Skip to content

How to add covariates(pretreatments) to setup_profile() #4

@jiyanxu

Description

@jiyanxu

Hi Kris,

I continued to follow the tutorial after solving issue 2 and tested my data with

profile_vvo_3 <- setup_profile(model_lasso_3, treatments(exper_vvo_3), treatments(exper_vvo_3))
samples_vvo_3 <- list(
  real = outcomes(exper_vvo_3),
  fitted = outcomes(sample(model_lasso_3, profile = profile_vvo_3)),
  altered = outcomes(sample(altered_lasso_3, profile = profile_vvo_3))
) |>
  bind_rows(.id = "source") |>
  bind_cols(treatment = rep(treatments(exper_vvo_3)$Diet_Type, 3)) |>
  pivot_longer(direct$outcome) |>
  mutate(name = factor(name, levels = unique(direct$outcome)))

then I got an error:

 Error in h(simpleError(msg, call)) : 
 error in evaluating the argument 'object' in selecting a method for function 'outcomes': object 'Female' not found

I checked the cran doc It seemed I could not add pretreatment to the profile directly, also :

> profile_vvo_3.1 <- setup_profile(
   model_lasso_3, 
   treatments(exper_vvo_3), 
   treatments(exper_vvo_3), 
   pretreatments = pretreatments(exper_vvo_3)  # Explicitly include covariates like "Female"
 )
Error in setup_profile(model_lasso_3, treatments(exper_vvo_3), treatments(exper_vvo_3),  : 
  unused argument (pretreatments = pretreatments(exper_vvo_3))

Here I attached the traceback() info for the first error:

> traceback()
20: h(simpleError(msg, call))
19: .handleSimpleError(function (cond) 
    .Internal(C_tryCatchHelper(addr, 1L, cond)), "object 'Female' not found", 
        base::quote(eval(predvars, data, env)))
18: eval(predvars, data, env)
17: eval(predvars, data, env)
16: model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels)
15: model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
14: predict.lm(fits[[i]], newdata = newdata, ...)
13: predict(fits[[i]], newdata = newdata, ...)
12: predict(fits[[i]], newdata = newdata, ...)
11: x@mediation@sampler(x@mediation@estimates, newdata = bind_cols(pretreatment, 
        profile@t_mediator[[i]]), indices = i, ...)
10: .local(x, size, ...)
9: sample(model_lasso_3, profile = profile_vvo_3)
8: sample(model_lasso_3, profile = profile_vvo_3)
7: outcomes(sample(model_lasso_3, profile = profile_vvo_3))
6: list2(...)
5: bind_rows(list(real = outcomes(exper_vvo_3), fitted = outcomes(sample(model_lasso_3, 
       profile = profile_vvo_3)), altered = outcomes(sample(altered_lasso_3, 
       profile = profile_vvo_3))), .id = "source")
4: list2(...)
3: bind_cols(bind_rows(list(real = outcomes(exper_vvo_3), fitted = outcomes(sample(model_lasso_3, 
       profile = profile_vvo_3)), altered = outcomes(sample(altered_lasso_3, 
       profile = profile_vvo_3))), .id = "source"), treatment = rep(treatments(exper_vvo_3)$Diet_Type, 
       3))
2: pivot_longer(bind_cols(bind_rows(list(real = outcomes(exper_vvo_3), 
       fitted = outcomes(sample(model_lasso_3, profile = profile_vvo_3)), 
       altered = outcomes(sample(altered_lasso_3, profile = profile_vvo_3))), 
       .id = "source"), treatment = rep(treatments(exper_vvo_3)$Diet_Type, 
       3)), direct$outcome)
1: mutate(pivot_longer(bind_cols(bind_rows(list(real = outcomes(exper_vvo_3), 
       fitted = outcomes(sample(model_lasso_3, profile = profile_vvo_3)), 
       altered = outcomes(sample(altered_lasso_3, profile = profile_vvo_3))), 
       .id = "source"), treatment = rep(treatments(exper_vvo_3)$Diet_Type, 
       3)), direct$outcome), name = factor(name, levels = unique(direct$outcome)))

Looking forward to hearing from you.

Yours sincerely,
Jiyan

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions