Skip to content

implementing GPU support to the codebase #5

@shivendrra

Description

@shivendrra

To-Do's:

  • Create a GpuArray class mirroring Array

  • Integrate with GPU backends:

    • CUDA (for NVIDIA cards)
    • OpenCL / ROCm (for AMD)
    • (Optional later) Metal for Apple M-series
  • GPU memory management abstraction

  • Port CPU ops to GPU kernels:

    • Elementwise ops
    • Reductions (sum, mean, etc.)
    • Matrix multiplication & dot products
  • Auto-select backend (CPU vs GPU) or allow manual selection

  • Async GPU execution (streams, queues)

  • GPU-CUDA kernel loader system

  • Performance benchmarking against CuPy / PyTorch / NumPy

  • GPU unit test framework

  • GPU error handling and safe fallbacks

  • Support for hybrid ops (GPU-to-CPU and vice versa)

Metadata

Metadata

Assignees

Labels

enhancementNew feature or requestfeatureslists new features required

Projects

Status

Todo

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions