-
Notifications
You must be signed in to change notification settings - Fork 13
Open
Description
Hi!
I have an issue when I try to build a Burnham model with LD data.
(Please note that the registration on the Phidot forum are closed, hence why I posted my issue here. Feel free to move it to the appropriate place)
When I build the ddl object, there seems to miss every other year in the Cohort/Year colums. This issue follows when building models and cause the PIMS matrices to have an extra parameters for the cohort missing.
See below a reproducible example with a subset of my data :
library(RMark)
#> This is RMark 2.2.7
#> Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
# Here is a subset of the first 10 years of the data
# The data have the format LDLDLD where L = capture/alive encounter
# and D = dead encounter. The column freq is this capture history
# frequency in the dataset
data <- tibble::tribble(
~ch, ~freq,
"11000000000000000000", 1L,
"10000000010000000000", 1L,
"10000000000000000000", 3L,
"00100000000100000000", 1L,
"00100000000000000100", 1L,
"00100000000000000000", 3L,
"00001000000000000000", 14L,
"00000010000100000000", 1L,
"00000010000000000100", 1L,
"00000010000000000000", 8L,
"00000000100001000000", 2L,
"00000000100000010000", 1L,
"00000000100000000100", 1L,
"00000000100000000000", 13L,
"00000000001000010000", 1L,
"00000000001000000000", 10L,
"00000000000011000000", 2L,
"00000000000010010000", 1L,
"00000000000010000100", 1L,
"00000000000010000000", 17L,
"00000000000000101000", 1L,
"00000000000000100100", 1L,
"00000000000000100000", 13L,
"00000000000000001000", 16L,
"00000000000000000011", 2L,
"00000000000000000010", 16L
)
# Process data into a Burnham life-dead model
data.proc <- process.data(
data = data,
model = "Burnham",
begin.time = 1960
)
# Create design data list
data.ddl <- make.design.data(data.proc,
remove.unused = T
)
# Where chekcing the desing data list, we notice that half
# the years are missing from the table. Upon running the model,
# this create a problem in the PIMS matrix
unique(data.ddl$S$Cohort)
#> [1] 0 2 4 6 8
data.ddl$S
#> par.index model.index group cohort age time occ.cohort Cohort Age Time
#> 1 1 1 1 1960 0 1960 1 0 0 0
#> 2 2 2 1 1960 1 1961 1 0 1 1
#> 3 3 3 1 1960 2 1962 1 0 2 2
#> 4 4 4 1 1960 3 1963 1 0 3 3
#> 5 5 5 1 1960 4 1964 1 0 4 4
#> 6 6 6 1 1960 5 1965 1 0 5 5
#> 7 7 7 1 1960 6 1966 1 0 6 6
#> 8 8 8 1 1960 7 1967 1 0 7 7
#> 9 9 9 1 1960 8 1968 1 0 8 8
#> 10 10 10 1 1960 9 1969 1 0 9 9
#> 20 20 20 1 1962 0 1962 3 2 0 2
#> 21 21 21 1 1962 1 1963 3 2 1 3
#> 22 22 22 1 1962 2 1964 3 2 2 4
#> 23 23 23 1 1962 3 1965 3 2 3 5
#> 24 24 24 1 1962 4 1966 3 2 4 6
#> 25 25 25 1 1962 5 1967 3 2 5 7
#> 26 26 26 1 1962 6 1968 3 2 6 8
#> 27 27 27 1 1962 7 1969 3 2 7 9
#> 35 35 35 1 1964 0 1964 5 4 0 4
#> 36 36 36 1 1964 1 1965 5 4 1 5
#> 37 37 37 1 1964 2 1966 5 4 2 6
#> 38 38 38 1 1964 3 1967 5 4 3 7
#> 39 39 39 1 1964 4 1968 5 4 4 8
#> 40 40 40 1 1964 5 1969 5 4 5 9
#> 46 46 46 1 1966 0 1966 7 6 0 6
#> 47 47 47 1 1966 1 1967 7 6 1 7
#> 48 48 48 1 1966 2 1968 7 6 2 8
#> 49 49 49 1 1966 3 1969 7 6 3 9
#> 53 53 53 1 1968 0 1968 9 8 0 8
#> 54 54 54 1 1968 1 1969 9 8 1 9Created on 2021-01-28 by the reprex package (v1.0.0)
Session info
sessioninfo::session_info()
#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 4.0.3 (2020-10-10)
#> os Windows 10 x64
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate English_Canada.1252
#> ctype English_Canada.1252
#> tz America/New_York
#> date 2021-01-28
#>
#> - Packages -------------------------------------------------------------------
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
#> backports 1.2.0 2020-11-02 [1] CRAN (R 4.0.3)
#> cli 2.2.0 2020-11-20 [1] CRAN (R 4.0.3)
#> coda 0.19-4 2020-09-30 [1] CRAN (R 4.0.3)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.0)
#> digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.3)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.3)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.3)
#> expm 0.999-6 2021-01-13 [1] CRAN (R 4.0.3)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.0)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.3)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.3)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.3)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.2)
#> knitr 1.30 2020-09-22 [1] CRAN (R 4.0.3)
#> lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.3)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 4.0.0)
#> magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.3)
#> Matrix 1.2-18 2019-11-27 [2] CRAN (R 4.0.3)
#> matrixcalc 1.0-3 2012-09-15 [1] CRAN (R 4.0.3)
#> msm 1.6.8 2019-12-16 [1] CRAN (R 4.0.3)
#> mvtnorm 1.1-1 2020-06-09 [1] CRAN (R 4.0.3)
#> pillar 1.4.7 2020-11-20 [1] CRAN (R 4.0.3)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.0)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.3)
#> R.cache 0.14.0 2019-12-06 [1] CRAN (R 4.0.3)
#> R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.0.3)
#> R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.0.3)
#> R.utils 2.10.1 2020-08-26 [1] CRAN (R 4.0.3)
#> rematch2 2.1.2 2020-05-01 [1] CRAN (R 4.0.2)
#> reprex 1.0.0 2021-01-27 [1] CRAN (R 4.0.3)
#> rlang 0.4.8 2020-10-08 [1] CRAN (R 4.0.3)
#> RMark * 2.2.7 2019-11-06 [1] CRAN (R 4.0.3)
#> rmarkdown 2.5 2020-10-21 [1] CRAN (R 4.0.2)
#> rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.3)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
#> stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.3)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.3)
#> styler 1.3.2 2020-02-23 [1] CRAN (R 4.0.3)
#> survival 3.2-7 2020-09-28 [2] CRAN (R 4.0.3)
#> tibble 3.0.4 2020-10-12 [1] CRAN (R 4.0.3)
#> vctrs 0.3.4 2020-08-29 [1] CRAN (R 4.0.3)
#> withr 2.3.0 2020-09-22 [1] CRAN (R 4.0.3)
#> xfun 0.19 2020-10-30 [1] CRAN (R 4.0.3)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.3)
#>
#> [1] C:/Users/gabri/Documents/R/win-library/4.0
#> [2] C:/Program Files/R/R-4.0.3/libraryMetadata
Metadata
Assignees
Labels
No labels