diff --git a/README.md b/README.md index be3f5c3..22e5af3 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,6 @@ Eye-to-hand calibration from RGB-D images using robot mesh as calibration target ## Table of Contents - [Installation](#installation) - [Pip (Requires CUDA Toolkit Installation)](#pip-requires-cuda-toolkit-installation) - - [Conda (Installs CUDA Toolkit)](#conda-installs-cuda-toolkit) - [Docker (Comes with CUDA Toolkit)](#docker-comes-with-cuda-toolkit) - [Command Line Interface](#command-line-interface) - [Segment](#segment) @@ -35,44 +34,20 @@ Eye-to-hand calibration from RGB-D images using robot mesh as calibration target - [Testing](#testing) ## Installation -Three install options are provided: +Two install options are provided: - [Pip (Requires CUDA Toolkit Installation)](#pip-requires-cuda-toolkit-installation) -- [Conda (Installs CUDA Toolkit)](#conda-installs-cuda-toolkit) - [Docker (Comes with CUDA Toolkit)](#docker-comes-with-cuda-toolkit) ### Pip (Requires CUDA Toolkit Installation) > [!NOTE] -> During runtime, CUDA Toolkit is required for the differentiable rendering. If you are planning to do differentiable rendering, see [CUDA Toolkit Install Instructions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). Alternatively, install using `conda`, see [Conda (Installs CUDA Toolkit)](#conda-installs-cuda-toolkit). +> During runtime, CUDA Toolkit is required for the differentiable rendering. If you are planning to do differentiable rendering, see [CUDA Toolkit Install Instructions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/). To `pip` intall `roboreg`, simply run ```shell -pip3 install roboreg +pip install roboreg ``` -### Conda (Installs CUDA Toolkit) -To install `roboreg` within an [Anaconda](https://www.anaconda.com/) environment (ideally [Miniconda](https://docs.anaconda.com/miniconda/), or even better, [Mamba](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html)), do the following: - -1. Create an environment - - ```shell - conda create -n rr-0.4.6 python=3.10 - ``` - -2. Clone this repository and install dependencies - - ```shell - git clone git@github.com:lbr-stack/roboreg.git - mamba env update -f roboreg/env.yaml # if Anaconda or Miniconda was used, do 'conda env update -f env.yaml' - ``` - -3. Install `roboreg` - - ```shell - mamba activate rr-0.4.6 # can also use 'conda activate rr-0.4.6' in either case - pip3 install roboreg/ - ``` - ### Docker (Comes with CUDA Toolkit) A sample Docker container is provided for testing purposes. First: diff --git a/env.yaml b/env.yaml deleted file mode 100644 index ce57bce..0000000 --- a/env.yaml +++ /dev/null @@ -1,27 +0,0 @@ -name: rr-0.4.6 -channels: - - defaults - - nvidia - - pytorch -dependencies: - - libstdcxx-ng==14.1.0 # nvdiffrast - - pip - - pytest - - python=3.10 - - pytorch=2.1.1 - - pytorch-cuda=12.1 - - cuda-toolkit # for compiling nvdiffrast torch extensions: https://anaconda.org/nvidia/cuda-toolkit - - pip: - - fast_simplification # for mesh decimation - - git+https://github.com/facebookresearch/segment-anything-2.git # SAM 2 - - git+https://github.com/NVlabs/nvdiffrast.git # nvdiffrast - - huggingface_hub # for SAM 2 - - numpy - - ninja # nvdiffast build - - opencv-python - - pycollada # used for visual meshes - - pyvista - - pytorch-kinematics>=0.7.4 - - rich - - transformations - - trimesh