|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.optim as optim |
| 4 | + |
| 5 | +class AeroNet(nn.Module): |
| 6 | + def __init__(self): |
| 7 | + super(AeroNet, self).__init__() |
| 8 | + # Input: 13 features (Position, Velocity, Orientation, Control Inputs) |
| 9 | + # Output: 6 features (Forces and Moments: Fx, Fy, Fz, L, M, N) |
| 10 | + self.network = nn.Sequential( |
| 11 | + nn.Linear(13, 64), |
| 12 | + nn.ReLU(), |
| 13 | + nn.Linear(64, 128), |
| 14 | + nn.ReLU(), |
| 15 | + nn.Linear(128, 64), |
| 16 | + nn.Sigmoid(), # Constraints output range |
| 17 | + nn.Linear(64, 6) |
| 18 | + ) |
| 19 | + |
| 20 | + def forward(self, x): |
| 21 | + return self.network(x) |
| 22 | + |
| 23 | +# Initialize model |
| 24 | +model = AeroNet() |
| 25 | +print(model) |
| 26 | + |
| 27 | + |
| 28 | + |
| 29 | +import torch |
| 30 | +import torch.nn as nn |
| 31 | + |
| 32 | +class FlightPINN(nn.Module): |
| 33 | + def __init__(self): |
| 34 | + super().__init__() |
| 35 | + self.net = nn.Sequential( |
| 36 | + nn.Linear(4, 50), nn.Tanh(), |
| 37 | + nn.Linear(50, 50), nn.Tanh(), |
| 38 | + nn.Linear(50, 3) # Predicts Cl, Cd, Cm (Lift, Drag, Moment) |
| 39 | + ) |
| 40 | + |
| 41 | + def forward(self, alpha, mach, reynolds, alt): |
| 42 | + inputs = torch.cat([alpha, mach, reynolds, alt], dim=1) |
| 43 | + return self.net(inputs) |
| 44 | + |
| 45 | +def physics_loss(model, inputs, targets): |
| 46 | + pred = model(inputs) |
| 47 | + mse_loss = nn.MSELoss()(pred, targets) |
| 48 | + |
| 49 | + # Physics Constraint: Drag must be non-negative and generally parabolic with alpha |
| 50 | + # We penalize the model if it predicts negative drag (physical impossibility) |
| 51 | + drag_constraint = torch.mean(torch.relu(-pred[:, 1])) |
| 52 | + |
| 53 | + return mse_loss + (0.1 * drag_constraint) |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +import gym |
| 58 | +from stable_baselines3 import PPO |
| 59 | + |
| 60 | +# Custom Aero Environment (Abstracted) |
| 61 | +class AeroEnv(gym.Env): |
| 62 | + def step(self, action): |
| 63 | + # 1. Apply thrust and surface deflections |
| 64 | + # 2. Calculate new State (x, y, z, phi, theta, psi) |
| 65 | + # 3. Reward = distance_to_waypoint - (fuel_consumption * k) |
| 66 | + pass |
| 67 | + |
| 68 | +model = PPO("MlpPolicy", "AeroEnv-v0", verbose=1) |
| 69 | +model.learn(total_timesteps=100000) |
0 commit comments