diff --git a/lambench/metrics/results/README.md b/lambench/metrics/results/README.md index 19b3b3f..72c791f 100644 --- a/lambench/metrics/results/README.md +++ b/lambench/metrics/results/README.md @@ -19,7 +19,7 @@ Large atomistic models (LAM), also known as machine learning interatomic potenti The following changes have been made compared to the previouly release version v0.3.1: - Added new models: MACE-MH-1, DPA-3.2-5M - Updated `Force Field Prediction` tasks, and for the domain of `Molecules`, two sets of labels were provided to support OMol25-trained models. -- Added new `Property Calculation` tasks: oxygen vacancy formation energy prediction, protein-ligand binding energy prediction, reaction energy barrier prediction, and volume prediction from materials under pressure. +- Added new `Property Calculation` tasks: oxygen vacancy formation energy prediction, protein-ligand binding energy prediction, reaction energy barrier prediction, stacking fault energy prediction, and volume prediction from materials under pressure. ⚠️ Note: To assess full LAM capacity, we use OMat24-trained task heads for *Force Field Prediction* in Inorganic Materials and Catalysis, and OMol25-trained task heads for Molecules, when available. As for *Property Calculation*, we follow a similar approach, but use OC20-trained task heads for Catalysis when available, as this tends to yield better performance. diff --git a/lambench/tasks/calculator/stacking_fault/stacking_fault.py b/lambench/tasks/calculator/stacking_fault/stacking_fault.py index 322181e..9ae1fff 100644 --- a/lambench/tasks/calculator/stacking_fault/stacking_fault.py +++ b/lambench/tasks/calculator/stacking_fault/stacking_fault.py @@ -52,8 +52,8 @@ def calc_one_traj(traj, label, calc): def run_inference(model: ASEModel, test_data: Path) -> dict: calc = model.calc - traj_files = sorted(list(test_data.glob("*.traj"))) - label_files = sorted(list(test_data.glob("*.csv"))) + traj_files = sorted(list(test_data.rglob("*.traj"))) + label_files = sorted(list(test_data.rglob("*.csv"))) energy_maes = [] derivative_maes = [] @@ -68,5 +68,5 @@ def run_inference(model: ASEModel, test_data: Path) -> dict: return { "MAE_E": np.round(np.mean(energy_maes), 4), # mJ/m² - "MAE_dE": np.round(np.mean(derivative_maes), 4), # mJ/m²/unit displacement + "MAE_dE": np.round(np.mean(derivative_maes), 4), # 1/unit displacement }