}$ci`JQfC10KcWPN&lA=?UPHcw^G z+dDs#uw#nhVQjoCA#L0+&2TXDmqLO%Y(j$b6Eyt;C@{A&KRZvH3Iu+@q&o*gV8sJJ z{W(wE>4YIQ>IayKv#h;l4hrnw>3Qj?ssJrrojJ{|TrI3QLC$Wk$pjb}F%aPequ;t1|`nS(f7Jn8;X z@*h2N)}EFg_HJJGt}cMT^qO0^dV7h}(*9-Wzn_1`X$`XfpCuR1f2Z|2L9V}AxOh0Z zx&EvBRaES+TA+qK$l6Iy&feMD#q-sMgn%%&*x&vCKP~^W_R%;s!RNQpS*24hwczfhn#yGF4ig3t~dH?nR!@a$#Z2TIFxh(Uc5F zruBVT3|rQpkj6c4JWRPBM?|1EYoa@2BAq$Dd*B>CKIKeWJUj#hSZOI7oWBY{D6W#4 z*{Zzve=7c}=ZCYvQI`F?{qJs}5sFe6r4g=ha3KHy3JP4f1|`soxq2JV{9pfAkcSpymL^L)#ME}a_$T(nb9E@O>DDHY%9-_@EH@o`GduJMJqa4CsB<@I$UcPbzZCwwXk;(By+qB)7TlmVqdqWNhc8&%~)d7fFIFR|UbGmhXP+4?XuSn(B_q)Zj z^3#(Sy8zr~oRI6hX=fXC~;IpxxvP{cj3M6bJr-emS=eeIpq* zn>~^9nH+{cFg7kvn$}xWWdwJ>25LK;OMsxo!BNLby}(>>7MJO1D)~1acPg_k|BTE` zgOr`=w_I~iDTSjE9UVBMt^U^zN26SwUTj%R1uYcmsO+lx=VN#EE6n)9ITN3CQ<&Jh zioE4Xjj--u4R?_fLg)tJnM7$Yn-FV}%g-aC3!*E3R8XlcmT-LI97Fbw25#FL;SM;z zxi@Q(gDUFkGPdCU6P#jD;7Djta_{6_eYExoCPhA1(fp!z-&e^;i9*9*W@HLp=`O~% zZoQs2^d=P$5TJN>G(wrdLVO|1=>=BVaF(E>pd_7cFmn3A!^OFL+}y&a80@t+G!cc^ zqY}mw3fe!#me$>d|G-Fs>Xd(1&9}G1#?8#mzOA@0SH)@8EQMs+0K+F}m6D7pS&RPN zxNAt3jKp89ui1TR4a)5YdV9p?vqGegoerDxOR&#c+EoM4dYEvb_-{<5MTu}8`Qo@x zTb&FT85^4oc>0`Vs;+z>wM;E+VOfo&&7A#HvmlzIe@b!AT)W->+Q_}y(qmP0^@~B{ z8)RYvg67hX)c4%-6+nL7=EE_g+vbDy&d%VM^FiwC*Y#a{82PX}QB>#Z>EU5CBff#E zC7_7Us4{u0N4O)Gk&yw^OMD|N--c;PU7<)F^e!vjKBr2%5-)#Q`epz4Cr&g9ey>6z z+1#5=OmzCS&JUgA;XWY;JSn^`SA@${&~*K1EJ`mD^_)Xw2sUIudJVea)$ITF2;0Xl z{tGgwOf|#o)eYwRgZtad1poC(czk#Zqlg@RbQD7HBpW>gwWBt3G;PaOaO6-W|CE z-H$LQ>E>BJ^@XSj`EGWkAFw1cu?tgUAbAp67#QRxX_ZNniT)rSz*Rf$NaX@?bD2)J z_6`{fU*33OX4DprqzL~zwk}+hSn0kp!KZ1(N_YtJW*zteAi zu#w?B=x=57+-1e^mgyO>*u0~M|4fF5wM$- z^1UD_>5guY5*rDnt7Y<-p7Kihxfcl$QkaRtrdE5K#p!Jx`QD<~%5g9sk&_QS* zRCMU^v`u}l|B!wIfhs%ILZT7vJ@)LGYbmo=~-kd%9XPe+T#hnd`bt-gMN`VjWrXN5&6lAWGe>gkfeFCOqFJ~H}$JLdwL zIZu3i+!`X;Bk275T}{x%ix!9B&)Mt4y4s4B|2hg5VKzoZ!wNXc>TaC$>1IyY!K-WM z&XFsHvi>7AwI?E}D4!=qEda{byOD4t2SyuJL9aARI|io^UG(x~4iC31DhqnP|7gsW z-s{n`w33c`>(Ht+=-JE*Y6dM3+6x!fb&b-SdI`=z);QU&YzI9!kxAT0ECl3kjM064MG?ihUS@RE^ zlCr{4lHoaIpd#u)K~j);J(-vV1m-MBmEy50dzBCr(vIogQ00JP5F~Lfh0-jxY3S%= z)fc*bQM9FRJlunc0`t;8dKpn%w9Vi`!+k^ zAH_m1pAiUsyf#qXys#dco_y^domL5sfjkvL&8RxcuZcx>PewCFvES*Mj->Gaiwj<8 zaCE|lBsEKg1QN(d*xf9m*42bj$)7f*-V3D4F%<=R2*=~C{SWrJVT2Y3#cWY3-(CN3 zTu`e)rLJ;I`;D%cj1kL2;8Gsh`5zDo<%28SYY0}$s`s4`yG-zbzJFn>Z4d52Mbb$@ zMg0e6z8;5CR=6oFeALjWiRiSmkJ$PQvHwv3K%1zk*l-lfcNf|Cc^#QaNE0*g;LGCS~Y;yd^~!ylv6u zB3j814Gzn3gFc<$&ptHZ55hH=X=+t>el*Yqd~gZG zLutvh9MbC;V(byZ41E4vFPP5UokPOmU@Ck0uvenLjZCRO^2Kz^ru{LWX%sb8rzZ08)q>G%9-D%IC zQNRE0G5PE42?fdmKI77QsT>A=E{;$fBpR5JO-lQ!UL?`#sblL)Nt}fO%Q*kBhpKY1 z%;@;)glm)Ah(z`fLqPo7kJoc0g;X{rGLeP^|L_aX!|P%5OvuB25Y&%BXK47-2{j(0 z=iT2%zyQANs04Bq@aa`9EKp(n$2 zq1O0n-q5vWo6oPg?N;8Gk84E!J_Vk7AEw>SHEVfn@06M_hUbH(_w}! z!H!=K$607MRVv@eZT!<|$$fa$93BHecd-%v$Z6b)lYB@qI7HK>UC={%|KDV z{^H`|>hf#TTD70<`}Zx=?4}(n{^$L~*WZCd?*?m#!E97uD!*;qqrV`Y`D>tLD9Zgk zY0ez&2N1ttGi7{*kqRxJK7GfZRZtj+7bh8wdlQdH^3NBRPb%64+nJ1DEt! zHWL*jg1bQI#&<-~Tw)@%R=?>lMU{@8)A@X3ShF5!62& z%BOwaxXG5#^xm(W(U?3D=jiCS01~y7$V(|kvAiha>4vcy-MWD?HtOjfsfWYN`= zKmhTGRON6)61I7YxQ0dh2^Xbl{a_a5PTn=V(TaKKIGnr9sCXhQKyV(UY3G@u1Jg3Jhq@uXEc%DyZ&CCIQhA|u1GXhBCPAp4cUf>Nr z-r=<#A<#lfV9QxW4V)+x2c8xNoVtJN{?&^u`K5@55M?Xya6uT8LRcgE{$fyf^#r`J z?Z}kbO?5iTxA&g%o27^PVhvZ@I6QmH3(#x7xEC}sZDn9&^o4pbiP8~?+LxMHaFFL4 z;+_h^6OsKouDWsvLFs4&At56)i1 zxv=W0=W9-b4TC#=Tot<<<4fA{N4qL-6Q}MZsGogmJ*u6_!`VVa?|Cb1w2c}tfC8$< zC10)br2Ksz8kpaqU8!c$e~nCDHkO4a*t);m-@d<2?H>q^LG!_U}St z9-f}4+5LP~Q<_=+cM_7%S2MMHcAee6?-I+Wb8HKh@61WiBQly6Oahz>zJle8VB!eD zD|7b7zPqQ}aT#uRzdBwXj()hVcL4E4tk(5{OJwoEPv$tApOO_iKKuz5FP$lthF`5J z!|#t4WhapbJfbmE+C7ExAQakxm}N1q5B0t~k>CP^v3pZAdKVsY{a7F1CmB z!UWY%V6%|c1J;Z4;tBW!P%uuRK!fY5}yirwU5TGnQhogGs1Ev*X?CSwv z+ou+b1o)yQzX&PbhlyJvFj>!%n>-jrj}3x79+0U6Cow8i^8^oUIcJES9C)~?RK^m_ zf<|`&YP16k>n~Av_<)oovfQjwJ~W;7i}hn27Ey@sD)|e`x6w0-mxPNOgCV&-lP6S? zQaD6!Bic(g#HiW&*j#yfI0=N|o=oDS&&)TN5eo6k)^DieLOs#BEB%)c z$X>{g*?L}tvek9B>=lh7Xs|^yOWkf1L)B4tEu@>nD&dqWg`QJWOugB2neKk?9W4zL zxMx?|gcTu))^5ew;*3Zcj6K(k%Zr|Fk@|j;;NO-48}PC`_2XwVtm`U3fk z>4!SF7uvqz8?DcIy5yR4-QyenOwqlthBc+8Z@S$r{u>P%DoHvbO;X<_J{^+WPFd`v z?XrznBJO^_>r1+m`>nJ9$pAa$7WaD1>`T`Ieej2zU_BeL(-P`V;u7S-902hV%v1B~ zM$kUXIKJryoLD#fPDx=1O|&#o8~BM5>F0hCi7QkpU%Bu~8t8j%ebFUeZ%H~O=sqF* z-Ly^!Lu^jqH^L!$YcYE*TRQC6iGPU-C$(SmFHkD1*q9(zN0Em^i z?av~JKr$DkheC+4w^~v~s7J$v$89r{-O`$kwjtQM^uDKdFe>>2;8Kb}Whte2;cdjt z(SG|A%y�AE0nM{DG?tmV@r*r}c`#oLQHUoJ0c7=sFNh9%z#)G5fM~HAKw3*ZzLw zdM6^s#^wpNLJd=prmYcz#(sy0{XE$b)IS!;LQ}Wo4!ftv_=9Bw&SGrxCT9}q_yh;! zW(YY$soZlcz899PUD45$FoD{L7r&@LqP**~;=y;Po_Pa=4>@OoocPY!GdVk(s}bMs zR(tJnTsrV`u(_qlhTy_sdEG>%NiH|f%Jn(dKHYWjbUc|TN|+vn?!cQE5q16n&_V2k zxb=buDE&k@Ko@OT1IVL2Pq-6Nv2DWYfuu~(Zr_ZfEI(;1(WOUTv%WL2ZOe;yoYSCc zuH8_!k?);~lSpGfBYYsJ)UMu%V8)8B-Y<$SiYd`YNd9F;E_|Rmzf@TN;#y(x3ka$6 zucz8#jxZ9*z`v{C%S_S;(HiI`gk%y{dCb!F^`oXs1t4a6th zajV1qc(IOh^RkLGk2(-?g{Eg$l8OzXtVkuVKCvbXc+%-51DY z-y3gxs9GkP9_}+|H`76~#K>EB?XZ2x@}oziUsUpwtt~oMOw8_z>8vg8aj>>-F(v5| z&ILrJ#`nHbX>{m+@S$j-v-Z<0R0cKWF1q_`OJpK~RaLqNjq`;%Vvsu(XGOD72SQ_E zqakr;^wW8Zv=j%wZZ^Iexn3g{GB!+^{ltIynD7(EBRaIs8?!x|ILrB`xC?c~DLec^ zv?!@cFr%7{@W|dxC^b9?>5qoC5=N;8Iw9NBB#b7H9Z3nTio<$dY|swB94>RyIO z8!NqcUH5x1u1&{c!N?BxckL$MtFb&D?z*S&J`*A0`3Z?j<8i=WGjBKQCV<4*1l zl&+(_qa_$c=5V)GGmgG?sH`>n_9QR!K#sBCYqizAe}RwvyEPC5KWon-Ht{@WT(+cz zzTRx{C+^(V2azQA(02r!YQ_kd-PQH=^~=fRl_;4v?J&YT1@LvuyOb%cOsSH&t#PK( z)FqUw&mo%3awulfA-w*Ly>0r`i~+*UbV+qK6zg=HT5NU}nl=LmuiW`U(rjJ(O|FEU z5Fej5*LYV?RNHCmTi2Fud-wNcSi5Btw}lt5lGo_7*Uu1tc~KZYL&SY$6!o3f(de@u zZF4QB7mK|OBRbv+SBsX(2OP=|Hzzgggw^=pnZ90+sr59%&4r7vq?uHIFMXlX(f#cw zD*pJbHT%-f0MRM=GV+YA4lE-Zg)tRxM8vLF9N#U7Sg1t$p|Et=uqAXpOS?ob!y%Ot zKI!{Hm3Fged%bWZ@e#A-_|Y3HUtYJI8#W!MFe=anY&)69)7|;QlX5_-hS;B#qo^>$ zuyZLzVPId4GNW3)63E=#JEtI>K~1m9mg)ExJpmO$J`_t`xdcKM&wI(ktw(AnbUarV z+%AL7c2t}(*ZXT>cC#0y_?Mr+9}uO0A?H!4EVL+^XZxchx-mz zjYCl}QhiQ-+n1pgh)RG=&D41WSc@^e+t{DV63&r6l=tHTKa&sqF2p_%PCDu~G9F$o z$}di$ffX@dE?2qs6v=&lO`@Bam{0Lo_e>xlQm^1J$ z@Kt^{J>gx1oJ>rj!(;0O#XYx6Ef{$wit8&C%Kki-pr1y;@2SHE2SSfj@6mA+08c>q zGO_#ZG(;L{z$s3bLPF=ubzP$g$*|O;ZBHgq;2r09u&k}H=dKE+xa~Ma`wn6UIe3Zz z=0rEk9BL`_-ke)rgU^Ssu@_)|6-YpyK23#otzrOez%ABsVT z6p@6rEE{6mT z7I_Z`G@5T?An4yw=|ZhNi1*M1CfYA`PCgj0xd>36DiYCT8|l8;Z*8)h8E4?sREx18yalb{@Q_ zOQw?KHvh?-q-R()rTD-uyuFXSEKH6;=(1D;nu`i6@9BvCPFNO?bkt<<$!%lvBZ*hc@x|4MbhIFJ6*Bq)`m?k1xJOw^PKEL zBi;rlpH+QM*B$?AuF8v(b=-8z`35G8t_ee9(Ss=7V{b%iwntymiLUNEjFjFabT{tU zWlSzCZitL`5rV=Sk$-7*SZbUuJFJ-J5$F-|jN)#3B(~Gjn=sy2deF%FAw!>GUqt%6gf%INS*{rO3w=Pwq_J_Y9L)HL84ZP`Ro&YF(v32V>5vZmNph{PUxwM4Btz+xQQR0idg7VJ$)#2Sl zt_n9ZjH;=W5GeYO6{$luy|NYZieuSVBW+0=ki;x;Y{@+DG4p0D5^gEUmlM|yeBrXe z)Qu8ye=*qk&S5PYdRZO{$wIO;`7O?BOj6bU zCPAcdy8=E2xtrn0)0uBuJwIF<@Zaez1=WXTke11Apv#DCP#-8W+!bst(h0n$s4v;! z!+O*5nckC%&@(<1=SE!0WXwD&jN5nOF~#gOcW;%ai8Q`Ep$M`YxaryTNLHm#zSr+3 zAwlF#kn^_}P!M2)|1?PI0>pX>kRLf4@&hrgbHJ#ymjeQ+pyCPn9H@L8g8WH3sRBF5 z?-Lw7peK$)?|uX@U3dn|Ba(^w4O(@XP2ErP?XJt!Y_Z?R&Ve5Gk@HITG2HA^ zh{J~0v@(;XyE{+&!(mNC2LA|ZlK<`LSKZNO@&SxDZo}+<@n%v4bRog;)L$;*b^c1L zUd5<3KP}X+!aroUmTvY&YuA~y)BfxMI#iCyXu|4geO7SYKW#h1%B55T>6Ym~S)|uK}DgGEU2w`-N+P)a74tCn%cCtR(@rr~Z;f8c;aw1cRJ+S(vzNXi}kM zmig-)bw~=cv(WOYiWT(#aJ=rxQc4Oj^|5&Q6Ck-zq0c=RVm@L~mIOVU5n~73Z_M!& zj8d@9@1RIVHe`?D`QZ9X*1hf+BtiV%3N?x(H7bPgsCx)i-dlGGVO%=uJy_~BBXny3 zht=R9zBve&T${&qn=ke}gia7DEus|9A|l!{gE>ASJPs2&D-4FTx?At_%;XHht5a=Cr0sVWOy?MCVJ8O1Msf2;bvHP4yYGy{Y_s3gQl>WO0HNthMc-XpYBrTm_~20EQR%^!eoMdl3t7xCy$J z@y!oW+q~h>hmt*Y*Zhw-3J`%ZYS3=ZSq_6AlRJQEdxwz%7hy=%>-9R92`VSjMKsFU z&@Wce1B%vzh9swvB7G?NE5Wok$oa*%&4(eMIGkfArwiY(zSj=_zi)e(GKPI=;`Yad8y^?QY$1Og|yRT z7y0dIGFm6>AMo-eodwNdX6KcYCER~LE9fCX=IhjMg=8y-0B|f(HgMh~h$+IG|7doH z4EVnR;$6t4oqn8LsKNmE@@QduEJ%v%pwk~m5}Qo&5q)H4!@0Mh!8WoVTcTUUa?qfo zEkzc$jtXDgfQSD;eOGO!J0XR_Bqrmc8m&rC@%bEecG&nH)S+~WwP~EpyIxiTl0c|D_l@KA7tD~Mq|CygzF_@i184%P($tXC^mk0 zBd_`1ts%AsMR9o(V75Ne+J2rk+eA~?REhKH1yG!Hp(5j_*@5@^Fp6GA?)|x^W{zTeZ?+NI zWQ-kg?f@*0Jnu~!Ls9hqVh15~`O;R9+?JKWv|3C+9-mzbZ{p^HtROZQ^%1!7ng+f@ z7SW`-;%hKpQVHssDR3ftcTb1X2Y~Z-zJf$!>6GxE-w^L66DFZwH`aP%H%gq|Z6Y^3 zBQqUQq2{j+@34sdJ!5rVIa!K78j`R7(mzz75b(z#Xt-=hr5b1ZU6OFNq@Ppdj#xEN zJ>wzlia3t7L@}PU08*e5ZLs9793;eY25{z$YQ4y3{tnX58Z~FeR$CdP){W?n9o@cv z<#A{I6;@7H+mg{m-8Q7Ya#Ki_D#RF>A2T~&L>Z}VD+`tDngWPTcL%XH91sn^3V%;3 zZlgrr*6mFLVq1pSyNLpT2OQ?H@i6(!ziy(>c$2U~(jcH%L=!Wp)TpC5k;ic96?Z!C%zu_+&0NI}xeM8P zt9{TJ!P^;cg!_m{kCu8{mck8*3%s6#4Ek+-sT&Ml_~p^^b)$VWf_J5n&h-SwIr9;B z=+`sDoP8arEx3MBq7hAu7gkZ|DMPxyk6N=mk&@rSS?eOI3rXu?&3 z_yY2!Tzh?C3i8fUr>mNnEUC||3~DMJ83GwD{wciiFIcz9{hY2ra;|jS-A%B!cO<*f za7uUIfN2i+U>A#8Gzo;Ifc0S~^C~Pv5@q940`WH8$X!TxI5DkB{{B90l<=upevbyx zpA=~c@ZB%s>U#@h*UOv_O2WgVTmj{_bTE5tJnmvZ7S0dh4LzANC6G`trQ|FLlqkgL z64}V${rYob?`Y)9@229z=7)#MzPsiNgcnk3r(aT%c6P*8aJMKequiI2&g5+TH(=?a zMO6f?Na!LwDMqA3xlujfB-O%w!fkhZJvQTnchOa{Rs4$6gzhyNFXh{~6Xjj%Hh$S3 zFVc={i*8Wg*afhogG!8iw^5N_Ttbnr6#sNf0Z*Z-`|jTcxU{ZwJcu1C;GX#3q7 z_4+=6hyM@6a##uGa6cD~|A(rt467s9mc=1B!QDe}3GVLh?oMzG?hu^d?(P=c9fDhc z;1Jy1-|U=o-@ES*d>_o7-QCktt5&U=4g6|!-QJXLlqQ^zOHv9LC7eCPhUCVsARWoEmYa;sl2v zWtZmW_F%4+Dv>XBw&On>7)8QAEY-ylmYDhRRoaEb!g~kRo`wnR8*thBfxl&6Y+gMc zRS>MZ+!xZ08RrPkp@cQlJZ?uaHgf(x!3s_i?tvnHhz&e(4P{#Yyp)Kv+E5y!vadqO z|D%51Ji`nlW+ihZ$pL)R$GkD6XR(imy)y!i1mu#WqY-Osg#_D`A$q zso+){EKnF+rugm;Xy3m*Y=zyP0s?~knlp#Zo2{-0Aq>0VfBFCqF|hXh9kB{u=A#tn zjV_;Cb|U>RL^3@U^a^~ps7olN%-5gxrGiw>u=4qco z#l*z8kB0E==QY;(i-dw;Ry>3x!cfKyuX_3Hm2IlY#IsDq=n&Bx=x{^>K3;F#ZO15( zT=kbS?d|^@F?$TET1F-*XtuSjr63&U2ej2eQVwM7dcVt!Kp zN%*X>={%9!WYh!Qi+t#^6 z!n@j>Ets0sVOy|eYlFxm@SKbvz8}-~hhL;h{Wd%-tA>ipd*NT-n>T#hhfr3tdg7qh zyv{qHxZO@PeZ=;|%g|*vqVPH7mx5wyU$>~`=ZSwZ^fnUYkTG5V{z>ij$Kz;nXzX@G z97$Y*1o9`vmK6bxcE?2cXi7=iOVUQlsj+wOVi{p=-GP-3e#$H|hdif4{rtSD@|#Ze zsTmWCO$i#g_<>tEd$7n@K-N{r?1ltR1&QpkQ8|t#ggpUV%z1rQ91#q?Ta=&7>0-<| zao5g+yooh3OwudQ=&k8K=Ay-|ji}_mz?54IY%=XgZ2ze=#e#m{)Xo1dtAp~MS0S`f z6XF>cfd;2-{THUNe&(cp&dx)_F~L&mAngv40?)ekzMu9RXKfbi4)v~NZr*=gTF9cZ zdM6w>lRf+U=^zg$URo@;G!Y@ zwYZnl%12f#v&XH+Q1+cXks)#i0;3Rvzylvdby1gMW-pPw5}=3ewhd!Ha`^q^n^Luu zgDEVr9W6nL_(6<~f~3VTp)I!jZ1@gJc3urSbwN$CGw)ST8PQ&V#|HsFDq!2&9$+Le zk}@oZ|1V)9kJh95!I!#U2&3EZG*|;Oli}OGHg5&?Uq`D;8T8$O{>ix%ix=S`MSg{L z|L#%zskorMtB?{tBp29AOPsULtpL_fA;QQCZN`PL1u*60F1B~p+lFI-UKdUpDR+$? z$Yz~fTZgK}B}{(1&CPNpSA0g}PMmupIQ&s;4lEM#Ts3nG--!VQ6^*#1VvhN02*YL# zB2C{&k)GY;l!l%AU-#gh%xXG;?O%6iiR`mR!`-fA^Z|+3u5gBucp@YJB-P8JxesDs zj1t#_UzadozT?JPoKgI0ls7W(=)N~k8?o7sweU*qHsf?fT)(JIL4)V&IE-NNIej?k zIJsKM2^yT<-48CoJs7$biRiWFH@8O zdZz(u2nYFLeYQ`O$`V#bgva;1w-xLng#ZWMn#}F+wfTH%FR@y^nA0*^q(|%nz~4TC(p%aVI#`itlF;v@kn~i;V1NDy*XP15uIWy zO*Sc;lHpIlscuL{G8Fe+{AArk;j{a*@L;uiUc9b%xNwlk9|t8F=3Dua4k7hFpFc(X zSH=SeL4=ALGy=)_9p@H^SVxcQMJqjKwEit9C{RHHls%Z+?Un$=_~~ish_fDvKPJO( zQfyk|T3Go)xC#eA<67jt7V@PI)Mg48Kqp2i&i7nNDIWd+Ws~zoN?3>l5w7Ra8KA(S zAffN$^Pv&2rjKj7t7B<48`{X!ekShVL;R*fsxUHp?6&uiqS*j7ha>ajrzBudWz{5# z@;e$Bg8OMw+cYno)?AkkotsGdYmNFHzEiU>M?v>O#$!`8n3xEi6w^__1;YdN5yBy+ z1Q)$E44J8!Sy_azE8*~UpJ8o4I_>E9W^%%wo0r!H>3z5tZU8vBI?FB&TJ( zwf>>sGMPv5Tf6(Yye1kg(1efRxTNru>CBTd1mz|j5GJbLvXN^J{YWbsaBsrDF&Y8U zDy!Gs*A#J1al@yZ!{F#0Ai2A|%%2syL)im+35ch%hXxhb9x{l&k)mIR(b1|`PSXiI zpM23+29#2qB_enyV2GWlq2BFor?Za_u{>H1wV!xAL~=m-s;{X)_9e}H3rXZ*#o;j% zo8=oBXMF>5OZ~67g?SYD^C*$h-4Ol)iCDL!*sE0jhfT;721`Z~bU#C=cd}%{dp9SI zSV?R+b+@-Gf&#eGP$~*IOQ`wG4mS5QT_F+F@Xrv|o@01iPK8M+DPbZBbgo@LeBbU? z?db7H!~F1>xbF-dM7vWelI3BI3qG7u>uZR_FTCMP9^s%mO%EE=TE6UBTp!W%rHsSGYws05W;pe<2=0G?gbY4M1{6;BulE}@Nic`M zKX0F>b7;kdMbnS;4m{4ET@e({rL~YiT*e{5fT1J8GvxF?M7T(zKn}|@4WSN)!foT? zZ%$xDb!>u18G1A4$*M38tt1BZ8(uKgeeGH-=+<=Pa*9TQG98oknF|h|XXH`N^4DJ` z_ke?#3GETX)>D-!3=9m^p1R(jTABh%!K%xC{P^*auvmYgX?DAJ}O>eyZSfHM8_m z5X)a~Hmo{7U#7C=yF?|MnyY0@nUbYmrCk&x`{IZQWeUFT5yk{f!+5pfzTtzXU^xE3 zVxWs_Q&LM?-O`7dnUu8GHXPmTd4pY{{cDf(FR1$HZv_)8{K%U~UawM1Ff2Gb5wD{J zEMmXD+|EG^N*3`|Z_2>;7pa`&0e;!RDHOFC}_qW#-YW!94M(YLXSYJb8a`!MzPZ@j06doAe0_BDtCrVkL{?1)(O+Jz-jwdvs{GSgdEG*r6rSSqZ)c@S7Zm@T9( zkQZ*4hT2`i-a|STd7Wr5c=xFiiw7$b?LuaK`LqtB4rkuXFj91aIJBXdKMp5@G<04#H5c124!>Yp6QCV4lWX91 zoH(N%IgLgphcdA=DwVHA-S|Jpj@KT8`D#`TnkEN%#R*)k9OJ~CjKw)_U95YZFZ5x` zZ@Rq%l<3)yfL*D^-tl%B7Nw2lv$xSzvw{x8aTYV+A+c~~?|2VJT#vH-M7ubRMqA~M zxY0-T7rFgTm3{Cqd;LQ#A37k83^j^$An;-J`(p-CmeXe*^JIJtKQrd*t4PiL$pjyLER^z%NN7y18$4$S;Yn@L5LxTL_410TOFlVB&>y zGll>1QHIze{r2CIFsJ}caR3fzR(GO~GI*hez)2dB|A(qaZ2*0!K@A(PcZ;{>+qJnh zAlbFVfye$IVK@m4XvM?O(kGHtH29ag9xs~OeZrQ0>yrV&3{VkYI5bE&9-<9j5VfsH zDDDu_^bY|A3jQJ?fl>OUs^$TO8FqBBNuvt_W)4ukFPFnTUu5KkNCbfo!lSl$jKYK+ z-JPxuM{?(f0iPYbd=$%2*cxO#lnj04y7NQ5F-b72x|ve>|gZQGW%#o5Tak zq4c;X05Zsef&dC!0Jv~Op=X<#3pwTM?^@DJsp-qYi~};Dr*&aqF_#a()3=s_x$ z9T=;~iJI!vUzWH*65ZDH3mMjHiyCeK2?EF!rYx8_s$|raN%p|Z1e9Czv9Q+r;d3{W zWU%aNILJ2nt3_f@XU;OXjN8jcQn#9j{WfbKI~>K$fZIrzjVRPa)7iyeB;7=Vfx}sBP?stkQ`tJKt=e=ra(tz z?jleEduYhV37l<8FVsOrv+t#Wf&}D>y1KG}6rlj1WrypM^R?+f6OC?OIoyobj3-=_e~a|j_Ys?{Jsp^GZ%HcAc`i~&Nb@D^X0(8G>? zmr}(mqlUXf?V3J&)NK8pRY1)DU0xF>NeiPSX^8O&!1cfloa%j0H>DP9K`qrZjMgs( zs?a>eB#exVZs4hZ05q52A950^)nOmZ;mknb*w9Uarn(44!Y>7~REg<$fGt<=2eMYs z0?I=}wKxi{ek)bgN6as+OuqO)`HT{RqO%3cbas&fH+c?CD2$*322Kp?oSRYZCG4mJ zUKC7-WD6}W;S{~=gD52!@ISMrV1>`j;eBCM4p_iK-aw5j;P&p9QWnDsNM#GRrlBeA z7$c*t_ZW1sN;aDTLa9Tbx;4UzPt*gn=JlW+OrQCEo(8Hvl6})9L(PCu+SB$d72&~q z-Fvt6D@qmZ`uS@jgF|I!D4LpDZSl|!Mk3sls> zh66mbX$+C~cv!Dc0S6L-#pC(iF(1|X4m7=d3=w>qb5ql^7E>dz8FG^s&|0Qcc7i0Fw3g3$M$UDXx01&# z8&z$y`ar+2?7y;inw$2eS!v0@rMS~(yma$MywPz5k;ZyCrTSzwdscdJTEk$fL`|$H zarFs<+rrSEyH$#&%77`w%`{WiA}d(|*Xna!Ap5Tz867oE6b;RRnYKTn)YF}dEv#ot{_V6bmvAod$f6S8fW0n zBcFN72`{Jl{`OVq<&-t=Uh5`IOsDi1Q$uN`k?|n*i1mJzUsJk(@m!S0f>&5X+(&5j zPE8r>Hh+n~EAh=?7-yyK)l$ns;F2qA(a!r@JLnU+6#H5FR{){10A^blB(hEpqZ`@VuUg2HM>~nL_RR=rge)*ky&z64;?2B^l z^aY6-HblnNHE-sI6%;Fqxm2@NrLE0gs0;waCkC%z>1Oi2Um)BOJOmaOX%C8uws(VX4ndy6s^GQVFK zbdX(d|9gaziVCuuAd;r`(d@#B4#J_?+#cgk7N{fDe@@a?tXWklo3J@P+~l)4NSG== zn4jTLnL>9;WEPqKn{RWdajReGIg&b;ut=vRYQtV#ke1M0fJEC}Ff4tiG#sTmrYgQD zL{s$F1s19OfxtRBL0)Z8LI&S+j?G2em!XJ;s?d!?KJPvI74o&w3Ry0@E57UfDyPxj z05?fpL&dEo^5E&$zU5Q1z{~~1W8=Z;cbD8_zWGkG>f{i!*t_Fuz4n{4c_e)HC^scB ze$e_90c}T|mGhh`)HLGZ{#NXIg3$E!Y9-Mns@A{TP>Qs;5@906UhS842a9T3tj2Jp zXOR~c7i$iZ87!1z&t4D5B=qyoD_Bb1l_OY!!>xO0%7Q;L=A=`Uyq!1~2GW+JpeN@A zMZ8^8xSlQ~cxHJ~^IgC3*00^XFV@tT)SL#e}eE>$OK}@#&zrlm%an&upDS$L^J>aP%r52%`zo4F?JWPYMsYC2 z#Pabhh;=`*`EXRnQ`zp-WlWV{T562**mJZ%)$;(_^X##EI_gKmVIL9n*fNiG?zNN> zbGUb))JM=}jDxzFa0-h|fCF>Zr;G}R1fjH6K`d24L3@hPcIkfDc(^xib+V6OxjLD1 z(ErR>@_w=`zXu=G*a)MVr7Eox$uXCmb!<6i5H=e`$#W=pNJOI{o-oypak?%l)_$ja zS&n-%!gW8rUgc%!ekfGVm7jc{X1005jE6#1*9!UL*lxKxVRr@e_J3rj{9e(M6d4HV zWQ)m%JBk$5e_YXzDLFfjHETzMnW@yko)!E$AD$^H`I)y^f>fB)?Ys30)AeNiwAB43*4la`Q5{EuS_C(s*qtpMo!(q59wTU8+JYr6 zTmH0dhCj7#uTt+^*80@)nLOiaUNEjngiHDTn7r-!a$)}X`~Km4@mT9>(r0!%(>6Nx zBdJ0RsBJWGu4R5A8#aDdmN2btm41>Y8iCqSA`drS*S0q)&#Nbf`BMGLG!fBM2K4tl z68u0@Y$&Jzf6$o?5h%y901i>N)GmQjSc&c@mGSe1rLQRTCubBYDC)~Iqxtg>r(Xnu z0e+mGH5{uvp6%qv5A(Jqo!f{Bgfs7Xu9YxK*P{a2h>VZz7i1`R= z_Kyg-FdR-r$No?x7a)iT4eGqW0EH?&XuwwE6f6c&Kmg#k{Eomtw3^b=aGj^o4 z=uVdMbdUz}R_Iwjk^%!{BrF(n1czSR$9@93gHJD>*HP1bJ4G+*3 zu(M1+tugL^;QP)96Hnzr0RpYU(V(*yK*I(UXyN7kdMRhzqU|VZGx3sSsKaKr9p;=9 zj7spyC$T2=6!{urxPp6?z+jp8g>e--SB?QoICyyxwuR3ZtUQjsr@gLR%7|dOz zVp$C)3a4li2upY4C<#;tY8pG#9`h)UH5ZjX2jmeHL=Y^92_CKtc>hFhsLD{F!u-`{ z`;>%Jk%)4pNRY{n7@i|F2!TTdaEgExh-g|f0w7sy5Gce0$ZE}y$Tk38lfVVzfmbr% zvsx;aF2f55k>rC$U8$vr2{;K+p|%k~9qT&!65oUt^f}(fzy(-40Fagh9g!s9i6=@y zpt-4nNf!QZHr0iI$^Xn@Hh}@^_LzP`VOv3i!$RfTEq4Y*ef+P$O>r1bRb72{C>q}i zNHR1U^~1b=dw;zz%gqJ0=bD|i_-zr;J@a~JXj6`k;JI}ZWS0-E5_iwPqte)G<$mLn zR4+g_=KYZ^Z{>@y8&D<+I&);n6;)J307dQs3<|zL%h^g(CazHZpvF$B~&+5QOW3EExtauI{FHXQY3ICI>9LJxfupvKz zzVnW=`T7Gexg!U>HRcmDZC+~R3Nmmq`80zxd|Q6ABJKh zK-_+*qNcW&egy1Re0mPO&?~58laqISN&xvYAOv(de8Cm@bnT6!?W#}2MY%@5(Q5SL zSW5wMXUA@ii|ambxPFtEdzQ?^LgVjAt#^r~H&42?FW(s0I?hunsjAwcP~dupo-^m)pnwtd+1OSB{v(t%Iha6Bet!Or zxDUYWNZ79aTo^(w?wI60rt{eVT#Qx_ccp-}83TIoJ0u@81gXuG6g+*0Y+RfL*eE(( zKdt?F_Vo0;`p8}30*T~f#D?T|%Hw%)RXtB)LhQp^iU0cO{$5;Rfvx;%LdM4nfcg%} z!Skn3hU0I1^cz3J7>+ZgHoBQYXhIbVqfrcmp<8hq|3;4=v~}C(iTL4(n@mmRKO1C7 z>4av9MdPbZ2R2hFi!DhU2D-^vxpL&I;1?>dbS<-P-`mfXb^B!feLsY^&dQK_e_n#a zb6K*zncQqRY>uA4Xm#qadmite_40csytPb_DSMlG2|>^V^8N#C5QBq*P3mq&V+a;u zO_no#Y)8&BV%S#wB><;+1$equbp+Yr%m;`t7^9ietulV)}~zWb3OsH|r^N zx`sDxmU4Hh{##pMwPy!o)34F|reRS!#~yJZ^e}C{m=*7c?m0sGjvsFFkU8-n|eTz^le)pu}P-+od0g<3K65kyQ&0 zZJP$w?L!Q(F~)xdtIAN+K4LB*QL9dpQBBg8N(}h+Vw!$Gm2wzaNhht|zh1RsAp08D zs6o!Jm6(50vRm#Vt^6LN%$5`{7Tpu%HpkPPBjw)NohFUqUTE<0lh{m+m@7G^^fFCj zW-o2$;95-Q;LlplOj`uM%PJRiV%BW~xvRA~xpka38s=Xb0rC`&vU$OzduN*bh@*Z} zEv6VvWDRB~5G~42=5R1gnzGf8JlSGw8m8fv<#|-*0@wl^qvg`w%A*1r-~a$6z$iU1 zFH&maew%lC@m_KEGO%7_62Zj_D>Lm93!6F;yiHJ77CENzd|2B*d&hEF z`o>|~`KHEQAQeMXFgDm&{sfk!^j z`?O3l_H`rDHzQffga}8%qQjT*c49*gJ?u4L)?HU@-}S4IRuT)D>98J9P$3RhP}~tu z8bw5OyWHi&(`3Cc2CSxKvy{VUAj>gHqXCL}$w1&w(=73$D~{yo)LUrV%PVS9g;S09 z6M9>>0j%|pweNqs>VhWUZix>wQ|tt2W*$*yqe}dwpremx%$rQ#4TV?;nXM}Vq(ctr zDwefwjTFzrkym!|YP;`doKt}GmFYftX-uY%tu8LHcun*CIa)9;hwI5HK*g2>@mu_`l>bTt zH5?Mk?R@=|#lvF&wm=Xt&U1@?xH(>m1-QTBS8t$@#d+E>x3d&r#W^6Pj+Q2rVzmTr zU+iS4^&Tg!@thq=^}MXn$ASxFP+4Uz+s``LSpQ-}lWt)Lf8LrXFD|(|;}T@E;+p4F zctl9U3U%sOZ&i6bES;E5Xa7}3xGz>7LZPx3@T!`YF1Cz2c0aOI zu2g^er%Qp5`G+u9RfbBnXIciosJ>`;#2$3lCrXqj+P!Or9@7LP5vNs0rV10pziV2{j|oNVsZQ)orwQv7jJ8f{32F zgiO$7A#fJ~Ma4l4a{)y-kMWQ)1+@@j6hgT%z+PM$C`SXBN2fK37sFxce!-hK_>V!*8?Pk)&bHd(p>aCi%l z1Tn=FipeZc0Z?Ls$aHek5!g-80XU*SFK{YZ(X>#**`YF#=>|to!tbv^U8q_VB?6WK z6IwWTkR<@p$0{_0ajl!pNQFpd;c{Qq<_W&L)G@1M3&1A#p<2(ED*Zb66bKIhPh)Zr z-j@&Mrjl70{9<5VZ1J&OUiA61p#Q1~Mz}H+*`_G*!_7qmLsvTR(M{mHjte~t6+s&a zBm@v(xLRq)@)Iw{yAhX@J^B!Zreh`ZlY^O*W?07_3T032I|sOCPOkwYy|(4tzS}d) zT}?p^GUMrs5uC>noyHK42kB3ML^3c67nfSic6wEiGN1yFwyQB(DPZ^&2;u%MaDAx! zF_H-VR8bZo5;xRMNSSY3Jk<{)0Y!BxVPqi5jwr}tlPtD1@iSa76u3QX^3_o_Q15tL z#t2LUidqD8&^Dn0dH_HYqX`HMfO*yYby*l7*J<2(`iK4(vB7u7d0S+|ZUdr##0n;S@kTM*0e?0!w zyIuFpqAT#m!yw@mBITW&oJ?cT=>ky)C?FvK<*CrHK43rz2ld3KvOsqBOo|VBR#xj+X-dV)GT()SiXF{FHkz zCj&W#3MP`FV#3VK>V=t#41KmG`TjY%IU3i8tG3aknMhTjiDyk<_p5c1M(k5gTuQiN z#N@vY3?M?d+Wo&MF$#BDboxQU5ELCc>lDr{=0|&$N5)qB7kq(}S-Es{H$1GQFG_5) zMJg&T8WhmX&jSVlV2Aw$v+zZWFc+RmW8z;|r(2^pWYJ_wcZmf#oKM>L8vwiA07~@jt1g4^F-q$Mj1F!eFP28&Hs7@2XP5P8khS0`Jjvv zh_wKId58f^w+2-T;@^Y#_dI~i4KN@6WgY(Wc!0n5&;n2XTZrVx|9%WKwjH1ozhkNP zASDitfXgYkyrQB&{XQZB9^^x+=eBH?n3yOUr!nFO<-di*@h6x0Pn&DSJK{DItOFRs zLv9ve*VRRa$~J!HgQ+XG|vc8i4Y)9al6PEfE!AT8iI_I+`VXcv;MzRzJlbV3d}U6lR)Q~u$W$tC2k*1R^*erS$u+(S zZJE6OZ?7iINw6lJ1iE6eS-)f8b#~{14Cr$e>{KPRc=?mq&jq?{NZcSg;t&K+JZuw53 zgxBPEnzEI_bQ7KodVO1-)p8D#+L2=w12Uj%Y$DESNv}%?8Es+>3LU{Vl|}TB{=~> zSYW;K)9I6(_cwyqosg8n0^CTe_H^U^P1)sQOjf@wAUt^FxVihiZ+UV|Ja^B7tkT4M z3ZzK1C{%z{{rmsO^PGzcF?wUPWc`qJbo8y)C z>Ft7arNse;UaKL?twu+*0lT`$*2ZG4d&n4y=@_Uxb4|&^}2r~SFH;r4TpA+ zoF6mtN|?O8LHIDa^ATQQesPDOl6=@6jBF})UvtG?bDrXR^4%LtVmLMWT8n-Lu!4;{ z)V^{%kW{MwtYNx=9rw`SO!sfS*|@G0)2t)lm8+D(pmzg{X5QK&!Mm?lXABMGo~QOw zk%9&?8AN?KlN-85!n|;z9e#q`?igT=dLZ`5kRB3~l1SSl71{e*zwSc&T=c?LUjc_k zY5xT*U>mbdVmLBxdbC$XM8b$D%7E|vN|^|bt0}b*U1M=hA zB{V}1I+mahiZm-W z5ncq=V2{VpHmkUsk)Vv|we#TVJTrC)=xTfpa@<$#iDee!y?}8exqb$FnP`0Q6_lT+ z-gkfM-LCd+c}Z=d5roM9mT|8$@!r+*v>%bRXtdA{Bfa52l^P;+eX0ExgR3rdY_5)V zTVLJQ)~(jf@n@+~kaH@jQ5|f&}?#UCzEU|hYn4VaJ-Wi3VeNNHAeY;@92&L7U`>C zB=lS>4PN$SZ0@eH+f4m^&tGdN)2Dw{Ej$D$R7F!_E-Da5HEOd}+ZQQGP+FuXvt=;U zzI9rcsQDVE-CC}CPn=gGOx3X*nQ2cP${$CvJ=5)(>?YH2_?TigT03EUp&U0c_|?RZ zH@kB5yt}`+_?omBPyepw!LeYb&-Gv&;-0*aX!o;AyL+j;HloT8$=;T2lI(b3y+qq8 zO~MR_=9O%$l**d+b_6u5GUl7PZwS8Xt+#fmF-BL84^1?>5vl4c85JuwN&LOee)9dL z+s*h(`TdvvtME^F1O(R}0P?uL0zt%7lAxTJmSn-|QyqI@@$brx4qn1Lz$CeCHk~8j z@0V{K?{Cj-h>6|ak4^}C^#p)RaPrk-?Yv7GvI*hI9$C#5n&X~`??H+9fUc2lu@j41 zNZOvB-|KA~-R{nnqu9epJh`6HFW6KPqWY6RttvaP9fEKs{9`#1VQG5|x-HWy^=6R> z8}{9=>Lo%TTOBhfz*dLJ(3l_~51sjJWZbG(1($;R5pXFx{1NgHg2BR^3L�d`}_PED26Mo5{o0llsz82)HmE88H zx^cX!sajOXe9bT6KjpuTSZ~}2A9psbR`pBoK*|j15MD9Xts6A0J#7fY;)$Xt=v$uF zl&WVvA|8J<_909{pCd@tYVOULzf>$ZPrlonx82R5m0FPSD;iyZ!{N=9GT z@|084gs@D@gimdHw#}xG*G6IVqfKdqm*onIy3`(;%^EYV?-%4D$q+S@B&`Gndz;(G zNY8cNalDnEtqXtM?KNrdiR#O%^cLrzJ+-Jz4Ziwxl>bh@HVs%{-WRvID(6#g{fHX+ zOVMmZ_ibL*MnWq|=Mq)vc1LHCnx3)gQx$lzc-k0=_Wd2Ddb7A+ZP#+k6a;o5z2)+V zr}qlYamhQcWs}`vkLM<2i2JuDwN|O5IzQ0u@4vKZpFQ?T{BWDhDYocd*ce81if*^lv_2%AJ9 zP8{7!PO-6POQ{<&tMxXwh+$$6kBb>+i)K5Enki$xlp#740?<;$Vgip`u;YHP7itR1 zYZ@o<_<(mFBwQ9ExBaK&SRUdt(Ffc^9D_4|)S<_Y1;{ZAf_M~Hi|zg_!tqGfPrW2x z>UM65y@49NjMTu`c20Y5G!)+hiZnxqG#m#`1G%6mB=(`n0fMY9J$0}4OUfLcwH73( zRkvK8UDob|%8F)|jwYVJL9|EfA8Za_2~lCaWw);aDAE0halC@bYqTtMv5w$(5hl5f z5MQKHsT;&YpjG4B{C&S&!U6AD64mx76!2+2L~pyB|C^YmTc}R{l2(1Z7*M}}p`tv8 zrJDLfdf9rDEbYp2J{2;eMicn=T)NbDRQG>AGY1FeOV~@ms>@ z+W~}wyMWu$uPZDoT_-Z0O-D>@a>{ce&fWP_#S^(XF|2tp7gtA*7Q1a#-s}3MKRd<#vHDy zza-?kB}(2bFR6_L0#w%SI~Y&rFB#Ofa|G!xPmyC%Zkc%Oj0MVUH*L+9xNKDd>7jSL zA@yIBKUbZG+=MAX&krg8UNTkONto{~zdp|+B|k60UeA!G)`%%lGguQT*|(q-4gN!# z%gs%=&}?tO*BEW}A^S%L2^Yz zMzY-lzGa@&dk>Zj%|Jq?dITUgkDn9dxkoY8yM29pYV@a{xB(*qpNY{?M>!1u`5!Rd z+AV6lC=H2K?Om0tI1FwT1McQeT!8nH0(e=BzJi$pS#oTS2B5pPM}UXtl)Q#DNJNPe z%$(BU`vVBCx#^2bew8s`J2P@Ps1B>b7soMG4L_tVYho>o&HxI>iO(sScc7_R!>zo; z;vqZ!E1j(Z%dH7s8Rhx@d`YMWXO5d>q3rlLky=If_BTi?{`Uil!By)VkE*RjU+@QQ z`AX5ognx52ftY8$-w(CLNE%_|TV*{^Zx|~-rgD&Zz7D2D0vzI%Sy3tnw1VV~G5_HC_H%IU}vMnu{iQca$GY(ieC!Y$@g zm0I8}_aCD3N}>MS%nN58zfa!0Gyb2YO4 zqKF8d$Ox5_HJVpH%}V%nhQi~Uw^@&hTzwVWmiR6yev zOPDVWdOW!9Eb;bWHfeRXKAIT|IR`&ms8OBh25d6N%5=T7eTT+|NHtg`#)Qb7hs#B0{-L$MW6bL=y{S8#)Bm;2B*ePT1n!)$<)f_g4Xink#XFM&`r2 zbq?eoeRcReZY1j)fu`BqsNhm9q}_EBcs9$Mu6%{HMIK_*%tcE01#GpunQXzlpXS0&%^QI zF0eewY4I9a7CXD2qfDN8h{|~My=<=YzneTc`OrS~r^Z_Ojry+Ky|yRDzuU8s)h8j_ zXh3qP)w?qDadu{U^6_Q-B+?bn>AL&KcWq2;t(WZUVk&A@VI5!Ki$--Eg9kG|yWc$5 zDS^75CC+`@vOU)y z>3r0j1W#`pQpKC?gcv&;{3B2jZFXqM*~U+0Qn(fqQ)cqW8xEh5%nDz6*ploty1U93 zX4`Ji4=Wk062D!0-JB(+-7IJr%xo9US>EhntDK)vDT;?0)iH?>S8LvNTfWe$I&R@; zcRiC#JZ{^1UL|KIR$Pp5E9b1Zo{7r&DL#{^5zTmNHfDACnoytGX-ct`c^w=#3*=ul z*yW{k(dWIIwOdZM7|g7rtmiMU-m45w37q)EQ8@mn4LaN%P54leJ$<+tkwW9UY+~w9 z7}EM>3maE)TRvSvD>LqzjhKKD$cN_&cu!@$1)=b3M&1H;qBmbs3}~-@2dT8m8)af= zp~4j)P2<<+1`S3M6B}?S1j`X-{6ZS+Q4N(+Hp&`j7gQNK^*b^9miSMR2-&93=V85gXt>I4Z=VcFwViw`^ zS$PN(^@WiFZn7`l_IVtLI5^HJ8A;2NAf3<|B3S7GHX;aMJ{(5OG+Ciot*>8W2rkKgR`@f4nC4}h+iMB=&h3rea@`wSn;7Fqci%y@^%^f!6uq!W4vfW&{l3N|o z*UX%~u+WS@MA+GK#AH9YAz*5z6kWo>(Qio15p~5B^S~W>YD?UNgF8(WkMAYL z7`{j7&XhR5+vCx&YsKS4Ta(Y1GK#<1g?ulr@!gR3TAV6aWqd_xriu+Dn3;Ef8O31t zV&UVm06+cH9p>wKOoZpN7TxGz&u{++N3`}PlmAjmyFTpLQB6qBN^8~fxeKz<>y$U$ zZ9C_nXYw^MNkg*AGh4pBKc`S9=Q%FfZdK6WZO8NJxZEdkLY(d3D=rGJ?7rRw)5NO@ zHfBnaiq@HDM8$~+VL_j(R5wCLo$=n)I3tHW)AFcjG}McP_ZW3as=HW{t=V^?M(w$d5%n9{|)18?7BvorzjTORcFZ!AjtFh{Kk!mqkw_ zN2jDv7e^F$nCqS^pu*Fj8;)Fk#E81yf2i%jiw z9-$v0j{rL(CBq(-KR&Zq8hg68L7$`Ih_8$XQFg(%aIao~xA*+Ty~<~x9n}QO1_-kJ zR_Fa6UpL{#apCGm_^LN)ch9n@yn7)Rg<{H_jK>^l``T6()`@4al)#KGQ~7<`;!zf< zD=8X`Nq1mgqw1TIoR`?)7Ew)LaU2ojtt^07fJ9fuVQ+{;<)t6_J4JS!4P_DXes*!7 z-VQ@M8g$2Z`Qtc@OOR{2-42WJv5U6UfNsn#jn=*5}) z4G&h@BIPev*V{gngtRW_S9Ijc$@IJFteAlT57^g3mEjKT>Mcy&4v14ljOf;Emnr-h z`qr?((s4IB2i|#xg;pBGiXLl_4z6yoUw` zQafIV3tP!JaRXAWh%`DH&;y0{2&=P`8?J;LO6F-hOwG`;Ie_Z-febg{`w9x@N?G)AmBNlP!LP zO2bA6b=r=2-vfr9gqmD~T1TZdeFY|awz&^|33zYGMcqzt-S+51rPZH+nxvBrqY>-D zj4IAa%!pYcsP~4eUDN+V)K><@(RJMh3+@)&f?GmxcXxtoaCdhN?he5{4DRk8bO;W? z-QBs(^L|zL7gbEr&2*pcv-jFdC=MLO@LE#o&y&1#rg0SIIC<#L12Rd6hmp&_y);wA zQnlB`nEuL|2pEyVLMQxgMod%f|DbbEd=~0xI#jT^rMZKh)Uh@76*KQEd{WAv%1Znd zHMQ)Jr#od|O|*f+&q}PBNuvmkWl_3n=_J__TYB7)Ykqeu(l$MnpeYT@WVDek;tKb5 z_efbfc!ZMs;Li~Vn0HzzFK*rfS^_s#trvyFSR|H=PNlaqD}42PAKnfTBZ_BTN3hVz zcNt!b{#4ejpPM5%C{56{wJ?uwtc%8Mg~{g^T3({(`M|nY<&>7H&9X545`7MO>dgNE zr9K6YtSm9&8LUH`a{6r?Rf`Zo!^#qm(On1fcN`U_`D}*l)76^xh)N=Bv9W=Lr6qWV zdMd{e>l5SKW`yMug}f6T<7mDYW4$KD6Sk?clqu*KKjH*`m|d4QSaANp5qmVduZX`G zzBQ7B1bH8VkibdttQ`6@oHaIN%s(nn3Kg)XY^J-oq0XTL<+Ag`&Pw+v`Pnt9yNSsr z;Q3w>FDW!cCeWcMyH$^G15t()gwAVGOTgb=srr2cwMA32{K~z|j_bQ`y%8+$mvQOi z#Bztz%9z#|9*Yv5Uq%1Oz|*&U?h8_fcE@LR9cw>5EA`_fMgFdBdkdFR=G=j6iEqT4 zq>DtXG*GZnV#D{cvKI@7xn)1CNMSS5)c9C7z^!9LjF-9Ql9r0qoh$1 z>X0Ec?fp{YC*{_I46o9@!q9^r8HK_?=3;OK!R-v&3;6!!M>2gH6g^LC>imd`oi_?Z zdXkvE+ndMO)6ZsN8=^Gc!@jS78PG z6#TGNT|eXKZYT1^#*lcyR)CUnfRLYV`H-UqPW5-+A=1IBrcNZg6H%5!u^>X9c(-_`7OxO|X*_?cSK~`liuy?;3NEn41gj3?t7<6M=lo(+;utVdbI*LRw_s!d}@&U8W=cn zmIsJ!{c@VfdwqGzOq{sbd_1apcXdf)J(6aHb~F?YO$bCC4Ls~M0(h>w$8<@s%)DOG zaWE2mg6!U;9B>vhKY_%B@xsM7(x0#JpTxFiy*YXZ06*{InVieRx#TjHsegg>(@3)y!ygSogJV8PW!(tz zJocgRQBQq!m>*I`tyGgG&1tYT_`pk+GrTn_7REATyN%hdB;dYIbXxHe$lDFGu*o+H zfytu@Sku<)SARgIjjjE}JWRofxVs+RN*YuM;Z>udbp*1Io&Qea{(;_tdAqw~IO2}& zV$f>}7_v$MZVjc%r&9zk%QSHIuzw?chlgDX`5)`HqE*vlHY0*=HuFNTApFGEy}SiX zpEuoOyGX7$%s4#1Eeda}zmXF1xE|Zj4N$qk!m4LpkB&+wp3N-09BVrrC9c>-PqVz`8gE(aOg84E|W7Mr+qhs#|1+UkO;!%j^W53 zguX4Bkpv^}{tvCn{#eBoyxsg8j86`*`2KGyw^+J zXM?VynExXQnE@mc462S2^G{t{MNLdh|&(jJ0e7 zG9O6deR@2=P4DU4M^Iag_`ESOitjw3RY`BK9^1^zXRZd8u#ndn_V1v!anC1_tT_F$ z3-nU%%|pc;I#HJoGIbvbA>}I2e$)>6{bHd-TxZz`6ApIv%8(VLq@*nVL&7js+QJj0$B9M5 zO--`EDGa6;0Z0Riz^V;e`)DB`Y8Yw<;L*jxEwa7wn-K=l5Jm5*##VN*rkbX^)MjCT@zS) zB$w`h)H3yv2su(AjRYIYa?s6*5xs!I+0*rbQEfy!ocB*iXnMFxHIv~OY=l8s;ZD?EiOP4Nr6pu0;`PUTW&3Z}3L9B%#D$~2h2_x{f0LG-qG#D8b|B$BNFz0{0zs|K4~iH{b;G)l;y~Zs zld3_VQKmrOP%sUv;vYgvwZn~SZ}FjY@LkSpF&oNvu z4TBecljQHehm(4d01x#ds;j4wBG;}{aB4n%H#8}f+vnJZQj5cOU#=1M(kUWa#eQx0 z0ilP%8&f`PVMB0A*@#q|&!lclq+L14Iy(D3XBZ+q0Mnhc62%CNxzk$A{V zY#YKsIUme-Wu>a!IlP=*8vii3H=9*5QIFr$&Sbq@W6ceH7yzf3ecD-X9{OqhL^Wpn*RtYMZxWKWf3nYz>PN@-wOA%Mzd%&p;sE^=42VSs$4Vt{2y70 ziA+1}<$17p*pG~_M&ilry$P-lJE;URPyoT&02Mc?L%uyU1a6L@2E$;{6$oBd3?WlH z{Pi49V$(Ns0+#0)?{Agl2k=oK#kZ2&%jRWEiUiTGya?U`#LCI&lK}e?nD&h<9@l|u zh{UhGrgwxVss%8_{d9-EQWJ;``Ud1iIB4Mpkj(fuU<>qgu`?K?*Ir7z%zdT2G|>6s z{Ua)ZM`ca3>h`rU#zIZ_-AI~k4mOn*q^K4+Uty!=QxjdyT?g*OvO=TUU_x`}|Wqsc;SRt!T#q@lIchSt5^z||Cm zbMmJ|{cX6I&-;0dapf)1t1+DFK%&Bqr{kbC!pm z z6=<1H`s?ad*E}4t#fC7&pk93HjqqRA54}_|?T+K2Q@_8Fu>YPKOJtlcZH^u9b{h6qF3&PvPrj zyDq#jsJ8H^1}L~CYK?S%7+qP0TUHNhbp>|~Y8o%!4V7hV9P}xHw};84TJC@IYU(y; zSy7fPHI0+1Y8nRyHvu=2hCZK3*ddbSZbi`t{zmX*>y8}K$=#3s%^n)X_24})+Hk2? zA2v+gGxv~wDA+(eLSsm;-d?;wf1RWMQg`d&bLgrb%d=MPEQA+0pqNZ%Wykv3F-a#{ zH%F9P)^(hh8roCH)nh@f+mMSKJtuO8$MneD{RA0c#I?em*Pl@fo z(&h*p)ykN|w+T1W%lWA6pAPUGfaSQZ@6Q`&vsa4)SW(W8Fxsxk zbHVd)Z4ZXDtU8D{>E0P_9o4k~#w{(wQ1e7dWHi$GNFzKQ?8uOtbRss2VeQH5hTES$ zZ?Rmd;k~Fb;1A=qaJ1Z!W3jM>}zaJaJV??wJG`RGUaa6*0_^A z1E#;7KDO~-y$WW<@B7N*#J)F$EO1<`S>l?zL1>1x6wD9abxij#`sYrEnbcff**eZ=-EsZA&CZj|BY4R}=XWiLo&Gf~(OBh6Vl3@=Lsv4CA zT%-9Ml?fUVuxEA8!kJiXRcQ} zhOsEK>z~lua)QL$y2Hg)Fb)3eB9*79xi)vX2w}*l~Yc!Vje*=(jd(_ z@6V62E^ESYlWUC>8<&pRUU7X6NXUhV46Xa|13BH^?(J-?`-)M!zrZ1SIxVq3{o1ol0iBNipj!bM2y1*h zt@c7!%X1)NSRA%jg5JJ?qJfzm=2TkWS@V&6E_*cUuTO37B$y?Gxf<;pFJyoB0neF^ zUS!_E8}5u=v<+eOAghjBr5p}983jakq-j-klqx$^EIOm9Z&whzVAAL;jLUu6MNp<{ zOcQNR04_ZJHu-r@C&K?fNMJnNU*Y)s%e|df7%uko-;TtCks>d1Km@_(>d2$|Gs9{7 zUT{@JYiMe|#I5jZ&!&LUV~5pG)-0o)G)T=DJJTo1I~SfVKb6#i;7^p*a;UGy`y z2+*P8e}bq|5A$8o71Xz7&VBmWRBY$oH=z0?W4;t_L!-nfg3OEcoT&S6o96L3%DFYL z$&ALV>F5~DJvA%FW3KSyFBI2H-ObYP0-+C?627kwd!}|J7h6MMz;V$chLQ_ETTAV| z55|S4a!ub!R+|$0XR{~8kmZV-0yY}En|?AYRzYAcQCEiM70VT%7yIU}pU=a!@VEm8 zAN;y?xSly=cm(@@U#nKpt<2usKYOS)CMM9@oKoVk#C7gQ)Y!|01;E{h0Q@6B` z0TKS{Ryb~qD^h-E|1!7-e$I5qa%Aj)4+vSy3*lz51DskvPceH%?w|a-1K$wpv;GVM zDQs%wquUsAu|C0J;o@d~YcPNa#0WMb&HeB$`Myr=dJZu(G=zkLvnc{@`gf6TdTerQ zTi4Y`(wk{wenW5Pyx5a)E+7bp{Of$%UcI2hPC?1F2VrHog`oQs5Dy zIGGa9YC1vX8O8BKHsV}bDKkH|KIWrnF10ou?1k;_zw?;6CREwH9um7;l|_U_N>&hr zm6F3_?Q7pn>?SAvZM8eo_B~l1K({GC}leigg#Qk06md##NcRht%ii zC~t0l+62!U!~W2DdRj>2z;1m7b2%S@6~Vrxftgt&t!Z5E-Nj^|1R6EQIOIS(m2W*| zhh1;4ZD54pW>UhO0DtpiUqHEjRE#5aqym6#B%<9%SoxC=!yyjdr{CN5zqA^hvOn5? zmyn)H7UbuwZ&%;GKSxsw#yF7SKeASi6~(_i_{g0ZRB7~Adb=abG|?Imrpv>aAIuc( znj>ih*aAu6hpTNIFtA65LIlQ-@3>t9>ADNTbio+QfdF+=QI0F_jAoe<;W@szoI8~n zqy2%EpV0aee?{q}1c5mcy|4;5_0%R2%xtR{q*xj441HTO2=u4rGjY!p5brYx$!fju z1>m*NQGWjHUbF%rQMqvUD3E$ZXeYz;1<eU54F0CNfLmkE!L4 z99)Q_b9ZUWw7Ol`;%5<;AjIRk7>bMk1S0^>d31+M4dqT!-m%1d?UKsaV!(6v3;|K4 z9LB#8C%5MsUJ?jE<2(9?Hio^DsML3%KX$Whnt!{|_v)#aI4Is^&p3`UF_p}gq9I($ zJG|)q&d(>`OK^u4p~yzFtp>O?GxZkWYXkW%5{M;1v0M-IbGnfI7P-aigMDWf2hpr8 z8XVX(pka;<{=ojQqVrvz%bR^Ic@^V;2W8W4$O2zyRnouBpbgMn8^Ht;Al-$%1z^1Q zMv9>*L^?@RpZ|k1@nIpVl)~mN^hAa(jFY-6qvqL7!8|1{vmHP1OD2=cVFJoq8w*2t zt`1~fQ+4_5c%sej(&;$#^OOqqiv z)aO#SJF~PbNf_?`$Xs-1t5h12_TY5717_zZ#&c^3HKIeLo)!#~@UeeaYE6=XzEY?3 zSLwFR;UU&L?aAYF+UF_-R(9NK0e%T(HSL|>ft4qgTZVRyAF`j!$i-?Wi~DH)0)aoz zrRP_~@fQy6+;fK0U!bi$0p(n%*FMvygDrMutB;mnHq~a{&D_}3l$%iyNChT%hY)B4 zn^qhVf$(UV)c$!~4aRruHyU`E(TLioBHQ8pNXj+yNNi`G+!s}9mC`G4ZD$b(>{eaX zo_Rj;V9k?}X}vzOah9r5`;A5vP%_8E5UyWi7y?E}N=@CjOX)oP{t2u&jT{Y?1&;Ylm|c+I%gRU;n#x8K@9dieWg%47rG{lv8K0(iVc{a1m4E z7a4Y<&<5i~oN0biw(!Y>&Qpr~d)83e49jAn%4w$$>x9S}7^rut&>~wfYC(XQE~Z!^ zr&4A!OY$K4{kfon)XPH~Hw)R%7AiAs@gd=FW6+@{*C$for+4!-{{pBbX4aEvv|3Bz zfS@hY5Sr?(u(>MzvwFyl{`*d!CwxkC0JUxXyk;iRickq$)>AZd*O1a&Py*pGdE_?y zLFym!RxblOdePRmxHc5<^`MXe4ZScytxOrJHqF0#J|5ClQ^4a>HKl)x6L>jPHg6&v z0m$6k6zj9U+x;>KI{~rS~0WI~AFjt41niy|WBB)Bn#>U@r%T(WQ3i-PB`!SOSF7WSN zI?JmAzYjf*lEA>`giUGl$Fqai>52GzC zlU<5CR_B}QVsrrxi+c(8k<6V7{V*N{D|CtfJw$6!f_3zwc~L0V!aNHua}m_!ehp|` zrT+Y_#T={WJ+6m$u@Bd$4Sh6}k8sbK{LRtgEBD+dycbH3FUjR)u&^2B6(EZ)Zi{N9 znj#ijmNd09W-2=^^N;jX36wIwDy#eZMU7xGcs*)0F-Y(u>=F|GJ8OiX4>~6c#e8a? zQc6$}G^U^YgHXioOPJPu4G!AG36fz!-{w5-)C6K|LE*keZ;TAeXudv4rU>PtnCJt{ z_hU|T9Il72SQ1>8_$BT-8i;hiNu{GKgiymz=n(lOv8@+H>>WM0hOj;CW4+67 zca<(C@mM*Sv-7nG3r#Naih0-m?qL!W+Xm)sAhd1#BzT7n90V0B|EpD@X&}demyj{o z@3WQQIq^>I5ks?>f%UMv{UU=_dq{;KZ4Fk)c%0j-xZNpjp10nKO;J8kx%p{Rq=mK; zr^|^zl04o*GPym1R}aeL#op>{qZ|EFyF2a<&>GxKN^R>s#A9-|A}SA$`wO- zD9!pUe2|Vr`i4Mo$*?Ltdved8gyTRnPFK>kViaPu*b{^`v1Jdoli9z0^A@a$N5{hG zT^6c_p^DPY%3h(c6Vv2UvWF8J7zB_9dEKQZR$fJ7@3^5=zO_XGMh&Xwl>b#eKy?ip zV5%A>O^2e41dA+${M%qG+)dn?mGInz%lj4F@s>;cmM!)6vVq!~t4}9(F>}gz^{+5m zjC$rCb8jXPBY#RdAC#k?FSK=54C3QE*v^x&*qFtT?t0;Se13&b%D8~hbzbDF_iS=jl+WL4eU+*=c>wMWTIbCUMHdQpDKW&7nP;^aeH}mTNS8=4> z!g*R(A6$9N5>c3UonzKE^8)72=P_k2(w09KpC*H0y=!zj$YW+MRG$|Rtl;^nS~ieF zOfDP&+)Y!uyA20wvKcR|gsNXN8CqMhD9+1Z8ns7J-*3)AVC9Wy_eDr9O_V4_60z zKddVl%*st@cpSzwc4yj1$wDSIYKm+^*>*z%Djz7}uXu_782EMHEJDYRvB#SCf zDy1r#ZmY2R>9Z$WzXiOiY04Hz+!Pd!enBv7(mePHbM5Hyl@fMm>Nn-T88iLyf@s*p zQgWIkwKKZH+P>*dBLxyk_-S;kq?PQMAd!RGZy%j<*#)j*{?+idRE-W7ubfy}sEXl5 zcNxGnM1_A5zRq^%i;jsd$$!SslS-B;bH>#5xD8M0eG-HbyU9naLMQ-HcNS$4g6p43 zs?2?){4&0@)3?QD{LNk1|0h8sLIy%owa-n3zg0(7EikIYes6xr*BRkhkC1SCD#L|u zlgXUL1Is&L(gqVK>gxlAm$F1TLPe+YDGAKYXG)TE95JJ<=L1}^>U>8H>cgx@)G`gU zo~pDD^aXxNPKym}hn)zOWU1JpQBwUt71$Qv%Qh)AbF~nfw2Dt+g#Duee`tSJh{4s~ zx;a88*KJP6i2rjUME?}CzXk|sAkDe{8n}jw$8YIhEKvDODQ?je4#4})@^nmoYEOo8-pXx#P2^=UoDST`tRQrht7DB zsD@S3Y-cgpWcSSB4-d@$X3i#|AcsG2T1w-Z?4Zu2aRg@}5KIgQU$SUa0yYz{ zDFkI%?e83k&&+D;6|6p(P$@)rSbE@1+tBD@;tPE{^+@T|ZHq)X)|Q&o^MDOG;Y*c2 z_?toA_q&`+h_Q9L+3Vx<;2SU{yy9xKP&A8(F~7|-v{2nz!AT}E=KX@g)fhcw-bBKjv zr(am}Rer-45AutJTs%{ACRge_qnvR4AYXO9Ts}sjsDnJ-sLC!@(oLlC_TmhI9&kKF zr`(xJw4T82WojUeh~Dax5^0^DWzH#xF3}aiCE-Z~Vi75)9$1}v^beq2TTTq~5WtJv zW(4pZLpm}){PcwxnYcqAsl^iCDjAIgQNXtRm0N}92K+;yK&=baNjx0m>;HX`HwuHy zkC~l47xr@17|&#ce!T1-RJ6tLUMWBO*{*tQKcqSBN84mt z>}FfjRU#EPyOv>1?&%6;9kN_7J{oPtgC^Q8g*#oQZg5cw-T9AM(P)Ay>=qb(T-4wx zuO2+fe1E6G3hP@EV86H7rS$JqjiNg8q_LDdtZe^UX%u2^fl*k6PgV5i**mBu{j;~( zCKZh8l1N4Mk!6gyPbZBt$4vqSBsrPlCKhhs7Cx{$bN*7~gGh`GB{mlB#9rEk)Sbv? z{(^9!{5QXSb({Y+580&l{d=2Ir{cq4GVVXJf+vQ(=3aW?@a8tbmPth=aM0M(8KG}d zh>I1s_fG0csY#zAjV4s6I@8ZSWK!2`I`C*mBxoq@!I%NmnE&3G5P^bqZ?^))CY&!l z1X$Tw*@DcK4X?+lSeO7YQ zRJrq?`;THHctsA>?@E(u@z*A%=-9O;rRv{5VJD}+{+W5&J@Kqqjp&~FBYfCr-w@W8q|_OqkoLPL^CXedRlBuXYir4JqZ( zrk}5VYNVzY-N0Ws3+X5%|F7(wa(^#TgNuQc)$U}YaPX}CwS@4VrM8fT&1^UYjku{5qv%A(XK=O3{=3Kk`U$kFAJ!92;aSa` zh+S;(g!Iqo3%&UrbfnPDt)X|VM~Wi32d^q;QMBT<#ZR_+X}@zATU#$Acl~cwg!<3Z zhz^wuO#SMB5l3%j;mb~`Sq3!=b68xrqHmc&b~G>zHID(UYhmP~4Nlcu9@W7HAc&s< zQVhfaW=}^8yHpW`mXwkb`a8~beOxy=!?pLzh@BW&k*0nzLNFSR^=X=jTo)~e!Pg>` zQ)?n(>YfSyI%g-{*|AL{0_g%DUF>_uBRpiwF~rZqpZ0S6)*f`0#{sQq86Ym1 zum++|*)SVE9|P{$`2_{#v-D@)2MA(?)zxtciHVu2$3w(kQN*76WF<)ZBF}yR1WE&` zihhodh~D4Y>?M;?M;W^`^mF=dkuphBN63=m_tKBYS$nwlCZ^1Zqd%BDB)D}|g$Xl; zB2sroyuoK}XPq)Ym}DN%Z>mG_QcwiVRqDzN2gRy#{Z3gF69ys*N^5Hq0L_Bh2_xte zEiJ7$+3(w#P>ft>!7>r;-HEJaPy&?MdRBJ!8pzRnC&IspVqFzMNng)~-Odl4h^C?t z*0U+!ZT_@`uoFOp@$mzc*YIBAcb@ieGGQ_8zO zAN66SrU>_ng$=$(Z)jkE+Nj8t*TU`SL%+L5Vv$! z@}T5vb!L`3j5lXDX-_lyyEGVlU>b$f?&Rcju$`#j+S+hjS@$@YD_A4^E1`d0!9CjJJjwqbYkkwv7S3q)4PuiX*HFz zwoCXG_gH|cc%FuzKe{mznBx`?Vlc9dEea&g}#l z*_P&J&cH|n`i0|Q4dUh)MHG_RI>7!j5xGXDl!BEtX@c)g=bc{n=i5D*9l)wNIgVmj zr}hx#FaNU+dkli+QcP_iypJSTC(*2q_%n*>xOmhsx_(NG08<^jV$NaQKgvp0kDL}H zaJi0mMtKI%eYX42U&1@l^@2VkvshauU~eI}?*z39nr9Yn5Z?%w^>|%#91g+yXeBCt zS6OXnK(>MS%Nis5@nx$G?wqs~_a!d=NYdxpY>1$og=hd9_Gq9_H?OxAK_awij`M!o zVJP$nmDBdcHIpK8ejV5sBq9a%q+0N_f%zh#UFC@5O5K+}hup%Ap}D(z-#_;Q7sP%7 zyLJ=&S~Z#NyhCVQ0NyXxaoii&(&N1#W;)|O^L4U4aD-wJ0|P_$6@YcQJ0ErlhI&H~ zk^RoGi2({{q|s;+EfvWjY+g2CtpQHQeYlv=(lg##{{hQ?`3pc4laO7=iEMUj?gnsA)+jE`vz z2%im)T35o=C^C6S9@8p`k==$VHIf9@tBdp$=ThjV(SiS zAZGBB>T4ldUZ2=B8YO%pEES)UsUtgAP?P< zUI%GazFV_Ao+`_7c-ha7mOv zJ%mRt7JLB5jA(d*bBm`k$7QRPw(em3Y?=B$;qD_HQ{G%;x#Mg}fy9No%Bme%vVC4KvW@%5UnzNsLdZGwfPadvI21!f`+0lV*F@vcwg~WvpifM{m^q`_r@t4dw}}|@I1z@iH0qyi zj6#B6pZ5gRN61-7;~8bBQlwej$?4Vb^HBwl=Bqf=n_C4*yw3w#dVM~Qj*NV@t(#vM z2>`A4wP!&=hTj* z0nCg9az%CMTdX87TcqohevCrFKg|)nOch}x4@#r@Q`wWRNyqps9(mtMb7$qPbxB?G zI0f7r>F92sZ#*g|55Fmy=Z3-kI4cB#*CQ9kg_~AgGe6I}H&nLwjeb=!tj1LVXfU!- zk<<=6YW!?!8htW6sNr3K`5!`@2O_Z9l3d>qULrJ@l`Ja=%vdlw-SQ z57TLLg^|ZNz|_)NeTv;zp%GKpbx95!_T8!lCpho3NObl-z>DTsD2m? z|7u6=aXTs|srODgo5KHtnkzLYHHnp!Y;MDe8W9eTDdWuc9o#IAjIdu!;!N4|%ZjEoOZM7+rhmtC3D&BW`F}JYBtI^8ewbrY7#@WZno=CiC2W7#%{0Ze zryLBhY}B=vkdl%*)x#UhdMPTY%?3;zi)of%2Ap~V zVfrh%05Wc1t~Hd^H4GLJjo5-L*2za4*UNfa;I&{Q!4nhQrPl#WB^uEnDy<%=z^44p zSD1P(x5H94`&Tv(?U^ny*-pDYMkDl;o7LZ1FOMpmx4ufT=F1`JUW~JQIxErS_AhpI~UOW!d6Bzm*X^Tum|xhA2{{8Bhu@ z4ZjA&kOQAMPLxc|0ufHZXc3c3n^k7vJbTRV?;uqE5dV34QNgQ}ZeT%6G<6MdVa&I{`ZFwjTgse*F zkqR)Vd^; z!mn3=&M&hQ615&a*tI(%u)M!JH>-4Bo@K)iZ~*;C((fBShO~@1j02+ zxn5IBJ`Skro*FmozAXQHHN9U)eMG&7mtp`MDs@c@e(WT$A>V1h1gk2~IUoII_3{B& zFu2w;SpV=3m4#K!$xQv&kgWQ z`S&^sTeR?gy4Ez5OY3bXvNX3IqDo0T>5SM`l(TDAa0cYeB6q4evdPEKw+c^Wklba@ z+K^byHNtmg490Iym)nt}LD#f^k7NZ-hYR4(Km~YaCE)&SDXeMe5<}Yw#-c=lWl?4n zJBhyg)K{B-CZC#y1mrCxXqE6$mG|VY!I14kXjzW~rWtF@$xM93l;ig<95y2rxp;lc ziYz35r?Kk&yGU?5o3dYhOeLhFQHtWNlP@^}+j_H}26VN52z4KRfp1J%joew(ZTTrZ zp_1ZW^1uo5eUAnLm`a*>hv4-g2DCS=Lg( zM=G)DEJW8d3a(eSd?HG5Lakz5OjMseE=ZRw^Pa`S+ioWjx!Uy|cp*)+`8etatI?p_ zXNcE!4>4Z}ca4bjL2fA`!97I_a=>qvtJ-E5@FCr`xRR?|cZ_?Nopt?9mc zxoXNBbO=xYeRvN&`nR$hZL8s)Hzmfbg&^+!;F$Q9S4vs9<6n7A17-&SkHrQuB$M?`!`@P&`l-1Hn1i#=~pKX z*2fe(92f5=V#yO}giD9PP51G@2$FPO^7kcaY6#(lm|TNTg&*Bzm@2ka!dnD9J{g>^S2i1aN(MWWMhJVkuk0pz7=3e|pQs}TGkwnW=4Y!fSH?w^}|f5mp^ zq4Ws$QsE4|K7s`M2P5s}00M+uh`$28=!Y_0olhNpuGCtIsA)9a7{{bbO}S>-E;weYc+8uU!nP9=1n}aou^({ELRAv zTZ!~`OAtS}hD8b5QmA_mo7_VGtWeT3AokHcAC!PoL%&1sS|qF6p2;%0z|x<-$@yjK zAGH*8@Pik@gN`TNy26*tUe8M|V>7p~0s&;%Vh-h*zid?cA3OdVmgd6E;z4vNg%$2h zTcdLq82x&9mch9BKTP*slola~40pdmSBJj@sLTF`>-_hl6c^IhjO;fqf|euz^&mkm zAiXzL^$uI&T3x;!Tqzp>KWlDXjfmuZc5nw*D!hHC3qt-5%`5Vu4c*AhfTsiCC;vuU z6q+^zz@l>==vk9pH{IXJ?~1(t&?BsXR`Of~C0%szbA*2mx&IcPy*MVx;6VxFtm*$| z$Haj0ZpEm;4lBT4)BvapAQo+H>H**fnjI2f1Z&}?szM$5H(6YKyb@(aVPP;ZG`2)p z6rH*OAOc!;_C{%9Ucd+|am{0o2s18v4`3okPw<@a?rmgN^J8OSO##mL77v#@^{yvc z8T>xnfVpCXp5KcL;J4R1fsAivF;WUL zG6f@v)GB~6da}3sLX#ay$L*4p{9>!?i8Nr@|D}!0Zn-g99!N1ZBZ|8MY#(wxu6FVG zhk0BMznk&cM|kV$5d&D%gux|15F7Z_^d1bWg5t<~zaGSdDheac+V%@=c#_^zFDLAJq&ITVXLt^$X?Yvr1*WaN8`g7X12Qq6?6ij;qF=(00Wq|(T zmsv2^xAW)*U#r$NdPqPH*}*9KHIM8WF>L?hjAj2qP(*II9L_!LLnpO^_ote!cfTGB zphGRzq>zXKk5#jtjfRxuuE7fv%VS)a$aqItgMKOL-Pa}{#lnoi``NO`Jc&1 zuu9$uH+R4Oj@AL338Rz18FFa6_1B#?mMR)w&!&6R{TZ7zo0%# zBteyL2Dxp149b+Daw{Y&-YF}|{+%x=m>wu2b(zPDg-9bp+U5;}=TPashGD3vsZmMo zYJLAMT8*KZjH48Mj6jOe-{1e87Ikp|3Upstf{ZRJ^_0 z`9>b1Y@l=9;e>G4FEWpLlO81|0bn*l>u*qpq*DXp`R&)}#QK;2FX(nT0i7Pgh zd*8MmJ^{&`By9{4w+*(dOFKMr-=QIq0}lV43W^8<3!Da$jobhkDJAL@3mxPQ34}%yYi(L$>go(3T{m>nlsb;2v&fMt$+=i9mR)SI@6Ve*pj-`@ z8e0+<>lT4FC_;-2#p>ygf(K{Bcx{U@L?mxN07|YVD$GFtp1$8vq)=G+3`R|t;>6nn z%6{}V3)MZ%e?XYrR89=b5`y)~9FX~W`-OEO!x<^slOD6nkioc8MC=0ak-D_0`yg|>pt92L#hueaO zbl#*;+dZKbB0p0{hW$7fTBP;Vy*0xf(}##YmZCxf9cLnI&oB{*7yr5UZn~M}HmwP< z&-FC^6#$f#6~aNYKw6S*zOlW}RMycTdAZbr@_n9eO>@Ye5FLViZWqn^6YE|Y;J**D zxM_BnG)d=vVBplSwJn*Q{qB|EAx?;TyB@$ZX892R#~!|ioV=2=dL=X8aqwN`61C9wLfFjTcp7umFGEx*qzW~nYnisK zBhB6R%+O=0y8OH%{5*NK+c|(;%1bgoJtRc9UprTd{B3~Nd?k!2Oe@XI=BXLj+)3)4q6{JG5|2?9*Lz~jwz2-}6 zwZm+4S!hd<`>F&Di3HJr2BQ&b<%AtDDEdJfo@(Q#8u`jdl;^oa5z>#h9HSVnK~1bV zG#dWu>xBxg+JHP`af0r;uS*b}fr+zwhjbp6i9M=MMWE!W`jNjpR{S06(2&>x1xukc zib7yldVu0^N8ulh*Q9m(hzF#uJ5cwCg?5`Cb&AxI|9R3b!g%NB8Ib`6i4j@3H!yh3 z)kK$+m#Puy{(Zhc^QZlw!vXABL>M3qCUCo{)#Er+J&0nl0h#khAbCg1^Oplc8CGqOTt!PbQ+UNS^+ c%z^*x^NJ5Lelfp(jsXZfUHx3vIVCg!0KEQUg#Z8m literal 0 HcmV?d00001 From d36f78dfa94aa6debdcd818423d3f5e657abcd31 Mon Sep 17 00:00:00 2001 From: alessiamarcolini <98marcolini@gmail.com> Date: Thu, 2 May 2019 18:35:51 +0200 Subject: [PATCH 2/2] Fixed typos --- 1.0 Data Loading.ipynb | 39 ++++++++++++++++--- 1.3 Data Wrangling.ipynb | 36 +++++++++++++++-- 1.4 Data Grouping and Filtering.ipynb | 34 +++++++++++++++- ... Representation for Machine Learning.ipynb | 34 +++++++++++++++- README.md | 8 ++-- 5 files changed, 135 insertions(+), 16 deletions(-) diff --git a/1.0 Data Loading.ipynb b/1.0 Data Loading.ipynb index e927a436..0779f71c 100644 --- a/1.0 Data Loading.ipynb +++ b/1.0 Data Loading.ipynb @@ -181,8 +181,7 @@ "\n", "- each column of data is separated by a comma (or other equivalent and specified separator);\n", "- the first row of the file may correspond to column headers;\n", - "- the first column of each row may correspond to values of the `row index`.\n", - "```" + "- the first column of each row may correspond to values of the `row index`." ] }, { @@ -1315,7 +1314,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**!** The date parse is US datew friendly! *MM/DD/YYYY*\n", + "**!** The date parse is US date friendly! *MM/DD/YYYY*\n", "\n", "To use the more common international format for sure,
\n", "add \n", @@ -1329,7 +1328,7 @@ "The CSV import may be highly customized,
e.g.:\n", "\n", "* `date_parser` - which columns to parse.\n", - "* `compression` - `pandas` hint compression of file, default: `infer`- auto discovery\n", + "* `compression` - `pandas` hint compression of file, default: `infer` - auto discovery\n", "* `delimiter` - delimiter\n", "* `thousands`, `decimal` - thousands or decimal character\n", "* `encoding` - encoding of the file\n", @@ -3109,6 +3108,7 @@ } ], "metadata": { + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -3124,7 +3124,36 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.3" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, diff --git a/1.3 Data Wrangling.ipynb b/1.3 Data Wrangling.ipynb index 31ca1818..b5c902d7 100644 --- a/1.3 Data Wrangling.ipynb +++ b/1.3 Data Wrangling.ipynb @@ -21,7 +21,8 @@ "metadata": {}, "outputs": [], "source": [ - "import pandas as pd" + "import pandas as pd\n", + "import os" ] }, { @@ -30,7 +31,6 @@ "metadata": {}, "outputs": [], "source": [ - "import os\n", "customer_churn_dataset = os.path.join(os.path.abspath(os.path.curdir), 'data', 'customer-churn-model', 'Customer Churn Model.txt')" ] }, @@ -4658,6 +4658,7 @@ } ], "metadata": { + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -4673,7 +4674,36 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.3" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, diff --git a/1.4 Data Grouping and Filtering.ipynb b/1.4 Data Grouping and Filtering.ipynb index 5c80fe15..165313e6 100644 --- a/1.4 Data Grouping and Filtering.ipynb +++ b/1.4 Data Grouping and Filtering.ipynb @@ -7,7 +7,7 @@ "# Data Grouping and Filtering\n", "\n", "Another quite popular operations to perform on data are **grouping** and **filtering**.\n", - "The former is used to group values into mulitple subgroups and operate on specific groups; the latter is to dwelve into data based on specific categories or filters on values.\n", + "The former is used to group values into mulitple subgroups and operate on specific groups; the latter is to delve into data based on specific categories or filters on values.\n", "Most of the time, these two operations are performed together.\n", "\n", "Pandas allows to do group and filtering, thanks to the `groupby` and `filter` functions. \n", @@ -4230,6 +4230,7 @@ } ], "metadata": { + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -4245,7 +4246,36 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.3" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, diff --git a/2.1 Data Representation for Machine Learning.ipynb b/2.1 Data Representation for Machine Learning.ipynb index ef403aaa..5eb0d0cd 100644 --- a/2.1 Data Representation for Machine Learning.ipynb +++ b/2.1 Data Representation for Machine Learning.ipynb @@ -502,7 +502,7 @@ } }, "source": [ - "This data is four dimensional, but we can visualize two of the dimensions\n", + "This data is 4-dimensional, but we can visualize two of the dimensions\n", "at a time using a simple scatter-plot. Again, we'll start by enabling\n", "matplotlib inline mode:" ] @@ -1427,6 +1427,7 @@ } ], "metadata": { + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -1442,7 +1443,36 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.5.3" + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false } }, "nbformat": 4, diff --git a/README.md b/README.md index 050501ac..7cda6be0 100644 --- a/README.md +++ b/README.md @@ -7,7 +7,7 @@ _(adapted from [Step by step approach to perform data analysis in Python](https: >So you have decided to learn Python, but you don’t have prior programming experience. >So you are confused on where to start, and how much Python to learn. > -> These are some of the common questions a beginner has while getting started with Python(for data centric application): +> These are some of the common questions a beginner has while getting started with Python (for data centric application): > * “How long does it take to learn Python” > * “How much Python should I learn for performing data analysis” @@ -20,7 +20,7 @@ _(adapted from [Step by step approach to perform data analysis in Python](https: ### What do you need to get started -Most people have the misconception that for performing data analysis in Python requires to be proficient in Python +Most people have the misconception that performing data analysis in Python requires to be proficient in Python programming. Coding is fun, but you don't *really* need to be a coding ninja in Python to do data analysis. @@ -31,7 +31,7 @@ share the code of your prototype or experiments on a public repo for **reproduci ### What you won't find in this tutorial -In this tutoria, you won't learn how to program in Python. +In this tutorial, you won't learn how to program in Python. If you are looking for a quick tutorial on Python programming, maybe this is the tutorial for you: [Python Programming Tutorial](https://github.com/leriomaggio/python-tutorial) @@ -81,5 +81,5 @@ Additional Books for further readings: ## Credits and Acknowledgements -Some of the material included in this repository has been created by adapting the materils in the **Python-ML-Course** repository by **luisPinedo**. +Some of the material included in this repository has been created by adapting the materials in the **Python-ML-Course** repository by **luisPinedo**. Original versions available here: [https://github.com/luisPinedo/python-ml-course]()