diff --git a/html/06_Induction.html b/html/06_Induction.html index 5abbfc38..c5f572f6 100644 --- a/html/06_Induction.html +++ b/html/06_Induction.html @@ -1922,7 +1922,7 @@

6.5.4. ExercisesProof

We prove this by strong induction relative to the expression \(2n - d\). Suppose that for all integers \(m\) and \(c\) with \(|2m - c|<|2n-d|\), it is true that -\(\operatorname{mod}(n, d) + d \cdot \operatorname{div}(n, d) = n\).

+\(\operatorname{mod}(m, c) + c \cdot \operatorname{div}(m, c) = m\).

Case 1 (\(nd<0\)): Then by the inductive hypothesis

\[\operatorname{mod}(n+d, d) + d \cdot \operatorname{div}(n+d, d) = n+d,\]
@@ -2830,4 +2830,4 @@

6.7.7. Exercises - \ No newline at end of file +