Skip to content

FlopCountAnalysis issues #153

@cavalleria

Description

@cavalleria

i use bellow code to test mha flops. but it's same flops and params when nhead=4 or 8

import torch
import torch.nn as nn


class MHAModel(nn.Module):
    def __init__(self, dim, nhead, dropout):
        super(MHAModel, self).__init__()

        self.mha = nn.MultiheadAttention(dim_out, nhead, dropout=dropout, batch_first=True)

    def forward(self, x):
        x = self.mha(x, x, x)[0]
        return x


from fvcore.nn import FlopCountAnalysis, flop_count_table

dim_out = 448
seq_len = 300
nhead = 4
dropout = 0.1

net = MHAModel(dim=dim_out, nhead=nhead, dropout=dropout)
net.eval()
data = torch.randn((1, seq_len, dim_out))
flops = FlopCountAnalysis(net, (data))
print(flop_count_table(flops, max_depth=4))

image

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions