Skip to content

The predicted results are very different between using python and imagej ?  #1

@WeisongZhao

Description

@WeisongZhao

Hi, I have trained a network with keras, and exported it to a .h5 file. I used the code in this repo. to generate the .pb model, and try to predict images using imagej with your plug-in. It appears that the python results and imagej predicted results are very different. Can you tell me what the potential mistake is ? Many thanks !

path2network='./model.h5'
K.set_learning_phase(0)
model = keras.models.load_model(path2network)
print(model.summary())
OUTPUT_DIR = "./tf_model"
builder = tf.saved_model.builder.SavedModelBuilder(OUTPUT_DIR)
signature = tf.saved_model.signature_def_utils.predict_signature_def(
            inputs  = {'input':  model.input},
            outputs = {'output': model.output})
signature_def_map = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }
builder.add_meta_graph_and_variables(K.get_session(), [tf.saved_model.tag_constants.SERVING],
                                             signature_def_map=signature_def_map)
builder.save()
start preprocessing 
end preprocessing 0.02025772
Extract Patch 0.172213ms
Build Tensor 7.995988ms
Session feed 0.026279999999999998ms
Session fetch0 0.031226999999999998ms
Session run 154.684742ms
Convert output 4.818864ms
Create ImageJ object 14.75155ms

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions