Skip to content

Training Instability and Performance Issues on RGB-stacking with Reduced Hardware Constraints #178

@kamadalao

Description

@kamadalao

Thank you for your time and for this great project!

I am attempting to train/fine-tune CoTracker3Online on the RGB-stacking dataset (and Kubric) using a single node with 8x A100 (40GB). However, I am experiencing significant training fluctuations and the final tracking performance is suboptimal compared to the expected results.

I am using the following command:
python train_on_kubric.py --batch_size 1 --num_steps 200000 \ --ckpt_path ./ --model_name cotracker_three --save_freq 200 --sequence_len 32 \ --eval_datasets tapvid_davis_first tapvid_stacking --traj_per_sample 384 \ --sliding_window_len 16 --train_datasets kubric --save_every_n_epoch 1 \ --evaluate_every_n_epoch 1 --model_stride 4 --dataset_root ${path_to_your_dataset} \ --num_nodes 1 --num_virtual_tracks 64 --mixed_precision --corr_radius 3 \ --wdecay 0.0005 --linear_layer_for_vis_conf --validate_at_start --add_huber_loss

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions