Skip to content

bayes R2 for occupancy models #58

@JustinCally

Description

@JustinCally

Hi Ken,

I'm not sure whether the use of a bayes R2 would be broadly suitable for occupancy models given the limitations with its application in logistic regression and often low values. However I had a crack at getting a bayes R2 for the state, detection submodels (and their combined value) using the residual method (https://avehtari.github.io/bayes_R2/bayes_R2.html). A bit of a messy function and example below.

# R2 example for logistic occupancy model
    library(ubms)
#> Loading required package: unmarked
#> Loading required package: lattice
#> 
#> Attaching package: 'ubms'
#> The following objects are masked from 'package:unmarked':
#> 
#>     fitList, projected
#> The following object is masked from 'package:base':
#> 
#>     gamma
    
    # R2 function
    bayes_R2_res_ubms <- function(fit, re.form = NULL, draws = draws) {
        
        # Get the observed occupancy at each site for each observation period
        y <- ubms::getY(fit)
        
        # Get the observed occupancy at each site
        y_mod <- matrix(apply(y, 1, FUN = function(x) max(x, na.rm = TRUE), simplify = TRUE), ncol = 1)
        
        # Get the linear predictor for the 'state'
        ypred <- ubms::posterior_linpred(fit, transform = TRUE, submodel = "state", re.form = re.form, draws = draws)
        yp <- ubms::posterior_linpred(fit, transform = TRUE, submodel = "det", re.form = re.form, draws = draws)
        
        # Assume perfect detection (no effect of detection submodel)
        yp1 <- yp
        yp1[!is.na(yp1)] <- 1
        
        # For each draw obtain the probability for each site that a detection will occur (0-1).
        # Probably a less messy way to do this
        ys <- list("state" = yp,
                   "detection" = yp1)
        
        ypred_mod <- list()
        r2 <- list()
        
        for(j in 1:length(ys)) {
            
            # detection * state
            ypred_prob <- ys[[j]]
            
            # draws x sites x obs
            ypred_cond <- array(data = NA, dim = c(draws, dim(ypred)[2], fit@response@max_obs))
            ypred_mod[[j]] <- ypred
            
            # loop over draws
            for(i in 1:draws) {
                # repeat the latent state by observation periods
                ypred_vec <- rep(ypred[i,], each = fit@response@max_obs)
                # det * state
                ypred_prob[i,] <- ypred_prob[i,]*ypred_vec
                # force into matrix with nsites X nobs
                ypred_cond[i,,] <- matrix(ypred_prob[i,], ncol = fit@response@max_obs, byrow = TRUE)
                # 1 minus the probability that all observations are zero = at least 1 detection
                ypred_mod[[j]][i,] <- 1-apply(1-ypred_cond[i,,], 1, function(x) {
                    prod(x, na.rm = TRUE)
                })
                
            }
            
            if (fit@response@z_dist == "binomial" && NCOL(y_mod) == 2) {
                trials <- rowSums(y_mod)
                y_mod <- y_mod[, 1]
                ypred_mod[[j]] <- ypred_mod[[j]] %*% diag(trials)
            }
            e <- -1 * sweep(ypred_mod[[j]], 2, y_mod)
            var_ypred <- apply(ypred_mod[[j]], 1, var)
            var_e <- apply(e, 1, var)
            r2[[j]] <- var_ypred / (var_ypred + var_e)
        }
        r2[[3]] <- r2[[1]] - r2[[2]]
        names(r2) <- c("both", "state", "det")
        return(r2)
    }
    
    # Data simulation
    
    set.seed(123)
    dat_occ <- data.frame(x1=rnorm(500))
    dat_p <- data.frame(x2=rnorm(500*5))
    y <- matrix(NA, 500, 5)
    z <- rep(NA, 500)
    b <- c(0.4, -0.5, 0.3, 0.5)
    re_fac <- factor(sample(letters[1:26], 500, replace=T))
    dat_occ$group <- re_fac
    re <- rnorm(26, 0, 1.2)
    re_idx <- as.numeric(re_fac)
    idx <- 1
    for (i in 1:500){
        z[i] <- rbinom(1,1, plogis(b[1] + b[2]*dat_occ$x1[i] + re[re_idx[i]]))
        for (j in 1:5){
            y[i,j] <- z[i]*rbinom(1,1,
                                  plogis(b[3] + b[4]*dat_p$x2[idx]))
            idx <- idx + 1
        }
    }
    
    # unmarked frame
    umf <- unmarkedFrameOccu(y=y, siteCovs=dat_occ, obsCovs=dat_p)
    
    # model
    options(mc.cores=3) #number of parallel cores to use
    fm <- stan_occu(~x2 ~x1 + (1|group), umf, chains=3)
    
    bayes_R2_res_ubms(fm, draws = 100)
#> $both
#>   [1] 0.2436708 0.1813600 0.1861829 0.1968885 0.2093023 0.2065249 0.2262449
#>   [8] 0.1605566 0.2356042 0.2089506 0.2313770 0.2569806 0.2476316 0.2080628
#>  [15] 0.1884270 0.2458283 0.2353730 0.2410739 0.2087004 0.2352926 0.2182499
#>  [22] 0.2195304 0.2197247 0.2299345 0.1642092 0.2512100 0.2537433 0.1866575
#>  [29] 0.2420921 0.1616609 0.1850477 0.2040931 0.2660747 0.1736265 0.2113426
#>  [36] 0.2345318 0.2077254 0.1940378 0.2166815 0.2828791 0.2590453 0.1380645
#>  [43] 0.2494774 0.2094812 0.1596296 0.2125061 0.2406926 0.2306142 0.2238410
#>  [50] 0.1424783 0.2422054 0.2399446 0.2433104 0.2083924 0.2163885 0.2143759
#>  [57] 0.2868863 0.2545129 0.2662583 0.2061908 0.2272771 0.1880253 0.2036795
#>  [64] 0.2259326 0.2396712 0.1560981 0.2029403 0.2575136 0.2447248 0.2600542
#>  [71] 0.1503401 0.1612022 0.2184497 0.2333725 0.2235703 0.2745752 0.1902804
#>  [78] 0.2021373 0.1704586 0.2658361 0.2470988 0.2298406 0.2281244 0.2116103
#>  [85] 0.2407505 0.2564699 0.2642025 0.2530184 0.2964650 0.1884810 0.1804507
#>  [92] 0.2371928 0.2304418 0.2121007 0.2515888 0.2200955 0.1956262 0.2275631
#>  [99] 0.2210517 0.2139585
#> 
#> $state
#>   [1] 0.17605019 0.10263418 0.10580724 0.13545364 0.14482887 0.13800919
#>   [7] 0.17355460 0.08628623 0.17066872 0.14583832 0.16249959 0.20375155
#>  [13] 0.18365678 0.13735974 0.11535767 0.17160635 0.16365889 0.18999839
#>  [19] 0.16342425 0.17257228 0.16156030 0.15115874 0.15180402 0.17367579
#>  [25] 0.09177282 0.18924085 0.20799994 0.13745090 0.18211136 0.09588723
#>  [31] 0.11718993 0.14892238 0.22422619 0.13182738 0.15381415 0.17530606
#>  [37] 0.14920495 0.12388629 0.15416240 0.24336614 0.20041741 0.08053604
#>  [43] 0.20827089 0.14264055 0.09731327 0.14357953 0.18287715 0.16933439
#>  [49] 0.15418602 0.07828137 0.17981013 0.17819720 0.19682582 0.15552595
#>  [55] 0.15226781 0.15547727 0.24004102 0.20505126 0.22142930 0.14618668
#>  [61] 0.15626259 0.12546194 0.14349652 0.16704033 0.18849389 0.08944449
#>  [67] 0.12046083 0.22172548 0.19268544 0.20941069 0.07355600 0.11754425
#>  [73] 0.15150645 0.17893636 0.16290501 0.22485436 0.12711429 0.15046677
#>  [79] 0.11693493 0.22099586 0.18770485 0.17481347 0.16442692 0.14398650
#>  [85] 0.17886823 0.20548550 0.20694618 0.20829883 0.24947301 0.11531789
#>  [91] 0.10101353 0.18807278 0.18736563 0.14776186 0.19111258 0.16002263
#>  [97] 0.11816607 0.17083967 0.16663188 0.15840369
#> 
#> $det
#>   [1] 0.06762062 0.07872586 0.08037562 0.06143486 0.06447340 0.06851572
#>   [7] 0.05269027 0.07427036 0.06493549 0.06311229 0.06887738 0.05322905
#>  [13] 0.06397480 0.07070302 0.07306933 0.07422198 0.07171414 0.05107554
#>  [19] 0.04527614 0.06272035 0.05668959 0.06837161 0.06792069 0.05625875
#>  [25] 0.07243638 0.06196911 0.04574332 0.04920663 0.05998069 0.06577362
#>  [31] 0.06785781 0.05517070 0.04184849 0.04179915 0.05752846 0.05922575
#>  [37] 0.05852047 0.07015146 0.06251909 0.03951300 0.05862791 0.05752848
#>  [43] 0.04120654 0.06684066 0.06231634 0.06892656 0.05781542 0.06127982
#>  [49] 0.06965496 0.06419698 0.06239527 0.06174742 0.04648460 0.05286642
#>  [55] 0.06412072 0.05889858 0.04684531 0.04946166 0.04482896 0.06000413
#>  [61] 0.07101450 0.06256336 0.06018296 0.05889223 0.05117732 0.06665366
#>  [67] 0.08247942 0.03578808 0.05203937 0.05064353 0.07678410 0.04365799
#>  [73] 0.06694323 0.05443615 0.06066532 0.04972085 0.06316610 0.05167058
#>  [79] 0.05352365 0.04484027 0.05939398 0.05502711 0.06369745 0.06762376
#>  [85] 0.06188222 0.05098439 0.05725632 0.04471958 0.04699198 0.07316309
#>  [91] 0.07943715 0.04912006 0.04307613 0.06433879 0.06047627 0.06007289
#>  [97] 0.07746012 0.05672347 0.05441978 0.05555479

Created on 2021-11-11 by the reprex package (v2.0.1)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions