layers.af{1} = [];
layers.sz{1} = [input_size 1 1];
layers.typ{1} = defs.TYPES.INPUT;
layers.af{end+1} = ReLU(defs, []);
layers.sz{end+1} = [input_size 1 1];
layers.typ{end+1} = defs.TYPES.FULLY_CONNECTED;
layers.af{end+1} = ReLU(defs, []);
layers.sz{end+1} = [output_size 1 1];
layers.typ{end+1} = defs.TYPES.FULLY_CONNECTED;
if defs.plotOn
nnShow(23, layers, defs);
end
Error using -
Matrix dimensions must agree.
Error in squaredErrorCostFun (line 2)
J = (Y.v(:,:,t)-A.v(:,:,t)).^2;
Error in ReLU/cost (line 65)
J = squaredErrorCostFun(Y, A, m, t);
Error in nnCostFunctionCNN (line 29)
J = nn.l.af{nn.N_l}.cost(Y, nn.A{nn.N_l}, m, 1) + J_s;
Error in
Train_proposal>@(nn,r,newRandGen)nnCostFunctionCNN(nn,r,newRandGen)
Error in gradientDescentAdaDelta (line 69)
[J, dJdW, dJdB] = feval(f, nn, r, true);
Error in Train_proposal (line 158)
nn = gradientDescentAdaDelta(costFunc, nn, defs, [], [], [], [], 'Training
Entire Network');