Skip to content

DataFrame.append was removed in pandas 2.0 #12

@charlesdtdb

Description

@charlesdtdb

here is the code to correct it:

#@markdown ---
#@markdown ### Enter the trix url for the sheet file containing the Client Sales Data:
#@markdown The spreadsheet should contain the mandatory columns:
#@markdown * date: date in the format YYYY-MM-DD
#@markdown * geo: the number which identifies the geo
#@markdown * response: variable on which you want to measure incrementality
#@markdown (e.g. sales, transactions)
#@markdown * cost: variable used as spend proxy (e.g. ad spend)

#@markdown Other columns can be present in the spreadsheet.

#@markdown Spreadsheet URL containing the geo level response and spend data
client_sales_table = "https://docs.google.com/spreadsheets/d/1bXZEUasXxEqE-lE0HrBInedrdOt2zoS3TyVbkE-xQco/edit?gid=0#gid=0" #@param {type:"string"}

#@markdown Leave the following field empty if you don't want to add constraint to the geo_eligibility
geo_eligibility_table = "https://docs.google.com/spreadsheets/d/1A_J8XCqXPd4i6WJruZ_6WDHMwe7wxiILwAKhY-_GV1w/edit?gid=0#gid=0" #@param {type:"string"}
auth.authenticate_user()
creds, _ = google_auth.default()
gc = gspread.authorize(creds)
wks = gc.open_by_url(client_sales_table).sheet1
data = wks.get_all_values()
headers = data.pop(0)
geo_level_time_series = pd.DataFrame(data, columns=headers)

geo_level_time_series["date"] = pd.to_datetime(geo_level_time_series["date"])
for colname in ["response", "geo", "cost"]:
geo_level_time_series[colname] = pd.to_numeric(geo_level_time_series[colname])

num_geos = geo_level_time_series["geo"].nunique()

if not geo_eligibility_table:
geo_eligibility = None
else:
wks = gc.open_by_url(geo_eligibility_table).sheet1
data = wks.get_all_values()
headers = data.pop(0)
geo_eligibility = pd.DataFrame(data, columns=headers)
for colname in ["geo", "control", "treatment", "exclude"]:
geo_eligibility[colname] = pd.to_numeric(geo_eligibility[colname])

## build defaults for ALL geos (eligible for either if not in the sheet)
all_geos = (geo_level_time_series[["geo"]]
            .drop_duplicates()
            .assign(control=1, treatment=1, exclude=0))

geo_eligibility = all_geos.merge(
    geo_eligibility[["geo","control","treatment","exclude"]],
    on="geo", how="left", suffixes=("", "_set")
)
for col in ["control", "treatment", "exclude"]:
    geo_eligibility[col] = (
        geo_eligibility[f"{col}_set"]
        .fillna(geo_eligibility[col])  # keep defaults (1/1/0) if blank
        .fillna(0)
        .astype(int)
)
geo_eligibility.drop(columns=[c for c in geo_eligibility.columns if c.endswith("_set")],
                    inplace=True)

geo_eligibility = geoeligibility.GeoEligibility(geo_eligibility)
geo_eligibility.data.index = (
    pd.to_numeric(geo_eligibility.data.index, downcast="integer").astype(str)

)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions