Skip to content

Commit 70c6349

Browse files
Create aeronautics_ai.yaml
Signed-off-by: Gilbert Algordo <69397216+gilbertalgordo@users.noreply.github.com>
1 parent f52d7d1 commit 70c6349

File tree

1 file changed

+69
-0
lines changed

1 file changed

+69
-0
lines changed

aeronautics_ai.yaml

Lines changed: 69 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,69 @@
1+
import torch
2+
import torch.nn as nn
3+
import torch.optim as optim
4+
5+
class AeroNet(nn.Module):
6+
def __init__(self):
7+
super(AeroNet, self).__init__()
8+
# Input: 13 features (Position, Velocity, Orientation, Control Inputs)
9+
# Output: 6 features (Forces and Moments: Fx, Fy, Fz, L, M, N)
10+
self.network = nn.Sequential(
11+
nn.Linear(13, 64),
12+
nn.ReLU(),
13+
nn.Linear(64, 128),
14+
nn.ReLU(),
15+
nn.Linear(128, 64),
16+
nn.Sigmoid(), # Constraints output range
17+
nn.Linear(64, 6)
18+
)
19+
20+
def forward(self, x):
21+
return self.network(x)
22+
23+
# Initialize model
24+
model = AeroNet()
25+
print(model)
26+
27+
28+
29+
import torch
30+
import torch.nn as nn
31+
32+
class FlightPINN(nn.Module):
33+
def __init__(self):
34+
super().__init__()
35+
self.net = nn.Sequential(
36+
nn.Linear(4, 50), nn.Tanh(),
37+
nn.Linear(50, 50), nn.Tanh(),
38+
nn.Linear(50, 3) # Predicts Cl, Cd, Cm (Lift, Drag, Moment)
39+
)
40+
41+
def forward(self, alpha, mach, reynolds, alt):
42+
inputs = torch.cat([alpha, mach, reynolds, alt], dim=1)
43+
return self.net(inputs)
44+
45+
def physics_loss(model, inputs, targets):
46+
pred = model(inputs)
47+
mse_loss = nn.MSELoss()(pred, targets)
48+
49+
# Physics Constraint: Drag must be non-negative and generally parabolic with alpha
50+
# We penalize the model if it predicts negative drag (physical impossibility)
51+
drag_constraint = torch.mean(torch.relu(-pred[:, 1]))
52+
53+
return mse_loss + (0.1 * drag_constraint)
54+
55+
56+
57+
import gym
58+
from stable_baselines3 import PPO
59+
60+
# Custom Aero Environment (Abstracted)
61+
class AeroEnv(gym.Env):
62+
def step(self, action):
63+
# 1. Apply thrust and surface deflections
64+
# 2. Calculate new State (x, y, z, phi, theta, psi)
65+
# 3. Reward = distance_to_waypoint - (fuel_consumption * k)
66+
pass
67+
68+
model = PPO("MlpPolicy", "AeroEnv-v0", verbose=1)
69+
model.learn(total_timesteps=100000)

0 commit comments

Comments
 (0)