From 674345949cc897eaf0c8e0aa634ef855fef7efd3 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 29 Aug 2020 02:03:44 -0500 Subject: [PATCH 001/104] add vanilia cpp binds --- .../cpp_connections/vanilia/tutorial/setup.py | 10 ++++ .../vanilia/tutorial/spammodule.c | 48 +++++++++++++++++++ .../vanilia/tutorial/test_spam.py | 6 +++ 3 files changed, 64 insertions(+) create mode 100644 scratchpad/cpp_connections/vanilia/tutorial/setup.py create mode 100644 scratchpad/cpp_connections/vanilia/tutorial/spammodule.c create mode 100644 scratchpad/cpp_connections/vanilia/tutorial/test_spam.py diff --git a/scratchpad/cpp_connections/vanilia/tutorial/setup.py b/scratchpad/cpp_connections/vanilia/tutorial/setup.py new file mode 100644 index 00000000..84452d31 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/tutorial/setup.py @@ -0,0 +1,10 @@ +from setuptools import setup, Extension # use setuptools instead of distutils from tutorial + +module = Extension('spam', sources=['spammodule.c']) + +setup( + name='spam', + version='0.0.0', + description='Binding python to cpp', + ext_modules=[module] +) diff --git a/scratchpad/cpp_connections/vanilia/tutorial/spammodule.c b/scratchpad/cpp_connections/vanilia/tutorial/spammodule.c new file mode 100644 index 00000000..01ea3379 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/tutorial/spammodule.c @@ -0,0 +1,48 @@ +//-- Pull the Python API +#define PY_SSIZE_T_CLEAN // What this does? https://docs.python.org/3/extending/extending.html#parsetuple +#include +//-- + +// The self argument points to the module object for module-level functions +static PyObject * +spam_system(PyObject *self, PyObject *args) { + const char * command; + int sts; + + // int PyArg_ParseTuple(PyObject *args, const char *format, ...) + if (!PyArg_ParseTuple(args, "s", &command)) + return NULL; + // Python.h above includes stdlib.h and other libraries + sts = system(command); + // Will return an integer object. (Yes, even integers are objects on the heap in Python!) + return PyLong_FromLong(sts); +} + +// "Method table" +static PyMethodDef SpamMethods[] = { + {"system", spam_system, METH_VARARGS, "Execute a shell command."}, + {NULL, NULL, 0, NULL} /* Sentinel */ +}; + +// Module definition struct +static struct PyModuleDef spammodule = { + PyModuleDef_HEAD_INIT, + "spam", /* name of module */ + NULL, /* module documentation, may be NULL */ + -1, /* size of per-interpreter state of the module, + or -1 if the module keeps state in global variables. */ + SpamMethods +}; + +/* + PyMODINIT_FUNC declares the function as PyObject * return type, + declares any special linkage declarations required by the platform, and for + C++ declares the function as extern "C". PyMODINIT_FUNC +*/ +PyMODINIT_FUNC +PyInit_spam(void) +{ + // Called on import + // Returns a pointer to module, which is insected into `sys.modules` + return PyModule_Create(&spammodule); +} diff --git a/scratchpad/cpp_connections/vanilia/tutorial/test_spam.py b/scratchpad/cpp_connections/vanilia/tutorial/test_spam.py new file mode 100644 index 00000000..1dc80a17 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/tutorial/test_spam.py @@ -0,0 +1,6 @@ +import spam +""" +-a all except session-leaders and non-terminal +-l long format +""" +spam.system('ps -al') From 124822f82979c97c871852a8b6d3b2a231a607bc Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 30 Aug 2020 23:38:05 -0500 Subject: [PATCH 002/104] add numpy vanilia integration --- scratchpad/cpp_connections/vanilia/README.md | 4 + .../cpp_connections/vanilia/nparray/README.md | 1 + .../cpp_connections/vanilia/nparray/setup.py | 14 ++ .../vanilia/nparray/tcontract.cpp | 160 ++++++++++++++++++ .../cpp_connections/vanilia/nparray/test.py | 14 ++ 5 files changed, 193 insertions(+) create mode 100644 scratchpad/cpp_connections/vanilia/README.md create mode 100644 scratchpad/cpp_connections/vanilia/nparray/README.md create mode 100644 scratchpad/cpp_connections/vanilia/nparray/setup.py create mode 100644 scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp create mode 100644 scratchpad/cpp_connections/vanilia/nparray/test.py diff --git a/scratchpad/cpp_connections/vanilia/README.md b/scratchpad/cpp_connections/vanilia/README.md new file mode 100644 index 00000000..912b5764 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/README.md @@ -0,0 +1,4 @@ +https://scipy.github.io/old-wiki/pages/C%2B%2B_Extensions_that_use_NumPy_arrays.html + +## Tutorial +https://docs.python.org/3/extending/extending.html diff --git a/scratchpad/cpp_connections/vanilia/nparray/README.md b/scratchpad/cpp_connections/vanilia/nparray/README.md new file mode 100644 index 00000000..e36f52c7 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/README.md @@ -0,0 +1 @@ +https://stackoverflow.com/a/52958940 diff --git a/scratchpad/cpp_connections/vanilia/nparray/setup.py b/scratchpad/cpp_connections/vanilia/nparray/setup.py new file mode 100644 index 00000000..f66191dc --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/setup.py @@ -0,0 +1,14 @@ +from setuptools import setup, Extension # use setuptools instead of distutils from tutorial +import numpy as np + +module = Extension('tcontract' + , sources=['tcontract.cpp'] + , include_dirs=[np.get_include()] + ) + +setup( + name='tcontract', + version='0.0.0', + description='Contract two tensors', + ext_modules=[module] +) diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp new file mode 100644 index 00000000..ff2e7ddb --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -0,0 +1,160 @@ +#include "Python.h" +#include +#include "numpy/arrayobject.h" +#include + +static PyObject * integrate3(PyObject * module, PyObject * args) +{ + PyObject * argy=NULL; // Regular Python/C API + PyArrayObject * yarr=NULL; // Extended Numpy/C API + double dx,dy,dz; + + std::cout << "in func" < read argument as a PyObject type into argy (Python/C API) + if (!PyArg_ParseTuple(args, "Oddd", &argy,&dx,&dy,&dz)) + { + PyErr_SetString(PyExc_ValueError, "Error parsing arguments."); + return NULL; + } + + std::cout << "parsed" << std::endl; + // Determine if it's a complex number array (Numpy/C API) + int DTYPE = PyArray_ObjectType(argy, NPY_FLOAT); + int iscomplex = PyTypeNum_ISCOMPLEX(DTYPE); + std::cout << "Is complex" << iscomplex << std::endl; + + // parse python object into numpy array (Numpy/C API) + yarr = (PyArrayObject *)PyArray_FROM_OTF(argy, DTYPE, NPY_ARRAY_IN_ARRAY); + if (yarr==NULL) { + Py_INCREF(Py_None); + return Py_None; + } + + //just assume this for 3 dimensional array...you can generalize to N dims + if (PyArray_NDIM(yarr) != 3) { + Py_CLEAR(yarr); + PyErr_SetString(PyExc_ValueError, "Expected 3 dimensional integrand"); + return NULL; + } + + npy_intp * dims = PyArray_DIMS(yarr); + npy_intp i,j,k,m; + double * p; + + //initialize variable to hold result + Py_complex result = {.real = 0, .imag = 0}; + std::cout << "Is complex" << iscomplex << std::endl; + + if (iscomplex) { + for (i=0;i= 0x0000000c + oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY2); +#else + oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY); +#endif + if (oarr == NULL) goto fail; + + + std::cout << "arr1" << std::endl; + dptr = (double *)PyArray_DATA(arr1); + std::cout << "arrval = " << *dptr << std::endl; + std::cout << "arrval = " << *(dptr+1) << std::endl; + std::cout << "arrval = " << *(dptr+2) << std::endl; + std::cout << "arrval = " << *dptr+3 << std::endl; + std::cout << "arrval = " << *dptr+4 << std::endl; + + + /* code that makes use of arguments */ + /* You will probably need at least + nd = PyArray_NDIM(<..>) -- number of dimensions + dims = PyArray_DIMS(<..>) -- npy_intp array of length nd + showing length in each dim. + dptr = (double *)PyArray_DATA(<..>) -- pointer to data. + + If an error occurs goto fail. + */ + + Py_DECREF(arr1); + Py_DECREF(arr2); + Py_DECREF(oarr); + Py_INCREF(Py_None); + return Py_None; + + fail: + Py_XDECREF(arr1); + Py_XDECREF(arr2); + Py_XDECREF(oarr); + return NULL; +} + +static PyMethodDef tcontract_Methods[] = { + {"integrate3", integrate3, METH_VARARGS, + "Pass 3D numpy array (double or complex) and dx,dy,dz step size. Returns Reimman integral"}, + {"example", example_wrapper, METH_VARARGS, + "Example from https://numpy.org/doc/stable/user/c-info.how-to-extend.html"}, + {NULL, NULL, 0, NULL} /* Sentinel */ +}; + + +static struct PyModuleDef module = { + PyModuleDef_HEAD_INIT, + "tcontract", /* name of module */ + NULL, /* module documentation, may be NULL */ + -1, /* size of per-interpreter state of the module, + or -1 if the module keeps state in global variables. */ + tcontract_Methods +}; + +PyMODINIT_FUNC +PyInit_tcontract(void) +{ + // Called on import + // Returns a pointer to module, which is insected into `sys.modules` + import_array(); // needed for numpy to work + return PyModule_Create(&module); +} diff --git a/scratchpad/cpp_connections/vanilia/nparray/test.py b/scratchpad/cpp_connections/vanilia/nparray/test.py new file mode 100644 index 00000000..6c3d7e90 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/test.py @@ -0,0 +1,14 @@ +import tcontract +import numpy as np + +arr = np.random.randn(2) +arr = np.array(arr, dtype=np.double) +an = tcontract.example(arr, arr, arr) +print(arr) + +arr = np.random.randn(4,8,16) + 1j*np.random.randn(4,8,16) +print(np.sum(arr)) + +# arbitrary step size dx = 1., y=0.5, dz = 0.25 +ans = tcontract.integrate3(arr, 1.0, 1.0, 1.0) +print(ans) From c4c9208b043c4b1291af1b4db2069c141fbf69a2 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Mon, 31 Aug 2020 00:34:53 -0500 Subject: [PATCH 003/104] add print_4 --- .../vanilia/nparray/tcontract.cpp | 34 +++++++++++++++++++ .../cpp_connections/vanilia/nparray/test.py | 34 ++++++++++++++++--- 2 files changed, 64 insertions(+), 4 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index ff2e7ddb..8b0e3ef9 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -3,6 +3,36 @@ #include "numpy/arrayobject.h" #include +static PyObject * +print_4(PyObject *dummy, PyObject *args) +{ + PyObject *arg=NULL; + PyObject *arr=NULL; + double *dptr; + + if (!PyArg_ParseTuple(args, "O", &arg)) return NULL; + + std::cout << "before convert" << std::endl; + arr = PyArray_FROM_OTF(arg, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); + if (arr == NULL) return NULL; + std::cout << "after convert" << std::endl; + + + dptr = (double *)PyArray_DATA(arr); + std::cout << "arr[0] = " << *dptr << std::endl; + std::cout << "arr[1] = " << *(dptr+1) << std::endl; + std::cout << "arr[2] = " << *(dptr+2) << std::endl; + std::cout << "arr[3] = " << *(dptr+3) << std::endl; + + + Py_DECREF(arr); + Py_INCREF(Py_None); + return Py_None; + +} + +// -- Examples + static PyObject * integrate3(PyObject * module, PyObject * args) { PyObject * argy=NULL; // Regular Python/C API @@ -132,11 +162,15 @@ example_wrapper(PyObject *dummy, PyObject *args) return NULL; } +// -- + static PyMethodDef tcontract_Methods[] = { {"integrate3", integrate3, METH_VARARGS, "Pass 3D numpy array (double or complex) and dx,dy,dz step size. Returns Reimman integral"}, {"example", example_wrapper, METH_VARARGS, "Example from https://numpy.org/doc/stable/user/c-info.how-to-extend.html"}, + {"print_4", print_4, METH_VARARGS, + "Prints first 4 values of numpy array"}, {NULL, NULL, 0, NULL} /* Sentinel */ }; diff --git a/scratchpad/cpp_connections/vanilia/nparray/test.py b/scratchpad/cpp_connections/vanilia/nparray/test.py index 6c3d7e90..d4b1d67a 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/test.py +++ b/scratchpad/cpp_connections/vanilia/nparray/test.py @@ -1,10 +1,36 @@ import tcontract +import sys import numpy as np -arr = np.random.randn(2) -arr = np.array(arr, dtype=np.double) -an = tcontract.example(arr, arr, arr) -print(arr) +def test(func): + def wraped(): + print('Testing', func.__name__) + func() + return wraped + +@test +def test_transpose(): + arr = np.array([[0,1],[2,3]]) + arr = np.array(arr, dtype=np.double) + print('in python:\n', arr) + _ = tcontract.print_4(arr) + + arr = arr.T + print('in python:\n', arr) + _ = tcontract.print_4(arr) + +test_transpose() + +@test +def test_transpose_large(): + N = 25 + arr = np.random.randn(*[2]*N) + tcontract.print_4(arr) + print('transposed') + arr = arr.transpose(*reversed(range(N))) + tcontract.print_4(arr) + +test_transpose_large() arr = np.random.randn(4,8,16) + 1j*np.random.randn(4,8,16) print(np.sum(arr)) From c30681288c5d25e5d501429c409f92e3162183e5 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Mon, 31 Aug 2020 02:37:55 -0500 Subject: [PATCH 004/104] add profiling for transposition of tensors --- .../cpp_connections/vanilia/nparray/setup.py | 1 + .../vanilia/nparray/tcontract.cpp | 9 ++++-- .../vanilia/nparray/transposes.py | 28 +++++++++++++++++++ 3 files changed, 36 insertions(+), 2 deletions(-) create mode 100644 scratchpad/cpp_connections/vanilia/nparray/transposes.py diff --git a/scratchpad/cpp_connections/vanilia/nparray/setup.py b/scratchpad/cpp_connections/vanilia/nparray/setup.py index f66191dc..f34a1e2a 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/setup.py +++ b/scratchpad/cpp_connections/vanilia/nparray/setup.py @@ -4,6 +4,7 @@ module = Extension('tcontract' , sources=['tcontract.cpp'] , include_dirs=[np.get_include()] + , extra_compile_args=['-g'] ) setup( diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 8b0e3ef9..30843642 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -2,6 +2,8 @@ #include #include "numpy/arrayobject.h" #include +#include +using namespace std::chrono; static PyObject * print_4(PyObject *dummy, PyObject *args) @@ -12,10 +14,13 @@ print_4(PyObject *dummy, PyObject *args) if (!PyArg_ParseTuple(args, "O", &arg)) return NULL; - std::cout << "before convert" << std::endl; + std::cout << "before arg convert..." << std::endl; + auto epoch = high_resolution_clock::now(); arr = PyArray_FROM_OTF(arg, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); if (arr == NULL) return NULL; - std::cout << "after convert" << std::endl; + auto now = high_resolution_clock::now(); + auto millis = duration_cast(now - epoch).count(); + std::cout << "after convert. duration (μs) = " << millis << std::endl; dptr = (double *)PyArray_DATA(arr); diff --git a/scratchpad/cpp_connections/vanilia/nparray/transposes.py b/scratchpad/cpp_connections/vanilia/nparray/transposes.py new file mode 100644 index 00000000..7c4af82a --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/transposes.py @@ -0,0 +1,28 @@ +import tcontract +import sys +import numpy as np + +def large_transpose(): + try: + N = int(sys.argv[1]) + except LookupError: + N = 24 + arr = np.random.randn(*[2]*N) + size = sys.getsizeof(arr) + print('Array size = {C_size:e} bytes'.format(C_size=size)) + tcontract.print_4(arr) + print('\n== transposed: reverse (worst case) ==') + arr = arr.transpose(*reversed(range(N))) + tcontract.print_4(arr) + + arr = np.random.randn(*[2]*N) + print('\n== transposed: start (good cache efficiency) ==') + arr = arr.swapaxes(1,0) + tcontract.print_4(arr) + + arr = np.random.randn(*[2]*N) + print('\n== transposed: end (low cache efficiency) ==') + arr = arr.swapaxes(N-1,N-2) + tcontract.print_4(arr) + +large_transpose() From 635502be69623ffdb3c53788c8465b255b0eb088 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Mon, 31 Aug 2020 02:40:59 -0500 Subject: [PATCH 005/104] print numel in transposition bench --- scratchpad/cpp_connections/vanilia/nparray/transposes.py | 1 + 1 file changed, 1 insertion(+) diff --git a/scratchpad/cpp_connections/vanilia/nparray/transposes.py b/scratchpad/cpp_connections/vanilia/nparray/transposes.py index 7c4af82a..3974d544 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/transposes.py +++ b/scratchpad/cpp_connections/vanilia/nparray/transposes.py @@ -7,6 +7,7 @@ def large_transpose(): N = int(sys.argv[1]) except LookupError: N = 24 + print('Numel = ', 2**N) arr = np.random.randn(*[2]*N) size = sys.getsizeof(arr) print('Array size = {C_size:e} bytes'.format(C_size=size)) From 23f06ba743f0f0d5a42282d851d6bfd351e65081 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Mon, 31 Aug 2020 02:57:03 -0500 Subject: [PATCH 006/104] add cli for easy profiling --- scratchpad/cpp_connections/vanilia/nparray/cli-command.sh | 1 + 1 file changed, 1 insertion(+) create mode 100644 scratchpad/cpp_connections/vanilia/nparray/cli-command.sh diff --git a/scratchpad/cpp_connections/vanilia/nparray/cli-command.sh b/scratchpad/cpp_connections/vanilia/nparray/cli-command.sh new file mode 100644 index 00000000..38580ae3 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/cli-command.sh @@ -0,0 +1 @@ +seq 23 25 | xargs -L1 python transposes.py | grep duration --line-buffered | cut -d'=' -f2 From b2bbe6e022bc3de3fc1c63a3aec6f396c8675cf6 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 2 Sep 2020 15:39:35 -0500 Subject: [PATCH 007/104] Update README.md --- scratchpad/cpp_connections/vanilia/README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/README.md b/scratchpad/cpp_connections/vanilia/README.md index 912b5764..1c7e9761 100644 --- a/scratchpad/cpp_connections/vanilia/README.md +++ b/scratchpad/cpp_connections/vanilia/README.md @@ -1,4 +1,6 @@ -https://scipy.github.io/old-wiki/pages/C%2B%2B_Extensions_that_use_NumPy_arrays.html ## Tutorial -https://docs.python.org/3/extending/extending.html + +- Python C++ API https://docs.python.org/3/extending/extending.html + +- Using C++ API to extend Numpy https://numpy.org/doc/1.19/user/c-info.how-to-extend.html From 4a8b0489b428a640c3b6d1bd6743455a12b781c0 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 2 Sep 2020 21:18:55 -0500 Subject: [PATCH 008/104] add contraction subroutine with cpp --- .../vanilia/nparray/contract.py | 23 ++++++ .../vanilia/nparray/tcontract.cpp | 76 +++++++++++++++++++ 2 files changed, 99 insertions(+) create mode 100644 scratchpad/cpp_connections/vanilia/nparray/contract.py diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py new file mode 100644 index 00000000..78dbfe26 --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -0,0 +1,23 @@ +import tcontract +import sys +import numpy as np + +def contract(): + try: + N = int(sys.argv[1]) + except LookupError: + N = 24 + + n, m, k = 2, 3, 3 + A, B = np.random.randn(n, m), np.random.randn(n, k) + C = np.empty((n, m, k)) + size = sys.getsizeof(C) + print('Result size = {C_size:e} bytes'.format(C_size=size)) + tcontract.triple_loop_contract(A, B, C) + + print(C) + C_einsum =np.einsum('ij,ik -> ijk', A, B) + print(C_einsum) + assert np.array_equal(C_einsum, C) + +contract() diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 30843642..15a426b0 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -5,6 +5,80 @@ #include using namespace std::chrono; +static PyObject * +triple_loop_contract(PyObject *dummy, PyObject *args) +{ + PyObject *argA=NULL, *argB, *argC; + PyObject *A=NULL, *B, *C; + double *Aptr, *Bptr, *Cptr; + + std::cout << "before arg convert..." << std::endl; + auto epoch = high_resolution_clock::now(); + int nd; + npy_intp * dimC; + + if (!PyArg_ParseTuple(args, "OOO!", &argA, &argB, + &PyArray_Type, &argC)) return NULL; + + A = PyArray_FROM_OTF(argA, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); + if (A == NULL) return NULL; + B = PyArray_FROM_OTF(argB, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); + if (B == NULL) goto fail; +#if NPY_API_VERSION >= 0x0000000c + C = PyArray_FROM_OTF(argC, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY2); +#else + C = PyArray_FROM_OTF(argC, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY); +#endif + if (C == NULL) goto fail; + + + + //auto now = high_resolution_clock::now(); + //auto millis = duration_cast(now - epoch).count(); + //std::cout << "after convert. duration (μs) = " << millis << std::endl; + + nd = PyArray_NDIM(C); + if (nd!=3) goto fail; + dimC = PyArray_DIMS(C); + Aptr = (double *)PyArray_DATA(A); + Bptr = (double *)PyArray_DATA(B); + Cptr = (double *)PyArray_DATA(C); + for (int i=0; i) -- number of dimensions + dims = PyArray_DIMS(<..>) -- npy_intp array of length nd + showing length in each dim. + dptr = (double *)PyArray_DATA(<..>) -- pointer to data. + + If an error occurs goto fail. + */ + + Py_DECREF(A); + Py_DECREF(B); + Py_DECREF(C); + Py_INCREF(Py_None); + return Py_None; + + fail: + Py_XDECREF(A); + Py_XDECREF(B); + Py_XDECREF(C); + return NULL; + +} + static PyObject * print_4(PyObject *dummy, PyObject *args) { @@ -176,6 +250,8 @@ static PyMethodDef tcontract_Methods[] = { "Example from https://numpy.org/doc/stable/user/c-info.how-to-extend.html"}, {"print_4", print_4, METH_VARARGS, "Prints first 4 values of numpy array"}, + {"triple_loop_contract", triple_loop_contract, METH_VARARGS, + "Contracts two arrays with first common index"}, {NULL, NULL, 0, NULL} /* Sentinel */ }; From fadf9846a0b5cb724f2fadb5726f25df11cc4b88 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 2 Sep 2020 21:28:05 -0500 Subject: [PATCH 009/104] minor usage improvements for cpp contract --- .../cpp_connections/vanilia/nparray/contract.py | 13 +++++++++---- .../cpp_connections/vanilia/nparray/tcontract.cpp | 3 +-- 2 files changed, 10 insertions(+), 6 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index 78dbfe26..af04fce9 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -1,23 +1,28 @@ import tcontract import sys import numpy as np +import time def contract(): try: N = int(sys.argv[1]) except LookupError: - N = 24 + N = 0 - n, m, k = 2, 3, 3 + n, m, k = 2+N, 3+N, 4+N A, B = np.random.randn(n, m), np.random.randn(n, k) + C = np.empty((n, m, k)) size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) + + start = time.time() tcontract.triple_loop_contract(A, B, C) + print('cpp contract time', time.time() - start) - print(C) + start = time.time() C_einsum =np.einsum('ij,ik -> ijk', A, B) - print(C_einsum) + print('einsum contract time', time.time() - start) assert np.array_equal(C_einsum, C) contract() diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 15a426b0..000b9912 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -43,13 +43,12 @@ triple_loop_contract(PyObject *dummy, PyObject *args) Aptr = (double *)PyArray_DATA(A); Bptr = (double *)PyArray_DATA(B); Cptr = (double *)PyArray_DATA(C); + for (int i=0; i Date: Thu, 3 Sep 2020 00:00:54 -0500 Subject: [PATCH 010/104] better usage of scripts --- .../cpp_connections/vanilia/nparray/README.md | 6 ++++++ .../cpp_connections/vanilia/nparray/contract.py | 15 ++++++++++----- 2 files changed, 16 insertions(+), 5 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/README.md b/scratchpad/cpp_connections/vanilia/nparray/README.md index e36f52c7..2e2f91bb 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/README.md +++ b/scratchpad/cpp_connections/vanilia/nparray/README.md @@ -1 +1,7 @@ https://stackoverflow.com/a/52958940 + +## Running stats + +```bash + seq 10 100 700 | xargs -L1 python contract.py +``` diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index af04fce9..658d89c6 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -2,27 +2,32 @@ import sys import numpy as np import time +from pyrofiler import Profiler def contract(): try: N = int(sys.argv[1]) except LookupError: N = 0 + def stats_callback(elapsed_time, description, ops): + print(f'{description}: Elapsed time={round(elapsed_time,3)} FLOPS={ops/elapsed_time:e}') + prof = Profiler(callback=stats_callback) n, m, k = 2+N, 3+N, 4+N A, B = np.random.randn(n, m), np.random.randn(n, k) C = np.empty((n, m, k)) + Ops = C.size size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) start = time.time() - tcontract.triple_loop_contract(A, B, C) - print('cpp contract time', time.time() - start) + with prof.timing('Triple loop', ops=Ops): + tcontract.triple_loop_contract(A, B, C) + + with prof.timing('Einsum', ops=Ops): + C_einsum =np.einsum('ij,ik -> ijk', A, B) - start = time.time() - C_einsum =np.einsum('ij,ik -> ijk', A, B) - print('einsum contract time', time.time() - start) assert np.array_equal(C_einsum, C) contract() From fc2f78ef8d5a65e847d920c75d308d5c49e1d734 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Mon, 7 Sep 2020 07:35:10 -0500 Subject: [PATCH 011/104] opt_einsum for comparison --- qensor/tests/test_bucket_backends.py | 9 ++++----- scratchpad/cpp_connections/vanilia/nparray/contract.py | 6 ++++++ 2 files changed, 10 insertions(+), 5 deletions(-) diff --git a/qensor/tests/test_bucket_backends.py b/qensor/tests/test_bucket_backends.py index 4c144554..d9a675ec 100644 --- a/qensor/tests/test_bucket_backends.py +++ b/qensor/tests/test_bucket_backends.py @@ -10,7 +10,7 @@ def get_test_problem(): w = np.array([[0,1,1,0],[1,0,1,1],[1,1,0,1],[0,1,1,0]]) G = nx.from_numpy_matrix(w) - G = nx.random_regular_graph(5, 14) + G = nx.random_regular_graph(5, 28) gamma, beta = [np.pi/3], [np.pi/2] return G, gamma, beta @@ -18,15 +18,13 @@ def test_profiled(capsys): G, gamma, beta = get_test_problem() composer = QtreeQAOAComposer( - graph=G, gamma=[np.pi/3], beta=[np.pi/4]) + graph=G, gamma=[np.pi/3]*2, beta=[np.pi/4]*2) composer.ansatz_state() - print(composer.circuit) backend = PerfNumpyBackend() sim = QtreeSimulator(bucket_backend=backend) result = sim.simulate(composer.circuit) - print(result.data) print("Profile results") print(backend.gen_report()) @@ -34,4 +32,5 @@ def test_profiled(capsys): assert qtree_amp - +if __name__=='__main__': + test_profiled(None) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index 658d89c6..042711df 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -1,6 +1,9 @@ import tcontract import sys +import torch as t import numpy as np +from opt_einsum import contract as opt_einsum + import time from pyrofiler import Profiler @@ -28,6 +31,9 @@ def stats_callback(elapsed_time, description, ops): with prof.timing('Einsum', ops=Ops): C_einsum =np.einsum('ij,ik -> ijk', A, B) + with prof.timing('Opt Einsum', ops=Ops): + _ = opt_einsum('ij,ik -> ijk', t.Tensor(A), t.Tensor(B), backend='torch') + assert np.array_equal(C_einsum, C) contract() From f24f5eecb9a6b962ff3d8b13ad0004d5a2b7bbad Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Wed, 9 Sep 2020 19:45:32 +0000 Subject: [PATCH 012/104] Added corrected tcontract file --- .../vanilia/nparray/tcontract.cpp | 22 ++++++++++++++----- 1 file changed, 16 insertions(+), 6 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 000b9912..0a6c0ad0 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -3,6 +3,9 @@ #include "numpy/arrayobject.h" #include #include + +#include "mkl.h" + using namespace std::chrono; static PyObject * @@ -45,12 +48,19 @@ triple_loop_contract(PyObject *dummy, PyObject *args) Cptr = (double *)PyArray_DATA(C); for (int i=0; i Date: Wed, 9 Sep 2020 19:47:02 +0000 Subject: [PATCH 013/104] Added edits to bench.cpp --- bench/mklbench/bench.cpp | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/bench/mklbench/bench.cpp b/bench/mklbench/bench.cpp index 4b25de13..0e0342c8 100644 --- a/bench/mklbench/bench.cpp +++ b/bench/mklbench/bench.cpp @@ -147,14 +147,20 @@ int main(void) // transa transb M N K int i; - for (i = 4096; i >= 512; i -= 256) - run_size(no_trans, no_trans, i, i, i); + //run_size(no_trans, do_trans, 4096, 4096, 4096); + run_size(no_trans, do_trans, 4096, 1, 4096); + //run_size(no_trans, do_trans, 1000, 1000, 1000); + run_size(no_trans, do_trans, 1000, 1, 1000); + + + // for (i = 4096; i >= 512; i -= 256) + // run_size(no_trans, no_trans, i, i, i); - for (i = 512; i >= 64; i -= 32) - run_size(no_trans, no_trans, i, i, i); + //for (i = 512; i >= 64; i -= 32) + // run_size(no_trans, no_trans, i, i, i); - for (i = 64; i >= 16; i -= 1) - run_size(no_trans, no_trans, i, i, i); + //for (i = 64; i >= 16; i -= 1) + // run_size(no_trans, no_trans, i, i, i); return EXIT_SUCCESS; } From 987454d6fe465edaf7c27da0c1efa003058f0965 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Wed, 9 Sep 2020 19:48:32 +0000 Subject: [PATCH 014/104] Messing around with another tensornetwork benchmark --- bench/pybench/tn_bench.py | 8 +------- 1 file changed, 1 insertion(+), 7 deletions(-) diff --git a/bench/pybench/tn_bench.py b/bench/pybench/tn_bench.py index ff31d1a8..c8159222 100644 --- a/bench/pybench/tn_bench.py +++ b/bench/pybench/tn_bench.py @@ -29,12 +29,6 @@ def run(n, num_iter, num_batch): if __name__ == "__main__": tn.set_default_backend(sys.argv[1]) - for i in range(4096, 512 - 256, -256): + for i in range(4120, 4082 - 2, -2): run(i, 10, 1) - for i in range(512, 64 - 32, -32): - run(i, 50, 100) - - for i in range(64, 16 - 1, -1): - run(i, 50, 100) - From 74e1a1795a534fec509f7324d894f9bbc318bdd6 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 9 Sep 2020 20:57:42 -0500 Subject: [PATCH 015/104] rename mkl contracting method to mkl_contract, add compiler options to setup.py --- .../vanilia/nparray/contract.py | 4 +- .../cpp_connections/vanilia/nparray/setup.py | 27 +++++++- .../vanilia/nparray/tcontract.cpp | 69 ++++++++++++++++++- 3 files changed, 96 insertions(+), 4 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index 658d89c6..32928aec 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -21,10 +21,12 @@ def stats_callback(elapsed_time, description, ops): size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) - start = time.time() with prof.timing('Triple loop', ops=Ops): tcontract.triple_loop_contract(A, B, C) + with prof.timing('MKL', ops=Ops): + tcontract.mkl_contract(A, B, C) + with prof.timing('Einsum', ops=Ops): C_einsum =np.einsum('ij,ik -> ijk', A, B) diff --git a/scratchpad/cpp_connections/vanilia/nparray/setup.py b/scratchpad/cpp_connections/vanilia/nparray/setup.py index f34a1e2a..d9938555 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/setup.py +++ b/scratchpad/cpp_connections/vanilia/nparray/setup.py @@ -1,10 +1,34 @@ from setuptools import setup, Extension # use setuptools instead of distutils from tutorial import numpy as np +""" +Use this before: + +export LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_intel_thread.so:/usr/lib/libomp.so +""" + +extra_link_args = ['-I', '/opt/intel/mkl/include' + , '-L', '/opt/intel/mkl/lib/intel64/' + , '-Wl,--no-as-needed' + , '-lmkl_intel_lp64' + , '-lmkl_gnu_thread' + , '-lmkl_core' + , '-lpthread' + , '-lgomp' + , '-lm' + , '-ldl' + ] + +extra_compile_args = ['-I','/opt/intel/mkl/include' + ,'-m64' + ,'-fopenmp' + ] + module = Extension('tcontract' , sources=['tcontract.cpp'] , include_dirs=[np.get_include()] - , extra_compile_args=['-g'] + , extra_compile_args=extra_compile_args + , extra_link_args=extra_link_args ) setup( @@ -13,3 +37,4 @@ description='Contract two tensors', ext_modules=[module] ) + diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 0a6c0ad0..09a65c6a 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -9,7 +9,7 @@ using namespace std::chrono; static PyObject * -triple_loop_contract(PyObject *dummy, PyObject *args) +mkl_contract(PyObject *dummy, PyObject *args) { PyObject *argA=NULL, *argB, *argC; PyObject *A=NULL, *B, *C; @@ -55,8 +55,8 @@ triple_loop_contract(PyObject *dummy, PyObject *args) // } // } cblas_dgemm(CblasColMajor, - CblasNoTrans, CblasTrans, + CblasNoTrans, dimC[2], dimC[1], 1, 1.0, Bptr + i*dimC[2], dimC[2], Aptr + i*dimC[1], dimC[1], 0.0, @@ -74,6 +74,69 @@ triple_loop_contract(PyObject *dummy, PyObject *args) If an error occurs goto fail. */ + Py_DECREF(A); + Py_DECREF(B); + Py_DECREF(C); + Py_INCREF(Py_None); + return Py_None; + + fail: + Py_XDECREF(A); + Py_XDECREF(B); + Py_XDECREF(C); + return NULL; + +} +static PyObject * +triple_loop_contract(PyObject *dummy, PyObject *args) +{ + PyObject *argA=NULL, *argB, *argC; + PyObject *A=NULL, *B, *C; + double *Aptr, *Bptr, *Cptr; + + std::cout << "before arg convert..." << std::endl; + auto epoch = high_resolution_clock::now(); + int nd; + npy_intp * dimC; + + if (!PyArg_ParseTuple(args, "OOO!", &argA, &argB, + &PyArray_Type, &argC)) return NULL; + + A = PyArray_FROM_OTF(argA, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); + if (A == NULL) return NULL; + B = PyArray_FROM_OTF(argB, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); + if (B == NULL) goto fail; +#if NPY_API_VERSION >= 0x0000000c + C = PyArray_FROM_OTF(argC, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY2); +#else + C = PyArray_FROM_OTF(argC, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY); +#endif + if (C == NULL) goto fail; + + + + //auto now = high_resolution_clock::now(); + //auto millis = duration_cast(now - epoch).count(); + //std::cout << "after convert. duration (μs) = " << millis << std::endl; + + nd = PyArray_NDIM(C); + if (nd!=3) goto fail; + dimC = PyArray_DIMS(C); + Aptr = (double *)PyArray_DATA(A); + Bptr = (double *)PyArray_DATA(B); + Cptr = (double *)PyArray_DATA(C); + + for (int i=0; i Date: Wed, 9 Sep 2020 22:54:29 -0500 Subject: [PATCH 016/104] add more flexibiliy to feynman simulator, add profiling to cli --- qensor/FeynmanSimulator.py | 22 ++++++++++++++++++--- qensor/ProcessingFrameworks.py | 3 ++- qensor/cli.py | 33 ++++++++++++++++++++++++++------ qensor/optimisation/Optimizer.py | 3 ++- qensor/utils.py | 2 +- 5 files changed, 51 insertions(+), 12 deletions(-) diff --git a/qensor/FeynmanSimulator.py b/qensor/FeynmanSimulator.py index b7ddb895..2c2aa267 100644 --- a/qensor/FeynmanSimulator.py +++ b/qensor/FeynmanSimulator.py @@ -1,6 +1,7 @@ import qtree import numpy as np from multiprocessing import Pool +from multiprocessing.dummy import Pool as ThreadPool from tqdm import tqdm from qensor.ProcessingFrameworks import NumpyBackend @@ -26,10 +27,26 @@ class FeynmanSimulator(QtreeSimulator): optimizer = SlicesOptimizer opt_args = {} + def __init__(self, *args, + pool_type='process', n_processes=None + ,target_tw=None + , **kwargs): + super().__init__(*args, **kwargs) + if n_processes is None: + self.n_processes = 2 + else: + self.n_processes = n_processes + if pool_type == 'thread': + self.pool = ThreadPool + else: + self.pool = Pool + self.target_tw = target_tw def optimize_buckets(self, fixed_vars: list=None): opt_args = {'tw_bias': self.tw_bias} opt_args.update(self.opt_args) + if self.target_tw: + opt_args['target_tw'] = self.target_tw opt = self.optimizer(**opt_args) peo, par_vars, self.tn = opt.optimize(self.tn) self.parallel_vars = par_vars @@ -60,10 +77,9 @@ def simulate_batch_adaptive(self, qc, batch_vars=0, tw_bias=2): self._reorder_buckets() - n_processes = 2 - with Pool(n_processes) as p: + with self.pool(self.n_processes) as p: total_paths = 2**len(self.parallel_vars) - log.info('Starting to simulate {} paths using {} processes', total_paths, n_processes) + log.info('Starting to simulate {} paths using {} processes', total_paths, self.n_processes) args = range(total_paths) piter = p.imap(self._parallel_unit, args) r = list(tqdm(piter, total=total_paths)) diff --git a/qensor/ProcessingFrameworks.py b/qensor/ProcessingFrameworks.py index 2b14d1a4..9184c5e8 100644 --- a/qensor/ProcessingFrameworks.py +++ b/qensor/ProcessingFrameworks.py @@ -69,7 +69,7 @@ def gen_report(self): # -- report on totals for indices, time in data[:max_lines]: - self.report_table.record( + kwargs= dict( bucket_len = len(indices) , time = time , flop = self._perfect_bucket_flop(indices) @@ -78,6 +78,7 @@ def gen_report(self): , min_size = min([len(ixs) for ixs in indices]) , result_size = len(set.union(*[set(i) for i in indices])) - 1 ) + self.report_table.record( **kwargs) print(self.report_table.markdown()) diff --git a/qensor/cli.py b/qensor/cli.py index a86cf771..fd0d6788 100644 --- a/qensor/cli.py +++ b/qensor/cli.py @@ -13,20 +13,41 @@ from qensor.optimisation.TensorNet import QtreeTensorNet from qensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer from qensor import QtreeQAOAComposer +from qensor import PerfNumpyBackend @click.group() def cli(): pass @cli.command() -@click.argument('filename') -def sim_file(filename): - n_qubits, circuit = ops.read_circuit_file(filename) - sim = FeynmanSimulator() +@click.argument('filename', nargs=-1) +@click.option('-p','--num-processes', default=1) +@click.option('-P','--profile', default=False, is_flag=True) +@click.option('-t','--target-tw', default=25) +def sim_file(filename, profile=False, num_processes=1, target_tw=25): + if not filename: + stream = sys.stdin + else: + stream = open(filename[0],'r') + + n_qubits, circuit = ops.read_circuit_stream(stream) + kwargs = dict( + n_processes=num_processes + ,target_tw=target_tw + , pool_type='thread' + ) + if profile: + backend = PerfNumpyBackend(print=False) + kwargs['bucket_backend'] = backend + sim = FeynmanSimulator(**kwargs) circuit = sum(circuit, []) result = sim.simulate(circuit, batch_vars=4, tw_bias=0) print(result) + if profile: + print('Profiling results') + backend.gen_report() + @cli.command() @click.argument('filename') @click.option('-t', '--tamaki-time', default=15) @@ -96,7 +117,7 @@ def generate_qaoa_ansatz_circuit(seed, degree, nodes, p, graph_type): G = nx.algorithms.core.k_core(G, k=degree) else: raise Exception('Unsupported graph type') - gamma, beta = [0]*p, [0]*p + gamma, beta = [0.1]*p, [0.2]*p composer = QtreeQAOAComposer(G, beta=beta, gamma=gamma) composer.ansatz_state() txt = qtree.operators.circuit_to_text([composer.circuit], nodes) @@ -120,7 +141,7 @@ def generate_qaoa_energy_circuit(seed, degree, nodes, p, graph_type, edge_index) G = nx.algorithms.core.k_core(G, k=degree) else: raise Exception('Unsupported graph type') - gamma, beta = [0]*p, [0]*p + gamma, beta = [0.1]*p, [0.2]*p edge = list(G.edges())[edge_index] composer = QtreeQAOAComposer(G, beta=beta, gamma=gamma) composer.energy_expectation_lightcone(edge) diff --git a/qensor/optimisation/Optimizer.py b/qensor/optimisation/Optimizer.py index fc9fa39b..5c716864 100644 --- a/qensor/optimisation/Optimizer.py +++ b/qensor/optimisation/Optimizer.py @@ -74,8 +74,9 @@ def optimize(self, tensor_net): class SlicesOptimizer(OrderingOptimizer): - def __init__(self, tw_bias=2): + def __init__(self, tw_bias=2, target_tw=None): self.tw_bias = tw_bias + self.max_tw = target_tw def _get_max_tw(self): if hasattr(self, 'max_tw'): diff --git a/qensor/utils.py b/qensor/utils.py index 51087bea..c58ed754 100644 --- a/qensor/utils.py +++ b/qensor/utils.py @@ -131,7 +131,7 @@ def record(self, **kwargs): if set(self.columns) != set(kwargs.keys()): raise ValueError(f"columns doesn't match: {kwargs.keys()}, expect: {self.columns}") else: - self.columns = set(kwargs.keys()) + self.columns = list(kwargs.keys()) self.records += [[kwargs[key] for key in self.columns]] def _title_row(self): From 1ee12bcd88a00cd714320058b3f530ec978f6492 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 9 Sep 2020 22:56:19 -0500 Subject: [PATCH 017/104] update qtree --- qtree | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/qtree b/qtree index 7c9fbf1b..007c4da1 160000 --- a/qtree +++ b/qtree @@ -1 +1 @@ -Subproject commit 7c9fbf1b35585f8e23bc3cbe88d8b7b49f6c0ad2 +Subproject commit 007c4da1a49593a92651c84b7c5edc6afa18b3ef From 374ad9a312f19e012b94ddaf9faa2b16499f1ec8 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 9 Sep 2020 22:57:21 -0500 Subject: [PATCH 018/104] add minor explanation on performance benchmarks to readme --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index e09d10d3..5d688fd5 100644 --- a/README.md +++ b/README.md @@ -92,3 +92,10 @@ else: return res ``` + + +### Use cli to run benchmarks + +```bash +» python -m qensor.cli generate-qaoa-ansatz-circuit -p 3 -n 22 | python -m qensor.cli sim-file --profile +``` From 6ad7095778c160aac275458fa2066a54047b4084 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Thu, 10 Sep 2020 00:02:40 -0500 Subject: [PATCH 019/104] add C++ and MKL backend --- qensor/ProcessingFrameworks.py | 73 +++++++++++++++ qensor/Simulate.py | 15 +++- qensor/cli.py | 6 +- .../vanilia/nparray/contract.py | 8 +- .../vanilia/nparray/tcontract.cpp | 89 ++++++++++++++++++- 5 files changed, 184 insertions(+), 7 deletions(-) diff --git a/qensor/ProcessingFrameworks.py b/qensor/ProcessingFrameworks.py index 9184c5e8..7be9050a 100644 --- a/qensor/ProcessingFrameworks.py +++ b/qensor/ProcessingFrameworks.py @@ -1,6 +1,11 @@ from qtree import np_framework +from qtree import optimizer as opt + from pyrofiler import timing from qensor.utils import ReportTable +import numpy as np + +import tcontract class BucketBackend: def process_bucket(self, bucket, no_sum=False): @@ -17,6 +22,74 @@ def process_bucket(self, bucket, no_sum=False): def get_sliced_buckets(self, buckets, data_dict, slice_dict): return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) +class CMKLExtendedBackend(BucketBackend): + def get_sliced_buckets(self, buckets, data_dict, slice_dict): + return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) + + def process_bucket(self, bucket, no_sum=False): + result_indices = bucket[0].indices + result_data = bucket[0].data + + for tensor in bucket[1:]: + """ + next_result_indices = tuple(sorted( + set(result_indices + tensor.indices), + key=int) + ) + ixc = list(map(int, next_result_indices)) + idx_to_least_idx = {old_idx: new_idx for new_idx, old_idx + in enumerate(ixc)} + + ixa, ixb = list(map(int, result_indices)), list(map(int, tensor.indices)) + ixa, ixb = list(map(lambda x: idx_to_least_idx[x], ixa)), list(map(lambda x: idx_to_least_idx[x], ixb)) + print(len(ixa), len(ixb), len(ixc)) + #print(result_data.shape, len(ixb), len(ixc)) + ixc = list(map(lambda x: idx_to_least_idx[x], ixc)) + + result_data = np.einsum(result_data, ixa, tensor.data, ixb, ixc) + result_indices = next_result_indices + """ + ixa, ixb = result_indices, tensor.indices + common_ids = sorted(list(set.intersection(set(ixa), set(ixb))), key=int) + distinct_a = [x for x in sorted(ixa, key=int) if x not in common_ids] + distinct_b = [x for x in sorted(ixb, key=int) if x not in common_ids] + transp_a = [ixa.index(x) for x in common_ids+distinct_a] + transp_b = [ixb.index(x) for x in common_ids+distinct_b] + a = result_data.transpose(transp_a) + b = tensor.data.transpose(transp_b) + n, m, k = 2**len(common_ids), 2**len(distinct_a), 2**len(distinct_b) + a = a.reshape(n, m) + b = b.reshape(n, k) + + c = np.empty((n, m, k), dtype=np.complex128) + tcontract.mkl_contract_complex(a, b, c) + + # Merge and sort indices and shapes + result_indices = tuple(sorted( + set(result_indices + tensor.indices), + key=int) + ) + result_data = c.reshape([2 for _ in result_indices]) + + if len(result_indices) > 0: + if not no_sum: # trim first index + first_index, *result_indices = result_indices + else: + first_index, *_ = result_indices + tag = first_index.identity + else: + tag = 'f' + result_indices = [] + + # reduce + if no_sum: + result = opt.Tensor(f'E{tag}', result_indices, + data=result_data) + else: + result = opt.Tensor(f'E{tag}', result_indices, + data=np.sum(result_data, axis=0)) + return result + class PerfBackend(BucketBackend): Backend = BucketBackend diff --git a/qensor/Simulate.py b/qensor/Simulate.py index 7d564982..37a4e412 100644 --- a/qensor/Simulate.py +++ b/qensor/Simulate.py @@ -4,10 +4,21 @@ from qensor.optimisation.TensorNet import QtreeTensorNet from qensor.optimisation.Optimizer import OrderingOptimizer + + from loguru import logger as log from qensor import utils +def int_slice(value, vars_to_slice): + """ + Creates a slice dict with integers an values. + """ + dimensions = [var.size for var in vars_to_slice] + multiindex = qtree.utils.unravel_index(value, dimensions) + + return {idx: val for idx, val in zip(vars_to_slice, multiindex)} + class Simulator: def __init__(self): pass @@ -77,8 +88,8 @@ def _reorder_buckets(self): return perm_dict def _get_slice_dict(self, initial_state=0, target_state=0): - slice_dict = qtree.utils.slice_from_bits(initial_state, self.tn.ket_vars) - slice_dict.update(qtree.utils.slice_from_bits(target_state, self.tn.bra_vars)) + slice_dict = int_slice(initial_state, self.tn.ket_vars) + slice_dict.update(int_slice(target_state, self.tn.bra_vars)) slice_dict.update({var: slice(None) for var in self.tn.free_vars}) return slice_dict diff --git a/qensor/cli.py b/qensor/cli.py index fd0d6788..7ed49bf0 100644 --- a/qensor/cli.py +++ b/qensor/cli.py @@ -14,6 +14,7 @@ from qensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer from qensor import QtreeQAOAComposer from qensor import PerfNumpyBackend +from qensor.ProcessingFrameworks import CMKLExtendedBackend, PerfBackend @click.group() def cli(): @@ -37,7 +38,10 @@ def sim_file(filename, profile=False, num_processes=1, target_tw=25): , pool_type='thread' ) if profile: - backend = PerfNumpyBackend(print=False) + class PerfMKLBackend(PerfBackend): + Backend = CMKLExtendedBackend + backend = PerfMKLBackend(print=False) + #backend = PerfNumpyBackend(print=False) kwargs['bucket_backend'] = backend sim = FeynmanSimulator(**kwargs) circuit = sum(circuit, []) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index 32928aec..cde399af 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -21,15 +21,17 @@ def stats_callback(elapsed_time, description, ops): size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) + with prof.timing('Einsum', ops=Ops): + C_einsum =np.einsum('ij,ik -> ijk', A, B) + with prof.timing('Triple loop', ops=Ops): tcontract.triple_loop_contract(A, B, C) + assert np.array_equal(C_einsum, C) + with prof.timing('MKL', ops=Ops): tcontract.mkl_contract(A, B, C) - with prof.timing('Einsum', ops=Ops): - C_einsum =np.einsum('ij,ik -> ijk', A, B) - assert np.array_equal(C_einsum, C) contract() diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 09a65c6a..ff8cdf53 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -3,10 +3,95 @@ #include "numpy/arrayobject.h" #include #include +#include #include "mkl.h" using namespace std::chrono; +using namespace std; + +static PyObject * +mkl_contract_complex(PyObject *dummy, PyObject *args) +{ + PyObject *argA=NULL, *argB, *argC; + PyObject *A=NULL, *B, *C; + std::complex *Aptr, *Bptr, *Cptr; + std::complex alpha(1, 0); + std::complex beta(0, 0); + + std::cout << "before arg convert..." << std::endl; + auto epoch = high_resolution_clock::now(); + int nd; + npy_intp * dimC; + + if (!PyArg_ParseTuple(args, "OOO!", &argA, &argB, + &PyArray_Type, &argC)) return NULL; + + A = PyArray_FROM_OTF(argA, NPY_COMPLEX128, NPY_ARRAY_IN_ARRAY); + if (A == NULL) return NULL; + B = PyArray_FROM_OTF(argB, NPY_COMPLEX128, NPY_ARRAY_IN_ARRAY); + if (B == NULL) goto fail; +#if NPY_API_VERSION >= 0x0000000c + C = PyArray_FROM_OTF(argC, NPY_COMPLEX128, NPY_ARRAY_INOUT_ARRAY2); +#else + C = PyArray_FROM_OTF(argC, NPY_COMPLEX128, NPY_ARRAY_INOUT_ARRAY); +#endif + if (C == NULL) goto fail; + + + + //auto now = high_resolution_clock::now(); + //auto millis = duration_cast(now - epoch).count(); + //std::cout << "after convert. duration (μs) = " << millis << std::endl; + + nd = PyArray_NDIM(C); + if (nd!=3) goto fail; + dimC = PyArray_DIMS(C); + Aptr = (std::complex *)PyArray_DATA(A); + Bptr = (std::complex *)PyArray_DATA(B); + Cptr = (std::complex *)PyArray_DATA(C); + + + for (int i=0; i) -- number of dimensions + dims = PyArray_DIMS(<..>) -- npy_intp array of length nd + showing length in each dim. + dptr = (double *)PyArray_DATA(<..>) -- pointer to data. + + If an error occurs goto fail. + */ + + Py_DECREF(A); + Py_DECREF(B); + Py_DECREF(C); + Py_INCREF(Py_None); + return Py_None; + + fail: + Py_XDECREF(A); + Py_XDECREF(B); + Py_XDECREF(C); + return NULL; + +} static PyObject * mkl_contract(PyObject *dummy, PyObject *args) @@ -324,7 +409,9 @@ static PyMethodDef tcontract_Methods[] = { "Prints first 4 values of numpy array"}, {"triple_loop_contract", triple_loop_contract, METH_VARARGS, "Contracts two arrays with first common index"}, - {"mkl_contract", triple_loop_contract, METH_VARARGS, + {"mkl_contract", mkl_contract, METH_VARARGS, + "Contracts two arrays with first common index using MKL"}, + {"mkl_contract_complex", mkl_contract_complex, METH_VARARGS, "Contracts two arrays with first common index using MKL"}, {NULL, NULL, 0, NULL} /* Sentinel */ }; From dc34388dbb267d119bf1e028f92d6859e9b0a23b Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Thu, 10 Sep 2020 00:28:21 -0500 Subject: [PATCH 020/104] fix in cpp contract --- qensor/cli.py | 2 +- scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp | 6 +----- 2 files changed, 2 insertions(+), 6 deletions(-) diff --git a/qensor/cli.py b/qensor/cli.py index 7ed49bf0..68d3bb4c 100644 --- a/qensor/cli.py +++ b/qensor/cli.py @@ -41,7 +41,7 @@ def sim_file(filename, profile=False, num_processes=1, target_tw=25): class PerfMKLBackend(PerfBackend): Backend = CMKLExtendedBackend backend = PerfMKLBackend(print=False) - #backend = PerfNumpyBackend(print=False) + # backend = PerfNumpyBackend(print=False) kwargs['bucket_backend'] = backend sim = FeynmanSimulator(**kwargs) circuit = sum(circuit, []) diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index ff8cdf53..145ed9a2 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -19,7 +19,6 @@ mkl_contract_complex(PyObject *dummy, PyObject *args) std::complex alpha(1, 0); std::complex beta(0, 0); - std::cout << "before arg convert..." << std::endl; auto epoch = high_resolution_clock::now(); int nd; npy_intp * dimC; @@ -100,7 +99,6 @@ mkl_contract(PyObject *dummy, PyObject *args) PyObject *A=NULL, *B, *C; double *Aptr, *Bptr, *Cptr; - std::cout << "before arg convert..." << std::endl; auto epoch = high_resolution_clock::now(); int nd; npy_intp * dimC; @@ -140,8 +138,8 @@ mkl_contract(PyObject *dummy, PyObject *args) // } // } cblas_dgemm(CblasColMajor, - CblasTrans, CblasNoTrans, + CblasTrans, dimC[2], dimC[1], 1, 1.0, Bptr + i*dimC[2], dimC[2], Aptr + i*dimC[1], dimC[1], 0.0, @@ -179,7 +177,6 @@ triple_loop_contract(PyObject *dummy, PyObject *args) PyObject *A=NULL, *B, *C; double *Aptr, *Bptr, *Cptr; - std::cout << "before arg convert..." << std::endl; auto epoch = high_resolution_clock::now(); int nd; npy_intp * dimC; @@ -245,7 +242,6 @@ print_4(PyObject *dummy, PyObject *args) if (!PyArg_ParseTuple(args, "O", &arg)) return NULL; - std::cout << "before arg convert..." << std::endl; auto epoch = high_resolution_clock::now(); arr = PyArray_FROM_OTF(arg, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY); if (arr == NULL) return NULL; From bd9fe2a750195f9fd472efd4db1c9b226bd6a0c3 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Thu, 10 Sep 2020 00:33:28 -0500 Subject: [PATCH 021/104] correct slices back to non-int --- qensor/Simulate.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/qensor/Simulate.py b/qensor/Simulate.py index 37a4e412..2b953d8e 100644 --- a/qensor/Simulate.py +++ b/qensor/Simulate.py @@ -88,8 +88,10 @@ def _reorder_buckets(self): return perm_dict def _get_slice_dict(self, initial_state=0, target_state=0): - slice_dict = int_slice(initial_state, self.tn.ket_vars) - slice_dict.update(int_slice(target_state, self.tn.bra_vars)) + #slice_dict = int_slice(initial_state, self.tn.ket_vars) + #slice_dict.update(int_slice(target_state, self.tn.bra_vars)) + slice_dict = qtree.utils.slice_from_bits(initial_state, self.tn.ket_vars) + slice_dict.update(qtree.utils.slice_from_bits(target_state, self.tn.bra_vars)) slice_dict.update({var: slice(None) for var in self.tn.free_vars}) return slice_dict From db0d5199ab4d127d4b05ae472bc130a9fdc48485 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Thu, 10 Sep 2020 01:16:04 -0500 Subject: [PATCH 022/104] minor readme updates --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 5d688fd5..f335a5e7 100644 --- a/README.md +++ b/README.md @@ -97,5 +97,5 @@ return res ### Use cli to run benchmarks ```bash -» python -m qensor.cli generate-qaoa-ansatz-circuit -p 3 -n 22 | python -m qensor.cli sim-file --profile +» python -m qensor.cli generate-qaoa-ansatz-circuit -p 3 -n 24 | python -m qensor.cli sim-file --profile --target-tw 27 ``` From 331caeffef2362c66882d600611a34b83b407658 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Thu, 10 Sep 2020 17:15:03 +0000 Subject: [PATCH 023/104] Added script for jlse setup --- .../vanilia/nparray/jlse_setup.py | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 scratchpad/cpp_connections/vanilia/nparray/jlse_setup.py diff --git a/scratchpad/cpp_connections/vanilia/nparray/jlse_setup.py b/scratchpad/cpp_connections/vanilia/nparray/jlse_setup.py new file mode 100644 index 00000000..197527ac --- /dev/null +++ b/scratchpad/cpp_connections/vanilia/nparray/jlse_setup.py @@ -0,0 +1,18 @@ +from setuptools import setup, Extension # use setuptools instead of distutils from tutorial +import numpy as np + +extra_link_args = ['-I', '/soft/compilers/intel-2019/compilers_and_libraries/linux/mkl/include', '-l', 'mkl_intel_lp64', '-l', 'mkl_intel_thread', '-l', 'mkl_core', '-l', 'iomp5', '-l', 'pthread', '-l', 'm', '-l', 'dl', '-L', '/soft/compilers/intel-2019/compilers_and_libraries/linux/mkl/lib/intel64', '-L', '/soft/compilers/intel-2019/compilers_and_libraries/linux/mkl/../compiler/lib/intel64'] + +module = Extension('tcontract' + , sources=['tcontract.cpp'] + , include_dirs=[np.get_include(), '/soft/compilers/intel-2019/compilers_and_libraries/linux/mkl/include'] + , extra_link_args=extra_link_args + , extra_compile_args=extra_link_args + ) + +setup( + name='tcontract', + version='0.0.0', + description='Contract two tensors', + ext_modules=[module] +) From f49ce24704ca22abbb28672095d71a6fc2387f2b Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Mon, 14 Sep 2020 19:01:26 +0000 Subject: [PATCH 024/104] Added exatn backend --- qensor/ProcessingFrameworks.py | 36 ++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) diff --git a/qensor/ProcessingFrameworks.py b/qensor/ProcessingFrameworks.py index 2b14d1a4..6dd98fe9 100644 --- a/qensor/ProcessingFrameworks.py +++ b/qensor/ProcessingFrameworks.py @@ -17,6 +17,42 @@ def process_bucket(self, bucket, no_sum=False): def get_sliced_buckets(self, buckets, data_dict, slice_dict): return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) +def exatn_process_bucket(bucket, no_sum=no_sum): + """ + Process bucket in the bucket elimination algorithm. + We multiply all tensors in the bucket and sum over the + variable which the bucket corresponds to. This way the + variable of the bucket is removed from the expression. + + Parameters + ---------- + bucket : list + List containing tuples of tensors (gates) with their indices. + + Returns + ------- + tensor : optimizer.Tensor + wrapper tensor object holding the resulting computational graph + """ + result_data = bucket[0].data + result_indices = bucket[0].indices + + for tensor in bucket[1:]: + expr = utils.get_einsum_expr(list(map(int, result_indices)), + list(map(int, tensor.indices))) + + result_data = tf.einsum(expr, result_data, tensor.data) + # Merge and sort indices and shapes + + +class ExaTnBackend(BucketBackend): + def process_bucket(self, bucket, no_sum=False): + res = process_bucket_exatn(bucket, no_sum=no_sum) + return res + + def get_sliced_buckets(self, buckets, data_dict, slice_dict): + return get_sliced_exatn_buckets(buckets, data_dict, slice_dict) + class PerfBackend(BucketBackend): Backend = BucketBackend From 1af6fdac96d629d040235dbf7aed9f0aadcd6fd6 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Wed, 16 Sep 2020 01:40:39 +0000 Subject: [PATCH 025/104] Added code for exatn framework --- qensor/ProcessingFrameworks.py | 24 ++++-------------------- qensor/cli.py | 7 ++++--- 2 files changed, 8 insertions(+), 23 deletions(-) diff --git a/qensor/ProcessingFrameworks.py b/qensor/ProcessingFrameworks.py index 39eada67..3c0d89e5 100644 --- a/qensor/ProcessingFrameworks.py +++ b/qensor/ProcessingFrameworks.py @@ -1,6 +1,8 @@ from qtree import np_framework from qtree import optimizer as opt +from . import exatn_framework + from pyrofiler import timing from qensor.utils import ReportTable import numpy as np @@ -24,11 +26,11 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): class ExaTnBackend(BucketBackend): def process_bucket(self, bucket, no_sum=False): - res = process_bucket_exatn(bucket, no_sum=no_sum) + res = exatn_framework.process_bucket_exatn(bucket, no_sum=no_sum) return res def get_sliced_buckets(self, buckets, data_dict, slice_dict): - return get_sliced_exatn_buckets(buckets, data_dict, slice_dict) + return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) class CMKLExtendedBackend(BucketBackend): def get_sliced_buckets(self, buckets, data_dict, slice_dict): @@ -39,24 +41,6 @@ def process_bucket(self, bucket, no_sum=False): result_data = bucket[0].data for tensor in bucket[1:]: - """ - next_result_indices = tuple(sorted( - set(result_indices + tensor.indices), - key=int) - ) - ixc = list(map(int, next_result_indices)) - idx_to_least_idx = {old_idx: new_idx for new_idx, old_idx - in enumerate(ixc)} - - ixa, ixb = list(map(int, result_indices)), list(map(int, tensor.indices)) - ixa, ixb = list(map(lambda x: idx_to_least_idx[x], ixa)), list(map(lambda x: idx_to_least_idx[x], ixb)) - print(len(ixa), len(ixb), len(ixc)) - #print(result_data.shape, len(ixb), len(ixc)) - ixc = list(map(lambda x: idx_to_least_idx[x], ixc)) - - result_data = np.einsum(result_data, ixa, tensor.data, ixb, ixc) - result_indices = next_result_indices - """ ixa, ixb = result_indices, tensor.indices common_ids = sorted(list(set.intersection(set(ixa), set(ixb))), key=int) distinct_a = [x for x in sorted(ixa, key=int) if x not in common_ids] diff --git a/qensor/cli.py b/qensor/cli.py index 9a1bde20..176180bf 100644 --- a/qensor/cli.py +++ b/qensor/cli.py @@ -39,10 +39,11 @@ def sim_file(filename, profile=False, num_processes=1, target_tw=25): , pool_type='thread' ) if profile: - class PerfMKLBackend(PerfBackend): - Backend = CMKLExtendedBackend - backend = PerfMKLBackend(print=False) + class PerfExaTnBackend(PerfBackend): + Backend = ExaTnBackend + # backend = PerfMKLBackend(print=False) # backend = PerfNumpyBackend(print=False) + backend = PerfExaTnBackend(print=False) kwargs['bucket_backend'] = backend sim = FeynmanSimulator(**kwargs) circuit = sum(circuit, []) From 7758661eb1bc2110e9450f0dcfff3bd78897e0d1 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Wed, 16 Sep 2020 20:43:03 +0000 Subject: [PATCH 026/104] Work on bugs in exatn backend/correcting set indices --- qtensor/FeynmanSimulator.py | 8 +-- qtensor/cli.py | 8 +-- qtensor/exatn_framework.py | 116 ++++++++++++++++++++++++++++++++++++ qtensor/toolbox.py | 6 +- 4 files changed, 127 insertions(+), 11 deletions(-) create mode 100644 qtensor/exatn_framework.py diff --git a/qtensor/FeynmanSimulator.py b/qtensor/FeynmanSimulator.py index bc25ad1e..0963e63a 100644 --- a/qtensor/FeynmanSimulator.py +++ b/qtensor/FeynmanSimulator.py @@ -29,7 +29,7 @@ class FeynmanSimulator(QtreeSimulator): def __init__(self, *args, pool_type='process', n_processes=None - ,target_tw=None + ,max_tw=None , **kwargs): super().__init__(*args, **kwargs) if n_processes is None: @@ -40,13 +40,13 @@ def __init__(self, *args, self.pool = ThreadPool else: self.pool = Pool - self.target_tw = target_tw + self.max_tw = max_tw def optimize_buckets(self, fixed_vars: list=None): opt_args = {'tw_bias': self.tw_bias} opt_args.update(self.opt_args) - if self.target_tw: - opt_args['target_tw'] = self.target_tw + if self.max_tw: + opt_args['max_tw'] = self.max_tw opt = self.optimizer(**opt_args) peo, par_vars, self.tn = opt.optimize(self.tn) self.parallel_vars = par_vars diff --git a/qtensor/cli.py b/qtensor/cli.py index 1b3838f5..ff54c322 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -10,7 +10,7 @@ import qtensor.optimisation as qop from qtensor.FeynmanSimulator import FeynmanSimulator -from qtensor.ProcessingFrameworks import CMKLExtendedBackend, PerfBackend +from qtensor.ProcessingFrameworks import CMKLExtendedBackend, PerfBackend, ExaTnBackend from qtensor.toolbox import qaoa_energy_tw_from_graph from qtensor.optimisation.TensorNet import QtreeTensorNet from qtensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer @@ -24,8 +24,8 @@ def cli(): @click.argument('filename', nargs=-1) @click.option('-p','--num-processes', default=1) @click.option('-P','--profile', default=False, is_flag=True) -@click.option('-t','--target-tw', default=25) -def sim_file(filename, profile=False, num_processes=1, target_tw=25): +@click.option('-t','--max-tw', default=25) +def sim_file(filename, profile=False, num_processes=1, max_tw=25): if not filename: stream = sys.stdin else: @@ -34,7 +34,7 @@ def sim_file(filename, profile=False, num_processes=1, target_tw=25): n_qubits, circuit = ops.read_circuit_stream(stream) kwargs = dict( n_processes=num_processes - ,target_tw=target_tw + ,max_tw=max_tw , pool_type='thread' ) if profile: diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py new file mode 100644 index 00000000..945b00c6 --- /dev/null +++ b/qtensor/exatn_framework.py @@ -0,0 +1,116 @@ +""" +This file implements Numpy framework of the +simulator. It's main use is in conjunction with the :py:mod:`optimizer` +module, and example programs are listed in :py:mod:`simulator` module. +""" + +import numpy as np +import copy +import qtree.operators as ops +import qtree.optimizer as opt +import qtree.utils as utils +import exatn + +from collections import namedtuple + +TensorInfo = namedtuple("TensorInfo", "name indices") + +def idx_to_string(idx): + idx = map(int, idx) + letters = list(map(utils.num_to_alpha, idx)) + return ",".join(letters) + +def tensor_to_string(tensor): + idx = idx_to_string(tensor.indices) + return tensor.name + "(" + idx + ")" + +def get_exatn_expr(tensor1, tensor2, result_name, result_idx): + # remap indices to reduce their order, as einsum does not like + # large numbers + all_indices = set.union(set(tensor1.indices), set(tensor2.indices)) + idx_to_least_idx = {old_idx: new_idx for new_idx, old_idx + in enumerate(all_indices)} + tensor1 = TensorInfo(name=tensor1.name, indices=[idx_to_least_idx[idx] for idx in tensor1.indices]) + tensor2 = TensorInfo(name=tensor2.name, indices=[idx_to_least_idx[idx] for idx in tensor2.indices]) + result_idx = [idx_to_least_idx[idx] for idx in result_idx] + + # T(a,b,c) = A(a,b) * B(b,c) + str1 = tensor_to_string(tensor1) + str2 = tensor_to_string(tensor2) + str3 = f"{result_name}({idx_to_string(result_idx)})" + + return f"{str1} = {str2} * {str3}" + +def process_bucket_exatn(bucket, no_sum=False): + """ + Process bucket in the bucket elimination algorithm. + We multiply all tensors in the bucket and sum over the + variable which the bucket corresponds to. This way the + variable of the bucket is removed from the expression. + + Parameters + ---------- + bucket : list + List containing tuples of tensors (gates) with their indices. + + no_sum : bool + If no summation should be done over the buckets's variable + + Returns + ------- + tensor : optimizer.Tensor + wrapper tensor object holding the result + """ + print("BBUCKET") + for x in bucket: + exatn.createTensor(x.name, x.data.astype(complex)) + print("ABUCKET") + prev_result = bucket[0] + pr_info = TensorInfo(prev_result.name, prev_result.indices) + + + for i, tensor in enumerate(bucket[1:]): + t_info = TensorInfo(tensor.name, tensor.indices) + + result_indices = tuple(sorted( + set(pr_info.indices + t_info.indices), + key=int) + ) + if len(bucket) == 2: + result_indices = result_indices[1:] + no_sum = True + + new_name = f"C{np.random.randint(0, 100000)}" + exatn.createTensor(new_name) + expr = get_exatn_expr(pr_info, t_info, new_name, result_indices) + + pr_info = TensorInfo(new_name, result_indices) + print("BCONTRACT") + print(expr) + exatn.contractTensors(expr) + print("ACONTRACT") + + result_indices = pr_info.indices + + + if len(result_indices) > 0: + if not no_sum: # trim first index + first_index, *result_indices = result_indices + else: + first_index, *_ = result_indices + tag = first_index.identity + else: + tag = 'f' + result_indices = [] + + print("BRESULT") + result_data = exatn.getLocalTensor(pr_info.name) + print("ARESULT") + + # reduce + if no_sum: + result = opt.Tensor(f'E{tag}', result_indices, data=result_data) + else: + result = opt.Tensor(f'E{tag}', result_indices, + data=np.sum(result_data, axis=0)) + return result diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 08c2855d..f0d3940f 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -3,9 +3,9 @@ from tqdm import tqdm import time -from qensor.optimisation.TensorNet import QtreeTensorNet -from qensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer -from qensor import QtreeQAOAComposer +from qtensor.optimisation.TensorNet import QtreeTensorNet +from qtensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer +from qtensor import QtreeQAOAComposer def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, ordering_algo='greedy'): gamma, beta = [0]*p, [0]*p From 4eb8171908d00763ddae12ba040b6ddbbeb3f973 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Wed, 16 Sep 2020 16:51:30 -0500 Subject: [PATCH 027/104] fix exatn api, add dynamic import of exatn --- qtensor/ProcessingFrameworks.py | 4 +++ qtensor/exatn_framework.py | 51 +++++++++++++++++++++++++-------- 2 files changed, 43 insertions(+), 12 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index eaad4738..86b7acfe 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -25,6 +25,10 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) class ExaTnBackend(BucketBackend): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + exatn_framework.import_exatn() + def process_bucket(self, bucket, no_sum=False): res = exatn_framework.process_bucket_exatn(bucket, no_sum=no_sum) return res diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index 945b00c6..ac97dcf9 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -9,7 +9,22 @@ import qtree.operators as ops import qtree.optimizer as opt import qtree.utils as utils -import exatn +from importlib import import_module + +# -- Dynamic import of exatn +class ExatnMock: + def __getattribute__(self): + print('You have to import exatn first') + +exatn = ExatnMock() +def import_exatn(): + global exatn + import sys + from pathlib import Path + sys.path.insert(1, str(Path.home()) + '/.exatn') + exatn = import_module('exatn') + +# -- from collections import namedtuple @@ -39,7 +54,7 @@ def get_exatn_expr(tensor1, tensor2, result_name, result_idx): str2 = tensor_to_string(tensor2) str3 = f"{result_name}({idx_to_string(result_idx)})" - return f"{str1} = {str2} * {str3}" + return f"{str3} = {str2} * {str1}" def process_bucket_exatn(bucket, no_sum=False): """ @@ -61,14 +76,17 @@ def process_bucket_exatn(bucket, no_sum=False): tensor : optimizer.Tensor wrapper tensor object holding the result """ - print("BBUCKET") - for x in bucket: - exatn.createTensor(x.name, x.data.astype(complex)) - print("ABUCKET") + if len(bucket)>1: + # Use exatn if we need to contract things + print("BBUCKET") + for x in bucket: + print(f'create Tensor {x.name}') + exatn.createTensor(x.name, x.data.astype(complex)) + print("ABUCKET") prev_result = bucket[0] pr_info = TensorInfo(prev_result.name, prev_result.indices) - + for i, tensor in enumerate(bucket[1:]): t_info = TensorInfo(tensor.name, tensor.indices) @@ -79,15 +97,19 @@ def process_bucket_exatn(bucket, no_sum=False): if len(bucket) == 2: result_indices = result_indices[1:] no_sum = True + else: + raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') new_name = f"C{np.random.randint(0, 100000)}" - exatn.createTensor(new_name) + print(f'create Tensor {new_name}') + exatn.createTensor(new_name, np.empty([2]*len(result_indices), dtype=complex)) expr = get_exatn_expr(pr_info, t_info, new_name, result_indices) - + pr_info = TensorInfo(new_name, result_indices) print("BCONTRACT") print(expr) exatn.contractTensors(expr) + #exatn.evaluateTensorNetwork('net', expr) print("ACONTRACT") result_indices = pr_info.indices @@ -103,9 +125,14 @@ def process_bucket_exatn(bucket, no_sum=False): tag = 'f' result_indices = [] - print("BRESULT") - result_data = exatn.getLocalTensor(pr_info.name) - print("ARESULT") + if len(bucket)>1: + print(f"Before getLocalTensor {pr_info.name}") + result_data = exatn.getLocalTensor(pr_info.name) + print("After getLocalTensor") + else: + # Bucket is just one tensor that needs summation + result_data = bucket[0].data + # reduce if no_sum: From d85bca11aebb64e08566426b57b218bbc86f009f Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Mon, 21 Sep 2020 21:39:23 +0000 Subject: [PATCH 028/104] Simplified process tensor, changed sliced buckets function to use exatn runtime --- qtensor/ProcessingFrameworks.py | 5 +- qtensor/exatn_framework.py | 136 ++++++++++++++++++-------------- 2 files changed, 80 insertions(+), 61 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 86b7acfe..890ec92c 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -18,11 +18,10 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): class NumpyBackend(BucketBackend): def process_bucket(self, bucket, no_sum=False): - res = np_framework.process_bucket_np(bucket, no_sum=no_sum) - return res + return np_framework.process_bucket_np(bucket, no_sum=no_sum) def get_sliced_buckets(self, buckets, data_dict, slice_dict): - return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) + return get_sliced_exatn_buckets(buckets, data_dict, slice_dict) class ExaTnBackend(BucketBackend): def __init__(self, *args, **kwargs): diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index ac97dcf9..9999a50d 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -19,9 +19,6 @@ def __getattribute__(self): exatn = ExatnMock() def import_exatn(): global exatn - import sys - from pathlib import Path - sys.path.insert(1, str(Path.home()) + '/.exatn') exatn = import_module('exatn') # -- @@ -30,6 +27,67 @@ def import_exatn(): TensorInfo = namedtuple("TensorInfo", "name indices") +def get_sliced_exatn_buckets(buckets, data_dict, slice_dict): + """ + Takes placeholder buckets and populates them with + actual sliced values. This function is a sum of + :func:`get_np_buckets` and :func:`slice_np_buckets` + + Parameters + ---------- + buckets : list of list + buckets as returned by :py:meth:`circ2buckets` + and :py:meth:`reorder_buckets`. + data_dict : dict + dictionary containing values for the placeholder Tensors + slice_dict : dict + Current subtensor along the sliced variables + in the form {variable: slice} + Returns + ------- + sliced_buckets : list of lists + buckets with sliced Numpy tensors + """ + # import pdb + # pdb.set_trace() + + # Create np buckets from buckets + sliced_buckets = [] + for bucket in buckets: + sliced_bucket = [] + for tensor in bucket: + # get data + # sort tensor dimensions + transpose_order = np.argsort(list(map(int, tensor.indices))) + data = np.transpose(data_dict[tensor.data_key], + transpose_order) + # transpose indices + indices_sorted = [tensor.indices[pp] + for pp in transpose_order] + + # slice data + slice_bounds = [] + for idx in indices_sorted: + try: + slice_bounds.append(slice_dict[idx]) + except KeyError: + slice_bounds.append(slice(None)) + + data = data[tuple(slice_bounds)] + + # update indices + indices_sliced = [idx.copy(size=size) for idx, size in + zip(indices_sorted, data.shape)] + indices_sliced = [i for sl, i in zip(slice_bounds, indices_sliced) if not isinstance(sl, int)] + assert len(data.shape) == len(indices_sliced) + + exatn.createTensor(tensor.name, data) + + sliced_bucket.append(TensorInfo(tensor.name, indices_sliced)) + sliced_buckets.append(sliced_bucket) + + return sliced_buckets + def idx_to_string(idx): idx = map(int, idx) letters = list(map(utils.num_to_alpha, idx)) @@ -47,7 +105,8 @@ def get_exatn_expr(tensor1, tensor2, result_name, result_idx): in enumerate(all_indices)} tensor1 = TensorInfo(name=tensor1.name, indices=[idx_to_least_idx[idx] for idx in tensor1.indices]) tensor2 = TensorInfo(name=tensor2.name, indices=[idx_to_least_idx[idx] for idx in tensor2.indices]) - result_idx = [idx_to_least_idx[idx] for idx in result_idx] + result_ide = [idx_to_least_idx[idx] for idx in result_idx] +uld # T(a,b,c) = A(a,b) * B(b,c) str1 = tensor_to_string(tensor1) @@ -56,6 +115,13 @@ def get_exatn_expr(tensor1, tensor2, result_name, result_idx): return f"{str3} = {str2} * {str1}" +def get_result_indices(idx1, idx2, contract=True): + result_indices = tuple(sorted(set(idx1 + idx2), key=int)) + if contract: + result_indices = result_indices[1:] + return result_indices + + def process_bucket_exatn(bucket, no_sum=False): """ Process bucket in the bucket elimination algorithm. @@ -76,68 +142,22 @@ def process_bucket_exatn(bucket, no_sum=False): tensor : optimizer.Tensor wrapper tensor object holding the result """ - if len(bucket)>1: - # Use exatn if we need to contract things - print("BBUCKET") - for x in bucket: - print(f'create Tensor {x.name}') - exatn.createTensor(x.name, x.data.astype(complex)) - print("ABUCKET") - prev_result = bucket[0] - pr_info = TensorInfo(prev_result.name, prev_result.indices) - - - for i, tensor in enumerate(bucket[1:]): - t_info = TensorInfo(tensor.name, tensor.indices) - - result_indices = tuple(sorted( - set(pr_info.indices + t_info.indices), - key=int) - ) - if len(bucket) == 2: - result_indices = result_indices[1:] + + pr_info = bucket[0] + + for i, t_info in enumerate(bucket[1:]): + is_hcon = len(bucket) == 2 # TODO better check if hypercontraction is required + result_indices = get_result_indices(idx1, idx2, contract=is_hcon) + if is_hcon: no_sum = True else: raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') new_name = f"C{np.random.randint(0, 100000)}" - print(f'create Tensor {new_name}') exatn.createTensor(new_name, np.empty([2]*len(result_indices), dtype=complex)) expr = get_exatn_expr(pr_info, t_info, new_name, result_indices) pr_info = TensorInfo(new_name, result_indices) - print("BCONTRACT") - print(expr) exatn.contractTensors(expr) - #exatn.evaluateTensorNetwork('net', expr) - print("ACONTRACT") - result_indices = pr_info.indices - - - if len(result_indices) > 0: - if not no_sum: # trim first index - first_index, *result_indices = result_indices - else: - first_index, *_ = result_indices - tag = first_index.identity - else: - tag = 'f' - result_indices = [] - - if len(bucket)>1: - print(f"Before getLocalTensor {pr_info.name}") - result_data = exatn.getLocalTensor(pr_info.name) - print("After getLocalTensor") - else: - # Bucket is just one tensor that needs summation - result_data = bucket[0].data - - - # reduce - if no_sum: - result = opt.Tensor(f'E{tag}', result_indices, data=result_data) - else: - result = opt.Tensor(f'E{tag}', result_indices, - data=np.sum(result_data, axis=0)) - return result + return pr_info From 3c6c45e7b92448e4e13542c6a4a34110f5748136 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Mon, 21 Sep 2020 21:58:19 +0000 Subject: [PATCH 029/104] Fixed errors in exatn backend --- qtensor/ProcessingFrameworks.py | 4 ++-- qtensor/exatn_framework.py | 8 ++++---- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 890ec92c..6d70245a 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -21,7 +21,7 @@ def process_bucket(self, bucket, no_sum=False): return np_framework.process_bucket_np(bucket, no_sum=no_sum) def get_sliced_buckets(self, buckets, data_dict, slice_dict): - return get_sliced_exatn_buckets(buckets, data_dict, slice_dict) + return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) class ExaTnBackend(BucketBackend): def __init__(self, *args, **kwargs): @@ -33,7 +33,7 @@ def process_bucket(self, bucket, no_sum=False): return res def get_sliced_buckets(self, buckets, data_dict, slice_dict): - return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) + return exatn_framework.get_sliced_exatn_buckets(buckets, data_dict, slice_dict) class CMKLExtendedBackend(BucketBackend): def get_sliced_buckets(self, buckets, data_dict, slice_dict): diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index 9999a50d..f179fc46 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -106,7 +106,6 @@ def get_exatn_expr(tensor1, tensor2, result_name, result_idx): tensor1 = TensorInfo(name=tensor1.name, indices=[idx_to_least_idx[idx] for idx in tensor1.indices]) tensor2 = TensorInfo(name=tensor2.name, indices=[idx_to_least_idx[idx] for idx in tensor2.indices]) result_ide = [idx_to_least_idx[idx] for idx in result_idx] -uld # T(a,b,c) = A(a,b) * B(b,c) str1 = tensor_to_string(tensor1) @@ -144,11 +143,12 @@ def process_bucket_exatn(bucket, no_sum=False): """ pr_info = bucket[0] + n = len(bucket) for i, t_info in enumerate(bucket[1:]): - is_hcon = len(bucket) == 2 # TODO better check if hypercontraction is required - result_indices = get_result_indices(idx1, idx2, contract=is_hcon) - if is_hcon: + no_hcon = n == 2 or i == n - 1 # TODO better check if hypercontraction is required + result_indices = get_result_indices(idx1, idx2, contract=no_hcon) + if no_hcon: no_sum = True else: raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') From ecad213cba0a74d72c36520b01677cc668ff87d6 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Tue, 22 Sep 2020 23:38:19 -0500 Subject: [PATCH 030/104] satityfy test size --- qtensor/tests/test_bucket_backends.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/qtensor/tests/test_bucket_backends.py b/qtensor/tests/test_bucket_backends.py index 73e4dd87..772ee456 100644 --- a/qtensor/tests/test_bucket_backends.py +++ b/qtensor/tests/test_bucket_backends.py @@ -10,7 +10,7 @@ def get_test_problem(): w = np.array([[0,1,1,0],[1,0,1,1],[1,1,0,1],[0,1,1,0]]) G = nx.from_numpy_matrix(w) - G = nx.random_regular_graph(5, 28) + G = nx.random_regular_graph(3, 18) gamma, beta = [np.pi/3], [np.pi/2] return G, gamma, beta From 7f4a9be7d8f1ea34f7a95b4c466f0d5f1580184a Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Sat, 26 Sep 2020 18:03:10 +0000 Subject: [PATCH 031/104] intermediate changes, need to fix naming still --- qtensor/ProcessingFrameworks.py | 5 ++++- qtensor/exatn_framework.py | 6 ++++-- 2 files changed, 8 insertions(+), 3 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 6d70245a..660b12d7 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -26,10 +26,13 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): class ExaTnBackend(BucketBackend): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) + self.next_tensor_id = 0 exatn_framework.import_exatn() def process_bucket(self, bucket, no_sum=False): - res = exatn_framework.process_bucket_exatn(bucket, no_sum=no_sum) + result_id = self.next_tensor_id + self.next_tensor_id += 1 + res = exatn_framework.process_bucket_exatn(bucket, no_sum=no_sum, result_id=result_id) return res def get_sliced_buckets(self, buckets, data_dict, slice_dict): diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index f179fc46..61697422 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -121,7 +121,7 @@ def get_result_indices(idx1, idx2, contract=True): return result_indices -def process_bucket_exatn(bucket, no_sum=False): +def process_bucket_exatn(bucket, no_sum=False, result_id=0): """ Process bucket in the bucket elimination algorithm. We multiply all tensors in the bucket and sum over the @@ -145,6 +145,8 @@ def process_bucket_exatn(bucket, no_sum=False): pr_info = bucket[0] n = len(bucket) + tmp_id = 0 + for i, t_info in enumerate(bucket[1:]): no_hcon = n == 2 or i == n - 1 # TODO better check if hypercontraction is required result_indices = get_result_indices(idx1, idx2, contract=no_hcon) @@ -153,7 +155,7 @@ def process_bucket_exatn(bucket, no_sum=False): else: raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') - new_name = f"C{np.random.randint(0, 100000)}" + new_name = pr_info.name + t_info.name exatn.createTensor(new_name, np.empty([2]*len(result_indices), dtype=complex)) expr = get_exatn_expr(pr_info, t_info, new_name, result_indices) From c523911274feb55254e730a185ccd4ff67b124da Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Sat, 26 Sep 2020 18:32:06 +0000 Subject: [PATCH 032/104] Updated README file --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 2282afe4..fc35f7a8 100644 --- a/README.md +++ b/README.md @@ -152,5 +152,5 @@ print('Max memory=', max(mems), 'Total flops=', sum(flops)) ### Use cli to run benchmarks ```bash -» python -m qensor.cli generate-qaoa-ansatz-circuit -p 3 -n 24 | python -m qensor.cli sim-file --profile --target-tw 27 +» python -m qtensor.cli generate-qaoa-ansatz-circuit -p 3 -n 24 | python -m qtensor.cli sim-file --profile --max-tw 27 ``` From a2e76ef407fb55af9c9447eb995d2f840496bcd2 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Sat, 26 Sep 2020 21:48:11 +0000 Subject: [PATCH 033/104] Debugging exatn backend --- qtensor/cli.py | 10 +++++++++- qtensor/exatn_framework.py | 8 +++++--- 2 files changed, 14 insertions(+), 4 deletions(-) diff --git a/qtensor/cli.py b/qtensor/cli.py index 44c3528b..0002f38f 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -44,11 +44,19 @@ def sim_file(filename, profile=False, num_processes=1, max_tw=25, backend='numpy if profile: class PerfExaTnBackend(PerfBackend): Backend = ExaTnBackend + class PerfMKLBackend(PerfBackend): + Backend = CMKLExtendedBackend if backend == 'numpy': backend_obj = PerfNumpyBackend(print=False) + if backend == 'mkl': + backend_obj = PerfMKLBackend(print=False) + if backend == 'exatn': + backend_obj = PerfExaTnBackend(print=False) kwargs['bucket_backend'] = backend_obj if optimizer=='tamaki': - kwargs['optimizer'] = TamakiTrimSlicing(wait_time=23) + kwargs['optimizer'] = TamakiTrimSlicing(max_tw=max_tw, wait_time=23) + else: + kwargs['optimizer'] = SlicesOptimizer(max_tw=max_tw, tw_bias=0) sim = FeynmanSimulator(**kwargs) circuit = sum(circuit, []) diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index 61697422..cc5b5dc7 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -81,6 +81,7 @@ def get_sliced_exatn_buckets(buckets, data_dict, slice_dict): indices_sliced = [i for sl, i in zip(slice_bounds, indices_sliced) if not isinstance(sl, int)] assert len(data.shape) == len(indices_sliced) + print(f"creating {tensor.name}") exatn.createTensor(tensor.name, data) sliced_bucket.append(TensorInfo(tensor.name, indices_sliced)) @@ -94,6 +95,7 @@ def idx_to_string(idx): return ",".join(letters) def tensor_to_string(tensor): + print(tensor.indices) idx = idx_to_string(tensor.indices) return tensor.name + "(" + idx + ")" @@ -105,7 +107,7 @@ def get_exatn_expr(tensor1, tensor2, result_name, result_idx): in enumerate(all_indices)} tensor1 = TensorInfo(name=tensor1.name, indices=[idx_to_least_idx[idx] for idx in tensor1.indices]) tensor2 = TensorInfo(name=tensor2.name, indices=[idx_to_least_idx[idx] for idx in tensor2.indices]) - result_ide = [idx_to_least_idx[idx] for idx in result_idx] + result_idx = [idx_to_least_idx[idx] for idx in result_idx] # T(a,b,c) = A(a,b) * B(b,c) str1 = tensor_to_string(tensor1) @@ -149,13 +151,13 @@ def process_bucket_exatn(bucket, no_sum=False, result_id=0): for i, t_info in enumerate(bucket[1:]): no_hcon = n == 2 or i == n - 1 # TODO better check if hypercontraction is required - result_indices = get_result_indices(idx1, idx2, contract=no_hcon) + result_indices = get_result_indices(pr_info.indices, t_info.indices, contract=no_hcon) if no_hcon: no_sum = True else: raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') - new_name = pr_info.name + t_info.name + new_name = f"C{np.random.randint(0, 1000000000)}" exatn.createTensor(new_name, np.empty([2]*len(result_indices), dtype=complex)) expr = get_exatn_expr(pr_info, t_info, new_name, result_indices) From 2d5eee2b8990082fff84befd4ea01c6463d2cf65 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 2 Oct 2020 00:29:35 -0500 Subject: [PATCH 034/104] update cpp extension with contraction combined with summ --- .../vanilia/nparray/contract.py | 34 ++- .../vanilia/nparray/tcontract.cpp | 197 +++++++++++++++--- 2 files changed, 200 insertions(+), 31 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index 19ef1743..b08bc627 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -7,6 +7,9 @@ import time from pyrofiler import Profiler +def random_complex(*shape): + return np.random.randn(*shape) + 1j*np.random.randn(*shape) + def contract(): try: N = int(sys.argv[1]) @@ -27,10 +30,6 @@ def stats_callback(elapsed_time, description, ops): with prof.timing('Einsum', ops=Ops): C_einsum =np.einsum('ij,ik -> ijk', A, B) - with prof.timing('Triple loop', ops=Ops): - tcontract.triple_loop_contract(A, B, C) - - assert np.array_equal(C_einsum, C) with prof.timing('MKL', ops=Ops): tcontract.mkl_contract(A, B, C) @@ -40,4 +39,31 @@ def stats_callback(elapsed_time, description, ops): assert np.array_equal(C_einsum, C) + +def contract_sum(): + try: + N = int(sys.argv[1]) + except LookupError: + N = 100 + def stats_callback(elapsed_time, description, ops): + print(f'{description}: Elapsed time={round(elapsed_time,3)} FLOPS={ops/elapsed_time:e}') + prof = Profiler(callback=stats_callback) + + n, m, k, f = N, 1+N, 2+N, 3+N + A, B = random_complex(k, f, m), random_complex(k, f, n) + + C = np.empty((f, m, n), dtype=np.complex128) + Ops = C.size + size = sys.getsizeof(C) + print('Result size = {C_size:e} bytes'.format(C_size=size)) + + with prof.timing('Einsum', ops=Ops): + C_einsum =np.einsum('kfm,kfn -> fmn', A, B) + + with prof.timing('MKL contract_summ', ops=Ops): + tcontract.mkl_contract_sum(A, B, C) + + assert np.allclose(C_einsum, C) + +contract_sum() contract() diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 145ed9a2..1b829721 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -10,8 +10,159 @@ using namespace std::chrono; using namespace std; + +// Helper function to parse numpy arguments complex-valued matrices A, B and C +// +int python_abc_complex_args(PyObject *dummy, PyObject *args, PyObject **Obj, std::complex **Data) { + PyObject *argA, *argB, *argC; + int fail = 0; + + if (!PyArg_ParseTuple(args, "OOO!", &argA, &argB, + &PyArray_Type, &argC)) return 1; + + Obj[0]= PyArray_FROM_OTF(argA, NPY_COMPLEX128, NPY_ARRAY_IN_ARRAY); + if (Obj[0] == NULL) fail = 1; + Obj[1] = PyArray_FROM_OTF(argB, NPY_COMPLEX128, NPY_ARRAY_IN_ARRAY); + if (Obj[1] == NULL) fail = 1; +#if NPY_API_VERSION >= 0x0000000c + Obj[2] = PyArray_FROM_OTF(argC, NPY_COMPLEX128, NPY_ARRAY_INOUT_ARRAY2); +#else + Obj[2] = PyArray_FROM_OTF(argC, NPY_COMPLEX128, NPY_ARRAY_INOUT_ARRAY); +#endif + if (Obj[2] == NULL) fail = 1; + + if (fail != 0) { + for (int i=0; i<3; i++) { + Py_XDECREF(Obj[i]); + } + return fail; + }else{ + + for (int i=0; i<3; i++) { + Data[i] = (std::complex *)PyArray_DATA( Obj[i] ); + } + return 0; + } +} +// + +static PyObject * +mkl_contract_sum(PyObject *dummy, PyObject *args) +{ + std::complex alpha(1, 0); + std::complex beta(0, 0); + + // -- Parse Python arguments + PyObject *Obj[3]; + std::complex *Data[3]; + int parse_fail; + parse_fail = python_abc_complex_args(dummy, args, Obj, Data); + + if (parse_fail != 0) { + std::cout << "Failed to parse arguments" << std::endl; + return NULL; + } + // -- + + PyObject *A, *B, *C; + A = Obj[0]; B = Obj[1]; C = Obj[2]; + + std::complex *Aptr, *Bptr, *Cptr; + Aptr = Data[0]; Bptr = Data[1]; Cptr = Data[2]; + + npy_intp *dimC = PyArray_DIMS(C); + npy_intp *dimA = PyArray_DIMS(A); + + int m = dimC[1]; // Row length of A, third index + int n = dimC[2]; // Row length of B, third index + int k = dimA[0]; // Summation length, first index of A and B + int f = dimA[1]; // Multiplication-only index, second index of A and B + + std::cout << "Dimensions: f:" << f << " k:" << k << " n:" << n << " m:" << m << std::endl; + + /* + * Performs opearation + * \sum_k A_{kfm} * B_{kfn} = C_{fmn} + */ + + for (int i=0; i alpha(1, 0); + std::complex beta(0, 0); + + // -- Parse Python arguments + PyObject *Obj[3]; + std::complex *Data[3]; + int parse_fail; + parse_fail = python_abc_complex_args(dummy, args, Obj, Data); + + if (parse_fail != 0) { + std::cout << "Failed to parse arguments" << std::endl; + return NULL; + } + // -- + + PyObject *A, *B, *C; + A = Obj[0]; B = Obj[1]; C = Obj[2]; + + std::complex *Aptr, *Bptr, *Cptr; + Aptr = Data[0]; Bptr = Data[1]; Cptr = Data[2]; + + //auto now = high_resolution_clock::now(); + //auto millis = duration_cast(now - epoch).count(); + //std::cout << "after convert. duration (μs) = " << millis << std::endl; + + npy_intp *dimC = PyArray_DIMS(C); + + for (int i=0; i alpha(1, 0); std::complex beta(0, 0); - auto epoch = high_resolution_clock::now(); int nd; npy_intp * dimC; + npy_intp * dimA; if (!PyArg_ParseTuple(args, "OOO!", &argA, &argB, &PyArray_Type, &argC)) return NULL; @@ -41,42 +192,28 @@ mkl_contract_complex(PyObject *dummy, PyObject *args) //auto now = high_resolution_clock::now(); //auto millis = duration_cast(now - epoch).count(); - //std::cout << "after convert. duration (μs) = " << millis << std::endl; nd = PyArray_NDIM(C); - if (nd!=3) goto fail; + if (nd!=2) goto fail; dimC = PyArray_DIMS(C); + dimA = PyArray_DIMS(A); Aptr = (std::complex *)PyArray_DATA(A); Bptr = (std::complex *)PyArray_DATA(B); Cptr = (std::complex *)PyArray_DATA(C); + std::cout << "A[0][1]" << Aptr[1] << std::endl; + std::cout << "dimC" << dimC[0] << "," <) -- number of dimensions - dims = PyArray_DIMS(<..>) -- npy_intp array of length nd - showing length in each dim. - dptr = (double *)PyArray_DATA(<..>) -- pointer to data. - - If an error occurs goto fail. - */ Py_DECREF(A); Py_DECREF(B); @@ -170,6 +307,7 @@ mkl_contract(PyObject *dummy, PyObject *args) return NULL; } + static PyObject * triple_loop_contract(PyObject *dummy, PyObject *args) { @@ -230,7 +368,6 @@ triple_loop_contract(PyObject *dummy, PyObject *args) Py_XDECREF(B); Py_XDECREF(C); return NULL; - } static PyObject * @@ -409,6 +546,12 @@ static PyMethodDef tcontract_Methods[] = { "Contracts two arrays with first common index using MKL"}, {"mkl_contract_complex", mkl_contract_complex, METH_VARARGS, "Contracts two arrays with first common index using MKL"}, + {"mkl_dotmul", mkl_dotmul, METH_VARARGS, + "Matrix multiplication"}, + + {"mkl_contract_sum", mkl_contract_sum, METH_VARARGS, + "Performs opearation:\ + \\sum_k A_{kfm} * B_{kfn} = C_{fmn}"}, {NULL, NULL, 0, NULL} /* Sentinel */ }; From 9bdf2c12b629244d151377ce9df70dde2910936a Mon Sep 17 00:00:00 2001 From: Danil Date: Fri, 2 Oct 2020 06:02:14 +0000 Subject: [PATCH 035/104] add cops to contract.py --- .../vanilia/nparray/contract.py | 42 ++++++++++++------- 1 file changed, 27 insertions(+), 15 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/contract.py b/scratchpad/cpp_connections/vanilia/nparray/contract.py index b08bc627..4eaeb5d7 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/contract.py +++ b/scratchpad/cpp_connections/vanilia/nparray/contract.py @@ -2,7 +2,10 @@ import sys import torch as t import numpy as np -from opt_einsum import contract as opt_einsum +try: + from opt_einsum import contract as opt_einsum +except ImportError: + opt_einsum = None import time from pyrofiler import Profiler @@ -10,32 +13,35 @@ def random_complex(*shape): return np.random.randn(*shape) + 1j*np.random.randn(*shape) +def stats_callback(elapsed_time, description, cop, flop): + print(f'{description}: Elapsed time={round(elapsed_time,3)} COPS={cop/elapsed_time:e} FLOPS={flop/elapsed_time:e}') + def contract(): try: N = int(sys.argv[1]) except LookupError: N = 0 - def stats_callback(elapsed_time, description, ops): - print(f'{description}: Elapsed time={round(elapsed_time,3)} FLOPS={ops/elapsed_time:e}') prof = Profiler(callback=stats_callback) n, m, k = 2+N, 3+N, 4+N A, B = np.random.randn(n, m), np.random.randn(n, k) C = np.empty((n, m, k)) - Ops = C.size + cop = C.size + flop = 6*C.size size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) - with prof.timing('Einsum', ops=Ops): + with prof.timing('Einsum', cop=cop, flop=flop): C_einsum =np.einsum('ij,ik -> ijk', A, B) - with prof.timing('MKL', ops=Ops): + with prof.timing('MKL', cop=cop, flop=flop): tcontract.mkl_contract(A, B, C) - with prof.timing('Opt Einsum', ops=Ops): - _ = opt_einsum('ij,ik -> ijk', t.Tensor(A), t.Tensor(B), backend='torch') + if opt_einsum: + with prof.timing('Opt Einsum', cop=cop, flop=flop): + _ = opt_einsum('ij,ik -> ijk', t.Tensor(A), t.Tensor(B), backend='torch') assert np.array_equal(C_einsum, C) @@ -45,25 +51,31 @@ def contract_sum(): N = int(sys.argv[1]) except LookupError: N = 100 - def stats_callback(elapsed_time, description, ops): - print(f'{description}: Elapsed time={round(elapsed_time,3)} FLOPS={ops/elapsed_time:e}') prof = Profiler(callback=stats_callback) n, m, k, f = N, 1+N, 2+N, 3+N + #k = 2 + print('Summation size:', k) A, B = random_complex(k, f, m), random_complex(k, f, n) C = np.empty((f, m, n), dtype=np.complex128) - Ops = C.size + flop = 6*C.size * (2*k - 1) + cop = C.size * (k - 1) size = sys.getsizeof(C) print('Result size = {C_size:e} bytes'.format(C_size=size)) - with prof.timing('Einsum', ops=Ops): + with prof.timing('Einsum', cop=cop, flop=flop): C_einsum =np.einsum('kfm,kfn -> fmn', A, B) - with prof.timing('MKL contract_summ', ops=Ops): + with prof.timing('MKL contract_summ', cop=cop, flop=flop): tcontract.mkl_contract_sum(A, B, C) assert np.allclose(C_einsum, C) -contract_sum() -contract() +if __name__=="__main__": + print('**With summ**') + contract_sum() + print() + print('**Just multiply**') + contract() + print() From b6cabcdbb95ae8e1329712fc36c77cdd9e1667ea Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 00:02:35 -0500 Subject: [PATCH 036/104] try to install tcontract from source --- setup.py | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/setup.py b/setup.py index c410413b..eef6eb16 100644 --- a/setup.py +++ b/setup.py @@ -16,6 +16,11 @@ ] +NON_PYPI_REQUIRED = [ + './scratchpad/cpp_connections/vanilia/nparray' +] + + setuptools.setup(name='qtensor', version='0.1.2', description='Framework for efficient quantum circuit simulations', @@ -26,6 +31,7 @@ license='Apache', packages=setuptools.find_packages(), install_requires=REQUIRED_PACKAGES, + dependency_links=NON_PYPI_REQUIRED, extras_require={ 'tensorflow': ['tensorflow<=1.15'], }, From 5d585324f435699c4887f9e412ce1d6f29fa2d64 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 00:19:45 -0500 Subject: [PATCH 037/104] lazy import exatn and tcontract --- qtensor/ProcessingFrameworks.py | 4 ++-- qtensor/exatn_framework.py | 18 +++--------------- setup.py | 7 +------ 3 files changed, 6 insertions(+), 23 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index ffa113dc..5105bf18 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -1,12 +1,12 @@ import numpy as np +import lazy_import from qtree import np_framework from qtree import optimizer as opt from pyrofiler import timing from tqdm import tqdm -import tcontract +tcontract = lazy_import.lazy_module('tcontract') -from qtensor.utils import ReportTable from qtensor.utils import ReportTable from . import exatn_framework diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index cc5b5dc7..2b05604b 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -4,24 +4,12 @@ module, and example programs are listed in :py:mod:`simulator` module. """ +import lazy_import import numpy as np -import copy -import qtree.operators as ops -import qtree.optimizer as opt -import qtree.utils as utils -from importlib import import_module - -# -- Dynamic import of exatn -class ExatnMock: - def __getattribute__(self): - print('You have to import exatn first') -exatn = ExatnMock() -def import_exatn(): - global exatn - exatn = import_module('exatn') +import qtree.utils as utils -# -- +exatn = lazy_import.lazy_module('exatn') from collections import namedtuple diff --git a/setup.py b/setup.py index eef6eb16..feacc9f7 100644 --- a/setup.py +++ b/setup.py @@ -12,15 +12,11 @@ ,'loguru' ,'tqdm' ,'click' + ,'lazy-import' ,'qtensor-qtree' ] -NON_PYPI_REQUIRED = [ - './scratchpad/cpp_connections/vanilia/nparray' -] - - setuptools.setup(name='qtensor', version='0.1.2', description='Framework for efficient quantum circuit simulations', @@ -31,7 +27,6 @@ license='Apache', packages=setuptools.find_packages(), install_requires=REQUIRED_PACKAGES, - dependency_links=NON_PYPI_REQUIRED, extras_require={ 'tensorflow': ['tensorflow<=1.15'], }, From 09bfc402b676878acb8fc16111c6da387769160a Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 01:40:34 -0500 Subject: [PATCH 038/104] fix transposition bug in mkl backend; add test for it --- .github/workflows/test.yml | 1 + qtensor/ProcessingFrameworks.py | 28 ++++++++++++--- qtensor/tests/test_bucket_backends.py | 51 +++++++++++++++++++++------ 3 files changed, 65 insertions(+), 15 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 27a26720..e1bd770a 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -34,6 +34,7 @@ jobs: pip install . pip install pytest mock cd qtree && pip install . + cd scratchpad/cpp_connections/vanilia/nparray/ && pip install . - name: Test run: cd qtensor && pytest diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 5105bf18..0e2d284a 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -5,7 +5,17 @@ from pyrofiler import timing from tqdm import tqdm -tcontract = lazy_import.lazy_module('tcontract') +class MockModule: + def __getattribute__(self, attr): + # Fail spectacularly + raise ImportError(f'Module tcontract is not imported! Please install it and try again.') + +tcontract = MockModule() +try: + import tcontract +except ImportError: + pass + from qtensor.utils import ReportTable from . import exatn_framework @@ -62,8 +72,8 @@ def process_bucket(self, bucket, no_sum=False): for tensor in bucket[1:]: ixa, ixb = result_indices, tensor.indices common_ids = sorted(list(set.intersection(set(ixa), set(ixb))), key=int) - distinct_a = [x for x in sorted(ixa, key=int) if x not in common_ids] - distinct_b = [x for x in sorted(ixb, key=int) if x not in common_ids] + distinct_a = [x for x in ixa if x not in common_ids] + distinct_b = [x for x in ixb if x not in common_ids] transp_a = [ixa.index(x) for x in common_ids+distinct_a] transp_b = [ixb.index(x) for x in common_ids+distinct_b] a = result_data.transpose(transp_a) @@ -80,7 +90,11 @@ def process_bucket(self, bucket, no_sum=False): set(result_indices + tensor.indices), key=int) ) - result_data = c.reshape([2 for _ in result_indices]) + ixc = common_ids + distinct_a + distinct_b + assert len(result_indices) == len(ixc), 'Wrong transposition, please submit an issue' + transp_c = [ixc.index(x) for x in result_indices] + result_data = c.reshape(*[2 for _ in result_indices]) + result_data = result_data.transpose(transp_c) if len(result_indices) > 0: if not no_sum: # trim first index @@ -119,6 +133,12 @@ def _profile_callback(self, time, label, indices): print(f"PROF:: perf data {label}: {time}") self._profile_results[str(indices)] = indices, time + @classmethod + def from_backend(cls, backend, *args, **kwargs): + """ Dynamically create and instantiate a class with a given backend. """ + class CustomGeneratedBackend(cls): + Backend = backend + return CustomGeneratedBackend(*args, **kwargs) def process_bucket(self, bucket, no_sum=False): indices = [tensor.indices for tensor in bucket] diff --git a/qtensor/tests/test_bucket_backends.py b/qtensor/tests/test_bucket_backends.py index 772ee456..ded2ed41 100644 --- a/qtensor/tests/test_bucket_backends.py +++ b/qtensor/tests/test_bucket_backends.py @@ -1,24 +1,40 @@ +import numpy as np +import networkx as nx +import pytest + from qtensor import QtreeQAOAComposer +from qtensor.Simulate import CirqSimulator, QtreeSimulator + +from qtensor.ProcessingFrameworks import PerfBackend from qtensor.ProcessingFrameworks import PerfNumpyBackend -from qtensor.Simulate import CirqSimulator, QtreeSimulator -import numpy as np -import networkx as nx +from qtensor.ProcessingFrameworks import CMKLExtendedBackend -def get_test_problem(): +@pytest.fixture(scope="module") +def test_problem(): w = np.array([[0,1,1,0],[1,0,1,1],[1,1,0,1],[0,1,1,0]]) G = nx.from_numpy_matrix(w) G = nx.random_regular_graph(3, 18) gamma, beta = [np.pi/3], [np.pi/2] - return G, gamma, beta + yield G, gamma, beta + +@pytest.fixture(scope='module') +def ground_truth_energy(test_problem): + G, gamma, beta = test_problem + composer = QtreeQAOAComposer(graph=G, gamma=gamma, beta=beta) + composer.ansatz_state() + + sim = QtreeSimulator() + + result = sim.simulate(composer.circuit) + yield result -def test_profiled(capsys): - G, gamma, beta = get_test_problem() - composer = QtreeQAOAComposer( - graph=G, gamma=[np.pi/3]*2, beta=[np.pi/4]*2) +def test_profiled(capsys, ground_truth_energy, test_problem): + G, gamma, beta = test_problem + composer = QtreeQAOAComposer(graph=G, gamma=gamma, beta=beta) composer.ansatz_state() backend = PerfNumpyBackend() @@ -28,9 +44,22 @@ def test_profiled(capsys): print("Profile results") print(backend.gen_report()) - qtree_amp = result + assert np.allclose(result, ground_truth_energy) + +def test_mkl(capsys, test_problem, ground_truth_energy): + G, gamma, beta = test_problem + composer = QtreeQAOAComposer(graph=G, gamma=gamma, beta=beta) + composer.ansatz_state() + + backend = PerfBackend.from_backend(CMKLExtendedBackend, print=False) + sim = QtreeSimulator(bucket_backend=backend) + + result = sim.simulate(composer.circuit) + print("Profile results") + print(backend.gen_report()) + + assert np.allclose(result, ground_truth_energy) - assert qtree_amp if __name__=='__main__': test_profiled(None) From 7463dd54afbfbd3ba4a5023e2ac1914cb83c09e0 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 01:43:28 -0500 Subject: [PATCH 039/104] try to fix build of tcontract --- .github/workflows/test.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index e1bd770a..d300e4d3 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -33,8 +33,8 @@ jobs: run: | pip install . pip install pytest mock - cd qtree && pip install . - cd scratchpad/cpp_connections/vanilia/nparray/ && pip install . + (cd qtree && pip install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) - name: Test run: cd qtensor && pytest From 2745f97ecff7f8034c1b47119a17eeb679aae63c Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 01:52:07 -0500 Subject: [PATCH 040/104] run on ubuntu with mkl installed --- .github/workflows/test.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index d300e4d3..382af14a 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -15,8 +15,8 @@ jobs: build: # The type of runner that the job will run on runs-on: ubuntu-latest + container: robbyjo/ubuntu-mkl - # Steps represent a sequence of tasks that will be executed as part of the job steps: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it - uses: actions/checkout@v2 From 898adb22e6d6d7a9e864d819c582f300afd5a351 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 02:01:08 -0500 Subject: [PATCH 041/104] fix tag of mkl container --- .github/workflows/test.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 382af14a..f5cf5073 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -15,7 +15,7 @@ jobs: build: # The type of runner that the job will run on runs-on: ubuntu-latest - container: robbyjo/ubuntu-mkl + container: robbyjo/ubuntu-mkl:18.04-2019.1 steps: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it From a0f7bfdd52499d32d00d6b840ebb94d75510a8a6 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 02:08:12 -0500 Subject: [PATCH 042/104] setup git 2.23 --- .github/workflows/test.yml | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index f5cf5073..d415cd62 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -19,6 +19,13 @@ jobs: steps: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it + - name: Setup git + run: | + add-apt-repository ppa:git-core/ppa + apt-get update + apt-get install git + + - uses: actions/checkout@v2 with: submodules: recursive From 972b1f889daba7f52cbbcf31a23097de8203971b Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 02:15:04 -0500 Subject: [PATCH 043/104] still trying to get to work github test --- .github/workflows/test.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index d415cd62..479b7ba6 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -21,6 +21,7 @@ jobs: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it - name: Setup git run: | + apt-get install software-properties-common add-apt-repository ppa:git-core/ppa apt-get update apt-get install git From 7102d63dc8edd9a5e7e8bd7caa84332bc59e30e4 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 04:51:55 -0500 Subject: [PATCH 044/104] [jlse-run] Add backend option to time-vs-flops plot --- .github/workflows/jlse.yaml | 1 - analysis/spec/notebooks/Time_vs_FLOP.ipynb | 654 +++++++++++++++----- analysis/spec/qtensor_specs/time_vs_flop.py | 67 +- run/automake/publish.sh | 4 +- run/automake/qsub_entry.sh | 4 +- 5 files changed, 548 insertions(+), 182 deletions(-) diff --git a/.github/workflows/jlse.yaml b/.github/workflows/jlse.yaml index f8a2bbc2..d01e044c 100644 --- a/.github/workflows/jlse.yaml +++ b/.github/workflows/jlse.yaml @@ -17,7 +17,6 @@ jobs: run: working-directory: run/automake steps: - # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it - uses: actions/checkout@v2 with: submodules: recursive diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 77d83c40..d041edc6 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -27,8 +27,8 @@ "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:46.967223Z", - "start_time": "2020-10-07T10:23:44.534313Z" + "end_time": "2020-10-09T08:43:40.881465Z", + "start_time": "2020-10-09T08:43:35.901033Z" } }, "outputs": [], @@ -47,8 +47,8 @@ "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:46.974535Z", - "start_time": "2020-10-07T10:23:46.968412Z" + "end_time": "2020-10-09T08:43:40.887219Z", + "start_time": "2020-10-09T08:43:40.882749Z" } }, "outputs": [], @@ -64,8 +64,8 @@ "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:46.980521Z", - "start_time": "2020-10-07T10:23:46.977197Z" + "end_time": "2020-10-09T08:43:40.953024Z", + "start_time": "2020-10-09T08:43:40.889534Z" } }, "outputs": [], @@ -103,8 +103,8 @@ "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:46.986625Z", - "start_time": "2020-10-07T10:23:46.982470Z" + "end_time": "2020-10-09T08:43:40.998465Z", + "start_time": "2020-10-09T08:43:40.969809Z" } }, "outputs": [], @@ -120,8 +120,8 @@ "execution_count": 5, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:49.052258Z", - "start_time": "2020-10-07T10:23:48.001942Z" + "end_time": "2020-10-09T08:43:42.672239Z", + "start_time": "2020-10-09T08:43:41.000745Z" }, "scrolled": false }, @@ -145,8 +145,8 @@ "execution_count": 6, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:23:50.164426Z", - "start_time": "2020-10-07T10:23:49.770343Z" + "end_time": "2020-10-09T08:43:43.315135Z", + "start_time": "2020-10-09T08:43:42.673529Z" }, "scrolled": true }, @@ -195,14 +195,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:23:49.308184Z", - "start_time": "2020-10-07T07:23:48.102918Z" + "end_time": "2020-10-09T08:43:55.163886Z", + "start_time": "2020-10-09T08:43:43.328433Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.12775195-9.88792381e-17j])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "backend = qt.PerfNumpyBackend(print=False)\n", "sim = qt.QtreeSimulator(bucket_backend=backend)\n", @@ -224,15 +235,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:24:09.759656Z", - "start_time": "2020-10-07T07:24:08.942804Z" + "end_time": "2020-10-09T08:43:56.750400Z", + "start_time": "2020-10-09T08:43:55.167425Z" }, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total time=11.34330129623413\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEICAYAAAB8lNKlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB93ElEQVR4nO2dd3gc1fWw37NNvViWq+TecAEM2HQc0w0JnRAMoQSCQ0JJDySElA9I4JeEUAOYZgIJhNCb6Sim28bYFBfcbclVttXLtvv9cWd3Z1e70q60klbmvs+zj3bu3Llzd7Q7Z06554hSCoPBYDAY0oWjtydgMBgMhr0LI1gMBoPBkFaMYDEYDAZDWjGCxWAwGAxpxQgWg8FgMKQVI1gMBoPBkFaMYNkLEZEvRWRmD5znNyLyQJrHPEpEVqVzTNvYfxCRx7pwfLdcVxEZJCILRKReRP6W7vHThYgoERnb2/MwZD6u3p6AIXVEpMG2mQu0AgFr+wdKqck9MQ+l1J+6Ycx3gQnpHjdVRGQeUKmU+m2orRuv6xygGihUe/nCMhEZCawH3Eopfy9Px9BNGMHSB1FK5Yfei8gG4PtKqTd7b0aGLjICWN4ZoSIiLnODNmQaxhS2FyIiG0TkOOv9H0TkvyLymGVq+VxExovIr0Vkh4hsFpETbMcWiciDIrJVRKpE5EYRcSY4T9i0JCIjLVPJRSKySUSqReS6duZ4sogst+ZUJSK/sNpnikhlzGf5pYh8JiKN1twGich869g3RaRfvGNjr0WcOfxXRLaJSK1lippstc8Bzgd+JSINIvJinOuaJSK3icgW63WbiGTZ5yEiP7eu8VYR+V6COcwDLrKd67gkx75GRLYBDycY9xIRWSEie0TkNREZYdt3u/V/rxORT0TkKNs+p2XiXGtd309EZJht6ONEZLWI1IjI3SIiCc5/sIgsts6xXURutXYtsP7WWJ/3sCTmq0TkahFZZ32v/iIi5t6VwZh/zteDU4BHgX7Ap8Br6P99GfD/gPtsfecBfmAscABwAvD9FM51JNqUdSzwOxGZmKDfg2izXQEwBXi7nTHPAo4HxlufZT7wG2CA9TmuTmF+duYD44CBwBLgXwBKqbnW+/9TSuUrpU6Jc+x1wKHAVGB/4GDgt7b9g4Ei9DW+FLg7JADtKKUujjnXm0mOXYLWdObEjikip6Gvz5noa/Qu8LityyJr7BLg38B/RSTb2vczYDZwMlAIXAI02Y79FjAd2A84BzgxzrUBuB24XSlVCIwBnrTaZ1h/i63P+2ES8wU4A5gGHAicZs3LkKkopcyrD7+ADcBxidqAPwBv2PadAjQATmu7AFBAMTAI7a/JsfWfDbyT4Nx/AB6z3o+0xim37V8InJvg2E3AD9B+BXv7TLRvw/5ZzrdtPw3cY9u+Cngu3rEJrsVjCeZTbM2/yNqeB9zYzlhrgZNt+04ENtjm0Qy4bPt3AIcmOHfUuZIY2wtkt/OdmA9catt2oIXDiAT99wD7W+9XAacl6KeAI23bTwLXJui7APgjUBrTHvqeuJKdr9V/lm3/j4C3euL3ZV6dexmN5evBdtv7ZqBaKRWwbQPko5+A3cBWy9RRg9ZmBqZwrm22903WuPE4C/1UvFFE/hcyiSQ5/9jtROdIiGXyudky+dShhQZAaZJDDAU22rY3Wm0hdqlo30d71yLVsXcqpVraOX4EcLvtf7gbELT2hIj8wjI71Vr7i4h87mFowZaIZP+/l6I1zJUiskhEvtXZ+Vpstr2PvR6GDMMIFoOdzWiNpVQpVWy9ClU3REMppRYppU5DC63niJhKukIjOkoO0MIDbVqJx3lok8px6BvryNBhoSl2cK4t6BtiiOFWWzroaOyO5rYZbWYstr1ylFIfWP6UX6HNWP2UUsVALZHPvRltuuoSSqnVSqnZ6P/vLcBTIpKXYO4J52vrY/fzpPNaG7oBI1gMYZRSW4HXgb+JSKGIOERkjIh8I53nERGPiJwvIkVKKR9QBwTTMPRXQLaIfFNE3Gi/RFaCvgVoIboLLYxiQ6e3A6PbOdfjwG9FZICIlAK/Azq9RibNY98L/NoWjFAkIt+29hWgfWg7AZeI/A7tSwnxAHCDiIwTzX4i0j/VDyAi3xWRAUqpIFBjNQet8waJvrbtzTfEL0WknxVI8GPgP6nOydBzGMFiiOVCwAMsR9venwKGdMN5LgA2WGaoy9FRWF1CKVWLtr8/AFShNZjKBN3/iTapVKE/60cx+x8EJlnmmefiHH8jsBj4DPgc7fy/sYsfIS1jK6WeRWsJT1jX9wvgJGv3a8CraCG8EWgh2sx0K1p7fB0t8B8EcjrxGWYBX4pec3U72tfWrJRqAm4C3reu7aEdzDfE88AnwFLgZWtehgxFlNqr12MZDIY+jogoYJxSak1vz8WQHEZjMRgMBkNaMYLFYDAYDGnFmMIMBoPBkFaMxmIwGAyGtJLRSSgdDofKyelMQAoEg0Ecjr4nN/vqvKHvzt3Mu2cx8+5+mpqalFKq1yabkYJFRE4BTsnKyqKxsbFTY1RUVDBz5sy0zqsn6Kvzhr47dzPvnsXMu/sRkeaOe6U03nDgDnRWhK+UUje31z8jxa9S6kWl1BynM25SXYPBYDB0ERF5SHT27S9i2meJyCoRWSMi11rN+wJPKaUuQSenbZeMFCwGg8Fg6HbmoReyhrHSIN2NXqA6CZgtIpPQC4gvFZG30Qts28UIFoPBYNj7cFn1cEKvNuUVlFIL0KYtOwcDa5RS65RSXuAJdE697wG/V0odA3yzw5N3ff7px+5jMRgMXWfTpk1cffXVlJSUMH78eK699tqODzL0ZRQ6FdCLSqkXUziujOgUP5XAIeh8bn8QkfOIZAJPSEZqLMbHYjB0zC233MLAgQOZMmVKVPurr77KhAkTGDt2LDffrH2sn3/+OWeffTYPPfQQn376aW9M19CzBJRSc1IUKglRSn2hlDpbKXW5UuoXHfXPSI0lk3A4HLQX8pxJIYiZNBcw8+mI9ubT3NxMMNh+wudZs2Zx0003ceGFF4bbAoEAV1xxBW+88Qbl5eVMnz6dU089lUMPPTQsWC644IK0fg5DRuIUkbmkrrFUEV2ioNxqSwkjWDogJyen3ZDnTApBzKS5gJlPR7Q3n7y8vA6P33///SkpKYlqW7hwIWPHjmX0aJ2V/txzz+X555/H7Xbzxz/+kRkzZnD22Wfzve99r8vzN+yVLALGicgotEA5F127KCUy5/HNhoicIiJzA4FAx50Nhr0Qv9/PtGnTwq+5c+cmdVxVVRXDhkUeOMvLy6mqqmLWrFnccccdXH755YwcObKbZm3oDOs+2sDT92zsuGNqdGgKE5HHgQ+BCSJSKSKXWlVPr0SXV1gBPKmU+jLVk2ekxmJdjBfz8vIu6+25GAx2VCBAbdUeKCyluLj7zuNyuVi8eHHaxpsyZQpPPfVU2sYzpI8jj8lha/Mg1A/TOmyHpjCrwme89leAV7py8ozUWAyGTMC7eQOxSVr3PPMY48YL/fr10qQ6oKysjM2bI0E9lZWVlJWVtXOEobdQSlH72vNsbR4EQAcutVRJq/M+VYxgMRji0LphLat+dBlv3TI/qr1l5RdUt6ZcqbfHmD59OqtXr2b9+vV4vV6eeOIJTj311N6eliEOTYs/YOe9fwtvp9ny7xSRudbSjR7HCBaDIQ7Bhnoe33AaJ/5mFtu3R9pdAyNVmnu74sQNN9zAYYcdxqpVqygvL+fBBx/E5XJx1113ceKJJzJx4kTOOeccJk+e3LsTNcQl2NrCq1XfCG+nWbD0qsaSkT4Wg6G3kZwcvqobRVA5WLoUTjxRt/sLBoX71NbSrX6Wjrj++uvjRpWdfPLJnHzyyT0/IUNqiJOrFt0Q3vT7e3EuaSYjNRYTFWbodQIBNjTo6KqlSyPN22vyw+937OjhORn2KgJBidpOs2AxprBYunPlfWNjIxdddBGXXXYZ//rXv9I+vmHvQAUCrI8jWKqqs8Pvd+7s4UkZ9ip8wWiD0d5kCstIwZIql1xySdKpLZ555hnOPvts7r//fl544YXemK6hD7BnN+z26tCvKMGyM5KFwWgshq4QUNEPzsYUlmFcfPHFvPpqdCbnUGqL+fPns3z5ch5//HGWL19OZWVleAGZyUVmSETlNv3TGFewjlWrIJR8YU+9O9zHaCyGruALdqtg6VVT2F7hvJ8xYwYbNmyIalu5cmXc1Bbl5eVUVlYyderUhLmY5s6dG17p7PV6qaioSHjuhoaGdvf3JJk0F+jb81m1pA6YzMGly1hdP5pHHvmESZPq2bq9Ndzn44/WMX78ph6Zj2Hvwx+jsXSHKSytI6bAXiFY4lFdXd0mtcXHH3/M1VdfzZVXXsnLL7/MKafEF+Zz5sxhzhz9P8nLy2s3v1Qm5Z/KpLlA35uPUopdj/yDgm+cyJ6BXgCm91/Gv9afgdN5EDNnwvw79Gr4/lm78ftGMHPm6G6bj2HvJhDjY9mbTGF7rWBJRF5eHg8//HBvT8OQgaiWZmqe/w+1r79I3aS/AzC+cB1F+T6WLtUmsBavA7fDy+Sir1i2bFpvTtfQx4k1he1NQbB7hY8lHqWlpSa1hSE1rBWPqrmJugb908h3NzJ5WHXYgd/S6iDL4WVi0RqWr3Ti9fbSXA19Hn+gW8ONe5UeEywikicij4jI/SJyfnefb5999jGpLQwpoYJBVtWO5vx3b2fTFg8A+a5GJpVs4LPP9BNls9dJtrOViUVr8PmEFSt6edKGPos/xhTm86U1lUPfXcciIg+JyA4R+SKmfZaIrBKRNSISqoF6JvCUUuoyIK13+NmzZ7dJbeF0Ok1qiz5M4+IP2XrzdT170mCQ733wNxbuOoBX3isFoHjEACbmr6CpCdasgVafk2ynl4lFq4HoUGSDIRUCwejbb8CX1iyUfTqlyzzgLuCfoQYRcQJ3A8ej6yUvEpEX0JXIPre6pdWa+Pjjj7dpq6ioMKkt+jBbb7oG0A51Eemgd3poagyy00owuWJDPnmuJjylpUyo0s9NS5dCS6sTj8PLiPwqcrMDLF3q5KKLemR6hr2MYMxzvT+9Gkuv0iXBopRaICIjY5oPBtYopdYBiMgTwGloIVMOLKUdTUlE5gBzQNek6Gw4pgnl3Evw+8Ht7rhfGmhuijwxKiXkuxpx9R/AKHkHt1uxbJmETWFOCTJ5VC1Ll5a0M2LnCQQCHX5/++p33Mxbs/7LJiASVbho0RIaW5rSNn5v0h1RYWXAZtt2JXAIcAdwl4h8E0ioniml5gJzAfLy8lRnwzFNKOfegQr4kW4QLNXVMGoU/POfcMYZuq21JbpPnqsJV/8BeGhl0j5Bli51alOYW3vspwzfxVMflFBdDaWl6Z2f0+ns8PvbV7/jZt4az+51Udv7TpnKUTM9aRu/N+kx571SqlEp9T2l1A+VUu0m6TJJKA0hVJKhMruffozWjWuTHveBB6ChAf7+90hbc7PWWEbn6zKx+W6tsQBMGdekTWFeFzkePzidXHTUMlpb4frrkz6twRAmtuyC35+5pjAROUpE7hWRB0Tkg476d4dgqQKG2bbLrbak6c4klIa+RTKCRQX87H5sLpt/8r2kx33uOf3X54u0tbboH/b+/XSoV76lsQCMGlTP1q1Q15JFlsuHs7CIicVrOfJI+OyzpE9rMIRpWhldSj7Qw4IlleArpdS7SqnLgZeARzoauzsEyyJgnIiMEhEPcC6QUrZHo7EYwgSSESz6e7KrtRgA3/YtVD10P42N+odaVwfNzdHHVG+qBQiHEYNdsCwHtCnMWaJtXEMK9gCwcVcx2S4fzqIS/LV7KCuDysrOfzzD15ea11+O2k5zuHEyzANm2RtswVcnAZOA2SIyydblPODfHQ3c1XDjx4EPgQkiUikilyql/MCVwGvACuBJpdSX7Y0Ti9FYDCFUEoKFQIDnNp3AofNf4JNPYOtf/sAZv5rOuNEBdu+GoiKIXcJUv8eHU/zhMGKI+FiG5m6jrF8dA7J34eo/EIBBOTrjZLPXQ7bbh7O4H4GaPZSXw5Ytaa9XnnaCwSDXXXcdV111FY880uEDp6FHiI52DKRXsLhEZLHt1SZvmFJqAbA7pjkcfKWU8gKh4CtEZDhQq5Sq7+jkXRIsSqnZSqkhSim3UqpcKfWg1f6KUmq8UmqMUuqmVMc1GoshRFKmsGCA+9ecB8BHHwR4Z+1EFu2aytYdLo4+Wvd5883oYxr9uUzvr21Y4VX1LVo6ZDm9PP39ufx04gM4C4sQTxYDnRFrbpYrgKu4hECN1lj8/t5JoX/LLbckXS7i+eefp7KyErfbTXl5ec9P1tCGoIpdeZ/WpxMFLAH+qJSaZgVFJUO84KtQypJLgaTyYWVkShejsRjCJPFw4WsOsLZ+OACfLWpi1S7t4utXFIjyfzQ06CDIYFALlv37LcfttgkWK3Gxx+GjPLuS4uxGxOHAPWgoA/1rwuNku304i/oRqN1NWZl+yuwNc9isWbOSLhexatUqDj/8cG699Vbuueeenp+soQ1BFbuOJa3Dp32BpFLq90qpDh33kKGCxWgshhAdaSzvvQc7tgcJKC00ln3uoMabj9vhZdzI1qi+a9fmAZHaKsWeOiaO84YFi9cyhXkcPoLNTeDQDzauwUPIrllPnj48bApTXi9lA/RB6RYsfr+fadOmhV+hMg529t9/f0pKotfRLFy4MFwuwuPxRJWL6NdPFy4zD2yZgYo1haXXed/ZlC5dDr6CDBUsRmMxhFDtPMbNnw9HHQX/7xZdLrg0axdfrMpmd3Mhxe56ygfr9SaHHKL7r1mj69XX1entPFcTY+rfYuknWni1tuoftsfhJdjYgFjfP/fgMvw7tjJsmN6f5QrgLNI36aGF2kS9fn26PrHG5XKxePHi8CtUxqEjqqqq2pSLqKqq4swzz+S1117jqquuYsaMGemdrKFTNPpzorYzJNy4y8FX8DVMm2/oW7TnvH/2Wf33/Y/0AsrDBizhxcrjWbZ1BEWeOoYM0CrG9OmwYUNEsNRbrsc8VxMTi9bw7OaT2LYNmi2NJcvpJdjchDj1z8M9aCiqpZlxo3ysXOkh2+PDWTwIgBLnLgYNKmPZsjR/8DSTm5vLgw8+2NvTMNiY89H/RW2nOaVLh4W+rOCrmUCpiFQCv1dKPSgioeArJ/BQqsFXkKEaizGFGcL4E38HXn9d/121RguAwwZ8AsDKnWUUe+rIz9HaTlERTJ0Ka9e2FSyTrGSSy5bFmMKaGiCssQwFYOzgGgB8ATfOPD1W65qV7D+pNWOSUZaVlZlyERlCsLUF79bkbaS+9PpYOjSFdVfwFWSoYDGmMAPA+zsOYtHSrKg2pXQali1bYPv2UJu2VU/v/xlul46sKXLXE7SEktOpBcuGDXl4vRHBku9uZJ8i7ZTXCSZ1u8fhQ3m9YVNY1qhxAIwu0GWI1+0ZjMMSLNUP38XIyqf48ktojXbp9ArTp0835SIyhG23/JZNPzoPFbvEPgFpru3Tq9mNM1KwGAybGodw8Qd/55iL94lqf+EFuOgiuPpqaGmBkSMj+wZmV7PPiAYAijx1nH30VgDOPVcLFp/PwcqVUFerhU++q5kiTwPDh2qNwxsWLNYv3BIsrpJSnP36M3PAe3q8qR/jyMkNn/eQ0k/x++Gvf03vNeiIG264oU25CJfLZcpFZAhNny7Ub5IVLOl9MOnVeizGx2LISP6zQT9lBwJCIBC+x3PXXfrvF1YSimOPhQcfBI+jlRxnC/uOruXztdp5v88wZ/g3Hcq8v3QpSDAIOMhz6Uyy+41rZOnSLCYN1n2ynFqwiE1jzhozAce2T9h8zQ+R7JywxgJw1MCFnHgi3H8/XNeDJWSuv/76uEkRTbmIDCNJwdLq7VkfS3eSkRqL8bEY1tSPDL9fa8stWVOj/65apf8efTSIKPp56hCBKaN0hyJPHcrrpXHR+2z7+/9j3DjIygrw6adQV6u/VyHBsu/Yelatgj21+ufgcWhjt12wuIeU4a/egQoGEYcD8URMdCJwwAFQVZX5K/ANPUi4jlByAsO/F5W5zkjBYnwsXx9274arroKdO+FnP4sIkXX1wxmepx2fdsd4bM6v4cNh3MhWij06hnjfEdWAJVj8Xrb+6dc0LHgTh0MxalQjS5dCvWUKCwuW0TUoBUu+zMUlfhxi3Qgcke+fw5OF8nm15HA42hQfC63A37kzDRfFsHeRpCLi7WHnfXeSkYLF8PXhvvu0eeuEE3QK+7/9TTvBNzcN4YQhC3A5g1GCpaUFhg6NbJeWwg/O3ckZw/QK9ANGbeekyV9yaOmnKFuYjWptYezYBpYuhZo9Cqf4yXHqMLDJo3RCyiVf5kX8K0RrLOLJgkBACxdH259NKEuKSUhp6CzGeW8wpAGlYN48/T4kPLZt01pLQLnYp2gt+4xoaKOxhBY8AvTvD5d/ZzuXjvsPADmOFh66+EnGFGxC2X6pweYmxo5toKYGFi52Upq1O2ypGN6/jsJCqG90hv0rAOKKuCDFrQswBVtbEEdbTTokWKpSXqNs2OuJ8bEsX26zktnIhKjCdJGRgsX4WL4efPQRfPVVdNuyZZGn/qE525kyqiauxjJcpwajpCSSNh+slfrWr1b5fGHtIiRYAN772MPA7F2RQf1epk7Vb0P+FSDKFCYeLVhUS0tUe4jQUhGjsRjaEi1YYtK7hdldk9bbsTGFxWJ8LHsffj/Mnq1Xy191la7gOHcu5OZGStr/8Iewbl0kPUq/rFr2HbWHrVsj2YObmyE7W4cPFxeDy0VUzRbl84UFjfJ5w1pHsLmJ0aMbEQGfTxiQvTvqmJBgcTt8SJZOEdPGFAYEW5oRZ9ufzcCBei62tYkGAwBKKXzbt9Dw0QIgsWayszqtt+NeNYWZcGNDWqmo0H6Tf8UUn54/H554Qr9CiGghc+GF+riJE+Gee+Dtt/X+fp5apozQmsWyZXDccVpjycmBX/0KTjxsJ/49jrYaS5Rg8aC8XlRzMzk5AcaN01rSAJvGovy+KI3FkZ1DoLUlEuMMOCxTmGptietjcTph7FhYubJz182wFyKizWAKNv30ElRzE2OfXUBLS/zuTc1x7GN9lIzUWAx9l6OP1sIjNjrq0Uf13/79I20uF/zxj3DQQfDznxO+ub/9tjYdFLnrmVKuo7yWLtXOTaW0xnLEEXDCx2exYc45Uan1lc+bUGOByDkGZtlNYRHBkuVsxZGrFz+GcoVBxBQGxPWxKKWYOpWMSe1iyCQUyvr+QeLULUmUHuozGMFi6BZCTuyQ33L9ejjxRNi0CW68UbcNHarNWSGGDIEBA6C6Wihw1eNyBCjObWb4cCvlivWkl2NPCuv3RSWqVD4fBAOR95adLdgSLViiNBafj0mTwOUMao0ltKo+jikMCGss+TOOt83Db6WNiay1MRiAKOe9UgpXAjuR3280lj7Lc889x2WXXcZ3vvMdXg9lMTSkBfsTV2Ul1Ne7mDwZbroJdu3S2kpurjZpgU55b0ckcuMPrUtR1g3bLliys6OPC5vCnE6U3x+u4aJ8PsRlCRbrifGAA3TXUKlh3c9LVhZMHNVIrrMFydFZkaN9LG01lkFX/5qScy8Jj7H//np/pmc6NvQUlqCwCRbvpnU4/Y1xe7eTb7UzGOd9LImiwi655JKkS7Em4vTTT+f+++/n3nvv5T//+U/a5/51QCntrL7lluj2NZEii6xcCddcsx8rVsBtt0UEC8DBB+tEkvEKGYYES7+QYAlowbJypV5MCTEaC4RNYY6snA5NYccfD/f97iuOGriQwhNPs/pp28Sdv/iSa6bcg3uQXihjD1cOhRvrE+mfjThdOAuL9PjeSGSZMYcZNG1XRm7+yfdo+ejtuL19vrRqLGYdSyyJosIuvvjipEuxrlu3jm9961tRrx22wuQ33ngjV1xxRY98nr2Nbdu0D+Xaa6ND9HdHAq245x5YsaKQ0lJoatLFtUKCRQQuuADy82lDRGPRixaxBEswCIsX66a2GovWUCQ7O8oUFmxqDGsdIcHidMJ5J27B7QhQdNIZOPuVhAXLAeNrmFz8FZ6helGKv3p7+BzRGkvkZxMSOMrnZfBgGDTICBZDW76sGc+45xYw7rkF3PxOfCVib1pd0aeiwmbMmMGGDRui2uylWIFwKdbDDjuMl156qc0YSimuvfZaTjrpJA488MC455k7d264FKzX66WioiLhnBoaGtrd35P01FwWLeoHaLtPcbGP++5bzODBrSxeHGkP/ZvOO281d9yh087v3v0VFRVb2h3b680FDg6bwjZv3EjL+I+AQ3nqqSqgjLWrl1Hxzi6sNYl8tXIl/YCWoKJxx3Yc3lY8QPPnS8LjbvrqKxryB1JRUUHOymX0BxYtWUKpP0hdVSXLKyrIXb6cEmDVnjpKAe/2beHr6dq1AytHJZVbt/Kl1Z6zZi39gY/few9/v/4MH74f773npqLikw6vYyZ9dwzdQcQU9tflP+iw997kY+lTgiUe8Uqxfvzxxwn733nnnbz55pvU1tayZs0aLr/88jZ95syZEy4Fm5eXFzeDbIiKiop29/ck3T2XxkYdyRXSHADq6tw8+eRhPPMM1FpKRna29ocUFXm56KJx3HGHbj/ssPHMnDm+3XP4/fDjq4MMydHaZdmgQUw991Auvxw2b9arEMv+9wzf+PV1rLXGHTd6NNUVkNevBEdOLqrFSexSgbLS/tTm5zNz5kzqAk3seA0OOeJItrz5LMX9S9h/5kxqfQ3sfBMOOH4Wm19+AgkGwtfTt20LGx/TqZXLhw/nAKu9IQu2vfYU0w+cStaIMRx3HPzlLzBo0EwmTmz/embSd8fQfSil8Cl33H0nl73NK1XHAGn3sfQqfV6wpMrVV1/N1Vdf3dvT6JPk58OwYdq0ZSckx0PtBx8MCxbAwIGtTJrkweXSAsMeapwIlwvee2EL/r9aC2EC/rBT//33dZPHuzvsoAdr7QrgyMpG+X1R61pCBG3hniHTl7hciNsdySmmdHJKZ0Gh3u7AeQ8gbh0tFvLHXHWVXsfz29/C0093/HkNXwcSCxaXRL7HafaxpBURcQA3AIXAYqXUI+31z0gfSyqYUqw9Qyir8ObN2hE/bVpk35YtemV8SLAcfrj+K6K1l9CTezKCBWD8iBYK3DpyJiRApk6N2KCzHN6oBJOBem02C/lYVCCAs6Q0asxAfW34fUgQicuNuD06sSREct6LUHbjHQy/89HwMfHCjXV7xMcCOmT6yCNh9erkPmtP0tjYyLRp0+KaiA3dgC1rvjfoidvFbUsh5A/0rGARkYdEZIeIfBHTPktEVonIGhG51mo+DSgHfECHiYv6vGAxpVi7nyVL4IMPItt5eXDeefr9eMuytWxZW8FSX68V4pBDPlnBErUuxZImoTEAsp2tYeEAEGzQtYYdWdn6Bh/wkzN5Klmjx4X7BHZHr1sBELcbcbki4cmW018cTnImT8UzpDx8jD0qLFpjsQSLLYKsvLxncobdcsstKUVJ3nLLLZxzzjndPzFDNEpFhEwMLkdEu+4FU9g8YJa9QUScwN3AScAkYLaITAImAB8opX4G/LCjgfuUYJk9e7YpxdrD/OlPemX8WWdF2srKIhmGr79e/126NCJYQvtOOEFHVc2cCUVFOkQ5EcHWlvBTv11o2DWWEFlOb5QpLNBgaSxZ2eD3owIBxOlEsiNxyf491bYxbRqLy2YKC1gaS5yULeK2mTLa0VhAC5Y9e9qaDNPNrFmzko6SfOONN5g0aRID2/snGLoHpXBJ/ApwLrEJlvQ6710istj2alNNUim1ANgd03wwsEYptU4p5QWeQGsrlcAeq0+HIrDHfCwiMhq4DihSSp3dmTEef/zxuO2mFGvX+OADvQreXj8+RCjnV23EkkRWltZKamq0wPjNb7RgGTNG7x8wQIcXL1q0ARjJ974H3/52nPUngL96B47CItadewKuQUMZee8T0Y9ulvYyaRJhX012jCksWF8HTqflL4nUq3dkWSd0OLVWYwmUsFByuRC3h5a1nxOoq43ETjva/sDF4QhPwJ6EMrQA0z6fkCW2qgrGjaPb2H///SkpKYlqSxQl2dDQQGNjI8uXLycnJ4eTTz4ZRxwBakgjtgqSzoSCJfKAlGbBooAlwIsprmUpA+ypVCuBQ4DbgTtF5ChgQUeDJCVYROQh4FvADqXUFFv7LOuETuABpVTC1YlKqXXApSLyVDLnNPQMdXU671ZxsX7KBh0qvGqVXhlvT6rocIQLKAJaqADhlfFDhuiV9SJQUBDpF9qOx4bLzib3gIMB8G/XochtUrSghdmkSfDZZ+BxthJsagj3CTTUIU6X5S/xgdOhNRZLy3APGoxvaxXOxnprTC+43FYVSJ3HaevN15F38BF6vnFygYFeEKn8/vgaS4wpDLQ5rLOCxe/3M83myLJHKrZHoijJu+7SEW3z5s2jtLTUCJWewHpQCQbhk53xQwS70ceS1pr3Sqkm4NJk+yerscwD7gL+GWqw2eKOR0u1RSLyAlrI/Dnm+EuUUjswZBz//a/+W1OjHfPDhun09a++Cn/4g/5RTJqkixMdfLCuoRJbzWDqVHj5Zb0/Ly/5c4f8J02fLoxuD5mqPB6CrZFUsFOnasGS7fSGHfYAgdoaraHk5BBsbkKyc7RwsJJIugYO0YLF8sUovz8sdJq/WAqAt2ojecHD9IAJbrridKGIFjyhrMdBbyTAOR1Fv1wuF4vtcd1p4uKLL077mIb2WfZZ4vIfbodNY0mvYHGKyFxS11iqgGG27XKrLSWSEixKqQUiMjKmOWyLAxCRJ4DTlFJ/Rms3ncKyBc4B/ePq7AIys/isY5TSZYGdTh1x9eqrcNllsN1acP6HP+i/t94Kp56qywYfcQT87nfR44RWxi9cqDWWpM9v86VEt+sfmyO/ENUSKXJ/6qmw+PmvyHa2ErRFeQX27MKRX4CruL9O6eLzajOXlc7FPXAIzRDWWPB5wyYsd9kwvBvWkjVqHMp6wpRET/Mu6wZhEyzOon7gcuHbFvntDRumtTR7iptUCQQCHX5/Gxoa+Oijj2hsbAz33b59O8uWLQtvL1igrRaZ9Fvoq7/NVOddZvnsFy1eBhwZt4/DZiLz+zPi/7QIGCcio9AC5VzgvFQH6YqPJZEtLi4i0h+4CThARH5tCaA2KKXmAnMB8vLyVGcXkJnFZ+2zbZteF7J0Kdx/P/zsZ5HkiZs3awHR1AQzZuisxKHiRKpt+qOwY335cjpcFGhHdZA/3JlXQNAmWM46C/Z/7PsAURoLaC3C2S/ibxCnM5zOxTVoiB6vMZLYMiR0hv7+Vjb/4vuo1tZwKhgkvmBxZGUTpDbaFOZ24xk2itb1kfjinBwdLdeVZJROp7PD729FRQVTpkyJWsR75JFH8re//Y0RI0ZQVlbGj3/8Y/79739nVEBLX/1tpjrvNXf/PwjCxH32S9hHbPnEAkEH3/jGzLhliztBh6YwEXkcmAmUikgl8Hul1IMiciXwGtr69JBS6stUT95jhlal1C6l1OVKqTGJhEoIU5o4NXbsgC+/hBdeGEpjozYXXXEFNETcEKxfD9//fiSl+5AhcLYVQvHtb8P++2shs3s3VFdrreTWWyOmsvYYORIKrTWFiTQWb+VGWjeui2qzR1JFtVs+FkdBtGCxE4oEC+Ny4exni2d2OMPCw1lQhHg8NlOYL2wKcxX3I3vsPgSbGyPrWBJoLKHxYzWarFHj8K5bHdZ4gB6pzXLDDTeYKMk+gM8X52nMIlaGpLEmS4fZjZVSs5VSQ5RSbqVUuVLqQav9FaXUeOtefVNnTt4VjSUttrh4WDbBF/Py8i5Lx3h7Kx9/DKWlcNFFoVXp41m3Tpuktm7V5q2sLHj3XV0b/q23tLC59dbIGGVl2gk/dSo89FBE45g0CU5JMuG2w6EF07vvJhYsm666AIBht83Du2kdBUcdl1BjCZnCnPmFeFvWxu0TDC2KtBY4itOJqzhaYwmbrAJ+nP1KI857fySdPoAjJ5dgUxMq2L4pzNWvv04VE1OaOGvMOOrffgXvxnVkjdShcVOnwn/+o4V0aWmbodLC9ddfH/cJ2kRJZgpabHjjPz/pHhItdPz+SKnuLpJW532qdEVjCdviRMSDtsW9kI5JfZ00lr/8RQuCVFEKDj1Ul8MNpTopLW3l+ee1UMnJ0alF7rgDPv1UCxXQN7ujj46ME3pInzpVm75CCaBDixyTJWQO68jHsvknF7P91v9HsLWV5i8+jf/Zwj4WrbGoOPa3kCnMNdBKDelwRmksYvOxKL8fV0kpjpApzOeLWpfiyMu3NJZAQm0FwNV/gH4Ts5Kt4MhjceQXsOuxueG2WbP0UNdei+FrTjB+pHFcelJj6U6SEiyWLe5DYIKIVIrIpUopPxCyxa0AnuyMLS4eidLm721UVVm120/suO8770ScwV4v3H579P4XX4Sf/WxVePvOOyP7fvYz/XfqVG0iGzpUm78Ajj02si/EwoXJr5IPETo+2aiwnff+lR13trWIqmAwvHbFmV8AwWBUKG+IUIoW90DtPxGnE0duXkRLsUWFqWAAV0n/aFNYPI0l0L5gCQkuf82u6PbCYvKmHY538/pw29Sp8N3vwrPPtnsZDF8DAu0Ki+iHpkRux86ctjfrsSQbFTY7QfsrwCtpnRFaYwFOycrK6rBvXyZUwLK5WTvTHQ745BOoqNACx35zP0YnQEUpXdr3hhsi+/r310725uaIU+XCC+Gaa3To8D776DYRHQUW4pNPIqYvuxm+Myb5ZDWWEC1fLY/brryRdC2OfL34JdjchCPmuxAyhbmHlMGnEKirRURwFhYRqNmtnfehKC6/H2eJ3RTmj9ZYcvMgGEC1NCeOCANcVv4xe3qY8BjZOQSbo/1B48drn1Vzc/zFoYa9m5ZANv9Zeyo73kxs2xLamsL2BjIyu3Ff97H86U9aqwiF6yYiZJ5yOPRixDVrtL+jtlb7O2bM0A7gQYMix6xeDQ88ENnes0dnHXa5oLQ08mTvdmv7vlLamQ9tFykedFDkvb14ViohwyFCK+OTvYEq27oPO8GWFpRlanLm64gAHXLcL8okFgrvzZ4wmdpXniFoOfNdJaUEanaD04ln2CjdNmgIOJw4fF6CzU1WZckYwQIEGusTRoQBZI3WidHc5SPa7JOcnKjQaIhezzJ2bMJhDXsp//f5pTy65kz4PHEfEdiveAXbW/qzvWUgjfGrFneGzq5jSQsZKVj6usZy3XX6b0eCZbn10N7cHDFz1dbqG/4nn8Azz+i2dbZgqvHj9c37llu08CgujuwTgYcfjhZEIrDvvjqNe0dr4555pn1HY3tkZ8Otfw0wvvYVgs3H4shpXzrFM2/p9pa2Gkvohh2M+DaCjVo7yx43Kep4V+lAWtd9hThdFMw8EfeQcrInTKZhwRsA+HdXa40lN/LdCgmWYEN9u6awrJFjGH7HP3EPLW+zz5GTq9fQ2EKZ7aldjGD5+lHZOKTDPoLi6Zk/4J1thzLno/9j504YNSotp+9V531GCpa+rLHYEw8OGqRNUjNnatupCIwYoaO55syBr77SJq6339bhuiUlOp3KqadqwQLw05/C3/+u3//mN1pVnj072idiJ57wcDiiTWeJOOOM5D9nPC47+Ssqf/UXmpYWkH/YzHb7BhOEGgdbWiLhxnkhwaIvarw6K4686PrGrtKBVl8/IkLOPjoDUSiNvn93Nfh9bU1hQKChoV1TGIBn2Mi47Y7sXGuuzdo3RHRqF8PXj0Z/x6p/yBRW7NFmWnt5775MRgqWvow9t9aOHfDXv+pXLGVluiLjmWfqtSIejxYyGzbAhAmRfqecEhEsv/pVJD9XbxH0ttK69ityJu7bZl8ofDjY2IB38wYGz7uN3bsqKTnru237JjCFqdYWLT2dzrDWEzYxWYJFcnJRVuEucbspu/GOsNAJCRb/ruqocSP+kWodFRblvLc0lg5MYe3hsGyAweamsGCxaywGQzxC4cahnGFpdN73qiksIzPR9eVw4y++iN8+YED0dmiNyLhxWlPJz9cmK9ApQQ48UL/f13b/7m2hArD7iYeo+s0VUSvNQ4Q0jUBjA60b1uKq3c1uWwhuFAn+t8HWFm1OcrpwZIdu1s3W+PqYrOERW4G4XORMnkruftphFBYs1dGp6VxhjWVX1AJJiFSMDNTs7lBjSYRYQtBeqbKgQP/PNm3q1JCGPo6D5OOMnVb6/DQ67zM/Kqyn6cumsC++0NrHO+/oxYlbtug6JFOnas3E64XBg+GCC7TaO8nmIrj9du2wP+wweOklnc6+tFRrQbYimb2Kf6dOJNZq5deyE1p/EmxsQBV0Tgqq1pZwOHBIYwnGaCzusuG0rLIi253RX+HcAw7BNXAw/U4/N6rdkZNL0JOFf/fONhpLSBgFGxui0sKkQkgIxjrw99lHZ0UwfP1wOjoWLKGV96H0+SYqzBCXL7/UN5PQAkN75NV3bRahrVu1ECq3+YHz8/UqetApV0LFtSZMiDaP9QY7H7id2pefpvi07wDg37EN5fMSqKu1LRyMmMLs6VpU+4H8UaiWFq2ZuCKFukJaQGgct72yY4yG4cwvYOR9T8YdO5BXQGD3LsvBHr2OxZGXrwMCOm0Ka6uxgH6gePJJq4hg5pY0N3QDjgQ1WKLRprBQJcm9RbBkpCmsr/DBB22TMn7xBcRUio2LxxMxd2UyyudD+f3Uvvy03raiubyVG9j21z+w4ftnhcOAQ9FcwabG6EJcCfJ9xSNo+VjE5cZpFXUJ1GiPZqh0sLOoX6c+SyCvQEeF+bzRFSEB1wAdStdZU1jYbBfzWadO1SHhmaJxGnqG//0P3t02PYme+mkjZApLo4+lV8lIjaUvhBu/+SYcfzyccsr4sKlj8WJtT09GsPQVNl19YVRNFJ9lCvNu3oDXSiqpfF7EkxVefxJorI/SWIIp1OgN1NVoU5jThThduPr1j/hLQs77TmZkCOQX4q/eGhUSHMLVfyDeDWvbDTduj3g+FohE7y1dCsOHd2poQx9DKR0JGo9cZxNNgUi0mC9oZeBOv4/FrGOJpS/4WI45RocMz507lBdj/m0zZvTOnNKNCgYjdUasoi3+HVsBCNTsifRrbQVPVkRjaWyI1lisVCod4cjN1ya2QCB843eVDgwLFtVFweIvLsG/UueyF5cnal9EY+nc2Il8LPvuq01gS5fqMHLD3k+itWALTjwLlDDj9UgR3YDS37fuct6nbbQUMaawTuJw6CSPL7zwHjt3ws6d0NKiH6qPOKK3Z5cevJs3hN87svTSfN+ObUAkVxdYIcLEOO9tvy5733jkHnQooFfI+3ZstZz3bQVLOJLM6WTA5T+n4JjUMvj6i21JKt2xGssA6zN0zhaRyMeSl6cXtXZ3Cn1D5mAvV2HHJQE8zmip41fW99yxdznvjWDpIgUFfkpLdfRWVlanLSkZRaCxAd+2LTR/uTTcJpZZMvxEbkvZGjaV2TUWv80UFlOUK5Yh1/6JUY+9jHvgYPw7tlnrWGyCZdcOlFJRGkvRiacx6KrUUgf7i+zZj6N9LM5CHcUWbOpcTg3JygaRNoIFeqY2iyFzSCRYHBLALdGSwxe0vud7mY8lI2+DfXkdS1+iadli1pwxA9+2LVHtW373Yzb+8Fyalup8/uL2IJ7seEMAbTWWQIwprG1RruiburhcOPMKdG36HduifCCu/gNRXi/B+tpwVJg4O2fB9dvqtcTOIZSXrNOCRQRHTl5cs98hh+hCaybT8deDRPm+HKLCCyFD+IL6e9gNprBeJSMFy9clbX5vU//OqwA0fb4kqr11nV782PTJxwBtoqhi13oEW6IFi2puCrcBBGJutrGZikO4Bw5Gtbbg31MdZQoDa8GjzRTWGVR2JENmrCkslJesK7iHluOt3Nim/Yc/1Fmk42Vg6Cmee+45LrvsMr7zne/weiittqFbSKixEAybvEL4LR9Lpocbi8hMEXlXRO4VkZkd9c9IwWJID0opGpd8rGuc0DbXVsi8FairiT9AMEDWWJ1z356CxT2oLPo83pBgsWkpdTUELa0gGONjkaz42k9IiPi2bQmbquyCJRRu3FnnPURClWOd985OLui04xkxGu/Gdex86E52//eRcHt2Nkyfnv6Q41tuuYWBAwcyJSYM8dVXX2XChAmMHTuWm2++GYDTTz+d+++/n3vvvZf//Oc/6Z2IIYrEpjAVNnmFCAS7zXnfISLykIjsEJEvYtpnicgqEVkjIiF7swIagGygw+x3X0vB0tjYyLRp03jppZd6eyrdStPSRWy94Zfs+e8j1FW8xtqzjw473yFi9vFVReccEXfkphsqtRuw+Uncg4dG9Y/VWECnRwlaiRkD9TEaS3b83PqhtCuqpTmslYSFjV1j6WTkFkS0rdhwY0dsTYFOkDViNIG6Gmpf/C+7//1g1L6yMr0oNpVqgh0xa9YsXn311ai2QCDAFVdcwfz581m+fDmPP/44y0NptIEbb7yRK664In2TMETh8+n1bfFQStoskvWpXvWxzANm2RtExAncDZwETAJmi8gk4F2l1EnANcAfOxq4TwmWSy65JOkntPa45ZZbOOecc7prmknTuORj6iuSN0u0rvsqrH3Yqf/f69TOb2vADzbpR6faN14Kp42vffkpfFt1CHEoPUus+caeMThU00TZnNKuQdHpwEM+FnupPC1YcrRD2+ZjGfCjX4VDe2MJCRaIONedRf3A5dIaSxfDjUHXrQfaLJAM+Vi6gmfEmIT7ysr002io9HNH+P1+pk2bFn7Nnds259r+++9PSUm0WXLhwoWMHTuW0aNH4/F4OPfcc3n++edRSnHNNddw0kkncWBfWJnbR/n5z+H66+PvizWDAfgt570IOMWfTo3FJSKLba82ocdKqQVAbD7lg4E1Sql1Sikv8ARwmlIqdOPZA3S4wDAj17Ek4uKLL+bKK6/kwgsvDLeFntDeeOMNysvLmT59Oqeeeirr1q3jrzFG7Yceeohly5YxadIkWmw+gO7Gu3kDta88Q+n3fxx1U9x6wy8BKJh5QodjNH3xKVuu/zGll/2E4pPPjNq3/bYb9Zsf/7+o9lA0VmDXTpSV7r3mhSepeeFJRj3yotYCAO/GdVF14B15+eHV7q4BA9vMJdjYgCM3Pyy4gq1tTWH+mj2o0kFIdk5Y2xnym5vJm344LSu15u0sKaXwmJPCxzj7leiwumAwrFGIw4Gr/wD8u3ZE6rF0xRRmCZZgzP8/kXkuFeLVaQlhz3Q8eHDHY7lcLhYvXpzyHKqqqhg2bFh4u7y8nI8//pg777yTN998k9raWtasWcPll1+e8tiGjpk/P377Zfs+T66r7T0nFG4M2hzm96ftluxXSk3rxHFlgN1oWwkcIiJnAicCxcBdcY6LIiMFS6KV9zNmzGDDhg1RbfYnNCD8hHbYYYfFNXVVVFTQ2NjI8uXLycnJ4eSTT8bRzTHCW266Fv/2LRSd8m08Q/WPPlBbk9IYLSt0GbpYs1U8mpcvI1C7J+ocKiYMdsNlZ6O8rWG/QMualeRM3Bf/7uooM5FkRcxWBUfPwrd9KwUzjqdx4XthwRIbFQbo0GOnC0dObtiHE3KYh8xbhcecRP/zI2tgxenCWdSPwJ5dUZFfrv56LUtoZX9nFzECOK3IsMCe6PLCkoZEXq6SAQn32QWLPX9cT3H11Vdz9dVX9/yJvyZs26bz+yViiKyP2x4KNwZtDsvUlfdKqWeAZ5Ltn5GCJZWV94me0BJx0003ATBv3jxKS0vjCpW5c+eGTQ9er5eKioqE4zU0NLS7H6BsxzYEWPzOW3jLRgKQs/oLQqsq/vf6ayi3R+vDfh8S8KOyov0QJQs/JBfYsXQxq55+En9/S5Pw+wk9J+e88zLv1tUw5OFbAWgaM4lQ8oj6HduxG39CzvjKQ45hwMb1LH/xaeq37qD8zmjz6bIVKwjpLFUNTdQdfxZrqrYzUAkhT8zaFSuoL6igeONG7GW3fECzy4N72xYEWPb5F7TWNJG7aw8lQOWXn/N5zLUb6M7CA2zftYuV1r5+SsjeuJbKZUspBT5ZuhTfliRtSjYaGhpYmd+fwcByZw7+mHOHrmNH/8/2sOssFe+8E848WV3tAQ7nnXe+orBwS3g+XTlXPMrKythsixKorKykrKysnSMM6WDVqvb3x9a2D+EPRh6SXI5AJqxjqQKG2bbLrbaUyEjB0hNc3E6d3jlz5jBnjjZJ5uXlMTNR4h/0Tai9/f5dO9lgmSf3HVZGwQzdd/f2DWHjZtk9N+EaNIQRdz7Klht+RfPnSxjzzP+inqI3PP4P/EDWlk0Mfuwuxj67AADv1kpCOkz/zz6mcPBAQh6NYn8LoWWK2cEAsauCBv3iD4w94hg2VLxEmdvJgEMOZv2dkf1lN91FeVYWlU89BMDIceMosT5r1VvP0rxTp3cZOXQo/WfOZPsXH9GwJlL73ZmVTb9hw2ncoW+kU6dNJ2fivrSOHsHmt55nxOEz2D/m2m396A0ad2xhcFlZeF+dv5Eddy9lXF4We4BphxxCVjv+jERUVFRw5MxvwRlnE69S8Jrb9d/2/p8dERoDYFquC//O7RR/62wCAV1SWmQ8M2eOD8+nK+eKx/Tp01m9ejXr16+nrKyMJ554gn//+99pPYehLbHJaGNJKFjamMLSNqXOpnRZBIwTkVFogXIucF6qg/Qp5308MukJre7t+bR8tZzd/32EjVd+l8ZPPqLyuivD+/27dobf26OzAPzbt9K45GOarTUlvi3RsamxC+8aPqxAKRV2wIewR2/5tm+NtDe2XbiXM/kAQKeaDzY1opojea4Kj/smOZP2i4rgEo+tTrzNwR9stY7z+8NFswCU0xnlqA+Z2LKGj2Lk/U9RFOMrAsgao+sD2Few5x5wMABNiz/U43TBFNYeo+a9wKhHXujSGOESAsC2m6+j+sE7AO0W2m+/9K7Av+GGGzjssMNYtWoV5eXlPPjgg7hcLu666y5OPPFEJk6cyDnnnMPkyZPTd1JDXDqM9pNEGkv3msIst0L8KYk8DnwITBCRShG5VCnlB64EXgNWAE8qpVKuKNTnNZZET2g7d+7s+OA0ovx+dtz5ZwAchUUE62qpe+NF/Labu12w+Hds1RmBLZOUI7+Qhg/ewTVgMP6d22ha8hG+qk34tm2h6KQz2qRj3/Z/v9Orx2NyWymbU1q1NOOyp0mxGPDDX+ApH4GrWK/pcOTqWiT2c4RCjh02p7Y9DNnu7FatrdY18CGeLBy5eVpQOV24S9sKFoj4WWLJmTwVgNavIiGyrv4DcA0aSutay97QTQtnnUXFXR6j7KY72XHv32heuqjNvv3318Xe0lWb5frrr4+r8Zx88smcfHJqedQMXaOzGovPprG43D27jkUpNTtB+yvAK10Zu09pLLNnz87YJzRvVSRkN1hXi3iyaPrsExCh+Izz8AwbZTmg/QTqavBt30r2+Ej5SM+I0fird4ZzVnk3b2TnA7dT/fBd1L76HASDFB73reiTxkmYGCuA7EWxQrj6DyBn0v7hbV3kqj5KSwhpJ2LTWBw2jcUerhu0Oe/F5QprM8rpitFYokN845E9Ti/IdJePiGr32CKuuhJu3N24Bw2l+OSzotqCra14N29gyohd7NljShXvjXSksSR6jrD7WJyOYDp9LKY0cbI8/vjjcdsz4Qmtde1XUdv9z7+M6od1VJ4jNw9n/1J8WytZ/73TUX4fyusl/8ijaf7iU0Cbo3zbqsI5toKNDeHIqFCWYc+osfT79oXs+e8/IydyOOl//vfZ9eh9+rgYk5lnSDnNy6LDVmMXKDryCtpqLJYQidJYbFF6Dpv2oqIEi1sLlp3bIcYUhqvjr5u4PQy/4584S/pHtbsH28ybGSxYABy5uVHbwcZ6Nl19IcNqxgMP8N5bTYy4JDf+wYY+SYeCJYEpbFR+ZBG7O73Oe1OPpa/SuPhDBs27jU3PPhxedAg671QoFQrolOrOwqI25hH34HIKj/smudMOp3Hh+wQb6sMLIAON9eGV8f5q7UdxZOegcvKixuh/3qW4h0aCOPwxYbSuQUP0SvVgxHUvbQRLvk4caRcslhCxayZ2H4t4IoIlZOJTVoix08q7pVwuPGWR6lbJaCwAHmvNjR33kIhg6S4fS7pw5OZHbQcbdVj2PoVryfO08MqNr3H+JWf0xtQM3USsYFm8GKbZVpHYTWHzj70ApwTY0jSIA0si2VRcjrQukOzVeiw9KlhE5HTgm0Ah8KBSqk9nw2v+/BPctbtRuTl4Ro4hZ8pUap59nH6nz45yYjtycuOu7HYWFTPwimsAaFm+jEBjQ9j4HmxsIGCtEwnVI3Hk5ERVZgQtxBzZEa0iGJNJ2FlYjCM/n2BdJF+XIzv6admZl49qadbnD/WxCQ69QHFnlGAQd0TIeDetQwX8YVNY1ujxWktSkTol0DUTlnuw3RSW2c9DsRpLKAmnyxHgwOJlLKreP24GBUPf5Nvfhvffj24LVQ4N4bAJlrEF2mxu11YA3A5/wiJhfY2kf6Ei8hDwLWCHUmqKrX0WcDvgBB5QSiXMqaKUeg54TkT6AX8F+rRgCTQ04M8vZOw/Iia6wmO/iXvosKgFeI6cXBzxBItd+OQVRGkMgT27wp48X1iw5EYvQkQLllgNBNBmJ78fZ2ExzryCaMGS01ZjAb1CP4RdOyk4ehZ7nno0ykMZ0lhCwQbeqs0Q8CNZ2WE/iWt3dABFshpLPKK0GFeGaywxmZLtwn5K8So+2HkQLbvar1Fj6Ds89VTbtjbPUAlMYXbSLFh61RSWivN+HkkmLBORfUXkpZiXPQzot9ZxfZpgfW040WIIT9lwXZvDdnNx5OaFzUN27Bl1HfnR5hN7BFlo1bxk5+CIMYU58/LbaCCSlY0jV/dzFhaFV5uHzxXHFAYRzQiiBUvJuZcw+Ff/j9wDDwm35R2q6y+XzL4EAO+61RGNZexEAJ0rDCg+Y7Y1/86nTbHnJ8t0U5gzL/p/7bOFhI/O30RAufjqs+TKNRv2DhJFhdnxOAPpFCx9w3mvlFogIiNjmsMJywBEJJSw7M9o7SYK0Sv+bgbmK6WWxO63+swB5oDOl9TZlcndsao5lkB9bfjmGYs9gsqRk4ujoK3GYm+z34zsebii+mfntjHmOvIKohzsul8Okp1NsK4WZ2ExnvIRtKz4LLw/Ni+WMyRY7BqL7ZFLnE7yD5sZdUzW8FGMfXYBKuCn+oHbaV7xmQ43drpwDxhE2Q13sLBKh1r3v+BySr7zvahrkipRKVcyXLBAxHwI4NsW8b+NLtAhYSs/b2XQ1MTHBwKBDr+/PfEd7w72vnnPbNOi+0XakxEsDlrZubOGioqlnZtgBtFVY3XchGXt9L8KOA4oEpGxSql7YzsopeYCcwHy8vJUZ1cmd8eq5lgC9XUEcztOt57Qx2Jrs2s4rtIBeDc1WO8HRvlYYgPmHXn5SIxpS2s2WotxFhXjGRYduhvr63DEESyxtVsSIU4X2ZP3p/nzT8DhDJu7cqZMRVXX6D4iaUnyOOQ3f6bujZeiAgcylaJTvs2uef8AogXLqHwtWFatVO0KFqfT2eH3tye+493B12Hesf2SWbeU7QpCbnG6rk2fMYV1GaXUHUqpg5RSl8cTKiH6SmniQBxTWDy0j6WtALIvGHTk2QVLxGroGhBJhevIzm3jGHbmF7Q1beXk4sjJ1SWFs3OiQ3Xjzc8yybWus4VMp3Dtc/c9CN/WKp0gM4mQ4s6SN/0Ihvzmz2lJGNndFJ/6HUY++AySnRMVMVjgbmJgdjUrV2d2AIIhvSSjsbgde48prKuCJS0Jy2LpC6WJVTBIsKE+oSnMjiM3L8pRHw9nfnzB4h4YESyS09bH4sjNj/KHgDaFOXJycBQWISLhmiqJ8AwbGRUeDYTryydD/hFHhwVKVxz0exMigqukFM/wUfhi6t1MKFzLsk98uGJCww17L0kJFqef1tYOu/UJuipYwgnLRMSDTljWtWRL9A2NJdjUCMEgwZyONRbJzulYsBRGHPlRGstAm9Pa7Qk75cNtLhficDD093+jYYrOx+7bXkXO5KnkWTm23IOHUv7X+xl22zzK/vyPtvMToeTc74W3syfuR/7hR3f4ucJzLCmlYMbxQNt09F93+lvBDXYmFq1hdf1IVPWeXpiRoae4d8YfGZhdDSReIGmnwNPInr3kK5G0YOnOhGWx9AWNJVRjJBlTmDgcYT9GouqJzsLicBEq+4JHu39ERBCXi5EPP0f5LfeG18AA5E6dTt1hxwGQvc++9Dvz/Kj92WMmkDViNDn7RFffDB9/QMQ1Vv6nuzoUhLEMuPRqsvfZV2svhjC5Uw+m/4WXk73PvnisMs+HnrsvvqCHrxz7d3C0IdNZsCDxvuPLP2K/4hVJj1WaXcvOnektX91bpBIV1m0Jy2JJVOgrkwhVZ2xPsAz66fU0LfsE0E7uwdfcSNbYCdS+9FSUJhJi+G3zaPiwgvzDj8Z3XiW+qk3kHz6T6gfuAGfkGcBVXIKruCQq1xhAMDePUf98qU3Z3WQQh4MR9/0HAp37Vjty8yj/c5+PIO8W+p1xHv3OOI9AYwMNC97g0BFT4AZYsya/44MNGc03vtH+/lA54kSmsIJvnED9//Ryvjx3M34/eL3Qhcj8ECalSyypFPrqLTwjxzLs1oeo+mpNwj4FM44Pm4gA8q21H6UXXxG3v7OwiKITTwOg5NuR8ssjH3wmkpq+A1LVNOy44wg7Q/pw5uVTdNIZ5Afgo49gz56dwMTenpahGwkJFpUoDaU947dDm/7TlNalV1O6ZGR2477gY3FkZZE1aiwqDWG0HSEuV5tFd4a+i9MJhxwC2dl7gc3D0C5usYRFML5Z3x7h6BIr00bvV5HsMhkpWPqCj8VgMBjaR8Iai71SZHSXyC3YKWnVWHqVjBQsBoPBsDcQFhbBRIIl8ta1FwmWjPSxZJLzvrm5mby8vIT7/X4/rjQuCgwEAnRWU0v3XFIldu69PZ9YEs2nK9e8O+YD+ntnyGySEQBuCWksib5fNlNYen0saUdE8oD/AX9QSr3UXt/M+dXbyCTnfbCD2L9p06axePHidvukQlfSXaR7LqkSO/fenk8siebTWylGMu36GFLjvffatg0ZAnffrde5BZsaIqawRBqLw2YKswRLT/lYOpGx/hrgyWTGzkjBYjAYDJnO7t1t2z78EEaMgA2X64WxYS0kgY/FHivWCz6WecBdQLgkrS1j/fHo3I+LROQFdF7I5UBS0UpGsBgMBkOaCAV5+bfrzN7hSK8EUWH27JQuLO0mPYLFJSJ2dXiuleA3TCoZ64F8IA9dHqVZRF5RSiU052SkYMkkH0tHzJnTa6HibcikuYCZT0dk2nwMyREIwLXXQlmc3K4OB7SsiiQfcXcUFWYzhYXNZukRLH6l1LSOu7UhbsZ6pdSVACJyMVDdnlCBDBUsmeRj6YhMujlk0lzAzKcjMm0+huRYvBj++tf4+0TAb6ucGjJvBRI67yOEosLS5GPplpX3Sql5yfQz4cYGg8GQAu1pFNqyZY/0CpnCEoUbR/pmyDqWtGSsz0iNxWAwGDKV9gJFY0sFhcONEwoW+wLJtJrCOpvSJZyxHi1QzgXOS3WQjNRY+kJKl1dffZUJEyYwduxYbr755o4P6AZGjhzJvvvuy9SpU5k2TZtTd+/ezfHHH8+4ceM4/vjj2dONebgvueQSBg4cyJQpkYzJic6vlOLqq69m7Nix7LfffixZErcyddrn84c//IGysjKmTp3K1KlTeeWVSL7UP//5z4wdO5YLL7yQ1157Le3z2bx5M0cffTSTJk1i8uTJ3H777UDvXiND12lviZEI0Q75jqLC7Askla7ylSbB4hSRuZa/OsG5uy9jfUYKlkxP6RIIBLjiiiuYP38+y5cv5/HHH2f58uW9Mpd33nmHpUuXhtdD3HzzzRx77LGsXr2aY489tluF3sUXX8yrr74a1Zbo/PPnz2f16tWsXr2auXPn8sMf/rBH5gPw05/+lKVLl7J06VJOPvlkAJYvX84TTzzBl19+yS233MKPfvQj0v0g43K5+Nvf/sby5cv56KOPuPvuu1m+fHmvXiND12lqSrzPEXNHPWHI/+jnqeH8Uc/EP8BuCgvqKl89tY5FKTVbKTVEKeVWSpUrpR602l9RSo1XSo1RSt3UmbEzUrBkOgsXLmTs2LGMHj0aj8fDueeey/PPP9/b0wLg+eef56KLLgLgoosu4rnnnuu2c82YMYOSkpKkzv/8889z4YUXIiIceuih1NTUsHXr1m6fTyKef/55zj33XLKyshgyZAhjx45l4cKFaZ3PkCFDOPDAAwEoKChg4sSJVFVV9eo1MnSdlpbobbsgiNVYBuXsYuHJpzKuMLqKaBj7AslgWjWWPl2a+GtJVVUVw4ZF/Fvl5eVUVXW5InPKiAgnnHACBx10EHPn6hD17du3M2SITn8/ePBgtm/f3qNzSnT+3rxmd911F/vttx+XXHJJ2OzU0/PZsGEDn376KYccckhGXiND8sQKFntWnlgfS0eII3KwEy2hMjWlSyoYwdKHee+991iyZAnz58/n7rvvZkFMOTsRiUrL3dP09vkBfvjDH7J27VqWLl3KkCFD+PnPf97jc2hoaOCss87itttuo7Awul5OJlwjQ2p06GNJBfs6lvQ67zv0sXQnRrB0grKyMjZvjqwhqqyspCzeaqkemAfAwIEDOeOMM1i4cCGDBg0Km0+2bt3KwIEDe3ROic7fW9ds0KBBOJ1OHA4Hl112Wdjc1VPz8fl8nHXWWZx//vmceeaZ4Tll0jUypMaPfhR5f+utMTv9raiW5BOIis2P7EpvrjBjCosl06PCpk+fzurVq1m/fj1er5cnnniCU089tUfn0NjYSH19ffj966+/zpQpUzj11FN55JFHAHjkkUc47bTTenReic5/6qmn8s9//hOlFB999BFFRUVhc1B3YvdRPPvss+GIsVNPPZUnnniC1tZWtm7dyurVqzn44IPTem6lFJdeeikTJ07kZz/7Wbg9066RoWN27oQ77xxLbCxMaWn0dtX1V7P9thuTH9hmR0vzOpZe1Vgych1Lpq+8d7lc3HXXXZx44okEAgEuueQSJk+e3KNz2L59O2eccQag06+fd955zJo1i+nTp3POOefw4IMPMmLECJ58MqlkpJ1i9uzZVFRUUF1dTXl5ObNnz+baa6+Ne/6TTz6ZV155hbFjx5Kbm8vDDz/c7fP54x//SEVFBUuXLkVEGDlyJPfddx8AkydP5pxzzmHSpEn4fD7uu+++tKfOf//993n00UfDIeEAf/rTn3r1GhlSp6EBtFJZzjMxwV1ud/R2YMsmiGlrj+gKkntPaWJRSvXWuTskLy9PNTY2durY3kqF3lX66ryh787dzLtn6Wvzfv55OP30+PvuuguuuCLiW1nyzVkUuNuJR46h/wU/YNej+mGnqmkQM1//Lw89BN/7XtfmLCJNSqnEhaS6mYw0hRkMBkOm8MtfJt4X68IUUnxQt2ksWQ4dbtzeOpm+ghEsBoPBYGPPHthoW3ayenXivkcdFb3tkM5bgIo9dYD256QB42MxGAyGTGHSJNi2DZLxEng80dspayw2XI4AxQV+du1Ky225V30sRmMxGAwGG9u2Jd+3jWBJWWOJXvjicQd7LKVLd2IEi8FgMMRBKbj88vb7xEaFpb7UNVoQuZzKCJZUEJGJInKviDwlIia7nsFgyGh27gQrOj0hsYIlVlB0SEwOfpdT7RXrWJISLCLykIjsEJEvYtpnicgqEVkjIte2N4ZSaoVS6nLgHOCIzk/ZYDAYup9BgzruE5vN2CHtVuxtQ+xyjzQKlj6x8n4eMMveICJO4G7gJGASMFtEJonIviLyUsxroHXMqcDLwCsYDAZDhtDaCh991PVxUjaFqSCjHnmR8lvuBcDlCu4VSSiTCj9QSi0QkZExzQcDa5RS6wBE5AngNKXUn4FvJRjnBeAFEXkZ+He8PiIyB5gDeoV7RUVFMlNsQ0NDQ6eP7U366ryh787dzLtnycR5//3v43jhhTIeffRj4JB2+x5yyC58PgdLlvQLf45jj53IW28NStl5v37dOuqXfIqrejuDgYCvha1bm6ioSLm2VkbRlbi2MmCzbbuSdv4jIjITOBPIoh2NRSk1F5gLeuV9Z1fo9rXVvSH66ryh787dzLtnycR5X3ON/jt2bPxb2Nq1sHTp+xx11BEUFvZHKZ3qpbR0JgAHDVzB8l9chjNFU9jIESPoP3MmrZvWs/lfd5OX56G4uCDjrk+q9Ng6FqVUBVCRTF/L4XRKVlZWd07JYDAYgMgC+ERrV0aNgk2bfAwYEGnLzo68b37nBfpn1aR+4qCyzq8n4EyfjyWtiMhE4MdAKfCWUuqe9vp3JSqsChhm2y632rpMppcmNhgMexchwRIv1PeSS5Kps9LJmjoqGDUBt7PnfCypBGWlGnzVFcGyCBgnIqNExAOcC7zQhfHCZHrafIPBsHfh1Wm6+MY32u5Lqtp1Z4u1hVQk0bfiNEaFJcM8kgzKsvYlHXyVbLjx48CHwAQRqRSRS5VSfuBK4DVgBfCkUiotHiejsRgMhp6kvSTqHaV28dfs6YLCEtJY9J+eXCCplFoA7I5pDgdlKaW8wBPAaVb/F5RSJwHndzR2slFhsxO0v0I3hA4bH4vBYOhJOitYvJUb2XTVBZ0/sQr5WEIaS5Cm9GgsLhFZbNueawVGdUTcoKxkg6/CJ09+nj1Hphf6MhgMexdWMda4BNsJ9PJt7aJbOeRjcWiVxZU+H4sClgAvpmORZCrBV5ChucKMj8VgMPQk06cn3jdmTDsHpmCuz95nX7InRFeaVcGQj8USLI5ejwpLS1BWRgoW42MxGAw9yfjx+u9DD0XanngCnnwSfvSjxMdJCveoIb+9mYFXXBPdGI4K07dipzNt2Y07m9IlLUFZGSlYDAaDoSfx+WDIELj4Yr39y1/Cd74D3/5223xgdvx7dqV2olhBFI4K03/SGG7cYRLK7gzKykgfi3HeGwyG7uLyy3VesMWLwWXdAb1enalYBAKB9oWJnR2335TCmaWthmM5cCT94cYdFvrqzqCsjNRYjCnMYDCkmwcegBUrdCr8ZcvgHtvacZ8vkgI/WaGSKiICjuh7Wji7cWjlvaPnNJbuJCMFi8FgMKSbyy6DyTbf+dVXQ22tfm8XLN1JIo0l7LxP3zqWPpE232AwGPo8sWtSNmyA886DrVvblhlOOyJt1aEYjcXtDOwVGovxsRgMhr2eRGtRpk6NvD/ooNTGrH/3rZTnIbGmsKBeUhHysTjTF27coY+lO8lIjcX4WAwGQ7o49lj4wQ867peqKaxl9YrUJ+NMpLHoP670hRsbjaUvEmxuQjxZKcWxGwyGnuftt/WrI1KuIBlITbVQwWAbjSXiY4mkdEmnjyUtI3WCjNRYMh3l87LuvFlUP3xXb0/FYDD0EipFCSAOR5uosFgfi8cVCGda7stkpGDJ9JQuQW8rAPXvvNrLMzEYvn588gm8kqbUtzU1UFcHmzbp9SupoPzJC5bCE07BkZPbxsKhYuqxeJxBgsHU55JpZKQpzCShNBgMiZg2Tf/tKJ19MhQV6b8FBakfq1IwhWVPmKLftIkK039CFSTdLi1RfL6U0pDFwykic0lTEspUyUjBYjAYDOkgHcIn4didcIZIrGCxosIi61i0BuP1Rpc+7gTGx9J36WR1H4PB0CO056/o6gr7QKp5wuIQm93Y49SCpq/7WYxg6Qzd+BRkMBgSY/etHHVU4vUpN9+s79XXXZd4rM6amryVG9nz7L9pWflFx507JLo0cUiw9FQVye7CmMI6Q0zsucFg6Bm++c3I+/feg7VrYdy4tv1+/Wv9929/SzxWTk7n5lD126sJ1O5J7SBJcLMIJaG0pJzLqf02ra2dm5sN42OJJeNX3nen4dZgMMSlpaVtW3uVHzvivfc6d1ywNc5EOkvoXmIJlsJsPfaePTByZJdGNj6WWDJ/5b0RLAZDT1NT07atvVr1dg44QP+9/nqdjLK5Gfbdt3PzaOOAT+qg+BpLKNw4lPl4UEEDoHOX9WUyUmPJdGIdbgaDofvZubNt2/r12tcSorJS+1diueYaWLkSrroKSkq6OJF0/u6DkYdUcTnJdWuNpakpfafoDYxg6RRGYzEYeprKyrZtn38evT1sWNs+oGvaf+c7aZqIpK6xSCKHrIpEHyivl6aKl4Dv9Hbd+y6TkaawjCdRKIrBYOg27P6Uo47SSSOT/Snm53f9/IXvvc6aM2YQbKjr+mAhYvy1btESJdMEi4icLiL3i8h/ROSEjvobwWIwGPoEsTfbfv20yeivf9XWqV/8IvGxXVxsCEDhJ5309kPCCFIVIxmdosONe0KwiMhDIrJDRL6IaZ8lIqtEZI2IXAuglHpOKXUZcDnQoe5nBEtnCH8ZjI/FYOgpYtd25OZqwfLLX+rt7ggttqNiE0imgxiNxenoOcECzANm2RtExAncDZwETAJmi8gkW5ffWvvbxfhYOoEy4cYGQ48RCOiorrKySJvLpQXL//6X3BiuFO503s0bEI8H96ChAKhAgD1PP4YEu5AZMpHDP+Ze4pKeWyCplFogIiNjmg8G1iil1gGIyBPAaSKyArgZmK+UWtLR2D0qWEQkD/gf8Ael1Es9ee60YgSLwdBjHHCAdtKHHPVDh+oFkG+8AU89ldwYqQRybbr6QgDGPruAurfn07LyC+re6J41ht1oCnOJyGLb9lyl1NwkjisDNtu2K4FDgKuA44AiERmrlLq33ZMnM0MReQj4FrBDKTXF1j4LuB1wAg8opeIE+kVxDfBkMufMaGJSXRsMhvSzezfcf3/byK+lS2HAADj+ePi//0t8fE0NTJoEY8cmdz4V8NPwQUVU2447/5zKlBOTUGOJFixuR9qc9wpYQppW3iul7gDuSLZ/shrLPOAu4J+hBpst7ni0VFskIi+ghUzsf+MSYH9gOZAGN1ovYxQWQxLUvfUKO+66mTFPvoWkWvf2a86KFVooxCPZS1lcDFu2JH/OmueeYNdjyTzUp5GYe0lPOu8TUAXYg7bLrbaUSEqwpGKLU0r9Ga3dRCEiM4E8tEOoWUReUUq1CRYUkTnAHACXy0VFRUWynyWKhoaGTh/bEc6aXQwBfD5f2s/RnfPubvrq3Ltr3kMevBMn8O7rrxHMS0O8awx78/V+8slyIL6q8eGH75KTk/5KWMXLPsX+X6qoqKA8TWMvX76C5oC+3drHrK3ZwxrrWpQTESxffbWOiopNXTllZ1O6LALGicgotEA5Fzgv1UG64mNJZIuLi1LqOgARuRiojidUrH5zgbkAeXl5aubMmZ2aXEVFBZ09tiO8VZvZ9Ai43e60nyPd81ZK4dtSiacswcqxNNKd17wzBBobaF29nNypB7fbr7vmvX7e3wk0N3L44Yfh6tc/7eNn2vVOlmTmvaQd9/DRRx9JdnbEtNS4+ENaVn5O/+92LTXWjhWLqLOZ3WbOnMma27s0ZJhJkyZRcNRMgKgxCwsKmTwz0u6yosKGDRvNzJmju3LKDpNQisjjwEygVEQqgd8rpR4UkSuB19DWp4eUUl+mevIeDzdWSs3ryHGf6aWJI6mue3cWyVD36nNsuvJ8mld+3nHnNOPdspnqR+/rtSi6bX/5HVv++AsCdTW9cv7eZs/Tj7HmjBlJF6QKBuFHP4LXX4dFi2DDBp09+JNPuneedhYv1lUd589P3Kd1SfR6kq03XcOepx+L21cF/Oz+zzyCzTpHSqCxnpavlscfuDsXPtvuFWU33Unp9660Jhh9Tgd6Ow2msIBSak57/hWl1Gyl1BCllFspVa6UetBqf0UpNV4pNUYpdVNnTt4VjSUttrh4ZHxp4lCq6z4gWUI/It+WSnL26WTWvU6y9cZr8G2tpOiEU8Khmz2Jd9M6AFRvGaxDDtteEqx7nnsCgGBzE053UYf9d+2Ce+6Be+9tO+UXX4RvtTFwp5/p0/XfN99su2/fUXv4fH0/Wr9cAocf1bZDHBree5vdTzxEoL4WV7/+7HriYfD7GPPUO23rz8cIls5UiEyGnEn7I26PdZLoCy0CbrfC7+/yvaVX0+Z3RWMJ2+JExIO2xb2Qjkllvsby9cS7ZTP+XXEyASYglZrg3UKmBFl0IFgCdTX4dmxL/3kd+uYUe8NMREj+xpvuFynWtAq2trDjH38h0ND5vPa5ubBwISxfDqtXw1t/e4uPTzol6WDM1vWr2X7bjXo+zc3aMe+3hEW8axLTtvacYzs99zbETNpZVAxA9riJbbq6XD2jsXQnSQkWyxb3ITBBRCpF5FKllB8I2eJWAE92xhYXj0xPm5/sD3VvY9MV57Ph+2f19jSSJ0PWG3X0fdlw2dls/ME5aT+vhFaKJ7mwr7UucQ76VL/ydW++TN0bL7L7Pw+ndqCNAw/UGszEiTBmVACnt56SrFpaViV3m6l95dnIRsxDTvOXS9v0T2edlVGPvdLufvfAIQz7+8MRk5gNZ6AlHYLFKSJzrdpWPU5SgqU7bXHxyHSNZW+x2a9cqR+kRHSs/0cfRbYfeCDyvrBQ29vHPbeAyz/6E5s3R/bZX0cfPTNqe9TcJxn33AIGTxzMgQfqGhixKAVTpsQfb/jwyPuWFrjgAv3+nXfif57aWvB4IseMfuR5xj23AHf/UgYMiLSDvlmJwJo13XRx7XRwY1fdVeA8VDckSanga0ls+kn5WSp0QBeEuz2/165/3c/uJ7SQal2zEu+WzQmOik/9/16P2t716H0A+Gt2E6irBaDxwySX8SeBMyYKMJ7ZPGvkmLhh6E7lS8fK+8zXWHqarmostW+8RNG7r6Z5VhG2/O4n+k0fXyB51+2Rx6K1a+HGGyP7LrN5t+rr4bbb9Pu3th2Z9GrnELv3OPj0U9gc517g98OXCR5A7f3Xr4fHLP/sT34Sv/8nnyROhVFdHXnf0qKFKugFeN1Nb2m4Yn0/kzVJ+r2J55myfEjDb8NeQLbh/bej9gVqa7o0duiabPje6ay/6BQ2XnF+l8ZLJ04J9HmNJSNzhXW1NHHLyi/I+SotVrm9mpY1K4CIQ//llxP3tUfpFBZ27nw/+Qmcdsg6ZPAIcnKd+HzJ37CmTIm8/+wzuOEG2GcfWLcOxozRFfeSLY5UZPNj/+9/sHHjaP77X10dduzYSF6pDz7Qdv6aGjj4YB0p1dqqC0V5vTp3VX29vh6ffuKnepeDM89ycO65cPHFcFDDd+gX3ErxQ7m8v0yft7ZWp3x/9VWdnTcQgNZPfkP/rN1kXQl5efDxx7rfz3+u5/Ozn8Hpp+vU7y0t8Omneo6bNk3k00+1Y33cOO1879dPj+Fygfvz03ln3WRajyvlR1dr5/sFF+gbdkuL1tref19fx5oaGFCUOFNjp5+gu6CxRP38Y8bpqv/Ou3Edu/79QHjbl6IGlDJJCNqBV/2aHXf+GbfDnzYfS5dH6SQZKVi6GhUmTicSf5lMl9mb/CvKn7yp8auvIu/79UvtPB6PwusV5s+H+fM7F5sfe9l/97tODQNooRDi44/h44+Hd3jMf//bUQ/9U1ryKfz2t7rlPWbrN591NJaVYDbGLHfBBZH3H34Y75yDeNt6kI9vHrQGqIY5cW4xoWOXLg21JBYsd9+tBVqy+LYfgXfTENzrhuCJCenZtWsK/ZNY1hMlWGK+AHuefozcKQdEtSmlwlpaMuz57z877tSTWKbLNGksvUpGmsK6jNPZfTHptielQO2e7jlHhqN8rSn1v+J7DfzhD+k599NPw9FHp2esJUvgoovatq9frzWEdPDRSaemZyBg+/a0DdUhhxwC+++vfVag/V1btiT/2rY7mx0tpWyryWuzr7o6K+FxuU6tdua5Gjn5mEhEWewDXfPSRTR8tCCqbesNvwq/926tpOmzxWQMSci7kFDcGwRLRmosXTWFicOBdJNgaW9NRGurNhnV1lrzEP3D9HojIYQFBVru5efDvvvqZHp9DW+TD0j+f+NwKkpL03PugQOjTVldYcgQbeqKJf/zZ+jnOQYo7vI5+mfVdHmMEAMHpm2odrnv0Gu49NVfU/3ovQy47Kc4OvE7rHnlbarvv52iWacz4Ac/i9pXUfFJwpX3a86wlQd5GZoPvxP/rmoCe3a16bvtlt9S/pdIbq+mTz8Ov9/0o5SzkKSdku/OYffjD2p7ZzAJk6AlWFyOQDqc9726jiUjBUuXF0g6nW1WtKaL9hZNHX10IpNFfE45BV5Iy8qfdmjPNNBJB6u3NbVoPYeolOphtIfTmb6YCVfLbqCkTXvNQ7fhWwZwZlrOI6JQqu8EergkwK5/3U/9W6/gKikl75CjyB4zIW7fQGM9zryCpMateeVpHJ5scOUlPZemJR8nXFUPpLdMcJopOeu7eDespeG9t5LzCUnEFNaydTswqCun71Ufy15pChNH95nClD8iWHKmTo/al4pQGT8e9nTSkuar3s66C76Ft3Jjx527YS2Htzk1waLq9tCyekVazt20/HO8m9anZSz/5x8kvDwi6fv+eJw9ULUpjTgkiL9a2932/PefVP7iMpq/WBre763axLoLT6HuzZdZ/91v0vRZJOeL8vnYevN1VN8fSYjV8P471L/7JtX3386Ou29J6aGvo6wJGbJUKSFiPVEllf3BWtDqEj8tu2u7c1rdzl4pWHA6u9EUFrlJuIrbPu0my6BB0U7kpM8f8FP/1nyCDXVdKj4UbG2lakfnTI0bk5BndpoXVlD3ZjshZymw65F7Ul7DkIj6f99N7avPpWWs9siS1HxSiVhzxoy0jNMRLgm0Ceetuv7qsJ+j9rUXCNbXaiGBztUF+ru58YrzaPz43fBxDR8vYNtff8/2W/9fZPw4Zq3EdCA5Mj2YxloyoVJYk+d2+Gmp7tv+24w0hXXZx9KtprD0eNWymnfQ4OsPOFGBQNu8RUqxa97dFB5/Cp7yEQA0f7GUquuvjvQJBql+9D5qnn8CAgEKZ51O3avP4Rk2iqKTz2T3fx4mULMb0AWLfNu2kDftMHxbK/nwhkd47ct/dWruN93eVqAWueuo9cWPQx5bsIEsR3oWAZZk1TChcC1vbO36TVZaGhmZXxl334TCdV0eP8RRAz/m5arj0jKWgwBBujcjRa6rOa7ppunTheQddGgbU6TyelGBABsvPxd/9Y6ofYE9u9uM46xP4Wm8Q5Uken+grpZgc+IMAj2NOK1bbDKmMOuzuh1+fIHMzDqSLBkpWNITbqxQwSDiSK9SZtdYuqKHS9VKmvxj8VYF2HTl+Qz+xR/JPyIS7uTfvpWaF56kcdEHjPjHvwHY//BCVtfbImGeC735gW3bcpTeCXBa9EnD/ScBJwBw9KD3OXbI+4zM38zqutGU525lZ2sJtV4tJBTgQKEQmgPZDM3ZRvn5s/E+fRcNfu35dkmAbwz+iDe2zKAl4OGwAUtoDmTzStUxDMreyTfL3sY9bjJ/8t3MjpZSnBLAIUGUcuCQAGMKNuIPuqj1FVDgauSIgYt4e9sReAMejh+6gPUNw6nYdij79VvJ4bf+glH/fZp+z91GSzCLFn822a4W/EEXBe5GhudV0RrwUOstpF9WLYeULuG1Ld/AKUFOKnuHhdVTWVg9lWMGf8DIh5/jB/ffS9Zjt9IcyMbt8HHYgCWMeuQFLnngDhxyMwOydlPZNISjBi5kfcMwmgPZDMjexebGoayuH4Uv6CLP1USeq4mtzQPpn1XD4OwdrK4fzQWjn6b8r/dzy09/xCGlSxmUs5OtTYM4Zsj7LNm1L4XuehwSZHPTUDY2lOEQhVMC5Dhb2O0tZlB2NQXuBjY3DuXScU9Q8I0TWOQ9hZerjmFA9m52tJRw7OD3eX/ndMpzt+INulldN4rtLQNwO3zkuxrJcnqpbBxCrquZUuuzfHuETi5e7yvAF3Txec0+BBECQSeTi79iSvEqvBvbfrejvvtx9sUKlUSIz8vmay7HPWgog3/Wftx4R4kgt9/+p6jt9Rf1ynrAhIRNYSlpLD58wS7fmo3zPu1YOZICe3bh6p/esCv7jytBSZmk8Dh8+H3QumE1APXvvxMlWEJj28MsV9d3qT5DXK7aZx779lsFwCGly5I6Zsgxx7H1vUVt2r9ZHr06+qp95gFQ9M2zcA0YxLfX/CPpeZ027I3w+wNKvuSAEr3gVVznkZsLF455Jumxzh4RWd05Y9BCZgxaqMdyusjtl8f5o5+O6u8oKMKZm8e3Rzwf1T4iP5K8e1r/5MoQZI+ZQJbTx+xR0VEa0dcqubz0g37yW+r/N6PNWGcOj2SZOHJg6iG2hwxYmvIxscTTTBIhfh+tXy2n9avl0EXBEkxF++kNnCn4WCxZ7nb4afDFCVdMDeO8Tzchs9KG759F6/rVaR27dfXKyEYXHIdZ/YvwKjdiRYK0Md1Z2lAqC746g8uRumlPeVPzGYjTGUmI2FXSeD3E5Yo7noiEnzTTc6K+ExHWEf7d1dS88GSb9o0/PDfpMUrefC5qu+aVZ2hc8nHcTMh1b7Yt3VQ46/SkzxVFO/8HZ5ofQMOndFnf+3a0vVjc4sMX7NulrDNSsHQ5CaXNX9G6Pn1ZBpt31TH17AOZ/MIbTH7hDUb+6tdkZxN+pYLbLfgDDrbt8rDP82+zcH10hcfmxiBTX5rPy2t1Uc7uin5xSScES7xsku3hcIIzA79qDmc4xLM72Vvq3ft37WTDpV0PwRbb73r3U49Sff9tbL3hl2y6+oJ2joow8Ac/Y+yzCxhxzxPhtkE/+x3Fp0ZniHaXDWfsszbTcQ/8r2MJ+VhSMYW5HAF8qm9/ZzLSFNZVH4sjN5JZNJ2ZY/dU+9jQOIwjBixicrHOcVJ82ncA8G2tpLFqJ3Mrprc3RBi3G1p8bp54dRAB5eLPrxzDwD89Rsu7b7JqyEy++tBFoz+Pa/83h2NXRRZdppOzh7/MuMIUQ7yA7bff2HEnG7EaS/8LL2fXP+9N2D9n/2k0L9Mmnex99qUltvplmjQAcTkRR/drE+LydF8G4x6k+v7b0j7m7n9FsoDGdfT3609gzy6yJ+1H1pgJUWtm3IOHRgmOgqOOo+7NVwg2NQC09a92w7/aM3IM3g1rE+5PJdw4pN140uNjSSsiMhq4DihSSp3dUf/Mmn2a8AwbGX5vTz8S9LYibk+nzUstjVqdPbnsbc4ZqcNn8/ovp2X1CgKN1TiG5hEYexEPromYBfJcTTT629pL87O97Gkt5Pp/aCf5x5vHcfh144Dvwj4AZQDUe3PZZ5/25/Xi0Rdzyjvz2rQvOvmbFHvqGffcgjb78lxN/PnAWzr+0OnA4Qj/wIpPPYd+Z5xHvzP0ymjl84HTSaCuFmdeHkGvF2dePrWvPk/u/tNwDymLCbNVFB77TRo/avuZOpxGQVG0Td7hxJFgcV86fXOu/qV4rZtdV8metB8tyz/ruGMXyD/yWBreeytt4w3+xR9xFvfDu3kDTZ8upHHhexSecAp1r7fvUy46+UwGXPaT1IJw7P1if+fiANJbiiNr9HgGzPkZVb+5ItzW7zsXRzqENZZkBIvWUtLkvO/4fCIPAd8CdiilptjaZwG3o2veP6CUulkptQ64VESSym2+VwqWrOGjwu9bVn0Jp0CgoZ71F3yT/hf+kH5nzG5zTN3b83EPHELOlKkJx21u0F8Oj8PHwCuuYcfdt0TF7AebGvn5pPvYv99yWgJZZDtbOXLgIj7aeQA1vkKmFK+i3pdPrquZsUeMZELDayiETY1lDM+LOIad+YUEGuqobBzC0NztOKzFek3+HPzKyfC8LWxrHkBQORiau519itZRccK3+WzPRAbn7AQUQeWg2KNt1v874Wwqm4aQ52qm0Z+DQocAA2SNHodv+1aKTjqDPU892uYzu4cOi8r8WnLe9/Ftq8JbuVE7Xy3yDvtGwnoWedMOxzNsJM1fLqPwuOj6tiEzkatYZ7Z0WiVbi2ZFItpGPfYK6797sp7viDE4cnLJm34EjYveT/CfipCz30E0Wwv4sidMxllUTP1bugiTiJB38JHstmW5DVF86jntalWpMPT3fwsXSHMNGkrewUdQ+2J0Jsr+F/2QXY/c0+FYQ37zZ9Z/95vh7ex9ptCyMsXyjtac/NXb2XH3/0XvcLkYeOW1DP757wFoWb0C5fdrjfzjd8k/4mjcZcMRl4uWlV9QdOJpNHy0ABXwU3DEMXg3b8BVOhBHTtuHqZzJUyk45iQ+fvLfjDn/Yvpf+EOqH7wDRKh/ez5lf/4HniHl4HSyc+7fKTnnYiCO5tEedg005jhxSPqLioqQPX5SeLP85nvInjA5sjuVcGOrr9vh7ymNZR5wFxDOxikiTuBu4HigElgkIi8opZbHHSEBe6VgceRGUkY0vP8Oaxe+T/GZ+gl51z/voWXl5/S/8HJ8WzaTs980EL3OA6D4zPPxVW7ENWAQrgGDcQ8aQu5+B+HIzaO1UX85sovzKPjGCahgkJ33/CV8LnF7KDniaE6qeC3cNvLBZyiIsUtnjZmAw7mLb5W3Ew1UnNpnLsvdTlludJZCd/kIfJUbGZq7g6G5bUNBc6ZOp+z3fwtvl8y+lEBdDa7ikqi1Na2b1qN8XpTPR84+kfz1yuelcfGHBJubyD/yGD4Yux/71FeTd/CR5Ezcl0BdDY6cvLDwGPTj61L7UBbOvPxoWzn6BquCQZS3FdXaiiM3j+Yvl+IZPgpnQSF177yKZ+hwsifuizidtKxZiadsOI6cXPIP+wbezRsAyBoxmqof/ZZppcXg94efLMXpYvS/X9XOLRFUIIAjN4+WFZ+RM3kqvp3b2fXYXHL3PZBgawtFJ5xCsLUVBIJNTfiqNpI1WqdBcfUfwNDf/xVnyYDwQ0//8y/Du3EdrtKBuEp0IrXi087Fv2MrDe+/w65H7yN/xvG4Bwyi4YMKBl97k3UtChjzdAXB5kY+eeQBDrrw+zjzI1qXf3c1yutFPB72PPtvCo+ehW/bFrb9JRJ9VXzGeeRaWSPyDj4Kf/V26t99i35nzMZZWBx1nUOlc3Mm7kvhMSdF7csaMQaA/EMjGqXdWhAPhyeL1vJRiAjOvHwGXf0bAAZd9euofh2FISdC7H6UWJ9KN/hYRCRqDZpn5Jjo/ZZ5KzlTWEiw9IzzXim1QERGxjQfDKyxNBRE5An0ugUjWADqDzqSgk/eA/QNcM9/5oX3NS58j8aF78U9ruaZxIsGN9WMBx5g4CnfRNxuik44haITInHzobTdA6/+Da2rV+AZPgpHdg4jH3yG1g1ryR67D+LxIG4PgboaNlxyhj7Q4SBr5Bha13UcwVZ2051kjR6PCgSo+s0VFJ92LlljJuAZWk7Ny09TeMxJBFtbCdbXkjV6PI2ffIjy+8k/5Cha16+madlinMUl5B14KM7C6GyO4nCEswnYfyx2DTCqv9tD/mHfCG/7SwZQeua3w9uxN6l0Iw4Hkp0D2Trde64txU7RCdFZhbPHRuyJeQcdRt5Bh4W3ldtD3gEHtxk/0VM3gHvAIAb/9PqofSFty5lXgHtAdJ6n3KnR4zuysqOedEHfpNyDhtLvzPPpd2ak8FT/70ZHjYrDgTOvgKZJB0QJFSAspAAGXKoX02aNHt9GMIfnXFiEs7CIrNHj4+7vc9i0lDYm7x6JzoupbW/9BhKZXKOOtASLSwLp0FhcImKPPZ+rlJqbsHeEMsCe2qISOERE+gM3AQeIyK+VUn9u9+QpT7cP8O678FL9hYw6cA41zz6etnE3NWq/R25p/BXmoS+yxKjHrpLSqB88gKtff8Y+u6BNDYmKN99kxuGHIW43QW8rLV+twLtpPe7BQ8kePwlXv0ghi+G3PxI1Zr/TtYnPCWDd2Ow30KxR48gaNS7FT20w9CEksSmsRwRLzCnyjzqOYGsLhUfPit/fhqtU/2bdDl86osIUsIQ0LZBUSu0CLk+2f0YKlq6mdHnoIZg3L/SE+ut2+6aKiGLE/oPTOF7MN9HlCpvynNaTdLynaYPBEId2BIuII+0+FtXBOgBxONpoz4lwD9T3FY/Dh7/3osKqAPvah3KrLSUyUrB0Ndz4L3+BE0/8kMMOO6zjzimSmyt9soaKwfB1I5Vw407rMjFyJR0Lmt0OP37lIuAP4nR12i/U2ZX3i4BxIjIKLVDOBVIubpORgqWrlJbC4MGtjBjR2zMxGAy9RgrO+/RpMukQLHpZg6+1S4Klw1xhIvI4MBMoFZFK4PdKqQdF5ErgNbRV/SGl1JepnnyvFCwGg8HQxqfSLYth058SwyV6rU1Lc4DsvE7fojvUWJRSbddd6PZXgFc6e2LI0JQuBoPB0FViTWHSjjaRNpHTVVOYyxXWWBpWJ17RnwROEZlr+at7HCNYDAbD3oPdmZ7mkhkAuQccEhW63f+870d36KpcKeoXFiz+rtVkCSil5vRGynwwgsVgMOytxGgPHUVwJcOgmIWbbVP/dE2yOIuKcVsZx2VI/PVjyQ71tdBYRGSmiLwrIveKyMyeOq/BYPh60iYqrJOCpWDmiZGNBFmK+337IuukXRMsxaedi9vKOO5Tnq4Mlfkai4g8JCI7ROSLmPZZIrJKRNaIyLUdDKOABiAbvZrTYDAYuo80rbz3jBzD8Lv/Rd3B38BhZasoPuM8xBNZZ9f/vEsZ++yCLlesLZhxfFhj6csJsZO9CvOAqKWjtmRlJ6Fr3c4WkUkisq+IvBTzGgi8q5Q6CbgG+GP6PoLBYDDEISa82FXcj5LZl8bv63DgGhBZ+Dzsb5HEpMHGBjxDh1F32LHhdSqlF17OmP+80WaYdDD0Cp2Kp4PimR3Rq6awpGLZUklWZuWQ+RaJ2QMkXFIvInOAOQAul4uKiopkptiGhoaGTh/bm/TVeUPfnbuZd8/SnfMumLA/RR/qlP+7du/iq4oKyq19O0buw7qBI8LbIZrGTqLusGPxl0T8JZWbtiA/vI6iBa9SVTIUVVHRY9d7zdYSoIQPP/yEPXvaVtVMkl4tTYxSKqkXMBL4wrZ9NjpXf2j7AuCudo4/E7gP+A8wM5lz5ubmqs7yzjvvdPrY3qSvzlupvjt3M++epbvnvfr0o9Tq049Su5/5l1JKqdYtm1XTis/C+2tefU6tPv0o1bh0UUrj9tT1fv11pUCp997r/BhAo0ry3t4drx5bIKmUegZ4Jpm+Xc0VZjAYvr4Mu+1h6t54iWIrKatnSDkMiegpRSeeRtGJpyU6vNcZMgS+/W3o169Lw3S48r476YpgSUuysnioLuYKMxgMX1+yRoxhwPd/3NvT6DRTpsCTT3Z5mF41hXUlhCGcrExEPOhkZS+kY1IicoqIzA0kCO0zGAwGQ+aSbLjx48CHwAQRqRSRS5VSfiCUrGwF8KTqRLKyeCilXlRKzXE6u7Ty1GAwGAy9QLJRYd2WrCwexsdiMBgMfZeMTOliNBaDwWDoEpm/jqWnMRqLwWAwdIk+67zvNozGYjAYDH2XjBQsBoPBYOi7GFOYwWAwGNKKqDTUKOguRCQINHfycBfgT+N0eoq+Om/ou3M38+5ZzLy7nxylVK9ZpDJasHQFEVmslJrW2/NIlb46b+i7czfz7lnMvPd+jI/FYDAYDGnFCBaDwWAwpJW9WbDM7e0JdJK+Om/ou3M38+5ZzLz3cvZaH4vBYDAYeoe9WWMxGAwGQy9gBIvBYDAY0speKVhEZJaIrBKRNSJybW/Px46IDBORd0RkuYh8KSI/ttr/ICJVIrLUep1sO+bX1mdZJSIn9uLcN4jI59b8FlttJSLyhoistv72s9pFRO6w5v2ZiBzYS3OeYLumS0WkTkR+kqnXW0QeEpEdIvKFrS3laywiF1n9V4vIRb0077+IyEprbs+KSLHVPlJEmm3X/l7bMQdZ37E11meTXph3yt+NTL7n9Aq9WRe5O16AE1gLjAY8wDJgUm/Pyza/IcCB1vsC4CtgEvAH4Bdx+k+yPkMWMMr6bM5emvsGoDSm7f+Aa6331wK3WO9PBuYDAhwKfJwB194JbANGZOr1BmYABwJfdPYaAyXAOutvP+t9v16Y9wmAy3p/i23eI+39YsZZaH0WsT7bSb0w75S+G5l+z+mN196osRwMrFFKrVNKeYEngIwpcK2U2qqUWmK9r0cXSStr55DTgCeUUq1KqfXAGvRnzBROAx6x3j8CnG5r/6fSfAQUi8iQXpifnWOBtUqpje306dXrrZRaAOyOM6dUrvGJwBtKqd1KqT3AG8Csnp63Uup1pQsCAnyELl+eEGvuhUqpj5S+k/+TyGftFhJc70Qk+m5k9D2nN9gbBUsZsNm2XUn7N+5eQ0RGAgcAH1tNV1pmg4dC5g4y6/Mo4HUR+UREQim5BymltlrvtwGDrPeZNO8Q5wKP27Yz/XqHSPUaZ+JnuAStgYQYJSKfisj/ROQoq60MPdcQvTnvVL4bmXi9e5W9UbD0CUQkH3ga+IlSqg64BxgDTAW2An/rvdkl5Eil1IHAScAVIjLDvtN6yszI+HUR8QCnAv+1mvrC9W5DJl/jRIjIdegcW/+ymrYCw5VSBwA/A/4tIoW9Nb849MnvRiaxNwqWKmCYbbvcassYRMSNFir/Uko9A6CU2q6UCiilgsD9RMwvGfN5lFJV1t8dwLPoOW4Pmbisvzus7hkzb4uTgCVKqe3QN663jVSvccZ8BhG5GPgWcL4lFLFMSbus95+g/RPjrTnazWW9Mu9OfDcy5npnCnujYFkEjBORUdZT6rnAC708pzBWlMuDwAql1K22drv/4QwgFKXyAnCuiGSJyChgHNrB2aOISJ6IFITeox2zX1jzC0UdXQQ8b71/AbjQilw6FKi1mXN6g9nYzGCZfr1jSPUavwacICL9LDPOCVZbjyIis4BfAacqpZps7QNExGm9H42+xuusudeJyKHW7+RCIp+1J+ed6ncjo+85vUJvRw90xwsdLfMV+knout6eT8zcjkSbMj4Dllqvk4FHgc+t9heAIbZjrrM+yyq6OUqmnXmPRke7LAO+DF1XoD/wFrAaeBMosdoFuNua9+fAtF685nnALqDI1paR1xst/LYCPrSt/tLOXGO0T2ON9fpeL817Ddr3EPqe32v1Pcv6Di0FlgCn2MaZhr6RrwXuwsoO0sPzTvm7kcn3nN54mZQuBoPBYEgre6MpzGAwGAy9iBEsBoPBYEgrRrAYDAaDIa0YwWIwGAyGtGIEi8FgMBjSihEsBoPBYEgrRrAYDAaDIa38f+8JM9Ui3dbYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "profile_results = backend._profile_results\n", "step_times = [x[1] for x in profile_results.values()]\n", @@ -271,11 +302,11 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:32:30.352158Z", - "start_time": "2020-10-07T10:32:30.333400Z" + "end_time": "2020-10-09T08:44:02.971407Z", + "start_time": "2020-10-09T08:44:02.955376Z" } }, "outputs": [], @@ -317,11 +348,11 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:32:30.486762Z", - "start_time": "2020-10-07T10:32:30.475258Z" + "end_time": "2020-10-09T08:44:03.983319Z", + "start_time": "2020-10-09T08:44:03.975236Z" } }, "outputs": [], @@ -340,11 +371,11 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:33:46.364675Z", - "start_time": "2020-10-07T10:33:46.361706Z" + "end_time": "2020-10-09T08:44:04.561252Z", + "start_time": "2020-10-09T08:44:04.558485Z" } }, "outputs": [], @@ -355,18 +386,18 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T10:35:58.030517Z", - "start_time": "2020-10-07T10:35:57.468824Z" + "end_time": "2020-10-09T08:45:09.179457Z", + "start_time": "2020-10-09T08:44:05.720927Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38797a3855c44faf80bd24f505fa9b8d", + "model_id": "93335ee93c0448f19428fd3c69ebf886", "version_major": 2, "version_minor": 0 }, @@ -428,16 +459,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:43:46.450025Z", - "start_time": "2020-10-07T07:43:46.445069Z" + "end_time": "2020-10-09T08:45:26.979955Z", + "start_time": "2020-10-09T08:45:26.967531Z" } }, "outputs": [], "source": [ "#export\n", + "\n", + "# These values work only for initial run\n", "EDGE_IDX_FOR_SEED = {\n", " 107: [2, 3, 10, 15]\n", "}\n", @@ -449,11 +482,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:39:58.442055Z", - "start_time": "2020-10-07T07:39:58.439007Z" + "end_time": "2020-10-09T08:45:27.390397Z", + "start_time": "2020-10-09T08:45:27.372326Z" } }, "outputs": [], @@ -465,19 +498,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T08:17:25.827182Z", - "start_time": "2020-10-07T08:17:25.810647Z" + "end_time": "2020-10-09T08:45:28.197914Z", + "start_time": "2020-10-09T08:45:28.186045Z" } }, "outputs": [], "source": [ "#export\n", "@ex.provider\n", - "def sim_profile(circuit, tn):\n", - " backend = qt.PerfNumpyBackend(print=False)\n", + "def sim_profile(circuit, tn, backend='numpy'):\n", + " if backend == 'numpy':\n", + " backend = qt.PerfNumpyBackend(print=False)\n", + " elif backend == 'mkl':\n", + " backend = qt.ProcessingFrameworks.PerfBackend.from_backend(\n", + " qt.ProcessingFrameworks.CMKLExtendedBackend, print=False)\n", " sim = qt.QtreeSimulator(bucket_backend=backend)\n", "\n", " sim.simulate(circuit)\n", @@ -493,58 +530,167 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:00.853291Z", - "start_time": "2020-10-07T07:40:00.237722Z" + "end_time": "2020-10-09T08:45:29.511282Z", + "start_time": "2020-10-09T08:45:29.108369Z" }, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHZCAYAAACcp9GFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8iElEQVR4nO3de3zO9f/H8ce1y9nM+Vw55BB2uGbOTIg5VKicT1vCVykUERE6kyKdKEWRKKJCZCGHnJnjWk5LiGEzO2nbdb1/f8j1a9kYtl2bPe+323X77fp83tf7/fpc9m2v3/toMcYgIiIikhO5uToAERERkVulREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmx8qSnkMVisQAVgJjMDUdERETEqQhw2lxn9950JTJcSWJOZkhIIiIiIul3F3AqrZvpTWRiAP788088PDwyIigRERGRNF26dIm7774bbjAalN5EBgAPDw8lMiIiIpJtaLKviIiI5FhKZERERCTHUiIjIiIiOdZNzZG5EbvdTlJSUkZWKdeRN29erFarq8MQERFxmQxJZIwxnDlzhosXL2ZEdXITihUrRrly5biy1Y+IiEjukiGJzNUkpkyZMhQqVEh/VLOAMYb4+HgiIiIAKF++vIsjEhERyXq3ncjY7XZnElOyZMmMiEnSqWDBggBERERQpkwZDTOJiEiuc9uTfa/OiSlUqNBtByM37+r3rrlJIiKSG2XYqiUNJ7mGvncREcnNtPxaREREcqwMXX59jRPA+Uxt4f+VAu7JorZEREQkW8i8ROYEUBO4nGktpFQACEPJjIiISC6SeUNL58m6JIZ/2sqq3p9bYLfbcTgcrg5DRETkjpKr58gsXrwYLy8vChYsSMmSJWndujVxcXE4HA5efvll7rrrLvLnz4/NZmPVqlXOz61fvx6LxZJiA8CQkBAsFgvh4eEAzJ07l2LFivH9999Tu3Zt8ufPz4kTJ/j7778ZPXo0d999N/nz56datWp8+umnznoOHDhA+/btcXd3p2zZsvTt25fz57NxhiYiIuJCuTaR+euvv+jZsyf9+/cnNDSU9evX8+ijj2KM4d133+Xtt99m6tSp7Nu3j7Zt29KxY0cOHz58U23Ex8czefJkZs+ezcGDBylTpgz9+vXjq6++YsaMGYSGhjJr1izc3d0BuHjxIq1atcLX15edO3eyatUqzp49S7du3TLjKxAREcnxMneybzb2119/kZyczKOPPkqlSpUA8PLyAmDq1KmMHj2aHj16ADB58mTWrVvH9OnT+eCDD9LdRlJSEh9++CE+Pj4A/P7773z99desWbOG1q1bA1C1alVn+ffffx9fX19ef/1157XPPvuMu+++m99//50aNWrc3kOLiIjcYXJtIuPj48MDDzyAl5cXbdu2JSAggC5dumC1Wjl9+jRNmzZNUb5p06bs3bv3ptrIly8f3t7ezvchISFYrVbuv//+VMvv3buXdevWOXto/u3o0aNKZERERP4j1yYyVquVNWvW8Ouvv/LTTz/x3nvv8eKLL7JmzZobftbN7cqInDHGeS21nXULFiyYYsO6q0cKpCU2NpaHH36YyZMnX3NPZymJiIhcK9fOkYEru+I2bdqUSZMmsWfPHvLly8fPP/9MhQoV2Lx5c4qymzdvpnbt2gCULl0auDI8dVVISMgN2/Py8sLhcPDLL7+ker9u3bocPHiQypUrU61atRSvwoUL3+JTioiI3LlybSKzbds2Xn/9dXbu3MmJEyf49ttvOXfuHLVq1eL5559n8uTJLFq0iLCwMF544QVCQkIYNmwYANWqVePuu+9m4sSJHD58mBUrVvD222/fsM3KlSsTGBhI//79WbZsGcePH2f9+vV8/fXXAAwZMoTIyEh69uzJjh07OHr0KKtXr+bxxx/Hbrdn6vchIiKSE2Xe0FIprmxSl5Ub4pVKf3EPDw82bNjA9OnTuXTpEpUqVeLtt9+mffv2tG3blujoaEaMGEFERAS1a9fm+++/p3r16gDkzZuXr776iieffBJvb2/q16/Pq6++SteuXW/Y7kcffcTYsWN56qmnuHDhAvfccw9jx44FcPYEjR49moCAAP7++28qVapEu3btnMNZIiIi8v8s/57nkWYhi8UDiI6OjsbDwyPFvcuXL3P8+HGqVKlCgQIFUn5QRxRkuut+/yIiIjnUpUuXKFq0KEBRY8yltMpl7mTfe8iVyYWIiIhkDY1XiIiISI6lREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSmVQEBQXRuXPnm/qMxWJh2bJlmRKPiIiIpC5TN8TLqRv7vvvuu6Rnx2MRERFxrUzrkTkB1AT8suhV8582M0LRokUpVqxYBtUmIiJ3sq5du7JlyxYAJk6cyNy5c2/4mfXr1xMUFHTDcuHh4bRo0SLVe7GxsVgsFuf7ypUr///NeOBL4HXgOyD5/2+1aNGC8PDwG7Z9uw4cOJAipn//7O/vz/HjxzOknUxLZM6TdedF8k9bN9v7s3jxYry8vChYsCAlS5akdevWxMXFXTO01KJFC4YOHcqoUaMoUaIE5cqVY+LEidete8KECZQvX559+/bd7KOIiEgOsX37diIjI2ncuLGrQ/l/u4FKQB9gAtAZqA2cdGFM/zFixAgmTJiQIXXl2jkyf/31Fz179qR///6Ehoayfv16Hn300TSHlD7//HMKFy7Mtm3bmDJlCi+//DJr1qy5ppwxhmeeeYYvvviCjRs34u3tndmPIiIiLjJr1ix69erlfO/u7k7BggWBK70z3bt35+GHH6Z27dq0atWKyMhIAPLly3f1QMTrslqtlChRIkV71atXx9fXl2nTpqUoW7p06Ss9Lx2BqH8uXu2JOQ70vfJjiRIlsFqtALz66qvUqlULm82GzWbjjz/+AGDHjh20atWKevXq4evryzfffONsZ/Xq1TRr1gw/Pz8aNGjAunXrnPcmTpxI9erV8fPzY+HChdfG948HH3yQH3/8kejo6Bt+BzdkjLnhC/AATHR0tPmvhIQEc+jQIZOQkJDi+q70VJzBr13XRJe2Xbt2GcCEh4dfcy8wMNB06tTJ+f7+++83zZo1S1Gmfv36ZvTo0c73gPnmm29Mr169TK1atczJkydvIppbl9b3LyIima9q1apm//79qd6bMGGCqVSpkjl//rwxxpju3bub119//Zbb2r9/vylbtqw5ffq0McaYMWPGmCt/xv9ltbn+H8p//cmLjIw0RYsWNfHx8cYYY+Li4kxCQoKJiooyNpvN2c65c+fM3XffbU6ePGmOHj1qGjVq5MwHDh8+bMqVK2cuX75sli9fbmrXrm2io6ONw+EwvXv3NpUqVUrzeVq2bGl++OGHNO9HR0cbwAAe13uqzD39Ohvz8fHhgQcewMvLi7Zt2xIQEECXLl0oXrx4quX/27NSvnx5IiIiUlx79tlnyZ8/P1u3bqVUqVKZFruIiGQPJ0+epGzZsmneb9euHSVLlgSgcePG7N+//5bbWrt2Le3bt6d8+fIAPPnkk7zxxhspC529QSURXBl2Ajw8PKhevTp9+vQhICCABx98kLvuuou1a9dy7Ngx2rdvn+KjYWFh/Pbbbxw5coTmzZs7r7u5uXHixAl+/vlnunXrhoeHBwD/+9//2LRpU5qhlCtXjpMnb3+8K9cOLVmtVtasWcOPP/5I7dq1ee+996hZs2aak4/y5s2b4r3FYsHhcKS41qZNG06dOsXq1aszLW4REck+ChUqxOXLac8ILVCggPNnq9VKcnJymmVv1r8n+l51rvK5tD9QELjv/99arVa2bt3K8OHDiYiIoFGjRmzcuBFjDHXq1CEkJMT5OnHiBK1atcIYQ5s2bVLcO3XqFNWrV09XfP92+fJl5zDc7ci1iQxc+ZKbNm3KpEmT2LNnD/ny5WPp0qW3XF/Hjh1ZsGABAwYMuGZsUERE7jze3t6EhYXddj333Xcfp06dum6ZVq1asWrVKs6cOQPAzJkzU9yfNGkSZZqX4Ru+YTSjeZ/3U1YwEijy/29jYmI4e/Ys/v7+jB8/nmbNmrFnzx6aNGnC8ePHCQ4OdpYNCQkhMTGRtm3bEhwcnGIhy/bt2wFo3bo133zzDTExMRhj+Pjjj6/7PKGhofj4+Fy3THrk2qGlbdu28fPPPxMQEECZMmXYtm0b586do1atWre10uiRRx5h3rx59O3blzx58tClS5cMjFpERLKTLl26sHr1alq3bn3LdURERHDhwoUUk3pT4+npycSJE/H398fd3Z1HH30UgMjISHx9fTlx4gQWi4VzU8+x/7391D9dHxKBEsAo4PmU9UVHR9OlSxfi4uKwWCxUr16dwMBAihYtyooVKxg5ciQjRowgKSmJe+65h2XLllGtWjUWLFjA//73P+Lj40lMTMTX15cFCxbQoUMHtm/fTt26dfHw8LhmaOrfwsPDsdvtGZLI5NrJvocOHTJt27Y1pUuXNvnz5zc1atQw7733njEm9cm+w4YNS/H5Tp06mcDAQOd7wCxdutT5ftGiRaZAgQJmyZIlNxHVzdNkXxER14mJiTFeXl4mNjb2luv4+uuvzSuvvHJLn502bZqxWCwGMJUrVzYXL140ycnJpl69esYebzfmtDEm6ZZDyzSjR482n3zyyXXLpHeyr8WkYwdbi8XicSV5i3ZO4rnq8uXLHD9+nCpVqqQYC7y6IV5W7SVTAAgj43b3zSnS+v5FRCRr/Pzzz5QtWxZPT88sazMhIQFfX1/CwsKwWCxMmjSJ8ePHZ1n7t2vGjBk8/fTTuLmlPcPl0qVLV5eoFzXGXEqrXKYNLd3DlcQiJx5RICIikl4PPPBAlrY3d+5cnnjiCRwOB+XKlWPPnj2UK1cuS2O4XUOHDs2wujJ1jsw9KLkQERHJCImJiTRs2JCQkBDgyu64U6dOdW1Q2UCunewrIiKSUyxdupRu3bqRnJxMiRIl2LlzJ1WqVHF1WNlCrl5+LSIikp3Z7Xb8/f159NFHSU5Opn///ly4cEFJzL+oR0ZERCQburqTb2JiIkWKFGHTpk06vy8VGdYjk57VT5Lx9L2LiNx5HnzwQR544AESExPp0qULly5dUhKThtvukbm6dX98fHyGbDUsNyc+Ph649ggFERHJebZv306LFi1ISEigQIECrFu3jkaNGrk6rGztthMZq9VKsWLFnAcoFipU6IbnK8jtM8YQHx9PREQExYoVcx7JLiIiOVOPHj1YtGgRAG3btmXFihX6b3s6ZMgcmavr1/97GrRkvmLFiuW4/QNEROT/hYaG0qhRIy5dukS+fPn4/vvvadu2ravDyjEyJJGxWCyUL1+eMmXKkJSUlBFVSjrkzZtX2bqISA42ePBgZs2aBUCTJk3YsGGD/rt+kzJ01ZLVatU/gIiIyA2cOHGCunXrcuHCBfLkycOCBQvo2rWrq8PKkbSPjIiISBaaMGECXl5eJCUl0aRJE+Li4pTE3IbbPjRSREREJKOl99BI9ciIiIhIjqVERkRERHIsJTIiIiKSYymRERERyQJz586lc+fOrg7jjqNERkREJJ2Sk5NdHYL8hxIZERER4LvvvqNWrVr4+PgwevRoSpUqRXh4OJUrV2b06NE0aNCAwMBAzpw5Q8uWLfHz86NOnTo8/fTTOBwO4EqvS6tWrejYsSO1a9emefPmhIeHO9uIjY2lZ8+eeHl5Ua9ePY4dO+aip71zKJEREZFcLyIigv79+7N06VL27t3Lfffdx4ULF5z3L1y4wLZt2/jyyy8pVqwYP/zwA7t27WLfvn2Eh4fz9ddfO8tu3ryZyZMnc+jQIR566CEGDRrkvLdjxw5ef/119u/fT+vWrZk8eXKWPuedSImMiIjkelu3bsXb25v77rsPgMDAQPLly+e8HxQU5DwQ2eFwMHr0aHx8fPD19WXnzp2EhIQ4yzZp0oRatWoBMGjQINavX4/dbgegcePGVKlSxfnz0aNHs+Lx7mgZekSBiIjIncjd3d358zvvvENERATbtm2jQIECPPfcc1y+fDld9RQoUMD5s9Vq1ZybDKAeGRERyfUaNWrEvn37CAsLA2D+/PkkJiamWjYqKopy5cpRoEABzpw5wzfffJPi/pYtW/jtt98AmD17Ni1bttQ5hJlIPTIiIpLrlSlThtmzZ9O5c2fy589PmzZtcHd3p1ixYteUHTZsGF26dKFOnTpUqFCB1q1bp7jfpEkTRo8ezZEjRyhZsiRffPFFFj1F7qSzlkRERICYmBiKFCkCwLJlyxgzZgyhoaE3VcfcuXNZtmwZy5Yty4QIc5f0nrWkHhkRERHgvffeY9GiRdjtdjw8PPjyyy9dHZKkg3pkREREJNvR6dciIiJyx1MiIyIiIjmWEhkRERHJsZTIiIhIrvb222/j5uaGxWKhatWqREdHuzokuQlKZEREJFeKjY2lRo0ajBw5EoDXX3+dY8eOXZ1gKjmEll+LiEiu8+mnnzJo0CAcDgfly5dn7969lC5d2tVhyS1Qj4yIiOQaiYmJ+Pj4MGDAABwOB88//zynT59WEpODqUdGRERyhSVLltCjRw+Sk5MpWbIkO3bscJ5ELTmXemREROSOZrfbadq0KV26dCE5OZmBAwdy/vx5JTF3CCUyIiKSo33zzTcUKFCApUuXXnNvzZo1FCpUiF9//RUPDw/279/Pxx9/7IIoJbPoiAIREcnRChYsyOXLl7FarcTHx5MvXz4A2rVrx+rVqwHo3r07CxcudGWYcpN0RIGIiNzxRo4cyeXLl4ErQ0iNGjVi69atFCpUiNWrV1OwYEG2bdumJOYOph4ZERHJkex2O3nz5iWtv2Pt2rXjxx9/zOKoJKOoR0ZERO5oDz74YJpJzPLly5XE5BLqkRERkRznzJkzlC9fPs37NWvW5LfffsvCiCSjqUdGRETuWC1atLju/bCwMKZPn54lsYhrqUdGRESyuRNAIlAVcGPz5s00a9bshp/KmzcviYmJmR2cZBL1yIiISI6TnJz8r3e7AT+gElAdqAYsv2FvTL58+ShTpgz9+/fPrDAlG1EiIyIiWeK7776jVq1a+Pj4MHr0aEqVKkV4eDiVK1dm9OjRNGjQgMDAQM6cOUPLlk3w86tPnTq7efppcDgAwpk7tyNFijgAyJMnD0WLFmXAgAH8/PPPfPrppzzwwAM8+uijlClThp07d3Ls2DGXPrNkPiUyIiKS6SIiIujfvz9Lly5l79693HfffVy4cMF5/8KFC2zbto0vv/ySYsWK8cMPzdi1y8K+fRAeDl9/DWAAC3FxcOjQIZKSkhg7dix//PEHrVq1ws3NjR07dvD666+zf/9+WrduzeTJk130xJJVlMiIiEim27p1K97e3tx3330ABAYGOnfgBQgKCsJisQDgcDgYPXoRPj52fH1h504ICbla0kGTJnmpVasWAIMGDWL9+vXY7XYAGjdu7DxDqXHjxhw9ejRLnk9cR6dfi4iIy7m7uzt/fueddzh1ysHmzeDuDs89B/9s3gtYgPxp1lOgQAHnz1ar9T9zbuROpB4ZERHJdI0aNWLfvn2EhYUBMH/+/FRXFF26dInvvvuOrVtP4e4OZ87AN9/8u4Rhy5YE5x4xs2fPpmXLllit1ix4CsmO1CMjIiKZrkyZMsyePZvOnTuTP39+2rRpg7u7O8WKFQOuHDfw6aef8uKLL3Lx4kVKlixP7doOKlY8S+vWV7cJsQDtaNLkMqNHj+bIkSOULFmSL774wlWPJdmAemRERCRLtG7dGk9PTz766COaNm1K/vz5WbZsGfPmzWPQoEEMGDCAVq1acfjwYU6dOsWhQ3+xZk0Ec+bMYfr0WcAxoBsnTpzA19eXgwcPsmHDBipXrgxcmWezbNkyZ3sPPfQQ69evT3+Al6BD4w6ErQpL9XaXLl2YO3fuDau5Gs+NtGjRgvDw8BuWCwoKcj7H+++/z+uvv56u+nML9ciIiEiWGDVqFKtWrSI0NBQPDw8CAgL48MMP2bFjB/Xq1WPz5s00adLkP58qBQRlbmAGmARMhpWXV0J7oD6wgCtb12QjgwYNolatWgwZMuTqZnG5nnpkREQkSyQmJjJ9+nS2bdtG69at+eabb/j999+ZO3cumzZt4vvvv6dBgwbYbDa6detGVFQUAH/99Rdt27aldu3azJ8/n3r16jnrjImJoXv37tx33334+/vzv//9j6CgIOf9qVOn0qBBA+rWrUu7du34448/rg1sOlcSmctQmcqEEAK74bdmv9GkURPq1KlD586duXTpyuayDoeDdu3aMXXqVACOHj3KXXfd5Zz/U7p06XR9HyVKlHDO7WnRogXPPPMM9evXp1q1aowYMcJ5IGbRokWdK7zy5ctHQEAACxYsSOe3fudTIiMiIlli/fr1nDt3jpo1azJ58mSef/55/vzzTwIDA3n77bcpXLgw27dvJyQkBC8vL8aNGwfA0KFDadCgAYcOHeLzzz/n559/dtb58ssvU7BgQUJDQ1m5ciW//vqr896CBQsICwtjy5Yt7N69m969e/PUU0+lDMoBpLbVjB36nu3LE95PcPDgQV555RV++eUXANzc3Jg/fz4ffPAB69evp1u3brz11lvUrFkTgB07dqTr+/j222+5++67ne8PHTrEr7/+yr59+/jll1/46quvAHj33XdT9FQ1btw4xXeQ22loSUREMt327ds5fvw4Y8aM4dFHH+Wtt96iatWqzvvLli0jOjqaJUuWAFd6b67ONfn555+dvR8VK1akY8eOzs/9/PPPTJs2DYvFQpEiRejevTtHjhxx1rljxw78/PwAnHvNpBADnL328iUuEUIIQaWDAPDy8kpxvlOpUqWYP38+LVu2JCgoiJ49e97qV+PUr18/8ubNS968eenTpw/BwcH06tXrmnLlypXj5MmTt93enUKJjIiIZJrTp08zZswYvvjiC6xWK19++SXdu3e/ppwxhvfee4+AgIAb1nl147wb3TPGMGbMGAYNGnRNucTERN59910+/uhjtrOd4hRPvcLKabe7Z88eSpYsyalTpzDGXDeuW5FWfZcvX6ZgwYIZ2lZOpqElERHJcJcvX+b111+nRo0arFy5kpkzZ9KkSRNKliyZavnOnTszbdo04uPjAYiPj+fgwYPAldVOn332GXBlvsz333/v/FyrVq34/PPPMcYQGxvL11fOMnDWOXPmTCIjIwFISkrivffeo0mTJhQqVIhRo0bxx8k/WFFlBcZi+DcPqwe+Vl++SL6ytPvgwYNs2rTJeX/37t1MnTqVPXv2ADBlypRUn2vMmDG8//776frO5s+fT1JSEgkJCSxYsIDWrVunWi40NBQfH5901ZkbqEdGREQyjDGGJUuW8Pzzz3Py5EmeeeYZXnrpJYoVK0ZiYiKrV69O9Q/06NGj+fvvv2nYsKGzJ2L06NHUqVOHd999l6CgIGrXrk3FihVp1aqV83MvvfQSTzzxBLVq1aJUqVL4+Pg496bp3bs3Fy5coEmTJpw5c4ZLly45e05q167N8OHD6d+/P252N/gfMJcrK5gAysEX07/g8bcf5+0P3qZ69eo0b94cuLJpX48ePfjss88oV64cX3zxBQ0aNKBZs2Y0bdo0xXPt3bvXObR1I7Vq1aJp06ZERkbSqVMnevTokWq5VatW8corr6SrzlzBGHPDF+ABmOjoaCMiIpKaPXv2mPvvv98ApkOHDua3335LcT8mJsZ4eXmZ2NjYDGszMTHRJCQkGGOMiY2NNU2bNjULFy40MTExZtSoUaZ8+fKGK+mJKVeunBk5cmTaf8uOGWMWGmOCjTFJtx9bcnKyqVevnrHb7Tcse//995ulS5fesNzBgwdNs2bNbj+4HCA6Ovrqv52HuU6Ooh4ZERG5LREREYwfP55PPvmEmjVr8uOPP9KuXbtryrm7uzNt2jSOHz+Op6dnhrQdFRVF+/btsdvtXL58mapVq/Lqq6/Ss2dPjDEUKlSIxx57jFdeecV50GSaqvzzyiBWqzXdK5jS688//2TWrFkZWmdOZzHG3LiQxeIBREdHR+Ph4ZH5UYmISLaXmJjIe++9x8svv4ybmxuTJk3iySefJG/evFkax5YtW5gwYQK//PILiYmJuLm5Ub9+fcaMGUOnTp2uKf/yyy/z7bffXnN9yZIl3HvvvVkRsqTDpUuXrm76V9QYcymtckpkRETkphhjWLFiBc899xxHjx5l8ODBTJo0iVKlSmVZDGfOnGH8+PEsWbLEuXFelSpVGDRoEM8995xzAznJuZTIiIhIhrt8+TKnTp0iJiYGd3d3KlasmGVLga/uDDxr1iyOHTsGQLFixejSpQuTJk2iQoUKWRKHZI30JjKaIyMiIulWoECBLB9++f7773n99dfZsWMHDoeDvHnz0qZNGyZMmHDNKiHJfZTIiIhIthMaGsr48eP58ccfiY+Px2KxUKdOHYYPH87jjz+Om5u2QZMrlMiIiEi2cOnSJV599VXmzZvHmTNngCvb8T/99NO8+OKLmtogqVJKKyJyh+nQoYPzJOaMkJyczIkTJ5zvz58/j8PhyJC6HQ4Hs2fPxtPTk2LFivHWW28RExNDly5d+O233/jrr7+YPHmykhhJkyb7ioiIS9jtds6dO0ejRo34888/adCgAWPGjElxKKTkXumd7KseGRGRHGzLli00a9YMHx8fvL29+e6776hcuTIhISGuDu2GrFYrpUqVYvHixSQkJLBlyxYlMXLTNEdGRCSHioyMpHPnzixevBh/f38cDgcXL15MUSY5OZk8ebLvf+rz5MlDvXr1XB2G5GDqkRERyaG2bNlCzZo18ff3B8DNzY0SJUqkKJOe6QOQ8fNqTp8+7YwLYOLEiVy+fDnD6he5SomMiIiwcuVKatasec315OTkW6qvQoUKbNy40fl+0qRJSmQkUyiRERHJoZo0acLhw4edCYPD4SAyMvKGn7vRvJoWLVowdOhQGjduTEBAAACTJ0/Gy8sLHx8fGjVqRHx8POvXr8dmsznrPXDgAJUrVwYgPDycYsWKATB48GAA/P39sdlsREREZMwXIILmyIiI5FjFixdn6dKljBgxgpiYGNzc3HjllVeu+5n0zKsB+P3339mwYQN58+bl888/Z8mSJWzatImiRYsSFRVF/vz50x3nzJkzmTVrFhs3bnQmNyIZRYmMiEgO1qhRIzZv3pzi2sMPP+z8+b8nUadnXg1Anz59nJ9dvnw5gwcPvroUluLFi2foM4jcDg0tiYjINdzd3W9YJk+ePNjtdud7zYERV1AiIyKSi9zKvJqOHTsyc+ZMoqOjAbh48SJ2u52qVavyxx9/cO7cOQDmzZuXZh1FihRxfl4kI2loSUQkF7mVeTV9+/bl9OnTNGnShDx58lC4cGGCg4OpUKECo0aNokGDBpQtW5b27dunWceIESNo06YNhQoV4qeffqJMmTIZ/WiSS+mIAhEREcl2dESBiIiI3PGUyIiI5CDGGDZu3EhgYCABAQHMmDFDc08kV1MiIyKSQxw8eJC2bdvSvHlzTp8+zTvvvMPQoUOdy6JFciMlMiIi2VxkZCTPPPMMPj4+HD9+nO+++46ffvoJT0/PVMufOHGCoKAgKlWqxMWLF2/5mAGRnECJjIhINpWcnMz7779PtWrV+Pzzz3njjTc4cOAAHTt2xGKxpCh7+fJlXn31VSpXrkylSpX4/PPPiY2N5YMPPnBR9CJZQ8uvRUSyoTVr1jB8+HBCQ0N54oknePXVVylbtuw15ZYsWcIbb7zBnj17cDgc5M+fn/bt2/Pyyy9Tr149F0QukrXUIyMikoXi4uLw9/fniy++SPX+4cOH6dixIwEBAZQsWZJdu3bxySefpEhiDhw4QOfOnSlUqBBdunRh9+7deHl5MW/ePOLj41m5cqWSGMk1lMiIZICdO3fSvXv3TKo9GjgGJKb7E7t37+aNN94gLi6Ohx56CC8vL4YMGcLMmTN56623AJg7dy6dO3fOlIglbWPHjmXTpk0MGTKEn376yXk9OjqakSNHUqdOHfbu3cuiRYv45Zdf8PX1Ba7spvvss89StmxZvLy8+O677yhRogTjxo0jNjaWkJAQ+vTpg5ub/rMuuYuGlkQyQL169Vi0aFEG1xoFPA0sAuxAcWAMMBK4Mj8iOTmZPHmu/M/Ybrfzww8/MHXqVOchghUrVuTw4cOEhYVlcGxyKzZt2sR7770HQGxsLG3btmXz5s0cOnSIsWPHEhcXx0svvcSIESMoWLAgDoeDmTNnMmPGDH777TfgyhlIPXv25JVXXuHee+915eOIZAtKZERuUkJCAkFBQezfv5+8efNStmxZxo4dy/DhwwkJCSE8PBybzcYzzzzDihUriImJYe7cuSxevJh169aRnJzMwoUL01xxAhAUFISb20p+++0c589D48Ywc2YUBQuOIihoEW5u3hw5coSIiAh27NhBnz59+PHHH0lKSkoxCXT8+PFERERgs9l47rnnOHbsGBcvXmT69OnXtDlv3jzef/99kpKScHd357333sPHxyczvsJcKT4+nn79+vHf3dTbtGlDfHw8ffr04c0336RixYqsX7+eSZMmsWnTJpKTk7FarTRr1oxx48bRtm1bFz2BSPakPkiRm7Rq1SouXrzIoUOH2Lt3LwsXLrymTHR0NH5+fuzevZsXXniBtm3b0rFjR0JCQggMDGTSpEk3aOUM27adY/VqCA2FyEiYNu3qvf3s2rWTDz/8kA4dOlC6dGm+//57kpKSAFL8oXz77bepWbMmISEh9OvXL83WNm/ezFdffcWGDRvYvXs3r732Go888kgmDpfdusTExBw5XDZu3DiOHz9+zfX4+Hg2bdrEa6+9xtixYylatCgtW7Zk/fr1VKlShenTp3P58mU2btyoJEYkFeqREblJPj4+hIaG8tRTT3H//ffToUOHa8oUKFDA+Qe1Xr16uLu707JlSwAaNGjAl19+eYNWIunWzUKRIleSkieegBkzYOxYgEQKFUrEy8vrhrFu3bqV6Ohofv75Z9zd3YmIiMDhcFxT7rvvvmPv3r00bNjQeS0hIYG5c+fesI2M9u/hstTs2bMnxw2X/frrr6n2gl3Vrl07YmNjAShZsiRPPfUUkyZNolSpUlkUoUjOpR4ZkZtUtWpVDh06RLt27di8eTOenp5ERUWlKJM/f37nz1arlQIFCqR4f+MNygoCKYcg/n/EyEL58vemaCMtb7/9NuHh4bRu3ZpGjRrx0UcfsWHDhmvKJSUl4eHhQWJiIsYYypQpw1dffUXjxo0BCA8Pp1ixYowfP566detSvXp1Nm/ezLPPPovNZsPT05MDBw5cN5agoCD69+9PkyZNqFGjBoGBgSQkJKS417x5c+eQ21tvvUWdOnXw8vKid+/eREdHc+jQIXr37s2JEyew2Wx88cUXTJw4keHDh6fa5rx582jYsCF169alefPm7N2794bfWVo6dOhwS8lTQkJCqkNK/xYbG8u9997Lr7/+yvnz5/nggw+UxIikkxIZkZt08uRJLBYLHTt2ZOrUqRhj+PPPPzO0jaSk8nz9NVy8CHY7zJkDrVsDWIEqNG/ehoiICMaMGYPVak21jgIFCrB69Wrq1KnDsWPH2LdvH/3798fPz++asqVKlSI8PJxVq1axd+9eFixYcM0f7dsfLoNt27axevVqQkNDiYyMZNr/j5exa9cuVqxYwW+//caPP/7IZ599xubNm9m/fz+FCxfmhRdeoHbt2syePfuWh8t69ep1wxjTsnLlSmrWrHnN9f9PSpcBDYDCQE3gA8DBoEGDOHr06A3rP3r0KLVq1brl+ERyKyUyIjdp//79NG3aFB8fH3x9fenbty/e3t4ZVv+ZM2dYtWoNUVFWOnRwo1YtKFYMrnQ6NPznBR4eHrz++uscPXo01Um5hQoVIl++fOTJk4cqVarg5eXF3XffTcmSJa8p27NnTwoXLoyfnx+VKlWiadOmrF27NkWZGw2XHT58+IbP1q1bN4oUKYLVauWJJ54gODjYea9r164UKVIEgODgYLp3706xYsUAePLJJ1mzZs0N6/+3fw+XXZ18HRkZ6ewFup4tW7bQrFkzfHx88Pb25rvvvqNy5cqEhIQA0KJFC4YOHUrjxo0JCAgAPmXy5Efw8tqBj088jRr9Tnz806xb14X58+enO2Z/f39sNhsRERE39awiuZnmyIjcpPbt29O+fftrrl/9I1e5cmUuXrzovO7p6Ul4eLjzfbNmzdIchvn9999p27YtCQkJ9O//LG+99TLwPQcOrCE01JO6dYcxd27KrekrVapESEgI27dvZ9iwYWzduhWAwoUL06JFC2dcABMnTnT+HBQURFBQEHBluCw8PJy1a9cSHBzMd999R48ePVL0stz+cNm1/r3Cyt3dPV3l0ssYQ2BgIK+//voNy44aNYo9e/bg7u5Ovnz5+OGHH+jcuTO1atWiUKFChIeHExcXx4YNG4iOjiYmJoY9e/awcOFCihcvzNy5lVmyBDZtgqJFISoK8ucHi2Up+fNb+PvvtIeV/m3jxo3O5E1E0kc9MiLZxNatW2nSpAkFCxakQ4cOVKxYESiIMd1o2PArGjceTWRkVJqfb9CgAb/++ivffPMNd999N1WrVk1321kxXAawePFiYmNjsdvtzJkzh9ZXxsuu0bp1a77++msuXboEwKxZs/7p+Ui/jh07Mn/+fE6cOAGAw+Fg586dqZa9++67KVGiBImJiRw8eBA3Nzd27NjBhx9+6JyDc/78eYYNG0aLFi3YvXs3mzZtonLlyjRvXpoVK+IYPPhKEgNQvDhcHfG77767+fvvv9m1axcvv/wyHh4ePPLII3h6emKxWChcuLA2sRO5DeqREXGRlStXMvbKMiQuXbpEeHg4hQoVYsSIETzxxBPOcnv27CE+Ph6Ap59+mgULFqRZp8VioUuXLnTu3DnV1Ulp2b9/P2PGjMEYQ3JycoYPl11Vv3592rZty7lz52jcuHGak3Tbt2/PgQMHaNy4MW5ubnh7e/Phhx/eVFv+/v5MmTKFRx55hOTkZBITE3nwwQdT3br/mWee4ZlnngFgxYoVTJ48OcWkaIfDQZUqVZg9ezaVK1emZ8+ePPLII//sunuEOXOGpRpDnjxX5jjly5ePunXr4nA4+PTTT/n222+d+w1d7b27lV4nEeFK9+uNXoAHYKKjo42IZKyPP/7YuLm5mUceecTEx8dfc3/UqFHGzc3NcGUZk1m8eLELorx9gYGBZtq0aa4O44YiIyNNuXLlzIYNG4wxxtjtdnPhwgVTqVIls2fPHmOMMffff79ZunSpMcYYh8NhZswoaurVw1y8eOU/m1FRmORkzKlThU2RIkVMRESEMcaYoUOHmkqVKhljjDl+/LgpWrSos90iRYqY8PDwLHpKkewvOjr66n/3PMx1chT1Z4q4iDGGiRMnMmjQIAYPHsw333xDwYIFrykzf/58Z++KxWJhwIABmgyaiYoXL87SpUt54YUX8Pb2pm7dus4jH/4rPj6eHj168Mkn0XTqlIcmTcDHBzp0gL//zkOFCgsYNWoUDRo0oFGjRpQoUSLNdkeMGEGbNm002VfkJlnMdfY2cBayWDyA6OjoaDw8PDI/KpE7XHJyMoMHD+bTTz/l9ddf54UXXkh1aGHLli00adIkxTWr1cqDDz7IsmXLst1wxL+Hy/5tzJgx2XKX4Ntx6tQpOnfuzKFDh/jiiy947LEWwBzgAHA30B+o4soQRXK0S5cuUfTKxLOixphLaZVTIiOSxeLi4ujevTurV69m9uzZBAYGpll22LBhfPjhh6muCJo3bx59+vTJzFAlDTt37qRTp064ubnx/fffO0+oFpGMk95ERkNLIlno3LlzPPDAA6xfv54ffvjhukmM3W5nwYIFaS5rfvLJJzl58mRmhSppWLRoEf7+/tx9993s2LFDSYyIiymREckix44do2nTphw/fpxffvmFdu3aXbf8hg0bOH/+fJr3Y2NjnSttJPM5HA4mTJhAjx49eOyxx1i/fj3lypVzdVgiuZ6WX4tkgd27d9OhQweKFCnCli1b0rXHy6JFiwDImzcvdrs9xXLqUqVKce+99+Lv759pMcv/i4+PJzAwkMWLF193TpOIZD0lMiKZ7KeffuKxxx6jdu3aLF++nNKlS6frcz4+PrRr147q1atTtWpVtm3bxpo1azhx4gSFChXK5KjlqpMnT9KpUyfCwsJYunSp85gGEckeNNlXJBN98cUXPPHEE7Rt25ZFixZRuHDhW65r3rx59OvXj9jY2NuqR9Jv+/btdO7cmTx58vDDDz+keqaViGQOTfYVcSFjDG+++SaBgYEEBgaybNmy204+rg5HHT9+PCNClBv46quvuP/++6lcuTI7duxQEiOSTSmREclgdrudZ555hjFjxvDSSy/xySefkCfP7Y/iXk1kjh07dtt1SdocDgfjx4+nV69edO3albVr11K2bFlXhyUiadDQkkgG+ve22RaLJUMPAzTG4HA4Mrxe+X9xcXEEBgby7bff8sYbbzBq1ChN6hVxkfQOLWmyr0gGslgsmfaHz2KxYL16pLJkuD///JNOnTrx+++/s2zZMjp27OjqkEQkHZTIiEiut23bNjp16kT+/Pn59ddfM+XkbxHJHOqfFpFcbcGCBdx///1Uq1aNHTt2KIkRyWGUyIhIruRwOHjxxRfp3bs3PXr04Oeff6ZMmTKuDktEbpISGckRwsPDmTlzZpa3+9JLL/Hll19mWH0TJ07k8uXLmVa/pE9sbCxdunThjTfe4K233mLOnDnkz5/f1WGJyC3QqiXJEdavX8/w4cMJCQlxdSi3xWKxEBUVRbFixVwdSq514sQJOnbsyNGjR/nqq6946KGHXB2SiKRCG+JJjpWQkED37t2pXbs2Pj4+BAQEMHjwYMLCwrDZbM7VJIcPH+bBBx+kfv36eHt78/777zvrsFgsjBs3Dl9fX2rUqHHDXo+tW7fi5+eHzWbD09OTjz76CICgoCCmT58OXOlN6datGw8//DA1atTgoYce4sCBA7Rt25YaNWrQs2fPFOch/dfgwYMB8Pf3x2azERERccv1x8TEMHDgQBo0aIC3tzeDBg0iMTHxlr7v3GTLli3Ur1+f6OhotmzZoiRG5E7w730v0noBHoCJjo42Ipnt22+/NQEBAc73Fy5cMOvWrTM+Pj7Oa8nJycbPz8+EhoYaY4yJi4szXl5eZvv27cYYYwAzbtw4Y4wxR48eNcWLFzfHjx9Ps82OHTuaBQsWON9HRkYaY4wJDAw006ZNM8YYM2HCBFOlShUTGRlpHA6Had68uWnYsKG5dOmSSUpKMj4+Pmb58uXXfTbAREVFOd/fav0DBw40n3/+uTHGGIfDYZ544gkzZcqU67ad233xxRcmX758xt/f30RERLg6HBG5gejoaAMYwMNcJ0fR8mvJdnx8fAgNDeWpp57i/vvvp0OHDteUCQsL4+DBg/To0cN5LSYmhkOHDlG/fn0ABgwYAFzZEbd58+Zs2LCBypUrp9pmy5YteeWVVzh8+DCtWrWiWbNmqZYLCAigePHiANStW5f8+fNTpEgRAHx9fTl8+PAtP/fN1L9s2TK2bNnCO++8A1zpxdIeM6lzOByMHTuWyZMn079/fz766CPy5cvn6rBEJIMokZFsp2rVqhw6dIi1a9cSHBzMqFGjnMMvVxljKFGixE3NmbneRnXDhw+nU6dOBAcHM3bsWDw9Pfnwww+vKVegQAHnz1ar9Zr3ycnJ6Y4nNemt3xjDkiVLqFGjxm21d6eLiYmhT58+LF++nLfffptnn31WO/WK3GE0R0aynZMnT2KxWOjYsSNTp07FGEPJkiWJjo52lqlZsyYeHh7MmTPHee3IkSNERkY631+9Fx4ezsaNG/H390+zzbCwMKpUqcLAgQMZO3YsW7duzYQngyJFiqR4jlvVuXNnJk+e7ExsoqKiOHLkyG3Xeyf5448/aNq0KevWreOHH37gueeeUxIjcgdSj4xkO/v372fMmDEYY0hOTqZv3740adKEOnXq4OnpSdWqVfn+++9Zvnw5w4cPZ9q0adjtdkqVKsWCBQuc9djtdnx9fYmLi2PGjBlpDisBvP/++6xdu5Z8+fJhtVp5++23M+XZRowYQZs2bShUqBA//fTTLdczbdo0XnjhBWw2G25ubuTJk4cpU6ZQrVq1DIw259q8eTOPPPII7u7ubNmyhTp16rg6JBHJJFp+LXckLXPOvT7//HMGDRpEo0aNWLJkCaVKlXJ1SCJyC7T8WkRyFbvdzqhRowgKCqJfv36sWbNGSYxILqChJbkjpdbTGBERQUBAwDXX27Rpw1tvvZVhbQ8ePDjVOTZbtmyhYMGCGdaO/L+YmBh69erFypUrmTZtGsOGDdN8GJFcQkNLIpKjhYeH8/DDD3PixAkWLlxI+/btXR2SiGQADS2JyB1v06ZN1K9fn4SEBLZu3aokRiQXUiIjuZoxBrvdTnJycqrDUZJ9zZkzh1atWuHp6cm2bduoVauWq0MSERdQIiO51uHDh6lWrRp33XUXBw4c0JyKHMIYw1tvvUX//v15/PHH+emnnyhZsqSrwxIRF9FkX8mVtm/fzoMPPkjJkiXZsmXLdfeYkezF4XAQFBREwYIFGTJkiBJQkVxOPTKS66xYsYKWLVtSo0YNNm/enGlJzM6dO+nevXum1H07EhMTeeihh/Dy8mLIkCHMnDnTuWpr7ty5dO7c2bUB3oDVaqV06dI8/fTTSmJERD0ykrt8+umn/O9//+Ohhx7iq6++ytTl0PXq1WPRokWZVn9akpOTyZMn7f9p79mzh8OHDxMWFpaFUYmIZA71yMgdxW63Y7fbr7lujOGVV15hwIABDBgwgMWLF2doEpOQkED37t2pXbs2Pj4+BAQEsH79emw2G3BliXCxYsUYP348devWpXr16mzevJlnn30Wm82Gp6cnBw4cuG4bQUFB9O/fnyZNmlCjRg0CAwNJSEhIca958+Z4enoC8NZbb1GnTh28vLzo3bs30dHRHDp0iN69e3PixAlsNhtffPEFEydOZPjw4am2OW/ePBo2bEjdunVp3rw5e/fuzbDv7KqJEydy+fLlDK9XRHIHJTJyR3n66aepUaMGERERzmvJyck8+eSTvPTSS7zyyit89NFH1+2xuBWrVq3i4sWLHDp0iL1797Jw4cJrykRHR+Pn58fu3bt54YUXaNu2LR07diQkJITAwEAmTZp0w3a2bdvG6tWrCQ0NJTIykmnTpjnv7dq1ixUrVvDbb7/x448/8tlnn7F582b2799P4cKFeeGFF6hduzazZ8+mZs2ahISE0K9fvzTb2rx5M1999RUbNmxg9+7dvPbaa/Tq1evWvqDrmDRpkhIZEbllGlqSO0ZUVBSfffYZiYmJtG3blo0bN+Lm5kbPnj1ZsWIFn332GY8//nimtO3j40NoaChPPfUU999/Px06dLimTIECBZzzT+rVq4e7uzstW7YEoEGDBnz55Zc3bKdbt24UKVIEgCeeeIIZM2YwduxYALp27eq8FxwcTPfu3Z1nTT355JN07dr1pp7pu+++Y+/evTRs2NB5LTIykoSEhAzrzRo8eDAA/v7+WK1WKlSowN13382RI0f4888/8fT0ZOHCheTLly9D2hORO496ZOSOMX/+fJKSkgDYt28fHTt2pFWrVgQHB/PDDz9kWhIDULVqVQ4dOkS7du3YvHkznp6eREVFpSiTP39+589Wq5UCBQqkeJ+cnHzT7f57squ7u3u6yqWXMYbAwEBCQkKcr7/++itDh+RmzpwJwMaNGwkJCaFMmTKEhITwww8/EBoaytmzZ1myZEmGtScidx4lMnJHMMbw4YcfOt87HA7WrVtHSEgI69aty/QdX0+ePInFYqFjx45MnToVYwx//vlnhrezePFiYmNjsdvtzJkzh9atW6darnXr1nz99ddcunRlV+9Zs2ales7U9XTs2JH58+dz4sQJ4Mp3unPnztt7gHR45JFHKFSoEFarlQYNGnD06NFMb1NEci4NLckdYevWrfz222/XXP/777/5/vvvadCgQaa2v3//fsaMGYMxhuTkZPr27Yu3t3eGt1O/fn3atm3LuXPnaNy4cZqTdNu3b8+BAwdo3Lgxbm5ueHt7p0j00sPf358pU6bwyCOPkJycTGJiIg8++CD16tXLgCdJW0b0VIlI7qFDI+WOEBQUxJdffpnmH72PPvrIOR8jpwoKCsJms6WZvORUHh4e7N+/n0qVKl3zjCNHjsTd3Z2JEye6NEYRyXo6NFJyjejoaBYuXHjd/899yJAhHDp0KAujkvQaMWIEbdq0wWazpVhtJiKSHuqRkRzvgw8+4Omnn05xzWq1OveTqVGjBg8//DATJ0687oTY7GDlypXOVUj/NmbMmGy5S7CISGZJb4+MEhm5KeHh4axatSrLh2leeuklatasSbvevVkGxAKtAE9jKF26NBcuXMBisWCMoUSJErRr146AgABat25NxYoVr6lv4sSJvPDCC875GFfr7927d1Y+loiIpEGJjGSK9evXM3z4cEJCQrK87QXA40AiV8ZEHUAvY/i+RAkqli3LgAEDaNOmDV5eXri5XX/U1GKxEBUV5dxnJaey2+04HA7y5s3r6lBERDKU5sjIbUtt2/3BgwcTFhaGzWajY8eOABw+fJgHH3yQ+vXr4+3tzfvvv++sw2KxMG7cOHx9falRo8YNN33bunUrfn5+zm37P/roIwAeDQqiz/TpJAJMnIijWzd4+GEW1KzJXU2bsnjxYtasWUPXrl3p3bs3DocjzTb+vQnb1XkZQUFBTJ8+nSvVT6Rbt248/PDD1KhRg4ceeogDBw7Qtm1batSoQc+ePZ31x8TEMHDgQBo0aIC3tzeDBg0iMTHxFr/xmxcWFsZnn32W6rEM2U1ycjLHjh3LEbGKSA5ijLnhC/AATHR0tJHc49tvvzUBAQHO9xcuXDDr1q0zPj4+zmvJycnGz8/PhIaGGmOMiYuLM15eXmb79u3GGGMAM27cOGOMMUePHjXFixc3x48fT7PNjh07mgULFjjfR0ZGGmOM8QoMNJZp0678Qk6YYKhSxRAZaXA4TP7mzU3Dhg3NpUuXTFJSkvHx8THLly+/7rMBJioqyvk+MDDQTJs2zRhjzIQJE0yVKlVMZGSkcTgcpvl16h84cKD5/PPPjTHGOBwO88QTT5gpU6Zct+2MFBwcbABz+PDhLGvzVkRGRpo2bdqYpk2bmsTERFeHIyI5QHR0tAEM4GGuk6NoHxlJU3q23Q8LC+PgwYP06NHDeS0mJoZDhw5Rv359AAYMGABc2f22efPmbNiwgcqVK6faZsuWLXnllVc4fPgwrVq1olmzZgDEAxau/EYDEBAAxYsDkFy3Li3y53duz+/r68vhw4dv69kDAgIo/k/9devWJX8a9S9btowtW7bwzjvvAFd6saxW6221fTOqVq0KwLFjx6hWrVqWtXszfv/9dx5++GHOnTvHkiVLNAwmIhlKiYyk6eq2+2vXriU4OJhRo0Y5h1+uMv9Mrr2ZOTPX2y5/+PDhdOrUieDgYMaOHYunpycffvghJYEU+7v+M0nXCpS2WPjhhx+IjIwEYMOGDWzZsoWvv/6a6OhoLl26RGxsLElJSXz//fe0atXqhjH+d1O2tDZpM8awZMkSatSoke7nz0h33303efLk4dixYy5p/0aCg4Pp2rUr5cqVY/v27dk22RKRnEtzZCRNqW27X7JkSaKjo51latasiYeHB3PmzHFeO3LkiDOpAJz3wsPD2bhxI/7+/mm2GRYWRpUqVRg4cCBjx45l69atAFQDinAlcfk3B1D70iUOHTrEJ598wuzZszl27BhhYWFs2bKFQ4cOcfLkSS5evEhcXBzly5cHoEiRIime41Z17tyZyZMnOxObqKgojhw5ctv1pleePHmoVKlSttzG/8MPP6Rdu3Y0bNiQrVu3KokRkUyhREbStH//fpo2bYqPjw++vr707duXJk2aUKdOHTw9PenYsSN58uRh+fLlfPvtt3h7e1OnTh2eeOIJEhISnPXY7XZ8fX0JCAhgxowZaQ4rAbz//vvUqVMHX19fxo0bx9tvvw1AXmAo0PJfZSsDXwO+xYo5z1IyaazCs1qttG7dmlq1agEZtwnbtGnTKFiwIDabDW9vbx544AHCw8Nvub5bUbVq1WzVI5OUlMSQIUMYMmQITz/9NMuXL7+68kBEJMNp+bVkqsxY5nweiAPuJmUm/uyzz/Luu++mmcz8+OOPtGvXLsPiyC4GDx7Mtm3b2LNnj6tDISoqiq5du/LLL7/w4YcfMnDgQFeHJCI5lJZfyx2rFFCJa395p06dSkBAQKqTbS0WC0uWLOHgwYNZEWKWuvfeezl69GiaCVxWCQsLo2HDhuzZs4c1a9YoiRGRLKHJvpKpUvvjGhERQUBAwDXX27Rpw1tvvXXLbVmtVr777jvmzJnDxYsX+fbbb/nzzz8ByJ8/Pz/++CPLly/nzTffpGnTptx7773XnXicUzz88MMkJSWRkJBAoUKFXBLD1T18KlSowPbt27n33ntdEoeI5D4aWpI7jjGGpKSkFNeuLvl1OBw4HA5ngmW1WnFzc8vRCY3D4SA5OZk8efLccEfjjGaM4YMPPmD48OEEBATw1VdfaT6MiGSI9A4tqUdG7jgWi4V8+fKles9qtWbpPi9Zwc3NLc3nzUxJSUkMHTqUmTNn8txzzzFlypQ77rsVkexPiYyI3LQLFy7QtWtXNm3axOzZs3niiSdcHZKI5FJKZETkpvz222889NBDXLx4keDgYJo3b+7qkEQkF9OqJcmxwsPDmTlzZpa3+9JLL93w8MubMXHiRC5fvpxp9Wek1atX06hRIwoUKMCOHTuUxIiIy2myr+RY69evZ/jw4Td1PEJ2lBl77WQ0YwwzZszgueeeo3379ixYsED/LRCRTKV9ZOSOkpCQQPfu3alduzY+Pj4EBAQwePBgwsLCsNlsdOzYEYDDhw/z4IMPUr9+fby9vXn//feddVgsFsaNG4evry81atS4Ya/H1q1b8fPzw2az4enpyUcffQRAUFCQ88ypiRMn0q1bNx5++GFq1KjBQw89xIEDB2jbti01atSgZ8+eOByONNsYPHgwAP7+/s5dhm+1/piYGAYOHEiDBg3w9vZm0KBBJCYm3tL3/W9JSUkMHjyY4cOH89xzz/Hdd98piRGR7ON6R2NffQEegImOjs7cM7tF0vDtt9+agIAA5/sLFy6YdevWGR8fH+e15ORk4+fnZ0JDQ40xxsTFxRkvLy+zfft2Y4wxgBk3bpwxxpijR4+a4sWLm+PHj6fZZseOHc2CBQuc7yMjI40xxgQGBppp06YZY4yZMGGCqVKliomMjDQOh8M0b97cNGzY0Fy6dMkkJSUZHx8fs3z58us+G2CioqKc72+1/oEDB5rPP//cGGOMw+EwTzzxhJkyZcp1276R8+fPmxYtWpi8efOazz777LbqEhG5GdHR0QYwgIe5To6iyb6SI/j4+BAaGspTTz3F/fffT4cOHa4pExYWxsGDB+nRo4fzWkxMDIcOHaJ+/foADBgwALhyPlHz5s3ZsGFDmmc/tWzZkldeeYXDhw/TqlUrmjVrlmq5gIAAihcvDkDdunXJnz8/RYoUAcDX15fDhw/f8nPfTP3Lli1jy5YtvPPOO8CVXqzbWQ596NAhHn74YS5dusTatWvTfH4REVdSIiM5QtWqVTl06BBr164lODiYUaNGOYdfrjLGUKJEiZuaM3O9jfCGDx9Op06dCA4OZuzYsXh6evLhhx9eU65AgQLOn61W6zXvr56MfavSW78xhiVLllCjRo3bag+unEvVo0cP7rnnHn7++efrHvQpIuJKmiMjOcLJkyexWCx07NiRqVOnYoyhZMmSREdHO8vUrFkTDw8P5syZ47x25MgRIiMjne+v3gsPD2fjxo34+/un2WZYWBhVqlRh4MCBjB07lq1bt2bCk0GRIkVSPMet6ty5M5MnT3YmNlFRURw5cuSm6jDGMG3aNB566CHuv/9+fv31VyUxIpKtKZGRHGH//v00bdoUHx8ffH196du3L02aNKFOnTp4enrSsWNH8uTJw/Lly/n222/x9vamTp06PPHEEyQkJDjrsdvt+Pr6EhAQwIwZM677R/r999+nTp06+Pr6Mm7cON5+++1MebYRI0bQpk0b52TfWzVt2jQKFiyIzWbD29ubBx54gPDw8HR/PjExkUGDBvHcc88xcuRIli5d6hzCEhHJrrT8WnKNnLDM2VXOnz/PY489xtatW/n4448JDAx0dUgikstp+bWIpGnZsmXOnw8ePEiDBg0IDQ1l3bp1SmJEJEfRZF/JNVLrfYyIiCAgIOCa623atOGtt97KsLYHDx6c6hybLVu2ULBgwQxrJ72GDRtGhQoVOHfuHD179qRKlSqsW7eOSpUqZXksIiK3Q0NLIrlMQkICJUuWxM3Njbi4ODp16sT8+fNxd3d3dWgiIk7pHVpSj4xILpKcnMyyZcucE6BLly7NvHnzlMSISI6lOTIi2YAxBofDgd1uJzk5GbvdjsPhSHU47HqSk5NTPRLhaj179+5lyJAhzusXLlwgKCjouscoiIhkZxpaEslGjDEcO3aMX375hf3791OwYEEaN25Ms2bNnLv7Xs/06dMpXbo0vXv3dl6Ljo5m3LhxbNu2jR07dqT6ufHjx/Pyyy9n2HOIiNyu9A4tKZERyaaOHz/O+++/z+zZs4mLi+Oxxx5j+PDhNGrUKM0difv27cvx48fZtGmT89r48eN5/fXXU+11yZMnD8nJyRQqVIhLly7d1pEGIiIZScuvRXK4KlWq8Pbbb3Py5EmmT5/O7t27adKkCY0aNWLBggXOk60nTpzI5cuXAahZ8y48PH4DruzoGx8fz9SpU51JTJ48/z8trlKlSvTp04fZs2dz4MABJTEikiOpR0Ykh3A4HKxcuZJ3332X4OBgKlSowJAhQ3jxxReJioqkWLGZJCVNIm/ev//5RAO++KItgYGvYLFY8Pb2pmXLljRr1oymTZtSrlw5lz6PiMj1aGhJ5A524MABZsyYwWeffYbdbueuuwpRsmQ8FSrA3XfDkSPw55/g6VmAnj0/pn37R7QySURyFA0tidzBPD09+fjjjzlz5gwAa9YksGcPlCkDISHwww8QGgpnz14mOflXJTEicsfSPjIiOdjVk67LlTNcnf/7yCNQqNCVnxs0cOPo0QMuik5EJPMpkRHJIf766y927dqV4nX69GkALl6Eq2dhFijw/5+xWh0kJ2s4WETuXEpkRLKh06dPs3PnzhRJy9VhpJIlS+Ln50dgYCB+fn4EBQUB/TFmxn9qcQOsgFfWBi8ikoWUyIi4kDGG06dPX9PTcjVpKVWqFH5+fvTv3x8/Pz/8/Py45557Uuwjc+DAAZo3nw2Ap+e/ay8NtAIKICJyp9KqJZEsYozh5MmTKRKW3bt3c/bsWeDKuUdXk5Wrr7vvvjvNze+uiomJwWazUbp0aTZu/Jy8eXcCJYEHgLyZ/lwiIplBh0aKuJAxhj///POanpZz584BUKZMGfz8/Bg4cKAzabnrrrtumLSk5plnniEiIoKffvqJvHnvBWpm8NOIiGRfSmREbpMxhhMnTlzT03I1aSlbtix+fn4MHjzYmbRUrFjxlpKW/1q0aBGff/45c+fO5d57773t+kREchoNLYncBGMMf/zxxzVJy/nz5wEoV67cNcNDFSpUyJCk5b9OnDiBt7c37dq146uvvsqUNkREXEU7+4rcJmMM4eHh1yQtFy5cAKB8+fKpJi1ZwW6307JlS/744w/27t1Lsatrr0VE7hCaIyNyE4wxHD9+/JqkJTIyEoAKFSrg5+fHM88840xaypcv77J433zzTTZv3sz69euVxIhIrqZERnIdYwzHjh27JmmJiooCoGLFivj5+TFs2DBn0pKdDljctm0bEyZMYMyYMfj7+7s6HBERl9LQktzRjDEcPXr0mqTl4sWLANx1113XDA+VLVvWtUFfR0xMDL6+vpQqVYqNGzeSN6+WV4vInUlDS5LrOByOVJOW6OhoAO6++278/PwYMWKEM2kpU6aMi6O+OUOHDuXs2bOsXr1aSYyICEpkJIdyOBwcOXLkmqTl0qUrSfs999yDn58fzz//vDNpKV26tIujvj1ff/01c+fOZc6cOVpqLSLyDw0tSbbncDg4fPhwiqRlz549zqSlUqVK1wwPlSpVysVRZ6wTJ07g4+NDQEAACxcu1FJrEbnjafm15Fjx8fEsXbo0RdISExMDQOXKla9JWkqWLOniiDOX3W6nVatWHD9+nL1791K8eHFXhyQikuk0R0YylcVi4cUXX2TFihXExcUxYcIEevfuDcCOHTsYPXo0ly5dwm63M3bsWLp27QrAvHnzeOutt4Arc1Y+/vhjKlasmKLu3bt306dPH6pUqYKfnx9jx47Fz8+PunXr3vFJS2omT57Mxo0bWb9+vZIYEZH/UCIjt8xisbBnzx6OHTtGvXr1aNq0KcWKFWPQoEGsXLmS8uXLc/78eerWrUuTJk2Iiori+eefZ9euXVSsWJHXXnuNAQMG8OOPP6ao19PTkwsXLlCiRAkXPVn2sX37dudS6+bNm7s6HBGRbEdDS3JLLBYL4eHhVKpUCYDOnTvz6KOPUqpUKXr27EmVKlWcZSMjI5k7dy4HDx5k165dzJ07F4CoqCjKlStHfHw8VqvVFY+RrcXGxmKz2ShZsiSbNm3SKiURyVU0tCRZzmKxYIyhTp06/Prrr9fcP3jw4DXlJW1Dhw7lzJkzrFq1SkmMiEga3FwdgORcc+bMASA8PJyNGzfi7+9PkyZNOH78OMHBwc5yISEhJCYm0rJlS1atWsXp06cBmDlzJg888IB6Y1LxzTffMGfOHN577z2qVavm6nBERLIt9chIqpKTkzl06BC7du2iZ8+eFChQ4JoydrsdX19f4uLimDFjBpUrVwZgxYoVjBw5khEjRpCUlMQ999zDsmXL8PT05K233qJdu3bAlcm+n3zySVY+Vo7w559/MmjQILp27UpQUJCrwxERydY0R0ZISkpyJi1XX3v37uXy5ctYLBYuXbqEu7t7is9YLBaioqJ0YGEGs9vtPPDAAxw7dkxLrUUkV9McGUlVUlISBw4ccO6EezVp+fvvv7FYLNx33334+fnRo0cP/Pz8sNls1yQxknmmTJnChg0bWLdunZIYEZF0UCJzB0tMTHQmLVdf+/btIzExETc3N2fS0qtXr5tOWtLTkyc3Z8eOHbz00ku88MIL3H///a4OR0QkR9DQ0h0iMTGR/fv3p0ha9u/f70xaatWqlWI3XJvNRuHChV0dtvwjNjYWX19fihcvzubNm7VKSURyPQ0t3cH+/vvvVJOWpKQk3NzcqF27Nn5+fgQGBuLn54ePj4+Slmxu2LBh/PXXX/z4449KYkREboISmWzu77//Zt++fSmSlgMHDpCUlITVanUmLY8//rgzaSlUqJCrw5absHjxYj777DM+++wzLbUWEblJGlrKRi5fvpxq0pKcnIzVaqVOnTophoe8vb2VtORwf/75J97e3rRu3Zqvv/5amwSKiPxDp19nc5cvX2bv3r0pkpaDBw+SnJxMnjx5Uk1aChYs6OqwJQPZ7XZat27NkSNH2Ldvn1YpiYj8i+bI3KLExEQcDkeqG8DdqoSEhFSTFrvdTp48efD09KRevXr873//cyYtGdm+ZE9vvfUWv/zyC2vXrlUSIyJyi5TI/Mu2bdvo3LkzzZs3Z9GiRbdUR3x8/DVJy6FDh5xJi5eXFw0aNODJJ5/Ez88PLy8vJS250M6dOxk/fjyjR4+mRYsWrg5HRCTH0tASV/ZE+eijjxg2bBjJycmUKlWKc+fO3fBz8fHxhISEpEhaQkNDsdvt5M2bFy8vrxTDQ15eXuTPnz8Lnkiys9jYWOrWrUvRokXZvHkz+fLlc3VIIiLZjoaW0ik+Pp6BAweyYMEC57Xz589z+vRpKlSo4LwWFxeXatLicDjIly8fXl5eNGnShGeeeQY/Pz88PT2VtEiqhg8fzunTp1mxYoWSGBGR23QHJzIGCAaWAIlAe+AR/v3Ihw8fplOnToSFhV3z6Xnz5lGgQAFn0vLbb785kxZvb2+aNWvGsGHDnEmL/iBJeixZsoRPP/2UTz/9lOrVq7s6HBGRHC/HDy1ZLBZefPFFVqxYQVxcHBMmTKB3717AAHbs+IzRoy1cumSw22Hs2Np07boLKMDw4cOZMWPGdbfaz58/P97e3imGh+rUqaOkRW7JyZMn8fb2plWrVnzzzTdaai0ich25amjJYrGwZ88ejh07Rr169WjaNI5ixT5j0CBYudJQvjycPw916x6iSZNXCAzcxs8//3zd+po2bcratWu1y6pkCLvdTr9+/ShcuDAff/yxkhgRkQxyRyQyAwYMAKBq1ao0b96cDRs+pVQpN44dc9C+fcqyv/32Jb/8cgq4krCk1iNjjOG3335TEiMZZurUqaxfv56ff/6ZEiVKuDocEZE7xh2RyPyXxfI3xjioUwd+/fWau7z99tusWbOGpk2b8uOPP7J582bsdjtWqxW73Q5cmfD7119/Ub58+SyPX+4su3btYty4cYwaNYqWLVu6OhwRkTuKm6sDyAhz5swBIDw8nI0bN+Lv/zBNmsDx4xAc/P/ldu6EY8fq0KpVK3bs2EG/fv345ZdfGD9+PPXq1ePpp59OcdbN77//ntWPIneYuLg4evXqhY+PDy+//LKrwxERuePcET0ydrsdX19f4uLimDFjBpUrPwwsZMWKY4wc6WDECEhKggoVLBw5soLu3evwxhtv0K5dOwDuvvtuli1bRsWKFZk+fTp//vknu3fvpmHDhq59MMnxhg8fzsmTJ9mzZ48miYuIZII7YtVSVFQUxYoV+8+dc8ArwEKuLL9+GIdjPFOnLuPFF1/Ex8eHBQsWUKNGjawOWXKJJUuW0KVLF2bPns0TTzzh6nBERHKUXHNoZNqJTNp27dpFz549OXXqFDNmzKB///5aRSIZ6upS65YtW7J48WL9fomI3KT0JjI5fo6MMeamkhgAPz8/du/eTc+ePRkwYADdunUjKioqcwKUXMfhcBAYGEihQoX45JNPlMSIiGSiHJ/I3Cp3d3dmz57N4sWL+fnnn/H29uaXX35xdVhyB5g6dSrr1q1j3rx5WmotIpLJcm0ic9Vjjz3G3r17uffee2nZsiVjx44lKSnJ1WFJDqWl1iIiWSvHz5HJKHa7nSlTpvDSSy/h6+vLggULUizFFrmRuLg46tatS5EiRfj111+1SklE5DbkmjkyGcVqtTJmzBg2b95MZGQkvr6+zJ0797pnMYn827PPPsvJkyf58ssvlcSIiGQRJTL/0aBBA/bs2UOXLl14/PHH6dGjBxcvXnR1WJLNRUVFMWDAAI4fP07NmjVdHY6ISK6hoaXr+Prrrxk0aBBFixZl/vz5+Pv7uzokERGRXEFDSxmgW7du7N27l0qVKtGiRQvGjx+vicAiIiLZiBKZG6hUqRLr1q1j0qRJvPHGGzRv3pxjx465OiwRERFBiUy6WK1Wxo0bx6ZNmzh79iw2m4358+e7OiwREZFcT4nMTWjUqBEhISF07tyZvn370rt3b6Kjo10dlqRh586ddO/e3dVhpGrixIlcvnzZ1WGIiOR4mux7i7766isGDx5MiRIl+PLLL2nSpImrQ5Ic5FbOCBMRyU002TeT9ezZk71791KhQgX8/f2ZOHEiycnJrg4r10pISKB79+7Url0bHx8fAgICWL9+PTabDYDw8HCKFSvG+PHjqVu3LtWrV2fz5s08++yz2Gw2PD09OXDgwHXbiI6OZsCAAXh6euLj40P//v0BiI2NpX///nh6euLp6cmkSZOcn3n11VepVasWNpsNm83GH3/8weDBgwHw9/fHZrMRERHB7NmzqV27NjabDS8vL7Zt25Y5X5SIyJ3GGHPDF+ABmOjoaCMpJSUlmYkTJxo3NzfTpEkTc/z4cVeHlCt9++23JiAgwPn+woULZt26dcbHx8cYY8zx48cNYJYuXWqMMWb27NmmcOHCZu3atcYYY6ZMmWK6dOly3TaCgoLMk08+aex2uzHGmIiICGOMMaNGjTK9evUydrvdxMbGGpvNZhYuXGgiIyNN0aJFTXx8vDHGmLi4OJOQkGCMMQYwUVFRzro9PDzM6dOnjTHGJCYmmpiYmNv7QkREcrjo6GgDGMDDXCdHUY/MbcqTJw8TJkxgw4YNnDp1Ch8fHxYsWODqsHIdHx8fQkNDeeqpp1i0aBF58+a9pkyBAgXo3LkzAPXq1cPd3d15HlKDBg04fPjwddtYvnw5I0eOxM3tyv9sSpcuDUBwcDADBw7Ezc2NwoUL069fP9asWYOHhwfVq1enT58+zJo1i8jISAoUKJBq3Q888AB9+/bl3Xff5fjx47i7u9/qVyEikqsokckgTZs2Ze/evTz00EP07t2bvn37culSmkN6ksGqVq3KoUOHaNeuHZs3b8bT05OoqKgUZfLnz+/82Wq1pkgqrFZrhg0NWiwWZ51bt25l+PDhRERE0KhRIzZu3JjqZ5YsWcKbb75JUlISHTp0YOHChRkSi4jInU6JTAYqWrQoX375JfPmzeO7777DZrOxdetWV4eVK5w8eRKLxULHjh2ZOnUqxhj+/PPPDG3jat0OhwOAc+fOAdC6dWs+/fRTjDHExcUxb948AgICiImJ4ezZs/j7+zN+/HiaNWvGnj17AChSpIhzxVtycjJHjx6lXr16jBw5ki5durB9+/YMjV1E5E6lRCYT9OnTh5CQEMqWLUuzZs145ZVXsNvtrg7rjrZ//36aNm2Kj48Pvr6+9O3bF29v7wxtY9q0afz99994eXlhs9kYO3YsAOPHjydv3rx4eXnRsGFDOnbsSLdu3YiOjubRRx/Fy8sLb29vkpKSCAwMBGDEiBG0adMGm83GhQsXnJOFbTYbu3bt4rnnnsvQ2EVE7lRafp2JkpKSeOWVV3jttddo2rQp8+fP55577nF1WCIiItmell9nA3nz5uXll19m/fr1/PHHH3h7e7No0SJXhyUiInLHUCKTBfz9/dm7dy/t2rWjR48ePP7448TExLg6LEnFypUrnXu+/PulBFREJHvS0FIWMsbwxRdfMGTIEMqVK8eCBQto0KCBq8MSERHJdjS0lA1ZLBYCAwMJCQmhRIkSNG3alDfeeEMTgUVERG6REhkXqFatGps3b2bUqFG8+OKLPPDAAxm+VFhERCQ30NCSixljnD0ybm5uzl1jxTUSEhLo3bs3+fLl44svviBfvnyuDklEJFdK79BSnqwLSVJjsVjIk0f/DNnFc889x6pVq9i9e7eSGBGRHEB/QUX+8d133zFz5kxmzpzJfffd5+pwREQkHTS0JAL89ddfeHl50axZM5YuXeo8L0lERFxDq5ZE0snhcBAYGEi+fPmYPXu2khgRkRxEiUwW2LlzJ927d3d1GKmaOHEily9fdnUYLjV9+nTWrFnD559/TqlSpVwdjoiI3AQNLeVyFouFqKgoihUr5upQXCIkJISGDRvy9NNP8/bbb7s6HBER+YeGllwkISGB7t27U7t2bXx8fAgICGD9+vXYbDYAwsPDKVasGOPHj6du3bpUr16dzZs38+yzz2Kz2fD09OTAgQPXbSM6OpoBAwbg6emJj48P/fv3ByA2NtZ5irKnpyeTJk1yfubVV1+lVq1azi33//jjDwYPHgxcOULBZrMRERHB7NmzqV27NjabDS8vL7Zt25Y5X1Q2EB8fT69evahduzavv/66q8MREZFbYYy54QvwAEx0dLSR6/v2229NQECA8/2FCxfMunXrjI+PjzHGmOPHjxvALF261BhjzOzZs03hwoXN2rVrjTHGTJkyxXTp0uW6bQQFBZknn3zS2O12Y4wxERERxhhjRo0aZXr16mXsdruJjY01NpvNLFy40ERGRpqiRYua+Ph4Y4wxcXFxJiEhwRhjDGCioqKcdXt4eJjTp08bY4xJTEw0MTExt/eFZGNPPvmkKVCggDl06JCrQxERkf+Ijo42gAE8zHVyFPXIZDAfHx9CQ0N56qmnWLRoEXnz5r2mTIECBejcuTMA9erVw93dnZYtWwLQoEEDDh8+fN02li9fzsiRI52b55UuXRqA4OBgBg4ciJubG4ULF6Zfv36sWbMGDw8PqlevTp8+fZg1axaRkZEUKFAg1bofeOAB+vbty7vvvsvx48dxd3e/1a8iW/v+++/56KOPeOedd6hVq5arwxERkVukRCaDVa1alUOHDtGuXTs2b96Mp6cnUVFRKcrkz5/f+bPVak2RVFitVpKTkzMklqurb6xWK1u3bmX48OFERETQqFEjNm7cmOpnlixZwptvvklSUhIdOnRg4cKFGRJLdvLXX3/xxBNP0LFjR+fwmoiI5ExKZDLYyZMnsVgsdOzYkalTp2KMyfBzlK7W7XA4ADh37hwArVu35tNPP8UYQ1xcHPPmzSMgIICYmBjOnj2Lv78/48ePp1mzZuzZsweAIkWKEB0dDUBycjJHjx6lXr16jBw5ki5durB9+/YMjd3VHA4HQUFB5MmTR0utRUTuANrZN4Pt37+fMWPGYIwhOTmZvn374u3tnaFtTJs2jWeffRYvLy/y5s1L/fr1+eSTTxg/fjxDhw7Fy8sLgK5du9KtWzdOnjxJly5diIuLw2KxUL16dQIDAwEYMWIEbdq0oVChQqxevZr+/fsTGRlJnjx5KF26NHPmzMnQ2F3t3Xff5aeffmL16tXOITkREcm5tPxaco29e/fSoEEDhgwZwjvvvOPqcERE5DrSu/xaiYzkCgkJCdSrV4+8efOybdu2FPOUREQk+9Hp1zncypUrGTt27DXXx4wZk213Cc7ORo4cybFjx9i1a5eSGBGRO4h6ZOSO98MPP9CxY0c++OADnnrqKVeHIyIi6aChJRHgzJkzeHl50bhxY7777jutUhIRySE0tCROxhgcDseVHRDd3LBYLLniD/rVpdZWq5VPP/00VzyziEhuo31kcgGLxUJSUhIjRozAarXy0EMPERER4eqwMt2MGTNYvXo1n3/+uZZai4jcoZTI5BIFChTg3XffZcWKFezcuRMvLy9WrVrl6rAyzb59+xg9ejTDhw+nbdu2rg5HREQyiRKZXKZDhw7s27ePunXr0r59e4YPH87ly5ddHVaGSkhIoGfPntx333288cYbrg5HREQykRKZXKhs2bKsWLGC6dOn89FHH9GwYUMOHjzo6rAyzPPPP8+xY8dYsGBBmodjiojInUGJTC7l5ubGsGHD2LFjB8nJydSrV48PP/yQ9Kxiy86WL1/OBx98wNSpU6lTp46rwxERkUymRCaX8/b2ZufOnfTv358hQ4bQqVMn5yGUOc2ZM2fo378/Dz30kPaLERHJJZTICAULFuSDDz7g+++/Z8uWLXh7e7NmzRpXh3VTHA4Hjz/+OG5ublpqLSKSiyiREaeHH36Yffv24eXlRUBAACNGjODvv/92dVjp8t5777Fq1Srmzp1LmTJlXB2OiIhkESUykkL58uVZtWoVb7/9Nu+99x6NGjXit99+c3VY17Vv3z5GjRrFsGHDaNeunavDERGRLKRERq7h5ubGc889x7Zt27h8+TJ169Zl1qxZ2XIicEJCAr169aJmzZq8+eabrg5HRESymBIZSZOvry+7du2iX79+DB48mEceeYTz58+7OqwURo0axZEjR7TUWkQkl1IiI9dVqFAhZs6cydKlS9m4cSM+Pj78/PPPrg4LgBUrVvD+++8zdepUPD09XR2OiIi4gBIZSZfOnTuzf/9+atWqRZs2bRg1ahSJiYkui+fs2bM8/vjjPPjggwwZMsRlcYiIiGspkZF0q1ChAj/99BOTJ09m+vTpNGnShLCwsCyPwxjD448/jsVi4bPPPtNSaxGRXEyJjNwUNzc3nn/+ebZs2UJMTAx169Zl9uzZWToR+L333uPHH3/UUmsREVEiI7fGz8+P3bt306tXLwYOHEjXrl2JjIzM0DYOHjxIQEAAO3fudF7bv38/o0aNYujQobRv3z5D2xMRkZxHiYzcssKFC/PJJ5+wePFi1q5di7e3N+vXr8+w+lesWMGaNWto1KgRkydPJjY2ll69elG9enUmT56cYe2IiEjOpURGbttjjz3Gvn37qF69Oq1atWLMmDEkJSVdU+69997jtddeS3e9oaGhWK1W7HY7L7zwAjVr1uT333/nq6++0lJrEREBlMhIBrnrrrsIDg7m9ddfZ+rUqTRt2pQjR444769bt45hw4Yxfvx4Dh48mK46Dxw4gN1ud74/ffo0bm5uLplgLCIi2ZMSGckwVquVF154gV9//ZWoqChsNhtz5szh/Pnz9OzZE4vFgtVqZezYsTesyxiT6tEIf//9N126dKF///7ExsZmxmOIiEgOYknPahOLxeIBREdHR+Ph4ZH5UUmOFxsby9ChQ5kzZw4VKlTg7NmzKXpXtm7dSsOGDdP8/JkzZyhfvvx12+jSpQvffPNNhsUsIiLZx6VLlyhatChAUWPMpbTKqUdGMoW7uzufffYZgwYN4vTp0ymSGKvVyujRo6/7+bQOqnRzu/Ir6+XlxXPPPZdxAYuISI6kREYyTVhYGF988cU11+12O7/88gvBwcFpfjY0NDTVje4qVarEwoULCQkJoXHjxhkar4iI5DxKZCRTJCYm0q1bt1RXL8GVnpVRo0aluZHegQMHnPcsFgtlypTh448/JiwsjO7duzt7ZkREJHfTXwO5ZTt37qR79+6p3vvqq6/Yt29fmp91OBzs2bOHb7/9NtX7K1euBK7sVTN58mTCw8MZOHAgefPmTVdsEydO5PLly+kqKyIiOZcm+0qmuHTpEvPmzSM0NJQDBw5w8OBBzp8/77xvsVgwxlCkSBGio09hsbwBzAVigVaMGhXHsWNFmT17NsWKFbvp9i0WC1FRUbf0WRERcT1N9pUMlZCQQPfu3alduzY+Pj4EBASwfv16bDYbAOHh4RQrVozx48dTt25d/Pz8sNls5M2bl4sXL1K2bFk2b97M1q1bmTNnDs8//zy+vr54eBQE2gCTiY7+iwEDYvD0/I7Vq3/GwyORYsWKERsbS//+/fH09MTT05NJkyY543r11VepVasWNpsNm83GH3/8weDBgwHw9/fHZrMRERHB7NmzqV27NjabDS8vL7Zt25b1X6KIiGQ8Y8wNX4AHYKKjo43kTt9++60JCAhwvr9w4YJZt26d8fHxMcYYc/z4cQOYpUuXGmOMmT17tilcuLBZu3atMcaYKVOmmC5duqRS8zfm6q9aUBDmyScxdjvGGKuJiGhljDFm1KhRplevXsZut5vY2Fhjs9nMwoULTWRkpClatKiJj483xhgTFxdnEhISjDHGACYqKsrZioeHhzl9+rQxxpjExEQTExOTUV+NiIhkgujoaAMYwMNcJ0dRj4yki4+PD6GhoTz11FMsWrQo1bkqBQoUoHPnzgDUq1cPd3d3WrZsCUCDBg04fPhwKjWvBfIAsHw5jBwJV+bx2ildehMAwcHBDBw4EDc3NwoXLky/fv1Ys2YNHh4eVK9enT59+jBr1iwiIyPTPLrggQceoG/fvrz77rscP34cd3f32/xGREQkO1AiI+lStWpVDh06RLt27di8eTOenp5ERUWlKJM/f37nz1arNUVSYbVaSU5OTqXmQtdptWCqV68uy7ZarWzdupXhw4cTERFBo0aN2LhxY6qfWbJkCW+++SZJSUl06NCBhQsXXqddERHJKZTISLqcPHkSi8VCx44dmTp1KsYY/vzzzwyouSdwJcHp2BGmTgWHA8DKuXNdAWjdujWffvopxhji4uKYN28eAQEBxMTEcPbsWfz9/Rk/fjzNmjVjz549AP9MIo4GIDk5maNHj1KvXj1GjhxJly5d2L59ewbELiIirpbH1QFIzrB//37GjBmDMYbk5GT69u2Lt7d3BtTsB7wEvMw771gZPtyOlxfkzZuX+vX/5pNPYPz48QwdOhQvLy8AunbtSrdu3Th58iRdunQhLi4Oi8VC9erVCQwMBGDEiBG0adOGQoUKsXr1avr3709kZCR58uShdOnSzJkzJwNiFxERV9Pya8kmtgFfMm/eh6xd62DOnHgg9fkuIiJy50vv8mslMpKt2Gw29u7dy19//UW5cuVcHY6IiLiI9pGRbGnlypXOPV/+/Vq0aBGAc6fgN99805VhiohIDqEeGclWEhISKFSoENWqVUtjubaIiOQG6pGRHKlgwYLkzZuXEydOuDoUERHJAZTISLZzzz33kJiYSEJCgqtDERGRbE6JjGQ7Dz74IAAzZsxwcSQiIpLdKZGRbGfUqFEA2n1XRERuSImMZDsVK1bEzc2NsLAwV4ciIiLZnBIZyZbKli1LQkICdrvd1aGIiEg2pkRGsqXmzZsDOPeXERERSY0SGcmWXnjhBQBmzZrl4khERCQ7UyIj2ZLNZsNisbB3715XhyIiItmYEhnJtooVK0Z0dLSrwxARkWxMiYxkW/Xr1wdgw4YNLo5ERESyKyUykm0NGTIEgGnTprk4EhERya50aKRkaxaLhTJlynD27FlXhyIiIllIh0bKHaFw4cKcP3/e1WGIiEg2pURGsrXatWvjcDg4evSoq0MREZFsSImMZGv9+vUD4M0333RxJCIikh1pjoxka4mJieTPn59KlSoRHh7u6nBERCSLaI6M3BHy5ctH/vz5OXXqlKtDERGRbEiJjGR7VapUITk5WZvjiYjINZTISLbXuXNnAKZOneraQEREJNtRIiPZ3vPPPw/AkiVLXByJiIhkN0pkJNsrUaIEefLk4dixY64ORUREspk8rg5AJD0ee+wxIiIisNvtWK1WV4cjIiLZhJZfi4iISLaj5dciIiJyx1MiIyIiIjmWEhkRERHJsZTIiIiISI6lREZERERyLCUyctssFguvvfYaDRs2pHLlyixbtow33niDevXqUb16ddavXw9AcnIybdu2pV69etSpU4devXoRFxcHwJdffkm9evX4+++/Mcbw8MMP89prr2VIuwCrV6+mWbNm+Pn50aBBA9atWwfA+vXr8fT05Mknn8Tb2xsvLy/27dtHUFAQXl5eNGzYUOc8iYhkZ8aYG74AD8BER0cbkf8CzPTp040xxgQHB5vChQubOXPmGGOM+frrr029evWMMcY4HA5z/vx558+DBw82b7zxhrOeQYMGmSFDhpgpU6aYdu3aGYfDkSHtHj161DRq1Mj5+3v48GFTrlw5c/nyZbNu3TpjtVrNzp07jTHGjBs3zpQsWdKEhoYaY4x56qmnzMiRI2/3KxIRkZsUHR1tAAN4mOvkKNoQTzJE9+7dAahXrx5xcXH06NEDgAYNGnD48GHgStI8bdo0VqxY4TwEskmTJs463n33XRo2bMj333/P7t27sVgsGdLuqlWrOHLkCM2bN3d+zs3NjRMnTgBQrVo1/Pz8nPVUq1aN++67z1nP0qVLb/2LERGRTKVERjJEgQIFAJy77v77fXJyMgALFixg7dq1/PLLL3h4eDBjxgzWrl3rrCMiIoKoqCgcDgcXL16kVKlSGdKuMYY2bdqwYMGCaz5/6tQp52eufu6/76/WIyIi2Y/myEiWiYqKolSpUnh4eBATE8PcuXOd95KTk+nRowevvPIK77zzDt26dePvv//OkHbbtm1LcHAw+/btc17bvn17htQtIiKupURGsky/fv2Ij4+nZs2atG/fHn9/f+e9F154gZo1axIYGEi3bt1o3Lgxw4cPz5B2q1WrxoIFC/jf//6Hj48PtWrVYvr06RlSt4iIuJbOWhIREZFsR2ctiYiIyB1Pk30lWxs8eDBbt2695vqWLVsoWLCgCyISEZHsRENLIiIiku1oaElERETueBpakhzp1KlTnD9/nvLly1OmTBlXhyMiIi6iHhnJsWw2G23btnV1GCIi4kJKZCRHqlixIm5uboSFhbk6FBERcSElMpJjlS1bloSEBOx2u6tDERERF1EiIznW1UMgFy1a5OJIRETEVZTISI71/PPPAzBr1iwXRyIiIq6iREZyLD8/PywWC3v37nV1KCIi4iJKZCRHK1asGNHR0a4OQ0REXESJjORofn5+AGzevNnFkYiIiCsokZEc7ZlnngFg6tSpLo5ERERcQWctSY5nsVgoU6YMZ8+edXUoIiKSQXTWkuQahQsX5vz5864OQ0REXECJjOR4tWvXxuFwcPToUVeHIiIiWUyJjOR4ffv2BWDy5MkujkRERLKa5shIjpeYmEj+/PmpVKkS4eHhrg5HREQygObISK6RL18+8ufPz6lTp1wdioiIZDElMnJHqFKlCsnJyURHR7N06VJat25NhQoVWL16tatDExGRTJTH1QGI3I7ExEQ+/PBDLl68CFzZ6fff5s+fT9u2bbM+MBERyRJKZCRHio6OpkKFCsTHx1+33PDhw7MmIBERcQkNLUmOVLBgwRsmMfD/RxiIiMidSYmM5Ej58uXj448/vm6Z4sWLZ1E0IiLiKkpkJMcaOHAg/fv3T/N+3bp1szAaERFxBSUykqN9+umnaSYsTz75ZBZHIyIiWU0b4skdoWTJkkRGRqa4lp7fbRERyZ60IZ7kKn/88Qd58vz/IrxChQq5MBoREckqSmTkjuDu7s6uXbuc78uXL+/CaEREJKsokblFXbt2ZcuWLQBMnDiRuXPnujSeWbNmcd9992Gz2di1a9c1G8NllLlz5zJx4sQbllu/fj1BQUE3LLNq1aqMCQzw9vbmlVdeAauVXiNGcDoykqZNm2Kz2XjttdcICgpi+vTpGdbev1WuXDld5Vq0aJErz4P69/fj7+/P8ePHXReMiNxRlMjcgu3btxMZGUnjxo1dHYrT9OnTmTNnDiEhIZQsWdLV4aRLRicyBig8bhylk5N55cknqbxmDSfc3dkcEsKLL76YYe3I7RkxYgQTJkxwdRgicodQInMLZs2aRa9evZzv3d3dKViwIAA//PAD3t7e2Gw2PD09+e6774Ar/5/4smXLnJ/p0qWLsxcnKCiIQYMG0bp1a6pUqUL//v3Zvn07LVq0oGrVqjz33HPXjadLly4cPXqUoKAgunTpcs391atXU7duXby9vbn//vs5dOgQcCWR8PT0pF+/fnh6euLn50dISAgAhw8fpmnTpvj4+ODl5cW4ceOAKxvRubu73/A7ypcv39VJWqnWFRISwsyZM/nyyy+x2Wy8/PLLzlibNWuGn58fDRo0YN26dTeM9aq3gOeAcwDBwSQ9/zwnt26lvM1GcHBwirKxsbH0798fT09PPD09mTRpkvNeixYteOaZZ6hfvz7VqlVjxIgRzonDr776KrVq1cJms2Gz2fjjjz8AKF269A2/E4ASJUpgtVqd7YwYMYLmzZtzzz33MH78eFauXEmzZs2oXLky77zzjvNzI0eOpH79+thsNpo3b05YWBgAYWFh3HXXXRw7dgyAqVOn0q5dOxwOR5ox3Ey7hw8f5sEHH6R+/fp4e3vz/vvvO+9ZLBZee+01GjZsSOXKlVm2bBlvvPEG9erVo3r16qxfv95Z9t/fz4MPPsiPP/5IdHR0ur4zEZHrMsbc8AV4ACY6OtqIMVWrVjX79+9P9Z63t7f59ddfjTHG2O12ExUVZYwx5v777zdLly51lnvsscfMnDlzjDHGBAYGmkaNGpmEhATz999/m3vvvdd07tzZJCYmmtjYWFOmTBlz4MCB68ZUqVIls2fPHmOMMcePHzdFixY1xhhz9uxZU6JECbNv3z5jjDHz5883tWrVMg6Hw6xbt84AJjg42BhjzKJFi0zNmjWNw+EwQ4cONa+//rqz/gsXLtzMV5RCWnVNmDDBDBs2zHn96NGjplGjRs7fs8OHD5ty5cqZy5cvXzdWY4xJMMYUNf/5xZ0zx9Cpk8EYs8tc+Z6nTZtmjDFm1KhRplevXsZut5vY2Fhjs9nMwoULjTFX/q1atWplEhMTTVxcnPHz8zNffvmliYyMNEWLFjXx8fHGGGPi4uJMQkLCLX8v999/v3nsscdMcnKyiYyMNB4eHmbIkCHG4XCYkydPmsKFCzt/fyIiIpyf++qrr0zbtm2d7xcsWGD8/PzMunXrTOXKlVOUvZ12k5OTjZ+fnwkNDXU+r5eXl9m+fbsxxhjATJ8+3RhjTHBwsClcuLDzd/rrr7829erVSzOGli1bmh9++OGmvzMRyT2io6MNVzrbPcx1chT1yNyCkydPUrZs2VTvPfDAAwwbNowpU6awb9++dM9V6dSpEwUKFCBfvnx4eXnRtm1b8ubNS+HChalduzaHDx++pVi3bduGl5cXXl5eAPTu3ZvTp09z6tQp4MrchQceeACAbt26cebMGf7880+aN2/OJ598wosvvshPP/10W3Nu0lvXqlWrOHLkCM2bN8dms9GlSxfc3Nw4ceLEdWMFOAZc7/+/3/6f98HBwQwcOBA3NzcKFy5Mv379WLNmjfN+v379yJs3L4UKFaJPnz4EBwfj4eFB9erV6dOnD7NmzSIyMpICBQrc4rdyRZcuXbBarRQvXpyqVavy0EMPYbFYqFixIqVLl3bOp1mzZg2NGzfG09OTl19+OUVvVM+ePalbty5t27Zl3rx56eodSk+7YWFhHDx4kB49emCz2WjSpAkxMTHOHj2A7t27A1CvXj3i4uLo0aMHAA0aNLju72y5cuU4efLkLXxjIiIpKZG5BYUKFeLy5cup3nvnnXeYM2cOhQoVIjAwkClTpgCQJ08e7Ha7s9x/P//vP4hWq/Wa98nJyRn5CGmyWCxYLBYee+wxNm/eTM2aNXn//fd56KGHbrnO9NZljKFNmzaEhIQ4X6dOnaJ69erXjRWgFGC5TgxlbhDj1Xqud99qtbJ161aGDx9OREQEjRo1YuPGjTeo+frS8+9+4sQJnn76aebPn8+BAwdYuHBhit+f5ORkDhw4QIkSJZwJaka0a4yhRIkSKf49jh8/TmBg4DX1XB0u+/f76/3OXr582TkcKyJyO5TI3AJvb2/nHIX/+u2336hTpw5PP/00Tz75JFu3bgWgWrVqbNu2DYDjx4+zadOmLIm1UaNG7N+/nwMHDgCwcOFCKlasSMWKFQEIDw93zkNZvHgxZcuW5a677uLw4cOULVuWfv36MWXKFOdz/NupU6e47777bhhDWnV5eHikmCfRtm1bgoOD2bdvn/Pa9u3/35eSVqxwJVF5ELCm0n6pf+79W+vWrfn0008xxhAXF8e8efMICAhw3p8/fz5JSUkkJCSwYMECWrduTUxMDGfPnsXf35/x48fTrFkz9uzZc017Y8aMSTGX5HZFR0eTN29eypcvjzHmmrpfeOEFatasycaNGxk5ciRHjhzJkHZr1qyJh4cHc+bMcV47cuTINRsP3orQ0FB8fHxuux4RkTw3LiL/1aVLF1avXk3r1q2vuTd27FjCwsLIly8fhQoV4qOPPgJg1KhRdO/eHS8vL+rUqUPDhg2zJNbSpUvz5Zdf0q9fP5KTkylevDjffPONsweiTp06zJ07l6FDh5IvXz6++uorLBYLixcvZv78+eTLlw+Hw8HMmTOvqfvUqVMpNqFLS1p1PfLII8ybNw+bzcajjz7KSy+9xIIFC/jf//5HfHw8iYmJ+Pr6smDBguvGetUnQBvgAFd+sZP/+b/fA/n/E9P48eMZOnSoc8ita9eudOvWzXm/Vq1aNG3alMjISDp16kSPHj04deoUXbp0IS4uDovFQvXq1VP0Tly1d+/eDD1128vLix49elCnTh1KlixJ586dnfeWL1/OqlWr2L59O4UKFeKdd96hW7du/Prrr7c97JUnTx6WL1/O8OHDmTZtGna7nVKlSjn/PW5VeHg4drtdiYyIZAgdUXALYmNjadKkCVu2bKFw4cKuDueWrV+/nuHDh1+z+ie93nrrLcqXL0+fPn0yNrBUpDdWO7AaCAHuAh4DbvZfqEWLFgwfPjxFwpBedrudRo0asW3bNtzc1OGZmhdeeIFq1aoxYMAAV4ciItlYeo8oUI/MLXB3d2fatGkcP34cT09PV4fjMs8//7yrQ7iGFejwz8sl7Vut7Nixw0Wt5wwVKlS47qnlIiI3Qz0yOUjHjh2dK3iuKl68uHPeSG60cuVKxo4de831MWPGOFfU5EazZ89OdZ7Oe++9h7+/vwsiEhG5OentkVEiIyIiItmOTr8WERGRO54SGREREcmxlMiIiIhIjqVERkRERHIsJTIiIiKSYymRERERkRxLiYyIiIjkWEpkREREJMdSIiMiIiI5lhIZERERybGUyIiIiEiOpURGREREciwlMiIiIpJjKZERERGRHEuJjIiIiORYSmREREQkx1IiIyIiIjmWEhkRERHJsZTIiIiISI6lREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmxlMiIiIhIjqVERkRERHIsJTIiIiKSYymRERERkRxLiYyIiIjkWHlupvClS5cyKw4RERERp/TmHBZjzI0LWSwVgZO3GZOIiIjIzbrLGHMqrZvpTWQsQAUgJgMDExEREbmeIsBpc51kJV2JjIiIiEh2pMm+IiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmxlMiIiIhIjvV/DE3HUluANm8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "f = ex.draw_dependency_graph(figsize=(7,6), node_size=20)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:01.553712Z", - "start_time": "2020-10-07T07:40:01.484774Z" - } + "end_time": "2020-10-09T08:45:32.198367Z", + "start_time": "2020-10-09T08:45:32.148942Z" + }, + "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6009d2e3bb52469ea537d9f1159ef550", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=8.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", + " result = np.array(list(tqdm(\n" + ] + }, + { + "data": { + "text/plain": [ + "7168" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "estimators = ex.map_variable('step_flops', d=ds, edge_idx=edge_indices, n=[N], p=[p])" + "estimators = ex.map_variable('step_flops', d=ds, edge_idx=edge_indices,\n", + " n=[N], p=[p], seed=[SEED]\n", + " )\n", + "max(np.max(estimators))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:03.546159Z", - "start_time": "2020-10-07T07:40:02.010399Z" + "end_time": "2020-10-09T08:46:05.718516Z", + "start_time": "2020-10-09T08:45:59.992556Z" }, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "81bfc9e640f5456d8323ada43d3219f3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=8.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", + " result = np.array(list(tqdm(\n" + ] + } + ], "source": [ - "times = ex.map_variable('step_sim_time', d=ds, edge_idx=edge_indices, n=[N], p=[p])" + "times = ex.map_variable('step_sim_time', d=ds, edge_idx=edge_indices,\n", + " n=[N], p=[p], seed=[SEED], backend=['mkl'])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:04.393623Z", - "start_time": "2020-10-07T07:40:04.134441Z" + "end_time": "2020-10-09T08:46:07.495448Z", + "start_time": "2020-10-09T08:46:07.306492Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Runtime')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEGCAYAAAB2EqL0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdrUlEQVR4nO3df5hcVZ3n8fcn6dAC+YEhSa8DaMCgu1HUkR5Q1zGNTBRdh4xuosEouBunlTU6y6y6MDOLPIy6gjMgCqK9gjCYNSijTmbMiBGmg+uDDMEfQFDcJkQJuuQX0kRNk06++8e9HSpFdfep6rpd1VWf1/P0w73n/vqeNF3fuufce44iAjMzs/FMa3QAZmY2NThhmJlZEicMMzNL4oRhZmZJnDDMzCxJR6MDqJd58+bFwoULaz7+N7/5DUcffXT9AppCXHfXvd247k/X/Z577tkVEfNTjm2ZhLFw4UI2b95c8/H9/f309PTUL6ApxHXvaXQYDeG69zQ6jIYor7ukn6ce6yYpMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyQt85SUmVm7Gdy0kT1r+xjetYOOeQuYu6qX2UuWFnY9JwwzsylocNNGdl57OTE0BMDwzsfYee3lAIUlDTdJmZlNQXvW9h1KFiNiaIg9a/sKu6YThpnZFDS8a0dV5fXghGFmNgV1zFtQVXk9OGGYmU1Bc1f1os7Ow8rU2cncVb2FXdOd3mZmU9BIx7afkjIzs3HNXrK00ARRzk1SZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLEmhCUPSWZIelDQg6cIK2zsl3Zxvv0vSwrx8hqQbJd0n6SeSLioyTjMzG19hCUPSdOAa4A3AYuAcSYvLdlsNPB4Ri4Argcvy8hVAZ0ScApwKvGckmZiZWWMUeYdxGjAQEVsj4ilgHbCsbJ9lwI358i3AmZIEBHC0pA7gSOApYLDAWM3MbBwdBZ77OOCRkvXtwOmj7RMRw5KeAI4lSx7LgF8BRwEXRMSe8gtI6gV6Abq6uujv76852L17907o+KlsrLof3Pskw7t3EsP7UccMOo6dz7SZsyY3wAL5997f6DAawnXvr+nYIhPGRJwGHAB+D3g28F1J34mIraU7RUQf0AfQ3d0dPT09NV+wv7+fiRw/lY1W98FNG9n5pU8TQ0OHytTZyfzzP8zsJUsnMcLi+Pfe0+gwGsJ176np2CKbpB4FTihZPz4vq7hP3vw0B9gNvB34VkTsj4gdwPeA7gJjtQr2rO07LFkAxNAQe9b2NSgiM2ukIhPG3cDJkk6UdASwElhfts964Lx8eTlwe0QE8AvgtQCSjgZeAfy0wFitguFdO6oqN7PWVljCiIhhYA1wK/AT4CsRsUXSpZLOzne7DjhW0gDw58DIo7fXADMlbSFLPF+MiHuLitUq65i3oKpyM2tthfZhRMQGYENZ2cUly/vIHqEtP25vpXKbXHNX9bLz2suf0Ycxd1VvA6Mys0Zp1k5vawIjHdt71vYxvGsHHfMWMHdVb8t0eJtZdZwwbEyzlyx1gjAzwGNJmZlZIicMMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEicMMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEs+4V2eDmzZ6SlMza0lOGHU0uGkjO6+9nBgaAmB452PsvPZyACcNM5vy3CRVR3vW9h1KFiNiaIg9a/saFJGZWf04YdTR8K4dVZWbmU0lThh11DFvQVXlZmZTiRNGHc1d1Ys6Ow8rU2cnc1f1NigiM7P6cad3HY10bPspKTNrRU4YdTZ7yVInCDNrSW6SMjOzJE4YZmaWxAnDzMySuA+jyXmoETNrFk4YTcxDjZhZM3GTVBPzUCNm1kwKTRiSzpL0oKQBSRdW2N4p6eZ8+12SFpZse4mkOyVtkXSfpGcVGWsz8lAjZtZMCksYkqYD1wBvABYD50haXLbbauDxiFgEXAlclh/bAXwJeG9EvAjoAfYXFWuz8lAjZtZMirzDOA0YiIitEfEUsA5YVrbPMuDGfPkW4ExJAl4H3BsRPwaIiN0RcaDAWJuShxoxs2aiiCjmxNJy4KyIeHe+/k7g9IhYU7LP/fk+2/P1h4DTgXcApwILgPnAuoi4vMI1eoFegK6urlPXrVtXc7x79+5l5syZNR9flIN7n2R4905ieD/qmEHHsfOZNnNWXa/RrHWfDK67695uyut+xhln3BMR3SnHNutTUh3Aq4E/AH4L3Cbpnoi4rXSniOgD+gC6u7ujp6en5gv29/czkeOnMte9p9FhNITr3tPoMBpiInUvsknqUeCEkvXj87KK++T9FnOA3cB24I6I2BURvwU2AC8vMFYzMxtHkQnjbuBkSSdKOgJYCawv22c9cF6+vBy4PbI2sluBUyQdlSeSJcADBcZqZmbjKKxJKiKGJa0h+/CfDlwfEVskXQpsjoj1wHXATZIGgD1kSYWIeFzSFWRJJ4ANEfHNomI1M7PxFdqHEREbyJqTSssuLlneB6wY5dgvkT1aa2ZmTcBvepuZWRInDDMzS+KEYWZmSapKGJKOKioQMzNrbkkJQ9KrJD0A/DRff6mkzxYamU0pg5s2sq13BQNvWcK23hUMbtrY6JDMrM5S7zCuBF5P9lId+RhPrykqKJtaRubtGN75GEQcmrfDScOstSQ3SUXEI2VFbTcYoFXmeTvM2kPqexiPSHoVEJJmAH8G/KS4sGwq8bwdZu0h9Q7jvcD7gOPIxn96Wb5u5nk7zNpEUsLIBwFcFRFdEbEgIt4REbuLDs6mBs/bYdYekpqkJJ0IvB9YWHpMRJxdTFg2lcxeshTI+jKGd+2gY94C5q7qPVRuZq0htQ/jG2QDBf4jcLCwaGzKmr1kqROEWYtLTRj7IuLThUZiZmZNLTVhXCXpI8C3gUPPT0bEDwqJqk0NbtroZh0za1qpCeMU4J3Aa3m6SSrydauDkZffRt5nGHn5DXDSMLOmkJowVgAnRcRTRQbTzsZ6+c0Jw8yaQep7GPcDxxQYR9vzy29m1uxS7zCOAX4q6W4O78PwY7V10jFvQTYWU4VyM7NmkJowPlJoFMbcVb2H9WGAX34zs+aSlDAiYlPRgbQ7v/xmZs1uzIQh6f9ExKslPUn2VNShTUBExOxCo2szfvnNzJrZmAkjIl6d/3fW5IRjZmbNKnXGvZtSyszMrHWlPlb7otIVSR3AqfUPx8zMmtV4fRgXAX8BHClpcKQYeArwdGptxkOXmLW3Me8wIuJ/5v0Xn4yI2fnPrIg4NiIumqQYrQl43m4zS32s9iJJxwHP4/D5MO4oKjBrLuMNXeK7D7PWlzqB0ieAlcADwIG8OAAnjDYx1tAlHjjRrD2kvun9ZuCFETE07p7WksYausQDJ5q1h9SnpLYCM4oMxJrbWPN2e+BEs/aQeofxW+BHkm7j8MEHP1BIVNZ0xhq6ZM/aPg+caNYGUhPG+vzH2thoQ5d44ESz9pD6lNSNRQdiU5cHTjRrD6lPST3M4YMPAhARJ41z3FnAVcB04AsR8Ymy7Z3A35G9Nb4beFtEbCvZ/lyyJ7MuiYi/SYnVGsMDJ5q1vtQmqe6S5WeRTdk6d6wDJE0HrgGWAtuBuyWtj4gHSnZbDTweEYskrQQuA95Wsv0K4J8TYzQzswIlPSUVEbtLfh6NiE8B/2Gcw04DBiJiaz4X+DpgWdk+y4CR5q5bgDMlCUDSnwAPA1uSamJmZoVKbZJ6ecnqNLI7jvGOPQ54pGR9O3D6aPtExLCkJ4BjJe0D/jvZ3ckHx4irF+gF6Orqor+/f9y6jGbv3r0TOn4qc937Gx1GQ7ju/Y0OoyEmUvfUJqm/LVkeBraRNUsV5RLgyojYm99wVBQRfeSDIHZ3d0dPT0/NF+zv72cix09lrntPo8NoCNe9p9FhNMRE6p76lNQZpet5/8RK4GdjHPYocELJ+vF5WaV9tudDps8h6/w+HVgu6XLgGOCgpH0RcXVKvGZmVn9j9mFImi3pIklXS1qqzBpgAHjrOOe+GzhZ0omSjiBLMOXvcqwHzsuXlwO3R+YPI2JhRCwEPgV83MnCzKyxxrvDuAl4HLgT+FPgL8nmw3hzRPxorAPzPok1wK1kj9VeHxFbJF0KbI6I9cB1wE2SBoA9ZEnFzMya0HgJ46SIOAVA0heAXwHPjYh9KSePiA3AhrKyi0uW9zFOX0hEXJJyLTMzK9Z4j9XuH1mIiAPA9tRkYWZmrWW8O4yXlk3NOjJVq4CIiNmFRmdmZk1jzIQREdMnKxAzM2tuqfNhmJlZm3PCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVmSpDm9rXEGN21kz9o+hnftoGPeAuau6mX2kqWNDsvM2pATRhMb3LSRnddeTgwNATC88zF2Xns5gJOGmU06N0k1sT1r+w4lixExNMSetX0NisjM2lnbJ4zBTRvZ1ruCoYceZFvvCgY3bWx0SIcM79pRVbmZWZHaOmGMNPkM73wMeLrJp1mSRse8BVWVm5kVqa0TRrM3+cxd1Ys6Ow8rU2cnc1f1NigiM2tnbd3p3exNPiMd235KysyaQVsnjI55Cw41R5WXN4vZS5Y6QZhZU2jrJik3+ZiZpWvrO4zSJh+AjvldbvIxMxtFWycMeLrJZ1t/PwtXv6fR4ZiZNa22bpIyM7N0ThhmZpbECcPMzJI4YZiZWRInDDMzS9L2T0lZfXjeDrPWV+gdhqSzJD0oaUDShRW2d0q6Od9+l6SFeflSSfdIui//72uLjNMm5rBBHCOabhBHM6uPwhKGpOnANcAbgMXAOZIWl+22Gng8IhYBVwKX5eW7gD+OiFOA84CbiorTJq7ZB3E0s/oo8g7jNGAgIrZGxFPAOmBZ2T7LgBvz5VuAMyUpIn4YEb/My7cAR0rqxJpSsw/iaGb1oYgo5sTScuCsiHh3vv5O4PSIWFOyz/35Ptvz9YfyfXaVnee9EfFHFa7RC/QCdHV1nbpu3bqa4927dy8zZ86s+fipbKJ1f+rnW4nh/c8oV8cMjnjeSRMJrXD+vbvu7aa87mecccY9EdGdcmxTd3pLehFZM9XrKm2PiD6gD6C7uzt6enpqvlZ/fz8TOX4qm2jdBzftP2zuccgGcZx//oeZvST9vI3oOPfvvafRYTSE695T07FFJoxHgRNK1o/Pyyrts11SBzAH2A0g6Xjg68C5EfFQgXE2nan2xFE95u0Y6TgfSTojHeel5zezxioyYdwNnCzpRLLEsBJ4e9k+68k6te8ElgO3R0RIOgb4JnBhRHyvwBibzlT94JzovB1jdZw3c73N2klhCSMihiWtAW4FpgPXR8QWSZcCmyNiPXAdcJOkAWAPWVIBWAMsAi6WdHFe9rqIaOpe1MFNG9l53VXEk4MATJs1h3mrP1DVB167fnC649ys+RXahxERG4ANZWUXlyzvA1ZUOO6jwEeLjK3eBjdtZMdnPg4HDhwqO/jkE+y4+hNA+t1Bu35wToXZD83anYcGqZM9a/sOSxaHDO+v6n2E0T4gm+WDc3DTRrb1rmDgLUvY1ruibi/nefZDs+bnhFEnY90BVHN30MwfnEW+0T17yVLmn/9hOuZ3gUTH/K78KavWbYYzm2qa+rHaqWS0JpWRbanq8cRRUYruX5lox7mZFcsJo07mrup9Rh8GAB0zqr47aNYPznbtXzGzjJuk6mT2kqUseP9foFmzD5VNmzWHBWsubMoP/1o0e/+KmRXLdxh11Kx3BvUyd1VvxTe6m6F/xcyK54RhyZq5f8XMiueEYVVp9bsoMxud+zDMzCyJE4aZmSVxwjAzsyTuw6ijooYln2rDnZtZa3LCKFPrh3NRw5JP1eHOzaz1uEmqxETGShpr2IyJKOq8ZmbV8h1GiYmMlTTaOFITHTajiOE4yu+iDp59bs3nMrP24TuMErV+OD/2+StG3TZt5uxRt6Wo93Acle6i9u/4f3UbptzMWpcTRolaP5yfvPUfRt12cO8gW8/945rnjzjy1FdWVT6eSndRxEE3cZnZuJwwStQ8F0XEmNsOPvlEzfNH/O6eO6sqH49HnDWzWjlhlJiMSXyq7bCu9we8R5w1s1q507vMWGMljfrIbeezYGhf8jWq+bBPmeu6mkeBK404i6Z5xFkzG5fvMBKN9sjtY5+/gmlHdI5/ghLVfJufu6oXpk8/vHD69EMf8NU+ClzpLmrGgn/jdzrMbFy+w0g02iO3T37rG1Wdp6b5IzQNOFC2PnZcYz0KXH4Xta2/v7p4zKwt+Q4j0YQ7hWvsE9mztg+G95cFs/9QP8io73+MUm5mVivfYYxjpH9gzCehxtExv4uFfV+t6dhxO72lyrFJNV3PzGw0ThhjKB/HqRa1NEGVdmKPlhAO9YOMlsgmkODMzCpxwhhDxZfcqjRtwXOqaoJ6RpKq8MHvebTNrBHch1HB4KaNbOtdUZd+gAOPbOORj1yQvP+oSWratMr9IKM1PblJyszqzHcYZerRDFVu6N57GHjzawDQ3Hk8/7qvjbrvqJ3rESz62qaK5aPtb2ZWT77DKLPjqo9VnSymzZqT/I0+9uziodVvGXV7tW9id8zvqqrczKxWThglHv7AuRAHqzuoYwbzVn+ABX/2V8mHxJ5do26rdjyrmse/MjOrUts3SQ1u2siu6z7N0JI3ceCRbdWfoOSdiHoY6ZtIHeqj2v3NzGrV1gljcNNGdnzqryd8nuGdj9W1k3ms8azqsb+ZWS3aukmqHslihEd7NbNWV2jCkHSWpAclDUi6sML2Tkk359vvkrSwZNtFefmDkl5fZJz1UKkvYTSaO6/gaMzM6q+whCFpOnAN8AZgMXCOpMVlu60GHo+IRcCVwGX5sYuBlcCLgLOAz+bna1qVRoFd8F//xzOSw3iP1ZqZNasi+zBOAwYiYiuApHXAMuCBkn2WAZfky7cAV0tSXr4uIoaAhyUN5OerbZq5SVKpL8F9C2bWKopMGMcBj5SsbwdOH22fiBiW9ARwbF7+/bJjjyu/gKReoBegq6uL/iqH6R5606qnl+ccy0Ml69XaPoWHCN+7d2/V/3atwnXvb3QYDeG699d07JR+Sioi+oA+gO7u7ujp6anq+IGrLj60/NCbVvH8f1pbfRBS5Tewp5D+/n6q/bdrFa57T6PDaAjXvaemY4tMGI8CJ5SsH5+XVdpnu6QOYA6wO/HYSbfo63c0OgQzs4Yp8impu4GTJZ0o6QiyTuz1ZfusB87Ll5cDt0dE5OUr86eoTgROBv613gGmJIBFX7/j0I+ZWTsr7A4j75NYA9wKTAeuj4gtki4FNkfEeuA64Ka8U3sPWVIh3+8rZB3kw8D7IuJAxQtN0Egi2N7f76RgZjaGQvswImIDsKGs7OKS5X3AilGO/RjwsSLjMzOzdG39preZmaVzwjAzsyROGGZmlsQJw8zMkihaZCpPSTuBn0/gFPOA0Wc2am2ue3ty3dtTed2fFxHzUw5smYQxUZI2R0R3o+NoBNfddW83rnttdXeTlJmZJXHCMDOzJE4YT6vfxNxTj+venlz39lRz3d2HYWZmSXyHYWZmSZwwzMwsSVslDElnSXpQ0oCkCyts75R0c779LkkLGxBmIRLq/ueSHpB0r6TbJD2vEXEWZbz6l+z3HyWFpJZ55DKl7pLemv/+t0j635MdY1ES/r9/rqR/kfTD/P/9NzYiziJIul7SDkn3j7Jdkj6d/9vcK+nl4540Itrih2yI9YeAk4AjgB8Di8v2+S/A5/LllcDNjY57Eut+BnBUvnx+q9Q9tf75frOAO8imB+5udNyT+Ls/Gfgh8Ox8fUGj457EuvcB5+fLi4FtjY67jvV/DfBy4P5Rtr8R+GdAwCuAu8Y7ZzvdYZwGDETE1oh4ClgHLCvbZxlwY758C3CmJE1ijEUZt+4R8S8R8dt89ftksxy2ipTfPcBfA5cB+yYzuIKl1P1PgWsi4nGAiNgxyTEWJaXuAczOl+cAv5zE+AoVEXeQzTM0mmXA30Xm+8Axkp4z1jnbKWEcBzxSsr49L6u4T0QMA08Ax05KdMVKqXup1WTfPFrFuPXPb8dPiIhvTmZgkyDld/8C4AWSvifp+5LOmrToipVS90uAd0jaTjZ3z/snJ7SmUO3nQrETKNnUI+kdQDewpNGxTBZJ04ArgHc1OJRG6SBrluohu7O8Q9IpEfHrRgY1Sc4BboiIv5X0SrIZQF8cEQcbHVgzaqc7jEeBE0rWj8/LKu4jqYPsFnX3pERXrJS6I+mPgL8Ezo6IoUmKbTKMV/9ZwIuBfknbyNpz17dIx3fK7347sD4i9kfEw8DPyBLIVJdS99XAVwAi4k7gWWSD87WDpM+FUu2UMO4GTpZ0oqQjyDq115ftsx44L19eDtweee/QFDdu3SX9PvB5smTRKm3YI8asf0Q8ERHzImJhRCwk68M5OyI2Nybcukr5//4bZHcXSJpH1kS1dRJjLEpK3X8BnAkg6d+RJYydkxpl46wHzs2flnoF8ERE/GqsA9qmSSoihiWtAW4le3ri+ojYIulSYHNErAeuI7slHSDrLFrZuIjrJ7HunwRmAl/N+/l/ERFnNyzoOkqsf0tKrPutwOskPQAcAD4UEVP+zjqx7v8N+F+SLiDrAH9Xi3xJRNKXyb4IzMv7aD4CzACIiM+R9dm8ERgAfgv8p3HP2SL/NmZmVrB2apIyM7MJcMIwM7MkThhmZpbECcPMzJI4YZiZTUHjDS5Ytu+Vkn6U//xM0q9ruaYThrUtSe+S9Hsl61+QtLgO510o6e01HHeDpOWjlD9c8gf/gbx8W/7eROm+R0j6VD4C6f+V9A+Sji/ZfiA/x/2SvirpqFrqaE3hBiBpGJeIuCAiXhYRLwM+A3ytlgs6YVg7exdwKGFExLsj4oE6nHchUHXCGMeHRv7gI+LTY+z3cbI3118YESeTvZT3tZJBNH+Xn+PFwFPAe+scp02SSoMLSnq+pG9JukfSdyX92wqHngN8uZZrOmFYS5H0Dkn/mn+L/ryk6fnPDfm36vskXZB/k+8G1ub7Himpf2Q4EEl7JX1S2fwQ35F0Wr59q6Sz830W5n+UP8h/XpWH8QngD/PzXpBf/5OS7lY278B78uMl6Wpl8zV8B1gwwbofRfby1QURcQAgIr4IDAGvrXDId4FFE7mmNZ0+4P0RcSrwQeCzpRuVzXNzInB7LSdvmze9rfXlQzu8Dfj3EbFf0meBVcAW4Lj8WzWSjomIX+dvAX9wZAgQHT6S/dFkQ8N8SNLXgY8CS8nmTLiRbFiFHcDSiNgn6WSyb23dwIX5ed+Un7eXbNiFP5DUCXxP0reB3wdemJ+zC3gAuH6U6n1S0l/ly++MiPsq7LOI7A39wbLyzcCLgNtK/q06gDcA3xrlejbFSJoJvIqnR2sA6CzbbSVwy8gXimo5YVgrORM4Fbg7/4M5kuxD/R+BkyR9Bvgm8O2Ecz3F0x+m9wFDeRK6j6zJCbJhFq6W9DKyITVeMMq5Xge8pKR/Yg7Z4H6vAb6c//H+UtJY3/o+FBG3JMQ9niMl/Shf/i7ZcDjWGqYBv877KUazEnhfrRdwwrBWIuDGiLjoGRuklwKvJ2uzfyvwn8c51/6SMYUOkjXrEBEH82/nABcAjwEvJftjHW3iJZE1E9xaFlO9pwN9CHiupFkR8WRJ+anAP+XLvxvnA8WmqIgYzB+OWBERX837rV4SET8GyPszng3cWes13IdhreQ2YLmkBQCS5kp6Xv4k0bSI+Hvgr8imrQR4kqyDuFZzgF/lcye8k2yAu0rnvRU4X9KMPK4XSDqabDrYt+V9HM8hmya3ZhHxG7LmsiskTc+vdS5wFDW2WVvzUja44J3ACyVtl7SarAl2taQfkzXFls4wuBJYN5HBFX2HYS0jIh7I2/m/rWxSpP1kt9+/A76YlwGM3IHcAHxO0u+AV9Zwyc8Cf59/KH8L+E1efi9wIP+jvQG4iqwZ6wf5t76dwJ8AXyfrjH6AbJjtWr753StpZLKfr5DV7W+An+XlPwXe3CojsNrTIuKcUTZVfNQ2Ii6Z6DU9Wq2ZmSVxk5SZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEicMMzNL4oRhZmZJ/j9QfpTgqIJX2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "est_flat = np.concatenate(estimators.flatten())\n", "times_flat = np.concatenate(times.flatten())\n", @@ -576,18 +722,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 145, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T08:20:00.827753Z", - "start_time": "2020-10-07T08:20:00.819148Z" + "end_time": "2020-10-09T09:35:35.428789Z", + "start_time": "2020-10-09T09:35:35.416513Z" } }, "outputs": [], "source": [ "#export\n", "def plot_with_filter(est_flat, times_flat):\n", - " filt = (est_flat>1e4) #& (times_flat>1e-4)\n", + " filt = (est_flat>5e4) #& (times_flat>1e-4)\n", " est_flat_filtered = est_flat[filt]\n", " times_flat_filtered = times_flat[filt]\n", "\n", @@ -599,25 +745,49 @@ " fit_fn = np.poly1d(log_fit_coef)\n", "\n", " # Plot scatter with filtered data\n", - " plt.scatter(est_flat_filtered, times_flat_filtered)\n", - " xfit = 10**np.linspace(4, 7, 100)\n", + " plt.scatter(est_flat_filtered, times_flat_filtered, marker='x')\n", + " min_x = np.log10(est_flat_filtered.min())\n", + " max_x = np.log10(est_flat_filtered.max()) + .5\n", + " xfit = 10**np.linspace(min_x, max_x, 100)\n", " plt.plot(xfit, np.exp(fit_fn(np.log(xfit))), color='blue')\n", " plt.loglog()\n", " plt.xlabel('estimated FLOP')\n", " plt.ylabel('Runtime')\n", + " plt.grid()\n", " return log_fit_coef, fit_coef" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 146, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T08:20:00.986928Z", - "start_time": "2020-10-07T08:20:00.964812Z" + "end_time": "2020-10-09T09:35:36.599797Z", + "start_time": "2020-10-09T09:35:36.031175Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lin fit: [ 1.28306780e-08 -1.61395132e-04]\n", + "Log fit: [ 1.26454643 -22.38704868]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8dElEQVR4nO3deXhU5fXA8e+ZIQtJSMCwVEXZAlRwQQ3uVfBXWzSoKKigbZVVqgT3hUqr4tqqrWxWEQJqWwMGXFjqirhXUYsLq2HToBUCmBACWWbe3x93ZpiZzEwmySzJ5HyeJw+ZO3fufe8F7pl3O68YY1BKKaWCscW7AEoppZo3DRRKKaVC0kChlFIqJA0USimlQtJAoZRSKiQNFEoppUJqE+8CRJKIXAhc2K5du/F9+vSJWzn2799Penp63M7fWul9jz2957EXzXv+2WeflRpjOvlvl0ScR5Gbm2s+/fTTuJ1/1apVDBo0KG7nb630vsee3vPYi+Y9F5HPjDG5/tu16UkppVRIGiiUUkqFpIFCKaVUSAkVKETkQhGZU1ZWFu+iKKVUwkioQGGMWWqMmZCVlRXvoiilVMJIqEChlFIq8jRQKKVUAqithWefBYcj8sfWQKGUUi3ce+/BSSfB1VfDihWRP35CBQrtzFZKtSb/+x/87ndw9tlQVgYvvghDh0b+PAkVKLQzWynVGtTWwowZ0LcvFBbCH/4A69bBsGEgEvnzJVSuJ6WUSnRffZXJjTfCF1/AeefBrFkQ7dR2GiiUUqoF2LkT7rgDFiw4ia5d4YUXYPjw6NQg/CVU05NSSiUahwOeeMJqZvrHP2DkyG9Zvx5GjIhNkAANFEop1Wz95z9wyilw/fXWqKYvv4Rrr91CRkZsy6GBQimlmpnSUhg/Hk4/3RrZVFgIb74JxxwTn/JooFBKqWbC4YCnnrI6p+fPh1tugQ0b4IorYtfMFEhCBQqdR6GUaqlWr4bTToOJE+H4461RTY8+Cu3axbtkCRYodB6FUqql2b3bCg6nngolJVaH9dtvQ//+8S7ZIQkVKJRSqqVwOmHePGs009y5MHmy1cx01VXxbWYKROdRKKVUjP33v3DdddaoprPOgtmzream5kprFEopFSN798KkSZCbC1u2wDPPwLvvNu8gAVqjUEqpqHM6rRTgt99u9Ulcfz1Mmwbt28e7ZOHRQKGUUlG0Zo0VGD780JoX8frrMGBAvEvVMNr0pJRSUVBWBjfcACefDJs2QUEBvP9+ywsSoDUKpZSKKGOsIa633WYl8ps4ER54ADp0iHfJGk8DhVJKRchXX1nNTO+9Z82LWLHCytHU0jX7picRSReRZ0TkaRG5Kt7lUUopf+XlcPPNcOKJ1gJCTz9t9UkkQpCAOAUKESkQkZ0i8rXf9iEislFEikXkTtfmS4EiY8x44KKYF1YppYIwBv71L2vS3OOPw7hxsHGj9aet2X8ND1+8LmUBMMR7g4jYgdnA+UA/YJSI9AO6At+5dnPEsIxKKRXUunVw7rnWTOojj4SPP4Ynn4Ts7HiXLPLEGBOfE4t0B5YZY451vT4duMcY82vX6ymuXUuAvcaYZSJSaIwZGeR4E4AJAF26dDm5sLAw2pcQVEVFBRmxThiv9L7HQWu855WVdp59thtFRV1JS3MwbtwW8vJ+wG6Pzfmjec8HDx78mTEm1397c+rMPpJDNQewAsSpwAxglojkAUuDfdgYMweYA5Cbm2sGDRoUvZLWY9WqVcTz/K2V3vfYa0333Bhr+dGbb4YdO2DMGHj4YRudOvUF+sasHPG4580pUARkjNkPjA5nXxG5ELgwJycnuoVSSrUqGzZAfr61eNCJJ1oB4/TT412q2GlO3S07gKO8Xnd1bQubphlXSkXS/v0wZYqVi2n1apg50/qzNQUJaF41itVAbxHpgRUgRgJXxrdISqnWyBhYsgRuugm++w6uuQb+/Gfo3DneJYuPeA2PfR74COgrIiUiMtYYUwtMAl4D1gOLjDFrG3hcXeFOKdUkmzbBkCEwYoQ1m/q996xlSVtrkIA41SiMMaOCbF8BrGjCcZcCS3Nzc8c39hhKqdapshIefBAeeQRSU2H6dGvNiDbNqd0lThLqFmhntlKqoYyBV16xEvht3w6/+Y0VLH72s3iXrPloTp3ZTaad2Uqphti8GYYOhWHDICMD3nkHnntOg4S/hAoUSikVjgMH4J57oH9/a4W5v/7VWp707LPjXbLmSZuelFKtyrJlMHkybN0KI0fCY4/BEUfEu1TNW0LVKLTpSSkVzNatcNFFcOGFVmf1ypXw/PMaJMKRUIFCKaX8HTwI990H/fpZweEvf7GWJx08uO6+/rnv4pULr7lJqKYnpZTy9u9/W6k3Nm+Gyy+3mpm6dg287+7CApz7K+g4Jh8RwRhDacFMbOkZZI8cE9uCNzMJVaPQCXdKKbCGuV5yCVxwgTUP4o03YOHC4EHCGINzfwVly4ooLZjpCRJly4pw7q9o9TWLhKpR6IQ7pWInUDONiMSpNJaqKqvWcP/9IAIPP2yl4UhODv05EaHjmHwAypYVUbasCICsoSM8NYzWLKFqFEqp2NhdWEBpwUzPa/c38N2FBXEr0xtvWMn77rrLqkmsXw933FF/kHDzDhZuGiQsGiiUUg3i3UxTW7oz7s00330Hl10Gv/oVOJ3w6qtQVARHH92w47ivw5u7Gaq1S6imJ51HoVT0eX/zdpTtZfOl5wCxb6aproa//Q2mTbMCxH33wW23QUpKw4/lHezc1+F+DVqzSKgahc6jUCo24t1M89ZbVjPTnXfCeedZzUxTpzYuSIB1Pbb0DJ9g13FMPllDR2BLz2jVQQISrEahlIqNQ800h57MpQUzox4sduyAW26xRjD17GnNss7Li8yxs0eO8emQdweL1h4kIMFqFEqp6PNuprFndaDXknfIGjrCZ2hppNXUWKOZfv5zeOklK0/T119HLki4+QcFDRIWrVEopRrEu5mmTcfOPs1Q0WimeecduP56WLvWyvQ6fbpVm1Cxo4FCKdVg7mYa3nkHiE4zzQ8/WJ3T//wndO8OL79s5WpSsZdQTU86M1up2IlWM01tLTz+OPTtCy+8AH/8I6xbp0EinhIqUOioJ6Vatvffh5NOsmZTn3mm1Q8xbRq0bRvvkrVuCRUolFIt048/wtVXwy9+AWVl8OKLsGIF9O4d75Ip0EChlIqj2lqYORP69LHWhpgyxWpmGjbMytWkab+bBw0USqm4+PBDGDjQWm3u1FOtZqYHH4T0dOt9dz4pd3BoDvmkWisNFEqpmNq1C8aMsfogSkth0SJ47TWrVuGmab+bFx0eq5SKCYcD5syBP/wBKirg9tutEU0ZGXX31bTfzUtC1Sh0eKxSzdPHH1vNS9ddByeeCF9+CX/+c+Ag4RbvfFLqkIQKFDo8VqnmpbQUxo+H006D77+3OqzfeguOOab+z2ra7+YjoQKFUqp5cDqtZqa+fWH+fCuR38aNMHKkNZqpPv5pv2ORT0oFp30USqmI+vRTq4lp9Wo45xyYNQuOPbZhxwiW9huik09KhaaBQikVEXv2WMuQPvUUdOkC//gHXHlleDWIQDTtd/OhTU9KqSZxOqGgwGpmevppuOEG2LABrrqq8UHCTdN+Nw8aKJRSjbZpUwZnngljx1prRXz+ubU8qY4nSSza9KSUarC9e605EH//+8l07AgLFsDvftf0GoRqnjRQKKXC5nTCs89ak+V274aLL95BQUFX2rePd8lUNGmgUEqF5YsvrJXmPvgATj/dSrtRVlZM+/Zd4100FWXNvo9CRHqKyDwRKYp3WZRqjcrKrA7qk06y5kIUFFjrRpx4YrxLpmIlqoFCRApEZKeIfO23fYiIbBSRYhG5M9QxjDFbjDFjo1lOpVRdxlhDXPv2tVKBX3stbNhgGD0abM3+K6aKpGj/dS8AhnhvEBE7MBs4H+gHjBKRfiJynIgs8/vpHOXyKaUC+PprGDQIfvtba73q1avhvrMLcL7km/a7tnSnpv1uBaLaR2GMeVdEuvttPgUoNsZsARCRQuBiY8xDwNBolkcpFVp5Odx7L0yfDu3bW2k4xo4FEUPpmgpPFteOY/IpLZiJgxScVPlMjFOJR6KdM8UVKJYZY451vR4BDDHGjHO9/i1wqjFmUpDPZwMPAOcBc10BJdB+E4AJAF26dDm5sLAw0pcStoqKCjJCpcVUUaH3vfGMgZUrO/P3v/diz55k8vJ+YNy4LWRl1frsV1u6E0fZXs/r6sM6065Dh1gXt1WL5r/zwYMHf2aMyfXf3uxHPRljdgMTw9hvDjAHIDc31wwaNCjKJQtu1apVxPP8rVW87vvuwgKc+ys86SXcCe1s6RlkjxwT8/I01Lp1MGkSvP02nHyytVb1KaccARxRZ19jDJsvPcfzuuSGafpvPcbi8e88Hl1SO4CjvF53dW1rMl2PQsVaS16Jzb140AknwJo18MQT1roRp5wSeP9Aab9rS3c262tUkRGPQLEa6C0iPUQkGRgJvBKJA+t6FCrW3Inq3CmwN196jic1dnNNYGcMvPCClXLjkUfg6qutYa+//z3Y7cE+Ezjtt6Nsr6b9bgWiPTz2eeAjoK+IlIjIWGNMLTAJeA1YDywyxqyN0Pm0RtFC+D9YWvKDpiWtxLZhA/zqV3D55dCpE3z4Icyda/0eSrC03/asDpr2uxWI9qinUUG2rwBWROF8S4Glubm54yN9bBU58WrT9x+ZE6mROsFWYmtOwWL/frj/fnjsMUhLs9aImDgxeA0ikEBpv9t07Ez2oMujVGrVXOi0GRVT8WrT311Y4NNE4j5vU+cANPeV2IyBJUuspUcffthaH2LjRisVR0OChFtzCXwqtpr9qKeGEJELgQtzcnLiXRQVhHczTdmyIs+4/Gi26XsHJzg0B8D9cG9KzaI5r8T2zTeQn2/lZDr+eGu96jPPjFtxVAuWUIFCm55aBvfD1P3ghui26Uc7OIVaiS1azV2hVFbCgw9aHdWpqfD441YNok1C/W9XsaRNTyrmgrXpR6qZJlBHebQ7nAOtxBat5q5gjIGXX4Z+/eCBB6wO640brYR+GiRUUyRUoNBRT81ftNv0gz6cny+IanDyF+u+mM2bYehQGDYMMjJg1Sp47jn42c8iehrVSiXU9wxtemr+ot2mH6wvIrlHDtVbiz3ndW937xepmoW79uK5LhPdvpgDB+DPf7Y6qpOSrFFN+fnW70pFSkIFCtUyhGrTb6pgfRGSlk7b/gOi2uHsP+wXwGmcPvtkj54UsfMtWwaTJ8PWrTBqFDz6KBxRN+uGUk2WUIFCRz21HIHa9CN13GAd5dEKThB4ZNV3d0yk+pv1PvuV3DqO9IFnkT2q8fNFtm61+h2WLrWGva5cCYMHN6n4SoXUoD4KEUmLVkEiQVN4qFAd5dEKTu5j+afycAeJ5O459Fy8ytP8tX/1+zidznqOWNfBg3DffVZn9cqVVpPTmjUaJFT0hRUoROQMEVkHbHC9PkFEnohqyZRqhHhOfgs0siq5ew7V24rZMnwQ1VuLSe6RQ9rAM7E1cIm4V1+F446DP/0JLrrISsVx++2QnBzJK1AqsHCbnv4G/BpX8j5jzBcicnbUSqVUI8Vz8lug2kxKv+Op3lbsed310bkNChLbt8NNN8GLL0KfPvD663DeeRErslJhCbuPwhjznd9/NEfki9M02kehotlRHor/sN+OY/LZNW8G5csX++y3e/6ssMpTVWWNYLr/fhCxJtDdfDOkpETzKpQKLNyvNt+JyBmAEZEkEbkVK/Nrs6J9FAqi11Fe3zm9azMAgnXelN7HNKgZ7PXXrZQbd90FF1wA69fDlCkaJFT8hFujmAhMB47EWmTodeD6aBVKqZbIvzZjy8ggK28EHceG1wxWUmI1MxUVQU4O/PvfMGRITC9BqYDCChTGmFLgqiiXRamoikXeJe/jhdsMVl1t5WOaNg2cTmtk0223aQ1CNR9hBQoR6QHkA929P2OMuSg6xVIqsuK1BkZ9zWArV1oJ+zZsgIsvtgJG9+5RK45SjRJu09NLwDxgKdDwAeBKxVE004w31o4dcOutUFgIPXpYs6zz8mJaBKXCFm6gOGiMmRHVkkSAjnpSgcRjDYxgampgxgy45x7r93vuseZDtG0bsyIo1WDhjnqaLiJ3i8jpInKS+yeqJWsEHfWkgmkO61qvWgUDBlg1ibPPhrVr4e67NUio5i/cGsVxwG+BcznU9GRcr5Vq9uK5rvUPP1id0//8J3TrBi+9ZM2u1lVFVUsRbqC4DOhpjKmOZmGUioZAk+GilWbcW20tzJxpuPtuoaoKpk6FO+80pKdrhFAtS7iB4mugPbAzekVRKjrisa71++/DtVfuYd13hzFkiGHmTKFXLytgHYzySCulIi3cQNEe2CAiq4Eq90YdHqtailil9vjxR7jjDnjmGeh6WBtmnTKVy4Z3plOv+I+0Uqqxwg0Ud0e1FEpFQX0P40g+qGtr4cknrealykr4wx9gypR2HFjYmbJlRZQvrzvSKhYTAJWKhHBnZr8T7YKo1sH7YejOd+T9OlqrzUVzgt1HH8F111lrQ/zylzBrFvTtCyCkB1lEKV4TAJVqjJDDY0Xkfdef+0Sk3Otnn4iUx6aI4RORC0VkTllZWbyLogLYXVjgSYi3u7CA0nkz2TVvBrsLCzwPyt2FBU0+j/cEO/f53M0+zv0VEVuXYtcuGDsWzjjD+n3RIiuhX58+xlOOQCOtnE5nTMqnVKSErFEYY85y/dkuNsVpGmPMUmBpbm7u+HiXRfnyfngbYxCEMldzTGbecErnzaRseWTa76M9wc7hgKeftpqX9u2zhr7+6U+QkXGoJpM9ehK758+ibFkRyT1ySB94Fs7KQ7PDs0dPilr5lIq0cHM9PWeM+W1925QKxv/h7c29ZkMkH5Sh1s5uik8+sZqZPvvMWoJ09mxr3WqomypE0tI9y5+27T/AExxs6RnYbLaolE+paAh3ZnZ/7xci0gY4OfLFUYks0Oxob5F8UIZaO7sxdu+GCRPgtNPg++/h+efhrbcOBQmou272T4ueoXprsScAuoODewRWJMunVDTV10cxRUT2Acd7908APwIvx6SEKmEEejh6i9SD0n+CXVPWznY6Yc4caxnSggJrvYiNG2HkyMAzq+tLFeLdcR2vtb2Vaqj6+igeAh4SkYeMMVNiVCaVgLwfjpl5w+v0UQgSsZnSkZpg9+mnVgrwTz6xcjPNng3HHhvedXrzTxUSjwmASjVFuMNjp4jIkUA3fNejeDdaBVOJxf/huGfhfLLyRmAw2DPacdgVo0Ei96BsygS7PXusZUifego6d4bnnoOrrqo/N1NDUoXEa21vpRoj3M7sh4GRwDrA4dpsAA0UKmzeD0f373BoHkWkH5QNXTvb6YQFC6yZ1Xv2wOTJcO+9EG4y4obWFOKxtrdSjRHuzOxLgL7GmKp691QqhGCT6+I9K/m//7WamT76CM4802pmOuGEhh9HawoqEYU76mkLkBTNgqhD/DszE61z03viHRxqsonEZLv6+N/LvXsN+fmQmwvFxVaN4r33Ghck3LSmoBJNuDWKSmCNiLyFb1LAyVEplR8RGQbkAZnAPGPM67E4bzwkemqHeC5L6n1vQXj2WcOt+QfYU5HK76+zcf/90L59VE6tVIsWbqB4xfXTYCJSAAwFdhpjjvXaPgSYDtiBucaYh4MdwxjzEvCSiHQAHgUSMlA0x7WdI8npdHrmEkBsZyV739u132Xzx7eu5P33hQEdtrDwj18x+J6R9Z67uTWXKRUr4Y56eqYJ51gAzAKedW8QETswGzgPKAFWi8grWEHjIb/PjzHGuNfBmOr6XEJqTms7R1rJ1Hyc+/fT9bG52Gw2Drvm+jqzkqNJREgans8jz/+CedOOIzOpjAdPfJIxE9PoPL7+e5voNT2lQpFw2r9FZCvWKCcfxpieYZ1EpDuwzF2jEJHTgXuMMb92vZ7iOp5/kHB/XoCHgTeMMW8G2WcCMAGgS5cuJxcWFoZTtKioqKggIyOjSceo2rzR83tKr75NLVLcVW/bjHHUIimpJHftRtWWb8A4Pe/bszoAIHY79g7ZjTpHsPtuDLz5ZmeefKIHe8tSueDsdVxzyWraZVRhz+oQ1jlrS3fiKNuLPasDbTp2rvO6tYrEv3XVMNG854MHD/7MGJPrvz3cpifvD6ZiLY16WBPKcyTwndfrEuDUEPvnA78EskQkxxjzpP8Oxpg5wByA3NxcM2jQoCYUr2lWrVpFY8/vPRbfraXXKIwx7PxmDftWLKnzXpuje5J23ImU/3MWYE2+6zTsUvYsnN/gb/CB7vvatdZopnfegQHd/8fcEyZzXIeNsOrQPu5zhrq/nr8XVznB9fcy/LIW+/cSCU35t64aJx73PKxRT8aY3V4/O4wxj2N1LseEMWaGMeZkY8zEQEHCraWnGU/U1A4iQudxN9Dugkt9trc5uie1327xJAVM6X0MncZa4yOamoZ73z649VZr9NJXX8FTTxlenbLIChL+5aP+B319qTmUSmThTrg7yeulDauGEW5tJJAdwFFer7u6tjVJS08znsipHYwxVK370mebzeb7PaXrn5/0mXwHDe+rMQYWLoRbboEffoBx4+DBB6FjR2F3YQZZeSM8qUMAsvJGYMuo/96Gk5pDqUQV7jyKx7x+HsLKHHtZE867GugtIj1EJBlr1nejRlUlmuyRY+rkBXJnHI21SM3ncDqdlNwyjuptxT7b/V9715oa8w1+27Y0/u//YNQoOPxw+M9/rIR+HTta7x92xWiMX1ebwVjpQwJcn/88j0Sr6SkVrnCbngZ7/ZwHTAQGhvNZEXke+AjoKyIlIjLWGFMLTAJeA9YDi4wxaxt3CT7natFNT27NYcJWUyfFeT88RYTasr0AtLvgUnouXkVSt17Weymp9Fy8qs6DtyFpuCsq4PbbYdy4XNasgb//HT7+GE45xbc8pQUzKV++2OdhX758sXVdzwe/3mA1vayhI1p8TU+pcIRsPhKRTOB6rM7nl4E3Xa9vAb4E/lnfCYwxo4JsXwGsaGB56ztXi256ai6aOp/DfygpQFLHzjizO9F53A2ICPb0DGozMsk8fxg2m43s0ZM4sHYNVVu/AQgruZ4xUFRkpf7esQPOP/9HnnnmcDp1qlsm98M+M2+4z8PeGIOkpfusPhfoejU1h2rN6utneA7Yi1UjGA/cBQhwiTFmTXSL1nAiciFwYU5OTryL0qI1ZT5HsCBT9c16svJGePZJ6dmbg+u+gAOV1hra82d5FvkB6u2r2bgRJk2CN9+EAQPghRegqmojnTodHvra/DquBbGSFIZxvc2hpqdUPNQXKHoaY44DEJG5wA/A0caYg1EvWSNojSJy3A/nhi7VGW6QqW+fYN/gKyuFKVPgsccgLQ1mzoTf/x7sdli1Kni5PAFseRGIV63BtU43UGcS4GHXXK/BQCnq76Oocf9ijHEAJc01SKjIaspSnSLiWR/aLXv0JJ+Hbjid1b7pMuDFF4VjjoGHH4Yrr8RTq7Db678e736FsmVFbL70HJ+mrZKp+WwfM8znM9vHDOO7uyYFPqBSrUh9geIE8V0C1b0k6j4RKY9FARsiUTqz4y3cUT7Bgkbp8/MouXWcz7aSW8dR+vy8Oufw+VyQQPTNN3D++TB8OHToYGV3XbAAunRp2HUFC05Op5Oaku04y8uwZWbRo+htbJlZOMvLqCnZjsPhCHJEpVqHkIHCGGM3xmS6ftoZY9p4/Z4Zq0KGyxiz1BgzISvclWZaqUDDQP1HKUlauufbNoCkpZPcIwdbWobnM4FGQTmdTipXf0D11mKSe+TQc/EqknvkUL21mMrVH+B0OsMORJWV8Kc/WcuPfvghPP44fPYZnHVW4687UHCy2WxkDhnmCQ5bRwz2BI3MIcOwh1NlUSqBNWXSnGqBAiW3K7ljIgBHPvx3bDabFTgq9yNt09mzcD6Oin0IQvXWYtr2G8CueTOo2rTO6qD2GwVls9lIH2g9yau3FrNl+CAAknvkkD7wLM8ku1Cd1SC88grccANs22YtQ/rII9bciMYKZ5nSDpdfw9YRgz2f6VbwkgYJpdBA0aoEGpG0a94Mqr5ZD0DJLePo+thcds+fRdmyIpK750BSEtXfrCczb3jAWc2BOrizR42hwxXXeIIEQNdH5/rMxA7WWb1li3D1hbB8OfTvb3VQn3NO065ZRA7NhcgLHJyMMQGby456bF6dGeRKtTYJ9T9A+yhCC9ShW758Me0uuJTk7jlUb7NqAGXLiqzmom3FtO3Tn8y84ZQvX+wTJAA6jg08Cso93NXb7vmzQs70PnAA7rnHCg7vvAOPPmotT9qUIOE/adA9M3vPwvk+96PD5dewbewl1GzbTFL3XtaEwO69qNm2mW1jL8HpdIY6jVIJL6EChfZR1C9Qh27ncTfQ9bG5Ptvccxo6js33JOrzF6jzOdz+h5Kp+ZTcOg6n08ny5XDssYZp04QhOZ+ycaOVqympCYvveteevBMLli9f7JNY0F3bEJvVxNS2/wBEhLb9B1jv2+w6RFa1etr01MoE6tDdNW9GwAyq7iGuu+bN8NmemTccQerMlIbwEhs6nU6clfvZ8nUF4/us4fXNJ5Fz2A88e+ZfOOeUcn72s7k09TtMQyYNigjd5y5m17wZlC9f7Mlmm5k3nE5jJ2ugUK2eBopWJFCHrvvhCHian9xKbhlHSr/j2bdiCSm9jyG1T38MhvLliz19FoFyHdWX7qK62sbMzy5l5gfnYcfB7f2f4OpeRSSn2pC2x0SsT6AhkwZFhE5jJ3vuBaBBQimXhAoUmsIjtEDf9juNnczBjWtxlP5I9TaruSl79CRKbh1H9dZiJCnJ883a/ziHXTE66IM0WLqL116DSZMMxcVDOf+IlUw5bjaHt91l7VQN5sB+z9raTdWQ1OCaRlyp4BIqUCRqCg//JHz1JeULJdC3/aP+8hR7CufjrDw0bLbro9bop0ABoTEPz2+/tZL3LVkCffoIK1Y46L3gQaiuPrRTcjJH/GWOJ0g05brDGQ7rPlZD9lWqNUqoQJGIAs17qG9J0PoE+rafPWpMnfkQoZppwlVVBX/9K9x3n/X6wQfhxhud7LprPNXeQQKguprvb59A10fnsnfRApwVFZ6RVcYYSufNxJYR3nWH01fSmH2Vao00UDRjDUn3HYlaR6Szo77xhpWLadMmuOQSa2b10UcD2CA1DZKSocYrWCQlQ2oaIkLl5x975nd0HJtP6TwrgV9K72NCNnl5a0hqcE0jrlRwGiiasXBH7kSj1tEUJSVw881W6u+cHPj3v2HIkEPvO51OHD98BzXVJHfPoetjcz0r4Dl++M6T5gOgbHmRz/yNhq4m15Dgp2nElQosoeZRJKL6sqwGmy9QtqzIZ76A9wPWP7dTuA/f+pZGra62Um38/OewdClMmwZffeUbJNzXhGveQkq/4xERUvodb73pmrfg2FMasAzBtiuloiehahQtfdSTf1OSW6jROOHUOrxrHN65m2wZVkd1OLWP+motK1dazUzr18NFF8H06dC9e+Bjuect7Jw7nX0rlrBvxRLAWia187gbMMaEDBRN6cxXSjVcQgWKljzqyf9hXlNeZiXiK15P1TfrSerWi7RTzoQDlXVG4wSbLwC+NQ538HHPFcjKG+GZRxFqidNQfSUHzrqaSaMMhYVCjx5WTWLo0NDX6j5P53E3eIIE4FkmtaamJsSnoba2luTk5HruqFIqUhIqULRUDofj0IPYQPkHKzE/7QEgqVdf2nTrSc32zZT9UELWRVeQNfTQRDf3w9+/1lFyx0RS+vSj09jJVtAw1MnV5H5d3xKngWotNU47L6Q+wCP3nEVNjXDPPXD77dC2behrdQfE7NGT6uSDcteUkpKSSOrVl5rNG+t8PqlXX5KakttDKdVgGijirGRqPs7K/aScdBpJ3XvVeZj7PCyrqyhb/BztR/zOSnDnGjJ6cNNaT8pv79nWnlFDY/IxBO+H8G5OCjZyyrvW8knpCdzzxU18s68nF1wAM2ZAr171X6t3zeTA2jWeNSvcf7prLNmjJyFBJtwF266Uih4NFHHkznlUvbWY6u1bwRnGSmrGUP76Kzj278MmNsqWF5Hc+xiSuvfClpbhyYyamTecqk3rfHIXBVNaMBNbWgaO/fs8aSuMMeyaNwN7RjvP0NG1f5vH1E/v4uWSX3Nk2x94dtJSrpo+FJstvP4C/5oJHEo+6K5hWOtRQM2PPwQ8Rs2PP2gfhVIxpl/P4shms3HkI09ja5cVXpAApF0mzrK97FuxhLLlRWTljSC1Tz9qtm3Gub8CR8U+T2A48uG/+3w2M284mXnDPa+z8kaQmTfcak56/WXKl1uJ8dxBonz5Yio//5jqaicPXfkup98xkn//75fcdZfhg0df5PSSR9g9P7x1tD3lDzKKyz3BL3vkGBwOB6b8J9cHbHRb9BaIa7Z2+U+6NKlSMaY1ijiz2+0cXfAi2y47N6z9j573Itsv/z/Pa/9+BrAexmXLigLWJOzp7TzZX92jngAqPnoHoE4N5JOSXkwbKHz55TkM7r+dJ5ccTZ8+gjG/pzSltsEzl8PJqZSUlARtksDhoNvCN0hKSqLbwjfYfsV5YLdrH4VSMZZQgaIlDo91Op18f/uEsPf/duwlAbd7P2izR0/yGQHVc/Eqz1oM3h3X7v07jsm3ljb1GpJaerADf1k7kRe/O5+jjjIsXgzDhh3taWZqzMzlhuRUynnhLWpqajxBwR0sNEgoFXsJ1fTU0hYucjqdniytJIU33NPsKyepWy/aXXCpz3Z3k1Gw1eXcK9vZ0jOw2Wx1ch25m48cxsZzWy7lV2/+g2Ulv+T6U1ewbh1ceil1+iIakyIkUE4l71Fc3vyDggYJpeIjoWoULY3NZsPWNh1buyyc+7yWb/XLgdTu/EupddRy4PVXQARJSmbfiiWeJqSDm9ZSvnwxgnjWi/DuIPYeTRQofbcxhtpdP/LfPf2554ubWFfWhzM6rebu4x8np2sFaWlDIMDCRo2hOZWUank0UMRZ1wdmsutfczm4ZjXGGFL79uewa67n+z9cT/X/dpDc5QjaZGbS+YrR/Gi3Y89oh81mo+3P+/t0CrtnSQNBs6AGW+Nh1y644+0JFH2bR5fUnUwfeDfnH/E2IuCMwvLjmlNJqZZFA0Uz0OnKcZhRYz2vRYSj/vyk55u3+0HaZfyNQbPF+ud/Cucbu8MBTz8Nf/iDsO+nXzMu519M+vkzpLc54LNfpBYSUkq1TBoomolA37JDffNu7Htun3wC110Hn30GgwfDHZk30ku+rLOfLatDRBYSUkq1XPo1sRmrL1trfa8D2b0brr0WTjsNvv8enn8e3nwTjuldHXD/Np26eBILurPTus9VWjCT3YUFDbkkpVQLpIGiAfxTdgf703//xqjvwdzQB7fTCXPnQt++MG8e3HgjbNgAI0eCCDh2B8nWurs07FTmSqnEpE1PYdpdWICzogJJT8dU7rdGFBVYKSeclRVUbf2GlB69fbK2hkrfHaoZp76V7ZxOZ9gr34HVvHTddVZz09lnw+zZcOyxh8ricDhw7A0SKPaW4nQ6kbR02hzd0yeVeZujeyJp6dr8pFSC00ARBmOMZ2nO5O45VG8r5sDXa6jeVoy9fQccP+31SWpHr+NDPrjrW9tBRDi4ZRO2zCyfB7MtM8va7kp3AaFXvtu7F+66C558Ejp3hmefhd/8xqpBeLPZbGBvA47auhdvb4OI8NMLz4JfzaH22y389N1WT5mVUomp2Tc9icgxIvKkiBSJyO9jcc5ATUgpffoBUL2t2OdPx097ycobQddH55I1dARly4qo2rzRZ/axf82hvmYcp9OJOVCJs9x3bKqzvMza7nSGXPnO6YSCAujTB556CvLzrWam3/62bpAAK1C0H34VSd19U8Amde9F++FX4XQ66wQJrwuitjZAgFFKJYyoBgoRKRCRnSLytd/2ISKyUUSKReTOUMcwxqw3xkwELgfOjGZ5IXDb/+75s6jaWkxy98CpQTqOzff5lu/ZHmBYqvds5LJlRWy+9Jw6QcWdLFAyMn0/m5FpJRG02YLmTPr8c8NZZ8HYsVZ/xOefW6vNtW8f+rqzR44htd8JPttS+51A9sgxVo0jo13gD7rmdSilEle0/4cvAHxWTBYROzAbOB/oB4wSkX4icpyILPP76ez6zEXAcmBFNAsb8tt+ZYWnFuFv17wZOJ3OgA/uQB294ayD/e2EyzAV5b7lqyjn2wmXec7lDjC9lrwD517JLQ8cycBcQ3GxYcECePddOMH32R/0unfNm+Gz2hzAvhVL2DVvBjabjZSje1J3draQcnRP7HZ7/SdRSrVYUe2jMMa8KyLd/TafAhQbY7YAiEghcLEx5iEg4CKaxphXgFdEZDnwr2iVV0SwpWWQ3D3Ht28gqwO1e3cH/ExSt16UL1/MwXVfeNZWSOnV11NjgLo1i/oyqBpjMEFSabu3u3MmZY/O57nnhNvuv5bSXYYx523gkYX96q1B+KvatA6wUo93HJtP6byZlC0vomrTOpxOJ46KfVBn8SODo2KfTshTKsFJtIc2ugLFMmPMsa7XI4Ahxphxrte/BU41xkwK8vlBwKVACvClMWZ2kP0mABMAunTpcnJhYWGjyluz41ucBw/Uv6P7vCmp2FLbYqqrkOQU2nTsTEVFBRkZGdSW7kTsduwdsn0+U1u6E0fZXuxZHWjTsXOd1wBV24qtqdP+7HZSXE1gmzenM316b776qj39+pVxww3f0KdPRaOu27F3N8bh8JzfXU6x27G1P4zqLZuCfja5Z59m0Zntvu8qdvSex1407/ngwYM/M8bk+m9v9qOejDGrgFVh7DcHmAOQm5trBg0a1JhzsWvuDMpX1F3HQTLbH1pMxyWpey/STzmL7OGX+SwlumrVKgYNGhR05vLuwgKcVNHR63OlBTOx1VaQPehyjDFseeohTICAJaltyf77q9x7rzBzJnToYM2LuOaaLGy2XM91NGYGdbDPOZ1Otsy4O+jnei5e1SxqFO77rmJH73nsxeOexyNQ7ACO8nrd1bWtySKxHsXBTWuDHdun4SUrbwRly4swx57os4//ZwIJJ4Nqxrnn1+kzMAZeT7+R+46BH3+ECRPgwQfhsMMO7VPf0NtQgpXfZrOR0u94qr7dChX7Du2Q0Y6Uo3s0iyChlIqeePwPXw30FpEeIpIMjAReicSBo7kehX9zlMGQlRd4HYVwhAoqxhj2f/C2z/ubyntw1fszuH7e+Rx1lDV57sknfYNEtGZQG2NI7dkHKvZ5Os+zho6Ain2k9uyjM7OVSnBRrVGIyPPAIKCjiJQAdxtj5onIJOA1wA4UGGMCf41v+PmaXKNI7duf6uINdd+oOkjmBcPpNG6y5+GbmTfcs5RoJIkIpuogABU1bZm5YQzPbBlOuzb7uX/g49z50Q0EGmjkPZoq1ES8xpQn0IJDQKMDpVKq5Yj2qKdRQbavIApDXY0xS4Glubm54xt7DPfoH3/29h3oODY2D0ljDCSnsrz4dB76+np2Hszmsm7LuaXfHDp2tiEyGZA6o43crzuOyfdZCjUSCwPpgkNKtV7NvjM7lkSEtBNPxVlTTc22zZ7tSd17kT7wrDoPyWhZvx7Gvz6Nj/53Av2zNjLrlKkMOGy96932AJRMzcdZuZ+uj87FZrN5llW1tU0npWdvn+N5D71tCl1wSKnWKaF6IUXkQhGZU1bWuGXZjDE4Kyuo2bbZpy2+ZttmDqz5hNJ5vhPoIp1mu6IC7rgDBgywsa7859x7ymwWD7rWEyQkI5PMX10MgLNyP9Vbiym5dZzP2tvVJdt8JuK553MEm/ynlFL1SagaRVObnoK1xRtjqNq0jrLlRSD1Z2tteLlh8WK46SYoKYFrrjHcdvwzJL+70He/inKclRWICF0fnUvJLVZw2DJ8EADJ3XNoO/AMOFCpfQlKqYhJqEDRFO6Hvbst3k1E6DR2MrsLCzC1NT6dxMk9cpqcZnvjRitp3xtvWOk2Fi6E00+Hkjs+oyrA/u4+lL2LFpDa7wSftCKp/U7AZrNxmFczk/YlKKWaSpueqJsIEOo2KxlXU4+36q3FmMr9jWrS2b/fSgF+3HHw8cdW4r5PP4UzzvDdLzNvOL2WvENm3vBDZTEGx759dSYGlq9YjGPfPvxpkFBKNUVCBYrGzKMIZ+6BiJA9ehLJPXyH3Sb3yCF79CSfZH7+x657PnjxRejXz5osN2oUbNoEkydDG1f9TkRIO+lUMvOG02nsZE+tJjNvOGknnQpAxQcrA15PxQcrtS9CKRVRrb7pKZy5B+5U44FqFLvnz6LjmHz2LJzvmRENgVe4++YbKyC8+qpVk3j3XfjFLwKXK9BwVHfQMMbgLNsb8HPOsr1ag1BKRVRC1Sga2/RUX9pvd1bZQAv72NKs5FzetRLAp1ayf7/hj3+0lh/94AP429+sdSKCBQnvcgV67QiSWdatvveVUqohEipQNDaFR7C0396LF1X+92Nqtm326TOo2baZyv9+DOCzGJH3Cncfdcrn2GOF+++Hyy6zOq9vvPFQM1NjVFdXN+l9pZRqiIQKFI3h3ScRau5Bdcn2gJ93b/evlXy7/3DGvJTPxRcLaWnw9tvwj3/A4Yc3vcypqalNel8ppRpC+yjCyGPkdDqR5GTMgUrKly+mfPmh0UaSnOwJJqUFMznoSOYfr5zMoreuISmphkceSeKGG4SkpMiV2el01vu+ZnRVSkVKQgWKxiYFrC+PkYjQptPhVJf9VOezbTpZVYTSgpm8PLeE+zcvZvuuLIYN3MQth91J3w6DaNMmn7rLiDZeOIFCKaUiJaG+djYlzXh9eYxS+/YL+LnUvv3Yvl24+smLGf+fv9A2O5NHH13Dko970/eyQVGZEa2d2UqpWEqoGkU0BZqbUOVI5q/LBjI9H+z2bjz0kOHmm4UPP/wpqjOi29TTE17f+0op1RD6RAlDoIWE3vtxIPd+eRPb93dlxAjDX/8KXbtCLKYw2Gw2sNkgUBOTzab9E0qpiNInShhExLPC3feVnbn+4/sY89Fj2MRJwTlTWLQI0j4oqDOkNtLZZb3LEzQiieiEO6VURGmNIgzGGBzJ7Zj71XBmb7oGkpK57YzFXJ39BGnZGTidTs+EOwB6HR/R7LL+bDYbyX36U73hKysniJsIyX36a41CKRVRCRUoIrEUaiArV9qYuPwJNu/pwnmHv8tdx83kyLQfsbXLos0RR2O32z3pyMuWFVE1NMWzVGo0+ikcDge1O7aDMdgys+hW8BLbxwzDWV5G7Y7tOBwO7IHWSlVKqUZIqK+eTRn1FEhJCVxxBZx3HjjsKTx92u08cepUjkz7EQDnvjJSe/bGGMOehfMRvyGwgrBn4fyIlMWb3W5HUlI9QcJut9Ot4CVsmVlISqoGCaVURCVUjSJSqquttN/33gsOB0ybBrfckknp1FKqtx7az509FsBZUWEtbOSlbHkRWXmRb3oC6DHnBZ+agztYaJBQSkVaQtUoIuHtt2HAALj9djj3XFi3DqZONex/Pnj2WGMMBzZ+HfB4wbZHgn9Q0CChlIoGDRRebrzRCg4HD8LSpfDKK9Cjx6HssYHWo7ClWRPqaoLkggq2XSmlWgoNFF5OOw3+9CdYuxaGDj203RiDs7KC6q3FPokDq7cW46yswOl0YlzDZ/2Zgwd0ISGlVIumfRReRo4MvL2+xIH1pcyora0lOTk50sVVSqmY0EARplCJA+sLFNp3oJRqyRKq6amxK9w14PgBX9fXtKRNT0qpliyhAkWk51GES7O5KqUSWUIFinjR9SGUUolMA0UE1NcHoX0USqmWTANFBNSXhE+T9CmlWjJ9gkWA9lEopRKZBooI0KYnpVQi00ARAfUl/NOFhJRSLZkGigiwliYNUmuw2bWPQinVoukTLAKcTifSxprkbmuXRUqvvtjaWXM5pE0bHR6rlGrRWkSgEJF0EflURIbWv3fs2e12knOs4ODcV0bV5o0495Vha5dFck5f7aNQSrVoUc31JCIFwFBgpzHmWK/tQ4DpgB2Ya4x5uJ5D3QEsilpBI+CoB2bhcDjYOmKwZ1u3+bqQkFKq5Yt2jWIBMMR7g4jYgdnA+UA/YJSI9BOR40Rkmd9PZxE5D1gH7IxyWZvEGMOeBbN9tu1ZMFvzPCmlWjyJ9oNMRLoDy9w1ChE5HbjHGPNr1+spAMaYh4J8/gEgHSuoHAAuMcbUafQXkQnABIAuXbqcXFhYGPmLCaG2dCeOsr3YszpwMDWN1IOVntdtOnaOaVlaq4qKCjIyMuJdjFZF73nsRfOeDx48+DNjTK7/9nikGT8S+M7rdQlwarCdjTF3AYjINUBpoCDh2m8OMAcgNzfXDBo0KELFDc/uwgKcVNFx+GW88847nJOXR2nBTGy1FWQPujymZWmtVq1aRaz/3ls7veexF4973mLWozDGLKhvHxG5ELgwJyenvl0jLtR6FUop1ZLFY9TTDuAor9ddXduaLF5pxt2CrVehlFItWTwCxWqgt4j0EJFkYCTwShzKoZRSKgxRDRQi8jzwEdBXREpEZKwxphaYBLwGrAcWGWPWRuh8UV3hTimlWqOo9lEYY0YF2b4CWBGF8y0Flubm5o6P9LGVUqq1ahEzs8OlNQqllIq8qM+jiAcR2QVs99qUBYSKHsHeD7Q9nG0dgdKwChsZ9V1fpI8Rzr6RvOeBtgfar6Xd94Z+vqn3van3PNA2veeJ9XzpZozpVGerMSbhf4A5jXk/0PZwtgGfNqfri/Qxwtk3kvc8yD0O9PfQou57Qz/f1Pve1Hse5O9B73mCP1+MMYnV9BTC0ka+H2h7uNtiKRLnb8gxwtk3kvc80PZ433Noehka+vmm3vem3vNwyxBNLe2eh3q/pTxfErPpKd5E5FMTYBq8ii6977Gn9zz24nHPW0uNItbmxLsArZTe99jTex57Mb/nWqNQSikVktYolFJKhaSBQimlVEgaKJRSSoXUYtKMt2QiMgi4D1gLFBpjVsWzPK2BiNiw7nkm1rjzZ+JcpFZBRH4BXIX1bOlnjDkjzkVKeCJyNDAD2ANsMvUvLd1gWqNoJBEpEJGdIvK13/YhIrJRRIpF5E7XZgNUAKlYCzWpRmjgPb8YK4V9DXrPm6Qh990Y854xZiKwDNDg3EgN/Ld+HFBkjBkDnBiVAsV6hl+i/ABnAycBX3ttswObgZ5AMvAF1hKuNtf7XYB/xrvsLfWngff8TuBa1z5F8S57S/5pyH33en8R0C7eZW+pPw38t54NvA2sBEZHozxao2gkY8y7WFU9b6cAxcaYLcaYaqAQuNgcWr51L5ASw2ImlIbcc6xaxF7XPo7YlTLxNPC+u5tCyowx+2Jb0sTRwHs+GrjbGHMukBeN8migiKxA64EfKSKXishTwHPArLiULHEFvOfAEuDXIjITeDceBUtwwe47wFhgfsxLlPiC3fNXgcki8iSwLRon1s7sGDDGLMF6cKkYMcZUYj2wVIwZY+6OdxlaE2PM18CIaJ5DaxSRFbX1wFVQes/jQ+977MXtnmugiCxdDzz29J7Hh9732IvbPddA0UixXg9c6T2PF73vsdfc7rkmBVRKKRWS1iiUUkqFpIFCKaVUSBoolFJKhaSBQimlVEgaKJRSSoWkgUIppVRIGihUqyci14jIEV6v54pIvwgct7uIXNmIzy0QkTopGVzbt4rIGtfPZNf2bSLS0W/fZBF53JWO+hsReVlEunq973Ad42sReUFE0hpzjap10EChFFwDeAKFMWacMWZdBI7bHWhwoKjHbcaYAa6fGSH2exBoB/Q1xvQGXgKWiIi43j/gOsaxQDUwMcLlVAlEA4VKSCLyGxH5xPWt+SkRsbt+Fri+RX8lIje5vrnnAv907dtWRFaJSK7rOBUi8oiIrBWRN0XkFNf7W0TkItc+3UXkPRH53PXjXtXtYeAXruPe5Dr/IyKyWkS+FJFrXZ8XEZnlWpDmTaBzE689DSv19E3GGAeAMWY+UAWcG+Aj7wE5TTmnSmwaKFTCEZFjgCuAM40xA7DWo7gKGAAcaYw51hhzHDDfGFMEfApc5fqGfcDvcOnASmNMf2AfcD9wHnAJMM21z07gPGPMSa7zur/p3wm85zru37Cy2ZYZYwYCA4HxItLDday+WIvQ/A4ItXzoI15NT8cF2ScH+NYYU+63/VOgv9+9agOcD3wV4pyqldM04yoR/R9wMrDa1dLSFuthvhTo6VqjYjnwehjHqsbK9w/Ww7TKGFMjIl9hNS0BJAGzRGQAVlDqE+RYvwKO9+p/yAJ6Y61m9rzr2//3IrIyRHlucwW3pmorImtcv78HzIvAMVWC0kChEpEAzxhjptR5Q+QE4NdYbfKXA2PqOVaNOZQQzYnVfIMxxun6Ng5wE/AjcAJWLf1giHLlG2Ne8yvTBfVeUcNsBo4WkXZ+q8ydjLWWNbj6KCJ8XpWgtOlJJaK3gBEi0hlARA4TkW6ukUE2Y8xiYCrWmsRgNSm1a8L5soAfXEve/hZrbeNAx30N+L2IJLnK1UdE0rFW4LvC1YdxODC4CWXBGLMfeAb4q4jYXef6HZCGta6yUg2iNQqVcIwx60RkKvC6iNiAGuB64AAw37UNwF3jWAA8KSIHgNMbccongMWuh/GrwH7X9i8Bh4h84TrHdKzmqs9do492AcOAF7E6mdcB32Kll26oL0XEvTb7IqxrexTY5Nq+AbjEq3akVNg0zbhSSqmQtOlJKaVUSBoolFJKhaSBQimlVEgaKJRSSoWkgUIppVRIGiiUUkqFpIFCKaVUSBoolFJKhfT/mtUUrcRZGsEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "log_fit_coef, fit_coef = plot_with_filter(est_flat, times_flat)" ] @@ -638,14 +808,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:10.141424Z", - "start_time": "2020-10-07T07:40:10.138386Z" + "end_time": "2020-10-09T08:46:15.425675Z", + "start_time": "2020-10-09T08:46:15.422157Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Factual FLOPS on a laptop 3.333333e+07\n" + ] + } + ], "source": [ "FLOP = 1e6/.03\n", "print(f'Factual FLOPS on a laptop {FLOP:e}')" @@ -660,36 +838,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:12.055353Z", - "start_time": "2020-10-07T07:40:12.050244Z" + "end_time": "2020-10-09T08:46:17.081604Z", + "start_time": "2020-10-09T08:46:17.075393Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Factual FLOPS on a laptop, from log fit 8.870076e+08\n" + ] + } + ], "source": [ "FLOP_logfit = np.exp(-log_fit_coef[1])\n", "print(f'Factual FLOPS on a laptop, from log fit {FLOP_logfit:e}')" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-10-07T07:40:16.520371Z", - "start_time": "2020-10-07T07:40:12.850181Z" - } - }, - "outputs": [], - "source": [ - "N = 500\n", - "matmul_flop = N**2*(N-1)\n", - "x, y = np.random.randn(2, N, N)\n", - "%timeit np.matmul(x,y)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -699,41 +868,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T07:40:19.790768Z", - "start_time": "2020-10-07T07:40:19.787939Z" - } - }, - "outputs": [], - "source": [ - "FLOPS_matmul = matmul_flop/4.65e-3\n", - "print(f'FLOPS on this laptop for matrix mul: {FLOPS_matmul:e}')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-10-07T07:40:20.329754Z", - "start_time": "2020-10-07T07:40:20.326436Z" - } - }, - "outputs": [], - "source": [ - "print(f'Simulator inefficiency: {FLOPS_matmul/FLOP_logfit}')\n", - "print(f'Simulator optimality: {FLOP_logfit/FLOPS_matmul}')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2020-10-07T08:25:27.943213Z", - "start_time": "2020-10-07T08:25:27.939822Z" + "end_time": "2020-10-09T08:46:19.966699Z", + "start_time": "2020-10-09T08:46:19.960673Z" } }, "outputs": [], @@ -743,7 +882,7 @@ "def get_log_flops_vs_matmul(log_fit_coef):\n", " FLOPS_logfit = np.exp(-log_fit_coef[1])\n", "\n", - " N = 300\n", + " N = 500\n", " matmul_flop = N**2*(N-1)\n", " x, y = np.random.randn(2, N, N)\n", " number = 100\n", @@ -755,6 +894,31 @@ " return FLOPS_logfit, FLOPS_matmul" ] }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-09T08:46:21.142290Z", + "start_time": "2020-10-09T08:46:20.624505Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulator inefficiency: 28.295439844627968\n", + "Simulator optimality: 0.03534138382336739\n" + ] + } + ], + "source": [ + "FLOP_logfit, FLOPS_matmul = get_log_flops_vs_matmul(log_fit_coef)\n", + "print(f'Simulator inefficiency: {FLOPS_matmul/FLOP_logfit}')\n", + "print(f'Simulator optimality: {FLOP_logfit/FLOPS_matmul}')" + ] + }, { "cell_type": "markdown", "metadata": { @@ -771,14 +935,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 171, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T08:14:59.391811Z", - "start_time": "2020-10-07T08:14:59.381070Z" + "end_time": "2020-10-09T09:47:35.854229Z", + "start_time": "2020-10-09T09:47:35.837578Z" } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# export\n", "import click\n", @@ -787,9 +962,12 @@ "def cli():\n", " pass\n", "\n", - "@cli.command()\n", - "@click.argument('filename')\n", - "def time_vs_flops_plot(filename):\n", + "@click.argument('filename', nargs=-1)\n", + "@click.option('-B', '--backend', default='numpy')\n", + "@click.option('-M', '--max-memory', default=3e8)\n", + "@click.option('--min-memory', default=3e6)\n", + "def time_vs_flops_plot(filename=None, backend='numpy',\n", + " max_memory=2e8, min_memory=1e6):\n", " \"\"\"\n", " Plots times and estimated FLOP for each step of several QAOA energy computation contractions.\n", " \n", @@ -799,34 +977,196 @@ " - N = 1000\n", " \n", " \"\"\"\n", - " edge_indices = EDGE_IDX_FOR_SEED[SEED]\n", " ds = [3, 4]\n", " p = 3\n", " N = 1000\n", " \n", - " estimators = ex.map_variable('step_flops', d=ds,\n", - " edge_idx=edge_indices, n=[N], p=[p], seed=[SEED])\n", - " maxmems = ex.map_variable('max_mem', d=ds,\n", - " edge_idx=edge_indices, n=[N], p=[p], seed=[SEED])\n", - " if np.max(maxmems)>1e10:\n", - " print('memory estimations:', maxmems)\n", - " raise Exception('Will get too large tetsors!!')\n", + " edges_to_try = 20\n", + " estimators, maxmems = ex.map_variables(\n", + " ('step_flops', 'max_mem'),\n", + " d=ds,\n", + " edge_idx=range(edges_to_try), n=[N], p=[p],\n", + " seed=[SEED],\n", + " )\n", + " \n", + " \n", + " selector = ((min_memory < maxmems) & (maxmems < max_memory)).all(axis=0)\n", + " edge_indices = np.arange(edges_to_try)[selector]\n", + " print('Selected edges', edge_indices)\n", + " print('Estimated memories', maxmems.T[selector].flatten())\n", + " estimators = estimators.T[selector]\n", " \n", " times = ex.map_variable('step_sim_time', d=ds,\n", - " edge_idx=edge_indices, n=[N], p=[p], seed=[SEED])\n", + " edge_idx=edge_indices, n=[N], p=[p],\n", + " seed=[SEED],\n", + " backend=[backend]\n", + " )\n", " \n", - " est_flat = np.concatenate(estimators.flatten())\n", + " est_flat = np.concatenate(estimators.T.flatten())\n", " times_flat = np.concatenate(times.flatten())\n", " \n", " log_fit_coef, fit_coef = plot_with_filter(est_flat, times_flat)\n", - " plt.savefig(filename)\n", + " if filename:\n", + " plt.savefig(filename[0])\n", " \n", " fit, matmul = get_log_flops_vs_matmul(log_fit_coef)\n", " \n", " print('===Results===')\n", + " print(f'Total time: {times_flat.sum():.5}')\n", " print(f'Simulator fitted flops: {fit/1e9:.5} G')\n", " print(f'Matmul flops: {matmul/1e9:.5} G')\n", - " print(f'Simulator optimality: {fit/matmul}')" + " print(f'Simulator optimality: {fit/matmul}')\n", + "\n", + "cli.command()(time_vs_flops_plot)" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-09T09:47:38.722903Z", + "start_time": "2020-10-09T09:47:36.705859Z" + }, + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "569714635bec45359238e7911c84aff0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Selected edges [ 0 2 3 4 10 13 16]\n", + "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", + " 3145728 83886080 2621440 14680064 13631488 5767168]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", + " result = np.array(list(tqdm(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9911e208caf48eb8960caac14cd9f4f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Lin fit: [2.25775523e-08 2.81690669e-03]\n", + "Log fit: [ 1.26797763 -22.41530383]\n", + "===Results===\n", + "Total time: 10.178\n", + "Simulator fitted flops: 5.4305 G\n", + "Matmul flops: 26.963 G\n", + "Simulator optimality: 0.20140393024569148\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "697fd76cbe4441da95ba56f66251b03c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Selected edges [ 0 2 3 4 10 13 16]\n", + "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", + " 3145728 83886080 2621440 14680064 13631488 5767168]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", + " result = np.array(list(tqdm(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ae79e8a3852a4f68a939a62e43969290", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Lin fit: [ 2.34533017e-08 -3.54229365e-03]\n", + "Log fit: [ 1.27757884 -22.53195178]\n", + "===Results===\n", + "Total time: 9.0879\n", + "Simulator fitted flops: 6.1024 G\n", + "Matmul flops: 25.841 G\n", + "Simulator optimality: 0.23615711657511182\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABYzklEQVR4nO2dd3hUVfrHP+dOCqRDaCIlEEVFENQgrBVxVVax41oQFVBWpewq7iJYgF0bdgmgUoKi/HR3sYPLui7qWpGIdFFaKAohCek9c8/vjzszzEwmk0kyQ5Lh/TzPPHLv3HLmgud7z3nP+32V1hpBEARBqAujuRsgCIIgtGxEKARBEAS/iFAIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8IsIhSAIguAXEQpBEATBLy1eKJRSvZVSi5VSy5u7LYIgCMcizSIUSqkMpdQhpdRmr/3DlVI/KaV2KKUeANBa79Jaj2uOdgqCIAjNN6J4FRjuvkMpZQPmAb8D+gI3KaX6Hv2mCYIgCO40i1Borf8HHPbafRawwzGCqALeAq466o0TBEEQPIho7ga4cTywz217PzBYKZUMPAacrpSaprV+wtfJSqnxwHiA2NjYM08++eRQt1cQBCGs+P7773O11h2997ckofCJ1joPuCuA4xYACwDS0tJ0ZmZmqJsmCIIQViil9vja35JWPf0CdHfb7ubYFzBKqSuUUgsKCwuD2jBBEIRjmZYkFGuBE5VSvZRSUcCNwAcNuYDW+kOt9fjExMSQNFAQBOFYpLmWx74JfAOcpJTar5Qap7WuASYC/wZ+BP6htd7SwOvKiEIQBCHIqHCscCcxCkEQhIajlPpea53mvb8lTT0JgiAILZCwEgqZehIEQQg+YSUUEswWBOFYpaYGli4Fuz341w4roZARhSAIxyLffANnngm33QYffRT864eVUMiIQhCEY4nDh2H8eDj7bNixw9rXpk3w79PiM7MFQRAET7SG116DP//ZEovoaKishKlTLdEINiIUgiAIrYjNm+Huu+HLLyEuDkwTfvMbmDcP+obIbzuspp4kRiEIQrhSWmqNGE4/HTIzQSlo29YKYK9eHTqRgDATColRCIIQjrz/viUETz0FERFQUQH33AM//wyjR1uiEUrCSigEQRDCiT174Mor4eqrIS/P2te/P6xdC3PnQlLS0WmHCIUgCEILo6oKZs+2RhGrVoFhWCOJl16ylsKm1TLZCC1hJRQSoxAEobXz+edWHOKBB6zVTdXV1vTSzz/DXXeBzXb02xRWQiExCkEQWis5OXD77TB0KOzebe1LTYX//Q9efRU6dWq+toWVUAiCILQ2TBMWLICTToI33rBGDErBM8/AunVw3nnN3ULJoxAEQWg21q+3ciK+/dZa6mq3w3XXwQsvQLduzd26I8iIQhAE4ShTXAz33mv5M/3wg7Wva1crcL18ecsSCQgzoZBgtiAILRmtLSE45RR48UVrmklrmDnTyri+9NLmbqFvwkooJJgtCEJLZedOuOwyuP56KydCa7joIti6FWbMCI2ZX7AIK6EQBKHl4l12ORzLMPuishIefRT69YP//tfa1769NbL46CNrZVNLR4RCEI5RjmbHnfdWBrkZ6a57aK3JzUgn762MkN2zJfDf/8Jpp8HDD1urm0zTcnz96ScraB1q641gIUIhCMcgR7Pj1lpjlpZQuGK56565GekUrliOWVoSliOLgwfh5pvht7+1bDgABg+2Vjk99ZTl+tqakOWxgnCM4d5xA3QYO8nVcSeOGInWGhXEV12lFB3GTgKgcMVy130TR4ykw9hJQb1Xc2O3WzYbDz5oub0CxMdbeRJHw7wvVKhwVPO0tDSdmZnZ3M0QhBaL+1u9k1B33Fprdl57gWs79Z3Pw0okMjOtnIjMTIiKsvya7roLHn8c2rVr7tYFhlLqe611LScpmXoShGMQ97d8J6EWidyMdI997lNfrZnCQpg4Ec46CzZutPb16wfffWeNLlqLSPgjrIRC8igEITCOZsftPnpJHDGS1Hc+J3HESI+YRWtEa3jzTct6Y/58a1qpTRvL/vu772DQoOZuYfAIK6GQPApBqJ+j3XErpTBi40hwm9rqMHYSCSNGYsTGtcrpp59+gosvtgLW+fmWaIwaZTm8TpjQPA6voUSC2YJwjOHsuBO9Om4gZB333HOupaDG5Dm3fU8Mu4WkCIMZQb9b6Cgvt2IOTz1lLXUFKw9i/nzL9TVcEaEQhGOQ5BvHeqxucopFKERCa01Bjcmcg8UAPJfSjvuy8plzsJjJXeKDvsoqGHi3SWvNqlWKCRMsC3CbzQpYP/YY/OlP1p/DGREKQThG8e6cQ9VZK6V4LsWK6M45WOwSjMld4nkupV2LE4lZ+wqs0Y+jbfv2aYaNr2bHqiiXIFx5peXw2qNHszb1qCFCIQhCyHGKhVMkgBYpEu6jH7MGen7YjgcehuqKSAC6dtXMm6e47LJmbuhRRoRCEISQo7Xmvqx8j333ZeW3OLFwCtqv6yKYc2sb2KHApjFs8OCDmmnTFG3bNncrjz4iFIIghBSnSDhjEu4xCmhZI4vDh2HaNMU/FiRAhGP11+kV/LisDX36tIw2NgctXiiUUrHAfKAK+ExrvayZmyQIQgNQSpEUYXjEJJwxi6QIo0WIhNawdCncfz/k5TkEIsGOui8fLizjpch4ntMtR9CONs2SR6GUylBKHVJKbfbaP1wp9ZNSaodS6gHH7muB5VrrO4Erj3pjBUFoMjO6J3mMHJxiMaN7UvM2DNiyxVraevvtUFCg0QA3FHPPZ0XYp3fgj8fFM+dgMfd8/GWrTQ5sKs01ongVmAssde5QStmAecDFwH5grVLqA6AbsMlxmP3oNlMQhGBxtFZZBUppKfztb/Dss0f2DRoEfW78GqU2M+O7Sug3iWmr36CgLJr4ninN1tbmplmEQmv9P6VUitfus4AdWutdAEqpt4CrsESjG7CeMMskFwShefjgA8ufad8+y3qjXTt4+mm4/XaFUmeTk/E9RSuWU+QwTZw9YiQdr7ik2cWtuWhJHe/xwD637f2Ofe8A1ymlXgI+rOtkpdR4pVSmUiozJycntC0VhDDgWKw4t3cvXH01XHUVHDhg7Rs/HrZvh7FjwTCskU5HL8PEjmFmh95QWpJQ+ERrXaq1HqO1vttfIFtrvUBrnaa1TuvYsePRbKIgtDpm7Svgvqx8j8JF92XlM2tfQfM2LERUV1u2GyefDB86Xjf79YNvv4WXX7ZKkzoJZ6fbxtKShOIXoLvbdjfHvoAR91hBqB/3pDKnWDiXqxbUmGHXIX7xBQwcCFOnQkUFxMRAerpVN2LwYM9jw9Xptqm0pOWxa4ETlVK9sATiRuDmhlxAa/0h8GFaWtqdIWifIIQFrc1So7Hk5MBf/gKvvgoRjp7u5putWMRxx/k+pzkME1sDzVLhTin1JjAU6ABkAzO01ouVUpcBLwA2IENr/Vhjri8V7gShfrTWRHy717VdM6RHWHSEpgmLF8Of/wxFRVaORJ8+1hTThRcGdg1fpoDh8Gzqo64Kd8216ummOvZ/BHzU2Osqpa4ArjjhhBMaewlBOCZoLZYaDWXDBqv86LffWoHpqCiYORPuu69hDq8tbSlvc9OSYhRNRgoXCUL9eFtq1AzpweQu8R4xi9ZGcbElBmecAWvXWvsuv9wqMPTAA+FvAx5qWlKMosnIiEIQ6qelWGoEY3pHa3jnHZg06chy1+7dYd48uOKKYLb22KZZYhShRmIUglA/zTkP713zwTnKSYowArb12LXLKju6apUz/8Fa2fTgg9bKJqHh1BWjCKupJ0EQAqe55uGbujy3shIefRT69oWPP7b2XXABbN5sVZwTkQg+MvUkCAJw9EYYTVmeu3q1Fazevt3a7tgR5syBG26wRhRCaAirEYUEswWhceS9leGRUOZMPMt7KyMk93MXCyf+RCI7G265BS66CHbutEThj3+0BOPGG2uLxLFoTxJKwkooBEFoOFprzNISj+xjZ3ayWVoSkk62ruW53vey22H+fDjxRPi//7P2paXBunVWzWpf74THmj3J0UCmngThGMc9+7hwxXIKHY6p7tnJwSTQinfff28Z9q1bZ40YEhIsS/AxY6zgdV3XdsY/nNdyv9exkjgXbGTVkyAIAJimya7rhrq2e7/9GUZdPbIbjYltTP3XpxTaNfMvG4phGJimyT0ffUaiTTH97At58EF46SVnuyxn19mzoUOH+n+HuxA5CTd7klAhq54EQaiTmXvzueejz3C+Nmrgno8+Y+befH+nNWqaR2vN/b9uYsrimeQtmYvWmrwlc7lv0Ux6v1vJiSdq5s2zBKJvX/j6a8uSIxCRgIbHP4T6CaupJ0EQGo5pmhzc+AMLk1Nh3EzmXzaUez76jIXJqdy58QfMbkN9jiy01hzcuokFCT0Az2me8UV70d3O9dk5+5rq2l3Sjb/uX8aX73dHKWuJ62OPWcWFIhrYS4WrPUlzElZCITEKQWg4hmHwaEkWAAuTU1m4Zh8kp3Jn3k4eLcnyO/00a/8PVJRtZU7acNdUz62Zq5gVUwmcW+d5TrHIfv8DXv75Fl75+RZMZQPg+uvh+eeha9eG/5ZA4x9Cw5AYhSAIgDWyiFxzpMhk9eDu9cYotNbkZKRzXN+rXPsObH2/3opwWmv+cd8HTHnlLH4ptzy/e3YoYOH/JXLxxU3ryIOR9X2s0qLcYwVBaFlorZmyp8Bj35Q9BQG9gT8x7BZwCxw/MewWnvNz/P79mruv2sGKdVehlCYyUnP/5d8wyv4wnfZehdZNW2k1o3uSR0DdGbOQkUTjkWC2IBzjNNZN1v28WzNXse2p0dyauarO82pqrNyHPn0UK3+wpoeHD4efflI89s5v6HTVVUErDiQ24cFFRhSCcIzTFDfZyE1ruXVPFrNjKun4zufMzkiHzFVE9kyBlEtcx61ZA3fcYfkxAXTtqpg/X3PVVc5rq5DkbAjBQYRCEIRGTdcopZha9gv2mEpXTKLj2EnMzkjHVvYLSikOH7bqQSxaZJ1js1mV5x56CGJj5a2/tRBWwWy3VU93bne6hgmCEFJ8JdyB4vXX4U9/gnzHStXzzoNXXoFTTmmeNokQ1c8xkXAnpoCCcPTx7oB//FFx7rlw222WSLRvD8uWweefHx2RONoGh8cCYSUUgiCEjvocWcvKrGmm006Db76x/JkmTLAKDN18M0DoHV2bw+DwWEBiFIIg1EveWxmYpSWugLOzAzZi40i+cSwffmjVifj1V+v400+34hJnnGFtH63chqNtcHisICMKQRD84u8tfe9eGDFCc+WVlkjExcHLL8PatUdEoqkV7RqKu1g4EZFoGjKiEATBL77e0qtNG29GPs5Tj5xDVZXVAd92Gzz9tFV1zvv8xla0awxOIXMnNyNdxKIJyIhCEIR6cReLzLz+XL76Nf729rlUVir69IEvvoBXX60tEu7nHw1HV/fRTuKIkaS+8zmJI0Z6jIaEhhNWIwoxBRSE0KC15qcXFzLt+2m8t+93gCY6oprHnoxg8mRFZGT95x8NR1elFEZsnEdMwilwwcr6PhYJqzwKJ2IKKAjBw27XzBm7mof/bwilNTGA4rLTd/BAp6mcfP0F9U7p+HN0DeX0k+RRNBwxBRQEocFs3Ahjxyq+//4iALp31yxcCJdckkpuxgUBvaU3xSKksYjXU3ARoRAEoRbFxfDIIzBnjlVpLiICHnxQ88ADijZtoKHeTBO/egd7aQm4rUaatvoNbLFxcOPY0PwIIWhIMFsQWjn1JcI17Frw9tuQmmo5vZomXHQRbNsGM2c6RcIiUJFwLq8t8lpeWyRJcK0GGVEIQivANE2PIkLO7WAmsu3eDePHwyefWNudOlk5EVdfbWVZNxZJgmv9yIhCEFo4F24+yKBNBzFNE7BEYtCmg1y4+UBQEtkqK+HRR+GkkyyRMAyYMgV27oRrrmmaSDiRJLjWjQiFILRgTNOkyG6yvqzaJRaDNh1kfVk1RXbNMz0SXUWGIr7d2+CVRJ9+CiefDA8/DNXVMHiwFcB+5hkryzpY1JUEJ9NOrQMRCkFowRiGwdr+XRgYE8n6smoi1+xjfVk1A2MiWdu/CzabrVGJbNnZcMMNMGwYZGVBYiIsXWqZ+Z16anB/gyTBtX5avFAopXorpRYrpZY3d1sEoTlwioU7a/t3wTCMOhPZ6up87XaYNw9694Z//MPa94c/WGIxenRwppm8qSsJLnHESEmCayWENJitlMoARgCHtNb93PYPB14EbMAirfWTdV1Da70LGCdCIRyrOKeb3Bm06SDf9evM/XsLfSayQe2Rxbp1cPvtsGmTtX3qqZbtRlqt9Krgk3zj2FoV9CRG0XoI9YjiVWC4+w6llA2YB/wO6AvcpJTqq5Tqr5Ra4fXpFOL2CUKLxj0mMTAmkurB3V3TUGdtzibBoFYi2+Qu8R6JbIWFcM89liBs2gQxMTB/PmzYcHREwokkwbVeQjqi0Fr/TymV4rX7LGCHY6SAUuot4Cqt9RNYow9BaDE0txWEYRgk2AxXTMI5DTVo00ESbAazeravs9a11vD3v1si4SxHeuONVn5E585H7ScIYUBz5FEcD+xz294PDK7rYKVUMvAYcLpSappDUHwdNx4YD9CjR4/gtVZoNM3dyTaV+or1HC0+7dfFI4/CKRbObV9v6tu3w5gx8NVX1r7evWHJEjj//KPWbCGMaPHBbK11ntb6Lq11al0i4ThugdY6TWud1rEur2PhqNFcdYuDlaUcSEnNYGZE14d7sp2vbScVFfDgg1Zt6q++gqgoePJJK7NaREJoLM0xovgF6O623c2xr8mIzXjLwL2TBSuxyn15ZKhGFsEcAdSXTXz470taxGjDnY8/hrFj4RfH/02XXWZlVnfv7v88QaiP5hhRrAVOVEr1UkpFATcCHwTjwlrrD7XW4xMTE4NxOaGRuC9/LFyxnB3XXuASCe/s3GARyAigodSVTQwE/V5N4ddf4cor4dJLLZHo0gU++ghWrhSREIJDg0YUSqkYrXVZA45/ExgKdFBK7QdmaK0XK6UmAv/GWh6bobXe0pB2+LmfjChaCM5O9tF8O0XRMUxfvczVyTbWi8gb7yBu8piJQPD8hPyV1GwJ3kU1NZa76/Tplg2HzQYPPGBNPbVte1SaIBwjBDSiUEqdrZTaCmxzbA9QSs2v7zyt9U1a6+O01pFa625a68WO/R9prfs44g6PNekXeN5PRhQtBK01ORnpFEXHsDRtOI8PG0VORnqjvIh84SsGkrdkLirG03cieczEJolEXdnEQLN6F61ZA337Wp5MlZVw3nlWHOLRR0UkhOAT6NTT88ClQB6A1noD0OJCY0qpK5RSCwoLC5u7Kcc07jbSs2MqmdwlnqVpwzmu71VBqWpW1zTTo/l2HqiKxSk/Grjno8+YuTff3+V84jeb2CFGzeFdlJ9vJc0NGQLbt0P79vDPf8Lnn4MMpIVQEVApVKXUGq31YKXUD1rr0x37NmitB4S8hY1ASqE2P+6BZYCIb/e6vqsZ0qPJb97ub/xgicLsqyewpM8Q7szbyfzLhnLPR5+xMDnVtV3XSqH67uPe1tw3F2MvLcFAUbByOUmXj8REU/XzViq2/0hSiKaftIbXXoPJk62iQkrBpEnWCCI+Pqi3Eo5hmloKdZ9S6mxAK6UigT8CPwazgUJ44bRsAHx6ETW1TrLzDd8pFAp45OcvAFjYZwgL1+yD5FTG/PwtD27/EmPEsEbfx4nWmqdiupGTm0W72FjKxs1kxoGNTK9oS4dzrqX4/EgSbYrZQRaJH3+EW28F57vPwIGWgV///kG9jSDUSaCvWHcBE7CS5X4BBjq2WxQy9dTycMYkJneJp2ZID5cltj/jukBwxkA89pWXMfW9eR77pr43jza9TgzKlFDe35dQZItkadpwPm7fnYXJqVzc8XSWpg1ndUp/FianUnXygKBNP5WVWTGIfv0skYiLg4wMy7NJREI4mgQ09dTakKmnlkMwK7A50Voz9cOPydmTxeyYSjqMmUjukrlMLYtmY69+rE/u5jq2KdNO3vfMzUinYMVynh03k4XJqbWOmdQ5jud7tQ/KtNOKFVZORE6OtX3rrfD881ZMorlo7Zn2Qv00aepJKdULmASkuJ+jtb4yWA0UwpMZ3ZPq9CJqCsWO1VTRRXv565K5PH7hKJZmlwAwOnMVD65exuPDRrEwbTht9xQEbapLa5iyeCYL//K6j4Pgr/sLm7Tsd+9eGDfuSDnSE0+EN96AQYOat5MOheALrYdAYxTvAYuBDwEzZK0RwgpnZ+bs0Ly3G4tSivmXnEt01mHS6cHCvj0gu4SzYiPp+8MXPLB6GQqYvnoZ0b1OJPH405u0wsp57qx9BfzapR+Vw6J9Hpt+sISzYqN4pFtig+9XXQ1PPw0zZ1p/jo62rDcmTYKCf2aQu6n5ssC11q6Sq4CHnfnkLvEysjgGCFQoKrTWc0LakiAgCXcth1Ab6imleD6lPekHS1z7ls64EYDoXifQ7ZlF5C2Zy5TFM0kaMRLdiJVI7m/RAPk1dhYnp0JyKkmlRRTEJtQ6p9I0G9xxfvUVjBoFe/ZY21dfDS+9ZGVYN5cdijvOUSDAnIPFLsFo6jJnofUQ6MTti0qpGUqp3yilznB+QtqyRiAJdy2DUNhp+LqH92qqx4eNAqDbM4swDIMOYyeR1Mgqau5v0c7Ae8XWja7vfYnEqeUF/PbAzwHHQ/LyLNvvc8+1RKJbN1i9Gt591xIJqG2HstPLDuVoddLuYuFEROLYIdARRX9gNDCMI1NP2rEtCB7UZ6jXVJwi4Zz6mLb6DaaWRbM0zaqRNXvJXDq6Jck1pjPz+RadnModeTtZ5COQDXDGlm+5P6YSrYf6vadpwqJFcO+91sqmiAiYMQP+8hfL7dVXW9yXAsPRzQIH38IcjGXOQusg0BHF9UBvrfUFWusLHR8RCaFO/BnqNdVuXClFUoThEgn3DPCOPVMochvJNDWA7f0W3bZv3TmmrzusSvyxaZOVB/GHP1gicdFFsHMnPPSQb5GAuj2njtaKRW9hDuYyZ6F1EOiIYjOQBBwKXVOajsQoWg5aa3IWe4a1chbPQaEoXNn0+XXnaqrDbjYbzwGkXEJuzk+Nmm7y9Ru836LTs0uY2CmW70qr+a60CrBWWYElFGuKq3xeq6TEGjG8/LKVZd2hg1VIaEQ9NR29PafcYxRwdEYW7sLsXnIV8Ci5KoQvgVp4fAachmURXunc31KXx0oeRfPi3rklXH6dSxycJF4+kg7j6u/gAl23H4r1/d5v0c+ltOOczQdZU1LF5C7xJBhwYNN6qnZvJ7GyjIlfvcsz42Zy3GmnM7NHO7frWDGHO+6wfJoMw5py+tvfAjfvaymV9iSPIvypK48iUKG4wNd+rfXnQWhb0BGhaH68vZ52Xnvkn1DqO5/X28E0tnMMZmdWV+5Aok0x4T+vU+B4y+/oeMsvWLHcw+tp924YPfpIOdK0NFi2DPr0aXhbpJMWjgZNSrhrqYIgtFzcvZ7qqulQV0fX0CWhzm1nx/5szyQMw2hyUpi/ZMG82DgPUXAKohEbR3W14q9/hdmzrZoR8fHWlNNNN1lmfo3B+1mJSAhHE79CoZT6Umt9rlKqGHAfeihAa61rrxEUBDcaM79e36op93OcI4/kMRNdy1nLt6zn0ZIsHht8dZOTwurqoJ1C6C4iHcZO4tNPFbekwIED1vF33AHPPgsJTfw/RUYUQnPiVyi01uc6/tsqjIwlmN2yqKumA1BvsDmQJaGmaXqMPJ65fQLlW9azMDnV8mIKQu2L+n6fk+xsuOMOxYoV1vYpp8Cbb8KAIBjxt5QYhXDsEmiFu1rGNr72NTeScNfySL5xrEcH7xSA+jq4+paE5r2VQd6SuSSPmehKRts98kKmLJ7pcU6o1/mbJrzwAvTsaRn5tW0L8+fD5s3BEYlAkhe944yyXFUINoEujz3VfUMpFQGcGfzmCOFIQ+fX61sSmjxmosdIInnMRApXLEdDrTyGUCaFrVsHN9wAO3ZY29dfb1lvJCcH7x71TcMd/vsSGW0IIcfviEIpNc0RnzhNKVXk+BQD2cD7R6WFwjFHXVNWiQ47Dqc9h8vW4rqhLpFYmjacO/J2Uj24e8iSwoqK4Lbb4MwzNTt2QI8e8PXX8Pe/66CKhBN/yYuhtkoRBAh8eewTWutpR6E9QUGWx4YH9QVwTdPk3udepCg6humrl7Hsxfc5sPEHKndvp1PPFJ4ccTFT9hQEzQpba8vy+557oKREY0TCY3+F++9X2Gyhs932LvsKnnYodX0nwW6hodS1PDagGIXWeppS6nil1NlKqfOdn+A3UxCO4G/KSmtNzpK5FDnqUjw+bBR3/+d12vQ9jdfThlMcHeNazhqMjnvHDisP4tZbrSzrHudVo9/+hewb8l0iMedgMQU1ZlDjBt7TcKnvfO4aSTljOL5GGyISQjAJtHDRk8CNwFbA7titgf+FqF2CUCeuCndl0TwZU0lC51jmpg1nKUB2KRM7x/LCkHOD0llWVMD06fDii1bgulMna1Rxet4bPKRSmHMw1WW7fWfeTh7ck8VfI64NWpGf+laOQcPzVAShoQRqCngNcJLW+jKt9RWOT4uz71BSM7tZ8X5rNh21Gdy/D9a8ubPC3dWDrq898kDx1/1H/g009p7/+pdl/f3881ai3NSpsG8f/Pa3mvJ1a2qtsJqyeCZl69bUsid3H2005pnUtXKs/Q1j/I42JEYhBItAVz3tAiJx83lqiWitPwQ+TEtLu7O523Ks4b3Wf+befPZ//gmPbPqE7rNfBqwVSJGb1jK17JcmrchRzgp3uw+Tnl3iMudzkp5dwqQucR6Z4Q1ZBfTrr5b1xurV1vaQIVZORErKEdGJ6tOXR7p7lmR5fNgonmxbwbM9k4DaRX4SbYpzt2RzVmwUz/eyil/fl5XPt8WVDG/X1u9oo65puMbmqQhCQwhUKMqA9Uqp/+JpCjg5JK0SWhXelhvJYyZyYOMPLDnhLOwFh5m9OJ0nLrqFOQeLuXVPFvaYyqBZgKdnl/j8vnzLBnTPoeQtmRtwNTi73So/OmuWVY40MdGqGzFypPW9u0XIkxeNZunBYk7JzmLYjnWuEU5Sl3iec7TNKRIAz/ZMYsqeAtaUVLGmpMr1G5zHDI6LatQzqStDXERCCCaBCsUHjo8g1MLXWv/7AcbNZJEzdnCwmFszV/FkTKWrqFB9+Fv1pLVmyp4Cn+fdkbeTNts2sMsxNRTIKqBvv4Xf/96aWlIK7rrLst6IiTlyb/e60QkG9CsvYHPnFAbt28Y0t/rcQC178il7CjxGGu4CN6lzHM/3at/ozl18oIRQE9Dy2NaGLI9tHrTWHi6xb7z4Pn/7pci1/eNTo3npufdItCkPK25f1OXcmhRh8Ei3RNe8/6TOcaDwqJ09qXMcE6Zcg7O79OdWW1Bg+TG9/ba13a8f/OMflgWHr9/nvK+TWzNXMX31Msv8DMtC3Tl6ctqHeFTj+/Zdjkv5rcd1D2x9H5skyAktgCYtj1VK7VZK7fL+BL+ZQmvF23LDBN7ZsdfjmGtv+xtzDhZzYOMP5L5Zd4U7X/Wq3QPCYBXMmdTZmodPP1jC5C7xTOocx1mxUaRnl/D4sFEuF8vcjHRM0/S4h2lqXnkFuna1RCImBhYvhg0btIdIuL9IOae73HmybQUnvPO5o+4GVP68hUSbqlXkZ3KXeKK2bWBaVVyt3/uXsmjskiAntGACnXpyV5g2WKVR2we/OUJrxH2tf9SJp2BWVzGr9xC2tE3ilOwsfuycAsCPnVM4JTuLKa/NpDQlFdB0uGlcreu5d8jeAWFn5+u0AP/r/kLXfq01uUvmMrUsmo49Uzjhnc/JzUjn0Xw7lR99xvzLhmIYBlu3as67ys7hHdY//5tusqw3av6VQd6Suu0wfFW8e/Ki0TwHdBxnhetscfHM7NEO0zQ94gZPd09gwhbNq32GAFZVPAUsTRvO62nDSewcywvB/WsRhKARaD2KPK9dLyilvgceCX6ThNaGa63/5SPRaIpWvk3SqUO5NXMV01Yv45S/HPGPHLZjHRFJ7ajO2onud3qdAVzlIyDs7dnkLhhKKZRS2GLjmE0JHa+4BKUUyWMmUvnRZyxMTiViWwFVL7Rj4SJAR5DQ3c7qdw3OPNMhCn5qYJimyZQ9BT6nlJxt6zhusqsuxuGqGl7onewSnCl7Cvg55RTOyD7IqVu/48HVy1y/Y9sFV9A+MkJiC0KLJdCEO/d1gAbWCCPQ0YhQD+FQa8C9UJFSigkrFmMCT3iZ9BVHx1BTkE+7egLMvt7e6zL4c9/2XgVkGAbzLxvKvpdLmTc1FkoURJqc/5cyVs+KwWbzXC0EddfACKRutNaa99dtZEOnngC80DuZP+3KY+6hUgYc2sN3l5/N7rl/dMVPpq9eRqIjwC8ILZVAvZ4+ddusAbKAp7XWP4eoXd73vxq4HEgAFmutP/Z3fGsKZnuXDIUj6/7b3zCm1QkGWIl2O68b6jLpOyU7i3dee5gn3LavO70/s3r6nr30Va/ae9vfczFNE8Owwm9798Lvf69Zs8Zx/JBy1CO52Id383kN74C8dyC8PlGvqalh/OI3eO20C2td+7aNn/LQ1k8x9+527YvqdQJVu3eIP5PQImiq19OFbp+LgbuAQQHeOEMpdUgptdlr/3Cl1E9KqR1KqQfquf97Wus7Hfe9IZD7tgbc8w+mfvgx92Xlk+OY7rCXlnBfVj6z9hUc1fb4+28gmKbJ/vvvQAHxlWWuGMUTw0ZZ01CO7V8++w92u93nNep6e5/cJd7j7d0XF24+yKBNB6msNJk+HXr3tkTCSK6BeQcxnjuESjJ9OsrWVwPD2TbvtroTERHBgnG3cNvGTz3237bxUx5T+Zh7dxPV6wR6v/0ZiSNGUrV7B1G9TkDFxIpICC2W+kqhJgATgOOxbMU/cWxPATYCy+o+28WrwFywltM7rmsD5gEXA/uBtUqpDwAb8ITX+WO11occf37IcV5Y4Jzu0EDOniyWdjyZgrJoZo8YyRPDbmlyGc+G4BzZqJhYdFkpyWMmkrdkLkZMHGZZSUCZzaZpkrdkLpWOzu/5eyezb9o9zOp+BkvThrM0bTgAY37+lqnvzeNwTXadb9H+6lX7u3+R3WTdFwZxwzQ1h7FehW4rQI8r5I/d4ng+pXOt2IJ74LpgxXJXLWznNjTMaM9msxH/2xFwqNS1L/63I4hc+wGJI0aSPGaiyyodwIiJI/kmWRortFzqizO8DuQD3wB3Ag9i1cu+Rmu9PpAbaK3/p5RK8dp9FrBDa70LQCn1FnCV1voJYIT3NZT1f+iTwL+01usCuW9rQSlFx7GTmO6Y7ljqlqAWyjKecGTaxH1kE5mSSnXWTsq3rKdq9w7Xdn2Zzc68h8iu/fl04nmcndIdtbeApIlPoj7/xOPYV24ZSV5NdkDlUP1te5Ofb7DzzjhYm0ANwGkV8NdcIjtW09FexfMpPeqMLSileKZrfwrH9WP+ZUNdgfCHO/cj0aaYHeDfgdbaFZNwZ+6hUhh0Jc/3au+aFpMsaqG1UN/UU2+t9e1a61eAm4C+wKWBioQfjgf2uW3vd+yri0nAb4GRSqm7fB2glBqvlMpUSmXm5OQ0sXlHD+ebrMIKbLoTKpHQWpP3VoZHfkHymIkYjtVIAFW7rbJt1Vk7iT7xlHoDz868h0+6nsS6mPbMPVRK+sES3s8r5bUTzvI4/v69hTx+4SjmnnOt63zv6zUE04TnnoOuXTWFaxMg3g6zD2G8nI3RyY5dGdRoXL/VKRbu3kpaa6pOHsDC5FSm7ClwrVRamJxK1ckDAm6T3W7ni03WLOttGz+lctDxrmmoLzZtrpXPISIhtAbqG1FUO/+gtbYrpfZrrStC3KZaaK3nAHPqOWYBsACsYPbRaFdTcc8/SHBMN+G2HDQUZTzz3srALClxLWMt37yeNn0HUPHzFsyCfJ/ntOlzqqu9/payAh7LWQE2VnjGIQbERLqOmdQ5jpl78ym060Zbcq9bB9ddB1lZlvXGaaPL2DQuBxXledzvu7Zzvck72+zvN/jK3fD1DLy3IyIiOP/X7QzMzmLBuFtcMQsWv0GCvZqIiKH1/iZBaGnUN6IYoDxLoDpLohYrpYrqOdcfvwDd3ba7OfY1CdXKbMad+QcJXjGJA1vfZ3zR3qCX8XRNMa1cTvlPWzDiE6nK2kHRR29TtWMbREb6Pg/tErW8t3xnVPvKWvbFhjLr3eOs2CieS2lH9o+bfWZgH9y6ye/vLimBUaPgzDMtkTjtNPjpJ03OpLxaIgHwdn5lvc/R129wFwnnKMw9yO/rmbxwz50ukYAjAe4X7hFTY6F14ndEobW2hei+a4ETlVK9sATiRuDmpl60NdqMO9f9J7llGDN2EvOBNo4362CNKFzBc22NJmpRXQ2RUVB9xLZbxSdQtPJtKrZucC3j9DWy8JX34I+v+3cBYNb+H6go28qctOGut/hbM1cxK6YSOLfWeVrD0qUwYQKUlkJsrJVVfcstAAr1ZRlEtKn92yvK6n2O/nI3AA+HXO+EPF8jC3e8twWhNRFo4aJGo5R6EysYfpJSar9SapzWugaYCPwb+BH4h9Z6SxDu1apGFE6cGcbP9kxyZRgrpXi2Z1LQ6y8f/vuSOr/TQGSPXh7butgaOPpb66+15t6sw8w5WMyAGN+jEm/u3X0YgI5jJ/FkjGeZk7ocZnfuhAED4PbbLZG45RbIzrZqRyhlxQeSin2LVVJxPna7vdaSXOe2d+5GzZAeTO4S7xrtgCUOzsJAO6+9wCUSEpAWwh1xj20BaK05/PcldSbeBcNV1Pn3nLN4js/RRPo511AUHcP01ctIuOxaOo6bzN0ffUabbRuY9NW7QN0urPsfmsSzKWnoi0aQZDNYVVBO0f69/NTuOAbFRLK3qobsGuv+kzpbpnjp2SWcFRvFJYnRrCioYH2ZKxzGwJhIrmjX1uUwW1UFU6bA/PlW4Do11TLyGzCg9m88/j8byI6vPQXWuTifGw/8SBEGr9wyEpvNht1u5w9vLCcRk2dvu8mvY61TsOtLyBOE1kyTEu6E0JH3VgY5i+dglljTGrmL08lZPIf9U++icMVyzCC4irrPrStqd2oaKHIU3nl82CiUMrhvTz6LklMpio7xcGH1botpmjyXkkZBeQV/Sv8zj3RL5K1XHyK6vJQBefv58tRORDg60gExkSRFGDibsL+qhg/zy1lfVm0l4j01mlOys1hfVs2H+eWYpsnKldClC8yda4VQXnwRtm+vLRLOtnQvPES7Us/wWbvSIroXZlNQUcmSPkP4wxvLXSKxpM8QCiqrsNvtzOie5BGT8F4dFUhCniCEI2E1caqUugK44oQTTmjupgSEM7hctPJtEi6/jsTLR1K4crnr+8TLmz6t4V19zoiNc+VGOEm47FpmbbfSU47kcZRYhYbaVtDJ4cJa6CP5TCmFedEIljrqQUx3WHds7HoCkzrHYRgG17aPIT27hA1l1a5gNsB17WOI3JxJldnGcpZ1mAeekp3F4EKTCyYex5dfWseOGAGvvw5JSf5/b3n7zuTHJLhsQ6697W/82DmFcmXn0YIfqc5cxZK04Sz5bj/0GcLNmat4vE2FR26DO+6rndxjEu4xCu9nIgjhRlgJRWsLZnsb0XmTPHZiyO/hPKbbky8xe8ncI+nzwOyYSjqOnexxDe8kOaUUz6e0Bw3pbtnX7lXbnPWhfVV1O/zdL9xfWkJXhxW5NmF4RjQvrDwLu6k47jj45z/hnHPq/62GYTC85CBmcUEt4RmuKjjlxOFUG56D6LcHXMgHpklhPZ28c4Wa1KcWjkVk6qmZce9wvNk/5Q72/eUPdS5Jbew9nJXYnH5DhSvfJnfJXB73cnp9fNgoD0fY5DETfcZLZu0roPgLz+zr4i8+8fSp8u5HHdvtbxjDk8NuAcDcGIW++nie/XAIylDMmGGVJg1EJJxt/HPJPt75v7957H/n//7GH4v2UG3YqIyM9viuMjLa2l/pGVD3RfKNY2uNpjqMnSSV6YSwJ6yEojWuetJac2jRix77Inr2JirlBKqydlC1Yxs1xUU+58EDzWjWWpPjmFtPP+caHh82Crsj8pA8ZiLPjJvJ5alDST9YwsCYSKrO6sbguCjSD5YwaNNBZu7Nd2Uqe5sU2u129n36sasgj5NX+wxh36cfU1NTw9mbDnqUKgWrdOnZmw5y7+7DvLCjhJ4PHQd3dYHcCBhQwZivC5gxQ2OzBf477XY7Rf9+nyfOu95j/xPnXU/Zfz7g+l3f+zzv+t3rAl6+2lBbEUEIB8JKKLTWH2qtxycmJobq+n63G3O93Ix0ij96h6gTTyEqxYqt1OzZRVWWZaERdeIpdLrjj7U6pECTv7TWTP3wY6aWRRM/YiTfXXIjS9OGM6DnUAZ9uoF7dx9mUXIqB2KT6GBTrC+rZtDmbAY5lrmuL6vmg/xyzt50wFWK1P13G4aBqiNRT0VGopRiT2UNAAPaRlA9uDsD2lqdclZFDT8ta4NtRHd2r46ifXvFypWaP71bxvFdrCXCs/YVeCQdOlci+XLVVUrx2JCrWZo2nDtyd1A9uDt35O6wgvRDriGptJCbM1d5nHNz5iralRR4ZG0LguBJWMUoQkkgSycbive8t9aaXdcN9Tim++yXa9lHeAeo60v+KnasaErsHMdg4LvSKnLjksgF1jvM6zpG2thYXkME1Ao6O//sy6RQKUX384YxqdpeKwbRrtswbDYb4zvH8f7hMjaU1xC5xrL4OvHXaHLu78iqLBuGofnjH+HppyEyUvE7feQZOz2kgFp1Kdyfh1IKwzDo2Ks343J38NLlF2IYBi9dfiGs/JSkXr35U/5Oenc73+P5Lh9wIbv2/09GBoLgh7DKo3Bb9XTn9u3bg3bdphbSCeT6ADmL5lD0kWeOQ9zvrnGNKLzrN7uvugFqJX+5d6T3Zh2uNf3TUGqG9Kiz2M+9uw/7DFY7RwV5ldXMyylDV4KenQyrYgHFgAHw7ruaXr18+ye5P3sn7s/cl4Dfu/sw7SJtLgE3TZPq6mri1/6C3WYjqrqKgsE9SFqzl6rIKGx2O8WDjic62jN+IQjHGsdEHkWopp6c6+mdmboR3+4Niki4i/S+qXe5RCKiZ28ie6YCUPKvd9k15iqPvArTNFFK0f72CR7XcxeJvDePTE0d/vsSpv33jYDaNNBPZnVdxX7uy8onPbvEI6M5PdsqvGSaJouyi5mXU4b5nxj0Zd1hVRy01bT7Wx6fPJBB3Oq6p9D8+S+5jzjcvaLSs0s8psgMwyAqKgrDsX1n1ySioqK4s2uS9b3WREX5MIgSBAGQqaeAcXZY7m+2TREJ9xKoeW9lUJ39q+u76j27MOISXNu6qJDKokKM+ETa3XYPeUvmotrGUvTv9zyumbs4nQ7jrCms0rVfWlbhGkw0D5TX9j/yxfqyagbERHpMPQ2IieT8+OhaxX6g7mp0YNV70FqTt19hTu0CP0cDGi4tQT2QR1UbqNlSQomfKTTAb+3sQBxfne0sP7c3f9yZy7ycMubl7AVgQscYXkztIFNPguAHEYoA8WcY19BOxiPGoMHUJrrIWqnlbqWhsJayPj5sFAmVZUz66l32jrsGs6gQoqKgqgojPpHYcy+i+F/vuJL1NNpVYrNg5XJX7erRmavY0PUENnatOyGxjbJiEmfFRjE4Lor/FVeyoaya8+Oj6yxFWlc1OtNU3H+/pnzO8WAq6FYNTx7C6G0Ftw17DZ3GTMSmrRwP5zSaM9HQ+Yx9TfmBJViH/76EaaUlzOl7las901a/wWEv6xNn+15M7eASCUBEQhACIKyEIlSZ2f5iFNDwkUVdSXAmR6w0AB5YvYwnHZ38rZmrMAEcgkJVFUZCIj0z3rNWHhmKopVvu8TCWXJz13VDSags49bMVUxfvYy551zDab/u4OPBv+OQ3XpjH9A2gigFa8tqqNDWCOKrfp1d0ztT9hSQFGHwSLdEj+Cx+/Px/v2ffKK4+WbIzVWoSBP9x3zUyGLcD+tZWULe31/FxHM6y8SaLku+cSxR2zZwp13z7OChLqPE8i3riSpQkDIUe2kJU8s8YwtTy6KZTYmrXc7RW/KYiUzZU+BxbChqfghCuBFWQhGqzOz6plca08k4E9icQuEcSUxzVLlzrzF9R+4OpqxexhNuIwuAnhnvYbNZTvAdx032MPtLHjORvIy5AEz66l00Vo6b88+de6bw5nF96RhlY22/zhiGwZ925fHPw+Uk2pSHpYV3TQbnlJlTNNyD7IcPW4WEPvvMaseIEZr2Y7/hjS7daj2DwdVFPBVzPLm5WUx3tE8DD5S3oWPH43nSNLn/100UrFhOXrY1yshbMpcpjrrWWl/AE8NuYenBYpcQOkdPSV3ieY4jo7eCFct5uHM/FiancmfeTqYsnsmz42YyBysWJGIhCHUTVkIRSuqaXmlKINvZkXuPJKauXub6M8B9GbN4wm1k4ez09//5Tro/s8haEbU43bUfrKxuZy6Gu7dT4uUj0WjuXPIYheNmsig5lfv3Frp+S3aNyQ2x0bV+q7PNdS3LTbh8JI89ppk1S1FdDV27QsZdHzDguN2cljDM5zP4ICKJy7J387rjt7p39Ldt/tx1D/CcmkpyW93lFPB7HFN101cvI2nE9R4C7rxG9LYN3Bq9nSmrl5E0YiTzLxtKW8doSURCEOomrJbHOmnpNuPuS1sX3P4gefn5TH1/vksM6uLWzFU8lLkCXVTI3GE3UYjBzF1raNt3AIUfvc2z42aSYK9m/KuPuc6Jv+xaIuISsJcWo1AYcXG0v2GMVac7No7HBl9d59LT+truZPep9zD2tRvYv18REQGPPAIPPqjJW5JOwYrlnH/XixxKaF/rWp2KDnP9z9/ySfe+/OTwegI4KTuLS/b/yHP3jMcwDL/W3s6s8yK39iSMGFmrnoXzGk4xdV6jrvKugnAsckwsj20tOBPtok48hUIjgldP+g1PDBvFA45pJydbnhrtsT1j9xpSMt4jYcRIKvr0Y2nacB4dNAIjPp5nx81kYXIq1acN8pjx73THH0m+yfIo6jDO8iVyTnsprMCvO9NWv+EqbuRrKax7fKW8Joq71zzKJY9ZInH++XDgADz8MBiGdVzbS6+iuE0MACc7rMRPzs4CoLhNDK+ecYmHSAD81DmFjNMv9pjacse57Nf5XZFjlVTqO5+TOGIkRSuW+8xahyMjLpftuoiEINRLWE09tSab8fY3jKH0+zXcnzGLKsdIwns0MfI2T3O7FyY9zfOGQcexk3gJaJN1mHTOxGnaMblLPNNWv4GzGoPG6hDnXTyaQrt2VdBzBqgjY44nJyfL4x7OQHDum4sxy0pdb+bON3cjJhZdVsqbu6/gsU2TqTSjaRdbzv8tb8Pw4bV9kI6780/E/3cj5VFtSNu3DQWk7dvGts4pxNZUkRvpO8mtVNmorq6m8PWX/Vp71+foKvbggtB0ZOqpmdBau6rN2YG+DktsgE1Pjeb3jjoKSRWlTOjVmWKtaiX5mabpssQAOLD1fdfb9byLR3Nw4w/ct3gmzzlGG87KcYV2zZyDxQyMiWR9WXWtQPCkLnFEbcokZ0+Ww2p8EjkZ6dbqosKOfD77THaX9MQwNHdcuJ774u6l/RXX1up0tdYccvzGR4eN4g03IbwlcxWPRJTQZ8B14Kuj1prDp7aj5l9v+w2eO+/jbxVWfQF4QRAs6pp6EqFoRrTW3LtkGf9p351tbtMviaVFpOb9wvpufTANG53LirgjtSsrCytdJUJN02TQpoMeJUTHF+1l5v4f6HD7BCb863MWJqdyR95OHi3JYvgpwz2OndwlnkSboqDGZMKUa1wrjuY9+y5JEYZLTJwi8ugFt7D0vzfByjjQioEDNe+/D927HynZ2v6GMR6xg6kffkzOniymf/lPqKriZDcx3PbUaIzEdlxxxWR+8pHXcdKvO9lw5XlERkYGtBw3kGfd1GsIQrhTl1CE1dRTc9KYjmjm3nxeOukcagyDyOpKqh3TMIWxCayLPZKZXW0YFJlW1vT5CW2w2+2ctTmb9WXVDIyJ5KPM5TxQFs2CtOGsSUvlX6/O474Vy9GOVU2LklPBTSTAWg46a18B5Vs3eOwv37qBpNNOP5LxnDacV4uvgQc7QJlBXJxmwQLNz+cW8nyNyXO080iOczdJdJoRuq/GcvL4sFFMW72Ms8ry+cnHsxlcnu+y/g6GtbfYgwtC45ERRSOoNbXxZgZmWcOmNmbsOcy7O/expW1SvfeLBjpFKJKjIjxGBR0iDO7uHAfArxt/4KsaG9s6pzA6cxXRvU5kQ/eTWeslEE4mdY6jfOsGFjnyCuZfNpR7PvrMlWcw73cXsPWFJZy2aDRss6w3rh+yjdc/O5nISCvG4ZwKe7Znkse2uxfTn3bnMTe71HXfiZ1jKd+ygcUdTmBU5irePv23VNhqv6+0sddQOKRnwHUiBEFoOjKiCBLe892maR7xVaJ+y2+w3EyLTNjSNok2VZVURNXtWmpok0plkGPX7PPq9HNrTArt1uqfxcmpjM5cxaB921x5Cd6jiIExkazt38XVqXdOPJ72NZUsTE5l4Zp9kJxKck0lG2PaM/ny9bz08VjQBnSvgidziM37Hw/9ey81/QfxbM8kwL/HklKKF3olewjFC72S0SmW9XebXqlUGDafv7vCsFFWVkZCQoLP7wVBOHqIUDQAXwlneUvmunyVPPyKvCy/nTiF5pnbJ7B6zy9sjvbfEZrKIBqo8DHwGxgT6eqwK7ZuYKGPHAxnLOLD/HLWl1UzZU8Bz/ZMwjRNlucbHK42PY7P2ZhA/sOpfJNvg0iToQ+WsvqRGO7Lasucg8PpV1nEZocwPNszySMHw7mqyv151eWP9fLlF6K1Zp4jGH/TT9/w2ujrue31f/LmSb8BIDY21u+zEQTh6CBC0QC8PZrcRcHpq+TEl0h4C03mrXfTJvNX6iPBgByz9n5nxz9t9RtMWbGchW7BYvd7zujejke6Jbo8mwzD4IXeyazfdICcahM7YBYreLAjZLahBuhzUTUXv1hMel9Py5JEWwLDHIFud5EAmLKnoFZhJ3/+WIZh8Kft35CtFa+Nvh6bzcZro6+H1/9JZ6WxnZ1S77MRBCH0hJVQHI08Cm+PJoD2t08gb8lcj+NyM9JriYW70OSvWM7Q5AHglWzmi1wfIgHWiCLRZiXvPTNupsd3d+TthMhI0unh6ujdp4VM02RdWbUlEsvi4ZV2UKOgQw1tn8hh65hOGIbnNJL7slx3kage3N01nQVHfJMC8cd69rabsNvtLs8qp1g4twVBaH7CSihCZQrouLblRPpmBqVrv/T4bs/YqzGLCgNK6HIKzV/KotnWOQVbTQ32OgK2fSNhZzVUYtl/V2hcuQ/O/56f0IZHz7qKRdklDI6L4qzYKJRSzCGVyV3imaS1Ty8jwzAwf47E/EsnyI4Am4Y78lFjioi0OWph+1gp5EzWc8c5nQWeIhCoP5a3KIhICELLIqyEIlh4B6Bz31yMLiul/e0TKF37JZW7d2BLSCT+0qsoz/zatd3+9gk+s4O9r523ZC7xlXZOyc7iR7cRRYcIg9yaI8OHAgzuPy6GV3LKaKvgmuRY1wqjRJvi/IQ2JEVYLizON3d33K3B3amogJtv1pS9e5y1Y0CFVSci0QqElJq43vLdzzVNs87VTmDFKJyus05kWaogtH5EKLzIeysDe0kxHcdNdk2zlH33lcuJdd5vR5Ozbw/TVmVQ+M+laGD21RNo37EjTznehJ1i4UsknKONh0eMpN3p/floxx5qCg4zKFoxf/j5/HlfEd8UlaOUwfB2bZnRPYkZ3ZOw2WwuAXOPA7gnuLnfry5jvyVLYMIEKC83IMEOs3IxBld4tdPk0V+LKagxXXWvnTGHDWXVHqLUVLt1QRBaPiIUbmitKfrPCuyHcwGrxkNuRjpVWTtQ0W0oWLGcQ8OirSSyqsojthd9hjC5SzymaXrUcfDuvJ1mgM4pqllKMaN7ErlL5mLExhERMczR8bZzHQ9HpmK8bb+9r+2O9/auXTBiBPz4IxgGTJxoZ+F1O6mOrr00N7KmmgV7DpEdYZVPfb5Xe+7dfZj07BK61FTw374ncvjvS1zLhJ1iIbYYghCeiFC4obXGSEjEfjiXopVvexQCsnXpit6zi+k+CgvdmbeT6Vm7yVtdWm/SXfKNYz0ExHCY/Ll3/sG0m7Db4e67YdEi0BoGDoQPP4TOnU3+sbqUXB9CkVheSk1UFERAenYJ6dklru+qa2owTbPOuhR15Y4IgtB6EZtxNwzDoPuzi4lMSfXYb+vRi5h+pwM4rLk97cDvWzyTsrVfUehmb53j6DjN0pJadt3+3v5n7Svgvqx8D4vs+7LymbWvoMG/54MPIDkZFi6E2Fh480344Qfo5ig2Vxod4/O80ugYuhbm+vyuW1EuhmHQYewkEkeMpHDFcnZee4GHO6uIhCCEFzKi8EIpRdtTB7oqwgHo/MMUrnyb6F4n8EzX/qzuM8jjnPPvXUg3s5KPdn5G4YrlFKxYzuPDRtFxzIPMvuISn7EKXyMGrTUFNabHMlP3XIRA39QPHYIrroDvvrOMWUePhowMcF9cpbWmIjLK5/nlkVEcbOs7EfDXtgnWyMshFu7LhEUkBCE8afEjCqXUKUqpl5VSy5VSd4fyXu7W3+68eNowHh82ivLdO/j8jGH82LE7yTWV3FewiwExkeREtuGH6EQeu/BmNLjsuqv7D6p1D38jBqUUP5RU0iHCYM7BYiK+3cucg8V0iDD4oaSy3k5Ya5g2zSpD+t13cOKJsHUrLF3qKRLO+9q07wQNZZrkxLfz+V1OXDvsdrvfgkKCIIQXIRUKpVSGUuqQUmqz1/7hSqmflFI7lFIP+LuG1vpHrfVdwO+Bc0LZXq01JV+tRmPVme799mcYPXu76lk/OWwUV6d2p0OEQV5ENM8l9WZDWTUDYiI5KzaSudmlnPyX1121rR/wqh7nPmJwioVzxFBQY2K32yk2tccSWbA8nYpNjWnWkXkHfPEFdOkCTz5picK8efDzz3Dyyb6Pt9lsDPxlO+1Kizz2tystYsCv2/0+p5qaGo+YhLOyXKFXZTlBEMKDUI8oXgU8DIiUUjZgHvA7oC9wk1Kqr1Kqv1Jqhdenk+OcK4GVwEehbKxhGMwbeiNPXj2Bbs8s4q/7C5n921sxgQG/7rBKj/5aXKsjX9uvM+dlbfLY92RMJQ+URTP1w49dHadzaevkLvEeIwbnclObzcZ3/TrTIcLzr6VDhMF3/TrXylEAKC6GSy6B88+3ppxGjIDDh+Gee/z/VqUUb7z1OJf9+LXH/st+/Jo33nrcGp74wjH95auyXOKIkT5zRwRBaN2E3GZcKZUCrNBa93Ns/waYqbW+1LE9DUBr/UQA11qptb68vuMaazPu/obvbsMNMLFTLHMPlfo8b2KnWD7bd8DD4M+ZOT2+aC/zLzm3Vkwi4tu9ru2aIT1cMYpuX/7MQceyVHe61FSw/9w+Htd59lmYPh2qqqzppnfegcGDA/utNTU13PFSBq+nXVrru1syV7Gh64ls6ppa67v+B3by/VUXeOR1uP8uEQlBaL3UZTPeHDGK44F9btv7Hft8opQaqpSao5R6BT8jCqXUeKVUplIqMycnp1ENU0qRaFMMjIkkPbvEJRJALZEYGBNJ9eDuTOocx9xDpWyOTmBATKTre6fNxryLzwnIUVVra2qpUPleX1CoIlxTT5s2Qa9ecP/9YJowaxb88kvgIuH8rRsdleVu//kbqs7qxu0/fwPAhq4n8GtCss/zfo1Pxm63u67hfU1BEMKPFr/qSWv9GfBZAMctABaANaJo5L0otGuP4kDePNQ1nhUFFS7n1udS2rGmpAql4MtTO3vUsL6iXVuP6aL6HFWf7p5AbHQU5TW1YxGx0VFUVcGtt2qWL7c65HPPhXff1XTo0PDcC5vNxoUl2Zz+8yEW3GKZ8C245Xp445/EoZnXpbfP8w7HSH0IQTjWaA6h+AXo7rbdzbGvyTTVPVYpRYJR23PJnSITvuvXmfv3Frosu7/u38WnWZ6zqJB7Mp0/R9WIiAgqqypRyoZWRwRGaZOi96JJvMCgulzRvr1m2TLFpZdawrP+YBUDY6NqWXy7lyX1hS/n1gW3XE9NTQ1zvz9gtau0iK/nTeDsCfMoiE1AO64vCMKxQ3MIxVrgRKVULyyBuBG4ORgXbqp7rGmarCio8CkSp7WxcUFS2zoN8LxLgXrXXgjEUdVut1NjarRbMNs8YIM/H4d9VyTKAEYWccuTNVza+8g9BsZENjr3wpdzq81mo2txHmW2KL6eNwEbuMQixl5FdHRKg5+tIAitl5AKhVLqTWAo0EEptR+YobVerJSaCPwbsAEZWustoWxHoBiGwYikNuyvsnuIRbJNcWX7GGb2aIdCuUYSTgKtveB+vK9tu92OibNeBPBMe3g/DjSoE6rYvgrmGjXMOVjM3ENHyo+6u7jWVZa0IWitWbf/Kw6vWE57N+v0r+dNoP2IkWh9hsQjBOEYIuSrno4mblNPd27f7j8XwBfuMQRv3B1T6+okm7oKSGtNwte7KPk6Dv7aAUps0NaEqXnE/baIorN7o7X2iINUD+6OYRh1rqRqLN61wevyrhIEIXyoa9VTiw9mN4SmTj25r3pyD2g7K8k5j3G7X4McXOsjJwcq/9AVtjiWx15SAg/mYURCfE0NM/fm82F+ucc5aRsPcGX7GArtnoLvrE3dWLHwNi+syzpdEITwp8VbeDQEpdQVSqkFhYWFDT5Xa+2x6mlyl3hqhvRgcpd41pdV8++CiqCZ9dW+Nzz0kJULUb2lLRxfA2/8ijHTEgmAw6bi5b25bCivYUDbCKoHd2dA2wg2lNfwzL7DrpiEs83u2d+NRZa/CoIAMqIAHNMsJSV0GDfJFWuY9t83OBwXx3M3jEFrzXelVX4DxuB/tFEXX34JI0dCdjZER4OemAM3lNU6zrTZ6JK7n9zOKWwor/GYfkooL+GO3t0Cio8IgiA0lLAaUTQGrTVl69ZQsHI5uYvTeaRbItP++waFK5dTtm4NYBXuuSSxjWt1kdN6wzkl9df9hdybddhjtHFv1mG/o43iYrj0UjjvPEskLr8cDh0yGfSb74murvQ4Nrq6kjN+2U5be7VPb6YehTk82zOp1koqf0tjBUEQAiWsRhSNzaNIP+daDnXP4sGVyyhcuRwNPDZsFJ16pDDbcUz2j5tZn9DD47z1ZdUMOriT76MTWRedCMDzKe25N+sw6QdLOKOy0GfN6uees1xeq6rguOMs640hQ6CmRnNKwQHW9jjF4/jKyGhOLjjAR6lnkh/rmfCWH5vAbt/PokHPQBAEoS7CakShtf5Qaz0+MTGxQed90es0Xk8bzmPDRrlE4vW04XzR6zTXMTP3/8DJ2Vke552cncWMfes4o8Qq8pN+sISIb/eSftCqCHdGSa5HjMBpvTFlirX8deZMy3pjyBDre8Mw2Jg6wGcbN6YOoDSydjU6gJLIKEmCEwQhZISVUDSWwfFWAZ/X04Zz8l9e53VHiVPnfoBBA65hW+cUj/O2dU5h8MBr6dJ/IKeWF3h8d2p5AceddjqGYVBVBTfcAKedBllZcM45cOAAzJhhFRZyUlNTgy60fKBuzVzFtqdGc2vmKgDshflU1CEUFZHRfi3IBUEQmoJMPQHT/7uMwvJoVw1ssDrq6W0rYdwktNbk12HpkV9tUmA32dI2yWP/lrZJDKsxefVVzYQJirIyaNcOli2D3/3OdztsNhvn7d7IgF93MH31MhS4anS3qSxj83G13VydlJeXExXlu2KdIAhCUwirEUVjp54qft6C98SNdux3EusVYHYSU1PJmuKqWvvNX20suDSBMWMUFRUwYQLk5tYtEk4mff0e01cvw4hPoNfyTzHiE5i+ehl/+Opdv+dVVvpunyAIQlMJqxFFY3n8olt43StQ/XracNr06ctLWKuYjKpKiKg99aOqKskq1BBpJclpO+jn2sF78ZRrRf/+mg8+UKSk1N8Om82GrUMnzIpyUpa8j81mI2XJ+2SNuYo2dUw7OYmNjQ305wqCIDSIsBpRNBZnXQb3hDX3/YZh0MXmO1jc1aYZXfor7WsqMb9qg/5dN3g3AaI1v5uylY0bAxMJJ70W/NMlEoBLLFLmLfNbdc7b3E8QBCFYhNWIojExCqUUlya1ZXBcdJ0Ja3a7nS3RvqezNkcnkhbbjdyxMbDZ8db/2xJ4OI+TundpVNU3X46uRUVFnpFvzx9BeXk5bdrUrownCILQVMJKKBqbme3P+tuFaQfDswPXGuwvJ7BoWSKYBnSthtmHMFJr6FdeQOS2XaheFzb5dwFUVFQ06XtBEITGIlNPDvz5GmmtaVfq6R9lro9GX3E85uvtrDoRf8zjD698gf3m47gzbyeb2yZRZNdBW7ZaX4C+oQF8QRCEQAmrEUUoyXeUADVLFTzUAda0BUANLuX+RRUUZG1gyuKZ7FoMUwA9biZdHHkUwSAqKgqlNdrH9JPSWpbGCoIQMkQoAsSosWP+ox283A6qFbS3w2OHaHNKMdFxybTt65lR3bbvgIBjE4HWsehQWkBOfHuf+z2rywqCIAQPmXoKgA0bTCpuToH09mAHbi9AfbgfY0AVCk1+jZ307BIed1iAPD5sFOnZJRTUmPVaa+S9lUFuRrqHoWBuRjp5b2V4HGeaJqby/ddlKkMyswVBCBlhJRRNqUfhi/JyuPFGSEuLhANR0K8CPtiPMb7QtQApoaaSKQseZnTmKpY6LECWpg1ndOYq7n1pmt/ra60xS0soXLHcJRa5GekUrliOWVriITIRERFEaEsMxuZsp3pwd8bmWFX8IrRJRIQMDgVBCA1h1bs0tcKdO0uXwt13Q1kZJCXB6Tf8m89vO7nWcZds+44XTz4PVVrqsV8BL5x8Hs/6uYezahxA4YrlFK5YDkCio061+/STYRiMthdwOCePV0YMwzAMXhkxDFaspn2kLWixEEEQBG/Cqma2k7S0NJ2Zmdmoc3ftgquugs2brbSF8ePhxRft9PhiM7mxSbWO71BawFX2IhZ7ZXYD3Fm0l5cuObfeWIXWmp3XXuDaTn3n8zrPMU3TQxS8twVBEBpLXTWzpYdx409/ghNOsETi1FNh+3Z4+WUwDJNeeQd8Fg3qlXeAN9t29nm9ZW071xujcE43ueMes/DGWxREJARBCDXSy7jx1VfQti1kZFhikeowazUMg1MO7SE/NsHD/js/NoGTDu2hLML30tSyiCi/QWb3mETiiJGkvvM5iSNGesQsBEEQmpuwilE0lY8/tupWx8R47jcMg449UizrcS/776TuPf1es7Kyss5As1IKIzbOIybhjFkYsXFSpU4QhBaBxCgCxDRN9t43jpo9O137Inqm0uHRdBI35vr2YdKa4oGdiPFWnlqHBZZHIQiCEEqOiRhFsJfHOtFak7s43UMkAGr27OTgkrl+zy0vL6/3+v7sQwRBEJqbsBKKxhYuCuC6lHy92ud3Zd9/4/dcsf8WBKG1E1ZCESqUUiiHc2zCZdeR+s7nJFx2XUDn1tTUhLJpgiAIIUeC2QGglCLh4hHYi4vpeMdklFJ0vGMyABFt2/o9VzKmBUFo7UgvFiDJN46tVbOi4x2TycvLg59L6jxPRhSCILR2ZOqpAfgKOtdXVU6qzgmC0NoRoRAEQRD8IkLRRCIjI5v0vSAIQktHhKKJREZGYjiSFm9y2HvclLkKAENrEQpBEFo9rSKYrZSKBT4HZmqtVzR3e9wxDIN7C3dzYN9eHnHYe8xYvQwVFc1x3XtgGL2au4mCIAhNIqQjCqVUhlLqkFJqs9f+4Uqpn5RSO5RSDwRwqanAP0LTyqZhmiYTP3mDR1ZlEN3rBHq//RnRvU7gkVUZTPzkDak8JwhCqyfUU0+vAsPddyilbMA84HdAX+AmpVRfpVR/pdQKr08npdTFwFbgUIjb2igMw8CIiSW61wl0e2YRhmHQ7ZlFRPc6ASMmVmzABUFo9YR06klr/T+lVIrX7rOAHVrrXQBKqbeAq7TWTwAjvK+hlBoKxGKJSrlS6iOtdYt6Te/2aLpHASGnWIhICIIQDjRHjOJ4YJ/b9n5gcF0Ha60fBFBK3Q7k1iUSSqnxwHiAHj1qV5sLNVJQSBCEcKXV9GZa61f9BbK11gu01mla67SOHTsezaYJgiCENc0hFL8A3d22uzn2NZlQ2YwLgiAcyzSHUKwFTlRK9VJKRQE3Ah8E48KhshkXBEE4lgn18tg3gW+Ak5RS+5VS47TWNcBE4N/Aj8A/tNZbgnQ/GVEIgiAEmbAshaqUygH2eO1OBOpSkLq+87Xfe5/3dgcgN+DGNg1/vymY5wZyrDzfpp1f37Gher6+9h2tZyzPN7Q05vn21FrXDvJqrY+JD7Cgod/52u+9z8d2Zkv4TcE8N5Bj5fmG9hmH6vk25zOW59uyn6/7p9WsegoCHzbiO1/7vff5u26oacq9G3JuIMfK823a+fUdG6rnG8i9Q4U839AStPuG5dRTc6KUytRapzV3O8IVeb6hR55xaGmNz/dYGlEcLRY0dwPCHHm+oUeecWhpdc9XRhSCIAiCX2REIQiCIPhFhEIQBEHwiwiFIAiC4JdWUeGuNeOwSf8bsAV4S2v9WXO2J9xQShlYzzcBa336a83cpLBCKXUeMAqrr+irtT67mZsUViilegBzgMPAz1rrJ5u5ST6REUUjaGDlPg2UAG2wLNWFemjg870Ky1iyGnm+AdGQ56u1/kJrfRewAhARDoAG/vvtDyzXWo8FTj/qjQ2Uo5EhGG4f4HzgDGCz2z4bsBPoDUQBG7CKLRmO7zsDy5q77a3h08Dn+wDwB8cxy5u77a3h05Dn6/b9P4D45m57a/g08N9vMvApsBoY09xtr+sjI4pGoLX+H9ZQ0R1X5T6tdRXgrNznLLSUD0QfxWa2WhryfLFGEfmOY+xHr5WtlwY+X+f0SKHWuvjotrR10sDnOwaYobUeBlx+dFsaOCIUwcNX5b7jlVLXKqVeAV4H5jZLy8IDn88XeAe4VCmVDvyvORoWJtT1fAHGAUuOeovCi7qe7ypgslLqZSCrGdoVEBLMDjFa63ewOjMhBGity7A6MiFEaK1nNHcbwhWt9WZgZHO3oz5kRBE8Qla5TwDk+YYaeb6hpVU/XxGK4BGyyn0CIM831MjzDS2t+vmKUDSCo12571hDnm9okecbWsLx+YopoCAIguAXGVEIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8IsIhSAIguAXEQpBEATBLyIUwjGPUup2pVRXt+1FSqm+QbhuilLq5kac96pSqpatg2P/bqXUesdnsmN/llKqg9exUUqpFxyW1tuVUu8rpbq5fW93XGOzUuqfSqmYxvxG4dhAhEIQ4HbAJRRa6zu01luDcN0UoMFCUQ9/1loPdHzm+DnucSAeOElrfSLwHvCOUko5vi93XKMfUAXcFeR2CmGECIUQliilblFKfed4a35FKWVzfF51vEVvUkrd63hzTwOWOY5tq5T6TCmV5rhOiVLqaaXUFqXUJ0qpsxzf71JKXek4JkUp9YVSap3j46wC9yRwnuO69zru/7RSaq1SaqNS6g+O85VSaq6jqM0nQKcm/vYYLPvqe7XWdgCt9RKgEhjm45QvgBOack8hvBGhEMIOpdQpwA3AOVrrgVh1KkYBA4Hjtdb9tNb9gSVa6+VAJjDK8YZd7nW5WGC11vpUoBh4FLgYuAb4q+OYQ8DFWuszHPd1vuk/AHzhuO7zWC63hVrrQcAg4E6lVC/HtU7CKmRzK+Cv3OjTblNP/es45gRgr9a6yGt/JnCq17OKAH4HbPJzT+EYR2zGhXDkIuBMYK1jpqUtVmf+IdDbUbtiJfBxANeqwqoZAFZnWqm1rlZKbcKaWgKIBOYqpQZiiVKfOq51CXCaW/whETgRqyLam463/1+VUqv9tOfPDnFrKm2VUusdf/4CWByEawphigiFEI4o4DWt9bRaXyg1ALgUa07+98DYeq5VrY8YoplY0zdorU3H2zjAvUA2MABrlF7hp12TtNb/9mrTZfX+ooaxE+ihlIr3qkp3Jlbta3DEKIJ8XyFMkaknIRz5LzBSKdUJQCnVXinV07EyyNBavw08hFXXGKwppfgm3C8ROOAoezsaqz6yr+v+G7hbKRXpaFcfpVQsVmW+GxwxjOOAC5vQFrTWpcBrwHNKKZvjXrcCMVi1mQWhQciIQgg7tNZblVIPAR8rpQygGpgAlANLHPsAnCOOV4GXlVLlwG8accv5wNuOzngVUOrYvxGwK6U2OO7xItZ01TrH6qMc4GrgXawg81ZgL5ZFdUPZqJRy1mf/B9Zvewb42bF/G3CN2+hIEAJGbMYFQRAEv8jUkyAIguAXEQpBEATBLyIUgiAIgl9EKARBEAS/iFAIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8Mv/A2Uus6EJQ7AVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "time_vs_flops_plot(max_memory=5e8, min_memory=1e6)\n", + "time_vs_flops_plot(max_memory=5e8, min_memory=1e6, backend='mkl')" ] }, { @@ -838,11 +1178,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 173, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T08:24:00.725270Z", - "start_time": "2020-10-07T08:24:00.720844Z" + "end_time": "2020-10-09T09:47:45.194375Z", + "start_time": "2020-10-09T09:47:45.192105Z" } }, "outputs": [], @@ -853,11 +1193,11 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 174, "metadata": { "ExecuteTime": { - "end_time": "2020-10-07T11:26:28.836173Z", - "start_time": "2020-10-07T11:26:28.792839Z" + "end_time": "2020-10-09T09:47:45.825582Z", + "start_time": "2020-10-09T09:47:45.720189Z" } }, "outputs": [ diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 0c6d16d8..ba8390ab 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -69,6 +69,8 @@ def max_mem(sim_costs): SEED=107 # Cell + +# These values work only for initial run EDGE_IDX_FOR_SEED = { 107: [2, 3, 10, 15] } @@ -79,8 +81,12 @@ def max_mem(sim_costs): # Cell @ex.provider -def sim_profile(circuit, tn): - backend = qt.PerfNumpyBackend(print=False) +def sim_profile(circuit, tn, backend='numpy'): + if backend == 'numpy': + backend = qt.PerfNumpyBackend(print=False) + elif backend == 'mkl': + backend = qt.ProcessingFrameworks.PerfBackend.from_backend( + qt.ProcessingFrameworks.CMKLExtendedBackend, print=False) sim = qt.QtreeSimulator(bucket_backend=backend) sim.simulate(circuit) @@ -95,7 +101,7 @@ def step_sim_time(sim_profile, tn): # Cell def plot_with_filter(est_flat, times_flat): - filt = (est_flat>1e4) #& (times_flat>1e-4) + filt = (est_flat>5e4) #& (times_flat>1e-4) est_flat_filtered = est_flat[filt] times_flat_filtered = times_flat[filt] @@ -107,12 +113,15 @@ def plot_with_filter(est_flat, times_flat): fit_fn = np.poly1d(log_fit_coef) # Plot scatter with filtered data - plt.scatter(est_flat_filtered, times_flat_filtered) - xfit = 10**np.linspace(4, 7, 100) + plt.scatter(est_flat_filtered, times_flat_filtered, marker='x') + min_x = np.log10(est_flat_filtered.min()) + max_x = np.log10(est_flat_filtered.max()) + .5 + xfit = 10**np.linspace(min_x, max_x, 100) plt.plot(xfit, np.exp(fit_fn(np.log(xfit))), color='blue') plt.loglog() plt.xlabel('estimated FLOP') plt.ylabel('Runtime') + plt.grid() return log_fit_coef, fit_coef # Cell @@ -120,7 +129,7 @@ def plot_with_filter(est_flat, times_flat): def get_log_flops_vs_matmul(log_fit_coef): FLOPS_logfit = np.exp(-log_fit_coef[1]) - N = 300 + N = 500 matmul_flop = N**2*(N-1) x, y = np.random.randn(2, N, N) number = 100 @@ -138,9 +147,12 @@ def get_log_flops_vs_matmul(log_fit_coef): def cli(): pass -@cli.command() -@click.argument('filename') -def time_vs_flops_plot(filename): +@click.argument('filename', nargs=-1) +@click.option('-B', '--backend', default='numpy') +@click.option('-M', '--max-memory', default=3e8) +@click.option('--min-memory', default=3e6) +def time_vs_flops_plot(filename=None, backend='numpy', + max_memory=2e8, min_memory=1e6): """ Plots times and estimated FLOP for each step of several QAOA energy computation contractions. @@ -150,31 +162,44 @@ def time_vs_flops_plot(filename): - N = 1000 """ - edge_indices = EDGE_IDX_FOR_SEED[SEED] ds = [3, 4] p = 3 N = 1000 - estimators = ex.map_variable('step_flops', d=ds, - edge_idx=edge_indices, n=[N], p=[p], seed=[SEED]) - maxmems = ex.map_variable('max_mem', d=ds, - edge_idx=edge_indices, n=[N], p=[p], seed=[SEED]) - if np.max(maxmems)>1e10: - print('memory estimations:', maxmems) - raise Exception('Will get too large tetsors!!') + edges_to_try = 20 + estimators, maxmems = ex.map_variables( + ('step_flops', 'max_mem'), + d=ds, + edge_idx=range(edges_to_try), n=[N], p=[p], + seed=[SEED], + ) + + + selector = ((min_memory < maxmems) & (maxmems < max_memory)).all(axis=0) + edge_indices = np.arange(edges_to_try)[selector] + print('Selected edges', edge_indices) + print('Estimated memories', maxmems.T[selector].flatten()) + estimators = estimators.T[selector] times = ex.map_variable('step_sim_time', d=ds, - edge_idx=edge_indices, n=[N], p=[p], seed=[SEED]) + edge_idx=edge_indices, n=[N], p=[p], + seed=[SEED], + backend=[backend] + ) - est_flat = np.concatenate(estimators.flatten()) + est_flat = np.concatenate(estimators.T.flatten()) times_flat = np.concatenate(times.flatten()) log_fit_coef, fit_coef = plot_with_filter(est_flat, times_flat) - plt.savefig(filename) + if filename: + plt.savefig(filename[0]) fit, matmul = get_log_flops_vs_matmul(log_fit_coef) print('===Results===') + print(f'Total time: {times_flat.sum():.5}') print(f'Simulator fitted flops: {fit/1e9:.5} G') print(f'Matmul flops: {matmul/1e9:.5} G') - print(f'Simulator optimality: {fit/matmul}') \ No newline at end of file + print(f'Simulator optimality: {fit/matmul}') + +cli.command()(time_vs_flops_plot) \ No newline at end of file diff --git a/run/automake/publish.sh b/run/automake/publish.sh index 6614f1e7..073f6e9e 100755 --- a/run/automake/publish.sh +++ b/run/automake/publish.sh @@ -3,11 +3,11 @@ echo "## Automake run result" >> results/result.md echo "### Performance summary:" >> results/result.md -tail -n 4 time_vs_flops.log >> results/result.md +tail -n 5 time_vs_flops.log >> results/result.md echo "\n" >> results/result.md echo "\n" >> results/result.md -echo "Backend used: numpy.einsum" >> results/result.md +echo "Backend used: mkl (contraction only)" >> results/result.md echo "\n" >> results/result.md echo "### Performance plot:" >> results/result.md diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 1a3d368a..a3f8f830 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,6 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png > time_vs_flops.log +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png \ + --backend=mkl --max-memory=1e10 --min-memory=1e7 \ + > time_vs_flops.log From 3b451af7f07c5ffdb91a4a79ab4fff5dd7f0299e Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 04:54:54 -0500 Subject: [PATCH 045/104] yet another try to get git working on ubuntu --- .github/workflows/test.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 479b7ba6..115f9b38 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -21,10 +21,10 @@ jobs: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it - name: Setup git run: | - apt-get install software-properties-common - add-apt-repository ppa:git-core/ppa - apt-get update - apt-get install git + yes | apt-get install software-properties-common + yes | add-apt-repository ppa:git-core/ppa + yes | apt-get update + yes | apt-get install git - uses: actions/checkout@v2 From 488c690c8ddf374d3d8f83118312824a56d56fdf Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 05:01:53 -0500 Subject: [PATCH 046/104] [jlse-run] configure jlse runner to update qtensor --- .github/workflows/jlse.yaml | 3 ++- run/automake/qsub_entry.sh | 4 +--- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/.github/workflows/jlse.yaml b/.github/workflows/jlse.yaml index d01e044c..487e8b21 100644 --- a/.github/workflows/jlse.yaml +++ b/.github/workflows/jlse.yaml @@ -22,8 +22,9 @@ jobs: submodules: recursive - - name: Update subpackages + - name: Update packages run: | + (cd ../../ && python setup.py develop --user --no-deps) (cd ../../analysis/spec/ && python setup.py develop --user --no-deps) (cd ../../qtree/ && python setup.py develop --user --no-deps) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index a3f8f830..ef2c436a 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,6 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png \ - --backend=mkl --max-memory=1e10 --min-memory=1e7 \ - > time_vs_flops.log +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=1e10 --min-memory=1e7 > time_vs_flops.log From e82268c4410bba3a84b684437d32a8bd00393302 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 05:09:22 -0500 Subject: [PATCH 047/104] [jlse-run] fixes to actions setup --- .github/workflows/jlse.yaml | 6 +++--- .github/workflows/test.yml | 1 + 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/.github/workflows/jlse.yaml b/.github/workflows/jlse.yaml index 487e8b21..a44c3be2 100644 --- a/.github/workflows/jlse.yaml +++ b/.github/workflows/jlse.yaml @@ -24,9 +24,9 @@ jobs: - name: Update packages run: | - (cd ../../ && python setup.py develop --user --no-deps) - (cd ../../analysis/spec/ && python setup.py develop --user --no-deps) - (cd ../../qtree/ && python setup.py develop --user --no-deps) + (cd ../../ && python setup.py develop --user) + (cd ../../analysis/spec/ && python setup.py develop --user) + (cd ../../qtree/ && python setup.py develop --user) - name: Remove previous result.md run: | diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 115f9b38..e70d71f3 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -21,6 +21,7 @@ jobs: # Checks-out your repository under $GITHUB_WORKSPACE, so your job can access it - name: Setup git run: | + yes | apt-get update yes | apt-get install software-properties-common yes | add-apt-repository ppa:git-core/ppa yes | apt-get update From 37a4804e3dd095dd834248a2deebfe273b25eb21 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 05:19:04 -0500 Subject: [PATCH 048/104] [jlse-run] another try to fix autotest --- .github/workflows/test.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index e70d71f3..8d6edc52 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -42,8 +42,8 @@ jobs: run: | pip install . pip install pytest mock - (cd qtree && pip install .) - (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) + (cd qtree && pip3 install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && pip3 install .) - name: Test run: cd qtensor && pytest From 478a5b4cab4ab0c10347b464f54687ed88678f43 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 10:22:52 +0000 Subject: [PATCH 049/104] [jlse-results] for `[jlse-run] another try to fix autotest` --- run/automake/results/result.md | 13 +++++++------ run/automake/results/time_vs_flops.png | Bin 28382 -> 29008 bytes 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 6734b893..927a9d00 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,14 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Simulator fitted flops: 0.32148 G -Matmul flops: 416.78 G -Simulator optimality: 0.0007713454853975739 +Total time: 2.3545 +Simulator fitted flops: 1.3383 G +Matmul flops: 524.01 G +Simulator optimality: 0.0025538916224821734 \n \n -Backend used: numpy.einsum +Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/1ec86d76903b5fdaa3b519e755ed2ba5423db5fd) +![](https://asset.cml.dev/21c11a92253253815e90434751acc694bcb0d06a) \n -Run date: Wed Oct 7 11:39:25 UTC 2020 +Run date: Fri Oct 9 10:22:48 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 6b538b8d7ceef40778262c63aa931cc633680203..2d4c678261b3880ffe0ad52bb5f56b377b530909 100644 GIT binary patch literal 29008 zcmeFZbyQSu`#w5=fV3c;Qliq*jfet*fFdOz-QC^Yf=Y)7f^>JcC@tNgAUQ+Mz!2vd zKJWK^-`|O~eruhz&R=KNqGq%Ae)j#uecjh}Jrk*_EJuJ#jSGQ52o&UHUqc}10T2k< z%55z0j=zDX5Wf;WX-o@u$L*_*kz z8#y?*|xIpG4!`OJBjlePml()=Q^qIT>JZhmk}> zTlNk!b+6T@>^iOn(o&76HLgby2DT41bjajQWVA@C?%e-yc6pFuc>jZRQmT0MLix^G zQMIJ`IO9^5vt+jMfrmJ~EO@b)^`uHbh{4NJ2RDETym+6ZsiF?_J%B_-L`3vZVoHOf z36!~z2jD1)F)8F3IBXPy{uvyVk9h?l1&1Sf|NoQ!zX(`msziXihK`Qnt5?K(^Y#5k zl_?UmsLn%=@9z%8!2Uis$il@XxYsa^YqPiXj1+d_}?w$y*8sgeN>`u0O91M~%C2oB#Jih$KmzzFO{1>&+Nt z+4VW4I^M!q_Om{f|MKBxyoM0OWAC>!42$1wJIBp`$>%LQHehxN0gaM{obCoz8n2#A z$Iff&qN#`*ZomJMWQH2-JuVFX_`XQ$Rc>Blde2)Lr9n0P)pF#S;3+>doh{ zB7O4|Bx6?At4rRi8O{cq%EDJ3h-0;e6O9V3L3+L8*ASb)-CdhHyTu=Uu{1;UV0Ov( z%(c?^ov?o&!mOt$Ys3+tI(uD`7UA8H1V-_KBPIDM;CKinW;hEGZ={UWMyJ?hy_ zbV;0crl?j&wnBcJFe75=tWUogB_{=dXJj#1uuGAkc^=2#wLHK^qu7S)zcGGuuMpW+ z3A{V-CGWnybo(%D27WV0ukJq=bMe0x)Aes1+h!FY(W!mwIGOCLv@^)qsI*BP+f?a_zUi8pIU4&80-=tj*3ldc z@hjnr(|WV`7u30|2B_i7n~ayQ9IAgkciaCG*-fGU;38CP2(>`TM_<4&bY01O&I=up zr}L|A$a}nF3yuS04{wfEm%bxd@9Vs}9Ia#)KOxn1ik!_&%pWJI08!-Eb`?;{!cTr@ z71I7B*x<-4v|aw6Rqo|s`*kOkIpt6WTE0>skyJ>Q#7nxQnt+>7{r>jO3&*Yr=f{uF zYHV7KBwS73cV8(eT4JF(joKA<&&0g@lP2}5{a@9Ys%NX*0M%C-e<0^wDk){e+JlM z=QlGjMkMi4Q#axigV^)UAwo7Y9SUrjvKkuXg@uJN)B;hp*3)Sc93aSQ7szEE*KHB; zGZR{Jyul0{`}R^8MJ$sj#1Gbqt?M%O%*4#hs8UO-)yuWR85bA#?`$>O-dwFQY^Bp? zrlJ$61y&_(ZSAFb@Qsw5yl!9yjI6GKUn<@283pU?p#j~ihI?;Qgotc-TQw+K!G$&6 zycsP}VF1^n_PGe9cz2JDEqu1x{HT{gAN4+0!wPy-bo9JO9vIiFgujjj`{T_Q8XO@dT9rXUOCG^&**=L| zzY0F2rfvzXYienI|NJDF+P8gs+p4IzxV8T0j~@_+M%@P8vMIle_k}b%!tt->;@XJT z6qmziPRso}1*T^Z@OI9gUe5-k9mVB&X@T=*g6xr|%rg8oQGlG&-%&tK>crHP)3lyDT_w7(kWg|)1}${2 zs_Jo*J9PMLGg~E`kWS|4Nl?chr-LaSdtRsC@@wkt3`fVlcl6ICd$JClz7N+OE;#pb zRU|N5du~5ur=kir-ax9>2T}Y4cNUxky)+2E7VEzcK>D2w$Ka&@`UGG?gtUVNM0oM(DtFzpV|)Wo zPmyImWGVdAec87^iBsqAMB!ZtuVd60fm3z7Mh% zh~W76_**0|nC>!b(cCet%hy-ae>dHst?xfzkVnrl->rV;0=c+28ljT(X@I-w1@@)z z8f!H=vF6Ifo5A-N2h#+i!BdXa+v`u2Xx~+(1g#`_DNg_3LBK<`l~G3FQ!S4xPvJ|K zYPtKXOkXfoDh#_}9^!I7!y!0#Q+NzzXkz6-TGBm=x8XZ3Wxc3Fj*d`z(ew5-w&`i@eJ{OVkD{gh0zNu zSX91{PjPNGyz-%xq>YMN>A4%5#4WU3!m4jcrH;x#A-n~5%bE$7{N@{cy9xRpG87hq z1&}HIpEJES=|F;)xH^F$y8RQWnJ#w0nd2u<{CG zgNC}O{5MiEs!sbQ@%51Sbi2o=$di5B)9);44Hp z`9xk>5Im6W4H{9>P{ZIe>i{Xy_v-vOkh_iN^g1#mC`uZPBBdJVg0aD~-1wOJ`UP|% zaf9QtyEtSw=`H2Ay+2=)kJS0?xq3Kkcm1pQxrG6u_~FAoy;pX__gEj@B$pbH9`~E@ z0Fs!g#y*ETAN8qMQy!i{9X|Wzm13aA<%{;X_7cVF3PwK zy>=y9TyM+i)0Q<{VzIyN@=5sNV7hE<^=wNzZ_zTMAA2djG@5bMIC4*LhIf3bN426x-51j3}^i)^C-2X`cs*AwO|bQQ+iUUlI)qV;mmE z&a35jgfqyDWCf1I){8kPWv#kr8z16_O5up2N|S^;o@b`U1Ms7f95ptNJprvIQW6qs zzqaC@NIw6-W#8coOter&rqZvd`h~;30vxxYsurkV+d=j7f~3vl8MUVte<)E^79&O zB|~H-ZrX9r6U^B?e&f0kJ0WU`WpD1DeugvGq&$-n%PllahPF_~sTvm!1yNG1pr>-3 zksy?>)yV+<@J9qYB1@`QX3cYS>hoKd(h^^6l(2dfJ;Hd~+A~k*lHR^>JMv-S6Z*!U zM?+w&odaMapJ_X905f2|(B^obj16u1bqv$&PfMJ$$d*c%c)F?*^a2%j6pVyqd17JV z2b8x3#o!~5%d1)59r-5$ILxk-&6x zT#MlaMdLNRNy#)nTZNV^-dtq)w^jZYvq`ahN@7WN)2>fLS;V8T2CI2ZwAcii;`ao# z-0dM(m#bjTnVpk!1PCqjM@h;ueL_w4l;QeS$JpwKt_7QRnC3KPBd4c0Y{vL`bn^8D zc2(6%D|}_YIkwfGDM3l!5cE0Tfg5(*0N=&Fvr?Af3j{lRaB*3Xj$Pok6=Jd+tn_>% zHb*%TAt9)1hhS<(-Zj5MZ%1aF;i2O`m9afCTNkcZFOKo^gD+y2x0=!J-6!EhP5&O3 zHcSRVx%=ADxEH6l>Yjm+eEtkkmZG~t>i-?Xki58)uRNJpF3aHiRYw{%IBu!DRB)8; zlpBvMxJ4SqKgGsFc?u0@F9!(#B!~utk@0=l@vo-wWI0MR=?sT$N(uzqt`hXjyD!tRxG0XdF}Yg|_`S#@-B5$ZNYwhpBYqN?%-FU4 ze-gu=IxG$^W{gL3f*aRKcyG!C*;;_c zi_62hWGto$leojv?WanzdjwHshy0tO(ojr1gBc#?i%bV}Q2fO(l*8D*P=T==DXPq- z>o3uAlH`ay-&swNyC=|)X(G#%gz87xPwva1)@6Zu&G#M--1al>Pm_3*0Q-VU2$8sU zLW8Loo0;Yz?H`nbMx-BOXS>U0WGc}olDcjL!H;}XgicNz`FcOfDQe?o zuU=Dp$r%xey}Jj4^G&k2mAT8~kr$aO-ZcG=&+BY&9^29q)-TodCpjI&@_Rn$gM~&O5}ILndIzKB;_>kgHjR*smuSoRBMu!b92|ftSiEk|X!K~t z=>JXS2N$_N0-L`}Nk~YKns8C(POxY-sU66wL$$A_iT`7+*J&O z5gRm=qNKREG4t+=n9z2jetPTu2H7vDbx5A{h!asE@_69wo0WRD(b|Gla$ei5v&|fT zf8)AxXLFBr0<9Lxwe=zTRCz!Ykb+PPu=ZZ9+Fu2;WO_s`XLT@as_@zRsH^u8+W|0( zP1vDr-kHStJlC8Uhx4X2rV20m(vtidR@Mt7{87n`q(pP@zgRb8O_e+o4QSnEueNnjIzw_9| z<3ry~FujsPaSX2p(-NugTy4+nQfYlqo3r8g^a)G?hs%@a2pY)+twV{|2(j%~Ze)KL zsY~TuPUHCXmLS z|B;_u9DkC}h(x_*x&4n`;Q>_65m`)Pc3X&IKk;-raVjJ8N_4jYjR>% z)-ai-t|4j)GR?Iy{A@fw3`Wh>#|S8mLw`tmo>B9 zcZee`vdhbV*DQT%fhD_XmC}=QhfV8aH@CWyHOoo-P-axkduAjFA*2zEIo+E_(RT?E zzYnCJpk?riM?&G|?^A1{)!Var>4ZchqpkIN?bPC`*ay=mEV8AEEp@f9JBTC^0nuDd z5rczD9OQV#n&pHZ%7BBD@IK80RR=!3cnSfHU<%J`;)I!Me<@v0R;3h3IH5M;Boy0o zy`E2a^3YH9kz2aUN4=XIqUtM~@QrLru2cP=V%@Ig;5k?GZdE|PzQ-!2larHHr4eQ@ zHqm`4scby1hJf<+tF##W^<<^xHeWz7;CO%<*Lq-Z5dX{^Jo|GRp{~DUutoPf3`8JF zez;$oYc?Wd|CfDm2+P9p=3%N?SdCvQ5X^0oM3NcOLF8hod%wNPrS|oitul>akjipg z??bCF>cw3GvnI>uP$6F>o3I1aZ$W}t|JRECvmV>bb|3k$@yEJcz-e0T!$GwZP9McA zBt)3}Q>OeK{ndrJ5C)dVw?edW(J@aWu4m2#9{TGkDR`EdZ%;E7 zx{FvC{eeHN@o&q&y#w)J0Tr~-ul$$4H#WSW(b3VyJrTq{hXZVkjT>K{MW=|l+jU%8 zPnWTZh+HJ!Tk_iBtPa0tD7%b(F!>P**xCc}V^t|Z8=hf%n#Xw&ySqcA6w|Q!_DS!< z+PkgS4SVy@)p=;JkQPp(#r37CcHu8$rhnJ_6FZN#9fW7_TTA_xLH4^QXqh0YoyBO_Vv-^W^D054+yS4^fEL$NiOQTEgMfS@qJ*xa4>}zpOPowNibGIcDBm1XQB0vgx^$ER}Tyi=L257 zrl#ioJ4M+%&dI5+FVA?alMY7MG9bkoorMMTm$d+#S+J~F&T6u>gt-1Up@8f%r9VY^~}2H)c)aSPLG?na7&`4mn-6V|^jvgV9>(nD5#;sgu8?vmRzpt){^(d1{2VbUdb8-qJWdp=)8S*?X--eBkkVY zB0|ZlYnS^RXL>|CvyxHH`<{FTLaygOlF{0Wu#%+KY-fQWXW#7=QmaE^1*MRbR{Fu_qB2W?J}) zguPM6`r{Q&*!l6H!$EI_Jp(?i1;^PtKTp-Acd}nlWr+Ok+1>y9`a5@W`g~tZc!xu) zZm>bZ^Rdq{F|E69@$y^QFEOZc9#=~?jrqUJZ;KOwcb>fuU^5kH%>TCk_uO9a> z$jW|+x(ShXVq#_fS8P%r1bLX&uklJ2R)&+-wyU|B^?D;rEe;3xA|TVj;`vP~G(wgp zeHH^`DzpEG+DKvzd2u!ZLoPpkhUv0}?tgwa!{6_L92e7=5?=u4XF(pOaoVYm6VH(s zpkw6l{Q)*Q8gf{41=vV%Q0q_~aW`QK0DiREK;neD3RiY~>RbL7xuC}N7Hqi`G%-t) zcuXAW!iX2Z05Cm@y?q*npHoqBC%`<*Gb~>6{K1=KfDftJHL3d>Kt(=UTTFbhF^Eu7N7JA{5u z0BERjGfj-k{h4R(ryn4$4eUSWJ!F~2sTpwsjy6Zkd!xw2uMq1!NdB*)>oI%?zXa9#BC_A-v*!zbZ z_?-|XuNL}SQ*pXX?+m0FjQ#7sx$(mL4eO|OMG}t*(zvcbbiFw*_T3#|_hP6`InD%O z%cJ>~vwY~(nwqxAN1r=gjXw=Dk@(4wK>FhuM)DLsAa<)qDzrFA$;b`>W1lJpZTSEQ zc>&U7(gaH4m({Oy>L~jgCEyva7Aie>TdtbMHn|rNf@NinqJGbQ8-I=1vu6~eDJow55*?G;k@Iwjes&BjOu|PL zh{er8{W}$;+)S(7dDo?>fK5lOoBS4c3Jc{VH{@mWM3@`}w~s~uTn9@Q!b7VL|D7+H zsOw{I6S>Xi9y@1~#M*Bi_T(Cjsw`C@ED(BekN2#KNwA;#SBYpCSU|ZdIJ*QZaH)J6 z=vsp_C*vfj|8;Pd#A+R8FSVe)1@x)~)<>lp3w6 z>xdbQMbJfp)4nRpVl!g$w2x={%h>%~8VQsz+>#-GHwT{TDpE0?MqHg@|xJ@Fbzg9-v0u(o&J;z(TqH47kB_!&`#)LjRLk7Jt|fmlj(^>k5coA*6I*m zyfuU#B~OE^0MTvtlgRct#PK~p#_64pmM1OtpU}|>%TLm6ZlEk{rw2Uw(t6X*%9vcI zg>M?MYQ~yQB`r=tQiQwaH{Kyz;edauwPt)c zU;#Zm{^hzla%TW_&M~-S3qUZbk47=3AhXFtT_#;05#=6^G6RGsx4pS% z&!1!YB2RmbDpw9X(6h`dwH%rkJDW-(WK%c7?t_F7To5FEq%!x-f6p~rtl`S*!9#_6 z0$-Ct3#58jFY6N)wvO+&>NjMgo}JwS4b}{8%T-L~TJk3+wv5~e0ap+St#)=u-p`%? z5{^MF1Rcx_0OP5o@n;%o)pnWhx01wEMLw;TnTB?IeXZI@aqqS?g~TerbfekR{AQ|8 z%&Rzx{u!FuE(IihU^(eEJMu@SrBP3n>z5w|K4X&SF`r2*D$E&ZH5Ur6yQa|Pa@$ab zg>^K+Hn|+vxE7S6bLV($xF(J_wkq?rT|@&-)fNAZvyH(XMkGcsL_Uy&2u?kL#;G-*y-#1<~nO?qMz9-@1I~ zznHS8(@rny!V~B0jaY4hu`!WIfQ%wRuM)g@y+2zW{_$h}B@=l<9f}&y&zpftw&#wS zDIJGNFTcQESOP3r;RCxmoB?5y$7OZ|Aglk=3v6j#@Ucy|#G z1FK_W2*?(U*SDFN@^4$wr2OP+#^=G6=!>IMG&1@E=dGU~lDaw|3L~VW9#o8yzcVp( z+^7gYBYOw#AnauJ+5>*eD$4zpurX7dm|57QcHMy+^Y6V3H}?Hj)+J)ji4fG9M%Gwn+HX{^*!0xD%Vj?6g(rFX39$%W(p=M|Tq|y(22PQ1`p0(Jexl;n;wjqMZh3d! z!LJn;kEq$-gOpVCeito6!n>|3TR!C5JW_Mod}QN0zl^+{Ai&%udQEHJQwOp>#Uom| zXossxA3i+gM*Lm7XZW=NsAT5-4yzq&ZO|EhMc zIG}IBijJA7^G+h_!rQnObQ-T(FW`#*+uL%O$R1pB?_K zW7vzk?rNTeGa`Y#*i?J=KE8-6WO}bQ1g33Ak?@x|5rP<#V>nn1XBe-yUsi2tjkp!b z`Y^TOBcZ{fZAfD?n+KjGOrnZ+IEvZaY$nsx`lSM^^Kez43W2s(hre4MZ0G3pH?c3` zLKGWA7&`KP$l9#p9;!QCnP+&Y>hK8}NVfp#2zd}zM1)YNsI%67`V-!r1-+iKosNhO zek(L=3Pg&gU=aVFbaP zIsjh}(rd5(FLIz?wHC%y^@=2}Jm*>3-K;siPO1opfh}(Y2d9kB!P}xzU&EveWiZkT!53ftOQolgM zg_?$XV1+q4I(m9g$3%j@WH!>aO4MP?fqXu`RQ-vaQEWa1ZFi3B>X=O!Dqbx&$^TCg zW9cJhd@Iy}7{?!=dgHzrkd~ulTO7o;f4a}|eui~h3AFyGFMRZ9rEY#@s~~os`8nn4 z2r*UTMUCRH^A=;ZN5li2IyF>+ygFlk|}D@?P9JwUa(uVCzIrXquz>55zF^yh!QC z@V{VI%D9b9Bx9C8HV@sc2JCr+JOU52vcBSA;;e282#Qwp~d3{^Dvd(Mnk}C=F!O z*jd^IftTsx>SIz;mF>LX;o+e$DBVESmr&u9=b(0y?O$m?1}a${dCZ(B9|WtwTB3L~_g>?a|P)CR-nA5gT2 zEKn;@Mj35XB+o+R=sj5gO2T1}4NWh)zW51kSuFdtXX0agSSz-<;GFheF^W%!EwIi z(Gj}8oZ8g1DNwKV6+9sjfgwQWe+>0}FPH7=u$j5y1Q2%@9(Tt|=acIQ;C*HTpt?JZ zU_HZm_~1%pr=&2{8&qtO&Xs!fj@efl3Qi8UsD;P0|X3je@uf8aIbID2#f^j$es3&e6OW@mw3xTg(WZh#ow6T| z`#qyJq=&w>C6HbBZN&spbti`g@OwCJFxU~*nnJI6Eo8BZHJ{3$1BV88JO0*ICxV5E z3H`}C^eh2u@_30;O6KP=2AAh2x}JYN#n1@F0eRx1>CYs`Kc6&>)V=*88Be+iqz8V; z$zPn|01lSe_0(D~rBo+Bbc&)F!NuHfYEoIW{@9FbPv&K5EInODiC1sm%2Ca%iY&`a zkSGRUuq~pv30>DobzFZEHJ|R-p#+7gFX-*2Z!{x+)sS;= zj;W^DzO0Obiu7QQ`*rp}H4?p-c_$|35R;DC73U?D!tVwJeQ|VUS*S4uAo~lAAFeKu z7!Clpe@IFB4g%)bW4t<8W86;|MnLl%06P%?jXe)~DTe41WpS1r)asSeT-F|p%yY^W}FIz;vW)6 z)XPUq%@aQ9U!Y4O@$DKhNt!4XS8~L$wPjh7FkOj0_pcl7&Qt=P9Nhu7^2Dz35BclY zuP?ITKiJD}9aV9<4f6IofG@~st+nQ^n;2m72`J0uol|{#-ttU_YTvWi#Dp#p2rWRY zrzqRm%UY*W&a9WOV9qk0x3VJSOYpYwSAhTQ`}gnnI5}f$YWT~V_eH@1)>^-F#XpJ7 z;M4JpLQmGr>^^yPua5d|F|ageNqCQ!>4{+x(GP+^zU4oCnJ&2M*1QE6hv;|Quk~5> zpkj$lJoC0!hXFzH;FpZlCirrAo3G&zwfu`9wk*I^9T52gCH(D^Of;YE!h)bPHoU?O+wCJ+K%uy}0O3nl{8vMJ1WyU)p5co_dJ zs2Xe!7ba3g>uJcjLPVTD*O6aAuVa2mD2qOfz#t<|xQ{cSaIf>R)x?A6vDA})*MBB) z8Ux@8hCX2c8M_9okH#MM`-94300tm+HnUDW)_^&49$-!80q=y-|1lW*KdDQGzFi87 zGhLoBm0fz;on^or`t#Ho=+bLq41_9W|EMKEh20Xhm7MxLYV(X|9a&*b5kqJFC(}LV z8Sofd4UD*dNHpU2vSZ)>fy?aUzE1+v8p>LHjvyQxkeWGvfE zGP<`*|LTx}tMNApgpf{D*2(EHck6K?T#_d#2M%2xDK2mGnt&gBi0e8J31m2Q;S8qo zZGIcc<})X}ahzVynrEW~DWRk2l+~Zyd*U!@|5K>FoRJZ5NFEY}5iJ{@RsiF^x`u|+ zkiaw`4qpJ3Ymh$fVV4&c3{Z+MK#?d+d*z)-ONc#RXKOv~?E`$vEwC=U46p6NrOVI} z@gw|#45t^tBO^mYtZZ!k-p&8)AaK4q+YCRU`2Jsh({-SDD-RZ@ZxugW3gygYr>a-} ziWp;Enm;ke3ii7cJeLGc@{2P^j<=-Y{l=@mKS+opOTzD}h+|qHpjr>;=FTw0%#}i@ zDW-<0Oordd_-x|qdPhA>6C;CX8CCTDvh94z;v!Zz)Nf9H>32uJ^3eC2PG__!F%2Ym zb&zi)udc3cU_?bp=~zP;85JKNAJP6G;qkBq#j-#&z4N}%+X7O%{!}6209jz&ao)F| z9H1Vemb=|f6dL;66bkJ5_5JbT*bFuAKbkDTN5h3Db6gF4R-}$I549&)7 zRW1oAH5QHB6EleJY-c;ayw~>S5_xARyR@>WCg$4(Mo@9<$=L|KlVkQ zCABDXLv4RiXtaQJ%%f#6xhCFtoN6Pw8DgUJ`B04iP0_e+zRTtKIwd_8S#W=J zu{IlsBzG#&co-Q2!QxmA6fLN4ZEbCdPJJBX)3A`^x&QcM!;VEsT7!H`-U>T3-V>sD z9vhTM!hFl`08`huc9vO;W63T=+?uU<`Ep9xt%_WdmJCf-Ht%7VC?qL4xfr< zS!ZY3e8nIlA|fcJ_@ez9ehuu>*F&ZCOE3N-dCfMtveO9J;cvOJh=#6d2~_XRpmm3L zx5BCG?VAZC&u+y@fko@aiSjX>uj70>x$T+k!;A=d*uTWDt?6OF&bLJv+)zqejD>>PJ)nP>;(iw0DxO3x6xr%~ zb~9+OPo3_)#H-)`@nYetcVPF8P_m{^`MQb1{i_I?I*=Ptp0QKN3v1aqs!l=guw{}H zwQ0$x?UHtaHZMLuy+ETE^M4rMI-i|)OlrmcD28u&TgJeyPUvFQO-<*O;T-MfhT=r1Uk|<1$k7>$M|mW;KZuRDpvuf!S+| z6*!(|YH&pF)2~$iD&W2REhisQjPqCTFYxW?y2V%G@BZBDYuu$*pN)zL!NKexS0$E5 zh`dfutk{;KctS|ee}1Ot$@=kAXF%D!$6khG#`0!3mN&(DU4x|s7LTsZ0@xkL^v`J? zmL)H7LR79B<&TDhcua1KpMP^iPPG+#dX1L4KuxV{+;f_%5*vQMvF{AG|FF~4^}gZv zM1_?jGZRTMDTH-RU?Tt41#$!sHUe6{MXBA=BNFBuXLhsbZelH0$&d20;X-q!Gc>z; z7PVp#ihB@g+h?iz;8LpmMFBsRih(yPp&NCbNqe=|?bo`-lLcua$C~Px>;2sV)6$+I z8NPMI=-jkheMV@}UstCmCCHOMhSVBwG7B~C&uF78J%-X~s$YWazr*&VG^Jt?Rzrh^ zHD~a4!_j*lYdFk?9-&(}o45Dvqg05dcC<>Kca-8@Nc}3mA3TO(B9O znr(!UgBJ*hR>;F%eG z8&&o#z;WFGwKF8-Xc*X~Ysr7lLZ z7@yjd=;8oFt3Cb2B@{rc^>UH9k%t*(Z=T8i{*H?2*=e@*xAS9*%gwisohg-UsWQar zJq{J{)C#h?>ukv%^Q~sO8<=5)yH8Ai%vKW~{1z4Q9qc}Op=B{dFZ_=slUXx6|ErLe z?_64Hw}DmkiVM)E-02paqGO+im*_e?;nb`M98d-TG< zY?)e}1WXTySj8&Mz?}uW!Dy2OrI{l5b*fke-0l3h5?Q|FB^pH2`t6@I^<95`{W+#T zzmWZ5mamA3$;kybz^KV!H?TTCPq0bWs@j}?#w$;NFFfZ?)XMJz$^uV(di?7%B9|Sk zovFsgi$nVe>$T;pjf;#f)9324vT;gis!9}55)Lo5U)yaB8a@bN68@CbrLIY}d8VP+ zUG8uD=8TYT+j0uYf3gXLZ2V#>bwIIY+}OpHV3^KCy3R=-bwJ>3aoeq)eT zOzyHSf3i8uNn;E;YE=;R(6MSavM5fh!Cqi=ji1X9fwElMqRSrFM(5W_d^+6gOKw_k z4j%-gQtCM3m0c%^^35Zf;0BNg2GwG7jh~MRunE&yx>Y0Qjku_fB|a3~clvur*9pgF z3BMqFDJdKH(3t|!KZk@GKyU8wQZLHR#_edm9lBcMM}Bp6d2emqN~>-KQr?2TwPkxs ztRyxD4Ekv*s3;VK1s5=I= z#!pg6uS?DY`iN6M7n(LVhl4pek7-XV9LLGQEoUk2wyda2Vdrl3JkHkWh@MB7(w4PT zwCfsdDSKL7dm-@#!2Q}A4R#)i?_Tf*W<3=1IM~%`teY+-m9n_n&2RofiFCd0Z)M)B)&K0dC?p=qtGXh@>W zpBt+O0i_@GN)5m^umCf#@52{Dgx4Q?4Z^q|Oaz=6z#R;>DpWv?4!IE+Yzy@>V$GI- zG)NYnb=>qIw7o7H>i=6Dz6va}oameTJ@He&B`{#|;>_BCx%1hc02>q!hnuhspWt{`Y?H z^#?~2Cr3oXS9f6T0oxu*fz5Yw#lH^gcmWW7=s#j2-`FCfzIf*c{=}qI45W{#?bNa- z-EEF}*J@4S{tm{-Ea&C0Uw0Tyc)ecx)7$|Wos8tP47dJZ4HhGMae`C*cuLQJR*2$=nc;(G*=F^5POyW zrYB_1!UYCzr7Q5J?@x~{`M;7yId)$ZH{iNESRnmlD<~+!na%G5dq)uXp;d}D0u?pY zSpS*KyYK*EU#`LH;9)L_tQ2}!_hKI^6_0tDH0r!P5pdb>J+z4Mn6{tl4iv?svm?A7ZN~Ll+-=FX!6H9DFQtp>Zai(3nG!#%N$9q`6xb;s2_|6DIax6vSeur3 zv8~y}AhpOB2*>@*3E}8_`!IY1Jy#38YNO36Pd_LP;m>4S+f8M#U1`5r3N66e>oSyL zq#-pM?vemxbR7j9z$1BQzv5p%@Nh`}gkET${Xbp+tT$Ty^K?tvn(o>U>6e$-ZCR+1 z+`!$;{;&Ik0U9nKl3Mm_pYb!VUMVjIfCzuxmUF=Xnc<%Bpur69JT%quUMI+{JOT!3 z)6NORRN~{2ccM7NTpeqJgr9+DU@i z>j`Lg3~WMv?+3PJe(Rfb?s4Y*H99l39{G-{w!RuPseBYP&j_^$!_yERaRbfV8>bPC zx;(CrF3zVb%!!VnM8Na9CWO&;!2Nz;=rqg(#h85MPJb%zaA$Vc+X zdNK60OA-nSj|oj%&gP^+(A6{LuN*GTddJ%2Y)-7ezM@|$ImU7xf5^1jXi4tI_NUKF zaqA*cHenOg6)e9I(bd*Az@Zo&a|8RF_>Rdyq0u&6U@-RXDJnKRG-)_~J=4x`v)?Ip zzAbHjj`crhn-w!?Jifmf*n3?(;kvEc#OX&0bihY*7|bBYa~O4BbGSgv!nM9 zQUvVj-`QW+ovC8ZNJz)#+r-33#l3)&f>z%X;o5641BDm) zUP$>Oqo%@o~$tiUH6a#FrkOdz=0Ey&q9r8n~+MrR>k>VN*rB1H= zy@TfNSqT4D4|WBN1Apea>#Mq!`S-!tv8ipS4bMb$xIi(I@S;6)CC3Xyve9@9cCB9d zo#3t`jTH%o2|k2@Z0^iV@Hy0vRSa% z8}S zoFzX{s2r1zu$&6V*+o-Jsx$&ATVdBxw^$PFGL)49bC7&Fcg3ps(M8;q)4%IUlH`vh zg0_0w4Emct-3K{w0@c-F&C6gLv9xF7*rxqY@&;JfMyramH?r_%PhA-LXa4AdqQo>` z?-uj(DGhalYIB4-Rx{X@0iC7$=Smb6J=+{zdQC*&IY*CYyMUrn#}zMSw>y?Da(AjU zxTGX0wpt`d*%l<*JONV3SM3<1I8w;MOGvM&oXWnw6^=1g7V3G_F%?x+lpof#af%PNz!d`Alh&)Iu28B{;hZeo`twtdcFq)m z09QLzt;3zPWcQsHUlv>wQY9d z#+fd+Sy>N~8W4OzSuoO!J!&?xlG03JR4ayVhIf7W5?#~hSnl2V2+!J@!M?8XMmg}Q z#FmT1ewLsos>OcMY1Ny+_p99e^Gzn1pnuS-)-DJ3F-8!9zNr2gEz?T_7eg=Xf_o;3dqk4$cMtYG| zn_(We+a>fB75d^m-7YHRB*&YYAY8f0>C5S{Mek>;H*aPZlBus z#GT39)TfUodAU~vgXos6Pg^S)P0{H|X?`6G>)mNdf|4mLIG<513H*A#`3Ux)$i;tU zd3#&=`|~7*BWTTzg ze`D}8Uxhv41s{QfMb<-=Qo)+{L0Lv-oN=qHY??$}EnI&Dyd54(*S?N1rOi6jk z+#}y=j1&+s7Z!NJ7~yB5aY=FK8Sz;Bkdp~N>W=wj>Oa3T;5_LZeg6DO(Su-0`aklB z_eGBw-C{!CXy97#bLn)gp|4SVVG$xB2;WVGGL~5?f5pbZ?8C zg+phP>{$bdsTeORrcY&v+f6u2Sno%4cE){u-rsB~h+||zimzfOjgRA6Xm4&GE=Z_k zv++p&k7=AS(kA=T-;`>`#e^lxpN*up7Cn)KQ)}9v*KXPeqm+?8Oa#wBw_fJqFA`&E zn{DyQAa=#8v#?+(F$I~u#$Oe`v%@`f;_LRnN8Fs@bD^nKM>6KzR@z=W%t}3KwtTI? z%T+dL;Zh%4cfY%kCF*%dEyC(x+lcv52_5gw=wptbnXz+k(eCz78zBEmi3PQL37kd6 zHZ(kbTFYvnCu9DXB(W^hVc5d0Mj?nRry94FnTbii6Y_qcuhC9#aZ&L9DC{evs_LS( zHx1Gu(v5&1oq~iYpoj|6l1eBc0@8ITr33^46$wSUyWt=RB1%cOv~);H+@S=Tt9N&Hn030l|qyMP%7M~xspYF77BJr=yCQ78Spz@2j8GOelV zuarmaqD8;@l=qc8`K!#6pO7oc$=r$jPQ zjijey=O>SfIjM*AsCe=+IA(=j`y8ii2Mn8(Qxj8CdayzV(q6eE+_IrosGiI#h`&~E z`g~#cGRgIU>B`XBjh-(G@2y+-5?mW%q}e+}KZZHAoqX<8u>RxQrgcrmVwhOU@;nDe zVUruuesN_zqrD%1I_<-;JVB{bl0H)Q>n2lsjRa@TU{mrA+&5225Xs(lZOfZ1?+m9% zstDM&3Sd*DrX|a+qG&DeU}~!PZ1Hr(Eid%U^E>P8fZs0oNy1kBf{tqBVN8%N>!?*z z%6I%ceXIy3A{rWGyw+f|$7g%@SFg^F(?R#E>BPNg@EXwd!eV@Z9x7I}%Ag`V+4I98Xsiw}xt_q(lM^L# z;r=~o{-3U->IqG4n6q(Ts}{t?Q;rB}@C~>T6OYO%1qm?z79d5z`!T>cI%C>FPU7l73Da+5Gg zQ()>53;m95?Z&D!R|OBsGU^iNJJYBAj+70y#!CqZN%1Nk;{h*2yx;OxJZ{{;*1Tsp zbf4_eC4_{SSozj1GACzeM@XaQ8C6qpb939cb!3h&j*GhqoV}Ni4!}dd7P*nsDDQ*f zR7I(>Y>qj55Ig+SkDm*16g6omy1ab`(E7y9nwjIaQdn&%>*cUL?Cl0(z zpMGXkg+wsmglguJmyPJq1YhM5nxzWKCS8M37C{9q<*L0SSS0N6uRl{C8qy<>P};1t-y;4 z9bJ28iJkGX_;``wV(5e8c}6w?lA#Jxz-TOXH`RCjB%QM>$gCHzrlx%9S$7G^%gMQt zBJTqfALCOy_M;W-7cY{ApA%|@ik%*KR0O>k{qQU>N=p9+ZISFk zLgecWe*_~`Tuf36YsC!{{nkb{j|?KyHPugKqOAKXt~yU@*xsV24#$I9+Wqeis2HkL zKfkFz>;Bhc$4;3h?sPtbIq(C7V3K;w6fa~N`DeYcv1u7nTA#}v{Qznq?cXcI)P?oC z3;}_G7|t1)5rEE3L;ZTr-dR@Gbtj>~CKS}zm_g>A#V4b+&zM1?z&LD?PmK9iHfD4#WgB3G$;#hfF+oH2 zOWJ9cP*hZuX+fNUR3(b#1;&&8#iEi%+0@iT2=fN0U;xM{43$wTql0~YsTmoqjz*fA zSO`D@;P;|870*x25aSa3a|x$-64!!x^=oOmLr{W9G}jy*N|K$Z_)QniPfd+OBQM6v z-^C(W{vmHt(s5N>{+wmOYmOrQJ8CNY_1p)<|x%g*tLJ3T(KW zDf0C_yXx@*O{HD(_tuY~+ILy){QH4YeO$ZYUSb%-o7>}_w)DL}8Uvfq22vaxHkV6> zBcL(}7hn*JL&a$$}@ACXUYT($mwcsjE9P>1k`HLUy_e5Da6Is1-4- zfe)W-c~(2ndXFB=EPb~y-bhKl82cqrqgq|S@Sc6{O4gy-fpp4*kP`S#d6UEJkw zE9cL=HQilzPIyo8ysv;}Kx4Htx4=ExFcj)#{vV^vlw3*4wUNAu{+VaK$$BR)*mzy? ztJ0CCb@9C^0sROYTQe?;T@>R{egfeq+2Fi2i7G8FdkdRz8 zGc&8-#)#o}N8mhXSiBtRus%vrS?)vTw;;!z`)DoV5Dt=GT^}sAbBpFvlzU<_3ll{~ zDcp8SC2*6-YEsSAJ_qx9JPMwnhucpM`vkxJS<=xqRHmdiZ;r2&crC1i%T{sd?BYnI zW>}))5hZlW6!E4M3-N#E&Lv=QcYWcZ2)$;BJn@J00mlLhAKg;F`H63gtvDX!kpxZy z6K%>~z7-i;OI*>*M1+KB6c$dA*WTkcnZ)nU#%tYb1&IEH)fkjLE4#)!e3Zk9g&PwT z^SzKm(EjD%+J5(|tHl5AP;$z{#VH&6UyQzu#XY-W%lnLLkYn#PKK1#kNj zSFiR>c(@??1_q&HV@7SF_9iAQ81=h0CW9y%8ZrPyK?tNarhr$l6%@}M9i8CpyP2M4 zrhpg3aEHaj#*Vvofh<@=*9Rl@8m7N|=;!A0n2RL;&X+R%j^6vQ3?-|IJC!u^06~70 z=5FjXAY9zljZqry|2%${yv~zoA0|aJ0EC&^cK6nya;C^*+e+?eqnTGwuoYmqcl7l` zplA`Qks44KCaI6c}`G0vckJM?ftIm$dX%)geaJfYRPGZ zbk;^J&yqVjjQC~B!K;qmg3GBf_LAJ{(p)rP(#cd7eEKGprfEs4WP#?k^Gqk9&UD#P zJ6-Br0z(f47MiM}^?D%%4T;7>)sUDzGnqticv6X07bX0qC@D47-FHZ)zP#jQrmyKV zO_XwQEqeoHS)Iw3!=b{RNzR=D^2)k}&H37H&j}W0YGmcyM$+47v;N?7LhUi^*ECFn=L8E%52 zqdJ2n$~KB11NXTXbL9`xN|;SI`_bAJe5>HGd(+^cY1K3|K8I5CJlWqcFRz`}dFqKn z@`yN&UV+C-1~)uR%53S|6YVz=bZ?(hrQH6CZcfY`f6^iCmR(!7_RT}axJHXqO|nhG zwpjB`yMXK4xL0;JWWgtAo$J5OHhT|NV}xx&^*7|C_5*RU+>yX7pb zL(+FOV`oMDxrYuDE%l=fgHVwgi7)OdKOgmEW9Mh2U?AGS#Ue5oUVMUabLb#0$>@mR ztva;4a(&Kn$2F}eL7K9elX<VYSd>QvCZ~ua|9*(fZW{02>{38 zyP;crBfOWvP*zL0v20A;%=!LBZ*Dg~yxrbU5;J_1?z~{27 zooa!lH?`0!Smn2V-rLEBPMpE)*HOoi(`0zaKpa|E=e^CV75a)P%WtZI*?pqA^40o!?n)dyy&riF_6mk~Iu@DiVlP{w`oi$&q zyPp&@M)~tt3?=D&HqVljz|VD{L~H1qj(s0ET^xH4kVWNpVwOqEEB*Nng98^XpcGE{ zXtqy9=*zW`)+hoeXMgkNf}PRozA&j+cImHZ1QBOgJUtRmbv#Vt7=7gmNjmv3tkkHU zU!=m{45pkqg{}QOI+`8*>xZHi6)?TYZAUCyyeaJY z%!BwdGc}oZ+t(wAQsqt!EiS(6zq5k%BzNTWzq~3Bo}&B!w0Z*SISaN`7ru?Hzt=im z!>I`oe&VOZj^V}oBvp@&W!1ioOc9=}1Uz02ZpkCXT|8PuNTR(EFw4y* zJRr8Jt=m5LJNMGPtc$N#H&^<=y7oOrHJ&ne|3aNJ#f2z%NSMvY-e||L(HHL$6SR#8 zy(9bf_4Kh9UzN-rxSU)X8whM-g|U?TJC?LX0v$#1rr6>PbiK4ScJHm!?h!r|hbsXB zURF_t2D$)t{!4 zKHE@)TQrPZ-%^{>Has)t#u^=uuP=ZOB)`zk8i+4(YGPvg*J30WMt)PiouUZ&Nr@os z7A?UM23hh4;KO_icq&0h)6AJlMCQ1>ur^8ldzIL3k_;CY86HLxup*R{7aKDx<4f6L z%+A4>1%b9Le!!JViN&jA=Btv!xgV$!G$hh%9~^Hlnf|e3<0txHTe0#n#%LF_mUL*Z zWY^N+#w8?;FQsJ5Iy`~Cc&RXDg2uc@vsD4EU5r*(%e-M8og@(inM!cSzIu9{r;d)n zUKx51NrgT1av=`0Y{gOq@@`jLQ0)EMa#*l!{1pmBL~EV;S{k^B-e;{rtmAPRO@}9> zCkWaq@S&-${amfH*WLy723c2x`4Zw#hgJ8dz$-vu%7#kq4bi}TPOezZUv9dRSL?B2 z+OysXiHQ&efngm;2Sqy!mS#+LTHBpcI~9^18@yHmWD%->OO*pXMS zp+%3ZuO88N4uS+s@`u&h zt+GrR9sLp4OS0XPUz!^j6&0^gmGvB+AHV(I+)m2@hp#l`3eV+fiTDSU86RXxCGy3+ zO?@H4J7_=<4UIjZLk)RVDlzR~zJyUop})V5IkHzJ#iE!GMb zhlU^@*%x%47BwYj6L0)k4ST6cQFbZ8d5*Pl!Aanu3k7G|NC}1o+BbL|sStxm?SkM# z;XmOd-lh!Lh?+*6u+yvwuERKfZZW#2pxg_;vdpjK>9Mi8#r0|3CvYE23q9J^s_jJo z=1?)qWWou9`AEmmlRXBD@B2iTl1K+WTv4ShHYB1I#hp@-NDj`$*a%-ZVY*Y7m!rq3 z(Ji5h!`!6!yQNd5&*vXJ{ldfRzWWG4NlJF62SqU8enG$3J&gOu0N5hLN3ANFumC0i zUE}g~6Yg$saG|SOBua2C7E9KY*vCOF`6c1bGUB32G#;s9q-#RD+kE!fy9-&L>8r2mJL+G$R+j<20NwRQ)=iIzLAL?)E8l-e;AE4_?_%UmDA>+sf^4`($X> za`0Q>J$$TlSU^PPPeJQDE_p>?TD*z;10w%@fa1SuU>?J3&-9)S!?}_}9GT zFE?eQr9b^X=emEr#so@3zfXZEz;0BbJyBZ*){}%^(Ev_ysaOm?d0snLKNXLm?!Dqtfq?F zP^zqWIXNiJv{&4dwd;>Z_U_%BFu-p$ydRK0C1+MD6QdpA>rz`Hdp!cHXxNNTn%p+@ zdcQBmM7AbD>bo~*6rDti9>tc-0%#9v!Mn5X{%DwV+8J-e??79~r`u5QD(bSF8N9AV ziQ9k!(Y;wElJf?}+YqD)!<-QSO@y6Ahf)K3Rgsrek-G@nMC#Mzq<-yLs-x;x{-G}d z`}I?eq|SP55HSqiiMg@U&I-N@4eTd7TxUUV`=OC;VoPhByBWOdKvN~L?iHMB2JwT) zsjh>hMobI>qRn(HMC`mn^+}JP)m*=DK%X6n(pmlYZY^6AUQsQB6MG^NE}Fya?5z4H z4JMzS3tpmq*{H6hc;7mNed%$z)orczE;W~TV&4o>J!8)N-Bd};WbZofDtt*v37cLK zFp@7DoHLwziNo93dFA9tyYJm`)Q!v9;;%m5hit%q%373EOh?Q-Ow*c&C#YoBGm`$* z?@LMVEpC@s?G;P2m31CbLI_-L3BcODd8csVMpAulgaNUc=boSO$l|mtXO`Z2#TorlH*wrhi?xt_)*Gf>IQc~@x9n~x9hITbe(8^;2lPjvm_6t)5}c!)8+w$c8IX#xIXN0z zkfNk)36s3WHbdi*y#Kt02Z+s{QtR8m5}i99=NW`TDl6doA9gWQ9Q;_Il%SUO-Y*(4 z&Q?7~PdbIKj;1KUe1pRe(;_7{P9oLmU-#*Y5M<-5bD~&ndu37mZBgYK&oK&fSs1QD zVgckDCnQ#?45)wY1V!6lFITsEI=dM?YfYz3C1rU1-AdaquUkJ4VqPz$-1c&O?~WGh z3kWBE&&tX|-O9XMEBjFtq7U;zGfgLZDTaw0?l?-j3z-h-#ODMtu^p+$FrBZOEF2wd ztKGb*UCWqbh76sNOeBSJbcnzOvJtA?y7gGg>dD=a@hpu8gN&C*0kB}v}!LWp6O%TrtDnkDECB8dOKm0twU7Mv>^h*t`Ege4kVcp zQ1_J5da8~(lxRMmKlXogqn5G!(aPaYLm|XFP5uznWGl#)uZ_oeJ&`Mez#aMbN0TF) z-MzL<eF+A1&ouC+sOsp%jTm#p9c^_8Esj#EYtZ@k&_7hzm4uU^Id*;p0un-8$Xs=OvKq$0w29QekHx}CRbomR6s@@eaVnx3CjjXT2P(9#)-S>Y!zdUZa z6+I9c46NoKGc!5)_=wxQP9C1ji>&@*8X2xQs3QPiSHEL~S^Dnn+a>9EuIrIeQ3<6bB@A_{o}M*zkA9rL z?HW6xrrz2N@Q^vLwdyuUpZ*-3tsI@)k&Nb9&HRJo4VWDr0Bd_3>l?FBZXr+yeX<2O zBIZH8d_!)9)1z(sALd(xok+!le`D(qQ(u+N?0G2c`THRga4?~^3O@mC66cP|)(K3n zo?Ja4okR8H{#Torq4@BD1Ky&^s+1k5?}2gsPHxAnk_J7wtI>)5V85~cK_izxd>z^Re z0FM}(_u=lc{p#LrQ;y+Xe@4zqW)Sb#b$M^9vhg^dVVs*BJ_ISZoR}^>CGouwwd#UhzyGhC&$;K^kEJz)_`r4%MId9mGuLt7`72xd1?&H@Y{%6h0 zM&g}3U_4&DE}Ro`uN%${|T~Eo;@4<@gvvA^mKM^ zZam0mv_Mq72+%&-Iy&Y{ec2aw-^xM##5>R+%x&2HX|4>S<(+z_KHNB2dvP%_(+^91 zk3D7h_^y)?5=Ik{GI06*S*=`hc`X4zhU%DXc_kVp{C~o=q{YR{u21Sg zi?VA~I9OO%?yKd4-7rnx$vES`dGiJ~qgFUU0GPX^WJjWyWoZ*7?XPHPkh-o6VG3G+ z*a28#s*c}4&hrU=bco@1n9ThA#ISs?-MK??`1@C2`-NWMf`(s$yp;h)Kcu3*VA2Gdj*;fs1RnL)0~V<0gDch#Q=a}w}{-Uu!_5-#H7tT=g+-d=hVYHSM9}kH!!mFyP4<_n79xe?m6&DwWgoitOOGqF_MP^t~ z>$%b8cR~#_TUkqs3YJb}lC0a6%pdF$68-5uW@c>D)6>BADrF8aeT+f`r8e=g3oMcs zuql-r!oeaFzJKiNc1LWbeUGH)JCnkJmm~^v$O#q##sJtWJR5NQ#0(}Y0O-=x!DTF< zA7#cyj1Ntu>_q z3chrhM3LwwH8u5S69MZKG_DV4Ys`10MD0!bu_D0Z6L~%MJO*D|<-W-wXi^sf?R~mm zYzFOt+0hJ$)?$ZA`JiXd?!$Mo^7HYKJcCkv2*|g>UhV9&e zVMy3x%K}z%wGr`|GoL^$7CSH80>r(fXH;q`o9b!km#+4!SM#6DeLX89Ev-M%=-1eB z00U-p0zABI9VG&{A;FV;$;BpcG9@8_2PeAm^u#M+n~#rg3&dw`16X$SdfoP|w&H%9 zIOQu>W>r~z`W)A$KZlDV2S6M0Vi$naI+!C_7>}6@;^%;|NOf(ZzSgdEm}$Yr#%30z z@L1?fDiP>#%Dj~{tCOoMQ*cj!Rz^gmc%uHD&rZLdC?dnf)iT#%AzE!D#Lu6*S05Z4 z46Vaq9(EfOz&rPzL{Z*-!>oRxWY}&C=rm{1XhoUJm+N~@C|{mV$)c|IU4W(ohV5E` z@^aOwp`wBogUmzzj*|R->Vx>ThCge~umvX`8vt(C^{A3JEF?0rb+vMGP1;(R4neM6 zyB6sTTekahe&rL$7y;Ne4Vr-hfcmusCRtY!c)%5X{ns4_{CWjbzkmJU6%uNL*&zaQ zwMpdbhQsodd_?aKxnjY+$cTu#pL;_Rb0@ATzK48Ql$Fhk_039$fnGAo3@kT|6JHLS zM$kB#x!StA*ogd}6)`R@t|}v95)xblqsXnhlHq6~*&^FP!7-OXV@#T1sXsSy#{lwt zbNUpx3C;m*$enm~ETD{^PzG)&IJqMb3>Y>60TQ9Q4Qw(XKx?*U0B;ixcrsi!ym|9x z>ET#3^c|?i4+fJkLjz&mVNL}hH93X(&rXO9x@ulp3INHN({o;4%2 zrh`0$BqS}>&I`i#TS8PuKex27fue_5LMLfQm+Uc5pJ!6f0E!EF_3?}wFuky1Rt7Bb zOPxvbJ|pQGii(Q$U0^#Xz?m@5hKBSL?2N6GF1dUH(@4a7AGYXzsEp)P?QZn*lTrx2 zlGbC^`|^wDrF{;?BUvto?JN&IfPWFxwQ$;>vA5-$Al>)mXy4KM@K+{4H3<-IPDwB_O}#hq zB2+lPc65vnRAO`@ux2s4u8oEI0iU6M)f09yR{53Q46tCq5M$lw5NbqQh&I8Z-I{Ih zUfy{v?Z~maHXdGACkG}b0Vq8#K`6>V+yQ3}hbDFXoQYCsZI9&<0ady@ux=X(MlB@} zEkt6>ek??{z$g?B=@|p2u6-B{$CD$E+1Xi)LIC^nOJ}ER#{#wHpElUr4DEq&7$Z+f zNlAB_DtQF#0|5Dalh&dRI}Owmbl18$kg&=#ec+vjS%H&UC%XsM&dkoBsj9cP-1%GY z7At%;QskM*L&~o~}x z5}dr>m!B;%XxhJZaW{2( z1Fy>v9UCxcYEXHY-w-D&&|ip&q@Ez#l=CChv&aO=eBpU;DJK;7KwLo+jBHSc~uM6rQHKIMH7_$myI_EXUN*UofJ$JgewpUk7D=02xR{oKCvxbSch zN>9Cf9amZA6LsE0j~)nN06!x*S<^K1@K^U{5GME=6sXeh%T&|<|MLGktMQq>Mhw5# zMv!VCMI@-VSCJeWwWjHboSYmXdLVRb%ZiDax$WK9`YUpz46>hZ`N8j(FJBH$Cya~c zXu!ifYR8khflB&b<{j_w;GO-!I0tnpI@j&o}26 z7t6W0R8P;TqbNXpP14UI!@~aV4@_P!qvo8!P78ND0rA4BK_<(@{6aVIBP2B-}T8Lk)J(kWEcxoW>T*8b%lotgx z?%A$gj4CgLkbvM)SH+L^hhW)*cic>`{NaiDr0I^|9VWH!r3&qaK-w`&G9n zbcKu)Sp_s^LGW1@olY{AHQ=KaIV2PYduhV^89y2E-%T2A^gJEEH=BP6G$TeaF`JAL!nORxtT3W&R`E37gpM&FMM)-W>8av=a z|L;xxpSmQf=v_tFQ2L_``^iAQ-DXrHuH^k{HSt#{dvV9ST=gFOfPqIC)(Lf z!0sD)|K&!Uxa@~5*&U=+&nN^u;QYQp%>oO<=slzbuDaPkS_v!4Wo|9Hsx z)}y|V6ft-1THBdiHz6=2my$a<^}LvtD7}Hi%saW5bg!|RO-YE6>u)VsM8wM`D)>UZ z{rlvdR7MdT?(c5N`QKv4#>SfPl9yXgl&ac-qjz<_AH6r%v|QQG-SPFwhnE}d1Yno8 zk1=YGyRCf5MKZCq<D8qUr7HYa7W?KD=B{XA}@15t?;CQc_mdpUKY2 zc_1RvFzRnHka9RtCj&aSdyo4(fL-vuBgY6;zM&4AcmG!R_!s23cOZh`Qz&m@{ID4l)*PQK2P@=%(^h;6cp<2 zChF{spY8!ml&t{vsiHx7@u;H73j;(#GEQ?EX$ng(oVbjxkC!3>aV(xo#Z{Oy2)P|Gs$g8TVZkva9wc~?5$dm=n@_RhG zzBp-O(sG0s+}>w9F|&e9Ovn!&Jit5)0gnxvg{VDt^!J{85^1?+tD~bM@8{=i?Ch53 zKF^+E5E2n-ZIOT{5OW6HBsMOtyu3W>+1}jDRm!io9e=)ir>ZXg=&}(sAIgv+7qt15 zc@At3gGOL(9@N^(%3*7)V7zDE@0tq}3v0N_LhWRG0#8Il=SYgJ58?UJ3fZMmacG?5MxmD$=K$5i)uH`4I|F^92Ko zY6`5f@)4(QC306+m!h(A2O6Evkfk{~{I1&{z(Z%au_7k;B9|8yVydgFTe*J#b7fjs zcZZZAz+E-NJ}<;8AXyr`%l6R`a}teOmW4qAoGQ}I9BB8TeWX3yjM^6T4L+G#J1tL4 zs*$t^i&VIYK=XV~rVd#o<|QC_rt$w`8e!spZJ8a0HV3e+?o(?!iFprRmH2IetsICj zgf)vSE9a%@pP4_}YplR!p{(wo*{deOz+eo<^gv9E%GmFcS@L>^zoto6ZiQ^zd9|{Z zk--&iEo1a^X)FF-Ig)`9G>`y$o;&H0G}PLEy}zKq z%kyer-^C>N$tngfyJDFBjzU< zOwr=i_=mp+*99~NgWG9Ei=8*V2Bx~{rIG*l%ONaIByb7>qTv0$G4W}&U6GR`-Z%km zq|g8TDBGHIJ4-DEkp*n7wls;>L8+oStpB(LD;s25FZB97QIqM%t#37(6tWfme)A}9 zxhFtu4-yvE*+XUksjh~!wQZe+pM3ahv@wa0TWwH7a7j9heZ&u<{UL*r{RawL3+VJ< zw+AXIK{rPO&gaSK?(fc9$4jKmG8=Che3$=zD*MNmjQo)tw*P|%tyiZ@_iry4Yxux! z3eEs)p3o>tFGfYqkIKe@q@e-r_z)oC3<;9i{X5l zY1ICREM4_dUOKcuvukMp;&A+{6^jSr=ve3$-pda6mXZI9ol6k&dG%~tZzC)1+bJop zGs_Egg!jP++v5o5vmG^l*|r8q8%U)O=ouP*udIKC@0qfmh}8E#49moBy}-^0L*sS# zJyD>m&d5c*Xt_rcv?ryrcnv9Q#x!sW1*>y@arp}l8NPt64xA6Lvp?MbI9#4q>8FL5 z)clw#amzkY-;{jUW|5AtxoLL6PYw;n3Q&_Yy~t{90}eEs;FL9NTBSgAWo=*xgB%^Hdz)ew|BDW?C%UNG_^<^CJfC?Ey7Xi zZ=5QIj_2H+lXy@BQKfkf*o1-oYkMsVEQMihXoF>7e_4-8de%EGNp|0tjd*uQhdt7I zU+SwS-XSM)lPExVzP;E@Be;zEci(3tD+ruL#HhpW{FjHFZ(fhlicW5BgToC=mQ?sH z3ccG4()f}bAa$=R-u&w=5-K*t$n)v!#Ucmk;5e$EA3x;keT%eQHgTKP)2?KmtfRS9 ze5*qJ^g1$q-2Ps<-yfQW417@M2;=a5J6@6Be#5EZ2>Gm;2Nl~##-$;ooA(tuI2naf z-*;Ad)VcwDgD}K;gTla&Q_oRr6A=+uGCgwjNv2&W5c2JUf!6}}g+5kiCrr$TRW*M7 ziZiW*3!qN;^Y|5`VbfrHfdsMkqzKbl&18{M>nnAAMnYotENOGJ>mVrsg<9gF@rC)J z%?QKa?HcnEe;NZ7V{m7NHPPMkScRSq{Z$3xWE0uOgj%!r#&-`vOCltCf|%|L4Y|)U zvR`spOxh4l#@H6X83^Y_JUR||8V+el;@fHf-z0-$;1P1;a5jF$dbg$b^}|^i(mvwO zEC(xb(jN7X&PT05$AVG7pjt*`2M%%bDhjipw}#+I%ZHHPnVAQ)+|zjMiLAEMWwb0! z5tG9$*<*R7iZ>SIOw=4)D0Yn)p9HY-%g{<&XxSbjc1LO5{qcI3rVP3^eh_|G4*%wMm<$VOuOR#K=hLG9zHpS~rHR&Lb4{ z;geGow2FFucf-%?`mo%)?&6}GD&SXgz`O$e-hbD9C0%6>O-I~#eZW5)t1sR)ro06dRB$v zRW!)vW@}LyA`;pUKaMR~U^E`_0;tXib}aC;+%s&B@`o{utvN|yi-RWk(Qel#njumQ z?0+2^>t73TEy}P?(WPBfpLKrJ9}veHa6Eu?wnLDPg`2oaDrZPL0e6&YU;33^+phn> zlY+#tB6)f)E$iEZCv<0`{wwXRDSz!4@eyc`iTbj<|C?7hS4zih*Fj;sYYCsw-~LPYQY`^ z$Ef+1l$SC}!q#B{+xi zEf>We*dO@i88hw4IWE6&akU<;wpPAb%8foAL^JY4As5jI!6hPq@Bh>+*=}3izj2sO z#TPe?0$qnG0&@pmGrKQPxTUrwavnt{XSN%@U87nkZR#ABlBPy@oE)(6PQ*)D4k8qQ zPk;a^l)6LjDsq}j0M015G9;c{<&dm<(Z>%&tk{YGC%;X+t6M`;GDC`;Fzs(byrb$_C%zx zxB`pj6QZWgw|+sZV9f$#1dlsUdI>{pe+e&$eKUs5pPvT`D{3GX%hpeeibv^U&euci zHhJ{GuRDl)CZ9w#N7$Q`TnM-R+$f_Iw|BVSQ`FbQ@O4(x}E@(&m#gg#p=me!YW z-G26~7r_QV@gT4rFPOLbpy_^h%5z9PZ`jnSDL!6IkiNZqxkxX^gj5PP>|AAZJ_!g! zrnnvV7}1q~9cY%#hWGxIy*P;ZB7)JG5Q4f8?T?)1qv0d&kWoL($fYvpN3fX+VqBi+ zb(Zk1z>SS}FSWEDJbb9MyN4f>1djTPMpFTs--&L6RE$|44_bYGMHO1k9WJ-hxWh)j zL3pi6%e@5fNptO5U>BDq#{{i(eisOFtZMR>mh6Fnfgh8T!)NT8RCetMV$y4(@@Y8a z<_;0bAuejF3X=o}7Y$LfG?&slB6v`Fonb3_d}Pjsa()%jLRMS5KA#l71cHcdvpOp3K^Rh63V~ zEcg9C5NKzoTxVC;*UU^=C$LE}jlW-)lHdLK0sV;Yn5Ez*Xu_Kh`rA?*ZGxWf&qwo_ zchj@8W1t2hG`a0=jdj}yX8GUWZT$Hz#@)2@h+5R8x5%4D#0gouh{X5$?6hVE#I+ha ztfl)@{PNiT?CfTdEmKt#cd%-uQH1i^TGE1o0^a0bxGl}*J-90?D<+#GITts_gE3#e zgi+bmBjn`dl-Q1pjC@QJ=_n4<#VvJK^{GV;!t(= z9IqkVU*dgCDF!RvTLaZaddEwCa1I=nc~6wB?;bpEE;sEs_{l#AfdJ0y>TEY$#CgqR zIP+<2>CEILY`e4x7j)9O(ibPOMKpnrA7eCS(>h&a7Mis7HpAV1AtwpCU8>n+A-8vU zEC!u`2nq-+_Qo*2`sU%d?JS=~kR=}}>*v>;Z4KD70?oXoFV>|o#CMcbRKt^#lUI{w z74`2_Qg6IS zhsWpiw@z&7;b9LQmLlSM{!Ubs1vz}6O)Z#^2*tN zkC0Uu`IpqQAL zfbVBd+3EFMBk((n=bKv<=n$f%_B=0;=vB+=C`?_m|KZ_0r_32*l|~t%0s;cUu3Im+ zm+f0_NrQufH>RpsuTHl=q@+;8!|W#?aJxY0U12vTIyOFTHeGEQcGmw74tO|5F9sLHrX_(+83l3qh(>PgW9BQzLm=ZV1zT&prcMA=5a| zLM-HQgZ$Dr94bT4?5*EA0b?)uZl1~`0>4!DeN7*rP0i?6x-$eZ=Z_^2J$`HHv>ASG zpQ^GjKiir58+yk{jYnJ(3N}tFYH1~SWcHlxE-e!U>)xO3`Bs8HjG;%_j?{Q0w8Xdlx;42AJ>`WoWNKI^;&**~#%qYaUe zuWC}NHtPr>2nYVJWUZmz?$@B$>B~oitjzJknP-X#2FYds&CeRpb6^SkQf`pxMojn# zVQKc~eLbmYxY%pPsI>D41qK|1U#YV0AP!M(#lKWd=G3!+O7cM)zJ#*oO9eLCNeqPqciekD2XopPzpkpE-zwK~#^OgNeIF%ZjLISv+r zq;0wIi5N|Euk>ytuWa+mFv65u0WrXvt)A36Xs?Pu6eC}qI#TR&Z%>=>HU_i_;-Q_+ z0^B^d$QbnvK1)$l8{ZkrR*gb!)0u7MDdOd=W)hNC+d2gPx3EPX4y=p8fo1Lvx}h3( z38KxITzAl*r0|!KlMsWNO8~C%C4I6LG~@4t=f~qz_)PmYQ=4n;=^W1ITGgZwWMtsr z=?NZ!YdUdOXIqWvmQ_<)=t%@4)Mx<&(3iqR$LlyE3I+cFV*<}Ew)f0=O*sBa;}31V zrzHi)Q&9z69tT*Lk#x*6CqdHvFgagAK0PlU1hfJ+)X3z)I|fe=FYILEJKCIBb3N^c z_JPx(M6IhyNY>-9=>6|x!cNG&@2V{1mDs7_fo_$4r)!M6H#{rf!gW2 zcaVQV4!h>5%We3Vjq5Sq!(KAFR&%>u*&uhF$c=ucGfaG^ZXW+*etUgKrerxJ4#XIp zD(OK;3A&#|k=eLVWM!c(cO;+q(Rh_Eoad8&@yHQ>BF2KE;ZnEeswBfRAIral<~u#t zQ$Hjb`%!=(vlTdighnm`6#N2UwlL4!1n$XZq7V~E^@3A3?;GS?{UXA)g`)0I;J!?EGg=j=~BV1}JZol0&w15PT zfT0(<_Rr)DVGOJRz_OVC`Q}-Fz1KuQK@pmz5WN(L#Vsu(g8-=A$fYH-2Kxd`Z9>*q zh0`9ouR9H_rd2O%CG*zu(}bvhBfPxwE}w$tr6H1XA%6J+HTvF3Bq<-Qy#mZVs#FUJ zCBn_V|9v<|*|*Bk5&Oc7XWtV@B^TEI(YG3Btm{vNTqpxiR13-?WZLD-Ofru9ptgCyb%% zrAbRkwYIK$35UPr5%RiEGDh-TFRX88OAT8k&LOL-OON-7)F9{ccp%c6{{m}7e~P#O zXRO`#3~Z(Bn|JS8N7bYvqb0A<0mLewve|9E16cwNNBx$*fdP3pH@9s;r_9plr3Yht zu43eJA+$wT@YyIjL8iF6ksAoSMr~BgIutsx;Mv}*T4(>$hf9x7nZm5iP zkkkTe^0F1o@b`BdD_fo)N-OPoY4yI8W2ca1L=4QHNKHH-7>mqoxjRz${^mHL9);jC zrf%_>m5HUW=PVCOe2rTaFU03K61bjGwXPlze5*;}2hqKU=d(Sg)*b> zz)g>@mcwl$sAY{tm${#KR&17`BX&^+A1QTUV_Xz~~ zn(W-%hmM}VD{$#upDNjqqG!+5mG)l#Sy>IGlJL7BK*vO+^~QcxkN?q01dOUA(K+^N zX&2p4=dyut^D_g&0kC{rTie?S_0=rppbeD3-(gqg!TDlF&^0=>ti4wc-ftC-m-ScZ zwkF{)=`HrjW9n-X6-v$quPyO!Bz}6oLDk)U(eFs3qS88&vxGq#2r+Pp@rc?lH%&WL z_~G@l(HteVbQRv?1?VxA;f;yg{-4MmFsS|{o}P~no`{wp>^#&jZHP=k)B?#~C86Sw zlIf+|66#fP>R`4Sw|TEeU)G-$#8vS~gag7BzwU4v#QhDHh(CDJg8_ZMBXF?afaY=Z zjGjUE^FACa>{cfm-uXnv43n3;CaFD8QI^tSP&+u*{|b5cI7|WC-Qb!P9T6M#Nz!N0 zRUUj4LT{6N2^V~=`$_go*HWt+k;djKlbm28MsbQ?$JuK}mmJB|q}8Oz3#a>b?O{aD z>hohb65fb|Qg{(m>$)uxzWea>gX(vRT1p)RUQDFg=H25#X)JiBhoDpT1#rX_L;DG1 zkfS6&TI12|5c_1uR_aPCm1}sPm*l-s&rTFA;1Feqx^aE+hdfdNlhn-qP!ZBvqcd|b z(l4Llp0<8_R-I^k8_JNhhzGIxO{)8&I{((0nPH!e5K>hse4>_(s$kkiPQh$hI6V(!F7nM_f8_iIaI2%6Fd)5RF6%wj&$xd;^xk0ED|cXo(ogUJi(E#H0Z z^_ft83xNIKj^Tokl8}JZBn1eio<4obJ(HX5U_l-;n-Yv-+(EbCQw3#h!-QIC27~qm zpPqhnvDG)U-M+W0Mm7JHbiUM8)|KIIy5jyS`OpG8Oa#Tcz~Z>MIi=RL=A}~OhcP#~ zvD02s$mqz(3j>3Q_wSKGr%H z`X)_A!5V3&5Ets^{lYIUF2(@~bH~Wc>Cvwxf>+SCHM^}Z+A6HtmXS@+Xv8|FmNBzbp%yZE_H%wT zPtCj&1`e8)|7Bt#sn1a#t2o^!#kWe-4a_+yAE;R+E}WP?zl8VlNJ4LXi0GW>dB>kj zDF~#}Yt{VCl~Sjxy)kSGpK$B&e7)b2igWC_+#Y#C{l;${E4SY|3E6v6# zPOOMKaoiknGI4oh0_J7W?ezfdV;|G>?w7IO9V$3z6h!A#qW5k+k?-c4$tuo|nckCA zRWQAwNo(;j%{xGY$UaH!na_$pAJ>H)uU#`U_yTu2y?yKY(#R<4;J|^|Zd2!N6$Nl+ z?YwHr7ewrGQS_*gZWtSrOPydc_p|Neco-!G6+&d*0@l#lp$oLIP^?vO2j8ix_1W3XLLUcs7a zPrZMb{{nDEaH#%peh%YnZsX}CK#_7$jl+vqEm14fZ7$3V{8)<}3QE(FJMSn@JyyGV zMN-1;tvcUu^2g4%ZE^X&xVvz-+u!|l&bB%!WC4P6>U+saoBY{R(MDtOPY*sS_PoY{ zp7AoFBQh{D5>Qf3U)3xum>Bq7u6`16&P}OfVt_S4i|}?%Hz~mqolr|PoO)@<#&$FY z5vaqO9mTz7ozN&%eFA>KdfnQ}8U4$i#_849?|Rk=wn2a8u`KoRSY+yMguLIgIGj+X z>$wmRV!Ro7`SM}?pMkg`t94}z3WgChU8IHa5`6^7?e%$22cFa{bFOzNVgPj$bT`Xi zLoLlg&%L}m(7DWB=C`-KQlU)#YRx;4s?Tq7LfzBnLrzaL#DvtBp8IjOxZt49o?VZh zchC~29-exioK)i&EA`^XNU~L;IsnE8+h5L)sfV)BF7#Q+*HUwj@+2FOp+lm#ecxwz z;aq#Bs%&KBN3FyC4FxnB_Cix4G4GaSZP8yg+AaaCnb-F9*P2te=J<~f7<^waK@#KR zO^#Oj6qS@@U%bG7&Z60L4^uR9D*kF+Q2g<+?WCy0&MGX6?-AyAI&X~;Zu6R#I!L3r z(+=n9s9A*~m`}`97j}y*Ol0rRr)^KlTj)x*cSWf&ER5|f@WSqv{#l!+1Bhv&t`D2< z@4Q#m)-nN;2AnZbj8FEMuXB&KZH&0>Mt^Ti$uwfnaQ>9#yqXjW0D>25RE*f=i+AD1 zZ7K71Ple3ai6Y>FkUfvDYvVJ(ixM;d-z@HNK#xl;46Uwy%*?GOM??OcrBfw2GFCwO zdy8VvrZVde6@ky!u7aLKQUD79$qOkW*_bJ!<>1kSE;=e0HkU5G3IOfZ%(X5>Bu*F+ z#vBoUM%v`+K(_TjMm+) z3*I0=$NV>MXuKp!ycOlHGJDY%8eO-`-wiX^Ojl!oEuphSDmNBThR{*zO%@@sY*Hk= zT^;E={o)6DT$A;?E{-xt)!WeRI|jx8i*%Aas3}#%KGXB85FAy7)d5?({Ve&7)7A%X+^n`D@NM|sOPD-DP)R(Jj~ zGNqV&i%e+jR)UFG{sxQJo%?T^5|S*4K*Un-mnzg#;OX_6iXcXh7z2ueg0f31BqWrT zkpY3re~woB6Y7}>ZrcG{znIn#n-};yEjQk&IHfK)zP~@fdmrVGm$Hw~Z>`o^Tj}}c zJ>&l6F~HAiGC^{4bKSh`Hio`}L)pIdyNJ(jR+!mtTL@VEw^g4RKWFQn(KJSlXLqUo z3Sk$O=O2y#6H)!F!U7M_qz-G?LnTz@J|YK0Phz(XkA(#owno6{1`M3~m@j@dLs+42 zEG!ts#F|`j5MoGClyHRY<);lwYOI0w!4uhI38P{ckQFm^NJ&Opx-B4C-AYb@qF>Wx zNoD@prRj*<07+3UKsE;QuA=%LO%osa1`yC5C&LPk!%xZB9hDiJ=<&z1Jw->>tg3p? zhjr_haVyg3AhZ50mo(jhJcb(jdQ`iNYT~CVd zUYX{ddfan2Q{UUqhhMn&p(9gK9p*hyTl|%feocJ`+0-1>R?b<0_oMf~8e(H()49|Y z&gZi6A_8a?K>h#`Vl&rB0;f>o)FeYakJtJ^iC~M-Mjh(#>|K zYwCAvXH1re(On6may=u}`O0-40+R}-hoeatI0c?;a*JknZCYAbU)zva=uZqy4KCeQ z9tnADC~~W6g;!x{a!-a{1_?dr96RX`w@EEs#wpMo?N+qRLoYYLCa?@GW`qJsS|^YO z9;_wXo1O2?mFtzfv$Sj*&QjpB9AOHP+Ip0ta@>gJ?UOUNW0n{}Ek#x<=Zazzsqy(r4m<+}xlgLcP4)oG9X2F0vnN#yYT+Q{A#NXI7g%2#%K> zlDakNqN8gShFc- zL|YpqJDS)D2^~I7gdwXMhKnSBVg!0NHn{Z6=}(}ds|I5D%N#0gG0w-FH9j!b(FUc| z`b7?R>t(m}21NgdDbWDIZP;10(#55>W#8?$PR%FC*vT)8uWm?``go(cyAY{M#|c0% z|E5>q+zVuAXb5_}-$J*zxVSt0{f*S8I5tRM!>9S*>_pIQ0uhVtwUl6mk~G_G8(RZg zWj5M-Gr>Q?5~z@mg5{(|Xk7CC)?Y`h`y_rpT$RA3lhlY~ERvHe?WKg|J^wticWCH7 z$GpB8`uOYS&uG77xo@o zRgUktzmaqmrJzZRt0SvA@jG7QmsiMJnsDKmJ5jZhZv9_@KqBR@fb!Ckog2HEI6WHzR{HLVW0Ykwq)Fn zFCIIuxAmmdd4(DRtCow2lZG`G0#SdtR?6wN1WjbGCx2?u?_Zc_Sz~^M+rgI#v~3ov zmJsOhv+HtBTb#@wYm*{*>rbwA>`%Bg=FJPlY9k4bc2!vzj!2N`W6)M;yZGeg8w}7k zY~%)JHfPaU8Q)orBiOL>bV&JqBUQ$7elbTFdXOQ?`AqkN{*~X5U6w*W&+X|%E_T6w zMM_a`^)+EK1u zs^M5$xH;g*ouO)Hxbga#1{P9ZgYMbHcH$={g*v#@41eruv<2(G)Z>|%_00-ADG8`C z4}ty~1VO{xDbKjpcJg^NgyjC?j#cPsu375V-kMB3GP!g*9IN%i5P0R=hiE|Q{d09Y zQ$9L)HN9!pND9D)%Dr0GbJ`gosQ3v{Aai~rS0|6!)m$LZy$gR*|SA;tl*56JIeZF)di`00=QVI z+-J#u=-}Hnh`l~u4S_%iL&pj*+B?|&U_tG`i-e~6I%LBZY) zxBt``9~qt-6>)}sp`;h3oUAAK^cW*wj1s9Qu6Y-QIgNGGNNJ4E<(#%hfdrd$}8UmENOsuTtv-OU!$W!|V23CV{%fH4zhL3Ho zeELoDmM>lAJ(mBIj=tqD7!_%I)QQ{cK(06IFIDcGcX9E918|C{SEodDScK7-c$@A4 zZrkLt*Z~suEeeN6kLBc?hE7@VdfKYl0yS}jv8UGkHZzvR-=(#lq|9oSs|Q<&#H@ON} zr4((~c{JQ>5DzZbhsKaO^^gs`xek`2Tc464TwX3Y)9}ZzGRFPc`*QXHF!FHfG^H;! zJhsNa`}6GIEZUcgtYBC^qly~B#P~P^(1`<5p{L$)S=9GG8giiacAR>XWD4}i^@|}? z2lMxLWEdD25O|1EU0vc&kRUd*^#uFh&uMFIrUIXa zlOjMcu~O-%=d}T|`4K1ykkD}9a(&#H{}QM#c~O=Z#a%xcOjZHunY0w#omrNWRMdu< z-&?zbGWgK-G$fD$*xC+AlL#O)g4i{5ow|ao7(-e8_$v1_EM}tmY!Hl3k=b=c6r4X* z45FB~@4PT46LND|sDb_g2m!2o2i`q~AFAHL!6cVRpwxJ&qk{y`?3DZ8`@zAh>fhWw z$eEPfpYF~8#XAF(ozHN4_welhnqE33Z-zZPSYi)qj9s2k%& zP@?!8245eb!CI7mqn$O{XgWL4As1=IS<6XKG_Wv?V5&qz8lBE|bYGQ>tB%%u_d0FY zG4^HNq|8%G@BV)NXQuJe9F+W!KY9%t{qK4I%o+UrPM4Cgg4R7UJkmUN=DpH{rtAoi zqiip}AcQVFiQiq zI(w}hyvBE9C#WB4Y2?Sc*@!-@wyRD}tH0@v|I^=(LXkuVM{hWnJNl9s1!dOEi5NKW!ymIK2d^Z}V zv+?rj&@h^fGN`&2xAcFlKq3Z+8CXvzp%3@>;y8kEh6l8o9ziC7O>k?=BVYinI~$~7vh zst#9^jF+kgB{feZ^;l{E;k5XJws_}hJe4Z#`Ma+YWNYp$uCIS;>ueufj)c6LjcdW| zZ}Grasl_+&9(Dvf(;jfel&ZAuG~DD zPX&Xbnwo-Fqi}m{TwD+kLcj|bAiR!Ca>cq;sLF|)GJ1NHph)7d4UMimDn0$8imfcq z8n=PBg};E&d~TqneAL<7|Bl9PwvGf%iRTHdf*?A#xa({-=ptt}SB(j6w9q;1Zg_E* z4(G;@F;hBwlYIe%JU@1aZQzf?=SNb?@r0ZSVlwi}8@-fmW9slr@<1O(cc zxcADDld8<$ogcDLr+(it{nfwwsd^qk+Bf+`zt5Roigsj)UlwaW*3^B&ae@os0u)CP zJ|YH5jkkGLu9dS$;jJ6ZFP(j9eoltUz}{56oI4osRbL3wTJanf2U0Z0VitP95si?n~GQXG>b z1(ti-AW0GEV_w#;?Y%)?czlPFygG540qm39eaqp7h~Fbn#kTl-&!BE%8xW&rtg2e& zJ=1H&19L!Q>OQ9zd7J(e5mLIJ`k^JeOg?&HAelNgQG&U@*M6=7@tIUr_8YY}ZCgi? zz|HMxO^YUIj={Y8CAmm$Zm6Ok&`lHbqCgbribM8HA;{=Br{!Au4nTuZezQ#nBX>;5 zwnk+=RnM(LXdkY=9Y}5cevX)s5QC0Y*pnVRVSaPD-?m^9rai#^3ocxjmur}PW*rf6 zR8Ra-$l&)^7qS(^5^g4fO)4aM%P&;~6korVjyeNT)5}})yzK2QUm3p{g4V_b56)>` zWS(ZGQgjMQ>dBKKGMLA%L|$2vuhQtQs5H`6%T+rMs0$%nK`i)BYl-oVHn ztX~t9T4@^whrrWVtO^Yzs3HtoTjY@Mt#Q&fPm~M=Kg<%7)M{yEy383v6s4MU3iyL> ze@SLeoAH}=^s)2ayJHs1;tycmQWWtgn*XG;ds1h&biQ21{);qJ%DkXI;Z(9wS&j+C z9hAI)p??@NSx`KQtZSGX#<=n7Oe&(uJ{ub2i%{|`Nt{%8>7TzFDTY_tb5-`X^&zt9 z^K}13x{2pK<@K4WtcEV)F;7DY1`~f^KHH7>N)VO?4nj67HZ)t8E8$NP1xAYv)0Mp! z(zE_F+4lQejPCq*NxL*OhbSKY;-5%=`|7^0!yM&Z%i_BDW`^D#WL3dpPBD&a7}9IE zbZBoy9ldUMRaawZD9~SmPtXTyD6+S#iiI zOZHTW44#M+e4HX4RlefVvg;%G>G|I{ib$A{)}#J(eM-yiH4#BUs5Rt!Mvq}DNUDN7 zXuf1Qnrjc{P37hTw(chNnkefdACV$~p#e`4Nann&S#X)jNUqP6Vv33n=nlDm_&`CMV&V{4Ng#)NvI6OqcgD6D7w(qGi zXg)pMY|O1Uk~~+5na2`Rxbd6?clUt1zruwv-oD}4wMxHR<0=t4Ql&+5I^up22SUV; zv3XtCUc5vGl;Hk1B=KubeA2ZWTGUXKq$a%j-qAfVrtAHu@9Mwpf|Ak*@O+1U_qQs3 zzOq&Bqx2{hG?6oqpiB@mcDnSsR*bK5eWSO~$C4aNSdra-y&oR!R29eaA1#3Yy|>A> zHa*|)t#2`@rS-!gukLno0u=qoYR2i5nCtV*%j>c?whD6D7C_h4`&SYo__xe=m0i1- zStClSiodIy!w6|`7!})Ei&;siH0H#MD}7`Uba?&;34rpy5@M56E0Z&uR(i*}>a0k< zs83#<45o?OjXrybnS?b2!QJvel1Q*gkq0dxQbUXznuJY1K_l6T%-==D)~`Wfwoa7I zFGxJm<4PMrP@I3Qsbk)?GX*5jVT<;?_!ZsrDIy~sbP#f;v=Y`F!?Ap+`kO}3>=S z5Yq(RCI30lx0U-_ppXXpw?N@ojyx!cq(O>6U8fzQ2uT5%yB~DPTyXvFRq=Kly=bMD z{^KT$PF;GA(&&!%!F!n6j}SzN-M2XjEBX)Vl2m<4{6DG)5}a77Cc$rY0@>@e~koiT-?OVrui~5XGoV zOtsgX9k4g&?c_{@@r7gbHeq3oP5l$(6ggYdN??7wB0gtK--f~vX~3T$Xw;*T7Lo6b zXS+6C*OV5Z>?%-;4D0>b9xYVbF_!X2*me^K$)^51bGMh`k~{XTB>nbV%mSIoF-B5Z z<*I%`S?6$SLr~+I0L(4fe}}qF9F-r<-#-tnq;r!*d6}$|ay3T(Php+wd=6+eQZiJ< z!~S;t)%CcE!O2Zg<$g8}C@OXHO$VvO@@e|VV@)=!kH@}(Y+lM7BLjof5<0zzLHJrI zZCoyg##zU}1hlYA0Gg+U1Y|#GxUgu}=MX_VY#_mVLh`+ACgyu0=@=c)N0$=d?$Ooy zK4$5|i}Zo5O&^#Q=<3c|zvu(zZN*04eFx#UzEvrL%Za4TJZ^S2kcBcJdK^AosL?4w zzkHT<-v1e>X!aD&wzh{1uBx)PF$8xLCqc#T1Sm-mfnZI6rp4u5BVXc*u z?FKmQRWne#>J4v|S(|$IikNZ>U+^(ecm5~0K{2tzHouan(Y~`P+nhA=5yury5GTV6 zH7uEi4AIq{Y%@7%=09|-KH+^kPx|fFl{BK7 z86XA4t-Fip83WJQD>U4N=^!RRQ@D~a!FW>{gRAEA(Wztvr)VyXe8~!Vc({+K<^!&q z6&+A2*Kax#8zyf&pE>_J^|qbgSf#5w&bc@u8?7 z$`ie5tO^`FBj8iWiu&hoDva1G#5S1w)2U9Rd`MwzU=tNWhd3zD<9$r7#EqHT8ge29 zB|k~oj1w!OeM~kEU$U?KhJ|J$!fdI)95PprM8T7%%!9fPB-2z{)QRsp#08F7Ykfb@ z?U+!eka2Odzm9ng@|&`+oEohF7|?t8<8WQw|cS(y7O9KNS1E{4rxaHMqX3 z_yaw&%G>(sQxx7+9*S26<>ap8yx8GfolO(ZJ0gA0T&=9P*ljU?lM`_1-~Ut7M-d@0 zL&s?o7HLmom_R99^U4U6m1i#!mk)UABMl9I@P||83=9v(UV5KiN#oI8pCP!<JT57an?^V3*wjQEb*nJ*~^pP5CZ~AJp@YytzmRDG>5A1!LuYmpJ6afo?B5QN30`&}&Z0{?6p% zkwSnTe3=z#v7rdErB_}9fVTa5pDXmSdWT)EiK5H-bkUyo^Tz||b|mV65uIY&lfN41 z2yBpeg+-#=-MPaBob?f}EoHQq_^cj~87*niC0qpsz+i}UNG6bjH}1u(JEMVz{A&Ve_TO|D&+84y&sB_Wh!fkdTrP z1VL$#?kyq+f`LeviZlXJ3J3^FhbW>F0wN(LNNl^)!rO$g91?D1VTucGa4d{R3fggdN}ebqdHaJ2^sy8`vgD+u+}uW{(axV(gxo=zm=R7 zO6|$-_UkujS6SSU^EZO;t|SHcR2>iypI9q5q577Csn=;dR|v_8%TqZ$GTt5L=)WD1 z-I9NSvHv~?J`wsU6JCexQ0ohSRm{^PwdfYl5Ra zoi$19f3&X=uIpR}I2bSvYS#3J0eQg@b*0klJ#UJ+^Xnp2iJ%%x5rmk=+khA7YNW!1 zWhiLRivM#{?u>u}o2#~IbS8d_|B7X+TBt|dd2_8^KhBC3{1l!j_F)eMLwO(sO`2KS zPW*qjL{*Lg14|J?40#5$tT{ik+^eE2KH0Z!(^hlfbN$;#=k3e?)>G@9cpeZkWt@6_ z(>6PScZ=%lcdT213D!!8ZF)K=5d14h@?I^Cj^W6I4V(=IkxPa9r>G(?LMp)YA7#KD z)7Q_j3rGEruufgtoZ0F@U9Q%1;0JDVUJGq--K5Gq_V(C5LwBcSi{d~=L`X93P4Z*R z4^dGnEg|kJZakXr&FxD=1|K)|2kTRBS<6uLUEe#sB>TL7Yl!hpMU35*&d`{Iz|a38A|k?UMr^x8p=pX(?SqYThmRNu zg^lRD9BH@jkE^6%#Pbv`+K#@_@i{(FF_37DA!vywEiP4yi9U1Lt-WQr2j*IrIv=tW z`0ffhp_S;(ogGHWV9r-K<$Ne;6nsk+L`#TO#+|e6yuetLKq_wW9%$GwD*21hy)5>OUFp z%@^1?F%d|l{4o;{b-PC1V7VNf2)_?{Y*_ymTb_DkvZnu~py8BLIOqKZdp`sbmiv)A zJ@R3;9nuzRYKt^Qy^`SO<~=5A4-b4FBlf9eCCm=KRfATXEW1^l@Fu}}#YvjY>UvYJKmK3Sc!9CBGbdZ zCCU@N1-HN4Z5gh=kWQwU-YAx}knsG;wSnp@RtX^&CO-_nYJhG3pn7go56-U~c_TaA zt55d`Wc0Xs7$}6fTP52n^P22wL#&vn9saZ?BR=$(v7`1wZ$C~YCy5INlaH~04E-zZ zFb;fyOiKcewqH2?GTvLa4{&mDvN^*4hvYfQmSCjhD)wlpyv3)_1$Rb=wRiHAWt2NDnwT`8{l&xIfoLpQsa~>W@hMV2? zvfP#U%eHZ6uUx5K|JME3W8$h-#+}&(Z-$XWD`x+q4ttT?k@*z!8EW}oEKay!gU^M5 znWGN5UG1vm%whSSj1oV}6MKepBpZA6^;83c&1#lAAMPVTdq3W1Q^xW)<>>BepMfHz zpdiepXSg|E^~<|A6Bv5tn3^7h-QXYDyC;Qfa!q_8CYo)Vt|vm-mKjhhy5)G5DoPT* zbQ`2B*F^Oy6W$TFU3`K2?6oK*>NFDL;5ESlgN>!h;{xYQ5 zRaoB;l=pzNy+S6}j%jq7kk5$3c8CO@;E?LJ$6-vmQ};o%{jcr9m_H;|Xw#I?rdivP z6keHmSbTAp)9-fPMK_9K7x%8&U5)r(V!4%y$9vQpZaL`)Fl?rN6efK8_Uua)VX2GF zqVIU?=Sm|p^ltsu|K5!SBja*RlVSK-R9cQtD{4YhQ8xHu^yyF$7d0ItcLT%nrs7m) zIg*X}O_jB`ab(Pr?MiDz)k~2%A6qk5X|ctrIq%zy#S?lh_IJpDzoQyLkcekx?XDZ4 z>?iZyhMex%JsqZ=#`lc&JYj@auXX19k#i!n9AeyAQyHCzct*z`Bi|~R)0q? zAA+N$rNt&HO2f^~U3C3Q)UTxxF-yWBA7#H+SuM(Lcj9GIDwfPAcQTyPkU)d@MFp>n zX5Ob&huZt0BW((J%gfc@-vD{Ur>d%WqJElFD=J7jA+=>^|7{A5q*w5#e+?A=D(no6 zf|3R6!uYX!xcH&Ap;Le9LiI(QN% zBGY?MmbEPhYnK;&k?pqbv%zEXNWd^{iA>dZ9)m zIDCSFDiLSoguD(OhcZijtvPa8_>D?8c(t=I3Gz?TN@3s%j4k%%6O)nQBhaeEoSdAR zJcXkjj*}qlYmJvlcA9DJt@5s_uZqxZFxKPJ;ThW>yfD~oI4~*YnZQI)qS-eqe|w-b z%Co9tM!3BqXrS z6W)iLI$1_#bPGLSRP^*tTie)-EiHusB|wzX#KOHz1M9XCJgufdilIx-sb$o)-r+n2J$-#hlXT{J;JEWC!FOnWGHhH=qwVxp73>M{h=d-(=k)c75ZOaS` zNC68;WkeZAlL88^BxcJjrq|XMhM1FW%18aMD>h&(iJ{j^Pj<_&d^DBcHltG_lFn5B~rWnKAl&4RW{6bv#m`A&83 zl;(UT%lRPxTQwMN>Cfy+qWf73MF{rh-4A#etDIaD&LYze@WBvc896x?qcYbkT3S(` zW@z_qKin83ZZ`gDp8hoWT{%9EuJ@Fc?Dh{HX6Z2;6B8(0fn@jog(D9UlHa*5bFGM#3zf~x|ODAo3$lZnXIh(NUynT(&UvW z#H>vneJ(hUXWP#zDJ!#I)EtQ6fY}JNgwi*qp!ijWO?1$x`UM6Oqu(Nc)ypzhs4fz< zk}H7AU)B0iw}Qx`rwuvDAcXiv64u>LRj-NSzMT~nIrZkjigkHSeqv30OQB^)NvyG> z+wn?7-iV+R`k~h%&I^ltCJqrPyy803id%W4A8uU1=c;#t;mJ|kBzoUQ^By;3=}pQ9 z9GWg`8Ua01p;U)vTw?3OoVx|7#aHdCQj3Wt=vtNawggn2@O;W;6IV`=@EsW%98?@h zJ4^<)w1z0aZAw{5tIcz}M0}>shhx$+L>V}=?tEPAJ)6&XDOQcr=fMvU#sXxZx{ac# z1z$T0k(E7Hf)6HNj|!amM{Y9|AIH_iv&Ay03b-E*lR!s%XYEJzi#7_ zBgg)C34Y{^1}>RZ#e}~Fyq@gsUBG2C8x^IJ!karuS6 zD{Hb-wRfvsn`Q{6oUkD%c%4OF|EqHQwu~2ZU@&g9K)09I1i9T>PeoaC+E-S$;1twT zedGXPR}EY;_|4$FB=sQTXraJSS?1W zkN@q62540i4GF%6N295FdzaozZW;}7U)MDX(GseS&4udrr0R`1j7FGi2c*OL?I>{H zijSAx4*C13&KGN5#rv^3fXsMxZS4|pGs`O~IA!di*A9*pLXs-e8WU;-5u8)0Viy+i z3mM-$X-ukoN*WyPb@RoGSmzl*kyEIG;x|7g1y_C-AE|T0F-vDddhmH$c#mIbVsvnKO>f&j;icjDL+6EFN##=wUd%hv*GDZ>CVL5K= z`bg;M>ircwwG`)`_O7nPbG)YtVb4KK5?|htgYE4fTrPMp#9lT65BcJT%+yy6oHRTYXqxl3aTFQA44A$ z=g%==if4vOFG_g^MEH7-n^_5(`+i+CDqd^5v7xiSSERUV)2ZQZ4!lHWrZgWtB&I&{ z2(Q$g7SM{l6$bmeRY#;diz114c&)zNj>;o*yVxUMGU8U3V5g5Cv)=;lvXs2a-u8f| zB*Efn9gV0>53cti?@i5*Pu*715^#fpehF?s3mN#1kkRYY`UUQDcVe#-8CYA#gPFON zi#VG;=qp>@uZo_npx+tpu1!g)j^eI963jj$rvqv27kJ%nY4DE;IFCzcZ(oa{eFX&gj=j*txMmcZcPug#m? zSo^uBboizd-IB6cC)#j21wz5MWjiV>+pBHZ2;FS>-dZ8$`RB#K;0E&fy8S1UQTkx= zcdF%F+P;fw*!gMZYc<McZ#pShYoj= zc(d3)!lNqU4F9^b@XYmM?7KTcvaJAuP|?5GdRONSBtjwaHk~xha}^0y#c= z+9}zcXuA!Ec>ig)U#1TW<`xwckO3FcCZr1B5MOmHl5ezr;$ph=_QA?mua7+f*O(wN zqeNGO+unM(!+}O$R;LoRaILH`zs1E2CDKmI=2&)Xf<1rp_23vk2o1fO*davy4Ayne znN8qiu_GQaDc(tDWZ0cFU4Gy($E-&;?T`}qPrMH@Ik%~Ms8!G?nM#ikweZdyv!~Ac z%vzduurJMgIyc%5uujGO-6Q384JxMdv{gZ!|Ms~lPA}R2U1lvK*98sJ`El{^p79&_ zfKG34=(yM0p2PBTU4v@9j5OiPW-_8?v%f3d*VA-9u9nTzrU#ElcN|CGTQDxWEo`Kx zuLp*`4pvXXtcLCq-uJa=!FqWs!sz<-4Y&Pdq3wx-1ryB8n-lxjynFfPW$#UVngr8S zV_!w_cz=Fnb?eINz{C1-^=35$-myjr@DO7fxJ`-9Y3W>JM4x{vWIpg- z@zxC$)Bf#`zkh4uZ>*0GBCu+sX9S4nNq>5e#!{1px`=e5bXc)YdC=eaF;k1%j$_pt zABp-GfpMhhbKb}t4gJ-n`uAqnUl5pz=A~lIqEmf5rg3 z4ZcHjJ$dZkRq~NQ7A5mb#VG-FEu)g6ujHvE^JN3^(zR>Z?n5!7MHi0S2$CJo)YxTz zV1lt+k$H^GI~sAcICm;;cOZ7IztG0ACnr9;lZ~DIqd8R9stgp_*~R;7WSlh|T* z3ojE3pDB)=zQpQwiPB+v*$DK&nB`AxKb%N<$sUy$t{gMdkX(7~9T;2IHZU-db97HA zDwDr$DDHm!nfrXLryE#u2Ya0ckE*_jh(gWg>{4-2?o}x@~-&-#NfH zzk1r;-MzE=jY8PwH(zl{iE4BL4cSu)gAZj=jlpsax^W_*GNvVYGsRAW*^aV}L!zzX z%dP&9XUc$P$ji$EfjY13SmfM~v0|C?;bl(a#jp9%1j_9TG^l#Z&`|RBin`=-YtY1U zoaC|@Z#n4OpmWXQoaRX3fk&RYkMqw9x+r3vN(x3b+JD#m2_U^d75Vxu&TJwN4-X|H zV{lXyjX|2C_OGPNM9%{Pz+?iM@??RFv>E4H0i#;L$aWOk=s2$ovrJ7*6%>*z<%{phfMpJ=LT!wgP1YOf_ceo# z3f@PuvT}0hoi-NxPLa~_<(ltxscRlQ`LYdEAXBJJkG}psj*=9^%ll7w3^1?Z+5ZZS zA>6G8>Un#z3I!S(PydWXd^BRkli>B)!IFHjPA-x60F}sfTQNps!B`3V244bFhl3qQ zo0J&I#Stg-~zJ4mH6fzHG#Rx})hYvg3X3?@!|8<>iaTVpoCc zt|w-H@rF~wp%-LrY9UbWEln!Bs>I=rORUq#|I*yH8y|ksmge-L5_!qM8bZ!ZfO9U)M1IjWuCuy(Z}=P zmCrlJFO731U(d;F*s25v2PbN0Qqj!@N5&}tjd1x_=6xf_oeICPaYkvcpJ!E zc|;A1V=qLAcJa7+&6g?Uoes-lTz4XczDgH$Vg6|2~q_aWMW=~aTu#57@E2ER^Y6J1Y~au75BH6BIDvhp^klHd58%V1Sp07`;Q-}u9nGM zV|x5Qmf>>l=0!7$e5aY~I2gYKxWK3djs$qIwKPDgmZAyAV$gX(#$$j}{nhAyuHkrj z!k0}KJNcIdZ!j+M|C@*Z#d`d=|2BII$$$_l4&`2H^4F60T9qc_!1P3F7*%?nhG|w( zQsO>9FK8SJ{WLh5mycb! z=clEmrB4Khgsg!{y8Kz|UVSj_?C)$Q0h7v5w~?pxz{H1=w+86vPa&*8;sG5ABz~+t zj}Ny|`A%jguldgy&RsW%QEO#K0AJ1_Q9@w_3CbKj^2>__H+_x_gMxpU{( z*w_$wIYRaiG2Dn8neENvK-ex`q=u%0_7!PgZ5{N%!9xKQ<-60dmVIA20S=n`Xi6>W z?ORj?wfg6eV%qiiT)P4BAz|x6##3DC?Ni+;*Xa3-%XP8du(UKaHKBAeXSW|fh@eL> zu+G7W3Irx5CI!~rBmiP+oci&0vo$_0jtpMg+1(vm!jAa&>SPiT60%E5>TYusAqN8^ zNB)rYng9}&qNk^9Kh{11^jI9cyrht~gLeN4adUFI?BF1zc=<9aR7IyXm?%0Ies=fV zJYa|Br=+HWDX0Wt6fYcaz^$Gj&+-M*bgoPN1jsu%5Ao{>@?mxZMP~&CDS*EdP*tUX zu$@0ogsg(aN=i&bn8a-@|42hpWOaL61!iCB_4r`b*IZ-u^d?GhpiDTkl<(Qg{-&U! zf`uJP7Lk+02N9X2(;2e#QkR?S{A%8rv-lou)aVHZsz%bhG1ICGNU+%Z1sBW1n zKQ%QqB{Opt_C|{4U7$-eegCcq2SU7_x%pYE^dP9I`Gk^^d3r_$_2AIZ3s~V6>=K0T z`T{v!5atqkAk8Vrul3BX!MaI}5JTp)d*H*ncNfT5c}VPSqApMrwo zE;O;!4&?W^2poA(*6jKE)vM?9#*dSl7l?h?Ja?zwD#Cs6!<3T;w2h4TVX-~S%X^Iy z|B~fUX<@FznBve8G&TvIHF>Mcmv|XB5(K?%MZ(9A>=lPt`;mtZi?A@@Beei>`ZZf3 zVcW}wPy%$KebmEBl<_W@7vI>}*q5(f{W9}Xnv_L19^OyYz95C?jxNWWMLk_z=nzJP zU?7yQ){>T%IRh~Tqplv>+(SY^(Q~MubhEmxjRLf7J$9rdB)G_6`IFmNepq&4m9Fj1 z)VZan7X(R9a6A~wTl4NWqBidFlP7a_UotXk>qF>ofldc#c+j;f*tYt5f(nmqIx+Hc zi?%ZrPFUN%U$erSb#Yb0(fkHzH$rnQMH$Nv{``0+VgF%vB51az9yb13G_|z}k={}l zUO;pvW7{AdiBPh#M)2z7jDlzwD3=3kUAJ$byU|uwR$N9uy1VbJEe zItGJyK7AVb_HEDXQF*y+li5YEO{!SC(duWqm7XOJ3v)wAkH4R1=RdN;D4Byx%R4wY z=&(6|r>>zv{4_l!CCcSJ$Hn#0q{{1^@O?ta{U&Ph;8@b%xoS63`7|&ns0JXlE&~F_ z<>~avT0BgKWnkTOu@6}wlG)T=7|w)ryrjb@0%yihAnBQz-{3$I^q7&Lsu$6Q0*xSk z&o%$a*pi@NvLaOtnnM83k->Pj?9O=euq+@T!1&TtC9Q}MOkfkAv9U4w1fVBS_9{SP z$5G^MsWbP*ix&~ZX}YBbY!BLfandd%21T})bafe!rC{ARYA;aWF^G@AV~ym)ssN24 z;3SKpwl*Ck{{w(NIss$JT^RN8)+QPqL9IqZOPd5$Cm=2a6VQkfR-wNQOPx20&<)4UXZ~hM09gap)AQy`0=VK zh-Anihu&M^Apv^In+66UpfXa;xdHnu;QE>sZI5`ff)q&E+M1`fwpIuL1;8b^(=&br zmWJP1dc+hIDsUiA(#;FGAUZ_)EoP$m^nBao_tC8x26@k7vnLftdkZK=7v(9!X;>&X z$K4GN#}pin*OkzpcIO0uiW5+f!X+Ze-4}l1f5Y;M|-@4Cz%6#OuSi8@F0404rFr~h$zl Date: Fri, 9 Oct 2020 05:33:21 -0500 Subject: [PATCH 050/104] [jlse-run] larger sim and another try to fix ubuntu setup --- .github/workflows/test.yml | 11 ++++++++--- run/automake/qsub_entry.sh | 2 +- 2 files changed, 9 insertions(+), 4 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 8d6edc52..cf8ec5a3 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -26,24 +26,29 @@ jobs: yes | add-apt-repository ppa:git-core/ppa yes | apt-get update yes | apt-get install git + which pip; which pip3 - uses: actions/checkout@v2 with: - submodules: recursive + submodules: recursive + - name: Setup Python uses: actions/setup-python@v2 with: python-version: 3.x + run: | + ln -srf $(which python3) /usr/bin/python + ln -srf $(which pip3) /usr/bin/pip - name: Setup dependencies run: | pip install . pip install pytest mock - (cd qtree && pip3 install .) - (cd scratchpad/cpp_connections/vanilia/nparray/ && pip3 install .) + (cd qtree && pip install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) - name: Test run: cd qtensor && pytest diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index ef2c436a..9dc13dfe 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=1e10 --min-memory=1e7 > time_vs_flops.log +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > time_vs_flops.log From c2975d19b37328754711b53c31246f8842b9e677 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 10:36:21 +0000 Subject: [PATCH 051/104] [jlse-results] for `[jlse-run] larger sim and another try to fix ubuntu setup` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 29008 -> 29315 bytes 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 927a9d00..71d5bf07 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 2.3545 -Simulator fitted flops: 1.3383 G -Matmul flops: 524.01 G -Simulator optimality: 0.0025538916224821734 +Total time: 2.4037 +Simulator fitted flops: 1.204 G +Matmul flops: 442.24 G +Simulator optimality: 0.002722635885697399 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/21c11a92253253815e90434751acc694bcb0d06a) +![](https://asset.cml.dev/1c4b1e9357bcc15ad33727f25111a6febb530c0b) \n -Run date: Fri Oct 9 10:22:48 UTC 2020 +Run date: Fri Oct 9 10:36:17 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 2d4c678261b3880ffe0ad52bb5f56b377b530909..429d7957989e3d4e02441a5999895262252a30b8 100644 GIT binary patch literal 29315 zcmeFYbyQW~`!#y#25FFz1Bgfq(xEh>q7u@ngmgED?iN8B0YSREOOOuf2I-bKGA@^Vt|AP{6P2n1;n z6CM2J>G13y@DHk;guF5)_;Sbm5Cne5vX)b~gFp!M5#LBZ#B)r+9|i2C)$En5jO?BC zZ9hUR^zE(9t?bQB4IVgtw6!y}vgG05=HOv_U}A4?EyT(B-{Txsw#J-Z5N;_5bbIW^3I%_^XJv;u0y9pS}(E}-1kh7hBp-hF`m8ldHwwD2c?{s(ua^A0+pEEl(~;E zp(upI(4^Ogyq)E*Y1-b9NE5~i(X?-hKnk<)0>^0|$tNz*MPj`gl^~E$qZTXPUaoVG z;jR7b|98q`Vd2v3(6v!V3VbnIGJX|>5P~mL9c(Ws__C2fdV@GH@CXtT6cp4!iS`T} zjTXp+JOW3Fj7cEU;P7%7aymFFm;4q&0uBfB{GXHmcTAW(uN!2zATKY(#|K%X+A_S; zfZI&~yq0$aI>qs6u$zRwzL!Kq%XS$=35Dy8%Likd;Jb4MPM=zB)w$kQjaVPl zO8;3O;ZaFR3h=$T&6(=rDapGf$A#7+(>*X?G*e|^KHo64^9`I5#QXLC|I%WFx-=R^ zK5%3~tX;W|sR}IDV=t@br*4d;@^{M`8ZdzaUm!3}#nSb}8qG-(&6tceIfWp$0_1eZ zdpL8cpFe!Nm&3PlzPelU28nr( zYxcziF3l$^aU#TN#m-SJYth)q%4NyxNg!18{QU8IbM>RuR=VYZhz(R360+#j?3=*T zy5b$puv9)6mhcRV^Z#KYq`t!!_YK| zJ_$)nFmu~lzjZsF#$SuqdB|koZ5u6Fw~W1SuXFf$^5bn(5>9UJS_CWYKeIB~cv)21 zHMr!ZS{Sy-?^-dH8KSFkcUH-v^I}oGUiUqQs}%RL(m(kJ#vJ{3GpR;GLZQ&KJwY|W zKaWWuX3_@yqhayLo79@Z=4qh5sV*ZEmyRfaX7fzbR%hh zPI+R(qNVSqlZZ&z>HhQmc7pJ2O-pYkg)qAt#N)y@wOns64TE%9y1mtCWKj8 zUxhgYpWH<*(~=1tUv5LaTThc2GFlilN8|6ExAGpQSZd&%Z|yEV|0*zy>2?X1Z1(&a zQ{1L&e;3iBUC;M~1y*oZxQxAieb#SB-x%-ztuN1Da(7z9#`pNe0IKvX)agoJ<}_Yx zaYi9ibVS(PvR{OJFm7Lsr&_XFeAeBobQbD(w@lvUTQzwjq3E64uDGtf%q+Hw=g7ua zka(uhf>;!PYS$ODlhP|l%=w(xC@F*xL;TTkjk}m+)$|LCIl1Mqi*C>`Qq<_w8rvdXX$?X=FE(?M?MLK4eEb+47x%M7zg?}| zD154&2yvdGC>jbnW0|2W)s7>l*?7xrEjFz5aURMd2AzA0G`Y5vkGpG$=^Qr|d~)X4j9mZ*(k| zVwFNB8>afB=#3&@wz1@)=&7qyin<;@;ODO%zkFY)(U~Rxxn{el{_N^#aC0~lLoyKm zdr3)2g6v~3eJ)KG*cYe%Us&nsk&FgUt>JT2o0G#k(egFYCmnm>Q7HJ#)l%S`>ScbV zhFwpL`Y0f(1!}FDR*ju2k>Ueklsw&ieYjr_dj|(|belaL#B@J?Wcu>u%guI73=u?& zgPbEiKi7)c+}$wr5BH0sVfgdBQ8>MrOJj-ccmH7GLS<#Ojo-g|l@whl1P&gUP5iup z(~mFcdZ;z%6i@6t_w(sASQ>k;yBedwfwZ{T>Ra(?ECjrnUofhcA8#`!n_=R`%{M}p z)k(Uy7ZU}#&GWjbWi~56g+ib0HCtPF9e?b?Ih>2{QzBXH*EcM^2GQxsZw?Y1AXh{0XgRa z#sapENaz$qO_yBPof~}HG}0!;#7Mk&@nUFKUS9s~Avu%APnLekf37vTcG8x1i%ZNb z@sY`X4|h=1c&U%4(Cg{OVd;%W&?;P2mzxS=!AGTr&euAgMyB0GGe#Bwl>n} z=5%qoJM&u~Bn!WOc>0ONkUu`l5so2Q_r|f~(uz#Nc3FoI7i4{3^r0h&kc58xq`L*#sA)7{PGq(!8jAq2s{&l|*$V!&fL zEATU%YT_jW*tpz-IcXp;9<&og#iE9iw_8+ucN&~_GmdoZ&;nE!?Ywl-7Q;X~!jSJ(Sdh%8A(+MK5t%WxM=gP*9VlvvXzJCN`=BEANKt`ZPerajzIfoM0N*j;WFEa6wn0s=M3FYpR#oJ|Hf-t6qvHWk+IA^`O zi&ikDv(Eua5OY*gZ!jTtf1UN_MJPllu(22Yi1kJvQV6RmG>r&gdxfV%0q!y7z{k+C zMw)fWDTVJ(o9XwG37jaG%RU@_>4w0u(BJj@Z6HzZ%?;&|{#k3=7zX*qz}x8VSXdW| z(;S*)0L9XN)@QvVBY$x$n!9u;73G6$IBs?Ax^nT8YN-_?obp-pn_*l%h98(9I=AWf z-_PuEx^|U&ij8mTy&rJKUVE*A85?!?VoYVk zZ!nEh&_c)@obtR5Oa=8)Onw z2wg@>>i#k!-x6}vqMq&tdR{-^B;aT~9x{wEKW(`uz$5(NifL+Rtr00$5b^#D^`xY- znwl>02L##$`Y82A7$-}R>Kt%9&13o_JeCW*W_E~;S+3-}?{JOZuU<~cVx5wYI3GT= zP+7HH!zFEPcO#tyX$0a12x|IE?LEOBl2iKU!;{`9T$a>Yj+C*nEnY}JWA>%V$F6zC zaKwmq6F#ta<4qF(xcBH=7NX`Ml34J>LBWu)EV2>x5Nfy;v)|Q#57wmkKS!fuR}^9T z!PT+LW}eDV&#j1nn2b`XFxuC`cvY5YNqF;~RD1OVF){eJc5!iqCE3QPr0&X`xTV>~ zdZxMAEkyS}p)o_DBT}TKGGF#}Zw$0<*Z2=+?V`S@G^bT(XGaUV5zdGFP0!ScF?SRi z)HL$z_+4=?Qfv7O0wT*1n=jzM*FpkFmJFva5e+QXV7x2x@x(-Q2UL-iTjp=si1Cle zDT?D&&mw>PIP?ugDp{GZ$kD_KzXr&p0fG^LT^oCL6 z5eNbJK4gT!y0}v@2R2*Ji?g}?usvGi)G2exdswW9?ZmBp5@&2Fi*(LY zj?$J^{8Yp4?8+`PWd?_nB2e&lQ}N&@m5dpGwAwesJQLFYGU^huQEjm}4K7b)zjA3j zIB4h6gIw*yhALUjCm~8XpMJeJh-?}GYl=|oHAckuBNR(JwiG&L3L^YVc>BlrR*UM^ zR^Nlm1u!=`X|$*DWZeG9AgmCBmu;fLc_vq398>v#Ur$j_KyooBO`=%mpobNNc7^!1 z{9=iEM}0SW!cj!@76P%+FJeZWLiu3$Z-( zHq;U|iHmnoLfN|s{b)LcZRRTTrd9T&?Vgz{I#{z3r-^RxHm3NNEcr#-R=OKK5}1j; z?6SW`Yj99dZb7c;hXEbG>I{*MAMuPyDFa7wl=R$B*%^zgZ8B{-dIwUXlFj>&=WRoc zt{I!|V#g*p=Z$O&&e%B&WCdsLSsM&z5$jo-pKm!EUH$)TN@s*17I#NO29)AykI54H zPuxWS3M{4pq$ey#Tte>UOi3%II~v+h1{#|tI{*9+Cf#7G#~_nLe^pjNJ6dl~e-0Ab z66$0H*3Sr)GvZ-HmC%vgCQ-9?U#)(;rs-5et%-U>LP-`%bb?rajM)uv+AwOYdMC-= zI8ZJb{`@NXIJ*0;?g+-BCFn~)`F9%VCG!`Lo;E>%{fv1<@z$~TROK+pgf0PrC~BdE zlVgS4OGIdm{!!&vSh`SLa_^mzekb;dhSXLzqKXNAVafmJPs`9ZFu)V#vmG9AwTmId z_@q*_>%$}>@u+ql-s_q&HIcC6P)9%gW2Asw}9I_^tTd zz-qP8@4^Q)t6D{O4J|)DpQYbQ1do#z*jb2zgu72kHKaNtSxPf7{c?6dLPY-8!>~O4 zd1n-v$N-Pa2ck5fkP0B+cT)WtM(v^AWcuD z-?}`ED6_;MXgl64vCp-ctL7}wKWwxeV#uCeJhC=Yye0y-t^W+RpM74``x0lGJW9aiK{J0nKdhAz3DX+=(t`D zA~k0Q045N*A(n@M*8fO2XggTEGt~=iE#6T{W?G6#==;qC+VzRT9MNjuK^P!f`5!xb ze}UMfYCVmA;CQBvG(re_-W7+8!!L^wab-XbfGew=_(V#%JygfBML9*SJ0(fvs|vx+ z^q*0A-#RGXZsm!h>yFfXU1%yv6ikI!3EVxqY`D0vBigLh;2hK)tSi%bd!?VJCll5e zn+NgDUY*E-f(Lu`QC~jxSW7KOfSn{4R#su||5SA4O=}mY+f5#MfZ9xj#i@%F8RDIOnLTC<_QpHN#GoBUSL~c;pESAPjhao zp%tM>^&k^+_!JjU9{q_I1w4B@*xQv=-Y6@{&&=|F8&P&uS;#O)f&>xgzTZSOULSu{ad?-lLrL}iMQcb05+c-MQ58>MdU#w=(3cp>s#W9f)!`J3x8D{Nf0-*v zK73Bv`%h8`S9QYnhT`2NHvP96*qJh|Cldf`uBRAN?}#{CUwby`6z+t;mkJ*dtkmBN zzT;?!Y;`?N+0MnTc^Mg7uFgwbpH5O)pW1t9Oo8`bGQea>n45%%IeuXiX4JbQ#dPKi zmekv2o}#lhfrO}3TS0|8&>u;`a=dptJL(Y&Aa26jQwXTN^xFX>Te!+L9i+l5+>y$7 zHH*=rz}XlZ7KY1Fzw-pa_z+cAS^CfCs2pA$$=GzY`5&w$>6KH$`M(?Rk7!N>OJ&v& zco9E*xtN=i`oxU_3Vr))+kaL|;M$&Z;fB+@uL3%Md8q?Rvx+}6u_1E|Rb@(;B&M<8 zBwuvA42SJ;BLYb&#;u(Nf_Pm^>OJ>^bboqTtEH22nbFk~P04qqnrW(z0L5*IFu#%7 zA{$0J@Ffsi%n0Rx^6(IccD9)nHa_7N?4%P*Sy2vsl$}lTuBi3VULPBv_qr4!fwJAdFVj)%yBmg2(;r zApPGpyIQFM+Vv&ecyr`CE{#wusB;tXX~J}$h`OD2>^fpx?<77oLlobaZuba-nRGZs z&K|r>Lgyf-w!;PW9Q8S}4A+r=(^bM0B)n*{P?1$wp;uK+X;k8PPik3K3Zq58J%HPM zvP5WKx9kI!VOPY*zOUSn0<}_~>Ur1DE;?8;C65s#Dn5RK%@9101IT4xxk1|gc|vys zi4;Y*n4xtID>j%QzezVGtsno*`-5R|^GZDWXXpmRSpb88_D}hsm?5aZZ)S*yh$xB02Hd**CLVuxJ#j&P3d5^2U3KOmP0w8=(Tuh(ADd;BLBk^ zfcZ2Td;AxkUZ7n+zC$mEieM}9w=dtQpcOZJQV)t8nTgQiqzHX^;;=;)Ay)Slc9j{y zEWH0WJ*jEBg2^xQi*@M90>SF)CpwBsBrfHf^Fi47WhsyGz=x46`8!6W&VIA)d_7Gu ziO-^qyCKTDRtwxK?r1Zg=E&~1LKoz5; zX=t(jaC`5PKxN0VFJpTS{uv}GvrlF*n$@j&``R6dXD_{)-(vlQqW53&K+E zrPOjx2vpbP;}Zk@{Y?D)@;{#Zx4eOu{$9gL_@K#V|Cqybf z2;b}b_wVkPyVW<_`^~qh4GkjGm1eRNMcRO9Ax&=-q!_88cPs*C@r2uCR~QvP$Bsf16#8n3 zg|*PZlqAg2*oY(CRpj96h#5SeYF=Kto0H)$c-H5alo3I^pMxwxDMPd?^6@)KUrG;% z**7;eV*f$%q>AdM<&nENX^Yj(m4Cq{-l=?Cy4VgUv%-c!OBDe=v9+_?oNpBN2%ndQ zLLL69#;&l;ukS~0<9KuAv@bmAS85=zl0HgRI30vZ45l8;yJ1zBEUg`O&0U=o-$Rp4 z43WbGMa%zmXRYYa@&! zc~J+utuOskZ^Mw4)2_hTDoH@;;UO)B03dDMBW0xH$6@I{kz4-sjjJ*~c6 zE>E=Fxp!tTJTBYD3l9Rt{Qxv)l##M$zDF2sV*KhAgWYL{hOjr|)Q){>HQR@jXHB>B zlQZzmoS!GV)$Jbe=eD+=(=?R;wd?7G1k`I7Y zqVse`l@fv;2GjJ@t^~iafU9ILGf}~6cl0reu`J;Dlk@y#I8Dv@jrb;lD&`Gr! zDi4zLKu`fv!Ntu1ql$szx0GyTU!UU4yAcQhk?aGM$U+&74N8OtFwV`H>?2m+)7_;6 z}6R$@VQyo~|7&M*Dr zHlbbO$Zo&&0kO}f{n;UwlO^6}MYRD)DCkjXX#_2!isJo&bel~EVx}z?qjK_sAzn9bG_s& z56T?CZ5l>Wvd`gDd-c6^-V^+>I`Jb&PR{QmdI`wJh@khp8g{l6NbR;$`p+54?~oZ} z+g|ZgE?G@-8UErQX-mr~AgL}d8NVwvK7Q{PffAaAfUzRDdi^$3K8tC;PJ?gh>0ZWZ z9&s#6+19=6)qY^Wj1e6#D5mPh9vwU1xMbECE=f2ay;@0bmRn|F{jRsC?6?}%1&FWN zbz7myFFdI}wMv<5cI44q>_~%Oxqb8U9uJ7ZwR(Dc5sxJ&FR$Md%QEXYV}TfEFmV&t zGRwRyg3~IanSKB+(LI>p^;FciZz{ATJ3B#Oqz)AL-3->3yMWfU-!$-R@kZ&VRo`tO zU3CWd^B)fFw)RrYsyegfRsed;LmvH1KLM#ijjb>7X((W&{{l(i@E3F18)fAV(T{UD zJOB0qz-Ngg;)$aL-tmN;8D-@K5`x-@AxtWL*`Q__yL*7IZK0DKFa*)}Zy-b#G~J2t z2f?Q=Z`XB7uN7|BQ%nYV_o^MZ+Y=4WV6zs9KGF11)79?8N4SIyI zgpGrfo0o@OBR(DJ^J`$>p|CJu^ofAn)K42BH+$$$sJqddmVkFJ2FxF8r{-H7GcS8# zoYD&OvBmEni^*wSF|%JH#pBdD_^RZGanKDj-mxZew@2tDipk#(n2G$`h#*!qOX%YT z>VOi_mTC69E>UA!a;78J| z9I09`ZeRj8U5*4>0pfnt&+h^jq2NjwPut-!C{ebk+JrtR;<->@Ih3|%zv5aBdF(kG z{md5Voo?HOGP=4ZS78~Hc`$S^ry!&+sR@a1loLg7+=~@OX3d9LRj_ccYA;Xq%onbZuR+_hSm!q|GdI>LIbN zXV*H*4{x|g8n$=l7T$Us=fTFVssCya^8z;yrg|5^H4{YM5#|x=n8B9$|+b>Q4xtsWOsEkSEMnL35S?}zqF>SidykCu!oKmfUU6L zw%=$iV$t!2RUrBxR}m9ued$*qtD{=l1V|uAf$f;?ks<~=xA~z7`l=vff-?riE_bX& z3WGX=h%YxzltwxY`gWa0FpVFnf7MA55F8>EG%`%)kO16CkR0=B_xo6^w^Al zIjIz0P6&h%9ZxYph|#(0X)V|jvuOjV>$hx{zd9iyraok6s+_srX+Iliu*W-7po;XF z*v50!V%tF?iSE9Givf6v^JY#bpA3U1HhCYr(Rq**HI(HtkP&k0b|Wvs7hsB)r@Pm; zfPA(D%x`AAX;%_n%31P}2*euWe*T zo;qEffsOL3r)L@bhJW_?%a`vr03Ly!44sHhob%mm;h`lrFi%DNH4Hqqd|d zWuTxofJ80g%;g5(!>enosrlOKi-AacjQC8`LZ~SOld(GWR!ydTrxvrA7Sk=EoItdb z3?QmGiqLQXS>7J8A4nJ07V#=6Y&)2Esp&F(x|kEto5UlK4Plb0?URu@2Qv*- zVP<*|-2rw;0jV8GoU7yh*h9h&50R=(lqPGsr`Fir2Cu0bsKdEDI~BAcr|hIt zO-hOQY+QbMQ|p{}GFd3t)brviA6^_gPthejP$hqHBQwe23<}N0>ZNU|->XwtQe^A_ zPXz!disccxdPQ|$RyUM7Z}958iuV12kCvU$0qoY7XF!1D2G~0As7P+47@PdQlP0$> z>48jKpjjQ!*4CDe^3CC1h1{P5z#Gl4WN|s^54|g%QI}J3Ng&LKiMf&{d*&O$*47DN zZ1Ar6Pnc$l_8$S>rc=iT9XWI3Blxt(5*mdt*^3wH+QQC%qsfCEy9?O3 zm`z;n5&^Q?Ze4Oj3p7f;T)u1yq&NTG#Gf^qdVuR~;u-J)h-x6^)qQ7ns7LenppG~Y zj0wcAqVTBrhCr0D7HQlB!Qoeb|JciHDbZWnW++DR?yj1}&v*Mp2`lM6zQ)CbXGBlT z)rbm_#JAOi7LF;OaY>}-XW-r?xXYh#ZO{7%>Bn7vR?O~UUkXmJ{`u~Nb9B?fJH$#q zg*XDjWn8SK6bkaQ#Y|PH%aIXaqed8!Fj&Y1uT;uua~Ocy#;6e(IAs-12z|n;(?`j)PzvLBZ_<0`XD4?sW)osErnB*L#UWi3IcLvb46ZnK~J( zsxeTbww`w;rY>=onOOcyR71_Wy}}r{N=Z?f8SIoGCB|s_l~_#>lVI9&kBaS=5y8a* zl;{+^adWI*iSCi_3hjp#P$Gk-HWauHvohKq;4J%Fl-}W5lFx&xHtki})TW44LhhH` zvCwA#U?G;xiRvTHzzCY9+||xxyPNbMj}xs0X&m;9l`%=8-+&pRe)>sSAXQaLqEGW} zgj+Gs;?M`P06excI3y;@%UF@H-Y6oo*JsvC)C34n00TI;{Jy6qbDuxV2he_&R8LS- zUC?(jfgyn9)5K)X6y&^Ijuum#T4+BC<`!LtMVI}v zM2sNy4%?2C<+t|kAszX0!W$DKWnZ{gFqB>LeoSln8S3NfRj8D!J)mb#d7MuQPlbBc zIT>|OD=we3>E2=kwHO2cnbAWLICZjvYB?T#mir~8w+3AEVgQNP?B7cs6es9f^;#TN zmUBHZObTDcVV*SNOhhxEz}?6(8=ZaeFDxRSIoJ5c3cnV!kFr&fP7vQ&U4MzGmdLx} z90TM+AcbJML&&xC`XE(S3+9rTwTYLM`JsN-aZn;nkn7xzHwf)D)5JUghxlPQLmI?d z5o%6WqTx@p$1|G|ZY+J;Bt!n~aDfR~=CljA4Q{qv z^u9~8;u}Kf6b*xF8hDxQG+A2L>Fd^DjsRt1r?@>kmHr;rRgH{YK z3k`EWal+^|k~rNYCMG5%7%=KgHF*dN3JOxgt`0%<5&h%M^;N^x9N%I*O1v2hD&~5h zq9iuKmQZR|Y05Kqh2?tNpBSRD{mU`S1{BLUlbZEw!wnhO7t7 z8Na%_4{l8-ifHEQoz?-SGCKdedUyS|GcOY>Q}CRkGpB^be>+B%S%r-exH|5#KyM># zDhG+?xg&aL7WmI9%{YQDCG<`xC?i2k84tz7zOMa7sZWFeLkI-DfE+Q5;&YRv75Px5IYrq z7-3_$(spHWzo~6Y3zGZc#|u$aRefT&_VVI*vmKOtF1wWz5a;D!W`VV@hR%!L7&X_Y zGm_^qP{Q1*)mPQ!2XD?$h-Ru7zNu)mJntLFr2=vOd2fc%i#=CdZ8GsssAIZu#;jE^ zdCvh<*x`%#&d8YAN}JpDqO}<3`FUNt!$euelH#Gx z%FU^x(CY+W!(Upn()dI(Go{lzAhM3KtSb^uoYQ~bF16P=upWA;4OpiE9NLHA58c)oIrMxhzgXbp zw~|f$9OBP`ySPxI&^#w=U?({<-6LtigsH>DUP|=-_8K4{W4rP7WGFrIwaPBK&>wy^ zm%qV!_GntYC#;xuagL@D>C9rho{i#|w^{5$>_LxfU2u?;chmr6Z@MyczA;>PkvYx% z2_Q>nJui2Gr=a?isIXPcuzve{uVI(@C!l08Y@Xu`gj`~CwRvFLOZr_Z$Gpf3HKn0Wu7=Dm&!Q!M9$F9^=(|Ol7>v%&P7<<7#UP#`S5RJcjhV6f}6#6kfNsPjlaWn zl{U?;3n4*%@8ygkvf=lo1Mz9(6cw38MN<%*6Yz-NR_-fi$-R8}0iXo)nW}JL{^qh- zmg?#0>7$M7@CvY>46;8FWvgrAaRBnBs9PIwA%hC)ltSeC_}jrcu{=*Y6k7T)i^oe* z1!lDbwWGMq*QaGSD(EHUwcw;$vktzeSHcrRu&w&{9ApKW#yf|0 z0_iHOhQ$jG6A7Y^38T+|*k(OhqK`|(S1@oH&!*lsS!xK>C|n4*<6>d;{4ywFjDLnv zLV&N3=Je@fR@T}-F$!O~4bi~@5m`25Wo5md02u;Oqg52NXR|}4$r#C<3UYne>hH{H zjJfrBr4MX5RoDxBerp$EHFI26I>$tegj|755pxwdZb5JMp7!4$EHnY>yd(%q>9Do5$Yzw-p^sWPAIWY6?64EvQFT#>- z;lG3>taZ5lU@94#`bZM&b_Tu0W&OG(oZs`8(}K$3oRhwrx+(ItXVjL#_2nBK9m~^u zFUf(DvuVG4=v*>`0)IcX>j+Z1PVxE~sN&Rsvo$BxH4g?`LQtVBImz#~SBwXee*vTA z6=D+XH%I)B2F23=8OZxL#V@UQ)nIqJGTCX~g^`IVK{UB$ZC**LwZXIo$LaIrH-;2j zvKV`13@tb8bD)sl?j{Jr@*LtGleArXIIq*-jOJ+C2(f2he%UMdifP9Z|i7wQm6fY{oL@i;6IwI3|a_ETAD#$+rC2 zPe0iEHOV}XVZG_z5P|$|C*i}K2dq4qfMRRkxA!B7%dAtH&0INi!-0?gN@Qf1E{{A7 z&!&h42O9ikmr}2BntAzWK?@ER8lHaIJeK3j=Xs$g`;u(U)fXWfj~ClZr_9v~RjDId z@KNyteIsau6L}v;Gvs@Erp~;5cGI_$E*Y2EKaj%ZeDLkSX}b`-O6#k`K-v{YG5|)N z8hd%=6vVd8N~^KyRZgLZx#jmqbRzrLhQ6f91SZPhX~@^)I7OoXAkjcNO~nW;<;+0QGc{##adEkMG5;@N%yDND30RFjJ0B0r zy8Qjc48+HqcJ}I733c^^=EnkB|8=q8Z*R-(2)&D3Gy(i8aHx`NqXKc)R8;HA;|zB| z(c@{lxb;b#vk`g$NbrVhm5nrmI>s#?sg19RW^SMGP|3<32gzN9{G*<^o@_}M>oh_b z4oI z2Q)EkV-f4EWHY|j6<8Yj`)L3bSj;wI#h_?@?KErV+Va3pK1R!2fK7v0!3 z0H1P8#xJ0(^13XbJDd@<8iUoPtuv#5aA=z^n> z1o$m)uJyN7YyJ?e+{i5$u3zpH@(IUDnJsz*s{%~a;du&$0>j`WCgKvLg`z&UaB5xYweFy*@ zkPgg4K{yXM8&Pvo(9=B7cc)tyZt+9O?_8OYzeOE^El_+;_~^}9e(jacAFjO#qLLtl z7bN;V&=4I0AmxK)X0I{uDb~-mJq2T9DR{hGT!68)Qe12VJ}G_l7tH1l>7Rtx&{u!{ zA)2@Q5@*y+u2ys-6P_xn=h~=h16D~g!DFl*uu4H%*?8YU3kGWu7cyN-7$uhz2ld{8 zyDoS!B5G_;_d>ly9h+9+(@o6a=Y^*tuy>^x-3e;Zo#fL%NgxoC`2G#!-X#v@C+c5B zEXGq$1J_e|;@pq^wix-su29I>1l-S181$x!=+-&Ue$;kFJSM2x?n<~{l3{VKEybwy zk31L66#K1TxBJbmT-=uN)Oj31zgRB^_2b8SJ8BeyL@yM=?QZ`5UG%}(f**Ym_Iz+V zaEOFPcO&Z9OcL;CK`^z4M%?ejBM4BJERYw!aU4uSJ9Qdm|EAqOYxX>tG`#ETDA2@E zS3iN_;{@i3d?IsKZZ5hJ0A9vGeZ3JolEN~Az(vo|TF}l;KzdJ_N1C6`5IP4n7rHJb8`4SbSr+n6Q zgb&pJ2Q35x5$HafjmR;8E*J`qqFUiGvQTH>B1d4r!igc?{}43k(#J z(6s1e_)_oL(g@>(s3y&+4OBQ_ZtJ)9tGIwB6zko}gD&xhwg>57zDeeH_xhF(;?JGk zC+?7z$~s599J3dJfq()L?@vJHh!?+7(XGNYE}pl3PYXNrf4gzGQ?6I(TDw;VJG$7W zovtPT=TiOW+#?6)4G}B#H*fM3P4X=UHM)M4o8f6MiLeP!yRA3qsFfmLzyoh@$c3B& z9JWPp>2BDu@UCWHS%QjL%$zSX4^Xl#fqAJqm{Mc)^cH*wZ&0Zy)O!u ztlnbF&y;qjtiz{IgF=Jkj)1XgG~q3p=Jh#){-DN>uF{X8!vnkiI zD83Fo`PZk%1WtE-m)e1(XI;A(qoB8~YIv*57>4+0VCQz>RHf2ZKIl3*KDPf)?@I3H z-qq#Z>V>uH=4*D)F=9lJ^Lotq%Kg43+V;QXB@-Yog}?cnsJh?fuc_2kYDyeNfdqW* z^706GsiWp@xo7yfm{iX?<2Q140E1jQdg1gMH`n;g{g4+Om@1^^lBXmxJ*kyHBigs0 zp2AaHvI%b@M9F|B@^FQ!8Q8846NX1#1IG6?(i^DEk37BpX{AXmcY3oyTHq4=`UGv( zvgXS6%-({q(bM8}_mlFkvf#s@jTS2LDF5!m)b8}#l~i=u?+FO3ny`St;w~uid3$kP ze9lOtJLF^$@Zbt0kWTxhA5ZX{jPc5ydwPC(-12Lk|1@`8(-hoO;|DDh{5pH-i?8h@ zRoO7C2&2_NKW;Y8`!A*fLS|oce_(ow=b_;6hj*;J`qMUG=5n$_CHPJHk6(dbT&{gG zZ~geuM>FE%Sii0wf zk=wJBqhe?5@F+By&WhcOnU<_N&xOAgInH#l;Z3AnZPd3O;6GpH6xIx04Zh(A&H&7G z$`+X+K`(EKx95~wpJwGY58moJcmx0sZHju&Vyh0KPh(}SL1e>-_u zTXv}^xI+P>Dau%b!N%YaA+iNh>omhdZIF$iM9)F&r2n5pra_%t!Btq*04caMK1MR^ zHIvg^yo|~he>2&-GwZSHE8Q(v>q_f+_p;ZzjaV6l2yH`=uk-1y#a{Ju;0QUDck&tg z#P~j+bf*6^O407;z2Bf81`HnZ=oL}$m$c#W+Kj3}>p7tfn~*>!ak+2bD}6eB=cL#tr(=IW(w) z2kn_@Oxp%tT(m9**nduWnbrv$V=dwkMhl^_N{9lBdFv1S1 z?RwNiUW4Lq!0Y3Z^FGPpfbbAJ`PBWLHBoNx>g<9W$B`R*#?0^B=jC6?aGbR zD3%N0=V2XwKn0qXq>4)HlG>B%@nx#6m|A6(*aUu%*bbE-u@4VPxptBhXn40JeMp_6 zeN&Vyv&^@1fI3T~#jzNF@2J;>>2Q{%Z8t!8&kMAq4xC?}ycIv#N~fx==@s{0RCNYO zb=ECKnRMUxF#+S%JCkTV|HlL>Kuv0MC~u5^#M%VB+s4>lBaBVYmTiOp^pP{S;y3b` zo(cCtUbH(bpo~u#&^tAu)HVw&1``~hEs2bctEhOhDS#YfzWcB_FYjpbK73x( z`E>tCJh0LNokf-|w9+ErmT&OJqXxcbIu1u3e($c)W(WPZ7k~juG+2T0=00#_-*+}C zuihH+z#w?%kdACc6G-TkERuxqXkYsb&u0{V1NLH&fJNQXUu{2LgX{i8Gc87S$49z+ zZ1->o@E`@0yCsawE27T#%w}*!+){1^ho%PtjBmx*e*IG8nSOfdhCSgu4;-tmiAb^N zxh_U2-#@YzSUd@1l55dyh)i3fDEEj1R-rVw!&=aHG7CIlHNWdMk~!O+qvC@pw|0tF z>0dJ)k0lG1Pw(8cMP!{i)^WIn4B*6#+I-UcZqb!%x6z;{s2wjV{m#u!toIGw20H+a zpnU@G-BDj%UdWTOJ@pWe3(=^1XAXaFw9Kz$eMm2lU2d5AwRyVGcF7BBC)mlZ&lo@} z8Qab3)!K}uFKEryrP&7lkb&j!L^xArwV}mC(Kw&exa00i92j^SQAF@a)odMe+*@c( zStwsG#rT%@_@GrqB}$LUthK#D?3(S?Ty@B^71MH<>@lD<0pG!#_H3pKG*^_EQ)Xpd z5#_-+4);TGgxI{6ZQ7rQx&vyYy2%qL}vOYs;V+z1$4Bxl8Z`MOP9}k113$!K-I^H5? z#Q;32bj|9;uJQYM`Th-C7|-)ZRHdX6U#PTGfs28Ddphlm{tHXHD!IiDsx69Fr@ZZ^xc{7 zw4{SYCwJ)$C1~C_1K7y-_pI+YVCUrp*KXzZ96@i7%w;tb9JH9LZN!#yS;jFnpZ~;k z2VH~{JVq@SCqtFn(J)ni8qmy?3>xL|mS=p?hyG#r{XjBG*;9Kq=8a8#mxfxDbbczr z2Raf{pRdv2l+cceWgBOwy5U>aVZBgjHS*0#2|0a|_&$A;3ewG-w(4)J$)0HXu-Z z!E8^*oxeW5FZblB6K6vEUZ>Lv3#&zsCTIvpgiiEBV6~jD#!wu#{JY@QAY>GXFfKUdrWo=%V#kGeI+ieJ-LrrdFBT>>8&Ti%u{E6 zhl)4c8sEU}_=PH_d#B%@^0-wU68cGa2!oa>u*ktkgRJ=a&(GRFgf(!VA*r&;r_@JH zelzSi{%+BYt9jD3eE4ST)34uyMmDnZ_V~^k)~f3wVhhV_$qUBR=l)bbs!m;>{`X>X zCsP$3gJSouAdwhWtIvgAHwkCpd%ZSE=((+ST3>pla(>&gz;CKC;vp|@s(>a<5rT<^ zz5J+`p-dpN#^W$Q$lMqEW4X_3b?osGY-H%07JV5%N*ZfwQqLdl4;WBFBuJk($9~lF z8tII!`0ig-@vHy(+U6J2H+Fk@yQH;i*HkgXJyChFc){P1>&b(HZ-3=FM3hJ~

qN z|4kXj^^mjUuvh!=teM}yZ64DEjdgAI1jD^aGw|ykI}hp1(C24hRuV(8^oT+GKE0S2 zZE$e#r@&=Lv4B%>ZtS|4MU~Ku)XNtV^+kt4uXMvVe)Fp=G$eopwk;&A3$=)EFH<-8VOp<{>0}>+u!xE)&xg zW^#qHUEqo7cIx6H`{8W|Co7pS6U%!=n!wczp-i>cnQ;>#!nmAGJIB*s8}5m(R>|J# z6HdCU>6~GzUNy;*-SE2N?P)~k7GU|Q;)KJ}6>=(fnZ0M#4wlp?4ANeZvlcyoy?w%w z#W`u>wbsid%fJ#I-{E8bXOJ*1yHAAw8=TaT?Cq zYC4+u0^9rHzK_~e-|mfwp6_&RcV-tC9WmbP%C#>&gMJ!F^ETn5=locwByFeDV;^Mn z*}eHJqj#ABno$*q_26kLWU@#VDdR`M`_TX@h&-}6-((Lb{Z+!RAu!gh-`sx&lQ_r& z)jmCli>ndUl8@12ZALYz;1aow85N!5vEvpMrU@l@Df24aYq+^`IaFRDdh+_+b*2se zuflv26y)u>^+B7*+CJ%8)y&>1%$}+-;;RWX)1U`@F31>3Df7|x81=x#7-d+Hb{(xt z@oRrI19WpflI(u}rSmB+E3NNg6`danr0a|3=4i_c^RQzcA@dQgInBQ-qGR8Um|FS2 z3j6A)D8Fw1XJBY)0VzoVY5dYiw~{I$Qi1{!0@B^mEs98qN~d%WCm!Hk z6G3YUhm(`%`P@vIbAwxY8A9a zp(Vq0s4yk@7uJu{;`wIVX4kU(7WwzRHVe#X__S$W4hTq_`%Br`i>Tbb%N-~&mO0@e zl>4)p;o7p1R)(Zj+RH0}i5$k}%GmCyVwsSZzX}PG%)vKXkd8(#lcjGjXyZxdGDh3~t-#&;K3U(JIYQl@$xmN6j4TPAIqSl@ zs3OO$q;L0k8u)D6+t)t-etge#Tck-!l#_FtPY3D0P?;;c`REw8j;k@lG5x0NkI z@hxjeZwosQ*)UsC6!(*%hf%6S2jl$vLq0#BbBBe0VwkRWYwW3WWgBXhs&;CmJQg3* z+G;-|aMY2cWMNd%@c7s~`J4nTJL<2Hr8pDDEL;0EDKB4KY%5dLiH z8op9_a;n2KKV=^#()q|LnVG2Eua@wxtE078v~r6%#U#rov2h0uG=ZwUsK46hm*m81 zADjdX)APti2E>a3dbTQ5N54+YGt<7qqvGUjxu}Oqe;-3y89N{r*86;QfZm zo@5^%9N|BcMBQpYIC_=N*%vCUudinxqaL7Qs;UC#RMU8F84>6Rj95$1@$uH|pL=mz zf(}!6iM*kdv|bfPY>XRmq^Uar!99=EM(e@{3Kcm$&MLFvPx-W-ec{y3=NlMlfAg@P zD^%VefF z3$^EfL?doNQ%dW$Iq(=6sx?Qd;V{wnu-qFV@N|EAZ^^rGCtFRi(h= zUCHoSwyaR(71Naa=m*RCauVWS3H$Y?EP~R5qv6bfm6%<_pUaL zX$#h@l~Ly$7QWN5hxlJM6G?k7ouqP8m!MBy`@t3L2FX>A2~x8POq(AjhI(5eq}?AC zO^I*&ZhXda=;#fv;6mXGJB8cS=l^jW&l=6uQc_SdZ0-VQCwBkaJM1)nU$V{W;kq`q|ZC^$lKYWzy}#tXaf z*}PZ?>io#7&ZF8q*JuuR*Q00K0~RY=H@g9}WR$4+li$pwI#XA)!fe6wW1VB{Yo2Nu zCj!M&^W5!|Lnn4V;>iYb(@yO7{ybLAkKp(#|NKCU^6?QvL&uv`E=@P68Q!^bC%>u5 zG{bbXyugd@9rtGMPwkC<%j@H$W`Y=jDg>G^49w5$tl=N;bBWp|#8F;VQ(Nk4lSPd> z*8l1>7BjH0AlFV~*Z#rs{FO0XMVYu=01eo=-lb952~wu?>(7UY`0@g z&iD_M%R}Wh4c3$aa6TPsoP%tBX{3Z^I?;j`FF1(tfM00D%;oj#*Fz=OdFz}eD1hGu zWFnerm-UIT1wiE6shFALn>|*#two#ok2MTm#EoY#waCYEYlE=j6h}=b^ZO1XL@Hf% zmvkA|zIL!`X(2#6K}>?eVtuT49WjIYiM-sLoQ`s4UewTK41M!IqO{X_zCpdT$}0pK zZM5|CdSL@5YK=k4&FV?HG!iiV>Ab@o?b&?0n=?RIQ$HSX3biawSy`s%&!0>C@9^pH z(4Ge<;pKy+bWx^T*tY4G$@B{WpY26nHi?zsEm1d)-)I^dQh{cBnuS+3rt!gH_YOFV zybG7(5ks{^Bh1x)rt*V`!1j<3$fM?a*!#$nLs;`=yp$GW_(J3MXtCk$tX1=a3xzsQ z!((ZA@eoPp$xvtwKC{(vBpiHtG>4BQvB-SR-@3$I|G<*`aPwHOxxK~;OXd7STkekz*E!01;^#8GQiD$Fc##U>-q zcPWdvMjq|6oHq9CAEG*fy+ZW0&T%6JW2DbQsMIWC11(nKV}6eqwE3~J$2A!+#xLdE z+n?gr|2UW{#3?^RXl3OmlrI;PLHB_3*1IXp_(J@Hg`jxFKjR-zAFjSYLZO*r|LAD(MY6)RN)%@Q_oDmS=L(yY@<|_t;?s~Hc#r=8wyFwfiGhz6w)!r_6`~qIY zXUe-iJdGai>|7gn#R)(pU_LMZ`S1^)fPku-TlMs};sT>&WHw>S`5|9ieW6pL2A5v8 z^l<*5bO`oxZV1-z)xIrM_;-0ikd(Bv@TH|Y%U*tdGP2$qG2h-qx4y)m()?Sl-iav+ zI@_K1G`v89alrlVPx}w5{Y1NRO}~LsEz03X^oPpJonQXU`!VC^l27BFLU-fLUJ5{gAiZ`g+ zzpGV?7oz%a$-4a2k{Sx{~-$d!!iy z^TVLT8QYrYnz*Rbk3U%#2?`1t26{fI^lCQS)lO9d3g8TjbhUb?oPYq?@87?nPsVe~ ze!9%TcEn^t_I$;DyO*8|tN!>eabpkaPshO&!JX@jZ96A6H%#$|L>BnG&*VfZ4=YOl zWLV|bow6Mcewo9iuipmdYs1V7&v$u%jz#8y+S5XSKnsEjh67RnQ39-~Ar zg6w9>dhx^0qtf}uX^$R7W@oe9vA1vC@o>FdS?Z89g=%iWwTP6(iSUrzHc@th)vzE+F zF4MA57^LF|^y_iFXu#o5u;5pu~2&k@f_ zPp};gr`)pu@AUWy%1kJspDc&Q)plD&sVvIWvT*w8FpxV{V$jtjW{%|Zi7XT7S=0U> zwhmR?AzntWOS^LO@wOdiTet9HV}V+4sEcnQPp&K_i*(_C=1ZU{}NOoe{(P7CHxSO<|;yUu@ere921NZusU zeKE8@J*<>}zKdgQQp|?GWmDIC+OfyNs3GyD{>9ak<$GSr#kJPxaJP1F1gX(Bc&i*) z*ZP0x{YCGtT=(Dk>C$tw_5OOty+6XXsuLu{LWENV6!KfS{ZUSY^7eE( z#)<0@6)mgtM@3j9j7A>dQd{gG(^LcXzM363fK( zhV^Myv8PVU-`=-4h{yDs$9r3}wu&o2ZQ5u1M{Vdc{)-n$piamqBBH6K6?3a&q@(wf znN4rvE>U5|y%cT?@7MVoj2jfVn5-AE|AZ(gC}|Li{*;nE`$^>bv^3O$xJeq`@0v_~ zAACmf<*rwmb5J+=P-NsAW3vDe6+P=3KK#*P-^*;CCY`& zP5f&yS*cUbwY_2R-OzcltK(nWGVk^?jm6zWw=0UHP*=L5)19I?AS53*rFp z)ZHfBS7UlEac)`n(e<=PAJc<46Ner$nq3y_|3rAWgHphr8(IrBDht(DBnWpQpL2XA z!BDGZlu><_0fJ$1vvZb#j6)7p5-HXfg^gWWAtTFaGS8$$`5d+)quD)FSFf^9mE*$L zP4)I{QsqT_7gOK(iqmxN`JatpCYC5cdI(jlzexJMu%ACP7C?S{b-WPLC3v@t?wt+& zyA?Mg*RTY~SpV^X{w43#8d!WJA3>WH>Sw0MvQK+rEym zxFFBh67;o`2i`GZ^Ai+lJq6q$NdDF|K8RLo-X+#>J)$`ZvHQu1u(veIL?pwQj4(;+ z?8rRry+|<`IuIq;$jH=3kkJ;ob`s?JlQy}be(e%K0VY$neslNXbSTEZ^GohovybYf zmo-(_I1^)T{jvWayT}j!-bI$oic3J$<{^gKVc!(QtCZsAEhWE9>QFLf9Ra>@o1b^cFT)dGtF|P%f?YRS6%>Uvk~M?>DelRuvkG%nybTVt07=xI?^y-E*kZYZ^9dL;o4?7OAW~ z3Wt62whFk3m>$98%rT?Osh!sJf_B&2x9HSSB_&MI262`SfvEzeiGeQWn!Bp2c)@%=^s zz5M_YyWyMS1h>!OdMb6*2BMih37m*1LxiT4nRYy-Ip8_Le=jIuc<5o|7(d>@u?M@@ zFp-Q5A(}vYvW0H4TDfxH=&FatCAhTsz!bf}!4j_&c;;u$=GqyJw}n;S{CG8{OF<`( zh42wn<6JO_oDU&TOynFz_*hFYaJbH%iD3wFzhYE`*kTE-Q{J>tnc|enO#(R? zc4Ek3douNl^N66)DEPs#?|L zY(Z!sr-{(BkAMx3ADLYNyGx~`c0MF49ZON#D&LsNGS)2Pry{$h=m(zBjNf?w6J(}X zT@>Za<>(l?bZ5S%Xos(rDYR8JdGYkbj{ZDjV354U?ZdL_EYc}l0y7Wb#l_;5s z{xX7;t4~bKl+<^8l4{|Ctnz@c9QcwI?25#B z@KRp8{NR>;y`@#U$tdc^?zTh>!1&OA`FS&Dp~gH}20XM;yprR#$L(e}OUrc=2JP_W zZoko`l@?r9kW-}F#rpEl+6X3743n%lP-W#uprudbDJydz06TQ2*yeHeTZZG;90ck2 zBbljk4(%e6k~}0(y9vh64%$< zU^6}JW~+YgwwDfegGCejBkNv;>p_m(4Thx|@dJEh?Ezyc+4ff)34ZF{ZM;>KUM_mG znP~qF+tQK?HgF!acye;uh2VdZLf(KNp;`+ z&df|?@zrIQA)FY`lhrlC)j9hp0vG$!u%Mjrd{_ufZjyk3N?_*Y4N;B8(@dVdd{8?= zh*k+lkCa}}n}{FpBq2$2>}O-Il0W#AcR zr}$r9T|0=%SJttkSJ6z+fM4u=GsE5`XN^uzk{!hWNK)^mgWP(4;c93$3p+pQWG#_t z9r2JO^Iyxd=Dv#u@!(y4w)EnsNQF0mt{i)p9vJo}ohF)NpjpU0mK`C#6p|FKu4IPB!5A&~|ROSw#*crl7 zezK7qE4?OJVOHQ6MhbG*XpJ}78`HyZ`(ht~b3qzJycjzk&h+&bK#+F`Xg~5miP*(`qZvCM=yIRG%Z zG^P5|M_{hoP`J?#9jVe%6>pT7w1yF8g({5|hT^1}u3pNm=nT6PabZsoEWq>52E}|ine#>~whmjK`u3unl0o&Qnq#=l zIDQfgi+)5z*kytS${Y1iB4JYv;0b~G6G|YlW**sW_%ty%R*|g1)d+&kS@jlOotVmw zqqM!d<*yzDrY@`4CX+1QwVVR11vGqc#6uioKgN7w~t zNnI#uF+5sVuBhngQ9y6`7{x34pkoWF`-W;9XtWC3;2&??*QdkXl}C~CT2IEahE)E_ zd>+L?T^KR7q0^fnEh|Koc4t27`mq8 z7I^k*Oa%ilBe74S&E5_kswIRR1)UDn>>| zHnB4ezOrcZ{cTep;c)eEZ)@xIzsJa2WdbRHM5$S&D_2O5kB^zo{$FGK@b58hP|ikN z$5`gKwXtw;a6sP8ss2=5bMp;WDG4Tz`Y2*=o;d%>kYhcLn=LR2maw*{?jHO1= zmnaDVgF@}cxFr|_u@dLDjSd3K8Pj%#Rta8mio8Lmz{|e(P;9`xeMtu)$&vNyp7EJW zgv7ZmQ0zEHtMbc1p5`G1Yux_6FOKejj*iYTT8&@EZ=2hHZ?ocfb=N--xbq#O)%pF_ zD;kFYWAygjI~->mY~ykhzhI~U8x?ta)Oo6EZJj^;+&}<88rCn1iWVUsqY3jCi+tbx4we{$&M<>j(lu3s9+`=JA^&VibOO(DUu-TyW)p!4zbUz-jD zHbLMHVgo863Mf1P)|k3T7a1O8}l>m9Hb{(|;k8#q^FvOSe!NGyF+dKk{dMlqa*-g@mKO*cw05;K^ z07(@Au+haTb;CzcUU>E4!v|SK+fUgtp9^)LnO)L(kY2bG4L8<$6HRHdDRQep$E?Bm zX#id!{aE%K<*f$i)ZQf4^~cgB%M!0d0%7Q%;eeD!M*vApe=KbABR8}}-3>ywvXYW6 zm_(qDe0Xs}oQWJt2M=94Pv}FBt)ignM940(jfFII6c8#F(}>iUKir81OdycLKd-Ah zEBTBZmQWSG@fhh-GXvGb2-YH~K|I`v0#wifKvJ9hclp%}-+}}W18}Zhg@?hKT8r6E z@)<`QXM)Cy5w91+F|@pT2!bm?1Z;>Qp?q3kJ(RDU z!c79-^_^?T(JhJYSM=j4SOmFy_bx~Y6&AbK*(#^@ARQhZ05K1x{0m`c|t8W|9)|O2jIIgiU_mR|5PU&qm?Vvw6utIc+#hD8wgb2>8AnIs@hM{ zK6Nlc4;jx8I@C{_b++m9&=wRF+=z=C?f$pUCk1ukdPLp?{=aG4`?G6N|FR1BQ#B&K zyn3jBCLq+GhvehHI-q42`ck=wDJeD0%~{gY)5U_1eSvk45)e1<019YeXcz`{lG1Y$ z^=JPQJ$Q>%^4=i35kGymZ}hTN&~64ge|!)!vl)_3;D08>OO7w^_uci|NsK?$sM?;jww5ryLfaO76M zc6Zf1J;ix+vmznyT;vVZqXr6d6B7&;EuP9|W=!SAPVov{)P96)_4w?ZrB@+|HqB9& zna-=vDJ^a4$9nGEWd2^pqet_(0h?h}RU){m5{T*i*JcmXYHJk8&~MPk1z2#C>0}le z8sLaj@$!;TI6d|Npq_Hk2*-sBJaYo&yK%5uC4~~O08xq zGqX6LG~v8-iN?SEJb?Uo0r!VSa34e1;gFATcI&&v9j4f*)1kM9tfx-s+}f;S3PCnOUu;n{rRJMa-=WD3`g`;EXzr8{5j1b20&)PrRExMB@4LhK zAm<4qP>9>=5C?*JVig?Q-K`RM{QKQ*@Zk54&u)vJ!@UDEsQ5r=(sOz|csh?GXM%c@ zSm3@J@H$e!$tK9sTX9KA`jDe9bGS_|6aqdxlcK~Kal{(T-8q1%Y9z7X?tGS>egUqJ z>appHq2{7Gdo~gjW)aS%QMR^b$9)D0ZwMxiP5>wwx4wbv?3u6%Nd!u;K(MGnf9;*2 zqT;n~oWLqaZ)j+!w+G7%w)CMztM~JlFJI0M4z2HAIaXU*hPDDbuw11}TU#Qm(r%cw z!=?W8S77nY(zvz#!IZuN?HoVAf*xN%UIGj2@Y*5h<0~*L0#!iNDhQ7b8gMEb<0n9) zwHA95uUFF1)5Ax>ur|#4rl+O71ge{Y*{xJ=?L%;6g20^%Odrkz^*??%YFABM1$HcW zQktyiD!ULE_GZ@_)0dNzlV*9#t7TOkX^0jIh0;@m0?}IVy?gg6_ORRUMQD&U0P>dp zsa3@8+meKO{+jPH8@yXP^%4jdt_BAOf6kWi_>q_#(?&Fb&=}TcD+DpY? z&d7*@ugUKPE@IR zWpObg_~cN+fyozu)OvZW^z`2E_a-Hl{`~ab{2GhFC;{Sn(peH$-!yIWb&r_SS94*2 zNXhXr7*Pblp@rYReJefl=g%K}B!NkSbY(E_-AZ0a5`5XkFrxEH*RIh#7O|Qw-uk@e zsaHjy?AF3VjEDHOoJD{DBu>WTyLC?--8pGD_VDm2;dcs)4IwX>DZ@%~R@t-b6ICXqQ9*(G0(mia zj$M@0KGLwUQ7S4bE`9%Q1M9Hc5TB6n7B0fs`L7ToWy<*o!|*7;ZX*v2qsoE+g5Lz3 ziDG~#UY>@@%AVdoJRCpV1lBYhd4|JWNBi~q$`=%@vbZyQ&WSrvAsEN{1t7gq0>TmV zPIy{8K+6sWH3R#LXZMTGq+#;Lk zQymC^J#ISV3}VMAHeh4Ao(w?u-Q7`SsW~}6M+-sY_t%Q@+_smrGe6qFdg9a$j0G?c z^kPqr-2ZOe+?Z))05V@SOUv_!HE`_tLNxvhu32~+OPdK+R(Eg9DFKd>W7JGyF$_*R zFHef}_4O%%`8pr?OBqMyfZJX`>=aE6gqk)r>;eMsFW^Ll4JRrMp!}?448phrp;~;l zlAxNn0Q4N!8+?C*R)>Y-*P|FL zF~C-m1b}c-=;i=!%bF1fc0}jtB?36e2M+2wp<-l=b?rDH#A30Njjn9qj(_bhCcl8` z0vms+(z3lYfw<#%`~5ko`z*c5Y*jiUihn0AdM3$jDtUW1jGTv^yA+pJ;!Q)?G^?qdPX><#Kb8+k*#G6;p`8d`F5S)i h&o+bSe}5aRXkNklgoD_i01k{qwAJ<0Dpjn*{|l(@^V$Fa literal 29008 zcmeFZbyQSu`#w5=fV3c;Qliq*jfet*fFdOz-QC^Yf=Y)7f^>JcC@tNgAUQ+Mz!2vd zKJWK^-`|O~eruhz&R=KNqGq%Ae)j#uecjh}Jrk*_EJuJ#jSGQ52o&UHUqc}10T2k< z%55z0j=zDX5Wf;WX-o@u$L*_*kz z8#y?*|xIpG4!`OJBjlePml()=Q^qIT>JZhmk}> zTlNk!b+6T@>^iOn(o&76HLgby2DT41bjajQWVA@C?%e-yc6pFuc>jZRQmT0MLix^G zQMIJ`IO9^5vt+jMfrmJ~EO@b)^`uHbh{4NJ2RDETym+6ZsiF?_J%B_-L`3vZVoHOf z36!~z2jD1)F)8F3IBXPy{uvyVk9h?l1&1Sf|NoQ!zX(`msziXihK`Qnt5?K(^Y#5k zl_?UmsLn%=@9z%8!2Uis$il@XxYsa^YqPiXj1+d_}?w$y*8sgeN>`u0O91M~%C2oB#Jih$KmzzFO{1>&+Nt z+4VW4I^M!q_Om{f|MKBxyoM0OWAC>!42$1wJIBp`$>%LQHehxN0gaM{obCoz8n2#A z$Iff&qN#`*ZomJMWQH2-JuVFX_`XQ$Rc>Blde2)Lr9n0P)pF#S;3+>doh{ zB7O4|Bx6?At4rRi8O{cq%EDJ3h-0;e6O9V3L3+L8*ASb)-CdhHyTu=Uu{1;UV0Ov( z%(c?^ov?o&!mOt$Ys3+tI(uD`7UA8H1V-_KBPIDM;CKinW;hEGZ={UWMyJ?hy_ zbV;0crl?j&wnBcJFe75=tWUogB_{=dXJj#1uuGAkc^=2#wLHK^qu7S)zcGGuuMpW+ z3A{V-CGWnybo(%D27WV0ukJq=bMe0x)Aes1+h!FY(W!mwIGOCLv@^)qsI*BP+f?a_zUi8pIU4&80-=tj*3ldc z@hjnr(|WV`7u30|2B_i7n~ayQ9IAgkciaCG*-fGU;38CP2(>`TM_<4&bY01O&I=up zr}L|A$a}nF3yuS04{wfEm%bxd@9Vs}9Ia#)KOxn1ik!_&%pWJI08!-Eb`?;{!cTr@ z71I7B*x<-4v|aw6Rqo|s`*kOkIpt6WTE0>skyJ>Q#7nxQnt+>7{r>jO3&*Yr=f{uF zYHV7KBwS73cV8(eT4JF(joKA<&&0g@lP2}5{a@9Ys%NX*0M%C-e<0^wDk){e+JlM z=QlGjMkMi4Q#axigV^)UAwo7Y9SUrjvKkuXg@uJN)B;hp*3)Sc93aSQ7szEE*KHB; zGZR{Jyul0{`}R^8MJ$sj#1Gbqt?M%O%*4#hs8UO-)yuWR85bA#?`$>O-dwFQY^Bp? zrlJ$61y&_(ZSAFb@Qsw5yl!9yjI6GKUn<@283pU?p#j~ihI?;Qgotc-TQw+K!G$&6 zycsP}VF1^n_PGe9cz2JDEqu1x{HT{gAN4+0!wPy-bo9JO9vIiFgujjj`{T_Q8XO@dT9rXUOCG^&**=L| zzY0F2rfvzXYienI|NJDF+P8gs+p4IzxV8T0j~@_+M%@P8vMIle_k}b%!tt->;@XJT z6qmziPRso}1*T^Z@OI9gUe5-k9mVB&X@T=*g6xr|%rg8oQGlG&-%&tK>crHP)3lyDT_w7(kWg|)1}${2 zs_Jo*J9PMLGg~E`kWS|4Nl?chr-LaSdtRsC@@wkt3`fVlcl6ICd$JClz7N+OE;#pb zRU|N5du~5ur=kir-ax9>2T}Y4cNUxky)+2E7VEzcK>D2w$Ka&@`UGG?gtUVNM0oM(DtFzpV|)Wo zPmyImWGVdAec87^iBsqAMB!ZtuVd60fm3z7Mh% zh~W76_**0|nC>!b(cCet%hy-ae>dHst?xfzkVnrl->rV;0=c+28ljT(X@I-w1@@)z z8f!H=vF6Ifo5A-N2h#+i!BdXa+v`u2Xx~+(1g#`_DNg_3LBK<`l~G3FQ!S4xPvJ|K zYPtKXOkXfoDh#_}9^!I7!y!0#Q+NzzXkz6-TGBm=x8XZ3Wxc3Fj*d`z(ew5-w&`i@eJ{OVkD{gh0zNu zSX91{PjPNGyz-%xq>YMN>A4%5#4WU3!m4jcrH;x#A-n~5%bE$7{N@{cy9xRpG87hq z1&}HIpEJES=|F;)xH^F$y8RQWnJ#w0nd2u<{CG zgNC}O{5MiEs!sbQ@%51Sbi2o=$di5B)9);44Hp z`9xk>5Im6W4H{9>P{ZIe>i{Xy_v-vOkh_iN^g1#mC`uZPBBdJVg0aD~-1wOJ`UP|% zaf9QtyEtSw=`H2Ay+2=)kJS0?xq3Kkcm1pQxrG6u_~FAoy;pX__gEj@B$pbH9`~E@ z0Fs!g#y*ETAN8qMQy!i{9X|Wzm13aA<%{;X_7cVF3PwK zy>=y9TyM+i)0Q<{VzIyN@=5sNV7hE<^=wNzZ_zTMAA2djG@5bMIC4*LhIf3bN426x-51j3}^i)^C-2X`cs*AwO|bQQ+iUUlI)qV;mmE z&a35jgfqyDWCf1I){8kPWv#kr8z16_O5up2N|S^;o@b`U1Ms7f95ptNJprvIQW6qs zzqaC@NIw6-W#8coOter&rqZvd`h~;30vxxYsurkV+d=j7f~3vl8MUVte<)E^79&O zB|~H-ZrX9r6U^B?e&f0kJ0WU`WpD1DeugvGq&$-n%PllahPF_~sTvm!1yNG1pr>-3 zksy?>)yV+<@J9qYB1@`QX3cYS>hoKd(h^^6l(2dfJ;Hd~+A~k*lHR^>JMv-S6Z*!U zM?+w&odaMapJ_X905f2|(B^obj16u1bqv$&PfMJ$$d*c%c)F?*^a2%j6pVyqd17JV z2b8x3#o!~5%d1)59r-5$ILxk-&6x zT#MlaMdLNRNy#)nTZNV^-dtq)w^jZYvq`ahN@7WN)2>fLS;V8T2CI2ZwAcii;`ao# z-0dM(m#bjTnVpk!1PCqjM@h;ueL_w4l;QeS$JpwKt_7QRnC3KPBd4c0Y{vL`bn^8D zc2(6%D|}_YIkwfGDM3l!5cE0Tfg5(*0N=&Fvr?Af3j{lRaB*3Xj$Pok6=Jd+tn_>% zHb*%TAt9)1hhS<(-Zj5MZ%1aF;i2O`m9afCTNkcZFOKo^gD+y2x0=!J-6!EhP5&O3 zHcSRVx%=ADxEH6l>Yjm+eEtkkmZG~t>i-?Xki58)uRNJpF3aHiRYw{%IBu!DRB)8; zlpBvMxJ4SqKgGsFc?u0@F9!(#B!~utk@0=l@vo-wWI0MR=?sT$N(uzqt`hXjyD!tRxG0XdF}Yg|_`S#@-B5$ZNYwhpBYqN?%-FU4 ze-gu=IxG$^W{gL3f*aRKcyG!C*;;_c zi_62hWGto$leojv?WanzdjwHshy0tO(ojr1gBc#?i%bV}Q2fO(l*8D*P=T==DXPq- z>o3uAlH`ay-&swNyC=|)X(G#%gz87xPwva1)@6Zu&G#M--1al>Pm_3*0Q-VU2$8sU zLW8Loo0;Yz?H`nbMx-BOXS>U0WGc}olDcjL!H;}XgicNz`FcOfDQe?o zuU=Dp$r%xey}Jj4^G&k2mAT8~kr$aO-ZcG=&+BY&9^29q)-TodCpjI&@_Rn$gM~&O5}ILndIzKB;_>kgHjR*smuSoRBMu!b92|ftSiEk|X!K~t z=>JXS2N$_N0-L`}Nk~YKns8C(POxY-sU66wL$$A_iT`7+*J&O z5gRm=qNKREG4t+=n9z2jetPTu2H7vDbx5A{h!asE@_69wo0WRD(b|Gla$ei5v&|fT zf8)AxXLFBr0<9Lxwe=zTRCz!Ykb+PPu=ZZ9+Fu2;WO_s`XLT@as_@zRsH^u8+W|0( zP1vDr-kHStJlC8Uhx4X2rV20m(vtidR@Mt7{87n`q(pP@zgRb8O_e+o4QSnEueNnjIzw_9| z<3ry~FujsPaSX2p(-NugTy4+nQfYlqo3r8g^a)G?hs%@a2pY)+twV{|2(j%~Ze)KL zsY~TuPUHCXmLS z|B;_u9DkC}h(x_*x&4n`;Q>_65m`)Pc3X&IKk;-raVjJ8N_4jYjR>% z)-ai-t|4j)GR?Iy{A@fw3`Wh>#|S8mLw`tmo>B9 zcZee`vdhbV*DQT%fhD_XmC}=QhfV8aH@CWyHOoo-P-axkduAjFA*2zEIo+E_(RT?E zzYnCJpk?riM?&G|?^A1{)!Var>4ZchqpkIN?bPC`*ay=mEV8AEEp@f9JBTC^0nuDd z5rczD9OQV#n&pHZ%7BBD@IK80RR=!3cnSfHU<%J`;)I!Me<@v0R;3h3IH5M;Boy0o zy`E2a^3YH9kz2aUN4=XIqUtM~@QrLru2cP=V%@Ig;5k?GZdE|PzQ-!2larHHr4eQ@ zHqm`4scby1hJf<+tF##W^<<^xHeWz7;CO%<*Lq-Z5dX{^Jo|GRp{~DUutoPf3`8JF zez;$oYc?Wd|CfDm2+P9p=3%N?SdCvQ5X^0oM3NcOLF8hod%wNPrS|oitul>akjipg z??bCF>cw3GvnI>uP$6F>o3I1aZ$W}t|JRECvmV>bb|3k$@yEJcz-e0T!$GwZP9McA zBt)3}Q>OeK{ndrJ5C)dVw?edW(J@aWu4m2#9{TGkDR`EdZ%;E7 zx{FvC{eeHN@o&q&y#w)J0Tr~-ul$$4H#WSW(b3VyJrTq{hXZVkjT>K{MW=|l+jU%8 zPnWTZh+HJ!Tk_iBtPa0tD7%b(F!>P**xCc}V^t|Z8=hf%n#Xw&ySqcA6w|Q!_DS!< z+PkgS4SVy@)p=;JkQPp(#r37CcHu8$rhnJ_6FZN#9fW7_TTA_xLH4^QXqh0YoyBO_Vv-^W^D054+yS4^fEL$NiOQTEgMfS@qJ*xa4>}zpOPowNibGIcDBm1XQB0vgx^$ER}Tyi=L257 zrl#ioJ4M+%&dI5+FVA?alMY7MG9bkoorMMTm$d+#S+J~F&T6u>gt-1Up@8f%r9VY^~}2H)c)aSPLG?na7&`4mn-6V|^jvgV9>(nD5#;sgu8?vmRzpt){^(d1{2VbUdb8-qJWdp=)8S*?X--eBkkVY zB0|ZlYnS^RXL>|CvyxHH`<{FTLaygOlF{0Wu#%+KY-fQWXW#7=QmaE^1*MRbR{Fu_qB2W?J}) zguPM6`r{Q&*!l6H!$EI_Jp(?i1;^PtKTp-Acd}nlWr+Ok+1>y9`a5@W`g~tZc!xu) zZm>bZ^Rdq{F|E69@$y^QFEOZc9#=~?jrqUJZ;KOwcb>fuU^5kH%>TCk_uO9a> z$jW|+x(ShXVq#_fS8P%r1bLX&uklJ2R)&+-wyU|B^?D;rEe;3xA|TVj;`vP~G(wgp zeHH^`DzpEG+DKvzd2u!ZLoPpkhUv0}?tgwa!{6_L92e7=5?=u4XF(pOaoVYm6VH(s zpkw6l{Q)*Q8gf{41=vV%Q0q_~aW`QK0DiREK;neD3RiY~>RbL7xuC}N7Hqi`G%-t) zcuXAW!iX2Z05Cm@y?q*npHoqBC%`<*Gb~>6{K1=KfDftJHL3d>Kt(=UTTFbhF^Eu7N7JA{5u z0BERjGfj-k{h4R(ryn4$4eUSWJ!F~2sTpwsjy6Zkd!xw2uMq1!NdB*)>oI%?zXa9#BC_A-v*!zbZ z_?-|XuNL}SQ*pXX?+m0FjQ#7sx$(mL4eO|OMG}t*(zvcbbiFw*_T3#|_hP6`InD%O z%cJ>~vwY~(nwqxAN1r=gjXw=Dk@(4wK>FhuM)DLsAa<)qDzrFA$;b`>W1lJpZTSEQ zc>&U7(gaH4m({Oy>L~jgCEyva7Aie>TdtbMHn|rNf@NinqJGbQ8-I=1vu6~eDJow55*?G;k@Iwjes&BjOu|PL zh{er8{W}$;+)S(7dDo?>fK5lOoBS4c3Jc{VH{@mWM3@`}w~s~uTn9@Q!b7VL|D7+H zsOw{I6S>Xi9y@1~#M*Bi_T(Cjsw`C@ED(BekN2#KNwA;#SBYpCSU|ZdIJ*QZaH)J6 z=vsp_C*vfj|8;Pd#A+R8FSVe)1@x)~)<>lp3w6 z>xdbQMbJfp)4nRpVl!g$w2x={%h>%~8VQsz+>#-GHwT{TDpE0?MqHg@|xJ@Fbzg9-v0u(o&J;z(TqH47kB_!&`#)LjRLk7Jt|fmlj(^>k5coA*6I*m zyfuU#B~OE^0MTvtlgRct#PK~p#_64pmM1OtpU}|>%TLm6ZlEk{rw2Uw(t6X*%9vcI zg>M?MYQ~yQB`r=tQiQwaH{Kyz;edauwPt)c zU;#Zm{^hzla%TW_&M~-S3qUZbk47=3AhXFtT_#;05#=6^G6RGsx4pS% z&!1!YB2RmbDpw9X(6h`dwH%rkJDW-(WK%c7?t_F7To5FEq%!x-f6p~rtl`S*!9#_6 z0$-Ct3#58jFY6N)wvO+&>NjMgo}JwS4b}{8%T-L~TJk3+wv5~e0ap+St#)=u-p`%? z5{^MF1Rcx_0OP5o@n;%o)pnWhx01wEMLw;TnTB?IeXZI@aqqS?g~TerbfekR{AQ|8 z%&Rzx{u!FuE(IihU^(eEJMu@SrBP3n>z5w|K4X&SF`r2*D$E&ZH5Ur6yQa|Pa@$ab zg>^K+Hn|+vxE7S6bLV($xF(J_wkq?rT|@&-)fNAZvyH(XMkGcsL_Uy&2u?kL#;G-*y-#1<~nO?qMz9-@1I~ zznHS8(@rny!V~B0jaY4hu`!WIfQ%wRuM)g@y+2zW{_$h}B@=l<9f}&y&zpftw&#wS zDIJGNFTcQESOP3r;RCxmoB?5y$7OZ|Aglk=3v6j#@Ucy|#G z1FK_W2*?(U*SDFN@^4$wr2OP+#^=G6=!>IMG&1@E=dGU~lDaw|3L~VW9#o8yzcVp( z+^7gYBYOw#AnauJ+5>*eD$4zpurX7dm|57QcHMy+^Y6V3H}?Hj)+J)ji4fG9M%Gwn+HX{^*!0xD%Vj?6g(rFX39$%W(p=M|Tq|y(22PQ1`p0(Jexl;n;wjqMZh3d! z!LJn;kEq$-gOpVCeito6!n>|3TR!C5JW_Mod}QN0zl^+{Ai&%udQEHJQwOp>#Uom| zXossxA3i+gM*Lm7XZW=NsAT5-4yzq&ZO|EhMc zIG}IBijJA7^G+h_!rQnObQ-T(FW`#*+uL%O$R1pB?_K zW7vzk?rNTeGa`Y#*i?J=KE8-6WO}bQ1g33Ak?@x|5rP<#V>nn1XBe-yUsi2tjkp!b z`Y^TOBcZ{fZAfD?n+KjGOrnZ+IEvZaY$nsx`lSM^^Kez43W2s(hre4MZ0G3pH?c3` zLKGWA7&`KP$l9#p9;!QCnP+&Y>hK8}NVfp#2zd}zM1)YNsI%67`V-!r1-+iKosNhO zek(L=3Pg&gU=aVFbaP zIsjh}(rd5(FLIz?wHC%y^@=2}Jm*>3-K;siPO1opfh}(Y2d9kB!P}xzU&EveWiZkT!53ftOQolgM zg_?$XV1+q4I(m9g$3%j@WH!>aO4MP?fqXu`RQ-vaQEWa1ZFi3B>X=O!Dqbx&$^TCg zW9cJhd@Iy}7{?!=dgHzrkd~ulTO7o;f4a}|eui~h3AFyGFMRZ9rEY#@s~~os`8nn4 z2r*UTMUCRH^A=;ZN5li2IyF>+ygFlk|}D@?P9JwUa(uVCzIrXquz>55zF^yh!QC z@V{VI%D9b9Bx9C8HV@sc2JCr+JOU52vcBSA;;e282#Qwp~d3{^Dvd(Mnk}C=F!O z*jd^IftTsx>SIz;mF>LX;o+e$DBVESmr&u9=b(0y?O$m?1}a${dCZ(B9|WtwTB3L~_g>?a|P)CR-nA5gT2 zEKn;@Mj35XB+o+R=sj5gO2T1}4NWh)zW51kSuFdtXX0agSSz-<;GFheF^W%!EwIi z(Gj}8oZ8g1DNwKV6+9sjfgwQWe+>0}FPH7=u$j5y1Q2%@9(Tt|=acIQ;C*HTpt?JZ zU_HZm_~1%pr=&2{8&qtO&Xs!fj@efl3Qi8UsD;P0|X3je@uf8aIbID2#f^j$es3&e6OW@mw3xTg(WZh#ow6T| z`#qyJq=&w>C6HbBZN&spbti`g@OwCJFxU~*nnJI6Eo8BZHJ{3$1BV88JO0*ICxV5E z3H`}C^eh2u@_30;O6KP=2AAh2x}JYN#n1@F0eRx1>CYs`Kc6&>)V=*88Be+iqz8V; z$zPn|01lSe_0(D~rBo+Bbc&)F!NuHfYEoIW{@9FbPv&K5EInODiC1sm%2Ca%iY&`a zkSGRUuq~pv30>DobzFZEHJ|R-p#+7gFX-*2Z!{x+)sS;= zj;W^DzO0Obiu7QQ`*rp}H4?p-c_$|35R;DC73U?D!tVwJeQ|VUS*S4uAo~lAAFeKu z7!Clpe@IFB4g%)bW4t<8W86;|MnLl%06P%?jXe)~DTe41WpS1r)asSeT-F|p%yY^W}FIz;vW)6 z)XPUq%@aQ9U!Y4O@$DKhNt!4XS8~L$wPjh7FkOj0_pcl7&Qt=P9Nhu7^2Dz35BclY zuP?ITKiJD}9aV9<4f6IofG@~st+nQ^n;2m72`J0uol|{#-ttU_YTvWi#Dp#p2rWRY zrzqRm%UY*W&a9WOV9qk0x3VJSOYpYwSAhTQ`}gnnI5}f$YWT~V_eH@1)>^-F#XpJ7 z;M4JpLQmGr>^^yPua5d|F|ageNqCQ!>4{+x(GP+^zU4oCnJ&2M*1QE6hv;|Quk~5> zpkj$lJoC0!hXFzH;FpZlCirrAo3G&zwfu`9wk*I^9T52gCH(D^Of;YE!h)bPHoU?O+wCJ+K%uy}0O3nl{8vMJ1WyU)p5co_dJ zs2Xe!7ba3g>uJcjLPVTD*O6aAuVa2mD2qOfz#t<|xQ{cSaIf>R)x?A6vDA})*MBB) z8Ux@8hCX2c8M_9okH#MM`-94300tm+HnUDW)_^&49$-!80q=y-|1lW*KdDQGzFi87 zGhLoBm0fz;on^or`t#Ho=+bLq41_9W|EMKEh20Xhm7MxLYV(X|9a&*b5kqJFC(}LV z8Sofd4UD*dNHpU2vSZ)>fy?aUzE1+v8p>LHjvyQxkeWGvfE zGP<`*|LTx}tMNApgpf{D*2(EHck6K?T#_d#2M%2xDK2mGnt&gBi0e8J31m2Q;S8qo zZGIcc<})X}ahzVynrEW~DWRk2l+~Zyd*U!@|5K>FoRJZ5NFEY}5iJ{@RsiF^x`u|+ zkiaw`4qpJ3Ymh$fVV4&c3{Z+MK#?d+d*z)-ONc#RXKOv~?E`$vEwC=U46p6NrOVI} z@gw|#45t^tBO^mYtZZ!k-p&8)AaK4q+YCRU`2Jsh({-SDD-RZ@ZxugW3gygYr>a-} ziWp;Enm;ke3ii7cJeLGc@{2P^j<=-Y{l=@mKS+opOTzD}h+|qHpjr>;=FTw0%#}i@ zDW-<0Oordd_-x|qdPhA>6C;CX8CCTDvh94z;v!Zz)Nf9H>32uJ^3eC2PG__!F%2Ym zb&zi)udc3cU_?bp=~zP;85JKNAJP6G;qkBq#j-#&z4N}%+X7O%{!}6209jz&ao)F| z9H1Vemb=|f6dL;66bkJ5_5JbT*bFuAKbkDTN5h3Db6gF4R-}$I549&)7 zRW1oAH5QHB6EleJY-c;ayw~>S5_xARyR@>WCg$4(Mo@9<$=L|KlVkQ zCABDXLv4RiXtaQJ%%f#6xhCFtoN6Pw8DgUJ`B04iP0_e+zRTtKIwd_8S#W=J zu{IlsBzG#&co-Q2!QxmA6fLN4ZEbCdPJJBX)3A`^x&QcM!;VEsT7!H`-U>T3-V>sD z9vhTM!hFl`08`huc9vO;W63T=+?uU<`Ep9xt%_WdmJCf-Ht%7VC?qL4xfr< zS!ZY3e8nIlA|fcJ_@ez9ehuu>*F&ZCOE3N-dCfMtveO9J;cvOJh=#6d2~_XRpmm3L zx5BCG?VAZC&u+y@fko@aiSjX>uj70>x$T+k!;A=d*uTWDt?6OF&bLJv+)zqejD>>PJ)nP>;(iw0DxO3x6xr%~ zb~9+OPo3_)#H-)`@nYetcVPF8P_m{^`MQb1{i_I?I*=Ptp0QKN3v1aqs!l=guw{}H zwQ0$x?UHtaHZMLuy+ETE^M4rMI-i|)OlrmcD28u&TgJeyPUvFQO-<*O;T-MfhT=r1Uk|<1$k7>$M|mW;KZuRDpvuf!S+| z6*!(|YH&pF)2~$iD&W2REhisQjPqCTFYxW?y2V%G@BZBDYuu$*pN)zL!NKexS0$E5 zh`dfutk{;KctS|ee}1Ot$@=kAXF%D!$6khG#`0!3mN&(DU4x|s7LTsZ0@xkL^v`J? zmL)H7LR79B<&TDhcua1KpMP^iPPG+#dX1L4KuxV{+;f_%5*vQMvF{AG|FF~4^}gZv zM1_?jGZRTMDTH-RU?Tt41#$!sHUe6{MXBA=BNFBuXLhsbZelH0$&d20;X-q!Gc>z; z7PVp#ihB@g+h?iz;8LpmMFBsRih(yPp&NCbNqe=|?bo`-lLcua$C~Px>;2sV)6$+I z8NPMI=-jkheMV@}UstCmCCHOMhSVBwG7B~C&uF78J%-X~s$YWazr*&VG^Jt?Rzrh^ zHD~a4!_j*lYdFk?9-&(}o45Dvqg05dcC<>Kca-8@Nc}3mA3TO(B9O znr(!UgBJ*hR>;F%eG z8&&o#z;WFGwKF8-Xc*X~Ysr7lLZ z7@yjd=;8oFt3Cb2B@{rc^>UH9k%t*(Z=T8i{*H?2*=e@*xAS9*%gwisohg-UsWQar zJq{J{)C#h?>ukv%^Q~sO8<=5)yH8Ai%vKW~{1z4Q9qc}Op=B{dFZ_=slUXx6|ErLe z?_64Hw}DmkiVM)E-02paqGO+im*_e?;nb`M98d-TG< zY?)e}1WXTySj8&Mz?}uW!Dy2OrI{l5b*fke-0l3h5?Q|FB^pH2`t6@I^<95`{W+#T zzmWZ5mamA3$;kybz^KV!H?TTCPq0bWs@j}?#w$;NFFfZ?)XMJz$^uV(di?7%B9|Sk zovFsgi$nVe>$T;pjf;#f)9324vT;gis!9}55)Lo5U)yaB8a@bN68@CbrLIY}d8VP+ zUG8uD=8TYT+j0uYf3gXLZ2V#>bwIIY+}OpHV3^KCy3R=-bwJ>3aoeq)eT zOzyHSf3i8uNn;E;YE=;R(6MSavM5fh!Cqi=ji1X9fwElMqRSrFM(5W_d^+6gOKw_k z4j%-gQtCM3m0c%^^35Zf;0BNg2GwG7jh~MRunE&yx>Y0Qjku_fB|a3~clvur*9pgF z3BMqFDJdKH(3t|!KZk@GKyU8wQZLHR#_edm9lBcMM}Bp6d2emqN~>-KQr?2TwPkxs ztRyxD4Ekv*s3;VK1s5=I= z#!pg6uS?DY`iN6M7n(LVhl4pek7-XV9LLGQEoUk2wyda2Vdrl3JkHkWh@MB7(w4PT zwCfsdDSKL7dm-@#!2Q}A4R#)i?_Tf*W<3=1IM~%`teY+-m9n_n&2RofiFCd0Z)M)B)&K0dC?p=qtGXh@>W zpBt+O0i_@GN)5m^umCf#@52{Dgx4Q?4Z^q|Oaz=6z#R;>DpWv?4!IE+Yzy@>V$GI- zG)NYnb=>qIw7o7H>i=6Dz6va}oameTJ@He&B`{#|;>_BCx%1hc02>q!hnuhspWt{`Y?H z^#?~2Cr3oXS9f6T0oxu*fz5Yw#lH^gcmWW7=s#j2-`FCfzIf*c{=}qI45W{#?bNa- z-EEF}*J@4S{tm{-Ea&C0Uw0Tyc)ecx)7$|Wos8tP47dJZ4HhGMae`C*cuLQJR*2$=nc;(G*=F^5POyW zrYB_1!UYCzr7Q5J?@x~{`M;7yId)$ZH{iNESRnmlD<~+!na%G5dq)uXp;d}D0u?pY zSpS*KyYK*EU#`LH;9)L_tQ2}!_hKI^6_0tDH0r!P5pdb>J+z4Mn6{tl4iv?svm?A7ZN~Ll+-=FX!6H9DFQtp>Zai(3nG!#%N$9q`6xb;s2_|6DIax6vSeur3 zv8~y}AhpOB2*>@*3E}8_`!IY1Jy#38YNO36Pd_LP;m>4S+f8M#U1`5r3N66e>oSyL zq#-pM?vemxbR7j9z$1BQzv5p%@Nh`}gkET${Xbp+tT$Ty^K?tvn(o>U>6e$-ZCR+1 z+`!$;{;&Ik0U9nKl3Mm_pYb!VUMVjIfCzuxmUF=Xnc<%Bpur69JT%quUMI+{JOT!3 z)6NORRN~{2ccM7NTpeqJgr9+DU@i z>j`Lg3~WMv?+3PJe(Rfb?s4Y*H99l39{G-{w!RuPseBYP&j_^$!_yERaRbfV8>bPC zx;(CrF3zVb%!!VnM8Na9CWO&;!2Nz;=rqg(#h85MPJb%zaA$Vc+X zdNK60OA-nSj|oj%&gP^+(A6{LuN*GTddJ%2Y)-7ezM@|$ImU7xf5^1jXi4tI_NUKF zaqA*cHenOg6)e9I(bd*Az@Zo&a|8RF_>Rdyq0u&6U@-RXDJnKRG-)_~J=4x`v)?Ip zzAbHjj`crhn-w!?Jifmf*n3?(;kvEc#OX&0bihY*7|bBYa~O4BbGSgv!nM9 zQUvVj-`QW+ovC8ZNJz)#+r-33#l3)&f>z%X;o5641BDm) zUP$>Oqo%@o~$tiUH6a#FrkOdz=0Ey&q9r8n~+MrR>k>VN*rB1H= zy@TfNSqT4D4|WBN1Apea>#Mq!`S-!tv8ipS4bMb$xIi(I@S;6)CC3Xyve9@9cCB9d zo#3t`jTH%o2|k2@Z0^iV@Hy0vRSa% z8}S zoFzX{s2r1zu$&6V*+o-Jsx$&ATVdBxw^$PFGL)49bC7&Fcg3ps(M8;q)4%IUlH`vh zg0_0w4Emct-3K{w0@c-F&C6gLv9xF7*rxqY@&;JfMyramH?r_%PhA-LXa4AdqQo>` z?-uj(DGhalYIB4-Rx{X@0iC7$=Smb6J=+{zdQC*&IY*CYyMUrn#}zMSw>y?Da(AjU zxTGX0wpt`d*%l<*JONV3SM3<1I8w;MOGvM&oXWnw6^=1g7V3G_F%?x+lpof#af%PNz!d`Alh&)Iu28B{;hZeo`twtdcFq)m z09QLzt;3zPWcQsHUlv>wQY9d z#+fd+Sy>N~8W4OzSuoO!J!&?xlG03JR4ayVhIf7W5?#~hSnl2V2+!J@!M?8XMmg}Q z#FmT1ewLsos>OcMY1Ny+_p99e^Gzn1pnuS-)-DJ3F-8!9zNr2gEz?T_7eg=Xf_o;3dqk4$cMtYG| zn_(We+a>fB75d^m-7YHRB*&YYAY8f0>C5S{Mek>;H*aPZlBus z#GT39)TfUodAU~vgXos6Pg^S)P0{H|X?`6G>)mNdf|4mLIG<513H*A#`3Ux)$i;tU zd3#&=`|~7*BWTTzg ze`D}8Uxhv41s{QfMb<-=Qo)+{L0Lv-oN=qHY??$}EnI&Dyd54(*S?N1rOi6jk z+#}y=j1&+s7Z!NJ7~yB5aY=FK8Sz;Bkdp~N>W=wj>Oa3T;5_LZeg6DO(Su-0`aklB z_eGBw-C{!CXy97#bLn)gp|4SVVG$xB2;WVGGL~5?f5pbZ?8C zg+phP>{$bdsTeORrcY&v+f6u2Sno%4cE){u-rsB~h+||zimzfOjgRA6Xm4&GE=Z_k zv++p&k7=AS(kA=T-;`>`#e^lxpN*up7Cn)KQ)}9v*KXPeqm+?8Oa#wBw_fJqFA`&E zn{DyQAa=#8v#?+(F$I~u#$Oe`v%@`f;_LRnN8Fs@bD^nKM>6KzR@z=W%t}3KwtTI? z%T+dL;Zh%4cfY%kCF*%dEyC(x+lcv52_5gw=wptbnXz+k(eCz78zBEmi3PQL37kd6 zHZ(kbTFYvnCu9DXB(W^hVc5d0Mj?nRry94FnTbii6Y_qcuhC9#aZ&L9DC{evs_LS( zHx1Gu(v5&1oq~iYpoj|6l1eBc0@8ITr33^46$wSUyWt=RB1%cOv~);H+@S=Tt9N&Hn030l|qyMP%7M~xspYF77BJr=yCQ78Spz@2j8GOelV zuarmaqD8;@l=qc8`K!#6pO7oc$=r$jPQ zjijey=O>SfIjM*AsCe=+IA(=j`y8ii2Mn8(Qxj8CdayzV(q6eE+_IrosGiI#h`&~E z`g~#cGRgIU>B`XBjh-(G@2y+-5?mW%q}e+}KZZHAoqX<8u>RxQrgcrmVwhOU@;nDe zVUruuesN_zqrD%1I_<-;JVB{bl0H)Q>n2lsjRa@TU{mrA+&5225Xs(lZOfZ1?+m9% zstDM&3Sd*DrX|a+qG&DeU}~!PZ1Hr(Eid%U^E>P8fZs0oNy1kBf{tqBVN8%N>!?*z z%6I%ceXIy3A{rWGyw+f|$7g%@SFg^F(?R#E>BPNg@EXwd!eV@Z9x7I}%Ag`V+4I98Xsiw}xt_q(lM^L# z;r=~o{-3U->IqG4n6q(Ts}{t?Q;rB}@C~>T6OYO%1qm?z79d5z`!T>cI%C>FPU7l73Da+5Gg zQ()>53;m95?Z&D!R|OBsGU^iNJJYBAj+70y#!CqZN%1Nk;{h*2yx;OxJZ{{;*1Tsp zbf4_eC4_{SSozj1GACzeM@XaQ8C6qpb939cb!3h&j*GhqoV}Ni4!}dd7P*nsDDQ*f zR7I(>Y>qj55Ig+SkDm*16g6omy1ab`(E7y9nwjIaQdn&%>*cUL?Cl0(z zpMGXkg+wsmglguJmyPJq1YhM5nxzWKCS8M37C{9q<*L0SSS0N6uRl{C8qy<>P};1t-y;4 z9bJ28iJkGX_;``wV(5e8c}6w?lA#Jxz-TOXH`RCjB%QM>$gCHzrlx%9S$7G^%gMQt zBJTqfALCOy_M;W-7cY{ApA%|@ik%*KR0O>k{qQU>N=p9+ZISFk zLgecWe*_~`Tuf36YsC!{{nkb{j|?KyHPugKqOAKXt~yU@*xsV24#$I9+Wqeis2HkL zKfkFz>;Bhc$4;3h?sPtbIq(C7V3K;w6fa~N`DeYcv1u7nTA#}v{Qznq?cXcI)P?oC z3;}_G7|t1)5rEE3L;ZTr-dR@Gbtj>~CKS}zm_g>A#V4b+&zM1?z&LD?PmK9iHfD4#WgB3G$;#hfF+oH2 zOWJ9cP*hZuX+fNUR3(b#1;&&8#iEi%+0@iT2=fN0U;xM{43$wTql0~YsTmoqjz*fA zSO`D@;P;|870*x25aSa3a|x$-64!!x^=oOmLr{W9G}jy*N|K$Z_)QniPfd+OBQM6v z-^C(W{vmHt(s5N>{+wmOYmOrQJ8CNY_1p)<|x%g*tLJ3T(KW zDf0C_yXx@*O{HD(_tuY~+ILy){QH4YeO$ZYUSb%-o7>}_w)DL}8Uvfq22vaxHkV6> zBcL(}7hn*JL&a$$}@ACXUYT($mwcsjE9P>1k`HLUy_e5Da6Is1-4- zfe)W-c~(2ndXFB=EPb~y-bhKl82cqrqgq|S@Sc6{O4gy-fpp4*kP`S#d6UEJkw zE9cL=HQilzPIyo8ysv;}Kx4Htx4=ExFcj)#{vV^vlw3*4wUNAu{+VaK$$BR)*mzy? ztJ0CCb@9C^0sROYTQe?;T@>R{egfeq+2Fi2i7G8FdkdRz8 zGc&8-#)#o}N8mhXSiBtRus%vrS?)vTw;;!z`)DoV5Dt=GT^}sAbBpFvlzU<_3ll{~ zDcp8SC2*6-YEsSAJ_qx9JPMwnhucpM`vkxJS<=xqRHmdiZ;r2&crC1i%T{sd?BYnI zW>}))5hZlW6!E4M3-N#E&Lv=QcYWcZ2)$;BJn@J00mlLhAKg;F`H63gtvDX!kpxZy z6K%>~z7-i;OI*>*M1+KB6c$dA*WTkcnZ)nU#%tYb1&IEH)fkjLE4#)!e3Zk9g&PwT z^SzKm(EjD%+J5(|tHl5AP;$z{#VH&6UyQzu#XY-W%lnLLkYn#PKK1#kNj zSFiR>c(@??1_q&HV@7SF_9iAQ81=h0CW9y%8ZrPyK?tNarhr$l6%@}M9i8CpyP2M4 zrhpg3aEHaj#*Vvofh<@=*9Rl@8m7N|=;!A0n2RL;&X+R%j^6vQ3?-|IJC!u^06~70 z=5FjXAY9zljZqry|2%${yv~zoA0|aJ0EC&^cK6nya;C^*+e+?eqnTGwuoYmqcl7l` zplA`Qks44KCaI6c}`G0vckJM?ftIm$dX%)geaJfYRPGZ zbk;^J&yqVjjQC~B!K;qmg3GBf_LAJ{(p)rP(#cd7eEKGprfEs4WP#?k^Gqk9&UD#P zJ6-Br0z(f47MiM}^?D%%4T;7>)sUDzGnqticv6X07bX0qC@D47-FHZ)zP#jQrmyKV zO_XwQEqeoHS)Iw3!=b{RNzR=D^2)k}&H37H&j}W0YGmcyM$+47v;N?7LhUi^*ECFn=L8E%52 zqdJ2n$~KB11NXTXbL9`xN|;SI`_bAJe5>HGd(+^cY1K3|K8I5CJlWqcFRz`}dFqKn z@`yN&UV+C-1~)uR%53S|6YVz=bZ?(hrQH6CZcfY`f6^iCmR(!7_RT}axJHXqO|nhG zwpjB`yMXK4xL0;JWWgtAo$J5OHhT|NV}xx&^*7|C_5*RU+>yX7pb zL(+FOV`oMDxrYuDE%l=fgHVwgi7)OdKOgmEW9Mh2U?AGS#Ue5oUVMUabLb#0$>@mR ztva;4a(&Kn$2F}eL7K9elX<VYSd>QvCZ~ua|9*(fZW{02>{38 zyP;crBfOWvP*zL0v20A;%=!LBZ*Dg~yxrbU5;J_1?z~{27 zooa!lH?`0!Smn2V-rLEBPMpE)*HOoi(`0zaKpa|E=e^CV75a)P%WtZI*?pqA^40o!?n)dyy&riF_6mk~Iu@DiVlP{w`oi$&q zyPp&@M)~tt3?=D&HqVljz|VD{L~H1qj(s0ET^xH4kVWNpVwOqEEB*Nng98^XpcGE{ zXtqy9=*zW`)+hoeXMgkNf}PRozA&j+cImHZ1QBOgJUtRmbv#Vt7=7gmNjmv3tkkHU zU!=m{45pkqg{}QOI+`8*>xZHi6)?TYZAUCyyeaJY z%!BwdGc}oZ+t(wAQsqt!EiS(6zq5k%BzNTWzq~3Bo}&B!w0Z*SISaN`7ru?Hzt=im z!>I`oe&VOZj^V}oBvp@&W!1ioOc9=}1Uz02ZpkCXT|8PuNTR(EFw4y* zJRr8Jt=m5LJNMGPtc$N#H&^<=y7oOrHJ&ne|3aNJ#f2z%NSMvY-e||L(HHL$6SR#8 zy(9bf_4Kh9UzN-rxSU)X8whM-g|U?TJC?LX0v$#1rr6>PbiK4ScJHm!?h!r|hbsXB zURF_t2D$)t{!4 zKHE@)TQrPZ-%^{>Has)t#u^=uuP=ZOB)`zk8i+4(YGPvg*J30WMt)PiouUZ&Nr@os z7A?UM23hh4;KO_icq&0h)6AJlMCQ1>ur^8ldzIL3k_;CY86HLxup*R{7aKDx<4f6L z%+A4>1%b9Le!!JViN&jA=Btv!xgV$!G$hh%9~^Hlnf|e3<0txHTe0#n#%LF_mUL*Z zWY^N+#w8?;FQsJ5Iy`~Cc&RXDg2uc@vsD4EU5r*(%e-M8og@(inM!cSzIu9{r;d)n zUKx51NrgT1av=`0Y{gOq@@`jLQ0)EMa#*l!{1pmBL~EV;S{k^B-e;{rtmAPRO@}9> zCkWaq@S&-${amfH*WLy723c2x`4Zw#hgJ8dz$-vu%7#kq4bi}TPOezZUv9dRSL?B2 z+OysXiHQ&efngm;2Sqy!mS#+LTHBpcI~9^18@yHmWD%->OO*pXMS zp+%3ZuO88N4uS+s@`u&h zt+GrR9sLp4OS0XPUz!^j6&0^gmGvB+AHV(I+)m2@hp#l`3eV+fiTDSU86RXxCGy3+ zO?@H4J7_=<4UIjZLk)RVDlzR~zJyUop})V5IkHzJ#iE!GMb zhlU^@*%x%47BwYj6L0)k4ST6cQFbZ8d5*Pl!Aanu3k7G|NC}1o+BbL|sStxm?SkM# z;XmOd-lh!Lh?+*6u+yvwuERKfZZW#2pxg_;vdpjK>9Mi8#r0|3CvYE23q9J^s_jJo z=1?)qWWou9`AEmmlRXBD@B2iTl1K+WTv4ShHYB1I#hp@-NDj`$*a%-ZVY*Y7m!rq3 z(Ji5h!`!6!yQNd5&*vXJ{ldfRzWWG4NlJF62SqU8enG$3J&gOu0N5hLN3ANFumC0i zUE}g~6Yg$saG|SOBua2C7E9KY*vCOF`6c1bGUB32G#;s9q-#RD+kE!fy9-&L>8r2mJL+G$R+j<20NwRQ)=iIzLAL?)E8l-e;AE4_?_%UmDA>+sf^4`($X> za`0Q>J$$TlSU^PPPeJQDE_p>?TD*z;10w%@fa1SuU>?J3&-9)S!?}_}9GT zFE?eQr9b^X=emEr#so@3zfXZEz;0BbJyBZ*){}%^(Ev_ysaOm?d0snLKNXLm?!Dqtfq?F zP^zqWIXNiJv{&4dwd;>Z_U_%BFu-p$ydRK0C1+MD6QdpA>rz`Hdp!cHXxNNTn%p+@ zdcQBmM7AbD>bo~*6rDti9>tc-0%#9v!Mn5X{%DwV+8J-e??79~r`u5QD(bSF8N9AV ziQ9k!(Y;wElJf?}+YqD)!<-QSO@y6Ahf)K3Rgsrek-G@nMC#Mzq<-yLs-x;x{-G}d z`}I?eq|SP55HSqiiMg@U&I-N@4eTd7TxUUV`=OC;VoPhByBWOdKvN~L?iHMB2JwT) zsjh>hMobI>qRn(HMC`mn^+}JP)m*=DK%X6n(pmlYZY^6AUQsQB6MG^NE}Fya?5z4H z4JMzS3tpmq*{H6hc;7mNed%$z)orczE;W~TV&4o>J!8)N-Bd};WbZofDtt*v37cLK zFp@7DoHLwziNo93dFA9tyYJm`)Q!v9;;%m5hit%q%373EOh?Q-Ow*c&C#YoBGm`$* z?@LMVEpC@s?G;P2m31CbLI_-L3BcODd8csVMpAulgaNUc=boSO$l|mtXO`Z2#TorlH*wrhi?xt_)*Gf>IQc~@x9n~x9hITbe(8^;2lPjvm_6t)5}c!)8+w$c8IX#xIXN0z zkfNk)36s3WHbdi*y#Kt02Z+s{QtR8m5}i99=NW`TDl6doA9gWQ9Q;_Il%SUO-Y*(4 z&Q?7~PdbIKj;1KUe1pRe(;_7{P9oLmU-#*Y5M<-5bD~&ndu37mZBgYK&oK&fSs1QD zVgckDCnQ#?45)wY1V!6lFITsEI=dM?YfYz3C1rU1-AdaquUkJ4VqPz$-1c&O?~WGh z3kWBE&&tX|-O9XMEBjFtq7U;zGfgLZDTaw0?l?-j3z-h-#ODMtu^p+$FrBZOEF2wd ztKGb*UCWqbh76sNOeBSJbcnzOvJtA?y7gGg>dD=a@hpu8gN&C*0kB}v}!LWp6O%TrtDnkDECB8dOKm0twU7Mv>^h*t`Ege4kVcp zQ1_J5da8~(lxRMmKlXogqn5G!(aPaYLm|XFP5uznWGl#)uZ_oeJ&`Mez#aMbN0TF) z-MzL<eF+A1&ouC+sOsp%jTm#p9c^_8Esj#EYtZ@k&_7hzm4uU^Id*;p0un-8$Xs=OvKq$0w29QekHx}CRbomR6s@@eaVnx3CjjXT2P(9#)-S>Y!zdUZa z6+I9c46NoKGc!5)_=wxQP9C1ji>&@*8X2xQs3QPiSHEL~S^Dnn+a>9EuIrIeQ3<6bB@A_{o}M*zkA9rL z?HW6xrrz2N@Q^vLwdyuUpZ*-3tsI@)k&Nb9&HRJo4VWDr0Bd_3>l?FBZXr+yeX<2O zBIZH8d_!)9)1z(sALd(xok+!le`D(qQ(u+N?0G2c`THRga4?~^3O@mC66cP|)(K3n zo?Ja4okR8H{#Torq4@BD1Ky&^s+1k5?}2gsPHxAnk_J7wtI>)5V85~cK_izxd>z^Re z0FM}(_u=lc{p#LrQ;y+Xe@4zqW)Sb#b$M^9vhg^dVVs*BJ_ISZoR}^>CGouwwd#UhzyGhC&$;K^kEJz)_`r4%MId9mGuLt7`72xd1?&H@Y{%6h0 zM&g}3U_4&DE}Ro`uN%${|T~Eo;@4<@gvvA^mKM^ zZam0mv_Mq72+%&-Iy&Y{ec2aw-^xM##5>R+%x&2HX|4>S<(+z_KHNB2dvP%_(+^91 zk3D7h_^y)?5=Ik{GI06*S*=`hc`X4zhU%DXc_kVp{C~o=q{YR{u21Sg zi?VA~I9OO%?yKd4-7rnx$vES`dGiJ~qgFUU0GPX^WJjWyWoZ*7?XPHPkh-o6VG3G+ z*a28#s*c}4&hrU=bco@1n9ThA#ISs?-MK??`1@C2`-NWMf`(s$yp;h)Kcu3*VA2Gdj*;fs1RnL)0~V<0gDch#Q=a}w}{-Uu!_5-#H7tT=g+-d=hVYHSM9}kH!!mFyP4<_n79xe?m6&DwWgoitOOGqF_MP^t~ z>$%b8cR~#_TUkqs3YJb}lC0a6%pdF$68-5uW@c>D)6>BADrF8aeT+f`r8e=g3oMcs zuql-r!oeaFzJKiNc1LWbeUGH)JCnkJmm~^v$O#q##sJtWJR5NQ#0(}Y0O-=x!DTF< zA7#cyj1Ntu>_q z3chrhM3LwwH8u5S69MZKG_DV4Ys`10MD0!bu_D0Z6L~%MJO*D|<-W-wXi^sf?R~mm zYzFOt+0hJ$)?$ZA`JiXd?!$Mo^7HYKJcCkv2*|g>UhV9&e zVMy3x%K}z%wGr`|GoL^$7CSH80>r(fXH;q`o9b!km#+4!SM#6DeLX89Ev-M%=-1eB z00U-p0zABI9VG&{A;FV;$;BpcG9@8_2PeAm^u#M+n~#rg3&dw`16X$SdfoP|w&H%9 zIOQu>W>r~z`W)A$KZlDV2S6M0Vi$naI+!C_7>}6@;^%;|NOf(ZzSgdEm}$Yr#%30z z@L1?fDiP>#%Dj~{tCOoMQ*cj!Rz^gmc%uHD&rZLdC?dnf)iT#%AzE!D#Lu6*S05Z4 z46Vaq9(EfOz&rPzL{Z*-!>oRxWY}&C=rm{1XhoUJm+N~@C|{mV$)c|IU4W(ohV5E` z@^aOwp`wBogUmzzj*|R->Vx>ThCge~umvX`8vt(C^{A3JEF?0rb+vMGP1;(R4neM6 zyB6sTTekahe&rL$7y;Ne4Vr-hfcmusCRtY!c)%5X{ns4_{CWjbzkmJU6%uNL*&zaQ zwMpdbhQsodd_?aKxnjY+$cTu#pL;_Rb0@ATzK48Ql$Fhk_039$fnGAo3@kT|6JHLS zM$kB#x!StA*ogd}6)`R@t|}v95)xblqsXnhlHq6~*&^FP!7-OXV@#T1sXsSy#{lwt zbNUpx3C;m*$enm~ETD{^PzG)&IJqMb3>Y>60TQ9Q4Qw(XKx?*U0B;ixcrsi!ym|9x z>ET#3^c|?i4+fJkLjz&mVNL}hH93X(&rXO9x@ulp3INHN({o;4%2 zrh`0$BqS}>&I`i#TS8PuKex27fue_5LMLfQm+Uc5pJ!6f0E!EF_3?}wFuky1Rt7Bb zOPxvbJ|pQGii(Q$U0^#Xz?m@5hKBSL?2N6GF1dUH(@4a7AGYXzsEp)P?QZn*lTrx2 zlGbC^`|^wDrF{;?BUvto?JN&IfPWFxwQ$;>vA5-$Al>)mXy4KM@K+{4H3<-IPDwB_O}#hq zB2+lPc65vnRAO`@ux2s4u8oEI0iU6M)f09yR{53Q46tCq5M$lw5NbqQh&I8Z-I{Ih zUfy{v?Z~maHXdGACkG}b0Vq8#K`6>V+yQ3}hbDFXoQYCsZI9&<0ady@ux=X(MlB@} zEkt6>ek??{z$g?B=@|p2u6-B{$CD$E+1Xi)LIC^nOJ}ER#{#wHpElUr4DEq&7$Z+f zNlAB_DtQF#0|5Dalh&dRI}Owmbl18$kg&=#ec+vjS%H&UC%XsM&dkoBsj9cP-1%GY z7At%;QskM*L&~o~}x z5}dr>m! Date: Fri, 9 Oct 2020 05:37:52 -0500 Subject: [PATCH 052/104] [jlse-run] larger runs, another try on ubuntu setup --- .github/workflows/test.yml | 5 +++-- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 22 ++++++++++----------- analysis/spec/qtensor_specs/time_vs_flop.py | 2 +- 3 files changed, 15 insertions(+), 14 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index cf8ec5a3..d3c44607 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -26,8 +26,6 @@ jobs: yes | add-apt-repository ppa:git-core/ppa yes | apt-get update yes | apt-get install git - which pip; which pip3 - - uses: actions/checkout@v2 with: @@ -38,7 +36,10 @@ jobs: uses: actions/setup-python@v2 with: python-version: 3.x + + - name: Link to proper python run: | + which pip; which pip3 ln -srf $(which python3) /usr/bin/python ln -srf $(which pip3) /usr/bin/pip diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index d041edc6..dd1ac495 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -935,11 +935,11 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 175, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:47:35.854229Z", - "start_time": "2020-10-09T09:47:35.837578Z" + "end_time": "2020-10-09T09:48:42.372162Z", + "start_time": "2020-10-09T09:48:42.355981Z" } }, "outputs": [ @@ -949,7 +949,7 @@ "" ] }, - "execution_count": 171, + "execution_count": 175, "metadata": {}, "output_type": "execute_result" } @@ -981,7 +981,7 @@ " p = 3\n", " N = 1000\n", " \n", - " edges_to_try = 20\n", + " edges_to_try = 30\n", " estimators, maxmems = ex.map_variables(\n", " ('step_flops', 'max_mem'),\n", " d=ds,\n", @@ -1178,11 +1178,11 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 176, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:47:45.194375Z", - "start_time": "2020-10-09T09:47:45.192105Z" + "end_time": "2020-10-09T09:48:46.549223Z", + "start_time": "2020-10-09T09:48:46.545053Z" } }, "outputs": [], @@ -1193,11 +1193,11 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 177, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:47:45.825582Z", - "start_time": "2020-10-09T09:47:45.720189Z" + "end_time": "2020-10-09T09:48:46.941642Z", + "start_time": "2020-10-09T09:48:46.823058Z" } }, "outputs": [ diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index ba8390ab..121e4a79 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -166,7 +166,7 @@ def time_vs_flops_plot(filename=None, backend='numpy', p = 3 N = 1000 - edges_to_try = 20 + edges_to_try = 30 estimators, maxmems = ex.map_variables( ('step_flops', 'max_mem'), d=ds, From f9cec4c66c67980140df2462a6254ab5c1525cbd Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 10:41:27 +0000 Subject: [PATCH 053/104] [jlse-results] for `[jlse-run] Merge remote-tracking branch 'origin/exatn' into exatn` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 29315 -> 29016 bytes 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 71d5bf07..a38da7f9 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 2.4037 -Simulator fitted flops: 1.204 G -Matmul flops: 442.24 G -Simulator optimality: 0.002722635885697399 +Total time: 2.0027 +Simulator fitted flops: 1.3026 G +Matmul flops: 591.27 G +Simulator optimality: 0.0022030887121806233 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/1c4b1e9357bcc15ad33727f25111a6febb530c0b) +![](https://asset.cml.dev/503075ff2f9ecf4bb29b74913ca2972c3737448c) \n -Run date: Fri Oct 9 10:36:17 UTC 2020 +Run date: Fri Oct 9 10:41:24 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 429d7957989e3d4e02441a5999895262252a30b8..83f67e298ff878598cb4f17ae10731eb1dc50dcc 100644 GIT binary patch literal 29016 zcmeFZbx>9B*FJnGX^?J^5F{j|TS5d8P!Ob3LApB*(p`ceEea^zA>9a4(%oH$ZqDyM ze4fwqeP*8d&AflS^ZxZRb4KNyz0bY(zSmmUx~^*(`bzmZE*2#g1OmZTke5}3K#+YQ z5Tpf+d*C3UqoxGMK1cGmbcp?3e%rytU6moi|>7-_B z>f~zV@E&4qttna{J`bCgQK~v4KF7TCoji?4^B>YB3xYmd7snP!Hmln!XpcT zJb)<3O1*JQ-I?|DQaicnI(VC`zk$~C@csv+p_}@MpYe5WfvjxGsUj?M_lLf=u^AHF z|AAKO>p=D3nLz53G_{eRM^9)%1c|vq7H|*B=o2+mTMJL675-k|3NiCFJk^Oy*PR>a z`W79`qNF16QFGphE2Fq$`^19){KO^^n7JS^fSm1qD`ZKE$<_vf%LjtE8hsT${V94R!U_?Pa&Zwz5wtbExjZpV zMC@q()18mKoc?wD_o}IieqqsikL=`SeY%T{q`jLndUkAmceJ=T!%bDUH41qZ!Md`I z?{^Ex`I+a3PV0Nr@1G{R*iN+AhHrHIp+xgf5vNB-ik>ebcyeaz7CWgHPsSs+w~PGW z_h!CVbleU@yNk5HJ9FM-MGd53VVTdcHOo+K8nwRp^gUB+28;S@B}Usl5G>^%0dwtP zE%6bbaR_fUaQusbh*&=CV3eXJ+OYzjqURC5e#r7l{MAL8|E!6=+BA~jmKsl9fyd<{ zirmOWy;Sk;jD$~U@n5Fg^GByz+#gYkWHktsbTmgrM7ng=kM4=dtA5eW6S`YSI4K3A zuQBIc&}06BU!w=%3u-rf&!*VbD{7kC$!mZ9&*}JV1YdqZCNr=KXrdK2Y`YiOWcQ5# zkts04Xhb9CeD<4cb)#u&YvOzbXJP2WDm&1N-3#7are3vxlcqMB9==*=aCS|b)T_Ss!> zqg;W){mTagl7&$s=o#;#S|UR2}fvOD!fFBz;} zQ^;+Qd{gJwNR7nNOSen&jlUf;zg8yNk1-ay=%9a!eNNb)@bW4sDw=f1(1WP#*(n3h zq_x#`zQq?QxNTnita;j&{rZ`I2%hhL;}xe&Fy2E(MwIZ5)^M&y&23>cG&HB}u}IR# z+Jj9{sKo8L3H%J?gYG|njt$IAO;t5DCpap@LqY<|bJP9w8w`h;OC}d8#|=-dSQ+{qPWVg z=yh_m1ioq-c+HX-)O_Jy6sxk0ZZkf3;_g6FTdUsQMaAMHi|swfCZMBxY&sEd<@^X6&y>`1uWpl_xaHxi_vA%w0 zhwvp?CDP!g)6#)k$@DH#^z^PvmDMEjQ!g*EqxAu^!Az+)>gqi9OYMw%kaRKkC&I$Q zx7%@Xguk3NTLa1T<-zw#AIbTFt1k68vABm%`_hlpwq4Ad_PYpp72tG6RUV!%cjlE0 zD^K@@bLITaRy6p;j!iR{Lsx;`-%uGzO?OgrxKh=_h z|G9Uio4s6%TltII#q^wb4vyl-8>La4dYqwK12TL~)j?q!N)MhJmrs^x7Yb2F`F7FZ zq0@-E@cm>1@pI(f0NeQ1$zx*x#Z41wN#>79(Fq*2aB==ioh1NaW@i3d=W07vptTG| z6e@npF>b?VUz1<1Qc_5>b*{O#^BXj@WCXDrZ?v)6g4-TfKYfO#>l8b*^?u=LIs2zI z;vu!>?CfkW_|4hvcA-vnnfWmDRF$>jc#+=k-@lF8LkNyHhl71?E=%nerF(jMuIv0# z*hEEBc6O{@ym%q6q9Qp~O%GBfhs4#Nq{Ew2of2(&Njhd_z8vVoDp@DUH3(yJz7H|* zscI<`aJB-?Qa_`%pi<8>o5RDyiAqZ{EiJA3+so}rfgnV+;4LP*JtQL+C1qp(>S*?D z=xEX`Mej?}!z`4A=8q@`9u3dE`e|HeTEJ`QB}pgPUaAnM~UkJXlisuS4hC1}_B{1f$6&xz2QnTMF~g9K@&&n0$zABP+Qzu}^Gr7qCJ zUheYmFm`b!!~+HU0l37z6v1+z8;^2DL_RHnO6oe3L{OjvE)stZ-R?+7~ol`u|LluXl5R~TPXVWn3Tq6g4?^|XVO*N znn8`g10RUM?MnKYhqdPGX)dOOgve60d2C6-MECIcTIX4F$sZfs z!q5XH%_+gXyIYbuCmy=47thKXr4$U*)lVu56~ljuUNU_7cUgSFg7bVX7e)HGtgI!* zXxF>8G07G#?+G{WzPL4_3uQRB4UMe1NY8HTXNgZk>4gjvc?Bi{uS5`&w498$P1{n9 zSI;1alTk7HGPGnNYFaG!0xSD!rPkqU3@T~%xZ?X%UVTGv0fYn9Mk%H5^0gE#Z<7)DwN?4p!9v177#kqO%ffi zX*^Qatj6;>z?LtWER9Z~gn3=n{KSG1I{ov(6$AJaN>S)J{rB89Nw|51o5G7Hjr$HF zb{we`Fy5#@UVC90<~Qs^FYmT&J06Xn{qn+LuMym5V;o<=CV;(I>^gOeN@8i3;$1(d zkQhy>s0RHjzZZ8O54b&(6x!y{tmv+xm82aj3S5qsyr!-$7vjENk)TUj!mPFKPHDstP>GBMwi7>G;t<8M$Z#HGU&sFOt19-cN- z7_)ysNNs__2!P-_bbLxiZ^cB)akF$x6>&7Zy0IHCOAAU0cgF*b_;HJqIK%Q`VQ47< zq1v#tZf!f(U5q`r+!G}i_@lXu&TURO1C?ZAqP|!!_-X!1rCALwi7B9jBq;UY8L{#1 z2^y_z=0f*2s|labM_N$Yet3 zh!Wy%tdN5Wb92>ZaEnZey|UJtVk^Dg53+%(Bw{f7qKPk}IU40A|GiD`YtWYz;Mg=$*whc5 zuN%NA1+4vA{QHVtem6qw^Y%A$VGd&Gr=ubVS(m@b|7)x2{#?v2jsURE6K82@q4COa zlx<_=_fC&2r7~jKFG*~-Uv0OChdnkJ5us??(Rid^OmKO58rYW-*<5XkyR!Om)WX7? zAu(eYolelMZQw21m+dlkc`utF&KV zl=sYtZ`aOpPBQJS#1)RmSx^&vmV7fsm`LBVZ{nDq@F!yBOdK_-c+}Wt_r%sTh04b| zW7d{VS~K8Q6>b-&I^BN)s^^1P)gmgP46!fi7MTYX9xyPpsC&0PuNU|KGl_;|iJT&e z`Z>Otf4rFvj**Z6;)qPE@UT0e4CZc3Pdy*Nj?9)BS!^;G!gqz8Pl9bpNm5a8RcFx6ppP| z*E&_nZRD5Z_3-k?+gijS$;onZbGr2;tCiXfOcOg!{Q!fvk5t5rf`Y9}Gqv2N5%xvJ@)d{=#U`zs zv}Qfywr8l(wYxqjamXIp&|;cG0B!j{lXYZrQG5cfkn25HSU2O~ugY5IP(HH9mL%Y~ z!xr?x@?3&jLZYvkkaTa2MHS<4#PziY&LzF?bS38u|#4 zr3lsMJg@<3b=mb>dB=D@>-1?-Jv4v}QFi3tz}yTkorK_CjMq0?Z(+Y#u%HaiLx^Te zww?|euw5)D2X7V{cRer$eN{DQtX(#!k&hld%Je+jJ05kH0$Wz6fwHVD0+yJJ1%=ny z=LNTB$lv_$Y96X(BM74Q8JUzlPpXfI)r4ULYFKyd-E}ea_osErMORuzZcp3zOWynj z8<*jEE+QZZR_EbCRJH-)o*=|Na|Ii<{V96ERE8+EOkwUlFTkGLzD}RkipZ@m_`+@> zl8DW$958>~i2-f!XvxiB1L-AD4n#m!{68TNqn>zfddom)QSv6e=>QB3ebJ7w+sm2h=s65JCLci z=Wm**RV)*{P*k^2-4y73m1%1*QA6N!CR)x;6zYX|XsYl`Id&W6Mqk@$n4K`-ivnGT^N14*n&<^-vZKPRw9TO z`S>!XTtg*WN4K`F0n6JwTb$A=3u|p}5|T~=8vvsuZ&24$Op9=@zD0$?MM1asO5+}l2>H1G zwot@(dX_IBQN_dxzNLTlJ@zh+`?Bh(ZEDc~Q_wn}Db*QotG9?x=@$3h+iMRytTN+OBm1sxb9z7TT&Ga%wD?Fes3E%gvu05LdRK;Rme$kUUkiCAWYGVP& zc~>RS@da|c&~Ythycu?xh+^eIXKx31F|ph8Wz$4@kP9T>Gvp_pOPC?y{?}e^H_j!3 z^ySZb6qp%enbz*`zWHQXHiA%-MZ0SYOd93|=bxG~*WU=dOtV03=@i*gV8;5$phP%^ z1etJdW_+$i z1p)Lj5v=o${pM3Qh#LUnX{H}0)UV7G7vK!xU}yjKJerpH951-QXtgI{Wo3oidWuit z=2*?+c%$VRnVziu!J@%E(7>d6Z2hck1Ra0!wl!F7LnKw?@=UtV)Wpoef-LRbh zCLLGgH&X-d=au*e4cM_01Y?nz!8jDHG4wK9H@ALh*yQ{c#Ej3QPz@)`-q&Al<%?Zz ze4B9`5QkVzRs7VlAR!2S21=41mawqh#(k&VoyASF0vz)D=k+#9>rYuH_e@dy-v*RMFQ)Oii z^X9BsK$f`L;RT)K#!M~mfW#FCip6d5_JHX?dY|{%?Az@F^?Z%kIKo@C`}uE+1?o^S z885};og;6=yw3D2*ZQ{o+hSjMd65Xtos-A}+q}sHEPjFQ=B+GbI?WQSS>u@jCD*l4t2vk)IyNC!0 z8I}y<|0N0ZWF+uGAJ`oWfO6-_z7Kk|nDJL<%Vo)jm^8ebBHoRqyw!H1Q8S`Q@?{|T zc{frDK9BhTzq#MHU--4vgA5kS^uMWq5z#<)1_q_07W5cI&(tmp2+nkGQtfIyuXN?z z`=K~SG!R8a#mNfuPf(Wqu|gg2H=^lkTl5DkEWxY2iAU8jO^^;N+|*dm)phTQ{;qJlarHHbM;?Nw#S3-PQT*R zI`|b}dN(m{D{`+(*5fVpvm+CTU7pr$j^M?1gR}u)aq?RLWs=eS?@1Za zr+PgBt^ACK<*Ztxgh-_fQ<>}zry(y1F)`q^eY=)<5IHWBl{09u&1jTu+2h=9IX=4L z9(Bc6HBniHa5+fIQ%lG*rm6aysz6$CfJ9Ppq9w4PS2}I28POoeYn&g2Ry)5sC&FZ; zL?R{#HKN5AyE*GaFL+$#=b((%<>UamDrrM?LEUP8Pe(rfw7E{ zCq4ic4XJ>(n1N>_QgGpN`)iF*6zSs`kQx}DZ%JY@lu9%DDrL$IG7$cpvFYv$#OC4? z@J{u}OLRY)TMVMAH%(+_=#xh(!9;Z246ngOLnQ!|)8~qyMB8uL&v9H=EmtIpHO)Ej z0g4lB%F=E*vU8Kx+`Pm~Sl1D^Mi+EC45ovKN!S&CMo0# zqJT*MQPa@gC-`vJ1`WP!v6;t1L2peJ?sRq$D9}M?Nhgm>B#OnzLKJoB^fJ{j)0c*3 zd*r&x&zli&NYt_G6`zUppv(dwM$9gXbkH|9VKa^;?=UMq5R4=OS|uAYfjR{cEbeOI zqb^57I?%EM40S_4xa#yONtCqu8^*w0?ejnM0Hn?Nf!*Z$5?i|CUCWmjw|lNqwGAP% zmrgX2VlX?pg%fqGpHADJNFTP{)4}BtkAAsxWo{k3mfYCGul+U zR-Son*(`)|Cm-@~V&@~horBBMbH$R$=nH;*x0Z>8gM+TYU;Opw4A+|~F-hbBf)5y8 zKL>m5I|b+!Cc2bx-Tp|}Z1Ds)0dAc4UQsP`zsH%2 z($)F}DO#Aczo3%mJ5M8=wqJ~h)}y;7of`=V7g3^nnrtMonwf~3Xgn(D1<+l0s^0w) z<`PzV*cY?Rw_GOv&+A-ZTlsQzi2(uk>yZdTMGz2;e#M1!db&5WZmfknona({x%gfuBu+aRw)IHEx&EUT%HjZ< zc?jm!q;*J1_G-#Xvoj&VGT_%NWO_~nppsb4)Wr7mynx_Q3pE#Ll}jJQ0hIi;f>T>7!smfJ!w5$ z?eu7Rtn+}EXwGN)!x16bJ@(3FYZ{A_#|0CI&kApYo=*=lFf1}MHED~u>~x>aLk+eM z&gML$iIj!tiMb{VM$liiiwy}-sv{s2di5L@IzB)!o$>p^>q&ZAnOol2vr!CKEN18d zO(x>Qnjp8zBQN}T{f%7Ig@exfn1D1q5NN6CUWW>MjaN2u(X=#SiB=l_N%|>zVe)@M zbB2BZ1QkiEB57^4m&A(>q(3Wxa`t?k|3NZBz1Uf$C6(Lio}eJTJ< ziQm67AAV2Z_2z$P2E@IxUVtm*F`!7_3d*sO<%}$gx`<<8q<>dCLPJ9l^%F4a zv7cR5Orm6EDZe!i{jkGh*dCV|NCzn{CI*5{+8oX$JzZt`*5#dznSCMa>57_iK0k@U ze7_X|rX)S4FFHQ$yS&Boa&aiRAYy1hQF`qwNTu8A6J(EQMu^X7Te{?cJM<& zpSDnW*&mjCd1J}VGo^svnE4+00HkR^c{tw|0G==4t4IGyVecMI_Vr>Fs=mi#Okeh5 zz9<*V*oy#D!7!w>PrU7736joMUHUf-g?YTvE&S-+ZahZi~o>FFyNDNu%n>aPt{$D~RV00AXqZ%Ghp|CKs2Z_;Ft3^`v#_$vLa0Xg!I zyeDI4O6jQ)(`nMQADIa zjABwU5ZXvTLG$Wi&3*OyH9?q8cu2q-6Azrm8-aK4DHgeeCqL{18LYC+fa!#TICkQG z9OS$i1)tmJ+HKC~%KCI?Qbs{Rp*b-`UdUo2lq@02*z}L@(LgZZZ47P+C2q-W8ih+r z%asT3$J&v^u`U4FlpMS-DY;-@JRaU*JTxUtfSGJ4U}Ga6-6B4=T(g>7Rew=+z{~i& zRR&+m!eV$Ymxxcc9S3ZEAo6NFvSDW+d@vE25tAFM9#6NJ8z!uAF2*3MLAI3A5iOhQ6nhjGjH$(Tp_7zB__ zd@gT_FFiyIzP*3&DDtxbbT(4fZj!9M~K#R}C6$Z!|29Zl!5XIiI| zJxcv`nf>SeU(SPhBw|+_#Ke!TL*0qdLVa1LdbCR1 zKfqXkNlqnh^J|kiE-vnR{>V+t3-PeQEo$*nAi(^(Ht}93F}W*O9on}=B?ADC=JW)F z@z^~T5AIYtYT9LtWJxtmK=l|7L&2dkOU}7>jSi0i+aaw1)e9n5EPx@SVRE_+k4T@aSm#5Q)%f^a5xk`M($e_bzy(*q|E>zs!jd1#=4U|;2oE? zF`x+vfYr7SplYTtYaUkdKg|u5FTnUs*=#*Djz;fF726>)D_I{xo{3^e#UBv8mbF#)A6w?H4pJt2tF21zC@OYca^Pr|feVzW zG*Lm%-{6_k18mrEHfORsRr&7y`@p4B212IC%9jtnlz)CDw2BACcu9BZiC2GK0T(_v zRbDvx%fnK<=bMnMv0fV8*CME=JHM6yK=6f)8Jo<2$||sOeCGbd(&l|8XK|w z%u6KK&A%NL@CPCC%S;)^>`%-dBjuBbrTfCr7f#$tm>!l}wnX@D&Y`Bzcq-HGWxSZ+ zxAl-umJ)1_%?Z!Y8vW?APQF;|?YV3<|Am+27TAplA!MAo-Qs660LWb5N7Uh%hv39h zx{iv?CYy-{GC+@vE+>CGbSjb}B})3Ix!m(@H#niXyD(@ILAuM%=C*s_bxNV@_7&0c z1q6d!3xxfH(`nnIaD!{V&yRKfR#{K`auHy1NqS$?UZr1yGo$PKj5YC~Mxz&KKr!wx zXCIkq0a8KlxPc7(7DyTZN>-QyReA8|r^y5wprnm78D%q9mrqo@)*uL#p#OrQRbyv_ zNdNS&4tC!P(bfaj;v&>k*S$GhkLEmlEYU4kKYZe`x%BH!*68&QIB0)}naie1U!- zOoKH3)!2HNR8g8iv+!NNzBKq+l#d_{VTLl%z_IhTgsmBgy&+V~;ar(2bd1*>9a26L z*Xxq8B)1E&+TPJCvY?|kbs@4kUg|p7nN|${BcAvEtK`Su1|{X z*3;}@58k~aZ@B3fuh#0t$kP@lZF9=glVvcFmxBn}%yfe?xdjKjWi-NX#FFMj2nar_ zNBXKvJEPQ#_8du4btyJy)dnpV*|SR3KtFYiJZGw?9>;=8AOeOoJo|O7HD7Rs&l8vP zC`!Osg>wZdr7(zIU;NuPbLi$wJ!A3+c!yd7sM$)|Z2-4`m+4QMXd-)Y{S#s?cEVGO zD3}oKAO6MzM~q{=;NcJz8I|c0rd&Qn@f3j;z{0!EQ$VfCO)1tdIs;drW+@rHn?D@$ z#C0X`83<{TPu{NmX36*iKyb>@!)L9^dW>RKua}XF+RWR#T&LvLuRAI&4%4cJs72Kp z^p_u1^Y(MM8YFUpq{eM;>=fAKJ2Yl0r6Wjy@j|py*T-)~#acHop1Y5tD1s%UnNto86 zc2V19AZ!3(t5a~sLxlg+1}nB zK#p|yRTI2z)d5l6TlM=0XhB|yLgT$&#E%XZXa5Xx*gzA(cVLuAJ0k0Pw~Y_FDvxf> z`E`dD`>vLrgicnvp>DxZ{RWlq(YATwBi{7Sm|Oyw5Djz5m`OrH0*8KmlCa}i324n< z)fdQX=GT5<;1nK(S`XBcb@^R^_Jp3kJfAg%{m-j%o~nUHZ|=jO7q=(-Oc3BC{BZF% zCz3*4fX>oFyWug^_yCG5%jD!o31Mev|03Zn0+?fF9-i1xA{K{>)x@I-lV~32tv3Z4 z?5?xUZ@CRrnT$vHTh(rUU19)E?(x=huPxEb9Ux&&?2B7X$I51ncBG=`k@HG~GFFfR zWmOJqi?SKemb55-iN|HZ2%CxJ#IYW(SlHzJ@X>SRedcIY#I4rXIg!wTcjt;dEwc_z;A9OHJDV0OvlYpN zu>cE%6b+Ks>7<$a^+8wdPFXL)IVXH`JZxV#i}>|(F^YDMgM$MO-I|z!0uEque6~N= zP`eVRD6gc%U&j~wW8E@BFG=+Ctmuo{Y+HI;n`#tN&fi|2CjB!O5*_IVM{+~tF;Mv- zpnv={*Wif)OgOo5@$v0?uCpYc7x6RIa+RI7MlgM&XheZ2ZKBS#7&$ZGjraCk^TZ>< zzTrlGzMLyurD_ci`EU&54YCw;jrvFFrRkctCw_`J>VKT zD1w;>JZ2z_^bzwa4p1iJ z?p`xJ3G4{Z8_-{l_vbSLvB?~Uo{=5&3C<6G_2>B&2O#|PZqZ3O!l?+%pS}&AXAaAe zf@NM8hjI-Dv7LFfdwtaxUp=5t=a06gaVc?K_7QUNxPf31^a^VE#m7Oy9FxR1N`i<0 zvoiBuGXbLeic{zCPD zuI1aiinVV4@Z5|RG&pv}>K-u*I}DVq#-*@UY%bvYO+>NV7^DXRhudE5`gQb20_n5;`GKa}lj3i4 z!`mkgv(Dr8hrd~Py)TcyNkA`;H)mYuy(?+qU6Qv_FJ2s0x3`CGZ%&=CAV_I)HGTbl=W)HRk0|ILM)MLTSCbf+A~RF`hd0}o4-Bi(l?f*A z44{8AJ?r7OR|UGYaUcd~n;Kyt_X3}qa{kc;u%|M!uyi4Am~8M? zH+MGw7D0cqUZ9lSYnwF7P*PV{_s__Pk6$sE*VL1imX^H^CuDW*L}s7pd0s~b&6&*3v24;xvrvONsyQtlFW4W% ze)5}y?jiMg7$C(TIJzJmoZ`ScW0LFq855>)-QBs}N(gS1MR5hJxCNl+BUTZ5dL>jw z<1@a?SB^!uXN$rm0~5ZCK-~wI_kVGz#x%P8$CE|xO%rMb_@$ZtCEu=@eq-oFN!7kQ z=u_fUgd>4(0g1k3ZQxmQt29s$Yv4XG52KMs%OTZj$~?u)2FsgU(0&q~Mhu+gi|`RQ zZCPV!P4wo!e^mvnr&i{F*Ew%%fWNh$?oK0hg9rz7EAS*jm$!?XOo8V*J|W@46)pJ1 ze`XR8i_twfxhiMMy`LC&PlJ8z^W#uOfw2^j`EKoum2CYV3OfjrG~9~3d*33u|5Tgu zdYKNE*!0w)Y%&4uR=AGl8L@Id9tPAxl#!v7p119m+QC0{pmciNZ7xE({IK(nR9 zsBNObQ_$Vr9l;WSRIU%bIRSnp*<>B>o7+6Lo*!)NNYTN0Wo5oTP)q?)P->s=C_Lay zGE1Kn4IJGtOIWlt;J(?8A}8^~MpW4RDDHi`CW5CfdwQh;{{r7qG!t zT@tt^OjoN4tw#M4TzFaQ-?OWuRH!2Ry%wP-j6q(=T;x#YhkxGelnFMxb|V)dKHUqP z6Bn<4!V!H-H&6O`o%*c}{3DGk9O)m@;3JjY)U^G+OUd${D=YXIzb@O*>i_Wuh(8p>II7KLWO;1msNl5LwHnCNhJ7 zbn(b4&O)6wY_8_kz?fu;Icp8VI$D)P_ukT}9XFrbx`WYmdy$f<9j7nVsqIBwDXJME z@{Yiyh4~Rk_FgS4f3I%THGo_3tu7LneSqJV*fYKn4HMlN7iV@B|JYxiIHF~+KB*|b z<>B}9Bs7GN>>mfMFy((Sv3@GwPp_`_p^F9Oh6l#W9@lPeXL=iBg{O{f-m@k(<17q+ zseygzY0A@;55UX_xKKb5ENQp2j_-4+_NRL932%({_6Fe&Rz0r2e)1;;Jv6lQ%yMrJ z_sltZQ6I6`S75QRYhvpH#CWuPmlrp;XRlO^zp8XSE`T};ChB{f3-i041zr8>vMc`Q z$-H>;V|zv~!)`;8%)Idm?;ehCFr7frbF+r-%tF^iU0_n(TLA z>U+2}>bl1n@El$%e>9?o@U%{$3Q*ObQeJNwh|5<^Z_Uk4&nf4!mMe7c5RPrrezVrg z3F$7y*e>^dMw!*<=$aq>>LUGll1g3j&n)E5h>u|6qi8^!?DhbEW8xQZM>@hhcqp0S z^`4{=mc?XY*lWP}k_gykU~I8e@(ykj?rL=YvZ#%?;J+Ba8ck;BCcIQzXEX>cqW_cL zdV6WPF+P9+z4K}U1N|3wAw$npym}jz<^lIvS~2C|pSbB%jDN@9hlQYqBTUR>cITL9 zw~o(^Pl->Lqh&HAV5^CS)opp|c0h55A6@%$8R}TOh+U|ke z(Coeb#(FdRht}PHN^PRgIY3*B0?fuR$~|=#PK7p>?(O?wZ}~KKIIMK_dC&ppyc?D; zAwT8xeBVy2ARTW`Nwu}*Z(pQ?0!<`)dv23^puHO`HQ8OibRF1pF|@YCK2NVK#67cN zTtFg_B;jHpWCss`jW4@NM<`O0f1J2#96MUv)TlMUak8vKTJB!`1@nw2mu8_eJOX-V zZY2SaDM6n-Jqx*E7Na6&{H9%ndTADAulk$kW)Gy7|g43AOct4P+L?LaWf1%;lU z>TJwV%(=C-?fab3*yCPTH}T-cJC7uX$iI69L71*Fiwp}o^5^CY*KX?FZWfD+uD*yH zljJe>0M*s9=;P40uVsXs4I>k)o?}{ba-Phwqqt7K=lxx-QR)mE1 zlt-^*e2IU}XOY{OB#f~~;-X!sfA@=7gpbeBT8ko=RGo`bekna}e1krhx+D!GpTx7j z0cpQ2-DKy<&&y4SzU?ydkB|`541lNu4U0Q0yKkiV563idX^f7n%Y^=VD2(qJllB*` z{NY^$(^1P&{*{(S*XNg4=V*W>Z<%7F5u>HX-oq#V?aWa_Cq`RP__s9R7no-dW+U@p{~~q@9*>bB6)CqG?=4wG)AUe zm-kHeyARkoq<#&g#b3`XH@bCde$+PFuaA_9ac@4qryr+mWbXN^$^o_q#j_ia|4g58 zSQuV>0~+dLQVtPx&?dYD9@9;5IG66&X<(Rb{BG{?rvbw~?!KIwKkc9!^&YVEqLLt`$S5KyFc}1DW6Imku zKD*%RQEacqjumo0HUt(*0D_n7MeO!n?$6KJMATPRFVF3A z)6Q>Oeg1X=9NyhaeVh*n-~Z2{OVdOX5x~FCg&m6Is?PQsGse&uv5i)f78iM*k1f&c z(tfQs_;DfEkFaHHv#h7|RDmXz(UwzPJx0)p-*LVHCwlxv^#~2emT2T&VN+M>f(!>~ zNmc2WDwopBit^%V#gihgDF_DxAuS*BqplTAl>->&sdl}*_VoCm+(d^c8@Y!&GJd@y z8f|fcqG<72_Pml2tj*P^a`J}JHr;zIqU=IWztGzH)&nT8%XgKlbJ5 zgt|-|tx0CP{S>5PP}Q8PR6w2cg5DxurhSLR=w?*H&y>BG_I zx^LFu(whbbt88kCmI`vlm>C#?Ss^_gjT<^={Fuo7405jV$wuZItKy=spVdQfarm>bxuSXcnCk)9)o1EkRP( zS@IOJ5Hx?&-o~ySXH|<0v~ZrD%cBf_UvZXb)RftZlgNWAya~s>Y`Y$sg#+KwFzXSa z)Lyd7;$7jht$)5t4)XAkpLf`Ej!;E~hmFoUkUTsvUOT&|kK?`ldhBMx|D7e;QNK>B zNiUncBJY@>$HCa-%2fC`IJb>iDZE>-Km+Dx$C*NBx2tIfZLgXKV?E4RzJEXP>wI?W zdGYhy#WC&U_oeB+tt%H|#A^1_@$5Ck=7dPS#p6=u41CMWXjm#Q>EP6S$HWTt_52@&cSo(T@l-Szt9sl5wZW`Ibw}8p$<$?ZzAi+b9Qb|sUi9fTkr;Tp2wfw& ziM^pIXikn_X_5d-sKIiDL|Wn!u>--RzWVH?&s9H`gu^Kle`D%JgBf@Ey6)epDsJr` z*J2K&drC$5Y&~`yNw3#8zMHh*0G#_0%tFZ`vqD~c8<{!TzTRe75`9PQ<2U*uB|m5x zNIG;cx;I`(o03%q{qt-UbEfx6&$;^jEL$lrG}TA-^b=%s?Vo$mXy;e&!?tfX`l zUFO_xplj)!UHrRJODXf)4Tc0k?1wCnC`x^Zbx($vfq!pClJcA9Z6F-~$mh`IUoXIb zcs+~`rlDc?p-TgNolzGaxzK%DH(M%BF{y{!v(y||kC$se&e`WB2c&q3+5 zbJR;WA}D6YmsP&ISjnsvJnZbAEO;0!v+%LOt*6bioiFt{3z(RQLC)k01tewVw(I;n zoX`&OXtWL7^_ope=O{Z@{V<6Z{wf;n>u=0bNoc)oAu-!$YHUdRqos)ayx#}!qe9n> z-?@vxr+mp@b~I_gzxMQQXHLgV$f;nQH(DRh29IM%h;e}s4CGa^R5J#&{lbi+(cA!( z$)uB<(U&Fd^NY@7G^cd+S7%^>$WL;(UbzthAKYt5yxh;)!TI!0UAOBQIBro#T+po1 zKp7NTOGyuD&Eq`Y-f%8TwMH;;0ATjfKwH+cg=vn$SY9v|41oLJNBm@$ET%5vGuN(% zFX3`A4Jy}@a9&KkD3;vyjFFo0N zfS0aWP2)xIj)JC|Dwwotb~y9i@!%eZU%Lp-E94vCA5?Q6@N+~3&St`|=zuu`c>Q&w z>F~=o%Q$zXhhFBwP_^X-#Rw(fY*J7{ERJx*J%FXoxH;PBcB&LlD* zQD4WOd=90Mn@_O$PKN*DO!n8ub71+$Cw(`O0|9 z+5PZe2fp}X{StGc2`k|H>%^qP#O!j?0YhssufU@QcRO==cKD{w8#{NV$y@wfdX^Dyh1v^kN)!Y!oJZH?+`aCujG_Z+$tM zs;kEP0L^IwlCRNnb0$+?r5+k0j|wh}8R#xT@XJ?)UDnl6y#2-E(rxQCD{rg>XK7(c z`wv8DI!g9;C{0J=HyC&E+%bK;47F0sizQ`6fe+1ad*F!^fOg2 zZ`{K3x#BOHEp_fM1OE|1I=KH~fdy-1hrISzrQ)Wji$#qd{an8=Jx@IfSdWT-33lt zhMD@sAGASo2E>ofn%>+0Gf(N8--NZ;K$%YerbEny~S*kxDprZAnza?TRY{AIyh?sGGdFWmVq5q*&+2Et@ z0mW#cKg`0;Jwxs5T@xkb(W^_z40o|zeV6hOeN8=Fk5HvIg;*VN*#?L|J4_8rH=I^bhX8W@W!$zT)go za`4BUbDVL#K49Zn{%qs(62~Pi=hZU%Q$@~wHj8g2Uqhoh(9QPS+Uk_fPg3c!aI)Rb zPB-1EhU;GCGkq{I{u&wOY#HG^n&;nh^#IJmiX~E#t@0f-ttf5QRj!GWb}?kgdDcTa@};y zwYu0BZA_YT`jLME74#c&pAZnZ(-J+kh)I@%{V9IjV036&zVe2>xu7Zgd8Kq;Irm(>w*eKzM%`x!o`bN{jFg~#5*Kn5lT2HR%Tn5{w{MmJ7usZ^I+yE*#r7Q4-z zgyG@Tn6D?)LOC;7#h(11#=Zk6s;+7CGJs?O$w`K+C`koL!ieN3IS1iY5ERLZAPfou zB3T3hB`A^vL`0(GB#7i7l7}EU=d?ZV_ifc*wY9ZtS*0^vX726Nr@K#gKTmV$Qwu52 z2gs+TD+Cqp41Rv%!9BF{&K&n$_|0n`9x2^IT8UzRq}R|-qITz`wm5v0)6suA#(D}tZTb((d9^D>Q zI(%}>wQDV{`zH@U`YG&nA5V@shZV@R9`9UO3?deuCI9B^CH0MoF?G?uTH-bU3a4)4 zzs2GKQNhx%heKVsc*MBWgEgZvnh*S}Hv<0{6HsuaVT~?uhHzhs$+VrjeA38)n~c)! zW-L5@Gw9Y#shN_dkeei}kg?&uexcz z#JE}ppRii8iA5lLkDKZlnrO*p&z;Cz{U!yMkUuIr^L2@D2@DJnWc`8}E{NyH;QeC` z#748%`NNiJ1p2<%r{64{N{tF5(#+|6&7N^Wa~itaPl;&~MJCoh!o@|T_&=}|%tKkLpB^UA(BVL?WPECLmG z|KP%kljkEde^T}1d5QF&+ zPRX%Kv*2XzJyR#ndis>MXpyRU)7_wzoY^Ux#la(oC5y;gX~STUV%@3IS)@fpdEKBS zKb@aD{dF)Ix-5J{eKe6=aUerEwZgKT2%j@CfKGdZwDEw5Y zV^Z>4JY&6uMmuJsFEK!!Rzn@lXyKo9wGd5h8|oI66B?4WXNOXC?n^**Eq{9`(pho! zvmMEJrf_r2Xj@^ z>4L3u?(2k4;eAmP!&ehRi!oyCEQ_V$j7)~EX8-4A1J0zZq+Dq)de48NcA6nJDH65_ zHyzz6Y5!X|uuXExro9}2x0NPAf-A6}hLuBwMsqGD1&G;Ui7Ai@4rq=KSdo(rH%IA6 z4Z(USW+tHnrNd)>f1=sgpwHGf;Z#t~viLaTxSqK(%z>n?439(;<#_nH&9QNFr<;iq z@RnqC^k$n_7%b4|xPPzN-`{ugZry1UA@KLNIeKh^Q%2W}omO?bCCk-|O}PC4z>f)pQZe$ggMzUb%LDDs#)h(K`-!_lE<9kT&2Ys=Z!0eC@o=ZJt3w1$-=t8X0?3^7Y|3ZlL%dfX@6X2Q& zeYRVgWBCaRs)ZvF>1M|7k391V8-;!JwQU&Ke}nKH)#a|CnCa;Qp}smfSZF8tXcgVv z-3{#%xgI8`-z5qf#>gxXACH~<(692@MhFOMDppYbN4ZYx#@SLj3ukC)#l=&!5#sCE zlfHXtm6hxkw$rDw*XTh z>GAjGcRAepblcy)TqavvTT%O8?97y{y*jyxm@>_{UvFPf{0MC^yFxNO+aXw0Y^If? zy)^1@q4aq_#m|jUY$w8TCG&gWvvcdDDA$IJq^wZ885Dn4E&f`WpAmW_=ftnn!z z&IS%Pa=y&WpnZN&e4e%lBZ7uF)*j9rN}$<%lg!PlaUzt+`bo<6<)V` zvvfNhi^C%}%2TE{DdTdQ%zNBtDhumeEw+AtGJ;MFaihE#3XYvQo{8@}_kjLjqvK}$ zZl#v~Hi_f$AZN>)g3aK%It6CRQ_y@+I(<_8J$is2%fP^}3ehDXL>FV|fxl-Q7IP5J z!Bi`EC6XpqRw7eV(Qy6vw?EGH&|Zy&u7Tb`IdO3Yk?)&&#TzTtCsjC01-F7^_G?D@ zi^0}@(G+Ya)h9dhnh7o_vpma*7KlU4<6gZQUu)*vnIr0SYO681$QY7N`o3%Ht=Rjn zkQD#pGVPt+rINALpO-r%8T~brB=Y*FsF9f1*l4H;OXjl^0H8r;WGJ9j`>kTXMiG0n zf+};vp;K<`cWwc_b@!2%m*3snGn6Ula~#>`e9>pCyqxGk+W*2y!2QbvlXIZhdE%LY*LAPG&q`$% z&40D+*LUr2a1`Sa@MPq5XFPnVEBY(hSZLJf6p!ufcMEr|suqW@8kWSlnwNnT=UNG+NoiAb--f~>GEIku&>wN*Af6*O+ zgKYv1=_?~eSAwsFLjpkdhZ7yyJ}nrz4213ABBu?jf~g6) zxPWe<=0X7?ZK;1v>FA6p-ZA%m%EX4fc;T|YdAE7(cagm-U_t|*Kj#(}J`L^js;a7Z zqAWaxSmpMR(>Y<`riM_uYplk$w%ljv=yXj?LdM5!N`{Lr1)#=NQw2+mV$odg$CN6l z3^G!WdwKm9UY}`DC|W5Q23tR?;`4fWwIMAZf@l;JxQK`pE(*K7K?z@oRoU;)i~U2* zdd_x(k-(MwUb}hE*p2DSiXx^<>pK|O=Xr^qs9o5yHbB=DfommZCL<%mvwEFaJD^E5n*@ zDu9Ld;OdF~d(e{9*qg1NbdI~jO?x-T(V5KJ&~};6AX%Q!B(FvF-MlI)kMS}@h6-O3 zxEQC>4i^g|ycU|CVE2MQzRxlV|9n%%s3FrX#82RZrVvEans9Ipk!^4qBls|*w8V*M zv6UI6JQAO~aI_~6=N9D3eTB5Ubf?U1cxO%|*)BiqP}D7CE!h%kl2_4bqB+u5ktz1a za(C3`jl;fX5+%5Y=v+jtd9mIgO7H1cpcB?PdI7f+O9v`9p{$sh*C^#D?v!R2H9K!H_JzbEf1ec)@}uqR#}d=&tKiYV2~p zCUZ9v8S<`ck0!SbAXpkljK`3f?`jb3lLOSrwQMED(h#cmOt>;<|7XfVLgMLmas;rYBG414H@;afbAhO}7`1sGRR;8-Zb$Os}yVTztm}&ZN z-3Lfsa%#L2Ti0 zFXn?6rGzQuh@R0}Z~Jgk`)x>QThC!#sx2yI_!&A*CItTJNSWVvwkiKHJyQE}D*FYa zS^vZ3)3}W=$I3gtezXt*U3G<2oZ@mL$g7m}gLL5sBHI92A+yns95YP!>ZbO@&e0u- z^6oPq??Ep$^)BPLHtz_pI10JVl1&#&j9wH;p<wz5{ls zK}1~$MH?38$iY%%>P9c5l}>iKrod7qS#PJA@Sq=e6uEgbHy}eJz*6N;9W#!k+KXdi zAdT*D$kT(@Us&e8g%;{)$TN`tr^_>)P0HE4amUJEc!kL#cIXdEol9)p_prTQ)y8f(vQ7p3ylyjOh|*NQbR;v%AybO{;tbk1NpNSrf&D*eGfy{wRE=Y%rfQ^l-?< zF_S26lvD8SSTWsGq`v3!E$;(y%q!yyxgLJQer_do+PR3ZALd~2@Zsjt#} z4+A4A^4clQH(lh@(}KfKuDUFm++G*xVdiF6drL!O;`CO2)=T~K9V@K(My0QdXRS(7 zmz^c!bCb&*^@-ls3z_k|GK?%W9?~T=-~SQ6(v-!z&~x{t?)nzLaH{X-IhTdJn%6>D zWkO&vJKRXYPDo!aZTA*5CnXC~&%}qUAojNvGBKDqZ4xeCga3Y@ehrn)r8n>wZT0rd zJwdZ)v|SoTGBH)4euxXNzm_S+GzN(!OAx2X%0eb5vF%9#*PrE|JZXO-XwK%WIJ}UA zo|!egu$2yRx7ghUbYP$YTfRl1BZS>elcY9;=gR0p`fUPTXJq5uo8D|BUfHYgWdZIm zAheL$t5}f(GxQ+&kf7a1up&lc7^G1B-(Z)!pqZ#METmECoQ&rg@NMPESF69#-_F#Q z_|ZF;b_0_lS0jH+;80wXTYxezL8W;n)85b5{|)L`6$nzI2@8u7d%y}C!9wFzw^oFr zAdffsr5UXa6A0U9wlgav}`C9x1@?Ha4!DXU?2fnC}NBH z%h#%t@^q`@GIr#2Rv%=ou*a{@!aqo_V~uk#ynjyqN$XO|+jtV-y^4B8WRh1?Pu-?p z6`uWUg#F_eSTbJ*I*bTcU?7S$&)22|H~GTg)$t*xg+;WWKoFAJRsO_tK7erj)ynn~ zR$D;iaCh|vTC&u2r`YVLxb|)Lcq;H*9d>XZhm%7*UenfGfvsDHieW5oeuNHek5Y-F z;k^l_fl;9p`;s<3%jc8?zfwq~Jy8HwPPmkDtY2j)C9<0(9k)~|8i=>L&&Xg&ikUuJ zTadu{raqd;=!^nYi0SsJ!%6AVY4?kat9R=;u{j(naFRf5gG$%-8e}JBEWLdS*g8qyfv^qWLD^g}Z(J_YGrjp|Phw zr_Og4uY^EKjLiV^+nJ=hC*T$RUWa9Q%gX-N;#|H!sd7fn6V|=Q1MpZa*CatipWZN8 z#K^+|?ypBr@tjQs2gB^ID-MxnMJ#~xPLQ{*I*Qdn$sdltnbHvy3NU%Z@=aqVk>a}b zr5hJ3KRIwYfXcp(0M)r!+)d~>F%;S=Z!DGRm{BnBr25$G-TFu|Mdw1m)+63g?fL1vT(Oi+oCMNSxYu-z*l5q?7unMa!bHYOHGT zDviafG=vv%<>Y#ILuD<^-drIFNsdE7wli+DT6^W>wml)7?Z^2NJXYg5gq zja(vV$iJ8S zL7aJ-LzAd>>nXY>;VZTx09qWpnL&-a6Hu+`SqkbeSl_D0`DB^NJ?8F zjacbeC`+}-%KI~yv54jh$Rbz_d@~>U^?^+67ZZyqJyj_lLX*!nqE>#USYCn-+1rgf zV{I8$iHRHTy;o2z3Y~b(Y6i`Eb&e$-{eo4!Vqti|JY2yRY%OcKWBT@UNZ z-xY0mdalvvw|WL2O@W20>8kFV2BQed7smN64EXgX5hK{-R>0WgsYUagrz8#BofUs% zt0@+FphpI)78%m4FBi-?zOzCVC; zUcSL~sWt6M=|Acu27(P$}ON-lc91oQTxk<;;#)Hno^xaD5@NPeD}=rsx19GroEY%}X@+ zjmkt~;H5@be%#AYv(ht&ONvH9FQm7#&!t)g`uFxzP**`o>9CzvH8^si7%$p zUZ6lzw3^8G&bgkN@!Fc9;`OzS4#F{C!iL5^=%zs6Ks%Ggl+`O}Zs|c8c(dN~&%en% zyF{QE`9Z)h~q`ibn`C?#}xx=fSPFrI?Gy5T1~#R~&@Ow5cE|M`$`E|e~X zF}J%j_hMsTm~Jj1iniD#!}hi#$ibID1!2R4zQw3(1lXq#pY_qyK7LMFCOz%*aO)dh zVaQ%J(WE(qG8C4Qn%;GH(mY0L{I<$X+C1S-9A!ZO0cF*k3b~!`S@z|bqI9i&I|bSD7WZWje_sRrc%57_Y!_=duJ%!y7t+H0q|nk*}xJC z{E?mqeubr3{g*@}G$PVh2GpXaf>DTJ+_JIvC%qp_c>BvENjyv`WJ#VZOQxudTB#O^ zJnoBw6z?Y`cQoUa@dZM=_V(-A^B3U^5~6OJ)?!Oz>A~*7A$|R4TM)0>XQnBc{A_cQ ziLJRL1fhw+&j`4Yp?95>>Y1=~{tr6{$=4a!3GO}D(l1{>i!WoD>dVRN-Q+(L}G`N|Rwm$@9NpzUp~y-+RsekB}e1wr?2wgHl>3 zS~%2A2N%zpM-}f9H+l&I_wG6|Y+iJ+91^W|K7vdFtis>BdCWIKALoL+=ANRhYRfmPPt|9syl$Hnk3pdZT1(ZgM%0AGEd2c zh`It<#s~7>^X%pNs^~h2O2=Rz&P^k$IQGH^-n}jsMBR0GL5R%Oy>_RaF=i~cXfusH zmG+4~YH?i#OI~R&Kt#kX=xNw)-pBGXMD6nVazhS$Xk&vKtjpRw#=2}37}675#|-NC zVApe-5wydU7db5o<)kH7MuN9*v##W&LFcczvVU8A=_CNfyp>O`ckSAKVdg?{TI?*K zdg4rY`&Is0=gynk_)P?dfuOE2kIOW}GyCCB|Frz8AOd(-5c?w#Fwk6ba#nLUb9Cp9 z(x^_CIkVk&2}xf;Aaxl1B>|DZz7Z;O zS!K82?jfCwojDa&AYtAC4Oy+CnZ5QXAHp-J+g%AHJ6;wk(+Qy>*Mr*3Qlq ze&eh2$o})S^J)3=G8xMwQ9hsLuUKd-P;cEG8$7-_=Cnw?Nd3zTq2CF%3KW;&X?}_^8Ch#2gPAAvHh;jr1=o-*>FA+Vb`G zma_8OyUi;gP~Xu}p#6Wl!<7Hr;UK3kNhbCQ2A=EbvuC#Y~?jNIL6x`b;b(zH?r$8MaL{vk!sSFRXLfMyR?J&{>1#hvB{ zTBtikX`en(A~wZl@Q`UPioMLqsBJfZ9X0~uIV>ydT$Vu&Yo`7Gkq?h*^Ndpu0z5G6 zw6g%Vw$cyMKHE8Xyb6#DZc$Mhd_o-$pZk!JA%1&z>dx}+(akx?IW@eGl$)Q6`f-Ex z4^v%zy_nDTJs@G=0^I^?JVnSuCau%9v?m~s%O)pnH|P5(_+zu1765C1T~F@}qp(E? zF!rSz7g#Z0dwc~5^x5xM0VO%Rlp7IXZ&l39SdWiZ{I43q7ltoUOC(W&utt$o8S`zoYb!^ji(BYvk9)BnKaG4#Z1r++9_$`i9 zl$_@b7}iQ>B*bn)R=hlU0cgiwB_#ZnWK_}xLco~ro*t*lW?26W;575Or0K{_HAj80 zvl0*VG}_Huz_O;%7BBK35&Ppk>&C&Yo{w7HyKA^4UhVbD=bJ$QHN2U4>GliUJ|v_w zfKWtSt7eK8{7|i+prFfC3++pGscu*8JR`fQmS~_uLy$e|Ame-s0(AA%(bjYbRi(I7Xo7yh{ZjdToA-b6)hvjOMA912fFOvXZUexq!gqIf`6J_G z3xtoZzwbf|2~hzRAvo7k$XmMtTqj!o}qNAh9m6X(PfvsGmHVA!Edlj5P zt%o$n{`OKB3`S^m{pDPOgZ!`Unl@*{zuQ0S%)!$Klk}hCF9-_O&Glq*G~0K)Yb>;D zreS4$QCcd=%f|=Q0t7I@1dty`YeP;2X{DvibOPE2qK@nIkVtPj#>5RWWwB<&bLrz2 zN57k+ZZ2H_Xj#{t_C#?#3yb6rJ#!z9j}A0|o9??CL9EJu%u!B56~@q2#0Go^H)s7r z1P<^azLa#B|GXxO!pAzzP)&r_>tdS!&mU)*CW_udEmxoTWz=UeJ$U&h#Fq{}Os}`h zeHP3=5ORveZvbGn2{`#=kN33Rd|mooL?RfMGc<6xw_%xYUFBQW?*lgG*38d04g>id zAT%h2t@i5cOuz-gOZ=J%rE2gO+Z82$15pmGDjmj z6L0Nz9oS4bngap?JojOAgDfS0lce9Ceo(c?U;c0eSJkjO|pxX-0W>#EdH zB+KPf&`PNS7QYIPTR?HBklV*CCG~r$Ls4-whzG0K>)=(v0V6+v`IB(-@inNG1x3mq z54v8Hm*<2En98F^lJK^3)!rRou{eu>(vcvLw|N4OF6z7Mg7m4(fZdM(!VCQKk&=-G zbU8GD{R{{DqM0m73#{RPd$Z}h76&JG&+5{P-Rhl5JKvYfF`%!nU+9Wc22fSI znAtb`j?Kzc}mWJoOf-yj|ZYw}ag@5nXty_3tb7Z^8`4kfSzm|~$E!H(y# z7?>*x$+`^%bj9%3@7_fKFdQ1=#_+}-c%(We0P+eydSXwIGDgvJ6`+Db@Q+8u=niS zM*wBh1*|DXThq?gcC|}|a{~A^Rn^pLhs)g8CW1Lp2(WpEyW*N|{Y(%84iRPea2TvX z2^Bo3Tk@PcM~b(*0Q?NDslmL2C5Gx7f{nXiYztoP(d^rYt55~w77?L_*(ce}eoe5# zFe|7D%pxtw%T23bz^?Vx`N1-G0T?0S_&wOF;9-M~qMSCISpvU&x%6Xf%zCKWzq)M? zh@8|SuWcvrs>OJK6H@5G`| zs1E`uzTK|EGBV~UGywQh`ybKK(PadmeVo^ax1^ySY|g!}aLbc|I& zyw~#Zd9@hc;`@J$%wX5x%KIGSpc&g+34yYm@0DWrYBU~{e3}hl2>l+)fAW2InU&Sez-P34V@m8=yAo{1e@0H7v z3$n8Cnv5WTXKlJceQk<4qXHnWVvknGANw1@Q*!t-5)pvH{q1@mj7#ovAVPq`R`S;y zO@4eKQPTfdR$W6wS64RxK;YIp?h%~w5j~kYus$u*zNV%uzmlb38Vw2tPuW3{JHm-I z{1h0w+@33|P%E=o<~Vc4t$rojApXF3f3c{8hMAc(w~xGHBm#=4?Ah7bp2vRNj%5%Y z>At6DU?4!`P7d7_Ra7c0Ha0d0kzoMw{#)#9WU{t_VI!ru2$`sagb-sZ?+mMyj6O%p z2t&cRHmNvuV$3^XV#xVkwF8zZlQK8HQ&g;hP>zL3A}C(665JUnzcKJ=z!llau{1s{Mf%PAQ_s1;&DLpb!es&Ll*O$A^-yl~yhnLUOFi{=l$GvI>~Ma952M@xI4YG|x|MuLyN5G;_wM)RmZ zro5zl@BBaD>R`jw!!(>=r7*^_N)i(@vlkG}-2z-HDHWAxGBqiwiyCQYh@dMiDXqBr z&6_m%%>|@)r`fJLH@vxQ?*iKrI0#R{OCsdMhYvPD`6T&d|B809WB|}_P=duEMi+$i zEo|)$00TtP@0YNsC5>JHddCHG`qhAWa-Huzf6?SK5=_nMb+@PLiO(UZcauo*solUOp>gA%e|TXc5ezHw8m|kY0A>LZpa7%-wTb;P^}0hK{dFWn z*WyEyjbV6B1t2YZ5Bw0!m+w&Gl}9C%3F@>{Q~zu({-(nR7HHBzXthW7M#=`P{W<*i z+N^097=pkJ3^E$aJS`SkY5j7=k#e4;ur~eC)V#1pM literal 29315 zcmeFYbyQW~`!#y#25FFz1Bgfq(xEh>q7u@ngmgED?iN8B0YSREOOOuf2I-bKGA@^Vt|AP{6P2n1;n z6CM2J>G13y@DHk;guF5)_;Sbm5Cne5vX)b~gFp!M5#LBZ#B)r+9|i2C)$En5jO?BC zZ9hUR^zE(9t?bQB4IVgtw6!y}vgG05=HOv_U}A4?EyT(B-{Txsw#J-Z5N;_5bbIW^3I%_^XJv;u0y9pS}(E}-1kh7hBp-hF`m8ldHwwD2c?{s(ua^A0+pEEl(~;E zp(upI(4^Ogyq)E*Y1-b9NE5~i(X?-hKnk<)0>^0|$tNz*MPj`gl^~E$qZTXPUaoVG z;jR7b|98q`Vd2v3(6v!V3VbnIGJX|>5P~mL9c(Ws__C2fdV@GH@CXtT6cp4!iS`T} zjTXp+JOW3Fj7cEU;P7%7aymFFm;4q&0uBfB{GXHmcTAW(uN!2zATKY(#|K%X+A_S; zfZI&~yq0$aI>qs6u$zRwzL!Kq%XS$=35Dy8%Likd;Jb4MPM=zB)w$kQjaVPl zO8;3O;ZaFR3h=$T&6(=rDapGf$A#7+(>*X?G*e|^KHo64^9`I5#QXLC|I%WFx-=R^ zK5%3~tX;W|sR}IDV=t@br*4d;@^{M`8ZdzaUm!3}#nSb}8qG-(&6tceIfWp$0_1eZ zdpL8cpFe!Nm&3PlzPelU28nr( zYxcziF3l$^aU#TN#m-SJYth)q%4NyxNg!18{QU8IbM>RuR=VYZhz(R360+#j?3=*T zy5b$puv9)6mhcRV^Z#KYq`t!!_YK| zJ_$)nFmu~lzjZsF#$SuqdB|koZ5u6Fw~W1SuXFf$^5bn(5>9UJS_CWYKeIB~cv)21 zHMr!ZS{Sy-?^-dH8KSFkcUH-v^I}oGUiUqQs}%RL(m(kJ#vJ{3GpR;GLZQ&KJwY|W zKaWWuX3_@yqhayLo79@Z=4qh5sV*ZEmyRfaX7fzbR%hh zPI+R(qNVSqlZZ&z>HhQmc7pJ2O-pYkg)qAt#N)y@wOns64TE%9y1mtCWKj8 zUxhgYpWH<*(~=1tUv5LaTThc2GFlilN8|6ExAGpQSZd&%Z|yEV|0*zy>2?X1Z1(&a zQ{1L&e;3iBUC;M~1y*oZxQxAieb#SB-x%-ztuN1Da(7z9#`pNe0IKvX)agoJ<}_Yx zaYi9ibVS(PvR{OJFm7Lsr&_XFeAeBobQbD(w@lvUTQzwjq3E64uDGtf%q+Hw=g7ua zka(uhf>;!PYS$ODlhP|l%=w(xC@F*xL;TTkjk}m+)$|LCIl1Mqi*C>`Qq<_w8rvdXX$?X=FE(?M?MLK4eEb+47x%M7zg?}| zD154&2yvdGC>jbnW0|2W)s7>l*?7xrEjFz5aURMd2AzA0G`Y5vkGpG$=^Qr|d~)X4j9mZ*(k| zVwFNB8>afB=#3&@wz1@)=&7qyin<;@;ODO%zkFY)(U~Rxxn{el{_N^#aC0~lLoyKm zdr3)2g6v~3eJ)KG*cYe%Us&nsk&FgUt>JT2o0G#k(egFYCmnm>Q7HJ#)l%S`>ScbV zhFwpL`Y0f(1!}FDR*ju2k>Ueklsw&ieYjr_dj|(|belaL#B@J?Wcu>u%guI73=u?& zgPbEiKi7)c+}$wr5BH0sVfgdBQ8>MrOJj-ccmH7GLS<#Ojo-g|l@whl1P&gUP5iup z(~mFcdZ;z%6i@6t_w(sASQ>k;yBedwfwZ{T>Ra(?ECjrnUofhcA8#`!n_=R`%{M}p z)k(Uy7ZU}#&GWjbWi~56g+ib0HCtPF9e?b?Ih>2{QzBXH*EcM^2GQxsZw?Y1AXh{0XgRa z#sapENaz$qO_yBPof~}HG}0!;#7Mk&@nUFKUS9s~Avu%APnLekf37vTcG8x1i%ZNb z@sY`X4|h=1c&U%4(Cg{OVd;%W&?;P2mzxS=!AGTr&euAgMyB0GGe#Bwl>n} z=5%qoJM&u~Bn!WOc>0ONkUu`l5so2Q_r|f~(uz#Nc3FoI7i4{3^r0h&kc58xq`L*#sA)7{PGq(!8jAq2s{&l|*$V!&fL zEATU%YT_jW*tpz-IcXp;9<&og#iE9iw_8+ucN&~_GmdoZ&;nE!?Ywl-7Q;X~!jSJ(Sdh%8A(+MK5t%WxM=gP*9VlvvXzJCN`=BEANKt`ZPerajzIfoM0N*j;WFEa6wn0s=M3FYpR#oJ|Hf-t6qvHWk+IA^`O zi&ikDv(Eua5OY*gZ!jTtf1UN_MJPllu(22Yi1kJvQV6RmG>r&gdxfV%0q!y7z{k+C zMw)fWDTVJ(o9XwG37jaG%RU@_>4w0u(BJj@Z6HzZ%?;&|{#k3=7zX*qz}x8VSXdW| z(;S*)0L9XN)@QvVBY$x$n!9u;73G6$IBs?Ax^nT8YN-_?obp-pn_*l%h98(9I=AWf z-_PuEx^|U&ij8mTy&rJKUVE*A85?!?VoYVk zZ!nEh&_c)@obtR5Oa=8)Onw z2wg@>>i#k!-x6}vqMq&tdR{-^B;aT~9x{wEKW(`uz$5(NifL+Rtr00$5b^#D^`xY- znwl>02L##$`Y82A7$-}R>Kt%9&13o_JeCW*W_E~;S+3-}?{JOZuU<~cVx5wYI3GT= zP+7HH!zFEPcO#tyX$0a12x|IE?LEOBl2iKU!;{`9T$a>Yj+C*nEnY}JWA>%V$F6zC zaKwmq6F#ta<4qF(xcBH=7NX`Ml34J>LBWu)EV2>x5Nfy;v)|Q#57wmkKS!fuR}^9T z!PT+LW}eDV&#j1nn2b`XFxuC`cvY5YNqF;~RD1OVF){eJc5!iqCE3QPr0&X`xTV>~ zdZxMAEkyS}p)o_DBT}TKGGF#}Zw$0<*Z2=+?V`S@G^bT(XGaUV5zdGFP0!ScF?SRi z)HL$z_+4=?Qfv7O0wT*1n=jzM*FpkFmJFva5e+QXV7x2x@x(-Q2UL-iTjp=si1Cle zDT?D&&mw>PIP?ugDp{GZ$kD_KzXr&p0fG^LT^oCL6 z5eNbJK4gT!y0}v@2R2*Ji?g}?usvGi)G2exdswW9?ZmBp5@&2Fi*(LY zj?$J^{8Yp4?8+`PWd?_nB2e&lQ}N&@m5dpGwAwesJQLFYGU^huQEjm}4K7b)zjA3j zIB4h6gIw*yhALUjCm~8XpMJeJh-?}GYl=|oHAckuBNR(JwiG&L3L^YVc>BlrR*UM^ zR^Nlm1u!=`X|$*DWZeG9AgmCBmu;fLc_vq398>v#Ur$j_KyooBO`=%mpobNNc7^!1 z{9=iEM}0SW!cj!@76P%+FJeZWLiu3$Z-( zHq;U|iHmnoLfN|s{b)LcZRRTTrd9T&?Vgz{I#{z3r-^RxHm3NNEcr#-R=OKK5}1j; z?6SW`Yj99dZb7c;hXEbG>I{*MAMuPyDFa7wl=R$B*%^zgZ8B{-dIwUXlFj>&=WRoc zt{I!|V#g*p=Z$O&&e%B&WCdsLSsM&z5$jo-pKm!EUH$)TN@s*17I#NO29)AykI54H zPuxWS3M{4pq$ey#Tte>UOi3%II~v+h1{#|tI{*9+Cf#7G#~_nLe^pjNJ6dl~e-0Ab z66$0H*3Sr)GvZ-HmC%vgCQ-9?U#)(;rs-5et%-U>LP-`%bb?rajM)uv+AwOYdMC-= zI8ZJb{`@NXIJ*0;?g+-BCFn~)`F9%VCG!`Lo;E>%{fv1<@z$~TROK+pgf0PrC~BdE zlVgS4OGIdm{!!&vSh`SLa_^mzekb;dhSXLzqKXNAVafmJPs`9ZFu)V#vmG9AwTmId z_@q*_>%$}>@u+ql-s_q&HIcC6P)9%gW2Asw}9I_^tTd zz-qP8@4^Q)t6D{O4J|)DpQYbQ1do#z*jb2zgu72kHKaNtSxPf7{c?6dLPY-8!>~O4 zd1n-v$N-Pa2ck5fkP0B+cT)WtM(v^AWcuD z-?}`ED6_;MXgl64vCp-ctL7}wKWwxeV#uCeJhC=Yye0y-t^W+RpM74``x0lGJW9aiK{J0nKdhAz3DX+=(t`D zA~k0Q045N*A(n@M*8fO2XggTEGt~=iE#6T{W?G6#==;qC+VzRT9MNjuK^P!f`5!xb ze}UMfYCVmA;CQBvG(re_-W7+8!!L^wab-XbfGew=_(V#%JygfBML9*SJ0(fvs|vx+ z^q*0A-#RGXZsm!h>yFfXU1%yv6ikI!3EVxqY`D0vBigLh;2hK)tSi%bd!?VJCll5e zn+NgDUY*E-f(Lu`QC~jxSW7KOfSn{4R#su||5SA4O=}mY+f5#MfZ9xj#i@%F8RDIOnLTC<_QpHN#GoBUSL~c;pESAPjhao zp%tM>^&k^+_!JjU9{q_I1w4B@*xQv=-Y6@{&&=|F8&P&uS;#O)f&>xgzTZSOULSu{ad?-lLrL}iMQcb05+c-MQ58>MdU#w=(3cp>s#W9f)!`J3x8D{Nf0-*v zK73Bv`%h8`S9QYnhT`2NHvP96*qJh|Cldf`uBRAN?}#{CUwby`6z+t;mkJ*dtkmBN zzT;?!Y;`?N+0MnTc^Mg7uFgwbpH5O)pW1t9Oo8`bGQea>n45%%IeuXiX4JbQ#dPKi zmekv2o}#lhfrO}3TS0|8&>u;`a=dptJL(Y&Aa26jQwXTN^xFX>Te!+L9i+l5+>y$7 zHH*=rz}XlZ7KY1Fzw-pa_z+cAS^CfCs2pA$$=GzY`5&w$>6KH$`M(?Rk7!N>OJ&v& zco9E*xtN=i`oxU_3Vr))+kaL|;M$&Z;fB+@uL3%Md8q?Rvx+}6u_1E|Rb@(;B&M<8 zBwuvA42SJ;BLYb&#;u(Nf_Pm^>OJ>^bboqTtEH22nbFk~P04qqnrW(z0L5*IFu#%7 zA{$0J@Ffsi%n0Rx^6(IccD9)nHa_7N?4%P*Sy2vsl$}lTuBi3VULPBv_qr4!fwJAdFVj)%yBmg2(;r zApPGpyIQFM+Vv&ecyr`CE{#wusB;tXX~J}$h`OD2>^fpx?<77oLlobaZuba-nRGZs z&K|r>Lgyf-w!;PW9Q8S}4A+r=(^bM0B)n*{P?1$wp;uK+X;k8PPik3K3Zq58J%HPM zvP5WKx9kI!VOPY*zOUSn0<}_~>Ur1DE;?8;C65s#Dn5RK%@9101IT4xxk1|gc|vys zi4;Y*n4xtID>j%QzezVGtsno*`-5R|^GZDWXXpmRSpb88_D}hsm?5aZZ)S*yh$xB02Hd**CLVuxJ#j&P3d5^2U3KOmP0w8=(Tuh(ADd;BLBk^ zfcZ2Td;AxkUZ7n+zC$mEieM}9w=dtQpcOZJQV)t8nTgQiqzHX^;;=;)Ay)Slc9j{y zEWH0WJ*jEBg2^xQi*@M90>SF)CpwBsBrfHf^Fi47WhsyGz=x46`8!6W&VIA)d_7Gu ziO-^qyCKTDRtwxK?r1Zg=E&~1LKoz5; zX=t(jaC`5PKxN0VFJpTS{uv}GvrlF*n$@j&``R6dXD_{)-(vlQqW53&K+E zrPOjx2vpbP;}Zk@{Y?D)@;{#Zx4eOu{$9gL_@K#V|Cqybf z2;b}b_wVkPyVW<_`^~qh4GkjGm1eRNMcRO9Ax&=-q!_88cPs*C@r2uCR~QvP$Bsf16#8n3 zg|*PZlqAg2*oY(CRpj96h#5SeYF=Kto0H)$c-H5alo3I^pMxwxDMPd?^6@)KUrG;% z**7;eV*f$%q>AdM<&nENX^Yj(m4Cq{-l=?Cy4VgUv%-c!OBDe=v9+_?oNpBN2%ndQ zLLL69#;&l;ukS~0<9KuAv@bmAS85=zl0HgRI30vZ45l8;yJ1zBEUg`O&0U=o-$Rp4 z43WbGMa%zmXRYYa@&! zc~J+utuOskZ^Mw4)2_hTDoH@;;UO)B03dDMBW0xH$6@I{kz4-sjjJ*~c6 zE>E=Fxp!tTJTBYD3l9Rt{Qxv)l##M$zDF2sV*KhAgWYL{hOjr|)Q){>HQR@jXHB>B zlQZzmoS!GV)$Jbe=eD+=(=?R;wd?7G1k`I7Y zqVse`l@fv;2GjJ@t^~iafU9ILGf}~6cl0reu`J;Dlk@y#I8Dv@jrb;lD&`Gr! zDi4zLKu`fv!Ntu1ql$szx0GyTU!UU4yAcQhk?aGM$U+&74N8OtFwV`H>?2m+)7_;6 z}6R$@VQyo~|7&M*Dr zHlbbO$Zo&&0kO}f{n;UwlO^6}MYRD)DCkjXX#_2!isJo&bel~EVx}z?qjK_sAzn9bG_s& z56T?CZ5l>Wvd`gDd-c6^-V^+>I`Jb&PR{QmdI`wJh@khp8g{l6NbR;$`p+54?~oZ} z+g|ZgE?G@-8UErQX-mr~AgL}d8NVwvK7Q{PffAaAfUzRDdi^$3K8tC;PJ?gh>0ZWZ z9&s#6+19=6)qY^Wj1e6#D5mPh9vwU1xMbECE=f2ay;@0bmRn|F{jRsC?6?}%1&FWN zbz7myFFdI}wMv<5cI44q>_~%Oxqb8U9uJ7ZwR(Dc5sxJ&FR$Md%QEXYV}TfEFmV&t zGRwRyg3~IanSKB+(LI>p^;FciZz{ATJ3B#Oqz)AL-3->3yMWfU-!$-R@kZ&VRo`tO zU3CWd^B)fFw)RrYsyegfRsed;LmvH1KLM#ijjb>7X((W&{{l(i@E3F18)fAV(T{UD zJOB0qz-Ngg;)$aL-tmN;8D-@K5`x-@AxtWL*`Q__yL*7IZK0DKFa*)}Zy-b#G~J2t z2f?Q=Z`XB7uN7|BQ%nYV_o^MZ+Y=4WV6zs9KGF11)79?8N4SIyI zgpGrfo0o@OBR(DJ^J`$>p|CJu^ofAn)K42BH+$$$sJqddmVkFJ2FxF8r{-H7GcS8# zoYD&OvBmEni^*wSF|%JH#pBdD_^RZGanKDj-mxZew@2tDipk#(n2G$`h#*!qOX%YT z>VOi_mTC69E>UA!a;78J| z9I09`ZeRj8U5*4>0pfnt&+h^jq2NjwPut-!C{ebk+JrtR;<->@Ih3|%zv5aBdF(kG z{md5Voo?HOGP=4ZS78~Hc`$S^ry!&+sR@a1loLg7+=~@OX3d9LRj_ccYA;Xq%onbZuR+_hSm!q|GdI>LIbN zXV*H*4{x|g8n$=l7T$Us=fTFVssCya^8z;yrg|5^H4{YM5#|x=n8B9$|+b>Q4xtsWOsEkSEMnL35S?}zqF>SidykCu!oKmfUU6L zw%=$iV$t!2RUrBxR}m9ued$*qtD{=l1V|uAf$f;?ks<~=xA~z7`l=vff-?riE_bX& z3WGX=h%YxzltwxY`gWa0FpVFnf7MA55F8>EG%`%)kO16CkR0=B_xo6^w^Al zIjIz0P6&h%9ZxYph|#(0X)V|jvuOjV>$hx{zd9iyraok6s+_srX+Iliu*W-7po;XF z*v50!V%tF?iSE9Givf6v^JY#bpA3U1HhCYr(Rq**HI(HtkP&k0b|Wvs7hsB)r@Pm; zfPA(D%x`AAX;%_n%31P}2*euWe*T zo;qEffsOL3r)L@bhJW_?%a`vr03Ly!44sHhob%mm;h`lrFi%DNH4Hqqd|d zWuTxofJ80g%;g5(!>enosrlOKi-AacjQC8`LZ~SOld(GWR!ydTrxvrA7Sk=EoItdb z3?QmGiqLQXS>7J8A4nJ07V#=6Y&)2Esp&F(x|kEto5UlK4Plb0?URu@2Qv*- zVP<*|-2rw;0jV8GoU7yh*h9h&50R=(lqPGsr`Fir2Cu0bsKdEDI~BAcr|hIt zO-hOQY+QbMQ|p{}GFd3t)brviA6^_gPthejP$hqHBQwe23<}N0>ZNU|->XwtQe^A_ zPXz!disccxdPQ|$RyUM7Z}958iuV12kCvU$0qoY7XF!1D2G~0As7P+47@PdQlP0$> z>48jKpjjQ!*4CDe^3CC1h1{P5z#Gl4WN|s^54|g%QI}J3Ng&LKiMf&{d*&O$*47DN zZ1Ar6Pnc$l_8$S>rc=iT9XWI3Blxt(5*mdt*^3wH+QQC%qsfCEy9?O3 zm`z;n5&^Q?Ze4Oj3p7f;T)u1yq&NTG#Gf^qdVuR~;u-J)h-x6^)qQ7ns7LenppG~Y zj0wcAqVTBrhCr0D7HQlB!Qoeb|JciHDbZWnW++DR?yj1}&v*Mp2`lM6zQ)CbXGBlT z)rbm_#JAOi7LF;OaY>}-XW-r?xXYh#ZO{7%>Bn7vR?O~UUkXmJ{`u~Nb9B?fJH$#q zg*XDjWn8SK6bkaQ#Y|PH%aIXaqed8!Fj&Y1uT;uua~Ocy#;6e(IAs-12z|n;(?`j)PzvLBZ_<0`XD4?sW)osErnB*L#UWi3IcLvb46ZnK~J( zsxeTbww`w;rY>=onOOcyR71_Wy}}r{N=Z?f8SIoGCB|s_l~_#>lVI9&kBaS=5y8a* zl;{+^adWI*iSCi_3hjp#P$Gk-HWauHvohKq;4J%Fl-}W5lFx&xHtki})TW44LhhH` zvCwA#U?G;xiRvTHzzCY9+||xxyPNbMj}xs0X&m;9l`%=8-+&pRe)>sSAXQaLqEGW} zgj+Gs;?M`P06excI3y;@%UF@H-Y6oo*JsvC)C34n00TI;{Jy6qbDuxV2he_&R8LS- zUC?(jfgyn9)5K)X6y&^Ijuum#T4+BC<`!LtMVI}v zM2sNy4%?2C<+t|kAszX0!W$DKWnZ{gFqB>LeoSln8S3NfRj8D!J)mb#d7MuQPlbBc zIT>|OD=we3>E2=kwHO2cnbAWLICZjvYB?T#mir~8w+3AEVgQNP?B7cs6es9f^;#TN zmUBHZObTDcVV*SNOhhxEz}?6(8=ZaeFDxRSIoJ5c3cnV!kFr&fP7vQ&U4MzGmdLx} z90TM+AcbJML&&xC`XE(S3+9rTwTYLM`JsN-aZn;nkn7xzHwf)D)5JUghxlPQLmI?d z5o%6WqTx@p$1|G|ZY+J;Bt!n~aDfR~=CljA4Q{qv z^u9~8;u}Kf6b*xF8hDxQG+A2L>Fd^DjsRt1r?@>kmHr;rRgH{YK z3k`EWal+^|k~rNYCMG5%7%=KgHF*dN3JOxgt`0%<5&h%M^;N^x9N%I*O1v2hD&~5h zq9iuKmQZR|Y05Kqh2?tNpBSRD{mU`S1{BLUlbZEw!wnhO7t7 z8Na%_4{l8-ifHEQoz?-SGCKdedUyS|GcOY>Q}CRkGpB^be>+B%S%r-exH|5#KyM># zDhG+?xg&aL7WmI9%{YQDCG<`xC?i2k84tz7zOMa7sZWFeLkI-DfE+Q5;&YRv75Px5IYrq z7-3_$(spHWzo~6Y3zGZc#|u$aRefT&_VVI*vmKOtF1wWz5a;D!W`VV@hR%!L7&X_Y zGm_^qP{Q1*)mPQ!2XD?$h-Ru7zNu)mJntLFr2=vOd2fc%i#=CdZ8GsssAIZu#;jE^ zdCvh<*x`%#&d8YAN}JpDqO}<3`FUNt!$euelH#Gx z%FU^x(CY+W!(Upn()dI(Go{lzAhM3KtSb^uoYQ~bF16P=upWA;4OpiE9NLHA58c)oIrMxhzgXbp zw~|f$9OBP`ySPxI&^#w=U?({<-6LtigsH>DUP|=-_8K4{W4rP7WGFrIwaPBK&>wy^ zm%qV!_GntYC#;xuagL@D>C9rho{i#|w^{5$>_LxfU2u?;chmr6Z@MyczA;>PkvYx% z2_Q>nJui2Gr=a?isIXPcuzve{uVI(@C!l08Y@Xu`gj`~CwRvFLOZr_Z$Gpf3HKn0Wu7=Dm&!Q!M9$F9^=(|Ol7>v%&P7<<7#UP#`S5RJcjhV6f}6#6kfNsPjlaWn zl{U?;3n4*%@8ygkvf=lo1Mz9(6cw38MN<%*6Yz-NR_-fi$-R8}0iXo)nW}JL{^qh- zmg?#0>7$M7@CvY>46;8FWvgrAaRBnBs9PIwA%hC)ltSeC_}jrcu{=*Y6k7T)i^oe* z1!lDbwWGMq*QaGSD(EHUwcw;$vktzeSHcrRu&w&{9ApKW#yf|0 z0_iHOhQ$jG6A7Y^38T+|*k(OhqK`|(S1@oH&!*lsS!xK>C|n4*<6>d;{4ywFjDLnv zLV&N3=Je@fR@T}-F$!O~4bi~@5m`25Wo5md02u;Oqg52NXR|}4$r#C<3UYne>hH{H zjJfrBr4MX5RoDxBerp$EHFI26I>$tegj|755pxwdZb5JMp7!4$EHnY>yd(%q>9Do5$Yzw-p^sWPAIWY6?64EvQFT#>- z;lG3>taZ5lU@94#`bZM&b_Tu0W&OG(oZs`8(}K$3oRhwrx+(ItXVjL#_2nBK9m~^u zFUf(DvuVG4=v*>`0)IcX>j+Z1PVxE~sN&Rsvo$BxH4g?`LQtVBImz#~SBwXee*vTA z6=D+XH%I)B2F23=8OZxL#V@UQ)nIqJGTCX~g^`IVK{UB$ZC**LwZXIo$LaIrH-;2j zvKV`13@tb8bD)sl?j{Jr@*LtGleArXIIq*-jOJ+C2(f2he%UMdifP9Z|i7wQm6fY{oL@i;6IwI3|a_ETAD#$+rC2 zPe0iEHOV}XVZG_z5P|$|C*i}K2dq4qfMRRkxA!B7%dAtH&0INi!-0?gN@Qf1E{{A7 z&!&h42O9ikmr}2BntAzWK?@ER8lHaIJeK3j=Xs$g`;u(U)fXWfj~ClZr_9v~RjDId z@KNyteIsau6L}v;Gvs@Erp~;5cGI_$E*Y2EKaj%ZeDLkSX}b`-O6#k`K-v{YG5|)N z8hd%=6vVd8N~^KyRZgLZx#jmqbRzrLhQ6f91SZPhX~@^)I7OoXAkjcNO~nW;<;+0QGc{##adEkMG5;@N%yDND30RFjJ0B0r zy8Qjc48+HqcJ}I733c^^=EnkB|8=q8Z*R-(2)&D3Gy(i8aHx`NqXKc)R8;HA;|zB| z(c@{lxb;b#vk`g$NbrVhm5nrmI>s#?sg19RW^SMGP|3<32gzN9{G*<^o@_}M>oh_b z4oI z2Q)EkV-f4EWHY|j6<8Yj`)L3bSj;wI#h_?@?KErV+Va3pK1R!2fK7v0!3 z0H1P8#xJ0(^13XbJDd@<8iUoPtuv#5aA=z^n> z1o$m)uJyN7YyJ?e+{i5$u3zpH@(IUDnJsz*s{%~a;du&$0>j`WCgKvLg`z&UaB5xYweFy*@ zkPgg4K{yXM8&Pvo(9=B7cc)tyZt+9O?_8OYzeOE^El_+;_~^}9e(jacAFjO#qLLtl z7bN;V&=4I0AmxK)X0I{uDb~-mJq2T9DR{hGT!68)Qe12VJ}G_l7tH1l>7Rtx&{u!{ zA)2@Q5@*y+u2ys-6P_xn=h~=h16D~g!DFl*uu4H%*?8YU3kGWu7cyN-7$uhz2ld{8 zyDoS!B5G_;_d>ly9h+9+(@o6a=Y^*tuy>^x-3e;Zo#fL%NgxoC`2G#!-X#v@C+c5B zEXGq$1J_e|;@pq^wix-su29I>1l-S181$x!=+-&Ue$;kFJSM2x?n<~{l3{VKEybwy zk31L66#K1TxBJbmT-=uN)Oj31zgRB^_2b8SJ8BeyL@yM=?QZ`5UG%}(f**Ym_Iz+V zaEOFPcO&Z9OcL;CK`^z4M%?ejBM4BJERYw!aU4uSJ9Qdm|EAqOYxX>tG`#ETDA2@E zS3iN_;{@i3d?IsKZZ5hJ0A9vGeZ3JolEN~Az(vo|TF}l;KzdJ_N1C6`5IP4n7rHJb8`4SbSr+n6Q zgb&pJ2Q35x5$HafjmR;8E*J`qqFUiGvQTH>B1d4r!igc?{}43k(#J z(6s1e_)_oL(g@>(s3y&+4OBQ_ZtJ)9tGIwB6zko}gD&xhwg>57zDeeH_xhF(;?JGk zC+?7z$~s599J3dJfq()L?@vJHh!?+7(XGNYE}pl3PYXNrf4gzGQ?6I(TDw;VJG$7W zovtPT=TiOW+#?6)4G}B#H*fM3P4X=UHM)M4o8f6MiLeP!yRA3qsFfmLzyoh@$c3B& z9JWPp>2BDu@UCWHS%QjL%$zSX4^Xl#fqAJqm{Mc)^cH*wZ&0Zy)O!u ztlnbF&y;qjtiz{IgF=Jkj)1XgG~q3p=Jh#){-DN>uF{X8!vnkiI zD83Fo`PZk%1WtE-m)e1(XI;A(qoB8~YIv*57>4+0VCQz>RHf2ZKIl3*KDPf)?@I3H z-qq#Z>V>uH=4*D)F=9lJ^Lotq%Kg43+V;QXB@-Yog}?cnsJh?fuc_2kYDyeNfdqW* z^706GsiWp@xo7yfm{iX?<2Q140E1jQdg1gMH`n;g{g4+Om@1^^lBXmxJ*kyHBigs0 zp2AaHvI%b@M9F|B@^FQ!8Q8846NX1#1IG6?(i^DEk37BpX{AXmcY3oyTHq4=`UGv( zvgXS6%-({q(bM8}_mlFkvf#s@jTS2LDF5!m)b8}#l~i=u?+FO3ny`St;w~uid3$kP ze9lOtJLF^$@Zbt0kWTxhA5ZX{jPc5ydwPC(-12Lk|1@`8(-hoO;|DDh{5pH-i?8h@ zRoO7C2&2_NKW;Y8`!A*fLS|oce_(ow=b_;6hj*;J`qMUG=5n$_CHPJHk6(dbT&{gG zZ~geuM>FE%Sii0wf zk=wJBqhe?5@F+By&WhcOnU<_N&xOAgInH#l;Z3AnZPd3O;6GpH6xIx04Zh(A&H&7G z$`+X+K`(EKx95~wpJwGY58moJcmx0sZHju&Vyh0KPh(}SL1e>-_u zTXv}^xI+P>Dau%b!N%YaA+iNh>omhdZIF$iM9)F&r2n5pra_%t!Btq*04caMK1MR^ zHIvg^yo|~he>2&-GwZSHE8Q(v>q_f+_p;ZzjaV6l2yH`=uk-1y#a{Ju;0QUDck&tg z#P~j+bf*6^O407;z2Bf81`HnZ=oL}$m$c#W+Kj3}>p7tfn~*>!ak+2bD}6eB=cL#tr(=IW(w) z2kn_@Oxp%tT(m9**nduWnbrv$V=dwkMhl^_N{9lBdFv1S1 z?RwNiUW4Lq!0Y3Z^FGPpfbbAJ`PBWLHBoNx>g<9W$B`R*#?0^B=jC6?aGbR zD3%N0=V2XwKn0qXq>4)HlG>B%@nx#6m|A6(*aUu%*bbE-u@4VPxptBhXn40JeMp_6 zeN&Vyv&^@1fI3T~#jzNF@2J;>>2Q{%Z8t!8&kMAq4xC?}ycIv#N~fx==@s{0RCNYO zb=ECKnRMUxF#+S%JCkTV|HlL>Kuv0MC~u5^#M%VB+s4>lBaBVYmTiOp^pP{S;y3b` zo(cCtUbH(bpo~u#&^tAu)HVw&1``~hEs2bctEhOhDS#YfzWcB_FYjpbK73x( z`E>tCJh0LNokf-|w9+ErmT&OJqXxcbIu1u3e($c)W(WPZ7k~juG+2T0=00#_-*+}C zuihH+z#w?%kdACc6G-TkERuxqXkYsb&u0{V1NLH&fJNQXUu{2LgX{i8Gc87S$49z+ zZ1->o@E`@0yCsawE27T#%w}*!+){1^ho%PtjBmx*e*IG8nSOfdhCSgu4;-tmiAb^N zxh_U2-#@YzSUd@1l55dyh)i3fDEEj1R-rVw!&=aHG7CIlHNWdMk~!O+qvC@pw|0tF z>0dJ)k0lG1Pw(8cMP!{i)^WIn4B*6#+I-UcZqb!%x6z;{s2wjV{m#u!toIGw20H+a zpnU@G-BDj%UdWTOJ@pWe3(=^1XAXaFw9Kz$eMm2lU2d5AwRyVGcF7BBC)mlZ&lo@} z8Qab3)!K}uFKEryrP&7lkb&j!L^xArwV}mC(Kw&exa00i92j^SQAF@a)odMe+*@c( zStwsG#rT%@_@GrqB}$LUthK#D?3(S?Ty@B^71MH<>@lD<0pG!#_H3pKG*^_EQ)Xpd z5#_-+4);TGgxI{6ZQ7rQx&vyYy2%qL}vOYs;V+z1$4Bxl8Z`MOP9}k113$!K-I^H5? z#Q;32bj|9;uJQYM`Th-C7|-)ZRHdX6U#PTGfs28Ddphlm{tHXHD!IiDsx69Fr@ZZ^xc{7 zw4{SYCwJ)$C1~C_1K7y-_pI+YVCUrp*KXzZ96@i7%w;tb9JH9LZN!#yS;jFnpZ~;k z2VH~{JVq@SCqtFn(J)ni8qmy?3>xL|mS=p?hyG#r{XjBG*;9Kq=8a8#mxfxDbbczr z2Raf{pRdv2l+cceWgBOwy5U>aVZBgjHS*0#2|0a|_&$A;3ewG-w(4)J$)0HXu-Z z!E8^*oxeW5FZblB6K6vEUZ>Lv3#&zsCTIvpgiiEBV6~jD#!wu#{JY@QAY>GXFfKUdrWo=%V#kGeI+ieJ-LrrdFBT>>8&Ti%u{E6 zhl)4c8sEU}_=PH_d#B%@^0-wU68cGa2!oa>u*ktkgRJ=a&(GRFgf(!VA*r&;r_@JH zelzSi{%+BYt9jD3eE4ST)34uyMmDnZ_V~^k)~f3wVhhV_$qUBR=l)bbs!m;>{`X>X zCsP$3gJSouAdwhWtIvgAHwkCpd%ZSE=((+ST3>pla(>&gz;CKC;vp|@s(>a<5rT<^ zz5J+`p-dpN#^W$Q$lMqEW4X_3b?osGY-H%07JV5%N*ZfwQqLdl4;WBFBuJk($9~lF z8tII!`0ig-@vHy(+U6J2H+Fk@yQH;i*HkgXJyChFc){P1>&b(HZ-3=FM3hJ~

qN z|4kXj^^mjUuvh!=teM}yZ64DEjdgAI1jD^aGw|ykI}hp1(C24hRuV(8^oT+GKE0S2 zZE$e#r@&=Lv4B%>ZtS|4MU~Ku)XNtV^+kt4uXMvVe)Fp=G$eopwk;&A3$=)EFH<-8VOp<{>0}>+u!xE)&xg zW^#qHUEqo7cIx6H`{8W|Co7pS6U%!=n!wczp-i>cnQ;>#!nmAGJIB*s8}5m(R>|J# z6HdCU>6~GzUNy;*-SE2N?P)~k7GU|Q;)KJ}6>=(fnZ0M#4wlp?4ANeZvlcyoy?w%w z#W`u>wbsid%fJ#I-{E8bXOJ*1yHAAw8=TaT?Cq zYC4+u0^9rHzK_~e-|mfwp6_&RcV-tC9WmbP%C#>&gMJ!F^ETn5=locwByFeDV;^Mn z*}eHJqj#ABno$*q_26kLWU@#VDdR`M`_TX@h&-}6-((Lb{Z+!RAu!gh-`sx&lQ_r& z)jmCli>ndUl8@12ZALYz;1aow85N!5vEvpMrU@l@Df24aYq+^`IaFRDdh+_+b*2se zuflv26y)u>^+B7*+CJ%8)y&>1%$}+-;;RWX)1U`@F31>3Df7|x81=x#7-d+Hb{(xt z@oRrI19WpflI(u}rSmB+E3NNg6`danr0a|3=4i_c^RQzcA@dQgInBQ-qGR8Um|FS2 z3j6A)D8Fw1XJBY)0VzoVY5dYiw~{I$Qi1{!0@B^mEs98qN~d%WCm!Hk z6G3YUhm(`%`P@vIbAwxY8A9a zp(Vq0s4yk@7uJu{;`wIVX4kU(7WwzRHVe#X__S$W4hTq_`%Br`i>Tbb%N-~&mO0@e zl>4)p;o7p1R)(Zj+RH0}i5$k}%GmCyVwsSZzX}PG%)vKXkd8(#lcjGjXyZxdGDh3~t-#&;K3U(JIYQl@$xmN6j4TPAIqSl@ zs3OO$q;L0k8u)D6+t)t-etge#Tck-!l#_FtPY3D0P?;;c`REw8j;k@lG5x0NkI z@hxjeZwosQ*)UsC6!(*%hf%6S2jl$vLq0#BbBBe0VwkRWYwW3WWgBXhs&;CmJQg3* z+G;-|aMY2cWMNd%@c7s~`J4nTJL<2Hr8pDDEL;0EDKB4KY%5dLiH z8op9_a;n2KKV=^#()q|LnVG2Eua@wxtE078v~r6%#U#rov2h0uG=ZwUsK46hm*m81 zADjdX)APti2E>a3dbTQ5N54+YGt<7qqvGUjxu}Oqe;-3y89N{r*86;QfZm zo@5^%9N|BcMBQpYIC_=N*%vCUudinxqaL7Qs;UC#RMU8F84>6Rj95$1@$uH|pL=mz zf(}!6iM*kdv|bfPY>XRmq^Uar!99=EM(e@{3Kcm$&MLFvPx-W-ec{y3=NlMlfAg@P zD^%VefF z3$^EfL?doNQ%dW$Iq(=6sx?Qd;V{wnu-qFV@N|EAZ^^rGCtFRi(h= zUCHoSwyaR(71Naa=m*RCauVWS3H$Y?EP~R5qv6bfm6%<_pUaL zX$#h@l~Ly$7QWN5hxlJM6G?k7ouqP8m!MBy`@t3L2FX>A2~x8POq(AjhI(5eq}?AC zO^I*&ZhXda=;#fv;6mXGJB8cS=l^jW&l=6uQc_SdZ0-VQCwBkaJM1)nU$V{W;kq`q|ZC^$lKYWzy}#tXaf z*}PZ?>io#7&ZF8q*JuuR*Q00K0~RY=H@g9}WR$4+li$pwI#XA)!fe6wW1VB{Yo2Nu zCj!M&^W5!|Lnn4V;>iYb(@yO7{ybLAkKp(#|NKCU^6?QvL&uv`E=@P68Q!^bC%>u5 zG{bbXyugd@9rtGMPwkC<%j@H$W`Y=jDg>G^49w5$tl=N;bBWp|#8F;VQ(Nk4lSPd> z*8l1>7BjH0AlFV~*Z#rs{FO0XMVYu=01eo=-lb952~wu?>(7UY`0@g z&iD_M%R}Wh4c3$aa6TPsoP%tBX{3Z^I?;j`FF1(tfM00D%;oj#*Fz=OdFz}eD1hGu zWFnerm-UIT1wiE6shFALn>|*#two#ok2MTm#EoY#waCYEYlE=j6h}=b^ZO1XL@Hf% zmvkA|zIL!`X(2#6K}>?eVtuT49WjIYiM-sLoQ`s4UewTK41M!IqO{X_zCpdT$}0pK zZM5|CdSL@5YK=k4&FV?HG!iiV>Ab@o?b&?0n=?RIQ$HSX3biawSy`s%&!0>C@9^pH z(4Ge<;pKy+bWx^T*tY4G$@B{WpY26nHi?zsEm1d)-)I^dQh{cBnuS+3rt!gH_YOFV zybG7(5ks{^Bh1x)rt*V`!1j<3$fM?a*!#$nLs;`=yp$GW_(J3MXtCk$tX1=a3xzsQ z!((ZA@eoPp$xvtwKC{(vBpiHtG>4BQvB-SR-@3$I|G<*`aPwHOxxK~;OXd7STkekz*E!01;^#8GQiD$Fc##U>-q zcPWdvMjq|6oHq9CAEG*fy+ZW0&T%6JW2DbQsMIWC11(nKV}6eqwE3~J$2A!+#xLdE z+n?gr|2UW{#3?^RXl3OmlrI;PLHB_3*1IXp_(J@Hg`jxFKjR-zAFjSYLZO*r|LAD(MY6)RN)%@Q_oDmS=L(yY@<|_t;?s~Hc#r=8wyFwfiGhz6w)!r_6`~qIY zXUe-iJdGai>|7gn#R)(pU_LMZ`S1^)fPku-TlMs};sT>&WHw>S`5|9ieW6pL2A5v8 z^l<*5bO`oxZV1-z)xIrM_;-0ikd(Bv@TH|Y%U*tdGP2$qG2h-qx4y)m()?Sl-iav+ zI@_K1G`v89alrlVPx}w5{Y1NRO}~LsEz03X^oPpJonQXU`!VC^l27BFLU-fLUJ5{gAiZ`g+ zzpGV?7oz%a$-4a2k{Sx{~-$d!!iy z^TVLT8QYrYnz*Rbk3U%#2?`1t26{fI^lCQS)lO9d3g8TjbhUb?oPYq?@87?nPsVe~ ze!9%TcEn^t_I$;DyO*8|tN!>eabpkaPshO&!JX@jZ96A6H%#$|L>BnG&*VfZ4=YOl zWLV|bow6Mcewo9iuipmdYs1V7&v$u%jz#8y+S5XSKnsEjh67RnQ39-~Ar zg6w9>dhx^0qtf}uX^$R7W@oe9vA1vC@o>FdS?Z89g=%iWwTP6(iSUrzHc@th)vzE+F zF4MA57^LF|^y_iFXu#o5u;5pu~2&k@f_ zPp};gr`)pu@AUWy%1kJspDc&Q)plD&sVvIWvT*w8FpxV{V$jtjW{%|Zi7XT7S=0U> zwhmR?AzntWOS^LO@wOdiTet9HV}V+4sEcnQPp&K_i*(_C=1ZU{}NOoe{(P7CHxSO<|;yUu@ere921NZusU zeKE8@J*<>}zKdgQQp|?GWmDIC+OfyNs3GyD{>9ak<$GSr#kJPxaJP1F1gX(Bc&i*) z*ZP0x{YCGtT=(Dk>C$tw_5OOty+6XXsuLu{LWENV6!KfS{ZUSY^7eE( z#)<0@6)mgtM@3j9j7A>dQd{gG(^LcXzM363fK( zhV^Myv8PVU-`=-4h{yDs$9r3}wu&o2ZQ5u1M{Vdc{)-n$piamqBBH6K6?3a&q@(wf znN4rvE>U5|y%cT?@7MVoj2jfVn5-AE|AZ(gC}|Li{*;nE`$^>bv^3O$xJeq`@0v_~ zAACmf<*rwmb5J+=P-NsAW3vDe6+P=3KK#*P-^*;CCY`& zP5f&yS*cUbwY_2R-OzcltK(nWGVk^?jm6zWw=0UHP*=L5)19I?AS53*rFp z)ZHfBS7UlEac)`n(e<=PAJc<46Ner$nq3y_|3rAWgHphr8(IrBDht(DBnWpQpL2XA z!BDGZlu><_0fJ$1vvZb#j6)7p5-HXfg^gWWAtTFaGS8$$`5d+)quD)FSFf^9mE*$L zP4)I{QsqT_7gOK(iqmxN`JatpCYC5cdI(jlzexJMu%ACP7C?S{b-WPLC3v@t?wt+& zyA?Mg*RTY~SpV^X{w43#8d!WJA3>WH>Sw0MvQK+rEym zxFFBh67;o`2i`GZ^Ai+lJq6q$NdDF|K8RLo-X+#>J)$`ZvHQu1u(veIL?pwQj4(;+ z?8rRry+|<`IuIq;$jH=3kkJ;ob`s?JlQy}be(e%K0VY$neslNXbSTEZ^GohovybYf zmo-(_I1^)T{jvWayT}j!-bI$oic3J$<{^gKVc!(QtCZsAEhWE9>QFLf9Ra>@o1b^cFT)dGtF|P%f?YRS6%>Uvk~M?>DelRuvkG%nybTVt07=xI?^y-E*kZYZ^9dL;o4?7OAW~ z3Wt62whFk3m>$98%rT?Osh!sJf_B&2x9HSSB_&MI262`SfvEzeiGeQWn!Bp2c)@%=^s zz5M_YyWyMS1h>!OdMb6*2BMih37m*1LxiT4nRYy-Ip8_Le=jIuc<5o|7(d>@u?M@@ zFp-Q5A(}vYvW0H4TDfxH=&FatCAhTsz!bf}!4j_&c;;u$=GqyJw}n;S{CG8{OF<`( zh42wn<6JO_oDU&TOynFz_*hFYaJbH%iD3wFzhYE`*kTE-Q{J>tnc|enO#(R? zc4Ek3douNl^N66)DEPs#?|L zY(Z!sr-{(BkAMx3ADLYNyGx~`c0MF49ZON#D&LsNGS)2Pry{$h=m(zBjNf?w6J(}X zT@>Za<>(l?bZ5S%Xos(rDYR8JdGYkbj{ZDjV354U?ZdL_EYc}l0y7Wb#l_;5s z{xX7;t4~bKl+<^8l4{|Ctnz@c9QcwI?25#B z@KRp8{NR>;y`@#U$tdc^?zTh>!1&OA`FS&Dp~gH}20XM;yprR#$L(e}OUrc=2JP_W zZoko`l@?r9kW-}F#rpEl+6X3743n%lP-W#uprudbDJydz06TQ2*yeHeTZZG;90ck2 zBbljk4(%e6k~}0(y9vh64%$< zU^6}JW~+YgwwDfegGCejBkNv;>p_m(4Thx|@dJEh?Ezyc+4ff)34ZF{ZM;>KUM_mG znP~qF+tQK?HgF!acye;uh2VdZLf(KNp;`+ z&df|?@zrIQA)FY`lhrlC)j9hp0vG$!u%Mjrd{_ufZjyk3N?_*Y4N;B8(@dVdd{8?= zh*k+lkCa}}n}{FpBq2$2>}O-Il0W#AcR zr}$r9T|0=%SJttkSJ6z+fM4u=GsE5`XN^uzk{!hWNK)^mgWP(4;c93$3p+pQWG#_t z9r2JO^Iyxd=Dv#u@!(y4w)EnsNQF0mt{i)p9vJo}ohF)NpjpU0mK`C#6p|FKu4IPB!5A&~|ROSw#*crl7 zezK7qE4?OJVOHQ6MhbG*XpJ}78`HyZ`(ht~b3qzJycjzk&h+&bK#+F`Xg~5miP*(`qZvCM=yIRG%Z zG^P5|M_{hoP`J?#9jVe%6>pT7w1yF8g({5|hT^1}u3pNm=nT6PabZsoEWq>52E}|ine#>~whmjK`u3unl0o&Qnq#=l zIDQfgi+)5z*kytS${Y1iB4JYv;0b~G6G|YlW**sW_%ty%R*|g1)d+&kS@jlOotVmw zqqM!d<*yzDrY@`4CX+1QwVVR11vGqc#6uioKgN7w~t zNnI#uF+5sVuBhngQ9y6`7{x34pkoWF`-W;9XtWC3;2&??*QdkXl}C~CT2IEahE)E_ zd>+L?T^KR7q0^fnEh|Koc4t27`mq8 z7I^k*Oa%ilBe74S&E5_kswIRR1)UDn>>| zHnB4ezOrcZ{cTep;c)eEZ)@xIzsJa2WdbRHM5$S&D_2O5kB^zo{$FGK@b58hP|ikN z$5`gKwXtw;a6sP8ss2=5bMp;WDG4Tz`Y2*=o;d%>kYhcLn=LR2maw*{?jHO1= zmnaDVgF@}cxFr|_u@dLDjSd3K8Pj%#Rta8mio8Lmz{|e(P;9`xeMtu)$&vNyp7EJW zgv7ZmQ0zEHtMbc1p5`G1Yux_6FOKejj*iYTT8&@EZ=2hHZ?ocfb=N--xbq#O)%pF_ zD;kFYWAygjI~->mY~ykhzhI~U8x?ta)Oo6EZJj^;+&}<88rCn1iWVUsqY3jCi+tbx4we{$&M<>j(lu3s9+`=JA^&VibOO(DUu-TyW)p!4zbUz-jD zHbLMHVgo863Mf1P)|k3T7a1O8}l>m9Hb{(|;k8#q^FvOSe!NGyF+dKk{dMlqa*-g@mKO*cw05;K^ z07(@Au+haTb;CzcUU>E4!v|SK+fUgtp9^)LnO)L(kY2bG4L8<$6HRHdDRQep$E?Bm zX#id!{aE%K<*f$i)ZQf4^~cgB%M!0d0%7Q%;eeD!M*vApe=KbABR8}}-3>ywvXYW6 zm_(qDe0Xs}oQWJt2M=94Pv}FBt)ignM940(jfFII6c8#F(}>iUKir81OdycLKd-Ah zEBTBZmQWSG@fhh-GXvGb2-YH~K|I`v0#wifKvJ9hclp%}-+}}W18}Zhg@?hKT8r6E z@)<`QXM)Cy5w91+F|@pT2!bm?1Z;>Qp?q3kJ(RDU z!c79-^_^?T(JhJYSM=j4SOmFy_bx~Y6&AbK*(#^@ARQhZ05K1x{0m`c|t8W|9)|O2jIIgiU_mR|5PU&qm?Vvw6utIc+#hD8wgb2>8AnIs@hM{ zK6Nlc4;jx8I@C{_b++m9&=wRF+=z=C?f$pUCk1ukdPLp?{=aG4`?G6N|FR1BQ#B&K zyn3jBCLq+GhvehHI-q42`ck=wDJeD0%~{gY)5U_1eSvk45)e1<019YeXcz`{lG1Y$ z^=JPQJ$Q>%^4=i35kGymZ}hTN&~64ge|!)!vl)_3;D08>OO7w^_uci|NsK?$sM?;jww5ryLfaO76M zc6Zf1J;ix+vmznyT;vVZqXr6d6B7&;EuP9|W=!SAPVov{)P96)_4w?ZrB@+|HqB9& zna-=vDJ^a4$9nGEWd2^pqet_(0h?h}RU){m5{T*i*JcmXYHJk8&~MPk1z2#C>0}le z8sLaj@$!;TI6d|Npq_Hk2*-sBJaYo&yK%5uC4~~O08xq zGqX6LG~v8-iN?SEJb?Uo0r!VSa34e1;gFATcI&&v9j4f*)1kM9tfx-s+}f;S3PCnOUu;n{rRJMa-=WD3`g`;EXzr8{5j1b20&)PrRExMB@4LhK zAm<4qP>9>=5C?*JVig?Q-K`RM{QKQ*@Zk54&u)vJ!@UDEsQ5r=(sOz|csh?GXM%c@ zSm3@J@H$e!$tK9sTX9KA`jDe9bGS_|6aqdxlcK~Kal{(T-8q1%Y9z7X?tGS>egUqJ z>appHq2{7Gdo~gjW)aS%QMR^b$9)D0ZwMxiP5>wwx4wbv?3u6%Nd!u;K(MGnf9;*2 zqT;n~oWLqaZ)j+!w+G7%w)CMztM~JlFJI0M4z2HAIaXU*hPDDbuw11}TU#Qm(r%cw z!=?W8S77nY(zvz#!IZuN?HoVAf*xN%UIGj2@Y*5h<0~*L0#!iNDhQ7b8gMEb<0n9) zwHA95uUFF1)5Ax>ur|#4rl+O71ge{Y*{xJ=?L%;6g20^%Odrkz^*??%YFABM1$HcW zQktyiD!ULE_GZ@_)0dNzlV*9#t7TOkX^0jIh0;@m0?}IVy?gg6_ORRUMQD&U0P>dp zsa3@8+meKO{+jPH8@yXP^%4jdt_BAOf6kWi_>q_#(?&Fb&=}TcD+DpY? z&d7*@ugUKPE@IR zWpObg_~cN+fyozu)OvZW^z`2E_a-Hl{`~ab{2GhFC;{Sn(peH$-!yIWb&r_SS94*2 zNXhXr7*Pblp@rYReJefl=g%K}B!NkSbY(E_-AZ0a5`5XkFrxEH*RIh#7O|Qw-uk@e zsaHjy?AF3VjEDHOoJD{DBu>WTyLC?--8pGD_VDm2;dcs)4IwX>DZ@%~R@t-b6ICXqQ9*(G0(mia zj$M@0KGLwUQ7S4bE`9%Q1M9Hc5TB6n7B0fs`L7ToWy<*o!|*7;ZX*v2qsoE+g5Lz3 ziDG~#UY>@@%AVdoJRCpV1lBYhd4|JWNBi~q$`=%@vbZyQ&WSrvAsEN{1t7gq0>TmV zPIy{8K+6sWH3R#LXZMTGq+#;Lk zQymC^J#ISV3}VMAHeh4Ao(w?u-Q7`SsW~}6M+-sY_t%Q@+_smrGe6qFdg9a$j0G?c z^kPqr-2ZOe+?Z))05V@SOUv_!HE`_tLNxvhu32~+OPdK+R(Eg9DFKd>W7JGyF$_*R zFHef}_4O%%`8pr?OBqMyfZJX`>=aE6gqk)r>;eMsFW^Ll4JRrMp!}?448phrp;~;l zlAxNn0Q4N!8+?C*R)>Y-*P|FL zF~C-m1b}c-=;i=!%bF1fc0}jtB?36e2M+2wp<-l=b?rDH#A30Njjn9qj(_bhCcl8` z0vms+(z3lYfw<#%`~5ko`z*c5Y*jiUihn0AdM3$jDtUW1jGTv^yA+pJ;!Q)?G^?qdPX><#Kb8+k*#G6;p`8d`F5S)i h&o+bSe}5aRXkNklgoD_i01k{qwAJ<0Dpjn*{|l(@^V$Fa From 540e75469aca62664df04d275606e0ca9f4dae2d Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 05:47:36 -0500 Subject: [PATCH 054/104] [jlse-run] try to use /usr/bin/env to resolve pip --- .github/workflows/test.yml | 10 ++++++---- run/automake/publish.sh | 2 +- run/automake/qsub_entry.sh | 2 +- 3 files changed, 8 insertions(+), 6 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index d3c44607..fbbb7f09 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -42,14 +42,16 @@ jobs: which pip; which pip3 ln -srf $(which python3) /usr/bin/python ln -srf $(which pip3) /usr/bin/pip + which pip; which pip3 + echo $PATH - name: Setup dependencies run: | - pip install . - pip install pytest mock - (cd qtree && pip install .) - (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) + /usr/bin/env pip install . + /usr/bin/env pip install pytest mock + (cd qtree && /usr/bin/env pip install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && /usr/bin/env pip install .) - name: Test run: cd qtensor && pytest diff --git a/run/automake/publish.sh b/run/automake/publish.sh index 073f6e9e..381cc5ac 100755 --- a/run/automake/publish.sh +++ b/run/automake/publish.sh @@ -3,7 +3,7 @@ echo "## Automake run result" >> results/result.md echo "### Performance summary:" >> results/result.md -tail -n 5 time_vs_flops.log >> results/result.md +tail -n 5 results/time_vs_flops.log >> results/result.md echo "\n" >> results/result.md echo "\n" >> results/result.md diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 9dc13dfe..499d4412 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > time_vs_flops.log +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > results/time_vs_flops.log From b23df20f12437cf0652a28071bc63cd0601b163e Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 10:50:31 +0000 Subject: [PATCH 055/104] [jlse-results] for `[jlse-run] try to use /usr/bin/env to resolve pip` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 29016 -> 29176 bytes 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index a38da7f9..423a1a47 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 2.0027 -Simulator fitted flops: 1.3026 G -Matmul flops: 591.27 G -Simulator optimality: 0.0022030887121806233 +Total time: 2.0306 +Simulator fitted flops: 1.0638 G +Matmul flops: 496.09 G +Simulator optimality: 0.0021444590257524046 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/503075ff2f9ecf4bb29b74913ca2972c3737448c) +![](https://asset.cml.dev/3193821be02da7ed2f56ccc27d126247632372b1) \n -Run date: Fri Oct 9 10:41:24 UTC 2020 +Run date: Fri Oct 9 10:50:28 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 83f67e298ff878598cb4f17ae10731eb1dc50dcc..5b5fd464021e9467bc5322747932f133183c39cf 100644 GIT binary patch literal 29176 zcmeFYWmuJ6w>G>$5CH`V>5xWg=@z5}0hR7jy1TnmR5~S!7R)vR|H)-5s%$G~p>OM;WBnCk zrekYqYGG??r2EqTtF?`hg*huD3nMH2OG8^*OCBbs|9+p*!rFkz6T%__fxLvg7ZH+o zOx&4ua{M`Zdv|#LrQ{o8Gv*sIIFbAwblkTbqEf$tCDd-yL_euRUR1u+Rz^U6{w*^) zGw`udaj>Dnj9IxVZE))E)aNne#`z_bUxX)wahiL-xO?#ReXfBnp|{wWlBlKNu9tsWZ z6EfKX+ZJcbnpq+N*VvO2+q5)t8^#ZC2jC;v1HaxOl?IT34GSwW8E2fTw6Hj1{_qRp zh!W3ffrh7*io>89%NPHbn+Q#@P_r*eN%Q@O520YmADh=NM`16~?(<(68NO)5JdXGL zBth5^SucahO3@G;AyNnyCZ^$FnyB)=Nq%$ff4)=+kea17(Y{CzzC z_k)aw8xd;R_4h+vEa_RuEnH|q>LdB&7|h`UfjKr8R*0{d;L{=vnv z<@Ij-smW_qcpR{&)XUaQJCg$q4H$R*{J0zz{=9o1FH9uk;lMGCq}Hiy>EmpfDsMkM zSp1fN8Wgk^PKWslc2*@C^EFI-1#5^gF+*R^FShiND69-&7J*}m5ZZ&ts^91dCw9Sm z@2c0OvkyEy_TtVv zNgozxGCsLqA)D7?2;7cT)!)0v3X(1@eISk=@p)L2ZGzCEu`|;0;ANR9vMfL1xTeY3 z?~M8~1bVROsiF$q85DfIa>rqAPNx~E&C z`sh;NB10l>__#RB+f%WN?ct7xTQegghKv_#K}VIeq@A64a6T-bwpsVpcCFs zp+mMOZr`?GFCsLgsHjgfZk2x7DI6r*)0M$dbQ&4igwiQ3UiJHABoNt^jlp!+yUXU3Cqigv%ot*R| z`aQaPdiqGbH=8*iIJmgW*40ImrUDVurW_R(^Js5vZP`$988bZY@8lH}Sd4};uoNM( zac}(c^62;N-oHmC=CNJqrYp<AqmerCh52?9t<=FU4%mF=XeF{>aQD9XjrD zqoNBKX6E$@8|Ne#BwJZst{OlLV)@w`j`J2oONyR(p4#=Xk6VJ*$acAvl~wDgb-nb5 z4<96M+VEd5|IGTe?<1eR|8C_qozGx;SOp^lSFPYQjogT+Y~*xI{4SlgvWkILQxT?B>+8JJc0yx zOGsM?uAHLcT0V+-UT^P*H>|9$UcDmY=Dw5{^oM-|w=3RW4SKRme-#PWbHxJRk&%Nx zM^QgeHz6031}TFL9v=JU*>CkO4i@v2i@krn3n+2e*UXYlkMYHnJ?H+HDs?M2dEL)fIT~sIL5L}T~gL~EN9#*~n$;MzP3IE?9F-q`p*BSGR z9xd%1<==U}XS-oy&=?Kx@br121y?Pde^W~0~ z!F0TnFUpkqOLx@0EtK9$z%<#KYD<}97}=4U*x+R1H-wQ8LRh(52z6tV|$#? zt1uN3&+gMf!m3(tI3`OVDb*O3`Wifykt8E-Z}PL-Yr@6-8JnnkclTb zAWcSQ=~lKVC^eNCwa+z7oBQ-7EPA7YSmpbM0WJi1_n-4Qp9Bm4W?=~l<{Z}mbWRs} zOfEqBf21om-;){#|?WO_fe+(#=jWk)*lk z)ybtY)(iO6k%!D2+iO*oD40jmIaJ#OQFl!CiO~vKJQ)+au$e-ISStMl>FmPm48q|( z)d(D=VQ22yqXOAe|Aqvfx+W>yd6|Hm!rDcqsc4z@9q}NU_v}t(n2gvELLoD45s_BX zIrnLf8>Ah}!J2#9l9c_-D=9%dFy+>n@saiBAjb9!o{PRZqmYb3ME1>!F&84jwc!} z_x6wuRz^fZc%89H93hX<{e6&rDKUXWV^YYT?0|ziN_!C~cn+U_kgoc~76&)(T8Ps0 z!PW=^_jgFZdqZ#u$5m7wQnT$2d-MfDURS;`wrgv~L@n7s{0xeetMIS~1X*h9VT)fD z)}vI;qft=}fYd?MDNK=-1hGoU2Vflu=?BEcE&Aex<@v1Tu(a64 z^(s?Xdq0W?W*)4lYPBsW8RAh(sRmth{ zh1~98m*lFuC11s|N6t>_8ME=)V^2>e@%wwLVEMd3C{Rb9t!Yux5;A^$v#oV-(DFS0 znIh)O!M-coVu&mJ)3sQY(| zMw4q7@gE0F{=w3_Vo&(1P#m2Cp~3{oWV|^PU%Nb>pC{5E76l?xpa0Np;V{pE>Qz|D z`H39wEuR)-g-xwu;y=BXKlD*zdCH7_^fU= z>&?9Tc%r1_za-&`Fl@0C0|Px2m@Wb1(yyrCbk&}GAB65lc=$Hl&vH#kQ>y<~$P5gO z?T(KX0l}e)uG^%{Ip}@yp!*pn1tm2#qAig*=gM01#i8X1t?kZ}T*am~T%?l<@~n@r zAUq7bH#OXI9Q*bjjl`FC&vRUpwcvjLe&J7cs@=BdylN{ptaykFtZ*s?$8pN!Io6{P z+?MS^x|{co!!U3zLRm>j;)YEv4Il7GMsOCOP9LNo1lWdQTAl3&L{fw;p?S{VlO(%h zs#dT$sFO=SfOE`G0(W?S?O2<&O!Gcn93J%mcU5`V403q|d+z^UsynU0Cf_+XWy1?#5XILo#dp#ItCyVzm% z6O5dqg>VR)n=>ZyI%H)}wS@#C`0=}FH$pnQSkCTd-FZ!?5R!Nk_}@e>WPp?t7Z+zb zT@luoz?r}goHnph|C#NsG5swyb#p1SS?eAJ85y`Kr6bHOd|8xKUiB}fsixTA;4Z#q zGFig7j2K3qoMg64{d8ir=m$z9hRRsj(%B$IM>4OzrpweG69LEa8_V@4-Or|T>mbG+ zm39bkV{h;`wtnL1-tEhxjX zie(fLo72x{=THvVJQ}Ck3vzn3tOJ^%=deB3dCfx=6*?J#X(n~<-v~~&Q;Sv^ zLz4YuL@a-=vkjLv2x_|)I`aac9GECU^haX{f#(-298iX~WlXrfTlo3G;-V+^mX^ir zb03Lr-OdCY00B3b?WY@qAZ6Sv;jV>CQOZBqqdFFw5FBndlG3n*tx_81*t$z<+wI3G zuJB!52V1!Z6MD~a4M4aNjsg295o?1zUCflcd>jjM&3x6tGw zJ34iTq)7@aWVeS0$#ZTJ2X`LoR4w2FPke1`fuUDH>fzhN=+hPwww*_Raqy1o*4Czj z3YIcOMVfz>R&{dT^tu1Muwgow#Hunl^U+5y^;gnjk9Os>@K?+arCRVqCF2;|i45{Z z2U#nU`D>7DWBkmPa#IJ?oFcIRv%AEP>oc{g3ta$T8+E<@$Su~Lr@Fa-IE{%9vqZ*w z{&OPReKak1^jezS8)Q1(BTyY~$L@`Lv|o=} zA+}QfAMTrTKx2(UE&w^(9*nztx-0UdtL^AHYc_0N^4avEM_3?nOqsKwDs67-58;4O_f8=ODbt<+$S2tN^ z^aGjV1xDl}7s=|)bMdNc^JVpUA)ipH`Fc0P`I5~4^mmw!Xa?KOAwRE2NT20x^9hW75`n)2{#5p0rplmgIDCEJIwa z)^wlbh04m=pq{Ai$Tae^Uiatgce-im>DCXH7`Z_L<$&{aV?LeCLg3nmM0sZ zFflP5SEH0_BjBEr3MBdTQ zVdUDKoP060j4gg<#@zMBiU;ryyNh?%l|!}FcdM_P@@s1obz1zbHU`L4%M5kSEI(k3 zuzJ#bR#y-0S#7pge;?PUuXla6d+MG-S5W26RDa=JQt}3{v(O%n7`0# z&sdn5Z;L&odwo*R!NVQ~g8K7evD+(ejf|Vy1(l|dFJy#}+tvB|JBK zPiyv91oML>hsC?|cU&G7S14QL->}}lf8S(Wu3LGn=sCG-KQuJ-fgmbS;$o_Sw4e@l zyH7mEHIURQ2^h5aMoL5}*?dhQpZiw{OIUt zqS}TAqN1WguT`IDknH4dQGe<0vR@Yi>~5i8nfl+{G10&^fM@vtdq6pzFL!5<4U&y~ zn+DUHbh*!X%1tql8HDPP4oaZ{=^o|pDEJZa0C!=~7X0EVG0)FBm-9DnSGFjqsGC#e zbo=$!=3&jC_BN_o(p{#X_qZFbBH+lY5AlQP;+%tlpwrUg{|rm+*&f`t1&tn8b$<#@>S=om~iaFle2npn&Lc@#sSe8Y6C^8%OQU8+FIU zE{{TX7UZobjvWEQ7%WO3_u-x@zJ|w$^an-9SoL{+vBAn?;ZGRqb}v388T&Sa(;DX#I3zp;#RkdifR_#n861$_q0W!OG8Sa zufW4q!7}gj2T?M0ua($UvtoBO>)w?U700!ap)#>*H9F827tlE$F#-eGQ1yUEB(Bdv z5??l~G@lKfbLX7H`!*dU5eS3&$S|-1#^d5(rMO-6 zyag3GnV5JJI}E)7R<}x>5ti_T`tw+=?+?-OSl|JiU-^<=e7x_mKduHym|<9b`$R;9 zpgBHP-XNs`z={U{hIDbA8^@|O0*af{9b~l%+MA$2ral;a4I=emJ3BL*`l22|hy*f1 zaWQ~$BHj_Or^9o+wZr4aL?iZA%-3#1(Zl&DlEDGP*vL9jQOx>J0W`z7W30!kFb8x( zBo?evMgDYu%XG5&D1u*KT{a$Jd%VRcJC2tT1KIuIIw8O(Im{skpubDtD6-BR+?Ex| z5MX;W@q`CeS)}*#C%E%D)OP^{i~A)#FPUT)Wkm?YKz%pzSWKk%V7IcJq~U81KsNy- z-T?id?e>wx1^N=eC?H?YhTCU*^@QEssb*?`XstSu1egg_hpYhp3gy+#Ol&*!FaQRA z913ILu_EPufyNAG2H-q7Nr=y3o^ba!hZA!~6}4C93WNpY1}TJ=Op#Rw}xLPSQi z5q`n{86j{GwW^ixQk_sJ(gL6&S6k2ppN=p9q}d+)qMgP3{t`VS6TgXx1}SeWi!>xR z?SFWF#*spY}Del<6J=fWir+D(%Cl))w;z{E7O{_cJ z&mUy|kPp3tyUe9xU=iXf1AX11I69d2|5HX1h{Zow1 zMBc>o63+5yrRymnM<~eBi9q+2)ttp3^u#g(uj^4B%ngb&Hwpw&azLXFmR03vjkS z4+R*dk0!;nd9KdI>0&Y9krgjS(A!@;gmwonXDlCm(QgLqa34FMMN$OxBl65al}RAA zbGWYgQSViKK{v=!0&uq$eG?PPJPvyw3N`B_0QtX?FGA_;( z1$mglwCPWpKt~cNfa2GaQr>CLTLCGm;KW_+A@y~L(vmAxjz+m0g^?#cFy{y%FR1C3 zv=fvyL)p*{jZd1(1_b|3Sx=9kWaJ&d^XIHOi1Re-;>q6m59BH_(c=K8q#(!WWFlD+*s-xx@UJ_39XLHt>K@3Zk^49mJwc0fysl_@pMk@5POR4a zIK5IwV^LCs@;Q775;Fyb4?y`yOZlQAMby-z+}qem-<>5Fp`;zX3JOi$hy(XqW7t0{ zR?BewYDdmB3oZ{C!(9pg@}r7Ux`IbyRImDmMC$sDnAaX*X;)MPz8PHj0+%qV4vWTn z82Md5^SaX~TkdSO3>TbW2}f|dJA>&+;^9P#p{)I>PRDCy=Cf1lF@X}yJfnJR0yoe9 z+WAz@`-66L#Zyg3xT(Zsf)dzw@gaUeUy$aU6>)bLuvzbK(=YYY0ND6H(gWrpuw3~b z5`tb=1=%$mKe+!w>WZ+0V7J3WEXGMi1^jHs4+)R|!3igrwwtdVIiz&b#YSv$FmGEgDHlNeLMl4i_$RjGodj+pr8Dd(=C{Ue;Y9CKdN84r0eR ziSwcf@HAVa?WcgX!IJgNKHWUzN6kg*1~fT}7rAb*Cp}z>%U-p-ygUNT$h9(dT@{R{ z{QBmzJR4J^Pdp9}#av>d=py_ClTyjZn_j( zR7&zmvR+rDI7jVvg~!=cYmd=a-B?eQBJnu*OD8OxP5-(I$NkqTQjJO)b}t|?TJF`* zW%EkHkhZis8**#mXOrXO160#LxF^5opWb!gaaS;yj1v@+a$}OXJjKK^saK*srN@r! z#QX-i07n98$xM_Io=smX#h_~p>n_zwp@N22f6u3IilyG*>GkW-#`9LJ_PYkGL1Y4Q z%urxRkJDT&#D}Yh8VaFU%{kCsCrxo(%z~27M3=lK8YR*_@iHI8I-H?JqjtTCnVDe? zlmcC(9MlWc!KnQkJ$n@Ny6n&2#kJb={Rj=f9j8MWtM~$-OpAZh)oJ@aDf>`U zdNoUH2hvH$OLEMQ?x>!iYnEA5^lfBB{;&ORaGP$^uKl=U(itSUvungbD}}-%hVw?J zT(>7)>}GOZ2mE#SF1=}WX``Ria%I2S`RqP-ye^k%vi`cDxK&NvRQ`-n3k?7rtXOmg z@*&?F90&}dPgR(0-x^><%6&?4b7R3L4&>i`8oqZyTBSaL%fFKZcjDVTG2H)>I{lr` z-mWE{bP}mkYt`P=sNs(5n2P(QAvt;0u^NPLw`{ofzE-aT?doLnoo(6vG;fj&hxyFL zu_{L7)X4hDQxjcG{8Ext!#kOs5dG0uhO)2HG!<|z5IFl?Z$b;-Fv76y-Ve$}pcQot zUB|>gehjzyXaY19K}^z=JTSYLKq`z>a)wm_NQyq{lzDc5}XU zx;pg2fM160shcdXU6k^2(%#%IleU}Aw}%a+Ap-EtcUJ{?Oy3kwgtxK{4a>X0d0VIA zzXnNsJSzJF5J5YQtry0Sy+H(vYQ+T$0>|1(=nr;tfw+GIwTT8&=M&F-HJ#4q4Q}*+ zIbRy*U>?_SAlAlq4#i{fuBzhNw_%J4VQRSfF5q@`aU4y)L{rYLb!OD{=G6Vo8lQc0 zH2vL2CA#P>KeAC-DA#DIy~hDP*w? zSLoD;9P<^3)|Ty|_&S7l5YRiGtS}=?;I!ayp(S@;G^$s38{4^v6PWgm6KKe05zoI= zd#8`e?|uQtSa+g)k-&v9R;UCJAnaHhR!&!+j;Xzum8Id~A;=xwItI`;AiH~<)nx6N zm)skxDb%70>6U2rFgLpBtDAa%Y!!s>>@0u!sWt$tPB}O~>VYNM%k_b*XSJs|H-{0= z)93nuZVuiW=O7S+0#=U>XGy1n(^amB5E6I^&M5ZEmqi|1&(P|K@hR6y-SW>>+SCPg zeqpamo;(&0f2)YYcj#;7Hu?3S8Fiq(u6h|0gGK5s{6YY!dnW*(8&l;bFXuExZd$7g zW4nn3JzIppNi3G`{4*%irV@*Ov3JRPmp6A-8go(pyfvl%8Vz*)>o4E|zB*k zMEkI^0biUMBSHiy&vXq`%EQ z9$Fe5X-PRbM{g35&L4?gm`-sil!$;>9KyS+LyD4W@0nz&pf1y*L$Y27>bFZpvUdW ziJ&TH+FG%1h|u=(wG5Xlo_RgKSlFB9c?BhWh5E(kcR8dDF`x;!?pUwQvHs>2Nl(>29pJCTB(%PD zOK+E%2^UZ}3NOA2$t8Y^F<`U5yK`CY;Ba945UWjp@BhZYD$?QtwF$O$Jn<)my*B;a z0ibKdxym5wEo0_V`&lgPxZ1p%U+a`xsTc;>KFnxS%q#6jX=M-<76YpW$6Qy)ptSRA zl_z1%$P1kgkm*&Am-?)1G$dxPJEq}=Dm%rUM=F|r@nl#Q9oWEo?$D)Hmz9U4Ci%L`AwmfNsMM)r1vM*S zKwn?%A)nZM@50AOelwU?FI&!b(}HwJn=@uSys2F;|cuq58a@Ytp3r$i23Um^!WntDv2L&X=`&{ zUks;cAAPapS?raON%lCStz(oM%?0w2OLj;-I6ryn)!$7Ds{IQa?&49IYM*Bhcj0Qe zS~dR=>cu1`?ptaLfsvJdetx$5b4l|zYn-499na4enQHB7nO{&WG-`vLygdLH|CM2} zKTjTrOdQQS?}>Gsw_S`bBlN5OvhN}T>11SMA)Mv;-Yi&z*z*`Fm;z7;u$WisQxC}Q zR5>iqK{7HkBfo!dzPr7C0TGS&TsN$htt?;j3d!4fdTgn3Ar)< z;UB0M3vK(Cedl5q$LGit$@m>GIfXm}Z}9F;KZ#ziM0C{ED&YK^dJ9=S0TjZZ5POb` zi_{oNAzrnf>|)&eyY6htGXlQE10lx&iT_5lpC!53T8HM?Ic_*4KGJIBCL|jDS&TiDKj_o+TdZCmBM{o4- zOQfd>pxo!X?9pUc@RiS+cJ^DYPI1g@`Xq(C{4N|hLvU-Vie*vHdaW0mm4%9C1rfii zT|0z!`y$*nB$F1qgh*?(fVL3CjPmUv?*!kb=qBC?5*3k1GyxC#&zsBj6dE$2s9@- z!ow|s~%iwh@4PvB<*(+{hwtFRSdP(Mu+wKPC4*fSAv20J(;#Hw0- z!n9sWgd-sgVD|BCeu1kE3eai6lS*?qmQmAzkBJRl5)hoHIZ&6XJb&RiG0VIW{ z?z9>ubc<-sMUJRtm@pCLJy)#Slc$;}m6n)ud6?q9;V}jihQnD=R*WqrWJ8`$E z=Z7adf@3`IHqiB5Nl{RBTA$GE*BO}dk_glWw}m8NxU3MRKzEZOdH2?rEyU}m#hQ8# z=eAGqQH|{F4I1WYus8OR{xE*7M^AoHD}hr2H$ci*v-2h=Cui&S3RWQ8wQuR_>IyHR zOa2aJO>E1^9A+{2RlH8`K_kk&TpX4lIk?1KwTsv~In>puvN2v~VHchmRF4iiuzj39 zvuMc32d!8@)&2=6WhRqY>)Y4O?Ps9bp!wjw8?-@NQMzC3q)aSc7qRPNnmm6_b%!$BRi!A(jRhcoH%)? zMhm6m`eLmBnXdR>U8wuJITKm9_JhS1m112);BH?*_xMAKKvHwFFsRtOYxe8a(wRjv z{wN5p?Oc4F4c@nZx5=HXIY%{#`wN*$dR%pO zmM4>?0QYc^A&q<8miKdIeeG+U$|;ut{hz?+ps9I#b=m?5fs1n8Hk5r6u?UjBaAMxy zd3h@U#bpAi`r0$)6@v~=;o6bMOxn;gDyP-d4u5$R- zRxUwL!5#gEA>h_u`Jr0Vs%Zrnx#%S=grq% zx5SGSwFuv%H!EruLO`QBC=N<(zWWs+eXVK~Ac7Q9Soo|&Td0Y*#ADkS`wQ65=AY)z zA5c%adF)w?yPGo}8l)&KpWZRLKFI*3b~8fNl`$x_!5{*I+Cmnu>f^6oQX0Sbl=W#v zMdH7Mc@xk|*~%R=o=3_WowS{p_e1wO8kQZXWTIC$RF5Dw>4hXaWwE5|!+QUxO`kzP zV{jA^f$3$Nn}c4PgHj-CcN=AmdF1)1N4-TY-0a^bFs}j%<8D?Y6|U@`RaFBUrMLyK ziwK0_J_;viFWEbs#j0|i@Anr>x@Wxd6~@a!heFQ-Ua8D@C~=Q#q9UOS@6Qz(?P~tD zs0{$^1@6Dc9pAtrjK9=HR^(|RlAWmSeYcAvwi6nk`tR-A->gKLl4zM@XNQuan`o6{ z9miZp+`1McxTVxtBCnE@XTv0P@(7sf-c~jqT1>E}}{)H`IPolC^u`N`4ZVsI-6%|78#{;IDJTpx6Sk-NIO^wGt+aPs)>y`d@J zk+rAR+@UN6d%;HpO~Y9JfO{6wIIvoI^5tt2mMlcXs!Md0{=x%2QuXY`rQ95RXo`jE zm~Gk;7TmJU_~^>y&X%eyEt2uG)yqk}cho;a0ux^&zC|WX?z>GsKw2~3LtkUIeKYTY z&N%}SOlj_PtDFBig9!a@-!VHudf9#bmxE$2-Exo~h)2Ea-K4pEtpREs#4PfCX0~@8 zfvf2m!uY0HOA@8_bV-QXUc)QX5%&y{)m76(i@C)h;%kwjo(tRRWD5WUK>gb6&2gUc zHy8ydJ^i2g41G?AYH5<(*c(cjsth+8pC;>mw}v{Vn5d1h!JbkjjDeh-{T0}Y;k7%t z^FGdjTwK0ON@eSO~>%i|dbVV>qQ(0CdY+<#thcU&$VyLs$lhNbW9 zQ9q`bU(8{Frf8BsI-#7eoWO~`bx#WV%6`Fb34|0Ho2W)O&s_)@YS4&(e=6RI<3|;V z6ji|oimNt zm}ZqzR#4RMg*@K8#|6kxnAH;#N7%`x0Y5CyVaKqaDn_JK7g0pCDNhB+jYgk(kbp93 z0=F;6E+W%ykUr;ix9b(llJ#Z1SI<{TK`{)BKS}VZB4ygYRn5A^#>_eSPJj9ZVR^Kj z?cxj#12L2K6qKE$+^CbJCl)Biyd$^V8L9duF@lvFNFXFX8jpv3U z;5y%$16$=~8iY3M`22&q+xdtn6(wvLFT*dp_Jrcqr+d%l-H>*t!6X->`~CHPka1(m z-PKNUSu4%+sBbF_7r*P32ITNCqrPPTHGJgDRM31kezdH0$LMX?nfy0P**QPrEn5lW zD=$D_UhnyIOJ2b{&Ds}(`Oe1hRHwPi{RW{PL|*95Hn7p9Y9553d3a38&e zU+OPy5$^N~ysP>ZmM2@LHB?*~D2^*Xl#PCK@F>xqz;pt#+(Ag=3M0pY%8Yu^T5W)_Dz=lmTn>RKr}})!&H49KwhwUOR-GdZgoNn zgnw$4%|Hx$Lje(EW>Ek3ZZR#cd~cOro$W_6A~&o}3_BK*0|)EC(En`uyx5rCZp_Vw z)^*iy!rE&+3*EFt`gohzaZMk^e0Tv{CRPH~kU)uLaM{O)%Y2e@Yx!3Cp9{D*tnB^K zbNX^ba&=1`Hya?gInmsIgj%b3SCkeCQh9 z(q&-Nk#Np>8EMazn}%=OPUBiX+T5muP&AaD{I5%8=%>Kwts^|)M-%NHD9Lnc92Yd1 z2c}D(q?RozZKWYXwYNj4)lT{Ygce7KS$O7}bw6j%ly%czJ8gJ(#9cH;wN@}EbJCUl z?UpRoZsIV14O8PpOt(w7dAE%e2L*PrfGqbdAwdeXfC`o)YQBpZS!(C5yZEaX<)U{i ze$Kize}>AT?$cwIDYwK(vdit$&u}j_m?8j>(8k!StX_3z6#2yK5EFXAY23aycBbUy zOH#1G3<1yj8>>(?w~&|QlVG~>bODb<#e;#dGHSkDt3}YCuho-==(B~@a!dcws_KX8u*z69)?MC-^@#Ts_!607v zC&*7ZYu9abz$a*qZaZmcNR>qHiI80d&i0Swju&5)ZvU}vsWwn5UKtYSqPvosF()k0 zt#K$!VsG0Dm8tK z^i*CcaIVgbiBr>PJ^khvWQM2Ao92!{mX)MYSI_Z z9v-+1>7z^#X#eLNp@0NoQg&CAHDTzoF9MQVABq0Q+K!@|~M_U21!$&TU$1rB>8h-uLS#O-k zT`0W;S)d?_So0@&SMrLyP30;5BFovg?hYf>WyF6a;y8WPyRv&&&OEr)~kb$5Zg9+&XlcX9H2H-qct;kvv){DbGRNKTL7?9Qkq zaDzu7=;7VbKpd1nYtFSx>UyvxqgofYds~e#d}!B!x(1vwkO}dv(Q}Ky9uglyPJA2E zj;X1M3t5Gz!-h{C`ng5Q5(%;IY$bCr;L)*{XG{#neR=E1n1`Ujc1k~w=f;UI`lM_o zi!!N#23P5K1VXrH*K95hjRXW^u9B^FRWT&Kg#)v={&^xouyWz;SC+R~?}eV4qv~T? znb3U6Z40(jmuN^Xpz?}l=TAcw14TwXZIsi!>l05KHCO2O5Q9NhlP7IG^GGqM zd5U0@Y6WpUIQ!0G-m;wlZGGdw(^NJIpoQ2ai4Os810>gr%|u}PUgoSRbxjR%&Gp$C z3P#nqlLL1F)*Hi4sN}Y!OnFh`!g;cfe!PZ1-Xi0Xq~xB|wTa9NOY($wmeoZd>DSm2 z^h%djDd1=QTMOXh1kRjwC!ZYXHb^dUM9*2fhvzd`V6c3ArXFv!QKq?%9V{Toj(w|7DGiE0aau)o^6g4I0YY}3!SS}3rbKZ$c z^apTEKXZE{o$*!LU_Llgpm4rY_mz>#u-$hsiF^?SpUM_kX`rD-Sa93Mo?KZWbC`UO z^3iU?6MF22Y7lupun}mARicMa)RI3 zATa^4x+vU7g3PPS0)ezVkxH2+4zhJ+D+yb+-7KcYcwHimwHXtdzxfPlQ@;NmMj9xg zsy!p%yP|Dv`{M>~h>aiSd$P(_FQ)6(>z$R=G8bM~l)7{q?x0$ycKek}tMSm^&;`vp zM+)p>1O~x{LX4W=eH{|Mfr4O$3y%*E3|(l}X>Ti5olWT#e!2z|8Ais&k0_okA=8=1 zpoXkgt*7NH%bAKP7ehWNro6=(KYYqVuPoElf{r=M(?&DktC#TY{ubRI%?~QTTF?;@ zP;CPw=I3_CDPSZ~S{giGD;NwhUZXtgP5wf^IyD4Jap$}kEj7Xl7P&z4;fk?;*6i)c zXCLsDyKhj^@&jV*@0fyD3y?HZK;oXIiH9CLx(UX2WN6C!QHasd$zPv2_(Bl3<`R|1W_R%Z~5@=RBU7Ml=&r2x6ABPq_&hMf&1C z7{16ag=%pj8G@1h0AK;-o5`fE*y}1zggp(uX|Cm`sW~Xy&}+Eas=8<4pj!l!FFGu^ zm;DduU8*l+OR=@30h)Qe@tu1+EbKDEe;D4<(FX^1{`m~~DHbGn&1Z_GKX#Sa_W61f zCpkx(6+X0KPet)Dg?RJ9;zv!ihP(3O6_>UbVWbJ?uB*%8Enp791YyJ9Ula_^foT=V zbTIw2qgGtjzC0G4Z@E|gLy&5i=Ef<SU)pLyKo7SHb|SfpyGzSyrr8qOZSxCm3co#4!_OYMiu zek%e4mY-pA$^S9^%2vH4Rg=u`Iapz9ir&wW)s~avs%ZfVWP`E3P>9|MqbaOBId3&? zo2umovwbk#0<=?i{O1QS(1J$l59T|0_t{>%Usphv^G#^1RnYI5irX_LioiU{@x&n< z!OPbIks#!k`?rBVMcQbt+(7um)Wn8l3W3^7go^Ugw*gGM4DH~qYnx3@UGtdaj)_#3 zkH*^hTtV$GL%@_q&QQyOH8HA};Qa70ca9`FVJR4&u(n-CuL|DHt2Pmst>Jds<1V_p zKilII=sudezc-1d{6aBJ`RM(VR9eK>xxXz@nq?6VX%tLy6{Ij26rKc?8}bk*@mi8{6Aj=s@se*k8ph3+Zz0>R+MYqt>8UsUU%8w8 zFpq5p{}>|xla|~JRN$yZZ{YDjRm4QbS>2Emkg>RrvzGg9bl;chyq9c`pNZ=~R=fy1 zQAkqE-#1ix8B3ndEbeeZ<>LPOyReOINAL;9gGW5 zBUxPzeC1^<7I8%TpZQz1WuwWGQ%9x^f;HWg1GKNQZaQ_;!+p3E8BbjN^;U(!?>|Yo z^Vos#(ppjylG)V!eK&*AJ@6zm;<<~`-XF?zca^Ne^B=*$kS^qGN70- z3l4nhZelg?ZM3i2p^kCeK0+vRrh)s%^nn|E5Er3<-nKb^?&bmlt=A9=LA-KK%e zQ5=*gBH9N3tsowDU#C-gpZct&(I&4EmlFrILT&Fr%ACIgh50Fk_F+(<#B@5sM}js? z;$lJ9ZqEOE~~^?Qc~!yEtoR zxl*d;1*;k8PAdSu{Nsc97CA5nS;tNRtJy!)9x=ElE@at@$}Sv2z{p8wJ_7>uW0$kH zFkb6^?KoSjK5SC{D`kG%LMmERG&FJ2xyt zDch%ijupQ#>saTT0l_4--5iRR%R}^m`-wC9ZLr`ii)8R2_KT~rUWKdI4Y)BLH%fQ= z3zp5jjC)$np-Rc!nHzH-_N&|F^Dfnr!`Q3SzLgI*d2!1<;t`&FzL&O4^w)s#(!(WZ z>>B(T{O-JWlo5=2b5l`yVltodo9EZ3Yk27fhc**oZBNtcynnxXn#^Ri>u-vN?T{s9 zi&l6q5VBbrckmN?nX&V@{d4gm#S!khBd5DOwHKmORftb%PX(WW;8(%h^`C^Q-R@WD ztK8RW9Lyl~ypn`ay;MEMFBf~yQs515S;LLvz#-?M-jZ~l_4)r4_TBMR|Iz=~PUMD) zvWk$AJu;#qkr1-U%F52(du3#gG8#%|_UPKPWQ1(Fwz#-P_WGUM_w#ss|M@;1zkeck zyx;HFc%Jh*=RBWhtwdlas@KE1HR}(x7q&H! z+|kyhDG)g=TbwD{t3zAo7g8Hr8R!ad!v*+Fl<#zqp=*7W-D`N9jI6YbTl+PxW>_=QCY16(t@UHR99Atp>09VYY;- z44~*Uz-nnM|4V7V?YPIM@1bs?dE!N7*V1XWgmE|Bll64nqY-n;nGs*fD5`8_H;Fhq z(KEZy|IUJ`KiR_crDEe}?lT5Ww>14Zcmm4jN1gwSvddEf_w2@F{2O?K@egVU!7jXBySu(WinQhU$?f7P(hT1OsrhIrYhd1 zC4X2jxoYQJParCL-n< ztJ9^>>6;G?g!^127-)&JpY`-BT>T$ZWW7p`!zl#!iz$C8Ip`$i>GVw(QOgeP|l zs^~891gn0iW%2hpXdEi!GY;IX2e2@mXI}rMDmgmaUh+a!{?VJS={5A7ue}8J^OG%6 z859&|-RB~(VDp=BkKg=Ez<7z4#7;DZBzf7QUbycq6r|-0~y)CODaCS{kDb6dL+fU=z;k_)Y_)q&Mof| z)SCTxkqkwYg5!i2e_Xo zI?))Ymwd!V4KyS3Xpzy;QD@9hG>B+9fO<_C#rlsfCfvwp8S$F=Lvd?+V4E5ytx20(+r;!ZzGU+S@K||Jy(sI2A~6~FHbZeia{b73iXFPP6J37jry|{9;M%+^k>g> z4|GHOqzvY3Z9%CAkv|kq|H725xJtk?nF1N=Xs4>d)^k1ju^96_-9~<`>c{ejgV)Jw zS)P{%wzj$5yI&#fr_rF&Q@iB+y5ziyYFw48q8ZgK_JPCmkwg=AlK1b|W48xX)(_EM zIUaa$5P;}ucz9@=MMO;QRxihegqnUvdYD}faVMW^2v!QDWaQio=~UA_m_*& z*B(+d{2*b{QSO}6nUnHmDw1R$DkoQ4_#H`^;xN`*RLfLMYduXt7A8x_mY67~GfxjF0Ziz7d{o^q zc)glm?s2n^>ALf0X?cy+kJ9DaSS=%uuiXdnPl_Y&tX|k`2 zYA0G>3;Vb)W(eZl!W4L$_Z;D)>b98%A;ec`=;+9gt4}2&B640C;UAeMy#Fl*LEP-I zn4yK`F!2|2THrHnCr4v&8B3_10F@_#{(#O`a|d$m1soa5F?;hTE5kf4)5p%YP;Lw= zx$`yi^94{^6vZEGTamrR6)!_09XD zbTC}!9f#TsoYS*XdfE+QRdk0q8%8<-WXV36MkqE)*;3T#IPuYwlz?xP|F<{mfxu#< z4!v7Q!g;K5x088$bQvO9SE^)sV^CA_a;@LaYKi*`ryUZ~+sjBb4LvNKWq?Fsyzcv4QX8$s2@z+7j2I$>9^^CbS#?e-Zg)?{qa&1vFd%iA7w znXNkLrxCGLh7K{3ZwF3*8Oa&Qqi%%K`!XoBMhmS1M`g6clmz&!1V&JLD|!5P09WUL zV_1GqUZx+gxw{&W~o_^!oLs{Gm0+Q=5pF z%~UC8rWElN>yJ}-_X&zyS!cu?1549=rW{R`D%D@ia`L?1Q_Mt*5&KJLZR7VMzh4(# zc4#!oFKlPtODW7PC>hZ_`vQc2(jUUcZP=S31F9?t-Vq?|n?*s@;S#qtqEUEQzoj#Y zOQ+Zf@Az=nq9cakXe;Zq)y{t8m!%A(EK5Nu5lB~8elBX>p2z29o>$^#2+0eZ~7}0m{HNN1{^P99_gxb-Mpps<#{s4&_ISd`D5Qdh{TM7ZS6E}O*TJ7Vv^@Lz-RCcR{!Xq^wx;+ zz|M0_Ymzx=7q`rW^cr=KoelgRrc2+e!UhyxelzV(ZJU@p{G#1Gnb8>fBYJ#kU1ICj z&y9@bbQAyeUp%R^)GGV*PTtJZxd!-*S>UZIs^X8F>8>E=ORPz+IiZuXamBfzC8Hd! zE=CJubg8#kW8RwxviNGWqqKg1kNt)`&YbRX^F(WvF!IJOJ1O(K4?oqVPH24MLt7U3 zJs1kN2Mg+O(L8dTXO}s{tp8xkKY>n)+0T)Jh?;S+D(fU^c<1;u)lu+t$9vLCn91vJ zpKg}A*5u%YiVSu7{YaUn{JU%3$S4 zTaOa-`JN^Gy=Qrl&$&Dr`^xp2m_QcI7vETqDu(&RkO4;qS0jb;eQB1yh2OX7r#3|@ z2DJ&7CscjDUN0Ame*%ZFZvTUlejPSwA)p(v5UCFm^8I*hc+X z;wOI)R>`&^ET#-BAk57z+N{XZWT&n~CM z{&wd0QX}70RwvEIgpq@_&pf@OD*Go{%KHVI$I_~qWzuiqh#g*j9hSoRD5b0CILztE zL-ACkNEfq^C^s41E8a)^T^Sf9LN1ug|NPcU#@$s+uF5it%fw?)KhzLzRxFBe!FkaQt7_h$i!>FS9<;C@e zQ!){~)z$ng4}Fb!&sw8GQ$p+$l&a^wITtqhH)Rg_i*<( z3=ZByx?OvX>A8t(hbob+kn99;EYQ1RKKBWlsnVTV-%Dy7?w}NTy*gDIm+L+ zep+eAcbjW(QH9H41m2Vd$vwOv09vH?&?Kr7$P!8O+C*dQoYW0G{`1)ip`_(z59!t*bmm zj=f|_l$Ar3d=7{s>RYgrATJj3Vk?E~cAkyEO` z$0dvD(B?CG)}yvikQhXo##k}l!R~G*di))Me`jh0{l(0MLOZt zCZ_VH)YM@F?XSXIFtuMG&(Ogblxlt}wq?G{?9@oV9x>{plbmq~ji33_i2OMYi^cN6s5q#%fOHvNP?qt_puhH&4cAgQ2rwwB6M z{%_ZXm-={pPm^X)Njk@*p@P3LCjtMfn`95D{#|TI8Fht7`jouRtA)m}@tmj-X1MXj zO`?RVaWPHqx6gK!5f5FlttBP_RdL@}Y+)3cyYIn@IWwnl6-0R2Xj*=|d8zDGZ^(^& z9ehJ5Qbl30%WS*PS*+c-%4V_lB&NtG5^PYNPHx-1u}uwdDz&yqz}4$l2BfBh1^TCS zv!U+(TWc}W*4H*UKRQpPRu!&dhCFh-r4P=$|1iD3IQ_*h@LXZP!GHc*xjG$)^1xQDKv z9P{ z=x*gMT%&c=iv!4g11G8DSbHVF#c&~}f5;&2pL9j{&OVgJtQ&EmTt~yBh257}-DgO# zF=!)>(YgWq?yS{hiK8JxPEwrFdx~3wz~+P^?GhKv(52&v&$zgQry`&KH(f7zcUzs%=D^1L$115FD8Bjrb$C1!AS za~O2lCyc7e^?&28&`CAhxT;-}Z0>v?Rq9zg;5>2PzOg~13vo%F5ojYqGlv>&A@~*cK)V-cb z4aj}LX%*!SJsNk*4etM(>0wHX$TouvF@Yl0s9d&sVJ(J=)*BkJf3xyu0cia=y`XuGI77F^^n}1P@)%M2uwEw;f1K;(Q$=Cm#jPW2R z7BgBlouKm8T8r;rkT;-XRuSK)%Y5B^{lZ1##0yp4Q~s=+XBBPIcSAbPExZ)>H;>#E zHj0QQ8#@EacJf|t3He%U|5B0D|6y2Fdt?n?n=P`Y&}Ofu>rI_35zK%%^3A zKhhL?CUUE{o*T+6_Bh20y5-r+$SXQsqz`#XDfQt`D*86sx@8>~kB>8d2TqXg=8bAl zjvzi4_@yB<@q#w$QZhGQe#OoX&N;luVpCCsM+i>h`UM(c(_b!;@=6^SQXD!(K2;Mk zt66`y11om@Y9gXit*y;rHk!{@5)|vc#Z7XcBYCB^54jb-2Y)o*6YQ$unrV@_p}fzdONbe| zyV#TC_XVuEs@k052>|*dII9pCDJ>B)BIOj;UGcnLMmo@3N-vE@6<@VvNrdlQ4WMe& zv>X)}sUQ<~2}DZyhmgIi4>I}m?FRRTf^ZKx@gGU-Q*2t(hQi%^0?U_Cd3yqEd>R;E zwzA!?ZB*rZxIGaht{JbuXJ#QIO9+~XBda;~h8pu}O>zp3(Q3TL3LM$IKCN%A%XJX) z%^V1(JxUdqHBQW2wyX)ocF@K$28zxIcdG|O@2Mo}%xf1iS&^35OX>Gb=8X^nifA#cykKBKav zt?z@37bU4Aq`clY_oJwWDo7Rx>2^jHkJd&(b1mJ7rN9~qFA#IwgITUrfn&*4x4sSC zVMJinV`si$gzkG&$oBA=i5)sf7LQ;j<1CmyY#Am~WhPVpvV!PfT%|ILzikxi&n+>s zPi3b)dNGVi-o^0J-lVm4ZOJ7MLWYoV!04Jl;Q*RZWp8B_~i!T=91?>;M&)F}v z$ezs5|1;J2P76xNF;$oUCQ+o_z=NEAFTRl)<>q0y$dp@QpeS%(&NxExvuX}sm-#Mh zKyo$VAWkmcN=}zxq&=18h?*U)0h&lMTM=BqXg5th~#Q+dnh>?u+E03Rt(+MXB zOHX=tijex%rd6w&>fK<5`LMFZ?MriWHk9kC36T7nC_WOW2&Oc2=)uUk zg4v)`Pj*7U!8p-&!b7?91x5K|i2XD7kKMqtG1Vv9$NOg@Y+t$Ji3S+cA}(CIL@XAc z5QEaE=W^ROz&K1g07*ma=~}bCBX8$?pyq|D^7PHk7w|`%gT&3vJu)pHoBKbZuqP*O zs7>Hr$9=c#Mb}4A(BHa~!ebD~02F6y>+T7 z2vfnIEw!pV{Hf@$!hn~XI~(NFSI`YvQ23rHQg8Gbn`Ka(`8(C(v$W7tJq+@k75dl7 z&!1k)$YrEPMaqd0EiptKScHWymeu$ag$`VBpib>JZ}1b-=1%rJ4#`zP4OHY}PI4!Q zAt@Vc~ z)GmCzO|wn1k#llY1MUcU1-INNtt`eChXBj}%`46^k(Yqf10Y9shAKW_HFJN@jsM=5 zh&T%h4j=5%^|&}Rgzt$Z=t)a)N?I@Gju{E^bP2l8HF(yHUdfK8!#F# zi`dYDDjmcjRks_1A&50ls3+=su*449azP9+<;5W9o-aTb<4B2S_?t#&vCXr?)B@J-=F2Vc(O@Iyn*}cgYFzX(x={)Hls6c=w|{T2}&aX zqB&39r$ds@8oa)%e%P{$_EUlD%(h3HPBjJq!=&Qb9+gqR-tprl=+-g)+PcVUEf%OV z6};Ek*#(^z9tj8t$SWzC{raq$?y-<|bN}M?MzHSH&=urh8}q=`)wOWf(0AX=yeqY- zIfQJq-sfLDy(^U;3d|11ybqRgZ~~`QXx}%WVPAi8fJr`Uh+mL<+%*59#JGi+(QAcY z#CELps|!ZE%FaO1mx%Q3og-facE6ZT)NZa{k=Hh&_~T``pSi`wtsV*NI>_k7CnU7A zN7Lyv`1;^JAS5$J-snCXEqYW0@;M%I=H{QU72~TSYU=9I^FLCC52Apwb){Ew>yc9^ z$IWd1V`F&yc8Ci5>}o+VItaVJH^WahA526edvEWi;|P*f^6C9YR|aUFddy!m?M&pT zKjhLZ-~$HEWHPDt>kv7_crj4(fP&Kwv3u{~E_1;Ta?vJ0!1v!Z41w)PP#ak*eY7qE zx)Icg?jJn{bEL@`B~zh323jj@xJwqm3_h*%B;tBzCAYnVOcFXCuN=(b#i=Sr(}}*A zX(gSo6UB8R!0FRzexpK+5%!0QWhld6T~WWWUw_*zj@vg7LFWUUkRSe(E9yUjsojS5 z$9=dO5KN&V18%v68uNMnwFI_SsZlUjcY)L~-rKit{cq}3u0zL(3g__td&>hfJk?Y9 zAX=aX(M|tRn}zq0JTt=$CoX)=NeGCH^<+4^Pq?(;J{BG0T| zzmhumhIoDiA88t1=!1?Vu&|@x4rT$`1cA@FHATeT4R@CZmw&iSrk2rzYnlScQ~s}K z%l`#5V93JD1s_5YJh(8IS)mLCyrC#6oYN5JDo6UiIHmiM&aOHDq#2n8*wCEtDU$4iL|ZOG)Xl zt@}MGe?EV7sOLQn4<&i5-5gJTckUN zemMpO$!5V`Nf|3Ej?=vkX{f;h^A`na7Q!Qm2zg7W7zh_i>zFkL^)DRh_uDslz=jUc zBV9&iWo7jOHyPLD1X`A)yA0__ZgmMF{?U4Yxo9MiM$2zP_}J;09f1F%HzLvFcBts! zU_!{tsYo9S-M@byvUhPHJmvZKPZJ0%E_%HhUtRe0#%{B1u*^b*(Ra@neGFEr1ZdWi z(1QhSISO2J@i6;XS7atJyU;XvH3>*>{jrXD~Gg-yz5J0`@YlG%lY0@+XshR&VU@yoY8 zg}~6{R9Dlkvwebm?@{mR5fbMOfpSz=hD3_iQx774fV>y5W1WDu=m5H*kSlJ5?oAxL zycU4Xt?lil0KQU(D}un<#L3Lv;Nl{f0_mYekeV}t-X=KU2Ej{QQcq|+tE6Lg8icN9 z4lrMGV6c35nORuU1kBEYm?kSP@0T76Svk3b8JalPp7WGefz<5Ev|wS|0iutK(9Q!& z?G?~Mhc?t0^4LA8w;W9hv1llf$D;+q@e#dEO3g-#Q%u5cgH5#r=1jw8ookK0oU?N| zzwePdx&k>wi;IiH?$}=GQyWBk5K>AT zQ)cLQ>_Wf?9iQ}Py*wltO~I3pla&qT2eDT1S?ahQ8EeG-Yy}(|ffrb_HxqeWl#-Oh z4~ZZIZjv;#4Cd)RqM#Ov7MS5d()r+p)SudxXoFnZOuAFgh5;~B5jewGWM*Me1~hG$ z&IiC|Gcz*-Z{;*GYYQ6n;M5Jy)6rqvj$0$BS4PXiAQz0AK6qLz%A!J7YKGdv`+iYkOF#=Jd?$3zQN(-d zxx{MTll~ocM{n#knegc7`TD~(Qvj%(V`XUJGXvB2*^yUFtmZEN@F&Rkw{~=h{<#fI zJ@{p-TNM4v^AuRsP0s|NQ~`;u0N-pAI=39UlIay5B=IsoJ+QsXtke$&0Kn0aDtji- zoHEW>1!JGaXN(VZV@4yz#!%Z3nZ%_<#mGqEE~-H|W|8I74(l2g<4f!quyT*a0L+H> zRzRD0bMpspLVWy8m0ndIw3R9I*fI}AGEw;dm^Xp`DIkW(*NATZVIzWL{BJdr@fN#p zm^8TfgP$e2Gh!NbSunJx)gs7U~CBn-?v-Xuc_px?i&;IzZz$B)k!kKh_b)k8iJ(B%iT z!%36&lhUiQ+qTB}kKiU*!_Z2kE3?Du)%QEz9Cq+;D~??oDOU01uQYAg|z=cJ@{Gbg3)Za0!BH9B*FJnGX^?J^5F{j|TS5d8P!Ob3LApB*(p`ceEea^zA>9a4(%oH$ZqDyM ze4fwqeP*8d&AflS^ZxZRb4KNyz0bY(zSmmUx~^*(`bzmZE*2#g1OmZTke5}3K#+YQ z5Tpf+d*C3UqoxGMK1cGmbcp?3e%rytU6moi|>7-_B z>f~zV@E&4qttna{J`bCgQK~v4KF7TCoji?4^B>YB3xYmd7snP!Hmln!XpcT zJb)<3O1*JQ-I?|DQaicnI(VC`zk$~C@csv+p_}@MpYe5WfvjxGsUj?M_lLf=u^AHF z|AAKO>p=D3nLz53G_{eRM^9)%1c|vq7H|*B=o2+mTMJL675-k|3NiCFJk^Oy*PR>a z`W79`qNF16QFGphE2Fq$`^19){KO^^n7JS^fSm1qD`ZKE$<_vf%LjtE8hsT${V94R!U_?Pa&Zwz5wtbExjZpV zMC@q()18mKoc?wD_o}IieqqsikL=`SeY%T{q`jLndUkAmceJ=T!%bDUH41qZ!Md`I z?{^Ex`I+a3PV0Nr@1G{R*iN+AhHrHIp+xgf5vNB-ik>ebcyeaz7CWgHPsSs+w~PGW z_h!CVbleU@yNk5HJ9FM-MGd53VVTdcHOo+K8nwRp^gUB+28;S@B}Usl5G>^%0dwtP zE%6bbaR_fUaQusbh*&=CV3eXJ+OYzjqURC5e#r7l{MAL8|E!6=+BA~jmKsl9fyd<{ zirmOWy;Sk;jD$~U@n5Fg^GByz+#gYkWHktsbTmgrM7ng=kM4=dtA5eW6S`YSI4K3A zuQBIc&}06BU!w=%3u-rf&!*VbD{7kC$!mZ9&*}JV1YdqZCNr=KXrdK2Y`YiOWcQ5# zkts04Xhb9CeD<4cb)#u&YvOzbXJP2WDm&1N-3#7are3vxlcqMB9==*=aCS|b)T_Ss!> zqg;W){mTagl7&$s=o#;#S|UR2}fvOD!fFBz;} zQ^;+Qd{gJwNR7nNOSen&jlUf;zg8yNk1-ay=%9a!eNNb)@bW4sDw=f1(1WP#*(n3h zq_x#`zQq?QxNTnita;j&{rZ`I2%hhL;}xe&Fy2E(MwIZ5)^M&y&23>cG&HB}u}IR# z+Jj9{sKo8L3H%J?gYG|njt$IAO;t5DCpap@LqY<|bJP9w8w`h;OC}d8#|=-dSQ+{qPWVg z=yh_m1ioq-c+HX-)O_Jy6sxk0ZZkf3;_g6FTdUsQMaAMHi|swfCZMBxY&sEd<@^X6&y>`1uWpl_xaHxi_vA%w0 zhwvp?CDP!g)6#)k$@DH#^z^PvmDMEjQ!g*EqxAu^!Az+)>gqi9OYMw%kaRKkC&I$Q zx7%@Xguk3NTLa1T<-zw#AIbTFt1k68vABm%`_hlpwq4Ad_PYpp72tG6RUV!%cjlE0 zD^K@@bLITaRy6p;j!iR{Lsx;`-%uGzO?OgrxKh=_h z|G9Uio4s6%TltII#q^wb4vyl-8>La4dYqwK12TL~)j?q!N)MhJmrs^x7Yb2F`F7FZ zq0@-E@cm>1@pI(f0NeQ1$zx*x#Z41wN#>79(Fq*2aB==ioh1NaW@i3d=W07vptTG| z6e@npF>b?VUz1<1Qc_5>b*{O#^BXj@WCXDrZ?v)6g4-TfKYfO#>l8b*^?u=LIs2zI z;vu!>?CfkW_|4hvcA-vnnfWmDRF$>jc#+=k-@lF8LkNyHhl71?E=%nerF(jMuIv0# z*hEEBc6O{@ym%q6q9Qp~O%GBfhs4#Nq{Ew2of2(&Njhd_z8vVoDp@DUH3(yJz7H|* zscI<`aJB-?Qa_`%pi<8>o5RDyiAqZ{EiJA3+so}rfgnV+;4LP*JtQL+C1qp(>S*?D z=xEX`Mej?}!z`4A=8q@`9u3dE`e|HeTEJ`QB}pgPUaAnM~UkJXlisuS4hC1}_B{1f$6&xz2QnTMF~g9K@&&n0$zABP+Qzu}^Gr7qCJ zUheYmFm`b!!~+HU0l37z6v1+z8;^2DL_RHnO6oe3L{OjvE)stZ-R?+7~ol`u|LluXl5R~TPXVWn3Tq6g4?^|XVO*N znn8`g10RUM?MnKYhqdPGX)dOOgve60d2C6-MECIcTIX4F$sZfs z!q5XH%_+gXyIYbuCmy=47thKXr4$U*)lVu56~ljuUNU_7cUgSFg7bVX7e)HGtgI!* zXxF>8G07G#?+G{WzPL4_3uQRB4UMe1NY8HTXNgZk>4gjvc?Bi{uS5`&w498$P1{n9 zSI;1alTk7HGPGnNYFaG!0xSD!rPkqU3@T~%xZ?X%UVTGv0fYn9Mk%H5^0gE#Z<7)DwN?4p!9v177#kqO%ffi zX*^Qatj6;>z?LtWER9Z~gn3=n{KSG1I{ov(6$AJaN>S)J{rB89Nw|51o5G7Hjr$HF zb{we`Fy5#@UVC90<~Qs^FYmT&J06Xn{qn+LuMym5V;o<=CV;(I>^gOeN@8i3;$1(d zkQhy>s0RHjzZZ8O54b&(6x!y{tmv+xm82aj3S5qsyr!-$7vjENk)TUj!mPFKPHDstP>GBMwi7>G;t<8M$Z#HGU&sFOt19-cN- z7_)ysNNs__2!P-_bbLxiZ^cB)akF$x6>&7Zy0IHCOAAU0cgF*b_;HJqIK%Q`VQ47< zq1v#tZf!f(U5q`r+!G}i_@lXu&TURO1C?ZAqP|!!_-X!1rCALwi7B9jBq;UY8L{#1 z2^y_z=0f*2s|labM_N$Yet3 zh!Wy%tdN5Wb92>ZaEnZey|UJtVk^Dg53+%(Bw{f7qKPk}IU40A|GiD`YtWYz;Mg=$*whc5 zuN%NA1+4vA{QHVtem6qw^Y%A$VGd&Gr=ubVS(m@b|7)x2{#?v2jsURE6K82@q4COa zlx<_=_fC&2r7~jKFG*~-Uv0OChdnkJ5us??(Rid^OmKO58rYW-*<5XkyR!Om)WX7? zAu(eYolelMZQw21m+dlkc`utF&KV zl=sYtZ`aOpPBQJS#1)RmSx^&vmV7fsm`LBVZ{nDq@F!yBOdK_-c+}Wt_r%sTh04b| zW7d{VS~K8Q6>b-&I^BN)s^^1P)gmgP46!fi7MTYX9xyPpsC&0PuNU|KGl_;|iJT&e z`Z>Otf4rFvj**Z6;)qPE@UT0e4CZc3Pdy*Nj?9)BS!^;G!gqz8Pl9bpNm5a8RcFx6ppP| z*E&_nZRD5Z_3-k?+gijS$;onZbGr2;tCiXfOcOg!{Q!fvk5t5rf`Y9}Gqv2N5%xvJ@)d{=#U`zs zv}Qfywr8l(wYxqjamXIp&|;cG0B!j{lXYZrQG5cfkn25HSU2O~ugY5IP(HH9mL%Y~ z!xr?x@?3&jLZYvkkaTa2MHS<4#PziY&LzF?bS38u|#4 zr3lsMJg@<3b=mb>dB=D@>-1?-Jv4v}QFi3tz}yTkorK_CjMq0?Z(+Y#u%HaiLx^Te zww?|euw5)D2X7V{cRer$eN{DQtX(#!k&hld%Je+jJ05kH0$Wz6fwHVD0+yJJ1%=ny z=LNTB$lv_$Y96X(BM74Q8JUzlPpXfI)r4ULYFKyd-E}ea_osErMORuzZcp3zOWynj z8<*jEE+QZZR_EbCRJH-)o*=|Na|Ii<{V96ERE8+EOkwUlFTkGLzD}RkipZ@m_`+@> zl8DW$958>~i2-f!XvxiB1L-AD4n#m!{68TNqn>zfddom)QSv6e=>QB3ebJ7w+sm2h=s65JCLci z=Wm**RV)*{P*k^2-4y73m1%1*QA6N!CR)x;6zYX|XsYl`Id&W6Mqk@$n4K`-ivnGT^N14*n&<^-vZKPRw9TO z`S>!XTtg*WN4K`F0n6JwTb$A=3u|p}5|T~=8vvsuZ&24$Op9=@zD0$?MM1asO5+}l2>H1G zwot@(dX_IBQN_dxzNLTlJ@zh+`?Bh(ZEDc~Q_wn}Db*QotG9?x=@$3h+iMRytTN+OBm1sxb9z7TT&Ga%wD?Fes3E%gvu05LdRK;Rme$kUUkiCAWYGVP& zc~>RS@da|c&~Ythycu?xh+^eIXKx31F|ph8Wz$4@kP9T>Gvp_pOPC?y{?}e^H_j!3 z^ySZb6qp%enbz*`zWHQXHiA%-MZ0SYOd93|=bxG~*WU=dOtV03=@i*gV8;5$phP%^ z1etJdW_+$i z1p)Lj5v=o${pM3Qh#LUnX{H}0)UV7G7vK!xU}yjKJerpH951-QXtgI{Wo3oidWuit z=2*?+c%$VRnVziu!J@%E(7>d6Z2hck1Ra0!wl!F7LnKw?@=UtV)Wpoef-LRbh zCLLGgH&X-d=au*e4cM_01Y?nz!8jDHG4wK9H@ALh*yQ{c#Ej3QPz@)`-q&Al<%?Zz ze4B9`5QkVzRs7VlAR!2S21=41mawqh#(k&VoyASF0vz)D=k+#9>rYuH_e@dy-v*RMFQ)Oii z^X9BsK$f`L;RT)K#!M~mfW#FCip6d5_JHX?dY|{%?Az@F^?Z%kIKo@C`}uE+1?o^S z885};og;6=yw3D2*ZQ{o+hSjMd65Xtos-A}+q}sHEPjFQ=B+GbI?WQSS>u@jCD*l4t2vk)IyNC!0 z8I}y<|0N0ZWF+uGAJ`oWfO6-_z7Kk|nDJL<%Vo)jm^8ebBHoRqyw!H1Q8S`Q@?{|T zc{frDK9BhTzq#MHU--4vgA5kS^uMWq5z#<)1_q_07W5cI&(tmp2+nkGQtfIyuXN?z z`=K~SG!R8a#mNfuPf(Wqu|gg2H=^lkTl5DkEWxY2iAU8jO^^;N+|*dm)phTQ{;qJlarHHbM;?Nw#S3-PQT*R zI`|b}dN(m{D{`+(*5fVpvm+CTU7pr$j^M?1gR}u)aq?RLWs=eS?@1Za zr+PgBt^ACK<*Ztxgh-_fQ<>}zry(y1F)`q^eY=)<5IHWBl{09u&1jTu+2h=9IX=4L z9(Bc6HBniHa5+fIQ%lG*rm6aysz6$CfJ9Ppq9w4PS2}I28POoeYn&g2Ry)5sC&FZ; zL?R{#HKN5AyE*GaFL+$#=b((%<>UamDrrM?LEUP8Pe(rfw7E{ zCq4ic4XJ>(n1N>_QgGpN`)iF*6zSs`kQx}DZ%JY@lu9%DDrL$IG7$cpvFYv$#OC4? z@J{u}OLRY)TMVMAH%(+_=#xh(!9;Z246ngOLnQ!|)8~qyMB8uL&v9H=EmtIpHO)Ej z0g4lB%F=E*vU8Kx+`Pm~Sl1D^Mi+EC45ovKN!S&CMo0# zqJT*MQPa@gC-`vJ1`WP!v6;t1L2peJ?sRq$D9}M?Nhgm>B#OnzLKJoB^fJ{j)0c*3 zd*r&x&zli&NYt_G6`zUppv(dwM$9gXbkH|9VKa^;?=UMq5R4=OS|uAYfjR{cEbeOI zqb^57I?%EM40S_4xa#yONtCqu8^*w0?ejnM0Hn?Nf!*Z$5?i|CUCWmjw|lNqwGAP% zmrgX2VlX?pg%fqGpHADJNFTP{)4}BtkAAsxWo{k3mfYCGul+U zR-Son*(`)|Cm-@~V&@~horBBMbH$R$=nH;*x0Z>8gM+TYU;Opw4A+|~F-hbBf)5y8 zKL>m5I|b+!Cc2bx-Tp|}Z1Ds)0dAc4UQsP`zsH%2 z($)F}DO#Aczo3%mJ5M8=wqJ~h)}y;7of`=V7g3^nnrtMonwf~3Xgn(D1<+l0s^0w) z<`PzV*cY?Rw_GOv&+A-ZTlsQzi2(uk>yZdTMGz2;e#M1!db&5WZmfknona({x%gfuBu+aRw)IHEx&EUT%HjZ< zc?jm!q;*J1_G-#Xvoj&VGT_%NWO_~nppsb4)Wr7mynx_Q3pE#Ll}jJQ0hIi;f>T>7!smfJ!w5$ z?eu7Rtn+}EXwGN)!x16bJ@(3FYZ{A_#|0CI&kApYo=*=lFf1}MHED~u>~x>aLk+eM z&gML$iIj!tiMb{VM$liiiwy}-sv{s2di5L@IzB)!o$>p^>q&ZAnOol2vr!CKEN18d zO(x>Qnjp8zBQN}T{f%7Ig@exfn1D1q5NN6CUWW>MjaN2u(X=#SiB=l_N%|>zVe)@M zbB2BZ1QkiEB57^4m&A(>q(3Wxa`t?k|3NZBz1Uf$C6(Lio}eJTJ< ziQm67AAV2Z_2z$P2E@IxUVtm*F`!7_3d*sO<%}$gx`<<8q<>dCLPJ9l^%F4a zv7cR5Orm6EDZe!i{jkGh*dCV|NCzn{CI*5{+8oX$JzZt`*5#dznSCMa>57_iK0k@U ze7_X|rX)S4FFHQ$yS&Boa&aiRAYy1hQF`qwNTu8A6J(EQMu^X7Te{?cJM<& zpSDnW*&mjCd1J}VGo^svnE4+00HkR^c{tw|0G==4t4IGyVecMI_Vr>Fs=mi#Okeh5 zz9<*V*oy#D!7!w>PrU7736joMUHUf-g?YTvE&S-+ZahZi~o>FFyNDNu%n>aPt{$D~RV00AXqZ%Ghp|CKs2Z_;Ft3^`v#_$vLa0Xg!I zyeDI4O6jQ)(`nMQADIa zjABwU5ZXvTLG$Wi&3*OyH9?q8cu2q-6Azrm8-aK4DHgeeCqL{18LYC+fa!#TICkQG z9OS$i1)tmJ+HKC~%KCI?Qbs{Rp*b-`UdUo2lq@02*z}L@(LgZZZ47P+C2q-W8ih+r z%asT3$J&v^u`U4FlpMS-DY;-@JRaU*JTxUtfSGJ4U}Ga6-6B4=T(g>7Rew=+z{~i& zRR&+m!eV$Ymxxcc9S3ZEAo6NFvSDW+d@vE25tAFM9#6NJ8z!uAF2*3MLAI3A5iOhQ6nhjGjH$(Tp_7zB__ zd@gT_FFiyIzP*3&DDtxbbT(4fZj!9M~K#R}C6$Z!|29Zl!5XIiI| zJxcv`nf>SeU(SPhBw|+_#Ke!TL*0qdLVa1LdbCR1 zKfqXkNlqnh^J|kiE-vnR{>V+t3-PeQEo$*nAi(^(Ht}93F}W*O9on}=B?ADC=JW)F z@z^~T5AIYtYT9LtWJxtmK=l|7L&2dkOU}7>jSi0i+aaw1)e9n5EPx@SVRE_+k4T@aSm#5Q)%f^a5xk`M($e_bzy(*q|E>zs!jd1#=4U|;2oE? zF`x+vfYr7SplYTtYaUkdKg|u5FTnUs*=#*Djz;fF726>)D_I{xo{3^e#UBv8mbF#)A6w?H4pJt2tF21zC@OYca^Pr|feVzW zG*Lm%-{6_k18mrEHfORsRr&7y`@p4B212IC%9jtnlz)CDw2BACcu9BZiC2GK0T(_v zRbDvx%fnK<=bMnMv0fV8*CME=JHM6yK=6f)8Jo<2$||sOeCGbd(&l|8XK|w z%u6KK&A%NL@CPCC%S;)^>`%-dBjuBbrTfCr7f#$tm>!l}wnX@D&Y`Bzcq-HGWxSZ+ zxAl-umJ)1_%?Z!Y8vW?APQF;|?YV3<|Am+27TAplA!MAo-Qs660LWb5N7Uh%hv39h zx{iv?CYy-{GC+@vE+>CGbSjb}B})3Ix!m(@H#niXyD(@ILAuM%=C*s_bxNV@_7&0c z1q6d!3xxfH(`nnIaD!{V&yRKfR#{K`auHy1NqS$?UZr1yGo$PKj5YC~Mxz&KKr!wx zXCIkq0a8KlxPc7(7DyTZN>-QyReA8|r^y5wprnm78D%q9mrqo@)*uL#p#OrQRbyv_ zNdNS&4tC!P(bfaj;v&>k*S$GhkLEmlEYU4kKYZe`x%BH!*68&QIB0)}naie1U!- zOoKH3)!2HNR8g8iv+!NNzBKq+l#d_{VTLl%z_IhTgsmBgy&+V~;ar(2bd1*>9a26L z*Xxq8B)1E&+TPJCvY?|kbs@4kUg|p7nN|${BcAvEtK`Su1|{X z*3;}@58k~aZ@B3fuh#0t$kP@lZF9=glVvcFmxBn}%yfe?xdjKjWi-NX#FFMj2nar_ zNBXKvJEPQ#_8du4btyJy)dnpV*|SR3KtFYiJZGw?9>;=8AOeOoJo|O7HD7Rs&l8vP zC`!Osg>wZdr7(zIU;NuPbLi$wJ!A3+c!yd7sM$)|Z2-4`m+4QMXd-)Y{S#s?cEVGO zD3}oKAO6MzM~q{=;NcJz8I|c0rd&Qn@f3j;z{0!EQ$VfCO)1tdIs;drW+@rHn?D@$ z#C0X`83<{TPu{NmX36*iKyb>@!)L9^dW>RKua}XF+RWR#T&LvLuRAI&4%4cJs72Kp z^p_u1^Y(MM8YFUpq{eM;>=fAKJ2Yl0r6Wjy@j|py*T-)~#acHop1Y5tD1s%UnNto86 zc2V19AZ!3(t5a~sLxlg+1}nB zK#p|yRTI2z)d5l6TlM=0XhB|yLgT$&#E%XZXa5Xx*gzA(cVLuAJ0k0Pw~Y_FDvxf> z`E`dD`>vLrgicnvp>DxZ{RWlq(YATwBi{7Sm|Oyw5Djz5m`OrH0*8KmlCa}i324n< z)fdQX=GT5<;1nK(S`XBcb@^R^_Jp3kJfAg%{m-j%o~nUHZ|=jO7q=(-Oc3BC{BZF% zCz3*4fX>oFyWug^_yCG5%jD!o31Mev|03Zn0+?fF9-i1xA{K{>)x@I-lV~32tv3Z4 z?5?xUZ@CRrnT$vHTh(rUU19)E?(x=huPxEb9Ux&&?2B7X$I51ncBG=`k@HG~GFFfR zWmOJqi?SKemb55-iN|HZ2%CxJ#IYW(SlHzJ@X>SRedcIY#I4rXIg!wTcjt;dEwc_z;A9OHJDV0OvlYpN zu>cE%6b+Ks>7<$a^+8wdPFXL)IVXH`JZxV#i}>|(F^YDMgM$MO-I|z!0uEque6~N= zP`eVRD6gc%U&j~wW8E@BFG=+Ctmuo{Y+HI;n`#tN&fi|2CjB!O5*_IVM{+~tF;Mv- zpnv={*Wif)OgOo5@$v0?uCpYc7x6RIa+RI7MlgM&XheZ2ZKBS#7&$ZGjraCk^TZ>< zzTrlGzMLyurD_ci`EU&54YCw;jrvFFrRkctCw_`J>VKT zD1w;>JZ2z_^bzwa4p1iJ z?p`xJ3G4{Z8_-{l_vbSLvB?~Uo{=5&3C<6G_2>B&2O#|PZqZ3O!l?+%pS}&AXAaAe zf@NM8hjI-Dv7LFfdwtaxUp=5t=a06gaVc?K_7QUNxPf31^a^VE#m7Oy9FxR1N`i<0 zvoiBuGXbLeic{zCPD zuI1aiinVV4@Z5|RG&pv}>K-u*I}DVq#-*@UY%bvYO+>NV7^DXRhudE5`gQb20_n5;`GKa}lj3i4 z!`mkgv(Dr8hrd~Py)TcyNkA`;H)mYuy(?+qU6Qv_FJ2s0x3`CGZ%&=CAV_I)HGTbl=W)HRk0|ILM)MLTSCbf+A~RF`hd0}o4-Bi(l?f*A z44{8AJ?r7OR|UGYaUcd~n;Kyt_X3}qa{kc;u%|M!uyi4Am~8M? zH+MGw7D0cqUZ9lSYnwF7P*PV{_s__Pk6$sE*VL1imX^H^CuDW*L}s7pd0s~b&6&*3v24;xvrvONsyQtlFW4W% ze)5}y?jiMg7$C(TIJzJmoZ`ScW0LFq855>)-QBs}N(gS1MR5hJxCNl+BUTZ5dL>jw z<1@a?SB^!uXN$rm0~5ZCK-~wI_kVGz#x%P8$CE|xO%rMb_@$ZtCEu=@eq-oFN!7kQ z=u_fUgd>4(0g1k3ZQxmQt29s$Yv4XG52KMs%OTZj$~?u)2FsgU(0&q~Mhu+gi|`RQ zZCPV!P4wo!e^mvnr&i{F*Ew%%fWNh$?oK0hg9rz7EAS*jm$!?XOo8V*J|W@46)pJ1 ze`XR8i_twfxhiMMy`LC&PlJ8z^W#uOfw2^j`EKoum2CYV3OfjrG~9~3d*33u|5Tgu zdYKNE*!0w)Y%&4uR=AGl8L@Id9tPAxl#!v7p119m+QC0{pmciNZ7xE({IK(nR9 zsBNObQ_$Vr9l;WSRIU%bIRSnp*<>B>o7+6Lo*!)NNYTN0Wo5oTP)q?)P->s=C_Lay zGE1Kn4IJGtOIWlt;J(?8A}8^~MpW4RDDHi`CW5CfdwQh;{{r7qG!t zT@tt^OjoN4tw#M4TzFaQ-?OWuRH!2Ry%wP-j6q(=T;x#YhkxGelnFMxb|V)dKHUqP z6Bn<4!V!H-H&6O`o%*c}{3DGk9O)m@;3JjY)U^G+OUd${D=YXIzb@O*>i_Wuh(8p>II7KLWO;1msNl5LwHnCNhJ7 zbn(b4&O)6wY_8_kz?fu;Icp8VI$D)P_ukT}9XFrbx`WYmdy$f<9j7nVsqIBwDXJME z@{Yiyh4~Rk_FgS4f3I%THGo_3tu7LneSqJV*fYKn4HMlN7iV@B|JYxiIHF~+KB*|b z<>B}9Bs7GN>>mfMFy((Sv3@GwPp_`_p^F9Oh6l#W9@lPeXL=iBg{O{f-m@k(<17q+ zseygzY0A@;55UX_xKKb5ENQp2j_-4+_NRL932%({_6Fe&Rz0r2e)1;;Jv6lQ%yMrJ z_sltZQ6I6`S75QRYhvpH#CWuPmlrp;XRlO^zp8XSE`T};ChB{f3-i041zr8>vMc`Q z$-H>;V|zv~!)`;8%)Idm?;ehCFr7frbF+r-%tF^iU0_n(TLA z>U+2}>bl1n@El$%e>9?o@U%{$3Q*ObQeJNwh|5<^Z_Uk4&nf4!mMe7c5RPrrezVrg z3F$7y*e>^dMw!*<=$aq>>LUGll1g3j&n)E5h>u|6qi8^!?DhbEW8xQZM>@hhcqp0S z^`4{=mc?XY*lWP}k_gykU~I8e@(ykj?rL=YvZ#%?;J+Ba8ck;BCcIQzXEX>cqW_cL zdV6WPF+P9+z4K}U1N|3wAw$npym}jz<^lIvS~2C|pSbB%jDN@9hlQYqBTUR>cITL9 zw~o(^Pl->Lqh&HAV5^CS)opp|c0h55A6@%$8R}TOh+U|ke z(Coeb#(FdRht}PHN^PRgIY3*B0?fuR$~|=#PK7p>?(O?wZ}~KKIIMK_dC&ppyc?D; zAwT8xeBVy2ARTW`Nwu}*Z(pQ?0!<`)dv23^puHO`HQ8OibRF1pF|@YCK2NVK#67cN zTtFg_B;jHpWCss`jW4@NM<`O0f1J2#96MUv)TlMUak8vKTJB!`1@nw2mu8_eJOX-V zZY2SaDM6n-Jqx*E7Na6&{H9%ndTADAulk$kW)Gy7|g43AOct4P+L?LaWf1%;lU z>TJwV%(=C-?fab3*yCPTH}T-cJC7uX$iI69L71*Fiwp}o^5^CY*KX?FZWfD+uD*yH zljJe>0M*s9=;P40uVsXs4I>k)o?}{ba-Phwqqt7K=lxx-QR)mE1 zlt-^*e2IU}XOY{OB#f~~;-X!sfA@=7gpbeBT8ko=RGo`bekna}e1krhx+D!GpTx7j z0cpQ2-DKy<&&y4SzU?ydkB|`541lNu4U0Q0yKkiV563idX^f7n%Y^=VD2(qJllB*` z{NY^$(^1P&{*{(S*XNg4=V*W>Z<%7F5u>HX-oq#V?aWa_Cq`RP__s9R7no-dW+U@p{~~q@9*>bB6)CqG?=4wG)AUe zm-kHeyARkoq<#&g#b3`XH@bCde$+PFuaA_9ac@4qryr+mWbXN^$^o_q#j_ia|4g58 zSQuV>0~+dLQVtPx&?dYD9@9;5IG66&X<(Rb{BG{?rvbw~?!KIwKkc9!^&YVEqLLt`$S5KyFc}1DW6Imku zKD*%RQEacqjumo0HUt(*0D_n7MeO!n?$6KJMATPRFVF3A z)6Q>Oeg1X=9NyhaeVh*n-~Z2{OVdOX5x~FCg&m6Is?PQsGse&uv5i)f78iM*k1f&c z(tfQs_;DfEkFaHHv#h7|RDmXz(UwzPJx0)p-*LVHCwlxv^#~2emT2T&VN+M>f(!>~ zNmc2WDwopBit^%V#gihgDF_DxAuS*BqplTAl>->&sdl}*_VoCm+(d^c8@Y!&GJd@y z8f|fcqG<72_Pml2tj*P^a`J}JHr;zIqU=IWztGzH)&nT8%XgKlbJ5 zgt|-|tx0CP{S>5PP}Q8PR6w2cg5DxurhSLR=w?*H&y>BG_I zx^LFu(whbbt88kCmI`vlm>C#?Ss^_gjT<^={Fuo7405jV$wuZItKy=spVdQfarm>bxuSXcnCk)9)o1EkRP( zS@IOJ5Hx?&-o~ySXH|<0v~ZrD%cBf_UvZXb)RftZlgNWAya~s>Y`Y$sg#+KwFzXSa z)Lyd7;$7jht$)5t4)XAkpLf`Ej!;E~hmFoUkUTsvUOT&|kK?`ldhBMx|D7e;QNK>B zNiUncBJY@>$HCa-%2fC`IJb>iDZE>-Km+Dx$C*NBx2tIfZLgXKV?E4RzJEXP>wI?W zdGYhy#WC&U_oeB+tt%H|#A^1_@$5Ck=7dPS#p6=u41CMWXjm#Q>EP6S$HWTt_52@&cSo(T@l-Szt9sl5wZW`Ibw}8p$<$?ZzAi+b9Qb|sUi9fTkr;Tp2wfw& ziM^pIXikn_X_5d-sKIiDL|Wn!u>--RzWVH?&s9H`gu^Kle`D%JgBf@Ey6)epDsJr` z*J2K&drC$5Y&~`yNw3#8zMHh*0G#_0%tFZ`vqD~c8<{!TzTRe75`9PQ<2U*uB|m5x zNIG;cx;I`(o03%q{qt-UbEfx6&$;^jEL$lrG}TA-^b=%s?Vo$mXy;e&!?tfX`l zUFO_xplj)!UHrRJODXf)4Tc0k?1wCnC`x^Zbx($vfq!pClJcA9Z6F-~$mh`IUoXIb zcs+~`rlDc?p-TgNolzGaxzK%DH(M%BF{y{!v(y||kC$se&e`WB2c&q3+5 zbJR;WA}D6YmsP&ISjnsvJnZbAEO;0!v+%LOt*6bioiFt{3z(RQLC)k01tewVw(I;n zoX`&OXtWL7^_ope=O{Z@{V<6Z{wf;n>u=0bNoc)oAu-!$YHUdRqos)ayx#}!qe9n> z-?@vxr+mp@b~I_gzxMQQXHLgV$f;nQH(DRh29IM%h;e}s4CGa^R5J#&{lbi+(cA!( z$)uB<(U&Fd^NY@7G^cd+S7%^>$WL;(UbzthAKYt5yxh;)!TI!0UAOBQIBro#T+po1 zKp7NTOGyuD&Eq`Y-f%8TwMH;;0ATjfKwH+cg=vn$SY9v|41oLJNBm@$ET%5vGuN(% zFX3`A4Jy}@a9&KkD3;vyjFFo0N zfS0aWP2)xIj)JC|Dwwotb~y9i@!%eZU%Lp-E94vCA5?Q6@N+~3&St`|=zuu`c>Q&w z>F~=o%Q$zXhhFBwP_^X-#Rw(fY*J7{ERJx*J%FXoxH;PBcB&LlD* zQD4WOd=90Mn@_O$PKN*DO!n8ub71+$Cw(`O0|9 z+5PZe2fp}X{StGc2`k|H>%^qP#O!j?0YhssufU@QcRO==cKD{w8#{NV$y@wfdX^Dyh1v^kN)!Y!oJZH?+`aCujG_Z+$tM zs;kEP0L^IwlCRNnb0$+?r5+k0j|wh}8R#xT@XJ?)UDnl6y#2-E(rxQCD{rg>XK7(c z`wv8DI!g9;C{0J=HyC&E+%bK;47F0sizQ`6fe+1ad*F!^fOg2 zZ`{K3x#BOHEp_fM1OE|1I=KH~fdy-1hrISzrQ)Wji$#qd{an8=Jx@IfSdWT-33lt zhMD@sAGASo2E>ofn%>+0Gf(N8--NZ;K$%YerbEny~S*kxDprZAnza?TRY{AIyh?sGGdFWmVq5q*&+2Et@ z0mW#cKg`0;Jwxs5T@xkb(W^_z40o|zeV6hOeN8=Fk5HvIg;*VN*#?L|J4_8rH=I^bhX8W@W!$zT)go za`4BUbDVL#K49Zn{%qs(62~Pi=hZU%Q$@~wHj8g2Uqhoh(9QPS+Uk_fPg3c!aI)Rb zPB-1EhU;GCGkq{I{u&wOY#HG^n&;nh^#IJmiX~E#t@0f-ttf5QRj!GWb}?kgdDcTa@};y zwYu0BZA_YT`jLME74#c&pAZnZ(-J+kh)I@%{V9IjV036&zVe2>xu7Zgd8Kq;Irm(>w*eKzM%`x!o`bN{jFg~#5*Kn5lT2HR%Tn5{w{MmJ7usZ^I+yE*#r7Q4-z zgyG@Tn6D?)LOC;7#h(11#=Zk6s;+7CGJs?O$w`K+C`koL!ieN3IS1iY5ERLZAPfou zB3T3hB`A^vL`0(GB#7i7l7}EU=d?ZV_ifc*wY9ZtS*0^vX726Nr@K#gKTmV$Qwu52 z2gs+TD+Cqp41Rv%!9BF{&K&n$_|0n`9x2^IT8UzRq}R|-qITz`wm5v0)6suA#(D}tZTb((d9^D>Q zI(%}>wQDV{`zH@U`YG&nA5V@shZV@R9`9UO3?deuCI9B^CH0MoF?G?uTH-bU3a4)4 zzs2GKQNhx%heKVsc*MBWgEgZvnh*S}Hv<0{6HsuaVT~?uhHzhs$+VrjeA38)n~c)! zW-L5@Gw9Y#shN_dkeei}kg?&uexcz z#JE}ppRii8iA5lLkDKZlnrO*p&z;Cz{U!yMkUuIr^L2@D2@DJnWc`8}E{NyH;QeC` z#748%`NNiJ1p2<%r{64{N{tF5(#+|6&7N^Wa~itaPl;&~MJCoh!o@|T_&=}|%tKkLpB^UA(BVL?WPECLmG z|KP%kljkEde^T}1d5QF&+ zPRX%Kv*2XzJyR#ndis>MXpyRU)7_wzoY^Ux#la(oC5y;gX~STUV%@3IS)@fpdEKBS zKb@aD{dF)Ix-5J{eKe6=aUerEwZgKT2%j@CfKGdZwDEw5Y zV^Z>4JY&6uMmuJsFEK!!Rzn@lXyKo9wGd5h8|oI66B?4WXNOXC?n^**Eq{9`(pho! zvmMEJrf_r2Xj@^ z>4L3u?(2k4;eAmP!&ehRi!oyCEQ_V$j7)~EX8-4A1J0zZq+Dq)de48NcA6nJDH65_ zHyzz6Y5!X|uuXExro9}2x0NPAf-A6}hLuBwMsqGD1&G;Ui7Ai@4rq=KSdo(rH%IA6 z4Z(USW+tHnrNd)>f1=sgpwHGf;Z#t~viLaTxSqK(%z>n?439(;<#_nH&9QNFr<;iq z@RnqC^k$n_7%b4|xPPzN-`{ugZry1UA@KLNIeKh^Q%2W}omO?bCCk-|O}PC4z>f)pQZe$ggMzUb%LDDs#)h(K`-!_lE<9kT&2Ys=Z!0eC@o=ZJt3w1$-=t8X0?3^7Y|3ZlL%dfX@6X2Q& zeYRVgWBCaRs)ZvF>1M|7k391V8-;!JwQU&Ke}nKH)#a|CnCa;Qp}smfSZF8tXcgVv z-3{#%xgI8`-z5qf#>gxXACH~<(692@MhFOMDppYbN4ZYx#@SLj3ukC)#l=&!5#sCE zlfHXtm6hxkw$rDw*XTh z>GAjGcRAepblcy)TqavvTT%O8?97y{y*jyxm@>_{UvFPf{0MC^yFxNO+aXw0Y^If? zy)^1@q4aq_#m|jUY$w8TCG&gWvvcdDDA$IJq^wZ885Dn4E&f`WpAmW_=ftnn!z z&IS%Pa=y&WpnZN&e4e%lBZ7uF)*j9rN}$<%lg!PlaUzt+`bo<6<)V` zvvfNhi^C%}%2TE{DdTdQ%zNBtDhumeEw+AtGJ;MFaihE#3XYvQo{8@}_kjLjqvK}$ zZl#v~Hi_f$AZN>)g3aK%It6CRQ_y@+I(<_8J$is2%fP^}3ehDXL>FV|fxl-Q7IP5J z!Bi`EC6XpqRw7eV(Qy6vw?EGH&|Zy&u7Tb`IdO3Yk?)&&#TzTtCsjC01-F7^_G?D@ zi^0}@(G+Ya)h9dhnh7o_vpma*7KlU4<6gZQUu)*vnIr0SYO681$QY7N`o3%Ht=Rjn zkQD#pGVPt+rINALpO-r%8T~brB=Y*FsF9f1*l4H;OXjl^0H8r;WGJ9j`>kTXMiG0n zf+};vp;K<`cWwc_b@!2%m*3snGn6Ula~#>`e9>pCyqxGk+W*2y!2QbvlXIZhdE%LY*LAPG&q`$% z&40D+*LUr2a1`Sa@MPq5XFPnVEBY(hSZLJf6p!ufcMEr|suqW@8kWSlnwNnT=UNG+NoiAb--f~>GEIku&>wN*Af6*O+ zgKYv1=_?~eSAwsFLjpkdhZ7yyJ}nrz4213ABBu?jf~g6) zxPWe<=0X7?ZK;1v>FA6p-ZA%m%EX4fc;T|YdAE7(cagm-U_t|*Kj#(}J`L^js;a7Z zqAWaxSmpMR(>Y<`riM_uYplk$w%ljv=yXj?LdM5!N`{Lr1)#=NQw2+mV$odg$CN6l z3^G!WdwKm9UY}`DC|W5Q23tR?;`4fWwIMAZf@l;JxQK`pE(*K7K?z@oRoU;)i~U2* zdd_x(k-(MwUb}hE*p2DSiXx^<>pK|O=Xr^qs9o5yHbB=DfommZCL<%mvwEFaJD^E5n*@ zDu9Ld;OdF~d(e{9*qg1NbdI~jO?x-T(V5KJ&~};6AX%Q!B(FvF-MlI)kMS}@h6-O3 zxEQC>4i^g|ycU|CVE2MQzRxlV|9n%%s3FrX#82RZrVvEans9Ipk!^4qBls|*w8V*M zv6UI6JQAO~aI_~6=N9D3eTB5Ubf?U1cxO%|*)BiqP}D7CE!h%kl2_4bqB+u5ktz1a za(C3`jl;fX5+%5Y=v+jtd9mIgO7H1cpcB?PdI7f+O9v`9p{$sh*C^#D?v!R2H9K!H_JzbEf1ec)@}uqR#}d=&tKiYV2~p zCUZ9v8S<`ck0!SbAXpkljK`3f?`jb3lLOSrwQMED(h#cmOt>;<|7XfVLgMLmas;rYBG414H@;afbAhO}7`1sGRR;8-Zb$Os}yVTztm}&ZN z-3Lfsa%#L2Ti0 zFXn?6rGzQuh@R0}Z~Jgk`)x>QThC!#sx2yI_!&A*CItTJNSWVvwkiKHJyQE}D*FYa zS^vZ3)3}W=$I3gtezXt*U3G<2oZ@mL$g7m}gLL5sBHI92A+yns95YP!>ZbO@&e0u- z^6oPq??Ep$^)BPLHtz_pI10JVl1&#&j9wH;p<wz5{ls zK}1~$MH?38$iY%%>P9c5l}>iKrod7qS#PJA@Sq=e6uEgbHy}eJz*6N;9W#!k+KXdi zAdT*D$kT(@Us&e8g%;{)$TN`tr^_>)P0HE4amUJEc!kL#cIXdEol9)p_prTQ)y8f(vQ7p3ylyjOh|*NQbR;v%AybO{;tbk1NpNSrf&D*eGfy{wRE=Y%rfQ^l-?< zF_S26lvD8SSTWsGq`v3!E$;(y%q!yyxgLJQer_do+PR3ZALd~2@Zsjt#} z4+A4A^4clQH(lh@(}KfKuDUFm++G*xVdiF6drL!O;`CO2)=T~K9V@K(My0QdXRS(7 zmz^c!bCb&*^@-ls3z_k|GK?%W9?~T=-~SQ6(v-!z&~x{t?)nzLaH{X-IhTdJn%6>D zWkO&vJKRXYPDo!aZTA*5CnXC~&%}qUAojNvGBKDqZ4xeCga3Y@ehrn)r8n>wZT0rd zJwdZ)v|SoTGBH)4euxXNzm_S+GzN(!OAx2X%0eb5vF%9#*PrE|JZXO-XwK%WIJ}UA zo|!egu$2yRx7ghUbYP$YTfRl1BZS>elcY9;=gR0p`fUPTXJq5uo8D|BUfHYgWdZIm zAheL$t5}f(GxQ+&kf7a1up&lc7^G1B-(Z)!pqZ#METmECoQ&rg@NMPESF69#-_F#Q z_|ZF;b_0_lS0jH+;80wXTYxezL8W;n)85b5{|)L`6$nzI2@8u7d%y}C!9wFzw^oFr zAdffsr5UXa6A0U9wlgav}`C9x1@?Ha4!DXU?2fnC}NBH z%h#%t@^q`@GIr#2Rv%=ou*a{@!aqo_V~uk#ynjyqN$XO|+jtV-y^4B8WRh1?Pu-?p z6`uWUg#F_eSTbJ*I*bTcU?7S$&)22|H~GTg)$t*xg+;WWKoFAJRsO_tK7erj)ynn~ zR$D;iaCh|vTC&u2r`YVLxb|)Lcq;H*9d>XZhm%7*UenfGfvsDHieW5oeuNHek5Y-F z;k^l_fl;9p`;s<3%jc8?zfwq~Jy8HwPPmkDtY2j)C9<0(9k)~|8i=>L&&Xg&ikUuJ zTadu{raqd;=!^nYi0SsJ!%6AVY4?kat9R=;u{j(naFRf5gG$%-8e}JBEWLdS*g8qyfv^qWLD^g}Z(J_YGrjp|Phw zr_Og4uY^EKjLiV^+nJ=hC*T$RUWa9Q%gX-N;#|H!sd7fn6V|=Q1MpZa*CatipWZN8 z#K^+|?ypBr@tjQs2gB^ID-MxnMJ#~xPLQ{*I*Qdn$sdltnbHvy3NU%Z@=aqVk>a}b zr5hJ3KRIwYfXcp(0M)r!+)d~>F%;S=Z!DGRm{BnBr25$G-TFu|Mdw1m)+63g?fL1vT(Oi+oCMNSxYu-z*l5q?7unMa!bHYOHGT zDviafG=vv%<>Y#ILuD<^-drIFNsdE7wli+DT6^W>wml)7?Z^2NJXYg5gq zja(vV$iJ8S zL7aJ-LzAd>>nXY>;VZTx09qWpnL&-a6Hu+`SqkbeSl_D0`DB^NJ?8F zjacbeC`+}-%KI~yv54jh$Rbz_d@~>U^?^+67ZZyqJyj_lLX*!nqE>#USYCn-+1rgf zV{I8$iHRHTy;o2z3Y~b(Y6i`Eb&e$-{eo4!Vqti|JY2yRY%OcKWBT@UNZ z-xY0mdalvvw|WL2O@W20>8kFV2BQed7smN64EXgX5hK{-R>0WgsYUagrz8#BofUs% zt0@+FphpI)78%m4FBi-?zOzCVC; zUcSL~sWt6M=|Acu27(P$}ON-lc91oQTxk<;;#)Hno^xaD5@NPeD}=rsx19GroEY%}X@+ zjmkt~;H5@be%#AYv(ht&ONvH9FQm7#&!t)g`uFxzP**`o>9CzvH8^si7%$p zUZ6lzw3^8G&bgkN@!Fc9;`OzS4#F{C!iL5^=%zs6Ks%Ggl+`O}Zs|c8c(dN~&%en% zyF{QE`9Z)h~q`ibn`C?#}xx=fSPFrI?Gy5T1~#R~&@Ow5cE|M`$`E|e~X zF}J%j_hMsTm~Jj1iniD#!}hi#$ibID1!2R4zQw3(1lXq#pY_qyK7LMFCOz%*aO)dh zVaQ%J(WE(qG8C4Qn%;GH(mY0L{I<$X+C1S-9A!ZO0cF*k3b~!`S@z|bqI9i&I|bSD7WZWje_sRrc%57_Y!_=duJ%!y7t+H0q|nk*}xJC z{E?mqeubr3{g*@}G$PVh2GpXaf>DTJ+_JIvC%qp_c>BvENjyv`WJ#VZOQxudTB#O^ zJnoBw6z?Y`cQoUa@dZM=_V(-A^B3U^5~6OJ)?!Oz>A~*7A$|R4TM)0>XQnBc{A_cQ ziLJRL1fhw+&j`4Yp?95>>Y1=~{tr6{$=4a!3GO}D(l1{>i!WoD>dVRN-Q+(L}G`N|Rwm$@9NpzUp~y-+RsekB}e1wr?2wgHl>3 zS~%2A2N%zpM-}f9H+l&I_wG6|Y+iJ+91^W|K7vdFtis>BdCWIKALoL+=ANRhYRfmPPt|9syl$Hnk3pdZT1(ZgM%0AGEd2c zh`It<#s~7>^X%pNs^~h2O2=Rz&P^k$IQGH^-n}jsMBR0GL5R%Oy>_RaF=i~cXfusH zmG+4~YH?i#OI~R&Kt#kX=xNw)-pBGXMD6nVazhS$Xk&vKtjpRw#=2}37}675#|-NC zVApe-5wydU7db5o<)kH7MuN9*v##W&LFcczvVU8A=_CNfyp>O`ckSAKVdg?{TI?*K zdg4rY`&Is0=gynk_)P?dfuOE2kIOW}GyCCB|Frz8AOd(-5c?w#Fwk6ba#nLUb9Cp9 z(x^_CIkVk&2}xf;Aaxl1B>|DZz7Z;O zS!K82?jfCwojDa&AYtAC4Oy+CnZ5QXAHp-J+g%AHJ6;wk(+Qy>*Mr*3Qlq ze&eh2$o})S^J)3=G8xMwQ9hsLuUKd-P;cEG8$7-_=Cnw?Nd3zTq2CF%3KW;&X?}_^8Ch#2gPAAvHh;jr1=o-*>FA+Vb`G zma_8OyUi;gP~Xu}p#6Wl!<7Hr;UK3kNhbCQ2A=EbvuC#Y~?jNIL6x`b;b(zH?r$8MaL{vk!sSFRXLfMyR?J&{>1#hvB{ zTBtikX`en(A~wZl@Q`UPioMLqsBJfZ9X0~uIV>ydT$Vu&Yo`7Gkq?h*^Ndpu0z5G6 zw6g%Vw$cyMKHE8Xyb6#DZc$Mhd_o-$pZk!JA%1&z>dx}+(akx?IW@eGl$)Q6`f-Ex z4^v%zy_nDTJs@G=0^I^?JVnSuCau%9v?m~s%O)pnH|P5(_+zu1765C1T~F@}qp(E? zF!rSz7g#Z0dwc~5^x5xM0VO%Rlp7IXZ&l39SdWiZ{I43q7ltoUOC(W&utt$o8S`zoYb!^ji(BYvk9)BnKaG4#Z1r++9_$`i9 zl$_@b7}iQ>B*bn)R=hlU0cgiwB_#ZnWK_}xLco~ro*t*lW?26W;575Or0K{_HAj80 zvl0*VG}_Huz_O;%7BBK35&Ppk>&C&Yo{w7HyKA^4UhVbD=bJ$QHN2U4>GliUJ|v_w zfKWtSt7eK8{7|i+prFfC3++pGscu*8JR`fQmS~_uLy$e|Ame-s0(AA%(bjYbRi(I7Xo7yh{ZjdToA-b6)hvjOMA912fFOvXZUexq!gqIf`6J_G z3xtoZzwbf|2~hzRAvo7k$XmMtTqj!o}qNAh9m6X(PfvsGmHVA!Edlj5P zt%o$n{`OKB3`S^m{pDPOgZ!`Unl@*{zuQ0S%)!$Klk}hCF9-_O&Glq*G~0K)Yb>;D zreS4$QCcd=%f|=Q0t7I@1dty`YeP;2X{DvibOPE2qK@nIkVtPj#>5RWWwB<&bLrz2 zN57k+ZZ2H_Xj#{t_C#?#3yb6rJ#!z9j}A0|o9??CL9EJu%u!B56~@q2#0Go^H)s7r z1P<^azLa#B|GXxO!pAzzP)&r_>tdS!&mU)*CW_udEmxoTWz=UeJ$U&h#Fq{}Os}`h zeHP3=5ORveZvbGn2{`#=kN33Rd|mooL?RfMGc<6xw_%xYUFBQW?*lgG*38d04g>id zAT%h2t@i5cOuz-gOZ=J%rE2gO+Z82$15pmGDjmj z6L0Nz9oS4bngap?JojOAgDfS0lce9Ceo(c?U;c0eSJkjO|pxX-0W>#EdH zB+KPf&`PNS7QYIPTR?HBklV*CCG~r$Ls4-whzG0K>)=(v0V6+v`IB(-@inNG1x3mq z54v8Hm*<2En98F^lJK^3)!rRou{eu>(vcvLw|N4OF6z7Mg7m4(fZdM(!VCQKk&=-G zbU8GD{R{{DqM0m73#{RPd$Z}h76&JG&+5{P-Rhl5JKvYfF`%!nU+9Wc22fSI znAtb`j?Kzc}mWJoOf-yj|ZYw}ag@5nXty_3tb7Z^8`4kfSzm|~$E!H(y# z7?>*x$+`^%bj9%3@7_fKFdQ1=#_+}-c%(We0P+eydSXwIGDgvJ6`+Db@Q+8u=niS zM*wBh1*|DXThq?gcC|}|a{~A^Rn^pLhs)g8CW1Lp2(WpEyW*N|{Y(%84iRPea2TvX z2^Bo3Tk@PcM~b(*0Q?NDslmL2C5Gx7f{nXiYztoP(d^rYt55~w77?L_*(ce}eoe5# zFe|7D%pxtw%T23bz^?Vx`N1-G0T?0S_&wOF;9-M~qMSCISpvU&x%6Xf%zCKWzq)M? zh@8|SuWcvrs>OJK6H@5G`| zs1E`uzTK|EGBV~UGywQh`ybKK(PadmeVo^ax1^ySY|g!}aLbc|I& zyw~#Zd9@hc;`@J$%wX5x%KIGSpc&g+34yYm@0DWrYBU~{e3}hl2>l+)fAW2InU&Sez-P34V@m8=yAo{1e@0H7v z3$n8Cnv5WTXKlJceQk<4qXHnWVvknGANw1@Q*!t-5)pvH{q1@mj7#ovAVPq`R`S;y zO@4eKQPTfdR$W6wS64RxK;YIp?h%~w5j~kYus$u*zNV%uzmlb38Vw2tPuW3{JHm-I z{1h0w+@33|P%E=o<~Vc4t$rojApXF3f3c{8hMAc(w~xGHBm#=4?Ah7bp2vRNj%5%Y z>At6DU?4!`P7d7_Ra7c0Ha0d0kzoMw{#)#9WU{t_VI!ru2$`sagb-sZ?+mMyj6O%p z2t&cRHmNvuV$3^XV#xVkwF8zZlQK8HQ&g;hP>zL3A}C(665JUnzcKJ=z!llau{1s{Mf%PAQ_s1;&DLpb!es&Ll*O$A^-yl~yhnLUOFi{=l$GvI>~Ma952M@xI4YG|x|MuLyN5G;_wM)RmZ zro5zl@BBaD>R`jw!!(>=r7*^_N)i(@vlkG}-2z-HDHWAxGBqiwiyCQYh@dMiDXqBr z&6_m%%>|@)r`fJLH@vxQ?*iKrI0#R{OCsdMhYvPD`6T&d|B809WB|}_P=duEMi+$i zEo|)$00TtP@0YNsC5>JHddCHG`qhAWa-Huzf6?SK5=_nMb+@PLiO(UZcauo*solUOp>gA%e|TXc5ezHw8m|kY0A>LZpa7%-wTb;P^}0hK{dFWn z*WyEyjbV6B1t2YZ5Bw0!m+w&Gl}9C%3F@>{Q~zu({-(nR7HHBzXthW7M#=`P{W<*i z+N^097=pkJ3^E$aJS`SkY5j7=k#e4;ur~eC)V#1pM From 8b22d9503d08bd75f8343125a4c3786569d0ed28 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 05:55:52 -0500 Subject: [PATCH 056/104] [jlse-run] debug --- .github/workflows/test.yml | 3 +++ run/automake/publish.sh | 2 +- run/automake/qsub_entry.sh | 2 +- 3 files changed, 5 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index fbbb7f09..e2dbea3c 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -48,6 +48,9 @@ jobs: - name: Setup dependencies run: | + python --version + python3 --version + pip --version /usr/bin/env pip install . /usr/bin/env pip install pytest mock (cd qtree && /usr/bin/env pip install .) diff --git a/run/automake/publish.sh b/run/automake/publish.sh index 381cc5ac..99e0ce74 100755 --- a/run/automake/publish.sh +++ b/run/automake/publish.sh @@ -3,7 +3,7 @@ echo "## Automake run result" >> results/result.md echo "### Performance summary:" >> results/result.md -tail -n 5 results/time_vs_flops.log >> results/result.md +tail -n 5 results/time_vs_flops.txt >> results/result.md echo "\n" >> results/result.md echo "\n" >> results/result.md diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 499d4412..c673d11e 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > results/time_vs_flops.log +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > results/time_vs_flops.txt From a2cb18f6dfc6f7b400aaaa82e7f57036963d1da4 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 10:58:31 +0000 Subject: [PATCH 057/104] [jlse-results] for `[jlse-run] debug` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 29176 -> 29022 bytes run/automake/results/time_vs_flops.txt | 9 +++++++++ 3 files changed, 15 insertions(+), 6 deletions(-) create mode 100644 run/automake/results/time_vs_flops.txt diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 423a1a47..aa3c125b 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 2.0306 -Simulator fitted flops: 1.0638 G -Matmul flops: 496.09 G -Simulator optimality: 0.0021444590257524046 +Total time: 2.0177 +Simulator fitted flops: 1.2417 G +Matmul flops: 533.67 G +Simulator optimality: 0.002326671888925848 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/3193821be02da7ed2f56ccc27d126247632372b1) +![](https://asset.cml.dev/c63b4b63603898e93277031dd727997f971b5404) \n -Run date: Fri Oct 9 10:50:28 UTC 2020 +Run date: Fri Oct 9 10:58:28 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 5b5fd464021e9467bc5322747932f133183c39cf..d8434d9b604a3abe80539adeaba49178a28f1b8b 100644 GIT binary patch literal 29022 zcmeFZWmuJ6v^Kivl9n!MrBgbTRFH0v5CQ4#ZV(WVZj_Wpx>HcPyIZv`s!&zxi2_dV|MhAPNOp`#L`LLdjyw3#-JX5mi-0MZ@vt6J;PT5eGlnMlT?rLqb9Vh!8}fZ?I)So>Ng#;TS)KNPxH7!(lVQyV8k@ zkf-2n6i!qh@Gg~sB#Z)hm!|Le|NrIx4;GAWWETd$qM(4`_~gWNzMdOD?APux^s&Iz z&Rd=D&&!yZF<@ga^AY4irk-3~T{-N}P45~&KY(j7Umquz#-AkgMEN=7rP$6yG0ZC5 zSnfNL7%63uywN|$>%DvzbM~R1KXbVAe&FyV&!z*fT$?MwrvwC}b@nEM58WNnu===b zYim(4G5)>lu$k{tUcyj7R##R&jpn|Sen4VI&l>a}%LcEfRvE!I3(a`xXp8-^>FEQx z?@}~stkR~%pqtK=>;LsFM)Rz0-Z=7^!{Z*7ZoOJT+nUDpy8g2p9YFVZGZaEA9wr^+ zymZt>54ae*B%$v^PfgDueu{E(7<_zuwK^;n!O-o_;k4_sQyN^ez(KBOiy(Mk`$G&> zGa1Ih@ATB+rR7X#z2iy!%<1!i<#9QW z>Mj<8mpdYqSW!?UT@%bp*xgl>-aSrjg)=UW%?LHsyBYi5?K}XTO=leLhlzcwNWNKB7B@zN1JJ3(si3Hv6jG4bf(Ars{NS z*uS!p3kL^>kmDnAZvrciy9O9nuKO|q?~yq5?X<<=egm6#bGu$X@;2o14}FHsumnML za`NY2AC@C{7V^*1Q&UOn9sa&9R4XQA(}$Q(mYg-lXJp80X(eykYH1O>y1FuRIDr%( zs-lS9R$QY+^zzBuw@cxi`m2&zHKhSxGBJE|a&k_0r(;r6Q~CAusx64XPhTRtKWoeF z*K{Fwy9L)xMFoYSc4|D3Dm)gwF>&eB+i>N@^~+l;O%F33M9m7Osd4qtwuOAef}R-s zj-otkPESkg&sWSM{~sYp#r<3p&9F;cNo^u%?IVx8$ll6s#eD6& zWJ8U@_d)k4q*k%%7H<)fmln@BIY&=)#KqzLkuZ(Vw#Ol-2a6fjEqC#ajeg2_)?EXPY{msXeFC%{?c96dr5DXB-?~ z1JMZVHj+$~R8@bycb<3rjoX@(lmzyQ3pv5RC_Er^p)*ryx|(6#iIgfw&!|=e4(xV>6_e3S8h+lZcY@M{0IhKzl6LT`$eGF z2VQfT7hRp5SjtktJNfzfnU|Qf8eK1##WIk7yvYbYTyY|4a+it>I=0)I!oELaMaxV5 zu$<=n`r!ntXHi=W;fyj$tbE!+qgag;BY5%zBiKJS_GyeHEeLNVP3{JlHd%#Iu6(J^ z>5AJ%L(eLt=$K!8gwuC$;PSjaHCXS7OW!OgDA1_0qlH7lu$ZW_x3k+?XcD-)J~Q8E z1K~oeuPb7xhE?!EP@`D#eT(yg@7hP`MVRvwd}Q9fz5JV(AsFd>wN7AXZ*MwTLMBCO z3lH{TI3c@Vv**o7i?=sEvzEB2>5okn8|9q5yqNTKIk00wLqq%TUV_tk+p`xWMG<(k z`t3U`zas~#P=*_HS609~LUdZZgiO+1b2n|zU?Q-oB@f4x<=Gv!6j0I7l7v0^XKSqU z)Jt_6FBaUZFoHmY3Mg3lPOIEzTg z%>gY!8lWW`iz$d$aQmQ$*vIVhwUlTWY{~{0Sz?BKI4H&%+i((-!;npc++1{EOSOiv zzUHiHl|dd}gh>_+76o5d*jqqX*MTwYB3wSO_U4qkVz_Z1kD(*-bdTgm)ph&x{EAA602%_LpHv#*@EJcXn@4!@HrFwkZ>u**v%0WAofbNlXW+vxl^P2wj^FnQ^y%TwjrYqQ_I z{%XZb--4IANVs?CBOarDG(=q$!G5zn^OfY~&P4z7E4$HmsNN%7$uIzsqUd8FJ)yv0 zR3nTmZ5Y@(j*imbucfIqMJz*cK!)bVb|eZy_Zzh$pITm*?H4ZBrhy`+!U(N&LzGz9 z*hlmUXvTd$ZTy17ptv?Kml=drL10sv>3@A@`O~=j)F}&j>5NhAb^pRx; zJblbHxR$esCh5y7={H%n4a{>Mo7OikN?Yoq72WdcRq4?dDy- znPy-_Q8W^qvPMi|=h0`jg-BlZ_7Y3wP*Y5%zpw4>l_f6^Kn3$sAR+`=4kHhDzaEXH z76M?6u&4g~rjd@viuVtPwU`9%FUS3hF70~RLUEORm^h{~FWt9rsGv{DNFUIFAJrDV zqw>KBXyM(4U9FoLVl`ebsn@2JBd`*a_VMn&TR7Pxu~14t;eU2u;}zZMJ~|ltZ1v%c zxnyWUBH`-U^Axh1%OARWh7=;I%kmy_(2sTwo*x7Y?EA>D_`Yw*^!C2oW~@C`I=J8q zBjv^KKXV%>|HLvtC584y?LV*(#oaMlsv857)gw5}1$WqrE=5fh z{Q({-N~y;Ib)WC~4`(fZX4D@fC*&Q{IBwedUcYD^8qtxQsIt>472Cg$;yckv!&JVF zMBn^P%?2b};nUSfHivxdO9LzM@44*;ItWxgJwqEb?J<(soZ z)A6jrzLyi|PlU1fbct(f3eNYxw=GYM3E3d`N0?DZL|W7apU;LVdFL$EaClA&Nlfdt zExV2*-kckwib^X20ijHDUi!?681@kw^kC70fU#KMxME%7_UL-IS zw`z^?n-qm9fPitdFEPwNC>6s|aAO8(;Kr17c3oLM0ZATDy)}`&%v!u&c}Cn+>7dsqYK>(G)yY0M6~b!RtioH*x@{yUTnpz!@y3JAsw4yFi# ze~86-io*Xm1tsBItRQs%y;;ha6UbhZde-Op;;>=yK46?QwK{C}bg7=zfUlhTobBM< zi*NtCpj*oW#-xs6-#yHnOP1{v^?>)Dzl2{hbd2y-c#KOk=HD_QE2|O5EZ|en3#P>T zq&%ai58j_|7?nq-mJpX!)^p)|mr%dO`5p}Z3( z9x$Vd0gj%=+IgE^W=Zu(!$@v$sM}sab1sg`f-6!<0|toU6UEEr-TGS!fXLwJJd(6m zZGQtA_WjUU*xDCE>Dv?Z7;Zzk0-=11X328;!|B2MiY^yH<0niS5O(&BFETV5P>vkH zrf!M?4l9-ApDJAtA6xP8EZg&mH~V=E)}*JZ&~R{8g;Wf=$&>4yZS@;QbRO~#lN@c`E>G#SkEOTXoa_o=9$QQIt;Ze8ES~PU^R32B4*CZOQ`+J@4ARkCt zyC__n1KB|p{ow^)j4aXYMn9lxx2qI@L5=-5Y(t8Q zH}0_!Z~p?lL&(q0E`xWn{5DIgkwV_kfH7NXd1NbeL3+A}2IP)Ee-7_&*i10Q3pk3U z!-l=Bz;t_vGeoyf5geUhLw`>H<)%tSS#(^RXM`vR9Yiw2`~hJT#9p8W2CEv$lm8tE}!x7ao; z|HykLG|zh){T24%I)VLW5-WJe$Rad?^L0rG*XMI+TGES+Z4JS;=|Bf(WRrBNw%m4^ z)q6s`+9;w}^=Fsnn!fggM%JXQX()vxE6z;2FhtkwZw?JDt?e&7^+chkAe0=PO%9b( z2;MM>ixUP5F1Qc!o(?OZZyPn55P&@{;z>aDjd2%lsn&MY1(2&g@*ogLY#Jg)Sl|!| zb96^Wma-zlIaskHZbjt8+=%k}UCRd64Y2tt%P@WX5z)Up?o1eCiiy)~?Oito6tXUM zGuIG$dImpXM-|9$N-ozceIZj7yk|rzy0b}R#UiypQ31jFA-1@#4v`RatH{dC}v5r+pS4M;#uDJ%v!hf{F`r4wiJgxJ#1~ zxaE3Vsop&uf;m(;KUf?LLMQp%*LNyNfQ{X@)aI|*0<=#mwny)Qbo-sJjJUIhVqYO=G)gV#PYqp(G6@H z=B+A_hOzL&0w?vn(_~oc;C*gyJw`@GG^)(-05v^rJSb_{UjeGlMi^`Jry)lqOmaX? zNnS8B=e%!lYP>z})txLf-RMi2^Sqd^N`IJaxtGw<(ZOwI#ExECaq4)uTO1ZVk;PoXYr^+d z6LhtHWkpJkR`2~mDyhlxS=^NU{!_nUv+noWQ-0%l8I_x^1asTCIN~(X?ZoB6ImJ&7 zu%Thrr;a&R%f~n0+z?n(5iB8<|H1AL-nIT?_bqdrbaX+9iHTZ+QW6pfzr3Hfambkx zK?e|gBUq%14ruK}F%}v6^t8>*9<~M((f|&B80pi#RG-;sdD;FuH`f+LHv88x=Q|R# z)q$PWjxF(DXY$S8bOc@>1S{Mx5Hn=T!%)2azeNJ0CYf3)su5mQRUq?8GPe|KFUxy# zwClU^gPSan^uU`#dg0oDz%EIT_O0|>zsxQf`7|_6X0+S}LWVA#Xuyz3$uwiiWux-5%z_^1Kw*E@?36t)V zEJ@eF>+z2f^3NQvVGUarUj27&5r9wF6hbNo0?sRcMB7@io-Cjl zoNRWS{_PT>aA#^f#YwekUv8No&VZc33j&aX!URJGKtlHV)2FRflkK1Jx>n6g1Et7) z;or@K2Bc;R!GFkw3Wd%GaxGqWkD9l<$7yt6x=_R+0STJCAk3g()*(Gk!T*hBMwnO# z8ZTGMfdm}4H~Y=q8R*oKUy8h2GD6@*pn09G%2VL>tW-_cqnt!l6(4A{Rp#HMFoC#3 zb)O3bl?GcP55DFlzJ7klT2%#W%fSGZ+_Ao*(fI^~?#@9dkHHrOj~U8iJ{bNe3MgXY zz0g@5>bC8!t9!VQtUI5{{Dj6zCHx&S1SwM73Ly}4$-y}McL`g%~H8kLA#+6XHXFIuSPRhJe54=v_J<1aDU zEopE~?(hN30_X?VrER$?goo-8GR+bAsOf=qwOllpz+dX|VXwUHShVvoxdn zw%o$zr6FPp>I;&KkPF{D`64_+pFj|e^|-zWOjPKq-~a-)3_XBkPkxlj>5Dbp*W0!l z?rD9R#b0pgK=vCR7QU7gr^$xmh|B2zo8NH%y~e|1Gk&7uM6^2%N1p~?SJwrU6lu?~ z3vdo2i;hsT<@9_S8jI9^Bs@<^le5Psp=1~SHavO%m!6P+Y-$yW&Gx(E8XrRs0X0Fi zLN4?Hm`q&4=hH87SKTklu(p93#zNCjvyk8&myXRVd&w76%i>Uc{p#bQaP8hp!wu^L zUEVVl!$0cF^5Vo|P}D1Zd(i@b7t?!Gd^Fi4SPCy>XbFu28|5XGk8`k5jf|vwlV6|u zmbL_8kS#S`gx`5Z&-|vQdY1`y9s?XT6?0Be-_(xtUX_BDS*25Nf1v#!6xrkSK_4S5 zD8LQ1h}@oJfTtHu^k2$&wEkud1S)Xa?Nv>3*er=2A0Ih zI$X2GB;7XzIgzuQch{gM1-cO2UMM~fcL&~lcc-J~LK%sPzXAEVvz5U{p)MKu>gK+w zhL5+zz-+pV%^f+59w}tJdokNMJ+*qV9L(lefDI4#D*vueqCHK|t13G?`*2iVWZdn( zVo-Q>D=YH6n^}TJ7AR(bctl%j8rtIXHR{^q^G(Hb$KPt=`qM@2&ZAB0!0{|vJar}K z=+rnaUOgDfMXAcD3%Ps&`9jS7*><(-2ngN!S2RE-aGd2eV4%Vt?txmd`wPUv- zpA);^>q3^$sXVu?^@qs$_$8-~4$O`>^lkEOieKUW(+eQ-YIET5553Lgd*6yRZRO{; zeG;81dS2riO!&ESX*~mJ0$1m=)|wT@=peoHr3=kc)Zj+5;Tl!ABYo|2D1C-wgf^#) z>wez4_<-^EuYw{B!TXPW@aY~ur>O-h_3x9yq%FPf8jL}%oo{f?^M1Iep`p1vQ3Ex9 zpkD#m#7)SALWDch|M&ITPy#H<3IsZ*eN9eslrNqmv5#!vyepHdzx@)i~$ zbd;uqExRzXGBR0!5Zu>Rh6MPE;gLDT#erm-JF)Da9Q?E>^o_=cRS&O&Abi1+0>41C z<#78C(`s|+)GIYdJ%P%#>kPr_muT_-#v1y@>jpf8-jm)ZOYMPZNnEBl(8AYm>d4b> zX27^r3CNuGrd7=~hc(xhE?i^EtF6SgW3Q^>NwXgH#kn=3@s9ZhN=_#MC&DI=MK6-p z_PB&yL#+|656*Y8x)ZFrGI?!E!oU7;Js=L7MO4*+iLeLj8AEQ)_j*B{g!g(Y3u+|* zrNxtLYAU4+L_D$uZCP<0k2F0BQyD8eEK{qt)j?tZM~w#;P9~xK=cLx~UbDMjv&Uy{ z;cp9>GpXRbC3diK`hal54a$doDLj}B^Ce=>s7Cb1C4$ZOnazJ_R^%=;6!dJZuv-$> z>I_veHr{fi+V~y0IbOv!_Bjkr=6ie&N&LeKV>4c$TBO^Q4C;v2tH-&$fBsO?(<3GH z8l5YMzXpmJqBneAd?L5`ZW9`+{-upZ^PG#vUe)1mYK4l^A3b>?(wRrSI5ss_^UqmX zFS>K!{IuFaFZIO2Fm6_cB$W^DhNVEPJzmEmF^_e2-AI~Q9^8T712SH`*?4as6%{iW z!eP4mzCn8cipS}&)b3QdKfq_DBB1uGyjY~!->TyI$xwS@O6yh6KM=91AVn>_5W{z?4p?gjq#m)6+2pZVf-bXSJ!H3%uK!3PRGCW`Y z`SS;m+346<@!4w2H*en_LxWxbm%~I+UGU3fyMy9IJP^&<41>xq4z7114kxpu_RN2P z#e!!5+wu0W1M|*S6B`9Cf|-A}7mhl(;i7xd;p6L;=T5O=9*yOb)|ZFZrFq9MsBrQ@ zfFI;ted4X7Cf+W3Rz#$*S)}R6+`O&HsYg!u<6t4a+UXwqf%l^5bH_XQ?hBiv5k|Fo zM}b@J;v*CV`Bt>kYi}x?dJlX^%l)o={C6;lxu(*S=E9` zxrU0cggC~Ja&Qf%3Z;{UgC-NEBYZp}dUp!Bi+yZ5_J6xzZ`Y&Jfr#mn~?@9eEgeQh)kr~ zV)`{Gb4!uCW>02-QabqeN}={=>BJMMq_|>jgP}~gWmX|FwNkZ9+~}c|1P(S(3ZxTo z-Y+`41)Gxhq>uA4zlk-oR2)xecUdeJr~>(Nc);=x&ZqI7jK#nZ=$U?@Uo-pO9u$nV@hOC12VvSQa!;JqjujxSH0-XQ>&w2MNG-Y z*`!v;#W^l`s5pb?m?o0SgaOm6p9jbj$6z zdHVLcg*@_YR*h{YQ%#uk)*%S8n*(V(yKqcYzVuWt(__Q`rmrt1FJoqI4I_EXn06#! zOroq+oy`;3XbF<=ybi{Yv|g;UhvU3eHQ#~`&K?YoMXNI8PYnGD*u)^%gYAWM4jK5q zXVlTCD^tH=91`NgKp?IGwv4$`9=cv(DQ*boz`*VZePWpbf6jo$0B`Zv2$JPF`*%df zSz|S+o`-E%*wGt@y^H?A7-VlXHHo~hM>9gg!l<`1$tE1DLUE(x)$K9$hp8{zo2qwy zdB0YTqlf1Qs{w$(AbI6KUXikZLIdb_>BtM4Q3p z2<+CVe8*mmm?lwncI(NYHt$Z+rx>XzHb-WY$r;>4?g7Stun?{|J=i6n9o&MjepC+B zVAAOdq25N7x~a2Uk#K@yHJiGrBXNuuM4TaScSy@5LS$qjmM;1@yH?x$m+LlL$;D%g z#(Srs0!2U8rwzM?kN|vug%-VT_M%EDfcSA=TP)p*Rw;+cEhcrdV=ba^jZn7e$|I2O zMhI$7qQNcJ&Ft|WJk~GO3QhVs!q&f7$?p+SwN5fmnRPpiPWo-~_ z8ld$Bc0>I|Vd;0=W;bbGZebW5d1fpo6tca|R4X!GR|3ZXP5c6?&EKmNfZ)p<{wmcw z?e+Asw(Le~e}-?Y=NAIZ;Q51ra#|WWLl~-7_MW<`>x(bDnn>sA{ewrbF18;BzuQR} zv{pTzZ6GMALzIl*XkWbA6tl9j2^PVQj$cb4Y6Ss(!mY%5u^D)be(JZuvNY^+c+aWP zWRmGPxX#A1i&uXBmGnSTtD~Dnu4N`!Mu~*!m0?d{#Z!AvsC?#bmac(7y)?n&u9}g{ z6uP+q3YH@GpDdJ9c?P#ONi1ZVsi=(2hV_!V$=!>tH{WU$YKjc1){<>b=wYN*-(?Nx z%A9)@mwriCPivte`7yeG#&E0Ce3hcrR$eX>J1(<=o~G&05TRy8pY}1JWgrbiuBDO& z5MjlM!8*JQ3kz$y-<_@q?oZ)~iHrLM%xA06wINkEeUnDU0Z_aJwYA7rzhs(_9(-X} z{sP>T>A;HC*?IvcIUv)beb`d&&JVw3OS#RbG#r^j;T#c{gxo=SX*Jtg0ztBOji!h3i&*%9lIrCLWrmWdYQLTx_t2XIZg!WgyBXO52qpZN$_Q1o9l%ZzN7%N5q zB}_4wkSIKs98m$V@WUYEKimX$!@SYI&^g8Wo75C^=v-kgM)Md|noRQ;t;|0ax+*iF zcwZ&Dd#9xr_HzS%Tr2Pk=O|1_W!_i*n^)vl326cc@Oijj1aab-{bAse?}|ZnQK+R4 zfLf99t@naaRxu*%6CbS94mWV&4NRp~kW5B`)?6dInoFIAvz!+4&A@6?Y3vrH2HwRl)3q@j|mF z9x9tzA+mBuZ_1A2>g79WDs4u6^QQUw z3vgHD!Ps1%{uKl`$Kmftpq}?#9AjzY*A(mKBqVYdpWR&xue&pKx_8NIyy2xa z_8U{CN`%Z13gu4hwzx!sE9)??Xf&?g`pcp6luKy#C;bXpC z_(wp1kP{I@QC(MDJh?T`9ir!TWt8r^LB!I0`JwslTw9KJ8J>ZWaT*j{C}N8J zi}eTfpI(2K)9~0KIyR?f#t%mLZ&>M-rtQn?^+Q4~6XoHSsx4=?M)NQs-DJ+B?Ck7w zw%uefME4MIAI-{7*iCL{9{|re{W}`ma(`CZ+1;HY#DxNbbdXXJneo|hSf|vVvTfvM zoPxQhzyyEN`k;r5(YTCx@huQvwcvSlytuALap0&RVIcuj8Hl0@y%G)%r@moQl3%0r z?;jesN6QVRK)yy6eft*mWlBVvfHMQ+Z3TCBha{+r^7sGnc48beX<{lz5hQ5|`D-n) zYNxq1g9ls!;gYX?@q8r2Uq{GaKH8L4Cwl?T#|1Gl&3;2F=2SVD`f7?{5|#zNT9Ar2`xh*3;9YrPttbWe0`@GgW6#Kl$F7EK=xPqoRvZsbBAA z<8@m%MMs%IR0d{w`QeZlU_$&`lvE>MJ%}M09>;I=biYuF1+jhn9p$DsI51#5maiC2 z%7^2VBa?6pB#o0!TzNLvg}EgZJ%#HO7N#RP(@viLvq5=;&ovP;HV0U<_*DHw9LF z+!ovid;YW{jdDNx0lwh;{O1+HxDyP{Prr(6vH;+Xo0R&xyU0D%EF;`r3Z`W+Y0Xub zdqlPQ0w{x)R*z;U!=gr6_b^fE#A!f{@rgyBvzlunnHj=PjqORwyr1&ucP!5{^e)>(ef|1jBwrlk zUaucTBf44!IjTn%0(kgon#u+m%V#lJ^3(0vGVet6dnMPVi7EBQEl0oHpXR|Y)>VvkFa#5jYM{XYj1UyGnt*Rg9QIEe^U8nP@(5xnZFbZM9fHDc z@QKrWtjILGw#RMy*#En`@dqVawK--fmPVz+H}%V~y_t^6^3agVY;bQ-d2ioyn!G*% z-dooNPPfxfP~r~6Y(3!mfkS-4X5C5^tf(GVJ7v}Fet^zqm#$qLqv)CUSZ2?zGIpQ*-;;Vv>AHGUCE*;H6n(dqzk=9JrtFTX#s# zkJmpW=I-x+@gJZcP*3%|ZcTo8YHKjqpZ-j{`HDpTvSMb}A(dnBl)M{k8L45zu*P&o zHw(pLe@ZHz=+01aW~F$_YLf zcZZ(9M`k&AqYVZL&e1~b5m;gxP#NN*0WP4c3c6!^V?;wMmemm%g9|HQE}SS~${sAx z{sZhjG8U=j;qz@@%uS*%xSjB^rchtM(*gR`mJMGqo; zdp$1Dfzlfq!yoSO`?oHBUOLs3^Vqh-*9vsJT4plz);qgteSWL6>A3CMoFnd7X5YDD zvb_tBGh2m}wjo41ktQlm)A;G1Z@2vq2?eeF(JbcS-o903#7xKP=3@75O7l@b%QhS{ z1Smc>czk7a(~Ttt?|v>92%}r9pls%2oV)GZR&8Gs1d3pzko-sU&dBKK3lij6wTs%&v~42zkr+Z-Fi1aM)z{bfA8G$CG<@QganoTCN2x41ocSY(b&~jZA|n zD%DF}lpKgRC_JFT2a~z+V%ERP0j-Ka*9XV}b2??yOY_bK_a6F#-)1KPH9EX$>;n?T z64hiN#_HKK20LadXn~cM242a>tY}-g8kmA7%-|-!GLQB28jL+Bgmz|tVnkh?&HWX+ zxtjd`w-zaY zxtj_9caL8jBPDY`^3ZH6=Kir#!Q0P5d7hZ}7fTFw3aUyLZmggwM-gIyQ{{)o^bTFYm&;zGg21L9-wf&E z$$8F*5+NUsWVp{y4&ECJ;50haKe*6j!Y{JKXINL@O0Ux-u?$ut?!?+`_&hD$CXVtBMFAcCWgC~_x>JW3W?Pyw z@vDR1)XTpJma}7$z4|4QEGQ7cDji{h55Iv*uW)EUoEi6}jWsTE+Vdl^4w%&AA=k4* z5j=vYq2+#(Is8qqnD>Fm_ zzQgjx(w{gbjW`n}&$HEe9xhmf=ccxmG*yPEJmVz9p$%-b&o23S;ok;h>J{oPc&+Br zp6>r$DXw`&he+-UpWbU*cG1k9zHV93H4&BL3>?D=pa&x#Bh&hdkvDOExr0I{$B5}_ zi>u`N!l8OY^Xg~iHP3l+}p|MYI)U?mHWZw=eX(@Zcb%OX2)g@Xn#*Jzd_B?-BK=$u5^HQ57azq#?O&Yq z*KuIMvR{_oTC$5$EK|f!?3u&mr|^!zEzCvMEOl1U^B7XD#&*z&z{J0at+jWZVe)uE z^9z<^6XPW&uFV^?aWJK51>m9RUzt(-eZT0{r3!3-8=p$28!VHuZ1MQQC!L>?AM-aq z!DyR^Iai=`%jjs!K2hgzk!CzTS)R&bbUEvrtvwET$TAz0JJ{J>Kv89x8@Q`=a&4LT z`r7vIdl1Z@1F9z8`3rZtn#_kDKHmDi3l|W_*=lMkmiw~FV^y0^a@P8sV+7x8EEzr? zhGP8W(Rmjq;J2*4Yt%8xo*KsqLsg`py6*X{fFY#p>q~1CfK-149CRXA+;~l?Y>wPC zQ@s2O0X;1~Ap9DKR?^0R&qR}jN3Ap1MI|J8J-c-*BPpHKXfC$a%Pc+LRdv36JbZ^5 z^UKtZ*M2@Pj&;;Sye@t`3^!Om&DhKkEvibr8PsUUjf};mz>MCr(3qWgzdSwjGW54o zbv$WvaA9RYqv`7OOWLM^oC{0kkv}Ofbt!?10Ro+>#B_L+i4d=gxVV0ceXcrk;ekqN z>BTOBa&Tla<;?n*XE&oQc5S~|p2pSWn5R4(9msGJ-SotX1NEkNwj@nLyi)G8UQT>R zTt^^GR(ru|!_w%%S_Ckv$N1jqBtY)o#Z{)&w*CS9dbMwMX2lRRGg_nitO)G;ldG#P z*Lvq(G`GGmG)vnqt}_{&p`=~9*u4@1Mi!&pj_}J5C^Gi~I6T<5cfTK2&t!6Kx~P-V zvEDZ|T3VW9ZD%G`7L4E&?OEh9TTA6Q(p~?~5;7Q!7D@q4EK9%B_fP_drO4l@Xl>$C zq=baHC_`c;1ui=aHe0((zH1#6GdV=@tVeqKDt9e0%v6oI0%7jDki%m35{F=}k(4@`XXVD_?fM8(XHao`iUN9Bd|6Pn$#vV;E{9 zh6k1bZNZ762H;vA?~IlyZeSmfy~iuW#yR~}*K<_j@Bu$iHT|L9)FMiqjjr;aUVyoZ zO_{j3s3erl49q|YYzOlb>Qc=5&@h1qB*VECvC4RmEVY<7+(3bgr-l zcVSVFw_mY$>&Xs0>)i(Bbc~Fkr#Nn=ZeX-|JkLK%Nq{GR_lpR;HuP3DInY}zpq6Yb z2&ykTrMhZ2w(G_ATlK*j4Zcj5mpej*1=W?xmV2jC^B|dT`gyo?asg|V3~vb^8^r{y zD2*eYWpzYj+VhmAi60BGD4e1D9CqumE~UvfNP|y;j&YV#tbq>wpWRqxF6^D1grz*WRtA~pv*^{Zb5vBzvM>t7 z{S|W>o&`0@k9;)N^CE6jrIho4M<;L=>U`m}F3h9T`Dlk~YEOZBMcaONV{q#NTBxU* zNUkq}OPl>+1SG8!x_FwaUUUlx;ul+h(=&Y4QhlTVcPf61zb1lron4$Q@m$tnQ zGw>E?`QaWZFBKM3_|tzibeY~)IgS88k_;?Y#Oq6*y5;ZPUD~yoSq}Uumn+4Ap9$Dc ziu5oao4PD_@4~*6+}t4%OqTpzTKL0n3Y6o1(Eb&nq#jae&i8Yst@rD&I1~R9E4?eX8ps= zDRgFXj1NAhRf1M#JrKwx`CO_CjHUT%w>Z_zr)h!lvd^&$U;uj@ zwLK;UhF&Sq#D?Ys~0R*KWBzNXH_a{vZqNcpbz#KvOFN^YYC>#7~w;Aw=M2 zOF?8*2X*k#E~5OL_n@ovR6JP-f+CDvegtSkS5*a8svJ-yKzpG~5-+aQITP@Hcm0DLez$ZyN%XBR>KpOOy-~D`}sQps1>4#&k5H-(dR$ zoXd1Ew24~YLA#u!-mg%1PqDT;v()6AVet6pDo68GPg`KVorO^Vmv8>p%&2L^NVjQh zt1OAs(*xAD2wFY80FgLoGkg4ZutkgkKXU5$bine=XZ4;a{k|o5TWS`pfAbQaMxode zh5K$nn5ueQ{0a*z^+>#I-jz(*J^QMf<`&z6_SRDHN>=S{1-;8zH)m*wk7mWv-329W zj_azjDM9pu^})buO2Ki9ulLv4>}+?_nOG|(7UU-a2nHHb@D3_AL>^DCV6N?B@pa6` zVYHrWqaoMo!>ki&8Y_$``btS4D#9bcw5>=hBEi=WGn6h zhOvFrOs_qq6#bsBhesz@qJoG0bh`sdkXHtsXibalT`76g8h>x^T>6>!sMI0v#Kpa#_KTUH z$NSFbT6X9%F+)xxwF7gAaCWZamp91x-jBpGp=<*ZDnM1oBkQ zxP?+`k%5(cg^c2O&70Ek6N$}x4=126yuuVMi75ECN~RVmDkLPi6U@lCprjH#e|x-W zv{deuOM5%w=J3RzoaIikGin58KxUL=g+*W)vW39KGs#7=@WnyKVeYPgQW4hf-mu$m zMHlqqIpdW4%w*AFlRdg)Gq>hVzjOPQg1R-7I)!}1#T~?+K>kop+&Lgzy(~0+zmW&S zfES){_FJ#%Hyz|hMw(WFV{^ax0!p(Nvb-#~{ddI3M8+lum;3fvjmiguvGEt+e=Krn z7=%Mj?^x|#daf|0_2chHFM~gwUe^dIcZqM`(NBMwr>3I1Xa#c_(dg%I>%N#lA3(PZexLXK=l6SF|3KLL?7jD#Gc#w- z%zQpGnkUR5M@qFQVl~o8lzx--&+i;#pM5b}w#Bk&57~>375Bo}wN%|-Fl{*C#V!0FRqJ9ssjA&UGOHz>e*`JZ{CGFfz0#zGREI?v)%55Gb&fQeIto$>t ztt(S;s-f^(^Wmal_A__&UzLnbt-=9~IrJ*FLW42dC6WDfS--E;+IVq>^ZU&Ao*c%3 zP@cQ_;0iCTe8{^Y>J#UK?FSxR}Radop$IG^0jL3nt! z7_7hjSWVqkH`4~H2{#&1zc58rjV5_*3#<82zCOO6jdRo#r`}tb3oKB);bCCK^2^yH zHawT|+q4k^D~Vu4@_*juIHN{ zcT45)!!08Nes)Vi0aY_cMjZY0iJZ~{cj_V3X*&06BT>c^ALMnpx$ktqNOUChIojiY zn6X-mqq-A`zPF>i~)LSLGfS4VYGN&yT&f%SO{71 z{P*jm&Snpoyw@M%KJ#*(>0%>0{B(qTyL-S=In!ER>@mzOF2t^4o4@hG&@{AWf-Nzs zmt|0F67rMBiSwyvhSZi5T;;4XI0E!Teh$4%kNPFNbt5b^o81~wXKy#Kc#hp!9>;8N zBQK?hOe)cbTz4F>SKo)sRWuN$_cWQVq1LF~e4X_}PJyLfhv?z?HWO^U+M9avl_U;V zniyDh88EO6RyHKULJ#O?vd9RJ#mir1ls*p#6ZWKz*6x9H62|w4dI42-A}ZZ#FDZ!9*YXd^}Jkk z&a~zh^?rh&*owdRzRMb&Q@yvvg7ukHwtClBlN|&7XQjAZyA~YvE>z1WjDs$1P4}a4 z_V#BUQ?UdeRx>Pg`&MmI>i)2d5t%p`o4iUiXooD=X2!d2S=tt(*n6Y{+@vq%6)_d9I{@UJsgI~*rmrwL`i6we!TszbDuw#?8?WozRjXtPisr-=y(qpml~{=e(H(#X*^(D-NJY*B9e~8 z60Gx)jrB(gWr?nGs;aYJ$J`M^BcrgxgFPO3`ANsUy_Lr3pdeyF<1#Y7>#3?ohX-OV zGpY;>rY7~piz~H<^HA=O;M3DNlV#m0=0Bx%)UGs8)|;mu=xm~Sic8Q#jW%P)B4*9Q zO5V!AE0h@Y;Sh75exKJS+H|6Jw9bEdf&S{_5w+{7Qt3>dC0j5K5BPay(jLevW!wN* zj6(CXGdg)Afc<+6UP|50+)D(B>k9h$)2=5)j>&It{2SY0L{*ja{;%tP?=M32UuAto z1!H-6`S1u3{)9$FUADC3LZi`ahjj}q;S^6R7j2j+|8m*2q^}P*Jx#M#SUWGsW)`cj za)SQ$5+5-!*ZvP1S|1-LAB#W~r2bn{Jin61Um5!CGG;AU6LGcMJfN8K+p?k12v4kj z^I6`(xtdD{TSlgJWEVD*@UPT*kMzT$nSj%W{OecY9af|d*JD{~q1yb|fYnFJbBJ-x ze*!a4G&Fx^Eu*fE%{ZSC5PVuYN0oA}<493K0kwjH!ZzUlY>qR0OcEmknxxTk2ZOk+ z!G(?0KTwO>1v+e#Ve=>@A{eFt9=DT!2L`fftyKkX$t*_0&({uHecNEp5` z+N$#U!+p3r(r6r~IQKDS+-?P0C-^L9c7%kG8bA?&N=3-hyNi#*d@S#moS--mR?`Zc0Vnpd~ z9{JHeUtj&65<+AqTd`Ykf3m&l5kf~kHaj7(dfq+{c^8W9F&GNpXS-3F-{J1Y#O5IBx% zglRC&ZwCNuG1M0%#2}8*c8u#7nYB zUUs(9<;#yZ#Flo}=Ao9=KQB)ZQBqMsgP{$|H>sTId44WQ-dhstb;KNo1rwvrDkyLO z>6G-N{i=aw`@*Kej2krYz~Lcrz5AYC!NHZ|@!4|>H!705Pd>k6t|#ZIFbnu=klYC-~^I<>MM;1qw#5O?#khUE#wf2 z*O{dplQ+sw0h>_-%V>!WC83_ow84jkl1W(g(IW*?DrUS$!*-^!Rj6DM!*+a5?qY#z zFrQ$MfH*0*B?}u9uWjkd7mvM7EgZj@fc_Ao3PI{%8+0(uL zEud>abp2!Y`-oO%T~=Q)-dP5ZXm7TI>pgD2a&GIqeP-C$5%0<@vasYA-Tg4s;De12 zF`QKfjbX9YZ!LSwCK65$P6#KN$JQ5R+Vu5fO@&4c%(AWcquO2!MUtp(U&r=uJiYeh zps;V*p7*qFUz4fbY+4g!GF^8LKtS`t5e)9%PucTvonF`XtIkF zan?IM3)r_$z|}T;hOaYV>Xd2g+75R+o{HJ14 z|0AK5$F@--&0o$=rt6}+MD%eFwOL=k@9rx!yCe18h>Seweb{rx5x!AV#kp)7r=&nt z3&la36seIj63pp-HZj*M4$eM7;>e2gn63JMc$A~B!rYL7*E=vsGs8>1y*e}LHTAO6 zW%G(u&<=z3N=KWz(R4^snUrH)hvSay+m&L6wCY6%>>DA)N8?%{NT>TYds(R&pQ;M_HyvukM>5>rL>@I%Cf> z{EmrRkEo_j(^O8Ep&VthEtm-3+iDD+lsV2xMsLox%W0ZOuc7vPET(d+wpihqj12bftxhOOqESKz3K0# zLt=L?CM5}WDbHjwRud*}v&wUMRs+|^ITaYKyZSe_$V!_;VRGSE{;Rqli zkbKN1`blPOiE^Fm_1D$6sx%WgtNgJ}rX&(>*2x0*dcIlWsTGTt`bPYi2JYtgj_gWmp?Z3>-Qi9XZ$U&(L_O-CW1e4dp@c=sCQfY z9#gw&l!)=~h(Zxz&{$vMY~7~ZLbRMGIz>)u<-mMQRP{|k?X-D&w(k50>aOrbM@gy& zGILA;_|8EoItdqXZk=ysr2dcV*qB{QZCD5^ehvaPD47!cvFb0`wcE8Dd1huR;u4h` zHly%AnvaERa{#XG8;U^(WlE43EJV1P~2Kl+PZu-4%x$$nL%{3C#B zXvPZnfq|0?CCZG)U?uqc%5I~|>KAS5QU!EFlB6oQ1l;S-Z$QJKAh}7N#r=x8OBw~UC=90pXk?H$6W58 z_f70A%-qDJCZDK4NVwkDI}?3{=Hcv|qxGp8Op03-Q#H z3R!UyN7>sqy$_x{TK;l;dx|LCLXqzgITBEqwxRlT!QiYA-(!9W1zMkj{LAY@ zym%T8uKhO6SCrmKi1ZIBX1u?Jes<-)Q4#&`q-E;Kt%btgXrHYmA_-R9+HKspeg9~rY@br+^S%K1NIaJ#Ux{e5n#@Os+mZ&%S)qd+>%|t?foCySn5oJqwLfs8;e1IfV2AV54lhO8Z+zXqY;va>-=qR({^VP z`shRB|DG@|sNa?=NlSyr-(O2;@%zc|FdlCml78I;;b#baW5ipW!5H$XsgyOI|m9-_61VphX*JN&sDfsHlvFC|%5o2(mv5Bd1t zgnB9sKl0cv;&(MU{R7gbU9}F;4sCgs)M$sSeeAQP377o1n_WYMTQSX0;4s<-mDMb6JWUtH;5SBz{g8Cs7kjW9 z#atCd7Lku>n9EVb=H9*gyI~D!)AibaLaF)j+J5ATjEy+Qs)qrg?@B(`q4}BKg{_6Z zyaOc}nfjK<&pCx%GNAkOiB)qJEplKgn$G1~{Y8IUVI^NdyX-cdR7GOn5W`dC((wVU z42dm}eeOgY@-yqs9lVSiK7<4P;RAlU#UJZO40M+_?)YT*`b0fwD^yU%Z~l>izkjeu zAaA0b;-b?|KoHA!_9PD&IkgU6TB-Y+f`EIMnIgg`nxhkhh;#*%^751%|GH&&%i4O9 zi2CV?L#&p|^_N4*vw(Ly2ZFE9+DI+(n4P)UyJ9=dHz088- zfRVwl`ZL=;3eP1q{%F;fD;(~Ix#;LIeyoN=LtKX7575a(q0(Pw7m%htV)dG(oBD8q zUZ6vg}$1IHjiw*@h{L!>-CE}{i^BR0Y*vB zhMk_NblNY!5j2j485ZKX82RgzoE&l69mlVCAIUqifm!W)(;fNER_0uluoUHP`PI8) z;ol~MLP7J@+B-cMiwt${$&;wE(30uwln2o+IK*{L5JqMia2CJR_iF$SvohN{{P<@K zxNi+vfr^wm?x)rr5}UFciABtaxf%0OI0bUmMh|k$q4ae8L*20>_( z2t5MEGuH2eeRNA$sd9;`H;Cm;DtLwpKwz)eHBKoP5fgshB_!Ek9a8ZqoE!t&-ADVm1Lr5V9#RCORg^e6!@<|4xR~*E zO#f*EJ?$kjl>ZHW1}(N?qVEISN@P?OFJEWE+GyP*r%I602!^*^ zjM*c0uXbL0$Vkv((G?U!nJjD%Dix)8Aq|0=pkV&7lCN3$cHIwu(lc^fO`k0}^$r*n zAD~I`>=A}W{sHR-={K5KiOr4o(TEZmd7ui4;dLXrxJ0Ew%slNi{qqEBSQL0f3E%(w zo~{{*wFVvJ67aujzE5d#!*8Mq3|;zUW3cDI5%FHEF8D#0W=lr$m2r-rODBkchj&(m z3Xx+DZpQ>PDyB1VGBS;og`K*Dzlon(5gF&G-StLz66+nW-PE>sALe}Ojerki`Xo4A zj`>{;g_V(g%a9@^;g~T9)}=*3uA4&%j9#;XYP^2Pf6gV#1h2xC<=?pUNQz%?xBFfR z=hD~f+I%Upy?dV3=Ri z6@&`b{#s9`*7o)f^3OWF#wL36ALExuNgg8zI3cmd z9)YG%>Th+*Rk2@IgEi*}L*X#5Ao(CrvkKQB`UK4p4E~qXYBWj|)3_+lb^>!N^ z)tk1G6k>Qk)xXy4P5MuH$q_;zXHC7}%+WM|0mF$erstHya&iQ8nImqnMks01{q>U$ z$J1HgVm;N>g%eHB$)SJ<-i>#m(d*pKc_0tPGo4!@bC_OtiFpjz>yT|I_V^$J%%LJhrBM z?AUF4Lz>!3O9TqAcdU|BseJ{w8SXuj;P>7rnKGT^F&`} zeA0KNu@{I82x1v}A;LDR0knwjfhZ{?+F+F*qd4Kum=H?@BwcmZk{O{VTxKT42RTmG zWB_`aK>iLiW_(-D>bD7jUqEa1fqbnmjWYp3y(>-Ft-k=vwQ9nnhOv>C0|8w0L0&Mn zE4Q#AT)}rY9dH2zHa+0aS&p>9kxkaPw|r7OqEb{;tPW9G0+v$iB7m$!u%4#?`Z8#r zf|C~|RPRFrg~v~rMBa~#7%WfUI0+ykamU63k7Na3R)KhmS8CA!637+v*>R zE`$Ok0qQU4Kzux~pP(xBl}V-J&%t-c36W@+$S-AQ87LxH&XGc_ZM4DH+vHe^X?pqE zbmP&1$o~GmGsI`D`qGuvuU)&>JslS(^L+*Lga+7lX%zR1aziwQKaW+@va*J^wyL(a zwsJy7?0ZLa$2FzTl{k|gcI zO+i7C=Su+0B}==YYdu#kL$cx#06Z#K6=aMY<^%ifS~D(&6al3en~Wg4=FIw>XsgXM$eL&4GDJ!F3 z5IFJY&Z|?(fG)XOz!gV%-d4eI^^a4>aB?**=zU8F&8w^|(oFuDCV!%zUrOJaUOdf* zqgTi18yb>nGh__>x?8YtUlw@zL=dFjJQ`9UScEg2I~9;;U_C2#47)a7oWs`D)jfr_ z2>q|rF2?d|CW)c|Jr&K?a*D~}qYr{FDG_Ir^Ps}|u4|jn#EhxC&Ao??1W^#9KM9_W$m5@RxDD#1`^>F0`h zt>PBHHGX^8drRCBBuen>FMnxlw!%kD$&~4;CPChz!GQDTqS3+vV9|IW@dcW4SyPh= znnZ|Nw^LEEh!X>5r_G_T{_%$oS9)HYzuK-Hm-`?4a;v#o=~!pVW6k`vjS-8h2tVckIDA+jSzJ2mHHNO z3RG!rDose2eF9F`fWSbI@FM$x)4KZlR>OHlt6N(ggnXjuY-|9;`K@4HhKEW(b`hkcv{cOfw=OXWNrv0}$0R6t6E>~FxvfB+ z5I*DLkokQ}OTJ?7F@#Cb5D#n~z*^VX3cV?UlaiPtIOJIY{uX@Y zjf#&?-8DZaCnv~~yn>D*gp5LaG&UNDI;0j#L$j?RldYPckdW{gAmon;FT=peZ9?2jLot)Xk?w&sr1VeRxpRjXi^cw0ooO6{E%x!>bXyT)$;*56kKC&F^sk0XZHx z<`u_G)5NSFO8^vhVF9?r)OpmR${HkDBV!8-3!#g~{e^OPd2;;y+0K~D9Vf9^5qTJ0 zxp21u z7=6g`vkMCjYdVI8b_3=&Z+@PthZa)w$gd#-i*oOkXvITAG$*_K!?NZr@#mVKVJqT= z1wSJuR^0!G5J=%r;=U6PtC0zgAI#C)-i?|XS-?rsBBI`#cQ3%34eQmM(aFNWOjG;m z1FK}-kq{YLMMb5r(#c}se2NwZ;pgWsGQWELdWYOfT_9wtbPWt%K~@#uepS=+gbX!| zD7dk)v3KLe3)W;gPijcNc6N6I)VL+@p1HX>^u$pwD*1JKtc7uej-Sk?2dki(_Ny46zrv_L_yT!GrKGSug+QX${K1bC zY%p70D-vM9??QJUWfMEQ?2FbFZ$W3sC@5Ti%4cL`z%TEgpR--8NRx3Rh4YuxH=ojt zG4RD;NTd!GMTtyDANaV>9o|z?&HoJUnU}XW&)Kuk*(Soi%)-u&|8`H3Kg+q>IDk-l z0n=SEP%>l>-9hGFQ`o}hv?6NNO4i!eW>g4U!pE#=<9x@}F9c*Ip)8=NNc831$zA9L z6aapg6)=Y)$gBR)<9u2;@O-om8E;>CL$C8zs|^t8#kacXU;5&QhK3BGH_B9=W*-WN6=hQEKW!c0Y~`BL&2SPF2f+F_$|2Hjzkc1Av3Sfg@vbw!X*3VVY3d4~Ql z{uwYM%BH3h#}>9^W)zQhfHy}xPw}l*3K{|S5AF*W*g$OgHW$AH!pVZ|f)_2!L{Kvh ziY#k%6w*Rv6~MI~yaUQ}$<npTSB-q6OP8^s7 zq{n;ytJn8qbsNJb;HEbLlX8k=!Q0e_6a*FsLar0&f2n|?Q8L#b0bJSjOqd)(V<*@Y z{!Ds)Ywqa4K=FtwY~~zZQz&qVfO+)~F&L4&vjHM?tLUujX;HBJhFB5Up%1iJwxH3B z7!XD-e1Zfs3gP17+6JhunB#=>g^fX-s$W?zMZxk<+#k61Z$6JHK}D6edekC6App%? z*>OUN@IOrp0u_Owoh_mW9AUZtih`C9P8n20|MTS|ELD%aY2=yp80dwFXk5}#El|M) F{2x+xHP`?E literal 29176 zcmeFYWmuJ6w>G>$5CH`V>5xWg=@z5}0hR7jy1TnmR5~S!7R)vR|H)-5s%$G~p>OM;WBnCk zrekYqYGG??r2EqTtF?`hg*huD3nMH2OG8^*OCBbs|9+p*!rFkz6T%__fxLvg7ZH+o zOx&4ua{M`Zdv|#LrQ{o8Gv*sIIFbAwblkTbqEf$tCDd-yL_euRUR1u+Rz^U6{w*^) zGw`udaj>Dnj9IxVZE))E)aNne#`z_bUxX)wahiL-xO?#ReXfBnp|{wWlBlKNu9tsWZ z6EfKX+ZJcbnpq+N*VvO2+q5)t8^#ZC2jC;v1HaxOl?IT34GSwW8E2fTw6Hj1{_qRp zh!W3ffrh7*io>89%NPHbn+Q#@P_r*eN%Q@O520YmADh=NM`16~?(<(68NO)5JdXGL zBth5^SucahO3@G;AyNnyCZ^$FnyB)=Nq%$ff4)=+kea17(Y{CzzC z_k)aw8xd;R_4h+vEa_RuEnH|q>LdB&7|h`UfjKr8R*0{d;L{=vnv z<@Ij-smW_qcpR{&)XUaQJCg$q4H$R*{J0zz{=9o1FH9uk;lMGCq}Hiy>EmpfDsMkM zSp1fN8Wgk^PKWslc2*@C^EFI-1#5^gF+*R^FShiND69-&7J*}m5ZZ&ts^91dCw9Sm z@2c0OvkyEy_TtVv zNgozxGCsLqA)D7?2;7cT)!)0v3X(1@eISk=@p)L2ZGzCEu`|;0;ANR9vMfL1xTeY3 z?~M8~1bVROsiF$q85DfIa>rqAPNx~E&C z`sh;NB10l>__#RB+f%WN?ct7xTQegghKv_#K}VIeq@A64a6T-bwpsVpcCFs zp+mMOZr`?GFCsLgsHjgfZk2x7DI6r*)0M$dbQ&4igwiQ3UiJHABoNt^jlp!+yUXU3Cqigv%ot*R| z`aQaPdiqGbH=8*iIJmgW*40ImrUDVurW_R(^Js5vZP`$988bZY@8lH}Sd4};uoNM( zac}(c^62;N-oHmC=CNJqrYp<AqmerCh52?9t<=FU4%mF=XeF{>aQD9XjrD zqoNBKX6E$@8|Ne#BwJZst{OlLV)@w`j`J2oONyR(p4#=Xk6VJ*$acAvl~wDgb-nb5 z4<96M+VEd5|IGTe?<1eR|8C_qozGx;SOp^lSFPYQjogT+Y~*xI{4SlgvWkILQxT?B>+8JJc0yx zOGsM?uAHLcT0V+-UT^P*H>|9$UcDmY=Dw5{^oM-|w=3RW4SKRme-#PWbHxJRk&%Nx zM^QgeHz6031}TFL9v=JU*>CkO4i@v2i@krn3n+2e*UXYlkMYHnJ?H+HDs?M2dEL)fIT~sIL5L}T~gL~EN9#*~n$;MzP3IE?9F-q`p*BSGR z9xd%1<==U}XS-oy&=?Kx@br121y?Pde^W~0~ z!F0TnFUpkqOLx@0EtK9$z%<#KYD<}97}=4U*x+R1H-wQ8LRh(52z6tV|$#? zt1uN3&+gMf!m3(tI3`OVDb*O3`Wifykt8E-Z}PL-Yr@6-8JnnkclTb zAWcSQ=~lKVC^eNCwa+z7oBQ-7EPA7YSmpbM0WJi1_n-4Qp9Bm4W?=~l<{Z}mbWRs} zOfEqBf21om-;){#|?WO_fe+(#=jWk)*lk z)ybtY)(iO6k%!D2+iO*oD40jmIaJ#OQFl!CiO~vKJQ)+au$e-ISStMl>FmPm48q|( z)d(D=VQ22yqXOAe|Aqvfx+W>yd6|Hm!rDcqsc4z@9q}NU_v}t(n2gvELLoD45s_BX zIrnLf8>Ah}!J2#9l9c_-D=9%dFy+>n@saiBAjb9!o{PRZqmYb3ME1>!F&84jwc!} z_x6wuRz^fZc%89H93hX<{e6&rDKUXWV^YYT?0|ziN_!C~cn+U_kgoc~76&)(T8Ps0 z!PW=^_jgFZdqZ#u$5m7wQnT$2d-MfDURS;`wrgv~L@n7s{0xeetMIS~1X*h9VT)fD z)}vI;qft=}fYd?MDNK=-1hGoU2Vflu=?BEcE&Aex<@v1Tu(a64 z^(s?Xdq0W?W*)4lYPBsW8RAh(sRmth{ zh1~98m*lFuC11s|N6t>_8ME=)V^2>e@%wwLVEMd3C{Rb9t!Yux5;A^$v#oV-(DFS0 znIh)O!M-coVu&mJ)3sQY(| zMw4q7@gE0F{=w3_Vo&(1P#m2Cp~3{oWV|^PU%Nb>pC{5E76l?xpa0Np;V{pE>Qz|D z`H39wEuR)-g-xwu;y=BXKlD*zdCH7_^fU= z>&?9Tc%r1_za-&`Fl@0C0|Px2m@Wb1(yyrCbk&}GAB65lc=$Hl&vH#kQ>y<~$P5gO z?T(KX0l}e)uG^%{Ip}@yp!*pn1tm2#qAig*=gM01#i8X1t?kZ}T*am~T%?l<@~n@r zAUq7bH#OXI9Q*bjjl`FC&vRUpwcvjLe&J7cs@=BdylN{ptaykFtZ*s?$8pN!Io6{P z+?MS^x|{co!!U3zLRm>j;)YEv4Il7GMsOCOP9LNo1lWdQTAl3&L{fw;p?S{VlO(%h zs#dT$sFO=SfOE`G0(W?S?O2<&O!Gcn93J%mcU5`V403q|d+z^UsynU0Cf_+XWy1?#5XILo#dp#ItCyVzm% z6O5dqg>VR)n=>ZyI%H)}wS@#C`0=}FH$pnQSkCTd-FZ!?5R!Nk_}@e>WPp?t7Z+zb zT@luoz?r}goHnph|C#NsG5swyb#p1SS?eAJ85y`Kr6bHOd|8xKUiB}fsixTA;4Z#q zGFig7j2K3qoMg64{d8ir=m$z9hRRsj(%B$IM>4OzrpweG69LEa8_V@4-Or|T>mbG+ zm39bkV{h;`wtnL1-tEhxjX zie(fLo72x{=THvVJQ}Ck3vzn3tOJ^%=deB3dCfx=6*?J#X(n~<-v~~&Q;Sv^ zLz4YuL@a-=vkjLv2x_|)I`aac9GECU^haX{f#(-298iX~WlXrfTlo3G;-V+^mX^ir zb03Lr-OdCY00B3b?WY@qAZ6Sv;jV>CQOZBqqdFFw5FBndlG3n*tx_81*t$z<+wI3G zuJB!52V1!Z6MD~a4M4aNjsg295o?1zUCflcd>jjM&3x6tGw zJ34iTq)7@aWVeS0$#ZTJ2X`LoR4w2FPke1`fuUDH>fzhN=+hPwww*_Raqy1o*4Czj z3YIcOMVfz>R&{dT^tu1Muwgow#Hunl^U+5y^;gnjk9Os>@K?+arCRVqCF2;|i45{Z z2U#nU`D>7DWBkmPa#IJ?oFcIRv%AEP>oc{g3ta$T8+E<@$Su~Lr@Fa-IE{%9vqZ*w z{&OPReKak1^jezS8)Q1(BTyY~$L@`Lv|o=} zA+}QfAMTrTKx2(UE&w^(9*nztx-0UdtL^AHYc_0N^4avEM_3?nOqsKwDs67-58;4O_f8=ODbt<+$S2tN^ z^aGjV1xDl}7s=|)bMdNc^JVpUA)ipH`Fc0P`I5~4^mmw!Xa?KOAwRE2NT20x^9hW75`n)2{#5p0rplmgIDCEJIwa z)^wlbh04m=pq{Ai$Tae^Uiatgce-im>DCXH7`Z_L<$&{aV?LeCLg3nmM0sZ zFflP5SEH0_BjBEr3MBdTQ zVdUDKoP060j4gg<#@zMBiU;ryyNh?%l|!}FcdM_P@@s1obz1zbHU`L4%M5kSEI(k3 zuzJ#bR#y-0S#7pge;?PUuXla6d+MG-S5W26RDa=JQt}3{v(O%n7`0# z&sdn5Z;L&odwo*R!NVQ~g8K7evD+(ejf|Vy1(l|dFJy#}+tvB|JBK zPiyv91oML>hsC?|cU&G7S14QL->}}lf8S(Wu3LGn=sCG-KQuJ-fgmbS;$o_Sw4e@l zyH7mEHIURQ2^h5aMoL5}*?dhQpZiw{OIUt zqS}TAqN1WguT`IDknH4dQGe<0vR@Yi>~5i8nfl+{G10&^fM@vtdq6pzFL!5<4U&y~ zn+DUHbh*!X%1tql8HDPP4oaZ{=^o|pDEJZa0C!=~7X0EVG0)FBm-9DnSGFjqsGC#e zbo=$!=3&jC_BN_o(p{#X_qZFbBH+lY5AlQP;+%tlpwrUg{|rm+*&f`t1&tn8b$<#@>S=om~iaFle2npn&Lc@#sSe8Y6C^8%OQU8+FIU zE{{TX7UZobjvWEQ7%WO3_u-x@zJ|w$^an-9SoL{+vBAn?;ZGRqb}v388T&Sa(;DX#I3zp;#RkdifR_#n861$_q0W!OG8Sa zufW4q!7}gj2T?M0ua($UvtoBO>)w?U700!ap)#>*H9F827tlE$F#-eGQ1yUEB(Bdv z5??l~G@lKfbLX7H`!*dU5eS3&$S|-1#^d5(rMO-6 zyag3GnV5JJI}E)7R<}x>5ti_T`tw+=?+?-OSl|JiU-^<=e7x_mKduHym|<9b`$R;9 zpgBHP-XNs`z={U{hIDbA8^@|O0*af{9b~l%+MA$2ral;a4I=emJ3BL*`l22|hy*f1 zaWQ~$BHj_Or^9o+wZr4aL?iZA%-3#1(Zl&DlEDGP*vL9jQOx>J0W`z7W30!kFb8x( zBo?evMgDYu%XG5&D1u*KT{a$Jd%VRcJC2tT1KIuIIw8O(Im{skpubDtD6-BR+?Ex| z5MX;W@q`CeS)}*#C%E%D)OP^{i~A)#FPUT)Wkm?YKz%pzSWKk%V7IcJq~U81KsNy- z-T?id?e>wx1^N=eC?H?YhTCU*^@QEssb*?`XstSu1egg_hpYhp3gy+#Ol&*!FaQRA z913ILu_EPufyNAG2H-q7Nr=y3o^ba!hZA!~6}4C93WNpY1}TJ=Op#Rw}xLPSQi z5q`n{86j{GwW^ixQk_sJ(gL6&S6k2ppN=p9q}d+)qMgP3{t`VS6TgXx1}SeWi!>xR z?SFWF#*spY}Del<6J=fWir+D(%Cl))w;z{E7O{_cJ z&mUy|kPp3tyUe9xU=iXf1AX11I69d2|5HX1h{Zow1 zMBc>o63+5yrRymnM<~eBi9q+2)ttp3^u#g(uj^4B%ngb&Hwpw&azLXFmR03vjkS z4+R*dk0!;nd9KdI>0&Y9krgjS(A!@;gmwonXDlCm(QgLqa34FMMN$OxBl65al}RAA zbGWYgQSViKK{v=!0&uq$eG?PPJPvyw3N`B_0QtX?FGA_;( z1$mglwCPWpKt~cNfa2GaQr>CLTLCGm;KW_+A@y~L(vmAxjz+m0g^?#cFy{y%FR1C3 zv=fvyL)p*{jZd1(1_b|3Sx=9kWaJ&d^XIHOi1Re-;>q6m59BH_(c=K8q#(!WWFlD+*s-xx@UJ_39XLHt>K@3Zk^49mJwc0fysl_@pMk@5POR4a zIK5IwV^LCs@;Q775;Fyb4?y`yOZlQAMby-z+}qem-<>5Fp`;zX3JOi$hy(XqW7t0{ zR?BewYDdmB3oZ{C!(9pg@}r7Ux`IbyRImDmMC$sDnAaX*X;)MPz8PHj0+%qV4vWTn z82Md5^SaX~TkdSO3>TbW2}f|dJA>&+;^9P#p{)I>PRDCy=Cf1lF@X}yJfnJR0yoe9 z+WAz@`-66L#Zyg3xT(Zsf)dzw@gaUeUy$aU6>)bLuvzbK(=YYY0ND6H(gWrpuw3~b z5`tb=1=%$mKe+!w>WZ+0V7J3WEXGMi1^jHs4+)R|!3igrwwtdVIiz&b#YSv$FmGEgDHlNeLMl4i_$RjGodj+pr8Dd(=C{Ue;Y9CKdN84r0eR ziSwcf@HAVa?WcgX!IJgNKHWUzN6kg*1~fT}7rAb*Cp}z>%U-p-ygUNT$h9(dT@{R{ z{QBmzJR4J^Pdp9}#av>d=py_ClTyjZn_j( zR7&zmvR+rDI7jVvg~!=cYmd=a-B?eQBJnu*OD8OxP5-(I$NkqTQjJO)b}t|?TJF`* zW%EkHkhZis8**#mXOrXO160#LxF^5opWb!gaaS;yj1v@+a$}OXJjKK^saK*srN@r! z#QX-i07n98$xM_Io=smX#h_~p>n_zwp@N22f6u3IilyG*>GkW-#`9LJ_PYkGL1Y4Q z%urxRkJDT&#D}Yh8VaFU%{kCsCrxo(%z~27M3=lK8YR*_@iHI8I-H?JqjtTCnVDe? zlmcC(9MlWc!KnQkJ$n@Ny6n&2#kJb={Rj=f9j8MWtM~$-OpAZh)oJ@aDf>`U zdNoUH2hvH$OLEMQ?x>!iYnEA5^lfBB{;&ORaGP$^uKl=U(itSUvungbD}}-%hVw?J zT(>7)>}GOZ2mE#SF1=}WX``Ria%I2S`RqP-ye^k%vi`cDxK&NvRQ`-n3k?7rtXOmg z@*&?F90&}dPgR(0-x^><%6&?4b7R3L4&>i`8oqZyTBSaL%fFKZcjDVTG2H)>I{lr` z-mWE{bP}mkYt`P=sNs(5n2P(QAvt;0u^NPLw`{ofzE-aT?doLnoo(6vG;fj&hxyFL zu_{L7)X4hDQxjcG{8Ext!#kOs5dG0uhO)2HG!<|z5IFl?Z$b;-Fv76y-Ve$}pcQot zUB|>gehjzyXaY19K}^z=JTSYLKq`z>a)wm_NQyq{lzDc5}XU zx;pg2fM160shcdXU6k^2(%#%IleU}Aw}%a+Ap-EtcUJ{?Oy3kwgtxK{4a>X0d0VIA zzXnNsJSzJF5J5YQtry0Sy+H(vYQ+T$0>|1(=nr;tfw+GIwTT8&=M&F-HJ#4q4Q}*+ zIbRy*U>?_SAlAlq4#i{fuBzhNw_%J4VQRSfF5q@`aU4y)L{rYLb!OD{=G6Vo8lQc0 zH2vL2CA#P>KeAC-DA#DIy~hDP*w? zSLoD;9P<^3)|Ty|_&S7l5YRiGtS}=?;I!ayp(S@;G^$s38{4^v6PWgm6KKe05zoI= zd#8`e?|uQtSa+g)k-&v9R;UCJAnaHhR!&!+j;Xzum8Id~A;=xwItI`;AiH~<)nx6N zm)skxDb%70>6U2rFgLpBtDAa%Y!!s>>@0u!sWt$tPB}O~>VYNM%k_b*XSJs|H-{0= z)93nuZVuiW=O7S+0#=U>XGy1n(^amB5E6I^&M5ZEmqi|1&(P|K@hR6y-SW>>+SCPg zeqpamo;(&0f2)YYcj#;7Hu?3S8Fiq(u6h|0gGK5s{6YY!dnW*(8&l;bFXuExZd$7g zW4nn3JzIppNi3G`{4*%irV@*Ov3JRPmp6A-8go(pyfvl%8Vz*)>o4E|zB*k zMEkI^0biUMBSHiy&vXq`%EQ z9$Fe5X-PRbM{g35&L4?gm`-sil!$;>9KyS+LyD4W@0nz&pf1y*L$Y27>bFZpvUdW ziJ&TH+FG%1h|u=(wG5Xlo_RgKSlFB9c?BhWh5E(kcR8dDF`x;!?pUwQvHs>2Nl(>29pJCTB(%PD zOK+E%2^UZ}3NOA2$t8Y^F<`U5yK`CY;Ba945UWjp@BhZYD$?QtwF$O$Jn<)my*B;a z0ibKdxym5wEo0_V`&lgPxZ1p%U+a`xsTc;>KFnxS%q#6jX=M-<76YpW$6Qy)ptSRA zl_z1%$P1kgkm*&Am-?)1G$dxPJEq}=Dm%rUM=F|r@nl#Q9oWEo?$D)Hmz9U4Ci%L`AwmfNsMM)r1vM*S zKwn?%A)nZM@50AOelwU?FI&!b(}HwJn=@uSys2F;|cuq58a@Ytp3r$i23Um^!WntDv2L&X=`&{ zUks;cAAPapS?raON%lCStz(oM%?0w2OLj;-I6ryn)!$7Ds{IQa?&49IYM*Bhcj0Qe zS~dR=>cu1`?ptaLfsvJdetx$5b4l|zYn-499na4enQHB7nO{&WG-`vLygdLH|CM2} zKTjTrOdQQS?}>Gsw_S`bBlN5OvhN}T>11SMA)Mv;-Yi&z*z*`Fm;z7;u$WisQxC}Q zR5>iqK{7HkBfo!dzPr7C0TGS&TsN$htt?;j3d!4fdTgn3Ar)< z;UB0M3vK(Cedl5q$LGit$@m>GIfXm}Z}9F;KZ#ziM0C{ED&YK^dJ9=S0TjZZ5POb` zi_{oNAzrnf>|)&eyY6htGXlQE10lx&iT_5lpC!53T8HM?Ic_*4KGJIBCL|jDS&TiDKj_o+TdZCmBM{o4- zOQfd>pxo!X?9pUc@RiS+cJ^DYPI1g@`Xq(C{4N|hLvU-Vie*vHdaW0mm4%9C1rfii zT|0z!`y$*nB$F1qgh*?(fVL3CjPmUv?*!kb=qBC?5*3k1GyxC#&zsBj6dE$2s9@- z!ow|s~%iwh@4PvB<*(+{hwtFRSdP(Mu+wKPC4*fSAv20J(;#Hw0- z!n9sWgd-sgVD|BCeu1kE3eai6lS*?qmQmAzkBJRl5)hoHIZ&6XJb&RiG0VIW{ z?z9>ubc<-sMUJRtm@pCLJy)#Slc$;}m6n)ud6?q9;V}jihQnD=R*WqrWJ8`$E z=Z7adf@3`IHqiB5Nl{RBTA$GE*BO}dk_glWw}m8NxU3MRKzEZOdH2?rEyU}m#hQ8# z=eAGqQH|{F4I1WYus8OR{xE*7M^AoHD}hr2H$ci*v-2h=Cui&S3RWQ8wQuR_>IyHR zOa2aJO>E1^9A+{2RlH8`K_kk&TpX4lIk?1KwTsv~In>puvN2v~VHchmRF4iiuzj39 zvuMc32d!8@)&2=6WhRqY>)Y4O?Ps9bp!wjw8?-@NQMzC3q)aSc7qRPNnmm6_b%!$BRi!A(jRhcoH%)? zMhm6m`eLmBnXdR>U8wuJITKm9_JhS1m112);BH?*_xMAKKvHwFFsRtOYxe8a(wRjv z{wN5p?Oc4F4c@nZx5=HXIY%{#`wN*$dR%pO zmM4>?0QYc^A&q<8miKdIeeG+U$|;ut{hz?+ps9I#b=m?5fs1n8Hk5r6u?UjBaAMxy zd3h@U#bpAi`r0$)6@v~=;o6bMOxn;gDyP-d4u5$R- zRxUwL!5#gEA>h_u`Jr0Vs%Zrnx#%S=grq% zx5SGSwFuv%H!EruLO`QBC=N<(zWWs+eXVK~Ac7Q9Soo|&Td0Y*#ADkS`wQ65=AY)z zA5c%adF)w?yPGo}8l)&KpWZRLKFI*3b~8fNl`$x_!5{*I+Cmnu>f^6oQX0Sbl=W#v zMdH7Mc@xk|*~%R=o=3_WowS{p_e1wO8kQZXWTIC$RF5Dw>4hXaWwE5|!+QUxO`kzP zV{jA^f$3$Nn}c4PgHj-CcN=AmdF1)1N4-TY-0a^bFs}j%<8D?Y6|U@`RaFBUrMLyK ziwK0_J_;viFWEbs#j0|i@Anr>x@Wxd6~@a!heFQ-Ua8D@C~=Q#q9UOS@6Qz(?P~tD zs0{$^1@6Dc9pAtrjK9=HR^(|RlAWmSeYcAvwi6nk`tR-A->gKLl4zM@XNQuan`o6{ z9miZp+`1McxTVxtBCnE@XTv0P@(7sf-c~jqT1>E}}{)H`IPolC^u`N`4ZVsI-6%|78#{;IDJTpx6Sk-NIO^wGt+aPs)>y`d@J zk+rAR+@UN6d%;HpO~Y9JfO{6wIIvoI^5tt2mMlcXs!Md0{=x%2QuXY`rQ95RXo`jE zm~Gk;7TmJU_~^>y&X%eyEt2uG)yqk}cho;a0ux^&zC|WX?z>GsKw2~3LtkUIeKYTY z&N%}SOlj_PtDFBig9!a@-!VHudf9#bmxE$2-Exo~h)2Ea-K4pEtpREs#4PfCX0~@8 zfvf2m!uY0HOA@8_bV-QXUc)QX5%&y{)m76(i@C)h;%kwjo(tRRWD5WUK>gb6&2gUc zHy8ydJ^i2g41G?AYH5<(*c(cjsth+8pC;>mw}v{Vn5d1h!JbkjjDeh-{T0}Y;k7%t z^FGdjTwK0ON@eSO~>%i|dbVV>qQ(0CdY+<#thcU&$VyLs$lhNbW9 zQ9q`bU(8{Frf8BsI-#7eoWO~`bx#WV%6`Fb34|0Ho2W)O&s_)@YS4&(e=6RI<3|;V z6ji|oimNt zm}ZqzR#4RMg*@K8#|6kxnAH;#N7%`x0Y5CyVaKqaDn_JK7g0pCDNhB+jYgk(kbp93 z0=F;6E+W%ykUr;ix9b(llJ#Z1SI<{TK`{)BKS}VZB4ygYRn5A^#>_eSPJj9ZVR^Kj z?cxj#12L2K6qKE$+^CbJCl)Biyd$^V8L9duF@lvFNFXFX8jpv3U z;5y%$16$=~8iY3M`22&q+xdtn6(wvLFT*dp_Jrcqr+d%l-H>*t!6X->`~CHPka1(m z-PKNUSu4%+sBbF_7r*P32ITNCqrPPTHGJgDRM31kezdH0$LMX?nfy0P**QPrEn5lW zD=$D_UhnyIOJ2b{&Ds}(`Oe1hRHwPi{RW{PL|*95Hn7p9Y9553d3a38&e zU+OPy5$^N~ysP>ZmM2@LHB?*~D2^*Xl#PCK@F>xqz;pt#+(Ag=3M0pY%8Yu^T5W)_Dz=lmTn>RKr}})!&H49KwhwUOR-GdZgoNn zgnw$4%|Hx$Lje(EW>Ek3ZZR#cd~cOro$W_6A~&o}3_BK*0|)EC(En`uyx5rCZp_Vw z)^*iy!rE&+3*EFt`gohzaZMk^e0Tv{CRPH~kU)uLaM{O)%Y2e@Yx!3Cp9{D*tnB^K zbNX^ba&=1`Hya?gInmsIgj%b3SCkeCQh9 z(q&-Nk#Np>8EMazn}%=OPUBiX+T5muP&AaD{I5%8=%>Kwts^|)M-%NHD9Lnc92Yd1 z2c}D(q?RozZKWYXwYNj4)lT{Ygce7KS$O7}bw6j%ly%czJ8gJ(#9cH;wN@}EbJCUl z?UpRoZsIV14O8PpOt(w7dAE%e2L*PrfGqbdAwdeXfC`o)YQBpZS!(C5yZEaX<)U{i ze$Kize}>AT?$cwIDYwK(vdit$&u}j_m?8j>(8k!StX_3z6#2yK5EFXAY23aycBbUy zOH#1G3<1yj8>>(?w~&|QlVG~>bODb<#e;#dGHSkDt3}YCuho-==(B~@a!dcws_KX8u*z69)?MC-^@#Ts_!607v zC&*7ZYu9abz$a*qZaZmcNR>qHiI80d&i0Swju&5)ZvU}vsWwn5UKtYSqPvosF()k0 zt#K$!VsG0Dm8tK z^i*CcaIVgbiBr>PJ^khvWQM2Ao92!{mX)MYSI_Z z9v-+1>7z^#X#eLNp@0NoQg&CAHDTzoF9MQVABq0Q+K!@|~M_U21!$&TU$1rB>8h-uLS#O-k zT`0W;S)d?_So0@&SMrLyP30;5BFovg?hYf>WyF6a;y8WPyRv&&&OEr)~kb$5Zg9+&XlcX9H2H-qct;kvv){DbGRNKTL7?9Qkq zaDzu7=;7VbKpd1nYtFSx>UyvxqgofYds~e#d}!B!x(1vwkO}dv(Q}Ky9uglyPJA2E zj;X1M3t5Gz!-h{C`ng5Q5(%;IY$bCr;L)*{XG{#neR=E1n1`Ujc1k~w=f;UI`lM_o zi!!N#23P5K1VXrH*K95hjRXW^u9B^FRWT&Kg#)v={&^xouyWz;SC+R~?}eV4qv~T? znb3U6Z40(jmuN^Xpz?}l=TAcw14TwXZIsi!>l05KHCO2O5Q9NhlP7IG^GGqM zd5U0@Y6WpUIQ!0G-m;wlZGGdw(^NJIpoQ2ai4Os810>gr%|u}PUgoSRbxjR%&Gp$C z3P#nqlLL1F)*Hi4sN}Y!OnFh`!g;cfe!PZ1-Xi0Xq~xB|wTa9NOY($wmeoZd>DSm2 z^h%djDd1=QTMOXh1kRjwC!ZYXHb^dUM9*2fhvzd`V6c3ArXFv!QKq?%9V{Toj(w|7DGiE0aau)o^6g4I0YY}3!SS}3rbKZ$c z^apTEKXZE{o$*!LU_Llgpm4rY_mz>#u-$hsiF^?SpUM_kX`rD-Sa93Mo?KZWbC`UO z^3iU?6MF22Y7lupun}mARicMa)RI3 zATa^4x+vU7g3PPS0)ezVkxH2+4zhJ+D+yb+-7KcYcwHimwHXtdzxfPlQ@;NmMj9xg zsy!p%yP|Dv`{M>~h>aiSd$P(_FQ)6(>z$R=G8bM~l)7{q?x0$ycKek}tMSm^&;`vp zM+)p>1O~x{LX4W=eH{|Mfr4O$3y%*E3|(l}X>Ti5olWT#e!2z|8Ais&k0_okA=8=1 zpoXkgt*7NH%bAKP7ehWNro6=(KYYqVuPoElf{r=M(?&DktC#TY{ubRI%?~QTTF?;@ zP;CPw=I3_CDPSZ~S{giGD;NwhUZXtgP5wf^IyD4Jap$}kEj7Xl7P&z4;fk?;*6i)c zXCLsDyKhj^@&jV*@0fyD3y?HZK;oXIiH9CLx(UX2WN6C!QHasd$zPv2_(Bl3<`R|1W_R%Z~5@=RBU7Ml=&r2x6ABPq_&hMf&1C z7{16ag=%pj8G@1h0AK;-o5`fE*y}1zggp(uX|Cm`sW~Xy&}+Eas=8<4pj!l!FFGu^ zm;DduU8*l+OR=@30h)Qe@tu1+EbKDEe;D4<(FX^1{`m~~DHbGn&1Z_GKX#Sa_W61f zCpkx(6+X0KPet)Dg?RJ9;zv!ihP(3O6_>UbVWbJ?uB*%8Enp791YyJ9Ula_^foT=V zbTIw2qgGtjzC0G4Z@E|gLy&5i=Ef<SU)pLyKo7SHb|SfpyGzSyrr8qOZSxCm3co#4!_OYMiu zek%e4mY-pA$^S9^%2vH4Rg=u`Iapz9ir&wW)s~avs%ZfVWP`E3P>9|MqbaOBId3&? zo2umovwbk#0<=?i{O1QS(1J$l59T|0_t{>%Usphv^G#^1RnYI5irX_LioiU{@x&n< z!OPbIks#!k`?rBVMcQbt+(7um)Wn8l3W3^7go^Ugw*gGM4DH~qYnx3@UGtdaj)_#3 zkH*^hTtV$GL%@_q&QQyOH8HA};Qa70ca9`FVJR4&u(n-CuL|DHt2Pmst>Jds<1V_p zKilII=sudezc-1d{6aBJ`RM(VR9eK>xxXz@nq?6VX%tLy6{Ij26rKc?8}bk*@mi8{6Aj=s@se*k8ph3+Zz0>R+MYqt>8UsUU%8w8 zFpq5p{}>|xla|~JRN$yZZ{YDjRm4QbS>2Emkg>RrvzGg9bl;chyq9c`pNZ=~R=fy1 zQAkqE-#1ix8B3ndEbeeZ<>LPOyReOINAL;9gGW5 zBUxPzeC1^<7I8%TpZQz1WuwWGQ%9x^f;HWg1GKNQZaQ_;!+p3E8BbjN^;U(!?>|Yo z^Vos#(ppjylG)V!eK&*AJ@6zm;<<~`-XF?zca^Ne^B=*$kS^qGN70- z3l4nhZelg?ZM3i2p^kCeK0+vRrh)s%^nn|E5Er3<-nKb^?&bmlt=A9=LA-KK%e zQ5=*gBH9N3tsowDU#C-gpZct&(I&4EmlFrILT&Fr%ACIgh50Fk_F+(<#B@5sM}js? z;$lJ9ZqEOE~~^?Qc~!yEtoR zxl*d;1*;k8PAdSu{Nsc97CA5nS;tNRtJy!)9x=ElE@at@$}Sv2z{p8wJ_7>uW0$kH zFkb6^?KoSjK5SC{D`kG%LMmERG&FJ2xyt zDch%ijupQ#>saTT0l_4--5iRR%R}^m`-wC9ZLr`ii)8R2_KT~rUWKdI4Y)BLH%fQ= z3zp5jjC)$np-Rc!nHzH-_N&|F^Dfnr!`Q3SzLgI*d2!1<;t`&FzL&O4^w)s#(!(WZ z>>B(T{O-JWlo5=2b5l`yVltodo9EZ3Yk27fhc**oZBNtcynnxXn#^Ri>u-vN?T{s9 zi&l6q5VBbrckmN?nX&V@{d4gm#S!khBd5DOwHKmORftb%PX(WW;8(%h^`C^Q-R@WD ztK8RW9Lyl~ypn`ay;MEMFBf~yQs515S;LLvz#-?M-jZ~l_4)r4_TBMR|Iz=~PUMD) zvWk$AJu;#qkr1-U%F52(du3#gG8#%|_UPKPWQ1(Fwz#-P_WGUM_w#ss|M@;1zkeck zyx;HFc%Jh*=RBWhtwdlas@KE1HR}(x7q&H! z+|kyhDG)g=TbwD{t3zAo7g8Hr8R!ad!v*+Fl<#zqp=*7W-D`N9jI6YbTl+PxW>_=QCY16(t@UHR99Atp>09VYY;- z44~*Uz-nnM|4V7V?YPIM@1bs?dE!N7*V1XWgmE|Bll64nqY-n;nGs*fD5`8_H;Fhq z(KEZy|IUJ`KiR_crDEe}?lT5Ww>14Zcmm4jN1gwSvddEf_w2@F{2O?K@egVU!7jXBySu(WinQhU$?f7P(hT1OsrhIrYhd1 zC4X2jxoYQJParCL-n< ztJ9^>>6;G?g!^127-)&JpY`-BT>T$ZWW7p`!zl#!iz$C8Ip`$i>GVw(QOgeP|l zs^~891gn0iW%2hpXdEi!GY;IX2e2@mXI}rMDmgmaUh+a!{?VJS={5A7ue}8J^OG%6 z859&|-RB~(VDp=BkKg=Ez<7z4#7;DZBzf7QUbycq6r|-0~y)CODaCS{kDb6dL+fU=z;k_)Y_)q&Mof| z)SCTxkqkwYg5!i2e_Xo zI?))Ymwd!V4KyS3Xpzy;QD@9hG>B+9fO<_C#rlsfCfvwp8S$F=Lvd?+V4E5ytx20(+r;!ZzGU+S@K||Jy(sI2A~6~FHbZeia{b73iXFPP6J37jry|{9;M%+^k>g> z4|GHOqzvY3Z9%CAkv|kq|H725xJtk?nF1N=Xs4>d)^k1ju^96_-9~<`>c{ejgV)Jw zS)P{%wzj$5yI&#fr_rF&Q@iB+y5ziyYFw48q8ZgK_JPCmkwg=AlK1b|W48xX)(_EM zIUaa$5P;}ucz9@=MMO;QRxihegqnUvdYD}faVMW^2v!QDWaQio=~UA_m_*& z*B(+d{2*b{QSO}6nUnHmDw1R$DkoQ4_#H`^;xN`*RLfLMYduXt7A8x_mY67~GfxjF0Ziz7d{o^q zc)glm?s2n^>ALf0X?cy+kJ9DaSS=%uuiXdnPl_Y&tX|k`2 zYA0G>3;Vb)W(eZl!W4L$_Z;D)>b98%A;ec`=;+9gt4}2&B640C;UAeMy#Fl*LEP-I zn4yK`F!2|2THrHnCr4v&8B3_10F@_#{(#O`a|d$m1soa5F?;hTE5kf4)5p%YP;Lw= zx$`yi^94{^6vZEGTamrR6)!_09XD zbTC}!9f#TsoYS*XdfE+QRdk0q8%8<-WXV36MkqE)*;3T#IPuYwlz?xP|F<{mfxu#< z4!v7Q!g;K5x088$bQvO9SE^)sV^CA_a;@LaYKi*`ryUZ~+sjBb4LvNKWq?Fsyzcv4QX8$s2@z+7j2I$>9^^CbS#?e-Zg)?{qa&1vFd%iA7w znXNkLrxCGLh7K{3ZwF3*8Oa&Qqi%%K`!XoBMhmS1M`g6clmz&!1V&JLD|!5P09WUL zV_1GqUZx+gxw{&W~o_^!oLs{Gm0+Q=5pF z%~UC8rWElN>yJ}-_X&zyS!cu?1549=rW{R`D%D@ia`L?1Q_Mt*5&KJLZR7VMzh4(# zc4#!oFKlPtODW7PC>hZ_`vQc2(jUUcZP=S31F9?t-Vq?|n?*s@;S#qtqEUEQzoj#Y zOQ+Zf@Az=nq9cakXe;Zq)y{t8m!%A(EK5Nu5lB~8elBX>p2z29o>$^#2+0eZ~7}0m{HNN1{^P99_gxb-Mpps<#{s4&_ISd`D5Qdh{TM7ZS6E}O*TJ7Vv^@Lz-RCcR{!Xq^wx;+ zz|M0_Ymzx=7q`rW^cr=KoelgRrc2+e!UhyxelzV(ZJU@p{G#1Gnb8>fBYJ#kU1ICj z&y9@bbQAyeUp%R^)GGV*PTtJZxd!-*S>UZIs^X8F>8>E=ORPz+IiZuXamBfzC8Hd! zE=CJubg8#kW8RwxviNGWqqKg1kNt)`&YbRX^F(WvF!IJOJ1O(K4?oqVPH24MLt7U3 zJs1kN2Mg+O(L8dTXO}s{tp8xkKY>n)+0T)Jh?;S+D(fU^c<1;u)lu+t$9vLCn91vJ zpKg}A*5u%YiVSu7{YaUn{JU%3$S4 zTaOa-`JN^Gy=Qrl&$&Dr`^xp2m_QcI7vETqDu(&RkO4;qS0jb;eQB1yh2OX7r#3|@ z2DJ&7CscjDUN0Ame*%ZFZvTUlejPSwA)p(v5UCFm^8I*hc+X z;wOI)R>`&^ET#-BAk57z+N{XZWT&n~CM z{&wd0QX}70RwvEIgpq@_&pf@OD*Go{%KHVI$I_~qWzuiqh#g*j9hSoRD5b0CILztE zL-ACkNEfq^C^s41E8a)^T^Sf9LN1ug|NPcU#@$s+uF5it%fw?)KhzLzRxFBe!FkaQt7_h$i!>FS9<;C@e zQ!){~)z$ng4}Fb!&sw8GQ$p+$l&a^wITtqhH)Rg_i*<( z3=ZByx?OvX>A8t(hbob+kn99;EYQ1RKKBWlsnVTV-%Dy7?w}NTy*gDIm+L+ zep+eAcbjW(QH9H41m2Vd$vwOv09vH?&?Kr7$P!8O+C*dQoYW0G{`1)ip`_(z59!t*bmm zj=f|_l$Ar3d=7{s>RYgrATJj3Vk?E~cAkyEO` z$0dvD(B?CG)}yvikQhXo##k}l!R~G*di))Me`jh0{l(0MLOZt zCZ_VH)YM@F?XSXIFtuMG&(Ogblxlt}wq?G{?9@oV9x>{plbmq~ji33_i2OMYi^cN6s5q#%fOHvNP?qt_puhH&4cAgQ2rwwB6M z{%_ZXm-={pPm^X)Njk@*p@P3LCjtMfn`95D{#|TI8Fht7`jouRtA)m}@tmj-X1MXj zO`?RVaWPHqx6gK!5f5FlttBP_RdL@}Y+)3cyYIn@IWwnl6-0R2Xj*=|d8zDGZ^(^& z9ehJ5Qbl30%WS*PS*+c-%4V_lB&NtG5^PYNPHx-1u}uwdDz&yqz}4$l2BfBh1^TCS zv!U+(TWc}W*4H*UKRQpPRu!&dhCFh-r4P=$|1iD3IQ_*h@LXZP!GHc*xjG$)^1xQDKv z9P{ z=x*gMT%&c=iv!4g11G8DSbHVF#c&~}f5;&2pL9j{&OVgJtQ&EmTt~yBh257}-DgO# zF=!)>(YgWq?yS{hiK8JxPEwrFdx~3wz~+P^?GhKv(52&v&$zgQry`&KH(f7zcUzs%=D^1L$115FD8Bjrb$C1!AS za~O2lCyc7e^?&28&`CAhxT;-}Z0>v?Rq9zg;5>2PzOg~13vo%F5ojYqGlv>&A@~*cK)V-cb z4aj}LX%*!SJsNk*4etM(>0wHX$TouvF@Yl0s9d&sVJ(J=)*BkJf3xyu0cia=y`XuGI77F^^n}1P@)%M2uwEw;f1K;(Q$=Cm#jPW2R z7BgBlouKm8T8r;rkT;-XRuSK)%Y5B^{lZ1##0yp4Q~s=+XBBPIcSAbPExZ)>H;>#E zHj0QQ8#@EacJf|t3He%U|5B0D|6y2Fdt?n?n=P`Y&}Ofu>rI_35zK%%^3A zKhhL?CUUE{o*T+6_Bh20y5-r+$SXQsqz`#XDfQt`D*86sx@8>~kB>8d2TqXg=8bAl zjvzi4_@yB<@q#w$QZhGQe#OoX&N;luVpCCsM+i>h`UM(c(_b!;@=6^SQXD!(K2;Mk zt66`y11om@Y9gXit*y;rHk!{@5)|vc#Z7XcBYCB^54jb-2Y)o*6YQ$unrV@_p}fzdONbe| zyV#TC_XVuEs@k052>|*dII9pCDJ>B)BIOj;UGcnLMmo@3N-vE@6<@VvNrdlQ4WMe& zv>X)}sUQ<~2}DZyhmgIi4>I}m?FRRTf^ZKx@gGU-Q*2t(hQi%^0?U_Cd3yqEd>R;E zwzA!?ZB*rZxIGaht{JbuXJ#QIO9+~XBda;~h8pu}O>zp3(Q3TL3LM$IKCN%A%XJX) z%^V1(JxUdqHBQW2wyX)ocF@K$28zxIcdG|O@2Mo}%xf1iS&^35OX>Gb=8X^nifA#cykKBKav zt?z@37bU4Aq`clY_oJwWDo7Rx>2^jHkJd&(b1mJ7rN9~qFA#IwgITUrfn&*4x4sSC zVMJinV`si$gzkG&$oBA=i5)sf7LQ;j<1CmyY#Am~WhPVpvV!PfT%|ILzikxi&n+>s zPi3b)dNGVi-o^0J-lVm4ZOJ7MLWYoV!04Jl;Q*RZWp8B_~i!T=91?>;M&)F}v z$ezs5|1;J2P76xNF;$oUCQ+o_z=NEAFTRl)<>q0y$dp@QpeS%(&NxExvuX}sm-#Mh zKyo$VAWkmcN=}zxq&=18h?*U)0h&lMTM=BqXg5th~#Q+dnh>?u+E03Rt(+MXB zOHX=tijex%rd6w&>fK<5`LMFZ?MriWHk9kC36T7nC_WOW2&Oc2=)uUk zg4v)`Pj*7U!8p-&!b7?91x5K|i2XD7kKMqtG1Vv9$NOg@Y+t$Ji3S+cA}(CIL@XAc z5QEaE=W^ROz&K1g07*ma=~}bCBX8$?pyq|D^7PHk7w|`%gT&3vJu)pHoBKbZuqP*O zs7>Hr$9=c#Mb}4A(BHa~!ebD~02F6y>+T7 z2vfnIEw!pV{Hf@$!hn~XI~(NFSI`YvQ23rHQg8Gbn`Ka(`8(C(v$W7tJq+@k75dl7 z&!1k)$YrEPMaqd0EiptKScHWymeu$ag$`VBpib>JZ}1b-=1%rJ4#`zP4OHY}PI4!Q zAt@Vc~ z)GmCzO|wn1k#llY1MUcU1-INNtt`eChXBj}%`46^k(Yqf10Y9shAKW_HFJN@jsM=5 zh&T%h4j=5%^|&}Rgzt$Z=t)a)N?I@Gju{E^bP2l8HF(yHUdfK8!#F# zi`dYDDjmcjRks_1A&50ls3+=su*449azP9+<;5W9o-aTb<4B2S_?t#&vCXr?)B@J-=F2Vc(O@Iyn*}cgYFzX(x={)Hls6c=w|{T2}&aX zqB&39r$ds@8oa)%e%P{$_EUlD%(h3HPBjJq!=&Qb9+gqR-tprl=+-g)+PcVUEf%OV z6};Ek*#(^z9tj8t$SWzC{raq$?y-<|bN}M?MzHSH&=urh8}q=`)wOWf(0AX=yeqY- zIfQJq-sfLDy(^U;3d|11ybqRgZ~~`QXx}%WVPAi8fJr`Uh+mL<+%*59#JGi+(QAcY z#CELps|!ZE%FaO1mx%Q3og-facE6ZT)NZa{k=Hh&_~T``pSi`wtsV*NI>_k7CnU7A zN7Lyv`1;^JAS5$J-snCXEqYW0@;M%I=H{QU72~TSYU=9I^FLCC52Apwb){Ew>yc9^ z$IWd1V`F&yc8Ci5>}o+VItaVJH^WahA526edvEWi;|P*f^6C9YR|aUFddy!m?M&pT zKjhLZ-~$HEWHPDt>kv7_crj4(fP&Kwv3u{~E_1;Ta?vJ0!1v!Z41w)PP#ak*eY7qE zx)Icg?jJn{bEL@`B~zh323jj@xJwqm3_h*%B;tBzCAYnVOcFXCuN=(b#i=Sr(}}*A zX(gSo6UB8R!0FRzexpK+5%!0QWhld6T~WWWUw_*zj@vg7LFWUUkRSe(E9yUjsojS5 z$9=dO5KN&V18%v68uNMnwFI_SsZlUjcY)L~-rKit{cq}3u0zL(3g__td&>hfJk?Y9 zAX=aX(M|tRn}zq0JTt=$CoX)=NeGCH^<+4^Pq?(;J{BG0T| zzmhumhIoDiA88t1=!1?Vu&|@x4rT$`1cA@FHATeT4R@CZmw&iSrk2rzYnlScQ~s}K z%l`#5V93JD1s_5YJh(8IS)mLCyrC#6oYN5JDo6UiIHmiM&aOHDq#2n8*wCEtDU$4iL|ZOG)Xl zt@}MGe?EV7sOLQn4<&i5-5gJTckUN zemMpO$!5V`Nf|3Ej?=vkX{f;h^A`na7Q!Qm2zg7W7zh_i>zFkL^)DRh_uDslz=jUc zBV9&iWo7jOHyPLD1X`A)yA0__ZgmMF{?U4Yxo9MiM$2zP_}J;09f1F%HzLvFcBts! zU_!{tsYo9S-M@byvUhPHJmvZKPZJ0%E_%HhUtRe0#%{B1u*^b*(Ra@neGFEr1ZdWi z(1QhSISO2J@i6;XS7atJyU;XvH3>*>{jrXD~Gg-yz5J0`@YlG%lY0@+XshR&VU@yoY8 zg}~6{R9Dlkvwebm?@{mR5fbMOfpSz=hD3_iQx774fV>y5W1WDu=m5H*kSlJ5?oAxL zycU4Xt?lil0KQU(D}un<#L3Lv;Nl{f0_mYekeV}t-X=KU2Ej{QQcq|+tE6Lg8icN9 z4lrMGV6c35nORuU1kBEYm?kSP@0T76Svk3b8JalPp7WGefz<5Ev|wS|0iutK(9Q!& z?G?~Mhc?t0^4LA8w;W9hv1llf$D;+q@e#dEO3g-#Q%u5cgH5#r=1jw8ookK0oU?N| zzwePdx&k>wi;IiH?$}=GQyWBk5K>AT zQ)cLQ>_Wf?9iQ}Py*wltO~I3pla&qT2eDT1S?ahQ8EeG-Yy}(|ffrb_HxqeWl#-Oh z4~ZZIZjv;#4Cd)RqM#Ov7MS5d()r+p)SudxXoFnZOuAFgh5;~B5jewGWM*Me1~hG$ z&IiC|Gcz*-Z{;*GYYQ6n;M5Jy)6rqvj$0$BS4PXiAQz0AK6qLz%A!J7YKGdv`+iYkOF#=Jd?$3zQN(-d zxx{MTll~ocM{n#knegc7`TD~(Qvj%(V`XUJGXvB2*^yUFtmZEN@F&Rkw{~=h{<#fI zJ@{p-TNM4v^AuRsP0s|NQ~`;u0N-pAI=39UlIay5B=IsoJ+QsXtke$&0Kn0aDtji- zoHEW>1!JGaXN(VZV@4yz#!%Z3nZ%_<#mGqEE~-H|W|8I74(l2g<4f!quyT*a0L+H> zRzRD0bMpspLVWy8m0ndIw3R9I*fI}AGEw;dm^Xp`DIkW(*NATZVIzWL{BJdr@fN#p zm^8TfgP$e2Gh!NbSunJx)gs7U~CBn-?v-Xuc_px?i&;IzZz$B)k!kKh_b)k8iJ(B%iT z!%36&lhUiQ+qTB}kKiU*!_Z2kE3?Du)%QEz9Cq+;D~??oDOU01uQYAg|z=cJ@{Gbg3)Za0!BH Date: Fri, 9 Oct 2020 06:14:37 -0500 Subject: [PATCH 058/104] [jlse-run] add seed parameter and lower low boundary for mem --- .github/workflows/test.yml | 6 - analysis/spec/notebooks/Time_vs_FLOP.ipynb | 145 ++++---------------- analysis/spec/qtensor_specs/time_vs_flop.py | 5 +- run/automake/qsub_entry.sh | 2 +- 4 files changed, 33 insertions(+), 125 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index e2dbea3c..a7324ac0 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -31,12 +31,6 @@ jobs: with: submodules: recursive - - - name: Setup Python - uses: actions/setup-python@v2 - with: - python-version: 3.x - - name: Link to proper python run: | which pip; which pip3 diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index dd1ac495..527d1542 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -935,11 +935,11 @@ }, { "cell_type": "code", - "execution_count": 175, + "execution_count": 183, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:48:42.372162Z", - "start_time": "2020-10-09T09:48:42.355981Z" + "end_time": "2020-10-09T11:13:18.412649Z", + "start_time": "2020-10-09T11:13:18.399650Z" } }, "outputs": [ @@ -949,7 +949,7 @@ "" ] }, - "execution_count": 175, + "execution_count": 183, "metadata": {}, "output_type": "execute_result" } @@ -965,8 +965,9 @@ "@click.argument('filename', nargs=-1)\n", "@click.option('-B', '--backend', default='numpy')\n", "@click.option('-M', '--max-memory', default=3e8)\n", + "@click.option('-s', '--seed', default=SEED)\n", "@click.option('--min-memory', default=3e6)\n", - "def time_vs_flops_plot(filename=None, backend='numpy',\n", + "def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED,\n", " max_memory=2e8, min_memory=1e6):\n", " \"\"\"\n", " Plots times and estimated FLOP for each step of several QAOA energy computation contractions.\n", @@ -998,7 +999,7 @@ " \n", " times = ex.map_variable('step_sim_time', d=ds,\n", " edge_idx=edge_indices, n=[N], p=[p],\n", - " seed=[SEED],\n", + " seed=[seed],\n", " backend=[backend]\n", " )\n", " \n", @@ -1022,11 +1023,11 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 184, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:47:38.722903Z", - "start_time": "2020-10-09T09:47:36.705859Z" + "end_time": "2020-10-09T11:13:20.456887Z", + "start_time": "2020-10-09T11:13:20.285230Z" }, "scrolled": false }, @@ -1034,12 +1035,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "569714635bec45359238e7911c84aff0", + "model_id": "4a2cd057db5e4bc08fa036838d8caec2", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=60.0), HTML(value='')))" ] }, "metadata": {}, @@ -1050,9 +1051,9 @@ "output_type": "stream", "text": [ "\n", - "Selected edges [ 0 2 3 4 10 13 16]\n", + "Selected edges [ 0 2 3 4 10 13 16 28]\n", "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", - " 3145728 83886080 2621440 14680064 13631488 5767168]\n" + " 3145728 83886080 2621440 14680064 13631488 5767168 4194304 7340032]\n" ] }, { @@ -1064,104 +1065,16 @@ ] }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a9911e208caf48eb8960caac14cd9f4f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Lin fit: [2.25775523e-08 2.81690669e-03]\n", - "Log fit: [ 1.26797763 -22.41530383]\n", - "===Results===\n", - "Total time: 10.178\n", - "Simulator fitted flops: 5.4305 G\n", - "Matmul flops: 26.963 G\n", - "Simulator optimality: 0.20140393024569148\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "697fd76cbe4441da95ba56f66251b03c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Selected edges [ 0 2 3 4 10 13 16]\n", - "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", - " 3145728 83886080 2621440 14680064 13631488 5767168]\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", - " result = np.array(list(tqdm(\n" + "ename": "NameError", + "evalue": "name 'seed' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtime_vs_flops_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5e8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1e6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mtime_vs_flops_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5e8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1e6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'mkl'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mtime_vs_flops_plot\u001b[0;34m(filename, backend, max_memory, min_memory)\u001b[0m\n\u001b[1;32m 43\u001b[0m times = ex.map_variable('step_sim_time', d=ds,\n\u001b[1;32m 44\u001b[0m \u001b[0medge_idx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0medge_indices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m )\n", + "\u001b[0;31mNameError\u001b[0m: name 'seed' is not defined" ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ae79e8a3852a4f68a939a62e43969290", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Lin fit: [ 2.34533017e-08 -3.54229365e-03]\n", - "Log fit: [ 1.27757884 -22.53195178]\n", - "===Results===\n", - "Total time: 9.0879\n", - "Simulator fitted flops: 6.1024 G\n", - "Matmul flops: 25.841 G\n", - "Simulator optimality: 0.23615711657511182\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABYzklEQVR4nO2dd3hUVfrHP+dOCqRDaCIlEEVFENQgrBVxVVax41oQFVBWpewq7iJYgF0bdgmgUoKi/HR3sYPLui7qWpGIdFFaKAohCek9c8/vjzszzEwmk0kyQ5Lh/TzPPHLv3HLmgud7z3nP+32V1hpBEARBqAujuRsgCIIgtGxEKARBEAS/iFAIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8IsIhSAIguAXEQpBEATBLy1eKJRSvZVSi5VSy5u7LYIgCMcizSIUSqkMpdQhpdRmr/3DlVI/KaV2KKUeANBa79Jaj2uOdgqCIAjNN6J4FRjuvkMpZQPmAb8D+gI3KaX6Hv2mCYIgCO40i1Borf8HHPbafRawwzGCqALeAq466o0TBEEQPIho7ga4cTywz217PzBYKZUMPAacrpSaprV+wtfJSqnxwHiA2NjYM08++eRQt1cQBCGs+P7773O11h2997ckofCJ1joPuCuA4xYACwDS0tJ0ZmZmqJsmCIIQViil9vja35JWPf0CdHfb7ubYFzBKqSuUUgsKCwuD2jBBEIRjmZYkFGuBE5VSvZRSUcCNwAcNuYDW+kOt9fjExMSQNFAQBOFYpLmWx74JfAOcpJTar5Qap7WuASYC/wZ+BP6htd7SwOvKiEIQBCHIqHCscCcxCkEQhIajlPpea53mvb8lTT0JgiAILZCwEgqZehIEQQg+YSUUEswWBOFYpaYGli4Fuz341w4roZARhSAIxyLffANnngm33QYffRT864eVUMiIQhCEY4nDh2H8eDj7bNixw9rXpk3w79PiM7MFQRAET7SG116DP//ZEovoaKishKlTLdEINiIUgiAIrYjNm+Huu+HLLyEuDkwTfvMbmDcP+obIbzuspp4kRiEIQrhSWmqNGE4/HTIzQSlo29YKYK9eHTqRgDATColRCIIQjrz/viUETz0FERFQUQH33AM//wyjR1uiEUrCSigEQRDCiT174Mor4eqrIS/P2te/P6xdC3PnQlLS0WmHCIUgCEILo6oKZs+2RhGrVoFhWCOJl16ylsKm1TLZCC1hJRQSoxAEobXz+edWHOKBB6zVTdXV1vTSzz/DXXeBzXb02xRWQiExCkEQWis5OXD77TB0KOzebe1LTYX//Q9efRU6dWq+toWVUAiCILQ2TBMWLICTToI33rBGDErBM8/AunVw3nnN3ULJoxAEQWg21q+3ciK+/dZa6mq3w3XXwQsvQLduzd26I8iIQhAE4ShTXAz33mv5M/3wg7Wva1crcL18ecsSCQgzoZBgtiAILRmtLSE45RR48UVrmklrmDnTyri+9NLmbqFvwkooJJgtCEJLZedOuOwyuP56KydCa7joIti6FWbMCI2ZX7AIK6EQBKHl4l12ORzLMPuishIefRT69YP//tfa1769NbL46CNrZVNLR4RCEI5RjmbHnfdWBrkZ6a57aK3JzUgn762MkN2zJfDf/8Jpp8HDD1urm0zTcnz96ScraB1q641gIUIhCMcgR7Pj1lpjlpZQuGK56565GekUrliOWVoSliOLgwfh5pvht7+1bDgABg+2Vjk99ZTl+tqakOWxgnCM4d5xA3QYO8nVcSeOGInWGhXEV12lFB3GTgKgcMVy130TR4ykw9hJQb1Xc2O3WzYbDz5oub0CxMdbeRJHw7wvVKhwVPO0tDSdmZnZ3M0QhBaL+1u9k1B33Fprdl57gWs79Z3Pw0okMjOtnIjMTIiKsvya7roLHn8c2rVr7tYFhlLqe611LScpmXoShGMQ97d8J6EWidyMdI997lNfrZnCQpg4Ec46CzZutPb16wfffWeNLlqLSPgjrIRC8igEITCOZsftPnpJHDGS1Hc+J3HESI+YRWtEa3jzTct6Y/58a1qpTRvL/vu772DQoOZuYfAIK6GQPApBqJ+j3XErpTBi40hwm9rqMHYSCSNGYsTGtcrpp59+gosvtgLW+fmWaIwaZTm8TpjQPA6voUSC2YJwjOHsuBO9Om4gZB333HOupaDG5Dm3fU8Mu4WkCIMZQb9b6Cgvt2IOTz1lLXUFKw9i/nzL9TVcEaEQhGOQ5BvHeqxucopFKERCa01Bjcmcg8UAPJfSjvuy8plzsJjJXeKDvsoqGHi3SWvNqlWKCRMsC3CbzQpYP/YY/OlP1p/DGREKQThG8e6cQ9VZK6V4LsWK6M45WOwSjMld4nkupV2LE4lZ+wqs0Y+jbfv2aYaNr2bHqiiXIFx5peXw2qNHszb1qCFCIQhCyHGKhVMkgBYpEu6jH7MGen7YjgcehuqKSAC6dtXMm6e47LJmbuhRRoRCEISQo7Xmvqx8j333ZeW3OLFwCtqv6yKYc2sb2KHApjFs8OCDmmnTFG3bNncrjz4iFIIghBSnSDhjEu4xCmhZI4vDh2HaNMU/FiRAhGP11+kV/LisDX36tIw2NgctXiiUUrHAfKAK+ExrvayZmyQIQgNQSpEUYXjEJJwxi6QIo0WIhNawdCncfz/k5TkEIsGOui8fLizjpch4ntMtR9CONs2SR6GUylBKHVJKbfbaP1wp9ZNSaodS6gHH7muB5VrrO4Erj3pjBUFoMjO6J3mMHJxiMaN7UvM2DNiyxVraevvtUFCg0QA3FHPPZ0XYp3fgj8fFM+dgMfd8/GWrTQ5sKs01ongVmAssde5QStmAecDFwH5grVLqA6AbsMlxmP3oNlMQhGBxtFZZBUppKfztb/Dss0f2DRoEfW78GqU2M+O7Sug3iWmr36CgLJr4ninN1tbmplmEQmv9P6VUitfus4AdWutdAEqpt4CrsESjG7CeMMskFwShefjgA8ufad8+y3qjXTt4+mm4/XaFUmeTk/E9RSuWU+QwTZw9YiQdr7ik2cWtuWhJHe/xwD637f2Ofe8A1ymlXgI+rOtkpdR4pVSmUiozJycntC0VhDDgWKw4t3cvXH01XHUVHDhg7Rs/HrZvh7FjwTCskU5HL8PEjmFmh95QWpJQ+ERrXaq1HqO1vttfIFtrvUBrnaa1TuvYsePRbKIgtDpm7Svgvqx8j8JF92XlM2tfQfM2LERUV1u2GyefDB86Xjf79YNvv4WXX7ZKkzoJZ6fbxtKShOIXoLvbdjfHvoAR91hBqB/3pDKnWDiXqxbUmGHXIX7xBQwcCFOnQkUFxMRAerpVN2LwYM9jw9Xptqm0pOWxa4ETlVK9sATiRuDmhlxAa/0h8GFaWtqdIWifIIQFrc1So7Hk5MBf/gKvvgoRjp7u5putWMRxx/k+pzkME1sDzVLhTin1JjAU6ABkAzO01ouVUpcBLwA2IENr/Vhjri8V7gShfrTWRHy717VdM6RHWHSEpgmLF8Of/wxFRVaORJ8+1hTThRcGdg1fpoDh8Gzqo64Kd8216ummOvZ/BHzU2Osqpa4ArjjhhBMaewlBOCZoLZYaDWXDBqv86LffWoHpqCiYORPuu69hDq8tbSlvc9OSYhRNRgoXCUL9eFtq1AzpweQu8R4xi9ZGcbElBmecAWvXWvsuv9wqMPTAA+FvAx5qWlKMosnIiEIQ6qelWGoEY3pHa3jnHZg06chy1+7dYd48uOKKYLb22KZZYhShRmIUglA/zTkP713zwTnKSYowArb12LXLKju6apUz/8Fa2fTgg9bKJqHh1BWjCKupJ0EQAqe55uGbujy3shIefRT69oWPP7b2XXABbN5sVZwTkQg+MvUkCAJw9EYYTVmeu3q1Fazevt3a7tgR5syBG26wRhRCaAirEYUEswWhceS9leGRUOZMPMt7KyMk93MXCyf+RCI7G265BS66CHbutEThj3+0BOPGG2uLxLFoTxJKwkooBEFoOFprzNISj+xjZ3ayWVoSkk62ruW53vey22H+fDjxRPi//7P2paXBunVWzWpf74THmj3J0UCmngThGMc9+7hwxXIKHY6p7tnJwSTQinfff28Z9q1bZ40YEhIsS/AxY6zgdV3XdsY/nNdyv9exkjgXbGTVkyAIAJimya7rhrq2e7/9GUZdPbIbjYltTP3XpxTaNfMvG4phGJimyT0ffUaiTTH97At58EF46SVnuyxn19mzoUOH+n+HuxA5CTd7klAhq54EQaiTmXvzueejz3C+Nmrgno8+Y+befH+nNWqaR2vN/b9uYsrimeQtmYvWmrwlc7lv0Ux6v1vJiSdq5s2zBKJvX/j6a8uSIxCRgIbHP4T6CaupJ0EQGo5pmhzc+AMLk1Nh3EzmXzaUez76jIXJqdy58QfMbkN9jiy01hzcuokFCT0Az2me8UV70d3O9dk5+5rq2l3Sjb/uX8aX73dHKWuJ62OPWcWFIhrYS4WrPUlzElZCITEKQWg4hmHwaEkWAAuTU1m4Zh8kp3Jn3k4eLcnyO/00a/8PVJRtZU7acNdUz62Zq5gVUwmcW+d5TrHIfv8DXv75Fl75+RZMZQPg+uvh+eeha9eG/5ZA4x9Cw5AYhSAIgDWyiFxzpMhk9eDu9cYotNbkZKRzXN+rXPsObH2/3opwWmv+cd8HTHnlLH4ptzy/e3YoYOH/JXLxxU3ryIOR9X2s0qLcYwVBaFlorZmyp8Bj35Q9BQG9gT8x7BZwCxw/MewWnvNz/P79mruv2sGKdVehlCYyUnP/5d8wyv4wnfZehdZNW2k1o3uSR0DdGbOQkUTjkWC2IBzjNNZN1v28WzNXse2p0dyauarO82pqrNyHPn0UK3+wpoeHD4efflI89s5v6HTVVUErDiQ24cFFRhSCcIzTFDfZyE1ruXVPFrNjKun4zufMzkiHzFVE9kyBlEtcx61ZA3fcYfkxAXTtqpg/X3PVVc5rq5DkbAjBQYRCEIRGTdcopZha9gv2mEpXTKLj2EnMzkjHVvYLSikOH7bqQSxaZJ1js1mV5x56CGJj5a2/tRBWwWy3VU93bne6hgmCEFJ8JdyB4vXX4U9/gnzHStXzzoNXXoFTTmmeNokQ1c8xkXAnpoCCcPTx7oB//FFx7rlw222WSLRvD8uWweefHx2RONoGh8cCYSUUgiCEjvocWcvKrGmm006Db76x/JkmTLAKDN18M0DoHV2bw+DwWEBiFIIg1EveWxmYpSWugLOzAzZi40i+cSwffmjVifj1V+v400+34hJnnGFtH63chqNtcHisICMKQRD84u8tfe9eGDFCc+WVlkjExcHLL8PatUdEoqkV7RqKu1g4EZFoGjKiEATBL77e0qtNG29GPs5Tj5xDVZXVAd92Gzz9tFV1zvv8xla0awxOIXMnNyNdxKIJyIhCEIR6cReLzLz+XL76Nf729rlUVir69IEvvoBXX60tEu7nHw1HV/fRTuKIkaS+8zmJI0Z6jIaEhhNWIwoxBRSE0KC15qcXFzLt+2m8t+93gCY6oprHnoxg8mRFZGT95x8NR1elFEZsnEdMwilwwcr6PhYJqzwKJ2IKKAjBw27XzBm7mof/bwilNTGA4rLTd/BAp6mcfP0F9U7p+HN0DeX0k+RRNBwxBRQEocFs3Ahjxyq+//4iALp31yxcCJdckkpuxgUBvaU3xSKksYjXU3ARoRAEoRbFxfDIIzBnjlVpLiICHnxQ88ADijZtoKHeTBO/egd7aQm4rUaatvoNbLFxcOPY0PwIIWhIMFsQWjn1JcI17Frw9tuQmmo5vZomXHQRbNsGM2c6RcIiUJFwLq8t8lpeWyRJcK0GGVEIQivANE2PIkLO7WAmsu3eDePHwyefWNudOlk5EVdfbWVZNxZJgmv9yIhCEFo4F24+yKBNBzFNE7BEYtCmg1y4+UBQEtkqK+HRR+GkkyyRMAyYMgV27oRrrmmaSDiRJLjWjQiFILRgTNOkyG6yvqzaJRaDNh1kfVk1RXbNMz0SXUWGIr7d2+CVRJ9+CiefDA8/DNXVMHiwFcB+5hkryzpY1JUEJ9NOrQMRCkFowRiGwdr+XRgYE8n6smoi1+xjfVk1A2MiWdu/CzabrVGJbNnZcMMNMGwYZGVBYiIsXWqZ+Z16anB/gyTBtX5avFAopXorpRYrpZY3d1sEoTlwioU7a/t3wTCMOhPZ6up87XaYNw9694Z//MPa94c/WGIxenRwppm8qSsJLnHESEmCayWENJitlMoARgCHtNb93PYPB14EbMAirfWTdV1Da70LGCdCIRyrOKeb3Bm06SDf9evM/XsLfSayQe2Rxbp1cPvtsGmTtX3qqZbtRlqt9Krgk3zj2FoV9CRG0XoI9YjiVWC4+w6llA2YB/wO6AvcpJTqq5Tqr5Ra4fXpFOL2CUKLxj0mMTAmkurB3V3TUGdtzibBoFYi2+Qu8R6JbIWFcM89liBs2gQxMTB/PmzYcHREwokkwbVeQjqi0Fr/TymV4rX7LGCHY6SAUuot4Cqt9RNYow9BaDE0txWEYRgk2AxXTMI5DTVo00ESbAazeravs9a11vD3v1si4SxHeuONVn5E585H7ScIYUBz5FEcD+xz294PDK7rYKVUMvAYcLpSappDUHwdNx4YD9CjR4/gtVZoNM3dyTaV+or1HC0+7dfFI4/CKRbObV9v6tu3w5gx8NVX1r7evWHJEjj//KPWbCGMaPHBbK11ntb6Lq11al0i4ThugdY6TWud1rEur2PhqNFcdYuDlaUcSEnNYGZE14d7sp2vbScVFfDgg1Zt6q++gqgoePJJK7NaREJoLM0xovgF6O623c2xr8mIzXjLwL2TBSuxyn15ZKhGFsEcAdSXTXz470taxGjDnY8/hrFj4RfH/02XXWZlVnfv7v88QaiP5hhRrAVOVEr1UkpFATcCHwTjwlrrD7XW4xMTE4NxOaGRuC9/LFyxnB3XXuASCe/s3GARyAigodSVTQwE/V5N4ddf4cor4dJLLZHo0gU++ghWrhSREIJDg0YUSqkYrXVZA45/ExgKdFBK7QdmaK0XK6UmAv/GWh6bobXe0pB2+LmfjChaCM5O9tF8O0XRMUxfvczVyTbWi8gb7yBu8piJQPD8hPyV1GwJ3kU1NZa76/Tplg2HzQYPPGBNPbVte1SaIBwjBDSiUEqdrZTaCmxzbA9QSs2v7zyt9U1a6+O01pFa625a68WO/R9prfs44g6PNekXeN5PRhQtBK01ORnpFEXHsDRtOI8PG0VORnqjvIh84SsGkrdkLirG03cieczEJolEXdnEQLN6F61ZA337Wp5MlZVw3nlWHOLRR0UkhOAT6NTT88ClQB6A1noD0OJCY0qpK5RSCwoLC5u7Kcc07jbSs2MqmdwlnqVpwzmu71VBqWpW1zTTo/l2HqiKxSk/Grjno8+YuTff3+V84jeb2CFGzeFdlJ9vJc0NGQLbt0P79vDPf8Lnn4MMpIVQEVApVKXUGq31YKXUD1rr0x37NmitB4S8hY1ASqE2P+6BZYCIb/e6vqsZ0qPJb97ub/xgicLsqyewpM8Q7szbyfzLhnLPR5+xMDnVtV3XSqH67uPe1tw3F2MvLcFAUbByOUmXj8REU/XzViq2/0hSiKaftIbXXoPJk62iQkrBpEnWCCI+Pqi3Eo5hmloKdZ9S6mxAK6UigT8CPwazgUJ44bRsAHx6ETW1TrLzDd8pFAp45OcvAFjYZwgL1+yD5FTG/PwtD27/EmPEsEbfx4nWmqdiupGTm0W72FjKxs1kxoGNTK9oS4dzrqX4/EgSbYrZQRaJH3+EW28F57vPwIGWgV///kG9jSDUSaCvWHcBE7CS5X4BBjq2WxQy9dTycMYkJneJp2ZID5cltj/jukBwxkA89pWXMfW9eR77pr43jza9TgzKlFDe35dQZItkadpwPm7fnYXJqVzc8XSWpg1ndUp/FianUnXygKBNP5WVWTGIfv0skYiLg4wMy7NJREI4mgQ09dTakKmnlkMwK7A50Voz9cOPydmTxeyYSjqMmUjukrlMLYtmY69+rE/u5jq2KdNO3vfMzUinYMVynh03k4XJqbWOmdQ5jud7tQ/KtNOKFVZORE6OtX3rrfD881ZMorlo7Zn2Qv00aepJKdULmASkuJ+jtb4yWA0UwpMZ3ZPq9CJqCsWO1VTRRXv565K5PH7hKJZmlwAwOnMVD65exuPDRrEwbTht9xQEbapLa5iyeCYL//K6j4Pgr/sLm7Tsd+9eGDfuSDnSE0+EN96AQYOat5MOheALrYdAYxTvAYuBDwEzZK0RwgpnZ+bs0Ly3G4tSivmXnEt01mHS6cHCvj0gu4SzYiPp+8MXPLB6GQqYvnoZ0b1OJPH405u0wsp57qx9BfzapR+Vw6J9Hpt+sISzYqN4pFtig+9XXQ1PPw0zZ1p/jo62rDcmTYKCf2aQu6n5ssC11q6Sq4CHnfnkLvEysjgGCFQoKrTWc0LakiAgCXcth1Ab6imleD6lPekHS1z7ls64EYDoXifQ7ZlF5C2Zy5TFM0kaMRLdiJVI7m/RAPk1dhYnp0JyKkmlRRTEJtQ6p9I0G9xxfvUVjBoFe/ZY21dfDS+9ZGVYN5cdijvOUSDAnIPFLsFo6jJnofUQ6MTti0qpGUqp3yilznB+QtqyRiAJdy2DUNhp+LqH92qqx4eNAqDbM4swDIMOYyeR1Mgqau5v0c7Ae8XWja7vfYnEqeUF/PbAzwHHQ/LyLNvvc8+1RKJbN1i9Gt591xIJqG2HstPLDuVoddLuYuFEROLYIdARRX9gNDCMI1NP2rEtCB7UZ6jXVJwi4Zz6mLb6DaaWRbM0zaqRNXvJXDq6Jck1pjPz+RadnModeTtZ5COQDXDGlm+5P6YSrYf6vadpwqJFcO+91sqmiAiYMQP+8hfL7dVXW9yXAsPRzQIH38IcjGXOQusg0BHF9UBvrfUFWusLHR8RCaFO/BnqNdVuXClFUoThEgn3DPCOPVMochvJNDWA7f0W3bZv3TmmrzusSvyxaZOVB/GHP1gicdFFsHMnPPSQb5GAuj2njtaKRW9hDuYyZ6F1EOiIYjOQBBwKXVOajsQoWg5aa3IWe4a1chbPQaEoXNn0+XXnaqrDbjYbzwGkXEJuzk+Nmm7y9Ru836LTs0uY2CmW70qr+a60CrBWWYElFGuKq3xeq6TEGjG8/LKVZd2hg1VIaEQ9NR29PafcYxRwdEYW7sLsXnIV8Ci5KoQvgVp4fAachmURXunc31KXx0oeRfPi3rklXH6dSxycJF4+kg7j6u/gAl23H4r1/d5v0c+ltOOczQdZU1LF5C7xJBhwYNN6qnZvJ7GyjIlfvcsz42Zy3GmnM7NHO7frWDGHO+6wfJoMw5py+tvfAjfvaymV9iSPIvypK48iUKG4wNd+rfXnQWhb0BGhaH68vZ52Xnvkn1DqO5/X28E0tnMMZmdWV+5Aok0x4T+vU+B4y+/oeMsvWLHcw+tp924YPfpIOdK0NFi2DPr0aXhbpJMWjgZNSrhrqYIgtFzcvZ7qqulQV0fX0CWhzm1nx/5szyQMw2hyUpi/ZMG82DgPUXAKohEbR3W14q9/hdmzrZoR8fHWlNNNN1lmfo3B+1mJSAhHE79CoZT6Umt9rlKqGHAfeihAa61rrxEUBDcaM79e36op93OcI4/kMRNdy1nLt6zn0ZIsHht8dZOTwurqoJ1C6C4iHcZO4tNPFbekwIED1vF33AHPPgsJTfw/RUYUQnPiVyi01uc6/tsqjIwlmN2yqKumA1BvsDmQJaGmaXqMPJ65fQLlW9azMDnV8mIKQu2L+n6fk+xsuOMOxYoV1vYpp8Cbb8KAIBjxt5QYhXDsEmiFu1rGNr72NTeScNfySL5xrEcH7xSA+jq4+paE5r2VQd6SuSSPmehKRts98kKmLJ7pcU6o1/mbJrzwAvTsaRn5tW0L8+fD5s3BEYlAkhe944yyXFUINoEujz3VfUMpFQGcGfzmCOFIQ+fX61sSmjxmosdIInnMRApXLEdDrTyGUCaFrVsHN9wAO3ZY29dfb1lvJCcH7x71TcMd/vsSGW0IIcfviEIpNc0RnzhNKVXk+BQD2cD7R6WFwjFHXVNWiQ47Dqc9h8vW4rqhLpFYmjacO/J2Uj24e8iSwoqK4Lbb4MwzNTt2QI8e8PXX8Pe/66CKhBN/yYuhtkoRBAh8eewTWutpR6E9QUGWx4YH9QVwTdPk3udepCg6humrl7Hsxfc5sPEHKndvp1PPFJ4ccTFT9hQEzQpba8vy+557oKREY0TCY3+F++9X2Gyhs932LvsKnnYodX0nwW6hodS1PDagGIXWeppS6nil1NlKqfOdn+A3UxCO4G/KSmtNzpK5FDnqUjw+bBR3/+d12vQ9jdfThlMcHeNazhqMjnvHDisP4tZbrSzrHudVo9/+hewb8l0iMedgMQU1ZlDjBt7TcKnvfO4aSTljOL5GGyISQjAJtHDRk8CNwFbA7titgf+FqF2CUCeuCndl0TwZU0lC51jmpg1nKUB2KRM7x/LCkHOD0llWVMD06fDii1bgulMna1Rxet4bPKRSmHMw1WW7fWfeTh7ck8VfI64NWpGf+laOQcPzVAShoQRqCngNcJLW+jKt9RWOT4uz71BSM7tZ8X5rNh21Gdy/D9a8ubPC3dWDrq898kDx1/1H/g009p7/+pdl/f3881ai3NSpsG8f/Pa3mvJ1a2qtsJqyeCZl69bUsid3H2005pnUtXKs/Q1j/I42JEYhBItAVz3tAiJx83lqiWitPwQ+TEtLu7O523Ks4b3Wf+befPZ//gmPbPqE7rNfBqwVSJGb1jK17JcmrchRzgp3uw+Tnl3iMudzkp5dwqQucR6Z4Q1ZBfTrr5b1xurV1vaQIVZORErKEdGJ6tOXR7p7lmR5fNgonmxbwbM9k4DaRX4SbYpzt2RzVmwUz/eyil/fl5XPt8WVDG/X1u9oo65puMbmqQhCQwhUKMqA9Uqp/+JpCjg5JK0SWhXelhvJYyZyYOMPLDnhLOwFh5m9OJ0nLrqFOQeLuXVPFvaYyqBZgKdnl/j8vnzLBnTPoeQtmRtwNTi73So/OmuWVY40MdGqGzFypPW9u0XIkxeNZunBYk7JzmLYjnWuEU5Sl3iec7TNKRIAz/ZMYsqeAtaUVLGmpMr1G5zHDI6LatQzqStDXERCCCaBCsUHjo8g1MLXWv/7AcbNZJEzdnCwmFszV/FkTKWrqFB9+Fv1pLVmyp4Cn+fdkbeTNts2sMsxNRTIKqBvv4Xf/96aWlIK7rrLst6IiTlyb/e60QkG9CsvYHPnFAbt28Y0t/rcQC178il7CjxGGu4CN6lzHM/3at/ozl18oIRQE9Dy2NaGLI9tHrTWHi6xb7z4Pn/7pci1/eNTo3npufdItCkPK25f1OXcmhRh8Ei3RNe8/6TOcaDwqJ09qXMcE6Zcg7O79OdWW1Bg+TG9/ba13a8f/OMflgWHr9/nvK+TWzNXMX31Msv8DMtC3Tl6ctqHeFTj+/Zdjkv5rcd1D2x9H5skyAktgCYtj1VK7VZK7fL+BL+ZQmvF23LDBN7ZsdfjmGtv+xtzDhZzYOMP5L5Zd4U7X/Wq3QPCYBXMmdTZmodPP1jC5C7xTOocx1mxUaRnl/D4sFEuF8vcjHRM0/S4h2lqXnkFuna1RCImBhYvhg0btIdIuL9IOae73HmybQUnvPO5o+4GVP68hUSbqlXkZ3KXeKK2bWBaVVyt3/uXsmjskiAntGACnXpyV5g2WKVR2we/OUJrxH2tf9SJp2BWVzGr9xC2tE3ilOwsfuycAsCPnVM4JTuLKa/NpDQlFdB0uGlcreu5d8jeAWFn5+u0AP/r/kLXfq01uUvmMrUsmo49Uzjhnc/JzUjn0Xw7lR99xvzLhmIYBlu3as67ys7hHdY//5tusqw3av6VQd6Suu0wfFW8e/Ki0TwHdBxnhetscfHM7NEO0zQ94gZPd09gwhbNq32GAFZVPAUsTRvO62nDSewcywvB/WsRhKARaD2KPK9dLyilvgceCX6ThNaGa63/5SPRaIpWvk3SqUO5NXMV01Yv45S/HPGPHLZjHRFJ7ajO2onud3qdAVzlIyDs7dnkLhhKKZRS2GLjmE0JHa+4BKUUyWMmUvnRZyxMTiViWwFVL7Rj4SJAR5DQ3c7qdw3OPNMhCn5qYJimyZQ9BT6nlJxt6zhusqsuxuGqGl7onewSnCl7Cvg55RTOyD7IqVu/48HVy1y/Y9sFV9A+MkJiC0KLJdCEO/d1gAbWCCPQ0YhQD+FQa8C9UJFSigkrFmMCT3iZ9BVHx1BTkE+7egLMvt7e6zL4c9/2XgVkGAbzLxvKvpdLmTc1FkoURJqc/5cyVs+KwWbzXC0EddfACKRutNaa99dtZEOnngC80DuZP+3KY+6hUgYc2sN3l5/N7rl/dMVPpq9eRqIjwC8ILZVAvZ4+ddusAbKAp7XWP4eoXd73vxq4HEgAFmutP/Z3fGsKZnuXDIUj6/7b3zCm1QkGWIl2O68b6jLpOyU7i3dee5gn3LavO70/s3r6nr30Va/ae9vfczFNE8Owwm9798Lvf69Zs8Zx/JBy1CO52Id383kN74C8dyC8PlGvqalh/OI3eO20C2td+7aNn/LQ1k8x9+527YvqdQJVu3eIP5PQImiq19OFbp+LgbuAQQHeOEMpdUgptdlr/3Cl1E9KqR1KqQfquf97Wus7Hfe9IZD7tgbc8w+mfvgx92Xlk+OY7rCXlnBfVj6z9hUc1fb4+28gmKbJ/vvvQAHxlWWuGMUTw0ZZ01CO7V8++w92u93nNep6e5/cJd7j7d0XF24+yKBNB6msNJk+HXr3tkTCSK6BeQcxnjuESjJ9OsrWVwPD2TbvtroTERHBgnG3cNvGTz3237bxUx5T+Zh7dxPV6wR6v/0ZiSNGUrV7B1G9TkDFxIpICC2W+kqhJgATgOOxbMU/cWxPATYCy+o+28WrwFywltM7rmsD5gEXA/uBtUqpDwAb8ITX+WO11occf37IcV5Y4Jzu0EDOniyWdjyZgrJoZo8YyRPDbmlyGc+G4BzZqJhYdFkpyWMmkrdkLkZMHGZZSUCZzaZpkrdkLpWOzu/5eyezb9o9zOp+BkvThrM0bTgAY37+lqnvzeNwTXadb9H+6lX7u3+R3WTdFwZxwzQ1h7FehW4rQI8r5I/d4ng+pXOt2IJ74LpgxXJXLWznNjTMaM9msxH/2xFwqNS1L/63I4hc+wGJI0aSPGaiyyodwIiJI/kmWRortFzqizO8DuQD3wB3Ag9i1cu+Rmu9PpAbaK3/p5RK8dp9FrBDa70LQCn1FnCV1voJYIT3NZT1f+iTwL+01usCuW9rQSlFx7GTmO6Y7ljqlqAWyjKecGTaxH1kE5mSSnXWTsq3rKdq9w7Xdn2Zzc68h8iu/fl04nmcndIdtbeApIlPoj7/xOPYV24ZSV5NdkDlUP1te5Ofb7DzzjhYm0ANwGkV8NdcIjtW09FexfMpPeqMLSileKZrfwrH9WP+ZUNdgfCHO/cj0aaYHeDfgdbaFZNwZ+6hUhh0Jc/3au+aFpMsaqG1UN/UU2+t9e1a61eAm4C+wKWBioQfjgf2uW3vd+yri0nAb4GRSqm7fB2glBqvlMpUSmXm5OQ0sXlHD+ebrMIKbLoTKpHQWpP3VoZHfkHymIkYjtVIAFW7rbJt1Vk7iT7xlHoDz868h0+6nsS6mPbMPVRK+sES3s8r5bUTzvI4/v69hTx+4SjmnnOt63zv6zUE04TnnoOuXTWFaxMg3g6zD2G8nI3RyY5dGdRoXL/VKRbu3kpaa6pOHsDC5FSm7ClwrVRamJxK1ckDAm6T3W7ni03WLOttGz+lctDxrmmoLzZtrpXPISIhtAbqG1FUO/+gtbYrpfZrrStC3KZaaK3nAHPqOWYBsACsYPbRaFdTcc8/SHBMN+G2HDQUZTzz3srALClxLWMt37yeNn0HUPHzFsyCfJ/ntOlzqqu9/payAh7LWQE2VnjGIQbERLqOmdQ5jpl78ym060Zbcq9bB9ddB1lZlvXGaaPL2DQuBxXledzvu7Zzvck72+zvN/jK3fD1DLy3IyIiOP/X7QzMzmLBuFtcMQsWv0GCvZqIiKH1/iZBaGnUN6IYoDxLoDpLohYrpYrqOdcfvwDd3ba7OfY1CdXKbMad+QcJXjGJA1vfZ3zR3qCX8XRNMa1cTvlPWzDiE6nK2kHRR29TtWMbREb6Pg/tErW8t3xnVPvKWvbFhjLr3eOs2CieS2lH9o+bfWZgH9y6ye/vLimBUaPgzDMtkTjtNPjpJ03OpLxaIgHwdn5lvc/R129wFwnnKMw9yO/rmbxwz50ukYAjAe4X7hFTY6F14ndEobW2hei+a4ETlVK9sATiRuDmpl60NdqMO9f9J7llGDN2EvOBNo4362CNKFzBc22NJmpRXQ2RUVB9xLZbxSdQtPJtKrZucC3j9DWy8JX34I+v+3cBYNb+H6go28qctOGut/hbM1cxK6YSOLfWeVrD0qUwYQKUlkJsrJVVfcstAAr1ZRlEtKn92yvK6n2O/nI3AA+HXO+EPF8jC3e8twWhNRFo4aJGo5R6EysYfpJSar9SapzWugaYCPwb+BH4h9Z6SxDu1apGFE6cGcbP9kxyZRgrpXi2Z1LQ6y8f/vuSOr/TQGSPXh7butgaOPpb66+15t6sw8w5WMyAGN+jEm/u3X0YgI5jJ/FkjGeZk7ocZnfuhAED4PbbLZG45RbIzrZqRyhlxQeSin2LVVJxPna7vdaSXOe2d+5GzZAeTO4S7xrtgCUOzsJAO6+9wCUSEpAWwh1xj20BaK05/PcldSbeBcNV1Pn3nLN4js/RRPo511AUHcP01ctIuOxaOo6bzN0ffUabbRuY9NW7QN0urPsfmsSzKWnoi0aQZDNYVVBO0f69/NTuOAbFRLK3qobsGuv+kzpbpnjp2SWcFRvFJYnRrCioYH2ZKxzGwJhIrmjX1uUwW1UFU6bA/PlW4Do11TLyGzCg9m88/j8byI6vPQXWuTifGw/8SBEGr9wyEpvNht1u5w9vLCcRk2dvu8mvY61TsOtLyBOE1kyTEu6E0JH3VgY5i+dglljTGrmL08lZPIf9U++icMVyzCC4irrPrStqd2oaKHIU3nl82CiUMrhvTz6LklMpio7xcGH1botpmjyXkkZBeQV/Sv8zj3RL5K1XHyK6vJQBefv58tRORDg60gExkSRFGDibsL+qhg/zy1lfVm0l4j01mlOys1hfVs2H+eWYpsnKldClC8yda4VQXnwRtm+vLRLOtnQvPES7Us/wWbvSIroXZlNQUcmSPkP4wxvLXSKxpM8QCiqrsNvtzOie5BGT8F4dFUhCniCEI2E1caqUugK44oQTTmjupgSEM7hctPJtEi6/jsTLR1K4crnr+8TLmz6t4V19zoiNc+VGOEm47FpmbbfSU47kcZRYhYbaVtDJ4cJa6CP5TCmFedEIljrqQUx3WHds7HoCkzrHYRgG17aPIT27hA1l1a5gNsB17WOI3JxJldnGcpZ1mAeekp3F4EKTCyYex5dfWseOGAGvvw5JSf5/b3n7zuTHJLhsQ6697W/82DmFcmXn0YIfqc5cxZK04Sz5bj/0GcLNmat4vE2FR26DO+6rndxjEu4xCu9nIgjhRlgJRWsLZnsb0XmTPHZiyO/hPKbbky8xe8ncI+nzwOyYSjqOnexxDe8kOaUUz6e0Bw3pbtnX7lXbnPWhfVV1O/zdL9xfWkJXhxW5NmF4RjQvrDwLu6k47jj45z/hnHPq/62GYTC85CBmcUEt4RmuKjjlxOFUG56D6LcHXMgHpklhPZ28c4Wa1KcWjkVk6qmZce9wvNk/5Q72/eUPdS5Jbew9nJXYnH5DhSvfJnfJXB73cnp9fNgoD0fY5DETfcZLZu0roPgLz+zr4i8+8fSp8u5HHdvtbxjDk8NuAcDcGIW++nie/XAIylDMmGGVJg1EJJxt/HPJPt75v7957H/n//7GH4v2UG3YqIyM9viuMjLa2l/pGVD3RfKNY2uNpjqMnSSV6YSwJ6yEojWuetJac2jRix77Inr2JirlBKqydlC1Yxs1xUU+58EDzWjWWpPjmFtPP+caHh82Crsj8pA8ZiLPjJvJ5alDST9YwsCYSKrO6sbguCjSD5YwaNNBZu7Nd2Uqe5sU2u129n36sasgj5NX+wxh36cfU1NTw9mbDnqUKgWrdOnZmw5y7+7DvLCjhJ4PHQd3dYHcCBhQwZivC5gxQ2OzBf477XY7Rf9+nyfOu95j/xPnXU/Zfz7g+l3f+zzv+t3rAl6+2lBbEUEIB8JKKLTWH2qtxycmJobq+n63G3O93Ix0ij96h6gTTyEqxYqt1OzZRVWWZaERdeIpdLrjj7U6pECTv7TWTP3wY6aWRRM/YiTfXXIjS9OGM6DnUAZ9uoF7dx9mUXIqB2KT6GBTrC+rZtDmbAY5lrmuL6vmg/xyzt50wFWK1P13G4aBqiNRT0VGopRiT2UNAAPaRlA9uDsD2lqdclZFDT8ta4NtRHd2r46ifXvFypWaP71bxvFdrCXCs/YVeCQdOlci+XLVVUrx2JCrWZo2nDtyd1A9uDt35O6wgvRDriGptJCbM1d5nHNz5iralRR4ZG0LguBJWMUoQkkgSycbive8t9aaXdcN9Tim++yXa9lHeAeo60v+KnasaErsHMdg4LvSKnLjksgF1jvM6zpG2thYXkME1Ao6O//sy6RQKUX384YxqdpeKwbRrtswbDYb4zvH8f7hMjaU1xC5xrL4OvHXaHLu78iqLBuGofnjH+HppyEyUvE7feQZOz2kgFp1Kdyfh1IKwzDo2Ks343J38NLlF2IYBi9dfiGs/JSkXr35U/5Oenc73+P5Lh9wIbv2/09GBoLgh7DKo3Bb9XTn9u3bg3bdphbSCeT6ADmL5lD0kWeOQ9zvrnGNKLzrN7uvugFqJX+5d6T3Zh2uNf3TUGqG9Kiz2M+9uw/7DFY7RwV5ldXMyylDV4KenQyrYgHFgAHw7ruaXr18+ye5P3sn7s/cl4Dfu/sw7SJtLgE3TZPq6mri1/6C3WYjqrqKgsE9SFqzl6rIKGx2O8WDjic62jN+IQjHGsdEHkWopp6c6+mdmboR3+4Niki4i/S+qXe5RCKiZ28ie6YCUPKvd9k15iqPvArTNFFK0f72CR7XcxeJvDePTE0d/vsSpv33jYDaNNBPZnVdxX7uy8onPbvEI6M5PdsqvGSaJouyi5mXU4b5nxj0Zd1hVRy01bT7Wx6fPJBB3Oq6p9D8+S+5jzjcvaLSs0s8psgMwyAqKgrDsX1n1ySioqK4s2uS9b3WREX5MIgSBAGQqaeAcXZY7m+2TREJ9xKoeW9lUJ39q+u76j27MOISXNu6qJDKokKM+ETa3XYPeUvmotrGUvTv9zyumbs4nQ7jrCms0rVfWlbhGkw0D5TX9j/yxfqyagbERHpMPQ2IieT8+OhaxX6g7mp0YNV70FqTt19hTu0CP0cDGi4tQT2QR1UbqNlSQomfKTTAb+3sQBxfne0sP7c3f9yZy7ycMubl7AVgQscYXkztIFNPguAHEYoA8WcY19BOxiPGoMHUJrrIWqnlbqWhsJayPj5sFAmVZUz66l32jrsGs6gQoqKgqgojPpHYcy+i+F/vuJL1NNpVYrNg5XJX7erRmavY0PUENnatOyGxjbJiEmfFRjE4Lor/FVeyoaya8+Oj6yxFWlc1OtNU3H+/pnzO8WAq6FYNTx7C6G0Ftw17DZ3GTMSmrRwP5zSaM9HQ+Yx9TfmBJViH/76EaaUlzOl7las901a/wWEv6xNn+15M7eASCUBEQhACIKyEIlSZ2f5iFNDwkUVdSXAmR6w0AB5YvYwnHZ38rZmrMAEcgkJVFUZCIj0z3rNWHhmKopVvu8TCWXJz13VDSags49bMVUxfvYy551zDab/u4OPBv+OQ3XpjH9A2gigFa8tqqNDWCOKrfp1d0ztT9hSQFGHwSLdEj+Cx+/Px/v2ffKK4+WbIzVWoSBP9x3zUyGLcD+tZWULe31/FxHM6y8SaLku+cSxR2zZwp13z7OChLqPE8i3riSpQkDIUe2kJU8s8YwtTy6KZTYmrXc7RW/KYiUzZU+BxbChqfghCuBFWQhGqzOz6plca08k4E9icQuEcSUxzVLlzrzF9R+4OpqxexhNuIwuAnhnvYbNZTvAdx032MPtLHjORvIy5AEz66l00Vo6b88+de6bw5nF96RhlY22/zhiGwZ925fHPw+Uk2pSHpYV3TQbnlJlTNNyD7IcPW4WEPvvMaseIEZr2Y7/hjS7daj2DwdVFPBVzPLm5WUx3tE8DD5S3oWPH43nSNLn/100UrFhOXrY1yshbMpcpjrrWWl/AE8NuYenBYpcQOkdPSV3ieY4jo7eCFct5uHM/FiancmfeTqYsnsmz42YyBysWJGIhCHUTVkIRSuqaXmlKINvZkXuPJKauXub6M8B9GbN4wm1k4ez09//5Tro/s8haEbU43bUfrKxuZy6Gu7dT4uUj0WjuXPIYheNmsig5lfv3Frp+S3aNyQ2x0bV+q7PNdS3LTbh8JI89ppk1S1FdDV27QsZdHzDguN2cljDM5zP4ICKJy7J387rjt7p39Ldt/tx1D/CcmkpyW93lFPB7HFN101cvI2nE9R4C7rxG9LYN3Bq9nSmrl5E0YiTzLxtKW8doSURCEOomrJbHOmnpNuPuS1sX3P4gefn5TH1/vksM6uLWzFU8lLkCXVTI3GE3UYjBzF1raNt3AIUfvc2z42aSYK9m/KuPuc6Jv+xaIuISsJcWo1AYcXG0v2GMVac7No7HBl9d59LT+truZPep9zD2tRvYv18REQGPPAIPPqjJW5JOwYrlnH/XixxKaF/rWp2KDnP9z9/ySfe+/OTwegI4KTuLS/b/yHP3jMcwDL/W3s6s8yK39iSMGFmrnoXzGk4xdV6jrvKugnAsckwsj20tOBPtok48hUIjgldP+g1PDBvFA45pJydbnhrtsT1j9xpSMt4jYcRIKvr0Y2nacB4dNAIjPp5nx81kYXIq1acN8pjx73THH0m+yfIo6jDO8iVyTnsprMCvO9NWv+EqbuRrKax7fKW8Joq71zzKJY9ZInH++XDgADz8MBiGdVzbS6+iuE0MACc7rMRPzs4CoLhNDK+ecYmHSAD81DmFjNMv9pjacse57Nf5XZFjlVTqO5+TOGIkRSuW+8xahyMjLpftuoiEINRLWE09tSab8fY3jKH0+zXcnzGLKsdIwns0MfI2T3O7FyY9zfOGQcexk3gJaJN1mHTOxGnaMblLPNNWv4GzGoPG6hDnXTyaQrt2VdBzBqgjY44nJyfL4x7OQHDum4sxy0pdb+bON3cjJhZdVsqbu6/gsU2TqTSjaRdbzv8tb8Pw4bV9kI6780/E/3cj5VFtSNu3DQWk7dvGts4pxNZUkRvpO8mtVNmorq6m8PWX/Vp71+foKvbggtB0ZOqpmdBau6rN2YG+DktsgE1Pjeb3jjoKSRWlTOjVmWKtaiX5mabpssQAOLD1fdfb9byLR3Nw4w/ct3gmzzlGG87KcYV2zZyDxQyMiWR9WXWtQPCkLnFEbcokZ0+Ww2p8EjkZ6dbqosKOfD77THaX9MQwNHdcuJ774u6l/RXX1up0tdYccvzGR4eN4g03IbwlcxWPRJTQZ8B14Kuj1prDp7aj5l9v+w2eO+/jbxVWfQF4QRAs6pp6EqFoRrTW3LtkGf9p351tbtMviaVFpOb9wvpufTANG53LirgjtSsrCytdJUJN02TQpoMeJUTHF+1l5v4f6HD7BCb863MWJqdyR95OHi3JYvgpwz2OndwlnkSboqDGZMKUa1wrjuY9+y5JEYZLTJwi8ugFt7D0vzfByjjQioEDNe+/D927HynZ2v6GMR6xg6kffkzOniymf/lPqKriZDcx3PbUaIzEdlxxxWR+8pHXcdKvO9lw5XlERkYGtBw3kGfd1GsIQrhTl1CE1dRTc9KYjmjm3nxeOukcagyDyOpKqh3TMIWxCayLPZKZXW0YFJlW1vT5CW2w2+2ctTmb9WXVDIyJ5KPM5TxQFs2CtOGsSUvlX6/O474Vy9GOVU2LklPBTSTAWg46a18B5Vs3eOwv37qBpNNOP5LxnDacV4uvgQc7QJlBXJxmwQLNz+cW8nyNyXO080iOczdJdJoRuq/GcvL4sFFMW72Ms8ry+cnHsxlcnu+y/g6GtbfYgwtC45ERRSOoNbXxZgZmWcOmNmbsOcy7O/expW1SvfeLBjpFKJKjIjxGBR0iDO7uHAfArxt/4KsaG9s6pzA6cxXRvU5kQ/eTWeslEE4mdY6jfOsGFjnyCuZfNpR7PvrMlWcw73cXsPWFJZy2aDRss6w3rh+yjdc/O5nISCvG4ZwKe7Znkse2uxfTn3bnMTe71HXfiZ1jKd+ygcUdTmBU5irePv23VNhqv6+0sddQOKRnwHUiBEFoOjKiCBLe892maR7xVaJ+y2+w3EyLTNjSNok2VZVURNXtWmpok0plkGPX7PPq9HNrTArt1uqfxcmpjM5cxaB921x5Cd6jiIExkazt38XVqXdOPJ72NZUsTE5l4Zp9kJxKck0lG2PaM/ny9bz08VjQBnSvgidziM37Hw/9ey81/QfxbM8kwL/HklKKF3olewjFC72S0SmW9XebXqlUGDafv7vCsFFWVkZCQoLP7wVBOHqIUDQAXwlneUvmunyVPPyKvCy/nTiF5pnbJ7B6zy9sjvbfEZrKIBqo8DHwGxgT6eqwK7ZuYKGPHAxnLOLD/HLWl1UzZU8Bz/ZMwjRNlucbHK42PY7P2ZhA/sOpfJNvg0iToQ+WsvqRGO7Lasucg8PpV1nEZocwPNszySMHw7mqyv151eWP9fLlF6K1Zp4jGH/TT9/w2ujrue31f/LmSb8BIDY21u+zEQTh6CBC0QC8PZrcRcHpq+TEl0h4C03mrXfTJvNX6iPBgByz9n5nxz9t9RtMWbGchW7BYvd7zujejke6Jbo8mwzD4IXeyazfdICcahM7YBYreLAjZLahBuhzUTUXv1hMel9Py5JEWwLDHIFud5EAmLKnoFZhJ3/+WIZh8Kft35CtFa+Nvh6bzcZro6+H1/9JZ6WxnZ1S77MRBCH0hJVQHI08Cm+PJoD2t08gb8lcj+NyM9JriYW70OSvWM7Q5AHglWzmi1wfIgHWiCLRZiXvPTNupsd3d+TthMhI0unh6ujdp4VM02RdWbUlEsvi4ZV2UKOgQw1tn8hh65hOGIbnNJL7slx3kage3N01nQVHfJMC8cd69rabsNvtLs8qp1g4twVBaH7CSihCZQrouLblRPpmBqVrv/T4bs/YqzGLCgNK6HIKzV/KotnWOQVbTQ32OgK2fSNhZzVUYtl/V2hcuQ/O/56f0IZHz7qKRdklDI6L4qzYKJRSzCGVyV3imaS1Ty8jwzAwf47E/EsnyI4Am4Y78lFjioi0OWph+1gp5EzWc8c5nQWeIhCoP5a3KIhICELLIqyEIlh4B6Bz31yMLiul/e0TKF37JZW7d2BLSCT+0qsoz/zatd3+9gk+s4O9r523ZC7xlXZOyc7iR7cRRYcIg9yaI8OHAgzuPy6GV3LKaKvgmuRY1wqjRJvi/IQ2JEVYLizON3d33K3B3amogJtv1pS9e5y1Y0CFVSci0QqElJq43vLdzzVNs87VTmDFKJyus05kWaogtH5EKLzIeysDe0kxHcdNdk2zlH33lcuJdd5vR5Ozbw/TVmVQ+M+laGD21RNo37EjTznehJ1i4UsknKONh0eMpN3p/floxx5qCg4zKFoxf/j5/HlfEd8UlaOUwfB2bZnRPYkZ3ZOw2WwuAXOPA7gnuLnfry5jvyVLYMIEKC83IMEOs3IxBld4tdPk0V+LKagxXXWvnTGHDWXVHqLUVLt1QRBaPiIUbmitKfrPCuyHcwGrxkNuRjpVWTtQ0W0oWLGcQ8OirSSyqsojthd9hjC5SzymaXrUcfDuvJ1mgM4pqllKMaN7ErlL5mLExhERMczR8bZzHQ9HpmK8bb+9r+2O9/auXTBiBPz4IxgGTJxoZ+F1O6mOrr00N7KmmgV7DpEdYZVPfb5Xe+7dfZj07BK61FTw374ncvjvS1zLhJ1iIbYYghCeiFC4obXGSEjEfjiXopVvexQCsnXpit6zi+k+CgvdmbeT6Vm7yVtdWm/SXfKNYz0ExHCY/Ll3/sG0m7Db4e67YdEi0BoGDoQPP4TOnU3+sbqUXB9CkVheSk1UFERAenYJ6dklru+qa2owTbPOuhR15Y4IgtB6EZtxNwzDoPuzi4lMSfXYb+vRi5h+pwM4rLk97cDvWzyTsrVfUehmb53j6DjN0pJadt3+3v5n7Svgvqx8D4vs+7LymbWvoMG/54MPIDkZFi6E2Fh480344Qfo5ig2Vxod4/O80ugYuhbm+vyuW1EuhmHQYewkEkeMpHDFcnZee4GHO6uIhCCEFzKi8EIpRdtTB7oqwgHo/MMUrnyb6F4n8EzX/qzuM8jjnPPvXUg3s5KPdn5G4YrlFKxYzuPDRtFxzIPMvuISn7EKXyMGrTUFNabHMlP3XIRA39QPHYIrroDvvrOMWUePhowMcF9cpbWmIjLK5/nlkVEcbOs7EfDXtgnWyMshFu7LhEUkBCE8afEjCqXUKUqpl5VSy5VSd4fyXu7W3+68eNowHh82ivLdO/j8jGH82LE7yTWV3FewiwExkeREtuGH6EQeu/BmNLjsuqv7D6p1D38jBqUUP5RU0iHCYM7BYiK+3cucg8V0iDD4oaSy3k5Ya5g2zSpD+t13cOKJsHUrLF3qKRLO+9q07wQNZZrkxLfz+V1OXDvsdrvfgkKCIIQXIRUKpVSGUuqQUmqz1/7hSqmflFI7lFIP+LuG1vpHrfVdwO+Bc0LZXq01JV+tRmPVme799mcYPXu76lk/OWwUV6d2p0OEQV5ENM8l9WZDWTUDYiI5KzaSudmlnPyX1121rR/wqh7nPmJwioVzxFBQY2K32yk2tccSWbA8nYpNjWnWkXkHfPEFdOkCTz5picK8efDzz3Dyyb6Pt9lsDPxlO+1Kizz2tystYsCv2/0+p5qaGo+YhLOyXKFXZTlBEMKDUI8oXgU8DIiUUjZgHvA7oC9wk1Kqr1Kqv1Jqhdenk+OcK4GVwEehbKxhGMwbeiNPXj2Bbs8s4q/7C5n921sxgQG/7rBKj/5aXKsjX9uvM+dlbfLY92RMJQ+URTP1w49dHadzaevkLvEeIwbnclObzcZ3/TrTIcLzr6VDhMF3/TrXylEAKC6GSy6B88+3ppxGjIDDh+Gee/z/VqUUb7z1OJf9+LXH/st+/Jo33nrcGp74wjH95auyXOKIkT5zRwRBaN2E3GZcKZUCrNBa93Ns/waYqbW+1LE9DUBr/UQA11qptb68vuMaazPu/obvbsMNMLFTLHMPlfo8b2KnWD7bd8DD4M+ZOT2+aC/zLzm3Vkwi4tu9ru2aIT1cMYpuX/7MQceyVHe61FSw/9w+Htd59lmYPh2qqqzppnfegcGDA/utNTU13PFSBq+nXVrru1syV7Gh64ls6ppa67v+B3by/VUXeOR1uP8uEQlBaL3UZTPeHDGK44F9btv7Hft8opQaqpSao5R6BT8jCqXUeKVUplIqMycnp1ENU0qRaFMMjIkkPbvEJRJALZEYGBNJ9eDuTOocx9xDpWyOTmBATKTre6fNxryLzwnIUVVra2qpUPleX1CoIlxTT5s2Qa9ecP/9YJowaxb88kvgIuH8rRsdleVu//kbqs7qxu0/fwPAhq4n8GtCss/zfo1Pxm63u67hfU1BEMKPFr/qSWv9GfBZAMctABaANaJo5L0otGuP4kDePNQ1nhUFFS7n1udS2rGmpAql4MtTO3vUsL6iXVuP6aL6HFWf7p5AbHQU5TW1YxGx0VFUVcGtt2qWL7c65HPPhXff1XTo0PDcC5vNxoUl2Zz+8yEW3GKZ8C245Xp445/EoZnXpbfP8w7HSH0IQTjWaA6h+AXo7rbdzbGvyTTVPVYpRYJR23PJnSITvuvXmfv3Frosu7/u38WnWZ6zqJB7Mp0/R9WIiAgqqypRyoZWRwRGaZOi96JJvMCgulzRvr1m2TLFpZdawrP+YBUDY6NqWXy7lyX1hS/n1gW3XE9NTQ1zvz9gtau0iK/nTeDsCfMoiE1AO64vCMKxQ3MIxVrgRKVULyyBuBG4ORgXbqp7rGmarCio8CkSp7WxcUFS2zoN8LxLgXrXXgjEUdVut1NjarRbMNs8YIM/H4d9VyTKAEYWccuTNVza+8g9BsZENjr3wpdzq81mo2txHmW2KL6eNwEbuMQixl5FdHRKg5+tIAitl5AKhVLqTWAo0EEptR+YobVerJSaCPwbsAEZWustoWxHoBiGwYikNuyvsnuIRbJNcWX7GGb2aIdCuUYSTgKtveB+vK9tu92OibNeBPBMe3g/DjSoE6rYvgrmGjXMOVjM3ENHyo+6u7jWVZa0IWitWbf/Kw6vWE57N+v0r+dNoP2IkWh9hsQjBOEYIuSrno4mblNPd27f7j8XwBfuMQRv3B1T6+okm7oKSGtNwte7KPk6Dv7aAUps0NaEqXnE/baIorN7o7X2iINUD+6OYRh1rqRqLN61wevyrhIEIXyoa9VTiw9mN4SmTj25r3pyD2g7K8k5j3G7X4McXOsjJwcq/9AVtjiWx15SAg/mYURCfE0NM/fm82F+ucc5aRsPcGX7GArtnoLvrE3dWLHwNi+syzpdEITwp8VbeDQEpdQVSqkFhYWFDT5Xa+2x6mlyl3hqhvRgcpd41pdV8++CiqCZ9dW+Nzz0kJULUb2lLRxfA2/8ijHTEgmAw6bi5b25bCivYUDbCKoHd2dA2wg2lNfwzL7DrpiEs83u2d+NRZa/CoIAMqIAHNMsJSV0GDfJFWuY9t83OBwXx3M3jEFrzXelVX4DxuB/tFEXX34JI0dCdjZER4OemAM3lNU6zrTZ6JK7n9zOKWwor/GYfkooL+GO3t0Cio8IgiA0lLAaUTQGrTVl69ZQsHI5uYvTeaRbItP++waFK5dTtm4NYBXuuSSxjWt1kdN6wzkl9df9hdybddhjtHFv1mG/o43iYrj0UjjvPEskLr8cDh0yGfSb74murvQ4Nrq6kjN+2U5be7VPb6YehTk82zOp1koqf0tjBUEQAiWsRhSNzaNIP+daDnXP4sGVyyhcuRwNPDZsFJ16pDDbcUz2j5tZn9DD47z1ZdUMOriT76MTWRedCMDzKe25N+sw6QdLOKOy0GfN6uees1xeq6rguOMs640hQ6CmRnNKwQHW9jjF4/jKyGhOLjjAR6lnkh/rmfCWH5vAbt/PokHPQBAEoS7CakShtf5Qaz0+MTGxQed90es0Xk8bzmPDRrlE4vW04XzR6zTXMTP3/8DJ2Vke552cncWMfes4o8Qq8pN+sISIb/eSftCqCHdGSa5HjMBpvTFlirX8deZMy3pjyBDre8Mw2Jg6wGcbN6YOoDSydjU6gJLIKEmCEwQhZISVUDSWwfFWAZ/X04Zz8l9e53VHiVPnfoBBA65hW+cUj/O2dU5h8MBr6dJ/IKeWF3h8d2p5AceddjqGYVBVBTfcAKedBllZcM45cOAAzJhhFRZyUlNTgy60fKBuzVzFtqdGc2vmKgDshflU1CEUFZHRfi3IBUEQmoJMPQHT/7uMwvJoVw1ssDrq6W0rYdwktNbk12HpkV9tUmA32dI2yWP/lrZJDKsxefVVzYQJirIyaNcOli2D3/3OdztsNhvn7d7IgF93MH31MhS4anS3qSxj83G13VydlJeXExXlu2KdIAhCUwirEUVjp54qft6C98SNdux3EusVYHYSU1PJmuKqWvvNX20suDSBMWMUFRUwYQLk5tYtEk4mff0e01cvw4hPoNfyTzHiE5i+ehl/+Opdv+dVVvpunyAIQlMJqxFFY3n8olt43StQ/XracNr06ctLWKuYjKpKiKg99aOqKskq1BBpJclpO+jn2sF78ZRrRf/+mg8+UKSk1N8Om82GrUMnzIpyUpa8j81mI2XJ+2SNuYo2dUw7OYmNjQ305wqCIDSIsBpRNBZnXQb3hDX3/YZh0MXmO1jc1aYZXfor7WsqMb9qg/5dN3g3AaI1v5uylY0bAxMJJ70W/NMlEoBLLFLmLfNbdc7b3E8QBCFYhNWIojExCqUUlya1ZXBcdJ0Ja3a7nS3RvqezNkcnkhbbjdyxMbDZ8db/2xJ4OI+TundpVNU3X46uRUVFnpFvzx9BeXk5bdrUrownCILQVMJKKBqbme3P+tuFaQfDswPXGuwvJ7BoWSKYBnSthtmHMFJr6FdeQOS2XaheFzb5dwFUVFQ06XtBEITGIlNPDvz5GmmtaVfq6R9lro9GX3E85uvtrDoRf8zjD698gf3m47gzbyeb2yZRZNdBW7ZaX4C+oQF8QRCEQAmrEUUoyXeUADVLFTzUAda0BUANLuX+RRUUZG1gyuKZ7FoMUwA9biZdHHkUwSAqKgqlNdrH9JPSWpbGCoIQMkQoAsSosWP+ox283A6qFbS3w2OHaHNKMdFxybTt65lR3bbvgIBjE4HWsehQWkBOfHuf+z2rywqCIAQPmXoKgA0bTCpuToH09mAHbi9AfbgfY0AVCk1+jZ307BIed1iAPD5sFOnZJRTUmPVaa+S9lUFuRrqHoWBuRjp5b2V4HGeaJqby/ddlKkMyswVBCBlhJRRNqUfhi/JyuPFGSEuLhANR0K8CPtiPMb7QtQApoaaSKQseZnTmKpY6LECWpg1ndOYq7n1pmt/ra60xS0soXLHcJRa5GekUrliOWVriITIRERFEaEsMxuZsp3pwd8bmWFX8IrRJRIQMDgVBCA1h1bs0tcKdO0uXwt13Q1kZJCXB6Tf8m89vO7nWcZds+44XTz4PVVrqsV8BL5x8Hs/6uYezahxA4YrlFK5YDkCio061+/STYRiMthdwOCePV0YMwzAMXhkxDFaspn2kLWixEEEQBG/Cqma2k7S0NJ2Zmdmoc3ftgquugs2brbSF8ePhxRft9PhiM7mxSbWO71BawFX2IhZ7ZXYD3Fm0l5cuObfeWIXWmp3XXuDaTn3n8zrPMU3TQxS8twVBEBpLXTWzpYdx409/ghNOsETi1FNh+3Z4+WUwDJNeeQd8Fg3qlXeAN9t29nm9ZW071xujcE43ueMes/DGWxREJARBCDXSy7jx1VfQti1kZFhikeowazUMg1MO7SE/NsHD/js/NoGTDu2hLML30tSyiCi/QWb3mETiiJGkvvM5iSNGesQsBEEQmpuwilE0lY8/tupWx8R47jcMg449UizrcS/776TuPf1es7Kyss5As1IKIzbOIybhjFkYsXFSpU4QhBaBxCgCxDRN9t43jpo9O137Inqm0uHRdBI35vr2YdKa4oGdiPFWnlqHBZZHIQiCEEqOiRhFsJfHOtFak7s43UMkAGr27OTgkrl+zy0vL6/3+v7sQwRBEJqbsBKKxhYuCuC6lHy92ud3Zd9/4/dcsf8WBKG1E1ZCESqUUiiHc2zCZdeR+s7nJFx2XUDn1tTUhLJpgiAIIUeC2QGglCLh4hHYi4vpeMdklFJ0vGMyABFt2/o9VzKmBUFo7UgvFiDJN46tVbOi4x2TycvLg59L6jxPRhSCILR2ZOqpAfgKOtdXVU6qzgmC0NoRoRAEQRD8IkLRRCIjI5v0vSAIQktHhKKJREZGYjiSFm9y2HvclLkKAENrEQpBEFo9rSKYrZSKBT4HZmqtVzR3e9wxDIN7C3dzYN9eHnHYe8xYvQwVFc1x3XtgGL2au4mCIAhNIqQjCqVUhlLqkFJqs9f+4Uqpn5RSO5RSDwRwqanAP0LTyqZhmiYTP3mDR1ZlEN3rBHq//RnRvU7gkVUZTPzkDak8JwhCqyfUU0+vAsPddyilbMA84HdAX+AmpVRfpVR/pdQKr08npdTFwFbgUIjb2igMw8CIiSW61wl0e2YRhmHQ7ZlFRPc6ASMmVmzABUFo9YR06klr/T+lVIrX7rOAHVrrXQBKqbeAq7TWTwAjvK+hlBoKxGKJSrlS6iOtdYt6Te/2aLpHASGnWIhICIIQDjRHjOJ4YJ/b9n5gcF0Ha60fBFBK3Q7k1iUSSqnxwHiAHj1qV5sLNVJQSBCEcKXV9GZa61f9BbK11gu01mla67SOHTsezaYJgiCENc0hFL8A3d22uzn2NZlQ2YwLgiAcyzSHUKwFTlRK9VJKRQE3Ah8E48KhshkXBEE4lgn18tg3gW+Ak5RS+5VS47TWNcBE4N/Aj8A/tNZbgnQ/GVEIgiAEmbAshaqUygH2eO1OBOpSkLq+87Xfe5/3dgcgN+DGNg1/vymY5wZyrDzfpp1f37Gher6+9h2tZyzPN7Q05vn21FrXDvJqrY+JD7Cgod/52u+9z8d2Zkv4TcE8N5Bj5fmG9hmH6vk25zOW59uyn6/7p9WsegoCHzbiO1/7vff5u26oacq9G3JuIMfK823a+fUdG6rnG8i9Q4U839AStPuG5dRTc6KUytRapzV3O8IVeb6hR55xaGmNz/dYGlEcLRY0dwPCHHm+oUeecWhpdc9XRhSCIAiCX2REIQiCIPhFhEIQBEHwiwiFIAiC4JdWUeGuNeOwSf8bsAV4S2v9WXO2J9xQShlYzzcBa336a83cpLBCKXUeMAqrr+irtT67mZsUViilegBzgMPAz1rrJ5u5ST6REUUjaGDlPg2UAG2wLNWFemjg870Ky1iyGnm+AdGQ56u1/kJrfRewAhARDoAG/vvtDyzXWo8FTj/qjQ2Uo5EhGG4f4HzgDGCz2z4bsBPoDUQBG7CKLRmO7zsDy5q77a3h08Dn+wDwB8cxy5u77a3h05Dn6/b9P4D45m57a/g08N9vMvApsBoY09xtr+sjI4pGoLX+H9ZQ0R1X5T6tdRXgrNznLLSUD0QfxWa2WhryfLFGEfmOY+xHr5WtlwY+X+f0SKHWuvjotrR10sDnOwaYobUeBlx+dFsaOCIUwcNX5b7jlVLXKqVeAV4H5jZLy8IDn88XeAe4VCmVDvyvORoWJtT1fAHGAUuOeovCi7qe7ypgslLqZSCrGdoVEBLMDjFa63ewOjMhBGity7A6MiFEaK1nNHcbwhWt9WZgZHO3oz5kRBE8Qla5TwDk+YYaeb6hpVU/XxGK4BGyyn0CIM831MjzDS2t+vmKUDSCo12571hDnm9okecbWsLx+YopoCAIguAXGVEIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8IsIhSAIguAXEQpBEATBLyIUwjGPUup2pVRXt+1FSqm+QbhuilLq5kac96pSqpatg2P/bqXUesdnsmN/llKqg9exUUqpFxyW1tuVUu8rpbq5fW93XGOzUuqfSqmYxvxG4dhAhEIQ4HbAJRRa6zu01luDcN0UoMFCUQ9/1loPdHzm+DnucSAeOElrfSLwHvCOUko5vi93XKMfUAXcFeR2CmGECIUQliilblFKfed4a35FKWVzfF51vEVvUkrd63hzTwOWOY5tq5T6TCmV5rhOiVLqaaXUFqXUJ0qpsxzf71JKXek4JkUp9YVSap3j46wC9yRwnuO69zru/7RSaq1SaqNS6g+O85VSaq6jqM0nQKcm/vYYLPvqe7XWdgCt9RKgEhjm45QvgBOack8hvBGhEMIOpdQpwA3AOVrrgVh1KkYBA4Hjtdb9tNb9gSVa6+VAJjDK8YZd7nW5WGC11vpUoBh4FLgYuAb4q+OYQ8DFWuszHPd1vuk/AHzhuO7zWC63hVrrQcAg4E6lVC/HtU7CKmRzK+Cv3OjTblNP/es45gRgr9a6yGt/JnCq17OKAH4HbPJzT+EYR2zGhXDkIuBMYK1jpqUtVmf+IdDbUbtiJfBxANeqwqoZAFZnWqm1rlZKbcKaWgKIBOYqpQZiiVKfOq51CXCaW/whETgRqyLam463/1+VUqv9tOfPDnFrKm2VUusdf/4CWByEawphigiFEI4o4DWt9bRaXyg1ALgUa07+98DYeq5VrY8YoplY0zdorU3H2zjAvUA2MABrlF7hp12TtNb/9mrTZfX+ooaxE+ihlIr3qkp3Jlbta3DEKIJ8XyFMkaknIRz5LzBSKdUJQCnVXinV07EyyNBavw08hFXXGKwppfgm3C8ROOAoezsaqz6yr+v+G7hbKRXpaFcfpVQsVmW+GxwxjOOAC5vQFrTWpcBrwHNKKZvjXrcCMVi1mQWhQciIQgg7tNZblVIPAR8rpQygGpgAlANLHPsAnCOOV4GXlVLlwG8accv5wNuOzngVUOrYvxGwK6U2OO7xItZ01TrH6qMc4GrgXawg81ZgL5ZFdUPZqJRy1mf/B9Zvewb42bF/G3CN2+hIEAJGbMYFQRAEv8jUkyAIguAXEQpBEATBLyIUgiAIgl9EKARBEAS/iFAIgiAIfhGhEARBEPwiQiEIgiD4RYRCEARB8Mv/A2Uus6EJQ7AVAAAAAElFTkSuQmCC\n", - "text/plain": [ - "

" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" } ], "source": [ @@ -1178,11 +1091,11 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 180, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:48:46.549223Z", - "start_time": "2020-10-09T09:48:46.545053Z" + "end_time": "2020-10-09T10:37:19.992490Z", + "start_time": "2020-10-09T10:37:19.988889Z" } }, "outputs": [], @@ -1193,11 +1106,11 @@ }, { "cell_type": "code", - "execution_count": 177, + "execution_count": 181, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:48:46.941642Z", - "start_time": "2020-10-09T09:48:46.823058Z" + "end_time": "2020-10-09T10:37:21.032327Z", + "start_time": "2020-10-09T10:37:20.975921Z" } }, "outputs": [ diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 121e4a79..1e9cefb9 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -150,8 +150,9 @@ def cli(): @click.argument('filename', nargs=-1) @click.option('-B', '--backend', default='numpy') @click.option('-M', '--max-memory', default=3e8) +@click.option('-s', '--seed', default=SEED) @click.option('--min-memory', default=3e6) -def time_vs_flops_plot(filename=None, backend='numpy', +def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED, max_memory=2e8, min_memory=1e6): """ Plots times and estimated FLOP for each step of several QAOA energy computation contractions. @@ -183,7 +184,7 @@ def time_vs_flops_plot(filename=None, backend='numpy', times = ex.map_variable('step_sim_time', d=ds, edge_idx=edge_indices, n=[N], p=[p], - seed=[SEED], + seed=[seed], backend=[backend] ) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index c673d11e..851d23ee 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e7 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=107 > results/time_vs_flops.txt From 6173b32914e2e0c0029f6cee7d4a36b4c4e5cb6a Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:23:00 -0500 Subject: [PATCH 059/104] [jlse-run] re-run --- .github/workflows/test.yml | 7 +- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 126 +++++++++++++++++---- 2 files changed, 107 insertions(+), 26 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index a7324ac0..43d8b9cc 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -22,7 +22,7 @@ jobs: - name: Setup git run: | yes | apt-get update - yes | apt-get install software-properties-common + yes | apt-get install software-properties-common python3 yes | add-apt-repository ppa:git-core/ppa yes | apt-get update yes | apt-get install git @@ -33,10 +33,11 @@ jobs: - name: Link to proper python run: | - which pip; which pip3 + echo $PATH + which pip3 ln -srf $(which python3) /usr/bin/python ln -srf $(which pip3) /usr/bin/pip - which pip; which pip3 + which pip3 echo $PATH diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 527d1542..747432e8 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -935,11 +935,11 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": 185, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:13:18.412649Z", - "start_time": "2020-10-09T11:13:18.399650Z" + "end_time": "2020-10-09T11:13:41.696896Z", + "start_time": "2020-10-09T11:13:41.678724Z" } }, "outputs": [ @@ -949,7 +949,7 @@ "" ] }, - "execution_count": 183, + "execution_count": 185, "metadata": {}, "output_type": "execute_result" } @@ -1023,11 +1023,11 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 186, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:13:20.456887Z", - "start_time": "2020-10-09T11:13:20.285230Z" + "end_time": "2020-10-09T11:13:45.402940Z", + "start_time": "2020-10-09T11:13:42.801460Z" }, "scrolled": false }, @@ -1035,7 +1035,59 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a2cd057db5e4bc08fa036838d8caec2", + "model_id": "71f8839f8b234ce2a1b95762f9e7558e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=60.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Selected edges [ 0 2 3 4 10 13 16 28]\n", + "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", + " 3145728 83886080 2621440 14680064 13631488 5767168 4194304 7340032]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fa0707d2e4e34d949272f8d090141867", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Lin fit: [2.25974400e-08 2.21825219e-03]\n", + "Log fit: [ 1.26078658 -22.31852001]\n", + "===Results===\n", + "Total time: 10.318\n", + "Simulator fitted flops: 4.9296 G\n", + "Matmul flops: 21.564 G\n", + "Simulator optimality: 0.2286069959285035\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1577a2799ffd4daba683d5d71cda19a5", "version_major": 2, "version_minor": 0 }, @@ -1065,16 +1117,44 @@ ] }, { - "ename": "NameError", - "evalue": "name 'seed' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtime_vs_flops_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5e8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1e6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mtime_vs_flops_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmax_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5e8\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_memory\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1e6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'mkl'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mtime_vs_flops_plot\u001b[0;34m(filename, backend, max_memory, min_memory)\u001b[0m\n\u001b[1;32m 43\u001b[0m times = ex.map_variable('step_sim_time', d=ds,\n\u001b[1;32m 44\u001b[0m \u001b[0medge_idx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0medge_indices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m \u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m )\n", - "\u001b[0;31mNameError\u001b[0m: name 'seed' is not defined" + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "16ea2f0424af43439929d0db8b503e75", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Lin fit: [ 2.34506798e-08 -3.58409871e-03]\n", + "Log fit: [ 1.26797606 -22.39941682]\n", + "===Results===\n", + "Total time: 9.2619\n", + "Simulator fitted flops: 5.3449 G\n", + "Matmul flops: 21.523 G\n", + "Simulator optimality: 0.24834176328456667\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABZU0lEQVR4nO2deXyU1fWHnzuThewJCYuswQQFBEGNS9Uq0mqpoFagLYqigFirBBf8CS5V3LUVVALYyipKBQtoFSxuqFXrAlZkL4uERQwkIfueee/vj3dmmJnMTCbLZBnO8/lM8b3zLncu9J733nPO9yitNYIgCILgC0trd0AQBEFo24ihEARBEPwihkIQBEHwixgKQRAEwS9iKARBEAS/iKEQBEEQ/BLW2h0IBikpKTo1NbW1uyEIgtCu+Pbbb/O01p0820PKUCilrgKuSk9PZ9OmTa3dHUEQhHaFUuqAt/aQ2nrSWr+jtb41ISGhtbsiCIIQMoSUoVBKXaWUermoqKi1uyIIghAyhJShkBWFIAhC8xNShkIQBEFofkLKUMjWkyAIQvMTUoZCtp4EQRCan5AyFIIgCCcrtbWwbBnYbM1/75AyFLL1JAjCycgXX8A558BNN8Hatc1//5AyFLL1JAjCyUReHtxyC1x8MezcabYp1fzPCSlDIQiCcDJgGLBoEZx+OixZYrYlJcHy5XDVVc3/vJAyFLL1JAhCqLN1K/z85+ZKorgYtIapU2H3brj+ellR1ItsPQmCEKqUlMC0aXDWWfDNN2bbOefAt9/Ciy9CMKe9kBIFFARBCDW0hjVr4M474ccfzRVDQgL85S8wcSJYWuB1P6RWFIIgCKHEvn1w5ZUwZgwcO2a2TZwIe/aYW08tYSQgxAyF+CgEQQgFqqrg8cfhjDPggw/Mtv794T//gYULISWlZfsTUoZCfBSCILR3PvwQBg6Ehx+Gmhro0AFeeMH0RfzsZ63Tp5AyFIIgCO2VI0fguuvg8svhgL180G9/a0Yz3XknhLWiR1mc2YIgCK1IbS3Mnw8PPgjl5WZbaiq89BL84het2jUnYigEQRBaiW++gT/8ATZvBqvVXDU8/DDcey9ERrZ2704QUltP4swWBKE9UFAAt90GF1wA27aZbcOHw65d5sqiLRkJCDFDIc5sQRDaMlqbCq99+8LLL5vHp5wC//ynKebXp09r99A7IWUoBEFou2it/R6HOtu3w6WXmgqvhYXmVtMDD5iriKuvbu3e+UcMhSCcpLTkxJ2/YjF5i7Ocz9Bak7c4i/wVi4P2zLZCWRlMnw6DB5t5EACXXGJqNj35JERHt27/AkEMhSCchLTkxK21xigrpWjtKucz8xZnUbR2FUZZaUivLP75T+jXD/78Z7OgUHIyvP46fPSR2d5ekKgnQTjJcJ24AVImZjon7oSRY9Bao5pRglQpRcrETACK1q5yPjdh5BhSJmY267PaCtnZpqLrO++YW0xKmbkQjz4K8fGt3buGo0LRmmdkZOhNmza1djcEoc3i+lbvINgTt9aafaMudR6nrfk05IxEdTXMmgWPPWb+t2HA+efDX/8KQ4a0du/qRyn1rdY6w7Ndtp4E4STE9S3fQbCNRN7iLLc2162vUODjj2HQINNBXVlprhwWLDD9Eu3BSPgjpAyF5FEIQmC05MTtunpJGDmGtDWfkjByjJvPoj1z9CjceCMMG2aqvYKp7Lp3b8sqvAaTEPgJJ5A8CkGon5aeuJVSWGJi3ba2UiZmkjByDJaY2Ha7/WSzmdIbffuaJUgBBgwwVxALFpiO61BBnNmCcJLha+IGgjZxJ4+diGEYznsrpUieMAVLO33d/vZbU3rj229NR3V0tBnqescdrSveFyxC8CcJglAfyWMnukU3OYxFsN7uHz1USGGtwezUJJRSaK2ZdqCQxDALj/RMDMozm4Jn5JfjuLAQHnrIXEk4bNzvfgfPP29mWIcqYigE4STF0ygE05FdWGswJ6cEgNmpSdyTXcCcnBKmdo1r9nDcpuLNqN29v4BDayP57IkYcnPN8/r0MaOZ2orCazARQyEIQlBRSjE7NQmAOTklToMxtWucczJuK3gzajd/VMSy6VHw3ygsFk1kpOLhh2HatLYn3hcsxFAIghB0HMbCMQEDbc5IgLtRezG7lBdmWmF5AkqDBkaMUMyZY9aLOJlon54kQRDaFVpr7skucGu7J7ugTYbGKqX4xfYk9HXdYFkC2BQ9usPbb5ufk81IgBgKQRCCjMNIOHwStRf0YmrXOObklLQ5Y3HwIFx7reaqqxQcs4JVw/girl5fwMiRbaefLU2b33pSSsUA84Fq4BOt9fJW7pIgCA1AKUVimMXNJ+HY3kkMs7SJ7aeaGnjhBXj4YU1lldnW4/xa3l8cxssdbMzJKcH2/nbmX3Fxm+hvS9MqhkIptRgYCRzTWg90aR8OvAhYgYVa62eAUcAqrfU7SqmVgBgKQWhnPNIzsU44blvxUXz2Gdx6q1kXAiAqvprzRn3Gyot20LlfJvcvfo3C8kjieqe2aj9bk9baeloKDHdtUEpZgXnAr4EBwHVKqQFAD+CQ/TRbC/ZREIRmpKXCcQMlNxcmTDBrQ+zebeZF3HWX4qeDEbxx8Q5K1q1i36hLKV67imejq3j2qitavc+tRasYCq31v4HjHs3nAXu11j9orauBFcA1wGFMYwHiUxEEoYkYhimxkZ4Or7xitmVkwH//aybOJSQoOnkIJnYKUTn0QGlLE293TqwcwDQQ3YE1wGil1EvAO74uVkrdqpTapJTalOvIiBEEwScnY2nSzZvhggvMrabiYlPhdeFC+PJLswIdnBxKtw2lLRkKr2ity7TWE7TWf/TnyNZav6y1ztBaZ3Tq1KkluygI7Y5HDxW6RRw5IpMePVTYuh0LEsXFZuGgs8829ZnAVHbdtw8mTTohxxHqSreNpS1FPf0I9HQ57mFvCxil1FXAVenp6c3ZL0EIKdqbpEZT0Br+8Q/IzIRjx8y2M84wt54uuKDu+a0hmNgeaLUKd0qpVGCtI+pJKRUG7AZ+gWkgNgLXa623N/TeUuFOEPzjmtvgoC1KajSFPXvg9tvhww9PKLw+/TT88Y/1K7z6EgUMddpUhTul1OvAl8DpSqnDSqlJWutaYArwHrATeKOhRkIKFwlCYLjmMjgIFSNRWQkzZ5orh48+MtvGjjUNR2ZmYDLgbS1Cq7WRmtmCcBISqiuK994z60QcOGAep6fDyy/DZZe1br/aC21qRREsZEUhCPXTniQ1AuXHH2HMGBg+3JThiIgwt5m2bxcj0RyElKGQUqiCUD++JDWmdo1rUUmN5gjPra01cx/69oU1a8y2kSPNBLoZM0yDITSdthT1JAhCC9HakhreigPdk13QoIp3//kPTJ4MO3aYx927m4WERo4MXr9PVkJqRSFbT4IQOPUZhWBtQbmG5zq2uhxbYYW1Rr3Pzc83cyAuugh27jSd0w8+aK4ixEgEB3FmC4JA/orFGGWlztwBR+KZJSaW5LETm/15jXGmGwYsXQr33AOOd8GhQ81VxOmnN3sXT0pOCme2IAgNR2uNUVbqln3syE42ykqDsrJoaHju1q1w4YVmFnVREaSkwIoVsGGDdyNxMsqTBJOQ8lFIZrYgNBzX7OOitasoWrsKwC07ubnxVfHO01iUlsIjj5i1IrQ2E+fuvBMefdTUafJGc/g/BHdCakUhUU+C0DiUUiRPmOLWljxhStCMxO3vf+41PPf29z9Ha43WZhRTejrMnm1uO2VkmKJ+zz/v20g01f8heCekVhSCIDSOmQcLyNnyHdMABWjg9nc/oeuZZzGzV5Lfaw3DwGKx+Dz2RlxVOeM3ref+6CqYmMn9G04UB/rhB1N64/33zXPj403jcPPNJ8T7fOG6pTUnp8TpAwmFZMLWJKRWFIIgNBzDMMjZ8h0LktOYNWkmp67+hFmTZrIgOY2cLd9hGIbPa6f/62Nuf/cT5zmGYXD7u58w/V8f+7xGKcWzV13Bs9FVFK89URzosfBa4r6/gv79FR98YJ47aRL88ANMnFi/kXC9f6jKk7QWYigE4STHYrHwRGk2k/P3sSA5jfCvD7EgOY3J+ft4ojTb5+rAMAyKbJoFyWlOY3H7u5+wIDmNIpv2a2CUci8O9J/cs7nk2dt5+GFFTQ0MGABffWXWikhObtjv8eX/kG2nxhNS4bEuzuzJe/bsae3uCEK7wjAMwr8+UTus5vye9W4huRoHB5Pz9zH/yqF+r3VEVu1Z9TFPbM3kXz8OAzTR0fDMM4rbbwerteG/wVOexFNCXVYW/jkpwmPFmS0IjUNrzbQDhW5t0w4U1vsWbrFYmH/lULe2QIzE0YVzyXrR4Jcb3uBfP5piTCO7f8jXjy9iyhTdKCMBbUeeJNQQZ7YgnOT4ewsH//v7jhUFLiuK29/9xK+x2LhRcfNj49h5uCMAaWnw8suaQft3NktxoNaWJwlFQmpFIQhCw2nsW7jrttPk/H3UnN/T6edwdXA7KCgwa1VfcAHs+rEjERGaZ54xtZqGDTNzOZorC1zqSTQvsqIQBKFRb+EWi4UEq3LzScy/cii8+wkJVuVcUWgNr71mJsoV2H3MI0bA/PmKXr1O3E8m87aLOLMFQWgS/vIoduwwBfy+/NL8rls3s5DQiBGt0VOhPsSZLQhCUPD0RVgsFsrK4L77YNAg00hYrfDQQ7B3b8sYCdF6al5k60kQhIBw3Zryduzg7bfNcqQ5Oebx0KHmKqJv35bpZ0sr4Z4MhNSKQhCE4JC/YrFTWRZO5EHkr1jsPCc7G379a7jmGtNIJCfDypWmwmvfvi3zlt8aSrgnA7KiEATBL66TL0DKxEzn5JswcgxVVZrZsxUzZ0J1tanwOnUqPP44xMWZ92gpRdfWUMI9GRBDIQiCX/xNvttOzeSWAYoffjDPzciAxYtN34QDV0VXoE62tK8trKb219FPQIxEE5GtJ0EQ6sXVWADkVSYx5f1Mhg0zjUR8vGkgvv7a3Ug4rnXkZczJKSHsq4NBldRwbDe54rptJjSckDIUUjNbEIKDY/K1aQuv/fAbhn2wgjfeANBMnAj798OECb4VXltK0dXVJ5Ewcgxpaz4lYeQYN5+F0HBCylBIeKwgND+OyfeL17Zw7aZVPLrlHipsUaTHZrP+gTdYuFDTsWP992gJRVelFJaYWDefRMrETBJGjmkWeZCTFfFRCILgl+JixX2vX84rn2SigagoePZZzW87rCU8LqbeybcpWlKNIXnsxDpZ5uKjaBpiKARB8IrW8PrrcMcdUFjYH4Df/Q7mzIEuXRRaB1YqVSlFxK7vmWzTzDp/KEopZvVOpGL7ZiIKFarPZc3ed9F6al7EUAiCUIf//c+sLvfFF+Zxnz6wZAlceumJcwKdfLXW3HtkK4VrV5F/1NwSyl8yl2lrV5E4cgxaD5WJvI0jhkIQ2gH+9JQCzZgOhPJyM//hL38Bmw3Cw+HRR2HaNIiIaFzffYXXJkpuQ7tBDIUgtHEu25ZDsc1g46CuWCwWDMPg3K05xFstDE3o0GyJbOvWmQJ+DumNK6+El17CTeG1sUhuQ/smpKKeBCHUMAyDYpvB5vIazt2a4zQSm8trKLIZFNTYmJNT4owgcjiJC2uNgCOKDh0yjcLIkaaROOUU02isW9c8RgIkt6G9IysKQWjDWCwWNg7q6jQOjprWQ6LD2TioK0oplFLMySlxRhEFmshWUwOzZ8PDD5vSG1YrzJgBDz5oRjY1F565Da4SICAri/aAGApBaOM4jIXDSADObSgww0sdRsJxXN/E+/nncNNNOKU3LrkEFi4MjsKrr9wGQHIb2glt3lAopU4FHgQStNZjWrs/gtDSOLabXDl3a45zReEtkc2XscjLMyvN/f3v5nHHjvC3v8Ho0aaYX7CQ3Ib2TVB9FEqpxUqpY0qpbR7tw5VS/1NK7VVKzfB3D631D1rrScHspyC0VVx9EkOiw6k5vydDosPZXF5DxtYc7t5/3JnIVntBL6eekmfWs2GYBiE11TQSDoXX7GwYMya4RsKB5Da0X4K9olgKzAWWORqUUlZgHnA5cBjYqJR6G7ACT3tcP1FrfSzIfRSENovFYiHeanH6JFx9FvFWC0nhVjefhENPKTHM4pyIN282t5m2bDHvedZZ8MordcX7BMEXQTUUWut/K6VSPZrPA/ZqrX8AUEqtAK7RWj8NjGzss5RStwK3AvRqrlAN4aSnOXMUGsvHA7u65U04jIW3PAqHsVBKUVwM999vhrhqbdaGePFFuPnmlllBCKFDa4THdgcOuRwftrd5RSmVrJT6K3CWUup+X+dprV/WWmdorTM6derUfL0VGk1r1C1uzmcGUtWtpfBWl9pBXcOlWLnS3GaaP980EhMnwoEDpsKrGAmhobT5PAqtdb7W+jatdZp91eETkRlvO7TGJNuczwykpGZrGML62LMHfv5zGDsWCgqgXz/45htYtAiSkuq/XhC80RqG4kegp8txD3tbkxGZ8bZBa9Qtbu5nuspTF61dxb5Rl7rlARxfuaTNrDYAKivN/If+/U19pg4dICsLtm2Dc89tlS4JIURrhMduBPoqpfpgGoixwPXNcWOl1FXAVenp6c1xO6GReGr7FK5dheJE3eKWeGZz1Er2JTsB+K0h3dJ+jPfeM/0ODumNMWNg7lzo0qXFuiCEOCqYy2Wl1OvAUCAFOAo8orVepJS6EngBM9Jpsdb6yeZ8bkZGht60aVNz3lJoBFpr7pr1AsWR0TywYTnpaz4FaLQWkbf7ezqatdb8MHqos+3U1Z/U2d9vyP1dM4jB3dj5+q6ljMSPP8Ktt8K775rHvXrBq6+ayXOC0BiUUt9qrTM82xv0/yClVHRDztdaX6e1PkVrHa617qG1XmRvf1drfZrd79CsRkJoG2ityV2cRXFkNMsyhvPUsHHkLs5qlBaRN7z5I6a//T63Ll+N464auP3dT5h5sMDnffz132dJzUWmZpHn6qiljERtLTz3HJx6qmkkwsPh6adh714xEkJwCMhQKKUuVErtAHbZjwcrpeYHtWeNQJzZbQPHJFu8dhXPRlcxtWscyzKGc8qAa9yqnDV2UvXmj8hdlEXuwWyWpJ/Hc5NmcurqT5g1aSYLktPI2fIdhmE06Bm+ZCci+/ancvf2VhO5++or00H9f/9n6jP96lewb5+p0RQeHtRHCycxAW09KaW+BsYAb2utz7K3bdNaDwxy/xqFbD21PvkrFmOUlTrfusO+Ouj8rvaCXk1+8/a2LWTpmMKTl/yepadd4GybsPsrHtnzOT2fyPJ2m4Ce4+iraZDmULRuNZF90qnav7fOn8GqsZCfb0pvLF9uHnfpYhYS+vWvm/UxwkmOr62ngJ3ZWutDHv/4bc3RMSE0cWj7AA3SIgoUpRTJE6a4GYqYn13KjLfmsfS+E4Zi+lvz6NAEB7PrNUop5l8xnpyug4jY9T0lfc7n/g3LmT1pJl0GDeHo1s0kWBXPNqORMAxYvBjuugvKykyF1/vugz/9qXkVXgXBH4EaikNKqQsBrZQKB+4EdgavW41Dop7aHg6fhGO7yXEMgamc+mLmwQJytnzHNEBh+iMe7jqIb6e4b9LPmjST+Vc2T6nNvBWLyYlNZUFyGv3TrezsksrGnv3YmZzKkMJKNienMbVrXLNFPW3dCjfccEJ648ILTekN+ecttDSBOrNvA+7AzKD+ERhiP25TSB5F20IpRWKYpY4W0dSucW5aRA3FMAxytnzHguQ0Zk2aSZ9VH/PcpJksTE7ju+iO3LhpPbv+fCPjN61nQXIa0w4UNtl3oLVGl5Vyz6KZTNj9FTu7pAI4/9xcXkNml9gmr5QASkthyhQYPNg0EomJsHKlKQ3emkaiLSYYCi1DQCsKrXUeMC7IfRFCkEd6JvrUImosFouFJ0qzAViQnMaCbw5Dchpnlx/nzCN7mbFhOQp4YMNyIvv0JaH7WU1ynDuKA827/EYOhXVh+lvzWOKyveXKY4eLGh32qzWsXm2GvBYUmFIbU6aYEU0xMa2rOfXoocJmK7kqtD8CdWb3ATKBVFyMi9b66qD1rBG4bD1N3rNnT2t356Qn2IJ6NpuNiG8OO4+PbHuL4ndXo4D4EaNRKArXrWq0g9l1cgS4e/9xso6WklxaSH5sotdrzouJ4D/2OhEN4YcfzKS5zz4zjwcPhtdeg4ED3QMDHJN03uIsLDGxJI+d2KDnNAbXEqueW4hNjWAT2hZNdWa/BSwC3gEaFmfYgmit3wHeycjImNzafTnZCfbkprXm3oPuYdAzKjvwAKaR6DRpqtmoGldFTWtNYa3h5k9x4MtIAFQZRoMMYlUVPP44PPMM2GwQE2NKbzgUXl1DgaF1ssBd5csbU3JVaP8EaigqtdZzgtoTIWQI9uTm+YY7q3cik+YtYFnGcAAWTZzsvH9T5Du8TY5nHtnLlm7eHQVnVBTyy8LjWIb4FEN248MPYfx4+Okn8/jGG00ZcFfxvmBIkzQGx3g0tOSqEBoE6sx+USn1iFLqZ0qpsx2foPZMaLfUJ6jXHPd3OMln9U4kf8lcHtiwnPGb1hNfVU7+krlOR2tTQ3BdVxIA50X6vt/Z27/i3iNb63Xy5uTAyJFw+eWmkUhPNxVely3zrvDqaiwctHQZUYdxdsWzip4QugRqKAYBk4FngFn2z3PB6lRjkczstoOvyQ1oFpXVR3omOo1E0VrTD7Hojsk8lGR1y9huCt4mx4XJaUzpHENml9g6579qlyrxhc0Gs2ebdSLWrYPISHjhBdi1y7/Ca2tlgbs+33UF56/kqhCaBLr19FvgVK11dTA701TER9F2cGQxu5K7aA4KRdG6wLag6nOGWywWrzIb0Di/hOezPR22F23L4evSapRF8XVJFQD9jmbzi73/pTgymlczhvN1iff/i2zcCNddZ8ptAPzmN2YN686d6++H67ad6zYetMzKwleYM9CkMGeh/RCoodgGJAJSv1qoF6fW07rVzuijonWrKF63GoCEEfXvrwfqDHdkgLuG3zbH5OltcvxiYFdnSOivEqM48+Aupr0yEwtmwl9kn76c4hGKW1AAmZknpDd69DCjmS69NPB+BMsYNoRghDkL7YdADUUisEsptRGocjS2tfBYoW3gObkBFK1zqekwyf9E3hRnuLeksMZOZr4mRzC3fgrXngi9zVucxb2LZpI4cgx6YiagWLrUNBJlZRAWBg8/3DjxvmAZw4bi+TwxEicPgRqKR4LaCyHkcNV68ra/7m+ia0ikj+vK47HDRRTWGty/4TWsMbF0/P2EJieF+ZocLTGxbvkZrm/5u3YprrsOvv/evOYXvzAF/Hr2RBDaJYFmZn8a7I40B6L11PZo7P66Y/J1VMdznO+KYRjOlYcGCoaNIyunlMLySJ6l1M3H0Nz5Bt7e8qPHZjJjhmL+OFPMLyUFli6FESOa9qzWTrgTBL+GQin1udb6YqVUCeC6pleA1lrHB7V3DUSc2W2Lpuyva62Z/s775A4bxwN2SY7cxVk8NWwcSWFWpnyxBqOslOQJUwBz5XHH2lUUDRvHsozhLAMIcuaw6z3fegsmTlQUFIDFYtaLeOwxs3Z1UwhkG86zLy0t7yGEPkEthdpaSD2KtkVDpTwc1fGml0eyLGM4mV1jeWDDcufx5OKDPHb4O4rtk2XyhCnO8qca6Hffq857NUftC38cOGAmyjmkN847z3RcN+ei1l9J1uMrl8hqQ2g2fEl4BFrh7tVA2gTBGw11giqlsETHMHP/14zftJ6snFJOGXANyzKGM37Teh47/B0pE6Y4E/pcjYRnHkOw4vyrq03ndHq6aSQSEkyF16++an6FV385KZ6V/hwGxSgrlfwGodkINOHuDNcDpVQYcE7zd0cQTFKum0TP5xbybHSVW/uz0VV0mpiJxWJxbjtp+2fe7DedxuSnHf8MWlLYxx+bSXOPP24m0d16Kxw+DL/9rSYYixdfCXeA3wx42X4Smgu/hkIpdb/dP3GmUqrY/ikBjgL/bJEeCictSimeHnaDW5vjWGtN/pK5ZF10rXMVEbF1E5ldYono05dZ3QY1S+0LV44dg6uugmHDTOmNjn1r2bJF87e/mTLg92QX8OihwiY/xxXPhLu0NZ86DYOrsXBFjITQ3Pg1FFrrp7XWccBftNbx9k+c1jpZa31/C/VROAlxzYwe71KIaE5OCXdnHyd3cRYFa1dR1W8wyzKGM2vSTG5Z8iQVO75nYXIa1f0GA6ZwXVPrJdhs8Pzz0KsXrF0L0dGaS+/cTcHSH1kUU+DW15wdptZTcxX58RUQkDByDJYYU0akNeU9hJODgJ3ZSqnuQG/c61H8O0j9ahLizG4bNKUehTPq6UC2c7vJ4eDu1DsVFR5BkU3TZdAQ1hZWsrm8xnntkOhwrkqKYmavpAY/15Nvv4Xf//6E9Mb118PcuZqaNSec7Q7Gb1rPs9FVzL/8Rops2muRn4d7JDRqTLyNJfgOP5btJ6ExNNWZ/QzwBfAQ8H/2z73N2sNmQEQBWxfXl45HDxVyT3YBhmE4v7snu4CZBwt8Xe6GUorp5T86jYRSik4TM3k2uor7yn+kut9gFiSn1TESYJYlLbJp55t9Y0QIi4rMetUZGaaROPVUU+H1tdc0SUknnO2uzNz/NSo6hiKbdvONOFYb7xVWcPf+440aE28BAfWtNsRICM1FoBXu/gecqbWuqvfkNoCsKFoe16QwwDk5Ttj7DS+PG820A4XMySlhcv4+nijNJiXA0E1fqxLXCdiT/kez+Sj/ezo34g1ba9ykNyIizFKkd94JTxwxK97N6p1I3pK53FceyateVhQpE6Y4f68DR9Jf1tFShkSHs3FQV+c5niughhLsSoLCyYOvFUWgEh4/AOG46DwJggNvSWEzPnqVwooOLMkYzpKvDwEwOX8f9yyaiW5A8SJfobVKKWb1TvRqKHZ2SWXGoV08MOpSFIEX+dm1y9xm2rLFPB4xAhYvNhVePSveGZddz6tHywDTQGhgWcZwErrG8ryPIj9aaz4rqWJzeQ3h9jEZEh3O5vIaLonv0OgJXjSYhGATqKEoBzYrpT7CXRRwalB6JbQrfGkzpdz8oNt59yyayexJM+l65lnMbOS+vONYa820A4VerxsSHU5cVbmb9Ie/ybOiAu67D+bPN6U3TjkFXn/dXeHVVRDQ1QCM37SeBzaY0rAKiOidiu59eZ2+3ZNdwOzUJL4Z2MWtzvfm8hopKSq0eQLNo3gbeBz4D/Cty0cQgLpJYQawIXWQ2zmjbnqcBclp5Gz5jrx6fAYOH4dja9Sx1fTooUK3bach0aYUq+ufm8trKImMdmrO+IsC+uc/oXt3mDvXlN6YOdPMtvYmA+5qLBw45EUUpo/ivrIfnVtKnkV+/vj+59z69zV17nvXS/dzfOUSv+MhCK1JoKKArwS7I0L7xjUpTANPDxvH5vIaBhT8xI6kUwBzS2hAwU/m9tMI39tPnts8s1OT3AT+AGetiASr4pL4Dszqnci0A4WEbd3ImQey6dQ7lfQ1nzp9FBqcTnGAgwc148YpPv/cfOYll5jSG927+1/FeFa8mzVpJvOvHOqstKfPGEKCVdUp8qPRfFEey3/Tz6P/0Wx2dkl13mPEhdfzYd5m8S0IbZaADIVSaj/uooAAaK1PbfYeCe0O16SwiNR0qrP3El9VzvhN67l/w3L6u2gvXbbjSzqkpmNog+Mrl3jVI/Lc5nEYDNfJ17VWhOPP2alJHP/6R2zRVXS66grnKucvnU6nJDKa+UBNDTz6qOapZ0DboGNHs1b1iBGmQz7Ph26SQ7LcYawe/PotHopNZUFyGlEHCpllzxK3xMQys1cSNpvN3Z/SK5HHrRaq9x5kW5dU59iMuulxdnZJ5dnBg5gd5L8nQWgsgfooXL3gHTBLo3Zs/u4I7RHXMM3kCVPIW5xF5rrVGJgrC1dKIqPR4eGUvLvGbxEi5cMh7Hqu60Ts+NNT/hugZtC5vJxTQt7KEj6/O46cHAVKM2RCBf+Z14GoKFWvSivgXvGuz0TmGwZRBwpJDLNgsVicBmb6vz6moFbz1xFDsVgsGIbBH9/9lKQwxW8GDObst//h3LJa88qfeGn2W1JSVGjTNFo91h5G1Sb1ntpbeGyohDe6vuHvHXUpT9klvx0OX9fjZ6Iq6Txpqt9KdZ7hr4E6fT3H79gxgwvG1rL/4wiz4fQqbnqpgiVD6ya/+VJpdd1+8vd3ZRgGGe98xvedU5mUt4+/jhjKbes+YVFKGoOPZfOvY5spfnc1rr8gbsRov2MhCC1FUxPuznb5ZCilbiPw1UiTUUr9Rim1QCm1Uil1RUs9tyXIX7HY6Wz1TBBrLRmGxspPOIxE7qI5KCC+qpzBR/aigYjUdB7YsJzxm9azuVs6szr18/t8120eV4dwfQJ/jx4q5O79x80VggHPP6/p1lOZRiLagEePoRbn1DESjv7Xp5tUXyiq1pqzCnMAWJSSRvjXh1iUkgbAkJz9TiMRP2I0CSPMlUrJutXkLpojshtCmyXQyX6Wy3/XAtmY20/1opRaDIwEjmmtB7q0DwdeBKzAQq31M77uobV+C3hLKZUEPAe8H2C/2zSu2x1/6XQ6NYPO5f4Nr1G8dhXxI8c0uYxnY/rjWt/AQaD1DQzDMN/I160G4IFEKw+UH2dpxnAU8EC2aTS2dEvnnL3f+N12ctvmcfFZ+Nui0VqzvqCCb8qqObbdytd3JfDDDwrQRF1dSuWdx1FR5mTsCFf1XB3keugm5S7OcnOC14fVauXlG8bAa6tYetoFzvabd3/F03G1VPXtT+RpA+g06URkeeXu7Vhj42RFIbRZAo16usz1WCllBcYCuwO4fCkwF8yiYy7XzwMuBw4DG5VSb2Majac9rp+otT5m/++H7NeFBI43WA3kHshmWad+ZhnPkWN4etgNQSvj6Y38FYsxSkvRaIrXrTafiaJy93aq9uz0608A802+sNYgvPuZfHTLuZyjK4keMJjuFui/Y49Zdc6exXxL/j6mrckiv/onnzkOrs5qOOGzqG8cbGUKY2Yyr78fAyjoVQ1P5VF1ag132g2P65aWqx7T9HfeJ9c+/m7aUu+8z7N253ggKKWwduzk1mbt2ImUEb9FXTfJeQ5AyqRMt2NBaIvUVwo1HrgD6I4pK/6h/XgasAVYXt8DtNb/VkqlejSfB+zVWv9gf84K4Bqt9dOYqw/PfijgGeBfWuv/1vfM9oRDw+iBUWbgfrDLeHqGezowykopWreK+CtHEz9iNMX2VQGY2yT+ktZcw1kHdzud78tr2AxwtJTBUWHstIfHOpj/60u5g5kkWBU+l5E0LOPYIb2x6fbOUKkgUsOdx1HXlKIURBu1zOqd6Hd1UhIZzbKM4SR2jWM2pqT5spwSbi0+6KeX7hiG4fRJuLIoJQ3WfeJ0cAfymwShrVDfiuJVoAD4EpgMPIiZW3St1npzE57bHTjkcnwYON/P+ZnAL4EEpVS61vqvnicopW4FbgXo1atXE7rWsjh8EgozectVjbS5jYRDjyl5whQK3liKUVqKoQ2ssXEkT5hCyecfUfzu6jrXWWP8b4v4yloG+L6its755247yvfJaUztGkeufVvLVfupoSuoPXtg9GjYutV+zWXlqBn5qLgThrB31YmKb95WJ0op5l9xMR3sqw23kNwLLg64P1prNtmsgLnd9PINY7jVvg21yWYVP4TQLqnPUJyqtR4EoJRaCPwE9NJaVwa9Zy5orecAc+o552XgZTCjnlqiX03FNcom3r7dhMtE620fvSnPcvhDKrZtpsOAwU6jEN47jfL/fo1R6F3FtGzj5yT9/manYqk3vIWz+uL78hqGRIczY8NrPFlgo6pLKvMNA4vF4ibJXZ9vprIS7r3XlN7QGnr21MQ/lcvOtIo658Ymp9T7Jh9ISG59UU9Wq5XLio5wVlEOL98wxs1nkYiB1Wqtd3wEoa1Rn6Fw6jdrrW1KqcPNZCR+BHq6HPewtzUJpdRVwFXpzV20OEg48g/iPXwS9294jUd6nMUczJVRcxgLpRTJE6ZQsX0z1fv3Up291/ldzQF7sYWwcKh1l+wOT02jev9e+6pHYYn17tT2lrXsj4s+WEnxF29SOiqTpfakNVf/wa3FB9E9fL/Jv/023HwzFBRAeLhZlnTaNE2v76rMcAsPDlYb9a5UvP0GV2PtqpDrmZDnOiazbroOm83mNAoOYyFGQmiv1BceO1i5l0B1lEQtUUoVN+G5G4G+Sqk+SqkITMf42024HwBa63e01rcmJCQ09VYtRvLYiXSamOkW5dNpYibzr7i4Wct4AlgsFqIzLvL5va6tMXW1Hcf2/4m7chRVu3dQtG4VRllpne0T13DWwXbNpfpwaDGFJSVz5pG9zMkpIeyrg86Kdo8e/s7rdYcPw8UXwzXXmEbiiivgxx9h+nSwWhXdyrwbq25lBc7J3bPvnr/BW0iuYRjOFZkjnNmxGvQ2Jp5GQYyE0J7xu6LQWjf5X7dS6nVgKJCilDoMPKK1XqSUmgK8hxnptFhrvb0ZntWuVhQOHJIUhmG4GYVZvRPdtkuagiNHo3zTF16/z7roWoojo3m6QwWl765BA08NG0d8VTmZ75pCdr7kuo+vXEJ4VHemnnkuCVZFpILSvFx2RCVybnQ41Vq7+Sr6H81mWcZwNvbsx87kVCbl72OLy/2ecSlW5KC2Fh59FJ55xvzvzp3h73+HX/zixHU2m41DtRoi6/6+Q7Wa3NcXo8tLncltWmuOLZpDWGwcyWMn+g3JdWReg7tCrlSSE04GGp2Z3ZZpj5nZTclfqA/P0FdLXAJGyYkqgA6j4Mya7lDJM7+80fl275CbSFvzqdcEs8PTb6Nyz07i7RnGxxbN4YlCg/IuPVgwbjS/2HGUIpvBOYf+x7dVmu+7nTDkZx7Ziy0phe1Ric42z0I+n34KY8dCTg5YrfB//wePPWZuObliGAY/W/0h+5JOoSAm3tmeVFZMWsFPXFRyjIKyMmdW+LFFc5hR0YGkmBhmTRjnphvl+vs8j/eNOiEt621MBKG90qTM7PaCaoelUPNXLCZ30RyMUvu2xqIschfN4fD023xuazQEpxN73Soq/7ediNR0NyMBOCOuxn/3AcsyhtNt4G+Yk1PCLfn7nEYCfMt1Z100iqeGjaN43Wr2jbqU4nWrKY2MJjnenKyrNHxfXos1PJx/FbovHGvtRqL/0Wx2/vlG+h/NZnN5De8UVJCXZ3DllTB0qGkkfvYzyM42K855Ggnn/aJjKYiJZ/ym9ez6842M37Segph4aqNjKQo3a1zPqOjA3lGXMqOiA8syhlMcHukWEeU2Nl4kPlzxJ2EuCKFCi8lwtARa63eAdzIyMia3dl8CwTGJF69bTfwIM3+haN0JnaH68hcCwVWWwlXDyJXw3mlYIiJ44INlLDvrcmf7vYtmkjBiNJ0mTXXTQPLsU82Z57KssynJ4arp5JAEPy8mgq9Lq1kQ34sFA9xDlyO1QT+77LZDZbZfTjbxa7vQ/bVTqK6GxERYsgR+85sAfm+HKOCE1LF2aX+y8gjVm9a7Jf9dv2k9T0ZVBqQf5VlW1d+YCEIoEVKGor0RyCR+fMUSkq9r2taT4zmuz4js258Op52BoQ1K3l1D3IjRPHnJ792uc9RacO2nJSa2Tv7BrN6JlG/fzEKP7OtZ55vJZc/36YhhGMzLLXded0enaKxWK3Ny4JaKAnbZ243d4ZTeO4QdeQkoBX/8I8yeDR06BPY71/7wKTMqo3g1Y7iznvWNm9bzTIcKTu87nBoPn8/qwZfxtmFQVM8k74hQc/VJ+BoTQQg1QspQtEdntiNs1ZuhKF63mvDUNDSaFLv0gyuBqs56bploIPK0AXSccIfpLLdYmNnjLBbE9yKzSyzP9+loRgCRRofsAp7v09HZT0/nutaaGe98QNXBbEg+kY1ctX8PM96p4dmrr+DRQ4V8UeYedvtFWQ0jE61M7RrHVzH90bk16Gc7wgcxHEQxaJBmzRpFQ/4qtdaUf7GBB4sKnUYC4MENyymMT6Tm9CupCnf3dFeFR0JNFZWVlXSoxxp5Spg7jIUYCSHUCSkfRXsMj/W27+1KTfY+r34KV9VZ1/vke5QYdbQX2rdMXnvxnzw3aSaPFxrc/q9Pqa2t5elh49jVPZ0uYRa+KqlCa02CVTE4KoyvS6ud5UenHSjk0UOFde6fX1zsNjEDvJoxnPziYmw2G+8UVLC53N1QbC6v4Z3CSmprbXy1MhzrVT3hg1jCozQ8lMuwtwpISzvx2zyf6Q2lFFjDeMqjBsZTw8YRZg3jt9mbvV73uwPfE+ESFuyPhsiKCEKoEFIrimDT3HUjHJN48brVRNpVRV01lsDcIurkUavAW5Gd3EVzKF632ineBzgzqZ/rNoiiSQPpPHAwC4+WcjQ5jagLelNhDeO1b49QqaGzVXHMpjlaa9Dj28P8LjnGGdJapTXvFVbwTVlNHZFCpRThnbt6/X3hnbtisViI8DFExmErb0xLgv+FUYvmhhvgpZcUf8q1OvNHHGKDruJ9npnbrnUwnhp6HcvSz+OW/H28dOVQ/vjuJyzMGI41sSMda6q4ftN6/u5i1K7ftJ6OMTEy4QuCH8RQBEggE1ZDcd33Tp4whdxFdVVKuj/zkpuIn2Py9xbT73B+A24lPKv7DWZBTgmDCys5WmsAUGE1/+or7S/nx2wn3tKP1mqyjpY6j7+3rwa8iRQqpThlwCAya21k5Zy4JrNrLEk9BmGxWBieFM250TVOH4WuhoELOvP93zuAVqSlmdtMZ54JoJgdc2KM/dXO1lrz2OEiCmsNZ85JckoKZ1QU0mXgYCwWCy9dORTe/YTElBTuKtjHqeluQsisGnwZPxz+txgKQfBDSG09BSs81nXCchTOcUxYhbVGk8Ijk8dOJHnCFH6c8UdK3l2DtVcft+9/uPlqbDZbna0lV2PhQNkDWZ0Zw6XmxD07NYmpXeO8CvR5ktkl1ud3vqREHu6RULeiura3Y47fZyVVABifdUCP7MHW5VFYw+HFF2H3buxGwh1H0psjQ9qRue0wWIDz7+XcrTkYhkF1v8Fsj0pkXVEVMw8WOI3FY8MupHevYVSHRxJRU0352V2JqKmmOjyS3r2GUVVVVe/YCMLJSkgZimD5KOqbsBr7NuowMMdXLqE216yKZju4H0uvPlji7L+hpJgfrvuVW16FYZjGKXeh+wqkaN0q9o26lKK1q4js2x/NifvP+OjVRv76E3irLucwmllHS92kL7KOlnJPdgE2m43ZR4rZfFjT4bauML0LlFrgonKi1h7ius6LyV/i29fimiHtwDHmjoirIdHhbC6vIfzrQ8zJKXEeF9nMbHSLxUJERAQW+zMmd0skIiKCyd0SAbBoHbCPQhBORmTrKUACURZtCK6S37q8DJtdudUhpfHAhuUoZUFrg6d+/lviq8q5M+cISTfdTv7iuVT8bzvVe3di7ZhC3C9HUPbN59Rk73Pe36ippnjdahQKA82MigDiS4Gso6Wc2cHKlkqbs21wdDiXxEXWKfbjGBd/0heGoah8KQ6WJ1FuU5BSC0/mYhlUDUYtxsFSSlx8La65Cg7j4U+or+CNpbxbVkq3Adc4v99cXsOtxQfryINXXHwqd+7LY15uOfNyzRoTd3SK5sW0FNl6EgQ/hNSKIpj4UhZtzLaTqzM6f8lcOt58BxGp6Wig2F4856lh40wjYU9eK46MxlZSxMFJ11K0bhU1B38AwBKfgK2kxM1IgBktFZ6aRuG6Vc4M5H5Hs332qbOLqteWShvnRoeT2SWWwdHhbj6KxLC6/2Qe7pFQx3jMTk3isv2J9OypqFnW0TzxlgLUWz+aRgKIt9VgiYohok86RWtPrIYi+qSjomOcY+xPqM9WVsqM8rriTo8cOlHfyhEhBvBiWorbeWIkBKF+QmpFEaw8Ck9lUV/lNBvQT6/OaDAzmwG37GGH3hKAUWz6X3R1FRGp6XR/bgHHl8xDA6490EDUGUOoyd5HfFU54zetJ66qnAhbLWce2cvuS6/icJWNTuFmVNLwpGgKamysKaigR0QY/xnU1fnbpx0oJDHMwsM9Eji+cgl59UhtFxTA9dcr1q8HUMQMKaXsiQIsHQ23cUg2ajAqyqjcv9ftjaVy/16izhgCQMSu75ls08w6f6hzq6li+2YiChUqdaizCl1/e3a3g1+dOpQPVy4h5fcTnEZZY1atc6U5a34IQqgSUoYiWBIe9W2vNGaS8Uy0c91y8qx09+B3693VXL94E4Aesxaa4a/dB1E4aSD3LpqJwjQSz02aSVT2bqYAmV+86TQkjmsToquY98sbKKw1eL5PRywWi129tsDtNzl+q8MoeIblum4VGYbmhRcU998P1dWQnAzLltl4I/9fvNrxvDpjcPahXYzq83OKJpzNmiUPYAEMYNSEp0iMjeEz4N4jWylcu4r8o2ZGdP6SuUxbu4rEkWOAocRbYGBFIdu6pDJ+03ru37Cc32ZmsS0qkT/FpjJfa2dd8unlkSyzCx0+G13lrAECzV9NUBBCiZAyFMHkkZ6JdfIHmurIzl88FzAnR8eWk6ZuANETZw1HgVPd1THpH5w2iagzhlDc82wWJvaieti4E1pLyWmM37+H8NR0olyq2SWOGINGU7R2FUe7DGRBchoWi4XZqUlMO1DodEp7/lbHn76ktg+fncn56Yr9+8FigWnT4P/OWoI+UszNqcO8jsG6U/rRuayIXZ16Muqmx1nzyp8YddPj7OzUk/55h7HZbF6fl+giozGzVxLlmzdy9vavnAKG/8jKZPakmXQ98yxnJnmniZnEz3rBuTrrtOZTZtv70Zw1PwQhFBGZ8VbAVWBu/ohJFIV3YPpb83hq2Di3DOd+R7PZ5bKd4nhjtgBZl42lWFm5f8NyIlPTmXnq+W6rEMeEeOqqjyn8xyvYSkucFeo6/n4CeYuzqNy/hycuuJaFLtIbt+Tv48nSbLca1t7675DarqiN5MmY91m50pxozzkH3nwTevQ4kRF+9p1/ozwyus59oqvKia+uJDc6Hpv1xDuL1VZL5/JiDl0+xLmS8Sbt7TqOcSNGU+KSrBhnlzz3PM9hZB2aTSDZ1YLg4KSQGW8vKKWwRMcS3iedgopKlp52AU/bVwOurHnlT27HiVEdmDVpprkCUVaWZQxn1MSnmXfFjUT06et2ruPt+vjSeXT8/QRSJmaSMimT5LETUUrR8eY7yDpvJNX797hdV71/D3+O7u4sdOSKo83hGF59YDjn/+ttVq5UxMVpVq6ETZugZ88Tq4/o4ddiKNNTnlhWzI4/30himVkcsVZZ6xgJAJs1jNzoeGpra/1KezsSFuNHjMaC+2RfvXuHs8+u22Ppaz4lYeQYZ6U6QRDqJ6RWFC7O7Ml79uyp9/zWJu/viyha/xZPnDvSbTXgwHNF4YhAcqwsRt30uJsD15XMrrHcv2E5JWtX8fKEB6kZdK4ze1lrzd37j/N1aTXflFV7vfahr/+JUVbqrDTnqAZXvXsHu78r5I4d8/jfkRQUmjG91zJ7xkG6/+H2Om/nNpuNi1Z9wJ7k7hS6FBNKLCsmvSyfTZ1SwdsbvdZUndeDglfme5X2dl0R5C3Komidyzkex65FoXw54AVB8L2iCCkfRXuqR6G1RpeXoUuKmOHhvL5h03o29eznNBI37f6KnWf9nG/KajijotAtIsqVycUHefTwdzxjd9J+ljGGtZj1qV/OKeHfxZVclRRFkc2U6Bgc5eOvX8Ofo7uTm5vNs4uz6DQxk9zFWdxXGs13G+9h26enobWiXz946y3o+Pl+r1LbWmvylszltXWrsQED7juR9PefeXdgnHoaA0c/5HOMioqKApL2tsR6nDMpE9SJc0T1VRCaRkitKBy0ho+iMYKBNpuNu19awEc9+rutHDxuTLeKYkb36U7W0VIGHdnL1m7ew3/PjQ7ngrhInuuVwDn/3s62KDNreWRiB9YWVropuE7tGke8BX7auplFLj6KSfn7OGXQEIoN3Eqh/iHlAT5ecTmUWomKMqObJk8+IcbnWUZUa830d94n90A293/+D56++Ld1fCgPfruO3//mHjZ3TnVfVWjNkNxsNl19aUDlSRs7/oIguHNSrChaC0eWdUO2NmYeLGDtnmy2DLkcmzUMa00VtvC6iWMoxdHoBOItMKn4IIs8jMQZFYW8s34+D/c8m9cyhrOxvIaKHd+zctFMfp+ZxWYS60h8A8zqncj0tR/wheGesf1FrZUrv9/IrJFmpbsXUq9k6Z6b4K0OgGb0aM3SpTCroJB7sg1nmLA3kcQSeyTXxp79zAp2jkp2R7NZljEcG3AgsXPdrSelOJDQGZvNRlhYWEDS3iL/LQjBQwxFI/B8czZKS50lTL3JUHh7+y2sNfguuqOzzauRcHwHLDpWSpeuaeAy6aeEWdgelcjYG2Yy6OBObty0nu+7pbOwWzoL7/Ov7XT3/uOsTOpDblgkg6PD2TSoKxlbc/i+Syr5tVU8ZdMYd+yF984FQ0GXWj6Y/AafT/41Dx0zUEo5cxC01nxTVs3XpdVuobXzr7iYyOzjZJEKwM4uqWR2jWX6tu944NAuYqsrKQnz/rtLwiJlsheENoJEPTUQz4JBABpNZN/+bjIUrnvm3pjVO5EBFYUBP7cW5ZTScJBXazA4OhzQzu2jla896vMeQ6LDqTm/J1O7xjH3WBllduP0vV1Qz3F/Y0cC3ZIrmfOv88Ci4Y7jqDU/srxzCT9t+Y6so2YhJYecRtbRUqeR8JTyeD61o1sfnk/tSNdb7uTpDhXcnRxOrcWuHaI1+f0TwD6utRYrJSUlCILQ+oihaACumckOY+EsPHTaALdzfRkJh6GxWCxsOPZtQM/tZIE8m3df0s9jI/j8jC5Mzt/HqxnD6e+xkhgSHc5D3eKciqrTDhQyq3cimV1iGRjtrphqlCqMuzqTe1tn8kqi4bwKbttYhJGVxJ2nxLEsYzgq3NSAyjpa6iaQCHWzm33pYwF0ueVOTr35dkCbRmJAIomJieQPSLQbC01iYmJA4yMIQnAJKUMRrHoULvcnZWIm8SNGu60e4q4c5awF4cBz1QHuhiZ3cRZPnHd1QM8tNry3Z3aJJSncyvGl87hn0Uy37+74Yg0DKwrZXF5DsQHfDOziFPWzWCw836cjkUrTQZnzsrE8Dq7sCd9EEd7R4OaVpdy1ooL5gxPdZNZPGTCI5/t09NofV5FET30sT0E/B7YL+ziNBOA0FrYL+3h7hCAIrUBI+ShaIjz2+MoldYxC1Y4tVGfvrRPrD+4rC4eh0cB95ZG8erQsoGf6KqmjlOKRnonkx8Qye9JMt++q+w3mg2Pf8vT5vyExzILVanV74zcMg2/Laij/XzjM6AQ54eY20/hCIv5QxMLze2Cx1NV8AtO/4Upml1g3n4XjOYHqY3muHGQlIQhti5AyFMHEFMxTbo5rB9XZe4lITSd5whSfsf4OlFJO3aGU0kLyYhN9PjPZAoYBBUC0gnKNcwtpSHT4CWfyedewwK7RNKt3ItMOFDKHNKLOGOJMsnM820FFhaLsgRT4OBpQMLAKnjqGJcWgFu9RQw4l2ayjpZwXE8EFcZFobeZkZHaJda5YHNc2tz6WIAitgxgKL3hGKh16MBOjoowef1mAdtaNOyHrrYHIAWcGlNDl8GtMtau4ftbnTPZ26U10RASHzzqFn+84xv7KWso1xIRZualTDG8XVBBvUZwVG+k0BAlWxSXxHZz1IXy9uTuMhCuLF8OUKQpdEQNxNvhTPpaLK5zf12DWCC8yNM+ndnSG/N5zoIDvy2qcz3Kt4Z0YZuFP3ePrPE/CVgWh/SMJdx7kr1iMrbSETnZBOZvNxrR5L1OkLMzc/zXzf3kjxw4dgOoq4qvKmfLFmzw3aSaJVsWzv77M7709dYeSJ0whb8lc088xcgyd7SsSh6aS1WpGBBmG4ZTe8JfgVl/C2d69cPXVsHMnKKXRvylG3V2I8nxdMGx0iwznSI1BZtdYnk/tyN3Zx8nKKaV7uJXss7tR8MZSZ+6IA5HFEIT2jSTcBYDWmuIP1mI7ngfYcyKWzKVIdXBmFet9u50Kr+M3refJYeN4NTmNqV3jnBO66/1cJ2uHiF3CyDHMu/xGig4UMmvCFBSgYmKdBYIcCWsOPLeOPP/0/G/P45oauOMOWLjQdFwPGgSrV9dywYGDFIbF40lCRRlVRiSERZKVU0pWTqnzu6qK8nrrUkhWtCCEFmIoXNBam6VFj+dRvG41xXbZ6gcAwsLr6Cu5VqC7+9B/yTttgHMl4is7O3nsRAzDoOhAodPHMGvCFNOvYI8Qqs/gNIQ334Sbb4biYoiJgb/+FW64AaqrNeE/1Hq9JtxWS7eiYvKTe9T5rntxHkql+6xLIRpKghB6hFR4bFOxWCz0nLWIsN6nAicKCKmoaO5/f6nP6yL69OX5fj+neN1qZ1hsrv0N2ygrrRMm6ygU5AgXDf/6kNNIJFgV0w4U1gkzffRQYYN+y08/wfnnw6hRUFJiGoe8PPNPMFccpV5qRACURUZjVNdVlQUwqqqc17tuO4Hv3BFBENo3Yig8UEoRPfAssi66lqeGjUMDc87+Fdfe9LjPaxYmp/Hp2ZcRZ69zsHfUpUwvj+TlCQ96nTwdKwSH09nBrN6JvF9U6cw1cM1FeK+woo7B8YZhwH33mTUhvvkG0tJg61Z49VXo4CLrZLPZqIjwLp9RERHJ9i69vX63rUtvbDab3zoRgiCEFmIoXNBak7toDoXrVjtLkz45bBwrBg9zqruefjTb67XfV9Ty1NDrnbWtl2UMp3pgHZ8Qjx4q5J7sAgzDqJO1PO1AITabmV03J6eEsK8OOrenDKP+Cfjjj6FrV/jLXyAsDObMMR3YZ5xR91yr1UqYzeb9RjYbWnn/p6GVhZqaGjefRJpHMSAxFoIQWrR5H4VSqj9wJ5ACfKS1filYz9Ja81RlJEXDxvGnfV8S0acvCz38Ev/zIgee2TWW1fnlzD1Wxly7hMaNm9ZT0acvj4adxcxeJxRWC2sN5thrQzjyIVzzIoZEh3vt28/iO3htBygshNGjYcMG83jECFi50vRJ+OMPX7/NR+lnu0mc9zuazaV7/8vfLrzW53UWiyWgOhGCIIQGQV1RKKUWK6WOKaW2ebQPV0r9Tym1Vyk1w989tNY7tda3Ab8DLgpyfynr2JllGcN59pfjidj1fUDXaUNzZY57Rb3IPn1ZmJxGzpbvMAzDeX+Hb8Ih/b253MxL2DioK1O7xnFVUhSDo93t9+DoMGb1TvSyhQXPPgudO5tGols3+PJLWLu2fiNhsVjI/OJNMg7tcmvPOLSLzC/exGJ4X21YDHPbKXnsRK9Z5xIaKwihR1DzKJRSlwClwDKt9UB7mxXYDVwOHAY2AtcBVuBpj1tM1FofU0pdDfwReFVr/ff6ntuUPAqtNXftz2duPfIaAyoK2XDsW546/zfMySnhjKpitke6h5rekr+PJ0uzSfGYPLXWhH110Hlce0EvM+vbMOj5xR5ywuquHrrWVnL44tOcE/O338K118KhQ+Y205/+ZH4CfZmvqalh8l8XO0N9Xblh03o2d0tnm5cCSQOP7OXbay4lLKzNL0YFQWggvvIogrqi0Fr/Gzju0XwesFdr/YPWuhpYAVyjtd6qtR7p8Tlmv8/bWutfA+N8PUspdatSapNSalNubm6j+/zY4aI6Wk7e2BGVyJPnXcNzvRIYEh3O9sh4MrvEup0TNWAwyb+f4NbmS1FVa41hGORa3RVdHeRaI0wHdIVpIDIyTCNxySWQkwMPPxy4kQDTR7GlW18AJuXuoeb8nkzKNVdF33VL91mLe2eXVGprvYfVCoIQmrSGM7s7cMjl+LC9zStKqaFKqTlKqb8B7/o6T2v9stY6Q2ud0alTp0Z1zOFDyDpa6vOch7rFOQ3CN2XVWCwWrkqKcgrjufJNmXuIaX2KqkopOniR3ADoYLGweLGFjh01b70Fycnw3nvwySea5GS8KtX6w2KxcHm0YlLuHv46chgWi4W/jhzGpNw9XBGlsDnqRHhgs1i9yoIIghC6tPn9A631J8AngZyrlLoKuCo93XtN6UD4qqTS7/fFhrs6qkPB1dUAzE5Nch7fk13gPL8+RVWLxQK2WrC4/7UYB8Mova8TfzhoQVk0d92lmTVLoZRpeDaXVTMkJsJ5T29lSb3x7K8vc0vucxiLmpoaXth0BK0UiWXF/GfeHVx4xzwKY+JRdnkRQRBOHlrDUPwI9HQ57mFvazLNIzPuff8mIyqMCxOiTmRTe6iyBiqp7U9R1WazEVVdSVkHc8Vi1AB/ToZ3Y9Ba0emMGnKfzIEzY1DqhDFyVZJ1NVKuZUl94bk6sFgsREZGckrpccqtEfxn3h1YwWksom3VREZKrQhBOJloDUOxEeirlOqDaSDGAtc3x42buqJQSvHFwC5m7WiXsqNnRoXx5ZmnOCdcb6qsDZHU9qXLZBgGtXZDZXwUBU+nQLkFog1i7j3M4Qe7MP3HGObklDgNg5u0uEd7YyW9tdb89/AXHF+7io4uNTb+M+8OOo4cg9ZnSwisIJxEBDs89nXgS+B0pdRhpdQkrXUtMAV4D9gJvKG13t4cz9Nav6O1vjUhIaEx1zrrLXjWpt5SUcu0A4WA+cbuazunqZLaYWFhVBZFY0zoCn/qBBUKriyBfx1CXVFNeHg4s3q7P9uxsvHM8m5K3QeHeGFHjzyJjiPHSJ6EIJyEBHVFobW+zkf7u/hxTLc0+SsWOyWzE6zKmQTnYEh0OAnWuoqtzamSqjVMm6Ypf7E3GAp61cCfj2HpZUYY6Robjxw4zjuF7j6Uc7b8xDUdoynyqKnt6htpDMljJ9ZZIYmWkyCcnLR5Z3ZDaMzWk0Myu3DtKjRQNOwGNpfXcOOm9fw5uoqnh93AnJwSIpSiyFbQYIdxIHz4IYwdC/n5Fogw4O7jWK5xj7yqtlj56/4c8jvEcmZUGN+eeQrnbPmJLRW17D6QR2VYRB1HOjR9ZeHvWBCEk4OQMhSNcWYrpXiu2yDyf9OF6W/NwyiwcWNkNNb4RGZ17uys5PZNWbVfh7HjXi59qXdiLSw0cyI++cQ8vuYaG+syszGi6/61KKBbwVHyT4llS0Ut4V+fiDCOryjllvSe9TrSBUEQGsNJHxBvGAb5eXksOe0Cnho2jilfvIkClp52Afl5eWiteb5PR65I6OCMLnKI9Tm2pB47XMTd2cfdpMHvzj7uUxpca3jiCVN645NPoFcvM9N61SrNwMJsr9cMOJpNpDZIKit2a08qK6Z3ST6zeyfVcaQ3daUjCIIAIbaiaMzWk1KKxPg4+h3NZlnGcGcxon5Hs0mMj3NOvkd3bmNzfC+3azeX13Buzj6+jUzgv5GmA921bOjZVUU83CPB7a1+40ZzFfHjjxAeDs88A9Onm9/ZbIqzSvPYQt3+DynNY133/hTEuMuEFMTEs9/H7xIEQWgOQmpF0ZioJ601n8Z2cVNQBdjVJZVPY7s4VwkzD39HPw+J8X5Hs3nk0H85u9QsnZqVU0rYVwedpUPPLs1zXl9RYdarPu8800j84heQm3vCSDj68l18F6/9/C6+C4UdvCv9FXSIliQ4QRCCRkgZisaglOLsWu+SHWfXljrfzM8dfK1XY3L+kFF0HTSEMyoK3b47o6KQU848C4vFwksvQceO8M470KmTud304Yfgac+01uBDtdVm2PzKatTU1Hj9ThAEoamElKFQSl2llHq5qKgo4Gu01uBrkq2pceZXFNQaXk8pqDEotBlsj0p0a98elcgPu6FvX83tt5uPmD4djh6FSy/12X9nXvj4TevZ9ecbGb9pPVD/X1RlpX/pEUEQhMYSUj6KxkY9xRw7Qr9aa50CPjHHjzhDYWNqqigPq1s6NLq2iq9L3IsNGbXAU8m8+l4MaHO76e23oYv3XSUnFouFn+/fyuAje3lk31f0Wv0Jj9wzCYCIqnK2nZLm89oqey1rQRCE5iakDEVjKe/em10ejupdXVL5eZT5Hq+1xlJdBV4MhaquIrtIQ7hZQ8L4IBqeSYYKCyrGxj9egdGjvW8ZeQuhvWvnv6k9nkf0iNH2+t1DeGDdcnRSMgv9VJ2Lj4/3+Z0gCEJTCKmtp8ayxV6gx1X627XdYrFAhPc6EZaICG4sO0L8kVqMm7rCIylQqYi8qpC7V/zbp5HIX7HYrb601pr8JXOJ/+VIEkaMpnjdavaNupTidatJGDGa7lmvNffPFgRBCIiQWlE0Njz2V4lRnB8b6TNhrba2lmNeqs4B5Fg68OqrGRSuiAWtoE81/OUYNd1sfBnbz+uqwZENXrR2FYBTdK9o7SpnHeridaud53eaNJWCAvdiR55UVlYSHR0d8O8WBEEIlKCWQm0tGlMK1XNCdz222WxEfXWgTtSR8WUHmJkCJVaINODefCwjyp3fn1VVxMZLB3nNadBaO42Dg4SRY0ieMIX8JXPrtFdecS2ph2zey9hpzYFeYfTo0aNBv1kQBMGVVimF2p7wp2uktaZj2YlIKqPIgnFbF5jWGUos9LnoKKw/5GYkAM5xyaPw9ryUiZluba5GImHkGNLWfErCyDEUrV2FZf1qr/dxXpucHNDvFARBaCghtfUUTI5Hm85iY2E8vJIINgXdarA++RM3DI0hZ9s+FkWeiEqalL/PmUfhDceKwpX8JXNR0THO7SdXY6KjYwiz2agNq/tXFmazER4eXqddEAShOZAVRQBorTG2RWBc1R0WJ5mjlnkcy6ojWNJr+HD/Id5McN/2eTOhBx/uO+Dzfq4+iVNXf+JcOejyMjrefEcdee/k391MUkWx1/slVRSLZIcgCEFDDEU9lJXB1VdbsP2xB+Rb4fxy+NdBLNeVOM/ZbY3ieFgkSWXF7PjzjSSVFXM8LJL/hUVTW1tb556OwkAJI8egomPIXzKX5AlTSBg5Bkt0LMeXziN/xWK382traymJ9C7hURIZ4/U5giAIzUFIGYrGZGb7Y84cSE6G9eutWJJq4aUcLM/nYnEJLkquKiO98CiRNVUUxMQz4L5XKYiJJ7KmirSCHKxW7+GxyWMnkjxhCrq8jKK1q5zGwig3o6GMslI3/0Z4eDhWbWaHT8jdQ835PZmQuwcAqzZk60kQhKARUj6KxmRme2PbNrjmGvjhB7Ba4YEHbBzu/gqvDb68zrmX7/qG8PgENnbq7dZeFR7JwKKjfutSWCwWpw+iaO0qZ6STq4/C9dw/VvxEfrGNl0cOw2Kx8PLIYbB2A8nhViyWfk35yYIgCD4JKUPRVGpqYPx4WLnSrBlx4YXwz39CUhJ0+/hcr9e8d/q53Fh9nMiaaqrCTyTlRdZUk5SS4tOZ7cDhg3ANh/VVcvTZX1+GYRjOezqMRX3PEARBaAoyw7jQty+sWAGJibBuHXzxBaSkmHkUffJ/8l40KP8nXkhIdTMSAFXhETwfn1qvqqu36CfXjG1PPI2CGAlBEIKNzDIu3HUX3H475OXBlVeeaLdarfQ/doCCmHg3VdeCmHj6HzuA9rG1pJXyG43kGf3kmjfhz1gIgiC0JLL15MJdd3lvt1gsdOqVyvhN63lgw3IU8MCG5QAk9Ozl/SI7FRUVxMXFef3ONfrJM2/CEhMrIa+CILQJRMIjQAzD4OA9k6g9sM/ZFtY7jZQnskjYkudTWqNkSOd6NZj8yYcIgiC0FCeFhEdzh8c60FqTtyjLzUgA1B7YxxEP/4In5eXlfr8H//IhgiAIrU1IGYrG1MwO8L6U/meD1+/Kvv3S77Uy6QuC0N4JKUMRLJRSKLtybPyVo0lb8ynxV44GwFKPIbDZvNfAFgRBaC+IMzsAlFLEXz4SW0kJnW6ZilKKTrdMBcASWbfqnSthXkT8BEEQ2hMyiwVI8tiJbk5mh7FQeXmwp8zndbKiEAShvSNbTw3Am9M5wkeJVAf1fS8IgtDWEUPRROrLjJbMaUEQ2jsyizWR+lRbRdVVEIT2jhiKJhIeHo6yy39fZ5f3uG7TegCUyH8LghACtAtntlIqBvgUmKm1Xtva/XHFarUydc9XHCsr5xG7vMcjG5aDxUrnmGisF53a2l0UBEFoEkFdUSilFiuljimltnm0D1dK/U8ptVcpNSOAW00H3ghOL5uGYRjcteVDHvlwGZF90jl19SdE9knnkQ+XcdeWDzEMo7W7KAiC0CSCvfW0FBju2qCUsgLzgF8DA4DrlFIDlFKDlFJrPT6dlVKXAzuAY0Hua6OwWCxYomOI7JNOj+cWYrFY6PHcQiL7pGOJjhFntiAI7Z6gbj1prf+tlEr1aD4P2Ku1/gFAKbUCuEZr/TQw0vMeSqmhQAymUalQSr2rtW5Tr+k9nsiqU1DIYTQEQRDaO63ho+gOHHI5Pgyc7+tkrfWDAEqpm4E8X0ZCKXUrcCtAr17+pb+DgRQUEgQhVGk3s5nWeqk/R7bW+mWtdYbWOqNTp04t2TVBEISQpjUMxY9AT5fjHva2JhMsmXFBEISTmdYwFBuBvkqpPkqpCGAs8HZz3DhYMuOCIAgnM8EOj30d+BI4XSl1WCk1SWtdC0wB3gN2Am9orbc30/NkRSEIgtDMhGQpVKVULnDAozkB8GVBfH3nrd2zzfM4BcgLuLNNw99vas5rAzlXxrdp19d3brDG11tbS42xjG9wacz49tZa13Xyaq1Pig/wckO/89bu2ebleFNb+E3NeW0g58r4BneMgzW+rTnGMr5te3xdP+0m6qkZeKcR33lr92zzd99g05RnN+TaQM6V8W3a9fWdG6zxDeTZwULGN7g023NDcuupNVFKbdJaZ7R2P0IVGd/gI2McXNrj+J5MK4qW4uXW7kCII+MbfGSMg0u7G19ZUQiCIAh+kRWFIAiC4BcxFIIgCIJfxFAIgiAIfmkXFe7aM3aZ9MeB7cAKrfUnrdmfUEMpZcEc33jM+PRXWrlLIYVS6ufAOMy5YoDW+sJW7lJIoZTqBcwBjgO7tdbPtHKXvCIrikbQwMp9GigFOmBKqgv10MDxvQZTWLIGGd+AaMj4aq0/01rfBqwFxAgHQAP//Q4CVmmtJwJntXhnA6UlMgRD7QNcApwNbHNpswL7gFOBCOB7zGJLFvv3XYDlrd339vBp4PjOAP5gP2dVa/e9PXwaMr4u378BxLV239vDp4H/fpOBj4ENwITW7ruvj6woGoHW+t+YS0VXnJX7tNbVgKNyn6PQUgEQ2YLdbLc0ZHwxVxEF9nNsLdfL9ksDx9exPVKktS5p2Z62Txo4vhOAR7TWw4ARLdvTwBFD0Xx4q9zXXSk1Sin1N+BVYG6r9Cw08Dq+wBrgV0qpLODfrdGxEMHX+AJMApa0eI9CC1/jux6YqpT6K5DdCv0KCHFmBxmt9RrMyUwIAlrrcsyJTAgSWutHWrsPoYrWehswprX7UR+yomg+gla5TwBkfIONjG9wadfjK4ai+Qha5T4BkPENNjK+waVdj68YikbQ0pX7TjZkfIOLjG9wCcXxFVFAQRAEwS+yohAEQRD8IoZCEARB8IsYCkEQBMEvYigEQRAEv4ihEARBEPwihkIQBEHwixgK4aRHKXWzUqqby/FCpdSAZrhvqlLq+kZct1QpVUfWwd6+Xym12f6Zam/PVkqleJwboZR6wS5pvUcp9U+lVA+X7232e2xTSv1DKRXdmN8onByIoRAEuBlwGgqt9S1a6x3NcN9UoMGGoh7+T2s9xP6Z4+e8p4A44HStdV/gLWCNUkrZv6+w32MgUA3c1sz9FEIIMRRCSKKUukEp9Y39rflvSimr/bPU/ha9VSl1t/3NPQNYbj83Sin1iVIqw36fUqXUX5RS25VSHyqlzrN//4NS6mr7OalKqc+UUv+1fxxV4J4Bfm6/79325/9FKbVRKbVFKfUH+/VKKTXXXtTmQ6BzE397NKZ89d1aaxuA1noJUAUM83LJZ0B6U54phDZiKISQQynVH/g9cJHWeghmnYpxwBCgu9Z6oNZ6ELBEa70K2ASMs79hV3jcLgbYoLU+AygBngAuB64FHrOfcwy4XGt9tv25jjf9GcBn9vs+j6lyW6S1Phc4F5islOpjv9fpmIVsxgP+yo3+xWXraZCPc9KBg1rrYo/2TcAZHmMVBvwa2OrnmcJJjsiMC6HIL4BzgI32nZYozMn8HeBUe+2KdcD7AdyrGrNmAJiTaZXWukYptRVzawkgHJirlBqCaZRO83GvK4AzXfwPCUBfzIpor9vf/o8opTb46c//2Y1bU4lSSm22//dnwKJmuKcQooihEEIRBbyitb6/zhdKDQZ+hbkn/ztgYj33qtEnBNEMzO0btNaG/W0c4G7gKDAYc5Ve6adfmVrr9zz6dGW9v6hh7AN6KaXiPKrSnYNZ+xrsPopmfq4QosjWkxCKfASMUUp1BlBKdVRK9bZHBlm01quBhzDrGoO5pRTXhOclAD/Zy97eiFkf2dt93wP+qJQKt/frNKVUDGZlvt/bfRinAJc1oS9orcuAV4DZSimr/VnjgWjM2syC0CBkRSGEHFrrHUqph4D3lVIWoAa4A6gAltjbABwrjqXAX5VSFcDPGvHI+cBq+2S8Hiizt28BbEqp7+3PeBFzu+q/9uijXOA3wJuYTuYdwEFMieqGskUp5ajP/gbmb3sO2G1v3wVc67I6EoSAEZlxQRAEwS+y9SQIgiD4RQyFIAiC4BcxFIIgCIJfxFAIgiAIfhFDIQiCIPhFDIUgCILgFzEUgiAIgl/EUAiCIAh++X9coww4xt8gcAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ @@ -1091,11 +1171,11 @@ }, { "cell_type": "code", - "execution_count": 180, + "execution_count": 187, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T10:37:19.992490Z", - "start_time": "2020-10-09T10:37:19.988889Z" + "end_time": "2020-10-09T11:13:48.884783Z", + "start_time": "2020-10-09T11:13:48.881981Z" } }, "outputs": [], @@ -1106,11 +1186,11 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": 189, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T10:37:21.032327Z", - "start_time": "2020-10-09T10:37:20.975921Z" + "end_time": "2020-10-09T11:15:52.416601Z", + "start_time": "2020-10-09T11:15:52.176206Z" } }, "outputs": [ From 12a8b55417d2ad56bc42b88f51b1c07283cce41b Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 11:26:03 +0000 Subject: [PATCH 060/104] [jlse-results] for `[jlse-run] re-run` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 29022 -> 40474 bytes run/automake/results/time_vs_flops.txt | 18 ++++++++++-------- 3 files changed, 16 insertions(+), 14 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index aa3c125b..074a6ef9 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 2.0177 -Simulator fitted flops: 1.2417 G -Matmul flops: 533.67 G -Simulator optimality: 0.002326671888925848 +Total time: 13.715 +Simulator fitted flops: 0.46822 G +Matmul flops: 691.72 G +Simulator optimality: 0.0006768905621257221 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/c63b4b63603898e93277031dd727997f971b5404) +![](https://asset.cml.dev/946954d5657afc115218d78fa3fa4fe9558b59cc) \n -Run date: Fri Oct 9 10:58:28 UTC 2020 +Run date: Fri Oct 9 11:26:01 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index d8434d9b604a3abe80539adeaba49178a28f1b8b..024338a493eb0db53189cb653e4a354cc6fe1e69 100644 GIT binary patch literal 40474 zcmeFZbySqm7cM-2fV6Z-D1xY@AYDoe3M$eKQqtWmjUb?O2?#3P%>YA6gVHbzDH1~u zF~E05f4_Ubb=SRX-M_xSKGqtAd71N`_nf`=dG@oPP2>wzMG`^=LI?yx@>EIg6$FAE z2!UWNUdIFP2#(IJfd8(!$UJ?09env-e-i&zsoay-o*7&7UY;L+&0p=I-rNo1x*;QTm(AAx>l57XO26JZP1fpetJxT|>)JlF z4HLXEO~4u*A?Nqqt?10^*Y}cIsU0`1*Dp9_5 z`8QmmpE3E_yScd$Gl~5~!S}TD!Pw3HtrzF0xG6}=$B%MXmlsF0de=tRX;KdxBCsOsVZI9V_N|f6(p?@pxp04vb7}hINW!fT`1Hq)OKXwy*mUeAe+Ci#yi@zS( zT26ZZtu-FzF*x_gK;X! z9hNIT9JmMk3B1*DJ<}0Jl6JItKMf1GWjwPPUAeDlhFcQ-WvnQk6#9n$!Oc);Rz5w( zD>ukjR~-ihcmEWvEk{y*uBS^#go&4eeZ!1;8#QC&_)BBa@$st!di34rgs88k$w`60 z_1WGK#MTc)#4gWqMuBoA$3Mh`!-%hD;jZ3kr^uvCMg}p!bsz z%%7?iRocK~jG3!)45Z>npQqAas!EX8+P*y5+vZ#-9An=k=J5E;bEVR#hA8pi}|Gn9AU;uzz#I zO3^N@&Of_RzdSb**?v@&D$rJ}v%8kgXDX*1&TfzcnZkX0jhmIVV(nX@@s{?lrN zH!jb#w3}!sC^{thHwbatcwXGG0+E#32PI?3tnV-S^H=+~!j6d&i(h4OJbxdR;1B#t z2nTN9ks7x?EF9;4Q|wVOEW!S-jgS-Uo-8{qzu&z;eTc^jK<9Zir_13F{td%w>WTE| z(&jPZ0Lu&$p3?_t`F~4?wb;*#SV=@I__Uh_b;x)gY4r9HpnCJ0{;j#^iAf4SF2l`s z`*20(AeSKm)K|9Ge;1De#=tN@DS21*5e%+lnX1xC7%=)A6ZzQ`E)KH!>=`9aZgqCG zkA2x4Q~B_TdMEzr*S|xub$d!UUS06nrRf|#^yHH`rhArh16)=6dx}Kfh6j)d&%fE( z!x2GBRCTFXSa|lZORD_c$%jkhYKZ*AfnCd*j_(?~C@3eoi}mm0$%)3{U#1y9{<}n6Q-m?=fB<_`2yKWWY(R6C{tsp-{d(N&!)P}H~Tko_jcH?B1DXU@g$GP zpL?EHekuI&Dy?Ipn5z_SF=5{N8q`mWTr@O{AN@q_Ml`CKv!k~x`2wWq@btaDOd}lz zQow?;Mq&5zKE3MHn61 zaUJ`)*A}2QWub9W!IY}kQN3&l_c0&+897{j9^Mu#0o|p|HX%dZ5MQmC9AJlQ83yIE z9mvInvxI&8h?!{S--&)XAr?PQCA!F}8rG*HM-1~B_fd$fGv4D3f0<`|U{M9nR`PfO zkWc*Am15_`sq!(TXiwNDtkByn&vjDi(MddlYA5vwyn~3kxj8Uu?!Sf0oWNxf@(~g( zin=(yc06(8WK3l(0eRCQrN22&>TTAa_>WY;8LBbP5dU@Q`}gbjPLw3pP69hV9G_ha z3+cxtqG>x_Pxrh0f5peq2WvQs2gB0CqlzqpFBO@({800>JBWyg-rJRIcTJu@C%SiH zWk6^8{5dRPO1$8gvhu(&PmyM7TmVYk6Ddh2%HO=4@Y@0)hK{~f=lJaG;mtCr>f5&u zII=uhlMTJ^Z)|KJnA0L6T;l~rL$~B@b{`4iReOWw6nN96Ai#Dv9QyItAs}S4H000Q zs?-BNR6B3L^d5?yh;cRPr@Hohcx zNOF;ri^@%`d~`oYPxJG`m}4_kQ^aZg&(sCb7mN7i<|^wjqv|YIR!NRr9N-zPee$#h zasa{5M2A{t`w1;dc6D{d&^-)p^*iVHM|(=4cV*!==H})rD=R0=>nkfSbaiL$n9-8Q zPaSU8Id;>RTf9H@oO$GlG7wpcIEEG;O?TU=iA^_|-BghElgkD-;?2b|mX*cHQ;aL9 zuNV2fsV1>^?ez4N%dj~`P3rXBXr7|W<>|Wm%TXVpOJG}Do;#v+;xypoex;7sC^T7C z_&r{DfwUH1o;=P^Ou+T}NVW2^(NR|pJOqM#)Ca=byeq@gyxZY!WCZn>Oyp2oJKHS7 zU(E8^L4?v8E?%A^EicihZ!9g(2TwjFB{}c+an$*=tgTt3rKkJFZT|TKaTLoG$sCfs zaPrRZ7>E}+)-L!D2Ae->sHuMZbu3~*dLSld0}D?N*TdIbx_TO}sC@qh`jvpLgKk7aX^17tap<%(-_ z(PVk8(epH{P(XBbb(NHrm%bHd?MveGIW5T@Z%xBoh9$%MSC^*D;#S`aFYHnWHJ|S^ zZPNsC=~TY^qLPd!aRn~L=ihw}LXMo57lqAaR;QNH7c9rUE+ePyn%RiBxTq_%LVkC* zLTTfl2XAd`HUR9b52vIdm&EbBrJq)iDik#iH z*qLjub&q>(6FAR;_K^MAATqEzo0ez ztU>akI<%tqnvbo9iH zZ06a1D8Rc5)Xmy7HCW|UJgq0D;I*XMQm2+Jbx2V8@{W|0RPL2b+~Ho&1Auj(X6wBX zn;N!58m0&m?KJlL`u?~NPHdVmlFgX_ckUq?F1H$Ol+Y=3@lC+>YF$JV#e<}Q{mlTn z{+aW+L!|LL+8{VlV%5lYqPC@46LP~p%97X-^ypb4ze z|GA#R-D9-gz=z2slax>v`E>8?ryOJFa(0ksN=l2Jlxi!#w2Y1<*WH`Ej(%y0u6|S} z-IxK6w6eCwZ$DQr%TxdYeS8lK96ru_2WETN>@CRn=Urmek07%PXO{xr(&u2373*-B zrQVk<`}vd`nXF=viOI<-w@uAj`+35)Nuz*4ushQYE*ucxJ99qB7Ky_VS>MyuXnR+{&yfJx?5jZ}ocA+HP2=cGy}y#)?j4 zg11LQ10lY_<};dBF5Hx~z@3YN_#cicW_Ycow)QMwzmKHk*k24GbMB(ndZDA!mn$EA zkC)eSAmw56$x<{3(cqjnsPSv^3hr6Y4(Y-sqU~7fGTtn>>hK;G!Yf~gn+{#8wWy&; z{dE4u&n6w`-PWYD-Dqs*XD$%K{o_A>(_T7j&OKRr*n^ZN&(GBlWpRG-7iE%m&>FS% zalmlM9_ur584&WeTnoVu-^p4qH+DEVsPzP~xoB6mku5hFgV(*IdT_|3u6ub|jP@+H z?@pQVnaKP`ZX4hogFwEucR=H>O_2!TMP>m8_|N~a`bx&|x~beFV}Bf+4G~g|^d-%7lf>#rqDO$YSRguS7Bd zLf~Wg1AEjFf;yVKpqF0gz7vV#m|7d+kw(Q!d-cQV~pKhf72MY6j{z8d5M@_M* zreziAkJrh0F=N3J0E85ucYLl3uBkg)p*#?&lfEFZ6(XbL@Ndt)vi%TGz7rqm%7TI6 zqHl(j@x=>`6#IhHt!DOc_vqcX1ZdA%dJMFP@OS1}G?~e4XRZ}yU|*e*5#PisYq4X^kXXnQ5y3BmXF;W z>+Ke7c}_1+hi|Zu-4tr88t!NdLNKQ){r>mlN{pg}=X0w;yxJvGM4D&RVTWON`X!j_ zFWf=qa&l%Pvc>1Q&Xn>Hhbzf3PL-`1V{`elZ0{LD1jnzQRmb!RYnUr2cgzY>U+uC7uv4OPVk*^>SEt21te^beYDNW3#fcecno zif*U9{0<@3dF~#M*(>ULas&n617soAeC&fv~xoi9DGhT>;P&Mo zt=+vIKKHH9=%1|dD*qi}I8Eq=if=G4nmv{gHzoA;!VRlPwYId0qp_J|hG#x7BOj6i zxHnOE%)?>i_AIUcm5=Av!{2adzbtvA=ihWaoXh`1rpZl~?kNLVczn-UOOl8)m2A{b zN1D)wlPBTsgb{V^uGUYokfP@Up-*7hvm`~D?YZ)6(ky<}UX48j9E@W(8Fnglc zNmhyfPP(l1PMqY*F8*2;w3eiR>82*$A&slZB1ojmM~DL^4T)I%@^?9wzF^#&{Igqo z_+Zxaq3@=%Bb9!>!az{NVGRxP7rXJE1AG2H z*d9D7eYp)J8Gb?^lVM+9uH9!zyt@rm^*E-WihP5~BgQs$C=w%7HsaijZbx_wXV>xN zi)~nydN~pFPqHoVwUG$7g|o=m?_An=`Vb^hsgh~)yK9PqEW-Yn;q~>8bUA+~*ltR& zP=;Kcq&(RWu<;C-9A)G10Wq~6DdlonSF`h*{T>B36{P90A6NnJq{46H%jaVHpGb{7 zT^fup2anKO$=_ZJlPsnL!S~xa1@-;hc5N8n@;-^T$^|+2ACUQvRn3Ie#aZx}caYuG zZn=$1=A@r_&d*}I-T#%PfMr+AU>n@R4rBDW&#Gy}JYlnXgVKmXHJZJlo<6o&hWdjo zanD5-j*$SX^^WwqWMiA{Bd`RTm?e10mPW*sp{nhfo@sRDC)K2f$M@jKNJ1DPJXgL^ z975=ji5YzG@8C*c@U1xl>C1=3I%ZO>$Ge4|OEKwmS+BfbAWEuQuF2VlrM%ivp{akJbyNX3v0M#z6b zCLF{Kpw48%TYOCZysqEk7eHq^ z6WY!b(i*&JwSTT^Eu0V11wj`M=NlM%c%LJmFT7WT1_3o8_*?6)Wkuji^-#OE$Hnx= zhI+qukpZx8g)&YRr=C0dCq2@}Q{}s{Dr~x#z@;uYMRsCis0z8rAx0;fp%&+oxUc7v(8X}+N3iTJY+PaC z-F>4?>PtEA2+Wp${5`0cQN#1vYj;N%kXBOX#QXw?Q0eWp?(Umk??nyV`6I^~|JOEt zZv)tq#_+A|t?@CuZ1pVtm9CbOw_4psK?Iw zMy7OEaC$0-RG-lfnh{lCP3|L?sl=vE4p_K%2h2`*uBRVkUhH`;w&UOCB}+@QeM910 z>5qQUJ#F~8dBisk1Q5+j)+LHWA75YA3T4cWcN|UJ8TzvcP!Mp|gT0MAwG}&u;v#DW zMNY;3U8vT>r@}8={po?pRnnGhP*eY49aa5nDTlRphQJg0pQ=>N2=kC84VA5b|Grw! zsq9p2u!S=0ndvg73vAFTZ^@RGYm7U_vfGAOe zhX|psjh30bXcG*=M7k;djFjU9hkZQVNF#xZUg`HJ*&S$|d9+u?>~dVluRkW2CyFQ8 zECczc#~UI=i~vDJsHh6T3~wG!tN5&vyRnX9h-H8f`vwQi=jxph%wXQ(y22**vt%PW zt2z0OV&?sg6Yr*%gO*GWUdNTS2AjYZOX|3|d@l7VD)G*BN2<5Z7?#hGsNs{ER~L&0 zQwOx)AaeQm_aW|23=NrQYwgSq)&?=-9tsz$ei-=&XC7OHx< z4pYRab#)h)q6bsk)K#b9!QGSL<+sT4D(C9vW@~k7%r5xno|D|p{zgTfh%qW*D~F^( zfat7ygnnoa2(kzZofvL@dkkO}u@&Kb^~FKp+9;Kk@{1Ma&0vHCK%bF#$ndt7hq5(K3>ut zxy?(d-)9ZN1k=W^N6zN6I<*D|_PMU3&oacJd$TAD6&AViSl)XE#ypXY?pmn7cd^WF zC?7|Z72xr-{3P~KZ;!MO-K{14v9EDnn}s+KDjG7Z4Z1Dw;lBCoOT@Lm z4}jaAc~$> z&MhFELR_d&Xh!aHw%CE~_&vPzcpIkf8KNM2;bI*e%M2`Wj}CIh6cfikKik-ic#+ec zcCzVkXC#(xE8`z9Vb^ECwepE(xQn&se^X9wNMoqUOYv2W5&0?1>fq_`JTWh)_+8y0hMb*L?4II=Q&eb_|1RAiuV-2FThxKgJ+|6fN zmJj4t7BK*nG1$2O69}|n#WQjsw@JL*Y;JR?)b)8Z!Z;9qC4Xa3g9ByN6^*tU>rEiELtY5^| zt{-7s5}a&PWN9bhc<1Zc_8G}U6+cwB_vio^QmSh0= zEK?J`Z$AUbygOF!;S_zU&;MvhZeD&PrtO-)%fRjdzw_lZTT*?Y)?YS-o|;f;u*1Y za62w1jKPW+Cy6H%Q%NzhFZKG-b2N#vJvsREXWbFDjeO%a28kFre(nE+kQ!Y2q&2Xs z_0j~dwFwz!Q%17+0mKjt7ta<}um3{(`g*2i7<4&Km`IZ9QqD9Q698zhi4zX>|2Igj z0Y*67`dyH+3Sz6uWL0?=6MI>FAw7(gAR|&zi#~;T0vazNDXH5$*?6ETnBk$Eu zd};?wFF*(;%-=RnIot)-JZT+T2`1{a|g^H;ZWGLlfNH~kX z$Q=E|0TZ&51Z>O) zz`HJWMW3!Ds?kY$KU&WYkfNqOkJDffupsVX^3ZS7($UdTySV*S`}%*i0N^pZf|+pF zr^+k!hED_;{>)193;}9H%W7;4yUL=yi&pkINz6@rz1p@<<6-gY)da)b2$oAt#H@A%>oaP<`;)Zf*6y@V={-HE=X(MAjyWnu8JXHn&}%;KS(C1FWe= zH=DZmg$)g0i*owk>Gx)=! znkGl|Uk(kiSJCO$r=7UEkQr-93jcka%8J^f2GKe;;k>6{WQ0jcjS3^IF$t zxVijP)!yXnkUNIOhu7lU4FXqeF9xi?)& z-E5j4I^LcY_set{5)D_AzW4~(E>KkONK}*RyI+_=aoB>3i@UPEe$G7k>(@iq-!F#5 zkOSsXmi^nxEQI9{64xl?%gTMuu@usW$# z@%wFKy)zUyzuRGhm)5SSPA6X5&i)V1GS{;fzq7;7fV{*S?&;}KJTxMXm%7ycGR)n) zq>j($iYRH13-146a*}ZLBrbUK$2v{+Cs;ZA<^YYr7jY*lRh-49RLt#Kk*s1}xz97mxJ@!wj8pJ$u%@?wjAh>0OC*5o7&zf!OXhdt5M)J#!eXRYW= z%NVoImey0SXj+GO$j`oArd1wVT7s5Z_FL}d7s3vPVRm&-e0`05(tb2ep0p0%yo3Pb z-=_}Kw%z+!rl0zokcK4LY`Y{wF#5VL?%jbj$d=*`3U~8PBr# zHf}x3hX;A=zHsB!>OF3dqDWtSyE+f4DWrd79?OgN0&GFohuo�VCotBI1xSTy?+O zFIuqWbJfd81CNf5Z08$)Y4x20x5LnUO4;_h70 zG~C#WQJkg5+cPy>y44X6&AQ9M+zfs9x&k|HkVi^oibZ><3BpTsr%aT#25*mOXkbct zS(jE+$(PGywq^7~IZt-c*>6*Q*5EmnooFw;(76dHPP$}zhDMja;zZ44Uinc%xi@Z< zT%92kgyUICV9zqaiT7?hz8^AG%fT&pe)586^xSxP|Kv7lE%%GJ&zivVAu_oc1RQXtv>gwhQXgQx>N_3?7Hw34sQK@~^w zu8}>AEW1r_9W);~t=!|kJACNFW48Y+R673NcoB}V!xzaw))rYs%e`Z!)L9dy0UamB zrcg#it=-KGXA43#Uw;Og=_t6?mM+0beHaJ=GS=4jApz)R7O(T|I$5`V z<~+>Z6~W!zsVIDw1`P8)Gi$k-k4(?8_ci=;Lb-u0_ekeYnVw&xopQCd(@Ww~CAGCl zxw*M7=3dE}ei(f*yudUYoYmFj(IaG3{^uTBn0L&V=!5$PV&aQ}mY+flK>3Pi2=%_E zmHDpfyUnujZUqsP{!}CNkXX?HYD?KCtwp?*_}&Sf=PBC7Wdex^zs*CcSsX}f^e*eGO;rI& zCq?#+7rTf_PCh9to0+x|G6gvq9yY99qpLGo%M2%lwu5iqzHLocaZuH5y##C=h5yi) zLG>0o&Y}B9Rsa#OjyTCH8hDIG|IpRQVOOES_lRvCr>A{Wcw1!8K^bzS`ohKN1gE@! zbmg*eT=ewKR4Y?u72;^p1R*1E{rKI<6ZbGX-xQEG;8OW|`rwkzo;VIc>U75k#T-%jbYGQ91vlI;xL&Qhb;52UxPoK?>`-YRR7WUnno8@FOKI2MF0#tH z+4V92H2|BCtE7azxYC!H`p^uI#djAA6ih2C`I-F=Us?=j4Su|@F5{#ElzV{EcTSpr zqWaQl7dtN36pwZxjGMcqpSoh6o#!F_d3A8$`qipvq{>2l9LHrw#4o}kt#rjk5(cU< zP-QkI>XKg{&W@YiUfZe~E~u!87Z?%=k@7p^^EtLHc%DuZr5B|{TzR+fg9tw@pfo?y ztej@m4eKi{_3A?a70^EZlkNo-q9me*?XKHqYKxth8khBHE6orT8xn`le11j|bt(FZ z#sho$;;kn-wKc=v-74g3M1+=-1%#W1h=>+ou7a?D%Y*FZtIPA(nwpiqr~5DFROL*y z6>*sjzC~=SW)&#J%xkoouOT!0p23?xvS+W3FR3mT7khXj5_B^78&O#btgNFP`LofK z6coLKgR20A-DPL54(K~(1NDhRQUl5T;=+bZRY>dETL{$i)ZUOwJkc{c5w~Z)PjZ>) zx5GTs8hMmbF+m^2?m~-C!@-ca*TvD~x36E@w%yNLm^Vs{_xJaE`}^}iRr2T0pN?dT zY^4t23Y_iljg%Q6@B+<^9EViq?o2W}vfD zGH~JdVkuo&tz^M+v>(!&6Z59Np!^fLnH<*SF05^*eSSC0ErXRpPlf`L9dPM&d0Yo| znz1enUD{`5ZM`$xp|dy|PbL+}SxPrlXAX;ub8)_KXkA%L`!c1^9VmK0o1FAyD4~Xp zSe(mtnJRvYGC?v>R8;hEbCQ=TnTC9iz#~Y}XU<-`j@19~&dIT!i0Qj%j)01kZ1jrF z3{OPoba5v;d$>86K@*t4Bq-=MdmWq{&pOCDd4V`m)X2coN@p>QmrUgE)n}L`>cZcn zEk*2E2Kd2JWyRj~m(dZ`)CmyJv8Nmr9!Nt{X|&_n(PmFu5Y9y_Yv%VrdA5`~c-TX; z#ZcNDAdFdO_B@Q^!6W{2)3<Spswught) zv5uw9+GQ;{0a?j?*E@;;!gUaEK=MDN3WpmM5n`2_Tf|GcG5;&>m0L{p4W#3wd>U*I z&Mo@Rx^+%3&(;WbsudK%o567&!z?LAl}t;%A^70I;*1UAOY%U^q&|)ZoMd65u=G1& zE2l0XEpgixJAScQte(^qo!YPZE+w2V+ZUsXtimo@NK3w1zv0!*yK#?oo|R3dt%uQt z`1$kapX;k5l*$0A1zf%g?-Ns2G=gk*7j_O~*>cb_>mR_rB{iRcI1rB$`6A8zD>e{s zqU5H5u(m%*a8k#Hm{hdVY!u&P_VL>XPckviz5zA6=WsN``3)O zzTLH%pg4;iIBHp&?McdznLvL6WfGP}<(5g#vbJAZ>F1XTiGwZvlZHOOCz%{4aJNqT zDMxnw&K;C@dIGC>L=Mvt1-UqBj?@Ryl zDSb^&fPR#Q_DRSEDStZyv0J$_JCL`b_jU`V+aLD04j*rQxdC*PfFEIVe4| zI0-v<(=3m0O}8fs%=SB`2e}=ilarJ0@w6qrFOtB*;a!9V5W)g+Zc?SZE=KMoXhQ&Q z`?pd^eZKYOwX|n)L)_q7Tv*$@6%QrlZLIQYD!@)G_>TMfF264~3DG$mowvPzzdrcd zV?E_J=u$a0XIDK4BS<7cvHgvO1;51r9TyD|a~#K_-)K4h3s6W2Mxr*w`I7))B+LoOalc6HF%Su1WmDEXe+Y%!);C> zg#o0hoOc~~ETe!6!4N!>{fnvyIbOIwbY>pQZ_^e>p!^saS7GT<I+Ivui9N8Q4X@{5br50agOC z9zNd_M`#()5oMBbQQ!iOfv%=0FMmIo;zI3V1W5J(NLEw?OC@jItvouyH1YIW%$nX6^x~`i_vq z4eICB^7*LW6ZCCAf4+XDt`0JMaH0&OL<9vt6&G{aH}5Ghd#%LpG=GVB7mrb;z?82z zmX|;Xrf<%Ph*}c-NTu2%#21p0Yg!yqS^njV*&`uWZ@A$my@bP}t=)*j!R)-=)ackA zyq2*&l#HtU^bRLb`T`nzyADIb0mM?Rhp_4IeSJb1Z~v=AAdn0cNFjF=VvK>-Nq2`j z(zFBx2kOHqOP#BWAOYj-FU5>4|X%1d~&h^fnopzi-@L* ztPE-o$hB)jNKI-!*KNN;dUx$MluvT3UsYJBK>4tK?~q%O&gqOfdJnqB0IL4i~WFfOPp+D=v zVJH+$&)s}l(2*U{ne^e><8WAe&7`3UP}>QmlN9~>gQDK}Z&5>p=?70mUqZ?|K|yZg zD}&9B8#Zql0BFS~l-CW1;?#tK(Y!37tgsUc>5w`P@(ti_W5Giu>+kg|Y$#r}!4Zl>6yK z|D@T-TXs)MP(IFM4VpxVk@bx zd$-wZt+#QR5uG1F8dV4PPp@0>js}VFJAjNREbv_(D3;5R1La1h7^1CVA*%4$sX&#q#uyf#UV1?A%4t|j>tTqMsXjH~Y;z?ii zGl0>%+TP8h5kEzrO`qQc=?PzJS=aoOV>uL$JU)UZ0a9-Q!&@899u|iCQbzShE77?f zzm8qILPr}^ahSapE#FD+JD`cu7T5y2y}Mqxag{g~L8gyf&9-M5)~aR#qm0r;z5QC{EAi_rgF~c?Z)w zf`dm}c`(hk{SGz*?b_vwo^Bv`lC8yaI%bF+J$8Tl9AZJ(?&arc1HYD$cbljleFyy{Zys1v%s{h|C`@#piL~|+Om2Vdd zndCK~QXhg?n78M}b!>1{m)n%y^!VW8DRCniNIj{^<9~y77jatZe4($&W>IZmaTN9# zq|!*ufe;top0Bgx_LQq3_s4#JH|}ZEQGfODm>ZWYjUPWb@2Bk~wlSTE$F|Ak9quzEy4!o_gMEpyR{QI@ zrXuW8vc&}hd0;(Zr4Q`uSO6#gi0~<7uEAv;%ZNqDRvREN3c(ri_6`uaN*M$Oh~j_Y=*kR@5u*X@Un zt$!Aj@o9)!S>tjL4lJ8(#8q){EQI#6A(NMZnLnd+Sp_#=qRRKNH0a6E@ z24{0|I6JEyuAaqU20wo5SvS(J#PR}j$jy|oC_Mi{kBzAr@$>z$Y2Ub3L~R50$9kS9 z&N=na(GGP@7atEkIhnS4LlyVz(g!1E47i%~^=-#p+ehX+xkL)6QCb5C6ddzQL#w}3 zR5%#HYN=6CR(C6fx)guoFy}@%l{5|S##F6Pr0i?nffRMAD ztA9vUM-{2uo}|OMV@SE%I^l!YpEL}+@SAVF^Ru}A0TW$Q(ZDXPB?cyrjI7ePk;Vnx zeA9E%dfY}E8Eu0)sf`6RB}bN3m~;`fW?2}m;dSDGg^HQ6F*46L2Kq8AjwwgnT*knp1P4C^=12gg zG*G2g_=Ho}f6Kn@@s*^*qA=yeuUvfOLNf@^c#?gvWvmQUa56^>Gc%xB?S(saB2`p( z4xi=sVA3IJ^lkJxoX_=M^Xc7z%%*@olyUc;dBv2os{V^^4c!ktSyw&)cKD(krf0u7 z0bxZjh|r)S0WF)E(XDlWtD2bHR%CK}jiFfndtUu5!pnU#?k`@r`(r^eke#To!se2S zLFys}Kt;!5qcA}J6w|u{|8YcqBWN!F6(xCgzjsZ`$Lweaw!2BzAv7r8!3a4r8i*K#3I)MD|Vn3(Q(iN4me0CRc=}%@%;|s$1 z6y9{7VKeD$Ym4g+5@q~|Sp?#beu$~ruOu2*wKuw9YSUQ@lFK_7C7~u9cUvgG_CwVf z&snTQt&cr$S)zCO*H^&t4>O&i_;}&;?@MhLpXj}+E(m4iM!-LURQCzcOFPE4}8%Ap7_E;$qyo4ly~9L-T}vFX`8CBI8jjwe18*k z4am}7V!~6-B5b(zZ@&ky>Rfx0KtRMV?KB}RIwQz^!AbE9BGQ$^0!KBi63t0X>K- zi4y2tm_8^2pbxUIR^CynwyiqvZ4_poZ4*$%%dQuf=9uA`9M#RuTI&@1#q_Jvza1K@q_C`SnL)a6UqSbrpg9^&ZR+gl4rk@1wo5Shr z&O40s8IQdD& zEP;YfbZqVl)dUZ9@2e}p5XQ99KR*0IU8C}5!xV{rq4=6lUNYfuu)h4FmmDa`O!hAW zlY(r`HzmU_c0AZPIL=#;!=SOuV?mRxI40~Y=ToWiPM%HKSWW+Aap|>NX0Mo6qb&n( zF5!`y?l!Li3CR~^ykeEj4pkMss~^*JsLh7UiW2mpXV0%=eSKsq%)585(2oB(6O;5)#NwqQSdc)TTsshXg&2F(gxO72eA=LQ`m%M zel9|?I=$g3M`p~j+qBb=X_ps#ISqx@E=LWQn`JkQAf*6+m!-M9+#_@8Lv_*Ken`I4 zM0R=7vl}W+9vt+7v-(vwe~dZF~*xcq;$ z05)eG+CVeRP%@0Y^G6VL4Fut;Jihe|(>u01ZJ6CQgtmtm`cZdh81K%c6R>p)AG9G+ z&Q}*B7B=M(5r?;MAIFD`7;aKQ=EAPhNpO1p$Up<#_*A~PAFr9~2P7i77AIzAjXZNM z{E|A^4!9PC%xst#Lo~?h3b&CKWiTL6cHC)TX8fe7aD2rZ&{7>}!&9=kRR)yqGC-8N za;v&dLXZFIZj7JLK`{N{EIMRCZN1p}+SVYaQB_KdksX<*(PnOJY$;-@oWk-GOrpqR zlmWwu^VR+V>LgJz8yS!(*S%<6Z_>bhghV%vqpS>yO{y#t1p`98p2Ko%r?+yD zHcim-ZNcDeB9=avy{j&X0X^`|DWriy>F-Hy3YCNActh_Ec8j5mr?RrL_2KL-+MD3^HPJZm zMfZ^Yr*naimR^kytlJ6|Z-fA4s~C0T%xrqHi1W|O8`njIxEwqJOgwgwn_qcNfbUAB z8Fap5xjE-ubcz;ixav`t&gw9^&wk$BxSzurB`?S3YAOaHWtK<*Suh0jAIXD;Btbzz z6Xs8c7PT?YwodD|vLmZ>pF;h=U)i!OE>zt_?L4S@deC@I=e%i=|JFlNu1`+eU#d%cmA#&YfT(qvrb459! zN`SNhvj*=JK<{%R6{0G);2w;-uY* zBj9vnFe7_^;0d?5hlQ68=v>zVGbJG*0px$$($Z2+ne<*KB@lm9dG48laww%j9P{Am zdbXN;*X318481_ua;!MdVo`DN04ggjjiIz@N6i1~93GCgOz2(H(;Xb>uoyn};a=`e z$C1fdK3;8wOnl0Xn(&opqF#l(;WeDx+0s?4a?i9=-u_ivxEL;w7e}tevL5TgB6xEA=UyB@1?S9>4+N^KloCrfGRMJAWmGe0JlSiS6OhkrQaG^UcA{S-x0! zoa@G2Ke;r%jTcmKieoD>5xHZgid? zEH-H!TVCG5CerIF{<^~CKygL{+%Es?(x{)0wQkitSN%%woA;~Mb5KWP&DOZy9+q;C z_)d7Liy5PmO4dt+WA_Jn5BK6Gma$R-G>C-1@I1MIcfZSvgy1+_BzC9indD!QYEUWL z?A$u-Ozif(`qqhmgq(F%^sn1^DnZ^xCN{1KQN4zVHwupKHjDs>C4v%!)53gJV6 z%Fa0p=TI)i4;!GVc6?7#{gbPs#Zi>o!@lkCQT!Iq=V}YR*KjdGf$03hXVnq`R`0zp zWJt?&Y>n1Y%e}oa4w5l=Rt={qAt7{3h6#jG_oAJy$WfV@IMbphzEYbaTOKa|4^?j+ zRt3~-57Qwf-62ScgwhRC(jX~~DBay4(kX&~bazU3gGjgJp&Je<4c|V#@4ess{o#WT zj~+IA&z?QA)|wfj?~<*3+ZSVXK6J@;9M0u7x6&mHILMO=0dw;T^26CGOX;KgS$U?o z`32}s_FpqZ7rUe6Px)SJODdh>`c@8(CYCexY%f`Rg?!qFQk}))(6M6K*gqv<#?4w$ zkQX$4i1ZzMXrpBL1?3SAyJ#M;JShI7MGn= zhrq$i90vG@6d-01a30~nO!vL9U~5M2is z>+Mhs?aSGVblw5b7;Z484+{Vw+uGpIB1S=K1bYLshjC z$OJr2dWjh?_`5dN&ODD78#`Uumcs};Rjrz4zic_KGufLsyJni2#&~BHzpKeb2`RCE zCw!zZDG5D7Q0&%koG=~0uNUc>oxx+0y$5P%>F7P#mwqnj-`UIZXEXX5uf5#& zCaf9`OyXuY_pL6wV#{NRDR+O)pa;;P;rGQ8`6uc*qUT#k-<^#~-~`PKrSQf8IGKZk zqvL3)ng8+b4APE;p+?nOAChysTp7_W=2=tdNEqFforKTQMQVUin5j+WPY1Rzt8wwO z`hH82=@33HsdK{<=8`3sP0omnVj(A~6A-!`0MVu`$cP zi_R)&)>|<8YZGHhtpA8+?IVdl4ZKR4K(H^S<@TS%2R}K#R-UiLh1=4zscf~IET)c# zTNp#eSap%p>x+H`u=yLN*q1rY5v6{QACin~zNceBQ!hM(@rg*))h1b0$@9kZz>**S z^2}4Ug&1;qCl5Y4Q{Ohl^nYLM!(r3wDRZLg$=a(C_QpZPf<{|W)5WS&8QK`O{AVRs zVhbJ5<)oyL2?+_E-Q42Rgyn`4IX>S?^(rl{?%%HwnQ9zR?e318pDaUn}A$oa^|Gzu+ z6)p4lbLZ*{Oqb5RvSDB$(z#OdvknryEn~!2SsKJR=O--u<`g=S;-yB zRAfXW;c-;rYP5>uQRUbu~yi#@`u> zi$Lo@`bySOB=OQ1rD}f{@8l69KPJQto&3I)q;)BCKj~hE*+5<5Bw5g&pkaKWHG#AS zg5#gC4IYo6X&~i}EU=}#hO~Mp+>+oI^PEG2JDV5WeqQBmszcxR`Nt0RKY8qnOEl=d zE^m)p5V2Qp7mi>9gSZvWiz|+8W`>(ZWoe=R~UP!WSB}E>v7xe{>oVf3*

XWZ>2)?1(oT)c<>mB6-bB09BIIs) z!iUA1jZ6#9I6sIDrFVm~j`T)nrcLH$TELE)|9D?G*J#e)cyK5bJDAa!QGl%yYDlzt!)c0*Z7F_-vd)JOE^=#;OuiSzq8*exQ>xJ%^ zmsd8KLWsrr7V4KMtSnRP z;mv&a3r(&>a^bPn{WDL#CMZ^NeK~qq`_K79T$6d}vu6}otvP8&ZO@6?D#O1wvygCo zYn-~LP}cXvGRu1yF2*>&JuqB<%lj~b?bRO6(VC zTy`l0cGOt7{#~!cr<&S&t%8v>E`(69+sMOt_@6As&m6(MY;VcD3g3Jr4(CF#yzK(E z$MgTZBi*bn2RF5KS7c8s{5NAoD? z7uYY`;9^lLB?^}NMAoz)F07hl4CiGPBuz|p-|awNG;H-eX5S7_%apn`M2x?CXTM}$ za_D`eRW9jb-o0eSKmo#p?%HXIHFl2g^dD#OkG12;#K0pECWT~#@Rs=acJO!vVvqP~ zc(ZOIOo`D~8J|^Piv?#q`a883XI8ATn0iT$9M z3j*A{)Ns8&0{Qv;+o!)=wh3BW>9iY~<<-VG%S0BZyzMf35wZYL_{gOW0+dimhR@GC zP<`-1mlyEy6uM8mbW0!AGJ4|E%FgONsq(|nB$+?P#55V-8#+bHw*88=Z7 zyvQ$?k?bW1F-0F0J7;GW{sOGv%|$RUF!~n-i+EF0p?5RqUZaP7W3vw_r%XKG8&r2mOwKIhhCKit13*a}2LU zXQQwwjDb&$f8GsKT7vO*H13~=3WIxMLW>J&4eOh^Uf2_dTFMN%ykD!}rrEP}Q>n@A zvqXC3TyqzovY}*msT1&OlyKVFqrrm<$#VKd!h8nq!J^GYCXc|NIMi3%%+MuQsRnob!DRu6TAn!D%>qN%anM2 zI|7F>OT>77ohZozO6|d;>QqYE<0`P2^rIwL;fLpt)>Y=|f#*U}p`#(otCV=A`_MPy zooe;i&Xh97xS#5wx#qiM3&Q6ku6Ktvbxu{1r5YugpS*(0oa(1dd_?qK_EOotx#UyBO(DP8OwzHjyo z^7ia??I}ixQMrc5;!mR$VN0S-fG$gpR7EAmGI;*69OSV^4L#rD#KgAKAx#X$B4ZJJ zvN&!v{bUh%>St9OXF9ch;{w6tCEKsYDl__~zf*vao=jF)TSNS8i5$57DEHZrS$4qZ zpI(iME{;-@jWF=fee5pq?b*tPe%q=(`YyDO6u%LV3(5GF`euBhwt+=!{O_33f|(7@ zVUK>}i&aws*mhZh%T2-=HZqxJp6&9$Gh3G92U%9Jc|Uj44F5(=JRpBiC;fXe_q;BD z!#RWJWeZ1fDEDw|v;UWj>sD6Hb(s?SKCVQ;kCm98`@T-szjj}-Iro26YZD-w>1toO zYC}M<&@AGTsN3DXas?m-fB91qVqu27hOGMjmBevYdQzlPSDlnf-t+ zDHf(Tb~gD{O#u%+6(O`*Sw%Gd$;odfBHzc`GyykPtCiC|xXK+NLr`VvM=h;fKRm|o zO%0;?aTAvzGN0BfLBvT`gj)Y1#thqOB$OkobLX5-rthING&eU8Z`Q6t9YuMZ*8RHA z*5$YR40{I6MBOUaeY}_kzN90KT^V!eV-E zT=*oo*BE@B=QgEI*7!C|=sG`trH=phK8<&b{ zW(qt%_=-0nB~LSEyW`~jMu;C9BFuC}-ux60lj{hawb78d? zgl&~^7Zw#c6x0Gc4KzUok5WtML{n3Pg zr-&-C?Sw3X-er6cz50X)Uc>I{+CH){qQ1AZuDMfg4j0lod%RBOy$F#H26D4guS`sY zl@b>iOsA)uO|44{oE0etHmjM+mT=`{P{&X8;%9Was_Y&GU*2Ado|ZiteBL&PXUwpV zH}tmQ&bU!W3<0vW%vH*ThhUjcsu~>53s8cCo9T(kSE}oBR`b|vozJ>#7Y>nY+A8PzK2^J!I z^Ilf2p2ltI$&+EQIMSXKQ<9N!n zq>b~Q?Z|W8vh7xna{0565;Jt8=&^JyqEWPJt^=w4HnI#SGcQj{QgL!rD27y*x!M2k-e~Q2a1yy*p2MYp>KQsR}M+#Dbgy5BnUW7gOzR3pc|ATjmEi3%QWjY zOb$(ps#d!y8jFK7IAJw=9?w{k)--f&)|jqJwP|^lr|JXVjAv{7^&#=>xd@tNt7IK- z7Vx+83_mA_Vy_f29bh)gWGEOJOtj`li!%4qm&5%gr*I;Ws z8`$KuVK%-EKEIrrR0VIgyB+Kze?a7vbZ3N$bqm(jSh$~ci*+}v2CYbP$HOIcOGbW6 zm;D{axLU497;X-4UR0Djlx|Xijv4V)id>Y)Zci7wANI7`vzeE+HcijBg_ZYqd#k!} zXYcIKp>UkD4E4f@!C-K8-8YSR%GO3i`z_rrYa!M51%pw|j(HcpUFbvbz7;~0u&a7W z1WOfoI3!d>{ZeMhx`_(C1l9FB0p3<7OZ+)BrG05|^+G;7S}P?q_*2XbkM{dLy zdAm1?vYqb*=$x1N=40j{y!lPN?vk3uy?7w|49Sj^sxOO4LOw8Ppg=~>C_q=hZ_lc- zfx76O&Dzx9Y&km4v|sho&z=U6f>bGNd5*NT@k>^$edj&>YvtMPi$LkEIkX{ost7n@ z5H{xHL|=L#cAe9aTucfssJxqebtj;cj?uc5-0xMmXR4w;cCYzyfa};xSA4qE^QS)v zy7aVvp=xa(VSVI_p}S?G6pxG^Kxa2wM3N*i<>SbA$M-^^xWIPG6kcf-t<18 zcydp621NoQC97B!_VKc7lk4!$M`64B*8m@+r^v$~URlL`x4$Y8^$cKf30##R?0FR| z3H%HGDb&iM&uzsf5}Q3A-BN7Gm?Yr}am?ksZl>_!BmTHbHY_PY&bQql29fXheRF|5 zyDs@_F`g!Yep+Mlut5@%#N+=|++ zc|EF0dAZ>gY_<%rv$rOU#y>Exr7wHcWiv3!%uu3OK2iipWuaNns%hNW7nT5n_N zDe+E{<&TJe)Q*#~2riB@*qlp|{$XAH1bFZScyFMGS$Vz@!yoyG(wk~Axejoo3Zst} ztRf_%xGs5Ts=L+FR#hdDg91{BWXdeOD#*x(K0osl6@E&1?=vaoy&BW(UVHKJXR1u0 zs2x9xsJEN-3311dIC8-^$%aqyhQbsyWM5?TMwVUXG%jXY&~#b_JOpvpEi1pfE@%w78?qfHX-p56x{Nlo*T>`y&jy-PVS=PwHL;`TJqp?6di*Ed(@Ann9 z1Uk3q%H?|mnORb6_mqcO1JZC6LLybY*4Ts_MY@?PZb%!2pNwvxveDI@j=~!(8u59m zd5b*1e!gNhT$p_fD^l#RuBP}ccXmU)3H_mIS0=vac4tiTcG6Jmdc%(-?$9Mu?yD~kr^4mx z#puE4$=!Iu!MJk$Ja#&`KWS7atKoVz`+4*huZ0zNT7?N%%fl30*fQ+iS2iq~&+%)T zNK}^8c0@rY0|CHu^jpJ(N`qH(DChnzf0efFydTxQ?2N!MRe#az!Di8QUg_JE7y#8* zUjF!;5XUZQ^4tEtl4{K3lD3 zEIR`Ec28S#gx7RnN9{?6zyU9^6DJmsz^LO3ZyxI-Y3W*i-;#wh*JVytzMtc^ZE0cQ zFkO{5l8*ml&)T9cJ3>15Fwz1+$xIBXJZ);OP9~g?S7=S z)aDL}&>snd&>L+M5xh9Z;u%PIHA2k#wbMMtbfMY)3EwI2Kj>3e3Gyxr)D^CeVnv>OPvrT_rM|5-8$c&_Sdb0zsBjXGlNyMhyu5U2kxzytb8{bbRLU~ zV<(MrhY~;uSkI()N1_U%S@+zz6cICUCMlAi;t@!GB6m~K)TNetjGpH5-~x4SeETo| zRHN!O`ck#nGe>MMhNw-`5vMSO%)ZPv9(T#&YRc)Ll+!}oF~C7hT%xGI3U||VXt=^^ zXSiILojXdrJ=|Z8^OOZgwR$g(l=<~(mOw|HCdzM+i+W5JM5I*mu z9ZJx0V9K}rc}xnCo{O5Yo|t}RS++uM*Wt0CZgb7E$Y%HVyDnmz-tVbnh?H{kez2Ka0eR$;_5b5Q`3%Mkj(kqCT2 zUEUholZ&h)lK;c1FEiKY`P;HSL{j@~i?HT#M?Cctr;W>JP{S#Gn{zp5Yk_^feseVJ zUN@s%8!YbGBw=C3%E&uLXwBiiLWx37ZhiT-hl@0`p18b?3>2E(+^noq*Y7>BwHg)X zb6oe#@tINKgkQ`K?i^2OYrNumt*q)WB9tD9!Jc2^DswJ8bwuOwjnUq`(SvCu_v@8> zn$HWkqH1NVFfjmQC8Y2c-GZq1>9W^9^rFS1Yj&@52U=g?N*J_gXGo1F3ODlYHN{-x zGyI)8eL;>JuQJn^-`}5gnw?*~Q*TWEIq%ub^hB~Jz}LgGdG_=vCJ8~wT%+Vrt{PX$ zc4mRCjif}c`7lE_xfBqQfx30~oo6Z<7B>|+uALZmKU<}cGN1CU z4&&cHdZz^=YfaR+;(EIMX?Q)EyB>1+nSbi(2TV*AdlzIKB`Q9Ox|$N;?so*DyJ#09 zEbTX%-~JG0dyRR0&Uy6Xfj^eGXy#puKD*%a7in_263j>qk0=WUfUBjnB3gu4T(tg zWWa*UaBx3uyMmO?w!Q<7*=UC(?XWJ?5KT&actB$CS6B7@-;PBiWOY{B&0T{UGUX+m z5!d7fh|N#DT@e!>H&KPIXWFxv1*}+7 z8n-1N^aZ!Wq0+Id+(CfY3f{v-)bHSlY0m=zqVOqIFgY(Qq3)7|J@5FdZ~AvAe56Yu zPJGYjr_NtKDR1ZQV(Y7RaWRjs$Tph(%b%8%PcIPhLhExe7P^d7Ra0p9M5m{jVAHJ0 z+(hYeIN8+@WDd{`%1Js@h8e*Uou- z-NzByu197$bjVD2!X-<#CmkJ`7o3%Ut+O*BMA4-c?vk3kwj}~LCNS&`EN`8fa@Ny= z2yN|09%1XW`^o%reJ;7uV88sjMo-J=qi*`Aot8DC^9Ns*ZpZfgFn&I<6Px|ArZ;fi zV#6$%4NVDk)FS@bMqy$ZF#zX=U)^3c(m+n9OhMcFCY+)LV|3v_c0Qs@ZfmwG&t1A) z9r{`P`=}4L!BuOB)2Shbu!v@y^wjQiV^vwRN`|Tq#nT~t=JGZlg}!01i2)p{p>PWR zH#eSJLqEDf^X*$-JNh2U7@i0hJ3yZHY1EIke7g8!_c3|raAxD_V z%q3+7*6Uw|<>c=fD2^sn3hX#66JC2^(_0-?4qZ}U%W2t(iyH&*@7%S5JMPb?;m7G) zPndZv?RP>ZK1%I%wHygNZp-?*P3n8^?n2M@`(oDZlRzIw(S^;<$77uZ%^YqE%!+NG z-y$5|#18v&{K^fWIPp_c@GEw9bYy^)jcmIzgXKABUD{7URt{)Zmgk3jxNjNG*g(>rDRj9u3X!spH?L&ZwPjK|yw1_%!Qd&ep ziXFGY)qR~$-+pYOo=9A-zs1kxg)ei{q&Et7myYg-YhOWqS+l^nmlpt&UX0kWnJ#1O zYhTX4@s`HRXg=ofGLT4JUsupLf6_oyGw;s_JFQjDv^%c>YLAB^L_LAW4~z04 z$->@Px1@g_U55&bx;6OVDVuV_1abXf#=Sv<+hG!_%{+M`3D<1}*LpcKCz{g1rZJjE z&QxBWm*4h>fF7^eS@i83<^zQUz_33D-)9w(O53sbM$86U?gi^EV%AYa zyGI(oSiG#TbL=%d+Ols?`LT<7JFnbpjoe&qYRsVYVIt+OS;63DEhgs-h!AwL5E8_c&z z&v&XvQ1OQXuN)xLC>c1FR-=E2cqROD4Ub1QBm5S7In!glmSR_~Mk-FFwMJu_iRMPV zYd0g?kvZI*h5fj=*ZYC!`i!u&$^>@F#Atb*o3z#g>;sT96lWKfN>tq`q^Z51;!Br_ zekSni=>`Sh&6_!1m;U&*eBy!ZRn~jN<}C{)tgN3Kzs2k{Q(Xy zQS0SkbaP*4V&=dcgpm-ZC&FUt{91=IVr^_p&sMk9fGZ-!)enAFs69v!(m;e5^_Y61 z>+3skks5y=?PFrR{H5x+o=dr~AUn<7ikY!;>mAIEz}Q$WTJwQyHy25?45L7~!4XBi zdE%(!n>VbZpRWIs_WdHx%k5BQas2exS$A8V(Ch@$o?*4o#K!zlTvRxxJrN*+nfafL z&Ry5-ETWGeCr|b2`Z4PpuDhvMQnb<)BWA^mXGZsMAf1UZw>DF(0#6pNgk!Pj#8c@x zIlSA@FV!hNP&|bFGccv+2z*gVL$P*MXch1;b(*kycQJkPx1?iGUNG+#zMrdeLgsy$ z@4l-u^kA^?Kv~}P_3F$knZ(*%@cD!F@Jr;Qv8x7}&LWy7>=LbRMp1ND161nY-XR(K z-aZN^sF^XR(UG5X2)sdm^F?=I!tN6{H{~6eR8E`(gBGp;H;(_5m1y-MsE9F5ZZ6-; zVI=93aEWON_m|mKNucH^)DBKI4CQ3Up^yc+@7)1zd`%7RWd$KYEHHdkI-4w%rv-6q z)4CFu?wd1YA`T}sR(K# zpLo86DU*1(CtVyC(qs$u#c# zehys_d}iQMg+?3*w~SgpsaGHT;Nt~iQYpLIcMVeVmOD4o$|{`I4g}ay_G&60qD#qr zp~nQybA6Q06RBe$INWXxjeE1xFl<|{^O?bwyeQ;`C^yv|FZ!qB2VP|+bNWwwgVEJJ z=~)Ys1`Rlwnkrmb>EVBE3LVfp2Doxy(Vj?ycjhA`uev%8)>07GVrf!IFzOcC{&>GU z5&A!9&%B#W{eRJ(tra)`Q%YVGM@)-jhLKY2w+dg8;RNsDrPR-4<`zXJ+ zclNW)Rk5($&@H8j5EZdhWoCfrHKJnLWWmJ!iH`VcN1Fj#D}kj|*=WV1Ej9bWu<^)` zU4IQm3v5h;{7-t6(fRMUQBlUcJcD}-lYUJ;L0E^Ve_!k6#@{P4_j02=%;B9R3I6Z9 zn}kyXH#9V~0ouWQf{7-VTT?*2=KOsA(MC}GT)~P#(~PTZ;5^%AibI|)&?y>FOOLZznfV6u|H)TAA;@S48-FS;f-t>^FHbK(ztB`Md zQAus^KwFFF^HG0#7)EEImTb@c1-YKlhtr+!&3tE=aqV}=psRKmA<0?>W`QNu} z3y~F$Tak`+ID7*W6VoV}VG9iMOECxJ!o2JB!U(BPYn@4JHKokwlz^0kKOz`V8j*$r zQ_sf-$DQi#{lp-FP@gDN8(NM8d#>Bt<9e_0Rw`^eZBzWu0PhZz?k8j=3(v-)a7Q)l z_GK9^wgepeH_y}EnNnj7#O@9X3NbsIy6O1~%D)`YxaP(!-um(JjLsj_e@}k19M@Jz zwb8YfeeaY&?HC(JP;FLm9^FKd=%01|3iKF#TqEhK&0i*5+@uLT)-TjCTSem=kTRJ? z{9$3ibB;V@SksTeZP7;$IXO8Mf*`|((?ndWz5V?k{7wwa%*?5N57%Ih5r&DUw3!*B z)AmRnm^euGg?RJ`lzr~mtE2834X6I`$*M=t!TIFvB z2KvqIz!btVXVFVk|7WAEzrS10YXniE?QR49*eM2s3pLCdP~(_| z(Kk3Vt}!#Nhs-|s8fan#a#=Zp)*y@)7pg*R2#mDyxjEzzNB`iCs#l_xWkjzGf-@TRI z<*~aEDBOK&7^qm6o7;1DjA;GIL(w*ln3|X67CWU04exgm?$$R6czgo?GsiP+xpJ-VJ z9JKs`#-+(T+`UMidHE#GakOI1+zLa{%?7SOIGk`^!k$3y&$f;xwx=5-rqzT?1IBJ^ zakSs9HFm|_lFsAOoM_hRIjZbUUPRj@&+1Uj@4$#jCGZH#bXNt@b&r*jeRSoXOp#QD$8p{bJ9pG$jXOAd}3z9}+2A?|y#Z zj5b#7Sg|`Zxch<6fPKA`&v@Fbs4RWEv~h{loBCTH$CxR+i{1AGqwPG89e!+TN)oiZ z92I>OBG$7PH(#2_lLuXu%>J}`T^3$?uLcn}fL>k_!_*+lUId-(Ud_%Cx@Pa z>Mi%eAChlVw=>vH`=dE`_np4QzWNn_Tw%ZLp~g%957AY=xw&Zo-A8uz_GnpH_V1TR zZo6utK*0tWR%@`x{K3Dt_{9qr7K#3)r6n*6>dPQo^MUX!;sy+o5mC5Rrg{Ul?mylq zNmDJg;<8~{61dB`d&6??4&_}`{QHwya7}t_T#6Cq^T0?!D?7#C zoN;k+ve6TtSDXbH5B*5am#O5RBUzrN_U5VR$=w{p?fTtAYnHV_j>sch>;re|c-#r> zmUM>7vEjnEm!uc!$d0krTAe6CoVFlcRSW7`{->aY9OPxW3q1DrC$%eQs~j%xFcu3L zhqD;x4YF~Qx=w7BNihscSEI`3;PfuD`axqdL&v*>EMdL~Ip&Hv)9I}|vv2V~f{50A z`seNBRy_So5YsQ}jh)>BAR)SuFTCrD6aRlo zMIz0Y7ypO>OdN=I3i&-un(aCOk3BU>Pwhvmqr}FSn)Rc#vrxO?LczUT5+p?`^<@eB zZ)6p_A@gJq6ar+-Gzi7@>&NT6oR)F!l*L>nss?-J>5K>N>KW_sy;0&Abf?n$VC7T$ zkK5VEfr-m=#(un?O;`nS6en(A4)xXV_-MGl=jX7-dqL5cPzZ>KykI>dTUt_o|CWP| zz#HM;rU0#>g^pUzlsvt>B=kGur2dcGKTX(Tl=P^Rn1BmZxop{RXAKacuiC4$IAc{j zLJY7g41?#6q?{U639NHQ0%kZ@Re#aI6j3E*I0}$oG&V=?Uy;A-;@@+7cU$r4Zf95- z-hNyLWzO;LwVsdNik)j8muU3n0&z5u?T)XJok#yIr2Sdw$gN{bB?Gx;1kkAs<W*O+gX4>BQ;e8h5Qexv9DadflSU%3`Vt3G7;h!EfPU-4ZetxAnXQ2Iq?>6)Wr#9MdQ2 z;q8rKJ#J@(P(3O8!D~l_icMi;WaPip>;@bC*zQN3j?|@=2!sM4Ij`$6OvfM~%;^qa zEP8(;MLXSs0H~bEk-uN1!1M=1|Te{bIOOrBzzC*)_>FKQg1{-+L|Nl)cB*yf)TLFb!S1mtYL2x8M=-=n`rJI zJ{B9i@B5~uIaW|`f;-D1bP=}S&~Ys~^ZcoD+;puq3CZV?Ka!*lj@@G>Pba5y zojT)>cMFWi_4TWbPG1ha2ZeQaAoXsG>!YdkpK!MyriJ4`g+NROk2f}98ZskvEh~aZ zHHoX#SaMc;a_lvy#6<`?)I@uVi|O^3sAq`KBbk_2C~P&9b{MVfF-P<;o)&EqlrpHH zfkKiGB8Ot#zCcU83UYVzD-MALi#8u*X)QCoOXyASIu~0r^YdUiO*_O=vW`BOlws*L z8*U+eLGZ&8*J=T(NcZOGV!y78sp{9oK04~w@7Ii?fzr-?Z=5M}+`Mr+XvVYikAen) zBB#_su1)3+YgW?=V-~(qU^fkKQ^B|TPA;n10dtSaQS~cxrV0r;! zy4)dbEf65qNtCdFkVQ508TFeDQ5t_nlFqKC(H8j)EH< zqA%Uu7#TG5n}a7wSTx!DVUj4P%u4bHqW zITKFs567==#)vf5ZwQVaU+sk)MG4-RCRduE>e<7$+{5OxO^ROF9}b8{v2T)_U%@sE z(AFWe0V1NFGBpHlcOdqCMfU^955J&7qV`4ZA3aU<{_(JZMd4^2%#t-*$itg`JK?sK zi*+Sbu$qb}D^KaK?t_m4f~zHlLDy%-_D|ccq=3eOt>vx6z%R1v4;t09$)AH`U^-p3 zdN!_Ez9Mf1PSS&3uP_eD`2YS8fY(3!by}WohVLoo_*%}A%+k_QZ&D1fF(XE-ywsSK zt%9zI!4_RPi`-}!QA#mr%L_x6&_%q<-6lJ1vZvBWUI-oLKxos3a@r)2FjV$Tz-q%&UuvXY|ORoeh;A#ZPGmH~6~Bq(xnmR;*RYrS%1j6pqy98H$WWgxj^`}u!- zU{nA(&P|7y-hO;(>MxYYXdZPf+?Xb+jkw1j@+Net&UgpQShM=X?V>bdj@KvgHjA&g zCi#rc*6b5i+}Fzza9#W}iE8uG1s6`R79f(G2~$n552uI#5c{iulgHI+PcOA3wb^!~ z6QZ2lYxA5t-jJ=1_wSOgx?vw8PC|$aK19dU)Eh(Xohk)cQ_;`$3uvY1MNrM(?bm_@ zpC2y|b;=*o1@hye_SsR@82MjPcr-sBQD37pWqiJWl=DUeZ&v_KB=CABNFb1C3zE6D z5ZKw?BX+Aafr5e4U5RE7!5O{>o=QWuB(qfDGvt9c9bBB#4*<02tPchM_4@q32MCRh z4&j)j^9ON;`Hj6(Ig@uKg&CMwX2M3p4f^bYps)F9|*q6jA*Ap-Psh9~1?$V3#c~`xWu4cS} z+BW`WAwyA(_u`pd?Kx(s15PV@8&~bu(4m(j?X*6hJ3Fl94RhMf`Y0 z!(KZ~zcfB5vHv)LD9TPNMUGj<++u-VRJ|Rkdlx0`C_DEb!U*ZvD?rN8UFit_HIXox z6t&%GYPZQZ;RsQyejJEP)EhLDOOLKJw`erOxWE0|2YLIA#!~a>fB)}uWbeq#PuRnj zR(mWTfl#4k-j@sx^5cRtA+0X%dphclHkD$Npm3NtfY(FskR;W>%%_lM>L(as2hFB*0R)3BAy_LNqepG z=b!$jj=gFcS!sqwmSDJZIkMf}{qKTczl=Gja{k}iC$@{Nv22D!)NJk%FrA&~Nce~1 z(tQB(IXFX>$6moHq3YN!=N_K?%6R1XS2&F%{uUFMH5_=0`rAdmP`BK>z_q#ERJi*p zGZc8AZhS@OgtJ`Pp5d~3-JdL#WdbMT%J$p6&p)zj-0iR8e~6%`coIk}T-)2CAz&J0 zqJhh|w248VjO8w2KfaK2yk_)jkS$C&Fs?DZ3_l>6aT#p!=>CiL*cR3kxv3Vn@-Mms zACWAU&kS^)-{>n%LR>%x%i}+6NvlmSiqV}w;TF&~kXQ?enOq1pqhU@Vp)k5B5ET^+ ze_EMt@B0tlA2=XE>yNHtXgHe6?*xWoJ3$h++b@W~tf{Y8x=jS>9w?@1sZ^W+px}7T z&Z@V%mcbHfthzQBP`zXuKp8vBS=qmqz*96F!+2d8e{mlF0y^^mPIPEutVBoUS z_ODqiu9m^h-q|&~3vIgfE>&(Id&g#LgY~Ciw1GZE|NSo=`sM=&oEgq9yTM3W-gb1E z=ng63&UE49xzRqi)&O+V6@ZoN*@AolgA!4Da$~4)Rv8J9RsYZ4t_<_8-kq(s-HNFi zT|0tq@mbcG_>)sL&QqnSV-7W@hTJTu+^jwbt`sIXMJG#w%l~*^n&-hFz8V2-WBIo` ztSZEfpWTf2Zs-rlM|dwEgtA1%A7iy46s_w(I+ekS?7P(oQW0Z zN%;IXNI4muVND=t(88V}*grYF*#{f}=tiMg>^l8IyYcnLZ0gfCO`MQ~rO;h+$-ye+ z+v7!j3!MZx2_}GmTQ) zn+IJ>-Rd~)kC#+u6`%L5bo}qV0>movz;LbQBZJ%>yb;-7lkQBL*}vnniZml##>kOB z=HhKjLxv7w|8to+vO?kR{4?`=-un@6H%Y!tak?23H|6P{78V0BnUmfUA`h;)?mvdS zD-d{Z#5eDZy;pnOXX)SUS(s&iAI1!8UpX)?7^KAetTU$oq^wR8fB$V>z!aRX5s@-P^fjw{cVFbZn&(Md0!Qr7MRB$&Kro;b5K}ccXU+zFI9~YW0lk&^?uvZ}Om^9OA z*?-Wsy@4ZC761SGy7F)++qeD5z7*2Spdo7u*;2+nm}n6~*<~$a?0X~`3>j&YEkzsI z(kqjl$dYU!LJX56+hos@-!<=h{J!ITkMBFa=NNyO``PBculqW$`?;>?JSF*Da;~K{ z7{q=~%}YW_;GnqJ*X+_TQ?o*cV6SUDF(baB-GZjm)r!^eRTDLHX}Ff7l*y=rebV)( zHmY5X!N&ge@cjOAcFoCQ|44Fe>6WkPY@rvr-^x#BdNQH*{I{eI+22GWF^qw;&gjIM zGcjbc%I4M<37s&K{`+^nO*1cWr%gFA46y(F`SVTaqO_cSmD`NTk~I1C)F)pY4(C!~ ziJZbwqglVGCBbSso^&NP@UsYGqvQhIGo0+fVZ>)yV7J1~}ji{*$EM9z5 zlS1xTIpY1XBZFs$ah66@MuzZ*4^Kjm?llHs!~emZ$rRRf2dT z&SJ4xGHKc^F*{-#e`RGx@ECrO0BNa)j~^Fee3vBuak}-=)xLk9E-Xm%+w4S>S>5jQ zW@e1)>gu5LA-t?@qr|m%G5zn(lm0gQE`-Ts{HvepGouF_{=b5|1O0gt#fcS%E#8sg1dOPpqU_)8vCRAEcGdV2c@h*F65=p3P=W&bFkL-8 z5_;EE_LC<}pl3!~S!n_)ITH(uOEbyenG+Hc6ugEpvpMF6eAj4>&T+@X241;xhKGk! zW@kwgK>K&$g`<$EsVRj@jqZMIK&_mwITD1?Zzzt+reA~t9PQDsU%xKV6Vr?#5a_wf z22eRNv9e;fv9Y z-@6~D9>WXW(B|vz?InQdUvA%J_+Zr4h1Dg)qTasMHO$fw+*)6bHq9dx7t0%EX}Hh4 zq}!qBy*qcJtw6Q0y?v)rT0y(nDUhn7(P-G(t6K{0A0_wf+4Fs=%|(eoAk>YHie6cr zn=R~;%FkEbpx)GWz~f19tmEd|&l84*Gwn2~e06(|!d-hY*M2Qdt_HLaiYD7zTiIdr z2@Z|}+k^?D;M7PQ8D>8D|zxw)n;Gh*HPED#RB`*L==mX@hy?H@jHIXXJFbat|KEnN5nOx;K+yxP`dtX&UsiU)q) zzN)&oy4u_j$9?wPIcAc6G^C3|LPG^*T%dN{<6Td!Ja@#xF_#t|cp?a<#sJcHFcPuP zpFc0rmHxgR=AkKMX>LxqeticaE^alfK%UWFOit&fh^DT;{}EeT+kinkTU(#$PlpjK zqzItimJxCD@@fK6(XsjY(diOX&IrGYUS3I!jW{M&Rz0>T!6O$bpg5?a|7J-(Vu1ze z>+3sk;6NQD+XjZjOof+PZ5$l-!N9OA{frq_&w>LuASd@pOYY#o`g<}K6bc0i4h}A` ze$8>{9tYokBODfs)NC%C?(OSy?9Mr^pJ+XpdV~%fe_!uQ%K%x-tP|t^EfJv&=a}Y| zI+x*xq=&zJiP6pG0TUYs&ci0o)YKz<@BZhQxLRhzzr0@+OEP%J6Hb=MZn|@X8~^{E zqa-xnM)6;RgK@hXb|e$+Pl2RaBhZPF(6Ks(iWkLiOGB%RIml80K)vysNHE&?RA^HI z9zbODsy9C#xG$lh^RUOKg6^rv%{AXje^5bl0_iy$jZvXLi~pp zFexh?*4S|ZXZNhzE&1+Uf@4FhPM-PO{(b@NOt@1px=T4trxmuPuF|%-?5CH)JIwN*&ettvF@f!}# z&e69d48|Md`33_a$;2xxoKI@&>EW{>d-bgpU#JzCnwrA+eI>5AS%I7h@~EJItGm1V zC7B!-9nDDBL$tPjab)$yxqJt2@0(GKtm6&b+JqYI!nv6lE(;5b*&J_%wV%zR)cR;v zOyG|_;t~>Lb8|@)iUVjWfj`{=(UTe#$R5Xj{7A^wi*uU#_>_&4vjK2wd61uX84tji z+jjf*?Uz6iH#1z$r{XnS_x_&DPe|}lK<}3YDX^>LSMeT!AF$uV(vpZ)531|#=0!|Q zOb~>A#rJJ(zBEdG5cy74)-D4B1Hc3adUsR=90c0MGfd3PV+#{)fTt|{vX=Csd*pD; z6s11;Cn)$*zqMyrlD*Jc>)$2z0!<5&oSb~^`*$}myGK=3dqEkBjf3O5b)kMp2*%UX zGdUyU22}IZ4-N`}8M}FUG9jKLRf3hl^G(2c>$5Ur1vW-^x|%C{J(PuJhREFXAq))c zn=(6ek9gyT-o=a3kZm7&pqFQUnYv#*o)3q!>+0&-x4t?r57hPngU-&*??4VyiooLp zs$)(t6Y)hCOijfR;)TeqbIvLAXZOBOP&7RjZ-m z^ZDf z8OjPyTUuKu00sw9CB&yFN3Y>}r9c)ox45`@X{sl1P*_-aY;uwnm;(b2LWe)sJf#9E zh%hjMRfQm}dU-pgZ32by+1HdP_!#f+>&t*>gs+(lrKG1P*i{CN!3+&qUpgoxEUf4? z{AL%~fBDBbptEggYSMpR4UjA-aW!wSz3PANNIIZ!^2#}woREL17vT}-Me?c z3|+iP4`?8GUK_t5?=uEMlyf~m(*H7eeq?ezGc%Jbq5N<|?9S-w>S~>7jH+t=$cRWx zObmWSfS+Gi`i>)bp~14QE)$3j^{$X#maC2~#OE@P?j+`(uBxtfba#&jlM|PeeDcK? z!T<=x;FGH4%AvJJVFYx?W}6^x<#{=k57dKq>FDTy;q{b#sfn<;l&G5>;x$BVzS#^> z#MsPCfj@aJa;K0on}D1x*2hNyc?1<(0NtQ0L#+&zw+4U{Q&STHulg=_r*J?KV>k>1 zJ!GNLd@vY{+fZRaK>&xYc+UAMb^@`Yv8jm#qAAOAKdFyBJ-!<&c-xwA!J#s|URanK z;_#&+5IhYVC{OrOn|8XmxYV_^aYC}KARuqwD@Yw1i}L6%%FfMY1B9o~OG87hy=XM=AMje-uw|$7LeHAJz zD=QUv)8dwz6A|Wnq26>vXiHVqj0ZV0NWw)DbH6Z9|`O<;G{LsCXC3wZb zzd~vb-0j-0U+(uo(j7rSHG{Y~*(sr{yytX^Y(0p}@SxEoUI~2)L_KPwupsH>O;h-q r;6%q@rBFHs{huq8{{_PTK=2RRPm39NxoK@F2y7>h8{vv{9j^ZeONo@9 literal 29022 zcmeFZWmuJ6v^Kivl9n!MrBgbTRFH0v5CQ4#ZV(WVZj_Wpx>HcPyIZv`s!&zxi2_dV|MhAPNOp`#L`LLdjyw3#-JX5mi-0MZ@vt6J;PT5eGlnMlT?rLqb9Vh!8}fZ?I)So>Ng#;TS)KNPxH7!(lVQyV8k@ zkf-2n6i!qh@Gg~sB#Z)hm!|Le|NrIx4;GAWWETd$qM(4`_~gWNzMdOD?APux^s&Iz z&Rd=D&&!yZF<@ga^AY4irk-3~T{-N}P45~&KY(j7Umquz#-AkgMEN=7rP$6yG0ZC5 zSnfNL7%63uywN|$>%DvzbM~R1KXbVAe&FyV&!z*fT$?MwrvwC}b@nEM58WNnu===b zYim(4G5)>lu$k{tUcyj7R##R&jpn|Sen4VI&l>a}%LcEfRvE!I3(a`xXp8-^>FEQx z?@}~stkR~%pqtK=>;LsFM)Rz0-Z=7^!{Z*7ZoOJT+nUDpy8g2p9YFVZGZaEA9wr^+ zymZt>54ae*B%$v^PfgDueu{E(7<_zuwK^;n!O-o_;k4_sQyN^ez(KBOiy(Mk`$G&> zGa1Ih@ATB+rR7X#z2iy!%<1!i<#9QW z>Mj<8mpdYqSW!?UT@%bp*xgl>-aSrjg)=UW%?LHsyBYi5?K}XTO=leLhlzcwNWNKB7B@zN1JJ3(si3Hv6jG4bf(Ars{NS z*uS!p3kL^>kmDnAZvrciy9O9nuKO|q?~yq5?X<<=egm6#bGu$X@;2o14}FHsumnML za`NY2AC@C{7V^*1Q&UOn9sa&9R4XQA(}$Q(mYg-lXJp80X(eykYH1O>y1FuRIDr%( zs-lS9R$QY+^zzBuw@cxi`m2&zHKhSxGBJE|a&k_0r(;r6Q~CAusx64XPhTRtKWoeF z*K{Fwy9L)xMFoYSc4|D3Dm)gwF>&eB+i>N@^~+l;O%F33M9m7Osd4qtwuOAef}R-s zj-otkPESkg&sWSM{~sYp#r<3p&9F;cNo^u%?IVx8$ll6s#eD6& zWJ8U@_d)k4q*k%%7H<)fmln@BIY&=)#KqzLkuZ(Vw#Ol-2a6fjEqC#ajeg2_)?EXPY{msXeFC%{?c96dr5DXB-?~ z1JMZVHj+$~R8@bycb<3rjoX@(lmzyQ3pv5RC_Er^p)*ryx|(6#iIgfw&!|=e4(xV>6_e3S8h+lZcY@M{0IhKzl6LT`$eGF z2VQfT7hRp5SjtktJNfzfnU|Qf8eK1##WIk7yvYbYTyY|4a+it>I=0)I!oELaMaxV5 zu$<=n`r!ntXHi=W;fyj$tbE!+qgag;BY5%zBiKJS_GyeHEeLNVP3{JlHd%#Iu6(J^ z>5AJ%L(eLt=$K!8gwuC$;PSjaHCXS7OW!OgDA1_0qlH7lu$ZW_x3k+?XcD-)J~Q8E z1K~oeuPb7xhE?!EP@`D#eT(yg@7hP`MVRvwd}Q9fz5JV(AsFd>wN7AXZ*MwTLMBCO z3lH{TI3c@Vv**o7i?=sEvzEB2>5okn8|9q5yqNTKIk00wLqq%TUV_tk+p`xWMG<(k z`t3U`zas~#P=*_HS609~LUdZZgiO+1b2n|zU?Q-oB@f4x<=Gv!6j0I7l7v0^XKSqU z)Jt_6FBaUZFoHmY3Mg3lPOIEzTg z%>gY!8lWW`iz$d$aQmQ$*vIVhwUlTWY{~{0Sz?BKI4H&%+i((-!;npc++1{EOSOiv zzUHiHl|dd}gh>_+76o5d*jqqX*MTwYB3wSO_U4qkVz_Z1kD(*-bdTgm)ph&x{EAA602%_LpHv#*@EJcXn@4!@HrFwkZ>u**v%0WAofbNlXW+vxl^P2wj^FnQ^y%TwjrYqQ_I z{%XZb--4IANVs?CBOarDG(=q$!G5zn^OfY~&P4z7E4$HmsNN%7$uIzsqUd8FJ)yv0 zR3nTmZ5Y@(j*imbucfIqMJz*cK!)bVb|eZy_Zzh$pITm*?H4ZBrhy`+!U(N&LzGz9 z*hlmUXvTd$ZTy17ptv?Kml=drL10sv>3@A@`O~=j)F}&j>5NhAb^pRx; zJblbHxR$esCh5y7={H%n4a{>Mo7OikN?Yoq72WdcRq4?dDy- znPy-_Q8W^qvPMi|=h0`jg-BlZ_7Y3wP*Y5%zpw4>l_f6^Kn3$sAR+`=4kHhDzaEXH z76M?6u&4g~rjd@viuVtPwU`9%FUS3hF70~RLUEORm^h{~FWt9rsGv{DNFUIFAJrDV zqw>KBXyM(4U9FoLVl`ebsn@2JBd`*a_VMn&TR7Pxu~14t;eU2u;}zZMJ~|ltZ1v%c zxnyWUBH`-U^Axh1%OARWh7=;I%kmy_(2sTwo*x7Y?EA>D_`Yw*^!C2oW~@C`I=J8q zBjv^KKXV%>|HLvtC584y?LV*(#oaMlsv857)gw5}1$WqrE=5fh z{Q({-N~y;Ib)WC~4`(fZX4D@fC*&Q{IBwedUcYD^8qtxQsIt>472Cg$;yckv!&JVF zMBn^P%?2b};nUSfHivxdO9LzM@44*;ItWxgJwqEb?J<(soZ z)A6jrzLyi|PlU1fbct(f3eNYxw=GYM3E3d`N0?DZL|W7apU;LVdFL$EaClA&Nlfdt zExV2*-kckwib^X20ijHDUi!?681@kw^kC70fU#KMxME%7_UL-IS zw`z^?n-qm9fPitdFEPwNC>6s|aAO8(;Kr17c3oLM0ZATDy)}`&%v!u&c}Cn+>7dsqYK>(G)yY0M6~b!RtioH*x@{yUTnpz!@y3JAsw4yFi# ze~86-io*Xm1tsBItRQs%y;;ha6UbhZde-Op;;>=yK46?QwK{C}bg7=zfUlhTobBM< zi*NtCpj*oW#-xs6-#yHnOP1{v^?>)Dzl2{hbd2y-c#KOk=HD_QE2|O5EZ|en3#P>T zq&%ai58j_|7?nq-mJpX!)^p)|mr%dO`5p}Z3( z9x$Vd0gj%=+IgE^W=Zu(!$@v$sM}sab1sg`f-6!<0|toU6UEEr-TGS!fXLwJJd(6m zZGQtA_WjUU*xDCE>Dv?Z7;Zzk0-=11X328;!|B2MiY^yH<0niS5O(&BFETV5P>vkH zrf!M?4l9-ApDJAtA6xP8EZg&mH~V=E)}*JZ&~R{8g;Wf=$&>4yZS@;QbRO~#lN@c`E>G#SkEOTXoa_o=9$QQIt;Ze8ES~PU^R32B4*CZOQ`+J@4ARkCt zyC__n1KB|p{ow^)j4aXYMn9lxx2qI@L5=-5Y(t8Q zH}0_!Z~p?lL&(q0E`xWn{5DIgkwV_kfH7NXd1NbeL3+A}2IP)Ee-7_&*i10Q3pk3U z!-l=Bz;t_vGeoyf5geUhLw`>H<)%tSS#(^RXM`vR9Yiw2`~hJT#9p8W2CEv$lm8tE}!x7ao; z|HykLG|zh){T24%I)VLW5-WJe$Rad?^L0rG*XMI+TGES+Z4JS;=|Bf(WRrBNw%m4^ z)q6s`+9;w}^=Fsnn!fggM%JXQX()vxE6z;2FhtkwZw?JDt?e&7^+chkAe0=PO%9b( z2;MM>ixUP5F1Qc!o(?OZZyPn55P&@{;z>aDjd2%lsn&MY1(2&g@*ogLY#Jg)Sl|!| zb96^Wma-zlIaskHZbjt8+=%k}UCRd64Y2tt%P@WX5z)Up?o1eCiiy)~?Oito6tXUM zGuIG$dImpXM-|9$N-ozceIZj7yk|rzy0b}R#UiypQ31jFA-1@#4v`RatH{dC}v5r+pS4M;#uDJ%v!hf{F`r4wiJgxJ#1~ zxaE3Vsop&uf;m(;KUf?LLMQp%*LNyNfQ{X@)aI|*0<=#mwny)Qbo-sJjJUIhVqYO=G)gV#PYqp(G6@H z=B+A_hOzL&0w?vn(_~oc;C*gyJw`@GG^)(-05v^rJSb_{UjeGlMi^`Jry)lqOmaX? zNnS8B=e%!lYP>z})txLf-RMi2^Sqd^N`IJaxtGw<(ZOwI#ExECaq4)uTO1ZVk;PoXYr^+d z6LhtHWkpJkR`2~mDyhlxS=^NU{!_nUv+noWQ-0%l8I_x^1asTCIN~(X?ZoB6ImJ&7 zu%Thrr;a&R%f~n0+z?n(5iB8<|H1AL-nIT?_bqdrbaX+9iHTZ+QW6pfzr3Hfambkx zK?e|gBUq%14ruK}F%}v6^t8>*9<~M((f|&B80pi#RG-;sdD;FuH`f+LHv88x=Q|R# z)q$PWjxF(DXY$S8bOc@>1S{Mx5Hn=T!%)2azeNJ0CYf3)su5mQRUq?8GPe|KFUxy# zwClU^gPSan^uU`#dg0oDz%EIT_O0|>zsxQf`7|_6X0+S}LWVA#Xuyz3$uwiiWux-5%z_^1Kw*E@?36t)V zEJ@eF>+z2f^3NQvVGUarUj27&5r9wF6hbNo0?sRcMB7@io-Cjl zoNRWS{_PT>aA#^f#YwekUv8No&VZc33j&aX!URJGKtlHV)2FRflkK1Jx>n6g1Et7) z;or@K2Bc;R!GFkw3Wd%GaxGqWkD9l<$7yt6x=_R+0STJCAk3g()*(Gk!T*hBMwnO# z8ZTGMfdm}4H~Y=q8R*oKUy8h2GD6@*pn09G%2VL>tW-_cqnt!l6(4A{Rp#HMFoC#3 zb)O3bl?GcP55DFlzJ7klT2%#W%fSGZ+_Ao*(fI^~?#@9dkHHrOj~U8iJ{bNe3MgXY zz0g@5>bC8!t9!VQtUI5{{Dj6zCHx&S1SwM73Ly}4$-y}McL`g%~H8kLA#+6XHXFIuSPRhJe54=v_J<1aDU zEopE~?(hN30_X?VrER$?goo-8GR+bAsOf=qwOllpz+dX|VXwUHShVvoxdn zw%o$zr6FPp>I;&KkPF{D`64_+pFj|e^|-zWOjPKq-~a-)3_XBkPkxlj>5Dbp*W0!l z?rD9R#b0pgK=vCR7QU7gr^$xmh|B2zo8NH%y~e|1Gk&7uM6^2%N1p~?SJwrU6lu?~ z3vdo2i;hsT<@9_S8jI9^Bs@<^le5Psp=1~SHavO%m!6P+Y-$yW&Gx(E8XrRs0X0Fi zLN4?Hm`q&4=hH87SKTklu(p93#zNCjvyk8&myXRVd&w76%i>Uc{p#bQaP8hp!wu^L zUEVVl!$0cF^5Vo|P}D1Zd(i@b7t?!Gd^Fi4SPCy>XbFu28|5XGk8`k5jf|vwlV6|u zmbL_8kS#S`gx`5Z&-|vQdY1`y9s?XT6?0Be-_(xtUX_BDS*25Nf1v#!6xrkSK_4S5 zD8LQ1h}@oJfTtHu^k2$&wEkud1S)Xa?Nv>3*er=2A0Ih zI$X2GB;7XzIgzuQch{gM1-cO2UMM~fcL&~lcc-J~LK%sPzXAEVvz5U{p)MKu>gK+w zhL5+zz-+pV%^f+59w}tJdokNMJ+*qV9L(lefDI4#D*vueqCHK|t13G?`*2iVWZdn( zVo-Q>D=YH6n^}TJ7AR(bctl%j8rtIXHR{^q^G(Hb$KPt=`qM@2&ZAB0!0{|vJar}K z=+rnaUOgDfMXAcD3%Ps&`9jS7*><(-2ngN!S2RE-aGd2eV4%Vt?txmd`wPUv- zpA);^>q3^$sXVu?^@qs$_$8-~4$O`>^lkEOieKUW(+eQ-YIET5553Lgd*6yRZRO{; zeG;81dS2riO!&ESX*~mJ0$1m=)|wT@=peoHr3=kc)Zj+5;Tl!ABYo|2D1C-wgf^#) z>wez4_<-^EuYw{B!TXPW@aY~ur>O-h_3x9yq%FPf8jL}%oo{f?^M1Iep`p1vQ3Ex9 zpkD#m#7)SALWDch|M&ITPy#H<3IsZ*eN9eslrNqmv5#!vyepHdzx@)i~$ zbd;uqExRzXGBR0!5Zu>Rh6MPE;gLDT#erm-JF)Da9Q?E>^o_=cRS&O&Abi1+0>41C z<#78C(`s|+)GIYdJ%P%#>kPr_muT_-#v1y@>jpf8-jm)ZOYMPZNnEBl(8AYm>d4b> zX27^r3CNuGrd7=~hc(xhE?i^EtF6SgW3Q^>NwXgH#kn=3@s9ZhN=_#MC&DI=MK6-p z_PB&yL#+|656*Y8x)ZFrGI?!E!oU7;Js=L7MO4*+iLeLj8AEQ)_j*B{g!g(Y3u+|* zrNxtLYAU4+L_D$uZCP<0k2F0BQyD8eEK{qt)j?tZM~w#;P9~xK=cLx~UbDMjv&Uy{ z;cp9>GpXRbC3diK`hal54a$doDLj}B^Ce=>s7Cb1C4$ZOnazJ_R^%=;6!dJZuv-$> z>I_veHr{fi+V~y0IbOv!_Bjkr=6ie&N&LeKV>4c$TBO^Q4C;v2tH-&$fBsO?(<3GH z8l5YMzXpmJqBneAd?L5`ZW9`+{-upZ^PG#vUe)1mYK4l^A3b>?(wRrSI5ss_^UqmX zFS>K!{IuFaFZIO2Fm6_cB$W^DhNVEPJzmEmF^_e2-AI~Q9^8T712SH`*?4as6%{iW z!eP4mzCn8cipS}&)b3QdKfq_DBB1uGyjY~!->TyI$xwS@O6yh6KM=91AVn>_5W{z?4p?gjq#m)6+2pZVf-bXSJ!H3%uK!3PRGCW`Y z`SS;m+346<@!4w2H*en_LxWxbm%~I+UGU3fyMy9IJP^&<41>xq4z7114kxpu_RN2P z#e!!5+wu0W1M|*S6B`9Cf|-A}7mhl(;i7xd;p6L;=T5O=9*yOb)|ZFZrFq9MsBrQ@ zfFI;ted4X7Cf+W3Rz#$*S)}R6+`O&HsYg!u<6t4a+UXwqf%l^5bH_XQ?hBiv5k|Fo zM}b@J;v*CV`Bt>kYi}x?dJlX^%l)o={C6;lxu(*S=E9` zxrU0cggC~Ja&Qf%3Z;{UgC-NEBYZp}dUp!Bi+yZ5_J6xzZ`Y&Jfr#mn~?@9eEgeQh)kr~ zV)`{Gb4!uCW>02-QabqeN}={=>BJMMq_|>jgP}~gWmX|FwNkZ9+~}c|1P(S(3ZxTo z-Y+`41)Gxhq>uA4zlk-oR2)xecUdeJr~>(Nc);=x&ZqI7jK#nZ=$U?@Uo-pO9u$nV@hOC12VvSQa!;JqjujxSH0-XQ>&w2MNG-Y z*`!v;#W^l`s5pb?m?o0SgaOm6p9jbj$6z zdHVLcg*@_YR*h{YQ%#uk)*%S8n*(V(yKqcYzVuWt(__Q`rmrt1FJoqI4I_EXn06#! zOroq+oy`;3XbF<=ybi{Yv|g;UhvU3eHQ#~`&K?YoMXNI8PYnGD*u)^%gYAWM4jK5q zXVlTCD^tH=91`NgKp?IGwv4$`9=cv(DQ*boz`*VZePWpbf6jo$0B`Zv2$JPF`*%df zSz|S+o`-E%*wGt@y^H?A7-VlXHHo~hM>9gg!l<`1$tE1DLUE(x)$K9$hp8{zo2qwy zdB0YTqlf1Qs{w$(AbI6KUXikZLIdb_>BtM4Q3p z2<+CVe8*mmm?lwncI(NYHt$Z+rx>XzHb-WY$r;>4?g7Stun?{|J=i6n9o&MjepC+B zVAAOdq25N7x~a2Uk#K@yHJiGrBXNuuM4TaScSy@5LS$qjmM;1@yH?x$m+LlL$;D%g z#(Srs0!2U8rwzM?kN|vug%-VT_M%EDfcSA=TP)p*Rw;+cEhcrdV=ba^jZn7e$|I2O zMhI$7qQNcJ&Ft|WJk~GO3QhVs!q&f7$?p+SwN5fmnRPpiPWo-~_ z8ld$Bc0>I|Vd;0=W;bbGZebW5d1fpo6tca|R4X!GR|3ZXP5c6?&EKmNfZ)p<{wmcw z?e+Asw(Le~e}-?Y=NAIZ;Q51ra#|WWLl~-7_MW<`>x(bDnn>sA{ewrbF18;BzuQR} zv{pTzZ6GMALzIl*XkWbA6tl9j2^PVQj$cb4Y6Ss(!mY%5u^D)be(JZuvNY^+c+aWP zWRmGPxX#A1i&uXBmGnSTtD~Dnu4N`!Mu~*!m0?d{#Z!AvsC?#bmac(7y)?n&u9}g{ z6uP+q3YH@GpDdJ9c?P#ONi1ZVsi=(2hV_!V$=!>tH{WU$YKjc1){<>b=wYN*-(?Nx z%A9)@mwriCPivte`7yeG#&E0Ce3hcrR$eX>J1(<=o~G&05TRy8pY}1JWgrbiuBDO& z5MjlM!8*JQ3kz$y-<_@q?oZ)~iHrLM%xA06wINkEeUnDU0Z_aJwYA7rzhs(_9(-X} z{sP>T>A;HC*?IvcIUv)beb`d&&JVw3OS#RbG#r^j;T#c{gxo=SX*Jtg0ztBOji!h3i&*%9lIrCLWrmWdYQLTx_t2XIZg!WgyBXO52qpZN$_Q1o9l%ZzN7%N5q zB}_4wkSIKs98m$V@WUYEKimX$!@SYI&^g8Wo75C^=v-kgM)Md|noRQ;t;|0ax+*iF zcwZ&Dd#9xr_HzS%Tr2Pk=O|1_W!_i*n^)vl326cc@Oijj1aab-{bAse?}|ZnQK+R4 zfLf99t@naaRxu*%6CbS94mWV&4NRp~kW5B`)?6dInoFIAvz!+4&A@6?Y3vrH2HwRl)3q@j|mF z9x9tzA+mBuZ_1A2>g79WDs4u6^QQUw z3vgHD!Ps1%{uKl`$Kmftpq}?#9AjzY*A(mKBqVYdpWR&xue&pKx_8NIyy2xa z_8U{CN`%Z13gu4hwzx!sE9)??Xf&?g`pcp6luKy#C;bXpC z_(wp1kP{I@QC(MDJh?T`9ir!TWt8r^LB!I0`JwslTw9KJ8J>ZWaT*j{C}N8J zi}eTfpI(2K)9~0KIyR?f#t%mLZ&>M-rtQn?^+Q4~6XoHSsx4=?M)NQs-DJ+B?Ck7w zw%uefME4MIAI-{7*iCL{9{|re{W}`ma(`CZ+1;HY#DxNbbdXXJneo|hSf|vVvTfvM zoPxQhzyyEN`k;r5(YTCx@huQvwcvSlytuALap0&RVIcuj8Hl0@y%G)%r@moQl3%0r z?;jesN6QVRK)yy6eft*mWlBVvfHMQ+Z3TCBha{+r^7sGnc48beX<{lz5hQ5|`D-n) zYNxq1g9ls!;gYX?@q8r2Uq{GaKH8L4Cwl?T#|1Gl&3;2F=2SVD`f7?{5|#zNT9Ar2`xh*3;9YrPttbWe0`@GgW6#Kl$F7EK=xPqoRvZsbBAA z<8@m%MMs%IR0d{w`QeZlU_$&`lvE>MJ%}M09>;I=biYuF1+jhn9p$DsI51#5maiC2 z%7^2VBa?6pB#o0!TzNLvg}EgZJ%#HO7N#RP(@viLvq5=;&ovP;HV0U<_*DHw9LF z+!ovid;YW{jdDNx0lwh;{O1+HxDyP{Prr(6vH;+Xo0R&xyU0D%EF;`r3Z`W+Y0Xub zdqlPQ0w{x)R*z;U!=gr6_b^fE#A!f{@rgyBvzlunnHj=PjqORwyr1&ucP!5{^e)>(ef|1jBwrlk zUaucTBf44!IjTn%0(kgon#u+m%V#lJ^3(0vGVet6dnMPVi7EBQEl0oHpXR|Y)>VvkFa#5jYM{XYj1UyGnt*Rg9QIEe^U8nP@(5xnZFbZM9fHDc z@QKrWtjILGw#RMy*#En`@dqVawK--fmPVz+H}%V~y_t^6^3agVY;bQ-d2ioyn!G*% z-dooNPPfxfP~r~6Y(3!mfkS-4X5C5^tf(GVJ7v}Fet^zqm#$qLqv)CUSZ2?zGIpQ*-;;Vv>AHGUCE*;H6n(dqzk=9JrtFTX#s# zkJmpW=I-x+@gJZcP*3%|ZcTo8YHKjqpZ-j{`HDpTvSMb}A(dnBl)M{k8L45zu*P&o zHw(pLe@ZHz=+01aW~F$_YLf zcZZ(9M`k&AqYVZL&e1~b5m;gxP#NN*0WP4c3c6!^V?;wMmemm%g9|HQE}SS~${sAx z{sZhjG8U=j;qz@@%uS*%xSjB^rchtM(*gR`mJMGqo; zdp$1Dfzlfq!yoSO`?oHBUOLs3^Vqh-*9vsJT4plz);qgteSWL6>A3CMoFnd7X5YDD zvb_tBGh2m}wjo41ktQlm)A;G1Z@2vq2?eeF(JbcS-o903#7xKP=3@75O7l@b%QhS{ z1Smc>czk7a(~Ttt?|v>92%}r9pls%2oV)GZR&8Gs1d3pzko-sU&dBKK3lij6wTs%&v~42zkr+Z-Fi1aM)z{bfA8G$CG<@QganoTCN2x41ocSY(b&~jZA|n zD%DF}lpKgRC_JFT2a~z+V%ERP0j-Ka*9XV}b2??yOY_bK_a6F#-)1KPH9EX$>;n?T z64hiN#_HKK20LadXn~cM242a>tY}-g8kmA7%-|-!GLQB28jL+Bgmz|tVnkh?&HWX+ zxtjd`w-zaY zxtj_9caL8jBPDY`^3ZH6=Kir#!Q0P5d7hZ}7fTFw3aUyLZmggwM-gIyQ{{)o^bTFYm&;zGg21L9-wf&E z$$8F*5+NUsWVp{y4&ECJ;50haKe*6j!Y{JKXINL@O0Ux-u?$ut?!?+`_&hD$CXVtBMFAcCWgC~_x>JW3W?Pyw z@vDR1)XTpJma}7$z4|4QEGQ7cDji{h55Iv*uW)EUoEi6}jWsTE+Vdl^4w%&AA=k4* z5j=vYq2+#(Is8qqnD>Fm_ zzQgjx(w{gbjW`n}&$HEe9xhmf=ccxmG*yPEJmVz9p$%-b&o23S;ok;h>J{oPc&+Br zp6>r$DXw`&he+-UpWbU*cG1k9zHV93H4&BL3>?D=pa&x#Bh&hdkvDOExr0I{$B5}_ zi>u`N!l8OY^Xg~iHP3l+}p|MYI)U?mHWZw=eX(@Zcb%OX2)g@Xn#*Jzd_B?-BK=$u5^HQ57azq#?O&Yq z*KuIMvR{_oTC$5$EK|f!?3u&mr|^!zEzCvMEOl1U^B7XD#&*z&z{J0at+jWZVe)uE z^9z<^6XPW&uFV^?aWJK51>m9RUzt(-eZT0{r3!3-8=p$28!VHuZ1MQQC!L>?AM-aq z!DyR^Iai=`%jjs!K2hgzk!CzTS)R&bbUEvrtvwET$TAz0JJ{J>Kv89x8@Q`=a&4LT z`r7vIdl1Z@1F9z8`3rZtn#_kDKHmDi3l|W_*=lMkmiw~FV^y0^a@P8sV+7x8EEzr? zhGP8W(Rmjq;J2*4Yt%8xo*KsqLsg`py6*X{fFY#p>q~1CfK-149CRXA+;~l?Y>wPC zQ@s2O0X;1~Ap9DKR?^0R&qR}jN3Ap1MI|J8J-c-*BPpHKXfC$a%Pc+LRdv36JbZ^5 z^UKtZ*M2@Pj&;;Sye@t`3^!Om&DhKkEvibr8PsUUjf};mz>MCr(3qWgzdSwjGW54o zbv$WvaA9RYqv`7OOWLM^oC{0kkv}Ofbt!?10Ro+>#B_L+i4d=gxVV0ceXcrk;ekqN z>BTOBa&Tla<;?n*XE&oQc5S~|p2pSWn5R4(9msGJ-SotX1NEkNwj@nLyi)G8UQT>R zTt^^GR(ru|!_w%%S_Ckv$N1jqBtY)o#Z{)&w*CS9dbMwMX2lRRGg_nitO)G;ldG#P z*Lvq(G`GGmG)vnqt}_{&p`=~9*u4@1Mi!&pj_}J5C^Gi~I6T<5cfTK2&t!6Kx~P-V zvEDZ|T3VW9ZD%G`7L4E&?OEh9TTA6Q(p~?~5;7Q!7D@q4EK9%B_fP_drO4l@Xl>$C zq=baHC_`c;1ui=aHe0((zH1#6GdV=@tVeqKDt9e0%v6oI0%7jDki%m35{F=}k(4@`XXVD_?fM8(XHao`iUN9Bd|6Pn$#vV;E{9 zh6k1bZNZ762H;vA?~IlyZeSmfy~iuW#yR~}*K<_j@Bu$iHT|L9)FMiqjjr;aUVyoZ zO_{j3s3erl49q|YYzOlb>Qc=5&@h1qB*VECvC4RmEVY<7+(3bgr-l zcVSVFw_mY$>&Xs0>)i(Bbc~Fkr#Nn=ZeX-|JkLK%Nq{GR_lpR;HuP3DInY}zpq6Yb z2&ykTrMhZ2w(G_ATlK*j4Zcj5mpej*1=W?xmV2jC^B|dT`gyo?asg|V3~vb^8^r{y zD2*eYWpzYj+VhmAi60BGD4e1D9CqumE~UvfNP|y;j&YV#tbq>wpWRqxF6^D1grz*WRtA~pv*^{Zb5vBzvM>t7 z{S|W>o&`0@k9;)N^CE6jrIho4M<;L=>U`m}F3h9T`Dlk~YEOZBMcaONV{q#NTBxU* zNUkq}OPl>+1SG8!x_FwaUUUlx;ul+h(=&Y4QhlTVcPf61zb1lron4$Q@m$tnQ zGw>E?`QaWZFBKM3_|tzibeY~)IgS88k_;?Y#Oq6*y5;ZPUD~yoSq}Uumn+4Ap9$Dc ziu5oao4PD_@4~*6+}t4%OqTpzTKL0n3Y6o1(Eb&nq#jae&i8Yst@rD&I1~R9E4?eX8ps= zDRgFXj1NAhRf1M#JrKwx`CO_CjHUT%w>Z_zr)h!lvd^&$U;uj@ zwLK;UhF&Sq#D?Ys~0R*KWBzNXH_a{vZqNcpbz#KvOFN^YYC>#7~w;Aw=M2 zOF?8*2X*k#E~5OL_n@ovR6JP-f+CDvegtSkS5*a8svJ-yKzpG~5-+aQITP@Hcm0DLez$ZyN%XBR>KpOOy-~D`}sQps1>4#&k5H-(dR$ zoXd1Ew24~YLA#u!-mg%1PqDT;v()6AVet6pDo68GPg`KVorO^Vmv8>p%&2L^NVjQh zt1OAs(*xAD2wFY80FgLoGkg4ZutkgkKXU5$bine=XZ4;a{k|o5TWS`pfAbQaMxode zh5K$nn5ueQ{0a*z^+>#I-jz(*J^QMf<`&z6_SRDHN>=S{1-;8zH)m*wk7mWv-329W zj_azjDM9pu^})buO2Ki9ulLv4>}+?_nOG|(7UU-a2nHHb@D3_AL>^DCV6N?B@pa6` zVYHrWqaoMo!>ki&8Y_$``btS4D#9bcw5>=hBEi=WGn6h zhOvFrOs_qq6#bsBhesz@qJoG0bh`sdkXHtsXibalT`76g8h>x^T>6>!sMI0v#Kpa#_KTUH z$NSFbT6X9%F+)xxwF7gAaCWZamp91x-jBpGp=<*ZDnM1oBkQ zxP?+`k%5(cg^c2O&70Ek6N$}x4=126yuuVMi75ECN~RVmDkLPi6U@lCprjH#e|x-W zv{deuOM5%w=J3RzoaIikGin58KxUL=g+*W)vW39KGs#7=@WnyKVeYPgQW4hf-mu$m zMHlqqIpdW4%w*AFlRdg)Gq>hVzjOPQg1R-7I)!}1#T~?+K>kop+&Lgzy(~0+zmW&S zfES){_FJ#%Hyz|hMw(WFV{^ax0!p(Nvb-#~{ddI3M8+lum;3fvjmiguvGEt+e=Krn z7=%Mj?^x|#daf|0_2chHFM~gwUe^dIcZqM`(NBMwr>3I1Xa#c_(dg%I>%N#lA3(PZexLXK=l6SF|3KLL?7jD#Gc#w- z%zQpGnkUR5M@qFQVl~o8lzx--&+i;#pM5b}w#Bk&57~>375Bo}wN%|-Fl{*C#V!0FRqJ9ssjA&UGOHz>e*`JZ{CGFfz0#zGREI?v)%55Gb&fQeIto$>t ztt(S;s-f^(^Wmal_A__&UzLnbt-=9~IrJ*FLW42dC6WDfS--E;+IVq>^ZU&Ao*c%3 zP@cQ_;0iCTe8{^Y>J#UK?FSxR}Radop$IG^0jL3nt! z7_7hjSWVqkH`4~H2{#&1zc58rjV5_*3#<82zCOO6jdRo#r`}tb3oKB);bCCK^2^yH zHawT|+q4k^D~Vu4@_*juIHN{ zcT45)!!08Nes)Vi0aY_cMjZY0iJZ~{cj_V3X*&06BT>c^ALMnpx$ktqNOUChIojiY zn6X-mqq-A`zPF>i~)LSLGfS4VYGN&yT&f%SO{71 z{P*jm&Snpoyw@M%KJ#*(>0%>0{B(qTyL-S=In!ER>@mzOF2t^4o4@hG&@{AWf-Nzs zmt|0F67rMBiSwyvhSZi5T;;4XI0E!Teh$4%kNPFNbt5b^o81~wXKy#Kc#hp!9>;8N zBQK?hOe)cbTz4F>SKo)sRWuN$_cWQVq1LF~e4X_}PJyLfhv?z?HWO^U+M9avl_U;V zniyDh88EO6RyHKULJ#O?vd9RJ#mir1ls*p#6ZWKz*6x9H62|w4dI42-A}ZZ#FDZ!9*YXd^}Jkk z&a~zh^?rh&*owdRzRMb&Q@yvvg7ukHwtClBlN|&7XQjAZyA~YvE>z1WjDs$1P4}a4 z_V#BUQ?UdeRx>Pg`&MmI>i)2d5t%p`o4iUiXooD=X2!d2S=tt(*n6Y{+@vq%6)_d9I{@UJsgI~*rmrwL`i6we!TszbDuw#?8?WozRjXtPisr-=y(qpml~{=e(H(#X*^(D-NJY*B9e~8 z60Gx)jrB(gWr?nGs;aYJ$J`M^BcrgxgFPO3`ANsUy_Lr3pdeyF<1#Y7>#3?ohX-OV zGpY;>rY7~piz~H<^HA=O;M3DNlV#m0=0Bx%)UGs8)|;mu=xm~Sic8Q#jW%P)B4*9Q zO5V!AE0h@Y;Sh75exKJS+H|6Jw9bEdf&S{_5w+{7Qt3>dC0j5K5BPay(jLevW!wN* zj6(CXGdg)Afc<+6UP|50+)D(B>k9h$)2=5)j>&It{2SY0L{*ja{;%tP?=M32UuAto z1!H-6`S1u3{)9$FUADC3LZi`ahjj}q;S^6R7j2j+|8m*2q^}P*Jx#M#SUWGsW)`cj za)SQ$5+5-!*ZvP1S|1-LAB#W~r2bn{Jin61Um5!CGG;AU6LGcMJfN8K+p?k12v4kj z^I6`(xtdD{TSlgJWEVD*@UPT*kMzT$nSj%W{OecY9af|d*JD{~q1yb|fYnFJbBJ-x ze*!a4G&Fx^Eu*fE%{ZSC5PVuYN0oA}<493K0kwjH!ZzUlY>qR0OcEmknxxTk2ZOk+ z!G(?0KTwO>1v+e#Ve=>@A{eFt9=DT!2L`fftyKkX$t*_0&({uHecNEp5` z+N$#U!+p3r(r6r~IQKDS+-?P0C-^L9c7%kG8bA?&N=3-hyNi#*d@S#moS--mR?`Zc0Vnpd~ z9{JHeUtj&65<+AqTd`Ykf3m&l5kf~kHaj7(dfq+{c^8W9F&GNpXS-3F-{J1Y#O5IBx% zglRC&ZwCNuG1M0%#2}8*c8u#7nYB zUUs(9<;#yZ#Flo}=Ao9=KQB)ZQBqMsgP{$|H>sTId44WQ-dhstb;KNo1rwvrDkyLO z>6G-N{i=aw`@*Kej2krYz~Lcrz5AYC!NHZ|@!4|>H!705Pd>k6t|#ZIFbnu=klYC-~^I<>MM;1qw#5O?#khUE#wf2 z*O{dplQ+sw0h>_-%V>!WC83_ow84jkl1W(g(IW*?DrUS$!*-^!Rj6DM!*+a5?qY#z zFrQ$MfH*0*B?}u9uWjkd7mvM7EgZj@fc_Ao3PI{%8+0(uL zEud>abp2!Y`-oO%T~=Q)-dP5ZXm7TI>pgD2a&GIqeP-C$5%0<@vasYA-Tg4s;De12 zF`QKfjbX9YZ!LSwCK65$P6#KN$JQ5R+Vu5fO@&4c%(AWcquO2!MUtp(U&r=uJiYeh zps;V*p7*qFUz4fbY+4g!GF^8LKtS`t5e)9%PucTvonF`XtIkF zan?IM3)r_$z|}T;hOaYV>Xd2g+75R+o{HJ14 z|0AK5$F@--&0o$=rt6}+MD%eFwOL=k@9rx!yCe18h>Seweb{rx5x!AV#kp)7r=&nt z3&la36seIj63pp-HZj*M4$eM7;>e2gn63JMc$A~B!rYL7*E=vsGs8>1y*e}LHTAO6 zW%G(u&<=z3N=KWz(R4^snUrH)hvSay+m&L6wCY6%>>DA)N8?%{NT>TYds(R&pQ;M_HyvukM>5>rL>@I%Cf> z{EmrRkEo_j(^O8Ep&VthEtm-3+iDD+lsV2xMsLox%W0ZOuc7vPET(d+wpihqj12bftxhOOqESKz3K0# zLt=L?CM5}WDbHjwRud*}v&wUMRs+|^ITaYKyZSe_$V!_;VRGSE{;Rqli zkbKN1`blPOiE^Fm_1D$6sx%WgtNgJ}rX&(>*2x0*dcIlWsTGTt`bPYi2JYtgj_gWmp?Z3>-Qi9XZ$U&(L_O-CW1e4dp@c=sCQfY z9#gw&l!)=~h(Zxz&{$vMY~7~ZLbRMGIz>)u<-mMQRP{|k?X-D&w(k50>aOrbM@gy& zGILA;_|8EoItdqXZk=ysr2dcV*qB{QZCD5^ehvaPD47!cvFb0`wcE8Dd1huR;u4h` zHly%AnvaERa{#XG8;U^(WlE43EJV1P~2Kl+PZu-4%x$$nL%{3C#B zXvPZnfq|0?CCZG)U?uqc%5I~|>KAS5QU!EFlB6oQ1l;S-Z$QJKAh}7N#r=x8OBw~UC=90pXk?H$6W58 z_f70A%-qDJCZDK4NVwkDI}?3{=Hcv|qxGp8Op03-Q#H z3R!UyN7>sqy$_x{TK;l;dx|LCLXqzgITBEqwxRlT!QiYA-(!9W1zMkj{LAY@ zym%T8uKhO6SCrmKi1ZIBX1u?Jes<-)Q4#&`q-E;Kt%btgXrHYmA_-R9+HKspeg9~rY@br+^S%K1NIaJ#Ux{e5n#@Os+mZ&%S)qd+>%|t?foCySn5oJqwLfs8;e1IfV2AV54lhO8Z+zXqY;va>-=qR({^VP z`shRB|DG@|sNa?=NlSyr-(O2;@%zc|FdlCml78I;;b#baW5ipW!5H$XsgyOI|m9-_61VphX*JN&sDfsHlvFC|%5o2(mv5Bd1t zgnB9sKl0cv;&(MU{R7gbU9}F;4sCgs)M$sSeeAQP377o1n_WYMTQSX0;4s<-mDMb6JWUtH;5SBz{g8Cs7kjW9 z#atCd7Lku>n9EVb=H9*gyI~D!)AibaLaF)j+J5ATjEy+Qs)qrg?@B(`q4}BKg{_6Z zyaOc}nfjK<&pCx%GNAkOiB)qJEplKgn$G1~{Y8IUVI^NdyX-cdR7GOn5W`dC((wVU z42dm}eeOgY@-yqs9lVSiK7<4P;RAlU#UJZO40M+_?)YT*`b0fwD^yU%Z~l>izkjeu zAaA0b;-b?|KoHA!_9PD&IkgU6TB-Y+f`EIMnIgg`nxhkhh;#*%^751%|GH&&%i4O9 zi2CV?L#&p|^_N4*vw(Ly2ZFE9+DI+(n4P)UyJ9=dHz088- zfRVwl`ZL=;3eP1q{%F;fD;(~Ix#;LIeyoN=LtKX7575a(q0(Pw7m%htV)dG(oBD8q zUZ6vg}$1IHjiw*@h{L!>-CE}{i^BR0Y*vB zhMk_NblNY!5j2j485ZKX82RgzoE&l69mlVCAIUqifm!W)(;fNER_0uluoUHP`PI8) z;ol~MLP7J@+B-cMiwt${$&;wE(30uwln2o+IK*{L5JqMia2CJR_iF$SvohN{{P<@K zxNi+vfr^wm?x)rr5}UFciABtaxf%0OI0bUmMh|k$q4ae8L*20>_( z2t5MEGuH2eeRNA$sd9;`H;Cm;DtLwpKwz)eHBKoP5fgshB_!Ek9a8ZqoE!t&-ADVm1Lr5V9#RCORg^e6!@<|4xR~*E zO#f*EJ?$kjl>ZHW1}(N?qVEISN@P?OFJEWE+GyP*r%I602!^*^ zjM*c0uXbL0$Vkv((G?U!nJjD%Dix)8Aq|0=pkV&7lCN3$cHIwu(lc^fO`k0}^$r*n zAD~I`>=A}W{sHR-={K5KiOr4o(TEZmd7ui4;dLXrxJ0Ew%slNi{qqEBSQL0f3E%(w zo~{{*wFVvJ67aujzE5d#!*8Mq3|;zUW3cDI5%FHEF8D#0W=lr$m2r-rODBkchj&(m z3Xx+DZpQ>PDyB1VGBS;og`K*Dzlon(5gF&G-StLz66+nW-PE>sALe}Ojerki`Xo4A zj`>{;g_V(g%a9@^;g~T9)}=*3uA4&%j9#;XYP^2Pf6gV#1h2xC<=?pUNQz%?xBFfR z=hD~f+I%Upy?dV3=Ri z6@&`b{#s9`*7o)f^3OWF#wL36ALExuNgg8zI3cmd z9)YG%>Th+*Rk2@IgEi*}L*X#5Ao(CrvkKQB`UK4p4E~qXYBWj|)3_+lb^>!N^ z)tk1G6k>Qk)xXy4P5MuH$q_;zXHC7}%+WM|0mF$erstHya&iQ8nImqnMks01{q>U$ z$J1HgVm;N>g%eHB$)SJ<-i>#m(d*pKc_0tPGo4!@bC_OtiFpjz>yT|I_V^$J%%LJhrBM z?AUF4Lz>!3O9TqAcdU|BseJ{w8SXuj;P>7rnKGT^F&`} zeA0KNu@{I82x1v}A;LDR0knwjfhZ{?+F+F*qd4Kum=H?@BwcmZk{O{VTxKT42RTmG zWB_`aK>iLiW_(-D>bD7jUqEa1fqbnmjWYp3y(>-Ft-k=vwQ9nnhOv>C0|8w0L0&Mn zE4Q#AT)}rY9dH2zHa+0aS&p>9kxkaPw|r7OqEb{;tPW9G0+v$iB7m$!u%4#?`Z8#r zf|C~|RPRFrg~v~rMBa~#7%WfUI0+ykamU63k7Na3R)KhmS8CA!637+v*>R zE`$Ok0qQU4Kzux~pP(xBl}V-J&%t-c36W@+$S-AQ87LxH&XGc_ZM4DH+vHe^X?pqE zbmP&1$o~GmGsI`D`qGuvuU)&>JslS(^L+*Lga+7lX%zR1aziwQKaW+@va*J^wyL(a zwsJy7?0ZLa$2FzTl{k|gcI zO+i7C=Su+0B}==YYdu#kL$cx#06Z#K6=aMY<^%ifS~D(&6al3en~Wg4=FIw>XsgXM$eL&4GDJ!F3 z5IFJY&Z|?(fG)XOz!gV%-d4eI^^a4>aB?**=zU8F&8w^|(oFuDCV!%zUrOJaUOdf* zqgTi18yb>nGh__>x?8YtUlw@zL=dFjJQ`9UScEg2I~9;;U_C2#47)a7oWs`D)jfr_ z2>q|rF2?d|CW)c|Jr&K?a*D~}qYr{FDG_Ir^Ps}|u4|jn#EhxC&Ao??1W^#9KM9_W$m5@RxDD#1`^>F0`h zt>PBHHGX^8drRCBBuen>FMnxlw!%kD$&~4;CPChz!GQDTqS3+vV9|IW@dcW4SyPh= znnZ|Nw^LEEh!X>5r_G_T{_%$oS9)HYzuK-Hm-`?4a;v#o=~!pVW6k`vjS-8h2tVckIDA+jSzJ2mHHNO z3RG!rDose2eF9F`fWSbI@FM$x)4KZlR>OHlt6N(ggnXjuY-|9;`K@4HhKEW(b`hkcv{cOfw=OXWNrv0}$0R6t6E>~FxvfB+ z5I*DLkokQ}OTJ?7F@#Cb5D#n~z*^VX3cV?UlaiPtIOJIY{uX@Y zjf#&?-8DZaCnv~~yn>D*gp5LaG&UNDI;0j#L$j?RldYPckdW{gAmon;FT=peZ9?2jLot)Xk?w&sr1VeRxpRjXi^cw0ooO6{E%x!>bXyT)$;*56kKC&F^sk0XZHx z<`u_G)5NSFO8^vhVF9?r)OpmR${HkDBV!8-3!#g~{e^OPd2;;y+0K~D9Vf9^5qTJ0 zxp21u z7=6g`vkMCjYdVI8b_3=&Z+@PthZa)w$gd#-i*oOkXvITAG$*_K!?NZr@#mVKVJqT= z1wSJuR^0!G5J=%r;=U6PtC0zgAI#C)-i?|XS-?rsBBI`#cQ3%34eQmM(aFNWOjG;m z1FK}-kq{YLMMb5r(#c}se2NwZ;pgWsGQWELdWYOfT_9wtbPWt%K~@#uepS=+gbX!| zD7dk)v3KLe3)W;gPijcNc6N6I)VL+@p1HX>^u$pwD*1JKtc7uej-Sk?2dki(_Ny46zrv_L_yT!GrKGSug+QX${K1bC zY%p70D-vM9??QJUWfMEQ?2FbFZ$W3sC@5Ti%4cL`z%TEgpR--8NRx3Rh4YuxH=ojt zG4RD;NTd!GMTtyDANaV>9o|z?&HoJUnU}XW&)Kuk*(Soi%)-u&|8`H3Kg+q>IDk-l z0n=SEP%>l>-9hGFQ`o}hv?6NNO4i!eW>g4U!pE#=<9x@}F9c*Ip)8=NNc831$zA9L z6aapg6)=Y)$gBR)<9u2;@O-om8E;>CL$C8zs|^t8#kacXU;5&QhK3BGH_B9=W*-WN6=hQEKW!c0Y~`BL&2SPF2f+F_$|2Hjzkc1Av3Sfg@vbw!X*3VVY3d4~Ql z{uwYM%BH3h#}>9^W)zQhfHy}xPw}l*3K{|S5AF*W*g$OgHW$AH!pVZ|f)_2!L{Kvh ziY#k%6w*Rv6~MI~yaUQ}$<npTSB-q6OP8^s7 zq{n;ytJn8qbsNJb;HEbLlX8k=!Q0e_6a*FsLar0&f2n|?Q8L#b0bJSjOqd)(V<*@Y z{!Ds)Ywqa4K=FtwY~~zZQz&qVfO+)~F&L4&vjHM?tLUujX;HBJhFB5Up%1iJwxH3B z7!XD-e1Zfs3gP17+6JhunB#=>g^fX-s$W?zMZxk<+#k61Z$6JHK}D6edekC6App%? z*>OUN@IOrp0u_Owoh_mW9AUZtih`C9P8n20|MTS|ELD%aY2=yp80dwFXk5}#El|M) F{2x+xHP`?E diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index 23644f79..a7fd892f 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -1,9 +1,11 @@ -Selected edges [3 4] -Estimated memories [11534336 16777216 46137344 436207616] -Lin fit: [ 8.31173190e-09 -2.45433083e-04] -Log fit: [ 1.1372553 -20.93973565] +Selected edges [ 0 2 3 4 10 13 14 16 25 27 28] +Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616 + 3145728 83886080 2621440 14680064 3670016 536870912 13631488 5767168 + 4194304 1744830464 2883584 671088640 4194304 7340032] +Lin fit: [4.95413522e-09 5.97115167e-03] +Log fit: [ 1.0600399 -19.96444236] ===Results=== -Total time: 2.0177 -Simulator fitted flops: 1.2417 G -Matmul flops: 533.67 G -Simulator optimality: 0.002326671888925848 +Total time: 13.715 +Simulator fitted flops: 0.46822 G +Matmul flops: 691.72 G +Simulator optimality: 0.0006768905621257221 From 5bbec72507d6ae29f329ac90fa012bdbdf6d8c75 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:28:44 -0500 Subject: [PATCH 061/104] [jlse-run] another seed --- .github/workflows/test.yml | 3 ++- run/automake/qsub_entry.sh | 2 +- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 43d8b9cc..fe406954 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -22,7 +22,7 @@ jobs: - name: Setup git run: | yes | apt-get update - yes | apt-get install software-properties-common python3 + yes | apt-get install software-properties-common python3 python3-pip yes | add-apt-repository ppa:git-core/ppa yes | apt-get update yes | apt-get install git @@ -34,6 +34,7 @@ jobs: - name: Link to proper python run: | echo $PATH + python3 --version which pip3 ln -srf $(which python3) /usr/bin/python ln -srf $(which pip3) /usr/bin/pip diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 851d23ee..50e8b8ba 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=107 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=108 > results/time_vs_flops.txt From b0aba541a12ae88d08912b5de3bc69d1ddea9458 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:39:08 -0500 Subject: [PATCH 062/104] [jlse-run] another seed --- .github/workflows/test.yml | 2 ++ run/automake/qsub_entry.sh | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index fe406954..6c761bf1 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -44,6 +44,8 @@ jobs: - name: Setup dependencies run: | + export LC_CTYPE=en_US.UTF-8 + export LANG=en_US.UTF-8 python --version python3 --version pip --version diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 50e8b8ba..22292745 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=108 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=109 > results/time_vs_flops.txt From a0bd533c11a2320444f40b894008ed9405047e2e Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:47:32 -0500 Subject: [PATCH 063/104] try to fix tests --- .github/workflows/test.yml | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 6c761bf1..6ce8b570 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -43,9 +43,10 @@ jobs: - name: Setup dependencies + env: + LC_CTYPE: en_US.UTF-8 + LANG: en_US.UTF-8 run: | - export LC_CTYPE=en_US.UTF-8 - export LANG=en_US.UTF-8 python --version python3 --version pip --version From 3f1c10130435c8876f03f89f4f4a3fb4cd0a4bfe Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:52:45 -0500 Subject: [PATCH 064/104] try to fix lc-stuff --- .github/workflows/test.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 6ce8b570..81043b3a 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -50,10 +50,10 @@ jobs: python --version python3 --version pip --version - /usr/bin/env pip install . - /usr/bin/env pip install pytest mock - (cd qtree && /usr/bin/env pip install .) - (cd scratchpad/cpp_connections/vanilia/nparray/ && /usr/bin/env pip install .) + LC_ALL=C.UTF-8 pip install . + LC_ALL=C.UTF-8 pip install pytest mock + (cd qtree && LC_ALL=C.UTF-8 pip install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && LC_ALL=C.UTF-8 pip install .) - name: Test run: cd qtensor && pytest From 2574623b70f6891c0318d42f397d913d0aaa18c9 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 06:58:24 -0500 Subject: [PATCH 065/104] fixes with setuptools --- .github/workflows/test.yml | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 81043b3a..150b3cc3 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -46,12 +46,16 @@ jobs: env: LC_CTYPE: en_US.UTF-8 LANG: en_US.UTF-8 + LC_ALL: C.UTF-8 run: | python --version python3 --version pip --version - LC_ALL=C.UTF-8 pip install . - LC_ALL=C.UTF-8 pip install pytest mock + pip install --upgrade pip + pip install --upgrade setuptools + pip --version + pip install . + pip install pytest mock (cd qtree && LC_ALL=C.UTF-8 pip install .) (cd scratchpad/cpp_connections/vanilia/nparray/ && LC_ALL=C.UTF-8 pip install .) From 4ff0b4395c3f69fafdecf0f6e042c3ac5e251c03 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 07:08:40 -0500 Subject: [PATCH 066/104] verbose pytest --- .github/workflows/test.yml | 14 ++++---------- 1 file changed, 4 insertions(+), 10 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 150b3cc3..66738675 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -33,12 +33,9 @@ jobs: - name: Link to proper python run: | - echo $PATH - python3 --version - which pip3 ln -srf $(which python3) /usr/bin/python ln -srf $(which pip3) /usr/bin/pip - which pip3 + which pip3 echo $PATH @@ -48,16 +45,13 @@ jobs: LANG: en_US.UTF-8 LC_ALL: C.UTF-8 run: | - python --version - python3 --version - pip --version pip install --upgrade pip pip install --upgrade setuptools pip --version pip install . pip install pytest mock - (cd qtree && LC_ALL=C.UTF-8 pip install .) - (cd scratchpad/cpp_connections/vanilia/nparray/ && LC_ALL=C.UTF-8 pip install .) + (cd qtree && pip install .) + (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) - name: Test - run: cd qtensor && pytest + run: cd qtensor && pytest -s From 347c2ddefae2eb0ce4abc81f85c1b5a91b3483fd Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 07:18:09 -0500 Subject: [PATCH 067/104] [jlse-run] ld_preload for mkl, fix usage of seed --- .github/workflows/test.yml | 2 + analysis/spec/notebooks/Time_vs_FLOP.ipynb | 306 ++++++++++++++------ analysis/spec/qtensor_specs/time_vs_flop.py | 2 +- 3 files changed, 221 insertions(+), 89 deletions(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 66738675..4904119a 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -54,4 +54,6 @@ jobs: (cd scratchpad/cpp_connections/vanilia/nparray/ && pip install .) - name: Test + env: + LD_PRELOAD: "/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx.so" run: cd qtensor && pytest -s diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 747432e8..2474dc2a 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -27,8 +27,8 @@ "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:40.881465Z", - "start_time": "2020-10-09T08:43:35.901033Z" + "end_time": "2020-10-09T12:09:49.685884Z", + "start_time": "2020-10-09T12:09:44.521036Z" } }, "outputs": [], @@ -47,8 +47,8 @@ "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:40.887219Z", - "start_time": "2020-10-09T08:43:40.882749Z" + "end_time": "2020-10-09T12:09:49.693502Z", + "start_time": "2020-10-09T12:09:49.687338Z" } }, "outputs": [], @@ -64,8 +64,8 @@ "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:40.953024Z", - "start_time": "2020-10-09T08:43:40.889534Z" + "end_time": "2020-10-09T12:09:49.709455Z", + "start_time": "2020-10-09T12:09:49.697804Z" } }, "outputs": [], @@ -100,28 +100,28 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:40.998465Z", - "start_time": "2020-10-09T08:43:40.969809Z" + "end_time": "2020-10-09T12:10:25.614936Z", + "start_time": "2020-10-09T12:10:25.607910Z" } }, "outputs": [], "source": [ "N = 1000\n", "p = 4\n", - "edge_idx = 7\n", + "edge_idx = 28\n", " " ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:42.672239Z", - "start_time": "2020-10-09T08:43:41.000745Z" + "end_time": "2020-10-09T12:11:20.886351Z", + "start_time": "2020-10-09T12:10:57.276722Z" }, "scrolled": false }, @@ -129,7 +129,7 @@ "source": [ " \n", "gamma, beta = [.1]*p, [.3]*p\n", - "graph = qt.toolbox.random_graph(nodes=N, degree=3)\n", + "graph = qt.toolbox.random_graph(nodes=N, degree=4, seed=108)\n", "\n", "comp = qt.QtreeQAOAComposer(graph, gamma=gamma, beta=beta)\n", "\n", @@ -142,11 +142,11 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:43.315135Z", - "start_time": "2020-10-09T08:43:42.673529Z" + "end_time": "2020-10-09T12:11:21.636121Z", + "start_time": "2020-10-09T12:11:20.888291Z" }, "scrolled": true }, @@ -155,12 +155,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Total FLOPS=0.247250917 G, Memory=0.268435456 G\n" + "Total FLOPS=1.7455608865774634e+32 G, Memory=3.920052866929211e+32 G\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA28klEQVR4nO3deXxcZbnA8d8za9am6UK6Ny3QAqW1QCk7hJ0iyKbIIlDEy0UFFJdrRUG594KiXjdQC2oBK1JBEVBAFiVApaUsBaQLNC1pm+5JkzT7bO/945xJJ5NJMjOZNXm+n08+nTnLe55zkj7zznve875ijEEppdTQ4ch2AEoppVJLE7tSSg0xmtiVUmqI0cSulFJDjCZ2pZQaYjSxK6XUEKOJXfVJRK4UkefTVPaDIvK/g9i/VUSmpzImpYYKTezDnIicKCKviUiziOwVkX+JyNEAxpiHjTFn5UCM1SLyuchlxpgSY8ymbMUUr1ix5woRqRWRM7Idh0o9V7YDUNkjIiOAvwGfBx4FPMBJQFc241LJERGXMSaQ7ThU9mmNfXibAWCMecQYEzTGdBhjnjfGvAcgIgtFZHl4YxExIvIFEdkgIi0i8j8icqBd498nIo+KiCfWvhH7HxQdhIiUi8jfRGSPiDTaryfZ6+7E+rC5125+uTe6LBEpE5Hf2ftvFpFvi4gjMg4R+ZFd9kcisqCvCyIik0XkcbushojjOexyN4vIbvt4Zfa6AhH5vb19k4i8ISIVfcUedbxK+1yuF5HtIrJDRL4Wsd4hIotEZKNd/qMiMipq3+tEZAvwzxjlj7GvZ5P9jexVu8ylwBTgr3Zs/2Vvf6z9+2wSkXdFpCqirGoR+Z6IrLJ/30+GY1E5xhijP8P0BxgBNAAPAQuA8qj1C4HlEe8N8KS93yysmv0/gOlAGbAWuCbWvhH7H2S/fhD4X/v1aOASoAgoBR4DnojYrxr4XD9l/c6OqxSoBD4ErouIww/8B+DE+nayHZAY18MJvAv8BCgGCoAT7XWfBWrscy0BHgeW2uv+E/irHb8TOAoY0VfsUcestM/lEfuYs4E9wBn2+i8BK4FJgBe4D3gkat/f2fsWxij/e8BiwG3/nBQ+d6A2fBz7/UT77+FcrErfmfb7sRHnsg043D7en4HfZ/vvWH96/2iNfRgzxuwDTsRKDr8G9ojIUyJS0c9uPzDG7DPGrAHeB543xmwyxjQDzwJHJBFHgzHmz8aYdmNMC3AncEo8+4qIE7gM+KYxpsUYUwv8H3BVxGabjTG/NsYEsT7ExgOxznE+MAH4ujGmzRjTaYwJf+u4Evixfa6twDeBy0TEhfXBMRrrgyZojHnLvraJuMM+5r+BB4DL7eU3AN8yxtQZY7qA7wKftI8b9l17344Y5frt851qjPEbY141xvQ1QNRngGeMMc8YY0LGmBeAN7ESfdhSY8z7xpg24DbgUvt3oHKIJvZhzhizzhiz0BgzCasmNgH4aT+77Ip43RHjfUmiMYhIkYjcZzdz7ANeAUbGmTDGYNVEN0cs24xV+wzbGX5hjGm3X8aKczLWh0CsduoJMY7hwvqAWAo8Byyzm1N+ICLuOGKPtDWq7An266nAX+ymkSZgHRCk5wdT5L7Rfoj1TeN5EdkkIov62XYq8KnwsezjnYj1wdBXnG6s34HKIZrYVTdjzHqsJpLDU1BcG1bTBAAiMq6fbb8KzASOMcaMAE4O7xYOrZ9967FqpVMjlk3BajJI1FZgSlRtOGx7jGMEgF12TfgOY8xhwPHAecDVccQeaXJU2dsjYlpgjBkZ8VNgjIk8vz6PYX+L+aoxZjrwCeArInJ6H/ttxaqRRx6r2Bjz/X7i9GP9DlQO0cQ+jInIISLy1YgblZOxmgBWpqD4d4FZIjJXRAqwmhD6UopV22+yb8Z9J2r9Lqy27V7s5pVHgTtFpFREpgJfAX6fRMyrgB3A90Wk2L4peoK97hHgFhGZJiIlwF3AH40xARE5VURm298w9mElu9BAsUe5zf7mMgu4FvijvXyxfW5TAURkrIhcEO8Jich5InKQiAjQjFXb7yu23wPni8jZIuK0z78q/Pdh+4yIHCYiRcB/A3+yfwcqh2hiH95agGOA10WkDSuhv49Vgx4UY8yHWP/xXwQ2AMv72fynQCFWzW8l8Peo9T/DalduFJGfx9j/JqxvCJvs4/wBWJJEzEHgfOAgYAtQB3zaXr0Eq8nlFeAjoNM+LsA44E9YSX0d8LK9bTyxh72M1WTyD+BHxpjwg2E/A57Cakppwbo+xyRwWgdj/Q5agRXAL40xL9nrvgd82252+ZoxZitwAXAr1g3crcDX6ZknlmJ9q9uJdXP55gRiURkSvjuulMoCEanE+qBw99G2nzNEpBqrF8xvsh2L6p/W2JVSaojRxK6UUkOMNsUopdQQozV2pZQaYnJiELAxY8aYysrKpPZta2ujuLg4tQFlQL7GDfkbu8adWfkaN+RP7G+99Va9MWZs9PKcSOyVlZW8+eabSe1bXV1NVVVVagPKgHyNG/I3do07s/I1bsif2EVkc6zl2hSjlFJDjCZ2pZQaYjSxK6XUEJMTbeyx+P1+6urq6Ozs7He7srIy1q1bl6GoUifVcRcUFDBp0iTc7kQHFVRKDTU5m9jr6uooLS2lsrISa/yi2FpaWigtLc1gZKmRyriNMTQ0NFBXV8e0adNSUqZSKn/lbFNMZ2cno0eP7jepK4uIMHr06AG/3SilhoecTeyAJvUE6LVSSoXldGJXSqmh4Pd7WmkNhgbeMEU0sffj5z//OYceeigTJ07kxhtvzHY4Sqk89HpLF9fUNPDFTXszdsycvXmaC375y1/y4osv8uKLLyb9ZKxSanhrC1k19Tpf5obb1xp7H2644QY2bdrEggULaGxs7F5eW1vLaaedxpw5czj99NPZsmULAAsXLuSGG25g3rx5zJgxg7/97W8ArFmzhvnz5zN37lzmzJnDhg0bsnI+SqnscNpT9wYzOJBuXtTY9/z253R9VBNzXTAYpNkZz2T2PXmnHcTY6/qe1Wvx4sX8/e9/56WXXupO0gA33XQT11xzDddccw1Llizh5ptv5oknngCspL9q1So2btzIqaeeSk1NDYsXL+ZLX/oSV155JT6fj2BQp4dUajhx2v0aMvk/X2vsCVqxYgVXXHEFAFdddRXLl++fyvPSSy/F4XBw8MEHM336dNavX89xxx3HXXfdxd13383mzZspLCzMVuhKqSxwSrjGnrkqe17U2PurWefSA0rRXQ5FhCuuuIJjjjmGp59+mnPPPZf77ruP0047LUsRKqUyLdyekMmmGK2xJ+j4449n2bJlADz88MOcdNJJ3esee+wxQqEQGzduZNOmTcycOZNNmzYxffp0br75Zi644ALee++9bIWulMqCcFNMe8iw05eZBpm8qLHnknvuuYdrr72WH/7wh4wdO5YHHnige92UKVOYP38++/btY/HixRQUFPDoo4+ydOlS3G4348aN49Zbb81i9EqpTAs3xazt8DPxrTq6jp2CK80PFGpi70dtbS1g9XhZuHAhAFOnTuWf//xnzO3POOMMFi9e3GPZokWLWLRoUTrDVErlsOiuHf6QweVMb2LXphillEojR1QOz8Tzp1pjT5EHH3ww2yEopfJAJu6hao1dKaXSKDqRhzKQ2TWxK6VUGkUn8kw0xWhiV0qpNDrivR093psMNMZoYldKqQzSphillBpi9OapAiAQyNxwn0qp9Ap0dKT9GJrY+1FbW8shhxzCwoULmTFjBldeeSUvvvgiJ5xwAgcffDCrVq2ira2Nz372s8yfP58jjjiCJ598ErC6P1544YWceeaZVFZWcu+99/LjH/+YI444gmOPPZa9e61B99955x2OPfZY5syZw0UXXdQ9RHBVVRVf/vKXmTdvHnfeeSfTpk3D7/cDsG/fvh7vlVL5IxhK/+3TvOjHfstHe3m33RdzXSAQxOVqS7jMjxV5+Mm0UQNuV1NTw2OPPcaSJUs4+uij+cMf/sDy5ct56qmnuOuuuzjssMM47bTTWLJkCU1NTcyfP58zzjgDgPfff5/Vq1fT2dnJQQcdxN13383q1au55ZZbeOSRR1i0aBFXX30199xzD6eccgq33347d9xxBz/96U8B8Pl83RN81NbW8vTTT3PhhReybNkyLr74Ytxud8LnrZTKLpOBUR61xj6AadOmMXv2bBwOB7NmzeL0009HRJg9eza1tbU8//zzfP/732fu3LlUVVXR2dnZPfnGqaeeSmlpKWPHjqWsrIzzzz8fgNmzZ7Nlyxaam5tpamrilFNOAeCaa67hlVde6T72pz/96e7Xn/vc57rHpXnggQe49tprM3UJlFIpFAqlfyCwvKix91ezTvewvV6vt/u1w+Hofu9wOAgEAjidTv785z8zc+bMHvu9/vrrA+47kOLi4u7XJ5xwArW1tVRXVxMMBjn88MMHdV5KqewIZWCyHa2xD9LZZ5/NPffc0/31avXq1XHvW1ZWRnl5Oa+++ioAS5cu7a69x3L11VdzxRVXaG1dqTymiT0P3Hbbbfj9fubMmcOsWbO47bbbEtr/oYce4utf/zpz5szhnXfe4fbbb+9z2yuvvJLGxkYuv/zywYatlMoSvXmaZZWVlbz//vvd7yMH+opcd9999/XaN3KoX9g/BHB43SWXXALA3LlzWblyZa/9q6urey1bvnw5n/zkJxk5cmRiJ6KUyhkmAzV2Tex54qabbuLZZ5/lmWeeyXYoSqlBCGmNXYXdc8892Q5BKZUCmWhjz+nEbozpNUG0ii0TfWOVUvFrDoR4aE9rr+WZ6O6YszdPCwoKaGho0IQVB2MMDQ0NFBQUZDsUpZTtpo/2ckttY6/lweAwboqZNGkSdXV17Nmzp9/tOjs78zKhpTrugoICJk2alLLylFKDszcQO4Gb4fyAktvtZtq0aQNuV11dzRFHHJGBiFIrX+NWSsWnr0bkTNTYc7YpRiml8llftwe1V4xSSuUZf8jQ2c+9wUw0xaS8xi4iJ4nIYhH5jYi8lurylVIql523fjcjV23N/aYYEVkiIrtF5P2o5eeIyAciUiMiiwCMMa8aY24A/gY8lPqQlVIqd73Y3NnvepOBpph4a+wPAudELhARJ/ALYAFwGHC5iBwWsckVwB9SEKNSSuWdPmvsudIrxhjziohURi2eD9QYYzYBiMgy4AJgrYhMAZqNMS19lSki1wPXA1RUVMQcGyUera2tSe+bTfkaN+Rv7Bp3ZuVr3DDI2L1Wb76G+npwFvdaXVNTQ7Cz/1r9YA3m5ulEYGvE+zrgGPv1dcAD/e1sjLkfuB9g3rx5pqqqKqkgqqurSXbfbMrXuCF/Y9e4Mytf44ZBxr5iMwCvxUjqAJVTK6k66cQkI4tPWnrFGGO+k45ylVIq3wVCuT013jZgcsT7SfYypZRSfegyuXPzNJY3gINFZJqIeIDLgKdSE5ZSSuWfJ/a2D7hNVw51d3wEWAHMFJE6EbnOGBMAbgSeA9YBjxpj1qQvVKWUym2XfND/2FYAvgw0xcTbKybmXGzGmGcAnflBKaWwasoD1cd9uVJjV0opNbB4Zo/ozPE2dqWUUjZ/yBDPo0eZqLHrIGBKKTUIIWNoCxl+t7v3bEmxZKKNXWvsSik1CN/Y3MTIVVvZ5Y+vJt6liV0ppXLbUnte0/Y4B/daXjgqneEAmtiVUmpQwvVvR1y3TuG5EePTF4xNE7tSSg1COLE/sCe+NvZM0MSulFKDEE7sfU1enQ2a2JVSahD6mQUvazSxK6XUIORgXtfErpRSg2ESTO2VLQ1pimQ/TexKKZWkzV0BmoOJJXZP0J+maPbTxK6UUkmo7Qww/e3Ep6AIxtktcjA0sSulVBK2+gJJ7RfSxK6UUkNLUDSxK6VUTko2PWuNXSmlhpiQ1tiVUio3bffFM/p6b5rYlVIqR12+oT7ubT/TWNv9WtvYlVJqCIhMtAbBpHkcAk3sSimVZq6Ip1ODDgeEkmvGiZcmdqWUStBXa/cmtL0zooZuRDABTexKKZVTfrqjJaHtnRGvg+KAYHIPN8VLE7tSSqWZM6IpJiQOTEATu1JK5YxdSXRzjGxjDzicGG1jV0qp3PDXve1MeKsu4f1cEW3sfqcLtMaulFK54fXWrqT2k4i+6yGHgyZ/eofu1cSulFJxcqZonJdFu3wpKacvmtiVUipOziTzevRujV2a2JVSKic4UjQagGh3R6WUyg2OJJtiJGp8GIcJpSKcPmliV0qpOKWqKaYylN6mGFdaS1dKqSHinLW7qO1KsgnFhGg8ejK1u3ZxxBYf04MdqQ0uiiZ2pZSKwwvNncnvHAwxwuWgxGUNLhAM6uiOSimV3+wnTZ0uqy4d1DZ2pZTKrsBgx0+3E7nTadXYQyGtsSulVFY1BgZXww4ncqfTrrGHtMaulFJZNTWJ8WEi+e0KusuuseddYheRKhF5VUQWi0hVqstXSqlM6xpky0m4c6MjfPM0F6bGE5ElIrJbRN6PWn6OiHwgIjUisshebIBWoAAY3MecUkrlmS+WOfnrIQf0WBZO7C6H3caeIzdPHwTOiVwgIk7gF8AC4DDgchE5DHjVGLMA+AZwR+pCVUqp3PfVEcJJI7w9lvmM9YhSeEiCYC7cPDXGvAJET/I3H6gxxmwyxviAZcAFxnR/FDUCXpRSKo991JnYELsi4IkaQsBvP3saniIv3Yl9MA8oTQS2RryvA44RkYuBs4GRwL197Swi1wPXA1RUVFBdXZ1UEK2trUnvm035Gjfkb+wad2bla9zQM/ZlzjJwjYp73zc3bGLkhg3gnba/PL+f6upqfAh4K2lsbk7rtUn5k6fGmMeBx+PY7n7gfoB58+aZqqqqpI5XXV1NsvtmU77GDfkbu8adWfkaN/SM/bW6ZtjaFPe+xx5/HBM8LlixuXuZeLxUVVXhDxl4fQslpaVpvTaD6RWzDZgc8X6SvUwppYYMf4I9WPwxNvdJzzb2UC70iunDG8DBIjJNRDzAZcBTqQlLKaVyQ6KJ3Rej/dxvp9pwws2V7o6PACuAmSJSJyLXGWMCwI3Ac8A64FFjzJr0haqUUpkXSDAHV3p7t3D7xEq1IoIzFCS9M57G2cZujLm8j+XPAM+kNCKllMohiYwT84OWj3A7pvZa7pf9dWh3KIjfpGgqpj7osL1KKRWDMYaf7WjhJzta4t6nr3Ttc+xP7J5QkPROs6FjxSilVEw1nQG+urkxsZ2kj9ReMaH7pZXY01tj18SulFIxtAQTf+y/r3QdLCzufp2JxK5NMUopFeU98dLalPiMSX1V2H0RzfRuE6Krrw1TRBO7UkpFucUzIaGHkgYS2QXSY0Ld3R/TRZtilFIqRSSiiaXcuT+9fmpMUfdrjwl1P7CULlpjV0opoDEQ5MC3t3HFmOKBN7a1zp9Myar9Q2ZF5utt8yZhsB5wKnbsX2El9vTWqTWxK6UU8HqLj+ag4Ve7WuPep9AZnaD3J3CvncwLom6Uiggfjug5XnuqaWJXSg1LH3X6cYgw1X5SNBVTX8TTwvJ2qZXUGwNByl3OAbZOjiZ2pdSwdNDq7QAEj7OeFDUMfvwWSaDtvCsYgjQldr15qpRSkIK0DpLIJNWd7Sk4Ymya2JVSCkjJgIvBYPybBuLfNlHaFKOUGvaOfHc777anYMzFBGrswWBg8Mfrg9bYlVLD3mCS+vLDxzGnq9l6Exq4Fv4l/x4AAmmssWtiV0qpQTiu1MssXxsAwTgS+8FYNXWtsSulVA7z2J1h/HG0xDjsIXxDSQwyFi9N7EopNUjhxO6L4w6sy2ltrDV2pZRKE+eKzYMuw92d2Afe1mEPJ6Bt7EoplSIbO/0Urhx8Mo/kth9M8seYyDqas7spRhO7UkqlxKP17XHVrBPhsceFiWcCDafTeto0kMjDTAnSxK6UGlYcKRox9+eV5d2vPXaNPZ42dkcGauz6gJJSalhJRW22ZpKTaeNHdL8Pj+QYT2/4cFNMUJtilFIqNX65s2XQZUQP9uW2k7XPDPx1wGU3xWhiV0qpFAgZwxZfChJqVP4unmSNEOmccdiAu4abYoLaxq6UUoPXHkevlXhI1AxI3gIvAIGikgH3dTqsGnsojqdUk6WJXSk1bLQFU5XYo5piwt0d4yje6Qz3Y9cau1JKDdoWX2qe9nREJfbu7o5x9IoJd3fUphillEqBZfVtSe97bIln/5uoxH5ksbXuvPLCAcvprrGnMbFrd0ellBrAvGAbrxw+Bc/KLUDvppiZhW7aj5nS3e2xP16nEwjg0xq7UkoNXrJN7J5QEGdEMo81tWk8SR3A67Tq0ztN+tKvJnal1LCRbGI3Ub1pEpm0OprHbSX2m4orky5jIJrYlVJD0hN723lod2uPZcEkp6x2lY3s8T66u2MiCouKkt43XtrGrpQachoDQS75wJqC7uBCF8eXFgDJ19ije8EMosKO15H++rQmdqXUkNMZ0XSy3RfEGEMICMTRHTGm6MQexyiOcRaVFprYlVJDSvTEGZ/+sH7QZU7z9kyVMohat0cTu1JKxWdbV4DfD6Kfen9+NKWs54JBJOfxHivtntxYB0xNvqB+aGJXSg0JV2yoZ3lLV1rKLnK7e7yXQfZBn9m8i2K/b1Bl9Ed7xSilhoTWYPoe+HG6nD3eD7Y1RQykbwgwTexKqSHClca7kuFEGW7icJWW9bVpXJxYN3PTJeWJXUQOFZHFIvInEfl8qstXSqloW7sCvNmWvqaN8EeGJ0Xz6jnIgRq7iCwRkd0i8n7U8nNE5AMRqRGRRQDGmHXGmBuAS4ETUh+yUkr1tK4jnknpkhd+0jQ8t2koyQedwpxAioaGjyneGvuDwDmRC0TECfwCWAAcBlwuIofZ6z4BPA08k7JIlVLDQtAYLv1gDwvW7oq733lRqmaoHoDHzpjxjLveHwektSlGTJwXTkQqgb8ZYw633x8HfNcYc7b9/psAxpjvRezztDHm432Udz1wPUBFRcVRy5YtS+oEWltbKSkZeNaSXJOvcUP+xq5xZ1aycb8rBXzFMx6Ab/j3cFaodYA94B0p4Kv2PoPx6UATjeKkxNfBfGcILyGWO4r5QnAvABvEw1+dpXw50DCoduyvtrjw+jq5a/TgOiaeeuqpbxlj5kUvH0ypE4GtEe/rgGNEpAq4GPDST43dGHM/cD/AvHnzTFVVVVJBVFdXk+y+2ZSvcUP+xq5xZ1ayce9paAP7oaK73WO567heeauXjsYOWL874WNFumH7Gn5xybmAHfspVQDcHLFNFfAfgzqKxfvsSiToStvvNeX92I0x1UB1qstVSg0PydSEO1LQYO3PxLP+NodAII2HG8y3iW3A5Ij3k+xlSimVNGcSCbYtBZNWuGYcPugy4mW1sae/e2Yy3gAOFpFpIuIBLgOeSk1YSqnhKtF01xQIsbCmYdDHDRamfzjdMCfpvXkab3fHR4AVwEwRqROR64wxAeBG4DlgHfCoMWZN+kJVSg0Hibaq/HB7c0qO60925MckWIk9yzV2Y8zlxpjxxhi3MWaSMea39vJnjDEzjDEHGmPuTFuUSqlhI3oyjF/vagFgjz/Iwpp6Nnbu77O+xx/kFztbUnLcQObyOg6BYLYTu1JKZUp0jf2GTXt5samDcW/WsXRPGzNWb+9eN/+9HbQkOHtGia+z+/UB7v0p8KJRmWuKcQGBNPa919EdlVI5JVbb805/7Afwt/gSezBfTIj3/vhdpv7ykSQiSx0PhoA4B94wSZrYlVI5JRijrbsh0DPd1/uDLNk98INL0cSAuNwDb5hmbsDn1MSulBomYtXY10eNBTP1rW10JnmzM9Aw+BmVBssrBr/DhTGmexyaVNI2dqVUTniuqYPZ72znrdb9ozSWOe1Bt6JyeLJJ3WFChNoTr+mnmkcEv8MJofSM8ag1dqVUTjh3nTUkwNqI2vkBDsNol4v2FA2FKCJUfPnbKSlrMLwCPqcbEwggztSnYa2xK6WyqqOfmY8CO7dT7BT2BuKv2Tr6eQpVnE5KTzkrofjSwSNYTTH+9Aw3rIldKZU1b7Z2UbJqKw/vid08csieLYx0Ovh7U2fM9bE4TN+J/ahib8IxpoPX4cDncmEC6Uns2hSj1DBjjOHWLU1UlRVw9sjCrMSwtt3Hx9ft5qLRVt/xZ5s6em3zrReX8vH1K/F+6kJea/XRFTL8ob6NC0YV8p2tPZ82/dK4Un5mP6gUK7F/b8pIji/1Mqso+z1iwJqJKehwEvD50pKEtcau1DDTHjL8YPs+LhjkMLeDccL7O9niC/KzHVYyjjU648fXr2R0+z5KrjqTG8o93DJhBG/MGc+3J43k2BJP93YjO1q45Vff7H4vUUUV+Lv4r4llnDiigHJX+roYJsLrsFJvlzbFKKVSIVyfHewsQIPRGvW06BN7e9fYI9vKfVs/6rMsR8jQtWHd/vdRPWaCjtxI5pHqndY3h8f2BdJSviZ2pYaZdM61mUqRTSqhjvYe60wf2wFI1FgzgTT0Ohmsta5iAH67Lz3dHTWxKzXMDHYi5kyJrHmbzp41+n4Te1SNPRfPNmQ//epM081TTexKDTMJjpmVNZEJu+3t13us8+3eFbFdzxNyZnBc9WSF7KdNoz+EUkUTu1LDTGT9dnNXgKs31PNYQxt31aVmXPNEY+hLdMKOFGze2/3aGVVjT2YGpkxz2DFGx56y8tNSqlIqZ0W2sV9XU8/D9W1c9mE9t21tylpMkSYSYPaOjRQEfLgnTsE1tgLT2UH7e29Rc9HJND/7F0zEWObhWu+Dy74HwEuzKvjGhBHcO20UAP86fFzmT2IAPxhndTNd4GtKS/m5d1dBKZVWkaMnduVIs8yeeZMY5bZ6r7S+Vs3Opd/tXifeAkJdXWz/zi3Wtvf/BK66o3t9uNZ73Ja1+A4vx1nsYXax1R3y8+NKM3QGiZngtVKvS8eKUUqlQuSX/9daunqsc67YTOv8yRQ6HbQGQ5St2sqhhW7WdfgZ6XRQf/QkRITvbGnif7dZTTcfHjGBKR4Xt9Tu5ZH6dprsIQKWEX83Q7dDMMEAH119Pq4Dxncvd9jt5R1rVvfY3kS0tkR2ixRvbjxZOhCny0q9wRRMwh2LNsUoNcwMlEoeabC6Fv7KfpJznT0oV1Mw1D0uejipA5y3bjf/aO7kV7tau5M6wCvO4rhjKnYIGy89g1B7G77aGgA8kysZffUNlJ58Bu5xk3CWle/fIWKSCmdEkhf3/geXcpnTHos9lKabp1pjHwYa/EGmvb2N9pDh5BFefjl9NLPesaYXe+7QA1i0pYmaTj/zS7w8OmMso9/YytcmjOC2SWWUrdrau0DvNFixudfiOUVuxrmd/HnmWIqcvesMX/5oL/dEzU95XImXgwpdLN3TBkD7MVP40fZmbt/azKrZ4ziqpHcNLGAMn/pgD0819uwCd2Kpl8leJ4/Ut3OA28GOeZO5ZkM9v69vY8uRE+O+XkPdQMkkvD5WI4Evxr6tQROzS2G8jQxzTSdbb74aomqv42/7Ie6xFRTNPpKR51/aY533vR3QZg3vWzBxCiMvvBxHcUlaxjZPh3BiD6bpoQJN7MPAL3a20Gb/Ab28r4vvRNwkO3vd/sfK/9HcyR32uh9t38fsBMfVeK/dz3v4+bAzwNzi3jWn6KQOsKK1ixWt+5sDXm/t4nZ7HJAL1+9h67xJvfZZ1+7vldQBlrd0gX2I3f4QnSHD7+utD4zbtzZxVUJnM3QNprtjW4yd2wbZnOCuq8Vf17uiIP3MMNSjH7sIY675/KBiyLT9iT09TTGa2IeB6P+Kf2poj7kdwF/27l9XFqPWHY//2NjAZw8oIWTPDpNIHerUNfv7J2/3B7l1cyMHFrjY4Q8y2eNijz9IvJWy4te3dL9+ZV8XDa7RPFhTjzEwq8iNxy7o5X2dFDmE+kCIE0q9rGr10RIMMd7jpD1kmORx0hQIMdrlZHWbj62+ABeNKuLm8aVcuH4PZ40sYJLHhcGaLGKUy0FDIMQZZQU809hBoVNw29dhnNtJW8hQ6hRWtnRRHwjxtQkjOKbEy8Kaei4dXUy5y4HPGF7e10mJ08FmdwUXb2vmsYZ2Dixw0RQIMcLpYITTesbS6xBea+miMRDi7JGFXDiqiP+pa0IAn4FDC928uq+TQwrdtARDjHb33/b996ZOWoOG52J8eP56VysTPD33bw4antjb+2/qXSnkp9v3Dfh7KvLFHrlRXH2nJxPxzSE/6ug9hbtkpufWqSZ2FWVrxOTAJUkm9rfbfLz90d6BN4zD3XEkhnhs6gqwyTkC7CafvrzYHN/wsPfsbOn+BrKmI/bTg/GWdUttY/fryLbrbo4i3tjSBFjXtj+/3d3Kb6PmAl1t77M1zomf/7K3vccHfKT/2xH79/GbGPOPrnQWsXJzY4yte5q2d0fsFf0MBfD5caX85ybrb+yLOdrzpT/hxB7SGrtKVrI1mkQfPf/U6CKOK/XyldqB/zMP5OGDx/B8UwcPDZCI47Hi8HE8vredH0Z9SHwwdwL37Wrlx30kq0TsPXoyk96qS8lMP3uPnsyoN2Lc20ix/1vxJ05f8SzOUBAjDhwmxIQ774WDDu3epsAh+Iyh1OmgPRjqHjhM7HUG6LTP2SlWbwyHCE7guVde4aQTT4p57G13fIXQ+n/jd7go8fX+ZgD919g/V1HK5yryL6GHhatMsSbuTgVN7KpP/gQrE14RSpOs5Ucrckh3U8lglbscFDh6lzXW7aTMlZpjlLkclDolJYm9zJWZzmruXdsoDIS/AVi1ef+KlxhzyKwe23ntqkGsG+JgNQXFUoLp81z2rH0XQkEKsL7tlJ62AOeIkWBClF/8GTo/XIvDW5DgGeWP8CXTXjEq4/wJ/tF5HII3Bxs8+0o8Hklt+6w3T3pkhMV6ZN+kKdH0tv843ukzqLjpmz3WFs87LkNxZEe6a+zaj30YCDQn1zTS2dyU0PYtL/yVpl/+IKljRdvxvW/i256a5oht112Ev773pBKePhJ+slJdXrrFHIAqTW2+/R1HPPnR9zyVRAQxobTV2DWxDwP+rbVJ7de+bcvAG0VwGIO0xZ67MhmRkycMhjsYoGvTh72Wp3qwqKFQYydjNfb98uWholRzGqNNMbnEGENryLAvEMLrkO4n+YocQpv9sEb4xmPAWF3cslmba3QmN8/jbk9RQv2xUj0EqemKfwLj/niCAbpqa2DC7B7L6751I80HHguHxr7Bl4i6b90IJ3wGyscPvHE8ZZ339UGXM5BYIwsG6nfj37MrxtZJlL+vKa6yhmONHawP1mCaviBpYk/CrVua+EEC3fA+Xl7IU4cckMaI+ratK8CvSycnte+iYFmvZa5goM8Zaaa3NfbZwyFRY9r2Mal5T0rKcgcDjAvFmIIsZJhQuy4liV0cTmbXrmVNChK7OJyM6GxjX0H8j+QnwxNjkoe2VctpW7U8JeWPBzY/MPB2jsL0nmeucpgQgTRNA6KJPQmJJPVpXhfbutIzr2E8NvusY8/YvYXz1q3kwIZtrKuYysTmehqKRrC3aATWjSwhfEOrzVNIZeNOppz5cXyPL6W5oJigOPAG/Jy7fiVPzjqRNk8Bp2x6FwP8bt7ZVLQ08gV3BwXnfZxv/vNhNo0aR0HA311yCOFjOzbS6fbQVFBCsa+TBetf58lZJ9DuKeCSf7/MR6PG8/jhJ/OxHRs5Z+F1HPX2KnzLH6e5oIhOt5diXwc+p5vSznZm1NfR7vGyp3gkY1ubOHPDmzw2pwojwuWr/8HyabP5+8z5nL/2NQ78+e9Y+MqL7H3lMZoKS3CFgpyx4S3G3/0zrnr6T+x66RFGtzdTWz6OMze8SW35ePYUl3FQwzY+GDuFtRVTaXd7Ke9opdDfxebyCsa37GXGnq2snHIYN/3rcSbe/zC3XXsxFa2NTNhXz0fl47lozau8NvVwivydFPh9fDRqPB+OnUxQHBQGuijw+9gxYjSVjTsZ29rEv8dN59Z//p6JS5/kxcvOYelRZ1HR2siuknIuWPMvnp9xNFOaduF3OFl/wFRqy8fhDgUob2/BG/Tz4ZjJlHe0MKl5D+sOmMLnVj1Nod9HffEI/E4XqyYfit/pIigOjtm6jlOnT6bsk5/CUVBAsLmJYOs+nCUjUva3t/6DDzhk5syY60wgQMe6dymYefiQv1HaF3coRCBNj1dpYk+zio1r2DtmPDBh0GV1hkyvbnudIYMvZChxSvfg/ZHb7fRZ3/X+57klzN2xEYAzat6O63jjzziJHetf77X8inf+0eP9nX//LQCO08/F5faw8M2/x31OC996rvt1RWsTx26x29XPOY0iE+TG1/4ad1n/serp7tcLPljFgg9WAdZX/QIT4vMrn+qxvbg9iDi47o1neiyftWv/4+0n1r7f7zGvevuF7tcFLgdfWPFkj/WVjck1a5R1tXPja0/0WBYZ57n2uSXi9JqeIySOPO8OSk44Nan44tHuKmZEVVWf68vOuSBtx84HnlCQLk3suWN0WzMNxb2bKWIp9nexIxBghy/ApLe28eBBo7lqbEn3en/IUPD6Fr47qYzbJo8ErKFTU628o/c4LQMxgcS+aYjDmbr20hTeiHR4Yg/lKh5PSvs7Sr71u+7nASCVfp5QEH+aErv2iknCBWv+Ffe2pW4XfnF0D336YNSj1+HBuX6Uokfn+zKlqXd3v4H49+xMbAcRUpYpU3gjtq8Pm1SPBJhvvTvEEf946Sr13CaET9KTgjWxJ8GfwH+IYkJ0OfquGbWl67Z4lGRSWMODv+y1zFHU940uz9RpOIpL+lyfCOeoMbjH9R7ZMRni9uAaE/vmtXtCcjeWYymc9bGUleUsH5WysvoiBXn2DWOI8Zgg/Y/8kzz9LpYEfz+DE0XziOB3OPq8992WpvGYoxUcMpuSk07HM3EKvi2bcI05gGDLPoIxHkIyXZ24xlbgKCrGUVBEqLMdEwzicHsomnc8bzxwH4dMn0bh4XPBQMtLz+IsK6dswcVgDGO/8F8Edm23a7DW7VNjQngrD8IEA4Ta2nAUFFB01HG0rXwF4+ui+LgqArt30LriZbyVB1Jw0CF4pkxDnE5CHW2EfD4c3gJMIICjsAjPxMmE/D5C+5pxjhhJ4dyjaf3XS2BClJ58Jh1r36N99esUH30C4nIx4tRz+HDtGg6cOB5xuij82DwASo4/ldDn23COKCOweyeFc48msHsnwX1NuMdNxLdtC77NGzE+H46SEhzeQgL1u3CWleMeN5HOmvWMPP9TAIxZ+EXc4yfhGnMA/p3bKDnuFDrXv494CxC3B//Obfi3b4VQCHG7kYIignvrcY05AGfZSHxbayn/1NUATL33Yfb981lc5aNZ/8brfOwz19K++g3cYyswwQC+LbX4d+9AXC4cxVZc/u1bcRQV4Rw1Fv/2LYw46xM4PF6CzU2YUJDOD9ZAKIgJBCg4+FAKD0vdB5FKnNeE6EpTjV0y9whx3+bNm2fefPPNpPatrq6mqp8bNMkwxnDlhnpqOmO3MW/c00BTUXwDEP3njrXcP+4QDiz0dJd3VLGHlpYWSktL6QgZ1trNNEfZY5i/NcAIfsloKWmgaPaRKSkrHdc8EzTuzMrXuCEzsR/13BusLR5Fx4kHJl2GiLxljJkXvVxr7DF0hgx/bGhnRqiTylDvJFu6YyMH1W/jD0ecTrvHmm38Dw//N98+5zo2jZ7Ihe+/SofLCwLnSQsbuoIUzJ1PTWeAqlIPRU4nLhPsHhd7bYefeYUuDrDfF/k6afek7mvy/z77G7j4/JSVp5QaPJ/ThTcYe8jnwdLEHkOnz7rYl1T/ud+ue19/+Y893j/720W9tin7+CXc98KfmHjcoWy99VrKzr+UsZ+9kerqtVQdeiihjnY2XfFJio6Yz4Tbf4QJhdh46ydTe0KA+8YvprxMpVTyjm/ZzR/Lp6al7JQndhGZDnwLKDPGpD5DZUBHlzVVW9mco5j6n9fF3GbPr35E+9u9+3hHE5eLUEc7u3783wA0//VRujauZ2xTM3Uv/Anjs74RtK9eZT1KHuz7Gf4x191M/W9/3mv5+Fu/T8Fhs/noMx+Pud/0ZS/gyJPZ25UaLlwiBBzpaWOPK7GLyBLgPGC3MebwiOXnAD8DnMBvjDHfN8ZsAq4TkT+lI+BM6PLbk+QWFeEeUxFzmwO++A1qr7u4+/2EO37Crp/8D8GmvRQfcxKhTuvR+uKjT6DroxprNLut4D3oEMThxDgcVr/vAqspxz1xitX9zOG0+hcHAvv/xeolMuKs8xGPhz2/+hFFRx4DxhBsbqToyGMQp5OKr9xO01OP4hpbQcAeo6P8ks9oUlcqB7mF7CZ24EHgXuB34QUi4gR+AZwJ1AFviMhTxpi1qQ4y07rsphhvP5NGuEaN4aC/vNJj2bQHnoi57cQ75vZatqG6msOTuDlTdtYnKDvrEzHXlZ50BqUnnZFwmUqpzHM5hKCk51mCuBK7MeYVEamMWjwfqLFr6IjIMuACIK7ELiLXA9cDVFRUUF1dHWfIPbW2tia9b1/q9rXC2NnU79yR8rLD0hF3puRr7Bp3ZuVr3JCZ2Nv27SM0xsE/q6tT/kDRYNrYJwKRMyHUAceIyGjgTuAIEfmmMeZ7sXY2xtwP3A9Wd8dkuhY98eZqXtyxl/IU3ynY6bAewpk+dSpVxx2d2sJt2hUs8zTuzMrXuCEzsf/jGWvMpRNOOrnf1oFkpPzmqTGmAbgh1eXG8tcdjTxYeVRayvYE/BxYUZ6WspVSymW3rwf8frzO1N4HG0xi3wZEPo89yV6WMYsXnMRlL7/MySeenPKyHU7B7UpuggqllBpIOLH7An6KyZ3E/gZwsIhMw0rolwFXpCSqOLldbtxOF15vfg2+pJRS4cTu96X+SfO4GnZE5BFgBTBTROpE5DpjTAC4EXgOWAc8aoxZk/IIlVJqCApPl+n3p34innh7xVzex/JngGdirVNKKdU3l9Pq6ugLpj6x67C9SimVBZE3T1NNE7tSSmWBx2W3sSc4U1k8NLErpVQWuOwJe9LRxq6JXSmlssDt0jZ2pZQaUsI19oDW2JVSamgI19j9/QzVnSxN7EoplQUFo8YAIAeMT3nZmtiVUioLvCUlAJiy1I9JpYldKaWywCXWk6cBY1JetiZ2pZTKApeV1/GnPq9rYldKqWwY63JyyagiDnCnfhallI/HrpRSamAHF7p5dObYtJStNXallBpiNLErpdQQo4ldKaWGGE3sSik1xGhiV0qpIUYTu1JKDTGa2JVSaojRxK6UUkOMmDSMU5BwECJ7gM1J7j4GqE9hOJmSr3FD/saucWdWvsYN+RP7VGNMr6ecciKxD4aIvGmMmZftOBKVr3FD/saucWdWvsYN+R07aFOMUkoNOZrYlVJqiBkKif3+bAeQpHyNG/I3do07s/I1bsjv2PO/jV0ppVRPQ6HGrpRSKoImdqWUGmLyOrGLyDki8oGI1IjIomzHE0lEJovISyKyVkTWiMiX7OXfFZFtIvKO/XNuxD7ftM/lAxE5O4ux14rIv+343rSXjRKRF0Rkg/1vub1cROTndtzviciRWYp5ZsQ1fUdE9onIl3P1eovIEhHZLSLvRyxL+BqLyDX29htE5Josxf1DEVlvx/YXERlpL68UkY6Ia784Yp+j7L+xGvvcJAtxJ/y3kcs5pwdjTF7+AE5gIzAd8ADvAodlO66I+MYDR9qvS4EPgcOA7wJfi7H9YfY5eIFp9rk5sxR7LTAmatkPgEX260XA3fbrc4FnAQGOBV7PgWvvBHYCU3P1egMnA0cC7yd7jYFRwCb733L7dXkW4j4LcNmv746IuzJyu6hyVtnnIva5LchC3An9beR6zon8yeca+3ygxhizyRjjA5YBF2Q5pm7GmB3GmLft1y3AOmBiP7tcACwzxnQZYz4CarDOMVdcADxkv34IuDBi+e+MZSUwUkTGZyG+SKcDG40x/T3NnNXrbYx5BdgbI6ZErvHZwAvGmL3GmEbgBeCcTMdtjHneGBOw364EJvVXhh37CGPMSmNl0t+x/1zToo/r3Ze+/jZyOudEyufEPhHYGvG+jv4TZ9aISCVwBPC6vehG+2vrkvDXbXLrfAzwvIi8JSLX28sqjDE77Nc7gQr7dS7FHXYZ8EjE+1y/3mGJXuNcPIfPYtXAw6aJyGoReVlETrKXTcSKNSybcSfyt5GL1zumfE7seUFESoA/A182xuwDfgUcCMwFdgD/l73o+nSiMeZIYAHwRRE5OXKlXcvKyX6yIuIBPgE8Zi/Kh+vdSy5f476IyLeAAPCwvWgHMMUYcwTwFeAPIjIiW/HFkJd/G/HI58S+DZgc8X6SvSxniIgbK6k/bIx5HMAYs8sYEzTGhIBfs//rf86cjzFmm/3vbuAvWDHuCjex2P/utjfPmbhtC4C3jTG7ID+ud4REr3HOnIOILATOA660P5SwmzIa7NdvYbVPz7BjjGyuyUrcSfxt5Mz1Hkg+J/Y3gINFZJpdS7sMeCrLMXWz7/L/FlhnjPlxxPLI9ueLgPBd+qeAy0TEKyLTgIOxbjBllIgUi0hp+DXWjbH37fjCvS6uAZ60Xz8FXG333DgWaI5oTsiGy4lohsn16x0l0Wv8HHCWiJTbzQhn2csySkTOAf4L+IQxpj1i+VgRcdqvp2Nd40127PtE5Fj7/8nV7D/XTMad6N9GTuecHrJ993YwP1i9BT7Eqgl8K9vxRMV2ItZX6feAd+yfc4GlwL/t5U8B4yP2+ZZ9Lh+Q5l4C/cQ9Hetu/7vAmvB1BUYD/wA2AC8Co+zlAvzCjvvfwLwsXvNioAEoi1iWk9cb68NnB+DHaqu9LplrjNWmXWP/XJuluGuw2p7Df+eL7W0vsf+G3gHeBs6PKGceViLdCNyL/RR8huNO+G8jl3NO5I8OKaCUUkNMPjfFKKWUikETu1JKDTGa2JVSaojRxK6UUkOMJnallBpiNLErpdQQo4ldKaWGmP8Hj46b6Iz+R+UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu30lEQVR4nO3de3xU9Z3/8ddnJslMuCPwSxVQUJAWldWCt2oraFXsxVrXWtEqqK21v9W2brdb6cW1uz97X7f10kW3ota2UrQ3Smm1tlDr1gtSbyheIgYNKij3QGaSzHx+f8yZYZJMyCSZzCV5Px+PeXDO95zzPZ+ZDOcz3+8553vM3REREQEIlToAEREpH0oKIiKSoaQgIiIZSgoiIpKhpCAiIhlKCiIikqGkID1iZheY2f39VPcdZvb/+rB9k5kdXMiYRAYbJQXpxMxONLO/mdkOM9tqZv9rZkcDuPtP3f20MohxlZl9MrvM3Ye5+/pSxZSvXLGXCzNrMLP3lzoOKZ2qUgcg5cXMRgDLgc8AS4Ea4L1AvJRxSe+YWZW7t5U6DqkcailIR4cCuPvd7p5w92Z3v9/dnwYwswVm9lB6ZTNzM/u/ZvaSme0ys/8ws0OClsZOM1tqZjW5ts3afkrHIMxstJktN7O3zGxbMD0hWHYdqUR1U9BldFPHusxspJn9ONh+g5l91cxC2XGY2feCul8xszO6+kDMbKKZ/TKoa0vW/kJBvRvMbHOwv5HBsqiZ/SRYf7uZrTazuq5i77C/ScF7uczMXjezN8zsX7KWh8zsajN7Oah/qZnt12HbS83sVeDPOeofG3ye24OW4F+DOu8CDgR+G8T2r8H6xwV/z+1m9pSZzc6qa5WZfdPMHgv+3r9JxyIVyt310ivzAkYAW4A7gTOA0R2WLwAeypp34DfBdoeRalH8CTgYGAk8B8zPtW3W9lOC6TuA/xdMjwH+ERgCDAfuAX6dtd0q4JP7qOvHQVzDgUnAi8ClWXG0Ap8CwqRaRa8DluPzCANPAf8FDAWiwInBskuA+uC9DgN+CdwVLPs08Nsg/jAwExjRVewd9jkpeC93B/s8AngLeH+w/HPAI8AEIALcAtzdYdsfB9vW5qj/m8AioDp4vTf93oGG9H6C+fHB9+EDpH5EnhrMj8t6LxuBw4P9/QL4Sam/x3r1/qWWgrTj7juBE0kdWP4HeMvMlplZ3T42+46773T3Z4G1wP3uvt7ddwC/B47qRRxb3P0X7r7H3XcB1wEn5bOtmYWB84CF7r7L3RuA/wQuzFptg7v/j7snSCXA/YFc7/EY4ADgi+6+291j7p5u7VwAXB+81yZgIXCemVWRSjpjSCWphLuvCT7bnvh6sM9ngNuBeUH55cBX3L3R3ePAtcA5wX7Trg22bc5Rb2vwfg9y91Z3/6u7dzUI2ieAFe6+wt2T7v5H4HFSSSLtLndf6+67ga8B5wZ/A6lASgrSibuvc/cF7j6B1C/AA4Dv72OTTVnTzTnmh/U0BjMbYma3BF0zO4EHgVF5HmzGkvoFvCGrbAOpX71pb6Yn3H1PMJkrzomkEkiufvkDcuyjilRyuQu4D1gSdAF9x8yq84g922sd6j4gmD4I+FXQnbMdWAckaJ/Usrft6LukWjj3m9l6M7t6H+seBHwsva9gfyeSSipdxVlN6m8gFUhJQfbJ3Z8n1a1zeAGq202qOwUAM3vHPtb9AjANONbdRwDvS2+WDm0f275N6tfwQVllB5Lq5uip14ADO/wKT3s9xz7agE3BL/Cvu/t04D3Ah4CL8og928QOdb+eFdMZ7j4q6xV19+z31+U+gtbTF9z9YOBM4J/N7JQutnuNVEsge19D3f1b+4izldTfQCqQkoK0Y2bvNLMvZJ3UnUiq2+KRAlT/FHCYmR1pZlFS3R5dGU6qlbE9OHH5bx2WbyLVl99J0CW0FLjOzIab2UHAPwM/6UXMjwFvAN8ys6HBCeQTgmV3A1eZ2WQzGwZ8A/i5u7eZ2RwzOyJo2ewkdaBMdhd7B18LWkyHARcDPw/KFwXv7SAAMxtnZh/J9w2Z2YfMbIqZGbCDVCujq9h+AnzYzE43s3Dw/menvx+BT5jZdDMbAvw7cG/wN5AKpKQgHe0CjgUeNbPdpJLBWlK/3PvE3V8kddB4AHgJeGgfq38fqCX1i/MR4A8dlv+AVD/6NjO7Icf2V5JqmawP9vMzYHEvYk4AHwamAK8CjcDHg8WLSXUTPQi8AsSC/QK8A7iXVEJYB/wlWDef2NP+Qqqb50/A99w9fdPgD4BlpLp/dpH6fI7twduaSupv0AQ8DPzQ3VcGy74JfDXoKvoXd38N+AjwZVInu18Dvkj7Y8ddpFqTb5I6Ef/ZHsQiZSZ9xYGIlAkzm0QqyVR3cS6jbJjZKlJXG/2o1LFIYailICIiGUoKIiKSoe4jERHJUEtBREQyynJAvLFjx/qkSZN6vf3u3bsZOnRo4QIqAsVcHJUYM1Rm3Iq5eNJxr1mz5m13H9enyko9zkau18yZM70vVq5c2aftS0ExF0clxuxemXEr5uJJxw087hr7SERECkVJQUREMpQUREQkoyxPNOfS2tpKY2MjsVis23VHjhzJunXrihBV4fRHzNFolAkTJlBd3dPBOUVksKqYpNDY2Mjw4cOZNGkSqXG8urZr1y6GDx9epMgKo9AxuztbtmyhsbGRyZMnF6xeERnYKqb7KBaLMWbMmG4TgqSYGWPGjMmrZSUiklYxSQFQQughfV4i0lMVlRRERAaCvzfFWd0UL3UYOSkp9NANN9zAu971LsaPH88VV1xR6nBEpAId/cybHPfMm92vWAIVc6K5XPzwhz/kgQce4IEHHuDxxx8vdTgiIgWllkIPXH755axfv54zzjiDbdu2ZcobGho4+eSTmTFjBqeccgqvvvoqAAsWLODyyy9n1qxZHHrooSxfvhyAZ599lmOOOYYjjzySGTNm8NJLL5Xk/YiIdFSRLYW3bruB+Cv1XS5PJBLsCId7VGdk8hTGXbrvpwguWrSIP/zhD6xcuTJzgAe48sormT9/PvPnz2fx4sV89rOf5de//jWQShiPPfYYL7/8MnPmzKG+vp5Fixbxuc99jgsuuICWlhYSiQRtbWX9gC0RGSTUUiiAhx9+mPPPPx+ACy+8kIce2vvo4XPPPZdQKMTUqVM5+OCDef755zn++OP5xje+wbe//W02bNhAbW1tqUIXEWmnX1oKZjaU1EPHr3X35cH8D4EWYJW7/7Qv9Xf3i76cbl7reFmomXH++edz7LHH8rvf/Y4PfOAD3HLLLRx99NElilBEZK+8WgpmttjMNpvZ2g7lc83sBTOrN7OrsxZ9CViaNX82cK+7fwo4s89Rl5n3vOc9LFmyBICf/vSnvPe9780su+eee0gmk7z88susX7+eadOmsX79eg4++GA++9nP8pGPfISnn366VKGLiLSTb0vhDuAm4MfpAjMLAzcDpwKNwGozWwaMB54DolnbTwCeCaYTfQu5/Nx4441cfPHFfPe732XcuHHcfvvtmWUHHnggxxxzDDt37mTRokVEo1GWLl3KXXfdRXV1Ne94xzv48pe/XMLoRUT2yvsZzWY2CVju7ocH88eT6h46PZhfGKw6DBgKTAeagY8CFwDbgq6kJe5+Xo76LwMuA6irq5uZ/uWdNnLkSKZMmZJXrIlEgnAPTzT3h8svv5y5c+dy1llndbtuf8VcX1/Pjh07Cl4vQFNTE8OGDeuXuvtLJcYMlRm3Yu7aKZHUeGR/ir9SkPrScc+ZM2eNu8/qS119OacwHngta74RONbdrwAwswXA2+6eNLNfAjeZ2QeB3+aqzN1vBW4FmDVrls+ePbvd8nXr1uV9nqBczilUV1dTW1ubVyz9FXM0GuWoo44qeL0Aq1atouPfqdxVYsxQmXEr5n14eAMAJ510UkGGoylk3P12Saq735E1vRu4uL/2Va7uuOOOUocgImUslnRqw+U1RllfLkndCEzMmp8QlImISB6a4+U3/lFfksJqYKqZTTazGuA8YFlhwhIRGfiaW1pKHUIn+V6SejfwMDDNzBrN7FJ3bwOuAO4D1gFL3f3Z/gtVRGRgiZVhUsjrnIK7z+uifAWwoqARiYgMErGW1lKH0ImGuRARKZFmJQUpBA2eJzIwNLcqKVS0hoYG3vnOd7JgwQIOPfRQLrjgAh544AFOOOEEpk6dymOPPcbu3bu55JJLOOaYYzjqqKP4zW9+A6QuTz3rrLM49dRTmTRpEjfddBPXX389Rx11FMcddxxbt24F4Mknn+S4445jxowZfPSjH80M0T179mw+//nPM2vWLK677jomT55Ma/CF2rlzZ7t5EakMsTL8P1uRQ2df9cpWntrT9QmatrYEVVW7e1TnPwyp4b8m79ftevX19dxzzz0sXryYo48+mp/97Gc89NBDLFu2jG984xtMnz6dk08+mcWLF7N9+3aOOeYY3v/+9wOwdu1annjiCWKxGFOmTOHb3/42TzzxBFdddRV33303V199NRdddBE33ngjJ510Etdccw1f//rX+f73vw9AS0tL5sE+DQ0N/O53v+Oss85iyZIlnH322VRXV/foPYtIaVS3tdJaVU1zW/mN+qOWQg9NnjyZI444glAoxGGHHcYpp5yCmXHEEUfQ0NDA/fffz7e+9S2OPPJIZs+eTSwWyzx0Z86cOQwfPpxx48YxcuRIPvzhDwNwxBFH8Oqrr7Jjxw62b9/OSSedBMD8+fN58MEHM/v++Mc/npn+5Cc/mRlj6fbbb+fiiwfdvYEiFSuSSHUBx1rLryu4IlsK3f2i789hLiKRSGY6FApl5kOhEG1tbYTDYX7xi18wbdq0dts9+uij3W7bnaFDh2amTzjhBBoaGli1ahWJRILDDz+8T+9LRIqnJpn6/96cUEthwDv99NO58cYbSQ80+MQTT+S97ciRIxk9ejR//etfAbjrrrsyrYZcLrroIs4//3y1EkQqTKaloO6jge9rX/sara2tzJgxg8MOO4yvfe1rPdr+zjvv5Itf/CIzZszgySef5Jprruly3QsuuIBt27Yxb17O20hEpEzVJFPJIFaGLYWK7D4qlUmTJrF27d7nDGUPeJe97JZbbum07YIFC1iwYEFmvqGhod2yf/zHfwTgyCOP5JFHHum0/apVqzqVPfTQQ5xzzjmMGjWqZ29EREoqmkkKyRJH0pmSQoW68sor+f3vf8+KFbqhXKTSRDxICkklBSmQG2+8sdQhiEgv1XgqGcQS+T3krJgq6pxCvk+JkxR9XiLlKX3gjZfh/9GKSQrRaJQtW7boQJcnd2fLli1Eo9HuVxaRonlmdwuP7TcBSD1kp9xUTPfRhAkTaGxs5K233up23VgsVnEHw/6IORqNMmHChILWKSJ9c9q6TZnpWPnlhMpJCtXV1UyePDmvdVetWtVvzyXuL5UYs4j03ObWvSeX42WYFCqm+0hEpNJ17P6OUV7PZwYlBRGRkokrKYiISNqgaCmY2bvMbJGZ3Wtmn8kqH2pmj5vZhwq9TxGRStDxFELcKjQpmNliM9tsZms7lM81sxfMrN7MrgZw93XufjlwLnBC1upfApYWKnARkUoXs3CpQ+gk35bCHcDc7AIzCwM3A2cA04F5ZjY9WHYm8DtgRTB/KvAcsLkgUYuIDABxK78e/LwicvcHga0dio8B6t19vbu3AEuAjwTrL3P3M4ALgnVnA8cB5wOfMivDT0JEpJ917j4qv5aC5XuHsJlNApa7++HB/DnAXHf/ZDB/IXAscC9wNhABnnb3m7PqWAC87e7Lc9R/GXAZQF1d3cwlS5b0+k01NTUxbNiwXm9fCoq5OCoxZqjMuBVzZwngtMje+60m7NzCnZGdfa43HfecOXPWuPusPlXm7nm9gEnA2qz5c4AfZc1fCNyUb337es2cOdP7YuXKlX3avhQUc3FUYszulRm3Yu6sLZn00N8aMq/9//hUQepNxw087n08/valG2cjMDFrfkJQJiIieYiHy29Qib4khdXAVDObbGY1wHnAssKEJSIy8HQ6p1CpScHM7gYeBqaZWaOZXerubcAVwH3AOmCpuz/bf6GKiAws8XB12Y38nFeacvecDwF29xUEl52KiEjPJEMhWpNOTbh8bmLTpaEiIkWSq1HQ3BIvfiD7oKQgIlJCzS0tpQ6hHSUFEZESao4rKYiIDEq5TinHWlqLHse+KCmIiJRQs5KCiIikNbcpKYiIDErqPhIRkYxcN6rF2tpKEEnXlBREREqouTVR6hDaUVIQESmWXC2FhFoKIiKDUu7uI7UUREQGpVfjnVsFsUSyBJF0TUlBRKRIPt2wLTN9XDQ1CJ6SgojIIPee+HZWHDIKgFhS3UciIoNS+oDrQG2kBoBYoryep6CkICJSJKFEqlWQcKiuiRBOJoiV2UN2lBRERIok8WbqMfatTbswMyJtrcSSSgoiIoNSdXBPQiupk8yRRBux8soJSgoiIsVSFYx+1BZKHXprkm3Eyywp5PWM5p4ws7OADwIjgNvc/X4zOxC4AdgKvOju3yr0fkVEyl118G+rpZJCJJEg7uXzfGbIs6VgZovNbLOZre1QPtfMXjCzejO7GsDdf+3unwIuBz4erHoEcK+7XwIcVcD4RUQqRrqlkEgnhWQbsVIGlEO+3Ud3AHOzC8wsDNwMnAFMB+aZ2fSsVb4aLAd4BLjUzP4M/KEvAYuIVKqqoFGQ7j6KJBPEy6wX33KNxZFzRbNJwHJ3PzyYPx641t1PD+YXBqt+K3j90d0fCJb9C/CYuz9oZve6+zk56r8MuAygrq5u5pIlS3r9ppqamhg2bFivty8FxVwclRgzVGbcirmzH7wdY9n4d1G3ays/q9nBF3YY0WSC60b3LTGk454zZ84ad5/Vp8rcPa8XMAlYmzV/DvCjrPkLgZuAzwJrgEXA5cGyw4F7g7LvdbevmTNnel+sXLmyT9uXgmIujkqM2b0y41bMnS1Y8aCH/tbg4/74lLu7n7jsL37s8of6XG86buBxz/OY3tWr4Cea3f0GUieVs8vWBklERGTQSncfJUJhAKLuNFm4hBF11pc2y0ZgYtb8hKBMRERyeKR2PwBaw6nf4xGSxK28zin0JZrVwFQzm2xmNcB5wLLChCUiMvA8V5M6X3HE0NS4R1GcWKgCWwpmdjfwMDDNzBrN7FJ3bwOuAO4D1gFL3f3Z/gtVRGRg+MlBwwGI4MTDBe/F75O8onH3eV2UrwBWFDQiEZEBblQ4OKcAxEPllRTKqzNLRGQQMAvGPgpBS5m1FJQURESKLBROHXqjRtl1HykpiIgU2d6WQoi2cBVtyfJ5JKeSgohIkYWCYS6ioeA5zS0tpQynHSUFEZEiS7cU0kmhOR4vZTjtKCmIiBTZ3pZC6iqk5rhaCiIig1YouIu5tir1b3NraynDaUdJQUSkyCwcdB8F9yvEWpQUREQGLQtaCtGqoPtILQURkcErlD7RXKWWgojIoJc50VyVunGtua2tlOG0o6QgIlJEJzdtykwPqQ6SQquSgojIoHRkbEdmOlpdDUAskShVOJ0oKYiIFJFlTdemk0KbkoKIyKDyyy17ANhUFc2URWvSLQWNfSQiMqj8aPMuANZGR2TK0kkhru4jEZHBI+nOfdtjqemsDqTaSOqxnGopiIgMIs83770PIWFZSaEmAkBMQ2eLiAweL8X2XnKayGoVRGpSLYXmpBc9pq70yyN/zOws4IPACOA2d78/V1l/7FtEpNyc/cJbmenWrGGyQ6EQkbYW4uXTUMi/pWBmi81ss5mt7VA+18xeMLN6M7sawN1/7e6fAi4HPt5VmYjIYNMWsnbzkbY2Yl4+LYWedB/dAczNLjCzMHAzcAYwHZhnZtOzVvlqsJxuykREBqzqrDzQEmrfQRNJthIrn5yAeQ8ylJlNApa7++HB/PHAte5+ejC/MFj1W8Hrj+7+QLDMOpZ1qPsy4DKAurq6mUuWLOnte6KpqYlhw4b1evtSUMzFUYkxQ2XGrZj3+lD1gTQHD9QZu3sHP6/amll2UXwER+14k6v+z5Be15+Oe86cOWvcfVZfYu3rOYXxwGtZ843AscCVwPuBkWY2xd0XdVGW4e63ArcCzJo1y2fPnt3roFatWkVfti8FxVwclRgzVGbcinmvmr88T3NNLQBtoXC7fUT/sBqrHdKn/RYy7n450ezuNwA3dFcmIjIYVCX33pzWEjxYJy2STBDHOm5SMn29JHUjMDFrfkJQJiIigaqs+xBaO55T8CSxAZQUVgNTzWyymdUA5wHL+h6WiMjAUZPVUmitqm63LOIJ4lY+t4z15JLUu4GHgWlm1mhml7p7G3AFcB+wDljq7s/2T6giIpWp2vcmhepE+2cnRN3LKinkfU7B3ed1Ub4CWFGwiEREBpCWpLN++NjM/B2P3gsnfikzHyFJ3MK5Ni2J8klPIiID0Pp4+5bBrI+e224+ghMPKSmIiAwKHU8hW3X7DpqokoKIyODRKSl0KIkA8XC/3B3QK0oKIiL9qNPFpta+JGpKCiIig0anlkKHgohBPFxNuVBSEBHpR6EOl6B2aimEjJaqapJl8qAdJQURkX5U1dbabr7jOYXaYCjtWEtL0WLaFyUFEZFi6tRSSB2Gm1viudYuOiUFEZF+tLUt0b6gwzmFaDhICnG1FEREBrxPvNrUbr7jiedMUmhppRwoKYiI9KN1HR7AnGztMPZRMJR2XElBRGTwaWnrkBSqUkmhuVVJQURkQDvz+c2dylqi7R+7GQlaCjElBRGRge1325o7lY0fO6bdfG0wFlJzh26lUimfe6tFRAa4+NHjqapqP/hdbVWQFNrKIymopSAiUiQW6nzIjdakhriIdbx0tUSUFEREiiAEhDoOfATUVispiIgMOlunDsFyJIVMSyGhpCAiMmhYFw/Sqc0khfIYEK/gJ5rN7GDgK8BIdz8nKAsB/wGMAB539zsLvV8RkXKW63wCQG1NDbCnsloKZrbYzDab2doO5XPN7AUzqzezqwHcfb27X9qhio8AE4BWoLEQgYuIVBILd5EUIhEAYkkvZjhdyrf76A5gbnaBmYWBm4EzgOnAPDOb3sX204C/ufs/A5/pXagiIpUr1EX3UbSmBoDmMkkKeXUfufuDZjapQ/ExQL27rwcwsyWkWgTP5aiiEUgPAZizjWRmlwGXAdTV1bFq1ap8QsupqampT9uXgmIujkqMGSozbsUMRCZnJv/68N+orsr9hLXq8AQ2b9/R630XNG53z+sFTALWZs2fA/woa/5C4CZgDLAIeBlYGCwbAtwG3Aj8U3f7mjlzpvfFypUr+7R9KSjm4qjEmN0rM+7BHnNbMumhvzVkXvFYrMt1R6xc55/57QO93lc6blLnbPM+rud6FfxEs7tvAS7vULYH6HieQURkwLp6w/b2BV20EgAiiTZi5dF71KdLUjcCE7PmJwRlIiKD3vVv7Gw3X9PFiWaAmmQbMe98D0Mp9CUprAammtlkM6sBzgOWFSYsEZHBI5JMUB4P48z/ktS7gYeBaWbWaGaXunsbcAVwH7AOWOruz/ZfqCIiA1MkmSBWJvcS53v10bwuylcAKwoakYjIAPPUP+y/z+VRTxDPMQRGKZRHahIRGaBG79nJ4UNq9rlOJJksm5ZCeUQhIjJAJa37w2yEJPE81iuG8ohCRGQAeXp3S2a6NZz7TuZsUU8S7+KO52JTUhARKbBbNu3KTDdXR7pdP4KXTVLQ4zhFRApkdyLJ6y0JQuw9aVyVx+inUSUFEZGBZ8Rjr3UqG9ra/R0IESAeKo/DsbqPRET6UUs+5xQsv/WKQUlBRKQftebRAogaxMNdj41UTEoKIiL9qHUfA+GlRUJGPFxNMln6R3IqKYiIFMBvt+7p9bbRkJEMhWhtbel+5X6mpCAiUgDz69/OWf5v44d3u200nLpaqTmupCAiMiCEuxi76JoD9+t222hwOaqSgojIALG1rffnA6LBsxaa1X0kIiLppBCLt5Y4EiUFEZGSi1YF3UetSgoiIhXvzZbcQ1kM9+6HuACIhlP3MsSUFEREKt/4NY05y39/xPi8tq+tTrUU9rS2FSym3lJSEBHpJ8cP736EVIDaqqCl0DYAk4KZHWxmt5nZvVllQ83sTjP7HzO7oND7FBEpFXfvcx3RmtRdz/FKSQpmttjMNpvZ2g7lc83sBTOrN7OrAdx9vbtf2qGKs4F73f1TwJkFiVxEpMR+s3UP7127qc/11FankkKsLb9zEP0p35bCHcDc7AIzCwM3A2cA04F5Zja9i+0nAOkxZUv/rkVECuDsF97i4abuh8buTrql0Jwo/dhHlm/Tx8wmAcvd/fBg/njgWnc/PZhfCODu3wzm73X3c4LpC4Ft7r7czJa4+3k56r8MuAygrq5u5pIlS3r9ppqamhg2bFivty8FxVwclRgzVGbcgyHmUyKTO5Wd+MrTPDR5BgB/ir+SVz1b9jRz7ujpLHxlNe8/YGze+09Lxz1nzpw17j6rxxVk6ctTHcaz99c/QCNwrJmNAa4DjjKzhUGS+CVwk5l9EPhtrsrc/VbgVoBZs2b57Nmzex3YqlWr6Mv2paCYi6MSY4bKjHugx9wYb4O/b+xUXjt8BAvHj2BipIrZdQflVdemHTvgue2MHDeO2bNP6knIQGE/64I/6sfdtwCXdyjbDVxc6H2JiJTCnZubuOTlLTmXXfx2PR8/sGcH9tqaGgBiZdB91JerjzYCE7PmJwRlIiIDWlcJYc6uNznn3HN7XF9tJHXpaqwAVzL1VV+SwmpgqplNNrMa4DxgWWHCEhGpPL84+WjCQ7sfKruj6lCIcDJBLFkhScHM7gYeBqaZWaOZXerubcAVwH3AOmCpuz/bf6GKiJS3kVW9/50daWslVvqckN85BXef10X5CmBFQSMSERmEIsk24qU/paBhLkREemLtnv555kEk0UasX2ruGSUFEZEe2NLaPz/nI8kEcXI/va2YlBRERHog3k9XCEWSCeJlcE5BSUFEpAe+2LCtX+qNJBPErfSH5NJHICJSQdY298+DcCKeJFYGh+TSRyAiIkQ9qZaCiEgl+Y/Xtreb/9jWBgBu2rOBxPH5jXPUlQhJ4qHSH5ILPvaRiMhAFH54Q6eyKKkzw/Fk369IiuDEQuE+19NXpU9LIiJl7l8atuYsjwQPx4lXVfd5HxGcuJKCiEj5cnfmv/Q2//XGrpzLZxx2GAAHHXZEn/cVBeKh0nfelD4CEZEydcnLW/jJ27tzLqufOoKDxozkkCERTh8V7fO+IgbxcOkPyaWPQESkTP34rdwJAWBcbQ0hM+aOri3IvqIGLeG+d0P1lbqPRERymPh44z6Xhwrc/x8NpVoK+T4iub8oKYiIdPCFhq283prY5zpWXdhf9VEz2sJVtLbEC1pvTykpiIh08P0uTixni4YLe/hM1xdr6Z9RWPOlpCAiEthGKOf9CB19ffwIzAo7omk0uHEtFldSEBEpC+dE8rsr+asHji74vtMthWa1FERESu/J3fs+GH9l/EgAvnngqH7ZfzScOnEda+mfAffypUtSRWTQ2pNI8m+v7eDkkVE+9PzmLtcbETL+/cBR/Hs/JQSAaFUIHJpbB0lLwcyGmtnjZvahYu1TRGRfRq9+jevf2LnPhFCdTLDt2AP7PZba4Ma15pa2ft/XvvQ6KZjZYjPbbGZrO5TPNbMXzKzezK7OWvQlYGlv9yci0lPuTizZ9XX/bXncEjCH5gJG1LVodar7qLmtQpMCcAcwN7vAzMLAzcAZwHRgnplNN7NTgeeArtOxiEiB3fTmLoY++ipvBL++n97dQvjhDZlXPhYecUh/hpgRrUq1FGKtpU0K1pe758xsErDc3Q8P5o8HrnX304P5hcGqw4ChpBJFM/BRd092qOsy4DKAurq6mUuWLOl1XE1NTQwbNqzX25eCYi6OSowZKjPucoj51JpJJM0Y6glubn2dBTUTe7T9n+Kv9FNknb20fReX183gu6+u5t11Y3u0bfqznjNnzhp3n9WXOAp9onk88FrWfCNwrLtfAWBmC4C3OyYEAHe/FbgVYNasWT579uxeB7Fq1Sr6sn0pKObiqMSYoTLjLnbMm1oSTH1iI0PDxvljh/Kfk/YjGbQGdls474Rw7lMrOfOcj/HuoTVMq+3bg3N6Yvj6DbAJ6sZPYPaJx/Vo20J+1kW9+sjd7yjm/kRk8Jj25EZ2J53dSef7b+zK667kXL576glMGDu0wNF1r7amGmglltj38Br9rdBXH20EstPxhKBMRKRf3PDGTt7zzBvsSvR9ILlfxTcw4ZCpBYiq56I1qbGUYm19f4pbXxS6pbAamGpmk0klg/OA8wu8DxEZoNyd2zY3UVcdZnK0isOH1HRaJ+HOk7tbOLS2muHhEFc1bCvIvhdG44yIl+6AXBupAfYQS5a2pdDrpGBmdwOzgbFm1gj8m7vfZmZXAPcBYWCxuz9bkEhFZMBbsb2ZT6/f++jLxPGd+/RnP7uJv+1KjSRaf9QBBdv36aOGkNhRsOp6rLYmlQDjiQptKbj7vC7KVwAreh2RiAxoDbE22tyZUpvqLtmTSPK5hm2cO2YIX+zwq/+VWCuTo9X8bVeM967d1KmuKU+8nnMfL3znQgB2RoZw9Odu6TKW/zxwFF94dTsAh4x/By9uqO/NWyqI2poIwD7vqygGDXMhIkV1yBOp04xPztifI59+I1O+eHNTp3WnPvE6+1WF2JJHP/vI5iZ21La/BHZEfA+rf/BpttywhLkvp5oB246eyNCw0eoQDRmX1A0ngTO6KsyLfXljfVQTMsyTSgoi0r8S7izcsJ2aECwcP5J7tuzhF1v2cNuUMTywPca8sUMKPgx0PrITQlc+UzccgPXxVv6wPbbPda/66z1ce9rFAEz+8XJC0ShUZT0I5+UdXD9pNCOqUtfXhIO3nJ4vNTMj0tZGrLQ5QUlhIPnZW7u5sP7tTuXfOWgU/7phe6fyz9QN48QRUc4bO5TfbN3D2S+8lfe+jh5aw3VA0h0H0oeUkBnb2hKMXZ37UYbDw9bpKpGtR09kSMioMkh2qOtXW/Zwzou545oSraI+tvfuzwOqw9S/ezwhUvVUWWoYg2Rwg6YDcYzmoM+2JmQkHRJAtbXfb9KdkBkJd8JmmeESkpCZ92BddycSSv3yJKgrmwX7Ttfd5k5rh7rSwmaEDNxT7yG7ruz34ey9dLDFUydow2YYqYNdm5OZvmVTE//5xk4AvrlxZ6a+/YPHTV5YD385rI53D60h7p7527181Hj+T3WIJDDysezbjzp7beZ4RnV46EwMY0/wWQ/vZvuO/rzo84zfuSX1mYwZh5nR9vbeARE+9olrefqA9ncan9Cwd8Sd8PARnerMdX6i3EQSrUoKUhjf3riDLwd9ox3lSggA/72pif/e1MQFL3VOJN1ZvbuF0yKT4ZFXe7RdrssG91vdswNGWnZCAHi9NcGQR7uJJzIJeniAKgu9+Kx74qRnO/fXp7t58jFxTY51u/ms135vAeaO4ThGyB03CLmTnVeH/MPRAOz6895TlQdu38TTBxxCOJkgEQrTNBFqb7+X0l6303eRZBtxJYXK9aX6TXzvra6btJcMcd43djgXjh/T77F0lRBE0syT1O3axpsjOn8fv/L601jQnrl97BQ21gxtV/bgsDoeHPGOdtsc2ryDF2tTzxj46utPdapz585djBiR6v759agDWTtk74NpvvfbH1Ld7tJLb/fPIUsfwKrbX45ad+Xe8TV/mkjy5x0xjh8e4cndLdSOqs3jEyh/kUSCGMXvysumpNANd6c+1pbzF8i+EgLAj3clWLb1TY7eb29TdmNLG6c9t5mZQ2tYs7uFNTP2Jxoy/is0mlPyHKBLesc8iVt59B+XwvPfnZ+z3KK1hGr3HlQX5FgnV1l3WuIt1ERqMtt7axvJpr3dV1N+9WAvak0ZFg5x5n5DADh1gCQEgBpPEFdSKG/Xr36Gf02M7NW281/5O7dNOYbDnux82dya4ClPM9Mn26pH9TbEdtKX4klnoaHDSO7ufIXLYNGXg3BvVOJ4TaUWSaqlUFDxeAsfuP8RWlvbqP5tYf4D1EeGM7Smme82/r3Tso2vrOd/Jx9OpK2V9zSs5dC3Gnlp3AR2RWo5bsNzzDp/Pv9w3/+QyPojezzOUwccwtS3G3ll9P4ctvV1LGQkW+J84cP/1GkfI2K7CSWTbB8ynPHb3+L1kWNwC7Hf7p1sHdr+ZNq9P76mqP/xK/E/fSXGDJUbt/RMxJPES9yaHVBJwXG2hapIVhmhULggdY5pbeas1m18+hPdjdbxsZyl//S+U/Laz6pVq/K4OqKb5cffmde+RKQ8RT1JTEmhcKKRCH//4HuCX1XvLXU4IiI9EvEk20qcFAbvWTcRkTJTW1NNayRa0hgGVEtBRKSSnXL4dBpbSvs4TiUFEZEycdUBne/ELjZ1H4mISIaSgoiIZCgpiIhIhpKCiIhkKCmIiEiGkoKIiGQoKYiISIaSgoiIZFj2owDLhZm9BfTl4QJjgZ4/Tqy0FHNxVGLMUJlxK+biScd9kLuP60tFZZkU+srMHnf3WaWOoycUc3FUYsxQmXEr5uIpZNzqPhIRkQwlBRERyRioSeHWUgfQC4q5OCoxZqjMuBVz8RQs7gF5TkFERHpnoLYURESkF5QUREQkY0AlBTOba2YvmFm9mV1dBvEsNrPNZrY2q2w/M/ujmb0U/Ds6KDczuyGI/Wkze3fWNvOD9V8ys/n9GO9EM1tpZs+Z2bNm9rlyjznYV9TMHjOzp4K4vx6UTzazR4P4fm5mNUF5JJivD5ZPyqprYVD+gpmd3p9xB/sLm9kTZra8EmI2swYze8bMnjSzx4Oycv9+jDKze83seTNbZ2bHV0DM04LPOP3aaWafL0rc7j4gXkAYeBk4GKgBngKmlzim9wHvBtZmlX0HuDqYvhr4djD9AeD3gAHHAY8G5fsB64N/RwfTo/sp3v2BdwfTw4EXgenlHHOwPwOGBdPVwKNBPEuB84LyRcBngun/CywKps8Dfh5MTw++NxFgcvB9Cvfzd+SfgZ8By4P5so4ZaADGdigr9+/HncAng+kaYFS5x9wh/jDwJnBQMeLu9zdUrBdwPHBf1vxCYGEZxDWJ9knhBWD/YHp/4IVg+hZgXsf1gHnALVnl7dbr59h/A5xaYTEPAf4OHEvqDs+qjt8P4D7g+GC6KljPOn5nstfrp1gnAH8CTgaWBzGUe8wNdE4KZfv9AEYCrxBcVFMJMed4D6cB/1usuAdS99F44LWs+cagrNzUufsbwfSbQF0w3VX8JXlfQffEUaR+dZd9zEE3zJPAZuCPpH4xb3f39FPQs2PIxBcs3wGMKUHc3wf+FUgG82MqIGYH7jezNWZ2WVBWzt+PycBbwO1BN92PzGxomcfc0XnA3cF0v8c9kJJCxfFU6i67a4LNbBjwC+Dz7r4ze1m5xuzuCXc/ktSv72OAd5Y2on0zsw8Bm919Talj6aET3f3dwBnAP5nZ+7IXluH3o4pUF+5/u/tRwG5S3S4ZZRhzRnBO6Uzgno7L+ivugZQUNgITs+YnBGXlZpOZ7Q8Q/Ls5KO8q/qK+LzOrJpUQfuruv6yEmLO5+3ZgJamul1FmVpUjhkx8wfKRwBaKG/cJwJlm1gAsIdWF9IMyjxl33xj8uxn4FakEXM7fj0ag0d0fDebvJZUkyjnmbGcAf3f3TcF8v8c9kJLCamBqcPVGDakm17ISx5TLMiB9BcB8Uv326fKLgqsIjgN2BM3E+4DTzGx0cKXBaUFZwZmZAbcB69z9+kqIOYh7nJmNCqZrSZ0HWUcqOZzTRdzp93MO8OfgV9cy4LzgSp/JwFTgsf6I2d0XuvsEd59E6rv6Z3e/oJxjNrOhZjY8PU3q77qWMv5+uPubwGtmNi0oOgV4rpxj7mAee7uO0vH1b9zFOFFSrBepM/AvkupP/koZxHM38AbQSuoXy6Wk+oH/BLwEPADsF6xrwM1B7M8As7LquQSoD14X92O8J5Jqjj4NPBm8PlDOMQf7mgE8EcS9FrgmKD+Y1AGynlTzOxKUR4P5+mD5wVl1fSV4Py8AZxTpezKbvVcflW3MQWxPBa9n0//HKuD7cSTwePD9+DWpq3DKOuZgf0NJtQZHZpX1e9wa5kJERDIGUveRiIj0kZKCiIhkKCmIiEiGkoKIiGQoKYiISIaSgoiIZCgpiIhIxv8H6MX52mazJMYAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] @@ -195,21 +195,21 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:55.163886Z", - "start_time": "2020-10-09T08:43:43.328433Z" + "end_time": "2020-10-09T12:10:36.332087Z", + "start_time": "2020-10-09T12:10:35.674274Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([-0.12775195-9.88792381e-17j])" + "array([-0.12891499-1.05818132e-16j])" ] }, - "execution_count": 7, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -302,11 +302,11 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:44:02.971407Z", - "start_time": "2020-10-09T08:44:02.955376Z" + "end_time": "2020-10-09T12:13:28.382777Z", + "start_time": "2020-10-09T12:13:28.368511Z" } }, "outputs": [], @@ -348,11 +348,11 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:44:03.983319Z", - "start_time": "2020-10-09T08:44:03.975236Z" + "end_time": "2020-10-09T12:13:30.576497Z", + "start_time": "2020-10-09T12:13:30.563939Z" } }, "outputs": [], @@ -371,11 +371,11 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:44:04.561252Z", - "start_time": "2020-10-09T08:44:04.558485Z" + "end_time": "2020-10-09T12:13:31.415936Z", + "start_time": "2020-10-09T12:13:31.412602Z" } }, "outputs": [], @@ -386,18 +386,19 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:45:09.179457Z", - "start_time": "2020-10-09T08:44:05.720927Z" - } + "end_time": "2020-10-09T12:14:23.221292Z", + "start_time": "2020-10-09T12:13:32.209570Z" + }, + "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "93335ee93c0448f19428fd3c69ebf886", + "model_id": "a2880f9d929c4256a869fe9aebb2b159", "version_major": 2, "version_minor": 0 }, @@ -409,23 +410,102 @@ "output_type": "display_data" }, { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ + "ERROR:root:Internal Python error in the inspect module.\n", + "Below is the traceback from this internal error.\n", + "\n", + "INFO:root:\n", + "Unfortunately, your original traceback can not be constructed.\n", "\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAAEiCAYAAAB3HQTBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLJElEQVR4nOydd5gb1dX/P0d9td27695xwxhjML33nl5IBULKj4T0kAIpJKRAEkJIwvuShBDS3gRIAgkJEGyqIYAxNjZgwNi4rb3N25v63N8fM6PVylskrbTSau/nefTYmh3N3KsyZ84933OOKKXQaDQajUaj0Wg0mlziyPcANBqNRqPRaDQaTfGjHQ+NRqPRaDQajUaTc7TjodFoNBqNRqPRaHKOdjw0Go1Go9FoNBpNztGOh0aj0Wg0Go1Go8k52vHQaDQajUaj0Wg0OUc7HhqNRqPRaDQajSbnaMdDo9FoNBqNRqPR5BzteGg0Go1Go9FoNJqcox0PjUYzrojIMSLyjIj0iYgSkVUi8m0RUfkem0aj0Wg0mtzhyvcANBrN5EFE3MBfgSDwBaAf2JPXQWk0Go1GoxkXtOOh0WjGk0OAecDHlVK/sTeKSP5GpNFoNBqNZlzQUitNwSIipfkegybrTLX+7cznIDQazcRE2wWNZmKjHQ9N2ojIuy1t/mlD/O3/WX9bYT1fKSK/E5GdIhIUkSYR+a2I1CS97tvW65aLyJ9FpAN42vrbbhH5t4icLCLPW8fZKSKXJh1jiojcJCIvi0iviHSLyEMickTSfqdb53qviFwnIvtFpEdE/iYilSLiFZFbRKTFOs6dIuIdYq4fEpGNIhIQkXYRuUtE5mThLU4ZEXFbc9huvS9tIvK0iJyTsM8TIvLEEK/9nYjsTng+33pfrhaRq6z3uF9E1ojIHDH5pojss+b8TxGZksZYfwc8aT39q3Wug8aVsL/LOt+bIhKyvgc/SP4sEr4f54rIZut9eFVE3pnue6XRaDJD24X4cQrBLlxuzeVkEfm5iBwQkU4R+ZWIeESkSkT+ICId1uNHIoPDzpYdeMa6TgasOb07aZ+PWOe5Imn7tdb2C9MY8xMi8or13XjSsj077HOKyGkist4ayzYROXuIY8yyvkfNls3YOsTYsvI5azJHS600mfAA0Au8l4EbSZtLgK1KqVes5+cAC4E7gSbgMOATwGEicrxSKjmh+K/AduBaIPFCuAj4G3AH8HvgCuB3IrJRKbXV2mch8HbrGLuAacD/A54UkeVKqYakc10DBIAbreN/BogABlANfBs4HrjcOt719gtF5OvAd4F7gN8Addbr14nIkUqpzqHeOOu1bqByuL8n0a6UMkb4+7etefwGeB6oAI4GjgLWpniOZD4IeIBfAFOAr2DO8zHgdOCHDLxfN2F+FqnwK2A/5mf7c2AD0DzC/r8BLsP83H8CHIc510OBdyTtuxi4G/gl5vfjI5jOzflKKft9+DbZf680Go2JtguFYxdsfoH5/l5njfkTmNHmE4G9mO/nhcCXgVeAPyS89nPA/cD/YdqD92FeUy9WSj0AoJS6U8wFnptFZK1Sql5EDrfOd4dS6sEU52NTDfwbuAvz8/okcJeIfBC4BfP6/mdrvH8TkTlKqR4AEZkGPAco4FbgAHABcIeIVCilbkk6V8afs2aMKKX0Qz/SfmD++JsBZ8K26UAM+GbCtpIhXvs+zIvDKQnbvm1t+/MQ++8eYv86zATlmxK2eQFH0mvnW/sljul063gvA+6kORnAg0nHeAbYnfB8HhAFrk3abwXmheva5Dkk7WefP5XH/FGOtRn49yj7PAE8McT23yXNa751zhagMmH7D6ztmwFX0vsVArxpfG/sub87afu3zctR/PkR1n63J+33Y2v7GUN8P96ZsK0CaAA2pfNe6Yd+6EfmD7RdKBS7cLm1338ASRqzAdyWsM0J1JNkI5I/I8BtvTePJm2fDrQBazAdlE2YBUMq0vzuPGGN+f0J25Za22LAcQnbz7W2X56w7TfWNb8m6bh/wXS2SrLxOevH2B9aaqXJlLsx9fqnJ2x7N6Z87257g1IqYP9fRHwiUou5KgHmSnMyvxzmfK8qpZ5KOO4BYBvmapa9LaSsVSARcVph+15rv6HO9QelVCTh+XrM1bTfJu23HpgjInaE8J3WPO8RkVr7gbmytB04Y5g52GzBXPFL5dE0yrE6MVcJF4+yXzr8VSnVlfB8vfXvn5RS0aTtHmBWFs9tY4fob07a/hPr34uStjcA99lPlFLdmKt3R4rIdGtzJ9l/rzQazQDaLhSGXbC5Q1l3z0lzucPeoJSKAS+Q8J5Z2xM/o2rMaMxTJL1nSqkm4CprXE8Bq4ArrGtwuvRiRjvsY2/DvG6/ppRan7Cf/f+F1vgEeBfwL+tp4vv/sDX25M86089ZM0b0G6nJlP8AXZgh9EetbZcAm5VSb9g7iZkDcB3matbUpGMMFVbeNcz59g6xrQMzJGqfy4EZHv4UsABzJcemLYVj2jfb9UNsd1jjbcOU9QimMRmKyDDbAVBKdQCPjLRPGnwL+Cfwhoi8gvm5/FEp9dIYjpnO+wIJn0EWmYe5+rQjcaNSqklEOq2/J7IjycAC2N/D+ZiGOhfvlUajGUDbhcKwCzbpzGXQdVxELga+gelIJOY4JF9nUUrdJSIfwlwQ+rVS6tHkfVJk3xDX8a7k8SqluqyUFHvMdUAVppTsE8McO/l7lunnrBkj2vHQZIRSKiQi/wDeISKfwtTNnoSpGU3kHkw96Y8xpS69mD/i/zB0cYPAENvADLUORaLe91pMfe1vgW8C7Zg3r7cMc67hjjnauRyYF98Lhtm3d5jXmwcR8WDmTqTCAWtFakiUUutE5BDgbZjh548BXxCRK9VAuVrF4PfJxjnENsj8fckFBxm5jA+U2nul0WgyRNuFwrALCaQzl/h7JiKnYOZ3rMN02BoxHaePAB846IVmFOlo6+lyEXGo1HJQxjLexDHbn+OfMHN9hiJ5gamQ7NykQjsemrFwN2by71mYCb9CQjjdCs+eBVynlEpMwMuV1OXdwONKqY8mbhSRKqA1i+d5E3OuuxJX8dLgRODxFPddgKllHhalVDtmkuadIlKGaSy+jal5BXMFcOEQL02OGhQSezCNyWLgNXujlUBYxcFNBxeJiCStli2x/t1tb0jhvdJoNGND24UCsAtj5F2YOTDnKaVC9kYR+cgw+/8PUI6ZsH0D8HkOlsnmkgNAD2ZuUbajRposox0PzVh4BHP16BJMA/O8UioxJG6vHCSvFHw+R+OJJZ9LRN6DmYOwY8hXZMa9mBfX60TkQ4k3u5bWdIpSaqSQrK3lTYURtbwiUpN4LqVUr4jsABLLN74JXCgidZYGGjFLSZ7EwWHlQuFBzKT2z2NWoLH5ovXvA0n7z8SsdHUvgIhUAJdiSjyarG2pvFcajWZsaLuQZ7uQBWKY0Zt4VFxE5mNWBxuEmOVuLwE+q5T6hWVbvici/87QAUsbpVRMRP4OfEBEVqiB6mn2GOO2T5N/tOOhyRilVERE7sXU6ZYCVyf9vVtE1gFfsUoF7seUuCzI0ZD+DXxLRO7ErERxOGZp2J3ZPIlS6k0R+QamkZlvSQt6MOf1DuDXmGVmh3t9NrW8r4rZC2MjprE/GnOF79aEfX6LecP+sIjcgal1vRLYiln9qeBQSm0Rkd8Dn7BWJp8EjsVcSf2HUip5ZfANzLKJx2BW1bkCU+aRuEKXynul0WjGgLYLBWEXxsoDmDbjPyLyZ0ybcRWmo7bS3klEpgK3YUZq7OvopzET6X8nIidnKLnKhK9Z510vIrcDr2JK144CziZ1GZsmx2jHQzNW7sbUyitM3W4yH8CsJX4V5qrTGkwNbHLt9GzwA0xD9wHMFZhNmMluN2b7REqpG0XkDeALmEmSYEYP1mBqY8eLnwNvxTTcXkwJ0jcwtdP2WF8Ts6nW9Zjh71eBD2O+T6eP41jT5WOYNweXYxruJkyj/p0h9t2OWYf9x5glGHcBlyilHk7YZ9T3SqPRZAVtF/JrF8aEUuoxEfko5s38LZjX069iFupYmbDrbZjX0o/YER6lVJuIfAKzkMfVwI/GaczNInIsZhGRd2LmprRhLrB9dTzGoEkNObiAgEaj0UwcxOy+/opS6uJ8j0Wj0Wg0Gs3w6D4eGo1Go9FoNBqNJudoqZVGoxkzVoWoslF2S7UEpEaj0WiKAKtni2eEXWI68XtyoR0PjUaTDa5mQNM8HLkuAanRaDSawuJe4LQR/r4HM3dEM0nQOR4ajWbMiMhChu4VksjTSqngeIxHo9FoNPlHRFaT1BU9iYBS6r/jNR5N/tGOh0aj0Wg0Go1Go8k5Orlco9FoNBqNRqPR5Byd4zEMVqfRmZgNgDQajWYyUg40KB0aH4S2DxqNRgNkYCO04zE8M4F9+R6ERqPR5JnZmN2lNQNo+6DRaDQmadkI7XgMTw9AfX09FRUVab0wEomwZs0azj33XNxud04GNx7oeRQexTIXPY/CI3ku3d3dzJkzB/Sq/lBo+1Ak84DimYueR+FRLHMZah6Z2gjteIxCRUVFRobF7/dTUVEx4b9oeh6FRbHMRc+j8CimuYwX2j5M/HlA8cxFz6PwKJa5ZHMeOrlco9FoNBqNRqPR5BzteGg0Go1Go9FoNJqcox0PjUaj0Wg0Go1Gk3N0jodGkwaxWIxIJJK380ciEVwuF8FgkFgsltVju91unE5nVo+p0Wg0kwXDMAiHw3k7fy7tA4DH48Hh0OvVmrGhHQ+NJgWUUjQ1NdHZ2Zn3cUyfPp36+nrMVgLZpaqqiunTp+fk2BqNRlOshMNhdu3ahWEYeRtDru2Dw+FgwYIFeDyerB9bM3nQjodGkwK20zF16lT8fn/ebswNw6C3t5eysrKsrjwppejv76elpQWAGTNmZO3YGuiMGqztCvCWaj8+h3bqNJpiQilFY2MjTqeTOXPm5C0qkCv7YB+7oaGBxsZG5s6dqxensswjnQFmeVwc6p+4la9SRTseGs0oxGKxuNNRU1OT17HYoXyfz5d1w1JSUgJAS0sLU6dO1bKrLPL9fV3c3NjNz+dXc9WM9MqvajSawiYajdLf38/MmTPx+/15G0cu7QNAXV0dDQ0NRKPRCV0attDYFYxw3mstLPK52HbkrHwPJ+dosZ5GMwp2Tkc+Dcp4Yc8xn3ksxchrAfP93BaM5nkkGo0m29j5FMUuQbLnl4v8kcnM6wHTLrwZjBIxVJ5Hk3u046HRpMhkCC1Phjnmg4awaVgaw9pgazTFSrFfP4t9fvlir2UfFNAYKX4boR0PjUajyTH7LIdDOx4ajUajSaQ+NBAJ3z8JbIR2PDQajSaHBA1FW9SsdNMY0VIrjUaj0QxQHxpwNvaHi99GaMdDoylibrvtNlauXElFRQUVFRWccMIJPPTQQ/ke1qSiIcGQNIRjKFX8Gt5CQkTuE5EOEflbwrYqEXlBRDaLyCsi8vF8jlGjyQfaPhQG9Uk2otjRjodGU8TMnj2bG2+8kY0bN/LCCy9w5pln8ra3vY2tW7fme2iThn0JhiSsoCOavzr/k5SfAZcmbesBTlVKrQKOA64VkfyWrNNoxhltHwqDvYMiHsXveOhyuhpNEfOWt7xl0PPvf//73HbbbTz33HMcdthheRrV5CLZkDREYkxx61LF44VS6gkROT1pWwzot556AbEeGs2kQduH/GMoxb5wYo5H8UuttOOh0WSAUgoVCo77eQ3DyFiqE4vF+Otf/0pfXx8nnHBClkemGY6GJEPSGI6xovgrM2cFETkV+DKwGpgBvEMp9Y+kfa6y9pkObAE+o5R6PoVjVwFPAouBLyulWrM6eM2kRdsHTao0R2JEEj6yySC10o6HRpMBKhRk5/vPy8u5a355T1r7v/zyy5xwwgkEg0HKysq47777WL58eY5Gp0lmXygp4jEJDEsWKcV0Jn4L3Jv8RxG5BLgZuBJYD3weeFhEliqlWkY6sFKqEzhCRKYB94rI35RSzdkdvmYyou2DJlX2JtkHLbXSaDQTnqVLl7J582a6urr429/+xmWXXcaTTz6pjcs4kWxImiZBnfZsoZR6CHgIhu0h8EXgdqXUndY+VwIXAVcAN6Z4jmYR2QKcAvxtqH1ExIspybIpB7PRZrrNNu39J3qTzmKZB4x9LpFIBKUUhmHEH/nEHksqLF68mE2bNtHV1cXf//53LrvsMh5//PEh7YMdUYlEIjiduZOLTqbv1u7+EABTXQ5aogb7wzHC4XDB9UwZah6Zfj7a8dBoMkC8Phb+5eFxP69hGPSEwmm9xuPxsGjRIgBWr17Nhg0b+NnPfsavfvWrXAxRk4Qd4Vjsc7E9GNURjywhIh5MCdYN9jallCEijwAjakWsKEe/UqpHRCqBU4HbRnjJNcB1yRvXrFmD35+Zbm7t2rUZva7QKJZ5QOZzcblcTJ8+nd7eXsLhMEqptCMPWcPjpaenJ62XTJ06lalTp/K1r32N5557jptuuolbbrnloP3C4TCBQIB169YRjeY+F2EyfLfWlNRB+Szm9XXQ4q0kYCj++p81lKnCtBOJ8+jv7x9hz+HRjodGkwEigvhKxv/EhoGEx7YKZBgGoVAoSwPSjIadOHh0mYftwahuIpg9agEnkCyPagaW2U8sR+QIoFRE9gHvAWLAr8VcVhTgF0qpl0c41w2Yki6bcmDfueeeS0VFRVqDjkQirF27lnPOOQe3253WawuJYpkHjH0uwWCQ+vp6ysrK8Pl8ORhhaiil6Onpoby8POMVc4fDgVJqyO91MBikpKSEU089NafznEzfrcf3dkFLH6fMncmO1n46YorDTj+Tw0oKa95DzaO7uzujY2nHQ6MpYq655houuOAC5s6dS09PD3/+85954oknePjh8Y/WTEYMpWi0pFXHlHn5S2t//LlmfFBKnT3Mn1alcYwQEPfW7Zs6t9ud8Y3RWF5bSBTLPCDzucRiMUQEh8OBw5G/LgW2vMoey2iMZB+Ger3D4UBExu0znwzfrX1RM7N8fomHWZ4wHYEIzYawqkDnnTiPTD8b7XhoNEVMS0sLl156KY2NjVRWVrJy5UoefvhhzjnnnHwPbVLQEjGIKrNh0iq/B0BHPLJHK2bkYlrS9mlA0/gPR6OZWGj7kH/qQ2ZEfLbXxUyPk1cCkaJPMNeOh0ZTxNxxxx35HsKkxpZZTXc7mes1kzEbwlGUUgWXPDjRUEqFRWQjcBbwDwARcVjPb83j0DSaCYG2D/nH7lo+1+tilmfARhQz2vHQaDSaHGGvXM3yOJnhMS+3IQWdMYNql24iOBoiUgYsSti0QERWAe1Kqb2YeRe/F5EXgOcxy+mWAneO81A1Go0mLYKGojliyuPmeJzMsmyEjnhoNBqNJiPsClYzPU58DqHa6aAjZtAQjmnHIzWOBh5PeG4neP8euFwpdbeI1AHXYzYQ3Aycr/txaDSaQmefJbMqcQg1Lgczrai4djw0Go1GkxG21Gq217zUzvA46QgYNIZjHKa7l4+KUuoJzKpTI+1zK1papdFoJhj1loMx1+NERBKkVsXteOSv/EIWEZH7RKRDRP6WsG2OiDwhIq+KyEsi8p58jlGj0Uw+EqVWYDoegK5spdFoNJOcvaHBC1MDUqvizvEoCscD+BlwadK2KPB5pdRy4FzgFhEpHfeRaTSaSUui1ApghttyPIp8RUuj0Wg0IxNPLLfsg71A1RIxCBsqb+PKNUXheFjh+J6kbY1Kqc3W/5swSy9OGffBaTSaSYut4Z1trWTZDoh2PDQajWZyUx+ypFZWxKPW5cBtCUuLOSqed8dDRE4VkX+JSIOIKBF5+xD7XCUiu0UkKCLrReTYNM+xGnAqpeqzNW6NRqMZCaUU+4aRWjUUsVHRaDQazegkS60cIvHFqWKWW+Xd8cAsfbgFuGqoP4rIJZiVTL4DHGXt+7CITE3l4CIyBfgD8ImsjFaj0WhSoDum6LPC5cmOR5OOeGg0Gs2kJjG53GYylNTNe1UrpdRDwEPAcA21vgjcrpS609rnSuAi4ArgxpGOLSJezMZSNyqlnklhX2/CpnKASCRCJBJJZSpx7P3TfV2hoecx8HqlFIZhYBhGNoeWNkqp+L+5GIthGCiliEQiOJ25K/c6Gb5bewLmtiqn4DFiRIwYdWJ+fvvD0YKbe/JcCm18Go1GUywopeJdy22pFTApKlvl3fEYCRHxAKuBG+xtSilDRB4BThjltQL8DnhMKfXHFE53DXBd8sY1a9bg92dW93Lt2rUZva7QmOzzcLlcTJ8+nd7eXsLhcJZHlRk9PT2j75QB4XCYQCDAunXriEZzH+ot5u/WZncZVC+iPNTPgw8+CECTwwO1y9kfjPDAgw+OXCc2T9hz6e/vz/NINBqNpjjpjBn0WhHx2YMiHpbUKqQdj3xRCziB5GZQzcAy+4nliBwBlIrIPuA91usuAV5KyBv5sFLq5WHOdQMDzanAjHjsO/fcc6moqEhr0JFIhLVr13LOOefgdrvTem0hoedhEgwGqa+vp6ysDJ/Pl4MRpo5Sip6eHsrLy4eLEA7LD3/4Q6699lo++9nP8tOf/nTIfYLBICUlJZx66qk5netk+G4daO2H3Z0sm1LFhcdfCEDAUHxqUyNhcXDSuedT5SoEtatJ8ly6u7vzPSSNRjOO3HjjjVxzzTV87nOf45Zbbsn3cIoaO7G81uXA7xywA5OhpG6hOx4poZQ6e5g/pWzVlVIhIGQ/t2/q3G53xjdGY3ltITHZ5xGLxRARHA4HDkd+bxRteZU9nlTZsGEDv/71r1m5cuWIr3U4HIjIuH3mxfzdao5Zq1leV/xvbqDK6aAzZtCqHNQV4NztuRTD56LRaFJjw4YN/OpXv2LlypX5HsqkYG/4YJkVDFQ+LGapVeEstw1NKxADpiVtnwY0jf9wNJqJR29vLx/84Ae5/fbbqa6uzvdwJg0DzQMHG5aBylbFu6Kl0WgmDtpGjD92xCNRZgUJUivteOQHpVQY2AicZW8TEYf1/Nl8jUujUUrRFzPy8rATzFPlqquu4qKLLuLss4cLDGpyQbyUrnewYdG9PDSa4mYi2QfQNiIfDJVYDoMdj0w+y4lA3qVWIlIGLErYtEBEVgHtSqm9mHkXvxeRF4Dngc9jluC9c5yHqtHE6TcUFc/npy3M3qUVVKa471133cWmTZvYsGFDTsekOZiGpB4eNtN193KNpqiZKPYBtI3IFwNSq+SFKfO2PKgUHVGDKe7cVZfMF3l3PICjgccTntsJ3r8HLldK3S0idcD1wHRgM3C+Uio54Vyj0SRQX1/P5z73OdauXZv3pPjJiJ0cmCy1ikc8dBNBjUaTR7SNyB8DUqvB9sHnEGpcDtqiBvvDMe145AKl1BMwclVJpdStwK3jMiCNJgX8DqH72Dnjfl7DMIj2plZKd+PGjbS0tHDUUUfFt8ViMdatW8ett95KKBTKaa+OyUzIULREzEIAyRreGZMgeVCjmcxMBPsA2kbkk/phksvBjJK3RQ32hWMcXjreI8s9eXc8NJqJiIhQ6hz/LgyGQHeKZXTPOussXn55cPXoj3zkIyxbtoyvfvWr2qDkEFtG5RWoSSqZa0utdPdyjaY4mQj2AbSNyBcxpdgXOrhruc1Mj5OX+iNFW1JXOx4aTZFSXl7OihUrBm0rLS2lpqbmoO2a7GIbjJke10H9ViZDuUSNRlP4aBuRHxrDMWKAS2D6EI6HLc8tVhtR0FWtNBqNZiJiV7RKllkBzHAP5HgUa9USjUaj0QxNfULhEecQEapiL6mrIx4azSTiiSeeyPcQJgX2StXMoRwPa1u/oeiOKSpd4y/J0Gg0mqHQNiL37LVK6c7xDH0LPrPIHQ8d8dBoNJosM1xFK4BSp4MKS/+tK1tpNBrN5MLu4THHO3QOzYDUqjhzPLTjodFoNFkmLrUaxrAM5HkUp2HRaDQazdDYUqu5w0Q8il1qpR0PjUajyTIjSa0gIc+jSA2LRqPRaIYmLrUaopQuDDgerVGDkFF8eYDa8dBoNJosMyC1GsbxsFa6tOOhGY7+mEF/zMj3MDQaTZaxI+LDSa1qXA68VupfMUbFteOh0Wg0WcRQKh4iT+5Ka5NY2UqjSSamFCu3NLJiSwNRXflMoykq7IjHcFIrEWGm9bdilFtpx0OjSRHDKP7Vx8kwx1zTGjWIKBAGHIxkbAmWjnhohqI5EmNXKMqeUCx+k6IpfIq9PHaxz2886I8ZtEZNOztcxAOKO89Dl9PNE28EInx+dzvXzKrklApfvoejGQGPx4PD4aChoYG6ujo8Hs9BTeHGC8MwCIfDBINBHI7srRsopQiHwxw4cACHw4HH48nasScbtqGY5nbidgz9PZmuHQ/NCDRHBhYAdoWiLPS58zgazWi43W5EhAMHDlBXV1d09gFMG3HgwAFEBLdbfx8zxZZZlTmEKufwn1ExN5rVjkeeuKu1j4c7g1Q5HdrxKHAcDgcLFiygsbGRhoaGvI5FKUUgEKCkpCQnxs3v9zN37tysG63JxL7QyPkdkBDx0FIrzRA0Jdxs7A5GoTKPg9GMitPpZPbs2ezbt4/du3fnbRy5tg8iwuzZs3E6h7+2aUYmLrPyukb8jAYiHsUX8dSOR55osm446ovQmy1GPB4Pc+fOJRqNEovl7zOLRCKsW7eOU089NeurTk6nE5dr5IuhZnT2j1LRCgYkWMW4mqUZO00JDumekP6OTATKyspYvHgxkUgkb2PIpX0AM7KjnY6xsTee/zfy+ziriHM8tOORJ5otw7JH63cnDHaIOZ9hZqfTSTQaxefz6XB3gdKQgmGxu5f3GYqemEH5CCF3zdgQkfuA04FHlVLvHm17IdCS4Hjs0jZiwuB0OvN6Y67tQ+GzLyHiMRLFLLXS1i5PtFga3oZwjEgR1mnWaCYr+0boWm5T5nRQbnUvL0bDUmD8DLg0je15J1FqpRenNJriYUBqNVrEo3iTy7XjkSdsw6Iozi+WRjNZSUVqBTBTNxEcF5RSTwA9qW4vBJoTIx5B7XhoNMXC3lFKrdvMikc8okVXTUw7Hnki0bDsLcLkIY1mshKXWo2yojWjiEPp2UJEThWRf4lIg4goEXn7EPtcJSK7RSQoIutF5Ng8DDWrJNqHhkisKLsXazSTkdSlVubfQwraosVV5l47HnmgL2bQl2BIdJ12jaZ4SEVqBQOOR5OubDUSpcAW4Kqh/igilwA3A98BjrL2fVhEpo7bCHNA8ndC2wiNZuKjlIpHPEaTWnkdQq3LvEUvNlWMTi7PA81JRqVeVy3RaIqC3phBd8xcVBipnC7ADLd5+W3QEc9hUUo9BDwEDFdt7YvA7UqpO619rgQuAq4AbszWOETEC3gTNpWDWUUo3SpG9v4jva7ZutHwirniub0vyPwCs9apzGOiUCxz0fMoPBLn0hqJEbAWnaeJGnV+M90OWqMGe/tDLPfkt9rkUJ9Jpp9PgV3KJgcHrWbpGw+NpiiwV6YqnDJqpSrdvXxsiIgHWA3cYG9TShki8ghwQpZPdw1wXfLGNWvW4Pf7Mzrg2rVrh9weQeiYegQA88N9bHOX8sDGLUSCbRmdJ9cMN4+JSLHMRc+j8Fi7di07XSUwZSlVsQiP/uehUV/jqlwA3koe3rQZI9g+DqMcncTPpL+/P6NjaMcjDzSHB+v1dBhdoykOUpVZQUL3ci21ypRawAk0J21vBpbZTyxH5AigVET2Ae9RSj073PZhznUDpqTLphzYd+6551JRUZHWoCORCGvXruWcc84ZsuRpfTgGLzXjFjhjZh3bDvRTtuRQLpyd3nlyzWjzmEgUy1z0PAqPxLn8pzcKb3ZwSLmfC4+7cNTX/nt3J5ta+5mydDkXzsrv73+oz6S7uzujY2nHIw/YUqsyh9BrKC210miKhFQrWoGuajVeKKXOTmf7MPuGgJD93JZ9jaWvz3CvbQuZC1PT3E4O8XuBfuojRsHegOW7t1E2KZa56HkUHm63m8aYlVjuS21ec3zmPk0xCuZ9SPxMMh2TTi7PA7bjcXSZBzDrtBdbuTSNZjKyP5RaV1rQVa2yQCsQA6YlbZ8GNI3/cLKDXWp9utvJPCsBVffy0GgmPqkmltvMjPfyKK7fv3Y88oDteKwuNXMVew1FV0w7HhrNRGd/XGqVuuPRa3Uv16SHUioMbATOsreJiMN6PpxkquCx7cNUt5MFVslN3b1co5n42LL6OSlIcWFAsltsi1Pa8cgDtmFZ4HPFy6XpPA+NZuIzILUa3bCUOx2UOUzJjpZbDY2IlInIKhFZZW1aYD2faz2/Gfi4iFwmIocCt2GW4L0zD8PNCrZ9mO5xMt9yPJojBgHtnGo0E5p91nV+TooRj2LtXq4djzzQEjENyFS3g3mWYdGhdI1m4rM/nLrUCgaiHtrxGJajgRetB5iOxovA9QBKqbuBq63nm4FVwPlKqeSE8wlDs2UfprsdVLscVDhN53S3zgXUaCY09gLz3JQjHqZ9aIsaBIuoiah2PPJAoobX9nzr9Y2HRjPhsR2PVKRWMKDhbdCVrYZEKfWEUkqGeFyesM+tSql5SimvUuo4pdT6PA55zNj2YZrbiYjEox679eKURjNhiSoVl0ylGvGY4nLgtdp3FFO/p6w5HiJSla1jFTt2KH2a2xn3fLXUSqOZ2EQMFf9tz/amtqI13aps1aQXHjQWcftgOaXztOOh0Ux4GsIxDMAt5r1fKohIPM+jmORWGZXTFZGvArutMDcicg/wLhFpAi5USm3J4hiLit6YQZ/dudLjZK5XOx4aTTHQGImhMA2Lnbs1GjOLtLKVmPVm3w2cAUwlaZFLKfXOfIxrIpC4MAXEE8y146HRTFxsVcscjwuHpN6FfJbHyc5QtKgcj0wjHlcC9QAicg5wDnAB8BDw4+wMrTixjYrfIZQ5REutNJoiIbGHR6qGJZ7jESm6m8pbgD8CC4BeoCvpoRmGpsiAFBdgvk87HhrNRKc+TZmVTTEuTmXaQHA6luMBXAzco5RaIyK7gQmtr801iatZIqKlVhpNkWCX0p2dYuIgwAy3uW8RJpd/GHinUurBfA9kItEfM+ixSqvHHQ874hHUNkKjmajsS4h4pMOA1Kp4fv+ZRjw6gDnW/88HHrH+L0B67lwWEJH7RKRDRP6WtP1iEdkmIttF5GPjPa6haA7bXWnNt96WWjWEY0SKqGqBRjPZSKdruU0RV7XqAnbmexATDXthyidCuVXNSieXazQTn/o0mwfaFGNJ3Uwdj3uBP4vIWqAGU2IFcCSwIxsDS5OfAZcmbhARF2bpxTOtcX1ZRGryMLZBJDaHMv914BEw0JVtNJqJjN21PNWKVlDUVa2+DVwnIiX5HshEoskupetxIDLY8WiNGvTqXh4azYTEdjxSLTxiU4xSq0wdjy8AtwKvAucopXqt7TOA/83GwNJBKfUE0JO0+Vhgq1JqvzW+h4Bzx3tsySQ2hwJwiMRDb1pupdFMXDKTWpnXgZ6Yoq+4birvAaqBFhF5WUQ2JT7yPbhCJTmxHKDS5aDaaZpqHfXQaCYmttQq1R4eNgMRj+L57WeU46GUigA3DbH9p+keS0ROBb4MrMZ0XN6hlPpH0j5XWftMB7YAn1FKPT/KoWcC+xOe7wdmpTu+bDOUYZnrdfJmKKodD41mApOJ1KrcKZQ6hD5D0RiOsaikaFor/R7zmv4noBnQOtIUSOzhkch8n4uOvjC7Q1FW+D35GJpGoxkDmUutBuT4Sql4JHQik2lyOSKyFPgMcKi16TXgF0qpbWkeqhTTmfgtpoQr+TyXYEqmrsRMXP888LCILFVKtWQ2+vwxlOMxx+sCQrqylUYzgUm3eSCYddpneJzsCEZpiMRYVOLO1fDGm4uA85RST+d7IBOJlqSIuM18r4sX+8Ls0QnmGs2EIyAOOqyiEekml9sLWWFlyi3rUuwBUshk2sfjXcBdwAvAs9bm44FXROR9Sqm/p3ospdRDWDkiw3hyXwRuV0rdae1zJaZRuwK4cYRDNzA4wjELGDZKIiJewJuwqRwgEokQiURGnUci9v5Dva7JimrUOlT877Nc5rx3B8JpnyuXjDSPiUSxzAOKZy7FNo9wOBwPhU9L+G2nwnSXgx3AvkCYSEn+jEryZzLGz6Ye6B7zoCYZTUMsTAHMt1ZJd+mouEYz4WhzmAtKlU6hIsUeTzYeh1DncnAgarA/HJu8jgfwI+AGpdS3EjeKyHesv6XseIyEiHgww/U32NuUUoaIPAKcMMrLnwdWiMgszAorFwDfHWH/a4DrkjeuWbMGv9+f7tABWLt27UHbdtUcCk4vb77wPA9G+gDo8k2Birls3NfIg1ufyehcuWSoeUxEimUeUDxzKZZ53Pvo44TqDgdgy6NreTUNZZGqmAe+ah7b8gqlgQO5GmLK2J9Jf3//WA7zJeBHInKlUmp3FoY1KRhWahWvbKWj4hrNROOA05RHphvtsJntdXEgai5urSqd+FLLTB2PGcAfhtj+J8xcjGxRi1metzlpezOwzH5iOSJHAKUisg94j1LqWRH5EvA4ZhL9j5RSbSOc6wZMSZdNObDv3HPPpaKiIq1BRyIR1q5dyznnnIPbPVg60bupEQzF2085iUOsxlCeriD/u72dYGUNF5506FCHzAsjzWMiUSzzgOKZS7HNY8lJp8IbHdS5HLztwgvSOsYT9V38t7mP6kVLuHDOMTka6egkfybd3WMKWPwJ8ANvikg/MCh8opSaMpaDFystEbvc+sE5HqCTyzWaiUirFfGYk2ZFK5uZHicv9hVPSd1MHY8ngFM4uHTuycBTYxlQJiilzh5m+/3A/SkeIwSE7Oe27Mvtdmd8Y5T82t6YQZ/Vq2OW34vbqlSysNT8+95wDJfLVXDJQ2N5DwqJYpkHFM9cimUeLYb5m53tdaU9n1lec/+mGAXxXtifyRjH8vksDWdSEe9a7hksx9BNBDWaiUurFfFIN7HcZlaRldTN1PG4H/ihiKwGnrO2HQ+8B7N2+1vtHa2b/0xpBWLAtKTt04CmMRw3L9iJ5X6HUOYYcC7mWF+qXkPRFVNUuQrL8dBoNCOzL5J+RSsbu4lgU5EYFQCl1O/zPYaJhlJqoNz6MFKrjphBV9SgMk2duEajyR+tjrFJrYqtiWCmV6//xZRBfQpTcvUH6/911t/+YT3uG8vglFJhYCNwlr1NRBzW82eHe12hkljRKjGq4Xc6qLUMiS6pq9FMPBoyqGhlMyPeRLC4fvsicoiIfE9E/iIiU61tF4jIYfkeWyHSayj6rYh4stSqLMFGaLmVRmNSH4ryuV3t7C/w30Sr05ZaZRbxmGk5LMXSyyMjx0Mp5UjxMeq7LCJlIrJKRFZZmxZYz+daz28GPi4il4nIocBtmCV478xk7PmkOWzrdw9+2+daK1p7i+SLpdFMJhosbf7sDBwP26g0FslqFoCInAa8DBwHvBMos/50BPCdfI2rkLEjXmUOodR5sI0YSDDXNkKjAbipoZtbm3r4Rn1nvocyInbEY26GOR7xiEeRFJcohHjt0cCL1gNMR+NF4HoApdTdwNXW883AKuB8pVRywnnBM1ypRBiQW9UXyRdLo5lMDDQPTN+w2N3Lu2KK/uLpXn4j8A2l1DlAOGH7Y5iyXE0SQ/V4SkQnmGs0g3ktYNaseKgjQEwVZo9SpdRAxCODhSnQUqs4InKaiPxLRHZYj/tF5JR0j6OUekIpJUM8Lk/Y51al1DyllFcpdZxSan2m484ndnOoaUN8+eIRD21UNJo4ByIx9k2A30SD9dvOJOJR4RT8Vs5XY6Q4DAtwOENLbVswZbqaJJqGaR5ooxPMNZrBvG45HgeiBht6w6PsnR8ORA0i4kAY6EKeLrbj0REzCBTB4lRGjoeIfAh4BOgHfm49AsCjIvKB7A2vuBhpRUs7HhrNYJRSnPJKE6u2NNJW4DfkY8nxEJF41KNYqpYAnZhl15M5Etg/vkOZGAxXStdGS600mgF6YsagCMADHWPqO5Qz6q0xznA78DgyKxxU5XRQYr22GKIemUY8vg58RSl1iVLq59bjEuBrwDezN7ziYiTHw046qi+CL5VGkw0awjG2B6N0xAwe7QrmezjDEkLoiFllsjNc0bKrYRVRnsddmJUPpwMKcIjIScBNDN0DatIz0DxwaLOsHQ+NZoBtgUGtgXigI5CnkYzMvnDm0XAbESkquVWmjsdC4F9DbL8fWJD5cIqbgeTyISIeHh3x0GgS2RYcMCyPdxeu49Fm6XfLHEKFM7MVLVteU0RSq2uB14F6zMTyV4F1wDPA9/I4roIlZalVKIoqUD27RjNe2DKrFSVuBNjSH6G+AO+f7MXkTPM7bLTjYRqTs4bYfrb1N80QDEQ8Dn7b53ntcmkxotqoaDRsCwwYkccKOOLRblUsmeVxZtz8s9giHkqpsFLq48AhwMXAh4BlSqkPK6WKY5JZxrYPU4eVWpnbu2OKjujE13lrNGPBjnicVOHlhHIvUJhRj2w5HjPjTQQLz7lKl0wbCP4E+LlVAvcZa9tJwOXA58Y+rOJkJKnVVLcDj0BYmRKTTMuuaTTFwhsJofQdwSh7Q9GC/F20OcyIR6YyK6AYczwAUErtBfbmexwTgebw0M0DbUqcDqa5HTRHDHaHokwZZj+NZjLwurUwtazEzVyvi2d6Qvy7I8CV08vzPLLBZENqBQP2pRgiHhlZSqXUbSLSBHwJeK+1+TXgEqXUP7M1uGKiN2bQZzWHGiqU7hBhjsfFm6Eoewr0BkujGU8SpVZgRj0un1o2zN75w5ZazcqwORQMXBOaikRqJWbo593AGcBUkqLrSql35mNchcxwXcsTWeB10RwJszsU46jC+yloNOOGHfFYWuJmptvJ1/d28lhXgL6YMWQfnHyhpVYHk/Gno5S6Tyl1slKqxnqcrJ2O4bGNit8hlA3zo5hr3bjoPA+NBt6wVrROtsLohSq3ao9HPDI3LANh9IlvVCxuAf6ImfPXC3QlPTQJKKUG+jyN8D2apxPMNRqiSrHdWphaVuJmhd/NPK+TkCo8O5F9qdXEtxF6WX2cGK05FMAcrwsI6cpWmklP0FDxm6srp5fzdE+Ix7uCKKUyzqPIFdmUWhVLjgfwYeCdSqkH8z2QiUBnzCBspfaNZCN0ZSuNxuxlE1ZQ4hDmWLl1F1X5+d/mHh7oCPCWKf58DxGAsKFosspkZ09qNfF/+ylHPESkQ0TaU3nkcsATlSarotVIYXRd2UqjMdkRjKCASqfw9uoSvGI26dtWgM3T2p3ZiHiYv/3OImkQhRnV2JnvQYyEiFwtIltF5BWrN1XeaLZuTiqdgm+EWv929/JdBfg70GjGi9etaMdSnwuHtRB1UXUJYCaYF0rVt/3hKApwK4M619jkX7Z9aYjEMApkfpmSzhLd53M1iMnAQMWS4b98c+JSq6JZ9dRoMiJRv1vidHBiuZfHu82ox7ISd55HN5i2LEitKp2CT4SgUjRGYiwsII1yhnwbuE5ErlBKFVypGRE5HPgAsBoQ4HER+bdSqjMf42kaJbHcxo547NGLU5pJTKJ9sDm90offITREYmzuj3BkqSdfw4vzRHcIgLpYeMyR+hluJwJEFRyIGCNKMguddByPI4BvKqX6RORU4BmllL76pUhLCvpdO6G8EGtRazTjiV1Kd4nPNCxnVpbweHeIR7uCfLKAqpZElaIzC46HiDDT42RnKEpDOMZCX2E5VxlwD/B+oEVEdgODKgUopY7Kx6ASOBR4VikVBBCRLcD5mI0Px53mUXp42CxI6uVRaLJDjWY8SKxoZeNzCGdX+ri/I8ADHf15dzw6owbX7u0A4IxgO2b7u8xxO4SpVlW7/eHohHY80llW+wxmIyiAx4Ep2R9O8ZJKjofteOwtAg2fRjMWkle0zqz0AfBEV7CgwszNEQNDBJcM338hVWYUVxPB32NGE/4E/B34Z9JjTIjIqSLyLxFpEBElIm8fYp+rRGS3iARFZL2IHJvw51eA00WkSkSqgdOBWWMdV6aM1sPDxrYRfYaiVffy0ExShop4wIDc6t/tmQVZ2yMxPrernfU9obENEPjm3k5aIgZLfS7e2n9gzMeD4impm07EYzfwWRFZgxmaPkFEOobaUSm1LgtjKyrsUPqIyeWegQZRXVGDyjFqAjWaicobloZ3SYl5iTq6zEO5U+iIGWzuC3NUmTefw4uzP0Ei4xxrKL24mgheBJynlHo6R8cvBbYAvwXuTf6jiFwC3AxcCazHlAo/LCJLlVItSqlXReTnwGOY+SjPAXl741OVWnkdwky3k4ZIjN2hKHW6l4dmEmJ3LU+W3dqOx4a+ME3h2KgRxGSu2dvJb1p6uau1jxePmBHPvUuXjb0hbmvuAeCWuZUE9mZnsWymx8mmvonveKRzZ/tl4KOY0Q4F3Ac8McTj8ewNr3hosZIHR3I8Sp0OaixnQyeYayYrSqmBFS1LcuQS4dQKM+pRSOUSG6yV6lkj5G6lSpFVtqoHunN1cKXUQ0qpbyil7htmly8Ctyul7lRKvYrpgPQDVyQc41dKqaOUUmdgSsG252q8o5FKRNxmgU4w10xiWiMx2qIGAiz2DXYMZnhcHG1JrB7sTC/qsS0Q4c6WXvMcUYNLt7cSyyC6HlOKq3a2o4D31/o5oyJ7i2SziqSkbsrunFLqH8A/RKQM06AsBVpyNK6iY8CwjHyDMtfroi0aZm84yuEFkByl0Yw3LRGDrphCgEUJhuXMCh8PdAR4rDvI1bMq8zfABGwDMJb8DpuZxSW1+hLwIxG5Uim1ezxPLCIeTJnXDfY2pZQhIo8AJyTsN1Up1SIiS4FjMZ2T4Y7pBRLvIMoBIpEIkUhk6BcNg71/4usarYWmWiejHm+OZUN29oeIRPJnI4aax0SlWOaSr3n8vKmXP7X1c+/imjGXjYWR5/GKJYOa63HiNmJEjMHXy/MrvbzQF+bfbX18uDr1m/6v72knBhxf6ublQJTHu0P8YG8HX5uZXk7h7S19bOgLU+EUfjCzPKufyXSnGVWvD4bH/TMeah6ZjiHtOJJSqldEzgB2jZZcLiJfA36Zr0ohhURTismDcz1OXuzTla00kxe7Y/k8r5OShOpOdp7HU90hwobCM0LZ0fFivxXJnJkFycv0IlnNsvgT4AfeFJF+Dk4uz2WOYC3gBJqTtjcDyxKe/1NEKoE+4COj2LNrgOuSN65Zswa/P7OeAWvXro3/f3v1EnD7qd+8kQfDPSO+Llo6HUqns277Lg59cV9G584mifOY6BTLXMZ7Hj+qWU6r08O3ntnMu/uTf3aZM9Q81vqmQMVcpvR08OCDGw/6e6WrBKYs5eH2Pv754HrcjB612O7yc9+UJYhSXLL3ZY5xl/CLinlcv78b99ZNHBrpS2m8neLiazXLwOHiPZ31vPjIiyPOJV1arbm/1NDMg689O+bjZULiPPr7+zM6RkYCNqXUkynuei1mdZPOTM5TLPTGDPoN88s/WihdV7bSTHZsmdWSpMpOK/xu6lwODkQNnu8NcbIlvcoXMaV4vjcMZCniYV0bmorD8fh8vgcwGkqpE0bfK84NmDkjNuXAvnPPPZeKioq0zhuJRFi7di3nnHMObrf5Hf/0liaIGFx0wnEcNUqku/lAH3/b04WaPosLl6xM69zZZKh5TFSKZS75mEdjOEbrS6azsXPaXC48dPWYjznSPNbVd0FzHyfPmcGFJy076LWGUtz8UjONEfCfdAbnVI5sJ5RS/OyNNugJ88FaP5885kyUUrTu6uQv7QF+OW0Z65fXMSWFnNuP7eqgry3AKr+bn60+BpdIVj8Td1eQ/9neTrhyypBzzyVDzaO7OzM1ba47l+d/SbIAsGVWfodQNkp9fl3ZSjPZecMqlZhcscQhwumVPv7a1s9jXcG8Oh6GUnz8zTae6g3jUgZnZ0HHO6OIIh5Kqd+nsl+OouKtmIni05K2TwOaMjmgUioExEvd2GVs3W53xjcT9msNpeINBGeXeHG7RzbLh5Sa37W9kVhB3CSP5T3IhCe7gly+o5X/XVjDBVYycbYY77nkivGcx+aegWDm+r4IXTiozVLRg6Hm8UbI/K0cWuYddo4XVvu5o6WXh3siXFg7slRqTWeAJ3vCeASunzcl/vu7bVEtG15qZEcwyqf2dvG3JXUjlq9e1x3kT20BBPjfhTWUeAYvIGTjM5nnNxew90diuFyuvJTTTpxHpvPRZZPGgXQSB3UTQc1kx5ZaJTseMCC3ymeCuVKKz+3q4PcH+nACX+zaw+H+sRt5O8ejI2YQNAqnZHCOuZYsl2ZXSoWBjcBZ9jYRcVjP86NPGIH2qBEvp5VKSeZ4L49grGA6NI8nv2jqYW84xh8P9OZ7KBpgQ+9A6VkFPJxmUne62BHxZSP0OoqX1e3oH/E3YijFtXs7AfjU9HLmeQec/nKngz8vrsUt8I/2AL9sHv77FjEUn97ZDsDHppZxXHluqi4u8LpwCXTFFLsnsCpGOx7jQFPY9NBHK5UIMNcq36arWmkmK2/YUquSg1d+z7SiHM/1huiLjX8fA6UU1+zt5H+bexDgNwuqOD7clZVjVzkdeK0FrMbJE/HMaMlORMpEZJWIrLI2LbCez7We3wx8XEQuE5FDgdswS/DeOeYRZxk7/6/G5cCdQt7SHI8LBxBMiJRMFmJK8bi16PDGJKnqFTEUp73SxLmvNmdUZSnXbLDkpnZVvgc7cud4BA3FrtDBzQOTObvSh1dgdyjGq4HhE6DvaevnRSsR/JohCpasLvNy49xqAL60u52X+sJDHufnTd1sDUSodTn4/tyqNGaUHn6ng2OtUvKPd4+910i+0I7HODDQHGr0t3uuFfHYH44RLcCLjEaTS8KGYqd1Q7F0iBWtQ3wu5nqcRBQ8nYUmT+ny/f1d/LjB1LXetnAK76/JLLF4KMzu5aazVSSVrXLJ0cCL1gNMR+NF4HoApdTdwNXW883AKuB8pVT2Ml+zRLxreYryFLdD4pWDcrHqGTYUHdHC/P5t7A3TaS04vBGITIqIz+PdQZ7uCfFoV5C1nYVTShzMhRjb8fjqLDPX6eHOYM4cpO2BCAbmIs1I91OlTgdnWNHxB4ZxhMKG4ltWtOPqmRXDysM+N6OcC6pKCCn4wPbWgxa89oWifKfeXHy6cV41NTnurXO6Jet9ooDKyqeLdjzGgRZbapVCAuo0txO3gEFxaL01mnTYGYoSA0odMmTCtojEDcrj43zh/WlDN9dZBubm+dV8fFp6ZRZToZjyPHKJUuoJpZQM8bg8YZ9blVLzlFJepdRxSqn1eRzysKTSXDaZ+ZYkZFcOHI8Pbm9l9gv7403aColHE37zfYaa8I3UUuEf7QOVg+5oKSx52Y5glM6YgVdMiVG100FHzOC5HC0KvR60GweOnt9wcbW5KDSc43FHSy9vhqJMczv43IzhC0SICHcuqmGG28lrgQhf2D24b/YXd3fQZyhOKvdyWV1pOtPJiNOsqP+T3cEJ63jn2vF4Csit4G8C0JTGipZDhDmTXG714/1dfGpnG8YE/VFpMide0arEPaxhyUeex6+be7h6j2lwrp9TOaKhGgsziquylSYFbLnUNE/q5nie1d9mT5ZtRH0oyn3t/QSV4t62zEpl5pJHuwbfThSic5RNDKW4v31gzvd39NNcQNeG5638jqNKvZQ4HZxXZV6b023elyrxxrIjyKxsLrTyPJ7pCdGWFEHuixl8b5+5iPSN2VWjFv2pczv54+JaBNNhubvVLK/7n44Af2/vxwncumAKjnFI9j6x3ItbYF84xpsTVG44JsdDRKaKyAoRWZn4sP+ulLpQKdU49mFObOwLRSqJgzAgt5qMCeY9MYNr93byq+ZeNg2jpyw2Hu0KMOX5vfylNbVa4cVMPL/DN3xlH9vx2NQXpn0cJEl/OtDLp6zEwa/MrODaHDYvtCMe9QV0c6HJLekUH7EZSDDP7o3HPW198a4Hj3QV1pphf8zgv9ZK+jIr/6vY8zzW94ZpjMSocApHlXqIKgoqqd6WWR1TZlZwsquMPZSjPA/b0Rwpv8NmntfF4X43BvCfJEfoZ409NEViLPS6+NjUspTOfUalj2ssOdmVO9t4tT/MZ3eZduGzM8pZOU4Nn/1OB8fH8zwmptwqI8dDRFaLyCtAI/ASpob2xYR/NQm02CtaKRqWOXYvj8mTYBpnQ28IW0G5tb+4V7Nsft3cS1dM8f19XRM2dJotUlnRmulxsazEhQKeTDPB7iu7O1i8aT/vf+MA/9PYzea+8Ih65Hvb+rliRxsK+NS0cn4wtyqnJQyXW9WxEivFFDmTPipuR7dSzfEA4tV3si21uqt1IMrxTE9+CjgMx1M9IcLKbLJ7UZUpo9lW5BEPW2Z1YVUJn5hm3iDf0dJbMHbCvk4dY90In19VggBb+iPsy4FiY9swpdaHw65ulSi3aovE+HGDGe24fm5VWo1or5tTxUnlXrpjihNebuLNUJSZbifXzalK+RjZIFFuNRHJNOLxW+AN4ERgIbAg6V9NAgMrWqm93ZO5stWzCdrQyeB4GAlVWl4LROIrSJMVewVzNMNyZoVpUNKRW/21rY+fNHazMxTlnrZ+Pru7g9UvNVK7oZ4LX2vmB/u6WNcdJGDdbP2nI8AHth8gBlxWV8rPFlTnvG66bVCe6wkRmsAldUXk8mG2u0TkBvu5joon2Ic0mlDaEY9sSq22BSJs6gvjEtNWRRSsK6DKOY9YidVnVfriFe+K2fFQSsUdj7fX+HlfbSmlDuGNYJSn8lBYI5mwoXjRUiUca0U8at3O+Gp8tuVWhlJpRTxgwPH4T2eAiHU9vXF/N90xxSq/m0vSLA7iEuGPi2upcjrotY5384JqykeRamWb062o/xNdoYJxQtMh03drIfAVpdR6pdRupdSexEc2B1gMxHM8UjQsk1lq9WzPwI33K4Hivwl/uT9CW3RgVfH3BRRGzwepanjjCeYprvjsD0X55JtmWPzjU8u4fk4l51b6KHcK3THFw51BvlnfyRlbm6neUM/JLzfxrm0HiCh4b42f2w+pGRf97lKfi6luByE1oJ+eoPxcRP4qItX2BhFZCqwH3p+/YRUemUit5ifkeGQrF+4uS+p5TmVJPDG3kORWdn7H2VUl8RvPN4LF63hsDUTYEYziFbigqoRyp4NLas3k5TtG6CkxXrzcHyakoNrp4JAEaaydW5Htsrr7wzH6DYVLYKE3td7Xx5V5qXU56Iop/tsTYm8oyv80mVUJvz+3OqNr+jyvi98cUoMT07F595TsVTZMlRPKvXjFrH44EeWGmToejwJHZHMgxUpvzKDf8oxTNSxzJ6nUSinF+oSbrVcnQcTDXrG3SwPe3dpfcM3juqMGp77SxBd3t+f0PO2RGK2WEzZSjgeYJQUFM0rUMMrvxFCKK95soyNmsLrUwy8WTOHrs6t4aPk0Wo+ZwwsrZ/Cz+dW8u8bPdLdZqvfZ3hBBpbi4uoQ/LKrFOU4dYkWEU8pNp+qpAlptzoAjgdnAyyJyjohcBWwCXkfbjkGkU3zEZpbHiRMIK2jMQj6QUiqeY/b+Wj9nW479IwVSvrU5HGOLZQ/OrPTFFyb2hGL0F5AcLJvcZyX3n11VEk9+tvMR/tbWn/eSx88n5HckRoLtPI9Hu4JZjdra0Y5FPldK/W4AnCLx8TzQEeA79Z2ElGk/7ET4THhHjZ+9q2eP2s08V/gcwvFWk8InJqDcKlPH42PAFSJynYi8S0TemvjI5gAnOvZqlt8ho1ZOsLEdj8kmtXojGKU9auCxfsf14Rhd0eI0KjZ2ecgvzqhgjsdJR8zgXx2FVU3mHx39/LcnxM8ae7KezJrINuvYsz1OSkf5rUxxOznKSuYbrazu/zT18EhXkBKH8IfFtYOMlkuEI0s9fHpGBXcvqWPf6llsP3Imdy6q4eb51dy9pC5lI5ctTrXqtE9U/S6AUupN4CTgXuA/wE+BjymlPqiUyk7HxSIgphStaeYAgvm9te1ENnp5bOwLsz0YpcQhvG2KnzMrfQjwSiBSEM0sH7N+C6v8bqa6ndS6HFRb14jtE3DFNxXiMquEFfVjyzysKHETVIq/tObXTtj5HXZDO5tVfjcz3U76DZXVa1g8Gj5Cx/KhsOVW/9fayx8OmM71D+aOXTY73eNMKz8k25xeYcutJp6dyNTxOAHTqFwH/BX4R8LjviyMq2jIJHFwjiXJ6oqpor/xTuQZS7d6XJk33iBraxHLrSKG4inrwnx2VQkfsmqA/6GlsKpbJSbm/S6HUrDX0yiVCANyq5HyPLb2h/mqVQb3x/OqR9UGiwgLfW4urSvjczMq8OXBsJxqGZRne0JxXfIE5SLgfcCzQCfwURGZmdcRFRgHIgYGpiGuSzEH0Ga+JcnNRoK5LbN6S7W5ul7rdnKk5dg/UgA3No9Y+QJnVZo3kSLC0iLO89gVjLC5P4IDeKt14wzmvD9mJZn/prknr/r+eEWr8sHVnCQhypBNuVW6+R0251aW4BKzbLUBvGOKn+PKvaO+rtCx8zwmYj+PTB2PXwB/AmYopRxJj9y2bZxgNGewmlXqdFDjMj+aXMit9oWiBVWtxMZuOnR8uZfl1sXllSKWW23oC9FrKKa4HBzhN292AR7uDBTEKiOYCYRrEpIEf9fSm7OutKmU0k0ksZ/HUBfesKG4dHsrIQXnV/m4clpqZRPzzQq/m2qngz5DTdiS0iLyK8xFqR8CpwArgTCm9Oq9+RxbIWFHxOvcjrTlfPOzlGAeU4q7rdXz99UONEArFLmVUioeGT47QR6zpIjzPP5p9e44tcJ7UEftD9aW4hWzctTGPF0fuqMGr1nX62NKD76Jv6DKKqubxQTzdCta2VS6HJxqyVcdwPfmVmVtTPnkuDIvPhGaIwavBwrjfiFVMnU8aoCfKqWaszmYbCMiXxCRrSLyqoj8XPIgxrMNy9Q0V7Pm5qBqCZirqIte3M87th3I6nGzQaLjscJvrqIUc56HvVJ/eoUPhwhLStycUOYlBvy5QHp6PN0TpDumqLOkDfXhWM5WQNNpDgVwstVIaW84xs4hfifX1XeyuT9CrcvBHYfU5kWLmwkOEU625FZPTVy51UnAcUqpnyiTJqXUhcC3MKsiahjI70hnYcrGTjDfNUap0VPdIRoiMaqcDs6vGlhdt2/yHx3GsR8vtgej1IdjeMT8zdvYK9/F2ERwKJmVzRS3k3da1Zjy1cl8Y18YhVnaeKhqbGdX+XCL2dn8jSx9PplGPADeb6kJ/t+0soxeX4h4HcKJEzTPI1PH417gjGwOJNuISB3waWA1cLj17/HjPY6WDEolwoDcKpuVrZRSfGl3OxFlGpOWcWi+lipdUYOt1oXlhDIvh1n9DIq5pK6dm2Cv3ANcOnVAblUI4VNbZnVhdQkfsC7ev82RsbOrcyxJ0TCUJjRSejTJGXqyK8iPG8zqJb86pCblinKFwkCd9gmbYL5aKbUleaNS6n8wr8UaBqS4mTge8+KLU2O7jttJ5e+q8eNNkBaeVO7DJ0JjJMareby5txc6Tir34k/I/Vpiaf3fmGCrvaPREonxtLUI97ZhKiZ9dGo5YH52vXlQLyT370im3OmIS0azIbfqjho0WPcr6UY8AD5SV8qmlTP42YIpYx5LIXF65eRyPN4AbhCR34nIl0Tks4mPbA5wjLgAH+C2Hi3jPYBMKpZAQmWrLEY87m7rZ31Cn4i1Wa6zPRbW94ZQmGXypnmcrLAcj2ItqdsfM+I5LWclOB7vrTHD6K9YNfXzje14XFRdwkesiir/bO+nNctOa1QpdgTTTx60nbbEBPOuqMHlO1pRwBVTy4ZcNSx0TrEiHv/tCeZM2pZLlFLDekxKqW3jOZZCpmUMEY8FWUguDxuKv7fZMqvBvxOfQ+Lfw3zmedj5HWcnRGOAQTkehbBIky3ub+9HAatLPfH7gGROr/CyyOeiJ6b4a9v4J5nbFa3s/h1DcaH1eWWjn8c2yzZMdzupcqV/2yoiHFHqGbfqhONFfIEqz1HJdBlLVate4DTMqMIXEh6fz8bARORUEfmXiDSIiBKRtw+xz1UisltEgiKyXkSOtf+mlDoA3ATsBRqAR6xKK+NKc9iWWqXreFgRjyxp/YOG4tq9ZpKt3chwTYGUSoTBMiuAQ61VjZaIwYECisxki/9aXXhne5wsTshpqHI54jfKdgWOfPFGIML2YBS3mLX9jyz1cGSph4jKvhRsdzBKRIFPJP7dT4UzEhwPu5/BZ3e1szccY6HXxc3zq0d6ecGyqtRDuVPoiilemqBRPxF5t4jcIyLPicimxEe+x1YopNvjKRE7x2NvOJqxc/pwZ4COmMEMtzN+E5PIOZbcam2ebEVUqXivnsQFGoBDfG4cQK+haCwiG/EPK79jpAUTEeEKayEoHz09Rot4wEA/j3XdQXrGGJUZkFmllv83WTi2zIvfIRxIUIxMBDJyPJRSC0Z4ZKtzeSmwBbhqqD+KyCXAzcB3gKOsfR8WkanW36uBi4H5wCzgRBE5NUtjS5mWDJLLAeZ47IhHdi6otzZ2sycUY5bHya8PqQFgbVcga82nxoq9+n+C5XiUOh3xJkHFKLeyV+jPqPQdlHtwmWVQ/tLaRziPVY3sEPmpFT4qrFUm29j9tqU3qyss9orW4hJXWk2djku48L7SH+Ge1j7+1NqHA/jD4tpx7yibLVwyoN+diHkeVuT7TqAZs6fH80AbZvPZh/I4tIKiOcOIOMBMjxO3QFSZzdUywZZZvbfWP+Rq8NmVAzeP+bgWvdAbpjumqHY64uWzbbwOYaHPjnpkvkAXMhTfa+hhjzPzvg7ZojtqxBslvn1KyYj7XlZXhhOz59DW/vGLjjeEo+wLx3AAq0eIeCwpcbPI5yKixl6gIN38v8mCJyHP48kCqD6XKgXrPiqlHsIyUMMkhX4RuF0pdae1z5WY5RuvAG4EzgZ2KKXarb8/gJnjsW6og4mIF0h038sBIpEIkUh6N772/pHIQA30WodK6zgzLTu0JxRN+/zJtEZi/GC/WTr/2zPLOd3vwu8wqyFs6g5whH/oH3PiPHKJoVS8S/MxJc74+ZaXuNgZivJSb5CT/Jlr9MdrHunwqBV+Pq3UfdC4TvM7mel20BAxuL+1h7cllFMcz7n8q928KbmgwhM/37srPVwtZsf157r6Obp0eMMzEsnzeM36/Bd7nWnNTYCTyjys7Q7xh+ZufmdV5/nqjDKO9jly/j7l8vM4udTNw51BnugM8MnakW9CskHyXMY4p08Bn1BK/UVELgd+pJTaKSLXA8UltB4DzWFzYSrd4iNgFiGY53WxIxhlVzA6rCxnOHpjBv+yFhfen1DNKpHD/W6muh20RAye7QlxWuX43pzbndPPqPQN6Rgt8bnZEYzyeiASj36my+8P9PK9hh4WVMzlk2Ma7dh5qDNAWJmV/Q4d5SZ7usfJxdUl/LMjwB0tvdw8f3x+VnYZ3eUl7lF7k11YVcLPm3p4qDPAO2oyl7zaVZuKJTE8m5xe4eORriCPd4e4aka+R5MaGTkeIjJiVRKl1BWZDSfl83swExRvSDinISKPYPYYAajHjHL4gAhwOvDrEQ57DWZfkkGsWbMGvz+zH8zatWtprDscxMlr/11HRyz1VYl2hwtqV7A/FOVfDz7IWFJjby+bRZe/jgWRfqqf38yjwKGVC9joreQXz2/hnf0jp76sXbt2DGcfnb1OH101y/AZMeqfWEuDtd1TOgNKp/HQtjeZ98K+jI/f5nDT4C6DHM8jVfrEyabaFSCC8cJ/edA4+AbvuNIZ3Fc6jZte3Y27a9dBf8/1Z9InDp6qPRxE8G9+jgcTvrvHVszlKd8Urt/0Olf2ZP65wMA8HimfDSW1OPbt5sFtz6V1jBn+OiibxU+bTUdpUaSPI7ds5sGDUptzRy4+D6fLD1OW8Fh7Lw88+BzjpU6259LfPybt+FzgGev/AayFHOCPwHOYEt1Jz1ikVkDc8dgdinJamq+9vz1Av6FY5HMNu4DgEOHMCh93tfXzSFdg3B2PRzsPLqObyNISFw92MqbKSbbMd5fbzxvBKIe583dzm1jNKpUqfB+dVsY/OwL88UAfN8ytzlg7nw4DMqvRF50uqLYcj44ASqmMKwvqiMfwnF7pg3qzn4ehVFqKgXyRacQjWTjtBlYAVcBjYxlQitQCTswwfiLNwDIApdRzIvIg8CJgAI8C949wzBswpVs25cC+c889l4qKirQGF4lEWLt2LSeceTahV1oBeO/ZZ6bcuRzMKMAnNzUSQVh19nnxKlfp8kYwytqtLaDgtsPmcHrFIgB2N/eysb6b+hnzuXDp0SPO45xzzsGdw4vxHQf6YE8Xx1aW8JZjL4xv727r595dnfTWzeTCU1ZmfPyzXjvAf/si3L+wknOnDL2yN578qyOA8WYHi71OLj3/nCH3WRiIcN/WA7zoq+ToY8+L5wiN12fy9/YAsZ0dLPW5uOK8swf9raQ7xAVvtPFcWR13nbhiUKWZVEmex09fb4XeMBesWMaFNUeldazpfWH+8Jr5OytxCPceuYAlvsVpjykTcvl5nG0ovru5iR5cLDjjnHhvm1yRPJfu7u6xHK4JM7KxBzPP7nhMOewCGDcfquBpHkNyOQwkmGdSdt2WWb2vpnTEG8Kzq0osxyPIdzMaZWb0xgyetW5yzx7G4bEr4G0bQy+PDQkFV+5u6+f68txHF4ciaKi4vDXVghjnV5Uwy+NkfzjGP9r7eWdlZhHodHg+3jhw9CZ8p1X4KHUIDZEYm/sj8aaU6RBViu3BzEvpFjtHl3oodQjtltx4ZYYqhPEkI8dDKfWO5G0i4gBuA8Y9gXs4lFJfB76e4r4hIF6Jxb4Qu93ujG8o2q31B79DqPal3ylzjseUGjXGYGGGY/jGmx1EFVxcXcI5NQMN1C6oKeOL9d080xsm5HCO6BSN5T1IhQ39ptE8qcI36DxHlJcAnbwaiOJyuTJaLemNGTzXZ1607u+JcNG0/F+4nuzrAeCsqpJh39fD3W6OLfPwfG+Yv3WF+dyMwc5vrj+T//SY0ryLq/0HnefsKS4WeLvYFYpyf0+ED9dl3pjPnsd2K5dpeakv7XkdXemizuXgQNTgpnnVHJaHG4dcfB5uzNLSj3UHeaY/xhEV41Ody57LGOfzGPBWzIWfO4Gfisi7gaMxy7FPeiKGoi1qSq0yyfGAgQTzdLuXt0VirLFkTO8bRmZlc4510/9Cb5iOaIxq1/iUpl7XHSKiTOfqkGEq3S0dY0ndxEZ4APe0B/jOvMxX5sfCo10Beg3FLI8zpWgCgFOEj9SV8b39XdzR0ss7K3MrtzKU4gXLGTx2hMRyG69DOKvSx/0dAR7qCGTkeOyyCo+UOCTjBdhixu0QTir3sqYryBPdwQnheGQtMqeUMjAjBl/I1jFHoBWIAdOStk/DXGkrCMaSOAiJla0ySxx8sivI/R0BnMAP5w0OUi32uZjvdRJR+a8B/Vzv4IpWNktL3DiBzphBQ4bvwfreEPYrH+osjJJzQ/XvGAq7k/nvx7lJVEwpHkooo5uMQ4TLrX4jd2ZhbN1RIy45ySSU7hTh3mV13Lmohv83QbqTp8qpVjnTdRMvwfwTwPch3rvjI8BrmA0Er8zjuAqGFsvpcAlMyaBEKAw0EUw34vG39n6iCo4s9XBoUo5frKeb4Buvxp/P9rpYVuLCYKDp6XhgJ1knV7NKxF4B3x2KEsigctILfWYZ9xluBx5lsD0U48U8lTG3q1m9rdqfllzmI1PLEMxeRkM1Us0m24NRumIKnwgrUrxWX2DZkEz7edgVrZb60is8Mpk4Y4iy8oVMtiWBhzAOCetKqTCwETjL3mZFXM4Cns31+VPFNiyZhtHnjKGXh6EUV+8xy+d+YohunSLCuVad7XyW1W2PxOKJY8cnraB4HcJiq3zeKxlqeJ9JaMC2P2LkzajYNIVjbA1EEMyksJG4pMaPR2BLf4TN4zju53vDtEYNqpyOeMWMZC6rM43dk90hdoyxjJ8tk5jmdlCZ4Q3YieU+Lq0rmzDdyVPlFOs78lR3qCCc5lSxFqJcInKsiFyMmefxCKb06vy8Dq5AsBemprqcGd9QxSMeaXYvvzsusxocRYt1dVJ/9cfY99UrCb450G7Frm6V3KgzlzwySn4HmEn5lU5BYXbJThdbNnRSmYfVIVNaeFfr+PfFiCnFv+z8jpr0Irbzfa64FO13B3I7drsIzFFlHtyO1L6zdj+P53pDGfV/0vkdo3Nagp0olEqlI5GRlReRm5MePxWRu4C7rceYEZEyEVklIqusTQus53Ot5zcDHxeRy0TkUEyZVylmWL8gsEvpZlKxBGCuVVJ3bwaOx/+19rGpL0yFU7huTtWQ+5xnXRAezmMjweesC/8Sn4vaIRy0w0rMsOGrGZbU/a+VOOhS5mfxryx0UR0L9orhqlIPNaM4pFPcTt4a7+kxflGPBzpM43VelW9Y4zLH6+Jc64bgzjGOLW5Y0mgcOFk4rsyDR6AxEsvoxipfiMj5mAU+nsPMrftH0mPS02zZh0wTywHmW1HxfeEYoRTL3daHoqyzFmQuSZBZqUiExh99g2iLKRoIvvZy/G/2je1Yy6KmSlM4xivWAs2ZIyzQiEj8hjSTPI/nLftwdKmHU0LmQt09bX3jfvP2354QB6IG1U4Hp5ann8D/MSvS+8e2fnLZ0eQFO78jRSkYmBGzI/xuFJndawz08ND2YThWl5l9nzpiBlsmQPuBTCMeRyY97MzfL5GlBoKYWuAXrQeYjsaLwPUASqm7gaut55uBVcD5SqnkhPO8MdaKJXMso7InzV4e/TGDb+ztBOCaWZXUDXODe2aFD5eYK0U7x5CcNxaSGwcmE+9gnkGd8phScRnXeYE2AP6dZ8fDboY1kjFN5NI688bgzwf6iIxTHf0HRpBZJWL39Ph9Sx/RMRhqW5+9RBuWgyhxOuJa6gkmt/oFcA8wQynlSHpooTbQHB3bwhSYMt5qpwMDOGtrc0rX8Xva+lDAKeXeeFRdKcWB228h+OpL8f3CewbSNU+vNG3Fm6Eou8bBVthldI9KYYFmSYZ5HkqpgUTpUjdHhbqpcAr14Vi8r9R4YVezunhKScqRhETeWu2nzuWgMWKw0ZNeMZx0SKVx4FCMRW61zVpw0RGP4XGJcLLlsD4xAeRWmV7xLgIuVkqdoZQ6A/go5srWHqVUVpbllFJPKKVkiMflCfvcqpSap5TyKqWOU0qtz8a5s8VYpVZ2Xfb6NLuX39LYw75wjHleJ5+dMfxFqMLl4ATrAvJwnuRWw+V32Cy3HI9Mmgi+0h+hJ6Yodwjv6G9GgE19YfbnWAc7Eo8l1KVPhfOqSpjmNhOnHxqHyNTeUJSX+iM4MCumjMRbqv3UuBw0RmJjiprZK5XasAzNQJ7H+N4MjZFpwM2FtBBUaIw1BxDMFf/fLqqh0ik82xviqJca+cOBkZt72lKixKTyrofupXvtv0CEirMvAiC0e8DxKHc64lLYteNwY2NLukbK77CxV8K3pSn53B+O0RiJ4QSO9LvxoHirFcW9y5KijQdKqUFldDPB45B4TuAjJTVZG1siYUPFpcrHphHxgAG51cOdwbQWqZRSvNavIx6pcLplJ/Kds5sKmToe/wA+DCAiVZhOx5eAf4hIvnvwFAwDUqsMHY8MpFbN4Rg/tJoFfn9uNb5RVk8G8jzGPxIQU4r1dsfyYVZQVvgtqVUgknb425ZZHVvmYYoR5dhS88L17zxJy3YGI+wOxXAJnFKR2oqRS4QP1lqRhXGQW9nRjhPLvaOuNHodwoesiMxvx5BkbtfgX1JSsP1M80o8z6On8A1KAn/D7J2kScAI9NP8/a8y+8l/s3fzJgCq9rxB92MP0bfhvwRee5lw/W6ine2oFBs4vnWKnxePmMkp5V56YoqP7GjjA9tb6YgeHCnfFoiwqS+MS+DdVn5H/0sbab3jVgBqLr2Sqrd/AIDw3l2o2MAxzhonuZVSKqX8Dhv7upGu42FHOw73u+MlwS+xuoX/ra1/TFHcdNjcH2FPKEaJQzh3DH1SrrDkVps8FWzMQU7gS/1hwsoshLAwzWaVx5d7meJy0BEz4iqHVGiNGnTEDASzII5meE6vtPM8gsQKPM8jU8fjKOAp6//vxuyfMQ+4FPhsFsZVFLSMsUa7LbXqiim6oqlV7Pj2vk56DcUxpR4uSaFTqK3Tf7w7OG5SHptX+iP0Gopyp3DYMN3TF/lceAT6DJV25Zb/Wp7/CdbqzIXWXP/dnh/Hw87vOL7Mm1ZPF1tu9UBHIKPkvHSwHY8LR5FZ2dhyq393BGjOoPKYoRTbrVD6Mp3jMSQnlntxYkouM+nXkCc+DbxTRH4nIl8Skc8mPvI9uHwR6+kiuOUFKndto6HNlH/6n32Mll/cQOMPrmH/tVex97OXsvsjb+fN957FvmuuItrZMepx53ldPHrYNL47pwoncE9bP0duaeTJpOiEvZJ/TmUJtW4n4cZ9NP34W2DEKD/9PKre9j7c02ciHi8qHCLS1BB/re0EPNaV2xub1wNRGiIxfCKclEK+Q2KORzoFGJ4fQjZ0RoWXWqs093gl0v+jbSCnLpOeSDbLSty8p9qHIcJHdnXSn0GVr5HYkJDfkW4RD6cI51nfn3Qi97bMap7XOab3ZjJwZKmHCqfQFVPjWowmEzL9JP1Aj/X/c4F7rSomz2E6IBqgKZ48mNnbXOZ0xMsspiK32tof5jfN5srzTfOrU6qUclSph1qXg56YijdrGi+ejUckvDiHGatLhENL7DyP9Fa0nolHU0zH4+IEw5nti3Iq2I5HqjIrm8NLPRxV6iGizDrzuaI/ZsTL8Y2W32Gzwu/h2DIPUQV/ak0/6lEfjhEwFG4ZKA2qGUyZ08Fq6zs8gfI83o9pG94FfAazzLr9+Hz+hpVfHKXl1Fz1VRqPOZ2OeUsAmD1nLv4jj8W7aBnu6bNwlJWDdT0Mvv4yDd/+ArHuzlGP7RTh2tmVPL1iOod4XdSHY5z1ajPf2NtBxFAopeJNA99f68fo76PxB9dg9PbgXbKcuk9ejYggTieeuQuAwXkex5Z5qbASWDfl8MbGzu84ucI7asQeYJHPjQDdMRVP2E+FoTpwu0TikaDxkluNVWaVyM/mVTElFuaNYJSv7BndYU2H59Po3zEUF1Sln+eh8ztSxykSj44XutwqU8djB/B2EZkDnAessbZPBcbU7raYGGuOB8BcKzF97ygJ5oZSfGVPBwbwjil+Tk4xedkhEq9YMt5yq2dHkVnZxPM80gil7wtF2Rs29bu2xGq51bskqBSPjHMCllJqILE8g3D6ZVbU409tufuMHusOElSKeV4nh6Vxof+IFfX4bcvI2vKheMMyLIt8blxFVgo3m5xq/Z4nUJ7H94HrgEql1Hyl1IKEx8J8Dy5fOEvLKDvtXNoPW0179VQAlr79vcz81k3M+fGvmXfbX1j4xwc45K+PMeeW3+GsriG8Zyf7v/0lYj2pmdZjy71sOmIGH6krRQE37O/m5FeauKutn+3BKCUO4a2VXppuvp7Ivj04a+qY8dXv4fAMXIe98w8BBud5uETiJcBzKbeyr83DdStPxueQeFnhVOVWMaXiFZqOS8ovtHNf/tHeTzDHKoAdgQivBCK4xGzyO1amuBx8unsvALc198b7MWWDDRlUtErk/KoSHMBL/ZGUWwTY9kHnd6TGGRV2P4/CthOZOh7XAzcBu4H1Sim7d8a5DFShmtQExEG/ddEak+PhPTjPQylFfSjKvW39XLOng3O2NlOzoZ7/dAZxC9w4tyqtc5xXnZ9+HnZi+QnDJJbb2Hke6SSY2/kdR5R6KLdCtCLCxdXmqtJ4V7faGojQEjEocchB/UpS4X21pbgFNvVH2OPMXAc8EvFqVlX+tELpl9SUUuIQXg9E4+WRU8U2LEt0tGNE7ATzpwp8JSsBD3C3FQkvOERkqYhsTngEROTt4zmG5hGqHorTiXfeQmZdfwvOymrCu7bT8J0vEevrOWjfoShzOvjNolruXlJLtdPBC31hPrS9FYC3VJcQuus39G98FvF4mPG17+OaUjvo9Z55puORGPEAOKfK7ueRm+tnxFA82Z16YrnNUivP4/UUK269FjBlvmWOgYi6zUnlXmZ7nHTHVMZN71LFjnacXuHLWkf4VZFePm01eP3Ym20cyII8tytqxMvaplvRyqbG7YwXkflOfWdKi1Q64pEedp7H0z3pJfGPNxk5HkqpvwFzMUveJjaDepTx6Vxe8HQ6zAthqUPS0vMnYzsej3YF+d6+Tt72eguzN+5n/qb9vOeNA/yooZvHuoN0xxQlDuEn86pZlOaP9FyrOdTGvnA8LyXXHEjoS3Bc+cgrKPbq+9Y0SurajkdyAzx7VemBjsC41mq3ZVYnl3vxZFAusdbtjMuf/lNSO8re6aOUSrmMbjKVLkdcnpBukvkb2rCkxEnlPgSzc3BjmlXu8sTvgUvyPYjhUEptU0qtUkqtAk4G+oC143X+MKYWG0auauWZPY+Z19+Co6KS0JvbaLj+yxj9qUuA3l1TyuYjZnBGQjGLtzVtp/O+vwAw9dNfw7do2cHntSMeSY6HHYX4b08oJ3LV53tD9MQUNS4Hq0pTX1m3rx9vpBjxsIuaHF3mOUjm6xDhkhrzxj3Xcqv7siizSuS7sytYXuKmKRLj/73ZNubmoxutDu/zvM6Mi+UAfGt2JQ7gzgN9/KJpdCd6m87/S4uVfjdVTlM6vynNRcDxJOM7YqVUk1LqxcQVLaXU80qp17MztIlNp8P8oYwl2gEw10owv7e9n+vqu/h3R4AmqwTgEX43H5taxi8XTmHTyhl0HjuHq0Yonzsc0z1OjrDkTGvHSW5ly6wOLXGPutJj9/J4LRBJ2Yt/ZhjH47QKH+VOoSkSy0nlj+FIpzzkcHxqejkAa0pqeCrLdea39EfYH47hd0h81SQd7CTze1r76E3jhiQe8dCOx4hUJdyITRC5lRP4iog8KSK/SG46m+/BJfFW4FGl1LjVULUXpjwClc6RFyK8cxcw69s/xVFWQeiNV2n47pcxAql3qJ7tdbFm+TT+d+EUvlUSZvWt1wFQ/a4PU37K2cOc01TDRZsbBzk6i30u5nqchBU8nYMbG/s6eWalL61u7nYvj20p9vIYkA0NvXr/vlrTEXigI0B3ioVd0qUhPBAhftuUscusEilxCH9cXItb4J8dAe48MPirHXj1JXqeeiTl4432fqXKOVUl/GheNQBf2t0xorw7jLDbkphrqVVqOEXi0fFCzvPQZQJyRJdlWMbqeFxY5Wea28Ein4v31/q5eX41T62YRuexc9h0xEx+dUgNH59WzhGlnpQ18rHuLlR08AV6oKzu+HxZ7ZJ6o8mswKzY4ncIYQVvptC9uSdmsMVyKk5KOr7HIfEIz3hVt4oqFU8KziS/w+asyhIuq/WjRPjYrk56srjiaHcrP7vSl1JCZzKnlHtZ7HPRayjuaUv9pmgg4qGlVqNxSvmEaiR4OKbs1gBWMLjh7KqxHlxEThWRf4lIg4iooWRSInKViOwWkaCIrBeRY4c53HuBu8c6pnSwF6amu50pyRq9CxYx89s/wVFaRvD1V2j43lcwgqlfvxwifNQV5NKffwWJhCg99mSmfOCjw+7vrKjEWVMHQGjPzvh2EeFsW26VAwc43fwOm3QjHhtGSZQ+stTDEp+LoFLc35H69Swd7rOukyeUeZnpyf71b1Wph+/OqQLg87vaedOSoSmlaPzh12m++XpCe3eldKyBxPLM8jsS+fyMci6rK8UA3v9G67CfWaPTiwKqnI4xNdmcbNgLh9rxmITYK1pj/cEc6nfTcPQcth05iz8truNzMyo4sTzzsnuBV19i98ffReOPvjFou11Wd23X+EiQ4o0DU7iQOUTicqtUOpiv7wlhYIaFZw9Rb/xia3Xp3zkyKMls7A3THVNUO9OTDwzFj+dUMDUWYk84xpd2Z69qSaYyKxsRiSeZ397ck9J3KIiD/VYVmqU6lD4qdoL5UxMg4mE3lx3mcWYWTlEKbAGuGuqPInIJcDPwHczy71uAh0VkatJ+FcCJwINZGFPKdGawMOU7ZCkzr/sJDn8pwVdfovH7X8MIjXxzoWIx+l/aSMsvf8LeL15BrKMNz9wFTPv8NxDHyDbEO8+MeiTnedhR22w7Ht3RgR4PZ1emdx1aZi1c7ApFCY2SEN4fM3jZyhcc7kZaROJJ5nbDxWzzd0tm9e4Uyt5nyhdnVnBquZc+Q3HZ9jaiShFtacToNnt9hXakJlDJVsQDzPf2toU1nFDmpTNm8PbXW4ZsF7DfZZ5rWYkr7fK9kxm7AMTT3aFxb5GQKnqZMUfEV7SGSBzMF7G+Xppv+R4qHKZ/03qMUAiH1/xxn1Tuw+8QmiMGL/VHxnyDPBIRQ8WbN6US8QA4zO9mQ1+Yrf0R3jVKY9bhZFY2F1rVNTb3R9gbisbzaHKFnd9xWuXwZYNTpcLp4DPde/lW9WLuaOnlrVNK4gnzmdIcjsU/j1T7dwzFpXWlXF/fxfO9Yb67r4vrrNW24WiwDEuNyzFqs0LNQNPJrYEIrZEYtZP4PVNKPQQ8BAx3U/JF4Hal1J3WPlcCFwFXADcm7Pc2YI1SasQ7eBHxAokXlHKASCRCJMVGfzaRSCRuH6a6JK3XO+cvYuq1N9L8/a8SeOVFGn5wDVO/8j3EM3C9VkaM0Gsv0/fsk/SvX4fR1Tnw+rpp1H75emIuN7FRzuuauxA2rSewczv+hH1P9Zvfu1cCUTocrrTnPxyPdQaJAYd4ncxyqrSOW4Oi3CH0GIrXewMsH0Ga83xPiBgww+1gqhiDPsPEc767ysv1+8zFuKZAiBpX9tZpmyOxuGTyLRXurL2HQ83j9vmVHPPqAZ7tDfGDvR18bt+2+N8Cb75ByTByO5v94Rj7wzEcwOGe9L6vw+EA/nJIFSe9eoBtwSjv29bCfYunxO1jJBJhn1VEZbHXmbX3Jx8M9ZnkkmVumOIU2mOK57r6U1rcTYWh5pHpnLTjkSMyWdHKNa2/+RnRA03mk1iM0JvbKFm+EjC7UJ9e4ePBzgBrOgM5dTxe6g8TMBRVTkfK2s3D/B6gL6VeHnZi+XDNp2rdTk4o9/LfnhAPdAT4pJU7kSsej1dpyY6O97BIH5+bVsotzX184s02XjrCO6ab0Ic6AyhgdalnTCH/GR4X/7twCle82cb1+7o4stTDW0dImmxwmvdxOrE8NWrdZpnjrYEIT3WHeEcOV0onMiLiAVYDN9jblFKGiDwCnJC0+3uBX6dw2GswywMPYs2aNfj96X8Onf5pAISb9vPg9vVpv77k9Lcyb+3fCb60ka1f/ST1Z7yVktZmKnZvo2L3G7iDA6v0Ua+PnrmL6VqwhL7pc2DjZmDzqOeoaO9iDtCyZSPrHxwcEFpQvYRdbj8vucupXju2nHwFbPBU8Jvy2eD0sKijmQcf3Jj2caZWL6HH7eeuZ57n+FDXsPv9s6QOymcxp7edhx7aNOhva5PmYs/z+nUbOC/YlvaYhuNhXw2qYg6LI3288ugaXsnakU2S5/ERbzU/q5zHd/d3M2v9Jk6ztjduep7nps4f8VjrPZVQtYA50QDrHv5PVsf5eVcJX69ezJruEO9/aguX9w40rNxfMRcAtedNHnytJavnzQfJn0kuWVwxn/W+Km5/4SXa+7P73iXOo78/s2igdjxyxIDUqjAcj56nH6XniYfB4cA9YzaR/XsJbtsadzzA7JxqOx5fmVWZs7HY4fTjyj0pJxDanc1fHUXDG1UqfvzhIh5gVrf6b0+If3X059TxCBqK/1orW2PJ70jm27MqWNMd5tVAhE/ubOeeJbUZh6PHKrNK5LKpZWzqC3NrUw+X7mjlucNnDOtc7rccD11KN3VOqfCyNRBhXXdQOx7DU4uZ3N6ctL0ZiJdwEpFK4FjMJoejcQOmdMumHNh37rnnUlGRXkGPSCTCr599FYDVC+dz4ayVo7xiaILHHUvLD66hfP9uDrvnV6jwgPTJUVpOybEnUXrC6fhWHIm40v+NheuX07juQUp7Orng/PMHSbP+u6+bnzT1ssVTzvdOPRq3O7PFg12hKF/a28WDVt+BOR4nN69YziG+9N+Te3Z28GZ7gLLlK7lwxvDX9D+/2Q4dQS5eOIcLZywHzM9k7dq1nHPOOYPm8npTL9fu6+bVmYfws2XHpT2m4fj5tlboCfORBTO48ITFWTvucPO4QCn27+zgbx1BbjzibI557j/4IyEqeju54IILRrQdz+7rhqZezphew4XHX5i1sdrMaA/woZ0d3O+fyluWL+HDtX4ikQhXv7AHgLcdcRgXVh+d9fOOF8N9Jrlkd3Mv6+u7aZq5gAuXZOe9G2oe3d2Zte3TFj9HJCYP5ptIazMHfvkTwKxk4ijx0/aH2whuG7zOcl5VCdDB0z0hemMGY1dzDo3dIX20xoGJrEhIHgwZCu8wCdAv95v12SucEq+GNRQXV5dwzd5OHu8K0hszxlTyeCSe6TGb8s1wO1maxRtsn0P4/aIaTniliXvb+/lzax8frCtL+zhhQ8Uri2TD8QC4aV41L/WFWdcT4p2vt/Ds4TOoHEKm0OAyHTEd8UidUyt8/LK5N+tVzSYjSqkuYFqK+4aA+Jtu36i53e6MbiZs+zDL58n4ZsR9xNE4v34jjd//KiocwuEvo/T4Uyg78Qz8K1cjY7zJcc1dAC43KtCPdLbhnjYz/rdzq/1xx8PlcqU9h5ChuKmhix/s6yaoFG6Bq2dWcO2syozzFw8t9UB7gB1hY8TxvGBFzU+oLDlov+TP8/1Ty7l2XzdP94ZpMYRZWZDlHojEWNdjSlvfW1eWk5vRob6Xtx1Sy7MvNbKTKn50+vv49trfY/T2IN0duGuH/xlssiqFHVfhy8lY3z/Nzeshg+/t7+KqPZ0cWubjKK8rnuNxWPnBn9NEJNNrRSacNaUU6rtZ1xPi2v29fHpGOfOyJClPnEem89HJ5Vkm0txA4MX1dIkltfLk9y1WhkHLz36A0deLd9Eyprz3MnxLDwMguG3roPrei3wuFnhdRFRuKyLYpXSPTzG/A2Cmx0mV00GMkbvTPmON+/iykfMpDi1xs9DrIqxgbQ4reT2eUB4y2wlyR5V5+dZsMzL1mV3t7EuxG2wi67qD9BqK6W4nR2VJXud2CHcvrWO2x8m2YJTLdrQOmWwej3hoxyNl7FKJm/vCdOaozGcR0ArEONipmAY0jf9wDiZbxUf8K1cz56bfMPO6n7Dgd/9k2meuoXT18WN2OgDE5cIzZz4wuIM5wMkVPnwCHU43323oYX1PKOVS52s7AxyxpYFv1XcRVIozK3xsPmIm35tbnbHTAQMLGCPZh5ZIjN2hGAIcXTq6/ZnrdXFSuVldKZ1qfSPxj/Z+DExp64JxLKoxxe3kjllmwvxfjjybp1adCkB415vDvsZQatQKYNngujmVvH1KCWEF79rWwvN9EULixCWwMMc5mMXI8hI351b6iCi4ubGbRZv2895tB3i6Ozjmni7ZQDseWabniYdpueFauq3PtvSFp4l1d+ZtPJ3/uofAKy8iXh/TPv9NxOXCe8hScLmIdbYTbWmM7ysi8epWD3fk5ma8KTxw4T8ujQuZiMTlVltHMCzx/I6KkY9tdjHPfXWrxxIcj1zw1VmVHFvmoSumuOLNtrQrktkyqwurS9Kqmz8aU91O/r60Dq/AvzoCfG/fYM21Umogx0NXtEqZGR4Xi30uFPDfnsItl5hPlFJhYCNwlr1NRBzW82fzNa5EshkR98yZj3/VMVlxNpIZqGy1c9B2n0M407rG/qCxlxNfaaJ2Qz0Xv9bCTfu7eKE3RCzpWrQ/FOV9bxzg/Nda2B6MMsPt5P8W17Jm+dSs9GlYmtDLY7ibK7ss7KElbipSTBYfqG6VnTYvf7ccmHflQSp5cvteLnvBzNP4wpmXcc0FH+eu5i7ahmkc/EYwGm9OfFgOF4gcIvx+US0r/W6aIwbv3G7m0xzideHOoLz7ZMchwgOHTuX+ZXWcVenDwKyidtrWZo57uYk/HeglnMeKV9rxyDLi8RKsm0HAbd343vZDdn3k7ey79tN03PcXwvv3jttYQrt20Pan2wGoveIzeGbNAcDh9eJdYOpKg9u2DnpNvJ9HV256XNjRjhX+1C/8NnHHY4SSuqNVtErkLVZZ3Qc7c1NCuDtqxMsQ5srxcInwu0W1lDiER7uC/LI59c7hSin+ncX8jmSOLvPyvwvNEmTf2dfF/e0DDl5DxCDocOIEDtE5HmlxilUucYI0EswJIlImIqtEZJW1aYH1fK71/Gbg4yJymYgcCtyGWYL3zjwM9yDsiEchSHFHIt7BfPfBq+K3L6jmip59vKXKF++W/FBngK/u7eS4l01H5K2vt3BzQzc/2t/F8s0N/LWtHwfwuRnlvLpqJu+rLc1aJHixz4UAnTGDA8NEA5/vscvCph7dfXeNHyfwQl+Y7Sn2CRmOtkgsvhj1zix3K0+F0K4dfOnJeziiu5kel4d7Dz+VT9QsZ9oL+zjx5Ua+Xd/JswnRK9tRO6rUk3MHoMzp4L6lU6l1OWiPmefPpjx5suEQ4aJqP2uWT2Pzyhl8dGoZXoGNfWEu29HGwk37+cG+Lg4M43TmdGzjfsYip/odH8B5k2nb/EaU6tlzwTAIvvYSbX+4jb2f/hB7PvUBWn/3PwS2bs5Z2MsIhWj+6XchGqH0mJOoOOfiQX9PlFslcmaFD5fAjmCUnRlId0YjLrPKIGy7It7LY+iL/95QlPqw2dU9lWjKKeU+Kp1CS8SIl5PNJut6zPKQi3yunJbsXVri5odzqwD4yp6OUZtoGUrxZFeQj7/Zxs5QFI+k37ArVS6fWsZVVvL+ZTta4zIIu3HgfK8Tj17RSgtbbvVUATeIGgeOxmxQ+KL1/Gbr/9cDKKXuBq62nm/GbFp4vlIqOeF83OmNmU43wLQCKrc+FN55puOR3MsDzDLYFwda+euiKbQcM5sXVs7gJ/Oqubi6hEqn0B1TPNAR4Mt7Orhmbye9huKEMi8bVs7g5vlT0l54Go0Sp4O5XvP9HE5uZd9Ip9OPYqrbGV84urttbFGPf3YEiAFH+N0szoPENLx7B95YhAdaX+J+TwdXPP8ASzqaUMB6qwz6ya80MW3DPt677QC/azEXstJx1MbCfJ+Lvy6tw2WZhGIoPGKEgmCMvyzWCAZQEfO+5vBSD78+pIY9q2fz3TlVzHA7aYzE+GZ9J/M37ufjb7axKzh+JYu145EDWqzVlmklXubefAfzfv1Xaj/+eUpWHQMuF5HGfXT+8272f+OzZl+NWPY9zrY//pJw/S6cVVOYetVXD1pVijserw9OMK9wOeJJ3490ZX9F1W4cmGr/jkTMkrqwdRjHw5ZZrSr1UJqCVtjtECuhPjdyq/utzuhnVOTmpj6RT04v56xKHwFDcfmO1iH11i/1hfnang4WbtrPma82c+cB04i+p6Y0Z8n1AD+ZV82p5V66Y4p3bmuhO2qw3XI8isGwjDd2I8EXesP0ZrF7/URCKfWEUkqGeFyesM+tSql5SimvUuo4pVT6dWtzQLPVNNPvEMoK3Om2Ix6Rxn0jdkp3inBkqYfPz6zgn8umcuCYOTx/+HR+PK+ai6pLOKrUw+2H1LBuxbSclmpf4hs+z8PMVzBvxI5L80Y6sZngWBYL/245Lu+uKc34GGPBjlyVL1jEeYfM46tP3MW/fvMVdi2fwu2H1PCeGj/VTgedMYO/t/fzZHf6jtpYObXCx28XVHNIpJ/3Tcl+JH48iTTuZ98n3sPsdQ+My/liPd10P/IADd/9Mjs/fBF7PvNhjIRqd3VuJ9fOrmTnUbP4w6IaVpd6CCrFb1t66R9H6ZW2+jkg7nhYKzruumlUXfhOqi58J0Z/H/2bN9C34b/0PPUIvevW4ijxU/f/vpi1kHPfi8/T9cDfAZj66a/hrKw6aB/f0hWAeSEyggEcvoEf+LlVJTzVE2Jtd4iPZGVEJmFD8cKYHA/TqOwKRemLGQc5F8902/07Uj/2xdUl3NPWz787AnxvbnXaYxqOhnCUPx4wV4s+UJd7I+MQ4Y5DajhiSwPre8P8aH83186uZG8oyl2tffzfgT5eSTDGlU7hXTWlfKC2lNNGyYcZK26HcNeSOo59uZHXA2ay+RwrqVY7Hukzz+tintfJnlCMR7uCrPS7ORAxOBCN0RIxaI2Y/5rPY7RGDE4q9/LTBVPyPXQNA/ZhqstR8B2ZXVVTcFZWE+vqILx3F74ly1N6nVOE1WVeVpd5+eLM9MoNj4VlJW7WdgXZFjg4Wr8jGKUzZuAT4XB/eo7HO6b4+dTONl4LRHi5P8LKDJynjqj5e4XU8juMUIjAK5voe+FZAps34Jm3kOlf/V7G3xkVi8ZzdTzzD8FVVY2zuoZYRxt1jXu4YtkKrphaRsxy0B62SusLwgVV4+sAvHdKCWUdb7DCv2hcz5ttep5+BBXop2LPdmK9Pbirs38NjnV10rv+KXqffYLAy5sgYSE72txI8LWX8R8xuKSuxyF8sK6MD9SW8kxPiMe7g/GF3fFAW/0cYK9oDdU80OEvpezE0yk78XT8Rx1P80+vp/vhf+IsK6fmQ58Y87lj3Z20/OIHAFRe8A5KVx8/5H6u2qk4a+qItR0gtGMbJStWxf92XpWPb9bDE90hPjzmEQ3wYl+YkDJD9IszuOGsczuZ6nbQEjF4LRDh6KRVmGesZNsT07iRvqCqBCdmGd49oWjWSs79tKGHsIKTy73xFepcM8fr4ucLpnDZjja+s6+ThzsDPJ1QdtUjZhL5B2pLuajaj28cV1uneZz8bWkdp73SxP0dAXzWqTP5HmhMmeCeUB/v3HYgpf2rsixr0WROs6Wpnj7GilbjhWf+IQS2vEBoz86UHY98Ea9sNYRsJJ6vUDY4X0FFInTd+394A8MrDypdDi6oLuEf7QHuau3LyPG4vz1ARJmS4eFKiEdam+l/4Tn6Nj5L4KWNg3qzRJr2E2nch2fmnLTPDRBp2IeKhBFfCe7pswDwzl9Ef0cb4d1vUrLMXIx0inB8uZfjy71cN6cqo3NpTPo2PAOAKEXwpRfwnXZuVo4b7Wijb/1T9D7zBIGtmwdJuTzzF1F24mkE33iN/heeoX/zhoMcDxsR4aQKHyeN0z2Kjbb6OcA2LKOVSiw/5SyMQB8HbruJjr//CUdpGdXv+EDG51VK0fK/PybW0Y571lxqLvvksPuKCL4lh9H37BMEt70yyPE4stRDncvBgajBNvfQq/VKKQ5EDbYHIuwIRnGLcKjfzVKfa9iSiLbM6rgyb8arNitKPDwWCfJK/2DHoztq8JIlwUon4jHF7eSkci/rekL8u72fq2aMfXWuLRLjV809AHwth40Yh+KDtaX8sz3Ave39cafjtAovH6gt5V01fqpd+dOUH2Mlm3/0zTaCVlRXRzwy45LaUv6vtQ8F+ESY6nZQ53ZSZ//rMp30WstZz5ZDrRk7Iy1MFSJey/EYKs+j0FhSYn7Ph8pzs/P4kvMVutbeT+ddv2XG1FnwwUuHPfb7a0v5R3uA21t6+dLMCmrS/Pz+3n5wNSsVixHc/hr9LzxL38ZnCCcl8btq6vAffSLBV7cQrt9N8LWXM3Y8Qrt3AGalMrsZpGfBIvpfXE9o1/aMjqkZnmh7K6Htr8WfBzatp2qMjoeKxWi66Tr61j8FCZI/7yFLKTvhNEpPOC3+/ehZtzbueDDCvWA+0NYoBySG0kej8ty3YvT10vaHX9L2h1/iKC2j8ty3ZnTenkcfNL+QLhfTvvBNHN6RvVjfUtPxCGx7hUSRkUOEs6t8/KW1n+e8VTzbG2ZXJMSbwSjbg6ajsSMYoTt2sCZQgHleJ8tK3Bxa4mZZiZvlfvP/z6ZRcWo4lvvdPNYdPCjP47neEAZmsvJMT3pf64unlLCuJ8T9HYGsOB63NvXQZyhW+d2cXzW+Kwkiwq8WTmGadbP5vtpS5hTQTeflVmfz/2kyHTPteGTGhdUltB0zB6dAqUMKXrKjGSDVhalCwTNv+MpWhYZdUndnMErYUIMKVwzXj6L/hecA8B9oNPNYhilL/PYpfg73u3m5P8I36zvjFftSoStqsNZq1Go7Hkagn/ovfYxI476BHUXwLT0M/+oTKD36RDzzFiIitP7xV4TrdxN47SUqzsqse7jtXHjmD8iXvNb/J8JnO9Hoe8Gs3C0lpahAH4EXn0cZRtzpy4TAay/R99w6ALxLllN2wmmUnXDaoOaeNiUrzShHePcOoh1tuKpT/77mGm31c0C6K1rV7/gAsd4eOu/9Pw788ic4/KWUn3zW6C+0UIZBz7q1HLjj5wDUvP+j+A5ZOurrkhsJJt68nFtVwl9a+3nAX8cDr7cO+XoB5nicLPK5CSvFa4EIbVGD3SGzV8d/hmnMl07jwGQGenkMrkI1UEY3/Rv9i6v9fGVPJ092B+mOGmOqttITM/hFoxXtmF2ZlxvCKW4nt6ZhFMebn8yrpj8a48De3Ux3H3zB1KTGUN3gNYXPRIx4gFnZKtlOFBqzPE5KHUKfoXgzGOVQy16EDMXmPtNmHJsQ8TBCIQJbzcJoogxCr7+M95iThjy2S4SfL5jCGVub+XVzLx+bWsZRKSZd/6ujn7Ay+4fYWvq+Tc8RadyHeH2UHnMipatPxH/UsTgrqg56fcmhK+nk/wi+9nLK70UydjTFO8jxsD7bvTtRsRjinBjfyYlA34b/AlBx0bto/+dd0NNFaMfrY5Ir2k5H+ZkXMO0z14y4r6uqGu/CxYR2biewZSPlp2dH5pUNtOORA1qsFa1paaxo1XzoExh9vXQ//E+ab/kejhI/patPGPV1/Zufp/UPvyJsrWaUrDiSqre9L6Vz+g5ZAi43RncXkab9eGbMjv/toqoSproctEQNZnucLPa5WORzs7jE+tfnYqHPfVCewIFIjNcCEV4LRHi93/o3EKE+bL4nNS7HoAt/uqyI9/IYHPGwHY90ZFY2S0vM+WwPRlnTFRhTxZFfN/fQETNY4nPlpU77RMDtEG6bX8WDrzZgVjnVaCYPycVHCh3P7HngcGL09hBrO4Crdmq+hzQsIsLSEjeb+sJsC0bijseWvjBhBbUuBwsSIsCBrZtR4YFFrOArm6kYxvEAs+LS+2v9/KW1n8/u6mDdimkpNV6NNw1MsAl9zz8NmLmYtaNIYXxW/kWkoZ5oZweuqvQLoYR2WVKrBQOOh3vmHMTjRQUDRJoa4r2+NGPDCAUJvPQCAP7jT2Hvhueo3PMGfZuey9jxUIZBr+V4lB1/WkqvKVl1LKGd2+nf/HxBOR4T48o3wbBXtKamsaIlItR94guUnXI2xGI0/eibBF7dMuz+oZ1vsP/bX6ThO1cT3rUdh7+Umg99ghnf+FHKqxbi9pjOBwf386hxO3lz5TT+0rKFHSun8chh0/nlITV8aWYlb5viZ7nfM2Rycp3byakVPv7ftHJ+umAK/1k+jd2rZ9N1rFlecfMRM1IqdTsch5WYTsu+cIxOy4BHleK5MTgeQEIX88wbJwYNxc0NZrTjK7MqceZpZTDSuJ/dV76Pjn/enZfzazSa4WnOYGEqn4jbg2eW2ZcxNBHyPHwH53kk9u9IjNj0bzJlVg6r8mNw6+ZRj//DudWUOoRne0P8KYVu5j0xg4eTZFYqGqV/o3nu0mNPHvUYzrJyPHMXmGN87aVR908m2tlOrLMdRPBY3egBxOmMHzds5YBoxk5gywuocBjX1Om45yygd7b5HtufeSaEdrxOrO0A4iuh5IjVKb3Gv+oY87xbXkDloZfIcEyMK98EQimVVo5HIuJwMO2z1+JffQIqHKbx+18j+Oa2QftEWhpp+ul3qf/SxwhseQFcLirf8h7m3fYXqt/1IRze9G68h+vnAebKtJfs1HYuczpYXeZNO/8imUqXg9lW061XLbnVS31h+gxFpVPiUqx0ubjaNAgPdQSIZVin/XctvTRFYsz1OPlQbX7qtAN0P/Yg0eYGOv95V84aVGpMIk37qX1p/aBV0/HACIcI79+LimW/yacmtzRNMKkVDPTzSE5+LkTila0GOR4Hy6wA+jeZrV2q3mXWbwzv3E6sr2fE48/yuvjmbLNoyNf2dNA1TJd0mwc6AoSUWcHvcMs+BV7dgtHXi7OiKuUVcN+hK83XZiC3sp0K94zZg0rnQ2Keh3Y8soUtsyo95iREhN5ZpuMR2vE60c72jI5pRztKjz4Bhye1+7ySZSsQr49YZ3u8lHIhoB2PLNNrqHgjlkxWtMTlYvqXr8d32CqM/j4arr+a8L49xLq7OPDbW9lz1YfoXbcWgLJTz2berX+i7orPDKkLTQW7n0dyxKOQsZ0Lu4O53Tjw+HJvSmHvoTip3EuV00Fr1GDtMLkpIxExFD9u6ALg6pkV8XKN+Vhl6H/xeQBiHW0FdbEpRtp++ROmbXqa7gf/nrNzKMMgXL+b7sceouVXN1N/9cfZ+YHz2fvpD9H25ztydl5N9lFKxaW4EyW5HMxKSAChCXA9WWI5Hm8EB5zyoRLLI41meVqcTkpPPYdQRTUog+DW4ZUGNp+bUcESn4vmiMF393WOuO/fLJnVu2v88WiLLbPyH3NiygqFkuWm45FJxCMus0rI77DxWNIrex/N2FCGES+jW2rJ9qL+UjwLTXWJ7eymdUyl6HvuSfOYx5+a8uvE7YlXLO3fvCHt8+aKiXPlmyA0W7kMPiOWcTdoh9fLzGtvwHvIUozuLvZ/63Ps+eT76frXPRCNULJyNbNvup3pX/jWkNUM0sGOeIT37sQIZL97dy5YUTK4g/l/xyizAjO6895aM+px+Y5Wdg5RB34k7mrrY3coxlS3gyumlgHQ8+Qadr7/PA7cfsug7qG5JNrZQSghSmY7IZrsE21tIWTdBPSvfyp7x+1oo3f9U7T96dfsv+4L7PrwRez97KW0/OIGuv/zD/PztZpEda+5f9y+W5qx0x1T8VLSEyXHAyZWxGOZ5Xi8bkU8OqKxuBOSWEq370VT9uJbdjgOfyl9M0w5Wf/Lm0Y9h8ch3GI15Px5Yw9b+4eOePbGDB7qsGVWZhRcKRV3PMpSkFnZ2BGP0M7tI3aRHwo7mmF/jonYzoiWWmWH0PbXiHV14PCXUrL8iPj2kiOPBQbkfekQ3ruLSON+xO2h9Kihe7MNh3+Vdd4t2vEoWmz9bqUamwTC4S9l5rd+jHv2PGId7Rj9vXjmL2LGt25i5rdvTqlqVSq4aupw1U0DwyCYUHO6kFkeTzAPo5RKSCwfW+naH8+r5qhSDweiBm95vYWO6PANpRIxlOKH+7sB+PyMCkqcDpRStN/9O1Q4RNeD97Lvq58kvH/vmMaXCoGki0v/i+mvrmhSo/eZJ+K11MNvbiNyoHnMx+x5cg27P/pOmm78Oh1//xOBlzZi9PchXh++5SupetslTL/6O8z75V24auowenviYX1N4WPbhxIjNmy/o0LEa5XUDe/fW/COrt2UtD1q0BqJscGSWS3yuQb13rBXnkuPOg6AvhlmYnXglRdTOs95VSW8rbqEGPD5XR1Dylof6gwQVIqFXherLLsV3r2D6IFmxOuj5IhjUp6Xu26amdhvxAi+8WrKrwMI77IqWi1YfNDf7MpW0bYDxLq70jqu5mDsaIf/qOOQhNLMJUea37P+FzekLZG1q1mVHHE0jpL0itbYeR7BV1/CCKWv5sgFE+fKN0FosgxLlTF27bWzoopZ376ZivPfztTPfZ05N91O6ZHHZr2c4UBZ3YPzPAqReGWrQIS94Rj7wzFccrB+N13KnA7+uayO2R4nrweivGfbAcLG6DkS/2wP8FogQqVTuHJaOWDmzNilEh0VlYR376D+6o/T/dhDYxrjaNgRjtITTgfMut8TJZI10eh56hEAlJiXUds4jIXOB+8DpXDPmE3F2RdR98kvM+fm37Lw/x5k9vdvpfbyqyg76Qzc02ZSfsb55jgeze13SpM95ntdbDysjm90Fb5kKRFnTR2OsnIwYkT27cn3cEak1OlgjpUHuC0QSUgsTyijGw4ReNl0MPzWCnLfdNPxCO9+k1hXZ0rn+sn8anwiPNYdjDcITCRezSpBZtVrRUf9q45JPyfzUFtulXqeh50PBgNORiIOfykuSzmh8zzGTt8GM5pVmlQdzbNoKY7ySoz+3rSl7QPVrFKXWdm4Z83FVTsVFQkTSEFGOB5oxyPLtFiJg1Wx9KQ6w+GqqWPq//siFaefl7Ma274lA/08JgKHlrgRzPf6H9bF/ki/JysriDM9Lv61bCplDuHx7hBX7mwbMUFbKcWN+81Voquml8d7K/Q89iAAZSedwdyf3knJiiNRwQAtv7iB5p99PyfOgDKMuI6z8sJ3mMYkGk15BU+TOpHG/YR2vA7ioPVwc0Wp19LgZnzMpgZCb2wFh4NZ3/8FU6/6KpXnvgXvgkWI8+CiDOVnXgCYJbWjrS1jOrdmfPA4hMNK3BwaGb0aUiEhIhOq2Zyd57EtGI0nlh+XkN8R2LoFFQ7hrKmLV3mK+fy4rQpPqV4zF/jcfGWW2XT26t0d9MUGcvr6YwYPdAyuZgXQ97yVeJyGzMqm5NDDzfGlkecRrt8NRgxHWQXOmroh9/FOICldIRNpaiC8dxc4nHGH1kYcTvyW3KovjepWkcb9pgzO4aT0mBPTHpOIDFS3KpA8j6J2PERkgYg8LiKvisjLIpLzUkPNWYx4jBcDEY9XJ0QVpFKng4VWLfbbm3sBOLEi8/yOZFaWerh7SR1O4PcH+rjBklENxSNdQV7oC1PiED5rdT03ggF6nn4MgIozL8A1pZaZ376ZKR/4KDgc9DzxMPVf+hihnW9kbcxgdqaNdXWY5faWrqDU1pTqPI+s0/Nf8/P1rVhF+9KBVchMK5YA9Dz9KAAlhx+VUpdZz4zZ+JavBKXofuLhjM+r0aSCfYMengAldZclVLbakFBK18bW2ScrCHwrjjT/nsZizVdmVjDf66Q+HItLbgH+0xmk31DM8zo5utSMtkRamsyeWw4HpUeP3qcrmXjEY9vWlOU64YT+HcOpJezeHjriMTZs2WvJ8pU4y8oP+nvpatMZ6d/4bMrH7F1vyawOOyLjIkIlluMR0I7HuPA74FtKqeXAaUDOxam9MQNh7Dke44l3wWLE48Ho7SbSUJ/v4aSEnefxmpVAeOIYEsuH4vzqEn5mJQ9+s76TvwxTr92Odnx8ahl1ln6495knUMEA7umz8FnJZeJ0MuU9lzHruz/HVVNHpHEf9V/9JJ3//lvWnD3bwfCvXI243fiPOm7Qdk326LWcBP9JZxAtrcBzyFJISBrN6JjrTOlW+clnpfyaijMvBMwI20RYNNBMXOxV8YlQ2WqpleextjNAS8TALbCqdEBqZed32NdIG9vxCKSQYG5T4nRw0zzTVvy4oYsdlk36e5tpM941pXSgmpV1Y+pbtiKjm0jP3AU4/GWoYCDlyNNAYvnBFa3ix52vK1tlg8QyukPhX3UsOByE9+wk0ppaTqAt4U2nmtVB5115NIgQrt9FtO1AxsfJFkXreIjIYUBEKfUUgFKqXancewM3zZ9Cz+oZvKNv7Imm44W43XgPWQYM3c+jEFmR1K9jpIpW3f/+G/MfuotYV0da5/jk9HK+aEUxrtjRytPdgxOznukJ8kR3CLfAl2ZWDJzPyuMoP/OCg1aYSpavZM5P7zTD7NEIrXf8nMYbrslKUl/c8bAiHSUrjgSXi0jTfsKN+8Z8fI1JaO8us0yxy4X/2FMA8B9n/tv7bGZyq9CeNwnX7wKXm9ITUjcwZSeejvhKiDTuT0v3rdGki2fexJHj2FKrLVblwyMSGt5GmhrMBTank5KVRw96ne/QleBwENm/l2h7a8rne/uUEs6p9BFW8MU9HQRiRrwZ7WCZlaX/z0BmBWavL9+hVgn8V1OTWw2U0j04v8PGjniE9+1GRbIjE59sxPp64k2fh3M8nBWV8b4tqZTVjba3xiXwZZaNyQRneQXeReY9Xv+WFzI+TrYoWMdDRE4VkX+JSIOIKBF5+xD7XCUiu0UkKCLrReTYhD8vBnqtY2wSkWvHa+wuyV7jvfFiQG41MfI8DvMPrF4t9LqYMUxjwmhnOx1//g2lzfvpzSCx+4fzqnj7lBLCCt657UB8NQvgRiusfmldGbMt6VekqcHsfitC+RnnDXlMZ3kF07/2fWo//jlwuenf8Az1X7xiTF2BY3298eIAdvk8R4mfkmWmJlhHPbJHryWj8x95bDyc7rduJAIvbyLWO3IDsqHosaIdpauPx1l6cIh+OBwlfspOPB0wG0dqNLnCM3cBiBDr6hiTpHA8sJsI2iQmltuV/nxLV+AsLRu0n6O0DK/VbyGdqIeI8LMFU3CL2TDwC7s76P3/7d13fFvV+fjxz9GWLG87cXZC9p4khJCwEgphQwstpS1Q+isttKV00m8LhZbS3ULhC99SChTKLITVkJBAIAFC9l4kZMdxhuOtYY3z++NKiu3ItiQPyeZ5v156JZKu7j3H19a5557nPCes6Wszx5KehOpq8EZWRk+14wHJLSSotY51FONltIqyFJdgcrkhGKQ+w5MHZCrP2pUQCmHrNxBrrz7Nbhed+5HIKuZ1kUQE9mGjsTQzPydRsXkeGXAtkLEdDyAL2ADcGu9NpdS1wJ+Be4BJkW0XKqV6RDaxADOBbwPTgTlKqTkdXeiuqstltmrQsLQUZlU1fx4Ejc5CXeSCMRkmpXh6SBGnZ9koD4a5ZPtRygMhNtTV898KLybgR3FGO5zjp2At6tnsfpVS5M29mn6/fxRr734Ey49R/tQjSZcvyrtpLYRCWHv3w1pycm0XCbdqX1rrWJhVw5Aoa+9+xoVZKETd6o+S3+cyY5/umYmHWUXlRCaZ1364JOn8/kIkymR3YO3VF8j8UY++NjNO08nR5qkN2oi6Jml0m3KOjczzSKLjAUZn53uREfLHjhpzD68udMUWtfWs+ThyYToIW+TnmIroBHPf9o2thlcGj5UR9tSCxYKt74Bmt1NKxdb4kHkeqYmGWbmmtDwBPDbPY+MadCD++i9Rbclm1VSs47FhdVoWNm4o/m3iDKC1fgt4C2huQtQdwGNa6yci29wCXAzcBPwWOASs1lofiLw/H5gALIq3M6WUHWh4BZsNEAgECCQ59BjdPtnPpZMlsi5I/YG9+KsqMLncGV2PQRYwAyFgWpYlbhnDfh9VC+bFngcO7KHu0x3Y+p+W1LGswEtD8pm57Tg7fUGu2n6Uokj2qqsLnAy0GD8jHQ5TvcToeGSdfUFCPzdT34EU//Q+Sr/7VTzrV+EtPWisq9KM5s5JbeTuiWPclEbv2cZMAoyOSb2nDmVtW8rh9pLJv1st8e/+xEiTbLNjmzitUT2cU8+ifv8eaj56D+eM8xLep2/HFoLHylAOJ7bxpyf9MzEPHYWlZ2+CR0qpWvYO7nPij7S1puk56WrnRnQ824DBBEoP4N/3KdbRE9JdnGaZlGK4w8L6SKhVdMVyI42u0aFoOr8jyjlmEpXznktqxCPq531z+fexOg5HksxcXdAgzGpF28KsouxDRoDFSqjiBMGy0hbvrkfDrGx9BzZaUyLufgcNwbd1gywkmAIdDMZGMLKmxg+zirINGoo5v5BQRTneLRtiHYKmQtVVeDevN/Z5RuphVlGOYaNRThfhmir8e3a221pwqcjYjkdLlFI2YDJwf/Q1rXVYKbUYY3QDYBXQQymVD1QBs4D/a2G3dwJ3N33x7bffxuVKbsGWqEWL4vZxMtZQdy622iqW/ftf1PUZGHs9U+sxJu80dliysK5ZzvzwqXcO8revp3dNNfXZufjyCsk5sJuNTz3G0cmp/RHfYXbwP/lD+aD25LGm71zH/O3G3I+s0n0MPH6UkM3O0vJa9PzEQ18GlPTDXXaAdX//G8cmtp4yr9E50Zqhy5diAzYHobbhcbVmmDMLq7eOpU89Tl3v5u96pUOm/m41p+fq9ykCKnsPYPO7S2KvL1q0CHs9DMG4o7rgtVcJJ9jJK/n4HQqBit4D2fxO8qNyAEW9B9HzSCn7X36WvZ7EFr5sTvSceDyy/otozD5wMHXL38v4EQ8w5nms9xjrKw2LTDb3bd2I9vsw5xc2O9naOXIsmM0Ej5YROFKKtWfvuNvFk2028fsB+Xxl13H62cxMj4y06EA9dWsTuzBtjclmxzFkOL7tm/Fu29hixyPaiWhpfkdULHmATDBPmnfbRsKeWsw5eTiGjmpxW6UUrknTqHlnPnVrP26241G3+iMIh7ANHNymEbLYcS0WXGMnUbfyAzzrV0nHIwVFGDe8m87gPgKMANBaByPzOpYCCnhba/1mC/u8HyN0KyobOHjBBReQk5PTzEfiCwQCLFq0iDlz5mBt5S5DJjm2az2eD95hfJ6bvLlzM74es0JhasOaEmu/U97T4RClC54nCBRf9WU279tPzoHdlJTtY/KF96FMqUUZDqnyccXOE4SAubl2vj3l5J3tYw/chwfIPedzXHTZZUntty7HwfEH76PXwU+Zcuc9KFP8NVvinZPAof2UPlUNVitnffXrmBzORp85vm8Lde8tZJzDRP7cuUmVq6Nk+u9WPDoc5tAbTxMChlx9HeOmzWxUD4vFQumKdwgeKWVmz3yyzji79X2GQhyc9zhhYNi1X2H8xPh3YVsTnDqFQ7d+RNaRg8yZNKFRuF2imp6T6urm00iLz6ZoSt2usJZHdJ7HFLc9Fu4UDbNyTZzWbGpZk9OFY+gofNs34d20LqmOB8CXilw4TMUMdVhOhlltWof2eTHnF8Ym+baFY+Q4fNs349u2MRZqGU9sxKOFjFZRtsgcEP/eT9Fat/tCxd1ZwzCrRNZby5o8nZp35hujJDd9J+420XWh2iPMKso14XTqVn5gpNW9+vp222+yumrHIyENw7US2NZPg3S70T86q9Wa8oVRWz6bDq6RY/B88A6BXdsalTtT65Fvhfxm3qtd8THBskOY3NnknD+XmrffRjmchI4dIbT7k1icbLLmFll5Upt4uKya3w0siP1cQnU1eCMrlubNvjjpn1fOjHM48c+/ESo/SmDz+lgcaHManpO6SEiAc9R47NmndpLdk8+g7r2F+DasxnrjbUmVq6Nl6u9WPN5tmwiVH0U5XWRPnYEpzt+Ie/rZVL76HL5VH5E3c3ar+/RsWUe4qhJTdi7Zk85AWVL7Srb26oNz/BS861fhXbYI13U3p7QfOFmXrnJeROeJLTR3cC86mNkp42/q4WZ5jZ+f9smNvRZbv6OZMKso59iJ+LZvwrNpLTmzL07quEopripsHCURy2Z1+oyUb3o1Kt/IcVTOe7bVCeb+2MTyBDoe/QaCyUy4porQieNtnsz8WaEbpFFPdDTLNX4KmM0ESg9Qf/jgKSMaYa8H73oj+1Rb0ug2FVvPY/smwl4PJmdq0TxtlcmTy1tyHCO8v2kwfE+grPOL0z04hkfS9O3YmvbJR21V+erzAOR+7gpMDifaYo1lHqpd2rbwnuuKs/hwbC9GNcisVbvsXXR9Pbb+g1K6o2Wy2ck+5wIAqhe9kdRnm6bRbSqWw3vf7ozI4d1VRSeVu6fNxGSLn9AgeneqbvVHrU4cBKiJTiqfcW7KnY6o2JoeSxagQ20LtxIiHktxCcrpgmAw49d86m+3sHBUT87NdQAQOHqYwKH9YDLjnDClxc86x0bmxm1e1+b1cXQ4fHJ9hzbO74hyjDDa6sCh/YSqKuNuE/bUETxSChBbdb4lJpsdWx8jekDCrRJXf2AvwSOHUVab0aFIgMmVhTOSnSxeWl3P2hXoQD3WXn2SnpPaEmtJHyw9e0EwGJs/kg5dsuOhta4H1gCxFDBKKVPkeeJLQopG7AMGo+wOwp5a4wu6i/J9shXf9k1gsZI798rY61mRLEQ1Hy1p97t10VSm2efNTXmIOnpnrW71RwQryhP6TNjvx7vFWGXX1UyYjjknF/vQkQB4MmTl0q5Gh4LUfmjM6XC3sMCffehIzAVFaK8Hz4Y1Le4zXO+PLQ6VnUI2q6aypp2FKctN8PjRlCbGCtEaZTJhj6znEdif+QsJNhS9wHMMH91qymrH8NEoq43QieNt7mD5P91B6MRxlMOJa9ykNu0rypydg63fIMC4ex33uJHRDnNhMeac3LjbNGWTFcyT5omuVj5u0ilhzi1xtbCKeW2DRQPbM+RNKYVrfDS7VfquBTK246GUciulJiilJkReGhR53j/y/M/AN5RSX1NKjQQewUjB+0QaitstKIsldrfe20UWEoyn8rUXAMieNRtLQVHsdcfYSZhz8ghXV+HZ2PJFYTLqD+zFv3MbmM1kn31ByvuxDxiMfdgoCIWoWbIgoc/4tm1A19djLiw2hsqbER0NieawF8nxbtlAqKoCkzunxbtaymSKjXpEY3Sb41nzMWFPHZaiHjhGpBb615DJZscdCe+qTmHNGiESEU27Wt8FVjBvKDq5u7lsVg2ZbPZYivm2duJjYTiTzmjXrIKOaFrdbfEXEvTHJpa3PtoRFd022cxW9Yf2U/HyM5z4z9OtPirnv5LQaHBX0dpq5c3JmmzkQfJuXt8oDXq43h9Lye5OYJ5gsmLXAmm8CZnJczymAEsaPI9O/H4KuEFr/YJSqhi4FygB1gMXaq27zpLhGcgxfDS+Levx7diMK8W0nOkUOFIau+DLu+zaRu8psxn3WedRNf8VapctbjXON1HV7xijHVmTp2PJa27WSWJy51zC0U+2Ur34TfKuvK7Vux11a40wq6yJU1vc1jVhKhUvPGnk8A6FEpoAJ06KrbNx5tmthkRlnTGLqvmvULfyQ3QoiDLH375mmbFooPus89sl7huMNT2qF7xK3YqlhOpqklqMUIhEREc86vfvhvzmMyplEh2ox7vJGBlO9HvfOW4S3s3r8G5aR+6FV6R87JNpdNuWzaop56hxVL/9erPzPOr3JN/xiE5CTybUSgcCHP71TwiUHUr4M8EjpRRl2HzDVAQrT+D7ZCsAWa2s39GUte8ALD1KCB4tw7tpHVmnG5/3blxrJCIoLG6XRARNOcdOBJOZwKH9BI6WYe1R0u7HaE3Gjnhord/TWqs4jxsabPOQ1nqA1tqutZ6mtZbbuW3k7GIrmDdV+cZLEA7jmjgV+4BTYyOjd4RrP15K2O9r8/F0MEjNewsByG4hu0ii3DPOQzmcBA4fwrdlQ6vbR0cwmguzinIMHYHJnU24tgb/ru1tLudniQ4ETmYYaSHMKso5ahym7FzCNVV4mzmHYU8dntXGEHv2rNYnoSfKPmQEtn6D0PX11C5LLTWvEC2xDTS+VwNdaMTDu3VjJKtUQSx7U2ui8zw8m9emPOcxcPgQ9Qf2gMmMa/L01j+QhOgK5v5Pd8RdODQ64mEb1Hoq3ajoJPTA4YMJL0ZatfA1AmWHMOfkkTP7khYf7lnGGs6Vb7zUbIhYV+JZvRy0xj54eNKT8ZVSZEVWMY+OxkGDbFbTZrbbDamGzFnZOIZFQq83rG73/SciYzseIj2iE8wDB/cRqq1Jc2mSE6qtiY0+5F3+xbjbOIaPxtKjBO3zJr3CdDyetR8TqqrAnJsfGzptC5PTRXakc1TVyiTzwLEjBA7uA5MJ57jJLW6rzJZYiFCdhFslxbNhNeHaGsz5hThHjW91e2W2xO5uRudwNFX78VJj8mCf/gmlukyUUors840OcHTekYhPKbVXKbVRKbVeKbWk9U8IAHtksmvoxHHMCV6cpls0m1VLaXSbcgwZiXI4CVdXUb9/T0rHrY2EWTlHj8fsbt/RR0txT+NiNxTCt3Nbo/d0KGSMSAH2gYl1tAAseQWY8wpA64RC6UJ1NZx48SkACr58Mz1u/XGLj5Lv/8K4Qac1Rx/6HWG/v5UjtHL86koq3/xP2q5VUg2ziop2Rj1rPkZrjQ4FqVsZ2Wc7ZrM65bjR7FZpCreSjodoxJybF1uQqH7n1jSXJjnVC19D+7zYBg5u9kJcKRW7sK9durjtx4zE0mefPafNWYmiYpPMl7/f4hdqNJuVY9iohBo114ToPI+V7VDKz45YNqsZ5yYcouaebsTm1q5YFvduaXSf2bPmtHu+/OyzLwCTGf/ObdQf2Nuu++6GztRaT9Ban5vugnQVJleWkRkHsFccT3NpEnNy/Y74mf/iURZLLPNQqvM8TqZZbZ9sVg0ppWKjHr4m4VbBwwfR9fUouyPpNX2ic3gSmWBe8cqzhGuqsPYdQM75ia0RVXTjbZjzCwkc2s+J5/+ZVNkaCvv9lP7qxxx//EGOPviblPfTluNHRwxSDaNzjp2IstoIHisjcHAf3q0bCddUYcrOxTlqXHsWt/FxoxPMN65OSwZE6XiIU0RHPfyfdJ2Ohw4EqPzvy4Ax2tHSxVw03Kpu7cdtulMSrKyIjZpkn9d+C/PZh47ENnAwOlBPzftvN7tdomFWUdFG179zG6HqqrYX9DMg7PdTu2IZANkJhFlFucZNRjldhE4cj8UARwUrK2IZr9ztkM2qKUteAVlTjDtp0RFAIdpTdJ6HoyLz03MHjpbFRoajGX0S5Rw7EUit4xGqrjSyK9IxHQ84OcHc22SCef0+I6OVbcDgpOfz2WOZrVpeJDJw/AhVb74EQNFXb2l2LltTZnc2Pb71QwAqX3/hlO/HRGitOfrw72Jhw3WrPqRudecmNPVuWov2+7AU9Uh51Npkd+AcY/yO1a1eHhshz5o6I+GfZyocQ0dgynIbodef7uiw4zRHOh7iFNFsHl2p41GzbDGhinLMBUVkzzivxW3tA04zVuANBqld3nLmoZbULl0EoRD2ISPizidJlVKKnNmXAMaaHvHyyOtgEG8kM1d02LQ1lsJio95a49mYntjOrsazZjna58VSXGJkHEuQstpikw2bhlvVfrQEwsbvTdOFo9pLdL5RzXsLM36ht1QopWYppd5QSpUqpbRS6oo429waCafyKaVWKKWa3u7WwPtKqVVKqS93SsG7CVsX6nhEb9A4ho3CHGeB1ZbE1vPYsiHpO8N1q5dDOIxt4JAOm8AbHZHxbd+MDp38O6+PLhw4MPH5HVGxzFZ7dra43YlnH0fX1+MYNR5XkhOrs06fYYzMhsMc+dv9hOuTC7mqeOXf1C5bDGZzLEvZsX88kPR+2qJuVYNFIdswah1Nq1u3+qPYTa6OyGbVkDJbYlEh6chuJR0PcYrYiMeu7dAFFhLUWlP5upFCN+/iq1EJrLh8MtwqtcUEtdaxGPpEh5iTkX32BSirjfp9u41UvU34d20j7KnDlJ2LffDwhPcr4VbJqYmGWZ11XtKNy8m0uksbdR6jGbKyE1jZPFVZk6djzs0nVFURi2/vZrKADcCt8d5USl2LkQnxHmBSZNuFSqkeDTY7S2s9GbgM+JlSquNiG7qZ6AWt40QX6HhEw6xSyGJoHzQUk8tN2FOLv5UL8aY6MswqytZ/ECaXG+3zNpqTER3xSGTF8lP2Gc1stW93s5Pq/Xt2xZKqFH3tWyldeBd9/buY8woIHNxHRWSeSCLqVn7AiX8/BkDxzbdT8sN7MBcUETxSSuW855IuRyqMRSGNaAdXivM7oqJzQ31bNxAqP4ZyunC203ovLYnesExHxyOT0+mKNLH1H4RyONFeD/bK5hey04EA/t2f4NuxBUthMVnTz+6QLAyt8W5YRf2+3SiHk5zPXZbQZ9wzz6f8mb/j3bKe4Injjdb7SIT/0x3GMa22hDIdJcvsziZr+tnULl1E9eL/4mhytz06Kcw14fSkhtJdk6ZR+drzeNatRGvd7vMLupOwpy62uFMqC/y5Jk1D2WwEj5RSv3cX9kFDCRwtM8IvlMJ9Vssjc22hLBayz55D5esvUv3uWx168ZMOWuu3gLeA5n6H7wAe01o/EdnmFuBi4Cbgt5F9HIr8e1gpNR+jgxJ3UQSllB1ouFx9NkAgECAQCCRV9uj2yX4uk5j6GMtp2SvLqW+QHTBUW2Ok6Ty0j+DB/ZH/7ydUeQJLz15Y+/SPPAZg7dsfS+9+mGz25g7TZjoYiK3ZZBs3pdmfeUvnxD5qHN7VH1G7fhXmAYmNIITr/bELOsfkMzr0XNuGj8K3biW1m9bhLDFGUKMjHuZ+A5M+turRC6xWtM+L99B+rCWnpkw+9tT/gta4zjwH86ChqdXP4aTg5u9x7I93UzHvWexTzozdRGvufNTv30PZX34FWuO+4DJc588lBOR/9RaO//XXVLz8DI4Z52Ltmdy8lmTVvreQUEU5yuHEOnx0i/Vv9e+9sBhL734EIwtVOidOI6RMhDr4+8E6egIAvh2b8VdVYnJltbh9vHqk+nstHQ9xCmU24xg6Eu+mtbiOlcZeD3s9+D7ZinfrRnxbN+D7ZCu6wdCm/bShFN54G65IzGJnqYgsGJgz++KE1y2w9uiFY8RYfNs3UfvBu+Rddk1Sx6yJrt0xbWa7ZyuJyp1zKbVLF1GzbDFFN96KyemKvedr0PFIhnPkWJTdQaiinPp9u1Maiu8sWmu8m9cZ6ZFbWLSvo9St/BBdn3rmKZPDiWviNOpWLKN2+VLsg4bGJpU7R09IurObrOzz5lL5+ovUrf6IYGVFm9eY6SqUUjZgMnB/9DWtdVgptRiYHtkmCzBprWuUUm7gPODFFnZ7J3B30xfffvttXC5XnM1bt2hRaqOtGSEcZqTFgikYZNvdP8TqqcVWWY7V52n2I4EDewk0SXaggYA7F39eAf7cAvx5RVT3H0LY7miXYmYd3s9An5egw8U723bC9pYnTMc7JwUmO72AA0sW8aE1sVAt94FPGeD3UZ+VzeKtn8C25EZLklGkbPQE9r63iIM4MHs9hCtPoIEl23YS3rUv6X2ellOAs/wIK155ieqBwxq9l3VoLwM3rCZsMrG+12AC89s2j6zvoOHk7tnB3t/dxe5Lv4xuMLeh4fkw+7yc9ua/sfm81JX0Y0vJaRA9ttYM6NUf9+H9bP/93Rw4/8o2lak5KhSi5+r3KdxmrAlTPmAYmxcllqSmpb/3nnk9KIp0PHbYsljVxp9poobk5GOvruDDfz1OTf/E2riG9fB4mv97b4l0PERcjuGj8W5aS+6eHZz41yPUb9+Mf/dOCDeOczVl5+IYNhLftk34d++k9BffI2vaTAq/9q0Oi19vyL/3U+Puv8lE3qVfSOqz2bNm49u+iZpli5PqeITr/bHF33LOb/vaHc1xjB6PtVcfAocPUfvhu7F5H2avh/rdnwDJdzyU1YZzzEQ8a5bjWbcioY6Hf89Ojj76J4LlxzDZ7CiHE5PdjrI7MNkdKIcDky3yr92BbdAQ3FPPSnmVXq01nnUrOfHCE7F5RsXf/AG5F16e0v5S1ZYwq6isM2ZRt2IZdR8vpfC6r59cNLADw6yi7ANOwz5kBP5d26lduijpznUXVgSYgaaLyR4Boity9QTmRc6rGWN0pKWYg/s5uYgtGCMeBy+44AJycpKbNxAIBFi0aBFz5szBmkBYaKYq/fAtAp9uJ29341BQc2HxKSMb5rwCgkdKjRGQ2EjIPsK1Ndhqq7DVVpF90EhZ23f1+7jPu4jsi6/G2qNXm8pY8fT/UQ3kTp3B3Isvbna7ls5J/ZgRHF65hJzyMi66YA7K0vo5K3/0j9QChTPPZ2gLx20PvoF9ObL2AwqqyhkxezbL//UPAKwlfbjw8itS2mf5/q3UvvsWYwpyyZt7MpRYh8Mc/sktBIDcC69kzrXXtbn8obNmUHrHTTgqjzPdU07etTeecj50MMiR+36Mv7YKS49eDP/1A4zKyW20n8D4MZT+6BvkHNjNOT3ykp530prg8aMc+8u91EdCn3Ou+BL9r72Ria1EHCTy9+7t25OjW9eA1cqZN92CyeFs17I350TZp9QseJVRFk3h3JZDxuPVo7q6OqXjSsdDxBWd55FVdoCaNw/EXrcU98QxchzOUeNwjhqPtU9/lMlEqKqS8uf/SfXbrxsXWmuWkzf3KvKv+VqHrp4cndvhnn520o2U+8xzOfaPB/Hv2k79oQPY+vRL6HN1Kz4gXFeLpbAY59iW189oi+gk8/Kn/4+qRf+NdTzcpcYdLNugoSndNXdNmmp0PNauIP/KlhuO6vcWcuyRP6Dr6wFIdHrl8Zw8ss+fS+4FlyWczjFehwOzGUIhjv39z5hcLrIjC1B1tFBNNZ71xjyYZLJZNZU15Uwwm6k/sIfaj5caIRAWSyzdbkfLOe8iju3aTvW788m99AsSWhehtd4NtL4oy8nt/UBseDf6c7RarSl3Htry2UxQcP032PH0Y/QfNxFH/0HY+g7A1ndAo5HZRpok4NBaE6qqJHBoH/UHjYd3wxrqD+yh5q151Cx8jaxps8i77BqcI8akVMboyLB7ypkJ/azjnRPLoKGYcnIJV1cR2vspzkgmqeboYBDvGmNeVfYZszr8HJtHjAGLxQj9qTgem3djHzQ05WM7ThtG7btvETiwu9E+qpcsILDvU0wuN0XX3oC5HepmLSyixzfvoOwPd1E17zlyzjwHa79BxnuR83Hsn3/Dv2UDyuGk1//8Fnvhqe2eddAQ8i67hsp5z1Hx1P+SPekMTPb2CePzrF9F2V/uJVxdhcnlpuf3fpZ0+GpLf++WiVMJXHMDtr79sSeZAKEt3JOmUbPgVfwb1yT8u9KwHqn+fknHQ8TlHDsR+4gxVJUdpmjKdLLGTMAxajzW4p5xtzfn5tHjm3eQe9GVlD/5v3jWrTDiy5cspOCLN5B7weXtts5FVPDE8dgd5OYWDGyJOTcP14QpeNauoPaDxRRce2Orn6lbvZyjj/wBMDIHJZuqMFnZ515I+bP/wP/JFvz7dmPq3Q/3IePOYLKjHVHR9Lve7ZsIez1xLxR0IMDxf/6NqgWvGp+ZNI2Ca29EBwOE/X60z4v2+wn7G/8bqqulbtWHhMqPUTnvWSrnPYtr4lRyPnc5WVOmx00RGK/DoWx2ci+6grwrvkTFS/+iav4rHHngN5gczg6fr6C1NtIYh0LYBg3F1ndAyvsyu7NxjZuMZ91Kjj36J8BIa5xsdp1UuWfOpr70ADnnXfRZ6nQcx+gjN/2y6gmUdX5xuifH6AkcmnUx4+fOTekCRCmFJS8fS14+zki8udYa74ZVVL7+Ip51K6lb/h51y9/DMXw0eZddS9a0mQl952qtqd+/J7JquKlNoZrKZMI1ZhK1Hy3Bu2ltsx0PHQpSs+wdKl58klBVBSaXO1avjmSy23EMGYFv+2b82zc36HikHkYbHQmv33MyNC3s93PiWWM0Jf/z12NuMuLQFu4zz8F95rnUfrSEI3/7LSW/eSj2XtWC14x2SClK7rgLe/9Bze6n4Atfo2bpYoJHDlP56rMJtekt0eEwFS/9ixMvPGGsUH7aMEp+dG/Sa6O0RplMFH7ppnbdZyKcYyaC2Uyg7BCBw4dia7h1NOl4iLhMdgcl9z7A2vnzGZ5Ew2LvP4jed/2BurUrKH/yYeoP7OX4Yw9QNX8eRTfeimvSGW2+AArV1eDfvZPqha9BMIhj1DgcQ0emtK/smXPwrF1BzdLF5F9zQ7Nl01pT+erzlD/9KGiNY/QE8q/4UluqkRBLfiFZU86kbsUyqhe/Se7134yNeKSSpQXA1qsv1pI+BMoO4d287pRVV4Plxyj7w134dmwBIP/aGyi45oaEEwfom79L3erlVC98Dc+6lbGHubCYnNkXkzvnUsjJA63xrl9F1X+exv+JcayGHQ5LXgFgZD8Je+qoeW8hZX/8Jb1+/jtcrazUnqzAkVK8m9bi2bQO7+Z1hE4YC6Nlt8ME8KwzZuFZt5JQVYWxz5mdM2oDRsen+Ovf7bTjZQKtdb1Sag1wPvAqgFLKFHn+UAsfFWmmlMI1YSquCVPx79tN5esvUrN0Eb4dWyj7w11YevYi75IvkHP+XJTFaqzRcaTUuHAqKzXCucoOEThyGB2Z9G4fMrLNF8nOsSc7HlzztUbv6VCI2g/e4cSLTxGIxOmbcnLpccsP2/1mW3McI8ee2vFIcW0JOJnZKnj8KKGaaszZOVTNf5ng8aNYinqQO/fqdil3Q0XfuB3P5rXU791F1bznIKsI35b1HPvHXwEo+PI3Wl0h3OR0UXTjrRz54y+pePnfZJ/9uZQ7CaHqSo789dexDJA5cy6l6ObvdmgyhM5mcrpwzzgXk71zQruipOMhOkTWpGm4xk+metGblD/3OIFD+zn8659gGzgYa69+WHv0xNKjBGtxCZbiEqw9SuJmVQhWlOPfvRP/7k/w7zH+DR453GibvMuuTb2c085C2ewESg/g3/0JjjipacP1fo498sdY+sCcCy6l+ObbE0rb2x5y5lxK3Ypl1Lz3No5ps7D4PCiHE+fw1MIPwBgtqVpwCM/aFY2+zL2b11P2x7uNO3ZZbnre/ovYYnSJUmYL7mkzcU+bSaCslKq3X6f6nf8SKj9GxQtPUvHS0zgnTWPQvj0cPWacy3gdjtj+TCZ63PYTwl4PdSuWcfj+n9H77j+lHH4BRoPq2bwO76a1eDetI3is8Y1wYy7MhNgq8m2RNfUsY7RDa5TdQdbp7Rt7/FkUmRDe8MpqkFJqAnBCa70fYz7GU0qp1cBK4HaMFLxPdHJRRYrsA06j53d+SuH136DqrXlULXiN4JHDHH/8QcqfftRYn6aldO8mE5binhRc3fYlWqILCfp2bCHs92Oy240Ox0dLOPHCkwQO7TcOmZ1L/hVfJPeiK5sPOesAzpHjqJz3HL7Na7FXnQDAlkIq3ShzlhtLjxKCR8vw792FfcBgKv7zDGB0ANorhKkhS14+xd+4nSN/uoeqV54he9bFHHv5MQiFcM+cTf5ViZ1H95nnUj3uDbwb13Ds8Qfp/T+/Tbosvk+2UvaHuwgeP4qy2Sn+5h3knNdx8znTqeT7d3X6MaXjITqMMlvIvfAK3DPPp+Klp6n873+o3/tpLNVfU6Ysd6wTokNB/Lt3EqqIn87X0qME+2nDcI6d1KbQG5PTRdbpZ1L74RJqly46peMRrCin7Hc/N+7+m8wUff02ci+6qlPDVlwTTsdS1IPg8aNU/PNBABxjJrap4+OaNI2qBa9St24lxUTXQnmR8n89CuEQtoFD6PXjX7V56NVa0puir95C4ZduovbjpVQteA3f1g14V3+Ei0iH48LLjQ5HfmGz+1FmCyU/uJvS+36Kd8NqDv/6x/T51YNJ5akP1VRT+cZL1H7wDoHDBxu/aTbjGDoK59iJOMdOwjFsdLs1rpa8AuOO5NaNZE07q9MmDnZzU4AlDZ5HJ34/BdygtX5BKVUM3AuUAOuBC7XWTSeciwxnyS+k8Lqbyb/6emqWLKTy9Rdif7/K7sDasxfWkj5YS3pj6dk79n9rcUm73Ryy9u6HuaCI0Inj+LZvIlRbTcULT1IfydJlcmeTd/kXybv46k7tcERF52QGjxxGAaasbCyFPVr+UCvsA4cQPFpG/d5d1K36kLCnFtvAIR06z8494zxqP3iXuhXL6L/kdcKAfcgIetz6k4TbXKUUxd+4nf3fvxHP6o+oW/VhqyMlUTocpmrBPI4/8TAEg1h79aXkx7/K6OyPXZF0PESHM2dlU3TDt8m79Av4dm0neLSMwLEjBI8eJnjsCIGjZYRrqwnX1VJft4v6vQ1SHiqFtXc/7IOHYT9tGPZBQ7EPGtquMfLumbOp/XAJNR+8S+FXvxWLIfbv/oTD9/+M4PGjmLLclPzo3rSkdVVmM9nnzzUaukjMrTPF+R1RzjETwWIheKQU/56dVLz8DLUfGtdx2WdfQPG3foipnVJagjGCkD1zNtkzZ1N/YC+Vi//Lrn37mHTrD3A0M28o3j56/fQ+Su/5Ab7tmym95wf0ue+hVpMChKqrqHz9RSrnv4z2RtL/mUyxjqtz7CScI8Z06AVD4XU3c+L5Jyj4/Fc77BifJVrr94AWr0S01g8hoVXdhsnuIPfCy8m54FLqD+7DnJ2DOa+gU24CKaVwjZ1Ezftvc/j+n8XCuExZbvIuv5a8iz/f6joIHcmck4ut38BYR8g68LQ2/1xsg4ZQt/IDald8gG/HZiCyWGAHrtWllKL4m3fg3bKecG0N5vxCev30vqRvAtn6DiDv0muonPcsx/7xAM5xU1rcR9jvp+b9hVS+/mJs9Cpr+tn0vO2naT2v3ZV0PESnsRQW4y4sjvte2OuJdEbKYmEvtkFDsA8Y3OF3kLImTcOU5SZ04jjebRtxjZlI7UfvceTB36D9Pqx9+tPrzvsTznrVEXLOm2us7hpZAdvRxg6QyenCOWIs3s3rOHjnrUZDajZTdNN3yL3oyg5tzG39BpJ//f/j2Pz5mJuEVbXG5HDS6+e/49Avbqd+z05Kf/l9+vzm4bhJD0LVlVS89gJV819B+7zGsQcOIf+qL+OaNA1zlrtd6pMI5+gJ9PnVA512PCG6K2UytTjBuKM4x0yk5v230X4fJpebvMuuIfeSz3fq90hLHCPHxjoetgGph1lFReeI+LasB4ykGKkmNEmGJb+Qou/fxadPPMLQ236EpZlrhtYUfOGr1C5dRPBoGRWv/Dvu5O1gZUUkjG8e4eoqAEyuLAq+eBO5l3z+s5SQo1NJx0NkBJPThb3/oLQ0KMpqwz39HKoXv0nt+4vwbdnAief/CRhftj1/cHeHpgROhLVHCa4JU/GsW4E/J79dVmZ1TZqGd/M6tN+HuaCIkh/dg3NEy6kiM4E5K5ved/2RQz//DoFD+ym9+/v0+c1DsbkhoapKKl57jqq3Xo11OOynDSX/mhvIOn1Gh96xE0J0T+6Zs/Ht3IqloJjcS65Oe5vQlHPkeKrffgMA28DTWtm6dY0mpytF4Ve/1eZ9Jso5dhL7Z1/JmNOGtb5xM0xOF0U3fYeyP9xF5bxnyTnnc7HQ4foDe6l8/QVq3l+EDhip4i3FJeRd+nlyZl+SlnC5zxLpeAgBuGfNpnrxm1QvfjP2Wu6lXzCGluOkgE2H/Ku+jGfzWiqGj2uX/blnnEvFy89gHzycnrf/vMU5FpnGkpdP71/+iUM/u43A4YOU3vMDSn54D9WL3qRqwasnM9qcNoyCa2/AdfoMuXslhEiZyW6nx7d+lO5iNMsx6uRNI1sbMlpFWSIJX8KeOrLPvbBLznPImn42zvFT8G5YzbHHHzDCr15/Ac/aFbFt7ENHknf5tbjPmJUxbX13Jz9lIQDnqPGxyYNYLPT45h2xBfsyhXPMBPo/8xZb3nqrXfZn7dGLQU+90eFrkXQUa1FPet/zFw79z23U7/2U/bddH3vPPmQEBdfcgGvKdOlwCCG6PUtxCa4zz+XIvj3079f2yAFlMpFz4RV41n5M4XU3t0MJO19sovntN+BZ8zGeyMKOKEXWtJnkXXYtjhFjpI3oZNLxEAJjAnfhdTdTtfA1im74Ns5RCS9q3Kna+wuyq3Y6omy9+tL77j9x6OffJVxbg33oSGOEox3WixFCiK5CKUXx7T9n1fz5jGmn7/Wir3wTvvLNdtlXutj69Cf/ii9R8Z+nUXYHOefPJe+SL3TaYnniVNLxECIi5/y55Jw/N93FEEmyDxhMv7/8k1D5cezDRkmHQwghREzBl76Oc9xk7AOHtGtGTJEa6XgIIbo8a1FPrEWJpeUVQgjx2aFMJlxjJ6W7GCJC0rsIIYQQQgghOpx0PIQQQgghhBAdTjoeQgghhBBCiA4nHQ8hhBBCCCFEh5OOhxBCCCGEEKLDScdDCCGEEEII0eEknW4rqqurk/5MIBDA4/FQXV2N1WrtgFJ1DqlH5ukudZF6ZJ6mdUnlu++zRtqHrl8P6D51kXpknu5Sl3j1SLWNUFrr9ixbt6GU6gMcTHc5hBAizfpqrQ+luxCZRNoHIYSISaqNkI5HM5Sx/HFvoCaFj2djNEp9U/x8ppB6ZJ7uUhepR+aJV5dsoFRLQ9GItA9A96kHdJ+6SD0yT3epS3P1SLqNkFCrZkR+iCnd5TPaJABqtNZdNl5B6pF5uktdpB6Zp5m6dOk6dRRpH7pPPaD71EXqkXm6S11aqEfSdZLJ5UIIIYQQQogOJx0PIYQQQgghRIeTjkfH8AP3RP7tyqQemae71EXqkXm6U10yWXf5OXeXekD3qYvUI/N0l7q0Wz1kcrkQQgghhBCiw8mIhxBCCCGEEKLDScdDCCGEEEII0eGk4yGEEEIIIYTocNLxaGdKqVuVUnuVUj6l1Aql1NR0lylZSqlfKqV0k8f2dJerNUqpWUqpN5RSpZEyX9HkfaWUulcpdVgp5VVKLVZKDU1TcZuVQD2ejHN+FqSpuM1SSt2plFqllKpRSh1VSr2qlBreZBuHUuphpVS5UqpWKfWyUqpnusrcnATr8l6c8/Jousocj1LqW0qpjUqp6shjuVLqogbvd4nz0VVJ+5A+3aV9AGkjMu07SdqH5EjHox0ppa4F/owx838SsAFYqJTqkdaCpWYL0KvB46z0FichWRg/81ubef/HwHeBW4BpQB3G+XF0TvES1lo9ABbQ+Px8qRPKlayzgYeBM4A5gBV4WymV1WCbvwCXAl+IbN8beKWTy5mIROoC8BiNz8uPO7OQCTgI/BSYDEwB3gVeU0qNjrzfVc5HlyPtQ9p1l/YBpI3ItO8kaR+SobWWRzs9gBXAQw2emzBWt/1pusuWZD1+CaxPdznaWAcNXNHguQIOAz9s8Fou4AO+mO7yJlqPyGtPAq+mu2wp1KU4Up9ZDX7+9cDnG2wzIrLNGekubzJ1ibz2HvDXdJcthbqcAL7elc9HV3hI+5A5j+7SPsSrS+Q1aSMyqB6R16R9iDxkxKOdKKVsGL3ExdHXtNbhyPPp6SpXGwyNDOPuVkr9WynVP90FaqNBQAmNz08VxsVAVzw/50SGdHcopR5RShWmu0AJyI38eyLy72SMO0MNz8l2YD+Zf06a1iXqy0qp40qpzUqp+5VSrs4uWKKUUmal1Bcx7p4up2ufj4wm7UPG627tA0gbkU7SPrTA0o7l/KwrAszAkSavH8HoFXYlK4AbgB0Yw4F3A8uUUmO01jXpLFgblET+jXd+SuhaFmAMb+4BBgO/Ad5SSk3XWofSWrJmKKVMwF+BD7XWmyMvlwD1WuvKJptn9Dlppi4AzwL7gFJgHPA7YDhwVWeXsSVKqbEYDYkDqAWu1FpvVUpNoAuejy5C2ofM1p3aB5A2Im2kfWiddDzEKbTWbzV4ulEptQLjD+Ya4PH0lEpEaa2fb/B0k1JqI/ApcA7wTloK1bqHgTF0jVjw1sSti9b67w2eblJKHQbeUUoN1lp/2pkFbMUOYALGXbnPA08ppc5Oa4lElyHtQ+aTNiKtpH1ohYRatZ/jQAhoOsO/J1DW+cVpP5Ee7ifAkDQXpS2i56A7np/dGL9/GXl+lFIPAZcA52qtDzZ4qwywKaXymnwkY89JC3WJZ0Xk34w6L1rreq31Lq31Gq31nRiTVL9HFzwfXYi0D5mt27YPIG1EZ5H2ITHS8WgnWut6YA1wfvS1yJDb+RjDVl2WUsqNMVx7ON1laYM9GH8cDc9PDkb2kq5+fvoChWTY+VGGh4ArgfO01nuabLIGCND4nAwH+pNh5ySBusQzIfJvRp2XOEyAnS50ProaaR8yXrdtH0DaiI4m7UNy50JCrdrXnzGGpVYDK4HbMSbmPJHOQiVLKfVH4A2M4fPeGOkfQ8Bz6SxXayINYMO7B4MicYkntNb7lVJ/BX6ulNqJ0dD8CiPe8tVOLmqLWqpH5HE38DJGQzkY+D2wC1jYuSVt1cPAdcDlQI1SKhoHWqW19mqtq5RSjwN/VkqdAKqBvwHLtdYfp6fIzWqxLkqpwZH35wPlGDG8fwGWaq03pqPA8Sil7gfewpgQmI1R5nOAz3Wx89EVSfuQRt2lfQBpI8i87yRpH5KR7lRd3e0B3IbxhezHGEqblu4ypVCH5zG+cP0YeZ2fBwanu1wJlPscjNRuTR9PRt5XwL0YX8Y+jOwMw9Jd7mTqATgxGo+jGKnt9gJ/B3qmu9xx6hGvDhq4ocE2Dowv7RMYefNfAUrSXfZk6wL0A97HaFR8wE6Mxj4n3WVvUo/HI78z/sjv0GJgTlc7H131Ie1DWsvdLdqH1uoibUTm1UPah8YPFdmZEEIIIYQQQnQYmeMhhBBCCCGE6HDS8RBCCCGEEEJ0OOl4CCGEEEIIITqcdDyEEEIIIYQQHU46HkIIIYQQQogOJx0PIYQQQgghRIeTjocQQgghhBCiw0nHQwghhBBCCNHhpOMhRAdQSp2jlNJKqbxOPKZWSl3RwvsDI9tM6KwyCSGEaEzaB/FZZkl3AYQQ7aYXUJHuQgghhMg40j6IjCAdDyG6Ca11WbrLIIQQIvNI+yAyhYRaCZEApZRJKXWnUmqPUsqrlNqglPp8g/fnKqU+iby3BBgYZx/fUEodUEp5lFLzlFJ3KKUqm2xzuVJqrVLKp5TarZS6WymV0A2CpkPpSqmpSql1kX2tBiY22f4upVSpUqqwwWv/VUotUUrJd4MQQiRA2gchEicjHkIk5k7geuAWYCcwC3hGKXUM2A28AjwM/B2YAvyp4YeVUjOAR4GfAK8Ds4FfNdlmJvAv4LvAMmBwZH8A9yRTWKWUG3gTWBQp9yDggSab3QdcCPwDuFIpdStwJjBeax1O5nhCCPEZJu2DEAlSWut0l0GIjKaUsgMngNla6+UNXv8H4AL2ApdrrUc3eO+3GI1Ivta6Uin1PODWWl/SYJtngEu01nmR54uBd7TW9zfY5nrg91rr3gmUUwNXaq1fVUr9P+A3QF+ttS/y/i3AI8BErfX6yGunAeuB/8Vo0G7WWj+b3E9ICCE+m6R9ECI5MuIhROuGYDQgi5RSDV+3AesAJ7CiyWeWN3k+HJjX5LWVwCUNno8HZiil/qfBa2bAoZRyaa09SZR5JLAx2qg0Uya01ruVUj8E/g94QRoVIYRIirQPQiRBOh5CtM4d+fdi4FCT9/zAg+14nLsxhuWb8sV5rb3MAkLAQKWURWsd7MBjCSFEdyLtgxBJkI6HEK3bitGA9Ndav9/0TaXUNuCyJi+f0eT5DuD0Jq81fb4WGK613tWGskZtA76ilHI0uKvVtEwopa4FrgLOAV4EfoHRuAkhhGidtA9CJEE6HkK0Qmtdo5T6I/CXSDaPD4BcYAZQjTEp8AdKqT9gTMSbDNzQZDd/A5Yqpe4A3gDOAy4CGk6yuhd4Uym1H/gPEMYYXh+jtf55ksV+FmNy4GNKqfsxsqj8sOEGSqm+GDG9P9Faf6CUujFy/Le01h8neTwhhPjMkfZBiORISjQhEvMLjCwjd2LcLVqAMbS+R2u9H7gauALYgJHZ5GcNP6y1/jDy+h2RbS4E/kKDIXKt9UKMmN4LgFXAx8D3gX3JFlZrXQtcCozFiDO+D2MyIwDKCEZ+EiOO+KEGx38EIxuLGyGEEImQ9kGIBElWKyHSRCn1GDBCaz0z3WURQgiROaR9EN2VhFoJ0Uki2UEWAXUYw+hfA76d1kIJIYRIO2kfxGeFjHgI0UmUUi9iTNLLxlhU6m9a60cT/OyXMVIaxrOvYY54IYQQXYu0D+KzQjoeQnQBSqlsoGczbwe01knH+QohhOj6pH0QXYl0PIQQQgghhBAdTrJaCSGEEEIIITqcdDyEEEIIIYQQHU46HkIIIYQQQogOJx0PIYQQQgghRIeTjocQQgghhBCiw0nHQwghhBBCCNHhpOMhhBBCCCGE6HDS8RBCCCGEEEJ0uP8PuFn8jw40EiIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Traceback (most recent call last):\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.py\", line 3331, in run_code\n", + " exec(code_obj, self.user_global_ns, self.user_ns)\n", + " File \"\", line 1, in \n", + " fig = ex.plot_variables2d(('sum_flops', 'max_mem'), n=[N], p=[3],\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 212, in plot_variables2d\n", + " fig = self.plot2d(self.get_variable, varname=varnames, **kwargs)\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 178, in plot2d\n", + " data = self.map(func, processes=processes, **uservars_corrected)\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 72, in map\n", + " result = np.array(list(tqdm(\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/tqdm/notebook.py\", line 215, in __iter__\n", + " for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/tqdm/std.py\", line 1104, in __iter__\n", + " for obj in iterable:\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 73, in \n", + " map(lambda x: func(**x), param_iter)\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 193, in get_variable\n", + " return self.get_variables([varname], **kwargs)[0]\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 144, in get_variables\n", + " retval = f(**call_kwd)\n", + " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/lib/lru_cache.py\", line 154, in wrapper\n", + " result = user_function(*args, **kwds)\n", + " File \"\", line 10, in circuit\n", + " comp.energy_expectation_lightcone(list(graph.edges())[edge_idx])\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 95, in energy_expectation_lightcone\n", + " composer.energy_expectation(i,j)\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 71, in energy_expectation\n", + " self.ansatz_state()\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 132, in ansatz_state\n", + " self.cost_operator_circuit(gamma[i])\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 121, in cost_operator_circuit\n", + " self.append_zz_term(u, v, gamma)\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 115, in append_zz_term\n", + " self.apply_gate(self.operators.cX, q1, q2)\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 42, in apply_gate\n", + " self.builder.apply_gate(gate, *qubits, **params)\n", + " File \"/home/dali/anl/qsim/Qensor/qtensor/OpFactory.py\", line 107, in apply_gate\n", + " self.circuit.append(gate(*qubits, **params))\n", + " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 62, in __init__\n", + " self._check_qubit_count(qubits)\n", + " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 66, in _check_qubit_count\n", + " n_qubits = len(self.gen_tensor().shape) - len(\n", + " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 408, in gen_tensor\n", + " return np.array([[[1., 0.],\n", + "KeyboardInterrupt\n", + "\n", + "During handling of the above exception, another exception occurred:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", + " stb = value._render_traceback_()\n", + "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", + "\n", + "During handling of the above exception, another exception occurred:\n", + "\n", + "Traceback (most recent call last):\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 1148, in get_records\n", + " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", + " return f(*args, **kwargs)\n", + " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", + " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", + " File \"/usr/lib/python3.8/inspect.py\", line 1503, in getinnerframes\n", + " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", + " File \"/usr/lib/python3.8/inspect.py\", line 1461, in getframeinfo\n", + " filename = getsourcefile(frame) or getfile(frame)\n", + " File \"/usr/lib/python3.8/inspect.py\", line 708, in getsourcefile\n", + " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", + " File \"/usr/lib/python3.8/inspect.py\", line 747, in getmodule\n", + " if f == _filesbymodname.get(modname, None):\n", + "KeyboardInterrupt\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m" + ] } ], "source": [ @@ -457,29 +537,6 @@ "Determine easy edges from previous graphs.\n" ] }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "ExecuteTime": { - "end_time": "2020-10-09T08:45:26.979955Z", - "start_time": "2020-10-09T08:45:26.967531Z" - } - }, - "outputs": [], - "source": [ - "#export\n", - "\n", - "# These values work only for initial run\n", - "EDGE_IDX_FOR_SEED = {\n", - " 107: [2, 3, 10, 15]\n", - "}\n", - "\n", - "EDGE_IDX_FOR_SEED_JLSE = {\n", - " 107: [2, 4, 8, 14, 15, 21]\n", - "}" - ] - }, { "cell_type": "code", "execution_count": 14, @@ -491,7 +548,7 @@ }, "outputs": [], "source": [ - "edge_indices = EDGE_IDX_FOR_SEED[SEED]\n", + "edge_indices = [0]\n", "ds = [3, 4]\n", "p = 3" ] @@ -866,6 +923,31 @@ "#### Compare with matrix multiplication" ] }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-09T08:30:13.809002Z", + "start_time": "2020-10-09T08:30:09.998578Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.46 ms ± 709 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + ] + } + ], + "source": [ + "N = 500\n", + "matmul_flop = N**2*(N-1)\n", + "x, y = np.random.randn(2, N, N)\n", + "%timeit np.matmul(x,y)" + ] + }, { "cell_type": "code", "execution_count": 32, @@ -919,6 +1001,29 @@ "print(f'Simulator optimality: {FLOP_logfit/FLOPS_matmul}')" ] }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-09T08:30:13.813663Z", + "start_time": "2020-10-09T08:30:13.811189Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FLOPS on this laptop for matrix mul: 2.682796e+10\n" + ] + } + ], + "source": [ + "FLOPS_matmul = matmul_flop/4.65e-3\n", + "print(f'FLOPS on this laptop for matrix mul: {FLOPS_matmul:e}')" + ] + }, { "cell_type": "markdown", "metadata": { @@ -935,23 +1040,48 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 30, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:13:41.696896Z", - "start_time": "2020-10-09T11:13:41.678724Z" + "end_time": "2020-10-09T08:30:15.557628Z", + "start_time": "2020-10-09T08:30:15.552781Z" } }, "outputs": [ { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 185, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulator inefficiency: 27.113991518360194\n", + "Simulator optimality: 0.03688132746234916\n" + ] + } + ], + "source": [ + "print(f'Simulator inefficiency: {FLOPS_matmul/FLOP_logfit}')\n", + "print(f'Simulator optimality: {FLOP_logfit/FLOPS_matmul}')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-09T12:12:23.137094Z", + "start_time": "2020-10-09T12:12:22.900853Z" + } + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'SEED' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-B'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--backend'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'numpy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-M'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--max-memory'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3e8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-s'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--seed'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mSEED\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'--min-memory'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3e6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED,\n", + "\u001b[0;31mNameError\u001b[0m: name 'SEED' is not defined" + ] } ], "source": [ @@ -987,7 +1117,7 @@ " ('step_flops', 'max_mem'),\n", " d=ds,\n", " edge_idx=range(edges_to_try), n=[N], p=[p],\n", - " seed=[SEED],\n", + " seed=[seed],\n", " )\n", " \n", " \n", @@ -1186,11 +1316,11 @@ }, { "cell_type": "code", - "execution_count": 189, + "execution_count": 21, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:15:52.416601Z", - "start_time": "2020-10-09T11:15:52.176206Z" + "end_time": "2020-10-09T12:14:46.211984Z", + "start_time": "2020-10-09T12:14:45.839810Z" } }, "outputs": [ diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 1e9cefb9..2fb2d701 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -172,7 +172,7 @@ def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED, ('step_flops', 'max_mem'), d=ds, edge_idx=range(edges_to_try), n=[N], p=[p], - seed=[SEED], + seed=[seed], ) From 9e80240f2a95a6225f1980f024b98083eeed59b3 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 12:21:43 +0000 Subject: [PATCH 068/104] [jlse-results] for `[jlse-run] ld_preload for mkl, fix usage of seed` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 40474 -> 43711 bytes run/automake/results/time_vs_flops.txt | 21 +++++++++++---------- 3 files changed, 17 insertions(+), 16 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 074a6ef9..782914b2 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 13.715 -Simulator fitted flops: 0.46822 G -Matmul flops: 691.72 G -Simulator optimality: 0.0006768905621257221 +Total time: 35.446 +Simulator fitted flops: 0.24741 G +Matmul flops: 414.19 G +Simulator optimality: 0.000597333645279433 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/946954d5657afc115218d78fa3fa4fe9558b59cc) +![](https://asset.cml.dev/de972b4890ad16ef8d2a0da324083fd7bed8a225) \n -Run date: Fri Oct 9 11:26:01 UTC 2020 +Run date: Fri Oct 9 12:21:40 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 024338a493eb0db53189cb653e4a354cc6fe1e69..32d0126ddfc60e53410bfed1e2e0125f63bf0e52 100644 GIT binary patch literal 43711 zcmeGDWmuG7^gfCY-5^M(B8o^$w+aY|G)T9AG)Q+zNQy|85`uzs$Iu|s-7Osh49zf{ zJ$}BwbAH$Vyg4ua*LiigE?{P!d1CLq_FDJ4*S$WfD$5b!)8a!Q5F!P68FdH*JrDvx zTgJr(p9qZ1{{{arU0x_?;({Mv+_w?nJ)V=it_uW0Vv71jE0ij*1|JH$%IdgkI9j@T zn7+4w*qgdK**Ut}S)1K+w|MVj?dZVA#mmLVaqpe0tCJ`<_y2XA%kjMxcOZmU1_HSU zQIL7A>6x*&;N_{gzHobVZilCPkA;v%9#a0~N#R$H$!b-K_41k>^Ia~RuKee%xMuf? zU#O}@%ahw0GFJc6*SEK=ems$_N2S_H6mO$;?|#B-GO~(imV^DUxDG;^&(CoAQd!_$ zhE&P@{k<7J@9+87!QeNGNzd-xc_ssXR>K4)G47C(lE%m8Lmo3TGm}}7Lu640qS3!b zL`2AEs6oiV;g5Xyf#4{!^Gh^UaFk{6F(eWk?xewbhB{d|_y0Tj|BVUrDaIL2yu9&$ z_3G8uOeHI2)WgXR)cgzLVxsTO*C!Mga}-ZrWDsaT#4#T}d`L(y%rn^mmN(vgy1|Vd z1Di17l*jA^+Top(y_vf_w~*7F3HI(>5n-d!WUZn%y#5GJdSbca@Vis4oT5~Qaf7l` zx$rIJshscM!-6ny!jMvoapVw^=T0-V+NDN@Pa%(3S;vaBOSx{T>Wjvzw+vh*{+*U9 zW)$TK^<$T$g8s9ml>fim(kL4idO73sbBc4c!<;BCW(kQ*MXq|5Nomwa$rBCjFB?t41kXL~fe zrYN&+j>NyX95TIfJ-l50thoG<)lA~&!4E~8R*yxma00HnKrqo9lmy%@i1(G|k&%(q z;+{Mb-Y3g{6I3h*(gb*^e}Jp(4Yk}7v1Z{0+={V0YVRQFAmDzcr&laDDdDya(b3lK zIb7*rd-BBQ=yWqXAZvc!U}GS?r@?KPTGCf|Gs}m|!oq?cGx>J*({rp0FiR@<1?nwQXw=3gF z9p(DE)6J0b`a%WWWMjTQ0d?@SAfMSW1ilI2{i)+ zf=s@L&l?wAdOttp&?);m121~>i&;dZe!)B@Uuemudc4PvhxylYtV+*j!dYrxsuuUypsF6x?||19_MVVM$H5qX` zHXUJaX1EX&hd-F?_-NZenHg0ghZ?n)%#I#4_Pk$hV&g%@>bbt~)fOb+A|!h)jtQGE zYCiD%L0vG_P=h_hu1ILfw{oE8(W6J7Q&Oh)yuv$1ECP7k*2_JF{inpx`S$+9eDl&@NDj9n=1(`yqM6fng7Xd@({P8{bpM+xhEX3X3JPA=E!CHC zjDGU42f!6`zbO@@6Du_$>g_%Jn{YU;@#!uVLMeKF>VSRw5x3x8hoQoWHW^?u!jN1cB;L4s@wbR(Jw`Aw5iF- zWBUXNGeO72{;Sj7-rv7XhQB`lyRq@qc~$0R3~g5mulZvRj=Yi*E=>v!;QL23)Xlgq zp*J;`7h!bEZ8!ro&p!U*Vt_~?FU-N3PFF_x#x&G9hNuO%#x|MtGl z5*NwYbX*yQ1-EGbXlB;lzib(vm zZtT$vjY5c<4WW$^M*M(GmE;e!_qUa_tRn;KWRH6R|=P5Cm}%hZq@NkLEqHFFpT|U!1qBL_9DP;}YS) zYIPr$0AY~~X5>%vGMWc=w7WouJf^DbQY4_WRA9~f7ZmMle1u-7V^bMoin+I@@E&d# zIIV=1Gp5oLQUswQZ2Fg^M||$ZF)EV0OiTV^>ga%Pk*G?EP7tx~5p4>C>s6P=PY{v84TxVfhGic7L;hLiv~ zdNZR?*QLf$y&})gB3%A)rctk*o#lpIlU13*((r8LxWTc+^`5*h{&q1rWbU~Z7%G{) zyVawaD8|l%Klq`oVKK%Z+OroDEuaVecIP5c1lh|tL7yw#Uu7miBJinFv~p%vHaT|W#oPlPkvzooP#40$u)bF(psmCo7D^g{IEf0NR`;<}P1 zD7GguRW-9u93bY=E-=+fB$PtYveuKX2sQ6{X;L<7@!yn~8O70gtgM!8&WA>&Q-oD@ zS!Jh&G7d@F4xVu8qL(&fr|uieCULz&SwmiejozWDhedpI-s8Qj)|#-^XOK4~9}-l; zl+ycaxEx!EJQl4NuUU`ek`2MP?;d;oNu%&(VQ}%SZ2vTQg^8`D-C>d3##!5Xu;7He z-1rRJF7Oz}iC0!YD`ObPekmi9Gw}IKv_LggjYR0ZHXmeg=zYNg0$Uqy4u#%leM-4f zmzXbOKTsJ#8YNms^AD$5()1e@d^I3;IMqSG8e&b#Q(A~mW}!;CV2ZZx3!iFU9Ekl^ z=G@HhOL{-YS*>?W@$BC~H1NS{?iIIbA2`&Ly4KT~TM-3?U6p+wF&_H8wo2g6Yk|)% z*e((>b^IswE=^X&!Kd_>is#=@8)_7f;q`;9<#J=a!DR#$CH%NZ!bup>FL8SNnATs+ z5Bp5?@Ar|>=Kp3_-QFIP0k>6JrSW2YiL(3`R0`v>qUXVQdc7#znf`|Omvxn^%72SI z9Yp(F`%OEyKU(b)v1E2AL60{4&orIzeLwR`bJ^g3uvoPGMj+V#){mMO9eE}sFCT~l zD>0o}PTxvYo!iri|Nh^XeoWFn7fN!l8XQ{u+s}uA3fhc#FzB1MA)%!RHTQQ)xeq1( zXFvQB2v$z1$w;51ct0ekZAMMW)#yoOyZD$D9-1NTK+Aa~janI8z5iJmPELv9<+V%? zlM~(4rsh)_GW(c$zk^C~cz~q$sgjL5#|NtT>CsVXrCiy)a>i%cUlJ0em6eGF1O)Q( z^Siu-!R!&usH^v;HGX*}Es=Ecnvyfv3*HI~H;)aH5^qSj`_d?a^C87O*FESjBYI^j z3`$NRjP)#Y+5ZN{rvK{6!K`M9D9NJlnC}7briHlb8rS?{NpH}zu5Npw|1Opw09yBvH7B06l_sV4}9zwfY7rhS)hW+#|VWJ)I`fCTa8bsS2$tM9T)J=9kuT|R{{?N9FgmvJ9YMS z(R4V9NhxuT4S14>JF$|YHEW*_lu%~c&;(}brJGiz{ZN`izNMx%>AS+XBl(V-HKq+C zD6APr!l&J3D76o&pa2}Ys|V_7N7r>fe|BCUB$_)bHeI9oc4)ObH#AS0n{d(r_g;w= zTSmaY<)ABz;!XYvQRI#}{mo)jhzp`(L)G$eshVLZy9e=sg-7ar9_}9TR?CjbO4iA| zFVn=Xah&?g6@AMgB>g?Li};GkFU-t<6F-vWL)|l9z!2%i-54b~g?xm7bhH|4Pq8Hh z7<+XY9N#Qs$Sa0O-SpZWwvLy-2l4`XBU!bGuXT`uCh#p!DMa5-dSZQj81+)x;Cm_jIrsR~lcc!#gfeU`71 z2T4c*0&TC*?Uc0(dGe|ygGP=Eq}o2Rrp?vm7jzik;-4>(;NdZd62@Dij4Mx(Z^y=2 zstVIw?x9Y{ZS95^;{GAsvXhC@e(1v==4Tpn)dY`J!W6lJ(rAU($#q&7x$3@3D|5ep z_HS+Sv7(+GdbPoNHe7)Z#Z4azU2!(o^e#Jn-63E>S@UJQFm6-oHb_GyG=~{})Sr5I zi)13CB|p`Os!E-01;H?x3U}|Oxr+>G3@H}0>mA9y@i`EwJ9;@?e>X$f^U6Af=l)Is zg~+@A?glKO+)8+0NxxP5fcO+rb?!!r8z|91GqJuDhF$sRytYMvDcczvaTNC{lc8E8 zlAa6|Kek8h*nYenFnsm(+v5Bc=QM=YX??J3#nn{dRqX6BtUKng$heKlI0eo1%q~TU zWbaC<*ww572W79~V1uHe*AY;KOTf4cUI#*IzGy}_%)TiK^vik*UW7=(_=Z{w)hsXi z`ac99?;bQLuBeDg{k!XN6QjqwCF4f+sJ(}>rq}4O#fsEbuX?+IKI=)6VX$QcxWmDF zd*UEBH;@@P4G3(&0@KWvtl9jHgB&`LqBqZPkt4`F=J(Sp>L6P z$9(-p*aK$6j|b{^NaMMFS(E;TUf+mjaA9-k#e$0lNHcU*K3ZeNfMIFeVm;RXYoVfY;N?(3 zHsdL2q)etIFlrXA5BQQl#Z8Ckw6e<%ni22oE-m>GnE_DU^`b-81=)F=)|T5F z7`@-g2)*058sfmCCF;}(;5&TZtct_nIOv9d+ZlAD!m*5}bCb<{K~#8~#S`gOnZ5MC z;`B#XDrW|WpCnU#eLZ5=_;z(nMap7(G+$Fwv(sA#U~4^oS}vw1xlqR32C`}W!+6*J zBg>VZtUFtCYQ2%+_8IT-ea{&PX)$3<7-I$L`$jSi33bQ^&6WeSVMKH<-Q5L${P^)Y zg(nCw30?m#n53qy*xOEH*OxtN*0FAXsqt7>IJZOkYja#eXGbhQ%k_|@<&eCr?yuF5z?)HW-x(Yn{9adAC*94(Jj#GYyTkjl=!KXQzkMCO-K5<= z4-Ol4{ucvVqS3Hq2Y&iV-IPWdH{D>C-fXha6MHVBd0txl{=GGPKhm`jq&K@D!vq<* ztgI|26p4TjC8VeKHF?2xY8@Cl!bvvgU54_Di`VnZ)0H zG|kw~_5NaW`a+{eIOEj#IArGwmx*k`JBMg!q-zqTC zgWibVbK|6p3T;8Ga~pWBghKcQ1wUtG^eb{VlY0}Jtag6fn=TL0HuA#C9_lIYVeFf8 zY*EtFqkSM3`}gL2sX!%Lk~7O3iMafa76`cLV3Jo>jvd6gOBx?BTgRJueLxr5lMub& z033_)Q`7eIw9}{ur>Ca|&RrCm+S(|NNr!~>QNs!0GSX9=k+7q69lvF&WBq-(^V&2hmOG?Nsx?*{GIySeG8n=Zp; zP(+wM7F@GrThEoNfiZsN*JJbRoYadyucU`&_^wB!ZW-zQW}yhW-rbe+jtYx68~x<~ zp2dnkZG{EEHaqWzqf3))H?KVh^F(UU7G<>{2&tJE3P8H}BjMS#+tZz$GGuq}rc1z_ zgd6sZ!%D=@4qi^>xQv{>lPc{|nnBFr)hWumT7WzOz<)E}F8#;p0b(FKv2&ZNo}}M7 zeas#H@$LZUJcO%}5Uk3JQlo}$oFXyA!q(1O+y^d0%nB*xg1hMhVRH)xg^_uAR^FZ7ZmHZ$&K>%2(c4d|57pGZ@T8n@XVn>dY|yrdR%uf zeU0LrkC4%7NRQiIdVCy|?9!jis*R3<3VX@<=F zZm2Gga%D9Xg~T$5C1JRgr;2+$O<+}t-SUcxjC}m$Njpz;1hh0FqAJ_8HAlA0>03QQ z%=K~8Mb4!$51l4XhmkXKyt#{w*Flw&j9}r6vGv_3U=&8RXxyrQQJT1p`#FtJcbx4z z4T|stKxvRAEsT>TL}5}IW7l{54#*5!C ze^2XXlB7aEhw|mnqUZ94X%(4VIJs;KJ;ciL!e$Jh*V`F_IW;&br8Asm*v{I8N_`aj zcNOMg)i^an3O#fp?6U9YZ8Q^F8-7lPCWMkq{aHktnO0|)Vk?*zfA7}q{G4p*-gRE% zGN3=pXmoO}fMOo5Ad&LgZ#^spcYCJFj-o96u5-MY4D!0m?CB6E1*)o$AjrJy zUEhoQ^nR|p#$)_%XAO1VaAkoxpRbXvvaC6$u_laFl zK~u1@QRN(^L8Swose?{T22tiZH9U5NMsew%Wj!Eem+9Vv;vLJ#c1*~7hr-R9^OfHZ z&KVn9&_A1m?4U&@2@#~WVNckga~{cn)PN0Do()!05cdB*DrV)k6Qjvm+) zyfOiKx00DM{@?|G^(Z>XP>tgtWUh8UO3m0d_FHMxGYDZEU4S3w4Xln}F6)Rokr8^^ z_Gg_5k;E#M4r#5j#s*o8^vkmtFVZM^kFTidWHobUnuppO*HHB{uO08cSmCCg_a>xy z)iSq4I0`#t`^&v`VJ0X(CZFu_!JNUq>cyUoXA7i1X-h*O=U8cjw3WrMmDrYEl0;CeW$y0jl}OV@y2q z0~xZ+(*K>(Hpv$h=1rTx*PA-ts!?i$)5@l6e0;rmm)do;^hjtt)DpjKk13)(Lw@|< zL}>!FGjk~Yqy_QNZu--Q30jjK1@8A6XB|3O`*OK1f(Pwgvjft37}j_?fM$4fCy+J! zgIcah2lmz!$(zy|ry*OZ`{l+``y2Pk9-#aK8AWw9k2AADfCN8(>%~!-zeF@c(So>) z87j9#u}E)kC2!|5PJK3L%JfW+%m5a4+VAxM_h6~{zvqq(k8?|ECc?TTRdfsSYl>p- z-w9koQYuT*KrgW?Dp&SvO(!|{aD(09ceV*p8K7v&|Ai_!_Bx!7w7u-K%X&4B}*ldc6U z!hq$bo^1~q;itt>vLu6xCsIh~K*yHQpc!m#gdLaANx+w9N*0w6nmqzxlaXUfEGFWD zDC8KG$!=m;Y4JGWcZvqq@W&k=-E1 zSyfpY{;j&|=qFQP9rm|4modaNeQh=7KZ-v@aRtvgV3bmEL8&L3bh}$8E=_x6bF#Cq zFe7D>QJ#aeDxyle<9q3$_*JWa9Pbke@}abOn>eWaJ4LaiRm6{PydacicrrH~YGrQV>P0g#Au&ttyI=1I^B`pG&Q5o01Y?zRaGIf_*L zFD<~BL~-+I*>^Ft!~Md}!Z@R%1dM9)^2Um?{QSG}uPwLLE0dR!IGs9458H5@;1(8N z`mKEe?TY+DtZxxMkge>1q5I9H5g#=EO?{)FpM98A3k|Z^dRxcm98av})vXJ!G zslKydT^vHu{e^+GXZt!JEmm%KOnSd!@nhZ@=fW2R%`yju3|I9zjJ$_z^-4?GUoByC zJsiQ#C%xi%=M?cyXF4R$KyhJul&>`&(&%B@=k!?s=Km-1pi5r<>(Hr49V`_i2vQR* zS@(U=(x=`HhN)7n~eEv1@}}_o}8_pcPw}Sg205@>15=v zoxrIbZy;{LI8gk{nZSs*G3ksVsxHFNIWi@Ce3t1efH@sSAk zxfM2g?G+Uh4vLXj4heQFX=%6hFxAo{W%6wQO?*4Cg;3o0MQ;L7g%(;2%wzFf#RKG! z{KTswc~H@K%skq~@M`RBM<5o#@?Pb)D)KO50gubNg9c04Kg^>s|1gS<54%^$>>Pi6 z6?u1D_$7S6=eDGgc(ORiw1e2@f_W4R6)-zh%RYPPBfnS%4gBLYBXzguUg3&QFNg;N zh8B>2Q!V!%b{QP_t>VGYnMZH_oihwgY-($r&hjBllGt5{gy;HleKVaez{0`_ zab)?eXF}U!T8=Va8RfZFXTNc^F#eSO@mFHnvcIeAa4frhwd)RUtCCQg98()_kId;>K zt<#K!+O<6MXsTGJn=+x$Kg>46n21SR^|=s;d25 zYt7x}H+miDb7S(E>|wZq-Lg zEk=3JJms5_fB|bEkz;UME*03ZVarPHn{3LUjMAvtSXUM2*1oTr7X>_Cd|d^s-}o{& zG;ro{u<%6njc2mg*NMpTTzrH-`r^yzpMMHtel#aGUBhcz+9F6TmlYL5l8u5X*uTof z)%Z25sVT1|!Fa?SYSxvA*_CIKglIa}1dU4{OKp{Zl-~mjC_j%oh_E*n4PQ()h*?Ms zZTS;Y?eP*Gg7K`CM38O=ue6t06ANv(MgyPdYQ-mZ#01N?$OqbU196c za3yKxu7667p3by~Q-l816uHzY4$g$02Rk}&rA z&XQYFuo!J8pLvS{S1f)AVPQ!rtu0vk+F>0gJ}0?^p&yn29@~Bqbsr|web|4PD|aN; z)=ryk{?yi!m^9Wv;q5A~%W4S__pr&utCl1KG4L5}+`ikNJJg-Nsk<;MED2+}rIx%I zH$Y!J7vJ9(`VCEp!^w&!k5^VkZ5QPsUaL?3r!m)3zs-=I{7)qIV&BuHe2+;F@q?s? zRZLpWLT@OQB_=oyASt{Ui(WXyVjNF5@hE)vDrForz1s1mW%71`>?*zvz!B`9$V1Pl zQeB^O-rMvfM*N^TSXx_&lChlIYn(Zp!^_Q;yo7%AI7z?d3GD%QZeqE&gKO|Fp;W#n zZmAQ!N(XrJNkSq&D|4C2Bmj0JqY9=d1898odNahd%G2PAyA-o^Wl!pW;6tSdf{ zvpMwD3a*VUQ)?JDU?3~w;e(lg!Y}i0p4k%lyve(>%lmU+Qm8FB4n^;B6aFaaEOdm* zl}EVxgUgTZW3ijmqPBzWQ)tC#Gq;|-PFmH|AD(t1kQ+-bW{Zo*U`qSHuB)tV(KQE$ z*PNjtHt67tEpkj)QCOBkVW4n?hQaK^2=QTJ{TR*w%+d6k5QY~7UI#U+xJJE|VG#vx zKW`2cgV&0F0-SQB^=8kn&8A~gEc2NkLz0oTsqq^74ED3Q`#moO5SQW>1NgjYr)d4z zf5zC0Xhg^)Z|SejLZ^(wWusabyBQYdyt9@+m!N2d%RXvV)p0wo=@nPruU{j;`3 ziU^rFAYO9yNy>X`C*c!3fE_mEJ8IK4DaMdHiXlixZ1pI$-lf%s&-fs7(b-&4(eX_L zDaZ7oCE+93jee@9BCVSnj|08$8BH`3(+qstP#2Wv%2^(ULpPpX6S5;dx*FOeYI7sx zrzpTaGuF0RJh!S$y*<5_ULir1apaE6J9@J`r09hF!gE7t>F3ndw}t#9Uus!YrqPq;HGNqxKahR^*UV@qxLu+Oo>*J zX(%YfY?Y0oEPucLiqU6}mtHANJ=1;Gx>&!Ki?+b7Hj1ku;^f4YtN!n2RPiaNaC_3m z^lT>hSFS*2Cc;L8TVi`t+EgF?FMH36M{Y8OTF8;BN9@^X};WCt>jDd4Gyv2fJHDKwIb7}u~_e5^A zl}dX1FDqnJzp={Xq%AX6spLrK|k<0RY7%2n0X+hGB>KHpWc2RUo!M>o#B zHZwiymV*g?|M>%sA0GE{3yFO%ER1Li!5PbyBT<&Td^=gJd$%_ZluiS6u?+6MIUK3N z$pWvWzkW0KsJ=MSpyn$P3YdFJoZi*L(80J-E0v}2(o6u7C3k?)ac|kav+(EMFo;9v zl!<~oKnus}-;!N9C>nKj1;`WlYe0CWO8SY`E_&OhFBO!O#IAINyWE^kxg2#-3HjVy zZf3Iz2_+}8YrjA4W!2Ep`3>x)56G#cEx&uU^hc0BIK1>7fVxlo)Ou@SQGF{NDW43A zUfq+8Bs#^MXRYjm*|a-BQ=~<|f*|6@xbyCG{DO~oTC1ZhBPp*BpDv|C+P9x|)zd^vn2oh%GPA{}b~4Zs6(e zRPAlZp85H~!na7vz_c`42#}KjC~CI3joWtQUhV85*Fec|?|wYAGAV`6*P3Q!X}5~d z0RC?T*`KISchwAugcjbe4Fw2NnG8zR24P`*kJp1UVBl*sz|^(-EY(187OFk2lJ z&gdNh7CEY-;wi#EV0t(H9oE{BCl4V;GJBIpa^JccpyKWQvnz)r(}7Mex}iZ7n~=IS ziW~ZytsrA`wH#;$fzB)pRl4ADT7K3Y$D~qf)I59s+^lo=^thYO5%8UxAF6laW5KxV zW!Ahg(aX$26Pv`@jY>n?LNE}>bN`odlGwu7xzJcc8#}>_sijvFibE!v zS|&q#av&peI_d4ySL;5LA{HeS8>_Dl^YviPtOPs7%g+0A!^% z=hDi={5L{J06b`j+rBSkP;zg>{~Sj6;OOwdx#W^7{XafAEz@=?0Q%^tY;eL-QAV`1 zuqvo`a4^=}u^HIi%UJr}orxmpAs|71Q);xZL*|h8_wU~_(+=#(5<|KPc!aCfOGEpj znB@P;&BRP9p#JxTqak<37NCy*sQ@ai9bd0Nua~3w0AL4+Eb^Mi>%Hd%Mp?dLF8%G_I2?CtG!q_+ps zg)04Tyq`XOO3nZ74ybRw&Jd1Q%YDgf*-wp6K=7leh(HS~N`CV#2xw2GsB#-30SYv| zKJ=Dwh_q7bMkS*N3mkzp_s1`Mj^B9qJ8OPf*-EyLWvz?)owYVSlp@Ypcc$lgss%qP z^~Z{n!2Y%HXm4xRZ1}i<_ve%JYHtPFr_pF0Qo*%CwA+8f)oj_ioy3F$4VdH8(QUBA|mn!DL zm7kv#{G6GLc9NKDf0Z(i^0z85C%61uqdOpFU4>5-} z4Ja7h1gljpgXkecGMjtNEfQW!J|tW%^fmS&oidL(KBPO?Nbc5h%NbL}LOE~ecXUK_P1Y|nPu1@M*f%Uoy*wzfl^^suS+TM~_sp z`v3MO%$*|l^L-$)#4(&ApjeL`))P}YPv}=NUtgEZ*;xyW5qwxf>`?mGsR7UvB*y+H zyZ{>xH@mkTPPu-sU~6GIsK?pp=XIQ+dx~k~i55m8b;65v&g;O2Km&YrB)s4$;IwYS zG)UvW=a4~`0&e{zFP1UFueS^sYWC&So<)ZV~{?9)j?UXHkS>eD7JplbA1_BDD; zt_s|x;roDt03tE5Z9==_r`Elf^*2Y@)@&=H~?o2)!5KQHd4&r zy?YnYtsf;Xv@(77*lv5JFS*8*6(gzmoq&^UdToxEX=I}luTfm%3>*};K$T*Jn+*?? zR7WBlw`MX{b3>!zA@Lb39RpL zG(pR7qqJKh?qMXbolLnwGB2Esw-ohCegE~QBAI;TdfxaG&PHb_qHB!z9;x7fq#q{~2VD6~& zQE@NlV4bYSTGD`B^9^>i1Yh6{9Cm*@Wv$ofU34AmC9BJso zS!_tq!$6hk{E)$iKIucJ>IH%A-AYzWJu)%{QNdRjcj6t`o}5FVr<3|4o^#65K*UQ= z3lt=p`ve;j0XGiWirY5?9r)7N=_OC(U*aef6%#yAsmEb_|SO(-!UF*#+@Hyk@8ez z^Y$InYC#Wd?;smyRWIP)^Qir?*eE2~nze|dpABUY6l~;60A8d&slGPV{MX}LVearz zY}R@vsn*#@QpoExOcKd=lzzYwXps^GK6n}ZwW{h%fB$Qst`6!lvn~(M?lM!m6^|FD zn6=L>Cik(Fx*F0ct3^A>S`geT;i$0WYLAyF>qvWs11b(q3u!&c>HTJL9`oiYNCio) zm}UhfL7n>czQn21tzq7e5i-(XJfJ0Ed#=`T>wF=V_IXs5ic@Wj$uzrR%^jd@9dMtE zkR_l7vk7EDdnG@*Jq{A*Z!d|&&ju_Ygaa4ceLagqYQ|o?JIpN-nSizb`VHE3%>Y6J zP?It+hRNpnMCni*nuaq_&K|9WGx^^W6HD&^$?%>w5R*tD4yE&yY4}7$MC_)^f~swS zjPNnDVQk0t(^}2BF{6B8Zq|(zlGeh<1xMkq$6V!~vjg-VBMiMRj6GMX=tTN&v0|ir z!`0LnXW$3AluJoc`MT?sQ$U7yvuI->Wrw)unpCb5KcNu3vN=G?L36_G6&etZRf0u1QLW}K^=3wO<`3r0{TY3yb+ zpd=ZH*igv_r2*4(8B1<&)oTPQy{RJV@1im$ObKP2GVk1*xQ0s1 zUpCo10$vn#C6?IDgd_+HT1cdDCowrHrY9r5CY>Q*+AH%}gx)f8HIq*kZ)3D}<{~?X z@X4qz+T9NiM1I={G)kI(+Z(}=M~tYMRwlO1i0bQ!>bfK|o=k`It+owQ%~Od?_N_9H z`pLRt^Kf#;R8{e#2SFr!&Il!x6%})hTm0t%4i&%NtBe=Vk8r)excckcVfa88&<-l} z(8v9g5Smc)BM*%M_eX-TBt1-SY5gY#JUt-dmVEOHSw{uLzAIolbbJcTw-@LFEWC;o ztD%36-MJ^+yDgkax1r3U7#9E-qw{zkntm!wiN3wJTwaSoZYX`#}-_1$z zJ)5bu1_+jk-!4f;%qT{-AK>k6`NhlTT}QowxHc{r_?=FGG|9Afu6)MMv_bkZ+g2d|R9=aPmiE^}oci9~ z&tm{xX#3`$=4$|78c51Q023a61Cq|BvsqhRpmlQD=wHcCHd;kVTtI{p5nlMEURAxW zT-w8sIMiTEh1d`Ry2R&7L>c~~#l|F?*)8YPfW^U^33*{Ulr_W6e>Z$7kW!S6e@&>+ z@YXrK2P>s-#(H}IUo!1Xu_`~`T;Y{u;W-8AOm@T~2KC9J5A5im5%$!qGvZxSv%J9$ zS7OdJmq(Zu8rWriN%DS^K=QtPK4WDW*4Gz;MbHWzQfWb{bqzCV&H|B_=by&8#q8+q zS4tOVHp+uU9;69)SVx_E{HFn2e0TsOk1u)ngf9^E2-%&-3^R{5lo+vj^YmrLUla#i zU_{efhqXZcR!*l(k5+-7=}#5*@n!;b9Ej5iZ-)*~^sINSy|oapk7{}k)mudcd$*Tk z2mP8CcjF_#@^El)`~|wTzW}htb+|Os+vX{~ga;BAu$Hnb$^6^?bGm>a?{ttte9SLbrCH zDKyLxYI90&96-dHP1tgsS^rnek+JFW(Fts+=4j^n#QvzdwFDbMk#*zWtY)-mDnTeK zLoBO#fCh#X-96_{3;Z#F{Hhun(t4noE&PG=*Zll3%k$oK6^quK^-SoU&ZN)yzc{RC zGgJBPW}i7PI^Mg}nzTZAT?~l)V72XU!Z4w?OE&?|rbKKt*Rwn zYWIu?c~*)<=1(e8H(%U#Cqw;#UQ`a%2zXyQ>~J-T`{mjf=FtHbBAPIl(WS5l{u_eelv;L7tExpv~EG$q zCdsB57m(I4v$IF#D<;1O43FGe74!Q~KxIssoY=-8{&AwB;$MxODZLM>! zpyh-ddQ-}fPK1x&f8+b0{IBi!#Oj>x*s3ki7owd@zA`yKuvBaU*1@}cAO}*yEu<9b zHW>i^`YvE7l|XSG3qnWL|0tcJcYazn+G6St0$LSFzN)09zt+wVkR+6T=za;uODEdQ zv;J~h^GVA0nhziOH0)(dCa9SYHJhxBYdmmSTt3e&cVNwc_Z{-?!*AYwJh;9aUjndV z+4n~X#7QL%`JJZm- zLL%Q{Lxx-%S|uKOXN2S+2+Tga7HZL7Y+WhHVkqauq}@5v(psL=u-^OixMPG{Z10-% z@LKHe^?lHpq*jkp<^fv-a6H`K;_X`=&eu4|Ic2f3yd(y3vOlcnxy2V-gbv0-rc%z&y(m&LgBTGh}aHP zU(Z94s-z~rk^V9m&Kvg0FMl0IY~*BEfD;5A7cK2S1Ao0?_q#q@|NS5i@G!ts7+%GE z%`cig&uXz8$b-L!q}fkUDsc|T5bGUr2*8k0?Uxqw@O8&SY!X?@4f@XNpv#uSNbh)a@>AJfmvOG{1O6xr;HAE#*ALK(*ZZA17pg@XvJarlAKz zGauw*_wbO|4{a;#uHE`T& zqdygem8#Sf`Rv7{d|AisXwr$M`ejW^J>KG0ojV^H%wiZI9Z0)~ZfL$##83?)h_snb z@%<)x*VXwGpe^l$B}t8iCzPW$YUd$nG@IqxlhNwN0t9C9_few9$P) zYMQPj^-R|6$M);=A;aM7EQIPsAD7PaA*SpZ4wfr%3pFNfSuDg})570{IVR)Q!P~dD zQOP~Zt96U%P7CFq7B`W>C~D=t)71CU2cp>71<^nrK~2HwYg9z>K!<1^ZHWZ5@DJ}k>krS4jhLs*$jbjIQM?Ks9;8%~ z&H>uf9j($^q)@bQ+cHxTnL^ot<&kxqx~C1A1cMtyQ(W!C)S95j{PbOPPItL!WTR5` zxgM$)<55A)yqfnAW9Q^wO)a!2`Pw@pkayJBK==Bs$GtIgTvMx0VRK3^2s1?~uy$RA zH~o>v=p9dEeHG28lUhl^enbUXHPXU`o<CZAyNJ+Elm#xESVF+2y<`eugmKzru~-?l%*4sP4tnQ>x?JWs1~?!&3(=bC(F+u zxA!Sq?u7Le{&;!~3j40kr1lt~gjxsCm%?j)A5S2@jY@ZfrhfTy__JQ>_Hrm*{MYaM zyRVhvNhaI&wpJVq33lO||HQI8Mj&_yN5i zOyZk4gP$P_a_jf-MF^i`?Be!CWNqMzx&Go?Yz|%0hBtG^k3eOXT8jc_p`@#@w5M?9 zc^T2`+j>QXon#bkh>C{V2i=7;L2AZJ<@%37w)kAe3c{+KA#Z8<$lBT(w3|6kXlchM zCQ^9QBOZ>?lxj4HA2OWwCf7m5FsZqaq$^n?p zQBth|%cx#g`PABm%2erJ1Qoug51i-oXLQi`aM&)_A-u8ZlU|)=ZT)EU-8)E!71Cd2 z%NA(vA0tw^FZ$Prga7L>n4Wu3u99H%5mjtwceho` z9U|?<0n8IL19~gl>G?VfzJu^26VRQQD3<(T@AzHQGKu8cNRy1aJn zHjJ(XNc=P6nCN;4kB&yO_X+8+KjHtH=c;hrA|C7xgE}&vFNO_VGkTm1*Z9HF0G!u_ zCy&%shH*>bFICR}t4-o6s#l~v1LpfRkud&IFcz5-hOC@`ELSsYc3?qte@3b%a>e7@ zx<=q?<3a1R8lEI~SLJ(o;XS#x+`dk*&kpr;KE_l*kZYn+kh_Ip^?lFw0np79t*7uO z%d$P8)&jP)2@fa)V!i|Q9=md0mobz2n{Yz|5eFey@-2Sg$7CVZ6CEozg=50&rwRFJ_>>$bQNzd5cb;Q$mwbI3sU4p$pI-H>A)H?+ zoqs{Pmi+Ax3SAjBN^b2YgU+Z(syoH#`R{{jW?1=j)AM`#Mc~(K{TcnK5A`+Ds)nvl zS7kT*T?V}d6@D^7`!>b8ZP|O-bY651hcY8>G11$4JDpQ8neV*T$`O$FHTeD;I_R$H zK`>xTxn^rW8ERmCq-w+W=}bn8MjSzU18cHS-hKmXudkbT9dJ7O$x_fs{*=-umaQR? zXDxwrl0CB}VDc|rig9z)2b%2Y%hzujLvE!4Z9ad9dLwB=K! zJ<*_N_k^)X(VghWCnuk}Y`g|;+a;%#8JCBYlIxp*3#DAvBH9&i8nYN>$@oCn4Xurp z*n7Q(MbBmD?MW8@+hH@Ud<*GRwl0F#b)H1kM$fg5=36FMkT1sCSAZOA=rbeKyKmbQ zyFyrOU)tZLYv1>1c+`AWV`pB`l*N`!VRQ;K&IjFl@&XbY0$KphU`s=Ej!nGBW^K+^ z%p3;6k6O*GKM7Atgd4N36uUTamGVp4E*MH1+el}5sOyDoH+?NwI=WM8<47{uZ?^|O zc*;;a)JR}!>E7=#JC2#%;`?dm7u!Yr<$(zI(a!CO%b@O}`C`IDKK50H4-fJ!OnRdw zN0si~!Nq(5!B<8P+Z86-4`vu_QF`_Ig+i_Dcs~P)#$VMoQB{vS#_4kxgFF3Wx%TCs zED(Op-=#VApS;u26<=8us2ggq@L2XTN#7P5!k8=6cbC&Ny=f=l+0~#8xU!}1O_Hn$ zFvW>OY>Pj&$`-mGthc}0vE=f0S^$~#pwO?qR0TYN*?r8fCV%+Aw7+_f@3o%JRyfQ1 zg#EMmea*5-?)sQ+0Y%7RP4#G%<;N_un9%P*Lt^~DUZ|1{S_+@q zf3bTQ_&vDTq{X~E>-(hU|3TSXhE>@`-NK}Zlpvjwg0yriDP7VXN_V%Qbf-v42uOE# zBi$v9)MnG2XKkPNJ>U8Jd0oaYS@)_r=9puSRgHiG5n|SHKL>R!e z2(Mqp?p15yf@;}h=1efonRDE=-VgML(g>(dHh(HYGz`2*v^9c{wG`^G{T7@zKPRGp zo|*P9Yl*z^tY3dNSN=|<)eye9cBS`kle$9v4{~cVy*>A8*w0=4ApZ1ihqTxfQ5{8m z;Gj9`%tK%b8p(=F1f}s$dS2Pz=X8;V;=`Y!iIqvp+|{hVzjttW$=J^=pdB3CnQ+;2lW<<&X-xUEMqsyOJ9Rar-ma@_Y-N}(;?JF(GN^nBC^s{eqFXWW@)l_L}ugl z#{T2XHs8fN4ZuRvkx(Jf^D^+p;T>@O_s%Y<7n7zP7!gf z>qR<)*&KQsz`rslEh)nJ)5T%uh#wrJJftp(`Kea@sZ!T+?E&Tz;Zl5-aY9)FM>Z%4 zr}~pKOr5tCA1Teyxinu6Ua8^LbbT>)+c^(N35v57s}P6^FURm1ZFzK$zo9)<5@Nw^ z`Vz73h(7}P+xJ+LU~Bif%KGr+?4!u)V5Tsy(IwW3SaFCYEhVs{(>@w{~C3$0Mz^9xBEq_69!ye`Xy7e zpDQKu0LxtjTjB=c1)IKs6m0s@qo02cVCX2www`Xv<~E9`6}GMKpM1OYj#wrkzPp4Zip_z)#6c^$m{Rg+O$NDsKgJ%Sv9^$u!-8eF3 zZeK0(q+`s_cjlT#+DW_DGEl+5O=IVoepaetIu*%ZwQ|+sFTI@8_?X%C(i> zK=aJgXE*rs`r~5}T$>_BbYG+tjxM{@C9A}F6me(I?Zh;P<3DP3P96s<5nN%z zQM5XK+svuIW7c0(Z1TQpRzDQK;eQ4&#jkb-W;h50(y$)Jn9S!ymw7Xle>Gj^>ylkZ z6Y|dd=0k-*xv6P(t(V+*V^Crb(66~uDQ0nacA1?NLdlutF-c`-lA{C;8iT{`V-$+}#F-ZUtmE z?8xiwSy;z49@)#=u~Mtq;j8Ix?Xfw>J8rI(XTMh*78c~Y(}ndenWjFNh6fl|<(xYc zjgQq&=Eb`o6r+|*qupy^5hx4kw?=`uY5&?@W)xv$c$k)lhX5{rGIYr{zojJ|P>wH} zIo|R97t`fWT~CW@v3`Csm}BcaW);|CCMC^>uYv?FYZ`h{h3VM5MUDpBLA|+AaIGi58NH!a2Gp#qSkiIsTi?y7W&lofyxGl< zkBMmqC7U5&k0e~`)pEU+T2T1A+G0E(?Wuy`nsROE0S<;_25u7~&8Y!KO_S{7m!2>R z>CBPX42!9*$XB!$Q>3-EaH}?xqgZy?0L4_#*h<#Y_wRB~a&0=3R9Y`vDZRv$KtUX3 zV>7(F2F@WPq;V~Eq zB8uL9Y{piDUB(en(#&vPUS8k1tnh(;O1aGsXt)>{7>t02Tr()&4yAB~v-<4HR@Y+Q zQyc@a6(1lIsU9pWiNiis*VUbNQ9Q(;kh`zei^LnQC-1N*)A9wTWq*7hr+=Dn`VkA2 zMIKR0Qbs|-$}MM(Y_nv+JU6>9K9188(<$xq0U}{ZsHlPrcZzB?wO*c;xm4p=BR@5g z6>sIRg10`ruLy7_(?0}C#+Yv?fV?l({%Pi!gAEa)xQ0BgmWUwvV$cvt4ZOw~<)Z+9 z`H1*p*xgg!EZ_GfFNcF~dm1GY&yVaq%ry&K4Q9LVT0z5?$LW>>kP0H&Ki*%Sg0}A} zvr%&OVomt=R-fCTmcI6OI9Q2|QN4JTBlCJF#0o_;n|^7@b72^AzK(I#Esqy)n_hgY ze(QOTYpCwp?bgc8qwPn*tiyOz<5j*%5Xa%iP;zPW=|@dqV_45-k`3p+nq+v{u>546 z+7-Wmk|WwnT0Fl|>^lck^K_e=>{jy4eO=CQ(bIb_-ftRf1qJUQhkcOKtjKepJhQl# zY~tlR0Ys?HRN@N84-wUQ$@in(Sf)!JSn^g$NS244rABJ~8Eu54qX&H}lVlEP478Dd z)KYhnY;gSyHbP%HSGb=~6N}vcl5wpyaw7DvD@oic{Hwg;1Yx~ct?MPSBB?9wsVKmm zjk5eOIQCdwkiu`_H=4~p|7e?L8Iswzxn_E!m4-fQU;N(JuQ={3-sioB3eyGl?`GyNA@8SFTG4tz%n4 zVel>FfO7=nku+)rOVRgCt?-iBP$@j;NBiigU#Y|H&rCRB_VruydCj1OB_eF)^V%Af zHe>j+$Uj_}46SZ!2t*@lW zukm#H{(N3PueZ0O4=iex_x^xv5qsK_x{v z(^`1=7y3wispf$MsLpRcZeQ}xeofVpQklb4j8@Km(2`vuxh6BQGh1CVVZN1XY#Xd) zfpwR-lRWvxm5OmTBCu0`|F=`GwB*k36_HfA;Z5rnm2r{34eA~pIyTtzr}v#NgR5;Q zjW3?hX^V9BHtjdP^uVXXrXL;lwTNvL)vi3+28ti5wvU}diOCxLqn2|H4|$l3s7`V# z(Nlt~Oy=3YlamDX`LnG4sf<*{h`zt~F&%B16trcTvw^ruFt2(wZCJM+pNQR=ZERP( z7gkTx8C=%MpkcI<(;=-T;aMB1l5)YY8ackd{f9j(I6fj9>gtjb=(|(0ww%Q|$W3zU zd+yT0q|Y1wdj0<=(Ra{2bb4)4v8`0@OAt0}%YShBt02RK$1BRU%}}azbXt6H=2>pN zyV!nUcJ9wq;pkbT0H=mDNX$K;~BzCWtMYU{x$ z+s|ud&AjXWME+>aUgx_mov;~NqN>(poS)HGr2xxRC@8?)`Db#n3x&el&|BF3=;iGN zl$wJhzOz#l_>{s9eEm*#crxI<7i(>D>gr~9p5e>+(1bVqRf7`ZyvxDXv$Rv3!lm26 zt{?kQk(L~hmi8oUG2}Ng`%q@IbC#=Xa;uY#4o~S*!?7dxqxU?A&7U5kLzTKV#!$)Q zOj{*)wo5y3)gOG2S-A}`+tnJ%${zwSa{G37jRpyuvZX{7LYRVilUx9}czJb|JcZrf zb`Q1F1)d_X-*5>D2{3yRC4GHNVA1xcJ&9R|o|Vcaoo4c(>hgwx}oQODwf0yRjkC5%aWqd!_2Y&`zZ)VVT`5ihnG@!RXn^+&*)iL zwt%N7Iy(B%f>oIVD9KS=`h*gdJ+spR))ul^G_99~0yRl0FkvE0<|#i>qGiZKQa!lL9oD5nPLi zE>Dg+B@Q+VR_m!t>*b1$#s26=Z53)o{npQ^BX>2sH3P??FB)Hc&N*xm%KAr%938X& zLS8kMn1UlWh={e;nm5;{uuLT}{l0%K8ySRNvm`dUVvyte5gX%U4`%{P#B*m!J%jgR z64lZq_+FUc=SCJCWPhA|ErdY$8sQ7qXMAK+S~fg!%6xN%_LM5noN zu`!bzbk6B8I3O(i6%JR9KVcJhzm7>9x<{DOo@G(}xQ9(T$QW5+ma&woEX2|rEG+6$ zCvJm|YE$quGA+>Uz>@?*RD3)3-0x!XFzQcoVXTlJ1HKe_VV{JP3j+Ymy=tncg<-UP z(hrU4FD8<4Qd(!CE{Mp+J8rt_7DhHmSVe{?h_`TFVJWd&F$!!I(@hgEeN%Mdnz)>? z>T51j!pX-vq~@LZpXG<;^;d^}nIwW%y7jds9Ax19npvVN$Eo%kG?8sr%7`Ih`ViH-`H28j zgroA|9RuZ>OH;N2rhh+O;@VS1gC_38$(hW~<~Cc?!3T<*8)omCRf&v;JLr(yqsZw% z+}Hc49_&upsMI-IT`OC76>o%>{-ks#rl>I>g)85}m)r3Hne$uw{ipD}nBo|#ePZ5g z&d+8JI|0uoPv&Y<{{zhilYROQ86yGkSZ|{nJuddcb`V^dv~u!&mYAmiQ3zuq3$?6T z{f4#ol1B4w*Raer*+o2O9W1cr@o01K{X5QT;-H%@vmW5Y3N=sMJcfKj(d6-><|0s! zOCkzRz*jMOCB1sN(co9KT#iG9@VC0Zf49PL*fqxK^0nT+MM?%g;1*euxiCya)0#Al zhVk{T!I;_RVGC;+Add>D9%n12+1drNIltAI)a;41S`-|Ige!&~@DC=Mr`YN)kKP(`2J^1HbE&Sn3!cT3A zk_|s@&_gG^8QX;L;8YHGEO(RLt&T3*lMQbTO^MxYg)Lr>?2b}P|8Q|x#bPf^QW@g- zB_^W7@kYvLW!(Pk{?gutg{RxV_nhTT>lwyLksA@!SWQD(&S4u*)+HWrqwc7n20ZMC zh-p*+<5Q_PV z_}Q%dEm_<3ALvj&Z-j|QVg@7?V^^SlH= ztit(gOW@Tsp?Tj}FR!9+C^6MCZRT!bXYK;`JCe4db;rK=f-_Zih<>ZqmFTMfc|oqv zGL%9ADYdkXkesY&?nq~`e>y?BEOI>F~ zb+r2y$>8-C5i2Hh+()6;4GwC#SMh)QM^nOz^4@&9dC)BXBtX?|5Cdu_xa%-ho{oVE zffo~CeBgZhhfkDRmglG_Y6)e@~t`xEiHm%22x@h3fHgtTn;UcODouih4#<;-lDSHy zi8o_6o?}l?0FCnrZ}8XddweuU6`2pzJ4YV1g~m{|QqVLt|$TGeP{ z8zwQAy3g6G03^RVw~(cFR;G%Q0z#~MDOQ4lv1$UU*&{&0du$cq3*sSh8Y`<5OId3LAEE z<5PHg!WTKmQ>pz{ZVy}RKEihNg))m7dg$Eby=ql6&jaD;pA|L*22BK>wY7=t`2;~U z$!q6-E&;N#i_0Hf>appOa3LJ)_ixZTc8zXZ*Ilf2w3TYV5h<={5WF&o)q265^76njdPI~#W|4FmD!TIlf07!N z+20?HI_6Bw>*mQ%Ng4L=mSb>UCu`S!*x5DHdRIFiN%wquL$pF*$k!V_PUN;H#3YGH zZ)$qBD^a5pzZl{r1 z2!@#Dk+<#a*BM(t>-ih*QNb=Jq$blZ*_3tF{Ej2G?W(Mto!rES?MGH9_cx@p{z1{7 zQJuH24%j9-Zh86{3FR^PV|JG=j)9Z!o*}fZa zjcaR7`t#9BZggE&S7FP|Hp;zsS>)cWo84xWepCdj%B(B%5#7SVH;KvPOS%9T4i44I zq~X%LJ%Z72vNeGT)Iuyi>iD}oy{#unpPxnuK;@YDMvS&80hQ#xI`!^pyMz5}SNLGp zfvqIjJT7I7`iBJE}tWzSb^77(Ibs#sHq7}OSp!vB9F`t|)W()_M2z|lA zJB9H#DMcFVPF(EnS7O@SCB~~`C_xO4Qv-y-BI1xko>DSgnydhhCi4bt)U!WriD!0y zo>z#})DRg!VuB5R|B)RqsB@x^=wv# z#@}!}eLH`gEKK4yPIWbCusXyM?01Q3HuCbInj;c~{a?9{?TcavTIwNS0pdi2c=oOV z0@e0AbSPTFh3)JqF+j-|pmNh{0!AK}brQ?+btGf>?&Iob%7*~ap2Y>@2&!-{A~ESv zacP;bg`*hN>a>7DvRuDo#?3OU2m)2LM&DES2#nXfGV0$|evI=c{p~hY)#j&ydX0)k z-5oO4*CtzG31J;_=0%8;Fz0*fvXhAFTQ^47-5ncUc#P0dBWCy#*V+YNU5&R~f{A8$ zTGD`yU5yN}0#p9X&ctWx)Jy*n?VK?zN*0<2!?byHfYk4m@YY|8p_OjWru}dSPfzrH zv!s|?G70&W3E}$a!4E^9Ty{q`+C|+K1iv3pE>M-4vtuRlRV|!9;G17?eM zFY?|DUay8y;ABPPvTo~bzP9hhcpZHGd9lIKl^KCb@}kI{Q}@dx>H|qE|HBBf?|g< za(tXE$HQGy@91$PkRhaxIQ5siIz09;YC0_2uA5R|n}|zxfa+M+1)X3d#KWBAg5n!t z`e@|O9_NP#En?YlM6Q50d~V<3-(0Fpa(#IL_$Qul>6b8^90n`9$RXu86*fs^PLl{9 zQ+=M9j~d-r-$8lIHoEqnQaJtktY*oCGf2ED4D}fc?PO`bzS#X?=hl)ZdHuIyov?F$ zK{qr|$v;c!G}^l9P3I<~U9=7l$j&cg=2K`1=Pg#SrRmsoY9dtHD7fldV)D$11BEXq zv)beRZMzM$hO(5I$Uy%_F#x@7%x~To{J@Z-JpNOM9H)woy#pXLi}OchKB4&1Z9lT< zOEzcnO4y!OAo~hOijtp=A@@97C>W%XQZ?!}b~z1>p~7wWZ{r-8%HB*PaTja8HL<|P zxWtvRkvs}Ul>--S{p9GBe5OVz2eFtS7PMVUC8{SjxF;#lsfS-x!y)EJ$RNm5%tGh! zY0c@<+iYJkP+F{v@$-S=(u3P0(YeRv<8)7*!ThiZN*Us6U#5FPi*aK@v39|f>#Sm#tXr)fusNLxamRlfIdmN_$<|O4_Ai{ z)hxYa7U{{??+f!ChFwNWWrr}3-waAi=IPKpMwu|t87u-NrJ65O4VkoUjrg>Sp<9DZo5>c)udQ;uYte*V8 z)i~0mnhw!XR$HWHG2+}iA?UM2><>mVf9)OK>&$5Y5vN}82?|-oPqaL9A2;%2olB`i0 z{^}^bffm@xWb-gxnz++^+?2B((UY|WfF?VQuHzp|nj)$>66CZHefY1fk^v3{l)vAYD{O`tF< zke4&pzWJxZw4a{;$wLSHRMdshEV#D+MNoj^*ewTg+3#-p!}QCxEVGS1vcu|-B~2tB z@c0-}Kz15mj~XUIOCA5GQl4fgIW#Sec<%Fo(A@1P5ByOrBztUjAz)#i+q#frX0D;R z5`*4V>ML{D!s3@QAvUwwT~0m7^hD;-Zk6D^4>tj7Br=C@FZH+ONRD63y#g@~r3J*7 zf0i^`gOVbKVo79s$K9#^%_aeCHbtS(tO{$&((|9I(aUf+GGla-kfR^hAB4iT9mX3= zekU7e(Y#uluVOSlc@h?|uoPPOXVL%p%4KOVmk z&D_iEi;FSsCL-yH7Su1b^p1@$gzOK&&6keXMTMB8oTXKD>C zaZvP96~zX6_GWNtb8AE_ImJg3N6LfQ)U+u;ga{!hk#w*r}^?d?aU!{73WA20mX6 zmMu$wK+tvY$~jlho+@NbV8@kG8pKO^l1C2lXceW&y%U3EiAFcmr_NY~< z6IihaSVhrVy-#yED5%Y)$$v>pH(u?^0QkS74T`-hmnQQX62iKp!8ME+v$D9rCz|rD5;|EL>ap{JUzoLYeJsw zRin%L=st%mVK`RJr$j;@Ovr+QO3WRdbYwyO`9Oehr&?`MX!RT%>CKYGo-%>fQI}EM z)h`E=1JXxF{XgBRj?yx--d9Yn%H-+Uu?=u4zEh4SCp#CW^jshoZA_@D9Ddagk4sFt@v;I zHn2z}dpcNF_sg}~z#NwIo|JEWw^8jZQ4r1dj8I3Clp{gq_BH>sn3N#!y1wN^SN(1@ zny--VXg+P${ouDwJ+IeF`K-npD6VyLG{Exth8sR~*yaNvxaD2?j5Ic6!?R<)x5ldX znQ6Av57oP$vi4`kdg%rK@joY2FvN*1Io9!1S8P7}X)MQ_W?%anR*vT`vTCrUMjty7 zd@7Qv6mzm6vhiw`IOjIi`uyNHWLAoOW75dm(0=R(O0} zBYq>E0T6?0RFtL@d%D__osZ%5CI^QxKVvhsYQ=d5l1d!Z`+RG%#z2O+sn%~`|IeTiDdF;;j;kbLQID%+bc%~eoQu3cXDy2ce7-Y(m0 zL2~m<1_1ugU-dP=jk!YO9>(&m&1}<;kS7y`VS5hal?|QG{b%kh3R+qU z4w96m1To;rRzrBcOO!FKjc{F~7dq&!-7&)A0Kwn=zKarys6B`2(x|7g%bKqF!jo6; zFCB;mJ`KD6F#RN16RP}%c+mCuGW=%Uuu9K_ymd16?EY$b~N7BN3kjFnyBL+-nPY4%Ar=?pr z=QH7?$5X5lp?$wcJzX8fURQs6Cu8XuYIl9sQsyFyWfhP~si=PWGP{xe%ac~Kcr(e4 z)(`3m`0N}^1qC@tX?Zbed7eDCYHNBi7sxMT&cvB?k|25bVC^D$K99SLKL#hz6}!BH zkoY@Xo@fL0AvdAZSQ-(>MvT7n%T)@(2zPu2Vc||c*83tJalBn1d;kifik3EIHsaLe zv0XaYCGq^Fn)#=ixtUWDI(>5;zZj z=2C@sybHA|3#@xMFdKO#psX?hh#bIua%y~|>d_gFWc9@`Fd@_aHou;?QKu*=$2D*> zj-YKhL+-?LVLys9N!J@|CdY#fLkDnQ;nGylQ@0qIxudp|)TQ#m5wU+%cp?zj1Oo_5 zt{4})j9K={=PQ}oc%aBr zw${Ra!Sbxo6@>SQt-ZvJC{YG!271tcj;+vVf(4Eb{qA?qOS?u4s|U_?wEVtei-?cj zLYi(dTZMS5vs4m4XucTacr1k#aD*=|tU?Tc-+0IN7f4w!@C^%R32V7DclkCx*8HVf zsG9oX!wa<@HB|=7W3aSu?K}UCMkU2g`<&&3u@2k7-BWyT7UDp(KKi~SC>o0dUc~p* zyh1t7{vlsJ6MBlTtfXg^OJg$4i8)0UVc`vhTBBt0++cj6_4GY5;V$$&SF2w|xQc%K zeC00ECsMjah1cSwLNN{G!XohjE}t@$j%~hx+IBTLLzA zsIg<(#t9Po40$2>H{l7U<|;SBsMh%U3{SovnvC#hwntF?AbazbR|y<34ZdcVKV z{}AW#Ajj$Ree-yaxo~m7?Xy(t#sez(%HjWDyfh%`UZH~O+JD5++If9;9y6`gp8}ir z0lTwD3ti3AIu*Ppea#}bceFRTm{z1=%<=yvY8aV|fwYT8Q=EW|$}wF~UKA?OO9wY$ z(9?YnC>}`Zvm13Jn=|Vg;O$I=Yc7PqPEPl1UW*uhh*83Z-lFcl?IK=cbr zxW0EbHq0DmBc>y1e6KtipJdI@3xlC2dRlTd+m7lrb$n3WwsMl1Y7X>#Yfv6itvaSR-AQJn3OSOjKu(%x<1zMJGV-I_#N&t#I{8C?NZ#M&D*s$9 z0!hz3pTkcrzeMA*x%~_1r&=!&OCL((^XPcDN!{;Vl6hF|pT!9?n0`IjIBJvyv^p&{ zsE_m5wCE2K8n_3soVNuH-t4!q2op`?`h^Zd(p4@!^PjRk3O`Ws%0DBL?%<;-aUj6zg6_( zuezglqtbd7Kqfr6wI~D_! zU2eE3*J$!kp(AcUeH1_&8EO(TLb*QB!MZamVl(}Wadbp-`Ns5!`%dM**~m|;_ZcqOVazXR+1XvC%8L!be-C(!E~R;` zO5*LfXQ~9nvm2c*c0YHgYFnBHuC^}a`*6K5QOz<+^0m8|tUt63U0m93<+V+%67{dY z_(gFHVLV(7Qfwn?8DU-YU%@Ku0WIWVv#CX{GOd6zwZq(D=0(Cue7cm! z^zHm6A|R(ez40Qn<}H?5&klVnF9CswJ-aG)7h(Z1daUv%)r9fSnjUA2%p%lLMa!Y+ zu?0Dxd*19e-LG4*A$2=9bC@)+oI5W|J*GZ|PCk4w@H^=9ruzF*>+~S1_!N!6k1~>Y zd}7L^Ly(rnTO~}S_n)r+sjx4YW`wU{tsTAmley9UykBi*{r#B>i(TWFmn7I6fNODCAo@Y?DZjcvd)3GvG*O=NM4j<_9m^Yo_sTIi@l;Ie z&5`HmGi01D%lzLoc5D24gSt}aKZBpq9O+^X?|+*=!{>buip5*koYFEBIxNMxHv#fA z+E318o!unG*{Zf#d*Upj`ITwaQ#`9Rt-p&)K6J(+{1Z>S0fFqC*YEaY^St zw=kY$QnJaE{QSgx{LR}x<-X2gskTI_@&zsuOPcwZR>7n##zZqT2J zb0C_+wy-N&diQP`vt`kZ^wY4VA4P0zoBf^tKkdTvG+uEe`)ALW6Cs7arb?7?X&bN5 zaGv|gNYZu05&-p^{%O(%(vJp9KKC3bSJkW{Ne z7v_y})vCgii24>U_Sr()e%Px;JI9}Q0j#8FC%%R=njXnzr`^qgWTU|pC8+(Equ#b_ z7UTG`WioT^*XVHcb3Zt}HZQtDN++YhFV$y~)kfknY4Y}n5I&c7ko+<|B`5qSqU7>}&yF8Gux8xz>^4IobP2q9uwVR2? zj{()`<%d7_-q!<``U0yj=O+d)_=>aynu6SE-_&5dHHfzO{oZ%l70Anh82?<>7W5#D zg&f*3(WKx0Le+ysb%c&%(WmVU;?<>pVq=)_6Q-Pnp4HlJD-G-XxEPJw5SNw~gYI(g zJ%iUndXgdukgR(PJt%L{S_QQj4EDYu)?j)mh_`S&hd55{506G{vRvNOql@;G(^^}0 zz=pil*W`%}6sPKw^XYzK-O1m(Z&KdAZ6X(D7TwO!xfsdfN0P<=&RG1H6>TF*k8gSMmU zKEcQ4Z)aHy)bJ#P|B8pnwSPO_<~pvAMMag?+Wl*i0_9wNkex_8h2~;J$6QA{ONlUy z{VXEel?)yCupIc!?R_JsPR|$~v5WUkS4W*h{dE|#b&5nidlgO2^}Vy;Y5lH!Uk;XJ zgkC&Mc%dS<&e~=v;AgKl;^OC%;6t_@YsuH?qhXVk*Npc|sB)Q=IJ9b8lI$`GJjw?S)1GQnjD|*TX9)-Ms9%- zJhdQRG39<1?b7geIj`>GwX9Ujt0w+-NKYKJ9Z*7Y24?r>{uW!d2ftmqGhOo@bpI}D zY5!eau*%9A?3Bpd+rEZq93`R&i_6GOFxyDJTgiM(jj&rb=TABwCb5|RAi0!HvF;K* zdc=o+Y?k(ORtGb9$Cyhdf_bkcl*MDe-AF)@;(WW|5V2GW!cStJ*KkHH%j}?aHOiGYa-YC+j^* zdg&p5S{BO9VmYj-h0)-AMKW${lQEG+ZpS4mxC9zeFWd=vud;-5+&@xZOxj-ZRK2-Wj><$WU zCXb&a$1NP|7L1u2P?! zsH{OSutEcH(wKFzBMgIYYGw~2a!LgJ>gkyxS`CVXP*f&+xSB?8m`3ud<5!dLKK{#ZAo2Hnr;r%WVn0eY)8qr?^BlKjG+2cX^Q@OJ87YT3VU|Y(^khZ^r zFcC#_u6h>*Tbh4fkaDO9D3U;L>r$iUTm5d?BfUs48Q7)E;1fQk$ui2BY=J+|6fDAB zIu9BD-JP0zKamYBEnk-b6LFwr-Kd$>&jC)xwY9Y`YBN_kqm(vtO%tXJ#eykfvPT9Y z+l?h`F2?}j#4t>Z0kZw(lVRKs(2(*l)F`PzMxe%s16?a4w0N2-lhnf(qGSAvIlg7* z=g0d31V?|R2Cr{LaQ9uWmJY#-D?bJ$#OA3|W>_L$BjiL@qbVLE(2QK8leM|eITvpb zV3{;MpzwbC5aG2h#Y7`5Dm@4%-=(H%(d^bzTZzMoLCcINjU)UShTC~7(k2j;lyT$Y z&di5Evx09M#Uq>XmOHE%@E>(87cdO+{!_2Ipkh)FKbfFNpjnP>^`*Q#sc9JArpY&~ z*j_yqms~cElse_+S+(Jfpp=u}$-Mu9SYT5^N4cPPxW2{e)4o)eI1Z8h6y+phch@o8 zcAq+bKxd9arf{_km5?21wSd3K{+YKS^mwk5<23KvXG|>wDP01MCY8z9y~oBtvaDot zp^AQk^<)x)JT35w6Uy{&4cwEb5RMWx^w+EmZi#_k?EAQGj#0rE6?wI_N#Nnabl^tH z(t2gA?{|OBzLZl{6|YtGNm)q=yh`r311p*{D#ZIi~Ng?axb zSL*pw0*EU!Bo_nsvc4v#Wj`UKz%ph0DxC4z~;C3|@OY z9O9m;%=Op?38f}BQKr8dHqoz>fGS}2tl{)m-;T%;ce#_zn zI3*=wLWMt1joRyIT@#E$0yo41&nPZaC`y;b{Z&}8$m*PP$*FKt&RSE z2RWFECfm(x^+cX&7Cm`gn|K}l+kM5yny)gvZ)FI1_3>|WPX-D~`Gf5%d6YN(&G#(Y+zCVwGBgcQ&#m&y zZ>M>&2|O5lJehf1;qu$Rr3b2oPSKQnZg`trqmNla6~{;{anXe3#WF%NbqJSh)l=MT zI9pQl^hiKMs`-#1cL~HhfW0gQk0mPdr@cLu`Q~e?J;-FtM-iSs_MahTej?r}|Af3q6eK=AJ}_TC zXBU^)q$JnuIww(>On&XiU9g}qtjkEDh>sK#la!aO(27*pI~iD=FPT4R*4rD&9ix;3 zFJAB~VsvR~NiLN;vZ$=pv(wkV*`|b3gSl^Z;mtlj10V9Ey^ANqudzjv=?p+NcD#}% zt-lfQULUwsM(_>rD5@il=aUp0Eh+XRW?Q~5=fP+59Y))G81&SSZt}}1Uedgf zG-Z*)_b}kYxO*+G~uwVH-r;52_HJzs}|)SVz5!TL74 z2k&=Z{0{WxUqcCapI>zRX>gKCr+N|+9sNr9H!e!iG(V*uQ8PI~310YdQ%Z>2<{D_E z)wX=CyhLfNq};Dp^Zn{h^hV@{p!EDwyiHTeT7cx&_ES>mEbI1ZwmS;E`C@~wT;#Lk zTJ()SN}fKU35PmEP8b@9_F5wl>xS~M;wuGyzZ2rM4v`+9rZQ#(1{7bzN<5j3O~}BH z1g-|y<4?02QelAg@YrlcrJo?vj6I-Qw!S6nuZY&MDr_k$14c`uAV3W{ZZpZMnIw?fhq zh(nTPa7Jj0zaJb1Q_@M!NSMKqEa;V~Uv2^}`1iM$r@&fVZjP%f-ys=k{I{i$+B4_7 zJ#4Wb7*jstw;NuPEGy_xsE?(3_w4G(??+lGpi zQD4=`TlN(Wl8*`Byw;BP_~gLmQ(|f=nd>2iBMXB4b>bp@L22Xya+>G#tmGeo&u+=| zyY8qr43gAInc4p$0R>OIHr&P8S-IVcFtxlFxY;kDi&A=eWN@^!w1QWwU+(tJL^fJ3 zmtoJQo?ToJ>vgDxu4PMwa(q%LH{tBmOr)`u8y8SKDO*p?8TR*x*5guf) zP(I{}(^QF5eV@$EQMe>?7vUrY22RW2wJ8Cc;OA*y<@SjGYn}1OF~^a3b2+27rMQwLIadq(F zv^7vHn}YqtC|0dbBlzWaFS`&G@s6MxuBx*-Z}pAQV4el1!pGst;UYdFZ&XCrlPRdD z>KE4gIi}fN@3xdhbwTCb zj69lL-(OCW-}Ei$0s?D`D?ukKdf^)38)zdUuq4~@-BweDV%%o`Xk|pMX3UE|Iye)q zAtco~?IwXYe@UbA)*(BDlmD6?Uh--^2bGuSjO%#ut@@{C(sVnm`%X>fOX?Qhv}T_; zY&H&(htaZ{ANY0c;qPu{4QtF3GV0=QSy*VP5BiT@1>IubaOvgJ(oy#m>P2*vV{oV~ z#v+an$Cgp6wEsJ6T(I&#n{Kx(QKVTWO%`w3X4zsO4!5f2K)>-q?-I4=tchReIX)@hYZ^sa);^&)4I5u>#~SFexJh!C%ONfA(+DT$YB<) zH_RPg>;+d)*P)b+h4I*QF4h3s|EcV(!=n1SJ$?p;ZV*J8Aw@}Pi9uQr0qGW0O1gUp zVJJ~a1!)OsC8R+bL_kHl8>FS{?)kmbH*iv-4TI!ql*5dWl5)!vBcvZpf4~7qFzW3GT{uu@q znAIN!|49)P=yu>4|I7=gYngZL@4Q4G*eTP47XHK`=;Z=>-ik6n? zNmEO6K5k}aO2j>Q>)H>yG@J-}&G9jMtL(A|`3}s2)%-(t4=h#o%7M`8F_PCyhWLyuQK*RcU#8UEJ2}y92C5@00mkY31GGX^DNY z@4RquUGrf7Aq4q2b4y8jyZ|lPNxsCY_;~+Ez#=Q1LS6uV+10Agm1N#yoq!%j+U zv+(dThTK0GWcm^-waA5!ALJ0(aVPAZPhsA)cr8{)FTL{1lyLu}Kd^=dRP!bEXeGf; z)sNQIDL>@Kbmb6gd_zC0ug_u1V_nNLCPYZ+^isNb8<`yw6aGfN1vDft1*%3Gt7B<} zg|V)Vyo)v!#8&zNgR?+W(m*b4vQKGL32=IrRp2_f?oSE~+%R=vdEopX<*&kbmPR|c= zJ=O{3iJH}1C2~YK&8Zb!a^OLk{0%QCXPCU_%;_t{ACTlwq{uKHU;1S}%;;Pw=^uy( zb(<`OGgsq1$PVPD?hDlEPtVo~5zUzzIENC=7Ro*7Hk9?3Iw{|&p3^W+IcFNU?A=M@^N zzj9?$M`___Ec%v#NlVa^If`15qBCkwY3o*KMK(ir0>Nzs1qD8pxmBn;*O3yPmD|1E zZX~x9`(tWi_KvenTcdC4_~D1z>5zSYY-krFhcFT?LT&z)8b$B!F`hFKf zey{#=7(Ove|H1PSY)|9qi)0a!fSb!Avl9Ge3*mB5gATGPHd0WDZT5rRAt^gJXK9Eu zO5+~r?5te;(+L~_1H<@-#UB+m`%PB2g-wng-k{{$FA$$%+(%lXdco@BOlvt*h0PZ+ZvXf)S_u*d1Sr&x5Mk3+Vm(QDe<1Ue^==d z2Lj=%BLH(pWGALKM2vJ(_4PTsb=!%cHq#vs} zYwc5u8{V~5p)V&~N0vR~@BTBC#Rh*E*@zOYROCvN62K4nw41IdXM5Gd1%6H(At#D= zkmfTACs7Q3t1SzZA?rX4gopSiFw0tM<FFX8O3?IUWToF{ynepfZXz; z%wno;d*{jD)-#x}EEN?Tw)596`%UqX_3o2tyLx^&FFqE$iWw4~JUhOu$UIyi7XXsQ z`=2LUlCiTfGqVw)h`-6a{*(&t?GabSJ#yV>rn5vNP?tN8*^i9*YOk5~UbwYYwN+nt z?doU+gAlL_r_)d_dOgV8(Y1g&n?it&l?=a9oRouHr%1|o9W(^6co}tm?1js#3UafHX^6z6fGpLN&!9)W_QJ(J>8E2<+!3< z2Ufp}mc8|{$LC}`b@C6&=l8!x?ahD5dwcVUv|+IdvUta9FN|E?nEAt0u}pkLcYoVR z_V)&>p04ml(}UM%1r&J!j3E}|%Nkjc$gWEFpTw&ZIOK2^^)uhL9%0bujv)k@R72F% zvxi;wk8jr#`Mg>h?Q5^!4>})F+)|);)uT=%*Y|{MllAt!%6-k^rULSl zTiVR*L4CjF4^pRBzdUc0Aoynf+Rkm}DMl%}fPSw=6ZY2!a^Dj{HU`*{bSQQk?^qY9 zs_B0BiC#!ee4OI>7yG=qF9?Fvx6i4o*}uzGj(2|T&!#x(n@08@*!M>n0%tIIM1-sy zox(=8SwRAH4~XPOQvYZl^bPdaIX!|WiY;CSFE5rkZrpu}?o5OCUSLbW)j>Z*6J*8< zfXb;u6lGsC!zQyg!!KY8gBl6fa^W`t2a7cV%0eG^c z!|k$`9dSkt-a;fFBxU~+d_gm+27UeVa>j7F;8OdJM;8;5rYHKj-ZzX0Q$Hnp)9fo> zqV1!kD7Mk0{cAJ+c`SlGriU4fe35@feqRfOk`libl}TPCpZwaEd7Po{-1f{?UB!pt zhJHE>k{a>2b@{qLG2vm;-&Fe8ezRAGnm+POs-boHDFXo{W){nQo&L+F>|7itqC zn<^vlNB}gGnVA{KkrMj4YehWtf6azTObL0MqNj@-CQvK!XPK2I1VK-4=#i+mb?;b_ znQ`Nn*VUK=C{c8-+tqi{AI|$v-Zvg>4~U(NPe!8)-dAjN^r$e_6&J#mzvJYo!|wMb zt}_3n@?`I?RKG;|_GHA4RSVrn&=S=2jQM2WFsxsuQm52mcvh0H0-E-~3hNlZ&i@9j zDDm-*{LkHn!mG}_u9fVZqfnfzi;UC8ME&tqTdIj?YN9#qtWOIM&}ekGObR4pS^XS_ zOALKagN1|!Pt^yD*u#I#oL0M^JzKj@9b3@fh-+$AYHFo>j3;bbc;nw+Lwx**x^4~+ zyz-l!mS$mviTlx{2($|Ow6o>iowZ-^QD8PlP9HC%N0p;#NMK@}+`B_E|8-I&$Z!>wvVP?LZMAVeyjU#T7C<4rVB}G zlRO&#Btf6ZKpwUg&5sJk4&Gl0E*G$vk(u4BfhjhUHjX!#yVwtZ4ZjnpNYOzr``Vp9 z;PIWL*w>kth;Jn&AZbxJYy~c;tA_<{4O7n`)zN`eRr6S9hH~hCms~C(_Oz>LqNR*8 z;FhUELUhyExHY2B)wH>iDqG>#fd77qC9oi>9KJW`!Dj-^&!b|9f19+G3kVEXmf}{>abpy`e;lx+NsoaQ1 zXRY2f?dvpdB^=zj7uy_FOdvlU!}G#&xwp24%I7L~<;Z-!NdrUJhai^4ra%&K0~BvX_3zSu8G7_!J`4-{L0hx- zn`X)MAyYc`AP;}s&NiFDRs$m}S`w7W%h{EccZ9LHv}$UZWw&eO7n2f1J@IXAF^MY1 zMvj^D?xMtEPAPFBW&AI$x(R4Jz%%e-wdwZ8l=AqUH`*JZ*{=gY#KrF2agJWdZf=ZQ zH+OwkJYuxhf~^0|299)QfwfA?^p2Gn3eU!x^xqif+^9-oaS6Eo?;%weJWl`P@Ho-v z;m6)IH_v}tnWP|s6G=lkZo_D(!u?C0>W{CvX)Eu49TnHk$t0p;)icK3VsA zlmFG+^1siD%fp{mV=rCkf93Y2qv9S_@Jrh@O&bK=KPPYiQc5q7Ks`~Fu9Nd2swG^BnS0>~;mNe~oATEYQ5`Up*KnDuX>rn9Yp^_4f8MFsLqUP4g+l zes?XAW_walT&z&5K{j^rX?)^^=G_xN7e&eUq=|`%+_!FpY8Se@i#x_`&Y6rdeQ!$~ z&)(YhoSJd*Vn=VCZyB$3#?qssqFmi+K@)yq0dg2RCdS>Jmb4XKP93Af<~ZFzU~X=X zA2OIJ#mA@dL*aGa`WTPX_mk5V&<=8H>KBufCdVfyA~$lRRWBMx&*-$xe*UPoDK0KN z^!_!G%`sxTF%VuN*joqM9#0%a`68833m zk5_BLwD95%T!3PP$7eTZU_Vl-2tb27qgHWqVAj{!UHliE4_lt3y}f-F zR74LkD)DsZhFcu(%o$Wazd=b!scB+DEGsKp+PY-1w6uhdjBG7yz9eL3W>$_^NOGKM ziUnAO*{?5%GnjOhg|kabfR%{H zcK7Z?wh1|$m|2Fw#l>Z`()N+xi>)_C6HJ(*|CxG481Ni1tpEf{nb{2Nm_|v<(0f!n zPDNR#`{b3#d)k&b#0?H==H}*R0`@4dP)mVU&LF@s9r_dTeW=>p1)a%y=MEJpt*@x6 zN+5LS&gtQW!LW# z;|@?oDy0vMLEciMs*eF!o-T*S6M~>Pv$DXR%MoThWI{0aiv+?i{f?g;nEe&tAK!WP*mR44b)SuMiPfrRq zNE+PNC_jDvEa>@X)H5zIcj4!vV{SnKK5i(CF1B;NK`EzoK=z6l;^yXV0jsVgkN_=l z3Mc?LKR-V%t>?w^LHZgY4ycM3+}^H$&PEGbbW>dZ-{0R|Sru4iUFeGII^JDiWWU@goK3TOiWvu1(VnR(IJc+0aY@gqC$$z&&>q~W8=-wwuUad zDdkY$kufdK7m~IdIx{^dTKRhD%=esZq@C5``Xe*5mwn0nsc}F&qCg=)1UEPSdr6P4 z=O_EG)6!z(LUCDTWSF)akC=FPcm%9EiSd*+>p;8#s)z|YKqJE$q)FcX*%-`{N1$+J zdwP17B>{ymc(m{l*HBxVd`w*2^@nNVb6-%V4FA2ElVnF&od2kyKkolj$A8rH{}#{x z^>*41w*l#h{B+;mp~u2~Ika~uYPmR33X7UxFov?=i~AiGcbovs?E+XsblN|wvHp?t z_AP-NIocTYFUrDQB{yS`d*aTs5P;&w zX}p(Y6%?cZdr&|g6Q);GRj|Fb7P+(Ite~uH1uB%$ir8KA+?u?(W~Q(>o`UHF;6IN6 z&kn;sbDsN((*O#O9xpIop#k}u6e_nFLV!Z57Jy3q#d{Yab9rnP78V9Uz(-*a9w`Gd zFi@u2VdB}o487=cq>2hYMj5=eOunT{(>I?@Z3{df6~G9$RcA~q2+LZAh6F7MDN0I8 z^L_ly3K|-uH2h{UI7BoS8^22+6i`j|_mb40HS*xNd;9x>;OndIk}-^TX_}gv#9bHh zUozgstul%Q#?7j(rh&>GrzHI^Pgafr$=DeL1i&3#0CiCvKZ62(HtnEa1Tlt;h%inl z)ZzK|_6{EC7@@?0Hcr9iDNELiP6($RUMWu~qDW45Zsaf%X#F-_^Pz0*YX12{{% zl+UNuGab9;o#ttJdOCyxe!T#&wjF@|9SYWEtw828Xjf%W@9FS)>w^vt?@JuHa&azvEa<26 zP3ZY_!wpbq)&M~00Qi~^cnlyBDEiu&}V+ z9lQfM3mgugo$rX&>*F_Tz?UN*1pd2Uo14q-5B5bYk9{S?Y2J(M4x7ORZ3KwIu>5?k zQuAgEvwWiXIvriq;^Grb2FJ<@D{DNY1At>9GBPqKPnG%*L`y+pdQoD)#1qV@cU_87 zWF#Yt!#!dWuz;$ckA;+%3q+6Akpa2K)<~C%1i=wPnU!^|{md7%Xo2oF6H&cY4=;R_ zZwZQx8q~QLcDSK*b#;$dbK(R56A6xk^LF6u_}G9wOhLgzoFEKs)G;!09dv>BQldTv zwu~{2_4l+^P;n7OLN5wI7{_D0>p8o()c3`C4hxe2F-iME0{v*+LY>iiFMbdPHI0ny zYDVk4wqI^HUoipKX#+|Zq8Lpx_p9&`jR(jWLDuDCQs+(p?)Cu2Oc8aUyLay%M!Faz zT;Z6+8weZl!U&M*KoF)5B>;<20y=0H$Pr>dt|MF*Xzq4?ybyplFoE#zgMZL(I88)`ZHPq&Y<$}VNKsfWcPs}j6GY=4^VI`fI?wJ9Aq)HVvY=+ z+tUta^Bo{I6c!e){>&$%q@rR??yKaa!Oe=w{s7;x$ijGr2joDq0xTi^aZB?S#!GBpU7lmQ>YCnfESq~dy&kPrq6M8Zt# zJv%@j4prIfr%8JBT9P0U*`4^7Zt2{Z*qyD+^q-eL|Bqmexez)JD%8ZDwRNcc1A#wP MMGb}0dln)80p?qS>;M1& literal 40474 zcmeFZbySqm7cM-2fV6Z-D1xY@AYDoe3M$eKQqtWmjUb?O2?#3P%>YA6gVHbzDH1~u zF~E05f4_Ubb=SRX-M_xSKGqtAd71N`_nf`=dG@oPP2>wzMG`^=LI?yx@>EIg6$FAE z2!UWNUdIFP2#(IJfd8(!$UJ?09env-e-i&zsoay-o*7&7UY;L+&0p=I-rNo1x*;QTm(AAx>l57XO26JZP1fpetJxT|>)JlF z4HLXEO~4u*A?Nqqt?10^*Y}cIsU0`1*Dp9_5 z`8QmmpE3E_yScd$Gl~5~!S}TD!Pw3HtrzF0xG6}=$B%MXmlsF0de=tRX;KdxBCsOsVZI9V_N|f6(p?@pxp04vb7}hINW!fT`1Hq)OKXwy*mUeAe+Ci#yi@zS( zT26ZZtu-FzF*x_gK;X! z9hNIT9JmMk3B1*DJ<}0Jl6JItKMf1GWjwPPUAeDlhFcQ-WvnQk6#9n$!Oc);Rz5w( zD>ukjR~-ihcmEWvEk{y*uBS^#go&4eeZ!1;8#QC&_)BBa@$st!di34rgs88k$w`60 z_1WGK#MTc)#4gWqMuBoA$3Mh`!-%hD;jZ3kr^uvCMg}p!bsz z%%7?iRocK~jG3!)45Z>npQqAas!EX8+P*y5+vZ#-9An=k=J5E;bEVR#hA8pi}|Gn9AU;uzz#I zO3^N@&Of_RzdSb**?v@&D$rJ}v%8kgXDX*1&TfzcnZkX0jhmIVV(nX@@s{?lrN zH!jb#w3}!sC^{thHwbatcwXGG0+E#32PI?3tnV-S^H=+~!j6d&i(h4OJbxdR;1B#t z2nTN9ks7x?EF9;4Q|wVOEW!S-jgS-Uo-8{qzu&z;eTc^jK<9Zir_13F{td%w>WTE| z(&jPZ0Lu&$p3?_t`F~4?wb;*#SV=@I__Uh_b;x)gY4r9HpnCJ0{;j#^iAf4SF2l`s z`*20(AeSKm)K|9Ge;1De#=tN@DS21*5e%+lnX1xC7%=)A6ZzQ`E)KH!>=`9aZgqCG zkA2x4Q~B_TdMEzr*S|xub$d!UUS06nrRf|#^yHH`rhArh16)=6dx}Kfh6j)d&%fE( z!x2GBRCTFXSa|lZORD_c$%jkhYKZ*AfnCd*j_(?~C@3eoi}mm0$%)3{U#1y9{<}n6Q-m?=fB<_`2yKWWY(R6C{tsp-{d(N&!)P}H~Tko_jcH?B1DXU@g$GP zpL?EHekuI&Dy?Ipn5z_SF=5{N8q`mWTr@O{AN@q_Ml`CKv!k~x`2wWq@btaDOd}lz zQow?;Mq&5zKE3MHn61 zaUJ`)*A}2QWub9W!IY}kQN3&l_c0&+897{j9^Mu#0o|p|HX%dZ5MQmC9AJlQ83yIE z9mvInvxI&8h?!{S--&)XAr?PQCA!F}8rG*HM-1~B_fd$fGv4D3f0<`|U{M9nR`PfO zkWc*Am15_`sq!(TXiwNDtkByn&vjDi(MddlYA5vwyn~3kxj8Uu?!Sf0oWNxf@(~g( zin=(yc06(8WK3l(0eRCQrN22&>TTAa_>WY;8LBbP5dU@Q`}gbjPLw3pP69hV9G_ha z3+cxtqG>x_Pxrh0f5peq2WvQs2gB0CqlzqpFBO@({800>JBWyg-rJRIcTJu@C%SiH zWk6^8{5dRPO1$8gvhu(&PmyM7TmVYk6Ddh2%HO=4@Y@0)hK{~f=lJaG;mtCr>f5&u zII=uhlMTJ^Z)|KJnA0L6T;l~rL$~B@b{`4iReOWw6nN96Ai#Dv9QyItAs}S4H000Q zs?-BNR6B3L^d5?yh;cRPr@Hohcx zNOF;ri^@%`d~`oYPxJG`m}4_kQ^aZg&(sCb7mN7i<|^wjqv|YIR!NRr9N-zPee$#h zasa{5M2A{t`w1;dc6D{d&^-)p^*iVHM|(=4cV*!==H})rD=R0=>nkfSbaiL$n9-8Q zPaSU8Id;>RTf9H@oO$GlG7wpcIEEG;O?TU=iA^_|-BghElgkD-;?2b|mX*cHQ;aL9 zuNV2fsV1>^?ez4N%dj~`P3rXBXr7|W<>|Wm%TXVpOJG}Do;#v+;xypoex;7sC^T7C z_&r{DfwUH1o;=P^Ou+T}NVW2^(NR|pJOqM#)Ca=byeq@gyxZY!WCZn>Oyp2oJKHS7 zU(E8^L4?v8E?%A^EicihZ!9g(2TwjFB{}c+an$*=tgTt3rKkJFZT|TKaTLoG$sCfs zaPrRZ7>E}+)-L!D2Ae->sHuMZbu3~*dLSld0}D?N*TdIbx_TO}sC@qh`jvpLgKk7aX^17tap<%(-_ z(PVk8(epH{P(XBbb(NHrm%bHd?MveGIW5T@Z%xBoh9$%MSC^*D;#S`aFYHnWHJ|S^ zZPNsC=~TY^qLPd!aRn~L=ihw}LXMo57lqAaR;QNH7c9rUE+ePyn%RiBxTq_%LVkC* zLTTfl2XAd`HUR9b52vIdm&EbBrJq)iDik#iH z*qLjub&q>(6FAR;_K^MAATqEzo0ez ztU>akI<%tqnvbo9iH zZ06a1D8Rc5)Xmy7HCW|UJgq0D;I*XMQm2+Jbx2V8@{W|0RPL2b+~Ho&1Auj(X6wBX zn;N!58m0&m?KJlL`u?~NPHdVmlFgX_ckUq?F1H$Ol+Y=3@lC+>YF$JV#e<}Q{mlTn z{+aW+L!|LL+8{VlV%5lYqPC@46LP~p%97X-^ypb4ze z|GA#R-D9-gz=z2slax>v`E>8?ryOJFa(0ksN=l2Jlxi!#w2Y1<*WH`Ej(%y0u6|S} z-IxK6w6eCwZ$DQr%TxdYeS8lK96ru_2WETN>@CRn=Urmek07%PXO{xr(&u2373*-B zrQVk<`}vd`nXF=viOI<-w@uAj`+35)Nuz*4ushQYE*ucxJ99qB7Ky_VS>MyuXnR+{&yfJx?5jZ}ocA+HP2=cGy}y#)?j4 zg11LQ10lY_<};dBF5Hx~z@3YN_#cicW_Ycow)QMwzmKHk*k24GbMB(ndZDA!mn$EA zkC)eSAmw56$x<{3(cqjnsPSv^3hr6Y4(Y-sqU~7fGTtn>>hK;G!Yf~gn+{#8wWy&; z{dE4u&n6w`-PWYD-Dqs*XD$%K{o_A>(_T7j&OKRr*n^ZN&(GBlWpRG-7iE%m&>FS% zalmlM9_ur584&WeTnoVu-^p4qH+DEVsPzP~xoB6mku5hFgV(*IdT_|3u6ub|jP@+H z?@pQVnaKP`ZX4hogFwEucR=H>O_2!TMP>m8_|N~a`bx&|x~beFV}Bf+4G~g|^d-%7lf>#rqDO$YSRguS7Bd zLf~Wg1AEjFf;yVKpqF0gz7vV#m|7d+kw(Q!d-cQV~pKhf72MY6j{z8d5M@_M* zreziAkJrh0F=N3J0E85ucYLl3uBkg)p*#?&lfEFZ6(XbL@Ndt)vi%TGz7rqm%7TI6 zqHl(j@x=>`6#IhHt!DOc_vqcX1ZdA%dJMFP@OS1}G?~e4XRZ}yU|*e*5#PisYq4X^kXXnQ5y3BmXF;W z>+Ke7c}_1+hi|Zu-4tr88t!NdLNKQ){r>mlN{pg}=X0w;yxJvGM4D&RVTWON`X!j_ zFWf=qa&l%Pvc>1Q&Xn>Hhbzf3PL-`1V{`elZ0{LD1jnzQRmb!RYnUr2cgzY>U+uC7uv4OPVk*^>SEt21te^beYDNW3#fcecno zif*U9{0<@3dF~#M*(>ULas&n617soAeC&fv~xoi9DGhT>;P&Mo zt=+vIKKHH9=%1|dD*qi}I8Eq=if=G4nmv{gHzoA;!VRlPwYId0qp_J|hG#x7BOj6i zxHnOE%)?>i_AIUcm5=Av!{2adzbtvA=ihWaoXh`1rpZl~?kNLVczn-UOOl8)m2A{b zN1D)wlPBTsgb{V^uGUYokfP@Up-*7hvm`~D?YZ)6(ky<}UX48j9E@W(8Fnglc zNmhyfPP(l1PMqY*F8*2;w3eiR>82*$A&slZB1ojmM~DL^4T)I%@^?9wzF^#&{Igqo z_+Zxaq3@=%Bb9!>!az{NVGRxP7rXJE1AG2H z*d9D7eYp)J8Gb?^lVM+9uH9!zyt@rm^*E-WihP5~BgQs$C=w%7HsaijZbx_wXV>xN zi)~nydN~pFPqHoVwUG$7g|o=m?_An=`Vb^hsgh~)yK9PqEW-Yn;q~>8bUA+~*ltR& zP=;Kcq&(RWu<;C-9A)G10Wq~6DdlonSF`h*{T>B36{P90A6NnJq{46H%jaVHpGb{7 zT^fup2anKO$=_ZJlPsnL!S~xa1@-;hc5N8n@;-^T$^|+2ACUQvRn3Ie#aZx}caYuG zZn=$1=A@r_&d*}I-T#%PfMr+AU>n@R4rBDW&#Gy}JYlnXgVKmXHJZJlo<6o&hWdjo zanD5-j*$SX^^WwqWMiA{Bd`RTm?e10mPW*sp{nhfo@sRDC)K2f$M@jKNJ1DPJXgL^ z975=ji5YzG@8C*c@U1xl>C1=3I%ZO>$Ge4|OEKwmS+BfbAWEuQuF2VlrM%ivp{akJbyNX3v0M#z6b zCLF{Kpw48%TYOCZysqEk7eHq^ z6WY!b(i*&JwSTT^Eu0V11wj`M=NlM%c%LJmFT7WT1_3o8_*?6)Wkuji^-#OE$Hnx= zhI+qukpZx8g)&YRr=C0dCq2@}Q{}s{Dr~x#z@;uYMRsCis0z8rAx0;fp%&+oxUc7v(8X}+N3iTJY+PaC z-F>4?>PtEA2+Wp${5`0cQN#1vYj;N%kXBOX#QXw?Q0eWp?(Umk??nyV`6I^~|JOEt zZv)tq#_+A|t?@CuZ1pVtm9CbOw_4psK?Iw zMy7OEaC$0-RG-lfnh{lCP3|L?sl=vE4p_K%2h2`*uBRVkUhH`;w&UOCB}+@QeM910 z>5qQUJ#F~8dBisk1Q5+j)+LHWA75YA3T4cWcN|UJ8TzvcP!Mp|gT0MAwG}&u;v#DW zMNY;3U8vT>r@}8={po?pRnnGhP*eY49aa5nDTlRphQJg0pQ=>N2=kC84VA5b|Grw! zsq9p2u!S=0ndvg73vAFTZ^@RGYm7U_vfGAOe zhX|psjh30bXcG*=M7k;djFjU9hkZQVNF#xZUg`HJ*&S$|d9+u?>~dVluRkW2CyFQ8 zECczc#~UI=i~vDJsHh6T3~wG!tN5&vyRnX9h-H8f`vwQi=jxph%wXQ(y22**vt%PW zt2z0OV&?sg6Yr*%gO*GWUdNTS2AjYZOX|3|d@l7VD)G*BN2<5Z7?#hGsNs{ER~L&0 zQwOx)AaeQm_aW|23=NrQYwgSq)&?=-9tsz$ei-=&XC7OHx< z4pYRab#)h)q6bsk)K#b9!QGSL<+sT4D(C9vW@~k7%r5xno|D|p{zgTfh%qW*D~F^( zfat7ygnnoa2(kzZofvL@dkkO}u@&Kb^~FKp+9;Kk@{1Ma&0vHCK%bF#$ndt7hq5(K3>ut zxy?(d-)9ZN1k=W^N6zN6I<*D|_PMU3&oacJd$TAD6&AViSl)XE#ypXY?pmn7cd^WF zC?7|Z72xr-{3P~KZ;!MO-K{14v9EDnn}s+KDjG7Z4Z1Dw;lBCoOT@Lm z4}jaAc~$> z&MhFELR_d&Xh!aHw%CE~_&vPzcpIkf8KNM2;bI*e%M2`Wj}CIh6cfikKik-ic#+ec zcCzVkXC#(xE8`z9Vb^ECwepE(xQn&se^X9wNMoqUOYv2W5&0?1>fq_`JTWh)_+8y0hMb*L?4II=Q&eb_|1RAiuV-2FThxKgJ+|6fN zmJj4t7BK*nG1$2O69}|n#WQjsw@JL*Y;JR?)b)8Z!Z;9qC4Xa3g9ByN6^*tU>rEiELtY5^| zt{-7s5}a&PWN9bhc<1Zc_8G}U6+cwB_vio^QmSh0= zEK?J`Z$AUbygOF!;S_zU&;MvhZeD&PrtO-)%fRjdzw_lZTT*?Y)?YS-o|;f;u*1Y za62w1jKPW+Cy6H%Q%NzhFZKG-b2N#vJvsREXWbFDjeO%a28kFre(nE+kQ!Y2q&2Xs z_0j~dwFwz!Q%17+0mKjt7ta<}um3{(`g*2i7<4&Km`IZ9QqD9Q698zhi4zX>|2Igj z0Y*67`dyH+3Sz6uWL0?=6MI>FAw7(gAR|&zi#~;T0vazNDXH5$*?6ETnBk$Eu zd};?wFF*(;%-=RnIot)-JZT+T2`1{a|g^H;ZWGLlfNH~kX z$Q=E|0TZ&51Z>O) zz`HJWMW3!Ds?kY$KU&WYkfNqOkJDffupsVX^3ZS7($UdTySV*S`}%*i0N^pZf|+pF zr^+k!hED_;{>)193;}9H%W7;4yUL=yi&pkINz6@rz1p@<<6-gY)da)b2$oAt#H@A%>oaP<`;)Zf*6y@V={-HE=X(MAjyWnu8JXHn&}%;KS(C1FWe= zH=DZmg$)g0i*owk>Gx)=! znkGl|Uk(kiSJCO$r=7UEkQr-93jcka%8J^f2GKe;;k>6{WQ0jcjS3^IF$t zxVijP)!yXnkUNIOhu7lU4FXqeF9xi?)& z-E5j4I^LcY_set{5)D_AzW4~(E>KkONK}*RyI+_=aoB>3i@UPEe$G7k>(@iq-!F#5 zkOSsXmi^nxEQI9{64xl?%gTMuu@usW$# z@%wFKy)zUyzuRGhm)5SSPA6X5&i)V1GS{;fzq7;7fV{*S?&;}KJTxMXm%7ycGR)n) zq>j($iYRH13-146a*}ZLBrbUK$2v{+Cs;ZA<^YYr7jY*lRh-49RLt#Kk*s1}xz97mxJ@!wj8pJ$u%@?wjAh>0OC*5o7&zf!OXhdt5M)J#!eXRYW= z%NVoImey0SXj+GO$j`oArd1wVT7s5Z_FL}d7s3vPVRm&-e0`05(tb2ep0p0%yo3Pb z-=_}Kw%z+!rl0zokcK4LY`Y{wF#5VL?%jbj$d=*`3U~8PBr# zHf}x3hX;A=zHsB!>OF3dqDWtSyE+f4DWrd79?OgN0&GFohuo�VCotBI1xSTy?+O zFIuqWbJfd81CNf5Z08$)Y4x20x5LnUO4;_h70 zG~C#WQJkg5+cPy>y44X6&AQ9M+zfs9x&k|HkVi^oibZ><3BpTsr%aT#25*mOXkbct zS(jE+$(PGywq^7~IZt-c*>6*Q*5EmnooFw;(76dHPP$}zhDMja;zZ44Uinc%xi@Z< zT%92kgyUICV9zqaiT7?hz8^AG%fT&pe)586^xSxP|Kv7lE%%GJ&zivVAu_oc1RQXtv>gwhQXgQx>N_3?7Hw34sQK@~^w zu8}>AEW1r_9W);~t=!|kJACNFW48Y+R673NcoB}V!xzaw))rYs%e`Z!)L9dy0UamB zrcg#it=-KGXA43#Uw;Og=_t6?mM+0beHaJ=GS=4jApz)R7O(T|I$5`V z<~+>Z6~W!zsVIDw1`P8)Gi$k-k4(?8_ci=;Lb-u0_ekeYnVw&xopQCd(@Ww~CAGCl zxw*M7=3dE}ei(f*yudUYoYmFj(IaG3{^uTBn0L&V=!5$PV&aQ}mY+flK>3Pi2=%_E zmHDpfyUnujZUqsP{!}CNkXX?HYD?KCtwp?*_}&Sf=PBC7Wdex^zs*CcSsX}f^e*eGO;rI& zCq?#+7rTf_PCh9to0+x|G6gvq9yY99qpLGo%M2%lwu5iqzHLocaZuH5y##C=h5yi) zLG>0o&Y}B9Rsa#OjyTCH8hDIG|IpRQVOOES_lRvCr>A{Wcw1!8K^bzS`ohKN1gE@! zbmg*eT=ewKR4Y?u72;^p1R*1E{rKI<6ZbGX-xQEG;8OW|`rwkzo;VIc>U75k#T-%jbYGQ91vlI;xL&Qhb;52UxPoK?>`-YRR7WUnno8@FOKI2MF0#tH z+4V92H2|BCtE7azxYC!H`p^uI#djAA6ih2C`I-F=Us?=j4Su|@F5{#ElzV{EcTSpr zqWaQl7dtN36pwZxjGMcqpSoh6o#!F_d3A8$`qipvq{>2l9LHrw#4o}kt#rjk5(cU< zP-QkI>XKg{&W@YiUfZe~E~u!87Z?%=k@7p^^EtLHc%DuZr5B|{TzR+fg9tw@pfo?y ztej@m4eKi{_3A?a70^EZlkNo-q9me*?XKHqYKxth8khBHE6orT8xn`le11j|bt(FZ z#sho$;;kn-wKc=v-74g3M1+=-1%#W1h=>+ou7a?D%Y*FZtIPA(nwpiqr~5DFROL*y z6>*sjzC~=SW)&#J%xkoouOT!0p23?xvS+W3FR3mT7khXj5_B^78&O#btgNFP`LofK z6coLKgR20A-DPL54(K~(1NDhRQUl5T;=+bZRY>dETL{$i)ZUOwJkc{c5w~Z)PjZ>) zx5GTs8hMmbF+m^2?m~-C!@-ca*TvD~x36E@w%yNLm^Vs{_xJaE`}^}iRr2T0pN?dT zY^4t23Y_iljg%Q6@B+<^9EViq?o2W}vfD zGH~JdVkuo&tz^M+v>(!&6Z59Np!^fLnH<*SF05^*eSSC0ErXRpPlf`L9dPM&d0Yo| znz1enUD{`5ZM`$xp|dy|PbL+}SxPrlXAX;ub8)_KXkA%L`!c1^9VmK0o1FAyD4~Xp zSe(mtnJRvYGC?v>R8;hEbCQ=TnTC9iz#~Y}XU<-`j@19~&dIT!i0Qj%j)01kZ1jrF z3{OPoba5v;d$>86K@*t4Bq-=MdmWq{&pOCDd4V`m)X2coN@p>QmrUgE)n}L`>cZcn zEk*2E2Kd2JWyRj~m(dZ`)CmyJv8Nmr9!Nt{X|&_n(PmFu5Y9y_Yv%VrdA5`~c-TX; z#ZcNDAdFdO_B@Q^!6W{2)3<Spswught) zv5uw9+GQ;{0a?j?*E@;;!gUaEK=MDN3WpmM5n`2_Tf|GcG5;&>m0L{p4W#3wd>U*I z&Mo@Rx^+%3&(;WbsudK%o567&!z?LAl}t;%A^70I;*1UAOY%U^q&|)ZoMd65u=G1& zE2l0XEpgixJAScQte(^qo!YPZE+w2V+ZUsXtimo@NK3w1zv0!*yK#?oo|R3dt%uQt z`1$kapX;k5l*$0A1zf%g?-Ns2G=gk*7j_O~*>cb_>mR_rB{iRcI1rB$`6A8zD>e{s zqU5H5u(m%*a8k#Hm{hdVY!u&P_VL>XPckviz5zA6=WsN``3)O zzTLH%pg4;iIBHp&?McdznLvL6WfGP}<(5g#vbJAZ>F1XTiGwZvlZHOOCz%{4aJNqT zDMxnw&K;C@dIGC>L=Mvt1-UqBj?@Ryl zDSb^&fPR#Q_DRSEDStZyv0J$_JCL`b_jU`V+aLD04j*rQxdC*PfFEIVe4| zI0-v<(=3m0O}8fs%=SB`2e}=ilarJ0@w6qrFOtB*;a!9V5W)g+Zc?SZE=KMoXhQ&Q z`?pd^eZKYOwX|n)L)_q7Tv*$@6%QrlZLIQYD!@)G_>TMfF264~3DG$mowvPzzdrcd zV?E_J=u$a0XIDK4BS<7cvHgvO1;51r9TyD|a~#K_-)K4h3s6W2Mxr*w`I7))B+LoOalc6HF%Su1WmDEXe+Y%!);C> zg#o0hoOc~~ETe!6!4N!>{fnvyIbOIwbY>pQZ_^e>p!^saS7GT<I+Ivui9N8Q4X@{5br50agOC z9zNd_M`#()5oMBbQQ!iOfv%=0FMmIo;zI3V1W5J(NLEw?OC@jItvouyH1YIW%$nX6^x~`i_vq z4eICB^7*LW6ZCCAf4+XDt`0JMaH0&OL<9vt6&G{aH}5Ghd#%LpG=GVB7mrb;z?82z zmX|;Xrf<%Ph*}c-NTu2%#21p0Yg!yqS^njV*&`uWZ@A$my@bP}t=)*j!R)-=)ackA zyq2*&l#HtU^bRLb`T`nzyADIb0mM?Rhp_4IeSJb1Z~v=AAdn0cNFjF=VvK>-Nq2`j z(zFBx2kOHqOP#BWAOYj-FU5>4|X%1d~&h^fnopzi-@L* ztPE-o$hB)jNKI-!*KNN;dUx$MluvT3UsYJBK>4tK?~q%O&gqOfdJnqB0IL4i~WFfOPp+D=v zVJH+$&)s}l(2*U{ne^e><8WAe&7`3UP}>QmlN9~>gQDK}Z&5>p=?70mUqZ?|K|yZg zD}&9B8#Zql0BFS~l-CW1;?#tK(Y!37tgsUc>5w`P@(ti_W5Giu>+kg|Y$#r}!4Zl>6yK z|D@T-TXs)MP(IFM4VpxVk@bx zd$-wZt+#QR5uG1F8dV4PPp@0>js}VFJAjNREbv_(D3;5R1La1h7^1CVA*%4$sX&#q#uyf#UV1?A%4t|j>tTqMsXjH~Y;z?ii zGl0>%+TP8h5kEzrO`qQc=?PzJS=aoOV>uL$JU)UZ0a9-Q!&@899u|iCQbzShE77?f zzm8qILPr}^ahSapE#FD+JD`cu7T5y2y}Mqxag{g~L8gyf&9-M5)~aR#qm0r;z5QC{EAi_rgF~c?Z)w zf`dm}c`(hk{SGz*?b_vwo^Bv`lC8yaI%bF+J$8Tl9AZJ(?&arc1HYD$cbljleFyy{Zys1v%s{h|C`@#piL~|+Om2Vdd zndCK~QXhg?n78M}b!>1{m)n%y^!VW8DRCniNIj{^<9~y77jatZe4($&W>IZmaTN9# zq|!*ufe;top0Bgx_LQq3_s4#JH|}ZEQGfODm>ZWYjUPWb@2Bk~wlSTE$F|Ak9quzEy4!o_gMEpyR{QI@ zrXuW8vc&}hd0;(Zr4Q`uSO6#gi0~<7uEAv;%ZNqDRvREN3c(ri_6`uaN*M$Oh~j_Y=*kR@5u*X@Un zt$!Aj@o9)!S>tjL4lJ8(#8q){EQI#6A(NMZnLnd+Sp_#=qRRKNH0a6E@ z24{0|I6JEyuAaqU20wo5SvS(J#PR}j$jy|oC_Mi{kBzAr@$>z$Y2Ub3L~R50$9kS9 z&N=na(GGP@7atEkIhnS4LlyVz(g!1E47i%~^=-#p+ehX+xkL)6QCb5C6ddzQL#w}3 zR5%#HYN=6CR(C6fx)guoFy}@%l{5|S##F6Pr0i?nffRMAD ztA9vUM-{2uo}|OMV@SE%I^l!YpEL}+@SAVF^Ru}A0TW$Q(ZDXPB?cyrjI7ePk;Vnx zeA9E%dfY}E8Eu0)sf`6RB}bN3m~;`fW?2}m;dSDGg^HQ6F*46L2Kq8AjwwgnT*knp1P4C^=12gg zG*G2g_=Ho}f6Kn@@s*^*qA=yeuUvfOLNf@^c#?gvWvmQUa56^>Gc%xB?S(saB2`p( z4xi=sVA3IJ^lkJxoX_=M^Xc7z%%*@olyUc;dBv2os{V^^4c!ktSyw&)cKD(krf0u7 z0bxZjh|r)S0WF)E(XDlWtD2bHR%CK}jiFfndtUu5!pnU#?k`@r`(r^eke#To!se2S zLFys}Kt;!5qcA}J6w|u{|8YcqBWN!F6(xCgzjsZ`$Lweaw!2BzAv7r8!3a4r8i*K#3I)MD|Vn3(Q(iN4me0CRc=}%@%;|s$1 z6y9{7VKeD$Ym4g+5@q~|Sp?#beu$~ruOu2*wKuw9YSUQ@lFK_7C7~u9cUvgG_CwVf z&snTQt&cr$S)zCO*H^&t4>O&i_;}&;?@MhLpXj}+E(m4iM!-LURQCzcOFPE4}8%Ap7_E;$qyo4ly~9L-T}vFX`8CBI8jjwe18*k z4am}7V!~6-B5b(zZ@&ky>Rfx0KtRMV?KB}RIwQz^!AbE9BGQ$^0!KBi63t0X>K- zi4y2tm_8^2pbxUIR^CynwyiqvZ4_poZ4*$%%dQuf=9uA`9M#RuTI&@1#q_Jvza1K@q_C`SnL)a6UqSbrpg9^&ZR+gl4rk@1wo5Shr z&O40s8IQdD& zEP;YfbZqVl)dUZ9@2e}p5XQ99KR*0IU8C}5!xV{rq4=6lUNYfuu)h4FmmDa`O!hAW zlY(r`HzmU_c0AZPIL=#;!=SOuV?mRxI40~Y=ToWiPM%HKSWW+Aap|>NX0Mo6qb&n( zF5!`y?l!Li3CR~^ykeEj4pkMss~^*JsLh7UiW2mpXV0%=eSKsq%)585(2oB(6O;5)#NwqQSdc)TTsshXg&2F(gxO72eA=LQ`m%M zel9|?I=$g3M`p~j+qBb=X_ps#ISqx@E=LWQn`JkQAf*6+m!-M9+#_@8Lv_*Ken`I4 zM0R=7vl}W+9vt+7v-(vwe~dZF~*xcq;$ z05)eG+CVeRP%@0Y^G6VL4Fut;Jihe|(>u01ZJ6CQgtmtm`cZdh81K%c6R>p)AG9G+ z&Q}*B7B=M(5r?;MAIFD`7;aKQ=EAPhNpO1p$Up<#_*A~PAFr9~2P7i77AIzAjXZNM z{E|A^4!9PC%xst#Lo~?h3b&CKWiTL6cHC)TX8fe7aD2rZ&{7>}!&9=kRR)yqGC-8N za;v&dLXZFIZj7JLK`{N{EIMRCZN1p}+SVYaQB_KdksX<*(PnOJY$;-@oWk-GOrpqR zlmWwu^VR+V>LgJz8yS!(*S%<6Z_>bhghV%vqpS>yO{y#t1p`98p2Ko%r?+yD zHcim-ZNcDeB9=avy{j&X0X^`|DWriy>F-Hy3YCNActh_Ec8j5mr?RrL_2KL-+MD3^HPJZm zMfZ^Yr*naimR^kytlJ6|Z-fA4s~C0T%xrqHi1W|O8`njIxEwqJOgwgwn_qcNfbUAB z8Fap5xjE-ubcz;ixav`t&gw9^&wk$BxSzurB`?S3YAOaHWtK<*Suh0jAIXD;Btbzz z6Xs8c7PT?YwodD|vLmZ>pF;h=U)i!OE>zt_?L4S@deC@I=e%i=|JFlNu1`+eU#d%cmA#&YfT(qvrb459! zN`SNhvj*=JK<{%R6{0G);2w;-uY* zBj9vnFe7_^;0d?5hlQ68=v>zVGbJG*0px$$($Z2+ne<*KB@lm9dG48laww%j9P{Am zdbXN;*X318481_ua;!MdVo`DN04ggjjiIz@N6i1~93GCgOz2(H(;Xb>uoyn};a=`e z$C1fdK3;8wOnl0Xn(&opqF#l(;WeDx+0s?4a?i9=-u_ivxEL;w7e}tevL5TgB6xEA=UyB@1?S9>4+N^KloCrfGRMJAWmGe0JlSiS6OhkrQaG^UcA{S-x0! zoa@G2Ke;r%jTcmKieoD>5xHZgid? zEH-H!TVCG5CerIF{<^~CKygL{+%Es?(x{)0wQkitSN%%woA;~Mb5KWP&DOZy9+q;C z_)d7Liy5PmO4dt+WA_Jn5BK6Gma$R-G>C-1@I1MIcfZSvgy1+_BzC9indD!QYEUWL z?A$u-Ozif(`qqhmgq(F%^sn1^DnZ^xCN{1KQN4zVHwupKHjDs>C4v%!)53gJV6 z%Fa0p=TI)i4;!GVc6?7#{gbPs#Zi>o!@lkCQT!Iq=V}YR*KjdGf$03hXVnq`R`0zp zWJt?&Y>n1Y%e}oa4w5l=Rt={qAt7{3h6#jG_oAJy$WfV@IMbphzEYbaTOKa|4^?j+ zRt3~-57Qwf-62ScgwhRC(jX~~DBay4(kX&~bazU3gGjgJp&Je<4c|V#@4ess{o#WT zj~+IA&z?QA)|wfj?~<*3+ZSVXK6J@;9M0u7x6&mHILMO=0dw;T^26CGOX;KgS$U?o z`32}s_FpqZ7rUe6Px)SJODdh>`c@8(CYCexY%f`Rg?!qFQk}))(6M6K*gqv<#?4w$ zkQX$4i1ZzMXrpBL1?3SAyJ#M;JShI7MGn= zhrq$i90vG@6d-01a30~nO!vL9U~5M2is z>+Mhs?aSGVblw5b7;Z484+{Vw+uGpIB1S=K1bYLshjC z$OJr2dWjh?_`5dN&ODD78#`Uumcs};Rjrz4zic_KGufLsyJni2#&~BHzpKeb2`RCE zCw!zZDG5D7Q0&%koG=~0uNUc>oxx+0y$5P%>F7P#mwqnj-`UIZXEXX5uf5#& zCaf9`OyXuY_pL6wV#{NRDR+O)pa;;P;rGQ8`6uc*qUT#k-<^#~-~`PKrSQf8IGKZk zqvL3)ng8+b4APE;p+?nOAChysTp7_W=2=tdNEqFforKTQMQVUin5j+WPY1Rzt8wwO z`hH82=@33HsdK{<=8`3sP0omnVj(A~6A-!`0MVu`$cP zi_R)&)>|<8YZGHhtpA8+?IVdl4ZKR4K(H^S<@TS%2R}K#R-UiLh1=4zscf~IET)c# zTNp#eSap%p>x+H`u=yLN*q1rY5v6{QACin~zNceBQ!hM(@rg*))h1b0$@9kZz>**S z^2}4Ug&1;qCl5Y4Q{Ohl^nYLM!(r3wDRZLg$=a(C_QpZPf<{|W)5WS&8QK`O{AVRs zVhbJ5<)oyL2?+_E-Q42Rgyn`4IX>S?^(rl{?%%HwnQ9zR?e318pDaUn}A$oa^|Gzu+ z6)p4lbLZ*{Oqb5RvSDB$(z#OdvknryEn~!2SsKJR=O--u<`g=S;-yB zRAfXW;c-;rYP5>uQRUbu~yi#@`u> zi$Lo@`bySOB=OQ1rD}f{@8l69KPJQto&3I)q;)BCKj~hE*+5<5Bw5g&pkaKWHG#AS zg5#gC4IYo6X&~i}EU=}#hO~Mp+>+oI^PEG2JDV5WeqQBmszcxR`Nt0RKY8qnOEl=d zE^m)p5V2Qp7mi>9gSZvWiz|+8W`>(ZWoe=R~UP!WSB}E>v7xe{>oVf3*

XWZ>2)?1(oT)c<>mB6-bB09BIIs) z!iUA1jZ6#9I6sIDrFVm~j`T)nrcLH$TELE)|9D?G*J#e)cyK5bJDAa!QGl%yYDlzt!)c0*Z7F_-vd)JOE^=#;OuiSzq8*exQ>xJ%^ zmsd8KLWsrr7V4KMtSnRP z;mv&a3r(&>a^bPn{WDL#CMZ^NeK~qq`_K79T$6d}vu6}otvP8&ZO@6?D#O1wvygCo zYn-~LP}cXvGRu1yF2*>&JuqB<%lj~b?bRO6(VC zTy`l0cGOt7{#~!cr<&S&t%8v>E`(69+sMOt_@6As&m6(MY;VcD3g3Jr4(CF#yzK(E z$MgTZBi*bn2RF5KS7c8s{5NAoD? z7uYY`;9^lLB?^}NMAoz)F07hl4CiGPBuz|p-|awNG;H-eX5S7_%apn`M2x?CXTM}$ za_D`eRW9jb-o0eSKmo#p?%HXIHFl2g^dD#OkG12;#K0pECWT~#@Rs=acJO!vVvqP~ zc(ZOIOo`D~8J|^Piv?#q`a883XI8ATn0iT$9M z3j*A{)Ns8&0{Qv;+o!)=wh3BW>9iY~<<-VG%S0BZyzMf35wZYL_{gOW0+dimhR@GC zP<`-1mlyEy6uM8mbW0!AGJ4|E%FgONsq(|nB$+?P#55V-8#+bHw*88=Z7 zyvQ$?k?bW1F-0F0J7;GW{sOGv%|$RUF!~n-i+EF0p?5RqUZaP7W3vw_r%XKG8&r2mOwKIhhCKit13*a}2LU zXQQwwjDb&$f8GsKT7vO*H13~=3WIxMLW>J&4eOh^Uf2_dTFMN%ykD!}rrEP}Q>n@A zvqXC3TyqzovY}*msT1&OlyKVFqrrm<$#VKd!h8nq!J^GYCXc|NIMi3%%+MuQsRnob!DRu6TAn!D%>qN%anM2 zI|7F>OT>77ohZozO6|d;>QqYE<0`P2^rIwL;fLpt)>Y=|f#*U}p`#(otCV=A`_MPy zooe;i&Xh97xS#5wx#qiM3&Q6ku6Ktvbxu{1r5YugpS*(0oa(1dd_?qK_EOotx#UyBO(DP8OwzHjyo z^7ia??I}ixQMrc5;!mR$VN0S-fG$gpR7EAmGI;*69OSV^4L#rD#KgAKAx#X$B4ZJJ zvN&!v{bUh%>St9OXF9ch;{w6tCEKsYDl__~zf*vao=jF)TSNS8i5$57DEHZrS$4qZ zpI(iME{;-@jWF=fee5pq?b*tPe%q=(`YyDO6u%LV3(5GF`euBhwt+=!{O_33f|(7@ zVUK>}i&aws*mhZh%T2-=HZqxJp6&9$Gh3G92U%9Jc|Uj44F5(=JRpBiC;fXe_q;BD z!#RWJWeZ1fDEDw|v;UWj>sD6Hb(s?SKCVQ;kCm98`@T-szjj}-Iro26YZD-w>1toO zYC}M<&@AGTsN3DXas?m-fB91qVqu27hOGMjmBevYdQzlPSDlnf-t+ zDHf(Tb~gD{O#u%+6(O`*Sw%Gd$;odfBHzc`GyykPtCiC|xXK+NLr`VvM=h;fKRm|o zO%0;?aTAvzGN0BfLBvT`gj)Y1#thqOB$OkobLX5-rthING&eU8Z`Q6t9YuMZ*8RHA z*5$YR40{I6MBOUaeY}_kzN90KT^V!eV-E zT=*oo*BE@B=QgEI*7!C|=sG`trH=phK8<&b{ zW(qt%_=-0nB~LSEyW`~jMu;C9BFuC}-ux60lj{hawb78d? zgl&~^7Zw#c6x0Gc4KzUok5WtML{n3Pg zr-&-C?Sw3X-er6cz50X)Uc>I{+CH){qQ1AZuDMfg4j0lod%RBOy$F#H26D4guS`sY zl@b>iOsA)uO|44{oE0etHmjM+mT=`{P{&X8;%9Was_Y&GU*2Ado|ZiteBL&PXUwpV zH}tmQ&bU!W3<0vW%vH*ThhUjcsu~>53s8cCo9T(kSE}oBR`b|vozJ>#7Y>nY+A8PzK2^J!I z^Ilf2p2ltI$&+EQIMSXKQ<9N!n zq>b~Q?Z|W8vh7xna{0565;Jt8=&^JyqEWPJt^=w4HnI#SGcQj{QgL!rD27y*x!M2k-e~Q2a1yy*p2MYp>KQsR}M+#Dbgy5BnUW7gOzR3pc|ATjmEi3%QWjY zOb$(ps#d!y8jFK7IAJw=9?w{k)--f&)|jqJwP|^lr|JXVjAv{7^&#=>xd@tNt7IK- z7Vx+83_mA_Vy_f29bh)gWGEOJOtj`li!%4qm&5%gr*I;Ws z8`$KuVK%-EKEIrrR0VIgyB+Kze?a7vbZ3N$bqm(jSh$~ci*+}v2CYbP$HOIcOGbW6 zm;D{axLU497;X-4UR0Djlx|Xijv4V)id>Y)Zci7wANI7`vzeE+HcijBg_ZYqd#k!} zXYcIKp>UkD4E4f@!C-K8-8YSR%GO3i`z_rrYa!M51%pw|j(HcpUFbvbz7;~0u&a7W z1WOfoI3!d>{ZeMhx`_(C1l9FB0p3<7OZ+)BrG05|^+G;7S}P?q_*2XbkM{dLy zdAm1?vYqb*=$x1N=40j{y!lPN?vk3uy?7w|49Sj^sxOO4LOw8Ppg=~>C_q=hZ_lc- zfx76O&Dzx9Y&km4v|sho&z=U6f>bGNd5*NT@k>^$edj&>YvtMPi$LkEIkX{ost7n@ z5H{xHL|=L#cAe9aTucfssJxqebtj;cj?uc5-0xMmXR4w;cCYzyfa};xSA4qE^QS)v zy7aVvp=xa(VSVI_p}S?G6pxG^Kxa2wM3N*i<>SbA$M-^^xWIPG6kcf-t<18 zcydp621NoQC97B!_VKc7lk4!$M`64B*8m@+r^v$~URlL`x4$Y8^$cKf30##R?0FR| z3H%HGDb&iM&uzsf5}Q3A-BN7Gm?Yr}am?ksZl>_!BmTHbHY_PY&bQql29fXheRF|5 zyDs@_F`g!Yep+Mlut5@%#N+=|++ zc|EF0dAZ>gY_<%rv$rOU#y>Exr7wHcWiv3!%uu3OK2iipWuaNns%hNW7nT5n_N zDe+E{<&TJe)Q*#~2riB@*qlp|{$XAH1bFZScyFMGS$Vz@!yoyG(wk~Axejoo3Zst} ztRf_%xGs5Ts=L+FR#hdDg91{BWXdeOD#*x(K0osl6@E&1?=vaoy&BW(UVHKJXR1u0 zs2x9xsJEN-3311dIC8-^$%aqyhQbsyWM5?TMwVUXG%jXY&~#b_JOpvpEi1pfE@%w78?qfHX-p56x{Nlo*T>`y&jy-PVS=PwHL;`TJqp?6di*Ed(@Ann9 z1Uk3q%H?|mnORb6_mqcO1JZC6LLybY*4Ts_MY@?PZb%!2pNwvxveDI@j=~!(8u59m zd5b*1e!gNhT$p_fD^l#RuBP}ccXmU)3H_mIS0=vac4tiTcG6Jmdc%(-?$9Mu?yD~kr^4mx z#puE4$=!Iu!MJk$Ja#&`KWS7atKoVz`+4*huZ0zNT7?N%%fl30*fQ+iS2iq~&+%)T zNK}^8c0@rY0|CHu^jpJ(N`qH(DChnzf0efFydTxQ?2N!MRe#az!Di8QUg_JE7y#8* zUjF!;5XUZQ^4tEtl4{K3lD3 zEIR`Ec28S#gx7RnN9{?6zyU9^6DJmsz^LO3ZyxI-Y3W*i-;#wh*JVytzMtc^ZE0cQ zFkO{5l8*ml&)T9cJ3>15Fwz1+$xIBXJZ);OP9~g?S7=S z)aDL}&>snd&>L+M5xh9Z;u%PIHA2k#wbMMtbfMY)3EwI2Kj>3e3Gyxr)D^CeVnv>OPvrT_rM|5-8$c&_Sdb0zsBjXGlNyMhyu5U2kxzytb8{bbRLU~ zV<(MrhY~;uSkI()N1_U%S@+zz6cICUCMlAi;t@!GB6m~K)TNetjGpH5-~x4SeETo| zRHN!O`ck#nGe>MMhNw-`5vMSO%)ZPv9(T#&YRc)Ll+!}oF~C7hT%xGI3U||VXt=^^ zXSiILojXdrJ=|Z8^OOZgwR$g(l=<~(mOw|HCdzM+i+W5JM5I*mu z9ZJx0V9K}rc}xnCo{O5Yo|t}RS++uM*Wt0CZgb7E$Y%HVyDnmz-tVbnh?H{kez2Ka0eR$;_5b5Q`3%Mkj(kqCT2 zUEUholZ&h)lK;c1FEiKY`P;HSL{j@~i?HT#M?Cctr;W>JP{S#Gn{zp5Yk_^feseVJ zUN@s%8!YbGBw=C3%E&uLXwBiiLWx37ZhiT-hl@0`p18b?3>2E(+^noq*Y7>BwHg)X zb6oe#@tINKgkQ`K?i^2OYrNumt*q)WB9tD9!Jc2^DswJ8bwuOwjnUq`(SvCu_v@8> zn$HWkqH1NVFfjmQC8Y2c-GZq1>9W^9^rFS1Yj&@52U=g?N*J_gXGo1F3ODlYHN{-x zGyI)8eL;>JuQJn^-`}5gnw?*~Q*TWEIq%ub^hB~Jz}LgGdG_=vCJ8~wT%+Vrt{PX$ zc4mRCjif}c`7lE_xfBqQfx30~oo6Z<7B>|+uALZmKU<}cGN1CU z4&&cHdZz^=YfaR+;(EIMX?Q)EyB>1+nSbi(2TV*AdlzIKB`Q9Ox|$N;?so*DyJ#09 zEbTX%-~JG0dyRR0&Uy6Xfj^eGXy#puKD*%a7in_263j>qk0=WUfUBjnB3gu4T(tg zWWa*UaBx3uyMmO?w!Q<7*=UC(?XWJ?5KT&actB$CS6B7@-;PBiWOY{B&0T{UGUX+m z5!d7fh|N#DT@e!>H&KPIXWFxv1*}+7 z8n-1N^aZ!Wq0+Id+(CfY3f{v-)bHSlY0m=zqVOqIFgY(Qq3)7|J@5FdZ~AvAe56Yu zPJGYjr_NtKDR1ZQV(Y7RaWRjs$Tph(%b%8%PcIPhLhExe7P^d7Ra0p9M5m{jVAHJ0 z+(hYeIN8+@WDd{`%1Js@h8e*Uou- z-NzByu197$bjVD2!X-<#CmkJ`7o3%Ut+O*BMA4-c?vk3kwj}~LCNS&`EN`8fa@Ny= z2yN|09%1XW`^o%reJ;7uV88sjMo-J=qi*`Aot8DC^9Ns*ZpZfgFn&I<6Px|ArZ;fi zV#6$%4NVDk)FS@bMqy$ZF#zX=U)^3c(m+n9OhMcFCY+)LV|3v_c0Qs@ZfmwG&t1A) z9r{`P`=}4L!BuOB)2Shbu!v@y^wjQiV^vwRN`|Tq#nT~t=JGZlg}!01i2)p{p>PWR zH#eSJLqEDf^X*$-JNh2U7@i0hJ3yZHY1EIke7g8!_c3|raAxD_V z%q3+7*6Uw|<>c=fD2^sn3hX#66JC2^(_0-?4qZ}U%W2t(iyH&*@7%S5JMPb?;m7G) zPndZv?RP>ZK1%I%wHygNZp-?*P3n8^?n2M@`(oDZlRzIw(S^;<$77uZ%^YqE%!+NG z-y$5|#18v&{K^fWIPp_c@GEw9bYy^)jcmIzgXKABUD{7URt{)Zmgk3jxNjNG*g(>rDRj9u3X!spH?L&ZwPjK|yw1_%!Qd&ep ziXFGY)qR~$-+pYOo=9A-zs1kxg)ei{q&Et7myYg-YhOWqS+l^nmlpt&UX0kWnJ#1O zYhTX4@s`HRXg=ofGLT4JUsupLf6_oyGw;s_JFQjDv^%c>YLAB^L_LAW4~z04 z$->@Px1@g_U55&bx;6OVDVuV_1abXf#=Sv<+hG!_%{+M`3D<1}*LpcKCz{g1rZJjE z&QxBWm*4h>fF7^eS@i83<^zQUz_33D-)9w(O53sbM$86U?gi^EV%AYa zyGI(oSiG#TbL=%d+Ols?`LT<7JFnbpjoe&qYRsVYVIt+OS;63DEhgs-h!AwL5E8_c&z z&v&XvQ1OQXuN)xLC>c1FR-=E2cqROD4Ub1QBm5S7In!glmSR_~Mk-FFwMJu_iRMPV zYd0g?kvZI*h5fj=*ZYC!`i!u&$^>@F#Atb*o3z#g>;sT96lWKfN>tq`q^Z51;!Br_ zekSni=>`Sh&6_!1m;U&*eBy!ZRn~jN<}C{)tgN3Kzs2k{Q(Xy zQS0SkbaP*4V&=dcgpm-ZC&FUt{91=IVr^_p&sMk9fGZ-!)enAFs69v!(m;e5^_Y61 z>+3skks5y=?PFrR{H5x+o=dr~AUn<7ikY!;>mAIEz}Q$WTJwQyHy25?45L7~!4XBi zdE%(!n>VbZpRWIs_WdHx%k5BQas2exS$A8V(Ch@$o?*4o#K!zlTvRxxJrN*+nfafL z&Ry5-ETWGeCr|b2`Z4PpuDhvMQnb<)BWA^mXGZsMAf1UZw>DF(0#6pNgk!Pj#8c@x zIlSA@FV!hNP&|bFGccv+2z*gVL$P*MXch1;b(*kycQJkPx1?iGUNG+#zMrdeLgsy$ z@4l-u^kA^?Kv~}P_3F$knZ(*%@cD!F@Jr;Qv8x7}&LWy7>=LbRMp1ND161nY-XR(K z-aZN^sF^XR(UG5X2)sdm^F?=I!tN6{H{~6eR8E`(gBGp;H;(_5m1y-MsE9F5ZZ6-; zVI=93aEWON_m|mKNucH^)DBKI4CQ3Up^yc+@7)1zd`%7RWd$KYEHHdkI-4w%rv-6q z)4CFu?wd1YA`T}sR(K# zpLo86DU*1(CtVyC(qs$u#c# zehys_d}iQMg+?3*w~SgpsaGHT;Nt~iQYpLIcMVeVmOD4o$|{`I4g}ay_G&60qD#qr zp~nQybA6Q06RBe$INWXxjeE1xFl<|{^O?bwyeQ;`C^yv|FZ!qB2VP|+bNWwwgVEJJ z=~)Ys1`Rlwnkrmb>EVBE3LVfp2Doxy(Vj?ycjhA`uev%8)>07GVrf!IFzOcC{&>GU z5&A!9&%B#W{eRJ(tra)`Q%YVGM@)-jhLKY2w+dg8;RNsDrPR-4<`zXJ+ zclNW)Rk5($&@H8j5EZdhWoCfrHKJnLWWmJ!iH`VcN1Fj#D}kj|*=WV1Ej9bWu<^)` zU4IQm3v5h;{7-t6(fRMUQBlUcJcD}-lYUJ;L0E^Ve_!k6#@{P4_j02=%;B9R3I6Z9 zn}kyXH#9V~0ouWQf{7-VTT?*2=KOsA(MC}GT)~P#(~PTZ;5^%AibI|)&?y>FOOLZznfV6u|H)TAA;@S48-FS;f-t>^FHbK(ztB`Md zQAus^KwFFF^HG0#7)EEImTb@c1-YKlhtr+!&3tE=aqV}=psRKmA<0?>W`QNu} z3y~F$Tak`+ID7*W6VoV}VG9iMOECxJ!o2JB!U(BPYn@4JHKokwlz^0kKOz`V8j*$r zQ_sf-$DQi#{lp-FP@gDN8(NM8d#>Bt<9e_0Rw`^eZBzWu0PhZz?k8j=3(v-)a7Q)l z_GK9^wgepeH_y}EnNnj7#O@9X3NbsIy6O1~%D)`YxaP(!-um(JjLsj_e@}k19M@Jz zwb8YfeeaY&?HC(JP;FLm9^FKd=%01|3iKF#TqEhK&0i*5+@uLT)-TjCTSem=kTRJ? z{9$3ibB;V@SksTeZP7;$IXO8Mf*`|((?ndWz5V?k{7wwa%*?5N57%Ih5r&DUw3!*B z)AmRnm^euGg?RJ`lzr~mtE2834X6I`$*M=t!TIFvB z2KvqIz!btVXVFVk|7WAEzrS10YXniE?QR49*eM2s3pLCdP~(_| z(Kk3Vt}!#Nhs-|s8fan#a#=Zp)*y@)7pg*R2#mDyxjEzzNB`iCs#l_xWkjzGf-@TRI z<*~aEDBOK&7^qm6o7;1DjA;GIL(w*ln3|X67CWU04exgm?$$R6czgo?GsiP+xpJ-VJ z9JKs`#-+(T+`UMidHE#GakOI1+zLa{%?7SOIGk`^!k$3y&$f;xwx=5-rqzT?1IBJ^ zakSs9HFm|_lFsAOoM_hRIjZbUUPRj@&+1Uj@4$#jCGZH#bXNt@b&r*jeRSoXOp#QD$8p{bJ9pG$jXOAd}3z9}+2A?|y#Z zj5b#7Sg|`Zxch<6fPKA`&v@Fbs4RWEv~h{loBCTH$CxR+i{1AGqwPG89e!+TN)oiZ z92I>OBG$7PH(#2_lLuXu%>J}`T^3$?uLcn}fL>k_!_*+lUId-(Ud_%Cx@Pa z>Mi%eAChlVw=>vH`=dE`_np4QzWNn_Tw%ZLp~g%957AY=xw&Zo-A8uz_GnpH_V1TR zZo6utK*0tWR%@`x{K3Dt_{9qr7K#3)r6n*6>dPQo^MUX!;sy+o5mC5Rrg{Ul?mylq zNmDJg;<8~{61dB`d&6??4&_}`{QHwya7}t_T#6Cq^T0?!D?7#C zoN;k+ve6TtSDXbH5B*5am#O5RBUzrN_U5VR$=w{p?fTtAYnHV_j>sch>;re|c-#r> zmUM>7vEjnEm!uc!$d0krTAe6CoVFlcRSW7`{->aY9OPxW3q1DrC$%eQs~j%xFcu3L zhqD;x4YF~Qx=w7BNihscSEI`3;PfuD`axqdL&v*>EMdL~Ip&Hv)9I}|vv2V~f{50A z`seNBRy_So5YsQ}jh)>BAR)SuFTCrD6aRlo zMIz0Y7ypO>OdN=I3i&-un(aCOk3BU>Pwhvmqr}FSn)Rc#vrxO?LczUT5+p?`^<@eB zZ)6p_A@gJq6ar+-Gzi7@>&NT6oR)F!l*L>nss?-J>5K>N>KW_sy;0&Abf?n$VC7T$ zkK5VEfr-m=#(un?O;`nS6en(A4)xXV_-MGl=jX7-dqL5cPzZ>KykI>dTUt_o|CWP| zz#HM;rU0#>g^pUzlsvt>B=kGur2dcGKTX(Tl=P^Rn1BmZxop{RXAKacuiC4$IAc{j zLJY7g41?#6q?{U639NHQ0%kZ@Re#aI6j3E*I0}$oG&V=?Uy;A-;@@+7cU$r4Zf95- z-hNyLWzO;LwVsdNik)j8muU3n0&z5u?T)XJok#yIr2Sdw$gN{bB?Gx;1kkAs<W*O+gX4>BQ;e8h5Qexv9DadflSU%3`Vt3G7;h!EfPU-4ZetxAnXQ2Iq?>6)Wr#9MdQ2 z;q8rKJ#J@(P(3O8!D~l_icMi;WaPip>;@bC*zQN3j?|@=2!sM4Ij`$6OvfM~%;^qa zEP8(;MLXSs0H~bEk-uN1!1M=1|Te{bIOOrBzzC*)_>FKQg1{-+L|Nl)cB*yf)TLFb!S1mtYL2x8M=-=n`rJI zJ{B9i@B5~uIaW|`f;-D1bP=}S&~Ys~^ZcoD+;puq3CZV?Ka!*lj@@G>Pba5y zojT)>cMFWi_4TWbPG1ha2ZeQaAoXsG>!YdkpK!MyriJ4`g+NROk2f}98ZskvEh~aZ zHHoX#SaMc;a_lvy#6<`?)I@uVi|O^3sAq`KBbk_2C~P&9b{MVfF-P<;o)&EqlrpHH zfkKiGB8Ot#zCcU83UYVzD-MALi#8u*X)QCoOXyASIu~0r^YdUiO*_O=vW`BOlws*L z8*U+eLGZ&8*J=T(NcZOGV!y78sp{9oK04~w@7Ii?fzr-?Z=5M}+`Mr+XvVYikAen) zBB#_su1)3+YgW?=V-~(qU^fkKQ^B|TPA;n10dtSaQS~cxrV0r;! zy4)dbEf65qNtCdFkVQ508TFeDQ5t_nlFqKC(H8j)EH< zqA%Uu7#TG5n}a7wSTx!DVUj4P%u4bHqW zITKFs567==#)vf5ZwQVaU+sk)MG4-RCRduE>e<7$+{5OxO^ROF9}b8{v2T)_U%@sE z(AFWe0V1NFGBpHlcOdqCMfU^955J&7qV`4ZA3aU<{_(JZMd4^2%#t-*$itg`JK?sK zi*+Sbu$qb}D^KaK?t_m4f~zHlLDy%-_D|ccq=3eOt>vx6z%R1v4;t09$)AH`U^-p3 zdN!_Ez9Mf1PSS&3uP_eD`2YS8fY(3!by}WohVLoo_*%}A%+k_QZ&D1fF(XE-ywsSK zt%9zI!4_RPi`-}!QA#mr%L_x6&_%q<-6lJ1vZvBWUI-oLKxos3a@r)2FjV$Tz-q%&UuvXY|ORoeh;A#ZPGmH~6~Bq(xnmR;*RYrS%1j6pqy98H$WWgxj^`}u!- zU{nA(&P|7y-hO;(>MxYYXdZPf+?Xb+jkw1j@+Net&UgpQShM=X?V>bdj@KvgHjA&g zCi#rc*6b5i+}Fzza9#W}iE8uG1s6`R79f(G2~$n552uI#5c{iulgHI+PcOA3wb^!~ z6QZ2lYxA5t-jJ=1_wSOgx?vw8PC|$aK19dU)Eh(Xohk)cQ_;`$3uvY1MNrM(?bm_@ zpC2y|b;=*o1@hye_SsR@82MjPcr-sBQD37pWqiJWl=DUeZ&v_KB=CABNFb1C3zE6D z5ZKw?BX+Aafr5e4U5RE7!5O{>o=QWuB(qfDGvt9c9bBB#4*<02tPchM_4@q32MCRh z4&j)j^9ON;`Hj6(Ig@uKg&CMwX2M3p4f^bYps)F9|*q6jA*Ap-Psh9~1?$V3#c~`xWu4cS} z+BW`WAwyA(_u`pd?Kx(s15PV@8&~bu(4m(j?X*6hJ3Fl94RhMf`Y0 z!(KZ~zcfB5vHv)LD9TPNMUGj<++u-VRJ|Rkdlx0`C_DEb!U*ZvD?rN8UFit_HIXox z6t&%GYPZQZ;RsQyejJEP)EhLDOOLKJw`erOxWE0|2YLIA#!~a>fB)}uWbeq#PuRnj zR(mWTfl#4k-j@sx^5cRtA+0X%dphclHkD$Npm3NtfY(FskR;W>%%_lM>L(as2hFB*0R)3BAy_LNqepG z=b!$jj=gFcS!sqwmSDJZIkMf}{qKTczl=Gja{k}iC$@{Nv22D!)NJk%FrA&~Nce~1 z(tQB(IXFX>$6moHq3YN!=N_K?%6R1XS2&F%{uUFMH5_=0`rAdmP`BK>z_q#ERJi*p zGZc8AZhS@OgtJ`Pp5d~3-JdL#WdbMT%J$p6&p)zj-0iR8e~6%`coIk}T-)2CAz&J0 zqJhh|w248VjO8w2KfaK2yk_)jkS$C&Fs?DZ3_l>6aT#p!=>CiL*cR3kxv3Vn@-Mms zACWAU&kS^)-{>n%LR>%x%i}+6NvlmSiqV}w;TF&~kXQ?enOq1pqhU@Vp)k5B5ET^+ ze_EMt@B0tlA2=XE>yNHtXgHe6?*xWoJ3$h++b@W~tf{Y8x=jS>9w?@1sZ^W+px}7T z&Z@V%mcbHfthzQBP`zXuKp8vBS=qmqz*96F!+2d8e{mlF0y^^mPIPEutVBoUS z_ODqiu9m^h-q|&~3vIgfE>&(Id&g#LgY~Ciw1GZE|NSo=`sM=&oEgq9yTM3W-gb1E z=ng63&UE49xzRqi)&O+V6@ZoN*@AolgA!4Da$~4)Rv8J9RsYZ4t_<_8-kq(s-HNFi zT|0tq@mbcG_>)sL&QqnSV-7W@hTJTu+^jwbt`sIXMJG#w%l~*^n&-hFz8V2-WBIo` ztSZEfpWTf2Zs-rlM|dwEgtA1%A7iy46s_w(I+ekS?7P(oQW0Z zN%;IXNI4muVND=t(88V}*grYF*#{f}=tiMg>^l8IyYcnLZ0gfCO`MQ~rO;h+$-ye+ z+v7!j3!MZx2_}GmTQ) zn+IJ>-Rd~)kC#+u6`%L5bo}qV0>movz;LbQBZJ%>yb;-7lkQBL*}vnniZml##>kOB z=HhKjLxv7w|8to+vO?kR{4?`=-un@6H%Y!tak?23H|6P{78V0BnUmfUA`h;)?mvdS zD-d{Z#5eDZy;pnOXX)SUS(s&iAI1!8UpX)?7^KAetTU$oq^wR8fB$V>z!aRX5s@-P^fjw{cVFbZn&(Md0!Qr7MRB$&Kro;b5K}ccXU+zFI9~YW0lk&^?uvZ}Om^9OA z*?-Wsy@4ZC761SGy7F)++qeD5z7*2Spdo7u*;2+nm}n6~*<~$a?0X~`3>j&YEkzsI z(kqjl$dYU!LJX56+hos@-!<=h{J!ITkMBFa=NNyO``PBculqW$`?;>?JSF*Da;~K{ z7{q=~%}YW_;GnqJ*X+_TQ?o*cV6SUDF(baB-GZjm)r!^eRTDLHX}Ff7l*y=rebV)( zHmY5X!N&ge@cjOAcFoCQ|44Fe>6WkPY@rvr-^x#BdNQH*{I{eI+22GWF^qw;&gjIM zGcjbc%I4M<37s&K{`+^nO*1cWr%gFA46y(F`SVTaqO_cSmD`NTk~I1C)F)pY4(C!~ ziJZbwqglVGCBbSso^&NP@UsYGqvQhIGo0+fVZ>)yV7J1~}ji{*$EM9z5 zlS1xTIpY1XBZFs$ah66@MuzZ*4^Kjm?llHs!~emZ$rRRf2dT z&SJ4xGHKc^F*{-#e`RGx@ECrO0BNa)j~^Fee3vBuak}-=)xLk9E-Xm%+w4S>S>5jQ zW@e1)>gu5LA-t?@qr|m%G5zn(lm0gQE`-Ts{HvepGouF_{=b5|1O0gt#fcS%E#8sg1dOPpqU_)8vCRAEcGdV2c@h*F65=p3P=W&bFkL-8 z5_;EE_LC<}pl3!~S!n_)ITH(uOEbyenG+Hc6ugEpvpMF6eAj4>&T+@X241;xhKGk! zW@kwgK>K&$g`<$EsVRj@jqZMIK&_mwITD1?Zzzt+reA~t9PQDsU%xKV6Vr?#5a_wf z22eRNv9e;fv9Y z-@6~D9>WXW(B|vz?InQdUvA%J_+Zr4h1Dg)qTasMHO$fw+*)6bHq9dx7t0%EX}Hh4 zq}!qBy*qcJtw6Q0y?v)rT0y(nDUhn7(P-G(t6K{0A0_wf+4Fs=%|(eoAk>YHie6cr zn=R~;%FkEbpx)GWz~f19tmEd|&l84*Gwn2~e06(|!d-hY*M2Qdt_HLaiYD7zTiIdr z2@Z|}+k^?D;M7PQ8D>8D|zxw)n;Gh*HPED#RB`*L==mX@hy?H@jHIXXJFbat|KEnN5nOx;K+yxP`dtX&UsiU)q) zzN)&oy4u_j$9?wPIcAc6G^C3|LPG^*T%dN{<6Td!Ja@#xF_#t|cp?a<#sJcHFcPuP zpFc0rmHxgR=AkKMX>LxqeticaE^alfK%UWFOit&fh^DT;{}EeT+kinkTU(#$PlpjK zqzItimJxCD@@fK6(XsjY(diOX&IrGYUS3I!jW{M&Rz0>T!6O$bpg5?a|7J-(Vu1ze z>+3sk;6NQD+XjZjOof+PZ5$l-!N9OA{frq_&w>LuASd@pOYY#o`g<}K6bc0i4h}A` ze$8>{9tYokBODfs)NC%C?(OSy?9Mr^pJ+XpdV~%fe_!uQ%K%x-tP|t^EfJv&=a}Y| zI+x*xq=&zJiP6pG0TUYs&ci0o)YKz<@BZhQxLRhzzr0@+OEP%J6Hb=MZn|@X8~^{E zqa-xnM)6;RgK@hXb|e$+Pl2RaBhZPF(6Ks(iWkLiOGB%RIml80K)vysNHE&?RA^HI z9zbODsy9C#xG$lh^RUOKg6^rv%{AXje^5bl0_iy$jZvXLi~pp zFexh?*4S|ZXZNhzE&1+Uf@4FhPM-PO{(b@NOt@1px=T4trxmuPuF|%-?5CH)JIwN*&ettvF@f!}# z&e69d48|Md`33_a$;2xxoKI@&>EW{>d-bgpU#JzCnwrA+eI>5AS%I7h@~EJItGm1V zC7B!-9nDDBL$tPjab)$yxqJt2@0(GKtm6&b+JqYI!nv6lE(;5b*&J_%wV%zR)cR;v zOyG|_;t~>Lb8|@)iUVjWfj`{=(UTe#$R5Xj{7A^wi*uU#_>_&4vjK2wd61uX84tji z+jjf*?Uz6iH#1z$r{XnS_x_&DPe|}lK<}3YDX^>LSMeT!AF$uV(vpZ)531|#=0!|Q zOb~>A#rJJ(zBEdG5cy74)-D4B1Hc3adUsR=90c0MGfd3PV+#{)fTt|{vX=Csd*pD; z6s11;Cn)$*zqMyrlD*Jc>)$2z0!<5&oSb~^`*$}myGK=3dqEkBjf3O5b)kMp2*%UX zGdUyU22}IZ4-N`}8M}FUG9jKLRf3hl^G(2c>$5Ur1vW-^x|%C{J(PuJhREFXAq))c zn=(6ek9gyT-o=a3kZm7&pqFQUnYv#*o)3q!>+0&-x4t?r57hPngU-&*??4VyiooLp zs$)(t6Y)hCOijfR;)TeqbIvLAXZOBOP&7RjZ-m z^ZDf z8OjPyTUuKu00sw9CB&yFN3Y>}r9c)ox45`@X{sl1P*_-aY;uwnm;(b2LWe)sJf#9E zh%hjMRfQm}dU-pgZ32by+1HdP_!#f+>&t*>gs+(lrKG1P*i{CN!3+&qUpgoxEUf4? z{AL%~fBDBbptEggYSMpR4UjA-aW!wSz3PANNIIZ!^2#}woREL17vT}-Me?c z3|+iP4`?8GUK_t5?=uEMlyf~m(*H7eeq?ezGc%Jbq5N<|?9S-w>S~>7jH+t=$cRWx zObmWSfS+Gi`i>)bp~14QE)$3j^{$X#maC2~#OE@P?j+`(uBxtfba#&jlM|PeeDcK? z!T<=x;FGH4%AvJJVFYx?W}6^x<#{=k57dKq>FDTy;q{b#sfn<;l&G5>;x$BVzS#^> z#MsPCfj@aJa;K0on}D1x*2hNyc?1<(0NtQ0L#+&zw+4U{Q&STHulg=_r*J?KV>k>1 zJ!GNLd@vY{+fZRaK>&xYc+UAMb^@`Yv8jm#qAAOAKdFyBJ-!<&c-xwA!J#s|URanK z;_#&+5IhYVC{OrOn|8XmxYV_^aYC}KARuqwD@Yw1i}L6%%FfMY1B9o~OG87hy=XM=AMje-uw|$7LeHAJz zD=QUv)8dwz6A|Wnq26>vXiHVqj0ZV0NWw)DbH6Z9|`O<;G{LsCXC3wZb zzd~vb-0j-0U+(uo(j7rSHG{Y~*(sr{yytX^Y(0p}@SxEoUI~2)L_KPwupsH>O;h-q r;6%q@rBFHs{huq8{{_PTK=2RRPm39NxoK@F2y7>h8{vv{9j^ZeONo@9 diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index a7fd892f..e2fdc332 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -1,11 +1,12 @@ -Selected edges [ 0 2 3 4 10 13 14 16 25 27 28] -Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616 - 3145728 83886080 2621440 14680064 3670016 536870912 13631488 5767168 - 4194304 1744830464 2883584 671088640 4194304 7340032] -Lin fit: [4.95413522e-09 5.97115167e-03] -Log fit: [ 1.0600399 -19.96444236] +Selected edges [ 0 1 2 3 4 15 16 23 25 26 27 28 29] +Estimated memories [2097152 16777216 1703936 872415232 1572864 17825792 2883584 12582912 + 2883584 11534336 2621440 436207616 2621440 2684354560 4194304 2415919104 + 2883584 6291456 1310720 33554432 3670016 285212672 2359296 33554432 + 3670016 2147483648] +Lin fit: [7.42866317e-09 9.68384717e-04] +Log fit: [ 1.01913057 -19.32655284] ===Results=== -Total time: 13.715 -Simulator fitted flops: 0.46822 G -Matmul flops: 691.72 G -Simulator optimality: 0.0006768905621257221 +Total time: 35.446 +Simulator fitted flops: 0.24741 G +Matmul flops: 414.19 G +Simulator optimality: 0.000597333645279433 From b631def5e567743bf0e0bc906b0b392de7ae2ef9 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 07:24:50 -0500 Subject: [PATCH 069/104] another ld_preload --- .github/workflows/test.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 4904119a..1d65b517 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -55,5 +55,5 @@ jobs: - name: Test env: - LD_PRELOAD: "/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx.so" + LD_PRELOAD: "/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_intel_thread.so:/opt/intel/lib/intel64_lin/libiomp5.so" run: cd qtensor && pytest -s From 54546f725e44aa7ceadde570bca2ce32749b7ec2 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 07:29:24 -0500 Subject: [PATCH 070/104] fix locales in test --- .github/workflows/test.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/test.yml b/.github/workflows/test.yml index 1d65b517..7764edb3 100644 --- a/.github/workflows/test.yml +++ b/.github/workflows/test.yml @@ -56,4 +56,5 @@ jobs: - name: Test env: LD_PRELOAD: "/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_intel_thread.so:/opt/intel/lib/intel64_lin/libiomp5.so" + LC_ALL: C.UTF-8 run: cd qtensor && pytest -s From 2afd200a5f76ba90546d19ea555de566e9170768 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 12:23:38 -0500 Subject: [PATCH 071/104] [jlse-run] just want another figure --- run/automake/qsub_entry.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 22292745..30b0dc82 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=109 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt From 89b6c733f38d32259e812992cf3bcec92d8c3ad2 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Fri, 9 Oct 2020 17:28:29 +0000 Subject: [PATCH 072/104] [jlse-results] for `[jlse-run] just want another figure` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 43711 -> 39974 bytes run/automake/results/time_vs_flops.txt | 20 +++++++++----------- 3 files changed, 15 insertions(+), 17 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 782914b2..7d4a36a4 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 35.446 -Simulator fitted flops: 0.24741 G -Matmul flops: 414.19 G -Simulator optimality: 0.000597333645279433 +Total time: 60.594 +Simulator fitted flops: 0.28745 G +Matmul flops: 511.87 G +Simulator optimality: 0.0005615634849012753 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/de972b4890ad16ef8d2a0da324083fd7bed8a225) +![](https://asset.cml.dev/19f9cd5cdf6920673891c0e807de4360b4528131) \n -Run date: Fri Oct 9 12:21:40 UTC 2020 +Run date: Fri Oct 9 17:28:27 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 32d0126ddfc60e53410bfed1e2e0125f63bf0e52..bc21ed7a87ea3c00dd6df91c7940c134b202a56f 100644 GIT binary patch literal 39974 zcmeFZbySpZ*e*IqiIkwE2vTCu-AD;aDoS@s4?Qrz(4Zh8N{2zHba#%3ND9(9bTf1h z=NW##Z-3uD>pN%dbJp7bZPwDk8F=64ed4~a>%Okr*P7}|q}S-LK_C#)C&~)XA&@Hp z5D3o9RRZvi(4UEU@Pg+i_vFP@@a22eG6MXY2&$~-27!>9VgKNKmC3aQZ;HAr>bh$= zTf2LixmrOS&D^05&h8Gj=65`;T-|J)odme~xCJ=xymEJkiu3UN=jYtct~NXY5IzM6 zRL9XE5;!)+e5eN%K% z43QJlf22Us@_;dCc`^CEe{K&-bBT!R*JOd>>T-NQ$=WGEvX|&oBS)oG^27h|_3ks2MWs zPZI*6F1f9c0pF}q7I}hQqIFK`%wC$6#|pnI9mk>K=_CxIv8AQ_1f=vohD{J^uCA_m z(p&pJ_qn*(g@mXg+b9=@z>+H8JMxwGKUv`@Eh~E+8QI;)Ymjy8`jZBq{m(i@#t=&@ ztGKwhmgw6O`nMq}Dk>|JbzY*W*tIt+wd$mHb#r5#jEaa@g&YkTIG4Qo!!lH4(hKen zLxs|aZq@Gw_1x#?w*K>3@%@Jne5TEi1TKT0vCQ%*hW6(t`?O&$nt|M4FuaI>TF;HK zMxGluPF1Occ{&2F^UCX<@T}AU+vS?Dj0{`Yzb_#tHQL(R{dHbj&C_!w_rBwrdUy!o z5|GS%&nuh_BIbUzgAwSJl=t_S?o8xa`m3d3)$xu!&F^5;cYjdF(%PD!XS~FMP{-Jt zom^_KPj+%zW_`TEe)ubCz>_CW+&9KvA~Zu|GwhdFlEcFPc~Pp)u;H^Z+P-jyMhD(1E*=zZS7 zk;!)d{(Z}7?6GXk&B+N<;c0je7ENj4s_{Jq5AqpIwIMeNvKa-%YuJQ}j#Rs_Lbe)D zxqBsdNjNfKEP2`mS7wS3=MOp3pmJryocHeCk&%&su4l^gy3YUldWPd#H(7r$W*^v?^$>e4DxOQco0Fr@P5N^WNK@S5ZPF%c0F8ylOT_oP#m(mrDO z&lD#5X|K@Uo+?uQpBL5_y)T7io3t6D@;#JY^O2tZK?HG8yi=} z#wvO4@8JP?-@hLnj637D%bcNcZwWhmgdcA1tqg>po%#NZqC?KK1k>?bUR6op{8U>j zUi?58d!VQlJs@YxUt(ybePJ^rO^+J1lI9KR;JiREOJ|aImCA#QW^NW89aW-Fd zk?@e%%dqQCE6p_FL6hb$?u!vqO{QF-_E3M;a1Hwm;xQZJX6w4J753euR$>$?oOLWq zT}3Lu@uL_vynou?tmB1#q{C2B&NQCRjM~T!4zKN5dvqZ(M!uc{EsLx~46< zdJlHtSB>#0)@7Nj?NO0$#>RgNDk|v02lQ&*;x>C?GcNffJ3Gs9D&oJm*a#6mfxuXh z9XFmla9_DXE`_Hd`3ddy^)iwCVz!{we1T_^L6n^h?czhD!lB(l^gB}TZ$ic&MLq%} zCo|TgOY;-%N;2y?za>B*eR5S@l)0ZPQtBEQyy6{jc|x0RdbeL*-So;&gOr#;sUF@D z69Ye>cA2;+g~M>ltXm=|X53p{+QDwHZjgD+P;dpzc3km2u22;oAsXKRvEHo=co*ZN z*PNGWji?53PFz^s%DMmU-IdNnq*bC~?aSF*W>f4E(Zvv6yEc>N)`b=^h2)zQp@;w6 z18bs<6B!X9SYbs>!sN8MjsuVJR5^wuk?Vz6V26HSD5jvIHQ^}3Fe zZDug1-7LNR+m|z;oLV!<>&<_*=~Zk&NJ5X7>3aonW|3uZ_w>u!iA8HO`+1r)%5ZyUHh~Pf?VcIhq;%Bx;fW?@Vzrd3H)YZ&D#JLyvCpQ z#gz|l^*c;%*UD{8b(Y(jqHs(I3Bc}BWe%GcIw+S9BBvScFQcCs4bJc9W`@OU2*XeL z`DZdOLhy;3oyfiH7c@1o7-Ho|)arw$OX}A4D79*%o{xtU+#CkP&Y#^k=O10oF9@|S z3RU3_{Qf|6jzj=2!%dw{p9l3Bdvy9=AKTgUdT#xgoTyT~1yLf_yz(F)<3T{ar8TGd+omH9qY#yjZLhm$}$;ZYdCL<7OGJ zror9uKR-?Kvc91qkfy zX1WBrnWxKo-ni$nr(I6Gd4Lo$aBgu$wy4HmAaUTam~P3H*;&&bhO#A|hY$H3-^(lA zt^+%puX)3D){vhZl1Z+OIWkzppm+~pA9Z+OJ5OkZIZLrW_s@;(t7j}UPAIzECc6i2 z_2V2_ZRSc=)Y6ExTR*P;;Cj#YYBg#34G=RFh-303uVWf3&(nyfe3Ei6;-UvvEp}pa zVX!{6>aCh@ZQ_CbV%QMlc?BGhS7uLCSqkmNdmWnI5o1bXog2&IQi+`#ZOx`SZ74Gb ziS6~p6MkeVi@YRbCdKZ5ck{u=*W#N@ewR6?8oVcYVs1 zdOtkrpM6l_FBQc|I_+oEZY@yd+Sx0jb9OSyFL=m9eIJW4-T6T@gY!(d68{~R&y-%A zYLpLuTx-?;?DDv{v($OE4C)|vdsEvlwk}$}#K`&hSdO#bj-(C*59&_I*sI4Li^al@a5`Mvb_8bNj8g zy_)H4niII7f1jZ-r_l3#`kfC$f39QC{>^V+1Nbb!4i}8!slj7}L7r=|j&r}}zT9xn zW(%sinsxNA8PztIT3L6{?4NYByg6o`+3l6d+}m^Ku1B{ji-6PI`s-_9>)Zq91F4ui zhA*|N*Q>tnliWh~wq|o_8-@ zBDo+`1m!6fJmprG=D=0|y1yn~!t$!SI4aG}^e2hi=JW@h)>;o}D^Z+NvO-xBIW}#v zzP!N!Qiza=Bk9l0bXZ#U`5NVi_8#PxLtPHJL+F6>;@U0nG5P7ktG61mfSR=@ck zp~5L%eFMAn-G6ubQnzd@AJ={h5Sy2Q-PpvCGJKTc$ml?VaGW3DQ7W?YTA;jBek3t5bwk8ejGHXY)Abe^76&8Uxdn*8p)@F7;1 z>wD;`O+`+QMfZMGi25yv5jRbk*$foVYej;AOxS6HR#bW|zwBslK;v6s;aw4t#H9>) z^e6dnVR&~?(3PFtUEKB$A3p4DPNv4OD)j?+jrNV>{ZHI@rEZdOWzn79r|?s*4LxJY zf#KwM=cu+IzJ@nlWfv!ZQKstgdE}M$hHEtDTYnnG0vx?_460hGbacHBjoh?{Du(Gf z_1`O)&lZghCiJlVmC3_U)awq};+oo@pH5#m?brNIh?6PfzaUOl>WsYhm+HssPma>E z*+fe_lKp57NC=Irr>(g0?vJX159X=4NIT?WholEU*7n*TX`GzsnEMoNy7%g#siW5| z@h_U^`JM-vheHvoig!-qSq#XElgwi~X9jEr2FZj#AObA4J@$O?c^ z7&Zv%`^4ijkF{Z3YI*F)ekTjj9(_z%5>7+5Vk7K0Ss%Tc~ad@SrGh~Aa zO02t6n(d8?5{2xC%0+*S>w9~9`);?<W8a59X62sTO3Jd>^nU3U1 zsW|i82r3tZ%~Mp*1j)PF$K82$8zOVE%o;|{#3*{e(?=^{P4ZAX-*j*J&x;o?c-J;evuS0LW!XhHUrIlQ+`6Y6TUPfX%I`q+8aVFQABFkeb zEWQqSW)#}~a%vsUs3Z2+<7H%K!6kBeSX5qO6Z3XJEwu=;#h>etQe`SF77`f|Htw#%PZ!Pv_SBJj3^)NCrtT);@+u6mdOmItIZd za1KVB`|P1NaGCoyTvOoq5-NNE3+Wi#*sE#6P!W)a^~!{Isltw}f;+j#Bh+r>X9a6P z9B>`+IavB@M)>)0;a5)OO*ek_;-Y$+!iy2@v8#5~s}HJop6*VElZ)saXLt-@><8Ys z-@MFUN$@L#q0K?{AJI$G@<)gZ0k0j{-m{3v;L$Qv#qdX+qFB_8k*$8# zNy9i#EdWB}l5C!+wx(DU)B#BN^{p3lgB{%^V1z?EwPdl0Ige+M@%6+rxKAnm&+_GW z+_&sC3;__cSJ-B!U8dD*I{y*4K2peAcxe7T08DIbmuMuQI_u^eCN;Buwy#Cu z(ta~5xn|3n5VfQD9z`s&GoLCng6 zk{@ZeB}^wokD4w7VlL2xup_hOAue!zu@{%bjc=jh&~)aJz*$?nybGV?VOneE4{9vb zc}--@0~kn}3xUJv6`51I`U~j^XmFS>`@t(Lf)a0dbB$Ku=R_;%%xokoknp4Z@UKc0 zw&#}@O&>FGPR{eaIM!J1$7l4tp5gl(rD2|mg@o=;jd{9K36bIQPly=&1bxvsQA|b5 zCKUhjin!?Rl@Pa{z*aedtHv()zIzmDFmsUm`}wf^YZYKdcf+D4r@|e-4IyRK5GBSy z06=a!&ON03h&}x2L1xYQde9*~O>Khn)6@q4xu3Sbbh7xc(-`-)%JG(=Ctdw^n78lX z%VGyQHg>?=SZ;s7j!U6pFb}oU+5McSqodfj#+#FcYXCca3hXh2IT|7~@E0$Vh$V-L zbdGM=lJ0|XDE}R;rQ&Y5Ipseti5bY8*{thUWMcV;t5Lo*_Qo%)r>t}i|NEk>c(;v4 zsrDtyA4M#Wrlgv1s@~T=+Hmehd+l_fx7)8FSR6kwf+=4?3p)!3PmNV9Zif&-m(pWn zuaA1ZR(QDoFIE?G*Ot=hY{oGjDhw?b)UD~~+gly6QeS?h>O#RdCRQLyt-id~VosVYkW(uWyA={a(j2Rc{MP z8SnKhuiYJV=~H!od-jZL90UPo#RbdSl2qyr(GIR}Hd_+n=vHzf6{xUmLOHzHhI~R& zBL0?f=Msm;0}hW1o{OXIw^8)<_?gbr-aplK{y}fUuj1}yV<*Y>#+TY_CXQ-l4bI@n z6MnGe7ceB8FW#b+qL)7YA(`QBA%ysD6wp=?`YuQklD|SnD`6DaE9#U{i00^jyov*k zdhlXqUR4G9?gY0@ADpmGbPk-zzB>YE`^z{yO(b62YInW*|IXatY6`=t>HrM`l1UJhG`^6P1!Vy-7$D}w*(mD2Ln#K;My^C>dpFK@5{u1n&lW`% zJ+P52-FY2qwzhKTGH7|m!y}c~u>41X57F^{F{JEq1{dpqq3@qN5ra-=fV+{Ei_Ya0 z%`C}?RJoMtnx44B&OLs0laj>^kq{1T(gpS&`*u&)W!v0g>Bh#c*Uuk&P_dWoj7l!} z*fn8TmZhpXI}(B5Gb0E z9Y@oaY%!>qQx28yJ&I6WcEbY@CQhO$X#)R{0ACs&7CiAe8${N>t8I5#%=;gh0?I{| z_&%z_UL@)^H=6$aP1R;TZ?eKBPUI_Io}N0d3MbKP>>?sMy)~A`@r=zpjRBF|{1>(* zAPi{gUe&fo@Bb63Z4f;;``|2Ww8{eq)k7`qu>Kd+2Zb)}hVa*j?LZmucj zy>~Y1BmOHH;jA0<99iQdtmIi1Dc~y&G99ht2nj+@uh{x69pqNHj0|A9ksB3Omfx#1 z*zf=qYuxKsVes4g!{G7vndBK78Rrxo@k_SEM)a2vOvc4_MQv&~yb1dEx4onePwp}! zWsDf}EA^RSEvJQ@KX8zD-P*PyC>CS4&?si-=m>_aB(ea;7;Mqf7;)|)eLR1InoIx3 z!Nxf2Bq!Lz*01fy(ud~0-$H8NtJyY`y6`(AmTxRMPrInHW7d!!4y_hV5+OJCqhk0z z&e_lW!yN*KL@u^jJ@>1lgPEN@^x2okB|iJB$|5QXSuera2RoOC z#>S#VSGU6MWxN|Gj;@SX@fg**12m(tfFze8sn^lhf2yvoJ|oJ(5f12!e7`3}+yO6^ zw0aAG{Uqy#$)6O6P*D>guQz^rZD(ZQtAc9v3+>kI#FV!5wN=hEfquYMtpjZ+R&)Vc z)Yj1v06GJ>Q>x!ZvP}lFj7+9pnf3N|I}`T(9_dqu-<>acUnqP|1xL4c(`ZKMN)dK> zQ(SMk7}c&z{8_Uazbznd3}#Rp%7kzjI)IOpmdeUj)zmWs1v$EsG&OIyDQz2o5v-x|p z5`q2M#OU?0*9AJ&Jso(9v{n*%; zk(I@!U1&%LBQ*sD@Aa{YNKj9wh-pWbv@>?5IyXMi*QXCAAf0VEocf{^!`MA#aj-rL zis88(YZ}tWY)_tim*Zh6$^QQPvCH<8e4|v-=2+(O>g}Hz%4&lqh5aRifB!;PvJ*?; zhfYBBp6}j~9J9opcl`R*Y*#Vs zPT(B0`TsyY`x&`5egv8Y4APIpeF61MwKu|5RyMJ>CBS0ek(nkz&=^9PFm-9tMKlEI zOQ7Uf)j8VwQXz|Vx%|Ilp}g+PeV#@VJUlTxjYmNqYeN-P$t*06t{>AygXBN~w9nh| zK3Rh&SDHKJ+4P01Z+#4WD>OGj;+wI%*36imR%G!(*R`>0>I&jHKpA=Y@}$A@pgIvvs?m&~y#^y@VumfO!j`3k7HE*~EV-?*!4 z+8P|^^5s9g03k%o4bH~KjDYpO(AIvJkU-sU9~n`e0EqZIt(5vrPcawnjL2uttO?3f zbLR~CdHNm>r(6dr7qo+2^Z6A}QItAtKH4@yJ2d%C_qpA*j7q(J6LU7)!=-O`@LYI6 zn&Nf+S4Mz>UsGebDe}`LYJBC{CE7R9j7!?>)4+?61_?T>=}Sx)xpaVi5q=~)EMip4 z`0;3KtMwAi7(YK1MnN1~1&!miuXog!cS?*0b;f7nUarb=ruK^j!Xkq9FLa)rSmA$p z+_JZ_NdK;rCp<ISZ)ANn%9V)@|uEC%HKQ zN((A1=;r|l8?eL|1dkQS!njz=I<7l>wcD*oG<)>y8AGC^o4|t5q}T&L;;jNtJ|_lP zr3mR)u0h5ZD>QM-ST(`*DqeRw@iWK9MTRb@n;u7+&&wx(xdo$(Mp8nURp4+dglQU{0WA}K!a6iqhpJ+7;->}}$C)Y7_ znF$z6I1Xj$zZ3))A#apb^yz~yv;h(r%o5go?%SCmbWt%8`4hLjM`Kpiz-kQsYEn-AKfq@sL>uH$B zrs3RF{e`H;f)@|h+(yNAR!*yyMvLE}_Y-CGl~*p||JXfBn{tEG zjt|W{f03+Bh#{Oa#_boPFO1rS>}g8;65j@LRO>Y{ayP=JYce*d^e34A@sG&mZ(m=p ztf>kZzkL-!y3`wLv1vHD$aF7RIIvp=R(%#s2wP57!Kpq&FM0c*X;0YBuDdrDi{HDr?(js`ct%JG(`Bu57FLQenOszJs9B&Na$szIPdYGa zlqfe`h;E*&J32nqKz)OjE+p75`z@J7tbM=@5W1hdo*W6djG%4g!9LYW+F#re0)0H7 zHd20@02tVmS?NPmODapv#4JH zsX5Ji1todX9SVt(+R@9P6-+SRx2B^-F8mmi3QikOpqySp7njQ_d=9=`18>6x3O&v3 zvt4NalVYda?rL9AffU5a9*b^2YAV+su1*Z#xM&;3Oxzk7)=@Bzzx{!cqn`FB{-T6zXG(34=RnqbdyYu4e%<_-Su&t#c$gu&V*}Ro$A)Ls8is|k z0XrwyD1MNejZX!5M$fFoh%mw~-aFtw13+GwO{O2Uy7VXsLdvIEg{S4VSHPrGqjQPi zg_!e#`fqA#VZ?>4_xqlnVRW%Fi6$sQ0Y?7XiECq!*qTST`iiDoUC1N!=Qv!_-l3sZ zkKtq~gv>c!ZYC%PHajEgiq1imYa0-7Y5F%RYXpqsKgnneat&kPb;l$Vf`O z<7=6kkY$rp30piYx3Sy&$NPkX)zILrPzl}c4a(R!;vg>5%9wr*xBmO6(zE*h&Xnm>iZQF1L!D$4SpXeM$C160Kn z`eFKO_l90dn%6y4nmtA|8vQ0&)NR|U}+n*-aB3`4O|486f1@x zGO;a|SI}_3(63YZMPmX$89K2kNxl)NBvgKW_q#tW28oES;`_j@}2FC*2b6V z5$+^rL;;A4(`m8O^|B|bs`K$0(w_9!v}LI-L9IKaihu`Jm;w#2K|gwdgIyABA$`6oR*w>?^4nbDk?6TlPg7tvo{D0!aO%1UHD9+ zWz;yaQuY)>4UXIEV}VsU;({VKpi2gnWrlpN1*)mEf+FN>;D7c?W$%{ zdJ^U@Aq++?=0;6e`OUtXDh*tJ3%?D-5w^!6*@RHwr&0yNCAstwB(hD;*7m-JnrzPm)@EN-<*hsFC3Bp89Z!0PiOy_zF;1&`bnGRtxd2OaU zE{D5lz1?5RL>i=Wue|;5BsFA#idqRXCk}M=?>9rAmFzRHi*vqzexRdyA^hj!@16`1}E*F2kNal9IE4NY=4{efc6yNFcR+hzzwy@y+*?%QCkbwzGGu z2DNw52cM#(GN+C!CRTxz>vF1QN~hnJ@B~%?Oyc1*BJ<6gYfg0=mCy-wz^U~Og0h9i z^i|NgCzf~5kM5MobmmS)EOq63d2dJYk*qY~Dq&P-DdXk$Jrou6Zw|@zZEtVyZB1ta z?il;-vl%|c>$IWwrncR)F=1rZO5_3LQ-!FkIXiEZiBZXTy{d#iU8e@uM}sqsJz6+! zPn#RElDs5BS>8+!uhgcO5$nFY$+-4kag}ny|kHzA7++eVt|_x$-!cFGXVkvK)DPk zk3gxG3nQTmYWpk|rodKuCSiG`(=0r1a^}MO(DW8LhlEo`v|C60BaP28c$*VMI!5?; z+BmvL2-b(m$-EhbLr;tKJ7^ICh2aTFs9w9aI2n025V6)9`>~Na2*{%*FF(r`78klgHai5i#M4Ziv~5t)jMjB1opNK>K4O z_$?bo37YB0PJf<J-At8pu&Fket-VaSI7=xWfkm zJ@+CyyHGqPM!$-uvv=oWp!0FXo?P>4#inc4{yi?8X&>#yosxsQsM#zm(tRA<>lqdB1&0WwuY8s+&rZ~MIa29hGxH`T1EGj{lYZ{EvloNw2jG*QTsYVF5` zb+9LDK7ZbNcD(B%%5aIG{uVFw#>wC=&5nb5G2kvLW5hBPT9{$9EfYxJ(WH6a-!$fxav%$PG3gpccHv-`R3~nS96&0xJ za$sn|WHdQ?^|XQ-j&1=Qj&Wk$&!5Imzct)o)3=Rz!_DMy>v!Z<^AfIsh7!7mQR?=Q zucooDQatmB$TU#9bc(`$C>(W~%xt%(k|T7fVuApf9It`;d+bA&eoZjzVoPaAFzd(rMF=%(>$@u}D_Oa@0|f>m{R0C?7Zp%f z#g^v3eG3$a1tKbc*tPLxf9-}J3AZy`$tO5N8HYIJLT}9WFDm?_lD>q<1WU zODqfWRb?Km6lfoA9lrH-Uc#r1UWZs^ad#oPlh#d*MV*63E*Z5 zkpmA?*1h}Y>%gbQ)qhO1`^Z=uGM>MV)(Q=4#$a9muhhciqJ z85qeY&U*!_5l?7*rA1MAz$GNQm?S*SuWau{{fCU1h4KM2aX_Zu0Ug$!1N^StZQWx+R^x9vj zt^}<-V@u%+*8ah$h zeOEp0*IbMYM^EcbD?f?dT3p~{ zT=$xl{PB58xNg&&!t?kEPAL!SG7Ur3pbEx1)>{TKQJ&MC|7qwM%b=T}B#*Gxo6g%UDbjQ6FDv*E- zWuecGpPeJA7Yn5mWg41djWz|WmI|wnY1@ zD@~B}0hnDmsorM_S)XDFn#;=to7Ztv)zsKaWYa^Aj$rnD6ng7E z7v=jpQ`SWAk=idpxjIx3B7L&_1+up>o@n4ylRb%S_+L>6@J)euv0*1K@8RL`cW@9t z`uvo>4yXcVC&UlZ&K#qER(e?ipA^lijlK?{R_@Pdh7LnClKU@s9wvOSKsZQeh}wVL z{AhAK*SYet`a0ZK&Mi?w)ONBX&5vgMO^&9H@z2F%1VMAcKzLVcXzb8=?D_h#&87Dq z6tiD8$(U{n>EsvTmg;iK$~W)t@3XP9m$)wc{%D5cv-nwTKg?|m97ozFr`;mc^HcCG zE6|H@D&_otEBHU?dq7EA>8LW>BcXw++p5KZPI*s5j~7hL%M{y~LRl!U0HlRQ-Rn~g zsf9*$k88y!C=v>0($qPy0N;Kn|5JT^{S(<`&6`1+k<{9>og-N0|*eoh%Xeih`7$$DxT&ea~3nS;@fdIcrr&JE95VI`b^f~=2}I84?ez>)?6a1X@CqfuEC{oLpZkwG8mb4PJawf}cu!@7Xcr+VmMg0j(h0_aN(IC^1kF zP;Lo9?ZMqfG2K&K`Hr@00+VHgJG%g!bk7ZFgy&|I#-`e1C|Bcmp6*z$iLf{Ye5HK3QS!c#f` z-aGcx;Eb(LfA##eB`86o%GE*8p`w;_Wd_R?$DNzHL9HC=;tk>F=P%YT5KV8%z6n-U zPfyRRjwk713~<6#WT*cKd1X?K-XBH-Q%r7VP}>!Jd|n%}5&E+gtidK>3RlI@Funm+ zcfQHuDd}`qNoV`EZe32C_2Q&aZ$&+bD^G!^QP2We^e7&-}=#=3#tL_vbE;3ZuQ&34a@!iH>8!8}P z^HUIi6DD+gsoL+Pgd{=vzUQGGie4Qw;8Lmk1DCZR@V86BTl0!q>%Ci0z|unlqWw9{hoCu=Pei6gh+#aMFp>OP^4})O-#8u%s$^rxOPY3u!1jgj=sPKqwi#cU59-wu^z4)^gtAxFs5ux$+cBW^r>UI9F--FDMUDrijEjtfO@8$}QuMK5S zm&|k4GtoQXR>21cNPCK7%h1xbdlCl$(>4g%0h3)`_~Pf{bx+`x*VGLQ01}>>ni{DR zqc@Q5o~ZpCOC7&kD8}Ts_pEQo1%pqE?K^6FLlwm+l>(@&bx+z8Jv}-ADds^mbu8s& z`zwgYS@P@Bu+FnA1f&qN4IGl2>QgBG@!|#sxOR^}F$dx}TWlU!GgIUn1#DWQ=u9gr zVX3%Ju?UuU>x<>@eYL4hJs8vL^Jx413bGfwnhNupS5+W}rIt^W3kASj;gYdyB=H6k z-MAYv?_cmCF;NLDCs0rWXNOtR^^nb0_SMi&f1;^@K8>jMK461XQmHY+Ti;VJF-afL z0+Z4xZqf&Q4M`lE47!v`n5WQ%Od(eTH%osUSf*$?fx8TeRB=}$_F6-$e^~PG<}?pa z&)w(wl68l?ndI}az-txNoZ2xG{}>r3|Hb^W8D~VWCMf|P*U_sVHKyV>yI4Jb@yNRg z07vE>PMkg&r6P8}lRct#M@2T0Gh&(mYZ`8>b$YxN|AL|UWHrH zpa~N&Wr2peT$3h$Z1_c0FED5G^HSRD>oXHCN;U)&Apo^x)bTFc65?Jn$94~xZF}T> zh+4b*Y(b6r0%@x{%^NDtno*_%8!2YqLy_NE8JTNg)Ig#MPpQKK@YlB&!A+mBa7qP$ zX1-TDW1u0cqo)VkIA{oM!ADgWM1&-PrV)o;rX;fsQ#j^Kz7{xa)TpD6Xi|Wo7B^dS zwej@Y;Skdy0dF%eZ0&$1xq1^v_~qeGyY1NN3ufynzL57B!DHussTNx+GsUwUyq=q{ zp0Bc(OuNi;8%7H?NE~E@dmfSjW&f%Qxv2`axo$t@wE_`BcU&KK!$}7nEpeLHQY8~u z$_=N9J}MfAekdt{=jsjN7kjQze4U=%ZPA)e?^JZ2?9Ex7+I#B0GruC@vccDDzBR?F zFkS0?kP%J2cIL6-mEW2fp^#pT*9s&z|2|U+ol6LR0sQgjr-w`L zwbWm`Ybm67@FMfM#72sT=rN_-fwvW}aa@=U;9e((TfKm;)qw85R+mos zr*4pJR^pevlPzHtL*hw}3t;p3*4~dN)}C&MZ!MUX!IC`B_!BbqANlwK+zUG-(*jGA48FZ1q5PqnXqA}@1ac6k0gg-!~6{B`<- zb)P*ob>a(GD0UnB)3(P6jA(JZXIQu!0dlr})7B=g)thZ;|9LCCDgW6Ka zP6EXz#XFRwpa9DM6Mrjy(qf%dEiCvJ_x!7R7~8%4efK{5#dK@khdf{WcfAN39%a=y zE&yXuAhxf`+IqKHqRDc^x<eNpwf~sCPHpFyZuO_t1w!=Y7)eKOh3$7Zw zFVwqH%T(|(Ou)94HFeiknwNraYsfq;vLyyRRV}>Dc2ZyQSul{mrkh`Uz%dBUGIHVY&)zLjY@o zjr>72xXU~r%cOzb|LnLIF|}0*Wuf$W8?JX->rI!BPgr1CGRpK-E$qkFZ~VxyDYQ*> z8f~4Ix!O~*F1{$4^{e?(WhwcK8$yoK)F~J*XEpVfIIo8dIg^alTcACtIS~DO6_1kA zcfzZeF+DY}OUGQT_#kYhG(>uoC!r@CGdd1qQVn z{g79*1fX~uXp!3e`03N-Lqe*!1R;^Gl#^Wn=mbB;SZeNJc|&km_=%&z_z@e> zN{ay3+dlSI-JNq1p)U3|DJu&;W$H|@C!KYi{ zfB(*Gfub!le34}p@qNCD2~VR2{X(Z|)%&mGL)nX44_GKUv!nt5)L<46hzC5czrVlw zY^M{X05XPC#B1fFBY7=s)vKiw*u3rSD26ihXsN7ZiAB%!ADs4AFPf<2d6OpI$Ru}= zy4~GFe)j7~sL7-u4bhPC2si`Ic+d8W)Q~2~ts8<9bvmvWIq+za+zLSTf4qx5xa4i0 z>J7tR8XBsC&>Lo^P5HrLCq>9Q15z|SkoS1VDT4!{7}{B#s|5co%^D;H}kH|h53{rMqO@LIP) zxR>jp65_{N1+NoBzQOPTx~hnD(zfw2iFMp^`KCTTCrf`+u>-L21L`siY!joF#u+lr zdIS9(88!EK8P@X(Y@fetYl=m_OA7IjX$X}yXc1cGlI-(%n_^el%`?;RCO&!Z4~e0N zlydn7YKq;%@WU|X+nvTS`l#ROTwC}{yJjyo9R?G;K&-?zH$2O6sY$@4GON6sizlZ) zmmzQPI7iHo1ZMxeB*)Xy!`TeECTz~qrR!E4p&U5`D%}9dR?!{Gog)Bb&M{)NCEQ_YKsm+`Wmur|2-qe{fAL;%4F~(Ae zqFD?u@8@6aI&j1N`P)q1wka{pwIjoC)k61rB?E=41VbkEg)$N5)L)$L%+)?=;h+oi z&WMP>1OG9_YdKQ*0zHkHlO*T*a7u=}^Go)jti`1+p>?i_OhiNcZ|4htLMA7f*Y7QP zG^B~hrLP*nMW*9Nv=d(-qHy3sxJ{`KgqKf&$P}KWp1}RvcASEEQKwINiG! zFrA+HD|+k&0mIhfoW^YR{JR<9s!EPOy`a1^(B;I~fvbU&O1J4sJ*8nTDh@HeHT2ZOooBsQdPq$vU$iNJLMBl0$X3Z;ZezHzYtw%NpA@4G^0x z;e+AlKsKdb8qq86+pRtOID9bd2D`)4V7a*fl3ZU!p5Ay-HEpfC?Z841URXhACj{y& z(xf$WT9*b}TfIVTOuyQ{r5h?k5l0P-4hnQJd1>!fLwDK9Q+4tu_Oy%n_M7L;dbc9&BQoQ!o44vc*Y`t(sSU+*9VlGD1WiDePO-X&?Hl6Eoj85_mfh3 zYdA77Ie96e<{h$QS8|Dg51EwndTN+BC9KTcQMrcNrcGb-WuIT5aXoVfV;&7^4H`Hc zxd{EqxhI)%I32Fxcg=IX*m&9{TnHET`@YtN-v${++e-rox}r*Lw6x;7T-q--$W8OG zXE*VM1a7(C9*%y?jFVyC{+O5KeLh2ZT791-IRZ_1Pwe=;y|2o z6PN#4lnKV=9eae#r2R~F^HYwM0$1;>Th-jk>Qc1COs7d$24nS+IaW(p&12pAGmbJ} zo-uf~g#drUB<@yDtWTfPIPiB4$z5gUq=a1K!)@zaj!SIwj$VJ+1PGlQ6()Gtq3 zWPba$0`dzl!3i$`p&Z$Et&Ev zhJY_PCIPkq-=FJOrM~xOqJzWxEC$Ezog+s?j*#|DbCDWOv!ufeJFcXlpM9k9_PckV zr-zm81s2iQX~nxgL|&1dnQ0NREi}Xnix!jop=`ffJ*oUR^)#ZhV9$eB>D|=??Ko6AiC6!kjte`s+Aw2U|I& zn1?RmH(FKQwd2P6CHCcf&8GA}(VEB#Y9@yw<>DEPbA)XSQ^fhUqa zGi4A?6UpYS3z64)Wj`+%b8J78kVQ9`EmviZC|502maHb%ca zYFYc{|KjQ^psMV;Zs`sc=~f9vx?8$SX$ci6fkWq^Q;<+vx&)-VQ%a<}TR3!g9PU2v z`+fKS?{y3ugTXlG+0V|k=A3J8Ec(DQc_ijep5+6#5zT4=kG+!^%%!4HE;Gt{bS;x;Tg_i%~D?Nm9)YeF?~yU)cJIVNgl zKlTqZT{+}}*CILPg2}~BRV86#qugcdq|$fRPYh)OA4rCOL$Z661K8BSeR6p>S@z+h zCojwC-E!3q_PVJ~!&$!sPqgEvwO0y$8G%BJM17Nj*Cu~tSo(E-ZL(@5dMJQT@XNL2 z#IB=a2JdpTj>AV>y!Domq)A&aQySOH!a}hJn?5kn;}Mdof0aK`sKwmtxZ!Xb>7@YD z!nGhDy{aM?9cgNj#*Wan+^$Rgq~btAmFy}AzhL@JbQ~EM1zHWnfaZ1XdU5UYuao9o zFCKjK02$aF|In>bwl!olu+pYFcKkUt6PSqG3P{YV%tSNhuH#eNI|>%EL+nPD35SuS z`W~|V=jOdkss7QikFnsdVP21Y$K7dvxb5+&YdwZO(l3d7cKrJ(NLd+eTTFYt&G$Yv z&Nu0?Wn(z$znrNlPy4~jM5?|jP9;N*c+jfbS0wcm4#tWh$cx81HsC?*x<#XGL|bm} z+3jAtOnE&no(7L;yM`M^i3Y~UNsau`mmN)+cYA8!BkCrCL(A?Nk?wO2_4FF5)<}p8 zxWMoBieE@YD^Tt+p;(K0D2ZjS45oo98F&?b;@ztt?4ix8E|$G$X0MF&bJ01wg9T!T z6v0i21DEUzr=#0HH}%UY4{5x~G$;NJ;(GsCREmFXkdyHvXdgd3-o}c+R3^_PN9uXi8fy?B_3ui_A^(sPx0dd_SB2bgcqk?g7PJ+~^K$ zi9&oi6ZmpIvCj;%p}UpIIH7}^5jwM`PpH|gBPGLhY`e9W@vsNsG0{(b?l&+hwvOx+K5t4l~NWp`>CJz>`v{6BsBlFCD!?NE%CXwp=7Zyxtm3GfAd7# zdU1|ppr}hePugw&G)0A*5=V9D)rb1;kggWt;Rl{Q6~#7I15X(Tn~XALk4NZaYZH}? zc8PPJeo`SMD$(n-evTX>!1Hsa2keDlc>eQh{St&N`>Ia0xE+Nj)0u^rvnLmh`96GI zmJph|&JU31EreR+O5=%}Vp3%lVW}*9oz!bZ^U@nK>1cE(S!$8!eqoY-ENMd>b3p%@ zD4@LJET$@C(7!)+FfkPzC?rK6)N6tWPw$e68iqIBLw@h3OzmZrSEO{C^2?=qh1VKC zeAV|mtj?B~H#IA4JD=Ob!yK~#wn?NOJI*tH$`g6XRex9eMfYOLG@Pv0VE-2NhON;L z_jn0Osz+OwXUi-2-9W#~esPpHVLbuPA02dm@z(w?VhS4ThW*#@DETzUV+}7gurtP( z3or81NekRRvT-zZUv3U%(+K9q6uoSi-^@miEN)Xc+7@cEDb}vV6W6M~-YRLrALHQg zXh2yDFsHpk{;@bm{V>r(xHw~&C-dVOsOj>Lve(v((G(Kq$mX9vq>1Q*AitYD$5cr3 z8lAq9O=zp$oewlaJ{u%}AIsvn-dVh8>%6>=}fsgJ#BXS6MWm z<*KgTXf>}lxh(ocBi*$&d7p`v9yn+`8H}?Z=~+vA`_Js*_WdyXJ?u5}3Su_K7o#Sh z-Miy0WZ2wz%+_f8Wd?9v>quy6R62rfKC|6;VgD-~`=WOj80<-2jO*di(JY#^*>YqP zJ32e%zV5i?Gyf?itGzIV10Noh>AMcimZNz#3XDI@DmLroYHX{*c|jOH%r8ED65^=$ z3I<1w;_KsS%J#jDTa)N$BB2B@+=OXpz900z7l0;#xjPTt8L4p8aHJ+Pq;{hu^eYJ{ z$TTwz7$6X%m9@2S@UP4g`f$#<@7?86h^J^j5&w0j)U9U|LYmZJ$zbDD$5?$|-bmSU zt);8~HgHOQHEfl1#`VfofdAmt<|`R`%l)6zO6KT`Nnj${IzC<8z}S(ga&h#nt(Q=2 z2HnHsEQ#qG5fNeFGGp4GE}mXFB$k|hw`<;W6R&FVMh}M}#phh*U>7SD8e0LC4&Bt$cW~dgs6f>oH~F;@Fhp23cETiw;{t}KJXAg33707 z*frVi1oFoHQ2&K)wuFpvPM)<{SK^(U!uMZu@jcB6Ze5v7vp9o1 zEBlQrMCraAAuE4lR)X$Jzm!(7{o1t;pg7kt(Bf=ZsG2NJ)1;%mBtTa+JMajsXb`2} z+i1f<>DxZ%fKEM~#?7rM$wF*u_MlOqxFE%GP!Q=cG4YC>z~*-JYE@64X1ru*mvV+o zaZ+5whFz9xqtvG@nPji<8sqZ2790B^THB~K>2q-xmtUZYuEKQrq!YNVFKU$_Rq?jbfd zHiH>QP5jQOGx7S`V`DH?Nl_68l>Bf4n~UR|k~4roW$p-7nhj9+lnIzsorWjg%rjO< zlMl8w6*U@K)JN8t#DQw&_^Ee}@fnSVi4BqQ#$=o~WR9(?n>4R{`0UEupj62(NP}YY zLu>DkfP^L9)8|S_UNu-0x|}B-w7Wa9zTdL{>d>6U?sY>w4Qp$g&@|7XbEDKF#U==; zN@1Vn&z}MXsw^NXH46qUC&0rid)JP#y^}o!RJNf^`T6SgT~=nxAA<1Ts`pZ!{gW)COy4IIWQ+N`uxu#OTPvO5ezI<1Sx1491vXFWl2^Uo zEpBM#X6I%q(8ca7Evy5_R0G8C$svsqZHuxCYZ3>QkMwTI`+u6J$gJ!YqF#JBb>f`= zz+msTz{Ya8YsY!JFMjAOYy5;%66yyL21JP(CFDe9jh4lR3VFrh2VN`*_gAUTg-f@&5?;-!X1Q7t-9!C@?Jmb#n_i-iwQX@z`gX|6 z_TOvnr0ogVmgY2jXEDKPRZ_`F~X#;4e#iB9aBAym7^kldY2rZAb0T) z%@8}^J`V$h2%=qpfWmM4{Ts{D(o*E=Z;amsQb{Y^1N@t=wOy)%@utJuuih1}9pT>XYniuV4MOtl$a`8i#@rftv0k`k#@6RZG=!GS6I5H>7|T4kdj zBsMH}G;8Dch^v7hc?$n^BP(i$rl42a;M%>V-Ntuw6m!PgJ7n1;f-%i{4ld4Ti3P7~ z+zAy-9T}bWP4@o(-h~r45zU0-Bjx>K5<9{Ucf04ri%CgQ2Kt)L8<$2e*?XDvt&4Ol zs0%^m)WU$gBWejXWmYZ6mv~;`KibPVP8}CaMz+J(kxvH+Lk7nOuzlAQ&Jai0? zH-6<{Mp9#WePj3JwuFZ8*dQ-WWX!~*Ag%D$I@kS?ya+)Es>+yMy=0#W@G}ex3ya*U z26lw9!xVn zcoQWjZlUPftDk&+3$oHV+hNUmEH56iag{jeVq?UPcXg6WZK}K8!O^J}%caAL&saqX zifzx|8+vFmmqiOnA7Hin~MV`P?R@QX^t=^ z1RU}ZI;laM45?w~V5%@V85!0`blit8>o91O%xua|?#V+I_i}$aJgnrK>e=fOrU8<+ zw-B0^5js`ZMvIb{gr55p{pMR%R_?uCG)PN{C%6TJvoZy%=pAiTG{5F%dA3mcx|fmG zI47(z&E=H`}|VB`_{1=KGlE+xD~9uk3zb?8exRB%+S@ox>QuA^<@_uwmI z4fTJ^qJAP<>Fi~sZ>2+}b#H(KV&U851FX}{GjfW#rCT=syDdnAtb^dwoqMCCn_qUKKY~-*IECYt=8wBJt}+frfbQ3n(8zoCwIjLlH+_MbQ;O0&TAbcb2-14 zPfngO%h4cYG1m~EGdgpLv?i}6%~BUSig|5W(h~6PVhOz?W8#f`7Z{IfM`Wa_wA06h zLq$w_l%XC?we`p#?9va1H?Aps7j^y5GXYG*M8ztKs%V~R`Z3eh*|)^RLylQrTk6mA zytTdU4EM7q!_MKE5{lZBSvff$`dpP8NI7*C$l%Kd^)*rDtJS=xZj}nP`0B3v+VJYr z`e{s-7YdbX?M6aZ49kDtsP-7~VcNdgm3{!7p^8=$^ctOdAc@7vt-Qmqyrp=K}B7e&r(xvzRGM$t~ytXI|AQo+AH#PEpC?cE{X|#N0VWaPneLwMllhTv^%Y zQ58@*)+fHbO!!Jcq04Hve&?X}XhGceM^EyAVBT5TL3#_N_$8`3-Tn33sBIdMBFU<= zbXbJ1yziG7$|(f{|H14lKp;L6E@Lu@*x_zCH(C_vEB6JjuVMIYWMDSeQl=LMZSdA| zI~^i{%|YMDJ7Ww}jJ@4FuR4AszdmS;l2sk4p{~*W!s3aDc8e_6mGh#l=xq>Mm z%m*3L`*-(!e#=7}FUwIH(Y8+j1QZrOiT01|vs4|L`$vW>)ui2G zZn7GW#*?Vbzjfo!aT{Esxsm1g#tnmvCYV79;EI`za;6gP_vHr_2Z!bSI>F(4UPAd; z)t358R*s^4=Apb&Kl7*iHoj`|36J!U_wuxn;nLZltL{*=n_A*ITFYvJh&?18%{PV) ziWG(4T#0I&FsGke-0;+?cgnb+i?T-fEp#YQzv@SSa+KrD_1BB=OnQ(x>~w7^XDp6I z?7L(NrUDkyCVUqyZ2sL^irXtff{AP=nIq51h~TN*-!C1WO2l_op!;aLn(Ur6w5%dUFvZ&<0W28K}E3mkhXz=m(yanL$wa$tnk)+0_3B~DOj4or4q1Ji%rYv;7_THxvO13rU)!%iMdb7FRJracf zl3jSs6+_9JW#<+si@ck)zG#ebaa`X>cDst7KTwoqoZh`OU1;f2{+@s!xaqvXuxd|NJQGI#B|Z(AGg3TBtOt>ikm#Y1#5{Vf z&0x{GC|&6ofF3W5oAR)oJlK!#x*oizn=>_^xx(`Gic+&*(Gm*NWz!^Ap$~0l$=f@h z>}uaPS}DX<3ZiQ-|L`5u=(k^al6i?vR+JX#-<)d_=_eKSfokg!ABg8bXo^NY-ZcLQV!>SlJqcli0LF=boUU`{;Wk*JQmeoDX}y4Dz7# zM(V~6g>%wY5{Ja3?<&VBF{pYSQXY@AeDoB%3U|m3f7ri=d!HLRGr>|xv(3v2x_q$0 zgoJj;u0?o#hFL0|K!b995o=k2E`Ave{ocE|*9?XT5jEK}>nlXEa>AnH2@1kM%vaYf z-_ck{JFU>WJz$?81NfA|uKe9MXcF_5(*1S+M8Fh= zvUfK3Xxrln0gd-}Tx0=UF!COAhw`)dIYg^f&9S`umtFdqF_*GDZUDi~3ll#ay|V z*_XPFY9$LJ#~a;p*zWx2v3eKlw$2>4Gc&7$%sCmWh3&TE!o?AiQHIVnrT6PQg}O)A z6c}fkZ1zpvr7aaHL*A46v(>^W0EsSdkg#u8PQuwINs?Z5uB$EiCba^TZ*K{`_8X z1>D$s7P}9Zr{y1pB#I}&n(-dB2s?l;qOzmwdjlYWnUzi?QZzxh&Z zjo#a7>otx8h7^h@w1qf_xVQ-ad#Wafl;Vu^UgyIO4JThBFw34G8q@`YM9E)b?HfE~ z5#}dh6%B~qw&|ZWpauGkS8#k>h41{JDL8z>`4swT9XRlY;-U|%Lw@newq9cTy7~vZ zZBv(GX14s-!|K1QPvPFmMBe9c(#t<5golIQVwjcfPk#S!b+{qF_sb>QELM5w<&Rud zH5^I7s7QB-chLFJ;9M5J@A3H*OUmzmmg4F^OA*(NCzD>76b!fw@x+L*PLBCI)py&9 zV48G>H<}Z+ReMnfU@l2Zl*dClqSbjqh~7fdwBRxtBNY|x5V=0b42z`doTOwq`!j8x z5bm6g&w{hWou#d`@y*&@+jlJFqi-&ySNd*mkCW@_=y;a7LqdA)ylcQo;HVZl8=C!b zVL@B{Q)TA#E`85)KKy}|@b7ys!OT~VMJ!9bHtjO)svqb5s#Ru}VHgi^w z1`Y6yTJU4NkKXW7)v{9V^uDeC+#OdtYSbF%U)Jm|qf}UY%s%+&bkL>09XVy4MT2Kx zn`iZ9Cg5AP%#GWM2F_w3vo>*l*eBWt&pp?#Xpc{Fhq9iF#Sh#g6B<^e-2VOT<*9gl zX()D^D)47}`)TyYX!CUGquFAMnflFC>P)3=YPQGdIDIf! z_^)Wvof=vbf$p<{XpjER3sY=e5TC>%V!K&Qk^q92&xMtk7o6A`tZFghl_m_Vd{RpD za2cLsvzqfHPnpSS#Fe+Py~IYB&zFv9b|L{$G_uy(XZ{FbV?((!;{?tR&m6y>MC~^2 z3LAXAm)%X)(W=TeNW#B@OCW#x9o_H}8LYO%C!@H!%3)%|QG%P;Xw2}8()tQ2q~Z(< z$*zn$1v+q|Kj4VBo(>hF`Y}%k+*5Y1{xatRS#IF=$EY&3e{ypmAFgHC`(_ zNDBZ|dfPhZV&8MpXF*?NE|t>b-HVHNBRjonnB(Yedg>o1`0b4&>eC zRsR)Mee$LD$3xq(6>P65=@uW34tvgpbc-d~acWI|Qd?+gWrax-|-B51|G z5dW97Odd!RiTBm$0Fr0!rVL-YE2*G@9OI$WyTgTmoD}#7HuY1mWT@D=PzA7=K9G}v zGh%TrqO_Uy!EL4`2q5bCO3RHxsNRhNEMZf5&LSi-9>0$%j+{y?W=g-7g8R>G5dv%6 zA#)X9=qt5Maou>(>RJAvaohCl`$Yw8l~=&bbk#tQ@_Q)NmjTu8AX+u+B1B4sFOMXE zJ=TmD?(>t6!Y67zv_cT4n4CX^`@yXYnio=m+1U}gQ|%WJnNL>OtJA@D_EX%<4$;C? zZZ5{+CicUWFYN@LFVuZua&SG~V&52<-pP1b9CUv>{sba&WayNrJ(Xfz}1||b3IowUWak* z1ndWY=)JGb6bA?0ad{$cDM?mm%Q+u7k<4rGy4dNO6EcVrfh?Fd*qqKUj~TI75k5ll z{*4y@Y3=m4N)?~+_=!th+h>|vWT!h=$EN6lAH3eJxeB7or#-JX#fgDYbP_>SR0GlX zE3JO0{IpwzJOi5T%`<-}Hn8(Ta_|mRA=JZuvHM^v%wi>%xTP@BoN)TwXjl1ztk~df zfutGLn3w~}GlsWJ)D(D7#%zi7Tm^R$F!{K{(0pmR-smN>Z@c3n*n-UfP2%jih{Xl+ zJ4ZvpdU##?Cn#mED_V2q)76vQiP~&e7miUoEL%sZ-=+Y{F0Sq)w{#-~NoY5(QhuS> zuRJmIhzJh;!nky=W9<@AcUnBXAJ#aeY`B6UtwtGH%wM_m|ITm}MLw%#qh^)0LC;lG zO!{{rYCJ=_eSo9tg0=sRGVL)ZxjjqPrTN_l{81hdPD(Y{b>eDQ`#;$=bwuf9Y){{T z4^jt9?3^e4UM}wlVr7a-I~}V#+7i~S zD9pd&+(_neaGzmYBwm)3ss!RcKxFl#^?oz*H01O*0$uWfA{yyX>d(F%<2d?L4R|1) zsP#`5$$tbd54{3R&6&JhwK#T9v%j>+Z3iw}10ZDknL_!imNV*}a9;-0K`o1+?L zZF(ce()+v*AMF>Ag~Ug&v|F(>z3QM0z!t*KQVzAg?q0`Q_b|a6=_};YqH(a;<({|I9-!jLO ztYdQ~cI#WRO{> z{PtbmJGo}9Z@kg0{~oPXO<$|t^g+}#8R#n!oDQRS;R`TNJ%gLVX{r!kI4KwOA;sB$D8fj+YU+E31c;0UgPAifNlxo`rHo^?|!a{lz2kehv3g+ zs(4~BUC&-8L!b5Rx^&-`r-w{jDo5`F$0seHGNYz@XEv0}50q54b}SYo@(Y z|ES@ea+P%`VjuiwI?zdup=dT)*R#1`7|z2FBr1tufAOPJ@9ULQQ0bVP|NVRA0);zZ zFsvG6;gi$h=_PA60v{PXJM~pdz<0l;yx@DeaV_pmdtoP*XWG&;cCX(qez&(_kNVzm znCSQC$XSOHZ(NWL61*hBOqctIu%Sp;_$A+wi7kp?o>$$XL86rF$WjLy7CW(@mE$oN z=y8NG*!Z65hx6oa!pszrmw_tHrBW7|(4H_q#wWs0mgMwPwF!eyEYF|&y&I}Fc^Y8b z>Sxu{J;FvMAz@s#{;`esYX?62f!WlKaR(1Eq|W85mvQOJvn8v|W<$;|@*$YNI1>hh zg+ZxzcT2qSp%u|{RB*6-*g&9Gxlk4XR?(+ssp84mcE8$<58dxV$>A=xD`3FBa&dU5 z>B#T3F7F_+WyrjOo}riYlaK*D$#$E*o=3{R%(1j0Naxu97QoJrVUyenY9ZiC6xzFI zac^p^J2qa@yAM8(Em;tP(1|Qo2qJ}rm39y(+03s<_BpCI*pv2F!c@1v|4= z!OGq&ND=$tPqC?mjrJr!BpvI1l5K`;ZgBiO+ARI!02;=?13ufO&dAoK-zq*$$tB+m z2F2dMs;9tQt%$@&bK?~*TFYM0QKzG@ooNCo@bsScv7(WL{MQ1(6y~I0=)u0inGVQv z=p#wzj#`j8MYmAz5(8*}yr9q(=na2VUu3vCk2HN+5g^X&dG;F0q1~GV;0R7UA|N^X zk+bYreYhP>@xrKhV`2~;$pE_Hc)MJW+iMp%_(?TqEYxR4#7+F&a%B}>RgnP*QXl_n zsmxs4aR|uLEk0uuto(Pie#B6h#@ZU0n}0A`VzYTDjE(8T;l0=H#$csCxe!{qA}TQY zMU1EOU{0(%Ar1OjN0{_02#Zc) zYxV`YvVP`ANMTs*q8@YmCG_{XGJYBT&E{_~axYG{F`{Gud3 zi-MIE6_#q%4k3(9Jffg*z1v!IJ#+tVDX+DI^iNtf7iX-=g;kNOi*9pp z_M{LRUI$LJuyEvzC}Op}Q9*fy9Jqgid%DT`^4AoId;9b&S`R0Ni{|YU(w< zfP;{gmzam`h9DwteKQT-wkQk;&)J&N?DsPRPV=qQyxf?+W>GO##!U&BOZ6naJF4E% zOk&kv1<3~{n@Qq6u&45NshNax@;ny4#Kq$(vIpbXiARsTj7LgUC-cmzZVt5)vyqL@0T07>FbCEPnq2lCgoIeiVx?uynMWiA`JX)g`p3G;&|dMA-yJvAgv z0}&4|9vE-Fo@m>b3j&3@nJsrm5-2aYtbl4ExVd2!JXtAR}p!v_BDrqoWmUJZDb{0;iO!;%4vKbzJ8 z5?%B%&)rbw7mySj?&ke4|LSvRVJ=|#VLyiQl@SX_Me`d7 z^S!RJ7G>ZSM(HJnBlYgv0T^Uq|CK|~h8@>&GjK^!Qr)lb5xVA z*jb;i1PiSgoV_5J1i0{1`~$`+e)eZu3@_iC9xfy6^Rr1E?1y8y+=bE?JI4`0iUIN| zNu~A(Y4Dw2v&Y~gFj9}vs|+w3=7^bJTPIB_zqRAsumG(D;c-=oaqx&}(iw%#fw4Nr z$E0sPwR_VKc&AT|`}8!ZkKpNp^Mf+?yUP0J|Bz&~xNsa9%FE1X(NkS84DtMl>;X+mNfpne;}y|jnE~@V&v~x&k-Ch6S7N# zfytM;x(_S}PE9t2g4X*`m70LG2k0-JMjVV)SZe*I5hcFw&yYJ+~Pj{F@{$ z)}}__Mechr2o0BGuS0iM6YRDiCli0`N5ney(8DLpKPi>yI6fYhQ3biEL$)nDB=3J! z8zmw~hjo_De->WJTs&vvg#n~rZXKV{5S#wk3^p~=`ROT;Et1*|3c?WV@o@(&{LpP_ zGzZaeG|=$>VIbTB&WnRcKe8FsQZqn#j@nyKf9`1a#{Ur-pZDaz>j%)BRXqBj_~^WE z?N4N7qJtGza&H)|3Cy_J!bvTSSpBZziraH*>f+c8*8BIz>G3c_pRU-wcmL#t`kU84 zsbo@Vn-uJ*hj04!pmLFrL`*5sEp_|B2#RG-tu1=;g2%&_$NN6TGsCZ6Gr4LYj&cEk zOw=}DZvlv3^z(zIA#mlLw4ot&YHDiFO%3C-XLc-hS%Cw=$bO~+gL$;IvvpfSAV|;d zQ9L|!b_sM@%Wn>e9ou;0WbWKqln&tQ*J^1YjtW|INL&pIexhzRbCW^4agKW}EM+O% zKnXrD_~57Jp7CI6sixz{S8Jmun3oee+K10!eMr;hsnWf(#jz9fDx(T{`WGCtxYIC* zTy?}^Oo3m)`_r@F`D`%{@gt$HogVQkeonA8s6AVuL|^5(cJNEW#$vDdAJvT?&Z!V5 zV{SH)5YjkLL=}(K3Hb<`KMoDv$8>|llp_u& z#ZbbzfV}m;nH$7tix-#)X>;%ZALtFK$Pqk_ne1iC1+9qgwG35SE!bk7|D2JS$%U4a z3KUmxQtoF~m54c6)^vc~1@QO&5Qfiz2LodZY!o_d$^ydtMoL0c3%rSpCNjl$OL=YB z1&EXX`Ax=|$rDF#-$mzU({n|f^S>*0??4ijv;PHiB*}yf12Ecrv3Df}* zHOQ)|5#o}(%m6+n;KIcXb*mRL-Rt}xIsaIBH8x_7= z!2#-AoUF-ADvu>@)jS)&EFV_xinKX2ax>B@QIV0oYxhSVpPG`pyA5SZLlEb{R`=+7r?e7CoWw5bhej5~_;%KomPp}hN=mp$ z!1)9eGx@9!XG)2jPXqA-(ObTh7e|WUE(2l?Ur8wqWmxFp%MkC#r`fP3Z!9%E8*c8{ z6qlTpNeDJz+QBt`dc$q}xvr(vDBW0nwNPvO887e0!c_mz+Ppa&-(LyuZaj+V%C9(( zXpC`KjE%ck<0=o`fZ^auoVn2DW?!LHBsfLMUe1md-7pbGG=J7k>$)$MTEjG3;m&~n z{q{8}hz}~QBHcU}v7ttzKsN`r<-kNX>z*5o)vH^W_z+C|{wgv3V7fd2m}CS2FS3We zHwUfh#&_E~y9NqU@LBnRB4^xcE}js^&v)!1h4VtF*7)=>Z=-77 z37pkr$?6n(-Rf#TL9%zRAxxTS#>RXOM=+&&z(8O(-g|*H817SJ@$NbDM|oHRwM{vXx=HQ z#U=+gV`0#Fz4{|+~T`Axt56VvngcvDTFF;5C^8?g@A?WP<>{j5S2WIkYVDkSN zo3ioYSyd5L7*ImEI*(SFJ-lq1rV4r-6?x%OGxoZYXFHtg-2_JepYC`ac?5ij*5KEf z1;qfh2SJNtrp{VhRC7id>!kV%Iu6Io`g)Xg;L6kW+SWUpelSX^|L-VW>l~_nfOMq@Ns(d^)Az4w028-scbAkMtntufycwJF? zEBjmYx_JVM3Np4pVt&B8|E6*&Xnu%Q$ zwZbtGIz>}BWN$^Z#|w%H2D z@H0{V-xz-P_tC+z9q*27OjYbE{2GrP?Xi}dlEh|5o5){ZUoQWhVbTjFTcH-B8Z0NE zdl-~aJoU-LOtRT`?WlgvviL3a=xg>%JrMgAI~NkM@&B_&V}jvQR#aRC)>1HVnE*Dz z3JGB@lwjb{%h~J#d=xPWsFve&jJ{VmGCp$R)mdmi6vjMqu9x!vwGw9NzDlh3Ts zo5LzV2$k67vqTV*X7O5Y*+p1fs(8YZk`(VN?+JaMF7oVqI#W;h7}=`Yz&n~DkwloqMP~(31pQvC<@#o zf7+aO7ewJka)uz>#*|MJ zL;R--@;sjOl3*)7 z8y*&=(cjSq6?}S?cJ&0|C6U;MJ=M;vH3Lxjh;N!G+A5OSt?a|s{j^`N6Y`yFamNB_ z@9%K} zKhyrmVvGF2)3%svA20%DS(eRco-?Ki=v+<#_wK;20M!I>S;tBTLZQ3yBf)5O^$WY$ z#)b3CcwhPoGDkpheEmD)*b^TpY{2|XykQRG4aZ8TUyAx^DW5~PWKYblH~=%Pp9*` zHPD%#i3Wf!P9|sB%gw`8SEc#uIkmQXw4U%em(?8MFcn-+1D%1vbe_C!SrpRVOX{N| z)|-%aM}Om;5Mp>#u~B5WTknSNXbUGnpJK;Tzzcmxrmgesv?$OFX>G67@%F~GM|5#& zvj4F0p3F4`&=>Yu-zSyYp74#4Hry7i3k^3)5wSSj?=b?R5AD^=#sW`C9X%==NMMHyq4G z#>Xhl$_<%bHs9l(R`51I1qh@?wnXec`DcBWp>)p??&#h>Q#vQs$rC!DP?GAyLDU=h zJ;UBMW23B{5zJRp_Depll1p8idle|dXq~e@2@Zcm0M35MM;+;2)ND=gJg;AAQwXsJ zL#5+=nO1c7ki!}3&X?>QQ9W!)k!nzw2IHzTK2185y?-?wo?vxCL9t)wS2Ix9PKK|` zO9{|`#gP&co3{l;@OlZ*A?&oj*Ob_AF^6gl6{ELJ7iKP|4s?-_C^Z$NB{YE{Yc!?& zMSYndPVaT6_*$K5FIwx@LHV~QIcY)Zf}7;EonQ8ko>fh$Bd~>$-+0S-?+84Gp^ZoN z`W6dyR89*x@Oa=HXv9r2jr_@sr2E_A*R_DT1mtDv_lL!;V@G4O?Zn1%2Rqn$(PvqCV^j zyNi&?d7!{>)2>ci`65pqRAOGl`PW)*kj6-+yu+9JHAY#cBT|pql2$wQa$Za8$#G z-cq=MsBrLpIXA;`Si`51zxMf`WrApk*ruqjH-aw>tEN8?OemsvKUY8;{8T~AL|8>Q zwr^=JT|0bLl9wy`GJc?|ic=eTD6GW4eNxc(&hc@yra@SAEM7raJnYqh!WJ0>MP7%~6fC^G>ofNpy;p4O6*-4{i>At=%Sc+aH8v+r5 z_@^!V*@J@<;J_$cP}$lLeb`k{466*Om|Ymn)&bM}vm{CzIb9Be{y&Nfzj%vwiRIz; zT6s2=myLX|9e#~_xa4H3r0R+(n7UT$E)CS ziQI?sgJptB-G3&Sw>8+2Zx||GA{NPKbx`m63o{jM)izYS%1IQ+X+F+O?c1#u<;#jY zpfzXXJGyb~*TZY?P)a=Z>5UvxRg!EzGbkBl?-N1gw;@<)4l6cOS)mhoItP2$u^!`8`6O3(i9wG0U4*&{b;nl>+c9fEv4%L0( zOB-d)7C~3qA(2BNCUZXYZqWG>5(;kjv_O(^Y5o3B?+KmNF3s)w`_qyP4^O?B$-3+Z zRv28DR~B!++91>|o@5FMMdZIhHyKm}BV?*j0I>o9;8g4;`D=Nr?F|`=k+I5!Ji%5C zGGA(C1beLL7g+0oW#bM;mur|1liV@RR9$IB7i48@YX z>neyF=TSgIkdIkk!9K=pv?_Hy1Jg6Xi(vI>je84kirfE2C6;tYcy8#zZOjav6nbZe zWK)IuIo|j)s508ITiLM|FL=ZnVB72`$o0rIT#)P6@>^TwYYOiXGrBvVeE)~X`%H#7 z&ele725p-$Ba-pu=x~kEGG?k*bZsLS%3=d zJSW5%OrHy?0b}f%^xGMtFAsm)s5wrsw+zAexqGW z*+*=*U~Dzd%Y%D_VSH{o~hTeT3-~uX}a`6zsV}lt7Hdw@v<;J9j*4tAxXWN&OsAU!rdTT^oV1G48zE^M`Hl# z1$O)c<^P!~WAoWjzph{%OK^;!pu^;)w(f{`$({QuLw@`mH{IupKLxMoeNYm;MBNCK zTU3%cV|6j?|2r<=vAH5Nbz6*e`$A-7zJ2Vq@t&o1AC6%>!BSQSf{+)4SKO0zq3SV2 zeRQh->yg9Bw!eZ%e?@tJWR05~2bX)`cFE}pvAa+1ex2I8u*N}r3fpjP+4MS_N(d-QWN-D{9<*{~jCW7oth4akcL9|j88=XZkP&Eu zMKP!@UJ%=|LX7L`rab+oB{Tn&K0NhPO^S%s3r_29_P|`dHOAgUyycxpn%k?ZhDHt% z)R>lF#3GE0>_YXEK^P+trWZfE2I#BMgN23D%XhS(ENc@fLU-U*aPJc~_8cw=OwYHUn9Gc(h3 zv2*Uv68^KfnK2^z z>O5NS|9-*=MGz;~@~m=iXGeI@HJU66;?TK++r+1S8@P0FQ_{!ki=M3pbuvcCFQ}1Zn_Lq{I=P` zq@toC^6Fk)z39xJCTuw)1=);D3%^(M2z|1>7s8Q)oGB=HTvGZoC* zEJpHQkgFBTNpk$3;0m{je~y8mH~wbpt5{Ow!aiwn6gl}wLbE6s4=Xso>)$D4?{NfW zdgs7Ic5+giX^vCdj1m}IzuTm{j&5svmCAZk0Ux{;`gHF)cXDMul=l8)V?ejk4F4r7 z>pjanWJeLwP+3xPGCNU|)^FwNFdKJPtyjVV`)Ix=qEmffZe;8wm{w?LJT*S3^`=d! zjdAy&^**?`n3aNp;uM}<@cg}zbClo&;fB^l;+wm7;FqVqjD!9Ccq=O_9Q?2aq=wF> zZ5qb{+Wx|Q&b;gPrfm{Aq|ncwKP!h@id{=eOG|(JrHl0F;lqdD$w+*`uhNXc=yc%M zZ=vszIgO^4?yAX8aD@Q{5BOA4~>*pLuRV6=>3Wo0E5GHMqkX#%Sp1g!rLi9;a#xfmw`2NJu!};zg;gtsP9zV{vx{OUD9r0{{Vj|Ngz- z@US{?@P8`se>yw&XejqJj=!UEi(<%~FbZj_NbZ!|V92GMvgu-sok=Eap~)qNF@|Q; zj<9FCOd6Ubv=O%3j7X(6=`x2=h>#VcZS!b;?e^?f;*ZV%d-*frB z&-?p+>_z=tod(b+0KIZSP{q47{$4EGDZqO*)N$lp9cn>=zpif_=J1-L*Df3ZCW?P#}!FB_ujPLdp{$;}P zK>4un@By({xfm~7jHkh)FFmQ94jf>Ojz$0l#n8G;xxKyJKIwH4x62w2qgGp2H$d8G zX-O+AR1u5C5o9v6v{YM4HI>V+{X|5Gyfrj6BYRHi#3v=uJh9WWzl7p&axg&suz%YB zR~tnhkEgq+#z4dEDkv!INKQ@;q&+{9WLMd-xS)5vx*AllmHkV%pr9G$qLWd>D@gp< z40}5xp0`rIu5Nzz=4ilq4(Bw7qnwhG($vy|wYF9>@n*ff>+!0%h5ZcvdI#7BM)zt> z4c(pF2_nTO=2cI~?$3}cPs0vIWncY3bk zwGbZQQ~gRdNq-(39DICsG^?o(c6uhvjeF^D&(Mb}YXWV?K-!CqaM@sba|;V0%fJcX z8&m+rPE1XGnlS!=Z?WH-wJ@{tZx+R+uIVQNb4IG*Xb}7c@~azc&HQuZcX{3}hEOQH z;GA=S|2ri;WBVkuXR;g;B}V4v3Wp9Ia-k@+QE#}uf4o!XBL&HU+a%S?%E_$+)!^~8 z@No9%>(>@nDk_qjm=hCGpyRjuB0;x!?_K^b{+f!NY*T=R@f2aJwu^f0nO6^+fk|?} z*wwY&d)&sf=9fXRsRDz+h&&k<_UkOn!cYF4ICrg%z3OUeIUJ6DThHHzlgtWbWo3op z=EUwVAeBaVdi}@o@AH%QK|mnZ#p~#Idl?cnEG#S@?Ba>T<&zh`e)NcnT8GEuk@{u& z!sj_6^3Lw*GH6-O&dpi*wD#;^bL7xyP@0vOj!sxLjzBO59dc!jo5B62HGj;_*Cf~9 zorXQ+a$p&WgBv%fb8v7l$XHL748YFvPz?mChOPBa=BbpG-|M7XBRuJ{cv79GuM_Po0*#{S9I>&IJC}Yrd63N zTZdKPwI8Mj$EK#}u*aQnuV_Q5Lt=%oaGUPXg{r!`IuePLSzN3EEuSw&q7D-KPH(SI zQE@Ss&sX%IukHpLVD$A*S%xqdOCHME$+ndqFx7#p^Kq&Sy!dBrx}>k{d$gBdD>{~{Z(u+; zbZ9|n*f%s3*3{IbZEo?hhx1zg{k7CSe#VxX7J)PLyfaOGEQ*CMUKmC{S|0$y>DD}UR!1ERViu(T}Dg4)8w>_fDDs4IP^al_6 z!1^BTt(Y=X$ShGo06abIv#u%a%T3(3M)Ghiz?<4;I?M`eY3?Y7=e)2!`CS-u3ADSD zT9`l-z8+d910aFy5DQvW)yC&1m(#&byot@SN}74YC3v3pwwN`xN5y%Nb=%gOV07dY zJ>++IKE{NHhkMX3*}*K21&&SkEhaTvfz>B?}=FKOCe?l_O)$87!%+_%7(7`|BTzm zUY!;lJb17W&<*wu4sNDr2_Ie!^!D|k5$Qq5=+u-v!;?BY8;@*e_0i~b;`Ae)l+Fs- z4h;^I22Bf6OpH)SQz8(F*#N6H2Fmw7h)t`PSpW*7@Cj`@v8{eF<|Ft)S9iA;r`{3)%m`83 zancYbGtS>%873D-S2w@4)j2dY)MUn0fN&kyEugs7GfdNWE9Yhse{{c}R~f|qBy zo)X-DBiuanw6%ckCQYb-Rlv7?dY<}uy7D4|fDC;XQ_t=+n_VzJ|MOdMvpS2#LNXsc z+J$sZ4^{^6-klBMBBkXb0NU&w9WU3{uYnxU{mXj4Sx}rXS+@>dvT47t{_xtaXA6CfLr#&Q1xGyj6?vJY1@~J9QR_ zfeKV3g{_DBR5ds46ODZZ`mYQ!2AcN+q>}rS?y<4g?F}_GO{FR><7r2ZR7F6U43a?y zW2^Xl3?eOj&-bv4iq`d=ce*vW2x0)Pk=$^%I5;=^g4QI5w|j4(-la8(zaDO8a4kEy>^U*8G*38Xgat{Pm{ zUVR=L+SmYbXlboUc-h0)&Mqqx2m~nN9hSy0=lppTqO#Umby&(u09XNdsC?i>S1)+0 zqo>et`O%^@9^bsFW@~G!`|iPm2Te(DG@)<}f~nwp)|8Phkw{AI6E5#5$tuXtw`p`C z^Z#;lrOkbRw zoP=lwL8wTiiNR!n5L14j5}W;guPdhEW!wtvYt6X0xX`e$ageJ}P*Qqx%)!je4C1&n zlwWYxG0gaE3=ApbVmzvTdkFUk$R;T$D!N5RUKS<4d1}f0>B_EYrEeFu5M-ceDg+-s z;#~bL&?8q_@a6p!c8gJUP8rHs|riAjI^h_9sZm5~y z#!$SDp{(*w?rb5k%NQI#=SQ@_w3OG>1i7HA^~2dfQnZJxqh%? z?H!hZ2h5Bc2Rm3$tsJLNP^6RCJ*H>Jph&)2UG3%Jk^L}I4~q1Rr7zLoFk{fh>~2Yd zhk!y^=1)+M#!ueUfFfcP+Jiy-ki5b|dU?5tG*E?v(`8hOOTSU~ZkYGA-rHw(zCIerGulP>f6=(_u z2i4(pIcLwR1E$w1q7wm~d*R54L87EDtE5CrO--#|EdGI|kTENeF9q?IiJzOndeEeH zWH{N_tjWm87@vRz1QH(~-`Sivr3$kL#*sMDdnT`-pbMf>g4BX3uqbOg<@xHKK{u>S iJfl9?%ltoyS+ab6rs^K2FZ(M3A78Hk&l~O$)PDd<9(zsz literal 43711 zcmeGDWmuG7^gfCY-5^M(B8o^$w+aY|G)T9AG)Q+zNQy|85`uzs$Iu|s-7Osh49zf{ zJ$}BwbAH$Vyg4ua*LiigE?{P!d1CLq_FDJ4*S$WfD$5b!)8a!Q5F!P68FdH*JrDvx zTgJr(p9qZ1{{{arU0x_?;({Mv+_w?nJ)V=it_uW0Vv71jE0ij*1|JH$%IdgkI9j@T zn7+4w*qgdK**Ut}S)1K+w|MVj?dZVA#mmLVaqpe0tCJ`<_y2XA%kjMxcOZmU1_HSU zQIL7A>6x*&;N_{gzHobVZilCPkA;v%9#a0~N#R$H$!b-K_41k>^Ia~RuKee%xMuf? zU#O}@%ahw0GFJc6*SEK=ems$_N2S_H6mO$;?|#B-GO~(imV^DUxDG;^&(CoAQd!_$ zhE&P@{k<7J@9+87!QeNGNzd-xc_ssXR>K4)G47C(lE%m8Lmo3TGm}}7Lu640qS3!b zL`2AEs6oiV;g5Xyf#4{!^Gh^UaFk{6F(eWk?xewbhB{d|_y0Tj|BVUrDaIL2yu9&$ z_3G8uOeHI2)WgXR)cgzLVxsTO*C!Mga}-ZrWDsaT#4#T}d`L(y%rn^mmN(vgy1|Vd z1Di17l*jA^+Top(y_vf_w~*7F3HI(>5n-d!WUZn%y#5GJdSbca@Vis4oT5~Qaf7l` zx$rIJshscM!-6ny!jMvoapVw^=T0-V+NDN@Pa%(3S;vaBOSx{T>Wjvzw+vh*{+*U9 zW)$TK^<$T$g8s9ml>fim(kL4idO73sbBc4c!<;BCW(kQ*MXq|5Nomwa$rBCjFB?t41kXL~fe zrYN&+j>NyX95TIfJ-l50thoG<)lA~&!4E~8R*yxma00HnKrqo9lmy%@i1(G|k&%(q z;+{Mb-Y3g{6I3h*(gb*^e}Jp(4Yk}7v1Z{0+={V0YVRQFAmDzcr&laDDdDya(b3lK zIb7*rd-BBQ=yWqXAZvc!U}GS?r@?KPTGCf|Gs}m|!oq?cGx>J*({rp0FiR@<1?nwQXw=3gF z9p(DE)6J0b`a%WWWMjTQ0d?@SAfMSW1ilI2{i)+ zf=s@L&l?wAdOttp&?);m121~>i&;dZe!)B@Uuemudc4PvhxylYtV+*j!dYrxsuuUypsF6x?||19_MVVM$H5qX` zHXUJaX1EX&hd-F?_-NZenHg0ghZ?n)%#I#4_Pk$hV&g%@>bbt~)fOb+A|!h)jtQGE zYCiD%L0vG_P=h_hu1ILfw{oE8(W6J7Q&Oh)yuv$1ECP7k*2_JF{inpx`S$+9eDl&@NDj9n=1(`yqM6fng7Xd@({P8{bpM+xhEX3X3JPA=E!CHC zjDGU42f!6`zbO@@6Du_$>g_%Jn{YU;@#!uVLMeKF>VSRw5x3x8hoQoWHW^?u!jN1cB;L4s@wbR(Jw`Aw5iF- zWBUXNGeO72{;Sj7-rv7XhQB`lyRq@qc~$0R3~g5mulZvRj=Yi*E=>v!;QL23)Xlgq zp*J;`7h!bEZ8!ro&p!U*Vt_~?FU-N3PFF_x#x&G9hNuO%#x|MtGl z5*NwYbX*yQ1-EGbXlB;lzib(vm zZtT$vjY5c<4WW$^M*M(GmE;e!_qUa_tRn;KWRH6R|=P5Cm}%hZq@NkLEqHFFpT|U!1qBL_9DP;}YS) zYIPr$0AY~~X5>%vGMWc=w7WouJf^DbQY4_WRA9~f7ZmMle1u-7V^bMoin+I@@E&d# zIIV=1Gp5oLQUswQZ2Fg^M||$ZF)EV0OiTV^>ga%Pk*G?EP7tx~5p4>C>s6P=PY{v84TxVfhGic7L;hLiv~ zdNZR?*QLf$y&})gB3%A)rctk*o#lpIlU13*((r8LxWTc+^`5*h{&q1rWbU~Z7%G{) zyVawaD8|l%Klq`oVKK%Z+OroDEuaVecIP5c1lh|tL7yw#Uu7miBJinFv~p%vHaT|W#oPlPkvzooP#40$u)bF(psmCo7D^g{IEf0NR`;<}P1 zD7GguRW-9u93bY=E-=+fB$PtYveuKX2sQ6{X;L<7@!yn~8O70gtgM!8&WA>&Q-oD@ zS!Jh&G7d@F4xVu8qL(&fr|uieCULz&SwmiejozWDhedpI-s8Qj)|#-^XOK4~9}-l; zl+ycaxEx!EJQl4NuUU`ek`2MP?;d;oNu%&(VQ}%SZ2vTQg^8`D-C>d3##!5Xu;7He z-1rRJF7Oz}iC0!YD`ObPekmi9Gw}IKv_LggjYR0ZHXmeg=zYNg0$Uqy4u#%leM-4f zmzXbOKTsJ#8YNms^AD$5()1e@d^I3;IMqSG8e&b#Q(A~mW}!;CV2ZZx3!iFU9Ekl^ z=G@HhOL{-YS*>?W@$BC~H1NS{?iIIbA2`&Ly4KT~TM-3?U6p+wF&_H8wo2g6Yk|)% z*e((>b^IswE=^X&!Kd_>is#=@8)_7f;q`;9<#J=a!DR#$CH%NZ!bup>FL8SNnATs+ z5Bp5?@Ar|>=Kp3_-QFIP0k>6JrSW2YiL(3`R0`v>qUXVQdc7#znf`|Omvxn^%72SI z9Yp(F`%OEyKU(b)v1E2AL60{4&orIzeLwR`bJ^g3uvoPGMj+V#){mMO9eE}sFCT~l zD>0o}PTxvYo!iri|Nh^XeoWFn7fN!l8XQ{u+s}uA3fhc#FzB1MA)%!RHTQQ)xeq1( zXFvQB2v$z1$w;51ct0ekZAMMW)#yoOyZD$D9-1NTK+Aa~janI8z5iJmPELv9<+V%? zlM~(4rsh)_GW(c$zk^C~cz~q$sgjL5#|NtT>CsVXrCiy)a>i%cUlJ0em6eGF1O)Q( z^Siu-!R!&usH^v;HGX*}Es=Ecnvyfv3*HI~H;)aH5^qSj`_d?a^C87O*FESjBYI^j z3`$NRjP)#Y+5ZN{rvK{6!K`M9D9NJlnC}7briHlb8rS?{NpH}zu5Npw|1Opw09yBvH7B06l_sV4}9zwfY7rhS)hW+#|VWJ)I`fCTa8bsS2$tM9T)J=9kuT|R{{?N9FgmvJ9YMS z(R4V9NhxuT4S14>JF$|YHEW*_lu%~c&;(}brJGiz{ZN`izNMx%>AS+XBl(V-HKq+C zD6APr!l&J3D76o&pa2}Ys|V_7N7r>fe|BCUB$_)bHeI9oc4)ObH#AS0n{d(r_g;w= zTSmaY<)ABz;!XYvQRI#}{mo)jhzp`(L)G$eshVLZy9e=sg-7ar9_}9TR?CjbO4iA| zFVn=Xah&?g6@AMgB>g?Li};GkFU-t<6F-vWL)|l9z!2%i-54b~g?xm7bhH|4Pq8Hh z7<+XY9N#Qs$Sa0O-SpZWwvLy-2l4`XBU!bGuXT`uCh#p!DMa5-dSZQj81+)x;Cm_jIrsR~lcc!#gfeU`71 z2T4c*0&TC*?Uc0(dGe|ygGP=Eq}o2Rrp?vm7jzik;-4>(;NdZd62@Dij4Mx(Z^y=2 zstVIw?x9Y{ZS95^;{GAsvXhC@e(1v==4Tpn)dY`J!W6lJ(rAU($#q&7x$3@3D|5ep z_HS+Sv7(+GdbPoNHe7)Z#Z4azU2!(o^e#Jn-63E>S@UJQFm6-oHb_GyG=~{})Sr5I zi)13CB|p`Os!E-01;H?x3U}|Oxr+>G3@H}0>mA9y@i`EwJ9;@?e>X$f^U6Af=l)Is zg~+@A?glKO+)8+0NxxP5fcO+rb?!!r8z|91GqJuDhF$sRytYMvDcczvaTNC{lc8E8 zlAa6|Kek8h*nYenFnsm(+v5Bc=QM=YX??J3#nn{dRqX6BtUKng$heKlI0eo1%q~TU zWbaC<*ww572W79~V1uHe*AY;KOTf4cUI#*IzGy}_%)TiK^vik*UW7=(_=Z{w)hsXi z`ac99?;bQLuBeDg{k!XN6QjqwCF4f+sJ(}>rq}4O#fsEbuX?+IKI=)6VX$QcxWmDF zd*UEBH;@@P4G3(&0@KWvtl9jHgB&`LqBqZPkt4`F=J(Sp>L6P z$9(-p*aK$6j|b{^NaMMFS(E;TUf+mjaA9-k#e$0lNHcU*K3ZeNfMIFeVm;RXYoVfY;N?(3 zHsdL2q)etIFlrXA5BQQl#Z8Ckw6e<%ni22oE-m>GnE_DU^`b-81=)F=)|T5F z7`@-g2)*058sfmCCF;}(;5&TZtct_nIOv9d+ZlAD!m*5}bCb<{K~#8~#S`gOnZ5MC z;`B#XDrW|WpCnU#eLZ5=_;z(nMap7(G+$Fwv(sA#U~4^oS}vw1xlqR32C`}W!+6*J zBg>VZtUFtCYQ2%+_8IT-ea{&PX)$3<7-I$L`$jSi33bQ^&6WeSVMKH<-Q5L${P^)Y zg(nCw30?m#n53qy*xOEH*OxtN*0FAXsqt7>IJZOkYja#eXGbhQ%k_|@<&eCr?yuF5z?)HW-x(Yn{9adAC*94(Jj#GYyTkjl=!KXQzkMCO-K5<= z4-Ol4{ucvVqS3Hq2Y&iV-IPWdH{D>C-fXha6MHVBd0txl{=GGPKhm`jq&K@D!vq<* ztgI|26p4TjC8VeKHF?2xY8@Cl!bvvgU54_Di`VnZ)0H zG|kw~_5NaW`a+{eIOEj#IArGwmx*k`JBMg!q-zqTC zgWibVbK|6p3T;8Ga~pWBghKcQ1wUtG^eb{VlY0}Jtag6fn=TL0HuA#C9_lIYVeFf8 zY*EtFqkSM3`}gL2sX!%Lk~7O3iMafa76`cLV3Jo>jvd6gOBx?BTgRJueLxr5lMub& z033_)Q`7eIw9}{ur>Ca|&RrCm+S(|NNr!~>QNs!0GSX9=k+7q69lvF&WBq-(^V&2hmOG?Nsx?*{GIySeG8n=Zp; zP(+wM7F@GrThEoNfiZsN*JJbRoYadyucU`&_^wB!ZW-zQW}yhW-rbe+jtYx68~x<~ zp2dnkZG{EEHaqWzqf3))H?KVh^F(UU7G<>{2&tJE3P8H}BjMS#+tZz$GGuq}rc1z_ zgd6sZ!%D=@4qi^>xQv{>lPc{|nnBFr)hWumT7WzOz<)E}F8#;p0b(FKv2&ZNo}}M7 zeas#H@$LZUJcO%}5Uk3JQlo}$oFXyA!q(1O+y^d0%nB*xg1hMhVRH)xg^_uAR^FZ7ZmHZ$&K>%2(c4d|57pGZ@T8n@XVn>dY|yrdR%uf zeU0LrkC4%7NRQiIdVCy|?9!jis*R3<3VX@<=F zZm2Gga%D9Xg~T$5C1JRgr;2+$O<+}t-SUcxjC}m$Njpz;1hh0FqAJ_8HAlA0>03QQ z%=K~8Mb4!$51l4XhmkXKyt#{w*Flw&j9}r6vGv_3U=&8RXxyrQQJT1p`#FtJcbx4z z4T|stKxvRAEsT>TL}5}IW7l{54#*5!C ze^2XXlB7aEhw|mnqUZ94X%(4VIJs;KJ;ciL!e$Jh*V`F_IW;&br8Asm*v{I8N_`aj zcNOMg)i^an3O#fp?6U9YZ8Q^F8-7lPCWMkq{aHktnO0|)Vk?*zfA7}q{G4p*-gRE% zGN3=pXmoO}fMOo5Ad&LgZ#^spcYCJFj-o96u5-MY4D!0m?CB6E1*)o$AjrJy zUEhoQ^nR|p#$)_%XAO1VaAkoxpRbXvvaC6$u_laFl zK~u1@QRN(^L8Swose?{T22tiZH9U5NMsew%Wj!Eem+9Vv;vLJ#c1*~7hr-R9^OfHZ z&KVn9&_A1m?4U&@2@#~WVNckga~{cn)PN0Do()!05cdB*DrV)k6Qjvm+) zyfOiKx00DM{@?|G^(Z>XP>tgtWUh8UO3m0d_FHMxGYDZEU4S3w4Xln}F6)Rokr8^^ z_Gg_5k;E#M4r#5j#s*o8^vkmtFVZM^kFTidWHobUnuppO*HHB{uO08cSmCCg_a>xy z)iSq4I0`#t`^&v`VJ0X(CZFu_!JNUq>cyUoXA7i1X-h*O=U8cjw3WrMmDrYEl0;CeW$y0jl}OV@y2q z0~xZ+(*K>(Hpv$h=1rTx*PA-ts!?i$)5@l6e0;rmm)do;^hjtt)DpjKk13)(Lw@|< zL}>!FGjk~Yqy_QNZu--Q30jjK1@8A6XB|3O`*OK1f(Pwgvjft37}j_?fM$4fCy+J! zgIcah2lmz!$(zy|ry*OZ`{l+``y2Pk9-#aK8AWw9k2AADfCN8(>%~!-zeF@c(So>) z87j9#u}E)kC2!|5PJK3L%JfW+%m5a4+VAxM_h6~{zvqq(k8?|ECc?TTRdfsSYl>p- z-w9koQYuT*KrgW?Dp&SvO(!|{aD(09ceV*p8K7v&|Ai_!_Bx!7w7u-K%X&4B}*ldc6U z!hq$bo^1~q;itt>vLu6xCsIh~K*yHQpc!m#gdLaANx+w9N*0w6nmqzxlaXUfEGFWD zDC8KG$!=m;Y4JGWcZvqq@W&k=-E1 zSyfpY{;j&|=qFQP9rm|4modaNeQh=7KZ-v@aRtvgV3bmEL8&L3bh}$8E=_x6bF#Cq zFe7D>QJ#aeDxyle<9q3$_*JWa9Pbke@}abOn>eWaJ4LaiRm6{PydacicrrH~YGrQV>P0g#Au&ttyI=1I^B`pG&Q5o01Y?zRaGIf_*L zFD<~BL~-+I*>^Ft!~Md}!Z@R%1dM9)^2Um?{QSG}uPwLLE0dR!IGs9458H5@;1(8N z`mKEe?TY+DtZxxMkge>1q5I9H5g#=EO?{)FpM98A3k|Z^dRxcm98av})vXJ!G zslKydT^vHu{e^+GXZt!JEmm%KOnSd!@nhZ@=fW2R%`yju3|I9zjJ$_z^-4?GUoByC zJsiQ#C%xi%=M?cyXF4R$KyhJul&>`&(&%B@=k!?s=Km-1pi5r<>(Hr49V`_i2vQR* zS@(U=(x=`HhN)7n~eEv1@}}_o}8_pcPw}Sg205@>15=v zoxrIbZy;{LI8gk{nZSs*G3ksVsxHFNIWi@Ce3t1efH@sSAk zxfM2g?G+Uh4vLXj4heQFX=%6hFxAo{W%6wQO?*4Cg;3o0MQ;L7g%(;2%wzFf#RKG! z{KTswc~H@K%skq~@M`RBM<5o#@?Pb)D)KO50gubNg9c04Kg^>s|1gS<54%^$>>Pi6 z6?u1D_$7S6=eDGgc(ORiw1e2@f_W4R6)-zh%RYPPBfnS%4gBLYBXzguUg3&QFNg;N zh8B>2Q!V!%b{QP_t>VGYnMZH_oihwgY-($r&hjBllGt5{gy;HleKVaez{0`_ zab)?eXF}U!T8=Va8RfZFXTNc^F#eSO@mFHnvcIeAa4frhwd)RUtCCQg98()_kId;>K zt<#K!+O<6MXsTGJn=+x$Kg>46n21SR^|=s;d25 zYt7x}H+miDb7S(E>|wZq-Lg zEk=3JJms5_fB|bEkz;UME*03ZVarPHn{3LUjMAvtSXUM2*1oTr7X>_Cd|d^s-}o{& zG;ro{u<%6njc2mg*NMpTTzrH-`r^yzpMMHtel#aGUBhcz+9F6TmlYL5l8u5X*uTof z)%Z25sVT1|!Fa?SYSxvA*_CIKglIa}1dU4{OKp{Zl-~mjC_j%oh_E*n4PQ()h*?Ms zZTS;Y?eP*Gg7K`CM38O=ue6t06ANv(MgyPdYQ-mZ#01N?$OqbU196c za3yKxu7667p3by~Q-l816uHzY4$g$02Rk}&rA z&XQYFuo!J8pLvS{S1f)AVPQ!rtu0vk+F>0gJ}0?^p&yn29@~Bqbsr|web|4PD|aN; z)=ryk{?yi!m^9Wv;q5A~%W4S__pr&utCl1KG4L5}+`ikNJJg-Nsk<;MED2+}rIx%I zH$Y!J7vJ9(`VCEp!^w&!k5^VkZ5QPsUaL?3r!m)3zs-=I{7)qIV&BuHe2+;F@q?s? zRZLpWLT@OQB_=oyASt{Ui(WXyVjNF5@hE)vDrForz1s1mW%71`>?*zvz!B`9$V1Pl zQeB^O-rMvfM*N^TSXx_&lChlIYn(Zp!^_Q;yo7%AI7z?d3GD%QZeqE&gKO|Fp;W#n zZmAQ!N(XrJNkSq&D|4C2Bmj0JqY9=d1898odNahd%G2PAyA-o^Wl!pW;6tSdf{ zvpMwD3a*VUQ)?JDU?3~w;e(lg!Y}i0p4k%lyve(>%lmU+Qm8FB4n^;B6aFaaEOdm* zl}EVxgUgTZW3ijmqPBzWQ)tC#Gq;|-PFmH|AD(t1kQ+-bW{Zo*U`qSHuB)tV(KQE$ z*PNjtHt67tEpkj)QCOBkVW4n?hQaK^2=QTJ{TR*w%+d6k5QY~7UI#U+xJJE|VG#vx zKW`2cgV&0F0-SQB^=8kn&8A~gEc2NkLz0oTsqq^74ED3Q`#moO5SQW>1NgjYr)d4z zf5zC0Xhg^)Z|SejLZ^(wWusabyBQYdyt9@+m!N2d%RXvV)p0wo=@nPruU{j;`3 ziU^rFAYO9yNy>X`C*c!3fE_mEJ8IK4DaMdHiXlixZ1pI$-lf%s&-fs7(b-&4(eX_L zDaZ7oCE+93jee@9BCVSnj|08$8BH`3(+qstP#2Wv%2^(ULpPpX6S5;dx*FOeYI7sx zrzpTaGuF0RJh!S$y*<5_ULir1apaE6J9@J`r09hF!gE7t>F3ndw}t#9Uus!YrqPq;HGNqxKahR^*UV@qxLu+Oo>*J zX(%YfY?Y0oEPucLiqU6}mtHANJ=1;Gx>&!Ki?+b7Hj1ku;^f4YtN!n2RPiaNaC_3m z^lT>hSFS*2Cc;L8TVi`t+EgF?FMH36M{Y8OTF8;BN9@^X};WCt>jDd4Gyv2fJHDKwIb7}u~_e5^A zl}dX1FDqnJzp={Xq%AX6spLrK|k<0RY7%2n0X+hGB>KHpWc2RUo!M>o#B zHZwiymV*g?|M>%sA0GE{3yFO%ER1Li!5PbyBT<&Td^=gJd$%_ZluiS6u?+6MIUK3N z$pWvWzkW0KsJ=MSpyn$P3YdFJoZi*L(80J-E0v}2(o6u7C3k?)ac|kav+(EMFo;9v zl!<~oKnus}-;!N9C>nKj1;`WlYe0CWO8SY`E_&OhFBO!O#IAINyWE^kxg2#-3HjVy zZf3Iz2_+}8YrjA4W!2Ep`3>x)56G#cEx&uU^hc0BIK1>7fVxlo)Ou@SQGF{NDW43A zUfq+8Bs#^MXRYjm*|a-BQ=~<|f*|6@xbyCG{DO~oTC1ZhBPp*BpDv|C+P9x|)zd^vn2oh%GPA{}b~4Zs6(e zRPAlZp85H~!na7vz_c`42#}KjC~CI3joWtQUhV85*Fec|?|wYAGAV`6*P3Q!X}5~d z0RC?T*`KISchwAugcjbe4Fw2NnG8zR24P`*kJp1UVBl*sz|^(-EY(187OFk2lJ z&gdNh7CEY-;wi#EV0t(H9oE{BCl4V;GJBIpa^JccpyKWQvnz)r(}7Mex}iZ7n~=IS ziW~ZytsrA`wH#;$fzB)pRl4ADT7K3Y$D~qf)I59s+^lo=^thYO5%8UxAF6laW5KxV zW!Ahg(aX$26Pv`@jY>n?LNE}>bN`odlGwu7xzJcc8#}>_sijvFibE!v zS|&q#av&peI_d4ySL;5LA{HeS8>_Dl^YviPtOPs7%g+0A!^% z=hDi={5L{J06b`j+rBSkP;zg>{~Sj6;OOwdx#W^7{XafAEz@=?0Q%^tY;eL-QAV`1 zuqvo`a4^=}u^HIi%UJr}orxmpAs|71Q);xZL*|h8_wU~_(+=#(5<|KPc!aCfOGEpj znB@P;&BRP9p#JxTqak<37NCy*sQ@ai9bd0Nua~3w0AL4+Eb^Mi>%Hd%Mp?dLF8%G_I2?CtG!q_+ps zg)04Tyq`XOO3nZ74ybRw&Jd1Q%YDgf*-wp6K=7leh(HS~N`CV#2xw2GsB#-30SYv| zKJ=Dwh_q7bMkS*N3mkzp_s1`Mj^B9qJ8OPf*-EyLWvz?)owYVSlp@Ypcc$lgss%qP z^~Z{n!2Y%HXm4xRZ1}i<_ve%JYHtPFr_pF0Qo*%CwA+8f)oj_ioy3F$4VdH8(QUBA|mn!DL zm7kv#{G6GLc9NKDf0Z(i^0z85C%61uqdOpFU4>5-} z4Ja7h1gljpgXkecGMjtNEfQW!J|tW%^fmS&oidL(KBPO?Nbc5h%NbL}LOE~ecXUK_P1Y|nPu1@M*f%Uoy*wzfl^^suS+TM~_sp z`v3MO%$*|l^L-$)#4(&ApjeL`))P}YPv}=NUtgEZ*;xyW5qwxf>`?mGsR7UvB*y+H zyZ{>xH@mkTPPu-sU~6GIsK?pp=XIQ+dx~k~i55m8b;65v&g;O2Km&YrB)s4$;IwYS zG)UvW=a4~`0&e{zFP1UFueS^sYWC&So<)ZV~{?9)j?UXHkS>eD7JplbA1_BDD; zt_s|x;roDt03tE5Z9==_r`Elf^*2Y@)@&=H~?o2)!5KQHd4&r zy?YnYtsf;Xv@(77*lv5JFS*8*6(gzmoq&^UdToxEX=I}luTfm%3>*};K$T*Jn+*?? zR7WBlw`MX{b3>!zA@Lb39RpL zG(pR7qqJKh?qMXbolLnwGB2Esw-ohCegE~QBAI;TdfxaG&PHb_qHB!z9;x7fq#q{~2VD6~& zQE@NlV4bYSTGD`B^9^>i1Yh6{9Cm*@Wv$ofU34AmC9BJso zS!_tq!$6hk{E)$iKIucJ>IH%A-AYzWJu)%{QNdRjcj6t`o}5FVr<3|4o^#65K*UQ= z3lt=p`ve;j0XGiWirY5?9r)7N=_OC(U*aef6%#yAsmEb_|SO(-!UF*#+@Hyk@8ez z^Y$InYC#Wd?;smyRWIP)^Qir?*eE2~nze|dpABUY6l~;60A8d&slGPV{MX}LVearz zY}R@vsn*#@QpoExOcKd=lzzYwXps^GK6n}ZwW{h%fB$Qst`6!lvn~(M?lM!m6^|FD zn6=L>Cik(Fx*F0ct3^A>S`geT;i$0WYLAyF>qvWs11b(q3u!&c>HTJL9`oiYNCio) zm}UhfL7n>czQn21tzq7e5i-(XJfJ0Ed#=`T>wF=V_IXs5ic@Wj$uzrR%^jd@9dMtE zkR_l7vk7EDdnG@*Jq{A*Z!d|&&ju_Ygaa4ceLagqYQ|o?JIpN-nSizb`VHE3%>Y6J zP?It+hRNpnMCni*nuaq_&K|9WGx^^W6HD&^$?%>w5R*tD4yE&yY4}7$MC_)^f~swS zjPNnDVQk0t(^}2BF{6B8Zq|(zlGeh<1xMkq$6V!~vjg-VBMiMRj6GMX=tTN&v0|ir z!`0LnXW$3AluJoc`MT?sQ$U7yvuI->Wrw)unpCb5KcNu3vN=G?L36_G6&etZRf0u1QLW}K^=3wO<`3r0{TY3yb+ zpd=ZH*igv_r2*4(8B1<&)oTPQy{RJV@1im$ObKP2GVk1*xQ0s1 zUpCo10$vn#C6?IDgd_+HT1cdDCowrHrY9r5CY>Q*+AH%}gx)f8HIq*kZ)3D}<{~?X z@X4qz+T9NiM1I={G)kI(+Z(}=M~tYMRwlO1i0bQ!>bfK|o=k`It+owQ%~Od?_N_9H z`pLRt^Kf#;R8{e#2SFr!&Il!x6%})hTm0t%4i&%NtBe=Vk8r)excckcVfa88&<-l} z(8v9g5Smc)BM*%M_eX-TBt1-SY5gY#JUt-dmVEOHSw{uLzAIolbbJcTw-@LFEWC;o ztD%36-MJ^+yDgkax1r3U7#9E-qw{zkntm!wiN3wJTwaSoZYX`#}-_1$z zJ)5bu1_+jk-!4f;%qT{-AK>k6`NhlTT}QowxHc{r_?=FGG|9Afu6)MMv_bkZ+g2d|R9=aPmiE^}oci9~ z&tm{xX#3`$=4$|78c51Q023a61Cq|BvsqhRpmlQD=wHcCHd;kVTtI{p5nlMEURAxW zT-w8sIMiTEh1d`Ry2R&7L>c~~#l|F?*)8YPfW^U^33*{Ulr_W6e>Z$7kW!S6e@&>+ z@YXrK2P>s-#(H}IUo!1Xu_`~`T;Y{u;W-8AOm@T~2KC9J5A5im5%$!qGvZxSv%J9$ zS7OdJmq(Zu8rWriN%DS^K=QtPK4WDW*4Gz;MbHWzQfWb{bqzCV&H|B_=by&8#q8+q zS4tOVHp+uU9;69)SVx_E{HFn2e0TsOk1u)ngf9^E2-%&-3^R{5lo+vj^YmrLUla#i zU_{efhqXZcR!*l(k5+-7=}#5*@n!;b9Ej5iZ-)*~^sINSy|oapk7{}k)mudcd$*Tk z2mP8CcjF_#@^El)`~|wTzW}htb+|Os+vX{~ga;BAu$Hnb$^6^?bGm>a?{ttte9SLbrCH zDKyLxYI90&96-dHP1tgsS^rnek+JFW(Fts+=4j^n#QvzdwFDbMk#*zWtY)-mDnTeK zLoBO#fCh#X-96_{3;Z#F{Hhun(t4noE&PG=*Zll3%k$oK6^quK^-SoU&ZN)yzc{RC zGgJBPW}i7PI^Mg}nzTZAT?~l)V72XU!Z4w?OE&?|rbKKt*Rwn zYWIu?c~*)<=1(e8H(%U#Cqw;#UQ`a%2zXyQ>~J-T`{mjf=FtHbBAPIl(WS5l{u_eelv;L7tExpv~EG$q zCdsB57m(I4v$IF#D<;1O43FGe74!Q~KxIssoY=-8{&AwB;$MxODZLM>! zpyh-ddQ-}fPK1x&f8+b0{IBi!#Oj>x*s3ki7owd@zA`yKuvBaU*1@}cAO}*yEu<9b zHW>i^`YvE7l|XSG3qnWL|0tcJcYazn+G6St0$LSFzN)09zt+wVkR+6T=za;uODEdQ zv;J~h^GVA0nhziOH0)(dCa9SYHJhxBYdmmSTt3e&cVNwc_Z{-?!*AYwJh;9aUjndV z+4n~X#7QL%`JJZm- zLL%Q{Lxx-%S|uKOXN2S+2+Tga7HZL7Y+WhHVkqauq}@5v(psL=u-^OixMPG{Z10-% z@LKHe^?lHpq*jkp<^fv-a6H`K;_X`=&eu4|Ic2f3yd(y3vOlcnxy2V-gbv0-rc%z&y(m&LgBTGh}aHP zU(Z94s-z~rk^V9m&Kvg0FMl0IY~*BEfD;5A7cK2S1Ao0?_q#q@|NS5i@G!ts7+%GE z%`cig&uXz8$b-L!q}fkUDsc|T5bGUr2*8k0?Uxqw@O8&SY!X?@4f@XNpv#uSNbh)a@>AJfmvOG{1O6xr;HAE#*ALK(*ZZA17pg@XvJarlAKz zGauw*_wbO|4{a;#uHE`T& zqdygem8#Sf`Rv7{d|AisXwr$M`ejW^J>KG0ojV^H%wiZI9Z0)~ZfL$##83?)h_snb z@%<)x*VXwGpe^l$B}t8iCzPW$YUd$nG@IqxlhNwN0t9C9_few9$P) zYMQPj^-R|6$M);=A;aM7EQIPsAD7PaA*SpZ4wfr%3pFNfSuDg})570{IVR)Q!P~dD zQOP~Zt96U%P7CFq7B`W>C~D=t)71CU2cp>71<^nrK~2HwYg9z>K!<1^ZHWZ5@DJ}k>krS4jhLs*$jbjIQM?Ks9;8%~ z&H>uf9j($^q)@bQ+cHxTnL^ot<&kxqx~C1A1cMtyQ(W!C)S95j{PbOPPItL!WTR5` zxgM$)<55A)yqfnAW9Q^wO)a!2`Pw@pkayJBK==Bs$GtIgTvMx0VRK3^2s1?~uy$RA zH~o>v=p9dEeHG28lUhl^enbUXHPXU`o<CZAyNJ+Elm#xESVF+2y<`eugmKzru~-?l%*4sP4tnQ>x?JWs1~?!&3(=bC(F+u zxA!Sq?u7Le{&;!~3j40kr1lt~gjxsCm%?j)A5S2@jY@ZfrhfTy__JQ>_Hrm*{MYaM zyRVhvNhaI&wpJVq33lO||HQI8Mj&_yN5i zOyZk4gP$P_a_jf-MF^i`?Be!CWNqMzx&Go?Yz|%0hBtG^k3eOXT8jc_p`@#@w5M?9 zc^T2`+j>QXon#bkh>C{V2i=7;L2AZJ<@%37w)kAe3c{+KA#Z8<$lBT(w3|6kXlchM zCQ^9QBOZ>?lxj4HA2OWwCf7m5FsZqaq$^n?p zQBth|%cx#g`PABm%2erJ1Qoug51i-oXLQi`aM&)_A-u8ZlU|)=ZT)EU-8)E!71Cd2 z%NA(vA0tw^FZ$Prga7L>n4Wu3u99H%5mjtwceho` z9U|?<0n8IL19~gl>G?VfzJu^26VRQQD3<(T@AzHQGKu8cNRy1aJn zHjJ(XNc=P6nCN;4kB&yO_X+8+KjHtH=c;hrA|C7xgE}&vFNO_VGkTm1*Z9HF0G!u_ zCy&%shH*>bFICR}t4-o6s#l~v1LpfRkud&IFcz5-hOC@`ELSsYc3?qte@3b%a>e7@ zx<=q?<3a1R8lEI~SLJ(o;XS#x+`dk*&kpr;KE_l*kZYn+kh_Ip^?lFw0np79t*7uO z%d$P8)&jP)2@fa)V!i|Q9=md0mobz2n{Yz|5eFey@-2Sg$7CVZ6CEozg=50&rwRFJ_>>$bQNzd5cb;Q$mwbI3sU4p$pI-H>A)H?+ zoqs{Pmi+Ax3SAjBN^b2YgU+Z(syoH#`R{{jW?1=j)AM`#Mc~(K{TcnK5A`+Ds)nvl zS7kT*T?V}d6@D^7`!>b8ZP|O-bY651hcY8>G11$4JDpQ8neV*T$`O$FHTeD;I_R$H zK`>xTxn^rW8ERmCq-w+W=}bn8MjSzU18cHS-hKmXudkbT9dJ7O$x_fs{*=-umaQR? zXDxwrl0CB}VDc|rig9z)2b%2Y%hzujLvE!4Z9ad9dLwB=K! zJ<*_N_k^)X(VghWCnuk}Y`g|;+a;%#8JCBYlIxp*3#DAvBH9&i8nYN>$@oCn4Xurp z*n7Q(MbBmD?MW8@+hH@Ud<*GRwl0F#b)H1kM$fg5=36FMkT1sCSAZOA=rbeKyKmbQ zyFyrOU)tZLYv1>1c+`AWV`pB`l*N`!VRQ;K&IjFl@&XbY0$KphU`s=Ej!nGBW^K+^ z%p3;6k6O*GKM7Atgd4N36uUTamGVp4E*MH1+el}5sOyDoH+?NwI=WM8<47{uZ?^|O zc*;;a)JR}!>E7=#JC2#%;`?dm7u!Yr<$(zI(a!CO%b@O}`C`IDKK50H4-fJ!OnRdw zN0si~!Nq(5!B<8P+Z86-4`vu_QF`_Ig+i_Dcs~P)#$VMoQB{vS#_4kxgFF3Wx%TCs zED(Op-=#VApS;u26<=8us2ggq@L2XTN#7P5!k8=6cbC&Ny=f=l+0~#8xU!}1O_Hn$ zFvW>OY>Pj&$`-mGthc}0vE=f0S^$~#pwO?qR0TYN*?r8fCV%+Aw7+_f@3o%JRyfQ1 zg#EMmea*5-?)sQ+0Y%7RP4#G%<;N_un9%P*Lt^~DUZ|1{S_+@q zf3bTQ_&vDTq{X~E>-(hU|3TSXhE>@`-NK}Zlpvjwg0yriDP7VXN_V%Qbf-v42uOE# zBi$v9)MnG2XKkPNJ>U8Jd0oaYS@)_r=9puSRgHiG5n|SHKL>R!e z2(Mqp?p15yf@;}h=1efonRDE=-VgML(g>(dHh(HYGz`2*v^9c{wG`^G{T7@zKPRGp zo|*P9Yl*z^tY3dNSN=|<)eye9cBS`kle$9v4{~cVy*>A8*w0=4ApZ1ihqTxfQ5{8m z;Gj9`%tK%b8p(=F1f}s$dS2Pz=X8;V;=`Y!iIqvp+|{hVzjttW$=J^=pdB3CnQ+;2lW<<&X-xUEMqsyOJ9Rar-ma@_Y-N}(;?JF(GN^nBC^s{eqFXWW@)l_L}ugl z#{T2XHs8fN4ZuRvkx(Jf^D^+p;T>@O_s%Y<7n7zP7!gf z>qR<)*&KQsz`rslEh)nJ)5T%uh#wrJJftp(`Kea@sZ!T+?E&Tz;Zl5-aY9)FM>Z%4 zr}~pKOr5tCA1Teyxinu6Ua8^LbbT>)+c^(N35v57s}P6^FURm1ZFzK$zo9)<5@Nw^ z`Vz73h(7}P+xJ+LU~Bif%KGr+?4!u)V5Tsy(IwW3SaFCYEhVs{(>@w{~C3$0Mz^9xBEq_69!ye`Xy7e zpDQKu0LxtjTjB=c1)IKs6m0s@qo02cVCX2www`Xv<~E9`6}GMKpM1OYj#wrkzPp4Zip_z)#6c^$m{Rg+O$NDsKgJ%Sv9^$u!-8eF3 zZeK0(q+`s_cjlT#+DW_DGEl+5O=IVoepaetIu*%ZwQ|+sFTI@8_?X%C(i> zK=aJgXE*rs`r~5}T$>_BbYG+tjxM{@C9A}F6me(I?Zh;P<3DP3P96s<5nN%z zQM5XK+svuIW7c0(Z1TQpRzDQK;eQ4&#jkb-W;h50(y$)Jn9S!ymw7Xle>Gj^>ylkZ z6Y|dd=0k-*xv6P(t(V+*V^Crb(66~uDQ0nacA1?NLdlutF-c`-lA{C;8iT{`V-$+}#F-ZUtmE z?8xiwSy;z49@)#=u~Mtq;j8Ix?Xfw>J8rI(XTMh*78c~Y(}ndenWjFNh6fl|<(xYc zjgQq&=Eb`o6r+|*qupy^5hx4kw?=`uY5&?@W)xv$c$k)lhX5{rGIYr{zojJ|P>wH} zIo|R97t`fWT~CW@v3`Csm}BcaW);|CCMC^>uYv?FYZ`h{h3VM5MUDpBLA|+AaIGi58NH!a2Gp#qSkiIsTi?y7W&lofyxGl< zkBMmqC7U5&k0e~`)pEU+T2T1A+G0E(?Wuy`nsROE0S<;_25u7~&8Y!KO_S{7m!2>R z>CBPX42!9*$XB!$Q>3-EaH}?xqgZy?0L4_#*h<#Y_wRB~a&0=3R9Y`vDZRv$KtUX3 zV>7(F2F@WPq;V~Eq zB8uL9Y{piDUB(en(#&vPUS8k1tnh(;O1aGsXt)>{7>t02Tr()&4yAB~v-<4HR@Y+Q zQyc@a6(1lIsU9pWiNiis*VUbNQ9Q(;kh`zei^LnQC-1N*)A9wTWq*7hr+=Dn`VkA2 zMIKR0Qbs|-$}MM(Y_nv+JU6>9K9188(<$xq0U}{ZsHlPrcZzB?wO*c;xm4p=BR@5g z6>sIRg10`ruLy7_(?0}C#+Yv?fV?l({%Pi!gAEa)xQ0BgmWUwvV$cvt4ZOw~<)Z+9 z`H1*p*xgg!EZ_GfFNcF~dm1GY&yVaq%ry&K4Q9LVT0z5?$LW>>kP0H&Ki*%Sg0}A} zvr%&OVomt=R-fCTmcI6OI9Q2|QN4JTBlCJF#0o_;n|^7@b72^AzK(I#Esqy)n_hgY ze(QOTYpCwp?bgc8qwPn*tiyOz<5j*%5Xa%iP;zPW=|@dqV_45-k`3p+nq+v{u>546 z+7-Wmk|WwnT0Fl|>^lck^K_e=>{jy4eO=CQ(bIb_-ftRf1qJUQhkcOKtjKepJhQl# zY~tlR0Ys?HRN@N84-wUQ$@in(Sf)!JSn^g$NS244rABJ~8Eu54qX&H}lVlEP478Dd z)KYhnY;gSyHbP%HSGb=~6N}vcl5wpyaw7DvD@oic{Hwg;1Yx~ct?MPSBB?9wsVKmm zjk5eOIQCdwkiu`_H=4~p|7e?L8Iswzxn_E!m4-fQU;N(JuQ={3-sioB3eyGl?`GyNA@8SFTG4tz%n4 zVel>FfO7=nku+)rOVRgCt?-iBP$@j;NBiigU#Y|H&rCRB_VruydCj1OB_eF)^V%Af zHe>j+$Uj_}46SZ!2t*@lW zukm#H{(N3PueZ0O4=iex_x^xv5qsK_x{v z(^`1=7y3wispf$MsLpRcZeQ}xeofVpQklb4j8@Km(2`vuxh6BQGh1CVVZN1XY#Xd) zfpwR-lRWvxm5OmTBCu0`|F=`GwB*k36_HfA;Z5rnm2r{34eA~pIyTtzr}v#NgR5;Q zjW3?hX^V9BHtjdP^uVXXrXL;lwTNvL)vi3+28ti5wvU}diOCxLqn2|H4|$l3s7`V# z(Nlt~Oy=3YlamDX`LnG4sf<*{h`zt~F&%B16trcTvw^ruFt2(wZCJM+pNQR=ZERP( z7gkTx8C=%MpkcI<(;=-T;aMB1l5)YY8ackd{f9j(I6fj9>gtjb=(|(0ww%Q|$W3zU zd+yT0q|Y1wdj0<=(Ra{2bb4)4v8`0@OAt0}%YShBt02RK$1BRU%}}azbXt6H=2>pN zyV!nUcJ9wq;pkbT0H=mDNX$K;~BzCWtMYU{x$ z+s|ud&AjXWME+>aUgx_mov;~NqN>(poS)HGr2xxRC@8?)`Db#n3x&el&|BF3=;iGN zl$wJhzOz#l_>{s9eEm*#crxI<7i(>D>gr~9p5e>+(1bVqRf7`ZyvxDXv$Rv3!lm26 zt{?kQk(L~hmi8oUG2}Ng`%q@IbC#=Xa;uY#4o~S*!?7dxqxU?A&7U5kLzTKV#!$)Q zOj{*)wo5y3)gOG2S-A}`+tnJ%${zwSa{G37jRpyuvZX{7LYRVilUx9}czJb|JcZrf zb`Q1F1)d_X-*5>D2{3yRC4GHNVA1xcJ&9R|o|Vcaoo4c(>hgwx}oQODwf0yRjkC5%aWqd!_2Y&`zZ)VVT`5ihnG@!RXn^+&*)iL zwt%N7Iy(B%f>oIVD9KS=`h*gdJ+spR))ul^G_99~0yRl0FkvE0<|#i>qGiZKQa!lL9oD5nPLi zE>Dg+B@Q+VR_m!t>*b1$#s26=Z53)o{npQ^BX>2sH3P??FB)Hc&N*xm%KAr%938X& zLS8kMn1UlWh={e;nm5;{uuLT}{l0%K8ySRNvm`dUVvyte5gX%U4`%{P#B*m!J%jgR z64lZq_+FUc=SCJCWPhA|ErdY$8sQ7qXMAK+S~fg!%6xN%_LM5noN zu`!bzbk6B8I3O(i6%JR9KVcJhzm7>9x<{DOo@G(}xQ9(T$QW5+ma&woEX2|rEG+6$ zCvJm|YE$quGA+>Uz>@?*RD3)3-0x!XFzQcoVXTlJ1HKe_VV{JP3j+Ymy=tncg<-UP z(hrU4FD8<4Qd(!CE{Mp+J8rt_7DhHmSVe{?h_`TFVJWd&F$!!I(@hgEeN%Mdnz)>? z>T51j!pX-vq~@LZpXG<;^;d^}nIwW%y7jds9Ax19npvVN$Eo%kG?8sr%7`Ih`ViH-`H28j zgroA|9RuZ>OH;N2rhh+O;@VS1gC_38$(hW~<~Cc?!3T<*8)omCRf&v;JLr(yqsZw% z+}Hc49_&upsMI-IT`OC76>o%>{-ks#rl>I>g)85}m)r3Hne$uw{ipD}nBo|#ePZ5g z&d+8JI|0uoPv&Y<{{zhilYROQ86yGkSZ|{nJuddcb`V^dv~u!&mYAmiQ3zuq3$?6T z{f4#ol1B4w*Raer*+o2O9W1cr@o01K{X5QT;-H%@vmW5Y3N=sMJcfKj(d6-><|0s! zOCkzRz*jMOCB1sN(co9KT#iG9@VC0Zf49PL*fqxK^0nT+MM?%g;1*euxiCya)0#Al zhVk{T!I;_RVGC;+Add>D9%n12+1drNIltAI)a;41S`-|Ige!&~@DC=Mr`YN)kKP(`2J^1HbE&Sn3!cT3A zk_|s@&_gG^8QX;L;8YHGEO(RLt&T3*lMQbTO^MxYg)Lr>?2b}P|8Q|x#bPf^QW@g- zB_^W7@kYvLW!(Pk{?gutg{RxV_nhTT>lwyLksA@!SWQD(&S4u*)+HWrqwc7n20ZMC zh-p*+<5Q_PV z_}Q%dEm_<3ALvj&Z-j|QVg@7?V^^SlH= ztit(gOW@Tsp?Tj}FR!9+C^6MCZRT!bXYK;`JCe4db;rK=f-_Zih<>ZqmFTMfc|oqv zGL%9ADYdkXkesY&?nq~`e>y?BEOI>F~ zb+r2y$>8-C5i2Hh+()6;4GwC#SMh)QM^nOz^4@&9dC)BXBtX?|5Cdu_xa%-ho{oVE zffo~CeBgZhhfkDRmglG_Y6)e@~t`xEiHm%22x@h3fHgtTn;UcODouih4#<;-lDSHy zi8o_6o?}l?0FCnrZ}8XddweuU6`2pzJ4YV1g~m{|QqVLt|$TGeP{ z8zwQAy3g6G03^RVw~(cFR;G%Q0z#~MDOQ4lv1$UU*&{&0du$cq3*sSh8Y`<5OId3LAEE z<5PHg!WTKmQ>pz{ZVy}RKEihNg))m7dg$Eby=ql6&jaD;pA|L*22BK>wY7=t`2;~U z$!q6-E&;N#i_0Hf>appOa3LJ)_ixZTc8zXZ*Ilf2w3TYV5h<={5WF&o)q265^76njdPI~#W|4FmD!TIlf07!N z+20?HI_6Bw>*mQ%Ng4L=mSb>UCu`S!*x5DHdRIFiN%wquL$pF*$k!V_PUN;H#3YGH zZ)$qBD^a5pzZl{r1 z2!@#Dk+<#a*BM(t>-ih*QNb=Jq$blZ*_3tF{Ej2G?W(Mto!rES?MGH9_cx@p{z1{7 zQJuH24%j9-Zh86{3FR^PV|JG=j)9Z!o*}fZa zjcaR7`t#9BZggE&S7FP|Hp;zsS>)cWo84xWepCdj%B(B%5#7SVH;KvPOS%9T4i44I zq~X%LJ%Z72vNeGT)Iuyi>iD}oy{#unpPxnuK;@YDMvS&80hQ#xI`!^pyMz5}SNLGp zfvqIjJT7I7`iBJE}tWzSb^77(Ibs#sHq7}OSp!vB9F`t|)W()_M2z|lA zJB9H#DMcFVPF(EnS7O@SCB~~`C_xO4Qv-y-BI1xko>DSgnydhhCi4bt)U!WriD!0y zo>z#})DRg!VuB5R|B)RqsB@x^=wv# z#@}!}eLH`gEKK4yPIWbCusXyM?01Q3HuCbInj;c~{a?9{?TcavTIwNS0pdi2c=oOV z0@e0AbSPTFh3)JqF+j-|pmNh{0!AK}brQ?+btGf>?&Iob%7*~ap2Y>@2&!-{A~ESv zacP;bg`*hN>a>7DvRuDo#?3OU2m)2LM&DES2#nXfGV0$|evI=c{p~hY)#j&ydX0)k z-5oO4*CtzG31J;_=0%8;Fz0*fvXhAFTQ^47-5ncUc#P0dBWCy#*V+YNU5&R~f{A8$ zTGD`yU5yN}0#p9X&ctWx)Jy*n?VK?zN*0<2!?byHfYk4m@YY|8p_OjWru}dSPfzrH zv!s|?G70&W3E}$a!4E^9Ty{q`+C|+K1iv3pE>M-4vtuRlRV|!9;G17?eM zFY?|DUay8y;ABPPvTo~bzP9hhcpZHGd9lIKl^KCb@}kI{Q}@dx>H|qE|HBBf?|g< za(tXE$HQGy@91$PkRhaxIQ5siIz09;YC0_2uA5R|n}|zxfa+M+1)X3d#KWBAg5n!t z`e@|O9_NP#En?YlM6Q50d~V<3-(0Fpa(#IL_$Qul>6b8^90n`9$RXu86*fs^PLl{9 zQ+=M9j~d-r-$8lIHoEqnQaJtktY*oCGf2ED4D}fc?PO`bzS#X?=hl)ZdHuIyov?F$ zK{qr|$v;c!G}^l9P3I<~U9=7l$j&cg=2K`1=Pg#SrRmsoY9dtHD7fldV)D$11BEXq zv)beRZMzM$hO(5I$Uy%_F#x@7%x~To{J@Z-JpNOM9H)woy#pXLi}OchKB4&1Z9lT< zOEzcnO4y!OAo~hOijtp=A@@97C>W%XQZ?!}b~z1>p~7wWZ{r-8%HB*PaTja8HL<|P zxWtvRkvs}Ul>--S{p9GBe5OVz2eFtS7PMVUC8{SjxF;#lsfS-x!y)EJ$RNm5%tGh! zY0c@<+iYJkP+F{v@$-S=(u3P0(YeRv<8)7*!ThiZN*Us6U#5FPi*aK@v39|f>#Sm#tXr)fusNLxamRlfIdmN_$<|O4_Ai{ z)hxYa7U{{??+f!ChFwNWWrr}3-waAi=IPKpMwu|t87u-NrJ65O4VkoUjrg>Sp<9DZo5>c)udQ;uYte*V8 z)i~0mnhw!XR$HWHG2+}iA?UM2><>mVf9)OK>&$5Y5vN}82?|-oPqaL9A2;%2olB`i0 z{^}^bffm@xWb-gxnz++^+?2B((UY|WfF?VQuHzp|nj)$>66CZHefY1fk^v3{l)vAYD{O`tF< zke4&pzWJxZw4a{;$wLSHRMdshEV#D+MNoj^*ewTg+3#-p!}QCxEVGS1vcu|-B~2tB z@c0-}Kz15mj~XUIOCA5GQl4fgIW#Sec<%Fo(A@1P5ByOrBztUjAz)#i+q#frX0D;R z5`*4V>ML{D!s3@QAvUwwT~0m7^hD;-Zk6D^4>tj7Br=C@FZH+ONRD63y#g@~r3J*7 zf0i^`gOVbKVo79s$K9#^%_aeCHbtS(tO{$&((|9I(aUf+GGla-kfR^hAB4iT9mX3= zekU7e(Y#uluVOSlc@h?|uoPPOXVL%p%4KOVmk z&D_iEi;FSsCL-yH7Su1b^p1@$gzOK&&6keXMTMB8oTXKD>C zaZvP96~zX6_GWNtb8AE_ImJg3N6LfQ)U+u;ga{!hk#w*r}^?d?aU!{73WA20mX6 zmMu$wK+tvY$~jlho+@NbV8@kG8pKO^l1C2lXceW&y%U3EiAFcmr_NY~< z6IihaSVhrVy-#yED5%Y)$$v>pH(u?^0QkS74T`-hmnQQX62iKp!8ME+v$D9rCz|rD5;|EL>ap{JUzoLYeJsw zRin%L=st%mVK`RJr$j;@Ovr+QO3WRdbYwyO`9Oehr&?`MX!RT%>CKYGo-%>fQI}EM z)h`E=1JXxF{XgBRj?yx--d9Yn%H-+Uu?=u4zEh4SCp#CW^jshoZA_@D9Ddagk4sFt@v;I zHn2z}dpcNF_sg}~z#NwIo|JEWw^8jZQ4r1dj8I3Clp{gq_BH>sn3N#!y1wN^SN(1@ zny--VXg+P${ouDwJ+IeF`K-npD6VyLG{Exth8sR~*yaNvxaD2?j5Ic6!?R<)x5ldX znQ6Av57oP$vi4`kdg%rK@joY2FvN*1Io9!1S8P7}X)MQ_W?%anR*vT`vTCrUMjty7 zd@7Qv6mzm6vhiw`IOjIi`uyNHWLAoOW75dm(0=R(O0} zBYq>E0T6?0RFtL@d%D__osZ%5CI^QxKVvhsYQ=d5l1d!Z`+RG%#z2O+sn%~`|IeTiDdF;;j;kbLQID%+bc%~eoQu3cXDy2ce7-Y(m0 zL2~m<1_1ugU-dP=jk!YO9>(&m&1}<;kS7y`VS5hal?|QG{b%kh3R+qU z4w96m1To;rRzrBcOO!FKjc{F~7dq&!-7&)A0Kwn=zKarys6B`2(x|7g%bKqF!jo6; zFCB;mJ`KD6F#RN16RP}%c+mCuGW=%Uuu9K_ymd16?EY$b~N7BN3kjFnyBL+-nPY4%Ar=?pr z=QH7?$5X5lp?$wcJzX8fURQs6Cu8XuYIl9sQsyFyWfhP~si=PWGP{xe%ac~Kcr(e4 z)(`3m`0N}^1qC@tX?Zbed7eDCYHNBi7sxMT&cvB?k|25bVC^D$K99SLKL#hz6}!BH zkoY@Xo@fL0AvdAZSQ-(>MvT7n%T)@(2zPu2Vc||c*83tJalBn1d;kifik3EIHsaLe zv0XaYCGq^Fn)#=ixtUWDI(>5;zZj z=2C@sybHA|3#@xMFdKO#psX?hh#bIua%y~|>d_gFWc9@`Fd@_aHou;?QKu*=$2D*> zj-YKhL+-?LVLys9N!J@|CdY#fLkDnQ;nGylQ@0qIxudp|)TQ#m5wU+%cp?zj1Oo_5 zt{4})j9K={=PQ}oc%aBr zw${Ra!Sbxo6@>SQt-ZvJC{YG!271tcj;+vVf(4Eb{qA?qOS?u4s|U_?wEVtei-?cj zLYi(dTZMS5vs4m4XucTacr1k#aD*=|tU?Tc-+0IN7f4w!@C^%R32V7DclkCx*8HVf zsG9oX!wa<@HB|=7W3aSu?K}UCMkU2g`<&&3u@2k7-BWyT7UDp(KKi~SC>o0dUc~p* zyh1t7{vlsJ6MBlTtfXg^OJg$4i8)0UVc`vhTBBt0++cj6_4GY5;V$$&SF2w|xQc%K zeC00ECsMjah1cSwLNN{G!XohjE}t@$j%~hx+IBTLLzA zsIg<(#t9Po40$2>H{l7U<|;SBsMh%U3{SovnvC#hwntF?AbazbR|y<34ZdcVKV z{}AW#Ajj$Ree-yaxo~m7?Xy(t#sez(%HjWDyfh%`UZH~O+JD5++If9;9y6`gp8}ir z0lTwD3ti3AIu*Ppea#}bceFRTm{z1=%<=yvY8aV|fwYT8Q=EW|$}wF~UKA?OO9wY$ z(9?YnC>}`Zvm13Jn=|Vg;O$I=Yc7PqPEPl1UW*uhh*83Z-lFcl?IK=cbr zxW0EbHq0DmBc>y1e6KtipJdI@3xlC2dRlTd+m7lrb$n3WwsMl1Y7X>#Yfv6itvaSR-AQJn3OSOjKu(%x<1zMJGV-I_#N&t#I{8C?NZ#M&D*s$9 z0!hz3pTkcrzeMA*x%~_1r&=!&OCL((^XPcDN!{;Vl6hF|pT!9?n0`IjIBJvyv^p&{ zsE_m5wCE2K8n_3soVNuH-t4!q2op`?`h^Zd(p4@!^PjRk3O`Ws%0DBL?%<;-aUj6zg6_( zuezglqtbd7Kqfr6wI~D_! zU2eE3*J$!kp(AcUeH1_&8EO(TLb*QB!MZamVl(}Wadbp-`Ns5!`%dM**~m|;_ZcqOVazXR+1XvC%8L!be-C(!E~R;` zO5*LfXQ~9nvm2c*c0YHgYFnBHuC^}a`*6K5QOz<+^0m8|tUt63U0m93<+V+%67{dY z_(gFHVLV(7Qfwn?8DU-YU%@Ku0WIWVv#CX{GOd6zwZq(D=0(Cue7cm! z^zHm6A|R(ez40Qn<}H?5&klVnF9CswJ-aG)7h(Z1daUv%)r9fSnjUA2%p%lLMa!Y+ zu?0Dxd*19e-LG4*A$2=9bC@)+oI5W|J*GZ|PCk4w@H^=9ruzF*>+~S1_!N!6k1~>Y zd}7L^Ly(rnTO~}S_n)r+sjx4YW`wU{tsTAmley9UykBi*{r#B>i(TWFmn7I6fNODCAo@Y?DZjcvd)3GvG*O=NM4j<_9m^Yo_sTIi@l;Ie z&5`HmGi01D%lzLoc5D24gSt}aKZBpq9O+^X?|+*=!{>buip5*koYFEBIxNMxHv#fA z+E318o!unG*{Zf#d*Upj`ITwaQ#`9Rt-p&)K6J(+{1Z>S0fFqC*YEaY^St zw=kY$QnJaE{QSgx{LR}x<-X2gskTI_@&zsuOPcwZR>7n##zZqT2J zb0C_+wy-N&diQP`vt`kZ^wY4VA4P0zoBf^tKkdTvG+uEe`)ALW6Cs7arb?7?X&bN5 zaGv|gNYZu05&-p^{%O(%(vJp9KKC3bSJkW{Ne z7v_y})vCgii24>U_Sr()e%Px;JI9}Q0j#8FC%%R=njXnzr`^qgWTU|pC8+(Equ#b_ z7UTG`WioT^*XVHcb3Zt}HZQtDN++YhFV$y~)kfknY4Y}n5I&c7ko+<|B`5qSqU7>}&yF8Gux8xz>^4IobP2q9uwVR2? zj{()`<%d7_-q!<``U0yj=O+d)_=>aynu6SE-_&5dHHfzO{oZ%l70Anh82?<>7W5#D zg&f*3(WKx0Le+ysb%c&%(WmVU;?<>pVq=)_6Q-Pnp4HlJD-G-XxEPJw5SNw~gYI(g zJ%iUndXgdukgR(PJt%L{S_QQj4EDYu)?j)mh_`S&hd55{506G{vRvNOql@;G(^^}0 zz=pil*W`%}6sPKw^XYzK-O1m(Z&KdAZ6X(D7TwO!xfsdfN0P<=&RG1H6>TF*k8gSMmU zKEcQ4Z)aHy)bJ#P|B8pnwSPO_<~pvAMMag?+Wl*i0_9wNkex_8h2~;J$6QA{ONlUy z{VXEel?)yCupIc!?R_JsPR|$~v5WUkS4W*h{dE|#b&5nidlgO2^}Vy;Y5lH!Uk;XJ zgkC&Mc%dS<&e~=v;AgKl;^OC%;6t_@YsuH?qhXVk*Npc|sB)Q=IJ9b8lI$`GJjw?S)1GQnjD|*TX9)-Ms9%- zJhdQRG39<1?b7geIj`>GwX9Ujt0w+-NKYKJ9Z*7Y24?r>{uW!d2ftmqGhOo@bpI}D zY5!eau*%9A?3Bpd+rEZq93`R&i_6GOFxyDJTgiM(jj&rb=TABwCb5|RAi0!HvF;K* zdc=o+Y?k(ORtGb9$Cyhdf_bkcl*MDe-AF)@;(WW|5V2GW!cStJ*KkHH%j}?aHOiGYa-YC+j^* zdg&p5S{BO9VmYj-h0)-AMKW${lQEG+ZpS4mxC9zeFWd=vud;-5+&@xZOxj-ZRK2-Wj><$WU zCXb&a$1NP|7L1u2P?! zsH{OSutEcH(wKFzBMgIYYGw~2a!LgJ>gkyxS`CVXP*f&+xSB?8m`3ud<5!dLKK{#ZAo2Hnr;r%WVn0eY)8qr?^BlKjG+2cX^Q@OJ87YT3VU|Y(^khZ^r zFcC#_u6h>*Tbh4fkaDO9D3U;L>r$iUTm5d?BfUs48Q7)E;1fQk$ui2BY=J+|6fDAB zIu9BD-JP0zKamYBEnk-b6LFwr-Kd$>&jC)xwY9Y`YBN_kqm(vtO%tXJ#eykfvPT9Y z+l?h`F2?}j#4t>Z0kZw(lVRKs(2(*l)F`PzMxe%s16?a4w0N2-lhnf(qGSAvIlg7* z=g0d31V?|R2Cr{LaQ9uWmJY#-D?bJ$#OA3|W>_L$BjiL@qbVLE(2QK8leM|eITvpb zV3{;MpzwbC5aG2h#Y7`5Dm@4%-=(H%(d^bzTZzMoLCcINjU)UShTC~7(k2j;lyT$Y z&di5Evx09M#Uq>XmOHE%@E>(87cdO+{!_2Ipkh)FKbfFNpjnP>^`*Q#sc9JArpY&~ z*j_yqms~cElse_+S+(Jfpp=u}$-Mu9SYT5^N4cPPxW2{e)4o)eI1Z8h6y+phch@o8 zcAq+bKxd9arf{_km5?21wSd3K{+YKS^mwk5<23KvXG|>wDP01MCY8z9y~oBtvaDot zp^AQk^<)x)JT35w6Uy{&4cwEb5RMWx^w+EmZi#_k?EAQGj#0rE6?wI_N#Nnabl^tH z(t2gA?{|OBzLZl{6|YtGNm)q=yh`r311p*{D#ZIi~Ng?axb zSL*pw0*EU!Bo_nsvc4v#Wj`UKz%ph0DxC4z~;C3|@OY z9O9m;%=Op?38f}BQKr8dHqoz>fGS}2tl{)m-;T%;ce#_zn zI3*=wLWMt1joRyIT@#E$0yo41&nPZaC`y;b{Z&}8$m*PP$*FKt&RSE z2RWFECfm(x^+cX&7Cm`gn|K}l+kM5yny)gvZ)FI1_3>|WPX-D~`Gf5%d6YN(&G#(Y+zCVwGBgcQ&#m&y zZ>M>&2|O5lJehf1;qu$Rr3b2oPSKQnZg`trqmNla6~{;{anXe3#WF%NbqJSh)l=MT zI9pQl^hiKMs`-#1cL~HhfW0gQk0mPdr@cLu`Q~e?J;-FtM-iSs_MahTej?r}|Af3q6eK=AJ}_TC zXBU^)q$JnuIww(>On&XiU9g}qtjkEDh>sK#la!aO(27*pI~iD=FPT4R*4rD&9ix;3 zFJAB~VsvR~NiLN;vZ$=pv(wkV*`|b3gSl^Z;mtlj10V9Ey^ANqudzjv=?p+NcD#}% zt-lfQULUwsM(_>rD5@il=aUp0Eh+XRW?Q~5=fP+59Y))G81&SSZt}}1Uedgf zG-Z*)_b}kYxO*+G~uwVH-r;52_HJzs}|)SVz5!TL74 z2k&=Z{0{WxUqcCapI>zRX>gKCr+N|+9sNr9H!e!iG(V*uQ8PI~310YdQ%Z>2<{D_E z)wX=CyhLfNq};Dp^Zn{h^hV@{p!EDwyiHTeT7cx&_ES>mEbI1ZwmS;E`C@~wT;#Lk zTJ()SN}fKU35PmEP8b@9_F5wl>xS~M;wuGyzZ2rM4v`+9rZQ#(1{7bzN<5j3O~}BH z1g-|y<4?02QelAg@YrlcrJo?vj6I-Qw!S6nuZY&MDr_k$14c`uAV3W{ZZpZMnIw?fhq zh(nTPa7Jj0zaJb1Q_@M!NSMKqEa;V~Uv2^}`1iM$r@&fVZjP%f-ys=k{I{i$+B4_7 zJ#4Wb7*jstw;NuPEGy_xsE?(3_w4G(??+lGpi zQD4=`TlN(Wl8*`Byw;BP_~gLmQ(|f=nd>2iBMXB4b>bp@L22Xya+>G#tmGeo&u+=| zyY8qr43gAInc4p$0R>OIHr&P8S-IVcFtxlFxY;kDi&A=eWN@^!w1QWwU+(tJL^fJ3 zmtoJQo?ToJ>vgDxu4PMwa(q%LH{tBmOr)`u8y8SKDO*p?8TR*x*5guf) zP(I{}(^QF5eV@$EQMe>?7vUrY22RW2wJ8Cc;OA*y<@SjGYn}1OF~^a3b2+27rMQwLIadq(F zv^7vHn}YqtC|0dbBlzWaFS`&G@s6MxuBx*-Z}pAQV4el1!pGst;UYdFZ&XCrlPRdD z>KE4gIi}fN@3xdhbwTCb zj69lL-(OCW-}Ei$0s?D`D?ukKdf^)38)zdUuq4~@-BweDV%%o`Xk|pMX3UE|Iye)q zAtco~?IwXYe@UbA)*(BDlmD6?Uh--^2bGuSjO%#ut@@{C(sVnm`%X>fOX?Qhv}T_; zY&H&(htaZ{ANY0c;qPu{4QtF3GV0=QSy*VP5BiT@1>IubaOvgJ(oy#m>P2*vV{oV~ z#v+an$Cgp6wEsJ6T(I&#n{Kx(QKVTWO%`w3X4zsO4!5f2K)>-q?-I4=tchReIX)@hYZ^sa);^&)4I5u>#~SFexJh!C%ONfA(+DT$YB<) zH_RPg>;+d)*P)b+h4I*QF4h3s|EcV(!=n1SJ$?p;ZV*J8Aw@}Pi9uQr0qGW0O1gUp zVJJ~a1!)OsC8R+bL_kHl8>FS{?)kmbH*iv-4TI!ql*5dWl5)!vBcvZpf4~7qFzW3GT{uu@q znAIN!|49)P=yu>4|I7=gYngZL@4Q4G*eTP47XHK`=;Z=>-ik6n? zNmEO6K5k}aO2j>Q>)H>yG@J-}&G9jMtL(A|`3}s2)%-(t4=h#o%7M`8F_PCyhWLyuQK*RcU#8UEJ2}y92C5@00mkY31GGX^DNY z@4RquUGrf7Aq4q2b4y8jyZ|lPNxsCY_;~+Ez#=Q1LS6uV+10Agm1N#yoq!%j+U zv+(dThTK0GWcm^-waA5!ALJ0(aVPAZPhsA)cr8{)FTL{1lyLu}Kd^=dRP!bEXeGf; z)sNQIDL>@Kbmb6gd_zC0ug_u1V_nNLCPYZ+^isNb8<`yw6aGfN1vDft1*%3Gt7B<} zg|V)Vyo)v!#8&zNgR?+W(m*b4vQKGL32=IrRp2_f?oSE~+%R=vdEopX<*&kbmPR|c= zJ=O{3iJH}1C2~YK&8Zb!a^OLk{0%QCXPCU_%;_t{ACTlwq{uKHU;1S}%;;Pw=^uy( zb(<`OGgsq1$PVPD?hDlEPtVo~5zUzzIENC=7Ro*7Hk9?3Iw{|&p3^W+IcFNU?A=M@^N zzj9?$M`___Ec%v#NlVa^If`15qBCkwY3o*KMK(ir0>Nzs1qD8pxmBn;*O3yPmD|1E zZX~x9`(tWi_KvenTcdC4_~D1z>5zSYY-krFhcFT?LT&z)8b$B!F`hFKf zey{#=7(Ove|H1PSY)|9qi)0a!fSb!Avl9Ge3*mB5gATGPHd0WDZT5rRAt^gJXK9Eu zO5+~r?5te;(+L~_1H<@-#UB+m`%PB2g-wng-k{{$FA$$%+(%lXdco@BOlvt*h0PZ+ZvXf)S_u*d1Sr&x5Mk3+Vm(QDe<1Ue^==d z2Lj=%BLH(pWGALKM2vJ(_4PTsb=!%cHq#vs} zYwc5u8{V~5p)V&~N0vR~@BTBC#Rh*E*@zOYROCvN62K4nw41IdXM5Gd1%6H(At#D= zkmfTACs7Q3t1SzZA?rX4gopSiFw0tM<FFX8O3?IUWToF{ynepfZXz; z%wno;d*{jD)-#x}EEN?Tw)596`%UqX_3o2tyLx^&FFqE$iWw4~JUhOu$UIyi7XXsQ z`=2LUlCiTfGqVw)h`-6a{*(&t?GabSJ#yV>rn5vNP?tN8*^i9*YOk5~UbwYYwN+nt z?doU+gAlL_r_)d_dOgV8(Y1g&n?it&l?=a9oRouHr%1|o9W(^6co}tm?1js#3UafHX^6z6fGpLN&!9)W_QJ(J>8E2<+!3< z2Ufp}mc8|{$LC}`b@C6&=l8!x?ahD5dwcVUv|+IdvUta9FN|E?nEAt0u}pkLcYoVR z_V)&>p04ml(}UM%1r&J!j3E}|%Nkjc$gWEFpTw&ZIOK2^^)uhL9%0bujv)k@R72F% zvxi;wk8jr#`Mg>h?Q5^!4>})F+)|);)uT=%*Y|{MllAt!%6-k^rULSl zTiVR*L4CjF4^pRBzdUc0Aoynf+Rkm}DMl%}fPSw=6ZY2!a^Dj{HU`*{bSQQk?^qY9 zs_B0BiC#!ee4OI>7yG=qF9?Fvx6i4o*}uzGj(2|T&!#x(n@08@*!M>n0%tIIM1-sy zox(=8SwRAH4~XPOQvYZl^bPdaIX!|WiY;CSFE5rkZrpu}?o5OCUSLbW)j>Z*6J*8< zfXb;u6lGsC!zQyg!!KY8gBl6fa^W`t2a7cV%0eG^c z!|k$`9dSkt-a;fFBxU~+d_gm+27UeVa>j7F;8OdJM;8;5rYHKj-ZzX0Q$Hnp)9fo> zqV1!kD7Mk0{cAJ+c`SlGriU4fe35@feqRfOk`libl}TPCpZwaEd7Po{-1f{?UB!pt zhJHE>k{a>2b@{qLG2vm;-&Fe8ezRAGnm+POs-boHDFXo{W){nQo&L+F>|7itqC zn<^vlNB}gGnVA{KkrMj4YehWtf6azTObL0MqNj@-CQvK!XPK2I1VK-4=#i+mb?;b_ znQ`Nn*VUK=C{c8-+tqi{AI|$v-Zvg>4~U(NPe!8)-dAjN^r$e_6&J#mzvJYo!|wMb zt}_3n@?`I?RKG;|_GHA4RSVrn&=S=2jQM2WFsxsuQm52mcvh0H0-E-~3hNlZ&i@9j zDDm-*{LkHn!mG}_u9fVZqfnfzi;UC8ME&tqTdIj?YN9#qtWOIM&}ekGObR4pS^XS_ zOALKagN1|!Pt^yD*u#I#oL0M^JzKj@9b3@fh-+$AYHFo>j3;bbc;nw+Lwx**x^4~+ zyz-l!mS$mviTlx{2($|Ow6o>iowZ-^QD8PlP9HC%N0p;#NMK@}+`B_E|8-I&$Z!>wvVP?LZMAVeyjU#T7C<4rVB}G zlRO&#Btf6ZKpwUg&5sJk4&Gl0E*G$vk(u4BfhjhUHjX!#yVwtZ4ZjnpNYOzr``Vp9 z;PIWL*w>kth;Jn&AZbxJYy~c;tA_<{4O7n`)zN`eRr6S9hH~hCms~C(_Oz>LqNR*8 z;FhUELUhyExHY2B)wH>iDqG>#fd77qC9oi>9KJW`!Dj-^&!b|9f19+G3kVEXmf}{>abpy`e;lx+NsoaQ1 zXRY2f?dvpdB^=zj7uy_FOdvlU!}G#&xwp24%I7L~<;Z-!NdrUJhai^4ra%&K0~BvX_3zSu8G7_!J`4-{L0hx- zn`X)MAyYc`AP;}s&NiFDRs$m}S`w7W%h{EccZ9LHv}$UZWw&eO7n2f1J@IXAF^MY1 zMvj^D?xMtEPAPFBW&AI$x(R4Jz%%e-wdwZ8l=AqUH`*JZ*{=gY#KrF2agJWdZf=ZQ zH+OwkJYuxhf~^0|299)QfwfA?^p2Gn3eU!x^xqif+^9-oaS6Eo?;%weJWl`P@Ho-v z;m6)IH_v}tnWP|s6G=lkZo_D(!u?C0>W{CvX)Eu49TnHk$t0p;)icK3VsA zlmFG+^1siD%fp{mV=rCkf93Y2qv9S_@Jrh@O&bK=KPPYiQc5q7Ks`~Fu9Nd2swG^BnS0>~;mNe~oATEYQ5`Up*KnDuX>rn9Yp^_4f8MFsLqUP4g+l zes?XAW_walT&z&5K{j^rX?)^^=G_xN7e&eUq=|`%+_!FpY8Se@i#x_`&Y6rdeQ!$~ z&)(YhoSJd*Vn=VCZyB$3#?qssqFmi+K@)yq0dg2RCdS>Jmb4XKP93Af<~ZFzU~X=X zA2OIJ#mA@dL*aGa`WTPX_mk5V&<=8H>KBufCdVfyA~$lRRWBMx&*-$xe*UPoDK0KN z^!_!G%`sxTF%VuN*joqM9#0%a`68833m zk5_BLwD95%T!3PP$7eTZU_Vl-2tb27qgHWqVAj{!UHliE4_lt3y}f-F zR74LkD)DsZhFcu(%o$Wazd=b!scB+DEGsKp+PY-1w6uhdjBG7yz9eL3W>$_^NOGKM ziUnAO*{?5%GnjOhg|kabfR%{H zcK7Z?wh1|$m|2Fw#l>Z`()N+xi>)_C6HJ(*|CxG481Ni1tpEf{nb{2Nm_|v<(0f!n zPDNR#`{b3#d)k&b#0?H==H}*R0`@4dP)mVU&LF@s9r_dTeW=>p1)a%y=MEJpt*@x6 zN+5LS&gtQW!LW# z;|@?oDy0vMLEciMs*eF!o-T*S6M~>Pv$DXR%MoThWI{0aiv+?i{f?g;nEe&tAK!WP*mR44b)SuMiPfrRq zNE+PNC_jDvEa>@X)H5zIcj4!vV{SnKK5i(CF1B;NK`EzoK=z6l;^yXV0jsVgkN_=l z3Mc?LKR-V%t>?w^LHZgY4ycM3+}^H$&PEGbbW>dZ-{0R|Sru4iUFeGII^JDiWWU@goK3TOiWvu1(VnR(IJc+0aY@gqC$$z&&>q~W8=-wwuUad zDdkY$kufdK7m~IdIx{^dTKRhD%=esZq@C5``Xe*5mwn0nsc}F&qCg=)1UEPSdr6P4 z=O_EG)6!z(LUCDTWSF)akC=FPcm%9EiSd*+>p;8#s)z|YKqJE$q)FcX*%-`{N1$+J zdwP17B>{ymc(m{l*HBxVd`w*2^@nNVb6-%V4FA2ElVnF&od2kyKkolj$A8rH{}#{x z^>*41w*l#h{B+;mp~u2~Ika~uYPmR33X7UxFov?=i~AiGcbovs?E+XsblN|wvHp?t z_AP-NIocTYFUrDQB{yS`d*aTs5P;&w zX}p(Y6%?cZdr&|g6Q);GRj|Fb7P+(Ite~uH1uB%$ir8KA+?u?(W~Q(>o`UHF;6IN6 z&kn;sbDsN((*O#O9xpIop#k}u6e_nFLV!Z57Jy3q#d{Yab9rnP78V9Uz(-*a9w`Gd zFi@u2VdB}o487=cq>2hYMj5=eOunT{(>I?@Z3{df6~G9$RcA~q2+LZAh6F7MDN0I8 z^L_ly3K|-uH2h{UI7BoS8^22+6i`j|_mb40HS*xNd;9x>;OndIk}-^TX_}gv#9bHh zUozgstul%Q#?7j(rh&>GrzHI^Pgafr$=DeL1i&3#0CiCvKZ62(HtnEa1Tlt;h%inl z)ZzK|_6{EC7@@?0Hcr9iDNELiP6($RUMWu~qDW45Zsaf%X#F-_^Pz0*YX12{{% zl+UNuGab9;o#ttJdOCyxe!T#&wjF@|9SYWEtw828Xjf%W@9FS)>w^vt?@JuHa&azvEa<26 zP3ZY_!wpbq)&M~00Qi~^cnlyBDEiu&}V+ z9lQfM3mgugo$rX&>*F_Tz?UN*1pd2Uo14q-5B5bYk9{S?Y2J(M4x7ORZ3KwIu>5?k zQuAgEvwWiXIvriq;^Grb2FJ<@D{DNY1At>9GBPqKPnG%*L`y+pdQoD)#1qV@cU_87 zWF#Yt!#!dWuz;$ckA;+%3q+6Akpa2K)<~C%1i=wPnU!^|{md7%Xo2oF6H&cY4=;R_ zZwZQx8q~QLcDSK*b#;$dbK(R56A6xk^LF6u_}G9wOhLgzoFEKs)G;!09dv>BQldTv zwu~{2_4l+^P;n7OLN5wI7{_D0>p8o()c3`C4hxe2F-iME0{v*+LY>iiFMbdPHI0ny zYDVk4wqI^HUoipKX#+|Zq8Lpx_p9&`jR(jWLDuDCQs+(p?)Cu2Oc8aUyLay%M!Faz zT;Z6+8weZl!U&M*KoF)5B>;<20y=0H$Pr>dt|MF*Xzq4?ybyplFoE#zgMZL(I88)`ZHPq&Y<$}VNKsfWcPs}j6GY=4^VI`fI?wJ9Aq)HVvY=+ z+tUta^Bo{I6c!e){>&$%q@rR??yKaa!Oe=w{s7;x$ijGr2joDq0xTi^aZB?S#!GBpU7lmQ>YCnfESq~dy&kPrq6M8Zt# zJv%@j4prIfr%8JBT9P0U*`4^7Zt2{Z*qyD+^q-eL|Bqmexez)JD%8ZDwRNcc1A#wP MMGb}0dln)80p?qS>;M1& diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index e2fdc332..187e6478 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -1,12 +1,10 @@ -Selected edges [ 0 1 2 3 4 15 16 23 25 26 27 28 29] -Estimated memories [2097152 16777216 1703936 872415232 1572864 17825792 2883584 12582912 - 2883584 11534336 2621440 436207616 2621440 2684354560 4194304 2415919104 - 2883584 6291456 1310720 33554432 3670016 285212672 2359296 33554432 - 3670016 2147483648] -Lin fit: [7.42866317e-09 9.68384717e-04] -Log fit: [ 1.01913057 -19.32655284] +Selected edges [ 8 15 17 18 23 24] +Estimated memories [7340032 1342177280 3145728 1207959552 3145728 2281701376 6291456 37748736 + 5767168 23068672 2883584 22548578304] +Lin fit: [7.87117583e-09 5.93797914e-03] +Log fit: [ 1.02913807 -19.47655995] ===Results=== -Total time: 35.446 -Simulator fitted flops: 0.24741 G -Matmul flops: 414.19 G -Simulator optimality: 0.000597333645279433 +Total time: 60.594 +Simulator fitted flops: 0.28745 G +Matmul flops: 511.87 G +Simulator optimality: 0.0005615634849012753 From ebf842a7de2f7efb718ce171adf5692e10794a3b Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 21:35:39 -0500 Subject: [PATCH 073/104] [jlse-run] add summation through mkl to mkl backend --- qtensor/ProcessingFrameworks.py | 85 +++++++++++++++++++++++---- qtensor/tests/test_bucket_backends.py | 2 +- 2 files changed, 75 insertions(+), 12 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 0e2d284a..11c2d627 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -1,4 +1,5 @@ import numpy as np +from functools import reduce import lazy_import from qtree import np_framework from qtree import optimizer as opt @@ -30,6 +31,7 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): def get_result_data(self, result): raise NotImplementedError + class NumpyBackend(BucketBackend): def __init__(self): super().__init__() @@ -45,6 +47,7 @@ def get_sliced_buckets(self, buckets, data_dict, slice_dict): def get_result_data(self, result): return result.data + class ExaTnBackend(BucketBackend): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -61,6 +64,7 @@ def process_bucket(self, bucket, no_sum=False): def get_sliced_buckets(self, buckets, data_dict, slice_dict): return exatn_framework.get_sliced_exatn_buckets(buckets, data_dict, slice_dict) + class CMKLExtendedBackend(BucketBackend): def get_sliced_buckets(self, buckets, data_dict, slice_dict): return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) @@ -69,7 +73,9 @@ def process_bucket(self, bucket, no_sum=False): result_indices = bucket[0].indices result_data = bucket[0].data - for tensor in bucket[1:]: + # -- Contract first n-1 bucketns + def merge_with_result(result_data, result_indices, tensor): + # ---- Prepare inputs: transpose + reshape ixa, ixb = result_indices, tensor.indices common_ids = sorted(list(set.intersection(set(ixa), set(ixb))), key=int) distinct_a = [x for x in ixa if x not in common_ids] @@ -81,11 +87,12 @@ def process_bucket(self, bucket, no_sum=False): n, m, k = 2**len(common_ids), 2**len(distinct_a), 2**len(distinct_b) a = a.reshape(n, m) b = b.reshape(n, k) + # ---- c = np.empty((n, m, k), dtype=np.complex128) tcontract.mkl_contract_complex(a, b, c) - # Merge and sort indices and shapes + # ---- Post-process output result_indices = tuple(sorted( set(result_indices + tensor.indices), key=int) @@ -95,24 +102,80 @@ def process_bucket(self, bucket, no_sum=False): transp_c = [ixc.index(x) for x in result_indices] result_data = c.reshape(*[2 for _ in result_indices]) result_data = result_data.transpose(transp_c) + return result_data, result_indices + # ---- + + for tensor in bucket[1:-1]: + result_data, result_indices = merge_with_result(result_data, result_indices, tensor) + # -- + if len(result_indices) > 0: - if not no_sum: # trim first index - first_index, *result_indices = result_indices - else: - first_index, *_ = result_indices - tag = first_index.identity + tag = result_indices[0].identity else: tag = 'f' - result_indices = [] - # reduce if no_sum: + if len(bucket)>1: + last_tensor = bucket[-1] + result_data, result_indices = merge_with_result(result_data, result_indices, last_tensor) + result = opt.Tensor(f'E{tag}', result_indices, data=result_data) - else: - result = opt.Tensor(f'E{tag}', result_indices, + return result + + if len(bucket)<2: + result = opt.Tensor(f'E{tag}', result_indices[1:], data=np.sum(result_data, axis=0)) + return result + last_tensor = bucket[-1] + + # -- Contract with summation + ixa, ixb = result_indices, last_tensor.indices + # ---- Prepare inputs: transpose + reshape + k, fm = result_indices[:1], result_indices[1:] + fn = last_tensor.indices[1:] + + f = tuple(sorted(list(set.intersection(set(fm), set(fn))), key=int)) + # Sets don't store order, so use lists. Do we need order here? + m = tuple([x for x in fm if x not in f]) + n = tuple([x for x in fn if x not in f]) + transp_a = [ixa.index(x) for x in k+f+m] + transp_b = [ixb.index(x) for x in k+f+n] + a = result_data.transpose(transp_a) + b = last_tensor.data.transpose(transp_b) + shapes_a = {i:s for i,s in zip(k+f+m, a.shape)} + shapes_b = {i:s for i,s in zip(k+f+n, b.shape)} + shapes = {**shapes_b, **shapes_a} + print(f'{shapes=}') + K, F, M, N = [reduce(np.multiply, (shapes[i] for i in x), 1) for x in (k, f, m, n)] + print(f'{a.shape=} {b.shape=}') + a = a.reshape(K, F, M) + b = b.reshape(K, F, N) + # ---- + + # \sum_k A_{kfm} * B_{kfn} = C_{fmn} + c = np.empty((F, M, N), dtype=np.complex128) + tcontract.mkl_contract_sum(a, b, c) + c_einsum = np.einsum('kfm, kfn -> fmn', a, b) + assert np.allclose(c_einsum, c) + + # ---- Post-process output + result_indices = tuple(sorted( + set(result_indices + last_tensor.indices), + key=int) + ) + print(f'{result_indices=}, {k=} {f=}') + assert result_indices[0] == k[0], 'Broken ordering, please report' + result_indices = result_indices[1:] + ixc = f + m + n + assert len(result_indices) == len(ixc), 'Wrong transposition, please submit an issue' + result_data = c.reshape([shapes[i] for i in ixc]) + transp_c = [ixc.index(x) for x in result_indices] + result_data = result_data.transpose(transp_c) + # ---- + # -- + result = opt.Tensor(f'E{tag}', result_indices, data=result_data) return result def get_result_data(self, result): diff --git a/qtensor/tests/test_bucket_backends.py b/qtensor/tests/test_bucket_backends.py index ded2ed41..f0d5aeb9 100644 --- a/qtensor/tests/test_bucket_backends.py +++ b/qtensor/tests/test_bucket_backends.py @@ -17,7 +17,7 @@ def test_problem(): G = nx.from_numpy_matrix(w) G = nx.random_regular_graph(3, 18) - gamma, beta = [np.pi/3], [np.pi/2] + gamma, beta = [np.pi/3]*2, [np.pi/2]*2 yield G, gamma, beta @pytest.fixture(scope='module') From 717a1864a02b441a5bd4fa747e1bdacd7283ccf9 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Fri, 9 Oct 2020 21:40:49 -0500 Subject: [PATCH 074/104] [jlse-run] remove debugging prints --- qtensor/ProcessingFrameworks.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index 11c2d627..e4cb61b0 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -147,9 +147,7 @@ def merge_with_result(result_data, result_indices, tensor): shapes_a = {i:s for i,s in zip(k+f+m, a.shape)} shapes_b = {i:s for i,s in zip(k+f+n, b.shape)} shapes = {**shapes_b, **shapes_a} - print(f'{shapes=}') K, F, M, N = [reduce(np.multiply, (shapes[i] for i in x), 1) for x in (k, f, m, n)] - print(f'{a.shape=} {b.shape=}') a = a.reshape(K, F, M) b = b.reshape(K, F, N) # ---- @@ -165,7 +163,6 @@ def merge_with_result(result_data, result_indices, tensor): set(result_indices + last_tensor.indices), key=int) ) - print(f'{result_indices=}, {k=} {f=}') assert result_indices[0] == k[0], 'Broken ordering, please report' result_indices = result_indices[1:] ixc = f + m + n From edfac70baa81a532cff1991d3fbe6104817e5eb6 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Sat, 10 Oct 2020 03:44:52 +0000 Subject: [PATCH 075/104] [jlse-results] for `[jlse-run] remove debugging prints` --- run/automake/results/result.md | 12 +- run/automake/results/time_vs_flops.png | Bin 39974 -> 39976 bytes run/automake/results/time_vs_flops.txt | 13064 ++++++++++++++++++++++- 3 files changed, 13064 insertions(+), 12 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 7d4a36a4..cef42cda 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 60.594 -Simulator fitted flops: 0.28745 G -Matmul flops: 511.87 G -Simulator optimality: 0.0005615634849012753 +Total time: 140.53 +Simulator fitted flops: 0.20057 G +Matmul flops: 512.7 G +Simulator optimality: 0.0003912015764593512 \n \n Backend used: mkl (contraction only) \n ### Performance plot: -![](https://asset.cml.dev/19f9cd5cdf6920673891c0e807de4360b4528131) +![](https://asset.cml.dev/ff10063884eabb760241ae8236faeccc635c0205) \n -Run date: Fri Oct 9 17:28:27 UTC 2020 +Run date: Sat Oct 10 03:44:49 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index bc21ed7a87ea3c00dd6df91c7940c134b202a56f..475d6aa08fb665214eb5e42047ce0f9633519ffd 100644 GIT binary patch literal 39976 zcmeFYbyQW~yDz*c>6R{Ol?DN6X_Qh?M7pFqH!Vm?hjfRCNXMo-M7q1XyX(&F_nhDF z-1FY|j(3cAjQiJR493E}opY@@*PPGuiDw4AR+7cWAjg0}AlNVEq~1axh@T-4gaxz* z;1k}#nH6wBwwHMM4h{UcqZtN*f1}&TeYA%_aP{E72tUMfO~HrH9i-J9RIH60ob~KJ zK`iwgY%HuDEKKzuIeoITH?_9nVdrA!VSQxc;9w)j!SV0!*{$u2IX*+Uq#%$-ke5>8 z@1V&$vo6qgtF!lq=Y~w^A0Oc{k;y^cm{(N2_+$%9PhV0gP-j!m{~W8T_z>$6GTk*@ zCh16C)w?(Ou|v5-cPDSepN>BLlUWtB^pzDo!4M6vG@|G1dYMzw9~n!Ji6{E9t}s}> zFFBg$Jo&|q4afZS%JHRpAo!7+kqdM{k^(>3mQNsG!6$8GC@=8w@gtvSK_1i5(GeIw zgh+$0mqHNJ;r~DR4dfyCI*143Gx(OyRtDiU_?DsX@&9f7e_+Bo2sR(IaTkrto0>kM z5^`!Y`at=p%!tK zsv*PAfIuk)op#Vjy*>*%ZarKaqZEqkZvXR*rFy5dTTVeC#KC?FTV#A-mCG#p2)0{56ciP6RC1NB#EB$a3o~+!$*KS2vglfPDD1%^ zirVmZ0mc7o0a>8b&MKvedXPT1(albRFC)92hY$@~4vz5NB>pnb+bcPKc$1a*{~t>- zGpe6tlek>x?>Z%L6um;bI`gw`2y&30V*b0rgUCf`gl{-Cp|tLI0t$%_H;F5hZK)v6 zI}^4; z5k1dmovXKg=Kt>MYBuC9(Qp6CG(NHG3O z%RA2La%9*ic7Ic8Rs;IgJc8<;SyZhMJZAG7R{G+&y#Q_>PfN}Zx z`FW2M5D<_GIy^QXFGOitKjtzUdCXqDLSR+B8cS1W?BOADdV1=;43;fKlbxiHG&y6- z+McyiByqFaKQ+}9x&gmz4hm3m+GQtr-3@Pe)vOY8go|#`vh8kQib&jQp5B^vA`EOg zEFD6NCoRN_rY-m?EhZ70uJ;@JOFwl#-~LsGc#Nv!ekk21eB5KSFW`0OZq%1NxpMlA zY3eR3k#{?@Npg0jN%OaRJnZ!jsP|VNy7%#a zuB&TkP()p~l{!&CG?rR0Ioh^QD=)5ES|q@`LF|10{{6|$WOO%sZ3x(bepx|!t9I3D z6=p=O{@CIC4H#QUe1O8sfU&$}7CF%8&FJHhK{n~>Sv%gpFP5N$CZ@CdJ2fqkodh#Ub z?)JLO^>nMrT)QZ4H2;JBoXa}Zc>VFw(L|jK&-Qqc*qjl3<;z>wfBJQ#RrX+LIFzVC zSqz&?*x;vD&?a@$)|Od=X}SCfc(TcIQ^JIVgp;k&U>_eunJ~((&j?7Q&rI;z+uKJ* zMmSwhHqa{7K~}r9t6jXiUi3x{S#IzMZRr!cvo)M%Y}OZqSWOgr(}DyUc6)pb?_elL zo{UQ$nTUu;A&D=vw3Pembh|Ujx?$2#?{|ryJDM5@0=k_zS@Fl$`xKqdvnaS?79*F@ z8wA4$HU|sM7w!#N+RcUmQ)nx%2|LSD3waFWaeikI=$UwD{7PZyu#ejiop1P~2tlGa0 zNLWB{75}6Q(zG`3v!*Iro85|HXAUfKrGB zh3<=N%nD`pMyU=^!V$rxxYsSqjHl4M_u@uO!uNG02a@{HuApao01z0oDW5}JTsnTv z{e1fT-hHC{$UN?H9}QhFY% z5uzoswY5-6durj{D6`1%7bnSSno#=StUJXn=jB-~6IWm>EAr-)F_o5WQ1ktoRJ^}C z7?RiJYfa9)6}J8Jct)P7e7c{bR|PzI0U|Me5L>8ZME53|;JTgQ#775Q(6X`{ZzVs! zz1|s@!}IxPOn;}9{GxPOT&SBgBmakxW({p0<9TX#$BIa+pXIbDO{xP=b@3x7mOzs- zYg{YYCydetNVEg14zJ%nBZg&_&-$lNWm_Y&T(O4P5XQOi*)dU59Y%4{$h6Y!WY~S?HB!fM@;rqDoR3SUCF=czx|Fp zdx=m?^zMO-6hmcI$}T_hd({>WPlV;pFVooLI=D1mSV#{@*A<`S#q-oWOW2-(DrE~~ zVSbMpLG#2gHJ`#LBsw}e`rX}~_4DV~kdP2Lepx9g&(C7W2)+L4QJE!NWIm!75UV+Ay#O0k*umtK#wLa7U#K61xyy+B{$11W$b$}wjzdNM z=4fS!&ag(tHRXrJgELyTrKma zxnztwp4S?FVy0B5a10~G6@cVJOM9$*=g_DpW2=@Ysz_B)L&Yd|0Iju zB>&GKe$%a-j)!WAIPLQ}9YL>5NxA5T3ZkIt@Guq0w`SMe7Ibi&MzOfRQx;0A118}= zqJiXeWpgNhO8^adr}I2ECW(Zd9Y{cj((qZx4!ybEmtkwHccZ08O7$QvtYwGynf-Sj zIL%Ey+b%C8nui?lo8Y-01+}C}g~2hj9I3}Sm8J~>tF{GYI1TQ8Jt}i5>7>(3_hGzZ z@NN9f{yn*n%g!{aR!!4!f9v}X(lzht{)Q%mCKZ*?>5p?e0u1hJUD#NU0HZZ-l`;_I49s6xSe84hD@#C}a$wL?`G`j}3& zw!$u@B}LXn+Il8cax8!M^UU$+=+Yz%6_ynP7O*$ohMnN!C*;A?Z@&H$gJkOgc4ET7 z@a*`m$n;AUx{PfQ5Z=~SdGU~rjpQ8RV9LBGM?Q{S)9dy$(h9zc0^1W6_mbPyECjsq z)L^T}FD}X^>_U#mc8nSu3UNH|-KtiJF&!O)G#w)26q7>gJ)|?=%%C=v7<3*1=mhu< zc(Hmxsv0(EtUZ_*Uf{1Xo%7W=o4x9T5fxqT%c@0x4wr2<-0Et}8w9B^anQE;3+gav zFUKz_C6)OibJX8*W+Z(a#2{*}oB9j7lYQJYj|Y4dH}m%{RhMgQYVQmrGc^@Zo1Eu8 z;_?e?z9uJADlieUsQxms3!Syfb>5$I*ckA(?-K}c+#Zuo&jC+_2__T-DDfhJuj_mt zN#CjLsAY!7FE{1%!F4mz$EgvT#f!LFb&hkM5W)*4K_`4)< z6Y|{s!e*@}p|xUMdwSoE*3~1Q=BIM_PV^*zR+PV2YA3H7=jVL7P@m zZ$~Vf24W|;{pzr?SPo!0fc_S{U)uEv?brP;!1@&KfdBsktfQvzV14Egox(dg8Y@Uq zySUPSB|rR9?%-%!$9l15yTPc{f6YpNfCoGLwaEC?RMxnC2Yaplpo%|A1pIgX0P4hhBNN4HNS7&tNNoq-(ykmg-E@Bf=%`>x}9}=xsYH?5HBp? zedS76T`hWd!puRUX@g<&s!S&fudp_a?y<4b4myERfXA= z6~n0L=#uGOfD6G)K!SpTxNb>A#-?cs{zVCre*W~Czr~4V;|aT8_tM>bOQ>qzeFw{f z_w8DEHP?1Q7m@Yy)vHXvWPfSb3mznnZ+|-78kMD7vdjaZmd|>w2VmoHSOQqbpG5CS z`$VVFyofPbHPP-bP}K?|trFxm+8l6o9UXb+-H#O)pxa{w7E|RxJv|Bl|4WODBhbr+ z83J&IMgA;sX-VJA%#2jT)d5+9jgD^c_c~H7RY!P$|AUQD%)1-o=Y66`kv|>+kPYY! z78y5#%}!bxzuk&lEW6g9Kz#ZiKYr*=m7B(V`!-mlBR1!L+{=Uswk<=$?kpy39>?oC z$=3aJ^kBw5B7tnuDacnI>{GD6myfCHw_H6vMK3QeX+7p!*WoZ`M;(SE6Y_b#F`!Kf zdLT|JM6B>#4yM51KDA5PWHSU{aOA}LaWj2*lOG8n(QSl_x955@&q1)i*RMf^2Xx-2 zETQ%8_lLO47jccg#;M+YDfH9qk(HU$O{&GyyKwsJjf5%#&o*`;Ahlne^0er@jVd`X zxU>VYmjmN-0Xz#vPAs32A78UKkb=ZdbBiW=gSS^BFWErg^%pYlYD=SpP@-Gc=~2!@ z>4h&D+7_6U=x8(G;AnTsZNFKOU;HJy!v-W=6r=IB!1b1)0iFw=fk$Mxa;fKZX2+to z@NHC4_6ryF;WBu5Ck1B+a2!7smiwI?R#rD@Z)Gfynz+SO6c^V@^x?&uNPJ}LY7{<; z&t-iW&gRnkU*MTYitXRXRZ~fJKp<|o86=FyDZE^dksFS2PIfW#RmERn2w$@b-wS8w z!W_4yGvh!@IV^LBU!R%&EPh_Yq`I>G!7g95@h{NPLFjv zSA_De&FufV?-Q4phqIyiEw;WwQewfpNizb$B@=dtw8d84>)r>(C94ra##}^&7XH{@ z$aq3%=clcBDxurM%tL7}7zE)|h1fe#?wQTL)7$%7eyG!j*KgxxXFuE{;GBgic6Dkk zrY~MwPx4yZDV!rSsarPF7IShuzA3nDlWFwq7_e3+2h`=}FgzlWd^0v!iUW?a>G1G_ z9x%Db4+)Z^YU48cUGCf;%)YodJ|26woSz^1nnm(oKvwHGm%D7DV>J#?iatS1fSu=W zm?T0U2GRZm6p-Kx81VBQTz#ciEzyH0^9>>krweMYA3CH|n-f56hotws;pA zc}1K5YHW{RdZpv`&(6(onwexTQ>)^pXD|e3LGgo9>cC1aVdFnC|@3nFV zzB8RROJ&9~V{1e*G8w(~?LwsDLA|~#894=&Z^ocMurJ|kDCoi56#2}zKBl516&0>e z4g%1~fKt@`@I2bLUbfr*4<0}MY%ZH!47vfV@M=`a)AlkWijUa5vL#K91+IO!J*I)6 z!m8vr4U(QQb21Mk#~Av)kf&Q?*D^2)9BDkAo^ms?Z?0yic4>p&&bck75aAG{^;wsm zCIwOoVIu?wwmpKCC2JjHG%t6|@CI9*_cE<^dTbnIso)mG_m)P!FOI-rzJG4y+66#= z-C5TY1y^IN>)9ZO&7Du1$LLsM_XDqV?;YEI8xsV{z`zwmbrHDL>otlvbO+N4TD)x-?xQxmo_>MtZjVU8AwxRZB8bP6YsNIV|qn zoM;|P+J>4bCcVdlW?8cFB(fI)W+K;TU@zIeE)e&c6$LNN?mL^s8;XWIau7R}MY+N{ z=e1h*x7Q5p_R_OCaUbE`>DL!#$US=v?=uASNmIhiIulHf==XyvC+1;j`|7jGRCCSp z$ueu@;L7yt+!_ zh%fG&)H~{UqOYf7DvO{n5h|o$+}|(*vC?51HgkEFo}P#I*zN{ygJi!4 z`!JqUkAk0f!*RMQFP@Xi7XNqJogvnx=NXxyajS-PbFzSL39|L=8g3MTOOx3!uGlT| zuTu1XH3x$=9pt4#2YqgoG<()WzkbwM1@i&Ah$;2o{Q>K#JcSh8$l9*xHO^uu6?db( zFJ5zGHo^uQs~A+_U9bSA6Uny#Bm<{*cG7z7lFF2XqC#Tl9K!zQMK$?YY>nn;l)*-e zg*M1qvg(3K{H@shO>4a!5&I{bKp`=*Kk%ThuldNJ4PUOl6N`F9wp|ZFn64*F8kDIypG{)lLQrDC%xX2d|wO*2+)liCt80#Ucmbgc?0#ZEG3j zn?gdA><~J0q>wq+Tuoy9>}*R+)Ys}@B2J0a&P}wDZ5|EFcm zq##gEyz7!?Sb|Tf#KyrD^bXI2r7A7z$>qY~K=H27R>KA9y1iH6~M*aR>(X`_7xYC(EcTd591|qkX1&Dhegm=cDtR22Sd+{b% z{<{>5y}F>NyZGsqyC`(Una1vJHNpMT5wW_u*a%x8ArmYp#gp+jQVeZjsxFtDN*+FkIz7f)ZU#S!_-)&BPA#SkA3}*EH!|UI^Z}p|(N|C{+1d8J94|Ci zHdSZX^Ez#vOKd0hx=n|>c^HWGidi+mhd#D26 zDR_cIsz%ji!M5KlaxDgbr5BTg&9b#rZwL0HwzqSd5>#p0ECm%?keSGY$XUScLG%oI z%TGp1@|`!!qP_n0ugC7q3-K!E7i+^JV%!zZ3xD|zW-Zd(bB1|c%0t)4Hf972dr2bs zGU3Suj|apDt`R>slam99k-K)r&~--Fvt2GHDuD;);}VUYG8gi%d^%|YR=bJrr1ZbR z!Gw@qw!}z4zr3(;x~tjGBrV^i(-x%R{OS!l8X>2qE@l^({rjg~-I#Njq#=u+0PlS+ zmKx|A__t|vM3jGluKKax56th85mCer^|_V)LmvqzKRPJC79h_h^z?KQ@hclTgeuI~ z^dj8ZjzUZ0=0~$FLc2G0jR!?K4$36b^lxK0NghjCrd@o! zXu3_cj7yZM#2M|le!)b`HfTm~yOTB3aL7fi?M1I$6r^(k4feV*BbQ7grBPFKFZT$; z)p2B{8IcT6HdC^~0UQrdltZ0fGAxf#FyBA6RPt z=yrr0U*6dBK=_ldaHMm4a#gIDDs7!8+wGC;Z*ja-z2CPlf9G>c36z3W?ICEwtf+F+ zJO!((tFv=+c>tkSEz|^dYmgi%GO=t-++gwTv}7=8!LRVv+O45riXBhrZLl(s9DTx( zbZ%jrqMf~(yQ|9X3hBG8l`vlf0 zfnP%M{DZpsD=RCjh3EYIaZyoGe5SR5So%|nRk|Nc}HhB4}zI61%Ob>Y3$HE!$@c^6Gv0m z*VtbYC{+YJ%EG+74D0!Z8K-GWP3Kuh#Xb&=$`Ihx#Ik;D5m--_w6*1m)A1D0@w{Z5 zoGiI))sj;0r+If%ul7Q>L38y;!4CHR!wd)F(bzGD1!}@LQ$Ajb?f`MDK*c!lN+(%hhe>P>*&!Ju( z$Ysz0d?6FKT@uA8FQ=%uI%%AS@`#z4`A26_cD8SFax#2Yq-5+_)NZF*U#WuJG3i2h zSR(=;f>!4v&%1D0wGU$fVVm08E+{)r99>;=P2&}Y_e*kn_N;Ungu^1AWrqg_nmR%$ zp0KiF)x}0cG!0}(eynw3gM4{_y%fyRkPhw>5`r}cWUsx(`#bu%vWAA#tE;Of+xPE@ zAnb9Naot4Ul?g=uEsFRZCDb^@m2DrQKnbD~lUY365oUvlBPMvAWYK17Sso|o_~zDN z5JVq1ZuY692Dljd9VT2k+m>TCe-1Uh#BD(IgIN2^@y~ z4inh2!l&)B6cWeOkq+%>kf%@ILN6BYEGG4DG;5Fk?340t$^VRgPfL>6%zJX8 z&`STVzoL?lkHp3AZ7ud^HpkP^5BA^}wlVep;&0{$=`H`S{7sIB{Ui0YK0^ZMi|iai z(?B>cy;M=VoP7DvQ|-lSDl#{>yYOXpK)z>e zPvOTR-Mx_nE5G9dCZ^4Pv%t-LFR1TT^_A?w(ns)gs`*4^lOe76n(-rxHUkA3Fx6Qe z0f7V{vg|ks0Z+8Qxoi19$S zglnWXcb9Jk%c?5lm-s_y_kfNz$xXl9o8j+8s^F#i*T0oG)jX{SCN$^2 z>{GMC>NRpmoi<1Qhax61vHPmMl(;xqZEb4c3L6?4`es(s5g3JjC{BF)_KRvMpLX+> z7)@|6S*4X9g|)BaHqer-C|T7YFGIfzb(pzO;G-7+w|;bV6zC@W-pgQ!rKZD7+&ny+ zqxmE#C_rTph(bVmz-cn@=xcB=5C!2TKE6dopww63BiuCa6@Ml{lhMQR1X_Vn_m9tS zT8kwy+R_Q1#oM~i zxg7jqv1vhHyg;TK(r$BrPzpmiMbq|wjIXS()0{`_FXE&D<~&5;y}J=s+E{pB6MG`% zd5j%Gia_IKK{@YC)02RdILAOI#_%0eT=o^1!6bfbquZ-fG53+MRz)H&du7^eXjvQTRg*Z`NF7+#=nccNW}yjQ;-dfBetNLNkfMg8(bvA;k2wuF8vVPHpYxnI zwMfgPI=*Q*T$hn-qO%kJFLLpconY7j(Lt`5IB*IljU&FHST~sVoR_toC|KbKJp?o% zh&(mX3_v{kw4wsj)-hk%+p~fg1;FEXgyua>o!zm8BUAVX-m7M!M(SKLtNy?k1z9%jt*7M|OK0p-07J?zX=JUe9o`x;u<%JpA zYZQ21pYM>~Ys?Vguzu{&Y>FA~d$xvbG->nU`2^P;Y{dGW`g3nmXo_&E#~A5RiYV2b zCq<2O_|7_B#>zeQdYSL(L5Y^7i^Ih98u#U zF(}<;pyuY#JpoeACN%Ha8nR~V4lILOef-E}qFBg9{}&u2j(!CtYr%%2_CH{)}y|{@X%P!KTxqt>EK?Up|O>&&nKnTarytnrb_{`dZw#D&70QrOquGLb);Vg=<)Osd74ms8KS2Jl~z8 znjwmfB=U@j6~P7+%&>ke^@U>!lh##C_Nvd}w?y*NQV@Hyr)wb!%T4PjDp@r0qSgoP zqBLt?KD~3lKs-IZ@#dWR_-pb6x`3-z8Zz2Io%#LL})`uC}M+Imi7c0`0O z>k)LDZD38Bj=)S0{WCoClIXbGMvwDwb5GPdTR)$BE2SR;U}X4ZxWQT63jyI1st!YL ze-8~6VF7Xmb<34LH{k(7w1wm5qpuXzXQu%dN9LFU0x~Xfc`CHxJQdOmSS?3cIT|o4 zcq~!WzCUlg?|sRf@-PhcFp@OZq=JmLIQaC(ctWj1yVm0KwWY2%n+xo**IIcqwR+?# zbB)1Bs0vs#R#=yO$JQqJkrC+f5K0~+EQ8Ll)vR#Q7DMhg>gs>wIqKVd(Fv=-Vre~$ zwR{!)LaL>8UF7O+s-g94-snX6!9-*WhkUTDV!Es0NO13?STtE0(ZIsX zrJwl=%gS|F!Z}!+s;IS2LS73>bab7}zlMXOqoOu|U;;1*ors7?vNaW;CjV{vG?ntNL&uP?9XY0H9fqZ^yjCM6_ZnLSTprz1$ET>#?D!GuBhAuwBBYioy% zQ`G%b&e4@>>j&Z%V4=&Cuz=)i5?v+5P9PY7%|j#Vq)>xteTx8b?Qu(92}|M3$<_xh zw{xHVtFImUeH%V`*pks85d09SvR00!HHjO>H&N*;_lqAMI=oyc>C|oUrPO5Kh}2fH zy}#aUw5LIBNd5}mjIMJ87)sPkzO&l&UVgr%Q{dz-E3U8xzUh1m0mQoT)(N2YuG4Xy z{&ev#oV;Xx`1o9)&#si}AEu85NF`j^pgs@cg6|8bU%U+`EPnQrEfFMigT5?FYIPvR zLC<#4PeiXI)5UJ8sdBux&z@!5Pg@r2`yEz{YoW?h`zHEbhZJ%2AelrH_1kKLQijR z4%l*wRgUilRBh;X`%C&Z<%O&0U+PlpXHEIe8ndkpu3KtCGk`rWN;X#LS0`-X5!}7m z^hTI}!xLDVdOAHr&~YMXzb{&4Oo+wiV^T9j9d1cH++4Y4IGJ*8Bp~V@wBquZ4lz_( zP7{Ys2M7Abc$qk?$J8;=_N+P-+rLWXa+p#;D-TT~KS}(w^32mEDHNTsY1bd0eqlL$ zaixy|QjCBdLDDxs)^ z1hNx(DTYLND8IkcFo=tMa_Nn?mPWE(XhXV=%hGQLRi5*oHRd*n4;|MDSTR&9MFt>W z&{6P0wAVr}&TcB9StLkLd(b^w>qC#$uao$DXwS&Ihmp&Ku>zm@XB`L`85w($_;HhZ zze_)&BN(kiHEXu);W-I-@sBKr;xA)c8?udKHWM8ekzMs%8%7>M*3JcjOVZ@PqBZ>N*C6AxLP}dZ; z-xLAH{PNE(0_9fM^a9zRQEQRrpS)e!*-bR}Xx(%7Tx8W+VH45DO7db$ltRJ0LcbRK z8@FHSHp`Chq~Bk;iA~r1s0=Kx2df;F8v6NgxwFium)vQ8P7&bNfg&~I|4Gtq>CoAM z0&xWnIv!&DtMovMywW=K@{vi2(Xc@?VZ0E(nC#??Ks0se`TA}|9}Qt}_2udHtaLoEbar! zGGF?eq^iMfpkEyK9`t*WOEzT5Qq;O<=TOxMtA7~en{&+Rypi-vC#)sU|Kdzc?w8)H zRYnIKc61n+7w0(_W=a@QB;UiwPVP3p2bLX*j~j%zKK6K9cDsunJg189F#-WcmUWGC z_eL@+^_6ki`t9*@L*302nKj4e#m^(}K;ZxztlZWhymhg*u!@{$LaBUeLtwtJU_ok0 zN)2(L-}9`@W=2(NN-c9#X0NUj*RM%L<^{L0I?`glP9KB1TfKS<$P2Z0=lK1#^+wb# z`(~-o@1WW(+4cde4o+^$n13i%B+ZngwA7O1Z^Q-TG>;B4<79E*@~3&6O};4-0VS~# zr`x+5J1({T4ogE9{GzWAUwyYoXRu_u&AUq6W?zPld8z;UVuS8LK zg&HCO741n-b!CP6Nacs#Yo5uAcx0mc=)tktNjnysfbj6b4c(v)S}eep z!artoJe)?pSfs*ikkPpuF6kP6Kx{&cZ)&dh5oM?7+_`GD);W5tN-Y)`xA&Ew_GXp- z>|$~z^onDOy7rVU=M@-@*FCX>d0ECkd-g()78r+=xTKKo*yfka(v@0tbc+N-5a_Jq zI6{X+_?s-5NKoeTeEkr5u~XLn{Ql-x@-h}kd~ly&PshB($bhz1@vI0t7r5#8^dTw2 zkd81vR2tvx>@3fOKsg0WQ^?8w*Tv(@jfoQaC!t#m42+Dnd)4dQMm_Pb8$L+^i*LuN zR+UG7#-ylXS=(cDqQP=sdt-(ymfcV1hK}3vaO537`lKiD9TfsBfDTHF{kdP{oDx#+ zc5c+-i@xhr^+BUKsIBtKHU9bFL<{!9jQwK2m%m(r^6`G{&Lk}NrIz&lD+?f8ot4a{ z21@xAvmz#ldbrkN18P?ZjGijz56|5CfW4@q;-PSUeWp>h;3K(c-GU4~pZ)D8hBoJ1 zoo&L(o{NOW-U{$c=Y*BA6az8{)l@jBuo*jmjRn+LiF=If2RQH}V-LL+E_oOANeBYbWXA!17SFRE;%w`KK}eUcJo6C*yl|1huOVPD3v1w6lzN9;Yof zAprl9Ih8YvqYe*bHCL&@@6=#}R@)P!ipF_u*PoTbCm;?4A+P)E`MUEtH^9U>C}AX# z#9vRVKLI6%xE+0xtRS7uR4}l_QMC=_k5VQS&2rK)UzKS9czi_0#O;%7=J;f zpgkzk!?Y+e2Ad{~+`y0Zj#ye+g2!bO!C%|BwxMnjGvA0} zdK$v1k7<|(&CH#wK8{hLyrH_g5llWYP)HHvck7E8^uuAkeQtAeb8IuNC4;LAvjSDa zHeHOCqeEk0fny>29d!U--J@0n$i#r~fsz}nPD^QD$<`Y0(M)NB5`eDMNcFl(7mvNy zbszPll##;YAj)j+Oamt#Ue>opg5P919 zWu9lD2n;#7>H0RQ&4bmSsSJ|L+3s|>Yr}^k?M0|YWEJpKWMDp~F>HyW*@kl9uXw@i zVsq^bTdP;1qA=8cYG%lq0t-X@7exJX{}(E+o}%Y%+7x3c;HBXb5M2B`d)J|D^r`zp zM@_`XvXE~L=z0kY1fsi+@KGs&QGv}aYPQ>GG9`Hq42Ms>iM*Pwn>jb9MP8u}_EMg& zmxtJaN9SiC{$@dQ{EhRQN)zI>5O#+&?ldj?y;dz-lhky^Zg?t0@Nva+>v4JZRMH=A zs(z9l@Cgqww=$gnDz*$5@4i3J_Ob1V8^P}`F0*SbcUxo%RyqQDI4-+fiB2~F=cky{ z+*>lGgX4wHHwbH{rzT1as&^}=p?8<-pfW#_*i;yG;Beq1-99Yfduy|oZi342?;3l$ zS|dfYWEhbG=E+%m%S`E1ug=0O43!`n@|!(gCeEItV>F+pv9ZE`+zAIscO!ka?neDX zX(=5LhaxBNV<8hT>v^UkY*Nn8AQ%&~YyNf|*CGjnS$+d0P5@ygf)d8;cGfWq3zTye zZpL{uHzS@gu4NlhEz0MWL^I*IG(^hm7+31RVQGr6X6<2<7tL@UuywsZo+wB6JiR`? zbY%w28RJU0w?|Az>6PmE?`LnN7#>t?vL>h~i+lr>v#^V+|4(I)ex+S>Z#qFVEirL= zw6l1)pm}67P_mpsw!_+U-<)ViZ0z} z#lJ%zRhngep$>q&A0tHd{d<(#DVQ~lMx{l@j~{_5N&-3U=Rl)`I}a1PXF&D;$8`9v zoYvP#7j=|E=}LTVrw|mb1+jngp9|3FiRGx*szO0 z+w0ab)#L0VlX5Cn(|5%r^+R;2%(zBFIms?3%3vS)+8ymH)Y2p7l54-*1Jw`GT8h;M zvq=;By&bk+QYZ@T%d-CXGdB0m1g*{#=R%ZSrgsg2GG|pOg-M#hn;0-CEtNd z9nWJ369YrUw{Pv?o+tF0>>uRjvNAHfLn-**s;QBli2g^ZCap_&>*)BnijEG=^TMA$ z5ksWeGp;l(yXM!_EZm-%2d{5UHHK@2_qA$mwna?`?+7u!y=#-$>h6B*_A?$h^}tho zK$g(F`}=nrp8-C|9(6Cfpwky_`*S+dlD(cY-;^r*NtMqtQ5c+hJ1T0Ef!#=!)~TPN z=S8&EX1H^P%%u3IZIwGRMXPnmQ{`gQ`91?7q+hE%ebX3=OW6|p({b)X-jw{gDdx)^ z*T=|kdjzn|o)p310vqbJk@DgSddd@?M}OUhk^cAdG@O_2qB(UC4(i0zB?u@;BSO2_}YmKK# z@bANXpfZg&-tk_a?Ph^9laW?RQoiM=#lQn1<1s2W8+{6#xhmkkRIMcf$+CJqUeNKW zQCWi9em#GTwad($=k+eJj)t0=oVd97LKQeO01o%rO@4}NU!i#fLeS6m`J{Xnq`;B@ zJ=fyzt#9QOWLStt4$?aoqp}^$p}GyhXUTFX`NwV~#>vGunyb!q###zsC>?ac_&UOP z%Pfbd-;t)XE$H`^|E)%9X8*B<3N!+Xb5c-?>19No<1rm2nquE7Q@Qrm#JA9wH8_K$d^Lx9Sv&+M*-j z#Ln?ar2RxgXz8#ih%ARy)a|LUr&fURd6su-PqHbd>4Z)@2@T456>L?Bi9PpAy_ZYI zq`lky5u)ks13yPnkVQto0`(B3$&v}B6A&Q#3^YrdPAcb!SYl!PTWhatjo>|g=z*@M zNu=FBg~A2qHY`-4sIRjHQh(N8;NZNul6<>7$H9p~H7tWrd`R8WIsJWXu6sTUR$EA~ z(&&;5OXc=dopI+87VMN5MRHVhJ?SysREvsAvXrgbzHe?G5M-or_RG3FCc*(?@328? zz2em4O3By%Sqnf~g-9)6$1piL3H-f?$jD}EaHs~D{fM1+IweZ>kQ~Mu5;nBN zTvc#3B0ZzO^0Dqre0$=o;hv`X^vIN3!tl_g>+e?0dOLLMTb_iNhoIsHdMN#SCq*$_ zAiUDF$V49aBR2bmponQXk>X3(Y%R;d*jV|eGAXGrc{w*on%iFW>p3Nc?~G2pI6HNV zpiDru?yB_-gFhC<{sX%@OTjTW7hz6o>Yn(>uj80vm*{Y*AkA|l(PT$lsMwMPTJLS3 zv8XACQxk|ICP3JElh+Zf&4F5J$(T1Dgm0D;_`3wXTf1pD1ss)7P7}qVe9k$f82LEP zq~dR(9WN-f!%yKL{>cZ>J(r%@nKqMxc<_rqe-@6q^`@TD%ZE~9Z;zt}G@5*y$>*ok z{Jn zSW+VJH0Sbm7C$bW>UNb!@fhHniz=+ICH+-bpiAggr(+Qw$;I-biwv%!N0jWcAEV!L zz*m0W0Rn;Lteog#Hd@7Nsg;R5)Yl9Onzh|u*4uhvsJ#jH0!cdW@W%M4RDE(PEbaal z8N;AYQ=rK>J%ETE?*es7SP3=t6*KR={rlVI``FQsWS4sqYhqJm zX}BFB-k{KXSP8R}nGiqH0A5j+i1e6EZ*Qc!%O|jsU3W$;{m0RpshEg4bY)A+GM)LV zDtmn^NYULP=#cC|`xHx6Ev5G$EyC-KLtieKeD5F2tL$X4F(rv0>$ufSjK_ z6X@XJZ)TV)(8p;(?O2&)y>8E{ko!gT;ameKW42{YqW|u3 z6)fgyu=90rKc-&TVM!}FqGq_NDZhX~S}OA!{LF0d3x>o?;PGU-CB`_~3Q+B^)^wt| zg<|mX&rOe)nD7D8;y9rw0yQ^76mgyR_}E``$HjwpCzD#9ES7R6Pk(bs;=eOba<)6T z1@n+St-(zc`B1-y1pYxXc20sH^d5eYp#C#sA}@}8sQEQ-YWMmijM)Twc2Ms@g{z3$ zkT)4pu;2-pfwl)x-=zz#Xu*zTZnl}W=YrV7lvC0!BN9kuP#LF&CBvy8nf>^$VvoKn z%lVS!xxtv;w4OW1eUy~x#yycgYsyBQ^;txS0AzyW2Sa^oza{~@qLGg+n5=e>Wlgee zNch$Srm5M2k8kf(2wLZ{=zi2WVmIqp>|7KijwJHS&7Nf4GKI<^ZC3vN#o281#@YR3 z?ePWQmeApS(V(1@yH4rq#qT$-V*OcS>?}22)liDL4h^xhu}0W2D?NH1V7tViwAA(z z&Gd78ZA@hh+q9Fn(Pk$+yKXuUS|LqZ^%i!cwcX6aW-~0sZCu1|`CkkD1JB55eubg6Ag0R9)ba(OdVMxumDw^%Zsqq>74Ic9 znr->UvWUw8m2-E}8Y!gf{Q2ick-Eqd<3>sGWXt{WYN59LFfR2L?%e}2W^fn87qm)( z-bT100lj>d{*C-Q$&35a=3M=#i6VOIG1-O|U3qIEI)OBWZb?Nq`cgLseX^AMi&v5gXH9L?_ko%FC7`ixBs1TQMzfZMTF~h}}mQkCT1S2{^7vGN=i| zlSmF>fIJ-jy0%MRKKijPmWeqrF*zhL68rPm7`YSsg?jIA8AY6ZiA-m=!FsB6(+Mq< zm3N|T9bbr8Z)ay69P%_zUeb6?=N^2^kM`er`u1IYCl(?V4i6e-74qzPDs)7m=N2|i z@6(hXl3zrBK5rF%NiKnA%N+%=!D7IKnjP_1=jk*Gn>pTA8kNXv@o*Q zL+|yTabjcx$>Ql{{?k@O&U|GX10<&p2y^>8dW)gP2Pb#k2vr7i;TMb5u-EaHMyC&I zzdn2~f;Yy6-1Dfos>XjQMfqg>Ar`whE*j~wUPs+!mLNNPew(-=Sr_tTkDY9PxfWEP zkVR4DyVP#DF87ZVKA|0$03)|xQ%wC$)?5-}MHW&Kr#${Eij_DC+oAW@F$sZ%f8R#^ zQI~A>!CU722F&W}1D*cLx0MId1ZCVUt|a+S^1k#fO{Tao^d$zHyIgn*j~`XoV&An8 zh(175#KMoPyILmNM=uZ0a6v0`f!aP>b{`tW;4KM2CyQ2^BJO--!(=qRk z_9uPl`8~zE)6YrX)_nTGXYr-N4in>n{RX+KHHWL)J$Er185qb&)@A2wC-(mbV{aW5W%NZ257N@zAR+=H-HlQLk}A?EA&qo* zh=hXD4IV@}BzmGzfp`!($#lV{O%#7`4&ASBfc< zZ!2>{?iTP=9Uaxoo{T!Kd?j%@rM^S&&Yy_7e!b8t>{Ye{+9uR{o6pQD)0U0e==|pA z!(omoJ63kMSZlb{eqTs)k5)$InI8fRl6@a^RMgvZf$0T~op~wlASo-NuJ&s)H>3@) zKulmw(K0)j)Pl+w^g$?o#z~y@-WI8;w~WeJl`NyPIAg_ZiyM790~9sQhHBf^zt-vK zB0TXo?CaYDTe2~Q)brm{aQup0P--MV41u4&3LN4JB%5GoO*;{EXM z+_!Bt0DecxZ-;hGK7n3%8>9xVBe1pYOeE^x1qedFo=fnCYG|}4@ewdWx}PM_TRUB6xlpm>Q{MWt zx8>-$9cCbZo4@Du4|s5KyKgjCe}UrrqQev;+8m!P2;bO^5EA7- zhLqxQ<1BY5Fcy7zd!|bktaJY7r<(&Wk_rP@{Wx`Y#V*itg56}Edhd<7IkWUxLwpRU z%UI1zWmKy>4cX|pR+996Be*!v%zF&_KPQio7RX=GwEpf^(~QWrhb7EgDGp`WZ>QD5 zN~n4`u}=nFRNv|T+-^UE)+sa;hh0@fNJONh>065jxSh6*E*}ptr?~jWJ4{Ikad&w;l%e+t;f~Z1U5~pEhYljP_ss&*R$u(zsn|b9 zHP3!~xuQ0CJjT-VT_nS@TbeDr&n)(0>Bgfaui0k+SNrLITsB1uC6#pe`OG?E>Da=s1^Cw9EUvYTH%jEy>^ zGbs8nry>!`&;r4xA*PDTntDPUX`{08>LPhIaFCN$!VTg(dI8OSNFPL=26mJBNTVJ> zg>{<=l8T8m{hCF07G^S%lc1{OCkNs|T)YS9Hx+C`KXOLNRNv|aCdJAvrMxL!7c{x@ z=|Gj8qiZCq!d-Y3m#(9;xK*&YH~#s;StK4h+y7K4D>=U6CyV2WDc`BFvHodG}AWRo3ofPh7z z4IjUWQiOU0iBaB}R0)3S=BUsHJ7NJmxY&@9T`4O&94t3tVxDZi4`>4$XN&u1+L(lG zCfEciI6KOj?hS>0oNlRxe(}8b5n+#5Xix7$a3d572Wc$Ls!4WGk*gPYSn@p{?dW48 zH(%>9vj$2+#Lu|g&a{FZ#Sc*<_7uCCh~#+ZLM66*Gp)vcaCB1aNE4Q$S6m;+JxO=o ztDOzRe;Jn9OIVt~yE7rtK8$ z{0jq3z61I!>gw9mEYK3qhXAqk&yvZm%sQQ{QmiiP2~LM>Y(q-CP&EoU16%BTi00kV z#ZP~K-u;uwHx^8Xu_?{HB1j*E&lE8LiF%==gu}*|X;EQ$VoIH5` zO?7Ng`%O++0S!m*HhpGz z#ZM7FmuOxcOZ5SsEH)uCau%9BIE!k&>qJv+6ZnOLKM>KdJE0%g`GraDfNZ6{=z9)0 zBRtqQ+rK!>X?O(ezrvuGX2yhc<``9RI@S+sgKV)&d4{h~ON_d(K?!|v7){T{wx$!_V8|5n0yH}A`hHh_0`{T&0sL1(wO6t<*Mb70kZbRe;s4>b2k8QP!tkLGH*KG6=o_ zKabwi@aE+Q1Y>13(<+PL%zF{pHoIFZHfOs(H8CZZl|C@%pjLI#p2#8kjQ{fWqkngb z9Iblg?M_{B&w`{{si|4Enb2mDNceTL!dNBm*z8Rn-|mf)?G}tJy1u03dch~ESc?)E zUX-#^SLb}MMNw*s>~7aDm{JC*#^Zpw1;HAs;@StWBAyzFc{hf}Q&K=Ngt3#oICfDp z&{EhYvSJ)@Eq?#`wHddQrN6}%XOM8L) zYBjkiMZf(etsEzt#ap^*MuM}ACd{^AaFTeGZ~ik+$F*!e(AaY_;IjU zU&Q+y1Dgg^EK7f4xH*m05xE*P(gLcqhLj9VIeU0V^JwAMWu_<8SL5B$`?uUC^GsR3 zaW(zA67SxzVhm_iqMQ%nzz%PI{D3t#`&Xe#HQ0my&)7Da6MWfCRWEK$Z|O&ItSqn% zu|$HLoM{x~D19|kH0<{EPTE2rcsyjDf^>gKcksEVM99+e6St)-e^R#%s(W#<8BeLb~NvOP7ePvL7diNR|*|x6J`j9kwf#X6q zJpVl7Y}Xu{w+`AA)wVFSnU&|Eq8p>fE$(`m;d}=|%9{WQ`k(|uLP)qgqD-LM=QjXJ zIH`&>OTwdx{755jr)*56EyGsA0xQ#tYrb?m9ZL`C_Rx;a$G)bFdHK!;nV63u8^YRh zau@2KD(VbMjXY)k{4Et@il6Odg_`c-m+1ATZP_wlu;zS5d9qf3Jc^4zK9#p@qE9$*td%<>8qG`2de)Z zI-KYH2FH+XmDX!WyKh(Qh+q#r|FQV!^?IQPnVxD4l_lof@lMMEc1 z9Qk9gvRC+vkXy6mqCfRA#&ZIHzd_;c=RQ}X>B=W;N>)D6ROiJ|0>x^GrCD5^tBs^_ zx8bT*6y2=KT+&aN8_2?p{7qZ+?97_$x78evAPkQ&jyz|1cc#bgGo{9gMw61StkBn1 zkr#R};flZL&b8X$bd>BXtiCt2c6{kd;dA}B>o$hVQ*g!+msx57T!1ftPeoY0UIGHI zwTj`cm?D~YE@B zad7D)RVDezBrk#k-oN$+rkd??YpVvCAay>Nl2MX^Le1B7U?aB_m+$(LInG##SZqTVA_mUgjTWI^nHMTX%Ux0#b(lpZ zf4&si4H^9XXbvy|bRBq_WYLt=qlC|(AXv)b19vr%$GkkFK^9HWzHl z|I3Yy(JboGa6`2&gc>-AG~bo|{Q0KTRs@v(m=((O_i1cKr}r-<6rlrcY4Iu}FiO@% zhL7``wHmhARLKVQQ545(c!@M$Ea}R3Lq;4$cbu0y%zh{NYqg&0lTF;Y?)Fer3fxxiCK$Z?I+qzjuJ*ye$zu1GGu?cEx<>?kkjmN99v;X(r?L{SA1 zFHS>&A3!5Gx97W=r|(LC^cFa~WIg?*{`M3Sob0;X6PZ?)pPQpzdZ!;=9TXpa2v&*2 zsp_QW`5xPa*xri@6B`PxyhJTSa^_y-d`@)apMG?nwy&a>n#KIOtG{b$wQ@8<$h>|h zc(eVAO&gYhURr7S!jPZj`?MBfTJ(QX_kt6Fx=mzlU66Pt;sZ~@Pv0Q}``poKqP%J7 zzd&diD-1dDXi5PxKH#4yEp`t?UFtw@AA&>Www~%L2)uymmcm&rtasoYm43NX4PddZ8xQqybqgJ5 z4c-KUq^pC76OGuTI-trQlaXMm?4hOX)9Q%l5lB29nVt_E75iQZ?+%nciJQ-+8*$D9 zD|s=$Aft+8@H!`*tfe`rA4~spt$DIuCqHLTM9tTIGOkgfg+_38#!lqyp?q5X@gDJo z>)|s|tT*eiUF5Yc0!Lc-CP%vng!U_-%VQ8JKu)&Qp8REw-f_eaBGGyPyCAyFyDjIg=EXAfR zX)?zQA(gbV!tpGbhrP5@!E-uC_oaC6{pD=kmyo}Bb1`-Dsy-AYR+CbFXt|zBd3CoX z(PU45X*p_Mr_4Pn%S@z$+hN@LS7MM_^Y^8#q%d>*1Kz01Yn_Q#%3X1B1oLKg5FKsV zfmBI=U%mDL4~tsC&W;1f*ZEghS7BVh?dWH`exJep)dYceh!Od7(C-Kc|6_!WR!7wS z=4R%vU)>&aBO^$D@cr)n^XMb0*NqEec+UGtLsn>}LUjb|9#+v1G)$R_A`|~XT#u$y z6m3yzeP038?fuSgv7s$>-%Q?_g5LpMo`;A?Dbte>U&EJ=pFELmNsoArElJnm2&2aQ zx+`5a(_1i!OEI;^$6elA&=`Hy_v5764T4OKnJ4648yB}YUomHmOm+~+faKTs_cSNX zli_)A)Ij)I?B__0S_1M(t6nfSIMX$V_2z2-fU_*xw<8f z-8mPHf#;KpxfdTY4LN!JxvuL=$7Akt`$^rEn8hr5KI^FK{A22MGhpLEE26&l={xrN zjmK8ATjK?nqv>~lwo6*Xcg*iDhkVySr^s4i#b9~V?S`Dh(g07k!0(d6!Vk+`kp$i8 z?rRh=rZ8zpQxkvl{VmVMc*%gb7tqcQgp=6CCeMhqxjqfTf84Wv?66xk@ppb+*~8=N zz)lcTX^NuN?P9=OJdn0%V&_p`e?JQwTa~`6lM`?k9$1Yx5NGt2^l3?t*Z24g%wMqq zS?(Y{JS*)zZuuY*XY%+cQLBtbPMNl;DpaW2hD{r;o&{>>HZ;fF{fp53WgkOUZO7O; zGWML@bTN+f#u#pD)J~JMPD(rkc5dvVUhO#^KBJ^-o>17ppmZCIi$mh4^6+G( zb0$^4n-<2cOl*UPllbu4D0DAsVqo8i-a;eC>~u{B`O!+22N+6nBD#`xVLl3cGxA2O z#d#HF3*6Ti@giAl&TQEh9IZ*FcJ>dcId9|JuDh)Jq%-UPzPW(BFESZ+D44A1v_I1Dvbz1PI+ z>KS-7iXWYysYktw4}`0{tR^BxEy|4R>LXcst{reakCS1Q$4@l{*Ou;&z9O_`;#wJ$IMUV|JCtx9XmEMZ*(%;$tSSN zmo2mZSIm#$u5wRY)oM4=-riuCv-QW#CpkHpX6Vd?jU_GX_CEBTtM91w9I#LxK*+l- zulJE!%^2u~egsuIjd9(%XsqeiH!syDOY48JnQZSYMgroJS z!p4kWJD<9GTGAV&T36dg3&nB(6xjYIGV-q?pNkTkAejo59xYw3 zXVz>XdcS#9`bJi=W82nr?wYE0dsSrf=(pEdmcGyBuCv!sthXnvRC#965$`)Z=@V*= z*f(Y9+xJswH&!1j{EM@%>y3SFJ9aM;C`Dd^;Pl4=9F}@|dOI^ULwze^P8;|@?6TZL zQ1RXpNNl1d?gS+++VBMJ7a(8AIJ&k^wYAzFi&HC;6|Y)#-~o$qPu9Du>~AkdBXUaP zrzYlLE!2hiwF(n5AL^8e!G7QWCdCWeX&tW2(|d)j)Y0ULwYP7JE8<)#o?38!^F+e^ z-awT&FAqdHrG*q5Gqn1oG>Vbm9}L}-9yRbpw-`c_C(7(I}tCeCxs1-9bdF?K3MtG)ab1?`o5qx8;wC_aKnb>H!<=a8+sfb5cDy ztHX?{ssLNk-!5zh{Zfi&<+l4uPFC`@pZL;zWLN(xLTkvq#r%%@^JQBGitvtfb42dn z{tqnxx`_BgOJ(*P^MH3JTAl9OpG2eg_wJ8h5Ak+m(gz9tR@$OyRb;P2>EL{P2Ryoe z6>${HT3 z@|0(t9nhRM@zn|W97v8i0+bP;XaHvD0fk6aO_uwtg-u5#WDNRqVc_UmtNix0#$9HR zE!*cWDR#&G_jZ`^&%>U3i6u$L`~Bi-Wax&p4blXXOwxWnleo#1xInIuJ0daQ^L&C{ zp?Gmn(Q+JM4ldKxNx24{D5!ax|Z0V?|%8MznCD9rt)sv_40&FSM>Bd#Y{2B_L7{zjQrhe zodKkxy<0{PFqk~LazJZq}q*x3(^Bm!9b5#aZ*7339Ul@!rKkvr4; z3alMJ*mFOytR@=Ye0f~^ak2`tsiYtT5P-H)EOPydS2|^ zAmRM8(f&x<50leRqx^n>l;YeTd2==0~OgfJ@+xL2&02wv(g#OxY!*E z7a)&&{jgw9fJh2EP|{m(%$!Rd0NoXI7f3ldTHR4C*BbYJ-+9d>4gxXZ$t(cLzLAFr zqK%qjl0Pzn&6X|{o&J*eL;CzZHz9D~GFtr*;0dwmWtrruKq`DxdVSlXgWxB4sAe8{ zZUTUnmK4QIS&|Yb-*D@(UBC zl(1lc0vvBoMC~c%KSYw~u8z~`Z$OTJO`{yIb=d$ee{A*tS{ca zc12h;+6U0g>xXj$%h{Mu>&SPDGLlHX3E%e4-oiX!Ee$dHV&4>XOOCz-3pkDlr9MgZ zfpMmjC;!oMg!&2Af;QQgpv>JvpRErCzcOi-J$979g&&h;orXsLy_t;=q7kE^%yx5n zLnNf<*HqPK7>cx9{0_Zb_46djL-2)-vhD_Z#t}|gHikuY>iXbTP1l$kR~Or zj*H%XiFVj5!V+9!%i-K4AM$cx5lFv!es;neBkr(S!8sUh@225&Vc^lLkkKRQ|;?~0RiLw-VQBw+4ht- zsuiD9xw(-xt~%^`8yaF}84Cay@hZXb;pO>Tp6fQcZzn3hLctBcm@>kot7ES?k+)Yd z{DMx5$|%<16*wQiK|p#l#ay_jasl{jHEK-e&!43R6MRaIhzuGUBTf4=YThrFCwd|P zfRxxKc;g3i^eWRY%Y=S7zt(%`D<&NehRRB?U$^QZV38AQA>z^XUtU{}tx+oq7dQk9 zEEq#_a*S9LWcq$})x=kWh4NY8H)!422#}{}%P1*sL}`6^x0KjRq5BlIa7ejf!;ySW z92xZE4~uQWYs))2ZC@m9-Sboc{2GHCL>l^V=$YD;PYvkv|2w zng4SGV+Us}H@&yc8!*nE5wIwz@PE-^amJj_@|*bWUY3QGlJvrseSJ@p$p@KVRC{pB zQ(>{t`xkR-;}8w}NvFy$9Bey={o4YBoI75(So-s`Go4zOq0puvxZj&Ypz{UB5wntK+R}rxn zc%9vBS86D8?9Oo3i;CQCk=QAPDwaK$EjSkO9X7(1wVqky@wg;*yIeS7?A$KFXDtttA5Prd@V)Kyidnb#U-n>U2{kd<1jG;NOgjCtBoj(q3C2brQ|vK_;}GxibT z9F2cWC!mX(HD9J!s%}n}I(2=!_9eNthXgmEjF4a3cZ>TtTv&ULqE@UZy3lZvgQI? z0`Y({gc?`E#h3&{4QFb@)9$Z*E!b#zqi431tPC|VF~#V-U)jxldl4T=Lj1{&14o2^ zS}Z)O(7HhKIODB|JDlaS2MvIP+mFy|cX#J@+>YVH*grT(n*MOKR3}v^?^X)iVpmxg zKVdXclt+ITDV+T|-&j$e&grw)>#Q+pVgO+-$v3LV4l$DQO%J@@Lu|`Y|cjRiB zsj#a|+mXn5RWXl^V{s#Y1{(9sFD53+p;5&6jNJ*QZ1?dYM^%>9+JK3{0lFVjB;K5e zMS1tg5h17sLuu%CX*+|o936_LU;UXbkfC2cYxsD1&XlchzOOH6XN2pUFBU4TgQr7k zZ9Y+#e0ec_bPz=)Mf{r|s1W9H3%cz$UYnH8XYB2U^iwRIvY0h{dD{G3OCOKpizA1TrlnG0KV0TQ7PMCS z)4VSHL4X8o7UQ6Q$64P4+S>Oj$IgjupP?{;4uKo(%$7{te@xLza~0SwfoeRC30l=c zkEa+OhfURYPiG6pP}Hb4;hbuG{GK_?`xzvO)TiL4|-NMs`Jdr;PNTkev!7RA}DE-PzWZdRU)wY)r+ zo*alX5b%goh9wn_Ydhjx1039M)TwE3LOyu>^6A+ zGxkp_>KS#}p>NS4x8hQ2#Hf4>L{2z>Suj%E+S5yZF`>%Ct%io#2hzN-k*^T@hm_VO z^RI%MAg1$Bj`yTjA zlIq~iuIF6L0ax*j8EG(G7|_Cst_pq^u~;PpJs>aDwTfkeIgft2AXV$a4}6TmpP&Nw_Rx?+x^ zoxJ&5MA+iR*2oi2Y*|oFL0z(h_3}0;jMm3au=T}!C=A?u$b4@cAF!|-oQwi|@9V6< zZ-MdYw9W#bED*l9sQ-npCXf745;b18C!%n;$>0JXKZLWwSOl|TO}j0ID`O{oiHZva*nK%O`1b%Q{HVj22^tj8iB=`RaM&E$n||qCHl}TgOZ<9@m*8q9U}X!&cMD& zJ&;=!t>h(9jA0zZ~9H>L{`Qel&aw)wBb48w{@b}DlF zc`v3hSu|2m?PFG`ys)zSnI|k7Ta)L3SGB4LP&BYdr)GZ%7$)-7b}P#(L}{9hH|n7z ziRJb766|BSQI2@)1GNg^kC)DQvs^0^&sUrd&xa(sl-`>U&l)py?wR%ncwR2ezJJA= zMm~N{i<3Qr)x|k9J`8o>3h()&-%JW<2bgvKb7Vlmg^_`}G6OIjV4hWFn`K8N5g+3Z zpp7whx-Jzt9&Xgj`@Lzwreu~X+(7f7t=|1%TfHB^@_D{;x0~mS!aX6ywNJO49}4W1 z7Zde?ib+?`1iBNMdzT7oXmA*&MT`H5i<3W$3N7;M+IL9q|62qVd>B655S>gTzvFW9 znhbBqEnIIR7h>O-S5_VygfP?RUuBft5r#f_~_K-1hUl=R~GL+-AGj}-b!8y@Cu_blq%HwEi?4lL|nMc+oG`#SQZ zyXOUfWKp%&VWRe_9(j&H>wt>P( zZ29lC?EzfNy!^xH+UEq zK=x$GMiN>bFgmS0oRnM$fg&`ur)FDyiUZm~MYK`HjW{yzioAUwXNA^;SYO<)N2BeJ z-?&VBs>@fns^9kRdL5?Vscfj{5pc%}kL78`N}>(!g-}|`>w)Dr; z%@6O&d@sP)m6+575IyE`)qC`195VtAFkLeZYXNv{n$T7vBPh11$ada{l#)<~&=Qa% zxMHA;Vs((Qv%|r=`=qy`v1erZjuu`^AA6SecCb&h6${I5F+8A&Nt8iDNtw3tQ8nLF z1}r|Iv&6dJ8r8Dk5E%o92yupcLms>`9O!7W*=t}Lv+}pO?~MA3UbH3t%tQTlUG9qj z)M#`!=9)|IYLmL>;136d^AeZQUM0B-7r&!o*avv^kPTkN!85XRxE*c7W#Ro2oP#}6 zaFyJCiN_fFb84XH<=6}Uvq+pdAc>mGwj(FQk;HUBBSJf<) zfZ&HOICfN=l)}B``HtB1AcMKb?8|ih04N}DRsspSeNTPY9q-mF+>e!d`o`RE!f9rY z%V?eq4SezZw)u_woUIx=&8TP_MO#Pq2R4xSy?o7!31Rx2X?BT?&Er2|D`#byVXK6h zTC$77L7`qB6{1Ilo{AYEz{l!&aTUlvPEGds`C_&T5KVTu#=kl0_5@6d!=jM5&ti*%Iwh@?Ss(gCSbSY$EKqA#RmOTkwqpfJ{&yyNGniX`I=|r zFYoLOYkPnMIF?|q7d|IMZe6zE(J#<>sJ7ZgVKtxd%A)vIVVXP6p${FNWR@V?&-|8H z`^{7GYjT{2h1+2Z3DTzX|$)q(bOot}hL(8GhN? zX1H+?O1ChtZ`8zbYz40lXjw=gQfFfC`@3hqjF6_X{2nHQ+~qG@6?!kT3pZE`Ry?r2 z|3k?>=!xTn`)R_q>)UP$HANXcoL*Cbt1xHjRXTWN7+mr_*b7exg*!;>C*Hi*CnTLj z`bV*P0vRirn&?H)td&n&SezftB`Qo2gt$bj>P)iKuB-D2hxPsa+=~7#a|x{LJKOc? zeUA3DSjDB3H?Npe_`pZ2TAsV@W#`v%D_69a*Bt$aYW^Xn2iXl`65W5X)>_}{j?MNe zFPq7-h3#Q6-$4XTH$9oE@>Iw*VdVQA>(`8kJ_T1M6bFy4mw zc@QA9-&F1zJ$xpoF*^k$jTddmYC|*#RppzV&yTkvo~T~O`*olg6qKVp2kD;WH=wQW zsvru3FLyP0Do&P#T=OS-uD?9HsS-QiH!_(O5wLIM5V?@XsH_V5;s03yT(h^&g_PjA z?!~p|Gk5oc8F>2|)C|2LU?^5 zX1)H^WM@j*+N383h+OHPhJz*a%0i2*p`i7dHvo)Lu7ur#o_c}Kf!e-&Nj@Se%Dn?8+lVx#z&CaSpE}!WZOd3 zhj}CB^($d&#n_y8V=0U6c(u)bw0$oU>;hs;`n9I_}+(S z!Sm8ovt>S|G~#k=PCQ~h?G8C9Wc}N9d)&{+`LqPZCGrq|*og27c~Le=2YInUDPl>x zzoJNxe>_{W>kE1aLE`n$z;s1-2VF)QO@5{&uM~wPiz2oKy4?9pcrqeE|aH8f$w0E4nM_l(Us^tH(|en*7Do=fHx#4U!a-Ww%}5^a~6 z(0+o*!ZJ*;24Aiii%*0KWFzEgH!Im3j;HCgs|%SF#DilO%XB1t{h@Xgq8dOE)X`+( zJ?6Mav&~Q**xfGKroC7FJL8;xbHg1IO(%*UcR-NI!S$h3*q^~v zQQ>8o$UtJt%s#HjdgHBa>2GEi^y(+Sk(t5v+xiMQc(QyAckR#*bs?s(oV7r$h=bog z`ccwyR=NM!zti_oJG1MR!~(~t8^OTxCQJTaFe62(gf=i&o$G(3rXSZ8~| z05^m$>W>^ayi+@mk z^x4WJ()3hAq|ebGX&|{jf0nuK>w}p`hd{gn{2aV)w+(=!vw4=C&A?d1Ky4HjH}+%` zRbSsgxtrs9d&N+@`+DRm`?8dheDI40jc%wJmI}`D3!JcMgiL>NHeq}3-8^xZ(~_DcA+kigeW5lh#Z z zUlPFsBTA2ywGaY0+Pjv!py%9hQVW%+jG`03@Yma=h^?q&J&XxLCu3qpJ_E>W`bY)}C!-jch8ktxQGiYdgi-t;?hfW>lV)59=I1;| z6-IL{Apl}&hU)eAsja7l<8IL7F-<#?lzlT77GJ6BN*5hHB-men<}02-{^rT{3pHXO zrV>IJ&_jS44EUa}jK4Qn%`!w1HUtg`H=8QHOTb){?u-WxJkM<#cKKN^vw;aZn2+W? zeE8$X59`@luB8i}AyE^?*w^psaV73AMelCmDpC_953xkFs4XrB_ok?s;}3-24$cyK%sC6=i3fUz{>fU{cZBM)?*ouEd3+*qU|gR1&3p{xc$pKW>#MOfZX}U-aH}R-H?|h|5W=d~ zG+r;HW08C*w(}K2-f^V6tdh2Q5q9o~Q@o&L{)QjoB%GR;Px-BK(WRkxXoxP}>gm&` zF$oF4o&H}BLlT-_$6^BSeU^yXBQgm^2!u*QUi!sbQgwTCA#mIcd~EW!=GSHA|0-I6 z58m?rCOTGR?^Raj3wjnzS`Q3TwsJ1m%_ALcVa(p&C;WVV#U|7RoqA>1kgEMF@T(^| zKeM|Q6NQejSTwcGcKeZ;HMM2ceT)Xuan{m0fq;g5&x248l~`jQXp4;JYeO2ES4j}^soW5&e9OaY?0Mqs!D8Gi3UjsXZvqgpVjIpgFjZ zhWdJ7k(6Hb+H+%=9yn8Ve`An?Ftf3(9(L2Mqf1;Mq2p2;9xipdHR-dmx@mKtlr9XV zZF6Iht)H3q);DQ+8I3%zwpQc94wm`i1R4s~hN5qe5WQOO&H)ni?L}U3HX8CTL8mPY zvujz_Vcqu*?{x!O4g2c=irvl~x%lTq6p<2lb%1Mudu+2I#xWqiTCp$wO=c(ocGJLq zreiQwM61O|42$$RLY8=QHPOjERqt1@-N5^my8K7SN;v_Aj=*$P?&x+8(~gFD;(jTP+`C{#6^$G#(u2|6yqmN08EV$5^J|zFm3Wof zIs&*ZbR5myK~c;*L|G{WVpiiyjA9}7+;9t+?apE~00v;O5ci&_5oB0 zptWkm-@o&MSGKR4*muy;69zwh@BLdX4KjrU=_e3T%wTpc(D<1Qrt{sHSHyO!_&kXA z8G51q_d<6@H$VeQ7Gkt_Sy0S%j)G>s{1z0@qt2lHRlUuu;_Sv55b#zij}Sut{3qs! zlvoXLK4`J-n1Vg~q2mRMUkrlQ%q~`#7E@ipz}BwwdeDwgee!(U+5Q2$)8oOov|!5R zT&bcuOy6BK))~RcEH?6+%6Ho>3XbGWUBPZ)I4zKL(rzUT|#Iu;J_+*@x$fG(C zVIG!bV~zXwpRzXygMr77DUnRy&vB3|uq6WfVrs~6D2<5d29@REI# zy;Q39!8%u4&OrWTOVWU-Ot0{HN6}(LzkJxHv>8yPlcZZiwfNX?|EI`BjiHsQqUJmm=O$(ym-X8nu8;XSV`&r#1Zv!R3dx>(EW;c%!J`&T z?4fOC+33JqG`J_ZI}#4zc2dWeD{_d+5c?62-_^+D! zuC1Z%c_1NrrpkHM--_J@P+1T`z+*(vCDMeiTm@zwLbc!}6-46KT8_QvSO$Vd zHJp$C(?)xW?)&aM)@eGCSYyr()gLt0b~d7O4#NmF(7NJQb4u&cbmA&}zvd<)o(=|q zED&S}j>tcv^Ma7+V?>KvK5fIr`=e588qXjX3_<#h_WLsM99XJ7`RT?g(Nub5n zgwH~5#G2YsxhkM#SdxbvMR*O^ds}S0HUhiRSQyA4Vva5sa+4RXw%fLYgR!8D@P2lx zYja9~(4A>i*x7dKT_i&jC4C(koJm{>>?g9TYP!A)S-GyM)vms`lC-3A^GYmWJ{d~O6g61+S0g-@`8@#n%bJvbdoT)bxb{xiL3HWtQej=yqB z@-!#<|05QMy#PT4(`M?y^|_Rfc;gMX^`s$8H3~g+bes-_pC5v6VO<)~;$QJGn?%>l zWq(>4G~gJmeN zYC+E_@%PDCNzkcf12yZ7XKwOC-t(xeHe(qE$Ps9Y`~6J>4Om$NmFe)v$O~Cn*;xq* z)_&c)$eM+n6xf!LA)#%Dcd{z6YDEfhVTk zl9$eB%k z*C<=KqsNPFTn2zz2halu00=$hL_ttspOgo@V~ zfHERL{wXnC@mu4?1}I6by|tc(8%I%P&tEZQ;EiS}P5fskCEx?}mf>^7nrh=Q=1v{^ zaMeLAgmx95RGjw!!BYW_DS+7d}I@SeLeNu`QcWkjNo6pPA;QTzK!Ek zZz8mJFaLlRsnORKiq)LR+BK0s#5g4Wg+B}e(7_bd<~D&u&4Hxi+h1eBNq9={96Z?)AniO2IzN*7_ZOy{MHNK&k zz$fy*Ui?4z*0X`)rtV<^kbnCnlFR@Vr{pL`Wli^6bk)>v#QN`_Qp#}s+mFUC!3v86 zNYdgiFOj&ygw|*Bs1#AqB@fikjj80wGeHqAyIEV9vY@Y4BL5klU~tic*eUz3?R`V# z!h-+&>N1(C=np=h7_w7|**)+g{H3hV;+Ur`!^-(J;-8$H7VHI|Ub!eg1p4z((TR&#kistA>IU9l6ZNN^ z|5oP8J+6sXv$0_VRRobY6=G+R2ZAmz^|x<%M`{rFB*MRVdu(C?v@L~XF(VuU8H#ZP zXD2fU@m$!a5BN1i*<^p_Ex>YBLcX1m|N>WW+w z5SnzjEQ-2m6rCuGj)iY+z&*L|G;lgHDk@^Z%q;8b%{oT;I6o7^imCRy^uYXlhC3r% z0hhevz|=1;UJGRwCVxjqyKg1lX1nv3H44lR@x_@e-~ON9p!`k)4E|U;5_1~VZw{u=uU#*MsPPx&LyPw}Y(@DksfaylLy|M9#fg$kh?9AcbH-Gf=fA9By zYf1VczB|wJs@c<71kM4av&uQP7-lE&zcuV8b z`b)D17>3nw{gIZ&*9>^_u$Gu3nDvvzfRK?sgMcDb>m|Y9KxTDPSmzp>oz%DCNBF9* ziR@l2N-JUVe8mjc9X!77aED#~4t5ZtzG$pAU%vE7?_a;%Sv*+0){V-P;`aFY^JfGl zpMtE_2Gbhs0(xM6qSixZI)+l7y8HyY5kp@!2nw@HZn5WP_2(>ZIu+i zTphM0F;Mx&G>+!ujKg5Sb+{ckxN->y2sjDKZVyS^|CyMG2dZ%+OG^bwNr=3> z{Ke%Zg)ncn%VIlfR#p}mJr5*y0RaJm9w*Ei8X6(E(2bRq75n=;Z}m5C5Re80DCM!~ z#8VK)?I)Xo@$rZuQj?RDVqcq# z-@iX!U3pMaQGK+w&H?tUA-KI8KfZroSYMYb(Qg{I;B|9zvp?BTlL|Hc-W5$34ep@6 zj+z?5-rk;|kP!H=FMx@u#LYpV|KpvT9LP@ACr8IbZqtWRQBiqs^Ud`M6_u5{z^&15 z^5AmW(F_j{Ke>AMjKtsH-_6q#Y-E^PrmJ=lbQ3gHg#-tqzR7)!7+2 z97jXKG@>j=X^f&|JJ#%EZPOsj`<=J**Zbdlz5e;lWz1YN_j7N*=W%~ORPlJ_!F>0} zCoAtBW(0bBc_0U_PsK9WBpDX2Eg!3=aq5PKypb~0wY3NExfB%@uW~r8@lkKp zAM52%$1+%$OG?ynU5rVn#Kgp)UbP@8--%t?G)sB9YRbs_(jz(50>R#x%a@00;MiS3lrZ8$6NV}LDLDL~A zWavz3?`$s)El^mtENz%-W8-LqDZ?vE{|Yr?!_y ztU1MUoyF)$^wXzL_jKzn))ZzI6zIdCsYOLAvz@H{{Iq~ZyeQSYk+&{~TG{vhrkABH z2uW^IQc{2BFd|~d)cZsiCfNQI%KT;#W}6^U7)U^;T`-*Jb{M|n;KMP$2@z!N@M^t5?;)uUD{G ztVwJK|H~6t|1s$D19pwOzU?VJOoJ3bdzZMPu!u zV|ouBJUEbdYzb6MDX{0@VCB>Cl2_1n{(6(M&EtySckjoykv8&}qqN(%Z?{aWxFGj3 zH6!&WG`SwYX|q#JJ@t`NpW(2kC`4NN((>$I_wT=ulcSB-feY9@HfD=H04T^8t*smk zNG_ID%{pYXeLHRy6jgVheu15}=*yQY>g#VPX*ltwbe5>aU5bNgX#2Pg;$b%6m44*# zM>w#dM?jtyS>W&H=G0nGv1qZnx;jB-<#r;0N~Jn(Qi2aiCaK<9WgKoOt*muScgsCB-o3-XT?V_sP(^dPjK-_CZ&yJF zJvhw`Co!nx zmtt<-4cjzj)Otq8#HelCb{$SP;AfgvJJ_vE4hoEwBlE~%Va4yjrbtKr&)IEYKnoep zE>JYHyP@vz$Hu^cny~(9)HeqL23o^w8SL0t`|{_{gTJ5*S3!*X0q3~4w>^?pLUX>y za0}RwiYBONEWc;Dxw%yk+fIJE2JeL$?c^UEyq`zQemII2JJvkS4%A8|JT*7_T?5@} z(cH_I=5D}1QGJKU^YZhROwi{vamG4|xlKpt^x68Nh?!4O3pTFO^EuVe7mc=N5UP+o zlMJ-7ow&!`+|;qQR?g0Cfj!H}L2CkJQ{?XL2a@H~$4-f58*J+t$2~pE>gtxAStPxD zi?}jvZ0C8^eH4izy27ApY%j`>iCLnjrzbwND$;}B5|E727-&J^6Ca<=s1VvbZ3hR3;*bQZ^rk=TGtUTqx0YazwOOLW8E(oE zym=#QZEbBdKNDzs*I*(?05xkf8m+}4jLBqbD}KorhpvVOSD7ZLsacAEva+&DYCd9b zf6glX=-}JbB0i)D`996}LTOJts8f~7WW)8zixD9zMywsMwAdhJWn}|e9%!l@9Tn~D z?BZ7GUjgSN`TqTN_1?N4CsSkjH2@CHCi33;aq$=0o|CGkBVkj;z03fT}fHh`=AsdwByl< zb2zI$PR1O#Z2lY$nVFS!ANmm0N8w*9jOS;z;dpcgQ zSo_oMdU^^fDlysFnq6I8u&w`Si!L;t5AZzYOXufyiDzZ|q1@e9cJ?Rd!hj1Xs}Zb- z_m`fW=vsiVtlJ0wA)r(3>Fg{+*dnQPq7&@x?^jSzAS2q*f%@h}s8O0WpsL(!Fq)fm zMgB1Zw+Vd@LO%c=(ynnBcGhspa_Oy%U$}6g%h99dIF>jo5Y>d?@P-9Quei@uRqb&1 zuf|aT6zjJz8aKbZLV9&1Vm4iWC2`B~4ns6actQqV0S;>&(g2!paeaOnr}Ct*P@Y8E zhxFh_`B*IKaQ!yYjGFyHOB<@s#rwLK5{ZZ?2Ymn+C0txxp99W_zT_w<#4^AkA$4Dr zQ7K2In&^pN%dbJp7bZPwDk8F=64ed4~a>%Okr*P7}|q}S-LK_C#)C&~)XA&@Hp z5D3o9RRZvi(4UEU@Pg+i_vFP@@a22eG6MXY2&$~-27!>9VgKNKmC3aQZ;HAr>bh$= zTf2LixmrOS&D^05&h8Gj=65`;T-|J)odme~xCJ=xymEJkiu3UN=jYtct~NXY5IzM6 zRL9XE5;!)+e5eN%K% z43QJlf22Us@_;dCc`^CEe{K&-bBT!R*JOd>>T-NQ$=WGEvX|&oBS)oG^27h|_3ks2MWs zPZI*6F1f9c0pF}q7I}hQqIFK`%wC$6#|pnI9mk>K=_CxIv8AQ_1f=vohD{J^uCA_m z(p&pJ_qn*(g@mXg+b9=@z>+H8JMxwGKUv`@Eh~E+8QI;)Ymjy8`jZBq{m(i@#t=&@ ztGKwhmgw6O`nMq}Dk>|JbzY*W*tIt+wd$mHb#r5#jEaa@g&YkTIG4Qo!!lH4(hKen zLxs|aZq@Gw_1x#?w*K>3@%@Jne5TEi1TKT0vCQ%*hW6(t`?O&$nt|M4FuaI>TF;HK zMxGluPF1Occ{&2F^UCX<@T}AU+vS?Dj0{`Yzb_#tHQL(R{dHbj&C_!w_rBwrdUy!o z5|GS%&nuh_BIbUzgAwSJl=t_S?o8xa`m3d3)$xu!&F^5;cYjdF(%PD!XS~FMP{-Jt zom^_KPj+%zW_`TEe)ubCz>_CW+&9KvA~Zu|GwhdFlEcFPc~Pp)u;H^Z+P-jyMhD(1E*=zZS7 zk;!)d{(Z}7?6GXk&B+N<;c0je7ENj4s_{Jq5AqpIwIMeNvKa-%YuJQ}j#Rs_Lbe)D zxqBsdNjNfKEP2`mS7wS3=MOp3pmJryocHeCk&%&su4l^gy3YUldWPd#H(7r$W*^v?^$>e4DxOQco0Fr@P5N^WNK@S5ZPF%c0F8ylOT_oP#m(mrDO z&lD#5X|K@Uo+?uQpBL5_y)T7io3t6D@;#JY^O2tZK?HG8yi=} z#wvO4@8JP?-@hLnj637D%bcNcZwWhmgdcA1tqg>po%#NZqC?KK1k>?bUR6op{8U>j zUi?58d!VQlJs@YxUt(ybePJ^rO^+J1lI9KR;JiREOJ|aImCA#QW^NW89aW-Fd zk?@e%%dqQCE6p_FL6hb$?u!vqO{QF-_E3M;a1Hwm;xQZJX6w4J753euR$>$?oOLWq zT}3Lu@uL_vynou?tmB1#q{C2B&NQCRjM~T!4zKN5dvqZ(M!uc{EsLx~46< zdJlHtSB>#0)@7Nj?NO0$#>RgNDk|v02lQ&*;x>C?GcNffJ3Gs9D&oJm*a#6mfxuXh z9XFmla9_DXE`_Hd`3ddy^)iwCVz!{we1T_^L6n^h?czhD!lB(l^gB}TZ$ic&MLq%} zCo|TgOY;-%N;2y?za>B*eR5S@l)0ZPQtBEQyy6{jc|x0RdbeL*-So;&gOr#;sUF@D z69Ye>cA2;+g~M>ltXm=|X53p{+QDwHZjgD+P;dpzc3km2u22;oAsXKRvEHo=co*ZN z*PNGWji?53PFz^s%DMmU-IdNnq*bC~?aSF*W>f4E(Zvv6yEc>N)`b=^h2)zQp@;w6 z18bs<6B!X9SYbs>!sN8MjsuVJR5^wuk?Vz6V26HSD5jvIHQ^}3Fe zZDug1-7LNR+m|z;oLV!<>&<_*=~Zk&NJ5X7>3aonW|3uZ_w>u!iA8HO`+1r)%5ZyUHh~Pf?VcIhq;%Bx;fW?@Vzrd3H)YZ&D#JLyvCpQ z#gz|l^*c;%*UD{8b(Y(jqHs(I3Bc}BWe%GcIw+S9BBvScFQcCs4bJc9W`@OU2*XeL z`DZdOLhy;3oyfiH7c@1o7-Ho|)arw$OX}A4D79*%o{xtU+#CkP&Y#^k=O10oF9@|S z3RU3_{Qf|6jzj=2!%dw{p9l3Bdvy9=AKTgUdT#xgoTyT~1yLf_yz(F)<3T{ar8TGd+omH9qY#yjZLhm$}$;ZYdCL<7OGJ zror9uKR-?Kvc91qkfy zX1WBrnWxKo-ni$nr(I6Gd4Lo$aBgu$wy4HmAaUTam~P3H*;&&bhO#A|hY$H3-^(lA zt^+%puX)3D){vhZl1Z+OIWkzppm+~pA9Z+OJ5OkZIZLrW_s@;(t7j}UPAIzECc6i2 z_2V2_ZRSc=)Y6ExTR*P;;Cj#YYBg#34G=RFh-303uVWf3&(nyfe3Ei6;-UvvEp}pa zVX!{6>aCh@ZQ_CbV%QMlc?BGhS7uLCSqkmNdmWnI5o1bXog2&IQi+`#ZOx`SZ74Gb ziS6~p6MkeVi@YRbCdKZ5ck{u=*W#N@ewR6?8oVcYVs1 zdOtkrpM6l_FBQc|I_+oEZY@yd+Sx0jb9OSyFL=m9eIJW4-T6T@gY!(d68{~R&y-%A zYLpLuTx-?;?DDv{v($OE4C)|vdsEvlwk}$}#K`&hSdO#bj-(C*59&_I*sI4Li^al@a5`Mvb_8bNj8g zy_)H4niII7f1jZ-r_l3#`kfC$f39QC{>^V+1Nbb!4i}8!slj7}L7r=|j&r}}zT9xn zW(%sinsxNA8PztIT3L6{?4NYByg6o`+3l6d+}m^Ku1B{ji-6PI`s-_9>)Zq91F4ui zhA*|N*Q>tnliWh~wq|o_8-@ zBDo+`1m!6fJmprG=D=0|y1yn~!t$!SI4aG}^e2hi=JW@h)>;o}D^Z+NvO-xBIW}#v zzP!N!Qiza=Bk9l0bXZ#U`5NVi_8#PxLtPHJL+F6>;@U0nG5P7ktG61mfSR=@ck zp~5L%eFMAn-G6ubQnzd@AJ={h5Sy2Q-PpvCGJKTc$ml?VaGW3DQ7W?YTA;jBek3t5bwk8ejGHXY)Abe^76&8Uxdn*8p)@F7;1 z>wD;`O+`+QMfZMGi25yv5jRbk*$foVYej;AOxS6HR#bW|zwBslK;v6s;aw4t#H9>) z^e6dnVR&~?(3PFtUEKB$A3p4DPNv4OD)j?+jrNV>{ZHI@rEZdOWzn79r|?s*4LxJY zf#KwM=cu+IzJ@nlWfv!ZQKstgdE}M$hHEtDTYnnG0vx?_460hGbacHBjoh?{Du(Gf z_1`O)&lZghCiJlVmC3_U)awq};+oo@pH5#m?brNIh?6PfzaUOl>WsYhm+HssPma>E z*+fe_lKp57NC=Irr>(g0?vJX159X=4NIT?WholEU*7n*TX`GzsnEMoNy7%g#siW5| z@h_U^`JM-vheHvoig!-qSq#XElgwi~X9jEr2FZj#AObA4J@$O?c^ z7&Zv%`^4ijkF{Z3YI*F)ekTjj9(_z%5>7+5Vk7K0Ss%Tc~ad@SrGh~Aa zO02t6n(d8?5{2xC%0+*S>w9~9`);?<W8a59X62sTO3Jd>^nU3U1 zsW|i82r3tZ%~Mp*1j)PF$K82$8zOVE%o;|{#3*{e(?=^{P4ZAX-*j*J&x;o?c-J;evuS0LW!XhHUrIlQ+`6Y6TUPfX%I`q+8aVFQABFkeb zEWQqSW)#}~a%vsUs3Z2+<7H%K!6kBeSX5qO6Z3XJEwu=;#h>etQe`SF77`f|Htw#%PZ!Pv_SBJj3^)NCrtT);@+u6mdOmItIZd za1KVB`|P1NaGCoyTvOoq5-NNE3+Wi#*sE#6P!W)a^~!{Isltw}f;+j#Bh+r>X9a6P z9B>`+IavB@M)>)0;a5)OO*ek_;-Y$+!iy2@v8#5~s}HJop6*VElZ)saXLt-@><8Ys z-@MFUN$@L#q0K?{AJI$G@<)gZ0k0j{-m{3v;L$Qv#qdX+qFB_8k*$8# zNy9i#EdWB}l5C!+wx(DU)B#BN^{p3lgB{%^V1z?EwPdl0Ige+M@%6+rxKAnm&+_GW z+_&sC3;__cSJ-B!U8dD*I{y*4K2peAcxe7T08DIbmuMuQI_u^eCN;Buwy#Cu z(ta~5xn|3n5VfQD9z`s&GoLCng6 zk{@ZeB}^wokD4w7VlL2xup_hOAue!zu@{%bjc=jh&~)aJz*$?nybGV?VOneE4{9vb zc}--@0~kn}3xUJv6`51I`U~j^XmFS>`@t(Lf)a0dbB$Ku=R_;%%xokoknp4Z@UKc0 zw&#}@O&>FGPR{eaIM!J1$7l4tp5gl(rD2|mg@o=;jd{9K36bIQPly=&1bxvsQA|b5 zCKUhjin!?Rl@Pa{z*aedtHv()zIzmDFmsUm`}wf^YZYKdcf+D4r@|e-4IyRK5GBSy z06=a!&ON03h&}x2L1xYQde9*~O>Khn)6@q4xu3Sbbh7xc(-`-)%JG(=Ctdw^n78lX z%VGyQHg>?=SZ;s7j!U6pFb}oU+5McSqodfj#+#FcYXCca3hXh2IT|7~@E0$Vh$V-L zbdGM=lJ0|XDE}R;rQ&Y5Ipseti5bY8*{thUWMcV;t5Lo*_Qo%)r>t}i|NEk>c(;v4 zsrDtyA4M#Wrlgv1s@~T=+Hmehd+l_fx7)8FSR6kwf+=4?3p)!3PmNV9Zif&-m(pWn zuaA1ZR(QDoFIE?G*Ot=hY{oGjDhw?b)UD~~+gly6QeS?h>O#RdCRQLyt-id~VosVYkW(uWyA={a(j2Rc{MP z8SnKhuiYJV=~H!od-jZL90UPo#RbdSl2qyr(GIR}Hd_+n=vHzf6{xUmLOHzHhI~R& zBL0?f=Msm;0}hW1o{OXIw^8)<_?gbr-aplK{y}fUuj1}yV<*Y>#+TY_CXQ-l4bI@n z6MnGe7ceB8FW#b+qL)7YA(`QBA%ysD6wp=?`YuQklD|SnD`6DaE9#U{i00^jyov*k zdhlXqUR4G9?gY0@ADpmGbPk-zzB>YE`^z{yO(b62YInW*|IXatY6`=t>HrM`l1UJhG`^6P1!Vy-7$D}w*(mD2Ln#K;My^C>dpFK@5{u1n&lW`% zJ+P52-FY2qwzhKTGH7|m!y}c~u>41X57F^{F{JEq1{dpqq3@qN5ra-=fV+{Ei_Ya0 z%`C}?RJoMtnx44B&OLs0laj>^kq{1T(gpS&`*u&)W!v0g>Bh#c*Uuk&P_dWoj7l!} z*fn8TmZhpXI}(B5Gb0E z9Y@oaY%!>qQx28yJ&I6WcEbY@CQhO$X#)R{0ACs&7CiAe8${N>t8I5#%=;gh0?I{| z_&%z_UL@)^H=6$aP1R;TZ?eKBPUI_Io}N0d3MbKP>>?sMy)~A`@r=zpjRBF|{1>(* zAPi{gUe&fo@Bb63Z4f;;``|2Ww8{eq)k7`qu>Kd+2Zb)}hVa*j?LZmucj zy>~Y1BmOHH;jA0<99iQdtmIi1Dc~y&G99ht2nj+@uh{x69pqNHj0|A9ksB3Omfx#1 z*zf=qYuxKsVes4g!{G7vndBK78Rrxo@k_SEM)a2vOvc4_MQv&~yb1dEx4onePwp}! zWsDf}EA^RSEvJQ@KX8zD-P*PyC>CS4&?si-=m>_aB(ea;7;Mqf7;)|)eLR1InoIx3 z!Nxf2Bq!Lz*01fy(ud~0-$H8NtJyY`y6`(AmTxRMPrInHW7d!!4y_hV5+OJCqhk0z z&e_lW!yN*KL@u^jJ@>1lgPEN@^x2okB|iJB$|5QXSuera2RoOC z#>S#VSGU6MWxN|Gj;@SX@fg**12m(tfFze8sn^lhf2yvoJ|oJ(5f12!e7`3}+yO6^ zw0aAG{Uqy#$)6O6P*D>guQz^rZD(ZQtAc9v3+>kI#FV!5wN=hEfquYMtpjZ+R&)Vc z)Yj1v06GJ>Q>x!ZvP}lFj7+9pnf3N|I}`T(9_dqu-<>acUnqP|1xL4c(`ZKMN)dK> zQ(SMk7}c&z{8_Uazbznd3}#Rp%7kzjI)IOpmdeUj)zmWs1v$EsG&OIyDQz2o5v-x|p z5`q2M#OU?0*9AJ&Jso(9v{n*%; zk(I@!U1&%LBQ*sD@Aa{YNKj9wh-pWbv@>?5IyXMi*QXCAAf0VEocf{^!`MA#aj-rL zis88(YZ}tWY)_tim*Zh6$^QQPvCH<8e4|v-=2+(O>g}Hz%4&lqh5aRifB!;PvJ*?; zhfYBBp6}j~9J9opcl`R*Y*#Vs zPT(B0`TsyY`x&`5egv8Y4APIpeF61MwKu|5RyMJ>CBS0ek(nkz&=^9PFm-9tMKlEI zOQ7Uf)j8VwQXz|Vx%|Ilp}g+PeV#@VJUlTxjYmNqYeN-P$t*06t{>AygXBN~w9nh| zK3Rh&SDHKJ+4P01Z+#4WD>OGj;+wI%*36imR%G!(*R`>0>I&jHKpA=Y@}$A@pgIvvs?m&~y#^y@VumfO!j`3k7HE*~EV-?*!4 z+8P|^^5s9g03k%o4bH~KjDYpO(AIvJkU-sU9~n`e0EqZIt(5vrPcawnjL2uttO?3f zbLR~CdHNm>r(6dr7qo+2^Z6A}QItAtKH4@yJ2d%C_qpA*j7q(J6LU7)!=-O`@LYI6 zn&Nf+S4Mz>UsGebDe}`LYJBC{CE7R9j7!?>)4+?61_?T>=}Sx)xpaVi5q=~)EMip4 z`0;3KtMwAi7(YK1MnN1~1&!miuXog!cS?*0b;f7nUarb=ruK^j!Xkq9FLa)rSmA$p z+_JZ_NdK;rCp<ISZ)ANn%9V)@|uEC%HKQ zN((A1=;r|l8?eL|1dkQS!njz=I<7l>wcD*oG<)>y8AGC^o4|t5q}T&L;;jNtJ|_lP zr3mR)u0h5ZD>QM-ST(`*DqeRw@iWK9MTRb@n;u7+&&wx(xdo$(Mp8nURp4+dglQU{0WA}K!a6iqhpJ+7;->}}$C)Y7_ znF$z6I1Xj$zZ3))A#apb^yz~yv;h(r%o5go?%SCmbWt%8`4hLjM`Kpiz-kQsYEn-AKfq@sL>uH$B zrs3RF{e`H;f)@|h+(yNAR!*yyMvLE}_Y-CGl~*p||JXfBn{tEG zjt|W{f03+Bh#{Oa#_boPFO1rS>}g8;65j@LRO>Y{ayP=JYce*d^e34A@sG&mZ(m=p ztf>kZzkL-!y3`wLv1vHD$aF7RIIvp=R(%#s2wP57!Kpq&FM0c*X;0YBuDdrDi{HDr?(js`ct%JG(`Bu57FLQenOszJs9B&Na$szIPdYGa zlqfe`h;E*&J32nqKz)OjE+p75`z@J7tbM=@5W1hdo*W6djG%4g!9LYW+F#re0)0H7 zHd20@02tVmS?NPmODapv#4JH zsX5Ji1todX9SVt(+R@9P6-+SRx2B^-F8mmi3QikOpqySp7njQ_d=9=`18>6x3O&v3 zvt4NalVYda?rL9AffU5a9*b^2YAV+su1*Z#xM&;3Oxzk7)=@Bzzx{!cqn`FB{-T6zXG(34=RnqbdyYu4e%<_-Su&t#c$gu&V*}Ro$A)Ls8is|k z0XrwyD1MNejZX!5M$fFoh%mw~-aFtw13+GwO{O2Uy7VXsLdvIEg{S4VSHPrGqjQPi zg_!e#`fqA#VZ?>4_xqlnVRW%Fi6$sQ0Y?7XiECq!*qTST`iiDoUC1N!=Qv!_-l3sZ zkKtq~gv>c!ZYC%PHajEgiq1imYa0-7Y5F%RYXpqsKgnneat&kPb;l$Vf`O z<7=6kkY$rp30piYx3Sy&$NPkX)zILrPzl}c4a(R!;vg>5%9wr*xBmO6(zE*h&Xnm>iZQF1L!D$4SpXeM$C160Kn z`eFKO_l90dn%6y4nmtA|8vQ0&)NR|U}+n*-aB3`4O|486f1@x zGO;a|SI}_3(63YZMPmX$89K2kNxl)NBvgKW_q#tW28oES;`_j@}2FC*2b6V z5$+^rL;;A4(`m8O^|B|bs`K$0(w_9!v}LI-L9IKaihu`Jm;w#2K|gwdgIyABA$`6oR*w>?^4nbDk?6TlPg7tvo{D0!aO%1UHD9+ zWz;yaQuY)>4UXIEV}VsU;({VKpi2gnWrlpN1*)mEf+FN>;D7c?W$%{ zdJ^U@Aq++?=0;6e`OUtXDh*tJ3%?D-5w^!6*@RHwr&0yNCAstwB(hD;*7m-JnrzPm)@EN-<*hsFC3Bp89Z!0PiOy_zF;1&`bnGRtxd2OaU zE{D5lz1?5RL>i=Wue|;5BsFA#idqRXCk}M=?>9rAmFzRHi*vqzexRdyA^hj!@16`1}E*F2kNal9IE4NY=4{efc6yNFcR+hzzwy@y+*?%QCkbwzGGu z2DNw52cM#(GN+C!CRTxz>vF1QN~hnJ@B~%?Oyc1*BJ<6gYfg0=mCy-wz^U~Og0h9i z^i|NgCzf~5kM5MobmmS)EOq63d2dJYk*qY~Dq&P-DdXk$Jrou6Zw|@zZEtVyZB1ta z?il;-vl%|c>$IWwrncR)F=1rZO5_3LQ-!FkIXiEZiBZXTy{d#iU8e@uM}sqsJz6+! zPn#RElDs5BS>8+!uhgcO5$nFY$+-4kag}ny|kHzA7++eVt|_x$-!cFGXVkvK)DPk zk3gxG3nQTmYWpk|rodKuCSiG`(=0r1a^}MO(DW8LhlEo`v|C60BaP28c$*VMI!5?; z+BmvL2-b(m$-EhbLr;tKJ7^ICh2aTFs9w9aI2n025V6)9`>~Na2*{%*FF(r`78klgHai5i#M4Ziv~5t)jMjB1opNK>K4O z_$?bo37YB0PJf<J-At8pu&Fket-VaSI7=xWfkm zJ@+CyyHGqPM!$-uvv=oWp!0FXo?P>4#inc4{yi?8X&>#yosxsQsM#zm(tRA<>lqdB1&0WwuY8s+&rZ~MIa29hGxH`T1EGj{lYZ{EvloNw2jG*QTsYVF5` zb+9LDK7ZbNcD(B%%5aIG{uVFw#>wC=&5nb5G2kvLW5hBPT9{$9EfYxJ(WH6a-!$fxav%$PG3gpccHv-`R3~nS96&0xJ za$sn|WHdQ?^|XQ-j&1=Qj&Wk$&!5Imzct)o)3=Rz!_DMy>v!Z<^AfIsh7!7mQR?=Q zucooDQatmB$TU#9bc(`$C>(W~%xt%(k|T7fVuApf9It`;d+bA&eoZjzVoPaAFzd(rMF=%(>$@u}D_Oa@0|f>m{R0C?7Zp%f z#g^v3eG3$a1tKbc*tPLxf9-}J3AZy`$tO5N8HYIJLT}9WFDm?_lD>q<1WU zODqfWRb?Km6lfoA9lrH-Uc#r1UWZs^ad#oPlh#d*MV*63E*Z5 zkpmA?*1h}Y>%gbQ)qhO1`^Z=uGM>MV)(Q=4#$a9muhhciqJ z85qeY&U*!_5l?7*rA1MAz$GNQm?S*SuWau{{fCU1h4KM2aX_Zu0Ug$!1N^StZQWx+R^x9vj zt^}<-V@u%+*8ah$h zeOEp0*IbMYM^EcbD?f?dT3p~{ zT=$xl{PB58xNg&&!t?kEPAL!SG7Ur3pbEx1)>{TKQJ&MC|7qwM%b=T}B#*Gxo6g%UDbjQ6FDv*E- zWuecGpPeJA7Yn5mWg41djWz|WmI|wnY1@ zD@~B}0hnDmsorM_S)XDFn#;=to7Ztv)zsKaWYa^Aj$rnD6ng7E z7v=jpQ`SWAk=idpxjIx3B7L&_1+up>o@n4ylRb%S_+L>6@J)euv0*1K@8RL`cW@9t z`uvo>4yXcVC&UlZ&K#qER(e?ipA^lijlK?{R_@Pdh7LnClKU@s9wvOSKsZQeh}wVL z{AhAK*SYet`a0ZK&Mi?w)ONBX&5vgMO^&9H@z2F%1VMAcKzLVcXzb8=?D_h#&87Dq z6tiD8$(U{n>EsvTmg;iK$~W)t@3XP9m$)wc{%D5cv-nwTKg?|m97ozFr`;mc^HcCG zE6|H@D&_otEBHU?dq7EA>8LW>BcXw++p5KZPI*s5j~7hL%M{y~LRl!U0HlRQ-Rn~g zsf9*$k88y!C=v>0($qPy0N;Kn|5JT^{S(<`&6`1+k<{9>og-N0|*eoh%Xeih`7$$DxT&ea~3nS;@fdIcrr&JE95VI`b^f~=2}I84?ez>)?6a1X@CqfuEC{oLpZkwG8mb4PJawf}cu!@7Xcr+VmMg0j(h0_aN(IC^1kF zP;Lo9?ZMqfG2K&K`Hr@00+VHgJG%g!bk7ZFgy&|I#-`e1C|Bcmp6*z$iLf{Ye5HK3QS!c#f` z-aGcx;Eb(LfA##eB`86o%GE*8p`w;_Wd_R?$DNzHL9HC=;tk>F=P%YT5KV8%z6n-U zPfyRRjwk713~<6#WT*cKd1X?K-XBH-Q%r7VP}>!Jd|n%}5&E+gtidK>3RlI@Funm+ zcfQHuDd}`qNoV`EZe32C_2Q&aZ$&+bD^G!^QP2We^e7&-}=#=3#tL_vbE;3ZuQ&34a@!iH>8!8}P z^HUIi6DD+gsoL+Pgd{=vzUQGGie4Qw;8Lmk1DCZR@V86BTl0!q>%Ci0z|unlqWw9{hoCu=Pei6gh+#aMFp>OP^4})O-#8u%s$^rxOPY3u!1jgj=sPKqwi#cU59-wu^z4)^gtAxFs5ux$+cBW^r>UI9F--FDMUDrijEjtfO@8$}QuMK5S zm&|k4GtoQXR>21cNPCK7%h1xbdlCl$(>4g%0h3)`_~Pf{bx+`x*VGLQ01}>>ni{DR zqc@Q5o~ZpCOC7&kD8}Ts_pEQo1%pqE?K^6FLlwm+l>(@&bx+z8Jv}-ADds^mbu8s& z`zwgYS@P@Bu+FnA1f&qN4IGl2>QgBG@!|#sxOR^}F$dx}TWlU!GgIUn1#DWQ=u9gr zVX3%Ju?UuU>x<>@eYL4hJs8vL^Jx413bGfwnhNupS5+W}rIt^W3kASj;gYdyB=H6k z-MAYv?_cmCF;NLDCs0rWXNOtR^^nb0_SMi&f1;^@K8>jMK461XQmHY+Ti;VJF-afL z0+Z4xZqf&Q4M`lE47!v`n5WQ%Od(eTH%osUSf*$?fx8TeRB=}$_F6-$e^~PG<}?pa z&)w(wl68l?ndI}az-txNoZ2xG{}>r3|Hb^W8D~VWCMf|P*U_sVHKyV>yI4Jb@yNRg z07vE>PMkg&r6P8}lRct#M@2T0Gh&(mYZ`8>b$YxN|AL|UWHrH zpa~N&Wr2peT$3h$Z1_c0FED5G^HSRD>oXHCN;U)&Apo^x)bTFc65?Jn$94~xZF}T> zh+4b*Y(b6r0%@x{%^NDtno*_%8!2YqLy_NE8JTNg)Ig#MPpQKK@YlB&!A+mBa7qP$ zX1-TDW1u0cqo)VkIA{oM!ADgWM1&-PrV)o;rX;fsQ#j^Kz7{xa)TpD6Xi|Wo7B^dS zwej@Y;Skdy0dF%eZ0&$1xq1^v_~qeGyY1NN3ufynzL57B!DHussTNx+GsUwUyq=q{ zp0Bc(OuNi;8%7H?NE~E@dmfSjW&f%Qxv2`axo$t@wE_`BcU&KK!$}7nEpeLHQY8~u z$_=N9J}MfAekdt{=jsjN7kjQze4U=%ZPA)e?^JZ2?9Ex7+I#B0GruC@vccDDzBR?F zFkS0?kP%J2cIL6-mEW2fp^#pT*9s&z|2|U+ol6LR0sQgjr-w`L zwbWm`Ybm67@FMfM#72sT=rN_-fwvW}aa@=U;9e((TfKm;)qw85R+mos zr*4pJR^pevlPzHtL*hw}3t;p3*4~dN)}C&MZ!MUX!IC`B_!BbqANlwK+zUG-(*jGA48FZ1q5PqnXqA}@1ac6k0gg-!~6{B`<- zb)P*ob>a(GD0UnB)3(P6jA(JZXIQu!0dlr})7B=g)thZ;|9LCCDgW6Ka zP6EXz#XFRwpa9DM6Mrjy(qf%dEiCvJ_x!7R7~8%4efK{5#dK@khdf{WcfAN39%a=y zE&yXuAhxf`+IqKHqRDc^x<eNpwf~sCPHpFyZuO_t1w!=Y7)eKOh3$7Zw zFVwqH%T(|(Ou)94HFeiknwNraYsfq;vLyyRRV}>Dc2ZyQSul{mrkh`Uz%dBUGIHVY&)zLjY@o zjr>72xXU~r%cOzb|LnLIF|}0*Wuf$W8?JX->rI!BPgr1CGRpK-E$qkFZ~VxyDYQ*> z8f~4Ix!O~*F1{$4^{e?(WhwcK8$yoK)F~J*XEpVfIIo8dIg^alTcACtIS~DO6_1kA zcfzZeF+DY}OUGQT_#kYhG(>uoC!r@CGdd1qQVn z{g79*1fX~uXp!3e`03N-Lqe*!1R;^Gl#^Wn=mbB;SZeNJc|&km_=%&z_z@e> zN{ay3+dlSI-JNq1p)U3|DJu&;W$H|@C!KYi{ zfB(*Gfub!le34}p@qNCD2~VR2{X(Z|)%&mGL)nX44_GKUv!nt5)L<46hzC5czrVlw zY^M{X05XPC#B1fFBY7=s)vKiw*u3rSD26ihXsN7ZiAB%!ADs4AFPf<2d6OpI$Ru}= zy4~GFe)j7~sL7-u4bhPC2si`Ic+d8W)Q~2~ts8<9bvmvWIq+za+zLSTf4qx5xa4i0 z>J7tR8XBsC&>Lo^P5HrLCq>9Q15z|SkoS1VDT4!{7}{B#s|5co%^D;H}kH|h53{rMqO@LIP) zxR>jp65_{N1+NoBzQOPTx~hnD(zfw2iFMp^`KCTTCrf`+u>-L21L`siY!joF#u+lr zdIS9(88!EK8P@X(Y@fetYl=m_OA7IjX$X}yXc1cGlI-(%n_^el%`?;RCO&!Z4~e0N zlydn7YKq;%@WU|X+nvTS`l#ROTwC}{yJjyo9R?G;K&-?zH$2O6sY$@4GON6sizlZ) zmmzQPI7iHo1ZMxeB*)Xy!`TeECTz~qrR!E4p&U5`D%}9dR?!{Gog)Bb&M{)NCEQ_YKsm+`Wmur|2-qe{fAL;%4F~(Ae zqFD?u@8@6aI&j1N`P)q1wka{pwIjoC)k61rB?E=41VbkEg)$N5)L)$L%+)?=;h+oi z&WMP>1OG9_YdKQ*0zHkHlO*T*a7u=}^Go)jti`1+p>?i_OhiNcZ|4htLMA7f*Y7QP zG^B~hrLP*nMW*9Nv=d(-qHy3sxJ{`KgqKf&$P}KWp1}RvcASEEQKwINiG! zFrA+HD|+k&0mIhfoW^YR{JR<9s!EPOy`a1^(B;I~fvbU&O1J4sJ*8nTDh@HeHT2ZOooBsQdPq$vU$iNJLMBl0$X3Z;ZezHzYtw%NpA@4G^0x z;e+AlKsKdb8qq86+pRtOID9bd2D`)4V7a*fl3ZU!p5Ay-HEpfC?Z841URXhACj{y& z(xf$WT9*b}TfIVTOuyQ{r5h?k5l0P-4hnQJd1>!fLwDK9Q+4tu_Oy%n_M7L;dbc9&BQoQ!o44vc*Y`t(sSU+*9VlGD1WiDePO-X&?Hl6Eoj85_mfh3 zYdA77Ie96e<{h$QS8|Dg51EwndTN+BC9KTcQMrcNrcGb-WuIT5aXoVfV;&7^4H`Hc zxd{EqxhI)%I32Fxcg=IX*m&9{TnHET`@YtN-v${++e-rox}r*Lw6x;7T-q--$W8OG zXE*VM1a7(C9*%y?jFVyC{+O5KeLh2ZT791-IRZ_1Pwe=;y|2o z6PN#4lnKV=9eae#r2R~F^HYwM0$1;>Th-jk>Qc1COs7d$24nS+IaW(p&12pAGmbJ} zo-uf~g#drUB<@yDtWTfPIPiB4$z5gUq=a1K!)@zaj!SIwj$VJ+1PGlQ6()Gtq3 zWPba$0`dzl!3i$`p&Z$Et&Ev zhJY_PCIPkq-=FJOrM~xOqJzWxEC$Ezog+s?j*#|DbCDWOv!ufeJFcXlpM9k9_PckV zr-zm81s2iQX~nxgL|&1dnQ0NREi}Xnix!jop=`ffJ*oUR^)#ZhV9$eB>D|=??Ko6AiC6!kjte`s+Aw2U|I& zn1?RmH(FKQwd2P6CHCcf&8GA}(VEB#Y9@yw<>DEPbA)XSQ^fhUqa zGi4A?6UpYS3z64)Wj`+%b8J78kVQ9`EmviZC|502maHb%ca zYFYc{|KjQ^psMV;Zs`sc=~f9vx?8$SX$ci6fkWq^Q;<+vx&)-VQ%a<}TR3!g9PU2v z`+fKS?{y3ugTXlG+0V|k=A3J8Ec(DQc_ijep5+6#5zT4=kG+!^%%!4HE;Gt{bS;x;Tg_i%~D?Nm9)YeF?~yU)cJIVNgl zKlTqZT{+}}*CILPg2}~BRV86#qugcdq|$fRPYh)OA4rCOL$Z661K8BSeR6p>S@z+h zCojwC-E!3q_PVJ~!&$!sPqgEvwO0y$8G%BJM17Nj*Cu~tSo(E-ZL(@5dMJQT@XNL2 z#IB=a2JdpTj>AV>y!Domq)A&aQySOH!a}hJn?5kn;}Mdof0aK`sKwmtxZ!Xb>7@YD z!nGhDy{aM?9cgNj#*Wan+^$Rgq~btAmFy}AzhL@JbQ~EM1zHWnfaZ1XdU5UYuao9o zFCKjK02$aF|In>bwl!olu+pYFcKkUt6PSqG3P{YV%tSNhuH#eNI|>%EL+nPD35SuS z`W~|V=jOdkss7QikFnsdVP21Y$K7dvxb5+&YdwZO(l3d7cKrJ(NLd+eTTFYt&G$Yv z&Nu0?Wn(z$znrNlPy4~jM5?|jP9;N*c+jfbS0wcm4#tWh$cx81HsC?*x<#XGL|bm} z+3jAtOnE&no(7L;yM`M^i3Y~UNsau`mmN)+cYA8!BkCrCL(A?Nk?wO2_4FF5)<}p8 zxWMoBieE@YD^Tt+p;(K0D2ZjS45oo98F&?b;@ztt?4ix8E|$G$X0MF&bJ01wg9T!T z6v0i21DEUzr=#0HH}%UY4{5x~G$;NJ;(GsCREmFXkdyHvXdgd3-o}c+R3^_PN9uXi8fy?B_3ui_A^(sPx0dd_SB2bgcqk?g7PJ+~^K$ zi9&oi6ZmpIvCj;%p}UpIIH7}^5jwM`PpH|gBPGLhY`e9W@vsNsG0{(b?l&+hwvOx+K5t4l~NWp`>CJz>`v{6BsBlFCD!?NE%CXwp=7Zyxtm3GfAd7# zdU1|ppr}hePugw&G)0A*5=V9D)rb1;kggWt;Rl{Q6~#7I15X(Tn~XALk4NZaYZH}? zc8PPJeo`SMD$(n-evTX>!1Hsa2keDlc>eQh{St&N`>Ia0xE+Nj)0u^rvnLmh`96GI zmJph|&JU31EreR+O5=%}Vp3%lVW}*9oz!bZ^U@nK>1cE(S!$8!eqoY-ENMd>b3p%@ zD4@LJET$@C(7!)+FfkPzC?rK6)N6tWPw$e68iqIBLw@h3OzmZrSEO{C^2?=qh1VKC zeAV|mtj?B~H#IA4JD=Ob!yK~#wn?NOJI*tH$`g6XRex9eMfYOLG@Pv0VE-2NhON;L z_jn0Osz+OwXUi-2-9W#~esPpHVLbuPA02dm@z(w?VhS4ThW*#@DETzUV+}7gurtP( z3or81NekRRvT-zZUv3U%(+K9q6uoSi-^@miEN)Xc+7@cEDb}vV6W6M~-YRLrALHQg zXh2yDFsHpk{;@bm{V>r(xHw~&C-dVOsOj>Lve(v((G(Kq$mX9vq>1Q*AitYD$5cr3 z8lAq9O=zp$oewlaJ{u%}AIsvn-dVh8>%6>=}fsgJ#BXS6MWm z<*KgTXf>}lxh(ocBi*$&d7p`v9yn+`8H}?Z=~+vA`_Js*_WdyXJ?u5}3Su_K7o#Sh z-Miy0WZ2wz%+_f8Wd?9v>quy6R62rfKC|6;VgD-~`=WOj80<-2jO*di(JY#^*>YqP zJ32e%zV5i?Gyf?itGzIV10Noh>AMcimZNz#3XDI@DmLroYHX{*c|jOH%r8ED65^=$ z3I<1w;_KsS%J#jDTa)N$BB2B@+=OXpz900z7l0;#xjPTt8L4p8aHJ+Pq;{hu^eYJ{ z$TTwz7$6X%m9@2S@UP4g`f$#<@7?86h^J^j5&w0j)U9U|LYmZJ$zbDD$5?$|-bmSU zt);8~HgHOQHEfl1#`VfofdAmt<|`R`%l)6zO6KT`Nnj${IzC<8z}S(ga&h#nt(Q=2 z2HnHsEQ#qG5fNeFGGp4GE}mXFB$k|hw`<;W6R&FVMh}M}#phh*U>7SD8e0LC4&Bt$cW~dgs6f>oH~F;@Fhp23cETiw;{t}KJXAg33707 z*frVi1oFoHQ2&K)wuFpvPM)<{SK^(U!uMZu@jcB6Ze5v7vp9o1 zEBlQrMCraAAuE4lR)X$Jzm!(7{o1t;pg7kt(Bf=ZsG2NJ)1;%mBtTa+JMajsXb`2} z+i1f<>DxZ%fKEM~#?7rM$wF*u_MlOqxFE%GP!Q=cG4YC>z~*-JYE@64X1ru*mvV+o zaZ+5whFz9xqtvG@nPji<8sqZ2790B^THB~K>2q-xmtUZYuEKQrq!YNVFKU$_Rq?jbfd zHiH>QP5jQOGx7S`V`DH?Nl_68l>Bf4n~UR|k~4roW$p-7nhj9+lnIzsorWjg%rjO< zlMl8w6*U@K)JN8t#DQw&_^Ee}@fnSVi4BqQ#$=o~WR9(?n>4R{`0UEupj62(NP}YY zLu>DkfP^L9)8|S_UNu-0x|}B-w7Wa9zTdL{>d>6U?sY>w4Qp$g&@|7XbEDKF#U==; zN@1Vn&z}MXsw^NXH46qUC&0rid)JP#y^}o!RJNf^`T6SgT~=nxAA<1Ts`pZ!{gW)COy4IIWQ+N`uxu#OTPvO5ezI<1Sx1491vXFWl2^Uo zEpBM#X6I%q(8ca7Evy5_R0G8C$svsqZHuxCYZ3>QkMwTI`+u6J$gJ!YqF#JBb>f`= zz+msTz{Ya8YsY!JFMjAOYy5;%66yyL21JP(CFDe9jh4lR3VFrh2VN`*_gAUTg-f@&5?;-!X1Q7t-9!C@?Jmb#n_i-iwQX@z`gX|6 z_TOvnr0ogVmgY2jXEDKPRZ_`F~X#;4e#iB9aBAym7^kldY2rZAb0T) z%@8}^J`V$h2%=qpfWmM4{Ts{D(o*E=Z;amsQb{Y^1N@t=wOy)%@utJuuih1}9pT>XYniuV4MOtl$a`8i#@rftv0k`k#@6RZG=!GS6I5H>7|T4kdj zBsMH}G;8Dch^v7hc?$n^BP(i$rl42a;M%>V-Ntuw6m!PgJ7n1;f-%i{4ld4Ti3P7~ z+zAy-9T}bWP4@o(-h~r45zU0-Bjx>K5<9{Ucf04ri%CgQ2Kt)L8<$2e*?XDvt&4Ol zs0%^m)WU$gBWejXWmYZ6mv~;`KibPVP8}CaMz+J(kxvH+Lk7nOuzlAQ&Jai0? zH-6<{Mp9#WePj3JwuFZ8*dQ-WWX!~*Ag%D$I@kS?ya+)Es>+yMy=0#W@G}ex3ya*U z26lw9!xVn zcoQWjZlUPftDk&+3$oHV+hNUmEH56iag{jeVq?UPcXg6WZK}K8!O^J}%caAL&saqX zifzx|8+vFmmqiOnA7Hin~MV`P?R@QX^t=^ z1RU}ZI;laM45?w~V5%@V85!0`blit8>o91O%xua|?#V+I_i}$aJgnrK>e=fOrU8<+ zw-B0^5js`ZMvIb{gr55p{pMR%R_?uCG)PN{C%6TJvoZy%=pAiTG{5F%dA3mcx|fmG zI47(z&E=H`}|VB`_{1=KGlE+xD~9uk3zb?8exRB%+S@ox>QuA^<@_uwmI z4fTJ^qJAP<>Fi~sZ>2+}b#H(KV&U851FX}{GjfW#rCT=syDdnAtb^dwoqMCCn_qUKKY~-*IECYt=8wBJt}+frfbQ3n(8zoCwIjLlH+_MbQ;O0&TAbcb2-14 zPfngO%h4cYG1m~EGdgpLv?i}6%~BUSig|5W(h~6PVhOz?W8#f`7Z{IfM`Wa_wA06h zLq$w_l%XC?we`p#?9va1H?Aps7j^y5GXYG*M8ztKs%V~R`Z3eh*|)^RLylQrTk6mA zytTdU4EM7q!_MKE5{lZBSvff$`dpP8NI7*C$l%Kd^)*rDtJS=xZj}nP`0B3v+VJYr z`e{s-7YdbX?M6aZ49kDtsP-7~VcNdgm3{!7p^8=$^ctOdAc@7vt-Qmqyrp=K}B7e&r(xvzRGM$t~ytXI|AQo+AH#PEpC?cE{X|#N0VWaPneLwMllhTv^%Y zQ58@*)+fHbO!!Jcq04Hve&?X}XhGceM^EyAVBT5TL3#_N_$8`3-Tn33sBIdMBFU<= zbXbJ1yziG7$|(f{|H14lKp;L6E@Lu@*x_zCH(C_vEB6JjuVMIYWMDSeQl=LMZSdA| zI~^i{%|YMDJ7Ww}jJ@4FuR4AszdmS;l2sk4p{~*W!s3aDc8e_6mGh#l=xq>Mm z%m*3L`*-(!e#=7}FUwIH(Y8+j1QZrOiT01|vs4|L`$vW>)ui2G zZn7GW#*?Vbzjfo!aT{Esxsm1g#tnmvCYV79;EI`za;6gP_vHr_2Z!bSI>F(4UPAd; z)t358R*s^4=Apb&Kl7*iHoj`|36J!U_wuxn;nLZltL{*=n_A*ITFYvJh&?18%{PV) ziWG(4T#0I&FsGke-0;+?cgnb+i?T-fEp#YQzv@SSa+KrD_1BB=OnQ(x>~w7^XDp6I z?7L(NrUDkyCVUqyZ2sL^irXtff{AP=nIq51h~TN*-!C1WO2l_op!;aLn(Ur6w5%dUFvZ&<0W28K}E3mkhXz=m(yanL$wa$tnk)+0_3B~DOj4or4q1Ji%rYv;7_THxvO13rU)!%iMdb7FRJracf zl3jSs6+_9JW#<+si@ck)zG#ebaa`X>cDst7KTwoqoZh`OU1;f2{+@s!xaqvXuxd|NJQGI#B|Z(AGg3TBtOt>ikm#Y1#5{Vf z&0x{GC|&6ofF3W5oAR)oJlK!#x*oizn=>_^xx(`Gic+&*(Gm*NWz!^Ap$~0l$=f@h z>}uaPS}DX<3ZiQ-|L`5u=(k^al6i?vR+JX#-<)d_=_eKSfokg!ABg8bXo^NY-ZcLQV!>SlJqcli0LF=boUU`{;Wk*JQmeoDX}y4Dz7# zM(V~6g>%wY5{Ja3?<&VBF{pYSQXY@AeDoB%3U|m3f7ri=d!HLRGr>|xv(3v2x_q$0 zgoJj;u0?o#hFL0|K!b995o=k2E`Ave{ocE|*9?XT5jEK}>nlXEa>AnH2@1kM%vaYf z-_ck{JFU>WJz$?81NfA|uKe9MXcF_5(*1S+M8Fh= zvUfK3Xxrln0gd-}Tx0=UF!COAhw`)dIYg^f&9S`umtFdqF_*GDZUDi~3ll#ay|V z*_XPFY9$LJ#~a;p*zWx2v3eKlw$2>4Gc&7$%sCmWh3&TE!o?AiQHIVnrT6PQg}O)A z6c}fkZ1zpvr7aaHL*A46v(>^W0EsSdkg#u8PQuwINs?Z5uB$EiCba^TZ*K{`_8X z1>D$s7P}9Zr{y1pB#I}&n(-dB2s?l;qOzmwdjlYWnUzi?QZzxh&Z zjo#a7>otx8h7^h@w1qf_xVQ-ad#Wafl;Vu^UgyIO4JThBFw34G8q@`YM9E)b?HfE~ z5#}dh6%B~qw&|ZWpauGkS8#k>h41{JDL8z>`4swT9XRlY;-U|%Lw@newq9cTy7~vZ zZBv(GX14s-!|K1QPvPFmMBe9c(#t<5golIQVwjcfPk#S!b+{qF_sb>QELM5w<&Rud zH5^I7s7QB-chLFJ;9M5J@A3H*OUmzmmg4F^OA*(NCzD>76b!fw@x+L*PLBCI)py&9 zV48G>H<}Z+ReMnfU@l2Zl*dClqSbjqh~7fdwBRxtBNY|x5V=0b42z`doTOwq`!j8x z5bm6g&w{hWou#d`@y*&@+jlJFqi-&ySNd*mkCW@_=y;a7LqdA)ylcQo;HVZl8=C!b zVL@B{Q)TA#E`85)KKy}|@b7ys!OT~VMJ!9bHtjO)svqb5s#Ru}VHgi^w z1`Y6yTJU4NkKXW7)v{9V^uDeC+#OdtYSbF%U)Jm|qf}UY%s%+&bkL>09XVy4MT2Kx zn`iZ9Cg5AP%#GWM2F_w3vo>*l*eBWt&pp?#Xpc{Fhq9iF#Sh#g6B<^e-2VOT<*9gl zX()D^D)47}`)TyYX!CUGquFAMnflFC>P)3=YPQGdIDIf! z_^)Wvof=vbf$p<{XpjER3sY=e5TC>%V!K&Qk^q92&xMtk7o6A`tZFghl_m_Vd{RpD za2cLsvzqfHPnpSS#Fe+Py~IYB&zFv9b|L{$G_uy(XZ{FbV?((!;{?tR&m6y>MC~^2 z3LAXAm)%X)(W=TeNW#B@OCW#x9o_H}8LYO%C!@H!%3)%|QG%P;Xw2}8()tQ2q~Z(< z$*zn$1v+q|Kj4VBo(>hF`Y}%k+*5Y1{xatRS#IF=$EY&3e{ypmAFgHC`(_ zNDBZ|dfPhZV&8MpXF*?NE|t>b-HVHNBRjonnB(Yedg>o1`0b4&>eC zRsR)Mee$LD$3xq(6>P65=@uW34tvgpbc-d~acWI|Qd?+gWrax-|-B51|G z5dW97Odd!RiTBm$0Fr0!rVL-YE2*G@9OI$WyTgTmoD}#7HuY1mWT@D=PzA7=K9G}v zGh%TrqO_Uy!EL4`2q5bCO3RHxsNRhNEMZf5&LSi-9>0$%j+{y?W=g-7g8R>G5dv%6 zA#)X9=qt5Maou>(>RJAvaohCl`$Yw8l~=&bbk#tQ@_Q)NmjTu8AX+u+B1B4sFOMXE zJ=TmD?(>t6!Y67zv_cT4n4CX^`@yXYnio=m+1U}gQ|%WJnNL>OtJA@D_EX%<4$;C? zZZ5{+CicUWFYN@LFVuZua&SG~V&52<-pP1b9CUv>{sba&WayNrJ(Xfz}1||b3IowUWak* z1ndWY=)JGb6bA?0ad{$cDM?mm%Q+u7k<4rGy4dNO6EcVrfh?Fd*qqKUj~TI75k5ll z{*4y@Y3=m4N)?~+_=!th+h>|vWT!h=$EN6lAH3eJxeB7or#-JX#fgDYbP_>SR0GlX zE3JO0{IpwzJOi5T%`<-}Hn8(Ta_|mRA=JZuvHM^v%wi>%xTP@BoN)TwXjl1ztk~df zfutGLn3w~}GlsWJ)D(D7#%zi7Tm^R$F!{K{(0pmR-smN>Z@c3n*n-UfP2%jih{Xl+ zJ4ZvpdU##?Cn#mED_V2q)76vQiP~&e7miUoEL%sZ-=+Y{F0Sq)w{#-~NoY5(QhuS> zuRJmIhzJh;!nky=W9<@AcUnBXAJ#aeY`B6UtwtGH%wM_m|ITm}MLw%#qh^)0LC;lG zO!{{rYCJ=_eSo9tg0=sRGVL)ZxjjqPrTN_l{81hdPD(Y{b>eDQ`#;$=bwuf9Y){{T z4^jt9?3^e4UM}wlVr7a-I~}V#+7i~S zD9pd&+(_neaGzmYBwm)3ss!RcKxFl#^?oz*H01O*0$uWfA{yyX>d(F%<2d?L4R|1) zsP#`5$$tbd54{3R&6&JhwK#T9v%j>+Z3iw}10ZDknL_!imNV*}a9;-0K`o1+?L zZF(ce()+v*AMF>Ag~Ug&v|F(>z3QM0z!t*KQVzAg?q0`Q_b|a6=_};YqH(a;<({|I9-!jLO ztYdQ~cI#WRO{> z{PtbmJGo}9Z@kg0{~oPXO<$|t^g+}#8R#n!oDQRS;R`TNJ%gLVX{r!kI4KwOA;sB$D8fj+YU+E31c;0UgPAifNlxo`rHo^?|!a{lz2kehv3g+ zs(4~BUC&-8L!b5Rx^&-`r-w{jDo5`F$0seHGNYz@XEv0}50q54b}SYo@(Y z|ES@ea+P%`VjuiwI?zdup=dT)*R#1`7|z2FBr1tufAOPJ@9ULQQ0bVP|NVRA0);zZ zFsvG6;gi$h=_PA60v{PXJM~pdz<0l;yx@DeaV_pmdtoP*XWG&;cCX(qez&(_kNVzm znCSQC$XSOHZ(NWL61*hBOqctIu%Sp;_$A+wi7kp?o>$$XL86rF$WjLy7CW(@mE$oN z=y8NG*!Z65hx6oa!pszrmw_tHrBW7|(4H_q#wWs0mgMwPwF!eyEYF|&y&I}Fc^Y8b z>Sxu{J;FvMAz@s#{;`esYX?62f!WlKaR(1Eq|W85mvQOJvn8v|W<$;|@*$YNI1>hh zg+ZxzcT2qSp%u|{RB*6-*g&9Gxlk4XR?(+ssp84mcE8$<58dxV$>A=xD`3FBa&dU5 z>B#T3F7F_+WyrjOo}riYlaK*D$#$E*o=3{R%(1j0Naxu97QoJrVUyenY9ZiC6xzFI zac^p^J2qa@yAM8(Em;tP(1|Qo2qJ}rm39y(+03s<_BpCI*pv2F!c@1v|4= z!OGq&ND=$tPqC?mjrJr!BpvI1l5K`;ZgBiO+ARI!02;=?13ufO&dAoK-zq*$$tB+m z2F2dMs;9tQt%$@&bK?~*TFYM0QKzG@ooNCo@bsScv7(WL{MQ1(6y~I0=)u0inGVQv z=p#wzj#`j8MYmAz5(8*}yr9q(=na2VUu3vCk2HN+5g^X&dG;F0q1~GV;0R7UA|N^X zk+bYreYhP>@xrKhV`2~;$pE_Hc)MJW+iMp%_(?TqEYxR4#7+F&a%B}>RgnP*QXl_n zsmxs4aR|uLEk0uuto(Pie#B6h#@ZU0n}0A`VzYTDjE(8T;l0=H#$csCxe!{qA}TQY zMU1EOU{0(%Ar1OjN0{_02#Zc) zYxV`YvVP`ANMTs*q8@YmCG_{XGJYBT&E{_~axYG{F`{Gud3 zi-MIE6_#q%4k3(9Jffg*z1v!IJ#+tVDX+DI^iNtf7iX-=g;kNOi*9pp z_M{LRUI$LJuyEvzC}Op}Q9*fy9Jqgid%DT`^4AoId;9b&S`R0Ni{|YU(w< zfP;{gmzam`h9DwteKQT-wkQk;&)J&N?DsPRPV=qQyxf?+W>GO##!U&BOZ6naJF4E% zOk&kv1<3~{n@Qq6u&45NshNax@;ny4#Kq$(vIpbXiARsTj7LgUC-cmzZVt5)vyqL@0T07>FbCEPnq2lCgoIeiVx?uynMWiA`JX)g`p3G;&|dMA-yJvAgv z0}&4|9vE-Fo@m>b3j&3@nJsrm5-2aYtbl4ExVd2!JXtAR}p!v_BDrqoWmUJZDb{0;iO!;%4vKbzJ8 z5?%B%&)rbw7mySj?&ke4|LSvRVJ=|#VLyiQl@SX_Me`d7 z^S!RJ7G>ZSM(HJnBlYgv0T^Uq|CK|~h8@>&GjK^!Qr)lb5xVA z*jb;i1PiSgoV_5J1i0{1`~$`+e)eZu3@_iC9xfy6^Rr1E?1y8y+=bE?JI4`0iUIN| zNu~A(Y4Dw2v&Y~gFj9}vs|+w3=7^bJTPIB_zqRAsumG(D;c-=oaqx&}(iw%#fw4Nr z$E0sPwR_VKc&AT|`}8!ZkKpNp^Mf+?yUP0J|Bz&~xNsa9%FE1X(NkS84DtMl>;X+mNfpne;}y|jnE~@V&v~x&k-Ch6S7N# zfytM;x(_S}PE9t2g4X*`m70LG2k0-JMjVV)SZe*I5hcFw&yYJ+~Pj{F@{$ z)}}__Mechr2o0BGuS0iM6YRDiCli0`N5ney(8DLpKPi>yI6fYhQ3biEL$)nDB=3J! z8zmw~hjo_De->WJTs&vvg#n~rZXKV{5S#wk3^p~=`ROT;Et1*|3c?WV@o@(&{LpP_ zGzZaeG|=$>VIbTB&WnRcKe8FsQZqn#j@nyKf9`1a#{Ur-pZDaz>j%)BRXqBj_~^WE z?N4N7qJtGza&H)|3Cy_J!bvTSSpBZziraH*>f+c8*8BIz>G3c_pRU-wcmL#t`kU84 zsbo@Vn-uJ*hj04!pmLFrL`*5sEp_|B2#RG-tu1=;g2%&_$NN6TGsCZ6Gr4LYj&cEk zOw=}DZvlv3^z(zIA#mlLw4ot&YHDiFO%3C-XLc-hS%Cw=$bO~+gL$;IvvpfSAV|;d zQ9L|!b_sM@%Wn>e9ou;0WbWKqln&tQ*J^1YjtW|INL&pIexhzRbCW^4agKW}EM+O% zKnXrD_~57Jp7CI6sixz{S8Jmun3oee+K10!eMr;hsnWf(#jz9fDx(T{`WGCtxYIC* zTy?}^Oo3m)`_r@F`D`%{@gt$HogVQkeonA8s6AVuL|^5(cJNEW#$vDdAJvT?&Z!V5 zV{SH)5YjkLL=}(K3Hb<`KMoDv$8>|llp_u& z#ZbbzfV}m;nH$7tix-#)X>;%ZALtFK$Pqk_ne1iC1+9qgwG35SE!bk7|D2JS$%U4a z3KUmxQtoF~m54c6)^vc~1@QO&5Qfiz2LodZY!o_d$^ydtMoL0c3%rSpCNjl$OL=YB z1&EXX`Ax=|$rDF#-$mzU({n|f^S>*0??4ijv;PHiB*}yf12Ecrv3Df}* zHOQ)|5#o}(%m6+n;KIcXb*mRL-Rt}xIsaIBH8x_7= z!2#-AoUF-ADvu>@)jS)&EFV_xinKX2ax>B@QIV0oYxhSVpPG`pyA5SZLlEb{R`=+7r?e7CoWw5bhej5~_;%KomPp}hN=mp$ z!1)9eGx@9!XG)2jPXqA-(ObTh7e|WUE(2l?Ur8wqWmxFp%MkC#r`fP3Z!9%E8*c8{ z6qlTpNeDJz+QBt`dc$q}xvr(vDBW0nwNPvO887e0!c_mz+Ppa&-(LyuZaj+V%C9(( zXpC`KjE%ck<0=o`fZ^auoVn2DW?!LHBsfLMUe1md-7pbGG=J7k>$)$MTEjG3;m&~n z{q{8}hz}~QBHcU}v7ttzKsN`r<-kNX>z*5o)vH^W_z+C|{wgv3V7fd2m}CS2FS3We zHwUfh#&_E~y9NqU@LBnRB4^xcE}js^&v)!1h4VtF*7)=>Z=-77 z37pkr$?6n(-Rf#TL9%zRAxxTS#>RXOM=+&&z(8O(-g|*H817SJ@$NbDM|oHRwM{vXx=HQ z#U=+gV`0#Fz4{|+~T`Axt56VvngcvDTFF;5C^8?g@A?WP<>{j5S2WIkYVDkSN zo3ioYSyd5L7*ImEI*(SFJ-lq1rV4r-6?x%OGxoZYXFHtg-2_JepYC`ac?5ij*5KEf z1;qfh2SJNtrp{VhRC7id>!kV%Iu6Io`g)Xg;L6kW+SWUpelSX^|L-VW>l~_nfOMq@Ns(d^)Az4w028-scbAkMtntufycwJF? zEBjmYx_JVM3Np4pVt&B8|E6*&Xnu%Q$ zwZbtGIz>}BWN$^Z#|w%H2D z@H0{V-xz-P_tC+z9q*27OjYbE{2GrP?Xi}dlEh|5o5){ZUoQWhVbTjFTcH-B8Z0NE zdl-~aJoU-LOtRT`?WlgvviL3a=xg>%JrMgAI~NkM@&B_&V}jvQR#aRC)>1HVnE*Dz z3JGB@lwjb{%h~J#d=xPWsFve&jJ{VmGCp$R)mdmi6vjMqu9x!vwGw9NzDlh3Ts zo5LzV2$k67vqTV*X7O5Y*+p1fs(8YZk`(VN?+JaMF7oVqI#W;h7}=`Yz&n~DkwloqMP~(31pQvC<@#o zf7+aO7ewJka)uz>#*|MJ zL;R--@;sjOl3*)7 z8y*&=(cjSq6?}S?cJ&0|C6U;MJ=M;vH3Lxjh;N!G+A5OSt?a|s{j^`N6Y`yFamNB_ z@9%K} zKhyrmVvGF2)3%svA20%DS(eRco-?Ki=v+<#_wK;20M!I>S;tBTLZQ3yBf)5O^$WY$ z#)b3CcwhPoGDkpheEmD)*b^TpY{2|XykQRG4aZ8TUyAx^DW5~PWKYblH~=%Pp9*` zHPD%#i3Wf!P9|sB%gw`8SEc#uIkmQXw4U%em(?8MFcn-+1D%1vbe_C!SrpRVOX{N| z)|-%aM}Om;5Mp>#u~B5WTknSNXbUGnpJK;Tzzcmxrmgesv?$OFX>G67@%F~GM|5#& zvj4F0p3F4`&=>Yu-zSyYp74#4Hry7i3k^3)5wSSj?=b?R5AD^=#sW`C9X%==NMMHyq4G z#>Xhl$_<%bHs9l(R`51I1qh@?wnXec`DcBWp>)p??&#h>Q#vQs$rC!DP?GAyLDU=h zJ;UBMW23B{5zJRp_Depll1p8idle|dXq~e@2@Zcm0M35MM;+;2)ND=gJg;AAQwXsJ zL#5+=nO1c7ki!}3&X?>QQ9W!)k!nzw2IHzTK2185y?-?wo?vxCL9t)wS2Ix9PKK|` zO9{|`#gP&co3{l;@OlZ*A?&oj*Ob_AF^6gl6{ELJ7iKP|4s?-_C^Z$NB{YE{Yc!?& zMSYndPVaT6_*$K5FIwx@LHV~QIcY)Zf}7;EonQ8ko>fh$Bd~>$-+0S-?+84Gp^ZoN z`W6dyR89*x@Oa=HXv9r2jr_@sr2E_A*R_DT1mtDv_lL!;V@G4O?Zn1%2Rqn$(PvqCV^j zyNi&?d7!{>)2>ci`65pqRAOGl`PW)*kj6-+yu+9JHAY#cBT|pql2$wQa$Za8$#G z-cq=MsBrLpIXA;`Si`51zxMf`WrApk*ruqjH-aw>tEN8?OemsvKUY8;{8T~AL|8>Q zwr^=JT|0bLl9wy`GJc?|ic=eTD6GW4eNxc(&hc@yra@SAEM7raJnYqh!WJ0>MP7%~6fC^G>ofNpy;p4O6*-4{i>At=%Sc+aH8v+r5 z_@^!V*@J@<;J_$cP}$lLeb`k{466*Om|Ymn)&bM}vm{CzIb9Be{y&Nfzj%vwiRIz; zT6s2=myLX|9e#~_xa4H3r0R+(n7UT$E)CS ziQI?sgJptB-G3&Sw>8+2Zx||GA{NPKbx`m63o{jM)izYS%1IQ+X+F+O?c1#u<;#jY zpfzXXJGyb~*TZY?P)a=Z>5UvxRg!EzGbkBl?-N1gw;@<)4l6cOS)mhoItP2$u^!`8`6O3(i9wG0U4*&{b;nl>+c9fEv4%L0( zOB-d)7C~3qA(2BNCUZXYZqWG>5(;kjv_O(^Y5o3B?+KmNF3s)w`_qyP4^O?B$-3+Z zRv28DR~B!++91>|o@5FMMdZIhHyKm}BV?*j0I>o9;8g4;`D=Nr?F|`=k+I5!Ji%5C zGGA(C1beLL7g+0oW#bM;mur|1liV@RR9$IB7i48@YX z>neyF=TSgIkdIkk!9K=pv?_Hy1Jg6Xi(vI>je84kirfE2C6;tYcy8#zZOjav6nbZe zWK)IuIo|j)s508ITiLM|FL=ZnVB72`$o0rIT#)P6@>^TwYYOiXGrBvVeE)~X`%H#7 z&ele725p-$Ba-pu=x~kEGG?k*bZsLS%3=d zJSW5%OrHy?0b}f%^xGMtFAsm)s5wrsw+zAexqGW z*+*=*U~Dzd%Y%D_VSH{o~hTeT3-~uX}a`6zsV}lt7Hdw@v<;J9j*4tAxXWN&OsAU!rdTT^oV1G48zE^M`Hl# z1$O)c<^P!~WAoWjzph{%OK^;!pu^;)w(f{`$({QuLw@`mH{IupKLxMoeNYm;MBNCK zTU3%cV|6j?|2r<=vAH5Nbz6*e`$A-7zJ2Vq@t&o1AC6%>!BSQSf{+)4SKO0zq3SV2 zeRQh->yg9Bw!eZ%e?@tJWR05~2bX)`cFE}pvAa+1ex2I8u*N}r3fpjP+4MS_N(d-QWN-D{9<*{~jCW7oth4akcL9|j88=XZkP&Eu zMKP!@UJ%=|LX7L`rab+oB{Tn&K0NhPO^S%s3r_29_P|`dHOAgUyycxpn%k?ZhDHt% z)R>lF#3GE0>_YXEK^P+trWZfE2I#BMgN23D%XhS(ENc@fLU-U*aPJc~_8cw=OwYHUn9Gc(h3 zv2*Uv68^KfnK2^z z>O5NS|9-*=MGz;~@~m=iXGeI@HJU66;?TK++r+1S8@P0FQ_{!ki=M3pbuvcCFQ}1Zn_Lq{I=P` zq@toC^6Fk)z39xJCTuw)1=);D3%^(M2z|1>7s8Q)oGB=HTvGZoC* zEJpHQkgFBTNpk$3;0m{je~y8mH~wbpt5{Ow!aiwn6gl}wLbE6s4=Xso>)$D4?{NfW zdgs7Ic5+giX^vCdj1m}IzuTm{j&5svmCAZk0Ux{;`gHF)cXDMul=l8)V?ejk4F4r7 z>pjanWJeLwP+3xPGCNU|)^FwNFdKJPtyjVV`)Ix=qEmffZe;8wm{w?LJT*S3^`=d! zjdAy&^**?`n3aNp;uM}<@cg}zbClo&;fB^l;+wm7;FqVqjD!9Ccq=O_9Q?2aq=wF> zZ5qb{+Wx|Q&b;gPrfm{Aq|ncwKP!h@id{=eOG|(JrHl0F;lqdD$w+*`uhNXc=yc%M zZ=vszIgO^4?yAX8aD@Q{5BOA4~>*pLuRV6=>3Wo0E5GHMqkX#%Sp1g!rLi9;a#xfmw`2NJu!};zg;gtsP9zV{vx{OUD9r0{{Vj|Ngz- z@US{?@P8`se>yw&XejqJj=!UEi(<%~FbZj_NbZ!|V92GMvgu-sok=Eap~)qNF@|Q; zj<9FCOd6Ubv=O%3j7X(6=`x2=h>#VcZS!b;?e^?f;*ZV%d-*frB z&-?p+>_z=tod(b+0KIZSP{q47{$4EGDZqO*)N$lp9cn>=zpif_=J1-L*Df3ZCW?P#}!FB_ujPLdp{$;}P zK>4un@By({xfm~7jHkh)FFmQ94jf>Ojz$0l#n8G;xxKyJKIwH4x62w2qgGp2H$d8G zX-O+AR1u5C5o9v6v{YM4HI>V+{X|5Gyfrj6BYRHi#3v=uJh9WWzl7p&axg&suz%YB zR~tnhkEgq+#z4dEDkv!INKQ@;q&+{9WLMd-xS)5vx*AllmHkV%pr9G$qLWd>D@gp< z40}5xp0`rIu5Nzz=4ilq4(Bw7qnwhG($vy|wYF9>@n*ff>+!0%h5ZcvdI#7BM)zt> z4c(pF2_nTO=2cI~?$3}cPs0vIWncY3bk zwGbZQQ~gRdNq-(39DICsG^?o(c6uhvjeF^D&(Mb}YXWV?K-!CqaM@sba|;V0%fJcX z8&m+rPE1XGnlS!=Z?WH-wJ@{tZx+R+uIVQNb4IG*Xb}7c@~azc&HQuZcX{3}hEOQH z;GA=S|2ri;WBVkuXR;g;B}V4v3Wp9Ia-k@+QE#}uf4o!XBL&HU+a%S?%E_$+)!^~8 z@No9%>(>@nDk_qjm=hCGpyRjuB0;x!?_K^b{+f!NY*T=R@f2aJwu^f0nO6^+fk|?} z*wwY&d)&sf=9fXRsRDz+h&&k<_UkOn!cYF4ICrg%z3OUeIUJ6DThHHzlgtWbWo3op z=EUwVAeBaVdi}@o@AH%QK|mnZ#p~#Idl?cnEG#S@?Ba>T<&zh`e)NcnT8GEuk@{u& z!sj_6^3Lw*GH6-O&dpi*wD#;^bL7xyP@0vOj!sxLjzBO59dc!jo5B62HGj;_*Cf~9 zorXQ+a$p&WgBv%fb8v7l$XHL748YFvPz?mChOPBa=BbpG-|M7XBRuJ{cv79GuM_Po0*#{S9I>&IJC}Yrd63N zTZdKPwI8Mj$EK#}u*aQnuV_Q5Lt=%oaGUPXg{r!`IuePLSzN3EEuSw&q7D-KPH(SI zQE@Ss&sX%IukHpLVD$A*S%xqdOCHME$+ndqFx7#p^Kq&Sy!dBrx}>k{d$gBdD>{~{Z(u+; zbZ9|n*f%s3*3{IbZEo?hhx1zg{k7CSe#VxX7J)PLyfaOGEQ*CMUKmC{S|0$y>DD}UR!1ERViu(T}Dg4)8w>_fDDs4IP^al_6 z!1^BTt(Y=X$ShGo06abIv#u%a%T3(3M)Ghiz?<4;I?M`eY3?Y7=e)2!`CS-u3ADSD zT9`l-z8+d910aFy5DQvW)yC&1m(#&byot@SN}74YC3v3pwwN`xN5y%Nb=%gOV07dY zJ>++IKE{NHhkMX3*}*K21&&SkEhaTvfz>B?}=FKOCe?l_O)$87!%+_%7(7`|BTzm zUY!;lJb17W&<*wu4sNDr2_Ie!^!D|k5$Qq5=+u-v!;?BY8;@*e_0i~b;`Ae)l+Fs- z4h;^I22Bf6OpH)SQz8(F*#N6H2Fmw7h)t`PSpW*7@Cj`@v8{eF<|Ft)S9iA;r`{3)%m`83 zancYbGtS>%873D-S2w@4)j2dY)MUn0fN&kyEugs7GfdNWE9Yhse{{c}R~f|qBy zo)X-DBiuanw6%ckCQYb-Rlv7?dY<}uy7D4|fDC;XQ_t=+n_VzJ|MOdMvpS2#LNXsc z+J$sZ4^{^6-klBMBBkXb0NU&w9WU3{uYnxU{mXj4Sx}rXS+@>dvT47t{_xtaXA6CfLr#&Q1xGyj6?vJY1@~J9QR_ zfeKV3g{_DBR5ds46ODZZ`mYQ!2AcN+q>}rS?y<4g?F}_GO{FR><7r2ZR7F6U43a?y zW2^Xl3?eOj&-bv4iq`d=ce*vW2x0)Pk=$^%I5;=^g4QI5w|j4(-la8(zaDO8a4kEy>^U*8G*38Xgat{Pm{ zUVR=L+SmYbXlboUc-h0)&Mqqx2m~nN9hSy0=lppTqO#Umby&(u09XNdsC?i>S1)+0 zqo>et`O%^@9^bsFW@~G!`|iPm2Te(DG@)<}f~nwp)|8Phkw{AI6E5#5$tuXtw`p`C z^Z#;lrOkbRw zoP=lwL8wTiiNR!n5L14j5}W;guPdhEW!wtvYt6X0xX`e$ageJ}P*Qqx%)!je4C1&n zlwWYxG0gaE3=ApbVmzvTdkFUk$R;T$D!N5RUKS<4d1}f0>B_EYrEeFu5M-ceDg+-s z;#~bL&?8q_@a6p!c8gJUP8rHs|riAjI^h_9sZm5~y z#!$SDp{(*w?rb5k%NQI#=SQ@_w3OG>1i7HA^~2dfQnZJxqh%? z?H!hZ2h5Bc2Rm3$tsJLNP^6RCJ*H>Jph&)2UG3%Jk^L}I4~q1Rr7zLoFk{fh>~2Yd zhk!y^=1)+M#!ueUfFfcP+Jiy-ki5b|dU?5tG*E?v(`8hOOTSU~ZkYGA-rHw(zCIerGulP>f6=(_u z2i4(pIcLwR1E$w1q7wm~d*R54L87EDtE5CrO--#|EdGI|kTENeF9q?IiJzOndeEeH zWH{N_tjWm87@vRz1QH(~-`Sivr3$kL#*sMDdnT`-pbMf>g4BX3uqbOg<@xHKK{u>S iJfl9?%ltoyS+ab6rs^K2FZ(M3A78Hk&l~O$)PDd<9(zsz diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index 187e6478..2683dcd2 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -1,10 +1,13062 @@ +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:128 m:2 +Dimensions: f:4 k:2 n:16 m:16 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:128 m:8 +Dimensions: f:2 k:2 n:16 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:8 m:64 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:256 m:1 +Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:64 +Dimensions: f:2 k:2 n:1024 m:1 +Dimensions: f:8 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:32 k:2 n:64 m:4 +Dimensions: f:32 k:2 n:32 m:16 +Dimensions: f:16 k:2 n:32 m:64 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:4 k:2 n:128 m:64 +Dimensions: f:64 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:4096 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:2 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:16 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2048 k:2 n:16 m:1 +Dimensions: f:32 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:16 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:4 k:2 n:64 m:16 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2048 k:2 n:16 m:1 +Dimensions: f:32 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:256 m:2 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:64 m:16 +Dimensions: f:1 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:16 k:2 n:32 m:64 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:1 k:2 n:8192 m:1 +Dimensions: f:32 k:2 n:128 m:64 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:4096 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:1024 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:64 m:1 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:2 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:4 k:2 n:512 m:16 +Dimensions: f:32 k:2 n:128 m:8 +Dimensions: f:64 k:2 n:256 m:4 +Dimensions: f:32 k:2 n:64 m:32 +Dimensions: f:32 k:2 n:64 m:128 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:8192 k:2 n:8 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:64 m:4 +Dimensions: f:4 k:2 n:64 m:4 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:128 m:4 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:64 +Dimensions: f:4 k:2 n:64 m:32 +Dimensions: f:32 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:1 k:2 n:8192 m:1 +Dimensions: f:64 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2048 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:8 k:2 n:4 m:2 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:8 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:32 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:128 m:4 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:16 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:1 k:2 n:256 m:2 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:8 m:64 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:4 k:2 n:16 m:32 +Dimensions: f:1 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:16 m:64 +Dimensions: f:2 k:2 n:512 m:4 +Dimensions: f:4 k:2 n:256 m:4 +Dimensions: f:4 k:2 n:512 m:4 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:128 m:64 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:128 m:64 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:128 m:16 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:16 k:2 n:128 m:16 +Dimensions: f:2 k:2 n:4096 m:4 +Dimensions: f:4 k:2 n:4096 m:4 +Dimensions: f:16 k:2 n:256 m:16 +Dimensions: f:1 k:2 n:512 m:128 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:4 k:2 n:4096 m:8 +Dimensions: f:32 k:2 n:64 m:256 +Dimensions: f:32 k:2 n:64 m:256 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:4 k:2 n:65536 m:2 +Dimensions: f:32 k:2 n:128 m:128 +Dimensions: f:128 k:2 n:64 m:16 +Dimensions: f:4 k:2 n:2048 m:64 +Dimensions: f:128 k:2 n:1024 m:16 +Dimensions: f:32 k:2 n:2048 m:64 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:524288 m:1 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:1 k:2 n:131072 m:1 +Dimensions: f:32 k:2 n:256 m:1024 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:1024 k:2 n:64 m:128 +Dimensions: f:1 k:2 n:1048576 m:1 +Dimensions: f:2048 k:2 n:256 m:64 +Dimensions: f:2 k:2 n:8388608 m:1 +Dimensions: f:4096 k:2 n:256 m:64 +Dimensions: f:8 k:2 n:1048576 m:1 +Dimensions: f:8 k:2 n:131072 m:1 +Dimensions: f:8 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:1024 k:2 n:128 m:512 +Dimensions: f:32 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:8388608 m:1 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:32768 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:64 m:1 +Dimensions: f:1 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:8 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:16 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:128 m:2 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:16 m:32 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:8 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:16 m:64 +Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:64 m:1 +Dimensions: f:1 k:2 n:64 m:1 +Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:128 m:4 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:8 m:128 +Dimensions: f:4 k:2 n:128 m:16 +Dimensions: f:1 k:2 n:512 m:16 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:1024 m:8 +Dimensions: f:8 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:64 k:2 n:128 m:8 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:256 k:2 n:8 m:64 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2048 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:1024 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:1 k:2 n:128 m:1 +Dimensions: f:32 k:2 n:1 m:256 +Dimensions: f:16 k:2 n:256 m:32 +Dimensions: f:64 k:2 n:256 m:32 +Dimensions: f:4 k:2 n:1024 m:128 +Dimensions: f:32 k:2 n:256 m:1024 +Dimensions: f:64 k:2 n:2048 m:64 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:128 k:2 n:4096 m:128 +Dimensions: f:2 k:2 n:16777216 m:1 +Dimensions: f:1048576 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:1 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:16 +Dimensions: f:8 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:1 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:128 m:2 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:512 m:1 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:16 k:2 n:4 m:32 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:1 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:1024 m:2 +Dimensions: f:4 k:2 n:128 m:8 +Dimensions: f:4 k:2 n:128 m:8 +Dimensions: f:1 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:8 k:2 n:32 m:32 +Dimensions: f:8 k:2 n:32 m:32 +Dimensions: f:32 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:512 m:2 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:4 k:2 n:512 m:2 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:2 k:2 n:64 m:64 +Dimensions: f:32 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:64 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:256 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:4 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:8 k:2 n:128 m:64 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:128 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:16 k:2 n:64 m:64 +Dimensions: f:8 k:2 n:128 m:64 +Dimensions: f:8 k:2 n:256 m:64 +Dimensions: f:128 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:32 k:2 n:64 m:128 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:4 k:2 n:32768 m:2 +Dimensions: f:1 k:2 n:131072 m:2 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:2 k:2 n:1024 m:1024 +Dimensions: f:8 k:2 n:2048 m:256 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:64 k:2 n:4096 m:64 +Dimensions: f:2 k:2 n:4194304 m:1 +Dimensions: f:1 k:2 n:524288 m:1 +Dimensions: f:2048 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:524288 m:1 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:1 k:2 n:262144 m:1 +Dimensions: f:1024 k:2 n:128 m:512 +Dimensions: f:2 k:2 n:16777216 m:1 +Dimensions: f:32768 k:2 n:512 m:1 +Dimensions: f:32 k:2 n:131072 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:64 m:1 +Dimensions: f:1 k:2 n:8 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:4 m:16 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:128 m:2 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:1 k:2 n:32 m:16 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:1 k:2 n:16 m:32 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:128 m:2 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:256 m:2 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:1 k:2 n:256 m:4 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:32 k:2 n:1 m:64 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:256 m:4 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:512 m:4 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:512 m:8 +Dimensions: f:4 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:32 m:64 +Dimensions: f:2 k:2 n:256 m:32 +Dimensions: f:16 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:1024 m:8 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:4 k:2 n:2048 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:256 k:2 n:8 m:16 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:16 k:2 n:32 m:64 +Dimensions: f:16 k:2 n:32 m:128 +Dimensions: f:2 k:2 n:16384 m:2 +Dimensions: f:1 k:2 n:32768 m:2 +Dimensions: f:32 k:2 n:16 m:256 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:4 k:2 n:256 m:128 +Dimensions: f:8 k:2 n:512 m:32 +Dimensions: f:2 k:2 n:32768 m:2 +Dimensions: f:2 k:2 n:32768 m:2 +Dimensions: f:1 k:2 n:65536 m:2 +Dimensions: f:16 k:2 n:512 m:32 +Dimensions: f:512 k:2 n:64 m:8 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2048 k:2 n:1 m:128 +Dimensions: f:128 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:2048 k:2 n:1 m:64 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:64 k:2 n:32 m:1024 +Dimensions: f:32768 k:2 n:32 m:1 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:32 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8 m:1 +Dimensions: f:2 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:2 m:1 +Dimensions: f:1 k:2 n:1 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:2 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:16 k:2 n:2 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:8 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:8 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:128 m:4 +Dimensions: f:1 k:2 n:8 m:64 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:1 m:32 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:64 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:256 m:4 +Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:256 m:4 +Dimensions: f:4 k:2 n:64 m:16 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:512 m:4 +Dimensions: f:8 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:128 m:16 +Dimensions: f:2 k:2 n:256 m:16 +Dimensions: f:8 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:128 m:128 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:32 k:2 n:128 m:32 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:16 k:2 n:128 m:64 +Dimensions: f:64 k:2 n:128 m:64 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:64 k:2 n:256 m:32 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:512 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:65536 m:1 +Dimensions: f:4 k:2 n:32768 m:1 +Dimensions: f:4 k:2 n:8192 m:1 +Dimensions: f:1 k:2 n:16384 m:1 +Dimensions: f:32 k:2 n:64 m:256 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:1 k:2 n:16384 m:1 +Dimensions: f:16 k:2 n:128 m:256 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:64 k:2 n:128 m:128 +Dimensions: f:16384 k:2 n:32 m:1 +Dimensions: f:32 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:64 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:1 k:2 n:512 m:8 +Dimensions: f:2 k:2 n:256 m:8 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:2048 m:1 +Dimensions: f:4 k:2 n:16 m:64 +Dimensions: f:2 k:2 n:32 m:64 +Dimensions: f:2 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:1024 m:8 +Dimensions: f:4 k:2 n:512 m:8 +Dimensions: f:32 k:2 n:1 m:1024 +Dimensions: f:8 k:2 n:256 m:16 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:16 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:256 m:64 +Dimensions: f:4 k:2 n:4096 m:4 +Dimensions: f:16 k:2 n:512 m:16 +Dimensions: f:256 k:2 n:128 m:8 +Dimensions: f:4 k:2 n:2048 m:4 +Dimensions: f:2 k:2 n:8192 m:4 +Dimensions: f:4 k:2 n:8192 m:4 +Dimensions: f:8 k:2 n:256 m:128 +Dimensions: f:32 k:2 n:64 m:256 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:8 k:2 n:1024 m:256 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:128 k:2 n:1024 m:64 +Dimensions: f:64 k:2 n:2048 m:128 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:524288 m:1 +Dimensions: f:2 k:2 n:262144 m:1 +Dimensions: f:1 k:2 n:262144 m:1 +Dimensions: f:128 k:2 n:1024 m:256 +Dimensions: f:2 k:2 n:8388608 m:1 +Dimensions: f:2 k:2 n:4194304 m:1 +Dimensions: f:2048 k:2 n:64 m:4096 +Dimensions: f:262144 k:2 n:1024 m:1 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:2 k:2 n:33554432 m:1 +Dimensions: f:32 k:2 n:524288 m:1 +Dimensions: f:32 k:2 n:262144 m:1 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:16 m:1 +Dimensions: f:1 k:2 n:8 m:1 Selected edges [ 8 15 17 18 23 24] Estimated memories [7340032 1342177280 3145728 1207959552 3145728 2281701376 6291456 37748736 5767168 23068672 2883584 22548578304] -Lin fit: [7.87117583e-09 5.93797914e-03] -Log fit: [ 1.02913807 -19.47655995] +Lin fit: [1.38681845e-08 1.07741564e-01] +Log fit: [ 1.04507331 -19.11667363] ===Results=== -Total time: 60.594 -Simulator fitted flops: 0.28745 G -Matmul flops: 511.87 G -Simulator optimality: 0.0005615634849012753 +Total time: 140.53 +Simulator fitted flops: 0.20057 G +Matmul flops: 512.7 G +Simulator optimality: 0.0003912015764593512 From 9cfaddbc73b7e66b8c13ab329742293ac162e481 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 14:51:23 -0500 Subject: [PATCH 076/104] [jlse-run] correct name of backend and make simulation bigger --- run/automake/publish.sh | 2 +- run/automake/qsub_entry.sh | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/run/automake/publish.sh b/run/automake/publish.sh index 99e0ce74..b2f2bae1 100755 --- a/run/automake/publish.sh +++ b/run/automake/publish.sh @@ -7,7 +7,7 @@ tail -n 5 results/time_vs_flops.txt >> results/result.md echo "\n" >> results/result.md echo "\n" >> results/result.md -echo "Backend used: mkl (contraction only)" >> results/result.md +echo "Backend used: mkl (full)" >> results/result.md echo "\n" >> results/result.md echo "### Performance plot:" >> results/result.md diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 30b0dc82..9eb50e68 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=4e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=9e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt From 7637b44f1b477b5874c6167a76aa3630d0054c48 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 15:10:41 -0500 Subject: [PATCH 077/104] [jlse-run] make memory threshold back smaller, change seed --- run/automake/qsub_entry.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 9eb50e68..e03c68e6 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=9e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt From c69d63a0afe73a277e53eb682fd1954336a7608b Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 15:10:41 -0500 Subject: [PATCH 078/104] [jlse-run] make memory threshold back smaller, change seed --- run/automake/qsub_entry.sh | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 9eb50e68..77152c3c 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=9e10 --min-memory=1e6 --seed=110 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=111 > results/time_vs_flops.txt From ba2e8c7938927317c57819eefe946277caea55a9 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Sat, 10 Oct 2020 20:15:49 +0000 Subject: [PATCH 079/104] [jlse-results] for `[jlse-run] make memory threshold back smaller, change seed` --- run/automake/results/result.md | 14 +++++++------- run/automake/results/time_vs_flops.png | Bin 39976 -> 40997 bytes run/automake/results/time_vs_flops.txt | 12 ++++++------ 3 files changed, 13 insertions(+), 13 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index cef42cda..25dfb24b 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 140.53 -Simulator fitted flops: 0.20057 G -Matmul flops: 512.7 G -Simulator optimality: 0.0003912015764593512 +Total time: 107.19 +Simulator fitted flops: 0.25051 G +Matmul flops: 119.16 G +Simulator optimality: 0.0021023608741055147 \n \n -Backend used: mkl (contraction only) +Backend used: mkl (full) \n ### Performance plot: -![](https://asset.cml.dev/ff10063884eabb760241ae8236faeccc635c0205) +![](https://asset.cml.dev/1ac8b1479ed6c4f0fbe049e1a930c5f29986ab26) \n -Run date: Sat Oct 10 03:44:49 UTC 2020 +Run date: Sat Oct 10 20:15:46 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 475d6aa08fb665214eb5e42047ce0f9633519ffd..84073fedd5fafb5d369d47cf1d807e586292b57d 100644 GIT binary patch literal 40997 zcmeFYWmuGL+ci9NhlGHXhzJNsNvEVrDgu%NqSD>np_GWyC7>XUl;n`2(m8Z@_YlMI z9m93q?{+``-e=psAK#Df2Rg$r=XoBr?`vOc?e8?zl}QM15kepkk|&Q9o-QGAkTiV+RJ`j8$zV-uE|%z(oig9_u+nAY`WKAB=pNJWB{9^WzhRM=w0mwx&IO zUW`n4?)P=4|7kM+_=oW4d}{&6PaRvM_d3=WW6IXr*d08#X-8#=F)(lFVY3C$FFfao z)vqirR(Tew!*wT!@V<5&Ti4zA&)jzf-B->Q-`-1BrH~VdfBk#+((CM_1Y%`Ikj4U* z;q14%mZqLZ$r3^?htF@ac2S2RhY#LlyFY)2)Ozyp zG2dtYh}iHxP`{L)Dct=daZKjl2oIF>wKgI3A-dkDCjT$(Q!H@^6Bu9DgZik7Uh&8{ zR^@}gT%|{@@#u}sg0z#h$1&%lec9+Gl%pK`EjKrW-|Uw|j}V-kiD?F|Mu|Qmd#Mdcp;{PZpDu!O4nrvnVaZ`vrd{Y-g3cJB}Qn;jkNBsHo=l$z04XE=? zV>p;ezSqCW<>cgOMeG`4Av&?x_T`Brj$A~Ue&C>FFrz@D#DZh(t$+M;S z#sM4jyt!nR-&pAlRe2CNUC+W*SZd(%ig1l(Zhx^;&<}Y^+E=Py_5M#hyP)HO0z}wm ztU1-b>Cdld`eX_B2axFK=qZOblJ0bgL?YgXvY}NWVd25Cu{G(E@82<+-&UAbjC-BC zdZick1dg4cRR3K#&(bFL-AZ$}?Vxv*BwOP-(HAprsllJQv@>D4XO|f1L+dUluB<+f z@`lRabltT3IgblTNlC#cB3cB)aP`OKGi}8#C@An)j23YaPoHw?;z{#6Utd~TVLGI% zt*zxY{Mo;Gm}u=?n(OG?OioVTSxiZ}H8?a>yHQYxc|i7|=k4OO`|L8a=3A3eeVr!BvLFkrxfcn!7|IDg%;giZ9jX=2K-#Xd+`K{&&pnMGi4fZ-~9OTqnFEWR21>a&UBY~rtfIZ z1v(614QR-;@cLm4SgjY;X~^dZ=`=CP}p;qz@5)kX{08CYu?V0F@5NA=R&XFPqU zslan*L%j~wc-CxZijI$@j>wU#G8CwDA`t9uYd3>iD_mGv&6U*8>B53OQiv`RpDt0p ztb9z5qP`6NC(E9;<1t%MH}y&8@T?xp1(!Lq{|?Z*qU?9R&dLLbTeog=5selN#Do(E zs-?~is$Bfg&K4ZR8Y2?0=ubN-rg7`tEIVOWjn%RChK8BKDhzn*7-*QF zkeGj8@&G@IE+-Ur>TwFY3QjcsxJP4=dwpy2&ZA2NpDCsfvfRyQ+I7Og{`vFSY898* zBZyltRUo)LEe8WB2S>oOoXR~KIs$r;R(ku#r$nzQAoY*l%Yum}#ttWK8PRR~#Hk4- zON5d_eQ_w+tu~SGn%VwA9878IwtX`Uxj}j!N{}w8fb0dK}Fjo5Gp8K7TOwD#292_8$ zLbSCn>NwHEjMdg|8UDVv5IM0QaYMg!c5T3S{QkTKdX}GK-vI$xVZT>`&*$e&)RC91 z#%!N-{GNMuJQMl}UO@_qL-i_5+Hki|D~IN4SLcF=&Z~{G-5-;o0Rn%s&rw`;NhTLk zExllSi)G$^?!z^PN}C(5)886>9>X-^b?J8^c)G9rSR=d!TDUZT)NgG)ult-W@()&1 zH?cC}QH*@MKPpv7>s*~q%~k1&+WCp)=BN3$-+d>?Vt{+NZlcMqU`_F#Eg>2xG%|d+ z=AC$Wx(e&qdH5kI>tJ|@aFMrCGf9f1{wqGjTwW?f`N+{)(LN5$#)rm$Q1Ux_Kf@kP zn$;v^e2_BnMzr>oXe(q?oR<4br{?=i)LDe=NpQ7ZK}B?r?w~hY zS2LJG6GxI@rd~ft>d1m)@7pQ|(ThMzE85}t0PVuLG-s1e(uj9~tHLiTc62q!wGSCX z_2`)9`z!4RyWzU*5}!Sv{9uhZZG)8WSY!<6paWho`_o=OkPLG~K8FNC;f69)yX3*j)|DQ}X0av>rhd+Q*VybB_->9pRWKH{m=GG{$ck9Nc>5d`DRokaa z@uoxfiU)NgcF>3KLpnJ6clNLs_}20=TgT07LSWvzq0{wj$afjnJ3;P9P)&``U)s=v zWor_TlXGv>pv+H7;Ru#?AM*n-1{xt<{!WCpZr4~#`9l0pgGaGw=_hNpDcEoRbMDVE zv_r$0!<_p@S~LG(mo^ddHgU{roMs$dmpr~(uq$xpP>0Ohr*K#pdj`bW#7^@LX28E6 zx6cPuS(^@X@E{cxEvcIfsvn0AYxY>OsZjapyghOv(<|_ zI`BN|n$*-2`hKtr#!rdXILs1m&1qs;9KO@y{F)@E5RdUUi8ts#yhp=&N6hn1naWx} z-bQS%#_IaclkEv}xudTEqydxFwu^O}C9G_0IO*!0o29TFS2eJ@@?pd*ckhNcF8(U_ zy*Qb%&qr5;U#oReH{E-LG+$uLhqrbz%Nu71Be@iyL~D?jy1JeD&vHO$wLl;NjQZ2v z{kkOxXKSi9{#lNaXSK zc`lJ5Owx3U`78QRTP1X@HlPHPNybldu`_me4_TmHm?Y^bK*_F-ZPFG-(r~ttYBTjS zuGV?=L`M)*u}9ATgvu{Ex*t<&aC5%Dp?;e>B4>K?@YCAM=S~SZAbBoe_T1p!CmN=?aR04Ko>s z$C=t^g8rCzvV|k>3ks4Zx4xSFgHoqEbqyVH>fLw0m6XI(Rz5WLT&8~Tb1ukjH#sx2 zuQimYQQChs-5sFm!)=;1#oeY0JE+Kf$ld=GXYjYWsNT!2Qkm(2meov8WW;pI;%D73 zPy)$2in_G7GqACm(X6JM&*#JX)f|!)_o~US2P!J{|A)%%=H6&+%w%>mMtMT&k^S`y{fw2K?{PQQt0^zMi#0Yav ztrhZ=PaD!Y+8#&Ge)op`Qi_NScHNx&mU=X1qttXNH}f5Ky3zP|S1mvn!~GryM+7MO z%0{ZXgy$SY$Ld_I!{r-{0IY18Y4kqZs_2XHEeB^Iz_dcYtjKs_Kl#lug^f2+B}NRA9^?Vt-KrU0 z8=M*5J7P^|EA%_{yV4sQ8&ldX;BbdT7EZwJI9t&P7X}Fy!>Ruo(RP^ktSmb$juouW z?K_wmUWBL|tA=vp9%6p2P|bn1B(L)PC^lUqM=YWbW`fx1FKKp_A7cNTH+i9EzjaJVmAzL;_h zltXs*R$W@J8g1YHg%af#j8fWIyjrJVA2P?yAzRxQWWkiY4vS4$A<7>c>=0!WKDL8j^w;Q&824o* zzVx`=r#*Ic4m8Rv0LW&cUCW5XeF{Tl3i9=4t`q=W z1}y|E3UjAB62*D;7jE09BCtRb`rG{F;Mo+Q*J)M^WUPTJF@}k~owWh|)5w@G8sh-C zar_>8$aO{%oo5h*P_nmP>{@r~8sUHngxUw6XC*9BVff`}j`)mJilUIm$Z z^3Bt?B|s^0PGpcAnw_@J@Gr#NS!-%!$dFMa(sZrz9d2FB8y$I7lYlw*Ul8(^GGbe? zxX?8m_Cvnvb%PrhEHf(bt;mb3rp>p&v#tp9!;7F7C?7zd*Ud7zd z4E6tsuNWB46m*5e3nSazv}aMcVn^dW%uf|xn3Ro3^6zuJm%wH^>k}qiRU43obKULv zZR_swQ^sm?(Y!*RFQq$4ka@7~=*8#1%qmHTC$_4nKGshoold{#KoTmmhy&?1L{u0} z)!xWTQ)jQ6({$%^3YG2pVY5xk_l>kQNjyK+V8Yeb8%bD^H?X&@`%;GoS9@7&lcU7j zpYqCmPTWPDolF{E!re*&EO(tcn&ZX3T~(6sF?`jGOMH#gzp_FiZqY)%nfR&>pxZw3 zq|c9R<36)NHI_$XnN}Tq1uRWF8jcDTxl_$q9#)nba4XDRBTS6n+^ZY~rkh^o8P zT+RIKXvZzv@#3#i_a*tk!1DU==DPk0o*rNHm91aQVmNe0QzI|Gd8QTG948?-Le|8u zhZUet_SuaJ1^Fvda;ze2Wl%Jb(qlF6aDpXOAYHA;!=Qi07rWCKe>Ghl!)%QgPyW2u zT7zM3Tz5fqF)myx?41N*wp_%?6UY{>9p*TkD+@GUEk&3Iwrxp0XSHFWab5#4A+WNJml`5&fs0Yr0oUb?}5A zHC`N!<)p@bI~=7pYWG;AT3P#Vsl5eIot4epv-yDwj{@|c3498Wzx2cQ3x&cxb5%8V z%N+_BHu{0}!(pTKZY~{&*|ueo_KK|`853u0$DYs8K8?zKJvHIv;zvbp-pFhGF6VO1 zEZ}Qaw+4@qG7pkc;T)zlB!~s}u=Ec&P^GJ{)(BTV7-gSORQkWRTlnW=t zk_>+njF&0rl;9uc-%>HxcAfE>&D2fIS^C#Q009FCfN6J@yV#>efyD-dk!LSlMpY3$>cL<<7wk&S@o^ zb>oDtJ|QURN?|38v5bYGEkhaz6|GS6?GNaB9$)jRheEh^HHzuJt9W|8(8$D8TX*=B zGfIDVvT*dpqKmkcpIz5YT4_TfeHwWov$wSKiiwKq%y_gv>?adP;) z=vuTj{Qtyr7vAWF^KN5P#XKyw(WRN5)~bXI3PySd3ByVwyt1{w9ja*ztxbPjAa?cN z13NSE*~IH&>F_U) z=-_txq2<$>9_;`Frh&cnic57xq|!_ZDf~!+sbuC?+c=rWb~}J_qG^`_qw?czQH8Hx%Zx**ts$&Bw%*(>>+E?beI6`Fdt6bVCBMs$OqBo zQNAerx?G`CZ*eL&$@CcBXn>~t(2Gf}PW{Z%`oN*}ki3kb zI9Ah1VSKW168bqnQVhSy^uu8Z$-E|+m=9BC6QKbtEk)D;FL^lbRh;OhdImKO51ji< zllcFK579IrqJa|EySGUp=J;XH@NdxK`aqDAv#4L|d6~VIdFj7~G-RgXJvZdAe~yln z7kf{o^(I)m)VX=B|HyNFSv$$NeIo0YQ!}t0k_a8GcDeu+DWjxLQ2-#4wbb|ZoI}YQ zZDjFe>!;PYh2Wc%Y>bW0Yk)Ax(i`$h!0a(!PJ2p! zXqab+EL5kvdJ=0qdPb>`+OF;i*H(T}h;wh?HuI>UtsLk31>eTfgrpmCr?a4$O# zENxi=W(9Ykd?(Yo-un;qiZGr%xC8V3!s{6u`op&(&k|%J+lp`2x)Chl6o=AAVAkO| zfCAglecClQH#ci&-Q)5Y-dMuP!C~_I14~Fq2%p`QXtn+9jQr^9;MyK3GQIYu8)nDFUU6B^WRs3!ad@OaS3sU0tJY3B3;r3UceSpJ_-2 z1;|bAmw!PuS2eeNdq%t@QFZXzx4LsapD=iI`u0p7n@^F z`wG2IJ|X%>@1(h>c2&CZS-g}1^B>DBlL2%kcMrdj0&Ud{$>evG?3iVyZMZW&hibxh zQ@^Kbou52;vcI;^#m)VCYpk4crnI~~?$<9Rgrk}o2}C%RB(-OBsB~!4(3Z5l8ex7d zs93_sV~6{PHDenKJ_gqcKJGOR0G9({R*G(8>pvy^JyU)#Qc)4{8Nsv zM!i^ua-Mn~l;2Xn;HL3bBd8mGboVW9+qmTGw50lv3k_lq6A~QwRv$r#d*I}ZB3b^K zOMM0Yr{|ysBwI`C9j&qqRQbPzy_efC=LfS@V(wwqQOb!xV-xH##nWM}t) zh~~l3Ir3|w@f~i}Y6%KC?2O%}$TvMH&K&m#TW3dfcUNO1PAG0!?Jgz|%*z}fAEULd z7rMGY86AQ5tW#o4V~x@MLjd$-SQ{tzyluKXF@O-`VsYt~EFE<5cFsHSd7o^NwlT~8 zFEpw?`0k71(jh{o1UC$>iLm1EnT^^`Ca1sT?4s0o(aopM=5v))H*C~fBz>h5MpVjZ zm~tPwhiM>$NM9cyW@UVijh7Mknj>Y!&Hm*ZoEy0!JLG_F8@pqqsoAV&p56h11RO1$ zdBy7Mstjc7QLXm08k-*Hzpet9G$XO)OL9C`(?{*%qGn5LOzmTQe+U~+?2q}>)U%#R zP<_R^3wWQnW%wJj$w{3|1a9;2Q+oZvhdn?a%vefc2rdo|KiEJ(YTH0{&pVX4Zt9?U z9j0jsR@UG~Z^Xg4dFF9tvRs7mLV-(FqF(>HEPryj!F$m(q0lzxoi^jQ7^yvtK2NiB zeuNQAQ6Ad#U54e@|4h!b8allUkF9Xpl^RP^DuFS%ZU1nd5A7K1>Z+sK8b0^>@A$xk zSyEiQe6b62XWpHKWg6AH-JqfA%z6|I*q+ybPe}9Lsf}WkNEj*9)zZ~nEg`%qN6dh$ zmEHO3cL}4|uulCej(dWZXVzF=_(K36`yb4}i2wgq^V8PUlm(P!LBYwIv|Pl@h?{a$ z^~bkM*e<77eSEr7=k8OPf=RJmy*P8`tnc;2@5DZ`Bt0^%nYTdEv2i0$gN*Pncs0G% z(D7OvV(d2lhQXRT707{nZ~jtcN{fIM06d44l~qJc%*lFVC^_oQ!(@P;HB5EF;9@{a zz<{=+X$)k)Q-)t|gr1gGew8wLHp82fG7{wcFzkbX?Ts&ON`QTwv#7e6Lczq+q8@>< z6q1ewbdT+FJ)W03p1pBe3#vO}fyFhVL<%>FruMAy5Ijszi=~1p7MoUb*ku-~hh}7V z%d`%D%Ri)MTHAa}$a0>94e0dyCM=loJyu^FW~hqiuryz((Nc8hQ|rXGevmDG?Yk{R z>-Q~PWHz!jzk=WSG~VXoac9yK-4AsxJRF4i_d^fAIk?P<_)Z%Fa{D7NdpySh<(wn0 z>GQW3InTIGJzh(FSAko7E-5YuzSR3uFgoH!`(S(YIZ&Jyo6O&^0T|-27;RGg(BW-2 znax>;6t~y*ojbh@xUy^graR>Mg1BGWe;u!Rg9_L{whxGk5hYee3~`dY%xv6KQZ>b{ zUkk;|grE8ZLGSAsS>LEO3b~cy&7L~xAQ`C%yA)PU!B$kvg3IgNd_7GQ_*^6sL>ezc zdT|$8OBFb{vZ*RxmtVdd@wGVwD~N(=U{xjQC;W~L(_6PtS>01-?RygR8xq{V9ljTb zCJWBLW3OENB0qn&YC0tfaXyrpnFy0(X>Y!ZrWt@{im!@B|J21`OV7efor@L6yd0Oq z>|qD`A!jeOYnc7;S(U3pV3tF3k-UcU8u%>58k373o@y-7}B_ zgv76jt*A>r3-Sg8Q;{)=>5sE8@&(cBn#y=ZKe9~d@aQZ(3Le-)m*k{`%G8Pprt)UL6vod$yq@KM*ShHZC?28xnRWI=! zv*W<}p(VfpBa+$e`MtCY{V?A{qN%o)@YN~hHh1qS_|7yDjWK?0tw~MW6^eIj91Cs) zci*OwOQXFDG}~?rs#Y1BHwo%A9Mw2;3*E&+TazlLqnBVeeG;Yo?rDuLWrhv@(_Bym zzap&I$va7HEHWfmO~aCKleOV)KnmE*5by8%Uh;&Hvtxp4KEkg>=k5F)R*kdA%;m$a z$wkMVHN-5YgU5-~*k4TdRAKYBXSSHkSvuM#rDd4lCtF7w;!r014my+4+nwA$hQHX^ z28Xuwh#>ST03y1LzNWM}NC+@*c6EdJYHhtyDytfQY}sR(*<6cxVn~`Bee{L@-WX3# zeZBcnXxX#X4{7yJ4a&#ov%moWVp|Eb{Nrc?iJH;NyCSWK`z6IwfU=as{W1W zt&O@WZzU)pv+INJXE;>7sh9=tUE7{My`|bcD->>f)0PFM!W(Ly85*yCaCtaVH{nLp zhRdUR;mvOY=%L#{S&ESUs-yGM8&yQFbHjV{HKLZ){;Fef;vgDlj7Kql>JeI9W;eG&mAwcp2+Ah+@4Wm} zr0-$~=8v7^;$&}n!rXJNBDDKdGW?doT~;&Ld_2$9atmJ7jaUAfU0oL9r&t9et@A~k zV}Gl%ZvkW$UhyqUpJ(FiK;Y`3EdBr>5w>u@W8Q470mc3ye&BJ>;g#Wr%$350;-P2P zkF5v08S}hAxH%y$_$ZN@I96s));GIP0dK00t9k#RGfOndZB$7Z>Le4_H?^$|SyVYM zb0Fq-)W0ac`Tk}vW|qY~_wWkSBY9N@@Bysq5&nP-`iLD7eUT5p;d^=I<#SVD!!UL+ zABq}XJbhVjej52t3I}9j*7TQQPy=dKS|sS=SNfnBYm7ZVc+2R?d73epr@MX9sM-88 zD?l0?w}P1zrJmTjP7ur)H~iI_|E|TZs_hPj%jM(;lhIy0P5T1!Y;SZOb{@Ln-}K}- zAyG1MPBWsNrk?6TH;Svt~BpUPUP8~hl^;E z-z1BhA9btPs>M89()-zAPx@L=@a3pm&J!Zfr)hr{o!NR7HU_JFDe^(3qydWC>^^Wr z<$+E-)fuOIIkD)|P7SYQSUXBuU8;5O1Es%LWXq@g9toR~Fc8L^0F87=vAJRLm+I#N zp{U_&6NeWByikEqOVf&eW=n#YWqP7Y?@sm;b?TBs+D^F$$`qglD`bk-?b6#mp~|Cl z5r4%FB8gq!Syj~)vi^i9ohgm*fa^o%(!v;b^~{0SC&YnzbjF7iGH2LI zv0<1zla8~#dmVOCi@gPFqM|Do?)amlhLCI>eJN>Ou3~-D$IM6hge+c}P%INIEy`J6 z1fyI1bY?6lB>C8cNz?i9sX~Xt;WwO@U4gPd+s&C&kzm1AF3t$ytmWcQ($dT}R3r7Xxkzw+=ZoFXfJ2mx} z{Gs~?aDb;V{4L#Cof+)5>*8Qz%M--jW-}MF^o+eBc0w_D0FO_Akp_Iw>buRe%a6$J z1BCbD&-yySygt{NA71Y|&39#vFju3?_xIZ79GY!wEDdUnT(t{#rye;RA&?SPO-xn# zlTN)KOzw%9i$VT~br}%K7jS8AVwtNcvM3-<*&uJ1=IY_XF@u!dym%Tr&fvY^@%yz#@4r)JiY5_EFFgJ zd?8;!@OIm$@XPq= z`JK+=`Aa?rw6hvO`v)(jN$V#lFpbc6XKqx^ar4c*@%G_5A*l2V}k);K&*J+L`z3m+Tk&y7r4JWPIKpfCG$=l(b$z*fz? z7-dC8QSA!5Pr5s&a2 z5N^IZ(>S*6Hd>_DhE^m`7h})hFw}CaG9imXjaa&R8l%nhO4GLzo%&vaK53$%ym03w z{E*O=_tZdK+j+H2>OE$N^8m1JrPhWxJli;DfesgrW*y zE=7T$}^{gFiNVW3*of2#v&jPbns$0 z4CX!|W)%Nq4(yT@<36oCm(Q;Yl|XDgM>*^1L-SrA{H}tI9dcTba$o9jL$np2JRVHo z-(N&kp+>#Ji39WvILQ3dTUM~(SPo9@7zwckzpBW(fkZup=wpWb=RSL#%>GMNaO1^c zEsf*O?F&O-vZkY>8y+4eXJkb4ajm@i_OWmEs>WEc^%LG$({K_#5p=$63QdO5EvV7< zZ~~oR4k$z`J87Ns=dWEve=dH~{Vlo4c?XaE!Ztjr+F+no&SXzK-{?1j$ zjyn95PG*sxE2bgkvp>R>`*hDnF}$3b>7eUyvdOx%crAq{nsmun2LPjmM5gAvOurNY z%6ogqaHycqsY8@fPUjhLsLU|OQp=sb+{Agmop1+$Ca*N!*~*v?S{h`hOwGK0PnW6@ znG4}5k04X7G)4M2adGSed~Q6T*2%iAN6v~#Y-e3fb#MbDkT~ZOH|36aLBPuNIUu+~ zAz){nGN^f1bzo4$=T?f>OFdk@b%LXc=*_a~>N1v32>kZ_i9zq1^+AspLK(T(^nEr0 zPCY_A@DNf)rHMgTj&es@O5_D&^gY3q^~33TvSvwNKiMV&Frbx0mbvd*c}|8PL*3T$pe>xmZ{&O%%yE${44EDvveD}Nd|10tC?hxG{FU}yFeUmIwtmiz#`vw z`YHSj<0t3bGUc~@KTnA>d|*bb70WKzsrsY1Tc@ zf#<{23wP|2qpfe78<>B>$=Y(C?CsP~>;tO3qOWzX#n1Z0ag%IUAD_Prq}!cY*er9+ zapWv=MFdUxAs1+1bHK8`y}5!vP|7iXgYkjn6utEzKzZf531+2(ZtG>A6JM!5Jx=0X zbrGE~x;?%gLIVx?uJxtvmYkf)xImHs&XHd-a!}CsvLuuoOGO5m*)k(!JMl2XA9dDb z7e=1Vh!)p>Kh~szygyv=;QkPmou#1UMG~Em(0YX=oARr_iTV{CY*arNh<9#&N(s1+ zl?tY2G^xvLtm@$*3ViG7#`RVs_n}hNoe%1_1OQkF{^!ad{%>i2)?a^M!pmc+$Exv6 zR=ZqR+v^BoH;xJ9u{Uo_9?IE0=*}R)g+;le4W0+%{zU%!9W-M$!iZ9di@d^W+sR+9 za3kfXPYK1-W8hH#>CF^i%LyZ_S-h3M!S;*(!oy)yR$oP3V z-?i$6wxyIG?6UYKN+~K}dlDG32>gLvA)yatUVi+8w@DupZEym{F@DRzyM7mwvtH@5 z4W5EvJT_xxfoM~j*RfSe)45gC#f}68WtEs9=+^jUSL1!TC9&He|Mcm5jR{T#|D4g0 zIwC^-t6P#>=JooDle#tu6t)6T^ECAtlnNGItOX9USL5hnVk%KfOOvJYr2Ck@zkfJ* z5GEMXeLwd}{L6~BByn+ZOquYJ5qghaPq41W_F_5^UD89!9<4%bt;SeDpQguyc@GQD& zkoJ3@t!ZeuwG--Gu3vnYjjd{u)twuxFpohs=mrsi^bZd!ynIPp+H_uUAs7I{v!=Fo z2fcm6z_PbLI2T1m^(RT%&HuAigHJD0C1U2NN5rv6&sms_O}}qa2#)-{U9-z}SD`wU zO3tOEsVT$2t~PXI!zw#F`@Bxfw>3{H0Q3rp0z{+Et{lSv?1=5Y>e|{U5Tw0BTX%lw z7v~pjR86Oi+pJ95!?q86OF&rzQj!|zma(+7Yyhq{Lx&ceZR1qn<$E^wTuV#d%S&7r zz-(C*#*cBEhKrqgL(k>U#*wa(JBJAG?WeJyq`4WYnn*|V-?w~<7%Iuuv2Ss1*Tn^wf1|Fl zEALZfC(N=2lb1Hd~izqfp7gaEpqZv6QLK z-i5Z8Kk_h(XE?KJ#<5Ozm!t+qmc-)J}EidqNjxZt0 zxR>|iRWu8CPpLt!VpJo!^C$)P*`Y+kue7R=h;o|qViGz0d24ASisL~Q-eu4RVs?eP zM4rQ8E8xBBm2(RY&1vO^@V{xkvQi@EwP`-KdW@%|j^ZE1EwSgQ@fSei#<$ct`0u*6i4yARt z{&MP7<+CBh9u-$+13lD5KlTetOVlfYdU+H58M8|(*!bmz>4F0Ad4I(CIfkU8Ow@5$ z)NUJCuWSq`G`?hooQqN_$y84Ru>!Dz?qr4VvlY`*0B|lh(2s16{K2&nMJJf_(2}C6 z3M4JxYrL`K8*mtu1aJT`oy-R1yNYvS^n~7qBO_s zQarqbr>bN$$E#Y%K#x=7Cc~Sh$6y$@B^gGGi{{6#^yGbz&q^BuNLHu@6N?endrre} zQ~SdVp!tk1jv1SFJc9zG53qNXo_)nDD=Yhe$K)Y9`iruaY~tiG=RLtEf=(QIwfG}e zk9c^oZhN{hwFIl*VKcAod~g#`7`5&t7MGhdS)(J*D=ltbuqr^o%A;>c1KMc0B z62B{+Mz6|7az1b#8~`w6l{xT%!VZ6+rOR$$zNlyK7DO)P?)0j~sK& zFxtigtVRg(9bLg6dir%~@R|1*CO_AejeVrvKch*O^y}5xk$P>T*O;s81qsH>R6Wn> zdsXqtgXfq69CsHzGP8&5HzZGA!>Z-+S$zJ03i4p-4}@F4^7kg_=8j(=VDXX#G?VN6 z{a8~Ynw&qXUVe{CNjI5z!Ao%C4A{2V3TjckD4L%`TtchYGySW7V@TPO@O+=u7g2js z!!rrucTaLvlY`$Je>5(B1t=S*a14#nE8u##0|)>Kh8WT-(6XS=SH(DLTU=o}-Al*^ zj5Yv)XI7Q73JE#vG6=di3ej7eN#-e_+PP%vW05o(?A+smzk%OM-`>=c0P<(N>tC4w zZ1O3VvYg$!pi9md6cp^@$ygkiafOgYVCFL>lASENNop>WMQ!22kL|{;+H@ryMT+3O;A@Ro-aFE1^f zE|xbctw7$(4p&3kgj}pD^rxH;4B?JZ^MG>nG(u=)n?3oX7XzAPe5GE$X)%kngy$;j zdw9HHq9NsKle`=t4R`sxhYxxLhFo&PN@b1>-Tr{?Broa;a=A1P5V>k>#uosiK0XHX zm%$AV)KV8?o5RW?56rj4Py+o0-9xMOZHd-;pG%6qyGxoL43)C}ymT9@(YP2l==Dh) z&nvnuE;M@SY&$vPWopGHi7Bt?P`?eFE3ULJft*Hw#+(>n3D5wW>BY(biC7aioFD>k#D&ZUVVltk@NuhKa{ZKC+N5nha z3Vlk5v{k_(gCfjh_u$n44h?E=T8TZhC&YWJZs-2^qPhDILyE{(jTtb!BlkvOJihz) z--i;>9Q4bR9gnhJqNlP1;L`1iGq*4~5AgM1sLw zVd>liy&RZbbr5om`%yXAzwTeymop=8n7gv!na^zdp?#LYg1f);jNV<&#Xj`A z+IIBi1s#I;URC(Hpf?xT-e-Jrp}%z;vbly+?w8`k8j!^mjC`Khd&66SR!DjGPm3Bc zqe?93?`h{{(6s70qp0_RnQec6?=RP0r;MConwy$CS5jk>vZcyy0T;Hg&&6j6WR-h5 z=zfWYu0W($Qr4%t*IhvE-HmSU<@G;P0c2!^AG?@0-Pc+{FUi^7M14HXV6l!IwP`)A zQr9Hpcj4%9iPilMdi{7~6b44Zn*F_o?|1tQAOG$boV+|6Rip+> z_~LnYW|4cD%_`%t$l5!;;g8M(&ab&)X=S+;F`k(_gW)c=>xm`C?4WV?9W*Qe^w#d~ z_mRmUo5A*w_3@F+OLt2FjH3cI3D@ANSw8F{d zD%vZbB4?Wud5snnU;$K?& zLVjxo^{3xqy8)~kuQW*jXz(q9!ZKLo!^-@x{QMC0vyO;q_d_t-Kb)4Io`4?XG%;tN zv)|Gz+RfQqHp{kQhKEFw32N(wOVr>m`0QV8^pO*IobROUWhCtqoDpL%Z>N>i8@Z z^FxqR(DA*8JnTE%C@ekbmDtTHxbIe4wJ8Ob)?k_>arM2@FTJRy zaN9}GNM`+Bvl-rx9N)1TnO3?%E8%TXQKregV}`#CM4fR7$5O{}1Gzi~Wc@oxW#}

5I3LA9rejys#% z)H)2V%91A0ubYp&E4J9yd7k9U|e6N|W9Dm#cRY995oJ;z@3ErYR zIwfKPc4(JDDyp{k%va4r&`ZKREoCop$qR17BSdBtkNF`pfE`n&&GE-qAS;_S*3s;}lS>G^ahY6v%GdiVXHJu| zJ4LRoNeWWzwe=z`TDhE>+3hMyU$;v_P~@PHX7zA55kBv-ktBMf>739{_;1jgkvqh3 z&+hhgD-y&uue$_kZJvR`0j#^m8XfCngK8$W-eDhI#-}bt%9DnN%vw$fh_16(&>5|X zmWB0j@9_cu@k7R`*_}Zy&`lDJ=fAPPLv{H`^QriG(u$`Su&rCaOGpw8dOnCzHf}O- z=jVKf9naatqvHB(84g?WNAl{RanBd5{OQu{0{(^sVs8EG8L@_@<6f)?~jZ`ZV~W?CZ{{SW+q zOZgJKV-6j1uv3{=n(RnLV+xv5%bG@|_~fHE^yjvpLB_=geqXE*&=BJNMr_Pxtc#l= z!akO!?N@Qx4^ZEiYKLGehV+AmTb3Nlzzi;c*JsE1HMxF zQ=Nwm zRimmuFlOnz6#L}K9;%11o+p##pHm2b_5;NF6=lxE&~TDp^$yF zFiqe1H#zuvRzF{qM3Yy{IME$Tn-D090yJa$U3ud_-806X$cq#K-MMQtcOmaFT5@!| z6}6>e)72TM-vD1BMpeV7Usy8zr)}u{qkbZ&2^m0JCwTWN9&>>=%1ePmx9~q zbtqpE+>vC+@W4c&+#f#~D6y=^e`paY!o1tm0UC62-7Y$}GYY3s{NRmb$prx@i+KnF zUdi$$Q9Sv77<&t-D8KEGn^L+ZB?J|eMwAW#k(3Z=DN#BddMHsqLPkZ99vTGc?go+0 zK{^BmhM_y(Gu+?(-}|n2t#@4)f-*4k%=4V*oPGBGem^_;JB%$gDw!vQ$UF0mP1G-I z9+=G3QYs=@d`!B|7#$=5D%nIUGn<2_dP8Ol1sW`DR)=b9qndr;v+Y(+KK;`k@9nZX z#_B&^hY$fR2g|#%Jhr0kCK!{qGyC0Rh*-(FJPe{(;jg58@sdnRR7(!%%lFs_1JX>v zkebXNy5{|mUjulF%H}8&b0@xfP7K=`OI!)VyX6ZT24AHsH3SkMY${~A1WFfeUnKThkzpn7QRrb&N z2;$`-?652A1ml0ed0%&|h>eW1Gq7Ar6`H!!MX8_5?1^WeiVrL+aSaxm)PKr{-mR_i zgiKc2b-^|MKv0qgD-N6D7$dVH##|sba53Kvd^V!%wsib2Ty$-ASAZr%G?HaWQ}=oh z@tM($g*>+L0U^aLlYO0+r!$Z`V^@ajNlAYi|MXoNKa3krBg0C8MY8SnP;S7rK;iD6 z__6*|XRT)`+k*~N=^Em4Bonhj?2%z?55%%SR7%WdI1FUaPZU@Y{r3cmW385LCld^K zA2OeT@wHwBpQdSG49qVGu4Rc>N!gyvMfqroklfVH4ad=V66JS0@y>zlO>7j882Jb#=7rT$7=3 z^jAWYEk~(KeNeCf8f?w@M*m4R{r1;SSt&szucdM)1VGizG zhnQ0Pw)T=3Zhtead?f_Ns_FI}*S&(47VwYPm4TReXBMC#PMA%BGb0n25Lg+~9lngU zV-ct`jYeYuQ6ESWOfC)#8GIqm&2K#p6*ulI=ic8JaN`1wU|_r9gp*8Gtm->Ysxw|* zD8lUWOfRWPW&BnS72;tRRpe_Zack!!ci{MV0tap*@H+VlD+=ZFIX|w~G8?-x-7}sd z)GFi@v`~l9$-6r!dfek~Mb!eSVaDp52FQK_H_e*VWpPiScSeWZ#UdxX2{~Bgp6~9n zSziPdi6A-|NJp}t1Sd>4IvU5J$jc{X4!Dl2yD_W08xHVhAHne+4;CKfQna8Nfo|f9Y-ub2zds!IqQ4lL%oGp+gZCS5z%Htt%lXWs2h zyc{1VFaQG5_O01VIa{u}ecGR<w+W*|38v%Ep@kAomNdZGZ%3>!8zZ z(q@e!XQb*$>hqtfzu6H9kOE`E532WdkJh-WPS%z;ZPnj~=!3K(d#4G`W00aVluJ?1 zHeSIOm&7fT7LNhdG*BX|K!6DfDMf{)&^X^+j-0^MsEzC5fx*D+Ar8>J+15LT$xWdT zW%C}Vg-7fpawDBJ>wIJ@Te5+2M+sB{9AGA86#B8z^OP6QX@52)#w~6`3XWm!5>wwVH&kYO8FpBY$s~bBnJSyeGmJGts6%>bnnGEdv4-1X$23O@;HCt{M z8L3V;N++L&d=mfu_oq)7U9YQu@p|vNt6Zv0RL!AFMA(pXog0%Cko!YE1lXcI{?z+2W?!i{+|hBK!*ySV*_4J z!?NUN%dXP5g0WQh6GaqINf9D$r?pp=yl<(7s`Xr7m=$wfM48NZakFuO6&s|WZ^+bq zvyzsE)AT=iJ3^+VwRN=UJn4|MX^r>}j$&wMtfm!e2UdOAZn*fy79U7_RlX+B-{UTL z^W1Qg=&kj#G1KqgDPYBCB;RoQLz6M2GQaT0c!s5*6ensS)1YlyoPk7^MP@Pgsrr?$ zC6^_LHhVbKP&<=Zlqs3hxKkbf#M41`eQ1Dks`^lDry;&W3o1aD>DN`@pzGLJe;F)8 zXUfY3l$b3t*IltBU6B+R|F%_<8|`hy$iLBgCaWk8QtSLf9N_R*`rXs~+3b2kzE{K4 zIa9m~ox3WfiVu!@wlJ)Kd$QFnvnj)K+aCCvrq?Vu`&dF^(r4G-Wo22I&_P;RJ?Hr? zK^2c&nuwjJrzNWL=SBX%R_pb_b1)I$1p|5->2=&Zy+TW% zWC3YE2{pKMQcVpRZ6S>xq5@Iqd5qH|1esQ#7G;`XlB#C`M$NlF-OQm?eMD+sA3z?1 zQl%EvS06*)sd#CQx~r0Vo*v(TS_oFYj6l+56{U| zc2>OeaXnw3hJ5?mzcjEXaR-kGpbZ58TSZ2%}hf#VvTk;$G z+fz(rMU(Xv&+PK{3vL$RM3vQbmW3JG{eX^-$BKVU*<-u6O_;&!J5_rkDvj-HZCyLs znZF6)Vaq0IkCo17-Sy|MOSF^r{NisP&T&u4X!*^gu;~7aS&{^n>BIa}L_Xbn>5^&4 zAaV>dU5EBFR=Az$pYpj9JClFRw8;>Bw-a~7B?P363v*Le2Q+{qK(Y_W2FUumQ|^hBcC%?_ z-!r*(OXt}awM(858#r&qnl)a!VlHsVLzbUttiUtNT5NZcKDP=yEr}Ws$ZZR zDfLq-!}D;k)49>NJC&O5EX$F@mBXb_9hbba{H)o;GIhI&e7rlq)847u@ec2`Tddy_ z`^z__IunBQQjqIY{vEq#DA*~z;6iMrgdE^!zxmmSDQOW?)o5EYm2~H(0i%*yPl8BoC=t11~sfERDktt_f z$V%T*3$cVLYySUPojz6QCiYskT9&#kaqn{%2p@)5D0Y7RKVy<+nK*fbtjYJ)^j8D- ziEQ79*@6@ri}&Ym*SZBeDtoYBfQs>-BC3!<0%e}@G=X8=F=Avj9X zO0W;9&*U!AmY~(Gs+Gqj7Q1^ZlmT*&S3kJEU~HPK{NUqCb*_rQ^;FoSc>@OoeXD&u_J1HF!1;4_5zx14Z#9+2I<)F)|EDDArehU$KvotIB%UwCDr3tR2{Xv}0hhX&_b zNuI>{Ig$?rH_ccsmvQ%$Uh}^QSgou)S^6X8BI&QIfatn{8eYu*124o8#yV+fr!)PD zZWvH#Zf?fI$A|hlK4io_;rG^?C@g&>8$^?x`ElqPc^WyaMawi?Y?n<%kGI3-K29xj zXDYnt@`yQyE0dVzj$5d%j$NtYz22nxhCVa97PE+LpO0x~1KgrIqv<<(p(?jFmX%+e z*`!x|e%ocvMHG{cc=xsp+xXeFuzbpN!H#n#9tFI(o;gh|)o>eQ)l^X?deZAaCsrY( zbn$ZJH&M~#!0P_J{7bbL(UnF_L-DeLR5uuchR(PIm_IN0}-iMz3 z>G!?xF(ue*wEI8&OoMmf4s^KxzwBhC1Wm7sKY#o77hy$r+YufJmVXQXyebS8k6o8f4E=B)0@g=yAN8T1FRc@%0kckPb=?M}sM3v1 zEt`GKCogXyTSy3v=CSjqt=rjvk+N*_g|>qBGbv))rsI`Xk=a#cm7?7}e%jK#b;YtR zL>Lvd;!dJuBl@ek%yaZGW>1D!5I`CLs`{Wh8Vri!H8K!UCj04{Xkxyqro#TdU%$-2 z+U|4k$I8!FUD2@62{E?)Q`MucA5s`@r9LRfVtqNr-8SnY6QdJu)Ph)VHxw-AI zP8ij+>w137!j-X|*U(Z*Zj2b2ibfinE9uy9Nq$t%{v2~iAIeaA->8!5?t_x)l~^Ij zJ%i+M!#`Q#m0tHM-8^+b-TJ`nBB@n&`?eS_c9|DJ?T!a`^^smEk6}iA)@A+tJ^#jK z6TVMAbiR41=2*Tj9@^?$3nI>{JcXjdjm6nJObCK4&h!eKb1)n1g%4wexMmIxytVG= zw|YB328J=lxooA3O@57w>jLuDc1XWeClHdh`W{Xz8XG6oavePxnK^OiLl-!$EUqwM z5OFI|lfRn9Jl*agg&$5W&3wH{Pd;nHy1@hK@(9Pth##wXq~h)Mw-x`K&^)AJeS7#5 zn_m06x!SYNP)s-od?2E0Yf4p+Fa%_eEj4F!B5fuZue74vXm=uT!=zz3Nv4Oq2RGBo zpJrs|xd+y0+}A%POE36pxV|Jwu~VUoDoAAENvWtYMNZsKE-ZSAasz?G^G1)# zPO(EiW^(m)Edp2J5j%+=t{sjN%N5>W1BGJ>H0%=Y>vI5mv<&`UFKhAu*A%dCahm{v zvn`B<`&U;NhAISv!{H!_+MOrRhB$dkP_^&v<$$P!kovp7ahlqYE;OHI0nxszr|;Az zr&ir-K49^$Xu)M!0n7Rjt-2#;ifwCcp0d$I3BFTT>z|GJ*H~5-xX(fkpd`ETLaZ$( z>*9qgz;by#;Tf?%Fr*pP@)}Q;a~{Iwc+uJ>d%S8?~T zF_DK)P4Y_e&8ON?k#>bag^j@pjzfKUq@+1IG=>B^H-M^h%Me|?H`tEe9GZ81Ra$oc zvlyA1DSGE>`-r0l-u=IzN5d%ivjpMl!ng--i15jnQov#kgx=qP5be0$*jEg1U68Jy z=68)iXP;HS9gFZjkxH)$Yd1dPM1>6h-u15#-IUm#e}fImrvq|7C{jGw<0)i$y4w@9 zQ5}-pT1W0hB9XmpH?LK02yD$&t?vB3uC56;QfNcl4A+eWD}MInHB*b^`d_GIGFOv>U(HQs(Mk7c0F0Sp0Q*6gYi#;U6x7{r|qMeX3nHQ zKGBRNr~^;R{AA(1*>T(K1YO9U;U?y&<-q1z+@Z7h1Bvv~xKzA&y*sGsVazE_j!1Hy zCUkGRkOq8ncWZ^}n>c~R?^~PH%zJpYD`jpwDlu;?_)ER~}SqL|0bE z(jg2K81YddY+Bq~ML+fDTPNoPxg6`66+Im(Z)yqEJax`G7oNusV0!Hq_Fo__R{?LYbOF0ec`p#W(QkQL{#e#VKQ&#E_HogYM zehgCa5+H1X8wzlO51_v>w@#IaqlOscnlqEb)|qA@g$L^IfqaTOY&BU82J49v%UGeq zaI^q2AiW8bNZzdWO&CihCL7(Dm827}QBS5#{z+T(=U;3RLAs$5+hW~0N}5kV_x=xW zQhsesS;sJhy`J`-d_R5awXTZR#@^k7-wwrUe;Q)r;4*EL&^s$hc{}ZNpT%UtMnYJ| z9BEjV$ZGgH@Pt6caEEA<@X+%4`EuS3{@$Glc;(5yjEnQ~UlzJUq+F{2N9>?tX9d)R zl{s9nd41FpvsGXr48YED(1^>c%ylsTSP0LKi7t~Y^!lz3n(hS8OHUUtM2S)*?g&lc=@C|?3(B#i521zW7T2SgMvnS^T6r-`o)s>pkdW_CVX%8(Oend_a#gL?avjpAsQVEoF4tAdBGgggmA^Udb&(=Qa z)E%Kcu^c5(ybVXs`Lir8Ax}+271yCL35) zHo1a5xUWi-a~@@Am%p)&Z#4x)N-RSlFM3xqM-iwYUOw3ma@mx?Q5;5AZj5&_fYF-x zl7~FlY|}Cz6PFScnI%-|Z2hWkL>(C{4ue*Z`X|wpVWA7WkTe%HVsy_z{p81%fUS<| zmYr+xR@F9x-{t%wQ;zEG`(@vr(MkV0`A+qbVJa(d{PolP{DUehn*^4wF>#_zVB3i< zblRwT`viZf-vOybQ)I^wUv{<+K!j8n$M`V{Q$z*sjM}J3Fg6-EF=L}uJfJ?)ZJ^mw zKA*?QfMjAdWlf`hE~l*Gvi17=3aBD}y^Arg^*+90_615Vp(3MmuV zF@`2@jEw+7n0NL8QpIz%e#%wZ)dS{=EJMPYg>;pCnLPnnwVY)&zh4Zev ztL%G?j@Wo0C=RIRC}b~ES&M+thwDDEuKV~+kDr0G z5KFRWA!M2-$QJjIkE*Q3O7rr=MdiFtu@438tTqAH3@At$$?%f8pKTVt*`JXpmLPo@ zea1g?c8ph`c1*BG6gpg@+}E>B5Vf%tZ^q$e(xB-1tj{FNw=pM{PtSsTp0aJ$kJYto z`y=&&Q=`Th5~I4IrozHiLL~`Jko}mr(vl5e4p2H9#F{YkiMG{0ol_cPX6i15lXQ~E z40Y(DIJb4NflAZZU+GBrH(5}h{s{jz_*P5%HtFof>YfBB$B^+S_D*~fJX_=EJ}y~P zON&s{7qk?#>y&=tlWlUxds_*jK z3kDlA(&WAMf$iZ|E`Y6ITmuL90|qvTow47?faVQWQQaQ_DS(>{E=wEoGWEqTZ1;tK?}P9w z49`gDwY1cp8Ap$cx^~1d=w(82SX z#g6)`Gv4ZS%&I53*@TRLnX!!g@ymaHXz^lT0t7^|et1VWJh|76)qX)np_M?0=}lL^ z$oAg2+E@ARDVf5yc!4{y3GhtZ`k8tb^T|wWP{>3V(Us;!5L!NetCt3gY}c~cr{8dY zVF)6NuU~7Qhdl&4)1wcVxUif3^Vl^ihe{dMM zKwjLwV{M{(WT#Du&MAB4^-!b2=HCNYQ&GYSi3JTRpJrQVHPEh+e6l{nU@^)Ln1!B+ zcJ;h*`1K~lhJ0lBce&p}Z|J{7W9%a76&;I-i%O5c5Q8``8$V<@8(e&eD!K{cU$CJ# zLvQt0TcRL7X4Ri>rK^k`^Y1KFK^d6d*vx1b9NXbt`|^;x@{RvYZdlCC$pp#dMSJnE z^xUsm@P_Qwt!77m4dglR1vrx=_TUE7gz8j-HAlOIgFKOJub2aNb(os@v;y>kGO@lr z^S{S-S9rK-J(Kea?GCNf4tpMl+9boX^ak47EIxjcu{2x#nfpiAlfcNPcx)GGpDj7& zh@bE&tsNqsNN#ZE#s<0ye8Knl``jV?mHwVbonO}zj=NIIMPgr4WV5a7v#Ytwd8dE# z0E{KaMdYazF7KTEaQ8}%4d0Ey)d9D%00`awGA-~9v4P8uHSE3;@%I{c8C!P=RlMH` zs0ouOx+$m<^!y%Z0c{rYQF<(psv$F#w#4JlP~;7TX4g#;^!VV*%n6PyefY~DLz7^( zW}wQwsoZOrOUmX!r5~yD!>G=_!HPW5q_8~wS+qSAvI`iG?#ZPQ5WnPK2{I-DY1(nS zAx>UPLr^i^HBPJrPIWf7ZCec9(PzX96m3x~hLt?s*L4&^HL%{lQ@?DcHZuuyA+189)uK$mmid^Me^(l@EEW?@47`Np)kktV z<+=JHt+k2;$A-H-FZayN0joi&D{M-=b-6eMIAR3K*eUumpHGE96Y1}@`zRIk z66JldlH7~|iQ4vfIB8;~M521aKFy!Rf7u+(m~Tc*2Qk|&vh zNKkI?HfD~U^m?VD|A98;H;?G3Fk5C+rr~;YbP_($Y?NmiqK<1%WnmC+5B_gt>}itz znt*=z3%%phYN7Lpdz)~>&f?PfduM+Q%uRg3v9|O4*#CFmvYwMnGo-LRt+hGn_GL%* zWiA_f`gmi`J~?WItl};=L@Ll~GIc+`veHax)#s3OF(rzCS-51_4jj_Qizh&Uus8ZZ zz+oknK`r!7zY)>X+mX2{u3rXCfxFw3^(1leZ>6=Vt za=I;rm#O+vg@56^nHB{nX+`ONe)><}r5m6C9-|K>2qwxe$6BD;tDijnUN}BUQVqt0q9O^YMPxkFDj>?$z+-NfidJ_ zV&mr^fO^C%C69I-EXch8*@T^gUlRTIK$DWCB^8#2le=N*nBAnx7zf!RU;w{g~FXz!EP->#N2D zYz>1U!4}+zU~|=&H_*M2@?<;f8RBIO&u?4Fh2TrOpGBTNCq-Lp28EEc0em z-rv{CD|49Xl`A(CeYopLRQh157K%)_Fmj)>CW}SV5NtCAo)>KMI8Ghlp$?uscH=s` zI0U9-=jq;J6Vx(uUd>pn*@nQKVEB?$B|i{B)Jqd9vrcVb%AFrCkn|{{j~6}VFIDI3 z?i+5tq!YD&c7xwEfQsQ$elbfyjq*)eJ^-iF+%$2#V`Itp>9n!4X4?e@FZA@f9jaYQ zprZDajxnrt<^sa(E)nUzOushpC9ysNVC)Q?^9x+z!=3R;{;#D1pwh_zEj;Q?1@zI` zmrx+_-$ z0n^W)tj6D^j~XtDzF`ZwNVAX%WC{x`t@$c1#35w;rrV^xV96MuGpRP<3fnDlEYDPv z>j$QBzsFYwgPc(Sb!{en0B-q@o*6M%63uO_Bd?)GuM-_=PGi>^1Y&)4rf#E<>ShSv z9Xu;->Y6PAhvYXx#;+gt)fl?U%1Rqtb)!M@4mnUZy_5&-tRfoFUwItz-c7RPfr`wX z$CHPZ``$jJPfrCjAi>zzKhm^fp7XTHH8L#mF&BCz_s1Q@Oq=PTT&*bW48D zo4dSrr{$#n00#&A$?5RN8{o(QrfzXy>VDn9lGn@K84hVa3D|%pCyXzD9@c2A{(O-I zgrlxngY-ihEwRguI3z~%Z1H4gb9~RWfSz=ju1cPpEE-e=%(x~0UOAg68aS{80x+Oo z{$88}Qu)9*0OlcNm5M0~LD;m`lF=wSBqZMlYy2#a1LfZb`9$M7q*F7x)*vkdgvi4y zfQ`aKGAP)&;bkYZp6EQwL*l|Az*r8TTD0k1KZ7*%+=>R3g3JXDeFfkE2CZcWn_F-5 z^*Qhp8!k;#GA%L8+xiso)QRLNA(8mTp}XWB8(T7z97WUbkBi*L*o)Yn1Yr8-`Ib{F z8L=3(@*1Ox{gS+%?#lI%mEUc8c(|-{ehiDX;&JZB<^jzizy@nW*Lo~l7s`Z5`&yRI z+1uM2(@!=CxAwi!_{r{KOS{UQ%qG>?WYI+f@>+nNEPZ*bdbU%pQ@7h{9r2X2w4kWIbDXZ}{}n+UvqO z;ac~jaG=iJS0V*fiWr*Y+Gqgh7;u-|hVW;ATV&o2tU5pv9gewRVi;0o!C0PEk(-h$ z@7F|33YLcn>n`7nMdMV;h%AeIcR`c28uJL%EsI6Tm5y@7LQea(KN~Aq%lX^)4#q{S zggs`p`uY6{gMyr&yHfhs{PnYp@Fq*2pvsv@NU%?(dO#wyarS(LVWM{?e@D zv(A&O4k#(ALPTV+#9O&=4@;PNO2cJlDu#FU35Ws}XB$MF<3Ft+eFiYh6u^6OR23K0Ya7m5EEZ ztO=0c|B>+_X6sC0xJ&xcEc3+#am9xDtnMzMQ6sLu7EHJ*q-Ng%r~Gu>aTw#hVZ*@$ z{&Q=`+y>%0BtJ@lYGQ=&R^ z<#|P5v)GtYN!vIrMwIyZ13s z#N%7o0$3oq%~EdyN~WR5y_-@6f>$P@QY>r9t=m9v>3C=YK4$^BvXo;~eh!8Gv(BoV zP<|Pnl|bTKB6RESN7I{g;r`KY4?+%^A^Mf+Zyd3lZJ`t*%+gBQ^Vl$LkWg?2oIWO> zId}Mn$1nwWEd&DyM*_a|!R;iSBM^5;@;AO|G|^*|E8Tg90{D@KEJt7D$<;IN`11i( zGSa2@3!3%$SDEkNd+RO)t`FU%SDv}8c`Y}JxD0Og|DQztLSIv5F`eAiOTV%n90jP; z18$$_3(ylG6(nyS6Z->JOF-^I*`ril-90394G0j~(+3ouLiMCj`$+cm@?G?v9Hy(% zc{E;=U(2KZO^l^5h!mL2Ff=#AEdm!2jU7>|8js+W#3qf(YLB_1zx^H|O}8gy+P==# zeG3~_K1bAgkIW31rwe3cl=}?WdVPEE)-`o9$jCAiC2J7{P{#AX+IHB8@2kJkT2pY> zDv~A#WM-6ikh`(>;T&E#IvEZU&q1g zkA=Ef?`)-KV&&id?Dc9l-uc2m#mnVxnf2-k^~aWm1l&fAU%xjt#-L^<+ah{0UEe+g~{p13XhDBkAECqZCl-&$*!n$Eknn>dXPT+4(#E-eg>F49QOXp zI6ZTv=gT+?j@7lQ{coAjb$TfMmr`EK_>gf?e-T8(A=9KvKc~{H(!sU<-3zGmMQ*h* z5oCIvsOLmqySBR&Y4J?jfT}aJFYi|?V6V}@t`%N|^aZB)O%9V4F4Jy^FJHd~s%I|( zLeXJOR!T|$aH>&IQMFXLERHw$p1Me-=jMh1j>(spn2w(Yr2=tk(zd>bWtC`yR~F1{i|+*FiwJX zw$k4bGXxh0ftKNaX(p?BH{Z_BbkaX8EDY;oXsG$&#`HQ+K7hWfgyHRt5~@t9(8=Uz z2YrQC9Y6Vc6SVVcboVDlQQ{>_?OacjsN0NAJIx0syW+IF{oR9IY?>2I3^J-Oy8G|< zC8g3>mT4!2x5~O~kgPSH)hYI0>Hm!t&Wwk1&W43pR=6(rNVYwm-M;G)J?kwF&NzWT z5&`|60OMEKmG8-KgcC48b5_42Hjx=mi&_L|+%+_wdn+X?>pE6KZ*abs>2&fxvMu01 zkzcz-wV9x>da{HegCBii`da#Z-hNYTuvm2P;2{5eRq=(zfFNAwbQp#VfiF7x>*?sV zMlcZd%dp}${U{Fkv-g(5!k>kB{FZoR+f+0VD!j{~U++jcn4FT&Wg~cWPe0FdY_<7M zt{lSc=Wr@xp!XTbqR;t-u^9g(y>|2cN4T@hQhz?KP9}1&J>&1sTYpD{rVzEsE8#NK zap7P|BJNlRWSuE?bFwHn9=?kkjUKGgouks2oBC#-8nFP;=-dU*l`iaMjfz{ujeiI}|sYy^RT0G*zuvGFs| z2-;L6TVoIPpJuuTOjM5&dVNmOmBuxl?{M*}0AFRgomD$q9W8K%{rb(DFL80JnC8K3 zQc_8I1vR;y{sAK=;-E+mD(_%ROJd=px*eEjr5PH=W~0uc!Z{fk?c^1@re`X;yqo4! z_bJEpJo3NVi_Mn<`-6W&av)AV{ledqEO&!;ytLAQ3Evj1)o1>2cMLu7%$Jz@jw&-;C`bZDFkFj%eW`+F#Y!178%$RPW z1ivhzO`Ld9z!>$M0WfHZ)jMPDXuUcJY+>aJM!RkW!X9H68q)6wspmjL!pO~fx)^>0 zCFS4+D>J4gqT#AsASR zfjpluEJALzdGnK?Sag)G)O$mN`SP5y?H)=JlPbn58{=V#c*7BdO%lWVx$4n8@(=ht z05_%UwVc+C!Zgw===oPuIDnpGfZDbw6HZp}+$rxhN0ye<5{;Q6r8?X`eVVwahe@W5 z8f0X(2=zCO>ai|XIM9~42Q`fm8`c(}khShXb_|R_q^6?FyCbUiuTY#`8~->%v^Cbu zQDhEVYR2XXCbS?vuOX@u`X6;<9yz1NsIiUpn(12eb$!nxbKbLQ@4SlW$>J7PCaA0( zg4S8e7*1YhKKGS|*l;7kbk5JQE9@E&HhZ6ufM8+a$;f|{T;#+5QF2u@7=eZp8dCc= z0L+nT)@PR#c#K&AIC3L*?wu0dg4C1gQPjG-e$9&~p6^Em?0>I7p=J9~ppXwJkKulpK3=y!d@L zf8&(zI#(0MEuJ9ku#lDDm0Jv`jcu%Vo&=<7hKCH1_>(+=k!qd2p7br?{d)!>qXED=_;5`Ek-Ltz$S^g zPeIS~9^=%>lm8zn)43Nx)sHeeVuRWOh^QIbP|6CPAJmw0&vQd;yd?8*Y=q0V&AS zTK`?k>)L6$%2P}@I(b2${y(xD@B?^Uy9_p>s)Mgy<|){>g5K)?)>iJjY1iQa<1Hu# z3@CIi{4CfbFaxqp*TLdDOF!o_57n0wAtXNgIymO$>SF~#m9xQnd&yFb+jAOB@m>+t zUP4f55sZ=V@8DfgX08)qSv??I8BTq^gQNoJa~3H@FnC2NF$$dvNj!TXqp0wE1L`}> zO+EL&8M;n6zmHUon)^k`oDDZ=wu1lZ`n5Ilyi&ro%${f19Tqp%nO}$^o1DiTC-Z@& z=TcpqOt?)slwAC0TJsS?OrTqIgOmJLN)(_Np-fKu zbqLqH- zQla4JE^I%WI?xrsGpVD5*V1&A`W9a4QUSuiV zfF^o4?F^cXz9h+plY!=X;dJtvpZ(zuAU3W&pGEWGYJ)H1zr7o7L{L!yr{{4FTGM&A z*ktf(KllM3phi+0CP7y#fb~XuPCPtXAa;O?_?Jc-h>GqDtL&6c%%<_mgumBzLb(vU zSfCc*$QEWT=e;)=`Kjy2y%I7^aZ!8`uGXO?S;E^(~M4;$R*ihAF2#ZuFrr0%@+E;jA{6l`x?p4j=of0Om(kTYS zloalS={l?ml|Z5eVp! zuqnh{Ve-FtPS6FYtxff+(fAa1vR}&lw%pg`c>k@bq6qOLOg)|UXU6Ilo5vA^ zkXbz91JsK8Tg=SjLd3y=qSQ3y~K zdV~6|^(|pF0X=7k_L_?M$Ep7T82~o+$WJ0>N6tsP@Mg1tgU$0J3(>`hejt(%dqD;LK@6IZ%OrL_I zrDmQn4{+yJ5tvUHQH@EXdd{gQ|PQjKaP{?70gbj~WxV}SZ}{_NNQx30P<*Gk6FMPu??d4&YW(K8ng?#32?3J z2SR&n4q<#uWDcC4h5L7FFgsX^ddymN1Z9Z*Oc5(a9r)hY-wA-gd|mBpSM~t(bU{t3 z#vfVq1xYPo`u!<9c4`sRpB+TszM!LNsto#?k0cO(f$omrK1qW`9EfJaB050TLI7$A zbMG%=mJUcSs~War%4`SqW8{Gl=B6GLqQb(b0JMUWkN3bDC_3?Te zI-||afpYZic&=zv3m8yd!&Q`xDkTQm=7wN_U1(VX?Q|*Kj&TqrBp*B6$|#4LFbH`#c=lYHwnVv zNYco=D7LU(|EEzQmHk-qX8)wVYt`-+zH^4*Rc3+0R}NXw2nb4M(@zop)x-ZeQSR>>J#eR zVl%wvoFqGca2Gd;Y`9+NaW?AgUvGmEOhFVm67K-hp~(@q$y`sWuNsCHM%OqJsoWfT zn=<_6WJ~;2!NsE=X{UcXuW{&<-VaPaX?y7sq+iN$@&e?Aeb~= zgzUx^9niaBftjQH!()rj|B3)lJ^*y!t;h}zm_>Qr$hlKy6e=5-)J1V7V^*d!#vpZ^{%Su<=HOim+nXB*4*#oeRcQZ3MVGCs8cw?97L?yvkqO&hFnYpbe}8|4Xwq zUSbA7yosN`oSmu1SI{|d!Mfzrql{7b9`54u`3AMx3qC@xcaI}D5g|&Irf0 zST%Z0mr9|A%1pGq;k3m2DVRz-P(a|m(~{dz6BFAA<-4G7Zw~AHMb{^=0X!hoNT`*BsekO*Z%PWJXk+16*cVX`52ANFxHh2T{}DN zcNr^^iOCi6=t=dA)m}6+Y41#A3>o)YLg0TU2)q?5LEx)&hiZMM{w8R$hJ{sDS!prX z^lrQwl3hWHb%W?yfoWqTU^1H2`B}!w2}s>0+zS;{Z`I56F|i#G zb43#Y{Bi5Z5AAs*(sP9d8TsGu3@!QIs{3aJ){RNfGSRnFu&=Mr+1-6(Xak9~rkO<+ z$TnAHZD2iQ6!koAI+YO<^+nPhU2@`oFQrXiRKYc~!bhZ-<&CqdTJi3-#0zA1G}nc} z#2%3q@BA+O6f}$XRw6k$xu~*IQC|MNI#gaBH<(0lgVO+PkZ#?%g9j43Pp2ctnf@j_ zlMw~K|4x2Za!IUMErQjgwL#jre%aF8y`tMVHQe)sijwk+pn(H6^6%ddTU*ZGVq$D3 zA2O1vsH##jGdqkpWM^j1gLimzyaNAJ!(9BQwx-$RnCr-ju4z#FaHKjtoBXVlc&^rm zX5DzY=LQ=kC1qTo0vtz|D_YcJBhkGYWaGe?X`O3+FX)QY1m{^kRr3}*JC2r?mVUkW zBSRyja*t~_RY58OG<#3c%>yrDQRLx<>wRyFNwWSK6Dj5y-z(4sG@k7cFDzX63(2jJ z(h~*Y1O)}fNS~4uaXmSc?BEYo z0(h3<;^L}dZQEr33ol79X>f#r;qvjtr9WtctCbQDEOuLVyt!C%jSpd7cjaJqQ-B@rn=;7)!lO%Ck8y zxXQ}Q!C}O)M)0yP>-hBia1kh6uu%Ubzh38lG1D+y8hk258*ts)#s(V;4-YR^j0(KW zT7FCnZNm8z{!p{-rNVdMdH{Idt!NdtFG>^)3_lLt-gz)WYcG;dYV0mOCT0FTa>MEP zTc)Rt3#(3ZMXCi~8yD|Rd>7VU8vUGjVCn1Iv2Uqo2oAap;nmS8rM=)2Aa# zF)%cQV`^$T{^!r~sIw%FHI{^g#L?-g-FGw^y`LQWUoU0kVKFs5{psTUzn|Y$DWQ1R zR!JRN+918?EyM}6U3od$2=_vtiuR4p6i%A1k_gr4{s|f^umrHtiL^M`!dz&DI6yomQ0U*`bR#sM!kfFkVo#*#nG^`L? zrk=bbPrQF!qb-74U`&1aWR9%_F6?UyeJpSfQ2wE(y&3_+!PoxpVJRXKk~TnN6L4SG zZ)@Pp#f5;7uo)oC!pFvRAtA5#`;w)?L6*?gl#h?^2vFmCm}5qvfRRke z$QbtdGezCeLiil+?Y1x9zlRJAXhyI|F@hOW*h5s;4lHT(53MO!eD}1H4i*+(MKFm` z-F_N@p@msyA%Ehs;>uqg1!%N6x4dk*p?UHNU})!(JZ72!yWAN)@u;e{wzc^k{MS9& z%;%v^O^;tzIb#=^smWiIM$+<- zwWXyXK-ULNJ#I8KG$<)4HBEcWI>o6qyuu#WD6gns=iwm%kc8<2r^yP^)zwwth8OvN3cJpr zsIoNrKtwWv$hKq~6bXw6!oW0X0KvduqCgmINh*vsK?T9qCPOPqP?1JKaU7D+Hjbc8 z&WHgXM=-dZ)aJ5^iTe<Ih6)9oQeYaE%v^P z+9KwyQ)`M^;9w+IR4<|bUFFTm7M*~1)Whm9xwUQrS?gt z&!IzNZ@YQlcwO$w-e}5&a-i(0RV52hfVcMdzq4(qL_Y3m=LN-Y#2|)Xw1wl0gI-ph zDKGMEqcXyA#MCS1`*aQZk+n^~c7FOWCXTPzB+)*!=Hf#vsZ@6yG zl-S99$NJ>g_OpmW8thmnJwNcC2=g)5rE9|nq zk@2mGi5iWjcu8|-oSF!%cN*%YEsrJ!a^oz*mXq2Eu!bGRP2=1lq^{(|Nj00&OfNCb81M-LvdtcLX^q;qF1f2sGy+l z)4bAf%fXj_5g;J5)M(p@eMGOCrlux|8O6m;eL0vAH@C+tDraTBV)EDHYt61o?G%{X zyFFWWtTnS;ue+mTpy#eP#Vk}mPD=UQ%*=@ma$>-0HEnG%Xv)|fIidrl{}xKgK_t?@ z0N#XSFYfuSFZq$lRDb*M!F zCeR9JzU1ikqUVmpURFV8P8ww{BFyGKsvtl(*oge|9xY)hC3bUjvtHPnr+#BQ^wQKf zZIZE1QZX8OC6iL(fgC2kWBsMt`g)v=()j$|;oS$|0$&O0eu_Ic7_Uk-HC;2;A8sk7 z{B6vE@P*Yo&8CG&O;<#8$eL;huA<@Rjg9p6lpv+M2ybLe)YE-o|ZrZaEih3ST_UaEEG9!&Rdr z#S1V5e;6mJxXa1uXLC1aI$et3hfY&f!smlRLqk2L25PrDI@&Q9+*W38ZZ0l;*|Ack z9anTCt5kXKCMPeTLGOFO-{1eF``A!p0tT-JKTW0ysb~Y5S6;@B|pf9ViK5z+>zaGfqC(4 z%`gQ;s6*zAh2fNcH!nY5h7iFT?DTWlAZLB-*e@Yrk1uQ0HJn{l@ z8RLgDXDSIRlh7%Tr0JaOY*8&OEpvbSl|r8FIp5bcr>HN#V0VjA9`+$;U}%U6vjvxx zLf`S<-YJiH@xq-^4K$cvSSYXPw#4;`5<)I6E}7l%B@X_qsHj+8_yuAGVg~7j59d@2 z51j{1&=9fi&M-DM7Bf8DDhK8eQ@!}P;NhGawQs&+$h=U5~sa-h+z?(_p0d59-C z2!iYf!Unq7e&WzmP9%rJp$8m6@b)hC_4V24r41u9E<@gqU#9jGc~=xo?fQx^Po zYV1b%(EI8oJ0_FXl&H+?n*^LH0llJ~v^)K(gNB7$Z&)S)pb=ifaIk5gH3jxlsn)#q z8YJ{*Veh|-7JeC&S%q~FnVG4KI!H!NE(TAW_#L;ky`O*xT;q`MBuG?!8dU_Vn3yr8 z(UuVxFJ25BtXobt;CmhfsKSUGPo2b}7N#?vw6*O%>`F};FW#mBF>}WS!J01a59r6A z#jOjNm)mHkdcA&}da^>wG2e-5W~PK3JMr7t>(`wHoN_~W?$G-OWR;Z2q|(vZS=-(1 zlFO^CR37{FhP}IchT|7_0f7Vxmb$+R2*_Le)2m?srB4we%7jK6M)}m3v+RMJk28;cVW-6>A!1-;L};Mv`_*0rg@v{b4ifVJbc+F8cz&E3GznjVHPao0(;ec<-<9piP5ym+yk@XIeoKG6BUVx1i4(Rg7Avg^ zA@);A$?D^yPuu*YMMOxh)-sgDK0$K)H4fUTR71m68>{CHP(iJC%wXf%oSdCeBPpYR zbaizVk(Rdi_1)l)TNotwRxlE);nKYJySu}VLNGi$oaCqm=?<5B?9NjnL2tYOloaEm z6k|qj%#H9xSLWCzLP%Jc{IdyjRu?#e5(V&>kgDTC0x$Zz@>s(`m@?9KkA$e|YD@a5 ziFKqg4P}#;(7Vzxl|r|Y?Zx(m^C0Bk=CaqxiUMqtuU$)kBQ^O2K8&_R-@2ua$8?I0 zJ~#03@fpv!xSsk(RNRUx+Xz=2NnkM?GzI`a5%KXWnvztL02~7R;LD7O-?G63V}al6 zzrRY}zY*jIPriVlcm#wz#4!M{y|_5LTQ|;)AGkJA#rz!dhYdBw0};Qk*f*v1mY2Nl zz6kJK++*^K?%k_5 z{M9TPdmtH}^0|CuXp40>GQS_5_5{aJq`T4>DY3!rX yw$H|XJcvS=`sSNZ$-nBczh_$f{=f1xXGvf}bx*wQDme;)*S0N=ws)*OqW%PBR}A3* literal 39976 zcmeFYbyQW~yDz*c>6R{Ol?DN6X_Qh?M7pFqH!Vm?hjfRCNXMo-M7q1XyX(&F_nhDF z-1FY|j(3cAjQiJR493E}opY@@*PPGuiDw4AR+7cWAjg0}AlNVEq~1axh@T-4gaxz* z;1k}#nH6wBwwHMM4h{UcqZtN*f1}&TeYA%_aP{E72tUMfO~HrH9i-J9RIH60ob~KJ zK`iwgY%HuDEKKzuIeoITH?_9nVdrA!VSQxc;9w)j!SV0!*{$u2IX*+Uq#%$-ke5>8 z@1V&$vo6qgtF!lq=Y~w^A0Oc{k;y^cm{(N2_+$%9PhV0gP-j!m{~W8T_z>$6GTk*@ zCh16C)w?(Ou|v5-cPDSepN>BLlUWtB^pzDo!4M6vG@|G1dYMzw9~n!Ji6{E9t}s}> zFFBg$Jo&|q4afZS%JHRpAo!7+kqdM{k^(>3mQNsG!6$8GC@=8w@gtvSK_1i5(GeIw zgh+$0mqHNJ;r~DR4dfyCI*143Gx(OyRtDiU_?DsX@&9f7e_+Bo2sR(IaTkrto0>kM z5^`!Y`at=p%!tK zsv*PAfIuk)op#Vjy*>*%ZarKaqZEqkZvXR*rFy5dTTVeC#KC?FTV#A-mCG#p2)0{56ciP6RC1NB#EB$a3o~+!$*KS2vglfPDD1%^ zirVmZ0mc7o0a>8b&MKvedXPT1(albRFC)92hY$@~4vz5NB>pnb+bcPKc$1a*{~t>- zGpe6tlek>x?>Z%L6um;bI`gw`2y&30V*b0rgUCf`gl{-Cp|tLI0t$%_H;F5hZK)v6 zI}^4; z5k1dmovXKg=Kt>MYBuC9(Qp6CG(NHG3O z%RA2La%9*ic7Ic8Rs;IgJc8<;SyZhMJZAG7R{G+&y#Q_>PfN}Zx z`FW2M5D<_GIy^QXFGOitKjtzUdCXqDLSR+B8cS1W?BOADdV1=;43;fKlbxiHG&y6- z+McyiByqFaKQ+}9x&gmz4hm3m+GQtr-3@Pe)vOY8go|#`vh8kQib&jQp5B^vA`EOg zEFD6NCoRN_rY-m?EhZ70uJ;@JOFwl#-~LsGc#Nv!ekk21eB5KSFW`0OZq%1NxpMlA zY3eR3k#{?@Npg0jN%OaRJnZ!jsP|VNy7%#a zuB&TkP()p~l{!&CG?rR0Ioh^QD=)5ES|q@`LF|10{{6|$WOO%sZ3x(bepx|!t9I3D z6=p=O{@CIC4H#QUe1O8sfU&$}7CF%8&FJHhK{n~>Sv%gpFP5N$CZ@CdJ2fqkodh#Ub z?)JLO^>nMrT)QZ4H2;JBoXa}Zc>VFw(L|jK&-Qqc*qjl3<;z>wfBJQ#RrX+LIFzVC zSqz&?*x;vD&?a@$)|Od=X}SCfc(TcIQ^JIVgp;k&U>_eunJ~((&j?7Q&rI;z+uKJ* zMmSwhHqa{7K~}r9t6jXiUi3x{S#IzMZRr!cvo)M%Y}OZqSWOgr(}DyUc6)pb?_elL zo{UQ$nTUu;A&D=vw3Pembh|Ujx?$2#?{|ryJDM5@0=k_zS@Fl$`xKqdvnaS?79*F@ z8wA4$HU|sM7w!#N+RcUmQ)nx%2|LSD3waFWaeikI=$UwD{7PZyu#ejiop1P~2tlGa0 zNLWB{75}6Q(zG`3v!*Iro85|HXAUfKrGB zh3<=N%nD`pMyU=^!V$rxxYsSqjHl4M_u@uO!uNG02a@{HuApao01z0oDW5}JTsnTv z{e1fT-hHC{$UN?H9}QhFY% z5uzoswY5-6durj{D6`1%7bnSSno#=StUJXn=jB-~6IWm>EAr-)F_o5WQ1ktoRJ^}C z7?RiJYfa9)6}J8Jct)P7e7c{bR|PzI0U|Me5L>8ZME53|;JTgQ#775Q(6X`{ZzVs! zz1|s@!}IxPOn;}9{GxPOT&SBgBmakxW({p0<9TX#$BIa+pXIbDO{xP=b@3x7mOzs- zYg{YYCydetNVEg14zJ%nBZg&_&-$lNWm_Y&T(O4P5XQOi*)dU59Y%4{$h6Y!WY~S?HB!fM@;rqDoR3SUCF=czx|Fp zdx=m?^zMO-6hmcI$}T_hd({>WPlV;pFVooLI=D1mSV#{@*A<`S#q-oWOW2-(DrE~~ zVSbMpLG#2gHJ`#LBsw}e`rX}~_4DV~kdP2Lepx9g&(C7W2)+L4QJE!NWIm!75UV+Ay#O0k*umtK#wLa7U#K61xyy+B{$11W$b$}wjzdNM z=4fS!&ag(tHRXrJgELyTrKma zxnztwp4S?FVy0B5a10~G6@cVJOM9$*=g_DpW2=@Ysz_B)L&Yd|0Iju zB>&GKe$%a-j)!WAIPLQ}9YL>5NxA5T3ZkIt@Guq0w`SMe7Ibi&MzOfRQx;0A118}= zqJiXeWpgNhO8^adr}I2ECW(Zd9Y{cj((qZx4!ybEmtkwHccZ08O7$QvtYwGynf-Sj zIL%Ey+b%C8nui?lo8Y-01+}C}g~2hj9I3}Sm8J~>tF{GYI1TQ8Jt}i5>7>(3_hGzZ z@NN9f{yn*n%g!{aR!!4!f9v}X(lzht{)Q%mCKZ*?>5p?e0u1hJUD#NU0HZZ-l`;_I49s6xSe84hD@#C}a$wL?`G`j}3& zw!$u@B}LXn+Il8cax8!M^UU$+=+Yz%6_ynP7O*$ohMnN!C*;A?Z@&H$gJkOgc4ET7 z@a*`m$n;AUx{PfQ5Z=~SdGU~rjpQ8RV9LBGM?Q{S)9dy$(h9zc0^1W6_mbPyECjsq z)L^T}FD}X^>_U#mc8nSu3UNH|-KtiJF&!O)G#w)26q7>gJ)|?=%%C=v7<3*1=mhu< zc(Hmxsv0(EtUZ_*Uf{1Xo%7W=o4x9T5fxqT%c@0x4wr2<-0Et}8w9B^anQE;3+gav zFUKz_C6)OibJX8*W+Z(a#2{*}oB9j7lYQJYj|Y4dH}m%{RhMgQYVQmrGc^@Zo1Eu8 z;_?e?z9uJADlieUsQxms3!Syfb>5$I*ckA(?-K}c+#Zuo&jC+_2__T-DDfhJuj_mt zN#CjLsAY!7FE{1%!F4mz$EgvT#f!LFb&hkM5W)*4K_`4)< z6Y|{s!e*@}p|xUMdwSoE*3~1Q=BIM_PV^*zR+PV2YA3H7=jVL7P@m zZ$~Vf24W|;{pzr?SPo!0fc_S{U)uEv?brP;!1@&KfdBsktfQvzV14Egox(dg8Y@Uq zySUPSB|rR9?%-%!$9l15yTPc{f6YpNfCoGLwaEC?RMxnC2Yaplpo%|A1pIgX0P4hhBNN4HNS7&tNNoq-(ykmg-E@Bf=%`>x}9}=xsYH?5HBp? zedS76T`hWd!puRUX@g<&s!S&fudp_a?y<4b4myERfXA= z6~n0L=#uGOfD6G)K!SpTxNb>A#-?cs{zVCre*W~Czr~4V;|aT8_tM>bOQ>qzeFw{f z_w8DEHP?1Q7m@Yy)vHXvWPfSb3mznnZ+|-78kMD7vdjaZmd|>w2VmoHSOQqbpG5CS z`$VVFyofPbHPP-bP}K?|trFxm+8l6o9UXb+-H#O)pxa{w7E|RxJv|Bl|4WODBhbr+ z83J&IMgA;sX-VJA%#2jT)d5+9jgD^c_c~H7RY!P$|AUQD%)1-o=Y66`kv|>+kPYY! z78y5#%}!bxzuk&lEW6g9Kz#ZiKYr*=m7B(V`!-mlBR1!L+{=Uswk<=$?kpy39>?oC z$=3aJ^kBw5B7tnuDacnI>{GD6myfCHw_H6vMK3QeX+7p!*WoZ`M;(SE6Y_b#F`!Kf zdLT|JM6B>#4yM51KDA5PWHSU{aOA}LaWj2*lOG8n(QSl_x955@&q1)i*RMf^2Xx-2 zETQ%8_lLO47jccg#;M+YDfH9qk(HU$O{&GyyKwsJjf5%#&o*`;Ahlne^0er@jVd`X zxU>VYmjmN-0Xz#vPAs32A78UKkb=ZdbBiW=gSS^BFWErg^%pYlYD=SpP@-Gc=~2!@ z>4h&D+7_6U=x8(G;AnTsZNFKOU;HJy!v-W=6r=IB!1b1)0iFw=fk$Mxa;fKZX2+to z@NHC4_6ryF;WBu5Ck1B+a2!7smiwI?R#rD@Z)Gfynz+SO6c^V@^x?&uNPJ}LY7{<; z&t-iW&gRnkU*MTYitXRXRZ~fJKp<|o86=FyDZE^dksFS2PIfW#RmERn2w$@b-wS8w z!W_4yGvh!@IV^LBU!R%&EPh_Yq`I>G!7g95@h{NPLFjv zSA_De&FufV?-Q4phqIyiEw;WwQewfpNizb$B@=dtw8d84>)r>(C94ra##}^&7XH{@ z$aq3%=clcBDxurM%tL7}7zE)|h1fe#?wQTL)7$%7eyG!j*KgxxXFuE{;GBgic6Dkk zrY~MwPx4yZDV!rSsarPF7IShuzA3nDlWFwq7_e3+2h`=}FgzlWd^0v!iUW?a>G1G_ z9x%Db4+)Z^YU48cUGCf;%)YodJ|26woSz^1nnm(oKvwHGm%D7DV>J#?iatS1fSu=W zm?T0U2GRZm6p-Kx81VBQTz#ciEzyH0^9>>krweMYA3CH|n-f56hotws;pA zc}1K5YHW{RdZpv`&(6(onwexTQ>)^pXD|e3LGgo9>cC1aVdFnC|@3nFV zzB8RROJ&9~V{1e*G8w(~?LwsDLA|~#894=&Z^ocMurJ|kDCoi56#2}zKBl516&0>e z4g%1~fKt@`@I2bLUbfr*4<0}MY%ZH!47vfV@M=`a)AlkWijUa5vL#K91+IO!J*I)6 z!m8vr4U(QQb21Mk#~Av)kf&Q?*D^2)9BDkAo^ms?Z?0yic4>p&&bck75aAG{^;wsm zCIwOoVIu?wwmpKCC2JjHG%t6|@CI9*_cE<^dTbnIso)mG_m)P!FOI-rzJG4y+66#= z-C5TY1y^IN>)9ZO&7Du1$LLsM_XDqV?;YEI8xsV{z`zwmbrHDL>otlvbO+N4TD)x-?xQxmo_>MtZjVU8AwxRZB8bP6YsNIV|qn zoM;|P+J>4bCcVdlW?8cFB(fI)W+K;TU@zIeE)e&c6$LNN?mL^s8;XWIau7R}MY+N{ z=e1h*x7Q5p_R_OCaUbE`>DL!#$US=v?=uASNmIhiIulHf==XyvC+1;j`|7jGRCCSp z$ueu@;L7yt+!_ zh%fG&)H~{UqOYf7DvO{n5h|o$+}|(*vC?51HgkEFo}P#I*zN{ygJi!4 z`!JqUkAk0f!*RMQFP@Xi7XNqJogvnx=NXxyajS-PbFzSL39|L=8g3MTOOx3!uGlT| zuTu1XH3x$=9pt4#2YqgoG<()WzkbwM1@i&Ah$;2o{Q>K#JcSh8$l9*xHO^uu6?db( zFJ5zGHo^uQs~A+_U9bSA6Uny#Bm<{*cG7z7lFF2XqC#Tl9K!zQMK$?YY>nn;l)*-e zg*M1qvg(3K{H@shO>4a!5&I{bKp`=*Kk%ThuldNJ4PUOl6N`F9wp|ZFn64*F8kDIypG{)lLQrDC%xX2d|wO*2+)liCt80#Ucmbgc?0#ZEG3j zn?gdA><~J0q>wq+Tuoy9>}*R+)Ys}@B2J0a&P}wDZ5|EFcm zq##gEyz7!?Sb|Tf#KyrD^bXI2r7A7z$>qY~K=H27R>KA9y1iH6~M*aR>(X`_7xYC(EcTd591|qkX1&Dhegm=cDtR22Sd+{b% z{<{>5y}F>NyZGsqyC`(Una1vJHNpMT5wW_u*a%x8ArmYp#gp+jQVeZjsxFtDN*+FkIz7f)ZU#S!_-)&BPA#SkA3}*EH!|UI^Z}p|(N|C{+1d8J94|Ci zHdSZX^Ez#vOKd0hx=n|>c^HWGidi+mhd#D26 zDR_cIsz%ji!M5KlaxDgbr5BTg&9b#rZwL0HwzqSd5>#p0ECm%?keSGY$XUScLG%oI z%TGp1@|`!!qP_n0ugC7q3-K!E7i+^JV%!zZ3xD|zW-Zd(bB1|c%0t)4Hf972dr2bs zGU3Suj|apDt`R>slam99k-K)r&~--Fvt2GHDuD;);}VUYG8gi%d^%|YR=bJrr1ZbR z!Gw@qw!}z4zr3(;x~tjGBrV^i(-x%R{OS!l8X>2qE@l^({rjg~-I#Njq#=u+0PlS+ zmKx|A__t|vM3jGluKKax56th85mCer^|_V)LmvqzKRPJC79h_h^z?KQ@hclTgeuI~ z^dj8ZjzUZ0=0~$FLc2G0jR!?K4$36b^lxK0NghjCrd@o! zXu3_cj7yZM#2M|le!)b`HfTm~yOTB3aL7fi?M1I$6r^(k4feV*BbQ7grBPFKFZT$; z)p2B{8IcT6HdC^~0UQrdltZ0fGAxf#FyBA6RPt z=yrr0U*6dBK=_ldaHMm4a#gIDDs7!8+wGC;Z*ja-z2CPlf9G>c36z3W?ICEwtf+F+ zJO!((tFv=+c>tkSEz|^dYmgi%GO=t-++gwTv}7=8!LRVv+O45riXBhrZLl(s9DTx( zbZ%jrqMf~(yQ|9X3hBG8l`vlf0 zfnP%M{DZpsD=RCjh3EYIaZyoGe5SR5So%|nRk|Nc}HhB4}zI61%Ob>Y3$HE!$@c^6Gv0m z*VtbYC{+YJ%EG+74D0!Z8K-GWP3Kuh#Xb&=$`Ihx#Ik;D5m--_w6*1m)A1D0@w{Z5 zoGiI))sj;0r+If%ul7Q>L38y;!4CHR!wd)F(bzGD1!}@LQ$Ajb?f`MDK*c!lN+(%hhe>P>*&!Ju( z$Ysz0d?6FKT@uA8FQ=%uI%%AS@`#z4`A26_cD8SFax#2Yq-5+_)NZF*U#WuJG3i2h zSR(=;f>!4v&%1D0wGU$fVVm08E+{)r99>;=P2&}Y_e*kn_N;Ungu^1AWrqg_nmR%$ zp0KiF)x}0cG!0}(eynw3gM4{_y%fyRkPhw>5`r}cWUsx(`#bu%vWAA#tE;Of+xPE@ zAnb9Naot4Ul?g=uEsFRZCDb^@m2DrQKnbD~lUY365oUvlBPMvAWYK17Sso|o_~zDN z5JVq1ZuY692Dljd9VT2k+m>TCe-1Uh#BD(IgIN2^@y~ z4inh2!l&)B6cWeOkq+%>kf%@ILN6BYEGG4DG;5Fk?340t$^VRgPfL>6%zJX8 z&`STVzoL?lkHp3AZ7ud^HpkP^5BA^}wlVep;&0{$=`H`S{7sIB{Ui0YK0^ZMi|iai z(?B>cy;M=VoP7DvQ|-lSDl#{>yYOXpK)z>e zPvOTR-Mx_nE5G9dCZ^4Pv%t-LFR1TT^_A?w(ns)gs`*4^lOe76n(-rxHUkA3Fx6Qe z0f7V{vg|ks0Z+8Qxoi19$S zglnWXcb9Jk%c?5lm-s_y_kfNz$xXl9o8j+8s^F#i*T0oG)jX{SCN$^2 z>{GMC>NRpmoi<1Qhax61vHPmMl(;xqZEb4c3L6?4`es(s5g3JjC{BF)_KRvMpLX+> z7)@|6S*4X9g|)BaHqer-C|T7YFGIfzb(pzO;G-7+w|;bV6zC@W-pgQ!rKZD7+&ny+ zqxmE#C_rTph(bVmz-cn@=xcB=5C!2TKE6dopww63BiuCa6@Ml{lhMQR1X_Vn_m9tS zT8kwy+R_Q1#oM~i zxg7jqv1vhHyg;TK(r$BrPzpmiMbq|wjIXS()0{`_FXE&D<~&5;y}J=s+E{pB6MG`% zd5j%Gia_IKK{@YC)02RdILAOI#_%0eT=o^1!6bfbquZ-fG53+MRz)H&du7^eXjvQTRg*Z`NF7+#=nccNW}yjQ;-dfBetNLNkfMg8(bvA;k2wuF8vVPHpYxnI zwMfgPI=*Q*T$hn-qO%kJFLLpconY7j(Lt`5IB*IljU&FHST~sVoR_toC|KbKJp?o% zh&(mX3_v{kw4wsj)-hk%+p~fg1;FEXgyua>o!zm8BUAVX-m7M!M(SKLtNy?k1z9%jt*7M|OK0p-07J?zX=JUe9o`x;u<%JpA zYZQ21pYM>~Ys?Vguzu{&Y>FA~d$xvbG->nU`2^P;Y{dGW`g3nmXo_&E#~A5RiYV2b zCq<2O_|7_B#>zeQdYSL(L5Y^7i^Ih98u#U zF(}<;pyuY#JpoeACN%Ha8nR~V4lILOef-E}qFBg9{}&u2j(!CtYr%%2_CH{)}y|{@X%P!KTxqt>EK?Up|O>&&nKnTarytnrb_{`dZw#D&70QrOquGLb);Vg=<)Osd74ms8KS2Jl~z8 znjwmfB=U@j6~P7+%&>ke^@U>!lh##C_Nvd}w?y*NQV@Hyr)wb!%T4PjDp@r0qSgoP zqBLt?KD~3lKs-IZ@#dWR_-pb6x`3-z8Zz2Io%#LL})`uC}M+Imi7c0`0O z>k)LDZD38Bj=)S0{WCoClIXbGMvwDwb5GPdTR)$BE2SR;U}X4ZxWQT63jyI1st!YL ze-8~6VF7Xmb<34LH{k(7w1wm5qpuXzXQu%dN9LFU0x~Xfc`CHxJQdOmSS?3cIT|o4 zcq~!WzCUlg?|sRf@-PhcFp@OZq=JmLIQaC(ctWj1yVm0KwWY2%n+xo**IIcqwR+?# zbB)1Bs0vs#R#=yO$JQqJkrC+f5K0~+EQ8Ll)vR#Q7DMhg>gs>wIqKVd(Fv=-Vre~$ zwR{!)LaL>8UF7O+s-g94-snX6!9-*WhkUTDV!Es0NO13?STtE0(ZIsX zrJwl=%gS|F!Z}!+s;IS2LS73>bab7}zlMXOqoOu|U;;1*ors7?vNaW;CjV{vG?ntNL&uP?9XY0H9fqZ^yjCM6_ZnLSTprz1$ET>#?D!GuBhAuwBBYioy% zQ`G%b&e4@>>j&Z%V4=&Cuz=)i5?v+5P9PY7%|j#Vq)>xteTx8b?Qu(92}|M3$<_xh zw{xHVtFImUeH%V`*pks85d09SvR00!HHjO>H&N*;_lqAMI=oyc>C|oUrPO5Kh}2fH zy}#aUw5LIBNd5}mjIMJ87)sPkzO&l&UVgr%Q{dz-E3U8xzUh1m0mQoT)(N2YuG4Xy z{&ev#oV;Xx`1o9)&#si}AEu85NF`j^pgs@cg6|8bU%U+`EPnQrEfFMigT5?FYIPvR zLC<#4PeiXI)5UJ8sdBux&z@!5Pg@r2`yEz{YoW?h`zHEbhZJ%2AelrH_1kKLQijR z4%l*wRgUilRBh;X`%C&Z<%O&0U+PlpXHEIe8ndkpu3KtCGk`rWN;X#LS0`-X5!}7m z^hTI}!xLDVdOAHr&~YMXzb{&4Oo+wiV^T9j9d1cH++4Y4IGJ*8Bp~V@wBquZ4lz_( zP7{Ys2M7Abc$qk?$J8;=_N+P-+rLWXa+p#;D-TT~KS}(w^32mEDHNTsY1bd0eqlL$ zaixy|QjCBdLDDxs)^ z1hNx(DTYLND8IkcFo=tMa_Nn?mPWE(XhXV=%hGQLRi5*oHRd*n4;|MDSTR&9MFt>W z&{6P0wAVr}&TcB9StLkLd(b^w>qC#$uao$DXwS&Ihmp&Ku>zm@XB`L`85w($_;HhZ zze_)&BN(kiHEXu);W-I-@sBKr;xA)c8?udKHWM8ekzMs%8%7>M*3JcjOVZ@PqBZ>N*C6AxLP}dZ; z-xLAH{PNE(0_9fM^a9zRQEQRrpS)e!*-bR}Xx(%7Tx8W+VH45DO7db$ltRJ0LcbRK z8@FHSHp`Chq~Bk;iA~r1s0=Kx2df;F8v6NgxwFium)vQ8P7&bNfg&~I|4Gtq>CoAM z0&xWnIv!&DtMovMywW=K@{vi2(Xc@?VZ0E(nC#??Ks0se`TA}|9}Qt}_2udHtaLoEbar! zGGF?eq^iMfpkEyK9`t*WOEzT5Qq;O<=TOxMtA7~en{&+Rypi-vC#)sU|Kdzc?w8)H zRYnIKc61n+7w0(_W=a@QB;UiwPVP3p2bLX*j~j%zKK6K9cDsunJg189F#-WcmUWGC z_eL@+^_6ki`t9*@L*302nKj4e#m^(}K;ZxztlZWhymhg*u!@{$LaBUeLtwtJU_ok0 zN)2(L-}9`@W=2(NN-c9#X0NUj*RM%L<^{L0I?`glP9KB1TfKS<$P2Z0=lK1#^+wb# z`(~-o@1WW(+4cde4o+^$n13i%B+ZngwA7O1Z^Q-TG>;B4<79E*@~3&6O};4-0VS~# zr`x+5J1({T4ogE9{GzWAUwyYoXRu_u&AUq6W?zPld8z;UVuS8LK zg&HCO741n-b!CP6Nacs#Yo5uAcx0mc=)tktNjnysfbj6b4c(v)S}eep z!artoJe)?pSfs*ikkPpuF6kP6Kx{&cZ)&dh5oM?7+_`GD);W5tN-Y)`xA&Ew_GXp- z>|$~z^onDOy7rVU=M@-@*FCX>d0ECkd-g()78r+=xTKKo*yfka(v@0tbc+N-5a_Jq zI6{X+_?s-5NKoeTeEkr5u~XLn{Ql-x@-h}kd~ly&PshB($bhz1@vI0t7r5#8^dTw2 zkd81vR2tvx>@3fOKsg0WQ^?8w*Tv(@jfoQaC!t#m42+Dnd)4dQMm_Pb8$L+^i*LuN zR+UG7#-ylXS=(cDqQP=sdt-(ymfcV1hK}3vaO537`lKiD9TfsBfDTHF{kdP{oDx#+ zc5c+-i@xhr^+BUKsIBtKHU9bFL<{!9jQwK2m%m(r^6`G{&Lk}NrIz&lD+?f8ot4a{ z21@xAvmz#ldbrkN18P?ZjGijz56|5CfW4@q;-PSUeWp>h;3K(c-GU4~pZ)D8hBoJ1 zoo&L(o{NOW-U{$c=Y*BA6az8{)l@jBuo*jmjRn+LiF=If2RQH}V-LL+E_oOANeBYbWXA!17SFRE;%w`KK}eUcJo6C*yl|1huOVPD3v1w6lzN9;Yof zAprl9Ih8YvqYe*bHCL&@@6=#}R@)P!ipF_u*PoTbCm;?4A+P)E`MUEtH^9U>C}AX# z#9vRVKLI6%xE+0xtRS7uR4}l_QMC=_k5VQS&2rK)UzKS9czi_0#O;%7=J;f zpgkzk!?Y+e2Ad{~+`y0Zj#ye+g2!bO!C%|BwxMnjGvA0} zdK$v1k7<|(&CH#wK8{hLyrH_g5llWYP)HHvck7E8^uuAkeQtAeb8IuNC4;LAvjSDa zHeHOCqeEk0fny>29d!U--J@0n$i#r~fsz}nPD^QD$<`Y0(M)NB5`eDMNcFl(7mvNy zbszPll##;YAj)j+Oamt#Ue>opg5P919 zWu9lD2n;#7>H0RQ&4bmSsSJ|L+3s|>Yr}^k?M0|YWEJpKWMDp~F>HyW*@kl9uXw@i zVsq^bTdP;1qA=8cYG%lq0t-X@7exJX{}(E+o}%Y%+7x3c;HBXb5M2B`d)J|D^r`zp zM@_`XvXE~L=z0kY1fsi+@KGs&QGv}aYPQ>GG9`Hq42Ms>iM*Pwn>jb9MP8u}_EMg& zmxtJaN9SiC{$@dQ{EhRQN)zI>5O#+&?ldj?y;dz-lhky^Zg?t0@Nva+>v4JZRMH=A zs(z9l@Cgqww=$gnDz*$5@4i3J_Ob1V8^P}`F0*SbcUxo%RyqQDI4-+fiB2~F=cky{ z+*>lGgX4wHHwbH{rzT1as&^}=p?8<-pfW#_*i;yG;Beq1-99Yfduy|oZi342?;3l$ zS|dfYWEhbG=E+%m%S`E1ug=0O43!`n@|!(gCeEItV>F+pv9ZE`+zAIscO!ka?neDX zX(=5LhaxBNV<8hT>v^UkY*Nn8AQ%&~YyNf|*CGjnS$+d0P5@ygf)d8;cGfWq3zTye zZpL{uHzS@gu4NlhEz0MWL^I*IG(^hm7+31RVQGr6X6<2<7tL@UuywsZo+wB6JiR`? zbY%w28RJU0w?|Az>6PmE?`LnN7#>t?vL>h~i+lr>v#^V+|4(I)ex+S>Z#qFVEirL= zw6l1)pm}67P_mpsw!_+U-<)ViZ0z} z#lJ%zRhngep$>q&A0tHd{d<(#DVQ~lMx{l@j~{_5N&-3U=Rl)`I}a1PXF&D;$8`9v zoYvP#7j=|E=}LTVrw|mb1+jngp9|3FiRGx*szO0 z+w0ab)#L0VlX5Cn(|5%r^+R;2%(zBFIms?3%3vS)+8ymH)Y2p7l54-*1Jw`GT8h;M zvq=;By&bk+QYZ@T%d-CXGdB0m1g*{#=R%ZSrgsg2GG|pOg-M#hn;0-CEtNd z9nWJ369YrUw{Pv?o+tF0>>uRjvNAHfLn-**s;QBli2g^ZCap_&>*)BnijEG=^TMA$ z5ksWeGp;l(yXM!_EZm-%2d{5UHHK@2_qA$mwna?`?+7u!y=#-$>h6B*_A?$h^}tho zK$g(F`}=nrp8-C|9(6Cfpwky_`*S+dlD(cY-;^r*NtMqtQ5c+hJ1T0Ef!#=!)~TPN z=S8&EX1H^P%%u3IZIwGRMXPnmQ{`gQ`91?7q+hE%ebX3=OW6|p({b)X-jw{gDdx)^ z*T=|kdjzn|o)p310vqbJk@DgSddd@?M}OUhk^cAdG@O_2qB(UC4(i0zB?u@;BSO2_}YmKK# z@bANXpfZg&-tk_a?Ph^9laW?RQoiM=#lQn1<1s2W8+{6#xhmkkRIMcf$+CJqUeNKW zQCWi9em#GTwad($=k+eJj)t0=oVd97LKQeO01o%rO@4}NU!i#fLeS6m`J{Xnq`;B@ zJ=fyzt#9QOWLStt4$?aoqp}^$p}GyhXUTFX`NwV~#>vGunyb!q###zsC>?ac_&UOP z%Pfbd-;t)XE$H`^|E)%9X8*B<3N!+Xb5c-?>19No<1rm2nquE7Q@Qrm#JA9wH8_K$d^Lx9Sv&+M*-j z#Ln?ar2RxgXz8#ih%ARy)a|LUr&fURd6su-PqHbd>4Z)@2@T456>L?Bi9PpAy_ZYI zq`lky5u)ks13yPnkVQto0`(B3$&v}B6A&Q#3^YrdPAcb!SYl!PTWhatjo>|g=z*@M zNu=FBg~A2qHY`-4sIRjHQh(N8;NZNul6<>7$H9p~H7tWrd`R8WIsJWXu6sTUR$EA~ z(&&;5OXc=dopI+87VMN5MRHVhJ?SysREvsAvXrgbzHe?G5M-or_RG3FCc*(?@328? zz2em4O3By%Sqnf~g-9)6$1piL3H-f?$jD}EaHs~D{fM1+IweZ>kQ~Mu5;nBN zTvc#3B0ZzO^0Dqre0$=o;hv`X^vIN3!tl_g>+e?0dOLLMTb_iNhoIsHdMN#SCq*$_ zAiUDF$V49aBR2bmponQXk>X3(Y%R;d*jV|eGAXGrc{w*on%iFW>p3Nc?~G2pI6HNV zpiDru?yB_-gFhC<{sX%@OTjTW7hz6o>Yn(>uj80vm*{Y*AkA|l(PT$lsMwMPTJLS3 zv8XACQxk|ICP3JElh+Zf&4F5J$(T1Dgm0D;_`3wXTf1pD1ss)7P7}qVe9k$f82LEP zq~dR(9WN-f!%yKL{>cZ>J(r%@nKqMxc<_rqe-@6q^`@TD%ZE~9Z;zt}G@5*y$>*ok z{Jn zSW+VJH0Sbm7C$bW>UNb!@fhHniz=+ICH+-bpiAggr(+Qw$;I-biwv%!N0jWcAEV!L zz*m0W0Rn;Lteog#Hd@7Nsg;R5)Yl9Onzh|u*4uhvsJ#jH0!cdW@W%M4RDE(PEbaal z8N;AYQ=rK>J%ETE?*es7SP3=t6*KR={rlVI``FQsWS4sqYhqJm zX}BFB-k{KXSP8R}nGiqH0A5j+i1e6EZ*Qc!%O|jsU3W$;{m0RpshEg4bY)A+GM)LV zDtmn^NYULP=#cC|`xHx6Ev5G$EyC-KLtieKeD5F2tL$X4F(rv0>$ufSjK_ z6X@XJZ)TV)(8p;(?O2&)y>8E{ko!gT;ameKW42{YqW|u3 z6)fgyu=90rKc-&TVM!}FqGq_NDZhX~S}OA!{LF0d3x>o?;PGU-CB`_~3Q+B^)^wt| zg<|mX&rOe)nD7D8;y9rw0yQ^76mgyR_}E``$HjwpCzD#9ES7R6Pk(bs;=eOba<)6T z1@n+St-(zc`B1-y1pYxXc20sH^d5eYp#C#sA}@}8sQEQ-YWMmijM)Twc2Ms@g{z3$ zkT)4pu;2-pfwl)x-=zz#Xu*zTZnl}W=YrV7lvC0!BN9kuP#LF&CBvy8nf>^$VvoKn z%lVS!xxtv;w4OW1eUy~x#yycgYsyBQ^;txS0AzyW2Sa^oza{~@qLGg+n5=e>Wlgee zNch$Srm5M2k8kf(2wLZ{=zi2WVmIqp>|7KijwJHS&7Nf4GKI<^ZC3vN#o281#@YR3 z?ePWQmeApS(V(1@yH4rq#qT$-V*OcS>?}22)liDL4h^xhu}0W2D?NH1V7tViwAA(z z&Gd78ZA@hh+q9Fn(Pk$+yKXuUS|LqZ^%i!cwcX6aW-~0sZCu1|`CkkD1JB55eubg6Ag0R9)ba(OdVMxumDw^%Zsqq>74Ic9 znr->UvWUw8m2-E}8Y!gf{Q2ick-Eqd<3>sGWXt{WYN59LFfR2L?%e}2W^fn87qm)( z-bT100lj>d{*C-Q$&35a=3M=#i6VOIG1-O|U3qIEI)OBWZb?Nq`cgLseX^AMi&v5gXH9L?_ko%FC7`ixBs1TQMzfZMTF~h}}mQkCT1S2{^7vGN=i| zlSmF>fIJ-jy0%MRKKijPmWeqrF*zhL68rPm7`YSsg?jIA8AY6ZiA-m=!FsB6(+Mq< zm3N|T9bbr8Z)ay69P%_zUeb6?=N^2^kM`er`u1IYCl(?V4i6e-74qzPDs)7m=N2|i z@6(hXl3zrBK5rF%NiKnA%N+%=!D7IKnjP_1=jk*Gn>pTA8kNXv@o*Q zL+|yTabjcx$>Ql{{?k@O&U|GX10<&p2y^>8dW)gP2Pb#k2vr7i;TMb5u-EaHMyC&I zzdn2~f;Yy6-1Dfos>XjQMfqg>Ar`whE*j~wUPs+!mLNNPew(-=Sr_tTkDY9PxfWEP zkVR4DyVP#DF87ZVKA|0$03)|xQ%wC$)?5-}MHW&Kr#${Eij_DC+oAW@F$sZ%f8R#^ zQI~A>!CU722F&W}1D*cLx0MId1ZCVUt|a+S^1k#fO{Tao^d$zHyIgn*j~`XoV&An8 zh(175#KMoPyILmNM=uZ0a6v0`f!aP>b{`tW;4KM2CyQ2^BJO--!(=qRk z_9uPl`8~zE)6YrX)_nTGXYr-N4in>n{RX+KHHWL)J$Er185qb&)@A2wC-(mbV{aW5W%NZ257N@zAR+=H-HlQLk}A?EA&qo* zh=hXD4IV@}BzmGzfp`!($#lV{O%#7`4&ASBfc< zZ!2>{?iTP=9Uaxoo{T!Kd?j%@rM^S&&Yy_7e!b8t>{Ye{+9uR{o6pQD)0U0e==|pA z!(omoJ63kMSZlb{eqTs)k5)$InI8fRl6@a^RMgvZf$0T~op~wlASo-NuJ&s)H>3@) zKulmw(K0)j)Pl+w^g$?o#z~y@-WI8;w~WeJl`NyPIAg_ZiyM790~9sQhHBf^zt-vK zB0TXo?CaYDTe2~Q)brm{aQup0P--MV41u4&3LN4JB%5GoO*;{EXM z+_!Bt0DecxZ-;hGK7n3%8>9xVBe1pYOeE^x1qedFo=fnCYG|}4@ewdWx}PM_TRUB6xlpm>Q{MWt zx8>-$9cCbZo4@Du4|s5KyKgjCe}UrrqQev;+8m!P2;bO^5EA7- zhLqxQ<1BY5Fcy7zd!|bktaJY7r<(&Wk_rP@{Wx`Y#V*itg56}Edhd<7IkWUxLwpRU z%UI1zWmKy>4cX|pR+996Be*!v%zF&_KPQio7RX=GwEpf^(~QWrhb7EgDGp`WZ>QD5 zN~n4`u}=nFRNv|T+-^UE)+sa;hh0@fNJONh>065jxSh6*E*}ptr?~jWJ4{Ikad&w;l%e+t;f~Z1U5~pEhYljP_ss&*R$u(zsn|b9 zHP3!~xuQ0CJjT-VT_nS@TbeDr&n)(0>Bgfaui0k+SNrLITsB1uC6#pe`OG?E>Da=s1^Cw9EUvYTH%jEy>^ zGbs8nry>!`&;r4xA*PDTntDPUX`{08>LPhIaFCN$!VTg(dI8OSNFPL=26mJBNTVJ> zg>{<=l8T8m{hCF07G^S%lc1{OCkNs|T)YS9Hx+C`KXOLNRNv|aCdJAvrMxL!7c{x@ z=|Gj8qiZCq!d-Y3m#(9;xK*&YH~#s;StK4h+y7K4D>=U6CyV2WDc`BFvHodG}AWRo3ofPh7z z4IjUWQiOU0iBaB}R0)3S=BUsHJ7NJmxY&@9T`4O&94t3tVxDZi4`>4$XN&u1+L(lG zCfEciI6KOj?hS>0oNlRxe(}8b5n+#5Xix7$a3d572Wc$Ls!4WGk*gPYSn@p{?dW48 zH(%>9vj$2+#Lu|g&a{FZ#Sc*<_7uCCh~#+ZLM66*Gp)vcaCB1aNE4Q$S6m;+JxO=o ztDOzRe;Jn9OIVt~yE7rtK8$ z{0jq3z61I!>gw9mEYK3qhXAqk&yvZm%sQQ{QmiiP2~LM>Y(q-CP&EoU16%BTi00kV z#ZP~K-u;uwHx^8Xu_?{HB1j*E&lE8LiF%==gu}*|X;EQ$VoIH5` zO?7Ng`%O++0S!m*HhpGz z#ZM7FmuOxcOZ5SsEH)uCau%9BIE!k&>qJv+6ZnOLKM>KdJE0%g`GraDfNZ6{=z9)0 zBRtqQ+rK!>X?O(ezrvuGX2yhc<``9RI@S+sgKV)&d4{h~ON_d(K?!|v7){T{wx$!_V8|5n0yH}A`hHh_0`{T&0sL1(wO6t<*Mb70kZbRe;s4>b2k8QP!tkLGH*KG6=o_ zKabwi@aE+Q1Y>13(<+PL%zF{pHoIFZHfOs(H8CZZl|C@%pjLI#p2#8kjQ{fWqkngb z9Iblg?M_{B&w`{{si|4Enb2mDNceTL!dNBm*z8Rn-|mf)?G}tJy1u03dch~ESc?)E zUX-#^SLb}MMNw*s>~7aDm{JC*#^Zpw1;HAs;@StWBAyzFc{hf}Q&K=Ngt3#oICfDp z&{EhYvSJ)@Eq?#`wHddQrN6}%XOM8L) zYBjkiMZf(etsEzt#ap^*MuM}ACd{^AaFTeGZ~ik+$F*!e(AaY_;IjU zU&Q+y1Dgg^EK7f4xH*m05xE*P(gLcqhLj9VIeU0V^JwAMWu_<8SL5B$`?uUC^GsR3 zaW(zA67SxzVhm_iqMQ%nzz%PI{D3t#`&Xe#HQ0my&)7Da6MWfCRWEK$Z|O&ItSqn% zu|$HLoM{x~D19|kH0<{EPTE2rcsyjDf^>gKcksEVM99+e6St)-e^R#%s(W#<8BeLb~NvOP7ePvL7diNR|*|x6J`j9kwf#X6q zJpVl7Y}Xu{w+`AA)wVFSnU&|Eq8p>fE$(`m;d}=|%9{WQ`k(|uLP)qgqD-LM=QjXJ zIH`&>OTwdx{755jr)*56EyGsA0xQ#tYrb?m9ZL`C_Rx;a$G)bFdHK!;nV63u8^YRh zau@2KD(VbMjXY)k{4Et@il6Odg_`c-m+1ATZP_wlu;zS5d9qf3Jc^4zK9#p@qE9$*td%<>8qG`2de)Z zI-KYH2FH+XmDX!WyKh(Qh+q#r|FQV!^?IQPnVxD4l_lof@lMMEc1 z9Qk9gvRC+vkXy6mqCfRA#&ZIHzd_;c=RQ}X>B=W;N>)D6ROiJ|0>x^GrCD5^tBs^_ zx8bT*6y2=KT+&aN8_2?p{7qZ+?97_$x78evAPkQ&jyz|1cc#bgGo{9gMw61StkBn1 zkr#R};flZL&b8X$bd>BXtiCt2c6{kd;dA}B>o$hVQ*g!+msx57T!1ftPeoY0UIGHI zwTj`cm?D~YE@B zad7D)RVDezBrk#k-oN$+rkd??YpVvCAay>Nl2MX^Le1B7U?aB_m+$(LInG##SZqTVA_mUgjTWI^nHMTX%Ux0#b(lpZ zf4&si4H^9XXbvy|bRBq_WYLt=qlC|(AXv)b19vr%$GkkFK^9HWzHl z|I3Yy(JboGa6`2&gc>-AG~bo|{Q0KTRs@v(m=((O_i1cKr}r-<6rlrcY4Iu}FiO@% zhL7``wHmhARLKVQQ545(c!@M$Ea}R3Lq;4$cbu0y%zh{NYqg&0lTF;Y?)Fer3fxxiCK$Z?I+qzjuJ*ye$zu1GGu?cEx<>?kkjmN99v;X(r?L{SA1 zFHS>&A3!5Gx97W=r|(LC^cFa~WIg?*{`M3Sob0;X6PZ?)pPQpzdZ!;=9TXpa2v&*2 zsp_QW`5xPa*xri@6B`PxyhJTSa^_y-d`@)apMG?nwy&a>n#KIOtG{b$wQ@8<$h>|h zc(eVAO&gYhURr7S!jPZj`?MBfTJ(QX_kt6Fx=mzlU66Pt;sZ~@Pv0Q}``poKqP%J7 zzd&diD-1dDXi5PxKH#4yEp`t?UFtw@AA&>Www~%L2)uymmcm&rtasoYm43NX4PddZ8xQqybqgJ5 z4c-KUq^pC76OGuTI-trQlaXMm?4hOX)9Q%l5lB29nVt_E75iQZ?+%nciJQ-+8*$D9 zD|s=$Aft+8@H!`*tfe`rA4~spt$DIuCqHLTM9tTIGOkgfg+_38#!lqyp?q5X@gDJo z>)|s|tT*eiUF5Yc0!Lc-CP%vng!U_-%VQ8JKu)&Qp8REw-f_eaBGGyPyCAyFyDjIg=EXAfR zX)?zQA(gbV!tpGbhrP5@!E-uC_oaC6{pD=kmyo}Bb1`-Dsy-AYR+CbFXt|zBd3CoX z(PU45X*p_Mr_4Pn%S@z$+hN@LS7MM_^Y^8#q%d>*1Kz01Yn_Q#%3X1B1oLKg5FKsV zfmBI=U%mDL4~tsC&W;1f*ZEghS7BVh?dWH`exJep)dYceh!Od7(C-Kc|6_!WR!7wS z=4R%vU)>&aBO^$D@cr)n^XMb0*NqEec+UGtLsn>}LUjb|9#+v1G)$R_A`|~XT#u$y z6m3yzeP038?fuSgv7s$>-%Q?_g5LpMo`;A?Dbte>U&EJ=pFELmNsoArElJnm2&2aQ zx+`5a(_1i!OEI;^$6elA&=`Hy_v5764T4OKnJ4648yB}YUomHmOm+~+faKTs_cSNX zli_)A)Ij)I?B__0S_1M(t6nfSIMX$V_2z2-fU_*xw<8f z-8mPHf#;KpxfdTY4LN!JxvuL=$7Akt`$^rEn8hr5KI^FK{A22MGhpLEE26&l={xrN zjmK8ATjK?nqv>~lwo6*Xcg*iDhkVySr^s4i#b9~V?S`Dh(g07k!0(d6!Vk+`kp$i8 z?rRh=rZ8zpQxkvl{VmVMc*%gb7tqcQgp=6CCeMhqxjqfTf84Wv?66xk@ppb+*~8=N zz)lcTX^NuN?P9=OJdn0%V&_p`e?JQwTa~`6lM`?k9$1Yx5NGt2^l3?t*Z24g%wMqq zS?(Y{JS*)zZuuY*XY%+cQLBtbPMNl;DpaW2hD{r;o&{>>HZ;fF{fp53WgkOUZO7O; zGWML@bTN+f#u#pD)J~JMPD(rkc5dvVUhO#^KBJ^-o>17ppmZCIi$mh4^6+G( zb0$^4n-<2cOl*UPllbu4D0DAsVqo8i-a;eC>~u{B`O!+22N+6nBD#`xVLl3cGxA2O z#d#HF3*6Ti@giAl&TQEh9IZ*FcJ>dcId9|JuDh)Jq%-UPzPW(BFESZ+D44A1v_I1Dvbz1PI+ z>KS-7iXWYysYktw4}`0{tR^BxEy|4R>LXcst{reakCS1Q$4@l{*Ou;&z9O_`;#wJ$IMUV|JCtx9XmEMZ*(%;$tSSN zmo2mZSIm#$u5wRY)oM4=-riuCv-QW#CpkHpX6Vd?jU_GX_CEBTtM91w9I#LxK*+l- zulJE!%^2u~egsuIjd9(%XsqeiH!syDOY48JnQZSYMgroJS z!p4kWJD<9GTGAV&T36dg3&nB(6xjYIGV-q?pNkTkAejo59xYw3 zXVz>XdcS#9`bJi=W82nr?wYE0dsSrf=(pEdmcGyBuCv!sthXnvRC#965$`)Z=@V*= z*f(Y9+xJswH&!1j{EM@%>y3SFJ9aM;C`Dd^;Pl4=9F}@|dOI^ULwze^P8;|@?6TZL zQ1RXpNNl1d?gS+++VBMJ7a(8AIJ&k^wYAzFi&HC;6|Y)#-~o$qPu9Du>~AkdBXUaP zrzYlLE!2hiwF(n5AL^8e!G7QWCdCWeX&tW2(|d)j)Y0ULwYP7JE8<)#o?38!^F+e^ z-awT&FAqdHrG*q5Gqn1oG>Vbm9}L}-9yRbpw-`c_C(7(I}tCeCxs1-9bdF?K3MtG)ab1?`o5qx8;wC_aKnb>H!<=a8+sfb5cDy ztHX?{ssLNk-!5zh{Zfi&<+l4uPFC`@pZL;zWLN(xLTkvq#r%%@^JQBGitvtfb42dn z{tqnxx`_BgOJ(*P^MH3JTAl9OpG2eg_wJ8h5Ak+m(gz9tR@$OyRb;P2>EL{P2Ryoe z6>${HT3 z@|0(t9nhRM@zn|W97v8i0+bP;XaHvD0fk6aO_uwtg-u5#WDNRqVc_UmtNix0#$9HR zE!*cWDR#&G_jZ`^&%>U3i6u$L`~Bi-Wax&p4blXXOwxWnleo#1xInIuJ0daQ^L&C{ zp?Gmn(Q+JM4ldKxNx24{D5!ax|Z0V?|%8MznCD9rt)sv_40&FSM>Bd#Y{2B_L7{zjQrhe zodKkxy<0{PFqk~LazJZq}q*x3(^Bm!9b5#aZ*7339Ul@!rKkvr4; z3alMJ*mFOytR@=Ye0f~^ak2`tsiYtT5P-H)EOPydS2|^ zAmRM8(f&x<50leRqx^n>l;YeTd2==0~OgfJ@+xL2&02wv(g#OxY!*E z7a)&&{jgw9fJh2EP|{m(%$!Rd0NoXI7f3ldTHR4C*BbYJ-+9d>4gxXZ$t(cLzLAFr zqK%qjl0Pzn&6X|{o&J*eL;CzZHz9D~GFtr*;0dwmWtrruKq`DxdVSlXgWxB4sAe8{ zZUTUnmK4QIS&|Yb-*D@(UBC zl(1lc0vvBoMC~c%KSYw~u8z~`Z$OTJO`{yIb=d$ee{A*tS{ca zc12h;+6U0g>xXj$%h{Mu>&SPDGLlHX3E%e4-oiX!Ee$dHV&4>XOOCz-3pkDlr9MgZ zfpMmjC;!oMg!&2Af;QQgpv>JvpRErCzcOi-J$979g&&h;orXsLy_t;=q7kE^%yx5n zLnNf<*HqPK7>cx9{0_Zb_46djL-2)-vhD_Z#t}|gHikuY>iXbTP1l$kR~Or zj*H%XiFVj5!V+9!%i-K4AM$cx5lFv!es;neBkr(S!8sUh@225&Vc^lLkkKRQ|;?~0RiLw-VQBw+4ht- zsuiD9xw(-xt~%^`8yaF}84Cay@hZXb;pO>Tp6fQcZzn3hLctBcm@>kot7ES?k+)Yd z{DMx5$|%<16*wQiK|p#l#ay_jasl{jHEK-e&!43R6MRaIhzuGUBTf4=YThrFCwd|P zfRxxKc;g3i^eWRY%Y=S7zt(%`D<&NehRRB?U$^QZV38AQA>z^XUtU{}tx+oq7dQk9 zEEq#_a*S9LWcq$})x=kWh4NY8H)!422#}{}%P1*sL}`6^x0KjRq5BlIa7ejf!;ySW z92xZE4~uQWYs))2ZC@m9-Sboc{2GHCL>l^V=$YD;PYvkv|2w zng4SGV+Us}H@&yc8!*nE5wIwz@PE-^amJj_@|*bWUY3QGlJvrseSJ@p$p@KVRC{pB zQ(>{t`xkR-;}8w}NvFy$9Bey={o4YBoI75(So-s`Go4zOq0puvxZj&Ypz{UB5wntK+R}rxn zc%9vBS86D8?9Oo3i;CQCk=QAPDwaK$EjSkO9X7(1wVqky@wg;*yIeS7?A$KFXDtttA5Prd@V)Kyidnb#U-n>U2{kd<1jG;NOgjCtBoj(q3C2brQ|vK_;}GxibT z9F2cWC!mX(HD9J!s%}n}I(2=!_9eNthXgmEjF4a3cZ>TtTv&ULqE@UZy3lZvgQI? z0`Y({gc?`E#h3&{4QFb@)9$Z*E!b#zqi431tPC|VF~#V-U)jxldl4T=Lj1{&14o2^ zS}Z)O(7HhKIODB|JDlaS2MvIP+mFy|cX#J@+>YVH*grT(n*MOKR3}v^?^X)iVpmxg zKVdXclt+ITDV+T|-&j$e&grw)>#Q+pVgO+-$v3LV4l$DQO%J@@Lu|`Y|cjRiB zsj#a|+mXn5RWXl^V{s#Y1{(9sFD53+p;5&6jNJ*QZ1?dYM^%>9+JK3{0lFVjB;K5e zMS1tg5h17sLuu%CX*+|o936_LU;UXbkfC2cYxsD1&XlchzOOH6XN2pUFBU4TgQr7k zZ9Y+#e0ec_bPz=)Mf{r|s1W9H3%cz$UYnH8XYB2U^iwRIvY0h{dD{G3OCOKpizA1TrlnG0KV0TQ7PMCS z)4VSHL4X8o7UQ6Q$64P4+S>Oj$IgjupP?{;4uKo(%$7{te@xLza~0SwfoeRC30l=c zkEa+OhfURYPiG6pP}Hb4;hbuG{GK_?`xzvO)TiL4|-NMs`Jdr;PNTkev!7RA}DE-PzWZdRU)wY)r+ zo*alX5b%goh9wn_Ydhjx1039M)TwE3LOyu>^6A+ zGxkp_>KS#}p>NS4x8hQ2#Hf4>L{2z>Suj%E+S5yZF`>%Ct%io#2hzN-k*^T@hm_VO z^RI%MAg1$Bj`yTjA zlIq~iuIF6L0ax*j8EG(G7|_Cst_pq^u~;PpJs>aDwTfkeIgft2AXV$a4}6TmpP&Nw_Rx?+x^ zoxJ&5MA+iR*2oi2Y*|oFL0z(h_3}0;jMm3au=T}!C=A?u$b4@cAF!|-oQwi|@9V6< zZ-MdYw9W#bED*l9sQ-npCXf745;b18C!%n;$>0JXKZLWwSOl|TO}j0ID`O{oiHZva*nK%O`1b%Q{HVj22^tj8iB=`RaM&E$n||qCHl}TgOZ<9@m*8q9U}X!&cMD& zJ&;=!t>h(9jA0zZ~9H>L{`Qel&aw)wBb48w{@b}DlF zc`v3hSu|2m?PFG`ys)zSnI|k7Ta)L3SGB4LP&BYdr)GZ%7$)-7b}P#(L}{9hH|n7z ziRJb766|BSQI2@)1GNg^kC)DQvs^0^&sUrd&xa(sl-`>U&l)py?wR%ncwR2ezJJA= zMm~N{i<3Qr)x|k9J`8o>3h()&-%JW<2bgvKb7Vlmg^_`}G6OIjV4hWFn`K8N5g+3Z zpp7whx-Jzt9&Xgj`@Lzwreu~X+(7f7t=|1%TfHB^@_D{;x0~mS!aX6ywNJO49}4W1 z7Zde?ib+?`1iBNMdzT7oXmA*&MT`H5i<3W$3N7;M+IL9q|62qVd>B655S>gTzvFW9 znhbBqEnIIR7h>O-S5_VygfP?RUuBft5r#f_~_K-1hUl=R~GL+-AGj}-b!8y@Cu_blq%HwEi?4lL|nMc+oG`#SQZ zyXOUfWKp%&VWRe_9(j&H>wt>P( zZ29lC?EzfNy!^xH+UEq zK=x$GMiN>bFgmS0oRnM$fg&`ur)FDyiUZm~MYK`HjW{yzioAUwXNA^;SYO<)N2BeJ z-?&VBs>@fns^9kRdL5?Vscfj{5pc%}kL78`N}>(!g-}|`>w)Dr; z%@6O&d@sP)m6+575IyE`)qC`195VtAFkLeZYXNv{n$T7vBPh11$ada{l#)<~&=Qa% zxMHA;Vs((Qv%|r=`=qy`v1erZjuu`^AA6SecCb&h6${I5F+8A&Nt8iDNtw3tQ8nLF z1}r|Iv&6dJ8r8Dk5E%o92yupcLms>`9O!7W*=t}Lv+}pO?~MA3UbH3t%tQTlUG9qj z)M#`!=9)|IYLmL>;136d^AeZQUM0B-7r&!o*avv^kPTkN!85XRxE*c7W#Ro2oP#}6 zaFyJCiN_fFb84XH<=6}Uvq+pdAc>mGwj(FQk;HUBBSJf<) zfZ&HOICfN=l)}B``HtB1AcMKb?8|ih04N}DRsspSeNTPY9q-mF+>e!d`o`RE!f9rY z%V?eq4SezZw)u_woUIx=&8TP_MO#Pq2R4xSy?o7!31Rx2X?BT?&Er2|D`#byVXK6h zTC$77L7`qB6{1Ilo{AYEz{l!&aTUlvPEGds`C_&T5KVTu#=kl0_5@6d!=jM5&ti*%Iwh@?Ss(gCSbSY$EKqA#RmOTkwqpfJ{&yyNGniX`I=|r zFYoLOYkPnMIF?|q7d|IMZe6zE(J#<>sJ7ZgVKtxd%A)vIVVXP6p${FNWR@V?&-|8H z`^{7GYjT{2h1+2Z3DTzX|$)q(bOot}hL(8GhN? zX1H+?O1ChtZ`8zbYz40lXjw=gQfFfC`@3hqjF6_X{2nHQ+~qG@6?!kT3pZE`Ry?r2 z|3k?>=!xTn`)R_q>)UP$HANXcoL*Cbt1xHjRXTWN7+mr_*b7exg*!;>C*Hi*CnTLj z`bV*P0vRirn&?H)td&n&SezftB`Qo2gt$bj>P)iKuB-D2hxPsa+=~7#a|x{LJKOc? zeUA3DSjDB3H?Npe_`pZ2TAsV@W#`v%D_69a*Bt$aYW^Xn2iXl`65W5X)>_}{j?MNe zFPq7-h3#Q6-$4XTH$9oE@>Iw*VdVQA>(`8kJ_T1M6bFy4mw zc@QA9-&F1zJ$xpoF*^k$jTddmYC|*#RppzV&yTkvo~T~O`*olg6qKVp2kD;WH=wQW zsvru3FLyP0Do&P#T=OS-uD?9HsS-QiH!_(O5wLIM5V?@XsH_V5;s03yT(h^&g_PjA z?!~p|Gk5oc8F>2|)C|2LU?^5 zX1)H^WM@j*+N383h+OHPhJz*a%0i2*p`i7dHvo)Lu7ur#o_c}Kf!e-&Nj@Se%Dn?8+lVx#z&CaSpE}!WZOd3 zhj}CB^($d&#n_y8V=0U6c(u)bw0$oU>;hs;`n9I_}+(S z!Sm8ovt>S|G~#k=PCQ~h?G8C9Wc}N9d)&{+`LqPZCGrq|*og27c~Le=2YInUDPl>x zzoJNxe>_{W>kE1aLE`n$z;s1-2VF)QO@5{&uM~wPiz2oKy4?9pcrqeE|aH8f$w0E4nM_l(Us^tH(|en*7Do=fHx#4U!a-Ww%}5^a~6 z(0+o*!ZJ*;24Aiii%*0KWFzEgH!Im3j;HCgs|%SF#DilO%XB1t{h@Xgq8dOE)X`+( zJ?6Mav&~Q**xfGKroC7FJL8;xbHg1IO(%*UcR-NI!S$h3*q^~v zQQ>8o$UtJt%s#HjdgHBa>2GEi^y(+Sk(t5v+xiMQc(QyAckR#*bs?s(oV7r$h=bog z`ccwyR=NM!zti_oJG1MR!~(~t8^OTxCQJTaFe62(gf=i&o$G(3rXSZ8~| z05^m$>W>^ayi+@mk z^x4WJ()3hAq|ebGX&|{jf0nuK>w}p`hd{gn{2aV)w+(=!vw4=C&A?d1Ky4HjH}+%` zRbSsgxtrs9d&N+@`+DRm`?8dheDI40jc%wJmI}`D3!JcMgiL>NHeq}3-8^xZ(~_DcA+kigeW5lh#Z z zUlPFsBTA2ywGaY0+Pjv!py%9hQVW%+jG`03@Yma=h^?q&J&XxLCu3qpJ_E>W`bY)}C!-jch8ktxQGiYdgi-t;?hfW>lV)59=I1;| z6-IL{Apl}&hU)eAsja7l<8IL7F-<#?lzlT77GJ6BN*5hHB-men<}02-{^rT{3pHXO zrV>IJ&_jS44EUa}jK4Qn%`!w1HUtg`H=8QHOTb){?u-WxJkM<#cKKN^vw;aZn2+W? zeE8$X59`@luB8i}AyE^?*w^psaV73AMelCmDpC_953xkFs4XrB_ok?s;}3-24$cyK%sC6=i3fUz{>fU{cZBM)?*ouEd3+*qU|gR1&3p{xc$pKW>#MOfZX}U-aH}R-H?|h|5W=d~ zG+r;HW08C*w(}K2-f^V6tdh2Q5q9o~Q@o&L{)QjoB%GR;Px-BK(WRkxXoxP}>gm&` zF$oF4o&H}BLlT-_$6^BSeU^yXBQgm^2!u*QUi!sbQgwTCA#mIcd~EW!=GSHA|0-I6 z58m?rCOTGR?^Raj3wjnzS`Q3TwsJ1m%_ALcVa(p&C;WVV#U|7RoqA>1kgEMF@T(^| zKeM|Q6NQejSTwcGcKeZ;HMM2ceT)Xuan{m0fq;g5&x248l~`jQXp4;JYeO2ES4j}^soW5&e9OaY?0Mqs!D8Gi3UjsXZvqgpVjIpgFjZ zhWdJ7k(6Hb+H+%=9yn8Ve`An?Ftf3(9(L2Mqf1;Mq2p2;9xipdHR-dmx@mKtlr9XV zZF6Iht)H3q);DQ+8I3%zwpQc94wm`i1R4s~hN5qe5WQOO&H)ni?L}U3HX8CTL8mPY zvujz_Vcqu*?{x!O4g2c=irvl~x%lTq6p<2lb%1Mudu+2I#xWqiTCp$wO=c(ocGJLq zreiQwM61O|42$$RLY8=QHPOjERqt1@-N5^my8K7SN;v_Aj=*$P?&x+8(~gFD;(jTP+`C{#6^$G#(u2|6yqmN08EV$5^J|zFm3Wof zIs&*ZbR5myK~c;*L|G{WVpiiyjA9}7+;9t+?apE~00v;O5ci&_5oB0 zptWkm-@o&MSGKR4*muy;69zwh@BLdX4KjrU=_e3T%wTpc(D<1Qrt{sHSHyO!_&kXA z8G51q_d<6@H$VeQ7Gkt_Sy0S%j)G>s{1z0@qt2lHRlUuu;_Sv55b#zij}Sut{3qs! zlvoXLK4`J-n1Vg~q2mRMUkrlQ%q~`#7E@ipz}BwwdeDwgee!(U+5Q2$)8oOov|!5R zT&bcuOy6BK))~RcEH?6+%6Ho>3XbGWUBPZ)I4zKL(rzUT|#Iu;J_+*@x$fG(C zVIG!bV~zXwpRzXygMr77DUnRy&vB3|uq6WfVrs~6D2<5d29@REI# zy;Q39!8%u4&OrWTOVWU-Ot0{HN6}(LzkJxHv>8yPlcZZiwfNX?|EI`BjiHsQqUJmm=O$(ym-X8nu8;XSV`&r#1Zv!R3dx>(EW;c%!J`&T z?4fOC+33JqG`J_ZI}#4zc2dWeD{_d+5c?62-_^+D! zuC1Z%c_1NrrpkHM--_J@P+1T`z+*(vCDMeiTm@zwLbc!}6-46KT8_QvSO$Vd zHJp$C(?)xW?)&aM)@eGCSYyr()gLt0b~d7O4#NmF(7NJQb4u&cbmA&}zvd<)o(=|q zED&S}j>tcv^Ma7+V?>KvK5fIr`=e588qXjX3_<#h_WLsM99XJ7`RT?g(Nub5n zgwH~5#G2YsxhkM#SdxbvMR*O^ds}S0HUhiRSQyA4Vva5sa+4RXw%fLYgR!8D@P2lx zYja9~(4A>i*x7dKT_i&jC4C(koJm{>>?g9TYP!A)S-GyM)vms`lC-3A^GYmWJ{d~O6g61+S0g-@`8@#n%bJvbdoT)bxb{xiL3HWtQej=yqB z@-!#<|05QMy#PT4(`M?y^|_Rfc;gMX^`s$8H3~g+bes-_pC5v6VO<)~;$QJGn?%>l zWq(>4G~gJmeN zYC+E_@%PDCNzkcf12yZ7XKwOC-t(xeHe(qE$Ps9Y`~6J>4Om$NmFe)v$O~Cn*;xq* z)_&c)$eM+n6xf!LA)#%Dcd{z6YDEfhVTk zl9$eB%k z*C<=KqsNPFTn2zz2halu00=$hL_ttspOgo@V~ zfHERL{wXnC@mu4?1}I6by|tc(8%I%P&tEZQ;EiS}P5fskCEx?}mf>^7nrh=Q=1v{^ zaMeLAgmx95RGjw!!BYW_DS+7d}I@SeLeNu`QcWkjNo6pPA;QTzK!Ek zZz8mJFaLlRsnORKiq)LR+BK0s#5g4Wg+B}e(7_bd<~D&u&4Hxi+h1eBNq9={96Z?)AniO2IzN*7_ZOy{MHNK&k zz$fy*Ui?4z*0X`)rtV<^kbnCnlFR@Vr{pL`Wli^6bk)>v#QN`_Qp#}s+mFUC!3v86 zNYdgiFOj&ygw|*Bs1#AqB@fikjj80wGeHqAyIEV9vY@Y4BL5klU~tic*eUz3?R`V# z!h-+&>N1(C=np=h7_w7|**)+g{H3hV;+Ur`!^-(J;-8$H7VHI|Ub!eg1p4z((TR&#kistA>IU9l6ZNN^ z|5oP8J+6sXv$0_VRRobY6=G+R2ZAmz^|x<%M`{rFB*MRVdu(C?v@L~XF(VuU8H#ZP zXD2fU@m$!a5BN1i*<^p_Ex>YBLcX1m|N>WW+w z5SnzjEQ-2m6rCuGj)iY+z&*L|G;lgHDk@^Z%q;8b%{oT;I6o7^imCRy^uYXlhC3r% z0hhevz|=1;UJGRwCVxjqyKg1lX1nv3H44lR@x_@e-~ON9p!`k)4E|U;5_1~VZw{u=uU#*MsPPx&LyPw}Y(@DksfaylLy|M9#fg$kh?9AcbH-Gf=fA9By zYf1VczB|wJs@c<71kM4av&uQP7-lE&zcuV8b z`b)D17>3nw{gIZ&*9>^_u$Gu3nDvvzfRK?sgMcDb>m|Y9KxTDPSmzp>oz%DCNBF9* ziR@l2N-JUVe8mjc9X!77aED#~4t5ZtzG$pAU%vE7?_a;%Sv*+0){V-P;`aFY^JfGl zpMtE_2Gbhs0(xM6qSixZI)+l7y8HyY5kp@!2nw@HZn5WP_2(>ZIu+i zTphM0F;Mx&G>+!ujKg5Sb+{ckxN->y2sjDKZVyS^|CyMG2dZ%+OG^bwNr=3> z{Ke%Zg)ncn%VIlfR#p}mJr5*y0RaJm9w*Ei8X6(E(2bRq75n=;Z}m5C5Re80DCM!~ z#8VK)?I)Xo@$rZuQj?RDVqcq# z-@iX!U3pMaQGK+w&H?tUA-KI8KfZroSYMYb(Qg{I;B|9zvp?BTlL|Hc-W5$34ep@6 zj+z?5-rk;|kP!H=FMx@u#LYpV|KpvT9LP@ACr8IbZqtWRQBiqs^Ud`M6_u5{z^&15 z^5AmW(F_j{Ke>AMjKtsH-_6q#Y-E^PrmJ=lbQ3gHg#-tqzR7)!7+2 z97jXKG@>j=X^f&|JJ#%EZPOsj`<=J**Zbdlz5e;lWz1YN_j7N*=W%~ORPlJ_!F>0} zCoAtBW(0bBc_0U_PsK9WBpDX2Eg!3=aq5PKypb~0wY3NExfB%@uW~r8@lkKp zAM52%$1+%$OG?ynU5rVn#Kgp)UbP@8--%t?G)sB9YRbs_(jz(50>R#x%a@00;MiS3lrZ8$6NV}LDLDL~A zWavz3?`$s)El^mtENz%-W8-LqDZ?vE{|Yr?!_y ztU1MUoyF)$^wXzL_jKzn))ZzI6zIdCsYOLAvz@H{{Iq~ZyeQSYk+&{~TG{vhrkABH z2uW^IQc{2BFd|~d)cZsiCfNQI%KT;#W}6^U7)U^;T`-*Jb{M|n;KMP$2@z!N@M^t5?;)uUD{G ztVwJK|H~6t|1s$D19pwOzU?VJOoJ3bdzZMPu!u zV|ouBJUEbdYzb6MDX{0@VCB>Cl2_1n{(6(M&EtySckjoykv8&}qqN(%Z?{aWxFGj3 zH6!&WG`SwYX|q#JJ@t`NpW(2kC`4NN((>$I_wT=ulcSB-feY9@HfD=H04T^8t*smk zNG_ID%{pYXeLHRy6jgVheu15}=*yQY>g#VPX*ltwbe5>aU5bNgX#2Pg;$b%6m44*# zM>w#dM?jtyS>W&H=G0nGv1qZnx;jB-<#r;0N~Jn(Qi2aiCaK<9WgKoOt*muScgsCB-o3-XT?V_sP(^dPjK-_CZ&yJF zJvhw`Co!nx zmtt<-4cjzj)Otq8#HelCb{$SP;AfgvJJ_vE4hoEwBlE~%Va4yjrbtKr&)IEYKnoep zE>JYHyP@vz$Hu^cny~(9)HeqL23o^w8SL0t`|{_{gTJ5*S3!*X0q3~4w>^?pLUX>y za0}RwiYBONEWc;Dxw%yk+fIJE2JeL$?c^UEyq`zQemII2JJvkS4%A8|JT*7_T?5@} z(cH_I=5D}1QGJKU^YZhROwi{vamG4|xlKpt^x68Nh?!4O3pTFO^EuVe7mc=N5UP+o zlMJ-7ow&!`+|;qQR?g0Cfj!H}L2CkJQ{?XL2a@H~$4-f58*J+t$2~pE>gtxAStPxD zi?}jvZ0C8^eH4izy27ApY%j`>iCLnjrzbwND$;}B5|E727-&J^6Ca<=s1VvbZ3hR3;*bQZ^rk=TGtUTqx0YazwOOLW8E(oE zym=#QZEbBdKNDzs*I*(?05xkf8m+}4jLBqbD}KorhpvVOSD7ZLsacAEva+&DYCd9b zf6glX=-}JbB0i)D`996}LTOJts8f~7WW)8zixD9zMywsMwAdhJWn}|e9%!l@9Tn~D z?BZ7GUjgSN`TqTN_1?N4CsSkjH2@CHCi33;aq$=0o|CGkBVkj;z03fT}fHh`=AsdwByl< zb2zI$PR1O#Z2lY$nVFS!ANmm0N8w*9jOS;z;dpcgQ zSo_oMdU^^fDlysFnq6I8u&w`Si!L;t5AZzYOXufyiDzZ|q1@e9cJ?Rd!hj1Xs}Zb- z_m`fW=vsiVtlJ0wA)r(3>Fg{+*dnQPq7&@x?^jSzAS2q*f%@h}s8O0WpsL(!Fq)fm zMgB1Zw+Vd@LO%c=(ynnBcGhspa_Oy%U$}6g%h99dIF>jo5Y>d?@P-9Quei@uRqb&1 zuf|aT6zjJz8aKbZLV9&1Vm4iWC2`B~4ns6actQqV0S;>&(g2!paeaOnr}Ct*P@Y8E zhxFh_`B*IKaQ!yYjGFyHOB<@s#rwLK5{ZZ?2Ymn+C0txxp99W_zT_w<#4^AkA$4Dr zQ7K2In&^ Date: Sat, 10 Oct 2020 20:24:28 +0000 Subject: [PATCH 080/104] [jlse-results] for `[jlse-run] Merge remote-tracking branch 'origin/exatn' into exatn` --- run/automake/results/result.md | 12 +- run/automake/results/time_vs_flops.png | Bin 40997 -> 40051 bytes run/automake/results/time_vs_flops.txt | 7525 +++++------------------- 3 files changed, 1553 insertions(+), 5984 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 25dfb24b..7a8f518f 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 107.19 -Simulator fitted flops: 0.25051 G -Matmul flops: 119.16 G -Simulator optimality: 0.0021023608741055147 +Total time: 297.68 +Simulator fitted flops: 0.1103 G +Matmul flops: 187.51 G +Simulator optimality: 0.0005882526075949273 \n \n Backend used: mkl (full) \n ### Performance plot: -![](https://asset.cml.dev/1ac8b1479ed6c4f0fbe049e1a930c5f29986ab26) +![](https://asset.cml.dev/31cc207eb084d08f52518b974348cd2b47d35f9e) \n -Run date: Sat Oct 10 20:15:46 UTC 2020 +Run date: Sat Oct 10 20:24:25 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 84073fedd5fafb5d369d47cf1d807e586292b57d..720d98bc36500771fcbb361815a7063a99c8c248 100644 GIT binary patch literal 40051 zcmeFZWmMJSw>7#c>5^1R8bnH@OIii#?oyPN?oETVh=epKUDCDb5NYY|lJ4HzXY2o* z^PW%l{d&i^AJpLNT=Un@vvZ5R=)oK1cNF5} zwE6D?IP4rOI61=zvB60&?O*6PLLm4ih(Abq;<@i3kmSXe(h}-!DLZqXUTUYe-G^EZ zvGZHJHm~#uIHlI;Sm^$YZZ$^Q*bdayUqqj^}&*TV8CiyFG+q>qr#5aa6a?~i!E({;RX_<{k+9x^-9^zq}z_NS1p&dyJXi7ZgJ zKtFI~>;{$LQDeJOn!CO9(NXcwlnd&Nqaz0NT=4#KF;V3g*eb z-+Tu*UI;_%PU+^C|2O*;$5$N*8*Fb=fzJ?fNIo(t_-cne)BoF^$9c&yVZ6}#lkwky zQUlF!wA^$&&vU%9)Ch%t0m5xQX>ET#XAi$Dvm$$9C^G5#?CDDgj_(N)B98p`_n{%I zYR0!7Hdp64$%~)l?p>G2GGY26#fbSL?*E{&vL)5EEr_fw!AMdO@8-0$>7#eJ^{NUHX~F znYDHUX>9Dh^Cnp#OvDvBAa(5q6UrOwW#fwub$Nz0I8{IJyuIiK#!1WNsXN|1HLKCh zds2_>?IrSOshwQ)_s_?M!pl;NOYLR$wARz#VAR5-)ZWA#Fem$cHr0RG;okGAD&;Cu zBuljb=FvL$HUoWRMLnLVua?S|5*qp7WRCFrPu`p_m#O<@`4(i2Y=5Y#YQw5eHFiT9ZsxoVCkQ(}tyWDK|Nb^mFyAP0u@7C! z3J0%_?#thtXX+clRN;#8B8iIi0fe}4ipzxS2!VwCo>CKQAEY+ z{AfrjhReaCE=1(-TbCxdz;>OJN}aQ8RjqE@AJiK!JyD>ECWc;y^ZhyRAj%kNovoYB zTR1X39{=J+FU!5cYhBD?YE@4{LRyENU?SnctX8()zpcMN4b*hTmRa+r_|| z@|7x+nOTyES`_F;vV4a3`;e3a{D1CcwC)pg0&k$it#2Sv-ASUWmUckk2vG)Mh+ zF-9@JqU9=ZvV+GLTwnXl2iVSp_#F+ohs~4@wvH{h-ehzzyTQejf2=Uaf;XGnoZ) z%(G;|GiS;%;67ZR!|hCm{Xq0QC7y?jGZ zg-O1mW;l!M5o-v-`S$x<+q%I;Stn*A>5O-dZ;*#dUneHSW+KW5n$wHce4Pq5ZX32S zS4;Vu1NgOl*MrtOJi1B-2o{Ll;kG%_P6Og)J2C=S49a)k?d+`YZeyf+k6QEn4fT!_ zye{#pc>O%kQXYrIubEx%hj_#L3Lal9;V)fnS5ZUNa@(S)bTj4D)n7CPV{re?&)iwg zcHzq${s)%f{^O*biDC!Ele03kCDoeg&VB}LJ^?B_OXpX^!_(Ci9AsDDh;j0Dl_aGK zFuhf=2JW$KI!(KGFFLfUDZLkVd&cKKj3FQ2k|i@;+Ihf8k4THMlw;$|Nv6&_{%y;3-r7Run+FzPPKMK0jO?_Y6R8tV3C{ib#lbK12Mx-{2021%8k2}8| zOcnQF}p63M!!QWRCQNPQYM?-FtSG2yvh7Y_3vadBOQ z^rc`n-!MMoZ;yCzFf2D6S1Lgo8OiduXhpExQwvt=v_U+Qwwv(4I#a1*z%c2Xygy1b zk_p&8w^oVIFyUwX#UGEStEM$=iI@VnqhthRydXEj(LU0zUSVk&d7u6*!J&_~bU$pT zA!}?GPfNh&8`xhZ+&ajG!B1#!uB>WLRBLzn1iZ)xM9EzC0xyrNXQo=h z`iaN^r12Op#p}ozicM%qD4q>n3L-l?o3X<`vjMpX{RQLk=n=P#^y$GA zXp`o}hu<$zni|QOf=@9Ph4&lVNwoAOG&MyoNVY08HtMq>xikz~On@XMBCO zyVR@#3bx6LrB$bjolKRk{irV2w`6Y4ClW6eWo(Kj=1XgqEv*<`ZloPFMf)akmC(MU z8!M^nVSkZ77SxW}uDCa7TV-GNDB;)l%e?A%B%|KB5UyPF0HxNDSj+XGAJO)gc3KAm z;v~zs-jg7PWhZgDH@i#YK@f-%fLTG$`#<8l^-W>Jj z=VQ*DA#mS4qlr)A3D`J2tj1hdqSQR_(U@RyNL5LE6pB%nF1tGMs=H*y?WWb3<#5!* z*u6Cm_!R+sA9_%1CjnnpsjU7}yGeI(VfM3kq<$sz=hLEGUyFg1p1vd=PZ2{+&90rP zin^_wWXNQrJ5Ooj5td%HwaIXn%x#mQr>F4l?rz!yK!p$h9d}$jo5k(8>h@i0=g#dJ z{~^Z-WzYEnZY+hjPWR|J$ec#U>@zNGA#r__>^F?L%UrTcSRlsz7X|;?A8Y;QSf^jo+Vs&FpyI}ZHf(+OwJ#7SCno|jvhL$S@qKrEtV$L8Rr}u^Z&@Ij@2%FjwEwbZF zo~p2j-Z*7U&~Ga-XegVqUR_;1m~|ZdFd(>baogwbk9>4|ELxhJocw_2Elz@g%T(Dl zu6fPORJ}7>f}sbi?9>SJ>VGi!!-ByXL#_7A*dPJR0@3{kPoF+8sC;Pl_0DEm^80Q0 zV7@-L5=GSZ$E+9wFY#e!ss_|^?LmDFlUonb-uSKeb`#u|apAmH>b6aSXsLTyeqLV) zTSWuNdStC3JB9r7ZrOtyvT|}nyB5dR*~0?g;6vNdOJ4i!pZ){trMBE>ib*Zw``h2- z(@m!Yx$l_*c(a@*^1Q#?-Ei#3lCg;MeY1oF6`dG#MR8i?(s#SMS9NS3n=P6=`DdMo zYOSa_n<;&cDX7f4WpAKIqF~KNTA!IFcz;!3B9>`2JuIm%*M4ID_ATCKMQ?9!5|;_` zNUjpi&;}w8G&P;II%>D;5xjfBn@O<-t$xA(m{6+V{qyvF`*)saX+HI&@YvYOaSrG$ zTLhJGMl>n?P$;giii(OtGGC<4Ott&Gqfn~#Om%TL>wMF%{{A=TdvlF<@M{#w5tkc+k1)#Rq*lEH7C%P1|c+W=x7RvmW7VsRb;ol;qq4padE3I}H@aA{{pVmX{sr1X4urh6b&_~q-@Z+0estZr=ZSdBj!5II&D z5ZZn+UTPHG|MplN4YV-i?z7$pH@pUX|DcWT$Xb)Co}NnbA5ZbzeCn#IDx*7->KT($ zOYI+$*Uqo7L@plbLt&`m!wn!!xb950%8)s8ymcmf*Y}k-oH@Rf8czRklEId5F zq~z_N(fr1gk9>)2HK;W!cqGR{?P1M8!s zqo2LK*ngZI9UXi6`@h%KC4Kw$EyJf8l!H&*hVBHOV-mYTSurq6dH|{Jd*8fNCtdd| zFfA1dg&jTmb)n{YTNH%{o^jCo+#6eC?9M zP~WgsX1*Y!DzqMMzpu98^GpoyYQZ#Z`PZEK3knbuK!ojQi=nvGI7%=i(hoix>Y?zne*V z{C-QcMBdsiq%+*43#WLo-Q0m23cnV)F8T%0;{Axhh{Of?eNPsH_G)l!JZyS&@qPPm zUevmo>b%#uwbQ!jmx=*{#=jorR?ZgUz6RA9Ha)f)7k_P#Uh6HK^5I^Q?ss;wn;s?O z2@dp)R4vAAA39?M3b!#1B*?nM$-zlC^qP}WcIgQSQ2j=TXD~A)@I*tMbk)Oqe=jmW zn$k}ud@;qba(&>zgM*vn1Lz(4)>gm?V@D`00*Xpcp75jM@}d~DzeBV-20N!|AY{|` zZ}%E>r8dS2Ten8XFTAf#}iN zGm#&^>GJht1^QDSP@xxHn^8tu_^=4u!V$g6LqI!W%>Iy6u03&mW|v__-jIgq>gH@- zFU~;oE&iypu#I2^+to@?oHiW&GWM~eeTH~YE5J$7adl%!EMfWiMXckR<7T((O1+Ut zTe$rwtQu{xHC}jmM$&V$4~_YP2ED`-ZZGx?-$s1*YyY8@8F|-=kV&J+@|`6WFEE`Jtkte>NCAsp~`;|7~K;m z(09LN6*I}V%2SP19qQ}~x-q=>^efrVhq79p4Y_I+Z(eg((Rj-mQtP|XdKo;Be`}2! zo$86-%#r^{P%v>p9pmobtHb`Et^!kD_H$B7EG|GQyFVT{l%WYB&exTAm>X-Lix<|` zFs3H3(rEsx3O=aMvp3l2vGw}q=1`}D(u_iY)?Ws2Bi}HjF=&yqJD5)wvBA@_5Q=O}mvC{tq1b?YII1A5cLooSeChjg%T1|Hv-X7ax^; zsSBb!3)Ed4weTC-jm)}PeiiT?UT>>G$i=Cvt%uJ}&>jsS@M9+5=yj#XM=J48DH{0M z-@chD&`e*`hJTXE@kM#0(E>QUsd`O(yJDf}q?xqkbI#n1iH1aR8kfDD`|zlzImwATN_Aa+BQ z3yQyYd%IGNKU88P8tyR=y*Ub5SZuJnjZbL4VFFA+^GFw)xIvrwJm!o~mn2SL1ZWhc zQ329dXYZA>v3vyHLuo4Kjwbe(Aa@W>=Im_P*L##wI=f454hx1Yh3QHt#>>)fHy;wk zM5!B`sQ@VyWFu}ydrwjpkpz$h{}fg3->Gg}XeDlJS%6X;r5oSq^jO(wV*Pzo& z;)`#kF9=m?UTv3pAg^5U}{aLIfmk1c5077d5W?tFWGJZ^lk(#r*U7 zmQ2e>^cJw&9Y3Wa{X7=u-E{OGEPfB2wzYjUQtQ(V*D?2Ccr(pn|SkQQUgYg&|5nG=7uPlyV}%s z(jZpW^rMY%pB}1>rq+K&kZ2nf^z2H=DNH@o$TPnfpzy0#XSm~mDc-s31 zo)^b5{Eof+aNjJ)U>HUh45mNvsdrM1=~}@Ke{IW+`vw6{LNUIBj4#mn;GNWp{r2F` zq!CPfah%Ugt<^RJ6x&&wJIohzf;Au7@&eM1+YC^%!y~0$zB){*-V=hc&-8x$cUz{~ ze+GX}X&JS4l1bTe06KeqimK70lk)8wTZv&o^ePNlaNC7$?1GFGH&I=`&K&57|7KV6 z_^YQ5Ir0i`R#sjrq~X{#;~pL!3`v!po_|@bbwQEJ#(2vR(G|AT$u-H(MfoKmLCw%G zs-Pgin+@cpAG7op2r}ou{8`fbhWwN%SLWkVR}u(EJqDng6$OyglQmI6i+929pU?6W z-1P%e87@gw$$v7y|6s<}CMpok+MrxGQBbLAxE)AnHwr}3%RQn+8ZQabvqOV59dDE; zB%G2{cgMwB(MLQzVv=R~TW4e=L_HVRlb7aPt0ofkvm&pkTvPVz;BDE-)(uRuLOLj* ztVxAhT5bI}XfY{1Y$z>;grJNU`Q@us9q?Nc->mZ=Ty4YK(+NH)B1knH!vDdEBmNz> zRUooM0B&SJb*b>=_c~4ngnDI7yK56lx(`-`MF2-jn$P`?&KG}qz+jBO^ml*~enSat zZ#3r~2;u;*T&aL|r0?JDueQp(g&7!ISEAbsOWP8;{h%eN9|$oKtI$DU!u96jq|6FX z+)AawI_dZRSHqD82+fs9zv!#Fmjq;=p8vg1S_98X!GFLosM&r`Ntk$Q*M1+yW%CfE z$#36UMwHrnIi*}&>`Q1R^revz?~1#F{Po*DM>0>CMOuTva{IzSs{Oc*vVIX-D-B#3 zfHe3OxP~*cgnon*B6dtef9SDm1Jc`Lu-xa(-WUQrRP?t&tYhp1C5oAl~*Dxwq1s9@pj4-tP#)K>K_1(g@hM-Dj$l zv{OM{oU2l2j0NsyS~ofX(B4f5ai3Ck>diUL$y04|94Sf72l@wfD&|Vk1kV zsx1=%0Y+Z2=U%$=+yBOdxHIs|C62(M$kd-XaT^y~3pDHD?JFEh`E%;g7)?tIp8QMbJoe<0eN1}#pq?E}MpgCxNY3jOIq@sP_wU~acw2$g!8>}E z>r5tzXb|SHWoSDZ_S;_bw{D~-Lu%kLSBoTgM$e*oumN$VXEu=QW#swBQ`edRK@Oa z&ZbRAL>Ic!6-m#;6bv|zGH}Vk9|Z-E%Nv~V`UeJb%FCZp)^LEuG0elJgper-hT&?X?2CU$bD-TJt3elX28S;OF8t=+WZ0SC4w*Xg(D^ z^Z(nT_9Wa5sgW<^`N6MHv1qUCv`djv1Ra@pECzNC-E?#wR9FnI=Oo)A8y~OtHy-_B zvz{ssk_jjM^ySMM@3NMTPLGa7>e$LgRZY#v{QRE#+-%WnrN0!}_48&$?f*rQ;ip(e z_^T5M1^7i|jm5+jhz@>Je;PkG2uPlo#E5qCpbDD7>r_{#S&zatEu;6ZZ{GGhl)Dta zYLrsy6kq-zxC1(jcKaK*9T(x?m2R^pR}>Al^=uyU4^gk;pd~-|5B*{{?g=IIu07mI z#<&NT0GqS1<%^af=5skY^ba3Ch}_*Ar=3II_J5TzGo$B(o!rL@2~blK{Zg~wGoyxj zv=6;&=%$N#(;NT8>(U|pJl%c$!SeFAhYA?99>2$P4o*gh+)l@cAY4hhbt_Q@DIbFS zeuf@c+1RX2Ta|v#&;Qub(b3wJD#2YO2k|tk(pAwQajc2Td|Qzu>Ujn+<|3~J6inS_ zR=B-TDxk$gVVV#!Vq&n%_rYtM?E~UJzL zy@mLNguZTWzDqxklwB#iC9@Y;xVC2itfl{9qlRAig3F_f;?JL59;Mcc@2|hD-JrfW zEv=g9rb3Sv!veJh@@sK+6@wm{gDRUg#l?xd71?7hsY3jObpJ7Lc&Fssx9h%Q4ULT{ zm_$rm-d86`-cbam@3!k{Y_I)F8?mVC_d;fT7Pm8YL6_SI7g9)@eE{F9MG=FObJUsJ z@5^IkKKOye_4skv`;nXGD!>_9H zTP>3LT#YqiRVC}c%vzOh)vn;>gYQfVb%g(nf)X0Z*?|<-D3SI z0aU6+J`Zvfc@Nf;&4#!1S2x;A3|g_F5EuEXY7GoyR)fB!-8)Eqpg1H!URViZn7LgD zf#zKciqYf@iWkiMN&=2+XiAdZ_m(B_p|-N0r-V^KZ3t>Mp0_Zd(uazIKmg5c)Xq+O z<8Ae?+jFV1nXE2F5#07o?zD;c-<_jkm-ZGHC^*^O1j2`vi-y{vgbIjG21`3Mvj>J( zQm{&$Ze~#Ea!rKXpqTlXiRV>8&vxy1>rUVE4qQ^tVzjCz>f_l?!~Nt94%y<;ZbOQc zYp*4=L;*sdbK#+FlX;OZ<>fVk8!1COY>SpwXu0RH$vI?qi{7znV*^BzCm#{i5^))U z)MpDS{YXBNccmkbO&fv*s`4`jB{H{tYWMu{tLDRK=OSXW&?MxFgMPI&O5pqb7piEb zqSUPz-JZ8X7&$h z%kHU#F3AF9W!iCo8iZ3ku>q1XiY|KYKd@bJ#+z92)3EAO3U9Kq!dtF~RRr2jTG8y< zZ4x$l-DAT@iX{K7DW0%0rQmAX1QunZRAq`~3_{`V><70?_!%r^?+`sKs)>$sIzVEv zrA-6-KUND%DV~lTNaB#S*JEh|t)J&>Uj&D4KlA=>i;CLoHxeArpKmY5U7(hSO=OLa znX($8cyw;_bj8JIS5FI67C;zT(F}GLcQI{Wyp~Fj%L)>0nHqh54KKCl<8>PtX8vyc zV%NPv9%^a%h+hla7XsP}06>#W<~w%}&Y;HZM%(9!RbK3`Ov|;L%LuYu|3gKRPe;6O zqWAJ6wF35(v`3TP@&W;@C@3*%=sM{BoCwCGdbztpzED*H;q9 zX0Hlrpfg@dIV2>?D3;lsZx+C6Hgt~S5;FS3iqEXxxnzQSq}cI6!&}Gn#;D|^|cdT3NVP4v6$o!!Ki2hFdK~dvpc=P951-ZP5_D+RO|F!G?5|1FdsfdN} z_>X%$=dGONJd}aPI{YBpes~GcD*r4I^nm8sj8I`=1?SGs^VPEpYKCigih9>;E(w2F zHuegbXFbFe-7|S|dl$GV4oI<|{r!ym{0ZypZ)1U->DncbzyNF~@~j)J$2bfuz!B9< zublB(G=yHediOFgDlCA(;OWSQ_I3$=PpuVq*Qiq|q1ce5@jyX{imEDiPV$Gk#UI_q z^CItT$FYRtIVTJ$R-3UTrBN@n3@~V;T49|jfQ}!LAAV~Lcs%pG5}fy!zc9pp z>Ct5@n@IP=1-GdYdd`LulV{5#4=+tqq3)WG1jq_ne}BX%P3f+K$b;?mKSpp=iVEF~-K9E^fQbg^yDq zqnCH;KZ@l@`pD|)w^0QmGUS)0TadWg9&+P#wa|7|nKu$8pcZu-R`w+5FOeYI+_|+MTY)Q=zBd_?z5Uf|a%Apy z{5mu;=yZDtSm6#=&|NqYZStE-06wms%~$II$$4G1>WPtL27y!@NZ@e^2|Olks5wgM zVv{v=(jCeae?CkJi|i_ZC^JtG3FTlV(NYr?NUfcYR@SJW96{%zccmTM4in_MBYm8J zClc|uQ-#$qU^|7^J!dp>Ks($pT0S+rxlFhSZ02kZw1eu+{OW%jfX(512PfOBw=&N5 zv5gX9+r4h?P_bGX3L8+iM0n!*+EuK82Cjqd!%Ztagz)rPqcKZgbVi7O0dy|xA;pZ? z1%63;q~S*0*N4hcXLp6}dBk$XXgg;aMZ*>UX@Bi9^!iSx9QonzGOz*7mKSE2pzs+tm=g4`p(gEf zBLh^(#UNwekDkAdeyVj%n8B0C!o(x^odUg5w$!RsZUXkMy{=RL+&{X6-f#S<%Ilyb z*=t*m%asH4VKQW`-853RC4=-2%g(}X?Q46sVFhc)LhUpyOH8{Wv>h=B3ov(4M^t*~ z`!oI0^OM8uMnhq}ucFN^A+vV$=vwD5JutTkM|LEb%&O`^YjQSIivu3M{ zbWjk)NFTgOmU4lk4Ca84~es}xvTCD&3+=Kqkjp~CQX8Rc%(A;l7 z-kMqPvu&M`yJ7iv=aCsf1nsh5+X|mIjInL55ZP0w20QVMsoh<(i;1hjTv!DQ`EglL z@q%FQ%#@O(UAEfOQlC@e)!zAN*Aq|AsJ)D+P^-@io(V4>-jZ~o0L16LsZOgreK*hO z4Rf;6Pd3wmCqO}c;-!*X+46K%M|`uRn@ITPT1Hqx-eNhLgmfkP*Khufh$_8?IF{8ne2 zefyNMxBd-nDk+&HDuPln)&7@ApQ|A7!v(8FtVUyekqp~#^q<+!dg-yU<1l|~wpkav>cvKXCbyfzk0%Mp4ffc+VLFANOPCVQzF#Zw^Kz!(Gb|sdxM;IJil~(z5 zRpK~ke&KPM%Qola#O`?rdtM{8y?y3T@(o9`$d_j@5MMknj@a$${l#%Qt+4Q>QSRW^ z>L&lf`Gy|H@!!`lEGhj{P4LP6Jv{&o{r={-+zw^}QJ0hjUJtOqDrV96Iv3mf&uq22 zrw#W;uy`y|zms@O?%JMc2ygSx@eJa2$K{7P$1qC_c#DHjeGs-f0rK^PTY|tR$ z&Fw47_{Yk`aVps!fW7nftc#{l%vsEm78BPsI$WWVau-Z&ubHz?2Q@On0QLZoi6!5N zOU(d-^Z{Rl`e|JT#}QPS$V5H8xxCS=fVZFU2OX&Y%S2@}yJFqn?$QaQk`;iTTG|&#&a!0jmS4IG z{&*{EfbCGV;?t%)vAZTVoH`f{KSbU3`Rw;c^#cC!Zv9Jm$wtb#9ffMKRUiR<2x2{a zK^dRM_uA#p0|Xr?D-&jf9rn4?x_PWd0o$7c42CCI92(zqydoF&OT#1EsS{eKy^k*s zX0gQ^fu0O?@~hDt#4wi4Cn*N1y<- zH$WfA>PjOo=X(;+gOJ~iWp>B$&>*>Cx^^S^{q>OU{+(*VDqFtfZo&9HMkk5PDS}ho@=dyg7-HaPWRoc*g)gu zzR?O!@;M2U6ZY-&On&<}H)G818uIQ-mcURE1igvGllYX}pfbm?x2j(EG1gv&X=}0W zh13i;on!0Mg5LP^X(Bs;-vz#(y>g**Cs@Do7zUs1iNlf9a#~RE-?iG0KbeG4_#6cI zErfeMtIpz@fGV}M=@-PWMdxjB24bWjIw4Ja$#=6>i$iQIJ^9ngip-W~0cTb)YHxky z`0IpgYa71%?=)Ka7u7{+Cttth^;7G7Zm0RxxFVPJKI9G3u) z+n~3MQMxuKV};C1!^4wjrJ!7HSk&uc5Po2Q+~G&Mibs1a>zhHkC;WP)z8pnpFV%W z-fcXPRac+Hcz44%aYLJ4dbag|=boV_pjU}wWBs9=#hzkFxg*EZpsrWP7w$f#+HtZ3 z6_zdyF&%JkApgumV7E(HR{sK}xNLc-pl#s5_1UVA&lHnw-LPV(iA|;BSrOm3O(-Kb zci_3|OpTA9x2O^ZcXB|*zX0WfTY_4u1=>(GawvpBTf{Pj(6lO`i zK-s`-eI9$0%I0ZJSsWfoe<`dLylV(DS2Bn^=@!rxKHbv~6yw&>gXU1O2PzZW3k}P3 z#(Z$)e&xYrX;W2wI)yPk-8VM=$}BZCNYCOBmY!pO@F>L|+1mR@T967q(M%(ag}kHo zJUI=|$0-@vuVN_1b9x!7BvUaPxZkPG>o%mn-8Iq2Q?5(+~J z`Tn@*%OFDN3%)WO1orY3>nh;A0MBIfBJ8=Yo?hMYfUx^f4>QtagDWR9xK-DAcjl?7 zsVBOXEW`;Ul9b=4bt`jvfi^l;<5C#(E2}{{RuwVtkWt(vqSo>p7-u%kR)ELAqaa{z zg8OYWm5N?6@3WRU*MKv*l(v`50@}P=hKdu-GApoY!KD%}mrRtgYiM=0qEJv2XT5?% zAs)aZ(jC}67{(G3NDVH#%eyrTOiWB&$8dzB5Ae(sVe(kC_4el*j@kua?4q}U)qdDO z!s=I12XhQ4?!W>9;44_1!FLJ6-*zpw@sj+kZAbyy_s=dF-~VA8;RU}O_@rza|4_6UA7PKpKI=T4T=IQv;AJ(eEM7!q0{;BgffNm8CoJ)e2mxW6Qv7B z`DVBlgOMoqaoc^_RBs9GJvj{S${+?vn)`YZf_P7x*c&?E%#L;dylCKZEYkJ=VQ2oK zL<$t3uYHLd9A_S!vudB0%(>oh)t8O((7ETCXP*DGsGr)t_@P~VaGVYt0)CyyL`*F} zGWjz`K;c<=R6Ubt2_T-gtWmp$yYQbKY>%B|i~7BU`|v;lYFbR+Le1i=va*;NyJo78 z_SOJ=v7c`e47ygL#RqkQ zqY@Lz-}WW8p6$*AoZtqMHw90Rn%CBb8^t|aU^T324O^y8I_5#!acJF#mKL90uh6s_ z`!1VK{y_1#z8lX}N2Lcu4N0t+uPrYx@9600qLUD8UVOK5HCmb)=5{@r7(mlhJa}-nm)DWH`-jAlHCS>7NXlAJ=v}sT6 z^B&xb-r2G|SGOW-`;ve%R?)rk=FOYFG|}W_+j>mj{$&2+UuOmP;@P62C9lyVTFK7`$#@u%X7=jU!(CiwN^QRAqAXtW-@gF?;@UjIZI>n~ z6@ZsLEFyQB}}G!K+o`2$M-hhSAl*&wnTRj%Fo^ zA$CodZ@Z#t2F;>HgQu+VUT!BuMd68EETUjxVTtT-oqBN8t=^yaKA+1l!q2Fzj9cqX zxNf|=+Abv`;}?-rt+t&LnyevE0p{e^@8X9yN6?Ac_47ETdC&CvdU8ISuV4lw36f$j zN$ig94!gzSpFS%Ju@ckZ`;J-4 zXlV4k-4B}hCls9=s5K$(#$|UpsQ)cJGjqsBnrBJ3CNCNq8Zg&-8uIh=1Is=+Vs`O9 z5fREYT|kFzO@;HeCI{?96-+b!fIi0w1$xm|-o@9j>-{%_-^JHQ`HhTEie1$z-m`;I zx4252r({ny@a?DvZ!WQ3zZS~M(kCVnOycLH&OU6+n3KCEOINEirOtcIf~C{B9V)m* z9Od-`_yLYZ_btd4_FV(*1wJh-EHMvy8PD>#eR=|76=dkQ6D0<;xW27NT@-dFm$N`| z%4$eJLYB?`FbT&NNZI!m0P~W%0BTefCOn6c_@?-O>3H*&sA9+GaroZyq88PxLuO<% z%_w{`S&WJrs^8u55i0}r)G#7fk?y$qanJ2*X1@YuV5Uon+< zbQ_Q9@|Mcys1JpH@QE}M$h0(Xfc@PI6jX(;&w4f_?iSI-$q#rHn25r%jDNV*l$ZT; zUtb)10%r%1Y2DK&o?_9qwT~nWX50?H7171De!+7*-P633){RTK7fLTQ-5EwAbaY&0 zxuE=R;f|yVKi;V+vp}1FVc%JCH-NDtLip3>iXuk;Yhc#ImpqbNXxMM+ZHAw6!mqRz zUUy%sq5e+J%VWuTo!nJzGgAvvIuZ~9flE8Gv9S>e>SG5+ME}Pd5@RTjG3*M++N9%z zVcX)h&)M61XZs;j6(-x7Hc4F(@2Nx%XIK;k87t3CYt*G`=mcmu$bedcKuD88-|!cK z8r^d`VKkU26#_0}2t8%Ksj93jbKFo=V%%@?zMiaeWJbrMggg=#PnV;14`fdFiX9ZY zjzDDjnf=Z_*7~xgvD|jm-^c zMz!l-t@4VCzt`3#{`q4GGTASyQW)RjHg!1Y(zu^Zv7MPM+@YaQcb7SB)p_0gs4m%0 z<`L3P^XBgs6z_6Z4uP49|LP%<@(~YS9YvxdlMGeHd_}!%vC{8{>Ame-N3>f+_lt9C>24Z(7j7hblaq5Vezfz3ylsTx%@&2y~68)!wG6B z;M=F>3APL_UYof-ND*6af7=eUUmfTUdcM?xMaLR^4jn>C45;LN2r%oD zg+)_6HOB>%W&1n~lo-T>VrlcOjoXO|S9ja^dE?+%cXV5fCDshA%KENG>w<@@$b3|1 zgUIoZ`IGPANM&M;q*AJ1iTyEX+c-|JO=L4>XZ2n7=lieso5c~dr?jeub`4&R!f@L{ zo=TZJ51`amBg&O^QudE|2HIa!Hg34=XojaN;fQ4m5=GetY~ev6*#kn&6++s%BR~ra z<-(rEFb1ZE^LbCs!^1FrGl;Q}S1}-`WltmPm~(=lufsCXTB60SFdF9eE~^M6fgL~3&;XT(qtj3;fSYH= zu@6|Jbezb5k4C4{iV^j!ZOIpm27Z^%gi+lm$}CdA4v<5iepg!1GG&ZrMhwxBpWyy8 z+9OQ^z5fNxJ&j<}P=oLYf}xAC!@Ag0SxR8ag~kqPIvv;Zfr{SmdH8&o2KdWH*JU9< zzcJqdY}MDkG{i`;`+yX3hEcj#7MkdJL3k3+5`VK_3g!NBmaIi~cob5lG`VAJ^_(1F zzQDftR{jV-b@;{TrZuoQ#|D|>F81>;^ntN?@A;Z3>shbk{>)l)?Y~z8lu~xMCdy)7 zehwHWoBnGm1r5#=BYyB3X-h7^bx@8!Z0-hssp}0kI85%AIWQ_D=L9vcn!7Dyx~-8c z9H8s2?M{ZIF?nv?ighF0!nr3VU1BGd>hoB%bcQdG7e6bBz0^y#+b^uH=1cSVldr6= z8cN%rm=h!{CCh{uokpuOTpE1$Fv(9EF{1q>J*-VXeHj~JE;ZrM=smg(ZULP4+dkhc zy3I{rwh~_@@gSWFp2ja7P--Og*ZsT7j}R&0aJj8)GsTN66~VcgZH%s^{Ow)Hn?s7${bj$T{} zq2+mzstPQ&U=uWt?5akx2Zl08;QHFZPDwcu!tJ2fGdG9PPzK&A$M9@WQlf*U{01dTL5E}^6z{ob56A-@l@CWS>Vm!l%o&?Q3mA35Bgrh!pQV($c z3Ox>3lLuqH+lLA9_tw@9M$*s3=4NPs(h=6_4$Qa_I@c7X8#Xn%0=0{pao>m?G;QMu zSOUop{e{qOitW6^fz2ky`}*v#odzCb=e@0$)(l#d6hcDy^RVaAcYq!P{tS$FR*(w$ zzZ1Kfn6|Kx0op-J9qu?|;K_x+Al99scZ7=vC18Zr% z02hQ2IW>q{cw6bsa5Zw12qk{YpwB&gQPdm)+c7JJbHf*#)|LlfqxQB$!1H~S{C)53 ze4{%eZYwJ*hbAXqNJ#~3lwMt3{fneqafv-KUxQql!d^`f$g(z;LtiDLAK_U==1!Bf zq=^KFsNMbKy_@Vv2cstr3$=Cc@PN_$L=Y9sCkZ_5QoCxtygA`y+_`Ogu1VT>^Ymt+f%)^>sJ28= zytQ}F@ff}J8!g!1MxQ4qMu>5Ut)9~b5(Ka_SV5Z4VSs{YMMe~=)t=A5S7q1@JqVx) zTrM~HoSZCgYs&$qI~f=manE)`O*#_e{lEZGX_bXk{)0-ulmkOguITHGYtrUpB~ku6 z+XqJcmJ9n`6q!Xhs;VuvXfO#0J7vksFO34bXMbVHCpz%EA!j>NkRt6LZ5xSTQ^4Kn zOsBRj^K_bjZ^JT2ai)!b9jG%kNEuJ01$n0yR8M7OK&U-f@Iu=u)!MzuY?kV)_)QeH z?z332XJ}nfvY=<}Rz!cGvi);PIkChvEq0x#vSCE|+mjIVaHO%U#6@sc z2_y-!fKl{dJ+E*KZm714DHXxDj><9qx1)d$a_(EaSumNSw zxWrrC)U=9^s{jQe1&jhlro;g*X#|oH_JE+^Y&`IvumY|*fNQzP{~yNA0xHVxZTED8 zA_CGPil9;=T_Ok;B_Jg&pmZbMt$>nBgLF&BkOC^5L#LD=pv2Ied(iX$&ROR>YkjWu z`cg78&+NUQz3=?|)}v__u4zq7kZdiru!O%%mawE3Jz#r2VL=Emj1{#M65QC~ zdEDM+U69LaV(6Bal&Yn!FaI6eFNpTi!^Qs`tio+>wl`Jkx!dnn^u{-}>eKn-3u}(o z-Hn!0Cxc<<5yNnI;y$BxRw82fM+WrvH~ku>GILLN1>)}H@E$EJHn%e!p7Yc(JHdPP zE1kJZdb=vJu9<0u&^y4s)KQe<3quZQlnDsNX&b+Mk%n7M_xo#)n;pJIyc73o(M7#0 zE)=n=YWeo@~hzPxnXB^wPn zn>^}fOwk~?iHUw!nmcjIww7xPAHS_C*z-HzoLo%heTR>)Z*b6+E@1XDs2e70owiO6 zH_q)A1Yt1PT{S28)k$s+ax4bnhWm_X4s`x!CQWmGlU2hHl!6Lu;mP%cUU+mg#4|H5<%0TB>)Iz)D1LHef+h&q6W9xX?Fpp3nNpbg7miVd?W;fay6Imp(){|REbraU6j<6r)@^b3_01CS!P*o3 zq;1^Yb%dG+THd(7DA4c?6p#ds=t^Gj^`x&**<({}H0X7{;YDl*&V?5JoO=&@uG%RP z9$YNIQYpyGFz5sI`u>QW{N+_FF*8!$+n5&DBi7AGWvOGHD%T6&qWs1gOPp1JyG?X( zkpjx&pySFNN^^HY_zVm;C+mb6G~;j_t?YoCz-?P;vqg7dPDBWH6%EseGd@~5&)rOV z&z>oc5C#=Bb?K`CR$vsg!=&E(rr^1O8zNTJfthUc6MLX}rd#byc8-}U+DVg1wq1P$U4D8#bpuB95D#%90WQMt7j zjYJiyZ{8eia}nP4{PvD(7YEf0Z~`AXjAYk!A=ufnCxP}2jh9kUZJo6)HbZiH?3N~{ zvOVJFx-Nb9tnXNWnNE(uz&Y54$8mmGO9^lokx%P9WN4!OE>Q2OeB$YH8tg?-$Ozti z5Bl=YYT|yN`*X3^q%C8giIqs|becY3C~|Y)48aPeZV6;+)-WO6`|KeUFCv0fCH1!q z-ZKsB60;9WHfC{Jnh$7eF}Yv$UrkF-uRdI_?Q>u+7xL?ZnaJCzzW{o`T$dP#e^%J4vlQw(Bg)qU*ID7%aSxXdBRBVvib~W{d6VAdR96#q=76B( zl6J#x)KrY(L-{@|eQ50o5BY&b$!q~@qP!U>64}yP2YO$>uGw5Cak_7-)-=V1oQ%^b z*X+F>|GIk4p#E?%@~GhFJrZGj=j#&POg)Hq?Ct*bJf%%hlHbc4{IVIJ8mru4N1i;r z;SXLd93M@n!d6%PZlenp7dE&4@s-@N_80%${5+!ja3J~QVrK_>avu)lPG-{aQr~LV z`@XzJscugVrlAA+N1`J7^bGp++GQU{I?Xpud}SpDbnn|1qdFV}j4S9FTi;h2mpU}? zH@KSi>kMlj5oBe0yk#D`7}M4nc)CUA5I?-*c28CW{;&VwiSghlwI8~MaOFLY1CBM6 zs9wBy5fK$74IT%uABbsaXh5C6AwXo5$Z~I0Q*X8q<5_=y)5^AR&(jJl6Em~M+GnpF zn+4$o=@5^&UnglV)ueAZhbL(GoOG!Bs>#kWeV8Ig6RC%pmN-K zXGm>--Kin;_e&n>PuA*YXd^kH=l5)->@IZo)eJNGBE@o9lGmlTZ!}PBkDj|Vig?@8 zTQ2UPrclmPQ0ohW7I91`W-UYOnIt*uRPVlIQWlZ(T8(Tlt*cw(bnWL0mWZ50HE5}A zN6P8``N9+_H1Bh#=&m`p$&OhRuOi3zshq<~nqg9`hBXtRN#b}>PuP#?X?jiWXdSamn*+{NWO=82 zwy-Hym=*?MfRtv<^cKu9`;x@RSC7h#ZS2U^d7?Wq_^guz$#o`a<)REsnlu`g5aASp z@T~N#cNZNPg)aQNbU1g(Z6*!}7Ng8BJ08KEGk>?tPqHZDq(j7J?4#1EsnQc;k`?2q zix%1mS;6+_1QJ*W#_z_>5{bdEw)IRPk6dYv`0qC@pVd7;*W zDrU;58Fb$?RM!dbClyTkOq2<^to?pbG`8G8+L`-S8fEtrx!@zq*e7$0hU6r6{2bcc z@N9WCFz=Eu#TR$Gxnf7N^Wk+v(RCbdnSF_-Oa8yBD4+oRqj&;#h|(88&z0ie*y%jQ zpKK@&$ZtXRj4rOIA)tfP7o?FbfwKvAdQ0+PBjEOXf!b&URmYbke$q9D6NO@@ z^R8oeMu|c1dk<~r+Or}YC|9ymOEn#vNOs+9U-6TR*8|brJgLQM1(Z`fkFcS@nW9C+ zzPiDfzQ3?kH^mEdr&WiojvoEvNyFJX4)D(rz{U8os)ISMoNg=t%|^1s={{kG8jpfg z;%&y7!=E>+ep~?c{mWP0Tiw1;LHM(!|8>1_q@eez>kjK*$F#tX3v4BWywL}@k6B7~ zvE+4UZpE#dJderym+^^hOQH%k4{pJJf{g0NZY{y522^h}_!Y%Iy*+?K`IlDciZxH4 zl1=ZmH73brUrRi-P%IN#SsRKE0$PLD$ZrY}sg$$R6#==5)XV!3=VzBJ39(< zGWk;|kgRF=#q&&d+QfT=k0~mEQ40~)8kYQ^`={=iqx#&s_*b|MT*U|>fX4&2&kp;9 zHE^S*jz;qYk~*y z?%Ly-ujH5bh=vP?G!ffQUrLax^zOUB`BS)GdN_LXA-ldA6$h-mcLGNJl&on;@PJLy zvp!kte7uAFAmYTyA8%1?b#o4_F}gFDI{ZvoBknQC@-R0ZjRIfjsr&St*9}YGCLODt z>CX$xI?YYnqb8cF8$P(2d(ev6`#}NzS0B2QMnqdl1yTkXb};54Py@6^o-%2B40$`nlja0W&0OV41ej zxr#;&c|RQ9_kcuZ28?OvC5A#k?S20I8O;iUUb^@a`s{5vA!uL#ZDT_`D3_dD)?@;a zes1nCiQr6p zBjg#pq$9HH>5up`<5jrz?fMuQBQ9?56xsA~;qFwI0KO+k>Cn);7I27__m#(Y=*wC} zoGM+o7c^`B0RL`$R~xXNfF*!(JsLGhz6LFcjK{HmW&@dS8-2gX*>GfQYASq~A(to| z{VBIFy zv0?YT0{((4cQ_`O;?fJB-FzJsdTz{Jh)iHWU*t{t)OYW>+VV$QhEYhNM^A5eXUBOZ z?|aoNtK7-N?N}K(rF3XG=KIArM9)@Fhat7A-d}i1iDnk^-k>#!JzVYBnkpwY?%^-C z%i{lnI^GZ&tx~#n^Km>G8Fivie3b5jq5BWXWW&r+r&L~(bNka9?#IU*K2m>gu$P=I zQ|w41TSd|AFrC-l@ER|8LHl%WZtnHT{*u@RCYs07)+VFlvXWuwk=d~@2Y$GPACU^i zqo0l1MLpr~Te|fVOUEWj&H+_|qlJ%f+ANX3kGAHWPxgOj=O!to3s)_~gjdh_gha@r zz}EB0^#3*0efp27u5{Fuw%42=oQX-|?rrD}Tax>(hCILmdk&h>C&h1(*AK-SQc}Et zCDyYFGW@nTG%X-m;9v8=9{uGA-Q4dPu{t4rFSlL8(hFm9-@C$%)9~xp7xsOoZ(h-i zteOg{d{%Uo5W{wVexh~>FDxnRDr;nQ@uwaZfApRvwnw&LYwF<1!$&e=;CaNp zNi+(bQt_225BH6*5NwrO-PnN)zU;nzt!5$(10lF$j%Ii)LN^62M9*uz>f8BHmE|pB zrRZw$_3PEVmv4~-h6+80>ESamS|rfrirGe^d;&;?Z}Tc(%daAxhy!BIok+=j*f{-R zAN#H$%I}p);A|MyK>R6D=$DyZcAz7HoRD`;-9f z+m>D3#;NtmxDTx(Mkq7NlxX~H4gPab*cr^%4eoe)zf35!vo<7~Q_CAZ0mxO-lnsbx zJ{oOVYveZ0HtKCO>OBEP!ECltuyku%U#f6fv6ISfT}BEL)=B(bvi#MJYbFbA9+W=I zGHUwA|#$92-Q zR5!cn>LGYqD@6Zoi%i0K(fgeV|Ci9aE{3;1C|<-3ZJpbxZ#7`%<>mc^Sw^{NLfc-r98wUH^pa{x6^xGoo8j|NkH!y=yJU4V*vp)uw$i7 zCodGu=>>;Vr-nG?_r?7Vp14xzVI1KNgprAbQm+afnsaO#y=dI(X({b7ZCDQm-T;rH za6X@;MF4}q0*Sp+efosl6(uE1ylYrd>gSh1;cF4@p3eXJCK3ZaH5 zI#92Z9y}>a+@SH%sMg^teHnC1`4p(xPq?k1^gDTxYPJwTlr@4t1C??f0fNr z3Fph87qKCNmAuzA83E#gs-C1n5mlx!o;0*x*qZKGo|3T za3zJg*+7N$;c(@}8#iS1`DMRd#4bygVAPI%c$j zzjNw6M^h}CpniKr5Z)y;RM4jSxwxkoG|`jnpm#pf;3)yOvpQ(Yf(VJ_2a1wixe=`# zz3=4Q%#{0RlH#0Uw{E}DYN@Ej@$+-7cTR@OcK9>U@<7C#`Ph zA>}bL%@DSsg5h{WjFrZDm3SNxnl;iVUREmX3M208!Cds>zCy zj5h|%8Wb8$f99;|Q(3|@F zqFaJ#cilh#7F=X1{Vs`vPPPG# zr9-PRv!WAzD~lp%A`;ZB8edA6YZhB-63bsd_;Ckhr{vd${7PMQuOWPxC)ZRj_Bs6g ze7OAz#oj%2&mbkL%pUaN%Y>fV*a;#yGH=DmTYET}Q~U=y_dC9J>i$%|WpL-i{@l^w z-a4_7Ia_%1f=|3<|L}qPhO76ERyd>6y`J&U&X$k*x{0w8llf&&a=nfdVJH~vMPOX= zdZ3QIY-$D+&=&o2MMP#05PQ?UTuTYxVssy9Z+mCkMVkGVbY^gP*@&}$m@xMlF();& z+3rF~cWZm)9irC#UfTPl6^aX!2g-zb=;2WJh9_ge1A8K_-xkd`5&XVP);46+fmlz^ zz_qn{wa~xX{(Aw5XZtzvj4B>lk!+O$9;2uqQ-P$>KUAVF|B{Z}>k4hOesiLZmyYfO zfNu@#x>xi`Q(!S(tTRd~_XOESncE&yLLfqRpMEG>efXm5S?T_2XH_G`PnA4>sXQVv zxukGD_uTNuDF-J;I?Oz#oxj=AWxUf~7nJxm-q4TU^J6?bqIp7tkmorxGui@J`Pfzb za}t^U#b)xOZQV{k_qv@9>_rghT6Xw`J3ghmn_I&n^X`{8%f+g|WagcK@nc2>#H?eO z>mCgn4jiNpqK;)HfO)^s`7EO~p9S}Zf&m{LHO{PO7-`5e;Ix-hww(fItyVS~+AMMq zqx{*s5BDbAYwGT$K`$x`)Hztg?blKORMeXZK6J%f?T>ATO& z`4rr(t|^=vUU+qVFZtd&m+OM$S~Nbsn|#A^$_iJ{zS!V)?9#y?rz{#bNY$s+6g-tv zLG?3v)JI$#b7_{f$PmcH338-K$VUcOgttKg&_nQ1WU#u0>1DdrHh1$PV{`|U)yuUL zMC_|uk_LvKv^Tk5 zLh!#|=Q7;Aw4KA6P%c*FKA80pZ;&eMW?*?hh=1i_*;gCo)dH1Ub%{KA0{A=5a9||h zqQNA&do>>uM^rAU79d$Sk1(@20)@&lgL3DpM{50|4drqU=B+}8^E~zB$`wu<^#Tf~ zK5}U_Ew(a3k%rSHhGOFb_241K%VRy)qSog zZL{rd9?;^Vh9$V;L~*$%L*!5Xm}6%pW^M+G!5yK+ui;Ou)$~`P6(+2voTt0h)CbSR zCXicUtF*E5KZngePXNJsu^fI@lt| ztPxI~JIp=#%AYzoDJ`;x>Y{Z^_-gf>2|NAg3?Baa_tPG$mN9R*uCa?`v_Io-(z_E* z_S3l?&7)jSGZdZeL1glReO7^B@P7Mw_@ZPrdKNVSPH}HRqcZEITvGJK)591((POiX zh?jQ^y0tEr<*HQH@17&U1B(tY_!U*B^7mO|kM;Q!PT46L!3N#5^WUr z2nRc)YI8F55HY~gb)NnHJgO?YZvGr$ZeIDRbfkhkd5?ku0CR!o~P z%pua ze~8&7WFtzaE@Cx_K9%W*!t$AP|JTo&{@Fhbsh^P#g+YA}(z0-{qg;L(au<{~WCb^t zNj&{C2E~r)8dRGwb`(x&W##ymDeZZ9=rt?vu(5c9?Bp5`p$a7&XQ#$nqbG@TL*B>v zt*c9}T*`k28=0yw4FvR^NE?@)_4h{FuUo`QoxVIXQQv4yOm-LQkFj$t`(>>3R3Gm~eFD6|yMG3^qSXot!x!lVmq`Mi^$sTMk~XjHT$NTv#8f&jFMc`)4}&^(A(?W8OJY91t}^8k}h=5-v#(ONq2SUEHd|14)32{h_@FFsjm)RLQW z=VgT&<6wwFSYZS25*ITN@sg;xvu`lq*RPeIpX+5Vs6o}NrqnZL%KL*c)Tra~jqfNo z&qH!-Kq`hvbu1}uHQpw(It@gYw2YrhI;>nFn{rp~y_Zt4{-???!7d>m9d6PG6hC;s zSYF3CJVu0peYI6Try0tPJMN*bw=P1l_bv_JcM7b$m>%rLh(1)g3v6?th45SA+9-nO zj&Qk596K>ksDOdeN zM-H6b*vY2_?rZ=vStIoRhg0df|10L_-G)Ncab@|Ose~{hZ)5jOc)eqJrN5C_8k#69 zg*C&S@^;1{%rO;xN77j`yU+aVK+ERN@FCYl_D<;0Hoq!;chVtR)YDz%E}4w{xneM{ z`1FZpkC1QQpkKeKRxcdCC>U0o;ROIDE0_BrkTzTJL)mEsvJMw%7z!+bXy_UQk!{z}g$x8Ee%|dp__JbQAUU0}ly-=O z`ey4FAo0Vpb;TEqog^}JmrUYGp^*Zxm~HmVZgRF*it>^vSLyEy2!(=fy}L|wOO-Q* zP>BOiokzit*?4U{pl-TzC;YGJz!P-MD+8==_Gs1EDxz?pkh0=Q{o%kJO9UkuQ-EE! zccO@X6IReSdi8Vn1)Q!`7#Xr3EKjw>i1U-VKku<{K4^(BzTz?wJf7jfU z6;|!rC+s<_gEg9i0WNPw4c!lLX$JtMI@-JBU=7O!9OxK0WX|00(EbS)T6xhUmZsL* z-iBvEJ9ytDT*SSZErBBt)4Il9)O9&4|74TZJWS9aEiwPb5U)uXO6J-+UibQ8-mTt` z>L?RBA*XAOD8BF$!T5N=KSR`4arB8r(F|rIBY}9fB7!C@eYp!X@uO7w{Th#RC0E&FZsX*Ox_-A$AQ=UtT@0GdfwL=%lG(x`R z^KtIJBBrQXE}6dstx3S!ByBo1@_(c|*}-TXw<{5v6LdNtKRGN(s@>RacsyBB@lIs; znKP(9U}3L`s()KX)AiwaF8~2BK*$1H81v2rYl&@QPc6zHU877zdDnUSMog3M#F{L+2RaagYA;vajqlrBW`aH z!G|0?(d`X20XL_{n!{??zpxkF5-E6-Rqrg&Zo<@;tM?Yot`V0Qi^WjYu4q22-Me{F zi1xMiTZej7)~fizFQT!jy2-55N#)^ncGL;gCMXraZ{DdOVCxeJRTesibOXuI;}(uX6E?VHk4v zq@djTrK)7_aLAc7Xw_vhUfm*}u9x;MFi;Eq*_CG|otT?O9(^0+JKB{+@y<70DN+&z zl2r%xHIFRGLy8oan-_ntwe?>Y_K7<6>Ruc_!O0s%^ZmbG!L+^vjrX8q+KmBSLd6_(Lf*dDYeJGW#?9~Jd9;{ zuttf0h!Fem5621#ND*-a;bM422ur<#n&t?3U&cJePwBQ2@>-?CrdhE+%`mPpD-HiZ zm#6w6J5Nf?pOW6ux~6RMN=-SwO*KX>gURD9uklhCReGW_=WNoOtdwM+a4S9DlwN#Z zSa`;DdO!xts$L_ngka&$%j6pt#9L@-LTz!COY(HN+QCL85J~TmP{Of``;t~uHN(yP zneC~tF72*dO=1keDiSpLWqlVh>6lA31@tPrCmv-$8WZk8QmmwwgFwLh((q+%>Q608w zvq67;r`ja_TW6dqolP}_Z`6zk!m?k&wDy3Px|uOE z5rF{$0d!q^sLRGC{*C;qA^?=(>R0c6n(DqpY??+y-DR{gy=t zy;z7je=TW`C{BJEn%{?^t8)8R^CAdxA85e zAwGjXplmzIb#7$`e4Sziic_9UnQ{Y}ZmN_Xe<J7YzM9dfA0#&^gv`dR$)_46{Qkcaosvz4p4+JNz!1F zkfRMdnRv-LV};5!rpi*`Vn^`6nl?U@>wL5e`}>;2j|_+)6##omxO2gF_A>(>f>AB6 z>rg$9blXLIB)R3ow7k)dX@TP2k_7VJO!PG2`pZNpE46!bfoBBbSn86r?n^R)nv&sM z|3^_1EjrFXsqsT(j-yDnPe*XaY~$!KRn#iX+4HHeb_a3C-L9iM=d?15ba+&mHFpj! z{K1}d0lr>A>(Y|a#i%bYNF+znp1@2C4f}118EL=JgCUqEV>9h(HUClI``(c!UZ*is zvEg9&AedoNWf;426G*gqUEaSf2MOW$hUqCd!qn)iLx%^7NPurJ~EmFg{_q ziYRm)uW{W2ayp{i2G9g^<`%!#y2f{wCSA9MwY2c+hzT0s71aZ|kH#bFhsp)xgr2}( z(?3E4n3hVoJOYTtB$72+0E@g3orn^QP?Glq3x}ri&-AVjs(Jj^R>?e|O>6YQeC(W#?xQ9O7cCp6e+QV8l zoGWwiK=iGYqa}1f%#Y9yS*eNjbJnD&T(SBNlZj!X)!n`o8~$M>_{{ZJ<9MSqlM|L9 zX-f)C5C0shqcFvv9cl2v+f@H72l3v^w`aP^im>iC(X`*_#S80 zuE!zyuR6U6voXSnt<{|8;;T4hBeq}P6wH>`EtXz6ChJsg+b8w3^bWJ#&2^P*E16>Q zGNjylgbC%ipj6H@Y&~$&K+B#LbSp;vpB{?-`O4z!$OY259+m9cKwaed5oO#0asG;> zdbgy=?J;NU?ZtR*=d|yc9AkHudZ0Wm>shogo~63Yk&h?%eI>j_Go8|HQ0tgcZM8tt z>I>$sxP7S_;}?(3Rh>$oQl=wXAkmyPZu|)RgUGznW!}z#i51-{M7NysHOoV4YHB2_ zsnOe_ry)HmFOlrZ*K(E&@Zie45i)c|1n`)wd1bQ3$In)b&&-9+u3{5ulnjaPAfiQg z!XLhnPaerCrd>;XG&l@XHC?Nefdl8aHFdz9q4WwoGg7@LifC~iGoF+*{@wdZK_WGV zQm(GG!_$@#iyMDQlewkzh05MovKi*?7Do_3o|>g?%F< z=%}=>-@fTL`QXMqX(A-@R-B`7x%CVd0T+vz{2fes-1PTH$=o*x-H)<8Dy3eT`e<2t zgJ2IEe`asKoPDPKROqepaQ=##Iss&6o@ZX`KEL77wU>cL&1Ri)2Gyd)#HHgKukGcxZz3>%^Q!a|-wHtWupBbe>g0l^uv_qTWyzi?A_>KQ#h0j2Fr!g-C*v&GX?%_kUVEMEi z;BQ}9S)uAIEiLgHEh`Nx4+(Yj2e+phlpKV)WiV5iq8}KaJOxnFyy(Q5gHHd#G-{%# z;n30?QU)oLTprO~7XK|x-LU`m`~FgG*hwdb<((U}X=%q2MV~G{_bQd34hmsK6syq9 zK7O=wGVw{Jv*SBd2WH=dtWPiP+9JwCsBK<$Jsqr}B^fpRR^^V#7eCyur2O`MjO18i zs9Pa&e2c2-U)(WTH}Vdk*+}lua-FP!-w<(Sz0hZIO;}hsC^U2)_!6i(d^8z?mX6MO zB_lR${{vO1e^r$rT558fOfqU^xX?Ghrf4(b-h7N)xZsoCG(Kg;BUnE>k3TJv5{>{0R8)Q?9) z43kW{xmZ2MgaAeUUvi&M^^A*M%IHqGQiGLSODjuwc7p4=`rS<4$-!rIpr2KYr#p+8 z(_B)iKokZ@T_aYy5c%!7x=+8+>Fj!smS4r=(rDkwWySIC?9^rEy46Gzn7ej zZqMo*#CbXuFufdVJl0+nP`MQOo~Cq9{B#ux^Fr&(QFaQ`7Hmg4!B-(^`tg}0>)adB zQf3|83A)H{eras#x2D|ZZ&49{`0#-l;rK7zmW%vb;N<%FzfFfia9N8g4-_kTpX0TN}xsQE6bhnEe8}fg78V?>t*t6*YP=3VRdif` zl}Dg{-~1PZ#2_49!ufp0e%EaRw}`PS;{8UVS2^az)>c)uUqF_pc<_K=T@xLcfo`A; zb)Q#{$YW5ssHmDyFh<*yMfn;?-T?9tOlMYY-JL&ZB|m>4>*XZ@3i zCJX<2O$I?5{UQ%ZE4v=@9eCu27$079awW8Ly45nK2de5lR0G3vr%A@6!7`G#rl`JZ z3RzS{zT^5x-+*w<3Han7nsr-za$@lEKo{HvrKzQaF+%EB>v!UqC!Y-G+Me`p8`jtU zdRW0&gW=mPsc*?4;t1hAfx8|cI$AusHWs9-7UBa+&>kvV@1L~%$8rMryyoawNfv)} z;qTjxnGr$7G8%U{t4}5b?vFNqn>ZfUzB3jn$oGoN^Jw?i#c4y98#lI5u#+l|np}0l z=>@@*g2U!r`^m>6Vv`emN4Pitk6#EcRO(~!^1Q-5o)4prW9d)CBobqF@zTj-I80|V z@O@GIE={0x_VgME)Xu9W+XY51K}weh!P9#%j)OW0ZP zwMN5Jbh^_$0*Mzm);QK^WbaHF#5h%Oe9UGmDCqD!!Cp`N)jXOq0{lLgywT(o1agQIsMpU?JWnWdnlR6nB438Yz& zc2Mh`gqYSJtsFb*>o0r7@_A1oa2t9RN)N9(q=GcJ?*o z>490C7~RxsDOdOPYDj!faI+n;%8*4PL*o{6Mqrb9&M3^8j`ClUSZ0u1b3urchoqX_^WjRHzjf z7)7i@dY<1U7j$Fw`P-CJl*Ha}rQZ7Umlpn@q7Rn{s1xn&kPy1N3*rn&p=0JTAb6?@ z5q{9T*;jb*zzZx1(18MMxb5fPa$7Od3t^qb?@T(zzd6{E{`Y;^ zE3N14R|_Jda2obWA@l%fQJXy~793*yQjY3o0mrmLXC{cV8fG+8Wh&L&Su}v z;dijjz~vDbCA@kM4!`!xFuI=r7OlSq_2iJ{P_=I(4Or;5cgMEs2L;ey)JFciIKamq8Vc zfZX&pEjG(Vum68{9@#X{0tO!3Zwh9k{U(XmGfxjtbZPq7#g}hP)2@$kFO@2 zo$jQu^l+>z#?Yd_qT})yrFdHS%*R#?)NFG5n)brNQZs#vooAs8KpP8m7^gvxV?h|l zn9rAmm6LUvl+1o#^iEMLYgmP#?WU?ESE8z6Ecv0s6y+hAD}gqD|H0Y7x8BAi$^2Id z2Om#^cV~p9F_>+F8AUkRkU+uYo<`uf+Y&*&dNmF}oXH73`|HRiA@Y4Z?(G(??&u|KjInfowE%nWE%Pv z1C#FiI&S$mK}xOxd#ylrtvGUl{1B z4s@)KZ82r23)=L$n3!akGk`ch#f%6^-OHml~vV z?Tp0>m6?n8T5JeC&)#u>)>FhWI<_@P@(PO=`8^moB^ycLn;ztLe6e9duQ_!M9HeoU z@%Sz%D*@`jn4YDtQ$0S8=ww@Pvw9P4MHeck?`vn%rDkT5|e72`C z@grN<@C;ixKM=`QgK`J@OSuI`)>bO$AJk`t-v&J-m`RGO1Cga)r}e3z zL@z+h0sQc!&}J1F5>YA?!0^#&PvGcc%V7nE##)I|8TyB0sNjd1Av)Z`eAD%bg?Xcr z73mfOdd?aYqsP@*zeJKzaENofgdqdztDN!qvOB`XwxMu_Y&Fc#oEMAjOf9;Ho_Vs0< zi!uZ}w;y8Q09aFKy=p#A!t+FL`q6_+7bp-qBJs4@n&KOAXGd6r7w<6$@}F0~2fn3i zu@%b;=&PiNv`LsI>YUZ~&a>!z!EZc;BMzj42g0e4Y`4Jg3HYqO)fd$*ozEVKbl0s0 zwmN#u1pQCVHXBI3#hzpZ2(yYR?PA2#CJM`tm>xlTD1w9SE z?nVoYBU$DC?C0g?hCq^bFu)5vbry&%;Cb zUD6=&b;m}05VA8ag6P-(9`Q%Tp^4K7`OdCK`=>`s5=XP=JZGwxlF~CWaBC;!4GgZp zR#@_w(YGM|GuF-}5%=t!XTmpbz7P?Fcm4_%$qL3u{QrlwC+;ru>Q#=(0Sdh5Xgbge z-_d`?NKKGU>F^1s1O`G?diMIQb|>iPZnn30k3*MkBs+r+A>s)*;jFAHl24tM&Vd7aiS^7m-D zo}eg?HuAWqRDM7p`KsRZJ?VE#3_5V=`U~*W!at&U@=WI0kC@vJW4&##ye`dQedHbKUD?swhgVZoltp9!L zlHc}Nb#?XH6e1oq?J4mINyv(J0*ZV7XOWVQU>3s~>F;l*)^(e8Mp#XYJFZVWG&Q|p z*dB)VZUHmFX7PiG?XZSPiN~>vIe&cC4e)%z9NDAo$Fyz_V|Z@gcOQ(-J5Hs>T|j|L zn)zr}mAfU%{5n}hFf_@NsD)=qm0hzr&wN6mS!q1(Ax;jx1qc_{jeq2Xq zD#H&1MC#Y#S#y)NL#hh;VJy*+>Yk%;|?Ko&l(h1Ve`LdUuh)b4;udLx&K*t=97G;wHxO z&Vl%8vTqt&`%!FJrJalLFcRe|%*DgQbIbGf_QE0l7BAkRGiqC>D#=L!d2XoZ+_p2y zv973x|9z5^ZqK>l4IAev-&2#2BbuoOyD*1a?Cil1dM-ZM@qqF}iPL#dOOP!mB!%tl z9M?aWi1M*HK5=W)lh~-Al42v>KA3fzLNIKsmcIS;e?8;d6Uk1V5-ch`wGAkq_unpB z`COsBrc&) zlUxU+*xfa*Q$-(mTlU?$7le8eyaRixd8Pp_(Aw%28ZMM|GDnaiEhHjhI9cOh?dVux z&-T92Ei`nWih7Gfd@rFT}zlg9@*RL1?5j1e0;;XFTvcjZ)3>584nE) zU%7Rw^Uk*gTerhsl`&);i|z+2Spl<_D7bm^t#6kecjNRllboEK zwSz;sy&ylpV^8jxo8RKpttXL{m4yMA1`hzCc`;;NtlBm9gr?=Rpf>fn3^Cv|vSIYz zwY9YwQt4SFvKYa)mS>q-AFk!s;U~tXGZ1b=5{&q8>6#x z-ltDE@S3b`Y?`3PsHCiHILsCKEg~w)56o?FPnP}kwLsZ(%l+3FAKOJDa3T`JW&hgI zLBZp)%6onZB?U{Rda+*9Wm)s%gLpeGF0Pk%Xx}i3(Ta*C7w9__t7v#{K_gT=Q}^}!nORE1DTd& zz-E?maNzSwIu+lTti?}RV%=x*JR*m&N)?O*CF(SkNvj-Iso)yd)YdAgs`|rjMeD|k zyx~|ki7y=u*y&tCsI4tu`79|dEjsAK$_}SX z{`U6#Ad>))-^9OQ*VtB>n3Q_9OJ0m!_!7;p83tZ#Aq+EPhLNgPCC zHn+6so0tSfMP00eyLJo#^5@PDy@G;*teM%(=i1sO5bi0iE))Kx)Ta{%4{xs7pE!n0 z>S=#}e?&}-@e21alAU%x(}7jf(y9G;wf3wPY#8Tr0m|CXh{ zKc|CL!Gq_E3Fy_#{eS?x1PM>ZmHq{>&?xM{eGL^o6pP7{vk50hSukWR_j7$J- zdWBABWmTNjZ=NMs0w3Oq@gVttHw^C#E(U_NT+>3+7|_$r@EdTiU%w9jR%Q=+102-F z(T4xlOKR#ZIfL0sufK~Q3gZGy!-piq|HHNM?@Edl0W0SN19glGeafrQ7J!hdQVxbT zijuat;0G@7<#(-o{QUP=BWI8Hw~T+q^IHISSp?7h)PTxDvw-UMhkWGrdhN!?ooR$C zs$@JnJNqthRiYkU3m~EKSzcb&adwFt2#gF2#DA)+Yy%6Tq^R(f&s4BtFXv=D&6!zW zw_M@I1Klad$M|@;0U+T{X6=Bj`_1;Yy(ntJPSE|}4yR6CkeZG&ZU=;+%cQTA9|26> z3oOPe&z?2wabM=(_~l6zD}9v|e(B4*_D)VL5)w?9n3xeA3k0O3t$;0ha_oX&glXmz z8%zDeR;VqEA@tXHB{l{Y78VA^?CfmBw-<4+|M8k)v4h5ID-hO8OowieFbH3qnwr}C z)4`>GhxXmOcbFMZgHuv2(~G-}l*y~9QQzj}m9u$ECqM>Q<@QbkB#oj0zhsP}FKPc* zUsoE`)D?wa+M*B?gQ1m?Jrqk-(lpYUfPi3&vbt1783YN6EsKMIh=QRh1Ph{~rGk_- zQd(#XO9Qmj5>U(l!Ke`sNL^SeG$Ig+krK9kuhU=t===X>-o5vn?>pz6d%ok)6Gs<$zA zc-c=93Hc3}?r6i|n0k14wBNnEjmxz`Z)2?PWrQTb#l?jcc3U52B?N0YI5;%r+A!24 zBfiPN`VoBh{hF`=+;YB0w0{^1*s`5l7TzLGVMyfhXY#kP2vd-P44v}>YPA7TQCUgR zES2q>n?c%@g4ogkZU%+)&}Z^12c&15pduK4yRB^)<^dR!4au@%mlk=1YkFmM^#{^L zUDUzGI6Z{0sEB%?9zwX6DaoZn>fmgIBNJDEKt@;Hc+Rkl9fh1PvCSUBU7=tCh?p-Y z(7g$-vgm6#W=6s}IyVOZtZBK!=vD=j4PUn9`Q|axw+dTO?$h>ZpT#*5SBKtX7|=5^ zbd_SUzbX4jMroJ&jtZT}>FI`RsHxWah;vu7*=)4nMnp0C@dxGNQC4_rLRaHv#Z;%DTFyd*;8&)1PLGX=}2AC;K2YUJ+ zgMbF@kGRHNfr0Pqr&^ykcly-c-kzmRJaIx_DwQ@hXiF|yZDA5L0F>f;=sXl?$F#bT zF=kMM->%BN*^gg+=ba;{t8?_AC5`T_?llBn8kJai!_Cj<_%ql#7g&bw~$oTk5 z0)U@eDF&6JV$=%t`YB`MTrPJhe#;u>LHFQbi*J0&1CxRI&&S4;D%CkSm0z(- zfA{FX03WXG7QDc`F&OGF*xbTVmMK9z z<;_^2N*Vre^u>!6gqN@H$0#yNmll&D#bJUU+3j-q*4?|6^zlv*Qgq0=oc#KZBW%Jo zFNG31`K0Oo=Z^MF<~GDBuo9}F;nI{FC+#L5*bA%sVSh{V3p-p3NvWpQOBdEyd8t=&VGtsp?Sk zMYyp9;{NyQ3IPe-ksl$Ry8usyqPmnII8IKKKTlVLl@>WCP_g6#wPAW-B4ZO10rW2< z;e~~TN#mOtj5i>@-l`dFO}5DKDNpq&ztw)(RzdAR0EThSM_aN7g{P-SZYq_=NY|Tm zsEJa`lo>G2Z|mn~XSwL--ME<1PDXPTPqARfwJQUvLoNUi{qos*VzHQ$@Z99lqerCy zqRRyZS=a@EK!8MLIS!@;vbU6%F2)=3I%6TN^|wxUOD5A>e`>f0O(bE?tz?)*8n(nqweb zABM5;i<3vm!3ft6HCqByyu7?vP3Ov+bD6>C;z#e2S1thA5TmmRxPE~9>c^{gzPawA z9>)6hRB&)xwpCkqR{!*{{BIP?rk_Q z)WubkztHJ)1>9#`+25bJPZVIoV$nQ3J^Sh+=m?8wt5>Hw1T|RO+Lk??vtvYDGT=1^ r<%2*oqL;zK{!2PuC)WRA<&h;~HYvEMd9uZlz~k+?t`K(S literal 40997 zcmeFYWmuGL+ci9NhlGHXhzJNsNvEVrDgu%NqSD>np_GWyC7>XUl;n`2(m8Z@_YlMI z9m93q?{+``-e=psAK#Df2Rg$r=XoBr?`vOc?e8?zl}QM15kepkk|&Q9o-QGAkTiV+RJ`j8$zV-uE|%z(oig9_u+nAY`WKAB=pNJWB{9^WzhRM=w0mwx&IO zUW`n4?)P=4|7kM+_=oW4d}{&6PaRvM_d3=WW6IXr*d08#X-8#=F)(lFVY3C$FFfao z)vqirR(Tew!*wT!@V<5&Ti4zA&)jzf-B->Q-`-1BrH~VdfBk#+((CM_1Y%`Ikj4U* z;q14%mZqLZ$r3^?htF@ac2S2RhY#LlyFY)2)Ozyp zG2dtYh}iHxP`{L)Dct=daZKjl2oIF>wKgI3A-dkDCjT$(Q!H@^6Bu9DgZik7Uh&8{ zR^@}gT%|{@@#u}sg0z#h$1&%lec9+Gl%pK`EjKrW-|Uw|j}V-kiD?F|Mu|Qmd#Mdcp;{PZpDu!O4nrvnVaZ`vrd{Y-g3cJB}Qn;jkNBsHo=l$z04XE=? zV>p;ezSqCW<>cgOMeG`4Av&?x_T`Brj$A~Ue&C>FFrz@D#DZh(t$+M;S z#sM4jyt!nR-&pAlRe2CNUC+W*SZd(%ig1l(Zhx^;&<}Y^+E=Py_5M#hyP)HO0z}wm ztU1-b>Cdld`eX_B2axFK=qZOblJ0bgL?YgXvY}NWVd25Cu{G(E@82<+-&UAbjC-BC zdZick1dg4cRR3K#&(bFL-AZ$}?Vxv*BwOP-(HAprsllJQv@>D4XO|f1L+dUluB<+f z@`lRabltT3IgblTNlC#cB3cB)aP`OKGi}8#C@An)j23YaPoHw?;z{#6Utd~TVLGI% zt*zxY{Mo;Gm}u=?n(OG?OioVTSxiZ}H8?a>yHQYxc|i7|=k4OO`|L8a=3A3eeVr!BvLFkrxfcn!7|IDg%;giZ9jX=2K-#Xd+`K{&&pnMGi4fZ-~9OTqnFEWR21>a&UBY~rtfIZ z1v(614QR-;@cLm4SgjY;X~^dZ=`=CP}p;qz@5)kX{08CYu?V0F@5NA=R&XFPqU zslan*L%j~wc-CxZijI$@j>wU#G8CwDA`t9uYd3>iD_mGv&6U*8>B53OQiv`RpDt0p ztb9z5qP`6NC(E9;<1t%MH}y&8@T?xp1(!Lq{|?Z*qU?9R&dLLbTeog=5selN#Do(E zs-?~is$Bfg&K4ZR8Y2?0=ubN-rg7`tEIVOWjn%RChK8BKDhzn*7-*QF zkeGj8@&G@IE+-Ur>TwFY3QjcsxJP4=dwpy2&ZA2NpDCsfvfRyQ+I7Og{`vFSY898* zBZyltRUo)LEe8WB2S>oOoXR~KIs$r;R(ku#r$nzQAoY*l%Yum}#ttWK8PRR~#Hk4- zON5d_eQ_w+tu~SGn%VwA9878IwtX`Uxj}j!N{}w8fb0dK}Fjo5Gp8K7TOwD#292_8$ zLbSCn>NwHEjMdg|8UDVv5IM0QaYMg!c5T3S{QkTKdX}GK-vI$xVZT>`&*$e&)RC91 z#%!N-{GNMuJQMl}UO@_qL-i_5+Hki|D~IN4SLcF=&Z~{G-5-;o0Rn%s&rw`;NhTLk zExllSi)G$^?!z^PN}C(5)886>9>X-^b?J8^c)G9rSR=d!TDUZT)NgG)ult-W@()&1 zH?cC}QH*@MKPpv7>s*~q%~k1&+WCp)=BN3$-+d>?Vt{+NZlcMqU`_F#Eg>2xG%|d+ z=AC$Wx(e&qdH5kI>tJ|@aFMrCGf9f1{wqGjTwW?f`N+{)(LN5$#)rm$Q1Ux_Kf@kP zn$;v^e2_BnMzr>oXe(q?oR<4br{?=i)LDe=NpQ7ZK}B?r?w~hY zS2LJG6GxI@rd~ft>d1m)@7pQ|(ThMzE85}t0PVuLG-s1e(uj9~tHLiTc62q!wGSCX z_2`)9`z!4RyWzU*5}!Sv{9uhZZG)8WSY!<6paWho`_o=OkPLG~K8FNC;f69)yX3*j)|DQ}X0av>rhd+Q*VybB_->9pRWKH{m=GG{$ck9Nc>5d`DRokaa z@uoxfiU)NgcF>3KLpnJ6clNLs_}20=TgT07LSWvzq0{wj$afjnJ3;P9P)&``U)s=v zWor_TlXGv>pv+H7;Ru#?AM*n-1{xt<{!WCpZr4~#`9l0pgGaGw=_hNpDcEoRbMDVE zv_r$0!<_p@S~LG(mo^ddHgU{roMs$dmpr~(uq$xpP>0Ohr*K#pdj`bW#7^@LX28E6 zx6cPuS(^@X@E{cxEvcIfsvn0AYxY>OsZjapyghOv(<|_ zI`BN|n$*-2`hKtr#!rdXILs1m&1qs;9KO@y{F)@E5RdUUi8ts#yhp=&N6hn1naWx} z-bQS%#_IaclkEv}xudTEqydxFwu^O}C9G_0IO*!0o29TFS2eJ@@?pd*ckhNcF8(U_ zy*Qb%&qr5;U#oReH{E-LG+$uLhqrbz%Nu71Be@iyL~D?jy1JeD&vHO$wLl;NjQZ2v z{kkOxXKSi9{#lNaXSK zc`lJ5Owx3U`78QRTP1X@HlPHPNybldu`_me4_TmHm?Y^bK*_F-ZPFG-(r~ttYBTjS zuGV?=L`M)*u}9ATgvu{Ex*t<&aC5%Dp?;e>B4>K?@YCAM=S~SZAbBoe_T1p!CmN=?aR04Ko>s z$C=t^g8rCzvV|k>3ks4Zx4xSFgHoqEbqyVH>fLw0m6XI(Rz5WLT&8~Tb1ukjH#sx2 zuQimYQQChs-5sFm!)=;1#oeY0JE+Kf$ld=GXYjYWsNT!2Qkm(2meov8WW;pI;%D73 zPy)$2in_G7GqACm(X6JM&*#JX)f|!)_o~US2P!J{|A)%%=H6&+%w%>mMtMT&k^S`y{fw2K?{PQQt0^zMi#0Yav ztrhZ=PaD!Y+8#&Ge)op`Qi_NScHNx&mU=X1qttXNH}f5Ky3zP|S1mvn!~GryM+7MO z%0{ZXgy$SY$Ld_I!{r-{0IY18Y4kqZs_2XHEeB^Iz_dcYtjKs_Kl#lug^f2+B}NRA9^?Vt-KrU0 z8=M*5J7P^|EA%_{yV4sQ8&ldX;BbdT7EZwJI9t&P7X}Fy!>Ruo(RP^ktSmb$juouW z?K_wmUWBL|tA=vp9%6p2P|bn1B(L)PC^lUqM=YWbW`fx1FKKp_A7cNTH+i9EzjaJVmAzL;_h zltXs*R$W@J8g1YHg%af#j8fWIyjrJVA2P?yAzRxQWWkiY4vS4$A<7>c>=0!WKDL8j^w;Q&824o* zzVx`=r#*Ic4m8Rv0LW&cUCW5XeF{Tl3i9=4t`q=W z1}y|E3UjAB62*D;7jE09BCtRb`rG{F;Mo+Q*J)M^WUPTJF@}k~owWh|)5w@G8sh-C zar_>8$aO{%oo5h*P_nmP>{@r~8sUHngxUw6XC*9BVff`}j`)mJilUIm$Z z^3Bt?B|s^0PGpcAnw_@J@Gr#NS!-%!$dFMa(sZrz9d2FB8y$I7lYlw*Ul8(^GGbe? zxX?8m_Cvnvb%PrhEHf(bt;mb3rp>p&v#tp9!;7F7C?7zd*Ud7zd z4E6tsuNWB46m*5e3nSazv}aMcVn^dW%uf|xn3Ro3^6zuJm%wH^>k}qiRU43obKULv zZR_swQ^sm?(Y!*RFQq$4ka@7~=*8#1%qmHTC$_4nKGshoold{#KoTmmhy&?1L{u0} z)!xWTQ)jQ6({$%^3YG2pVY5xk_l>kQNjyK+V8Yeb8%bD^H?X&@`%;GoS9@7&lcU7j zpYqCmPTWPDolF{E!re*&EO(tcn&ZX3T~(6sF?`jGOMH#gzp_FiZqY)%nfR&>pxZw3 zq|c9R<36)NHI_$XnN}Tq1uRWF8jcDTxl_$q9#)nba4XDRBTS6n+^ZY~rkh^o8P zT+RIKXvZzv@#3#i_a*tk!1DU==DPk0o*rNHm91aQVmNe0QzI|Gd8QTG948?-Le|8u zhZUet_SuaJ1^Fvda;ze2Wl%Jb(qlF6aDpXOAYHA;!=Qi07rWCKe>Ghl!)%QgPyW2u zT7zM3Tz5fqF)myx?41N*wp_%?6UY{>9p*TkD+@GUEk&3Iwrxp0XSHFWab5#4A+WNJml`5&fs0Yr0oUb?}5A zHC`N!<)p@bI~=7pYWG;AT3P#Vsl5eIot4epv-yDwj{@|c3498Wzx2cQ3x&cxb5%8V z%N+_BHu{0}!(pTKZY~{&*|ueo_KK|`853u0$DYs8K8?zKJvHIv;zvbp-pFhGF6VO1 zEZ}Qaw+4@qG7pkc;T)zlB!~s}u=Ec&P^GJ{)(BTV7-gSORQkWRTlnW=t zk_>+njF&0rl;9uc-%>HxcAfE>&D2fIS^C#Q009FCfN6J@yV#>efyD-dk!LSlMpY3$>cL<<7wk&S@o^ zb>oDtJ|QURN?|38v5bYGEkhaz6|GS6?GNaB9$)jRheEh^HHzuJt9W|8(8$D8TX*=B zGfIDVvT*dpqKmkcpIz5YT4_TfeHwWov$wSKiiwKq%y_gv>?adP;) z=vuTj{Qtyr7vAWF^KN5P#XKyw(WRN5)~bXI3PySd3ByVwyt1{w9ja*ztxbPjAa?cN z13NSE*~IH&>F_U) z=-_txq2<$>9_;`Frh&cnic57xq|!_ZDf~!+sbuC?+c=rWb~}J_qG^`_qw?czQH8Hx%Zx**ts$&Bw%*(>>+E?beI6`Fdt6bVCBMs$OqBo zQNAerx?G`CZ*eL&$@CcBXn>~t(2Gf}PW{Z%`oN*}ki3kb zI9Ah1VSKW168bqnQVhSy^uu8Z$-E|+m=9BC6QKbtEk)D;FL^lbRh;OhdImKO51ji< zllcFK579IrqJa|EySGUp=J;XH@NdxK`aqDAv#4L|d6~VIdFj7~G-RgXJvZdAe~yln z7kf{o^(I)m)VX=B|HyNFSv$$NeIo0YQ!}t0k_a8GcDeu+DWjxLQ2-#4wbb|ZoI}YQ zZDjFe>!;PYh2Wc%Y>bW0Yk)Ax(i`$h!0a(!PJ2p! zXqab+EL5kvdJ=0qdPb>`+OF;i*H(T}h;wh?HuI>UtsLk31>eTfgrpmCr?a4$O# zENxi=W(9Ykd?(Yo-un;qiZGr%xC8V3!s{6u`op&(&k|%J+lp`2x)Chl6o=AAVAkO| zfCAglecClQH#ci&-Q)5Y-dMuP!C~_I14~Fq2%p`QXtn+9jQr^9;MyK3GQIYu8)nDFUU6B^WRs3!ad@OaS3sU0tJY3B3;r3UceSpJ_-2 z1;|bAmw!PuS2eeNdq%t@QFZXzx4LsapD=iI`u0p7n@^F z`wG2IJ|X%>@1(h>c2&CZS-g}1^B>DBlL2%kcMrdj0&Ud{$>evG?3iVyZMZW&hibxh zQ@^Kbou52;vcI;^#m)VCYpk4crnI~~?$<9Rgrk}o2}C%RB(-OBsB~!4(3Z5l8ex7d zs93_sV~6{PHDenKJ_gqcKJGOR0G9({R*G(8>pvy^JyU)#Qc)4{8Nsv zM!i^ua-Mn~l;2Xn;HL3bBd8mGboVW9+qmTGw50lv3k_lq6A~QwRv$r#d*I}ZB3b^K zOMM0Yr{|ysBwI`C9j&qqRQbPzy_efC=LfS@V(wwqQOb!xV-xH##nWM}t) zh~~l3Ir3|w@f~i}Y6%KC?2O%}$TvMH&K&m#TW3dfcUNO1PAG0!?Jgz|%*z}fAEULd z7rMGY86AQ5tW#o4V~x@MLjd$-SQ{tzyluKXF@O-`VsYt~EFE<5cFsHSd7o^NwlT~8 zFEpw?`0k71(jh{o1UC$>iLm1EnT^^`Ca1sT?4s0o(aopM=5v))H*C~fBz>h5MpVjZ zm~tPwhiM>$NM9cyW@UVijh7Mknj>Y!&Hm*ZoEy0!JLG_F8@pqqsoAV&p56h11RO1$ zdBy7Mstjc7QLXm08k-*Hzpet9G$XO)OL9C`(?{*%qGn5LOzmTQe+U~+?2q}>)U%#R zP<_R^3wWQnW%wJj$w{3|1a9;2Q+oZvhdn?a%vefc2rdo|KiEJ(YTH0{&pVX4Zt9?U z9j0jsR@UG~Z^Xg4dFF9tvRs7mLV-(FqF(>HEPryj!F$m(q0lzxoi^jQ7^yvtK2NiB zeuNQAQ6Ad#U54e@|4h!b8allUkF9Xpl^RP^DuFS%ZU1nd5A7K1>Z+sK8b0^>@A$xk zSyEiQe6b62XWpHKWg6AH-JqfA%z6|I*q+ybPe}9Lsf}WkNEj*9)zZ~nEg`%qN6dh$ zmEHO3cL}4|uulCej(dWZXVzF=_(K36`yb4}i2wgq^V8PUlm(P!LBYwIv|Pl@h?{a$ z^~bkM*e<77eSEr7=k8OPf=RJmy*P8`tnc;2@5DZ`Bt0^%nYTdEv2i0$gN*Pncs0G% z(D7OvV(d2lhQXRT707{nZ~jtcN{fIM06d44l~qJc%*lFVC^_oQ!(@P;HB5EF;9@{a zz<{=+X$)k)Q-)t|gr1gGew8wLHp82fG7{wcFzkbX?Ts&ON`QTwv#7e6Lczq+q8@>< z6q1ewbdT+FJ)W03p1pBe3#vO}fyFhVL<%>FruMAy5Ijszi=~1p7MoUb*ku-~hh}7V z%d`%D%Ri)MTHAa}$a0>94e0dyCM=loJyu^FW~hqiuryz((Nc8hQ|rXGevmDG?Yk{R z>-Q~PWHz!jzk=WSG~VXoac9yK-4AsxJRF4i_d^fAIk?P<_)Z%Fa{D7NdpySh<(wn0 z>GQW3InTIGJzh(FSAko7E-5YuzSR3uFgoH!`(S(YIZ&Jyo6O&^0T|-27;RGg(BW-2 znax>;6t~y*ojbh@xUy^graR>Mg1BGWe;u!Rg9_L{whxGk5hYee3~`dY%xv6KQZ>b{ zUkk;|grE8ZLGSAsS>LEO3b~cy&7L~xAQ`C%yA)PU!B$kvg3IgNd_7GQ_*^6sL>ezc zdT|$8OBFb{vZ*RxmtVdd@wGVwD~N(=U{xjQC;W~L(_6PtS>01-?RygR8xq{V9ljTb zCJWBLW3OENB0qn&YC0tfaXyrpnFy0(X>Y!ZrWt@{im!@B|J21`OV7efor@L6yd0Oq z>|qD`A!jeOYnc7;S(U3pV3tF3k-UcU8u%>58k373o@y-7}B_ zgv76jt*A>r3-Sg8Q;{)=>5sE8@&(cBn#y=ZKe9~d@aQZ(3Le-)m*k{`%G8Pprt)UL6vod$yq@KM*ShHZC?28xnRWI=! zv*W<}p(VfpBa+$e`MtCY{V?A{qN%o)@YN~hHh1qS_|7yDjWK?0tw~MW6^eIj91Cs) zci*OwOQXFDG}~?rs#Y1BHwo%A9Mw2;3*E&+TazlLqnBVeeG;Yo?rDuLWrhv@(_Bym zzap&I$va7HEHWfmO~aCKleOV)KnmE*5by8%Uh;&Hvtxp4KEkg>=k5F)R*kdA%;m$a z$wkMVHN-5YgU5-~*k4TdRAKYBXSSHkSvuM#rDd4lCtF7w;!r014my+4+nwA$hQHX^ z28Xuwh#>ST03y1LzNWM}NC+@*c6EdJYHhtyDytfQY}sR(*<6cxVn~`Bee{L@-WX3# zeZBcnXxX#X4{7yJ4a&#ov%moWVp|Eb{Nrc?iJH;NyCSWK`z6IwfU=as{W1W zt&O@WZzU)pv+INJXE;>7sh9=tUE7{My`|bcD->>f)0PFM!W(Ly85*yCaCtaVH{nLp zhRdUR;mvOY=%L#{S&ESUs-yGM8&yQFbHjV{HKLZ){;Fef;vgDlj7Kql>JeI9W;eG&mAwcp2+Ah+@4Wm} zr0-$~=8v7^;$&}n!rXJNBDDKdGW?doT~;&Ld_2$9atmJ7jaUAfU0oL9r&t9et@A~k zV}Gl%ZvkW$UhyqUpJ(FiK;Y`3EdBr>5w>u@W8Q470mc3ye&BJ>;g#Wr%$350;-P2P zkF5v08S}hAxH%y$_$ZN@I96s));GIP0dK00t9k#RGfOndZB$7Z>Le4_H?^$|SyVYM zb0Fq-)W0ac`Tk}vW|qY~_wWkSBY9N@@Bysq5&nP-`iLD7eUT5p;d^=I<#SVD!!UL+ zABq}XJbhVjej52t3I}9j*7TQQPy=dKS|sS=SNfnBYm7ZVc+2R?d73epr@MX9sM-88 zD?l0?w}P1zrJmTjP7ur)H~iI_|E|TZs_hPj%jM(;lhIy0P5T1!Y;SZOb{@Ln-}K}- zAyG1MPBWsNrk?6TH;Svt~BpUPUP8~hl^;E z-z1BhA9btPs>M89()-zAPx@L=@a3pm&J!Zfr)hr{o!NR7HU_JFDe^(3qydWC>^^Wr z<$+E-)fuOIIkD)|P7SYQSUXBuU8;5O1Es%LWXq@g9toR~Fc8L^0F87=vAJRLm+I#N zp{U_&6NeWByikEqOVf&eW=n#YWqP7Y?@sm;b?TBs+D^F$$`qglD`bk-?b6#mp~|Cl z5r4%FB8gq!Syj~)vi^i9ohgm*fa^o%(!v;b^~{0SC&YnzbjF7iGH2LI zv0<1zla8~#dmVOCi@gPFqM|Do?)amlhLCI>eJN>Ou3~-D$IM6hge+c}P%INIEy`J6 z1fyI1bY?6lB>C8cNz?i9sX~Xt;WwO@U4gPd+s&C&kzm1AF3t$ytmWcQ($dT}R3r7Xxkzw+=ZoFXfJ2mx} z{Gs~?aDb;V{4L#Cof+)5>*8Qz%M--jW-}MF^o+eBc0w_D0FO_Akp_Iw>buRe%a6$J z1BCbD&-yySygt{NA71Y|&39#vFju3?_xIZ79GY!wEDdUnT(t{#rye;RA&?SPO-xn# zlTN)KOzw%9i$VT~br}%K7jS8AVwtNcvM3-<*&uJ1=IY_XF@u!dym%Tr&fvY^@%yz#@4r)JiY5_EFFgJ zd?8;!@OIm$@XPq= z`JK+=`Aa?rw6hvO`v)(jN$V#lFpbc6XKqx^ar4c*@%G_5A*l2V}k);K&*J+L`z3m+Tk&y7r4JWPIKpfCG$=l(b$z*fz? z7-dC8QSA!5Pr5s&a2 z5N^IZ(>S*6Hd>_DhE^m`7h})hFw}CaG9imXjaa&R8l%nhO4GLzo%&vaK53$%ym03w z{E*O=_tZdK+j+H2>OE$N^8m1JrPhWxJli;DfesgrW*y zE=7T$}^{gFiNVW3*of2#v&jPbns$0 z4CX!|W)%Nq4(yT@<36oCm(Q;Yl|XDgM>*^1L-SrA{H}tI9dcTba$o9jL$np2JRVHo z-(N&kp+>#Ji39WvILQ3dTUM~(SPo9@7zwckzpBW(fkZup=wpWb=RSL#%>GMNaO1^c zEsf*O?F&O-vZkY>8y+4eXJkb4ajm@i_OWmEs>WEc^%LG$({K_#5p=$63QdO5EvV7< zZ~~oR4k$z`J87Ns=dWEve=dH~{Vlo4c?XaE!Ztjr+F+no&SXzK-{?1j$ zjyn95PG*sxE2bgkvp>R>`*hDnF}$3b>7eUyvdOx%crAq{nsmun2LPjmM5gAvOurNY z%6ogqaHycqsY8@fPUjhLsLU|OQp=sb+{Agmop1+$Ca*N!*~*v?S{h`hOwGK0PnW6@ znG4}5k04X7G)4M2adGSed~Q6T*2%iAN6v~#Y-e3fb#MbDkT~ZOH|36aLBPuNIUu+~ zAz){nGN^f1bzo4$=T?f>OFdk@b%LXc=*_a~>N1v32>kZ_i9zq1^+AspLK(T(^nEr0 zPCY_A@DNf)rHMgTj&es@O5_D&^gY3q^~33TvSvwNKiMV&Frbx0mbvd*c}|8PL*3T$pe>xmZ{&O%%yE${44EDvveD}Nd|10tC?hxG{FU}yFeUmIwtmiz#`vw z`YHSj<0t3bGUc~@KTnA>d|*bb70WKzsrsY1Tc@ zf#<{23wP|2qpfe78<>B>$=Y(C?CsP~>;tO3qOWzX#n1Z0ag%IUAD_Prq}!cY*er9+ zapWv=MFdUxAs1+1bHK8`y}5!vP|7iXgYkjn6utEzKzZf531+2(ZtG>A6JM!5Jx=0X zbrGE~x;?%gLIVx?uJxtvmYkf)xImHs&XHd-a!}CsvLuuoOGO5m*)k(!JMl2XA9dDb z7e=1Vh!)p>Kh~szygyv=;QkPmou#1UMG~Em(0YX=oARr_iTV{CY*arNh<9#&N(s1+ zl?tY2G^xvLtm@$*3ViG7#`RVs_n}hNoe%1_1OQkF{^!ad{%>i2)?a^M!pmc+$Exv6 zR=ZqR+v^BoH;xJ9u{Uo_9?IE0=*}R)g+;le4W0+%{zU%!9W-M$!iZ9di@d^W+sR+9 za3kfXPYK1-W8hH#>CF^i%LyZ_S-h3M!S;*(!oy)yR$oP3V z-?i$6wxyIG?6UYKN+~K}dlDG32>gLvA)yatUVi+8w@DupZEym{F@DRzyM7mwvtH@5 z4W5EvJT_xxfoM~j*RfSe)45gC#f}68WtEs9=+^jUSL1!TC9&He|Mcm5jR{T#|D4g0 zIwC^-t6P#>=JooDle#tu6t)6T^ECAtlnNGItOX9USL5hnVk%KfOOvJYr2Ck@zkfJ* z5GEMXeLwd}{L6~BByn+ZOquYJ5qghaPq41W_F_5^UD89!9<4%bt;SeDpQguyc@GQD& zkoJ3@t!ZeuwG--Gu3vnYjjd{u)twuxFpohs=mrsi^bZd!ynIPp+H_uUAs7I{v!=Fo z2fcm6z_PbLI2T1m^(RT%&HuAigHJD0C1U2NN5rv6&sms_O}}qa2#)-{U9-z}SD`wU zO3tOEsVT$2t~PXI!zw#F`@Bxfw>3{H0Q3rp0z{+Et{lSv?1=5Y>e|{U5Tw0BTX%lw z7v~pjR86Oi+pJ95!?q86OF&rzQj!|zma(+7Yyhq{Lx&ceZR1qn<$E^wTuV#d%S&7r zz-(C*#*cBEhKrqgL(k>U#*wa(JBJAG?WeJyq`4WYnn*|V-?w~<7%Iuuv2Ss1*Tn^wf1|Fl zEALZfC(N=2lb1Hd~izqfp7gaEpqZv6QLK z-i5Z8Kk_h(XE?KJ#<5Ozm!t+qmc-)J}EidqNjxZt0 zxR>|iRWu8CPpLt!VpJo!^C$)P*`Y+kue7R=h;o|qViGz0d24ASisL~Q-eu4RVs?eP zM4rQ8E8xBBm2(RY&1vO^@V{xkvQi@EwP`-KdW@%|j^ZE1EwSgQ@fSei#<$ct`0u*6i4yARt z{&MP7<+CBh9u-$+13lD5KlTetOVlfYdU+H58M8|(*!bmz>4F0Ad4I(CIfkU8Ow@5$ z)NUJCuWSq`G`?hooQqN_$y84Ru>!Dz?qr4VvlY`*0B|lh(2s16{K2&nMJJf_(2}C6 z3M4JxYrL`K8*mtu1aJT`oy-R1yNYvS^n~7qBO_s zQarqbr>bN$$E#Y%K#x=7Cc~Sh$6y$@B^gGGi{{6#^yGbz&q^BuNLHu@6N?endrre} zQ~SdVp!tk1jv1SFJc9zG53qNXo_)nDD=Yhe$K)Y9`iruaY~tiG=RLtEf=(QIwfG}e zk9c^oZhN{hwFIl*VKcAod~g#`7`5&t7MGhdS)(J*D=ltbuqr^o%A;>c1KMc0B z62B{+Mz6|7az1b#8~`w6l{xT%!VZ6+rOR$$zNlyK7DO)P?)0j~sK& zFxtigtVRg(9bLg6dir%~@R|1*CO_AejeVrvKch*O^y}5xk$P>T*O;s81qsH>R6Wn> zdsXqtgXfq69CsHzGP8&5HzZGA!>Z-+S$zJ03i4p-4}@F4^7kg_=8j(=VDXX#G?VN6 z{a8~Ynw&qXUVe{CNjI5z!Ao%C4A{2V3TjckD4L%`TtchYGySW7V@TPO@O+=u7g2js z!!rrucTaLvlY`$Je>5(B1t=S*a14#nE8u##0|)>Kh8WT-(6XS=SH(DLTU=o}-Al*^ zj5Yv)XI7Q73JE#vG6=di3ej7eN#-e_+PP%vW05o(?A+smzk%OM-`>=c0P<(N>tC4w zZ1O3VvYg$!pi9md6cp^@$ygkiafOgYVCFL>lASENNop>WMQ!22kL|{;+H@ryMT+3O;A@Ro-aFE1^f zE|xbctw7$(4p&3kgj}pD^rxH;4B?JZ^MG>nG(u=)n?3oX7XzAPe5GE$X)%kngy$;j zdw9HHq9NsKle`=t4R`sxhYxxLhFo&PN@b1>-Tr{?Broa;a=A1P5V>k>#uosiK0XHX zm%$AV)KV8?o5RW?56rj4Py+o0-9xMOZHd-;pG%6qyGxoL43)C}ymT9@(YP2l==Dh) z&nvnuE;M@SY&$vPWopGHi7Bt?P`?eFE3ULJft*Hw#+(>n3D5wW>BY(biC7aioFD>k#D&ZUVVltk@NuhKa{ZKC+N5nha z3Vlk5v{k_(gCfjh_u$n44h?E=T8TZhC&YWJZs-2^qPhDILyE{(jTtb!BlkvOJihz) z--i;>9Q4bR9gnhJqNlP1;L`1iGq*4~5AgM1sLw zVd>liy&RZbbr5om`%yXAzwTeymop=8n7gv!na^zdp?#LYg1f);jNV<&#Xj`A z+IIBi1s#I;URC(Hpf?xT-e-Jrp}%z;vbly+?w8`k8j!^mjC`Khd&66SR!DjGPm3Bc zqe?93?`h{{(6s70qp0_RnQec6?=RP0r;MConwy$CS5jk>vZcyy0T;Hg&&6j6WR-h5 z=zfWYu0W($Qr4%t*IhvE-HmSU<@G;P0c2!^AG?@0-Pc+{FUi^7M14HXV6l!IwP`)A zQr9Hpcj4%9iPilMdi{7~6b44Zn*F_o?|1tQAOG$boV+|6Rip+> z_~LnYW|4cD%_`%t$l5!;;g8M(&ab&)X=S+;F`k(_gW)c=>xm`C?4WV?9W*Qe^w#d~ z_mRmUo5A*w_3@F+OLt2FjH3cI3D@ANSw8F{d zD%vZbB4?Wud5snnU;$K?& zLVjxo^{3xqy8)~kuQW*jXz(q9!ZKLo!^-@x{QMC0vyO;q_d_t-Kb)4Io`4?XG%;tN zv)|Gz+RfQqHp{kQhKEFw32N(wOVr>m`0QV8^pO*IobROUWhCtqoDpL%Z>N>i8@Z z^FxqR(DA*8JnTE%C@ekbmDtTHxbIe4wJ8Ob)?k_>arM2@FTJRy zaN9}GNM`+Bvl-rx9N)1TnO3?%E8%TXQKregV}`#CM4fR7$5O{}1Gzi~Wc@oxW#}

5I3LA9rejys#% z)H)2V%91A0ubYp&E4J9yd7k9U|e6N|W9Dm#cRY995oJ;z@3ErYR zIwfKPc4(JDDyp{k%va4r&`ZKREoCop$qR17BSdBtkNF`pfE`n&&GE-qAS;_S*3s;}lS>G^ahY6v%GdiVXHJu| zJ4LRoNeWWzwe=z`TDhE>+3hMyU$;v_P~@PHX7zA55kBv-ktBMf>739{_;1jgkvqh3 z&+hhgD-y&uue$_kZJvR`0j#^m8XfCngK8$W-eDhI#-}bt%9DnN%vw$fh_16(&>5|X zmWB0j@9_cu@k7R`*_}Zy&`lDJ=fAPPLv{H`^QriG(u$`Su&rCaOGpw8dOnCzHf}O- z=jVKf9naatqvHB(84g?WNAl{RanBd5{OQu{0{(^sVs8EG8L@_@<6f)?~jZ`ZV~W?CZ{{SW+q zOZgJKV-6j1uv3{=n(RnLV+xv5%bG@|_~fHE^yjvpLB_=geqXE*&=BJNMr_Pxtc#l= z!akO!?N@Qx4^ZEiYKLGehV+AmTb3Nlzzi;c*JsE1HMxF zQ=Nwm zRimmuFlOnz6#L}K9;%11o+p##pHm2b_5;NF6=lxE&~TDp^$yF zFiqe1H#zuvRzF{qM3Yy{IME$Tn-D090yJa$U3ud_-806X$cq#K-MMQtcOmaFT5@!| z6}6>e)72TM-vD1BMpeV7Usy8zr)}u{qkbZ&2^m0JCwTWN9&>>=%1ePmx9~q zbtqpE+>vC+@W4c&+#f#~D6y=^e`paY!o1tm0UC62-7Y$}GYY3s{NRmb$prx@i+KnF zUdi$$Q9Sv77<&t-D8KEGn^L+ZB?J|eMwAW#k(3Z=DN#BddMHsqLPkZ99vTGc?go+0 zK{^BmhM_y(Gu+?(-}|n2t#@4)f-*4k%=4V*oPGBGem^_;JB%$gDw!vQ$UF0mP1G-I z9+=G3QYs=@d`!B|7#$=5D%nIUGn<2_dP8Ol1sW`DR)=b9qndr;v+Y(+KK;`k@9nZX z#_B&^hY$fR2g|#%Jhr0kCK!{qGyC0Rh*-(FJPe{(;jg58@sdnRR7(!%%lFs_1JX>v zkebXNy5{|mUjulF%H}8&b0@xfP7K=`OI!)VyX6ZT24AHsH3SkMY${~A1WFfeUnKThkzpn7QRrb&N z2;$`-?652A1ml0ed0%&|h>eW1Gq7Ar6`H!!MX8_5?1^WeiVrL+aSaxm)PKr{-mR_i zgiKc2b-^|MKv0qgD-N6D7$dVH##|sba53Kvd^V!%wsib2Ty$-ASAZr%G?HaWQ}=oh z@tM($g*>+L0U^aLlYO0+r!$Z`V^@ajNlAYi|MXoNKa3krBg0C8MY8SnP;S7rK;iD6 z__6*|XRT)`+k*~N=^Em4Bonhj?2%z?55%%SR7%WdI1FUaPZU@Y{r3cmW385LCld^K zA2OeT@wHwBpQdSG49qVGu4Rc>N!gyvMfqroklfVH4ad=V66JS0@y>zlO>7j882Jb#=7rT$7=3 z^jAWYEk~(KeNeCf8f?w@M*m4R{r1;SSt&szucdM)1VGizG zhnQ0Pw)T=3Zhtead?f_Ns_FI}*S&(47VwYPm4TReXBMC#PMA%BGb0n25Lg+~9lngU zV-ct`jYeYuQ6ESWOfC)#8GIqm&2K#p6*ulI=ic8JaN`1wU|_r9gp*8Gtm->Ysxw|* zD8lUWOfRWPW&BnS72;tRRpe_Zack!!ci{MV0tap*@H+VlD+=ZFIX|w~G8?-x-7}sd z)GFi@v`~l9$-6r!dfek~Mb!eSVaDp52FQK_H_e*VWpPiScSeWZ#UdxX2{~Bgp6~9n zSziPdi6A-|NJp}t1Sd>4IvU5J$jc{X4!Dl2yD_W08xHVhAHne+4;CKfQna8Nfo|f9Y-ub2zds!IqQ4lL%oGp+gZCS5z%Htt%lXWs2h zyc{1VFaQG5_O01VIa{u}ecGR<w+W*|38v%Ep@kAomNdZGZ%3>!8zZ z(q@e!XQb*$>hqtfzu6H9kOE`E532WdkJh-WPS%z;ZPnj~=!3K(d#4G`W00aVluJ?1 zHeSIOm&7fT7LNhdG*BX|K!6DfDMf{)&^X^+j-0^MsEzC5fx*D+Ar8>J+15LT$xWdT zW%C}Vg-7fpawDBJ>wIJ@Te5+2M+sB{9AGA86#B8z^OP6QX@52)#w~6`3XWm!5>wwVH&kYO8FpBY$s~bBnJSyeGmJGts6%>bnnGEdv4-1X$23O@;HCt{M z8L3V;N++L&d=mfu_oq)7U9YQu@p|vNt6Zv0RL!AFMA(pXog0%Cko!YE1lXcI{?z+2W?!i{+|hBK!*ySV*_4J z!?NUN%dXP5g0WQh6GaqINf9D$r?pp=yl<(7s`Xr7m=$wfM48NZakFuO6&s|WZ^+bq zvyzsE)AT=iJ3^+VwRN=UJn4|MX^r>}j$&wMtfm!e2UdOAZn*fy79U7_RlX+B-{UTL z^W1Qg=&kj#G1KqgDPYBCB;RoQLz6M2GQaT0c!s5*6ensS)1YlyoPk7^MP@Pgsrr?$ zC6^_LHhVbKP&<=Zlqs3hxKkbf#M41`eQ1Dks`^lDry;&W3o1aD>DN`@pzGLJe;F)8 zXUfY3l$b3t*IltBU6B+R|F%_<8|`hy$iLBgCaWk8QtSLf9N_R*`rXs~+3b2kzE{K4 zIa9m~ox3WfiVu!@wlJ)Kd$QFnvnj)K+aCCvrq?Vu`&dF^(r4G-Wo22I&_P;RJ?Hr? zK^2c&nuwjJrzNWL=SBX%R_pb_b1)I$1p|5->2=&Zy+TW% zWC3YE2{pKMQcVpRZ6S>xq5@Iqd5qH|1esQ#7G;`XlB#C`M$NlF-OQm?eMD+sA3z?1 zQl%EvS06*)sd#CQx~r0Vo*v(TS_oFYj6l+56{U| zc2>OeaXnw3hJ5?mzcjEXaR-kGpbZ58TSZ2%}hf#VvTk;$G z+fz(rMU(Xv&+PK{3vL$RM3vQbmW3JG{eX^-$BKVU*<-u6O_;&!J5_rkDvj-HZCyLs znZF6)Vaq0IkCo17-Sy|MOSF^r{NisP&T&u4X!*^gu;~7aS&{^n>BIa}L_Xbn>5^&4 zAaV>dU5EBFR=Az$pYpj9JClFRw8;>Bw-a~7B?P363v*Le2Q+{qK(Y_W2FUumQ|^hBcC%?_ z-!r*(OXt}awM(858#r&qnl)a!VlHsVLzbUttiUtNT5NZcKDP=yEr}Ws$ZZR zDfLq-!}D;k)49>NJC&O5EX$F@mBXb_9hbba{H)o;GIhI&e7rlq)847u@ec2`Tddy_ z`^z__IunBQQjqIY{vEq#DA*~z;6iMrgdE^!zxmmSDQOW?)o5EYm2~H(0i%*yPl8BoC=t11~sfERDktt_f z$V%T*3$cVLYySUPojz6QCiYskT9&#kaqn{%2p@)5D0Y7RKVy<+nK*fbtjYJ)^j8D- ziEQ79*@6@ri}&Ym*SZBeDtoYBfQs>-BC3!<0%e}@G=X8=F=Avj9X zO0W;9&*U!AmY~(Gs+Gqj7Q1^ZlmT*&S3kJEU~HPK{NUqCb*_rQ^;FoSc>@OoeXD&u_J1HF!1;4_5zx14Z#9+2I<)F)|EDDArehU$KvotIB%UwCDr3tR2{Xv}0hhX&_b zNuI>{Ig$?rH_ccsmvQ%$Uh}^QSgou)S^6X8BI&QIfatn{8eYu*124o8#yV+fr!)PD zZWvH#Zf?fI$A|hlK4io_;rG^?C@g&>8$^?x`ElqPc^WyaMawi?Y?n<%kGI3-K29xj zXDYnt@`yQyE0dVzj$5d%j$NtYz22nxhCVa97PE+LpO0x~1KgrIqv<<(p(?jFmX%+e z*`!x|e%ocvMHG{cc=xsp+xXeFuzbpN!H#n#9tFI(o;gh|)o>eQ)l^X?deZAaCsrY( zbn$ZJH&M~#!0P_J{7bbL(UnF_L-DeLR5uuchR(PIm_IN0}-iMz3 z>G!?xF(ue*wEI8&OoMmf4s^KxzwBhC1Wm7sKY#o77hy$r+YufJmVXQXyebS8k6o8f4E=B)0@g=yAN8T1FRc@%0kckPb=?M}sM3v1 zEt`GKCogXyTSy3v=CSjqt=rjvk+N*_g|>qBGbv))rsI`Xk=a#cm7?7}e%jK#b;YtR zL>Lvd;!dJuBl@ek%yaZGW>1D!5I`CLs`{Wh8Vri!H8K!UCj04{Xkxyqro#TdU%$-2 z+U|4k$I8!FUD2@62{E?)Q`MucA5s`@r9LRfVtqNr-8SnY6QdJu)Ph)VHxw-AI zP8ij+>w137!j-X|*U(Z*Zj2b2ibfinE9uy9Nq$t%{v2~iAIeaA->8!5?t_x)l~^Ij zJ%i+M!#`Q#m0tHM-8^+b-TJ`nBB@n&`?eS_c9|DJ?T!a`^^smEk6}iA)@A+tJ^#jK z6TVMAbiR41=2*Tj9@^?$3nI>{JcXjdjm6nJObCK4&h!eKb1)n1g%4wexMmIxytVG= zw|YB328J=lxooA3O@57w>jLuDc1XWeClHdh`W{Xz8XG6oavePxnK^OiLl-!$EUqwM z5OFI|lfRn9Jl*agg&$5W&3wH{Pd;nHy1@hK@(9Pth##wXq~h)Mw-x`K&^)AJeS7#5 zn_m06x!SYNP)s-od?2E0Yf4p+Fa%_eEj4F!B5fuZue74vXm=uT!=zz3Nv4Oq2RGBo zpJrs|xd+y0+}A%POE36pxV|Jwu~VUoDoAAENvWtYMNZsKE-ZSAasz?G^G1)# zPO(EiW^(m)Edp2J5j%+=t{sjN%N5>W1BGJ>H0%=Y>vI5mv<&`UFKhAu*A%dCahm{v zvn`B<`&U;NhAISv!{H!_+MOrRhB$dkP_^&v<$$P!kovp7ahlqYE;OHI0nxszr|;Az zr&ir-K49^$Xu)M!0n7Rjt-2#;ifwCcp0d$I3BFTT>z|GJ*H~5-xX(fkpd`ETLaZ$( z>*9qgz;by#;Tf?%Fr*pP@)}Q;a~{Iwc+uJ>d%S8?~T zF_DK)P4Y_e&8ON?k#>bag^j@pjzfKUq@+1IG=>B^H-M^h%Me|?H`tEe9GZ81Ra$oc zvlyA1DSGE>`-r0l-u=IzN5d%ivjpMl!ng--i15jnQov#kgx=qP5be0$*jEg1U68Jy z=68)iXP;HS9gFZjkxH)$Yd1dPM1>6h-u15#-IUm#e}fImrvq|7C{jGw<0)i$y4w@9 zQ5}-pT1W0hB9XmpH?LK02yD$&t?vB3uC56;QfNcl4A+eWD}MInHB*b^`d_GIGFOv>U(HQs(Mk7c0F0Sp0Q*6gYi#;U6x7{r|qMeX3nHQ zKGBRNr~^;R{AA(1*>T(K1YO9U;U?y&<-q1z+@Z7h1Bvv~xKzA&y*sGsVazE_j!1Hy zCUkGRkOq8ncWZ^}n>c~R?^~PH%zJpYD`jpwDlu;?_)ER~}SqL|0bE z(jg2K81YddY+Bq~ML+fDTPNoPxg6`66+Im(Z)yqEJax`G7oNusV0!Hq_Fo__R{?LYbOF0ec`p#W(QkQL{#e#VKQ&#E_HogYM zehgCa5+H1X8wzlO51_v>w@#IaqlOscnlqEb)|qA@g$L^IfqaTOY&BU82J49v%UGeq zaI^q2AiW8bNZzdWO&CihCL7(Dm827}QBS5#{z+T(=U;3RLAs$5+hW~0N}5kV_x=xW zQhsesS;sJhy`J`-d_R5awXTZR#@^k7-wwrUe;Q)r;4*EL&^s$hc{}ZNpT%UtMnYJ| z9BEjV$ZGgH@Pt6caEEA<@X+%4`EuS3{@$Glc;(5yjEnQ~UlzJUq+F{2N9>?tX9d)R zl{s9nd41FpvsGXr48YED(1^>c%ylsTSP0LKi7t~Y^!lz3n(hS8OHUUtM2S)*?g&lc=@C|?3(B#i521zW7T2SgMvnS^T6r-`o)s>pkdW_CVX%8(Oend_a#gL?avjpAsQVEoF4tAdBGgggmA^Udb&(=Qa z)E%Kcu^c5(ybVXs`Lir8Ax}+271yCL35) zHo1a5xUWi-a~@@Am%p)&Z#4x)N-RSlFM3xqM-iwYUOw3ma@mx?Q5;5AZj5&_fYF-x zl7~FlY|}Cz6PFScnI%-|Z2hWkL>(C{4ue*Z`X|wpVWA7WkTe%HVsy_z{p81%fUS<| zmYr+xR@F9x-{t%wQ;zEG`(@vr(MkV0`A+qbVJa(d{PolP{DUehn*^4wF>#_zVB3i< zblRwT`viZf-vOybQ)I^wUv{<+K!j8n$M`V{Q$z*sjM}J3Fg6-EF=L}uJfJ?)ZJ^mw zKA*?QfMjAdWlf`hE~l*Gvi17=3aBD}y^Arg^*+90_615Vp(3MmuV zF@`2@jEw+7n0NL8QpIz%e#%wZ)dS{=EJMPYg>;pCnLPnnwVY)&zh4Zev ztL%G?j@Wo0C=RIRC}b~ES&M+thwDDEuKV~+kDr0G z5KFRWA!M2-$QJjIkE*Q3O7rr=MdiFtu@438tTqAH3@At$$?%f8pKTVt*`JXpmLPo@ zea1g?c8ph`c1*BG6gpg@+}E>B5Vf%tZ^q$e(xB-1tj{FNw=pM{PtSsTp0aJ$kJYto z`y=&&Q=`Th5~I4IrozHiLL~`Jko}mr(vl5e4p2H9#F{YkiMG{0ol_cPX6i15lXQ~E z40Y(DIJb4NflAZZU+GBrH(5}h{s{jz_*P5%HtFof>YfBB$B^+S_D*~fJX_=EJ}y~P zON&s{7qk?#>y&=tlWlUxds_*jK z3kDlA(&WAMf$iZ|E`Y6ITmuL90|qvTow47?faVQWQQaQ_DS(>{E=wEoGWEqTZ1;tK?}P9w z49`gDwY1cp8Ap$cx^~1d=w(82SX z#g6)`Gv4ZS%&I53*@TRLnX!!g@ymaHXz^lT0t7^|et1VWJh|76)qX)np_M?0=}lL^ z$oAg2+E@ARDVf5yc!4{y3GhtZ`k8tb^T|wWP{>3V(Us;!5L!NetCt3gY}c~cr{8dY zVF)6NuU~7Qhdl&4)1wcVxUif3^Vl^ihe{dMM zKwjLwV{M{(WT#Du&MAB4^-!b2=HCNYQ&GYSi3JTRpJrQVHPEh+e6l{nU@^)Ln1!B+ zcJ;h*`1K~lhJ0lBce&p}Z|J{7W9%a76&;I-i%O5c5Q8``8$V<@8(e&eD!K{cU$CJ# zLvQt0TcRL7X4Ri>rK^k`^Y1KFK^d6d*vx1b9NXbt`|^;x@{RvYZdlCC$pp#dMSJnE z^xUsm@P_Qwt!77m4dglR1vrx=_TUE7gz8j-HAlOIgFKOJub2aNb(os@v;y>kGO@lr z^S{S-S9rK-J(Kea?GCNf4tpMl+9boX^ak47EIxjcu{2x#nfpiAlfcNPcx)GGpDj7& zh@bE&tsNqsNN#ZE#s<0ye8Knl``jV?mHwVbonO}zj=NIIMPgr4WV5a7v#Ytwd8dE# z0E{KaMdYazF7KTEaQ8}%4d0Ey)d9D%00`awGA-~9v4P8uHSE3;@%I{c8C!P=RlMH` zs0ouOx+$m<^!y%Z0c{rYQF<(psv$F#w#4JlP~;7TX4g#;^!VV*%n6PyefY~DLz7^( zW}wQwsoZOrOUmX!r5~yD!>G=_!HPW5q_8~wS+qSAvI`iG?#ZPQ5WnPK2{I-DY1(nS zAx>UPLr^i^HBPJrPIWf7ZCec9(PzX96m3x~hLt?s*L4&^HL%{lQ@?DcHZuuyA+189)uK$mmid^Me^(l@EEW?@47`Np)kktV z<+=JHt+k2;$A-H-FZayN0joi&D{M-=b-6eMIAR3K*eUumpHGE96Y1}@`zRIk z66JldlH7~|iQ4vfIB8;~M521aKFy!Rf7u+(m~Tc*2Qk|&vh zNKkI?HfD~U^m?VD|A98;H;?G3Fk5C+rr~;YbP_($Y?NmiqK<1%WnmC+5B_gt>}itz znt*=z3%%phYN7Lpdz)~>&f?PfduM+Q%uRg3v9|O4*#CFmvYwMnGo-LRt+hGn_GL%* zWiA_f`gmi`J~?WItl};=L@Ll~GIc+`veHax)#s3OF(rzCS-51_4jj_Qizh&Uus8ZZ zz+oknK`r!7zY)>X+mX2{u3rXCfxFw3^(1leZ>6=Vt za=I;rm#O+vg@56^nHB{nX+`ONe)><}r5m6C9-|K>2qwxe$6BD;tDijnUN}BUQVqt0q9O^YMPxkFDj>?$z+-NfidJ_ zV&mr^fO^C%C69I-EXch8*@T^gUlRTIK$DWCB^8#2le=N*nBAnx7zf!RU;w{g~FXz!EP->#N2D zYz>1U!4}+zU~|=&H_*M2@?<;f8RBIO&u?4Fh2TrOpGBTNCq-Lp28EEc0em z-rv{CD|49Xl`A(CeYopLRQh157K%)_Fmj)>CW}SV5NtCAo)>KMI8Ghlp$?uscH=s` zI0U9-=jq;J6Vx(uUd>pn*@nQKVEB?$B|i{B)Jqd9vrcVb%AFrCkn|{{j~6}VFIDI3 z?i+5tq!YD&c7xwEfQsQ$elbfyjq*)eJ^-iF+%$2#V`Itp>9n!4X4?e@FZA@f9jaYQ zprZDajxnrt<^sa(E)nUzOushpC9ysNVC)Q?^9x+z!=3R;{;#D1pwh_zEj;Q?1@zI` zmrx+_-$ z0n^W)tj6D^j~XtDzF`ZwNVAX%WC{x`t@$c1#35w;rrV^xV96MuGpRP<3fnDlEYDPv z>j$QBzsFYwgPc(Sb!{en0B-q@o*6M%63uO_Bd?)GuM-_=PGi>^1Y&)4rf#E<>ShSv z9Xu;->Y6PAhvYXx#;+gt)fl?U%1Rqtb)!M@4mnUZy_5&-tRfoFUwItz-c7RPfr`wX z$CHPZ``$jJPfrCjAi>zzKhm^fp7XTHH8L#mF&BCz_s1Q@Oq=PTT&*bW48D zo4dSrr{$#n00#&A$?5RN8{o(QrfzXy>VDn9lGn@K84hVa3D|%pCyXzD9@c2A{(O-I zgrlxngY-ihEwRguI3z~%Z1H4gb9~RWfSz=ju1cPpEE-e=%(x~0UOAg68aS{80x+Oo z{$88}Qu)9*0OlcNm5M0~LD;m`lF=wSBqZMlYy2#a1LfZb`9$M7q*F7x)*vkdgvi4y zfQ`aKGAP)&;bkYZp6EQwL*l|Az*r8TTD0k1KZ7*%+=>R3g3JXDeFfkE2CZcWn_F-5 z^*Qhp8!k;#GA%L8+xiso)QRLNA(8mTp}XWB8(T7z97WUbkBi*L*o)Yn1Yr8-`Ib{F z8L=3(@*1Ox{gS+%?#lI%mEUc8c(|-{ehiDX;&JZB<^jzizy@nW*Lo~l7s`Z5`&yRI z+1uM2(@!=CxAwi!_{r{KOS{UQ%qG>?WYI+f@>+nNEPZ*bdbU%pQ@7h{9r2X2w4kWIbDXZ}{}n+UvqO z;ac~jaG=iJS0V*fiWr*Y+Gqgh7;u-|hVW;ATV&o2tU5pv9gewRVi;0o!C0PEk(-h$ z@7F|33YLcn>n`7nMdMV;h%AeIcR`c28uJL%EsI6Tm5y@7LQea(KN~Aq%lX^)4#q{S zggs`p`uY6{gMyr&yHfhs{PnYp@Fq*2pvsv@NU%?(dO#wyarS(LVWM{?e@D zv(A&O4k#(ALPTV+#9O&=4@;PNO2cJlDu#FU35Ws}XB$MF<3Ft+eFiYh6u^6OR23K0Ya7m5EEZ ztO=0c|B>+_X6sC0xJ&xcEc3+#am9xDtnMzMQ6sLu7EHJ*q-Ng%r~Gu>aTw#hVZ*@$ z{&Q=`+y>%0BtJ@lYGQ=&R^ z<#|P5v)GtYN!vIrMwIyZ13s z#N%7o0$3oq%~EdyN~WR5y_-@6f>$P@QY>r9t=m9v>3C=YK4$^BvXo;~eh!8Gv(BoV zP<|Pnl|bTKB6RESN7I{g;r`KY4?+%^A^Mf+Zyd3lZJ`t*%+gBQ^Vl$LkWg?2oIWO> zId}Mn$1nwWEd&DyM*_a|!R;iSBM^5;@;AO|G|^*|E8Tg90{D@KEJt7D$<;IN`11i( zGSa2@3!3%$SDEkNd+RO)t`FU%SDv}8c`Y}JxD0Og|DQztLSIv5F`eAiOTV%n90jP; z18$$_3(ylG6(nyS6Z->JOF-^I*`ril-90394G0j~(+3ouLiMCj`$+cm@?G?v9Hy(% zc{E;=U(2KZO^l^5h!mL2Ff=#AEdm!2jU7>|8js+W#3qf(YLB_1zx^H|O}8gy+P==# zeG3~_K1bAgkIW31rwe3cl=}?WdVPEE)-`o9$jCAiC2J7{P{#AX+IHB8@2kJkT2pY> zDv~A#WM-6ikh`(>;T&E#IvEZU&q1g zkA=Ef?`)-KV&&id?Dc9l-uc2m#mnVxnf2-k^~aWm1l&fAU%xjt#-L^<+ah{0UEe+g~{p13XhDBkAECqZCl-&$*!n$Eknn>dXPT+4(#E-eg>F49QOXp zI6ZTv=gT+?j@7lQ{coAjb$TfMmr`EK_>gf?e-T8(A=9KvKc~{H(!sU<-3zGmMQ*h* z5oCIvsOLmqySBR&Y4J?jfT}aJFYi|?V6V}@t`%N|^aZB)O%9V4F4Jy^FJHd~s%I|( zLeXJOR!T|$aH>&IQMFXLERHw$p1Me-=jMh1j>(spn2w(Yr2=tk(zd>bWtC`yR~F1{i|+*FiwJX zw$k4bGXxh0ftKNaX(p?BH{Z_BbkaX8EDY;oXsG$&#`HQ+K7hWfgyHRt5~@t9(8=Uz z2YrQC9Y6Vc6SVVcboVDlQQ{>_?OacjsN0NAJIx0syW+IF{oR9IY?>2I3^J-Oy8G|< zC8g3>mT4!2x5~O~kgPSH)hYI0>Hm!t&Wwk1&W43pR=6(rNVYwm-M;G)J?kwF&NzWT z5&`|60OMEKmG8-KgcC48b5_42Hjx=mi&_L|+%+_wdn+X?>pE6KZ*abs>2&fxvMu01 zkzcz-wV9x>da{HegCBii`da#Z-hNYTuvm2P;2{5eRq=(zfFNAwbQp#VfiF7x>*?sV zMlcZd%dp}${U{Fkv-g(5!k>kB{FZoR+f+0VD!j{~U++jcn4FT&Wg~cWPe0FdY_<7M zt{lSc=Wr@xp!XTbqR;t-u^9g(y>|2cN4T@hQhz?KP9}1&J>&1sTYpD{rVzEsE8#NK zap7P|BJNlRWSuE?bFwHn9=?kkjUKGgouks2oBC#-8nFP;=-dU*l`iaMjfz{ujeiI}|sYy^RT0G*zuvGFs| z2-;L6TVoIPpJuuTOjM5&dVNmOmBuxl?{M*}0AFRgomD$q9W8K%{rb(DFL80JnC8K3 zQc_8I1vR;y{sAK=;-E+mD(_%ROJd=px*eEjr5PH=W~0uc!Z{fk?c^1@re`X;yqo4! z_bJEpJo3NVi_Mn<`-6W&av)AV{ledqEO&!;ytLAQ3Evj1)o1>2cMLu7%$Jz@jw&-;C`bZDFkFj%eW`+F#Y!178%$RPW z1ivhzO`Ld9z!>$M0WfHZ)jMPDXuUcJY+>aJM!RkW!X9H68q)6wspmjL!pO~fx)^>0 zCFS4+D>J4gqT#AsASR zfjpluEJALzdGnK?Sag)G)O$mN`SP5y?H)=JlPbn58{=V#c*7BdO%lWVx$4n8@(=ht z05_%UwVc+C!Zgw===oPuIDnpGfZDbw6HZp}+$rxhN0ye<5{;Q6r8?X`eVVwahe@W5 z8f0X(2=zCO>ai|XIM9~42Q`fm8`c(}khShXb_|R_q^6?FyCbUiuTY#`8~->%v^Cbu zQDhEVYR2XXCbS?vuOX@u`X6;<9yz1NsIiUpn(12eb$!nxbKbLQ@4SlW$>J7PCaA0( zg4S8e7*1YhKKGS|*l;7kbk5JQE9@E&HhZ6ufM8+a$;f|{T;#+5QF2u@7=eZp8dCc= z0L+nT)@PR#c#K&AIC3L*?wu0dg4C1gQPjG-e$9&~p6^Em?0>I7p=J9~ppXwJkKulpK3=y!d@L zf8&(zI#(0MEuJ9ku#lDDm0Jv`jcu%Vo&=<7hKCH1_>(+=k!qd2p7br?{d)!>qXED=_;5`Ek-Ltz$S^g zPeIS~9^=%>lm8zn)43Nx)sHeeVuRWOh^QIbP|6CPAJmw0&vQd;yd?8*Y=q0V&AS zTK`?k>)L6$%2P}@I(b2${y(xD@B?^Uy9_p>s)Mgy<|){>g5K)?)>iJjY1iQa<1Hu# z3@CIi{4CfbFaxqp*TLdDOF!o_57n0wAtXNgIymO$>SF~#m9xQnd&yFb+jAOB@m>+t zUP4f55sZ=V@8DfgX08)qSv??I8BTq^gQNoJa~3H@FnC2NF$$dvNj!TXqp0wE1L`}> zO+EL&8M;n6zmHUon)^k`oDDZ=wu1lZ`n5Ilyi&ro%${f19Tqp%nO}$^o1DiTC-Z@& z=TcpqOt?)slwAC0TJsS?OrTqIgOmJLN)(_Np-fKu zbqLqH- zQla4JE^I%WI?xrsGpVD5*V1&A`W9a4QUSuiV zfF^o4?F^cXz9h+plY!=X;dJtvpZ(zuAU3W&pGEWGYJ)H1zr7o7L{L!yr{{4FTGM&A z*ktf(KllM3phi+0CP7y#fb~XuPCPtXAa;O?_?Jc-h>GqDtL&6c%%<_mgumBzLb(vU zSfCc*$QEWT=e;)=`Kjy2y%I7^aZ!8`uGXO?S;E^(~M4;$R*ihAF2#ZuFrr0%@+E;jA{6l`x?p4j=of0Om(kTYS zloalS={l?ml|Z5eVp! zuqnh{Ve-FtPS6FYtxff+(fAa1vR}&lw%pg`c>k@bq6qOLOg)|UXU6Ilo5vA^ zkXbz91JsK8Tg=SjLd3y=qSQ3y~K zdV~6|^(|pF0X=7k_L_?M$Ep7T82~o+$WJ0>N6tsP@Mg1tgU$0J3(>`hejt(%dqD;LK@6IZ%OrL_I zrDmQn4{+yJ5tvUHQH@EXdd{gQ|PQjKaP{?70gbj~WxV}SZ}{_NNQx30P<*Gk6FMPu??d4&YW(K8ng?#32?3J z2SR&n4q<#uWDcC4h5L7FFgsX^ddymN1Z9Z*Oc5(a9r)hY-wA-gd|mBpSM~t(bU{t3 z#vfVq1xYPo`u!<9c4`sRpB+TszM!LNsto#?k0cO(f$omrK1qW`9EfJaB050TLI7$A zbMG%=mJUcSs~War%4`SqW8{Gl=B6GLqQb(b0JMUWkN3bDC_3?Te zI-||afpYZic&=zv3m8yd!&Q`xDkTQm=7wN_U1(VX?Q|*Kj&TqrBp*B6$|#4LFbH`#c=lYHwnVv zNYco=D7LU(|EEzQmHk-qX8)wVYt`-+zH^4*Rc3+0R}NXw2nb4M(@zop)x-ZeQSR>>J#eR zVl%wvoFqGca2Gd;Y`9+NaW?AgUvGmEOhFVm67K-hp~(@q$y`sWuNsCHM%OqJsoWfT zn=<_6WJ~;2!NsE=X{UcXuW{&<-VaPaX?y7sq+iN$@&e?Aeb~= zgzUx^9niaBftjQH!()rj|B3)lJ^*y!t;h}zm_>Qr$hlKy6e=5-)J1V7V^*d!#vpZ^{%Su<=HOim+nXB*4*#oeRcQZ3MVGCs8cw?97L?yvkqO&hFnYpbe}8|4Xwq zUSbA7yosN`oSmu1SI{|d!Mfzrql{7b9`54u`3AMx3qC@xcaI}D5g|&Irf0 zST%Z0mr9|A%1pGq;k3m2DVRz-P(a|m(~{dz6BFAA<-4G7Zw~AHMb{^=0X!hoNT`*BsekO*Z%PWJXk+16*cVX`52ANFxHh2T{}DN zcNr^^iOCi6=t=dA)m}6+Y41#A3>o)YLg0TU2)q?5LEx)&hiZMM{w8R$hJ{sDS!prX z^lrQwl3hWHb%W?yfoWqTU^1H2`B}!w2}s>0+zS;{Z`I56F|i#G zb43#Y{Bi5Z5AAs*(sP9d8TsGu3@!QIs{3aJ){RNfGSRnFu&=Mr+1-6(Xak9~rkO<+ z$TnAHZD2iQ6!koAI+YO<^+nPhU2@`oFQrXiRKYc~!bhZ-<&CqdTJi3-#0zA1G}nc} z#2%3q@BA+O6f}$XRw6k$xu~*IQC|MNI#gaBH<(0lgVO+PkZ#?%g9j43Pp2ctnf@j_ zlMw~K|4x2Za!IUMErQjgwL#jre%aF8y`tMVHQe)sijwk+pn(H6^6%ddTU*ZGVq$D3 zA2O1vsH##jGdqkpWM^j1gLimzyaNAJ!(9BQwx-$RnCr-ju4z#FaHKjtoBXVlc&^rm zX5DzY=LQ=kC1qTo0vtz|D_YcJBhkGYWaGe?X`O3+FX)QY1m{^kRr3}*JC2r?mVUkW zBSRyja*t~_RY58OG<#3c%>yrDQRLx<>wRyFNwWSK6Dj5y-z(4sG@k7cFDzX63(2jJ z(h~*Y1O)}fNS~4uaXmSc?BEYo z0(h3<;^L}dZQEr33ol79X>f#r;qvjtr9WtctCbQDEOuLVyt!C%jSpd7cjaJqQ-B@rn=;7)!lO%Ck8y zxXQ}Q!C}O)M)0yP>-hBia1kh6uu%Ubzh38lG1D+y8hk258*ts)#s(V;4-YR^j0(KW zT7FCnZNm8z{!p{-rNVdMdH{Idt!NdtFG>^)3_lLt-gz)WYcG;dYV0mOCT0FTa>MEP zTc)Rt3#(3ZMXCi~8yD|Rd>7VU8vUGjVCn1Iv2Uqo2oAap;nmS8rM=)2Aa# zF)%cQV`^$T{^!r~sIw%FHI{^g#L?-g-FGw^y`LQWUoU0kVKFs5{psTUzn|Y$DWQ1R zR!JRN+918?EyM}6U3od$2=_vtiuR4p6i%A1k_gr4{s|f^umrHtiL^M`!dz&DI6yomQ0U*`bR#sM!kfFkVo#*#nG^`L? zrk=bbPrQF!qb-74U`&1aWR9%_F6?UyeJpSfQ2wE(y&3_+!PoxpVJRXKk~TnN6L4SG zZ)@Pp#f5;7uo)oC!pFvRAtA5#`;w)?L6*?gl#h?^2vFmCm}5qvfRRke z$QbtdGezCeLiil+?Y1x9zlRJAXhyI|F@hOW*h5s;4lHT(53MO!eD}1H4i*+(MKFm` z-F_N@p@msyA%Ehs;>uqg1!%N6x4dk*p?UHNU})!(JZ72!yWAN)@u;e{wzc^k{MS9& z%;%v^O^;tzIb#=^smWiIM$+<- zwWXyXK-ULNJ#I8KG$<)4HBEcWI>o6qyuu#WD6gns=iwm%kc8<2r^yP^)zwwth8OvN3cJpr zsIoNrKtwWv$hKq~6bXw6!oW0X0KvduqCgmINh*vsK?T9qCPOPqP?1JKaU7D+Hjbc8 z&WHgXM=-dZ)aJ5^iTe<Ih6)9oQeYaE%v^P z+9KwyQ)`M^;9w+IR4<|bUFFTm7M*~1)Whm9xwUQrS?gt z&!IzNZ@YQlcwO$w-e}5&a-i(0RV52hfVcMdzq4(qL_Y3m=LN-Y#2|)Xw1wl0gI-ph zDKGMEqcXyA#MCS1`*aQZk+n^~c7FOWCXTPzB+)*!=Hf#vsZ@6yG zl-S99$NJ>g_OpmW8thmnJwNcC2=g)5rE9|nq zk@2mGi5iWjcu8|-oSF!%cN*%YEsrJ!a^oz*mXq2Eu!bGRP2=1lq^{(|Nj00&OfNCb81M-LvdtcLX^q;qF1f2sGy+l z)4bAf%fXj_5g;J5)M(p@eMGOCrlux|8O6m;eL0vAH@C+tDraTBV)EDHYt61o?G%{X zyFFWWtTnS;ue+mTpy#eP#Vk}mPD=UQ%*=@ma$>-0HEnG%Xv)|fIidrl{}xKgK_t?@ z0N#XSFYfuSFZq$lRDb*M!F zCeR9JzU1ikqUVmpURFV8P8ww{BFyGKsvtl(*oge|9xY)hC3bUjvtHPnr+#BQ^wQKf zZIZE1QZX8OC6iL(fgC2kWBsMt`g)v=()j$|;oS$|0$&O0eu_Ic7_Uk-HC;2;A8sk7 z{B6vE@P*Yo&8CG&O;<#8$eL;huA<@Rjg9p6lpv+M2ybLe)YE-o|ZrZaEih3ST_UaEEG9!&Rdr z#S1V5e;6mJxXa1uXLC1aI$et3hfY&f!smlRLqk2L25PrDI@&Q9+*W38ZZ0l;*|Ack z9anTCt5kXKCMPeTLGOFO-{1eF``A!p0tT-JKTW0ysb~Y5S6;@B|pf9ViK5z+>zaGfqC(4 z%`gQ;s6*zAh2fNcH!nY5h7iFT?DTWlAZLB-*e@Yrk1uQ0HJn{l@ z8RLgDXDSIRlh7%Tr0JaOY*8&OEpvbSl|r8FIp5bcr>HN#V0VjA9`+$;U}%U6vjvxx zLf`S<-YJiH@xq-^4K$cvSSYXPw#4;`5<)I6E}7l%B@X_qsHj+8_yuAGVg~7j59d@2 z51j{1&=9fi&M-DM7Bf8DDhK8eQ@!}P;NhGawQs&+$h=U5~sa-h+z?(_p0d59-C z2!iYf!Unq7e&WzmP9%rJp$8m6@b)hC_4V24r41u9E<@gqU#9jGc~=xo?fQx^Po zYV1b%(EI8oJ0_FXl&H+?n*^LH0llJ~v^)K(gNB7$Z&)S)pb=ifaIk5gH3jxlsn)#q z8YJ{*Veh|-7JeC&S%q~FnVG4KI!H!NE(TAW_#L;ky`O*xT;q`MBuG?!8dU_Vn3yr8 z(UuVxFJ25BtXobt;CmhfsKSUGPo2b}7N#?vw6*O%>`F};FW#mBF>}WS!J01a59r6A z#jOjNm)mHkdcA&}da^>wG2e-5W~PK3JMr7t>(`wHoN_~W?$G-OWR;Z2q|(vZS=-(1 zlFO^CR37{FhP}IchT|7_0f7Vxmb$+R2*_Le)2m?srB4we%7jK6M)}m3v+RMJk28;cVW-6>A!1-;L};Mv`_*0rg@v{b4ifVJbc+F8cz&E3GznjVHPao0(;ec<-<9piP5ym+yk@XIeoKG6BUVx1i4(Rg7Avg^ zA@);A$?D^yPuu*YMMOxh)-sgDK0$K)H4fUTR71m68>{CHP(iJC%wXf%oSdCeBPpYR zbaizVk(Rdi_1)l)TNotwRxlE);nKYJySu}VLNGi$oaCqm=?<5B?9NjnL2tYOloaEm z6k|qj%#H9xSLWCzLP%Jc{IdyjRu?#e5(V&>kgDTC0x$Zz@>s(`m@?9KkA$e|YD@a5 ziFKqg4P}#;(7Vzxl|r|Y?Zx(m^C0Bk=CaqxiUMqtuU$)kBQ^O2K8&_R-@2ua$8?I0 zJ~#03@fpv!xSsk(RNRUx+Xz=2NnkM?GzI`a5%KXWnvztL02~7R;LD7O-?G63V}al6 zzrRY}zY*jIPriVlcm#wz#4!M{y|_5LTQ|;)AGkJA#rz!dhYdBw0};Qk*f*v1mY2Nl zz6kJK++*^K?%k_5 z{M9TPdmtH}^0|CuXp40>GQS_5_5{aJq`T4>DY3!rX yw$H|XJcvS=`sSNZ$-nBczh_$f{=f1xXGvf}bx*wQDme;)*S0N=ws)*OqW%PBR}A3* diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index 1c1abd47..e96fa2b1 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -56,10 +56,6 @@ Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 @@ -77,16 +73,9 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -94,16 +83,12 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -140,18 +125,12 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -164,10 +143,8 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -188,143 +165,140 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -332,6 +306,7 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -339,29 +314,24 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -369,11 +339,12 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -382,6 +353,7 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -389,62 +361,65 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -454,13 +429,13 @@ Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -486,7 +461,8 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -513,90 +489,100 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:2 m:8 Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:32 m:4 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:64 m:2 -Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:2 k:2 n:16 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:128 m:2 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:4 k:2 n:32 m:2 Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:2 k:2 n:32 m:8 Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:128 m:2 -Dimensions: f:4 k:2 n:16 m:16 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:128 m:8 -Dimensions: f:2 k:2 n:16 m:32 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:128 m:2 Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:8 m:64 -Dimensions: f:8 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:256 m:1 -Dimensions: f:32 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:8 m:64 -Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:8 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:64 m:16 Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:32 k:2 n:64 m:4 -Dimensions: f:32 k:2 n:32 m:16 -Dimensions: f:16 k:2 n:32 m:64 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:4 k:2 n:128 m:64 -Dimensions: f:64 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:4096 k:2 n:16 m:1 +Dimensions: f:8 k:2 n:64 m:32 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:32 k:2 n:64 m:16 +Dimensions: f:2 k:2 n:4096 m:2 +Dimensions: f:2 k:2 n:4096 m:2 +Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:128 k:2 n:16 m:16 Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:1 k:2 n:8192 m:1 +Dimensions: f:512 k:2 n:8 m:16 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:256 k:2 n:8 m:64 +Dimensions: f:512 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:1024 m:1 Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:64 m:1 Dimensions: f:2 k:2 n:8 m:1 Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:2 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -653,10 +639,6 @@ Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 @@ -679,17 +661,12 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -736,8 +713,6 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -746,8 +721,6 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -768,10 +741,6 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -782,10 +751,8 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -796,61 +763,63 @@ Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 @@ -859,77 +828,69 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -937,10 +898,12 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -948,20 +911,13 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -975,11 +931,12 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -989,8 +946,9 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -999,64 +957,55 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -1078,6 +1027,9 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -1098,100 +1050,95 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:4 m:16 Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:4 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:4 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:2 k:2 n:16 m:8 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:16 m:16 Dimensions: f:32 k:2 n:1 m:16 Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:64 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:64 m:4 +Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:16 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:4 k:2 n:64 m:4 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:4 k:2 n:128 m:4 Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:4 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:256 m:16 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:16 k:2 n:128 m:32 Dimensions: f:32 k:2 n:64 m:64 Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2048 k:2 n:16 m:1 -Dimensions: f:32 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:4 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:1 k:2 n:8192 m:1 +Dimensions: f:1024 k:2 n:4 m:32 +Dimensions: f:2048 k:2 n:32 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:64 m:1 Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:2 m:1 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -1269,9 +1216,6 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -1282,25 +1226,27 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -1335,11 +1281,10 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -1348,6 +1293,7 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -1356,6 +1302,7 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -1363,17 +1310,16 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -1382,141 +1328,128 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -1525,42 +1458,47 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -1570,78 +1508,73 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -1650,7 +1583,6 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -1668,6 +1600,11 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 @@ -1691,101 +1628,101 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:2 m:8 Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:4 k:2 n:8 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:4 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:64 m:4 Dimensions: f:32 k:2 n:1 m:16 Dimensions: f:2 k:2 n:128 m:1 Dimensions: f:32 k:2 n:1 m:16 Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:32 m:8 Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:64 m:1 Dimensions: f:4 k:2 n:32 m:16 Dimensions: f:2 k:2 n:256 m:1 Dimensions: f:16 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:128 m:8 Dimensions: f:4 k:2 n:64 m:16 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:256 m:16 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:4 k:2 n:256 m:16 +Dimensions: f:8 k:2 n:256 m:16 Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2048 k:2 n:16 m:1 -Dimensions: f:32 k:2 n:512 m:1 +Dimensions: f:4096 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:16384 m:1 Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:2048 m:1 Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:256 m:1 Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:32 m:1 Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8 m:1 Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:2 m:1 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -1865,8 +1802,11 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -1874,22 +1814,21 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -1929,27 +1868,26 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -1962,59 +1900,74 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -2023,4267 +1976,157 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:256 m:2 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:64 m:16 -Dimensions: f:1 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:16 k:2 n:32 m:64 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:1 k:2 n:8192 m:1 -Dimensions: f:32 k:2 n:128 m:64 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:4096 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:8 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:64 m:1 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:2 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:4 k:2 n:512 m:16 -Dimensions: f:32 k:2 n:128 m:8 -Dimensions: f:64 k:2 n:256 m:4 -Dimensions: f:32 k:2 n:64 m:32 -Dimensions: f:32 k:2 n:64 m:128 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:8192 k:2 n:8 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:64 m:4 -Dimensions: f:4 k:2 n:64 m:4 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:64 -Dimensions: f:4 k:2 n:64 m:32 -Dimensions: f:32 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:1 k:2 n:8192 m:1 -Dimensions: f:64 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2048 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:8 k:2 n:4 m:2 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:8 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:64 m:2 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:32 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:128 m:4 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:16 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:1 k:2 n:256 m:2 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:8 m:64 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:4 k:2 n:16 m:32 -Dimensions: f:1 k:2 n:128 m:32 -Dimensions: f:4 k:2 n:16 m:64 -Dimensions: f:2 k:2 n:512 m:4 -Dimensions: f:4 k:2 n:256 m:4 -Dimensions: f:4 k:2 n:512 m:4 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:128 m:64 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:128 m:64 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:128 m:16 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:16 k:2 n:128 m:16 -Dimensions: f:2 k:2 n:4096 m:4 -Dimensions: f:4 k:2 n:4096 m:4 -Dimensions: f:16 k:2 n:256 m:16 -Dimensions: f:1 k:2 n:512 m:128 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:4 k:2 n:4096 m:8 -Dimensions: f:32 k:2 n:64 m:256 -Dimensions: f:32 k:2 n:64 m:256 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:4 k:2 n:65536 m:2 -Dimensions: f:32 k:2 n:128 m:128 -Dimensions: f:128 k:2 n:64 m:16 -Dimensions: f:4 k:2 n:2048 m:64 -Dimensions: f:128 k:2 n:1024 m:16 -Dimensions: f:32 k:2 n:2048 m:64 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:2 k:2 n:524288 m:1 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:1 k:2 n:131072 m:1 -Dimensions: f:32 k:2 n:256 m:1024 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:1024 k:2 n:64 m:128 -Dimensions: f:1 k:2 n:1048576 m:1 -Dimensions: f:2048 k:2 n:256 m:64 -Dimensions: f:2 k:2 n:8388608 m:1 -Dimensions: f:4096 k:2 n:256 m:64 -Dimensions: f:8 k:2 n:1048576 m:1 -Dimensions: f:8 k:2 n:131072 m:1 -Dimensions: f:8 k:2 n:65536 m:1 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:1024 k:2 n:128 m:512 -Dimensions: f:32 k:2 n:1048576 m:1 -Dimensions: f:2 k:2 n:8388608 m:1 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:32768 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:1 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:8 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -6293,8 +2136,6 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -6302,111 +2143,37 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 @@ -6457,237 +2224,104 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:8 k:2 n:1 m:4 Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:1 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:4 k:2 n:8 m:2 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:64 m:2 +Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:128 m:2 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:1 Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:16 m:32 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:4 k:2 n:8 m:32 +Dimensions: f:1 k:2 n:128 m:4 Dimensions: f:2 k:2 n:32 m:16 Dimensions: f:1 k:2 n:32 m:32 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:16 m:64 -Dimensions: f:32 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:1 k:2 n:64 m:1 -Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:128 m:4 +Dimensions: f:4 k:2 n:32 m:16 Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:8 m:128 -Dimensions: f:4 k:2 n:128 m:16 -Dimensions: f:1 k:2 n:512 m:16 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:1024 m:8 -Dimensions: f:8 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:1024 m:1 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:128 m:32 +Dimensions: f:32 k:2 n:32 m:16 +Dimensions: f:64 k:2 n:4 m:16 +Dimensions: f:32 k:2 n:2 m:32 Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:64 k:2 n:128 m:8 +Dimensions: f:8 k:2 n:128 m:32 Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:256 k:2 n:8 m:64 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2048 k:2 n:16 m:1 +Dimensions: f:2048 k:2 n:32 m:1 +Dimensions: f:32 k:2 n:1024 m:1 Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:2048 m:1 Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:1 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:256 -Dimensions: f:16 k:2 n:256 m:32 -Dimensions: f:64 k:2 n:256 m:32 -Dimensions: f:4 k:2 n:1024 m:128 -Dimensions: f:32 k:2 n:256 m:1024 -Dimensions: f:64 k:2 n:2048 m:64 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:128 k:2 n:4096 m:128 -Dimensions: f:2 k:2 n:16777216 m:1 -Dimensions: f:1048576 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:2 k:2 n:32768 m:1 Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:1 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:256 m:1 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:2 k:2 n:64 m:1 +Dimensions: f:2 k:2 n:32 m:1 +Dimensions: f:2 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:8 m:1 +Dimensions: f:2 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:4 m:1 +Dimensions: f:1 k:2 n:2 m:1 +Dimensions: f:1 k:2 n:1 m:1 +Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -6842,9 +2476,6 @@ Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 @@ -6901,19 +2532,12 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -6923,9 +2547,6 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -6933,15 +2554,12 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -6956,6 +2574,8 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -6975,6 +2595,8 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -7066,21 +2688,8 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -7099,8 +2708,6 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -7122,21 +2729,17 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -7149,16 +2752,19 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -7172,12 +2778,13 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -7201,6 +2808,7 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -7212,115 +2820,122 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 @@ -7329,56 +2944,47 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 @@ -7388,17 +2994,21 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -7407,15 +3017,16 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -7423,23 +3034,27 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -7448,15 +3063,13 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 @@ -7466,17 +3079,17 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -7485,45 +3098,42 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7537,62 +3147,62 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7604,8 +3214,6 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7616,80 +3224,86 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -7700,13 +3314,14 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7722,11 +3337,9 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7738,15 +3351,33 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -7758,16 +3389,18 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7775,37 +3408,30 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -7813,41 +3439,39 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7857,6 +3481,7 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -7867,24 +3492,27 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -7897,17 +3525,14 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -7970,6 +3595,8 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -8046,6 +3673,9 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 @@ -8059,37 +3689,41 @@ Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:16 k:2 n:1 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -8111,10 +3745,6 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -8126,151 +3756,155 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:16 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:4 m:32 +Dimensions: f:4 k:2 n:8 m:4 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:16 -Dimensions: f:8 k:2 n:2 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:32 m:4 Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:4 m:8 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:16 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:32 Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:8 Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:32 +Dimensions: f:2 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:16 m:16 Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:128 m:2 Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:16 k:2 n:8 m:8 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:512 m:1 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:16 k:2 n:4 m:32 +Dimensions: f:1 k:2 n:8 m:128 +Dimensions: f:32 k:2 n:1 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:1 k:2 n:512 m:2 +Dimensions: f:32 k:2 n:1 m:64 +Dimensions: f:8 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:32 m:16 Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:1 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 Dimensions: f:2 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:1024 m:2 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:1 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:8 k:2 n:32 m:32 -Dimensions: f:8 k:2 n:32 m:32 -Dimensions: f:32 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:512 m:2 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:4 k:2 n:512 m:2 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:2 k:2 n:64 m:64 -Dimensions: f:32 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:64 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:256 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:4 k:2 n:4096 m:1 +Dimensions: f:8 k:2 n:16 m:32 +Dimensions: f:8 k:2 n:8 m:64 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:64 m:64 +Dimensions: f:4 k:2 n:64 m:64 +Dimensions: f:32 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:16 k:2 n:64 m:32 +Dimensions: f:2 k:2 n:8192 m:1 Dimensions: f:2 k:2 n:4096 m:1 Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:8 k:2 n:128 m:64 -Dimensions: f:16 k:2 n:128 m:32 +Dimensions: f:1 k:2 n:2048 m:8 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:16 k:2 n:32 m:64 +Dimensions: f:2 k:2 n:256 m:64 +Dimensions: f:1 k:2 n:16384 m:2 +Dimensions: f:4 k:2 n:128 m:128 Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:128 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:16 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:128 m:64 -Dimensions: f:8 k:2 n:256 m:64 -Dimensions: f:128 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:32 k:2 n:64 m:32 +Dimensions: f:1 k:2 n:32768 m:1 +Dimensions: f:512 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:4 k:2 n:256 m:128 Dimensions: f:32 k:2 n:64 m:128 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:4 k:2 n:32768 m:2 -Dimensions: f:1 k:2 n:131072 m:2 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:2 k:2 n:1024 m:1024 +Dimensions: f:8 k:2 n:1024 m:64 +Dimensions: f:128 k:2 n:1024 m:4 +Dimensions: f:32 k:2 n:512 m:32 +Dimensions: f:2 k:2 n:65536 m:4 Dimensions: f:8 k:2 n:2048 m:256 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:64 k:2 n:4096 m:64 +Dimensions: f:128 k:2 n:512 m:64 +Dimensions: f:64 k:2 n:2048 m:128 +Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:128 k:2 n:2048 m:128 Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:1 k:2 n:524288 m:1 -Dimensions: f:2048 k:2 n:64 m:64 Dimensions: f:2 k:2 n:2097152 m:1 Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:1 k:2 n:1048576 m:1 +Dimensions: f:4 k:2 n:131072 m:1 +Dimensions: f:32768 k:2 n:8 m:32 +Dimensions: f:2 k:2 n:2097152 m:1 Dimensions: f:2 k:2 n:524288 m:1 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:1 k:2 n:262144 m:1 -Dimensions: f:1024 k:2 n:128 m:512 -Dimensions: f:2 k:2 n:16777216 m:1 -Dimensions: f:32768 k:2 n:512 m:1 -Dimensions: f:32 k:2 n:131072 m:1 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:4 k:2 n:4096 m:1 +Dimensions: f:64 k:2 n:64 m:4096 +Dimensions: f:128 k:2 n:1024 m:64 +Dimensions: f:2048 k:2 n:256 m:256 +Dimensions: f:131072 k:2 n:512 m:1 Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:1 k:2 n:8 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -8475,45 +4109,49 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -8619,16 +4257,6 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -8637,10 +4265,8 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -8649,9 +4275,9 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -8663,6 +4289,7 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -8676,13 +4303,10 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -8691,8 +4315,6 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 @@ -8712,10 +4334,10 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -8726,18 +4348,15 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -8754,6 +4373,10 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 @@ -8762,35 +4385,27 @@ Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -8802,9 +4417,10 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -8812,87 +4428,92 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -8900,80 +4521,89 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -8987,58 +4617,53 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -9047,23 +4672,25 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -9073,40 +4700,40 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -9122,13 +4749,16 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -9140,31 +4770,32 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -9172,65 +4803,65 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -9249,13 +4880,16 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -9266,33 +4900,33 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -9300,79 +4934,79 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -9380,60 +5014,67 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -9448,11 +5089,7 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -9460,6 +5097,12 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -9479,7 +5122,6 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -9523,11 +5165,7 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 @@ -9597,6 +5235,7 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -9607,15 +5246,15 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 @@ -9631,42 +5270,44 @@ Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:16 k:2 n:1 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -9677,7 +5318,9 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -9699,154 +5342,173 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:4 m:32 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:32 m:4 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:4 m:16 -Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:128 m:2 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:16 +Dimensions: f:1 k:2 n:32 m:8 Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:16 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:1 k:2 n:16 m:32 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:8 k:2 n:8 m:8 Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:2 k:2 n:32 m:8 Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:128 m:2 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:16 m:16 Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:256 m:2 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:16 m:8 +Dimensions: f:1 k:2 n:128 m:4 Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:32 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:2 k:2 n:32 m:16 Dimensions: f:1 k:2 n:256 m:4 Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:32 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:32 k:2 n:1 m:64 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:8 m:128 +Dimensions: f:4 k:2 n:16 m:16 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:256 m:2 +Dimensions: f:2 k:2 n:128 m:4 +Dimensions: f:1 k:2 n:512 m:2 +Dimensions: f:2 k:2 n:32 m:16 Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:256 m:4 +Dimensions: f:4 k:2 n:128 m:4 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:128 m:4 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:128 m:8 +Dimensions: f:2 k:2 n:64 m:32 +Dimensions: f:1 k:2 n:64 m:64 Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:8 k:2 n:16 m:32 Dimensions: f:2 k:2 n:512 m:4 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:512 m:8 -Dimensions: f:4 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:32 m:64 -Dimensions: f:2 k:2 n:256 m:32 -Dimensions: f:16 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:1024 m:8 +Dimensions: f:8 k:2 n:128 m:8 +Dimensions: f:16 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:1 k:2 n:2048 m:2 +Dimensions: f:2 k:2 n:256 m:16 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:64 m:64 Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:4 k:2 n:2048 m:1 -Dimensions: f:1 k:2 n:4096 m:1 Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:256 k:2 n:8 m:16 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:16 k:2 n:32 m:64 -Dimensions: f:16 k:2 n:32 m:128 -Dimensions: f:2 k:2 n:16384 m:2 -Dimensions: f:1 k:2 n:32768 m:2 -Dimensions: f:32 k:2 n:16 m:256 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:4 k:2 n:256 m:128 -Dimensions: f:8 k:2 n:512 m:32 -Dimensions: f:2 k:2 n:32768 m:2 -Dimensions: f:2 k:2 n:32768 m:2 -Dimensions: f:1 k:2 n:65536 m:2 -Dimensions: f:16 k:2 n:512 m:32 -Dimensions: f:512 k:2 n:64 m:8 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:128 m:32 +Dimensions: f:8 k:2 n:512 m:8 +Dimensions: f:1 k:2 n:512 m:128 Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2048 k:2 n:1 m:128 -Dimensions: f:128 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:2048 k:2 n:1 m:64 Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:64 k:2 n:32 m:1024 -Dimensions: f:32768 k:2 n:32 m:1 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:2 k:2 n:131072 m:1 Dimensions: f:2 k:2 n:8192 m:1 Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:16 k:2 n:64 m:128 +Dimensions: f:32 k:2 n:128 m:32 +Dimensions: f:32 k:2 n:64 m:128 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:1 k:2 n:131072 m:2 +Dimensions: f:32 k:2 n:64 m:128 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:1 k:2 n:131072 m:2 +Dimensions: f:32 k:2 n:64 m:256 +Dimensions: f:16 k:2 n:512 m:64 +Dimensions: f:32 k:2 n:1024 m:128 +Dimensions: f:16 k:2 n:4096 m:1024 +Dimensions: f:2048 k:2 n:2048 m:64 +Dimensions: f:2 k:2 n:4194304 m:2 +Dimensions: f:16 k:2 n:8192 m:2048 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:32 k:2 n:262144 m:64 +Dimensions: f:2 k:2 n:134217728 m:1 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:2 k:2 n:33554432 m:1 +Dimensions: f:2 k:2 n:16777216 m:1 +Dimensions: f:1 k:2 n:16777216 m:1 +Dimensions: f:32 k:2 n:4096 m:4096 +Dimensions: f:2 k:2 n:134217728 m:1 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:2 k:2 n:33554432 m:1 +Dimensions: f:2 k:2 n:16777216 m:1 +Dimensions: f:1 k:2 n:16777216 m:1 +Dimensions: f:131072 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:131072 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:134217728 m:1 +Dimensions: f:2048 k:2 n:65536 m:1 +Dimensions: f:2048 k:2 n:32768 m:1 +Dimensions: f:32 k:2 n:524288 m:1 +Dimensions: f:2 k:2 n:4194304 m:1 +Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:2 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:2 k:2 n:8192 m:1 Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:32 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:8 m:1 -Dimensions: f:2 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:2 m:1 -Dimensions: f:1 k:2 n:1 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:16 m:1 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -10047,8 +5709,6 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -10062,13 +5722,9 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -10077,19 +5733,20 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -10203,7 +5860,6 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -10248,9 +5904,9 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -10260,7 +5916,6 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -10273,8 +5928,10 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -10282,29 +5939,25 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -10319,9 +5972,10 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 @@ -10330,40 +5984,35 @@ Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -10376,91 +6025,79 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10468,12 +6105,6 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10481,24 +6112,37 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -10510,50 +6154,51 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -10563,43 +6208,46 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10607,83 +6255,80 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10692,18 +6337,13 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10711,88 +6351,91 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -10800,17 +6443,19 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10818,18 +6463,13 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -10837,45 +6477,39 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -10883,15 +6517,15 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -10899,42 +6533,60 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -10942,13 +6594,11 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -10958,31 +6608,22 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -10992,36 +6633,37 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -11031,14 +6673,12 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -11047,7 +6687,6 @@ Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -11104,6 +6743,9 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -11183,9 +6825,7 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -11193,24 +6833,19 @@ Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 @@ -11220,38 +6855,44 @@ Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:2 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:2 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:4 k:2 n:4 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:16 k:2 n:1 m:4 +Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:16 k:2 n:1 m:4 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:16 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:4 k:2 n:8 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -11286,154 +6927,151 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:4 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:4 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:8 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:8 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:4 m:32 Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:4 m:4 Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:8 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:16 m:16 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:8 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:8 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:4 k:2 n:16 m:4 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:8 Dimensions: f:8 k:2 n:8 m:8 Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:8 k:2 n:8 m:8 Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:8 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:16 +Dimensions: f:2 k:2 n:128 m:2 +Dimensions: f:4 k:2 n:64 m:2 Dimensions: f:2 k:2 n:16 m:16 Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:128 m:2 Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:128 m:4 -Dimensions: f:1 k:2 n:8 m:64 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:16 m:32 +Dimensions: f:2 k:2 n:16 m:16 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:2 k:2 n:128 m:4 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:1 k:2 n:8 m:128 Dimensions: f:4 k:2 n:32 m:8 Dimensions: f:32 k:2 n:1 m:32 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:2 k:2 n:64 m:8 Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:64 +Dimensions: f:16 k:2 n:4 m:16 Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:256 m:4 -Dimensions: f:32 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:256 m:4 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:64 m:16 +Dimensions: f:1 k:2 n:1024 m:2 +Dimensions: f:4 k:2 n:128 m:8 Dimensions: f:4 k:2 n:64 m:16 +Dimensions: f:1 k:2 n:2048 m:2 Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:512 m:4 -Dimensions: f:8 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:128 m:16 +Dimensions: f:1 k:2 n:2048 m:1 +Dimensions: f:2 k:2 n:128 m:32 Dimensions: f:2 k:2 n:256 m:16 -Dimensions: f:8 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:128 m:32 Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:8 k:2 n:32 m:64 +Dimensions: f:16 k:2 n:128 m:8 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:1 k:2 n:2048 m:2 +Dimensions: f:32 k:2 n:64 m:8 +Dimensions: f:8 k:2 n:128 m:16 +Dimensions: f:8 k:2 n:64 m:64 +Dimensions: f:128 k:2 n:16 m:4 +Dimensions: f:2 k:2 n:1024 m:1 +Dimensions: f:2 k:2 n:512 m:1 +Dimensions: f:8 k:2 n:256 m:16 +Dimensions: f:32 k:2 n:64 m:8 +Dimensions: f:2 k:2 n:1024 m:4 Dimensions: f:2 k:2 n:128 m:128 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:16 k:2 n:128 m:64 -Dimensions: f:64 k:2 n:128 m:64 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:64 k:2 n:256 m:32 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:512 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:65536 m:1 -Dimensions: f:4 k:2 n:32768 m:1 -Dimensions: f:4 k:2 n:8192 m:1 -Dimensions: f:1 k:2 n:16384 m:1 -Dimensions: f:32 k:2 n:64 m:256 -Dimensions: f:2 k:2 n:131072 m:1 +Dimensions: f:8 k:2 n:512 m:8 +Dimensions: f:8 k:2 n:128 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:4 k:2 n:128 m:128 +Dimensions: f:4 k:2 n:128 m:128 +Dimensions: f:16 k:2 n:64 m:128 +Dimensions: f:16 k:2 n:256 m:64 +Dimensions: f:64 k:2 n:64 m:128 +Dimensions: f:32 k:2 n:1024 m:64 +Dimensions: f:32 k:2 n:256 m:512 +Dimensions: f:8 k:2 n:1024 m:1024 +Dimensions: f:16 k:2 n:4096 m:1024 +Dimensions: f:2048 k:2 n:2048 m:64 +Dimensions: f:32 k:2 n:4194304 m:1 +Dimensions: f:2 k:2 n:4194304 m:1 +Dimensions: f:2 k:2 n:65536 m:2 +Dimensions: f:2048 k:2 n:64 m:64 +Dimensions: f:8192 k:2 n:16 m:2048 +Dimensions: f:2 k:2 n:67108864 m:1 +Dimensions: f:1048576 k:2 n:64 m:1 +Dimensions: f:32 k:2 n:1048576 m:1 +Dimensions: f:2 k:2 n:4194304 m:1 +Dimensions: f:2 k:2 n:262144 m:1 Dimensions: f:2 k:2 n:65536 m:1 Dimensions: f:2 k:2 n:32768 m:1 Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:1 k:2 n:16384 m:1 -Dimensions: f:16 k:2 n:128 m:256 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:64 k:2 n:128 m:128 -Dimensions: f:16384 k:2 n:32 m:1 -Dimensions: f:32 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:128 m:1 +Dimensions: f:1 k:2 n:8 m:1 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:2 @@ -11630,11 +7268,6 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -11644,40 +7277,39 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:2 k:2 n:1 m:2 @@ -11788,14 +7420,6 @@ Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -11833,16 +7457,12 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -11850,15 +7470,10 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -11870,12 +7485,11 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -11884,6 +7498,7 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 @@ -11894,17 +7509,15 @@ Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -11914,8 +7527,10 @@ Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 +Dimensions: f:1 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:4 Dimensions: f:2 k:2 n:1 m:2 Dimensions: f:1 k:2 n:2 m:2 @@ -11939,6 +7554,8 @@ Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 @@ -11946,123 +7563,114 @@ Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -12070,107 +7678,96 @@ Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -12182,68 +7779,69 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12251,44 +7849,40 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -12301,13 +7895,11 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12315,10 +7907,7 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12326,10 +7915,8 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12339,29 +7926,21 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12369,28 +7948,24 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -12403,18 +7978,24 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 @@ -12423,11 +8004,15 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12437,11 +8022,10 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12449,10 +8033,7 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12460,10 +8041,8 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12473,29 +8052,21 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 @@ -12503,28 +8074,24 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -12537,45 +8104,56 @@ Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:2 m:4 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 @@ -12583,38 +8161,33 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 @@ -12628,18 +8201,15 @@ Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 Dimensions: f:1 k:2 n:1 m:8 Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -12652,10 +8222,6 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:2 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -12669,6 +8235,8 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2 m:4 +Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -12736,6 +8304,8 @@ Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:8 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -12803,6 +8373,7 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:2 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 @@ -12814,6 +8385,9 @@ Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:1 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 @@ -12824,54 +8398,47 @@ Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:8 k:2 n:1 m:4 +Dimensions: f:2 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:4 m:8 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 Dimensions: f:2 k:2 n:4 m:4 Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:1 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:4 m:4 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -12887,6 +8454,11 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 @@ -12900,163 +8472,160 @@ Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:4 m:4 +Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:4 k:2 n:4 m:4 Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:8 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:1 k:2 n:8 m:8 Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:8 m:8 +Dimensions: f:8 k:2 n:4 m:2 +Dimensions: f:1 k:2 n:32 m:2 Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:2 m:8 +Dimensions: f:4 k:2 n:8 m:2 +Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:2 k:2 n:8 m:4 Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 Dimensions: f:2 k:2 n:16 m:4 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 +Dimensions: f:2 k:2 n:16 m:4 +Dimensions: f:1 k:2 n:32 m:4 +Dimensions: f:32 k:2 n:1 m:4 Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:32 k:2 n:1 m:4 Dimensions: f:32 k:2 n:1 m:4 +Dimensions: f:1 k:2 n:16 m:8 Dimensions: f:2 k:2 n:8 m:8 Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:4 m:8 +Dimensions: f:4 k:2 n:8 m:4 +Dimensions: f:4 k:2 n:4 m:8 Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:4 m:16 +Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:2 +Dimensions: f:8 k:2 n:8 m:4 +Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:2 k:2 n:32 m:4 +Dimensions: f:1 k:2 n:128 m:2 Dimensions: f:1 k:2 n:16 m:16 Dimensions: f:4 k:2 n:8 m:8 Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:8 Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:4 Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:16 m:8 +Dimensions: f:4 k:2 n:8 m:8 +Dimensions: f:32 k:2 n:1 m:8 Dimensions: f:1 k:2 n:32 m:8 +Dimensions: f:32 k:2 n:1 m:16 Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:64 m:2 +Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:8 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:16 Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:4 +Dimensions: f:4 k:2 n:64 m:2 Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 +Dimensions: f:4 k:2 n:8 m:16 +Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:8 k:2 n:16 m:4 Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:1 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:16 m:8 Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:64 m:8 Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:32 k:2 n:8 m:8 +Dimensions: f:16 k:2 n:8 m:8 Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:32 m:2 +Dimensions: f:4 k:2 n:8 m:2 Dimensions: f:2 k:2 n:16 m:2 +Dimensions: f:4 k:2 n:8 m:2 Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:64 +Dimensions: f:16 k:2 n:8 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:4 k:2 n:32 m:8 +Dimensions: f:1 k:2 n:32 m:32 +Dimensions: f:2 k:2 n:32 m:16 +Dimensions: f:2 k:2 n:64 m:8 +Dimensions: f:4 k:2 n:32 m:16 +Dimensions: f:1 k:2 n:64 m:32 Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:1 k:2 n:512 m:8 -Dimensions: f:2 k:2 n:256 m:8 +Dimensions: f:8 k:2 n:16 m:16 +Dimensions: f:8 k:2 n:32 m:16 Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:2048 m:1 -Dimensions: f:4 k:2 n:16 m:64 -Dimensions: f:2 k:2 n:32 m:64 -Dimensions: f:2 k:2 n:128 m:32 +Dimensions: f:4 k:2 n:128 m:8 +Dimensions: f:8 k:2 n:32 m:16 +Dimensions: f:4 k:2 n:128 m:8 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:4 k:2 n:512 m:2 +Dimensions: f:2 k:2 n:1024 m:2 +Dimensions: f:2 k:2 n:64 m:64 +Dimensions: f:4 k:2 n:64 m:32 Dimensions: f:4 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:1024 m:8 -Dimensions: f:4 k:2 n:512 m:8 -Dimensions: f:32 k:2 n:1 m:1024 -Dimensions: f:8 k:2 n:256 m:16 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:16 k:2 n:64 m:32 +Dimensions: f:32 k:2 n:32 m:16 +Dimensions: f:512 k:2 n:4 m:4 +Dimensions: f:2 k:2 n:2048 m:1 +Dimensions: f:32 k:2 n:1 m:128 +Dimensions: f:4 k:2 n:256 m:16 +Dimensions: f:4 k:2 n:128 m:32 +Dimensions: f:16 k:2 n:32 m:64 +Dimensions: f:2 k:2 n:1024 m:2 Dimensions: f:2 k:2 n:256 m:64 -Dimensions: f:4 k:2 n:4096 m:4 -Dimensions: f:16 k:2 n:512 m:16 -Dimensions: f:256 k:2 n:128 m:8 -Dimensions: f:4 k:2 n:2048 m:4 -Dimensions: f:2 k:2 n:8192 m:4 -Dimensions: f:4 k:2 n:8192 m:4 -Dimensions: f:8 k:2 n:256 m:128 -Dimensions: f:32 k:2 n:64 m:256 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:8 k:2 n:1024 m:256 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:128 k:2 n:1024 m:64 -Dimensions: f:64 k:2 n:2048 m:128 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:8192 m:1 +Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:1 k:2 n:4096 m:1 +Dimensions: f:32 k:2 n:64 m:64 +Dimensions: f:2 k:2 n:16384 m:1 +Dimensions: f:4 k:2 n:256 m:128 +Dimensions: f:2 k:2 n:32768 m:1 +Dimensions: f:4 k:2 n:2048 m:128 +Dimensions: f:4 k:2 n:4096 m:64 +Dimensions: f:2048 k:2 n:64 m:64 Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:2 k:2 n:1048576 m:1 Dimensions: f:2 k:2 n:524288 m:1 Dimensions: f:2 k:2 n:262144 m:1 Dimensions: f:1 k:2 n:262144 m:1 -Dimensions: f:128 k:2 n:1024 m:256 -Dimensions: f:2 k:2 n:8388608 m:1 -Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:2048 k:2 n:64 m:4096 -Dimensions: f:262144 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:2 k:2 n:33554432 m:1 -Dimensions: f:32 k:2 n:524288 m:1 -Dimensions: f:32 k:2 n:262144 m:1 -Dimensions: f:2 k:2 n:2097152 m:1 +Dimensions: f:32 k:2 n:64 m:4096 Dimensions: f:2 k:2 n:1048576 m:1 +Dimensions: f:131072 k:2 n:1 m:64 +Dimensions: f:131072 k:2 n:32 m:1 +Dimensions: f:32 k:2 n:65536 m:1 +Dimensions: f:2 k:2 n:524288 m:1 Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:16384 m:1 Dimensions: f:2 k:2 n:8192 m:1 Dimensions: f:2 k:2 n:4096 m:1 +Dimensions: f:2 k:2 n:2048 m:1 Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:16 m:1 +Dimensions: f:2 k:2 n:64 m:1 Dimensions: f:1 k:2 n:8 m:1 -Selected edges [ 8 15 17 18 23 24] -Estimated memories [7340032 1342177280 3145728 1207959552 3145728 2281701376 6291456 37748736 - 5767168 23068672 2883584 22548578304] -Lin fit: [1.07595890e-08 7.74829619e-02] -Log fit: [ 1.0453297 -19.33901584] +Selected edges [ 7 8 9 23] +Estimated memories [1835008 1610612736 3407872 16106127360 3670016 8589934592 3670016 + 301989888] +Lin fit: [1.44905105e-08 4.44274854e-02] +Log fit: [ 0.9890667 -18.51874438] ===Results=== -Total time: 107.19 -Simulator fitted flops: 0.25051 G -Matmul flops: 119.16 G -Simulator optimality: 0.0021023608741055147 +Total time: 297.68 +Simulator fitted flops: 0.1103 G +Matmul flops: 187.51 G +Simulator optimality: 0.0005882526075949273 From ee7974d56aa79b0cd24aaf6c12d98172ccd7b2e1 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 16:46:07 -0500 Subject: [PATCH 081/104] [jlse-run] remove debugging duplicate einsum --- qtensor/ProcessingFrameworks.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index e4cb61b0..b209feda 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -155,8 +155,6 @@ def merge_with_result(result_data, result_indices, tensor): # \sum_k A_{kfm} * B_{kfn} = C_{fmn} c = np.empty((F, M, N), dtype=np.complex128) tcontract.mkl_contract_sum(a, b, c) - c_einsum = np.einsum('kfm, kfn -> fmn', a, b) - assert np.allclose(c_einsum, c) # ---- Post-process output result_indices = tuple(sorted( From 013f19cb04a90630f22aa6483c284b83a6202569 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Sat, 10 Oct 2020 21:50:19 +0000 Subject: [PATCH 082/104] [jlse-results] for `[jlse-run] remove debugging duplicate einsum` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 40051 -> 39073 bytes run/automake/results/time_vs_flops.txt | 12 ++++++------ 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 7a8f518f..a8b0c735 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 297.68 -Simulator fitted flops: 0.1103 G -Matmul flops: 187.51 G -Simulator optimality: 0.0005882526075949273 +Total time: 80.923 +Simulator fitted flops: 0.046311 G +Matmul flops: 204.3 G +Simulator optimality: 0.00022668319088030888 \n \n Backend used: mkl (full) \n ### Performance plot: -![](https://asset.cml.dev/31cc207eb084d08f52518b974348cd2b47d35f9e) +![](https://asset.cml.dev/4cb66cd1f7888cc7e3eddf0da042da38c90b75db) \n -Run date: Sat Oct 10 20:24:25 UTC 2020 +Run date: Sat Oct 10 21:50:16 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 720d98bc36500771fcbb361815a7063a99c8c248..4e500de0db02e25c019f6b3a898449e1a5727d45 100644 GIT binary patch literal 39073 zcmeGEWmwc-^gRsE&?%sFgCaRq##3Oa8f+j;pPguce0#M9tF6&B@iv>7^B;kBx`tOIMdC+)ub4b28d{dAWIt z^6)tS?;qfH^|0gNc|(E^2ElbxGW3K%h%8Zmp+!=KFCmb$JIZo0x_+74KmGl5Z04l) z_xhB-^3>=y=Y0t~CPs*pIgQuRRCLcW2J+o=?7Fu%FTNz|h zY^dbGAJWIVH}nt^@aLQyU7DGhIghv#k{BHw&Gwxa@<X<0F8)2CttI{Qv*^|7VuP z0Y=1_W>}`5l$v^9P>?)~@hngnY~}=hHD`WR70Jt&FExvwKB4G_xIy{{2Kbz2cwt20 zVD=Zw-(TPB?d{z^<-H1nA|c-=pCi&A_ zd{*Caz}Oa>6U8&%d@J^_RlqA!=`c|UfBG{@As5=e0WI@KVm{l_>gsn=c+BIkFHfx( z8r>Urziw$78g8t-y$e18Gd_10T{!r{>sgLu%fL}rS67;VBf0HRCN9M9u#ffNWZrdU z)-I>3lSpb|{j#pUKCiBB^5*Nuk5KqnLZ6f1>G}0lpWvbejc+Abu>Wh_mOb$gA(djz z&dz6t13YgtG90BoYZto>3QQx%HKcZ?1IfwAEPwYWbN4I-?n%hW%O3}p-qd=otHX$x zKJEKolIJwI9{69<=lI|93kh8Y;)Dp8gVdbxFBGCp4ozo^O3rR@pfFx~YTTq{Aui)lj9NeFlQ{DB*HmJ zWy8%;&h6iex&3{&S5Z;lXs7M@WiC_AcoQTj!Ib}J=GouuT*@lKf3NRBYp9aXj}pxq zsi@2D*ycmQ3q}Jf3qESbiD{X8Qs1S}PoIS3VEL0M`PLe7$!Wc6w{R16;iXLc@L{u1 z3v7~qDkT{vpCk#yqWE#Hld_;ud{9g^%WS3YquYmX4qg+7du`nH@6IKJbar&`y8n{f zo~s)O`QcD!HC=9Ms(x^iVph>pq?OO>f4CZY=Y4c^Z~nv_=?hZl$RfQIX~QoBYy*Rv zI5)MTsJDzV#(vI^Fj7oFEp&A5-JunRqhsHJKvYyz+>i(;tyBmtB=PEMAKPQq+K#^nyCQ!qaZ!HhS#As$`XX#ri%qpV5*8^qxU~>?tNb(qZ^I7 z)^fA&oB}OzBFb~K(M~ATq4!9%a;qshvhXEqML$t&WKCmm_eFN~npQofLIwIfneTH> zVFl$_(u(bht0LA}__CW07S4j_o@uLg|1ts=3Ev|s%XGV$aH)CSiWXkE5}hGdmP`Ln zs~R#bSR>|*SRjp{B~#Lc|4r^nH2z>})M8&NO29ED8yy=)Nw-o+qRnW5Rmt$*&!tn+ zjoai%)d{lLhqb8(iX>w5q0&ztoLL$1)f*8_f*8uWp&vwk|CgN5y5HVMu%tp_D9{Vl zp%u-)_DBfT|IMm*?*Z;iC6rQ%{%rdRBljJ@6GNm1?C`V~iMPQ$+`9zO1ycy*|Uuk}F)+cw|xWy!3)^vgxsqza=yRgAopVT1XK zp#$9LrAP zhthE!SU2n-9&_xBVEP;k@e4Ly7urfYB4QeR@nh2cJs5g=dI*)ak`+WrPHxr4!5J@- z`_ZeS$=Ps3%KfFea4D^l&JmUf)05pTd~>Xf;Nwmr1epOuL;;S{B04$@zA#3h>MX#ihlQ9c4u7Q=R?rVo zb*}5F_Mk2s62WmI5_E3QafVr#pB*TIH6D?bR>gNap6oYjle&3pC;B%&4FUj?>|cgn$v9*HMZn-T0vKW({)K0h1m^E4(L;Y`ewG z%MUFxPR^20h~4iaE~5E&OqzdaJIfhwxU;Z(^f<_ae?0#Zw>x|qK5GxR9H%a{j#P6r z!IN!XF3f>*RA8(P=~agqm=(Xc-fhbgOuXp@e{3XV&{dm6%xY z>Y4o*_Tu%7RjJpbvuJUg!RykwIfTKBm6w^H&dk2YLN~@3F`!$i!;6JvwvaBp_M2Ctkle;-FU@w4Q|> z^p}K~tl$OIcgJdqC()e;8G!?b(CPz*fQ2MvJ;)f5)+}rdDl!Ku*w0;IE^f z>cASF-($|tee(vYo9DiVv^}$c3Hn`EE7{v5i2iod?_sc#-(b_uk9ZG zZrAGt&a^nJ-`6RUII1?7MzC|-0**B?%xnqF{A{0J7`(xvZcD-7rgz|nqGQ9O=+Wdx zw;EU(P`5Img+5;)u4A?D{j~%sGxKKD4XGEwix`2+>v!JpS%N-$>5aTuHsg1Msy6b0 zFlpQ=qx+l!3cXx|Enm1#NDZ;F{T2Eyt}mCs0(N4d?&^@_yki546l!cI3^h5@E7}Hy z8Zs|oEZ?l@zl2^f0&)6Le>(Y_GAN=%W%|Z#9|M%oqRAa(q$os;&tc2TRw(Sft-kE7|ivD@(;P=?ylW?Q7MM6nL< zi(k08InYC{9g(}=l98^Py2z4>Bp)7vo2TfgJc_4$&Gl!$7pw>Iy;}8kjdJ5VvIp#i z))IOYr^%e?!%{@C^n}ev@$Zg}zmcDvStA!bC46Y`&`^hvZI$3tt~KIRbxI~BSpc4= zkIkori&3`Yh&I_LT7i*oV}l?Rg82R{cyawu1M6fDo16=6!i1RI0~KRNbM49>BPT}p zwkzoHMQeSfaC-X>7RkN-CSQltBZuwbMyZjpd4rT+8>NfUTv!KO@N}_=WBVTiz^D?j zH}8sWX(_Em0+J1{Lz1E-JtkB46#ySa=_LfhlI!ZdYl5FBTohJ&M^D1y*JQCZtGJ26 z9ulM{v_aIW%cn8vf-S%06wF1dTpQu!+4Jmb$}8M=I-^RYc7V!YdgqZpeL*@g%6H^0vzI5K9;LzJJQ&b1vDlzwu5hI(T8ua@~a7&&+@A6Tute6MgZeLSH z-SE<)qp|9u->x&axYcMc&e3B`U0)I=arI$6z$KPPJh0#MN_)evRX%^_o<8um zYBM*)x;dn<2{;`TN-i~*f$nb<_FqUbEB@Qp2XgVWggd4F>OHkJYsVsITN;e4Ao;dB zFsU4^HR}EiuxeX+gNIzp2wl3RFDkv~8DJ(etj@ z4i0eKdvKms$l+nyaenr{U?Q^v&X@_FWTeR{O=<^mk7TGRl@jCn*gTKWz=mVMx8E6@ z=wd!Ne*5hl2i-L6MU#mBWW;(7`g+#%dXFsA8z>_Q38914Q)UdcG}ZPfYs=_d-0-x- znUYf)CC0+h&D@NJiH+yxCzoZV7%nYjXPpca_D%#njqZVWpLEm*mt{WJzk^FslhAY)3HZfhr`4R)DPJ+-$7!=7-U zYWV4ckrQOq-ss*!FZh-Yb#JM47swp!-+4z<`j^i?jRR-qD+WwL@1mZbXTy_my-{7W zOm*uxq^-Vm$+-clkpFn_n_U9t?cQy0LS?0y6ge~Ne+QV#zROu7xs}zU#?7j|B^Ym& zvs)$AJM8Ux?2dcel7X34bx1|)7fyp8!`LS~=-mmYKWg$ux={E6i>yu%Q#O_K>BQy& zxkI!O9l&#^Mc2H@VpaK60${JSCwTrUH20D~%;^Ilx1aO=%|%Y?Q1W>Z8w+{HuPg*Ou6 z2B>iCE%`FpqL>ejT`L`J*DAr(SlVuYI_0-56f*IZpXD3n@2@!(T!{c1EbRW|Q0VdU z2bdpI;eKK;QKfa1htm&Ai%TCH9&=_5YgGLZmh#Pt&=^bO*~HT?e4^&&*0mZxPbR#Y zN>rBie~f>-GO82oa^9bQ54)1>yV#jo&OEl>S6u8stzVe7Zx?k6_5Dv@jT+2Z2U-Ge zLu;Kj$~GO4C-b4V*X9LtzJKj)Xd1%M7{wQ?8<;%)0go_kgD&dAczS)Gn@SaU|9OrG zpA3GVKH-9V21V{Im+{4~dfTmp+tDDr9TH0o;x-H?lcKk$^-zj;7bJFsHe67oNU)1zzULZ)w~S@?tcrw zd?qI#urqYGaTJix^n^Q#^o@K-LQ?qT(>$Th8$`h zjQK2UZmWUuurcut1duo}qxp*WB_!zh`1sN!gGCns?*Su<0Rf--54rQMmtH9#3c`>9 z!LTQO*ILH-3;wKbD{<2Dm~JPt2-X~kl-FX84{H&cZ! zA|mp|(CJQ(Db3IT?yMBJYR!8}vf&9a#MYY?xhzNAc<=s8H90(PBa$pJD+ZzC2 zW-~vTbX~EdXH>)D_m?~HlerX|-2+1shzN4#8Sg;i6z)Gz4pU#hx>ulH*!lLpA_U@4 zM@=K-@;%wW47X(RjeHC_)1ybl1E-wq>>d5d9H#MYr;CBnZw`NwhO_Q0G>tFG;yemk zZ0%a#F%Aw`oL=1Y_=8+G_jBWKt%AYu{$3mul}||%zgTeV)M#9Zzh6|Aygwwi*e2E1 zb6MEbbQ+-$J_(qlz^!f?*Y9yci!&vTo}Qj>-@mtp{TvyATXsfT&egt*j)^&%B5vt$ z60}|)%4$5BbNo1Je(&uCG! z=>5CkGu(^vR{H0Sn%_@$=nUJO=O35^9k@X{TS8!9HDdpVYtt;5d`c=$Nifv%nE(r2 zTSw>eID2_{8OOIqBS9e_cTNi4E`DP19Xu>}=E?CR{jP2%PEm5JJj@LaK_61*PoM95 zb}1zN9*m%*i>aIuj)q=co&XNvbP+!(h28ObZ3uI!6jX@6FJao}5{ptnw&B7M0(|^V zz!_ILPIE7KjjKT*VBJl>`7nuz1xoLgO>cdi-eOXIhpnI@M@o%WW}ja{O$|Rkg3f=| zvde^upVGQ*6x`5JXu&YR!JC+P#Q?h+z4`j-69)DjT4^gQ=EqN-fb|TgdSYtjJIt^csL^+kCH%2D z`w2E1Cq`cWwHSBa4c;bXKZd6j0nW%vn6q(?kaahK(^4xP$ni8^zI;i{$w_$g1}~OD zihi&4vRu^?2N1vYQ`SXY8%D!-~DLkBT)?;=aIX_|MeuBpKm|26DKHrr|S>=se5g z0&nqUN42GidACQ`#i=oN7XXbA&tPCCb;hWv`@NKb@QzH&z34XZq|5uuoih!tIc-r- z<@o>9(cfa)-&!td){>&eKro%5Lk#uHkKo-3$OIV1XEmL$wsCcI$uo%Gl{*%U-w(qZ zl`)$Y9}6^b%|McZ{etx>NxXL{aSm`3w;Z8tGRWeL8=~WiHm5d)XbtI!CTpyq3e#`! zz+GrOosOBE4KzU0X8cwZfK_#z$buDbAu+I0vu71 zAP;z8&?0^Y8Y;ctM1 zLL7BO-+R`}KsGr!Gp7Hq#8*&FewaduP8fo1UF10vJ9Rou_U4gfNBkm;0Y&Weu_jLw zi9>=exsaOHO8kF#A=}vH&$=mPW0d+i^VD)HMMsJuV!_En^r29O z+va-ybwJzahc<6cH%mgzL!gmF2A|=_0k+rn`_`y@?DDc!be)k`XyDNqjnY(EMJAr4 zs5>XYMj4S5NNUFQY!!QL=HN_tPeQO&NFShTF0E946b+S$&hxXmK$7t0!^y5Y-p#8s z3>3jSg+cu$CGX{4cJ@+<^2>FP-^tR-xQXewSL;%UsWNG&QiDhh(!~FU`CmZwiIdTa zHsvq1FZ;ZgxASBTjmn9P=ZbKV_)yKtx=$Y9Im1B*Z&O0329 z|DvNx7ruLOJlpLo2>%*=1^aFx9t-J^#$y~bk3Fl2dX9Mmn(sd@%G9u&W z$%BO!i)_c*DPAB7R zKQGU$E!LhPdl-_ZPZ!Xg7I41zT>6^Gg}y=+22CsqJrGl;!K05a)c$#Xe?u=c|bFLu9${<5;Yj{e#q04gPRP;Vhd#?XG` z5SauN-@Pg*MBi&h7e68hm&)5k9X%AkaK4l+fjB!*`K*x=`fXR6J*ZIQ^t3k`jo}{= zz|O^m=!ihE)`|&eFJB^zU7^Dg*aTF+_C_B)(9ucd@&Kg)xL6Dc(Y^mDcs%NyV610p z5T}{k7uU8wG^<0}E|S|6r(_-rd<1teX>HK`Ws0*PwI(2*f0vLy#(B{8j|hhDO+2y~ zWk&vr3EgYMj=Y0;bFKkEH6zo<9-h-jO$Aii!DR#SkK)Bj{v(*L#kKKlP}NG2`42s; zOwo(1dC$W55Nyw6yZSemSDq|e4IvU1b!f1&aDa=BD;qu_~6J;^KZxO=_KW@ylA)LZasaM_J~3z_1oupN3SMF;wQiJ=$A_B z^kzFx!|;>fJS_76Dg$ZlcZCYu5?Li78gvrdq*pTU7#r%Cz1#5$I}*z;Fz%kCp$66k zVJdR13={I4odZ02j8&n@n^$7De@;v~vS4!CNveTC2|R5W57p4{@S)0RH+#2X_qW!I zJSSbdy2*$;IzUL>3FPruWxMpY3PO9;%LXILdP<2J*^6JfoJtbRwi)mdnwP%>8`d4n z7b3xnuUB*Rf)=xnEjD!v3RFEF@1M2-Zh|9sGQjcs;)?FEu_5&6_1!|`@JS1(`V+PG zg~tx3LApOUDteRzn1(!=p8Atv5{jk3sp9;lCek3`DkH6wjNkPd$eU}Gsft|bz6+4z z-OhO32Dr@VYg3QwHx0_vEcX>ddQf{!Rx=8Jj~N4nY$oac3&*B>IDcbxdQ?rq+8WKT zD~{y#OFT@!)eAC8F{C}lJUcN4Qba!oVt@zRZmQym{7)T-wGY5<5YDEIlj}m-uFEtcx4h%^+8j)& zVf(r89*`1ea6Yi{{#U?n>mlmv;PG2EU`L+hb;qM)Kp~0m-n&ZCi~SypXVfIll?66Fve_3N>w%Jp>DIZdjX@ZVl@*x5G6ZQ91GZ%Y~gzf?{++ z8KJ*?c{(;H;az!u568Dcm#&Ah`Dt~Xr2GKw%e`cM)gF#U2965zVVY|zboZ;O;Sn}l zatp|(#$O3-L0%b=hxaguvk|)!qL`tyE@q2CYO;rF+F@xQiD_&rJTNVvzZUz7 zq%&zyz=KPQ`Dq$%o&HXRFk18{z4trTBds zii-z+KKvKjKZmqbbfJ-wLDzGLw&y|UM-#sl-|wbDjC@3=%ncpw?{+;Gco{`}CO4J|tWPf7J?ADfXm#|nt4 z{~r(w0aknm3;~ZBB!N0 zS4TMnH_=$=Ao3sf)ohKH&zB`*`xGgn|WaD(Kp%1L89X&^r6;yP|~^ZFly0Fz(_L6$Oy>RdMEn1`0GC>%`Z>Yljt~PE;iLp*pc~)U|QJ{{Q}db*iQ3U z1T}&(+^Hwws+lQE)F0P z*ho>AXcZgi#$)*O;YO*pL}oEFRrC(|F^KmV$1O^c3`cqz@R}CC+rZzJJ_& ztvI6ZewRmo@O#DL!Yhr|ScPY`WSFUvaqAClWR51nP4(&CpZZsCX4vPVqQUuV;0-Wb zGzpC4X;E?=zM>N3^!+-u|J|te=J4L9uhd0(d09ind3l!3MV$wcFBZ<5=sBd)U$5Ch z4NNhE0yQJ#ZyTW>CitTdaEY1ogU(5cO%3#x;D^D;^39CijHi;2=JU0Tw~2}HrJIw6 z8+tsF2;!KkF_AM4KLWrwM{wJv2NN>NkrWeANSCRG*L}vTWKV9N`mC^i>fqFo18c=> z3xSDAR#1ljv9}l?w^&!V_>N=qK_nmP{^@sxZ!!JDC16Nkn$(-e4{?&oT_J*Mo7QO` ztF59lF+hg0#3*>0_ruzvWaO9>P#%vQ3!)oc;Dm4`N>lfU$tzF zw8&pW8uVRXT-QE!-3{d^hqPXkr%4#6KdRSq)SF zo@+9@sGTtPP<>K5sCI%})JLKtvJdJ6g=Q}$@A?By8{)gS7)RsM2nAj{Vhm_S+s)Sj z0U(FoSBRCClf(F|p7o|B@bn@iSB~@@*4J{?*m!q5T4xzcz^O;miu6BnBaqs8hOF3SXF5~HiIH}B|JN(M87tbsC8RLT)oYh))9`t47`kaPi zycNRmg4jP!=XF^S{&O7Auro6rH;5qa6i4vF|u$f8v)0D%GaD!~c8Qxmqr^Nky zMZw+M{ZiIAu|ALT!;7pQNe2HEg_5o3D;q^E8x0BrOJavv@H>z~jhy(fFtmlBqd}Kp z3JMDAsZzr<5zmLHTAwv1=&qKQmfy*&-Oep4>Uy^s-SY2VF1zPtuh3(X~gQo%OgYfD%-FP#LRrLa9ymxvACqwV=ooFmQB3v#2y zOknuk-|9lgS_cAv|YZbG?F zqLm@%9I@X74dWcBZo?j>0Tg%Lv{|PbP$VI2JUog40iq|{v*ExrITG?SPd;XURFPr% zXjls5bu-UFfiqx`w0xYNn3fi8VCLVoaZOwHyb6uOpxjI3W=xfbiTzEovD~U*a`M}e zt)7*wie$*af@cYz-H-vL=)~$eD2p4`)@&C-E_aG5DilpjGTWk7C}c9Af0J$jYthmw zC?rGyIPjBcLPA1HK_|-3Y8m8SOVYMARARon-@#1r;}ll*mI(q-OB=V&C6JNy#x!a> zcEagt*PQtCFC~n!@VY5`sX~>JjycWww;Lq#4+i}plf$l64C8>VbUwBw78CGEu|cNW zVQ`vp=2dA)%e{&XL*v-ZdGvHru-`edSKG8em&7-K#~gX;JIpz$$7Wmyc~^B8pnQTs zV|+DjydQv*Hmsyf>BoznBmK1Q`UlWt!_Bu&Py9Y|0vlzSKE4*IC9iNrIxi)GlA0Pg zCY_y~B=q#V9wzyt7&{CI3;IA_l%Z2Y!WBTXHytLRY(B{jhA^hhGt%^jQs2jbeE9x? zz_byKjK)Cb3un~0HtdP!X$Ln=)jE zGwrl31WoDQRyeMm`cCUsx#J|nMZKtF4(?L8JWYHkK$p%Tm@i5zKzPtL)So}6e5jro4d~d}1YiaRR>zWoM7(h}+efI|OB>t#_V}T+e~gF9n~{*$!u;oTuqe z>;k+^3=Iv1gU)zQcIMarO+wRAhu2G)Nv>?Dc&@=}1<%I!jto345d)m}>IF_0w z!W`v`5?aX)+?CPQB~?hEch0E}-fzb~=)Irdw~`{+^~fS`#A1H4EYFVx zh1%4oWKdG6jxk}8F5SF8*~Z7If=APaW!!s@1`s7ZpH~dN)vw&|#Ka*=tqPIYKj;B) zzt^|vG4X|etID^~TThDpEePK`8@IeRqI-}J1qQz_Gk&M1 zUrIuC$E&b3tG%}Q83)i7bFL^%lDz38ADcw;>d}zLFTQCr^O72hmK4n8yGwE$Wq^hN z-q}x|8udlfpFJ#uCq@^wIgQs8_lEgFIk4PFmojxh8h@qgLwI#%IZGvm7{5&tD)@wsIFBXKJkE1{Ok!0 zVbM(G)7dry(vQX_7Hv5n{k#>u-K-^EQ2DKVuWJmMKJr@+7k(Ad2b3Yn>j{yw`?v4E zl#KXXu`2DfXIo=6{qs=dW>%CR9x1(U?sN=>3=6LiIL+4&8oO%9fwBa(9&%y30@Dusw!R@hPovUVB6isW=$BePiCwD^hP1pl2so0M#Rt-+G{MD3Jf@~(+erY)4sOL z_Qw*4V)faSG61Y%pSR#XesNg`*OrMjBwH zwn6?*4c*>eE-I$F6Q`gM(h7Lzou5{@|H#G0ck(YtWGuFtjm=NR67Le?nc+fUH|KU& z*L$#@bi3@0xCU0{YK>tuY2bW5aZ(Fdwxu10;XuHV&O83jQ*@zIrIRb1_);Pq>W73P z8E!SrGyqe-#Eon|GO76e*V3YfB51;Aad9{r9Q@Qxi@f&l9FCBR)(eNA>*MJ~KSyR} z2;F!M6=s6i_5HHZO`oBC=ozDA;p@UYX zwFZ}HJB~MR{;E5ose0Blg}le&s(1m(3AuQQY9Ig*`+FLnb#B$*>)LO?bJgN*47#{> zKiff1cgz9(-Qn=~EA15NFk7Dsq+*UTOQMlKK%tJp8uneLJ*Z| z^I2gC;E4*8%Gc_<;4;PIG(>w9;eU?qpYF^dQQSJk@?_sHrf2{LL{krQA%J85+tQ=yfKSs%UL%`KdZt+49wU{##*tlPg@46A;6~^`&42~-;IKpx)~%_eFKA) zk5Tkt>OEaGa;w4G-ekZC`<&pnaFbPQ@K1e}DJ#kx|EIHEvTiq9LqPJ?8+HZKAq3p= zu96BM&YK035z7PmoaGGvtcBySgH(*@~1xY zp5@C7azK$>4GUpJl4l4SS2a1NXFwa~>`#5B#`|X)s*fAZ@XM?G*C?9J+cqOYriW9% zuQ$zMvm4%Oj^eiBL0B#=dVP?1I{fXQ_@zby!qp-1fP;Fj_VAM2H{N(dh7_tCHu-|O zmP$HLb3IuAeqS+O4m27`-ke#-(uqwK;Jg^h6j^NKA|bRgEi-&?{K2xAk6owPfsj}T z!=A{f)O(T`ieQ&@Dcw7{UgG*jJJ2>Hqh>5FN76f}_ZSw=wO<2>fJC$XG#!|nnDU|0 z04+0~iCGC+{Oi~4iVVT85+pBrH!>M<0M}GB{2x1ZvY}#3%qAPzGTq!okgNh9P_Zt- z@UFfyRWJB_%P~uRvbNiLQpoebXI20LA6X(Rx%RO028OOw?5Fq7(C1FIxXpHGub}V;?V8PVW}urVJOO}} zc6DG_nkdpr6ZfwM(m$y-zfqPa@l30&8sKPL+TXY|?28)Kk}9-}F@CM*x zo%>aQ#I8F9nLJ>-aFur&UVV|mSn;pYv zC;4)Q0hSN2Qs|Iv&Nhs5^Wmr}0bF*aH18?%1Ek0>lLPj z0Cvg$REePZjKR*nG& zZc1LK&T+7$VdPfYj{*5G)1VRc$bhJ8OUeWXPQttK!`8J(H= zS6qlFzXR&i9wSSHn*3|5_d|pc1BYv(WcU2Oe5~ZM{_XNbMEr>V1?eV}oWjSCTv(pF z4Zpf5cp#8W&pZ1Io@m^Sj0Epq=FeA5+j~>ipC~7&>FF#fPwLr=-Q2Sf%m?6(N{i9JNauk9}O>oYE#?3D!K>oa?d;R+L ziKnHdC8cDL@YvXxxW8%}C>#G(jzStNczjt6c3TVCnEJTM7ssaMEJwNrN~U!CBeIB- zo&K$wp?B`X61Vc|LlGnP-*;P+&|Vp3gn{M=5W}2_(CFGyC;CJI*t5-5UuB{vgz&Uo zc|iKr89O5h!&L-?FQ3(b`lRFK_0l`1-YjZ9RRIN@yg&8HN(OiZT-&_M0IO{Cpb+4x#i_hS=N^D>+s4F~pPYDe(pQtK*(z2deuAPZ{>#ng{WXEWS$$(_42H4wQ|Y92}jQBA&!uZEs&=NdQR|RE3O1SutEr^L57) znltqc759N@fxCUF?Upc>3SIoN^xbiW7{%FzBl4Z9_?cy|>!&r~_E!l*=gBDZ2m9p1t2+-$~$@wFqpg;G;?wh}KR4vU-iA=u6 z-`%uj%;WuzU`JeyE9dPO9K>V$Guo2JKzB$7hk zeBey9Cnwjk3{rpF#biaL+wxOd$skJWp7@B*!5I%TXk42|X&P9V89W;#GFHs0>lrJL zE~GN1R#*TZ*Gn%hS`Os|8jWnKRQzm{toyH59@m*7(w0obgZgga@hGzoS(mBcX1&0L z?LB+u;e8c|u;Uab1o1_$#AFCJ3~}Qx7yimQP!OW-ctRVFD4)7TS>{;RmhhkdP?_ps z@)NJNV4B*#;_`8#!Gj22d)aI@w2YGyYCBD+t%?D_FV+yul-FK-bm9~rmjz5rkMZam z?3_h~d{T^`!R0rmt?In4G#j__c^8g06_PUEK_N9T^SEP;hkRR#a;q}oH9Aj7&SNR* ztch;^$0m1qApzX%R$j4Vi}zjQ$IfOaFd+6NYz=KubyLyzk0_9fwf1yH_2;*V4}ac+opJOK&wpUA-EcIjuj#;f*FH=oeDK7>jnfBFtytgZ#r79 zM~@FHM6lf5y7Mz3RmBAh@lmgqO z?@wUE)ReImhS17s_%a z#@o};k7P+amkV02iGgPmVdn^0`Sq*PCujPBo*^)HUL= zGCsgdIgxYb@_DsX|d4?4PzDy{E(SB;qWDiQgE=u=GIoQzbf+~ zpKn|ihhTZwtUV%%0S$CGI?d+Mwgs=Y?N90XE_bY6yDSYWJ^40k;tos%;*#QPkjub+RFA2I69xUaAzjyQ)eXf-d$g`9{aYq9i^1>GFf<@7N z=$rh{)||R2oZ_ZgF&Jn>kKnDiYPtB6pCHVm$p7Od~ZPxBr90j82S1s|ZB3=i1u8Jhp*f z9YlZOtU zn4I`i$9In;f<2)e>g4P!4^a3+wGXd=4VDrJQ=$-L(|UF%I1HgZ^nnCK5`Pm}U6tja z9rYYaK#n@w7NhHqL;tJ6VT`z5n!RnGHyA{)DCaD%e!;BNr7~$X1587}TYAv>JAN>O z-*ig@947w!kRQXtJyT`IsNcPil$3-74G3KT4MhQDP6|BQa>~lM~`sV;1($trU+Kb+1?+65SJcCMRclWDj|6Wc23sJytXb z*u!w}iwwm7j>w`s5LIioj66g$wYZ5kjQ7!J>Io~!t}^1VK)+a|uC>>NXmLHYW-+hV zs6!#vDEuylEvfh}>B#H}b;_or=?9hhFA1P91-dDAM@P#=I(l+bKcu)Gi{$>Ww+Kq- zBEEO`qw-YKxe7C$0DTr($^%@01Wu-b#hs7u>Sd;VOu%zyh`fT%1AYn#af1qf6_S;QI*?RZd zrhfQ}=dRqwJM0mUzlq~bC~MZ&RVZzaC+iQFDf7Epe-7-iG*fIAyr)fZhzvq5B)vCD zciV15K*=CxdYS;c>U@ui32jFy8c^bfkm=(7u0N_T6sTqYu}0I}{|C+l6s9F-1 zT)SW4O1oFxy&61gp)%hq_rSez>UgXmj0uBm%j6bKGI1UeL@W2TP-i#?=K^oTlH&~D z*_L=RtqQY3b_~EtaJIQ{1aJsg65TMqQQ}$H_6bOfewv{81U@Wrn#sBpA01Ts&D)2N zmEigQR*T=-ym>o2x@;7hhU91%ZlLE#Z7cbK%hc~=inXU?_o8ZTwtki$(dd8L^IVQ} zu2=@D#wA}*OQftJ=s^RcI}!aql)VL1m2JDWJLwjrB&1Xnke2QiQ97klkd_osm~@9A zq5=Y<(%mH>rL@wGgmg(u{nzw;zqQuh{}^lRJ;pZ%->Wj`GoN`scU;$b9_ODZRYxtA zavVR{b)I-4<;c08)n4KLZrZOI@_={0u=xq&s%`32$JVgv7cWZtlV8|+Rut#X1_YPr z&pd`IO2Z+strT7;go! z4K>ti=u2?h4zi%0n5T=0x~Jkd@SQ6OAA$lU3E2Xe0Y0agcxi$kjQy3py#j52c3TMI zTvaJJ8+~zo3-8}m(jqcGxzAzzRG1VGuW%%3u}2={)JBy-t|OHnCE@Y0x4Swej3Bb& zxJ%qz?T|3QGheC98O$U{J}x7I(8?PcEq_dQi9sR?Oc}(xzj^|{4epw|;TvVBh1(if zA98TE?2F=WFPD8Q?qr*E8}{4jK_hUi6>r|ypEgcfax60IX#ZY0lTcV%meEu)i}4{mJBYU&`Wd?JM$eF2yjAV4B4t{YR=C{t4r;=w|6l-7*f`&Wy5ZK?#l1$ zNE5TLZ7U|se}$_-81o*UbMjPqL6_^oin~{3Lx?EOs~9w!rS|U`3;)x{7^iu+5tgQK z76i1~t9=d~!6QPXc>jJNBkn;%Fx|?&cN7&5I`Bwdi@3AFR(GPv=Q&tv;%?x<_L_D! z`*AUCcVc$hhGTnB*;>hYxQ$)`x?}fK;w{7Hw+iY1;IRo5ehCjg%wYE`yic+m>FyQd zL*zLmB*NkM{Ocy>wVO9&`h!5@2zy1w2ogRsm@7b~dkr5GjSlhl!ObXI!Asr^(;LTh zq8^O5ZsBw#adn)Zo$!Djz!28#?ELlD=roePVlbc0|IVwgpY(<8EYW8Du8P?Hpr-M~ z13sanYx9fu3kswhIh}VBUmRtK(2Z}~+NaiHCZAi=DmXpE1h?@w8>E(QU}c)0l)>1O zlaW6zM(~J4~b$eo`g{#D0B|`9i%K3;e%L^hi0(rWOZNF$b_S zy`I)~=rsG#90+4#8j427T=y=sr+In9jUCW95)f<<3k|2AG!APzpMD` zHex~bbN_mbI(h{clSkk@t#1==i1AX&ciP04b@rW)+*Jv71j+VVw~?NRacs~wwxS|Z zzElQ1MZ(TbnP~9Q9aNW?OAqsY^ySsP2Oky+f<;)dSZ@o=L6fFjM`!jZ;#jfE0LPun z=gdonQPQc1CLZ^R;`@m{j&~k65nEyjanGlHTdgIypE)8KyGqx$r1wG?ai4BfjDV3& z5DhUtK2AbG5e&PiAzwnZx9TH9LqEYiw7es3^{{=TY9^+vPlEQgPX6-FABx*Lrhmad zCf+N|a_--M1+b{S>0w(ReIjta6MM(3BA0~055LUXFPeZed;72->>ar^HPqk;6NNp{ ziO>Z^Pg!Kr`D*# z+{S)QP0iPD-%3z+E)>uSfKTP=C)m8nJ){3pf&Sv3ZrP09F;1jV%la^W$M+XNfY|ly zC8vewDQxNKp2yHV=6jodhC$VB zvBmX|ut&!7C26%#J}az$8y!;{Y8esHvU+apt#SlEbnVx(<&>50{)&iZ=}IQx5ur3I zc|tNJrt2rUH4JyRR3QKMuv9$ejawM15_pp?k@!e_{*yeWw-esa7&3b7FRs2lVv;%~ zsTz5#F(4**^tk3 z)%-%5++`uXR7zld-O5AT2W%N5Ew`?{N09exH%;OFw+-ur z=N}6e80NV4RvXGnOP!Cl&DJNX`tlB$`pN`d3iG8VcG5(=kLkoMi!2>P5AJ-(jo_pe zIVmO8hVD1JAEyfY=b4S(>$fOpwkkOyGyhxj92fQ>%v(&ti+XrvQ${R>_Tl~g3UOj3 zlJxJ#f@OE*)<{mL;xeF$KD0v@*)O>bao*X*=;$YSB{a}|k&Nhn0NNnQq(hDdkFbz?`pT(*; zJiPjRpMu+qx7fSl_Y)^@e*enTnRGrUcBFln7qa*MZVG$L_z&LnzWZ`==M?>DvsX-> z`Qwq@H2o5Uhj@u}f*)V|`fv~^HNYrr34ibI@_-Zor9t}F`1Rs?heB_$^1SHj$Outt z-GoW?zTUkK_kT+2AaR!o(ORkxR5qY3HV+2l!!KH?Jgk3I*Nht}FF9!+uKf}@6j+ZC zviypW-~oo20f;34ScYZ!(BrrQga{}6KxGp0Sf|oAFxY`=oCWa7j2V*t8;?^o6ItJ4 zblsZPM9^*1(eLMKQl+rb?I9|ZuAStRRqH36L)fLOYUquLx6vZ8suw9|`h-dDwErn?tRIK*L#qf``|?6(V1f%5s8TQx<{3}K~LJnVBU^C z?dqRHX<%0{aw9&(fmuid$FGv#FF09r7&BKSK&s;lVPr|^gzZEjNMk_(RC_gcLwriP z>r-!E=)q^NLUlvYvi$Ztx%<_#<2Rn|Q^dW-t>24}-ydkNrhFyj>+7z>23l2FAX05K zXIYruYHbyHUNCRxUg~MU0Yn^6EC&WDKXZnr*?%xN2+O?t3{4sLBT(*pBw=>Q4Vfra zBuP$wL77z#IFOR2ky9lUPs`uX_}e+Ti;NtL7jWE6dOY^K;y7+Cck1)u;eM9I&bi^$ zTn02m_3~+_OaI^EM}w;+`6}^YkIfFbUY?E%Jb`H`^+gy7EdH+e-T&x zR683B8{wPH!8(D;;_c?Nf#;&i)&>R-;%I20O;b_xZKVw8TbB7_QRUjn=`mqJA3JBo z_^y{l>E|-amNr zj$Lp4_q!b7V{Y;ym)cMVeaezvp9c&MLPS-Y(-C(Yld;P3oB4At+8PT#lQpL5tnl5R zG%^c^uDN?@?}l~BpjL}oed+b1H9mQJAI?p0N*Hw8py*vl&ohtm-@_h+iZ1wu0q~aZ z{Jd}P0jLHz5BqK073&u-Ew1HXtMt9_ncVv+a5Y~PXXh=p{p)HPgHN3DE^EVf z`w!E&X#Zf}KgOb@A!&Y42)v%RP?jPIWOGqosvtrNiCj2wO^G2Y z7fiqTjo;43NA;wFaZ0M(fow_LlwbQBR+y*Vq+N-yoF0E1@^%SQn4XZL= zb6Kd_+*ZY8YQ0rGPY4XyoBk~Qa2~*!*mjtz2^-)uKRd>H z>SD{Oacz7ATcP9HdU+Wzi0T@Pl70OG^nvwNGlj46uM}YUTKe9eaYu7u$JWPsVI>|^ z@g1L=5W%_tbgMYqXh+X!m}hBUv0<1B$PTWicrT0}a??^zy z)~CH=*t1^;%ie%sxiEX~>t!gTB10Ll$H$RtML3t983r1t%nZHQCzH3?N}DNh#Y2R3 z>Nv-&AG&Mm#T#!^K}B6LdSAt4evM-ro4|?u5}>?jF{D-#n@jtrcu?;h$I<(cn}_K# zwLA(z@^avb0a|PSBtOagTxw;MYxj{9Ia7Q4c%G#L7X4$dHN$puAJwTJ`z+I>fjjg5 zeUdnH^PmmHnD!=6jOIqCbUm4sgA#sw+?sD7oLK3k)7uDhhQ0b`H}UTyShSlSm38Sj zqwYhov#xzh6x(GiUKrjaw%SdB4jFZDGi=@AdskV)tiU!mk3XxhaLyb41g#Hf;#zeH z8Iai675(^JkuqfIqQ46^NvSFM7wxg_@CQm9m>E6%5(-Gc1c)d< zTms#T4MGZzwf*C4i3K`~wJMX8ugX=4?zeOPIjtE(kM;glI2uB&eGT7|5OKovG8f6L zN!D$3Ym(DV(tVG+^OXcuJ;9VHmNKfZm@6`#Sxw+LG)_)vqyfEJ6+Cphd!&QkI$ybn z7aYgm0PY^BMy%7&O3XO)e2x>Io_S&L@?I^pTYmkC-*GAoiWvw5>I8aZS>hr?!k8_$ zrx2^zvc5ZFZA3Z2ov9>;7KO&>{_WLq9*Z%aQ7>B4r=6LTZ-eOnE2n857znCF)pirbR)i@)CVi!^Jp1t5Os&rV%ugftz zI9{uxk92sg&io$HhTv8_vLJeA5lJAsW1Gd;Uo6l^kNnVUVn%#3z)U=Sa1!%=YUv}D z!PRsF!}JF;`pk;%6(pfIq;iX%j9==ZoK%9Y*KJ|^8c;_B;^tx2e5Q0@zRRSoTQjYT zF5sYHcKQ@FRsN%TrV|3QQ${~u*RwWGC}|jN(wvZ&0lA2-+2rS=lX7RLnq-Ub$jxj%HKE2xuBM z8+0G8jc77I2FGDWDu3UKc*S2F679OZpH3$MWlhR%`{AuSxpL(BR0wP|KY`?ptFH&e zs>W98ci!AuUt0{w*eS4RzX=+%GlmT~f@T;L|5(xY)J~DHwB*{#G`w}MDKi#5;bzX0 z1w~SGbIa2e)h6hqSUwW*Q}#^!@SnPcFw`v$`29bCx4|r@pz_eDe52`yb~3#x)jAAf znv}n9E|@$7Yf$YPT9!p_^-}~A?nYZBkAl`%U&gnhj*s=bYnL|oeR#1aB=D-MBZ*liPoZHqU=ggL#rpTs9DF%Vg z&5Vy&)qiYfC!BydneSNUD;_QVV11e4^|Om-SrW)v`Mj58rG!jk^(JY4#g|dsz!=xG zj}8~~I$-z!j}lWXnkmVSd)Y&uf!SRAux~kvT!Xi<$c*^ZD~E^D`2;8C2L`6u16J%P ztanFD(!JNPlMYKd(T$H*C?~g@%Z~O;N#9>*wx7aZpTvuz`hLOlfz#N*Nl^2olR#xn zGB0fi12K5d(E8E!D!!KS$%XOE?+Wpz4vyvkRFI*^Xkz>s`>0F>i!4}G$RYMo-=oKT zRBs!lA4d^dDW?Nbrs3h=&;2T%!DxEE`Z3G-_Rh`xa}Rp`4~mBAQ?XOAp94>}JR66L zxGYd|J!*OHY)y^Cl?R?{l92*9%ESszns%D$T@Q!%MU>UG#;JF_z~f|rpu#*IvL7}w zHD|b=h_-4;7vk`g<~!LZMqrmcS5A-4`jpjRggKDJrlPFT;jZ(rDN=GK%A~Q8&L{5{ zqmq4l#BRjSX&dp+ZuRfV1R-Ekg z0J92dY5wWzny{*C5=FUko00;CT)`#TBq!wSl<~zqH&uCBBN&?_G3_JLaqI*~UEvek zYlmqqOYOUtSt}VY>Xo1VoC}SkF4%iVW*#cF+%xIKaO8bvT^tWjF+YEGA7VTgsZ4}2 z75*JPYWfCzENg3%`Thw|pH6;u82i>jr+9bI4Jy}iDg2$&kp=J{P7wl=1;+^wltBho za$l4NnxaDPd&R2b-7jAvMyB3|EvEI#l#vI2yN9!l`lQ5J7Z_~P*o?9iX$WPF(z|ya zoauQSx-~~|6(8zPd*%WTA=q8(9B70QMJj3JxYt=NR z!>B|NN2Ffuf^>@B(Oq~h-S}kRHK?&halg!TyGPmis%KZ9#HIq>pbFih1D#=0=Q^*U z%=Bo-_8hY-kJz|Zm!REqjyXT~$c|i>vx@UOdhi^_(TM&*T{{@fLmTWMh$otxPI-yWC|+2U&9vA`u=}(~?A(!uuk_ zWZsR>V5Co%QJ@0@U@Z2yjzkIy7BJbMfOcpRoYvGZKeqgsrcn^icv5Hl{S_VgJQ?U< zriCL%!*{-!``jeaS!^_GQ4PKM{B?&!5<7;fI2OAef{!2V#S7>xJNGS0eksl+M5ITk zHWd@8N@ot4jfP~w+3{^k(*Df;qg|+ORIk)T(H_X3{3R^{VzUwM?Ti;mwSh7paj1Q`v>?$dF z_{6|_DK^9A08^g{S)d$Qw;!&Ywxs|~9MJ<4cgAe_Fnyy~JL**QuZ8;F>EamUITxn7 z7VaHS#>Zam(~44pOahP|u>3Lj;-X`8{@w3C;;>liOa5)@m}J32 zUi2k=GM_Uq!ly3U@Y`jw!n#XG^9=p~sCgd=tZcANEFC3K3j+nygAfrYl}>>Up5wa) z-(vr*_|Ri|Y<|bd8+zWPZ>2W8DeP?6wS45|F5IQIo8-W0p+-!H4F(N3uYiK*6;0+u zXYaep7k6}D&U2+jcT|6SFg<~E19t*j6UR;h=W;5g-ivs*<%GD+KRP93zsT$Cb#@B*3lVemCRfrP1vLf&8 zqjqzM%1kdgi?164A&um|ak*IEjKz3^cb}~b(f!MDgck-^Hj6PiH)>F)P|0ltykqG_e%e=n}pHgteG?HcA zau-)-fAiK`{9`vGJk{vH3t3Hq4NxMZ+VUR9jqJGduauUB7YSW|lUg-Bx%3yGyd_GFYK1?}d zTgWY?&r9%mtFf8$jUOodjBrvv`=l}`LouJ?1&3Xk)NJ=Ui4rb5YPzh3>k2V4ph@o> zd;-jIUzDxk-Zw>~;x7&%g96MGI#x*EgN~!2!i}S^&S+n>3Z6b)jXaul$51ed8(d4( z0d4xt|_~!Mx5g|y&kpgYq1FxyKZF=E9?pTRPRc)sPbKOM-MfFLvuwK0%9!(DqRnqV42fl;I$;1-1yeU=D zx~a!jEiV69xY=%}=}qvw3K7Y&`zT^XE2OQ(-paDc52acENLX_In{8#%cLfLGS)isu zCr*ff^OsP;lQkmcQ<9U5JSfdgeI^SPQ70IRldBpbl6(3Km(Zw|Qq6t+EU&@Ox5K!J z?J_Gd2l&*nUFC%ZW_E6V+RzInCc47J{-FJBV!_e+nov~Ts8d7Bp$;jOZnR@ML^@stV?64qOw)~VZzgMeLG>TvbGLhD%O z3wVICNz37(OvPu)uTX&hujpqA635sr z`t>t5jl%5v`9~Y>j=58wp3z2=rub85xep%V8|>P;KU)JHLU%lDqmT6m^dY$Q|b6iwC3F@idx^V&{q`FG;jvJ9Na zY~?3oKO9DD3&O;F9yFH8r*5t2iRU+Pb*$*a(Tqg%$M&BRJMQCQo}(sb9=-r-;U$S+ zx+~L>FKXZ2@rcpvj!Cr~4A&2PveSDdl1*w#cH^afVD^)x!>2P+tpb8_avA=x-(KA! zPp#v3Of(p&v-G~YHJ~k!z5f)CZFsR|e6~I_)Nxt^m!#kObjjB$a&l^5m{h^XQy@x} zLe$95vdbjy`SKI7z0HPfr|4$A4b{3xg(q8RFTo7zdL@Zgs!|_a~8Kb@d%|8PrM~-#j1Jt;$9?@lQtB znHa}u@^r!p10glmG%DlE2im|;Qg_H zOKP8jBlpy99lE?VENz+u|Mtz)Bm$vFo+q`2NO1xbH*xjhBSW*u$ zmPhg1)OE+wfjfgJtC^Qcw7Dn(?Ok~&Px8jv%Aa@+7tg*=eV&>2_bSDY$QZmyJqzmy zi5o5$S9_jNQTUNxRGU-MQ=Q=R(S%xCO;D>~V^+`H?0r$k>cS%(3Gn9580O$)roGZ) z`Q>8|w4SLlfWddp#)jF%nIfnxz2Clfz2Y|Z_IBOvBdDkj=TInFJC;eq%}ysq3f(|6 z571%#QLG-WXjENlf+oA z*YL$)rBu_^bnCa7brdzUi^O}?j-CB}K0PAJ!?)-IxzFvFg&u{@Nkl(BSj&K{K3lue zI>9!YbE)OW9h^OCx~<1ziOA!jqS?aZ7Bx+bC=Sx>sO?M%UTLO^yc)V%>frA~~}$qNiHX zG;Y4S*5Oi<#g5^WXdJvY<41pSsz^|w-yT8HG~LkTwZv-C$D%R3DZN^*opNJ8*Cu0^ z{21~WvVG31aNpyqPkf%5_<{4i{E$rR%*(E*ovU5AD)PnKL~C{9VwQ9aCeJP`6!0zH zeUmM7ggP%G{GVaA$jK6@v_6_PEIX8J^eB++wpxjqFxxPfXRR?*t{yh$7DnFp_EBxw zdDMOUNSywUIhO52$ZSeA!*;t9eS186;DElQwk2P=r}b@W$*ktE{^`_>`2F?nlAZ@( zb|T3%f0+&e4bq6#50;Ai?%7W*@%nRCYq}1#gk$A%)jd>J4Bae%I#zi@)D%6Vx9^KU z@RsA!%V|?>p3CZ{<_M~wTKrBJCZ$m^jLyiR`co+7tBJDr0|cij==C(V|8~V*^0> zSe#__l>MskX37tv_Ub!26l8yKZ_=M8SZiNuG2@mC;mA}@KYN~Pyv{~@Lr@UHILb`2 zlpZLw*A}3JJ0@f{4%vZhJTDFIv^>GHWeU-V}pD>(x;ViRVy+}QztXgeb~ z$}Ck?@itsFh-&Ehrysf^k_30fIj$_@|NXuRP}7RG+NX%95H^uZkaxi^qN+&~q5D(L zQ73KWwR<8_JX2GpSIFyZ`SH1-gWZE`8pwX4K5i_WM9v2^NH5{_08 zzvh+}-r~ggc#i>F`K@e8_`F2(2H)d1{U3-D4ee$vleU*BL6CHpccjyi&Y0 zfPg;mihfgPuLjHbha%srVD1A$FGX9P$gsOMHRDa&7oYz;kxLaU(QQuqjyvf=i!xbV zNP4grdln(J^N_{dOLn5x>EP@6TEMXp=w7DE{W2i&Jiowof>L2LEDccLGy3XF~zZ2$*S|IqDI=M41dl5$_bjgci-bq&7u29S+E!n zJ>M^@&^+i<&U@3`I)IvM7O0u%5bf>l=DDkPF=|pFF{403|@PE3oB0qTj%SKbA@=%b!5D z4_~O}ZtR^6<+%71W68WLggN_KAMOf5ja*(%p7mn8ys}c}mDSgVf;~d+gPfl-4fmZ; zMu)E~gNMQ-s}W#5fG+Dx)>)N-HyQ<(&EHo}MCcd{Z!IQ)r!bybNpmTjY-*;c!`LN} z!sfQmDTygku&LUr{A~0jQxaedg84&C~An#J>Ta^9iS|uYaOx zu$~=I7e68*p`YGA^Im1PHaJxvfrR2oH!x`@@e$)lZ2E~y|;T0s?flM z6CM%WxmW)B<&To8;)2dqgz0X8QR$yIt$Af)ESH1Rv*hXkr^;CD2e;!eBk zeb%>k;uQ6-oR?%>8xy%ApRI+|mH`1sihfc3c`XPR)=U!bySVzFo%r8N@b>KE^!fJj z!!-~`#;StjfFl*-3+Rv`=A_4$p(DM|Na{MO_)LqAP&D{Fy+Jh;K5o3BE2cL22J+(& zQgMNny_zJL^*}kUUip-~-hl$$0MON9_mR~`(vWQ%$ceVWBQp0hlwosMoF2@vhVDb! zf0N!0p4r*m1}Vfw5iJc3H)PULMJu$rkN?S&{P2hjp7ZP}OmyI(Fvl&w*G>6Yi@%5! z2|Zw>2r~stKr#t0(ZO!4Ldjmqpo&swY4CPGy5q4q8E#k9KuOc#!0#>Gn_x$oxpBnB zDNlqzB!(4tU#6;c<5<;yztb;!&Di%L9(kYe-S#_uim%0L{AN5*Fs|dyQQvYW)PeuACOf_n{x}k#8Pcu6X`KSoPA|hn$?b$)I^<<~* z%6t)k58Gqt)(-xk0sQy3p})Tre3q)~?(=ow=Zs)_XlPBYPdf8HXn) zqb8gh#Xn$3RW#!C1Lgm6{0-?WS7W`xffeV4uP=-nI!Y`$AhG3eEK-vG*>*E$pdlbGr{AFKVQ5AdF4`fmAFfXUL?F%(hZ5`X^jE&m7}yL*Gc>;G z6-z-11v-H4FA5&<=)8AndzQ3BQeu8xDM<`>#gdh<>lb6D+7>y=FGHoXP<=LeJ{P`4 z0eNaf*}m^_-?wZTL5n!h(P>)BYdRy~@0d6V?PG6>l&Z}fvSo^RfB$>P|Imu@fC%@& zJF&6MtqH3P*(`J%&-#+;8AB_nu~IJ;icFv-z!}Ai^90L9Ry?0y8y1zz``bF~66N@1 z9uiTVujEqbeXed@>|e<@B9N1FtIx8u{epsE7VvK5V%_s>SkSnVU#yF!Yj4>6KE!yo z_bO;i%F#^!Z$1pc72~HFx?8D<{{{A=_jB?*>0AB9vB7gYbMMz}l%l{P5dxQ}YCjZ@ zobD1*y?|yVr;S>Yj38ZSAUI?pW*VKT9P5n5xk^3N2W&uxM1~{%imVQ}u6%}x~x!El(Cl>)2 zspPkBQL%a_d=6k8K!xo=>>UOIH7Pnw2#8&r?xL6k+&%~PuOHm(P7xl6&7`M-OQ#Vi zSmC*S9f*F%t=Ey-tGMVBcfvrts>iG)v7=aYQU{gr&Wa76Reca2m^4s5k`-RKX|*9I zYd}c3gP`$gUcB&7>9<0tgm;)+}^PGyN^>q>0hlkSq(;v zxN2Zv$9?`4?rWtYOXT^B@!B=UCX6N&hlcFt1K=oDsbbV!e9paYM$MS}M46j(yexO;b|2V#UP9*Zg{+JjnKpb0FK@B)vAb&Qqvp?bZN7gr*$6`Xz- zOYDvO?qp?zh`K_KCJEpPASlqRsNence-Wh#4kIqP*{UE3r4WcDIuQ|Lf{l^=7z-WT z_#azEV8A5aGKun$G$L-vA&&}^@NYDJ8y(tVFC8?Bovnq!aY;PHA7k@eceU&4WL{&u zbPvJzmb1+LY%Djw@y&o*YpO6L%BEv9Ni9b6BQa9nCNN12wMb5y+h5gsZXfy{m<(2#i*#PrpzilnCANEbF>!{DUpy_NxQcKr{IgE58<3=f|^o z?1n*@rNJ#$OU`BVhw)X^&~=Te)!+QX?cSiI_s<@Z&UJt1^2#=vgsh^IuNcFivao2V zo81<^?p0B2B-)2YO;>=!eP}o4t02exx-rn&@MLw_tp3^IZnf`H+0*@_B1T-^M=3jO z=U$5s9w_~(T;qCaMK#Qc!TzW!>tn6HqC((=eJbG?^V2oQRK`deFvb3X?X=|6JYrM7 zoC;Q|N)Ljdqt-$$jT~-1Cyp<7?t-A#PAS)U#7SjtQ*}7wJu_AokzGsS$XcA=N+h&Y zIrDh|A;>&2^7v{on>;h9aI3~d&}52Em`bz#!@{z+P|-s~DvcUZK=mR=HQ$DAGwU z3!J(IeY8e*PAgcuug&$(#fPBHGMYIENZV$w9njo&aIdmM(9$3!&o4s@L`XgN%SzV6 zopaiX{>HeVWgF&xr8jk$xlFQ#je3=A7Zh4Z_7?A4EDeL?E-fy0%IvwhxMwr6y#_zr zJBLehlOSx*hYE3tbgFPebIdon4pKAIE)dWNQx*SM-`k7*`B*3Tw$p=R6AK=lIm@4< zdTX_u0+-21LHG#uQJKP`;L&$eWy<>z`gHm36(AE1tej_7F|q6V_r>er*2tz8plRv- z9GydD%{;I%@w2W#XQTMS%bTI%Vw^BCirf8;$k2zw`Bcbx{BaWw0|El;v-Qx$mc$&Vk%9*7V%`;u zcr1WV3^ReZ+cJM5*B%20p>z8~J9d`C@aJQN$Z)cur@!wl?nB1i%rgwbC&4EtK+r9I zOM|$lF?^WQlEMY`4*o$Ix->-g5CQ=pEg+4QUp=M-3r?pBGa_9_HY&=k<}SC^{y~=d z-`c(Ui4TI$xibA;Ze9o#87fHapotaK6Qoav*p{GY34JmG%IxhdNh3l8*c(v6ex0{{ zo}@9|gOm0vGn1LD z7}oXT0y6SznWs9VW_DT}LnF0XHzqz6f+Un9EU=wPz{j5Mvu$QYTlq&s&sO9u zmtDEYjlQ=8dd%gCX-y|v6=v&tkl(5C>B+^>T|ATLYQbHf_EIWH;n%wK7syY?KH1!f z5V$?2P)4n7Ai(I}ti*hOIYi_k>a!W?Y+}1;JDJdGLjW<>HEd*Hkd_HSc?DW2g;mX% zjj%T^vNYi?u%KRdU)I}^r~EV(ANDr~AgRQ5=oX8yx_|9mdbcs-g4-xVe7Jssi$~1VwgR@zxKzT(o(-sm-rCJfrak%$sv4`Rg6#8}W;Jva> z4r!qP-M$pE`?rT}f-+!Edg|Ue*s20xOceNGt5qN7O$!)TR=!p%@eS5M&V2<8)gKCJ zqi<`~^d(seLy&0fk80myno|@z(50tpf7$8r&i}(k+jz0?4AN0xCY4ZZNU_`C~0**do~c9rjviqB@x%BH~V> zt4ceW6uQ*tdm(&Uv*3pY7SE?-PDbumIF-(@p+fziBDwgxiukw5C=94cUV^(4mt-h3 z5sdgh{F*ho)q%QFa$p~0vl{T*{!Na6GT(cq_O{G1Qh)84?&d8?U-VmV2YA59xWw5h z-F!q8HpC}OLAJIh!CH33o7L_kUrHs#Gr4znbXZS|ar~$F3NJa^qb|4^Rc}}|jAoN< z|IXU=qy?vMu21rU65%|tEx2=_eaHD;=atSY@*Of1zb5O7T-LmyIkEnI+C3Mxf$wp% z<+1{Zqjg4%sjkV8$Y)RPp%J?Mec3=XD6%Z-MUU(0M4xcZgsvRMwms3r*0_FqXFYgV zom=|bpRqSIW;q(;RUbHJaG|cNS9yZ~_BG;^nD_w*?Mad*HWbh!M>_%pQl^Qh7MnEg zXLeI=zFas&uj0{4BS)>&})<8yAr*+}cZi1T_|WVMDJc{az?xfi5jul@{;x zD6+I5xrXSU+7V{!Uz`?7iHo0BY~2ayT$z7}8ko=XUP?Kk?#Uo+Hv*d)xP&mH*@&r! zr(B)Qr6t?B-=emBjcsQym_S{~%xDBWw0Z@g*KNBhB^b^Jj1m&l)`t#-kK1$oW{}pz=lHx@{qowG+dm|K zmVWg_lSWvEMq*KDFc=d-ir~jcYp9^nt5oWxOy99OkjW;ipr^~S@Q*;rqg+FXx)Sp( zPX5X2TX0Q5zeJkmi~peZCRX3odNf|GYUW+Kde=6Fm$RxL(Je!lRY?#J->gzFGFtVL zp0L_w$q={vs$emSA6hGz^_DGA_6K}!>F46-5f6PpwKM{R80i{R;))G7RNH6u^^w5@ z{`Wc2V(77c{6LOeXhaf?NDS~S+D$kXJfAV*VZs9q4@k}xdz7;$>nkCVj{sXR0BR;%O+-cMq~?P`xbR{ptXns4pamduaxRz7^ZiDQ>VN$3Ya!G7 zgfh$ZpQ=+D79-4FzO4vuM9*uqe1j~@v-52n<~7e2qE6v|&~VIoILzr}WG}B>%BjT< zsp#Tfcr}qa?esOe3hkEw0y$*vA#&?}e5tQmyqEwMA!3*kwYjUA;sod+MLx$=c`kH{ zuN6V@83~mRvlirkVkNX~C)Kvx zddJnW>UCv+)$wknr(@#>+#GaTj3xx1uh{l{Y*VzL2t!ptL7)N#u!L5E|AIy6ScV<{ zMvs~&=4SpLw$-LQCyaGWU{(bTS)0*34fxXt6a-VuK76+yI*|7~>{Bg2NC?03JgWv+v(D z@n^nH@KR=PvT87OP%)a}`X7ILWVre({!U?5x*WzL6Bgqtk`)miD0Jg;?y^nnqlIcC z8tB~5nqxc16{ zqQS>J#veiL@U*8xtl!0SN2|()AYW~L-psy)9p|P?8Smnn({8wAX2rr?s~h27xzH$xXz1w4Ty@f;9|JAJT>&U4~dIbzGR2&;fe` zp!#p0=~CcOBgjR3*Y^}l!=2gGF>p|gIH&e+{-!$aEV(mo@jDSLJ?2o1_~ghNiz4v0 zG<(n;M}U~U-)6n&BTc3T=A2@tdLhi(@1XXu#H+dE(3 zu6<=d{o>#F%EI8+*;x5HO9?u+L8}_VX*97Y-~u;|ubLY{hz6ApNZMu`(y5a)F(^n8 z6@{kUICPY5ijVMPq8Sr2l;`FqDf7lny?`32|Mg<-bb|F~B7 zcuF(sH-%V?0{?E^fBf+3_?YT-h?&1;GN;1G zBo!7FAi{))ZaHFwWV?)-t%GhrM3FBw18RIy!e9Y8NKiv`6>d7f>8a2Gd7i>@04jz^tzIcAX2m5>utFdh zEaEUY@RkwI(0!=>8A2QP>J_#$$uI^eS)=)?XxM`+fR~xPKbV}PqT^>0Fg_lh$ z{IQ%rS2~6ifPNwJ5OxQ3;*Ay^mlhTlOpkvrjyC#9wnx*3u7MIPF_Er~5NbFbz#=sC zO-xFf2NNtrA71BiSx_{2j=JmD8VQ#9k#K!m9=4U$)l_AVdcJhOxr2sKl{mhE;;D+A ztd~6n$U7PWRV)0xCV8@cr~dSJ7s}1vKRAe4HWpP~Ewr$-RM+siqJjcq3jeaG5s0!e z!m_c+k=P~O${p;9>OhLLDkrEyQl?dH?Yx0}L0ZPIrT6V-kvDMBjeR!w|3=#(0URzT zFaL8$*QA000|}XQ>4k-toa%QJ(x&|YRU-6sn^C}iw11Hw%)3xOMCA?c{kR_%VU7jX zGj(p%cZst1{`uqG+SYdLBjkIzpSo!is@#h4n5imDZiZO{KjHHm*H{Cf0}5N~|0#q& zNEYB&{_Ouh3)<1`GcDA6|0XNKkJ!FvrvE`!tJcB&^{&4uCUzAJvz#6LG|K(wXoSB? zaIQ;$03A@(@MHeJIMFdWdBH3ZK(|)uAo`md*x>EdU>vKSsbKbd;hS*-F^q0N$~z#a zC@DjLgJC{WXmntqlSfhKvGFDNit+N0kG0i*;S<5}3S(e_2u&Po^8a6;AMAy%UDE{z zyD!whtABUi-Y9aw0ycd&;H)N4m9mW7TzsJ4WM^kXiq`xNl=~nH>1kvEQiSSC!rPul ze1d|R85#a|OwW-2L@P%AQ;lyw*z$!OWPjyQTVWa{g`eX5q@Jp;N4s%{dT6ytG z&(h(7&(VpOr^K(drKu^shMj$k=hIW5w;8Jy6&OwPbSgR=JQPZ+y0}pJIrH;*-KQ*9 zpTkXg3ybRj^h(#jau9AsV(yVUr$f+Y!}&L9@;3U5I1f){-6e0I`niZ8SAwU?SNM?{_>cF`?!?-OwO_>@hq@?epODbeZ2-4kUt3$d zdNzQ-dAXknEb)dOV^%0DF=zd@j32Rs+Mk07Cmx8GTpugLDP>1}h*m&{MFL&!$j64< z6f%Z>U!RbSNHX?jMKJR4yl75~Mdfo;Lyw61^cdM@-khVEWh#(tCXoChK7Q`+M+J^L z>g8e3GV=10qWXaFl51OL>Iid$(AV|p23o;MXABryjJN?4D;)3~U%svYRY`QsES0wD z2A|Ykf&gR}SL4-$TdM6Q5JAomEha>?=XJ5&LL3I*Od`QaBzUwLf`fx4u0G%1X+5m! zfv^xklug>0{>e7&@*P!x83kYw#JzbFUS7^;2sr{m^HF!69pMFZNu?daY`zW6z4tIR zR#a3R!ON=a==^F?m1+)v3ZTXRmsE-$zC9fbeo+9VBX#siA#tCBSy-zM+lm9nrP90{95|-E z*Erx?8wjLxegxyb_DvS3VoGI1`xp zvn(_}J$L~o`t>5_d+`H5ek{Cyf30c@wc;HEHEDN_1t<1gYzyA<>%b@FvNV$_$JBbq zDUq}&!BOZ4p1}MVw^coV$%N2VZKdzd#l+0{P08&hjDy{^;erI1N!Jo~util*>3jhy z^VO+g|CM0qJ?RM8qW*x6A?g;47`jHEy;l18g@42_5cP?XzXz;g{yLcu;Cn69()^X1?J=j+_|fB+KLKJgI~*-N$!Uef|8=lfC9V!NnR+P-(t(lxyR7)2L z_R#_aZw-~WjN&LC?vvo8!W9v4RwLl46~75thKWkSc}1UTP>oT^5ZXQO6Y=xpnNw_N zq=v=Bw8O{g_`>TFIYY6q03hKG_^pjCv!Iv%W+R`|D|`)$jSX!!-9F@&>3qv?SNy1l z#*g^ArCaY)vYHmyhQI&Yee06+#STQv$;t7h8JhjCS!xp|tA%^85mfxY8)K2m4;%hn zRAT!ktB&fwB?w`OedXil{|Q62ypi)C)B!3$*UyVcGJ(ae*krerO!e!VH*Z|@^j?cWjPo&kLAx`^ zz^ni4QRvfZV5^c)2JzCYKldLlgg2sqXLD1Lq>%PuKeHsn!Few zfSjm34&1>s%=y>hEPJR4y72^P-;B8E&}^G^J4M0bVIhXhVH0cz2HztlOljw1*tRXX zeJ(64>^gk9R#4>(jGOBM0+bNxf*KKBuBGCd6Gb0B+<1_Da4}JL824#f^3v?qW8+uJ z$vs}*@OmD-ivNZ6{-c%RN559yZ=?xkq|G>M+t5E64A7PK2d>=AQw=7WQS>7}KlMJA03#>Vt8C_;fLjsO(2XvpTKBW%Ow zdy)lVn})2b6Gfz#m60_yTIbQw(k`uM)z;E%Zf-8GuggI?2&6lgz*L+)WGm)(eigJ= zvPw$$3U}|Kb>H}eAB-;OI4R}nDG2jFYB^pTDZ)U&<_$jXWm;OOmgfxFK6voJ6n5Su zk!?11cCtP`qH@!d?7|dg z4axkA^D`f8q`SNO&YXV1tH*pao6i7X#m>tcFPfH;V#&$L$e$3Nl2PLWo6Zj9vumh;Rkoy@bR`&?H(LFVrFJGJpMmBa)c#V zLuB)RDm5t4r zM~@%R^iWBXx38PCnb)Z!H{w%&+WeLY_D=cv`oKWlSo%6F?oQTLB@+`722kbQ(!!EA zEf07nIq>4}&+oJ?EN1-9&Clnb>C?6~`+AX~zrR1j0pM|`J8%5_{5&u;wDsUY$D05D zWPuHTVAb{ec3s?_ipG2Q;yR8d#nt5G@YL4Ug04)O=@YTP&Nh5o%1I$$vGeCr_5)zI zDeiV&UY`Bh&-Z~=ZP>i|FfgV6`ST|rKK{I|vQx*~MJy8pHYJF4voaL?{+9dW$Bz%E z=F9=!2vAs9C?O$nV6Js}!TWo*M~)m(u(p;49@YN&)#-x=8_V?sI4TSq9T*axUDao} za`h^(w|O|hAOSd^4onchHW^Yw#*vuF`;F8FCmz5#ss+&&(PYDG! ztv)_H%nod_&IwQ38g=pd^>*FpZ66*1Ya0$8o)#aq-^u1z1e~7rUjyZL9RmXaKR-VS z8JQNZrH^Fy?b~;!v}mUcaG6i|x|oB&TWty+9%5x^SiD%dVWzKW_u9RCWwW+Q0Y_vw zczIjBmO919%fAP%`a2$3+uqvx@a^sGA3l7TQR*+$$pS?8?%mtt0_^e$0juWdFV#P$ z10%=6!s0-J!5J;kr4PUWn>1-sMPYn={F<1ZlP1|aaqyo7xynaJ3^@L-tgp|1`SRtC zo}QMQIc~sw5EB~qLe#Z#qP|T7id_>4|W$&Y3$` zaiWJ}$ z;!v#TiDLHPP;3!MN(L3DK%tF>py~uDbVI_6ffFd>l*6Oi09I_)1`G_4Vrge!B?c7g b=>5sf@=)FW;{zcc1|aZs^>bP0l+XkKWr}_H literal 40051 zcmeFZWmMJSw>7#c>5^1R8bnH@OIii#?oyPN?oETVh=epKUDCDb5NYY|lJ4HzXY2o* z^PW%l{d&i^AJpLNT=Un@vvZ5R=)oK1cNF5} zwE6D?IP4rOI61=zvB60&?O*6PLLm4ih(Abq;<@i3kmSXe(h}-!DLZqXUTUYe-G^EZ zvGZHJHm~#uIHlI;Sm^$YZZ$^Q*bdayUqqj^}&*TV8CiyFG+q>qr#5aa6a?~i!E({;RX_<{k+9x^-9^zq}z_NS1p&dyJXi7ZgJ zKtFI~>;{$LQDeJOn!CO9(NXcwlnd&Nqaz0NT=4#KF;V3g*eb z-+Tu*UI;_%PU+^C|2O*;$5$N*8*Fb=fzJ?fNIo(t_-cne)BoF^$9c&yVZ6}#lkwky zQUlF!wA^$&&vU%9)Ch%t0m5xQX>ET#XAi$Dvm$$9C^G5#?CDDgj_(N)B98p`_n{%I zYR0!7Hdp64$%~)l?p>G2GGY26#fbSL?*E{&vL)5EEr_fw!AMdO@8-0$>7#eJ^{NUHX~F znYDHUX>9Dh^Cnp#OvDvBAa(5q6UrOwW#fwub$Nz0I8{IJyuIiK#!1WNsXN|1HLKCh zds2_>?IrSOshwQ)_s_?M!pl;NOYLR$wARz#VAR5-)ZWA#Fem$cHr0RG;okGAD&;Cu zBuljb=FvL$HUoWRMLnLVua?S|5*qp7WRCFrPu`p_m#O<@`4(i2Y=5Y#YQw5eHFiT9ZsxoVCkQ(}tyWDK|Nb^mFyAP0u@7C! z3J0%_?#thtXX+clRN;#8B8iIi0fe}4ipzxS2!VwCo>CKQAEY+ z{AfrjhReaCE=1(-TbCxdz;>OJN}aQ8RjqE@AJiK!JyD>ECWc;y^ZhyRAj%kNovoYB zTR1X39{=J+FU!5cYhBD?YE@4{LRyENU?SnctX8()zpcMN4b*hTmRa+r_|| z@|7x+nOTyES`_F;vV4a3`;e3a{D1CcwC)pg0&k$it#2Sv-ASUWmUckk2vG)Mh+ zF-9@JqU9=ZvV+GLTwnXl2iVSp_#F+ohs~4@wvH{h-ehzzyTQejf2=Uaf;XGnoZ) z%(G;|GiS;%;67ZR!|hCm{Xq0QC7y?jGZ zg-O1mW;l!M5o-v-`S$x<+q%I;Stn*A>5O-dZ;*#dUneHSW+KW5n$wHce4Pq5ZX32S zS4;Vu1NgOl*MrtOJi1B-2o{Ll;kG%_P6Og)J2C=S49a)k?d+`YZeyf+k6QEn4fT!_ zye{#pc>O%kQXYrIubEx%hj_#L3Lal9;V)fnS5ZUNa@(S)bTj4D)n7CPV{re?&)iwg zcHzq${s)%f{^O*biDC!Ele03kCDoeg&VB}LJ^?B_OXpX^!_(Ci9AsDDh;j0Dl_aGK zFuhf=2JW$KI!(KGFFLfUDZLkVd&cKKj3FQ2k|i@;+Ihf8k4THMlw;$|Nv6&_{%y;3-r7Run+FzPPKMK0jO?_Y6R8tV3C{ib#lbK12Mx-{2021%8k2}8| zOcnQF}p63M!!QWRCQNPQYM?-FtSG2yvh7Y_3vadBOQ z^rc`n-!MMoZ;yCzFf2D6S1Lgo8OiduXhpExQwvt=v_U+Qwwv(4I#a1*z%c2Xygy1b zk_p&8w^oVIFyUwX#UGEStEM$=iI@VnqhthRydXEj(LU0zUSVk&d7u6*!J&_~bU$pT zA!}?GPfNh&8`xhZ+&ajG!B1#!uB>WLRBLzn1iZ)xM9EzC0xyrNXQo=h z`iaN^r12Op#p}ozicM%qD4q>n3L-l?o3X<`vjMpX{RQLk=n=P#^y$GA zXp`o}hu<$zni|QOf=@9Ph4&lVNwoAOG&MyoNVY08HtMq>xikz~On@XMBCO zyVR@#3bx6LrB$bjolKRk{irV2w`6Y4ClW6eWo(Kj=1XgqEv*<`ZloPFMf)akmC(MU z8!M^nVSkZ77SxW}uDCa7TV-GNDB;)l%e?A%B%|KB5UyPF0HxNDSj+XGAJO)gc3KAm z;v~zs-jg7PWhZgDH@i#YK@f-%fLTG$`#<8l^-W>Jj z=VQ*DA#mS4qlr)A3D`J2tj1hdqSQR_(U@RyNL5LE6pB%nF1tGMs=H*y?WWb3<#5!* z*u6Cm_!R+sA9_%1CjnnpsjU7}yGeI(VfM3kq<$sz=hLEGUyFg1p1vd=PZ2{+&90rP zin^_wWXNQrJ5Ooj5td%HwaIXn%x#mQr>F4l?rz!yK!p$h9d}$jo5k(8>h@i0=g#dJ z{~^Z-WzYEnZY+hjPWR|J$ec#U>@zNGA#r__>^F?L%UrTcSRlsz7X|;?A8Y;QSf^jo+Vs&FpyI}ZHf(+OwJ#7SCno|jvhL$S@qKrEtV$L8Rr}u^Z&@Ij@2%FjwEwbZF zo~p2j-Z*7U&~Ga-XegVqUR_;1m~|ZdFd(>baogwbk9>4|ELxhJocw_2Elz@g%T(Dl zu6fPORJ}7>f}sbi?9>SJ>VGi!!-ByXL#_7A*dPJR0@3{kPoF+8sC;Pl_0DEm^80Q0 zV7@-L5=GSZ$E+9wFY#e!ss_|^?LmDFlUonb-uSKeb`#u|apAmH>b6aSXsLTyeqLV) zTSWuNdStC3JB9r7ZrOtyvT|}nyB5dR*~0?g;6vNdOJ4i!pZ){trMBE>ib*Zw``h2- z(@m!Yx$l_*c(a@*^1Q#?-Ei#3lCg;MeY1oF6`dG#MR8i?(s#SMS9NS3n=P6=`DdMo zYOSa_n<;&cDX7f4WpAKIqF~KNTA!IFcz;!3B9>`2JuIm%*M4ID_ATCKMQ?9!5|;_` zNUjpi&;}w8G&P;II%>D;5xjfBn@O<-t$xA(m{6+V{qyvF`*)saX+HI&@YvYOaSrG$ zTLhJGMl>n?P$;giii(OtGGC<4Ott&Gqfn~#Om%TL>wMF%{{A=TdvlF<@M{#w5tkc+k1)#Rq*lEH7C%P1|c+W=x7RvmW7VsRb;ol;qq4padE3I}H@aA{{pVmX{sr1X4urh6b&_~q-@Z+0estZr=ZSdBj!5II&D z5ZZn+UTPHG|MplN4YV-i?z7$pH@pUX|DcWT$Xb)Co}NnbA5ZbzeCn#IDx*7->KT($ zOYI+$*Uqo7L@plbLt&`m!wn!!xb950%8)s8ymcmf*Y}k-oH@Rf8czRklEId5F zq~z_N(fr1gk9>)2HK;W!cqGR{?P1M8!s zqo2LK*ngZI9UXi6`@h%KC4Kw$EyJf8l!H&*hVBHOV-mYTSurq6dH|{Jd*8fNCtdd| zFfA1dg&jTmb)n{YTNH%{o^jCo+#6eC?9M zP~WgsX1*Y!DzqMMzpu98^GpoyYQZ#Z`PZEK3knbuK!ojQi=nvGI7%=i(hoix>Y?zne*V z{C-QcMBdsiq%+*43#WLo-Q0m23cnV)F8T%0;{Axhh{Of?eNPsH_G)l!JZyS&@qPPm zUevmo>b%#uwbQ!jmx=*{#=jorR?ZgUz6RA9Ha)f)7k_P#Uh6HK^5I^Q?ss;wn;s?O z2@dp)R4vAAA39?M3b!#1B*?nM$-zlC^qP}WcIgQSQ2j=TXD~A)@I*tMbk)Oqe=jmW zn$k}ud@;qba(&>zgM*vn1Lz(4)>gm?V@D`00*Xpcp75jM@}d~DzeBV-20N!|AY{|` zZ}%E>r8dS2Ten8XFTAf#}iN zGm#&^>GJht1^QDSP@xxHn^8tu_^=4u!V$g6LqI!W%>Iy6u03&mW|v__-jIgq>gH@- zFU~;oE&iypu#I2^+to@?oHiW&GWM~eeTH~YE5J$7adl%!EMfWiMXckR<7T((O1+Ut zTe$rwtQu{xHC}jmM$&V$4~_YP2ED`-ZZGx?-$s1*YyY8@8F|-=kV&J+@|`6WFEE`Jtkte>NCAsp~`;|7~K;m z(09LN6*I}V%2SP19qQ}~x-q=>^efrVhq79p4Y_I+Z(eg((Rj-mQtP|XdKo;Be`}2! zo$86-%#r^{P%v>p9pmobtHb`Et^!kD_H$B7EG|GQyFVT{l%WYB&exTAm>X-Lix<|` zFs3H3(rEsx3O=aMvp3l2vGw}q=1`}D(u_iY)?Ws2Bi}HjF=&yqJD5)wvBA@_5Q=O}mvC{tq1b?YII1A5cLooSeChjg%T1|Hv-X7ax^; zsSBb!3)Ed4weTC-jm)}PeiiT?UT>>G$i=Cvt%uJ}&>jsS@M9+5=yj#XM=J48DH{0M z-@chD&`e*`hJTXE@kM#0(E>QUsd`O(yJDf}q?xqkbI#n1iH1aR8kfDD`|zlzImwATN_Aa+BQ z3yQyYd%IGNKU88P8tyR=y*Ub5SZuJnjZbL4VFFA+^GFw)xIvrwJm!o~mn2SL1ZWhc zQ329dXYZA>v3vyHLuo4Kjwbe(Aa@W>=Im_P*L##wI=f454hx1Yh3QHt#>>)fHy;wk zM5!B`sQ@VyWFu}ydrwjpkpz$h{}fg3->Gg}XeDlJS%6X;r5oSq^jO(wV*Pzo& z;)`#kF9=m?UTv3pAg^5U}{aLIfmk1c5077d5W?tFWGJZ^lk(#r*U7 zmQ2e>^cJw&9Y3Wa{X7=u-E{OGEPfB2wzYjUQtQ(V*D?2Ccr(pn|SkQQUgYg&|5nG=7uPlyV}%s z(jZpW^rMY%pB}1>rq+K&kZ2nf^z2H=DNH@o$TPnfpzy0#XSm~mDc-s31 zo)^b5{Eof+aNjJ)U>HUh45mNvsdrM1=~}@Ke{IW+`vw6{LNUIBj4#mn;GNWp{r2F` zq!CPfah%Ugt<^RJ6x&&wJIohzf;Au7@&eM1+YC^%!y~0$zB){*-V=hc&-8x$cUz{~ ze+GX}X&JS4l1bTe06KeqimK70lk)8wTZv&o^ePNlaNC7$?1GFGH&I=`&K&57|7KV6 z_^YQ5Ir0i`R#sjrq~X{#;~pL!3`v!po_|@bbwQEJ#(2vR(G|AT$u-H(MfoKmLCw%G zs-Pgin+@cpAG7op2r}ou{8`fbhWwN%SLWkVR}u(EJqDng6$OyglQmI6i+929pU?6W z-1P%e87@gw$$v7y|6s<}CMpok+MrxGQBbLAxE)AnHwr}3%RQn+8ZQabvqOV59dDE; zB%G2{cgMwB(MLQzVv=R~TW4e=L_HVRlb7aPt0ofkvm&pkTvPVz;BDE-)(uRuLOLj* ztVxAhT5bI}XfY{1Y$z>;grJNU`Q@us9q?Nc->mZ=Ty4YK(+NH)B1knH!vDdEBmNz> zRUooM0B&SJb*b>=_c~4ngnDI7yK56lx(`-`MF2-jn$P`?&KG}qz+jBO^ml*~enSat zZ#3r~2;u;*T&aL|r0?JDueQp(g&7!ISEAbsOWP8;{h%eN9|$oKtI$DU!u96jq|6FX z+)AawI_dZRSHqD82+fs9zv!#Fmjq;=p8vg1S_98X!GFLosM&r`Ntk$Q*M1+yW%CfE z$#36UMwHrnIi*}&>`Q1R^revz?~1#F{Po*DM>0>CMOuTva{IzSs{Oc*vVIX-D-B#3 zfHe3OxP~*cgnon*B6dtef9SDm1Jc`Lu-xa(-WUQrRP?t&tYhp1C5oAl~*Dxwq1s9@pj4-tP#)K>K_1(g@hM-Dj$l zv{OM{oU2l2j0NsyS~ofX(B4f5ai3Ck>diUL$y04|94Sf72l@wfD&|Vk1kV zsx1=%0Y+Z2=U%$=+yBOdxHIs|C62(M$kd-XaT^y~3pDHD?JFEh`E%;g7)?tIp8QMbJoe<0eN1}#pq?E}MpgCxNY3jOIq@sP_wU~acw2$g!8>}E z>r5tzXb|SHWoSDZ_S;_bw{D~-Lu%kLSBoTgM$e*oumN$VXEu=QW#swBQ`edRK@Oa z&ZbRAL>Ic!6-m#;6bv|zGH}Vk9|Z-E%Nv~V`UeJb%FCZp)^LEuG0elJgper-hT&?X?2CU$bD-TJt3elX28S;OF8t=+WZ0SC4w*Xg(D^ z^Z(nT_9Wa5sgW<^`N6MHv1qUCv`djv1Ra@pECzNC-E?#wR9FnI=Oo)A8y~OtHy-_B zvz{ssk_jjM^ySMM@3NMTPLGa7>e$LgRZY#v{QRE#+-%WnrN0!}_48&$?f*rQ;ip(e z_^T5M1^7i|jm5+jhz@>Je;PkG2uPlo#E5qCpbDD7>r_{#S&zatEu;6ZZ{GGhl)Dta zYLrsy6kq-zxC1(jcKaK*9T(x?m2R^pR}>Al^=uyU4^gk;pd~-|5B*{{?g=IIu07mI z#<&NT0GqS1<%^af=5skY^ba3Ch}_*Ar=3II_J5TzGo$B(o!rL@2~blK{Zg~wGoyxj zv=6;&=%$N#(;NT8>(U|pJl%c$!SeFAhYA?99>2$P4o*gh+)l@cAY4hhbt_Q@DIbFS zeuf@c+1RX2Ta|v#&;Qub(b3wJD#2YO2k|tk(pAwQajc2Td|Qzu>Ujn+<|3~J6inS_ zR=B-TDxk$gVVV#!Vq&n%_rYtM?E~UJzL zy@mLNguZTWzDqxklwB#iC9@Y;xVC2itfl{9qlRAig3F_f;?JL59;Mcc@2|hD-JrfW zEv=g9rb3Sv!veJh@@sK+6@wm{gDRUg#l?xd71?7hsY3jObpJ7Lc&Fssx9h%Q4ULT{ zm_$rm-d86`-cbam@3!k{Y_I)F8?mVC_d;fT7Pm8YL6_SI7g9)@eE{F9MG=FObJUsJ z@5^IkKKOye_4skv`;nXGD!>_9H zTP>3LT#YqiRVC}c%vzOh)vn;>gYQfVb%g(nf)X0Z*?|<-D3SI z0aU6+J`Zvfc@Nf;&4#!1S2x;A3|g_F5EuEXY7GoyR)fB!-8)Eqpg1H!URViZn7LgD zf#zKciqYf@iWkiMN&=2+XiAdZ_m(B_p|-N0r-V^KZ3t>Mp0_Zd(uazIKmg5c)Xq+O z<8Ae?+jFV1nXE2F5#07o?zD;c-<_jkm-ZGHC^*^O1j2`vi-y{vgbIjG21`3Mvj>J( zQm{&$Ze~#Ea!rKXpqTlXiRV>8&vxy1>rUVE4qQ^tVzjCz>f_l?!~Nt94%y<;ZbOQc zYp*4=L;*sdbK#+FlX;OZ<>fVk8!1COY>SpwXu0RH$vI?qi{7znV*^BzCm#{i5^))U z)MpDS{YXBNccmkbO&fv*s`4`jB{H{tYWMu{tLDRK=OSXW&?MxFgMPI&O5pqb7piEb zqSUPz-JZ8X7&$h z%kHU#F3AF9W!iCo8iZ3ku>q1XiY|KYKd@bJ#+z92)3EAO3U9Kq!dtF~RRr2jTG8y< zZ4x$l-DAT@iX{K7DW0%0rQmAX1QunZRAq`~3_{`V><70?_!%r^?+`sKs)>$sIzVEv zrA-6-KUND%DV~lTNaB#S*JEh|t)J&>Uj&D4KlA=>i;CLoHxeArpKmY5U7(hSO=OLa znX($8cyw;_bj8JIS5FI67C;zT(F}GLcQI{Wyp~Fj%L)>0nHqh54KKCl<8>PtX8vyc zV%NPv9%^a%h+hla7XsP}06>#W<~w%}&Y;HZM%(9!RbK3`Ov|;L%LuYu|3gKRPe;6O zqWAJ6wF35(v`3TP@&W;@C@3*%=sM{BoCwCGdbztpzED*H;q9 zX0Hlrpfg@dIV2>?D3;lsZx+C6Hgt~S5;FS3iqEXxxnzQSq}cI6!&}Gn#;D|^|cdT3NVP4v6$o!!Ki2hFdK~dvpc=P951-ZP5_D+RO|F!G?5|1FdsfdN} z_>X%$=dGONJd}aPI{YBpes~GcD*r4I^nm8sj8I`=1?SGs^VPEpYKCigih9>;E(w2F zHuegbXFbFe-7|S|dl$GV4oI<|{r!ym{0ZypZ)1U->DncbzyNF~@~j)J$2bfuz!B9< zublB(G=yHediOFgDlCA(;OWSQ_I3$=PpuVq*Qiq|q1ce5@jyX{imEDiPV$Gk#UI_q z^CItT$FYRtIVTJ$R-3UTrBN@n3@~V;T49|jfQ}!LAAV~Lcs%pG5}fy!zc9pp z>Ct5@n@IP=1-GdYdd`LulV{5#4=+tqq3)WG1jq_ne}BX%P3f+K$b;?mKSpp=iVEF~-K9E^fQbg^yDq zqnCH;KZ@l@`pD|)w^0QmGUS)0TadWg9&+P#wa|7|nKu$8pcZu-R`w+5FOeYI+_|+MTY)Q=zBd_?z5Uf|a%Apy z{5mu;=yZDtSm6#=&|NqYZStE-06wms%~$II$$4G1>WPtL27y!@NZ@e^2|Olks5wgM zVv{v=(jCeae?CkJi|i_ZC^JtG3FTlV(NYr?NUfcYR@SJW96{%zccmTM4in_MBYm8J zClc|uQ-#$qU^|7^J!dp>Ks($pT0S+rxlFhSZ02kZw1eu+{OW%jfX(512PfOBw=&N5 zv5gX9+r4h?P_bGX3L8+iM0n!*+EuK82Cjqd!%Ztagz)rPqcKZgbVi7O0dy|xA;pZ? z1%63;q~S*0*N4hcXLp6}dBk$XXgg;aMZ*>UX@Bi9^!iSx9QonzGOz*7mKSE2pzs+tm=g4`p(gEf zBLh^(#UNwekDkAdeyVj%n8B0C!o(x^odUg5w$!RsZUXkMy{=RL+&{X6-f#S<%Ilyb z*=t*m%asH4VKQW`-853RC4=-2%g(}X?Q46sVFhc)LhUpyOH8{Wv>h=B3ov(4M^t*~ z`!oI0^OM8uMnhq}ucFN^A+vV$=vwD5JutTkM|LEb%&O`^YjQSIivu3M{ zbWjk)NFTgOmU4lk4Ca84~es}xvTCD&3+=Kqkjp~CQX8Rc%(A;l7 z-kMqPvu&M`yJ7iv=aCsf1nsh5+X|mIjInL55ZP0w20QVMsoh<(i;1hjTv!DQ`EglL z@q%FQ%#@O(UAEfOQlC@e)!zAN*Aq|AsJ)D+P^-@io(V4>-jZ~o0L16LsZOgreK*hO z4Rf;6Pd3wmCqO}c;-!*X+46K%M|`uRn@ITPT1Hqx-eNhLgmfkP*Khufh$_8?IF{8ne2 zefyNMxBd-nDk+&HDuPln)&7@ApQ|A7!v(8FtVUyekqp~#^q<+!dg-yU<1l|~wpkav>cvKXCbyfzk0%Mp4ffc+VLFANOPCVQzF#Zw^Kz!(Gb|sdxM;IJil~(z5 zRpK~ke&KPM%Qola#O`?rdtM{8y?y3T@(o9`$d_j@5MMknj@a$${l#%Qt+4Q>QSRW^ z>L&lf`Gy|H@!!`lEGhj{P4LP6Jv{&o{r={-+zw^}QJ0hjUJtOqDrV96Iv3mf&uq22 zrw#W;uy`y|zms@O?%JMc2ygSx@eJa2$K{7P$1qC_c#DHjeGs-f0rK^PTY|tR$ z&Fw47_{Yk`aVps!fW7nftc#{l%vsEm78BPsI$WWVau-Z&ubHz?2Q@On0QLZoi6!5N zOU(d-^Z{Rl`e|JT#}QPS$V5H8xxCS=fVZFU2OX&Y%S2@}yJFqn?$QaQk`;iTTG|&#&a!0jmS4IG z{&*{EfbCGV;?t%)vAZTVoH`f{KSbU3`Rw;c^#cC!Zv9Jm$wtb#9ffMKRUiR<2x2{a zK^dRM_uA#p0|Xr?D-&jf9rn4?x_PWd0o$7c42CCI92(zqydoF&OT#1EsS{eKy^k*s zX0gQ^fu0O?@~hDt#4wi4Cn*N1y<- zH$WfA>PjOo=X(;+gOJ~iWp>B$&>*>Cx^^S^{q>OU{+(*VDqFtfZo&9HMkk5PDS}ho@=dyg7-HaPWRoc*g)gu zzR?O!@;M2U6ZY-&On&<}H)G818uIQ-mcURE1igvGllYX}pfbm?x2j(EG1gv&X=}0W zh13i;on!0Mg5LP^X(Bs;-vz#(y>g**Cs@Do7zUs1iNlf9a#~RE-?iG0KbeG4_#6cI zErfeMtIpz@fGV}M=@-PWMdxjB24bWjIw4Ja$#=6>i$iQIJ^9ngip-W~0cTb)YHxky z`0IpgYa71%?=)Ka7u7{+Cttth^;7G7Zm0RxxFVPJKI9G3u) z+n~3MQMxuKV};C1!^4wjrJ!7HSk&uc5Po2Q+~G&Mibs1a>zhHkC;WP)z8pnpFV%W z-fcXPRac+Hcz44%aYLJ4dbag|=boV_pjU}wWBs9=#hzkFxg*EZpsrWP7w$f#+HtZ3 z6_zdyF&%JkApgumV7E(HR{sK}xNLc-pl#s5_1UVA&lHnw-LPV(iA|;BSrOm3O(-Kb zci_3|OpTA9x2O^ZcXB|*zX0WfTY_4u1=>(GawvpBTf{Pj(6lO`i zK-s`-eI9$0%I0ZJSsWfoe<`dLylV(DS2Bn^=@!rxKHbv~6yw&>gXU1O2PzZW3k}P3 z#(Z$)e&xYrX;W2wI)yPk-8VM=$}BZCNYCOBmY!pO@F>L|+1mR@T967q(M%(ag}kHo zJUI=|$0-@vuVN_1b9x!7BvUaPxZkPG>o%mn-8Iq2Q?5(+~J z`Tn@*%OFDN3%)WO1orY3>nh;A0MBIfBJ8=Yo?hMYfUx^f4>QtagDWR9xK-DAcjl?7 zsVBOXEW`;Ul9b=4bt`jvfi^l;<5C#(E2}{{RuwVtkWt(vqSo>p7-u%kR)ELAqaa{z zg8OYWm5N?6@3WRU*MKv*l(v`50@}P=hKdu-GApoY!KD%}mrRtgYiM=0qEJv2XT5?% zAs)aZ(jC}67{(G3NDVH#%eyrTOiWB&$8dzB5Ae(sVe(kC_4el*j@kua?4q}U)qdDO z!s=I12XhQ4?!W>9;44_1!FLJ6-*zpw@sj+kZAbyy_s=dF-~VA8;RU}O_@rza|4_6UA7PKpKI=T4T=IQv;AJ(eEM7!q0{;BgffNm8CoJ)e2mxW6Qv7B z`DVBlgOMoqaoc^_RBs9GJvj{S${+?vn)`YZf_P7x*c&?E%#L;dylCKZEYkJ=VQ2oK zL<$t3uYHLd9A_S!vudB0%(>oh)t8O((7ETCXP*DGsGr)t_@P~VaGVYt0)CyyL`*F} zGWjz`K;c<=R6Ubt2_T-gtWmp$yYQbKY>%B|i~7BU`|v;lYFbR+Le1i=va*;NyJo78 z_SOJ=v7c`e47ygL#RqkQ zqY@Lz-}WW8p6$*AoZtqMHw90Rn%CBb8^t|aU^T324O^y8I_5#!acJF#mKL90uh6s_ z`!1VK{y_1#z8lX}N2Lcu4N0t+uPrYx@9600qLUD8UVOK5HCmb)=5{@r7(mlhJa}-nm)DWH`-jAlHCS>7NXlAJ=v}sT6 z^B&xb-r2G|SGOW-`;ve%R?)rk=FOYFG|}W_+j>mj{$&2+UuOmP;@P62C9lyVTFK7`$#@u%X7=jU!(CiwN^QRAqAXtW-@gF?;@UjIZI>n~ z6@ZsLEFyQB}}G!K+o`2$M-hhSAl*&wnTRj%Fo^ zA$CodZ@Z#t2F;>HgQu+VUT!BuMd68EETUjxVTtT-oqBN8t=^yaKA+1l!q2Fzj9cqX zxNf|=+Abv`;}?-rt+t&LnyevE0p{e^@8X9yN6?Ac_47ETdC&CvdU8ISuV4lw36f$j zN$ig94!gzSpFS%Ju@ckZ`;J-4 zXlV4k-4B}hCls9=s5K$(#$|UpsQ)cJGjqsBnrBJ3CNCNq8Zg&-8uIh=1Is=+Vs`O9 z5fREYT|kFzO@;HeCI{?96-+b!fIi0w1$xm|-o@9j>-{%_-^JHQ`HhTEie1$z-m`;I zx4252r({ny@a?DvZ!WQ3zZS~M(kCVnOycLH&OU6+n3KCEOINEirOtcIf~C{B9V)m* z9Od-`_yLYZ_btd4_FV(*1wJh-EHMvy8PD>#eR=|76=dkQ6D0<;xW27NT@-dFm$N`| z%4$eJLYB?`FbT&NNZI!m0P~W%0BTefCOn6c_@?-O>3H*&sA9+GaroZyq88PxLuO<% z%_w{`S&WJrs^8u55i0}r)G#7fk?y$qanJ2*X1@YuV5Uon+< zbQ_Q9@|Mcys1JpH@QE}M$h0(Xfc@PI6jX(;&w4f_?iSI-$q#rHn25r%jDNV*l$ZT; zUtb)10%r%1Y2DK&o?_9qwT~nWX50?H7171De!+7*-P633){RTK7fLTQ-5EwAbaY&0 zxuE=R;f|yVKi;V+vp}1FVc%JCH-NDtLip3>iXuk;Yhc#ImpqbNXxMM+ZHAw6!mqRz zUUy%sq5e+J%VWuTo!nJzGgAvvIuZ~9flE8Gv9S>e>SG5+ME}Pd5@RTjG3*M++N9%z zVcX)h&)M61XZs;j6(-x7Hc4F(@2Nx%XIK;k87t3CYt*G`=mcmu$bedcKuD88-|!cK z8r^d`VKkU26#_0}2t8%Ksj93jbKFo=V%%@?zMiaeWJbrMggg=#PnV;14`fdFiX9ZY zjzDDjnf=Z_*7~xgvD|jm-^c zMz!l-t@4VCzt`3#{`q4GGTASyQW)RjHg!1Y(zu^Zv7MPM+@YaQcb7SB)p_0gs4m%0 z<`L3P^XBgs6z_6Z4uP49|LP%<@(~YS9YvxdlMGeHd_}!%vC{8{>Ame-N3>f+_lt9C>24Z(7j7hblaq5Vezfz3ylsTx%@&2y~68)!wG6B z;M=F>3APL_UYof-ND*6af7=eUUmfTUdcM?xMaLR^4jn>C45;LN2r%oD zg+)_6HOB>%W&1n~lo-T>VrlcOjoXO|S9ja^dE?+%cXV5fCDshA%KENG>w<@@$b3|1 zgUIoZ`IGPANM&M;q*AJ1iTyEX+c-|JO=L4>XZ2n7=lieso5c~dr?jeub`4&R!f@L{ zo=TZJ51`amBg&O^QudE|2HIa!Hg34=XojaN;fQ4m5=GetY~ev6*#kn&6++s%BR~ra z<-(rEFb1ZE^LbCs!^1FrGl;Q}S1}-`WltmPm~(=lufsCXTB60SFdF9eE~^M6fgL~3&;XT(qtj3;fSYH= zu@6|Jbezb5k4C4{iV^j!ZOIpm27Z^%gi+lm$}CdA4v<5iepg!1GG&ZrMhwxBpWyy8 z+9OQ^z5fNxJ&j<}P=oLYf}xAC!@Ag0SxR8ag~kqPIvv;Zfr{SmdH8&o2KdWH*JU9< zzcJqdY}MDkG{i`;`+yX3hEcj#7MkdJL3k3+5`VK_3g!NBmaIi~cob5lG`VAJ^_(1F zzQDftR{jV-b@;{TrZuoQ#|D|>F81>;^ntN?@A;Z3>shbk{>)l)?Y~z8lu~xMCdy)7 zehwHWoBnGm1r5#=BYyB3X-h7^bx@8!Z0-hssp}0kI85%AIWQ_D=L9vcn!7Dyx~-8c z9H8s2?M{ZIF?nv?ighF0!nr3VU1BGd>hoB%bcQdG7e6bBz0^y#+b^uH=1cSVldr6= z8cN%rm=h!{CCh{uokpuOTpE1$Fv(9EF{1q>J*-VXeHj~JE;ZrM=smg(ZULP4+dkhc zy3I{rwh~_@@gSWFp2ja7P--Og*ZsT7j}R&0aJj8)GsTN66~VcgZH%s^{Ow)Hn?s7${bj$T{} zq2+mzstPQ&U=uWt?5akx2Zl08;QHFZPDwcu!tJ2fGdG9PPzK&A$M9@WQlf*U{01dTL5E}^6z{ob56A-@l@CWS>Vm!l%o&?Q3mA35Bgrh!pQV($c z3Ox>3lLuqH+lLA9_tw@9M$*s3=4NPs(h=6_4$Qa_I@c7X8#Xn%0=0{pao>m?G;QMu zSOUop{e{qOitW6^fz2ky`}*v#odzCb=e@0$)(l#d6hcDy^RVaAcYq!P{tS$FR*(w$ zzZ1Kfn6|Kx0op-J9qu?|;K_x+Al99scZ7=vC18Zr% z02hQ2IW>q{cw6bsa5Zw12qk{YpwB&gQPdm)+c7JJbHf*#)|LlfqxQB$!1H~S{C)53 ze4{%eZYwJ*hbAXqNJ#~3lwMt3{fneqafv-KUxQql!d^`f$g(z;LtiDLAK_U==1!Bf zq=^KFsNMbKy_@Vv2cstr3$=Cc@PN_$L=Y9sCkZ_5QoCxtygA`y+_`Ogu1VT>^Ymt+f%)^>sJ28= zytQ}F@ff}J8!g!1MxQ4qMu>5Ut)9~b5(Ka_SV5Z4VSs{YMMe~=)t=A5S7q1@JqVx) zTrM~HoSZCgYs&$qI~f=manE)`O*#_e{lEZGX_bXk{)0-ulmkOguITHGYtrUpB~ku6 z+XqJcmJ9n`6q!Xhs;VuvXfO#0J7vksFO34bXMbVHCpz%EA!j>NkRt6LZ5xSTQ^4Kn zOsBRj^K_bjZ^JT2ai)!b9jG%kNEuJ01$n0yR8M7OK&U-f@Iu=u)!MzuY?kV)_)QeH z?z332XJ}nfvY=<}Rz!cGvi);PIkChvEq0x#vSCE|+mjIVaHO%U#6@sc z2_y-!fKl{dJ+E*KZm714DHXxDj><9qx1)d$a_(EaSumNSw zxWrrC)U=9^s{jQe1&jhlro;g*X#|oH_JE+^Y&`IvumY|*fNQzP{~yNA0xHVxZTED8 zA_CGPil9;=T_Ok;B_Jg&pmZbMt$>nBgLF&BkOC^5L#LD=pv2Ied(iX$&ROR>YkjWu z`cg78&+NUQz3=?|)}v__u4zq7kZdiru!O%%mawE3Jz#r2VL=Emj1{#M65QC~ zdEDM+U69LaV(6Bal&Yn!FaI6eFNpTi!^Qs`tio+>wl`Jkx!dnn^u{-}>eKn-3u}(o z-Hn!0Cxc<<5yNnI;y$BxRw82fM+WrvH~ku>GILLN1>)}H@E$EJHn%e!p7Yc(JHdPP zE1kJZdb=vJu9<0u&^y4s)KQe<3quZQlnDsNX&b+Mk%n7M_xo#)n;pJIyc73o(M7#0 zE)=n=YWeo@~hzPxnXB^wPn zn>^}fOwk~?iHUw!nmcjIww7xPAHS_C*z-HzoLo%heTR>)Z*b6+E@1XDs2e70owiO6 zH_q)A1Yt1PT{S28)k$s+ax4bnhWm_X4s`x!CQWmGlU2hHl!6Lu;mP%cUU+mg#4|H5<%0TB>)Iz)D1LHef+h&q6W9xX?Fpp3nNpbg7miVd?W;fay6Imp(){|REbraU6j<6r)@^b3_01CS!P*o3 zq;1^Yb%dG+THd(7DA4c?6p#ds=t^Gj^`x&**<({}H0X7{;YDl*&V?5JoO=&@uG%RP z9$YNIQYpyGFz5sI`u>QW{N+_FF*8!$+n5&DBi7AGWvOGHD%T6&qWs1gOPp1JyG?X( zkpjx&pySFNN^^HY_zVm;C+mb6G~;j_t?YoCz-?P;vqg7dPDBWH6%EseGd@~5&)rOV z&z>oc5C#=Bb?K`CR$vsg!=&E(rr^1O8zNTJfthUc6MLX}rd#byc8-}U+DVg1wq1P$U4D8#bpuB95D#%90WQMt7j zjYJiyZ{8eia}nP4{PvD(7YEf0Z~`AXjAYk!A=ufnCxP}2jh9kUZJo6)HbZiH?3N~{ zvOVJFx-Nb9tnXNWnNE(uz&Y54$8mmGO9^lokx%P9WN4!OE>Q2OeB$YH8tg?-$Ozti z5Bl=YYT|yN`*X3^q%C8giIqs|becY3C~|Y)48aPeZV6;+)-WO6`|KeUFCv0fCH1!q z-ZKsB60;9WHfC{Jnh$7eF}Yv$UrkF-uRdI_?Q>u+7xL?ZnaJCzzW{o`T$dP#e^%J4vlQw(Bg)qU*ID7%aSxXdBRBVvib~W{d6VAdR96#q=76B( zl6J#x)KrY(L-{@|eQ50o5BY&b$!q~@qP!U>64}yP2YO$>uGw5Cak_7-)-=V1oQ%^b z*X+F>|GIk4p#E?%@~GhFJrZGj=j#&POg)Hq?Ct*bJf%%hlHbc4{IVIJ8mru4N1i;r z;SXLd93M@n!d6%PZlenp7dE&4@s-@N_80%${5+!ja3J~QVrK_>avu)lPG-{aQr~LV z`@XzJscugVrlAA+N1`J7^bGp++GQU{I?Xpud}SpDbnn|1qdFV}j4S9FTi;h2mpU}? zH@KSi>kMlj5oBe0yk#D`7}M4nc)CUA5I?-*c28CW{;&VwiSghlwI8~MaOFLY1CBM6 zs9wBy5fK$74IT%uABbsaXh5C6AwXo5$Z~I0Q*X8q<5_=y)5^AR&(jJl6Em~M+GnpF zn+4$o=@5^&UnglV)ueAZhbL(GoOG!Bs>#kWeV8Ig6RC%pmN-K zXGm>--Kin;_e&n>PuA*YXd^kH=l5)->@IZo)eJNGBE@o9lGmlTZ!}PBkDj|Vig?@8 zTQ2UPrclmPQ0ohW7I91`W-UYOnIt*uRPVlIQWlZ(T8(Tlt*cw(bnWL0mWZ50HE5}A zN6P8``N9+_H1Bh#=&m`p$&OhRuOi3zshq<~nqg9`hBXtRN#b}>PuP#?X?jiWXdSamn*+{NWO=82 zwy-Hym=*?MfRtv<^cKu9`;x@RSC7h#ZS2U^d7?Wq_^guz$#o`a<)REsnlu`g5aASp z@T~N#cNZNPg)aQNbU1g(Z6*!}7Ng8BJ08KEGk>?tPqHZDq(j7J?4#1EsnQc;k`?2q zix%1mS;6+_1QJ*W#_z_>5{bdEw)IRPk6dYv`0qC@pVd7;*W zDrU;58Fb$?RM!dbClyTkOq2<^to?pbG`8G8+L`-S8fEtrx!@zq*e7$0hU6r6{2bcc z@N9WCFz=Eu#TR$Gxnf7N^Wk+v(RCbdnSF_-Oa8yBD4+oRqj&;#h|(88&z0ie*y%jQ zpKK@&$ZtXRj4rOIA)tfP7o?FbfwKvAdQ0+PBjEOXf!b&URmYbke$q9D6NO@@ z^R8oeMu|c1dk<~r+Or}YC|9ymOEn#vNOs+9U-6TR*8|brJgLQM1(Z`fkFcS@nW9C+ zzPiDfzQ3?kH^mEdr&WiojvoEvNyFJX4)D(rz{U8os)ISMoNg=t%|^1s={{kG8jpfg z;%&y7!=E>+ep~?c{mWP0Tiw1;LHM(!|8>1_q@eez>kjK*$F#tX3v4BWywL}@k6B7~ zvE+4UZpE#dJderym+^^hOQH%k4{pJJf{g0NZY{y522^h}_!Y%Iy*+?K`IlDciZxH4 zl1=ZmH73brUrRi-P%IN#SsRKE0$PLD$ZrY}sg$$R6#==5)XV!3=VzBJ39(< zGWk;|kgRF=#q&&d+QfT=k0~mEQ40~)8kYQ^`={=iqx#&s_*b|MT*U|>fX4&2&kp;9 zHE^S*jz;qYk~*y z?%Ly-ujH5bh=vP?G!ffQUrLax^zOUB`BS)GdN_LXA-ldA6$h-mcLGNJl&on;@PJLy zvp!kte7uAFAmYTyA8%1?b#o4_F}gFDI{ZvoBknQC@-R0ZjRIfjsr&St*9}YGCLODt z>CX$xI?YYnqb8cF8$P(2d(ev6`#}NzS0B2QMnqdl1yTkXb};54Py@6^o-%2B40$`nlja0W&0OV41ej zxr#;&c|RQ9_kcuZ28?OvC5A#k?S20I8O;iUUb^@a`s{5vA!uL#ZDT_`D3_dD)?@;a zes1nCiQr6p zBjg#pq$9HH>5up`<5jrz?fMuQBQ9?56xsA~;qFwI0KO+k>Cn);7I27__m#(Y=*wC} zoGM+o7c^`B0RL`$R~xXNfF*!(JsLGhz6LFcjK{HmW&@dS8-2gX*>GfQYASq~A(to| z{VBIFy zv0?YT0{((4cQ_`O;?fJB-FzJsdTz{Jh)iHWU*t{t)OYW>+VV$QhEYhNM^A5eXUBOZ z?|aoNtK7-N?N}K(rF3XG=KIArM9)@Fhat7A-d}i1iDnk^-k>#!JzVYBnkpwY?%^-C z%i{lnI^GZ&tx~#n^Km>G8Fivie3b5jq5BWXWW&r+r&L~(bNka9?#IU*K2m>gu$P=I zQ|w41TSd|AFrC-l@ER|8LHl%WZtnHT{*u@RCYs07)+VFlvXWuwk=d~@2Y$GPACU^i zqo0l1MLpr~Te|fVOUEWj&H+_|qlJ%f+ANX3kGAHWPxgOj=O!to3s)_~gjdh_gha@r zz}EB0^#3*0efp27u5{Fuw%42=oQX-|?rrD}Tax>(hCILmdk&h>C&h1(*AK-SQc}Et zCDyYFGW@nTG%X-m;9v8=9{uGA-Q4dPu{t4rFSlL8(hFm9-@C$%)9~xp7xsOoZ(h-i zteOg{d{%Uo5W{wVexh~>FDxnRDr;nQ@uwaZfApRvwnw&LYwF<1!$&e=;CaNp zNi+(bQt_225BH6*5NwrO-PnN)zU;nzt!5$(10lF$j%Ii)LN^62M9*uz>f8BHmE|pB zrRZw$_3PEVmv4~-h6+80>ESamS|rfrirGe^d;&;?Z}Tc(%daAxhy!BIok+=j*f{-R zAN#H$%I}p);A|MyK>R6D=$DyZcAz7HoRD`;-9f z+m>D3#;NtmxDTx(Mkq7NlxX~H4gPab*cr^%4eoe)zf35!vo<7~Q_CAZ0mxO-lnsbx zJ{oOVYveZ0HtKCO>OBEP!ECltuyku%U#f6fv6ISfT}BEL)=B(bvi#MJYbFbA9+W=I zGHUwA|#$92-Q zR5!cn>LGYqD@6Zoi%i0K(fgeV|Ci9aE{3;1C|<-3ZJpbxZ#7`%<>mc^Sw^{NLfc-r98wUH^pa{x6^xGoo8j|NkH!y=yJU4V*vp)uw$i7 zCodGu=>>;Vr-nG?_r?7Vp14xzVI1KNgprAbQm+afnsaO#y=dI(X({b7ZCDQm-T;rH za6X@;MF4}q0*Sp+efosl6(uE1ylYrd>gSh1;cF4@p3eXJCK3ZaH5 zI#92Z9y}>a+@SH%sMg^teHnC1`4p(xPq?k1^gDTxYPJwTlr@4t1C??f0fNr z3Fph87qKCNmAuzA83E#gs-C1n5mlx!o;0*x*qZKGo|3T za3zJg*+7N$;c(@}8#iS1`DMRd#4bygVAPI%c$j zzjNw6M^h}CpniKr5Z)y;RM4jSxwxkoG|`jnpm#pf;3)yOvpQ(Yf(VJ_2a1wixe=`# zz3=4Q%#{0RlH#0Uw{E}DYN@Ej@$+-7cTR@OcK9>U@<7C#`Ph zA>}bL%@DSsg5h{WjFrZDm3SNxnl;iVUREmX3M208!Cds>zCy zj5h|%8Wb8$f99;|Q(3|@F zqFaJ#cilh#7F=X1{Vs`vPPPG# zr9-PRv!WAzD~lp%A`;ZB8edA6YZhB-63bsd_;Ckhr{vd${7PMQuOWPxC)ZRj_Bs6g ze7OAz#oj%2&mbkL%pUaN%Y>fV*a;#yGH=DmTYET}Q~U=y_dC9J>i$%|WpL-i{@l^w z-a4_7Ia_%1f=|3<|L}qPhO76ERyd>6y`J&U&X$k*x{0w8llf&&a=nfdVJH~vMPOX= zdZ3QIY-$D+&=&o2MMP#05PQ?UTuTYxVssy9Z+mCkMVkGVbY^gP*@&}$m@xMlF();& z+3rF~cWZm)9irC#UfTPl6^aX!2g-zb=;2WJh9_ge1A8K_-xkd`5&XVP);46+fmlz^ zz_qn{wa~xX{(Aw5XZtzvj4B>lk!+O$9;2uqQ-P$>KUAVF|B{Z}>k4hOesiLZmyYfO zfNu@#x>xi`Q(!S(tTRd~_XOESncE&yLLfqRpMEG>efXm5S?T_2XH_G`PnA4>sXQVv zxukGD_uTNuDF-J;I?Oz#oxj=AWxUf~7nJxm-q4TU^J6?bqIp7tkmorxGui@J`Pfzb za}t^U#b)xOZQV{k_qv@9>_rghT6Xw`J3ghmn_I&n^X`{8%f+g|WagcK@nc2>#H?eO z>mCgn4jiNpqK;)HfO)^s`7EO~p9S}Zf&m{LHO{PO7-`5e;Ix-hww(fItyVS~+AMMq zqx{*s5BDbAYwGT$K`$x`)Hztg?blKORMeXZK6J%f?T>ATO& z`4rr(t|^=vUU+qVFZtd&m+OM$S~Nbsn|#A^$_iJ{zS!V)?9#y?rz{#bNY$s+6g-tv zLG?3v)JI$#b7_{f$PmcH338-K$VUcOgttKg&_nQ1WU#u0>1DdrHh1$PV{`|U)yuUL zMC_|uk_LvKv^Tk5 zLh!#|=Q7;Aw4KA6P%c*FKA80pZ;&eMW?*?hh=1i_*;gCo)dH1Ub%{KA0{A=5a9||h zqQNA&do>>uM^rAU79d$Sk1(@20)@&lgL3DpM{50|4drqU=B+}8^E~zB$`wu<^#Tf~ zK5}U_Ew(a3k%rSHhGOFb_241K%VRy)qSog zZL{rd9?;^Vh9$V;L~*$%L*!5Xm}6%pW^M+G!5yK+ui;Ou)$~`P6(+2voTt0h)CbSR zCXicUtF*E5KZngePXNJsu^fI@lt| ztPxI~JIp=#%AYzoDJ`;x>Y{Z^_-gf>2|NAg3?Baa_tPG$mN9R*uCa?`v_Io-(z_E* z_S3l?&7)jSGZdZeL1glReO7^B@P7Mw_@ZPrdKNVSPH}HRqcZEITvGJK)591((POiX zh?jQ^y0tEr<*HQH@17&U1B(tY_!U*B^7mO|kM;Q!PT46L!3N#5^WUr z2nRc)YI8F55HY~gb)NnHJgO?YZvGr$ZeIDRbfkhkd5?ku0CR!o~P z%pua ze~8&7WFtzaE@Cx_K9%W*!t$AP|JTo&{@Fhbsh^P#g+YA}(z0-{qg;L(au<{~WCb^t zNj&{C2E~r)8dRGwb`(x&W##ymDeZZ9=rt?vu(5c9?Bp5`p$a7&XQ#$nqbG@TL*B>v zt*c9}T*`k28=0yw4FvR^NE?@)_4h{FuUo`QoxVIXQQv4yOm-LQkFj$t`(>>3R3Gm~eFD6|yMG3^qSXot!x!lVmq`Mi^$sTMk~XjHT$NTv#8f&jFMc`)4}&^(A(?W8OJY91t}^8k}h=5-v#(ONq2SUEHd|14)32{h_@FFsjm)RLQW z=VgT&<6wwFSYZS25*ITN@sg;xvu`lq*RPeIpX+5Vs6o}NrqnZL%KL*c)Tra~jqfNo z&qH!-Kq`hvbu1}uHQpw(It@gYw2YrhI;>nFn{rp~y_Zt4{-???!7d>m9d6PG6hC;s zSYF3CJVu0peYI6Try0tPJMN*bw=P1l_bv_JcM7b$m>%rLh(1)g3v6?th45SA+9-nO zj&Qk596K>ksDOdeN zM-H6b*vY2_?rZ=vStIoRhg0df|10L_-G)Ncab@|Ose~{hZ)5jOc)eqJrN5C_8k#69 zg*C&S@^;1{%rO;xN77j`yU+aVK+ERN@FCYl_D<;0Hoq!;chVtR)YDz%E}4w{xneM{ z`1FZpkC1QQpkKeKRxcdCC>U0o;ROIDE0_BrkTzTJL)mEsvJMw%7z!+bXy_UQk!{z}g$x8Ee%|dp__JbQAUU0}ly-=O z`ey4FAo0Vpb;TEqog^}JmrUYGp^*Zxm~HmVZgRF*it>^vSLyEy2!(=fy}L|wOO-Q* zP>BOiokzit*?4U{pl-TzC;YGJz!P-MD+8==_Gs1EDxz?pkh0=Q{o%kJO9UkuQ-EE! zccO@X6IReSdi8Vn1)Q!`7#Xr3EKjw>i1U-VKku<{K4^(BzTz?wJf7jfU z6;|!rC+s<_gEg9i0WNPw4c!lLX$JtMI@-JBU=7O!9OxK0WX|00(EbS)T6xhUmZsL* z-iBvEJ9ytDT*SSZErBBt)4Il9)O9&4|74TZJWS9aEiwPb5U)uXO6J-+UibQ8-mTt` z>L?RBA*XAOD8BF$!T5N=KSR`4arB8r(F|rIBY}9fB7!C@eYp!X@uO7w{Th#RC0E&FZsX*Ox_-A$AQ=UtT@0GdfwL=%lG(x`R z^KtIJBBrQXE}6dstx3S!ByBo1@_(c|*}-TXw<{5v6LdNtKRGN(s@>RacsyBB@lIs; znKP(9U}3L`s()KX)AiwaF8~2BK*$1H81v2rYl&@QPc6zHU877zdDnUSMog3M#F{L+2RaagYA;vajqlrBW`aH z!G|0?(d`X20XL_{n!{??zpxkF5-E6-Rqrg&Zo<@;tM?Yot`V0Qi^WjYu4q22-Me{F zi1xMiTZej7)~fizFQT!jy2-55N#)^ncGL;gCMXraZ{DdOVCxeJRTesibOXuI;}(uX6E?VHk4v zq@djTrK)7_aLAc7Xw_vhUfm*}u9x;MFi;Eq*_CG|otT?O9(^0+JKB{+@y<70DN+&z zl2r%xHIFRGLy8oan-_ntwe?>Y_K7<6>Ruc_!O0s%^ZmbG!L+^vjrX8q+KmBSLd6_(Lf*dDYeJGW#?9~Jd9;{ zuttf0h!Fem5621#ND*-a;bM422ur<#n&t?3U&cJePwBQ2@>-?CrdhE+%`mPpD-HiZ zm#6w6J5Nf?pOW6ux~6RMN=-SwO*KX>gURD9uklhCReGW_=WNoOtdwM+a4S9DlwN#Z zSa`;DdO!xts$L_ngka&$%j6pt#9L@-LTz!COY(HN+QCL85J~TmP{Of``;t~uHN(yP zneC~tF72*dO=1keDiSpLWqlVh>6lA31@tPrCmv-$8WZk8QmmwwgFwLh((q+%>Q608w zvq67;r`ja_TW6dqolP}_Z`6zk!m?k&wDy3Px|uOE z5rF{$0d!q^sLRGC{*C;qA^?=(>R0c6n(DqpY??+y-DR{gy=t zy;z7je=TW`C{BJEn%{?^t8)8R^CAdxA85e zAwGjXplmzIb#7$`e4Sziic_9UnQ{Y}ZmN_Xe<J7YzM9dfA0#&^gv`dR$)_46{Qkcaosvz4p4+JNz!1F zkfRMdnRv-LV};5!rpi*`Vn^`6nl?U@>wL5e`}>;2j|_+)6##omxO2gF_A>(>f>AB6 z>rg$9blXLIB)R3ow7k)dX@TP2k_7VJO!PG2`pZNpE46!bfoBBbSn86r?n^R)nv&sM z|3^_1EjrFXsqsT(j-yDnPe*XaY~$!KRn#iX+4HHeb_a3C-L9iM=d?15ba+&mHFpj! z{K1}d0lr>A>(Y|a#i%bYNF+znp1@2C4f}118EL=JgCUqEV>9h(HUClI``(c!UZ*is zvEg9&AedoNWf;426G*gqUEaSf2MOW$hUqCd!qn)iLx%^7NPurJ~EmFg{_q ziYRm)uW{W2ayp{i2G9g^<`%!#y2f{wCSA9MwY2c+hzT0s71aZ|kH#bFhsp)xgr2}( z(?3E4n3hVoJOYTtB$72+0E@g3orn^QP?Glq3x}ri&-AVjs(Jj^R>?e|O>6YQeC(W#?xQ9O7cCp6e+QV8l zoGWwiK=iGYqa}1f%#Y9yS*eNjbJnD&T(SBNlZj!X)!n`o8~$M>_{{ZJ<9MSqlM|L9 zX-f)C5C0shqcFvv9cl2v+f@H72l3v^w`aP^im>iC(X`*_#S80 zuE!zyuR6U6voXSnt<{|8;;T4hBeq}P6wH>`EtXz6ChJsg+b8w3^bWJ#&2^P*E16>Q zGNjylgbC%ipj6H@Y&~$&K+B#LbSp;vpB{?-`O4z!$OY259+m9cKwaed5oO#0asG;> zdbgy=?J;NU?ZtR*=d|yc9AkHudZ0Wm>shogo~63Yk&h?%eI>j_Go8|HQ0tgcZM8tt z>I>$sxP7S_;}?(3Rh>$oQl=wXAkmyPZu|)RgUGznW!}z#i51-{M7NysHOoV4YHB2_ zsnOe_ry)HmFOlrZ*K(E&@Zie45i)c|1n`)wd1bQ3$In)b&&-9+u3{5ulnjaPAfiQg z!XLhnPaerCrd>;XG&l@XHC?Nefdl8aHFdz9q4WwoGg7@LifC~iGoF+*{@wdZK_WGV zQm(GG!_$@#iyMDQlewkzh05MovKi*?7Do_3o|>g?%F< z=%}=>-@fTL`QXMqX(A-@R-B`7x%CVd0T+vz{2fes-1PTH$=o*x-H)<8Dy3eT`e<2t zgJ2IEe`asKoPDPKROqepaQ=##Iss&6o@ZX`KEL77wU>cL&1Ri)2Gyd)#HHgKukGcxZz3>%^Q!a|-wHtWupBbe>g0l^uv_qTWyzi?A_>KQ#h0j2Fr!g-C*v&GX?%_kUVEMEi z;BQ}9S)uAIEiLgHEh`Nx4+(Yj2e+phlpKV)WiV5iq8}KaJOxnFyy(Q5gHHd#G-{%# z;n30?QU)oLTprO~7XK|x-LU`m`~FgG*hwdb<((U}X=%q2MV~G{_bQd34hmsK6syq9 zK7O=wGVw{Jv*SBd2WH=dtWPiP+9JwCsBK<$Jsqr}B^fpRR^^V#7eCyur2O`MjO18i zs9Pa&e2c2-U)(WTH}Vdk*+}lua-FP!-w<(Sz0hZIO;}hsC^U2)_!6i(d^8z?mX6MO zB_lR${{vO1e^r$rT558fOfqU^xX?Ghrf4(b-h7N)xZsoCG(Kg;BUnE>k3TJv5{>{0R8)Q?9) z43kW{xmZ2MgaAeUUvi&M^^A*M%IHqGQiGLSODjuwc7p4=`rS<4$-!rIpr2KYr#p+8 z(_B)iKokZ@T_aYy5c%!7x=+8+>Fj!smS4r=(rDkwWySIC?9^rEy46Gzn7ej zZqMo*#CbXuFufdVJl0+nP`MQOo~Cq9{B#ux^Fr&(QFaQ`7Hmg4!B-(^`tg}0>)adB zQf3|83A)H{eras#x2D|ZZ&49{`0#-l;rK7zmW%vb;N<%FzfFfia9N8g4-_kTpX0TN}xsQE6bhnEe8}fg78V?>t*t6*YP=3VRdif` zl}Dg{-~1PZ#2_49!ufp0e%EaRw}`PS;{8UVS2^az)>c)uUqF_pc<_K=T@xLcfo`A; zb)Q#{$YW5ssHmDyFh<*yMfn;?-T?9tOlMYY-JL&ZB|m>4>*XZ@3i zCJX<2O$I?5{UQ%ZE4v=@9eCu27$079awW8Ly45nK2de5lR0G3vr%A@6!7`G#rl`JZ z3RzS{zT^5x-+*w<3Han7nsr-za$@lEKo{HvrKzQaF+%EB>v!UqC!Y-G+Me`p8`jtU zdRW0&gW=mPsc*?4;t1hAfx8|cI$AusHWs9-7UBa+&>kvV@1L~%$8rMryyoawNfv)} z;qTjxnGr$7G8%U{t4}5b?vFNqn>ZfUzB3jn$oGoN^Jw?i#c4y98#lI5u#+l|np}0l z=>@@*g2U!r`^m>6Vv`emN4Pitk6#EcRO(~!^1Q-5o)4prW9d)CBobqF@zTj-I80|V z@O@GIE={0x_VgME)Xu9W+XY51K}weh!P9#%j)OW0ZP zwMN5Jbh^_$0*Mzm);QK^WbaHF#5h%Oe9UGmDCqD!!Cp`N)jXOq0{lLgywT(o1agQIsMpU?JWnWdnlR6nB438Yz& zc2Mh`gqYSJtsFb*>o0r7@_A1oa2t9RN)N9(q=GcJ?*o z>490C7~RxsDOdOPYDj!faI+n;%8*4PL*o{6Mqrb9&M3^8j`ClUSZ0u1b3urchoqX_^WjRHzjf z7)7i@dY<1U7j$Fw`P-CJl*Ha}rQZ7Umlpn@q7Rn{s1xn&kPy1N3*rn&p=0JTAb6?@ z5q{9T*;jb*zzZx1(18MMxb5fPa$7Od3t^qb?@T(zzd6{E{`Y;^ zE3N14R|_Jda2obWA@l%fQJXy~793*yQjY3o0mrmLXC{cV8fG+8Wh&L&Su}v z;dijjz~vDbCA@kM4!`!xFuI=r7OlSq_2iJ{P_=I(4Or;5cgMEs2L;ey)JFciIKamq8Vc zfZX&pEjG(Vum68{9@#X{0tO!3Zwh9k{U(XmGfxjtbZPq7#g}hP)2@$kFO@2 zo$jQu^l+>z#?Yd_qT})yrFdHS%*R#?)NFG5n)brNQZs#vooAs8KpP8m7^gvxV?h|l zn9rAmm6LUvl+1o#^iEMLYgmP#?WU?ESE8z6Ecv0s6y+hAD}gqD|H0Y7x8BAi$^2Id z2Om#^cV~p9F_>+F8AUkRkU+uYo<`uf+Y&*&dNmF}oXH73`|HRiA@Y4Z?(G(??&u|KjInfowE%nWE%Pv z1C#FiI&S$mK}xOxd#ylrtvGUl{1B z4s@)KZ82r23)=L$n3!akGk`ch#f%6^-OHml~vV z?Tp0>m6?n8T5JeC&)#u>)>FhWI<_@P@(PO=`8^moB^ycLn;ztLe6e9duQ_!M9HeoU z@%Sz%D*@`jn4YDtQ$0S8=ww@Pvw9P4MHeck?`vn%rDkT5|e72`C z@grN<@C;ixKM=`QgK`J@OSuI`)>bO$AJk`t-v&J-m`RGO1Cga)r}e3z zL@z+h0sQc!&}J1F5>YA?!0^#&PvGcc%V7nE##)I|8TyB0sNjd1Av)Z`eAD%bg?Xcr z73mfOdd?aYqsP@*zeJKzaENofgdqdztDN!qvOB`XwxMu_Y&Fc#oEMAjOf9;Ho_Vs0< zi!uZ}w;y8Q09aFKy=p#A!t+FL`q6_+7bp-qBJs4@n&KOAXGd6r7w<6$@}F0~2fn3i zu@%b;=&PiNv`LsI>YUZ~&a>!z!EZc;BMzj42g0e4Y`4Jg3HYqO)fd$*ozEVKbl0s0 zwmN#u1pQCVHXBI3#hzpZ2(yYR?PA2#CJM`tm>xlTD1w9SE z?nVoYBU$DC?C0g?hCq^bFu)5vbry&%;Cb zUD6=&b;m}05VA8ag6P-(9`Q%Tp^4K7`OdCK`=>`s5=XP=JZGwxlF~CWaBC;!4GgZp zR#@_w(YGM|GuF-}5%=t!XTmpbz7P?Fcm4_%$qL3u{QrlwC+;ru>Q#=(0Sdh5Xgbge z-_d`?NKKGU>F^1s1O`G?diMIQb|>iPZnn30k3*MkBs+r+A>s)*;jFAHl24tM&Vd7aiS^7m-D zo}eg?HuAWqRDM7p`KsRZJ?VE#3_5V=`U~*W!at&U@=WI0kC@vJW4&##ye`dQedHbKUD?swhgVZoltp9!L zlHc}Nb#?XH6e1oq?J4mINyv(J0*ZV7XOWVQU>3s~>F;l*)^(e8Mp#XYJFZVWG&Q|p z*dB)VZUHmFX7PiG?XZSPiN~>vIe&cC4e)%z9NDAo$Fyz_V|Z@gcOQ(-J5Hs>T|j|L zn)zr}mAfU%{5n}hFf_@NsD)=qm0hzr&wN6mS!q1(Ax;jx1qc_{jeq2Xq zD#H&1MC#Y#S#y)NL#hh;VJy*+>Yk%;|?Ko&l(h1Ve`LdUuh)b4;udLx&K*t=97G;wHxO z&Vl%8vTqt&`%!FJrJalLFcRe|%*DgQbIbGf_QE0l7BAkRGiqC>D#=L!d2XoZ+_p2y zv973x|9z5^ZqK>l4IAev-&2#2BbuoOyD*1a?Cil1dM-ZM@qqF}iPL#dOOP!mB!%tl z9M?aWi1M*HK5=W)lh~-Al42v>KA3fzLNIKsmcIS;e?8;d6Uk1V5-ch`wGAkq_unpB z`COsBrc&) zlUxU+*xfa*Q$-(mTlU?$7le8eyaRixd8Pp_(Aw%28ZMM|GDnaiEhHjhI9cOh?dVux z&-T92Ei`nWih7Gfd@rFT}zlg9@*RL1?5j1e0;;XFTvcjZ)3>584nE) zU%7Rw^Uk*gTerhsl`&);i|z+2Spl<_D7bm^t#6kecjNRllboEK zwSz;sy&ylpV^8jxo8RKpttXL{m4yMA1`hzCc`;;NtlBm9gr?=Rpf>fn3^Cv|vSIYz zwY9YwQt4SFvKYa)mS>q-AFk!s;U~tXGZ1b=5{&q8>6#x z-ltDE@S3b`Y?`3PsHCiHILsCKEg~w)56o?FPnP}kwLsZ(%l+3FAKOJDa3T`JW&hgI zLBZp)%6onZB?U{Rda+*9Wm)s%gLpeGF0Pk%Xx}i3(Ta*C7w9__t7v#{K_gT=Q}^}!nORE1DTd& zz-E?maNzSwIu+lTti?}RV%=x*JR*m&N)?O*CF(SkNvj-Iso)yd)YdAgs`|rjMeD|k zyx~|ki7y=u*y&tCsI4tu`79|dEjsAK$_}SX z{`U6#Ad>))-^9OQ*VtB>n3Q_9OJ0m!_!7;p83tZ#Aq+EPhLNgPCC zHn+6so0tSfMP00eyLJo#^5@PDy@G;*teM%(=i1sO5bi0iE))Kx)Ta{%4{xs7pE!n0 z>S=#}e?&}-@e21alAU%x(}7jf(y9G;wf3wPY#8Tr0m|CXh{ zKc|CL!Gq_E3Fy_#{eS?x1PM>ZmHq{>&?xM{eGL^o6pP7{vk50hSukWR_j7$J- zdWBABWmTNjZ=NMs0w3Oq@gVttHw^C#E(U_NT+>3+7|_$r@EdTiU%w9jR%Q=+102-F z(T4xlOKR#ZIfL0sufK~Q3gZGy!-piq|HHNM?@Edl0W0SN19glGeafrQ7J!hdQVxbT zijuat;0G@7<#(-o{QUP=BWI8Hw~T+q^IHISSp?7h)PTxDvw-UMhkWGrdhN!?ooR$C zs$@JnJNqthRiYkU3m~EKSzcb&adwFt2#gF2#DA)+Yy%6Tq^R(f&s4BtFXv=D&6!zW zw_M@I1Klad$M|@;0U+T{X6=Bj`_1;Yy(ntJPSE|}4yR6CkeZG&ZU=;+%cQTA9|26> z3oOPe&z?2wabM=(_~l6zD}9v|e(B4*_D)VL5)w?9n3xeA3k0O3t$;0ha_oX&glXmz z8%zDeR;VqEA@tXHB{l{Y78VA^?CfmBw-<4+|M8k)v4h5ID-hO8OowieFbH3qnwr}C z)4`>GhxXmOcbFMZgHuv2(~G-}l*y~9QQzj}m9u$ECqM>Q<@QbkB#oj0zhsP}FKPc* zUsoE`)D?wa+M*B?gQ1m?Jrqk-(lpYUfPi3&vbt1783YN6EsKMIh=QRh1Ph{~rGk_- zQd(#XO9Qmj5>U(l!Ke`sNL^SeG$Ig+krK9kuhU=t===X>-o5vn?>pz6d%ok)6Gs<$zA zc-c=93Hc3}?r6i|n0k14wBNnEjmxz`Z)2?PWrQTb#l?jcc3U52B?N0YI5;%r+A!24 zBfiPN`VoBh{hF`=+;YB0w0{^1*s`5l7TzLGVMyfhXY#kP2vd-P44v}>YPA7TQCUgR zES2q>n?c%@g4ogkZU%+)&}Z^12c&15pduK4yRB^)<^dR!4au@%mlk=1YkFmM^#{^L zUDUzGI6Z{0sEB%?9zwX6DaoZn>fmgIBNJDEKt@;Hc+Rkl9fh1PvCSUBU7=tCh?p-Y z(7g$-vgm6#W=6s}IyVOZtZBK!=vD=j4PUn9`Q|axw+dTO?$h>ZpT#*5SBKtX7|=5^ zbd_SUzbX4jMroJ&jtZT}>FI`RsHxWah;vu7*=)4nMnp0C@dxGNQC4_rLRaHv#Z;%DTFyd*;8&)1PLGX=}2AC;K2YUJ+ zgMbF@kGRHNfr0Pqr&^ykcly-c-kzmRJaIx_DwQ@hXiF|yZDA5L0F>f;=sXl?$F#bT zF=kMM->%BN*^gg+=ba;{t8?_AC5`T_?llBn8kJai!_Cj<_%ql#7g&bw~$oTk5 z0)U@eDF&6JV$=%t`YB`MTrPJhe#;u>LHFQbi*J0&1CxRI&&S4;D%CkSm0z(- zfA{FX03WXG7QDc`F&OGF*xbTVmMK9z z<;_^2N*Vre^u>!6gqN@H$0#yNmll&D#bJUU+3j-q*4?|6^zlv*Qgq0=oc#KZBW%Jo zFNG31`K0Oo=Z^MF<~GDBuo9}F;nI{FC+#L5*bA%sVSh{V3p-p3NvWpQOBdEyd8t=&VGtsp?Sk zMYyp9;{NyQ3IPe-ksl$Ry8usyqPmnII8IKKKTlVLl@>WCP_g6#wPAW-B4ZO10rW2< z;e~~TN#mOtj5i>@-l`dFO}5DKDNpq&ztw)(RzdAR0EThSM_aN7g{P-SZYq_=NY|Tm zsEJa`lo>G2Z|mn~XSwL--ME<1PDXPTPqARfwJQUvLoNUi{qos*VzHQ$@Z99lqerCy zqRRyZS=a@EK!8MLIS!@;vbU6%F2)=3I%6TN^|wxUOD5A>e`>f0O(bE?tz?)*8n(nqweb zABM5;i<3vm!3ft6HCqByyu7?vP3Ov+bD6>C;z#e2S1thA5TmmRxPE~9>c^{gzPawA z9>)6hRB&)xwpCkqR{!*{{BIP?rk_Q z)WubkztHJ)1>9#`+25bJPZVIoV$nQ3J^Sh+=m?8wt5>Hw1T|RO+Lk??vtvYDGT=1^ r<%2*oqL;zK{!2PuC)WRA<&h;~HYvEMd9uZlz~k+?t`K(S diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index e96fa2b1..00e4067b 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -8622,10 +8622,10 @@ Dimensions: f:1 k:2 n:8 m:1 Selected edges [ 7 8 9 23] Estimated memories [1835008 1610612736 3407872 16106127360 3670016 8589934592 3670016 301989888] -Lin fit: [1.44905105e-08 4.44274854e-02] -Log fit: [ 0.9890667 -18.51874438] +Lin fit: [ 4.51181355e-09 -3.02204837e-02] +Log fit: [ 0.87971631 -17.65089851] ===Results=== -Total time: 297.68 -Simulator fitted flops: 0.1103 G -Matmul flops: 187.51 G -Simulator optimality: 0.0005882526075949273 +Total time: 80.923 +Simulator fitted flops: 0.046311 G +Matmul flops: 204.3 G +Simulator optimality: 0.00022668319088030888 From 2657bdf288ccb99b8943c011dd6e8d0e5d647f7a Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 17:02:26 -0500 Subject: [PATCH 083/104] [jlse-run] use different method of timing --- qtensor/ProcessingFrameworks.py | 18 +++++++++++++++++- 1 file changed, 17 insertions(+), 1 deletion(-) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index b209feda..a05e77d7 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -1,5 +1,6 @@ import numpy as np from functools import reduce +import time import lazy_import from qtree import np_framework from qtree import optimizer as opt @@ -198,12 +199,27 @@ class CustomGeneratedBackend(cls): Backend = backend return CustomGeneratedBackend(*args, **kwargs) - def process_bucket(self, bucket, no_sum=False): + def process_bucket_pyrofiler(self, bucket, no_sum=False): + """ This method was original, but let's try what is with vanilia time.time() + Using pyrofiler allows to easily add more profilers like memory or cpu, + but adds a couple of function calls. + """ indices = [tensor.indices for tensor in bucket] with timing('process bucket time', indices , callback=self._profile_callback): return self.backend.process_bucket(bucket, no_sum=no_sum) + def process_bucket(self, bucket, no_sum=False): + indices = [tensor.indices for tensor in bucket] + start = time.time() + result = self.backend.process_bucket(bucket, no_sum=no_sum) + end = time.time() + duration = end - start + if self._print: + print(f"PROF:: perf data process bucket time: {duration}") + self._profile_results[str(indices)] = indices, duration + return result + def get_sliced_buckets(self, buckets, data_dict, slice_dict): return self.backend.get_sliced_buckets(buckets, data_dict, slice_dict) From e166758c56b3c802fd7011ff9477d3e7357be6a7 Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Sat, 10 Oct 2020 22:06:53 +0000 Subject: [PATCH 084/104] [jlse-results] for `[jlse-run] use different method of timing` --- run/automake/results/result.md | 12 ++++++------ run/automake/results/time_vs_flops.png | Bin 39073 -> 39667 bytes run/automake/results/time_vs_flops.txt | 12 ++++++------ 3 files changed, 12 insertions(+), 12 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index a8b0c735..1a13c657 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,15 +1,15 @@ ## Automake run result ### Performance summary: ===Results=== -Total time: 80.923 -Simulator fitted flops: 0.046311 G -Matmul flops: 204.3 G -Simulator optimality: 0.00022668319088030888 +Total time: 79.116 +Simulator fitted flops: 0.041285 G +Matmul flops: 221.86 G +Simulator optimality: 0.00018608346870725733 \n \n Backend used: mkl (full) \n ### Performance plot: -![](https://asset.cml.dev/4cb66cd1f7888cc7e3eddf0da042da38c90b75db) +![](https://asset.cml.dev/b21650c77b199efc687ad3a73ccb1c89a8d8aaa3) \n -Run date: Sat Oct 10 21:50:16 UTC 2020 +Run date: Sat Oct 10 22:06:50 UTC 2020 diff --git a/run/automake/results/time_vs_flops.png b/run/automake/results/time_vs_flops.png index 4e500de0db02e25c019f6b3a898449e1a5727d45..60e384822e834965ee51ef65d6ea2a32c9bbbae0 100644 GIT binary patch literal 39667 zcmeGEbySpZ)HVzcB`G1&C8%_YbP6bfNJw`{NOuk04JrakV}R5k-9w{vcQ?{GH19e1 zyPxM?>wDMt|F_on2a93W%oY3E=ibLYj^iXkSyA>b4kZo*0=X;qQsxZ=g6a=}pv+_4 z0q^h)OfQ39LN3p>TvYANUEGbG%pk9gT^wxeU2NW&Ja98}a(-uT$IHpf`Goy}rHhM$ zvoIHz?f>}zr@fN}7gr<^E;tCb!%J;v2!y~G`Gb-xk@F4$`C=p|^GwYnb!!Idt$KXb zv9Ia$A<t2UnQOG^N+p&aU_F{*$)Es1+T~6^&=h46N#msspx) zIVm+8zKZQ?KXT_W?0=_5O6q>$uOBQc`y=P;m&$1SrR?a#t0C|7ILx>(CZRuPt7Y+( zb6sos&eeLH!Guy+^fJT!VYMjWMKB>l*&_%J_$?(vf$e|$j>-$v%-atoyoWF&KTc%! z|NjVx(ErcIg(tWc<$d>t%NqlO-u^7wUWCARvv*4j+f*-$YK%&Mh<1#qp4F0_iY(j55Q_Z{NOgSN?F{aub2o9pGr{ zIbyu{$}`oJ|KWnh%c<`oCo3ypp(PC3(DC&>dZVuc!3E>v$IstFqT}M2 zSXkt)_pwl_=dvCnM9RST(x(p_!&f(S2ZZ)GZnLiKf3og#E`h(q`9R#u*RNM5tzmcF zRd176is3KX{MJON=VAm?^9&v`hr{C|&LM(koe8-H7>|&DuM-cTIE)qP>$#4ozqPRV zI<(<&eYWP)%fiB9Je;e7NAV>1&qt#s&waUcHK1tIEnk>Ho_!v3+6yHx#U%qI$O-tL6lk zezoIn`R58>ta|P0A%deB&B$FxSJ!j59>L7cekA&1Y_oc+q|0Nou=4yU-FmFZY^C#) zcpUtoldZL*15sVLP-fZ@>mWd%_xlQ;<6mfxmeUchRaI51QV89G_#rxl8fxloHvCXA zJN^_Qhk5_C(~>UEr4|B-R`b&LDJfmNeWERAYZnIbQdD~DWs(B>?z%8GWaE! zSGFqy-hC{U!x_;?UWUTW$QWAMC!Uff;_gN3ES$DAU0vEmKbzj!)n$5feYG`HTM6&E z4;B$>r%~r4_ifVqANeslRm`#qxM5pK)fR8JU_syg1o5oon!c zP>XuR`&^tjp6(e#aBy(OD{QIaB(4QBd`>8M&AS`TOFcC(a6u{tz5m6r%<_{F*6~S= zxZ1j$-k4~H!3%%BcDJGHagyGmkQ-NjGQTb5RHgk|&1TWpyu8TlYz9_V)?`6P1}^wz zNnbM|GNY9T)8@5g3d8aJRevZntvIh0v@utApR=27+|NRao^WH+*U z{gY1v)-giKW)^iQhAS;|6uC}6@9_HPjB}!uy%uH1QVKg7Cx`CXWw2$d|6gcjq1sp+6 z0=iMa@p$4{up{(G&v=ucJif&KuYV2v*T3#itB1(aqST5_b5NxIt0g9qLJp9IE8D6S z(yEIche~sY50G(85P@h4-cY%Zj3Kow;38Wyv+|04#S~JpcI(jOt2GPyh%SjNL%}h5&FwKdusL1(clEyT z3!2L%y7&~Tozc4nZ!nR8!a^AtU9aS)vz)5LDB(9`hK6%IwsW(`Oe}83hR0AfeK_~aUT+J&N&<0j=d7Tskt}?VEbo=NFJs>Hi-MY#*Y2&)LD4p z`eGrPcV6OV!0U?E3(IZGU*)URDBeQY?UQBr4T2z;LRl`e95)nE`jaQ~@L)>=H?hav zQ_OtAJE^ZZ9yE$qRm=C1#dJ51YmeR(j_saIeIK)b@Za5hZc2!#Hqx#X^Ir`#LrF;* zb8HH0N_`Dh6HF+e2`@mA$z~$^_p9K4@@Lp#Q(i?=~*{W^xs22ZgYW!WxYW z@qU*JbDf5Z*w%rwO6uj8!Wss>&dqy+e=rte?k&X`w?`M1!mtR=9FGDL0*Iur2B@r5 ziLLZsBi4pTGWn1Fu(Xf?N&Q_!l;{O2OCPWwzA+7 zXb{KaE-3Hy!l)=IetgASDu{*m!9w50u*Oj=RZa-})Wc&QxkJ1gw+a;g#$E7E8lgv%8iCmwj|{dtp& zWw`@D1P0b){_bOoIDLIR(a_-|yR{XHH$!Lu&y(wM+9F~dmyFgF!=r}W5FXon8^=*k zpCH$-%&=paP3r zfcd@aAk%}yiQUObr<`?*Xn0SHtP?6Z&dJV*byqxRE1$x#cpE>&_}#X;IwObb`Gqj! zOAn6Awzj5vgjK!|xLwZM+s#%qY|-;O8QR(GbQu8prC+p6%acrpYXf+ykL;a;ww@RCC>FW5PT2BXM&2ecy<7U|Fir>cn z<`T2vtS8ezCph4C5vu&GG%kWew!={81R$2D4*Dx>0;vQfu*zI=IQg zb$qWwQ)jvlHQv-;J?jg+pDCLkb&*$q=X*$X+96T4^ygzax5xPg3Os?_|9{SX*I8aF zTj{+;CGl~;=UpL-WJe*jVV(Rn&&`JfMm3&{iLS52;?gXi$s1Pb?X?o?uq4$8gBuuO zrPzt#e}c}AOx=(Y?$WV%=TM5IS1D+@$=%HF7$Iu;7+qew3k$@BoI8aFPE~(dtM*@T zT&6)ez4uVqwH_>RP2Lt1p7oGgtWt~XOp!}%4)X2^fLEk;YQjY6`^Ct(t&JVyG{_JM zwPW^MS{@sZ!y^L9trvO(%zg{#+%|HaTvztyX`z=PdEJrF-=5=x$K-ymS$ zS3j6rqXk2%_AQP*T=yfW#c(7p=@n9b9G|B-l? zFADQAL90>P`zy%Qx8h=DrV&_02m27e?!J=+TEFxc?6mB7b>(0li{Q2CBGPY1!Ce@B zmk+zYV3d~|J#Fs%#O>FBE3czG{;q%BQd&GG_qy=_0aKVi{wvaM51MlTuaA3`XF=Tx-Hn95I;%gP)%)&Sp` zges;Kc7!Be2xk=6j#Yn2slm&v*N$IwYWk>T<$QI0B2YL6t0JHEdexkF+!*9v{=Y0hF{4VIVjG?9O3eO}cdl_=1uk2!UBar?bzkK3c)0Xj*toxXC>TGLlv`RUSwC5$PCocbxf!tY1y8p|j$gpSBtl zqVj*~PF`c*_bOnTsyIG&rBT;t?(-`uHg0*8m+z{O41pq~RNfz*N2Gs5A_0^BjjBZr zU5x2@Y(H&`=dE}Wf2@teherGJ&)nTW(y!Lm(Qf{!u=Vjto8s-WWb@8|D#m3CYS*Zl z_0ig{YlhF>wqO(Gjk-k*Was-3+msqpZA3wmqM-sH)Oi)U5|-MVLFhEvxZ}c$j@edX zTV!ZZ)YO~$e1Ba1(lMSEB->PqRIzVA5w1@gm6AdQ7yjjxoRP%1E^nXG=;5EAd1%?3g-bf#bX6vvh&07 zx=UGDW3#BF$mm99$y=YKdfy%Tx3~FKR5}s5q=hDLau0+AHs)Gst7~5gz34JDYRBU^ zWx-+B`F4ES)_!N16q{ZQSq&MI;OWABgbtrDl3I4IP;(-`b`IJOtPqpfYUHyz@bjJf z__$A1{6p%_@S++@-+kP|3Pbfz{6`ljQrTay{29NU``*=hiXPuzKUUVtwOw)R6+)?xCiK5eQlh-tbm6X0l6kc& zc(3as0{`v6D)G;v(UaY){kU>UKht*0dSC0&m#_>h+S^{r@Fq#j6$~(H?~Ii*QvV)P zJ{}4F%h}-+m?nX$Qg$W-R<*5T$48|K#CiRV_-~CvhVg&JTgw;vH;>)uX|@ty)^3@e zhJ~`Sf;pVcRb^IbM_4qsXO#Mpf54hK(y3}2Q}3(f zC+7Ou6L)~>KD9dOZg!VCsf+OMZry&{8Tj>mTk-es8-3mB{V)k|)wpC<^}cKAQ)`v? zv&XWx_u^CrFGf{wN?Gv{wW z%nZC$Hjgi^c0q=F9?l057#%Fr!b1pANJdZ``qIUsX+#nMcDzSS{8`wQ6>vxLRVk0b zr28hbE8k^8)qM;tozQZkY%)Kmh)EY-9mT&!I=2h(X{Bz*$VgL+K(o4L)4*45ucvkU zcM1%->U|mN7=$4^ljTwQMKzIITQ)AjG<^~`b$vp}nU0b#l3qHL+w#(7 z6y{pSTxlPZ4EJ*vNZEu9k_7tj;U2tC;_7JV{{8#K-e*p;em6dh3dxP1G!5j;%yw68 zkz-z}|O0jdwN1)bD?($$;bwOU=4f^pT+e6w2?xZaCz67fbC>! zVdZS+(Z&$Uc#SI?SN+kwIPr7lC{hjv5s|6<4p>1!v~#U?=*a(Kks!4*u`_nNf6dT7 z)YiWr-Ff*Rou*;GTUlT8;j8Xw7Uk5dvIKkWj^gi|+&>Ub?lH+);StAv+skTt{=C6( zOfGnVX**s>$rBpkw5W;Fv;w`2N1XVm6L@DdyL8p|nagP?|n;3;%ATc_r)^s0EjVh_%(qidcH2`wnL5GSZo~AoqC31+CH2*|A~S6%a<=z z*XNr*VK6`!vP}12M}_a8Y{iaPJy%!nHs3WyDV^vJK*NM^ljGS;SG|A5S&g1E^d}Gl zw+7D-5)u*u9*svV6(uFPxVIo6DWA7qp-ybOxowR%tt1)74p`#3JKquekAd{^g42ws zCy;S9s%Qt$^L7m_S-^^xE%&ARmL^{9HpQnCH7oT?!0NJ17oeW}7ky zU5Td=$-!C7@9>>8Y-|k6-hXNdC!u1|6{dP@%*-SGQJGu z%peyc|8nvHe97k_!iEr2^5dW2Y-TO?*|rxPq`2DJ+E-q?ATa@wP*%U8iUBOr-ikrl zf|cEYw(+JxSyogO!C7`pgU1R9U_b<&WJJ>WUQM-g(9_p#-^oo##G5JHAL^z1r$LB6Mrwv|nvG_4kPmp?8X zk1aG@Ji3hdeQ!X_KPD!|d%uk=eJKc&pu~Pod~k4(oW}$m0|P@Lg+Io*S18Q6Pb{e? zMZmOlLNq@RV1@8>Knu>VrY!6kZ+omNXw_;2W`rvc(Lm;W5c-_e%lG+tk+K+MDo7R%;^ z2xdJK!Q@VUix23V;Mn>)Je}B}AvtYh+MWzQ92YD+6_kax^u;?FTxDSrl5($^ z7?}hfj9nn$fVD8%)Yv|a6`5a(%W8>!NYC&OyosynK3vIPRjqL$b<1}b;;0>w`j032 zK$r_~vYZ^I&y;53P=xE|3#C(O7|10@#V@i19 zfJ6fPe=v_}JNLW6Zw>;_vFHPvN2Y^y45M1!C{7GcfD&G*!wk|m>^pUN1F5F7>dVPR z8>?Z|jH02jL`4EcrrsazzU3?BV`T<#OuFG%d$>N5D;aF4)C~^+8U)>M5c^gm3vROy zs@?!LRxqLS)18hJU*oOXY@cyjonw6EI9DUCN}W}zNnKZc?PC|!^W&2s__wvb??pgX`?mo85>PjbE4A~eG3;me6wNzI=L92p#-#-0X za4{UZWlM9HFTllYm0Xvph5vql94BOwq8WKtg;Um5Hb3DB=KYDNe2#`fu`?!rf<`GYRBaU*&Lf8W%hwpbO5pXNZ?=+Unx{Y;c97e3|bRS;&r> zkK%g3gn7MBa5}U5KuBo4htxzeYP}vgXQ7AvBa8s6CcdH$!d%^ku%_psC(4--H=0~L zSxw>g5e9_gXlJ2{6PJXMPIlpM9XPImzKmaF&WYUaw`Xe05%Os8IQ~kufPbl7+HQ{nK5-SD6$6ybGScY

a;t#O)j$N(mF3ylTsVQ{z`n2)LX)CJjBs5uPQJ?oaZbH4t_n`=qs;3$3@ zF}hjlCz0HI{fuDwqZo2pIUD^3cx|Xj4 zUR?Q?5}3J z5QU)O)8)E#q@gb5{xAMLMe?VjhOM8qAs~><`CLIVwp7=5hdm1mi)|hdHR{6 z!i6TY=k>>tq$VQ2b3yVi(^qoRAIlFF=dTa|oG+Sy6t|EV^1AXp_z29U7JV@;-T1pG-b@%8xGG%gdKs`bS%Lk#A1P7tt#D5P68)@j_B1ePL|&wccbR^^Bu%{a=XhX%@&_6OdSlj~SNESH35u z^A&vK;KG^z{1iV_FdGOX|NRJPPxk{!O^gn_i7E?G-TE*RxE33o)o71B*`a4IT)-#S zCblP)cZJq0rQsVJlYeKytZ#MsTo`CtfF}mg-R135BlQUn=p@{^1KLYw6+B!wj&JXe z$m~tf>NUe?TU!^IBZOIQo6X-%fg;*J)i(05`51=f>R z;7fP(_#Ss`79(w5a!&}H8hNyf69CIESGa<>F0qLszTNWNFfg>^8J1!INvKG%rQxQK z`*4#WV>Ku)8gjW8R_x05)-2@fcPT8te;?0a#*Q#(Nx{dQb|p)7CH3BW|9)8Qw1sZI zdhO9AHc$VpoE7dX;_bl zfs61FNcCjgn!#mZ;WY2_%~(rU1tK94J@O>253(jHYo}LQjSFSU`A#kvF zc_X$0mfw18@tj`F(K9g-W=LWY$s+}~6I4j)_A zURSf2_>CB3joHup2T|v)IK2-d_-~ZFu7blA{_oe3BpS9{CUZLBxc9s%fN3iIOplJO z=-#RWYT9^F2CzIYLD>ypoUb=9_$={++%8;zhzzT1eosDp}0X2Od$O|^+6Y{T4zWWAc&<4 zV}lK^p3k^^>^>$oDZVuo1qHMWtR1S6?9`JnD)`UT8m}vlSKPhcy#Ww2yh$GUjPX$A z$n*lmd45hgA4SML(szg$Grd*#B%cL<(tn05K^&EU&LIp!R=r@XkCLQzVC|T4o4KS- zx(MU_!0Tf*$|2sVCFm7IoAp4uN4!u85AnMuei6NXEK4LML#~YhCQ##f&gp{DF(lLk z#q_YMev2D0f?1DpKIoUxezzSdYSD?{X9ST5%lqFqRC@5<6U4GD$v2*AJL(VA&v+DB)`2IXO>8oeE zEfvO>R%0)4G`?s;hw?hYw z%07~UDhmqa;9|J|19}Z;ot9UN5XGd}Ilp65-@V=KtzYSK-UVqN?t!6rI9J){4gJ5u zP2c<*Xe;TZt(!cDb)UAyfjODCw5*VlOR zZz7q{bt>(Kn==dmxf{v@75pP{DO7=&TZuE&Z&APTjdm}vAhHnbof(>a+aaOe?&~Lo zC6PvGlKDZs5vc5pZuuc4-%G{ByaCuRwrRix^GjFgiou!=tyWlR7CyDxQG~Q3KkcDt zPMnftVg55)(e`UU@9u2PwZn>Ic1SNxMF!uJhGQoo`IE&4WnWSHRtV{_*#C!hNd*+0 zBOE`WHUyFTq(?VKm#8yD<$eh%i7B_mQo&DDi>dSmn&ym)@r}X#4z7ki#C6U4%0dew zy4}U=3*)f{7eyh8KB!7h}L0o7H#n_@D|U4+cpP4(WrKb$&oK$!?) zA+{t4fvg5Hm^i)2eDo;$(IbF^Ac~Jwo$*<&2dCs^L<)c zjAG6bFexE~a=;|2^7RGJ+uwwYO6lF{Vo<3$WqKL41I=!Vy0sHm_SNanKtsaz+gbY8 zdzGfwc?_OCIQgbJ(1wqaM(gwDiP>v&yXpG(*#v9G&aKXh=dyLDGZfw03G?nDu%-l- zCWh$YzpOe0ei4(TC&Jga*QLWTc{rkOZ1*#q6ipa1X~PegKS?>ch`F^4-}86C)T7nl zEwl^25hrF;nD1nReJd%ckMdb;jfkca=v`9+DtfMXD4|LGfo^wop`BqzwGWN-Y=jGb zh+R7#?*!ZK^NfV%4Dp)y-5aP#Z9XH9j8N~QBf;JRy%ptdV@>N|vmVl2pYG}e! zh|+&P3l#D;qdcT#mut00FJN5a# z;3la`gOj+G>tid^ha4T04&^-$@kq|DcCwbAKGC%O;SJKwwtUU_F<)Bur<4amg&hdx z9nYKJK4@uOD^4M`L}FRMFt}5_R<-)Y8p6!Q#l*xEHdE{F3_OI;Ufp6N6d3$kc(?9Q zF>V&|zif1giS58fw{+}FQ>gVT@DrQnx#;!sN2PmoTx^@cgaH=i_*viHGSGQv9zXIu zOyTSPa*QG*RAQnQ-e6^AwRpY>1Ir~Hcq|<}&6JAMLd-9NNBVF&FV6UGC)In0yGzkIs&$^P7I?F~Dwumigzcl*)Z} z(x|Z|(x{Mvf`UvvUVi?>@o}w;j+hswt=AaQ%N4Q=fOsXzy(pZd{Hdk7uDbKwf;&^h zm%42h$KS-hDRZ4C*Ub`&=b!ggE3t>(+KwnOCcn|@844cD&sO}`&HX=PzJCY)p2nN2 z3^(st&tjk2SbJYy{P4pY?b4EqE1`>5zVO=BVhs~*{+ug|4CD4&X^s_WExF8XB{uji zV<&d_In##?@1gvSnkeo}|F3?(X-TA0v^$wc;mcE&+%Y04JUry&TRtMbVld1|)!Xj1 z{ivQ6n5n>!3=WM)VNU)9Pk1{+8}ZE#5vipA<_U!-Ze7EcKIeD?O?%8xv!M-pfgyo? z9m?FL`AdlsEbj83K-IltX}E`M2DS^bQ=PWp@A5x>e;&}I+Dc+Jwzt1H*`8X{{sY~c ze+FK407oqfGjOC%RoIGNpDuZyOjv*mL`&&e)h3~42eoBu4xUjDMcg?SmI@De2Bgj> zF3il4n$<~Pt#O*{FzW-eR0;GZk1Hij(W+A8xrZ%j(%6I%kLIwwiiW-f?N%z`*Yu+~+XsCc!U~m@$qd&}#zYX&J(W4LbCLhOox$Iti z{5;L~xI{Gy>u2T>grASk@vujL7|0dlzf8r%+;}Z|mv?G+clIw7K0m=o>RLIp0M^WO z=YzvTA(wSR4i1jG!(I`EbWx#xx{feB6kH;)>5EdYlO^>LMW$T9ZgN|EEUiEf5~3t>PC9+;@qA7^Gm4J`wOXj7->S3Qm-;k0-kLOxim}1VMsJPpf zR>S2%myzBZETRxK-LG@>e0_(n`J?}^`1sz$La!1*j~!Z=Lc;>wA*a?VAB^pxJ&~;D z^iMH~NBFS%X4OHC=MqS9HQ56*-bl6sy_oanf0>`l!ClG2HqhA-CK}+ zBv>JY*)ZXg-fGR2nu)2u1?mO5e<_-`aS;aa$Uo6m<(4bLN50n+F2X;x;LWN8gpKiE za3WFqoA%B1I6W4AuXx+9EnU`biAH;g;BsEF+3%FRIwh70)>B5E7g|egdBs(~EaVo} zFn6`%{)}sYAvheL2D&DkX#Pu=18^r;{*%gK`PF`Ad;n8Sbd8oPbvg^9D8G5l{BE0# zf2780m{Au>HOhWx1f?ohIK7=_cet8isVv1{7m~Xh)xwZYy)~Ada`iYSz;r;wiXt}zJflV*fJR_o6;R2ZIFKg^g zC1;$}d>W8Y4*jwG>>7QQMPijuM(Fn3mvW=WcT^ccvn)@478Z0cf?Hg~%vfYQ8k2P{(Uv`x;Q#o`3h-@|Tbe>W<0n6ml# zviZI2Y0M_P$t0olhF=F%w)H6cPbBE!>RCt-Cc^_@+lPs za~N#{0MuY;i397gEWx*D;L{;6x3!h*Dqq4M4-ZpuQ>L=B4VGFGRk>$SdhLX)t?k)g(!)L7akJ_u%#mi_pZ{ES@ zrU0bIKbp5!FerkU$?H1RbM-SalydZzAe6Nui!}X{k=!Dz zY``YVrnHAYGjz*;dxc2s(Rz(`FunQZh~WplN%7ttk=W}Th~inN=@#B5N*CIFq1acE zI?u{LjZ|XTaG3Q|*J>lD0SD|z3;sMWkJJkfU}r|z`;lU2aizs?1j%=3Anyh2d%@BMSa8|43pP#@2v%BA)jwGW}FPcTZRxM3Hf4-xQY??RubB`v9OjB z8R>9)XY32b+A5BJ$@BS-e(mE2X2HSa;eq!ceu&yR9^1*M;%Cdm?J-ng1NBFRNC}rF z8kubhYqLV`wv8=ptEhlw#+W$670Y*d*gSaUA2VI0X$9Y+NiG*$s;26#Wb5+ z8qIBRJ-_3cXO3179JBspbQ-hUr#K-q;l`GSc!TX5Ku-}kgWp_8WURRer`=a3l|qjh zcxygB=<0pYTPw)QCR#6?M&@*sIFbiA`Ln*s{nPzoACXj74S!0`=A1+P?RcxJ3DuYr$*xYnY@2*eJ#|P2TZ`R3BOtLZ zUlR#!{A+dE#x*|)HZaWnGF{lN%&H=XOE zg6RO3>3vetgLW!=Zr@9fjOPzZ&3ka#%|Zx+l50EU3t`7!x^e)p9rq^dJ=XzNChI)q z7#&3FP*!$63?m4|$A(&Qil^^Fdz5qGlush(`YfleXo&n{SGQp^a1?d`uafiCovCO7 z;7ac7&&uUf2e1PWDWyhtoBp(K@(U}wZlSkon>HV` zXO6mvWx0&ON+3%FaV!`OMqzs<{m1_OqjZ@X{H{ zR*?(uG;QwuIv7UimSO;iq$!;?W}Vvc7mT50+Y9&SZq{Zzk8}a1Ag)vPdhDgPI&08( zu}iRXTOE1G*oT^(Wg`QtjXn=I5t|U=Y7rPcdxny)31g(E4+snlwCe+qRW*~7iWE4B z5)u;dB0um;$xwd%6Ybf152jDm?VM=zl6S$$<;wlZw#88Hc}t5!0j>Y}s7$0pdfTCF z18(D=h%hbprYpTtFZ$4Dg3Ft6GgeI{@5)DmCg10oOqA6ax)O&FqUkoG&STPf`_I@R zE)hnFNlCK6W)BA9M_|;f6_S!6sU69_d*Nm@QHGNv-KK55y{N8yJQXwVg1Tqb=E*)K zK-aa8ca%Hr@^`3P=t{-plSZuHF-C+6_vIQ`PXsp=cQc?>Yv`P5uR(8kLe1Lx;C?Y= z{MS}gfP9Om`{$Ckt)Xzbrcqg5@de1EDt zwltFT+4`VdEX7GEIy;y4E%o&Di0-!%H&uND{HAb{#lEJpRv~QLJ^nxOdTYbFo8nn_ zxT>TIcPw=XeNQkwFRuUA%H}(Hp-<1DYmP(k$YScg&ADid;4bk z#e@n*T5sEtYQ{qE5UqLmV5G^Dk9?KkkumwoGh#^=$-G^(k|=-0rjKD~|~ zYr-8-L#3DTM>CR_#}Q7$PgCqzANcB%KDOafpjZ7QKIy&`9%RShA>fX5v!<%uf5L0> zrhWk04p?TKZLDL>x)LKUHw`Bx9COlf2dO3C2=hw_pNzTkc6QQ_fa$-Z{K7;YA=uzkF zheG%r*76$psev}ToHFjYLtdvai4m)3g|KIZMIRu{G7$8q5CdR1@~UZu=%~W zj4(*Mq62brex`yeg^<%DS65fC?=-BlQ$E$UymH$2 zYSR#Nsf7MvNM=aC2M0tubyr*Ei|-PR7C$?nxsUrb%MxiA?T(T&%a=ZB0)talnVLv% zpJw%Z;8@jsAX|Me)l2F0=9H!cIl!AGaP%UA8)NJLgyNM}OhsL$24jVT`4N6|wR?Gx z1poHy*ZXhZ9=X(<+?{k4)^Ej>WI^W$ZU=i1^E1N-+dR{+JcjJ+g8pt3cy0GtPn5AT zV}wvqf)Rea;6ukI>-+jD5JV4q$Z zTs2_&hod0_aI`2Xy6#)#)4n2lzCzUEcuZ+v>ktlsCugj(b)Iiw7cz?Ylo z4RXg-J^%CH_46%aO#P+Y-x?ULa9nYTY@VG#T>uV5Ew&nAy~Th9=_DrcdzBI}C6)E> zrB|Gg4K1l3&M#fU2F2uhcmJ7$wka@e{ z1;{&rH&l~#SzG4`6CmT&TT#GW>9pI28xN!{VC4pu9~j}f0c6mVjSJ{fv0qq+D+o96 z19tW_4K=z#^#u;Xpootm|JCr|%n1M-KsfI8}jrl}< zyDFmqh+;Xief1dyr4y^zK|2`qoJqKVs2ELGgkr(Zf&17^xmxYnYH9p?q38+pga&M3Y?pDkEWYGkMS*60lvRVuuRs{p}m{q zc9qV6EW^8lmXqof34l*vw{=)7ZSXHiprQG!Uc2fME~Ym;HP+gZ$#_1=^rE*u1n2Mg)n|d9;iUP}{5a+o{e5;(YH%zrvvx zUbiL3y`O>cz*g7ORqw&#kEp1Qrbu8|axyOu~R47~z z!1i{Am#&a2IeB>#uz{Ohw}M?Q3GWNw6WXIGTE5ABYz8}~YL@X$k=D0pSA#;Tf=xgx z?0X@NGkwPZhSi;^P-@nn=Q3S_r)FR0vhkGj_we8F3JvNJFBYV)O6@o514$nrvE$?8 zth%?#%PT9t{BC?tc4nw{fbF<2J@l7ki7tm0|J=%PaxHV2t}5~Jj8+TRO?hlfgW_5F0NBs>HDm7Rg@r&PD-3*s?tODL>+A-kVc9s^6$Jc749Um@Im*!o z)9Hu&GCGEwd}BTm!R%JZz&G@Eq=ZP&oH2wf$&*`^o%!^QwqT;oD$)Z75m>m0StxAm zmjR6F;lrSJLqAlsw8(E`y3vPE4IH3InF`pA4`b|K3SrU*_85{!fgO^F)W+|nXf?3B zT4t9up-?~&N^6S!9=Y)hloh`g=S+&-7+R=@`!zk+W=ejMH5Bj)rwbPtGccY)D$2@~ zwX}XC38+f=m2JA;wI_rYy2Ya?v~nMih~hhdE0i>NgS8;*Zrn|SIwRtO9tlo@oWnQy z1X|K~ZSgvF@EZT7=D49a61+7>O=}7vNs6*v0atH(be2bA!Rg;*@e)EO$=|@LC@l$c zz_h1?P33+8M!k}#QE3Gm!kym6)!d3fr}bCGQ!KivN}z#nOVlF&p8>nzUn>VST{Llo zDi)C^>Li*V;5VM|^2#YHG71TOrn0LF02?OyeqF>7nix6l(og?VQ$U&o%l2_J0c57KdQ~ofdylAHQosgkX%s)=-MC-wvA{Nmdnka!<1mT@J z`OdAGe6aI*jv#X>Eay6G?s_RD89vZZ)k@Rt!t-mq3*XxL`u_7x?CFXLUM6mf9@51Z zabm``(+k5xMc+&7BX!;Ja@=agm=Wd=!2bgP^iIfNv$tCQbKC%136Xx%alrrF8^(~7 z3ja+sh;*O6&&n4IPLu9oH^5uVfQ3jnhj!Y-#v4N&Us=uycG<&HuYNyMI_=Uf4M|}0 zTjygc27ZMOiJO9s?SsEr?A?bGo{zpzOi87GusZP4ljD0|>-K7Rj*ebN1ZfzeyFMYD z{k5!=$~Vw7Sw2Y_Yj}w&ex+c1PUknW68}qFj97n*Q0deeanu$=yNMkjY>Fpu^#yKz zI-)N4$zkZ(S~KpO@Ml;9a%z~34`pMy%{uQRn*$&~n}D=Pyu*l1kn+f`H4mEYFR0)xLkaHu$q87zZCQh1J4zb)$ad?viFXs z`v3p`jYMWcMpj5F*&$m|MncKR-h1yo%BaXlLfH}#$KD5#WbeI+V{eY_dp};U@8|vf z{64?S<@f#l@zM*&^E}siJRgty{dT+F;$F9z5V;lx5PWI(B+&HHr~~1cbQ8Y#V`u6; zpZ1!)n(w8KeSzcY>J>}Tye6^KJO@rS12jAb+d9GG2)x^tPpUi^(gY`AhBZzkCJ)}- zPsv3)p)lt<=WuGuDE0TO*`1*%hHG@;;6Ua)Fn6v( zQcs(t{pNm>76>!Q{3=~mrn9nh!C6BCt0QQgtT`$G4kPXHdxJj_jL`mx6ZPEPUeEye z3Vl`<4={0jN;Ka5fj*PN_B#Wgf~8CSHgZxbQ>Nmt6~zOWzGXzHj?TdPoW~AS!!dv`M1exyebZZojE;0*BF^tq?5u~dQ(5O?!E#) zedyxCj|EfnBd|}HKv(eRv4nw=lJ$E~mmPiTu~TO&PQL6P=%T5qukwt|bt3B3;&ZNa zVRy6aL`y_pVyPzk3oDI<+a*74+&EZ?-nz|P=)?~)L3HKOn}6;6=y5ZiC{3>#)VOe3 z9&spUvD*Apdpv2%@(I(fD-17gpn_0H5Q+xLfy@5Ux2IpqpcfG*<}HK;`#%c{!09e& z2IDTKoU-L=@52h@<0nsu2DBVWz}YmdIdRZ`p~KqTe1lft-aRb6(h=s|)z~vHlb!Mx zs~0~s-wiAM<6Uyi^iY5I`C41Y5{qEzpwiDQ<$rEedhp?z3@jA*ciJplrM-(n@ zW>CBSyu7?C-(l+5tKKCDN-oRVi&sJ{LjCVu5qj<4n!a>h@abV_letmu;2+pv#K%|l zRIk}CCW+ppFfcftXvBD<3hO5t{XJ@4e+x#lcBbz71V@f;okSj<7lNK4p)0e;!;GGd zQO6GZHogI@&f#G>FE5b}vBMuI?oJox@7dWifs{J;r#vgPIC5)FJix+kTVT-e?n+{f zK?9*`uGYfVUX-GkY}Jba%1eK21~!%p)7*E5x-zp8QzSLZR!YKQX}D=8@D%J7-@bo; zyM(AoJUH<9@Zm$NgpzD7=F*1Mr)pV6IuRoYG3{{?hkq>b_9JZ{!g z{J3$`_2Yo$`RU`6bxBx5q=gqT*$-&V7>(r|+F9%31XuXxldqm}l;7`K zp0{@emV!1923sPmXtufOf{&7xMA4Rn++X8F9LGkX!@{R2ps%z7irq}(;QYG@7bHTP zLKTXY3!S4nmPXIl9hZ#gw_Ur%aXwfwd$!b=NXs>W-n2(O>_`+>`q9f6gn-d3m(!8d zM`#LB6QG4Z14#*JOklUV`|7`h4Qp3}{t-5C70VGjB_11%ET(@4Nhs9&d2hj!7nYP| zTFDyh^W+%itP=soO%4DR5D0v{x3*GZmj#}aWVH8~#739&Fnu)$LFi7;q`Z@>GOjN) z?O)KZ?26JxOWVKDH0JgPmtr2a_W5tZ+}zxlITetIdbVPF7K~8s3Gu!s`wx&VFm4(C z4%P4eD*FH#MnIYdc%IMfRKtW9vx`*~lO2P_(eL`(vu}@KcSq>&R*t-4tY1buA7do2 zKdhll2=*eyJ$e^mXs4s%(*kRXUa*3-9<;zKQ)J0IOPrHZ$Y}*ui=5&^M~s8m3_k7r z{QMYGSBKpAzxFOt1~Fm@7_eacnb~M$K!G(7c8Pk>ioYXkQm^U1s7V5#qWEceFOHj% z++FlrzdEu`*VVJdrP%3C=aVeBe4wj!bo;p?wzCbI#$d`(g#}n+2h}Qy`ERwqPGw>z z(6L_>(>eJ`?Bfv#WwFEKtP<V71xJ!jI3Auf77jYU~*xww9#|xYUn_@eopTzOSs>`~kWS-yGvPeL;TtU<> zL^STp@LYLnBY1JhV`1zo{b6giOkrhgVPU@Ml{7;|>apw&R&YM*QFmh7fwB$?g-PN7 zaYDyOB_(yFNCumkn@=UUj_Ys!okYk(C;HD^vE!qlA=W=CR$6_tt5;XYZjnb(Cp_5j zX-`g$ZAFg1fB0YRn0>9%zUNc>w*MQxDWSKv%|m-iD^%@8lnvwFU}JMv4k{qMn`Z}q60zY zf(&w0(PReMQ_YIKEgkCWAEE8$XSyS49qIh{@_fa;mNYT`@g*1&roe;A7SP*kU?p^R>$|^%g(Umxf2HlH-jth$zRL65xr0~4G zm_TlcU^Fbw$7bPfGEI?b)F}>=tX-WN+nmM|v$hXz2IEgxBg@`Ow6eU3%yM;UTV(9x zrZ7jrE&0Jp%ID7~HyWn`DZw{#q+Pj1D+3?{JN^+5Cx#u#pzV1PSgzqJ|LVsk&iLQP zPQKBnm%Kq@>G3K#ySz!cpy40>nBt)0@HI10hl{WQ5y`JG7fK0#vhI=a<)0>KPE5Wv z!60wdh$_!-9qqT=Y>jL$Dmom|&Cyrq+{bx&ZN>Vf>1)Rurb9Wy-Wzpkvh8)IYOftm z1P3z&EidPa*9_3gIP!xsRwOBZdc2QSr+L}I{;2bT!Q=SeV|UC+y1RhAj2nl0|30_? zd?e#DSaS>NEPdiLGCE=41ppLc-#4+sKTgAb6Vte+(02MEFpp5nov!BdQQOPn5G6ZZ zqdZ#go7hO1CI1jC^pBLjlFXOXlEwImiHCOO%*B$zV9EAN1%YMoIp+Y^RB99ls?k}Q za$Raoz-mFrk3-TJr6Y*0yR4@DzT?o_-Rj)H${qdV3|=$m-wyfv*5l(R`~u@{(+i$Z zt13>RC&#d25R6vvwX^gzs?$B=N=H6-&|XjD&VmlcNlFD~fi79Kt(l5DBt2JtJ5A6_ zx@K-`#EpJeQ;7MnDyZwcFtl5f$u}3Z02PiTG`Y^8 zGCFKw>|azZEB$U{q$8^xzBIo`_THW5gK2hzS4wwzXxif_6bjlwhz3s zy+cGQCDTof3z7m^%m+>g{SaX!D9Y2JI?<%@2id%zhWaC6F%DE#kQ} zVs3{vTC-Ky{!>%(rzz?)@5-%Y8mCipe?kC_hI{{T$A}fic7E;f9l1R; zPVbk*T(6px?uo4F4)I{NEs$g>ZkgHt-dqVq9?f){A360t8P*byA#xJhep&u2(L)0v zW~sJCYbYH*YE0#faA@byn8x;6<5w3hn{x(R6(rY9Eo5 z0_&@Jo*a6vDbH1=#y$1HV7X)+2>U<%7QH@LI>+M`5Efs|qTwxp6+@I!j3Zs#hZ-JR zut_wuRTY#L?zpqY5!5T3yGa2`Iw{yL-8rG7GD+jzZcneoEy_DJdpO_Z{a@kS_o3y8 z8?6=RNcioXrX!Ux-}JfW6(B#N_*TJpfEbw(apYju-#)mnq>1e|U0^*x*VU zFvXQ}){1z3pP>KtBhWPx>82g-dGj@Q$Fp-8P7zQti~@tyn_ZRKF0Eb6fdt#3h`HNmbn?0K75rQ$G$`}n2!tI;C6FCuZRL;-h8Wt!R>Wb5#Aqe(E$g=H<()}S^oIQ5kFPD zSm-oG+m974&9$8os&UOs;kA*NxB3cAArIrckH~pT&Tk-wTP~d=^>4!$11Wq- zRMFOvosfPD1(i5Gu+A=Dp8SbFHNjxSwP=J~lk2`ibStQYGCTQJtW6TpyHs|{^G^Bp zJVrD(dA@Q4ym@gM>k)!DsDSc#q2b;fabv7#)iKiI$H%L4#lhmWv7)qw?RH568h1Ce z+|%n?<2rl4=IkEt8G=I7fcF@2L#10@11a8t2kJNh5AZf3kGOUVn2*btQxQfo+60%r z-@tnO#{b@0u7EM;`RVxDlWhZ`teipi*|F-HvFEEQF&zs5!Svm{p1UknCl!f%ZaI{8 zD24kAUv~%gHDx~wI$q*VQ|R|NI(kNK@HlZB;Cn2FF-PaAHKhWMH3I9OH>@${yb1*sv_X z!t8~0WryV;WoOW9hOt+LL;V9IT=Rq3cWD!MESpu^cHDDeySKHy@Pkc{H6A8kWLm_q z$CP6Hsm-=lg@Uhc)fsf820$H=*3(l>s`bM1lMNkk4KAk#LkaoysrA%5Hm6a0{6Qo2k!N?Vkk8AY43T3C~CcxJQSWjLM2N)D`nZ6;@x zE$1MI1;GJ-p80~G_r)+CuBl<0tgTT=MBWE|lfmg?V$n4wfRt?nNVHU>U&_C#s{0Nt zw3t;a>+J(rufIRD_kXrayRWRAo1QKj6V>q~sX_YKjOE;*E7_*!qAI?Upnw>E@WNUp zPmJ+_YFr7_RJL~~9wmGAi7cM%zhXT~xdm9%x`?ifV9d~WN#`;avrJ~`mrVh5=M`1V zDn#j}0~wSpp})r6p-Ej(vZK}rmz+7|$D;?X4=}3-^jKCdlD<|UDBk09hv7F(6nLf{zTt;cA=NVV8q-d#8S9<)(ja9Z-s7wM z?CIvzW&qdqikwzi)m)x2`<=&4f3D?e>O0dqw0$nc$!H4#+!9cn6bX9IRDFRROrL%g zw&Nx24t%S+9koy?P+&FTWfgX=UG6ZpMpr0dVPcP{2|J!)IAzxfkr-mKTJB5tvebI_ z?(@sw+GoY)!YQIX`OLg!^YfYUPs{>LX7W#!rkUW8b1h=5Z&Wh$v6GOJWfqb$fc$R# z!Qks#lEF}Q9_M&IFM`gSu}A3-jrU($zW?`{fJf*6s?bW~{lafyyWwkgFI4yL8h{Xp zi&*@vDXDkT+VP?NxD|l-XiEcGIpdpTC0n?{?q6ULO;bxMWy35&4M|{mdZOm1_EIUF z@6Sa$eDHP2?Ps|UKgdW>Zl*wCp4S9$1<%o~2tRNdB~RV5Z`{IZni!QdHscAqLv)o! z4HO>R0pdW(1M@e?wF~BQ=6h7t6HxRnA~sMQM(7V!pY83i;9pf}5MMnJYHtxfYOw!y z?93k`uKuPivNp~)lrNs}J9-e}F*+rkualNk#y=)LW9s;7VXe)<8Ou_dfO#YrZ0GptAAcO5ed2aIGizCPw?fI>UNfrJ*qr7$2fQ-d?e^+-+{)maWJl`<+>D+ z72JA%FU7h&6RMPBy_{{U-!*vo#7SR_mCV_;ey)2LoBr}3(!IVIM?~pidB}U9inLSB zyu@2hB%%T|28>clvhGXG#=Up#vUPzm#WjCs>wNYmFIWP$BvZ`~ zUoO)%pBoCY_NQ0=l3Q=PbHGQ}VL;^1o5Q5qSnj;FFYxsL0#APeX*!8{PlEZ~CuJ1{ zEu2#}MC7G`5-)-WEJsIv?zpmE^wz=wHCm!UBL+@5MW)hl(CJ|v%g>uVfYeK<&r|!; z#>M-?3>QFeyYC$Mbr02kzjxl;Y`I87^hn$@B!k0ZZRg2J6DPH*lGLW6&w}%NL)(?b zK9p#r5(10tqusKBVJp`a&qaY_F#)6P1;8_01jy&5bOd8^HmANHtQsnhF0bZFUBkrxtLdauCVT{s+&kRbD@0<{$dVp~j<=^0CC=_p zT7vQoc&@a9mJBy$S!-<8-Y+Ye-G~3XX}a?IR|0?gQiVlSiLR~t#w#6?z{E^S{>vq= zLbe4%!JkYeixrCHPk^0J6VRg8j(30RVpa`K11z1=Lrg7<&4-71x2r(j{VW)ti9V$!-b%sTMQaK(Wteg$5_FDh$XH$q)T%IHy{vw>*zomL1CN=(F)L0I^nH6ks@Ae1 zrxq1IoKZUCR76JRszN+8aU|X0ZAlan{bg;s9KkW`dFt~@Ej<3Id}s)t<>XGyOPS*@ zs+S+8xfp*r`g{84=f)ozl7Lq5uAjFcPI*RIQf%qn`0OiVLjZ zdMq$PpSyEz@9=W2mzg)BCcs&UPR`&1|7fK-A8c#!0#72NCX(LN**Iw~)0wymE^@Ef zp=XjKOjp}A*udPtSRV>qAR52QFQ@YknJ?%SQM<1F1(U}t_XdM`IA*bYPp7=*j^+*T zvJHzzi7_^9oxpa7bu4pZ0)v9VC9ssznOpJ}H%FTHa-Htic75`P7!$N!z`QNN{1Hn$ zQj0CB%Uz~`6~j;nzUiqtUtziBe7DD-m97hwATjDMkey5b*E3V)>MiP*!xWC@HxZ77 za}<%4-@dkBjrK7GFo$gJw*;GVJEN`~RZfpkIlB-l_{N%k`)gm|t#}y5YMsFw61lv3uba;BvxEKOEDAN7tzQAHgIcAVN>3PBBXT`P8UN)RV)Ha*xo zM{K^}gD{kNBF&IAxm8wqqT5&?+{HtFZBZ~ZD<@xZhXT~DpJlK@FZ&-|R<(Zr@oL+* z=|p3(z|YTA?ySCi{IYA=$G59uWEp|q151CGUrnsEkDbaV(PRUTzlS8aciS#dw2Va3&EoNYM^uSK}5UV2Yzk6DI)m+x&@g&&$PiL?~t~ zGNrTD0dc^=sWZ8y#Z{6BGbBybelRtPs@5}$z@!Ma6(s9&+%8$W3=rzQfo}^-Y z;VXFHDHtfJR3_iPZ~;KAwLLTo0rT?-2Wc;5_a-A=42A+LT%(aCujKaA-d3YZQM?P1feN}yi}k95IK{KbcRfEn_5`p>TM2oOv#wtyc3yTBaIX@8;SsED39Uj^CeG#aD|< zejg%-J-&(rmg2AH8KK}5l;@oMTaO!7)s}wnpYtFh90C$|Z?~r=y&7yBG5o}fnFVfy z{I0~7qIBbZjV$q8e(E`PW6tY^G}DQs{igYP!w2w3XF}dC4PA@B0S{$W4w^y z*V6&>pTQjVW--nSa6)N*T_1gR8l8d4zYV~e-4hbP@JHJegt>XOAJuBD76iXX5Qhs8ta8?OXc@8_b*y(hZDu8x zkYV_Xd0%VRg_TBzBQs2lM(*gjc4YTz!WzXEW)t$dl(O6W_p&f#7IHhI)izokyUKxL z+A~Z?-AlFluJMvey<33#$@Xpx3lum( ze4gk%CNwm>dhjAjEj&f6FQBmc)8|q8XS|h_`>!iH7%vd z8Db<}c3Htv%^fcy;i>rF&5YHlxR?*mobH6o6>pAva@iZPw!bT@&C2x}B+?Xm2(5Is(##2{=T#+u+&&Y{;)a+Uo zH%3pIwX!t3?>o;wNG$(L`f1{TB|qO9FT+vV!nWJoCh>4ER=7az(f3NYd)<%R(3~zp z_WZr>V^1)}r00amZL&0fMrxgDeDKvZK>)d(0Mqrq2+B6PlcLGu;cQdPyRs^kw?xpM zdWm=H%XBN6hcl)%Mijab%@^xlLFIcO)&VBruaIGl#7<1O2SuBOlG4n|edFKpQ$RDv zBMPBaeDoB4~$Yjah zG6mUv3HE7?AM8i8k{YA$U5Ru2=JUwMG;6;MzFe0Ioe4Dwu%zX$%=uG_UL@RSPHk}?<1Qho-iC)Bzf1N z>`k8#MWYeeeN#JS8LS%@8 zzMz9GWo;oPs=Bt2zAPUT|BkV(cZsnjEW`xn9-r|0Q~L*?llk>zahC%TtP}1&WfA1% zXobjyyYFGZ2e_8K+MJ(_>j}GUtLm4$AhBbxI z)4^0=>2^5(xj}<_5d?mtDXA!nD z`yt6P8>|#+llY?O~Uc*KRGctW4?ZX)kCoz;uysoMm zKIj|OwDF|F>*l-GheL{6izY%-4k8pus>2vNm6te0uNVxYMx2)~S^IYSeHeB=u5Lfd zDZ-3DVqbKvL+pAD8xM-M-e6L1?mVNz3MQp%&eg6QEVX3-%m%4t|BsZ43Zc=qMOD}A zd(Ix(jkw7@I0VQ<&|M*Q&RR+#d|(R=Vz2%Z`wWvZgsJ0^88mlfc(&(MAz}?}*EWag zZT5mDE(sgFh)J4ZIPD}96hA4WxQ1#E1RaqkWy2mx8K~uyA{M%PCYECgeK& zqDG)c_4(Cmz(U)X36DU~a=ch$AOCny*>loL(>#Zm?#>zg@%%l>GMbAD?@})^AiSTI z78OmxG8fOF$qW-!)M>8prDYZ(O3oo)i3#@gJUMSBY|z{1$NihNma2yrED*X&FPFCy zfdV7gK&Hnj{IKC$wAkSWso(+)2%!iSSfTQQ?e$92)Y;h%l>pES7ZHzpBD+-3(O%^( z@>>GZ?~vpma>7nJnrs4~Mf9PMgV=SJluL817M8^ZavTvwE)&vNYN&EwkA@z@`Jwjq zG2C0(U|f7itb|*E|9_X2rlXyfn;UlF%FPG}3_IH2;*OJN_36U;+OyC}_Vj$lBJYdu zJ=h$qavx3;^H$|Np&v};7<9N2{X_(f)4HYRp0LI-zueKnSzl(avDdQzuyK$CXpWXJ?12ia&lN$6y&q=|%p48tZKXj~!ZYB@CQ6tDo_? zjAFfA7NJ1}dY<7e?OxX<1-1Hi7~L`E8t~QQ_B`_z9rfasParflwp;w3XGv)_N?>m< zYAM;6DDE1x(_E0Sc&TEi*d}2>Zi$#z&f@Tt3WQ0-n(Fea8f&ixgq)t=f<~Z}6ji5W z?f*-H+`wF#^;ku8jE=`!X$J3)k3uN0^K2)o>9t#|_<5n1d9sysY6qz81JR81^gy8L zoXNYeTq@}*$Hvo^&P9z))uvEAd(U01c<1plX|O5}p2*6IeWjrRn>%6WMHoo?QbeA>^;HzS=qN>!MJZl?Wm?yY|Zh#PEXyi;q!?7_8X&4D~+@=DrRA)fgo0u5r=7OK=0-q9e`X}2N;@sfO ztwACFPXdp}+-1V2%2ED}^fWDDbZJ2YjPHwClNkA15t`ca{@IRcTZvk9Zh0DD)m1#cJpY?h+(5N zSZehK2`R3{eW@&cDl5lmsh>Y#-2ea?>4CeypJ~1yPj-uT;*RC97kWYbeF2mH0Q!>u zrp-fI8hVo)FkZO-#hRE+Bb-~br{^*7pAg5qWiK9Wo7Oo6w$wX znAL`=C-S97@)>zUmebLCG9B|hd_th89DevwVGWg;n+jbd@B|UZy-ZAs&X6uDsI%2P zaHx4S0Re=V@Ico85PkHn$9t}pi_$ZlfAju5OGyts0_$;F{)8{KGgO%KL4>DVZjfu5 z9|&MuhXyUJPY!nXxdt`4sg%8R5CT-445caAC6f+9Z~06C2Zu>xv7=>wlrfMNPV=fu zPhz37f4m53NTc%l(s8Fz=y}}U0i|*S4w7`|(XH9{BF>XMSPEiIO@<>oT27HTdr4^n zSAPGnDlonJyyQN^at@|XoA4S6ejWC^KORmO6e#ZLh*q085Z=hxvu=5#g0|SgZ6Sp{ ziEwQ+x|@?S$}kW42HB@@1_gQ>J9QEAXBK< zGUnq)E|XTOn@>NJ=b^XNyvk;5C|9qRX|qq8?Qhl$k}>p_-0ESACHnL))U62bvI6UF zJ-#{o_Sn`ih?>>~q+>PCOO&zVNS}x}B=9QEK<1THHY!jiI&m4oRxy z+lDLaz{L}!U}!+b_zq*2mN1SW4r>ZuWcsZWCTHnv|?UVexNxmu^#yihTL}3BySJ|^5zX$C93?4%tZWT za`|;D$kyvup>j}K^YjoBr-+UXzW+KhCg{-vFWnl_cBT;DL%V?RH5hBuu3OiA9~F3H zS6@7t+Cne*kBKDPa?#08x#8dsu1>fngL|#*O1<8e8gr-ag?N9NV!rd+rp#cs+Jqh4 z1HX>LT%0N9KOBuo;jLEQ+js8ZOhR^|VSNw@`PHl3_R~@r!cq%o&2k~vjSt(b>Qvpl zMUR-ik2m~)5XP58A-E+HsRxCK{kCH1xZOFE=Fh>AG`=4vd_DPFSglNcKXSpus}*#oR<3Kz=Ydu4IN!+#2sJlU zf@`dZyF=&5)lfmd&KkX`69a^L4XsudI*KFu-A)VcX2VIdBcHs8Kp1OHH&B1wyB(|C z7T(9lY+z%3@_eV1oeezX!sWPD)^Q=a_^7>VdS@ zqDB@V{d2U?X3y&DHs*Y(c#pp>^vmb6%|`Q&{GXfNA|~J3cIY<*c*=5>BrD34Tzq3?rbO!NMaDJj=nHLJq5 z1P&|EcDJ@&^CLki_LDKIrIz@{svhJ>3&jJI-@Z&vK49-Xn*K_u&b1$YgC5bTU?&LcPS2WKxADUG{94{> z7(y68N47O28&N@Xo?d$bc{L%sT$ad%Zk!Ef_D&vw@7}XPr&g)N$;EU3%k^`g!>kvM z5?7JI&h{I)9&BY{HOi|EkNtiafX3(+lc*oAl-l9SL(jZFpG#l8BVqHJv;AK3IBdL- z*i@)s@7HMNou~>Ol|0HW z{)OlV2q0*oSlKHXnXE^)X*mr~l_;Tbw5mmYIacgnTs@9(1AM0U@U!BTY8_6A`&~ye z5;#ver8e)Fz;pMQ6#}qcso<|mReY{d$v2N4ShrbWD0Qz8LZOUmTKv=>YODSw&pk^=ae%!Y zqnk@dBOhnfradM6V<{N&Xfr&y-|2)e?3U{w9D{2U?@HXCstY0J4Xd~YRwJCY3sMJX z2jtHPO(jUE%)d(LsLwt=!fM)#o&N7WGz5bI@S z$5EufdfxtGvYQ-jO=+pQ9_cVkhM{3!!SUqLMO5xb3ONm<3PxBuwF4BTnYd11gxDLhG?14?d*uu8{bUXgooS%Fs>SiA&Awp8)uZ}wEElmtE%xKbIx+j9Rtf;!HTv=-_UzS(n6 zvNRn=(-n&6xn-ZB_&+R}tP{>?Nwv^p;)YPoE%57l!yy>`!@b2A`xR!{eG~KXXq;*f z+Zp{BdY5=kKXL0Wn%sVQMVqz)WwUxRFL2~FKv8W$D{JCKLY7qOXZ$-UGIkzRqkS{w zu5u5VUWTkPnf(0@oyck;k^YZnD}Si{HB@A0y4oBH{$ws}klf>+wYgcx`f}Tc zTbD2F+@v(K?$kK@`Q`Ac_j1HoalCVAi>W|v;Eyi0`A};AdQV@!&ZlX1n{#$Pt2{YN zond&=Sz#wlBl1BE5{mBU4IdvC|9jZix^V~br!>ytXza1+@+G~)l#W?Ff^0z_l2?k; zIn7nD8a1-NpL-c|Ds!3$CbWJN9<93ze-6jDK_YJP~VraD=~2YH6Q{jW1{^>o`7KwHavv>LKxpSoT@ z>bn`fcJz6Tcw}t%yaGTa3u0`~K_J4V^)Vg|Qs1YupDK~`*%-mXOf$P{kHg-QpSCh) z`63Dx#X7eYe65!c8osFv6OIIz7M%2ql-Uftrt>%^9I|WI{`!m7(%1W}4MfG`5$X~j z2kCMO3)6Afn%>!INQx8={Y9PxDhC=62tkRn^A=a zKA_zpk2t%rQ(d8{a0@EZ&2&$O))#E|7M9318uFvK8v55K%R`3T6!O(Te%8-g;z5E| z{qzG@<&mu1uhwS?cAj>0+33TnC3Vqg7IgA(1*ZrmHvY{d$PQD+Pt^FLGHz^* zoR0Zj31s-YIyq};;^4kZqh0+tCgP1o&dN=Pqpf2X%aoYewc}X;K%@ zFz|hT7C*jqeE|A%j8bcuFvb6P^B?-Ge4?ZANr<|rXL=xUOwhifg%W+aEub*~6k3^M*obdr-eD{sCTkAwkq z>JIMK$)VkD9BIF`f|T>^qsfnBUPlku#FGR+^d?P=?hpwRuL#iyk+cY@fG)B3VEBp+ z-hlEME?6K%QFiCBN{l6XIr>YL#aXT{lM|d>zkbzQcV0Pm1S*R2M$r3);&V>?(wz_s z)Su`Lvc7UN5%)J$4MOdC5Ava&w1qXFoZPiJ;TSwCfAI`#y?R9eM4=Ri9nny}!zIrDE={2P||jP~sn8EB+_c7!rFx zB;iz8rw?RV%X4}dql+&#jikJriIOk(v76Sl2x!vMv}>YYcmR>SAGxs|ktQaRaoLza9YzNN zq6>bwN*dQhj_f9MEHPoA)h$c;pG|$kxlPaQc1un=dDPU-oNxOf3qGeov91SBBUkR(MFted2oO*l?jKoF+7hU zCgVXF;RDx305g*M(oyI@PE*;UMG;o!+BWlmrDUD7S_f(ml@yq{?F)XdrCf

X%4fU6ke-?*4^L)7o}n-7zk*RKt~lhSN1W}GZx>XLjMZtfY0 z!@&xg1vqm7WesPW$G_nBtTvXH)^PQfwPp#t4n(O4(eGKwYFu++g!6YW7yKcy)@7`; zfN?V^*{)rbvwAadsVO_<3U1y0KL7qVS1Bgl{bC9e=u|+MrbL6O9+uH&p&el=^c#Gv zKq$Qp5%%zQXEO*KOdl0;9R||+HIRwQOIdKlNf9?R3o%drXAePggIP4vXQRjPezh$? z`-JnX#w_&_200d|iW5-?(1rC4JXXjt)0eNGmAd79TydUt%isEblNy32AgUO86Su%E zWKeNiafGmJiz~0^Z42JFFPlc3XE*R!R_uR8qr2;R&x~Q2n;%-Ks^H_fNj~^ ziH5#JV({;+4IWIiNWh!(a31|I$-Wjs&~GidA`{(U2@=Ds3z8NUcX1%E{GVM18pn8Y zgint=qOr%Oj0E{0l7|a(`pCHhDzTaNiXL`iB&|SNLVG~iCEu;aFAorAfyu@!5ZVOk zGqPlQdW1@R4nmr{P1p5KxO4J^(1@%Oi>VO1Qrfa%u!$l zSf&>+c4G$@f54;>OmSxHi3NqysSNOgeg}|;3v?ElY+Pb08#nU-na7uvv*MC zZOltAGGZ3{(5ER|%*y`L-VRUc4Jb$*#w$O6UYGeSjf%&JAc|Gd1QI}z6~C+8x6~_L zto<}#eF>Lnon#)%tZ*onOCJYNdp=3N2MZau0dKv(Ia_sla)`;=#5muZn|D22uCOW? z0jE{Wx4EUo9ZYjnq8|6sq{B)3q|dr=1eMrGLQJ0K7-^f$aM4>$TV(V?PX=zD^OCBL z#{vtz_x3Xic8znj7!$hJ@rZ3ro3f&41DHf54Go!HDigkby#dzHqr{2-8L+w1NW|vq z$(%D5DYxos_Md{G@84?w_F0GWy0JHjo&OgJncIuUrM468tVv#VK_oO4BBl-Rt^$&+ z8?^yH`mpDAI~8+Uq+Wgdb`xV8UtC%OOc0@~W1WEn8q1~8qBu3{j!EIrlKnr~mq5|~ z|3QWSH+)hNAopd`>!~k)ov)Rs1e}qgn}U_q-TeG~v2dFAzuz1aQ8ihIOZ`)i#~kbb za6tbD?XFV^5ezVX(30X`j5}r3FC8(rut)`R{0UQlAAsop&$p~8Wj3PFQj+@bB}_p- zg^Z{KVb>3kyVz@qnw^aV2%@?9ZLq1E?yXNfKqkU%!icj5^zJh#BDFr;ZF+FQbYVS< z+5^Po@az)Cs9 zY#XeNBfZ5kvQZufZYV?aQ3HTB0*p=!6vce6PcV<7E4K_&swc*Z`KSvxs|IzSy@@P?%VXuCAaxXNY;3~YRmf)pd}S+z|Jf}y z6nrKE|1yLpdYwpAOP8&=s)YwG`nWnD>mjRa(3O=aPY>I)1t0YGk;HLW%Q5L`&FxKF zx3zY`F2|;(re`BtD1P{8e!Q)$a9=D5PVhG4gv6hgmZbqfZP9_AMo))hJ;Gl*o?G-& z)f1xDl3Y9JgOsX?G0}-0PnxIb$_y0#qN~=b>)z?px7&wfBWQyD<5g?n^M!A|l6IxpZmeXq2rM+CZ!59 zj(|MTwOq=pn=~99K;!b31sVZ2+Pbqvddcv*w5gat5YsK2zy^1&Sn>gYRujXAA3Vdb;c$ zQDn{Wimew)cp`G05{ESSH5{d3=}7(vVDL?XFvp6itV0}1M+Bqfn~)I0x_}E+Ky;Y0 z`9$Rh(^H=RMmj;cx@G^5&=e>PE;wlcJrQCK-in`Wgfm*W8!fIKpG=&dNE;Y1scAc3 zHBE4)fd2ah{Uv6_>pnGOCr2o8NAT0*l{Z8pYS1FU@N(ap<2Lw30C30h<${*`vmcco z?pXxv9k zng*XZb=wcuYC14bl+9+g?>~NQ$8P~{7ff1f8_?l<4|w)nEO+} z5>~pdnGED=ryLPnN{6k9c5HS(;hb$0KjDVTI{mxUfKBE%GEV-{9YR z4)m8UL6o=j!u))4Mn>@Bq6Lf-A(~bkppnT!J+~k96Cc3YL|TscmcwhDQko@unCc zyiBqyoER7PwtnjR_3M71m|6JAQ-0H%?bo9hFUT_#5;mQvbXefV4-F+&44&fqp~?p7 z5s9Sr**`Q(!1^mo$#qSg54${BHB`VQOYqpg8XQU zR&F1Avi~XND^6#~-r-?XZ0sKxPU5XGXHUpUhSL~%0bcaHdQ4H!m2*}z=z|URgu(Fe zu$h^e-D;AcV-U=)FasELCx0#WWy8<_;}f^{ffK*YsEntlFx;v1p&om%fhYSe;OiWDE#zp6qq@<*NwPa$EU%GT@gXa#`Blx~5lu!b`y~LS@^Z)tllj218 zIqJENq_qXE+!njgmr_;X@Yfq%x2ZtIF?Y4!!Hj~20MBp%Lk3BtdV&c()y^Qo_ z&+d~`Qi{l^FS`x%Dsvkf7aPv1^}6KW)-YLYZI!2o^j&~pv;#e)5i>FDPJeRy?%ieA zBUF+v@Pv7zqoa$8iz6c=H%c4Q-?-sl^<(0>;o<2CV>crY&t;gA^?p|#s&qvZ))W^< z2NF>N0`Aq2)lG<&fqMu0A~p2|iH8qyfNa&<`y%&cGtii%`FN^-rw}r)-xx**VA2UeO;v4elG^<( z)Jw=Cg82`IxCh4q>@2Nzq{og0z^tL=`r~C`(9aXk9e@E{p`e%>#lgirwQq&Lf~od( zc>kTH0eDbKJ2~CM!^8Xd>C61_6n>XlZ*teJ@ zQ{gcJ)3yTR77CxeDSXu&jRp*PC`Q-kLM?PqTVdu6yMJB$WRLlafbC7V`Td56H73Oi zRp5fstP4SC(e?ZHW8r5&Lu!J}xJ|!hl>yNOoCFq8(S*@aEe_pk;_a*7rlzL;S6kN} z)6^YC5d??4m+)%AMi69!*$zZ(rY15dbHK96L&TOzVX#5P3IZjRM=&A}Q9uE4z#znJ z2~{Rf+d_FGh?Z%xnc5-|ivgEJs&BrWZlEU^F<7j|Q1MJ!09^JO zKXfKfA4qz5&Ud{_TJG>C>S8x4^Hx5I_|?hT*||7gJN;8?YFkxJ%@5nn%t!- z*XFRcGBh_id9S&-xe?q*FT)p5QmxtL~Rd?A#fZ z*RSvYT|O9c#pN7b2WpRK+;aEuFr`o^&*bvbvNAT*qSU3dM0Xs)79hBN+p3UYPTGCtZLTzSN z))TZiT(CK^@I;b4y=!i64tdr4#>C$(-9Uh0S`3rv0tunSW(0+Vh&g~k>C3>tz(3^6 z#6%&E;$9WFiG@)?K|!;+rK}}7BH~MEyQw5dg50rj>e%|oDha(FFaM0=WearY=#ku>g zpKb=M#B`QUo_ca zP0RTwu~}Uj12_X2`M4_XAra|w<*0(FVX8);OAmpo^z|Nl;J8h<$G V(B`76j5ESRq##3Oa8f+j;pPguce0#M9tF6&B@iv>7^B;kBx`tOIMdC+)ub4b28d{dAWIt z^6)tS?;qfH^|0gNc|(E^2ElbxGW3K%h%8Zmp+!=KFCmb$JIZo0x_+74KmGl5Z04l) z_xhB-^3>=y=Y0t~CPs*pIgQuRRCLcW2J+o=?7Fu%FTNz|h zY^dbGAJWIVH}nt^@aLQyU7DGhIghv#k{BHw&Gwxa@<X<0F8)2CttI{Qv*^|7VuP z0Y=1_W>}`5l$v^9P>?)~@hngnY~}=hHD`WR70Jt&FExvwKB4G_xIy{{2Kbz2cwt20 zVD=Zw-(TPB?d{z^<-H1nA|c-=pCi&A_ zd{*Caz}Oa>6U8&%d@J^_RlqA!=`c|UfBG{@As5=e0WI@KVm{l_>gsn=c+BIkFHfx( z8r>Urziw$78g8t-y$e18Gd_10T{!r{>sgLu%fL}rS67;VBf0HRCN9M9u#ffNWZrdU z)-I>3lSpb|{j#pUKCiBB^5*Nuk5KqnLZ6f1>G}0lpWvbejc+Abu>Wh_mOb$gA(djz z&dz6t13YgtG90BoYZto>3QQx%HKcZ?1IfwAEPwYWbN4I-?n%hW%O3}p-qd=otHX$x zKJEKolIJwI9{69<=lI|93kh8Y;)Dp8gVdbxFBGCp4ozo^O3rR@pfFx~YTTq{Aui)lj9NeFlQ{DB*HmJ zWy8%;&h6iex&3{&S5Z;lXs7M@WiC_AcoQTj!Ib}J=GouuT*@lKf3NRBYp9aXj}pxq zsi@2D*ycmQ3q}Jf3qESbiD{X8Qs1S}PoIS3VEL0M`PLe7$!Wc6w{R16;iXLc@L{u1 z3v7~qDkT{vpCk#yqWE#Hld_;ud{9g^%WS3YquYmX4qg+7du`nH@6IKJbar&`y8n{f zo~s)O`QcD!HC=9Ms(x^iVph>pq?OO>f4CZY=Y4c^Z~nv_=?hZl$RfQIX~QoBYy*Rv zI5)MTsJDzV#(vI^Fj7oFEp&A5-JunRqhsHJKvYyz+>i(;tyBmtB=PEMAKPQq+K#^nyCQ!qaZ!HhS#As$`XX#ri%qpV5*8^qxU~>?tNb(qZ^I7 z)^fA&oB}OzBFb~K(M~ATq4!9%a;qshvhXEqML$t&WKCmm_eFN~npQofLIwIfneTH> zVFl$_(u(bht0LA}__CW07S4j_o@uLg|1ts=3Ev|s%XGV$aH)CSiWXkE5}hGdmP`Ln zs~R#bSR>|*SRjp{B~#Lc|4r^nH2z>})M8&NO29ED8yy=)Nw-o+qRnW5Rmt$*&!tn+ zjoai%)d{lLhqb8(iX>w5q0&ztoLL$1)f*8_f*8uWp&vwk|CgN5y5HVMu%tp_D9{Vl zp%u-)_DBfT|IMm*?*Z;iC6rQ%{%rdRBljJ@6GNm1?C`V~iMPQ$+`9zO1ycy*|Uuk}F)+cw|xWy!3)^vgxsqza=yRgAopVT1XK zp#$9LrAP zhthE!SU2n-9&_xBVEP;k@e4Ly7urfYB4QeR@nh2cJs5g=dI*)ak`+WrPHxr4!5J@- z`_ZeS$=Ps3%KfFea4D^l&JmUf)05pTd~>Xf;Nwmr1epOuL;;S{B04$@zA#3h>MX#ihlQ9c4u7Q=R?rVo zb*}5F_Mk2s62WmI5_E3QafVr#pB*TIH6D?bR>gNap6oYjle&3pC;B%&4FUj?>|cgn$v9*HMZn-T0vKW({)K0h1m^E4(L;Y`ewG z%MUFxPR^20h~4iaE~5E&OqzdaJIfhwxU;Z(^f<_ae?0#Zw>x|qK5GxR9H%a{j#P6r z!IN!XF3f>*RA8(P=~agqm=(Xc-fhbgOuXp@e{3XV&{dm6%xY z>Y4o*_Tu%7RjJpbvuJUg!RykwIfTKBm6w^H&dk2YLN~@3F`!$i!;6JvwvaBp_M2Ctkle;-FU@w4Q|> z^p}K~tl$OIcgJdqC()e;8G!?b(CPz*fQ2MvJ;)f5)+}rdDl!Ku*w0;IE^f z>cASF-($|tee(vYo9DiVv^}$c3Hn`EE7{v5i2iod?_sc#-(b_uk9ZG zZrAGt&a^nJ-`6RUII1?7MzC|-0**B?%xnqF{A{0J7`(xvZcD-7rgz|nqGQ9O=+Wdx zw;EU(P`5Img+5;)u4A?D{j~%sGxKKD4XGEwix`2+>v!JpS%N-$>5aTuHsg1Msy6b0 zFlpQ=qx+l!3cXx|Enm1#NDZ;F{T2Eyt}mCs0(N4d?&^@_yki546l!cI3^h5@E7}Hy z8Zs|oEZ?l@zl2^f0&)6Le>(Y_GAN=%W%|Z#9|M%oqRAa(q$os;&tc2TRw(Sft-kE7|ivD@(;P=?ylW?Q7MM6nL< zi(k08InYC{9g(}=l98^Py2z4>Bp)7vo2TfgJc_4$&Gl!$7pw>Iy;}8kjdJ5VvIp#i z))IOYr^%e?!%{@C^n}ev@$Zg}zmcDvStA!bC46Y`&`^hvZI$3tt~KIRbxI~BSpc4= zkIkori&3`Yh&I_LT7i*oV}l?Rg82R{cyawu1M6fDo16=6!i1RI0~KRNbM49>BPT}p zwkzoHMQeSfaC-X>7RkN-CSQltBZuwbMyZjpd4rT+8>NfUTv!KO@N}_=WBVTiz^D?j zH}8sWX(_Em0+J1{Lz1E-JtkB46#ySa=_LfhlI!ZdYl5FBTohJ&M^D1y*JQCZtGJ26 z9ulM{v_aIW%cn8vf-S%06wF1dTpQu!+4Jmb$}8M=I-^RYc7V!YdgqZpeL*@g%6H^0vzI5K9;LzJJQ&b1vDlzwu5hI(T8ua@~a7&&+@A6Tute6MgZeLSH z-SE<)qp|9u->x&axYcMc&e3B`U0)I=arI$6z$KPPJh0#MN_)evRX%^_o<8um zYBM*)x;dn<2{;`TN-i~*f$nb<_FqUbEB@Qp2XgVWggd4F>OHkJYsVsITN;e4Ao;dB zFsU4^HR}EiuxeX+gNIzp2wl3RFDkv~8DJ(etj@ z4i0eKdvKms$l+nyaenr{U?Q^v&X@_FWTeR{O=<^mk7TGRl@jCn*gTKWz=mVMx8E6@ z=wd!Ne*5hl2i-L6MU#mBWW;(7`g+#%dXFsA8z>_Q38914Q)UdcG}ZPfYs=_d-0-x- znUYf)CC0+h&D@NJiH+yxCzoZV7%nYjXPpca_D%#njqZVWpLEm*mt{WJzk^FslhAY)3HZfhr`4R)DPJ+-$7!=7-U zYWV4ckrQOq-ss*!FZh-Yb#JM47swp!-+4z<`j^i?jRR-qD+WwL@1mZbXTy_my-{7W zOm*uxq^-Vm$+-clkpFn_n_U9t?cQy0LS?0y6ge~Ne+QV#zROu7xs}zU#?7j|B^Ym& zvs)$AJM8Ux?2dcel7X34bx1|)7fyp8!`LS~=-mmYKWg$ux={E6i>yu%Q#O_K>BQy& zxkI!O9l&#^Mc2H@VpaK60${JSCwTrUH20D~%;^Ilx1aO=%|%Y?Q1W>Z8w+{HuPg*Ou6 z2B>iCE%`FpqL>ejT`L`J*DAr(SlVuYI_0-56f*IZpXD3n@2@!(T!{c1EbRW|Q0VdU z2bdpI;eKK;QKfa1htm&Ai%TCH9&=_5YgGLZmh#Pt&=^bO*~HT?e4^&&*0mZxPbR#Y zN>rBie~f>-GO82oa^9bQ54)1>yV#jo&OEl>S6u8stzVe7Zx?k6_5Dv@jT+2Z2U-Ge zLu;Kj$~GO4C-b4V*X9LtzJKj)Xd1%M7{wQ?8<;%)0go_kgD&dAczS)Gn@SaU|9OrG zpA3GVKH-9V21V{Im+{4~dfTmp+tDDr9TH0o;x-H?lcKk$^-zj;7bJFsHe67oNU)1zzULZ)w~S@?tcrw zd?qI#urqYGaTJix^n^Q#^o@K-LQ?qT(>$Th8$`h zjQK2UZmWUuurcut1duo}qxp*WB_!zh`1sN!gGCns?*Su<0Rf--54rQMmtH9#3c`>9 z!LTQO*ILH-3;wKbD{<2Dm~JPt2-X~kl-FX84{H&cZ! zA|mp|(CJQ(Db3IT?yMBJYR!8}vf&9a#MYY?xhzNAc<=s8H90(PBa$pJD+ZzC2 zW-~vTbX~EdXH>)D_m?~HlerX|-2+1shzN4#8Sg;i6z)Gz4pU#hx>ulH*!lLpA_U@4 zM@=K-@;%wW47X(RjeHC_)1ybl1E-wq>>d5d9H#MYr;CBnZw`NwhO_Q0G>tFG;yemk zZ0%a#F%Aw`oL=1Y_=8+G_jBWKt%AYu{$3mul}||%zgTeV)M#9Zzh6|Aygwwi*e2E1 zb6MEbbQ+-$J_(qlz^!f?*Y9yci!&vTo}Qj>-@mtp{TvyATXsfT&egt*j)^&%B5vt$ z60}|)%4$5BbNo1Je(&uCG! z=>5CkGu(^vR{H0Sn%_@$=nUJO=O35^9k@X{TS8!9HDdpVYtt;5d`c=$Nifv%nE(r2 zTSw>eID2_{8OOIqBS9e_cTNi4E`DP19Xu>}=E?CR{jP2%PEm5JJj@LaK_61*PoM95 zb}1zN9*m%*i>aIuj)q=co&XNvbP+!(h28ObZ3uI!6jX@6FJao}5{ptnw&B7M0(|^V zz!_ILPIE7KjjKT*VBJl>`7nuz1xoLgO>cdi-eOXIhpnI@M@o%WW}ja{O$|Rkg3f=| zvde^upVGQ*6x`5JXu&YR!JC+P#Q?h+z4`j-69)DjT4^gQ=EqN-fb|TgdSYtjJIt^csL^+kCH%2D z`w2E1Cq`cWwHSBa4c;bXKZd6j0nW%vn6q(?kaahK(^4xP$ni8^zI;i{$w_$g1}~OD zihi&4vRu^?2N1vYQ`SXY8%D!-~DLkBT)?;=aIX_|MeuBpKm|26DKHrr|S>=se5g z0&nqUN42GidACQ`#i=oN7XXbA&tPCCb;hWv`@NKb@QzH&z34XZq|5uuoih!tIc-r- z<@o>9(cfa)-&!td){>&eKro%5Lk#uHkKo-3$OIV1XEmL$wsCcI$uo%Gl{*%U-w(qZ zl`)$Y9}6^b%|McZ{etx>NxXL{aSm`3w;Z8tGRWeL8=~WiHm5d)XbtI!CTpyq3e#`! zz+GrOosOBE4KzU0X8cwZfK_#z$buDbAu+I0vu71 zAP;z8&?0^Y8Y;ctM1 zLL7BO-+R`}KsGr!Gp7Hq#8*&FewaduP8fo1UF10vJ9Rou_U4gfNBkm;0Y&Weu_jLw zi9>=exsaOHO8kF#A=}vH&$=mPW0d+i^VD)HMMsJuV!_En^r29O z+va-ybwJzahc<6cH%mgzL!gmF2A|=_0k+rn`_`y@?DDc!be)k`XyDNqjnY(EMJAr4 zs5>XYMj4S5NNUFQY!!QL=HN_tPeQO&NFShTF0E946b+S$&hxXmK$7t0!^y5Y-p#8s z3>3jSg+cu$CGX{4cJ@+<^2>FP-^tR-xQXewSL;%UsWNG&QiDhh(!~FU`CmZwiIdTa zHsvq1FZ;ZgxASBTjmn9P=ZbKV_)yKtx=$Y9Im1B*Z&O0329 z|DvNx7ruLOJlpLo2>%*=1^aFx9t-J^#$y~bk3Fl2dX9Mmn(sd@%G9u&W z$%BO!i)_c*DPAB7R zKQGU$E!LhPdl-_ZPZ!Xg7I41zT>6^Gg}y=+22CsqJrGl;!K05a)c$#Xe?u=c|bFLu9${<5;Yj{e#q04gPRP;Vhd#?XG` z5SauN-@Pg*MBi&h7e68hm&)5k9X%AkaK4l+fjB!*`K*x=`fXR6J*ZIQ^t3k`jo}{= zz|O^m=!ihE)`|&eFJB^zU7^Dg*aTF+_C_B)(9ucd@&Kg)xL6Dc(Y^mDcs%NyV610p z5T}{k7uU8wG^<0}E|S|6r(_-rd<1teX>HK`Ws0*PwI(2*f0vLy#(B{8j|hhDO+2y~ zWk&vr3EgYMj=Y0;bFKkEH6zo<9-h-jO$Aii!DR#SkK)Bj{v(*L#kKKlP}NG2`42s; zOwo(1dC$W55Nyw6yZSemSDq|e4IvU1b!f1&aDa=BD;qu_~6J;^KZxO=_KW@ylA)LZasaM_J~3z_1oupN3SMF;wQiJ=$A_B z^kzFx!|;>fJS_76Dg$ZlcZCYu5?Li78gvrdq*pTU7#r%Cz1#5$I}*z;Fz%kCp$66k zVJdR13={I4odZ02j8&n@n^$7De@;v~vS4!CNveTC2|R5W57p4{@S)0RH+#2X_qW!I zJSSbdy2*$;IzUL>3FPruWxMpY3PO9;%LXILdP<2J*^6JfoJtbRwi)mdnwP%>8`d4n z7b3xnuUB*Rf)=xnEjD!v3RFEF@1M2-Zh|9sGQjcs;)?FEu_5&6_1!|`@JS1(`V+PG zg~tx3LApOUDteRzn1(!=p8Atv5{jk3sp9;lCek3`DkH6wjNkPd$eU}Gsft|bz6+4z z-OhO32Dr@VYg3QwHx0_vEcX>ddQf{!Rx=8Jj~N4nY$oac3&*B>IDcbxdQ?rq+8WKT zD~{y#OFT@!)eAC8F{C}lJUcN4Qba!oVt@zRZmQym{7)T-wGY5<5YDEIlj}m-uFEtcx4h%^+8j)& zVf(r89*`1ea6Yi{{#U?n>mlmv;PG2EU`L+hb;qM)Kp~0m-n&ZCi~SypXVfIll?66Fve_3N>w%Jp>DIZdjX@ZVl@*x5G6ZQ91GZ%Y~gzf?{++ z8KJ*?c{(;H;az!u568Dcm#&Ah`Dt~Xr2GKw%e`cM)gF#U2965zVVY|zboZ;O;Sn}l zatp|(#$O3-L0%b=hxaguvk|)!qL`tyE@q2CYO;rF+F@xQiD_&rJTNVvzZUz7 zq%&zyz=KPQ`Dq$%o&HXRFk18{z4trTBds zii-z+KKvKjKZmqbbfJ-wLDzGLw&y|UM-#sl-|wbDjC@3=%ncpw?{+;Gco{`}CO4J|tWPf7J?ADfXm#|nt4 z{~r(w0aknm3;~ZBB!N0 zS4TMnH_=$=Ao3sf)ohKH&zB`*`xGgn|WaD(Kp%1L89X&^r6;yP|~^ZFly0Fz(_L6$Oy>RdMEn1`0GC>%`Z>Yljt~PE;iLp*pc~)U|QJ{{Q}db*iQ3U z1T}&(+^Hwws+lQE)F0P z*ho>AXcZgi#$)*O;YO*pL}oEFRrC(|F^KmV$1O^c3`cqz@R}CC+rZzJJ_& ztvI6ZewRmo@O#DL!Yhr|ScPY`WSFUvaqAClWR51nP4(&CpZZsCX4vPVqQUuV;0-Wb zGzpC4X;E?=zM>N3^!+-u|J|te=J4L9uhd0(d09ind3l!3MV$wcFBZ<5=sBd)U$5Ch z4NNhE0yQJ#ZyTW>CitTdaEY1ogU(5cO%3#x;D^D;^39CijHi;2=JU0Tw~2}HrJIw6 z8+tsF2;!KkF_AM4KLWrwM{wJv2NN>NkrWeANSCRG*L}vTWKV9N`mC^i>fqFo18c=> z3xSDAR#1ljv9}l?w^&!V_>N=qK_nmP{^@sxZ!!JDC16Nkn$(-e4{?&oT_J*Mo7QO` ztF59lF+hg0#3*>0_ruzvWaO9>P#%vQ3!)oc;Dm4`N>lfU$tzF zw8&pW8uVRXT-QE!-3{d^hqPXkr%4#6KdRSq)SF zo@+9@sGTtPP<>K5sCI%})JLKtvJdJ6g=Q}$@A?By8{)gS7)RsM2nAj{Vhm_S+s)Sj z0U(FoSBRCClf(F|p7o|B@bn@iSB~@@*4J{?*m!q5T4xzcz^O;miu6BnBaqs8hOF3SXF5~HiIH}B|JN(M87tbsC8RLT)oYh))9`t47`kaPi zycNRmg4jP!=XF^S{&O7Auro6rH;5qa6i4vF|u$f8v)0D%GaD!~c8Qxmqr^Nky zMZw+M{ZiIAu|ALT!;7pQNe2HEg_5o3D;q^E8x0BrOJavv@H>z~jhy(fFtmlBqd}Kp z3JMDAsZzr<5zmLHTAwv1=&qKQmfy*&-Oep4>Uy^s-SY2VF1zPtuh3(X~gQo%OgYfD%-FP#LRrLa9ymxvACqwV=ooFmQB3v#2y zOknuk-|9lgS_cAv|YZbG?F zqLm@%9I@X74dWcBZo?j>0Tg%Lv{|PbP$VI2JUog40iq|{v*ExrITG?SPd;XURFPr% zXjls5bu-UFfiqx`w0xYNn3fi8VCLVoaZOwHyb6uOpxjI3W=xfbiTzEovD~U*a`M}e zt)7*wie$*af@cYz-H-vL=)~$eD2p4`)@&C-E_aG5DilpjGTWk7C}c9Af0J$jYthmw zC?rGyIPjBcLPA1HK_|-3Y8m8SOVYMARARon-@#1r;}ll*mI(q-OB=V&C6JNy#x!a> zcEagt*PQtCFC~n!@VY5`sX~>JjycWww;Lq#4+i}plf$l64C8>VbUwBw78CGEu|cNW zVQ`vp=2dA)%e{&XL*v-ZdGvHru-`edSKG8em&7-K#~gX;JIpz$$7Wmyc~^B8pnQTs zV|+DjydQv*Hmsyf>BoznBmK1Q`UlWt!_Bu&Py9Y|0vlzSKE4*IC9iNrIxi)GlA0Pg zCY_y~B=q#V9wzyt7&{CI3;IA_l%Z2Y!WBTXHytLRY(B{jhA^hhGt%^jQs2jbeE9x? zz_byKjK)Cb3un~0HtdP!X$Ln=)jE zGwrl31WoDQRyeMm`cCUsx#J|nMZKtF4(?L8JWYHkK$p%Tm@i5zKzPtL)So}6e5jro4d~d}1YiaRR>zWoM7(h}+efI|OB>t#_V}T+e~gF9n~{*$!u;oTuqe z>;k+^3=Iv1gU)zQcIMarO+wRAhu2G)Nv>?Dc&@=}1<%I!jto345d)m}>IF_0w z!W`v`5?aX)+?CPQB~?hEch0E}-fzb~=)Irdw~`{+^~fS`#A1H4EYFVx zh1%4oWKdG6jxk}8F5SF8*~Z7If=APaW!!s@1`s7ZpH~dN)vw&|#Ka*=tqPIYKj;B) zzt^|vG4X|etID^~TThDpEePK`8@IeRqI-}J1qQz_Gk&M1 zUrIuC$E&b3tG%}Q83)i7bFL^%lDz38ADcw;>d}zLFTQCr^O72hmK4n8yGwE$Wq^hN z-q}x|8udlfpFJ#uCq@^wIgQs8_lEgFIk4PFmojxh8h@qgLwI#%IZGvm7{5&tD)@wsIFBXKJkE1{Ok!0 zVbM(G)7dry(vQX_7Hv5n{k#>u-K-^EQ2DKVuWJmMKJr@+7k(Ad2b3Yn>j{yw`?v4E zl#KXXu`2DfXIo=6{qs=dW>%CR9x1(U?sN=>3=6LiIL+4&8oO%9fwBa(9&%y30@Dusw!R@hPovUVB6isW=$BePiCwD^hP1pl2so0M#Rt-+G{MD3Jf@~(+erY)4sOL z_Qw*4V)faSG61Y%pSR#XesNg`*OrMjBwH zwn6?*4c*>eE-I$F6Q`gM(h7Lzou5{@|H#G0ck(YtWGuFtjm=NR67Le?nc+fUH|KU& z*L$#@bi3@0xCU0{YK>tuY2bW5aZ(Fdwxu10;XuHV&O83jQ*@zIrIRb1_);Pq>W73P z8E!SrGyqe-#Eon|GO76e*V3YfB51;Aad9{r9Q@Qxi@f&l9FCBR)(eNA>*MJ~KSyR} z2;F!M6=s6i_5HHZO`oBC=ozDA;p@UYX zwFZ}HJB~MR{;E5ose0Blg}le&s(1m(3AuQQY9Ig*`+FLnb#B$*>)LO?bJgN*47#{> zKiff1cgz9(-Qn=~EA15NFk7Dsq+*UTOQMlKK%tJp8uneLJ*Z| z^I2gC;E4*8%Gc_<;4;PIG(>w9;eU?qpYF^dQQSJk@?_sHrf2{LL{krQA%J85+tQ=yfKSs%UL%`KdZt+49wU{##*tlPg@46A;6~^`&42~-;IKpx)~%_eFKA) zk5Tkt>OEaGa;w4G-ekZC`<&pnaFbPQ@K1e}DJ#kx|EIHEvTiq9LqPJ?8+HZKAq3p= zu96BM&YK035z7PmoaGGvtcBySgH(*@~1xY zp5@C7azK$>4GUpJl4l4SS2a1NXFwa~>`#5B#`|X)s*fAZ@XM?G*C?9J+cqOYriW9% zuQ$zMvm4%Oj^eiBL0B#=dVP?1I{fXQ_@zby!qp-1fP;Fj_VAM2H{N(dh7_tCHu-|O zmP$HLb3IuAeqS+O4m27`-ke#-(uqwK;Jg^h6j^NKA|bRgEi-&?{K2xAk6owPfsj}T z!=A{f)O(T`ieQ&@Dcw7{UgG*jJJ2>Hqh>5FN76f}_ZSw=wO<2>fJC$XG#!|nnDU|0 z04+0~iCGC+{Oi~4iVVT85+pBrH!>M<0M}GB{2x1ZvY}#3%qAPzGTq!okgNh9P_Zt- z@UFfyRWJB_%P~uRvbNiLQpoebXI20LA6X(Rx%RO028OOw?5Fq7(C1FIxXpHGub}V;?V8PVW}urVJOO}} zc6DG_nkdpr6ZfwM(m$y-zfqPa@l30&8sKPL+TXY|?28)Kk}9-}F@CM*x zo%>aQ#I8F9nLJ>-aFur&UVV|mSn;pYv zC;4)Q0hSN2Qs|Iv&Nhs5^Wmr}0bF*aH18?%1Ek0>lLPj z0Cvg$REePZjKR*nG& zZc1LK&T+7$VdPfYj{*5G)1VRc$bhJ8OUeWXPQttK!`8J(H= zS6qlFzXR&i9wSSHn*3|5_d|pc1BYv(WcU2Oe5~ZM{_XNbMEr>V1?eV}oWjSCTv(pF z4Zpf5cp#8W&pZ1Io@m^Sj0Epq=FeA5+j~>ipC~7&>FF#fPwLr=-Q2Sf%m?6(N{i9JNauk9}O>oYE#?3D!K>oa?d;R+L ziKnHdC8cDL@YvXxxW8%}C>#G(jzStNczjt6c3TVCnEJTM7ssaMEJwNrN~U!CBeIB- zo&K$wp?B`X61Vc|LlGnP-*;P+&|Vp3gn{M=5W}2_(CFGyC;CJI*t5-5UuB{vgz&Uo zc|iKr89O5h!&L-?FQ3(b`lRFK_0l`1-YjZ9RRIN@yg&8HN(OiZT-&_M0IO{Cpb+4x#i_hS=N^D>+s4F~pPYDe(pQtK*(z2deuAPZ{>#ng{WXEWS$$(_42H4wQ|Y92}jQBA&!uZEs&=NdQR|RE3O1SutEr^L57) znltqc759N@fxCUF?Upc>3SIoN^xbiW7{%FzBl4Z9_?cy|>!&r~_E!l*=gBDZ2m9p1t2+-$~$@wFqpg;G;?wh}KR4vU-iA=u6 z-`%uj%;WuzU`JeyE9dPO9K>V$Guo2JKzB$7hk zeBey9Cnwjk3{rpF#biaL+wxOd$skJWp7@B*!5I%TXk42|X&P9V89W;#GFHs0>lrJL zE~GN1R#*TZ*Gn%hS`Os|8jWnKRQzm{toyH59@m*7(w0obgZgga@hGzoS(mBcX1&0L z?LB+u;e8c|u;Uab1o1_$#AFCJ3~}Qx7yimQP!OW-ctRVFD4)7TS>{;RmhhkdP?_ps z@)NJNV4B*#;_`8#!Gj22d)aI@w2YGyYCBD+t%?D_FV+yul-FK-bm9~rmjz5rkMZam z?3_h~d{T^`!R0rmt?In4G#j__c^8g06_PUEK_N9T^SEP;hkRR#a;q}oH9Aj7&SNR* ztch;^$0m1qApzX%R$j4Vi}zjQ$IfOaFd+6NYz=KubyLyzk0_9fwf1yH_2;*V4}ac+opJOK&wpUA-EcIjuj#;f*FH=oeDK7>jnfBFtytgZ#r79 zM~@FHM6lf5y7Mz3RmBAh@lmgqO z?@wUE)ReImhS17s_%a z#@o};k7P+amkV02iGgPmVdn^0`Sq*PCujPBo*^)HUL= zGCsgdIgxYb@_DsX|d4?4PzDy{E(SB;qWDiQgE=u=GIoQzbf+~ zpKn|ihhTZwtUV%%0S$CGI?d+Mwgs=Y?N90XE_bY6yDSYWJ^40k;tos%;*#QPkjub+RFA2I69xUaAzjyQ)eXf-d$g`9{aYq9i^1>GFf<@7N z=$rh{)||R2oZ_ZgF&Jn>kKnDiYPtB6pCHVm$p7Od~ZPxBr90j82S1s|ZB3=i1u8Jhp*f z9YlZOtU zn4I`i$9In;f<2)e>g4P!4^a3+wGXd=4VDrJQ=$-L(|UF%I1HgZ^nnCK5`Pm}U6tja z9rYYaK#n@w7NhHqL;tJ6VT`z5n!RnGHyA{)DCaD%e!;BNr7~$X1587}TYAv>JAN>O z-*ig@947w!kRQXtJyT`IsNcPil$3-74G3KT4MhQDP6|BQa>~lM~`sV;1($trU+Kb+1?+65SJcCMRclWDj|6Wc23sJytXb z*u!w}iwwm7j>w`s5LIioj66g$wYZ5kjQ7!J>Io~!t}^1VK)+a|uC>>NXmLHYW-+hV zs6!#vDEuylEvfh}>B#H}b;_or=?9hhFA1P91-dDAM@P#=I(l+bKcu)Gi{$>Ww+Kq- zBEEO`qw-YKxe7C$0DTr($^%@01Wu-b#hs7u>Sd;VOu%zyh`fT%1AYn#af1qf6_S;QI*?RZd zrhfQ}=dRqwJM0mUzlq~bC~MZ&RVZzaC+iQFDf7Epe-7-iG*fIAyr)fZhzvq5B)vCD zciV15K*=CxdYS;c>U@ui32jFy8c^bfkm=(7u0N_T6sTqYu}0I}{|C+l6s9F-1 zT)SW4O1oFxy&61gp)%hq_rSez>UgXmj0uBm%j6bKGI1UeL@W2TP-i#?=K^oTlH&~D z*_L=RtqQY3b_~EtaJIQ{1aJsg65TMqQQ}$H_6bOfewv{81U@Wrn#sBpA01Ts&D)2N zmEigQR*T=-ym>o2x@;7hhU91%ZlLE#Z7cbK%hc~=inXU?_o8ZTwtki$(dd8L^IVQ} zu2=@D#wA}*OQftJ=s^RcI}!aql)VL1m2JDWJLwjrB&1Xnke2QiQ97klkd_osm~@9A zq5=Y<(%mH>rL@wGgmg(u{nzw;zqQuh{}^lRJ;pZ%->Wj`GoN`scU;$b9_ODZRYxtA zavVR{b)I-4<;c08)n4KLZrZOI@_={0u=xq&s%`32$JVgv7cWZtlV8|+Rut#X1_YPr z&pd`IO2Z+strT7;go! z4K>ti=u2?h4zi%0n5T=0x~Jkd@SQ6OAA$lU3E2Xe0Y0agcxi$kjQy3py#j52c3TMI zTvaJJ8+~zo3-8}m(jqcGxzAzzRG1VGuW%%3u}2={)JBy-t|OHnCE@Y0x4Swej3Bb& zxJ%qz?T|3QGheC98O$U{J}x7I(8?PcEq_dQi9sR?Oc}(xzj^|{4epw|;TvVBh1(if zA98TE?2F=WFPD8Q?qr*E8}{4jK_hUi6>r|ypEgcfax60IX#ZY0lTcV%meEu)i}4{mJBYU&`Wd?JM$eF2yjAV4B4t{YR=C{t4r;=w|6l-7*f`&Wy5ZK?#l1$ zNE5TLZ7U|se}$_-81o*UbMjPqL6_^oin~{3Lx?EOs~9w!rS|U`3;)x{7^iu+5tgQK z76i1~t9=d~!6QPXc>jJNBkn;%Fx|?&cN7&5I`Bwdi@3AFR(GPv=Q&tv;%?x<_L_D! z`*AUCcVc$hhGTnB*;>hYxQ$)`x?}fK;w{7Hw+iY1;IRo5ehCjg%wYE`yic+m>FyQd zL*zLmB*NkM{Ocy>wVO9&`h!5@2zy1w2ogRsm@7b~dkr5GjSlhl!ObXI!Asr^(;LTh zq8^O5ZsBw#adn)Zo$!Djz!28#?ELlD=roePVlbc0|IVwgpY(<8EYW8Du8P?Hpr-M~ z13sanYx9fu3kswhIh}VBUmRtK(2Z}~+NaiHCZAi=DmXpE1h?@w8>E(QU}c)0l)>1O zlaW6zM(~J4~b$eo`g{#D0B|`9i%K3;e%L^hi0(rWOZNF$b_S zy`I)~=rsG#90+4#8j427T=y=sr+In9jUCW95)f<<3k|2AG!APzpMD` zHex~bbN_mbI(h{clSkk@t#1==i1AX&ciP04b@rW)+*Jv71j+VVw~?NRacs~wwxS|Z zzElQ1MZ(TbnP~9Q9aNW?OAqsY^ySsP2Oky+f<;)dSZ@o=L6fFjM`!jZ;#jfE0LPun z=gdonQPQc1CLZ^R;`@m{j&~k65nEyjanGlHTdgIypE)8KyGqx$r1wG?ai4BfjDV3& z5DhUtK2AbG5e&PiAzwnZx9TH9LqEYiw7es3^{{=TY9^+vPlEQgPX6-FABx*Lrhmad zCf+N|a_--M1+b{S>0w(ReIjta6MM(3BA0~055LUXFPeZed;72->>ar^HPqk;6NNp{ ziO>Z^Pg!Kr`D*# z+{S)QP0iPD-%3z+E)>uSfKTP=C)m8nJ){3pf&Sv3ZrP09F;1jV%la^W$M+XNfY|ly zC8vewDQxNKp2yHV=6jodhC$VB zvBmX|ut&!7C26%#J}az$8y!;{Y8esHvU+apt#SlEbnVx(<&>50{)&iZ=}IQx5ur3I zc|tNJrt2rUH4JyRR3QKMuv9$ejawM15_pp?k@!e_{*yeWw-esa7&3b7FRs2lVv;%~ zsTz5#F(4**^tk3 z)%-%5++`uXR7zld-O5AT2W%N5Ew`?{N09exH%;OFw+-ur z=N}6e80NV4RvXGnOP!Cl&DJNX`tlB$`pN`d3iG8VcG5(=kLkoMi!2>P5AJ-(jo_pe zIVmO8hVD1JAEyfY=b4S(>$fOpwkkOyGyhxj92fQ>%v(&ti+XrvQ${R>_Tl~g3UOj3 zlJxJ#f@OE*)<{mL;xeF$KD0v@*)O>bao*X*=;$YSB{a}|k&Nhn0NNnQq(hDdkFbz?`pT(*; zJiPjRpMu+qx7fSl_Y)^@e*enTnRGrUcBFln7qa*MZVG$L_z&LnzWZ`==M?>DvsX-> z`Qwq@H2o5Uhj@u}f*)V|`fv~^HNYrr34ibI@_-Zor9t}F`1Rs?heB_$^1SHj$Outt z-GoW?zTUkK_kT+2AaR!o(ORkxR5qY3HV+2l!!KH?Jgk3I*Nht}FF9!+uKf}@6j+ZC zviypW-~oo20f;34ScYZ!(BrrQga{}6KxGp0Sf|oAFxY`=oCWa7j2V*t8;?^o6ItJ4 zblsZPM9^*1(eLMKQl+rb?I9|ZuAStRRqH36L)fLOYUquLx6vZ8suw9|`h-dDwErn?tRIK*L#qf``|?6(V1f%5s8TQx<{3}K~LJnVBU^C z?dqRHX<%0{aw9&(fmuid$FGv#FF09r7&BKSK&s;lVPr|^gzZEjNMk_(RC_gcLwriP z>r-!E=)q^NLUlvYvi$Ztx%<_#<2Rn|Q^dW-t>24}-ydkNrhFyj>+7z>23l2FAX05K zXIYruYHbyHUNCRxUg~MU0Yn^6EC&WDKXZnr*?%xN2+O?t3{4sLBT(*pBw=>Q4Vfra zBuP$wL77z#IFOR2ky9lUPs`uX_}e+Ti;NtL7jWE6dOY^K;y7+Cck1)u;eM9I&bi^$ zTn02m_3~+_OaI^EM}w;+`6}^YkIfFbUY?E%Jb`H`^+gy7EdH+e-T&x zR683B8{wPH!8(D;;_c?Nf#;&i)&>R-;%I20O;b_xZKVw8TbB7_QRUjn=`mqJA3JBo z_^y{l>E|-amNr zj$Lp4_q!b7V{Y;ym)cMVeaezvp9c&MLPS-Y(-C(Yld;P3oB4At+8PT#lQpL5tnl5R zG%^c^uDN?@?}l~BpjL}oed+b1H9mQJAI?p0N*Hw8py*vl&ohtm-@_h+iZ1wu0q~aZ z{Jd}P0jLHz5BqK073&u-Ew1HXtMt9_ncVv+a5Y~PXXh=p{p)HPgHN3DE^EVf z`w!E&X#Zf}KgOb@A!&Y42)v%RP?jPIWOGqosvtrNiCj2wO^G2Y z7fiqTjo;43NA;wFaZ0M(fow_LlwbQBR+y*Vq+N-yoF0E1@^%SQn4XZL= zb6Kd_+*ZY8YQ0rGPY4XyoBk~Qa2~*!*mjtz2^-)uKRd>H z>SD{Oacz7ATcP9HdU+Wzi0T@Pl70OG^nvwNGlj46uM}YUTKe9eaYu7u$JWPsVI>|^ z@g1L=5W%_tbgMYqXh+X!m}hBUv0<1B$PTWicrT0}a??^zy z)~CH=*t1^;%ie%sxiEX~>t!gTB10Ll$H$RtML3t983r1t%nZHQCzH3?N}DNh#Y2R3 z>Nv-&AG&Mm#T#!^K}B6LdSAt4evM-ro4|?u5}>?jF{D-#n@jtrcu?;h$I<(cn}_K# zwLA(z@^avb0a|PSBtOagTxw;MYxj{9Ia7Q4c%G#L7X4$dHN$puAJwTJ`z+I>fjjg5 zeUdnH^PmmHnD!=6jOIqCbUm4sgA#sw+?sD7oLK3k)7uDhhQ0b`H}UTyShSlSm38Sj zqwYhov#xzh6x(GiUKrjaw%SdB4jFZDGi=@AdskV)tiU!mk3XxhaLyb41g#Hf;#zeH z8Iai675(^JkuqfIqQ46^NvSFM7wxg_@CQm9m>E6%5(-Gc1c)d< zTms#T4MGZzwf*C4i3K`~wJMX8ugX=4?zeOPIjtE(kM;glI2uB&eGT7|5OKovG8f6L zN!D$3Ym(DV(tVG+^OXcuJ;9VHmNKfZm@6`#Sxw+LG)_)vqyfEJ6+Cphd!&QkI$ybn z7aYgm0PY^BMy%7&O3XO)e2x>Io_S&L@?I^pTYmkC-*GAoiWvw5>I8aZS>hr?!k8_$ zrx2^zvc5ZFZA3Z2ov9>;7KO&>{_WLq9*Z%aQ7>B4r=6LTZ-eOnE2n857znCF)pirbR)i@)CVi!^Jp1t5Os&rV%ugftz zI9{uxk92sg&io$HhTv8_vLJeA5lJAsW1Gd;Uo6l^kNnVUVn%#3z)U=Sa1!%=YUv}D z!PRsF!}JF;`pk;%6(pfIq;iX%j9==ZoK%9Y*KJ|^8c;_B;^tx2e5Q0@zRRSoTQjYT zF5sYHcKQ@FRsN%TrV|3QQ${~u*RwWGC}|jN(wvZ&0lA2-+2rS=lX7RLnq-Ub$jxj%HKE2xuBM z8+0G8jc77I2FGDWDu3UKc*S2F679OZpH3$MWlhR%`{AuSxpL(BR0wP|KY`?ptFH&e zs>W98ci!AuUt0{w*eS4RzX=+%GlmT~f@T;L|5(xY)J~DHwB*{#G`w}MDKi#5;bzX0 z1w~SGbIa2e)h6hqSUwW*Q}#^!@SnPcFw`v$`29bCx4|r@pz_eDe52`yb~3#x)jAAf znv}n9E|@$7Yf$YPT9!p_^-}~A?nYZBkAl`%U&gnhj*s=bYnL|oeR#1aB=D-MBZ*liPoZHqU=ggL#rpTs9DF%Vg z&5Vy&)qiYfC!BydneSNUD;_QVV11e4^|Om-SrW)v`Mj58rG!jk^(JY4#g|dsz!=xG zj}8~~I$-z!j}lWXnkmVSd)Y&uf!SRAux~kvT!Xi<$c*^ZD~E^D`2;8C2L`6u16J%P ztanFD(!JNPlMYKd(T$H*C?~g@%Z~O;N#9>*wx7aZpTvuz`hLOlfz#N*Nl^2olR#xn zGB0fi12K5d(E8E!D!!KS$%XOE?+Wpz4vyvkRFI*^Xkz>s`>0F>i!4}G$RYMo-=oKT zRBs!lA4d^dDW?Nbrs3h=&;2T%!DxEE`Z3G-_Rh`xa}Rp`4~mBAQ?XOAp94>}JR66L zxGYd|J!*OHY)y^Cl?R?{l92*9%ESszns%D$T@Q!%MU>UG#;JF_z~f|rpu#*IvL7}w zHD|b=h_-4;7vk`g<~!LZMqrmcS5A-4`jpjRggKDJrlPFT;jZ(rDN=GK%A~Q8&L{5{ zqmq4l#BRjSX&dp+ZuRfV1R-Ekg z0J92dY5wWzny{*C5=FUko00;CT)`#TBq!wSl<~zqH&uCBBN&?_G3_JLaqI*~UEvek zYlmqqOYOUtSt}VY>Xo1VoC}SkF4%iVW*#cF+%xIKaO8bvT^tWjF+YEGA7VTgsZ4}2 z75*JPYWfCzENg3%`Thw|pH6;u82i>jr+9bI4Jy}iDg2$&kp=J{P7wl=1;+^wltBho za$l4NnxaDPd&R2b-7jAvMyB3|EvEI#l#vI2yN9!l`lQ5J7Z_~P*o?9iX$WPF(z|ya zoauQSx-~~|6(8zPd*%WTA=q8(9B70QMJj3JxYt=NR z!>B|NN2Ffuf^>@B(Oq~h-S}kRHK?&halg!TyGPmis%KZ9#HIq>pbFih1D#=0=Q^*U z%=Bo-_8hY-kJz|Zm!REqjyXT~$c|i>vx@UOdhi^_(TM&*T{{@fLmTWMh$otxPI-yWC|+2U&9vA`u=}(~?A(!uuk_ zWZsR>V5Co%QJ@0@U@Z2yjzkIy7BJbMfOcpRoYvGZKeqgsrcn^icv5Hl{S_VgJQ?U< zriCL%!*{-!``jeaS!^_GQ4PKM{B?&!5<7;fI2OAef{!2V#S7>xJNGS0eksl+M5ITk zHWd@8N@ot4jfP~w+3{^k(*Df;qg|+ORIk)T(H_X3{3R^{VzUwM?Ti;mwSh7paj1Q`v>?$dF z_{6|_DK^9A08^g{S)d$Qw;!&Ywxs|~9MJ<4cgAe_Fnyy~JL**QuZ8;F>EamUITxn7 z7VaHS#>Zam(~44pOahP|u>3Lj;-X`8{@w3C;;>liOa5)@m}J32 zUi2k=GM_Uq!ly3U@Y`jw!n#XG^9=p~sCgd=tZcANEFC3K3j+nygAfrYl}>>Up5wa) z-(vr*_|Ri|Y<|bd8+zWPZ>2W8DeP?6wS45|F5IQIo8-W0p+-!H4F(N3uYiK*6;0+u zXYaep7k6}D&U2+jcT|6SFg<~E19t*j6UR;h=W;5g-ivs*<%GD+KRP93zsT$Cb#@B*3lVemCRfrP1vLf&8 zqjqzM%1kdgi?164A&um|ak*IEjKz3^cb}~b(f!MDgck-^Hj6PiH)>F)P|0ltykqG_e%e=n}pHgteG?HcA zau-)-fAiK`{9`vGJk{vH3t3Hq4NxMZ+VUR9jqJGduauUB7YSW|lUg-Bx%3yGyd_GFYK1?}d zTgWY?&r9%mtFf8$jUOodjBrvv`=l}`LouJ?1&3Xk)NJ=Ui4rb5YPzh3>k2V4ph@o> zd;-jIUzDxk-Zw>~;x7&%g96MGI#x*EgN~!2!i}S^&S+n>3Z6b)jXaul$51ed8(d4( z0d4xt|_~!Mx5g|y&kpgYq1FxyKZF=E9?pTRPRc)sPbKOM-MfFLvuwK0%9!(DqRnqV42fl;I$;1-1yeU=D zx~a!jEiV69xY=%}=}qvw3K7Y&`zT^XE2OQ(-paDc52acENLX_In{8#%cLfLGS)isu zCr*ff^OsP;lQkmcQ<9U5JSfdgeI^SPQ70IRldBpbl6(3Km(Zw|Qq6t+EU&@Ox5K!J z?J_Gd2l&*nUFC%ZW_E6V+RzInCc47J{-FJBV!_e+nov~Ts8d7Bp$;jOZnR@ML^@stV?64qOw)~VZzgMeLG>TvbGLhD%O z3wVICNz37(OvPu)uTX&hujpqA635sr z`t>t5jl%5v`9~Y>j=58wp3z2=rub85xep%V8|>P;KU)JHLU%lDqmT6m^dY$Q|b6iwC3F@idx^V&{q`FG;jvJ9Na zY~?3oKO9DD3&O;F9yFH8r*5t2iRU+Pb*$*a(Tqg%$M&BRJMQCQo}(sb9=-r-;U$S+ zx+~L>FKXZ2@rcpvj!Cr~4A&2PveSDdl1*w#cH^afVD^)x!>2P+tpb8_avA=x-(KA! zPp#v3Of(p&v-G~YHJ~k!z5f)CZFsR|e6~I_)Nxt^m!#kObjjB$a&l^5m{h^XQy@x} zLe$95vdbjy`SKI7z0HPfr|4$A4b{3xg(q8RFTo7zdL@Zgs!|_a~8Kb@d%|8PrM~-#j1Jt;$9?@lQtB znHa}u@^r!p10glmG%DlE2im|;Qg_H zOKP8jBlpy99lE?VENz+u|Mtz)Bm$vFo+q`2NO1xbH*xjhBSW*u$ zmPhg1)OE+wfjfgJtC^Qcw7Dn(?Ok~&Px8jv%Aa@+7tg*=eV&>2_bSDY$QZmyJqzmy zi5o5$S9_jNQTUNxRGU-MQ=Q=R(S%xCO;D>~V^+`H?0r$k>cS%(3Gn9580O$)roGZ) z`Q>8|w4SLlfWddp#)jF%nIfnxz2Clfz2Y|Z_IBOvBdDkj=TInFJC;eq%}ysq3f(|6 z571%#QLG-WXjENlf+oA z*YL$)rBu_^bnCa7brdzUi^O}?j-CB}K0PAJ!?)-IxzFvFg&u{@Nkl(BSj&K{K3lue zI>9!YbE)OW9h^OCx~<1ziOA!jqS?aZ7Bx+bC=Sx>sO?M%UTLO^yc)V%>frA~~}$qNiHX zG;Y4S*5Oi<#g5^WXdJvY<41pSsz^|w-yT8HG~LkTwZv-C$D%R3DZN^*opNJ8*Cu0^ z{21~WvVG31aNpyqPkf%5_<{4i{E$rR%*(E*ovU5AD)PnKL~C{9VwQ9aCeJP`6!0zH zeUmM7ggP%G{GVaA$jK6@v_6_PEIX8J^eB++wpxjqFxxPfXRR?*t{yh$7DnFp_EBxw zdDMOUNSywUIhO52$ZSeA!*;t9eS186;DElQwk2P=r}b@W$*ktE{^`_>`2F?nlAZ@( zb|T3%f0+&e4bq6#50;Ai?%7W*@%nRCYq}1#gk$A%)jd>J4Bae%I#zi@)D%6Vx9^KU z@RsA!%V|?>p3CZ{<_M~wTKrBJCZ$m^jLyiR`co+7tBJDr0|cij==C(V|8~V*^0> zSe#__l>MskX37tv_Ub!26l8yKZ_=M8SZiNuG2@mC;mA}@KYN~Pyv{~@Lr@UHILb`2 zlpZLw*A}3JJ0@f{4%vZhJTDFIv^>GHWeU-V}pD>(x;ViRVy+}QztXgeb~ z$}Ck?@itsFh-&Ehrysf^k_30fIj$_@|NXuRP}7RG+NX%95H^uZkaxi^qN+&~q5D(L zQ73KWwR<8_JX2GpSIFyZ`SH1-gWZE`8pwX4K5i_WM9v2^NH5{_08 zzvh+}-r~ggc#i>F`K@e8_`F2(2H)d1{U3-D4ee$vleU*BL6CHpccjyi&Y0 zfPg;mihfgPuLjHbha%srVD1A$FGX9P$gsOMHRDa&7oYz;kxLaU(QQuqjyvf=i!xbV zNP4grdln(J^N_{dOLn5x>EP@6TEMXp=w7DE{W2i&Jiowof>L2LEDccLGy3XF~zZ2$*S|IqDI=M41dl5$_bjgci-bq&7u29S+E!n zJ>M^@&^+i<&U@3`I)IvM7O0u%5bf>l=DDkPF=|pFF{403|@PE3oB0qTj%SKbA@=%b!5D z4_~O}ZtR^6<+%71W68WLggN_KAMOf5ja*(%p7mn8ys}c}mDSgVf;~d+gPfl-4fmZ; zMu)E~gNMQ-s}W#5fG+Dx)>)N-HyQ<(&EHo}MCcd{Z!IQ)r!bybNpmTjY-*;c!`LN} z!sfQmDTygku&LUr{A~0jQxaedg84&C~An#J>Ta^9iS|uYaOx zu$~=I7e68*p`YGA^Im1PHaJxvfrR2oH!x`@@e$)lZ2E~y|;T0s?flM z6CM%WxmW)B<&To8;)2dqgz0X8QR$yIt$Af)ESH1Rv*hXkr^;CD2e;!eBk zeb%>k;uQ6-oR?%>8xy%ApRI+|mH`1sihfc3c`XPR)=U!bySVzFo%r8N@b>KE^!fJj z!!-~`#;StjfFl*-3+Rv`=A_4$p(DM|Na{MO_)LqAP&D{Fy+Jh;K5o3BE2cL22J+(& zQgMNny_zJL^*}kUUip-~-hl$$0MON9_mR~`(vWQ%$ceVWBQp0hlwosMoF2@vhVDb! zf0N!0p4r*m1}Vfw5iJc3H)PULMJu$rkN?S&{P2hjp7ZP}OmyI(Fvl&w*G>6Yi@%5! z2|Zw>2r~stKr#t0(ZO!4Ldjmqpo&swY4CPGy5q4q8E#k9KuOc#!0#>Gn_x$oxpBnB zDNlqzB!(4tU#6;c<5<;yztb;!&Di%L9(kYe-S#_uim%0L{AN5*Fs|dyQQvYW)PeuACOf_n{x}k#8Pcu6X`KSoPA|hn$?b$)I^<<~* z%6t)k58Gqt)(-xk0sQy3p})Tre3q)~?(=ow=Zs)_XlPBYPdf8HXn) zqb8gh#Xn$3RW#!C1Lgm6{0-?WS7W`xffeV4uP=-nI!Y`$AhG3eEK-vG*>*E$pdlbGr{AFKVQ5AdF4`fmAFfXUL?F%(hZ5`X^jE&m7}yL*Gc>;G z6-z-11v-H4FA5&<=)8AndzQ3BQeu8xDM<`>#gdh<>lb6D+7>y=FGHoXP<=LeJ{P`4 z0eNaf*}m^_-?wZTL5n!h(P>)BYdRy~@0d6V?PG6>l&Z}fvSo^RfB$>P|Imu@fC%@& zJF&6MtqH3P*(`J%&-#+;8AB_nu~IJ;icFv-z!}Ai^90L9Ry?0y8y1zz``bF~66N@1 z9uiTVujEqbeXed@>|e<@B9N1FtIx8u{epsE7VvK5V%_s>SkSnVU#yF!Yj4>6KE!yo z_bO;i%F#^!Z$1pc72~HFx?8D<{{{A=_jB?*>0AB9vB7gYbMMz}l%l{P5dxQ}YCjZ@ zobD1*y?|yVr;S>Yj38ZSAUI?pW*VKT9P5n5xk^3N2W&uxM1~{%imVQ}u6%}x~x!El(Cl>)2 zspPkBQL%a_d=6k8K!xo=>>UOIH7Pnw2#8&r?xL6k+&%~PuOHm(P7xl6&7`M-OQ#Vi zSmC*S9f*F%t=Ey-tGMVBcfvrts>iG)v7=aYQU{gr&Wa76Reca2m^4s5k`-RKX|*9I zYd}c3gP`$gUcB&7>9<0tgm;)+}^PGyN^>q>0hlkSq(;v zxN2Zv$9?`4?rWtYOXT^B@!B=UCX6N&hlcFt1K=oDsbbV!e9paYM$MS}M46j(yexO;b|2V#UP9*Zg{+JjnKpb0FK@B)vAb&Qqvp?bZN7gr*$6`Xz- zOYDvO?qp?zh`K_KCJEpPASlqRsNence-Wh#4kIqP*{UE3r4WcDIuQ|Lf{l^=7z-WT z_#azEV8A5aGKun$G$L-vA&&}^@NYDJ8y(tVFC8?Bovnq!aY;PHA7k@eceU&4WL{&u zbPvJzmb1+LY%Djw@y&o*YpO6L%BEv9Ni9b6BQa9nCNN12wMb5y+h5gsZXfy{m<(2#i*#PrpzilnCANEbF>!{DUpy_NxQcKr{IgE58<3=f|^o z?1n*@rNJ#$OU`BVhw)X^&~=Te)!+QX?cSiI_s<@Z&UJt1^2#=vgsh^IuNcFivao2V zo81<^?p0B2B-)2YO;>=!eP}o4t02exx-rn&@MLw_tp3^IZnf`H+0*@_B1T-^M=3jO z=U$5s9w_~(T;qCaMK#Qc!TzW!>tn6HqC((=eJbG?^V2oQRK`deFvb3X?X=|6JYrM7 zoC;Q|N)Ljdqt-$$jT~-1Cyp<7?t-A#PAS)U#7SjtQ*}7wJu_AokzGsS$XcA=N+h&Y zIrDh|A;>&2^7v{on>;h9aI3~d&}52Em`bz#!@{z+P|-s~DvcUZK=mR=HQ$DAGwU z3!J(IeY8e*PAgcuug&$(#fPBHGMYIENZV$w9njo&aIdmM(9$3!&o4s@L`XgN%SzV6 zopaiX{>HeVWgF&xr8jk$xlFQ#je3=A7Zh4Z_7?A4EDeL?E-fy0%IvwhxMwr6y#_zr zJBLehlOSx*hYE3tbgFPebIdon4pKAIE)dWNQx*SM-`k7*`B*3Tw$p=R6AK=lIm@4< zdTX_u0+-21LHG#uQJKP`;L&$eWy<>z`gHm36(AE1tej_7F|q6V_r>er*2tz8plRv- z9GydD%{;I%@w2W#XQTMS%bTI%Vw^BCirf8;$k2zw`Bcbx{BaWw0|El;v-Qx$mc$&Vk%9*7V%`;u zcr1WV3^ReZ+cJM5*B%20p>z8~J9d`C@aJQN$Z)cur@!wl?nB1i%rgwbC&4EtK+r9I zOM|$lF?^WQlEMY`4*o$Ix->-g5CQ=pEg+4QUp=M-3r?pBGa_9_HY&=k<}SC^{y~=d z-`c(Ui4TI$xibA;Ze9o#87fHapotaK6Qoav*p{GY34JmG%IxhdNh3l8*c(v6ex0{{ zo}@9|gOm0vGn1LD z7}oXT0y6SznWs9VW_DT}LnF0XHzqz6f+Un9EU=wPz{j5Mvu$QYTlq&s&sO9u zmtDEYjlQ=8dd%gCX-y|v6=v&tkl(5C>B+^>T|ATLYQbHf_EIWH;n%wK7syY?KH1!f z5V$?2P)4n7Ai(I}ti*hOIYi_k>a!W?Y+}1;JDJdGLjW<>HEd*Hkd_HSc?DW2g;mX% zjj%T^vNYi?u%KRdU)I}^r~EV(ANDr~AgRQ5=oX8yx_|9mdbcs-g4-xVe7Jssi$~1VwgR@zxKzT(o(-sm-rCJfrak%$sv4`Rg6#8}W;Jva> z4r!qP-M$pE`?rT}f-+!Edg|Ue*s20xOceNGt5qN7O$!)TR=!p%@eS5M&V2<8)gKCJ zqi<`~^d(seLy&0fk80myno|@z(50tpf7$8r&i}(k+jz0?4AN0xCY4ZZNU_`C~0**do~c9rjviqB@x%BH~V> zt4ceW6uQ*tdm(&Uv*3pY7SE?-PDbumIF-(@p+fziBDwgxiukw5C=94cUV^(4mt-h3 z5sdgh{F*ho)q%QFa$p~0vl{T*{!Na6GT(cq_O{G1Qh)84?&d8?U-VmV2YA59xWw5h z-F!q8HpC}OLAJIh!CH33o7L_kUrHs#Gr4znbXZS|ar~$F3NJa^qb|4^Rc}}|jAoN< z|IXU=qy?vMu21rU65%|tEx2=_eaHD;=atSY@*Of1zb5O7T-LmyIkEnI+C3Mxf$wp% z<+1{Zqjg4%sjkV8$Y)RPp%J?Mec3=XD6%Z-MUU(0M4xcZgsvRMwms3r*0_FqXFYgV zom=|bpRqSIW;q(;RUbHJaG|cNS9yZ~_BG;^nD_w*?Mad*HWbh!M>_%pQl^Qh7MnEg zXLeI=zFas&uj0{4BS)>&})<8yAr*+}cZi1T_|WVMDJc{az?xfi5jul@{;x zD6+I5xrXSU+7V{!Uz`?7iHo0BY~2ayT$z7}8ko=XUP?Kk?#Uo+Hv*d)xP&mH*@&r! zr(B)Qr6t?B-=emBjcsQym_S{~%xDBWw0Z@g*KNBhB^b^Jj1m&l)`t#-kK1$oW{}pz=lHx@{qowG+dm|K zmVWg_lSWvEMq*KDFc=d-ir~jcYp9^nt5oWxOy99OkjW;ipr^~S@Q*;rqg+FXx)Sp( zPX5X2TX0Q5zeJkmi~peZCRX3odNf|GYUW+Kde=6Fm$RxL(Je!lRY?#J->gzFGFtVL zp0L_w$q={vs$emSA6hGz^_DGA_6K}!>F46-5f6PpwKM{R80i{R;))G7RNH6u^^w5@ z{`Wc2V(77c{6LOeXhaf?NDS~S+D$kXJfAV*VZs9q4@k}xdz7;$>nkCVj{sXR0BR;%O+-cMq~?P`xbR{ptXns4pamduaxRz7^ZiDQ>VN$3Ya!G7 zgfh$ZpQ=+D79-4FzO4vuM9*uqe1j~@v-52n<~7e2qE6v|&~VIoILzr}WG}B>%BjT< zsp#Tfcr}qa?esOe3hkEw0y$*vA#&?}e5tQmyqEwMA!3*kwYjUA;sod+MLx$=c`kH{ zuN6V@83~mRvlirkVkNX~C)Kvx zddJnW>UCv+)$wknr(@#>+#GaTj3xx1uh{l{Y*VzL2t!ptL7)N#u!L5E|AIy6ScV<{ zMvs~&=4SpLw$-LQCyaGWU{(bTS)0*34fxXt6a-VuK76+yI*|7~>{Bg2NC?03JgWv+v(D z@n^nH@KR=PvT87OP%)a}`X7ILWVre({!U?5x*WzL6Bgqtk`)miD0Jg;?y^nnqlIcC z8tB~5nqxc16{ zqQS>J#veiL@U*8xtl!0SN2|()AYW~L-psy)9p|P?8Smnn({8wAX2rr?s~h27xzH$xXz1w4Ty@f;9|JAJT>&U4~dIbzGR2&;fe` zp!#p0=~CcOBgjR3*Y^}l!=2gGF>p|gIH&e+{-!$aEV(mo@jDSLJ?2o1_~ghNiz4v0 zG<(n;M}U~U-)6n&BTc3T=A2@tdLhi(@1XXu#H+dE(3 zu6<=d{o>#F%EI8+*;x5HO9?u+L8}_VX*97Y-~u;|ubLY{hz6ApNZMu`(y5a)F(^n8 z6@{kUICPY5ijVMPq8Sr2l;`FqDf7lny?`32|Mg<-bb|F~B7 zcuF(sH-%V?0{?E^fBf+3_?YT-h?&1;GN;1G zBo!7FAi{))ZaHFwWV?)-t%GhrM3FBw18RIy!e9Y8NKiv`6>d7f>8a2Gd7i>@04jz^tzIcAX2m5>utFdh zEaEUY@RkwI(0!=>8A2QP>J_#$$uI^eS)=)?XxM`+fR~xPKbV}PqT^>0Fg_lh$ z{IQ%rS2~6ifPNwJ5OxQ3;*Ay^mlhTlOpkvrjyC#9wnx*3u7MIPF_Er~5NbFbz#=sC zO-xFf2NNtrA71BiSx_{2j=JmD8VQ#9k#K!m9=4U$)l_AVdcJhOxr2sKl{mhE;;D+A ztd~6n$U7PWRV)0xCV8@cr~dSJ7s}1vKRAe4HWpP~Ewr$-RM+siqJjcq3jeaG5s0!e z!m_c+k=P~O${p;9>OhLLDkrEyQl?dH?Yx0}L0ZPIrT6V-kvDMBjeR!w|3=#(0URzT zFaL8$*QA000|}XQ>4k-toa%QJ(x&|YRU-6sn^C}iw11Hw%)3xOMCA?c{kR_%VU7jX zGj(p%cZst1{`uqG+SYdLBjkIzpSo!is@#h4n5imDZiZO{KjHHm*H{Cf0}5N~|0#q& zNEYB&{_Ouh3)<1`GcDA6|0XNKkJ!FvrvE`!tJcB&^{&4uCUzAJvz#6LG|K(wXoSB? zaIQ;$03A@(@MHeJIMFdWdBH3ZK(|)uAo`md*x>EdU>vKSsbKbd;hS*-F^q0N$~z#a zC@DjLgJC{WXmntqlSfhKvGFDNit+N0kG0i*;S<5}3S(e_2u&Po^8a6;AMAy%UDE{z zyD!whtABUi-Y9aw0ycd&;H)N4m9mW7TzsJ4WM^kXiq`xNl=~nH>1kvEQiSSC!rPul ze1d|R85#a|OwW-2L@P%AQ;lyw*z$!OWPjyQTVWa{g`eX5q@Jp;N4s%{dT6ytG z&(h(7&(VpOr^K(drKu^shMj$k=hIW5w;8Jy6&OwPbSgR=JQPZ+y0}pJIrH;*-KQ*9 zpTkXg3ybRj^h(#jau9AsV(yVUr$f+Y!}&L9@;3U5I1f){-6e0I`niZ8SAwU?SNM?{_>cF`?!?-OwO_>@hq@?epODbeZ2-4kUt3$d zdNzQ-dAXknEb)dOV^%0DF=zd@j32Rs+Mk07Cmx8GTpugLDP>1}h*m&{MFL&!$j64< z6f%Z>U!RbSNHX?jMKJR4yl75~Mdfo;Lyw61^cdM@-khVEWh#(tCXoChK7Q`+M+J^L z>g8e3GV=10qWXaFl51OL>Iid$(AV|p23o;MXABryjJN?4D;)3~U%svYRY`QsES0wD z2A|Ykf&gR}SL4-$TdM6Q5JAomEha>?=XJ5&LL3I*Od`QaBzUwLf`fx4u0G%1X+5m! zfv^xklug>0{>e7&@*P!x83kYw#JzbFUS7^;2sr{m^HF!69pMFZNu?daY`zW6z4tIR zR#a3R!ON=a==^F?m1+)v3ZTXRmsE-$zC9fbeo+9VBX#siA#tCBSy-zM+lm9nrP90{95|-E z*Erx?8wjLxegxyb_DvS3VoGI1`xp zvn(_}J$L~o`t>5_d+`H5ek{Cyf30c@wc;HEHEDN_1t<1gYzyA<>%b@FvNV$_$JBbq zDUq}&!BOZ4p1}MVw^coV$%N2VZKdzd#l+0{P08&hjDy{^;erI1N!Jo~util*>3jhy z^VO+g|CM0qJ?RM8qW*x6A?g;47`jHEy;l18g@42_5cP?XzXz;g{yLcu;Cn69()^X1?J=j+_|fB+KLKJgI~*-N$!Uef|8=lfC9V!NnR+P-(t(lxyR7)2L z_R#_aZw-~WjN&LC?vvo8!W9v4RwLl46~75thKWkSc}1UTP>oT^5ZXQO6Y=xpnNw_N zq=v=Bw8O{g_`>TFIYY6q03hKG_^pjCv!Iv%W+R`|D|`)$jSX!!-9F@&>3qv?SNy1l z#*g^ArCaY)vYHmyhQI&Yee06+#STQv$;t7h8JhjCS!xp|tA%^85mfxY8)K2m4;%hn zRAT!ktB&fwB?w`OedXil{|Q62ypi)C)B!3$*UyVcGJ(ae*krerO!e!VH*Z|@^j?cWjPo&kLAx`^ zz^ni4QRvfZV5^c)2JzCYKldLlgg2sqXLD1Lq>%PuKeHsn!Few zfSjm34&1>s%=y>hEPJR4y72^P-;B8E&}^G^J4M0bVIhXhVH0cz2HztlOljw1*tRXX zeJ(64>^gk9R#4>(jGOBM0+bNxf*KKBuBGCd6Gb0B+<1_Da4}JL824#f^3v?qW8+uJ z$vs}*@OmD-ivNZ6{-c%RN559yZ=?xkq|G>M+t5E64A7PK2d>=AQw=7WQS>7}KlMJA03#>Vt8C_;fLjsO(2XvpTKBW%Ow zdy)lVn})2b6Gfz#m60_yTIbQw(k`uM)z;E%Zf-8GuggI?2&6lgz*L+)WGm)(eigJ= zvPw$$3U}|Kb>H}eAB-;OI4R}nDG2jFYB^pTDZ)U&<_$jXWm;OOmgfxFK6voJ6n5Su zk!?11cCtP`qH@!d?7|dg z4axkA^D`f8q`SNO&YXV1tH*pao6i7X#m>tcFPfH;V#&$L$e$3Nl2PLWo6Zj9vumh;Rkoy@bR`&?H(LFVrFJGJpMmBa)c#V zLuB)RDm5t4r zM~@%R^iWBXx38PCnb)Z!H{w%&+WeLY_D=cv`oKWlSo%6F?oQTLB@+`722kbQ(!!EA zEf07nIq>4}&+oJ?EN1-9&Clnb>C?6~`+AX~zrR1j0pM|`J8%5_{5&u;wDsUY$D05D zWPuHTVAb{ec3s?_ipG2Q;yR8d#nt5G@YL4Ug04)O=@YTP&Nh5o%1I$$vGeCr_5)zI zDeiV&UY`Bh&-Z~=ZP>i|FfgV6`ST|rKK{I|vQx*~MJy8pHYJF4voaL?{+9dW$Bz%E z=F9=!2vAs9C?O$nV6Js}!TWo*M~)m(u(p;49@YN&)#-x=8_V?sI4TSq9T*axUDao} za`h^(w|O|hAOSd^4onchHW^Yw#*vuF`;F8FCmz5#ss+&&(PYDG! ztv)_H%nod_&IwQ38g=pd^>*FpZ66*1Ya0$8o)#aq-^u1z1e~7rUjyZL9RmXaKR-VS z8JQNZrH^Fy?b~;!v}mUcaG6i|x|oB&TWty+9%5x^SiD%dVWzKW_u9RCWwW+Q0Y_vw zczIjBmO919%fAP%`a2$3+uqvx@a^sGA3l7TQR*+$$pS?8?%mtt0_^e$0juWdFV#P$ z10%=6!s0-J!5J;kr4PUWn>1-sMPYn={F<1ZlP1|aaqyo7xynaJ3^@L-tgp|1`SRtC zo}QMQIc~sw5EB~qLe#Z#qP|T7id_>4|W$&Y3$` zaiWJ}$ z;!v#TiDLHPP;3!MN(L3DK%tF>py~uDbVI_6ffFd>l*6Oi09I_)1`G_4Vrge!B?c7g b=>5sf@=)FW;{zcc1|aZs^>bP0l+XkKWr}_H diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index 00e4067b..737f83e5 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -8622,10 +8622,10 @@ Dimensions: f:1 k:2 n:8 m:1 Selected edges [ 7 8 9 23] Estimated memories [1835008 1610612736 3407872 16106127360 3670016 8589934592 3670016 301989888] -Lin fit: [ 4.51181355e-09 -3.02204837e-02] -Log fit: [ 0.87971631 -17.65089851] +Lin fit: [ 4.42116846e-09 -3.02228348e-02] +Log fit: [ 0.87176776 -17.53601154] ===Results=== -Total time: 80.923 -Simulator fitted flops: 0.046311 G -Matmul flops: 204.3 G -Simulator optimality: 0.00022668319088030888 +Total time: 79.116 +Simulator fitted flops: 0.041285 G +Matmul flops: 221.86 G +Simulator optimality: 0.00018608346870725733 From 4a15f1967c9d13f69d80197cdf801e64c6203436 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 17:18:03 -0500 Subject: [PATCH 085/104] add debug_mkl framework --- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 2 + analysis/spec/qtensor_specs/_nbdev.py | 2 - analysis/spec/qtensor_specs/time_vs_flop.py | 16 +- qtensor/DebugFrameworks.py | 143 ++++++++++++++++++ qtensor/ProcessingFrameworks.py | 3 +- .../vanilia/nparray/tcontract.cpp | 140 +++++++++++++++-- 6 files changed, 278 insertions(+), 28 deletions(-) create mode 100644 qtensor/DebugFrameworks.py diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 2474dc2a..e9e1a82b 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -572,6 +572,8 @@ " elif backend == 'mkl':\n", " backend = qt.ProcessingFrameworks.PerfBackend.from_backend(\n", " qt.ProcessingFrameworks.CMKLExtendedBackend, print=False)\n", + " elif backend == 'debug_mkl':\n", + " backend = qt.DebugFrameworks.DebugMKLBackend()\n", " sim = qt.QtreeSimulator(bucket_backend=backend)\n", "\n", " sim.simulate(circuit)\n", diff --git a/analysis/spec/qtensor_specs/_nbdev.py b/analysis/spec/qtensor_specs/_nbdev.py index f5881898..560d8c9b 100644 --- a/analysis/spec/qtensor_specs/_nbdev.py +++ b/analysis/spec/qtensor_specs/_nbdev.py @@ -12,8 +12,6 @@ "step_flops": "Time_vs_FLOP.ipynb", "max_mem": "Time_vs_FLOP.ipynb", "SEED": "Time_vs_FLOP.ipynb", - "EDGE_IDX_FOR_SEED": "Time_vs_FLOP.ipynb", - "EDGE_IDX_FOR_SEED_JLSE": "Time_vs_FLOP.ipynb", "sim_profile": "Time_vs_FLOP.ipynb", "step_sim_time": "Time_vs_FLOP.ipynb", "plot_with_filter": "Time_vs_FLOP.ipynb", diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 2fb2d701..70ffd972 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -1,8 +1,7 @@ # AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/Time_vs_FLOP.ipynb (unless otherwise specified). __all__ = ['ex', 'graph', 'circuit', 'tn', 'peo', 'sim_costs', 'sum_flops', 'step_flops', 'max_mem', 'SEED', - 'EDGE_IDX_FOR_SEED', 'EDGE_IDX_FOR_SEED_JLSE', 'sim_profile', 'step_sim_time', 'plot_with_filter', - 'get_log_flops_vs_matmul', 'cli', 'time_vs_flops_plot'] + 'sim_profile', 'step_sim_time', 'plot_with_filter', 'get_log_flops_vs_matmul', 'cli', 'time_vs_flops_plot'] # Cell import sys @@ -68,17 +67,6 @@ def max_mem(sim_costs): # Cell SEED=107 -# Cell - -# These values work only for initial run -EDGE_IDX_FOR_SEED = { - 107: [2, 3, 10, 15] -} - -EDGE_IDX_FOR_SEED_JLSE = { - 107: [2, 4, 8, 14, 15, 21] -} - # Cell @ex.provider def sim_profile(circuit, tn, backend='numpy'): @@ -87,6 +75,8 @@ def sim_profile(circuit, tn, backend='numpy'): elif backend == 'mkl': backend = qt.ProcessingFrameworks.PerfBackend.from_backend( qt.ProcessingFrameworks.CMKLExtendedBackend, print=False) + elif backend == 'debug_mkl': + backend = qt.DebugFrameworks.DebugMKLBackend() sim = qt.QtreeSimulator(bucket_backend=backend) sim.simulate(circuit) diff --git a/qtensor/DebugFrameworks.py b/qtensor/DebugFrameworks.py new file mode 100644 index 00000000..e9e3e225 --- /dev/null +++ b/qtensor/DebugFrameworks.py @@ -0,0 +1,143 @@ +""" Farmeworks that print a lot of info. +This file is meant to be temporary and will not be updated +""" +import sys +import time +from functools import reduce +import numpy as np +from qtree import np_framework +from qtree import optimizer as opt +from qtensor.ProcessingFrameworks import BucketBackend, PerfBackend + +class MockModule: + def __getattribute__(self, attr): + # Fail spectacularly + raise ImportError(f'Module tcontract is not imported! Please install it and try again.') + +tcontract = MockModule() +try: + import tcontract +except ImportError: + pass + +class _CMKLExtendedBackend(BucketBackend): + def get_sliced_buckets(self, buckets, data_dict, slice_dict): + return np_framework.get_sliced_np_buckets(buckets, data_dict, slice_dict) + + def process_bucket(self, bucket, no_sum=False): + result_indices = bucket[0].indices + result_data = bucket[0].data + + # -- Contract first n-1 bucketns + def merge_with_result(result_data, result_indices, tensor): + # ---- Prepare inputs: transpose + reshape + ixa, ixb = result_indices, tensor.indices + common_ids = sorted(list(set.intersection(set(ixa), set(ixb))), key=int) + distinct_a = [x for x in ixa if x not in common_ids] + distinct_b = [x for x in ixb if x not in common_ids] + transp_a = [ixa.index(x) for x in common_ids+distinct_a] + transp_b = [ixb.index(x) for x in common_ids+distinct_b] + a = result_data.transpose(transp_a) + b = tensor.data.transpose(transp_b) + n, m, k = 2**len(common_ids), 2**len(distinct_a), 2**len(distinct_b) + a = a.reshape(n, m) + b = b.reshape(n, k) + # ---- + + c = np.empty((n, m, k), dtype=np.complex128) + start = time.time() + print(f'Starting debug_mkl_contract, input sizes: {a.size} {b.size} output: {c.size}', file=sys.stderr) + tcontract.debug_mkl_contract_complex(a, b, c) + end = time.time() + print(f'After debug_mkl_contract, duration: {end - start}', file=sys.stderr) + + # ---- Post-process output + result_indices = tuple(sorted( + set(result_indices + tensor.indices), + key=int) + ) + ixc = common_ids + distinct_a + distinct_b + assert len(result_indices) == len(ixc), 'Wrong transposition, please submit an issue' + transp_c = [ixc.index(x) for x in result_indices] + result_data = c.reshape(*[2 for _ in result_indices]) + result_data = result_data.transpose(transp_c) + return result_data, result_indices + # ---- + + for tensor in bucket[1:-1]: + result_data, result_indices = merge_with_result(result_data, result_indices, tensor) + # -- + + + if len(result_indices) > 0: + tag = result_indices[0].identity + else: + tag = 'f' + + if no_sum: + if len(bucket)>1: + last_tensor = bucket[-1] + result_data, result_indices = merge_with_result(result_data, result_indices, last_tensor) + + result = opt.Tensor(f'E{tag}', result_indices, + data=result_data) + return result + + if len(bucket)<2: + result = opt.Tensor(f'E{tag}', result_indices[1:], + data=np.sum(result_data, axis=0)) + return result + last_tensor = bucket[-1] + + # -- Contract with summation + ixa, ixb = result_indices, last_tensor.indices + # ---- Prepare inputs: transpose + reshape + k, fm = result_indices[:1], result_indices[1:] + fn = last_tensor.indices[1:] + + f = tuple(sorted(list(set.intersection(set(fm), set(fn))), key=int)) + # Sets don't store order, so use lists. Do we need order here? + m = tuple([x for x in fm if x not in f]) + n = tuple([x for x in fn if x not in f]) + transp_a = [ixa.index(x) for x in k+f+m] + transp_b = [ixb.index(x) for x in k+f+n] + a = result_data.transpose(transp_a) + b = last_tensor.data.transpose(transp_b) + shapes_a = {i:s for i,s in zip(k+f+m, a.shape)} + shapes_b = {i:s for i,s in zip(k+f+n, b.shape)} + shapes = {**shapes_b, **shapes_a} + K, F, M, N = [reduce(np.multiply, (shapes[i] for i in x), 1) for x in (k, f, m, n)] + a = a.reshape(K, F, M) + b = b.reshape(K, F, N) + # ---- + + # \sum_k A_{kfm} * B_{kfn} = C_{fmn} + c = np.empty((F, M, N), dtype=np.complex128) + start = time.time() + print(f'Starting debug_mkl_contract_sum, input sizes: {a.size} {b.size} output: {c.size}', file=sys.stderr) + tcontract.debug_mkl_contract_sum(a, b, c) + end = time.time() + print(f'After debug_mkl_contract_sum, duration: {end - start}', file=sys.stderr) + + # ---- Post-process output + result_indices = tuple(sorted( + set(result_indices + last_tensor.indices), + key=int) + ) + assert result_indices[0] == k[0], 'Broken ordering, please report' + result_indices = result_indices[1:] + ixc = f + m + n + assert len(result_indices) == len(ixc), 'Wrong transposition, please submit an issue' + result_data = c.reshape([shapes[i] for i in ixc]) + transp_c = [ixc.index(x) for x in result_indices] + result_data = result_data.transpose(transp_c) + # ---- + # -- + result = opt.Tensor(f'E{tag}', result_indices, data=result_data) + return result + +class DebugMKLBackend(PerfBackend): + Backend = _CMKLExtendedBackend + # Just use print by default + def __init__(self, *args, print=True, num_lines=20, **kwargs): + super().__init__(*args, print=print, num_lines=num_lines, **kwargs) diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index a05e77d7..c157da31 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -1,3 +1,4 @@ +import sys import numpy as np from functools import reduce import time @@ -216,7 +217,7 @@ def process_bucket(self, bucket, no_sum=False): end = time.time() duration = end - start if self._print: - print(f"PROF:: perf data process bucket time: {duration}") + print(f"PROF:: perf data process bucket time: {duration}", file=sys.stderr) self._profile_results[str(indices)] = indices, duration return result diff --git a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp index 1b829721..810bb213 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp +++ b/scratchpad/cpp_connections/vanilia/nparray/tcontract.cpp @@ -46,12 +46,12 @@ int python_abc_complex_args(PyObject *dummy, PyObject *args, PyObject **Obj, std } // +// DEBUG static PyObject * -mkl_contract_sum(PyObject *dummy, PyObject *args) +debug_mkl_contract_sum(PyObject *dummy, PyObject *args) { std::complex alpha(1, 0); std::complex beta(0, 0); - // -- Parse Python arguments PyObject *Obj[3]; std::complex *Data[3]; @@ -59,17 +59,15 @@ mkl_contract_sum(PyObject *dummy, PyObject *args) parse_fail = python_abc_complex_args(dummy, args, Obj, Data); if (parse_fail != 0) { - std::cout << "Failed to parse arguments" << std::endl; + std::cerr << "Failed to parse arguments" << std::endl; return NULL; } // -- - PyObject *A, *B, *C; A = Obj[0]; B = Obj[1]; C = Obj[2]; std::complex *Aptr, *Bptr, *Cptr; Aptr = Data[0]; Bptr = Data[1]; Cptr = Data[2]; - npy_intp *dimC = PyArray_DIMS(C); npy_intp *dimA = PyArray_DIMS(A); @@ -78,8 +76,8 @@ mkl_contract_sum(PyObject *dummy, PyObject *args) int k = dimA[0]; // Summation length, first index of A and B int f = dimA[1]; // Multiplication-only index, second index of A and B - std::cout << "Dimensions: f:" << f << " k:" << k << " n:" << n << " m:" << m << std::endl; - + std::cerr << "Dimensions: f:" << f << " k:" << k << " n:" << n << " m:" << m << std::endl; + auto start = high_resolution_clock::now(); /* * Performs opearation * \sum_k A_{kfm} * B_{kfn} = C_{fmn} @@ -94,9 +92,12 @@ mkl_contract_sum(PyObject *dummy, PyObject *args) Bptr + i*n, f*n, &beta, Cptr + i*n*m, n); } + auto stop = high_resolution_clock::now(); + auto millis = duration_cast(stop - start).count(); + std::cerr << "Duration: " << millis << " milliseconds" << std::endl; + /* * Works as well: - cblas_zgemm(CblasColMajor, CblasNoTrans, CblasTrans, @@ -106,7 +107,59 @@ mkl_contract_sum(PyObject *dummy, PyObject *args) &beta, Cptr + i*n*m, n); */ + // -- Clean up python pointers + Py_DECREF(A); + Py_DECREF(B); + Py_DECREF(C); + Py_INCREF(Py_None); + return Py_None; +} + +static PyObject * +mkl_contract_sum(PyObject *dummy, PyObject *args) +{ + std::complex alpha(1, 0); + std::complex beta(0, 0); + + // -- Parse Python arguments + PyObject *Obj[3]; + std::complex *Data[3]; + int parse_fail; + parse_fail = python_abc_complex_args(dummy, args, Obj, Data); + + if (parse_fail != 0) { + std::cerr << "Failed to parse arguments" << std::endl; + return NULL; + } + // -- + PyObject *A, *B, *C; + A = Obj[0]; B = Obj[1]; C = Obj[2]; + std::complex *Aptr, *Bptr, *Cptr; + Aptr = Data[0]; Bptr = Data[1]; Cptr = Data[2]; + npy_intp *dimC = PyArray_DIMS(C); + npy_intp *dimA = PyArray_DIMS(A); + + int m = dimC[1]; // Row length of A, third index + int n = dimC[2]; // Row length of B, third index + int k = dimA[0]; // Summation length, first index of A and B + int f = dimA[1]; // Multiplication-only index, second index of A and B + + + /* + * Performs opearation + * \sum_k A_{kfm} * B_{kfn} = C_{fmn} + */ + + for (int i=0; i alpha(1, 0); + std::complex beta(0, 0); + + // -- Parse Python arguments + PyObject *Obj[3]; + std::complex *Data[3]; + int parse_fail; + parse_fail = python_abc_complex_args(dummy, args, Obj, Data); + + if (parse_fail != 0) { + std::cerr << "Failed to parse arguments" << std::endl; + return NULL; + } + // -- + + PyObject *A, *B, *C; + A = Obj[0]; B = Obj[1]; C = Obj[2]; + + std::complex *Aptr, *Bptr, *Cptr; + Aptr = Data[0]; Bptr = Data[1]; Cptr = Data[2]; + + //auto now = high_resolution_clock::now(); + //auto millis = duration_cast(now - epoch).count(); + //std::cout << "after convert. duration (μs) = " << millis << std::endl; + + npy_intp *dimC = PyArray_DIMS(C); + + std::cerr << "Dimensions: C[0]:" << dimC[0] << " C[1]:" << dimC[1] << " C[2]:" << dimC[2] << std::endl; + auto start = high_resolution_clock::now(); + + for (int i=0; i(stop - start).count(); + std::cerr << "Duration: " << millis << " milliseconds" << std::endl; + + Py_DECREF(A); + Py_DECREF(B); + Py_DECREF(C); + Py_INCREF(Py_None); + return Py_None; +} + + static PyObject * mkl_contract_complex(PyObject *dummy, PyObject *args) { @@ -127,7 +237,7 @@ mkl_contract_complex(PyObject *dummy, PyObject *args) parse_fail = python_abc_complex_args(dummy, args, Obj, Data); if (parse_fail != 0) { - std::cout << "Failed to parse arguments" << std::endl; + std::cerr << "Failed to parse arguments" << std::endl; return NULL; } // -- @@ -540,18 +650,24 @@ static PyMethodDef tcontract_Methods[] = { "Example from https://numpy.org/doc/stable/user/c-info.how-to-extend.html"}, {"print_4", print_4, METH_VARARGS, "Prints first 4 values of numpy array"}, + {"mkl_dotmul", mkl_dotmul, METH_VARARGS, + "Matrix multiplication"}, + {"triple_loop_contract", triple_loop_contract, METH_VARARGS, "Contracts two arrays with first common index"}, {"mkl_contract", mkl_contract, METH_VARARGS, "Contracts two arrays with first common index using MKL"}, {"mkl_contract_complex", mkl_contract_complex, METH_VARARGS, "Contracts two arrays with first common index using MKL"}, - {"mkl_dotmul", mkl_dotmul, METH_VARARGS, - "Matrix multiplication"}, - {"mkl_contract_sum", mkl_contract_sum, METH_VARARGS, "Performs opearation:\ \\sum_k A_{kfm} * B_{kfn} = C_{fmn}"}, + + {"debug_mkl_contract_sum", debug_mkl_contract_sum, METH_VARARGS, + "DEBUG Performs opearation:\ + \\sum_k A_{kfm} * B_{kfn} = C_{fmn}"}, + {"debug_mkl_contract_complex", debug_mkl_contract_complex, METH_VARARGS, + "DEBUG Contracts two arrays with first common index using MKL"}, {NULL, NULL, 0, NULL} /* Sentinel */ }; From 43bd88916fa650f77868bb9d27ff27130f1f5db0 Mon Sep 17 00:00:00 2001 From: Danil Date: Sun, 11 Oct 2020 00:15:13 +0000 Subject: [PATCH 086/104] some detailed logs for contractions --- data/README.md | 1 + data/debug_log_matched.log | 1181 ++++++++++++++++++++++++++++++++++++ 2 files changed, 1182 insertions(+) create mode 100644 data/README.md create mode 100644 data/debug_log_matched.log diff --git a/data/README.md b/data/README.md new file mode 100644 index 00000000..914b9cc8 --- /dev/null +++ b/data/README.md @@ -0,0 +1 @@ +debugging backend and mkl_verbose add 3 seconds to a 18 senond task diff --git a/data/debug_log_matched.log b/data/debug_log_matched.log new file mode 100644 index 00000000..61efd8e7 --- /dev/null +++ b/data/debug_log_matched.log @@ -0,0 +1,1181 @@ +== +PROF:: Bucket contains: [XPhase+(v_1827,v_1828), E162(v_1827), E1817(v_1827,v_1828,v_1829,v_1830,v_1831,v_1832,v_1833,v_1834,v_1835,v_1836,v_1837,v_1839,v_1840,v_1843,v_1844,v_1849,v_1856,v_1860), E1820(v_1827,v_1828,v_1829,v_1830,v_1831,v_1832,v_1833,v_1834,v_1835,v_1836,v_1837,v_1842,v_1847,v_1851,v_1852,v_1855,v_1859,v_1861,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract, input sizes: 4 2 output: 4 + * Dimensions: C[0]:2 C[1]:2 C[2]:1 + MKL_VERBOSE ZGEMM(N,T,1,2,1,0x7ffc3fd2db50,0x4c0f190,1,0x4d90500,2,0x7ffc3fd2db60,0x4d8ff30,1) 5.28us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1,2,1,0x7ffc3fd2db50,0x4c0f1a0,1,0x4d90520,2,0x7ffc3fd2db60,0x4d8ff50,1) 253ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 0 milliseconds + After debug_mkl_contract, duration: 7.963180541992188e-05 + Starting debug_mkl_contract, input sizes: 4 262144 output: 262144 + Dimensions: C[0]:4 C[1]:1 C[2]:65536 + MKL_VERBOSE ZGEMM(N,T,65536,1,1,0x7ffc3fd2db50,0xaea0390,65536,0x4d8ff30,1,0x7ffc3fd2db60,0xb2a03a0,65536) 127.61us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,65536,1,1,0x7ffc3fd2db50,0xafa0390,65536,0x4d8ff40,1,0x7ffc3fd2db60,0xb3a03a0,65536) 740.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,65536,1,1,0x7ffc3fd2db50,0xb0a0390,65536,0x4d8ff50,1,0x7ffc3fd2db60,0xb4a03a0,65536) 55.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,65536,1,1,0x7ffc3fd2db50,0xb1a0390,65536,0x4d8ff60,1,0x7ffc3fd2db60,0xb5a03a0,65536) 180.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 1 milliseconds + After debug_mkl_contract, duration: 0.001222372055053711 + Starting debug_mkl_contract_sum, input sizes: 262144 2097152 output: 134217728 + * Dimensions: f:1024 k:2 n:1024 m:128 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5dfff010,1048576,0xb2a03a0,131072,0x7ffc3fd2dde0,0x7f58dbff5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e003010,1048576,0xb2a0ba0,131072,0x7ffc3fd2dde0,0x7f58dc1f5010,1024) 958.32us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e007010,1048576,0xb2a13a0,131072,0x7ffc3fd2dde0,0x7f58dc3f5010,1024) 942.88us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e00b010,1048576,0xb2a1ba0,131072,0x7ffc3fd2dde0,0x7f58dc5f5010,1024) 957.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e00f010,1048576,0xb2a23a0,131072,0x7ffc3fd2dde0,0x7f58dc7f5010,1024) 928.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e013010,1048576,0xb2a2ba0,131072,0x7ffc3fd2dde0,0x7f58dc9f5010,1024) 903.97us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e017010,1048576,0xb2a33a0,131072,0x7ffc3fd2dde0,0x7f58dcbf5010,1024) 901.50us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e01b010,1048576,0xb2a3ba0,131072,0x7ffc3fd2dde0,0x7f58dcdf5010,1024) 886.54us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e01f010,1048576,0xb2a43a0,131072,0x7ffc3fd2dde0,0x7f58dcff5010,1024) 968.97us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e023010,1048576,0xb2a4ba0,131072,0x7ffc3fd2dde0,0x7f58dd1f5010,1024) 903.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e027010,1048576,0xb2a53a0,131072,0x7ffc3fd2dde0,0x7f58dd3f5010,1024) 911.73us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e02b010,1048576,0xb2a5ba0,131072,0x7ffc3fd2dde0,0x7f58dd5f5010,1024) 927.15us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e02f010,1048576,0xb2a63a0,131072,0x7ffc3fd2dde0,0x7f58dd7f5010,1024) 913.26us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e033010,1048576,0xb2a6ba0,131072,0x7ffc3fd2dde0,0x7f58dd9f5010,1024) 914.10us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e037010,1048576,0xb2a73a0,131072,0x7ffc3fd2dde0,0x7f58ddbf5010,1024) 912.27us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e03b010,1048576,0xb2a7ba0,131072,0x7ffc3fd2dde0,0x7f58dddf5010,1024) 920.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e03f010,1048576,0xb2a83a0,131072,0x7ffc3fd2dde0,0x7f58ddff5010,1024) 917.93us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e043010,1048576,0xb2a8ba0,131072,0x7ffc3fd2dde0,0x7f58de1f5010,1024) 927.94us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e047010,1048576,0xb2a93a0,131072,0x7ffc3fd2dde0,0x7f58de3f5010,1024) 919.64us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e04b010,1048576,0xb2a9ba0,131072,0x7ffc3fd2dde0,0x7f58de5f5010,1024) 987.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e04f010,1048576,0xb2aa3a0,131072,0x7ffc3fd2dde0,0x7f58de7f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e053010,1048576,0xb2aaba0,131072,0x7ffc3fd2dde0,0x7f58de9f5010,1024) 950.49us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e057010,1048576,0xb2ab3a0,131072,0x7ffc3fd2dde0,0x7f58debf5010,1024) 936.80us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e05b010,1048576,0xb2abba0,131072,0x7ffc3fd2dde0,0x7f58dedf5010,1024) 913.59us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e05f010,1048576,0xb2ac3a0,131072,0x7ffc3fd2dde0,0x7f58deff5010,1024) 961.82us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e063010,1048576,0xb2acba0,131072,0x7ffc3fd2dde0,0x7f58df1f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e067010,1048576,0xb2ad3a0,131072,0x7ffc3fd2dde0,0x7f58df3f5010,1024) 886.38us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e06b010,1048576,0xb2adba0,131072,0x7ffc3fd2dde0,0x7f58df5f5010,1024) 854.98us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e06f010,1048576,0xb2ae3a0,131072,0x7ffc3fd2dde0,0x7f58df7f5010,1024) 833.66us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e073010,1048576,0xb2aeba0,131072,0x7ffc3fd2dde0,0x7f58df9f5010,1024) 837.83us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e077010,1048576,0xb2af3a0,131072,0x7ffc3fd2dde0,0x7f58dfbf5010,1024) 847.38us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e07b010,1048576,0xb2afba0,131072,0x7ffc3fd2dde0,0x7f58dfdf5010,1024) 844.66us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e07f010,1048576,0xb2b03a0,131072,0x7ffc3fd2dde0,0x7f58dfff5010,1024) 846.41us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e083010,1048576,0xb2b0ba0,131072,0x7ffc3fd2dde0,0x7f58e01f5010,1024) 840.42us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e087010,1048576,0xb2b13a0,131072,0x7ffc3fd2dde0,0x7f58e03f5010,1024) 855.80us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e08b010,1048576,0xb2b1ba0,131072,0x7ffc3fd2dde0,0x7f58e05f5010,1024) 871.87us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e08f010,1048576,0xb2b23a0,131072,0x7ffc3fd2dde0,0x7f58e07f5010,1024) 876.54us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e093010,1048576,0xb2b2ba0,131072,0x7ffc3fd2dde0,0x7f58e09f5010,1024) 926.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e097010,1048576,0xb2b33a0,131072,0x7ffc3fd2dde0,0x7f58e0bf5010,1024) 927.38us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e09b010,1048576,0xb2b3ba0,131072,0x7ffc3fd2dde0,0x7f58e0df5010,1024) 964.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e09f010,1048576,0xb2b43a0,131072,0x7ffc3fd2dde0,0x7f58e0ff5010,1024) 975.92us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e0a3010,1048576,0xb2b4ba0,131072,0x7ffc3fd2dde0,0x7f58e11f5010,1024) 936.81us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e0a7010,1048576,0xb2b53a0,131072,0x7ffc3fd2dde0,0x7f58e13f5010,1024) 939.43us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e0ab010,1048576,0xb2b5ba0,131072,0x7ffc3fd2dde0,0x7f58e15f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [ ... and 200 lines like above...] + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3cf010,1048576,0xb31a3a0,131072,0x7ffc3fd2dde0,0x7f58fa7f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3d3010,1048576,0xb31aba0,131072,0x7ffc3fd2dde0,0x7f58fa9f5010,1024) 995.09us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3d7010,1048576,0xb31b3a0,131072,0x7ffc3fd2dde0,0x7f58fabf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3db010,1048576,0xb31bba0,131072,0x7ffc3fd2dde0,0x7f58fadf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3df010,1048576,0xb31c3a0,131072,0x7ffc3fd2dde0,0x7f58faff5010,1024) 943.77us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3e3010,1048576,0xb31cba0,131072,0x7ffc3fd2dde0,0x7f58fb1f5010,1024) 991.87us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3e7010,1048576,0xb31d3a0,131072,0x7ffc3fd2dde0,0x7f58fb3f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3eb010,1048576,0xb31dba0,131072,0x7ffc3fd2dde0,0x7f58fb5f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3ef010,1048576,0xb31e3a0,131072,0x7ffc3fd2dde0,0x7f58fb7f5010,1024) 925.15us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3f3010,1048576,0xb31eba0,131072,0x7ffc3fd2dde0,0x7f58fb9f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3f7010,1048576,0xb31f3a0,131072,0x7ffc3fd2dde0,0x7f58fbbf5010,1024) 951.69us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3fb010,1048576,0xb31fba0,131072,0x7ffc3fd2dde0,0x7f58fbdf5010,1024) 988.33us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e3ff010,1048576,0xb3203a0,131072,0x7ffc3fd2dde0,0x7f58fbff5010,1024) 959.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e403010,1048576,0xb320ba0,131072,0x7ffc3fd2dde0,0x7f58fc1f5010,1024) 945.27us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e407010,1048576,0xb3213a0,131072,0x7ffc3fd2dde0,0x7f58fc3f5010,1024) 973.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e40b010,1048576,0xb321ba0,131072,0x7ffc3fd2dde0,0x7f58fc5f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e40f010,1048576,0xb3223a0,131072,0x7ffc3fd2dde0,0x7f58fc7f5010,1024) 986.68us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e413010,1048576,0xb322ba0,131072,0x7ffc3fd2dde0,0x7f58fc9f5010,1024) 982.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e417010,1048576,0xb3233a0,131072,0x7ffc3fd2dde0,0x7f58fcbf5010,1024) 973.71us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e41b010,1048576,0xb323ba0,131072,0x7ffc3fd2dde0,0x7f58fcdf5010,1024) 959.75us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e41f010,1048576,0xb3243a0,131072,0x7ffc3fd2dde0,0x7f58fcff5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e423010,1048576,0xb324ba0,131072,0x7ffc3fd2dde0,0x7f58fd1f5010,1024) 981.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e427010,1048576,0xb3253a0,131072,0x7ffc3fd2dde0,0x7f58fd3f5010,1024) 964.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e42b010,1048576,0xb325ba0,131072,0x7ffc3fd2dde0,0x7f58fd5f5010,1024) 945.46us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e42f010,1048576,0xb3263a0,131072,0x7ffc3fd2dde0,0x7f58fd7f5010,1024) 938.79us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e433010,1048576,0xb326ba0,131072,0x7ffc3fd2dde0,0x7f58fd9f5010,1024) 962.15us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e437010,1048576,0xb3273a0,131072,0x7ffc3fd2dde0,0x7f58fdbf5010,1024) 954.58us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e43b010,1048576,0xb327ba0,131072,0x7ffc3fd2dde0,0x7f58fddf5010,1024) 928.71us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e43f010,1048576,0xb3283a0,131072,0x7ffc3fd2dde0,0x7f58fdff5010,1024) 943.96us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e443010,1048576,0xb328ba0,131072,0x7ffc3fd2dde0,0x7f58fe1f5010,1024) 975.09us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e447010,1048576,0xb3293a0,131072,0x7ffc3fd2dde0,0x7f58fe3f5010,1024) 965.79us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e44b010,1048576,0xb329ba0,131072,0x7ffc3fd2dde0,0x7f58fe5f5010,1024) 970.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e44f010,1048576,0xb32a3a0,131072,0x7ffc3fd2dde0,0x7f58fe7f5010,1024) 942.79us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e453010,1048576,0xb32aba0,131072,0x7ffc3fd2dde0,0x7f58fe9f5010,1024) 944.25us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e457010,1048576,0xb32b3a0,131072,0x7ffc3fd2dde0,0x7f58febf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e45b010,1048576,0xb32bba0,131072,0x7ffc3fd2dde0,0x7f58fedf5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e45f010,1048576,0xb32c3a0,131072,0x7ffc3fd2dde0,0x7f58feff5010,1024) 958.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e463010,1048576,0xb32cba0,131072,0x7ffc3fd2dde0,0x7f58ff1f5010,1024) 955.83us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e467010,1048576,0xb32d3a0,131072,0x7ffc3fd2dde0,0x7f58ff3f5010,1024) 959.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e46b010,1048576,0xb32dba0,131072,0x7ffc3fd2dde0,0x7f58ff5f5010,1024) 950.82us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e46f010,1048576,0xb32e3a0,131072,0x7ffc3fd2dde0,0x7f58ff7f5010,1024) 968.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e473010,1048576,0xb32eba0,131072,0x7ffc3fd2dde0,0x7f58ff9f5010,1024) 955.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e477010,1048576,0xb32f3a0,131072,0x7ffc3fd2dde0,0x7f58ffbf5010,1024) 943.74us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e47b010,1048576,0xb32fba0,131072,0x7ffc3fd2dde0,0x7f58ffdf5010,1024) 931.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e47f010,1048576,0xb3303a0,131072,0x7ffc3fd2dde0,0x7f58ffff5010,1024) 986.62us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e483010,1048576,0xb330ba0,131072,0x7ffc3fd2dde0,0x7f59001f5010,1024) 977.91us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e487010,1048576,0xb3313a0,131072,0x7ffc3fd2dde0,0x7f59003f5010,1024) 946.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e48b010,1048576,0xb331ba0,131072,0x7ffc3fd2dde0,0x7f59005f5010,1024) 946.69us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e48f010,1048576,0xb3323a0,131072,0x7ffc3fd2dde0,0x7f59007f5010,1024) 946.97us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e493010,1048576,0xb332ba0,131072,0x7ffc3fd2dde0,0x7f59009f5010,1024) 956.75us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e497010,1048576,0xb3333a0,131072,0x7ffc3fd2dde0,0x7f5900bf5010,1024) 941.58us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e49b010,1048576,0xb333ba0,131072,0x7ffc3fd2dde0,0x7f5900df5010,1024) 928.58us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e49f010,1048576,0xb3343a0,131072,0x7ffc3fd2dde0,0x7f5900ff5010,1024) 912.98us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4a3010,1048576,0xb334ba0,131072,0x7ffc3fd2dde0,0x7f59011f5010,1024) 931.40us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4a7010,1048576,0xb3353a0,131072,0x7ffc3fd2dde0,0x7f59013f5010,1024) 914.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4ab010,1048576,0xb335ba0,131072,0x7ffc3fd2dde0,0x7f59015f5010,1024) 929.06us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4af010,1048576,0xb3363a0,131072,0x7ffc3fd2dde0,0x7f59017f5010,1024) 917.62us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4b3010,1048576,0xb336ba0,131072,0x7ffc3fd2dde0,0x7f59019f5010,1024) 931.48us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4b7010,1048576,0xb3373a0,131072,0x7ffc3fd2dde0,0x7f5901bf5010,1024) 901.58us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4bb010,1048576,0xb337ba0,131072,0x7ffc3fd2dde0,0x7f5901df5010,1024) 928.18us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4bf010,1048576,0xb3383a0,131072,0x7ffc3fd2dde0,0x7f5901ff5010,1024) 929.69us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4c3010,1048576,0xb338ba0,131072,0x7ffc3fd2dde0,0x7f59021f5010,1024) 929.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4c7010,1048576,0xb3393a0,131072,0x7ffc3fd2dde0,0x7f59023f5010,1024) 968.94us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4cb010,1048576,0xb339ba0,131072,0x7ffc3fd2dde0,0x7f59025f5010,1024) 979.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4cf010,1048576,0xb33a3a0,131072,0x7ffc3fd2dde0,0x7f59027f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4d3010,1048576,0xb33aba0,131072,0x7ffc3fd2dde0,0x7f59029f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4d7010,1048576,0xb33b3a0,131072,0x7ffc3fd2dde0,0x7f5902bf5010,1024) 994.58us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4db010,1048576,0xb33bba0,131072,0x7ffc3fd2dde0,0x7f5902df5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4df010,1048576,0xb33c3a0,131072,0x7ffc3fd2dde0,0x7f5902ff5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4e3010,1048576,0xb33cba0,131072,0x7ffc3fd2dde0,0x7f59031f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4e7010,1048576,0xb33d3a0,131072,0x7ffc3fd2dde0,0x7f59033f5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4eb010,1048576,0xb33dba0,131072,0x7ffc3fd2dde0,0x7f59035f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4ef010,1048576,0xb33e3a0,131072,0x7ffc3fd2dde0,0x7f59037f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4f3010,1048576,0xb33eba0,131072,0x7ffc3fd2dde0,0x7f59039f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4f7010,1048576,0xb33f3a0,131072,0x7ffc3fd2dde0,0x7f5903bf5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4fb010,1048576,0xb33fba0,131072,0x7ffc3fd2dde0,0x7f5903df5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e4ff010,1048576,0xb3403a0,131072,0x7ffc3fd2dde0,0x7f5903ff5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e503010,1048576,0xb340ba0,131072,0x7ffc3fd2dde0,0x7f59041f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e507010,1048576,0xb3413a0,131072,0x7ffc3fd2dde0,0x7f59043f5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e50b010,1048576,0xb341ba0,131072,0x7ffc3fd2dde0,0x7f59045f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e50f010,1048576,0xb3423a0,131072,0x7ffc3fd2dde0,0x7f59047f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e513010,1048576,0xb342ba0,131072,0x7ffc3fd2dde0,0x7f59049f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e517010,1048576,0xb3433a0,131072,0x7ffc3fd2dde0,0x7f5904bf5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e51b010,1048576,0xb343ba0,131072,0x7ffc3fd2dde0,0x7f5904df5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e51f010,1048576,0xb3443a0,131072,0x7ffc3fd2dde0,0x7f5904ff5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e523010,1048576,0xb344ba0,131072,0x7ffc3fd2dde0,0x7f59051f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e527010,1048576,0xb3453a0,131072,0x7ffc3fd2dde0,0x7f59053f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e52b010,1048576,0xb345ba0,131072,0x7ffc3fd2dde0,0x7f59055f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e52f010,1048576,0xb3463a0,131072,0x7ffc3fd2dde0,0x7f59057f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e533010,1048576,0xb346ba0,131072,0x7ffc3fd2dde0,0x7f59059f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e537010,1048576,0xb3473a0,131072,0x7ffc3fd2dde0,0x7f5905bf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e53b010,1048576,0xb347ba0,131072,0x7ffc3fd2dde0,0x7f5905df5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e53f010,1048576,0xb3483a0,131072,0x7ffc3fd2dde0,0x7f5905ff5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e543010,1048576,0xb348ba0,131072,0x7ffc3fd2dde0,0x7f59061f5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e547010,1048576,0xb3493a0,131072,0x7ffc3fd2dde0,0x7f59063f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e54b010,1048576,0xb349ba0,131072,0x7ffc3fd2dde0,0x7f59065f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e54f010,1048576,0xb34a3a0,131072,0x7ffc3fd2dde0,0x7f59067f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e553010,1048576,0xb34aba0,131072,0x7ffc3fd2dde0,0x7f59069f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e557010,1048576,0xb34b3a0,131072,0x7ffc3fd2dde0,0x7f5906bf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e55b010,1048576,0xb34bba0,131072,0x7ffc3fd2dde0,0x7f5906df5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e55f010,1048576,0xb34c3a0,131072,0x7ffc3fd2dde0,0x7f5906ff5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e563010,1048576,0xb34cba0,131072,0x7ffc3fd2dde0,0x7f59071f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e567010,1048576,0xb34d3a0,131072,0x7ffc3fd2dde0,0x7f59073f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e56b010,1048576,0xb34dba0,131072,0x7ffc3fd2dde0,0x7f59075f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e56f010,1048576,0xb34e3a0,131072,0x7ffc3fd2dde0,0x7f59077f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e573010,1048576,0xb34eba0,131072,0x7ffc3fd2dde0,0x7f59079f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e577010,1048576,0xb34f3a0,131072,0x7ffc3fd2dde0,0x7f5907bf5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e57b010,1048576,0xb34fba0,131072,0x7ffc3fd2dde0,0x7f5907df5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e57f010,1048576,0xb3503a0,131072,0x7ffc3fd2dde0,0x7f5907ff5010,1024) 979.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e583010,1048576,0xb350ba0,131072,0x7ffc3fd2dde0,0x7f59081f5010,1024) 993.47us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e587010,1048576,0xb3513a0,131072,0x7ffc3fd2dde0,0x7f59083f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e58b010,1048576,0xb351ba0,131072,0x7ffc3fd2dde0,0x7f59085f5010,1024) 988.89us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e58f010,1048576,0xb3523a0,131072,0x7ffc3fd2dde0,0x7f59087f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e593010,1048576,0xb352ba0,131072,0x7ffc3fd2dde0,0x7f59089f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e597010,1048576,0xb3533a0,131072,0x7ffc3fd2dde0,0x7f5908bf5010,1024) 995.65us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e59b010,1048576,0xb353ba0,131072,0x7ffc3fd2dde0,0x7f5908df5010,1024) 991.90us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e59f010,1048576,0xb3543a0,131072,0x7ffc3fd2dde0,0x7f5908ff5010,1024) 995.89us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5a3010,1048576,0xb354ba0,131072,0x7ffc3fd2dde0,0x7f59091f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5a7010,1048576,0xb3553a0,131072,0x7ffc3fd2dde0,0x7f59093f5010,1024) 995.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5ab010,1048576,0xb355ba0,131072,0x7ffc3fd2dde0,0x7f59095f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5af010,1048576,0xb3563a0,131072,0x7ffc3fd2dde0,0x7f59097f5010,1024) 983.48us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5b3010,1048576,0xb356ba0,131072,0x7ffc3fd2dde0,0x7f59099f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5b7010,1048576,0xb3573a0,131072,0x7ffc3fd2dde0,0x7f5909bf5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5bb010,1048576,0xb357ba0,131072,0x7ffc3fd2dde0,0x7f5909df5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5bf010,1048576,0xb3583a0,131072,0x7ffc3fd2dde0,0x7f5909ff5010,1024) 998.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5c3010,1048576,0xb358ba0,131072,0x7ffc3fd2dde0,0x7f590a1f5010,1024) 988.64us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5c7010,1048576,0xb3593a0,131072,0x7ffc3fd2dde0,0x7f590a3f5010,1024) 957.56us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5cb010,1048576,0xb359ba0,131072,0x7ffc3fd2dde0,0x7f590a5f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5cf010,1048576,0xb35a3a0,131072,0x7ffc3fd2dde0,0x7f590a7f5010,1024) 997.89us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5d3010,1048576,0xb35aba0,131072,0x7ffc3fd2dde0,0x7f590a9f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5d7010,1048576,0xb35b3a0,131072,0x7ffc3fd2dde0,0x7f590abf5010,1024) 980.69us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5db010,1048576,0xb35bba0,131072,0x7ffc3fd2dde0,0x7f590adf5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5df010,1048576,0xb35c3a0,131072,0x7ffc3fd2dde0,0x7f590aff5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5e3010,1048576,0xb35cba0,131072,0x7ffc3fd2dde0,0x7f590b1f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5e7010,1048576,0xb35d3a0,131072,0x7ffc3fd2dde0,0x7f590b3f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5eb010,1048576,0xb35dba0,131072,0x7ffc3fd2dde0,0x7f590b5f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5ef010,1048576,0xb35e3a0,131072,0x7ffc3fd2dde0,0x7f590b7f5010,1024) 997.80us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5f3010,1048576,0xb35eba0,131072,0x7ffc3fd2dde0,0x7f590b9f5010,1024) 961.92us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5f7010,1048576,0xb35f3a0,131072,0x7ffc3fd2dde0,0x7f590bbf5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5fb010,1048576,0xb35fba0,131072,0x7ffc3fd2dde0,0x7f590bdf5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e5ff010,1048576,0xb3603a0,131072,0x7ffc3fd2dde0,0x7f590bff5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e603010,1048576,0xb360ba0,131072,0x7ffc3fd2dde0,0x7f590c1f5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e607010,1048576,0xb3613a0,131072,0x7ffc3fd2dde0,0x7f590c3f5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e60b010,1048576,0xb361ba0,131072,0x7ffc3fd2dde0,0x7f590c5f5010,1024) 993.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e60f010,1048576,0xb3623a0,131072,0x7ffc3fd2dde0,0x7f590c7f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e613010,1048576,0xb362ba0,131072,0x7ffc3fd2dde0,0x7f590c9f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e617010,1048576,0xb3633a0,131072,0x7ffc3fd2dde0,0x7f590cbf5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e61b010,1048576,0xb363ba0,131072,0x7ffc3fd2dde0,0x7f590cdf5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e61f010,1048576,0xb3643a0,131072,0x7ffc3fd2dde0,0x7f590cff5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e623010,1048576,0xb364ba0,131072,0x7ffc3fd2dde0,0x7f590d1f5010,1024) 988.68us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e627010,1048576,0xb3653a0,131072,0x7ffc3fd2dde0,0x7f590d3f5010,1024) 978.39us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e62b010,1048576,0xb365ba0,131072,0x7ffc3fd2dde0,0x7f590d5f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e62f010,1048576,0xb3663a0,131072,0x7ffc3fd2dde0,0x7f590d7f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e633010,1048576,0xb366ba0,131072,0x7ffc3fd2dde0,0x7f590d9f5010,1024) 972.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e637010,1048576,0xb3673a0,131072,0x7ffc3fd2dde0,0x7f590dbf5010,1024) 994.98us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e63b010,1048576,0xb367ba0,131072,0x7ffc3fd2dde0,0x7f590ddf5010,1024) 991.37us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e63f010,1048576,0xb3683a0,131072,0x7ffc3fd2dde0,0x7f590dff5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e643010,1048576,0xb368ba0,131072,0x7ffc3fd2dde0,0x7f590e1f5010,1024) 968.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e647010,1048576,0xb3693a0,131072,0x7ffc3fd2dde0,0x7f590e3f5010,1024) 996.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e64b010,1048576,0xb369ba0,131072,0x7ffc3fd2dde0,0x7f590e5f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e64f010,1048576,0xb36a3a0,131072,0x7ffc3fd2dde0,0x7f590e7f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e653010,1048576,0xb36aba0,131072,0x7ffc3fd2dde0,0x7f590e9f5010,1024) 993.95us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e657010,1048576,0xb36b3a0,131072,0x7ffc3fd2dde0,0x7f590ebf5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e65b010,1048576,0xb36bba0,131072,0x7ffc3fd2dde0,0x7f590edf5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e65f010,1048576,0xb36c3a0,131072,0x7ffc3fd2dde0,0x7f590eff5010,1024) 999.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e663010,1048576,0xb36cba0,131072,0x7ffc3fd2dde0,0x7f590f1f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e667010,1048576,0xb36d3a0,131072,0x7ffc3fd2dde0,0x7f590f3f5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e66b010,1048576,0xb36dba0,131072,0x7ffc3fd2dde0,0x7f590f5f5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e66f010,1048576,0xb36e3a0,131072,0x7ffc3fd2dde0,0x7f590f7f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e673010,1048576,0xb36eba0,131072,0x7ffc3fd2dde0,0x7f590f9f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e677010,1048576,0xb36f3a0,131072,0x7ffc3fd2dde0,0x7f590fbf5010,1024) 999.73us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e67b010,1048576,0xb36fba0,131072,0x7ffc3fd2dde0,0x7f590fdf5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e67f010,1048576,0xb3703a0,131072,0x7ffc3fd2dde0,0x7f590fff5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e683010,1048576,0xb370ba0,131072,0x7ffc3fd2dde0,0x7f59101f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e687010,1048576,0xb3713a0,131072,0x7ffc3fd2dde0,0x7f59103f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e68b010,1048576,0xb371ba0,131072,0x7ffc3fd2dde0,0x7f59105f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e68f010,1048576,0xb3723a0,131072,0x7ffc3fd2dde0,0x7f59107f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e693010,1048576,0xb372ba0,131072,0x7ffc3fd2dde0,0x7f59109f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e697010,1048576,0xb3733a0,131072,0x7ffc3fd2dde0,0x7f5910bf5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e69b010,1048576,0xb373ba0,131072,0x7ffc3fd2dde0,0x7f5910df5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e69f010,1048576,0xb3743a0,131072,0x7ffc3fd2dde0,0x7f5910ff5010,1024) 1.05ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6a3010,1048576,0xb374ba0,131072,0x7ffc3fd2dde0,0x7f59111f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6a7010,1048576,0xb3753a0,131072,0x7ffc3fd2dde0,0x7f59113f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6ab010,1048576,0xb375ba0,131072,0x7ffc3fd2dde0,0x7f59115f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6af010,1048576,0xb3763a0,131072,0x7ffc3fd2dde0,0x7f59117f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6b3010,1048576,0xb376ba0,131072,0x7ffc3fd2dde0,0x7f59119f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6b7010,1048576,0xb3773a0,131072,0x7ffc3fd2dde0,0x7f5911bf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6bb010,1048576,0xb377ba0,131072,0x7ffc3fd2dde0,0x7f5911df5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6bf010,1048576,0xb3783a0,131072,0x7ffc3fd2dde0,0x7f5911ff5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6c3010,1048576,0xb378ba0,131072,0x7ffc3fd2dde0,0x7f59121f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6c7010,1048576,0xb3793a0,131072,0x7ffc3fd2dde0,0x7f59123f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6cb010,1048576,0xb379ba0,131072,0x7ffc3fd2dde0,0x7f59125f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6cf010,1048576,0xb37a3a0,131072,0x7ffc3fd2dde0,0x7f59127f5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6d3010,1048576,0xb37aba0,131072,0x7ffc3fd2dde0,0x7f59129f5010,1024) 1.06ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6d7010,1048576,0xb37b3a0,131072,0x7ffc3fd2dde0,0x7f5912bf5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6db010,1048576,0xb37bba0,131072,0x7ffc3fd2dde0,0x7f5912df5010,1024) 1.01ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6df010,1048576,0xb37c3a0,131072,0x7ffc3fd2dde0,0x7f5912ff5010,1024) 1.03ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6e3010,1048576,0xb37cba0,131072,0x7ffc3fd2dde0,0x7f59131f5010,1024) 1.02ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6e7010,1048576,0xb37d3a0,131072,0x7ffc3fd2dde0,0x7f59133f5010,1024) 1.04ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6eb010,1048576,0xb37dba0,131072,0x7ffc3fd2dde0,0x7f59135f5010,1024) 997.57us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6ef010,1048576,0xb37e3a0,131072,0x7ffc3fd2dde0,0x7f59137f5010,1024) 983.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6f3010,1048576,0xb37eba0,131072,0x7ffc3fd2dde0,0x7f59139f5010,1024) 979.34us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6f7010,1048576,0xb37f3a0,131072,0x7ffc3fd2dde0,0x7f5913bf5010,1024) 989.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6fb010,1048576,0xb37fba0,131072,0x7ffc3fd2dde0,0x7f5913df5010,1024) 998.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e6ff010,1048576,0xb3803a0,131072,0x7ffc3fd2dde0,0x7f5913ff5010,1024) 997.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e703010,1048576,0xb380ba0,131072,0x7ffc3fd2dde0,0x7f59141f5010,1024) 987.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e707010,1048576,0xb3813a0,131072,0x7ffc3fd2dde0,0x7f59143f5010,1024) 986.73us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e70b010,1048576,0xb381ba0,131072,0x7ffc3fd2dde0,0x7f59145f5010,1024) 995.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e70f010,1048576,0xb3823a0,131072,0x7ffc3fd2dde0,0x7f59147f5010,1024) 978.82us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e713010,1048576,0xb382ba0,131072,0x7ffc3fd2dde0,0x7f59149f5010,1024) 992.72us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e717010,1048576,0xb3833a0,131072,0x7ffc3fd2dde0,0x7f5914bf5010,1024) 1.00ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e71b010,1048576,0xb383ba0,131072,0x7ffc3fd2dde0,0x7f5914df5010,1024) 993.64us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e71f010,1048576,0xb3843a0,131072,0x7ffc3fd2dde0,0x7f5914ff5010,1024) 997.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e723010,1048576,0xb384ba0,131072,0x7ffc3fd2dde0,0x7f59151f5010,1024) 986.47us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e727010,1048576,0xb3853a0,131072,0x7ffc3fd2dde0,0x7f59153f5010,1024) 995.57us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e72b010,1048576,0xb385ba0,131072,0x7ffc3fd2dde0,0x7f59155f5010,1024) 981.23us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e72f010,1048576,0xb3863a0,131072,0x7ffc3fd2dde0,0x7f59157f5010,1024) 956.03us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e733010,1048576,0xb386ba0,131072,0x7ffc3fd2dde0,0x7f59159f5010,1024) 957.57us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e737010,1048576,0xb3873a0,131072,0x7ffc3fd2dde0,0x7f5915bf5010,1024) 981.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e73b010,1048576,0xb387ba0,131072,0x7ffc3fd2dde0,0x7f5915df5010,1024) 990.95us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e73f010,1048576,0xb3883a0,131072,0x7ffc3fd2dde0,0x7f5915ff5010,1024) 953.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e743010,1048576,0xb388ba0,131072,0x7ffc3fd2dde0,0x7f59161f5010,1024) 948.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e747010,1048576,0xb3893a0,131072,0x7ffc3fd2dde0,0x7f59163f5010,1024) 991.57us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e74b010,1048576,0xb389ba0,131072,0x7ffc3fd2dde0,0x7f59165f5010,1024) 983.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e74f010,1048576,0xb38a3a0,131072,0x7ffc3fd2dde0,0x7f59167f5010,1024) 949.39us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e753010,1048576,0xb38aba0,131072,0x7ffc3fd2dde0,0x7f59169f5010,1024) 904.40us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e757010,1048576,0xb38b3a0,131072,0x7ffc3fd2dde0,0x7f5916bf5010,1024) 907.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5e75b010,1048576,0xb38bba0,131072,0x7ffc3fd2dde0,0x7f5916df5010,1024) 924.83us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... and 550 lines like above...] + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5eff7010,1048576,0xb49f3a0,131072,0x7ffc3fd2dde0,0x7f595bbf5010,1024) 960.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,128,2,0x7ffc3fd2ddd0,0x7f5a5effb010,1048576,0xb49fba0,131072,0x7ffc3fd2dde0,0x7f595bdf5010,1024) 341.73us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + * Duration: 1003 milliseconds +* After debug_mkl_contract_sum, duration: 1.003293752670288 +PROF:: perf data process bucket time: 1.0074033737182617 +== + +PROF:: Bucket contains: [XPhase+(v_1828,v_1829), E1827(v_1828,v_1829,v_1830,v_1831,v_1832,v_1833,v_1834,v_1835,v_1836,v_1837,v_1839,v_1840,v_1842,v_1843,v_1844,v_1847,v_1849,v_1851,v_1852,v_1855,v_1856,v_1859,v_1860,v_1861,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 134217728 output: 67108864 + Dimensions: f:2 k:2 n:33554432 m:1 + MKL_VERBOSE ZGEMM(N,T,33554432,1,2,0x7ffc3fd2ddd0,0x7f585bff4010,67108864,0x4d8ff30,2,0x7ffc3fd2dde0,0x7f581bff3010,33554432) 32.40ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,33554432,1,2,0x7ffc3fd2ddd0,0x7f587bff4010,67108864,0x4d8ff40,2,0x7ffc3fd2dde0,0x7f583bff3010,33554432) 32.17ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 64 milliseconds + After debug_mkl_contract_sum, duration: 0.06471776962280273 +PROF:: perf data process bucket time: 0.7571535110473633 +== + +PROF:: Bucket contains: [E1616(v_1839,v_1843,v_1848,v_1852,v_1861,v_1866), E1837(v_1839,v_1840,v_1842,v_1843,v_1844,v_1847,v_1848,v_1849,v_1851,v_1852,v_1855,v_1856,v_1859,v_1860,v_1861,v_1864,v_1865,v_1866), E1838(v_1839,v_1840,v_1841,v_1842,v_1843,v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract, input sizes: 64 262144 output: 262144 + After debug_mkl_contract, duration: 0.0024564266204833984 + Starting debug_mkl_contract_sum, input sizes: 262144 268435456 output: 134217728 + Dimensions: f:131072 k:2 n:1024 m:1 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561bff1010,134217728,0xcaa03c0,131072,0x7ffc3fd2dde0,0x7f559bff0010,1024) 25.37us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561bff5010,134217728,0xcaa03d0,131072,0x7ffc3fd2dde0,0x7f559bff4010,1024) 13.76us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561bff9010,134217728,0xcaa03e0,131072,0x7ffc3fd2dde0,0x7f559bff8010,1024) 11.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561bffd010,134217728,0xcaa03f0,131072,0x7ffc3fd2dde0,0x7f559bffc010,1024) 429.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c001010,134217728,0xcaa0400,131072,0x7ffc3fd2dde0,0x7f559c000010,1024) 5.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c005010,134217728,0xcaa0410,131072,0x7ffc3fd2dde0,0x7f559c004010,1024) 5.43us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c009010,134217728,0xcaa0420,131072,0x7ffc3fd2dde0,0x7f559c008010,1024) 5.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c00d010,134217728,0xcaa0430,131072,0x7ffc3fd2dde0,0x7f559c00c010,1024) 4.99us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c011010,134217728,0xcaa0440,131072,0x7ffc3fd2dde0,0x7f559c010010,1024) 5.47us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c015010,134217728,0xcaa0450,131072,0x7ffc3fd2dde0,0x7f559c014010,1024) 4.96us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c019010,134217728,0xcaa0460,131072,0x7ffc3fd2dde0,0x7f559c018010,1024) 5.38us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c01d010,134217728,0xcaa0470,131072,0x7ffc3fd2dde0,0x7f559c01c010,1024) 4.95us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c021010,134217728,0xcaa0480,131072,0x7ffc3fd2dde0,0x7f559c020010,1024) 4.71us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c025010,134217728,0xcaa0490,131072,0x7ffc3fd2dde0,0x7f559c024010,1024) 5.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c029010,134217728,0xcaa04a0,131072,0x7ffc3fd2dde0,0x7f559c028010,1024) 4.98us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c02d010,134217728,0xcaa04b0,131072,0x7ffc3fd2dde0,0x7f559c02c010,1024) 4.56us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c031010,134217728,0xcaa04c0,131072,0x7ffc3fd2dde0,0x7f559c030010,1024) 5.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c035010,134217728,0xcaa04d0,131072,0x7ffc3fd2dde0,0x7f559c034010,1024) 5.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c039010,134217728,0xcaa04e0,131072,0x7ffc3fd2dde0,0x7f559c038010,1024) 4.87us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c03d010,134217728,0xcaa04f0,131072,0x7ffc3fd2dde0,0x7f559c03c010,1024) 5.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c041010,134217728,0xcaa0500,131072,0x7ffc3fd2dde0,0x7f559c040010,1024) 5.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c045010,134217728,0xcaa0510,131072,0x7ffc3fd2dde0,0x7f559c044010,1024) 4.73us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c049010,134217728,0xcaa0520,131072,0x7ffc3fd2dde0,0x7f559c048010,1024) 5.00us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c04d010,134217728,0xcaa0530,131072,0x7ffc3fd2dde0,0x7f559c04c010,1024) 5.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c051010,134217728,0xcaa0540,131072,0x7ffc3fd2dde0,0x7f559c050010,1024) 5.22us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c055010,134217728,0xcaa0550,131072,0x7ffc3fd2dde0,0x7f559c054010,1024) 4.75us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c059010,134217728,0xcaa0560,131072,0x7ffc3fd2dde0,0x7f559c058010,1024) 5.33us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c05d010,134217728,0xcaa0570,131072,0x7ffc3fd2dde0,0x7f559c05c010,1024) 5.63us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c061010,134217728,0xcaa0580,131072,0x7ffc3fd2dde0,0x7f559c060010,1024) 4.79us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c065010,134217728,0xcaa0590,131072,0x7ffc3fd2dde0,0x7f559c064010,1024) 5.64us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c069010,134217728,0xcaa05a0,131072,0x7ffc3fd2dde0,0x7f559c068010,1024) 5.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c06d010,134217728,0xcaa05b0,131072,0x7ffc3fd2dde0,0x7f559c06c010,1024) 5.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c071010,134217728,0xcaa05c0,131072,0x7ffc3fd2dde0,0x7f559c070010,1024) 5.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c075010,134217728,0xcaa05d0,131072,0x7ffc3fd2dde0,0x7f559c074010,1024) 5.19us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c079010,134217728,0xcaa05e0,131072,0x7ffc3fd2dde0,0x7f559c078010,1024) 4.71us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c07d010,134217728,0xcaa05f0,131072,0x7ffc3fd2dde0,0x7f559c07c010,1024) 4.92us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c081010,134217728,0xcaa0600,131072,0x7ffc3fd2dde0,0x7f559c080010,1024) 5.81us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c085010,134217728,0xcaa0610,131072,0x7ffc3fd2dde0,0x7f559c084010,1024) 5.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c089010,134217728,0xcaa0620,131072,0x7ffc3fd2dde0,0x7f559c088010,1024) 4.99us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c08d010,134217728,0xcaa0630,131072,0x7ffc3fd2dde0,0x7f559c08c010,1024) 5.61us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f561c091010,134217728,0xcaa0640,131072,0x7ffc3fd2dde0,0x7f559c090010,1024) 4.99us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... and 131 000 lines more like that...] + [... occasionaly turning to something strange: ...] + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f5693171010,134217728,0xcc7c9c0,131072,0x7ffc3fd2dde0,0x7f5613170010,1024) 4.79us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f5693175010,134217728,0xcc7c9d0,131072,0x7ffc3fd2dde0,0x7f5613174010,1024) 17.81us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f5693179010,134217728,0xcc7c9e0,131072,0x7ffc3fd2dde0,0x7f5613178010,1024) 9.91us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f569317d010,134217728,0xcc7c9f0,131072,0x7ffc3fd2dde0,0x7f561317c010,1024) 29.51us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f5693181010,134217728,0xcc7ca00,131072,0x7ffc3fd2dde0,0x7f5613180010,1024) 9.49us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... 8 lines like aobove ] + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931a9010,134217728,0xcc7caa0,131072,0x7ffc3fd2dde0,0x7f56131a8010,1024) 9.56us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931ad010,134217728,0xcc7cab0,131072,0x7ffc3fd2dde0,0x7f56131ac010,1024) 9.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931b1010,134217728,0xcc7cac0,131072,0x7ffc3fd2dde0,0x7f56131b0010,1024) 10.44us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931b5010,134217728,0xcc7cad0,131072,0x7ffc3fd2dde0,0x7f56131b4010,1024) 9.40us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931b9010,134217728,0xcc7cae0,131072,0x7ffc3fd2dde0,0x7f56131b8010,1024) 9.40us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... 10 lines like above...] + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931e5010,134217728,0xcc7cb90,131072,0x7ffc3fd2dde0,0x7f56131e4010,1024) 9.61us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931e9010,134217728,0xcc7cba0,131072,0x7ffc3fd2dde0,0x7f56131e8010,1024) 9.67us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931ed010,134217728,0xcc7cbb0,131072,0x7ffc3fd2dde0,0x7f56131ec010,1024) 9.89us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931f1010,134217728,0xcc7cbc0,131072,0x7ffc3fd2dde0,0x7f56131f0010,1024) 9.83us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931f5010,134217728,0xcc7cbd0,131072,0x7ffc3fd2dde0,0x7f56131f4010,1024) 9.80us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931f9010,134217728,0xcc7cbe0,131072,0x7ffc3fd2dde0,0x7f56131f8010,1024) 4.42us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + ! MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f56931fd010,134217728,0xcc7cbf0,131072,0x7ffc3fd2dde0,0x7f56131fc010,1024) 392.54us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,1024,1,2,0x7ffc3fd2ddd0,0x7f5693201010,134217728,0xcc7cc00,131072,0x7ffc3fd2dde0,0x7f5613200010,1024) 5.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... 2362000/131072 = 18 us per loop, but in logs most are 5 us. Why?... ] + Duration: 2362 milliseconds + * After debug_mkl_contract_sum, duration: 2.362922191619873 +PROF:: perf data process bucket time: 6.452457666397095 +== + +PROF:: Bucket contains: [E1697(v_1840,v_1844,v_1849,v_1856,v_1860,v_1865), E1839(v_1840,v_1841,v_1842,v_1843,v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 64 134217728 output: 67108864 + Dimensions: f:32 k:2 n:2097152 m:1 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f569bff1010,67108864,0x4d808c0,32,0x7ffc3fd2dde0,0x7f586fff1010,2097152) 2.97ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f569dff1010,67108864,0x4d808d0,32,0x7ffc3fd2dde0,0x7f5871ff1010,2097152) 2.58ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f569fff1010,67108864,0x4d808e0,32,0x7ffc3fd2dde0,0x7f5873ff1010,2097152) 2.65ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56a1ff1010,67108864,0x4d808f0,32,0x7ffc3fd2dde0,0x7f5875ff1010,2097152) 2.61ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56a3ff1010,67108864,0x4d80900,32,0x7ffc3fd2dde0,0x7f5877ff1010,2097152) 2.54ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56a5ff1010,67108864,0x4d80910,32,0x7ffc3fd2dde0,0x7f5879ff1010,2097152) 2.55ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56a7ff1010,67108864,0x4d80920,32,0x7ffc3fd2dde0,0x7f587bff1010,2097152) 2.49ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56a9ff1010,67108864,0x4d80930,32,0x7ffc3fd2dde0,0x7f587dff1010,2097152) 2.45ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56abff1010,67108864,0x4d80940,32,0x7ffc3fd2dde0,0x7f587fff1010,2097152) 2.39ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56adff1010,67108864,0x4d80950,32,0x7ffc3fd2dde0,0x7f5881ff1010,2097152) 2.56ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56afff1010,67108864,0x4d80960,32,0x7ffc3fd2dde0,0x7f5883ff1010,2097152) 2.52ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56b1ff1010,67108864,0x4d80970,32,0x7ffc3fd2dde0,0x7f5885ff1010,2097152) 2.43ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56b3ff1010,67108864,0x4d80980,32,0x7ffc3fd2dde0,0x7f5887ff1010,2097152) 2.46ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56b5ff1010,67108864,0x4d80990,32,0x7ffc3fd2dde0,0x7f5889ff1010,2097152) 2.45ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56b7ff1010,67108864,0x4d809a0,32,0x7ffc3fd2dde0,0x7f588bff1010,2097152) 2.60ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56b9ff1010,67108864,0x4d809b0,32,0x7ffc3fd2dde0,0x7f588dff1010,2097152) 2.58ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56bbff1010,67108864,0x4d809c0,32,0x7ffc3fd2dde0,0x7f588fff1010,2097152) 2.49ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56bdff1010,67108864,0x4d809d0,32,0x7ffc3fd2dde0,0x7f5891ff1010,2097152) 2.48ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56bfff1010,67108864,0x4d809e0,32,0x7ffc3fd2dde0,0x7f5893ff1010,2097152) 2.52ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56c1ff1010,67108864,0x4d809f0,32,0x7ffc3fd2dde0,0x7f5895ff1010,2097152) 2.60ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56c3ff1010,67108864,0x4d80a00,32,0x7ffc3fd2dde0,0x7f5897ff1010,2097152) 2.57ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56c5ff1010,67108864,0x4d80a10,32,0x7ffc3fd2dde0,0x7f5899ff1010,2097152) 2.54ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56c7ff1010,67108864,0x4d80a20,32,0x7ffc3fd2dde0,0x7f589bff1010,2097152) 2.57ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56c9ff1010,67108864,0x4d80a30,32,0x7ffc3fd2dde0,0x7f589dff1010,2097152) 2.61ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56cbff1010,67108864,0x4d80a40,32,0x7ffc3fd2dde0,0x7f589fff1010,2097152) 2.68ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56cdff1010,67108864,0x4d80a50,32,0x7ffc3fd2dde0,0x7f58a1ff1010,2097152) 2.51ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56cfff1010,67108864,0x4d80a60,32,0x7ffc3fd2dde0,0x7f58a3ff1010,2097152) 2.45ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56d1ff1010,67108864,0x4d80a70,32,0x7ffc3fd2dde0,0x7f58a5ff1010,2097152) 2.41ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56d3ff1010,67108864,0x4d80a80,32,0x7ffc3fd2dde0,0x7f58a7ff1010,2097152) 2.53ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56d5ff1010,67108864,0x4d80a90,32,0x7ffc3fd2dde0,0x7f58a9ff1010,2097152) 2.59ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56d7ff1010,67108864,0x4d80aa0,32,0x7ffc3fd2dde0,0x7f58abff1010,2097152) 2.63ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,2097152,1,2,0x7ffc3fd2ddd0,0x7f56d9ff1010,67108864,0x4d80ab0,32,0x7ffc3fd2dde0,0x7f58adff1010,2097152) 2.54ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 82 milliseconds + After debug_mkl_contract_sum, duration: 0.08215188980102539 +PROF:: perf data process bucket time: 1.5319533348083496 +== + +PROF:: Bucket contains: [XPhase+(v_1841,v_1846), E1840(v_1841,v_1842,v_1843,v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 67108864 output: 33554432 + Dimensions: f:2 k:2 n:16777216 m:1 + MKL_VERBOSE ZGEMM(N,T,16777216,1,2,0x7ffc3fd2ddd0,0x7f56dbff1010,33554432,0x4d8ff30,2,0x7ffc3fd2dde0,0x7f56bbff0010,16777216) 16.61ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,16777216,1,2,0x7ffc3fd2ddd0,0x7f56ebff1010,33554432,0x4d8ff40,2,0x7ffc3fd2dde0,0x7f56cbff0010,16777216) 16.17ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 32 milliseconds + After debug_mkl_contract_sum, duration: 0.03291201591491699 +PROF:: perf data process bucket time: 0.46090030670166016 +== + +PROF:: Bucket contains: [E1841(v_1842,v_1843,v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.17297935485839844 +PROF:: Bucket contains: [E1842(v_1843,v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.0806725025177002 +PROF:: Bucket contains: [E1843(v_1844,v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.039273977279663086 +== + +PROF:: Bucket contains: [E453(v_1845,v_1853), E1776(v_1845,v_1846,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1857,v_1858,v_1859,v_1861,v_1862,v_1863,v_1864,v_1866), E1844(v_1845,v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract, input sizes: 4 65536 output: 65536 + Dimensions: C[0]:4 C[1]:1 C[2]:16384 + MKL_VERBOSE ZGEMM(N,T,16384,1,1,0x7ffc3fd2db50,0xcaa03c0,16384,0x4dfb050,1,0x7ffc3fd2db60,0xcba03d0,16384) 1.72ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,16384,1,1,0x7ffc3fd2db50,0xcae03c0,16384,0x4dfb060,1,0x7ffc3fd2db60,0xcbe03d0,16384) 379.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,16384,1,1,0x7ffc3fd2db50,0xcb203c0,16384,0x4dfb070,1,0x7ffc3fd2db60,0xcc203d0,16384) 23.91us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,16384,1,1,0x7ffc3fd2db50,0xcb603c0,16384,0x4dfb080,1,0x7ffc3fd2db60,0xcc603d0,16384) 19.53us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 2 milliseconds + After debug_mkl_contract, duration: 0.002335786819458008 + Starting debug_mkl_contract_sum, input sizes: 65536 4194304 output: 2097152 + Dimensions: f:32768 k:2 n:64 m:1 + * + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f1010,2097152,0xcaa03c0,32768,0x7ffc3fd2dde0,0x7f5b041e6010,64) 21.78us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f1410,2097152,0xcaa03d0,32768,0x7ffc3fd2dde0,0x7f5b041e6410,64) 410ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f1810,2097152,0xcaa03e0,32768,0x7ffc3fd2dde0,0x7f5b041e6810,64) 529ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f1c10,2097152,0xcaa03f0,32768,0x7ffc3fd2dde0,0x7f5b041e6c10,64) 2.78us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f2010,2097152,0xcaa0400,32768,0x7ffc3fd2dde0,0x7f5b041e7010,64) 613ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f2410,2097152,0xcaa0410,32768,0x7ffc3fd2dde0,0x7f5b041e7410,64) 590ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f2810,2097152,0xcaa0420,32768,0x7ffc3fd2dde0,0x7f5b041e7810,64) 251ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f2c10,2097152,0xcaa0430,32768,0x7ffc3fd2dde0,0x7f5b041e7c10,64) 2.52us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f3010,2097152,0xcaa0440,32768,0x7ffc3fd2dde0,0x7f5b041e8010,64) 520ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f3410,2097152,0xcaa0450,32768,0x7ffc3fd2dde0,0x7f5b041e8410,64) 680ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f3810,2097152,0xcaa0460,32768,0x7ffc3fd2dde0,0x7f5b041e8810,64) 315ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f3c10,2097152,0xcaa0470,32768,0x7ffc3fd2dde0,0x7f5b041e8c10,64) 2.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f4010,2097152,0xcaa0480,32768,0x7ffc3fd2dde0,0x7f5b041e9010,64) 596ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f4410,2097152,0xcaa0490,32768,0x7ffc3fd2dde0,0x7f5b041e9410,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f4810,2097152,0xcaa04a0,32768,0x7ffc3fd2dde0,0x7f5b041e9810,64) 281ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f4c10,2097152,0xcaa04b0,32768,0x7ffc3fd2dde0,0x7f5b041e9c10,64) 2.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f5010,2097152,0xcaa04c0,32768,0x7ffc3fd2dde0,0x7f5b041ea010,64) 501ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f5410,2097152,0xcaa04d0,32768,0x7ffc3fd2dde0,0x7f5b041ea410,64) 542ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f5810,2097152,0xcaa04e0,32768,0x7ffc3fd2dde0,0x7f5b041ea810,64) 268ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f5c10,2097152,0xcaa04f0,32768,0x7ffc3fd2dde0,0x7f5b041eac10,64) 3.63us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f6010,2097152,0xcaa0500,32768,0x7ffc3fd2dde0,0x7f5b041eb010,64) 495ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f6410,2097152,0xcaa0510,32768,0x7ffc3fd2dde0,0x7f5b041eb410,64) 654ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f6810,2097152,0xcaa0520,32768,0x7ffc3fd2dde0,0x7f5b041eb810,64) 244ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f6c10,2097152,0xcaa0530,32768,0x7ffc3fd2dde0,0x7f5b041ebc10,64) 2.10us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f7010,2097152,0xcaa0540,32768,0x7ffc3fd2dde0,0x7f5b041ec010,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f7410,2097152,0xcaa0550,32768,0x7ffc3fd2dde0,0x7f5b041ec410,64) 348ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f7810,2097152,0xcaa0560,32768,0x7ffc3fd2dde0,0x7f5b041ec810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f7c10,2097152,0xcaa0570,32768,0x7ffc3fd2dde0,0x7f5b041ecc10,64) 2.38us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f8010,2097152,0xcaa0580,32768,0x7ffc3fd2dde0,0x7f5b041ed010,64) 501ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f8410,2097152,0xcaa0590,32768,0x7ffc3fd2dde0,0x7f5b041ed410,64) 430ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f8810,2097152,0xcaa05a0,32768,0x7ffc3fd2dde0,0x7f5b041ed810,64) 268ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f8c10,2097152,0xcaa05b0,32768,0x7ffc3fd2dde0,0x7f5b041edc10,64) 6.41us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f9010,2097152,0xcaa05c0,32768,0x7ffc3fd2dde0,0x7f5b041ee010,64) 494ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f9410,2097152,0xcaa05d0,32768,0x7ffc3fd2dde0,0x7f5b041ee410,64) 542ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f9810,2097152,0xcaa05e0,32768,0x7ffc3fd2dde0,0x7f5b041ee810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079f9c10,2097152,0xcaa05f0,32768,0x7ffc3fd2dde0,0x7f5b041eec10,64) 2.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fa010,2097152,0xcaa0600,32768,0x7ffc3fd2dde0,0x7f5b041ef010,64) 505ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fa410,2097152,0xcaa0610,32768,0x7ffc3fd2dde0,0x7f5b041ef410,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fa810,2097152,0xcaa0620,32768,0x7ffc3fd2dde0,0x7f5b041ef810,64) 596ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fac10,2097152,0xcaa0630,32768,0x7ffc3fd2dde0,0x7f5b041efc10,64) 2.15us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fb010,2097152,0xcaa0640,32768,0x7ffc3fd2dde0,0x7f5b041f0010,64) 862ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fb410,2097152,0xcaa0650,32768,0x7ffc3fd2dde0,0x7f5b041f0410,64) 507ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fb810,2097152,0xcaa0660,32768,0x7ffc3fd2dde0,0x7f5b041f0810,64) 365ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fbc10,2097152,0xcaa0670,32768,0x7ffc3fd2dde0,0x7f5b041f0c10,64) 2.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fc010,2097152,0xcaa0680,32768,0x7ffc3fd2dde0,0x7f5b041f1010,64) 587ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fc410,2097152,0xcaa0690,32768,0x7ffc3fd2dde0,0x7f5b041f1410,64) 613ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fc810,2097152,0xcaa06a0,32768,0x7ffc3fd2dde0,0x7f5b041f1810,64) 386ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fcc10,2097152,0xcaa06b0,32768,0x7ffc3fd2dde0,0x7f5b041f1c10,64) 2.76us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fd010,2097152,0xcaa06c0,32768,0x7ffc3fd2dde0,0x7f5b041f2010,64) 509ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fd410,2097152,0xcaa06d0,32768,0x7ffc3fd2dde0,0x7f5b041f2410,64) 427ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fd810,2097152,0xcaa06e0,32768,0x7ffc3fd2dde0,0x7f5b041f2810,64) 296ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fdc10,2097152,0xcaa06f0,32768,0x7ffc3fd2dde0,0x7f5b041f2c10,64) 2.35us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fe010,2097152,0xcaa0700,32768,0x7ffc3fd2dde0,0x7f5b041f3010,64) 520ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fe410,2097152,0xcaa0710,32768,0x7ffc3fd2dde0,0x7f5b041f3410,64) 432ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fe810,2097152,0xcaa0720,32768,0x7ffc3fd2dde0,0x7f5b041f3810,64) 298ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079fec10,2097152,0xcaa0730,32768,0x7ffc3fd2dde0,0x7f5b041f3c10,64) 2.18us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079ff010,2097152,0xcaa0740,32768,0x7ffc3fd2dde0,0x7f5b041f4010,64) 540ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079ff410,2097152,0xcaa0750,32768,0x7ffc3fd2dde0,0x7f5b041f4410,64) 510ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079ff810,2097152,0xcaa0760,32768,0x7ffc3fd2dde0,0x7f5b041f4810,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b079ffc10,2097152,0xcaa0770,32768,0x7ffc3fd2dde0,0x7f5b041f4c10,64) 2.45us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a00010,2097152,0xcaa0780,32768,0x7ffc3fd2dde0,0x7f5b041f5010,64) 419ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a00410,2097152,0xcaa0790,32768,0x7ffc3fd2dde0,0x7f5b041f5410,64) 581ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a00810,2097152,0xcaa07a0,32768,0x7ffc3fd2dde0,0x7f5b041f5810,64) 276ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a00c10,2097152,0xcaa07b0,32768,0x7ffc3fd2dde0,0x7f5b041f5c10,64) 2.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a01010,2097152,0xcaa07c0,32768,0x7ffc3fd2dde0,0x7f5b041f6010,64) 443ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a01410,2097152,0xcaa07d0,32768,0x7ffc3fd2dde0,0x7f5b041f6410,64) 399ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a01810,2097152,0xcaa07e0,32768,0x7ffc3fd2dde0,0x7f5b041f6810,64) 315ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a01c10,2097152,0xcaa07f0,32768,0x7ffc3fd2dde0,0x7f5b041f6c10,64) 2.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a02010,2097152,0xcaa0800,32768,0x7ffc3fd2dde0,0x7f5b041f7010,64) 434ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a02410,2097152,0xcaa0810,32768,0x7ffc3fd2dde0,0x7f5b041f7410,64) 643ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a02810,2097152,0xcaa0820,32768,0x7ffc3fd2dde0,0x7f5b041f7810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a02c10,2097152,0xcaa0830,32768,0x7ffc3fd2dde0,0x7f5b041f7c10,64) 2.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a03010,2097152,0xcaa0840,32768,0x7ffc3fd2dde0,0x7f5b041f8010,64) 449ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a03410,2097152,0xcaa0850,32768,0x7ffc3fd2dde0,0x7f5b041f8410,64) 389ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a03810,2097152,0xcaa0860,32768,0x7ffc3fd2dde0,0x7f5b041f8810,64) 300ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a03c10,2097152,0xcaa0870,32768,0x7ffc3fd2dde0,0x7f5b041f8c10,64) 2.85us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a04010,2097152,0xcaa0880,32768,0x7ffc3fd2dde0,0x7f5b041f9010,64) 441ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a04410,2097152,0xcaa0890,32768,0x7ffc3fd2dde0,0x7f5b041f9410,64) 374ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a04810,2097152,0xcaa08a0,32768,0x7ffc3fd2dde0,0x7f5b041f9810,64) 298ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a04c10,2097152,0xcaa08b0,32768,0x7ffc3fd2dde0,0x7f5b041f9c10,64) 2.23us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a05010,2097152,0xcaa08c0,32768,0x7ffc3fd2dde0,0x7f5b041fa010,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a05410,2097152,0xcaa08d0,32768,0x7ffc3fd2dde0,0x7f5b041fa410,64) 529ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a05810,2097152,0xcaa08e0,32768,0x7ffc3fd2dde0,0x7f5b041fa810,64) 453ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a05c10,2097152,0xcaa08f0,32768,0x7ffc3fd2dde0,0x7f5b041fac10,64) 2.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a06010,2097152,0xcaa0900,32768,0x7ffc3fd2dde0,0x7f5b041fb010,64) 555ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a06410,2097152,0xcaa0910,32768,0x7ffc3fd2dde0,0x7f5b041fb410,64) 440ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a06810,2097152,0xcaa0920,32768,0x7ffc3fd2dde0,0x7f5b041fb810,64) 266ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a06c10,2097152,0xcaa0930,32768,0x7ffc3fd2dde0,0x7f5b041fbc10,64) 2.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a07010,2097152,0xcaa0940,32768,0x7ffc3fd2dde0,0x7f5b041fc010,64) 460ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a07410,2097152,0xcaa0950,32768,0x7ffc3fd2dde0,0x7f5b041fc410,64) 412ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a07810,2097152,0xcaa0960,32768,0x7ffc3fd2dde0,0x7f5b041fc810,64) 298ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a07c10,2097152,0xcaa0970,32768,0x7ffc3fd2dde0,0x7f5b041fcc10,64) 2.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a08010,2097152,0xcaa0980,32768,0x7ffc3fd2dde0,0x7f5b041fd010,64) 549ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a08410,2097152,0xcaa0990,32768,0x7ffc3fd2dde0,0x7f5b041fd410,64) 453ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a08810,2097152,0xcaa09a0,32768,0x7ffc3fd2dde0,0x7f5b041fd810,64) 505ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a08c10,2097152,0xcaa09b0,32768,0x7ffc3fd2dde0,0x7f5b041fdc10,64) 2.30us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a09010,2097152,0xcaa09c0,32768,0x7ffc3fd2dde0,0x7f5b041fe010,64) 527ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a09410,2097152,0xcaa09d0,32768,0x7ffc3fd2dde0,0x7f5b041fe410,64) 391ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a09810,2097152,0xcaa09e0,32768,0x7ffc3fd2dde0,0x7f5b041fe810,64) 283ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a09c10,2097152,0xcaa09f0,32768,0x7ffc3fd2dde0,0x7f5b041fec10,64) 2.10us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0a010,2097152,0xcaa0a00,32768,0x7ffc3fd2dde0,0x7f5b041ff010,64) 454ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0a410,2097152,0xcaa0a10,32768,0x7ffc3fd2dde0,0x7f5b041ff410,64) 380ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0a810,2097152,0xcaa0a20,32768,0x7ffc3fd2dde0,0x7f5b041ff810,64) 449ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0ac10,2097152,0xcaa0a30,32768,0x7ffc3fd2dde0,0x7f5b041ffc10,64) 393.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0b010,2097152,0xcaa0a40,32768,0x7ffc3fd2dde0,0x7f5b04200010,64) 840ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0b410,2097152,0xcaa0a50,32768,0x7ffc3fd2dde0,0x7f5b04200410,64) 421ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0b810,2097152,0xcaa0a60,32768,0x7ffc3fd2dde0,0x7f5b04200810,64) 324ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0bc10,2097152,0xcaa0a70,32768,0x7ffc3fd2dde0,0x7f5b04200c10,64) 430ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0c010,2097152,0xcaa0a80,32768,0x7ffc3fd2dde0,0x7f5b04201010,64) 538ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0c410,2097152,0xcaa0a90,32768,0x7ffc3fd2dde0,0x7f5b04201410,64) 427ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a0c810,2097152,0xcaa0aa0,32768,0x7ffc3fd2dde0,0x7f5b04201810,64) 296ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... Some 500 similar lines with occasional spikes ...] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a89c10,2097152,0xcaa29f0,32768,0x7ffc3fd2dde0,0x7f5b0427ec10,64) 685ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8a010,2097152,0xcaa2a00,32768,0x7ffc3fd2dde0,0x7f5b0427f010,64) 522ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8a410,2097152,0xcaa2a10,32768,0x7ffc3fd2dde0,0x7f5b0427f410,64) 641ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8a810,2097152,0xcaa2a20,32768,0x7ffc3fd2dde0,0x7f5b0427f810,64) 520ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8ac10,2097152,0xcaa2a30,32768,0x7ffc3fd2dde0,0x7f5b0427fc10,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8b010,2097152,0xcaa2a40,32768,0x7ffc3fd2dde0,0x7f5b04280010,64) 484ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8b410,2097152,0xcaa2a50,32768,0x7ffc3fd2dde0,0x7f5b04280410,64) 626ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8b810,2097152,0xcaa2a60,32768,0x7ffc3fd2dde0,0x7f5b04280810,64) 365ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8bc10,2097152,0xcaa2a70,32768,0x7ffc3fd2dde0,0x7f5b04280c10,64) 475ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8c010,2097152,0xcaa2a80,32768,0x7ffc3fd2dde0,0x7f5b04281010,64) 615ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8c410,2097152,0xcaa2a90,32768,0x7ffc3fd2dde0,0x7f5b04281410,64) 507ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8c810,2097152,0xcaa2aa0,32768,0x7ffc3fd2dde0,0x7f5b04281810,64) 356ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8cc10,2097152,0xcaa2ab0,32768,0x7ffc3fd2dde0,0x7f5b04281c10,64) 523ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8d010,2097152,0xcaa2ac0,32768,0x7ffc3fd2dde0,0x7f5b04282010,64) 959ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8d410,2097152,0xcaa2ad0,32768,0x7ffc3fd2dde0,0x7f5b04282410,64) 451ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8d810,2097152,0xcaa2ae0,32768,0x7ffc3fd2dde0,0x7f5b04282810,64) 319ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8dc10,2097152,0xcaa2af0,32768,0x7ffc3fd2dde0,0x7f5b04282c10,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8e010,2097152,0xcaa2b00,32768,0x7ffc3fd2dde0,0x7f5b04283010,64) 1.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8e410,2097152,0xcaa2b10,32768,0x7ffc3fd2dde0,0x7f5b04283410,64) 456ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8e810,2097152,0xcaa2b20,32768,0x7ffc3fd2dde0,0x7f5b04283810,64) 337ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8ec10,2097152,0xcaa2b30,32768,0x7ffc3fd2dde0,0x7f5b04283c10,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8f010,2097152,0xcaa2b40,32768,0x7ffc3fd2dde0,0x7f5b04284010,64) 782ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8f410,2097152,0xcaa2b50,32768,0x7ffc3fd2dde0,0x7f5b04284410,64) 684ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8f810,2097152,0xcaa2b60,32768,0x7ffc3fd2dde0,0x7f5b04284810,64) 587ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a8fc10,2097152,0xcaa2b70,32768,0x7ffc3fd2dde0,0x7f5b04284c10,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a90010,2097152,0xcaa2b80,32768,0x7ffc3fd2dde0,0x7f5b04285010,64) 482ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a90410,2097152,0xcaa2b90,32768,0x7ffc3fd2dde0,0x7f5b04285410,64) 434ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a90810,2097152,0xcaa2ba0,32768,0x7ffc3fd2dde0,0x7f5b04285810,64) 322ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a90c10,2097152,0xcaa2bb0,32768,0x7ffc3fd2dde0,0x7f5b04285c10,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a91010,2097152,0xcaa2bc0,32768,0x7ffc3fd2dde0,0x7f5b04286010,64) 654ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a91410,2097152,0xcaa2bd0,32768,0x7ffc3fd2dde0,0x7f5b04286410,64) 412ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a91810,2097152,0xcaa2be0,32768,0x7ffc3fd2dde0,0x7f5b04286810,64) 315ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a91c10,2097152,0xcaa2bf0,32768,0x7ffc3fd2dde0,0x7f5b04286c10,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a92010,2097152,0xcaa2c00,32768,0x7ffc3fd2dde0,0x7f5b04287010,64) 538ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a92410,2097152,0xcaa2c10,32768,0x7ffc3fd2dde0,0x7f5b04287410,64) 451ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a92810,2097152,0xcaa2c20,32768,0x7ffc3fd2dde0,0x7f5b04287810,64) 359ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a92c10,2097152,0xcaa2c30,32768,0x7ffc3fd2dde0,0x7f5b04287c10,64) 454ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a93010,2097152,0xcaa2c40,32768,0x7ffc3fd2dde0,0x7f5b04288010,64) 939ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a93410,2097152,0xcaa2c50,32768,0x7ffc3fd2dde0,0x7f5b04288410,64) 484ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a93810,2097152,0xcaa2c60,32768,0x7ffc3fd2dde0,0x7f5b04288810,64) 309ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a93c10,2097152,0xcaa2c70,32768,0x7ffc3fd2dde0,0x7f5b04288c10,64) 440ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a94010,2097152,0xcaa2c80,32768,0x7ffc3fd2dde0,0x7f5b04289010,64) 691ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a94410,2097152,0xcaa2c90,32768,0x7ffc3fd2dde0,0x7f5b04289410,64) 419ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a94810,2097152,0xcaa2ca0,32768,0x7ffc3fd2dde0,0x7f5b04289810,64) 330ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a94c10,2097152,0xcaa2cb0,32768,0x7ffc3fd2dde0,0x7f5b04289c10,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a95010,2097152,0xcaa2cc0,32768,0x7ffc3fd2dde0,0x7f5b0428a010,64) 747ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a95410,2097152,0xcaa2cd0,32768,0x7ffc3fd2dde0,0x7f5b0428a410,64) 738ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a95810,2097152,0xcaa2ce0,32768,0x7ffc3fd2dde0,0x7f5b0428a810,64) 317ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a95c10,2097152,0xcaa2cf0,32768,0x7ffc3fd2dde0,0x7f5b0428ac10,64) 509ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a96010,2097152,0xcaa2d00,32768,0x7ffc3fd2dde0,0x7f5b0428b010,64) 834ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a96410,2097152,0xcaa2d10,32768,0x7ffc3fd2dde0,0x7f5b0428b410,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a96810,2097152,0xcaa2d20,32768,0x7ffc3fd2dde0,0x7f5b0428b810,64) 441ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a96c10,2097152,0xcaa2d30,32768,0x7ffc3fd2dde0,0x7f5b0428bc10,64) 453ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a97010,2097152,0xcaa2d40,32768,0x7ffc3fd2dde0,0x7f5b0428c010,64) 779ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a97410,2097152,0xcaa2d50,32768,0x7ffc3fd2dde0,0x7f5b0428c410,64) 514ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a97810,2097152,0xcaa2d60,32768,0x7ffc3fd2dde0,0x7f5b0428c810,64) 542ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a97c10,2097152,0xcaa2d70,32768,0x7ffc3fd2dde0,0x7f5b0428cc10,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a98010,2097152,0xcaa2d80,32768,0x7ffc3fd2dde0,0x7f5b0428d010,64) 672ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a98410,2097152,0xcaa2d90,32768,0x7ffc3fd2dde0,0x7f5b0428d410,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a98810,2097152,0xcaa2da0,32768,0x7ffc3fd2dde0,0x7f5b0428d810,64) 311ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a98c10,2097152,0xcaa2db0,32768,0x7ffc3fd2dde0,0x7f5b0428dc10,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a99010,2097152,0xcaa2dc0,32768,0x7ffc3fd2dde0,0x7f5b0428e010,64) 667ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a99410,2097152,0xcaa2dd0,32768,0x7ffc3fd2dde0,0x7f5b0428e410,64) 2.99us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a99810,2097152,0xcaa2de0,32768,0x7ffc3fd2dde0,0x7f5b0428e810,64) 561ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a99c10,2097152,0xcaa2df0,32768,0x7ffc3fd2dde0,0x7f5b0428ec10,64) 563ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9a010,2097152,0xcaa2e00,32768,0x7ffc3fd2dde0,0x7f5b0428f010,64) 551ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9a410,2097152,0xcaa2e10,32768,0x7ffc3fd2dde0,0x7f5b0428f410,64) 469ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9a810,2097152,0xcaa2e20,32768,0x7ffc3fd2dde0,0x7f5b0428f810,64) 456ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9ac10,2097152,0xcaa2e30,32768,0x7ffc3fd2dde0,0x7f5b0428fc10,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9b010,2097152,0xcaa2e40,32768,0x7ffc3fd2dde0,0x7f5b04290010,64) 680ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9b410,2097152,0xcaa2e50,32768,0x7ffc3fd2dde0,0x7f5b04290410,64) 477ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07a9b810,2097152,0xcaa2e60,32768,0x7ffc3fd2dde0,0x7f5b04290810,64) 292ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... another 100 lines with variations from 200ns to 1us ] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab4c10,2097152,0xcaa34b0,32768,0x7ffc3fd2dde0,0x7f5b042a9c10,64) 479ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab5010,2097152,0xcaa34c0,32768,0x7ffc3fd2dde0,0x7f5b042aa010,64) 643ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab5410,2097152,0xcaa34d0,32768,0x7ffc3fd2dde0,0x7f5b042aa410,64) 414ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab5810,2097152,0xcaa34e0,32768,0x7ffc3fd2dde0,0x7f5b042aa810,64) 296ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab5c10,2097152,0xcaa34f0,32768,0x7ffc3fd2dde0,0x7f5b042aac10,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab6010,2097152,0xcaa3500,32768,0x7ffc3fd2dde0,0x7f5b042ab010,64) 905ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab6410,2097152,0xcaa3510,32768,0x7ffc3fd2dde0,0x7f5b042ab410,64) 635ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab6810,2097152,0xcaa3520,32768,0x7ffc3fd2dde0,0x7f5b042ab810,64) 304ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab6c10,2097152,0xcaa3530,32768,0x7ffc3fd2dde0,0x7f5b042abc10,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab7010,2097152,0xcaa3540,32768,0x7ffc3fd2dde0,0x7f5b042ac010,64) 590ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab7410,2097152,0xcaa3550,32768,0x7ffc3fd2dde0,0x7f5b042ac410,64) 395ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab7810,2097152,0xcaa3560,32768,0x7ffc3fd2dde0,0x7f5b042ac810,64) 320ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab7c10,2097152,0xcaa3570,32768,0x7ffc3fd2dde0,0x7f5b042acc10,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab8010,2097152,0xcaa3580,32768,0x7ffc3fd2dde0,0x7f5b042ad010,64) 1.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab8410,2097152,0xcaa3590,32768,0x7ffc3fd2dde0,0x7f5b042ad410,64) 777ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab8810,2097152,0xcaa35a0,32768,0x7ffc3fd2dde0,0x7f5b042ad810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab8c10,2097152,0xcaa35b0,32768,0x7ffc3fd2dde0,0x7f5b042adc10,64) 572ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab9010,2097152,0xcaa35c0,32768,0x7ffc3fd2dde0,0x7f5b042ae010,64) 799ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab9410,2097152,0xcaa35d0,32768,0x7ffc3fd2dde0,0x7f5b042ae410,64) 391ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab9810,2097152,0xcaa35e0,32768,0x7ffc3fd2dde0,0x7f5b042ae810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ab9c10,2097152,0xcaa35f0,32768,0x7ffc3fd2dde0,0x7f5b042aec10,64) 669ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aba010,2097152,0xcaa3600,32768,0x7ffc3fd2dde0,0x7f5b042af010,64) 492ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aba410,2097152,0xcaa3610,32768,0x7ffc3fd2dde0,0x7f5b042af410,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aba810,2097152,0xcaa3620,32768,0x7ffc3fd2dde0,0x7f5b042af810,64) 315ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abac10,2097152,0xcaa3630,32768,0x7ffc3fd2dde0,0x7f5b042afc10,64) 676ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abb010,2097152,0xcaa3640,32768,0x7ffc3fd2dde0,0x7f5b042b0010,64) 495ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abb410,2097152,0xcaa3650,32768,0x7ffc3fd2dde0,0x7f5b042b0410,64) 373ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abb810,2097152,0xcaa3660,32768,0x7ffc3fd2dde0,0x7f5b042b0810,64) 354ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abbc10,2097152,0xcaa3670,32768,0x7ffc3fd2dde0,0x7f5b042b0c10,64) 454ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abc010,2097152,0xcaa3680,32768,0x7ffc3fd2dde0,0x7f5b042b1010,64) 769ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abc410,2097152,0xcaa3690,32768,0x7ffc3fd2dde0,0x7f5b042b1410,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abc810,2097152,0xcaa36a0,32768,0x7ffc3fd2dde0,0x7f5b042b1810,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abcc10,2097152,0xcaa36b0,32768,0x7ffc3fd2dde0,0x7f5b042b1c10,64) 469ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abd010,2097152,0xcaa36c0,32768,0x7ffc3fd2dde0,0x7f5b042b2010,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abd410,2097152,0xcaa36d0,32768,0x7ffc3fd2dde0,0x7f5b042b2410,64) 501ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abd810,2097152,0xcaa36e0,32768,0x7ffc3fd2dde0,0x7f5b042b2810,64) 373ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abdc10,2097152,0xcaa36f0,32768,0x7ffc3fd2dde0,0x7f5b042b2c10,64) 767ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abe010,2097152,0xcaa3700,32768,0x7ffc3fd2dde0,0x7f5b042b3010,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abe410,2097152,0xcaa3710,32768,0x7ffc3fd2dde0,0x7f5b042b3410,64) 635ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abe810,2097152,0xcaa3720,32768,0x7ffc3fd2dde0,0x7f5b042b3810,64) 507ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abec10,2097152,0xcaa3730,32768,0x7ffc3fd2dde0,0x7f5b042b3c10,64) 4.44us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abf010,2097152,0xcaa3740,32768,0x7ffc3fd2dde0,0x7f5b042b4010,64) 1.39us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abf410,2097152,0xcaa3750,32768,0x7ffc3fd2dde0,0x7f5b042b4410,64) 944ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abf810,2097152,0xcaa3760,32768,0x7ffc3fd2dde0,0x7f5b042b4810,64) 581ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07abfc10,2097152,0xcaa3770,32768,0x7ffc3fd2dde0,0x7f5b042b4c10,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac0010,2097152,0xcaa3780,32768,0x7ffc3fd2dde0,0x7f5b042b5010,64) 654ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac0410,2097152,0xcaa3790,32768,0x7ffc3fd2dde0,0x7f5b042b5410,64) 423ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac0810,2097152,0xcaa37a0,32768,0x7ffc3fd2dde0,0x7f5b042b5810,64) 345ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac0c10,2097152,0xcaa37b0,32768,0x7ffc3fd2dde0,0x7f5b042b5c10,64) 486ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac1010,2097152,0xcaa37c0,32768,0x7ffc3fd2dde0,0x7f5b042b6010,64) 1.22us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac1410,2097152,0xcaa37d0,32768,0x7ffc3fd2dde0,0x7f5b042b6410,64) 447ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac1810,2097152,0xcaa37e0,32768,0x7ffc3fd2dde0,0x7f5b042b6810,64) 339ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac1c10,2097152,0xcaa37f0,32768,0x7ffc3fd2dde0,0x7f5b042b6c10,64) 497ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac2010,2097152,0xcaa3800,32768,0x7ffc3fd2dde0,0x7f5b042b7010,64) 566ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac2410,2097152,0xcaa3810,32768,0x7ffc3fd2dde0,0x7f5b042b7410,64) 445ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac2810,2097152,0xcaa3820,32768,0x7ffc3fd2dde0,0x7f5b042b7810,64) 549ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac2c10,2097152,0xcaa3830,32768,0x7ffc3fd2dde0,0x7f5b042b7c10,64) 468ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac3010,2097152,0xcaa3840,32768,0x7ffc3fd2dde0,0x7f5b042b8010,64) 585ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac3410,2097152,0xcaa3850,32768,0x7ffc3fd2dde0,0x7f5b042b8410,64) 434ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac3810,2097152,0xcaa3860,32768,0x7ffc3fd2dde0,0x7f5b042b8810,64) 594ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac3c10,2097152,0xcaa3870,32768,0x7ffc3fd2dde0,0x7f5b042b8c10,64) 488ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac4010,2097152,0xcaa3880,32768,0x7ffc3fd2dde0,0x7f5b042b9010,64) 514ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac4410,2097152,0xcaa3890,32768,0x7ffc3fd2dde0,0x7f5b042b9410,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac4810,2097152,0xcaa38a0,32768,0x7ffc3fd2dde0,0x7f5b042b9810,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac4c10,2097152,0xcaa38b0,32768,0x7ffc3fd2dde0,0x7f5b042b9c10,64) 760ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac5010,2097152,0xcaa38c0,32768,0x7ffc3fd2dde0,0x7f5b042ba010,64) 572ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac5410,2097152,0xcaa38d0,32768,0x7ffc3fd2dde0,0x7f5b042ba410,64) 818ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac5810,2097152,0xcaa38e0,32768,0x7ffc3fd2dde0,0x7f5b042ba810,64) 607ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac5c10,2097152,0xcaa38f0,32768,0x7ffc3fd2dde0,0x7f5b042bac10,64) 931ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac6010,2097152,0xcaa3900,32768,0x7ffc3fd2dde0,0x7f5b042bb010,64) 648ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac6410,2097152,0xcaa3910,32768,0x7ffc3fd2dde0,0x7f5b042bb410,64) 414ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac6810,2097152,0xcaa3920,32768,0x7ffc3fd2dde0,0x7f5b042bb810,64) 488ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac6c10,2097152,0xcaa3930,32768,0x7ffc3fd2dde0,0x7f5b042bbc10,64) 732ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac7010,2097152,0xcaa3940,32768,0x7ffc3fd2dde0,0x7f5b042bc010,64) 684ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac7410,2097152,0xcaa3950,32768,0x7ffc3fd2dde0,0x7f5b042bc410,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac7810,2097152,0xcaa3960,32768,0x7ffc3fd2dde0,0x7f5b042bc810,64) 302ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac7c10,2097152,0xcaa3970,32768,0x7ffc3fd2dde0,0x7f5b042bcc10,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac8010,2097152,0xcaa3980,32768,0x7ffc3fd2dde0,0x7f5b042bd010,64) 698ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac8410,2097152,0xcaa3990,32768,0x7ffc3fd2dde0,0x7f5b042bd410,64) 732ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac8810,2097152,0xcaa39a0,32768,0x7ffc3fd2dde0,0x7f5b042bd810,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac8c10,2097152,0xcaa39b0,32768,0x7ffc3fd2dde0,0x7f5b042bdc10,64) 386ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac9010,2097152,0xcaa39c0,32768,0x7ffc3fd2dde0,0x7f5b042be010,64) 818ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac9410,2097152,0xcaa39d0,32768,0x7ffc3fd2dde0,0x7f5b042be410,64) 732ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac9810,2097152,0xcaa39e0,32768,0x7ffc3fd2dde0,0x7f5b042be810,64) 305ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ac9c10,2097152,0xcaa39f0,32768,0x7ffc3fd2dde0,0x7f5b042bec10,64) 479ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aca010,2097152,0xcaa3a00,32768,0x7ffc3fd2dde0,0x7f5b042bf010,64) 885ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aca410,2097152,0xcaa3a10,32768,0x7ffc3fd2dde0,0x7f5b042bf410,64) 706ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aca810,2097152,0xcaa3a20,32768,0x7ffc3fd2dde0,0x7f5b042bf810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acac10,2097152,0xcaa3a30,32768,0x7ffc3fd2dde0,0x7f5b042bfc10,64) 395ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acb010,2097152,0xcaa3a40,32768,0x7ffc3fd2dde0,0x7f5b042c0010,64) 870ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acb410,2097152,0xcaa3a50,32768,0x7ffc3fd2dde0,0x7f5b042c0410,64) 352ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acb810,2097152,0xcaa3a60,32768,0x7ffc3fd2dde0,0x7f5b042c0810,64) 792ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acbc10,2097152,0xcaa3a70,32768,0x7ffc3fd2dde0,0x7f5b042c0c10,64) 449ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acc010,2097152,0xcaa3a80,32768,0x7ffc3fd2dde0,0x7f5b042c1010,64) 821ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acc410,2097152,0xcaa3a90,32768,0x7ffc3fd2dde0,0x7f5b042c1410,64) 382ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acc810,2097152,0xcaa3aa0,32768,0x7ffc3fd2dde0,0x7f5b042c1810,64) 292ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07accc10,2097152,0xcaa3ab0,32768,0x7ffc3fd2dde0,0x7f5b042c1c10,64) 454ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acd010,2097152,0xcaa3ac0,32768,0x7ffc3fd2dde0,0x7f5b042c2010,64) 564ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acd410,2097152,0xcaa3ad0,32768,0x7ffc3fd2dde0,0x7f5b042c2410,64) 373ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acd810,2097152,0xcaa3ae0,32768,0x7ffc3fd2dde0,0x7f5b042c2810,64) 292ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acdc10,2097152,0xcaa3af0,32768,0x7ffc3fd2dde0,0x7f5b042c2c10,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ace010,2097152,0xcaa3b00,32768,0x7ffc3fd2dde0,0x7f5b042c3010,64) 581ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ace410,2097152,0xcaa3b10,32768,0x7ffc3fd2dde0,0x7f5b042c3410,64) 412ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ace810,2097152,0xcaa3b20,32768,0x7ffc3fd2dde0,0x7f5b042c3810,64) 302ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acec10,2097152,0xcaa3b30,32768,0x7ffc3fd2dde0,0x7f5b042c3c10,64) 453ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acf010,2097152,0xcaa3b40,32768,0x7ffc3fd2dde0,0x7f5b042c4010,64) 715ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acf410,2097152,0xcaa3b50,32768,0x7ffc3fd2dde0,0x7f5b042c4410,64) 399ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acf810,2097152,0xcaa3b60,32768,0x7ffc3fd2dde0,0x7f5b042c4810,64) 486ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07acfc10,2097152,0xcaa3b70,32768,0x7ffc3fd2dde0,0x7f5b042c4c10,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad0010,2097152,0xcaa3b80,32768,0x7ffc3fd2dde0,0x7f5b042c5010,64) 719ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad0410,2097152,0xcaa3b90,32768,0x7ffc3fd2dde0,0x7f5b042c5410,64) 427ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad0810,2097152,0xcaa3ba0,32768,0x7ffc3fd2dde0,0x7f5b042c5810,64) 520ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad0c10,2097152,0xcaa3bb0,32768,0x7ffc3fd2dde0,0x7f5b042c5c10,64) 456ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad1010,2097152,0xcaa3bc0,32768,0x7ffc3fd2dde0,0x7f5b042c6010,64) 812ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad1410,2097152,0xcaa3bd0,32768,0x7ffc3fd2dde0,0x7f5b042c6410,64) 387ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad1810,2097152,0xcaa3be0,32768,0x7ffc3fd2dde0,0x7f5b042c6810,64) 311ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad1c10,2097152,0xcaa3bf0,32768,0x7ffc3fd2dde0,0x7f5b042c6c10,64) 453ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad2010,2097152,0xcaa3c00,32768,0x7ffc3fd2dde0,0x7f5b042c7010,64) 494ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad2410,2097152,0xcaa3c10,32768,0x7ffc3fd2dde0,0x7f5b042c7410,64) 373ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad2810,2097152,0xcaa3c20,32768,0x7ffc3fd2dde0,0x7f5b042c7810,64) 291ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad2c10,2097152,0xcaa3c30,32768,0x7ffc3fd2dde0,0x7f5b042c7c10,64) 719ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad3010,2097152,0xcaa3c40,32768,0x7ffc3fd2dde0,0x7f5b042c8010,64) 490ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad3410,2097152,0xcaa3c50,32768,0x7ffc3fd2dde0,0x7f5b042c8410,64) 622ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad3810,2097152,0xcaa3c60,32768,0x7ffc3fd2dde0,0x7f5b042c8810,64) 298ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad3c10,2097152,0xcaa3c70,32768,0x7ffc3fd2dde0,0x7f5b042c8c10,64) 475ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad4010,2097152,0xcaa3c80,32768,0x7ffc3fd2dde0,0x7f5b042c9010,64) 490ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad4410,2097152,0xcaa3c90,32768,0x7ffc3fd2dde0,0x7f5b042c9410,64) 557ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad4810,2097152,0xcaa3ca0,32768,0x7ffc3fd2dde0,0x7f5b042c9810,64) 311ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad4c10,2097152,0xcaa3cb0,32768,0x7ffc3fd2dde0,0x7f5b042c9c10,64) 475ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad5010,2097152,0xcaa3cc0,32768,0x7ffc3fd2dde0,0x7f5b042ca010,64) 827ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad5410,2097152,0xcaa3cd0,32768,0x7ffc3fd2dde0,0x7f5b042ca410,64) 384ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad5810,2097152,0xcaa3ce0,32768,0x7ffc3fd2dde0,0x7f5b042ca810,64) 548ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad5c10,2097152,0xcaa3cf0,32768,0x7ffc3fd2dde0,0x7f5b042cac10,64) 456ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad6010,2097152,0xcaa3d00,32768,0x7ffc3fd2dde0,0x7f5b042cb010,64) 630ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad6410,2097152,0xcaa3d10,32768,0x7ffc3fd2dde0,0x7f5b042cb410,64) 387ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad6810,2097152,0xcaa3d20,32768,0x7ffc3fd2dde0,0x7f5b042cb810,64) 305ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad6c10,2097152,0xcaa3d30,32768,0x7ffc3fd2dde0,0x7f5b042cbc10,64) 458ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad7010,2097152,0xcaa3d40,32768,0x7ffc3fd2dde0,0x7f5b042cc010,64) 700ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad7410,2097152,0xcaa3d50,32768,0x7ffc3fd2dde0,0x7f5b042cc410,64) 747ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad7810,2097152,0xcaa3d60,32768,0x7ffc3fd2dde0,0x7f5b042cc810,64) 350ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad7c10,2097152,0xcaa3d70,32768,0x7ffc3fd2dde0,0x7f5b042ccc10,64) 4.41us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad8010,2097152,0xcaa3d80,32768,0x7ffc3fd2dde0,0x7f5b042cd010,64) 1.27us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad8410,2097152,0xcaa3d90,32768,0x7ffc3fd2dde0,0x7f5b042cd410,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad8810,2097152,0xcaa3da0,32768,0x7ffc3fd2dde0,0x7f5b042cd810,64) 991ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad8c10,2097152,0xcaa3db0,32768,0x7ffc3fd2dde0,0x7f5b042cdc10,64) 1.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad9010,2097152,0xcaa3dc0,32768,0x7ffc3fd2dde0,0x7f5b042ce010,64) 1.27us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad9410,2097152,0xcaa3dd0,32768,0x7ffc3fd2dde0,0x7f5b042ce410,64) 1.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad9810,2097152,0xcaa3de0,32768,0x7ffc3fd2dde0,0x7f5b042ce810,64) 952ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ad9c10,2097152,0xcaa3df0,32768,0x7ffc3fd2dde0,0x7f5b042cec10,64) 1.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ada010,2097152,0xcaa3e00,32768,0x7ffc3fd2dde0,0x7f5b042cf010,64) 1.26us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ada410,2097152,0xcaa3e10,32768,0x7ffc3fd2dde0,0x7f5b042cf410,64) 1.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ada810,2097152,0xcaa3e20,32768,0x7ffc3fd2dde0,0x7f5b042cf810,64) 827ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adac10,2097152,0xcaa3e30,32768,0x7ffc3fd2dde0,0x7f5b042cfc10,64) 939ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adb010,2097152,0xcaa3e40,32768,0x7ffc3fd2dde0,0x7f5b042d0010,64) 1.46us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adb410,2097152,0xcaa3e50,32768,0x7ffc3fd2dde0,0x7f5b042d0410,64) 957ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adb810,2097152,0xcaa3e60,32768,0x7ffc3fd2dde0,0x7f5b042d0810,64) 827ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adbc10,2097152,0xcaa3e70,32768,0x7ffc3fd2dde0,0x7f5b042d0c10,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adc010,2097152,0xcaa3e80,32768,0x7ffc3fd2dde0,0x7f5b042d1010,64) 1.34us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adc410,2097152,0xcaa3e90,32768,0x7ffc3fd2dde0,0x7f5b042d1410,64) 888ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adc810,2097152,0xcaa3ea0,32768,0x7ffc3fd2dde0,0x7f5b042d1810,64) 814ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adcc10,2097152,0xcaa3eb0,32768,0x7ffc3fd2dde0,0x7f5b042d1c10,64) 1.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07add010,2097152,0xcaa3ec0,32768,0x7ffc3fd2dde0,0x7f5b042d2010,64) 1.29us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07add410,2097152,0xcaa3ed0,32768,0x7ffc3fd2dde0,0x7f5b042d2410,64) 888ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07add810,2097152,0xcaa3ee0,32768,0x7ffc3fd2dde0,0x7f5b042d2810,64) 831ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07addc10,2097152,0xcaa3ef0,32768,0x7ffc3fd2dde0,0x7f5b042d2c10,64) 1.03us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ade010,2097152,0xcaa3f00,32768,0x7ffc3fd2dde0,0x7f5b042d3010,64) 1.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ade410,2097152,0xcaa3f10,32768,0x7ffc3fd2dde0,0x7f5b042d3410,64) 1.25us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ade810,2097152,0xcaa3f20,32768,0x7ffc3fd2dde0,0x7f5b042d3810,64) 956ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adec10,2097152,0xcaa3f30,32768,0x7ffc3fd2dde0,0x7f5b042d3c10,64) 1.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adf010,2097152,0xcaa3f40,32768,0x7ffc3fd2dde0,0x7f5b042d4010,64) 1.29us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adf410,2097152,0xcaa3f50,32768,0x7ffc3fd2dde0,0x7f5b042d4410,64) 902ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adf810,2097152,0xcaa3f60,32768,0x7ffc3fd2dde0,0x7f5b042d4810,64) 885ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07adfc10,2097152,0xcaa3f70,32768,0x7ffc3fd2dde0,0x7f5b042d4c10,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae0010,2097152,0xcaa3f80,32768,0x7ffc3fd2dde0,0x7f5b042d5010,64) 1.17us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae0410,2097152,0xcaa3f90,32768,0x7ffc3fd2dde0,0x7f5b042d5410,64) 1.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae0810,2097152,0xcaa3fa0,32768,0x7ffc3fd2dde0,0x7f5b042d5810,64) 844ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae0c10,2097152,0xcaa3fb0,32768,0x7ffc3fd2dde0,0x7f5b042d5c10,64) 1.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae1010,2097152,0xcaa3fc0,32768,0x7ffc3fd2dde0,0x7f5b042d6010,64) 1.52us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae1410,2097152,0xcaa3fd0,32768,0x7ffc3fd2dde0,0x7f5b042d6410,64) 1.06us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae1810,2097152,0xcaa3fe0,32768,0x7ffc3fd2dde0,0x7f5b042d6810,64) 833ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae1c10,2097152,0xcaa3ff0,32768,0x7ffc3fd2dde0,0x7f5b042d6c10,64) 1.47us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae2010,2097152,0xcaa4000,32768,0x7ffc3fd2dde0,0x7f5b042d7010,64) 1.34us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae2410,2097152,0xcaa4010,32768,0x7ffc3fd2dde0,0x7f5b042d7410,64) 834ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae2810,2097152,0xcaa4020,32768,0x7ffc3fd2dde0,0x7f5b042d7810,64) 834ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae2c10,2097152,0xcaa4030,32768,0x7ffc3fd2dde0,0x7f5b042d7c10,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae3010,2097152,0xcaa4040,32768,0x7ffc3fd2dde0,0x7f5b042d8010,64) 900ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae3410,2097152,0xcaa4050,32768,0x7ffc3fd2dde0,0x7f5b042d8410,64) 557ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae3810,2097152,0xcaa4060,32768,0x7ffc3fd2dde0,0x7f5b042d8810,64) 298ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae3c10,2097152,0xcaa4070,32768,0x7ffc3fd2dde0,0x7f5b042d8c10,64) 766ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae4010,2097152,0xcaa4080,32768,0x7ffc3fd2dde0,0x7f5b042d9010,64) 719ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae4410,2097152,0xcaa4090,32768,0x7ffc3fd2dde0,0x7f5b042d9410,64) 4.42us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae4810,2097152,0xcaa40a0,32768,0x7ffc3fd2dde0,0x7f5b042d9810,64) 1.54us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae4c10,2097152,0xcaa40b0,32768,0x7ffc3fd2dde0,0x7f5b042d9c10,64) 1.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae5010,2097152,0xcaa40c0,32768,0x7ffc3fd2dde0,0x7f5b042da010,64) 1.22us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae5410,2097152,0xcaa40d0,32768,0x7ffc3fd2dde0,0x7f5b042da410,64) 1.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae5810,2097152,0xcaa40e0,32768,0x7ffc3fd2dde0,0x7f5b042da810,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae5c10,2097152,0xcaa40f0,32768,0x7ffc3fd2dde0,0x7f5b042dac10,64) 1.06us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae6010,2097152,0xcaa4100,32768,0x7ffc3fd2dde0,0x7f5b042db010,64) 1.09us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae6410,2097152,0xcaa4110,32768,0x7ffc3fd2dde0,0x7f5b042db410,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae6810,2097152,0xcaa4120,32768,0x7ffc3fd2dde0,0x7f5b042db810,64) 838ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae6c10,2097152,0xcaa4130,32768,0x7ffc3fd2dde0,0x7f5b042dbc10,64) 1.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae7010,2097152,0xcaa4140,32768,0x7ffc3fd2dde0,0x7f5b042dc010,64) 1.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae7410,2097152,0xcaa4150,32768,0x7ffc3fd2dde0,0x7f5b042dc410,64) 1.00us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae7810,2097152,0xcaa4160,32768,0x7ffc3fd2dde0,0x7f5b042dc810,64) 846ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae7c10,2097152,0xcaa4170,32768,0x7ffc3fd2dde0,0x7f5b042dcc10,64) 985ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae8010,2097152,0xcaa4180,32768,0x7ffc3fd2dde0,0x7f5b042dd010,64) 911ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae8410,2097152,0xcaa4190,32768,0x7ffc3fd2dde0,0x7f5b042dd410,64) 836ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae8810,2097152,0xcaa41a0,32768,0x7ffc3fd2dde0,0x7f5b042dd810,64) 836ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae8c10,2097152,0xcaa41b0,32768,0x7ffc3fd2dde0,0x7f5b042ddc10,64) 1.49us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae9010,2097152,0xcaa41c0,32768,0x7ffc3fd2dde0,0x7f5b042de010,64) 1.06us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae9410,2097152,0xcaa41d0,32768,0x7ffc3fd2dde0,0x7f5b042de410,64) 933ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae9810,2097152,0xcaa41e0,32768,0x7ffc3fd2dde0,0x7f5b042de810,64) 840ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ae9c10,2097152,0xcaa41f0,32768,0x7ffc3fd2dde0,0x7f5b042dec10,64) 1.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aea010,2097152,0xcaa4200,32768,0x7ffc3fd2dde0,0x7f5b042df010,64) 933ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aea410,2097152,0xcaa4210,32768,0x7ffc3fd2dde0,0x7f5b042df410,64) 851ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aea810,2097152,0xcaa4220,32768,0x7ffc3fd2dde0,0x7f5b042df810,64) 356ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aeac10,2097152,0xcaa4230,32768,0x7ffc3fd2dde0,0x7f5b042dfc10,64) 535ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aeb010,2097152,0xcaa4240,32768,0x7ffc3fd2dde0,0x7f5b042e0010,64) 702ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07aeb410,2097152,0xcaa4250,32768,0x7ffc3fd2dde0,0x7f5b042e0410,64) 443ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b04810,2097152,0xcaa48a0,32768,0x7ffc3fd2dde0,0x7f5b042f9810,64) 324ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... some 100 stable lines... ] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b04c10,2097152,0xcaa48b0,32768,0x7ffc3fd2dde0,0x7f5b042f9c10,64) 559ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b05010,2097152,0xcaa48c0,32768,0x7ffc3fd2dde0,0x7f5b042fa010,64) 510ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b05410,2097152,0xcaa48d0,32768,0x7ffc3fd2dde0,0x7f5b042fa410,64) 421ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b05810,2097152,0xcaa48e0,32768,0x7ffc3fd2dde0,0x7f5b042fa810,64) 568ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b05c10,2097152,0xcaa48f0,32768,0x7ffc3fd2dde0,0x7f5b042fac10,64) 799ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b06010,2097152,0xcaa4900,32768,0x7ffc3fd2dde0,0x7f5b042fb010,64) 885ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b06410,2097152,0xcaa4910,32768,0x7ffc3fd2dde0,0x7f5b042fb410,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b06810,2097152,0xcaa4920,32768,0x7ffc3fd2dde0,0x7f5b042fb810,64) 328ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b06c10,2097152,0xcaa4930,32768,0x7ffc3fd2dde0,0x7f5b042fbc10,64) 479ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b07010,2097152,0xcaa4940,32768,0x7ffc3fd2dde0,0x7f5b042fc010,64) 497ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b07410,2097152,0xcaa4950,32768,0x7ffc3fd2dde0,0x7f5b042fc410,64) 561ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b07810,2097152,0xcaa4960,32768,0x7ffc3fd2dde0,0x7f5b042fc810,64) 339ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b07c10,2097152,0xcaa4970,32768,0x7ffc3fd2dde0,0x7f5b042fcc10,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b08010,2097152,0xcaa4980,32768,0x7ffc3fd2dde0,0x7f5b042fd010,64) 454ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b08410,2097152,0xcaa4990,32768,0x7ffc3fd2dde0,0x7f5b042fd410,64) 425ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b08810,2097152,0xcaa49a0,32768,0x7ffc3fd2dde0,0x7f5b042fd810,64) 462ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b08c10,2097152,0xcaa49b0,32768,0x7ffc3fd2dde0,0x7f5b042fdc10,64) 460ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b09010,2097152,0xcaa49c0,32768,0x7ffc3fd2dde0,0x7f5b042fe010,64) 697ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b09410,2097152,0xcaa49d0,32768,0x7ffc3fd2dde0,0x7f5b042fe410,64) 423ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b09810,2097152,0xcaa49e0,32768,0x7ffc3fd2dde0,0x7f5b042fe810,64) 330ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b09c10,2097152,0xcaa49f0,32768,0x7ffc3fd2dde0,0x7f5b042fec10,64) 4.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0a010,2097152,0xcaa4a00,32768,0x7ffc3fd2dde0,0x7f5b042ff010,64) 1.66us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0a410,2097152,0xcaa4a10,32768,0x7ffc3fd2dde0,0x7f5b042ff410,64) 1.19us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0a810,2097152,0xcaa4a20,32768,0x7ffc3fd2dde0,0x7f5b042ff810,64) 883ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0ac10,2097152,0xcaa4a30,32768,0x7ffc3fd2dde0,0x7f5b042ffc10,64) 1.18us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0b010,2097152,0xcaa4a40,32768,0x7ffc3fd2dde0,0x7f5b04300010,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0b410,2097152,0xcaa4a50,32768,0x7ffc3fd2dde0,0x7f5b04300410,64) 874ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0b810,2097152,0xcaa4a60,32768,0x7ffc3fd2dde0,0x7f5b04300810,64) 825ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0bc10,2097152,0xcaa4a70,32768,0x7ffc3fd2dde0,0x7f5b04300c10,64) 995ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0c010,2097152,0xcaa4a80,32768,0x7ffc3fd2dde0,0x7f5b04301010,64) 1.09us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0c410,2097152,0xcaa4a90,32768,0x7ffc3fd2dde0,0x7f5b04301410,64) 844ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0c810,2097152,0xcaa4aa0,32768,0x7ffc3fd2dde0,0x7f5b04301810,64) 810ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0cc10,2097152,0xcaa4ab0,32768,0x7ffc3fd2dde0,0x7f5b04301c10,64) 987ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0d010,2097152,0xcaa4ac0,32768,0x7ffc3fd2dde0,0x7f5b04302010,64) 950ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0d410,2097152,0xcaa4ad0,32768,0x7ffc3fd2dde0,0x7f5b04302410,64) 894ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0d810,2097152,0xcaa4ae0,32768,0x7ffc3fd2dde0,0x7f5b04302810,64) 857ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0dc10,2097152,0xcaa4af0,32768,0x7ffc3fd2dde0,0x7f5b04302c10,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0e010,2097152,0xcaa4b00,32768,0x7ffc3fd2dde0,0x7f5b04303010,64) 1.00us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0e410,2097152,0xcaa4b10,32768,0x7ffc3fd2dde0,0x7f5b04303410,64) 844ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0e810,2097152,0xcaa4b20,32768,0x7ffc3fd2dde0,0x7f5b04303810,64) 792ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0ec10,2097152,0xcaa4b30,32768,0x7ffc3fd2dde0,0x7f5b04303c10,64) 1.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0f010,2097152,0xcaa4b40,32768,0x7ffc3fd2dde0,0x7f5b04304010,64) 1.10us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0f410,2097152,0xcaa4b50,32768,0x7ffc3fd2dde0,0x7f5b04304410,64) 672ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0f810,2097152,0xcaa4b60,32768,0x7ffc3fd2dde0,0x7f5b04304810,64) 387ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b0fc10,2097152,0xcaa4b70,32768,0x7ffc3fd2dde0,0x7f5b04304c10,64) 473ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b10010,2097152,0xcaa4b80,32768,0x7ffc3fd2dde0,0x7f5b04305010,64) 594ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b10410,2097152,0xcaa4b90,32768,0x7ffc3fd2dde0,0x7f5b04305410,64) 631ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b10810,2097152,0xcaa4ba0,32768,0x7ffc3fd2dde0,0x7f5b04305810,64) 363ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b10c10,2097152,0xcaa4bb0,32768,0x7ffc3fd2dde0,0x7f5b04305c10,64) 687ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b11010,2097152,0xcaa4bc0,32768,0x7ffc3fd2dde0,0x7f5b04306010,64) 773ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b11410,2097152,0xcaa4bd0,32768,0x7ffc3fd2dde0,0x7f5b04306410,64) 617ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b11810,2097152,0xcaa4be0,32768,0x7ffc3fd2dde0,0x7f5b04306810,64) 346ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b11c10,2097152,0xcaa4bf0,32768,0x7ffc3fd2dde0,0x7f5b04306c10,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b12010,2097152,0xcaa4c00,32768,0x7ffc3fd2dde0,0x7f5b04307010,64) 527ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b12410,2097152,0xcaa4c10,32768,0x7ffc3fd2dde0,0x7f5b04307410,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b12810,2097152,0xcaa4c20,32768,0x7ffc3fd2dde0,0x7f5b04307810,64) 333ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b12c10,2097152,0xcaa4c30,32768,0x7ffc3fd2dde0,0x7f5b04307c10,64) 510ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b13010,2097152,0xcaa4c40,32768,0x7ffc3fd2dde0,0x7f5b04308010,64) 754ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b13410,2097152,0xcaa4c50,32768,0x7ffc3fd2dde0,0x7f5b04308410,64) 609ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b13810,2097152,0xcaa4c60,32768,0x7ffc3fd2dde0,0x7f5b04308810,64) 369ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b13c10,2097152,0xcaa4c70,32768,0x7ffc3fd2dde0,0x7f5b04308c10,64) 468ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b14010,2097152,0xcaa4c80,32768,0x7ffc3fd2dde0,0x7f5b04309010,64) 924ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b14410,2097152,0xcaa4c90,32768,0x7ffc3fd2dde0,0x7f5b04309410,64) 412ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b14810,2097152,0xcaa4ca0,32768,0x7ffc3fd2dde0,0x7f5b04309810,64) 503ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b14c10,2097152,0xcaa4cb0,32768,0x7ffc3fd2dde0,0x7f5b04309c10,64) 505ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b15010,2097152,0xcaa4cc0,32768,0x7ffc3fd2dde0,0x7f5b0430a010,64) 760ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b15410,2097152,0xcaa4cd0,32768,0x7ffc3fd2dde0,0x7f5b0430a410,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b15810,2097152,0xcaa4ce0,32768,0x7ffc3fd2dde0,0x7f5b0430a810,64) 693ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b15c10,2097152,0xcaa4cf0,32768,0x7ffc3fd2dde0,0x7f5b0430ac10,64) 482ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b16010,2097152,0xcaa4d00,32768,0x7ffc3fd2dde0,0x7f5b0430b010,64) 825ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b16410,2097152,0xcaa4d10,32768,0x7ffc3fd2dde0,0x7f5b0430b410,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b16810,2097152,0xcaa4d20,32768,0x7ffc3fd2dde0,0x7f5b0430b810,64) 304ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b16c10,2097152,0xcaa4d30,32768,0x7ffc3fd2dde0,0x7f5b0430bc10,64) 525ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b17010,2097152,0xcaa4d40,32768,0x7ffc3fd2dde0,0x7f5b0430c010,64) 769ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b17410,2097152,0xcaa4d50,32768,0x7ffc3fd2dde0,0x7f5b0430c410,64) 389ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b17810,2097152,0xcaa4d60,32768,0x7ffc3fd2dde0,0x7f5b0430c810,64) 382ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b17c10,2097152,0xcaa4d70,32768,0x7ffc3fd2dde0,0x7f5b0430cc10,64) 747ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b18010,2097152,0xcaa4d80,32768,0x7ffc3fd2dde0,0x7f5b0430d010,64) 406ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b18410,2097152,0xcaa4d90,32768,0x7ffc3fd2dde0,0x7f5b0430d410,64) 371ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b18810,2097152,0xcaa4da0,32768,0x7ffc3fd2dde0,0x7f5b0430d810,64) 363ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b18c10,2097152,0xcaa4db0,32768,0x7ffc3fd2dde0,0x7f5b0430dc10,64) 821ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b19010,2097152,0xcaa4dc0,32768,0x7ffc3fd2dde0,0x7f5b0430e010,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b19410,2097152,0xcaa4dd0,32768,0x7ffc3fd2dde0,0x7f5b0430e410,64) 624ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b19810,2097152,0xcaa4de0,32768,0x7ffc3fd2dde0,0x7f5b0430e810,64) 391ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b19c10,2097152,0xcaa4df0,32768,0x7ffc3fd2dde0,0x7f5b0430ec10,64) 481ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1a010,2097152,0xcaa4e00,32768,0x7ffc3fd2dde0,0x7f5b0430f010,64) 529ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1a410,2097152,0xcaa4e10,32768,0x7ffc3fd2dde0,0x7f5b0430f410,64) 715ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1a810,2097152,0xcaa4e20,32768,0x7ffc3fd2dde0,0x7f5b0430f810,64) 307ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1ac10,2097152,0xcaa4e30,32768,0x7ffc3fd2dde0,0x7f5b0430fc10,64) 382ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1b010,2097152,0xcaa4e40,32768,0x7ffc3fd2dde0,0x7f5b04310010,64) 641ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1b410,2097152,0xcaa4e50,32768,0x7ffc3fd2dde0,0x7f5b04310410,64) 378ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1b810,2097152,0xcaa4e60,32768,0x7ffc3fd2dde0,0x7f5b04310810,64) 296ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1bc10,2097152,0xcaa4e70,32768,0x7ffc3fd2dde0,0x7f5b04310c10,64) 404ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1c010,2097152,0xcaa4e80,32768,0x7ffc3fd2dde0,0x7f5b04311010,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1c410,2097152,0xcaa4e90,32768,0x7ffc3fd2dde0,0x7f5b04311410,64) 387ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1c810,2097152,0xcaa4ea0,32768,0x7ffc3fd2dde0,0x7f5b04311810,64) 544ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1cc10,2097152,0xcaa4eb0,32768,0x7ffc3fd2dde0,0x7f5b04311c10,64) 397ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1d010,2097152,0xcaa4ec0,32768,0x7ffc3fd2dde0,0x7f5b04312010,64) 674ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1d410,2097152,0xcaa4ed0,32768,0x7ffc3fd2dde0,0x7f5b04312410,64) 415ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1d810,2097152,0xcaa4ee0,32768,0x7ffc3fd2dde0,0x7f5b04312810,64) 369ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1dc10,2097152,0xcaa4ef0,32768,0x7ffc3fd2dde0,0x7f5b04312c10,64) 469ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1e010,2097152,0xcaa4f00,32768,0x7ffc3fd2dde0,0x7f5b04313010,64) 1.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1e410,2097152,0xcaa4f10,32768,0x7ffc3fd2dde0,0x7f5b04313410,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1e810,2097152,0xcaa4f20,32768,0x7ffc3fd2dde0,0x7f5b04313810,64) 352ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1ec10,2097152,0xcaa4f30,32768,0x7ffc3fd2dde0,0x7f5b04313c10,64) 466ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1f010,2097152,0xcaa4f40,32768,0x7ffc3fd2dde0,0x7f5b04314010,64) 592ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1f410,2097152,0xcaa4f50,32768,0x7ffc3fd2dde0,0x7f5b04314410,64) 469ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1f810,2097152,0xcaa4f60,32768,0x7ffc3fd2dde0,0x7f5b04314810,64) 494ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b1fc10,2097152,0xcaa4f70,32768,0x7ffc3fd2dde0,0x7f5b04314c10,64) 397ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b20010,2097152,0xcaa4f80,32768,0x7ffc3fd2dde0,0x7f5b04315010,64) 741ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b20410,2097152,0xcaa4f90,32768,0x7ffc3fd2dde0,0x7f5b04315410,64) 423ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b20810,2097152,0xcaa4fa0,32768,0x7ffc3fd2dde0,0x7f5b04315810,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b20c10,2097152,0xcaa4fb0,32768,0x7ffc3fd2dde0,0x7f5b04315c10,64) 464ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b21010,2097152,0xcaa4fc0,32768,0x7ffc3fd2dde0,0x7f5b04316010,64) 825ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b21410,2097152,0xcaa4fd0,32768,0x7ffc3fd2dde0,0x7f5b04316410,64) 393ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b21810,2097152,0xcaa4fe0,32768,0x7ffc3fd2dde0,0x7f5b04316810,64) 333ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b21c10,2097152,0xcaa4ff0,32768,0x7ffc3fd2dde0,0x7f5b04316c10,64) 479ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b22010,2097152,0xcaa5000,32768,0x7ffc3fd2dde0,0x7f5b04317010,64) 631ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... Some 500 lines of stuff...] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b9f410,2097152,0xcaa6f50,32768,0x7ffc3fd2dde0,0x7f5b04394410,64) 352ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b9f810,2097152,0xcaa6f60,32768,0x7ffc3fd2dde0,0x7f5b04394810,64) 523ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07b9fc10,2097152,0xcaa6f70,32768,0x7ffc3fd2dde0,0x7f5b04394c10,64) 4.37us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba0010,2097152,0xcaa6f80,32768,0x7ffc3fd2dde0,0x7f5b04395010,64) 1.48us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba0410,2097152,0xcaa6f90,32768,0x7ffc3fd2dde0,0x7f5b04395410,64) 924ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba0810,2097152,0xcaa6fa0,32768,0x7ffc3fd2dde0,0x7f5b04395810,64) 1.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba0c10,2097152,0xcaa6fb0,32768,0x7ffc3fd2dde0,0x7f5b04395c10,64) 1.02us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba1010,2097152,0xcaa6fc0,32768,0x7ffc3fd2dde0,0x7f5b04396010,64) 1.36us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba1410,2097152,0xcaa6fd0,32768,0x7ffc3fd2dde0,0x7f5b04396410,64) 1.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba1810,2097152,0xcaa6fe0,32768,0x7ffc3fd2dde0,0x7f5b04396810,64) 846ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba1c10,2097152,0xcaa6ff0,32768,0x7ffc3fd2dde0,0x7f5b04396c10,64) 1.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07ba2010,2097152,0xcaa7000,32768,0x7ffc3fd2dde0,0x7f5b04397010,64) 1.20us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... Some 900 more lines of stuff...] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c83010,2097152,0xcaaa840,32768,0x7ffc3fd2dde0,0x7f5b04478010,64) 1.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c83410,2097152,0xcaaa850,32768,0x7ffc3fd2dde0,0x7f5b04478410,64) 469ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c83810,2097152,0xcaaa860,32768,0x7ffc3fd2dde0,0x7f5b04478810,64) 520ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c83c10,2097152,0xcaaa870,32768,0x7ffc3fd2dde0,0x7f5b04478c10,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c84010,2097152,0xcaaa880,32768,0x7ffc3fd2dde0,0x7f5b04479010,64) 563ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c84410,2097152,0xcaaa890,32768,0x7ffc3fd2dde0,0x7f5b04479410,64) 359ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c84810,2097152,0xcaaa8a0,32768,0x7ffc3fd2dde0,0x7f5b04479810,64) 328ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c84c10,2097152,0xcaaa8b0,32768,0x7ffc3fd2dde0,0x7f5b04479c10,64) 432ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c85010,2097152,0xcaaa8c0,32768,0x7ffc3fd2dde0,0x7f5b0447a010,64) 728ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c85410,2097152,0xcaaa8d0,32768,0x7ffc3fd2dde0,0x7f5b0447a410,64) 399ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c85810,2097152,0xcaaa8e0,32768,0x7ffc3fd2dde0,0x7f5b0447a810,64) 488ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c85c10,2097152,0xcaaa8f0,32768,0x7ffc3fd2dde0,0x7f5b0447ac10,64) 427ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c86010,2097152,0xcaaa900,32768,0x7ffc3fd2dde0,0x7f5b0447b010,64) 548ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c86410,2097152,0xcaaa910,32768,0x7ffc3fd2dde0,0x7f5b0447b410,64) 341ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c86810,2097152,0xcaaa920,32768,0x7ffc3fd2dde0,0x7f5b0447b810,64) 436ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c86c10,2097152,0xcaaa930,32768,0x7ffc3fd2dde0,0x7f5b0447bc10,64) 421ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c87010,2097152,0xcaaa940,32768,0x7ffc3fd2dde0,0x7f5b0447c010,64) 4.49us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c87410,2097152,0xcaaa950,32768,0x7ffc3fd2dde0,0x7f5b0447c410,64) 1.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c87810,2097152,0xcaaa960,32768,0x7ffc3fd2dde0,0x7f5b0447c810,64) 985ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c87c10,2097152,0xcaaa970,32768,0x7ffc3fd2dde0,0x7f5b0447cc10,64) 1.12us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c88010,2097152,0xcaaa980,32768,0x7ffc3fd2dde0,0x7f5b0447d010,64) 1.10us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c88410,2097152,0xcaaa990,32768,0x7ffc3fd2dde0,0x7f5b0447d410,64) 836ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c88810,2097152,0xcaaa9a0,32768,0x7ffc3fd2dde0,0x7f5b0447d810,64) 842ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c88c10,2097152,0xcaaa9b0,32768,0x7ffc3fd2dde0,0x7f5b0447dc10,64) 1.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c89010,2097152,0xcaaa9c0,32768,0x7ffc3fd2dde0,0x7f5b0447e010,64) 1.07us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c89410,2097152,0xcaaa9d0,32768,0x7ffc3fd2dde0,0x7f5b0447e410,64) 866ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c89810,2097152,0xcaaa9e0,32768,0x7ffc3fd2dde0,0x7f5b0447e810,64) 818ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c89c10,2097152,0xcaaa9f0,32768,0x7ffc3fd2dde0,0x7f5b0447ec10,64) 1.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8a010,2097152,0xcaaaa00,32768,0x7ffc3fd2dde0,0x7f5b0447f010,64) 946ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8a410,2097152,0xcaaaa10,32768,0x7ffc3fd2dde0,0x7f5b0447f410,64) 851ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8a810,2097152,0xcaaaa20,32768,0x7ffc3fd2dde0,0x7f5b0447f810,64) 1.03us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8ac10,2097152,0xcaaaa30,32768,0x7ffc3fd2dde0,0x7f5b0447fc10,64) 991ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8b010,2097152,0xcaaaa40,32768,0x7ffc3fd2dde0,0x7f5b04480010,64) 1.13us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8b410,2097152,0xcaaaa50,32768,0x7ffc3fd2dde0,0x7f5b04480410,64) 942ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8b810,2097152,0xcaaaa60,32768,0x7ffc3fd2dde0,0x7f5b04480810,64) 831ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8bc10,2097152,0xcaaaa70,32768,0x7ffc3fd2dde0,0x7f5b04480c10,64) 1.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8c010,2097152,0xcaaaa80,32768,0x7ffc3fd2dde0,0x7f5b04481010,64) 993ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8c410,2097152,0xcaaaa90,32768,0x7ffc3fd2dde0,0x7f5b04481410,64) 885ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8c810,2097152,0xcaaaaa0,32768,0x7ffc3fd2dde0,0x7f5b04481810,64) 827ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8cc10,2097152,0xcaaaab0,32768,0x7ffc3fd2dde0,0x7f5b04481c10,64) 1.24us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8d010,2097152,0xcaaaac0,32768,0x7ffc3fd2dde0,0x7f5b04482010,64) 1.15us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8d410,2097152,0xcaaaad0,32768,0x7ffc3fd2dde0,0x7f5b04482410,64) 937ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8d810,2097152,0xcaaaae0,32768,0x7ffc3fd2dde0,0x7f5b04482810,64) 862ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8dc10,2097152,0xcaaaaf0,32768,0x7ffc3fd2dde0,0x7f5b04482c10,64) 1.06us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8e010,2097152,0xcaaab00,32768,0x7ffc3fd2dde0,0x7f5b04483010,64) 1.18us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8e410,2097152,0xcaaab10,32768,0x7ffc3fd2dde0,0x7f5b04483410,64) 853ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8e810,2097152,0xcaaab20,32768,0x7ffc3fd2dde0,0x7f5b04483810,64) 844ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8ec10,2097152,0xcaaab30,32768,0x7ffc3fd2dde0,0x7f5b04483c10,64) 1.01us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8f010,2097152,0xcaaab40,32768,0x7ffc3fd2dde0,0x7f5b04484010,64) 982ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8f410,2097152,0xcaaab50,32768,0x7ffc3fd2dde0,0x7f5b04484410,64) 924ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8f810,2097152,0xcaaab60,32768,0x7ffc3fd2dde0,0x7f5b04484810,64) 911ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c8fc10,2097152,0xcaaab70,32768,0x7ffc3fd2dde0,0x7f5b04484c10,64) 1.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c90010,2097152,0xcaaab80,32768,0x7ffc3fd2dde0,0x7f5b04485010,64) 1.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c90410,2097152,0xcaaab90,32768,0x7ffc3fd2dde0,0x7f5b04485410,64) 946ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c90810,2097152,0xcaaaba0,32768,0x7ffc3fd2dde0,0x7f5b04485810,64) 834ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c90c10,2097152,0xcaaabb0,32768,0x7ffc3fd2dde0,0x7f5b04485c10,64) 430ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c91010,2097152,0xcaaabc0,32768,0x7ffc3fd2dde0,0x7f5b04486010,64) 821ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c91410,2097152,0xcaaabd0,32768,0x7ffc3fd2dde0,0x7f5b04486410,64) 574ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c91810,2097152,0xcaaabe0,32768,0x7ffc3fd2dde0,0x7f5b04486810,64) 248ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c91c10,2097152,0xcaaabf0,32768,0x7ffc3fd2dde0,0x7f5b04486c10,64) 708ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c92010,2097152,0xcaaac00,32768,0x7ffc3fd2dde0,0x7f5b04487010,64) 706ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c92410,2097152,0xcaaac10,32768,0x7ffc3fd2dde0,0x7f5b04487410,64) 535ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c92810,2097152,0xcaaac20,32768,0x7ffc3fd2dde0,0x7f5b04487810,64) 261ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c92c10,2097152,0xcaaac30,32768,0x7ffc3fd2dde0,0x7f5b04487c10,64) 389ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c93010,2097152,0xcaaac40,32768,0x7ffc3fd2dde0,0x7f5b04488010,64) 848ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c93410,2097152,0xcaaac50,32768,0x7ffc3fd2dde0,0x7f5b04488410,64) 641ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c93810,2097152,0xcaaac60,32768,0x7ffc3fd2dde0,0x7f5b04488810,64) 257ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c93c10,2097152,0xcaaac70,32768,0x7ffc3fd2dde0,0x7f5b04488c10,64) 408ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c94010,2097152,0xcaaac80,32768,0x7ffc3fd2dde0,0x7f5b04489010,64) 421ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c94410,2097152,0xcaaac90,32768,0x7ffc3fd2dde0,0x7f5b04489410,64) 674ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c94810,2097152,0xcaaaca0,32768,0x7ffc3fd2dde0,0x7f5b04489810,64) 270ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c94c10,2097152,0xcaaacb0,32768,0x7ffc3fd2dde0,0x7f5b04489c10,64) 423ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c95010,2097152,0xcaaacc0,32768,0x7ffc3fd2dde0,0x7f5b0448a010,64) 698ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c95410,2097152,0xcaaacd0,32768,0x7ffc3fd2dde0,0x7f5b0448a410,64) 330ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c95810,2097152,0xcaaace0,32768,0x7ffc3fd2dde0,0x7f5b0448a810,64) 574ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b07c95c10,2097152,0xcaaacf0,32768,0x7ffc3fd2dde0,0x7f5b0448ac10,64) 400ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + [... Some 30 000 lines of mess...] + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e2410,2097152,0xcb20010,32768,0x7ffc3fd2dde0,0x7f5b061d7410,64) 374ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e2810,2097152,0xcb20020,32768,0x7ffc3fd2dde0,0x7f5b061d7810,64) 577ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e2c10,2097152,0xcb20030,32768,0x7ffc3fd2dde0,0x7f5b061d7c10,64) 2.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e3010,2097152,0xcb20040,32768,0x7ffc3fd2dde0,0x7f5b061d8010,64) 587ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e3410,2097152,0xcb20050,32768,0x7ffc3fd2dde0,0x7f5b061d8410,64) 386ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e3810,2097152,0xcb20060,32768,0x7ffc3fd2dde0,0x7f5b061d8810,64) 557ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e3c10,2097152,0xcb20070,32768,0x7ffc3fd2dde0,0x7f5b061d8c10,64) 2.14us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e4010,2097152,0xcb20080,32768,0x7ffc3fd2dde0,0x7f5b061d9010,64) 475ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e4410,2097152,0xcb20090,32768,0x7ffc3fd2dde0,0x7f5b061d9410,64) 745ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e4810,2097152,0xcb200a0,32768,0x7ffc3fd2dde0,0x7f5b061d9810,64) 272ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e4c10,2097152,0xcb200b0,32768,0x7ffc3fd2dde0,0x7f5b061d9c10,64) 2.31us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e5010,2097152,0xcb200c0,32768,0x7ffc3fd2dde0,0x7f5b061da010,64) 419ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e5410,2097152,0xcb200d0,32768,0x7ffc3fd2dde0,0x7f5b061da410,64) 410ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e5810,2097152,0xcb200e0,32768,0x7ffc3fd2dde0,0x7f5b061da810,64) 276ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e5c10,2097152,0xcb200f0,32768,0x7ffc3fd2dde0,0x7f5b061dac10,64) 3.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e6010,2097152,0xcb20100,32768,0x7ffc3fd2dde0,0x7f5b061db010,64) 698ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e6410,2097152,0xcb20110,32768,0x7ffc3fd2dde0,0x7f5b061db410,64) 378ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e6810,2097152,0xcb20120,32768,0x7ffc3fd2dde0,0x7f5b061db810,64) 264ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e6c10,2097152,0xcb20130,32768,0x7ffc3fd2dde0,0x7f5b061dbc10,64) 2.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e7010,2097152,0xcb20140,32768,0x7ffc3fd2dde0,0x7f5b061dc010,64) 667ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e7410,2097152,0xcb20150,32768,0x7ffc3fd2dde0,0x7f5b061dc410,64) 514ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e7810,2097152,0xcb20160,32768,0x7ffc3fd2dde0,0x7f5b061dc810,64) 285ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e7c10,2097152,0xcb20170,32768,0x7ffc3fd2dde0,0x7f5b061dcc10,64) 2.16us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e8010,2097152,0xcb20180,32768,0x7ffc3fd2dde0,0x7f5b061dd010,64) 617ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e8410,2097152,0xcb20190,32768,0x7ffc3fd2dde0,0x7f5b061dd410,64) 434ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e8810,2097152,0xcb201a0,32768,0x7ffc3fd2dde0,0x7f5b061dd810,64) 279ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e8c10,2097152,0xcb201b0,32768,0x7ffc3fd2dde0,0x7f5b061ddc10,64) 6.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e9010,2097152,0xcb201c0,32768,0x7ffc3fd2dde0,0x7f5b061de010,64) 702ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e9410,2097152,0xcb201d0,32768,0x7ffc3fd2dde0,0x7f5b061de410,64) 590ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e9810,2097152,0xcb201e0,32768,0x7ffc3fd2dde0,0x7f5b061de810,64) 302ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099e9c10,2097152,0xcb201f0,32768,0x7ffc3fd2dde0,0x7f5b061dec10,64) 2.08us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ea010,2097152,0xcb20200,32768,0x7ffc3fd2dde0,0x7f5b061df010,64) 510ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ea410,2097152,0xcb20210,32768,0x7ffc3fd2dde0,0x7f5b061df410,64) 652ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ea810,2097152,0xcb20220,32768,0x7ffc3fd2dde0,0x7f5b061df810,64) 266ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099eac10,2097152,0xcb20230,32768,0x7ffc3fd2dde0,0x7f5b061dfc10,64) 2.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099eb010,2097152,0xcb20240,32768,0x7ffc3fd2dde0,0x7f5b061e0010,64) 482ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099eb410,2097152,0xcb20250,32768,0x7ffc3fd2dde0,0x7f5b061e0410,64) 587ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099eb810,2097152,0xcb20260,32768,0x7ffc3fd2dde0,0x7f5b061e0810,64) 274ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ebc10,2097152,0xcb20270,32768,0x7ffc3fd2dde0,0x7f5b061e0c10,64) 2.09us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ec010,2097152,0xcb20280,32768,0x7ffc3fd2dde0,0x7f5b061e1010,64) 652ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ec410,2097152,0xcb20290,32768,0x7ffc3fd2dde0,0x7f5b061e1410,64) 417ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ec810,2097152,0xcb202a0,32768,0x7ffc3fd2dde0,0x7f5b061e1810,64) 311ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ecc10,2097152,0xcb202b0,32768,0x7ffc3fd2dde0,0x7f5b061e1c10,64) 2.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ed010,2097152,0xcb202c0,32768,0x7ffc3fd2dde0,0x7f5b061e2010,64) 644ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ed410,2097152,0xcb202d0,32768,0x7ffc3fd2dde0,0x7f5b061e2410,64) 451ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ed810,2097152,0xcb202e0,32768,0x7ffc3fd2dde0,0x7f5b061e2810,64) 315ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099edc10,2097152,0xcb202f0,32768,0x7ffc3fd2dde0,0x7f5b061e2c10,64) 2.05us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ee010,2097152,0xcb20300,32768,0x7ffc3fd2dde0,0x7f5b061e3010,64) 680ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ee410,2097152,0xcb20310,32768,0x7ffc3fd2dde0,0x7f5b061e3410,64) 525ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ee810,2097152,0xcb20320,32768,0x7ffc3fd2dde0,0x7f5b061e3810,64) 661ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099eec10,2097152,0xcb20330,32768,0x7ffc3fd2dde0,0x7f5b061e3c10,64) 2.04us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ef010,2097152,0xcb20340,32768,0x7ffc3fd2dde0,0x7f5b061e4010,64) 704ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ef410,2097152,0xcb20350,32768,0x7ffc3fd2dde0,0x7f5b061e4410,64) 650ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099ef810,2097152,0xcb20360,32768,0x7ffc3fd2dde0,0x7f5b061e4810,64) 281ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099efc10,2097152,0xcb20370,32768,0x7ffc3fd2dde0,0x7f5b061e4c10,64) 2.21us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099f0010,2097152,0xcb20380,32768,0x7ffc3fd2dde0,0x7f5b061e5010,64) 490ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099f0410,2097152,0xcb20390,32768,0x7ffc3fd2dde0,0x7f5b061e5410,64) 471ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099f0810,2097152,0xcb203a0,32768,0x7ffc3fd2dde0,0x7f5b061e5810,64) 268ns CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,64,1,2,0x7ffc3fd2ddd0,0x7f5b099f0c10,2097152,0xcb203b0,32768,0x7ffc3fd2dde0,0x7f5b061e5c10,64) 2.11us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 585 milliseconds + [... 585000 / 32768 = 17.85 us , but most of data in logs are below 3us ??...] + * + After debug_mkl_contract_sum, duration: 0.5853049755096436 +PROF:: perf data process bucket time: 0.6231610774993896 +== + +PROF:: Bucket contains: [E460(v_1846,v_1854), E1845(v_1846,v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 2097152 output: 1048576 + Dimensions: f:2 k:2 n:524288 m:1 + MKL_VERBOSE ZGEMM(N,T,524288,1,2,0x7ffc3fd2ddd0,0x7f5b099f1010,1048576,0x4dfacf0,2,0x7ffc3fd2dde0,0xd2a03e0,524288) 5.36ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,524288,1,2,0x7ffc3fd2ddd0,0x7f5b0a1f1010,1048576,0x4dfad00,2,0x7ffc3fd2dde0,0xdaa03e0,524288) 1.16ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 6 milliseconds + After debug_mkl_contract_sum, duration: 0.00663447380065918 +PROF:: perf data process bucket time: 0.028242111206054688 +== + +PROF:: Bucket contains: [E1846(v_1847,v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.007658958435058594 +== + +PROF:: Bucket contains: [E467(v_1848,v_1852), E1847(v_1848,v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 524288 output: 262144 + Dimensions: f:2 k:2 n:131072 m:1 + MKL_VERBOSE ZGEMM(N,T,131072,1,2,0x7ffc3fd2ddd0,0xeaa0400,262144,0x4d322e0,2,0x7ffc3fd2dde0,0xcaa03c0,131072) 123.42us CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + MKL_VERBOSE ZGEMM(N,T,131072,1,2,0x7ffc3fd2ddd0,0xeca0400,262144,0x4d322f0,2,0x7ffc3fd2dde0,0xcca03c0,131072) 2.38ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:56 + Duration: 2 milliseconds + After debug_mkl_contract_sum, duration: 0.002573728561401367 +PROF:: perf data process bucket time: 0.005625009536743164 +== + +PROF:: Bucket contains: [E480(v_1849,v_1856), E1848(v_1849,v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 262144 output: 131072 + After debug_mkl_contract_sum, duration: 0.00018668174743652344 +PROF:: perf data process bucket time: 0.0014035701751708984 +PROF:: Bucket contains: [E1849(v_1850,v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.0005922317504882812 +PROF:: Bucket contains: [E497(v_1851,v_1855), E1850(v_1851,v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 65536 output: 32768 + After debug_mkl_contract_sum, duration: 0.00012922286987304688 +PROF:: perf data process bucket time: 0.0007731914520263672 +PROF:: Bucket contains: [E1851(v_1852,v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] +PROF:: perf data process bucket time: 0.0008180141448974609 +PROF:: Bucket contains: [XPhase(v_1853,v_1858), E1852(v_1853,v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 16384 output: 8192 + After debug_mkl_contract_sum, duration: 0.0001068115234375 +PROF:: perf data process bucket time: 0.0003962516784667969 +PROF:: Bucket contains: [XPhase(v_1854,v_1857), E1853(v_1854,v_1855,v_1856,v_1857,v_1858,v_1859,v_1860,v_1861,v_1862,v_1863,v_1864,v_1865,v_1866)] + Starting debug_mkl_contract_sum, input sizes: 4 8192 output: 4096 + After debug_mkl_contract_sum, duration: 5.7697296142578125e-05 + +[... And some boring mostly summation operations while we eliminate the final clique ...] + + 83%|████████▎ | 5/6 [00:23<00:06, 6.31s/it]PROF:: Bucket contains: [M(v_0,v_277)] From 1a47e7a74c6fa05dc4c2a544d722663344dc6884 Mon Sep 17 00:00:00 2001 From: Danil Date: Sun, 11 Oct 2020 00:16:40 +0000 Subject: [PATCH 087/104] fix import and compile of mkl backend --- qtensor/DebugFrameworks.py | 3 +++ qtensor/ProcessingFrameworks.py | 2 ++ qtensor/__init__.py | 1 + scratchpad/cpp_connections/vanilia/nparray/setup.py | 1 + 4 files changed, 7 insertions(+) diff --git a/qtensor/DebugFrameworks.py b/qtensor/DebugFrameworks.py index e9e3e225..c15f2655 100644 --- a/qtensor/DebugFrameworks.py +++ b/qtensor/DebugFrameworks.py @@ -136,6 +136,9 @@ def merge_with_result(result_data, result_indices, tensor): result = opt.Tensor(f'E{tag}', result_indices, data=result_data) return result + def get_result_data(self, result): + return result.data + class DebugMKLBackend(PerfBackend): Backend = _CMKLExtendedBackend # Just use print by default diff --git a/qtensor/ProcessingFrameworks.py b/qtensor/ProcessingFrameworks.py index c157da31..2e14cdda 100644 --- a/qtensor/ProcessingFrameworks.py +++ b/qtensor/ProcessingFrameworks.py @@ -213,6 +213,8 @@ def process_bucket_pyrofiler(self, bucket, no_sum=False): def process_bucket(self, bucket, no_sum=False): indices = [tensor.indices for tensor in bucket] start = time.time() + if self._print: + print(f"PROF:: Bucket contains: {bucket}", file=sys.stderr) result = self.backend.process_bucket(bucket, no_sum=no_sum) end = time.time() duration = end - start diff --git a/qtensor/__init__.py b/qtensor/__init__.py index 15922cc3..54846c99 100644 --- a/qtensor/__init__.py +++ b/qtensor/__init__.py @@ -14,6 +14,7 @@ from qtensor.QAOASimulator import QAOACirqSimulator from qtensor.FeynmanSimulator import FeynmanSimulator from qtensor.ProcessingFrameworks import PerfNumpyBackend, NumpyBackend +from qtensor import DebugFrameworks class CirqQAOAComposer(QAOAComposer): def _get_builder_class(self): diff --git a/scratchpad/cpp_connections/vanilia/nparray/setup.py b/scratchpad/cpp_connections/vanilia/nparray/setup.py index d9938555..470bff09 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/setup.py +++ b/scratchpad/cpp_connections/vanilia/nparray/setup.py @@ -20,6 +20,7 @@ ] extra_compile_args = ['-I','/opt/intel/mkl/include' + ,'-std=c++11' ,'-m64' ,'-fopenmp' ] From 7acfe239fbc24f40add6d56e37e1e18804799f58 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 21:35:56 -0500 Subject: [PATCH 088/104] add tamaki-time cli arg to qaoa_energy_tw --- qtensor/cli.py | 5 +++-- qtensor/toolbox.py | 15 +++++++++------ 2 files changed, 12 insertions(+), 8 deletions(-) diff --git a/qtensor/cli.py b/qtensor/cli.py index b1343ba1..02bdf4aa 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -185,7 +185,8 @@ def generate_qaoa_energy_circuit(seed, degree, nodes, p, graph_type, edge_index) @click.option('-T','--max-time', default=0, help='Max time for every evaluation') @click.option('--max-tw', default=0, help='Max tw after wich no point to calculate') @click.option('-O','--ordering-algo', default='greedy', help='Algorithm for elimination order') -def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, ordering_algo): +@click.option('--tamaki_time', default='greedy', help='Algorithm for elimination order') +def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, ordering_algo, tamaki_time): np.random.seed(seed) if graph_type=='random_regular': G = nx.random_regular_graph(degree, nodes) @@ -194,7 +195,7 @@ def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, orderin else: raise Exception('Unsupported graph type') - qaoa_energy_tw_from_graph(G, p, max_time, max_tw, ordering_algo, print_stats=True) + qaoa_energy_tw_from_graph(G, p, max_time, max_tw, ordering_algo, print_stats=True, tamaki_time=tamaki_time) cli() diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index f7015488..1d0c8444 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -34,12 +34,14 @@ def random_graph(nodes, type='random', **kwargs): -def optimize_circuit(circ, algo='greedy'): +def optimize_circuit(circ, algo='greedy', tamaki_time=15): + # Should I somomehow generalize the tamaki-time argument? provide something like + # Optimizer-params argument? How would cli parse this? if algo=='greedy': opt = OrderingOptimizer() elif algo=='tamaki': - opt = TamakiOptimizer(wait_time=45) + opt = TamakiOptimizer(wait_time=tamaki_time) elif algo=='without': opt = WithoutOptimizer() else: @@ -49,8 +51,8 @@ def optimize_circuit(circ, algo='greedy'): peo, tn = opt.optimize(tn) return peo, tn, opt -def get_tw(circ, ordering_algo='greedy'): - peo, tn, opt = optimize_circuit(circ, algo=ordering_algo) +def get_tw(circ, ordering_algo='greedy', tamaki_time=15): + peo, tn, opt = optimize_circuit(circ, algo=ordering_algo, tamaki_time=tamaki_time) treewidth = opt.treewidth return treewidth @@ -96,11 +98,12 @@ def qaoa_energy_cost_params_stats_from_graph(G, p, max_time=0, max_tw=None, def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, - ordering_algo='greedy', print_stats=False): + ordering_algo='greedy', print_stats=False, + tamaki_time=15): twidths = [] with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: for circuit, subgraph in qaoa_energy_lightcone_iterator(G, p, max_time=max_time): - tw = get_tw(circuit, ordering_algo=ordering_algo) + tw = get_tw(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) pbar.update() pbar.set_postfix(current_tw=tw, subgraph_nodes=subgraph.number_of_nodes()) if max_tw: From 6f52383f7551147dbff379b9c2b50be3cb81e3e1 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 21:40:52 -0500 Subject: [PATCH 089/104] fix data type in tamaki time arg --- qtensor/cli.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/qtensor/cli.py b/qtensor/cli.py index 02bdf4aa..c226e5e1 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -185,7 +185,7 @@ def generate_qaoa_energy_circuit(seed, degree, nodes, p, graph_type, edge_index) @click.option('-T','--max-time', default=0, help='Max time for every evaluation') @click.option('--max-tw', default=0, help='Max tw after wich no point to calculate') @click.option('-O','--ordering-algo', default='greedy', help='Algorithm for elimination order') -@click.option('--tamaki_time', default='greedy', help='Algorithm for elimination order') +@click.option('--tamaki_time', default=20, help='Algorithm for elimination order') def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, ordering_algo, tamaki_time): np.random.seed(seed) if graph_type=='random_regular': From d0d5ad9e896ba82f3b266523021ee5c6a5b649d1 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 22:42:52 -0500 Subject: [PATCH 090/104] [jlse-run] add tamaki to time-vs-flops, use a different fitting method --- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 639 ++++++++++++-------- analysis/spec/qtensor_specs/time_vs_flop.py | 40 +- run/automake/qsub_entry.sh | 2 +- 3 files changed, 410 insertions(+), 271 deletions(-) diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index e9e1a82b..f1b535c6 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -7,7 +7,7 @@ }, "source": [ "

Table of Contents

\n", - "
" + "" ] }, { @@ -27,8 +27,8 @@ "execution_count": 1, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:09:49.685884Z", - "start_time": "2020-10-09T12:09:44.521036Z" + "end_time": "2020-10-11T03:32:44.317870Z", + "start_time": "2020-10-11T03:32:41.940108Z" } }, "outputs": [], @@ -37,6 +37,7 @@ "import sys\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "import scipy\n", "\n", "import qtensor as qt\n", "from cartesian_explorer import Explorer" @@ -47,8 +48,8 @@ "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:09:49.693502Z", - "start_time": "2020-10-09T12:09:49.687338Z" + "end_time": "2020-10-11T03:32:44.323932Z", + "start_time": "2020-10-11T03:32:44.320677Z" } }, "outputs": [], @@ -64,8 +65,8 @@ "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:09:49.709455Z", - "start_time": "2020-10-09T12:09:49.697804Z" + "end_time": "2020-10-11T03:32:44.352129Z", + "start_time": "2020-10-11T03:32:44.339056Z" } }, "outputs": [], @@ -100,53 +101,170 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:10:25.614936Z", - "start_time": "2020-10-09T12:10:25.607910Z" + "end_time": "2020-10-11T03:32:45.497342Z", + "start_time": "2020-10-11T03:32:45.491342Z" } }, "outputs": [], "source": [ "N = 1000\n", - "p = 4\n", + "p = 3\n", "edge_idx = 28\n", + "degree = 4\n", " " ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:11:20.886351Z", - "start_time": "2020-10-09T12:10:57.276722Z" - }, - "scrolled": false + "end_time": "2020-10-11T03:32:46.435411Z", + "start_time": "2020-10-11T03:32:46.164940Z" + } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Line graph nodes 1671\n" + ] + } + ], "source": [ - " \n", "gamma, beta = [.1]*p, [.3]*p\n", - "graph = qt.toolbox.random_graph(nodes=N, degree=4, seed=108)\n", + "graph = qt.toolbox.random_graph(nodes=N, degree=degree, seed=108)\n", "\n", "comp = qt.QtreeQAOAComposer(graph, gamma=gamma, beta=beta)\n", "\n", "comp.energy_expectation_lightcone(list(graph.edges())[edge_idx])\n", "tn = qt.optimisation.TensorNet.QtreeTensorNet.from_qtree_gates(comp.circuit)\n", + "line_graph = tn.get_line_graph()\n", + "print('Line graph nodes', line_graph.number_of_nodes())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Using greedy optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-11T03:32:49.121865Z", + "start_time": "2020-10-11T03:32:48.199388Z" + }, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "treewidth 21\n" + ] + } + ], + "source": [ "opt = qt.optimisation.Optimizer.DefaultOptimizer()\n", "peo, _ = opt.optimize(tn)\n", + "print('treewidth', opt.treewidth)\n", + "if opt.treewidth > 100:\n", + " raise Exception('Too large treewidth')\n", "costs, mems = tn.simulation_cost(peo)" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-11T03:32:50.149626Z", + "start_time": "2020-10-11T03:32:49.123067Z" + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total FLOPS=0.034049645 G, Memory=0.033554432 G\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA80ElEQVR4nO3deXzU9Z348dd7roQchFOUM9yCSEEQsGqNV9VuqbZ1q+jWo7as7Vp77PZX3V62u7ba7bb12rXaxasVxGqtB67WaqpuUfFARQE5DBBAjkAg91zv3x/znWQSZiYzyWSO5P18PPJg5nu+55vwfc/n+H4+oqoYY4wZ2Fy5DsAYY0zuWTIwxhhjycAYY4wlA2OMMVgyMMYYgyUDY4wxWDIwSYjIpSLybB8d+14R+fde7N8oIpMyGZMxA5klgwFORE4Rkb+JyCEROSAi/yciJwKo6u9V9ZN5EGO1iHw5dpmqlqnq1lzFlKp4secLEakRkbNyHYfJD55cB2ByR0QGA08CXwVWAj7gVKAtl3GZnhERj6oGcx2HKUxWMhjYpgGo6nJVDalqi6o+q6rvAIjIFSLycnRjEVER+ZqIbBKRBhH5NxGZ7JQsDovIShHxxds3Zv8pXYMQkaEi8qSI7BORg87rsc66G4kkqNudqqHbux5LRCpE5H5n/20i8n0RccXGISK/cI79oYicl+iCiMg4EXnUOVZdzPlcznG3iche53wVzrpiEfmds329iKwRkVGJYu9yvkrnsywVkV0isltE/iVmvUtErhORLc7xV4rIsC77XiUi24Hn4xx/hHM9652S30vOMR8AxgNPOLH9P2f7Rc7vs15E3haRqphjVYvIz0TkNef3/adoLKYfUFX7GaA/wGCgDrgPOA8Y2mX9FcDLMe8V+JOz33FEShB/ASYBFcD7wOXx9o3Zf4rz+l7g353Xw4HPAyVAOfAw8FjMftXAl5Mc634nrnKgEvgAuComjgDwFcBNpBS0C5A418MNvA38CigFioFTnHVfAjY7n7UMeBR4wFn3j8ATTvxuYB4wOFHsXc5Z6XyW5c45jwf2AWc5678BvAKMBYqA3wDLu+x7v7PvoDjH/xlwJ+B1fk6NfnagJnoe5/0Y5+/hU0S+KJ7tvB8Z81l2ArOc8z0C/C7Xf8f2k5kfKxkMYKp6GDiFyA3lbmCfiDwuIqOS7PZzVT2squ8B64BnVXWrqh4Cngbm9iCOOlV9RFWbVbUBuBE4LZV9RcQNXAxcr6oNqloD/CfwxZjNtqnq3aoaIpL4jgHifcYFwGjgO6rapKqtqhot3VwK/NL5rI3A9cDFIuIhkmyGE0lOIVV9w7m26fixc853gXuAJc7yq4HvqWqtqrYBNwAXOueNusHZtyXOcQPO552gqgFVfUlVEw1I9g/AKlVdpaphVf0z8DqR5BD1gKquU9Um4AfAF5zfgSlwlgwGOFVdr6pXqOpYIt/4RgO/TrLLnpjXLXHel6Ubg4iUiMhvnCqYw8CLwJAUbzIjiHzj3RazbBuRb7lRH0VfqGqz8zJenOOIJI549e6j45zDQySpPAA8A6xwqnp+LiLeFGKPtaPLsUc7rycAf3SqbeqB9UCIzsksdt+u/oNIieZZEdkqItcl2XYC8PfRcznnO4VIMkkUp5fI78AUOEsGpp2qbiBSfTMrA4drIlJtAoCIHJ1k238GpgMLVXUw8InobtHQkuy7n8i33wkxy8YTqc5I1w5gfJdv3VG74pwjCOxxvnH/WFVnAh8HPg1clkLsscZ1OfaumJjOU9UhMT/Fqhr7+RKewykt/bOqTgI+A3xbRM5MsN8OIt/8Y89Vqqo3JYkzQOR3YAqcJYMBTESOFZF/jmmsHUekeuKVDBz+beA4EZkjIsVEqjcSKSdSqqh3GiR/1GX9HiJ19Udwqn5WAjeKSLmITAC+DfyuBzG/BuwGbhKRUqdh+GRn3XLgWyIyUUTKgJ8CD6lqUEROF5HjnZLMYSI3yHB3sXfxA6eEdBxwJfCQs/xO57NNABCRkSJyfqofSEQ+LSJTRESAQ0RKFYli+x2wWETOERG38/mron8fjn8QkZkiUgL8BPiD8zswBc6SwcDWACwEXhWRJiJJYB2Rb+q9oqofELlZPAdsAl5OsvmvgUFEvmG+Avxvl/W3EKknPygit8bZ/+tESiJbnfM8CCzrQcwhYDEwBdgO1AIXOauXEakOehH4EGh1zgtwNPAHIolgPfBXZ9tUYo/6K5HqnL8Av1DV6MN+twCPE6nmaSByfRam8bGmEvkdNAKrgf9S1RecdT8Dvu9UCf2Lqu4Azgf+lUgj9g7gO3S+TzxApPT4EZEG9mvTiMXksWivAmNMDohIJZHk4k3QVpE3RKSaSO+h3+Y6FpN5VjIwxhhjycAYY4xVExljjMFKBsYYY8iTgepGjBihlZWVPdq3qamJ0tLSzAaUBYUYdyHGDBZ3NhVizFCYcTc1NbFhw4b9qjoyIwfM9XgYqsq8efO0p1544YUe75tLhRh3IcasanFnUyHGrFqYcb/wwgsKvK79YWwiEVksIncdOnQol2EYY8yAZ20GxhhjcpsMVPUJVV1aUVGRyzCMMWbAy4sG5HgCgQC1tbW0trYm3a6iooL169dnKarMyXTcxcXFjB07Fq833cEyjTEmx8lARBYDi6dMOWLyK2praykvL6eyspLIGFvxNTQ0UF5e3odR9o1Mxq2q1NXVUVtby8SJEzNyTGPMwJK31UStra0MHz48aSIwESLC8OHDuy1FGWNMInndm8gSQersWhljeiNvSwbGGNOfPFLXxL5A/k79YF1Lk7j11luZMWMGY8aM4Zprrsl1OMaYAnUwGOILH+xn8fq9uQ4lobztTZQP/uu//ovnnnuO5557jtdffz3X4RhjClTQGQ90a1v+TlmR120GuXT11VezdetWzjvvPA4ePNi+vKamhjPOOIPZs2dz5plnsn37dgCuuOIKrr76aubPn8+0adN48sknAXjvvfdYsGABc+bMYfbs2WzatCknn8cYkzvRG204jweJzmnJQFWfAJ6YP3/+V5Jtt+9/bqXtw81x14VCIQ653Wmfu2jiFEZelXjGvjvvvJP//d//5YUXXmi/sQN8/etf5/LLL+fyyy9n2bJlXHvttTz22GNAJFG89tprbNmyhdNPP53Nmzdz55138o1vfINLL70Uv99PKJS/dYbGmL7hdjp4HAyF+cqWOu6ePDzHER3J2gzStHr1ai655BIAvvjFL/Lyyx1T+37hC1/A5XIxdepUJk2axIYNGzjppJP46U9/ys0338y2bdsYNGhQrkI3xuRIbF+/ZXsbcxZHMgXRZpDsG3w+PXTWtXuniHDJJZewcOFCnnrqKT71qU/xm9/8hjPOOCNHERpjciGPa4faWZtBmj7+8Y+zYsUKAH7/+99z6qmntq97+OGHCYfDbNmyha1btzJ9+nS2bt3KpEmTuPbaazn//PN55513chW6McYkZM8ZpOm2227jnnvuYfbs2TzwwAPccsst7evGjx/PggULOO+887jzzjspLi5m5cqVzJo1izlz5rBu3Touu+yyHEZvjMkFLYCyQUFUE+VKTU0NEOkpdMUVVwAwYcIEnn/++bjbn3XWWdx5552dll133XVcd911fRmmMSbPFcJU89aAbIwxxkoGmXLvvffmOgRjTJ4qgIJB5pOBiJwKXOoce6aqfjzT5zDGmEJSCMkgpWoiEVkmIntFZF2X5eeKyEYR2Swi1wGo6kuqejXwJHBf5kM2xpjC0m+SAXAvcG7sAhFxA3cA5wEzgSUiMjNmk0uABzMQozHGmD6WUjJQ1ReBA10WLwA2q+pWVfUDK4DzAURkPHBIVRsyGawxxhSiQigZ9KbNYAywI+Z9LbDQeX0VcE+ynUVkKbAUYNSoUVRXV3daX1FRQUND97kkFAqltF2+6Yu4W1tbj7iOmdTY2Ninx+8rFnf2FGLM0PdxH8AFRRPa32fiXI2NmR3Wok96E6nqj1LY5i4R2Q0sLi8vn1dVVdVp/fr161MaZiKfhqNIRzpxB4NBPJ7uf1XFxcXMnTu3t6ElVF1dTdffUyGwuLOnEGOGvo97jz8Eb9S2v8/EuTKdvHrznMFOYFzM+7HOsn6jpqaGY489liuuuIJp06Zx6aWX8txzz3HyySczdepUXnvtNZqamvjSl77EggULmDt3Ln/605+ASFfTCy64gLPPPpvKykpuv/12fvnLXzJ37lwWLVrEgQORWre1a9eyaNEiZs+ezWc/+9n24bKrqqr45je/yfz587nxxhuZOHEigUAAgMOHD3d6b4zJTw2hME8fbOHdZn+uQ+lWb0oGa4CpIjKRSBK4mEijccpSHcL6Wx8e4O0EFzMYDOHxNKVzWgA+VuLjVxOHdbvd5s2befjhh1m2bBknnngiDz74IC+//DKPP/44P/3pT5k5cyZnnHEGy5Yto76+ngULFnDWWWcBsG7dOt566y1aW1uZMmUKN998M2+99Rbf+ta3WL58Oddddx2XXXYZt912G6eddho//OEP+fGPf8yvf/1rAPx+f/ukOjU1NTz11FNccMEFrFixgs997nN4vd60P7cxJnuu3FzHHw805zqMlKTatXQ5sBqYLiK1InKVqgaBa4BngPXASlV9L52TF8JAdRMnTuT444/H5XJx3HHHceaZZyIiHH/88dTU1PDss89y0003MWfOHKqqqmhtbW2f8Ob000+nvLyckSNHUlFRweLFiwE4/vjj2b59O4cOHaK+vp7TTjsNgMsvv5wXX3yx/dwXXXRR++svf/nL3HNPpBnmnnvu4corr8zWJTDG9NAHLYVTek+pZKCqSxIsXwWs6unJUy0ZJPsG39dtBkVFRe2vXS5X+3uXy0UwGMTtdvPII48wffr0Tvu9+uqr3e7bndLS0vbXJ598MjU1NVRXVxMKhZg1a1avPpcxpu9J95vkDRvCupfOOeccbrvtNtQZieqtt95Ked+KigqGDh3KSy+9BMADDzzQXkqI57LLLuOSSy6xUoExBUIKKBvYENa99IMf/IBAIMDs2bM57rjj+MEPfpDW/vfddx/f+c53mD17NmvXruWHP/xhwm0vvfRSDh48yJIlcQtqxhjTYzkdqE5EFgOLp0yZksswEqqsrGTduo4ROGIHo4td95vf/OaIfWOHvYaO4bCj6z7/+c8DMGfOHF555ZUj9o/Xbezll1/mwgsvZMiQIel9EGNMThRQwSC3ySDVNgMDX//613n66adZtarHTTTGmCx6/lAL7zT3swZkk3u33XZbrkMwxqTh7Pf35jqEtOR1A7IWwvRAecKulTGmN/K2Abm4uJi6ujq7yaVAVamrq6O4uDjXoRhjClTeVhONHTuW2tpa9u3bl3S71tbWgrwJZjru4uJixo4dm7HjGWMGlrztTeT1epk4cWK3x6iuru7Twdn6SqHGbYzpn/K2msgYY0z25DQZGGOMyQ+WDIwxxlgyMMYYk+fPGRhjjMkOa0A2xhhj1UTGGGMsGRhjjMGSgTHGZJ2Gw7kO4QgZfwJZRFzAvwGDgddV9b5Mn8MYY/LZfXsbk28QCoErv76LpxSNiCwTkb0isq7L8nNFZKOIbBaR65zF5wNjgQBQm9lwjTEm/31pS13S9flYMkg1Nd0LnBu7QETcwB3AecBMYImIzASmA39T1W8DX81cqMYY00+EQ7mO4AiS6hDRIlIJPKmqs5z3JwE3qOo5zvvrnU13AH5VXSkiD6nqRQmOtxRYCjBq1Kh5K1as6NEHaGxspKysrEf75lIhxl2IMYPFnU2FGDNkPu4zi5IPsvn84ffRokG9OkdjYyOLFy9+Q1Xn9+pAjt60GYwhcuOPqgUWArcAt4nIqcCLiXZW1btEZDewuLy8fF5VVVWPgqiurqan++ZSIcZdiDGDxZ1NhRgz9EHcq7clXX3KSSfhHjykV6eIN096b2S8AVlVm4GrUtzW5kA2xgw4Gsq/aqLeNGfvBMbFvB/rLEuZDUdhjBmIwsFgrkM4Qm+SwRpgqohMFBEfcDHweGbCMsaY/stfqMlARJYDq4HpIlIrIlepahC4BngGWA+sVNX30jm5jU1kjBmI/IH8SwYptRmo6pIEy1cBq3p68mTTXhpjTH/VFsq/ZGCjlhpjTJa15WHJwOYzMMaYLAsUaptBX7GSgTFmIPL3s66lxhhjHE8fbOGh/U0pbdsWtGTQiVUTGWP6i09v2Mslm/antK1VE3Vh1UTGmP4glOIYb1FtocIdtdQYY0wCd+3pZv6CLgLWZtCZVRMZY/qDA2m2AfgLeD6DPmHVRMaYQnb3ngYu37Qft0ha+/mtmsgYY/qPq7ce4Hf7m3CnuZ91LTXGmH5ibZO//XXaJQOrJjLGmP5ha2tH99DYG2kqs0cGwun1PsoGa0A2xpgecEn816lUALVZyaAza0A2xhSq2Iqhg8GOm3sqX/qtZGCMMf1EbDL4SW1H7UYqD6D5LRkYY0z/kKjJOJVqIn+aTyxngyUDY4zpAVeCbBBK4T4fHAglAxGpEpGXROROEanK9PGNMSYfSIKyQZgUqonyLxekPAfyMhHZKyLruiw/V0Q2ishmEbnOWaxAI1AM1GY2XGOMyQ837KiPuzxRyaA40IZ/0XigsKuJ7gXOjV0gIm7gDuA8YCawRERmAi+p6nnAd4EfZy5UY4zJH2/EPHQWK1EyCLnc7Q+nHXR5+yqsHpNUHpAAEJFK4ElVneW8Pwm4QVXPcd5fD6CqP3Pe+4AHVfXCBMdbCiwFGDVq1LwVK1b06AM0NjZSVlbWo31zqRDjLsSYweLOpkKMGXoW95lFE+Muf6htOxcVjY+77i9tH7bv95e2D9MLsovGxkYWL178hqrO79WBHJ5e7DsG2BHzvhZYKCKfA84BhgC3J9pZVe8C7gKYP3++VlVV9SiI6upqerpvLhVi3IUYM1jc2VSIMUMP4169Le7iRSedBG/ujLuuqqqqfb/eXqfq6upe7d9Vb5JBXKr6KPBoKtuKyGJg8ZQpUzIdhjHG5ET+DUGXmt70JtoJjIt5P9ZZZowxA1a6s57li94kgzXAVBGZ6LQPXAw8ns4BbDgKY0x/UxfMv3GHUpFq19LlwGpguojUishVqhoErgGeAdYDK1X1vXRObgPVGWP6m0XvfhR3+WUjS7McSXpSajNQ1SUJlq8CVmU0ImOM6WfaFo1vnwDnK3s/4P5hlbkMJy4btdQYY/qYRwRxnjEYJEpY8m8koPyLyBhj+jGvQMDtSWkSnGyyyW2MMSaLPE6pIN+ama2ayBhjssjlitx2Q3k2cqmVDIwxJotcztjXoXB+PZ5mJQNjjMmi6GB1oZAlA2OMGbBcTjIIBy0ZGGNMv3d1ww72zB/Le3NGd1reXjKwaqIO1mZgjOmvFrYdZoTXzbGDOs9dEG0zCFs1UQdrMzDG9FeSYI5kl9O1NGjJwBhj+j9JkA3c0d5EwWA2w+lWxuczMMaY/uyVhjZaU3hGIEHBoL1kkG/VRDlNBja5jTGmEKgq7zQH+Fipj5PXxR+V9AjdlQzyLBlYm4ExxnTjgf1NnPDObp482JzyPgnbDJwnkMPh/BqQwtoMjDGmG280+gHY2ppOPX/8bOCykoExxhSmaBtBkStRS8CREm3pjrYZ2HMGxhhTWFqcZDCom2QwrOkw3mAA6HjSuKv2gepCA6CaSERKReR1Efl0XxzfGGOyKVoy+Mif/Nu8S8OokwQS9iZqTwYFWDIQkWUisldE1nVZfq6IbBSRzSJyXcyq7wIrMxmoMcb0pV3+IC8ebo27rtWZiOb67fVJj+HSMCHnZp+4N1EBJwPgXuDc2AUi4gbuAM4DZgJLRGSmiJwNvA/szWCcxhjTp+a8vZvT39sDQF0gRE1MY3EqzxVA5Fu/Om0CiR466xjCOr+qiVJ6zkBVXxSRyi6LFwCbVXUrgIisAM4HyoBSIgmiRURWqWp+fWpjjOmiLthxm5r45k6awkropAlA6snAHTOVZcIGZKdkoHnWgNybh87GADti3tcCC1X1GgARuQLYnygRiMhSYCnAqFGjqK6u7lEQjY2NPd43lwox7kKMGSzubCrEmCESN0WR19XV1TQVTWx/DbDPOxpcRd0eR2Ju8Lt27Yp7LWoOt8DImWzYsJGGww29izmD+uwJZFW9t5v1d4nIbmBxeXn5vKqqqh6dp7q6mp7um0uFGHchxgwWdzYVYsxAp5t2VVUVrN7W8Rrwrt0FLYFuj+ONqRoaM3Zs3Gux9/1NcAgmT57MooULMxJzJvSmN9FOYFzM+7HOMmOM6VcCmlo1kSR4HcvjcgPgz7M2g94kgzXAVBGZKCI+4GLg8XQOYMNRGGMKQaLb9pCWBm7yd4xV5CamzSBBNvC5I7fdQCEmAxFZDqwGpotIrYhcpapB4BrgGWA9sFJV30vn5Da5jTEmn4WcEkGi9uOwuNpnLovoeC0S//bqcxqQA4X40JmqLlHVY1TVq6pjVfV/nOWrVHWaqk5W1RvTPbmVDIwx+UZjqoS+7zxXkKiSqMTfygZPcfv7TeXD218nqiaKlgz8KfZQyhab9tIYY2LE3qKfPxR5CC2cIB0MbmumxjMo7rqEycAT6bdjySCGlQyMMfnG+8r29tdu546etP3YHb9TprgSVBM5ySBQoE8g9wkrGRhjcuXG2nr+bUc9AIk6jXqc9oBEuUBKy9AEN31JsJfP0/96E/WalQyMMbnywx2HuKE28kW0HnfcbTwCjaEwOxIMUKcihBM0FJOoAdkpGbRZNZExxuSXRLdlF3D3nmRP+gpXDPEmWBNfkTeyfUF2Le0rVk1kjMkHiZJBSGFPIHnd/oVDOnoTXbt3Y/vrhM8ZtFcTWcmgnVUTGWPygSb4Hh8k8Tf8yH7g83WUDNyuNJ4zyK9c0HdjExljTKH4D++IuMv/1tDG3xraEu6ngMsbkwwSFQdi+Jxt/Hk2mLNVExljBry1rvjPCnRHxNWpa6krpmdRwmoiZ7k/z0oGVk1kjBnQvrhpf8939vk6PU8QmwxcCaqJvE5Vkj+/CgbWm8gYM7A9uL+px/tKSWmn956Y0kCikoEbEA2nPBJqtlgyMMYMOA29GCROktT1u1wxzyskSAYigjccSvigW65YMjDGDDhDXtvR/UYJuGOeD/jE4OLO62J7EyW5vXrDYfw9jqBvWAOyMWbA2Noa4Ni3ejcHl9cZU2hQoI3bJg7rtM6dQgMyECkZ5FctkTUgG2MGjk+s28Om1mCvjuENR/avPLgHn6vzHd8TU02UrJNppJqo+26o2WTVRMaYAaEhFGZ3N08Tp8IbiiSDYJwB6lzumGUJBrAD8GoYvyUDY4zpnUBY+cctddS2pf4tf3ovq4eifKFI02/AdeTgdrEPnSUtGWiYoCUDY4zpnWcOtfDbvY18deuBlPfZE8hMx35fe8ngyGTgcsdWEyW+2Q+IkoGIzBCRO0XkDyLy1Uwf3xhjXM6NNNEMZH3JmyQZeDo1ICdLBoo/haErsimlZCAiy0Rkr4is67L8XBHZKCKbReQ6AFVdr6pXA18ATs58yMaYgS564wrloEdOspKBO7bNIMnN3lfA1UT3AufGLhARN3AHcB4wE1giIjOddZ8BngJWZSxSY4xxRKejzMWIDkXO5DRBd7ySQceyJO3HTskgv2rpUxq1VFVfFJHKLosXAJtVdSuAiKwAzgfeV9XHgcdF5CngwXjHFJGlwFKAUaNGUV1d3aMP0NjY2ON9c6kQ4y7EmMHizqZsxfyuFIPvGA4cPEh19frUdiqamJFzu5znDIIud8dndY69c8d2GDkDgM0fbCZ0+HDcY2jATZvSq2vV2Jhs0p309WYI6zFA7GN8tcBCEakCPgcUkaRkoKp3ichuYHF5efm8qqqqHgVRXV1NT/fNpUKMuxBjBos7m7IVsx5qhff3UDFkCFXHHZvaTqu3ZeTcpc7kNEGXm6pPVHU69rTJk8G5/0+bPo2T586Jf4z/fYWGcJiqqtN6HEemk27G5zNQ1WqgOsVtnwCemD9//lcyHYcxpv+KVrCkOlmYZnBQOJ/TaB1wH3n7jM5ilsoxAnlWTdSbaHYC42Lej3WWpcyGozDG9IQrzTaDTLYz+yRytFCcBuSi2CeQk/UmIv5zCrnUm2SwBpgqIhNFxAdcDDyembCMMSax6I3r5YY2dqbw4Nnzh1ozdu6iJOtiSwZJk4EUaMlARJYDq4HpIlIrIlepahC4BngGWA+sVNX30jm5jU1kjOmJ2Cd9v7SlLum2jx1o5pz1ezN2bl+SckZRTNdSV7KupeRfySDV3kRLEixfRS+6j4rIYmDxlClTenoIY8wAt6El+cwA29MYsiIVviTzGfhiE0DSkkH+JQMbtdQYU3BinzyuD4a55IN9vN105AwBTxxo5u49me2Cmaxk4It95izZMUQIutxoqPcD52WKzWdgjCk4sZ2DGsPKQ3XN3Fh75H3kgo37eL+bkkOqRvqbAShKsWSQrM3AhxJwe9BgZkstvWElA2NMwYl3O24M9+3zyB9viLQ7eJNs44u9/ydJBh6XOMkgfya/zPhzBsYY09e6e75AVVlV35LRc0Zv9O5k1USdhrBOUjIQibQZhKxkAFg1kTGmZ+LdjmNvvbd+1MBnNuzL6DmjyUCSPMAWOwfykCR3V59LCHi8hAP5UzKwaiJjTEFoDSsNoTCtYe126OrVDW0ZP3/7t/4Un2Yem6TeJXqsQB5VE+XXUw/GGJNA6avbGfLaDk5b91G31UStqY5TkYbofMeSpAFZUuxa6nOGNPUHrJoIsGoiY0xqYscWer3JH7dcELusrS+SgXNzl2QN1ak+Z+AklragdS0FrJrIGJOarrffeLfjt5sC/HttPf9eW8+zGRx+IsoXfbo4STVRbKNx0q6lzrH8eVRNZL2JjDF5L9jl/hvvfvxRIMSPdqRey+AL+vF7fJ2W/dPR5dzxUUPc7aNTWiav2IkJLMnYQz6XC0IQCFjJwBhjUhbocvePlgweXXUH++rfJLBoPP6Yn6dnHNW+7YWt+9n48y8yY09Np2N8asOrnd4PazrMrROHtb+f2Hig03qvkwwCSbqMSiimzJJCm0GbdS01xpjk/GGlybm5di0ZhJxhHEL793D4jw/iEsEd8+ONuRFHb3KuLgml6/twl5u3u8v6aD1/11gAPOFIPBp7c08yHkW0msjaDBzWgGyMSWT8G7UMfm0HG1sCDF+zo9O6CzZFRip1qUKcBt3YG1vCh8S63Oy1y5zGXk/nWnTfoBIAwqVlRxzK6/Qwcnk6nk/2DBsZ/7yA1zlXwMYmirAGZGNMPKrKvmDkBrstyaij4QT18jHPfsUkgy4lgy7v1bnZRxUPH97pfemYyFxe7qkzjzifzxtpe/AM7ahmcpcPThh3ewOyJQNjjEks9rt+c5Juon6PJ2ndPHTc5KTLYYonTu1UkxPuUq8TrdeP8kSrieLU/0SrkFLt0Opzpsy0ZGCMMUnE1ss3hxLfYtvcvrhdi8Ktze2v/evfjbtv8eTpeGLu610rmzxdkky00qhrYzbQ3kYRSPH5hiJnRjR/sG8H10uHJQNjTCc72oJsbQ2wt0u3x+1tQT7I0HDQ3QnF3HDXNCYeWqLNE38M0fpnn2x/HW0oli7f2wU6NTR3vY97uhQAot/+A3Hu99F5DOKtiyfaZuAP9/OSgYhcICJ3i8hDIvLJvjiHMaZvzFy7i6lv7eKY12vbl9UHw0x8cycz1u5KenPOlNiSwa0J+v0DjD5cF7eaSP0dMUaTwMkfruu0zUnlRXxuWEc7wfnDBnVaf3ZF5/czB3nb9wMojjnv4qGR45S5haLktVZAx1zJbaH8KRmk/NCZiCwDPg3sVdVZMcvPBW4B3MBvVfUmVX0MeExEhgK/AJ7NaNTGmD4Tr46+LqYL5MaWACeWJZsWvveCzrf5y+u38cUT59Dk9uAVIaBKW0jZvfI+jlm3hmP3bYfhiXvtxLr2/x7hiosvoq28gjK3i4+VeFkyopSfjh/C31av5vwppwBQd+I4FKXC7eL8YYMY7HbhEeFon5stc8cwocjNRcNLOlUj/WflUL4zejAjvG4+mj+uPf5EijwewE+wj+dgSEc6TyDfC9wO3B9dICJu4A7gbKAWWCMij6vq+84m33fWG2MKWGz1R5Iq/IyJpp4Ja6qZ49/N0PMv6ohl3x62/XlF+/tg3T5qr/8awy//GoOOjXxP1TiNvG5VThg8CHd5cfsyn8CYIg8jCbUPRDfE01FhMrOk8xPKlcWRW+Ywb+duqB4RxhZF1g32dF/hEu226i/EkoGqvigilV0WLwA2q+pWABFZAZwvIuuBm4CnVfXNeMcTkaXAUoBRo0ZRXV2dfvRAY2Njj/fNpUKMuxBjBos7bUUT218+Wv0Sf180vtPqL22p40tbIv38vxXYz6fDHdU40ZiXuyv4rSfSzbJIw6zyb0vp1L/0DGd2uJW54VYoGo9Lw2zZspnG6mqGPf0wvt07aBszgdIu+7VuWMfO679GwOnb31w6HGacDXSef+ClV1+FOO0M2b7WOwIKZZPY8dFHvbr3ZVJvxyYaA8Q+DVILLAS+DpwFVIjIFFW9s+uOqnoXcBfA/PnztaqqqkcBVFdX09N9c6kQ4y7EmMHiTtvqjhu3Z/Y82Jh4kphfeUfwi5Pmtb+Pxvyv7+6GxsgE9W3iSvlznLl6G0+5B7PthDHw5k484RBTph9PxWmnseWWH0Zi2lAfd9/ShaeCK/KNvWhwx3AUAgy/7GoAppx1dtx9s32ttza2wLt7GTryqB6fN9PJq08GqlPVW4Fbu9tORBYDi6dMmdIXYZgMU+CarXX8957IN5Kbxg9h2d5GGkKKV+CxY4/ivz9qwC1QWeRhfJGHi0aU8sKhVj6/cS875o2l1N1RhL5hRz3/FmcS86hFZT7WNQeoqijmyYOdpzAU4LFjR/LpoSVx960PhvnutoN8dlgJK91DmNAa4Fe7GyhxCUd73TxxsJnhHjdLR5VxfImP09/7iJklPlZOG4Grm37rA0lPa4RaurQ7qGrSUTy7ijYgu8NhxOOBBKN7jv2PuyiecuwRy4cdaoH3I3MWD/m7zzM0ZsyhfNBeTVSgbQbx7ATGxbwf6ywz/VCteNsTAcB12+s7rT/hnd1H7HPRiFLOen8PAD/feZgfjx8CRG4OyRIBwCvON8uuiQAiN6l/23EoYTL4y6EWfru3kd/ubQTPUJ5e9xF7A3GGLRA4bXAxG1uDbGwNsr0t1F4vbKChh3XaXRuh2xSKu8kF4ZjqnGB0eIdwGNegEjTR9JApPLSVj6m9KPoEch/Mu9BTve1augaYKiITRcQHXAw8nurONhxFoendH64/5j97Ywb+E/hV0Zgf6LihdP1m2pig1bMuEO7Un3xfMERIlWDMccMx/wadn1DM63DM9tEYQs7yaH/5UMz6qLCzDUSSY9djh5z9gjHbAe3vY+OKHl9jjhfuElN0fShm/6iusUUdTOGhqGBs7M77rtf/cCjcabt4P7G/o2iXS4+G0HA4YTIINR7uNr581D7tZYpTaGZDOl1LlwNVwAgRqQV+pKr/IyLXAM8Q6Vq6TFXfS+OYVk1UQNw9+Lt1x9Q//3zXYX6+K/Kf9x9GdG0CTN87zQE8r2yPu+7LR3UeTCzRkAbPH27l+cMdE6EsevejXseVMUUTIcHny5Zv1hzsdpui2BgTxBz7zEIqZr8bKU16Q0EIBggH4j/bMOj4E+IuL4+pjjza5467TS55nS8g+VQySKc30ZIEy1cBq3pyclV9Anhi/vz5X+nJ/ia7Mvln+7v9Td1u85Wjyrh7b896TDxc1/3xh3lcHEhzOIDLRpZy/77uj91TS0aUsHx/c/cbZsEXhpcwq8TLpl0fcSAQor5iOGdUFPOHnXUcN7iE9/3KhcNLOpWsPvywhokTKxGEqRLkm1v2cbwXTh13dErnfLc5wGifm2Eaonn5bzm5Zh3Na8tp/Ft1p+3G/uJuiidPT3icE8uK+Nn4Iaxt8vPPoxMPGJcr0ZKBP39yQW5nOrOSQWEJZrlh9ZeVQ3ucDFL5T3ZWRTEr69K78V42soxH65ozUs0Vz8UjSvMmGSyfNpJg/UFqfrYUgNE//hVFQ6fxD9deyaCPzWfMDb88Yp/qzfVUjR0CQO31/8RfN0TGBZryxxfTOneoqYEP1zwNQOP/vXDEek8KD5r9vzH5W/0cTaD5M7WNDWFt0pDtUVS8vUg+va2LTXRmXx/nw3xp7IzeGDTob18Wqj+ABiLv/R9u7vYYbTXdb5OQ0zA8/PKvMvH+JymeMZuhX7iCySufY/LK5/AMya/eQekSEbyhoJUMoqxkUFhCWb5VubTn3e7izUbVlSRJGGVuoSFOo7PPlS+3677l1jBNr72Mr7Lj/2b9U4/Q9MYrQOIG50Q0FELcqdfdazDyndlVXIK7fDBjf3p7WucrBN5wCH/3m2WNlQxMykKJuvf1kQ8vPL1Pj98Qp/ohqjhBqaQ3pZVce2bGUbw1+5iUtpVQkN0/+9dOvXjaPnifxhf/HHmTSjKI6UMfLVGkSqOjeaaRQAqNNxxKeZTTbLBpL03qmvuu4TTfJLrp93U1Ub5wO20isdVEnaRQaoudDzh2FNGUONVE6ZQmCo1XwwTypmLQSgYmDaEC/lYcT9fx7WO5WuI3XDetegRN8DRsJjREv3n3gd0/+hY7vnlFSttGr422xb+JR6txkop5ICzceuSDg8locAAkg3A4r6qJ7FHLPjDlzZ18mGTeViDSH9vpg7+oLDIy4pkVg/iJ84RuvmkMhfn+sKm5DiOj3EkmFvEcrocu49sDND+xEu/lx8Og8j6Jqemvf4a/n9Mnx4bUG6jDTuLfc9vP4q7XtlZ2fPerRywfefgQO55+6Ijlu396PVJ05PVMpL0k0Z+TQZ6VDCwZ9IFuE0EXbQp7/CF+t78xb5PB+pYAh10doz1WtDRy2ta1ALR6inh54iw+tmsLqytnJThCZxMOfsTg1ibePWYylQd2UzOsc132KVvfYczP7uCuu3/BT866jNohR/GrP93Gq+NnMritmTm7NvG1z337iOMWB9po9RZxcu1GNlWMZG/5MMYd3MOOoaM6bbfqt99lzMfmsL9mHX+rnMU5G15j4Y71fFQ+jCEtjXzygzWc9Y+du05esO4l5n77+zxw9y95ctJcRh/ez+C2Zv4y5QSO21PDzadf0r7t6EP72VUxov39wm3v8+qEIydS7xrTwn+8luo1z/GJD9/m3aMnMSjQRsDt4ZZTL2zf7rQta/nr5DlHXM9tQ5P35T9xxwZcqhz30VbeO3oSJ9WsY/vQUbR6fNSVdi6d//G+7wPgGXEUgdojRxwtmjQNV8mRQ4Foa2v78kHHn0DLu29SNOVYXGVpJs+SEkoXnELxsan9PRWiSDLIn8kmrTdRHvhBcy2PaQl/dpd1v3GOHHaGB/jdg//OibUbs3LO4ouf57Stb/OXu/65fdmnNr7W/nrjz7+YcF9XSRnh5uTPKJQFjuWelTcnOIA77vG9p97B9LqdTNvZ0W3yUxteBeBLTr/43vC6hB89dx8Ap29Z2778a6v/1OtjRz16/49S2i7dZwMANlVXM6sAR4jNBa+G8edR1WtOk0F/fAI53S53AIeX/w+B6SfSNuOkpMd9uaGNU8qLOBxSatqCfKy088QbLxxq5b1mf3uXyFK3ENLIk8PN4TCbWoI0h5VR3si3kZawMqnYg1uEQDgynkz0Mf4d/iCtYaXU5WLaIA8374wMI1HmT6/ut1dcPa8iCPtbu98o2alLSgg3Hjndonh9cbbuh1z58421v/JpmKBVE/VfPekqNuTvPkdJfRv+JP8BH9jfxJWb63hgyghu3X2YNU1+govGtw8LfCAQah8dtC8d1Vjf5+eISmfI4yOk0sCZ7NwJbvoDJRmI224Nfc0D+CV/km7+RNJPtKU4Pvk9D93U/to7/Ch8Ph/BJN+EN7VEerBsaQ2wpinSByE28TRlacCr4c2FOUpkuhL1YhHvkbNkZVS+jGLZjxtu84WPMAFLBv1XIJjaoA1lbTHjz7hc+IBACtUisV+WY4cJ9ufLTSTDpDj1HijpKJm7kKI4k6K0r5+zIO5yd0kZJXNO7JuY5i3CM+Kozgs9mfuGfsz3bmbMjak9yVsyd2HGzmvi86rmVTKwBuQMa/P3rOewVyDkchNWTXmmreZwmAonnzf38LzpKq86h7JPnA2qiNuNq6QUV0kpofoDSPEggvv3Ejp0EA0G0EAAcblxlQ8mdGA/Gg7jKilBvEW4y8pwlZYT3LuboknTaNu6CVXFe/RoQnX78VVOBqDyrocJ7K7Fv3M7pfNOInhgP65Bg3CVDablnTcI1u1DvF7E7SHsb8M78miCdfvwDBuOq2ww/u1bWXeoiVlDI71ZfKPH49+1g8GnnwMeL4NmzSWwczu+CZNxlZa2PzXrGTaSoqkzEK8XV/Egwi3N+MaMx10xhFHf/AHB/XtxFRUhviL8O7fjPXo0jX+rJtRwCN/ocXhHjSbUcBgNBgjs3knJvEW0ffA+YX8b4aYGXKVluAcPIdzSgrhcaCDA4DPPQ7w+xv36XrxHHc3/PfM0CxcsQNxu2mq20LblA1ylZZTMXYB/+1bcg4fgr63BM3QEnmEjCOzeSai5ATRSsnFXDCW4fw+ukjLcQ4ZSOi/SJjX2578huG8P3jHj0NZWggfr0NZWNBxCXG5Uw5SfckZW/p4GMi8QyKO2GWtATtPqhjb+mGSky8OtPWu4jI5v/p1tB3HHaVR6uj7ScPtozLlv2HGICqfBd1dDZifHTmTwmX/HoFlzjlwxxpk0PcmwwskUTZoWd7m7fDDu8pkUT4t0y3QP7ugCWXbSad0ed9DM2QSqq6mI6eESG3/x5OkJh0Ku+OTiuMtdRUX4xnRM8Ddo8PFAZHrFZIrGT0y6vn27CZMACA0Zjm905DzeUaMpW3jqEccqmd0x/3Dx9ONSOn7x1BkwdUZK25q+48NKBgXtpp2HeOpgC4MSDVimSkVLI4cGJe4m+t0XHmTSgY4pIme5Q9QHmyhra+auPfGPG60Geq+l4+nXB2PnBNAwfT3m5bR9O9DSvqm2MWag8YqmVDWcLZYM0tS4q5bZ9Yd4eGX8JzPRMJpilU20H/uwn/yas9vqeeOWf2Tyo3+N24vGX7uNHd++inG/uoeWd9/k4GMPMuG/V7Rv27JhHTuv/1rPPlQaJMU6Z2NMclZNVODaWlrwEabi3AsSbtP89uv4uxnLPez14YoZyVE8kW8Igd21SJxGw/onVqIBP4dWPcKhVY8C4N9Rg6u4OPJ6+4fpfpS0tUyeQfGM4/v8PMYMBD6BgCt/bsEZj0REJgHfAypU9cLuti80AYQij5cRVyT/Fr75s59IuM49dDi7P/MPHHPfLZH3gytwOb1mtv/TpUmPG00EADu+cXmqYQMweeVzqCpbLzqbQR+bj3h9NL/+t4TbT/nji50+R92nl/Su778xpp0PCLrcac/10FdSSgYisgz4NLBXVWfFLD8XuAVwA79V1ZtUdStwlYj8oS8CzrWACGUpzAY89ue/ofGVF6k4ezGHnn4UVfAMG07wQB3DL76Sba+t4ahr/xUNBimaMBnvyKNxlw/pGMc9Dn9tDb6xlWjAT7BuP96jR3daH2o4hAaDeCqGAhA8WIe4XOByUzx1BuL1IcDYm+/EN64SVGl48c+4hw4n3NiAe8hQQvUHQZWSuZGulWN/cTctb79O+SfOpnbd+z2+bsaYzrwuIeByo6Fg4SQD4F7gduD+6AIRcQN3AGcDtcAaEXlcVfv1HSMgLrwpJIPiqTMivTaAEVdeE3ebwaef2/7aVVJKedUnMxNkd7FN6xgwLVl1F3TtbdOvf7XGZJVXwO/2RJ6W9xXlOpzUkoGqvigilV0WLwA2OyUBRGQFcD4p3jFEZCmwFGDUqFFUV1enGHJnjY2NPd63J9p0ENrW1utzZjvuTCjEmMHizqZCjBlyE3dTfQvBo0bw8l//SnjQkSPAdqexMbPdyXvTZjAG2BHzvhZYKCLDgRuBuSJyvarG7XajqneJyG5gcXl5+byqHox0uK5mG2tee4PKkdkb7bMh6KMs2ERP4o1VXV3d62NkWyHGDBZ3NhVizJCbuFdVv0rA7eGkBSfiHT4y7f0znbwy3oCsqnXA1Zk+bjzLN3zITePmQc/nTU9fKQxv3Z/FExpj+qMiEVRcBINB+njEq5T0JhnsBMbFvB/rLEtZb59AvvqEmUz+v9XMmJHdpynnnnByVs9njOl/fM4zBv5gkHx4lLM3yWANMFVEJhJJAhcDlyTfpbPejk007qijmDS0gpOOjT+UgTHG5CuPM4qBP8XBLftaSo+/ichyYDUwXURqReQqVQ0C1wDPAOuBlar6XjonV9UnVHVpRUVF9xsbY0w/UuSUDNqCgW62zI5UexMtSbB8FbCqpyfvj6OWGmNMKnxuF4QgECigkkFfsZKBMWag8raXDHo3K1+m5DQZiMhiEbnr0KFDuQzDGGOyzucMP98WsmRgJQNjzIAVTQbBkFUTGWPMgOVzxiNqC2bzQanErJrIGGNyIJoM/FZNZNVExpiBq6g9GVjJwBhjBiyvM4mVJQOsmsgYM3AV+SIjEgV9vhxHEmHVRMYYkwODKoYA4J6eH1PJWjWRMcbkgNeZQtav3U+WlQ2WDIwxJgd8zkB1gfzIBZYMjDEmF3yRXGAlA7AGZGPMwDXY7eLzw0oY58v4HGM9Yg3IxhiTAyO8blZOH8npFcW5DgWwaiJjjDFYMjDGGIMlA2OMMfRuDuS4RKQU+C/AD1Sr6u8zfQ5jjDGZleocyMtEZK+IrOuy/FwR2Sgim0XkOmfx54A/qOpXgM9kOF5jjDF9INVqonuBc2MXiIgbuAM4D5gJLBGRmcBYYIezWX7M2mCMMSYp0RQfeBCRSuBJVZ3lvD8JuEFVz3HeX+9sWgscVNUnRWSFql6c4HhLgaUAo0aNmrdixYoefYDGxkbKysp6tG8uFWLchRgzWNzZVIgxQ2HG3djYyOLFi99Q1fmZOF5v2gzG0FECgEgSWAjcCtwuIn8HPJFoZ1W9S0R2A4vLy8vnVVVV9SiI6upqerpvLhVi3IUYM1jc2VSIMUNhxl1dXZ3R42W8AVlVm4ArU9z2CeAJEfmsiGzr4SlHAPt7uG8uFWLchRgzWNzZVIgxQ2HGPQKYkKmD9SYZ7ATGxbwf6yxLm6qO7GkQIvJ6popJ2VSIcRdizGBxZ1MhxgyFGbcTc2Wmjteb5wzWAFNFZKKI+ICLgcczE5YxxphsSrVr6XJgNTBdRGpF5CpVDQLXAM8A64GVqvpe34VqjDGmr6RUTaSqSxIsXwWsymhE6bsrx+fvqUKMuxBjBos7mwoxZijMuDMac8pdS40xxvRfNjaRMcYYSwbGGGMKPBkkGBsp50RknIi8ICLvi8h7IvINZ/kNIrJTRNY6P5+K2ed653NsFJFzchh7jYi868T3urNsmIj8WUQ2Of8OdZaLiNzqxP2OiJyQg3inx1zPtSJyWES+mY/XOt4YXz25tiJyubP9JhG5PEdx/4eIbHBi+6OIDHGWV4pIS8x1vzNmn3nO39Zm57NJlmNO+28i2/eYBHE/FBNzjYisdZZn9lqrakH+AG5gCzAJ8AFvAzNzHZcT2zHACc7rcuADIuM33QD8S5ztZzrxFwETnc/lzlHsNcCILst+DlznvL4OuNl5/SngaUCARcCrefA38RGRB3Hy7loDnwBOANb19NoCw4Ctzr9DnddDcxD3JwGP8/rmmLgrY7frcpzXnM8izmc7L8sxp/U3kYt7TLy4u6z/T+CHfXGtC7lksADYrKpbVdUPrADOz3FMAKjqblV903ndQKTr7Zgku5wPrFDVNlX9ENhM5PPli/OB+5zX9wEXxCy/XyNeAYaIyDE5iC/qTGCLqiZ7mj1n11pVXwQOxIknnWt7DvBnVT2gqgeBP9NlEMlsxK2qz2qkeznAK0QeOk3IiX2wqr6ikbvV/XR81oxLcK0TSfQ3kfV7TLK4nW/3XwCWJztGT691ISeDeGMjJbvh5oREBvibC7zqLLrGKVovi1YJkF+fRYFnReQNiQwmCDBKVXc7rz8CRjmv8yluiDz4GPsfJd+vNaR/bfMtfoAvEfn2GTVRRN4Skb+KyKnOsjFEYo3KVdzp/E3k27U+FdijqptilmXsWhdyMsh7IlIGPAJ8U1UPA/8NTAbmALuJFPnyzSmqegKRocn/SUQ+EbvS+aaRd/2RJfIU/GeAh51FhXCtO8nXa5uMiHwPCALRSax2A+NVdS7wbeBBERmcq/i6KLi/iS6W0PnLTkavdSEng4yNjdQXRMRLJBH8XlUfBVDVPaoaUtUwcDcd1RN581lUdafz717gj0Ri3BOt/nH+3etsnjdxE0leb6rqHiiMa+1I99rmTfwicgXwaeBSJ5HhVLXUOa/fIFLnPs2JMbYqKetx9+BvIp+utYfIxGEPRZdl+loXcjLI27GRnLq9/wHWq+ovY5bH1qd/Foj2GHgcuFhEikRkIjCVSANQVolIqYiUR18TaSRc58QX7bVyOfAn5/XjwGVOz5dFwKGYKo9s6/StKd+vdYx0r+0zwCdFZKhTzfFJZ1lWici5wP8DPqOqzTHLR0pk4itEZBKR67vVif2wiCxy/n9cRsdnzVbM6f5N5NM95ixgg6q2V/9k/Fr3Zct4X/8Q6XHxAZGM+L1cxxMT1ylEivvvAGudn08BDwDvOssfB46J2ed7zufYSB/2sugm7klEeky8DbwXvabAcOAvwCbgOWCYs1yIzHa3xflc83MUdylQB1TELMu7a00kWe0GAkTqca/qybUlUke/2fm5MkdxbyZSnx79+77T2fbzzt/OWuBNYHHMceYTuQFvAW7HGQEhizGn/TeR7XtMvLid5fcCV3fZNqPX2oajMMYYU9DVRMYYYzLEkoExxhhLBsYYYywZGGOMwZKBMcYYLBkYY4zBkoExxhjg/wPZRzW+NBUAEwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(costs, label='flops')\n", + "plt.plot(mems, label='memory')\n", + "plt.yscale('log')\n", + "plt.legend()\n", + "plt.grid()\n", + "plt.title('Simulation cost per step')\n", + "print(f'Total FLOPS={sum(costs)/1e9} G, Memory={max(mems)/1e9} G')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Using tamaki optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:11:21.636121Z", - "start_time": "2020-10-09T12:11:20.888291Z" + "end_time": "2020-10-11T03:25:03.478651Z", + "start_time": "2020-10-11T03:24:51.686901Z" + }, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "treewidth 17\n" + ] + } + ], + "source": [ + "opt = qt.optimisation.Optimizer.TamakiOptimizer(wait_time=10)\n", + "peo, _ = opt.optimize(tn)\n", + "print('treewidth', opt.treewidth)\n", + "if opt.treewidth > 100:\n", + " raise Exception('Too large treewidth')\n", + "costs, mems = tn.simulation_cost(peo)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-11T03:25:04.376000Z", + "start_time": "2020-10-11T03:25:03.480448Z" }, "scrolled": true }, @@ -155,12 +273,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Total FLOPS=1.7455608865774634e+32 G, Memory=3.920052866929211e+32 G\n" + "Total FLOPS=0.002586149 G, Memory=0.002097152 G\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu30lEQVR4nO3de3xU9Z3/8ddnJslMuCPwSxVQUJAWldWCt2oraFXsxVrXWtEqqK21v9W2brdb6cW1uz97X7f10kW3ota2UrQ3Smm1tlDr1gtSbyheIgYNKij3QGaSzHx+f8yZYZJMyCSZzCV5Px+PeXDO95zzPZ+ZDOcz3+8553vM3REREQEIlToAEREpH0oKIiKSoaQgIiIZSgoiIpKhpCAiIhlKCiIikqGkID1iZheY2f39VPcdZvb/+rB9k5kdXMiYRAYbJQXpxMxONLO/mdkOM9tqZv9rZkcDuPtP3f20MohxlZl9MrvM3Ye5+/pSxZSvXLGXCzNrMLP3lzoOKZ2qUgcg5cXMRgDLgc8AS4Ea4L1AvJRxSe+YWZW7t5U6DqkcailIR4cCuPvd7p5w92Z3v9/dnwYwswVm9lB6ZTNzM/u/ZvaSme0ys/8ws0OClsZOM1tqZjW5ts3afkrHIMxstJktN7O3zGxbMD0hWHYdqUR1U9BldFPHusxspJn9ONh+g5l91cxC2XGY2feCul8xszO6+kDMbKKZ/TKoa0vW/kJBvRvMbHOwv5HBsqiZ/SRYf7uZrTazuq5i77C/ScF7uczMXjezN8zsX7KWh8zsajN7Oah/qZnt12HbS83sVeDPOeofG3ye24OW4F+DOu8CDgR+G8T2r8H6xwV/z+1m9pSZzc6qa5WZfdPMHgv+3r9JxyIVyt310ivzAkYAW4A7gTOA0R2WLwAeypp34DfBdoeRalH8CTgYGAk8B8zPtW3W9lOC6TuA/xdMjwH+ERgCDAfuAX6dtd0q4JP7qOvHQVzDgUnAi8ClWXG0Ap8CwqRaRa8DluPzCANPAf8FDAWiwInBskuA+uC9DgN+CdwVLPs08Nsg/jAwExjRVewd9jkpeC93B/s8AngLeH+w/HPAI8AEIALcAtzdYdsfB9vW5qj/m8AioDp4vTf93oGG9H6C+fHB9+EDpH5EnhrMj8t6LxuBw4P9/QL4Sam/x3r1/qWWgrTj7juBE0kdWP4HeMvMlplZ3T42+46773T3Z4G1wP3uvt7ddwC/B47qRRxb3P0X7r7H3XcB1wEn5bOtmYWB84CF7r7L3RuA/wQuzFptg7v/j7snSCXA/YFc7/EY4ADgi+6+291j7p5u7VwAXB+81yZgIXCemVWRSjpjSCWphLuvCT7bnvh6sM9ngNuBeUH55cBX3L3R3ePAtcA5wX7Trg22bc5Rb2vwfg9y91Z3/6u7dzUI2ieAFe6+wt2T7v5H4HFSSSLtLndf6+67ga8B5wZ/A6lASgrSibuvc/cF7j6B1C/AA4Dv72OTTVnTzTnmh/U0BjMbYma3BF0zO4EHgVF5HmzGkvoFvCGrbAOpX71pb6Yn3H1PMJkrzomkEkiufvkDcuyjilRyuQu4D1gSdAF9x8yq84g922sd6j4gmD4I+FXQnbMdWAckaJ/Usrft6LukWjj3m9l6M7t6H+seBHwsva9gfyeSSipdxVlN6m8gFUhJQfbJ3Z8n1a1zeAGq202qOwUAM3vHPtb9AjANONbdRwDvS2+WDm0f275N6tfwQVllB5Lq5uip14ADO/wKT3s9xz7agE3BL/Cvu/t04D3Ah4CL8og928QOdb+eFdMZ7j4q6xV19+z31+U+gtbTF9z9YOBM4J/N7JQutnuNVEsge19D3f1b+4izldTfQCqQkoK0Y2bvNLMvZJ3UnUiq2+KRAlT/FHCYmR1pZlFS3R5dGU6qlbE9OHH5bx2WbyLVl99J0CW0FLjOzIab2UHAPwM/6UXMjwFvAN8ys6HBCeQTgmV3A1eZ2WQzGwZ8A/i5u7eZ2RwzOyJo2ewkdaBMdhd7B18LWkyHARcDPw/KFwXv7SAAMxtnZh/J9w2Z2YfMbIqZGbCDVCujq9h+AnzYzE43s3Dw/menvx+BT5jZdDMbAvw7cG/wN5AKpKQgHe0CjgUeNbPdpJLBWlK/3PvE3V8kddB4AHgJeGgfq38fqCX1i/MR4A8dlv+AVD/6NjO7Icf2V5JqmawP9vMzYHEvYk4AHwamAK8CjcDHg8WLSXUTPQi8AsSC/QK8A7iXVEJYB/wlWDef2NP+Qqqb50/A99w9fdPgD4BlpLp/dpH6fI7twduaSupv0AQ8DPzQ3VcGy74JfDXoKvoXd38N+AjwZVInu18Dvkj7Y8ddpFqTb5I6Ef/ZHsQiZSZ9xYGIlAkzm0QqyVR3cS6jbJjZKlJXG/2o1LFIYailICIiGUoKIiKSoe4jERHJUEtBREQyynJAvLFjx/qkSZN6vf3u3bsZOnRo4QIqAsVcHJUYM1Rm3Iq5eNJxr1mz5m13H9enyko9zkau18yZM70vVq5c2aftS0ExF0clxuxemXEr5uJJxw087hr7SERECkVJQUREMpQUREQkoyxPNOfS2tpKY2MjsVis23VHjhzJunXrihBV4fRHzNFolAkTJlBd3dPBOUVksKqYpNDY2Mjw4cOZNGkSqXG8urZr1y6GDx9epMgKo9AxuztbtmyhsbGRyZMnF6xeERnYKqb7KBaLMWbMmG4TgqSYGWPGjMmrZSUiklYxSQFQQughfV4i0lMVlRRERAaCvzfFWd0UL3UYOSkp9NANN9zAu971LsaPH88VV1xR6nBEpAId/cybHPfMm92vWAIVc6K5XPzwhz/kgQce4IEHHuDxxx8vdTgiIgWllkIPXH755axfv54zzjiDbdu2ZcobGho4+eSTmTFjBqeccgqvvvoqAAsWLODyyy9n1qxZHHrooSxfvhyAZ599lmOOOYYjjzySGTNm8NJLL5Xk/YiIdFSRLYW3bruB+Cv1XS5PJBLsCId7VGdk8hTGXbrvpwguWrSIP/zhD6xcuTJzgAe48sormT9/PvPnz2fx4sV89rOf5de//jWQShiPPfYYL7/8MnPmzKG+vp5Fixbxuc99jgsuuICWlhYSiQRtbWX9gC0RGSTUUiiAhx9+mPPPPx+ACy+8kIce2vvo4XPPPZdQKMTUqVM5+OCDef755zn++OP5xje+wbe//W02bNhAbW1tqUIXEWmnX1oKZjaU1EPHr3X35cH8D4EWYJW7/7Qv9Xf3i76cbl7reFmomXH++edz7LHH8rvf/Y4PfOAD3HLLLRx99NElilBEZK+8WgpmttjMNpvZ2g7lc83sBTOrN7OrsxZ9CViaNX82cK+7fwo4s89Rl5n3vOc9LFmyBICf/vSnvPe9780su+eee0gmk7z88susX7+eadOmsX79eg4++GA++9nP8pGPfISnn366VKGLiLSTb0vhDuAm4MfpAjMLAzcDpwKNwGozWwaMB54DolnbTwCeCaYTfQu5/Nx4441cfPHFfPe732XcuHHcfvvtmWUHHnggxxxzDDt37mTRokVEo1GWLl3KXXfdRXV1Ne94xzv48pe/XMLoRUT2yvsZzWY2CVju7ocH88eT6h46PZhfGKw6DBgKTAeagY8CFwDbgq6kJe5+Xo76LwMuA6irq5uZ/uWdNnLkSKZMmZJXrIlEgnAPTzT3h8svv5y5c+dy1llndbtuf8VcX1/Pjh07Cl4vQFNTE8OGDeuXuvtLJcYMlRm3Yu7aKZHUeGR/ir9SkPrScc+ZM2eNu8/qS119OacwHngta74RONbdrwAwswXA2+6eNLNfAjeZ2QeB3+aqzN1vBW4FmDVrls+ePbvd8nXr1uV9nqBczilUV1dTW1ubVyz9FXM0GuWoo44qeL0Aq1atouPfqdxVYsxQmXEr5n14eAMAJ510UkGGoylk3P12Saq735E1vRu4uL/2Va7uuOOOUocgImUslnRqw+U1RllfLkndCEzMmp8QlImISB6a4+U3/lFfksJqYKqZTTazGuA8YFlhwhIRGfiaW1pKHUIn+V6SejfwMDDNzBrN7FJ3bwOuAO4D1gFL3f3Z/gtVRGRgiZVhUsjrnIK7z+uifAWwoqARiYgMErGW1lKH0ImGuRARKZFmJQUpBA2eJzIwNLcqKVS0hoYG3vnOd7JgwQIOPfRQLrjgAh544AFOOOEEpk6dymOPPcbu3bu55JJLOOaYYzjqqKP4zW9+A6QuTz3rrLM49dRTmTRpEjfddBPXX389Rx11FMcddxxbt24F4Mknn+S4445jxowZfPSjH80M0T179mw+//nPM2vWLK677jomT55Ma/CF2rlzZ7t5EakMsTL8P1uRQ2df9cpWntrT9QmatrYEVVW7e1TnPwyp4b8m79ftevX19dxzzz0sXryYo48+mp/97Gc89NBDLFu2jG984xtMnz6dk08+mcWLF7N9+3aOOeYY3v/+9wOwdu1annjiCWKxGFOmTOHb3/42TzzxBFdddRV33303V199NRdddBE33ngjJ510Etdccw1f//rX+f73vw9AS0tL5sE+DQ0N/O53v+Oss85iyZIlnH322VRXV/foPYtIaVS3tdJaVU1zW/mN+qOWQg9NnjyZI444glAoxGGHHcYpp5yCmXHEEUfQ0NDA/fffz7e+9S2OPPJIZs+eTSwWyzx0Z86cOQwfPpxx48YxcuRIPvzhDwNwxBFH8Oqrr7Jjxw62b9/OSSedBMD8+fN58MEHM/v++Mc/npn+5Cc/mRlj6fbbb+fiiwfdvYEiFSuSSHUBx1rLryu4IlsK3f2i789hLiKRSGY6FApl5kOhEG1tbYTDYX7xi18wbdq0dts9+uij3W7bnaFDh2amTzjhBBoaGli1ahWJRILDDz+8T+9LRIqnJpn6/96cUEthwDv99NO58cYbSQ80+MQTT+S97ciRIxk9ejR//etfAbjrrrsyrYZcLrroIs4//3y1EkQqTKaloO6jge9rX/sara2tzJgxg8MOO4yvfe1rPdr+zjvv5Itf/CIzZszgySef5Jprruly3QsuuIBt27Yxb17O20hEpEzVJFPJIFaGLYWK7D4qlUmTJrF27d7nDGUPeJe97JZbbum07YIFC1iwYEFmvqGhod2yf/zHfwTgyCOP5JFHHum0/apVqzqVPfTQQ5xzzjmMGjWqZ29EREoqmkkKyRJH0pmSQoW68sor+f3vf8+KFbqhXKTSRDxICkklBSmQG2+8sdQhiEgv1XgqGcQS+T3krJgq6pxCvk+JkxR9XiLlKX3gjZfh/9GKSQrRaJQtW7boQJcnd2fLli1Eo9HuVxaRonlmdwuP7TcBSD1kp9xUTPfRhAkTaGxs5K233up23VgsVnEHw/6IORqNMmHChILWKSJ9c9q6TZnpWPnlhMpJCtXV1UyePDmvdVetWtVvzyXuL5UYs4j03ObWvSeX42WYFCqm+0hEpNJ17P6OUV7PZwYlBRGRkokrKYiISNqgaCmY2bvMbJGZ3Wtmn8kqH2pmj5vZhwq9TxGRStDxFELcKjQpmNliM9tsZms7lM81sxfMrN7MrgZw93XufjlwLnBC1upfApYWKnARkUoXs3CpQ+gk35bCHcDc7AIzCwM3A2cA04F5ZjY9WHYm8DtgRTB/KvAcsLkgUYuIDABxK78e/LwicvcHga0dio8B6t19vbu3AEuAjwTrL3P3M4ALgnVnA8cB5wOfMivDT0JEpJ917j4qv5aC5XuHsJlNApa7++HB/DnAXHf/ZDB/IXAscC9wNhABnnb3m7PqWAC87e7Lc9R/GXAZQF1d3cwlS5b0+k01NTUxbNiwXm9fCoq5OCoxZqjMuBVzZwngtMje+60m7NzCnZGdfa43HfecOXPWuPusPlXm7nm9gEnA2qz5c4AfZc1fCNyUb337es2cOdP7YuXKlX3avhQUc3FUYszulRm3Yu6sLZn00N8aMq/9//hUQepNxw087n08/valG2cjMDFrfkJQJiIieYiHy29Qib4khdXAVDObbGY1wHnAssKEJSIy8HQ6p1CpScHM7gYeBqaZWaOZXerubcAVwH3AOmCpuz/bf6GKiAws8XB12Y38nFeacvecDwF29xUEl52KiEjPJEMhWpNOTbh8bmLTpaEiIkWSq1HQ3BIvfiD7oKQgIlJCzS0tpQ6hHSUFEZESao4rKYiIDEq5TinHWlqLHse+KCmIiJRQs5KCiIikNbcpKYiIDErqPhIRkYxcN6rF2tpKEEnXlBREREqouTVR6hDaUVIQESmWXC2FhFoKIiKDUu7uI7UUREQGpVfjnVsFsUSyBJF0TUlBRKRIPt2wLTN9XDQ1CJ6SgojIIPee+HZWHDIKgFhS3UciIoNS+oDrQG2kBoBYoryep6CkICJSJKFEqlWQcKiuiRBOJoiV2UN2lBRERIok8WbqMfatTbswMyJtrcSSSgoiIoNSdXBPQiupk8yRRBux8soJSgoiIsVSFYx+1BZKHXprkm3Eyywp5PWM5p4ws7OADwIjgNvc/X4zOxC4AdgKvOju3yr0fkVEyl118G+rpZJCJJEg7uXzfGbIs6VgZovNbLOZre1QPtfMXjCzejO7GsDdf+3unwIuBz4erHoEcK+7XwIcVcD4RUQqRrqlkEgnhWQbsVIGlEO+3Ud3AHOzC8wsDNwMnAFMB+aZ2fSsVb4aLAd4BLjUzP4M/KEvAYuIVKqqoFGQ7j6KJBPEy6wX33KNxZFzRbNJwHJ3PzyYPx641t1PD+YXBqt+K3j90d0fCJb9C/CYuz9oZve6+zk56r8MuAygrq5u5pIlS3r9ppqamhg2bFivty8FxVwclRgzVGbcirmzH7wdY9n4d1G3ays/q9nBF3YY0WSC60b3LTGk454zZ84ad5/Vp8rcPa8XMAlYmzV/DvCjrPkLgZuAzwJrgEXA5cGyw4F7g7LvdbevmTNnel+sXLmyT9uXgmIujkqM2b0y41bMnS1Y8aCH/tbg4/74lLu7n7jsL37s8of6XG86buBxz/OY3tWr4Cea3f0GUieVs8vWBklERGTQSncfJUJhAKLuNFm4hBF11pc2y0ZgYtb8hKBMRERyeKR2PwBaw6nf4xGSxK28zin0JZrVwFQzm2xmNcB5wLLChCUiMvA8V5M6X3HE0NS4R1GcWKgCWwpmdjfwMDDNzBrN7FJ3bwOuAO4D1gFL3f3Z/gtVRGRg+MlBwwGI4MTDBe/F75O8onH3eV2UrwBWFDQiEZEBblQ4OKcAxEPllRTKqzNLRGQQMAvGPgpBS5m1FJQURESKLBROHXqjRtl1HykpiIgU2d6WQoi2cBVtyfJ5JKeSgohIkYWCYS6ioeA5zS0tpQynHSUFEZEiS7cU0kmhOR4vZTjtKCmIiBTZ3pZC6iqk5rhaCiIig1YouIu5tir1b3NraynDaUdJQUSkyCwcdB8F9yvEWpQUREQGLQtaCtGqoPtILQURkcErlD7RXKWWgojIoJc50VyVunGtua2tlOG0o6QgIlJEJzdtykwPqQ6SQquSgojIoHRkbEdmOlpdDUAskShVOJ0oKYiIFJFlTdemk0KbkoKIyKDyyy17ANhUFc2URWvSLQWNfSQiMqj8aPMuANZGR2TK0kkhru4jEZHBI+nOfdtjqemsDqTaSOqxnGopiIgMIs83770PIWFZSaEmAkBMQ2eLiAweL8X2XnKayGoVRGpSLYXmpBc9pq70yyN/zOws4IPACOA2d78/V1l/7FtEpNyc/cJbmenWrGGyQ6EQkbYW4uXTUMi/pWBmi81ss5mt7VA+18xeMLN6M7sawN1/7e6fAi4HPt5VmYjIYNMWsnbzkbY2Yl4+LYWedB/dAczNLjCzMHAzcAYwHZhnZtOzVvlqsJxuykREBqzqrDzQEmrfQRNJthIrn5yAeQ8ylJlNApa7++HB/PHAte5+ejC/MFj1W8Hrj+7+QLDMOpZ1qPsy4DKAurq6mUuWLOnte6KpqYlhw4b1evtSUMzFUYkxQ2XGrZj3+lD1gTQHD9QZu3sHP6/amll2UXwER+14k6v+z5Be15+Oe86cOWvcfVZfYu3rOYXxwGtZ843AscCVwPuBkWY2xd0XdVGW4e63ArcCzJo1y2fPnt3roFatWkVfti8FxVwclRgzVGbcinmvmr88T3NNLQBtoXC7fUT/sBqrHdKn/RYy7n450ezuNwA3dFcmIjIYVCX33pzWEjxYJy2STBDHOm5SMn29JHUjMDFrfkJQJiIigaqs+xBaO55T8CSxAZQUVgNTzWyymdUA5wHL+h6WiMjAUZPVUmitqm63LOIJ4lY+t4z15JLUu4GHgWlm1mhml7p7G3AFcB+wDljq7s/2T6giIpWp2vcmhepE+2cnRN3LKinkfU7B3ed1Ub4CWFGwiEREBpCWpLN++NjM/B2P3gsnfikzHyFJ3MK5Ni2J8klPIiID0Pp4+5bBrI+e224+ghMPKSmIiAwKHU8hW3X7DpqokoKIyODRKSl0KIkA8XC/3B3QK0oKIiL9qNPFpta+JGpKCiIig0anlkKHgohBPFxNuVBSEBHpR6EOl6B2aimEjJaqapJl8qAdJQURkX5U1dbabr7jOYXaYCjtWEtL0WLaFyUFEZFi6tRSSB2Gm1viudYuOiUFEZF+tLUt0b6gwzmFaDhICnG1FEREBrxPvNrUbr7jiedMUmhppRwoKYiI9KN1HR7AnGztMPZRMJR2XElBRGTwaWnrkBSqUkmhuVVJQURkQDvz+c2dylqi7R+7GQlaCjElBRGRge1325o7lY0fO6bdfG0wFlJzh26lUimfe6tFRAa4+NHjqapqP/hdbVWQFNrKIymopSAiUiQW6nzIjdakhriIdbx0tUSUFEREiiAEhDoOfATUVispiIgMOlunDsFyJIVMSyGhpCAiMmhYFw/Sqc0khfIYEK/gJ5rN7GDgK8BIdz8nKAsB/wGMAB539zsLvV8RkXKW63wCQG1NDbCnsloKZrbYzDab2doO5XPN7AUzqzezqwHcfb27X9qhio8AE4BWoLEQgYuIVBILd5EUIhEAYkkvZjhdyrf76A5gbnaBmYWBm4EzgOnAPDOb3sX204C/ufs/A5/pXagiIpUr1EX3UbSmBoDmMkkKeXUfufuDZjapQ/ExQL27rwcwsyWkWgTP5aiiEUgPAZizjWRmlwGXAdTV1bFq1ap8QsupqampT9uXgmIujkqMGSozbsUMRCZnJv/68N+orsr9hLXq8AQ2b9/R630XNG53z+sFTALWZs2fA/woa/5C4CZgDLAIeBlYGCwbAtwG3Aj8U3f7mjlzpvfFypUr+7R9KSjm4qjEmN0rM+7BHnNbMumhvzVkXvFYrMt1R6xc55/57QO93lc6blLnbPM+rud6FfxEs7tvAS7vULYH6HieQURkwLp6w/b2BV20EgAiiTZi5dF71KdLUjcCE7PmJwRlIiKD3vVv7Gw3X9PFiWaAmmQbMe98D0Mp9CUprAammtlkM6sBzgOWFSYsEZHBI5JMUB4P48z/ktS7gYeBaWbWaGaXunsbcAVwH7AOWOruz/ZfqCIiA1MkmSBWJvcS53v10bwuylcAKwoakYjIAPPUP+y/z+VRTxDPMQRGKZRHahIRGaBG79nJ4UNq9rlOJJksm5ZCeUQhIjJAJa37w2yEJPE81iuG8ohCRGQAeXp3S2a6NZz7TuZsUU8S7+KO52JTUhARKbBbNu3KTDdXR7pdP4KXTVLQ4zhFRApkdyLJ6y0JQuw9aVyVx+inUSUFEZGBZ8Rjr3UqG9ra/R0IESAeKo/DsbqPRET6UUs+5xQsv/WKQUlBRKQftebRAogaxMNdj41UTEoKIiL9qHUfA+GlRUJGPFxNMln6R3IqKYiIFMBvt+7p9bbRkJEMhWhtbel+5X6mpCAiUgDz69/OWf5v44d3u200nLpaqTmupCAiMiCEuxi76JoD9+t222hwOaqSgojIALG1rffnA6LBsxaa1X0kIiLppBCLt5Y4EiUFEZGSi1YF3UetSgoiIhXvzZbcQ1kM9+6HuACIhlP3MsSUFEREKt/4NY05y39/xPi8tq+tTrUU9rS2FSym3lJSEBHpJ8cP736EVIDaqqCl0DYAk4KZHWxmt5nZvVllQ83sTjP7HzO7oND7FBEpFXfvcx3RmtRdz/FKSQpmttjMNpvZ2g7lc83sBTOrN7OrAdx9vbtf2qGKs4F73f1TwJkFiVxEpMR+s3UP7127qc/11FankkKsLb9zEP0p35bCHcDc7AIzCwM3A2cA04F5Zja9i+0nAOkxZUv/rkVECuDsF97i4abuh8buTrql0Jwo/dhHlm/Tx8wmAcvd/fBg/njgWnc/PZhfCODu3wzm73X3c4LpC4Ft7r7czJa4+3k56r8MuAygrq5u5pIlS3r9ppqamhg2bFivty8FxVwclRgzVGbcgyHmUyKTO5Wd+MrTPDR5BgB/ir+SVz1b9jRz7ujpLHxlNe8/YGze+09Lxz1nzpw17j6rxxVk6ctTHcaz99c/QCNwrJmNAa4DjjKzhUGS+CVwk5l9EPhtrsrc/VbgVoBZs2b57Nmzex3YqlWr6Mv2paCYi6MSY4bKjHugx9wYb4O/b+xUXjt8BAvHj2BipIrZdQflVdemHTvgue2MHDeO2bNP6knIQGE/64I/6sfdtwCXdyjbDVxc6H2JiJTCnZubuOTlLTmXXfx2PR8/sGcH9tqaGgBiZdB91JerjzYCE7PmJwRlIiIDWlcJYc6uNznn3HN7XF9tJHXpaqwAVzL1VV+SwmpgqplNNrMa4DxgWWHCEhGpPL84+WjCQ7sfKruj6lCIcDJBLFkhScHM7gYeBqaZWaOZXerubcAVwH3AOmCpuz/bf6GKiJS3kVW9/50daWslVvqckN85BXef10X5CmBFQSMSERmEIsk24qU/paBhLkREemLtnv555kEk0UasX2ruGSUFEZEe2NLaPz/nI8kEcXI/va2YlBRERHog3k9XCEWSCeJlcE5BSUFEpAe+2LCtX+qNJBPErfSH5NJHICJSQdY298+DcCKeJFYGh+TSRyAiIkQ9qZaCiEgl+Y/Xtreb/9jWBgBu2rOBxPH5jXPUlQhJ4qHSH5ILPvaRiMhAFH54Q6eyKKkzw/Fk369IiuDEQuE+19NXpU9LIiJl7l8atuYsjwQPx4lXVfd5HxGcuJKCiEj5cnfmv/Q2//XGrpzLZxx2GAAHHXZEn/cVBeKh0nfelD4CEZEydcnLW/jJ27tzLqufOoKDxozkkCERTh8V7fO+IgbxcOkPyaWPQESkTP34rdwJAWBcbQ0hM+aOri3IvqIGLeG+d0P1lbqPRERymPh44z6Xhwrc/x8NpVoK+T4iub8oKYiIdPCFhq283prY5zpWXdhf9VEz2sJVtLbEC1pvTykpiIh08P0uTixni4YLe/hM1xdr6Z9RWPOlpCAiEthGKOf9CB19ffwIzAo7omk0uHEtFldSEBEpC+dE8rsr+asHji74vtMthWa1FERESu/J3fs+GH9l/EgAvnngqH7ZfzScOnEda+mfAffypUtSRWTQ2pNI8m+v7eDkkVE+9PzmLtcbETL+/cBR/Hs/JQSAaFUIHJpbB0lLwcyGmtnjZvahYu1TRGRfRq9+jevf2LnPhFCdTLDt2AP7PZba4Ma15pa2ft/XvvQ6KZjZYjPbbGZrO5TPNbMXzKzezK7OWvQlYGlv9yci0lPuTizZ9XX/bXncEjCH5gJG1LVodar7qLmtQpMCcAcwN7vAzMLAzcAZwHRgnplNN7NTgeeArtOxiEiB3fTmLoY++ipvBL++n97dQvjhDZlXPhYecUh/hpgRrUq1FGKtpU0K1pe758xsErDc3Q8P5o8HrnX304P5hcGqw4ChpBJFM/BRd092qOsy4DKAurq6mUuWLOl1XE1NTQwbNqzX25eCYi6OSowZKjPucoj51JpJJM0Y6glubn2dBTUTe7T9n+Kv9FNknb20fReX183gu6+u5t11Y3u0bfqznjNnzhp3n9WXOAp9onk88FrWfCNwrLtfAWBmC4C3OyYEAHe/FbgVYNasWT579uxeB7Fq1Sr6sn0pKObiqMSYoTLjLnbMm1oSTH1iI0PDxvljh/Kfk/YjGbQGdls474Rw7lMrOfOcj/HuoTVMq+3bg3N6Yvj6DbAJ6sZPYPaJx/Vo20J+1kW9+sjd7yjm/kRk8Jj25EZ2J53dSef7b+zK667kXL576glMGDu0wNF1r7amGmglltj38Br9rdBXH20EstPxhKBMRKRf3PDGTt7zzBvsSvR9ILlfxTcw4ZCpBYiq56I1qbGUYm19f4pbXxS6pbAamGpmk0klg/OA8wu8DxEZoNyd2zY3UVcdZnK0isOH1HRaJ+HOk7tbOLS2muHhEFc1bCvIvhdG44yIl+6AXBupAfYQS5a2pdDrpGBmdwOzgbFm1gj8m7vfZmZXAPcBYWCxuz9bkEhFZMBbsb2ZT6/f++jLxPGd+/RnP7uJv+1KjSRaf9QBBdv36aOGkNhRsOp6rLYmlQDjiQptKbj7vC7KVwAreh2RiAxoDbE22tyZUpvqLtmTSPK5hm2cO2YIX+zwq/+VWCuTo9X8bVeM967d1KmuKU+8nnMfL3znQgB2RoZw9Odu6TKW/zxwFF94dTsAh4x/By9uqO/NWyqI2poIwD7vqygGDXMhIkV1yBOp04xPztifI59+I1O+eHNTp3WnPvE6+1WF2JJHP/vI5iZ21La/BHZEfA+rf/BpttywhLkvp5oB246eyNCw0eoQDRmX1A0ngTO6KsyLfXljfVQTMsyTSgoi0r8S7izcsJ2aECwcP5J7tuzhF1v2cNuUMTywPca8sUMKPgx0PrITQlc+UzccgPXxVv6wPbbPda/66z1ce9rFAEz+8XJC0ShUZT0I5+UdXD9pNCOqUtfXhIO3nJ4vNTMj0tZGrLQ5QUlhIPnZW7u5sP7tTuXfOWgU/7phe6fyz9QN48QRUc4bO5TfbN3D2S+8lfe+jh5aw3VA0h0H0oeUkBnb2hKMXZ37UYbDw9bpKpGtR09kSMioMkh2qOtXW/Zwzou545oSraI+tvfuzwOqw9S/ezwhUvVUWWoYg2Rwg6YDcYzmoM+2JmQkHRJAtbXfb9KdkBkJd8JmmeESkpCZ92BddycSSv3yJKgrmwX7Ttfd5k5rh7rSwmaEDNxT7yG7ruz34ey9dLDFUydow2YYqYNdm5OZvmVTE//5xk4AvrlxZ6a+/YPHTV5YD385rI53D60h7p7527181Hj+T3WIJDDysezbjzp7beZ4RnV46EwMY0/wWQ/vZvuO/rzo84zfuSX1mYwZh5nR9vbeARE+9olrefqA9ncan9Cwd8Sd8PARnerMdX6i3EQSrUoKUhjf3riDLwd9ox3lSggA/72pif/e1MQFL3VOJN1ZvbuF0yKT4ZFXe7RdrssG91vdswNGWnZCAHi9NcGQR7uJJzIJeniAKgu9+Kx74qRnO/fXp7t58jFxTY51u/ms135vAeaO4ThGyB03CLmTnVeH/MPRAOz6895TlQdu38TTBxxCOJkgEQrTNBFqb7+X0l6303eRZBtxJYXK9aX6TXzvra6btJcMcd43djgXjh/T77F0lRBE0syT1O3axpsjOn8fv/L601jQnrl97BQ21gxtV/bgsDoeHPGOdtsc2ryDF2tTzxj46utPdapz585djBiR6v759agDWTtk74NpvvfbH1Ld7tJLb/fPIUsfwKrbX45ad+Xe8TV/mkjy5x0xjh8e4cndLdSOqs3jEyh/kUSCGMXvysumpNANd6c+1pbzF8i+EgLAj3clWLb1TY7eb29TdmNLG6c9t5mZQ2tYs7uFNTP2Jxoy/is0mlPyHKBLesc8iVt59B+XwvPfnZ+z3KK1hGr3HlQX5FgnV1l3WuIt1ERqMtt7axvJpr3dV1N+9WAvak0ZFg5x5n5DADh1gCQEgBpPEFdSKG/Xr36Gf02M7NW281/5O7dNOYbDnux82dya4ClPM9Mn26pH9TbEdtKX4klnoaHDSO7ufIXLYNGXg3BvVOJ4TaUWSaqlUFDxeAsfuP8RWlvbqP5tYf4D1EeGM7Smme82/r3Tso2vrOd/Jx9OpK2V9zSs5dC3Gnlp3AR2RWo5bsNzzDp/Pv9w3/+QyPojezzOUwccwtS3G3ll9P4ctvV1LGQkW+J84cP/1GkfI2K7CSWTbB8ynPHb3+L1kWNwC7Hf7p1sHdr+ZNq9P76mqP/xK/E/fSXGDJUbt/RMxJPES9yaHVBJwXG2hapIVhmhULggdY5pbeas1m18+hPdjdbxsZyl//S+U/Laz6pVq/K4OqKb5cffmde+RKQ8RT1JTEmhcKKRCH//4HuCX1XvLXU4IiI9EvEk20qcFAbvWTcRkTJTW1NNayRa0hgGVEtBRKSSnXL4dBpbSvs4TiUFEZEycdUBne/ELjZ1H4mISIaSgoiIZCgpiIhIhpKCiIhkKCmIiEiGkoKIiGQoKYiISIaSgoiIZFj2owDLhZm9BfTl4QJjgZ4/Tqy0FHNxVGLMUJlxK+biScd9kLuP60tFZZkU+srMHnf3WaWOoycUc3FUYsxQmXEr5uIpZNzqPhIRkQwlBRERyRioSeHWUgfQC4q5OCoxZqjMuBVz8RQs7gF5TkFERHpnoLYURESkF5QUREQkY0AlBTOba2YvmFm9mV1dBvEsNrPNZrY2q2w/M/ujmb0U/Ds6KDczuyGI/Wkze3fWNvOD9V8ys/n9GO9EM1tpZs+Z2bNm9rlyjznYV9TMHjOzp4K4vx6UTzazR4P4fm5mNUF5JJivD5ZPyqprYVD+gpmd3p9xB/sLm9kTZra8EmI2swYze8bMnjSzx4Oycv9+jDKze83seTNbZ2bHV0DM04LPOP3aaWafL0rc7j4gXkAYeBk4GKgBngKmlzim9wHvBtZmlX0HuDqYvhr4djD9AeD3gAHHAY8G5fsB64N/RwfTo/sp3v2BdwfTw4EXgenlHHOwPwOGBdPVwKNBPEuB84LyRcBngun/CywKps8Dfh5MTw++NxFgcvB9Cvfzd+SfgZ8By4P5so4ZaADGdigr9+/HncAng+kaYFS5x9wh/jDwJnBQMeLu9zdUrBdwPHBf1vxCYGEZxDWJ9knhBWD/YHp/4IVg+hZgXsf1gHnALVnl7dbr59h/A5xaYTEPAf4OHEvqDs+qjt8P4D7g+GC6KljPOn5nstfrp1gnAH8CTgaWBzGUe8wNdE4KZfv9AEYCrxBcVFMJMed4D6cB/1usuAdS99F44LWs+cagrNzUufsbwfSbQF0w3VX8JXlfQffEUaR+dZd9zEE3zJPAZuCPpH4xb3f39FPQs2PIxBcs3wGMKUHc3wf+FUgG82MqIGYH7jezNWZ2WVBWzt+PycBbwO1BN92PzGxomcfc0XnA3cF0v8c9kJJCxfFU6i67a4LNbBjwC+Dz7r4ze1m5xuzuCXc/ktSv72OAd5Y2on0zsw8Bm919Talj6aET3f3dwBnAP5nZ+7IXluH3o4pUF+5/u/tRwG5S3S4ZZRhzRnBO6Uzgno7L+ivugZQUNgITs+YnBGXlZpOZ7Q8Q/Ls5KO8q/qK+LzOrJpUQfuruv6yEmLO5+3ZgJamul1FmVpUjhkx8wfKRwBaKG/cJwJlm1gAsIdWF9IMyjxl33xj8uxn4FakEXM7fj0ag0d0fDebvJZUkyjnmbGcAf3f3TcF8v8c9kJLCamBqcPVGDakm17ISx5TLMiB9BcB8Uv326fKLgqsIjgN2BM3E+4DTzGx0cKXBaUFZwZmZAbcB69z9+kqIOYh7nJmNCqZrSZ0HWUcqOZzTRdzp93MO8OfgV9cy4LzgSp/JwFTgsf6I2d0XuvsEd59E6rv6Z3e/oJxjNrOhZjY8PU3q77qWMv5+uPubwGtmNi0oOgV4rpxj7mAee7uO0vH1b9zFOFFSrBepM/AvkupP/koZxHM38AbQSuoXy6Wk+oH/BLwEPADsF6xrwM1B7M8As7LquQSoD14X92O8J5Jqjj4NPBm8PlDOMQf7mgE8EcS9FrgmKD+Y1AGynlTzOxKUR4P5+mD5wVl1fSV4Py8AZxTpezKbvVcflW3MQWxPBa9n0//HKuD7cSTwePD9+DWpq3DKOuZgf0NJtQZHZpX1e9wa5kJERDIGUveRiIj0kZKCiIhkKCmIiEiGkoKIiGQoKYiISIaSgoiIZCgpiIhIxv8H6MX52mazJMYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABWgklEQVR4nO2deZgdVZm43+8uvac7K0nIHrJgIIFADCgiDSKbIO6COICiDPMbdXRGR1xQmRkXxhlHWWaQGQEBBVFUQEABoQ1o2IQAgex7Z0+nu9N73+X8/qiqe6vqVt19Tc77PHlSt5ZTX1Xfe77zLec7opRCo9FoNEc2gUoLoNFoNJrKo5WBRqPRaLQy0Gg0Go1WBhqNRqNBKwONRqPRoJWBRqPRaNDKQJMGEblMRB4vUdt3isi/FXB9v4jMLaZMGs2RjFYGRzgi8g4R+YuI9IrIQRH5s4i8FUAp9TOl1DlVIGOHiHzKvk8p1aKU2lwpmbLFS/ZqQUS2isjZlZZDUx2EKi2ApnKISCvwO+DvgPuBOuB0YKSScmnyQ0RCSqlopeXQ1CbaMjiyWQCglLpXKRVTSg0ppR5XSr0GICJXisiz1skiokTk/4nIBhHpE5F/FZFjTMvikIjcLyJ1Xtfarp/nFkJExonI70Rkv4h0m9vTzWPfxlBQN5uuoZvdbYlIm4jcZV6/TUS+LiIBuxwi8h9m21tE5Hy/FyIiM0Tk12ZbXbb7Bcx2t4nIPvN+beaxBhG5xzy/R0ReFJHJfrK77jfbfJarRWSXiOwWkS/ajgdE5FoR2WS2f7+IjHdde5WIbAee8mh/ovk+e0zL7xmzzbuBmcDDpmz/bJ5/qvn37BGRV0Wk3dZWh4h8V0ReMP/eD1qyaA4DlFL63xH6D2gFuoCfAucD41zHrwSetX1WwIPmdcdhWBB/BOYCbcCbwBVe19qun2du3wn8m7k9Afgg0ASMAX4J/NZ2XQfwqTRt3WXKNQaYDawHrrLJEQE+DQQxrKBdgHi8jyDwKvBfQDPQALzDPPZJYKP5rC3Ar4G7zWN/Czxsyh8ETgZa/WR33XO2+Sz3mvdcDOwHzjaP/wPwHDAdqAd+DNzruvYu89pGj/a/C9wKhM1/p1vPDmy17mN+nmZ+Hy7AGCi+2/w8yfYsO4Hjzfs9ANxT6e+x/lecf9oyOIJRSh0C3oHRofwvsF9EHhKRyWku+3el1CGl1BvAauBxpdRmpVQv8BiwNA85upRSDyilBpVSfcC3gTOyuVZEgsAlwFeUUn1Kqa3AfwJ/Yzttm1Lqf5VSMQzFNxXwesblwNHAl5RSA0qpYaWUZd1cBvzAfNZ+4CvAJSISwlA2EzCUU0wp9Vfz3ebC9eY9XwfuAC41918DfE0p1amUGgG+BXzIvK/Ft8xrhzzajZjPO0spFVFKPaOU8itI9nHgUaXUo0qpuFLqCeAlDOVgcbdSarVSagC4DviI+TfQ1DhaGRzhKKXWKKWuVEpNxxjxHQ38MM0le23bQx6fW3KVQUSaROTHpgvmELACGJtlJzMRY8S7zbZvG8Yo12KPtaGUGjQ3veScgaE4vPzuR3vcI4ShVO4G/gDcZ7p6/l1EwlnIbmeHq+2jze1ZwG9Mt00PsAaI4VRm9mvdfB/DonlcRDaLyLVpzp0FfNi6l3m/d2AoEz85wxh/A02No5WBJoFSai2G++b4IjQ3gOE2AUBEpqQ595+AhcApSqlW4J3WZZZoaa49gDH6nWXbNxPDnZErO4CZrlG3xS6Pe0SBveaI+3ql1CLg7cCFwOVZyG5nhqvtXTaZzldKjbX9a1BK2Z/P9x6mtfRPSqm5wHuBfxSRd/lctwNj5G+/V7NS6ntp5Ixg/A00NY5WBkcwInKsiPyTLVg7A8M98VwRmn8VOE5EThSRBgz3hh9jMKyKHjMg+U3X8b0YvvoUTNfP/cC3RWSMiMwC/hG4Jw+ZXwB2A98TkWYzMHyaeexe4AsiMkdEWoDvAL9QSkVF5EwRWWxaMocwOsh4JtldXGdaSMcBnwB+Ye6/1Xy2WQAiMklELs72gUTkQhGZJyIC9GJYFX6y3QNcJCLnikjQfP526/th8nERWSQiTcC/AL8y/waaGkcrgyObPuAU4HkRGcBQAqsxRuoFoZRaj9FZPAlsAJ5Nc/oPgUaMEeZzwO9dx3+E4SfvFpEbPa7/LIYlstm8z8+B2/OQOQZcBMwDtgOdwEfNw7djuINWAFuAYfO+AFOAX2EogjXAn8xzs5Hd4k8Y7pw/Av+hlLIm+/0IeAjDzdOH8X5OyeGx5mP8DfqBlcB/K6WeNo99F/i66RL6olJqB3Ax8FWMIPYO4Es4+4m7MazHPRgB9s/lIIumirGyCjQaTQUQkdkYyiXsE6uoGkSkAyN76P8qLYum+GjLQKPRaDRaGWg0Go1Gu4k0Go1Gg7YMNBqNRkOVFKqbOHGimj17dl7XDgwM0NzcXFyBykAtyl2LMoOWu5zUosxQm3IPDAywdu3aA0qpSUVpsJK1MDDS+G6bN2+eypenn34672srSS3KXYsyK6XlLie1KLNStSn3008/rYCX1OFQm0gp9bBS6uq2trZKiqHRaDRHPDpmoNFoNBqtDDQajUZT4QCyiFwEXDRvXsp6J0QiETo7OxkeHk7bRltbG2vWrCmRhKWj2HI3NDQwffp0wuFci2VqNBpNhZWBUuph4OFly5Z92n2ss7OTMWPGMHv2bIwaW9709fUxZsyYUopZEoopt1KKrq4uOjs7mTNnTlHa1Gg0RxZV6yYaHh5mwoQJaRWBxkBEmDBhQkYrSqPRaPyoWmUAaEWQA/pdaTSaQqhqZaDRaDTVTFckxi+7BiotRlHQyiANN954I295y1uYNm0an/nMZyotjkajqTI+sn4/l6w/wM6Rqq4+nhUVVQYicpGI3Nbb21tJMXz57//+b5544gm+/e1vV1oUjUZThWw1lcDoYVDwU89A9uGaa65h8+bNnH/++XR3dyf2b926lbPOOoslS5bwrne9i+3btwNw5ZVXcs0117Bs2TIWLFjA7373OwDeeOMNli9fzoknnsiSJUvYsGFDRZ5Ho9EUHzGX6a59VVAlheoysf8nNzKyZaPnsVgsRm8wmHOb9XPmMekq/xX7br31Vn7/+9/z9NNPJzp2gM9+9rNcccUVXHHFFdx+++187nOf47e//S1gKIoXXniBTZs2ceaZZ7Jx40ZuvfVW/uEf/oHLLruM0dFRYjG9XKxGc7hgpW0cDspAxwxyZOXKlXzsYx8D4G/+5m949tnk0r4f+chHCAQCzJ8/n7lz57J27Vre9ra38Z3vfIcbbriBbdu20djYWCnRNRqNxpeasAzSjeCradKZO71TRPjYxz7GKaecwiOPPMIFF1zAj3/8Y84666wKSajRaErBYRAy0JZBrrz97W/nvvvuA+BnP/sZp59+euLYL3/5S+LxOJs2bWLz5s0sXLiQzZs3M3fuXD73uc9x8cUX89prr1VKdI1GU2QOp9k9NWEZVBM33XQTn/jEJ/j+97/PpEmTuOOOOxLHZs6cyfLlyzl06BC33norDQ0N3H///dx9992Ew2GmTJnCV7/61QpKr9FoNN4UXRmISAD4V6AVY+GFnxb7HuVi69atgJEpdOWVVwIwa9YsnnrqKc/zzz77bG699VbHvmuvvZZrr722lGJqNBpNwWTlJhKR20Vkn4isdu0/T0TWichGEbF6vIuB6UAE6CyuuBqNRlM9WGHCwyBkkLVlcCdwM3CXtUNEgsAtwLsxOv0XReQhYCHwF6XUj0XkV8AfiypxlXLnnXdWWgSNRlNmDqfU0qyUgVJqhYjMdu1eDmxUSm0GEJH7MKyCHcCoeY5vUr2IXA1cDTB58mQ6Ojocx9va2ujr68soWywWy+q8aqMUcg8PD6e8x2LS399f0vZLhZa7fNSizJC/3IPh6RAI8/wLz7NLlbckRX9/f1HbKyRmMA2j47foBE4BfgTcJCKnAyv8LlZK3QbcBrBs2TLV3t7uOL5mzZqsUkarKbU0F0ohd0NDA0uXLi1qm3Y6Ojpw/51qAS13+ahFmSF/uZte2QnDUZYvP4WFjeVdWKrYSrfoAWSl1CBwVTbnplvpTKPRaKqdwym1tJB5BjuBGbbP0819WVPNtYk0Go3mSKIQZfAiMF9E5ohIHXAJ8FAuDVR71VKNRqPJhsMhgJxtaum9wEpgoYh0ishVSqko8BngD8Aa4H6l1Bu53FxbBtkRjdZ+rXSN5nDkiHMTKaUuVUpNVUqFlVLTlVI/Mfc/qpRaoJQ6RimVc9H/arcMtm7dyrHHHsuVV17JggULuOyyy3jyySc57bTTmD9/Pi+88AIDAwN88pOfZPny5SxdupQHH3wQMFJN3/e+9/Hud7+b2bNnc/PNN/ODH/yApUuXcuqpp3Lw4EEAVq1axamnnsqSJUt4//vfnyiX3d7ezuc//3mWLVvGt7/9bebMmUMkEgHg0KFDjs8aTa1x6mu7WbxqV6XFKBrHrdrFthpf4Kai5SiUUg8DDy9btuzT6c77wpaDvDo46nksGo0RCuW+7NwJTXX815zxGc/buHEjv/zlL7n99tt561vfys9//nOeffZZHnroIb7zne+waNEizjrrLG6//XZ6enpYvnw5Z599NgCrV6/mlVdeYXh4mHnz5nHDDTfwyiuv8IUvfIF7772Xa6+9lssvv5ybbrqJM844g2984xtcf/31/PCHPwRgdHSUl156CTAU0yOPPML73vc+7rvvPj7wgQ8QDpc3e0GjKRYvDnj/nmsNe23Kl/pHmFVfuxV+9EpnGZgzZw6LFy8mEAhw3HHH8a53vQsRYfHixWzdupXHH3+c733ve5x44om0t7czPDycWPDmzDPPZMyYMUyaNIm2tjYuuugiABYvXsz27dvp7e2lp6eHM844A4ArrriCFSuS2bgf/ehHE9uf+tSnEnWQ7rjjDj7xiU+U6xVoNBofxOYoildQjmJQE5ZBuhF8qecZ1NfXJ7YDgUDicyAQIBqNEgwGeeCBB1i4cKHjuueffz7jtZlobm5ObJ922mls3bqVjo4OYrEYxx9/fEHPpdFoiku8xqPIuoR1gZx77rncdNNNKLOg+SuvvJL1tW1tbYwbN45nnnkGgLvvvjthJXhx+eWX87GPfUxbBRpNFVLrloF2ExXIddddRyQSYcmSJRx33HFcd911OV3/05/+lC996UssWbKEVatW8Y1vfMP33Msuu4zu7m4uvfTSQsXWaDRFwJ5NFKvxFW5qwk1UKWbPns3q1clCrfZidPZjP/7xj1OutZe9hmQ5bOvYBz/4QQBOPPFEnnvuuZTrvaaaP/vss3zoQx9i7NixuT2IRqMpObVuGdRu6PsI47Of/SyPPfYYjz76aKVF0Wg0HtS4YVBZZaBrE2XPTTfdVGkRNBqNC4ebqGJSFIeKxgwyzUBWta5qy4h+VxpN+bErg3iN/warNpuooaGBrq4u3cllgVKKrq4uGhoaKi2KpoZ4fWCUW/eUZy2QvaMx/nVHT0V/z7tHo3y7szgy/LprkD/2Djn2uWMGT/UO8UBX7hNiK0XVxgymT59OZ2cn+/fvT3ve8PBwTXaCxZa7oaGB6dOnF609zeHPia/tBuCaKaVfD+QTmw7wh55h3jW2gbePqczv9fINXTx1aJhzxjby1pb6zBek4cPrjX7peNsaBjGXjnn3m/uM/W9rphao2phBOBxmzpw5Gdvo6Ogo6YIupaJW5dZo8mHQ7CkjFUy5GYgbN3d32oVgL0dR6z6Mqo4ZaDSaw4PDaa1gP2rdpV21MQONRnP4YI2gq6G7LJUMOptIo9FoMmB1NKqC6iBpnRRPBmc2UdGarQhaGWg0mpJjVfesZIcpJV6KptZnIGtloNFoSk5VuYmKGUC2bet5BhqNpqYpZ+Czkt2llMAwGBxNLtKjYwYFcDhULdVoap1ydNCHUzbR/kiy2+8cTTqHdMygAHRqqUZTecrh604EkCsaMzBlKLCdz2w5mNgekWQXGle1HTXQbiKN5ginHB205aKpZHdZLGUwajMB4jbf08DqVwtsubJoZaDRHOGU101U474U8M1JGu056HOkNtDKQKM5winHaN1K63SrgkrM2i30jgGfSHQ8UNrU1VKjlYFGc4RTjg7Z6ifdtyqnKkhYJwXe1K/TjEuwsIYrjFYGGs0RTjndRG4rpBLKoOB2bA1dPrA7sa1KkbtaRoquDESkXUSeEZFbRaS92O1rNJriUsmgbiXSMQt2E9m2622tqRLPcC41WSkDEbldRPaJyGrX/vNEZJ2IbBSRa83dCugHGoDO4oqr0WiKTSXnGcTj5VNFxRq42ztNxwzkI8QyuBM4z75DRILALcD5wCLgUhFZBDyjlDof+DJwffFE1Wg0paAsqaXm/492O1cHUxmUgVKKG3cfoi9WPTn89gCy2NRbzEcZbBiKlFymYpDV4jZKqRUiMtu1ezmwUSm1GUBE7gMuVkq9aR7vBnyXExKRq4GrASZPnkxHR0dukpv09/fnfW0lqUW5a1Fm0HL7Um8sHrXi2WdpKZKzyE/mg6GjINjMT/b18/bOtVBnrMr3pxUrqA/5B16fCzTytfAUnti0nX+KHihItp7wFAg08sqqVaCGs5Lbi/2hiRA0Vofr7emF5mlGG0NDzjbM97v4lZ38fnRrQbJ70d/fX9T2ClnpbBqww/a5EzhFRD4AnAuMBW72u1gpdRtwG8CyZctUe3t7XkJ0dHSQ77WVpBblrkWZQcvty8ptAJz2jtMYl6ZDzgU/mSet2w8HBwFYuuytYC65edppb6elsdG3va6uAVh/gPpJk2lfeHxBso1/Yw8cGuGEE0+gvc15z1ze9U83HoD9xtrGrW2tif2NzS3ONsz3GxEpyd+x2AOFoi97qZT6NfDrbM5Nt+ylRqMpD+UI4todKCHbh3gG909yfkL1TFaz+9btLjY/N1GtUEg20U5ghu3zdHOfRqOpIcoZQAYI2TrNTAHkYs0NsFPMSWf2tqpHXeVHIcrgRWC+iMwRkTrgEuChXBrQheo0mspTFmVg0wYOyyBDcbdi1jQq1uI2fq1UT4g7P7JNLb0XWAksFJFOEblKKRUFPgP8AVgD3K+UeiOXm+sS1hpN5SmHm8je0QRt3WmmbKLkcplOHjw4yMFIfisIFHMG8tMN4xLb8RqfZ5BtNtGlPvsfBR7N9+ZKqYeBh5ctW/bpfNvQaDSFUQ7LIGjrJ+0lfGIZNJHX/IS9ozE+sG4/7a31/PG4KVnLUKzV1uxWzqZwc2L7iLAMNBrN4Us5grNNgWRX4/Czx9OP7hMduO2iEfPDpuFoscTLiREfBaaVQQFoN5FGU3nK4SZqtJkD9o49nqVlEK+i8OyQVgbFRweQNZrKU45utsmuDGx3zJRNFPApfZ0PxVrcxl8Z1HbMQFsGGs0Rzui+PSW/R7i3y3N/PIObKHZgLwDRA/sLlkENGDN2h9avKaidyWHvCXraMigAbRloNJUn0l2GFbps98glNz9qKYNDPSnHch3hx8w2Irt3pD8xA29tqfPcr5WBRqOpbRoaSn8PnwBypg40YF5nPy9vZ0zMsEKk3r/8RTb4KSHtJtJoNDVNeZa99CZTzr+lDLzOy9UykFJMZ7ZxpJSwLgk6ZqDRVB4Vy2/yVk73sAWKHdlEGa4LBIIp5+Xf5RpXZpr1nAl/y8Cfpa/uojta+vdcCDpmoNEc4cTL0kkpj63M6y+LZRl4tZjjAD85Z6FElkGaY68NRnjEtZZDtaHdRBrNEU5MlV4ZxJV3cbdMcxwSbqIiJJdatYkyzW3IhI4ZaDSaw5JYGSyDfDtzyzLwUya5YHV28QpYBrWAjhloNEc4kTIsKemfTpq+Y/ayDPLtyq36SJEClYHf5SqDZVA9c6i90TEDjeYIJWgGdaMZJn4VBVsPah+ZZ+ogvWIGyvV/toTMK0pV0ehIXtxGo9HUMEEzqyaSoSREMbCPmvsj2XfHQS9lkOcQ+3dNRwHwoPl/vsQjo977C2q18mhloNEcoSSUQVncRMke/Ke7upP7M2UTmcftElpt5et2eaQl+7LXXsS6fUpruNxE8w/udnzWbiKNRlOVhMyOtjyWQZI6n5F1uivtOqPSnWpseDixfeXWVxLb7rcYLHA+Q7nRykCjOUKxOqtoGWpY2+8QHE12pplcPl6VRiutDNToSPLD/mSRv5QZyJUWNEd0NpFGc4QSMpXBaBksA3vHGMphxrOXMijH+gvpsLu2AumC4fX1rutKKFQR0NlEGs0RitWRZVp6shjYYwbhPCa52f3xyWyiauhdkzLEXDEDt3TVIG06tJtIo6kxHuga4MGDgwW3Y8UMSmUZ9EbjfHHrQUbjypFNFHKMpjN0kSo1WFzpTtU+wpc0dZYqLWeuhCotgEajyY2PrD8AQOxtswpqJ2h2V7ES+S+u29HDLXv6OLYx7HCttJG9ZWBdZc/hz3eeQbGwKzCxr9om2jLQaDQ1SDARMyhNN2W1G8PVEdozgzLd2jxu72gL1V1z+wtdzCcpiz1mUFu5Q6loZaDRHKEEzY4sWubIZi5VQ60zo2JfHKcweQsvKGezDNIEkDOVp6g2tDLQaI5QOhvHAOWfZ5BTZ24FuSV1pTSVp0WztWVcXte5RAKcbqLVE6Y7z3NfV9BdS09JlIGINIvISyJyYSna12g0hTMSMEKG0TL0Uo5JY/YKpFlaCVGPZTNjfYfyluexYq0t4BJ/76gtHlJbhkF2ykBEbheRfSKy2rX/PBFZJyIbReRa26EvA/cXU1CNRlMaomUosOasOpq7m8huGSQMghzcTY5OGtg6kn+5OvtdxfUsQ3H7c9aWNsjWMrgTOM++Q0SCwC3A+cAi4FIRWSQi7wbeBPYVUU6NRlNkQma10lJV8fTDWWcoA5abyFz+MqtrPFg7FHE2m0cbXlcHG5scRwJR/1IbpVphrVhklVqqlFohIrNdu5cDG5VSmwFE5D7gYqAFaMZQEEMi8qhSqUU6RORq4GqAyZMn09HRkdcD9Pf3531tJalFuWtRZjgM5a6fA1DwMwVCMwA40N1btPdjl3lXaAIEW1m/bj3dPT3QPA2A3Xv2wDSjcuhrr79G1/atvu2tPdgLU08kGggk2t1ICOpnoCT7d/CaNEDd1MTn9evX07G2z1PuTOzZdwhmGG3FYk5V+vyzz7K5oc44Fh/jOLZu3To61vRndY9s6O8vXltQ2DyDacAO2+dO4BSl1GcARORK4ICXIgBQSt0G3AawbNky1d7enpcQHR0d5HttJalFuWtRZjgM5V65DaDgZwo8uxGAlnHji/Z+7DLft6kL9vWzYOECRm31fCZPTlYNXbJ4CYvnzvZtL756DfQZloHV7pjuPlhrpIdmK3fw0DC8sTfx+Zj582mf2uopdyae73gusR0OObvQE5cuZf7kSQDIE684ji1cuJD2yU4FUQjFHuCUbNKZUurOTOeIyEXARfPmzSuVGBqNxodEamk5YgaOALL3Qjee15n/OwLI0ah5zFvu/ZEYAWBCOOlacp9ZiMPGHvMIuFq2Wwpu+arbSVRYNtFOYIbt83RzX9bo2kQaTeWJliHQmW8A2epCY+IRM/ARe8pLnRz1UmfaVos1z275xLFcNK4x8TlqWxtCueQ7nJXBi8B8EZkjInXAJcBDuTSgq5ZqNJWj8MlXhd834wRkjxOUNS8ih97V/aSFzKyw5H9p/Agf+cD7uX/BJP4tZuTLRKO2rCWXfL3ROPsiZVhiNE+yTS29F1gJLBSRThG5SikVBT4D/AFYA9yvlHojl5try0CjqRxWiQf3CLYUOFwmTp9RHm0Z17jTOtORutRAAeN0U+ZZY9uQYJC6gDBTrLUh/C2DL2/vYWoGi6WSZJtNdKnP/keBR/O9uY4ZaDSVI6EMyjHpzOEmyuE6D+Gs/lZysgycPXMhbqKkmyrZZjhgbEfTxAyqHb2egUZzhGK5O6zOraN3mODKbSVxZdj79LhHCeudI1GCK7exsm/EfWkK8XwsA7c8WV+Zpk1bo0FzHoTDMijCPcqJXulMozlCSVYCNbqt/9xllHd4PosOOVcyrUfwx0PGUpj/s6fPsd/LnVPpuVsJmWzaIGRaBjFbzECVIUurmGjLQKM5jBmMxemOpo70lVKJzspyZ1jVS0Ml7sS8FIPVwWdzZ8t1JDlohZR2i6BR7G2GgoZlYC/6Z6+0WgvUlrQajSYnFr+6i4kvpgYtlccnS2WEiqwLlHIpAEcA2SlPwB3o9comyqMjdz/S8Osv59xG8v6p+0LmPIiYbX3nmLYMske7iTSa0rJ1xNv/76wPVHrLwN5/eq9nbJA6gvdvKxcp3Y8U3bsrh6v92kw2Ggw43yE4i+vVAtpNpNEcgXhl01ilrIttGYC3JeK1J5tAb9IyKMDVEwxmPicTDmVgdKXRuFYGGo2mhvCqHOplGUTiipNf3cXjPYXV//edWmAteG/FAVKvTNkTK0LMQIJGVv3DBwc59bXdOazK7N1mWCxlkHyzWhnkgHYTaTSVIe7RO3tZBjtHY6wajPC3m7oKvKOtHpHHnIOEZZBhUXlD3MJjBvWmW+fjGw7w4sAowzk4nZLvzmYZBAPmMVsA2R0AqXK0m0ijOQJxlmPIHDMoNIzgzCBKbcySJ5usn3xiBiltmJaBdd98OsKAI7U01U0U15aBRqOpdmKOPtZlGTiOFCep3y+bKGMA2autIlgGKhwGbC6nHNryurtXzCAaKEJcooxoZaDRHIE4XDWSmgnjpqBR+MgwHtmkDu7Ym1yo5b/39DFgVv98LFqX2p41AzmXmIHb/WR21PZYwV/6hnnGnPyWjqRLK7kvbKWWmjJlKs1djWhloNEcgaTLJrJTSJcW7TEWoOl79o/+bSrFuqEILw4Yy0U+2j3EZ7cc5MvbugG4JWqWh/apc5ctKcrMXJTGbiGdvnov7bYFcDK36ZFN5Iq/1BI6gKzRHIE4somsDszspr36MXeht2xQI+YoOxZL6yYasWkma0H5A1H/ItPJzKPse1z3mTHX/pyK53nss2Ygx8xsonRWVrWiA8gazWHCawOjnPvmXkfn6ke2lkEhqIixCL3UN/jWJnL7/7NJwEm4aXKQ132fgvpqSxl5zTMw263eVQv80W4ijeYw4e+3HOTJ3mFe6s++8qex7YwZZCoqlzVWmmUg4JqB7N/+qIcMbuJ5WAZ+beRD4kp7Ceug000Uqz3DQCsDjeZIxMsysDowjzlhBQWQxadN+3GLvpjyPMdOPtlE7ivcyiCfvttRwjroDCAXKwurnGhloNEcJuTSR6abgeyV+pmXMvBKuyG14811DkM+1Sjcp+ajUFLasskdstYzUJmVWbWilYFGcwTiFZ6NjBoZPcPrU1evzW/SmWVWiH/MIP2V3seKYBm43Th5WQY2bRCyLIO4080lqpDVlsuLzibSaA4TcumwnW4SY3sgaEzEUrYyzAXFWS25fPZnc236dj1mJ/soCvfueAFP5lnCOmhZBuY55v4PrVmZ933Kjc4m0mgOE3IZMKcNcHpU9MzHMLDHG3wziJT3SsHpfO7pgr/ZvAJRcZQraJKbajDOtpejCJrvzFIyVnu1NAdZu4k0msMMq4+yZvFaDMdVcoasbX9KR2irqVOIZZCoNyTOgHWK/z7HdtPNQM7G7RRQytNN5iYSV4x6RNoHrfeTJrU0oQxqqFadVgYazWHIwwcHaX1hh2Nf8/Pbec+afYB3zCCBR02d/Po0a5TsvNo54Q2+tr0n9UoFT/qUzU6X4ZS1MkhRJKmtzfhrJ60vbHfs64rEuLF5esoVlpso7gog11IHW0uyajR58+yhYdpX7yGSxYSsw4Ener1r7Fj7446MIVdHGChyt5ASQHbe73fdqZ2+Ajp86gQlK5x6xQy8RbB2//fW5xCym2ewPxon4jrt+k7v+Ka7HIVy7a8FakdSjaYAPrWpi2f6RtgyEq20KFVBWsvAFjMowkRdQHi1IRkXLDQHP102kb9lYBwZRwxRxievFNpM3LKnL7Ftn4EcCAYRFU+4w/pNF12whtZB1spAc0RgfdFrJ9GvtKTz4dstg0Imndnz8Tc0tKa0aZzjk/2TtmErZpDjdRiddgBFXDktkrzUk6ujDyiVKEPxSXMxoL1NrdQKRVcGIvIWEblVRH4lIn9X7PY1mnywMj9qsbRwtuQy4nYoRfdsXFvMIB43LCk1mrnERao85v+uTjOWhWpJ9yTp/oZ+x2LmHAppak4EkHdFCqsg5C6LHYjHEwH61waN+42EU0twVytZKQMRuV1E9onIatf+80RknYhsFJFrAZRSa5RS1wAfAU4rvsgaTe5oy8CJI2aQxpUR6+k2zj94IOd7qIT/PH0A2Vs+V1u2NtI5d/zURHxwAIBgYxNCagA5vyGC87mCtsB0IoB8GLqJ7gTOs+8QkSBwC3A+sAi4VEQWmcfeCzwCPFo0STVHJAciMYIrt3H7vv6M5/6ya4Dgym3s8IgLWNUwD+f4sX1GbKYuKK1l4NjO7oUtfGUnJ6za5d2O+CsDf/nSxAXSiOSrDMyJdIFgCFEe34NoJAupXLheclDFU0pj11LMIJT5FFBKrRCR2a7dy4GNSqnNACJyH3Ax8KZS6iHgIRF5BPi5V5sicjVwNcDkyZPp6OjI6wH6+/vzvraS1KLclZB5jdRD3dH854adzH1zd9pzfxCaDMEmfvb8Xzk1nvQH9/f3Mxjuh0A9L7z0EgfVaKnFLgq+77t+DkDKsZ7wVAg08MrLr7Az0AyhZNC2o6PDcd1a6qB+mnGfgQHH8TVvriG6y0hL3T4wBOMXoeLxtH/7jea1dpn7+mPQDF0HD8Kk5LmH+vvBdKWvXbcWpi5Naa/r4EG2HRiF0FjnMwCbDo3ApGMRpVJkGkKgfnbK+3ljcBTGLWTH9u0EZ0xkYHiY9evWQ3giAIP9/dDsvI/nezb3AaxYsQJC4cTnAJPp7TfeZaxuFkiA6Eiqe61Yv6H+/swDpFzIShn4MA2wJzJ3AqeISDvwAaCeNJaBUuo24DaAZcuWqfb29ryE6OjoIN9rK0ktyl0JmRv7RmD1HlpbW2lfvDDtuePX7IWeYZYsXkL7uMbE/o6ODlrHjIGBUU46+WROaqkvtdhFwfd9r9wGkHKs7fXd0D/KSSedxPoDA2DLfGlvb3dcV987BG8acw6am5sdx499y7GcvnAeAK/u2AmdUQIi6f/25rUtLS2J82598nkAxk2Y4Di1qWVMYnvhwoVwKLW5sePGM6ulDnYmD1rt7nh9HfQbA3O3TH2xOJjzK+zHYls6YU+MWbNmEYorQo2NLFi4ADYfNGVqSbmP53s29wGcccYZiC0mEHz6TRrNdynPb4e4oqmxIeXZivUbKvbArBBl4IlSqgPoyOZcEbkIuGjevHnFFkOjcXAkxQyyce3EbAXUvAtCmMf8CgxlJYdFPm6izMe85hn4ugHN5xUgrOJE3Q+UXzqR41NAxZNlwBMxg1RPvFIqJfhcDRSSTbQTmGH7PN3cp9FUHQllUMGYQU80zic2HuBQNM6u0Sif3tTlWe4gHYWUXrYTd9fmcdULSr1xHvewNtLEDPyajZkBXy/yiRnYlVpQxYm4FVSavnnvaHZZR0FbaqmlkIMeS7c9ccDDFKoCClEGLwLzRWSOiNQBlwAP5dKALlSnyUQiPTGLzijdKYkAcqECFcC/7+zlrv0D/M/ePv5+80Fu39fPoz4lF/zIqhBbFsP4uGvCld97KUj1WKPklNRS2yk+f9jhrZv8m007z8Bv3oJ5jQhhpYi6XtHGgL/r8Evbur0PuJ4r2wDy+Rt7fO9VSbJNLb0XWAksFJFOEblKKRUFPgP8AVgD3K+USi2Enr5dXcJaUzTSTZAKmHsLKV1cKFZpg5AkC5rlWtWyWMrMXcLaXsXU8Y4KWmLS+5p4NsoqFM5cZ8ijGd9yFInvhhBUcaKuri+Yj8XlruKhVMpqcaFsFnWuErLNJrrUZ/+jFJA+qpR6GHh42bJln863Dc3hjfVTysXF6qkMqiC11KpbExJJdLi59hX5uEi8iMedMQM/140lZy6Lz7vbUYHc3URxkTQde+4zkI1rBBFMy8A1qve5LheCKNuylwZeMYNqpXYk1WgKoBoCyJY1ECK5nkAwx8hsuj7ZXaPfcczVs7otA7+Zu/HEiDp3VGKU7PbPZ9Ga+Nsi6QLk6ZWB4SYKoVICyAF7QD2e7bckddJZwk1k/X2rMFDsh17pTHPYkFXMoIKWQcTsIYKSHInnWu8+XTcV22fMwxjd3ZnxOnc2kdOPb9suwK3mJ2t2lkEgYzDYM5vI7xrLwkEIqXiKZeBwXcWyLFPhLkdBqptIr2eQJTqArCkFXoOxpGVQyZiBce+wJEfmuXYW6bKJ4hFjFm10IHUyklsJxmNuS8FxE69NTzpHovzLjp6056StTeTTflwk4XJJOWb+v3vMeP6ts8dZfTRTzCBgWGYRl/vGoaDi+dUsCir43ZT5vDYwqlc6yxVtGWjKhZVhU9mYgfF/OCCJEWSgiG4iSwuqaEoWfcqIOTWbyPnZve3ntLl0wwHfGv9+ZGMZKBFft5cle199E9/c0cvG4WT5kYxuIoSQUinF8hyWUdRZzsR+5kR7j5kSdzDucdJru5MBZI+RyanB6iyjri0DzRFFJV24iQAypXETJZRBPJbSobk7yZjLLx7ztQzSa8/+mL9E1pVx1yjcMe5OtzaB8m47/XoGGVJLEUKiiLgWnXHEMdK4iU5rsNV/cn2Zoma1V7sEIQ953hLQykCjKSm2eUVVidUFhASbZZAb2VgGsWiMkc3rHYfcAeK4I2bgP1rP9E7TBrSte7muTjfj2X6O8umU3crA3pqvPIkAspFNlGIZ2OMkMf/OOl357JFganKml2VQrcUStTLQHDZkowxKsZxBTCn+0DPEkDlK7o/FebxniLVDEaNAmom15GZIhJg1QzVHUyWt/NaaDbFoytKVqQHkNDED+/0KkCeRWuoO1mYOGaCAlbv3+9zTpQxs7fk9R2K/CCEhxTLYGkxOOotHo+zxmXWczioZ9Vo72uPv+0RfJK1FVSl0zEBzRFGKQdljPUNcsGYfP9xtFIa7fkcv56/Zx3GrdrHk1WSlVWvSWdhmGRTTTWT1OyoeR0LOUar7ue3lKFJiBh4BWb+YQVrLQHnLbB+Vr497d0FK4IU671XC8rEM7KmlYSDmcl39X8PkxHY0FuWj630UUZonHslSGexqHMP1O6qvz9MxA01NUKyaPKVQBt1Ro7t7c8jI5nl10LtEtnPSmUHubqLMT+B1Rko2UbqYgb2tNBO8/O7lPpYSvLZtD/g0EE0zWcv9XbAH4TPNTRCMQG9E/PN8RqMxnu3zXtkt3VwOt4Ixbuit7d8cqr4y6tpNpKlqol3GCC26f29R2iuFMrD8wlZn77v0ovm/kOqmyZZsLvOa1OVOqY2lWAa2c22nFuLM8FMGdsvAbwnMiMcoO9FuGjeRf8zAOte0DNJM/Y6mdeGkSe31eO9+q8jVVeFkNK0MNFVN3MyZjw9nX9Ct3DGDsHlDyw3k15VYykKR7HBzFSebzlkhKQ+aYhm4MnXcM5JTt/zulflYqmVgUwY+f5BU/3vyPHd79r+3uxpr8nJ7NlEy88fz3q7AtThcaL6XEfPq4H06/bBWBk50zEBTbkphGVhtJi0D13Fz/8jgIACje3cnAsj53ivdMa9zMsUMHNk0Wd4P0mfXJM5xZxPZszh9VPdIwL9smjvl1KEMfMtqJIIfhDHdUD7nRtzZRFmm2noW4POzDKpwGK5jBpqqYMdIlO0jUQZdJrrlWd3ZNDZjG9bvdIdHJojlM97isT5yoVj9qjXD2D1ytSabbR02Ygojm9YSGTDq9a/etcdYnctkXySWVe4+pPr9k0hKL5466Sy5Z1iCdNrfmYItwxF6onEOxKwRtWLzcISDkRg90TibhyPsi8TocwUbhhH2jMbYOhxNpNK6770/lFz9yy9W0R92lpRWCFuGI+wdjdHvWnxg96gh086RqKOu0ObhSFJmUwOJWJZBiMGo9/uLuvZH9iSXaUmn/DxrLvnEPqrRTVT0lc40mlwZisWZ/bLxg3tbSz3PLp6SOPb/+o1O4UBDMxuHIsxrDHu2AckO/1Obunj/+CbGhlJ/iJ/dcpBTW+qKuvRlLKEMLDmcDCtFGGGP2QmqQJDI8DA01XNVF/w2foDfHnsUAFNf6mROfYiNJ03zvFfcZwTvOEck5ajbHWOPGfxmwmx+82YyJvN6LMgFr1iL2xvv8PUJ05n/inPBey8+H57Khr+atZFapwJwX9Nkxznb6pNLTPpN7xp0KYNIKMw86/4B5zKab1u9J7G99vjkYstOeY1lUAMihEWIBQJ80SejJxKLMjYYoMdUytEDycyidEXsPK0cn06/NVh9pkH1SaQ54hi2dVQr+51ZHBttqYc7s1xxCtLPjN1cZOvAcvkkV1Nzdrwpg8lQ0NFVP9ztjIeks14U/i6LRJVQSY0ZDLp8V+6YgZ1N6Zb9ysAGj0VidgX9FW+x7bRYhhldQTH+RYJpYgbxOG9tSa5t7HiXaeoWeQWLlU+sq00rA42mPKTrzoptoLtnE7u7WYWr4w4EvYONWeBXUA6SvnglqfMCBkwhA+bINm2567wky49iT72KZSgyl7AMPFJLxw0ay1FGY3GnQrcpzniOk8ViI97KIN+YUSnRykBz2GD/mbr72vjwcPJYkdVBxFyv1yohbcUDLNypm6oAZZAuuGuVeVAeMYMBs/NviBqWlxXsDnp0nuWcG+sXM8i7vQyWQQAjkyfqYRnUmYHjSDTG8J6ki8muGOKR3OYH+JXUGFq/Jqd2yoHOJtJUnGKle0b370tsu7vayL7kTOBir0T4lT3G6C9+cD9/6RvmFeWMayicy0qOBsPsaRiTVdsv9o8QWrmNXaNRsy1bu27LwPa/e3LaoGkRNJhlri03UcDDB16K9Fs//ivSWNT2ohkWpgmIGOVAPFJL944ZD8CdsQb+3JSMS9jPjY96T0bzQzzqFQH8sHla0SZSFgudTaSpOEVb13egL7GdMvq3/fCK7SbqtjJV4orfdqW6BeLK+Yy7gv5BcDc37e5DAX/sNSybbKZDxT0sg1GrLlLcUCpWamnQI3ZQfVVzssddjdVNUIRwhjU8b1NORa3axiW3c5Snbt6xvsfyWzWhdGg3kabilKLzqUTinqA8aw0Zk8yS3UgwzYSnTDhc2e75DAk3kcd1ZidpiWfJE/AYnVbXeDU3olm4iXJ9+47VIXJ8OZImUF1lhoFWBprKU6ySvtmURobSKYqASqMM7J8D+f/s0mYT2c9xH3ONmK3yFIHDzDLIxk2UvV1mtmmL7+T+VfX/tlWZLtDKQFN58q3T40ZlOYArdswg0a6K+9Svd8YM0hVhy0Q2biLjdbpTSd3zDIz/vSyDaq23nw2ZvksBkZwnV0WyKIRnxxGUT5MoUG1KVysDTcUpxY/CHUC1fyqZC0l5uyBUNOIoFBcp4BbO5Sp9LAMv14/lJrLqI1luIo+RdCXXiS6UaIbU0mDAWFwopzZzVAahWJbKoMr8RHoGsqbiuLuj4MptgDEb2Y/jVu1k7VByytL/HjPB8UtN9zMrdmpp4p4inlZHPBojbvNNFKIM7O4ev9TSK8LT+MDIbscxK2BszT+IWdlEXoqjivqolpFB+uubsj7fp8JEggDiuRRlepTHVir1Ks6IBBgJJyes1acxQ48Iy0BE3ici/ysivxCRc0pxD83hg59p756NbMeuCAA+vanL6SZK86sttiqYKcZIsDnmnYOulHJkjkRU/hLYC8yljCxtzf62eYrjkNuKsK4tZzbRRV1bfY/95sBrnvuf3/mXnO6RbmY1GNlEQZ9vwN+s+qPj8/ce+TEApw51J/ZZb/GBhZNw88IJR1PvKnL3paNbeWLRUfxiwUTumjeBL05JluKoIp0L5KAMROR2EdknIqtd+88TkXUislFErgVQSv1WKfVp4Brgo8UVWXO4UTQftb1qQJrTih0zmGkWVVASYLinJ+V4TMUdzziaIciZjnSdndMV5ur8E24i67N5nkd7peqkPr5/Y2L7uD1bEtsfXfUUSxtTHWwzuvcydcJEzjuwJeWYH5EMXyYRIeCTWnpsdDCxfeLODXz44Fbzk/P85fu28r7xqdbK8c31XNWdlFVUnKZggLPaGvnQhGYum9TCDXNs8xeqLDiTi2VwJ3CefYeIBIFbgPOBRcClIrLIdsrXzeMajS+liRn4U2zLILFOQSBA35rUEa5STj/86OBgyjnZYi8j4S4pYc+mcj+jcrmJ0lkGpeqi7Os927OYQvEYhFJzfIIqjtTV+a6y5kU2tYn83IT2NQZC8RjKnGAWzyFm4Fj7IEOiQNxndnKlyFoZKKVWAAddu5cDG5VSm5VSo8B9wMVicAPwmFLq5eKJqzkcyVYZ5NJJKeCl/hGeOTTscbC43Z2VKbRy4ixeGzs15fhPuoadM5A9OokX+0eympEad8QMnOdvaE5OjnJnLLnXAIglAsge2UQZpcgPpzJI3jccixIIp4YvRSmkri4n7R3L4CYKiBDwCeqGbCm/4ViU+EA/ouKuoH2mulfZC9sdKSR6VHwKDSBPA3bYPncCpwCfBc4G2kRknlLqVveFInI1cDXA5MmT6ejoyEuA/v7+vK+tJLUod6lk3hqJQ8sxGc97/aknYJw5O7R+TsrxSDTpr33+qSe5dOxbAHiwv59ILDmrdN0Tj1J31MQCpU7SHxsLTQ3sbRzDXlLLTHx7/zCRXasgbPiZu/r6oNFZ1vnU1/fwxMiWxHN1dHTQ39/P3r17IdjC2jVr6Xijn60RBS1zAfjLn/9MQ9g2ovZ4JxZr166F1jmgjLb3dQ/DlIme8wx6d+2EyZn/HrnS3XUgsW1XBqF4jLXrN8Kxcx3nB5TijXXrGW1z7k/H2g0bYfx83+Ovv/oqu1QdzJiccmxkKGmxheIxYtEoAaXoPdSX+N5HIkGCsajv76D/UB/Yvlqe55l/p4+t2sYNsX2px7Okv78/72u9KEk2kVLqRuDGDOfcJiK7gYvGjBlzcnt7e1736ujoIN9rK0ktyl0qmVcd6IYNhzKed8ycObSfeLzxwcw4shO0jS6XLl0KWwyroKWlhfBgstOcM2M67W87tUCpk4T/vDbjOUfPXwBbjUBkU6t3+ZV3nnEGPLcdgPb2djo6Opg8eTIcGODYtxxL+6QWx7t629vfTltzc7IBj3diMW/+fNgbRVC0t7fz+xUvIspzbS7q64u31oOdyROTvaQ9pTUci3Lc4pNT0qwCSrHk5JOp35G9W23O3LnQ43/85JNOZucet4PDoK0lGdwNx6IEA4IoaGltTXzvg489R0jFfH8HDz78pOOz53nm32m4pZX2pYtSj2dJsQdmhSqDncAM2+fp5r6sUEo9DDy8bNmyTxcoR8UZjiuOW7WTrSOGH/D4xjDHNYXZNhLluf5RVi2ZyuLmupTrOkeifHJTF/2xOPMbwtxzYIDxoQAjccXipjBfnd7Ge9fu56hwgE1Lp9FUhXXQCyXbOFpG94UjtdTfXC92aulofz+0pi+4FlHe23ayeQ/u5SqzxR5f+NLWbn4QNhbTiXvMhn507PQcWs6e4Veeh/lnARCz3TcUjyOhcIoy2DBpOhLqRlT2yuCKnvTFJgKBgK9vPNCfHJAMhetRcUVchBsnzmfX+v0I8OLYqbx9n39AO5ditNVWqK5QZfAiMF9E5mAogUuAj2V7sYhcBFw0b968AsWoPJuHIwlFALB6KMLqoeS3+//29fOjOeNTrnuidzhRhOz5fiM18aCZLP1c/yj/aq7GtC8SZ8NwlBM8FEqtk+3km0zKQPlsu/cUPYCcRSXLEdtIeNRPGWRxL3sHkktnYs9C+sHuZKfX2ZaaIlkybG6YV49OuqH66hsJhLw7cXdcpFCCgQDi02Or3Z2J7ZWzjwcVTyjLX3Vlp5CqbzHL7MkltfReYCWwUEQ6ReQqpVQU+AzwB2ANcL9S6o1s2zycqpYeylCYPerzw83UER60zaLpy3FhjVrBfy1f13k5tJmy6pTtNft1BvkSzaLwnD2d1G91r2zKcrgDwdmSyCaq4GjUK3MJDHeQeGQTARCNFLWDDQTFd/Sesoaxz7sq1sJJNWsZKKUu9dn/KPBoPjevRcvglt2HeODgIEub69g5GuOLR7fS0TvM2qH0mQG37u3n0e4hFjSGWdJUx5uhiTzb2cNrA+mvsy/1eNf+AV7o957Y9FzfCIubwmwcjjKtLkhIhG0jUf7SN8KS5jDT6kI81j3E9Logk+uCDMeNomoLGsKsHYpwemsDnaNRNg1HObbRcG9NqwsyrS75FdkYbOXlXYfoisboisSZEA7w665BJoaDNAaEuFI0BwMcjMYZiSsmhQP0ROM0BIT3jEvNyz6mIcSixjAXb89u1PVgtI7Nu/xjC38dn1w32N7tPB5oYeX45Aj4PtXM/v399EbjtNnWSbZ+m5l0xQfHN9FsuuveHBxl6/jUDCI399tGlo82eY/Gv7A1Obnpse4hNkgDeyLG3//m3X1cOK6RDcPJ70MufYlhGQQqOnJtnO/tHw/GYwTHtEJ3qrIIT5kO29cXTYZgIOD7FkabWx2fm095p+d5kTTKPydlkMO55aCi5ShqLWbQH4vzOfMH+6dDhmvgl1majwDbR2NsH43xZO8wBMfwe58Fue3Y1wf+yb702QMPeMfFHGv+pq7/a9Tff8i2Du/vur2X6iM0AbZ1p+xeP5x5JduOQ6mulAC5jfbvitR73t8L+6jrhrCz872HFu7Z2JXDnZ08PWmYO+YZwdDFr+7OcLbB2uHMOeX2v++Fa/dB3VQwXYgvDYzyoXX7He8xl5FlumUuy8WEd56dKOIfUIqY2XPWT51GsHUsqZnrEJ5yNCLriiaD4SbCsydefMaZjs9T/ukb8EJqCPSFiTN927crgyt3rgZm+Z5bs5ZBKag1yyCSxR/vxcVTOLYxzIFonDkvZx1Lp/utMwiIUehMRFBKURcQBuMqMRnG7/6PdA9x2YYDnscKpWd5Mj/gmWee4fTTT2fsCzvSXOHN/x4zgQ9PSFoHN+/u4+s7ehznrPrBVQCMe/d7kIlTqD9mAZ3f+Qp10QixQJDJ3/wPGt+yBIDhN1YR39UJdXXE9u7mzpPP4bqupFIq5Q9tSwblF4jHPQOzhbJuKP/l4w33UjBlZnI5CQaDCWVQH4syaI6w6+rqfXP/iy9DyOEbf+emV1lxzAkATAo4343fKmXpsLsgr9vyAvCelHPeFzvEb4Ot1VUECm0Z5EQ2f7uWYICmYICGHEdiY4Li8mVLYr9Fg48R2lyqmszAGFv2UhPK8TkXmgLiuHZcKLWdxqjhAht+7DeAYbMkkv3iMcYINJpt7P3m5x3XDm/ZA2cmcxdKqQwyve5QPMpooPiBfvd9c6l6WQ0VMgO2v399PIZlU2eqIlrMb7cEAobiscpy2F6qhJLdodf8i6zat20Pr/yT5zmxgT5obSXa0w3Mzus+peDwy1MsIdl8PawvdjiHb7BlDeRLmQZVRaXZaxWYTKTpzwJRZ+ylpMogw/FwicoMuO+byxNaKanZLgBUCsTma7cXdAsH3AOhEuKKGcRtM7WDDvny+xvan8IvYM6I4eobKGBdi1JQUWlE5CIRua23N7PvvBrI5sdnuXS8FjnxoxY780LxsgwKwZ0lU1rLIP0fLBzP352T/r7uPdmnmVqppbESuK+yYexQH9jufdyhvYntuTGPkiE2iqrAJOD4vU05lIwdBWxLVC7rzS4WlNK8rW0/qQMNDQDsbh6b1z1KRUWVQa2llmbj+QmMDBEfGUa6cwhQKlCRCCoaJT4yTGygj9hAP9Gu/QDE+vsM0/Iw4py2Ru5bMJEfzR7HNc2K5278u4zXpMs5D7gXeimhMsjUNTVEvDO+CsWdBeNYDznDtdb7iBWw/nIh3PLrHzo627/b+Hxi+8Lhg57v9LsrHwAgVsTRkgScyqB986rEtl2+7274c37tm08yqd8/0aHu6Bm+xyqJXtwmB7LpXnZe81GGhvqNQmFf+ml2DceibPrIuzwPjb34EnoevA+A2bf/htC4CZ7n1Rp1AeHDE4xSCiOjB9gxnEWdlTTzEYKuY6XMnsk0gmqIlkoZOLE/YSYXpuUmSsmlLxOtI4Ng62yltye5reKebqLxO42ZvvFiulOCAc8Z6KLiDmUQ2rYhr+atlo/fs9X/nEAAqK6KpaDdRDmRzXKAIbNT8vUX5sjgqy8lti1L4bAj2/r+ac5zu4liJcyayRRAboxknpFcjPs6ZyOnv9YKIBe1Y82BYDxOwGaVxG2Ws4pFPX2lVhA3WkQ3kQSCjk7PKo/tlk/t25Nf+2K16/9dDVRZrMBCu4lyIBvPg7UYdrG+vrFDPYnt+OBAkVqtLlSGdWuT56X5ganyWQbBDKPrhmhpShOni7lntAwq7CYKqpjzR2HP4gmGPH8v1sCqqNZMIEDAQ5sHVNyRdhvM8jvpxmrZaznRlJOqDO0myoFYLHNgMJzHlyildIL9ngeT8wd2/9uXHaa2xZ7Zi+G9n835vtmw6dJzE9tHx2Js+vF34XO35dzOvhu/w6YNLzn21U2byfTv3wZZZm6o4SHiQ96T/Nw/vkpmEzWUyjJIiRkknzFT6qgVQI5WKIAcjMeR+gasYhwOV00wiFcPaSn4YscM7O/RUgDBuEJsSjxfy956rqCKM/Ur3/E+p0ozRrQyyIHYSPqsBzBHFKEw495v5Ly3DfXT29iS9poxw4MEx00gfPQMRja8Sd3MuTQuXkp4yjQiu3YwvO4NCIZomLfQ8/rJA6XJXgFoO/e9ie0dO3YwY0Z+wa+jpkymbW6yreH1axhe8xo7/ulTjG7Jzj+75/vf8D3mtgzettfnxCLwcPcQwTTloksVM3jTVfJkxrpDQObS35CMGfTlsLh8MQm4ymUrm1KSQBAvz4kVB/rT2GmpB/NFAsRtggzON0qiD9XVEwjXwYglb36DiTfqjDjY61PmUr/Ae32JmfVhwOhLlFJVoxy0MsgB6wd1dO8BLlyzkp7GFmZ17+FQfTPbxk3mojdXMut7/0PDgkVEe7r52XVfYkbPfnobmrl/STu7WyfQOjLIQLiB7qYWFu7bQX99Ex9YvYKZN91FsDl1YZRsOOvFP3PL/T/kuL1b2DpuCgEVJ6ji/HHeSfx86dm8Ze82PvHSY/xx3slMO7Sfl6ctYM7B3cw+uIcVc09gw8RpzOzZx+T+bsYO9bNpwtEMhhv46lP3MPGW2xP3Wd3RwdL2dp688oMcbGplwkAvt516IeMH+1g9ZQ6zu/dy3J4trDtqBlvHTWHSQC9/mXUc79z8GhcsWUTr6Wcn2up+8D6G17zmUAQtp51pZE71HCQ4po3guAnUz5rLoad/T93MOTQsSNa2iezuJHpgHxIKE+05SH0VZWg0lshNVAhelkPj6AhDdaVZu8CN23UWt9/XpzOsL7JSPebATgjOZNRm23U2Jn9zDTNnw5s9xr1Vfm6ijnqjMvGutomOeRV2rpsxlht2G9mBxrzw6kCXo8gByyz/3LMP8P43nvU8R+o/Y/wfDrGs0yiwNbm/m68/dU/atgMF/SiFszf+FYCpfcn6Lss61/PljvsSn89d/1LKlVf+9Q85321G735m9BrB7H95/M7UEzzq1sqSbzo/h1OrVE754vWe9xv3wY9nlKnpiacynlMuGmO1oQyW7trAX2YfX5b7N0ZGHCPgWNg2Q9uaFeyiqcjuthN2b0Lk7Y74Sp3NrWsXIZRHKQqAOlvr9hnNduptMYuYSh8LKic6gJwDMdNsTVffRcwvuW9JXj9yPb/GkVBxyzX4jcIqQUMVKgOvgHq+QdJ8cM+9iNkGP4aSSO0Ri52VZT2vXRmEbGtRBG2+Kr+OPBMh29KrXvE9cD6pX2n7SlCdOU5VipXNkq4mvDXCz/XLVC1+w3LhZRkUQjZrCpSLxiwSDcqN11oJxUp/zoYAyhE0dmQ1iXdRaffckUKx2otGkn+fkUPJmIv9Nyjh/AYrMZty8St0Z7/P/+ytnsmkWhnkgGVqp13cos78ElVR51SNFFsZjFZR7vb4kezLmpcLLzdRsTvbjDLYtqP2v1dAPOMGR/X3FPX+IdMyiCUyiGKJ8hwn7tzgzDLK0zI4asCYM/Wtx+/wtQzs/PO2nrzuUwqq5xdUA1irTKWraJhwE5VzpF8LVoVLxPCkKY5aNU0nnVJQ8yNVpHwX9GcuRVJXoowjP+Ie39lQGd1ELe98d2LO7czuvYSPXQzAmRtfpmnxSZ5f4VBra+rOAkikqpqK8fy1z8NRxsJEp295DbH58tsu+EB+NzEfZNHebTVn7etsohyIJ5YO9D8nYRnYPqvR9D/8QFNzQXIFGtMvxl4NBBqdz9iw8Djm3v0IKhpBGhoLDKCnX32q3DSNyZwVpspsyXhZBvmWac6HCZd9mgOj5uz8eIzAnPkQMRRS/dwFxDwysKb+87+WRJZYXIGYltFYI/snFI85gtht578/v7bNv2s54zHFQmcT5YCVTRQIBhjzrguIdXdRf8xCol37iezqpO3cix1+wqnXfZ+66TOJ9fbQ/ZufE9m9k+CYVuLDQwzs2U3b8Seihgdpe8+HCpKrYdEJHPW5r9Kw8DgindsMF5UI/c88Sd+fHic4bgLjL/kk/c88SXjK0Qy+/jL1M+cSnjGbgedWENm1g9DEowhNnEywtY3R7VuIDfYz5Qveef0zb76H6MEDhMZP5MAdtxAcO47htaupmzGbxrcsYXjDm4zu2Epo/CQGX3me5ree5jnyL1QJ2qkmN1GwwVs5G24JQ2mVO2wY9wogl/H+Eg4TNefphOJxojFLMVhJGR71gvL02/sRaDGUdDQeh6ARM4kmOu+4K2aQnxvTcjuVMx5TLPTiNjlg/aDaznkvk9/59oznN5sdYPioqSmjnI6ODo5tby+KXCJC65nnAc6KiM0nn8rkz3898bntnItSrp34N3+b8/3qps2kbpqx9N/RX78h5+tLwUj1JGUwtGEtnHBh2nPSzTovBV6WQcgcFZcDqasnEjXKqQTjMaNDxuaq8ngfUuQ5EMEJRwHJdxFQ8YTrKhSPOcqM5LPKGdgtg9pTBtUznKoB4uYfuFxL9GmyZyRaPRk8yiebyF5jp9zVQx8Mj03dWcbSFIG6+oQCCKqkMkhYBl7KoMiWgUU0bgWQ40RsheosGQIFdOQJy0Arg8ObRDaRVgZVx+V9nY6FSsrJ+IFD/P2ff8Nb9m7l5B3rWLpzAyfs2sh/PnwL8/d3MvugsVDKHb+4gXkHOgH4+c/+jWP3buPCN//CsXv9S1vkyphhY/Q9++Bulm9/k0n9Pczp2sWQ+VO3d3Sf73yVBfuT61l/7cm7875v67B3EcVz1r3I9x75MYRCLJIox+/ezHVP3s15sUPM39/J3z73kHGiCG/fuppbfv1DPv7Xx/nCivuRkOHIuuYvD6a0++nnHubcdS943nOpOdmzxZXV9emuTQBcHOlm/v5OrnrhEf62axPz93fynrXPERThlG1vcvNvf5i4Zk7XrpT2b/rNj3zfw7923MsJuzYyo6eE9VBKhA4g54ARM5CMJYw15efo/h7+dP/nKyrD5/7868T2/fcYs6kvXPOc45xHbv9KYvvBn36dcjHh8mvouutWx76W087k4Tu+6th3+cuPl+T+IkJ9PMoDdxsz0cdGR/ndHdc7jt9xv+FytGbT88nLAfjCs7/iC8/+qmAZ2s57HwDjY6P87g7j79A2fIjf/drYloBw1y++67jm9z/5ck73eOuONdy/4eWM5/1gdBf/WHd0Tm2XGm0Z5EAs4SbSr63aaH33ewhNmlyx+4fNGArA0df/FwChCZMc59TNmZ/YblqWOeZUTDzLfxezGqhP0NxO3QyjcFvDoiU0v/U0AMacdb6zncYmwtNnARAabyzkFGwdm9pYFjn8qUIaz9ty6hkAtJ7zXsZe+GEAek57d2JuUKAlfUrrlH/+F99jVqXSqV//9wyyVF8foi2DHLCWXdSWQfURnjiZ2bf9MmX/xve/s+T3rl+wiBk3OEfd836zIuvrt/39ZUR27ch8YgGMbt3ksVcITTyK6IF9iT2z/uc+tv3dJYnP836zgoEX/8Lu71zr2a79OTd++CxwxW7sxwP19Y7P7nfk985az72Y7l86Vw2c8oVv0HLamY6/79Hf+gG7vvWPic9tF32Y3odt3wlTGQTbxqbI0dHRgYikyBAcO55Yz0HHvpa3tXvKCdC05OSs/vaqQqXE01F0iURkroj8REQKt+uqDB0zqG1abFVTi9ruqYUpnJbTziqSJP70P/vHlH1NJ53ieCdjzjiHgMccibBPRdhAk7M0e6trlF8sGhctTtlXNzO1PHR4qlHqut6sbtt0vFEGPtHOkpNzvveYdzq/Mw2LluTchhflzibLhqwsAxG5HbgQ2KeUOt62/zzgRxgpy/+nlPqeUmozcNXhqAyUdhPVHHPve5xnnn6Kd5z2DgJNTRz1919GmfVjAk1NxAezKB1h/XCtwUAohBodTcw7CbaNLUjG8Zd8grbzLkZFI0aGTzSGikV54YUXeOvSpUgwCMEg8aFBAg1NSH0dRGPER4YgrhIuEwkECLS0okaHUSMjBNvGAYpYbw8qHiPQ2ER8aJBg61ikro5g8xhUPM64D37cWCi+rg4Jhphzz6ME6upQ5qJDddNmMOeeRwjU1aPicWOiYKguZVb5pKv/kTVzF3P66acj4TCqSBleTScuZ849jyChOiQgxEdHEuXe5977ByQYJD46SrC5hbk/ewxpaCQ+NECweQxNS5cnZM6nRPyEK/4f4z/6CZSKGyuyFamgZCkXX8qXbN1EdwI3A3dZO0QkCNwCvBvoBF4UkYeUUm8WW8hqITEDuQq1usabQH0DqqGJ4BjDDyzBENQn89et/TnTWLxFYiQQIDR+Ysr+6LjN1M8+puD2PX3utnsHm50jfOuzhO37jI5UAOobvNsKBlH1DYnJhMVMDbV35EFbuwEzVmHts+6dkDdcl1bmTEgggBRxcqRF3Jz4Vk1kpQyUUitEZLZr93Jgo2kJICL3ARcDWSkDEbkauBpg8uTJdHR0ZCmyk/7+/ryvzZX1B3tg6lK2b91Cx2B2K0z5UU65i0Utygxa7nJSizJD+eXeu68XZkwBKKjvKyaFBJCnAfaoVydwiohMAL4NLBWRryilvut1sVLqNuA2gGXLlqn2PGfjdnR0kO+1uRJfvQb6YM7cY2hfdmJBbZVT7mJRizKDlruc1KLMUH65X3z6L4ntQvq+YlL0bCKlVBdwTTbnFlqbaNOuPazp6ib62uq8rs+VV/d3Q9PMqlmZSKPR1CZxWyG7eDxOoAqyiwpRBjsBe5rBdHNf1hRam+j219byvaNPAu/Jj8WnyfBDtjbk53/UaDQagMXj28Co28ea7Ts4bvasygpEYcrgRWC+iMzBUAKXAB/LpYFCLYMrjp/PlJXPc0wZq56OqavjtLcsKNv9NBrN4ccFS5fwzSdWcH3LLLoHqmMxpGxTS+8F2oGJItIJfFMp9RMR+QzwB4y4+O1KKY+l0P0p1DJYMH0auyaNp31pcXJ/NRqNplwsnTAWRmA0Uh1FFrPNJrrUZ/+jwKP53rzW1jPQaDSaYhEOhWAEorHqWAinolELpdTDSqmr29raKimGRqPRlJ2wuc7yaFQrA0TkIhG5rbe3t5JiaDQaTdmpM0t0R6tkiUxtGWg0Gk0FCFmWgXYTaTQazZFLXdhQBlHtJtJuIo1Gc+RSN8bwiIhHBdZKoN1EGo1GUwHqzIKJaszYygpiot1EGo1GUwHCZlmbSJWUs9ZuIo1Go6kAY4IBPji+iZn11bHgpHYTaTQaTQWYFA5y/8JJnNlWHbXOtJtIo9FoNFoZaDQajUbHDDQajUaDjhloNBqNBu0m0mg0Gg1aGWg0Go0GrQw0Go1Gg1YGGo1GowFEVcFUaBHZD2zL8/KJwIEiilMualHuWpQZtNzlpBZlhtqUeyLQrJSaVIzGqkIZFIKIvKSUWlZpOXKlFuWuRZlBy11OalFmqE25iy2zdhNpNBqNRisDjUaj0RweyuC2SguQJ7Uody3KDFruclKLMkNtyl1UmWs+ZqDRaDSawjkcLAONRqPRFIhWBhqNRqOpbWUgIueJyDoR2Sgi11ZaHgsRmSEiT4vImyLyhoj8g7n/WyKyU0RWmf8usF3zFfM51onIuRWUfauIvG7K95K5b7yIPCEiG8z/x5n7RURuNOV+TUROqoC8C23vc5WIHBKRz1fjuxaR20Vkn4istu3L+d2KyBXm+RtE5IoKyf19EVlryvYbERlr7p8tIkO2936r7ZqTze/WRvPZpMwy5/ydKHcf4yP3L2wybxWRVeb+4r5rpVRN/gOCwCZgLlAHvAosqrRcpmxTgZPM7THAemAR8C3gix7nLzLlrwfmmM8VrJDsW4GJrn3/Dlxrbl8L3GBuXwA8BghwKvB8FXwn9gCzqvFdA+8ETgJW5/tugfHAZvP/ceb2uArIfQ4QMrdvsMk9236eq50XzGcR89nOL7PMOX0nKtHHeMntOv6fwDdK8a5r2TJYDmxUSm1WSo0C9wEXV1gmAJRSu5VSL5vbfcAaYFqaSy4G7lNKjSiltgAbMZ6vWrgY+Km5/VPgfbb9dymD54CxIjK1AvJZvAvYpJRKN5u9Yu9aKbUCOOghTy7v9lzgCaXUQaVUN/AEcF655VZKPa6UipofnwOmp2vDlL1VKfWcMnqru0g+a9Hxedd++H0nyt7HpJPbHN1/BLg3XRv5vutaVgbTgB22z52k73ArgojMBpYCz5u7PmOa1rdbLgGq61kU8LiI/FVErjb3TVZK7Ta39wCTze1qkhvgEpw/lGp/15D7u602+QE+iTH6tJgjIq+IyJ9E5HRz3zQMWS0qJXcu34lqe9enA3uVUhts+4r2rmtZGVQ9ItICPAB8Xil1CPgf4BjgRGA3hslXbbxDKXUScD7w9yLyTvtBc6RRdfnIIlIHvBf4pbmrFt61g2p9t+kQka8BUeBn5q7dwEyl1FLgH4Gfi0hrpeRzUXPfCReX4hzsFPVd17Iy2AnMsH2ebu6rCkQkjKEIfqaU+jWAUmqvUiqmlIoD/0vSPVE1z6KU2mn+vw/4DYaMey33j/n/PvP0qpEbQ3m9rJTaC7Xxrk1yfbdVI7+IXAlcCFxmKjJMV0uXuf1XDJ/7AlNGuyup7HLn8Z2opncdAj4A/MLaV+x3XcvK4EVgvojMMUeFlwAPVVgmIOHb+wmwRin1A9t+uz/9/YCVMfAQcImI1IvIHGA+RgCorIhIs4iMsbYxgoSrTfmsrJUrgAfN7YeAy83Ml1OBXpvLo9w4Rk3V/q5t5Ppu/wCcIyLjTDfHOea+siIi5wH/DLxXKTVo2z9JRILm9lyM97vZlP2QiJxq/j4uJ/ms5ZI51+9ENfUxZwNrlVIJ90/R33UpI+Ol/oeRcbEeQyN+rdLy2OR6B4a5/xqwyvx3AXA38Lq5/yFgqu2ar5nPsY4SZllkkHsuRsbEq8Ab1jsFJgB/BDYATwLjzf0C3GLK/TqwrEJyNwNdQJttX9W9awxltRuIYPhxr8rn3WL46Dea/z5RIbk3YvjTre/3rea5HzS/O6uAl4GLbO0sw+iANwE3Y1ZAKKPMOX8nyt3HeMlt7r8TuMZ1blHftS5HodFoNJqadhNpNBqNpkhoZaDRaDQarQw0Go1Go5WBRqPRaNDKQKPRaDRoZaDRaDQatDLQaDQaDfD/ARAH2YjE9o8iAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -195,21 +313,21 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:10:36.332087Z", - "start_time": "2020-10-09T12:10:35.674274Z" + "end_time": "2020-10-11T03:33:13.080314Z", + "start_time": "2020-10-11T03:33:10.463143Z" } }, "outputs": [ { "data": { "text/plain": [ - "array([-0.12891499-1.05818132e-16j])" + "array([-0.14101067-3.12250226e-17j])" ] }, - "execution_count": 10, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -235,11 +353,11 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:43:56.750400Z", - "start_time": "2020-10-09T08:43:55.167425Z" + "end_time": "2020-10-11T03:33:14.381426Z", + "start_time": "2020-10-11T03:33:13.081720Z" }, "scrolled": true }, @@ -248,12 +366,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Total time=11.34330129623413\n" + "Total time=1.9989681243896484\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEICAYAAAB8lNKlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB93ElEQVR4nO2dd3gc1fWw37NNvViWq+TecAEM2HQc0w0JnRAMoQSCQ0JJDySElA9I4JeEUAOYZgIJhNCb6Sim28bYFBfcbclVttXLtvv9cWd3Z1e70q60klbmvs+zj3bu3Llzd7Q7Z06554hSCoPBYDAY0oWjtydgMBgMhr0LI1gMBoPBkFaMYDEYDAZDWjGCxWAwGAxpxQgWg8FgMKQVI1gMBoPBkFaMYNkLEZEvRWRmD5znNyLyQJrHPEpEVqVzTNvYfxCRx7pwfLdcVxEZJCILRKReRP6W7vHThYgoERnb2/MwZD6u3p6AIXVEpMG2mQu0AgFr+wdKqck9MQ+l1J+6Ycx3gQnpHjdVRGQeUKmU+m2orRuv6xygGihUe/nCMhEZCawH3Eopfy9Px9BNGMHSB1FK5Yfei8gG4PtKqTd7b0aGLjICWN4ZoSIiLnODNmQaxhS2FyIiG0TkOOv9H0TkvyLymGVq+VxExovIr0Vkh4hsFpETbMcWiciDIrJVRKpE5EYRcSY4T9i0JCIjLVPJRSKySUSqReS6duZ4sogst+ZUJSK/sNpnikhlzGf5pYh8JiKN1twGich869g3RaRfvGNjr0WcOfxXRLaJSK1lippstc8Bzgd+JSINIvJinOuaJSK3icgW63WbiGTZ5yEiP7eu8VYR+V6COcwDLrKd67gkx75GRLYBDycY9xIRWSEie0TkNREZYdt3u/V/rxORT0TkKNs+p2XiXGtd309EZJht6ONEZLWI1IjI3SIiCc5/sIgsts6xXURutXYtsP7WWJ/3sCTmq0TkahFZZ32v/iIi5t6VwZh/zteDU4BHgX7Ap8Br6P99GfD/gPtsfecBfmAscABwAvD9FM51JNqUdSzwOxGZmKDfg2izXQEwBXi7nTHPAo4HxlufZT7wG2CA9TmuTmF+duYD44CBwBLgXwBKqbnW+/9TSuUrpU6Jc+x1wKHAVGB/4GDgt7b9g4Ei9DW+FLg7JADtKKUujjnXm0mOXYLWdObEjikip6Gvz5noa/Qu8LityyJr7BLg38B/RSTb2vczYDZwMlAIXAI02Y79FjAd2A84BzgxzrUBuB24XSlVCIwBnrTaZ1h/i63P+2ES8wU4A5gGHAicZs3LkKkopcyrD7+ADcBxidqAPwBv2PadAjQATmu7AFBAMTAI7a/JsfWfDbyT4Nx/AB6z3o+0xim37V8InJvg2E3AD9B+BXv7TLRvw/5ZzrdtPw3cY9u+Cngu3rEJrsVjCeZTbM2/yNqeB9zYzlhrgZNt+04ENtjm0Qy4bPt3AIcmOHfUuZIY2wtkt/OdmA9catt2oIXDiAT99wD7W+9XAacl6KeAI23bTwLXJui7APgjUBrTHvqeuJKdr9V/lm3/j4C3euL3ZV6dexmN5evBdtv7ZqBaKRWwbQPko5+A3cBWy9RRg9ZmBqZwrm22903WuPE4C/1UvFFE/hcyiSQ5/9jtROdIiGXyudky+dShhQZAaZJDDAU22rY3Wm0hdqlo30d71yLVsXcqpVraOX4EcLvtf7gbELT2hIj8wjI71Vr7i4h87mFowZaIZP+/l6I1zJUiskhEvtXZ+Vpstr2PvR6GDMMIFoOdzWiNpVQpVWy9ClU3REMppRYppU5DC63niJhKukIjOkoO0MIDbVqJx3lok8px6BvryNBhoSl2cK4t6BtiiOFWWzroaOyO5rYZbWYstr1ylFIfWP6UX6HNWP2UUsVALZHPvRltuuoSSqnVSqnZ6P/vLcBTIpKXYO4J52vrY/fzpPNaG7oBI1gMYZRSW4HXgb+JSKGIOERkjIh8I53nERGPiJwvIkVKKR9QBwTTMPRXQLaIfFNE3Gi/RFaCvgVoIboLLYxiQ6e3A6PbOdfjwG9FZICIlAK/Azq9RibNY98L/NoWjFAkIt+29hWgfWg7AZeI/A7tSwnxAHCDiIwTzX4i0j/VDyAi3xWRAUqpIFBjNQet8waJvrbtzTfEL0WknxVI8GPgP6nOydBzGMFiiOVCwAMsR9venwKGdMN5LgA2WGaoy9FRWF1CKVWLtr8/AFShNZjKBN3/iTapVKE/60cx+x8EJlnmmefiHH8jsBj4DPgc7fy/sYsfIS1jK6WeRWsJT1jX9wvgJGv3a8CraCG8EWgh2sx0K1p7fB0t8B8EcjrxGWYBX4pec3U72tfWrJRqAm4C3reu7aEdzDfE88AnwFLgZWtehgxFlNqr12MZDIY+jogoYJxSak1vz8WQHEZjMRgMBkNaMYLFYDAYDGnFmMIMBoPBkFaMxmIwGAyGtJLRSSgdDofKyelMQAoEg0Ecjr4nN/vqvKHvzt3Mu2cx8+5+mpqalFKq1yabkYJFRE4BTsnKyqKxsbFTY1RUVDBz5sy0zqsn6Kvzhr47dzPvnsXMu/sRkeaOe6U03nDgDnRWhK+UUje31z8jxa9S6kWl1BynM25SXYPBYDB0ERF5SHT27S9i2meJyCoRWSMi11rN+wJPKaUuQSenbZeMFCwGg8Fg6HbmoReyhrHSIN2NXqA6CZgtIpPQC4gvFZG30Qts28UIFoPBYNj7cFn1cEKvNuUVlFIL0KYtOwcDa5RS65RSXuAJdE697wG/V0odA3yzw5N3ff7px+5jMRgMXWfTpk1cffXVlJSUMH78eK699tqODzL0ZRQ6FdCLSqkXUziujOgUP5XAIeh8bn8QkfOIZAJPSEZqLMbHYjB0zC233MLAgQOZMmVKVPurr77KhAkTGDt2LDffrH2sn3/+OWeffTYPPfQQn376aW9M19CzBJRSc1IUKglRSn2hlDpbKXW5UuoXHfXPSI0lk3A4HLQX8pxJIYiZNBcw8+mI9ubT3NxMMNh+wudZs2Zx0003ceGFF4bbAoEAV1xxBW+88Qbl5eVMnz6dU089lUMPPTQsWC644IK0fg5DRuIUkbmkrrFUEV2ioNxqSwkjWDogJyen3ZDnTApBzKS5gJlPR7Q3n7y8vA6P33///SkpKYlqW7hwIWPHjmX0aJ2V/txzz+X555/H7Xbzxz/+kRkzZnD22Wfzve99r8vzN+yVLALGicgotEA5F127KCUy5/HNhoicIiJzA4FAx50Nhr0Qv9/PtGnTwq+5c+cmdVxVVRXDhkUeOMvLy6mqqmLWrFnccccdXH755YwcObKbZm3oDOs+2sDT92zsuGNqdGgKE5HHgQ+BCSJSKSKXWlVPr0SXV1gBPKmU+jLVk2ekxmJdjBfz8vIu6+25GAx2VCBAbdUeKCyluLj7zuNyuVi8eHHaxpsyZQpPPfVU2sYzpI8jj8lha/Mg1A/TOmyHpjCrwme89leAV7py8ozUWAyGTMC7eQOxSVr3PPMY48YL/fr10qQ6oKysjM2bI0E9lZWVlJWVtXOEobdQSlH72vNsbR4EQAcutVRJq/M+VYxgMRji0LphLat+dBlv3TI/qr1l5RdUt6ZcqbfHmD59OqtXr2b9+vV4vV6eeOIJTj311N6eliEOTYs/YOe9fwtvp9ny7xSRudbSjR7HCBaDIQ7Bhnoe33AaJ/5mFtu3R9pdAyNVmnu74sQNN9zAYYcdxqpVqygvL+fBBx/E5XJx1113ceKJJzJx4kTOOeccJk+e3LsTNcQl2NrCq1XfCG+nWbD0qsaSkT4Wg6G3kZwcvqobRVA5WLoUTjxRt/sLBoX71NbSrX6Wjrj++uvjRpWdfPLJnHzyyT0/IUNqiJOrFt0Q3vT7e3EuaSYjNRYTFWbodQIBNjTo6KqlSyPN22vyw+937OjhORn2KgJBidpOs2AxprBYunPlfWNjIxdddBGXXXYZ//rXv9I+vmHvQAUCrI8jWKqqs8Pvd+7s4UkZ9ip8wWiD0d5kCstIwZIql1xySdKpLZ555hnOPvts7r//fl544YXemK6hD7BnN+z26tCvKMGyM5KFwWgshq4QUNEPzsYUlmFcfPHFvPpqdCbnUGqL+fPns3z5ch5//HGWL19OZWVleAGZyUVmSETlNv3TGFewjlWrIJR8YU+9O9zHaCyGruALdqtg6VVT2F7hvJ8xYwYbNmyIalu5cmXc1Bbl5eVUVlYyderUhLmY5s6dG17p7PV6qaioSHjuhoaGdvf3JJk0F+jb81m1pA6YzMGly1hdP5pHHvmESZPq2bq9Ndzn44/WMX78ph6Zj2Hvwx+jsXSHKSytI6bAXiFY4lFdXd0mtcXHH3/M1VdfzZVXXsnLL7/MKafEF+Zz5sxhzhz9P8nLy2s3v1Qm5Z/KpLlA35uPUopdj/yDgm+cyJ6BXgCm91/Gv9afgdN5EDNnwvw79Gr4/lm78ftGMHPm6G6bj2HvJhDjY9mbTGF7rWBJRF5eHg8//HBvT8OQgaiWZmqe/w+1r79I3aS/AzC+cB1F+T6WLtUmsBavA7fDy+Sir1i2bFpvTtfQx4k1he1NQbB7hY8lHqWlpSa1hSE1rBWPqrmJugb908h3NzJ5WHXYgd/S6iDL4WVi0RqWr3Ti9fbSXA19Hn+gW8ONe5UeEywikicij4jI/SJyfnefb5999jGpLQwpoYJBVtWO5vx3b2fTFg8A+a5GJpVs4LPP9BNls9dJtrOViUVr8PmEFSt6edKGPos/xhTm86U1lUPfXcciIg+JyA4R+SKmfZaIrBKRNSISqoF6JvCUUuoyIK13+NmzZ7dJbeF0Ok1qiz5M4+IP2XrzdT170mCQ733wNxbuOoBX3isFoHjEACbmr6CpCdasgVafk2ynl4lFq4HoUGSDIRUCwejbb8CX1iyUfTqlyzzgLuCfoQYRcQJ3A8ej6yUvEpEX0JXIPre6pdWa+Pjjj7dpq6ioMKkt+jBbb7oG0A51Eemgd3poagyy00owuWJDPnmuJjylpUyo0s9NS5dCS6sTj8PLiPwqcrMDLF3q5KKLemR6hr2MYMxzvT+9Gkuv0iXBopRaICIjY5oPBtYopdYBiMgTwGloIVMOLKUdTUlE5gBzQNek6Gw4pgnl3Evw+8Ht7rhfGmhuijwxKiXkuxpx9R/AKHkHt1uxbJmETWFOCTJ5VC1Ll5a0M2LnCQQCHX5/++p33Mxbs/7LJiASVbho0RIaW5rSNn5v0h1RYWXAZtt2JXAIcAdwl4h8E0ioniml5gJzAfLy8lRnwzFNKOfegQr4kW4QLNXVMGoU/POfcMYZuq21JbpPnqsJV/8BeGhl0j5Bli51alOYW3vspwzfxVMflFBdDaWl6Z2f0+ns8PvbV7/jZt4az+51Udv7TpnKUTM9aRu/N+kx571SqlEp9T2l1A+VUu0m6TJJKA0hVJKhMruffozWjWuTHveBB6ChAf7+90hbc7PWWEbn6zKx+W6tsQBMGdekTWFeFzkePzidXHTUMlpb4frrkz6twRAmtuyC35+5pjAROUpE7hWRB0Tkg476d4dgqQKG2bbLrbak6c4klIa+RTKCRQX87H5sLpt/8r2kx33uOf3X54u0tbboH/b+/XSoV76lsQCMGlTP1q1Q15JFlsuHs7CIicVrOfJI+OyzpE9rMIRpWhldSj7Qw4IlleArpdS7SqnLgZeARzoauzsEyyJgnIiMEhEPcC6QUrZHo7EYwgSSESz6e7KrtRgA3/YtVD10P42N+odaVwfNzdHHVG+qBQiHEYNdsCwHtCnMWaJtXEMK9gCwcVcx2S4fzqIS/LV7KCuDysrOfzzD15ea11+O2k5zuHEyzANm2RtswVcnAZOA2SIyydblPODfHQ3c1XDjx4EPgQkiUikilyql/MCVwGvACuBJpdSX7Y0Ti9FYDCFUEoKFQIDnNp3AofNf4JNPYOtf/sAZv5rOuNEBdu+GoiKIXcJUv8eHU/zhMGKI+FiG5m6jrF8dA7J34eo/EIBBOTrjZLPXQ7bbh7O4H4GaPZSXw5Ytaa9XnnaCwSDXXXcdV111FY880uEDp6FHiI52DKRXsLhEZLHt1SZvmFJqAbA7pjkcfKWU8gKh4CtEZDhQq5Sq7+jkXRIsSqnZSqkhSim3UqpcKfWg1f6KUmq8UmqMUuqmVMc1GoshRFKmsGCA+9ecB8BHHwR4Z+1EFu2aytYdLo4+Wvd5883oYxr9uUzvr21Y4VX1LVo6ZDm9PP39ufx04gM4C4sQTxYDnRFrbpYrgKu4hECN1lj8/t5JoX/LLbckXS7i+eefp7KyErfbTXl5ec9P1tCGoIpdeZ/WpxMFLAH+qJSaZgVFJUO84KtQypJLgaTyYWVkShejsRjCJPFw4WsOsLZ+OACfLWpi1S7t4utXFIjyfzQ06CDIYFALlv37LcfttgkWK3Gxx+GjPLuS4uxGxOHAPWgoA/1rwuNku304i/oRqN1NWZl+yuwNc9isWbOSLhexatUqDj/8cG699Vbuueeenp+soQ1BFbuOJa3Dp32BpFLq90qpDh33kKGCxWgshhAdaSzvvQc7tgcJKC00ln3uoMabj9vhZdzI1qi+a9fmAZHaKsWeOiaO84YFi9cyhXkcPoLNTeDQDzauwUPIrllPnj48bApTXi9lA/RB6RYsfr+fadOmhV+hMg529t9/f0pKotfRLFy4MFwuwuPxRJWL6NdPFy4zD2yZgYo1haXXed/ZlC5dDr6CDBUsRmMxhFDtPMbNnw9HHQX/7xZdLrg0axdfrMpmd3Mhxe56ygfr9SaHHKL7r1mj69XX1entPFcTY+rfYuknWni1tuoftsfhJdjYgFjfP/fgMvw7tjJsmN6f5QrgLNI36aGF2kS9fn26PrHG5XKxePHi8CtUxqEjqqqq2pSLqKqq4swzz+S1117jqquuYsaMGemdrKFTNPpzorYzJNy4y8FX8DVMm2/oW7TnvH/2Wf33/Y/0AsrDBizhxcrjWbZ1BEWeOoYM0CrG9OmwYUNEsNRbrsc8VxMTi9bw7OaT2LYNmi2NJcvpJdjchDj1z8M9aCiqpZlxo3ysXOkh2+PDWTwIgBLnLgYNKmPZsjR/8DSTm5vLgw8+2NvTMNiY89H/RW2nOaVLh4W+rOCrmUCpiFQCv1dKPSgioeArJ/BQqsFXkKEaizGFGcL4E38HXn9d/121RguAwwZ8AsDKnWUUe+rIz9HaTlERTJ0Ka9e2FSyTrGSSy5bFmMKaGiCssQwFYOzgGgB8ATfOPD1W65qV7D+pNWOSUZaVlZlyERlCsLUF79bkbaS+9PpYOjSFdVfwFWSoYDGmMAPA+zsOYtHSrKg2pXQali1bYPv2UJu2VU/v/xlul46sKXLXE7SEktOpBcuGDXl4vRHBku9uZJ8i7ZTXCSZ1u8fhQ3m9YVNY1qhxAIwu0GWI1+0ZjMMSLNUP38XIyqf48ktojXbp9ArTp0835SIyhG23/JZNPzoPFbvEPgFpru3Tq9mNM1KwGAybGodw8Qd/55iL94lqf+EFuOgiuPpqaGmBkSMj+wZmV7PPiAYAijx1nH30VgDOPVcLFp/PwcqVUFerhU++q5kiTwPDh2qNwxsWLNYv3BIsrpJSnP36M3PAe3q8qR/jyMkNn/eQ0k/x++Gvf03vNeiIG264oU25CJfLZcpFZAhNny7Ub5IVLOl9MOnVeizGx2LISP6zQT9lBwJCIBC+x3PXXfrvF1YSimOPhQcfBI+jlRxnC/uOruXztdp5v88wZ/g3Hcq8v3QpSDAIOMhz6Uyy+41rZOnSLCYN1n2ynFqwiE1jzhozAce2T9h8zQ+R7JywxgJw1MCFnHgi3H8/XNeDJWSuv/76uEkRTbmIDCNJwdLq7VkfS3eSkRqL8bEY1tSPDL9fa8stWVOj/65apf8efTSIKPp56hCBKaN0hyJPHcrrpXHR+2z7+/9j3DjIygrw6adQV6u/VyHBsu/Yelatgj21+ufgcWhjt12wuIeU4a/egQoGEYcD8URMdCJwwAFQVZX5K/ANPUi4jlByAsO/F5W5zkjBYnwsXx9274arroKdO+FnP4sIkXX1wxmepx2fdsd4bM6v4cNh3MhWij06hnjfEdWAJVj8Xrb+6dc0LHgTh0MxalQjS5dCvWUKCwuW0TUoBUu+zMUlfhxi3Qgcke+fw5OF8nm15HA42hQfC63A37kzDRfFsHeRpCLi7WHnfXeSkYLF8PXhvvu0eeuEE3QK+7/9TTvBNzcN4YQhC3A5g1GCpaUFhg6NbJeWwg/O3ckZw/QK9ANGbeekyV9yaOmnKFuYjWptYezYBpYuhZo9Cqf4yXHqMLDJo3RCyiVf5kX8K0RrLOLJgkBACxdH259NKEuKSUhp6CzGeW8wpAGlYN48/T4kPLZt01pLQLnYp2gt+4xoaKOxhBY8AvTvD5d/ZzuXjvsPADmOFh66+EnGFGxC2X6pweYmxo5toKYGFi52Upq1O2ypGN6/jsJCqG90hv0rAOKKuCDFrQswBVtbEEdbTTokWKpSXqNs2OuJ8bEsX26zktnIhKjCdJGRgsX4WL4efPQRfPVVdNuyZZGn/qE525kyqiauxjJcpwajpCSSNh+slfrWr1b5fGHtIiRYAN772MPA7F2RQf1epk7Vb0P+FSDKFCYeLVhUS0tUe4jQUhGjsRjaEi1YYtK7hdldk9bbsTGFxWJ8LHsffj/Mnq1Xy191la7gOHcu5OZGStr/8Iewbl0kPUq/rFr2HbWHrVsj2YObmyE7W4cPFxeDy0VUzRbl84UFjfJ5w1pHsLmJ0aMbEQGfTxiQvTvqmJBgcTt8SJZOEdPGFAYEW5oRZ9ufzcCBei62tYkGAwBKKXzbt9Dw0QIgsWayszqtt+NeNYWZcGNDWqmo0H6Tf8UUn54/H554Qr9CiGghc+GF+riJE+Gee+Dtt/X+fp5apozQmsWyZXDccVpjycmBX/0KTjxsJ/49jrYaS5Rg8aC8XlRzMzk5AcaN01rSAJvGovy+KI3FkZ1DoLUlEuMMOCxTmGptietjcTph7FhYubJz182wFyKizWAKNv30ElRzE2OfXUBLS/zuTc1x7GN9lIzUWAx9l6OP1sIjNjrq0Uf13/79I20uF/zxj3DQQfDznxO+ub/9tjYdFLnrmVKuo7yWLtXOTaW0xnLEEXDCx2exYc45Uan1lc+bUGOByDkGZtlNYRHBkuVsxZGrFz+GcoVBxBQGxPWxKKWYOpWMSe1iyCQUyvr+QeLULUmUHuozGMFi6BZCTuyQ33L9ejjxRNi0CW68UbcNHarNWSGGDIEBA6C6Wihw1eNyBCjObWb4cCvlivWkl2NPCuv3RSWqVD4fBAOR95adLdgSLViiNBafj0mTwOUMao0ltKo+jikMCGss+TOOt83Db6WNiay1MRiAKOe9UgpXAjuR3280lj7Lc889x2WXXcZ3vvMdXg9lMTSkBfsTV2Ul1Ne7mDwZbroJdu3S2kpurjZpgU55b0ckcuMPrUtR1g3bLliys6OPC5vCnE6U3x+u4aJ8PsRlCRbrifGAA3TXUKlh3c9LVhZMHNVIrrMFydFZkaN9LG01lkFX/5qScy8Jj7H//np/pmc6NvQUlqCwCRbvpnU4/Y1xe7eTb7UzGOd9LImiwi655JKkS7Em4vTTT+f+++/n3nvv5T//+U/a5/51QCntrL7lluj2NZEii6xcCddcsx8rVsBtt0UEC8DBB+tEkvEKGYYES7+QYAlowbJypV5MCTEaC4RNYY6snA5NYccfD/f97iuOGriQwhNPs/pp28Sdv/iSa6bcg3uQXihjD1cOhRvrE+mfjThdOAuL9PjeSGSZMYcZNG1XRm7+yfdo+ejtuL19vrRqLGYdSyyJosIuvvjipEuxrlu3jm9961tRrx22wuQ33ngjV1xxRY98nr2Nbdu0D+Xaa6ND9HdHAq245x5YsaKQ0lJoatLFtUKCRQQuuADy82lDRGPRixaxBEswCIsX66a2GovWUCQ7O8oUFmxqDGsdIcHidMJ5J27B7QhQdNIZOPuVhAXLAeNrmFz8FZ6helGKv3p7+BzRGkvkZxMSOMrnZfBgGDTICBZDW76sGc+45xYw7rkF3PxOfCVib1pd0aeiwmbMmMGGDRui2uylWIFwKdbDDjuMl156qc0YSimuvfZaTjrpJA488MC455k7d264FKzX66WioiLhnBoaGtrd35P01FwWLeoHaLtPcbGP++5bzODBrSxeHGkP/ZvOO281d9yh087v3v0VFRVb2h3b680FDg6bwjZv3EjL+I+AQ3nqqSqgjLWrl1Hxzi6sNYl8tXIl/YCWoKJxx3Yc3lY8QPPnS8LjbvrqKxryB1JRUUHOymX0BxYtWUKpP0hdVSXLKyrIXb6cEmDVnjpKAe/2beHr6dq1AytHJZVbt/Kl1Z6zZi39gY/few9/v/4MH74f773npqLikw6vYyZ9dwzdQcQU9tflP+iw997kY+lTgiUe8Uqxfvzxxwn733nnnbz55pvU1tayZs0aLr/88jZ95syZEy4Fm5eXFzeDbIiKiop29/ck3T2XxkYdyRXSHADq6tw8+eRhPPMM1FpKRna29ocUFXm56KJx3HGHbj/ssPHMnDm+3XP4/fDjq4MMydHaZdmgQUw991Auvxw2b9arEMv+9wzf+PV1rLXGHTd6NNUVkNevBEdOLqrFSexSgbLS/tTm5zNz5kzqAk3seA0OOeJItrz5LMX9S9h/5kxqfQ3sfBMOOH4Wm19+AgkGwtfTt20LGx/TqZXLhw/nAKu9IQu2vfYU0w+cStaIMRx3HPzlLzBo0EwmTmz/embSd8fQfSil8Cl33H0nl73NK1XHAGn3sfQqfV6wpMrVV1/N1Vdf3dvT6JPk58OwYdq0ZSckx0PtBx8MCxbAwIGtTJrkweXSAsMeapwIlwvee2EL/r9aC2EC/rBT//33dZPHuzvsoAdr7QrgyMpG+X1R61pCBG3hniHTl7hciNsdySmmdHJKZ0Gh3u7AeQ8gbh0tFvLHXHWVXsfz29/C0093/HkNXwcSCxaXRL7HafaxpBURcQA3AIXAYqXUI+31z0gfSyqYUqw9Qyir8ObN2hE/bVpk35YtemV8SLAcfrj+K6K1l9CTezKCBWD8iBYK3DpyJiRApk6N2KCzHN6oBJOBem02C/lYVCCAs6Q0asxAfW34fUgQicuNuD06sSREct6LUHbjHQy/89HwMfHCjXV7xMcCOmT6yCNh9erkPmtP0tjYyLRp0+KaiA3dgC1rvjfoidvFbUsh5A/0rGARkYdEZIeIfBHTPktEVonIGhG51mo+DSgHfECHiYv6vGAxpVi7nyVL4IMPItt5eXDeefr9eMuytWxZW8FSX68V4pBDPlnBErUuxZImoTEAsp2tYeEAEGzQtYYdWdn6Bh/wkzN5Klmjx4X7BHZHr1sBELcbcbki4cmW018cTnImT8UzpDx8jD0qLFpjsQSLLYKsvLxncobdcsstKUVJ3nLLLZxzzjndPzFDNEpFhEwMLkdEu+4FU9g8YJa9QUScwN3AScAkYLaITAImAB8opX4G/LCjgfuUYJk9e7YpxdrD/OlPemX8WWdF2srKIhmGr79e/126NCJYQvtOOEFHVc2cCUVFOkQ5EcHWlvBTv11o2DWWEFlOb5QpLNBgaSxZ2eD3owIBxOlEsiNxyf491bYxbRqLy2YKC1gaS5yULeK2mTLa0VhAC5Y9e9qaDNPNrFmzko6SfOONN5g0aRID2/snGLoHpXBJ/ApwLrEJlvQ6710istj2alNNUim1ANgd03wwsEYptU4p5QWeQGsrlcAeq0+HIrDHfCwiMhq4DihSSp3dmTEef/zxuO2mFGvX+OADvQreXj8+RCjnV23EkkRWltZKamq0wPjNb7RgGTNG7x8wQIcXL1q0ARjJ974H3/52nPUngL96B47CItadewKuQUMZee8T0Y9ulvYyaRJhX012jCksWF8HTqflL4nUq3dkWSd0OLVWYwmUsFByuRC3h5a1nxOoq43ETjva/sDF4QhPwJ6EMrQA0z6fkCW2qgrGjaPb2H///SkpKYlqSxQl2dDQQGNjI8uXLycnJ4eTTz4ZRxwBakgjtgqSzoSCJfKAlGbBooAlwIsprmUpA+ypVCuBQ4DbgTtF5ChgQUeDJCVYROQh4FvADqXUFFv7LOuETuABpVTC1YlKqXXApSLyVDLnNPQMdXU671ZxsX7KBh0qvGqVXhlvT6rocIQLKAJaqADhlfFDhuiV9SJQUBDpF9qOx4bLzib3gIMB8G/XochtUrSghdmkSfDZZ+BxthJsagj3CTTUIU6X5S/xgdOhNRZLy3APGoxvaxXOxnprTC+43FYVSJ3HaevN15F38BF6vnFygYFeEKn8/vgaS4wpDLQ5rLOCxe/3M83myLJHKrZHoijJu+7SEW3z5s2jtLTUCJWewHpQCQbhk53xQwS70ceS1pr3Sqkm4NJk+yerscwD7gL+GWqw2eKOR0u1RSLyAlrI/Dnm+EuUUjswZBz//a/+W1OjHfPDhun09a++Cn/4g/5RTJqkixMdfLCuoRJbzWDqVHj5Zb0/Ly/5c4f8J02fLoxuD5mqPB6CrZFUsFOnasGS7fSGHfYAgdoaraHk5BBsbkKyc7RwsJJIugYO0YLF8sUovz8sdJq/WAqAt2ojecHD9IAJbrridKGIFjyhrMdBbyTAOR1Fv1wuF4vtcd1p4uKLL077mIb2WfZZ4vIfbodNY0mvYHGKyFxS11iqgGG27XKrLSWSEixKqQUiMjKmOWyLAxCRJ4DTlFJ/Rms3ncKyBc4B/ePq7AIys/isY5TSZYGdTh1x9eqrcNllsN1acP6HP+i/t94Kp56qywYfcQT87nfR44RWxi9cqDWWpM9v86VEt+sfmyO/ENUSKXJ/6qmw+PmvyHa2ErRFeQX27MKRX4CruL9O6eLzajOXlc7FPXAIzRDWWPB5wyYsd9kwvBvWkjVqHMp6wpRET/Mu6wZhEyzOon7gcuHbFvntDRumtTR7iptUCQQCHX5/Gxoa+Oijj2hsbAz33b59O8uWLQtvL1igrRaZ9Fvoq7/NVOddZvnsFy1eBhwZt4/DZiLz+zPi/7QIGCcio9AC5VzgvFQH6YqPJZEtLi4i0h+4CThARH5tCaA2KKXmAnMB8vLyVGcXkJnFZ+2zbZteF7J0Kdx/P/zsZ5HkiZs3awHR1AQzZuisxKHiRKpt+qOwY335cjpcFGhHdZA/3JlXQNAmWM46C/Z/7PsAURoLaC3C2S/ibxCnM5zOxTVoiB6vMZLYMiR0hv7+Vjb/4vuo1tZwKhgkvmBxZGUTpDbaFOZ24xk2itb1kfjinBwdLdeVZJROp7PD729FRQVTpkyJWsR75JFH8re//Y0RI0ZQVlbGj3/8Y/79739nVEBLX/1tpjrvNXf/PwjCxH32S9hHbPnEAkEH3/jGzLhliztBh6YwEXkcmAmUikgl8Hul1IMiciXwGtr69JBS6stUT95jhlal1C6l1OVKqTGJhEoIU5o4NXbsgC+/hBdeGEpjozYXXXEFNETcEKxfD9//fiSl+5AhcLYVQvHtb8P++2shs3s3VFdrreTWWyOmsvYYORIKrTWFiTQWb+VGWjeui2qzR1JFtVs+FkdBtGCxE4oEC+Ny4exni2d2OMPCw1lQhHg8NlOYL2wKcxX3I3vsPgSbGyPrWBJoLKHxYzWarFHj8K5bHdZ4gB6pzXLDDTeYKMk+gM8X52nMIlaGpLEmS4fZjZVSs5VSQ5RSbqVUuVLqQav9FaXUeOtefVNnTt4VjSUttrh4WDbBF/Py8i5Lx3h7Kx9/DKWlcNFFoVXp41m3Tpuktm7V5q2sLHj3XV0b/q23tLC59dbIGGVl2gk/dSo89FBE45g0CU5JMuG2w6EF07vvJhYsm666AIBht83Du2kdBUcdl1BjCZnCnPmFeFvWxu0TDC2KtBY4itOJqzhaYwmbrAJ+nP1KI857fySdPoAjJ5dgUxMq2L4pzNWvv04VE1OaOGvMOOrffgXvxnVkjdShcVOnwn/+o4V0aWmbodLC9ddfH/cJ2kRJZgpabHjjPz/pHhItdPz+SKnuLpJW532qdEVjCdviRMSDtsW9kI5JfZ00lr/8RQuCVFEKDj1Ul8MNpTopLW3l+ee1UMnJ0alF7rgDPv1UCxXQN7ujj46ME3pInzpVm75CCaBDixyTJWQO68jHsvknF7P91v9HsLWV5i8+jf/Zwj4WrbGoOPa3kCnMNdBKDelwRmksYvOxKL8fV0kpjpApzOeLWpfiyMu3NJZAQm0FwNV/gH4Ts5Kt4MhjceQXsOuxueG2WbP0UNdei+FrTjB+pHFcelJj6U6SEiyWLe5DYIKIVIrIpUopPxCyxa0AnuyMLS4eidLm721UVVm120/suO8770ScwV4v3H579P4XX4Sf/WxVePvOOyP7fvYz/XfqVG0iGzpUm78Ajj02si/EwoXJr5IPETo+2aiwnff+lR13trWIqmAwvHbFmV8AwWBUKG+IUIoW90DtPxGnE0duXkRLsUWFqWAAV0n/aFNYPI0l0L5gCQkuf82u6PbCYvKmHY538/pw29Sp8N3vwrPPtnsZDF8DAu0Ki+iHpkRux86ctjfrsSQbFTY7QfsrwCtpnRFaYwFOycrK6rBvXyZUwLK5WTvTHQ745BOoqNACx35zP0YnQEUpXdr3hhsi+/r310725uaIU+XCC+Gaa3To8D776DYRHQUW4pNPIqYvuxm+Myb5ZDWWEC1fLY/brryRdC2OfL34JdjchCPmuxAyhbmHlMGnEKirRURwFhYRqNmtnfehKC6/H2eJ3RTmj9ZYcvMgGEC1NCeOCANcVv4xe3qY8BjZOQSbo/1B48drn1Vzc/zFoYa9m5ZANv9Zeyo73kxs2xLamsL2BjIyu3Ff97H86U9aqwiF6yYiZJ5yOPRixDVrtL+jtlb7O2bM0A7gQYMix6xeDQ88ENnes0dnHXa5oLQ08mTvdmv7vlLamQ9tFykedFDkvb14ViohwyFCK+OTvYEq27oPO8GWFpRlanLm64gAHXLcL8okFgrvzZ4wmdpXniFoOfNdJaUEanaD04ln2CjdNmgIOJw4fF6CzU1WZckYwQIEGusTRoQBZI3WidHc5SPa7JOcnKjQaIhezzJ2bMJhDXsp//f5pTy65kz4PHEfEdiveAXbW/qzvWUgjfGrFneGzq5jSQsZKVj6usZy3XX6b0eCZbn10N7cHDFz1dbqG/4nn8Azz+i2dbZgqvHj9c37llu08CgujuwTgYcfjhZEIrDvvjqNe0dr4555pn1HY3tkZ8Otfw0wvvYVgs3H4shpXzrFM2/p9pa2Gkvohh2M+DaCjVo7yx43Kep4V+lAWtd9hThdFMw8EfeQcrInTKZhwRsA+HdXa40lN/LdCgmWYEN9u6awrJFjGH7HP3EPLW+zz5GTq9fQ2EKZ7aldjGD5+lHZOKTDPoLi6Zk/4J1thzLno/9j504YNSotp+9V531GCpa+rLHYEw8OGqRNUjNnatupCIwYoaO55syBr77SJq6339bhuiUlOp3KqadqwQLw05/C3/+u3//mN1pVnj072idiJ57wcDiiTWeJOOOM5D9nPC47+Ssqf/UXmpYWkH/YzHb7BhOEGgdbWiLhxnkhwaIvarw6K4686PrGrtKBVl8/IkLOPjoDUSiNvn93Nfh9bU1hQKChoV1TGIBn2Mi47Y7sXGuuzdo3RHRqF8PXj0Z/x6p/yBRW7NFmWnt5775MRgqWvow9t9aOHfDXv+pXLGVluiLjmWfqtSIejxYyGzbAhAmRfqecEhEsv/pVJD9XbxH0ttK69ityJu7bZl8ofDjY2IB38wYGz7uN3bsqKTnru237JjCFqdYWLT2dzrDWEzYxWYJFcnJRVuEucbspu/GOsNAJCRb/ruqocSP+kWodFRblvLc0lg5MYe3hsGyAweamsGCxaywGQzxC4cahnGFpdN73qiksIzPR9eVw4y++iN8+YED0dmiNyLhxWlPJz9cmK9ApQQ48UL/f13b/7m2hArD7iYeo+s0VUSvNQ4Q0jUBjA60b1uKq3c1uWwhuFAn+t8HWFm1OcrpwZIdu1s3W+PqYrOERW4G4XORMnkruftphFBYs1dGp6VxhjWVX1AJJiFSMDNTs7lBjSYRYQtBeqbKgQP/PNm3q1JCGPo6D5OOMnVb6/DQ67zM/Kqyn6cumsC++0NrHO+/oxYlbtug6JFOnas3E64XBg+GCC7TaO8nmIrj9du2wP+wweOklnc6+tFRrQbYimb2Kf6dOJNZq5deyE1p/EmxsQBV0Tgqq1pZwOHBIYwnGaCzusuG0rLIi253RX+HcAw7BNXAw/U4/N6rdkZNL0JOFf/fONhpLSBgFGxui0sKkQkgIxjrw99lHZ0UwfP1wOjoWLKGV96H0+SYqzBCXL7/UN5PQAkN75NV3bRahrVu1ECq3+YHz8/UqetApV0LFtSZMiDaP9QY7H7id2pefpvi07wDg37EN5fMSqKu1LRyMmMLs6VpU+4H8UaiWFq2ZuCKFukJaQGgct72yY4yG4cwvYOR9T8YdO5BXQGD3LsvBHr2OxZGXrwMCOm0Ka6uxgH6gePJJq4hg5pY0N3QDjgQ1WKLRprBQJcm9RbBkpCmsr/DBB22TMn7xBcRUio2LxxMxd2UyyudD+f3Uvvy03raiubyVG9j21z+w4ftnhcOAQ9FcwabG6EJcCfJ9xSNo+VjE5cZpFXUJ1GiPZqh0sLOoX6c+SyCvQEeF+bzRFSEB1wAdStdZU1jYbBfzWadO1SHhmaJxGnqG//0P3t02PYme+mkjZApLo4+lV8lIjaUvhBu/+SYcfzyccsr4sKlj8WJtT09GsPQVNl19YVRNFJ9lCvNu3oDXSiqpfF7EkxVefxJorI/SWIIp1OgN1NVoU5jThThduPr1j/hLQs77TmZkCOQX4q/eGhUSHMLVfyDeDWvbDTduj3g+FohE7y1dCsOHd2poQx9DKR0JGo9cZxNNgUi0mC9oZeBOv4/FrGOJpS/4WI45RocMz507lBdj/m0zZvTOnNKNCgYjdUasoi3+HVsBCNTsifRrbQVPVkRjaWyI1lisVCod4cjN1ya2QCB843eVDgwLFtVFweIvLsG/UueyF5cnal9EY+nc2Il8LPvuq01gS5fqMHLD3k+itWALTjwLlDDj9UgR3YDS37fuct6nbbQUMaawTuJw6CSPL7zwHjt3ws6d0NKiH6qPOKK3Z5cevJs3hN87svTSfN+ObUAkVxdYIcLEOO9tvy5733jkHnQooFfI+3ZstZz3bQVLOJLM6WTA5T+n4JjUMvj6i21JKt2xGssA6zN0zhaRyMeSl6cXtXZ3Cn1D5mAvV2HHJQE8zmip41fW99yxdznvjWDpIgUFfkpLdfRWVlanLSkZRaCxAd+2LTR/uTTcJpZZMvxEbkvZGjaV2TUWv80UFlOUK5Yh1/6JUY+9jHvgYPw7tlnrWGyCZdcOlFJRGkvRiacx6KrUUgf7i+zZj6N9LM5CHcUWbOpcTg3JygaRNoIFeqY2iyFzSCRYHBLALdGSwxe0vud7mY8lI2+DfXkdS1+iadli1pwxA9+2LVHtW373Yzb+8Fyalup8/uL2IJ7seEMAbTWWQIwprG1RruiburhcOPMKdG36HduifCCu/gNRXi/B+tpwVJg4O2fB9dvqtcTOIZSXrNOCRQRHTl5cs98hh+hCaybT8deDRPm+HKLCCyFD+IL6e9gNprBeJSMFy9clbX5vU//OqwA0fb4kqr11nV782PTJxwBtoqhi13oEW6IFi2puCrcBBGJutrGZikO4Bw5Gtbbg31MdZQoDa8GjzRTWGVR2JENmrCkslJesK7iHluOt3Nim/Yc/1Fmk42Vg6Cmee+45LrvsMr7zne/weiittqFbSKixEAybvEL4LR9Lpocbi8hMEXlXRO4VkZkd9c9IwWJID0opGpd8rGuc0DbXVsi8FairiT9AMEDWWJ1z356CxT2oLPo83pBgsWkpdTUELa0gGONjkaz42k9IiPi2bQmbquyCJRRu3FnnPURClWOd985OLui04xkxGu/Gdex86E52//eRcHt2Nkyfnv6Q41tuuYWBAwcyJSYM8dVXX2XChAmMHTuWm2++GYDTTz+d+++/n3vvvZf//Oc/6Z2IIYrEpjAVNnmFCAS7zXnfISLykIjsEJEvYtpnicgqEVkjIiF7swIagGygw+x3X0vB0tjYyLRp03jppZd6eyrdStPSRWy94Zfs+e8j1FW8xtqzjw473yFi9vFVReccEXfkphsqtRuw+Uncg4dG9Y/VWECnRwlaiRkD9TEaS3b83PqhtCuqpTmslYSFjV1j6WTkFkS0rdhwY0dsTYFOkDViNIG6Gmpf/C+7//1g1L6yMr0oNpVqgh0xa9YsXn311ai2QCDAFVdcwfz581m+fDmPP/44y0NptIEbb7yRK664In2TMETh8+n1bfFQStoskvWpXvWxzANm2RtExAncDZwETAJmi8gk4F2l1EnANcAfOxq4TwmWSy65JOkntPa45ZZbOOecc7prmknTuORj6iuSN0u0rvsqrH3Yqf/f69TOb2vADzbpR6faN14Kp42vffkpfFt1CHEoPUus+caeMThU00TZnNKuQdHpwEM+FnupPC1YcrRD2+ZjGfCjX4VDe2MJCRaIONedRf3A5dIaSxfDjUHXrQfaLJAM+Vi6gmfEmIT7ysr002io9HNH+P1+pk2bFn7Nnds259r+++9PSUm0WXLhwoWMHTuW0aNH4/F4OPfcc3n++edRSnHNNddw0kkncWBfWJnbR/n5z+H66+PvizWDAfgt570IOMWfTo3FJSKLba82ocdKqQVAbD7lg4E1Sql1Sikv8ARwmlIqdOPZA3S4wDAj17Ek4uKLL+bKK6/kwgsvDLeFntDeeOMNysvLmT59Oqeeeirr1q3jrzFG7Yceeohly5YxadIkWmw+gO7Gu3kDta88Q+n3fxx1U9x6wy8BKJh5QodjNH3xKVuu/zGll/2E4pPPjNq3/bYb9Zsf/7+o9lA0VmDXTpSV7r3mhSepeeFJRj3yotYCAO/GdVF14B15+eHV7q4BA9vMJdjYgCM3Pyy4gq1tTWH+mj2o0kFIdk5Y2xnym5vJm344LSu15u0sKaXwmJPCxzj7leiwumAwrFGIw4Gr/wD8u3ZE6rF0xRRmCZZgzP8/kXkuFeLVaQlhz3Q8eHDHY7lcLhYvXpzyHKqqqhg2bFh4u7y8nI8//pg777yTN998k9raWtasWcPll1+e8tiGjpk/P377Zfs+T66r7T0nFG4M2hzm96ftluxXSk3rxHFlgN1oWwkcIiJnAicCxcBdcY6LIiMFS6KV9zNmzGDDhg1RbfYnNCD8hHbYYYfFNXVVVFTQ2NjI8uXLycnJ4eSTT8bRzTHCW266Fv/2LRSd8m08Q/WPPlBbk9IYLSt0GbpYs1U8mpcvI1C7J+ocKiYMdsNlZ6O8rWG/QMualeRM3Bf/7uooM5FkRcxWBUfPwrd9KwUzjqdx4XthwRIbFQbo0GOnC0dObtiHE3KYh8xbhcecRP/zI2tgxenCWdSPwJ5dUZFfrv56LUtoZX9nFzECOK3IsMCe6PLCkoZEXq6SAQn32QWLPX9cT3H11Vdz9dVX9/yJvyZs26bz+yViiKyP2x4KNwZtDsvUlfdKqWeAZ5Ltn5GCJZWV94me0BJx0003ATBv3jxKS0vjCpW5c+eGTQ9er5eKioqE4zU0NLS7H6BsxzYEWPzOW3jLRgKQs/oLQqsq/vf6ayi3R+vDfh8S8KOyov0QJQs/JBfYsXQxq55+En9/S5Pw+wk9J+e88zLv1tUw5OFbAWgaM4lQ8oj6HduxG39CzvjKQ45hwMb1LH/xaeq37qD8zmjz6bIVKwjpLFUNTdQdfxZrqrYzUAkhT8zaFSuoL6igeONG7GW3fECzy4N72xYEWPb5F7TWNJG7aw8lQOWXn/N5zLUb6M7CA2zftYuV1r5+SsjeuJbKZUspBT5ZuhTfliRtSjYaGhpYmd+fwcByZw7+mHOHrmNH/8/2sOssFe+8E848WV3tAQ7nnXe+orBwS3g+XTlXPMrKythsixKorKykrKysnSMM6WDVqvb3x9a2D+EPRh6SXI5AJqxjqQKG2bbLrbaUyEjB0hNc3E6d3jlz5jBnjjZJ5uXlMTNR4h/0Tai9/f5dO9lgmSf3HVZGwQzdd/f2DWHjZtk9N+EaNIQRdz7Klht+RfPnSxjzzP+inqI3PP4P/EDWlk0Mfuwuxj67AADv1kpCOkz/zz6mcPBAQh6NYn8LoWWK2cEAsauCBv3iD4w94hg2VLxEmdvJgEMOZv2dkf1lN91FeVYWlU89BMDIceMosT5r1VvP0rxTp3cZOXQo/WfOZPsXH9GwJlL73ZmVTb9hw2ncoW+kU6dNJ2fivrSOHsHmt55nxOEz2D/m2m396A0ad2xhcFlZeF+dv5Eddy9lXF4We4BphxxCVjv+jERUVFRw5MxvwRlnE69S8Jrb9d/2/p8dERoDYFquC//O7RR/62wCAV1SWmQ8M2eOD8+nK+eKx/Tp01m9ejXr16+nrKyMJ554gn//+99pPYehLbHJaGNJKFjamMLSNqXOpnRZBIwTkVFogXIucF6qg/Qp5308MukJre7t+bR8tZzd/32EjVd+l8ZPPqLyuivD+/27dobf26OzAPzbt9K45GOarTUlvi3RsamxC+8aPqxAKRV2wIewR2/5tm+NtDe2XbiXM/kAQKeaDzY1opojea4Kj/smOZP2i4rgEo+tTrzNwR9stY7z+8NFswCU0xnlqA+Z2LKGj2Lk/U9RFOMrAsgao+sD2Few5x5wMABNiz/U43TBFNYeo+a9wKhHXujSGOESAsC2m6+j+sE7AO0W2m+/9K7Av+GGGzjssMNYtWoV5eXlPPjgg7hcLu666y5OPPFEJk6cyDnnnMPkyZPTd1JDXDqM9pNEGkv3msIst0L8KYk8DnwITBCRShG5VCnlB64EXgNWAE8qpVKuKNTnNZZET2g7d+7s+OA0ovx+dtz5ZwAchUUE62qpe+NF/Labu12w+Hds1RmBLZOUI7+Qhg/ewTVgMP6d22ha8hG+qk34tm2h6KQz2qRj3/Z/v9Orx2NyWymbU1q1NOOyp0mxGPDDX+ApH4GrWK/pcOTqWiT2c4RCjh02p7Y9DNnu7FatrdY18CGeLBy5eVpQOV24S9sKFoj4WWLJmTwVgNavIiGyrv4DcA0aSutay97QTQtnnUXFXR6j7KY72XHv32heuqjNvv3318Xe0lWb5frrr4+r8Zx88smcfHJqedQMXaOzGovPprG43D27jkUpNTtB+yvAK10Zu09pLLNnz87YJzRvVSRkN1hXi3iyaPrsExCh+Izz8AwbZTmg/QTqavBt30r2+Ej5SM+I0fird4ZzVnk3b2TnA7dT/fBd1L76HASDFB73reiTxkmYGCuA7EWxQrj6DyBn0v7hbV3kqj5KSwhpJ2LTWBw2jcUerhu0Oe/F5QprM8rpitFYokN845E9Ti/IdJePiGr32CKuuhJu3N24Bw2l+OSzotqCra14N29gyohd7NljShXvjXSksSR6jrD7WJyOYDp9LKY0cbI8/vjjcdsz4Qmtde1XUdv9z7+M6od1VJ4jNw9n/1J8WytZ/73TUX4fyusl/8ijaf7iU0Cbo3zbqsI5toKNDeHIqFCWYc+osfT79oXs+e8/IydyOOl//vfZ9eh9+rgYk5lnSDnNy6LDVmMXKDryCtpqLJYQidJYbFF6Dpv2oqIEi1sLlp3bIcYUhqvjr5u4PQy/4584S/pHtbsH28ybGSxYABy5uVHbwcZ6Nl19IcNqxgMP8N5bTYy4JDf+wYY+SYeCJYEpbFR+ZBG7O73Oe1OPpa/SuPhDBs27jU3PPhxedAg671QoFQrolOrOwqI25hH34HIKj/smudMOp3Hh+wQb6sMLIAON9eGV8f5q7UdxZOegcvKixuh/3qW4h0aCOPwxYbSuQUP0SvVgxHUvbQRLvk4caRcslhCxayZ2H4t4IoIlZOJTVoix08q7pVwuPGWR6lbJaCwAHmvNjR33kIhg6S4fS7pw5OZHbQcbdVj2PoVryfO08MqNr3H+JWf0xtQM3USsYFm8GKbZVpHYTWHzj70ApwTY0jSIA0si2VRcjrQukOzVeiw9KlhE5HTgm0Ah8KBSqk9nw2v+/BPctbtRuTl4Ro4hZ8pUap59nH6nz45yYjtycuOu7HYWFTPwimsAaFm+jEBjQ9j4HmxsIGCtEwnVI3Hk5ERVZgQtxBzZEa0iGJNJ2FlYjCM/n2BdJF+XIzv6admZl49qadbnD/WxCQ69QHFnlGAQd0TIeDetQwX8YVNY1ujxWktSkTol0DUTlnuw3RSW2c9DsRpLKAmnyxHgwOJlLKreP24GBUPf5Nvfhvffj24LVQ4N4bAJlrEF2mxu11YA3A5/wiJhfY2kf6Ei8hDwLWCHUmqKrX0WcDvgBB5QSiXMqaKUeg54TkT6AX8F+rRgCTQ04M8vZOw/Iia6wmO/iXvosKgFeI6cXBzxBItd+OQVRGkMgT27wp48X1iw5EYvQkQLllgNBNBmJ78fZ2ExzryCaMGS01ZjAb1CP4RdOyk4ehZ7nno0ykMZ0lhCwQbeqs0Q8CNZ2WE/iWt3dABFshpLPKK0GFeGaywxmZLtwn5K8So+2HkQLbvar1Fj6Ds89VTbtjbPUAlMYXbSLFh61RSWivN+HkkmLBORfUXkpZiXPQzot9ZxfZpgfW040WIIT9lwXZvDdnNx5OaFzUN27Bl1HfnR5hN7BFlo1bxk5+CIMYU58/LbaCCSlY0jV/dzFhaFV5uHzxXHFAYRzQiiBUvJuZcw+Ff/j9wDDwm35R2q6y+XzL4EAO+61RGNZexEAJ0rDCg+Y7Y1/86nTbHnJ8t0U5gzL/p/7bOFhI/O30RAufjqs+TKNRv2DhJFhdnxOAPpFCx9w3mvlFogIiNjmsMJywBEJJSw7M9o7SYK0Sv+bgbmK6WWxO63+swB5oDOl9TZlcndsao5lkB9bfjmGYs9gsqRk4ujoK3GYm+z34zsebii+mfntjHmOvIKohzsul8Okp1NsK4WZ2ExnvIRtKz4LLw/Ni+WMyRY7BqL7ZFLnE7yD5sZdUzW8FGMfXYBKuCn+oHbaV7xmQ43drpwDxhE2Q13sLBKh1r3v+BySr7zvahrkipRKVcyXLBAxHwI4NsW8b+NLtAhYSs/b2XQ1MTHBwKBDr+/PfEd7w72vnnPbNOi+0XakxEsDlrZubOGioqlnZtgBtFVY3XchGXt9L8KOA4oEpGxSql7YzsopeYCcwHy8vJUZ1cmd8eq5lgC9XUEcztOt57Qx2Jrs2s4rtIBeDc1WO8HRvlYYgPmHXn5SIxpS2s2WotxFhXjGRYduhvr63DEESyxtVsSIU4X2ZP3p/nzT8DhDJu7cqZMRVXX6D4iaUnyOOQ3f6bujZeiAgcylaJTvs2uef8AogXLqHwtWFatVO0KFqfT2eH3tye+493B12Hesf2SWbeU7QpCbnG6rk2fMYV1GaXUHUqpg5RSl8cTKiH6SmniQBxTWDy0j6WtALIvGHTk2QVLxGroGhBJhevIzm3jGHbmF7Q1beXk4sjJ1SWFs3OiQ3Xjzc8yybWus4VMp3Dtc/c9CN/WKp0gM4mQ4s6SN/0Ihvzmz2lJGNndFJ/6HUY++AySnRMVMVjgbmJgdjUrV2d2AIIhvSSjsbgde48prKuCJS0Jy2LpC6WJVTBIsKE+oSnMjiM3L8pRHw9nfnzB4h4YESyS09bH4sjNj/KHgDaFOXJycBQWISLhmiqJ8AwbGRUeDYTryydD/hFHhwVKVxz0exMigqukFM/wUfhi6t1MKFzLsk98uGJCww17L0kJFqef1tYOu/UJuipYwgnLRMSDTljWtWRL9A2NJdjUCMEgwZyONRbJzulYsBRGHPlRGstAm9Pa7Qk75cNtLhficDD093+jYYrOx+7bXkXO5KnkWTm23IOHUv7X+xl22zzK/vyPtvMToeTc74W3syfuR/7hR3f4ucJzLCmlYMbxQNt09F93+lvBDXYmFq1hdf1IVPWeXpiRoae4d8YfGZhdDSReIGmnwNPInr3kK5G0YOnOhGWx9AWNJVRjJBlTmDgcYT9GouqJzsLicBEq+4JHu39ERBCXi5EPP0f5LfeG18AA5E6dTt1hxwGQvc++9Dvz/Kj92WMmkDViNDn7RFffDB9/QMQ1Vv6nuzoUhLEMuPRqsvfZV2svhjC5Uw+m/4WXk73PvnisMs+HnrsvvqCHrxz7d3C0IdNZsCDxvuPLP2K/4hVJj1WaXcvOnektX91bpBIV1m0Jy2JJVOgrkwhVZ2xPsAz66fU0LfsE0E7uwdfcSNbYCdS+9FSUJhJi+G3zaPiwgvzDj8Z3XiW+qk3kHz6T6gfuAGfkGcBVXIKruCQq1xhAMDePUf98qU3Z3WQQh4MR9/0HAp37Vjty8yj/c5+PIO8W+p1xHv3OOI9AYwMNC97g0BFT4AZYsya/44MNGc03vtH+/lA54kSmsIJvnED9//Ryvjx3M34/eL3Qhcj8ECalSyypFPrqLTwjxzLs1oeo+mpNwj4FM44Pm4gA8q21H6UXXxG3v7OwiKITTwOg5NuR8ssjH3wmkpq+A1LVNOy44wg7Q/pw5uVTdNIZ5Afgo49gz56dwMTenpahGwkJFpUoDaU947dDm/7TlNalV1O6ZGR2477gY3FkZZE1aiwqDWG0HSEuV5tFd4a+i9MJhxwC2dl7gc3D0C5usYRFML5Z3x7h6BIr00bvV5HsMhkpWPqCj8VgMBjaR8Iai71SZHSXyC3YKWnVWHqVjBQsBoPBsDcQFhbBRIIl8ta1FwmWjPSxZJLzvrm5mby8vIT7/X4/rjQuCgwEAnRWU0v3XFIldu69PZ9YEs2nK9e8O+YD+ntnyGySEQBuCWksib5fNlNYen0saUdE8oD/AX9QSr3UXt/M+dXbyCTnfbCD2L9p06axePHidvukQlfSXaR7LqkSO/fenk8siebTWylGMu36GFLjvffatg0ZAnffrde5BZsaIqawRBqLw2YKswRLT/lYOpGx/hrgyWTGzkjBYjAYDJnO7t1t2z78EEaMgA2X64WxYS0kgY/FHivWCz6WecBdQLgkrS1j/fHo3I+LROQFdF7I5UBS0UpGsBgMBkOaCAV5+bfrzN7hSK8EUWH27JQuLO0mPYLFJSJ2dXiuleA3TCoZ64F8IA9dHqVZRF5RSiU052SkYMkkH0tHzJnTa6HibcikuYCZT0dk2nwMyREIwLXXQlmc3K4OB7SsiiQfcXcUFWYzhYXNZukRLH6l1LSOu7UhbsZ6pdSVACJyMVDdnlCBDBUsmeRj6YhMujlk0lzAzKcjMm0+huRYvBj++tf4+0TAb6ucGjJvBRI67yOEosLS5GPplpX3Sql5yfQz4cYGg8GQAu1pFNqyZY/0CpnCEoUbR/pmyDqWtGSsz0iNxWAwGDKV9gJFY0sFhcONEwoW+wLJtJrCOpvSJZyxHi1QzgXOS3WQjNRY+kJKl1dffZUJEyYwduxYbr755o4P6AZGjhzJvvvuy9SpU5k2TZtTd+/ezfHHH8+4ceM4/vjj2dONebgvueQSBg4cyJQpkYzJic6vlOLqq69m7Nix7LfffixZErcyddrn84c//IGysjKmTp3K1KlTeeWVSL7UP//5z4wdO5YLL7yQ1157Le3z2bx5M0cffTSTJk1i8uTJ3H777UDvXiND12lviZEI0Q75jqLC7Askla7ylSbB4hSRuZa/OsG5uy9jfUYKlkxP6RIIBLjiiiuYP38+y5cv5/HHH2f58uW9Mpd33nmHpUuXhtdD3HzzzRx77LGsXr2aY489tluF3sUXX8yrr74a1Zbo/PPnz2f16tWsXr2auXPn8sMf/rBH5gPw05/+lKVLl7J06VJOPvlkAJYvX84TTzzBl19+yS233MKPfvQj0v0g43K5+Nvf/sby5cv56KOPuPvuu1m+fHmvXiND12lqSrzPEXNHPWHI/+jnqeH8Uc/EP8BuCgvqKl89tY5FKTVbKTVEKeVWSpUrpR602l9RSo1XSo1RSt3UmbEzUrBkOgsXLmTs2LGMHj0aj8fDueeey/PPP9/b0wLg+eef56KLLgLgoosu4rnnnuu2c82YMYOSkpKkzv/8889z4YUXIiIceuih1NTUsHXr1m6fTyKef/55zj33XLKyshgyZAhjx45l4cKFaZ3PkCFDOPDAAwEoKChg4sSJVFVV9eo1MnSdlpbobbsgiNVYBuXsYuHJpzKuMLqKaBj7AslgWjWWPl2a+GtJVVUVw4ZF/Fvl5eVUVXW5InPKiAgnnHACBx10EHPn6hD17du3M2SITn8/ePBgtm/f3qNzSnT+3rxmd911F/vttx+XXHJJ2OzU0/PZsGEDn376KYccckhGXiND8sQKFntWnlgfS0eII3KwEy2hMjWlSyoYwdKHee+991iyZAnz58/n7rvvZkFMOTsRiUrL3dP09vkBfvjDH7J27VqWLl3KkCFD+PnPf97jc2hoaOCss87itttuo7Awul5OJlwjQ2p06GNJBfs6lvQ67zv0sXQnRrB0grKyMjZvjqwhqqyspCzeaqkemAfAwIEDOeOMM1i4cCGDBg0Km0+2bt3KwIEDe3ROic7fW9ds0KBBOJ1OHA4Hl112Wdjc1VPz8fl8nHXWWZx//vmceeaZ4Tll0jUypMaPfhR5f+utMTv9raiW5BOIis2P7EpvrjBjCosl06PCpk+fzurVq1m/fj1er5cnnniCU089tUfn0NjYSH19ffj966+/zpQpUzj11FN55JFHAHjkkUc47bTTenReic5/6qmn8s9//hOlFB999BFFRUVhc1B3YvdRPPvss+GIsVNPPZUnnniC1tZWtm7dyurVqzn44IPTem6lFJdeeikTJ07kZz/7Wbg9066RoWN27oQ77xxLbCxMaWn0dtX1V7P9thuTH9hmR0vzOpZe1Vgych1Lpq+8d7lc3HXXXZx44okEAgEuueQSJk+e3KNz2L59O2eccQag06+fd955zJo1i+nTp3POOefw4IMPMmLECJ58MqlkpJ1i9uzZVFRUUF1dTXl5ObNnz+baa6+Ne/6TTz6ZV155hbFjx5Kbm8vDDz/c7fP54x//SEVFBUuXLkVEGDlyJPfddx8AkydP5pxzzmHSpEn4fD7uu+++tKfOf//993n00UfDIeEAf/rTn3r1GhlSp6EBtFJZzjMxwV1ud/R2YMsmiGlrj+gKkntPaWJRSvXWuTskLy9PNTY2durY3kqF3lX66ryh787dzLtn6Wvzfv55OP30+PvuuguuuCLiW1nyzVkUuNuJR46h/wU/YNej+mGnqmkQM1//Lw89BN/7XtfmLCJNSqnEhaS6mYw0hRkMBkOm8MtfJt4X68IUUnxQt2ksWQ4dbtzeOpm+ghEsBoPBYGPPHthoW3ayenXivkcdFb3tkM5bgIo9dYD256QB42MxGAyGTGHSJNi2DZLxEng80dspayw2XI4AxQV+du1Ky225V30sRmMxGAwGG9u2Jd+3jWBJWWOJXvjicQd7LKVLd2IEi8FgMMRBKbj88vb7xEaFpb7UNVoQuZzKCJZUEJGJInKviDwlIia7nsFgyGh27gQrOj0hsYIlVlB0SEwOfpdT7RXrWJISLCLykIjsEJEvYtpnicgqEVkjIte2N4ZSaoVS6nLgHOCIzk/ZYDAYup9BgzruE5vN2CHtVuxtQ+xyjzQKlj6x8n4eMMveICJO4G7gJGASMFtEJonIviLyUsxroHXMqcDLwCsYDAZDhtDaCh991PVxUjaFqSCjHnmR8lvuBcDlCu4VSSiTCj9QSi0QkZExzQcDa5RS6wBE5AngNKXUn4FvJRjnBeAFEXkZ+He8PiIyB5gDeoV7RUVFMlNsQ0NDQ6eP7U366ryh787dzLtnycR5//3v43jhhTIeffRj4JB2+x5yyC58PgdLlvQLf45jj53IW28NStl5v37dOuqXfIqrejuDgYCvha1bm6ioSLm2VkbRlbi2MmCzbbuSdv4jIjITOBPIoh2NRSk1F5gLeuV9Z1fo9rXVvSH66ryh787dzLtnycR5X3ON/jt2bPxb2Nq1sHTp+xx11BEUFvZHKZ3qpbR0JgAHDVzB8l9chjNFU9jIESPoP3MmrZvWs/lfd5OX56G4uCDjrk+q9Ng6FqVUBVCRTF/L4XRKVlZWd07JYDAYgMgC+ERrV0aNgk2bfAwYEGnLzo68b37nBfpn1aR+4qCyzq8n4EyfjyWtiMhE4MdAKfCWUuqe9vp3JSqsChhm2y632rpMppcmNhgMexchwRIv1PeSS5Kps9LJmjoqGDUBt7PnfCypBGWlGnzVFcGyCBgnIqNExAOcC7zQhfHCZHrafIPBsHfh1Wm6+MY32u5Lqtp1Z4u1hVQk0bfiNEaFJcM8kgzKsvYlHXyVbLjx48CHwAQRqRSRS5VSfuBK4DVgBfCkUiotHiejsRgMhp6kvSTqHaV28dfs6YLCEtJY9J+eXCCplFoA7I5pDgdlKaW8wBPAaVb/F5RSJwHndzR2slFhsxO0v0I3hA4bH4vBYOhJOitYvJUb2XTVBZ0/sQr5WEIaS5Cm9GgsLhFZbNueawVGdUTcoKxkg6/CJ09+nj1Hphf6MhgMexdWMda4BNsJ9PJt7aJbOeRjcWiVxZU+H4sClgAvpmORZCrBV5ChucKMj8VgMPQk06cn3jdmTDsHpmCuz95nX7InRFeaVcGQj8USLI5ejwpLS1BWRgoW42MxGAw9yfjx+u9DD0XanngCnnwSfvSjxMdJCveoIb+9mYFXXBPdGI4K07dipzNt2Y07m9IlLUFZGSlYDAaDoSfx+WDIELj4Yr39y1/Cd74D3/5223xgdvx7dqV2olhBFI4K03/SGG7cYRLK7gzKykgfi3HeGwyG7uLyy3VesMWLwWXdAb1enalYBAKB9oWJnR2335TCmaWthmM5cCT94cYdFvrqzqCsjNRYjCnMYDCkmwcegBUrdCr8ZcvgHtvacZ8vkgI/WaGSKiICjuh7Wji7cWjlvaPnNJbuJCMFi8FgMKSbyy6DyTbf+dVXQ22tfm8XLN1JIo0l7LxP3zqWPpE232AwGPo8sWtSNmyA886DrVvblhlOOyJt1aEYjcXtDOwVGovxsRgMhr2eRGtRpk6NvD/ooNTGrH/3rZTnIbGmsKBeUhHysTjTF27coY+lO8lIjcX4WAwGQ7o49lj4wQ867peqKaxl9YrUJ+NMpLHoP670hRsbjaUvEmxuQjxZKcWxGwyGnuftt/WrI1KuIBlITbVQwWAbjSXiY4mkdEmnjyUtI3WCjNRYMh3l87LuvFlUP3xXb0/FYDD0EipFCSAOR5uosFgfi8cVCGda7stkpGDJ9JQuQW8rAPXvvNrLMzEYvn588gm8kqbUtzU1UFcHmzbp9SupoPzJC5bCE07BkZPbxsKhYuqxeJxBgsHU55JpZKQpzCShNBgMiZg2Tf/tKJ19MhQV6b8FBakfq1IwhWVPmKLftIkK039CFSTdLi1RfL6U0pDFwykic0lTEspUyUjBYjAYDOkgHcIn4didcIZIrGCxosIi61i0BuP1Rpc+7gTGx9J36WR1H4PB0CO056/o6gr7QKp5wuIQm93Y49SCpq/7WYxg6Qzd+BRkMBgSY/etHHVU4vUpN9+s79XXXZd4rM6amryVG9nz7L9pWflFx507JLo0cUiw9FQVye7CmMI6Q0zsucFg6Bm++c3I+/feg7VrYdy4tv1+/Wv9929/SzxWTk7n5lD126sJ1O5J7SBJcLMIJaG0pJzLqf02ra2dm5sN42OJJeNX3nen4dZgMMSlpaVtW3uVHzvivfc6d1ywNc5EOkvoXmIJlsJsPfaePTByZJdGNj6WWDJ/5b0RLAZDT1NT07atvVr1dg44QP+9/nqdjLK5Gfbdt3PzaOOAT+qg+BpLKNw4lPl4UEEDoHOX9WUyUmPJdGIdbgaDofvZubNt2/r12tcSorJS+1diueYaWLkSrroKSkq6OJF0/u6DkYdUcTnJdWuNpakpfafoDYxg6RRGYzEYeprKyrZtn38evT1sWNs+oGvaf+c7aZqIpK6xSCKHrIpEHyivl6aKl4Dv9Hbd+y6TkaawjCdRKIrBYOg27P6Uo47SSSOT/Snm53f9/IXvvc6aM2YQbKjr+mAhYvy1btESJdMEi4icLiL3i8h/ROSEjvobwWIwGPoEsTfbfv20yeivf9XWqV/8IvGxXVxsCEDhJ5309kPCCFIVIxmdosONe0KwiMhDIrJDRL6IaZ8lIqtEZI2IXAuglHpOKXUZcDnQoe5nBEtnCH8ZjI/FYOgpYtd25OZqwfLLX+rt7ggttqNiE0imgxiNxenoOcECzANm2RtExAncDZwETAJmi8gkW5ffWvvbxfhYOoEy4cYGQ48RCOiorrKySJvLpQXL//6X3BiuFO503s0bEI8H96ChAKhAgD1PP4YEu5AZMpHDP+Ze4pKeWyCplFogIiNjmg8G1iil1gGIyBPAaSKyArgZmK+UWtLR2D0qWEQkD/gf8Ael1Es9ee60YgSLwdBjHHCAdtKHHPVDh+oFkG+8AU89ldwYqQRybbr6QgDGPruAurfn07LyC+re6J41ht1oCnOJyGLb9lyl1NwkjisDNtu2K4FDgKuA44AiERmrlLq33ZMnM0MReQj4FrBDKTXF1j4LuB1wAg8opeIE+kVxDfBkMufMaGJSXRsMhvSzezfcf3/byK+lS2HAADj+ePi//0t8fE0NTJoEY8cmdz4V8NPwQUVU2447/5zKlBOTUGOJFixuR9qc9wpYQppW3iul7gDuSLZ/shrLPOAu4J+hBpst7ni0VFskIi+ghUzsf+MSYH9gOZAGN1ovYxQWQxLUvfUKO+66mTFPvoWkWvf2a86KFVooxCPZS1lcDFu2JH/OmueeYNdjyTzUp5GYe0lPOu8TUAXYg7bLrbaUSEqwpGKLU0r9Ga3dRCEiM4E8tEOoWUReUUq1CRYUkTnAHACXy0VFRUWynyWKhoaGTh/bEc6aXQwBfD5f2s/RnfPubvrq3Ltr3kMevBMn8O7rrxHMS0O8awx78/V+8slyIL6q8eGH75KTk/5KWMXLPsX+X6qoqKA8TWMvX76C5oC+3drHrK3ZwxrrWpQTESxffbWOiopNXTllZ1O6LALGicgotEA5Fzgv1UG64mNJZIuLi1LqOgARuRiojidUrH5zgbkAeXl5aubMmZ2aXEVFBZ09tiO8VZvZ9Ai43e60nyPd81ZK4dtSiacswcqxNNKd17wzBBobaF29nNypB7fbr7vmvX7e3wk0N3L44Yfh6tc/7eNn2vVOlmTmvaQd9/DRRx9JdnbEtNS4+ENaVn5O/+92LTXWjhWLqLOZ3WbOnMma27s0ZJhJkyZRcNRMgKgxCwsKmTwz0u6yosKGDRvNzJmju3LKDpNQisjjwEygVEQqgd8rpR4UkSuB19DWp4eUUl+mevIeDzdWSs3ryHGf6aWJI6mue3cWyVD36nNsuvJ8mld+3nHnNOPdspnqR+/rtSi6bX/5HVv++AsCdTW9cv7eZs/Tj7HmjBlJF6QKBuFHP4LXX4dFi2DDBp09+JNPuneedhYv1lUd589P3Kd1SfR6kq03XcOepx+L21cF/Oz+zzyCzTpHSqCxnpavlscfuDsXPtvuFWU33Unp9660Jhh9Tgd6Ow2msIBSak57/hWl1Gyl1BCllFspVa6UetBqf0UpNV4pNUYpdVNnTt4VjSUttrh4ZHxp4lCq6z4gWUI/It+WSnL26WTWvU6y9cZr8G2tpOiEU8Khmz2Jd9M6AFRvGaxDDtteEqx7nnsCgGBzE053UYf9d+2Ce+6Be+9tO+UXX4RvtTFwp5/p0/XfN99su2/fUXv4fH0/Wr9cAocf1bZDHBree5vdTzxEoL4WV7/+7HriYfD7GPPUO23rz8cIls5UiEyGnEn7I26PdZLoCy0CbrfC7+/yvaVX0+Z3RWMJ2+JExIO2xb2Qjkllvsby9cS7ZTP+XXEyASYglZrg3UKmBFl0IFgCdTX4dmxL/3kd+uYUe8NMREj+xpvuFynWtAq2trDjH38h0ND5vPa5ubBwISxfDqtXw1t/e4uPTzol6WDM1vWr2X7bjXo+zc3aMe+3hEW8axLTtvacYzs99zbETNpZVAxA9riJbbq6XD2jsXQnSQkWyxb3ITBBRCpF5FKllB8I2eJWAE92xhYXj0xPm5/sD3VvY9MV57Ph+2f19jSSJ0PWG3X0fdlw2dls/ME5aT+vhFaKJ7mwr7UucQ76VL/ydW++TN0bL7L7Pw+ndqCNAw/UGszEiTBmVACnt56SrFpaViV3m6l95dnIRsxDTvOXS9v0T2edlVGPvdLufvfAIQz7+8MRk5gNZ6AlHYLFKSJzrdpWPU5SgqU7bXHxyHSNZW+x2a9cqR+kRHSs/0cfRbYfeCDyvrBQ29vHPbeAyz/6E5s3R/bZX0cfPTNqe9TcJxn33AIGTxzMgQfqGhixKAVTpsQfb/jwyPuWFrjgAv3+nXfif57aWvB4IseMfuR5xj23AHf/UgYMiLSDvlmJwJo13XRx7XRwY1fdVeA8VDckSanga0ls+kn5WSp0QBeEuz2/165/3c/uJ7SQal2zEu+WzQmOik/9/16P2t716H0A+Gt2E6irBaDxwySX8SeBMyYKMJ7ZPGvkmLhh6E7lS8fK+8zXWHqarmostW+8RNG7r6Z5VhG2/O4n+k0fXyB51+2Rx6K1a+HGGyP7LrN5t+rr4bbb9Pu3th2Z9GrnELv3OPj0U9gc517g98OXCR5A7f3Xr4fHLP/sT34Sv/8nnyROhVFdHXnf0qKFKugFeN1Nb2m4Yn0/kzVJ+r2J55myfEjDb8NeQLbh/bej9gVqa7o0duiabPje6ay/6BQ2XnF+l8ZLJ04J9HmNJSNzhXW1NHHLyi/I+SotVrm9mpY1K4CIQ//llxP3tUfpFBZ27nw/+Qmcdsg6ZPAIcnKd+HzJ37CmTIm8/+wzuOEG2GcfWLcOxozRFfeSLY5UZPNj/+9/sHHjaP77X10dduzYSF6pDz7Qdv6aGjj4YB0p1dqqC0V5vTp3VX29vh6ffuKnepeDM89ycO65cPHFcFDDd+gX3ErxQ7m8v0yft7ZWp3x/9VWdnTcQgNZPfkP/rN1kXQl5efDxx7rfz3+u5/Ozn8Hpp+vU7y0t8Omneo6bNk3k00+1Y33cOO1879dPj+Fygfvz03ln3WRajyvlR1dr5/sFF+gbdkuL1tref19fx5oaGFCUOFNjp5+gu6CxRP38Y8bpqv/Ou3Edu/79QHjbl6IGlDJJCNqBV/2aHXf+GbfDnzYfS5dH6SQZKVi6GhUmTicSf5lMl9mb/CvKn7yp8auvIu/79UvtPB6PwusV5s+H+fM7F5sfe9l/97tODQNooRDi44/h44+Hd3jMf//bUQ/9U1ryKfz2t7rlPWbrN591NJaVYDbGLHfBBZH3H34Y75yDeNt6kI9vHrQGqIY5cW4xoWOXLg21JBYsd9+tBVqy+LYfgXfTENzrhuCJCenZtWsK/ZNY1hMlWGK+AHuefozcKQdEtSmlwlpaMuz57z877tSTWKbLNGksvUpGmsK6jNPZfTHptielQO2e7jlHhqN8rSn1v+J7DfzhD+k599NPw9FHp2esJUvgoovatq9frzWEdPDRSaemZyBg+/a0DdUhhxwC+++vfVag/V1btiT/2rY7mx0tpWyryWuzr7o6K+FxuU6tdua5Gjn5mEhEWewDXfPSRTR8tCCqbesNvwq/926tpOmzxWQMSci7kFDcGwRLRmosXTWFicOBdJNgaW9NRGurNhnV1lrzEP3D9HojIYQFBVru5efDvvvqZHp9DW+TD0j+f+NwKkpL03PugQOjTVldYcgQbeqKJf/zZ+jnOQYo7vI5+mfVdHmMEAMHpm2odrnv0Gu49NVfU/3ovQy47Kc4OvE7rHnlbarvv52iWacz4Ac/i9pXUfFJwpX3a86wlQd5GZoPvxP/rmoCe3a16bvtlt9S/pdIbq+mTz8Ov9/0o5SzkKSdku/OYffjD2p7ZzAJk6AlWFyOQDqc9726jiUjBUuXF0g6nW1WtKaL9hZNHX10IpNFfE45BV5Iy8qfdmjPNNBJB6u3NbVoPYeolOphtIfTmb6YCVfLbqCkTXvNQ7fhWwZwZlrOI6JQqu8EergkwK5/3U/9W6/gKikl75CjyB4zIW7fQGM9zryCpMateeVpHJ5scOUlPZemJR8nXFUPpLdMcJopOeu7eDespeG9t5LzCUnEFNaydTswqCun71Ufy15pChNH95nClD8iWHKmTo/al4pQGT8e9nTSkuar3s66C76Ft3Jjx527YS2Htzk1waLq9tCyekVazt20/HO8m9anZSz/5x8kvDwi6fv+eJw9ULUpjTgkiL9a2932/PefVP7iMpq/WBre763axLoLT6HuzZdZ/91v0vRZJOeL8vnYevN1VN8fSYjV8P471L/7JtX3386Ou29J6aGvo6wJGbJUKSFiPVEllf3BWtDqEj8tu2u7c1rdzl4pWHA6u9EUFrlJuIrbPu0my6BB0U7kpM8f8FP/1nyCDXVdKj4UbG2lakfnTI0bk5BndpoXVlD3ZjshZymw65F7Ul7DkIj6f99N7avPpWWs9siS1HxSiVhzxoy0jNMRLgm0Ceetuv7qsJ+j9rUXCNbXaiGBztUF+ru58YrzaPz43fBxDR8vYNtff8/2W/9fZPw4Zq3EdCA5Mj2YxloyoVJYk+d2+Gmp7tv+24w0hXXZx9KtprD0eNWymnfQ4OsPOFGBQNu8RUqxa97dFB5/Cp7yEQA0f7GUquuvjvQJBql+9D5qnn8CAgEKZ51O3avP4Rk2iqKTz2T3fx4mULMb0AWLfNu2kDftMHxbK/nwhkd47ct/dWruN93eVqAWueuo9cWPQx5bsIEsR3oWAZZk1TChcC1vbO36TVZaGhmZXxl334TCdV0eP8RRAz/m5arj0jKWgwBBujcjRa6rOa7ppunTheQddGgbU6TyelGBABsvPxd/9Y6ofYE9u9uM46xP4Wm8Q5Uken+grpZgc+IMAj2NOK1bbDKmMOuzuh1+fIHMzDqSLBkpWNITbqxQwSDiSK9SZtdYuqKHS9VKmvxj8VYF2HTl+Qz+xR/JPyIS7uTfvpWaF56kcdEHjPjHvwHY//BCVtfbImGeC735gW3bcpTeCXBa9EnD/ScBJwBw9KD3OXbI+4zM38zqutGU525lZ2sJtV4tJBTgQKEQmgPZDM3ZRvn5s/E+fRcNfu35dkmAbwz+iDe2zKAl4OGwAUtoDmTzStUxDMreyTfL3sY9bjJ/8t3MjpZSnBLAIUGUcuCQAGMKNuIPuqj1FVDgauSIgYt4e9sReAMejh+6gPUNw6nYdij79VvJ4bf+glH/fZp+z91GSzCLFn822a4W/EEXBe5GhudV0RrwUOstpF9WLYeULuG1Ld/AKUFOKnuHhdVTWVg9lWMGf8DIh5/jB/ffS9Zjt9IcyMbt8HHYgCWMeuQFLnngDhxyMwOydlPZNISjBi5kfcMwmgPZDMjexebGoayuH4Uv6CLP1USeq4mtzQPpn1XD4OwdrK4fzQWjn6b8r/dzy09/xCGlSxmUs5OtTYM4Zsj7LNm1L4XuehwSZHPTUDY2lOEQhVMC5Dhb2O0tZlB2NQXuBjY3DuXScU9Q8I0TWOQ9hZerjmFA9m52tJRw7OD3eX/ndMpzt+INulldN4rtLQNwO3zkuxrJcnqpbBxCrquZUuuzfHuETi5e7yvAF3Txec0+BBECQSeTi79iSvEqvBvbfrejvvtx9sUKlUSIz8vmay7HPWgog3/Wftx4R4kgt9/+p6jt9Rf1ynrAhIRNYSlpLD58wS7fmo3zPu1YOZICe3bh6p/esCv7jytBSZmk8Dh8+H3QumE1APXvvxMlWEJj28MsV9d3qT5DXK7aZx779lsFwCGly5I6Zsgxx7H1vUVt2r9ZHr06+qp95gFQ9M2zcA0YxLfX/CPpeZ027I3w+wNKvuSAEr3gVVznkZsLF455Jumxzh4RWd05Y9BCZgxaqMdyusjtl8f5o5+O6u8oKMKZm8e3Rzwf1T4iP5K8e1r/5MoQZI+ZQJbTx+xR0VEa0dcqubz0g37yW+r/N6PNWGcOj2SZOHJg6iG2hwxYmvIxscTTTBIhfh+tXy2n9avl0EXBEkxF++kNnCn4WCxZ7nb4afDFCVdMDeO8Tzchs9KG759F6/rVaR27dfXKyEYXHIdZ/YvwKjdiRYK0Md1Z2lAqC746g8uRumlPeVPzGYjTGUmI2FXSeD3E5Yo7noiEnzTTc6K+ExHWEf7d1dS88GSb9o0/PDfpMUrefC5qu+aVZ2hc8nHcTMh1b7Yt3VQ46/SkzxVFO/8HZ5ofQMOndFnf+3a0vVjc4sMX7NulrDNSsHQ5CaXNX9G6Pn1ZBpt31TH17AOZ/MIbTH7hDUb+6tdkZxN+pYLbLfgDDrbt8rDP82+zcH10hcfmxiBTX5rPy2t1Uc7uin5xSScES7xsku3hcIIzA79qDmc4xLM72Vvq3ft37WTDpV0PwRbb73r3U49Sff9tbL3hl2y6+oJ2joow8Ac/Y+yzCxhxzxPhtkE/+x3Fp0ZniHaXDWfsszbTcQ/8r2MJ+VhSMYW5HAF8qm9/ZzLSFNZVH4sjN5JZNJ2ZY/dU+9jQOIwjBixicrHOcVJ82ncA8G2tpLFqJ3Mrprc3RBi3G1p8bp54dRAB5eLPrxzDwD89Rsu7b7JqyEy++tBFoz+Pa/83h2NXRRZdppOzh7/MuMIUQ7yA7bff2HEnG7EaS/8LL2fXP+9N2D9n/2k0L9Mmnex99qUltvplmjQAcTkRR/drE+LydF8G4x6k+v7b0j7m7n9FsoDGdfT3609gzy6yJ+1H1pgJUWtm3IOHRgmOgqOOo+7NVwg2NQC09a92w7/aM3IM3g1rE+5PJdw4pN140uNjSSsiMhq4DihSSp3dUf/Mmn2a8AwbGX5vTz8S9LYibk+nzUstjVqdPbnsbc4ZqcNn8/ovp2X1CgKN1TiG5hEYexEPromYBfJcTTT629pL87O97Gkt5Pp/aCf5x5vHcfh144Dvwj4AZQDUe3PZZ5/25/Xi0Rdzyjvz2rQvOvmbFHvqGffcgjb78lxN/PnAWzr+0OnA4Qj/wIpPPYd+Z5xHvzP0ymjl84HTSaCuFmdeHkGvF2dePrWvPk/u/tNwDymLCbNVFB77TRo/avuZOpxGQVG0Td7hxJFgcV86fXOu/qV4rZtdV8metB8tyz/ruGMXyD/yWBreeytt4w3+xR9xFvfDu3kDTZ8upHHhexSecAp1r7fvUy46+UwGXPaT1IJw7P1if+fiANJbiiNr9HgGzPkZVb+5ItzW7zsXRzqENZZkBIvWUtLkvO/4fCIPAd8CdiilptjaZwG3o2veP6CUulkptQ64VESSym2+VwqWrOGjwu9bVn0Jp0CgoZ71F3yT/hf+kH5nzG5zTN3b83EPHELOlKkJx21u0F8Oj8PHwCuuYcfdt0TF7AebGvn5pPvYv99yWgJZZDtbOXLgIj7aeQA1vkKmFK+i3pdPrquZsUeMZELDayiETY1lDM+LOIad+YUEGuqobBzC0NztOKzFek3+HPzKyfC8LWxrHkBQORiau519itZRccK3+WzPRAbn7AQUQeWg2KNt1v874Wwqm4aQ52qm0Z+DQocAA2SNHodv+1aKTjqDPU892uYzu4cOi8r8WnLe9/Ftq8JbuVE7Xy3yDvtGwnoWedMOxzNsJM1fLqPwuOj6tiEzkatYZ7Z0WiVbi2ZFItpGPfYK6797sp7viDE4cnLJm34EjYveT/CfipCz30E0Wwv4sidMxllUTP1bugiTiJB38JHstmW5DVF86jntalWpMPT3fwsXSHMNGkrewUdQ+2J0Jsr+F/2QXY/c0+FYQ37zZ9Z/95vh7ex9ptCyMsXyjtac/NXb2XH3/0XvcLkYeOW1DP757wFoWb0C5fdrjfzjd8k/4mjcZcMRl4uWlV9QdOJpNHy0ABXwU3DEMXg3b8BVOhBHTtuHqZzJUyk45iQ+fvLfjDn/Yvpf+EOqH7wDRKh/ez5lf/4HniHl4HSyc+7fKTnnYiCO5tEedg005jhxSPqLioqQPX5SeLP85nvInjA5sjuVcGOrr9vh7ymNZR5wFxDOxikiTuBu4HigElgkIi8opZbHHSEBe6VgceRGUkY0vP8Oaxe+T/GZ+gl51z/voWXl5/S/8HJ8WzaTs980EL3OA6D4zPPxVW7ENWAQrgGDcQ8aQu5+B+HIzaO1UX85sovzKPjGCahgkJ33/CV8LnF7KDniaE6qeC3cNvLBZyiIsUtnjZmAw7mLb5W3Ew1UnNpnLsvdTlludJZCd/kIfJUbGZq7g6G5bUNBc6ZOp+z3fwtvl8y+lEBdDa7ikqi1Na2b1qN8XpTPR84+kfz1yuelcfGHBJubyD/yGD4Yux/71FeTd/CR5Ezcl0BdDY6cvLDwGPTj61L7UBbOvPxoWzn6BquCQZS3FdXaiiM3j+Yvl+IZPgpnQSF177yKZ+hwsifuizidtKxZiadsOI6cXPIP+wbezRsAyBoxmqof/ZZppcXg94efLMXpYvS/X9XOLRFUIIAjN4+WFZ+RM3kqvp3b2fXYXHL3PZBgawtFJ5xCsLUVBIJNTfiqNpI1WqdBcfUfwNDf/xVnyYDwQ0//8y/Du3EdrtKBuEp0IrXi087Fv2MrDe+/w65H7yN/xvG4Bwyi4YMKBl97k3UtChjzdAXB5kY+eeQBDrrw+zjzI1qXf3c1yutFPB72PPtvCo+ehW/bFrb9JRJ9VXzGeeRaWSPyDj4Kf/V26t99i35nzMZZWBx1nUOlc3Mm7kvhMSdF7csaMQaA/EMjGqXdWhAPhyeL1vJRiAjOvHwGXf0bAAZd9euofh2FISdC7H6UWJ9KN/hYRCRqDZpn5Jjo/ZZ5KzlTWEiw9IzzXim1QERGxjQfDKyxNBRE5An0ugUjWADqDzqSgk/eA/QNcM9/5oX3NS58j8aF78U9ruaZxIsGN9WMBx5g4CnfRNxuik44haITInHzobTdA6/+Da2rV+AZPgpHdg4jH3yG1g1ryR67D+LxIG4PgboaNlxyhj7Q4SBr5Bha13UcwVZ2051kjR6PCgSo+s0VFJ92LlljJuAZWk7Ny09TeMxJBFtbCdbXkjV6PI2ffIjy+8k/5Cha16+madlinMUl5B14KM7C6GyO4nCEswnYfyx2DTCqv9tD/mHfCG/7SwZQeua3w9uxN6l0Iw4Hkp0D2Trde64txU7RCdFZhbPHRuyJeQcdRt5Bh4W3ldtD3gEHtxk/0VM3gHvAIAb/9PqofSFty5lXgHtAdJ6n3KnR4zuysqOedEHfpNyDhtLvzPPpd2ak8FT/70ZHjYrDgTOvgKZJB0QJFSAspAAGXKoX02aNHt9GMIfnXFiEs7CIrNHj4+7vc9i0lDYm7x6JzoupbW/9BhKZXKOOtASLSwLp0FhcImKPPZ+rlJqbsHeEMsCe2qISOERE+gM3AQeIyK+VUn9u9+QpT7cP8O678FL9hYw6cA41zz6etnE3NWq/R25p/BXmoS+yxKjHrpLSqB88gKtff8Y+u6BNDYmKN99kxuGHIW43QW8rLV+twLtpPe7BQ8kePwlXv0ghi+G3PxI1Zr/TtYnPCWDd2Ow30KxR48gaNS7FT20w9CEksSmsRwRLzCnyjzqOYGsLhUfPit/fhqtU/2bdDl86osIUsIQ0LZBUSu0CLk+2f0YKlq6mdHnoIZg3L/SE+ut2+6aKiGLE/oPTOF7MN9HlCpvynNaTdLynaYPBEId2BIuII+0+FtXBOgBxONpoz4lwD9T3FY/Dh7/3osKqAPvah3KrLSUyUrB0Ndz4L3+BE0/8kMMOO6zjzimSmyt9soaKwfB1I5Vw407rMjFyJR0Lmt0OP37lIuAP4nR12i/U2ZX3i4BxIjIKLVDOBVIubpORgqWrlJbC4MGtjBjR2zMxGAy9RgrO+/RpMukQLHpZg6+1S4Klw1xhIvI4MBMoFZFK4PdKqQdF5ErgNbRV/SGl1JepnnyvFCwGg8HQxqfSLYth058SwyV6rU1Lc4DsvE7fojvUWJRSbddd6PZXgFc6e2LI0JQuBoPB0FViTWHSjjaRNpHTVVOYyxXWWBpWJ17RnwROEZlr+at7HCNYDAbD3oPdmZ7mkhkAuQccEhW63f+870d36KpcKeoXFiz+rtVkCSil5vRGynwwgsVgMOytxGgPHUVwJcOgmIWbbVP/dE2yOIuKcVsZx2VI/PVjyQ71tdBYRGSmiLwrIveKyMyeOq/BYPh60iYqrJOCpWDmiZGNBFmK+337IuukXRMsxaedi9vKOO5Tnq4Mlfkai4g8JCI7ROSLmPZZIrJKRNaIyLUdDKOABiAbvZrTYDAYuo80rbz3jBzD8Lv/Rd3B38BhZasoPuM8xBNZZ9f/vEsZ++yCLlesLZhxfFhj6csJsZO9CvOAqKWjtmRlJ6Fr3c4WkUkisq+IvBTzGgi8q5Q6CbgG+GP6PoLBYDDEISa82FXcj5LZl8bv63DgGhBZ+Dzsb5HEpMHGBjxDh1F32LHhdSqlF17OmP+80WaYdDD0Cp2Kp4PimR3Rq6awpGLZUklWZuWQ+RaJ2QMkXFIvInOAOQAul4uKiopkptiGhoaGTh/bm/TVeUPfnbuZd8/SnfMumLA/RR/qlP+7du/iq4oKyq19O0buw7qBI8LbIZrGTqLusGPxl0T8JZWbtiA/vI6iBa9SVTIUVVHRY9d7zdYSoIQPP/yEPXvaVtVMkl4tTYxSKqkXMBL4wrZ9NjpXf2j7AuCudo4/E7gP+A8wM5lz5ubmqs7yzjvvdPrY3qSvzlupvjt3M++epbvnvfr0o9Tq049Su5/5l1JKqdYtm1XTis/C+2tefU6tPv0o1bh0UUrj9tT1fv11pUCp997r/BhAo0ry3t4drx5bIKmUegZ4Jpm+Xc0VZjAYvr4Mu+1h6t54iWIrKatnSDkMiegpRSeeRtGJpyU6vNcZMgS+/W3o169Lw3S48r476YpgSUuysnioLuYKMxgMX1+yRoxhwPd/3NvT6DRTpsCTT3Z5mF41hXUlhCGcrExEPOhkZS+kY1IicoqIzA0kCO0zGAwGQ+aSbLjx48CHwAQRqRSRS5VSfiCUrGwF8KTqRLKyeCilXlRKzXE6u7Ty1GAwGAy9QLJRYd2WrCwexsdiMBgMfZeMTOliNBaDwWDoEpm/jqWnMRqLwWAwdIk+67zvNozGYjAYDH2XjBQsBoPBYOi7GFOYwWAwGNKKqDTUKOguRCQINHfycBfgT+N0eoq+Om/ou3M38+5ZzLy7nxylVK9ZpDJasHQFEVmslJrW2/NIlb46b+i7czfz7lnMvPd+jI/FYDAYDGnFCBaDwWAwpJW9WbDM7e0JdJK+Om/ou3M38+5ZzLz3cvZaH4vBYDAYeoe9WWMxGAwGQy9gBIvBYDAY0speKVhEZJaIrBKRNSJybW/Px46IDBORd0RkuYh8KSI/ttr/ICJVIrLUep1sO+bX1mdZJSIn9uLcN4jI59b8FlttJSLyhoistv72s9pFRO6w5v2ZiBzYS3OeYLumS0WkTkR+kqnXW0QeEpEdIvKFrS3laywiF1n9V4vIRb0077+IyEprbs+KSLHVPlJEmm3X/l7bMQdZ37E11meTXph3yt+NTL7n9Aq9WRe5O16AE1gLjAY8wDJgUm/Pyza/IcCB1vsC4CtgEvAH4Bdx+k+yPkMWMMr6bM5emvsGoDSm7f+Aa6331wK3WO9PBuYDAhwKfJwB194JbANGZOr1BmYABwJfdPYaAyXAOutvP+t9v16Y9wmAy3p/i23eI+39YsZZaH0WsT7bSb0w75S+G5l+z+mN196osRwMrFFKrVNKeYEngIwpcK2U2qqUWmK9r0cXSStr55DTgCeUUq1KqfXAGvRnzBROAx6x3j8CnG5r/6fSfAQUi8iQXpifnWOBtUqpje306dXrrZRaAOyOM6dUrvGJwBtKqd1KqT3AG8Csnp63Uup1pQsCAnyELl+eEGvuhUqpj5S+k/+TyGftFhJc70Qk+m5k9D2nN9gbBUsZsNm2XUn7N+5eQ0RGAgcAH1tNV1pmg4dC5g4y6/Mo4HUR+UREQim5BymltlrvtwGDrPeZNO8Q5wKP27Yz/XqHSPUaZ+JnuAStgYQYJSKfisj/ROQoq60MPdcQvTnvVL4bmXi9e5W9UbD0CUQkH3ga+IlSqg64BxgDTAW2An/rvdkl5Eil1IHAScAVIjLDvtN6yszI+HUR8QCnAv+1mvrC9W5DJl/jRIjIdegcW/+ymrYCw5VSBwA/A/4tIoW9Nb849MnvRiaxNwqWKmCYbbvcassYRMSNFir/Uko9A6CU2q6UCiilgsD9RMwvGfN5lFJV1t8dwLPoOW4Pmbisvzus7hkzb4uTgCVKqe3QN663jVSvccZ8BhG5GPgWcL4lFLFMSbus95+g/RPjrTnazWW9Mu9OfDcy5npnCnujYFkEjBORUdZT6rnAC708pzBWlMuDwAql1K22drv/4QwgFKXyAnCuiGSJyChgHNrB2aOISJ6IFITeox2zX1jzC0UdXQQ8b71/AbjQilw6FKi1mXN6g9nYzGCZfr1jSPUavwacICL9LDPOCVZbjyIis4BfAacqpZps7QNExGm9H42+xuusudeJyKHW7+RCIp+1J+ed6ncjo+85vUJvRw90xwsdLfMV+knout6eT8zcjkSbMj4Dllqvk4FHgc+t9heAIbZjrrM+yyq6OUqmnXmPRke7LAO+DF1XoD/wFrAaeBMosdoFuNua9+fAtF685nnALqDI1paR1xst/LYCPrSt/tLOXGO0T2ON9fpeL817Ddr3EPqe32v1Pcv6Di0FlgCn2MaZhr6RrwXuwsoO0sPzTvm7kcn3nN54mZQuBoPBYEgre6MpzGAwGAy9iBEsBoPBYEgrRrAYDAaDIa0YwWIwGAyGtGIEi8FgMBjSihEsBoPBYEgrRrAYDAaDIa38f+8JM9Ui3dbYAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEICAYAAAB8lNKlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9EklEQVR4nO2dd3gc1fWw37tNvdmy3GTcbSzTY+oPjEPHAUxJAIcQDAbTISEk8EFCSEISSEISAgQwzSGATe+YFhCmGLCxTbGMcbflJtmyelnt7v3+uDO7s31XWmlX4r7Po0e7d+7MnB2t5swp9xwhpUSj0Wg0mlRhS7cAGo1Go+lfaMWi0Wg0mpSiFYtGo9FoUopWLBqNRqNJKVqxaDQajSalaMWi0Wg0mpSiFUs/RAixUggxrRfOc5MQ4qEUH/MoIcTqVB7TcuxbhRCPd2P/HrmuQojBQohFQogmIcSdqT5+qhBCSCHEuHTLocl8HOkWQJM8Qohmy9tcoAPwGu8vlVJO7g05pJR/6oFjfgBMTPVxk0UIMQ+ollL+2hzrwes6B9gFFMp+vrBMCDEK2AA4pZSeNIuj6SG0YumDSCnzzddCiI3AxVLKd9InkaabjASquqJUhBAOfYPWZBraFdYPEUJsFEIcZ7y+VQjxjBDiccPV8pUQYoIQ4v8JIWqEEFuEECdY9i0SQjwshNguhNgqhLhNCGGPch6/a0kIMcpwlVwghNgshNglhLg5hozThRBVhkxbhRDXG+PThBDVIZ/ll0KIL4UQLYZsg4UQC4193xFClETaN/RaRJDhGSHEDiFEg+GKmmyMzwHOA34lhGgWQrwS4bpmCSH+KYTYZvz8UwiRZZVDCPEL4xpvF0JcGEWGecAFlnMdl+CxbxBC7AAejXLci4QQq4QQe4QQbwohRlq23WX83RuFEJ8LIY6ybLMbLs51xvX9XAgxwnLo44QQa4QQ9UKIe4UQIsr5DxFCLDXOsVMI8Xdj0yLjd73xeQ9PQF4phLhGCLHe+F79VQih710ZjP7jfDc4FfgvUAIsB95E/e2HA78HHrDMnQd4gHHAgcAJwMVJnOtIlCvrWOAWIcSkKPMeRrntCoB9gHdjHPMs4HhggvFZFgI3AYOMz3FNEvJZWQiMB8qAZcATAFLKucbrv0gp86WUp0bY92bgMOAAYH/gEODXlu1DgCLUNZ4N3GsqQCtSylkh53onwWMPQFk6c0KPKYSYgbo+Z6Ku0QfAfMuUJcaxBwBPAs8IIbKNbdcBM4HpQCFwEdBq2fcU4GBgP+Bs4MQI1wbgLuAuKWUhMBZ42hifavwuNj7v4gTkBTgDmAIcBMww5NJkKlJK/dOHf4CNwHHRxoBbgbct204FmgG78b4AkEAxMBgVr8mxzJ8JvBfl3LcCjxuvRxnHKbds/ww4N8q+m4FLUXEF6/g0VGzD+lnOs7x/DrjP8v5q4MVI+0a5Fo9HkafYkL/IeD8PuC3GsdYB0y3bTgQ2WuRoAxyW7TXAYVHOHXSuBI7tBrJjfCcWArMt720o5TAyyvw9wP7G69XAjCjzJHCk5f3TwI1R5i4CfgeUhoyb3xNHovIa80+ybL8C+F9v/H/pn679aIvlu8FOy+s2YJeU0mt5D5CPegJ2AtsNV0c9ypopS+JcOyyvW43jRuIs1FPxJiHE+6ZLJEH5Q99HO0dUDJfP7YbLpxGlNABKEzzEMGCT5f0mY8xktwyOfcS6Fskeu1ZK2R5j/5HAXZa/YR0gUNYTQojrDbdTg7G9iMDnHoFSbNFI9O87G2VhfiOEWCKEOKWr8hpssbwOvR6aDEMrFo2VLSiLpVRKWWz8FMoeyIaSUi6RUs5AKa0XCbhKukMLKksOUMoD5VqJxI9RLpXjUDfWUeZupohxzrUNdUM02csYSwXxjh1Pti0oN2Ox5SdHSvmxEU/5FcqNVSKlLAYaCHzuLSjXVbeQUq6RUs5E/X3vAJ4VQuRFkT2qvJY51jhPKq+1pgfQikXjR0q5HXgLuFMIUSiEsAkhxgohjk7leYQQLiHEeUKIIillJ9AI+FJw6G+BbCHED4QQTlRcIivK3AKUEt2NUkahqdM7gTExzjUf+LUQYpAQohS4BejyGpkUH/t+4P9ZkhGKhBA/MrYVoGJotYBDCHELKpZi8hDwByHEeKHYTwgxMNkPIIT4iRBikJTSB9Qbwz7jvD6Cr20seU1+KYQoMRIJrgWeSlYmTe+hFYsmlJ8CLqAK5Xt/FhjaA+c5H9houKEuQ2VhdQspZQPK//4QsBVlwVRHmf4YyqWyFfVZPwnZ/jBQYbhnXoyw/23AUuBL4CtU8P+2bn6ElBxbSvkCykpYYFzfr4GTjc1vAm+glPAmoJ1gN9PfUdbjWyiF/zCQ04XPcBKwUqg1V3ehYm1tUspW4I/AR8a1PSyOvCYvAZ8DK4DXDLk0GYqQsl+vx9JoNH0cIYQExksp16ZbFk1iaItFo9FoNClFKxaNRqPRpBTtCtNoNBpNStEWi0aj0WhSSkYXobTZbDInpysJKeDz+bDZ+p7e7Ity90WZoW/K3RdlBi13b+Lz+Whvb5dSyvQJnu6l/7F+cnNzZVd57733urxvOumLcvdFmaXsm3L3RZml1HL3Ju+9954EWmQa790ZabEIIU4FTs3Kira2TaPRaDSZSkbaeFLKV6SUc+z2iNXaNRqNRtOLCNXZ9X4hxENCiI/jzc9IxaLRaDSankUI8YhQ/YK+Dhk/SQixWgixVghxI6jOrlLKy4BXgf/EO3ZGKhYhxKlCiLlerzf+ZI1Go9F0hXmo0jt+jMKt96JK6lQAM4UQFZYpP0b18IlJRioW7QrTaDSabuEwOniaP2EN4aSUi1AtCqwcAqyVUq6XUrqBBagq4Agh9gIapJRNcU/effn7NzabjVgpz5mUjphJsoCWJx6x5Glra8PnS0XBZ813FI+UckoX9htOcFHSauBQ4/VsorTCDiUjFUsmZYXl5OTQ0tISdXtlZSXTpk3rPYFikEmygJYnHrHkycvL611hNP0NuxBiLvCKlPKVVBxQSvnbROdmzuObBe0K02g03yVe/ucyVn/RnG4xQLWRsDZVKzfGkiIjLRaNpi/Qsq2WVucgBkXrUanRJEDn9q3M+PlBAKSwdKNXShkWV0mAJcB4IcRolEI5FxWwT4qMtFg0mkzDU7eLtm++8r9vXbGEGd9bTVlZGoXS9FmklEifD19rC1tuvKwnTmEXQsw1wgoREULMBxYDE4UQ1UKI2VJKD3AVqiHcKuBpKeXKZE+ekRZLJsVYNP2ftWdMJe/woxn6qz9EnbPt1utwb9nI2GffRdgduLdt5n87zgKgtRVyc3tLWk1/oOZff6Kp8k0G//w3+BobeuIUcS0WKeXMKOOvA6935+QZabHoGIumt2lZ/H7M7Z7dtRyx8AXOPr0dAEfRAP+23bt7VDRNP6Sp8k0AhL3Hnu3jWiw9SUZaLBpNpuEcMYbajoE8+6p6L7Ky/dt274YRI6LsqNHEwuHg1Hcf6YkjdzXGkhIy0mLRaDKNhvwJwQO+QFUIbbFouoq0OfimcVxPHFpbLBpNprOpriTofWOT8L+uC127rNEkiFe4euzQ6bRYMlKx6OC9JtPYXFvgf+12w46aQPxPWyyaruKVGXkL7jYZ6QrTwXtNprFxV7H/dU0N7Njl9L/fVatLr2i6hkfo4L1G852lpiFQYmX7dmhqDrjCajc3A4VpkErT1+lBi0UH7zWadCETXOrc0hGwUHbsgOaWwL9O7ZboteQ0mlh4ZP/0ymiLRfPdJsEKwi0dToqdDdR3FrF5M8g2pVgGZe1mW3Xm9w3y+Xz85je/obGxkSlTpnDBBRekWyQN4PGkW4KeQVssmu82CSqW5nYXI/OrKXC1sWoVNLeqf519B67l2y0FcfbuGS666CLKysrYZ599gsbfeOMNJk6cyLhx47j99tsBeOmll6iursbpdFJeXp4OcTUR8HhF/EldI60xFq1YNN9ppM+Hx2ePW/yvxe0iz9HKuAFbqaqCllblwth/6Aa2NxbR0CNVOWIza9Ys3njjjaAxr9fLlVdeycKFC6mqqmL+/PlUVVWxevVqjjjiCP7+979z33339b6wmoh4PT2mWLxSyjmpKpmfLBmpWHRrYk1PUlMDbW3GG+njtPce5qcf/ROA5cthi6XNkderKs62dLjIc7QxvqRaKZZ2gVN0Mnmwqii+alVqZfR4PEyZMsX/M3fu3LA5U6dOZcCAAUFjn332GePGjWPMmDG4XC7OPfdcXnrpJcrLyykpUWtxdLZl5uDpp7e4jIyxGFr2lby8vEvSLYumf7FqFVRUQH4+1NeD8PlY0zSGNU2wcCFMn67mbdqkyrQcdBCMHAmtbhe5+W2ML67l6VVQvTOHHEc7E4bUAlBVBYcdljo5HQ4HS5cuTXq/rVu3MsJSX6a8vJxPP/2Ua6+9lquvvpoPPviAqVOnpk5QTbfwdKZbgp4hIxWLRtNTmJZFczNs2ACjBgdiLK+9Fpj32WewdCl8+aX6GZCbTa6jjXGFmwBYvqaEXEcbe5U2k+VwU1XVYyuoU0Jubi4PP/xwusXQhNCDMZa0kpGuMI2mp9i2LfC6qgo6OwK+iPffD95WVRV4v6c1VymWgo0ArN1WSK69DUeOi7El24PmppPhw4ezxeLLq66uZvjw4WmUSBMLnzd1nb0yCa1YNN8ptlqarFZVQUtL4B/766+Dt1kD8hIbeY42hmTtwGxHn+tow+bKYnzJVlYm3QqpZzj44INZs2YNGzZswO12s2DBAk477bR0i6WJgk/qrDCNps+zbRvstReUlyvl0dqsFItTBJzde++tttXXB++ba29DeN1MmmR5n5XN+KItbN4MTU299CEMZs6cyeGHH87q1aspLy/n4YcfxuFwcM8993DiiScyadIkzj77bCZPnty7gmkSJoWtiENJa1aYjrFovlNs2wbDhkFhoaFYDItln5LVLK9T60GmToV582DcOKVktm2DxkbIc7YiPR4qKlT8JcfRjnC5GFek4i7ffAMHH9x7n2X+/PkRx6dPn850MwtBk9FIn3aFaTR9HlOxVFSoQH6zqViKvwHA4YDDD1cVjJctg6IiNReUhYLXQ0WF2ifP0YZwOBmXvxEgY+Ismr5DP9UrWrFovju43TY2bVJusIoK1at+9bfGCvri1QCUloK5kH3TJiguBtOTlOdoAymp2FtlkuU62xFOJyNyNuNyacWiSR7ZczGWtNJrrjAhxBjgZqBISvnD3jqvRmPy/vultLTAjBlgtvr5fIX6FxiWu4NBg2BAXgvjh3UCxUCIxeJQqyonTfAAdnIdHQiHE7vPzcSJWrFokifBikJ9joQsFiHEI0KIGiHE1yHjJwkhVgsh1gohbox1DCnleinl7O4Iq9F0hZYWaG+HDz8cxF57wbRp+APwy75Q609y7B0cdoiHEW1LaPznDYwcqbYXFSnXmE34GJpTA8DIcjdlRS0Mz69BOJzIzk4qKrRi0SRPDwbvU4oQwiaE+KMQ4m4hRNwKpom6wuYBJ4WcyA7cC5wMVAAzhRAVQoh9hRCvhvyUJfk5NJqUkZ8PU6bA9u3ZTJ4MAh8DBsCQIbDsK1OxtPPko23c+b3bcG/Z6LdSiouVYll2wSWMyq8GwObzsvi2/zJr71cQTgf4vEza28eGDcq9ptEkSjotliQNhhlAOdAJVMc7dkKKRUq5CAjt7H0IsNawRNzAAmCGlPIrKeUpIT81iZxHo0k15hPhypWwc2c2I0r2sO6sabR+tYyKCmhqVv8C2fYOsp2dZNnd4PX6FUtRkfHbGcgllp5OCrLacTgFwqH6tEza24uUsHp1r300TT8gzRbLPBI0GICJwMdSyuuAy+MduDsxluGApVwf1cCh0SYLIQYCfwQOFEL8Pynln6PMmwPMAVUvqbKyskvCNTc3d3lfTf+hxvJI09joZKjYAEDrsk+pqDiId99V23Ls7Uh3BwDS6/Erlpw93wITwOcFmw18PqSnE+n1Imw2MBRLxfhOwElVFRx4YPfl9nq9Eb+/ffV7reUOxts8nG8axyJWrwZG+8dTca7m5mYAhxDCWmxurpQyqJKplHKREGJUyO5+gwFACLEAZa1sAdym+PFk6LXgvZRyN3BZAvPmAnMB8vLy5LRp07p0vsrKSrq6r6b/sG5d8PsRpU3QAsLu8CsPgGx7O7JDKRZ8Pv82WfkUnrrLkT4vwpWFbG9DerzKh2GzKVcYMHYvNw5HLp98Aued13257XZ7xO9vX/1ea7mDGXDiAexxF7PwivVB46k4l6GcPFLKKV3YPZrBcBdwtxDiKGBRvIN0J914KzDC8r7cGOs2umy+JlUsXhz8vnxAo3pht2NdkJ5td+MzLBaAQw6BPxz5CMcO+RBfWxt4fQiXisdIT6dSNHY7wqHGnLZOZs6EBx6A9cH3Co0miM8+gz3uYgBOnjWmp06T0pIuUspWKeVsKeXVUsp7483vjmJZAowXQowWQriAc4GXu3E8P1LKV6SUc3qib8SLL77IJZdcwjnnnMNbb72V8uNrMoc774Trrw8eGz1IhQqFw+63Spw2Nw6bN2CxoLxePz2wknxnm6FIfNhcKkdZejpVoxabDeFw+Mduugk6O4OLWWo0oVx8cboliElKDIZE043nA4uBiUKIaiHEbCmlB7gKeBNYBTwtpUxJKb5oFksyrVijcfrpp/Pggw9y//3389RTT6VCXE0GIiXcfLPK/Dr99MD4gJwW9cJmp7QUBg3wkGM3Yivu9qBjCKeKn0hPJ/h8CEOx4PUifT6EzW6Z42H8eLU+Rqcda2Lx1Ve9cpqu1gpLicGQaFbYTCnlUCmlU0pZLqV82Bh/XUo5QUo5Vkr5x2RPHuN8ES2WZFqxrl+/nlNOOSXop8YSyb3tttu48sorUyWypofxeOBvf1N9VObOhY0b4fnnVcfHSLS0QEcH/OIX8LvfqbGCgk6lJADpVnHIvce0k20oFp/FYgH8gXnZ3uaPsUBA0WC3ByyWzk7s9kABS42mK6QwSyyuK6wnDYaMLEJpXIxTs8zl0QZTp05l48aNQWPWVqyAvxXr4Ycfzquvvhp2bCklN954IyeffDIHHXRQxPPPnTvX3wrW7XbHzNTIpGyXTJIF4stTXZ1DR4eNsWNb/GObNuXS0mKnoiK4VPC775bxhz9UcN99zaxfn09RkZuGBhXfeO+98HPU1mYBh7Njx2q2b9/JmDEHMWvW12xbv548YPPaNXxVWckhFVkMqd0NwMrlyxlo7P/R0/MpbmkhC/hiyWcM7Oykqb2dLGDF0qXk7diBs62N7atWUwos/fQTOjduYeDASSxbVkhl5afdvj6a7x6dneBKTc84r5RyTqwJUsqZUcZfB17vzskzUrEk05o4WivWaNx999288847NDQ0sHbtWi67LDxRbc6cOcyZo/4meXl5MTM1MinbJZNkgfjyCKNMknWtyfe/D06nKgJp5RtVI5L16/MB/EoFImfSmL1VDj10IieeOJG133r46OVqylbn0wKUlw3iwGnTOKRkKdsa/wLApHFjqHlT7Td4/n3k7D+Ftq2b2GfCBHYIKC4dRNuOavabPJnGbevp7Gxj5EEHsu2VJzho//3I2XtfKivh3XfhiCOmxb1BZNrfS5N+UqhY7EKIucAr6Sidn5GKpSe55ppruOaaa9IthsaC263+mcxcis4IfcDrLMtzJ00KtBiOhtlLpbhY/d7zwnyGPPEg7UUlAP4MMGlZ+mzNCgP8ix997W0qxmJa0F6PkW5sD7jLPB5AVU4GtX6mvDy2jBpNKJG++10krsXSk2RkdeNk0o11K9a+ibU745o1ShGsWRMYU2u8AmzeHHh99NHRj2USqlg6q1XPFG/DHgBkhxGo9wW+Y7IjVLE4AnMtwXvp8VjSjQ3FYtwRhg5V+27fHi6TRhOPFCoW3UEylGTSjXUr1r6JtfTJ8uVQUgL33RcY27EjeP6mTYHXoYplw4bw45vKxlQsjrKhQdv9gXpLQwxfR+SsMG9ri/E+sI4lsEBSzcFIChgyJLL8Gk0ipNpiSVcHyYxULNHQrVj7D9bMqfPPD98eemO2Wiz77Re8LZJiCbVYbLm5QdtNi0XGsFjM4I/PUCy2HHUMX1urkW4cvI4FtGLRdI8UKpa0kpExlmhZYboVa//h00+hoABmz4Z//jMwPnasKsMSemPeuTN4jpVIbidTsZhFJGWIW9VnKd9iIkNiLOYcaSgWx6DB4HDSuWObsUAysPLejLEMHqz21YpF0xVS7QojTcH7jLRYenLlvSYz+OgjOOIItTbl/ffhscfUeGGh+h16Y+7ogJ/9TP3jhTxvRLyJ19dDTo4lw8awKHK/dxi53zs8sBjSGrwPcYXJdtXYy+8KczhwDR1O57YtKsZiqRVmxlhcLhg4MDMVS0tLC1OmTImYhq/JDLQrTKPpItu2qXTgI48Eux2mTgVjGRKDB6uxUCvE7VYKxRFiYw8ZEvkm3tAQcIOBEXAXNob9+i/Y8vIsrjCrxRKc4+wzFIuvzVAsNhvOYSNwb9tiWSDpDNt3yJDeCd4nW4nijjvu4Oyzz+55wTRdpr+4wrRi0fQ6V10F2dlgvccddhjceCPcfz+MGgVr1wa2SRlQLCYffKCC/dFu4vX1ERSLYQHbXNkWV5g1xhJssfjaVNcun9m9y2bHOayczh3bkB4PwmbHXqBMLG9TIDVt9Ohg+XuKZCpRvP3221RUVFBWpnvuZTL9RbH0qRiLpu/j88Ebb6hCfBMmBMbtdviz0aEntM2v+c9mXTh25JHq56WXIlsszc2Qlxd4Lz2dqrIkILKyAhaLDM8KKzzuBzS+85rfFSZNi8VuxzmkHDydeGp3Yi8qQThd2HLz/WnMpvxvvaXK0IRaWIni8XiYMiVQ9dy6aNckmUoUzc3NtLS0UFVVRU5ODtOnT8dm08+VmUZ/ibFkpGJJZuW9pu9QXw+XXAJtbbD//tHnVVTAm28GbsymlynSc8aQIYFV9lY6OpRV5MdisYisbHwd7UqpWGMsTaqkfs4+B9L4zmt+V5i3xSxcacNRooq+eBv2qEZfgL24JEyxuN2qfL5VeSaDw+Fg6dKl8SeGEK0SxT333APAvHnzKC0t1UolQ+kvCyQzUrFo+ifz5sGzz6rXIWGBIEJvzKbXKlKpiyFDVMaYsazET3u7Ct6bSI9HrZQH7IVF4PHga2kOcoV5dqkipf60YlOxGEpD2GzYSwYEDmooKntRCd76YMUCyurqqmLpKWbNmpVuETQx6C+uMP3YoulxOjrUTbYlUGsyqHtjKKYH6OGH1W/TYomkWCZNUv+ML70Ufk6rxSI9nUhDsTgHqcUmntodQcF7b2M9AMJQLBgpyqZLDJvdb7EACFNRhVgse++tfqejyrGuRNG30YpFo4nA6tUqhdha/vuKK2DyZDA9O+efr9awRKOiQs35xz+UgojlCps5UymXv/0teLyjI3i+NXjvGKQWm3TW7Ai4wozsLoTAlmX1oQUQNjt2o9YY4DeR7EUleCwWS0EB7LVXehSLrkTRt9GKpQfRrYn7LhdeCL/8ZaAaMQSsiVdfVdlf5pqVWJx8svon+/bb2K4wpxMOPhiqq4PH29vB6Wtlw0Vn0L5mFdLr8buuHH6LZaffYnEMLFU72h2BMi2h2NVKe1uhserSUCyO4hJ8TQ3qHAahCQg9ga5E0feI12+lvyiWjIyx6OB938WMa7z5JhxwQPA2j0el4iaCeS+sqoK9R7cAeVHLiZtrWaQMlOLv6ABHSy1edlNz959xDBnmd4XZi4oRriw8tTv8SsZRUopn53aEw+GvCQZgy83zl3TxK5KSgbgbGxCWGAuAt6EexwCloCoqoLJSedN6ap2vrkTR94j2rDxl4Bcs3b1/v8kKy0iLRdO3sD6FmXGNt99Wvz0eaLL07AotxxKNCRPUfbyqCqr/qpqTRss+HzJEucvMMi6gFIvTpxSCe8tGvHW7A+nGQuAYNJjO2p1+V5ipEJRiCVgsjtLAuo9AFpgRwDffG3EXz57d/rkVFcpqshbP1Gh27QofO7LsM/504B2AXnmv+Q7S1KTcTh9+GBjbd1/VnMvErOll9vXeuDG4addFFyV2ruxspYSqqqC1RsUvHL72iHMjFX5sbwdHR2DRYse61f4YC4CzbIjhClOPkHbDFSbswRaLadEA/qwyx8BBam7Ie+/uWv9Ua2aYRmNy6KHhYz5pwyHU97C/uMK0YtEkzKJFKgBvNt2UUq0hef/9gNVi3ty3bIGWFjt7jJj2X/4CK1Yk7goDtQK/uhrcQpkqtoYdeHbX4qkLfuyLpFg6OsDZsYecAw7GVqBiIqYrDFQA32MJ3psWCyGuMHtBIcII5gcUSfDqdXNfj0WxTJqkfmvForFirdJt4pU2HDYVn9OKRfOdork5EHQ3/cTWisMbN6p79M6dgZvq5s25/hTjKVNiL4qMhL9cS7HqpWKr387Gi89i4+wzg+aZzbVMxSKlUiz2tjpcw0bgHGK0dbRbFcsQvI31/rItfleY3Y6wBHOEw4FjgJFibMZYDPeYmWJsLyoBmx3P7oDCKy5W3SRXrkzuM2u+e3ilHafoX4olI4P3msxBSjjvPNXH3VQka9eq1fPWzK/Zs1UrXo8HjjlGtQ7etCmPvfZS263lVRLFDMp78oyb/u6tUedBoGaYf92LtxX7gFJs2SqjwGqxOP0px2onxwDDvWV3+AtLAmB3YC8ppXP7VoQ9WLGYlpOw23GUDMBTF7BYoHcywzR9H5+2WDSZwrJl8N//9vx5amth/vyAUjn1VKU8Vq0K7jv/3nsBeQ4/XAXaN24MWCxdVSwdHbCrWe1sb6mNOK+oSK0dMRt+menJWXY39oKigGIJsVgAPDuVYrEbVolwOFW2l1n+xW63WCyGK8xULJZgvX3goCBXGCjFsmpVUNUYjSYMj7TjyHCLRQgxTQjxgRDifiHEtHjzM1Kx6HUssdmzB773PfjpT9Vq9qYmFdO46qoD/VlIHo+yKkAVffzgg+B2wACPPx69b0hTk2oB/MQTgbEHH4Q7VPIKVVUq48nlgh/+MHjfY4+FiROVxdJdxQKwdY+Kkdiad0ecJ0SwddBuxPhdtk4VIzFX0ltjLGWGxbJjm3pvrqg3qkb64yyGxQKBGIvTdIVZFItjQGlY7KeiQv19LAvhNZowfNKG09b7wXshxCNCiBohxNch4ycJIVYLIdYKIW40hiXQDGQD1aHHCiUjFYtu9BWbN98MvD73XNUc65//hJUri/jDH9T4D3+obuZNTWqx4dSpqtTIffepXiX19Wp1uzVLZccO2Gp4mz7+WAXrr7tOvb/1VrjgAhg3Tt17q6oCpenvvhtuuQUeeAA++UQphIoK2LQpl+ZmtX93FEt1vVonInZFiHwaWBWLf0GlzY29MIrFUlIKDoeKk9js2HJyEdk5/rUppmIJtljUv4stNw/XqHGUXf3//MezFxbhawxkoUHwWhyNJhppDN7PA06yDggh7MC9wMlABTBTCFEBfCClPBm4AfhdvANnpGLRQGtr5Kq9oIozmpjNAB99VP3+8kv1+6WXVHzkqquC973iCjjppIBra/PmgKvm2GNVnKSmRrUHNsnPV4rD6VQ/Eyaom2VDg3JDDRkCv/sdzJkTUFQVFbBjRza1tYFjRGP3/EfYdOV5uLdXU3PvX5CdKkhiBuW3NhQDYG+JsAgA6/mgri7EFVZY7C8qaY2xCLvdXzPMWppF+C0WpzHPEcgYs1S53Osfj1A47UT/e3tBEd7mJjo2rPGX4teZYZpEmD3uKezCh1N0Yrb+SQEOIcRSy09YpWMp5SKgLmT4EGCtlHK9lNINLABmSClNh+4eIG4/E61Y0kBVVXz3yFlnqTUi1sKNDQ0qM+vVV9XN/JxzAtvMtN6vvlJZW+YaP2v5lKlT1TE/+STYxfXFF+pJybwB3ndfcPzkkEMCK9ohYB3U1wd6yocyeTJIKfj8c7VvUAn7EPY8PY/ObVuoe/JhGt95lZYlHwMqqwpgc726sTtt0R/nrOtGrK4wW0EhNrMcgPVDAI7BSnOZCx+dgwZjy1GmlamMsNvJmXwAuQcdimvEyKjntxUUgs/Llutm01SpTMqBA1VHTK1YNNFYc/pUZoxQq4mLXI3Uhd7mu44ElgG/k1JOkVLOTXC/4YD17lQNDBdCnCmEeAD4L3BPvINoxZIGJk/Gny3V2Qlz5wYvItyzR8VFIJB59eqrcPXVyh21eLFaDzJ/vnJdXX99YN/2drXWxGpSH3mkskIqK9W+oGIuJitXBltHX32lFMuUKbBmDbz+erj869Ypq8fapdGKeaNfskS5wULu6Xhbmmn+9AN/VhbgL0nfsVmZZKY1VN2oFIvL5iEaVsUScIV1Ys8vRGQrJSF8wTE752BDcxmKpeyqGxh0mfL92fKUiSUcdhwDBzHsN3/Fnhe9cqa9IKBhOzYE2kfqzDBNohS7GtkdOYzYFVK68l5K+byU8lIp5TlSysp487Vi6QXeeiugOMynaVA3/4cegksvVXEKUF0UB1haflRVqfLxp54anAXW0aFu1sOGBXz5JqZ7zLzpT5gAgwap+Xl5auHhp58G5r/3Hhx0kHq9337qnGvXqpjMuHHhpVQqKpT77KuvolssY8eCw+GjtjZyfKX2/jvZcfvNNC9e5B8z3VDuzRuDzmXislgsMqSa3157qfNYLZbsXKNopGGxCG+oYgmxWAYPw1lmrJkxLBZhTywj32xRbD2eKX9VVfzigxpNtr0j6P7QTexCiLlGN95k2AqMsLwvN8aSQiuWHuazz+DEE+Hmm9X7NWsC2/79b7jtNvV6yRJ4+WW46SYYMybg5qqqglcszxzTpqnfpv8ewnubmPPNuYMGBW+vqAhkjBUWwnPPqdc/+hH84AdKxq1bYcQIImKez+OJrlicTigvVyeJpFjMDKrO6o3+MZ9RVKxzWyBIb/1sDovFYsZhTGw2dU2sFkt2gbFi3wje4w22eEItlqDj5RpBoQQTSGwWxSI9AQVYUQGNjbBtW0KH0fRj4j1cOIQnE2qFLQHGCyFGCyFcwLnAy8meXCuWHsZM5zVdTdZFhT/7WeCG89RTMGOGen3XXbBggbJEzLRek4MPVkro3/8OjJlKZtiwNsrLVcwElAsMlK/fivVm/X//p2I3AH/6kzqnx6N+ovWHGj8+cL+N5goDGDlSBYgiKRZ7vnIrmem+AN4mJYjPEsE0ZbXbfAy/8fc4ylTAPVSxmHOtiiUn3wjEmyVZQiwWM8YSWbEka7EENKy3PuAo1zXDNCbx3FwOmzfl1Y1jWSxCiPnAYmCiEKJaCDFbSukBrgLeBFYBT0spk64foVfe9wAej1okePnlwWWyZ82C5cuVS2rpUli4ULmZqquVMgEVtD/5ZPW6okLNr6tTveIrKtQK99AmWQUFZjD+C/7zn8OorlaxiWuuUQrg8suD55s3O4dDxVEWLlTvy8uDKxGbwfNQsrKUi2z16ugWC8CoUa28/354RljTB//DXa20pXt7ICXe26xO7utoC5PV5fCQf9hUvPV7qH3gTqTbDSEKq6JCJSuYGW9ZOUbqsLGSXkSxWIQt3CoxLRbpjR7XsWLPD1gsnj2RFcvxxyd0KE0/xXzgiYazByyWWBOklDOjjL8OvB5pW6L0qmIRQpwO/AAoBB6WUr7Vm+dPNe+/D9dccwCXXKKe7j/4QD2VLFumAuKzZ6v0XlBpwKZ1cvzxKqZhxjUqKwOK5a67AtZARQU884x6PWaMsnCi8eMfQ2VlOxUVKqYzdqxyR0Xax7zZlZQE4jOlpSpza+JEpfikjG6xmMeIp1iiWSw7/x5Ig7dWBPY1NwIgLf+BfsViV9mOZh2vaBYLqGKXANm55poUU7EEWyz2/AKlQGJYLD5rWl4MbBbtabVYBg1SFqO2WDRxXWE2Dx39pB9LwopFCPEIcApQI6XcxzJ+EnAXYAceklLeHu0YUsoXgReFECXA34A+rVjuvBO++qqYW28lapqg6bIylcpRR6mAvRWra8pqJVjHR0bPdI14rFh9T0zXWUlJYL4ZT8nNVRln69fHVywvvBDbFTZqlHJpWRWLt6E+6nxvk6lY2pE+H8JmY9AgGJDVgN0ZvCJeuqMrluXL1e+cvODFjoRkhQE4hwyNKJOZduxrS0yxWF1mVsUSWhVA892jpkZ5MeKV9nEID829aLH0JMnEWOaR4CpNIcS+QohXQ36stcZ/bezXZ2lsVCvghw5ti6pUJkwIfl9RoVazm6nGJtbgeuh6EROrYvG1trD7yYeREezmRBRLYaFye5WUBBpqlZcHH8NmU2swomGeJ5bFMnx4K3Z7sGJxb43e+cq0WACkO2C1jCvajMsRYrG4w/0Ko0ap34uMRLOsPHWzdxiNuTpLh4Tt4xg8LNDv3oIt11AsSaxYG/fCIgbMnI2vtQXpCW5TvHKlzgz7LrJkifo/Gj48UA4pGr0dY+lJErZYpJSLhBCjQob9qzQBhBDmKs0/o6ybIIQQArgdWCilXBbpPMYK0TkADoeDysrKREUMorm5ucv7JsLKlerp/he/WM3ddx/Apk3KjXTFFWo1u5TKCvj5zwP7XH115GMJoeIv5kpzkwkTVKxm6NDgNr+7n3yIhteewzV8BAVHnxC0z/77qwWN8fz5P/6xcn1lZamyMEcdFdh25plqmyPGt+Poo9W5QtsPW3G5JDNnBo7tbW5ix19uCZtnyy/E19wYZIXIjg4wsrlOKn+fdXl2oMJvfdS/9hzZ4/bGWT6S3H2VT9FuV9dx9WqYUPcyQ0rVzd05dDjlf53LJxvDSxwNOOfCsOKR5j4Q3EEyEczUZl97mz9BoaJCrU2qqYmtrK14vd6I39+e/l73FN9VuV9+eSgwEYAnn3QDLi4Y8wyXTngCrwx+rnfaPDQ0tFJZ+VnXBUbJTJotlu7GWCKt0ozQI83P1cBxQJEQYpyU8v7QCcYK0bkAeXl5cpqZM5sklZWVRNu3paWFo48+mltvvZVTTgnTfwlx+OEqSPzhh/WsW6dKtluf+k3Mp//Fi1UAHmDdzBPJHrc3w/9wl3+eWZLFisulanaZtK5YQu3cf9BpBrwjPAHn5wevUQFofOdVbLn55B8xzT9mfXqyrsIHuPBC9ROL4cMDsYxYWNfetK1c4e9hYsVeVBxkrYAK4NspBuD8Mc9TfJoTqPBbLE3vLqTpXZV1MO6FwFoY8zquO/tf2HPP8o9nj9sbqsMrbmaNHEPWyDFh47n7HMiw395Jzj4Hxv+QFsz1L7621iDFAuphJFHFYrfbI35/Y32vY/Hiiy/y2muv0djYyOzZsznhhBPi75RCuip3uumK3F6vim1mZ8O33wbGpVTf3UlFaxiUHe7mcAgPLldut69TJijwXk03llL+S0r5PSnlZZGUikm06sYXXXQRZWVl7LPPPkHjb7zxBhMnTmTcuHHcfnvUEI+fO+64g7PPPruLnyKAy6WUht0eWakAnHACHHcc/OY3gaC8bG+j7evlSZ+vfc2qgFJJgpp7/8KOv94StqgwUbwtTdQ+cg++1sTiDdEwm2qFjbc0h401vPkymy6fqWT2ePwxDJsrbpkipNeL7HRjy8rplry5BxzsX7SZKMKiWEx6KuU4mf+H008/nQcffJD777+fp556KrWCaIL45BO45x7429/gtdcC4+basdAqFCYOW0qzwtLqCuuuYknJKs1QolU3njVrFm+YtU4MvF4vV155JQsXLqSqqor58+dTVVXF+vXrOeWUU4J+ampqePvtt6moqKCsLDkXR7pp/N/rtK1cETTmbQ2/Icdix19vYeNl58SfGEL9K8/Q8MrTNLzxYty5HRvWsPvxuWFKzNfWitdYFJl7kDJqbYUqQGMNdvvP+fwTdO7Yisco+RJaddhKaLl62aGWL4tYBcp6CJtRPkZaFMvQoSoWlWrFksz/g8ltt93GlVdemVpBNEFEC9Kbnl4RydUAOISXFHYKSWlJl2TprivMv0oTpVDOBX7cXaEMLXtqVkgtkalTp7Jx48agsc8++4xx48YxZoxyZ5x77rm89NJLHH744bxq1jaxUFlZSUtLC1VVVeTk5DB9+nRsIemmc+fOZe5cVbPN7XbHNC0j+mClj2EP3EHjodNo3v9QCpa8T8u+h+DLzQOvF9O4SdhklT6G3X8nNk/w48y6r7+iKTdQ/yWiLD6f/3wti99X533vveiPTREYsGwpucDmzxbzxYBAqpituRFXzXbax0z0jw3/128RUvL14FE0dwSu3fB7fudP961t6yAPaCsoIauxgfojT6D4Q5Ug6M3Owd4eWMfy+asvUQps2LyZLysrcezZRWgIfunLz9M+KpApYWtpYhiwdtMWWizXozf8/K6tmygDln+ymI7tgdhNefmBfPyxpLJyRULyeDwepkyZ4n8/Z84c5swJdpkn8/8wadIkbrzxRk4++WQOMvPcNT1CPMeATUTWPDbhw5PYsqmMJ5l04/nANKBUCFEN/FZK+bAQwlylaQce6coqzVAMLftKXl7eJfHmbt26lRGW2iPl5eV8GhpksPDHP/4RgHnz5lFaWhqmVCD4nzgvLy+qz1N2uvlw4escNW0a0htw1/haW1j/rzaKFy1k8onT2frJewyTHobe+Ec89XvYaOyfqC+1c+c2NnnCbeSRZYMotRwjkj/Y21jPhpD9jjpkSlBBRc/uWjZefBZDf/NX8gxronPXTmzZudjy8tn4n3/iBQprt7G/5fhbbriMjm+rGP3469iNoo1r71L/VUcecggfLF/B0UcfTePbr1BrPorZbAwfP4H6VSsoGTyYYfeo8svrPqtEut1klwwMcveNz8tiDzBm/HhKpk2js2YHmx77V9DnqSgfRqFFLvf2ajYDE/fbL2i8N/z8HRvWsuXZh9l3wnjyDz/aP3744aqVwbQE5XE4HCxdujTp80f7f7j77rt55513aGhoYO3atVx22WVJH1uTGF3N/nMI73dPsfTkKs1QolksqWTWrFndPkbN/Xcy9N2FtI4awbbf/pycfQ6k9OJrg6wB09du3iw9u2v826THk5AP31ylHkqk2EQokdZoeHbVBimWjo2q+Ur9y0/5FcumS34ENjuj572Et74O4crCW1+HlBJhfD7z/O4Na8nZ54Bg2Qx3lHvzemrv+5t/3JadEyixYnFrCVc20u3GVlAEFsXiNioF+11hrsA+xWfMpP6F+f4V+ybSqORny0qDKyxCjAVUnOWhh1Sr59Dabb3BNddcwzXXXNP7J9aEEc0VZk+tKyytCyQzslZYMh0khw8fzhZLc5Pq6mqGx1rZl0LavlIZ062fq1r0bV8vZ8vPZrHl2gsCc4y4iLe5idYvllJ9fcAIC70hRsOqWMxaWQBNi96mY8OasPnelmaaFr2N9HjwNtaHbQ9Nr7UZsQhvSAdEfF461qu0FteoseDz0bl1M9L49rvK1eKa9nWr8XW0B8U6zDiHDKljIbJzEGYA3qKAbcZDhLVKMBAoq29Yg2Z5FltuPgPPvwxsdnb/5z62/f6XAbGNkjAiu3vB+67gVyzt4YoFgvvc9ATp/H/QKOJZLEJEUywpdYWlNcaSkYolGQ4++GDWrFnDhg0bcLvdLFiwgNNOO61Xzu0YqB4929eujjrHvUUpBW/dLlqWfBS0zdfUEGmXCMfY6H9ty8ll3AuLyJowGenuYMt1s8PmN39cyc5//IHtd/w6XFkQrlh8RlTRF0EJNb6lvpdZeymf/earz6fuqUf9sgDsnncvG84/hY2zzwwc04iT+EIWMgqHw69ErP+BphUTqlhMq8i0WGx5+RSfPpPhf7obIYS/lErr8oD7M50WizDXsbS1BY33VjHKdP4/aBTxrA5bNIvF1n9cYRmpWKKlG8+cOZPDDz+c1atXU15ezsMPP4zD4eCee+7hxBNPZNKkSZx99tlMDm1Q0kPYS1TZ4I510RVL545AklzDa88FbUvUYum0WCzm0763PlAqtXNncE12MyOp/duV4RaLEHh2KXdcx4Y1+Dra/avYvY0NYdlc7WvUI7bLstajdblawOUzrJGc/adQeMKpFE0/k/wjj1UyGNtMy6XgGKOyptcbsFgs57IbGWI2S5VgCFwjM34lhKD0gsvJGqlKC0RqvtX6pYpN2NKQFSacLrDbg7LCQKWj5+enVrFk2v+DRhGh2lAQ0SwWh/Ck0hWWVjKyunG04P38+fMjzp8+fTrTp0/vDdGCMfIKzZtnJDp3bMUxcBCuUWNp/fyT4N1DFgWCqqbb+ParZI2ZQNZ4VdTL6goz4xKemsBiv02XncuQG26j/K5baB/+gD++gc8XbLHY7NjzC/DW78bb0syW62aTd/g08g9TS+Nlp5ud//gDg6+92b+Lp3YH9qIS7MUlgeMYLizpbidrzASG3/p3/6b2b6to/vB/fneUqWAcJaoLpPR5/dZJoI02uMpH0f7N1/4kAP/1MG/QUWJRtpD5nbU7qX9BfU9EN9exdAUhBLac3LAYS0/UDMu4/wcNkIBiiWKx9KessIy0WPoKvva2+JM8HhyDBlN8aviCzF2P3sO2P95I9c1X4anbRcPCF6i9/+/UPvB3qm+4jE2Xz8Rbt0u5g4ybuelGytnve0HHalqk+ma3fvl5IL7R2YmvJWAVCYcDW14evrY2pCF7e9UXQXW3mj94J6wOl2PQ4ODFhqZi6ejwKwn/JlNpGArFdIXZBxhNYby+wCJHX+AfzFmuCqh56+si1u4SCcTbpJRBFlo6LBYgomIBXYzyu0L8RY7Rg/dSxi9W2RfISMUSzRWWaYT60aNhLyohe+99w8Y7t2+ldenHtFd9ya6H76Z27j9ofOdV7CUDEFnZeHZu87uinMNUCqnpRhp64x/JP+L7/mNJi5IzFZ7saA8q+y6cTmy5+fhamwNKUUq/SwtUbSxfSMDdlpcfcbGhz+0OytKCwM3cKgOAY4DFYnGaiiPwD+YaMRpQzb4cRcWGMAEFE63hlrV8vuxo99/QsydOxm6cs7exZUdXLNu3q7phmv5LfIslMg6h7ncpuu316ZX3PUIyWWHpRLaH3zwiYS8qxpaVxej/vsaoR16g/I7wajbWG6RzaDmls1VqqBm4NzOwTFeYLSdXZWoZ+MutSBmUieWxlnB3utTTdGur/8YnkUFxEF9HB9Id7Nqz5eQG2vuqI6l93R1hJVZM95PfajIsFr9i8XoD/U8sFkvu/lMoOesnDLzgCpxD1ZJOx0CLYojyXbBWePa1tiCN61B6yc/8adG9ja2gIGLSRG9lhmnSSzzFEmuBJJAqd5jOCuurJOQKA2xGgNmeX4CjZCDZEyr8NaUiHcuWm4/dKNvu2aXaITqMRIHA035wO1x/eXcpAzEWVDaaf92Iw4EtNw9fW4vFYrG4q4qK8bW1hKUI23LzQxSLsWtHOyJkrZHpqjNlMK2fgCvMS+CZzZIVZrcz8CdzcA4ajHOImR4rLNujWSzBisW8DmbZ+3TgHFJO5/YtYeO6TfF3g67GWEyLpT/EWbRi6QZBiiXCCn6T0IB0pDGr68SWm4swFUutyuDy35gt2Cw9is26YbKzM8gt5tmzy19l15abpxRLa0sgKG5YOMLlUgrQ4wnLVrPl5gbFUkxDQLo7EK5oMRaLxWKz4ShSpWeyJ1QEYjRRnMn5U49TcydaspmiWCx5hx7pf+1rbfE35jIbdaUD1/ARePfUhRXtHDkScnK0YunvxIuxRDOkTYslwyMACZGRiqWvxFhkWxvSZq4Ij14lwJYfnhIbms1kDbJbLZbO2h2IrOzAfGuKruUYZoFHX3tr0NoR7546XKPGUXz6TIbccFuYKwykoSCy/OtSQotC2nLyggLhppXgc7uxhcRYhM2GcGXhazcXSLYjXFkIp5PyO+5nyI1/9Cs6Z1lIAxqD3H0PYswTC8k7+IjAcaMoltJZVzD4+luVPK0t/pu52Vo4HTiHq0QE99bNQeM2m+reubLbRY80mUyXLRabtlh6lL4QY5EeD7LTjde4SUaqumsSSbGEzvfsDqxat+Xk+l05nl01ytKIVy7eUDi+lhZlsdgC186Wl0fpBZfjGjZCBe/bWgKKxXCdiaxs/znDFEteXtAqdn98xt0R5goDZbWYFotSPmpO9oQK7Hn5ZE+oYMivfk/p7CidzzCsK4u7MFrpG2F3+ONPvrYWvK0t4HDE/Hv0NC4j0SJUsYDODPsuEE+xRM8KUxpFK5bvMOY6DW++Wikemh1lJdIivlCsKb62vHz/TV62tylrxYwxWCyWrPGTwjoc+tpa8HV0BK07sbqFbLm54PUG0nKlSg22WSwWzx5DsZir3XPygm7UvvZWpJR+ayQUW3a2P8YSKQ4DkH/4tLgr44PiOrboDxn+/vQtKnhvy8lLW+AeVPKFvXgATZVvhm2rqIDqatXaWtM/aY5Twi9a8N6e4a4wIUSeEGKpECJud0StWLqIbDMViwqgiwhrL0wiWSyxsFosEOzykkGusAJGPfgs9sJi/5ivtQXZ0YYjSLEEnvwDllCtcTyf3/IItVj8GWh5wTdqX1ubP4stdB0LKLegWVbFdLN1BauVFKtYpy3PUCyGJZbOwD0oWYtnnEPbF0tp/zbYPNGZYf2fmhooKwNrAemRI6HQqFYU7ZHH3svBeyHEI0KIGiHE1yHjJwkhVgsh1gohbrRsugF4OpFja8XSRczAvTcBpZGIxRI0Pzdf3VTNRZF5+Qhh/qnCzWjrjdTX1oqvvR170QDLdoti8VslyvUmO9qVK8wVcIV5jHIx/oKPIYFw2d4WqMcVwVKzZecEZYXZulilOsgVFsMtasvORbiyaF+9El9rS9oVC0DRiTOw5RdS9+xjQeNmdRXtDuu/7NkDAwYE55u4XIGgfvSSLr0eY5kHnGQdEELYgXuBk4EKYKYQokIIcTxQBdSEHiQSWrF0Eb9iyTMeQ3zR7dfQQH08bLm5RmmQPGP/gkgZupb5FsXSqtKFg1xh2VaLRcniNWM6Ph++pgZsLpfFYlEr+MzU5kg3atOVFskasQ8YSMf6bxGd7oiZY4kS5AqLkm4MSukUnz6T5o/eo2XJR0EKKV3YcnIpPvVHtC75OKgC9ejRkJWlFUt/xu1WisRqZDud8TtIpngdi8NwW5k/c0InSCkXAaHtWw8B1kop10sp3cACYAaqF9dhqEaOl4jAk25EMlKx9IWsMEfpYMquvIGOYSoDyF5UQulFVzPsd/8Im5usYjHjNaaLx5abZ8nxjWOxtLbg62jDXlQScbtpvZjl8AE89XtU8D4n1BVmKBbD3VV43Cn+NSZmRYBIiqXk9Jl49+wmf8UnUWMsiWAvHuA/fjyrp+TM83AMVllm1sWm6aToB2diy81jz7OP+8fsdth7b61Y+jNut1IkoYrFvJ3FywpL0W1PAsuA30kpp0gp5ya433DAugirGhgupbxZSvkz4EngQWkt9BeBjFQsfSErzFFcQuFxP6BzSDmDLvsFQ2+4jeJTf0Tuft9jr38/yV73PuGfG8mNU2Cs1YiEqTtMS8OWl0/eoVMpmHYipbOuCJtvZkUBePfsBq83WJlYnuCdw0eGxXy8dbuwZWX7lY6nVi3K9AfXjTU6ZVf+ivK/zsUxcBA1//pT8BwLORX7kzvlCAqWfoinblf8jLYoCJuN0fNeYujNd+CIkprs/4xZWQz+2a8ByB47Mebc3sKeV0DRyWfS/PF77Pjrb5Fe9SiqM8P6N52dymKx/ttb1jXH6MeSUldYj6y8l1LOk1KG93wPISMVS1+j6MQZQdlZrqHluIaNYK+7/8uQG/8YeZ9TfsSYJ9+IuM05ZBiA351lL1QlYQZfe7O/B4yVAT++GMfgoTQdcLhfK9myssn93mHqtcVichSXMOIvlocX/zocFzZXFrlTAmtHhvzy9xSecFqQ4rLnF1Bm3MDVfpGVRulPLwPpw1O7s8sWCyilmDfl8ISyvHL23pcx89/0l8PJBIpPO5usMRNo/vg91v3wGLb84mLGFWxk40bwbN6ZbvE0KUZKeOcd+PzzcIvFJHoHyZS6wrpaK2wrMMLyvtwYS4qMLJvfX3CVjwy6KVsRQiBychn9+Ov42lpoWPgiOZMPIHvcRH+W15Bf/YG2Lz8nZ//vRTyGib2gkFH3P8XGykoGCy+tyz/DVlDI0Bv/RMvni8PaBjuHDmfwdbdgy8rGvb2a5o/eo+D7KoZXdtkv2Hjxx0r+EaMou/z6sPPl7nMgg6/9NQ1vvkTW6HGRP/uIUez+wTkMeuXJXg2mRyo9k07shUWU/+1Btv76Gjq3b8HX1sLgFQ8Bt7FlU2bJquk+ZmUltzuGYolqsSiNkiJXmFdKGRZXSYAlwHghxGiUQjkXFVdJCq1Y0ow9Lx97Xj6l518avi2/gPwjpiV1vKG//gttXy8nZ9J+CIeD/EOPijiv4CjlissDSmac6x93DBzEqIef9zcDi0bBtBMomHZCzDkdI8dTfvt9/gKU31WEEAy/9U4QNnwtzUw471cArGkbn2bJNKnGWqUousUSmRRnhcXteS+EmI8KypcKIaqB30opHxZCXAW8CdiBR6SUSdeK0IqlnyFsNnL3i23hxMMxoDRlyiB73N4pOU5fx1wTZC8q5uj5/+STrz3U1dcCk9IrmCalWJWCVZkk4gozs8Li93NJiLgWi5RyZpTx14HXu3NyHWPRaHoZV0Euhx7uICenH3R00gRhVSwllqarwa6wyH93hy2lJV3S2o8lIy0W42KcmtWNoK9Go9H0Ns89F3g90FKQPBFXmNNwhfWWxdKTZKTF0hfSjTUajcbKqlVw+eXq9YMPQr5l+VoirjDTYkmRYtEWSybT1tZGXl70rCaPx4MjRh2rZPF6vXRVoaZalkSJJnO65IlGqDzdudY9IY+VtgTbXmsyB7MOHKjAfdQYS9SSLilVLGm1WDLnvz5D8UVpRmUyZcoUli5dmrLzVVZWMm3atC7tm2pZEiWazOmSJxqh8nTnWveEPJr+QyzFYotisThTa7GklYx0hWk0Gk1fxm5Pfh2LdoVpNBqNJiZWZRJcBDx2deP+4ArTFks3mTMnbX+7MDJJFtDyxCPT5NGkDp8v+XUsKbZY0opWLN0kk24OmSQLaHnikWnyaFKHlMHKxOoWi1b2zpna4H1a0YpFo9FoUkxeXnRXmI3YCyR1jCUJhBCTgGuBUuB/Usr7euvcGo1G01O8/DI8+mjw2MCB3+1044Qsli70Rg5DSrlKSnkZcDbwf10XOTN44403mDhxIuPGjeP2229PiwyjRo1i33335YADDmDKlCkA1NXVcfzxxzN+/HiOP/549uzZ02Pnv+iiiygrK+PCCy/0j0U7v5SSa665hnHjxrHffvuxbNmyHpNnn3328Y/deuutDB8+nAMOOIADDjiA118PlEB64oknGDduHBMnTuTNN99MuTxbtmzh+9//PhUVFUyePJm77roLSO810qSWhgaYMQNefDF4/MgjQ11hAWUSdeW9LaXB+7SSqCtsHon3Rt5XCPFqyE+Zsc9pwGt0s8BZuvF6vVx55ZUsXLiQqqoq5s+fT1WaOje99957rFixwr8e4vbbb+fYY49lzZo1HHvssT2q9GbNmsUbbwT3lIl2/oULF7JmzRrWrFnD3LlzudxcotzD8gD8/Oc/Z8WKFaxYsYLp06cDUFVVxbvvvsvKlSt54403uOKKK0h1x1KHw8Gdd95JVVUVn3zyCffeey9VVVVpvUaa1OKO0Kz0mGNUb7ygdGOH1f3V/4P3CbnCpJSLhBCjQob9vZEBhBALgBlSyj8Dp0Q5zsvAy0KI11AtLsMwejPPAfWPWVlZmYiIYTQ3N3d533isXLmSAQMGsHnzZjZv3swhhxzCP/7xD84777xuHzsZudvb2/noo48oKiryjy1YsIB//OMfVFZWMn78eH7+859z8sknd1uuaHz77bf4fD6/zNHOf9999zFlyhTef/99ALZv385zzz3HQGtBpRTJ09LS4pdn48aN5OTkhF3TJ554giOPPJLFixcDMGDAAO6//34mT56cUnkA/7kHDRrE66+/3q1r1JPf654kltzld91C04FH0DD1pIjb00m86717tws4ImisoaGOysovaWhwYjpnNm9cA6hK37EafQkhWbt2E5WVG7slc9qRUib0A4wCvra8/yHwkOX9+cA9MfafBvwLeAC4MpFz5ubmyq7y3nvvdXnfeDzzzDNy9uzZ/vePPfaYvPLKK1Ny7GTkHjVqlDzwwAPlQQcdJB944AEppZRFRUX+7T6fL+h9T7BhwwY5atQo//to5//BD34gP/jgA/+2Y445Ri5ZsqRH5Jk8ebL//W9/+1s5cuRIue+++8oLL7xQ1tXVSSmlvPLKK+VNN93kn3fRRRfJZ555JuXyWOUaMWKEbGho6NY16snvdU8SS+41px8l15x+VO8JkwTxrveGDVKqHLDAz/HHq211dYGx3x/9H//rV75/gf8zh/64nF55ww3dlxlokQne23vip9eywqSUlVLKa6SUl0op7401VwhxqhBibqpdE/2NDz/8kGXLlrFw4ULuvfdeFi1aFLRdCJFQS9+eIt3nB7j88stZt24dK1asYOjQofziF7/odRmam5s566yz+Oc//0lhYWHQtky4RpquE8kVZv45g1KMGwJtqGP9tZ0O2S+ywrqjWFLSGzkSMsOrGw8fPpwtW7b431dXVzN8+PC0yAFQVlbGGWecwWeffcbgwYPZvn07oFwpZWVlvSpTtPOn65oNHjwYu92OzWbjkksu4bPPPvPLU1MT6JLZU/J0dnZy1llncd5553HmmWf6Zcqka6TpOq9E6M1oM+6q1tuXmfEF0bPCAJzOlCkWr5RyjozSPbKn6Y5i8fdGFkK4UL2RX06FUJlusRx88MGsWbOGDRs24Ha7WbBgAaeddlqvytDS0kJTU5P/9VtvvcU+++zDaaedxn/+8x8A/vOf/zBjxoxelSva+U877TQee+wxpJR88sknFBUVMXTo0B6Xx7yBA7zwwgv+jLHTTjuNd999l46ODjZs2MCaNWs45JBDUnpuKSWzZ89m0qRJXHfddf7xTLlG0uej/dv0JJ34ZZDRb7J9geuvj74tKHhvsyiWKDEWtU/KFEtaSSh435O9kSNhaNlX8vLyLknF8VKNw+Hgnnvu4cQTT8Tr9XLRRRf1SNA3Fjt37uSMM84AVPn1H//4x5x00kkcfPDBnH322Tz88MOMHDmSp59+usdkmDlzJpWVldTW1lJeXs7vfvc7brzxxojnnz59Oq+//jrjxo0jNzeXR0MT/1Moz65du/zyVFZWsmLFCoQQjBo1igceeACAyZMn+1OBHQ4H9957b8pL6H/00Uf897//9aeEA/zpT39K6zWyUv/SU+x+7D6G/+Ff5OxzQI+eKxLehnp2/O23vX7ensZ8HrYqFrMOmCKGxWL/DikW2YO9kfsq06dP96eupoMxY8bwxRdfhI0PHDiQ//3vf70iw/z584Hw8vORzi+E4N57Y4bWUiaPldmzZ0ed/5Of/ISHHnqox+Q58sgjoz6Rp+saWXFv2QBAZ812cjig185r0vDWS7R9vbzXz5ssnZ1QXw+DBiU232wtbLP4g5y2gLawxXKF9ROLJSNLumS6K0yj6Q8Iw0KTKWqy3gUJ0nTe5DjvPCgrUzldiRDptuVI0BWmFUsPkunBe42mX2A3HBa+ND3A2TLy9hPGM8+o3xdfHKw0du6MPD+Snra6wmIF7x0OX0YqFiHEJCHE/UKIZ4UQcVfuZuRfVlssGk3Pk26Lpa+lWT/yiIqbCKF+fvKTyPMiKpYgiyU6vRljSaZUl0yyJFdGKhZtsWg0iSN9PtxbNye/o2GxSG+aXGF9TLGEErog/9hj1e9Iz8NOEdsVlnf40Wpe71os80iwVJexLeGSXBmpWDQaTeLUvzifzVf9hI4Na5PaTziMB7d0xVj6uGIJvWxZWZHHIcRiEeFl83Mq9lfz7ClTLA4hxFLLT1ilYynlIqAuZNhfqktK6QYWADOM+S9LKU8G4tau0opFo+njtK9dDcDu/z6Q1H7Cb7GkyeUs+tftx+y54vFA61fLqH3g7/5tQTGWGMdIYfBeAsuA30kpp0gp5ya433Bgi+V9NTBcCDFNCPEvIcQDJGCxZGTPe6MMwalZ5iOARqOJii07G4DW5Z8iOzsR1nrtMXc0YixpCt5neoylpQW2bMlJeL55u/J6YdstPzNG1cJYe5BiCXeF2fLyAXDQmZH9WKSUlUBlovMz8pFBx1g0msSxZWX7X/taW5LeP203+AxXLKecAj/96aEk+nwbyxUWtPI+QlZY9gS1wFpuX5/uWmEpKdWVkRaLRqNJHGFVLB3tJPw41sfLqfQUGzZAUVEgON/REXt+cbFaQBlLsVgtFluIxZI9aT+EkXrtEB6a02ux+Et1oRTKucCPkz1IRlosGo0mOvUvP03ds//1vxfZAcUi3XHugpq4jBkDkyYlPt+8/FZXWCh2m2Uw1GKREuyGYrF5e81iMUp1LQYmCiGqhRCzpZQewCzVtQp4uiulujLSYtExFo0mOrsevQeAAT88HwBbViAO4OtoT4tMXSNzLSZL4eu4hCoWjyf8czlixlikP5HBafP0WoylJ0t1ZaTFomMsGk3iCMsDmIzUICT+EVInTDKEPbhnrqKJhXn5zaywztZwq9ERax2LlEGusP7QjyUjLRaNRpM4NvOOBkmWZ8msG7mndgfOsp5vpRCLrmRem4rF7wqLZLHYrCVdgrdJib+8jaMXLZaeJCMtFo1GkzjWB/2+9NQfKuumS89Ju/yOLjxqhyoWjzf8thocvA9dIGlxhWmLRaPRZATScqPyha/qjk6a031lBFk9neB0hY9nMGEWiy9cscTrIOl3haUueJ9WiyUjFYsO3ms0SRBssiSzY8pFSYoIStDX1oY9TYqlq8aSaeUEFEu4ws4pH2Y9U/iJUx9jSSsZ6QrTwXuNJgms96lIVkCGIiMolj0vhjdr6y26WtnGvE2ZCsYTwWJxlRT5X4epHWvwPnUxlrS6wjJSsWg0mmQIaBbp6zsxlkh38raV4V1Re4tYiuWrr6JvMxWL+TuyKyxOPxZbz6QbG23eex2tWDSavk6QK6wLFkuaSqtYLZYB514EQP6hR/ba+Zua4N//Dly+X/868rxJk2DixOjHMRVKrL5lVmUSHrzHH7x3CA8eT98viqAVi0bTxwnKpOpLFoslNdq116heP/2118KVV8K776r3f/tb5HlSxs4WS0SxWN2VsV1h6pqkrVt0itCKRaPp83TTYkkT1nL9tlxV3dcXrzBXCjFX1+/ZAw8+GH2ezxfbqDOVTkzDz6L8w1xhIcF7gC6tcw1GpxtrNJpu0NV1LOn2t1hcYcKVhXC6kJ29X+ts3jx47bXo2+NdpoQsluAMi/DNlhgLkIo4i043DkWnG2s08fHs2a1uzkGusD5ksVhcYcLpVDfXNLjyqqtjb0+JYrFaLBFqhZmtC0yLpa+nHGekK0ynG2s08dl40RlsvPisPqtYgiwWp1P5klLgylu9Gk44AT76KLH5X8RJRIt3Sc3bVCwFZN1mC3GFmdsKjj6BrOI8oO8rloy0WDQaTTJY0o37UIzFmt8rHC4QotveOZ8Pjj4adu6EESPg//6vmzKSuMUSex1MDIvFPIEQONAWi6afIKVk17x/4962Jf5kTeYR5L7vwp05XcWNQ1xhIgUWy733KqUC8S9FolnWto4mdj8evWW8GbyPqVgswpQccyx5hxyJvbA45EQ2HKmLsaQVbbFEoemjd/Hu3kXxaWenW5SYSK+Hzh3bcQ0fEX9yFDq3VVP/0gJaPl/MyLv/G38HTUYh+4srDNHthII1a7opk8FTT8GiRfDll7Xc5LqOPc9t4oYb5rDffjBkCBx7LOy/P5xxBlx4IWzfDmedBUuWwP7LbvQf575Db+LDmoNBSm65bCMti96k9LQzyB47kY4Na9hy3WwCTwYCZ+piLHYhxFzglXQsktSKJQo7/3YrQMYrlt2PP0j9i/MZef8CnIOHxd8hIsYXu6s1LTRpxuoK6zvrWKzpxsLlAlv3TaeurvX8zW/gpJMCrrOzz1Y/lZUrKb9rEwC33x6YH3qZ33hD/f73v2HtGR/7x48b+iHHDf2QjrVw7Y8XUbfjCYTtGABcI0aTe9ChDPjxxUp2m8DeT7LCtCusj9O2cgUA3ob6bhwlzVVuu4DsdCMz0F/QsXEdbd/EqP/RE3TVYkm3DrJaLA4XILptccVO+QVvSxNrz5hK/evPB122/faDI46AHTtg0/8+x71lY5fOLzujL0Cpe/Ih45X6fxMOB8N+81eyxxrL+oUNZz+JsWiLRdMnWXf2cdgHlDL64efTLUoQW35+IQDjXljUeyftbowlTchQV5it+66weBbL+280ceyLi+DF4HEzAD94MKy97OdsRv0NnbU7guY1vPUywuGk8JiTIx4/oVpt0SwzQb+JsWiLJQ14dtXQ8vknqTlYH7qRpBpv3a50i5AhdHPlfchXyLNnd/fESRSrK8xmQyC67cqL10HgJ1eURdwvWmzG3tQQ9L72vr9Rc/efY0kQR0L8dcEijTuF0ihasSSBECJPCLFUCHFKb54309jyyzlsv+1X6RYjAt9dJdWnsdxBk6lu7M/KsuzftnIFGy86g6aP3k2ZeLHO7xoxmrHPv68GbLZuPyh1NUx4wQWRx6U99i3Svb2aluWfBQYScOWJaGaVEDi+S4pFCPGIEKJGCPF1yPhJQojVQoi1Qogbo+1v4Qbg6a4Imonseekp2qq+THo/b31dD0ij6S2k10PjO68GBZ/TSherG0t/pcPA/h0b1gLQHqV8fefObdTc91ekNwVVEn0+sNsDN1pBQoqlpQVeiZDnJCUsWBB8+LA5UeKJZYOiXLdo1oXB5it+zPbfXx9zTvgxI8sghMjYlfdCiNOFEA8KIZ4SQpwQb36iFss84KSQE9mBe4GTgQpgphCiQgixrxDi1ZCfMiHE8UAVUJPUJ8pgds+7l603X5VuMb5ztK9bndbzN7z2PDX3/oXGt9PS6iIMGc//Ew0j0Bxk5ZjR7yjH2XnXn2h86xXav/k64vZkkF6vv6qvIrEYyyWXwGmnwapVweMvvQS1tYH3jz8ODzwAra2BsWg37N1PRK5CaetojzjevLgybKyt6svEgv5RXWGiV11hyRgMUsoXpZSXAJcB58Q7dkLBeynlIiHEqJDhQ4C1Usr1hjALgBlSyj8DYa4uIcQ0IA+lhNqEEK/LPrVMOPVIKaObxb1JBoiQDN7dtfEn9eT5G+vV7+amlB7X19FB+zdfkbv/lOR2DHKFJf4v5TMzmKx1rIwbfdxYRyq+t4bF4sdmIxF3bFWV+t1u3PM/+EBZMUuWhB/+ssvg00/hSKPNy+49kctEtSyupPT8S8PGB77+VMT57WtXk3/4NP97KWXiD5nRLl3vWyzzgHuAxwIi+A2G44FqYIkQ4mUppXHV+bWxPSbdyQobDliXalcDh0abLKW8GUAIMQvYFU2pCCHmAHMAHA4HlZWVXRKuubm5y/sClBu/Yx0jkTmx9nu/8r2wp5dk5S5rasIFLFv2Oe5tXTMGHXt2MwRobW1L6twFn1bSMWIMzYUDunWtkyV7/WpKjdfdOW9XvyOFmzZRCGxYv54vQ/bv6ncCoOTtF8irWs6O86/GM2BQ+ARPJy3NzWHDGzasx2x8u+bbb2nJTezcA6qryQU2bdrIV4a8eWvWUAJs27qVqgifYVBDPVnA8uXLcdfsSeg8EPlal+6qRXg6/eNDOjpo3LYt4nmt1NcfDOSxYsUSvv7ax09/GvW2A8Cjj6qfWLS1tvHFTdfgrKvFZYxVVlb6/56h7zdXV/O15f37774bNDcWn362BG/xurDxoq1bET6lLVesWElJSdceoJrVd8QhhFhqGZ4rpQwqH5CMwSCEWAXcDiyUUi6LJ0OvpxtLKefF2T4XmAuQl5cnp02b1qXzVFZW0tV9AdbepX7HOkYic2Ltd/TUqQh78J8gWbm3vPYkHTvhoIO+R/aEiqTkMHFv28LmxyA3Nyepc6+96xb45F3c1/6+W9c6WVrys9j+yhNA8tfeSle/I7s2f0P9Uhg9diwDQvbv6ncCYMvr8+kApkyuIHviZHwd7bSuWELWqLE4Bw9jwwWn4WkJVyzD8NFivB4/dizFCZ57+6fv0AKM3GsvBhr7NLibqH33FYYNGcwBEY5T/daztG/bzIEHHkhOxf4Jf7ZI13rr/15Aer1MNsY3PnkvJUOGsH8c+Z1O9fvggw8mWvuWD/72MiPPPg2nM7i3SWfNTmp+cymOQWXs/9BcfDVb2XTVeWRlD8axakXQMaZNm+b/e4a+HzVG/e3N9yMfv5tEI26HHX5YxMXMteu/ZvcSlZE3YcJkuvrVNhS1BJaR/Mr7aAbD1cBxQJEQYpyU8v5YB+mOYtkKWOuIlBtj3eY7Uzbf54NMKuCsk8ISRF2olLsxDfdT566d2AeUsmnOj8KmRDpji9Xfn0yMxRueFSaMNRbJZJd1FenzIYIqmAcWSLZ9vQLX6HHY8/KD9mlpgbUqv4DOTnC5iMjQokZGRKhy1JnlRWbX4ch24XJBp1NgF77krhtqPUvbqkDiTlIJOVFiLMKW0qywlK68l1L+C/hXovO7k268BBgvhBgthHAB5wIvd+N4fr4rZfN745+3X5LuuJS/tFPPyLHzb7dGVCqJ0LmrJuG1IOa8oPnGTa/188VdOn9S+LzBS+UNpeZtbmLrb65hx19vCdvFLDAJ6uYbrYWvXUbZ4P+byaD3npodkedHwVu3i7YvlsafGFOGsA04SJli6WoHyZQYDImmG88HFgMThRDVQojZUkoPcBXwJrAKeFpKuTJZAaKc71QhxFxvpqRz9hSZkrvQBf2W1ppUaVcsgaKBKSVK4D1r3N4JH6LhladpWJhgNQLz+xekWIybe0Pi8ZOuEslikT4f0q38W+7N68P2sSqSzk6iusLwxuntKyX1rz5L29crkpI5FUS1dG0Cpy21FksXClCmxGBISLFIKWdKKYdKKZ1SynIp5cPG+OtSyglSyrFSyj8me/IY5+tTFktX6wplzqr5CE+u8UhnFd10K5Ye8xlGPq5jYIRAvokt/H+kZcnHESZGwLSYg7pQ9eyaaV9ba+D/xRtssSg3nPUahP+dQxVLpN7wA7PqyLW3RRZABj7zrof/FWcVfQ8R9RoL7KmrFRbXYulJgyEjS7r0NYul/uWurfm09qNIK11RcGlULBmRog0pN1ii/RmEw0HBtBMjb4zwHfJFCPBHPp9psVhqdiVxbVtaAim/ELxeJBpbf/tzNlw9i9rqVprWrKNzu9XLIuK2JrYqlo0b4cuQ9cnrF7zCJyefHvG6AH69lSmPdFaEzZbyGEssi6UnDYaMVCx9zWLpMpkSY+mCYklmvUTKSbdikcH++VTh3hCtYJUDW25ewseRURb1hU80LFXr3doRnM/TWbuTzl07CeXLb7LJz4ecHKVcvvoK8vLg6TjPWB1rVnFW5QOUjchl8svv0mltLicMiyXG99H6rHnhhXD11cHb8/KMv0m04It57C58f1PWCC+GxeJMf4wlJWSkYvnOkCExli7FS9JpbaVZsQQuV9flcG/dnPB1Fw5Hcp850T+ncXMN6otiuNZsBWplzKY5P2LTJT9i7RlT1TxD5uVVuf59Wlpg+XL1OlKplVBWNkyMvEEYK+9jKG5TX1x2WfDalBtuUI25snOMBZ5RSs5I/8VJ/ju/+crzkt4nEiLaynubSGV1467GWFJCRiqWvuYK6yoZkxXWxywWT234E3Tv0r1049YVS9h81U9oev+thOaLpOMeCf49zb+79eneH4MI//tae43YROAcnZ2Bh/BufS2EQPqk5eYfjinq6afDrFnw+efQ1KSacB11FH5BZByLxbsnjfX6on5tBHbpQYi+b7FkZD8WQ8u+kpeXd0m6ZYlG8NNmFxVEP4qxrFgBK1fCiBEwerTyf+fmQlsbHHooLFsGxcXKXZKXByUlUFOjypWbXftMli1TvvOcHOX62LMHhg1TqaYTJ8KmW97BJg4i39HK4v+q8/h86lz5+XDCCep3JDo71fErKqCmJovmZtVW1m5X+zc3Q2OjKgEiBLz9NkyYoM4bdr2MG0T7t1U4hwzHXlgUdr5IuLduBqDj2yqIFjuJw9Cb/kzDmy/RGqH9QixLSErJ7v/8m8Jjf+B/OLA+3fvjLiF/X58UHHWMk48X38uPR7/AtIMtsgy1Hr8LH8ZAPcnLmNrJ1Bemx+6gg0ImWNx7nbU7qX/+CUpnX6OsPsiM4EoMiwXA6ZR0dnbbKk9rB8mMVCzdpXPnNpy123v2JKl4Ys+UrDDZBfeA5fMv+ayIX90QfeoBByjFY5Kfr54yBw9W71etgr2NjNr6evje9+Kd/O+Bl++Hb/31r+EPfwgea/16OTX/+jMv7/041/7CXFV3OIcfDosjLNm44w7l4vn979X74OeIQLqxlJLqGy7DNWoce/3jkXiCq72MagsJV0d2OMPcQnkH/x8dG9dGVCyxasd763ZR/9JTNC9+H8fAMkMOy9O9YUWHWqRun5OPFyu5n9xwBsfYNkc8fre+0gL1vfLGVyw2bzuQbTmvUXfPFMDrYfd//k3zR++Rc8DB5B96lDmzGwKmiCiNvkwXmdOZedWNk6VfusLqFjzKwFfmp1iqULr/BU1pDc5u/Ud3xRUW+Nvs/F/soKZVqYCyCqxstSQG1dVEW5iQONu2qeqzLUs+8o/t/s99eGp3UPVxcD21SEoFYOsmd1DGUc3LL4dbAkIg21Vaq3vj2qBNO++5Pei9t6WJdTNPpPXLz/2FFxMtPT/wvEv85VM8+YXYiweoDVFcqbGOKz3qjiXd7oC7y2P5P/NbLMH/ex5fcCKNzRb53N163vIXwDQOYlGm3oZ6pNfj15k7b/uFGm9WrYbXnXk0dU/Ns1gsndhyVMJD0Kr4jHiYi96PBVKmWLQrLJTuusKEw4GjqZ7Omh04y4akWDqDOPGR+pefJvfAQ3CNGOUfk1Ky7syjEz5GMnRnwWKX4iWWfVy7k1u1DDB7n5eB0wC46tIO/v4PEM4sXN98BByTvDwWHnkENr3uoKLoWwacMIaBA33seGNfBucMxbPnQ9Sar9j869/BtUJmXZ7PmKd3MmSYnSfmnsLg7EMYuLWYAxZ78W2YgdvrovmQF6ip/QUen4Ph32yn/aMaRk3I5blXc3AJGxPrL2LVsYJWWwUl4g7y1pcwaaOqvnv88fDNF79gWM4OatpK+ap+IheMfZanWq7g7AcLgKP5RLyDU26nKHckOddDdvU+rFjyW1Y1jGP/kipc9k6W7NqfIYUNlJ+jXIltbTBliionn5UFjvYsli39Ne2igANG7+TdlZdS8/4I8h6FoiJwtH2P3Jo/sLZpFCcf/xmN666lzl1EQ2dh0PWI1l033g1RZGUHvfdJ64GMki6hbriODjbMOo3CE07FM/qXANiFF+n1sOH8H/jn1S14hEFXqAZ60utV7Y4JUbRJ/J94eqhDadSYWWoVi3aFpRzD1bDp0rN7sPd4+Be06YP/sfPvv2Ove55g16P34Hh1CKPmBvIvW1dEqOttfdvR0fUWeCl4EvPs3M6elxaQPX5SUIFBb2M9nj11uIaNQDiduKs3sfnq8/3bbe4E01stPLLyNP/rb9ZlMd14O3JA4oUNY/G/HUfyvx1Hgr91i8pLPX5o174PC7cdA0+Y7wbxTcNY2AnPLwH4ReSdvrG+yePjoDYWY2AnvG5YRR9+CDAjaPcVS/cB4JPrzBEXMNIyI1Bef33zSMtrgtrpBacADwRUn6a3rIamf6H9AEA9/Nz7zkhUsdtw5i4YGHH8xRcjd2PcsWNvHn1U0rT4uqDx65b+hoHG/JYlsxHZ2WQtG0Dr5zchsrLIvwBkp6D585vgSwcNo9Rch/AqqysU09rxegMWTxcf4DbOPrNL+8UlRgdJ6B+usH6pWISj5z9WpIyuhtdVKY0a0w1ieTLxdXSEdZozTf6mD//Hzjt/B6jCPNs+eoPcAw6m8Z3XcJSWUXTSDPIOOTKOQF3752lZupjtfwwESHbP+zcAA2ddQceaVTR/9F7cY4gU+q031UW+YVl5Zuql/GjRA106fpOIffxpgz9mWd2+NHYWJHXcV74/i1Pfm9clmeJx3HEwZgzMnRt/bm+xZX0HEJ4hMbCwnUWLsgh197S3FVL14Q5gfwQ+JDYKHE18sWcyDkPXe+smgM2OrTYbb93+YLOpbT47nt37q34lPphU9C3ledsjLjD2tSnXpPRZFIu1X00muMKiyCC0YulZulvdWPTGwsoI8ZH2b74K+u0YWOrf5muNsBraJ/G2NPuViknr8k9pXf4pAO4tG2hd/ml8yytGvMbX2hJ1gV3zh/+LOG4qmExk+l0Xw4Fd27fdG/s7VTzIhX1P8lbjvv+8A1JjbIVRVKTcWpnA2SNf4Y8H/jXuvDEL3sbbVM/2P93EsF/fwefPPRW1aZb53d5y/U3Yi0sYeN4lbLluNo6Bgxj10HN46hvYeOE52PIL2evux9h44cUAyAiFwnbPM3pQWcvFdLXDZg8hsqP8MU3F4khJVphdCDGX5Mvmp4SMVCzdTje298LHSuAL6hoWKBLa2e5l/IshyuFF80VkpTEmfxMAMw9czG2WcW9DPR0b16pOg/51B2rc19GGsyyQ/9mxYQ1brpvtf59dsR+OkoHkTjmCrNHjEl5LEYtUWiyJkHvAwfEnRaG9M0qddQOXyxa3z3kksrJ77mEmk7pH2EViSrf+pQX4Otpxb1hD47sLkYms+TGyusJifhb3sLUKsWmdREJ6vX4LIDhJJr2KxTViVPT1T6nNCtMxllTTOxZL8Bc0UgBcOAM3sTXrkn8CGX/wYJZ86qFyc/Dj+fY//z/aV69kzIKAUpDSx4aLzgCfN8i66Vj3bdC+7VXKqZ+IiytR0l1hJRla4yiWrnpRs3J67jsXredIOnAkqFiaP/xfwH0rZUJfEuF00b56JR1rVHDKs7uW9tUrsZeY7kuJsGhZX3v04mQda7+hY60R5PL5WH/+KbjKRzLo0uui7pN2jEvUH1xhGZlu3F16JcYS4nry7FTrZrImVFB+x/3YCouCF54lmFpq5c4/NTOxbAceb/A/pVm4z9vYYBUo4oLLjPApZxBN7tyY27ta3LcnFUtfLJmn1uhYvrdRrMCiU8/2v3aNGIWvpZnaB+70j1XfeLn/f8fX3o6nNpAuXvfEQwnJsvux+/E1N9L+zVfseeax+DukCbOcjnKFpVmYbtIvFUtPl/4GwizqTVfMBKDw2B+QPaECm9OFtK4PiLHoKxqubDsOh6TTG/x5bHlGfn5jfQJy9qxi8fjsLK4NXf6cuTS6Yxdz9GHvkmsvK7fnHmaEyByr0JfgLcPX3obsNGMgwRaLzdIVcuDMiwLjUQJJdU88qF54OoMSTcw4ZDI0fxyw1J3lIyk8vneXecR80HMoxeLQiqVn6H6tsJ75L5Q+X6DSa5S1H7Zc44nY4QiyILpSIt/psuO0S7yGxdLw1su0rliCLVf9Y1Zffwkd61bHlKenC11+VDuFt7dP7dFzpBKvjP34f9TEjZw2JsJyfoOxBRvDxuzCg3DYOWjAV/4xp0jdneHYY+ly//NE8PngtT++k9DcQ0uXJzTPW7fL305iz7OPB20rPvVsCo45mYJpJ2LLCViQwhW8xsWkK27bQZdGSQG3MPAncyi74pdJH7unMCsypMhi0QskQ+n2AskU+g78pSKAPc/8h7oFjzLygaewWTI7Gt95LXBuw+QXNntQITyPuysWiwOHAzq9NnzuDmrv+5saHz0+bG60p7eauiwmhCYN9AD3HnIz+5Z8g134aPXkUORqBEBK9fzf1FlAiyfHf2O3C58/7bTTZ1d9xwGHzUORs4lWbw5lWbvZ1VECQJGriXp3IUNyaoE3aWmBL8+aQas3m2E5NTR7crEhyXW0sa2tjObOPGzCZ5xPkO9sptFdgMPmoTRrD02deRQ6m2nszEcISb6jlVZPDvtM2Z/jWMLlox6ksbOAQdm78UkbNuHDhg+nzcO6ppFk2ztASFo9OZRl70bYX+C/066n060W/eXYO6hpH8iArHrWNY1CAoXOJrLtbrw+Ox5pZ4+7iLEFm9jWOhi3z0Wnz47D5iXf0cqIe56ksREGDICxY9U13r0bli59nyOOOJqWFpUttn69anbl84G45WTq3YU4bZ3Utg9kcM4uvNJGc2cuEhvt3iyctk7yHa00duYDgiE5OxHiFQ6vqOWjk87AK21kFeRASwMNnQV4pR1XQS6+5ibswsuIvORLJUl3B6UvB5SLY9BgBpwzK2yep6426WObFJ5wGo1vBRodFkw7AdeoseD1IL1eds37N84hw2hZHP2hoTeIVbjUvG85HT7cOnifedgHlMafFEL76pVU33g5ox56LrhjnyXw2Lr8MwA8u3fhHFoe8TjCeAITDgetK5aw9syjGf3oS3S0J+9ecWTZcToknk7J+nOO94+bfTvyDp9Gy+JKIHqzsYWfDE76vF1h35JvGJpTS94hR+JrbaHt62oKTziVnMkHsPMff2BgVkP8g0Sg0BVI0x6YVe9/nZsLpdn+VX2UDlOKftAlN1G6ckXk62Hxgg3KVmU+rMcAyN3nQopPOweuvYABITI7y0fSWb2JiUXhLXOF3c6EuY/jqa+jc9sWhNOF445fAzC5+Nuw+YD/Jj2+cGPYtnERKssPGAAulyQ/P1Bks6IisL1+zoWIrCxq77+TITmWVeMJpiqXZe9Wvy/9FY3vvcEAI9GjdPY17Hr4X4kdJA4DfzKHgu+fFHGbZ3fiimXIjX+k/sUFtH/zFbb8QgZd8jMa310InsAdOWfvffyv9/r7wwDsvPvPNL27sIvSJ0f+kcdGTeePiGmx2CUt3a9slFb6pWKxpqNuvPgsfO1t+FqaGfvsu2Cz+58aPHW7sOUXYHNlUf/6c4DywWaNmeDfX3a6A2UozACk9EVcl5I1bm9yD1QrlYXTha9ZPbW3rfqS9l35wOikPocrx4HDKcLqNJkM/dXv/QrRiqduFw5DuXb00je04olnGTjQSO/0+Wh8+xUKjzkZ4XRRMPV4pJR4G/bQ9P7bAHRur/Zn6LR9vZyOb6vY/bhaAThw1hV499RRdOIM6l9+iqYP3iF70n54andQZpTsABg59xnqnnyIATMvCkqxzjvkSNzbqmn9fDGlF19L+8ovyD/qWHYYN/r8I4+lY8MaNp/4I/YvyMY1tBzH4GF4G+rIGqnMg7HPv8+uh/9F7v5TyDs4UH7Z19HO5qvPp2DaSTR/FNyoyjFwEI6Bg8geq7TCqEdfxJ5fiKduF5suNYLU1kKJUYi6ziEOxaedjXtrF5tRBT1JC4bf+nd2/OMP5Ezaj6yxUfqnGDgGDcFTm1hZn7zDpkZ9ai+bcx27n3yI1uWfxu2CacvLp/zP9+LZsxuHkTU2dsFbrPvh90GIsNIxAXovWDXosl/4FUvRKT+k4dVnY8ZYzKSj/hBj6ZeKxVE8AHfZMFw124Kegtb9MH4Nql2P3BP0vv6lp6ib/zCll1zrX/i48++/D3u6WrTzEL7ynkfOzUY85N0f4Gs16oJdoNwdyeLMspNdNhDPquj5+vVNdp7bdBJn7vUGqxvHsMddTP7Dd5N3+FTyDj6Shs8+Aw5L+tzJ4u/ch6qFVHRicHkSIQSO4gGUzDgndFdy9z2I3H0PouSsn4RtG3TpdVFTRJ2DBjP42psjbht2s6UI5HRVmiN0kemGykoKLcELR3FJkLyDLr427Li2rGxGzX0GgIE/no30evE1N0WUwWEUi3SWDWHss+/RVvUFufuqRIe6px6lbsGjYfu4Ro1l2G/iL0CMhi3JRS85+6hU9oL/O8a/KFa4XAini6G/UiWiO3du88/f61+P4Roxis6aHThKBuJtavA/xLR98xWO0jJ8ra3s+OstDDh7Fs5h5VRff4n/XNEsfQDn0OEM+cVv/e/NhxFH8QCkx0Pzp4twb1gLCH/JIYc/FVlZjWOffz92nxxrolqqMyJCHhqsLvlEahb6s8LsPq1YMpU9x81g8JP3dfs4dfOVCb3rwbv8Y1alkj1xMu2rV3LHyitY0zQaxxvGBt9p3S6t73RC9qCBUOxh7PPv07mtGuewcpo/epesUeMAuPqPY3h2+U1MKlrLjEpVtn3NoKn+7JcOb2q63sUjkxbx9SbCbsdeVJzQPFOpAJScPYusMRNwDBrCnmcfo3X5Z/haWxj8s9/4b9RdwVFaRsH3T6LpvTdizvHsUmm7g3/2a//YmCffoP7lp8n/v+8HzXcOHkbpRVfj3rrZX1TVvFFaZc3Ze1//65F3/9f/etwLi/jgxec46vSzkvos5sMIqKf5gv87Bv4v9sNhPGURtXtjKrDZghZzWtexmd6OmPI5TFeYViwZS+egoYx7YREdm9bhbainddknuDdvIGf/KXjr94DNRvMH7yCysvHW1+FrbvIrCZPsyQfQvnJF8IFtdn+2V/bEyZRdeQOuEaPwjvHx41MFjxsxSukT1N7/TxrfDlRTKDnnIkpnzooq86mnwuDB63nooTGA+p45nVDf5ODOOwHMlfzHgtGG49kX1Zf3mU2n+I/z0JpA9d4Pa+KvUq9f+BKvvOjm/Ad+xEknwRvR70mAatBVVhZ4/957lQgxLe55NAGEEH4X25DrVUkfb2M99sLibh978DU3Mfiam9Qxmxqx5Rck9HRuy8mNGFQHKD71R92SyVscvwZcryBE5NcpObYN8JI/9XiG/Pw3wdtsZhWAGK4wu+kKyzzFIoQYA9wMFEkpfxhvfkYqlu7WCrNi+sxz9wvvHlV6/qUJHUN6PMhOd1BqZChujy1ohbSw2Si74pfh6Ywzo59n9myora3zKxabDcaNUx0NfxknK/LxDYFKrHesvCL25BCKTprB0ZOBB+DKK1V3x/lR2tlcfz0UWiqo//znSZ1KE4NUKJWwYxYUxp/0XaIHQyzCpjIgIyvxBE5suM4cdm+vKBYhxCPAKUCNlHIfy/hJwF2AHXhISnm7lHI9MFsI8Wwix85IxZJprYmFwxF3Nb/bnVjpjXjrFSsrm4Pm3HADXHVV7P1stoDXzfraJDs7fqmSESMC5zjlFHjyydjzrfJUVsaeq9FkDj2qWYzf4eeI2oPFgs24gThtvaNYgHnAPYC/HIEQwg7cCxwPVANLhBAvSymrkjlwRiqWvkiiiqUr5MVeLK7RaBIlJPstpcRSHom4Io0K5A7p7hXFIqVcJIQYFTJ8CLDWsFAQQixANQpKSrFk5Mr7vkhPKhaNRpMierA2johhsSRSMduvWEiJYnEIIZZafhJdLDkcsOasVwPDhRADhRD3AwcKIf5f3JN3QeCMx+xu2s2krKTo6PjuZkZpNH2FlKcYWzH7NUdSIglZLGrVqz01FosElpGifixSyt3AZYnO75eKZfZsmDdvWq+fNzvamiyNRpMZ9GRWmOkKi2SwGOeKpdjMOoMOX0c6+7FsJZB+Cqqp7dZkD9IvFcvppwNsYPTo5Fa6dwe7HWbN6rXTaTSartALrrBIykMYfnKfO3olDGF3ILKycbS14/Ek3MYmGl3tILkEGC+EGI1SKOcCP0725P1SscyYAUVFm5g2rfcUi0aj+Y7jD96HawN7karqENRDKdIhcvOwG2WYPB61jq2LxLVYhBDzgWlAqRCiGvitlPJhIcRVwJuodONHpJQrYxwmIv1SsWg0Gk1Eglxh6pe1EkG3Du3KCj+HgalYZFv0rpegFIvD2w6oLpLdUCxxLRYpZcRVdVLK14HXu3xmdFaYRqP5LhHhpl/+lwdScmh7YZFxjgjbLHXoYmHLy8fuVcqnm3EWr5RyTioC912h1xSLEGKaEOIDIcT9Qtf/0Gg0aSH8rm8tZNkd/FUOIqSjJloBwZaTi92ris52U7FkfqOvZJb+xziMBJqBbFRutEaj0fQqVoMl1SV07AXKYvFaSv4PvUU15zPrgMXDlpufKsWS1kZfiVos84Cg7jyWpf8nAxXATCFEhRBiXyHEqyE/ZcAHUsqTgRuA36XuI2g0Gk2CGJol96BDyR4/yT887oVF5B16VMRdsi0Nw2JhM1xh1jYKeQceQp7RownAOWR4zGPY8/Kwe1LiCst8iyWZpf9Syj+jrJto7AGiLiU0VojOAXA4HFR2sRBVc3Nzl/dNJ31R7r4oM/RNufuizJA5chdtqaYA2JZTyLch8mSXDqcUqD/yBIo/fMs/XpNXTCKOrM27dlMENOzYzpoIn1VcdhPYbGyIcR2Kdu3G3qpamn/wwScMH96ewJmDaW5uhj7cmjjS0v9Do00WQpwJnAgUowqfRURKOReYC5CXlyenWRoxJUNlZSVd3Ted9EW5+6LM0Dfl7osyQ+bIXd+6m13LPmLilEMpCJVn2jS4+AraVn3FVoti2au8HE/W9/09jkJxjRiNe8sGxu5dwa7F75IrZJc/a33zLhyvquze733vMPbeO/ljZIIC77V0Yynl88DzicxNZdl8jUajMSk66Qycg4aQO+WIqHNyJgUalrlLB1Mw7UTsxSVRFYtzWDnuLRuQXmVpeJsauyyfa6/ROMQXALRWb4e9h8bZIypdXSCZErqTFZaSpf+RkFK+IqWcY7e09tRoNJruImw28g7+v7g1w0Y9/Dzlf3uQmvOuJGvUWOz5AWfY6MdfwzFwkP/9gHMuxFFaRv5RxwLx16rElM+VhdOmGgl2NHb9OKQ53bg7FktKlv5HQlssGo0mnTgGlKq2y1u2A6onU9a4vcmbcgT2vAJGPfQcNff9FU/tTrJGj2PUg6r/lWPwMIqnnxnr0DHJ2XsfHMKwfJzRGwtmOommG/fY0v9IZFqjL41Goxnx17lB78suD2/rOur+Bd0+T3aZWlfjEX23qm2iWWE9tvQ/Etpi0Wg031Um/2wWM2o2Mmj0yO4cJq0xloysFaYtFo1G813lwO8P5sXF3T5Mn1ggqdFoNBpNQmSkxaJdYRqNRtN3yUiLRacbazQaTd8lIxWLRqPRaLpF5tcK6220K0yj0Wi6hQ7eh6JdYRqNRtN3yUjFotFoNJq+i1YsGo1Go0kpQkqZbhmiIoTwAW1d3N0BeFIoTm/RF+XuizJD35S7L8oMWu7exAE4pZRpMxwyWrF0ByHEUinllHTLkSx9Ue6+KDP0Tbn7osyg5e5NMkFm7QrTaDQaTUrRikWj0Wg0KaU/K5a58adkJH1R7r4oM/RNufuizKDl7k3SLnO/jbFoNBqNJj30Z4tFo9FoNGlAKxaNRqPRpJR+qViEECcJIVYLIdYKIW5MtzwmQogRQoj3hBBVQoiVQohrjfFbhRBbhRArjJ/pln3+n/E5VgshTkyj7BuFEF8Z8i01xgYIId4WQqwxfpcY40II8S9D7i+FEAelQd6Jluu5QgjRKIT4WSZeayHEI0KIGiHE15axpK+tEOICY/4aIcQFaZD5r0KIbwy5XhBCFBvjo4QQbZZrfr9ln+8Z36u1xucSaZA76e9Eb99josj9lEXmjUKIFcZ4+q+3lLJf/QB2YB0wBnABXwAV6ZbLkG0ocJDxugD4FqgAbgWujzC/wpA/CxhtfC57mmTfCJSGjP0FuNF4fSNwh/F6OrAQEMBhwKcZ8J3YAYzMxGsNTAUOAr7u6rUFBgDrjd8lxuuSXpb5BMBhvL7DIvMo67yQ43xmfA5hfK6T03Ctk/pOpOMeE0nukO13ArdkyvXujxbLIcBaKeV6KaUbWADMSLNMAEgpt0splxmvm4BVwPAYu8wAFkgpO6SUG4C1qM+XKcwA/mO8/g9wumX8Man4BCgWQgxNg3wmxwLrpJSbYsxJ27WWUi4C6iLIk8y1PRF4W0pZJ6XcA7wNnNSbMksp35JSmqvUPwHKYx3DkLtQSvmJVHe9xwh8zh4hyrWORrTvRK/fY2LJbVgdZwPzYx2jN693f1Qsw4EtlvfVxL55pwUhxCjgQOBTY+gqw4XwiOn2ILM+iwTeEkJ8LoQwy3EPllJuN17vAAYbrzNJboBzCf6ny/RrDclf20yT/yLUE7HJaCHEciHE+0KIo4yx4Sg5TdIpczLfiUy71kcBO6WUayxjab3e/VGxZDxCiHzgOeBnUspG4D5gLHAAsB1l1mYaR0opDwJOBq4UQky1bjSegDIud10I4QJOA54xhvrCtQ4iU69tNIQQN6Pqaz1hDG0H9pJSHghcBzwphChMl3wR6HPfiRBmEvzglPbr3R8Vy1ZghOV9uTGWEQghnCil8oSU8nkAKeVOKaVXSukDHiTggsmYzyKl3Gr8rgFeQMm403RxGb9rjOkZIzdKES6TUu6EvnGtDZK9thkhvxBiFnAKcJ6hEDFcSbuN15+j4hMTDPms7rK0yNyF70RGXGsAIYQDOBN4yhzLhOvdHxXLEmC8EGK08bR6LvBymmUC/L7Qh4FVUsq/W8at8YczADPz42XgXCFElhBiNDAeFXzrVYQQeUKIAvM1Kkj7tSGfmX10AfCS8fpl4KdGBtNhQIPFrdPbBD3NZfq1tpDstX0TOEEIUWK4ck4wxnoNIcRJwK+A06SUrZbxQUIIu/F6DOrarjfkbhRCHGb8b/yUwOfsTbmT/U5k0j3mOOAbKaXfxZUR17snMgLS/YPKnPkWpalvTrc8FrmORLk0vgRWGD/Tgf8CXxnjLwNDLfvcbHyO1fRwxkwMucegMl++AFaa1xQYCPwPWAO8AwwwxgVwryH3V8CUNMmdB+wGiixjGXetUYpvO9CJ8nvP7sq1RcU11ho/F6ZB5rWo2IP53b7fmHuW8b1ZASwDTrUcZwrqRr4OuAejGkgvy530d6K37zGR5DbG5wGXhcxN+/XWJV00Go1Gk1L6oytMo9FoNGlEKxaNRqPRpBStWDQajUaTUrRi0Wg0Gk1K0YpFo9FoNClFKxaNRqPRpBStWDQajUaTUv4/hnv9z3DZOTQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -302,11 +420,11 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:13:28.382777Z", - "start_time": "2020-10-09T12:13:28.368511Z" + "end_time": "2020-10-11T03:33:18.651384Z", + "start_time": "2020-10-11T03:33:18.636636Z" } }, "outputs": [], @@ -328,15 +446,19 @@ " return qt.optimisation.TensorNet.QtreeTensorNet.from_qtree_gates(circuit)\n", "\n", "@ex.provider\n", - "def peo(tn):\n", - " opt = qt.optimisation.Optimizer.DefaultOptimizer()\n", + "def peo(tn, ordering_algo='greedy', tamaki_wait_time=15):\n", + " if ordering_algo=='greedy':\n", + " opt = qt.optimisation.Optimizer.DefaultOptimizer()\n", + " elif 'tamaki' in ordering_algo:\n", + " if '_' in ordering_algo:\n", + " _, time_str = ordering_algo.split('_')\n", + " tamaki_wait_time=int(time_str)\n", + " opt = qt.optimisation.Optimizer.TamakiOptimizer(wait_time=tamaki_wait_time)\n", " peo, _ = opt.optimize(tn)\n", " return tuple(peo)\n", "\n", "@ex.provider\n", "def sim_costs(tn, peo):\n", - " opt = qt.optimisation.Optimizer.DefaultOptimizer()\n", - " peo, _ = opt.optimize(tn)\n", " costs, mems = tn.simulation_cost(peo)\n", " return costs, mems\n", "\n", @@ -348,11 +470,11 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:13:30.576497Z", - "start_time": "2020-10-09T12:13:30.563939Z" + "end_time": "2020-10-11T03:33:19.218710Z", + "start_time": "2020-10-11T03:33:19.214736Z" } }, "outputs": [], @@ -371,11 +493,11 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:13:31.415936Z", - "start_time": "2020-10-09T12:13:31.412602Z" + "end_time": "2020-10-11T03:33:19.709292Z", + "start_time": "2020-10-11T03:33:19.687803Z" } }, "outputs": [], @@ -386,11 +508,11 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:14:23.221292Z", - "start_time": "2020-10-09T12:13:32.209570Z" + "end_time": "2020-10-11T03:33:34.270292Z", + "start_time": "2020-10-11T03:33:20.397957Z" }, "scrolled": false }, @@ -398,120 +520,97 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a2880f9d929c4256a869fe9aebb2b159", + "model_id": "aacd4f2ba12c42098133c49a47077d7c", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=120.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "ERROR:root:Internal Python error in the inspect module.\n", - "Below is the traceback from this internal error.\n", - "\n", - "INFO:root:\n", - "Unfortunately, your original traceback can not be constructed.\n", "\n" ] }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAEiCAYAAACY32//AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJVklEQVR4nOzdd3hb1fnA8e+rLe+ROIvsACGEDWFvAmGFDS2lQCmrpYv210En3bS0dNGyStmbMkIYIWwoSdgzjEyy4ylbsrZ0fn9cyVGMk3jIWn4/z6PH1tXV1etrW0fvPee8R4wxKKWUUkoppdRgs+U7AKWUUkoppdTQoMmHUkoppZRSKic0+VBKKaWUUkrlhCYfSimllFJKqZzQ5EMppZRSSimVE5p8KKWUUkoppXJCkw+llFJKKaVUTmjyoZRSSimllMoJTT6UUkoppZRSOaHJh1IqL0RkHxF5VUQ6RcSIyO4icqWImHzHppRSSqnB4ch3AEqpoUdEnMADQBi4HAgCn+U1KKWUUkoNOk0+lFL5MBkYD1xkjPl3eqOI5C8ipZRSSg06HXalCp6IlOc7BpV1DamvvnwGoZQqXto2KFWcNPlQ/SYip6fG6h/aw2OXpB6bnrq/q4jcKiLLRSQsIhtE5D8iUt/teVemnjdNRO4WkTbgldRjK0VkrogcJCKvpY6zXETO7XaMOhH5k4i8LyIBEekQkSdFZLdu+x2Weq0zReQXIrJWRPwi8qCIVIuIW0T+KiKNqePcIiLuHn7Wc0TkTREJiUiriNwrImOzcIp7TUScqZ9hSeq8tIjIKyIyM2OfF0TkhR6ee6uIrMy4PyF1Xv5PRC5LneOgiDwtImPF8jMRWZP6mR8Vkbo+xHor8GLq7gOp1/pcXBn7O1Kvt0xEIqm/g991/11k/H0cLSLvpM7DYhE5ta/nSinVf9o2dB2nENqG81M/y0Ei8ncRaRIRn4jcICIuEakRkdtFpC11+6PI5l3Qqbbg1dR7ZSj1M53ebZ+vpF7ngm7bf5zaflwfYn5BRD5I/W28mGp/lqZfU0QOFZFFqVg+EZGjejjGmNTf0cZUu/FhD7Fl5fes+k6HXamBeBwIAGey6cNk2lnAh8aYD1L3ZwKTgFuADcDOwMXAziKynzGm+yTjB4AlwI+BzDfCKcCDwM3AbcAFwK0i8qYx5sPUPpOAk1PHWAGMAC4BXhSRacaYdd1e6wogBFyVOv43gRiQBGqBK4H9gPNTx/tV+oki8hPg18D9wL+B4annvyQiexhjfD2duNRznUD1lh7vptUYk9zK41emfo5/A68BVcDewJ7A/F6+RndfAlzAP4A64AdYP+dzwGHAH9h0vv6E9bvojRuAtVi/278DrwMbt7L/v4HzsH7vfwb2xfpZdwJO6bbv9sB9wPVYfx9fwUpwZhlj0ufhSrJ/rpRSm2jbUDhtQ9o/sM7vL1IxX4zV83wAsArrfB4HfB/4ALg947nfBuYAd2G1CV/Ael89wRjzOIAx5haxLvRcIyLzjTGrRWSX1OvdbIx5opc/T1otMBe4F+v39TXgXhH5EvBXrPf4u1PxPigiY40xfgARGQEsBAxwLdAEHAvcLCJVxpi/dnutfv+eVT8ZY/Smt37fsP75NwL2jG0jgQTws4xt3h6e+wWsN4eDM7Zdmdp2dw/7r+xh/+FYk5b/lLHNDdi6PXdCar/MmA5LHe99wNntZ0oCT3Q7xqvAyoz744E48ONu+03HeuP6cfefodt+6dfvzW3CNo71DjB3G/u8ALzQw/Zbu/1cE1Kv2QhUZ2z/XWr7O4Cj2/mKAO4+/N2kf/bTu22/0npb6rq/W2q/m7rtd3Vq++E9/H2cmrGtClgHvNWXc6U3veltYDe0bSiUtuH81H5PAdIt5iRwXcY2O7Cabu1E998R4Eydm2e7bR8JtABPYyUpb2EVEqnq49/OC6mYv5ixbcfUtgSwb8b2o1Pbz8/Y9u/U+359t+Peg5VwebPxe9Zb/2867EoN1H1Y4/cPy9h2OtaQvvvSG4wxofT3IuIRkWFYVybAuuLc3fVbeL3FxpiXM47bBHyCdUUrvS1iUleCRMSe6r4PpPbr6bVuN8bEMu4vwrqi9p9u+y0CxopIusfw1NTPeb+IDEvfsK4uLQEO38LPkPYu1lW/3tw2bONYPqwrhdtvY7++eMAY055xf1Hq653GmHi37S5gTBZfOy3dVX9Nt+1/Tn09vtv2dcDD6TvGmA6sK3h7iMjI1GYf2T9XSqnNadtQGG1D2s0m9Qm6289yc3qDMSYBvEHGOUttz/wd1WL1yrxMt3NmjNkAXJaK62Vgd+CC1PtwXwWwej3Sx/4E6737I2PMooz90t9PSsUnwGnAY6m7med/Xir27r/r/v6eVT/pCVQD9RTQjtWV/mxq21nAO8aYT9M7iTUn4BdYV7Qauh2jp+7lFVt4vVU9bGvD6hpNv5YNq5v468BErKs5aS29OGb6A/fqHrbbUvG2YA3xEazGpCexLWwHwBjTBjyztX364OfAo8CnIvIB1u/lDmPMewM4Zl/OC2T8DrJoPNYVqKWZG40xG0TEl3o809JuDSxA+u9wAlZDPRjnSim1OW0bCqNtSOvLz7LZe7mInAD8FCuZyJzz0P29FmPMvSJyDtaFoRuNMc9236eX1vTwXt7ePV5jTHtqiko65uFADdawsou3cOzuf2f9/T2rftLkQw2IMSYiIo8Ap4jI17HG0B6INX400/1YY0uvxhr2EsD6J36KngsfhHrYBlaXa08yx/7+GGus7X+AnwGtWB9g/7qF19rSMbf1WjasN99jt7BvYAvPtw4i4sKaS9EbTamrUj0yxrwkIpOBk7C6oS8ELheRS82mUraGzc9Tmr2HbdD/8zIYPtfI9ftAvTtXSqkB0LahMNqGDH35WbrOmYgcjDXf4yWspG09VvL0FeDszz3R6k3aO3V3mojYTO/mpAwk3syY07/HO7Hm/vSk+4WmQmrrhgRNPlQ23Ic1IfhIrEnAQka3eqqb9kjgF8aYzAl5gzXs5XTgeWPMVzM3ikgN0JzF11mG9bOuyLyS1wcHAM/3ct+JWOOat8gY04o1afMWEanAaiyuxBr/CtZVwEk9PLV770Eh+QyrMdke+Ci9MTWhsIbPL0w4RUSk2xWzHVJfV6Y39OJcKaUGTtuGAmgbBug0rDkxxxhjIumNIvKVLez/T6ASaxL374Hv8Plhs4OpCfBjzTXKdu+RyhJNPlQ2PIN1BeksrAbmNWNMZtd4+upB96sF3xmkeBLdX0tEzsCak7C0x2f0z0NYb66/EJFzMj/wpsad1hljttY1mx7X2xtbHdcrIvWZr2WMCYjIUiCzrOMy4DgRGZ4aD41YJSYP5PPdy4XiCayJ7t/BqkqT9t3U18e77T8aqwLWQwAiUgWcizXUY0NqW2/OlVJq4LRtyHPbkAUJrF6crh5yEZmAVTVsM2KVwj0L+JYx5h+p9uU3IjK3n0lYnxljEiLyX+BsEZluNlVVS8fY1f6p/NHkQw2YMSYmIg9hjdktB/6v2+MdIvIS8INUCcG1WMNdJg5SSHOBn4vILVjVKXbBKhu7PJsvYoxZJiI/xWpkJqSGGPixfq5TgBuxStBu6fnZHNe7WKy1Mt7Eauz3xrrKd23GPv/B+tA+T0Ruxhr3einwIVZVqIJjjHlXRG4DLk5dnXwRmIF1NfURY0z3q4OfYpVT3Aer0s4FWMM9Mq/S9eZcKaUGSNuGgmgbBupxrHbjKRG5G6vduAwrWds1vZOINADXYfXYpN9Lv4E1uf5WETmon8Ov+uNHqdddJCI3AYuxhrHtCRxF74e0qUGiyYfKlvuwxs4brDG83Z2NVWf8MqwrT09jjYftXlc9G36H1dCdjXUV5i2syW9XZfuFjDFXicinwOVYkybB6kV4GmucbK78HZiN1XC7sYYj/RRrHHU61o/EWnTrV1jd4IuBL2Odp8NyGGtfXYj14eB8rIZ7A1aj/sse9l2CVaP9aqzSjCuAs4wx8zL22ea5UkpljbYN+W0bBsQY85yIfBXrA/1fsd5Tf4hVwGPXjF2vw3o//Uq6p8cY0yIiF2MV+Pg/4I85inmjiMzAKi5yKtZclRasC20/zEUMauvk88UElFKq+Ii1SvsHxpgT8h2LUkoppXqm63wopZRSSimlckKHXSmlsiZVOapiG7v1tjSkUkqpEpFa08W1lV0SOhl8aNDkQymVTf/HpvHNWzLYpSGVUkoVnoeAQ7fy+GdYc0lUidM5H0qprBGRSfS8lkimV4wx4VzEo5RSqjCIyF50Wz29m5Ax5n+5ikfljyYfSimllFJKqZzQCedKKaWUUkqpnNA5H1uQWoV0NNbCQEoppSyVwDozhLvNtX1QSqke9ap90ORjy0YDa/IdhFJKFaDtsFajHqq0fVBKqZ5ts33Q5GPL/ACrV6+mqqqqT0+MxWI8/fTTHH300TidzkEJrhjoedBzkKbnwVLs56Gjo4OxY8eCXvHX9mGA9DxY9DxY9DxYivk89KV90ORjG6qqqvrVuJSVlVFVVVV0fzzZpOdBz0GangeLnofSou1D/+l5sOh5sOh5sAyV86ATzpVSSimllFI5ocmHUkoppZRSKic0+VBKKaWUUkrlhM75UEqpPkgkEsRisX49NxaL4XA4CIfDJBKJLEc2cE6nE7vdnu8wlFKqaGkbsW2afCilVC8YY9iwYQM+n29Axxg5ciSrV6/GWiqi8NTU1DBy5MiCjU8ppQqRthG9p8lHCTLGMLctxP6VboY59SqmUtmQblQaGhooKyvr1xtvMpkkEAhQUVGBzVZYo16NMQSDQRobGwEYNWpUniNSg+WjYAxfIsn+le58h6JUydA2ovc0+ShB97cEOXtJMyfXefnvjg35DkepopdIJLoalfr6+n4fJ5lMEo1G8Xg8BdewAHi9XgAaGxtpaGjQIVglKGEMMxdvpCme4MPdRjPFW7rlPJXKFW0j+qbwfjI1YM+1hwF4qi1MKJHMczRKFb/0+N2ysrI8RzL40j9jf8csq8K2OBhjfSxB3MAjrcF8h6NUSdA2om80+ShBiwIRAMLG8JI/kudolCodhToGN5uGws84lC0IbGoT5rSF8hiJUqVnKLx/ZuNn1OSjxPgTST4IbspGn9LGRSmlVMrCjAtSr/ojNMYKr6KOUqq0afJRYl4LRDAZ95/yafKhlFLKsiCVfLgEDDBXL1AppXJMk48Ss8gfBWBWjQeHwKfhOMvDOnZbqaHquuuuY9ddd6Wqqoqqqir2339/nnzyyXyHpfKgOZbg03AcgEtHVAIwR+d9KDVk5at90OSjxCxMjec9usbLgakyivN84XyGpJTKo+22246rrrqKN998kzfeeIMjjjiCk046iQ8//DDfoakcS7cPO3mdnNdQAcAz7WGCWphEqSEpX+2DJh8lxBjDolSX+n4Vbo6psUqiPalDr5Qask488USOO+44tt9+e3bYYQd++9vfUlFRwcKFC/MdmsqxhV3tg4vdypyMc9kJJQ3PtOsFKqWGony1D7rORwlZFo7THE/iEti93IXHJvx4lY/n28OEkwaPrfSrMCiVK8YYTKRvH9qSySQmEiYZdsIAariL29OviiOJRIIHHniAzs5O9t9//36/vipO6fke+1W6ERFOrCvjnxv8zGkNMruu9EuEKpUr/WkfIDttRDG0D5p8lJB0l/qe5S7cNmHXMiejnHbWxxK80hHmqFRPiFJq4EwkzPIvHtOv57YM8LUn3TMP8fT+//n9999n//33JxwOU1FRwcMPP8y0adMGGIUqJnFjeC1gzQk8IDUkd3atl39u8DO3LUTCGOxDoEyoUrkwkPYBBtZGFEP7oMOuSkh6svl+qYZFRDimxgNo1SulhrIdd9yRd955h0WLFvG1r32N8847j8WLF+c7LJVD73VGCSYNNXYbU1Ormh9a5aHaLjTFk5uV4FVKDR35aB+056OEpHs+9q1wd22bVevl1qZOnvKF+VO+AlOqBInbw6R75vXpOclkEr/fT2VlJbYBDrvqC5fLxZQpUwDYa6+9eP311/nb3/7GDTfc0O8YVHFZmOr12LfShS3Vw+G0CcfWeLm3JcicthAHVvXt70op1bP+tA+QnTaiGNoHTT5KRDCR5N3OzXs+AGZWe7EDH4VifBaJM96tv3KlskFE+tS1DUAyiURj2DzeASUfA5VMJolE9Er3UPKq3xp/vn/GxSmA2XVlVvLRGuQP42vzEZpSJadf7QMURBuRi/ZBP4mWiDc7oySAUU47Y132ru01Dhv7Vbr5nz/CU74Ql6RquyulhoYrrriCY489lnHjxuH3+7n77rt54YUXmDev71flVPFamBqWu3/l5snHsTVenKk1oT4OxbqGZCmlSl++2gdNPkrEom5VTDLNqvFayUebJh9KDTWNjY2ce+65rF+/nurqanbddVfmzZvHzJkz8x2aypEN0QQrInEEmNGt56PKYeOwKg/z28PMaQ0ydUx1foJUSuVcvtoHTT5KxILApvrt3c2q8fCz1fBce5ho0uDSkrtKDRk333xzvkNQeZYusbtLmZMqx+eHcpxUV5ZKPkL8QJMPpYaMfLUPWu2qBBhjurrU9+3WpQ7Wmh8jnDYCScP/tKKJUkoNKZnre/TkxFprbPrCQISN0UTO4lJKDU2afJSA1dEEG2IJHAJ7lX++58MmwtGpNT605K5SSg0t6UqI3ed7pG3ndrBXuQsDzG0L5jAypdRQpMlHCUhf1dqtzEWZvedf6axU8jFPkw+llBoyoknDG+nko6Ln5ANgdp3VRsxp0zZCKTW4NPkoAYt6WN+ju5nVHmzA+8EYayLxHEWmlFIqn97ujBIxMMxhY4pny9M8Z9eWAfCML0xnIpmr8JRSQ5AmHyUgXelq38rPD7lKq3famZGajK5Dr5RSamhYsJVKiJl2KXMy3m0nbAzz28O5Ck8pNQRp8lHkIknDW50912/vblbXvA9tWJRSaihIV0I8YBvtg4h09X7MadV5H0qpwaPJR5F7uzNKNNWlPmkbq5fPSlU0ebY9RCxpchGeUkqpPOrq+djKsNy09LyPx9tCJIy2EUqpwaHJR5Hrmu+xjS51sCphDXPY6EiYrqthSimlStPqSJy10QR2YJ8e1oDq7uBKDzV2G83xJK9qWXal1CDR5KPILezDVa3NSu5qRROllCpp6QRi9/ItV0LM5LQJx6V6yOe0ahuhlBocmnwUua7kYyuTzTPNqvEAWnJXKaVKXbp92NZ8wEybSu4GMTr0Sik1CDT5KGLronFWRRMIsE8vej4Ajq7xIsA7wRjro1pyV6mh5KqrrkJE+M53vpPvUFQObGtl857MqvHiElgajvNRKDZYoSmlClCu2ghNPorYIr9V5Wp6mZPKXnSpAwx32tm7PF1yV6teKTVUvP7669xwww3suuuu+Q5F5UAokeTtYKoSYi8vTgFU2m0cXm31kD+mw3OVGjJy2UZo8lHE0pPNezPfI1O66pUOvVJqaAgEAnzpS1/ipptuora2Nt/hqBx4ozNK3MAop53xbnufnqsld5UaWnLdRpRE8iEiD4tIm4g82G37CSLyiYgsEZEL8xXfYFno31Tpqi+OSU06n+8LE9cxvUr1izGGzkSy77dkP5+XcevrWPzLLruM448/nqOOOmqQzoYqNAt7ubhgT9LzPhYFomyIJrIem1Klrt/tQxbaiP7M1cp1G7H1hSGKx9+A/wDnpTeIiAO4BjgcaAfeFJGHjTEt+Qkxu2JJwxupxQX72vMxo8JFncNGazzJIn+EA6s8gxGiUiUtmDRUvba6n8/uGNBrd8wYS7m9dx8o7733Xt566y1ef/31Ab2mKi7pSlfbWlywJ6NdDvYpd/F6Z5TH2oJcNKIy2+EpVdIG1j7AQNqIvrQPkJ82oiR6PowxLwD+bptnAB8aY9YaYwLAk8DRuY5tsLwfjBJKGmrsNnb09i2HtIswszpd9UrnfShVqlavXs23v/1t7rrrLjwevcgwVBhjWBjoWyXE7mbXpYde6fBcpUpVvtqIvPd8iMghwPeBvYBRwCnGmEe67XNZap+RwLvAN40xr23j0KOBtRn31wJjshR23i0MWL0eMypc2PrYpQ7W0Kv7WoI85Qvxq3E1WY5OqdJXZhM6Zozt03OSySQdfj9VlZXYbP2/9lNm693//JtvvkljYyN77rln17ZEIsFLL73EtddeSyQSwW7v23wAVfhWROI0xpK4BPYs73vPB8CJtV5+ttrHs+0hAokkFb0saqKU6l/7ANlpI3rbPkD+2oi8Jx9AOVZC8R/goe4PishZWMOnLgUWAd8B5onIjsaYxhzGWVAW9qOEYqZZqXkfb3ZG2RhNMMKlH0CU6gsR6VPXNkBSIGETyu22ASUfvXXkkUfy/vvvb7btK1/5ClOnTuWHP/yhJh4lKj3kas9yF54+fBDJNL3MyUS3gxWROE/7wpxaX5bNEJUqaf1pH2DotBF5Tz6MMU9iDYna0qS47wI3GWNuSe1zKXA8cAFw1VYOvY7NezrGAFvsLRERN5D5Sb4SIBaLEYv1rdZ5ev++Pq8vFvqt4VJ7e+39ep06gT3KnLwdjPFka4AvDULDkovzUOj0HFiK/TzEYjGMMSSTSZLJZL+Pk54ImD7WYCsvL2fatGmf21ZXV8e0adN6jCGZtCYsxmKxzzU8xfr7G2r6s7hgdyLC7Dovf1vvZ05bUJMPpUpQZWUl06dP32xbeXk59fX1n9ueTXlPPrZGRFxYw7F+n95mjEmKyDPA/tt4+mvAdBEZgzXh/Fjg11vZ/wrgF903Pv3005SV9e9Nd/78+f163rZ0iJ1lw3cBwPfqizxh+leNZFL5SN4uH8mtH62gtuOzbIa4mcE6D8VEz4GlWM+Dw+Fg5MiRBAIBotHogI/n93efopY78XicaDRKR0fPExqj0SihUIiXXnqJeHzzhUiDweIrvSoiDwOHAc8aY07P2H4C8GesuY9/MMb8Oz8RZl9/FhfsyezaMv623s/jbSHixuDoxxBfpZTqrqCTD2AYYAc2dtu+EZiavpNKRnYDykVkDXCGMWaBiHwPeB6rcfnjNipd/R5reFdaJbDm6KOPpqqqqk9Bx2Ix5s+fz8yZM3E6nX16bm884QvD0lZ29Dg489hj+n2can+E/37SwofldRxz4DTsWW5YBvs8FAM9B5ZiPw/hcJjVq1dTUVExoEl5xhj8fj+VlZV9Ln+aLS+99NJWHw+Hw3i9Xg455JDP/axbSlgK3JCqhhhIJHkvaPVQ9afSVaaDqtxdlRH/1xHh0GotWqBUqXvhhRcG/TUKPfnoFWNMj4WJjTFzgDm9PEYEiKTvpz8YOJ3Ofn9YGshzt+aNUACwrmoN5PgH1TqosbfRmkjyTsT0uyrKtgzWeSgmeg4sxXoeEokEIoLNNrBxuOlhTuljFSKbzYaI9Pi7KsbfnTHmBRE5rNvmrmqIACKSroZ4T26jy77XAhGSwDiXndGugTXxDhGOq/FyZ3Mnc9qCmnwopbKiMFu/TZqBBDCi2/YRwIbch1MYFqUqXfV1ccHuHCIcVZMuuavlFJVShUVEDhGRx0RknYgYETm5h30uE5GVIhIWkUUiMqMXhy7ZaogL/Vb7MJD5HpnSCw4+1hrq1+JlSinVXUEnH8aYKPAmcGR6m4jYUvcX5CuufEoYw2up+u3793FxwZ6kVzt/SpMPpVThSVdDvKynBzOqIf4S2DO17zwRachZhAXm1SxMNs90TI0Xt8CySJzFIS04oJQauLwPuxKRCmBKxqaJIrI70GqMWYXVsNwmIm9gTSL/DlaDdEuOQy0Ii4Mx/AlDuU3YuWzgQyBmpXo+Xg9EaYolGO7U0ptKqcKg1RD7JmkMi1KVEPfpZyXE7tzA4VVunmqP8HBzgB1GZWe182KvgJcteh4sxX4eirUiYn9sqSJiX353eU8+gL2xJoWnpSd93wacb4y5T0SGA7/CWmTwHWCWMab7JPQhIb1q7YwKV1YmiI92OditzMm7wRjzfWHOHl4+4GMqpdRg02qIn7fG7qa1fidcJsnaF5/5XKWW/prgqYeqsdy5cgO7vP1ylo5qKdYKeNmm58FSrOehlCoibsuWKiL2pRpi3pMPY8wLwFY/RRtjrgWuzUlABW5RlkooZjqmxsu7wRhP+UKafCi1FYV6JSqbiuhn1GqI3dzWHISVPmZUepi9z3FZO+4e0QTXv7eRJc5ydj/qGEZnYVHaYq+Aly16HizFfh4ikQirVq2irKys3xckoDAqIm5LMBjE6/Vy6KGH4nZv+izal2qIeU8+VN8sTE82z8J8j7RZNV7+uK6Dp30hksZgK9A/eKXyxeVyYbPZWLduHcOHD8flcvWrYUgmk0SjUcLhcMFVuzLGEI1GaWpqwmaz4XINTvW7XBtK1RBfC1pXIQ+o8mT12OOcTvatcLEoEOWpQIxLRmSv6lWxVsDLNj0PlmI9D3a7HbvdzoYNG7LSRkQikYJuI+x2O2VlZZvF2JffmyYfRcQXT/JRasLfQCtdZTqg0k2lXWiKJ3mrM8reWUxslCoFNpuNiRMnsn79etatW9fv4xhjCIVCeL3egr2qVVZWxrhx4wqu4euBVkPsZuEg9IynnVhbxqJAlDmtQS4ZkZ15H0qVCm0j+kaTjyKSrnI1ye2gIYsTw5024chqD4+0hnjKF9LkQ6keuFwuxo0bRzweJ5FI9OsYsViMl156iUMOOaQgr+7Z7XYcDkfBNnqZjDFREUlXQ3wENquGOOSG6friST5MXZzKVqWrTLPrvPx0tY/n2sP4E0kq7QWfnCqVU9pG9J4mH0VkMOZ7pM2q8VrJR1uYn26X9cMrVRK2tPheb9ntduLxOB5PdofFlCqthth7i1IXpyZn+eJU2jSvk8luB8siceb5Qpxer/MDlepO24je0UsXRWRBqnHZryL7Y7Fnpdb7WBSI0BrrX8aulFJZtjfwduoGVrLxNlb1Q4wx9wH/l7r/DrA7Q7Qa4oIsr+/RnYh0LTg4p1XXhVJK9Z8mH0UiaQyv+bOzsnlPxrod7Ox1kgTmt4ezfnyllOorY8wLxhjp4XZ+xj7XGmPGG2Pcxph9jTGL8hhy3iwYxJ7xtNl1VhWfJ9pCxHW1c6VUP2nyUSSWhOO0JZJ4RNitbHCq0MzS1c6VUqroJIzpGnZ1wCAmHwdUuql32GhLJHmlI7LtJyilVA80+SgS6atae1e4cNoGZzLorFqrfOK8VMldpZRShW9xMIY/YaiwCdPLBm+cuEOE42tTQ6/aer+gmFJKZdLko0ikr2plc32P7g6s9FBuEzbGkrwbjA3a6yillMqeV9PtQ6Ub+yBXKptdaw29mtMawuhFKqVUP2jyUSTSla72rRy8hb/cNuGIaqv346k2HXqllFLFoGt9jxyUST+6xoNHhBWROB/oRSqlVD9o8lEEAokk7wcHr357Jp33oZRSxWWwK11lKrfbOLLGukilQ6+UUv2hyUcReD0QJQmMddkZ7RrcpVnSyccCfwRfPDmor6WUUmpgmmMJloTjAOw3iD3jmWbXasldpVT/afJRBBZljOcdbBM8DqZ6HSSAZ9q1YVFKqUKW7vXYyeuk1pH9xQV7cmJtGQK80RllbSSek9dUSpUOTT6KQC7H80LG0Cud96GUUgVt4SAuPrslI1z2rvZojrYTSqk+0uSjwBljNiUfOej5ADgmlXzM84W1molSShWwXM73yHRi12rnOu9DKdU3mnwUuBWROE3xJE6BPcpzc2XrkCoPZTZhXSzRNdFdKaVUYYkbw+uBKJD75CNdcvf5jjAdOj9QKdUHmnwUuIV+q2HZo9yFZ5AWF+zOYxMOq0qV3NWqV0opVZDe64wSTBpq7DamegdvccGeTPU62N7jIGZgns4PVEr1QdaSDxGpydax1CaLArmd75E2q2bTaudKKaUKz4KM9Z9sg7y4YHcistmCg0op1Vv9Sj5E5IciclbG/fuBFhFZKyK7ZS061TXfIxeVrjLNSpVSfMUf0S51pVSfiOUMEfmXiDwoIg9l3vIdX6lYkLo4dUCO24e02al5H0+0hYgldX6gUqp3+tvzcSmwGkBEZgIzgWOBJ4GrsxOaCiWSvBO0hl3luudjssfJ9h4HcQPPtodz+tpKqaL3V+AOYCIQANq73VQWLMhxJcTu9q90M9xhw5dI8rJf2wmlVO/0d8W6kaSSD+AE4H5jzNMishJYlI3AFLzVGSVuYITTxnh3buq3Z5pV42XJBj/zfCFOqS/L+esrpYrWl4FTjTFP5DuQUrU+GmdlJIEAM/KUfNhFOL7Wy61NncxpDXFEtTcvcSilikt/ez7agLGp72cBz6S+FyD3n5JL1KLApl4PyfF4XthUcvcpX0hL7iql+qIdWJ7vIErZglQxkl3KnFQ58lc7ZnZdat5HW1DbCaVUr/T3Hesh4G4RmQ/UYw23AtgDWJqNwFRGl3qexvMeVuXGI8LqaILFIS25q5TqtSuBX4iIXgofJLle/2lLZlZ78NqEzyIJ3tPS7EqpXuhv8nE5cC2wGJhpjAmkto8C/pWNwNSmSlf75qlL3Wu3cWi19dpaclcp1Qf3A7VAo4i8LyJvZd7yHVwpSE82z/X6Ht2V2W0cVW1VR9QFB5VSvdGvOR/GmBjwpx62/2XAESkA1kTirI0msAN7V+RmccGezKrxMs8XZp4vzPdGV+ctDqVUUbkN2Au4E9gI6HicLIokDW+mk488XZzKNLuujMfaQsxpC/GzsTX5DkcpVeD6O+EcEdkR+CawU2rTR8A/jDGfZCOwoS59VWvXchfl9vyN551V4+Vy2ni5I0wgkaQij7EopYrG8cAxxphX8h1IKXq7M0rEwDCHjSmefjfjWXNCrRfBKpKyOhJnrDv/MSmlCld/1/k4DfgA68rWu6nbnsAHqcfUAC1Kr++Rx14PgO09Dia5HUQNPKcld5VSvbMa6Mh3EKUqc75HPoqRdNfgtHcN/5rbpkN0lVJb19/L2H8Efm+M2d8Y893U7QDgd6nH1AClK13lenHB7kSEY3S1c6VU33wP+KOITMh3IKXoVX9+FxfsyezUwrSP6rwPpdQ29Df5GAXc3sP2O1OPqQGIFth43vRq51pyVynVS3cChwPLRMQvIq2Zt3wHV8yMMXlfXLAn6ZK7L3SEaY8n8xyNUqqQ9Xdg5gvAwXy+rO5BwMsDCUjBO6nxvHUFMp738CoPLoGVkQSfhONM9TrzHZJSqrB9J98BlKrV0QTrYlYxkn3yPCw3045eJzt6HHwSjvOUL8RZw8rzHZJSRcUXT/KLVe00OCs4Lt/BDLL+frKdA/xBRPYCFqa27QecgVXbfXZ6R2PMnIGFOPRkltgthPG85XYbB1d5eLY9zDxfSJMPpdRWGWNuy3cMpSrd67F7uYuyAisAMruujKvXdTCnNajJh1J99O0VrdzZ3MmIqrF8v8RHmfT3netfwDDg61jDr25PfT889dgjqdvDA45wCEpPJty/snCuah2bWu38SZ1MqJTqBRGZLCK/EZF7RKQhte1YEdk537EVswX+wljfoyez61LthC9ELFnaH56UyqYn2kLc2dwJwEa7m/+l5v2Wqn4lH8YYWy9v9mwHPBQszPPigj2ZlUo+XuoIE0zoeF6l1JaJyKHA+8C+wKlAReqh3YBf5iuuUlAoK5v3ZN8KNw1OG+0Jw4sdWh1Rqd7oiCf5+vIWAKrs1miXO1pK+0JvYfXZKjZEE6yMJBBgnwJKPqZ6HYxz2YkYeKEjku9wlCpK/kSSFQ5PvsPIhauAnxpjZgKZl/Cewxqiq/ohlEjydtA6nYVU6SrNLsIJtdbE8znaS65Ur1yxqo3V0QST3A7umlQLwEOtITpL+EJvv5MPETlURB4TkaWp2xwROTibwQ1F6fke07xOqh2FkxuKyGZVr5RSfWOM4eQlrXyvbirzS3/NnF3oedhtI9aQXdUPb3RGiRsY5bQzzlWYAwvSJXfntAa1OuI2GGO4uyXIO86Kbe+sStKL7WGu3xgA4MbJ9RxV5WZEIoI/aXi4hMtW93eRwXOAZ4Ag8PfULQQ8KyJnZy+8oWdRAXepp4dePaVXtJTqs4dbQ13jeP+xsTPP0Qw6Hz2XXd8DWJvbUEpH5nyPQihG0pOjqj2U2YTV0QTvBGP5Dqeg/WFdBxes8PGbmsm80VnaY/zV5wUTSS5ODbe6qKGCw6s9iAiHh6xq5Lc3lW470d9L6z8BfmCMOcsY8/fU7SzgR8DPshfe0LNpvkfhTDZPO6Lag1NgWSTO0pA2Kkr1Vixp+Mmqtq77T3dEWBYu6f+he7EqIo4EDGATkQOBP9HzGlGqFwp5snma125jZrU1tHBOCV+5HagHWjr5ySofAEkRLlnpI6qT9IeUX65pZ2k4zhiXnT+Mr+3afljYaiueaw+zKhLPV3iDqr/JxyTgsR62zwEm9j+coS1uDK+nrowWYs9Hpd3GQam4dOiVUr33n6YAn4bjDHPYmBZNdbGnutpL1I+Bj4HVWJPNFwMvAa8Cv8ljXEVrs8UFC6gSYk/SCw4+pr3kPVrkj3D+EuuK9/nDyqhKxvgwFOf3a9vzHJnKldcDEa5Z1wHAvybVbTbMviEZ5ZBKFwa4s0R7P/qbfKwGjuxh+1Gpx1Q/fBCMEUwaquzCTgW6lkZ66NWTmnwo1SudiSS/Wm19qPjxqApOCjYC8J/GAKESnVBojIkaYy4CJgMnAOcAU40xXzbGJPIbXXFaHonTFE/iEtizvPAuTmU6vtaLDXi7M1qyV277a2U4zsmfNBI2huNrvfxzfDUX+a2RiL9b2857Ovyq5EWThouWtZAEvjisrKtIQ6Zz6q1ttzcFSnLuVH+Tjz8DfxeR60Tky6nb9cBfsbrVVT+kr2rNqHBjK9DxvMekko8X2iMl+8FJqWz66/oONsSsSiYXDi9nz2gHY112WuNJHijxYSnGmFXGmCeMMfcbY5bkO55i9mqqfdiz3IXHVpjtQ9pwp72rGtdjJf433hft8SSzP26kMZZk9zInd28/DLsIB0R8nFTjIW7gwmUtxEvww6ba5Kq17bwfjDHMYeOvE+p63OfUWg/lNmFJOM6CQOlVGO3vOh/XAV/Aqmjy19RtOnCWMeaGbAU31KQrXe1XQCV2u5te5mSMy07YGF7yl94/hFLZ1BRLcHWqa/3X42pw2QQ7cOFw66rWDRv8eYxu8IjlDBH5l4g8KCIPZd7yHV8xWlgE8z0ypRccfFSHXgHWsOqzPm3iw1CMUU47j05toCK1Qr0Afx1XTY3dxpud0a7hOKr0fBCM8rvU8Lq/TaxjmLPnqnUVdhunpns/Gktv6FW/a7kaYx42xhxkjKlP3Q4yxjyazeCGmnSlq30LuHEREa16pVQv/XZNO/6EYa9yF2fWb+paP39YGU6BhYEob5XgVS2sC1J3YM0BDADt3W6qjxYUcCXEnsxODSV5sSOMLz60e8mNMXxrRSvz28OU2YRHpw5nO7djs31GuexcM8GadHzlah8fa1GXkpMw1nCrmIETa72cVf/54VaZzhtulWC+r6Wz5EaaFM5CEkNcSyzBp2FrbGwhVrrK1JV86LwPpbZoeTjG9Rutno3fj6/ZbCjlCKedU1OTcq8vzYnnXwZONcYca4w53xjzlcxbvoMrNv5EkvdTZWsLcXHBnmzvdbKT10nc6BzBv633c8PGAALcuf0w9trC6IZzh5dzTI2HiIELl7aQ0OFXJeVv6/28FohSbRf+Nalum+WyD61yM95tpyNhSq4HsdfJh4i0iUhrb26DGXCpWpSqcrWDx0H9FrrhCsWR1R4cAp+G4ywv7XKhSvXbz1b5iBmYWe3hyGrv5x7/2shKAO5p7izFK8PtwPJ8B1EqXgtESALjXHZGuxzb3L9QZC44OFTNaQ3yf59ZpVOvHl/LSXVbvtotIlw/qZ5Ku7AgEOGfJToscyhaGorxs1Rp5avH1/bq/9gmwpeHWb0ftzWW1kWqvvR8fAe4vJc31UfFMOQqrdph44DUlZt5vpJfqVmpPnsrEOHeFusD11UZ9dszHVTpZrrXSTBpuKOptBoW4ErgFyLy+axL9VmxzfdIS5fcfcoXGpJrWLwViPClJc0Y4OIRFXxnVOU2nzPO7eCqcdZ7xk9W+fQCXwlIGsPFy1sIG8OR1R4uaOj9ivbnNpQD8Ex7mLUlVDmuL8nHbsCDxpjbgBXAXcaY23q6DU6opW1hEUw2zzSrVkvu9saiQJQbK8awLFw6bxpq236UusJ19rBydi/veRiliHBpqvfj+o3+UiuneD9QCzSKyPsi8lbmLd/BFZsFfqtnvNiSjxkVLkY6rWEjL3QMrQtVayNxTvq4iWDScFS1h79P2PYwm7SLR1RwWJWbYNJw8bKWUntvGHJuagzwYkeEMptwQy+GW2Wa7HFyUKWbJHBXc+lMPO9L8vFNrMWiAJ4Heq4PpvosaQyvBYprMmG65O7z7WEiQ/CK1rYkjeHqte0c8XEzT5UN58xlrXqehoj5vhDPtodxCfx6bM1W9/3SsHIqbMLHoTgvdJTUxPPbgL2AO4H/Ao92u6leShpTtD0fNhFOGIJDrwKJJCd90sS6WIJpXif37zAcZx/KI9tEuHFyPV6b8HxHhJtKbMjNULI6EueHqWF3vx1Xw0RP39dwO3e41ftxWwmt+dGX5GMl8C0RORSrMtz+InJIT7dBibQfRORyEflQRBaLyN+lL+lmDn0UitGRMJTZhOllhbm4YHe7lTkZ5bQTTBpeHmJXtLalKZbghI8b+dEqHwnAYZJ8GIrz6zW+fIemBlnSGK5I9Xp8bWQlEzxbH9db5bBxTqphua60xncfD5xijPmaMeZKY8wvM2/5Dg6Kp334NBynLZHEaxN2KyvsYiQ9SZfcfawtVDIfnLYmYQxfWtLM251RGpw2HpvasNnq1b012ePkt+NqAPjBZ22sLqEhN0OFMYavLW/FnzDsX+HmspHbHnbXkzPqy/GmLlK9HiiNRSj78h/xfeCrWL0eBngYeKGH2/PZC6//RGQ48A2sq2+7pL7ul9egtiB9VWufCheOwmz/PkdEOKbGA2jVq0wvtofZ8931zPOF8Yjwr/HVXN7xGQB/XNvB66VZVlWl3Nsc5O3OKFV24cdjqnv1nEtHWA3SI61B1kVL5gPGaqBgFysopvYhvbjgPuWuPl09LxRHVnsptwlrogneHgKrd//gszbmtoVwCzy8Y8M2L0BszTdGVrJ/hRt/wvoQOxSSt1Jyd3MnT/pCuARumlyPvZ+f76ocNk5JzZ+6rUTmB/Y6+TDGPGKMGQlUYfV87Ig1prf7rZCGYzkAD+BM3RrzG07P0pWuimW+R1p66JVOOreudv16tY+jFm9kXSzBTl4nC3cZyQXDy9k/0s6ZdV4SwAVLWwjr8KuSFEkafrba6l7/wejqLS4e1d0u5S4OqnSTAG4unbK73wP+KCIT8h3IVhRF+7CwyNb36M5jE45OtRVzSqxcaHfXbfDz1/VWD+YtU4YN+HdmF+GmyfW4xJpfeWcJjfkvdY2xBJevtNqDn21Xw04DHNWSHnp1X3OwJD5D9Lkv0BgTAA4HVhhj2nu6pfcVkR+JSE1/AksN4XpMRNaJiBGRk3vY5zIRWSkiYRFZJCIzMuJsAv4ErALWAc8YY5b1J5bBtrCIKl1lmlnjwQYsDsVYNYS7hNdH4xyzeCNXrmknCZw/vJxFu4xkl4yJxn8ZV80Ip43FoRi/XO3LW6xq8Nyw0c/KSIJRTjvf7kVVm0zpiec3bgwQK4GGBWuux+HAMhHxZ7sc+1BqHxYU6XyPTCcOgXkf83whvr3C+tP+9dgazhpWnpXj7lTm5BepuWOXr2hjQzSRleOqwfWtFa20xJPsXubk+6OrBny8I6o9bOey05ZI8lhb8f8f9WuRQWPMi8aY3nza/DH97wkpB94FLuvpQRE5C7gG+CWwZ2rfeSLSkHq8FjgBmACMAQ4opPkoae3xJItTK5nuW2Q9H7UOe1eDOFSrXj3tC7HHu+t5viNCuU24bUo9N08ZRrl983+teoeN6ybVA/CndR1dCacqDe3xJL9ZY113+cXYasrsfXtrPbWujOEOG+tiCR4rjavD3wEuBi7AGt6U7XLsQ6J98GW0D8Xa8wFwfK0XG/BuMMbKEqz890EwylmfNpHAukJ9xZiBf9jM9L1RVexZ7qItkeQbK3QptUL3SGuQB1qC2LGGW2VjuKRdpGt+4O2Nxd8DNtirFfX7jBtjngSeBLZUluy7wE3GmFtS+1yKNcnxAuAq4ChgqTGmNfX441hjel/qMVARN5D57l4JEIvFiMX6Vmc7vX9vnregI4IBxrvs1EuSWKy4Fhs7qtLF//wRnmwNckGdZ7PH+nIeik3cGH651s/VG6xhMrt6Hdw5uY4dPI7Nft7Mc3BcpZOz673c3RLiK0ubWTRtON4iHMPdH6X8twDwh7UdtMST7OhxcE6te4s/55bOgw04f1gZV28IcN36dk6sKszCE739/fW25LqI/Ai43hjj60scQ6V9+F+7NaR1sttOLcXXPqRVAwdUuHglEOWRZj+XjagomfeEDbEEJ3zUjD9hOLjCxbVjq4jHe59g9fY8XD++mgM+auLh1iD3bezg1LrSWkKnVP4e2uJJLlveAsDlIyvYxW3r08+0tfNwdq2Hq9Z2MM8XYnUwzMgCW5C6Lz+nDOYEJhHxA7sZYwa00q2IGKzKKY+k7ruAIHB6eltq+21AjTHmJBHZD7gO2B+IAXOAG40xPZZ5FJErgV9033733XdTVrblFUkH6oGyEdxTMYqDw21dE5OLyTKHl+/X7YgnmeC25g9wUhJDRraq2ebkmqrxfOyyKk/PCjZxfmAdrl787AGx8+26qbTZncwONnJ+YN1gh6sGWavNwdfrpxEVGz/0rWDfaPu2n9SDRpuTr9VPw4jwj5aPGJMovN6xYDDI2WefDVBtjBnwhHIR6QB2H0gbUcrtw73lI7m/fCSHhlr5tn/VoL1OLszxDufWyjHsEvXzS19BjnDrswjCz2unsMRZzqh4mKvallBpBm9Y1D3lI3mgfCTVyRh/a/mYqkF8LdU//6wcy7PeesbEw/y59ZNefS7oiytqt+cTZznn+ddyUqgpq8ceqL60D4Pd8zFYhgF2YGO37RuBqQDGmIUi8gTwNpAEnsVqYLbk91jd9GmVwJqjjz6aqqq+daHGYjHmz5/PzJkzcTq3fgXzxiUt0B7h5O3Hc9yInfv0OoUgaQxXv7uRxjhUH3QEh1VtujjYl/NQLB73hfnRijZaE4Yqu3D9+BpOrRuNtQbn5/V0Dip8YU5d2spjZQ18Z4+dOKCIh1P0Vin+LaRdttJHtDnIfuVOrtzrgK0uILWt8zBnSQtPtEf4dKe9uWhc76pl5VJHR9YLWA1G11/JtA/XftIM/iin7ziR4xqm9+l1Cs2O4Ti3ftDIYlcl+x89iwqTKOr3hKQxfHl5G0vawtTZhfnTxzHFM6nPx+nL38ORScOHi5tYHIandpzBrZNq+xt+wSmFNuKZ9jDPLmlFgDt2HsMBldn/e1jb1Mk3P2vnjYbxXD9t7z4tWDjY+tI+FGvy0SvGmJ8AP+nlvhGg61Jj+hfqdDr7/Y+wrecaY3it0+qmOqC6rGj/4Y6u8XJncyfPBGLMrK/43OMDOYeFIpo0/GhVG39LVTLZp9zF3TsMY1IvFwzKPAcnDXdyXnuE25o6ueSzdt7adVSf5wgUq1L4W8j0cSjGrc3W5L8/TKjD5erdOgxbOg9fH1XNE+2N3NES4ncT6gru76KUfneF3j4kjOH1oNU+HFhTvO1D2lSnk529Tj4MxZgfiHFmjXXRpVjfE36yqo3/toVxCvx3agM7VXq2/aSt6M15cAI3TxnGgR9s4N7WEF9sqOCE2sHrecuHYv17CCSSXLbK6vW+bGQlh9Z9/rNQX2zpPJzdUMX/rWrnw1CcD6KGPSsKZ+2fvvzeCqtl671mIAGM6LZ9BLAh9+H0z9JwnNZ4ErfA7uWF8wfUV7Nq0yV3S2Ki7OcsC8c4+IMNXYnH5aMqeWn6yF4nHj25ZkIdY1x2loTj/FSrXxWtn6xqI4FVzeegqoF9+AA4psbDRLcDXyLJvS3FX9EkT0qiffgwGMOfMFQU0eKz25JecLDYS+7e0hjgqrXWVd4bJ9dzSBb+93trRqWby0dZvW1fW9aKL16c84BKzU9X+fgskmC82961OORgqHHYOKlrzY/inXg+2MnHy0DW32WMMVHgTeDI9DYRsaXuL8j26w2WBakF5/aqcOMq4onHR1d7EOD9YIw1JVZy9/7mTvZ+bz1vdEapc9h4ZMfh/GlC3YB/XzUOGzemql/9fb2fl3SV+KKzwB/hkdYQNuB3WWpsbCJcMsK6YnZ9aa14njOl1j7sW+nu9+JkhWZ26ir9U20hIkVaUvr59jCXpiYU/2RMNecOH9gV7v745dhqtvc4WBdL8IPP2nL++mpz/+sIc23q/fr6SfVUDHKP9Xmpv7l7mjuJFun/0YDOkIg0iMh0Edk185Z+3BhznDFmfT+PXSEiu4vI7qlNE1P3x6XuXwNcJCLnichOWJMHy4FbBvAj5dSi9PoeBdRt1h/1TjszUj9Dqax2Hkok+fryFr64pJmOhOHASjdv7TqKE+uy18U9q9bLVxsqMMBXl7bQmdArWMXCGMOPUo3++Q0VTCvL3v/wVxoqcAu82Rnl9UDhTTovBEOhfUiv71Fsi89uzd4VLkY57QSShpeKsNz4J6EYZ3zSRNzAmfVlXDk2P/OyvHYbN022Ll7d3Bhgfom0u8UonDRctKwFg7XGV3pBzcE0s8bDKKedlniSx4u0F7FfyYeI7CUiHwDrgfeAd7Am7qW/ZsPeqWOlj3dN6vtfARhj7gP+L3X/HWB3YJYxpvskw4KVXtm82BYX7MmsElrt/ONQjAM+2MANGwMIcMWYKp7beQRj3dmfIvWn8bWMddlZHolzxSpf1o+vBsfcthCv+CN4RLhyu+x+ABnmtHNGvVXP/brS7/3ob+94ybcPC0tgccHubCKcmBp69ViRtRXNsQQnftRIWyLJ/hVubpkyDFsee6QOrvLw9RHW4qSXLG8hoBev8uLXa3x8Eo4z0mnnTxNyUwAgc82P25oCOXnNbOtvz8d/gE+BA4BJwMRuXwfMGPOCMUZ6uJ2fsc+1xpjxxhi3MWZfY8yibLx2LnQmkrzXaSUf+5fAla108vFMe6ioV2i+oynAjPfW814wRoPTxhM7NfCbcbU4BqmRqXJsuoL1zw1+nm8vrgZ5KEoYw49TieK3R1UyZhCS0vSK5/c1B2mNFV85TRE5fwvbHSLy+/T9/vaOl3r70BRLsCS1GN9+lcXdM95deujV475w0RRmjyQNp33SxLJInAluOw9NHY6nAIZK/258DePddj6LJLrek1TuvBWIcHVq7s+1E+uodeRu3Y1zU8nHk74QjUXYRvQ3+ZgE/MAYs8gYs9IY81nmLZsBlqo3AlESwBiXne0G4cNLru1V4aLeYaMjYbrGKheTzkSSC5Y2c/7SFjqThiOqPLy166gcdaF6uTg1zv/CZc16BavA3dbUyeJQjDqHjR+MGZxhF/tVuNi9zEnYmGKdVPh3EXkgtZI4ACKyI7AI+GL+wioO6V6PnbzOnH6gyYUjqj1U2IS1sSTLHIW/UJ4x1rCaV/wRquzCY1MbaMjC4m4mkcD/yrNs+Ok3Gf2/efRnzbVKu40bJm26ePWyzh3MmVhquFUCOL2+jFPqc1t1bFqZi33KXcSNNfej2PQ3+XiWLS1soHplUXoyYQn0eoDVDXh0jVXxo9iqXr3fGWXG++u5rakTG9ZkvqemNTDKlbuk8I/jaxnvtrMykuCHOoGwYIUSSa5MVSf78ZhqahyDM7FQRLp6P67f6Cc5iIvBDpI9gO2A90VkpohcBrwFfIy2Hdu0ab5HafV6ALht0nVR5zV34a1l091v17ZzV3MnduD+HYYPeH5XOulYfflX2PjnXxL5dDG1Sz4g8smH/TrezBovFzRYF68uWtZCSC9e5cSf1nXwTtC6CPX3CXV5ieG81O/99sbiG3rV35bzQuACEfmFiJwmIrMzb9kMsFSV4nje9NCrp4pkApQxhps2+tnv/Q18HIoz2mnnmWkj+Ol2NTmvLlNpt/Hv1PCr6zcGeKbIErih4h8b/KyNWuUUv55KDgbL2cPKqbILS8Nxnimy4XjGmGXAgcBDwFPAX4ALjTFfMsb0bwn4IWRhoPTah0zpkruvumtYHIr166p/LtzT3MkvVlt/rv+cVMfMAfSEm0QC/8vPsuo757Pxz78kunoltvIKXBOnAOB/4r/9PvbV42sZ7bRKt1+5Rv+9BttHwRi/WuMD4JoJtYxw5ad38qz6MlwC7wRjvJsaxl8s+pt87I/VsPwCeAB4JOP2cBbiKmnGmK7GpdgrXWU6psaLYP0jrI8WdsndjniSLy1p5tLlrYSNYVaNh7d2G8Wh1bmr197dEdXergmEFy1roUPrtxeU1liCq9ZaDfsvx9bgHuQx3+V2W1cZzyItu3s88AWs8rY+4KsiMjqvERWBWNLwWqoYSakmH8fXeHEIrHN42PPDJqa8vZZvLG/hibZQwVy5/19HmAuWNgPwvVFVXDSifxcbNks6rvklsTWfYSuvoO6LX2X8DfdT/40rAAgueoVYY7+Kg1LjsPHPSdbV92vWdWiVvEGUSA3DixqYVePhnGHleYulzmnnxNQcqtuLbOJ5f5OPfwB3AqOMMbZut9IaoDoIPosk2BhL4hDYs4gXF+xuuNPOXqmfp5CrXr0ZiLD3e+u5ryWIQ+AP42p4bGoDw7Mwjnegfj++hkluB6uiCb6vw68Kyu/XdtCeMOxa5uTsHDU4l6Y+8DzWFmJ1Ea2hIyI3YF2Y+gNwMLArEMUahnVmPmMrdO8Fo4SShhq7jane0lhcsLs6p527JtWyR6QDt8DKSILrNgY48eNGhr2+hhM+auS6DX4+y9Pf/PJwjFM/aSJq4KRaL78fX9PnY1hJxzOs+vZ5mycdZ1tJR92Z52Evr8A1dgKB0ePBJGl/4qF+xzy7rowvDisjiVW6vVjXUSl0/9rgZ0EgQqVduH5SPZLnNXjObbDaoruaOouq2E9/k4964C/FVLawkKR7PXYvc+Ed5MVocq1r6FUBDhsyxvCP9R0c+MEGlkXijHfbeXHnkfzfmOq8lkzMVGG3cfMUa/jVvxsDRTd/plR9Folz7Qarqsnvx9XmbFjeTmVODqtykwRu2lhUV7YOBPY1xvzZWDYYY44Dfo5VLVFtQXq+x76VroJ5XxoMJ9V6+Vn7ctbtPpJHdhzOxSMq2M5lJ2wMT/pCfGNFK5PeWsuu76zjh5+18WJ7OCcfrnzxJCd+3EhzPMle5S7u2H5Yn/7fN086fkVs7SpsFZWbko4zrKQjU8u0PQHomP84yVCw37H/dUIdwx02PgzF+P1aHX6VbSvCsa6qYleNqx2U8vt9dUy1lxFOG03xZEF+7tqS/p65h4DDgWVZjGXISC8uuF8JdqnPqvXym7XtzPeFiRfQON7WWIILl7XwaGo+ysl1Xv49ub4gK8kcUuXhmyMr+ccGPxcva+G93UZTPUgTm1XvXLnaR9TA4VVujqnJ7dC8S0dW8kJHhJsbA/x0u2pcBVDisxf2MsZ8buyHMeafIvJMPgIqFM3/upqxy5fStORt7G434nAiLhfidCIOFy+O2BXKGthz/TLa17xubXc6sTld4HRhc7q6tonTlbo5N/uK3Z73K7K9VW63cWKdmxPryjDG8EEwxhO+EE+0hXjVH+HDUIwPQzH+tK6Dars1Wf3YGi/H1nqzUnUqUyxpOPPTJj4OxdnOZeeRqcMp7+UFQpNIEHj1eVrvu5XY2lUA2CoqqZl9JtXHnfa5hCNTYMxEHKPHEl+3mo7nn6TmuNP6Ff8wp52/T6zji0ua+f3adk6pK2O3EhpdkU/GGC5Z3kowaTik0t1VoTLfnDbh7GHl/GW9n9uaOrO6EPJg6m/y8SnwexE5CHgfiGU+aIz5+0ADK2ULS6zSVaYZFS5q7TbaEsmuccv5tsAf4exPm1gVTeASa2G/r4+sLOjG+bfjanjSF2JpOM73Vrby7ynD8h3SkPVeZ5Q7UuVufz++Nud/NyfXljHSaWdDLMEjrUHOzOMY497qKfHIeOyTXMZSaMLvvEaVr5XgqqU9Pr7okmsA2GHOHTR91r8KSNhsVlLjTCU2DldGgmNtczaMomrmCXh22rVg3gtFhF3KXexS7uKHY6ppiyeY5wvzRFuIp3whWuJJHmgJ8kBLEAH2qXBxXCoR2bN8YD1Fxhi+vqKVZ9vDVNiEOVMbGN2LiocmkSDwv+dovf+2bknHWdQcfxq2sl78v4pQddyptP77b7TPfZDqWacgtv5dcDqjvoz7Wrw80hriwmUtLNhl5KCtUzWU/KcxwLPtYTwi3Di5vqB6Jc8dXsFf1vuZ2xakJZagvgCGkG9Lf5OPC4EAcGjqlskAmnxsQThpeDtVlaDUFo8Cq+TuzBoP97cEebojwow8xGCMoS2epDGe5NHWID9b5SMBTPE4uGf7YexZBElfud3GzZPrOezDjdzS1Mmp9eUcV1v4NfFL0Y9X+TBYjfo+efjbcdqECxsq+M3adq7f6C+K5ANARE4HzgTGAZu92Rlj9sxLUAWg9txLee+119h5xx2wJROYWAwTi2JiUdYnbaytHo7NJNlv7GjKGqqtx6NRTDyW+j5ifR+NWvdT35PMWGgsmbT2i0ZgC0sAhBe/h/+FebjGT6L62FOoPGQmNm9hXTWtddj5wrByvjCsnIQxvB6I8kRbiCd8Id7ujPJawLpduaadkU47s2o8HFfrZWa1l6o+9hb/eV0H/2kMYAPu3mHYNnsMspJ0ZCg/ZCa+e24mtn4twTcXUL7PgX16fpqIcO3EOl5sX89bnVH+vK6DHw7SekRDxbpovGsO5q/GVbN9gc3F2rXcxR7lLt7ujHJvcyeXjarKd0jb1K/kwxgzMduBDBVvd0aJGWhw2phYAOMFB8OsGq+VfLRnL/kIJaxkojGWSN2SNGV83xhL0BSzJvI3xRPEu434Oqu+jOsn1fe5Qcqng6o8fGdUJX9Z7+eSZS28t/uoghwmVspeaA/zpC+EQ+A3Y2vyFsdFIyr4/dp2XuyIsDgYHfBaA4NNRL4F/Ba4FTgJuAWYDOwD/DN/keVf+UFH0tYRoeq443A6N/8Q82JLJ3zazPRyNzt872d9Oq5JJDKSkvQttlly0/V9NErwndfxvzSf6GfLabr+z7TcfgOVR8yietYpuMaMzeaPnBV2EfardLNfpZtfjathXTTOk6lE5BlfmA2xBLc2dXJrUycOgYMr3RxXW8ZxtV529Di22rvzUEuQH6XG8l8zoZbja7echJlEgsArz9L6wO0ZSUcVNSedRc1xp/Y56UizebxUHX0ivofvwffYA/1OPgBGuRxcM7GWryxt4ZerfcyuLWOnssL6wFwsjDFctryV9oRhn3IX3y7QD/bnDS/n7c4otzeVcPKh+i8932PfCnfBdHVn2zGpSedvBWP4pOc/sYQxtHYlE5lJRWYykdoeT+BP9H3+SLVdGO1ycPmoSi5oqCjK8/3rsTU83hbi03Ccy1e2casOv8oZYww/Sl3turihkil5vNq1ndvBiXXWUIrrNwb4+8T8LGrVB18HLjbG3CMi5wN/NMYsF5FfAQUffL4s9Pe/xK7Y7YjdDu7ezUmqOPBw6s/7Gv7nnqT9yYeJbVhL+9wHaZ/7IN7d9qbmuFMp22t/65gFaLTLwVdHVPLVEZVEkoZX/NbwrCdS75fPd0R4viPC9z9rY5LbwbG1Xo6r8XJYtQdPxrypNwIRzl3ajAEuG1nJN7fwwW2wko5M1cediu/R+wm9/xaRlctwT5jc72N9eVg59zZ3Ms8X5qJlLbw4fUTO168qBfe3BJnTFsIpcNPk+oIdwvbFYeV8/7M23uiM8kEwyvQCv0DVr+RDRLZarcQYc0H/wil9CwKlO9k8baTL3tUFeEvlaN5a1U5TwmyWTDTHkvS1mrtLoMFpp8FpZ7jTRoPTzginnQanjeFOOw0O63vrcfugr8OQC167jVumDOPgDzZwR1Mnp9aVMbtIJpQVuwdbg7zeGaXCJvxsbP6HLXxtRCWPtIa4vSnA78bVUFHYlfLGAa+mvg8B6UUS7gAWAt/IR1CFbkGOi5HY0xOiTzid4Duv0/7kwwTfXEDo3TcIvfsGjuEjqT5mNlVHnYC9uiYnMfWH2yYcWe3lyGovf54AS0MxnvSFeLwtxIsdYZZH4vxzg59/bvDjtQlHVHs4rsbLHuUuTv2kiVDSWuvpmgm1nzu2ScQJvPwcrQ/cRmzdaiCVdJz8BSvpyOJQNeewEVQccCiBV57D99gDjPjmj/p9LBGrFOyu765jQSDCtRv8BXvVvlA1xxJ8e0UrAFeMqWaXAp68P8xp57gaL4+2hbi9sZM/TijcWKH/PR/d/0OdwHSgBnhuIAGVusyej1I2q8bD251RXvbU8XLjFgYdA/UOWyqh2JRAjHB9PplocNqpsktR9l4M1H6Vbr43uoqr13XwteWtHFTppq4IJpQVs1jS8NPUMIzvja7KelWd/jii2sP2HgdLwnHubu7k4n4uepYjG7B6OD4DVgH7Ae8CE4Gh90/cC5Gk4c1Oq304IMftg9hslO+5L+V77kts4zra5z1Kx/zHiTdtoOXOG2m971YqDjyc6mNPwbPDtJzG1h9TvE6+6XXyzVFVBBJJnmsPd80VWRtN8HiblZik7VLm5J7th292VTuXSUemmhPOIPDKc/hfmk/9ly/BUfP5hKi3xrkd/GF8LV9f3spPVvk4odbLZI8Ov+qty1e20RRPMt3r5IoimDdzXkMFj7aFuKu5k9+NrynYXhro/5yPU7pvExEbcB1afneL1kbirI4msGFV6Shl3xpVxdpwjLVr1rDHxPGMcju7kox0MjHMaSvof45CcuXYGua2hfgoFOPbK9u4Y3sdfjWY/t0YYGk4ToPTxuWjC+NqoU2ES0dU8r3P2rhug5+LCnso4XPAbOBtrPkef0lNQN8bq1S76ubtzihRA8McNiZ78jci2jliNMPO/Rp1Z11A4H/P0f7kw0SWfoz/hXn4X5iHe8pUqo89hYoDj8DmLvyLaBV2G7NTPcbGGN4LWr0iT7SFWOCPMMplZ87Uhq75gD0mHZXV1J50FtWDmHSkeXbcGfcO04h8upiOeY9Sd9b5AzreRQ0VPNDcyfMdES5Z1sLT00YUVKWmQvV4W5C7mzuxYQ23KoYS58fWeBnmsLEhluBpX7igi9Rkrd/eGJMErgEuz9YxS026xO4uZc5CHzIxYA1OOzdOrOUy/2p+s10V3xldxdnDyzmqxsuu5S5Guuwln3iYRJyOpx5hwlP3E1ny0YCO5bEJ/5lcb1Viae7k4Zb+L0Slti6QSPKrNT4Afr5dDZUF9L96XkM5XpvwXjDWNYSzQF2MNeEcY8w/ga8AH2EtMnhpHuMqWJlDrgohqbS53VQdcSxjr76R7f5wPZWHHQMOJ5GlH9P4j9+z8sLTaL79OmIb1+U71F4TEXYrd/GjMdW8NH0kzfuM5aPdRzPO7bDer1+Yx6pvnsvGv/2G2LrV2CqrqT/nYibccB+1p52Ts2pgNSeeAUD7U49gYgMrWW8T4YbJ9XhtwvMdEW5qLKrFSvOiPZ7ka8ut4VbfGVXFjCIZJu9KrfkBcHtTYf+es92qTkYnsW/RotRkwn2L5A9Z9V/wg7dZ/b0LafvPPyjfsJqW667GJBLbfuJWzKh084Mx1lX4r69ooTk2sOOpnv1lXQeNsSRTPA4ubCiMhaTSah12zqq3PgBdv6FwG5fUxSiHiMwQkROw5n08gzUMa1ZegytQ6eTjgAJsHzw7TGPEt3/CxH//l/pzLsYxfATJQAe+h+/hs699kXW//RGdby3CJPs6ky+/qh02ykh2JR2Nf/stsfVr8pZ0pFXsdyiO+uEkfK34X352wMeb7HHy23E1APzwszZWR+IDPmYp++FnbayNJpjicfDLApjv1xfnptqsR1uDtMUL9zNCfyecX9N9EzAKOB64baBBlapF6cnmJT7fYyiLNW2k5bZ/Efjf84BV9z0WicKaz/A//xRVRx0/oOP/fLsaHmsN8WEoxjdXtHLPDsOzEbZKaYwl+NO6DgB+M64GZwF2tX9tZCW3NnXyQEsnf55Qy/ACmI/SnYjMwppcXt/DwwYovKDzyBizqeejgNsHe3UNtaedQ83JXyT45gJ8Tz5M6J3XCb7xKsE3XsU5agzVs06h8ohjsVcU5pwkE4sSa9xAbP1aoms/o2PeHGLr1wCp4VUnf4HqY0/J65on4nBQfdyptNxxA765D1J5+KwB94Z9Y2QlDzQHWRCIcOnyFuZObSiIHrZC83x7uKt36MZJ9ZQVUM93b+xe5mTXMifvBWPc1xzk0pGF+X/Y316KPbrdTwJNwPeArVbCGqpiScMbgfTigoXbuKj+SUYj+B65l7b/3mkt7GWzUX30bCrPOJc3rvsbI994kZZ7/0PFwUcNaJy02ybcMqWe/d/fwP0tQU5t6eSM+uJYdK4Y/GZNO4GkVc/99AKtKrZ3hZt9yl283hnllsYAPyjMiZD/AO4HfmWM2ZjvYArd6miCdbEEdopjPqDY7ZTPOIjyGQcRXbua9qcexv/cU8TWr6X5lmtpuesmKg+ZSfVxp+CeuH3O40uGgsQ2rLVu69cS27Cu6368uRHM5qXbCyXpyFQ180Ra77+N6IolhD98F+/03Qd0PLsI/55Sz57vruMpX5g7mjs5d3hh9ezmWzCR5JJlLQBcMqKCQ6t7V7a6kIgI5w6v4P8+a+P2pkDJJR/HA2KM6QQQkQnAycBnxhjtz+vBu8EoYWOotdvYPo+TCVV2GWPofO0Vmm+5lvjG9QB4pu3K8Au/jXvi9sRiMVqn7s6YlR+RaG6k/Yn/UnvK2QN6zb0q3FwxpprfrG3nG8tbObTKUxDVmIrd0lCMGzb6AbhqfG1BXxW8ZGQlry9r4caNAb43uqoQ6/ePAK7RxKN3Xk31euxe7iq6K62uMWMZ/tVvUf+li/C/NJ/2Jx8munIZHc/MpeOZuXimTqf6uFOp2O9QxJmdSkvGGBLtPiuZ2LCO6IY1xNMJxvq1JDp8W32+eLw4R47BOXI0nqm7UH30iQWTdKTZK6uoPHwWHU89gm/uAwNOPgCmep38fGwNP1nl4/IVbcys9jDKpZ9H0n6+2seySJztXHauGtf/KmP5dvawcn74WRuLAlE+DsWYWmArskP/k49HsCqWXC8iNVh122PAMBH5rjHmuuyEVzrSJXZnVLq00kSJiK75jKab/07ondcBsNcPZ9h5X6fioCM2++BqHA5qzvoKLf/8A23/vdOqmV85sApKP9mumjltQd4LxrhseSv37zCsoD8sF4OfrfYRN1aZ6MMK/IrXWfVlfH9lGysiceYVZlWTB4HD0OqHvbIw1T70Z3HBQmHzeKk+ejZVM08k/NF7tD/5MIEFLxL++APCH39Ac00dVTNPoPro2TiGNWzzeCaRIN7SlOqxWEdsw5rUVyvJMKGtF92wVVXjHLkdzpGjrURj1Jiu7+3VhX1xIa3m+NPoeOoROl97hdj6tThHjRnwMb83qor/tgR5qzPKN1a08uAOw4viXAyGpliClzrCvNgR4cX2MB+EYgBcN6m+q/pZMRrhsnNsrZe5bSFubwzwu/GFl0j1N/nYk01VrU4HNmINxToN+BVWyV2VYWFqyNX+BTyeV/VOMthJ6/234pv7ICQS4HBSe9IXqD3tS1u8elZ+8JH45z5A9LPltP33Toad//UBxeCyCbdMGca+76/nodYg97cEOWuYDr/qr9cDEe5vCSLA74vgileZ3cb5DeX8Zb2f6zb4CzH5+AbwgIgcDLyPdXGqizHm73mJqkDlenHBwSQieKfthnfabsRbm+mYP5f2p+eQaG2m7YHbafvvXZTvexAVM09E4nFia1cRbW7cNEwqnWxsXA/x2NZeCEf98FQPRiqxGLUp2cjGiuP55tpuPGV77kvwrUX4nvgvw7/6rQEf02kT/j25nhnvr+eR1hAPtgaHzNDdLSUbmS4fVVmI76d9du7wcua2hbizuZNfj6spuN7x/iYfZYA/9f3RwEPGmKSILATGZyWyEpO+sqWVroqXSSbxvzCPljtuIOGzyvCV7XMAw7/yzW1ekRKbnfovX8L63/yQ9iceovr403AOHzGgeHYvd/GTMdX8ck0731hhDb8a6dLhV31ljOGKz9oAOGd4ObsW8Cq2mS4ZUclf1vt50hdiZTjOhMIazvlFrLYhjNUDkjnI3gCafKQEE0neCVoXpwqx0tVAOOqGUXfW+dSedg6di17G9+TDhD98h84FL9K54EWmAevu3NoBHDgbRm1KLEZs6sVwNIzE5iqt89WTmhPPIPjWIjqefYL6L341K0nVbuUurhhTza/XtPPN5a0cXuVhWAkO3W2KJXixI8yL7RFe7AjzYQ/JxnSvk0OrPRxa5eaQKk9BFvDojxNqy6hz2FgbTfBse5ijaworoepva7UUOFlEHgaOAf6S2t4AdGQjsGIV/uRDNv7zD4wzNlo3LMM1cjS+htEsT+Vk+xTJBxu1ufCSj2j699+IfLoYAOfosQy74JuU77Vfr49Rtud+eKfvQeiDt2m952ZGfOvHA47rijHVPNoa5J1gjK8tb+GhHYduF3p/zfOFeb4jglvgV2Nr8h1Or23vdXJUtYdn2sPcuNFfaF3rvwV+AVyVKrurtuCNzihxA6OcdsaV6MUDcTioOPBwKg48nMhny2l/6hH8zz+FiYQ3m39hDY3adHPUD0fspXlOesu72z64xk4gunolHc88Ts3sM7Ny3B+PqeahliAfhmJ8Z2Urd25f/JUTG9M9G1tJNnYpc3JIVeklG925bcIX6sv510Y/tzUGSib5+BVwN1bS8awxZkFq+9FYK9oOWdH1a4itXkkl4F+zHIDnJu8Bp32Xyc1raT3vEvwjRuEcPhJHw0icDaNwjBiFs8G6by8vzMoEQ1Xc10brXTfS8ewTYAzi8VJ35vnUnHB6nydPigj1X76ENT+8FP8L86g56Szc4ycPKD5navjVjPfXM6ctxN3NnXxJK5j0WtIYrlhl9XpcNrKKce6C6j3Ypq+NrOSZ9jA3Nwb4xdga3IVTGtgF3KeJx7ZlzvcYChcO3OMn0XDJd6n+0kXMnzuXo089DZdLL8ptiYhQfcIZNF13Nb7HH6T6+NOykpC5UsOvDvxgA/c0Bzmkys9R1R5GOe14i6ToQWNXz0aYlzoiW0w2Dq3ycGiVh0Oq3CXZw7Ml5zVYyccjrSHa40mqC2geS79aWmPMgyLyCtbaHu9mPPQs8HA2AitW5XvsS8NP/sA7zz3D1BHDSDY38kH9DgDsvm4pJhQkunIZ0ZU9z8O0lVVslow4h4/EOWIUjgZrWymMYy0GJh6n/cmHaL33VpJBq+Z35WHHUP/lS3DUDev3cT07TKN8/8PoXPACLXfcyOif/mHAse5a7uLn29Xws9U+vr2ijcOrPYzWCia9cndzJ+8FY1TbhR+NGVgRgHw4odbLdi47a6IJHmwpqMTzNuAs4Hf5DqTQvVoCk837w+b2kPCWDYmEa6AqDz2aljtvJN64gc7X/0fFfodk5bgzKt18d3QVf1rX0bWiN0Cdw8Zop53RLus2xuVglMvOmK77dhqc9pzPI8hMNl7siLBYk42t2qvcxTSvk8WhGPe3dHLRiMK5uN3vTyjGmA3Ahm7bXhtwREXOXl2Dd7e9aVvbSO1xx+F0Oln84QboiHDUCScy7vhDiTVuIN64gVjjutRX636ivY1kMEB0xRKiK5b0eHxbRaXVW9IwMpWgjNrsfqGVCyxGwffepPnffyO6eiUA7kk7MOyib+OduktWjl9/zkV0LnqZ4JsLCH3wTlZKKP5gTBWPtAZ5szPKpctbeVSHX21TOGn4+WofAD8aU019ETZSDhEuGlHBL1a3c8PGQCElH3bgByJyDPAen59w/t28RFVgjDElUelKDS6b20310bNp++8d+B57IGvJB8CV21XTEkvwUkeEtdEEYWNojSdpjSd7nJCdZgdGuuyfS1JGZyQoo10Oqu3S77ZoYzSVbHRYPRs9JRu7ZiQbBw/xZKM7EeG84eX8cJWPO5pKJPlQvZMwhtfSla5qynGV1+Laruc5+clwiHjTRmKN662kZON6KzFp2kCscT3JjnaSAT+RgJ/I8k97PIatshrnCCshKdtrPyoPPhJxapd2b8Qa19N867/oXPAiYJVqrP/SxVQdeVxWxx27Ro+l6ugT6XjqEZrvuJ7trrpuwImCQ6zFB/d+bz2Pt4V0AaleuH6Dn88iCca47HyzQBdi6o2vNlTw6zXt/M8f4d3OKLsVxryyXdg0BHd6t8cMCoBl4ThN8SQugT0L4/emClT1cafQ9sjdhBe/S3jZJ3gm75iV43rtNv49xerNN8bgSyRZG02wLppgbTTB+miCtdE461Lb1kUTbIglSABrU/vQueXjl9mkKxkZ5dw8Qena7nJgB3zi4MHWEK90dvBiR4SPtpFsHFLlLsqLRrn0peHlXLHKx//8EZaEYmxfIGt+aPIxyD4MxuhMGirtwrSyrf/SbR4vrrETcI2d0OPjyVBwU69J03ri6eQk1XuSDHSQ9LcT8bcTWfoxgVefp+XOG6g+9hSqjzkJe1VN9n/AEpCMRPA9cjdtD92FiUbBZqf62JOp+8IF2CsG50Np3Znn4X9hHpFPF9O58EUq9j9swMfcuczFlWNr+PEqH99Z0cqRVR7GFNkchlzxxZP8dm07AFeOrSmaMc49GeVycHJdGQ+2BLl+o5/rJtXnOySMMYfnO4ZisCBg9XrsVe4upPk6qgA56oZRceARBF6aT/vcB/F8+ydZfw0RodZhp9ZhZ/pWBlHEjaExluhKUqxbvNv9BG2JJMGkYWk4ztLw1tefrrELvuHTYXnbZtt3Sycb1R4OrtRko69GuRwcXeOxVrVv6uRX42ryHRKgycegSzcuMyrcAx4fafOW4R4/Cff4ST0+nugMEG/aSLxxPZEVS2h/+jESrc203n0zbQ/eQeWhx1Bz4hlbTG6GGmMMnQtfpPmWfxFvskYQeqfvwbALvzXgieDb4qitp2b2WbTdfystd95E+T4HIY6B/zt+b7Q1/Oq1QJSLl7cwd2qDDr/qwdXr2mmNJ5nmdXLu8OKfR/W1EZU82BLkrqZO/jCutqgXyBpKNq3vob0eattqTjyDwEvz8b/y7IDnHw6EQ4TRLsc25xYGE0nWbyFJWR/dtD1sDL6E1SG6q9fBYdVeTTay6LzhFankI8CVY6sLYqFrTT4GWXpl830rBr9xsZdXYC+vwD1hMuUzDqL21HMIvPo8vsceILLsEzrmP0bH/Mco22NfamafgXe3fYbsB9PIqhU03/x3Qu+9CYBjWAPDzr+M8gMOy9k5qT3pLDqeeoTYutV0PPM41bNOGvAxHSL8Z/Iw9npvHU/5wtzS1MkFDTr8KtPaSJy/rbeWKfrduBocJfA/cGiVm528Tj4KxbizuZOvF/EwsqFE53uovvBMmYpnp12tFeSfepT6s7+a75C2qsxuY7LdxmTPlkd9GGNoiydZHYrw/gvPcdaxx+DsYyVJtXWz68qosdtYFU3wQkeYI6rzX3ZXL48NskWB/C0uKE4nlYcezXZX38iY3/6D8n0PBhGCby9i3S//j9XfPp+OZ+aSjEZyHlu+JDr9NP3nH6y+/AJC772JOF3UnnEe4669k4oDD89pMmYrK6f2zPMAaL3vFpKhYFaOu1OZk1+nula/t7KVVZGtd3cPNb9c004oaTio0s0JJbCSLVjDJS4dYSWZ123wY4xOqyh0/kSS94PWmHZNPlRv1Zx4OgDt8x4hGSn+tltEqHPameZ1UmkS+Q6nJHlswlnDrHF0tzVuZYJODmnPxyBqiyf5OGR98NuvIn+Ni4jgnbYb3mm7EVu/Ft/jD9Lx7BNEV6+g8Z9/pOWOG6madTLVx56Mo6Yub3EOJpNM4n/uCVruuJFEhw+A8n0PZthXLsM5YnTe4qo+eja+xx4gvnEdvrkPUHfGeVk57ndGVfFwS4gFgQgXLWvhqZ0Gb/iVMYbOpKE9nqQ9kaQ9YfB1fZ+kI56kNRrno4rRvLm2g2FuJzUOG7V2G7WOjJvdNuhzLxYHo9zSaJVOvmp8bUn1/H15eAVXrPKxOBTjZX+EQ6o8+Q5JbcXrnTGSwLhUVSCleqN8xkE4ho8k3rSBwMvzqTrqhHyHpIrAucMruGFjgIdag1ybSFKZ53mO+o43iF7vtKpcTfE4Cqb8m3PUGIZf+G3qvngBHfPn0v7EQ8SbNtJ2/620PXQXlYfMpGb2GYM+5yGXwp98aK1OvvRjAJxjxjH8wm9RtvuMPEdm9U7Vf+kiNl7zS9oevofqo0/CXl0z4OPaRfjPlHr2eHc9z7SHuakxwMU9lNkzxhBOGithSCQzEoiM7+Omh21WkpH+vlfXq8oaeGx9YKu7uIXUhEcrIalJJSiZyUpNt4Ql/X2ZbdslHX+yykcSOLnOW3JXm6sdNr40rJybGgNct8GvyUeBW5iuglhif4dqcIndQfXxp9Jy67/wPfYAlUceX1IXUdTg2LfCxY4eB5+E4zzYEuQreR6OrcnHIFqUalz2zWOvx5bYyyupPfmL1gS2hS/hm/MAkU8/xP/cE/ifewLvrntRM/tMyvbYF7EV3+i8RGeAyJLF+F+cj/+FeQCIt4y6s75CzfGnZWVyd7ZUHHg4vkfvJbLsE1ofuI3hF347K8fdwevkd+Nr+O7KNr6/so15vhAdqUQis2cilqUROnasD8A1dhvVDhvVdqEq9X2VwNoVyxk+YSLtSatX0BdP0pZIdn2fACIGNsSsUo595RQ2S0i6khS7lcwAzGkLYQd+N642Oz90gbl0ZCU3NVpXtzZEE4x0FcZFD/V5izT5UP1UddQJtN57C9FVKwi9/xZlu+6V75BUgRMRzm2o4CerfNzRFNDko5S91ln443nF7qDywCOoPPAIQh9/QPtjDxBY+CKh994k9N6bOMeMo+aEM6g8/Bhs7sK8kmqMIbZuDeFPPiD88QeEP/nAWiAwY9x75RHHUn/OxThq81+GtDux2ag/91LW/eJy2uc9Ss0JZ+AcmZ2hYN8cWclDLUFe8Ud4pDW05RiAKrtQbbc+tFfbbVSlvlrJhHRtq7Fb29MJRnr/rfU8xGIxnvhgPceN36PHyYTGGPwJ05WMbLol8GVsSycsvsx9EkniBmIGGmNJGmPJrZ6TCxoq2LFAap1n2+7lLvavcLMgEOE/jQF+vF11vkNSPUgCizo1+VD9Yy+voOrI42h//L/45tyvyYfqlXOGlfPTVT5e7IiwPBxj0lYKAQw2TT4GSZJNw65yUekqG7xTp+OdOp1Y4wban/gvHfPnElu7iqYb/kzLXTdRfcxJVB93St7K+6UlwyHCSz8m/MmHqWTjQ5L+9s/t5xgxCs+O06k5/jQ8O0zLQ6S9V7brXnh334fQO6/Tcve/Gfndn2fluDYRHthxOHc3deK2SSppSH3NSDQq7JLX8nsiQpVDqHLYGN/Hz2LpOSdt3RKSrmSla1sCpwi/KZA654Pl0pEVLFga4caNfn4wpqokqnmVmnV2N76EwWsTdisrjvZBFZbq406l/YmHCL65gOja1bjGjM13SKrAbed2cGS1h2farTU/fjG2Jm+xaPIxSDIbl12KrHFxNoxk2PmXUXfWV+h45nF8jz9IfON62v57B22P3kPlgUdQfeIZWVthdWuMMcSbNmb0anxIZMVSSG4+LEecLtyTd8QzdTqeHXfGs+POBdnLsTXDvnwJq995ncDLzxA+6aysnd8Gp53vjK7KyrEKkYhQYRcq7DbG6kVkTq8v57sr21gdTfB4W4iT6rayWpjKi4+d1toy+5S7cOrigqofXKPHUrb3/gRff5X2xx9k+MWX5zskVQTOG17RlXz8bLv8rfmhyccg+STVuOxdxI2LzVtGzYlnUH3cqXS+/j98j91PePF7+F98Gv+LT+PZeXdqTjyD8r0PQOzZGVtuYlHCyz61ejVSCUeireVz+9nrhuHZ0eqp8UydjnviFMRZXEled+5JO1BxyEwCL82n5Y4bGHPlNfkOSRUhj024oKGCq9d1cP0GvyYfBSjdPuynQ67UANSceCbB11+l47knqTv7QuwVur6P2rqT67xU2oUVkTgvd0Q4tDo/w+k1+RgknzqtBr8UGhex26nY7xAq9juE8NKP8T12P4H/PU/4w3fY8OE7OEeOofrE06k6/Fhs3r590Im3Nm9KND75kPDSTyAe23wnux33xO2tHo2p0/HsOB3HsNJcubv+7K8SePV5Qu++QfCd1ynbfZ98h6SK0MUjKvjTug6ebg+zNBRjSonOcSlW6eRD53uogfBO3wPXhMlEVy6jY/5cak/5Yr5DUgWuzG7jzPpybm4McHtTQJOPUvNpqnEpxEpXA+GZMpWRl/+c+JcvxffEQ3TMf4zYhrU03/Q3Wu++maqZJ1J9/Kk4h4343HNNIk5k5bLNejXijRs+t5+tqhrvjtO7kg33lKkFO9k925wjRlM962Ta5z5Iyx3X4911r6KsNqbya5LHyTE1Hp7yhblhY4CrJ5Rmda9i1BZPssZhvZ+VwsUplT8iQs0JZ9B47VW0P/Ffamafgdj1Y53auvOGW8nHgy1B/j4xSXke1vzQv9JB4E8kWWVPNy7FPRRoSxzDGhh27qXUnXke/uefwvfYA8TWr8H3yD345txPxQGHUT7zBCpWL6ftnpuJLfmI8JKPMJHw5gcSwTVuIp4dp3fN13CO2q4kezV6q+6Mc+l49gkiy5cQ+N9zVB58VL5DUkXoayMrecoX5tamAL8aWz3oCzgWGxGZCPwHGAEkgP2MMYO+/G+6EMlkt52GAln/SRWvioOPpOWOG4g3N9K58GUqDjw83yGpAndApZspHgdLw3Eeag3y5eG5L7uryccgeKMzhhFhnMvOqBJfudbm8VJ97ClUHXMSwTcX4ptzH6EP3ibwyrMEXnmW8UBH5v5l5akJ4amejR2mYSsrz1f4BcleVUPtKWfTeve/abnrJir2OxTpoTytUltzbI2X8W47n0US3N8S5Lw813UvQLcCPzXGvCwidUAkFy+6IFBcVRBVYbO53FTNOom2+27F99j9mnyobRIRzh1ezs9Xt3N7Y6cmH6XitXSJ3fKh84FRbDbK9zmA8n0OILJiCb7HHiDw6guE3V7q9pxB2U674pk6Hdd243UYUS/UnHgG7U8+RHzj+tTaH6fnOyRVZOwiXDyikp+s8nH9Rr8mHxlEZGcgZox5GcAY05qr1+5aXLBckw+VHdXHnETbf++yhjR/urjgS8ur/DtneAU/X93O8x1hPovEGe/ObTqgnwIHQbpxmTFEr2y5J27PiG/9mHF3PM7SUy9g2Nd/QPXRJ+IeN1ETj16yebzUnfUVAFofuI1kcNBHg6gSdEFDBU6B1wJR3gzk5MJ+TojIISLymIisExEjIif3sM9lIrJSRMIiskhEZmQ8vD0QSB3jLRH5cS7iThjTtfis9nyobHHU1lN58JEA+OY+mOdoVDEY73ZwRJUHA9zZFMj56+snwSwzGY3LDL2ypQag6qjjcY4eS7KjnbZH7s13OKoINTjtnF5vVaC7fmPuG5hBVA68C1zW04MichZwDfBLYM/UvvNEpCG1iwM4GPg6sD8wU0RmDnbQBrhnci1fCKxnZ68OPFDZU3PiGQAEXn2eeHNjnqNRxeDLDdaQ99ubOjHG5PS1NfnIsuWROM3xJA6TZPeyoTPsSmWf2B3Un3MxAL459xFvbc5zRKoYXTrCqv1/T3MnbfHENvYuDsaYJ40xPzXGPLyFXb4L3GSMucUYsxi4FAgCF6QeXwu8YYxZbYyJAE8Auw923A4RZlZ7ODO4EfsQLqqhss89cXu80/eARALfk1v6t1Bqk9PqyqiwCUvDcV7157ZnXC+9ZNmC1C9wUjyEu0gXF1SFo3y/Q3DvsDORTz+k9f7baLj0e/kOSRWZAyvd7FLm5P1gjDuaOvnWqNJd7R5ARFzAXsDv09uMMUkReQarlwPgdaBBRGqBduAQ4IatHNMNZNbFrQSIxWLEYrGen7QF6f37+rxSo+fBks3zUHHsKYQ+eJuOeXOoPOXsoipRr38PllyeBxdwSq2HO1pC3LLRzwzvwKrv9SXmkk4+8lFKcc9yFz8bXUnzx6uwhhUr1X8iwrBzL2HtT79Fx/y51Jx4Jq4xY/MdlioiIsKlIyq5bEUr123w882RlaVeynoYYAc2dtu+EZgKYIyJp+Z5vAQI8LQxZu5WjnkF8IvuG59++mnKyvq3gvz8+fP79bxSo+fBkpXzkEyyfWU1Ln87i/71F9p23G3gx8wx/Xuw5Oo87OAsh9rtua/Rz9GLF+Cm/8OvgsFgr/ct6eSDPJRSnFbm4iejK3ninZwVT1Elzrvz7pTtfQDBN16l5a4bGfWDX+c7JFVkvjS8nB+tauPTcJznOsIcWe3Nd0h5Z4x5Eniyl7v/HmsOSVolsOboo4+mqqpvPUmxWIz58+czc+ZMnEO4hLaeB0u2z0OHLULbrf9i3KpP2e/bPyyaIi/692DJ9XmYZQw3v9/IyihE9j2UU+r7dzEFoKOjY9s7pZRs8pHPUopKZVv9ORcTfGshnQteJPzJh3h23DnfIakiUmm3cc6wcq7bGOD6DYFSTz6asXq6R3TbPgLY0J8DpuaFdF28SvccOZ3Ofn9AGMhzS4meB0u2zkPt0bNpv/824mtXEfvwHcr33DcL0eWO/j1Ycnkezm2o4Fdr2rmrNcyXR1b3+zh9ibdgU+JiLaWo1GBwj59E5WGzAGi+/fqcV6ZQxe/SkdbE80dbg6yNxPMczeAxxkSBN4Ej09tExJa6vyBfcSmVCzZvGZVHHg9A+9wH8hyNKgZfHm5VvXqmPcyaHLUNBZt8UKSlFJUaLHVf/AridBFe/C7BNxfmOxxVZKaXuTik0k0C+HdjcZfdFZEKEdldRHZPbZqYuj8udf8a4CIROU9EdgKuw2pTbslDuErlVM3xp4LNRvDt14iuXpnvcFSBm+RxckilNdvjrubcrClWsMOuMsfjbmFyZFcpxdQ+lwLHY5VSvIqMUoqpx9OlFHucxaPVTLJPz0OWz0F1HZXHnkzHnPtpvv16nLvsgdgGVp0iV/RvwZLv83Dh8DJe8kf490Y/328ow9nHinwF9PvbG3g+4356PsZtwPnGmPtEZDjwK2Ak8A4wyxjTfRK6UiXHOWI05TMOonPhS/jmPkDD176f75BUgTu3oYKX/BFuawzwg9FVg16UpGCTj60ZjFKKaDWTQaPnIXvnwFY+nB1cbli9glevvYb2KcU190P/Fiz5Og9uhOph01gXc/Kr519l/0h7n57fl2omg8kY8wJWlaqt7XMtcG1OAlKqwNSceAadC1/C/8I86r90Mfaq/o/lV6Xv9PoyvrWilU/CcV4LRNm30r3tJw1AUSYfDE4pRa1mkmV6HgbnHLTbY/juvJHxH73FmEu/jbhcWTnuYNK/BUshnIcl6/2sjyU5f/q+TPb0rQnoSzUTpVT+eHbaFfekHYgs/5T2+Y9Rd9o5+Q5JFbBKu41T68q4s7mT25oCmnwMRF9KKWo1k8Gj5yG756DuhDMIPPkw8ZZGOufPofbkL2bluLmgfwuWfJ6HK8bV9fu5+rtTqjiICNUnnkHj335L+xMPUXvSFxBHSX/kUwN0bkM5dzZ3cl9zkGsm1OEZxIWyC3nC+dZkvZSiUsXC5nZTd/aFALT9904SAX+eI1JKKVVoKg88AnttHYnWZgKvPr/tJ6gh7fAqD2NddnyJJHNaB3eIbVEmH1pKUQ11lYcejWvsRJIBP20P3ZXvcJRSShUYcTqpPvYUAHyPPaAl2tVW2UQ4d3gFALc3DW7Vq4JNPrSUolJbJnY79V++BID2xx8k1qxFfJRSSm2u+uiTEKeLyNKPCX/yQb7DUQXu3OHl7Fnu4vjawV2ItmCTD6xSim+nbmAlG29jlU7EGHMf8H+p++9gldHVUopqyCjbe38803bDRKO03qs5t1JKqc3Zq2uoPNRa4qz9sQfzHI0qdFO8Tl7fdRRfSy1KO1gKNvkwxrxgjJEebudn7HOtMWa8McZtjNnXGLMojyErlVMiwrBzLwXA//xTRFatyHNESimlCk31CWcAEFj4IrFGnRar8q9gkw+l1LZ5dtyZ8v0OgWSSlju3toyNUkqpocg9fhLe3faGZJL2Jx7KdzhKafKhVLGrP+disNkJvv4qocXv5jscpZRSBaYm1fvRMX8uyVBhLBaqhi5NPpQqcq4x46g66ngAWm6/XiuaKKWU2kzZnvviHD2WZDBAx/NP5TscNcRp8qFUCag763zE7SH8yYd0Lno53+EopZQqIGKzUXPC6QC0z30Qk0zmOSI1lGnyoVQJcNQNo2b2mQC03HkjJhHPc0RKKaUKSeVhx2ArryC2fg3BNxfmOxw1hGnyoVSJqD35i9gqq4mtXUXHs0/mOxyllFIFxOYto2rmiQD45j6Q52jUUKbJh1IlwlZWTt0Z5wLQeu9/SIZDeY5IKaVUIak+7lSw2Qm99yaRlcvyHY4aojT5UKqEVM86CceIUSTaWvDN1QWllFJKbeIcPoKK/Q8BtPdD5Y8mH0qVEHG6qD/7QgB8D99NosOX34CUUkoVlK5FB196hrivLc/RqKFIkw+lSkzFQUfimrg9yWAnrQ/eke9wlFJKFRDPjjvj3n4nTCxKx9Nz8h2OGoI0+VCqxIjNxrBzLwGg/cmHiW1cl+eIIBkJYw8FdQ0SpZTKMxGh5kSrOmL7kw9jYtE8R6SGGke+A1BKZV/Z7jPw7rY3oXffoPWe/zDiOz8dlNdJhoLEW5uJt7WQaGsh3tpCoi11v7Wla3sy2MlUYO38B/BO2xXPTrvg3WlXXOMmIXb7oMSmlFKqZxX7H0pz/XASLU34X3mOqsNn5TskNYRo8qFUiar/8iWsefcN/C/Np+aks3BP3L5XzzPGkOwMWMlEWwvx1uau7xOb3W/F9LGiVqK1mcArzxF45TkAxFuGd+p0PDvtgmenXfFsvxM2t6fPP6tSSqneE4eDmmNPoeXOG2mf+wCVhx2DiAz4uMlohGTAb7UhAf+m7zut79Nfux7v2h5gx6Rh7ZN3Y6+owlZRib28EltFBbbyitT3lZu2l1ds9r1exCoumnwoVaI8k3ek4qAjCbzyLC133MCon11N0t+eSihatpBQWPdNtPfd8OItw1Fbj6NuGPbaehy1ddbXrvv1mMpq5s1/hsMnjyO25CPCH79P6OMPMKEgwbdfI/j2a9bB7Hbck3bAm05Gpu6Co6Z2kM6QUkoNXVVHz6b1/tuILF9CePG7eHfeHWMMJhxKJQkBkp3+VJIQsJKEgJ9kMOP7zk1fk52BPrUd3TmA+Mb1xDeu7/NzbWXl2FKJiL0iIzlJf1+e/j71NbXdXl6JOJ39jln1jyYfSpWw+i9dRGDhiwTffo1lZx4J8d6vfG6rqMRRW9+VQNjr6rvdH4ajth6bx7vNY8ViMYzTiWf6HlTuMQMAk0gQXbWc0EfvEf7ofUKL3yPR2kxkyUdElnwEc+4HwDl6bNcwLc9Ou+ActV1WrtAppdRQZq+sovLwWXTMe5T1v/8xYneQ6PRDIjGwA4ts/oG/ohJbWSopqMjoxehKFCpJuj289PzzHLjnHti6kp/Ne026ek7SiVBnoKv3PRnsJBnshKZ+hOv2pHpRKnCOHINrwhTcEybjnjAFx4hRiE2nR2ebJh9KlTDnyNHUHH86vkfv7Uo8bFXVm5KIVALxuQSjph6b2z2osYndjnvi9tZwsONOwxhDvGkD4cXvE/r4fcIfvUd01Qpi61YTW7ca/7NPAGCvrt0sGXFP3B5x6FuZUkr1Vc0Jp9Px7BMkOwObP+BwfH54U0Zvga1iU+LQlUSk73vL+vyBPRaLEampxzN1Os4+9ESYWIxksLPHXphNw74yem/S3wcCJIPWz2wiYRKRMImWJqKrVtD52itdxxdvGe7xk6yEZOIU3BOm4Bo3sVcX3dSWaYutVImr//IlVB4+C1tZOY6auoLtYhYRnA2jcDaMovKwowFI+DsIf/JhV+9IeMlHJNrb6Fz4Ep0LX7Ke5/bg2WEanp12xbvTdDw77IytrDyfP4pSShUF13bjGffXW0m0t242t0LcnqLoYRanE3t1Dfbqmj4/1yQSJEPBTT0q/naiqz8jsnIZ0ZVLia5eiQkFCX/8AeGPP8h4UcE5ajsrEUn1kLgmTsZR31AU56wQaPKhVIkTux33+En5DqNf7JVVlO+9P+V77w9Ykxkjyz4l/NF7qd6R90kG/ITef4vQ+2/RBmCz4Z4w2ZozkuohcdQNy+vPkU8mESfh7yDR0U6iw0cy9bV8v0Nw1NTlOzylVJ65xoyFMWPzHUbOid2OPTUvJH1Jrmz3GV2Pm0Sc6NrVRFcuJbJyKdGVy4isWErC19rVI8+rz3ftb6uowj1h8qaEZMJk3OMmIk5Xjn+ywqfJh1KqaNhcbrw77YJ3p12oBUwySWztqk3zRj56j/jG9USWLyGyfAntj/8XAMeIUXh32hX3lKnW8ABvGeItw9btJm5PQY/v7ZoM2uEj0e4j4W/f7Guy2/2Ev51kwN/jsZzbjdfkQymltkDsDtzjJuIeN5HKQ2Z2bY/7Wq2EZMWyVFKylOjaVSQDHYQ+eJvQB29vOojdjmvMuNQ8kim4J07GNWFKXt57TSJOMhgkGeq0vgY7U9+nb8Gu+65xE6k+evagxaLJh1KqaInNhmvsBFxjJ3S9UcZbmrp6RcIfvU9k5VLiG9fj37ge/wvztn1Mj3fzhGSz+96M7d2TF+/nkhpxubfaDb+lXonEFr4mO9r7tyCYCLbKKuyV1dYQhcpqbN6yvh9HKaWGOEdNHY7dZ2zeSxKLEl29ksjKVEKyYimRlctIBjqIrlpBdNUKAi/N79rfXlPX1UNi9ZZMwTVmXI+v9/mkIbBZotC1LRTclEhs9r21j4mEe/0zlu9zoCYfSinVW4764VQeeASVBx4BWAshWvNG3if62TLrTTl1M6EgyVCIZDgIySSA1bMQDpFoaxl4MDYbNo/XSkg8XsTjZWJHB2vn3UdyK70S2yIuF/aqGuxVNdiqqlPfb+lrjTWGW+vgK6XUoBCnC/ekHXBP2qFrmzGGREsTkRUZw7ZWLiW2fg0JXyuhd1oJvfP6ZsdwjBnHJL+ftfPuw4SDJDs7MdFIdmN1ubB5y63yxGXl1sWyssz75bjGT8zqa3anyYdSqqTZvGWU7b4PZbvvs8V9jDGYaGRTUhIObZakJEOhVKKScQunE5ju+wY3Lb6YTFrlH4OdpItXlgGbFTwWwVZRtcXkoafkQiutKKVUYRMRHMMacAxroHyfA7q2J8MhoqtWbNZDEvlsGSYUJLZyKV66tRHp47ncm5KF8opNSUPX13Js5amvZWWbvpZVbLrvLSuIojOafCilhjwRsWq9uz2QhbG4JpnERMKfS0piAT9vvv46+xx6OO66+lSvRAVi17dipZQaCmwer1WhcYdpXdtMMkm8cQPBFUt44823mHHIIbgqqzclD96ykiopXzo/iVJKFQix2brmfmSKxWL4G314pu3ap1r2SimlSpfYbDhHjqasfjiBRh+enUq7jSjcsi5KKaWUUkqpkqLJh1JKKaWUUionNPlQSimllFJK5YQmH0oppZRSSqmc0ORDKaWUUkoplROafCillFJKKaVyQkvtbkNHR0efnxOLxQgGg3R0dJR0qbRt0fOg5yBNz4Ol2M9Df94PS5m2D/2n58Gi58Gi58FSzOehL++HYowZxFCKl4iMAdbkOw6llCpA2xlj1uY7iHzR9kEppbZom+2DJh9bICICjAb8/Xh6JVbDtF0/n18q9DzoOUjT82AphfNQCawzQ7jx0PYhK/Q8WPQ8WPQ8WIr9PPSqfdBhV1uQOnH9urJntUsA+I0xQ3acgp4HPQdpeh4sJXIeijXurNH2YeD0PFj0PFj0PFhK4Dz0KmadcK6UUkoppZTKCU0+lFJKKaWUUjmhycfgiAC/TH0dyvQ86DlI0/Ng0fOg9G/AoufBoufBoufBMiTOg044V0oppZRSSuWE9nwopZRSSimlckKTD6WUUkoppVROaPKhlFJKKaWUyglNPrJMRC4TkZUiEhaRRSIyI98x5ZKIXCEir4uIX0QaReQREdkx33Hlm4j8SESMiPw137HkmoiMEZE7RaRFREIi8r6I7J3vuHJJROwi8msRWZE6B8tE5GeSUdRdDQ3aRmgb0Z22D9o+DLX2QZOPLBKRs4BrsCoV7Am8C8wTkYa8BpZbhwL/BPYDZgJO4GkRKc9rVHkkIvsAlwDv5TuWXBORWuB/QAw4FpgGfA9oy2dcefBD4GvAN4CdUvd/AHwzn0Gp3NI2AtA2YjPaPmj7wBBsH7TaVRaJyCLgdWPMN1L3bcBq4B/GmKvyGlyeiMhwoBE41BjzUr7jyTURqQDeAr4O/BR4xxjznbwGlUMichVwoDHm4HzHkk8iMhfYaIz5asa2/wIhY8w5+YtM5ZK2EZ83lNsIbR+0fYCh2T5oz0eWiIgL2At4Jr3NGJNM3d8/X3EVgOrU19a8RpE//wQeN8Y8s809S9Ns4A0ReSA1xOJtEbko30HlwavAkSKyA4CI7AYcBDyZ16hUzmgbsUVDuY3Q9kHbBxiC7YMj3wGUkGGAHdjYbftGYGruw8m/1FW9vwL/M8Z8kOdwck5EvoA1tGKffMeSR5OwupOvAX6HdS7+LiJRY8xteY0st64CqoCPRSSB9V7xE2PMXfkNS+WQthHdDOU2QtsHQNuHtCHXPmjyoQbTP4HpWBn8kCIiY4G/ATONMeF8x5NHNuANY8yPU/ffFpHpwKXAUGpczgS+BJwNfAjsDvxVRNYNsUZWqUxDso3Q9qGLtg+WIdc+aPKRPc1AAhjRbfsIYEPuw8kvEbkWOAE4xBizJt/x5MFeQAPwVkbBCjtwiIh8A3AbYxL5Ci6H1gOLu237CDgtD7Hk09XAVcaYe1P33xeR8cAVDK1GdijTNiLDEG8jtH2waPtgGXLtg875yBJjTBR4EzgyvS3VpXwksCBfceWaWK4FTgGOMMasyHdMefIssAvWFYz07Q3gLmD3IdKwgFXJpHsZzR2Az/IQSz6VAclu2xLoe/CQoW2ERdsIQNuHNG0fLEOufdCej+y6BrhNRN4AXgO+A5QDt+QzqBz7J1bX4UmAX0RGpra3G2NC+Qsrt4wxfmCzMcwi0gm0DLGxzX8BXhWRHwP3AzOAi1O3oeQx4CcisgqrW30P4LvAf/Ialco1bSO0jdD2YRNtHyxDrn3QUrtZluoy/T4wEngH+JYxZlFeg8ohEdnSH9RXjDG35jKWQiMiLzDESikCiMgJwO+B7YEVwDXGmJvyG1VuiUgl8Gusq70NwDrgHuBXqSviaojQNkLbiJ5o+6DtA0OofdDkQymllFJKKZUTJTueTCmllFJKKVVYNPlQSimllFJK5YQmH0oppZRSSqmc0ORDKaWUUkoplROafCillFJKKaVyQpMPpZRSSimlVE5o8qGUUkoppZTKCU0+lFJKKaWUUjmhyYdSg0hEDhMRIyI1OXxNIyInb+XxCal9ds9VTEoppT5P2wg1FDnyHYBSKutGAW35DkIppVRB0jZC5ZUmH0qVGGPMhnzHoJRSqjBpG6HyTYddKdUHImITkStEZIWIhETkXRE5PePx40Tk09RjzwMTejjGRSKyWkSCIvKwiHxXRHzd9jlJRN4SkbCILBeRX4hIry4WdO9SF5EZIvJ26lhvAHt02//nIrJOROoztj0uIs+LiL5HKKVUL2kbodS2ac+HUn1zBXAOcCmwBDgEuFNEmoDlwEPAP4Ebgb2BP2c+WUQOBK4HfgjMAY4Cft1tn4OB24FvAS8Dk1PHA/hlX4IVkQpgLjA/FfdE4G/ddvstMAv4N3CKiFwGHADsZoxJ9uX1lFJqiNM2QqltEGNMvmNQqiiIiBtoBY4yxizI2P5voAxYCZxkjNk547GrsBqRWmOMT0TuBSqMMSdk7HMncIIxpiZ1/xngWWPM7zP2OQf4ozFmdC/iNMApxphHRORi4HfAdsaYcOrxS4HrgD2MMe+ktk0C3gH+hdWgXWiMubtvZ0gppYYubSOU6h3t+VCq96ZgNSDzRSRzuwt4G/ACi7o9Z0G3+zsCD3fb9hpwQsb93YADReQnGdvsgEdEyowxwT7EvBPwXrpR2UJMGGOWi8j/ATcA92mjopRSfaZthFK9oMmHUr1Xkfp6PLC222MR4O9ZfJ1fYHXPdxfuYVu2HAIkgAki4jDGxAfxtZRSqtRoG6FUL2jyoVTvLcZqQMYZY17s/qCIfATM7rZ5v273PwH26bat+/23gB2NMUsHEGvaR8CXRcSTcWWre0yIyFnAqcBhwP3Az7AaN6WUUr2jbYRSvaDJh1K9ZIzxi8ifgL+kKny8AlQDBwIdWJMEvyciV/P/7d2/SlxREIDxb/pYp/EBUsTKOo2FmCIQSGmhtnZKQBKSRpCUKQwkYJPKQuwUVOzEgGCVJwj6DKYKZCxmi4so2ducdTffr9z755xumD0zc6sxbxZYvvOabeAsItaBA2AOeAl0m682gcOIuAb2gb/UMfvzzPzQc9u7VLPgTkR8oiarvO3eEBHTVH3vRmaeR8TKYP2jzLzouZ4k/ZeMEdJwHJEm9fORmjzyjvrH6Jg6Yv+VmdfAG+A18JOadvK++3Bm/hj8vj64ZwH4TOeoPDNPqPreeeASuADWgKu+m83MG+AVMEPVHG9RzY0ARBUmf6dqir901v9KTWh5giRpWMYI6R+cdiWNWETsAM8y88Wo9yJJelyMEZo0ll1JjQ0mhpwCv6nj9CVgdaSbkiQ9CsYITTpPPqTGImKPatqboj46tZ2Z34Z8dpEadXifq+78eEnS+DFGaNKZfEhjJCKmgKcPXP6Tmb1rfiVJk8EYoXFg8iFJkiSpCaddSZIkSWrC5EOSJElSEyYfkiRJkpow+ZAkSZLUhMmHJEmSpCZMPiRJkiQ1YfIhSZIkqQmTD0mSJElN3AKKTuObMjeIYQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = ex.plot_variables2d(('sum_flops', 'max_mem'), n=[N], p=[3],\n", + " d=[3,4], edge_idx=range(10),\n", + " seed=[SEED]\n", + " )\n", + "for ax in fig.axes:\n", + " ax.set_yscale('log')\n", + " ax.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "ExecuteTime": { + "end_time": "2020-10-11T03:32:05.580417Z", + "start_time": "2020-10-11T03:32:05.034225Z" + }, + "scrolled": false + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "58766bb48c1142a885c375dc4a55818c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "name": "stdout", "output_type": "stream", "text": [ - "Traceback (most recent call last):\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.py\", line 3331, in run_code\n", - " exec(code_obj, self.user_global_ns, self.user_ns)\n", - " File \"\", line 1, in \n", - " fig = ex.plot_variables2d(('sum_flops', 'max_mem'), n=[N], p=[3],\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 212, in plot_variables2d\n", - " fig = self.plot2d(self.get_variable, varname=varnames, **kwargs)\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 178, in plot2d\n", - " data = self.map(func, processes=processes, **uservars_corrected)\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 72, in map\n", - " result = np.array(list(tqdm(\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/tqdm/notebook.py\", line 215, in __iter__\n", - " for obj in super(tqdm_notebook, self).__iter__(*args, **kwargs):\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/tqdm/std.py\", line 1104, in __iter__\n", - " for obj in iterable:\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py\", line 73, in \n", - " map(lambda x: func(**x), param_iter)\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 193, in get_variable\n", - " return self.get_variables([varname], **kwargs)[0]\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/Explorer.py\", line 144, in get_variables\n", - " retval = f(**call_kwd)\n", - " File \"/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/lib/lru_cache.py\", line 154, in wrapper\n", - " result = user_function(*args, **kwds)\n", - " File \"\", line 10, in circuit\n", - " comp.energy_expectation_lightcone(list(graph.edges())[edge_idx])\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 95, in energy_expectation_lightcone\n", - " composer.energy_expectation(i,j)\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 71, in energy_expectation\n", - " self.ansatz_state()\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 132, in ansatz_state\n", - " self.cost_operator_circuit(gamma[i])\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 121, in cost_operator_circuit\n", - " self.append_zz_term(u, v, gamma)\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 115, in append_zz_term\n", - " self.apply_gate(self.operators.cX, q1, q2)\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/CircuitComposer.py\", line 42, in apply_gate\n", - " self.builder.apply_gate(gate, *qubits, **params)\n", - " File \"/home/dali/anl/qsim/Qensor/qtensor/OpFactory.py\", line 107, in apply_gate\n", - " self.circuit.append(gate(*qubits, **params))\n", - " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 62, in __init__\n", - " self._check_qubit_count(qubits)\n", - " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 66, in _check_qubit_count\n", - " n_qubits = len(self.gen_tensor().shape) - len(\n", - " File \"/home/dali/anl/qsim/Qensor/qtree/qtree/operators.py\", line 408, in gen_tensor\n", - " return np.array([[[1., 0.],\n", - "KeyboardInterrupt\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/interactiveshell.py\", line 2044, in showtraceback\n", - " stb = value._render_traceback_()\n", - "AttributeError: 'KeyboardInterrupt' object has no attribute '_render_traceback_'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 1148, in get_records\n", - " return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset)\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 316, in wrapped\n", - " return f(*args, **kwargs)\n", - " File \"/home/dali/.local/lib/python3.8/site-packages/IPython/core/ultratb.py\", line 350, in _fixed_getinnerframes\n", - " records = fix_frame_records_filenames(inspect.getinnerframes(etb, context))\n", - " File \"/usr/lib/python3.8/inspect.py\", line 1503, in getinnerframes\n", - " frameinfo = (tb.tb_frame,) + getframeinfo(tb, context)\n", - " File \"/usr/lib/python3.8/inspect.py\", line 1461, in getframeinfo\n", - " filename = getsourcefile(frame) or getfile(frame)\n", - " File \"/usr/lib/python3.8/inspect.py\", line 708, in getsourcefile\n", - " if getattr(getmodule(object, filename), '__loader__', None) is not None:\n", - " File \"/usr/lib/python3.8/inspect.py\", line 747, in getmodule\n", - " if f == _filesbymodname.get(modname, None):\n", - "KeyboardInterrupt\n" + "\n" ] }, { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAEiCAYAAAAbG1bEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAABy30lEQVR4nO3deZxcZZX4/8+praurl+wLSyDse9IJCAISEQQBccGZEUcdRccFRWdwHxxnXMYRvo6DG/6UYRRwHMdtkHFhCyAiAoGQdBb2LSQEspCk00ttt6rO7497b1d1pTvpqq69zvv1KtJ169atp55u6qnznGcRVcUYY4wxxhhjGlGg3gUwxhhjjDHGmIlYwGKMMcYYY4xpWBawGGOMMcYYYxqWBSzGGGOMMcaYhmUBizHGGGOMMaZhWcBijDHGGGOMaVgWsBhjjDHGGGMalgUsxhhjjDHGmIZlAYsxxhhjjDGmYVnAYoypOxF5lYjcLyIjIqIi0iciXxIRrXfZjDHGGFNfoXoXwBjT3kQkDPwSSAKfAOLAC3UtlDHGGGMahgUsxph6Oww4GPigqv6nf1BE6lciY4wxxjQMGxJmmoqIdNW7DKbi5nr/DtSzEMaY1mTthjHNzwIWUxEi8pfe3IPXjvPYh73HjvfuLxKRG0TkORFJisgWEfmRiMwqet6XvOcdKyI/FZFdwH3eYxtE5Hci8hoReci7znMi8p6ia8wUkW+IyDoRGRaRQRG5VUQWF513pvdabxeRL4rIZhEZEpFficg0EekQkW+JyDbvOteLSMc47/XdIvKIiCREZKeI/ExEFlSgiidNRMLee3jaq5cdInKfiJxTcM49InLPOM+9QUQ2FNxf6NXLp0XkMq+O4yJyh4gsENc/iciL3nv+PxGZWUJZbwD+6N39pfdae5Sr4PyQ93rPikjK+zv4WvHvouDv41wR6ffq4TEReVupdWWMqQ5rN0av0wjtxiXee3mNiHxHRLaLyICIXCsiERGZLiI/FpFd3u3rImPT4F47cb/3OZrw3tNfFp3zPu913l90/PPe8QtKKPM9IrLe+9v4o9c2PeO/poi8VkRWeGV5UkReP841DvD+jrZ6bcqj45StIr9nMzU2JMxUyu+BYeDt5L+A+i4GHlXV9d79c4BDgeuBLcBxwIeA40Tk1apaPNH6l8DTwOeBwg/Iw4FfAT8EbgTeD9wgIo+o6qPeOYcCb/Wu8TwwD/gw8EcROVZVXyp6rSuABHCVd/2PAw6QA2YAXwJeDVziXe8r/hNF5B+BfwF+AfwnMMd7/r0iskRVB8arOO+5YWDaRI8X2amqub08/iXvffwn8BDQC5wELAWWT/I1ir0LiADfBWYCn8V9n3cDZwL/j3x9fQP3dzEZ1wKbcX+33wEeBrbu5fz/BN6L+3v/d+AU3Pd6DHBR0blHAD8HfoD79/E+3KDoPFX16+FLVL6ujDGTY+1G47Qbvu/i1u8XvTJ/CDf7fRqwEbc+LwA+A6wHflzw3L8HfgP8N2578Q7cz9wLVfX3AKp6vbgdR1eLyHJV3SQiJ3iv90NVvWWS78c3A/gd8DPc39dHgJ+JyLuAb+F+/v/UK++vRGSBqg4BiMg84EFAgWuA7cD5wA9FpFdVv1X0WmX/nk0FqKrd7FaRG+6HwlYgWHBsPpAF/qngWOc4z30H7ofGGQXHvuQd++k4528Y5/w5uBO3v1FwrAMIFD13oXdeYZnO9K63DggXvacccEvRNe4HNhTcPxjIAJ8vOu943A+0zxe/h6Lz/NefzG3hPq7VD/xuH+fcA9wzzvEbit7XQu81twHTCo5/zTveD4SK6isFdJTwd+O/978sOv4l9yNq9P5i77zris77N+/468b5+3hbwbFe4CVgVSl1ZTe72a16N6zdaJR24xLvvNsAKSpzDvh+wbEgsImiNqT4dwSEvbq5q+j4fGAHcAduYLMKd6GV3hL/du7xyvzXBceO8o5lgVMKjp/rHb+k4Nh/em3CrKLr/g9ukNZZid+z3SpzsyFhppJ+jjsf4cyCY3+JO/Tw5/4BVU34P4tIVERm4/ZygNuzXewHE7zeY6r6p4LrbgeexO0d84+l1OtVEpGgN3xg2DtvvNf6sao6BfdX4PbO/ajovBXAAhHxs5Rv897nL0Rktn/D7al6GnjdBO/Btwa3B3Eyty37uNYAbq/jEfs4rxS/VNXdBfdXeP/+RFUzRccjwAEVfG2fP1Tg6qLj/+79+8ai4y8Bv/bvqOogbm/gEhGZ7x0eoPJ1ZYyZPGs3GqPd8P1QvW/dRe/lh/4BVc0CKymoM+944e9oBm72508U1ZmqbgEu88r1J6APeL/3GV2qYdzsin/tJ3E/1x9X1RUF5/k/H+qVT4C/AH7r3S2s/9u9shf/rsv9PZsKsMo0lXQbsBs3lX+Xd+xioF9Vn/JPEneOwxdxe8fmFl1jvPT28xO83sZxju3CTc36rxXATVN/FDgEt2fIt2MS1/S/pG8a53jAK+8O3OFHgtvIjMeZ4DgAqroLuHNv55Tgn4H/A54SkfW4v5f/UtW1U7hmKfUCBb+DCjoYtzfrmcKDqrpFRAa8xws9U9TwAvh/hwtxG/Bq1JUxZvKs3WiMdsNXynsZ8zkvIhcCX8ANQArncBR/DqOqPxORd+N2NP2Hqt5VfM4kvTjO5/zu4vKq6m5vyo1f5jnAdNwhbx+a4NrFf2fl/p5NBVjAYipGVVMicjNwkYh8FHfc7+m4Y14L/QJ3POy/4Q7JGcb9n/s2xl8IIjHOMXBTvuMpHK/8edzxwT8C/gnYiful91sTvNZE19zXawVwP5TPn+Dc4Qme715EJII7N2Qytns9XONS1XtF5DDgLbhp8A8AnxCRSzW/bLAytp58wXGOQfn1Ug17NH5lX2hydWWMqRJrNxqj3ShQynsZrTMROQN3/sq9uIHey7gB1/uAd+7xRDdrdZJ391gRCejk5thMpbyFZfZ/jz/Bncs0nuKOq0ZqB9uOBSym0n6OOyn6bNyJ0EJBWt9LE58NfFFVCyceVmtIzl8Cf1DVvy08KCLTgVcq+DrP4r7X5wt7BUtwGvCHSZ57CO5Y7Amp6k7cyanXi0g3biPyJdwxu+D2KB46zlOLsxSN5AXcRuYI4HH/oDdxcjp7bjZ5uIhIUe/bkd6/G/wDk6grY0x1WbvRAO3GFP0F7hyfN6hqyj8oIu+b4PzvAT24E9mvBC5nz+G+1bQdGMKdO1XpLJWpAgtYTKXdidsbdTFuw/OQqham5v2eiOKeh8urVJ5s8WuJyF/hzrF4ZtxnlOcm3A/dL4rIuwu/JHtjZWeq6t5Sw/5Y5MnY61hkEZlV+FqqOiwizwCFy2Q+C1wgInO8MdyIu2Tn6eyZ3m4Ut+BO9r8cd8Ue3ye9f39fdP7+uCuH3QQgIr3Ae3CHmmzxjk2mrowx1WXtRp3bjQrI4maLRrP0IrIQd7W1McRddvhi4O9U9bte2/NVEfldmYFbyVQ1KyL/C7xTRI7X/Gp0fhlH20bTGCxgMRWlqo6I3IQ7zrgL+HTR44Mici/wWW9Jxs24Q3EOqVKRfgf8s4hcj7tyxwm4S/Q+V8kXUdVnReQLuI3PQm+IwxDu+7oI+A/c5X4nen4lxyI/Ju5eJo/gfgk4CbfH8JqCc36E+0X/dhH5Ie5Y3UuBR3FX02o4qrpGRG4EPuT1dP4ROBm3Z/ZmVS3uaXwKd3nKV+GuQvR+3OEmhT1+k6krY0wVWbvREO3GVP0et025TUR+itumXIYb4C3yTxKRucD3cTND/ufsx3AXGLhBRF5T5tCwcvyD97orROQ64DHcIXZLgdcz+eF2pgYsYDHV8HPcuQCKO+642Dtx13q/DLcX6w7cMbzFa9tXwtdwG8B34vborMKd5HdVpV9IVa8SkaeAT+BODgU3W3EH7tjeWvkO8GbcBr0Dd6jUF3DHfvtlfVzczdK+gpuGfwz4G9x6OrOGZS3VB3C/NFyC26BvwW3svzzOuU/jrpP/b7hLXT4PXKyqtxecs8+6MsbUhLUb9W03pkRV7xaRv8UNAr6F+3n7OdwFThYVnPp93M/a9/kZJVXdISIfwl0A5dPA12tU5q0icjLu4itvw517swO34+5ztSiDmTzZc3EFY4xpbiKyAVivqhfWuyzGGGOMmRrbh8UYY4wxxhjTsGxImDGmKrwVt7r3cdpkl9o0xhjTBrw9dyJ7OSVrE+LbjwUsxphq+TT5MdkTqfZSm8YYY5rLTcBr9/L4C7hzY0wbsTksxpiqEJFDGX+vl0L3qWqyFuUxxhjT+ETkRPI70o8noap/rlV5TGOwgMUYY4wxxhjTsGzSvTHGGGOMMaZh2RyWCXi7zO6Pu4mTMcaYfesBXtImSt2LSAx4HPilqn56X8cncT1rO4wxpjT7bDssYJnY/sCL9S6EMcY0mQNxdyJvFv8IPFjC8X2xtsMYY0q317ajZQKWSveS4fWObdq0id7e3pLK4jgOd9xxB+eeey7hcLik57Yaq4uxrD7yrC7yWqEuBgcHWbBgATRRZkFEjgCOBn4LHL+v45NkbUcFWF2MZfWRZ3WR1wp1Mdm2o2UCFirfSwZAb29vWY1OLBajt7e3af+AKsXqYiyrjzyrizyri9KJyDLgM8CJwH7ARap6c9E5l3nnzAfWAB9X1YcKTvmG9/hpRZef6PikWdsxNVYXY1l95Fld5LVTXbTEpPuC3rBbJ3PcGGNM0+vCDUIuG+9BEbkYuBr4MrDUO/d2EZnrPf4W4ClVfaroeeMeN8YYUz91z7A0ei+ZMcaYxqOqt+J1Rrnz3PfwSeA6Vb3eO+dS4I3A+4GrgFcD7xCRvwK6gbCIDAKd4x1X1a+M9yIi0gF0FBzqAbfn03Gckt6Tf36pz2tFVhdjWX3kWV3ktUJdTLbsdQ9YyPeS/Qh3d9MxCnrJLgVWAJfj9pIdparbCnvDROS0gueNe9wYY0xrE5EIbifYlf4xVc2JyJ3Aqd79K4ArvPMvAY4vCEomOj6eK4AvFh+84447iMViZZV/+fLlZT2vFVldjGX1kWd1kdfMdRGPxyd1Xt0DlkbpJTPGmKnKZrNl9XQ5jkMoFCKZTJLNZqtQsqkLh8MEg8F6F2OyZgNBYGvR8a24w4Qr6UrcTjVfD/DiueeeW9YcluXLl3POOee0/Hj0fbG6GMvqI68V6yKbzZLJZCh1RfhMJsP999/PaaedRihU96/0exARQqHQXtuOwcHBSV2r8d5dgVr2kllavzqsLsay+shrpbpQVbZt2zbpD97xnj9//nw2btw4UcdNQ+jt7WXu3LnjlrGZf4+qekMpx4vOSQEp/75fN+FwuOwvU1N5bquxuhjL6iOvFepCVdmyZQsDAwNlP3/+/Pm8/PLLDd12TJ8+nfnz549bxsn+Dhs6YKG2vWQtldZXYHWkh0OdBNM1U7dy+Jo5XVkNVh95rVAXPT09zJgxg9mzZxOJRBq64SiHqpJOp9m+fTtPPfUUQ0N7rj452bR+jbwCZIF5RcfnAVtqX5zmoarcOpDkpO4Ic8NNk1Ezpin5wcrcuXOJxWIltx25XI7h4WG6u7sJBBpvHS1VJR6Ps23bNgD222+/sq/V6AFLSabSS0aLpfV/P5Dkq8/s5K3To/zs8Jl1KQM0Rl00EquPvFapi2w2y3PPPcecOXOYNWtWWddQVYaGhujp6WnoYCcajdLR0cFpp522R4q/3OxSNahqWkQeAc4GbgYQkYB3/5o6Fq3h/WZXgrc9uZ23zYzxy6Pm1Ls4xrSsbDY7GqyU23bkcjnS6TTRaLQhAxaAzs5OALZt28bcuXPLHlrc6AFLzXrJWi2t/0B8GID7htOEQqG6fwlqhdRtJVl95DV7XWSzWURkSj1cuVwOcD93GrXRAeju7uaVV14B9kzj1/p3KCLdwOEFhw4RkT5gp6puxO2AulFEVgIP4S7Y0gVcX9OCNpn7Bt1m8E+DSVS17m2HMa3KH0Zb7iieZuK/R8dxyg5YGrdlxO0lA/xeMmBML9kD9SpXM+gfSQPwSibHS+nGnMRrTCtphy92DfYeTwJWezdwA5TVwFcAVPXnwKe9+/1AH3CeqhYPMTYF1sTdtmO7tR3G1ESDfa5WRSXeY90zLNZLVnmqyhovYAFYHU9zQEfdf9XGGFMxqnoPsNdWUFWvwYaATZqqjnZ2AawasbbDGNMYGiHDYr1kFbbFybI9kxu9X9gAGWOMMePZnM6yo6DtWG1thzGmQdQ9YFHVe1RVxrldUnDONap6sKp2qOopqrqijkVueP0jY5cXtUbHGFPs+9//PosWLaK3t5fe3l5OPfVUbr311noXy9RRf3xsW2FthzGmWL3ajroHLKby1nqNzv7ekpSWYTHGFDvwwAO56qqreOSRR1i5ciVnnXUWb3nLW3j00UfrXTRTJ/5Q4oUdbtthAYsxpli92g4LWFqQH6C8e04XABtSWQYK0vzGGPOmN72JCy64gCOOOIIjjzySf/3Xf6W7u5sHH3yw3kUzdeJn598zpxuATeks2x2beG+MyatX22Gz6VqQ30t25rQoP98xwgupLP0jac6cFq1zyYxpD6qKppKTPj+Xy6GpJLlkGKawrLF0RMtajSWbzfLLX/6SkZERTj311LJf3zQ3v+04o7eDw6MhnklmWD2S5tzpnXUumTHtwdqOiVnA0mJGsjmeSro72/fFIvTFIryQSljAYkwNaSrJc3/9hpKft2OKr3vo/9yORCf/5XLdunWceuqpJJNJuru7+fWvf82xxx47xVKYZjSYyfFsym07FsciLOmK8EwyQ78FLMbUjLUdE7MhYS1mfdxBgXnhAPMiQZZ0RQAbi2yM2dNRRx1Ff38/K1as4CMf+Qjvfe97eeyxx+pdLFMH/tzHBZEgs8JBlnptxyprO4wxRerRdliGpcX4m34tjrmNTZ/X6NjEe2NqRzqiHPo/t0/6/Fwux9DQED09PVPa6V46SsuiRiIRDj/c3QbrxBNP5OGHH+bb3/421157bdllMM3JHw62uGts22GdXcbUjrUdE7OApcX4jU5fUaPzeMIhmVOigdbfUdWYehORktLr5HJI2iEQ7ZxSozNVuVyOVCpVt9c39dMfdyfc93mdXX52/plkhsFMjt6QDcgwptqs7ZiYBSwtZo23yssir7E5MBJkVijAjkyO9fE0J3V31LN4xpgGccUVV3D++edz0EEHMTQ0xE9/+lPuuecebr998r17pnUUZ1jmhIMsiATZlM7SH0+zrNfmQBpj6td2WMDSQnKqo+OQ/V4yEaGvK8Jdu5OsHrGAxRjj2rZtG+95z3t4+eWXmTZtGosWLeL222/nnHPOqXfRTI05OWW933Z0hUePL+mKsCmdYPWIBSzGGFe92g4LWFrIs8kMIzmlMyAc2Zn/1S7xAhabx2KM8f3whz+sdxFMg3gy6ZBS6A0KCzvGth2/2ZVg1bC1HcYYV73aDhuU2kL6vR6y4zvDBAvW0/bnsfjDxYwxxhif35m1OBYhUNB2LLFFW4wxDcIClhaytmgMss8fHrYmniarWvNyGWOMaVx+Z1Zx2+EvbfxYwiGezdW8XMYY47OApYX0T9DoHNkZIhYQ4jnlaW9TSWOMMQYKlsMvajv2jwSZEwqQA9bFLUNvjKkfC1haSH4PlvCY40ERFnnHbE19Y4wxPlUdHfLVV9R2iMjosDDbQNIYU08WsLSIV5wsm9NZIL+kcSHbQNIYY0yxzeksOzI5QgLHxvZsO5Z2W9thjKk/C1hahJ9dOawjRE9wz1+rBSzGGGOK+Yu1HNMZHndj4SW2470xpgFYwNIiJpo06SsMWNQm3htjjKFgw8hxsiuQD1jWxdM4OWs7jDH1YQFLi/AbncJNvwqdEIsQBF7J5EaHjhljTLsSkekislJE+kVkvYh80Dt+lHfMvyVE5K11Lm7V+Iu19E3Q2XVoR4hpQSGt7mphxhhTDxawtAh/SNiiCXrJogHhmE6beG+MMZ4hYJmq9gGnAJ8XkVmq+qSq9nnHXwOMAMvrV8zqGs2wTNDZZRPvjTGNwAKWFpDKKY8n9t5LVviYzWMxxrQ7Vc2qaty72wGIdyv0ZuAuVR2paeFqZDCT49mUu9T9REPCwOaxGGPqr+kDFkvru2n6jMLMUIADI8EJzxvdtThujY4xZqyrrroKEeHyyy+vd1EmRUSWichvReQlEdHxPt9F5DIR2SAiSRFZISInFz0+XUTWAC8C/6aqrxRd4u3Az6v2JupsrdcWLIgEmRWeuO3os4DFGDOBWrUdTR+wYGn90YzJ4lgYkT1XefEttgyLMWYcDz/8MNdeey2LFi2qd1FK0QWsAS4b70ERuRi4GvgysNQ793YRmeufo6oDqroYOAR4p4jMK3h+L3AacEvV3kGd5YeDTZxdgfyO92tG0mRt0RZjjKeWbUeo6q9QZaqaBdo6rT/ZRsefkL8hlWVXJsuM0MQ9asaY9jA8PMy73vUurrvuOr761a/WuziTpqq3ArcCE3XUfBK4TlWv9865FHgj8H7gqqJrbfUyLWcAv/IOvwW4Q1WTeyuHiHTgtj2+HgDHcXCc0iap++eX+rxyrRpOAXBCNLjX1zw0BJ0BYSSnPD6U4KjO8ee7VFKt66LRWX3ktUpdOI6DqpLL5cjlcmVdw1/11b9OLfltx7XXXsvXvva1vZYhl8uhqjiOQzA49rvnZH+PdQ9YRGQZ8BngRGA/4CJVvbnonMu8c+bj9pJ9XFUfKnh8OvBH4AjgMxOk9X9cpbdQd35af18By4xQkIUdQTaksvSPOLxumgUsxlSDqhIvYQnYXC7HSE4JZnMEptCBHQvIXrOs47nssst44xvfyOtf//qmClj2RkQiuG3Klf4xVc2JyJ3Aqd4584C4qg6JyDRgGfD9gsu8HfiPSbzcFcAXiw/ecccdxGKxssq/fHltBgP8acaREI6RfWIdt6zZvddzD5pxBE+Gu7j+/odZlhqoSfmgdnXRLKw+8pq9LkKhEPPnz2d4eJh02v0ep6rEy2gDRnYPTqksMZmw42dCH/nIR3j961/PySefTCaTIZ1OMzg4fjnS6TSJRIJ7772XTCYz5rF4PD7uc4rVPWAhn9b/EXBT8YMFaf1LgRXA5bhp/aNUdRu4aX1gsdcA3SQiv1LVrd7z/bT+O6r/VmpPVQuGhO09YAF3LPKGVIL+kTSvmxatdvGMaUvxnNL70KYynjm1Rmfw5AV0BSff6PzsZz9j1apVPPzww1N63QY0GwgCW4uObwWO9n4+GPgPcVtpAb6rqusAvADmZOAvJvFaV+K2Ub4e4MVzzz2X3t7ekgrtOA7Lly/nnHPOIRyubhbDySkvrn4ZFC55zSkc2rH3rwO3vzDAk9vjcORxXLBgWlXLBrWti2Zg9ZHXKnWRTCbZtGkT3d3dRKPu97GRbI6DVm6ueVkGTjqArnE2HZ/Iz372M9avX8+KFSuIRqOEQiEikciEn3nJZJLOzk6WLVs2+l59EwU5xeoesFhaf2o2pDLsziphgcND+37NRdEQNwOrhpM4TmfVy9cqqdtKsfrIa5W6GC+tX+vUvC+Xy5GbZLyyadMm/v7v/57bb7+dSCQyWuZqp/UbhZel75vgsd3AvPEeG+fcFJDy7/vtWDgcLvvL1FSeO1lPxtOkFHqDwhFdUQL76F09sScK2+OsTWRr+iWxFnXRTKw+8pq9LrLZLCJCIBAgEHCDhalk2KeisAz7smnTJj7xiU+wfPnyMVlk/71MdH0RGfd3NtnfYd0Dlr2xtP6+PRTphemHcmA6zp233brP8x3v/Pu27uSWxx+oevl8zZ66rTSrj7xmr4uJ0vobjyqtd70SMsNDDE4yrX/fffexbds2TjrppNFj2WyWe++9l+9973ts3bp1j6CkEmn9GnkFyLJn0DEP2FL74jSewsz8voIVgKXdbn/eqpE0qlry8BFjzL7FAsLgyQsmfX4ul2NwaIjenp5JBxwTve5kPfLII2zbto2lS5eOHvPbjmuuuYZUKrVH21EJDR2wYGn9fVr10hC8NMTp82dxwakX7PP8ReksV67dyuZQJ68773w6S/gjLUerpG4rxeojr1XqYry0PkApg2ZUlaGhIXp6emr2RfDCCy9kzZo1Y4797d/+LUcddRSf/exnmTFjxh7PqURavxZUNS0ijwBnAzcDiEjAu39NHYvWMNZ4O9zva+6j77jOMGGBgWyODakMh0Sb9/9ZYxqViJQ0rDcnkA0IXcHJZ0im6uyzz2bdunVjjr3vfe/j6KOP5nOf+1xVghVo/IBln9o9rb8u4fZyLu2JTuq1FoZCzA4FeCWT40lHeVX35BqrqWr21G2lWX3kNXtdjJfWL5U/BGtvKfVKmzZt2h5LUXZ1dTF79uwJl6isRFq/UkSkGzi84NAhItIH7FTVjbgdUDeKyErgIdz5j13A9TUtaINaM8nFWnyRgHB8LMLqkTSrRxwLWIxpUz09PRx//PFjjnV1dTFr1qw9jldSo+/DYmn9fVgb93rJJjHhHtwvRLYJmDGmBZwErPZu4AYoq4GvAKjqz4FPe/f7cTu2zvMXZGlnhYu19MUmH3jkd7xP7eNMY4yprIbOsFhaf+8GMjmeT7kZlsVdpTU6d+5Oju7fYowxAPfcc0+9izBpqnoPe+65VXzONVhbsYfN6Sw7MjlCAsdOsrML3A0kf4Q7j8UYY3y1aDvqHrBYWr98/v4rB0WCJW0CaTveG2NM++r32o5jOsNES5jHaNl5Y0y91D1gwU3r/6Hgvj/x/UbgElX9uYjMwU3rz8dN7VtaH1g7yR3ui/lp/bVxh6wqQVvtxRhj2saaEvbuKrQoFiYAbHVyvJzOsF+kEb5CGGPaQd3nsKjqPaoq49wuKTjnGlU9WFU7VPUUVV1RxyI3jFI2jCx0RDRELCDEc8pTicy+n2CMMaZl9HsrhPWV2NnVFQxwdKc7/NiGhRljaqnuAYsp35p4actS+oIio0GOpfaNMaa9jGZYSpj76Ftiw8KMMXVgAUuTcnLKo9445L4yGh3/Of7SlsYYY1rfYCbHs/5iLSVm5yEfsKwatrbDGFM7FrA0qSeTDimFnqCwsKP0ccSLrZfMmIry91JpZe3wHludv1jLgkiQWeHSN3jzA5Z+6+wypiLa4XO1Eu/RZsw1qcL5K4EyJs0vKVgpTFVrtru2Ma0mEokQCAR46aWXmDNnDpFIpOT/n3K5HOl0mmQyWbONI0uhqqTTabZv304gECASqc2Gs6by1pS5WIvPn/fyQirLDidbVtBjjLG2o1QWsDSptSPlzV/xHR+LEAR2ZHK8mM6yoIwsjTHG3f39kEMO4eWXX+all14q6xqqSiKRoLOzs6E7D2KxGAcddFBDNoxmcvq9uY99ZQwHA5geCnBYR4hnUxlWj6R5/fTOShbPmLZhbUdp7Ftqk/LT8YtK2KW4UDQgHBsLsy7usHokbQGLMVMQiUQ46KCDyGQyZLPZkp/vOA733nsvy5YtIxwu7//pagsGg4RCoYZuFM2+TTXDAm6W5dlUhn4LWIyZEms7Js++pTYhVR1tdEpdlrJQX1eEdXGHNSNp3jwzVqniGdOWRIRwOFxWoxEMBslkMkSj0YZtdEzzc3LK+iks1uJb2h3hf3fGbWljYyrA2o7Jsbx+E3rZyfJKJkcQOK6z/D/QPlva2Bhj2oa/WEtvmYu1+GxpY2NMrVnA0oT8Tb+O6gzTGSz/V9hnq70YY0zbmOpiLT4/YHkqmWEo2/orHBlj6s8CliY0lU2/ChWu9rLTKX3spDHGmOaxZoqLtfjmhoMcEAl617QOL2NM9VnA0oT8zR7LXeXFNz0U4BBvWIBlWYwxprX5bcdUAxawYWHGmNqygKUJ+T1aiyrQ6PhZFr/nzRhjTOtR1dEhYX1lri5ZaKm/470FLMaYGrCApcmMZHM8ncwA7jjkqfJXirFeMmOMaV2b01l2ZHKEBI6tSNthGRZjTO1YwNJk1sUdFJgfDjIvMvUdhvsKdrw3xhjTmvxhv8d0hokGpr6Xjp9heSzukMzplK9njDF7YwFLk+mv0IR73xKvp+2JhEPCVnsxxpiWtKZghbBKODASZHYoQBZYZ3MgjTFVZgFLk6nUhHvf/pEgc0YbHZvHYowxrchfDn8qmw0XEpHRifc2j8UYU20WsDSZtRWccA9uo2P7sRhj2o2ITBeRlSLSLyLrReSDBY9dKCJPisjTIvKBepazUiq1HH6hJTak2BhTI+VvdWtqLqvK2nhle8n8ay3fnbRGxxjTToaAZaoaF5EuYL2I3ATsBq4GXuf9/IiI/FpVd9SxrFMymMnxbKpyi7X4Rpc2Hra2wxhTXZZhaSLPJDPEc0pnQDgiWrlY0ybeG2PajapmVTXu3e0AxLudDDyqqptVdRi4FTi3TsWsiLVe9nxBJMis8NQXa/H5E+/XxtM4NvHeGFNFTR+wtFNa30/pnxALE5Spr/LiWzLa6Dhk1RodY0zjE5FlIvJbEXlJRFRE3jrOOZeJyAYRSYrIChE5uejx6SKyBngR+DdVfQXYH9hccNpm4IAqvpWqyw8Hq1x2BeDQaIjeoJBSeDxhcyCNMdVTsYBFRKZX6lol8tP6fcApwOdFZJaIhHDT+mcBS4DPiMisOpWxIkZ3Ka5gSh/giGiIroCQyClPWqNjjGkOXcAa4LLxHhSRi3HbgC8DS71zbxeRuf45qjqgqouBQ4B3isi8qpe6Dvr9ocQVbjsCIqPXtP1YjDHVVFbAIiKf8xoD//4vgB0isllEFlesdJPQTmn9/ir1kgVERq/ZbzveG2OqRFx/JSL/n4j8SkRuKryVci1VvVVVv6Cqv57glE8C16nq9ar6GHApEAfeP861tuIGNGcALzE2o3KAd6xpVSvDArCk2wIWY0z1lTsR4lLgXQAicg5wDnA+8Hbg3yghMBCRZcBngBOB/YCLVPXmonMu886Zj9uofFxVHyp4fDrwR+AI4DOq+oqInEmLpfXXesFEJVd58fXFItw/lKJ/JM0753RV/PrGGAN8C/gw8AdgK1CVMagiEsFtU670j6lqTkTuBE71zpkHxFV1SESmAcuA7wOPA8eLyAG4k+7PB/5lL6/VgdtZ5usBcBwHxymtA8g/v9Tn7fWaOWW9l50/rkMqem2ARVF3Tswjw6nKlrsKddHMrD7yrC7yWqEuJlv2cgOW+cAm7+cLgV+o6h0isgFYUeK1/LT+j4A9etgK0vqXete+HDetf5SqbgM3rQ8s9hqgm0TkV6W+oUa3zcnykpNFgBMqnNaHfBBkSxsbY6rob4C3qeotVX6d2UAQNygqtBU42vv5YOA/RMTPyn9XVdcBiMincIOqAPD1fawQdgXwxeKDd9xxB7FYrKzCL1++vKznjeeFYJTUrKOJ5bI8dtcdPFGxK7sGg1GYdTSrBhP87pZbKj4xtpJ10QqsPvKsLvKauS7i8fi+T6L8gGUXsAA3aDkP+IJ3XHAbiUlT1Vtxh2sh408kH03re+dcCrwRN61/VdG1tnoTKCdK6z/EBBq9l+yR3UkADusIEs1lcXLZil0b4IQOt5lZPZwinU5P9LsoWStE/5Vk9ZFndZHXCnUxybLvBp6rclEmxcvS903w2G+A30zyUlfidqr5eoAXzz33XHp7e0sqk+M4LF++nHPOOYdwuDKZ9J/uiMPzAyzp7eTCky+oyDULZVS5YtXLJANBjjrr3IqtYFmNumhmVh95Vhd5rVAXg4ODkzqv3E+Wm4CfisjTwCy8gAN3cvszZV5zD7VM69PgvWQ3d86BngOYs3sHt9zySMWu63MQgnMWsTMLP779TubkKvvFqZmj/2qw+sizushr5rqYZC/Zl4Avisj7VTVRxeK8AmSB4kn084AtlXwhVU0BKf++39kTDofL/gIxlecWW5/MAbCku6MqX2jCuHNjVgynWZvKcWxPZV+jknXRCqw+8qwu8pq5LiZb7nIDlk8AG3CzLJ/1JrWDOwfl/yvzmuOpZVq/oXvJfvHcLtiZ4A2HLuCC/Y+tyDWLHfvoNtYlMsx69RlcMD1akWu2QvRfSVYfeVYXea1QF5PsJfsF8NfANm8I8ZieEVVdWomyqGpaRB4BzgZuBhCRgHf/mkq8RrMYXV2yChPufUu8gGX1SJp3zLY5kMaYyisrYFFVB/jGOMe/OeUSlV6WiqT1G72XbF3C3aV4aW+0al9olnR3sC6RYV0yy0UVfo1mjv6rweojz+oir5nrYpLlvhE3a/4TpjjpXkS6gcMLDh0iIn3ATlXdiNsBdaOIrMQdDnw57pzJ68t9zWajqqOrS/bFqvd35W8+bCuFGWOqpezBpiJyFPBx4Bjv0OO42Y0nK1EwT83S+o0smVOe8PZHqfQeLIX6uiL8ePuINTrGmGp5I/AGVb2vAtc6CTeD7vMz5DcCl6jqz0VkDvAV3IVi+oHzvCWM28LmdJYdmRwhgWOr2HYsLQhYVLVicyCNMcZX7j4sfwGsx+0pW+PdlgLrvccqQlXTgJ/W91/bT+s/UKnXaXSPxtNkgVmhAAdESlrToCT+BmD9FrAYY6pjEzC5GZb7oKr3qKqMc7uk4JxrVPVgVe1Q1VNUtdRVLJuav+rjMZ1hooHqBRHHxyKEBHZmcmxMV3ZBGGOMgfJ3uv86cKWqnqqqn/RupwFf8x6bNBHpFpE+L5UPXlpfRA7y7l8NfFBE3isix+BOqG+rtP5oSr8rUtWeKz+tvzGdZYdjjY4xpuI+BXxdRBbWuyDtYHTDyCpmVwA6AsLxne6Qs1XD1uFljKm8cgOW/YAfj3P8J95jpTgJWO3dwA1QVuOm8VHVnwOf9u73485Xaau0/tq4OxxsURXHIANMCwU4tMMdJbjG9mMxxlTeT4DXAc+KyJCI7Cy81btwrabf22y4r4oT7n3+a1iG3hhTDeXOYbkHd6+T4iWMXwP8qZQLqeo9uKt77e2ca2izlV0KjfaS1ajReS6VoX/E4axpnVV/PWNMW7m83gVoJ/m2o/oLOSztinDD9hFWWcBijKmCcgOW3wD/T0ROBB70jr0a+CvcNfbf7J/ordRlyqSqo9mOviqn9QH6usLctNNWezHGVJ6q3ljvMrSLwUyOZ1Pu6pLVHhIGsKTbVgozxlRPuQGLv9fKR73beI+Bu2Rl9WaJt4ENqQyDWSUicHRn9XvJLK1vjKkmETkMeB9wGPD3qrpNRM4HNqrqo/UtXetY63V0LYgEmRWufjO8OBZBgJedLFvSWeZXcYEYY0z7KWsOi6oGJnmzT6wp8scgHxeLEK7iKi++JV7A8kTCIZ7NVf31jDHtQ0ReC6wDTgHeBnR7Dy0GvlyvcrWiWg4lBugKBjiq0+0DtSyLMabSyp10b2pkdJfiKk+49+0XDjI3HCAHrI87+zzfGGNKcBXwBVU9Byj8Vns37rBiUyH93ud3LYYS+5bYBpLGmCopO2ARkdeKyG9F5Bnv9hsROaOShTO17yUTkdEGbrWtFGaMqawTgF+Pc3wbMLvGZWlptW47AJZ2dQDYxHtjTMWVu3Hku4E7gTjwHe+WAO4SkXdWrngmn2GpXaNj81iMMVUywPhL3y8BNte2KK3LySnr/cVaarBCmM9/LWs7jDGVVu6k+38EPquq3yw49h0R+STwT8BPp1wyw65MlhdS7gaOtewls4DFGFMlP8NdYfKvcBdlCYjI6cA3GH9vL1OGJ5MOKYXeoLCwo9xmvnT+kLDnUxl2ZbLMCNk0VmNMZZQ7JOxQ4LfjHP8NcEj5xTGF1noT7g/uCDI9VLvpRn6js3bEIaNas9c1xrS8zwNPAJtwJ9w/BtwL3A98tY7lain9BTvcB6T6i7X4ZoSCHNJhE++NMZVX7rfgTcDZ4xx/vfeYqYB6DAcDODwaojsgJFV5KmET740xlaGqaVX9IO6SxhcC7waOVtW/UdVsfUvXOtZ4nV21zMz7bOK9MaYays0V/zvuELA+3J4xgNOBS4C/n3qxDOR7yfpq3OgERFjcFeHPQylWj6Q5tsYBkzGmtanqRmBjvcvRqkY7u+oUsNy0M24BizGmosoKWFT1+yKyBfgU8Hbv8OPAxar6f5UqXLtb6y1LuagOAcPimBuw9I84vGtOzV/eGNOCRESAvwReB8ylKMuvqm+rR7laiarmO7tqtBx+IcuwGGOqoezZeKr6a8ZfntJUQDqnPFqHVV58ttqLMaYKvgV8GPgDsBV34r2poM3pLDsyOUJCXbLjS72A5clEhuFsju6gbfdmjJm62i0fYkryRMIhXYdVXnyFvWSqitRw4qYxpmX9DfA2Vb2l3gVpVf1eR9cxnWGigdp/bs+LBNk/HOQlJ8uakTSn90ZrXgZjTOuZ9DdhEdnFJHvDVHVm2SUywNgJ9/UIFo6LRQgJ7Mrm2JTOclAdgiZjTMvZDTxX70K0sjUj9VmspVBfV4SXBhL0W8BijKmQUr6FXl6tQpg91WOX4kIdAeG4zjBr4g6rR9IWsBhjKuFLwBdF5P2qmqh3YVpRv7dCWK0Xaym0tCvCLQMJ2/HeGFMxpXwLXQz8k6qOiMgy4H5VzVSpXG3PX5ZyUR0mTfoWd0VYE3foH0nzlpmxupXDGNMyfgH8NbBNRDYAY9ZNV9Wl9ShUK8l3dtWv7VjSbRPvjTGVVUrA8nHg/wEjuBMm9wO2VaNQ7U5VR4eE1bOXbElXhB9vH7FGxxhTKTcCJwI/wSbdV9xgJsezKbcfsZ5DwvyJ948mHFI5paMOc2mMMa2llIBlA/B3InIHIMCp3ryWPajqvRUoW9vyV3kJ4s4lqRc/WLKVwowxFfJG4A2qel+9CyIiC4D/wl1eOQP8i6r+UkSmA3fito8h4Nuqel3dClqCtV5H14JIkFnhYN3KsSASZGYowM5MjvXxNCd2d9StLMaY1lBKwPIZ4AfAFbi9YhMtaaxA/T4pW4C/ysvRdVrlxdfnBUub0ll2ONm6NoDGmJawCRisdyE8GeByVe0XkfnAIyJyCzAELFPVuIh0AetF5CZV3VHX0k5Cvec++kSEJV0R7tqdZNWIBSzGmKmb9ALpqnqzqs4HenEzLEcBM8a52QphU7TWm79S70anNxTgMG+yvR9EGWPMFHwK+LqILKx3QVT1ZVXt937eArwCzFTVrKrGvdM6cNu7phjT1O9tNtxXx8y8b6ltIGmMqaCSd3RS1WHcXYqfV9Xd4938c0XkH7z0etWIyAIRuUdEHhORtSLyV97x6SKyUkT6RWS9iHywmuWopNFdius4adK32IaFGWMq5ye47cezIjIkIjsLb6VcSESWichvReQlEVERees451wmIhtEJCkiK0Tk5AmudSIQVNVN3v3pIrIGeBH4N1V9pdQ3Wg+NkmEBG1JsjKmsstaqVdU/TvLUz+OuCjNQzutMUsul9f1xyIsaoJdsSVeEm3bGrZfMGFMJl1fwWl3AGuBHwE3FD4rIxcDVwKXACu+1bxeRo1R1W8F5M4EfA6OdWqo6ACwWkXnATSLyK1XdWsGyV5yTU9bHG6ezy8+wrBlxyKgSss2HjTFTUO3NNar+CaWqLwMvez9vERE/rb8JaLq0/lA2xzNJb5WXhuolc/ZxpjHG7J2q3jiZ80TkH4AfeIHDRNe6FbjVO3+8Uz4JXKeq13vnXIo76f/9wFXesQ7gZuAqVb1/nNfY6mVazgB+NUFZO3DbGF8PgOM4OE5pn5v++aU+D7wVuRR6g8IBAS3rGpV0cFDpDgjDOWX9UILjOksLoqZSF63I6iPP6iKvFepismWv+26A3p4un8Fd6nI/4CJVvbnonMu8c+bj9qh9XFUfGudae6T1gT8CRwCfaYa0/rp4GgX2DweZ2wCT3Jd4PXVPJhzi2RyxYMmjCI0xplRTys6LSAS3TbnSP6aqORG5EzjVO0eAG4C7VfW/Cp47D4ir6pCITAOWAd/fy8tdAXyx+OAdd9xBLFbe/lXLly8v+Tl/7JgB0w7mwMQQt926uqzXrbSDph/OY5FubnhgJa9Ljruo6D6VUxetzOojz+oir5nrIh6P7/skGiBgwdL6Y4xuGNkAKX2A/SIh5oUDbHVyrIs7nNJjq70YY6puqtnw2birVRZ/3m8FjvZ+Ph24GFhbMP/lb4BO4D+8gEaA76rqur281pW4bZSvB3jx3HPPpbe3t6RCO47D8uXLOeeccwiHS2sD7t20G7aOcOaB87jgtCNLem613LVxN49tG4HDj+WCg6aV9Nyp1EUrsvrIs7rIa4W6GByc3MKRdQ9YLK0/1uqhJAAnREMNk+Jb1BlmuZPikcEES6OlZVhaIV1ZSVYfeVYXea1QF81Wdm8vmIk+0PpKuE4KSPn3/XYsHA6X/QWinOeuS2YBWNITbZgvLif2RGHbCGsSmZrWRSuz+sizushr5rqYbLnrHrDsTTum9e+dcQSEu8g9uZ5b1g6U9bqV1tO1H3TN4zdPPssBK18s6xrNnK6sBquPPKuLvGaui8mm9WvkFSALzCs6Pg/YUvviVJeq5leXjDXOl5bRpY3jaXKqBGzivTGmTNUOWP4EJKbw/LZK62dVedfqLZBT3nv6yRwZbYx4Mr4zwU3P7WLXrP244IxFJT23FdKVlWT1kWd1kdcKdTHZtH4tqGpaRB4BzsbNviMiAe/+NXUsWlVsTmfZkckREji2AVaX9B0TCxMVYSirPJfMcHiJE++NMcY3pW/EIjIXmEtRWl1V13r/XjCV609GK6X1n004JHJKLCAc3R0l2CC9USf1AuxifSKDhEJlLU/ZzOnKarD6yLO6yGvmuqh1uUWkGzi84NAhItIH7FTVjbgdUDeKyErgIdz5j13A9TUtaA34G/se0xkmGmiMdgMgJMIJsTAPj6RZNZK2gMUYU7ayAhZvNa4bgWPIT45U72fFzYpUQlul9f2U/qJYuGGCFYDDoqHR5SmfTDgc10A9eMaYljSZ7PxJwB8K7vsZ8huBS1T15yIyB/gK7gqT/cB5jb7wSjlGN4xswM/mJd0RHh5Js3okzdtnd9W7OMaYJlXuGrU/Ap4CTgMOBQ4p+rciVDUN+Gl9YExa/4FKvU6jWOsHLA2w/0qhgMjonjC2gaQxplwicskEx0MiUjhX8QJvj60Jqeo9qirj3C4pOOcaVT1YVTtU9RRVXVGp99JI/H2y+hqs7QB382GAVdZ2GGOmoNyA5VDgs6q6QlU3qOoLhbdSLiQi3SLS56XywUvri8hB3v2rgQ+KyHtF5BjcifMtndZvxF6y/AaS1ugYY8r2HRH5pYjM8A+IyFG4S9b/df2K1dxGMywNshx+oSUFbYeq1rk0xphmVW7AchewuEJlOAlY7d3ADVBW46bxUdWfA5/27vfjzktp0bR+4/aSWcBijKmAJcCBwDoROcfbFHgV8ASVa1PaymAmx7OpDNCYnV0nxCIEgVcyOV5MZ+tdHGNMkyp30v0HcCczHg+sB8YswK+qv5nshVT1HvaxSZiqXkMLruxSaGs6yxYniwAnNNCylL58L5mDqk60Z44xxkxIVZ8VkdOBbwG34c5RfK+q/k9dC9bE1nqZ+QWRILPClZo+WjnRgHBcLMzauMOqkTQLOhpj9UtjTHMp95PjVNzlhM8f57FKTrpvG2u8RueIaIiuYLmJr+o5rjNMWGBXNsfGdJaDrdExxpTnjcA7cOchHgn8rYj8UVVfqm+xmlN+OFjjZVd8S7oirI07rB5J85aZ5e1rZoxpb+V+M/4u8BNgP1UNFN0sWClDozc6kYBwrLckpU28N8aUQ0SuBX4J/D/gDGARkMYdIvb2epatWfXHvaHEDTgczLfEFm0xxkxRuQHLLOCbrTiPpF7WNPCEe5/NYzHGTNHpwCmq+u/q2uLt1/XPuKtPmhI1emcXWMBijJm6cgOWm4DXVbIg7c6fcG+NjjGmhZ2oqmuKD6rq94AT61CepubklPVeZ1dfA64Q5lvcFUGAzeks2xybeG+MKV25ExGeAq4UkdcA69hz0v13plqwdpLI5ngi4a8Q1riNjp9hWWMBizGmDKqa2stjT9ayLK3gyaRDSqE3KCxs4HmFPcEAR0ZDPJnMsHokzRumd9a7SMaYJjOVVcKGgdd6t0IKWMBSgkcTDjlgdijAfg24yovPH662KZ1lh5NtyBVpjDGNTUT+Eng7cBAwJqWsqkvrUqgm1V+ww32gwVdu7OuKWMBijClbWUPCVPWQvdwqttN9u+gvGIPcyMsF94YCHOb14tmwMGNMqUTk73A3/d2KuyfLQ8AO3M2Ib61j0ZpSMwwl9i31d7wftrbDGFO6xls/tw2NbhjZwBPufTbx3hgzBR8FPqSqH8ddHezrqnoOblZ+Wl1L1oRGF2tpgoBlSbfNgTTGlK+sIWEistfVXFT1/eUVpz35G38tauD5K74lXRH+d2fcGh1jTDkOAu73fk4APd7P/wU8CHysHoVqRqo62nHU14CbDRdb4nXIPZfKMJDJMT1k/aXGmMkr9xNjRtFtLnAW8DZgekVK1iZyqqO9ZH1N0Es2OvE+7uzjTGOM2cMWYKb380bg1d7PhwCNOx62AW1OZ9mRyRESOLYJsvMzw0EO7nDnPVqG3hhTqrIyLKp6UfExEQkA3weenWqh2snzqQxDWaVD4KhoE/SSeQHLkwmHeDZHLGi9ZMaYSbsbeDOwGncuyze9Sfgn4S6Xbyap3+voOqYzTDTQHLHekq4IL6QSrB5Jc+a0aL2LY4xpIhX7tqmqOeBq4BOVumY78OevHBeLEG6CRmd+JMi8cIAcsNayLMaY0nwI+FcY3XvlfcDjuBtHXlrHcjWdNSONv9lwsdGJ95ZhMcaUqNLd44dR/lLJbSnf6DR+dsXXZxtIGmPK4HVshUTkZBG5EHcey53AC8B5dS1ck+n3F2tpgqHEPlu0xRhTrnIn3V9dfAjYD3gjcONUC9VO+ptolRffkq4Itw8krdExxpRERM7DnWA/a5yHFbDNnSZptLOrCRZr8fkZlicSDiPZHF02pNgYM0nlflosKbot8o5/Crh86sVqH2tHmi9gsR3vjTFl+i7wC2A/VQ0U3SxYmaTBTI5nUxmguYaE7RcJMT8ctCHFxpiSlTt8642AqOoIgIgsBN4KvKCqmcoUrfXtdLJsTGeB5mp0/OUp18UdMqqEGnizS2NMQ5kHXK2qW+tdkGbmL4W/IBJkVri54rwlXRFuHUjQP5Lm1J6OehfHGNMkys2w3Az8DYCITMddP/9TwM0i8pGKlKwN+EsDL+wIMq2J1qQ/NBqiJygkVXkiYb1kxphJ+xVwZr0L4RORX4vILhH5VdHxQ0TkDyLymIisE5GuepVxPGuaMDPvW+INYbOJ98aYUpSbYVlKfjWwvwS24g4N+wvgK7jLG5t98HvJmim7AhAQYXEswn1DKVaPpDm+ycpvjKmbjwG/FJEzgHXAmB4PVf1OjcvzbeBHwHuLjt8AfEFV/yQiM4FUjcu1V/1eZ1dfE372Lulysyq2aIsxphTlBiwxYMj7+VzgJlXNiciDwMEVKVkbGN2luAl7yfq63IClfyTN38ypd2mMMU3ir3HbjCRupkULHlOgpgGLqt4jImcWHhOR4wBHVf/knbOzlmWajGbOsPgT79fH06RzSqQJlvM3xtRfueOQngHeKiILgDcAd3jH5wKDlShYKZo9rb+oCRsdm3hvjCnDvwJfBKap6kJVPaTgdmgpFxKRZSLyWxF5SURURN46zjmXicgGEUmKyAoROXkSlz4CGPauvUpEPl9KuarNySnr435nV/OsEOY7uCPIjGAAR+FRG1JsjJmkcgOWrwDfADYAK1T1Ae/4ubg7GNfat4H3jHP8BuCfVfVY4LU0UFo/nVMeSzRzWt/fi8VBVfdxtjHGABABfu7txzJVXcAa4LLxHhSRi3E3M/4y7jDmNcDtIjJ3H9cNAWcAHwVOBc4RkXMqUN6KeDLpkFLoDQoLO5pv2zMRGW0/Vg03TJNsjGlwZX3aqeqvROQ+3L1X1hQ8dBfw60oUrMTyNF1a//GEg6MwLSgc3NFcq7wAHNsZJiwwkM3xQirLwmjzNZzGmJq7EbgY+NpUL6SqtwK3gvsleByfBK5T1eu9cy7FXeHy/cBVe7n0ZmClqm7ynncL0AcsH+9kEekACpe76gFwHAfHKS2D4J+/t+c9MpgA4ITOMNlMhmxJr9AYFncGuXsQHhlK8p6Z0XHPmUxdtBOrjzyri7xWqIvJlr3sb5mqugXYUnTsoVKvIyLLgM8AJ+IGQBep6s1F51zmnTMfN0D6+CReazStDxwA/EpVp9xIVkr/SH7C/QSNbUOLBITjOsP0xx1Wj6QtYDHGTEYQ+KyIvAFYy56T7j9ZiRcRkQhum3JlwbVzInInbtZkbx4G5orIDGA3sAy4di/nX4E7zG2MO+64g1gsVmrRAVi+fNzYCICbu/eH2Fx6t23mludKbnIbQ8d0mLaQP7y0nVsevX+vp+6tLtqR1Uee1UVeM9dFPB6f1HmN8C3TT+v/CLip+MGCtP6lwArcjSlvF5GjVHXbXq7rp/X7gG3AbSLysKo2xG91bRPucF+srytCf9yhfyTNRbPKa5iNMW3lBPLDho8veqySY0tn4wZHxfu9bAWO9u94AcxioEtEXgT+SlUf8Oat3AsIcIeq/m4vr3Ulbhvl6wFePPfcc+nt7S2p0I7jsHz5cs455xzC4fHnp3z3yVdgKM2bjzmcC+YsLun6jeLwZIZvrt/Gpo5u3nD++QTH6bSbTF20E6uPPKuLvFaoi8HByU19r3vA0q5p/dXe2N3jo8GmTeUtirpD2VYPJyd8D62Qrqwkq488q4u8VqiLyZRdVV9Xg6JMmqq+foLjo+3SJK6RomB+pN+OhcPhsr9ATPRcVWVtwt2b+cTezqb9gnJMKERXQBjJKc9l4NjYxO9jKvXYiqw+8qwu8pq5LiZb7roHLHvTqml9BR6ZfTwEQgyuWsEtmURZ16+3RLgLZhzBgzuHuOWWFXs9t5nTldVg9ZFndZHXzHUx2bR+jbwCZIF5RcfnUTSUuZlsTmfZkckRBI5rwsVafAER+roi/HkoxaqRNMc28XsxxtRGQwcstGhaf1M6y/DarYQEPvj6M4k26Tr0r8nm+MfVW9gRjHDyOW9gdnjPxQNaIV1ZSVYfeVYXea1QF5NN69eCqqZF5BHgbOBmABEJePevqWPRpqTfG0p8TGe4adsN3xIvYOkfSfNu28vLGLMPjR6wTEqzpfUfHXKHThzTGaano3l7lmaF4fBoiGeSGdanlXMsrT9pVh95Vhd5zVwXtS63iHQDhxccOkRE+oCdqroRtwPqRhFZCTyEO/+xC7i+pgWtoGbeMLJY3+jS+LaXlzFm38rdh6VWWjKtv8brJVvUAmlwv9Hpt0bHGFNbJ+FO4Pcn8V/t/fwVAFX9OfBp734/7hzG81S1OGPfNPpHvL27WiBg8Xe8XzWSJmd7eRlj9qGhAxZVTQN+Wh8Yk9Z/YKLnNbo1LdToLLGAxRhTB6p6j6rKOLdLCs65RlUPVtUOVT1FVfc+2a7B5TMszZmFK3RsZ5iIwGBWeT6VqXdxjDENru4Bi4h0i0ifl8oHL60vIgd5968GPigi7xWRY4Dv0zJp/eZvdPq8LJE/ttoYY0zlDWZyPOt9sV/cAtn5cEBGRxnYsDBjzL7UPWChzdL6rdbo+FmiJxMZRrK5OpfGGGNak79314GR4LgLnDQjm8dijJmsuk+6V9V7cFfx2ts519DEK7sUWuc1Oge0SKMzPxJkfjjIFifL2rjDqT0d+36SMcaYkrTShHufP6R41bAFLMaYvWuEDEtbWRN356+0QnbF1+cNbbN5LMYYUx39XtvR10Jtx9KCDIvaxHtjzF5YwFJj/S00f8VnE++NMaa6Wmnuo++EWJggsD2T46V0tt7FMcY0MAtYamxtC6b1bWljY4ypHienrPeGE7fC6pK+zmCAYzrdAGyVtR/GmL2wgKWGMqqsa8G0vv9e1sXTODlL6xtjTCU9mXRIKfQEhUM66j71tKKWdNvEe2PMvlnAUkNPJRySqnQFhMOirdPoHBoN0RMUUgpPJJx6F8cYY1rK6FDiWISA7HWNmqaz1FYKM8ZMggUsNeRPuF/UYo1OQGQ0y7La9mMxxpiK8jcbbqWhxL4lFrAYYybBApYaasVJkz5/XPUaa3SMMaai1sT9DEvrtR3+ipmb0lm2Ozbx3hgzPgtYashP6y9qwV4ym3hvjDGVp6qjn6utNOHe1xsKcIQ3RNqyLMaYiVjAUkP+TsWtNOHelw9YHFtP3xhjKmRzOsuOTI4gcFwLth1gS+MbY/bNApYa2ZLOstXJEcBde77VHNsZJiwwkM2xIZWpd3GMMaYl9HsdXcd0hokGWmfuY6HRHe8tYDHGTMAClhrxe46OiIaIBVuv2iMB4Xh/4v2IrRRmjDGVsKYF9+4qZhPvjTH70nrfnBuUPxyslRudPi9zZBPvjTGmMvq9DqBWnL/i8wOWZ5IZdmdydS6NMaYRWcBSI608adI32ktmSxsbY0xFtPLqkr7Z4SAHRYJAfkU0Y4wpZAFLjfgfwotadNIk5LNHNnHSGGOmbjCT41lvTuDiFm47IN+ZZ8PCjDHjsYClBuLZHE8l3Eanr4V7yRZ3RRDcVW1sPX1jjJkafyjxgZEgs8PBOpemuvwd71cNW8BijNmTBSw1sD7ukAPmhALMb+FGpycY4HBbT98YYyqiHSbc+5Z0W4beGDMxC1hqoL9gwr1Iay5L6bMd740xzU5EPi0ij4rIehF5d73K0R/3Jty3+HAwyGdYHks4xLM28d4YM5YFLDWwtg0m3PtseUpjTDMTkROAdwInAq8CPiYi0+tRlnaYcO/bLxxkbjhADlgXt6XxjTFjWcBSA2u8D99FLbhhZDF/Yqil9Y0xTeoY4AFVTapqAlgDnFfrQjg5ZX28fTq7RMQ2kDTGTMgClirLqY72krVDo+M3OE8lMwxbWt8YU2MiskxEfisiL4mIishbxznnMhHZICJJEVkhIicXPLweOFNEpovIDOBM4IDalD7vyaRDSqEnKBzSEar1y9fFUltp0hgzgZYOWBphHPJzyQwjOaVD4KjO1s+wzIsE2S8cRMmvcGOMMTXUhZsVuWy8B0XkYuBq4MvAUu/c20VkLoCqPgZ8B7gbuAl4EKj5sof+l/bFsQiBFp/76LMhxcaYibRswNIo45D9CffHxyKE2qTRyU+8t3HIxpjaUtVbVfULqvrrCU75JHCdql7vBSeXAnHg/QXXuFZVl6rq6wAHeLrqBS/if362wwphPj9gWRdPk85pnUtjjGkkrZxnHh2HDCAi/jjkn9WyEO20LKVvSVeYWwcSbi/ZrGi9i2OMMQCISAS3E+tK/5iq5kTkTuDUgvPmquo2ETkKOBk3qJnomh1AR8GhHgDHcXCc0jpt/PMdx2H1cBKA4zsCJV+nWR0YUKYFhd1ZZZ33/tvlve9L4d9Gu7O6yGuFuphs2Rs2YBGRZcBncBuX/YCLVPXmonMu886Zj5vW/7iqPuQ9vB74opdVEdxxyE/VouyF1owuS9n6w8F8tuO9MaZBzQaCwNai41uBowvu/5+ITANGgPepamYv17wC+GLxwTvuuINYLFZWIe9YvpyVs4+HQIjh1Q9xSyZR1nWa0YLph7E70sNPV67hbGD58uX1LlJDsfrIs7rIa+a6iMfjkzqvYQMW8uOQf4Q7jniMgnHIlwIrgMtxxyEfparbVPUxEfHHIe+mTuOQ/QzLorbKsOTT+o6l9Y0xTUZVT933WaOuxG2LfD3Ai+eeey69vb0lva7jOCxfvpzjXnsWQ4/vJAh88PVnEg20x3BigD9u2s36rSNkDjkSHn+Qc845h3C4fTr8Cj2XynD3YIp7BlOsizvM272d9x55MOfN7GJWqGVH9O+T//9JO/9t+FqhLgYHByd1XsMGLKp6K3ArMNFmi6PjkL1zLgXeiDsO+SrvGtcC13qP/yd7GYdcjbT+lkSKF9NujHRMWJo6ZVeKAwNKb1AYzCrrLa0/RiukbyvF6iKvFeqiScr+Cm7H1byi4/OALeVcUFVTQMq/77dX4XC47C8Qj3lVeUxnmJ6O9unsAjixJwpbR1iTzPIGplaPzWabk+Xu3Unu2p3k7t0JNqTG9rE+GZ3JvRuHkI1DnNId4fwZnZw/vZMlXe2zMEOhdvrb8A1nczw8nObBoRQPDqdYOZwiMvMo/n5nikvmR5nehIHsZH+HDRuw7E01xiFThbT+jfetgBmHMy+b4s933FbWNZrVgdMP57FINz9d2c/raO50ZTVYfeRZXeQ1c11MNq1fT6qaFpFHgLOBmwFEJODdv6aORRvDH0rcTnMffUu73H7DdYlM7YdE1NhQNse9g8nRIKV4w8ywwKu7Ozh7WpTjo0F+uuZxnpl9AGsTGR4cTvPgcJovbtrNvHCAN0x3g5dzpkeZEQrW6R2ZSlJVnklmeGA4xYqhFA8OpVgbd9hjw4hQJ5/aNMg/bR7iHbO7+Mi8bpZ2d4x3yabWlAEL1RmHXPG0fvi4xfDSCK+eNY0LTrmgpGs0u7s37uaxbSPkDj0aHnugqdOVldQK6dtKsbrIa4W6mGxav9pEpBs4vODQISLSB+xU1Y24n/M3ishK4CHc4cRdwPU1LuqE1ia8uY9tGLAc2RkiFhBGcsrLwdb60pXOKSuGU14GJcmK4RSZolHTfbEwZ03r5OxpUc7o7aAr6PaYO45DYORlLnjtErbmhNsGEtw6kODOgSRbnRw/3j7Cj7ePEARO6+ngPC/7sigWnmiUimkwhdkTP0h5JbPnfnYLIkFe3dPBqT0dLIkG+enDq7l/7iE8msjwo23D/GjbMCd3R/jwvB4unhWjM9h8WZfxNGvAMimljEOuRlp/fcr9Q1vS3dG0X0LKtaQnCttGWJvMcjbtmbrdG6uPPKuLvGauiwYq90nAHwru+x1RNwKXqOrPRWQO8BXcBVv6gfNUtbgDrG7yGZaGqdOaCYqwOBbhgeEUz4U6612cKcmpsi7ucNfuJHftTvCnwRQjRfM6D+0Icda0KGdPi/K6aVHmhPedHTmwI8QH5vXwgXk9pHPKn4dS3LrLDWAeSzj8aSjFn4ZS/OPGAQ6IBDlveifnTe/k9dOi9DbhkKFWVJg9edDLnqwbJ3vSIXBidwev7u7g1T0RXt3dwQEFG8k6jsOuxA6+c+zJrEjm+MGWIf53Z5yHhtM8NLyDT2/YxSVzu/jwvB6OaPK9AJs1YKn4OORqWNfGaX1/4v3ahEM7T7vf7mTpH0mzZiRNfzzNcwmHnp4FDOyIc9aMLha0yQ7WZu+SOWVv6V8zeap6D+7KkHs75xoaaAhYobgEeM6bu7A41n5tB7jtxwPDKZ4Llzccu56eS/oBSpI/7E7u0UM+JxTgrGnR0SDlkOjUvkRGAsLrvGDn68xgQzLDrQMJbhtIcPfuJJvTWX64bZgfbhsmJHBGT8fo3JdjOi37UivD2RwPDad4cCjNg5PMnry6u4O+rggdk1h0Q0Q4ozfKGb1RvulkuX7bMNduHeKFVJZvvjzEN18e4uxpUT4yr4c3zexsyn0Bm/LbUjOMQ3YQHk+6X0HaMWA5tjNMRGB3VtkaaP33n1PluWSG/rgXnIw49I+keckZZxR25yzufH4Anh9gYUeQZb1RlvVGeW1vB4d0hKwBaXGJbI41cYdHhlOsHEmzajjNYwmHyOwTuODZnbxpVhcXTO9k9iR6Wk3recHLKhwYCbbt38CS7ghsheebIMPiT5S/28uiFE+U7woIy3rd4OTsaVGOj4WrOkF+YTTER+b38JH5PSRzyr2DydHsy9PJDH8YTPGHwRSffWGAgyLB0eDlrGnR0eFnZmpUlaeTGR6cYvakXHPDQT53wDQ+vX8vtw0k+MGWYW4dSIwG0gdEgnxgbjcfmNfN/pHmCQMatqTNPg55UyhKRmF6MMBBkfZrdMIB4fhYhFUjaTaEG7/RKUUypzwaT7uZk7jDmpE0a+JphrLj55KOiIZY3BWhLxZhQQhuWv8Um+ccwOq4w4ZUlg3e2GNwv6S4AUwHr+2NckTUAphmlswpa0fSPDKS5pHhFI+MpHk07ow7mTgZCHLTriQ37UoSwB2HfuGMTt40M8ZR9nfQNvwv6e3Y0eVb6r3350KdqDZWjn44m+PewRR373a/AK4tmigfKpgof9a0KCd3dxCp07LU0YBw7vROzp3eyTeBZxIOtw0kuGUgwT27k2xMZ7l26zDXbh0mIrCsN8oFXgBjbc/kFWZPHhhKsWI4xY5xsicHedmTV3vZkyVdkar+bQRFeOOMGG+cEeP5pMN1W935LZvTWb784m6++uJu3jIzxqXzuzmrN9rwv++GDVho8nHIG7xGp6+rfVOufV1uwNLM45B3Olkva+J4AUqaxxPOHhMlwe0tOSEWcYOTrgh9XWFOiEXoKei1chyHnpGXuOC1fSQDQf48mOLewSR/Gkrx8LC7DPZPXxnhp6+4Acz8cJAzvOBlWW8Hx1oKv2Glcsq6eJqVw2lWeQHK+gn+VuaGA5zU1cGJ3RFO7IpwQkeAX91zL7uOO5Fbd6dYE3e4byjFfUMp/mHjAIdHQ27wMiPG6T0dhNtoX4524wcsfW06HAzcDH1YYCQQ4ltbR5gZSREUISgQwP0iFgSCUvizeI95N2TM4wGZ6HkQGD238HnucQHWxtOjE+UfHGei/OJY2Bvm1cmy3g66GzRTcXhnmI91hvnYfr3Eszn+MJjktl1JbhmIsyGV5c7dSe7cneST7OKwjhDnz3DnvpzZ29EyE7cnks4p8ZwSz+WIZ/2fvfs5HT2WyCkjWffYy06WB4dSrJ9E9uTUno66ZjMOiYb52sEz+OKC6dy0M84Ptgxx31CKm3bGuWlnnCOjIS6d38N75nQ17CpzDRuwNPs4ZL/RWdTGjU5fzB2b2wxpfVVlQypD/4jDGi970j+SZlN6/IU1Z4UC9HVFWBxzA5O+rghHdYZLGhfaEwxw3oxOzpvh1k88m+OB4RT37naDmBXDKbY4WX65I84vd7hLxs4OBTjDGz62rDfKCVUeXmDGl84p6+Pp0SFdj4yk3Y1SxwlOZocCnNgdGROgHBAJjgk8HcfhiEyCCw7o5V8XhnkhleH3uxL8dmecewaTPJPM8K2Xh/jWy0NMDwY4f0aUC2fEOG96Z1Ouu28mtmE0w9LcE2SnIhIQTugMsyrucMWLjbH6XKFDiibKz23CoXuxYGC09/07OoMnk5nRoWP3DiZ5NpXhmi1DXLNliKi482TOnx7lVd0dBOvc5DiZDI+HuwjvTpIOOF4wkSPhBxnZfLAxMibYyBU9ng9IxutYKsVBBXNPTqlB9qRcHQHhr2d38dezu1g3kubarUP81/YRnkpm+OSGXfzjxgEunhXjI/N7OKnBlkZu2ICl2W2wtP7okpyNFrCkc8pjCWd0MrwfoOyeYEjXoR2h0YyJP7Sr+AtnJcSCAc6e1snZ09z6SuaUFUP5DMz93iS9X++M8+udbgAzIxjgNV4G5oxed4JeM06ma2ROTnk04bByOOVlTtKsjadJj/PnMjMU4MSuCCd1R1ja1cFJ3REWlPG3cnBHiI/O7+Gj83sYyua4YyDB73Yl+P2uBDsyOf7nlTj/80qckMCynigXzuzkwhmdHDbFCbymvuKbN7ExGAXgBBxy6RQSjrRlVvWqBb18ac0zzJ6/HzkRsgpZVbK4cwazCjlwj6NjHncf848VPu7+nJvguH/NYrMD8LpO4cxYkLO6ghzaEYJAAAlkIB0nlwl69wMQCIB4PzcJEeHozjBHd4b5xP69DGVz3L07P/flxXSWW71llBvGjCPg6Z0Vv2wA6AoKsYAQCwS8f4VYsOC+9/j0oNsZVe/sSblO6IpwzaGzuPLgGfz39hGu3TrE2rjDDdtHuGH7CCd1Rfjw/B7eMStGrAEybM1Xw01AVdkQchuddlxH37e4K4IAO4MRHh5OM6NjbMNS2NjkihsT/7FJneeekxvToI39OaPK86kM/SPuBOfxesIjAsfFIvTF3IzJ4q4Ii2IRptWpBzsaEF47Lcprp7l/S+mcsnIkxb2DKf64O8n9Qyl2ZXP8dleC3+5yG5KeoHB6jz+ELMqJXREbPlSCjCqPxR0vc+LOOVkzkiY1zt+L31id1BVhqZdBObij8oFsTzDAX8zq4i9mdZFV5cGhFL/zfuePJxzuHkxy92CST27YxbGdYW/eSyendHcQbMMvus3s/q9/GedvvkJXKgEfeA/PeWssSiTiBi6RDiQSIRDpGHNfvPuBDv94ZPR4oPC8cATpKDrmP7fwvv9vHf9+lvV08OnBF7jgNcdVdMlsVUUTcTK7dpDdtdP7dweZgfx9Z+dOUoO7yAwPkw0E6HRSY4Z7bJjsiwXGBjJSdH+8x8YeC4xeg1CYuaEoqcMXEjr6eCRYvaxOTzDAW2bGeMvMGKrK+rgzuu/Lc8n6r2eoQDY+wpyebrqCQWJBoTMgdI0GFwWBhne/c8x9N/joGicYCQtt10HQEwxw6fwePjyvmweGU3x/yzC/2jHCypE0K5/dwWc27OK93tLIR9VxaWQLWKpgYzrLSCBESOCYJl/3eiq6gwEO7wjydCrLGU+8Uu/ijDE9GGCJlzHxsyZHd4YbMoXriwSE03qinNYT5R8OmEZGlVXDae4dTHLvUIr7BpPsziq3DSS5bSAJuCvUnNqTnwPzqu6OSS2R2IxUFUchrUo6V/CzKulc4c9KWsHx7r/i5EbnnPSPOCTHmeQ7LSic2NXBUm9I10ndkbqs6BYU4fTeKKf3Rrny4Bk8k3D43a4Ev9sV597BFI8lHB5LOHz9pUFmhwK8cUYnF86Ice70aMOOqzcuVeWJ/Q8D4OjtGwkULAiv6TSaTsPIcO0KFAwS6Oom2NVNoKvH+9n9178Fu737se78uf6xSG2Hk2guR3ZwwA0+du30/t1BdmAnmZ07xtzXVHKf1wt6Nwgi0U5QhVwOzWUhl3Pv70suC7ns6G9yqssHzAG2rF1BsHc6sZNOpeukU4n1nUygs3rLP4sIJ3RFOKErwmcOmFa11ymF4zjccsstXPDqCxpp/6emJ5L/jnH1whncsM1dkOH5VIZvvzzEt18e4qzeKJfO7+bNM2I17wy1gKUKVj3zHNDNUeqQWfUgTsZBMw6ayUAmg2Yy7v1sxjvmeMfc42PPyXrPdSCTHb2OZhzIZlBn7LXGnJfNEOiMEezuJdDdQ7Cnl0B3r9vIdPcS7Okh0DNtzOPuz91IsDJ/Gh+e28WXXthJKBwumDTpTWrEmwjp3R/zM4yeH0S8x7yJkAWTKwNFEyTz1y36GdgvEvSGdkU4qApDumotJMLJPR2c3NPBp3EzSmvjDvcOJvnjbncY2c5MbnQiJUBUhFf3RDghFmFfnzX7qp3J1J7s5axcLsvT3Qdw2wsDZCTgBRLuzVG8oMMNLgof84MPpygQGS9rVo6eoHBilzuky59zclg01JBzhQ7vDHN5Z5jL9+9lVybLbQNJfrczzm0D7v4PN24f4cbtI0QEXjctyptmxLhwRqft/9OARIQX3/lR2DrCq5Ys4bCL7kbTKXLpNJpOoY73bzpNzvs3f9w7VnBO/tz0ns/1njP6/FSKnHcOWW/eXjZLbnA3ucHd5b2fcKQguOnxAp+CYKcguAmOBj09bvsU6xq9jqbTOLtecYOOgYJApDA7smsH2d0DboAw2fJ1xghNn0lwxixCM2cRnD6T0IxZ7v0Z3vEZswh09447vEtVvYAkh+ZyY/4tDGzcY1nI6ejPWnQOuRyqxdfIotn8ec7ALp677TdM37qZ7OAAQ3ffytDdt0IoROdxfXSddBpdrzqN8Lz9y/p9GVNoTjjIZw6Yxqf27+X2gSQ/2DrELbsSoxn9/cJBPjCvmw/M7ebAGrUn1mpVwf13LYfTLuKI9Q/y8i3/Udey5IaHyA0Plfy8QKzLDWK6ewn0eEFOz7SCYKd3zM/+uVLU2/Gxed0c+si9XHBBaT0ho4Ga4+QbVcfJN7SOM9rAjvfY6M8Z/1jabQhUQZVtoy+kBctmar4LTNW7r/mHxpynY3vYRs9TdLzrjD4mzEs5DMeCxA47ksiChUi4MsMGgyIs6YqwpCvC3+/XS06VR70A5l5vLsw2J8c9gynuGUxV5DWnLDYHtserdvkOgbAIkYAQESEijPk5LEJ3UFjcFeFEL0A5okGDk32ZEQqOTqZ0csp9Qyl+tyvOb3cmeDaV4faBJLcPJPnY8+6CGBfOiPGmmZ0s7Yo05fttRaM73MfCSCiEhEJjvrzXgmYzbmATHyE7MkzOvw0PkY0Pjd7PDud/zo0Me+cOkYuPuF+ynbQbYAyUN89AOqIcnVM23vDvJTxJCPZO3yPoKAxGgjPcnwPRqc2tFBEIhiA4uc6bqXIchxeTygnnnkPm6ccZWfkA8ZV/xnl5M4k1K0msWckrP/wOkQULvezL6USPOrZinY+mPQVE3L16ZnTyQirDdVuH+OG2YV52svzLi7v52ou7edPMTi6d18PZ06JVbUvsL7kKnjzoaACOdeJ0HH601/CEIRRCgm4jJOGw+0HiPeY3ThIKQzD/s4SC3nPDSDDoPs+7DkXPk1DIe24YCbuTAjWRcBuW4UGyQ4NuozM8SG5okOyYnwfJDQ2Ri7tDDnLxEXLxETLbtpT03iXaOSa4ka5u9n9lB9ufXo1kMwVBhRdYjP6c9gKQ9GiWqVXNBnY8+gg7AAJBIgccRGThYXQcfCiRhYfTsfAwgjNnTzkDFChI5V+2nxtwPZnM8MfBJBtTe6/ffY12mEwyY1/nZLNZXnjuWY454gg6Q0HCAhGRggDDve8HGOEx98f+PF5QEqT9xiL7wgW7X3/jYOWJRMYNXnYleGAoRX/coT++m69u3s1+4SAXzujkwpmdnN0bbfnlSxuVqrI24W02HKvfMBcJhpDOEIHOGKFZc0p+vuZyaDLhBjBeUJMdKQh0RooCnWG33Rk9FneXdNdUktFZGqHwuNmP0UBk5iw3WzJthtsOtjAJhYktOpHYohPh/R8jvXkjIyvvZ+Th+0k+vo70pg2kN21g4Nf/Q6C7l9jSU+h61WnElpxMsKun3sU3TezgjhBfPWgG/3zgdH69M861W4f442CKm3cmuHlngrfM6OSmo+dW7fVb+//sOnn6sOMhleWMi9/JglkfqndxSqLZjNuIDHlBjhfIZEd/HnvMDYSGyI0MuRmEZIJMMgGvjOYwmAHEn3m0/EIFAu5kUX8yaTjsTRKNQMj91308nJ9Y6p0jkQgSiowGei7Jd4mJAJL/Yiuj/3Efk4Jzx5wn417H/1nGuw6QSSZ4+r4/sn8gh/PCc+SGh0hvep70pucZ/lPBW+7upWPhYV4g4/4bWXAIgY7yx4UXrgTTCBzH4ZZ1W7hg/6U2DrmKRIRjYmGOiU3jMwdM4xUnyy0DCX67M8EdAwledrJct22Y67YN0xkQLp3XzTcWzqx3sdvOYFaZHw4w5GQ4tkH+Hy2HBAJIrMvNDM2ZV/LzNZshF4+T2r2LP951F69781vpmD6jbTsf9iVywEFEDjiIGW95B9nhIeKrH2Jk5f3EVz1IbniQ4XuXM3zvcggG6TxmEbGTTqPrpNOIHLCg3kU3TSoSEC6e3cXFs7t4NJ7m2q3D/Nf2Yc6dXt0VYS1gqbDBTI7nU+442kV17CUrlwRDbkq9d3pJz9Nczs3KeAGNn9VJD+ziiTX9HH38CYSinWMCjj2DjIi3ek3RYy2U0nYchy1OkKUXXEAoFCK7YzupF54lveFZUhueJf3Cs6Q3byI3PEhi/WoS61fnnxwIEN7vQC+QOXw0kAnNnmuNuZm02eEg75nTzXvmdJPKKfcMJvndTnfi/sZ0ls4WXZSh0U0LBXjkuLn83y23Eg0cWO/i1I0EQwR7eglHO0lPn+Vm6u3zbVKC3T30nHE2PWecjWYzJJ98lJGH72dk5f04L74w2qbsuOF7hPc70M28nHQanccsavnMlKmO42IRvnPITL520HSqvRuR/YVWWG8owIbF87jxnj8zK9Q+k98kECDY7U6YDHPA6HHHcXglF6G3xDks7UBECM2eS2j2XLpOPHX0eC6dwnnxBVIFQUxqwzPkBnfjbN6Is3kj/PkPo+cHurqJHHyYG8j4/x50yJTHaJvW1xEQ3jC9kzdM7+Q7OoO1cYcZthFlXYWnvJaUMW7g13nsYjqPXczs934E5+XN7tCxRx4g8Wg/zssvMvCbXzDwm18QiHUTW3oyXSeeRmzpKQR7G2M1sHpQb/6VplLk0kk05S9YkSKXSo4uVuEvfIHm3PHP6i2coIyuIqeq3uOav5/LAeouwlDwXHLufNfCubbuNQvmzO5xXchlM+z30kvsGniJsLdgxbi3TvffagWmtViF0gKWKpgfDnKCU8PlJ01LCUQ66Dj0SDoOPXL0mKqS3bWD1AvPedmYZ9xszIsvkBsZJvnYGpKPrclfRITw/APcIWULDydy8KF0LDyM0Nz9rLfSjEtE2nqjW2NaWXi/A5j+pr9i+pv+ilx8hHj/w6MBTG5wN8P33c3wfXdDIED0qOPpOulUul51OuEDD657m6G5nBskJJNoKkF6eJjoK1tIPraGdDZbEFCkRn8eE2CkvADDu5/zz9njvruIT7OZCQw+sWaf5wHu3kxjApnYPoOcsbcYgWisqvsATcQCFmOagIgQmjmb0MzZdC05efS4Og7pzRvdAGbDs6PDy7IDO3FefhHn5RcZeeCP+et0xug4+DBCc+e5PTqaQ71/80tr+sdzY3t1vKU5ix/LL+/p9xipt3RnvndpdKnOousclc3x4u9/QiDS4W56F8nfxmxk1+HfL/rZ30hvoud65xIKV6TR1VzOXU48k3EXjShYehx/KXLHGbMsOQXLmhc+RsFS5NlUirlPPcWugZcIBAIFq9QxZsU6dzGEolXqCnrgtPD+OKvVuT1z419DvXNii06i9+wLplxXxpjGFIh10X3amXSfdiaazZJ8+nHiKx9g5JH7SW94luTja0k+vpYd/3UtoXn7uUsmn3QancctnnBVS81kyKUSaDI5Gljkkkk3aEgmvH+T7jmpFLlkAk2NPde9nz/unzvevjmHAVt/99/VrahQiEAkinR4m7BGokhHvl0KhCPupp7ePFWRgLs/A+4+DSKBgrmwAXfa65hzAu5M18DY86TgGkjAbbsmeDyXU556/DEO238/SCXdhSsS8dGFk3KJEXIjI+6S5YCmU2TTqbJX7/NJtNNdorwg4Ol61elMv+BtU6vzvbCAxZgmJuEwHQvdYWCFMgM7Sb/wnDukbMMzbmZm0wY0ESf5xDp4Yl2dSjxWCMgm40x+94QyiRQEM/kgSCId7ip8BcFD4b84RXscZatX0jnA4LqHqnb9yQp0dlnAYkybkGCQzqOPp/Po45n17g/ibNtC/JEHGFl5P4l1q8lsfZndv/9fdv/+f5FoJx0HH+ru7VMYhKSTNVvZ0/3sjpLM5YhNm04wGh3bWVXcedUxzs976QALdETzHWV1yCKUynEctt9yC6/ax7B7zWS8QGaYXLzo38IAp/BWcH427q3g5/2eNZkgm0yMabsjBxxU1fdqAYsxLSg0fSah6TOJLT5p9JhmMqQ3byS94RkyA7vczdC8np38z15vjnd/7M9eL1Ag4J7v3Zdgwc+BYL5XKJA/f7zHMtks9/7hbl5zyikEs9l8Wn7c1L7/c+H44ZSX6k8XpPcL7qdTYzMIKa8Hr5IVLZJfsnx0mfGi5ciLHsN7rPBYToQXNm1i4SGHEBhtJL3V5kZXpPNXpfN78wpWqis6RyZ4DuJt5Tm6ct3Y54sIkaLg1xjTPsJz5zPt/IuYdv5F5BJx4msfGc2+ZHftJPnkPlb8DAQJRKNIR9T7t7PgfmfB8agbHEQ7Cezz3E432OiIIoFAfqd7mxs7aRJyF7MI9vRO6Tq5dMoNdBJ7BjiR/au78pwFLMa0CQmF6Dj4UDoOPrTeRQFAHIfUjDl0HH50VRodVYWM441dTo0dq1wYCGWcomCjYN+kPQKRwuAkCIFgRYaaOY7DiltuYak1wMaYBhHojNF9yhl0n3IGmsuReu4pMtu3jBNYdBDwjlVq+K1pTAFvyDXTZ9T8tS1gMca0JBGBcIRgOAK2YZoxxpRNAgGihx8Nhx9d76KYNmXrVxpjjDHGGGMalgUsxhhjjDHGmIZlAYsxxhhjjDGmYVnAYowxxhhjjGlYFrAYY4wxxhhjGpYFLMYYY4wxxpiGZcsa78Pg4GDJz3Ech3g8zuDgYNvvqWB1MZbVR57VRV4r1EU5n5WtzNqOqbG6GMvqI8/qIq8V6mKyn5Wi/k7QZgwROQB4sd7lMMaYJnOgqm6udyHqxdoOY4wpy17bDgtYJiDuVq37A0NlPL0Ht8E6sMzntxKri7GsPvKsLvJapS56gJe0jRsWazsqxupiLKuPPKuLvFapi322HTYkbAJepZXVS+i2VwAMqWpbj5OwuhjL6iPP6iKvheqimcteEdZ2VIbVxVhWH3lWF3ktVBf7LLtNujfGGGOMMcY0LAtYjDHGGGOMMQ3LApbqSAFf9v5td1YXY1l95Fld5FldGLC/g0JWF2NZfeRZXeS1TV3YpHtjjDHGGGNMw7IMizHGGGOMMaZhWcBijDHGGGOMaVgWsBhjjDHGGGMalgUsVSAil4nIBhFJisgKETm53mWqNRG5QkQeFpEhEdkmIjeLyFH1LlcjEJF/EBEVkW/Vuyz1ICIHiMhPRGSHiCREZJ2InFTvctWDiARF5F9E5HmvLp4VkX+SgsX1TfuwtsPajr2xtsPaDmjfdsMClgoTkYuBq3FXbVgKrAFuF5G5dS1Y7b0W+B7wauAcIAzcISJddS1VnYnIq4APA2vrXZZ6EJEZwJ8BBzgfOBb4FLCrnuWqo88BHwE+Bhzj3f8s8PF6FsrUnrUdo6ztGIe1HdZ2FGjLdsNWCaswEVkBPKyqH/PuB4BNwHdV9aq6Fq6ORGQOsA14rareW+/y1IOIdAOrgI8CXwD6VfXyuhaqxkTkKuB0VT2j3mVpBCLyO2Crqv5twbH/BRKq+u76lczUmrUd47O2w9oOsLajULu2G5ZhqSARiQAnAnf6x1Q1590/tV7lahDTvH931rUU9fU94Peqeuc+z2xdbwZWisgvveEeq0Xkg/UuVB3dD5wtIkcCiMhi4DXArXUtlakpazv2ytoOazvA2o5CbdluhOpdgBYzGwgCW4uObwWOrn1xGoPXU/gt4M+qur7OxakLEXkH7jCPV9W7LHV2KG4q+2rga7j18R0RSavqjXUtWX1cBfQCT4hIFvfz4x9V9b/rWyxTY9Z2jMPaDms7CljbkdeW7YYFLKYWvgccj9sD0HZEZAHwbeAcVU3Wuzx1FgBWqurnvfurReR44FKg3RodgLcD7wLeCTwK9AHfEpGX2rARNqaYtR3Wdvis7chry3bDApbKegXIAvOKjs8DttS+OPUnItcAFwLLVPXFepenTk4E5gKrChbxCALLRORjQIeqZutVuBp7GXis6NjjwF/UoSyN4N+Aq1T1Z979dSJyMHAF7dcItzNrO4pY2wFY21HI2o68tmw3bA5LBalqGngEONs/5qW0zwYeqFe56kFc1wAXAWep6vP1LlMd3QWcgNsL4t9WAv8N9LVRgwPuKi/FS5QeCbxQh7I0ghiQKzqWxT6b24q1HXnWdoxhbUeetR15bdluWIal8q4GbhSRlcBDwOVAF3B9PQtVB9/DTVe+BRgSkfne8d2qmqhfsWpPVYeAMeOvRWQE2NGG47K/CdwvIp8HfgGcDHzIu7Wj3wL/KCIbcVP7S4BPAj+qa6lMPVjb4bK2w2NtxxjWduS1ZbthyxpXgZeq/QwwH+gH/k5VV9S1UDUmIhP9Yb1PVW+oZVkakYjcQxsuTQkgIhcCVwJHAM8DV6vqdfUtVX2ISA/wL7i9yXOBl4D/Ab7i9bqbNmJth7Ud+2Jth7Ud7dpuWMBijDHGGGOMaVgtPd7NGGOMMcYY09wsYDHGGGOMMcY0LAtYjDHGGGOMMQ3LAhZjjDHGGGNMw7KAxRhjjDHGGNOwLGAxxhhjjDHGNCwLWIwxxhhjjDENywIWY4wxxhhjTMOygMWYGhKRM0VERWR6DV9TReSte3l8oXdOX63KZIwxZvKs7TDtLlTvAhhjqm4/YFe9C2GMMaapWNthGoYFLMa0OFXdUu8yGGOMaS7WdphGYkPCjJkCEQmIyBUi8ryIJERkjYj8ZcHjF4jIU95jfwAWjnOND4rIJhGJi8ivReSTIjJQdM5bRGSViCRF5DkR+aKITKrDoTitLyIni8hq71orgSVF5/+ziLwkIrMKjv1eRP4gIvaZYYwxU2RthzGlsQyLMVNzBfBu4FLgaWAZ8BMR2Q48B9wEfA/4D+Ak4N8LnywipwM/AD4H/AZ4PfAvReecAfwY+DvgT8Bh3vUAvlxKYUWkG/gdsNwr9yHAt4tO+1fgPOA/gYtE5DLgNGCxquZKeT1jjDHjsrbDmBKIqta7DMY0JRHpAHYCr1fVBwqO/ycQAzYAb1HV4woeuwq3gZmhqgMi8jOgW1UvLDjnJ8CFqjrdu38ncJeqXllwzruBr6vq/pMopwIXqerNIvIh4GvAgaqa9B6/FPg+sERV+71jhwL9wP+H29h9QFV/WloNGWOMKWZthzGlswyLMeU7HLdxWS4ihccjwGqgE1hR9JwHiu4fBfy66NhDwIUF9xcDp4vIPxYcCwJREYmparyEMh8DrPUbnAnKhKo+JyKfBq4Ffm4NjjHGVIy1HcaUyAIWY8rX7f37RmBz0WMp4DsVfJ0v4g4RKJYc51ilLAOywEIRCalqpoqvZYwx7cLaDmNKZAGLMeV7DLdxOUhV/1j8oIg8Dry56PCri+4/Cbyq6Fjx/VXAUar6zBTK6nsc+BsRiRb0lBWXCRG5GHgbcCbwC+CfcBs+Y4wxU2NthzElsoDFmDKp6pCIfAP4prcCyn3ANOB0YBB3QuSnROTfcCchnghcUnSZ7wL3isgngd8CZwHnA4WTy74C/E5ENgK/AnK4qf7jVfULJRb7p7gTI68TkStxV575dOEJInIg7rjkz6nqfSLyPu/1b1XVB0t8PWOMMQWs7TCmdLbMnDFT80+4K7NcgdsDdRtumv95Vd0I/AXwVmAN7mowny98sqr+2Tv+Se+c84BvUpCuV9Xbccclnws8DDwIfAJ4odTCquow8CbgBNyx0v+KO5ETAHEHVN+AOxb6moLX/z7uCjbdGGOMmSprO4wpga0SZkyDEZHrgKNV9Yx6l8UYY0xzsLbDtDIbEmZMnXkrqiwHRnBT+u8FPlrXQhljjGlo1naYdmIZFmPqTER+gTtBsQd3w7DvquoPJvncd+EuHzmeFwrX8TfGGNM6rO0w7cQCFmOamIj0APMmeNhR1ZLHKhtjjGlt1naYZmMBizHGGGOMMaZh2SphxhhjjDHGmIZlAYsxxhhjjDGmYVnAYowxxhhjjGlYFrAYY4wxxhhjGpYFLMYYY4wxxpiGZQGLMcYYY4wxpmFZwGKMMcYYY4xpWBawGGOMMcYYYxrW/w+K6+yTYFmGagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ "fig = ex.plot_variables2d(('sum_flops', 'max_mem'), n=[N], p=[3],\n", - " d=[3,4], edge_idx=range(30),\n", - " seed=[SEED]\n", + " d=[3,4], edge_idx=range(10)\n", + " ,seed=[SEED]\n", + " ,ordering_algo=['tamaki_5']\n", " )\n", "for ax in fig.axes:\n", " ax.set_yscale('log')\n", @@ -542,13 +641,13 @@ "execution_count": 14, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:45:27.390397Z", - "start_time": "2020-10-09T08:45:27.372326Z" + "end_time": "2020-10-11T03:33:37.905921Z", + "start_time": "2020-10-11T03:33:37.897612Z" } }, "outputs": [], "source": [ - "edge_indices = [0]\n", + "edge_indices = [2]\n", "ds = [3, 4]\n", "p = 3" ] @@ -558,8 +657,8 @@ "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:45:28.197914Z", - "start_time": "2020-10-09T08:45:28.186045Z" + "end_time": "2020-10-11T03:33:45.437646Z", + "start_time": "2020-10-11T03:33:45.430812Z" } }, "outputs": [], @@ -592,15 +691,15 @@ "execution_count": 16, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:45:29.511282Z", - "start_time": "2020-10-09T08:45:29.108369Z" + "end_time": "2020-10-11T03:33:47.801203Z", + "start_time": "2020-10-11T03:33:47.289919Z" }, "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHZCAYAAACcp9GFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8iElEQVR4nO3de3zO9f/H8ce1y9nM+Vw55BB2uGbOTIg5VKicT1vCVykUERE6kyKdKEWRKKJCZCGHnJnjWk5LiGEzO2nbdb1/f8j1a9kYtl2bPe+323X77fp83tf7/fpc9m2v3/toMcYgIiIikhO5uToAERERkVulREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmx8qSnkMVisQAVgJjMDUdERETEqQhw2lxn9950JTJcSWJOZkhIIiIiIul3F3AqrZvpTWRiAP788088PDwyIigRERGRNF26dIm7774bbjAalN5EBgAPDw8lMiIiIpJtaLKviIiI5FhKZERERCTHUiIjIiIiOdZNzZG5EbvdTlJSUkZWKdeRN29erFarq8MQERFxmQxJZIwxnDlzhosXL2ZEdXITihUrRrly5biy1Y+IiEjukiGJzNUkpkyZMhQqVEh/VLOAMYb4+HgiIiIAKF++vIsjEhERyXq3ncjY7XZnElOyZMmMiEnSqWDBggBERERQpkwZDTOJiEiuc9uTfa/OiSlUqNBtByM37+r3rrlJIiKSG2XYqiUNJ7mGvncREcnNtPxaREREcqwMXX59jRPA+Uxt4f+VAu7JorZEREQkW8i8ROYEUBO4nGktpFQACEPJjIiISC6SeUNL58m6JIZ/2sqq3p9bYLfbcTgcrg5DRETkjpKr58gsXrwYLy8vChYsSMmSJWndujVxcXE4HA5efvll7rrrLvLnz4/NZmPVqlXOz61fvx6LxZJiA8CQkBAsFgvh4eEAzJ07l2LFivH9999Tu3Zt8ufPz4kTJ/j7778ZPXo0d999N/nz56datWp8+umnznoOHDhA+/btcXd3p2zZsvTt25fz57NxhiYiIuJCuTaR+euvv+jZsyf9+/cnNDSU9evX8+ijj2KM4d133+Xtt99m6tSp7Nu3j7Zt29KxY0cOHz58U23Ex8czefJkZs+ezcGDBylTpgz9+vXjq6++YsaMGYSGhjJr1izc3d0BuHjxIq1atcLX15edO3eyatUqzp49S7du3TLjKxAREcnxMneybzb2119/kZyczKOPPkqlSpUA8PLyAmDq1KmMHj2aHj16ADB58mTWrVvH9OnT+eCDD9LdRlJSEh9++CE+Pj4A/P7773z99desWbOG1q1bA1C1alVn+ffffx9fX19ef/1157XPPvuMu+++m99//50aNWrc3kOLiIjcYXJtIuPj48MDDzyAl5cXbdu2JSAggC5dumC1Wjl9+jRNmzZNUb5p06bs3bv3ptrIly8f3t7ezvchISFYrVbuv//+VMvv3buXdevWOXto/u3o0aNKZERERP4j1yYyVquVNWvW8Ouvv/LTTz/x3nvv8eKLL7JmzZobftbN7cqInDHGeS21nXULFiyYYsO6q0cKpCU2NpaHH36YyZMnX3NPZymJiIhcK9fOkYEru+I2bdqUSZMmsWfPHvLly8fPP/9MhQoV2Lx5c4qymzdvpnbt2gCULl0auDI8dVVISMgN2/Py8sLhcPDLL7+ker9u3bocPHiQypUrU61atRSvwoUL3+JTioiI3LlybSKzbds2Xn/9dXbu3MmJEyf49ttvOXfuHLVq1eL5559n8uTJLFq0iLCwMF544QVCQkIYNmwYANWqVePuu+9m4sSJHD58mBUrVvD222/fsM3KlSsTGBhI//79WbZsGcePH2f9+vV8/fXXAAwZMoTIyEh69uzJjh07OHr0KKtXr+bxxx/Hbrdn6vchIiKSE2Xe0FIprmxSl5Ub4pVKf3EPDw82bNjA9OnTuXTpEpUqVeLtt9+mffv2tG3blujoaEaMGEFERAS1a9fm+++/p3r16gDkzZuXr776iieffBJvb2/q16/Pq6++SteuXW/Y7kcffcTYsWN56qmnuHDhAvfccw9jx44FcPYEjR49moCAAP7++28qVapEu3btnMNZIiIi8v8s/57nkWYhi8UDiI6OjsbDwyPFvcuXL3P8+HGqVKlCgQIFUn5QRxRkuut+/yIiIjnUpUuXKFq0KEBRY8yltMpl7mTfe8iVyYWIiIhkDY1XiIiISI6lREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSmVQEBQXRuXPnm/qMxWJh2bJlmRKPiIiIpC5TN8TLqRv7vvvuu6Rnx2MRERFxrUzrkTkB1AT8suhV8582M0LRokUpVqxYBtUmIiJ3sq5du7JlyxYAJk6cyNy5c2/4mfXr1xMUFHTDcuHh4bRo0SLVe7GxsVgsFuf7ypUr///NeOBL4HXgOyD5/2+1aNGC8PDwG7Z9uw4cOJAipn//7O/vz/HjxzOknUxLZM6TdedF8k9bN9v7s3jxYry8vChYsCAlS5akdevWxMXFXTO01KJFC4YOHcqoUaMoUaIE5cqVY+LEidete8KECZQvX559+/bd7KOIiEgOsX37diIjI2ncuLGrQ/l/u4FKQB9gAtAZqA2cdGFM/zFixAgmTJiQIXXl2jkyf/31Fz179qR///6Ehoayfv16Hn300TSHlD7//HMKFy7Mtm3bmDJlCi+//DJr1qy5ppwxhmeeeYYvvviCjRs34u3tndmPIiIiLjJr1ix69erlfO/u7k7BggWBK70z3bt35+GHH6Z27dq0atWKyMhIAPLly3f1QMTrslqtlChRIkV71atXx9fXl2nTpqUoW7p06Ss9Lx2BqH8uXu2JOQ70vfJjiRIlsFqtALz66qvUqlULm82GzWbjjz/+AGDHjh20atWKevXq4evryzfffONsZ/Xq1TRr1gw/Pz8aNGjAunXrnPcmTpxI9erV8fPzY+HChdfG948HH3yQH3/8kejo6Bt+BzdkjLnhC/AATHR0tPmvhIQEc+jQIZOQkJDi+q70VJzBr13XRJe2Xbt2GcCEh4dfcy8wMNB06tTJ+f7+++83zZo1S1Gmfv36ZvTo0c73gPnmm29Mr169TK1atczJkydvIppbl9b3LyIima9q1apm//79qd6bMGGCqVSpkjl//rwxxpju3bub119//Zbb2r9/vylbtqw5ffq0McaYMWPGmCt/xv9ltbn+H8p//cmLjIw0RYsWNfHx8cYYY+Li4kxCQoKJiooyNpvN2c65c+fM3XffbU6ePGmOHj1qGjVq5MwHDh8+bMqVK2cuX75sli9fbmrXrm2io6ONw+EwvXv3NpUqVUrzeVq2bGl++OGHNO9HR0cbwAAe13uqzD39Ohvz8fHhgQcewMvLi7Zt2xIQEECXLl0oXrx4quX/27NSvnx5IiIiUlx79tlnyZ8/P1u3bqVUqVKZFruIiGQPJ0+epGzZsmneb9euHSVLlgSgcePG7N+//5bbWrt2Le3bt6d8+fIAPPnkk7zxxhspC529QSURXBl2Ajw8PKhevTp9+vQhICCABx98kLvuuou1a9dy7Ngx2rdvn+KjYWFh/Pbbbxw5coTmzZs7r7u5uXHixAl+/vlnunXrhoeHBwD/+9//2LRpU5qhlCtXjpMnb3+8K9cOLVmtVtasWcOPP/5I7dq1ee+996hZs2aak4/y5s2b4r3FYsHhcKS41qZNG06dOsXq1aszLW4REck+ChUqxOXLac8ILVCggPNnq9VKcnJymmVv1r8n+l51rvK5tD9QELjv/99arVa2bt3K8OHDiYiIoFGjRmzcuBFjDHXq1CEkJMT5OnHiBK1atcIYQ5s2bVLcO3XqFNWrV09XfP92+fJl5zDc7ci1iQxc+ZKbNm3KpEmT2LNnD/ny5WPp0qW3XF/Hjh1ZsGABAwYMuGZsUERE7jze3t6EhYXddj333Xcfp06dum6ZVq1asWrVKs6cOQPAzJkzU9yfNGkSZZqX4Ru+YTSjeZ/3U1YwEijy/29jYmI4e/Ys/v7+jB8/nmbNmrFnzx6aNGnC8ePHCQ4OdpYNCQkhMTGRtm3bEhwcnGIhy/bt2wFo3bo133zzDTExMRhj+Pjjj6/7PKGhofj4+Fy3THrk2qGlbdu28fPPPxMQEECZMmXYtm0b586do1atWre10uiRRx5h3rx59O3blzx58tClS5cMjFpERLKTLl26sHr1alq3bn3LdURERHDhwoUUk3pT4+npycSJE/H398fd3Z1HH30UgMjISHx9fTlx4gQWi4VzU8+x/7391D9dHxKBEsAo4PmU9UVHR9OlSxfi4uKwWCxUr16dwMBAihYtyooVKxg5ciQjRowgKSmJe+65h2XLllGtWjUWLFjA//73P+Lj40lMTMTX15cFCxbQoUMHtm/fTt26dfHw8LhmaOrfwsPDsdvtGZLI5NrJvocOHTJt27Y1pUuXNvnz5zc1atQw7733njEm9cm+w4YNS/H5Tp06mcDAQOd7wCxdutT5ftGiRaZAgQJmyZIlNxHVzdNkXxER14mJiTFeXl4mNjb2luv4+uuvzSuvvHJLn502bZqxWCwGMJUrVzYXL140ycnJpl69esYebzfmtDEm6ZZDyzSjR482n3zyyXXLpHeyr8WkYwdbi8XicSV5i3ZO4rnq8uXLHD9+nCpVqqQYC7y6IV5W7SVTAAgj43b3zSnS+v5FRCRr/Pzzz5QtWxZPT88sazMhIQFfX1/CwsKwWCxMmjSJ8ePHZ1n7t2vGjBk8/fTTuLmlPcPl0qVLV5eoFzXGXEqrXKYNLd3DlcQiJx5RICIikl4PPPBAlrY3d+5cnnjiCRwOB+XKlWPPnj2UK1cuS2O4XUOHDs2wujJ1jsw9KLkQERHJCImJiTRs2JCQkBDgyu64U6dOdW1Q2UCunewrIiKSUyxdupRu3bqRnJxMiRIl2LlzJ1WqVHF1WNlCrl5+LSIikp3Z7Xb8/f159NFHSU5Opn///ly4cEFJzL+oR0ZERCQburqTb2JiIkWKFGHTpk06vy8VGdYjk57VT5Lx9L2LiNx5HnzwQR544AESExPp0qULly5dUhKThtvukbm6dX98fHyGbDUsNyc+Ph649ggFERHJebZv306LFi1ISEigQIECrFu3jkaNGrk6rGztthMZq9VKsWLFnAcoFipU6IbnK8jtM8YQHx9PREQExYoVcx7JLiIiOVOPHj1YtGgRAG3btmXFihX6b3s6ZMgcmavr1/97GrRkvmLFiuW4/QNEROT/hYaG0qhRIy5dukS+fPn4/vvvadu2ravDyjEyJJGxWCyUL1+eMmXKkJSUlBFVSjrkzZtX2bqISA42ePBgZs2aBUCTJk3YsGGD/rt+kzJ01ZLVatU/gIiIyA2cOHGCunXrcuHCBfLkycOCBQvo2rWrq8PKkbSPjIiISBaaMGECXl5eJCUl0aRJE+Li4pTE3IbbPjRSREREJKOl99BI9ciIiIhIjqVERkRERHIsJTIiIiKSYymRERERyQJz586lc+fOrg7jjqNERkREJJ2Sk5NdHYL8hxIZERER4LvvvqNWrVr4+PgwevRoSpUqRXh4OJUrV2b06NE0aNCAwMBAzpw5Q8uWLfHz86NOnTo8/fTTOBwO4EqvS6tWrejYsSO1a9emefPmhIeHO9uIjY2lZ8+eeHl5Ua9ePY4dO+aip71zKJEREZFcLyIigv79+7N06VL27t3Lfffdx4ULF5z3L1y4wLZt2/jyyy8pVqwYP/zwA7t27WLfvn2Eh4fz9ddfO8tu3ryZyZMnc+jQIR566CEGDRrkvLdjxw5ef/119u/fT+vWrZk8eXKWPuedSImMiIjkelu3bsXb25v77rsPgMDAQPLly+e8HxQU5DwQ2eFwMHr0aHx8fPD19WXnzp2EhIQ4yzZp0oRatWoBMGjQINavX4/dbgegcePGVKlSxfnz0aNHs+Lx7mgZekSBiIjIncjd3d358zvvvENERATbtm2jQIECPPfcc1y+fDld9RQoUMD5s9Vq1ZybDKAeGRERyfUaNWrEvn37CAsLA2D+/PkkJiamWjYqKopy5cpRoEABzpw5wzfffJPi/pYtW/jtt98AmD17Ni1bttQ5hJlIPTIiIpLrlSlThtmzZ9O5c2fy589PmzZtcHd3p1ixYteUHTZsGF26dKFOnTpUqFCB1q1bp7jfpEkTRo8ezZEjRyhZsiRffPFFFj1F7qSzlkRERICYmBiKFCkCwLJlyxgzZgyhoaE3VcfcuXNZtmwZy5Yty4QIc5f0nrWkHhkRERHgvffeY9GiRdjtdjw8PPjyyy9dHZKkg3pkREREJNvR6dciIiJyx1MiIyIiIjmWEhkRERHJsZTIiIhIrvb222/j5uaGxWKhatWqREdHuzokuQlKZEREJFeKjY2lRo0ajBw5EoDXX3+dY8eOXZ1gKjmEll+LiEiu8+mnnzJo0CAcDgfly5dn7969lC5d2tVhyS1Qj4yIiOQaiYmJ+Pj4MGDAABwOB88//zynT59WEpODqUdGRERyhSVLltCjRw+Sk5MpWbIkO3bscJ5ELTmXemREROSOZrfbadq0KV26dCE5OZmBAwdy/vx5JTF3CCUyIiKSo33zzTcUKFCApUuXXnNvzZo1FCpUiF9//RUPDw/279/Pxx9/7IIoJbPoiAIREcnRChYsyOXLl7FarcTHx5MvXz4A2rVrx+rVqwHo3r07CxcudGWYcpN0RIGIiNzxRo4cyeXLl4ErQ0iNGjVi69atFCpUiNWrV1OwYEG2bdumJOYOph4ZERHJkex2O3nz5iWtv2Pt2rXjxx9/zOKoJKOoR0ZERO5oDz74YJpJzPLly5XE5BLqkRERkRznzJkzlC9fPs37NWvW5LfffsvCiCSjqUdGRETuWC1atLju/bCwMKZPn54lsYhrqUdGRESyuRNAIlAVcGPz5s00a9bshp/KmzcviYmJmR2cZBL1yIiISI6TnJz8r3e7AT+gElAdqAYsv2FvTL58+ShTpgz9+/fPrDAlG1EiIyIiWeK7776jVq1a+Pj4MHr0aEqVKkV4eDiVK1dm9OjRNGjQgMDAQM6cOUPLlk3w86tPnTq7efppcDgAwpk7tyNFijgAyJMnD0WLFmXAgAH8/PPPfPrppzzwwAM8+uijlClThp07d3Ls2DGXPrNkPiUyIiKS6SIiIujfvz9Lly5l79693HfffVy4cMF5/8KFC2zbto0vv/ySYsWK8cMPzdi1y8K+fRAeDl9/DWAAC3FxcOjQIZKSkhg7dix//PEHrVq1ws3NjR07dvD666+zf/9+WrduzeTJk130xJJVlMiIiEim27p1K97e3tx3330ABAYGOnfgBQgKCsJisQDgcDgYPXoRPj52fH1h504ICbla0kGTJnmpVasWAIMGDWL9+vXY7XYAGjdu7DxDqXHjxhw9ejRLnk9cR6dfi4iIy7m7uzt/fueddzh1ysHmzeDuDs89B/9s3gtYgPxp1lOgQAHnz1ar9T9zbuROpB4ZERHJdI0aNWLfvn2EhYUBMH/+/FRXFF26dInvvvuOrVtP4e4OZ87AN9/8u4Rhy5YE5x4xs2fPpmXLllit1ix4CsmO1CMjIiKZrkyZMsyePZvOnTuTP39+2rRpg7u7O8WKFQOuHDfw6aef8uKLL3Lx4kVKlixP7doOKlY8S+vWV7cJsQDtaNLkMqNHj+bIkSOULFmSL774wlWPJdmAemRERCRLtG7dGk9PTz766COaNm1K/vz5WbZsGfPmzWPQoEEMGDCAVq1acfjwYU6dOsWhQ3+xZk0Ec+bMYfr0WcAxoBsnTpzA19eXgwcPsmHDBipXrgxcmWezbNkyZ3sPPfQQ69evT3+Al6BD4w6ErQpL9XaXLl2YO3fuDau5Gs+NtGjRgvDw8BuWCwoKcj7H+++/z+uvv56u+nML9ciIiEiWGDVqFKtWrSI0NBQPDw8CAgL48MMP2bFjB/Xq1WPz5s00adLkP58qBQRlbmAGmARMhpWXV0J7oD6wgCtb12QjgwYNolatWgwZMuTqZnG5nnpkREQkSyQmJjJ9+nS2bdtG69at+eabb/j999+ZO3cumzZt4vvvv6dBgwbYbDa6detGVFQUAH/99Rdt27aldu3azJ8/n3r16jnrjImJoXv37tx33334+/vzv//9j6CgIOf9qVOn0qBBA+rWrUu7du34448/rg1sOlcSmctQmcqEEAK74bdmv9GkURPq1KlD586duXTpyuayDoeDdu3aMXXqVACOHj3KXXfd5Zz/U7p06XR9HyVKlHDO7WnRogXPPPMM9evXp1q1aowYMcJ5IGbRokWdK7zy5ctHQEAACxYsSOe3fudTIiMiIlli/fr1nDt3jpo1azJ58mSef/55/vzzTwIDA3n77bcpXLgw27dvJyQkBC8vL8aNGwfA0KFDadCgAYcOHeLzzz/n559/dtb58ssvU7BgQUJDQ1m5ciW//vqr896CBQsICwtjy5Yt7N69m969e/PUU0+lDMoBpLbVjB36nu3LE95PcPDgQV555RV++eUXANzc3Jg/fz4ffPAB69evp1u3brz11lvUrFkTgB07dqTr+/j222+5++67ne8PHTrEr7/+yr59+/jll1/46quvAHj33XdT9FQ1btw4xXeQ22loSUREMt327ds5fvw4Y8aM4dFHH+Wtt96iatWqzvvLli0jOjqaJUuWAFd6b67ONfn555+dvR8VK1akY8eOzs/9/PPPTJs2DYvFQpEiRejevTtHjhxx1rljxw78/PwAnHvNpBADnL328iUuEUIIQaWDAPDy8kpxvlOpUqWYP38+LVu2JCgoiJ49e97qV+PUr18/8ubNS968eenTpw/BwcH06tXrmnLlypXj5MmTt93enUKJjIiIZJrTp08zZswYvvjiC6xWK19++SXdu3e/ppwxhvfee4+AgIAb1nl147wb3TPGMGbMGAYNGnRNucTERN59910+/uhjtrOd4hRPvcLKabe7Z88eSpYsyalTpzDGXDeuW5FWfZcvX6ZgwYIZ2lZOpqElERHJcJcvX+b111+nRo0arFy5kpkzZ9KkSRNKliyZavnOnTszbdo04uPjAYiPj+fgwYPAldVOn332GXBlvsz333/v/FyrVq34/PPPMcYQGxvL11fOMnDWOXPmTCIjIwFISkrivffeo0mTJhQqVIhRo0bxx8k/WFFlBcZi+DcPqwe+Vl++SL6ytPvgwYNs2rTJeX/37t1MnTqVPXv2ADBlypRUn2vMmDG8//776frO5s+fT1JSEgkJCSxYsIDWrVunWi40NBQfH5901ZkbqEdGREQyjDGGJUuW8Pzzz3Py5EmeeeYZXnrpJYoVK0ZiYiKrV69O9Q/06NGj+fvvv2nYsKGzJ2L06NHUqVOHd999l6CgIGrXrk3FihVp1aqV83MvvfQSTzzxBLVq1aJUqVL4+Pg496bp3bs3Fy5coEmTJpw5c4ZLly45e05q167N8OHD6d+/P252N/gfMJcrK5gAysEX07/g8bcf5+0P3qZ69eo0b94cuLJpX48ePfjss88oV64cX3zxBQ0aNKBZs2Y0bdo0xXPt3bvXObR1I7Vq1aJp06ZERkbSqVMnevTokWq5VatW8corr6SrzlzBGHPDF+ABmOjoaCMiIpKaPXv2mPvvv98ApkOHDua3335LcT8mJsZ4eXmZ2NjYDGszMTHRJCQkGGOMiY2NNU2bNjULFy40MTExZtSoUaZ8+fKGK+mJKVeunBk5cmTaf8uOGWMWGmOCjTFJtx9bcnKyqVevnrHb7Tcse//995ulS5fesNzBgwdNs2bNbj+4HCA6Ovrqv52HuU6Ooh4ZERG5LREREYwfP55PPvmEmjVr8uOPP9KuXbtryrm7uzNt2jSOHz+Op6dnhrQdFRVF+/btsdvtXL58mapVq/Lqq6/Ss2dPjDEUKlSIxx57jFdeecV50GSaqvzzyiBWqzXdK5jS688//2TWrFkZWmdOZzHG3LiQxeIBREdHR+Ph4ZH5UYmISLaXmJjIe++9x8svv4ybmxuTJk3iySefJG/evFkax5YtW5gwYQK//PILiYmJuLm5Ub9+fcaMGUOnTp2uKf/yyy/z7bffXnN9yZIl3HvvvVkRsqTDpUuXrm76V9QYcymtckpkRETkphhjWLFiBc899xxHjx5l8ODBTJo0iVKlSmVZDGfOnGH8+PEsWbLEuXFelSpVGDRoEM8995xzAznJuZTIiIhIhrt8+TKnTp0iJiYGd3d3KlasmGVLga/uDDxr1iyOHTsGQLFixejSpQuTJk2iQoUKWRKHZI30JjKaIyMiIulWoECBLB9++f7773n99dfZsWMHDoeDvHnz0qZNGyZMmHDNKiHJfZTIiIhIthMaGsr48eP58ccfiY+Px2KxUKdOHYYPH87jjz+Om5u2QZMrlMiIiEi2cOnSJV599VXmzZvHmTNngCvb8T/99NO8+OKLmtogqVJKKyJyh+nQoYPzJOaMkJyczIkTJ5zvz58/j8PhyJC6HQ4Hs2fPxtPTk2LFivHWW28RExNDly5d+O233/jrr7+YPHmykhhJkyb7ioiIS9jtds6dO0ejRo34888/adCgAWPGjElxKKTkXumd7KseGRGRHGzLli00a9YMHx8fvL29+e6776hcuTIhISGuDu2GrFYrpUqVYvHixSQkJLBlyxYlMXLTNEdGRCSHioyMpHPnzixevBh/f38cDgcXL15MUSY5OZk8ebLvf+rz5MlDvXr1XB2G5GDqkRERyaG2bNlCzZo18ff3B8DNzY0SJUqkKJOe6QOQ8fNqTp8+7YwLYOLEiVy+fDnD6he5SomMiIiwcuVKatasec315OTkW6qvQoUKbNy40fl+0qRJSmQkUyiRERHJoZo0acLhw4edCYPD4SAyMvKGn7vRvJoWLVowdOhQGjduTEBAAACTJ0/Gy8sLHx8fGjVqRHx8POvXr8dmsznrPXDgAJUrVwYgPDycYsWKATB48GAA/P39sdlsREREZMwXIILmyIiI5FjFixdn6dKljBgxgpiYGNzc3HjllVeu+5n0zKsB+P3339mwYQN58+bl888/Z8mSJWzatImiRYsSFRVF/vz50x3nzJkzmTVrFhs3bnQmNyIZRYmMiEgO1qhRIzZv3pzi2sMPP+z8+b8nUadnXg1Anz59nJ9dvnw5gwcPvroUluLFi2foM4jcDg0tiYjINdzd3W9YJk+ePNjtdud7zYERV1AiIyKSi9zKvJqOHTsyc+ZMoqOjAbh48SJ2u52qVavyxx9/cO7cOQDmzZuXZh1FihRxfl4kI2loSUQkF7mVeTV9+/bl9OnTNGnShDx58lC4cGGCg4OpUKECo0aNokGDBpQtW5b27dunWceIESNo06YNhQoV4qeffqJMmTIZ/WiSS+mIAhEREcl2dESBiIiI3PGUyIiI5CDGGDZu3EhgYCABAQHMmDFDc08kV1MiIyKSQxw8eJC2bdvSvHlzTp8+zTvvvMPQoUOdy6JFciMlMiIi2VxkZCTPPPMMPj4+HD9+nO+++46ffvoJT0/PVMufOHGCoKAgKlWqxMWLF2/5mAGRnECJjIhINpWcnMz7779PtWrV+Pzzz3njjTc4cOAAHTt2xGKxpCh7+fJlXn31VSpXrkylSpX4/PPPiY2N5YMPPnBR9CJZQ8uvRUSyoTVr1jB8+HBCQ0N54oknePXVVylbtuw15ZYsWcIbb7zBnj17cDgc5M+fn/bt2/Pyyy9Tr149F0QukrXUIyMikoXi4uLw9/fniy++SPX+4cOH6dixIwEBAZQsWZJdu3bxySefpEhiDhw4QOfOnSlUqBBdunRh9+7deHl5MW/ePOLj41m5cqWSGMk1lMiIZICdO3fSvXv3TKo9GjgGJKb7E7t37+aNN94gLi6Ohx56CC8vL4YMGcLMmTN56623AJg7dy6dO3fOlIglbWPHjmXTpk0MGTKEn376yXk9OjqakSNHUqdOHfbu3cuiRYv45Zdf8PX1Ba7spvvss89StmxZvLy8+O677yhRogTjxo0jNjaWkJAQ+vTpg5ub/rMuuYuGlkQyQL169Vi0aFEG1xoFPA0sAuxAcWAMMBK4Mj8iOTmZPHmu/M/Ybrfzww8/MHXqVOchghUrVuTw4cOEhYVlcGxyKzZt2sR7770HQGxsLG3btmXz5s0cOnSIsWPHEhcXx0svvcSIESMoWLAgDoeDmTNnMmPGDH777TfgyhlIPXv25JVXXuHee+915eOIZAtKZERuUkJCAkFBQezfv5+8efNStmxZxo4dy/DhwwkJCSE8PBybzcYzzzzDihUriImJYe7cuSxevJh169aRnJzMwoUL01xxAhAUFISb20p+++0c589D48Ywc2YUBQuOIihoEW5u3hw5coSIiAh27NhBnz59+PHHH0lKSkoxCXT8+PFERERgs9l47rnnOHbsGBcvXmT69OnXtDlv3jzef/99kpKScHd357333sPHxyczvsJcKT4+nn79+vHf3dTbtGlDfHw8ffr04c0336RixYqsX7+eSZMmsWnTJpKTk7FarTRr1oxx48bRtm1bFz2BSPakPkiRm7Rq1SouXrzIoUOH2Lt3LwsXLrymTHR0NH5+fuzevZsXXniBtm3b0rFjR0JCQggMDGTSpEk3aOUM27adY/VqCA2FyEiYNu3qvf3s2rWTDz/8kA4dOlC6dGm+//57kpKSAFL8oXz77bepWbMmISEh9OvXL83WNm/ezFdffcWGDRvYvXs3r732Go888kgmDpfdusTExBw5XDZu3DiOHz9+zfX4+Hg2bdrEa6+9xtixYylatCgtW7Zk/fr1VKlShenTp3P58mU2btyoJEYkFeqREblJPj4+hIaG8tRTT3H//ffToUOHa8oUKFDA+Qe1Xr16uLu707JlSwAaNGjAl19+eYNWIunWzUKRIleSkieegBkzYOxYgEQKFUrEy8vrhrFu3bqV6Ohofv75Z9zd3YmIiMDhcFxT7rvvvmPv3r00bNjQeS0hIYG5c+fesI2M9u/hstTs2bMnxw2X/frrr6n2gl3Vrl07YmNjAShZsiRPPfUUkyZNolSpUlkUoUjOpR4ZkZtUtWpVDh06RLt27di8eTOenp5ERUWlKJM/f37nz1arlQIFCqR4f+MNygoCKYcg/n/EyEL58vemaCMtb7/9NuHh4bRu3ZpGjRrx0UcfsWHDhmvKJSUl4eHhQWJiIsYYypQpw1dffUXjxo0BCA8Pp1ixYowfP566detSvXp1Nm/ezLPPPovNZsPT05MDBw5cN5agoCD69+9PkyZNqFGjBoGBgSQkJKS417x5c+eQ21tvvUWdOnXw8vKid+/eREdHc+jQIXr37s2JEyew2Wx88cUXTJw4keHDh6fa5rx582jYsCF169alefPm7N2794bfWVo6dOhwS8lTQkJCqkNK/xYbG8u9997Lr7/+yvnz5/nggw+UxIikkxIZkZt08uRJLBYLHTt2ZOrUqRhj+PPPPzO0jaSk8nz9NVy8CHY7zJkDrVsDWIEqNG/ehoiICMaMGYPVak21jgIFCrB69Wrq1KnDsWPH2LdvH/3798fPz++asqVKlSI8PJxVq1axd+9eFixYcM0f7dsfLoNt27axevVqQkNDiYyMZNr/j5exa9cuVqxYwW+//caPP/7IZ599xubNm9m/fz+FCxfmhRdeoHbt2syePfuWh8t69ep1wxjTsnLlSmrWrHnN9f9PSpcBDYDCQE3gA8DBoEGDOHr06A3rP3r0KLVq1brl+ERyKyUyIjdp//79NG3aFB8fH3x9fenbty/e3t4ZVv+ZM2dYtWoNUVFWOnRwo1YtKFYMrnQ6NPznBR4eHrz++uscPXo01Um5hQoVIl++fOTJk4cqVarg5eXF3XffTcmSJa8p27NnTwoXLoyfnx+VKlWiadOmrF27NkWZGw2XHT58+IbP1q1bN4oUKYLVauWJJ54gODjYea9r164UKVIEgODgYLp3706xYsUAePLJJ1mzZs0N6/+3fw+XXZ18HRkZ6ewFup4tW7bQrFkzfHx88Pb25rvvvqNy5cqEhIQA0KJFC4YOHUrjxo0JCAgAPmXy5Efw8tqBj088jRr9Tnz806xb14X58+enO2Z/f39sNhsRERE39awiuZnmyIjcpPbt29O+fftrrl/9I1e5cmUuXrzovO7p6Ul4eLjzfbNmzdIchvn9999p27YtCQkJ9O//LG+99TLwPQcOrCE01JO6dYcxd27KrekrVapESEgI27dvZ9iwYWzduhWAwoUL06JFC2dcABMnTnT+HBQURFBQEHBluCw8PJy1a9cSHBzMd999R48ePVL0stz+cNm1/r3Cyt3dPV3l0ssYQ2BgIK+//voNy44aNYo9e/bg7u5Ovnz5+OGHH+jcuTO1atWiUKFChIeHExcXx4YNG4iOjiYmJoY9e/awcOFCihcvzNy5lVmyBDZtgqJFISoK8ucHi2Up+fNb+PvvtIeV/m3jxo3O5E1E0kc9MiLZxNatW2nSpAkFCxakQ4cOVKxYESiIMd1o2PArGjceTWRkVJqfb9CgAb/++ivffPMNd999N1WrVk1321kxXAawePFiYmNjsdvtzJkzh9ZXxsuu0bp1a77++msuXboEwKxZs/7p+Ui/jh07Mn/+fE6cOAGAw+Fg586dqZa9++67KVGiBImJiRw8eBA3Nzd27NjBhx9+6JyDc/78eYYNG0aLFi3YvXs3mzZtonLlyjRvXpoVK+IYPPhKEgNQvDhcHfG77767+fvvv9m1axcvv/wyHh4ePPLII3h6emKxWChcuLA2sRO5DeqREXGRlStXMvbKMiQuXbpEeHg4hQoVYsSIETzxxBPOcnv27CE+Ph6Ap59+mgULFqRZp8VioUuXLnTu3DnV1Ulp2b9/P2PGjMEYQ3JycoYPl11Vv3592rZty7lz52jcuHGak3Tbt2/PgQMHaNy4MW5ubnh7e/Phhx/eVFv+/v5MmTKFRx55hOTkZBITE3nwwQdT3br/mWee4ZlnngFgxYoVTJ48OcWkaIfDQZUqVZg9ezaVK1emZ8+ePPLII//sunuEOXOGpRpDnjxX5jjly5ePunXr4nA4+PTTT/n222+d+w1d7b27lV4nEeFK9+uNXoAHYKKjo42IZKyPP/7YuLm5mUceecTEx8dfc3/UqFHGzc3NcGUZk1m8eLELorx9gYGBZtq0aa4O44YiIyNNuXLlzIYNG4wxxtjtdnPhwgVTqVIls2fPHmOMMffff79ZunSpMcYYh8NhZswoaurVw1y8eOU/m1FRmORkzKlThU2RIkVMRESEMcaYoUOHmkqVKhljjDl+/LgpWrSos90iRYqY8PDwLHpKkewvOjr66n/3PMx1chT1Z4q4iDGGiRMnMmjQIAYPHsw333xDwYIFrykzf/58Z++KxWJhwIABmgyaiYoXL87SpUt54YUX8Pb2pm7dus4jH/4rPj6eHj168Mkn0XTqlIcmTcDHBzp0gL//zkOFCgsYNWoUDRo0oFGjRpQoUSLNdkeMGEGbNm002VfkJlnMdfY2cBayWDyA6OjoaDw8PDI/KpE7XHJyMoMHD+bTTz/l9ddf54UXXkh1aGHLli00adIkxTWr1cqDDz7IsmXLst1wxL+Hy/5tzJgx2XKX4Ntx6tQpOnfuzKFDh/jiiy947LEWwBzgAHA30B+o4soQRXK0S5cuUfTKxLOixphLaZVTIiOSxeLi4ujevTurV69m9uzZBAYGpll22LBhfPjhh6muCJo3bx59+vTJzFAlDTt37qRTp064ubnx/fffO0+oFpGMk95ERkNLIlno3LlzPPDAA6xfv54ffvjhukmM3W5nwYIFaS5rfvLJJzl58mRmhSppWLRoEf7+/tx9993s2LFDSYyIiymREckix44do2nTphw/fpxffvmFdu3aXbf8hg0bOH/+fJr3Y2NjnSttJPM5HA4mTJhAjx49eOyxx1i/fj3lypVzdVgiuZ6WX4tkgd27d9OhQweKFCnCli1b0rXHy6JFiwDImzcvdrs9xXLqUqVKce+99+Lv759pMcv/i4+PJzAwkMWLF193TpOIZD0lMiKZ7KeffuKxxx6jdu3aLF++nNKlS6frcz4+PrRr147q1atTtWpVtm3bxpo1azhx4gSFChXK5KjlqpMnT9KpUyfCwsJYunSp85gGEckeNNlXJBN98cUXPPHEE7Rt25ZFixZRuHDhW65r3rx59OvXj9jY2NuqR9Jv+/btdO7cmTx58vDDDz+keqaViGQOTfYVcSFjDG+++SaBgYEEBgaybNmy204+rg5HHT9+PCNClBv46quvuP/++6lcuTI7duxQEiOSTSmREclgdrudZ555hjFjxvDSSy/xySefkCfP7Y/iXk1kjh07dtt1SdocDgfjx4+nV69edO3albVr11K2bFlXhyUiadDQkkgG+ve22RaLJUMPAzTG4HA4Mrxe+X9xcXEEBgby7bff8sYbbzBq1ChN6hVxkfQOLWmyr0gGslgsmfaHz2KxYL16pLJkuD///JNOnTrx+++/s2zZMjp27OjqkEQkHZTIiEiut23bNjp16kT+/Pn59ddfM+XkbxHJHOqfFpFcbcGCBdx///1Uq1aNHTt2KIkRyWGUyIhIruRwOHjxxRfp3bs3PXr04Oeff6ZMmTKuDktEbpISGckRwsPDmTlzZpa3+9JLL/Hll19mWH0TJ07k8uXLmVa/pE9sbCxdunThjTfe4K233mLOnDnkz5/f1WGJyC3QqiXJEdavX8/w4cMJCQlxdSi3xWKxEBUVRbFixVwdSq514sQJOnbsyNGjR/nqq6946KGHXB2SiKRCG+JJjpWQkED37t2pXbs2Pj4+BAQEMHjwYMLCwrDZbM7VJIcPH+bBBx+kfv36eHt78/777zvrsFgsjBs3Dl9fX2rUqHHDXo+tW7fi5+eHzWbD09OTjz76CICgoCCmT58OXOlN6datGw8//DA1atTgoYce4sCBA7Rt25YaNWrQs2fPFOch/dfgwYMB8Pf3x2azERERccv1x8TEMHDgQBo0aIC3tzeDBg0iMTHxlr7v3GTLli3Ur1+f6OhotmzZoiRG5E7w730v0noBHoCJjo42Ipnt22+/NQEBAc73Fy5cMOvWrTM+Pj7Oa8nJycbPz8+EhoYaY4yJi4szXl5eZvv27cYYYwAzbtw4Y4wxR48eNcWLFzfHjx9Ps82OHTuaBQsWON9HRkYaY4wJDAw006ZNM8YYM2HCBFOlShUTGRlpHA6Had68uWnYsKG5dOmSSUpKMj4+Pmb58uXXfTbAREVFOd/fav0DBw40n3/+uTHGGIfDYZ544gkzZcqU67ad233xxRcmX758xt/f30RERLg6HBG5gejoaAMYwMNcJ0fR8mvJdnx8fAgNDeWpp57i/vvvp0OHDteUCQsL4+DBg/To0cN5LSYmhkOHDlG/fn0ABgwYAFzZEbd58+Zs2LCBypUrp9pmy5YteeWVVzh8+DCtWrWiWbNmqZYLCAigePHiANStW5f8+fNTpEgRAHx9fTl8+PAtP/fN1L9s2TK2bNnCO++8A1zpxdIeM6lzOByMHTuWyZMn079/fz766CPy5cvn6rBEJIMokZFsp2rVqhw6dIi1a9cSHBzMqFGjnMMvVxljKFGixE3NmbneRnXDhw+nU6dOBAcHM3bsWDw9Pfnwww+vKVegQAHnz1ar9Zr3ycnJ6Y4nNemt3xjDkiVLqFGjxm21d6eLiYmhT58+LF++nLfffptnn31WO/WK3GE0R0aynZMnT2KxWOjYsSNTp07FGEPJkiWJjo52lqlZsyYeHh7MmTPHee3IkSNERkY631+9Fx4ezsaNG/H390+zzbCwMKpUqcLAgQMZO3YsW7duzYQngyJFiqR4jlvVuXNnJk+e7ExsoqKiOHLkyG3Xeyf5448/aNq0KevWreOHH37gueeeUxIjcgdSj4xkO/v372fMmDEYY0hOTqZv3740adKEOnXq4OnpSdWqVfn+++9Zvnw5w4cPZ9q0adjtdkqVKsWCBQuc9djtdnx9fYmLi2PGjBlpDisBvP/++6xdu5Z8+fJhtVp5++23M+XZRowYQZs2bShUqBA//fTTLdczbdo0XnjhBWw2G25ubuTJk4cpU6ZQrVq1DIw259q8eTOPPPII7u7ubNmyhTp16rg6JBHJJFp+LXckLXPOvT7//HMGDRpEo0aNWLJkCaVKlXJ1SCJyC7T8WkRyFbvdzqhRowgKCqJfv36sWbNGSYxILqChJbkjpdbTGBERQUBAwDXX27Rpw1tvvZVhbQ8ePDjVOTZbtmyhYMGCGdaO/L+YmBh69erFypUrmTZtGsOGDdN8GJFcQkNLIpKjhYeH8/DDD3PixAkWLlxI+/btXR2SiGQADS2JyB1v06ZN1K9fn4SEBLZu3aokRiQXUiIjuZoxBrvdTnJycqrDUZJ9zZkzh1atWuHp6cm2bduoVauWq0MSERdQIiO51uHDh6lWrRp33XUXBw4c0JyKHMIYw1tvvUX//v15/PHH+emnnyhZsqSrwxIRF9FkX8mVtm/fzoMPPkjJkiXZsmXLdfeYkezF4XAQFBREwYIFGTJkiBJQkVxOPTKS66xYsYKWLVtSo0YNNm/enGlJzM6dO+nevXum1H07EhMTeeihh/Dy8mLIkCHMnDnTuWpr7ty5dO7c2bUB3oDVaqV06dI8/fTTSmJERD0ykrt8+umn/O9//+Ohhx7iq6++ytTl0PXq1WPRokWZVn9akpOTyZMn7f9p79mzh8OHDxMWFpaFUYmIZA71yMgdxW63Y7fbr7lujOGVV15hwIABDBgwgMWLF2doEpOQkED37t2pXbs2Pj4+BAQEsH79emw2G3BliXCxYsUYP348devWpXr16mzevJlnn30Wm82Gp6cnBw4cuG4bQUFB9O/fnyZNmlCjRg0CAwNJSEhIca958+Z4enoC8NZbb1GnTh28vLzo3bs30dHRHDp0iN69e3PixAlsNhtffPEFEydOZPjw4am2OW/ePBo2bEjdunVp3rw5e/fuzbDv7KqJEydy+fLlDK9XRHIHJTJyR3n66aepUaMGERERzmvJyck8+eSTvPTSS7zyyit89NFH1+2xuBWrVq3i4sWLHDp0iL1797Jw4cJrykRHR+Pn58fu3bt54YUXaNu2LR07diQkJITAwEAmTZp0w3a2bdvG6tWrCQ0NJTIykmnTpjnv7dq1ixUrVvDbb7/x448/8tlnn7F582b2799P4cKFeeGFF6hduzazZ8+mZs2ahISE0K9fvzTb2rx5M1999RUbNmxg9+7dvPbaa/Tq1evWvqDrmDRpkhIZEbllGlqSO0ZUVBSfffYZiYmJtG3blo0bN+Lm5kbPnj1ZsWIFn332GY8//nimtO3j40NoaChPPfUU999/Px06dLimTIECBZzzT+rVq4e7uzstW7YEoEGDBnz55Zc3bKdbt24UKVIEgCeeeIIZM2YwduxYALp27eq8FxwcTPfu3Z1nTT355JN07dr1pp7pu+++Y+/evTRs2NB5LTIykoSEhAzrzRo8eDAA/v7+WK1WKlSowN13382RI0f4888/8fT0ZOHCheTLly9D2hORO496ZOSOMX/+fJKSkgDYt28fHTt2pFWrVgQHB/PDDz9kWhIDULVqVQ4dOkS7du3YvHkznp6eREVFpSiTP39+589Wq5UCBQqkeJ+cnHzT7f57squ7u3u6yqWXMYbAwEBCQkKcr7/++itDh+RmzpwJwMaNGwkJCaFMmTKEhITwww8/EBoaytmzZ1myZEmGtScidx4lMnJHMMbw4YcfOt87HA7WrVtHSEgI69aty/QdX0+ePInFYqFjx45MnToVYwx//vlnhrezePFiYmNjsdvtzJkzh9atW6darnXr1nz99ddcunRlV+9Zs2ales7U9XTs2JH58+dz4sQJ4Mp3unPnztt7gHR45JFHKFSoEFarlQYNGnD06NFMb1NEci4NLckdYevWrfz222/XXP/777/5/vvvadCgQaa2v3//fsaMGYMxhuTkZPr27Yu3t3eGt1O/fn3atm3LuXPnaNy4cZqTdNu3b8+BAwdo3Lgxbm5ueHt7p0j00sPf358pU6bwyCOPkJycTGJiIg8++CD16tXLgCdJW0b0VIlI7qFDI+WOEBQUxJdffpnmH72PPvrIOR8jpwoKCsJms6WZvORUHh4e7N+/n0qVKl3zjCNHjsTd3Z2JEye6NEYRyXo6NFJyjejoaBYuXHjd/899yJAhHDp0KAujkvQaMWIEbdq0wWazpVhtJiKSHuqRkRzvgw8+4Omnn05xzWq1OveTqVGjBg8//DATJ0687oTY7GDlypXOVUj/NmbMmGy5S7CISGZJb4+MEhm5KeHh4axatSrLh2leeuklatasSbvevVkGxAKtAE9jKF26NBcuXMBisWCMoUSJErRr146AgABat25NxYoVr6lv4sSJvPDCC875GFfr7927d1Y+loiIpEGJjGSK9evXM3z4cEJCQrK87QXA40AiV8ZEHUAvY/i+RAkqli3LgAEDaNOmDV5eXri5XX/U1GKxEBUV5dxnJaey2+04HA7y5s3r6lBERDKU5sjIbUtt2/3BgwcTFhaGzWajY8eOABw+fJgHH3yQ+vXr4+3tzfvvv++sw2KxMG7cOHx9falRo8YNN33bunUrfn5+zm37P/roIwAeDQqiz/TpJAJMnIijWzd4+GEW1KzJXU2bsnjxYtasWUPXrl3p3bs3DocjzTb+vQnb1XkZQUFBTJ8+nSvVT6Rbt248/PDD1KhRg4ceeogDBw7Qtm1batSoQc+ePZ31x8TEMHDgQBo0aIC3tzeDBg0iMTHxFr/xmxcWFsZnn32W6rEM2U1ycjLHjh3LEbGKSA5ijLnhC/AATHR0tJHc49tvvzUBAQHO9xcuXDDr1q0zPj4+zmvJycnGz8/PhIaGGmOMiYuLM15eXmb79u3GGGMAM27cOGOMMUePHjXFixc3x48fT7PNjh07mgULFjjfR0ZGGmOM8QoMNJZp0678Qk6YYKhSxRAZaXA4TP7mzU3Dhg3NpUuXTFJSkvHx8THLly+/7rMBJioqyvk+MDDQTJs2zRhjzIQJE0yVKlVMZGSkcTgcpvl16h84cKD5/PPPjTHGOBwO88QTT5gpU6Zct+2MFBwcbABz+PDhLGvzVkRGRpo2bdqYpk2bmsTERFeHIyI5QHR0tAEM4GGuk6NoHxlJU3q23Q8LC+PgwYP06NHDeS0mJoZDhw5Rv359AAYMGABc2f22efPmbNiwgcqVK6faZsuWLXnllVc4fPgwrVq1olmzZgDEAxau/EYDEBAAxYsDkFy3Li3y53duz+/r68vhw4dv69kDAgIo/k/9devWJX8a9S9btowtW7bwzjvvAFd6saxW6221fTOqVq0KwLFjx6hWrVqWtXszfv/9dx5++GHOnTvHkiVLNAwmIhlKiYyk6eq2+2vXriU4OJhRo0Y5h1+uMv9Mrr2ZOTPX2y5/+PDhdOrUieDgYMaOHYunpycffvghJYEU+7v+M0nXCpS2WPjhhx+IjIwEYMOGDWzZsoWvv/6a6OhoLl26RGxsLElJSXz//fe0atXqhjH+d1O2tDZpM8awZMkSatSoke7nz0h33303efLk4dixYy5p/0aCg4Pp2rUr5cqVY/v27dk22RKRnEtzZCRNqW27X7JkSaKjo51latasiYeHB3PmzHFeO3LkiDOpAJz3wsPD2bhxI/7+/mm2GRYWRpUqVRg4cCBjx45l69atAFQDinAlcfk3B1D70iUOHTrEJ598wuzZszl27BhhYWFs2bKFQ4cOcfLkSS5evEhcXBzly5cHoEiRIime41Z17tyZyZMnOxObqKgojhw5ctv1pleePHmoVKlSttzG/8MPP6Rdu3Y0bNiQrVu3KokRkUyhREbStH//fpo2bYqPjw++vr707duXJk2aUKdOHTw9PenYsSN58uRh+fLlfPvtt3h7e1OnTh2eeOIJEhISnPXY7XZ8fX0JCAhgxowZaQ4rAbz//vvUqVMHX19fxo0bx9tvvw1AXmAo0PJfZSsDXwO+xYo5z1IyaazCs1qttG7dmlq1agEZtwnbtGnTKFiwIDabDW9vbx544AHCw8Nvub5bUbVq1WzVI5OUlMSQIUMYMmQITz/9NMuXL7+68kBEJMNp+bVkqsxY5nweiAPuJmUm/uyzz/Luu++mmcz8+OOPtGvXLsPiyC4GDx7Mtm3b2LNnj6tDISoqiq5du/LLL7/w4YcfMnDgQFeHJCI5lJZfyx2rFFCJa395p06dSkBAQKqTbS0WC0uWLOHgwYNZEWKWuvfeezl69GiaCVxWCQsLo2HDhuzZs4c1a9YoiRGRLKHJvpKpUvvjGhERQUBAwDXX27Rpw1tvvXXLbVmtVr777jvmzJnDxYsX+fbbb/nzzz8ByJ8/Pz/++CPLly/nzTffpGnTptx7773XnXicUzz88MMkJSWRkJBAoUKFXBLD1T18KlSowPbt27n33ntdEoeI5D4aWpI7jjGGpKSkFNeuLvl1OBw4HA5ngmW1WnFzc8vRCY3D4SA5OZk8efLccEfjjGaM4YMPPmD48OEEBATw1VdfaT6MiGSI9A4tqUdG7jgWi4V8+fKles9qtWbpPi9Zwc3NLc3nzUxJSUkMHTqUmTNn8txzzzFlypQ77rsVkexPiYyI3LQLFy7QtWtXNm3axOzZs3niiSdcHZKI5FJKZETkpvz222889NBDXLx4keDgYJo3b+7qkEQkF9OqJcmxwsPDmTlzZpa3+9JLL93w8MubMXHiRC5fvpxp9Wek1atX06hRIwoUKMCOHTuUxIiIy2myr+RY69evZ/jw4Td1PEJ2lBl77WQ0YwwzZszgueeeo3379ixYsED/LRCRTKV9ZOSOkpCQQPfu3alduzY+Pj4EBAQwePBgwsLCsNlsdOzYEYDDhw/z4IMPUr9+fby9vXn//feddVgsFsaNG4evry81atS4Ya/H1q1b8fPzw2az4enpyUcffQRAUFCQ88ypiRMn0q1bNx5++GFq1KjBQw89xIEDB2jbti01atSgZ8+eOByONNsYPHgwAP7+/s5dhm+1/piYGAYOHEiDBg3w9vZm0KBBJCYm3tL3/W9JSUkMHjyY4cOH89xzz/Hdd98piRGR7ON6R2NffQEegImOjs7cM7tF0vDtt9+agIAA5/sLFy6YdevWGR8fH+e15ORk4+fnZ0JDQ40xxsTFxRkvLy+zfft2Y4wxgBk3bpwxxpijR4+a4sWLm+PHj6fZZseOHc2CBQuc7yMjI40xxgQGBppp06YZY4yZMGGCqVKliomMjDQOh8M0b97cNGzY0Fy6dMkkJSUZHx8fs3z58us+G2CioqKc72+1/oEDB5rPP//cGGOMw+EwTzzxhJkyZcp1276R8+fPmxYtWpi8efOazz777LbqEhG5GdHR0QYwgIe5To6iyb6SI/j4+BAaGspTTz3F/fffT4cOHa4pExYWxsGDB+nRo4fzWkxMDIcOHaJ+/foADBgwALhyPlHz5s3ZsGFDmmc/tWzZkldeeYXDhw/TqlUrmjVrlmq5gIAAihcvDkDdunXJnz8/RYoUAcDX15fDhw/f8nPfTP3Lli1jy5YtvPPOO8CVXqzbWQ596NAhHn74YS5dusTatWvTfH4REVdSIiM5QtWqVTl06BBr164lODiYUaNGOYdfrjLGUKJEiZuaM3O9jfCGDx9Op06dCA4OZuzYsXh6evLhhx9eU65AgQLOn61W6zXvr56MfavSW78xhiVLllCjRo3bag+unEvVo0cP7rnnHn7++efrHvQpIuJKmiMjOcLJkyexWCx07NiRqVOnYoyhZMmSREdHO8vUrFkTDw8P5syZ47x25MgRIiMjne+v3gsPD2fjxo34+/un2WZYWBhVqlRh4MCBjB07lq1bt2bCk0GRIkVSPMet6ty5M5MnT3YmNlFRURw5cuSm6jDGMG3aNB566CHuv/9+fv31VyUxIpKtKZGRHGH//v00bdoUHx8ffH196du3L02aNKFOnTp4enrSsWNH8uTJw/Lly/n222/x9vamTp06PPHEEyQkJDjrsdvt+Pr6EhAQwIwZM677R/r999+nTp06+Pr6Mm7cON5+++1MebYRI0bQpk0b52TfWzVt2jQKFiyIzWbD29ubBx54gPDw8HR/PjExkUGDBvHcc88xcuRIli5d6hzCEhHJrrT8WnKNnLDM2VXOnz/PY489xtatW/n4448JDAx0dUgikstp+bWIpGnZsmXOnw8ePEiDBg0IDQ1l3bp1SmJEJEfRZF/JNVLrfYyIiCAgIOCa623atOGtt97KsLYHDx6c6hybLVu2ULBgwQxrJ72GDRtGhQoVOHfuHD179qRKlSqsW7eOSpUqZXksIiK3Q0NLIrlMQkICJUuWxM3Njbi4ODp16sT8+fNxd3d3dWgiIk7pHVpSj4xILpKcnMyyZcucE6BLly7NvHnzlMSISI6lOTIi2YAxBofDgd1uJzk5GbvdjsPhSHU47HqSk5NTPRLhaj179+5lyJAhzusXLlwgKCjouscoiIhkZxpaEslGjDEcO3aMX375hf3791OwYEEaN25Ms2bNnLv7Xs/06dMpXbo0vXv3dl6Ljo5m3LhxbNu2jR07dqT6ufHjx/Pyyy9n2HOIiNyu9A4tKZERyaaOHz/O+++/z+zZs4mLi+Oxxx5j+PDhNGrUKM0difv27cvx48fZtGmT89r48eN5/fXXU+11yZMnD8nJyRQqVIhLly7d1pEGIiIZScuvRXK4KlWq8Pbbb3Py5EmmT5/O7t27adKkCY0aNWLBggXOk60nTpzI5cuXAahZ8y48PH4DruzoGx8fz9SpU51JTJ48/z8trlKlSvTp04fZs2dz4MABJTEikiOpR0Ykh3A4HKxcuZJ3332X4OBgKlSowJAhQ3jxxReJioqkWLGZJCVNIm/ev//5RAO++KItgYGvYLFY8Pb2pmXLljRr1oymTZtSrlw5lz6PiMj1aGhJ5A524MABZsyYwWeffYbdbueuuwpRsmQ8FSrA3XfDkSPw55/g6VmAnj0/pn37R7QySURyFA0tidzBPD09+fjjjzlz5gwAa9YksGcPlCkDISHwww8QGgpnz14mOflXJTEicsfSPjIiOdjVk67LlTNcnf/7yCNQqNCVnxs0cOPo0QMuik5EJPMpkRHJIf766y927dqV4nX69GkALl6Eq2dhFijw/5+xWh0kJ2s4WETuXEpkRLKh06dPs3PnzhRJy9VhpJIlS+Ln50dgYCB+fn4EBQUB/TFmxn9qcQOsgFfWBi8ikoWUyIi4kDGG06dPX9PTcjVpKVWqFH5+fvTv3x8/Pz/8/Py45557Uuwjc+DAAZo3nw2Ap+e/ay8NtAIKICJyp9KqJZEsYozh5MmTKRKW3bt3c/bsWeDKuUdXk5Wrr7vvvjvNze+uiomJwWazUbp0aTZu/Jy8eXcCJYEHgLyZ/lwiIplBh0aKuJAxhj///POanpZz584BUKZMGfz8/Bg4cKAzabnrrrtumLSk5plnniEiIoKffvqJvHnvBWpm8NOIiGRfSmREbpMxhhMnTlzT03I1aSlbtix+fn4MHjzYmbRUrFjxlpKW/1q0aBGff/45c+fO5d57773t+kREchoNLYncBGMMf/zxxzVJy/nz5wEoV67cNcNDFSpUyJCk5b9OnDiBt7c37dq146uvvsqUNkREXEU7+4rcJmMM4eHh1yQtFy5cAKB8+fKpJi1ZwW6307JlS/744w/27t1Lsatrr0VE7hCaIyNyE4wxHD9+/JqkJTIyEoAKFSrg5+fHM88840xaypcv77J433zzTTZv3sz69euVxIhIrqZERnIdYwzHjh27JmmJiooCoGLFivj5+TFs2DBn0pKdDljctm0bEyZMYMyYMfj7+7s6HBERl9LQktzRjDEcPXr0mqTl4sWLANx1113XDA+VLVvWtUFfR0xMDL6+vpQqVYqNGzeSN6+WV4vInUlDS5LrOByOVJOW6OhoAO6++278/PwYMWKEM2kpU6aMi6O+OUOHDuXs2bOsXr1aSYyICEpkJIdyOBwcOXLkmqTl0qUrSfs999yDn58fzz//vDNpKV26tIujvj1ff/01c+fOZc6cOVpqLSLyDw0tSbbncDg4fPhwiqRlz549zqSlUqVK1wwPlSpVysVRZ6wTJ07g4+NDQEAACxcu1FJrEbnjafm15Fjx8fEsXbo0RdISExMDQOXKla9JWkqWLOniiDOX3W6nVatWHD9+nL1791K8eHFXhyQikuk0R0YylcVi4cUXX2TFihXExcUxYcIEevfuDcCOHTsYPXo0ly5dwm63M3bsWLp27QrAvHnzeOutt4Arc1Y+/vhjKlasmKLu3bt306dPH6pUqYKfnx9jx47Fz8+PunXr3vFJS2omT57Mxo0bWb9+vZIYEZH/UCIjt8xisbBnzx6OHTtGvXr1aNq0KcWKFWPQoEGsXLmS8uXLc/78eerWrUuTJk2Iiori+eefZ9euXVSsWJHXXnuNAQMG8OOPP6ao19PTkwsXLlCiRAkXPVn2sX37dudS6+bNm7s6HBGRbEdDS3JLLBYL4eHhVKpUCYDOnTvz6KOPUqpUKXr27EmVKlWcZSMjI5k7dy4HDx5k165dzJ07F4CoqCjKlStHfHw8VqvVFY+RrcXGxmKz2ShZsiSbNm3SKiURyVU0tCRZzmKxYIyhTp06/Prrr9fcP3jw4DXlJW1Dhw7lzJkzrFq1SkmMiEga3FwdgORcc+bMASA8PJyNGzfi7+9PkyZNOH78OMHBwc5yISEhJCYm0rJlS1atWsXp06cBmDlzJg888IB6Y1LxzTffMGfOHN577z2qVavm6nBERLIt9chIqpKTkzl06BC7du2iZ8+eFChQ4JoydrsdX19f4uLimDFjBpUrVwZgxYoVjBw5khEjRpCUlMQ999zDsmXL8PT05K233qJdu3bAlcm+n3zySVY+Vo7w559/MmjQILp27UpQUJCrwxERydY0R0ZISkpyJi1XX3v37uXy5ctYLBYuXbqEu7t7is9YLBaioqJ0YGEGs9vtPPDAAxw7dkxLrUUkV9McGUlVUlISBw4ccO6EezVp+fvvv7FYLNx33334+fnRo0cP/Pz8sNls1yQxknmmTJnChg0bWLdunZIYEZF0UCJzB0tMTHQmLVdf+/btIzExETc3N2fS0qtXr5tOWtLTkyc3Z8eOHbz00ku88MIL3H///a4OR0QkR9DQ0h0iMTGR/fv3p0ha9u/f70xaatWqlWI3XJvNRuHChV0dtvwjNjYWX19fihcvzubNm7VKSURyPQ0t3cH+/vvvVJOWpKQk3NzcqF27Nn5+fgQGBuLn54ePj4+Slmxu2LBh/PXXX/z4449KYkREboISmWzu77//Zt++fSmSlgMHDpCUlITVanUmLY8//rgzaSlUqJCrw5absHjxYj777DM+++wzLbUWEblJGlrKRi5fvpxq0pKcnIzVaqVOnTophoe8vb2VtORwf/75J97e3rRu3Zqvv/5amwSKiPxDp19nc5cvX2bv3r0pkpaDBw+SnJxMnjx5Uk1aChYs6OqwJQPZ7XZat27NkSNH2Ldvn1YpiYj8i+bI3KLExEQcDkeqG8DdqoSEhFSTFrvdTp48efD09KRevXr873//cyYtGdm+ZE9vvfUWv/zyC2vXrlUSIyJyi5TI/Mu2bdvo3LkzzZs3Z9GiRbdUR3x8/DVJy6FDh5xJi5eXFw0aNODJJ5/Ez88PLy8vJS250M6dOxk/fjyjR4+mRYsWrg5HRCTH0tASV/ZE+eijjxg2bBjJycmUKlWKc+fO3fBz8fHxhISEpEhaQkNDsdvt5M2bFy8vrxTDQ15eXuTPnz8Lnkiys9jYWOrWrUvRokXZvHkz+fLlc3VIIiLZjoaW0ik+Pp6BAweyYMEC57Xz589z+vRpKlSo4LwWFxeXatLicDjIly8fXl5eNGnShGeeeQY/Pz88PT2VtEiqhg8fzunTp1mxYoWSGBGR23QHJzIGCAaWAIlAe+AR/v3Ihw8fplOnToSFhV3z6Xnz5lGgQAFn0vLbb785kxZvb2+aNWvGsGHDnEmL/iBJeixZsoRPP/2UTz/9lOrVq7s6HBGRHC/HDy1ZLBZefPFFVqxYQVxcHBMmTKB3717AAHbs+IzRoy1cumSw22Hs2Np07boLKMDw4cOZMWPGdbfaz58/P97e3imGh+rUqaOkRW7JyZMn8fb2plWrVnzzzTdaai0ich25amjJYrGwZ88ejh07Rr169WjaNI5ixT5j0CBYudJQvjycPw916x6iSZNXCAzcxs8//3zd+po2bcratWu1y6pkCLvdTr9+/ShcuDAff/yxkhgRkQxyRyQyAwYMAKBq1ao0b96cDRs+pVQpN44dc9C+fcqyv/32Jb/8cgq4krCk1iNjjOG3335TEiMZZurUqaxfv56ff/6ZEiVKuDocEZE7xh2RyPyXxfI3xjioUwd+/fWau7z99tusWbOGpk2b8uOPP7J582bsdjtWqxW73Q5cmfD7119/Ub58+SyPX+4su3btYty4cYwaNYqWLVu6OhwRkTuKm6sDyAhz5swBIDw8nI0bN+Lv/zBNmsDx4xAc/P/ldu6EY8fq0KpVK3bs2EG/fv345ZdfGD9+PPXq1ePpp59OcdbN77//ntWPIneYuLg4evXqhY+PDy+//LKrwxERuePcET0ydrsdX19f4uLimDFjBpUrPwwsZMWKY4wc6WDECEhKggoVLBw5soLu3evwxhtv0K5dOwDuvvtuli1bRsWKFZk+fTp//vknu3fvpmHDhq59MMnxhg8fzsmTJ9mzZ48miYuIZII7YtVSVFQUxYoV+8+dc8ArwEKuLL9+GIdjPFOnLuPFF1/Ex8eHBQsWUKNGjawOWXKJJUuW0KVLF2bPns0TTzzh6nBERHKUXHNoZNqJTNp27dpFz549OXXqFDNmzKB///5aRSIZ6upS65YtW7J48WL9fomI3KT0JjI5fo6MMeamkhgAPz8/du/eTc+ePRkwYADdunUjKioqcwKUXMfhcBAYGEihQoX45JNPlMSIiGSiHJ/I3Cp3d3dmz57N4sWL+fnnn/H29uaXX35xdVhyB5g6dSrr1q1j3rx5WmotIpLJcm0ic9Vjjz3G3r17uffee2nZsiVjx44lKSnJ1WFJDqWl1iIiWSvHz5HJKHa7nSlTpvDSSy/h6+vLggULUizFFrmRuLg46tatS5EiRfj111+1SklE5DbkmjkyGcVqtTJmzBg2b95MZGQkvr6+zJ0797pnMYn827PPPsvJkyf58ssvlcSIiGQRJTL/0aBBA/bs2UOXLl14/PHH6dGjBxcvXnR1WJLNRUVFMWDAAI4fP07NmjVdHY6ISK6hoaXr+Prrrxk0aBBFixZl/vz5+Pv7uzokERGRXEFDSxmgW7du7N27l0qVKtGiRQvGjx+vicAiIiLZiBKZG6hUqRLr1q1j0qRJvPHGGzRv3pxjx465OiwRERFBiUy6WK1Wxo0bx6ZNmzh79iw2m4358+e7OiwREZFcT4nMTWjUqBEhISF07tyZvn370rt3b6Kjo10dlqRh586ddO/e3dVhpGrixIlcvnzZ1WGIiOR4mux7i7766isGDx5MiRIl+PLLL2nSpImrQ5Ic5FbOCBMRyU002TeT9ezZk71791KhQgX8/f2ZOHEiycnJrg4r10pISKB79+7Url0bHx8fAgICWL9+PTabDYDw8HCKFSvG+PHjqVu3LtWrV2fz5s08++yz2Gw2PD09OXDgwHXbiI6OZsCAAXh6euLj40P//v0BiI2NpX///nh6euLp6cmkSZOcn3n11VepVasWNpsNm83GH3/8weDBgwHw9/fHZrMRERHB7NmzqV27NjabDS8vL7Zt25Y5X5SIyJ3GGHPDF+ABmOjoaCMpJSUlmYkTJxo3NzfTpEkTc/z4cVeHlCt9++23JiAgwPn+woULZt26dcbHx8cYY8zx48cNYJYuXWqMMWb27NmmcOHCZu3atcYYY6ZMmWK6dOly3TaCgoLMk08+aex2uzHGmIiICGOMMaNGjTK9evUydrvdxMbGGpvNZhYuXGgiIyNN0aJFTXx8vDHGmLi4OJOQkGCMMQYwUVFRzro9PDzM6dOnjTHGJCYmmpiYmNv7QkREcrjo6GgDGMDDXCdHUY/MbcqTJw8TJkxgw4YNnDp1Ch8fHxYsWODqsHIdHx8fQkNDeeqpp1i0aBF58+a9pkyBAgXo3LkzAPXq1cPd3d15HlKDBg04fPjwddtYvnw5I0eOxM3tyv9sSpcuDUBwcDADBw7Ezc2NwoUL069fP9asWYOHhwfVq1enT58+zJo1i8jISAoUKJBq3Q888AB9+/bl3Xff5fjx47i7u9/qVyEikqsokckgTZs2Ze/evTz00EP07t2bvn37culSmkN6ksGqVq3KoUOHaNeuHZs3b8bT05OoqKgUZfLnz+/82Wq1pkgqrFZrhg0NWiwWZ51bt25l+PDhRERE0KhRIzZu3JjqZ5YsWcKbb75JUlISHTp0YOHChRkSi4jInU6JTAYqWrQoX375JfPmzeO7777DZrOxdetWV4eVK5w8eRKLxULHjh2ZOnUqxhj+/PPPDG3jat0OhwOAc+fOAdC6dWs+/fRTjDHExcUxb948AgICiImJ4ezZs/j7+zN+/HiaNWvGnj17AChSpIhzxVtycjJHjx6lXr16jBw5ki5durB9+/YMjV1E5E6lRCYT9OnTh5CQEMqWLUuzZs145ZVXsNvtrg7rjrZ//36aNm2Kj48Pvr6+9O3bF29v7wxtY9q0afz99994eXlhs9kYO3YsAOPHjydv3rx4eXnRsGFDOnbsSLdu3YiOjubRRx/Fy8sLb29vkpKSCAwMBGDEiBG0adMGm83GhQsXnJOFbTYbu3bt4rnnnsvQ2EVE7lRafp2JkpKSeOWVV3jttddo2rQp8+fP55577nF1WCIiItmell9nA3nz5uXll19m/fr1/PHHH3h7e7No0SJXhyUiInLHUCKTBfz9/dm7dy/t2rWjR48ePP7448TExLg6LEnFypUrnXu+/PulBFREJHvS0FIWMsbwxRdfMGTIEMqVK8eCBQto0KCBq8MSERHJdjS0lA1ZLBYCAwMJCQmhRIkSNG3alDfeeEMTgUVERG6REhkXqFatGps3b2bUqFG8+OKLPPDAAxm+VFhERCQ30NCSixljnD0ybm5uzl1jxTUSEhLo3bs3+fLl44svviBfvnyuDklEJFdK79BSnqwLSVJjsVjIk0f/DNnFc889x6pVq9i9e7eSGBGRHEB/QUX+8d133zFz5kxmzpzJfffd5+pwREQkHTS0JAL89ddfeHl50axZM5YuXeo8L0lERFxDq5ZE0snhcBAYGEi+fPmYPXu2khgRkRxEiUwW2LlzJ927d3d1GKmaOHEily9fdnUYLjV9+nTWrFnD559/TqlSpVwdjoiI3AQNLeVyFouFqKgoihUr5upQXCIkJISGDRvy9NNP8/bbb7s6HBER+YeGllwkISGB7t27U7t2bXx8fAgICGD9+vXYbDYAwsPDKVasGOPHj6du3bpUr16dzZs38+yzz2Kz2fD09OTAgQPXbSM6OpoBAwbg6emJj48P/fv3ByA2NtZ5irKnpyeTJk1yfubVV1+lVq1azi33//jjDwYPHgxcOULBZrMRERHB7NmzqV27NjabDS8vL7Zt25Y5X1Q2EB8fT69evahduzavv/66q8MREZFbYYy54QvwAEx0dLSR6/v2229NQECA8/2FCxfMunXrjI+PjzHGmOPHjxvALF261BhjzOzZs03hwoXN2rVrjTHGTJkyxXTp0uW6bQQFBZknn3zS2O12Y4wxERERxhhjRo0aZXr16mXsdruJjY01NpvNLFy40ERGRpqiRYua+Ph4Y4wxcXFxJiEhwRhjDGCioqKcdXt4eJjTp08bY4xJTEw0MTExt/eFZGNPPvmkKVCggDl06JCrQxERkf+Ijo42gAE8zHVyFPXIZDAfHx9CQ0N56qmnWLRoEXnz5r2mTIECBejcuTMA9erVw93dnZYtWwLQoEEDDh8+fN02li9fzsiRI52b55UuXRqA4OBgBg4ciJubG4ULF6Zfv36sWbMGDw8PqlevTp8+fZg1axaRkZEUKFAg1bofeOAB+vbty7vvvsvx48dxd3e/1a8iW/v+++/56KOPeOedd6hVq5arwxERkVukRCaDVa1alUOHDtGuXTs2b96Mp6cnUVFRKcrkz5/f+bPVak2RVFitVpKTkzMklqurb6xWK1u3bmX48OFERETQqFEjNm7cmOpnlixZwptvvklSUhIdOnRg4cKFGRJLdvLXX3/xxBNP0LFjR+fwmoiI5ExKZDLYyZMnsVgsdOzYkalTp2KMyfBzlK7W7XA4ADh37hwArVu35tNPP8UYQ1xcHPPmzSMgIICYmBjOnj2Lv78/48ePp1mzZuzZsweAIkWKEB0dDUBycjJHjx6lXr16jBw5ki5durB9+/YMjd3VHA4HQUFB5MmTR0utRUTuANrZN4Pt37+fMWPGYIwhOTmZvn374u3tnaFtTJs2jWeffRYvLy/y5s1L/fr1+eSTTxg/fjxDhw7Fy8sLgK5du9KtWzdOnjxJly5diIuLw2KxUL16dQIDAwEYMWIEbdq0oVChQqxevZr+/fsTGRlJnjx5KF26NHPmzMnQ2F3t3Xff5aeffmL16tXOITkREcm5tPxaco29e/fSoEEDhgwZwjvvvOPqcERE5DrSu/xaiYzkCgkJCdSrV4+8efOybdu2FPOUREQk+9Hp1zncypUrGTt27DXXx4wZk213Cc7ORo4cybFjx9i1a5eSGBGRO4h6ZOSO98MPP9CxY0c++OADnnrqKVeHIyIi6aChJRHgzJkzeHl50bhxY7777jutUhIRySE0tCROxhgcDseVHRDd3LBYLLniD/rVpdZWq5VPP/00VzyziEhuo31kcgGLxUJSUhIjRozAarXy0EMPERER4eqwMt2MGTNYvXo1n3/+uZZai4jcoZTI5BIFChTg3XffZcWKFezcuRMvLy9WrVrl6rAyzb59+xg9ejTDhw+nbdu2rg5HREQyiRKZXKZDhw7s27ePunXr0r59e4YPH87ly5ddHVaGSkhIoGfPntx333288cYbrg5HREQykRKZXKhs2bKsWLGC6dOn89FHH9GwYUMOHjzo6rAyzPPPP8+xY8dYsGBBmodjiojInUGJTC7l5ubGsGHD2LFjB8nJydSrV48PP/yQ9Kxiy86WL1/OBx98wNSpU6lTp46rwxERkUymRCaX8/b2ZufOnfTv358hQ4bQqVMn5yGUOc2ZM2fo378/Dz30kPaLERHJJZTICAULFuSDDz7g+++/Z8uWLXh7e7NmzRpXh3VTHA4Hjz/+OG5ublpqLSKSiyiREaeHH36Yffv24eXlRUBAACNGjODvv/92dVjp8t5777Fq1Srmzp1LmTJlXB2OiIhkESUykkL58uVZtWoVb7/9Nu+99x6NGjXit99+c3VY17Vv3z5GjRrFsGHDaNeunavDERGRLKRERq7h5ubGc889x7Zt27h8+TJ169Zl1qxZ2XIicEJCAr169aJmzZq8+eabrg5HRESymBIZSZOvry+7du2iX79+DB48mEceeYTz58+7OqwURo0axZEjR7TUWkQkl1IiI9dVqFAhZs6cydKlS9m4cSM+Pj78/PPPrg4LgBUrVvD+++8zdepUPD09XR2OiIi4gBIZSZfOnTuzf/9+atWqRZs2bRg1ahSJiYkui+fs2bM8/vjjPPjggwwZMsRlcYiIiGspkZF0q1ChAj/99BOTJ09m+vTpNGnShLCwsCyPwxjD448/jsVi4bPPPtNSaxGRXEyJjNwUNzc3nn/+ebZs2UJMTAx169Zl9uzZWToR+L333uPHH3/UUmsREVEiI7fGz8+P3bt306tXLwYOHEjXrl2JjIzM0DYOHjxIQEAAO3fudF7bv38/o0aNYujQobRv3z5D2xMRkZxHiYzcssKFC/PJJ5+wePFi1q5di7e3N+vXr8+w+lesWMGaNWto1KgRkydPJjY2ll69elG9enUmT56cYe2IiEjOpURGbttjjz3Gvn37qF69Oq1atWLMmDEkJSVdU+69997jtddeS3e9oaGhWK1W7HY7L7zwAjVr1uT333/nq6++0lJrEREBlMhIBrnrrrsIDg7m9ddfZ+rUqTRt2pQjR444769bt45hw4Yxfvx4Dh48mK46Dxw4gN1ud74/ffo0bm5uLplgLCIi2ZMSGckwVquVF154gV9//ZWoqChsNhtz5szh/Pnz9OzZE4vFgtVqZezYsTesyxiT6tEIf//9N126dKF///7ExsZmxmOIiEgOYknPahOLxeIBREdHR+Ph4ZH5UUmOFxsby9ChQ5kzZw4VKlTg7NmzKXpXtm7dSsOGDdP8/JkzZyhfvvx12+jSpQvffPNNhsUsIiLZx6VLlyhatChAUWPMpbTKqUdGMoW7uzufffYZgwYN4vTp0ymSGKvVyujRo6/7+bQOqnRzu/Ir6+XlxXPPPZdxAYuISI6kREYyTVhYGF988cU11+12O7/88gvBwcFpfjY0NDTVje4qVarEwoULCQkJoXHjxhkar4iI5DxKZCRTJCYm0q1bt1RXL8GVnpVRo0aluZHegQMHnPcsFgtlypTh448/JiwsjO7duzt7ZkREJHfTXwO5ZTt37qR79+6p3vvqq6/Yt29fmp91OBzs2bOHb7/9NtX7K1euBK7sVTN58mTCw8MZOHAgefPmTVdsEydO5PLly+kqKyIiOZcm+0qmuHTpEvPmzSM0NJQDBw5w8OBBzp8/77xvsVgwxlCkSBGio09hsbwBzAVigVaMGhXHsWNFmT17NsWKFbvp9i0WC1FRUbf0WRERcT1N9pUMlZCQQPfu3alduzY+Pj4EBASwfv16bDYbAOHh4RQrVozx48dTt25d/Pz8sNls5M2bl4sXL1K2bFk2b97M1q1bmTNnDs8//zy+vr54eBQE2gCTiY7+iwEDYvD0/I7Vq3/GwyORYsWKERsbS//+/fH09MTT05NJkyY543r11VepVasWNpsNm83GH3/8weDBgwHw9/fHZrMRERHB7NmzqV27NjabDS8vL7Zt25b1X6KIiGQ8Y8wNX4AHYKKjo43kTt9++60JCAhwvr9w4YJZt26d8fHxMcYYc/z4cQOYpUuXGmOMmT17tilcuLBZu3atMcaYKVOmmC5duqRS8zfm6q9aUBDmyScxdjvGGKuJiGhljDFm1KhRplevXsZut5vY2Fhjs9nMwoULTWRkpClatKiJj483xhgTFxdnEhISjDHGACYqKsrZioeHhzl9+rQxxpjExEQTExOTUV+NiIhkgujoaAMYwMNcJ0dRj4yki4+PD6GhoTz11FMsWrQo1bkqBQoUoHPnzgDUq1cPd3d3WrZsCUCDBg04fPhwKjWvBfIAsHw5jBwJV+bx2ildehMAwcHBDBw4EDc3NwoXLky/fv1Ys2YNHh4eVK9enT59+jBr1iwiIyPTPLrggQceoG/fvrz77rscP34cd3f32/xGREQkO1AiI+lStWpVDh06RLt27di8eTOenp5ERUWlKJM/f37nz1arNUVSYbVaSU5OTqXmQtdptWCqV68uy7ZarWzdupXhw4cTERFBo0aN2LhxY6qfWbJkCW+++SZJSUl06NCBhQsXXqddERHJKZTISLqcPHkSi8VCx44dmTp1KsYY/vzzzwyouSdwJcHp2BGmTgWHA8DKuXNdAWjdujWffvopxhji4uKYN28eAQEBxMTEcPbsWfz9/Rk/fjzNmjVjz549AP9MIo4GIDk5maNHj1KvXj1GjhxJly5d2L59ewbELiIirpbH1QFIzrB//37GjBmDMYbk5GT69u2Lt7d3BtTsB7wEvMw771gZPtyOlxfkzZuX+vX/5pNPYPz48QwdOhQvLy8AunbtSrdu3Th58iRdunQhLi4Oi8VC9erVCQwMBGDEiBG0adOGQoUKsXr1avr3709kZCR58uShdOnSzJkzJwNiFxERV9Pya8kmtgFfMm/eh6xd62DOnHgg9fkuIiJy50vv8mslMpKt2Gw29u7dy19//UW5cuVcHY6IiLiI9pGRbGnlypXOPV/+/Vq0aBGAc6fgN99805VhiohIDqEeGclWEhISKFSoENWqVUtjubaIiOQG6pGRHKlgwYLkzZuXEydOuDoUERHJAZTISLZzzz33kJiYSEJCgqtDERGRbE6JjGQ7Dz74IAAzZsxwcSQiIpLdKZGRbGfUqFEA2n1XRERuSImMZDsVK1bEzc2NsLAwV4ciIiLZnBIZyZbKli1LQkICdrvd1aGIiEg2pkRGsqXmzZsDOPeXERERSY0SGcmWXnjhBQBmzZrl4khERCQ7UyIj2ZLNZsNisbB3715XhyIiItmYEhnJtooVK0Z0dLSrwxARkWxMiYxkW/Xr1wdgw4YNLo5ERESyKyUykm0NGTIEgGnTprk4EhERya50aKRkaxaLhTJlynD27FlXhyIiIllIh0bKHaFw4cKcP3/e1WGIiEg2pURGsrXatWvjcDg4evSoq0MREZFsSImMZGv9+vUD4M0333RxJCIikh1pjoxka4mJieTPn59KlSoRHh7u6nBERCSLaI6M3BHy5ctH/vz5OXXqlKtDERGRbEiJjGR7VapUITk5WZvjiYjINZTISLbXuXNnAKZOneraQEREJNtRIiPZ3vPPPw/AkiVLXByJiIhkN0pkJNsrUaIEefLk4dixY64ORUREspk8rg5AJD0ee+wxIiIisNvtWK1WV4cjIiLZhJZfi4iISLaj5dciIiJyx1MiIyIiIjmWEhkRERHJsZTIiIiISI6lREZERERyLCUyctssFguvvfYaDRs2pHLlyixbtow33niDevXqUb16ddavXw9AcnIybdu2pV69etSpU4devXoRFxcHwJdffkm9evX4+++/Mcbw8MMP89prr2VIuwCrV6+mWbNm+Pn50aBBA9atWwfA+vXr8fT05Mknn8Tb2xsvLy/27dtHUFAQXl5eNGzYUOc8iYhkZ8aYG74AD8BER0cbkf8CzPTp040xxgQHB5vChQubOXPmGGOM+frrr029evWMMcY4HA5z/vx558+DBw82b7zxhrOeQYMGmSFDhpgpU6aYdu3aGYfDkSHtHj161DRq1Mj5+3v48GFTrlw5c/nyZbNu3TpjtVrNzp07jTHGjBs3zpQsWdKEhoYaY4x56qmnzMiRI2/3KxIRkZsUHR1tAAN4mOvkKNoQTzJE9+7dAahXrx5xcXH06NEDgAYNGnD48GHgStI8bdo0VqxY4TwEskmTJs463n33XRo2bMj333/P7t27sVgsGdLuqlWrOHLkCM2bN3d+zs3NjRMnTgBQrVo1/Pz8nPVUq1aN++67z1nP0qVLb/2LERGRTKVERjJEgQIFAJy77v77fXJyMgALFixg7dq1/PLLL3h4eDBjxgzWrl3rrCMiIoKoqCgcDgcXL16kVKlSGdKuMYY2bdqwYMGCaz5/6tQp52eufu6/76/WIyIi2Y/myEiWiYqKolSpUnh4eBATE8PcuXOd95KTk+nRowevvPIK77zzDt26dePvv//OkHbbtm1LcHAw+/btc17bvn17htQtIiKupURGsky/fv2Ij4+nZs2atG/fHn9/f+e9F154gZo1axIYGEi3bt1o3Lgxw4cPz5B2q1WrxoIFC/jf//6Hj48PtWrVYvr06RlSt4iIuJbOWhIREZFsR2ctiYiIyB1Pk30lWxs8eDBbt2695vqWLVsoWLCgCyISEZHsRENLIiIiku1oaElERETueBpakhzp1KlTnD9/nvLly1OmTBlXhyMiIi6iHhnJsWw2G23btnV1GCIi4kJKZCRHqlixIm5uboSFhbk6FBERcSElMpJjlS1bloSEBOx2u6tDERERF1EiIznW1UMgFy1a5OJIRETEVZTISI71/PPPAzBr1iwXRyIiIq6iREZyLD8/PywWC3v37nV1KCIi4iJKZCRHK1asGNHR0a4OQ0REXESJjORofn5+AGzevNnFkYiIiCsokZEc7ZlnngFg6tSpLo5ERERcQWctSY5nsVgoU6YMZ8+edXUoIiKSQXTWkuQahQsX5vz5864OQ0REXECJjOR4tWvXxuFwcPToUVeHIiIiWUyJjOR4ffv2BWDy5MkujkRERLKa5shIjpeYmEj+/PmpVKkS4eHhrg5HREQygObISK6RL18+8ufPz6lTp1wdioiIZDElMnJHqFKlCsnJyURHR7N06VJat25NhQoVWL16tatDExGRTJTH1QGI3I7ExEQ+/PBDLl68CFzZ6fff5s+fT9u2bbM+MBERyRJKZCRHio6OpkKFCsTHx1+33PDhw7MmIBERcQkNLUmOVLBgwRsmMfD/RxiIiMidSYmM5Ej58uXj448/vm6Z4sWLZ1E0IiLiKkpkJMcaOHAg/fv3T/N+3bp1szAaERFxBSUykqN9+umnaSYsTz75ZBZHIyIiWU0b4skdoWTJkkRGRqa4lp7fbRERyZ60IZ7kKn/88Qd58vz/IrxChQq5MBoREckqSmTkjuDu7s6uXbuc78uXL+/CaEREJKsokblFXbt2ZcuWLQBMnDiRuXPnujSeWbNmcd9992Gz2di1a9c1G8NllLlz5zJx4sQbllu/fj1BQUE3LLNq1aqMCQzw9vbmlVdeAauVXiNGcDoykqZNm2Kz2XjttdcICgpi+vTpGdbev1WuXDld5Vq0aJErz4P69/fj7+/P8ePHXReMiNxRlMjcgu3btxMZGUnjxo1dHYrT9OnTmTNnDiEhIZQsWdLV4aRLRicyBig8bhylk5N55cknqbxmDSfc3dkcEsKLL76YYe3I7RkxYgQTJkxwdRgicodQInMLZs2aRa9evZzv3d3dKViwIAA//PAD3t7e2Gw2PD09+e6774Ar/5/4smXLnJ/p0qWLsxcnKCiIQYMG0bp1a6pUqUL//v3Zvn07LVq0oGrVqjz33HPXjadLly4cPXqUoKAgunTpcs391atXU7duXby9vbn//vs5dOgQcCWR8PT0pF+/fnh6euLn50dISAgAhw8fpmnTpvj4+ODl5cW4ceOAKxvRubu73/A7ypcv39VJWqnWFRISwsyZM/nyyy+x2Wy8/PLLzlibNWuGn58fDRo0YN26dTeM9aq3gOeAcwDBwSQ9/zwnt26lvM1GcHBwirKxsbH0798fT09PPD09mTRpkvNeixYteOaZZ6hfvz7VqlVjxIgRzonDr776KrVq1cJms2Gz2fjjjz8AKF269A2/E4ASJUpgtVqd7YwYMYLmzZtzzz33MH78eFauXEmzZs2oXLky77zzjvNzI0eOpH79+thsNpo3b05YWBgAYWFh3HXXXRw7dgyAqVOn0q5dOxwOR5ox3Ey7hw8f5sEHH6R+/fp4e3vz/vvvO+9ZLBZee+01GjZsSOXKlVm2bBlvvPEG9erVo3r16qxfv95Z9t/fz4MPPsiPP/5IdHR0ur4zEZHrMsbc8AV4ACY6OtqIMVWrVjX79+9P9Z63t7f59ddfjTHG2O12ExUVZYwx5v777zdLly51lnvsscfMnDlzjDHGBAYGmkaNGpmEhATz999/m3vvvdd07tzZJCYmmtjYWFOmTBlz4MCB68ZUqVIls2fPHmOMMcePHzdFixY1xhhz9uxZU6JECbNv3z5jjDHz5883tWrVMg6Hw6xbt84AJjg42BhjzKJFi0zNmjWNw+EwQ4cONa+//rqz/gsXLtzMV5RCWnVNmDDBDBs2zHn96NGjplGjRs7fs8OHD5ty5cqZy5cvXzdWY4xJMMYUNf/5xZ0zx9Cpk8EYs8tc+Z6nTZtmjDFm1KhRplevXsZut5vY2Fhjs9nMwoULjTFX/q1atWplEhMTTVxcnPHz8zNffvmliYyMNEWLFjXx8fHGGGPi4uJMQkLCLX8v999/v3nsscdMcnKyiYyMNB4eHmbIkCHG4XCYkydPmsKFCzt/fyIiIpyf++qrr0zbtm2d7xcsWGD8/PzMunXrTOXKlVOUvZ12k5OTjZ+fnwkNDXU+r5eXl9m+fbsxxhjATJ8+3RhjTHBwsClcuLDzd/rrr7829erVSzOGli1bmh9++OGmvzMRyT2io6MNVzrbPcx1chT1yNyCkydPUrZs2VTvPfDAAwwbNowpU6awb9++dM9V6dSpEwUKFCBfvnx4eXnRtm1b8ubNS+HChalduzaHDx++pVi3bduGl5cXXl5eAPTu3ZvTp09z6tQp4MrchQceeACAbt26cebMGf7880+aN2/OJ598wosvvshPP/10W3Nu0lvXqlWrOHLkCM2bN8dms9GlSxfc3Nw4ceLEdWMFOAZc7/+/3/6f98HBwQwcOBA3NzcKFy5Mv379WLNmjfN+v379yJs3L4UKFaJPnz4EBwfj4eFB9erV6dOnD7NmzSIyMpICBQrc4rdyRZcuXbBarRQvXpyqVavy0EMPYbFYqFixIqVLl3bOp1mzZg2NGzfG09OTl19+OUVvVM+ePalbty5t27Zl3rx56eodSk+7YWFhHDx4kB49emCz2WjSpAkxMTHOHj2A7t27A1CvXj3i4uLo0aMHAA0aNLju72y5cuU4efLkLXxjIiIpKZG5BYUKFeLy5cup3nvnnXeYM2cOhQoVIjAwkClTpgCQJ08e7Ha7s9x/P//vP4hWq/Wa98nJyRn5CGmyWCxYLBYee+wxNm/eTM2aNXn//fd56KGHbrnO9NZljKFNmzaEhIQ4X6dOnaJ69erXjRWgFGC5TgxlbhDj1Xqud99qtbJ161aGDx9OREQEjRo1YuPGjTeo+frS8+9+4sQJnn76aebPn8+BAwdYuHBhit+f5ORkDhw4QIkSJZwJaka0a4yhRIkSKf49jh8/TmBg4DX1XB0u+/f76/3OXr582TkcKyJyO5TI3AJvb2/nHIX/+u2336hTpw5PP/00Tz75JFu3bgWgWrVqbNu2DYDjx4+zadOmLIm1UaNG7N+/nwMHDgCwcOFCKlasSMWKFQEIDw93zkNZvHgxZcuW5a677uLw4cOULVuWfv36MWXKFOdz/NupU6e47777bhhDWnV5eHikmCfRtm1bgoOD2bdvn/Pa9u3/35eSVqxwJVF5ELCm0n6pf+79W+vWrfn0008xxhAXF8e8efMICAhw3p8/fz5JSUkkJCSwYMECWrduTUxMDGfPnsXf35/x48fTrFkz9uzZc017Y8aMSTGX5HZFR0eTN29eypcvjzHmmrpfeOEFatasycaNGxk5ciRHjhzJkHZr1qyJh4cHc+bMcV47cuTINRsP3orQ0FB8fHxuux4RkTw3LiL/1aVLF1avXk3r1q2vuTd27FjCwsLIly8fhQoV4qOPPgJg1KhRdO/eHS8vL+rUqUPDhg2zJNbSpUvz5Zdf0q9fP5KTkylevDjffPONsweiTp06zJ07l6FDh5IvXz6++uorLBYLixcvZv78+eTLlw+Hw8HMmTOvqfvUqVMpNqFLS1p1PfLII8ybNw+bzcajjz7KSy+9xIIFC/jf//5HfHw8iYmJ+Pr6smDBguvGetUnQBvgAFd+sZP/+b/fA/n/E9P48eMZOnSoc8ita9eudOvWzXm/Vq1aNG3alMjISDp16kSPHj04deoUXbp0IS4uDovFQvXq1VP0Tly1d+/eDD1128vLix49elCnTh1KlixJ586dnfeWL1/OqlWr2L59O4UKFeKdd96hW7du/Prrr7c97JUnTx6WL1/O8OHDmTZtGna7nVKlSjn/PW5VeHg4drtdiYyIZAgdUXALYmNjadKkCVu2bKFw4cKuDueWrV+/nuHDh1+z+ie93nrrLcqXL0+fPn0yNrBUpDdWO7AaCAHuAh4DbvZfqEWLFgwfPjxFwpBedrudRo0asW3bNtzc1OGZmhdeeIFq1aoxYMAAV4ciItlYeo8oUI/MLXB3d2fatGkcP34cT09PV4fjMs8//7yrQ7iGFejwz8sl7Vut7Nixw0Wt5wwVKlS47qnlIiI3Qz0yOUjHjh2dK3iuKl68uHPeSG60cuVKxo4de831MWPGOFfU5EazZ89OdZ7Oe++9h7+/vwsiEhG5OentkVEiIyIiItmOTr8WERGRO54SGREREcmxlMiIiIhIjqVERkRERHIsJTIiIiKSYymRERERkRxLiYyIiIjkWEpkREREJMdSIiMiIiI5lhIZERERybGUyIiIiEiOpURGREREciwlMiIiIpJjKZERERGRHEuJjIiIiORYSmREREQkx1IiIyIiIjmWEhkRERHJsZTIiIiISI6lREZERERyLCUyIiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmxlMiIiIhIjqVERkRERHIsJTIiIiKSYymRERERkRxLiYyIiIjkWHlupvClS5cyKw4RERERp/TmHBZjzI0LWSwVgZO3GZOIiIjIzbrLGHMqrZvpTWQsQAUgJgMDExEREbmeIsBpc51kJV2JjIiIiEh2pMm+IiIikmMpkREREZEcS4mMiIiI5FhKZERERCTHUiIjIiIiOZYSGREREcmxlMiIiIhIjvV/DE3HUluANm8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHYCAYAAABX+wIgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3V0lEQVR4nO3de3zO9f/H8ce1axibmfMh54yww4U5m+PMsSWJyGEJSSdFKRGlEykqvyKKnFIqFKWIfcn5tJBDc1hO1cpmbMbs2vv3x76uL9kYtl27tuf9dtvNruvzvt7v1+eDeXkfLcYYRERERFyRm7MDEBEREblVSmRERETEZSmREREREZelREZERERclhIZERERcVlKZERERMRlKZERERERl+WemUIWi8UCVADOZW84IiIiIg5FgVPmOpveZSqRIS2JOZElIYmIiIhkXkXgZEYXM5vInAM4fvw43t7eWRGUiIiISIbOnj1LpUqV4AajQZlNZADw9vZWIiMiIiK5hib7ioiIiMtSIiMiIiIuS4mMiIiIuKybmiNzI3a7nUuXLmVllXIdBQoUwGq1OjsMERERp8mSRMYYw59//smZM2eyojq5CT4+PpQrV460rX5ERETylyxJZC4nMWXKlKFIkSL6RzUHGGM4f/48MTExAJQvX97JEYmIiOS8205k7Ha7I4kpWbJkVsQkmVS4cGEAYmJiKFOmjIaZREQk37ntyb6X58QUKVLktoORm3f5uWtukoiI5EdZtmpJw0nOoecuIiL5mZZfi4iIiMvK0uXX1zgG/JOtLfxPKaByDrUlIiIiuUL2JTLHgFrAhWxr4WoewEGUzIiIiOQj2Te09A85l8Tw37ZyqvfnFtjtdlJTU50dhoiISJ6Sr+fIfPnll/j7+1O4cGFKlixJSEgIiYmJpKam8sorr1CxYkUKFSqEzWZj5cqVjs9FRERgsViu2gAwMjISi8VCdHQ0AHPmzMHHx4dvvvmGOnXqUKhQIY4dO8bFixcZNWoUlSpVolChQtSoUYOPP/7YUc/evXvp1KkTXl5elC1bln79+vHPP7k4QxMREXGifJvI/PHHH/Tu3ZuBAweyf/9+IiIi6N69O8YY3n33Xd5++20mT57M7t276dChA2FhYURFRd1UG+fPn2fixInMmjWLX3/9lTJlytC/f38+++wz3nvvPfbv38+MGTPw8vIC4MyZM7Rt25Z69eqxfft2Vq5cyV9//UXPnj2z4xGIiIi4vOyd7JuL/fHHH6SkpNC9e3eqVKkCgL+/PwCTJ09m1KhRPPDAAwBMnDiRtWvXMnXqVP7v//4v021cunSJDz74gMDAQAB+++03vvjiC1atWkVISAgA1atXd5SfNm0a9erV4/XXX3e898knn1CpUiV+++03ataseXs3LSIiksfk20QmMDCQdu3a4e/vT4cOHQgNDaVHjx5YrVZOnTpF8+bNryrfvHlzfvnll5tqo2DBggQEBDheR0ZGYrVaadWqVbrlf/nlF9auXevoobnS4cOHlciIiIj8S75NZKxWK6tWrWLjxo38+OOPvP/++7z44ousWrXqhp91c0sbkTPGON5Lb2fdwoULX7Vh3eUjBTKSkJDA3XffzcSJE6+5prOURERErpVv58hA2q64zZs35+WXX2bXrl0ULFiQn376iQoVKrBhw4arym7YsIE6deoAULp0aSBteOqyyMjIG7bn7+9Pamoq//nPf9K9Xr9+fX799VeqVq1KjRo1rvry9PS8xbsUERHJu/JtIrNlyxZef/11tm/fzrFjx/j666/5+++/qV27Ns8++ywTJ07k888/5+DBgzz//PNERkby1FNPAVCjRg0qVarE+PHjiYqKYsWKFbz99ts3bLNq1aoMGDCAgQMHsnTpUo4ePUpERARffPEFAI899hixsbH07t2bbdu2cfjwYX744Qceeugh7HZ7tj4PERERV5Rvh5a8vb1Zt24dU6dO5ezZs1SpUoW3336bTp060aFDB+Lj4xkxYgQxMTHUqVOHb775Bl9fXwAKFCjAZ599xqOPPkpAQAANGzbk1Vdf5f77779hux9++CGjR49m2LBhnD59msqVKzN69GgAR0/QqFGjCA0N5eLFi1SpUoWOHTs6hrNERETkfyxXzvPIsJDF4g3Ex8fH4+3tfdW1CxcucPToUapVq4aHh8f/Lmhn3xyR4fMXERFxYWfPnqVYsWIAxYwxZzMql309MpVJSyx01pKIiIhkk+wdWqqMkgsRERHJNpp4ISIiIi5LiYyIiIi4LCUyIiIi4rKUyIiIiIjLUiIjIiIiLkuJjIiIiLgsJTIiIiLisrJ1H5ljuOZ+eOHh4Zw5c4alS5dm+jMWi4UlS5bQrVu3LIpCREREbiTbEhlXPqHg3XffJTNHN4iIiORK54ElwO9AXaALefZ0xWwbWvqHnEti+G9bWdX7U6xYMXx8fLKoNhERycvuv/9+Nm3aBMD48eOZM2fODT8TERFBeHj4DctFR0fTunXrdK8lJCRgsVgcr6tWrZr2zU6gCtAXGAd0A+oAJ9Iut27dmujo6Bu2fbv27t37v5iujA8IDg7m6NGjWdJOvp4j8+WXX+Lv70/hwoUpWbIkISEhJCYmEh4eftUQUevWrXnyySd57rnnKFGiBOXKlWP8+PHXrXvcuHGUL1+e3bt3Z+9NiIiI02zdupXY2FiaNm3q7FDSpABhQNwVrwGOAv2cElG6RowYwbhx47KkrnybyPzxxx/07t2bgQMHsn//fiIiIujevXuGQ0qffvopnp6ebNmyhUmTJvHKK6+watWqa8oZY3jiiSeYO3cu69evJyAgILtvRUREnGTGjBn06dPH8drLy4vChQsDab0zvXr14u6776ZOnTq0bduW2NhYAAoWLHj5ZOfrslqtlChR4qr2fH19qVevHlOmTLmqbOnSpWENcBKw/6uiFCAC+B1KlCiB1WoF4NVXX6V27drYbDZsNhu///47ANu2baNt27YEBQVRr149Fi9e7Kjqhx9+oEWLFjRo0IBGjRqxdu1ax7Xx48fj6+tLgwYNWLRo0bXx/VeXLl34/vvviY+Pv+EzuCFjzA2/AG/AxMfHm39LSkoy+/btM0lJSVe9vyMzFWfx145rosvYjh07DGCio6OvuTZgwABzzz33OF63atXKtGjR4qoyDRs2NKNGjXK8BszixYtNnz59TO3atc2JEyduIppbl9HzFxGR7Fe9enWzZ8+edK+NGzfOVKlSxfzzzz/GGGN69eplXn/99Vtua8+ePaZs2bLm1KlTxhhjXnjhBZP2z/gV5prr/0O59X9FY2NjTbFixcz58+eNMcYkJiaapKQkExcXZ2w2m6Odv//+21SqVMmcOHHCHD582DRp0sSRD0RFRZly5cqZCxcumOXLl5s6deqY+Ph4k5qaah588EFTpUqVDO+nTZs25ttvv83wenx8vAEM4H29u8qjU39uLDAwkHbt2uHv70+HDh0IDQ2lR48eFC9ePN3y/+5ZKV++PDExMVe99/TTT1OoUCE2b95MqVKlsi12ERHJHU6cOEHZsmUzvN6xY0dKliwJQNOmTdmzZ88tt7VmzRo6depE+fLlAXj00Ud54403ripzuMRh7uTO9CsoDNz1v5fe3t74+vrSt29fQkND6dKlCxUrVmTNmjUcOXKETp06XfXxgwcPcuDAAQ4dOkTLli0d77u5uXHs2DF++uknevbsibe3NwCPPPIIP//8c4b3U65cOU6cOHETTyB9+XZoyWq1smrVKr7//nvq1KnD+++/T61atTKcfFSgQIGrXlssFlJTU696r3379pw8eZIffvgh2+IWEZHco0iRIly4kPHSFg8PD8f3VquVlJSUDMverCsn+kLa1iE1utZgMYuxXzO2BIwEiv7vpdVqZfPmzQwfPpyYmBiaNGnC+vXrMcZQt25dIiMjHV/Hjh2jbdu2GGNo3779VddOnjyJr6/vDeP7twsXLjiG4W5Hvk1kIO0hN2/enJdffpldu3ZRsGBBlixZcsv1hYWFsXDhQgYNGnTN2KCIiOQ9AQEBHDx48Lbrueuuuzh58uR1y7Rt25aVK1fy559/AjB9+nQAdu/eTbFixfj0009xd3fHbb4bY4LGMK3AtLQPlgDeBMZfXd+5c+f466+/CA4OZuzYsbRo0YJdu3bRrFkzjh49yurVqx1lIyMjSU5OpkOHDqxevfqqhSxbt24FICQkhMWLF3Pu3DmMMXz00UfXvZ/9+/cTGBh444dzA/l2aGnLli389NNPhIaGUqZMGbZs2cLff/9N7dq1b2ul0b333su8efPo168f7u7u9OjRIwujFhGR3KRHjx788MMPhISE3HIdMTExnD59+qpJvenx8/Nj/PjxBAcH4+XlRffu3QEcyUCTJk34+eefsVqtfLzgYxp82gBaA6VJ91/7+Ph4evToQWJiIhaLBV9fXwYMGECxYsVYsWIFI0eOZMSIEVy6dInKlSuzdOlSatSowcKFC3nkkUc4f/48ycnJ1KtXj4ULF9K5c2e2bt1K/fr18fb2vmZo6krR0dHY7fYsSWSybbLv78YYj8xUnkVfHv9tM7P27dtnOnToYEqXLm0KFSpkatasad5//31jTPqTfZ966qmrPn/PPfeYAQMGOF4DZsmSJY7Xn3/+ufHw8DBfffXVTUR18zTZV0TEec6dO2f8/f1NQkLCLdfxxRdfmAkTJtzUZ7Zv3268vLwMYAoUKGCWLVvmuJaSkmKCgoKM3W6/5Ziy26hRo8zMmTOvWyazk30tJhM72FosFu+05C3eMYnnsgsXLnD06FGqVat21VgguO4RBa7kes9fRESy308//UTZsmXx8/PLkfZ69OjBV199BaRtLLd27VrHcmpX8d577/H444/j5pbxDJezZ89eXqJezBhzNqNy2Tq0VJn8mVyIiEj+0a5duxxpZ/PmzbRr147z58875nR27tw5R9rOak8++WSW1ZVv58iIiIi4irvvvpvly5cDaZN+f/zxR5frhckuSmRERERyqXXr1tGhQwcuXLhAoUKF+O6772jbtq2zw8pV8vXyaxERkdzIbrfTsWNHWrVqxYULF+jYsSOJiYlKYtKRZT0ymZk0LFlPz11EJG9Zs2YNnTt35uLFixQuXJiVK1detZOuXO22e2Qu73h7/vz52w5Gbt7l5/7vnYdFRMS12O122rZtS7t27bh48SJhYWGcP39eScwN3HaPjNVqxcfHx3HuUJEiRW64LbHcPmMM58+fJyYmBh8fH036EhFxYd999x333nsvycnJFClShJ9++okmTZo4OyyXkCVDS+XKlQO45hBFyX4+Pj6O5y8iIq7FbrfTunVrx+GK9913H19++aWTo3ItWZLIWCwWypcvT5kyZbh06VJWVCmZUKBAAfXEiIi4qG+++YYePXpw6dIlvLy8iIiIoEGDBs4Oy+Vk6fJrq9Wqf1hFRESuw26306JFCzZv3gxA7969WbhwoZOjcl3aR0ZERCSHLF68mD59+pCSkoK3tzcbNmzIsaMN8irtIyMiIpLNkpOTadCgAT179iQlJYWHHnqI+Ph4JTFZQImMiIhINpo/fz6enp7s3LmT4sWLs2/fPj755BNnh5VnKJERERHJBsnJyQQGBtKvXz9SUlJ45JFHiI2NpXbt2s4OLU/RHBkREZEsNmfOHAYNGoTdbqdkyZJs2bKFO++809lh5UnqkREREckiSUlJ1KlTh4ceegi73c6TTz7JP//8oyQmG6lHRkREJAt8+OGHPP7446SmplKmTBm2bdtG5cqVnR1WnqdERkRE5DYkJCQQEhLCoUOHKF68OI8//jjjx493dlj5hhIZERGR2+Dl5eXY3E5ynubIiIiIiMtSIiMiIiIuS4mMiIiIuCwlMiIiIuKylMiIiIjcgjlz5tCtWzdnh5HvKZEREZF8KyUlxdkhyG1SIiMiInnSsmXLqF27NoGBgYwaNYpSpUoRHR1N1apVGTVqFI0aNWLAgAH8+eeftGnThgYNGlC3bl3HpnaQ1uvStm1bwsLCqFOnDi1btiQ6OtrRRkJCAr1798bf35+goCCOHDnipLvNv5TIiIhInhMTE8PAgQNZsmQJv/zyC3fddRenT592XD99+jRbtmxhwYIF+Pj48O2337Jjxw52795NdHQ0X3zxhaPshg0bmDhxIvv27aNr164MGTLEcW3btm28/vrr7Nmzh5CQECZOnJij9ylKZEREJA/avHkzAQEB3HXXXQAMGDCAggULOq6Hh4djsVgASE1NZdSoUQQGBlKvXj22b99OZGSko2yzZs0cJ1YPGTKEiIgI7HY7AE2bNqVatWqO7w8fPpwTtydX0M6+IiKS73h5eTm+f+edd4iJiWHLli14eHjwzDPPcOHChUzV4+Hh4fjearVqzo0TqEdGRETynCZNmrB7924OHjwIwPz580lOTk63bFxcHOXKlcPDw4M///yTxYsXX3V906ZNHDhwAIBZs2bRpk0brFZr9t6AZJp6ZEREJM8pU6YMs2bNolu3bhQqVIj27dvj5eWFj4/PNWWfeuopevToQd26dalQoQIhISFXXW/WrBmjRo3i0KFDlCxZkrlz5+bQXUhmWIwxNy5ksXgD8fHx8Xh7e2d/VCIiIrfp3LlzFC1aFIClS5fywgsvsH///puqY86cOSxdupSlS5dmQ4RyPWfPnqVYsWIAxYwxZzMqpx4ZERHJk95//30+//xz7HY73t7eLFiwwNkhSTZQj4yIiIjkOpntkdFkXxEREXFZGloSEZE8xxhz1VJoq9WKm5v+754X6XdVRETylF69euHm5kbBggVp06YNbm5uSmLyMPXIiIhInrB161batm1LYmIiBQsWZMmSJXTu3NnZYUk2U4oqIiIur1u3bjRu3JjExETatGnD+fPnlcTkE+qRERERl7Vhwwbat29PUlIShQoV4ttvv6V9+/bODktykHpkRETE5djtdrp06UKLFi1ISkoiNDSUxMREJTH5kHpkRETEpURERNCpUycuXLiAh4cH33//Pa1bt3Z2WOIk6pERERGXYLfbCQkJoU2bNly4cIEuXbqQlJSkJCafU4+MiIjkeqtWreLuu+/m4sWLFClShB9//JHmzZs7OyzJBdQjIyIiuZbdbqdVq1aEhoZy8eJFunfvTmJiopIYcVCPjIiI5ErLly/nvvvuIzk5GU9PT/7zn//QoEEDZ4cluYx6ZEREJFex2+00a9aMu+++m+TkZHr16kVCQoKSGEmXemRERCTX+Oqrr3jggQdISUnB29ub9evXExAQ4OywJBdTj4yIiDhdcnIyDRs2pEePHqSkpNC/f3/i4+OVxMgNKZEREZFs169fPypVqoTdbr/m2sKFC/H09GT79u0UK1aMPXv28OmnnzohSnFFSmRERCRb7d27l/nz53PixAk6duzoeD85ORmbzcaDDz5ISkoKgwYN4syZM/j5+TkxWnE1FmPMjQtZLN5AfHx8PN7e3tkflYiI5Blly5YlJibG8Xrt2rVER0czaNAg7HY7JUqUYNOmTdSsWdOJUUpuc/bsWYoVKwZQzBhzNqNymuwrIiLZ5uOPP74qiQFo06aN4/tHH32UDz74IKfDkjxEPTIiIpJtChYsyKVLl655v0CBAhw8eJBq1ao5ISpxBZntkdEcGRERyRbh4eHpJjEAly5d4tSpUzkckeRF6pEREZEsFx8fj4+Pz3XLFC5cmPPnz+dMQOJy1CMjIiI5JB7YAfyvhyUzZyElJSXx+OOPZ19Yki8okRERkVuUAowAygJBQEUgjMjI1fz666/X/aSbmxtFixalVatW2R+m5GlatSQiIjclJSUFd3d3YDQwBbg8RcEA31G9+mEAChUqRMWKFalSpQr+/v60atWKv/76i5UrV7J06VKnxC55j3pkRETEYdmyZdSuXZvAwEBGjRpFqVKliI6OpmrVqowaNYpGjRoxYMAA/vzzMG3avE2DBoa6deHxxyE1FcDO11/vo02b+oSGhjpWLQ0fPpx7770XDw8PEhIS6N27N/7+/gQFBXHkyBFn37a4MCUyIiICQExMDAMHDmTJkiX88ssv3HXXXZw+fdpx/fTp02zZsoUFCxbg43OGb79NZccO2L0boqPhiy/+V9eGDbuZOHEi+/bto2vXrgwZMsRxbdu2bbz++uvs2bOHkJAQJk6cmIN3KXmNEhkREQFg8+bNBAQEcNdddwEwYMAAChYs6LgeHh6OxWIBIDW1DM89B4GBUK8ebN8OkZH/q6tZszrUrl0bgCFDhhAREeE4Z6lp06aO/WOaNm3K4cOH//fBZGAF8ClwMLvuVPISJTIiIvnM/fffz6ZNmwAYP348c+bMydTnvLy8gLQzkmrVasayZbBhQ1qPTJ8+cOECgBUoCRTPsB4PDw/H91arlZSUlLQXm4BK0LlrZw6GH4S7gN6kJTf/1aNHj0zFW7Vq1UzdU+vWrYmOjr5hufDwcCIiIgCYNm0ar7/+eqbql+ynREZEJB/ZunUrsbGxNG3a9JprTZo0Yffu3Rw8mNYVMn/+fJKTk68qs3PnToKCgjhx4gRubuUoUqQdf/4JixdfLlEFeIZNmzZz4MABAGbNmkWbNm2wWq0ZB3YW6Aj8A9/xHbWolfb+F8C427njrDdkyBA+/vhj4uPjnR2KoFVLIiL5yowZM+jTp4/jtZeXF4ULFwagePHitGrVCpvNBkDlypXx9PTEx8eHlJQUunbtysmTJ/Hy8qJly5YcOnQIf/8/KFMmCHf3aObOvcCOHeWxWn+kePHijBo1ikOHDpGUlETRokWpX78+ly5donz58tcG9jlwDjBQlaosZSk2bBxIPcDAtwYS/008vr6+jg30UlNT6dy5MyEhIYwcOZLDhw/TqlUrfvrpJ2rVqkXp0qUz9TxKlCjhSLBat26Nv78/mzdvJi4ujnvuuYfJkydjsVgoVqyYY5itYMGChIaGsnDhQh599NFb+42QrGOMueEX4A2Y+Ph4IyIirqt69epmz5496V577bXXzIsvvuh43bt3b+Pj42N27NhhvL29jcViMePHjzdHjx41pUqVMuPGjTPGGDNy5EgzYMAAk5qaas6ePWvuuOMOU6lSJWOMMQsWLDCDBg0yKSkpxhhj5s6dazp37nxt42OMSXVPNQZjqlDF7GKXMRgTRJCZxSxj4ozZvXu3KViwoJk9e7Yxxpi///7bVK1a1axdu9bUr1/fLFy48LaeTatWrUzbtm1NcnKySUxMNA0aNDALFixIt+ynn35q7rvvvttqT64vPj7ekLam39tcJ0dRj4yISD5y4sQJypYtm+61pUuXcvToUd5++20ALBYLJUuWpFGjRgCsWLGCTp06ARAWFub43E8//cSUKVOwWCwULVqURo0asX37dked27Zto0GDBgCOCb9XSkhIYObqmTyd8vRV75/lLJFEEl4uHLzB39+fFi1aOK6XKlWK+fPn06ZNG8LDw+ndu/ctPpX/6d+/PwUKFKBAgQL07duX1atXX9WDdVm5cuU4ceLEbbcnt09zZERE8pEiRYpwIW1W7jWMMSxYsICkpCQ2bNhAjRo1+PPPPxk7dize3t7UqVPHUfby6qX0NGjQgLZt2zrqfOGFF4iMjCQyMpI9e/awZ88eAC5cuMDAgQPx8fHh+c3Pc9z9OKluqddW+DyOf63+3e6uXbsoWbIkJ0+evDyCkKUyus8LFy44huTEuZTIiIjkIwEBAY7JvP/WrVs33n77bZ5//nkaNWqExWJh0aJFjBs3jpCQED755BMA/vjjD7755hvH59q2bcunn36KMYaEhAS+uGJDmW7dujF9+nRiY2OBtFOvt23bxlNPPUWxYsWYPXs25cqVY/GyxVQ6VAm3Fv/7Z8nby5t6Fesxt+hcAH799Vd+/vlnx/WdO3cyefJkdu3aBcCkSZPSva8XXniBadOmZer5zJ8/n0uXLpGUlMTChQsJCQlJt9z+/fsJDAzMVJ2SvTS0JCKSj/To0YMffvgh3X+gQ0JCeO+99/jxxx8pU6YMqampjt6bd999l/DwcOrUqcMdd9zh6HEBeOmll3j44YepXbs2pUqVIjAw0HHy9YMPPsjp06dp06YNAKdOneLMmTOkpKRQunRppkyZwoMPPvi/IP5D2pFNbwH3wNxjc3nooYd4+5238fX1pWXLlkDaycgPPPAAn3zyCeXKlWPu3Lk0atSIFi1aXHNg5S+//OIY2rqR2rVr07x5c2JjY7nnnnt44IEH0i23cuVKJkyYkKk6JZtdbwKN0WRfEZE85dy5c8bf398kJCQ43rtw4YIZM2aMsVqtxmazmcjIyJuqMzk52SQlJRljjElISDDNmzc3ixYtcly32+1m4sSJxtPT0wDGx8fHfPDBB1lzQzeQkpJigoKCjN1uv2HZVq1amSVLltyw3K+//mpatGiRBdHJ9Wiyr4iIXMPLy4spU6Zw9OhR/Pz82LFjB+Hh4Rw4cICXXnqJF154gQIFCtxUnXFxcXTq1Am73c6FCxe455576NmzJwAffvghL7zwAvHx8Xh6ejJx4kRGjhyJm1vOzGywWq1s27YtS+s8fvw4M2bMyNI65dZZTCYmR1ksFm8gPj4+Hm9v7+yPSkREstXFixd59dVXeeONN/D392fOnDlZOudjwYIFPP300/z99994eHjwzDPPMGHCBEcC88orr/D1119f87mvvvqKO++8M8viENd19uxZihUrBlDMGHM2o3JKZERE8pkre2HGjh17S70wGfnmm28YNmwYJ0+epECBAjz66KO8/fbbuLtrAEBuTmYTGa1aEhHJJy5evMjYsWNp3Lgx7u7ubN++nZdeeilLkpg1a9Zw5513cs899/Dnn3/y0EMPcfbsWd59910lMZKt9KdLRCQfyIq5MOnZtm0b/fv358CBA7i5udGrVy9mzZrlOGBSJLupR0ZEJA/Lrl6YX3/9lfr169OoUSMOHjxIly5d+Ouvv1i0aJGSGMlR6pEREcmjsqMX5ujRo/Tt25eNGzcC0KZNG+bOnUvFihWzImSRm6YeGRGRPObixYuMGTMmS3thTp06RUhICNWrV2fjxo00adKEQ4cOsWbNGiUx4lTqkRERyUMu98IcPHiQcePG8fzzz99WAhMbG8tDDz3Et99+izGGwMBA5s6dS0BAQBZGLXLr1CMjIpIHXNkLU6BAAbZv387YsWNvOYlJSEigd+/elC5dmm+++YZatWqxceNGIiMjlcRIrqIeGRERF5eVvTDJyck89thjzJkzh5SUFKpWrcqsWbNo165dFkctkjXUIyMi4qKyshcmJSWFp59+mqJFizJr1izKlCnD119/zdGjR5XESK6mREZExAXt2LGDoKAgJk2axLhx49iyZcstDfmkpqby0ksv4e3tzdSpU/H29mbevHmcPHmSe++9NxsiF8laSmRERFxIVvbCvP322xQrVowJEyZQsGBB/u///o+///6bvn37ZkPkItlDc2RERFzEn3/+ycqVKylRogTr16+nUaNGWK3Wm67no48+4vnnnycuLg5PT0/eeOMNnnvuuRw7kVokK+nQSBGRXM4Yg91uJzU1FYvFgtVqvaWk4/PPP+fJJ58kJiYGDw8Pnn76aV599VUlMJIrZfbQSPXIiIjkchaL5bYOXoyIiGDMmDEcOHCAs2fP8sQTT/DOO+/oMEfJE9QjIyKSj6SmpqoHRlxCZntk9KdZRCQfURIjeY3+RIuIZLHM9HSLSNZQIiMiksUsFouzQxDJN5TIiIjchk2bNtGiRQsCAwMJCAjg2LFjpKSkODsskXxDiYyIyC2KjY2lW7duvPHGG/zyyy9ERkZStmzZTH++c+fOHDx4MMviOXXqFMHBwY7X48eP58KFC1lWv0hupFVLIiK3aMWKFUycOJF169Zd9X5KSsptLW2+3c9fZrFYiIuLw8fH57brEslpWrUkIpKL/HsIatmyZVStWpXIyEgAWrduzZNPPknTpk0JDQ0FYOLEifj7+xMYGEiTJk04f/48ERER2Gw2R7179+6latWqAERHRzuSlqFDhwIQHByMzWYjJiYmp25VJEdpNyQRkVvUrFkzoqKiWL9+PcHBwaSmpnLp0qVrjg24PAT15ZdfOsqdOXPmmvp+++031q1bR4ECBfj000/56quv+PnnnylWrBhxcXEUKlQo07FNnz6dGTNmsH79evXISJ6mREZE5BYVL16cJUuWMGLECM6dO4ebmxvffvst5cuXv6rcpk2bqFWrlmP+ipubGyVKlLimvr59+zoOf1y+fDlDhw693LVO8eLFs/luRFyTEhkRkdvQpEkTNmzYkCV1eXl53bCMu7s7drvd8VqTeSW/0xwZEZFsduUQFKQdExAbG3vdz4SFhTF9+nTi4+MBOHPmDHa7nerVq/P777/z999/AzBv3rwM6yhatKjj8yJ5lXpkRESyWXpDUBMmTLjuZ/r168epU6do1qwZ7u7ueHp6snr1aipUqMBzzz1Ho0aNKFu2LJ06dcqwjhEjRtC+fXuKFCnCjz/+SJkyZbL61kScTsuvRUREJNfJ7PJr9ciIiNwmYwypqanY7XasVitubm46pkAkhyiRERG5DadOnWLZsmXExsbSsmVLmjdvriRGJAdpsq+IyC24ePEiL774IpUrV2bWrFncfffdBAcH4+amH6siOUk9MiIiN2n79u2Eh4fz22+/MX78eEaNGuXY/+Wy+Ph4zp49i5eXFxaLBXd3d4oUKaJERySL6W+UiEgmXe6FadKkCYUKFWLHjh2MGTPmqiQmJiaGDh06ULx4cSpXrkyHDh3466+/8PLyUhIjkg3UIyMikglX9sK8/PLLPPfcc1clMGfOnGHgwIEsXboUYwz+/v7MnTv3qnORRCTr6b8HIiLXkV4vzIsvvuhIYs6fP0///v0pVaoUS5YsoUaNGvz888/s3r1bSYxIDlCPjIhIBq7XC5OcnMxTTz3FrFmzSElJoXLlynz00Ud06NDByVGL5C/qkRER+Zfr9cKkpqby3HPP4e3tzfTp0ylVqhSLFy/m999/VxIj4gTqkRERuUJGvTCpqam8+uqrvPnmmyQlJVGiRAk+/PBDHnroIWeHLJKvqUdGRIS0XpjRo0en2wvz7rvvUrx4ccaNG4e7uztTp07l9OnTSmJEcgH1yIhIvrdt2zbCw8OJioq6qhdm9uzZjBw5ktjYWIoUKcKECRMYPXq0llGL5CL62ygi+dblXpimTZvi4eHh6IVZtmwZ5cuXZ+DAgSQmJvLss89y7tw5xowZoyRGJJfR30gRyZe2bdtG/fr1mTx5Mi+//DKbN2/m1KlTVKlShfvvv59//vmHoUOHcvbsWSZNmqQERiSX0tCSiOQrFy9e5OWXX2bSpEnYbDZ27txJfHw8devWJSoqCqvVSr9+/Zg+fTpFihRxdrgicgP6L4aI5Clr1qzhzjvvZP/+/ddc+3cvzIcffkifPn1o0aIFhw4d4t577+Wff/5h7ty5SmJEXIQSGRHJM1JSUhg6dChHjhyhTp06zJkzB7h6LkzhwoVZsmQJy5Yto1GjRuzdu5cOHTrw559/8vXXX+Pj4+PUexCRm6OhJRHJM6ZPn05UVJTj9bBhw6hbt65jRdLTTz/N5s2b6dq1KwDBwcHMmzePKlWqOCtkEblNFmPMjQtZLN5AfHx8PN7e3tkflYjITYqNjaVq1aqcO3fummv+/v54e3uzceNGjDEEBQUxd+5cateu7YRIRSQzzp49S7FixQCKGWPOZlROPTIikieMHz8+3SQGYO/evRhj8PPz49NPP6V+/fo5HJ2IZBclMiLi8vbv38/777+f4XUPDw9+/PFHWrRokYNRiUhO0GRfEXF5TzzxxHWvJyUlUbJkyRyKRkRykhIZEckVOnfuzMGDB29Q6ijwETAH+AeAb7/9lp9++umG9bdq1YoLFy7cZpQikttosq+I5GopKSm4u1uBZ4F3gMs/swoAH1Cw4DAuXbqUqbri4uK0vFrERWR2sq96ZEQkx23atIkWLVoQGBhIQEAAy5Yto2rVqkRGRgLQunVrnnzySZo2bUpoaCgwl4kT38bf3xAYCE2awPnzl4iIGEzBgnZHvRaLBQCr1YrVagWgUKFCju+Dg4Ox2WzExMTk6P2KSPbRZF8RyVGxsbF069aNL7/8kuDgYFJTUzlz5sw15X777TfWrVtHgQIFmDOnOl99BT//DMWKQVwcFCoE4EaNGsWJjEwbZtq7dy9du3YlOjqa6OhobDabo26LxcL69evVIyOSxyiREZEctWnTJmrVqkVwcDCQlmBYrVYuXbrEhg0b2LZtG9HR0VSpUoXOnTtz4sQJatQ4ytChaUkMQPHil2tLBTI3rCQieZMSGRHJVmfPnuX48eOcOHGC48ePs2bNGn777TdCQ0Md7yUkJADw+OOPY7FYKFCgAAULFiQgIIC6dety8OBJUlMT+N/8mDTu7m7Y7YUcrzWZVyT/USIjIrfs3LlzVyUp//71+PHjV21SZ7FYKFOmDLGxsVy8eJH27dtzxx13UKJECcaOHcvHH39M+/btad++PcOHD6dbt24AzJvnxfvvv8Z996X1xpw5A0WLulG9ehF+/z2Jv//+m9KlSzNv3rwMYy1atCjx8fEaWhLJY5TIiEi6EhISbpiknD179UKCcuXKUbFiRSpVqkS7du2oVKmS43XFihWpUKECBQsWZPPmzYwYMYK1a9fi5ubGhAkTKFSoEBUqVKBAgQLXxNKv36vMn/8pjRufoHBh8PSE1asDqFDhY5577jsaNWpE2bJl6dSpU4b3M2LECNq3b0+RIkX48ccfKVOmTJY/MxHJeVp+LZIPJSYm3jBJiY+Pv+ozZcqUoVKlStckJ5d/veOOOyhYsGC2xPvTTz8REhLCokUL6dWrIVAQqJwtbYlI7pDZ5ddKZETymPPnz98wSfn3KqHSpUvfMEkpVKhQ+g1ms5SUFOrVq0exYsVYv369Y4m1iORtOjRSJB8KCwvj22+/veq9UqVKOZKU4ODgdJMUDw8PJ0V8YzNnzmTv3r1s27ZNSYyIXEM9MpLnbd++nbfeeovPP//c2aFcJTk5me7du/P777/TsmVL/P39OXfuHM8++yxz5sxh6dKlLF269KbqXLBgAampqY4kpWLFirk6SbmRuLg4fH19ufvuu5k9e7azwxGRHKQeGZH/CgoKckoSk7a1fsZ/xXbt2kVUVFQmzhfKvAcffDDL6soNXnnlFS5evMjrr7/u7FBEJJfSEQWSpyQlJdGrVy/q1KlDYGAgoaGhREREYLPZAIiOjsbHx4exY8dSv359fH192bBhA08//TQ2mw0/Pz/27t173TbCw8MZOHAgzZo1o2bNmgwYMICkpKSrrrVs2RI/Pz8A3nrrLerWrYu/vz8PPvgg8fHx7Nu3jwcffJBjx45hs9mYO3cu48ePZ/jw4em2OW/ePBo3bkz9+vVp2bIlv/zyS5Y9s9zqwIEDTJs2jdGjR1O+fHlnhyMiuZQSGclTVq5cyZkzZ9i3bx+//PILixYtuqZMfHw8DRo0YOfOnTz//PN06NCBsLAwIiMjGTBgAC+//PIN29myZQs//PAD+/fvJzY2lilTpjiu7dixgxUrVnDgwAG+//57PvnkEzZs2MCePXvw9PTk+eefp06dOsyaNYtatWoRGRlJ//79M2xrw4YNfPbZZ6xbt46dO3fy2muv0adPn1t7QC5kxIgRVKpUiaefftrZoYhILqZERvKUwMBA9u/fz7Bhw/j888/T3ZPEw8PDsdFaUFAQXl5etGnTBoBGjRoRFRV1w3Z69uxJ0aJFsVqtPPzww6xevdpx7f7776do0aIArF69ml69ejk2YXv00UdZtWrVTd3TsmXL+OWXX2jcuDE2m40nnniC2NhYRy9QXrRy5Uq+++473nrrLZee4yMi2U+JjOQp1atXZ9++fXTs2JENGzbg5+dHXFzcVWWuXEZstVqv+ofSarWSkpJy0+1euZrGy8srU+UyyxjDgAEDiIyMdHz98ccfFC5c+KbrcgWXLl3i6aefplWrVnTv3t3Z4YhILqdERlzOpUuX+P333zly5Aj/XnV34sQJLBYLYWFhTJ48GWMMx48fz/IYvvzySxISErDb7cyePZuQkJB0y4WEhPDFF184dsCdMWMGoaGhN9VWWFgY8+fP59ixYwCkpqayffv227uBXGz69OkcPHiQqVOnarm1iNyQVi0J8fHx7N27l+bNmzs7FFJSUjh16lSGm7mdOHGCP/74A2MMjz/+OFOnTsVqtTo+v2fPHl544QWMMaSkpNCvXz8CAgKyPM6GDRvSoUMH/v77b5o2bZrhJN1OnTqxd+9emjZtipubGwEBAXzwwQc31VZwcDCTJk3i3nvvJSUlheTkZLp06UJQUFAW3Enucvr0acaNG8egQYMcE7RFRK5H+8jkc9988w2DBw/m77//5q+//qJ06dLZ1lZKSgp//PHHDZOU1NRUx2c8PT0z3HE2MDCQcuXK5fj/2sPDw7HZbBkmL3LrnnjiCebOnUtUVJTOQhLJ57SPjFxXTEwMjz/+OIsXL8ZisWCM4dixY7ecyNjt9hsmKadOnboqSSlSpIgjSalduzahoaHXJCzFihXT8EI+8euvv/Lhhx/y5ptvKokRkUxTj4wTZN9Os8eAN4BvSDtUrzfwHODjKGGMYf78+TzxxBOOOR6XffHFF3z66afX7DT7zDPP8N5777F06VKeeOKJDJOUK+sqXLiwI0nJ6PweHx+fXJukfPfdd4wePfqa91944QV69erlhIjyNmMMHTt25MiRI/z666/ZdvikiLgOHRqZ7xwHGgCxwOWEwgrUBjYDnhw+fNix/PdyL8xlFouFrl27snnzZvr3739NknLlSp7LSUp6ycnlX4sXL55rkxTJfZYvX87dd9/NsmXLCAsLc3Y4IpILKJHJJZKSkggPD2fPnj0UKFCAsmXLMnr0aIYPH05kZCTR0dGOvUFWrFjBuXPnmDNnDl9++SVr164lJSWFRYsWOXaJTU94eDhubls5cGA///wDTZvC9OlQuDCEh4ObWxN+/PE4J0+evCaBSU/BggW58847KVCgAIUKFWLgwIEcOHCAX375hS+//JISJUowf/58pk2bxqVLl/Dy8uL9998nMDAwi5+e5AfJycn4+flRpUoVfvzxRyXAIgJkPpHR8utslnM7zR7ihx9g/36IjYUrNppl+/ZfOXnyJECGSYybmxvBwcEEBgZy8eJF9u3bx7333kuzZs0YOnQoNpuNYsWKUbJkSTZu3Jgvd5qV7DFt2jQOHz7MO++8oyRGRG6aEplslnM7zRajaFGwWuHhh+F/G81a6NmzMuvWrWPYsGF4enoCaYnLlVJTU9m8eXOmNoPLjzvNSvb4+++/eeWVV3jkkUfw9/d3djgi4oKUyGSznNtp1h9j/vfb+b//2BoOHy5Ay5Yt+eCDD0hMTEx7N52emUuXLl2T4KQnv+00K9ln7NixWCwWXnnlFWeHIiIuSolMNsupnWYXL/6TbdsKYbfD7NkQEnI5k6lK9er3UrZs2avKp5fIuLu7ZyqRyW87zUr22L17NzNnzmTcuHGUKlXK2eGIiItSIpPN9uzZQ/PmzQkMDKRevXrZttOsm5s7TZsmUaNGCXx8qjB8eE9gCdCSokW92blzJxUqVLhuovLiiy9mqq0rd5oNDAykbt266c79EcmIMYbhw4fj6+vLY4895uxwRMSFadVSHtChQwd+/PFH3nzzTUaNGpVhuQMHDtCkSRPOnTt31cZ0kNYbM2bMGB5++GEqVqyY3SFLPrdkyRK6d+/OihUr6Ny5s7PDEZFcSMuv84nTp0879m45cODADYeGNm3aRJs2bUhOTnYML1ksFho3bsyePXtISkqiU6dODB48mC5duuDurs2fJWtdvHiROnXqULNmTb7//ntnhyMiuZSOKMhjMtpptkCBAhQuXJi1a9dman5L06ZN+eKLLxyrpC7X8d133+Hu7s5nn33GzJkz6datG+XLl+ehhx7i4Ycfpnr16ll5O5KPvfvuu/z+++8sX77c2aGISB6gHhkXNmPGDIYOHcrXX3/Nvffee1OfnTlzJkOGDMFisdCnTx/mz59/1fXIyEhmzpzJ/PnzOXv2LCEhIQwePJhu3bpp+3i5ZX/99Re+vr489NBDvPvuu84OR0RyMQ0t5XH79++nQYMG9O/fn+nTp99SHS+//DLjx4/n559/pnnz5umWOX/+PIsXL2bmzJls2LCBUqVKMWDAAAYPHkytWrVu5xYkH9q5cyenTp2iffv2V207ICLyb0pk8rCLFy/SuHFjLl68yI4dOyhSpMgt1WOM4dSpU9xxxx2ZKr9v3z5mzZrF3LlzOX36NMHBwQwePJgePXpoDxm5oX+f7SUicj06oiAPe+GFF9i/fz+fffbZLScxkPaPSWaTGIA6derwzjvvcPLkST777DPc3d3p378/FSpU4IknnmD37t23HIvkfRaLxfElIpJVlMi4mJUrVzJlyhQmTpyIzWZzSgyFChXigQceYM2aNURFRfHII4+wePFiAgMDadKkCR9//DEJCQlOiU1ERPIXDS25kL/++ouAgADq16/PihUrMrVKKadcunSJb7/9lpkzZ/LDDz/g6elJnz59GDx4MA0aNND/wkVE5KZoaCmPMcbw0EMPATBnzpxclcRA2hLu7t278/3333P06FGeeeYZvvvuOxo2bEj9+vX54IMPiI+Pd3aYks3Gjx/PhQsXnB2GiOQj6pFxEe+99x5PPfWUS+2EarfbWblyJTNnzmT58uUULFiQnj17MnjwYJo1a6ZemjzIYrEQFxeHj4+Ps0MRERenVUt5yO7du2nYsCFDhw512b03Tp06xZw5c5g1axZHjx6lTp06DBo0iP79+1OyZElnhydZYOjQocyYMQM/Pz+sVisVKlSgUqVKHDp0iOPHj+Pn58eiRYu0D5GIZIoSmTwiKSmJoKAgrFYrW7duxcPDw9kh3ZbU1FR++uknZs6cydKlS7FYLHTv3p3BgwfTunXrXDdkJjfnyh6Z8PBw9u/fz9q1aylUqBAtW7bk8ccfp3fv3s4OU0RcgObI5BEjR47kyJEjfPbZZy6fxAC4ubnRvn17vvjiC06ePMlrr73Gzp07adeuHTVr1mTixIn89ddfzg5Tssi9995LkSJFsFqtNGrUiMOHDzs7JBHJY3TWUi72zTff8MEHH/DBBx9Qt25dZ4eT5UqXLs3IkSMZMWIEycnJJCYmkpSUREpKCqdPn8bT05NChQppLo0LuzL5tlqtpKSkODEaEcmLlMjkUqdOnWLgwIGEhYUxdOhQZ4eTrSwWC4UKFdKW9XlA0aJFiY+P12RfEckxSmRyodTUVPr370/BggX5+OOP1SMhLmPEiBG0b9+eIkWKUKFCBWeHIyL5gCb75kJvvfUWo0aNYtWqVbRr187Z4YiIiOQ4TfZ1Udu3b2f06NE8++yzSmJERERuQD0yuUhCQgL169fH29ubjRs3ar8NERHJt9Qj44KeeuopTp06xcKFC/NlErN9+3Z69erl7DCukZycTNeuXfH39+exxx5j+vTpvPXWW0DacRHdunVzboAiIvmYJvvmEosXL+aTTz7h448/pmbNms4OxymCgoL4/PPPc7zdlJQU3N0z/quwa9cuoqKiOHjwYA5GJSIimaEemVzg2LFjDBkyhPvvv99xMGRel5SURK9evahTpw6BgYGEhoYSERGBzWYDIDo6Gh8fH8aOHUv9+vXx9fVlw4YNPP3009hsNvz8/Ni7d+912wgPD2fgwIE0a9aMmjVrMmDAAJKSkq661rJlS/z8/IC0SdZ169bF39+fBx98kPj4ePbt28eDDz7IsWPHsNlszJ07l/HjxzN8+PB025w3bx6NGzemfv36tGzZkl9++SXLnllulZSUxFNPPcX//d//OTsUEcmHlMg4md1up2/fvhQtWpQZM2bkm6XWK1eu5MyZM+zbt49ffvmFRYsWXVMmPj6eBg0asHPnTp5//nk6dOhAWFgYkZGRDBgwgJdffvmG7WzZsoUffviB/fv3Exsby5QpUxzXduzYwYoVKzhw4ADff/89n3zyCRs2bGDPnj14enry/PPPU6dOHWbNmkWtWrWIjIykf//+Gba1YcMGPvvsM9atW8fOnTt57bXX6NOnz609IBfy2muvMWPGDLp06eLsUEQkH1Ii42RvvPEGGzZsYMGCBRQvXtzZ4eSYwMBA9u/fz7Bhw/j8888pUKDANWU8PDwc80+CgoLw8vKiTZs2ADRq1IioqKgbttOzZ0+KFi2K1Wrl4YcfZvXq1Y5r999/P0WLFgVg9erV9OrVy7GR26OPPsqqVatu6p6WLVvGL7/8QuPGjbHZbDzxxBPExsY6eoHyoujoaCZPnszIkSOpWrWqs8MRkXxIiYwTbdq0ifHjx/Piiy8SHBzs7HByVPXq1dm3bx8dO3Zkw4YN+Pn5ERcXd1WZK3f6tVqtWbLd/ZU9Xl5eXpkql1nGGAYMGEBkZKTj648//qBw4cI3XZereO655yhRogTPP/+8s0MRkXxKiYyTxMfH06dPHxo1asRLL73k7HBy3IkTJ7BYLISFhTF58mSMMRw/fjzL2/nyyy9JSEjAbrcze/ZsQkJC0i0XEhLCF198wdmzaSv8ZsyYQWho6E21FRYWxvz58zl27BiQtkPz9u3bb+8GcrF169axePFi3nzzzesmhSIi2Umrlpzkscce4/Tp06xZs+a6K2byqj179vDCCy9gjCElJYV+/foREBCQ5e00bNiQDh068Pfff9O0adMMJ+l26tSJvXv30rRpU9zc3AgICOCDDz64qbaCg4OZNGkS9957LykpKSQnJ9OlSxeCgoKy4E5yF7vdzvDhw2nUqBF9+/Z1djgiko9pQzwn+OGHH5gwYQLjxo2jffv2zg4nzwoPD8dms2WYvMit+/jjjxk0aBAbN26kadOmzg5HRPKgzG6Il/+6AnKBDh060KFDB2eHIXJLzp49y4svvkifPn2UxIiI0ymREZf23XffMXr06Gvef+GFF5gzZ07OB5QPvP7665w9e5Y333zT2aGIiGhoSUQy7/Dhw9SpU4fRo0czbtw4Z4cjInmYzloSkSz37LPPUrZsWZ599llnhyIiAiiREckSe/bsYdSoUdSoUYOyZcvSs2dPvvnmG5KTk50dWpZZu3YtS5YsYeLEiRQpUsTZ4YiIABpaEslSiYmJLF68mJkzZ7Jx40ZKly7NgAEDGDRoELVq1XJ2eLfMbrdTv359vLy8+Pnnn/PNURoi4jz5emgpOjqa6dOn53i7L730EgsWLMiy+saPH8+FCxeyrX7Jep6enoSHh7Nhwwb27t3Lgw8+yCeffMJdd91Fq1atmD9/vkseWTBr1ix2797N1KlTlcSISK6SJ3tkIiIiGD58OJGRkc4O5bZYLBbi4uIc5/+Ia7pw4QJff/01M2fOJCIiAh8fH/r168fgwYPx9/d3dng3dObMGXx9fencuTOffvqps8MRkXwi3/TIJCUl0atXL+rUqUNgYCChoaEMHTqUgwcPYrPZCAsLAyAqKoouXbrQsGFDAgICmDZtmqMOi8XCmDFjqFevHjVr1rxhr8fmzZtp0KABNpsNPz8/PvzwQyBtA7apU6cCab0pPXv25O6776ZmzZp07dqVvXv30qFDB2rWrEnv3r1JTU3NsI2hQ4cCabvF2mw2YmJibrn+c+fOMXjwYBo1akRAQABDhgzJU3M3cjsPDw/69OnD2rVr+e233xgyZAiff/45AQEBNGnShI8//piEhARnhwnAxo0beeqppzhx4oTjvQkTJpCUlMQbb7zhxMhERDJgjLnhF+ANmPj4eJPbfP311yY0NNTx+vTp02bt2rUmMDDQ8V5KSopp0KCB2b9/vzHGmMTEROPv72+2bt1qjDEGMGPGjDHGGHP48GFTvHhxc/To0QzbDAsLMwsXLnS8jo2NNcYYM2DAADNlyhRjjDHjxo0z1apVM7GxsSY1NdW0bNnSNG7c2Jw9e9ZcunTJBAYGmuXLl1/33gATFxfneH2r9Q8ePNh8+umnxhhjUlNTzcMPP2wmTZp03bYle128eNF8+eWXpkOHDsZisZiiRYuaIUOGmO3btzs1rqefftoAxsPDw7z88ssmMjLSuLu7m1dffdWpcYlI/hMfH28AA3ib6+QoLr8hXmBgIPv372fYsGG0atWKzp07X1Pm4MGD/PrrrzzwwAOO986dO8e+ffto2LAhAIMGDQLSTmVu2bIl69ato2rVqum22aZNGyZMmEBUVBRt27alRYsW6ZYLDQ2lePHiANSvX59ChQpRtGhRAOrVq0dUVNQt3/fN1L906VI2bdrEO++8A6T1Ylmt1ttqW25PwYIFue+++7jvvvuIjo7mk08+4ZNPPuGjjz6iXr16DB48mD59+lzuVs0x8fHxWK1WLly4wPjx43n99dfx8fHh6aefztE4REQyy+WHlqpXr86+ffvo2LEjGzZswM/Pj7i4uKvKGGMoUaIEkZGRjq+jR48yYMCADOu93oTG4cOHs2LFCsqXL8/o0aMZNmxYuuU8PDwc31ut1mtep6SkZPY2b6t+YwxfffWV494PHjzIjBkzbqttyTpVq1bllVdeITo6mm+//ZZKlSrxxBNPUKFCBR566CE2btx4uWc02509e9YxJGmM4eLFi/zzzz+0a9cuT5/kLSKuy+UTmRMnTmCxWAgLC2Py5MkYYyhZsiTx8fGOMrVq1cLb25vZs2c73jt06BCxsbGO15evRUdHs379eoKDgzNs8+DBg1SrVo3BgwczevRoNm/enA13BkWLFr3qPm5Vt27dmDhxoiOxiYuL49ChQ7ddr2Qtd3d3unbtyrJlyzh27BijR48mIiKC5s2b4+fnx9SpUzl9+nS2xhAXF5du0rRt2zYaNmzIo48+mmNJlYhIZrh8IrNnzx6aN29OYGAg9erVo1+/fjRr1oy6devi5+dHWFgY7u7uLF++nK+//pqAgADq1q3Lww8/fNUyWLvdTr169QgNDeW9997LcFgJYNq0adStW5d69eoxZswY3n777Wy5txEjRtC+fXvHZN9bNWXKFAoXLozNZiMgIIB27doRHR2ddYFKlqtQoQIvvvgihw8f5scff6Ru3bo899xz3HHHHY6Jw9mRUFyZ3F/JbrcDaZvi3W5PoohIVsqTy69vlpY5iyuIiYlh7ty5zJw5k99++40aNWowaNAgwsPDKVu2bJa0ceedd3LkyJGr3rNaraSmpvLkk0/y+uuva1dfEckR+Wb5tUh+UaZMGUaOHMmBAweIiIigcePGjBs3jooVK3LfffexcuVKR8/JrTp79uqfFW5ublSuXJn169czdepUJTEikuuoRyYDMTExhIaGXvN++/bteeutt7KsnaFDh6Y7x2bTpk0ULlw4y9qRvCk2Npb58+czc+ZM9u7dS5UqVXj44Yd56KGHqFix4k3X5+HhwcWLFx2T3YcPH86rr76qBEZEclxme2SUyIjkAcYYtmzZwsyZM1m0aBEXLlygc+fODB48mM6dO+PufuOdFlJSUihQoAAA1apVY/78+TRr1iy7QxcRSZeGlnLAxYsXWbduHZGRkVrJkcsdOnSIgQMHOuUMrpxgsVgcuwT/8ccffPDBB/zxxx/cc889VKlShTFjxnD06FFH+f+d43UO+BSYhMWylsKFPejevTu//vqrkhgRcQnqkblFqampdOrUid27d7N7925Kly7t7JDyCQOsB74GUoAuQAcyysmjo6N55ZVX+PTTT0lNTaVz586sWLEix6J1tl27djFz5kzmz59PQkICISEhDB48mJ49exIX9w0+Pg+SlsxYATvQBPge8HFi1CIiGlrKdlOmTOGZZ57hhx9+SHcujWQHAwwBZoFjU+oUoCtpiU0BR8kTJ07w6quv8vHHH2OMcUyC7dChAytXrszRqHODxMREvvjiC2bOnMmmTZsAqFvXgru7oUIFqFQJDh2C48fBz68yixZFUbBgQSdHLSL5WWYTGZc/osAZdu3axahRoxgxYoSSmGxisVh48cUXWbFiBYmJiYwbN44HHywMzGLbNhg1KoWzZ8Fuh9Gjl3P//TOAx3n//fd5+eWXM9w4Liv3QEk/xgeBtA3kRo0axdmzZ7Hb7YwePZr7778fgHnz5jkmjFeqVImPPvqIO+6445r6//jjD+x2O6mpqVf9eqvflyxZkueee47o6Giefvpp1q83FC8O4eEQGQlr10KhQtCy5TG++moBvXs/lGXPSkQkuyiRuUmJiYn06dMHPz8/XnvtNWeHk6dZLBZ27drFkSNHCAoKonnzRvj4uDFkSCrffQfly8M//0D9+tCs2UzCw5exevXq69a5Z88eevXqddPJwCuvvEJISMg1Z1RdG2NzfHx8GDJkCN999x3ly5fnn3/+oX79+jRr1oy4uDieffZZduzYwR133MFrr73GoEGD+P7776+JtWrVqtl6SvmVK7XvvRcuL0xq1AgOH96fbe2KiGQlJTI36ZlnnuH3339n586dFCpUyNnh5GnXHuQZRalSqRw5Ap06XV324MHTbN0afcM6L168SGxsLFarFTc3N6xWK+7u7o7vr3z/yu+LFy+e7vlb6R02WqpUKY4cOUKnfwV5+fDSjh07Onpghg0bxiuvvILdbr8mSVq6dCnAdeOyWq1YLBbOnj3LiRMnOH78OMeOHePYsWNER0fz+++/k5iYCKQlXZUrV6Z69eqsXbuWKxcyXXFMF1ZrEVJSrnhDRCQXUyJzE77++ms++ugjPvroI+666y5nh5PvWCx1MGY/desaNm783/spKZCQ0JoJExrxzTffcObMGXbs2IGbm5vjAMTL6tSpw6pVq7IxRgvGGOrWrcvGK4P8r19//fWa8hn5dyJ05swZoqKiiIqK4rfffnN8HxUVxZkzZxzlKlasiK+vLy1atGDgwIH4+vri6+tL9erVHcm3t7c38fE18PHZTdokXzAG0sJpihY0ioirUCKTSSdOnGDQoEF0797d8b9wyV6zZ89m/PjxjoM8p05dTbFiGzl69BSrV0NICBhjZfPmVB55ZAkPPWRj79697Nixg3379jFo0CCOHTuG1Wp1TPb9d2KT9TFOpVixYhw9epTVq1cTEhICQGRkJHXq1KFNmza89tprnDp1igoVKjB9+nTatWt3TW8MwJtvvsmBAwccics///zjuFa2bFl8fX3x9/ene/fujmSlRo0amdq8Lu0cr3kUKeJNhQpnAMPFiz54eLwGHM6ipyMikv20aikT7HY77du357fffmP37t2UKFHC2SHleRaLhTFjxrB8+fJ/TaQ9yc6djzJy5HecPp3KpUtFueOOuhQvXpHFixfTtm1bYmJisFgsVKpUiYEDB/J///d/rF27FoAGDRqwffv2bI4Rdu7cyciRIzl9+jSXLl2icuXKLF26FA8Pj0xP9i1fvjxVq1Z1JCk1a9Z0JCtZ+fcwNfUs1aqV4Pnnp/Loo49nWb0iIrdDy6+z0Jtvvsno0aNZs2YNrVu3dnY4+cLNHuRpjCEyMpJVq1ZRqlQp7r33XooXL+64fuLECTZu3EiJEiUcvSQ5HWNuVqlSJR566CFeeeUVZ4ciIgJo+XWW2bp1K2PHjuWFF15QEpOLWSwW6tWrR2BgoGOJdWpqKm5uaXM9KlasSM+ePZ0ZYq5Wrlw5/vzzT2eHISJy05TIXMe5c+fo06cP9evXZ/z48c4OJ1+51SMf3NzcsnQjN2MMcXFxnDhxgoCAgGuu5RXlypXjjz/+cHYYIiI3TUsTruOJJ57gr7/+YuHChY7D9CR/SU1NZc+ePTRs2JCffvrJsa9MXlO+fHn1yIiIS1KPTAY+++wzPv30U+bOncudd97p7HDESaxWKw0bNmTv3r1UrVrVMVSV12hoSURclRKZdERHRzN06FD69OlD3759nR2OOFmRIkXw9fV1dhjZ6nIic+W8IhERV6CfWP+SkpLCgw8+SIkSJfjggw+uu2GZq4mOjmb69Ok53u5LL73EggULsqy+8ePHc+HChWyrPz8qV64cKSkpxMbGOjsUEZGbouXX/zJ+/HheffVV1q1bR7NmzZwdTpaKiIhg+PDhREZGOjuU25KXlj3nFps2baJZs2bs2bMHPz8/Z4cjIpLp5dfqkbnChg0bmDBhAi+99JLLJzFJSUn06tWLOnXqEBgYSGhoKEOHDuXgwYPYbDbCwsIAiIqKokuXLjRs2JCAgACmTZvmqOPyhm/16tWjZs2aN+z12Lx5Mw0aNMBms+Hn58eHH34IQHh4OFOnTgXSEsWePXty9913U7NmTbp27crevXvp0KEDNWvWpHfv3tfdfXfo0KEABAcHY7PZiImJueX6z507x+DBg2nUqBEBAQEMGTIkWw9pzM3KlSsHoHkyIuJ6jDE3/AK8ARMfH2/yqri4OFOlShXTokULc+nSJWeHc9u+/vprExoa6nh9+vRps3btWhMYGOh4LyUlxTRo0MDs37/fGGNMYmKi8ff3N1u3bjXGGAOYMWPGGGOMOXz4sClevLg5evRohm2GhYWZhQsXOl7HxsYaY4wZMGCAmTJlijHGmHHjxplq1aqZ2NhYk5qaalq2bGkaN25szp49ay5dumQCAwPN8uXLr3tvgImLi3O8vtX6Bw8ebD799FNjjDGpqanm4YcfNpMmTbpu23nV+fPnDWDmzp3r7FBERIwxxsTHxxvAAN7mOjlKvpvsa/47lHbl3BdjDEOHDuXMmTP85z//wd3d9R9LYGAg+/fvZ9iwYbRq1YrOnTtfU+byacwPPPCA471z586xb98+GjZsCKR/unPVqlXTbbNNmzZMmDCBqKgo2rZtS4sWLdItFxoa6th1t379+hQqVIiiRYsCUK9ePaKiom75vm+m/qVLl7Jp0ybeeecdIK0XK70zj/KDwoULU6xYMfXIiIjLyXdDS4sXL8bHx4f58+c73ps7dy6ff/45H330EVWqVHFidFmnevXq7Nu3j44dO7Jhwwb8/PyIi4u7qowxhhIlShAZGen4Onr0KAMGDMiw3utNfh4+fDgrVqygfPnyjB49mmHDhqVbzsPDw/G91Wq95vXlnXlvVWbrN8bw1VdfOe794MGDzJgx47badmVagi0irijfJTLr1q3j7Nmz9OvXjz59+rBr1y4ee+wxHnrooTy1hf2JEyewWCyEhYUxefJkjDGULFmS+Ph4R5latWrh7e3N7NmzHe8dOnToqpUrl69dPt05ODg4wzYPHjxItWrVGDx4MKNHj2bz5s3ZcGdQtGjRq+7jVnXr1o2JEyc6Epu4uDgOHTp02/W6Ku3uKyKuKN8lMnv37nV8/8UXX9C4cWOKFy/Oe++958Sost6ePXto3rw5gYGB1KtXj379+tGsWTPq1q2Ln58fYWFhuLu7s3z5cr7++msCAgKoW7cuDz/8MElJSY567HY79erVIzQ0lPfeey/DYSWAadOmUbduXerVq8eYMWN4++23s+XeRowYQfv27R2TfW/VlClTKFy4MDabjYCAANq1a0d0dHTWBepitLuviLiifLf8unTp0vzzzz9Xvefm5sbLL7/MCy+8kG/nSKRHy5zTGGPy1H5CGXn66af54Ycf2Ldvn7NDERHR8uv0nDlz5pokBtLO03nppZdo2bIlx48fd0JktyYpKYm9e/eyZ8+e6y5Zlttz6tQpl/pzcas0tCQirsj1l+fchP3792d4zRjDxo0befXVV3PVhM/k5GSOHj3Kb7/9RlRU1FVfx48fxxhD9+7d+eqrr7K87fR662JiYggNDb3m/fbt2/PWW29lWdtDhw5Nd47Npk2bKFy4cJa1cyPGGI4cOUK3bt2YN29euqu/8opy5cpx5swZLly4cNUEaRGR3EyJDGkrWdzc3HjiiScYPXp0jp83k5KSwu+//35VknI5cYmOjnb0thQuXBhfX198fX3p06cPNWvWxNfXl5o1a+bY8EeZMmVyZGdgZxylkB6LxUL9+vVp1qwZXbp0YdSoUUyYMCFPnoZevnx5AP766688s3pPRPK+fJfIWK1W7HY7AO7u7qSmpjJw4EBeeuklChcuzJAhQ1i3bh3Hjx/P0v+VpqamcuLEiWsSlaioKI4cOcKlS5cAKFiwIHfeeSe+vr50797dkbj4+vpSoUIFHejnBJ6enixbtoy3336bF154gZ9//plFixZRsWJFZ4eWpS7v7vvHH38okRERl5GvEpktW7Zgt9uxWCwYY+jRowevvPIKvr6+rFy5kv79+/PPP/84hhPq1KlzU/UbY/jzzz/THQY6dOiQ46BDq9VKtWrVqFmzJh07dnQkKjVr1qRSpUqacJwLubm58eyzz9K8eXN69eqFzWZj3rx5dOrUydmhZRkdUyAirihPr1oywG/AJaA2ULRIEZKSkggNDWXSpEkEBgZy/vx5Ro4cyYcffoibm5tjGGfp0qXcc88919ZpDP/880+6w0CHDh0iISEBSBuSqFKlylVJyuXvq1atmieHJvKLpKQkVqxYweHDh2nSpAnBwcF5oqfMGMOlS5ewWq1KpkXE6TK7ailbe2Sio6NZuXKl46C/nPLSSy/hVqsWXzz4IJdnxdwBhM2Zw/1WK/fddx8A27Zt44EHHnDsHXI5ibFarezevZsKFSoQFRXFRx99RLly5Thy5AhRUVGcOXPG0dYdd9yBr68vjRo14sEHH3QkK9WrV9eEyTyqcOHC3HfffaSmppKSkuLo5XP1JdoWi4WCBQs6OwwRkZuSrT0yERERDB8+PEcmh14pGqgDXASuXJRsAf4DNE1J4fXXX+fll18GyNTS5SZNmlC7du2reljuvPNOPD09szx+ERGR/C7H95FJSkqiV69e1KlTh8DAQEJDQxk6dCgHDx7EZrMRFhYGQFRUFF26dKFhw4YEBAQwbdo0Rx0Wi4UxY8ZQr149atasyYIFC67b5ubNm2nQoAE2mw0/Pz8+/PBDAO4OD+fC1KlpScz48dCzJ9x9N6ZmTXp07UqFChUYN24cqampGSYxd911F9u3b+ehhx4CICEhgZ07d/Lwww+zfPly1qxZg6enJ+PHj6dnz57cfffd1KxZk65du7J37146dOhAzZo16d27t6ONc+fOMXjwYBo1akRAQABDhgwhOTn59h68iIhIPpZlQ0srV67kzJkzjl1BY2Nj2b1791U9Mna7nd69ezN//nzuuusuzp8/T5MmTWjcuLHjtGWLxcKuXbs4cuQIQUFBNG/ePMNt8d944w1GjhxJ7969ARyHIsaSNj/GYft22LEDfHyIb92aQhcvUqhQIS5evJjh/cTGxtKgQQM++eQTZs+ezfr16zPc4Xb79u3s2LEDHx8fWrduzaBBg1i1ahWFCxcmKCiI77//ni5dujBixAiCg4OZOXMmxhgGDx7Mu+++y7PPPpvZxywiIiJXyLJEJjAwkP379zNs2DBatWqV7sZhBw8e5Ndff+WBBx5wvHfu3Dn27dvnSGQGDRoEpJ3e3LJlS9atW5dhItOmTRsmTJhAVFQUbdu2pUWLFgB4kdbV5OhrCQ2F4sVxA0rWr0+/pk159dVXWbduHcOGDeP48eOcP38ed3d3xwGCMTExJCYmZmroKDQ0lOLFiwNQv359ChUqRNGiRQGoV68eUVFRQNoE4k2bNvHOO+8Aab1YmlQpIiJy67JsaKl69ers27ePjh07smHDBvz8/Bw9JJcZYyhRogSRkZGOr6NHjzJgwIAM673eBMrhw4ezYsUKypcvz+jRoxk2bBgANbl6bgz/nXSbCtS3WvHw8MDd3d2R/IwbN46IiAiGDBlCqVKlHB/L7AGCV07qtf63/itfX06OjDF89dVXjns/ePBgrtpFWP5n+/bt9OrVy9lhpGv8+PGOpfy5mavEKSKuLcsSmRMnTmCxWAgLC2Py5MkYYyhZsiTx8fGOMrVq1cLb25vZs2c73jt06BCxsbGO15evRUdHs379eoKDgzNs8+DBg1SrVo3BgwczevRox5b2JYHewJVrhqzAONKSnH9zc3OjVatW/N///R9//vkn69atY/Lkyfj6+gJQtGjRq+7jVnXr1o2JEyc6Epu4uDgOHTp02/VK1gsKCuLzzz93dhjpevnll10iQXCVOEXEtWVZIrNnzx6aN29OYGAg9erVo1+/fjRr1oy6devi5+dHWFgY7u7uLF++nK+//pqAgADq1q3Lww8/TFJSkqMeu91OvXr1CA0N5b333stwWAlg2rRp1K1bl3r16jFmzBjefvttx7VGwB/AfUAocAwYT9rKpeuxWq0EBwczYsQIx1LUESNG0L59e2w2GzExMbf0fACmTJlC4cKFsdlsBAQE0K5du0z3+kj2SW+iekREBDabDUhLqn18fBg7diz169fH19eXDRs28PTTTzsmmu/du/e6bcTHxzNo0CD8/PwIDAxk4MCBQNok8oEDB+Ln54efn59jJR3Aq6++Su3atbHZbNhsNn7//XfHVgbBwcGOP4+zZs2iTp062Gw2/P392bJlS7ox2Gw2l4hTROSmGGNu+AV4AyY+Pt5kJ8DExcVlaxsi//b111+b0NBQx+vTp0+btWvXmsDAQGOMMUePHjWAWbJkiTHGmFmzZhlPT0+zZs0aY4wxkyZNMj169LhuG+Hh4ebRRx81drvdGGNMTEyMMcaY5557zvTp08fY7XaTkJBgbDabWbRokYmNjTXFihUz58+fN8YYk5iYaJKSkowx1/498fb2NqdOnTLGGJOcnGzOnTuXbgyTJ092iThFRIwxJj4+3pC2dsfbXCdHcf3tSEVu05UT1T///PN0d1328PCgW7duQNqwk5eXF23atAGgUaNGjgndGVm+fDkjR4507ABcunRpAFavXs3gwYNxc3PD09OT/v37s2rVKry9vfH19aVv377MmDGD2NjYDDdYbNeuHf369ePdd9/l6NGjeHl5pVuuYcOGLhGniMjNyFWJjDHmmiXOMTExji7rK7+yesny0KFD023nymEvyZsyM1G9UKFCju+vN6H7dl2e3G61Wtm8eTPDhw8nJiaGJk2asH79+nQ/89VXX/Hmm29y6dIlOnfuzKJFi9It5ypxiojcjFx/aGSZMmVyZGfg6dOnZ3sbkjudOHGC4sWLExYWRseOHVm6dCnHjx/P0jYuT4KfNm0abm5u/P3335QuXZqQkBA+/vhjWrVqxfnz55k3bx6jRo3i3LlznDt3juDgYIKDg/n111/ZtWsXwcHBjsnnPj4+pKSkEB0dTVBQEEFBQfzzzz9s3br1qi0O8mKcIiKX5aoeGRFnSG+iekBAQJa2MWXKFC5evIi/vz82m43Ro0cDMHbsWAoUKIC/vz+NGzcmLCyMnj17Eh8fT/fu3fH39ycgIIBLly45tim4cvL56dOnHZNwbTYbO3bs4JlnnsnzcYqIXJanT78WERER15TjZy2JiIiI5DQlMiJZ5Lvvvkt3wnhu21jPVeIUEckMDS2JiIhIrpPZoaVcv2pJJL8xxpCamnZa2OX9XK535lh2tG+MwWKx5Gi7IiK3QkNLIrnM5eTh+++/58knn2T69OkkJCTkWPu//PILVquV7du351ibIiK3SomMSC5ktVrp2rUrXbt25aWXXuKuu+5iw4YNOdJ2uXLlAPjjjz9ypD0RkduhREYkF+vQoQO7du2iWrVqtGrVikmTJjmGnbJL6dKlcXNz488//8zWdkREsoISGZFcrmLFiqxdu5Znn32WUaNGERYWxunTp7OtPavVSpkyZZTIiIhLUCIj4gLc3d154403+O6779i8eTM2m42NGzdmW3vlypXT0JKIuAQlMiIupFOnTuzatYvKlSvTqlUrJk+eTGa2ULhZ5cqVU4+MiLgEJTIiLqZSpUpERETwzDPP8Oyzz3LPPfcQGxubpW2UL19eiYyIuAQlMiIuqECBAkycOJFvv/2WDRs2UK9ePTZv3pxl9atHRkRchRIZERfWtWtXdu3axR133EFwcDDvvPNOlgw1XZ4jkx3DViIiWUmJjIiLq1y5Mv/5z3946qmnGDFiBN26dSMuLu626ixXrhwXL14kPj4+i6IUEckeSmRE8oACBQowefJkli1bxvr166lXrx5bt2695frKly8PwLFjxzh+/Djbtm3jxx9/5MKFC1kVsohIltChkSJ5zO+//07Pnj3ZtWsXkyZN4qmnnrrhmUmJiYlMnDiRI0eOcPLkSY4ePcrvv/9+Tbkvv/yS++67L7tCFxFxyOyhkUpkRPKg5ORknn/+eaZMmUK3bt345JNPKF68eLrlrFYrp06domrVqo4DI9NToEAB/vzzT0qUKJHd4YuIZDqR0dCSSB5UsGBB3nnnHZYsWUJERAT169dn27ZtV5U5d+4c/v7+9O3bl0qVKvHkk09m2HPj7u5O9+7dlcSISK6jREYkD+vWrRs7d+6kdOnSNG/enPfff9/R6zJkyBB+++03Fi1axO7du5kwYQJly5ZNN5lJSUlh0KBBTrgDEZHrUyIjksdVq1aNn3/+mWHDhvHkk09y//338+6777Jo0SIgrbdl/PjxeHl5MX369HSHlipWrEjbtm1zOnQRkRvSHBmRfOTrr79mwIABJCQkXHNt9+7d+Pv7061bN5YvX47dbgfAzc2NcePG8dJLL+V0uCKSj2mOjIhcIyQkBB8fn2ved3d35+WXXwZg2rRpFCxY0HHNGEN4eHgORSgicnOUyIjkE8YYBg0alO6p1ikpKXz11Vfs3buXihUr8uabbzqutWvXjsqVK+dkqCIimaZERiSfmDlzJosXL3YMGf2b1Wp19Mo89thjVKpUCYCBAwfmWIwiIjdLiYxIPnHo0CHHiiSLxUKBAgWuum632/nyyy/Zu3cvVquVTz75mCZNfLn33lBnhCsikilKZETyiO3bt9OrV68Mr0+aNIlz586xefNmpk+fzuDBg2ncuDFFihS5qlzfvn2BbwgJeYJNm6Lw8CgD3A+cuuXYxo8fr+MNRCRbaNWSSD6XmppKdHQ0v/zyC1988QVdurjTt++C/169/PPBClQB9gBF0q3neiwWC3FxcelONBYRSY9WLYnkYUlJSfTq1Ys6deoQGBhIaGgoERER2Gw2AKKjo/Hx8WHs2LHUr18fX19fNmzYwNNPP43NZsPPz4+9e/cCacurq1evzr333stnn31G376HAAvx8YZBg8DPDwID7QwceAT4nISEBAYOHIifnx9+fn6OeTUAr776KrVr18Zms2Gz2fj9998ZOnQoAMHBwdhsNmJiYpg1axZ16tTBZrPh7+/Pli1bcvgJikiecXmXz+t9Ad6AiY+PNyLifF9//bUJDQ11vD59+rRZu3atCQwMNMYYc/ToUQOYJUuWGGOMmTVrlvH09DRr1qwxxhgzadIk06NHjwxqL2CMwYSHYx59FGO3p/0oiImxGmOGmueee8706dPH2O12k5CQYGw2m1m0aJGJjY01xYoVM+fPnzfGGJOYmGiSkpKMMcYAJi4uztGCt7e3OXXqlDHGmOTkZHPu3LksejIiklfEx8cb0rqFvc11chT1yIi4oMDAQPbv38+wYcP4/PPPr5m4C+Dh4UG3bt0ACAoKwsvLizZt2gDQqFEjoqKiMqg97XDJ5cth5Ehw++9PidKlAUqzevVqBg8ejJubG56envTv359Vq1bh7e2Nr68vffv2ZcaMGcTGxuLh4ZFuC+3ataNfv368++67HD16FC8vr9t4GiKSnymREXFB1atXZ9++fXTs2JENGzbg5+dHXFzcVWUKFSrk+N5qtV6VVFitVlJSUjKofQj//tGQ1jFrgP7XlL68EspqtbJ582aGDx9OTEwMTZo0Yf369em28NVXX/Hmm29y6dIlOnfu7DguQUTkZimREXFBJ06cwGKxEBYWxuTJkzHGcPz48Syq/UWgI2Fh8NZbFi5dgpQU+PvvqUANQkJC+PjjjzHGkJiYyLx58wgNDeXcuXP89ddfBAcHM3bsWFq0aMGuXbsAKFq0KPHx8UDa5nuHDx8mKCiIkSNH0qNHD7Zu3ZpFsYtIfqNERsQF7dmzh+bNmxMYGEi9evXo168fAQEBWVS7B7CcKVNWkpxcj4oV3SlSBMLDVwIwduxYChQogL+/P40bNyYsLIyePXsSHx9P9+7d8ff3JyAggEuXLjFgwAAARowYQfv27bHZbJw+fdoxWdhms7Fjxw6eeeaZLIpdRPIbLb8WkevavXs3gYGB1KhR4zrzakREspaWX4tIlggICKBo0aIcOnSI5ORkZ4cjInIVJTIi+dh3333n2PPlyq/PP//8qnKX94J59NFHnRGmiEiGNLQkIjdkt9spUKAAhQoVIikpydnhiEg+oKElEckyVquVgIAALly4wJo1a5wdjoiIgxIZEcmUOXPmAP8bZhIRyQ2UyIhIpthsNry8vIiKitKkXxHJNZTIiEimPfLII4Am/YpI7qHJviKSaZr0KyI5RZN9RSTLWa1W/P39uXDhAhEREc4OR0REiYyI3JxPP/0U+N8wk4iIMymREZGbcnnS72+//aZJvyLidEpkROSmXe6Neeyxx5wciYjkd5rsKyI37fKkXw8PD86fP+/scEQkD9JkXxHJNlarFT8/P5KSkjTpV0ScSomMiNyS2bNnA5r0KyLOpURGRG5JgwYNNOlXRJxOiYyI3LLBgwcD8Pjjjzs5EhHJrzTZV0RumSb9ikh20WRfEcl2mvQrIs6mREZEbsvlSb9Dhw51ciQikh8pkRGR29KgQQM8PT05ePCgJv2KSI5TIiMit23IkCGAJv2KSM7TZF8RuW12ux13d3cKFy6sSb8ikiU02VdEcsyVk37XrVvn7HBEJB9RIiMiWWLOnDmAdvoVkZylREZEssTlSb8HDhzQpF8RyTFKZEQkywwaNAiAJ5980smRiEh+ocm+IpJlNOlXRLKKJvuKSI7TpF8RyWlKZEQkS3388ceAJv2KSM5QIiMiWapRo0aOSb92u93Z4YhIHqdERkSy3MMPPwzAE0884eRIRCSv02RfEclymvQrIrcrs5N93XMuJBHJL6xWK9HR0Vy8eJGkpCQKFy7s7JBEJI9SIiMi2aJKlSrODkFE8gHNkRERERGXpURGREREXJYSGREREXFZSmRERETEZSmREREREZelREYkn7JYLLz22ms0btyYqlWrsnTpUt544w2CgoLw9fUlIiICgJSUFDp06EBQUBB169alT58+JCYmArBgwQKCgoK4ePEixhjuvvtuXnvttSxpF+CHH36gRYsWNGjQgEaNGrF27VoAIiIi8PPz49FHHyUgIAB/f392795NeHg4/v7+NG7cmJMnT2bLcxORXMYYc8MvwBsw8fHxRkTyBsBMnTrVGGPM6tWrjaenp5k9e7YxxpgvvvjCBAUFGWOMSU1NNf/884/j+6FDh5o33njDUc+QIUPMY489ZiZNmmQ6duxoUlNTs6Tdw4cPmyZNmjh+7kRFRZly5cqZCxcumLVr1xqr1Wq2b99ujDFmzJgxpmTJkmb//v3GGGOGDRtmRo4cebuPSEScKD4+3gAG8DbXyVG0j4xIPtarVy8AgoKCSExM5IEHHgDSzkuKiooC0v6zM2XKFFasWEFKSgrx8fE0a9bMUce7775L48aN+eabb9i5cycWiyVL2l25ciWHDh2iZcuWjs+5ublx7NgxAGrUqEGDBg0c9dSoUYO77rrLUc+SJUtu/cGIiMtQIiOSj3l4eABpO/H++3VKSgoACxcuZM2aNfznP//B29ub9957jzVr1jjqiImJIS4ujtTUVM6cOUOpUqWypF1jDO3bt2fhwoXXfP7kyZOOz1z+3L9fX65HRPI2zZERkeuKi4ujVKlSeHt7c+7cOebMmeO4lpKSwgMPPMCECRN455136NmzJxcvXsySdjt06MDq1avZvXu3472tW7dmSd0ikncokRGR6+rfvz/nz5+nVq1adOrUieDgYMe1559/nlq1ajFgwAB69uxJ06ZNGT58eJa0W6NGDRYuXMgjjzxCYGAgtWvXZurUqVlSt4jkHTr9WkRERHKdzJ5+rR4ZERERcVma7CsiWW7o0KFs3rz5mvc3bdpE4cKFnRCRiORVGloSERGRXEdDSyIiIpLnKZERkRz39ttv07RpU95++21nhyIiLk5DSyKS4+x2O+7u7hQpUsRxbpOIyJU0tCQiuZbVaqV27dqcP38+3UnBIiKZpURGRJzik08+AWDQoEFOjkREXJmGlkTEaTw9PTl//jwpKSmOc5dEREBDSyLiAgYMGACQZccaiEj+ox4ZEXEaTfoVkYyoR0ZEcj2r1cpdd93F+fPndbK1iNwSJTIi4lSzZs0C4OGHH3ZyJCLiijS0JCJOp0m/IvJvGloSEZdxedLvM8884+RIRMTVqEdGRJzu8qRfT09PEhISnB2OiOQC6pEREZdxedJvYmKiJv2KyE1RIiMiuYIm/YrIrdDQkojkGkWKFCEpKUmTfkVEQ0si4nr69+8PwIgRI5wciYi4CvXIiEiuoUm/InKZemRExOVo0q+I3CwlMiKSq8yYMQPQpF8RyRwNLYlIrqNJvyKioSURcVma9CsimaUeGRHJdZKTkylUqJAm/YrkY+qRERGXVbBgQWrVqkViYiI7duxwdjgikospkRGRXOmjjz4CIDw83LmBiEiupkRGRHKlli1bUrhwYfbu3Yvdbgdg5syZVKtWjWnTpjk5OhHJLZTIiEiu1bdvXwCqV6+O1WplyJAhREdH8/777zs5MhHJLdydHYCISHpmzJjB0qVLATh27NhV10qVKuWEiEQkN1IiIyK5ysSJExk9ejSpqakZlqlYsWIORiQiuZmGlkQkV1m0aNF1kxhIG2oSEQElMiKSy2zfvp1q1apdt4y/v38ORSMiuZ0SGRHJVaxWK0eOHKF58+YZlgkKCsrBiEQkN1MiIyK50s8//+xYtfRvd955Zw5HIyK5lRIZEcm15s2bx/jx4695XwdJishlSmREJFcbN24c8+bNc3YYIpJLKZERkVyvb9++/Pzzz2kvLBb+BHSUpIiAEhmRDN1///1s2rQJgPHjxzNnzhynxjNjxgzuuusubDYbO3bswMfHJ1vamTNnTrrDOf8WERFxw3OQIiIiWLlyZZbE1bx5c+ZeukQVu53ygA/QLTaWRs2bY7PZeO211wgPD2fq1KlZ0t6/Va1aNVPlWrduTXR0dLbEkJtd+XyCg4M5evSo84KRfEWJjEg6tm7dSmxsLE2bNnV2KA5Tp05l9uzZREZGUrJkSWeHkylZmch8CfR3d+d3iwUAO/DtqlXs8/JiW2QkL774Ypa0I7dvxIgRjBs3ztlhSD6hREYkHTNmzKBPnz6O115eXhQuXBiAb7/9loCAAGw2G35+fixbtgxI+5/45S31AXr06OHoxQkPD2fIkCGEhIRQrVo1Bg4cyNatW2ndujXVq1fnmWeeuW48PXr04PDhw4SHh9OjR49rrv/www/Ur1+fgIAAWrVqxb59+4C0RMLPz4/+/fvj5+dHgwYNiIyMBCAqKormzZsTGBiIv78/Y8aMAaBw4cJ4eXnd8BkVLFiQYsWKZVhXZGQk06dPZ8GCBdhsNl555RVHrC1atKBBgwY0atSItWvX3jBWgJcAy5UBrF5N6rPPkrh5M742G6tXr74qvoSEBAYOHIifnx9+fn68/PLLjmutW7fmiSeeoGHDhtSoUYMRI0ZgjAHg1VdfpXbt2thsNmw2G7///jsApUuXvuEzAShRooRjMnLr1q0ZMWIELVu2pHLlyowdO5bvvvuOFi1aULVqVd555x3H50aOHEnDhg2x2Wy0bNmSgwcPAnDw4EEqVqzIkSNHAJg8eTIdO3a87qaBN9NuVFQUXbp0oWHDhgQEBFx1IKfFYuG1116jcePGVK1alaVLl/LGG28QFBSEr68vERERjrJXPp8uXbrw/fffEx8fn6lnJnJbjDE3/AK8ARMfH29E8oPq1aubPXv2pHstICDAbNy40RhjjN1uN3FxccYYY1q1amWWLFniKHffffeZ2bNnG2OMGTBggGnSpIlJSkoyFy9eNHfeeafp1q2bSU5ONgkJCaZMmTJm7969142pSpUqZteuXcYYY44ePWqKFStmjDHmr7/+MiVKlDC7d+82xhgzf/58U7t2bZOammrWrl1rALN69WpjjDGff/65qVWrlklNTTVPPvmkef311x31nz59+mYe0VUyqmvcuHHmqaeecrx/+PBh06RJE8fPkqioKFOuXDlz4cKF68Z6wWTww2n2bGO55x4z8r/1DxgwwEyZMsUYY8xzzz1n+vTpY+x2u0lISDA2m80sWrTIGJP2e9W2bVuTnJxsEhMTTYMGDcyCBQtMbGysKVasmDl//rwxxpjExESTlJR0y8+lVatW5r777jMpKSkmNjbWeHt7m8cee8ykpqaaEydOGE9PT8efn5iYGMfnPvvsM9OhQwfH64ULF5oGDRqYtWvXmqpVq15V9nbaTUlJMQ0aNDD79+933K+/v7/ZunWrMcYYwEydOtUYY8zq1auNp6en48/0F198YYKCgjKMoU2bNubbb7+96Wcmcll8fLwBDOBtrpOjqEdGJB0nTpygbNmy6V5r164dTz31FJMmTWL37t2Znqtyzz334OHhQcGCBfH396dDhw4UKFAAT09P6tSpQ1RU1C3FumXLFvz9/R273T744IOcOnWKkydPAmlzF9q1awdAz549+fPPPzl+/DgtW7Zk5syZvPjii/z444+3Necms3WtXLmSQ4cO0bJlS2w2Gz169MDNzc1xKGRGsRYAMuojMkCZdN5fvXo1gwcPxs3NDU9PT/r378+qVasc1/v370+BAgUoUqQIffv2ZfXq1Xh7e+Pr60vfvn2ZMWMGsbGxeHh43PJzgbTeNKvVSvHixalevTpdu3bFYrFwxx13ULp0acd8mlWrVtG0aVP8/Px45ZVXruqN6t27N/Xr16dDhw7MmzcvU71DmWn34MGD/PrrrzzwwAPYbDaaNWvGuXPnHD16AL169QLSNiFMTEzkgQceAKBRo0bX/TNbrlw5Tpw4cQtPTOTmKJERSUeRIkW4cOFCutfeeecdZs+eTZEiRRgwYACTJk0CwN3dHbvd7ij3789f+Q+i1Wq95nVKSkpW3kKGLBYLFouF++67jw0bNlCrVi2mTZtG165db7nOzNZljKF9+/ZERkY6vk6ePImvr+91Y3UDBpP+DywL8GAmYrRYLDe8brVa2bx5M8OHDycmJoYmTZqwfv36TNSescz8vh87dozHH3+c+fPns3fvXhYtWnTVn5+UlBT27t1LiRIlHAlqVrRrjKFEiRJX/X4cPXqUAQMGXFPP5eGyK19f78/shQsXHMOxItlJiYxIOgICAhxzFP7twIED1K1bl8cff5xHH32UzZs3A1CjRg22bNkCwNGjR/+3XDibNWnShD179rB3714g7dDFO+64gzvuuAOA6OhoxzyUL7/8krJly1KxYkWioqIoW7Ys/fv3Z9KkSY77uNLJkye56667bhhDRnV5e3tfNU+iQ4cOrF69mt27dzve27p1q+P7jGIFeBVo/d9yVtISGHcgCKiQTkwhISF8/PHHGGNITExk3rx5hIaGOq7Pnz+fS5cukZSUxMKFCwkJCeHcuXP89ddfBAcHM3bsWFq0aMGuXbuuqfuFF164ai7J7YqPj6dAgQKUL18eY8w1dT///PPUqlWL9evXM3LkSA4dOpQl7daqVQtvb29mz57teO/QoUPExsbedt379+8nMDDwtusRuRF3Zwcgkhv16NGDH374gZCQkGuujR49moMHD1KwYEGKFCnChx9+CMBzzz1Hr1698Pf3p27dujRu3DhHYi1dujQLFiygf//+pKSkULx4cRYvXuzogahbty5z5szhySefpGDBgnz22WdYLBa+/PJL5s+fT8GCBUlNTWX69OnX1H3y5Enc3W/8YyKjuu69917mzZuHzWaje/fuvPTSSyxcuJBHHnmE8+fPk5ycTL169Vi4cOF1YwUoAqwGfv7vVwng0n/fS8/YsWN58sknHUNu999/Pz179nRcr127Ns2bNyc2NpZ77rmHBx54gJMnT9KjRw8SExOxWCz4+vpe1Ttx2S+//EKDBg1u+Fwyy9/fnwceeIC6detSsmRJunXr5ri2fPlyVq5cydatWylSpAjvvPMOPXv2ZOPGjbc97OXu7s7y5csZPnw4U6ZMwW63U6pUKcfvx62Kjo7GbrcrkZEcYTH/nal/3UIWizcQHx8fj7e3d/ZHJeJkCQkJNGvWjE2bNuHp6enscG5ZREQEw4cPv2q+xc146623KF++fIZnHmWl2431ZrRu3Zrhw4dflTBklt1up0mTJmzZsgU3N3Vqp+f555+nRo0aDBo0yNmhiAs7e/bs5ZWRxYwxZzMqpx4ZkXR4eXkxZcoUjh49ip+fn7PDcZpnn33W2SHkOlarlW3btjk7jFytQoUKDBw40NlhSD6hHhmRXCQsLMyxguey4sWLO+aN5Effffcdo0ePvub9F154wbGiJj+aNWtWuvN03n//fYKDg50QkUjWymyPjBIZERERyXUym8hogFdERERclhIZERERcVlKZERERMRlKZERERERl6VERkRERFyWEhkRERFxWUpkRERExGUpkRERERGXpURGREREXJYSGREREXFZSmRERETEZSmREREREZelREZERERclhIZERERcVlKZERERMRlKZERERERl6VERkRERFyWEhkRERFxWUpkRERExGUpkRERERGXpURGREREXJYSGREREXFZSmRERETEZSmREREREZelREZERERclhIZERERcVlKZERERMRlKZERERERl6VERkRERFyWEhkRERFxWe43U/js2bPZFYeIiIiIQ2ZzDosx5saFLJY7gBO3GZOIiIjIzapojDmZ0cXMJjIWoAJwLgsDExEREbmeosApc51kJVOJjIiIiEhupMm+IiIi4rKUyIiIiIjLUiIjIiIiLkuJjIiIiLgsJTIiIiLispTIiIiIiMtSIiMiIiIu6/8BeVD535L6ZT0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -615,11 +714,11 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 21, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:45:32.198367Z", - "start_time": "2020-10-09T08:45:32.148942Z" + "end_time": "2020-10-11T03:34:24.680002Z", + "start_time": "2020-10-11T03:34:24.650994Z" }, "scrolled": false }, @@ -627,12 +726,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6009d2e3bb52469ea537d9f1159ef550", + "model_id": "1b32ab81edaf452eaf14d5c7e462e6e0", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=8.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" ] }, "metadata": {}, @@ -645,21 +744,13 @@ "\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", - " result = np.array(list(tqdm(\n" - ] - }, { "data": { "text/plain": [ - "7168" + "1192070" ] }, - "execution_count": 17, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -673,11 +764,11 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:05.718516Z", - "start_time": "2020-10-09T08:45:59.992556Z" + "end_time": "2020-10-11T03:34:04.920612Z", + "start_time": "2020-10-11T03:34:03.202761Z" }, "scrolled": false }, @@ -685,12 +776,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "81bfc9e640f5456d8323ada43d3219f3", + "model_id": "9b287cacb9c2431aacc94463a54cee33", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=8.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=2.0), HTML(value='')))" ] }, "metadata": {}, @@ -719,11 +810,11 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 22, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:07.495448Z", - "start_time": "2020-10-09T08:46:07.306492Z" + "end_time": "2020-10-11T03:34:27.480257Z", + "start_time": "2020-10-11T03:34:27.300743Z" } }, "outputs": [ @@ -733,13 +824,13 @@ "Text(0, 0.5, 'Runtime')" ] }, - "execution_count": 27, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEGCAYAAAB2EqL0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdrUlEQVR4nO3df5hcVZ3n8fcn6dAC+YEhSa8DaMCgu1HUkR5Q1zGNTBRdh4xuosEouBunlTU6y6y6MDOLPIy6gjMgCqK9gjCYNSijTmbMiBGmg+uDDMEfQFDcJkQJuuQX0kRNk06++8e9HSpFdfep6rpd1VWf1/P0w73n/vqeNF3fuufce44iAjMzs/FMa3QAZmY2NThhmJlZEicMMzNL4oRhZmZJnDDMzCxJR6MDqJd58+bFwoULaz7+N7/5DUcffXT9AppCXHfXvd247k/X/Z577tkVEfNTjm2ZhLFw4UI2b95c8/H9/f309PTUL6ApxHXvaXQYDeG69zQ6jIYor7ukn6ce6yYpMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyQt85SUmVm7Gdy0kT1r+xjetYOOeQuYu6qX2UuWFnY9JwwzsylocNNGdl57OTE0BMDwzsfYee3lAIUlDTdJmZlNQXvW9h1KFiNiaIg9a/sKu6YThpnZFDS8a0dV5fXghGFmNgV1zFtQVXk9OGGYmU1Bc1f1os7Ow8rU2cncVb2FXdOd3mZmU9BIx7afkjIzs3HNXrK00ARRzk1SZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLEmhCUPSWZIelDQg6cIK2zsl3Zxvv0vSwrx8hqQbJd0n6SeSLioyTjMzG19hCUPSdOAa4A3AYuAcSYvLdlsNPB4Ri4Argcvy8hVAZ0ScApwKvGckmZiZWWMUeYdxGjAQEVsj4ilgHbCsbJ9lwI358i3AmZIEBHC0pA7gSOApYLDAWM3MbBwdBZ77OOCRkvXtwOmj7RMRw5KeAI4lSx7LgF8BRwEXRMSe8gtI6gV6Abq6uujv76852L17907o+KlsrLof3Pskw7t3EsP7UccMOo6dz7SZsyY3wAL5997f6DAawnXvr+nYIhPGRJwGHAB+D3g28F1J34mIraU7RUQf0AfQ3d0dPT09NV+wv7+fiRw/lY1W98FNG9n5pU8TQ0OHytTZyfzzP8zsJUsnMcLi+Pfe0+gwGsJ176np2CKbpB4FTihZPz4vq7hP3vw0B9gNvB34VkTsj4gdwPeA7gJjtQr2rO07LFkAxNAQe9b2NSgiM2ukIhPG3cDJkk6UdASwElhfts964Lx8eTlwe0QE8AvgtQCSjgZeAfy0wFitguFdO6oqN7PWVljCiIhhYA1wK/AT4CsRsUXSpZLOzne7DjhW0gDw58DIo7fXADMlbSFLPF+MiHuLitUq65i3oKpyM2tthfZhRMQGYENZ2cUly/vIHqEtP25vpXKbXHNX9bLz2suf0Ycxd1VvA6Mys0Zp1k5vawIjHdt71vYxvGsHHfMWMHdVb8t0eJtZdZwwbEyzlyx1gjAzwGNJmZlZIicMMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEicMMzNL4oRhZmZJnDDMzCyJE4aZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEs+4V2eDmzZ6SlMza0lOGHU0uGkjO6+9nBgaAmB452PsvPZyACcNM5vy3CRVR3vW9h1KFiNiaIg9a/saFJGZWf04YdTR8K4dVZWbmU0lThh11DFvQVXlZmZTiRNGHc1d1Ys6Ow8rU2cnc1f1NigiM7P6cad3HY10bPspKTNrRU4YdTZ7yVInCDNrSW6SMjOzJE4YZmaWxAnDzMySuA+jyXmoETNrFk4YTcxDjZhZM3GTVBPzUCNm1kwKTRiSzpL0oKQBSRdW2N4p6eZ8+12SFpZse4mkOyVtkXSfpGcVGWsz8lAjZtZMCksYkqYD1wBvABYD50haXLbbauDxiFgEXAlclh/bAXwJeG9EvAjoAfYXFWuz8lAjZtZMirzDOA0YiIitEfEUsA5YVrbPMuDGfPkW4ExJAl4H3BsRPwaIiN0RcaDAWJuShxoxs2aiiCjmxNJy4KyIeHe+/k7g9IhYU7LP/fk+2/P1h4DTgXcApwILgPnAuoi4vMI1eoFegK6urlPXrVtXc7x79+5l5syZNR9flIN7n2R4905ieD/qmEHHsfOZNnNWXa/RrHWfDK67695uyut+xhln3BMR3SnHNutTUh3Aq4E/AH4L3Cbpnoi4rXSniOgD+gC6u7ujp6en5gv29/czkeOnMte9p9FhNITr3tPoMBpiInUvsknqUeCEkvXj87KK++T9FnOA3cB24I6I2BURvwU2AC8vMFYzMxtHkQnjbuBkSSdKOgJYCawv22c9cF6+vBy4PbI2sluBUyQdlSeSJcADBcZqZmbjKKxJKiKGJa0h+/CfDlwfEVskXQpsjoj1wHXATZIGgD1kSYWIeFzSFWRJJ4ANEfHNomI1M7PxFdqHEREbyJqTSssuLlneB6wY5dgvkT1aa2ZmTcBvepuZWRInDDMzS+KEYWZmSapKGJKOKioQMzNrbkkJQ9KrJD0A/DRff6mkzxYamU0pg5s2sq13BQNvWcK23hUMbtrY6JDMrM5S7zCuBF5P9lId+RhPrykqKJtaRubtGN75GEQcmrfDScOstSQ3SUXEI2VFbTcYoFXmeTvM2kPqexiPSHoVEJJmAH8G/KS4sGwq8bwdZu0h9Q7jvcD7gOPIxn96Wb5u5nk7zNpEUsLIBwFcFRFdEbEgIt4REbuLDs6mBs/bYdYekpqkJJ0IvB9YWHpMRJxdTFg2lcxeshTI+jKGd+2gY94C5q7qPVRuZq0htQ/jG2QDBf4jcLCwaGzKmr1kqROEWYtLTRj7IuLThUZiZmZNLTVhXCXpI8C3gUPPT0bEDwqJqk0NbtroZh0za1qpCeMU4J3Aa3m6SSrydauDkZffRt5nGHn5DXDSMLOmkJowVgAnRcRTRQbTzsZ6+c0Jw8yaQep7GPcDxxQYR9vzy29m1uxS7zCOAX4q6W4O78PwY7V10jFvQTYWU4VyM7NmkJowPlJoFMbcVb2H9WGAX34zs+aSlDAiYlPRgbQ7v/xmZs1uzIQh6f9ExKslPUn2VNShTUBExOxCo2szfvnNzJrZmAkjIl6d/3fW5IRjZmbNKnXGvZtSyszMrHWlPlb7otIVSR3AqfUPx8zMmtV4fRgXAX8BHClpcKQYeArwdGptxkOXmLW3Me8wIuJ/5v0Xn4yI2fnPrIg4NiIumqQYrQl43m4zS32s9iJJxwHP4/D5MO4oKjBrLuMNXeK7D7PWlzqB0ieAlcADwIG8OAAnjDYx1tAlHjjRrD2kvun9ZuCFETE07p7WksYausQDJ5q1h9SnpLYCM4oMxJrbWPN2e+BEs/aQeofxW+BHkm7j8MEHP1BIVNZ0xhq6ZM/aPg+caNYGUhPG+vzH2thoQ5d44ESz9pD6lNSNRQdiU5cHTjRrD6lPST3M4YMPAhARJ41z3FnAVcB04AsR8Ymy7Z3A35G9Nb4beFtEbCvZ/lyyJ7MuiYi/SYnVGsMDJ5q1vtQmqe6S5WeRTdk6d6wDJE0HrgGWAtuBuyWtj4gHSnZbDTweEYskrQQuA95Wsv0K4J8TYzQzswIlPSUVEbtLfh6NiE8B/2Gcw04DBiJiaz4X+DpgWdk+y4CR5q5bgDMlCUDSnwAPA1uSamJmZoVKbZJ6ecnqNLI7jvGOPQ54pGR9O3D6aPtExLCkJ4BjJe0D/jvZ3ckHx4irF+gF6Orqor+/f9y6jGbv3r0TOn4qc937Gx1GQ7ju/Y0OoyEmUvfUJqm/LVkeBraRNUsV5RLgyojYm99wVBQRfeSDIHZ3d0dPT0/NF+zv72cix09lrntPo8NoCNe9p9FhNMRE6p76lNQZpet5/8RK4GdjHPYocELJ+vF5WaV9tudDps8h6/w+HVgu6XLgGOCgpH0RcXVKvGZmVn9j9mFImi3pIklXS1qqzBpgAHjrOOe+GzhZ0omSjiBLMOXvcqwHzsuXlwO3R+YPI2JhRCwEPgV83MnCzKyxxrvDuAl4HLgT+FPgL8nmw3hzRPxorAPzPok1wK1kj9VeHxFbJF0KbI6I9cB1wE2SBoA9ZEnFzMya0HgJ46SIOAVA0heAXwHPjYh9KSePiA3AhrKyi0uW9zFOX0hEXJJyLTMzK9Z4j9XuH1mIiAPA9tRkYWZmrWW8O4yXlk3NOjJVq4CIiNmFRmdmZk1jzIQREdMnKxAzM2tuqfNhmJlZm3PCMDOzJE4YZmaWxAnDzMySOGGYmVkSJwwzM0vihGFmZkmcMMzMLIkThpmZJXHCMDOzJE4YZmaWxAnDzMySOGGYmVmSpDm9rXEGN21kz9o+hnftoGPeAuau6mX2kqWNDsvM2pATRhMb3LSRnddeTgwNATC88zF2Xns5gJOGmU06N0k1sT1r+w4lixExNMSetX0NisjM2lnbJ4zBTRvZ1ruCoYceZFvvCgY3bWx0SIcM79pRVbmZWZHaOmGMNPkM73wMeLrJp1mSRse8BVWVm5kVqa0TRrM3+cxd1Ys6Ow8rU2cnc1f1NigiM2tnbd3p3exNPiMd235KysyaQVsnjI55Cw41R5WXN4vZS5Y6QZhZU2jrJik3+ZiZpWvrO4zSJh+AjvldbvIxMxtFWycMeLrJZ1t/PwtXv6fR4ZiZNa22bpIyM7N0ThhmZpbECcPMzJI4YZiZWRInDDMzS9L2T0lZfXjeDrPWV+gdhqSzJD0oaUDShRW2d0q6Od9+l6SFeflSSfdIui//72uLjNMm5rBBHCOabhBHM6uPwhKGpOnANcAbgMXAOZIWl+22Gng8IhYBVwKX5eW7gD+OiFOA84CbiorTJq7ZB3E0s/oo8g7jNGAgIrZGxFPAOmBZ2T7LgBvz5VuAMyUpIn4YEb/My7cAR0rqxJpSsw/iaGb1oYgo5sTScuCsiHh3vv5O4PSIWFOyz/35Ptvz9YfyfXaVnee9EfFHFa7RC/QCdHV1nbpu3bqa4927dy8zZ86s+fipbKJ1f+rnW4nh/c8oV8cMjnjeSRMJrXD+vbvu7aa87mecccY9EdGdcmxTd3pLehFZM9XrKm2PiD6gD6C7uzt6enpqvlZ/fz8TOX4qm2jdBzftP2zuccgGcZx//oeZvST9vI3oOPfvvafRYTSE695T07FFJoxHgRNK1o/Pyyrts11SBzAH2A0g6Xjg68C5EfFQgXE2nan2xFE95u0Y6TgfSTojHeel5zezxioyYdwNnCzpRLLEsBJ4e9k+68k6te8ElgO3R0RIOgb4JnBhRHyvwBibzlT94JzovB1jdZw3c73N2klhCSMihiWtAW4FpgPXR8QWSZcCmyNiPXAdcJOkAWAPWVIBWAMsAi6WdHFe9rqIaOpe1MFNG9l53VXEk4MATJs1h3mrP1DVB167fnC649ys+RXahxERG4ANZWUXlyzvA1ZUOO6jwEeLjK3eBjdtZMdnPg4HDhwqO/jkE+y4+hNA+t1Bu35wToXZD83anYcGqZM9a/sOSxaHDO+v6n2E0T4gm+WDc3DTRrb1rmDgLUvY1ruibi/nefZDs+bnhFEnY90BVHN30MwfnEW+0T17yVLmn/9hOuZ3gUTH/K78KavWbYYzm2qa+rHaqWS0JpWRbanq8cRRUYruX5lox7mZFcsJo07mrup9Rh8GAB0zqr47aNYPznbtXzGzjJuk6mT2kqUseP9foFmzD5VNmzWHBWsubMoP/1o0e/+KmRXLdxh11Kx3BvUyd1VvxTe6m6F/xcyK54RhyZq5f8XMiueEYVVp9bsoMxud+zDMzCyJE4aZmSVxwjAzsyTuw6ijooYln2rDnZtZa3LCKFPrh3NRw5JP1eHOzaz1uEmqxETGShpr2IyJKOq8ZmbV8h1GiYmMlTTaOFITHTajiOE4yu+iDp59bs3nMrP24TuMErV+OD/2+StG3TZt5uxRt6Wo93Acle6i9u/4f3UbptzMWpcTRolaP5yfvPUfRt12cO8gW8/945rnjzjy1FdWVT6eSndRxEE3cZnZuJwwStQ8F0XEmNsOPvlEzfNH/O6eO6sqH49HnDWzWjlhlJiMSXyq7bCu9we8R5w1s1q507vMWGMljfrIbeezYGhf8jWq+bBPmeu6mkeBK404i6Z5xFkzG5fvMBKN9sjtY5+/gmlHdI5/ghLVfJufu6oXpk8/vHD69EMf8NU+ClzpLmrGgn/jdzrMbFy+w0g02iO3T37rG1Wdp6b5IzQNOFC2PnZcYz0KXH4Xta2/v7p4zKwt+Q4j0YQ7hWvsE9mztg+G95cFs/9QP8io73+MUm5mVivfYYxjpH9gzCehxtExv4uFfV+t6dhxO72lyrFJNV3PzGw0ThhjKB/HqRa1NEGVdmKPlhAO9YOMlsgmkODMzCpxwhhDxZfcqjRtwXOqaoJ6RpKq8MHvebTNrBHch1HB4KaNbOtdUZd+gAOPbOORj1yQvP+oSWratMr9IKM1PblJyszqzHcYZerRDFVu6N57GHjzawDQ3Hk8/7qvjbrvqJ3rESz62qaK5aPtb2ZWT77DKLPjqo9VnSymzZqT/I0+9uziodVvGXV7tW9id8zvqqrczKxWThglHv7AuRAHqzuoYwbzVn+ABX/2V8mHxJ5do26rdjyrmse/MjOrUts3SQ1u2siu6z7N0JI3ceCRbdWfoOSdiHoY6ZtIHeqj2v3NzGrV1gljcNNGdnzqryd8nuGdj9W1k3ms8azqsb+ZWS3aukmqHslihEd7NbNWV2jCkHSWpAclDUi6sML2Tkk359vvkrSwZNtFefmDkl5fZJz1UKkvYTSaO6/gaMzM6q+whCFpOnAN8AZgMXCOpMVlu60GHo+IRcCVwGX5sYuBlcCLgLOAz+bna1qVRoFd8F//xzOSw3iP1ZqZNasi+zBOAwYiYiuApHXAMuCBkn2WAZfky7cAV0tSXr4uIoaAhyUN5OerbZq5SVKpL8F9C2bWKopMGMcBj5SsbwdOH22fiBiW9ARwbF7+/bJjjyu/gKReoBegq6uL/iqH6R5606qnl+ccy0Ml69XaPoWHCN+7d2/V/3atwnXvb3QYDeG699d07JR+Sioi+oA+gO7u7ujp6anq+IGrLj60/NCbVvH8f1pbfRBS5Tewp5D+/n6q/bdrFa57T6PDaAjXvaemY4tMGI8CJ5SsH5+XVdpnu6QOYA6wO/HYSbfo63c0OgQzs4Yp8impu4GTJZ0o6QiyTuz1ZfusB87Ll5cDt0dE5OUr86eoTgROBv613gGmJIBFX7/j0I+ZWTsr7A4j75NYA9wKTAeuj4gtki4FNkfEeuA64Ka8U3sPWVIh3+8rZB3kw8D7IuJAxQtN0Egi2N7f76RgZjaGQvswImIDsKGs7OKS5X3AilGO/RjwsSLjMzOzdG39preZmaVzwjAzsyROGGZmlsQJw8zMkihaZCpPSTuBn0/gFPOA0Wc2am2ue3ty3dtTed2fFxHzUw5smYQxUZI2R0R3o+NoBNfddW83rnttdXeTlJmZJXHCMDOzJE4YT6vfxNxTj+venlz39lRz3d2HYWZmSXyHYWZmSZwwzMwsSVslDElnSXpQ0oCkCyts75R0c779LkkLGxBmIRLq/ueSHpB0r6TbJD2vEXEWZbz6l+z3HyWFpJZ55DKl7pLemv/+t0j635MdY1ES/r9/rqR/kfTD/P/9NzYiziJIul7SDkn3j7Jdkj6d/9vcK+nl4540Itrih2yI9YeAk4AjgB8Di8v2+S/A5/LllcDNjY57Eut+BnBUvnx+q9Q9tf75frOAO8imB+5udNyT+Ls/Gfgh8Ox8fUGj457EuvcB5+fLi4FtjY67jvV/DfBy4P5Rtr8R+GdAwCuAu8Y7ZzvdYZwGDETE1oh4ClgHLCvbZxlwY758C3CmJE1ijEUZt+4R8S8R8dt89ftksxy2ipTfPcBfA5cB+yYzuIKl1P1PgWsi4nGAiNgxyTEWJaXuAczOl+cAv5zE+AoVEXeQzTM0mmXA30Xm+8Axkp4z1jnbKWEcBzxSsr49L6u4T0QMA08Ax05KdMVKqXup1WTfPFrFuPXPb8dPiIhvTmZgkyDld/8C4AWSvifp+5LOmrToipVS90uAd0jaTjZ3z/snJ7SmUO3nQrETKNnUI+kdQDewpNGxTBZJ04ArgHc1OJRG6SBrluohu7O8Q9IpEfHrRgY1Sc4BboiIv5X0SrIZQF8cEQcbHVgzaqc7jEeBE0rWj8/LKu4jqYPsFnX3pERXrJS6I+mPgL8Ezo6IoUmKbTKMV/9ZwIuBfknbyNpz17dIx3fK7347sD4i9kfEw8DPyBLIVJdS99XAVwAi4k7gWWSD87WDpM+FUu2UMO4GTpZ0oqQjyDq115ftsx44L19eDtweee/QFDdu3SX9PvB5smTRKm3YI8asf0Q8ERHzImJhRCwk68M5OyI2Nybcukr5//4bZHcXSJpH1kS1dRJjLEpK3X8BnAkg6d+RJYydkxpl46wHzs2flnoF8ERE/GqsA9qmSSoihiWtAW4le3ri+ojYIulSYHNErAeuI7slHSDrLFrZuIjrJ7HunwRmAl/N+/l/ERFnNyzoOkqsf0tKrPutwOskPQAcAD4UEVP+zjqx7v8N+F+SLiDrAH9Xi3xJRNKXyb4IzMv7aD4CzACIiM+R9dm8ERgAfgv8p3HP2SL/NmZmVrB2apIyM7MJcMIwM7MkThhmZpbECcPMzJI4YZiZTUHjDS5Ytu+Vkn6U//xM0q9ruaYThrUtSe+S9Hsl61+QtLgO510o6e01HHeDpOWjlD9c8gf/gbx8W/7eROm+R0j6VD4C6f+V9A+Sji/ZfiA/x/2SvirpqFrqaE3hBiBpGJeIuCAiXhYRLwM+A3ytlgs6YVg7exdwKGFExLsj4oE6nHchUHXCGMeHRv7gI+LTY+z3cbI3118YESeTvZT3tZJBNH+Xn+PFwFPAe+scp02SSoMLSnq+pG9JukfSdyX92wqHngN8uZZrOmFYS5H0Dkn/mn+L/ryk6fnPDfm36vskXZB/k+8G1ub7Himpf2Q4EEl7JX1S2fwQ35F0Wr59q6Sz830W5n+UP8h/XpWH8QngD/PzXpBf/5OS7lY278B78uMl6Wpl8zV8B1gwwbofRfby1QURcQAgIr4IDAGvrXDId4FFE7mmNZ0+4P0RcSrwQeCzpRuVzXNzInB7LSdvmze9rfXlQzu8Dfj3EbFf0meBVcAW4Lj8WzWSjomIX+dvAX9wZAgQHT6S/dFkQ8N8SNLXgY8CS8nmTLiRbFiFHcDSiNgn6WSyb23dwIX5ed+Un7eXbNiFP5DUCXxP0reB3wdemJ+zC3gAuH6U6n1S0l/ly++MiPsq7LOI7A39wbLyzcCLgNtK/q06gDcA3xrlejbFSJoJvIqnR2sA6CzbbSVwy8gXimo5YVgrORM4Fbg7/4M5kuxD/R+BkyR9Bvgm8O2Ecz3F0x+m9wFDeRK6j6zJCbJhFq6W9DKyITVeMMq5Xge8pKR/Yg7Z4H6vAb6c//H+UtJY3/o+FBG3JMQ9niMl/Shf/i7ZcDjWGqYBv877KUazEnhfrRdwwrBWIuDGiLjoGRuklwKvJ2uzfyvwn8c51/6SMYUOkjXrEBEH82/nABcAjwEvJftjHW3iJZE1E9xaFlO9pwN9CHiupFkR8WRJ+anAP+XLvxvnA8WmqIgYzB+OWBERX837rV4SET8GyPszng3cWes13IdhreQ2YLmkBQCS5kp6Xv4k0bSI+Hvgr8imrQR4kqyDuFZzgF/lcye8k2yAu0rnvRU4X9KMPK4XSDqabDrYt+V9HM8hmya3ZhHxG7LmsiskTc+vdS5wFDW2WVvzUja44J3ACyVtl7SarAl2taQfkzXFls4wuBJYN5HBFX2HYS0jIh7I2/m/rWxSpP1kt9+/A76YlwGM3IHcAHxO0u+AV9Zwyc8Cf59/KH8L+E1efi9wIP+jvQG4iqwZ6wf5t76dwJ8AXyfrjH6AbJjtWr753StpZLKfr5DV7W+An+XlPwXe3CojsNrTIuKcUTZVfNQ2Ii6Z6DU9Wq2ZmSVxk5SZmSVxwjAzsyROGGZmlsQJw8zMkjhhmJlZEicMMzNL4oRhZmZJ/j9QfpTgqIJX2gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEICAYAAABxiqLiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAffklEQVR4nO3df5RcZZ3n8fcn6dCLmIRDQnoxQTtOgjOg4EoP/hjHtLLBOOsQGGEIkxXczdioIKOsemBnxDkM7AjuojAg2iMosFFAFG01EqJYQT0jJjD8SjRuEzNDR05ICJI0moZOvvvHvR0qRVVX1U3f7uqqz+ucOn3vc5/71PNNderb9z73PlcRgZmZWb2mTHQHzMxscnICMTOzTJxAzMwsEycQMzPLxAnEzMwycQIxM7NMck0gkpZI2iSpX9LFZba3S7o93X6/pM60/CRJD6WvhyWdXmubZmY2PpTXfSCSpgK/AhYDA8A64OyI2FhU50PA8RHxAUnLgNMj4ixJLwOej4hhSUcBDwOvAKJam+XMnj07Ojs7M8Xx3HPPcdhhh2Xad7Jr1dhbNW5w7I79QA888MCOiDiy0n5tOfbpJKA/IjYDSLoNWAoUf9kvBf4+Xb4TuE6SIuJ3RXX+A0niqLXNl+js7GT9+vWZgigUCnR3d2fad7Jr1dhbNW5w7I79QJL+bbT98jyFNRd4omh9IC0rWycihoFngVkAkt4oaQPwKPCBdHstbZqZ2TjI8wjkoETE/cBxkv4IuFnS9+vZX1IP0APQ0dFBoVDI1I/BwcHM+052rRp7q8YNjt2x1yfPBLIVOLpofV5aVq7OgKQ2YCbwdHGFiPiFpEHgtTW2ObJfL9AL0NXVFVkPTX1Y2z3R3Rh3rRo3OHbHXp88T2GtAxZKmi/pEGAZ0FdSpw84N10+A7g3IiLdpw1A0quAPwS21NimmZmNg9yOQNIrqC4AVgNTgZsiYoOky4D1EdEH3AjcKqkf2EmSEADeClws6QVgH/ChiNgBUK7NvGIwM7PKch0DiYhVwKqSskuLlvcAZ5bZ71bg1lrbzMOutWvYubKXoTf+Z7Z89XqOWN7DjEWL835bM7NJo2EH0SfSrrVr2H7DVcTQEADD27ex/YarAJxEzMxSnsqkjJ0re/cnjxExNMTOlb0T1CMzs8bjBFLG8I6n6io3M2tFTiBltM2eU1e5mVkrcgIp44jlPai9/YAytbdzxPKeCeqRmVnj8SB6GSMD5SNjHm1HdvgqLDOzEk4gFcxYtJgZixazpVCgc8V5E90dM7OG41NYZmaWiROImZll4gRiZmaZOIGYmVkmTiBmZpaJE4iZmWXiBGJmZpk4gZiZWSZOIGZmlokTiJmZZeIEYmZmmTiBmJlZJk4gZmaWiROImZll4gRiZmaZOIGYmVkmTiBmZpaJE4iZmWWSawKRtETSJkn9ki4us71d0u3p9vsldabliyU9IOnR9Oc7ivYppG0+lL7m5BmDmZmVl9sz0SVNBa4HFgMDwDpJfRGxsajaCuCZiFggaRlwJXAWsAP484j4jaTXAquBuUX7LY+I9Xn13czMqsvzCOQkoD8iNkfE88BtwNKSOkuBm9PlO4GTJSki/jUifpOWbwAOldSeY1/NzKxOeSaQucATResDHHgUcUCdiBgGngVmldR5D/BgRAwVlX05PX31SUka226bmVktcjuFNRYkHUdyWuuUouLlEbFV0nTgG8B7gVvK7NsD9AB0dHRQKBQy9WFwcDDzvpNdq8beqnGDY3fs9ckzgWwFji5an5eWlaszIKkNmAk8DSBpHnAXcE5EPD6yQ0RsTX/ulvRVklNlL0kgEdEL9AJ0dXVFd3d3piAKhQJZ953sWjX2Vo0bHLtjr0+ep7DWAQslzZd0CLAM6Cup0wecmy6fAdwbESHpcOB7wMUR8dORypLaJM1Ol6cB7wYeyzEGMzOrILcEko5pXEByBdUvgDsiYoOkyySdmla7EZglqR+4CBi51PcCYAFwacnluu3AakmPAA+RHMH8c14xmJlZZbmOgUTEKmBVSdmlRct7gDPL7Hc5cHmFZk8cyz6amVk2vhPdzMwycQIxM7NMnEDMzCwTJxAzM8vECcTMzDJxAjEzs0ycQMzMLBMnEDMzy8QJxMzMMnECMTOzTJxAzMwsEycQMzPLxAnEzMwycQIxM7NMnEDMzCwTJxAzM8vECcTMzDJxAjEzs0ycQMzMLBMnEDMzy8QJxMzMMnECMTOzTJxAzMwsEycQMzPLxAnEzMwycQIxM7NMck0gkpZI2iSpX9LFZba3S7o93X6/pM60fLGkByQ9mv58R9E+J6bl/ZKulaQ8YzAzs/JySyCSpgLXA+8CjgXOlnRsSbUVwDMRsQD4LHBlWr4D+POIeB1wLnBr0T43AO8HFqavJXnFYGZmleV5BHIS0B8RmyPieeA2YGlJnaXAzenyncDJkhQR/xoRv0nLNwCHpkcrRwEzIuJnERHALcBpOcZgZmYVtOXY9lzgiaL1AeCNlepExLCkZ4FZJEcgI94DPBgRQ5Lmpu0Utzm33JtL6gF6ADo6OigUCpmCGBwczLzvZNeqsbdq3ODYHXt98kwgB03ScSSntU6pd9+I6AV6Abq6uqK7uztTHwqFAln3nexaNfZWjRscu2OvT56nsLYCRxetz0vLytaR1AbMBJ5O1+cBdwHnRMTjRfXnVWnTzMzGQZ4JZB2wUNJ8SYcAy4C+kjp9JIPkAGcA90ZESDoc+B5wcUT8dKRyRDwJ7JL0pvTqq3OAb+cYg5mZVZBbAomIYeACYDXwC+COiNgg6TJJp6bVbgRmSeoHLgJGLvW9AFgAXCrpofQ1J932IeBLQD/wOPD9vGIwM7PKch0DiYhVwKqSskuLlvcAZ5bZ73Lg8gptrgdeO7Y9NTOzevlOdDMzy8QJxMzMMnECMTOzTJxAzMwsEycQMzPLxAnEzMwycQIxM7NMnEDMzCwTJxAzM8vECcTMzDJxAjEzs0ycQMzMLBMnEDMzy6SuBCLpZXl1xMzMJpeaEoikt0jaCPwyXT9B0udz7ZmZmTW0Wo9APgu8k/RxsxHxMPC2vDplZmaNr+ZTWBHxREnR3jHui5mZTSK1PpHwCUlvAULSNOBvSB5Ta2ZmLarWI5APAOcDc4GtwOvTdTMza1E1HYFExA5gec59MTOzSaSmBCJpPvBhoLN4n4g4NZ9umZlZo6t1DORbwI3Ad4B9ufXGzMwmjVoTyJ6IuDbXnpiZ2aRSawK5RtKngHuAoZHCiHgwl16ZmVnDqzWBvA54L/AOXjyFFem6mZm1oFov4z0TeHVELIqIt6evqslD0hJJmyT1S7q4zPZ2Sben2++X1JmWz5L0I0mDkq4r2aeQtvlQ+ppTYwxmZjaGak0gjwGH19OwpKnA9cC7gGOBsyUdW1JtBfBMRCwgmS7lyrR8D/BJ4GMVml8eEa9PX0/V0y8zMxsbtZ7COhz4paR1HDgGMtplvCcB/RGxGUDSbcBSYGNRnaXA36fLdwLXSVJEPAf8RNKCGvtnZmbjrNYE8qkMbc8FiufPGgDeWKlORAxLehaYBeyo0vaXJe0FvgFcHhFRWkFSD9AD0NHRQaFQyBACDA4OZt53smvV2Fs1bnDsjr0+td6JvrbulvOzPCK2SppOkkDeC9xSWikieoFegK6uruju7s70ZoVCgaz7TnatGnurxg2O3bHXZ9QxEEk/SX/ulrSr6LVb0q4qbW8Fji5an5eWla0jqQ2YSTplfCURsTX9uRv4KsmpMjMzG2ejJpCIeGv6c3pEzCh6TY+IGVXaXgcslDRf0iHAMqCvpE4fcG66fAZwb7nTUSMktUmanS5PA95NMsBvZmbjrNYnEt5aS1mxiBgGLgBWk0z9fkdEbJB0maSRwfcbgVmS+oGLgP2X+kraAlwNvE/SQHoFVzuwWtIjwEMkRzD/XEsMZmY2tmodRD+ueCU93XRitZ0iYhWwqqTs0qLlPST3mJTbt7NCs1Xf18zM8ldtDOQSSbuB44vHP4BtwLfHpYdmZtaQqo2B/GNETAc+UzL+MSsiLhmnPpqZWQOq9TLeSyTNBV7Fgc8DuS+vjpmZWWOr9YFSnya5imojsDctDsAJxMysRdU6iH468JqIGKpa08zMWkKtkyluBqbl2REzM5tcaj0C+R3wkKQfcuBkihfm0iszM2t4tSaQPl56F7mZmbWwWq/Cujnvjpi1gl1r17BzZS/DO56ibfYcjljew4xFiye6WzaJTeTvVK1XYf2a5KqrA0TEq8e8R2ZNatfaNWy/4SpiKDkLPLx9G9tvuArAScQymejfqVoH0buAP05ffwpcC/zfvDpl1ox2ruzd/x99RAwNsXNl7wT1yCa7if6dqimBRMTTRa+tEfE54L/k2zWz5jK8o/zTlyuVm1Uz0b9TtZ7CekPR6hSSI5JaB+DNDGibPYfh7dvKlptlMdG/U7Wewvo/Ra9/JJkRt+wsumZW3hHLe1B7+wFlam/niOU9FffZtXYNW3rOpP8vFrGl50x2rV2TdzdtEsnyOzWWar0K6+3F65Kmkkxt8qs8OmXWjEYGNWu9YmaiB0it8dX7OzXWRk0gkmYA5wNzSaZv/0G6/j+AR4CVeXfQrJnMWLS45v/cow2QOoHYiHp+p8ZatSOQW4FngH8B3g/8LSDg9Ih4KN+umbW2iR4gNaumWgJ5dUS8DkDSl4AngVemTxI0sxxN9ACpWTXVBtFfGFmIiL3AgJOH2fiY6AFSs2qqHYGcIGlXuizg0HRdQETEjFx7Z9bCJnqA1KyaURNIREwdr46Y2UtN5ACpWTW13gdiZmZ2ACcQMzPLxAnEzMwycQIxM7NMck0gkpZI2iSpX9LFZba3S7o93X6/pM60fJakH0kalHRdyT4nSno03edaScozBjMzKy+3BJLOl3U98C7gWOBsSceWVFsBPBMRC4DPAlem5XuATwIfK9P0DSR3xS9MX0vGvvdmZlZNnkcgJwH9EbE5Ip4HbgOWltRZCow8LvdO4GRJiojnIuInJIlkP0lHATMi4mcREcAtwGk5xmBmZhXkmUDmAk8UrQ+kZWXrRMQw8Cwwq0qbA1XaNDOzcdC0D4WS1AP0AHR0dFAoFDK1Mzg4mHnfya5VY2/VuMGxO/b65JlAtgJHF63PS8vK1RmQ1AbMBJ6u0ua8Km0CEBG9QC9AV1dXdHd319P3/QqFAln3nexaNfZWjRscu2OvT56nsNYBCyXNl3QIyQOo+krq9AHnpstnAPemYxtlRcSTwC5Jb0qvvjqH5DklZmY2znI7AomIYUkXAKuBqcBNEbFB0mXA+ojoA24EbpXUD+wkSTIASNoCzAAOkXQacEpEbAQ+BHwFOBT4fvoyM7NxlusYSESsAlaVlF1atLyHCs9Wj4jOCuXrgdeOXS/NzCwL34luZmaZOIGYmVkmTiBmZpZJ094H0kx2rV3jp9KZWcNxAmlwu9auYfsNVxFDQwAMb9/G9huuAnASMbMJ5VNYDW7nyt79yWNEDA2xc2XvBPXIzCzhBNLghnc8VVe5mdl4cQJpcG2z59RVbmY2XpxAGtwRy3tQe/sBZWpv54jlPRPUIzOzhAfRG9zIQLmvwjKzRuMEMgnMWLTYCcPMGo5PYZmZWSZOIGZmlolPYZmZNZnxmr3CCcTMrImM5+wVPoVlZtZExnP2Ch+B2EHxRI9mjWU8Z6/wEYhlNnKoPLx9G0TsP1TetXbNRHfNrGWN5+wVTiCWmSd6NGs84zl7hU9hWWae6NGs8Yzn7BVOIJZZ2+w5yemrMuVmNnHGa/YKn8KyzDzRo1lr8xGIZeaJHs1amxOIHRRP9GjWunwKy8zMMsk1gUhaImmTpH5JF5fZ3i7p9nT7/ZI6i7ZdkpZvkvTOovItkh6V9JCk9Xn238zMKsvtFJakqcD1wGJgAFgnqS8iNhZVWwE8ExELJC0DrgTOknQssAw4DngF8ANJx0TE3nS/t0fEjrz6bmZm1eV5BHIS0B8RmyPieeA2YGlJnaXAzenyncDJkpSW3xYRQxHxa6A/bc/MzBpEnglkLvBE0fpAWla2TkQMA88Cs6rsG8A9kh6Q5OtFzcwmyGS8CuutEbFV0hxgjaRfRsR9pZXS5NID0NHRQaFQyPRmg4ODmfed7Fo19laNGxy7Y69PnglkK3B00fq8tKxcnQFJbcBM4OnR9o2IkZ9PSbqL5NTWSxJIRPQCvQBdXV3R3d2dKYhCoUDWfSe7Vo29VeMGx+7Y65PnKax1wEJJ8yUdQjIo3ldSpw84N10+A7g3IiItX5ZepTUfWAj8XNJhkqYDSDoMOAV4LI/O71q7hi09ZzL0+Ca29JzpGWbNzErkdgQSEcOSLgBWA1OBmyJig6TLgPUR0QfcCNwqqR/YSZJkSOvdAWwEhoHzI2KvpA7grmScnTbgqxFx91j3fTyf6NXs/LwQs+aV6xhIRKwCVpWUXVq0vAc4s8K+VwBXlJRtBk4Y+54eaLRpyv3lVzsnYrPm5jvRy/A05WNjrJ4XMnI6sf8vFvl0olkDcQIpYzyf6NXMxiIR+6mHZo3LCaQMT1M+NsYiEfuph2aNywmkjBmLFnPkBz9B25EdALQd2cGRH/yEz9vXaSwSsU8nmjWuyXgj4bgYmaZ8S6FA54rzJro7k9JYPC/ETz00a1xOIJarg31eyBHLew64kgt8OtGsUTiBNLFmuAfDTz00a1xOIE2qme7B8FMPzRqTB9Gb0K61a3jq2it89VIT8b0w1oh8BNJkRo482Lev7HZfvTT5NNPRpDUXH4E0mXL3TRTz1UuTj++FsUblBNJkRjvC8NVLk5PvhbFG5QTSZCoeYUyZ4pshJylPrWONygmkyVS6+3vOhX/r5DFJeWoda1QeRG8yvm+i+fgztUblBDJOxvOmPt830Xz8mVojcgIZB9u+eDW77/7W/vWxugxz2xevZvc9fcklu1OmMP2UU+k476KD7a6ZWU08BlLBti9eTf97uhl6fBP97+lm2xevztTOrrVrDkgeIw72Msz9SWnkfo99+9h997cy99PMrF4+Aimj9Ihh5MsZqPsv/NGSRLnLMGs91bX7nr6ybe6+p29/HxthLqxG6IOZ5cMJpIzdq79dvvzub7F79bfr+iIc7Vr90ssw67rjuMKd5iPljXD3ciP0wczy41NY5USMuq3cY1UrzVWkl0+v2NShJ775gPXtN15T+x3HUyp8dGl5I9y93Ah9MLP8+Agko5EvwhmLFo/6l7YQldLR7tV9ZcdHSpU7ipl+yqll951+yqkV9xmtPA+N0Aczy4+PQA7C8I6nkplvr7m84l/a+wZ3VW4gKpyGKlHujuOO8y6i/fgTDyhrP/7E/eMfjXD3ciP0wczy4wRyMKZM5anP/UPFU14jA8cHq9wdx7vWruH5TY8dUPb8psf2nzprhLuXG6EPZpYfJ5CDsXd41M16+fTky7JtWua3mDJ9ZtkB52rjCzMWLebID36CtiM7QKLtyI5xnwurEfpgZvnJdQxE0hLgGmAq8KWI+HTJ9nbgFuBE4GngrIjYkm67BFgB7AUujIjVtbTZSGL3rv1fljtuvJZ9u58FQNNnELtHObWVUns7s1dcWHZbLeMLjXD3ciP0wczykVsCkTQVuB5YDAwA6yT1RcTGomorgGciYoGkZcCVwFmSjgWWAccBrwB+IOmYdJ9qbTaccl+i/ae/rfIOUtVLhdtmz2F4+7ay5WZm4yHPU1gnAf0RsTkingduA5aW1FkK3Jwu3wmcLElp+W0RMRQRvwb60/ZqaXNSmDJ9ZsXyBd9cS2fv10f9y93jC2Y20fJMIHOBJ4rWB9KysnUiYhh4Fpg1yr61tDkpzF5x4UvHRtqmVTxlVcrjC2Y20Zr2PhBJPUAPQEdHB4VCoeZ9h969/MXlmbN4vGi9XgMV33ca+879CMNPbyeGX0Bt02ibdSQDMQ1q7us0+Kvz969tCerYt7rBwcG6/t2aRavGDY7dsdcnzwSyFTi6aH1eWlauzoCkNmAmyWD6aPtWaxOAiOgFegG6urqiu7u75o73X3Pp/uXH372cP/juypr3LTZ9yWl01PG+jaZQKFDPv1uzaNW4wbE79vrkeQprHbBQ0nxJh5AMipfOANgHnJsunwHcGxGRli+T1C5pPrAQ+HmNbY4viQV33cf0Jae9OL3IlClJ8vDU6mbWxHI7AomIYUkXAKtJLrm9KSI2SLoMWB8RfcCNwK2S+oGdJAmBtN4dwEZgGDg/IvYClGtzrPu+4K77Rr1KaurRncy/9pYDyjrOu8gJw8xaSq5jIBGxClhVUnZp0fIe4MwK+14BXFFLm3lYcNd9QDKGMbJsZmYv8p3oZmaWiROImZll4gRiZmaZOIGYmVkmTiBmZpaJYrTHtzYJSduBf8u4+2xgxxh2ZzJp1dhbNW5w7I79QK+KiCMr7dQSCeRgSFofEV0T3Y+J0Kqxt2rc4Ngde318CsvMzDJxAjEzs0ycQKrrnegOTKBWjb1V4wbH3qoyxe4xEDMzy8RHIGZmlokTSErSEkmbJPVLurjM9nZJt6fb75fUOQHdHHM1xP0+SdslPZS+/noi+pkHSTdJekrSYxW2S9K16b/NI5LeMN59zEMNcXdLerboM7+0XL3JSNLRkn4kaaOkDZL+pkydpvvca4y7/s89Ilr+RTI1/OPAq4FDgIeBY0vqfAj4Qrq8DLh9ovs9TnG/D7huovuaU/xvA94APFZh+58B3wcEvAm4f6L7PE5xdwPfneh+5hT7UcAb0uXpwK/K/M433edeY9x1f+4+AkmcBPRHxOaIeB64DVhaUmcpcHO6fCdwsiSNYx/zUEvcTSsi7iN5Dk0lS4FbIvEz4HBJR41P7/JTQ9xNKyKejIgH0+XdwC+AuSXVmu5zrzHuujmBJOYCTxStD/DSf9z9dSJiGHgWmDUuvctPLXEDvCc9lL9T0tFltjerWv99mtGbJT0s6fuSjpvozuQhPQ39n4D7SzY19ec+StxQ5+fuBGLVfAfojIjjgTW8eBRmzetBkiksTgD+CfjWxHZn7El6OfAN4CMRsWui+zNeqsRd9+fuBJLYChT/ZT0vLStbR1IbMBN4elx6l5+qcUfE0xExlK5+CThxnPrWCGr5vWg6EbErIgbT5VXANEmzJ7hbY0bSNJIv0ZUR8c0yVZryc68Wd5bP3QkksQ5YKGm+pENIBsn7Sur0Aeemy2cA90Y68jSJVY275NzvqSTnTltFH3BOelXOm4BnI+LJie5U3iT9x5HxPUknkXxPTPY/loDkCivgRuAXEXF1hWpN97nXEneWzz3XZ6JPFhExLOkCYDXJlUk3RcQGSZcB6yOij+Qf/1ZJ/SQDkMsmrsdjo8a4L5R0KjBMEvf7JqzDY0zS10iuPJktaQD4FDANICK+AKwiuSKnH/gd8N8mpqdjq4a4zwA+KGkY+D2wrAn+WBrxJ8B7gUclPZSW/U/gldDUn3stcdf9uftOdDMzy8SnsMzMLBMnEDMzy8QJxMzMMnECMTOzTJxAzMyaTLUJM8vU/8uiiRa/Wuv7OIGYlUhnIH5F0fqXJB07Bu12SvqrDPt9RdIZFcp/XTR76oVp+ZbSG8AkHSLpc+kMs/9P0rclzSvavjdt4zFJX5f0siwxWsP4CrCkloqSFgKXAH8SEccBH6n1TZxAzF7qfcD+BBIRfx0RG8eg3U6g7gRSxccj4vXp69pR6v0vkllYXxMRC0mmqfhm0YSgv0/beC3wPPCBMe6njaNyE2ZK+gNJd0t6QNKPJf1huun9wPUR8Uy671O1vo8TiLUESf9V0s/Tv7K/KGlq+vpK+lf3o5I+mv6l3wWsTOseKqkgqSttZ1DSZ9JD/R9IOindvjm94XLkSOPHkh5MX29Ju/Fp4E/Tdj+avv9nJK1TMlnleen+knSdkue0/ACYc5Cxv4zkZriPRsRegIj4MjAEvKPMLj8GFhzMe1pD6gU+HBEnAh8DPp+WHwMcI+mnkn4mqaYjF/Cd6NYCJP0RcBbJIfoLkj4PLAc2AHPTv7qRdHhE/Da9O/9jEbE+LS9u7jCSaWw+Luku4HJgMXAsyUSTfcBTwOKI2JOeHvgaSVK6OG333Wm7PSTTZPyxpHbgp5LuIZkp9TVpmx3ARuCmCuF9RtLfpcvvjYhHy9RZAPx7mcnz1gPHAT8s+rdqA94F3F3h/WwSUjKJ4luArxf9PrenP9uAhSSzE8wD7pP0uoj4bbV2nUCsFZxMMgnkuvQ/z6EkX/LfAV4t6Z+A7wH31NDW87z45fooMJQmpUdJTlFBMi3IdZJeD+wl+QuvnFOA44vGN2aS/Ed+G/C19GjhN5LuHaU/H4+IO2vodzWHFk1x8WOSqXuseUwBfhsRry+zbYDkoVkvAL+W9CuS38N11Rp1ArFWIODmiLjkJRukE4B3kpzz/0vgv1dp64Wi+YH2kZwGIiL2pX+9A3wU2AacQPIfd88o/fpwRKwu6dOfVY2oPo8Dr5Q0PX2Y0IgTge+my7+v8OViTSAidqUXXJwZEV9Px76Oj4iHScbDzga+nF58cQywuZZ2PQZireCHwBmS5gBIOkLSq9L/LFMi4hvA35E85hVgN8mAc1YzgScjYh/JBHZTK7S7mmTyumlpv46RdBhwH3BWOkZyFPD2g+gLEfEcyem1qyVNTd/rHOBlwGhHNzZJKZkw81+A10gakLSC5LTtCkkPk5y+HXn66GrgaUkbgR+RHNXWNPuyj0Cs6UXExnSc4B5JU4AXgPNJZhz9cloGyaWMkFwC+QVJvwfenOEtPw98I/2Svht4Li1/BNib/gf+CnANyWmvB9O/CLcDpwF3kQxubwT+neSLoF6PSNqXLt9BEtv/Bn6Vlv8SOL2JZtm1IhFxdoVNLxkgT38HLkpfdfFsvGZmlolPYZmZWSZOIGZmlokTiJmZZeIEYmZmmTiBmJlZJk4gZmaWiROImZll4gRiZmaZ/H/5orReaNG5wwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -781,11 +872,11 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 27, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:35:35.428789Z", - "start_time": "2020-10-09T09:35:35.416513Z" + "end_time": "2020-10-11T03:38:15.650497Z", + "start_time": "2020-10-11T03:38:15.632471Z" } }, "outputs": [], @@ -799,16 +890,22 @@ " # Fit times\n", " log_fit_coef = np.polyfit(np.log(est_flat_filtered), np.log(times_flat_filtered), 1)\n", " fit_coef = np.polyfit(est_flat_filtered, times_flat_filtered, 1)\n", + " def fixed_slope(x, shift):\n", + " slope = 1.0\n", + " return x*slope + shift\n", + " popt, pcov = scipy.optimize.curve_fit(fixed_slope, np.log(est_flat_filtered), np.log(times_flat_filtered))\n", " print('Lin fit:', fit_coef)\n", " print('Log fit:', log_fit_coef)\n", + " print('Slope-1 log fit:', popt)\n", " fit_fn = np.poly1d(log_fit_coef)\n", + " fit_fn = fixed_slope\n", "\n", " # Plot scatter with filtered data\n", " plt.scatter(est_flat_filtered, times_flat_filtered, marker='x')\n", " min_x = np.log10(est_flat_filtered.min())\n", " max_x = np.log10(est_flat_filtered.max()) + .5\n", " xfit = 10**np.linspace(min_x, max_x, 100)\n", - " plt.plot(xfit, np.exp(fit_fn(np.log(xfit))), color='blue')\n", + " plt.plot(xfit, np.exp(fit_fn(np.log(xfit), popt[0])), color='blue')\n", " plt.loglog()\n", " plt.xlabel('estimated FLOP')\n", " plt.ylabel('Runtime')\n", @@ -818,11 +915,11 @@ }, { "cell_type": "code", - "execution_count": 146, + "execution_count": 28, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T09:35:36.599797Z", - "start_time": "2020-10-09T09:35:36.031175Z" + "end_time": "2020-10-11T03:38:17.235983Z", + "start_time": "2020-10-11T03:38:16.590680Z" } }, "outputs": [ @@ -830,13 +927,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Lin fit: [ 1.28306780e-08 -1.61395132e-04]\n", - "Log fit: [ 1.26454643 -22.38704868]\n" + "Lin fit: [ 3.95588723e-08 -8.67827872e-03]\n", + "Log fit: [ 1.29641774 -22.79449518]\n", + "Slope-1 log fit: [-19.11949889]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA8dElEQVR4nO3deXhU5fXA8e+ZIQtJSMCwVEXZAlRwQQ3uVfBXWzSoKKigbZVVqgT3hUqr4tqqrWxWEQJqWwMGXFjqirhXUYsLq2HToBUCmBACWWbe3x93ZpiZzEwmySzJ5HyeJw+ZO3fufe8F7pl3O68YY1BKKaWCscW7AEoppZo3DRRKKaVC0kChlFIqJA0USimlQtJAoZRSKiQNFEoppUJqE+8CRJKIXAhc2K5du/F9+vSJWzn2799Penp63M7fWul9jz2957EXzXv+2WeflRpjOvlvl0ScR5Gbm2s+/fTTuJ1/1apVDBo0KG7nb630vsee3vPYi+Y9F5HPjDG5/tu16UkppVRIGiiUUkqFpIFCKaVUSAkVKETkQhGZU1ZWFu+iKKVUwkioQGGMWWqMmZCVlRXvoiilVMJIqEChlFIq8jRQKKVUAqithWefBYcj8sfWQKGUUi3ce+/BSSfB1VfDihWRP35CBQrtzFZKtSb/+x/87ndw9tlQVgYvvghDh0b+PAkVKLQzWynVGtTWwowZ0LcvFBbCH/4A69bBsGEgEvnzJVSuJ6WUSnRffZXJjTfCF1/AeefBrFkQ7dR2GiiUUqoF2LkT7rgDFiw4ia5d4YUXYPjw6NQg/CVU05NSSiUahwOeeMJqZvrHP2DkyG9Zvx5GjIhNkAANFEop1Wz95z9wyilw/fXWqKYvv4Rrr91CRkZsy6GBQimlmpnSUhg/Hk4/3RrZVFgIb74JxxwTn/JooFBKqWbC4YCnnrI6p+fPh1tugQ0b4IorYtfMFEhCBQqdR6GUaqlWr4bTToOJE+H4461RTY8+Cu3axbtkCRYodB6FUqql2b3bCg6nngolJVaH9dtvQ//+8S7ZIQkVKJRSqqVwOmHePGs009y5MHmy1cx01VXxbWYKROdRKKVUjP33v3DdddaoprPOgtmzream5kprFEopFSN798KkSZCbC1u2wDPPwLvvNu8gAVqjUEqpqHM6rRTgt99u9Ulcfz1Mmwbt28e7ZOHRQKGUUlG0Zo0VGD780JoX8frrMGBAvEvVMNr0pJRSUVBWBjfcACefDJs2QUEBvP9+ywsSoDUKpZSKKGOsIa633WYl8ps4ER54ADp0iHfJGk8DhVJKRchXX1nNTO+9Z82LWLHCytHU0jX7picRSReRZ0TkaRG5Kt7lUUopf+XlcPPNcOKJ1gJCTz9t9UkkQpCAOAUKESkQkZ0i8rXf9iEislFEikXkTtfmS4EiY8x44KKYF1YppYIwBv71L2vS3OOPw7hxsHGj9aet2X8ND1+8LmUBMMR7g4jYgdnA+UA/YJSI9AO6At+5dnPEsIxKKRXUunVw7rnWTOojj4SPP4Ynn4Ts7HiXLPLEGBOfE4t0B5YZY451vT4duMcY82vX6ymuXUuAvcaYZSJSaIwZGeR4E4AJAF26dDm5sLAw2pcQVEVFBRmxThiv9L7HQWu855WVdp59thtFRV1JS3MwbtwW8vJ+wG6Pzfmjec8HDx78mTEm1397c+rMPpJDNQewAsSpwAxglojkAUuDfdgYMweYA5Cbm2sGDRoUvZLWY9WqVcTz/K2V3vfYa0333Bhr+dGbb4YdO2DMGHj4YRudOvUF+sasHPG4580pUARkjNkPjA5nXxG5ELgwJycnuoVSSrUqGzZAfr61eNCJJ1oB4/TT412q2GlO3S07gKO8Xnd1bQubphlXSkXS/v0wZYqVi2n1apg50/qzNQUJaF41itVAbxHpgRUgRgJXxrdISqnWyBhYsgRuugm++w6uuQb+/Gfo3DneJYuPeA2PfR74COgrIiUiMtYYUwtMAl4D1gOLjDFrG3hcXeFOKdUkmzbBkCEwYoQ1m/q996xlSVtrkIA41SiMMaOCbF8BrGjCcZcCS3Nzc8c39hhKqdapshIefBAeeQRSU2H6dGvNiDbNqd0lThLqFmhntlKqoYyBV16xEvht3w6/+Y0VLH72s3iXrPloTp3ZTaad2Uqphti8GYYOhWHDICMD3nkHnntOg4S/hAoUSikVjgMH4J57oH9/a4W5v/7VWp707LPjXbLmSZuelFKtyrJlMHkybN0KI0fCY4/BEUfEu1TNW0LVKLTpSSkVzNatcNFFcOGFVmf1ypXw/PMaJMKRUIFCKaX8HTwI990H/fpZweEvf7GWJx08uO6+/rnv4pULr7lJqKYnpZTy9u9/W6k3Nm+Gyy+3mpm6dg287+7CApz7K+g4Jh8RwRhDacFMbOkZZI8cE9uCNzMJVaPQCXdKKbCGuV5yCVxwgTUP4o03YOHC4EHCGINzfwVly4ooLZjpCRJly4pw7q9o9TWLhKpR6IQ7pWInUDONiMSpNJaqKqvWcP/9IAIPP2yl4UhODv05EaHjmHwAypYVUbasCICsoSM8NYzWLKFqFEqp2NhdWEBpwUzPa/c38N2FBXEr0xtvWMn77rrLqkmsXw933FF/kHDzDhZuGiQsGiiUUg3i3UxTW7oz7s00330Hl10Gv/oVOJ3w6qtQVARHH92w47ivw5u7Gaq1S6imJ51HoVT0eX/zdpTtZfOl5wCxb6aproa//Q2mTbMCxH33wW23QUpKw4/lHezc1+F+DVqzSKgahc6jUCo24t1M89ZbVjPTnXfCeedZzUxTpzYuSIB1Pbb0DJ9g13FMPllDR2BLz2jVQQISrEahlIqNQ800h57MpQUzox4sduyAW26xRjD17GnNss7Li8yxs0eO8emQdweL1h4kIMFqFEqp6PNuprFndaDXknfIGjrCZ2hppNXUWKOZfv5zeOklK0/T119HLki4+QcFDRIWrVEopRrEu5mmTcfOPs1Q0WimeecduP56WLvWyvQ6fbpVm1Cxo4FCKdVg7mYa3nkHiE4zzQ8/WJ3T//wndO8OL79s5WpSsZdQTU86M1up2IlWM01tLTz+OPTtCy+8AH/8I6xbp0EinhIqUOioJ6Vatvffh5NOsmZTn3mm1Q8xbRq0bRvvkrVuCRUolFIt048/wtVXwy9+AWVl8OKLsGIF9O4d75Ip0EChlIqj2lqYORP69LHWhpgyxWpmGjbMytWkab+bBw0USqm4+PBDGDjQWm3u1FOtZqYHH4T0dOt9dz4pd3BoDvmkWisNFEqpmNq1C8aMsfogSkth0SJ47TWrVuGmab+bFx0eq5SKCYcD5syBP/wBKirg9tutEU0ZGXX31bTfzUtC1Sh0eKxSzdPHH1vNS9ddByeeCF9+CX/+c+Ag4RbvfFLqkIQKFDo8VqnmpbQUxo+H006D77+3OqzfeguOOab+z2ra7+YjoQKFUqp5cDqtZqa+fWH+fCuR38aNMHKkNZqpPv5pv2ORT0oFp30USqmI+vRTq4lp9Wo45xyYNQuOPbZhxwiW9huik09KhaaBQikVEXv2WMuQPvUUdOkC//gHXHlleDWIQDTtd/OhTU9KqSZxOqGgwGpmevppuOEG2LABrrqq8UHCTdN+Nw8aKJRSjbZpUwZnngljx1prRXz+ubU8qY4nSSza9KSUarC9e605EH//+8l07AgLFsDvftf0GoRqnjRQKKXC5nTCs89ak+V274aLL95BQUFX2rePd8lUNGmgUEqF5YsvrJXmPvgATj/dSrtRVlZM+/Zd4100FWXNvo9CRHqKyDwRKYp3WZRqjcrKrA7qk06y5kIUFFjrRpx4YrxLpmIlqoFCRApEZKeIfO23fYiIbBSRYhG5M9QxjDFbjDFjo1lOpVRdxlhDXPv2tVKBX3stbNhgGD0abM3+K6aKpGj/dS8AhnhvEBE7MBs4H+gHjBKRfiJynIgs8/vpHOXyKaUC+PprGDQIfvtba73q1avhvrMLcL7km/a7tnSnpv1uBaLaR2GMeVdEuvttPgUoNsZsARCRQuBiY8xDwNBolkcpFVp5Odx7L0yfDu3bW2k4xo4FEUPpmgpPFteOY/IpLZiJgxScVPlMjFOJR6KdM8UVKJYZY451vR4BDDHGjHO9/i1wqjFmUpDPZwMPAOcBc10BJdB+E4AJAF26dDm5sLAw0pcStoqKCjJCpcVUUaH3vfGMgZUrO/P3v/diz55k8vJ+YNy4LWRl1frsV1u6E0fZXs/r6sM6065Dh1gXt1WL5r/zwYMHf2aMyfXf3uxHPRljdgMTw9hvDjAHIDc31wwaNCjKJQtu1apVxPP8rVW87vvuwgKc+ys86SXcCe1s6RlkjxwT8/I01Lp1MGkSvP02nHyytVb1KaccARxRZ19jDJsvPcfzuuSGafpvPcbi8e88Hl1SO4CjvF53dW1rMl2PQsVaS16Jzb140AknwJo18MQT1roRp5wSeP9Aab9rS3c262tUkRGPQLEa6C0iPUQkGRgJvBKJA+t6FCrW3Inq3CmwN196jic1dnNNYGcMvPCClXLjkUfg6qutYa+//z3Y7cE+Ezjtt6Nsr6b9bgWiPTz2eeAjoK+IlIjIWGNMLTAJeA1YDywyxqyN0Pm0RtFC+D9YWvKDpiWtxLZhA/zqV3D55dCpE3z4Icyda/0eSrC03/asDpr2uxWI9qinUUG2rwBWROF8S4Glubm54yN9bBU58WrT9x+ZE6mROsFWYmtOwWL/frj/fnjsMUhLs9aImDgxeA0ikEBpv9t07Ez2oMujVGrVXOi0GRVT8WrT311Y4NNE4j5vU+cANPeV2IyBJUuspUcffthaH2LjRisVR0OChFtzCXwqtpr9qKeGEJELgQtzcnLiXRQVhHczTdmyIs+4/Gi26XsHJzg0B8D9cG9KzaI5r8T2zTeQn2/lZDr+eGu96jPPjFtxVAuWUIFCm55aBvfD1P3ghui26Uc7OIVaiS1azV2hVFbCgw9aHdWpqfD441YNok1C/W9XsaRNTyrmgrXpR6qZJlBHebQ7nAOtxBat5q5gjIGXX4Z+/eCBB6wO640brYR+GiRUUyRUoNBRT81ftNv0gz6cny+IanDyF+u+mM2bYehQGDYMMjJg1Sp47jn42c8iehrVSiXU9wxtemr+ot2mH6wvIrlHDtVbiz3ndW937xepmoW79uK5LhPdvpgDB+DPf7Y6qpOSrFFN+fnW70pFSkIFCtUyhGrTb6pgfRGSlk7b/gOi2uHsP+wXwGmcPvtkj54UsfMtWwaTJ8PWrTBqFDz6KBxRN+uGUk2WUIFCRz21HIHa9CN13GAd5dEKThB4ZNV3d0yk+pv1PvuV3DqO9IFnkT2q8fNFtm61+h2WLrWGva5cCYMHN6n4SoXUoD4KEUmLVkEiQVN4qFAd5dEKTu5j+afycAeJ5O459Fy8ytP8tX/1+zidznqOWNfBg3DffVZn9cqVVpPTmjUaJFT0hRUoROQMEVkHbHC9PkFEnohqyZRqhHhOfgs0siq5ew7V24rZMnwQ1VuLSe6RQ9rAM7E1cIm4V1+F446DP/0JLrrISsVx++2QnBzJK1AqsHCbnv4G/BpX8j5jzBcicnbUSqVUI8Vz8lug2kxKv+Op3lbsed310bkNChLbt8NNN8GLL0KfPvD663DeeRErslJhCbuPwhjznd9/NEfki9M02kehotlRHor/sN+OY/LZNW8G5csX++y3e/6ssMpTVWWNYLr/fhCxJtDdfDOkpETzKpQKLNyvNt+JyBmAEZEkEbkVK/Nrs6J9FAqi11Fe3zm9azMAgnXelN7HNKgZ7PXXrZQbd90FF1wA69fDlCkaJFT8hFujmAhMB47EWmTodeD6aBVKqZbIvzZjy8ggK28EHceG1wxWUmI1MxUVQU4O/PvfMGRITC9BqYDCChTGmFLgqiiXRamoikXeJe/jhdsMVl1t5WOaNg2cTmtk0223aQ1CNR9hBQoR6QHkA929P2OMuSg6xVIqsuK1BkZ9zWArV1oJ+zZsgIsvtgJG9+5RK45SjRJu09NLwDxgKdDwAeBKxVE004w31o4dcOutUFgIPXpYs6zz8mJaBKXCFm6gOGiMmRHVkkSAjnpSgcRjDYxgampgxgy45x7r93vuseZDtG0bsyIo1WDhjnqaLiJ3i8jpInKS+yeqJWsEHfWkgmkO61qvWgUDBlg1ibPPhrVr4e67NUio5i/cGsVxwG+BcznU9GRcr5Vq9uK5rvUPP1id0//8J3TrBi+9ZM2u1lVFVUsRbqC4DOhpjKmOZmGUioZAk+GilWbcW20tzJxpuPtuoaoKpk6FO+80pKdrhFAtS7iB4mugPbAzekVRKjrisa71++/DtVfuYd13hzFkiGHmTKFXLytgHYzySCulIi3cQNEe2CAiq4Eq90YdHqtailil9vjxR7jjDnjmGeh6WBtmnTKVy4Z3plOv+I+0Uqqxwg0Ud0e1FEpFQX0P40g+qGtr4cknrealykr4wx9gypR2HFjYmbJlRZQvrzvSKhYTAJWKhHBnZr8T7YKo1sH7YejOd+T9OlqrzUVzgt1HH8F111lrQ/zylzBrFvTtCyCkB1lEKV4TAJVqjJDDY0Xkfdef+0Sk3Otnn4iUx6aI4RORC0VkTllZWbyLogLYXVjgSYi3u7CA0nkz2TVvBrsLCzwPyt2FBU0+j/cEO/f53M0+zv0VEVuXYtcuGDsWzjjD+n3RIiuhX58+xlOOQCOtnE5nTMqnVKSErFEYY85y/dkuNsVpGmPMUmBpbm7u+HiXRfnyfngbYxCEMldzTGbecErnzaRseWTa76M9wc7hgKeftpqX9u2zhr7+6U+QkXGoJpM9ehK758+ibFkRyT1ySB94Fs7KQ7PDs0dPilr5lIq0cHM9PWeM+W1925QKxv/h7c29ZkMkH5Sh1s5uik8+sZqZPvvMWoJ09mxr3WqomypE0tI9y5+27T/AExxs6RnYbLaolE+paAh3ZnZ/7xci0gY4OfLFUYks0Oxob5F8UIZaO7sxdu+GCRPgtNPg++/h+efhrbcOBQmou272T4ueoXprsScAuoODewRWJMunVDTV10cxRUT2Acd7908APwIvx6SEKmEEejh6i9SD0n+CXVPWznY6Yc4caxnSggJrvYiNG2HkyMAzq+tLFeLdcR2vtb2Vaqj6+igeAh4SkYeMMVNiVCaVgLwfjpl5w+v0UQgSsZnSkZpg9+mnVgrwTz6xcjPNng3HHhvedXrzTxUSjwmASjVFuMNjp4jIkUA3fNejeDdaBVOJxf/huGfhfLLyRmAw2DPacdgVo0Ei96BsygS7PXusZUifego6d4bnnoOrrqo/N1NDUoXEa21vpRoj3M7sh4GRwDrA4dpsAA0UKmzeD0f373BoHkWkH5QNXTvb6YQFC6yZ1Xv2wOTJcO+9EG4y4obWFOKxtrdSjRHuzOxLgL7GmKp691QqhGCT6+I9K/m//7WamT76CM4802pmOuGEhh9HawoqEYU76mkLkBTNgqhD/DszE61z03viHRxqsonEZLv6+N/LvXsN+fmQmwvFxVaN4r33Ghck3LSmoBJNuDWKSmCNiLyFb1LAyVEplR8RGQbkAZnAPGPM67E4bzwkemqHeC5L6n1vQXj2WcOt+QfYU5HK76+zcf/90L59VE6tVIsWbqB4xfXTYCJSAAwFdhpjjvXaPgSYDtiBucaYh4MdwxjzEvCSiHQAHgUSMlA0x7WdI8npdHrmEkBsZyV739u132Xzx7eu5P33hQEdtrDwj18x+J6R9Z67uTWXKRUr4Y56eqYJ51gAzAKedW8QETswGzgPKAFWi8grWEHjIb/PjzHGuNfBmOr6XEJqTms7R1rJ1Hyc+/fT9bG52Gw2Drvm+jqzkqNJREgans8jz/+CedOOIzOpjAdPfJIxE9PoPL7+e5voNT2lQpFw2r9FZCvWKCcfxpieYZ1EpDuwzF2jEJHTgXuMMb92vZ7iOp5/kHB/XoCHgTeMMW8G2WcCMAGgS5cuJxcWFoZTtKioqKggIyOjSceo2rzR83tKr75NLVLcVW/bjHHUIimpJHftRtWWb8A4Pe/bszoAIHY79g7ZjTpHsPtuDLz5ZmeefKIHe8tSueDsdVxzyWraZVRhz+oQ1jlrS3fiKNuLPasDbTp2rvO6tYrEv3XVMNG854MHD/7MGJPrvz3cpifvD6ZiLY16WBPKcyTwndfrEuDUEPvnA78EskQkxxjzpP8Oxpg5wByA3NxcM2jQoCYUr2lWrVpFY8/vPRbfraXXKIwx7PxmDftWLKnzXpuje5J23ImU/3MWYE2+6zTsUvYsnN/gb/CB7vvatdZopnfegQHd/8fcEyZzXIeNsOrQPu5zhrq/nr8XVznB9fcy/LIW+/cSCU35t64aJx73PKxRT8aY3V4/O4wxj2N1LseEMWaGMeZkY8zEQEHCraWnGU/U1A4iQudxN9Dugkt9trc5uie1327xJAVM6X0MncZa4yOamoZ73z649VZr9NJXX8FTTxlenbLIChL+5aP+B319qTmUSmThTrg7yeulDauGEW5tJJAdwFFer7u6tjVJS08znsipHYwxVK370mebzeb7PaXrn5/0mXwHDe+rMQYWLoRbboEffoBx4+DBB6FjR2F3YQZZeSM8qUMAsvJGYMuo/96Gk5pDqUQV7jyKx7x+HsLKHHtZE867GugtIj1EJBlr1nejRlUlmuyRY+rkBXJnHI21SM3ncDqdlNwyjuptxT7b/V9715oa8w1+27Y0/u//YNQoOPxw+M9/rIR+HTta7x92xWiMX1ebwVjpQwJcn/88j0Sr6SkVrnCbngZ7/ZwHTAQGhvNZEXke+AjoKyIlIjLWGFMLTAJeA9YDi4wxaxt3CT7natFNT27NYcJWUyfFeT88RYTasr0AtLvgUnouXkVSt17Weymp9Fy8qs6DtyFpuCsq4PbbYdy4XNasgb//HT7+GE45xbc8pQUzKV++2OdhX758sXVdzwe/3mA1vayhI1p8TU+pcIRsPhKRTOB6rM7nl4E3Xa9vAb4E/lnfCYwxo4JsXwGsaGB56ztXi256ai6aOp/DfygpQFLHzjizO9F53A2ICPb0DGozMsk8fxg2m43s0ZM4sHYNVVu/AQgruZ4xUFRkpf7esQPOP/9HnnnmcDp1qlsm98M+M2+4z8PeGIOkpfusPhfoejU1h2rN6utneA7Yi1UjGA/cBQhwiTFmTXSL1nAiciFwYU5OTryL0qI1ZT5HsCBT9c16svJGePZJ6dmbg+u+gAOV1hra82d5FvkB6u2r2bgRJk2CN9+EAQPghRegqmojnTodHvra/DquBbGSFIZxvc2hpqdUPNQXKHoaY44DEJG5wA/A0caYg1EvWSNojSJy3A/nhi7VGW6QqW+fYN/gKyuFKVPgsccgLQ1mzoTf/x7sdli1Kni5PAFseRGIV63BtU43UGcS4GHXXK/BQCnq76Oocf9ijHEAJc01SKjIaspSnSLiWR/aLXv0JJ+Hbjid1b7pMuDFF4VjjoGHH4Yrr8RTq7Db678e736FsmVFbL70HJ+mrZKp+WwfM8znM9vHDOO7uyYFPqBSrUh9geIE8V0C1b0k6j4RKY9FARsiUTqz4y3cUT7Bgkbp8/MouXWcz7aSW8dR+vy8Oufw+VyQQPTNN3D++TB8OHToYGV3XbAAunRp2HUFC05Op5Oaku04y8uwZWbRo+htbJlZOMvLqCnZjsPhCHJEpVqHkIHCGGM3xmS6ftoZY9p4/Z4Zq0KGyxiz1BgzISvclWZaqUDDQP1HKUlauufbNoCkpZPcIwdbWobnM4FGQTmdTipXf0D11mKSe+TQc/EqknvkUL21mMrVH+B0OsMORJWV8Kc/WcuPfvghPP44fPYZnHVW4687UHCy2WxkDhnmCQ5bRwz2BI3MIcOwh1NlUSqBNWXSnGqBAiW3K7ljIgBHPvx3bDabFTgq9yNt09mzcD6Oin0IQvXWYtr2G8CueTOo2rTO6qD2GwVls9lIH2g9yau3FrNl+CAAknvkkD7wLM8ku1Cd1SC88grccANs22YtQ/rII9bciMYKZ5nSDpdfw9YRgz2f6VbwkgYJpdBA0aoEGpG0a94Mqr5ZD0DJLePo+thcds+fRdmyIpK750BSEtXfrCczb3jAWc2BOrizR42hwxXXeIIEQNdH5/rMxA7WWb1li3D1hbB8OfTvb3VQn3NO065ZRA7NhcgLHJyMMQGby456bF6dGeRKtTYJ9T9A+yhCC9ShW758Me0uuJTk7jlUb7NqAGXLiqzmom3FtO3Tn8y84ZQvX+wTJAA6jg08Cso93NXb7vmzQs70PnAA7rnHCg7vvAOPPmotT9qUIOE/adA9M3vPwvk+96PD5dewbewl1GzbTFL3XtaEwO69qNm2mW1jL8HpdIY6jVIJL6EChfZR1C9Qh27ncTfQ9bG5Ptvccxo6js33JOrzF6jzOdz+h5Kp+ZTcOg6n08ny5XDssYZp04QhOZ+ycaOVqympCYvveteevBMLli9f7JNY0F3bEJvVxNS2/wBEhLb9B1jv2+w6RFa1etr01MoE6tDdNW9GwAyq7iGuu+bN8NmemTccQerMlIbwEhs6nU6clfvZ8nUF4/us4fXNJ5Fz2A88e+ZfOOeUcn72s7k09TtMQyYNigjd5y5m17wZlC9f7Mlmm5k3nE5jJ2ugUK2eBopWJFCHrvvhCHian9xKbhlHSr/j2bdiCSm9jyG1T38MhvLliz19FoFyHdWX7qK62sbMzy5l5gfnYcfB7f2f4OpeRSSn2pC2x0SsT6AhkwZFhE5jJ3vuBaBBQimXhAoUmsIjtEDf9juNnczBjWtxlP5I9TaruSl79CRKbh1H9dZiJCnJ883a/ziHXTE66IM0WLqL116DSZMMxcVDOf+IlUw5bjaHt91l7VQN5sB+z9raTdWQ1OCaRlyp4BIqUCRqCg//JHz1JeULJdC3/aP+8hR7CufjrDw0bLbro9bop0ABoTEPz2+/tZL3LVkCffoIK1Y46L3gQaiuPrRTcjJH/GWOJ0g05brDGQ7rPlZD9lWqNUqoQJGIAs17qG9J0PoE+rafPWpMnfkQoZppwlVVBX/9K9x3n/X6wQfhxhud7LprPNXeQQKguprvb59A10fnsnfRApwVFZ6RVcYYSufNxJYR3nWH01fSmH2Vao00UDRjDUn3HYlaR6Szo77xhpWLadMmuOQSa2b10UcD2CA1DZKSocYrWCQlQ2oaIkLl5x975nd0HJtP6TwrgV9K72NCNnl5a0hqcE0jrlRwGiiasXBH7kSj1tEUJSVw881W6u+cHPj3v2HIkEPvO51OHD98BzXVJHfPoetjcz0r4Dl++M6T5gOgbHmRz/yNhq4m15Dgp2nElQosoeZRJKL6sqwGmy9QtqzIZ76A9wPWP7dTuA/f+pZGra62Um38/OewdClMmwZffeUbJNzXhGveQkq/4xERUvodb73pmrfg2FMasAzBtiuloiehahQtfdSTf1OSW6jROOHUOrxrHN65m2wZVkd1OLWP+motK1dazUzr18NFF8H06dC9e+Bjuect7Jw7nX0rlrBvxRLAWia187gbMMaEDBRN6cxXSjVcQgWKljzqyf9hXlNeZiXiK15P1TfrSerWi7RTzoQDlXVG4wSbLwC+NQ538HHPFcjKG+GZRxFqidNQfSUHzrqaSaMMhYVCjx5WTWLo0NDX6j5P53E3eIIE4FkmtaamJsSnoba2luTk5HruqFIqUhIqULRUDofj0IPYQPkHKzE/7QEgqVdf2nTrSc32zZT9UELWRVeQNfTQRDf3w9+/1lFyx0RS+vSj09jJVtAw1MnV5H5d3xKngWotNU47L6Q+wCP3nEVNjXDPPXD77dC2behrdQfE7NGT6uSDcteUkpKSSOrVl5rNG+t8PqlXX5KakttDKdVgGijirGRqPs7K/aScdBpJ3XvVeZj7PCyrqyhb/BztR/zOSnDnGjJ6cNNaT8pv79nWnlFDY/IxBO+H8G5OCjZyyrvW8knpCdzzxU18s68nF1wAM2ZAr171X6t3zeTA2jWeNSvcf7prLNmjJyFBJtwF266Uih4NFHHkznlUvbWY6u1bwRnGSmrGUP76Kzj278MmNsqWF5Hc+xiSuvfClpbhyYyamTecqk3rfHIXBVNaMBNbWgaO/fs8aSuMMeyaNwN7RjvP0NG1f5vH1E/v4uWSX3Nk2x94dtJSrpo+FJstvP4C/5oJHEo+6K5hWOtRQM2PPwQ8Rs2PP2gfhVIxpl/P4shms3HkI09ja5cVXpAApF0mzrK97FuxhLLlRWTljSC1Tz9qtm3Gub8CR8U+T2A48uG/+3w2M284mXnDPa+z8kaQmTfcak56/WXKl1uJ8dxBonz5Yio//5jqaicPXfkup98xkn//75fcdZfhg0df5PSSR9g9P7x1tD3lDzKKyz3BL3vkGBwOB6b8J9cHbHRb9BaIa7Z2+U+6NKlSMaY1ijiz2+0cXfAi2y47N6z9j573Itsv/z/Pa/9+BrAexmXLigLWJOzp7TzZX92jngAqPnoHoE4N5JOSXkwbKHz55TkM7r+dJ5ccTZ8+gjG/pzSltsEzl8PJqZSUlARtksDhoNvCN0hKSqLbwjfYfsV5YLdrH4VSMZZQgaIlDo91Op18f/uEsPf/duwlAbd7P2izR0/yGQHVc/Eqz1oM3h3X7v07jsm3ljb1GpJaerADf1k7kRe/O5+jjjIsXgzDhh3taWZqzMzlhuRUynnhLWpqajxBwR0sNEgoFXsJ1fTU0hYucjqdniytJIU33NPsKyepWy/aXXCpz3Z3k1Gw1eXcK9vZ0jOw2Wx1ch25m48cxsZzWy7lV2/+g2Ulv+T6U1ewbh1ceil1+iIakyIkUE4l71Fc3vyDggYJpeIjoWoULY3NZsPWNh1buyyc+7yWb/XLgdTu/EupddRy4PVXQARJSmbfiiWeJqSDm9ZSvnwxgnjWi/DuIPYeTRQofbcxhtpdP/LfPf2554ubWFfWhzM6rebu4x8np2sFaWlDIMDCRo2hOZWUank0UMRZ1wdmsutfczm4ZjXGGFL79uewa67n+z9cT/X/dpDc5QjaZGbS+YrR/Gi3Y89oh81mo+3P+/t0CrtnSQNBs6AGW+Nh1y644+0JFH2bR5fUnUwfeDfnH/E2IuCMwvLjmlNJqZZFA0Uz0OnKcZhRYz2vRYSj/vyk55u3+0HaZfyNQbPF+ud/Cucbu8MBTz8Nf/iDsO+nXzMu519M+vkzpLc54LNfpBYSUkq1TBoomolA37JDffNu7Htun3wC110Hn30GgwfDHZk30ku+rLOfLatDRBYSUkq1XPo1sRmrL1trfa8D2b0brr0WTjsNvv8enn8e3nwTjuldHXD/Np26eBILurPTus9VWjCT3YUFDbkkpVQLpIGiAfxTdgf703//xqjvwdzQB7fTCXPnQt++MG8e3HgjbNgAI0eCCDh2B8nWurs07FTmSqnEpE1PYdpdWICzogJJT8dU7rdGFBVYKSeclRVUbf2GlB69fbK2hkrfHaoZp76V7ZxOZ9gr34HVvHTddVZz09lnw+zZcOyxh8ricDhw7A0SKPaW4nQ6kbR02hzd0yeVeZujeyJp6dr8pFSC00ARBmOMZ2nO5O45VG8r5sDXa6jeVoy9fQccP+31SWpHr+NDPrjrW9tBRDi4ZRO2zCyfB7MtM8va7kp3AaFXvtu7F+66C558Ejp3hmefhd/8xqpBeLPZbGBvA47auhdvb4OI8NMLz4JfzaH22y389N1WT5mVUomp2Tc9icgxIvKkiBSJyO9jcc5ATUgpffoBUL2t2OdPx097ycobQddH55I1dARly4qo2rzRZ/axf82hvmYcp9OJOVCJs9x3bKqzvMza7nSGXPnO6YSCAujTB556CvLzrWam3/62bpAAK1C0H34VSd19U8Amde9F++FX4XQ66wQJrwuitjZAgFFKJYyoBgoRKRCRnSLytd/2ISKyUUSKReTOUMcwxqw3xkwELgfOjGZ5IXDb/+75s6jaWkxy98CpQTqOzff5lu/ZHmBYqvds5LJlRWy+9Jw6QcWdLFAyMn0/m5FpJRG02YLmTPr8c8NZZ8HYsVZ/xOefW6vNtW8f+rqzR44htd8JPttS+51A9sgxVo0jo13gD7rmdSilEle0/4cvAHxWTBYROzAbOB/oB4wSkX4icpyILPP76ez6zEXAcmBFNAsb8tt+ZYWnFuFv17wZOJ3OgA/uQB294ayD/e2EyzAV5b7lqyjn2wmXec7lDjC9lrwD517JLQ8cycBcQ3GxYcECePddOMH32R/0unfNm+Gz2hzAvhVL2DVvBjabjZSje1J3draQcnRP7HZ7/SdRSrVYUe2jMMa8KyLd/TafAhQbY7YAiEghcLEx5iEg4CKaxphXgFdEZDnwr2iVV0SwpWWQ3D3Ht28gqwO1e3cH/ExSt16UL1/MwXVfeNZWSOnV11NjgLo1i/oyqBpjMEFSabu3u3MmZY/O57nnhNvuv5bSXYYx523gkYX96q1B+KvatA6wUo93HJtP6byZlC0vomrTOpxOJ46KfVBn8SODo2KfTshTKsFJtIc2ugLFMmPMsa7XI4Ahxphxrte/BU41xkwK8vlBwKVACvClMWZ2kP0mABMAunTpcnJhYWGjyluz41ucBw/Uv6P7vCmp2FLbYqqrkOQU2nTsTEVFBRkZGdSW7kTsduwdsn0+U1u6E0fZXuxZHWjTsXOd1wBV24qtqdP+7HZSXE1gmzenM316b776qj39+pVxww3f0KdPRaOu27F3N8bh8JzfXU6x27G1P4zqLZuCfja5Z59m0Zntvu8qdvSex1407/ngwYM/M8bk+m9v9qOejDGrgFVh7DcHmAOQm5trBg0a1JhzsWvuDMpX1F3HQTLbH1pMxyWpey/STzmL7OGX+SwlumrVKgYNGhR05vLuwgKcVNHR63OlBTOx1VaQPehyjDFseeohTICAJaltyf77q9x7rzBzJnToYM2LuOaaLGy2XM91NGYGdbDPOZ1Otsy4O+jnei5e1SxqFO77rmJH73nsxeOexyNQ7ACO8nrd1bWtySKxHsXBTWuDHdun4SUrbwRly4swx57os4//ZwIJJ4Nqxrnn1+kzMAZeT7+R+46BH3+ECRPgwQfhsMMO7VPf0NtQgpXfZrOR0u94qr7dChX7Du2Q0Y6Uo3s0iyChlIqeePwPXw30FpEeIpIMjAReicSBo7kehX9zlMGQlRd4HYVwhAoqxhj2f/C2z/ubyntw1fszuH7e+Rx1lDV57sknfYNEtGZQG2NI7dkHKvZ5Os+zho6Ain2k9uyjM7OVSnBRrVGIyPPAIKCjiJQAdxtj5onIJOA1wA4UGGMCf41v+PmaXKNI7duf6uINdd+oOkjmBcPpNG6y5+GbmTfcs5RoJIkIpuogABU1bZm5YQzPbBlOuzb7uX/g49z50Q0EGmjkPZoq1ES8xpQn0IJDQKMDpVKq5Yj2qKdRQbavIApDXY0xS4Glubm54xt7DPfoH3/29h3oODY2D0ljDCSnsrz4dB76+np2Hszmsm7LuaXfHDp2tiEyGZA6o43crzuOyfdZCjUSCwPpgkNKtV7NvjM7lkSEtBNPxVlTTc22zZ7tSd17kT7wrDoPyWhZvx7Gvz6Nj/53Av2zNjLrlKkMOGy96932AJRMzcdZuZ+uj87FZrN5llW1tU0npWdvn+N5D71tCl1wSKnWKaF6IUXkQhGZU1bWuGXZjDE4Kyuo2bbZpy2+ZttmDqz5hNJ5vhPoIp1mu6IC7rgDBgywsa7859x7ymwWD7rWEyQkI5PMX10MgLNyP9Vbiym5dZzP2tvVJdt8JuK553MEm/ynlFL1SagaRVObnoK1xRtjqNq0jrLlRSD1Z2tteLlh8WK46SYoKYFrrjHcdvwzJL+70He/inKclRWICF0fnUvJLVZw2DJ8EADJ3XNoO/AMOFCpfQlKqYhJqEDRFO6Hvbst3k1E6DR2MrsLCzC1NT6dxMk9cpqcZnvjRitp3xtvWOk2Fi6E00+Hkjs+oyrA/u4+lL2LFpDa7wSftCKp/U7AZrNxmFczk/YlKKWaSpueqJsIEOo2KxlXU4+36q3FmMr9jWrS2b/fSgF+3HHw8cdW4r5PP4UzzvDdLzNvOL2WvENm3vBDZTEGx759dSYGlq9YjGPfPvxpkFBKNUVCBYrGzKMIZ+6BiJA9ehLJPXyH3Sb3yCF79CSfZH7+x657PnjxRejXz5osN2oUbNoEkydDG1f9TkRIO+lUMvOG02nsZE+tJjNvOGknnQpAxQcrA15PxQcrtS9CKRVRrb7pKZy5B+5U44FqFLvnz6LjmHz2LJzvmRENgVe4++YbKyC8+qpVk3j3XfjFLwKXK9BwVHfQMMbgLNsb8HPOsr1ag1BKRVRC1Sga2/RUX9pvd1bZQAv72NKs5FzetRLAp1ayf7/hj3+0lh/94AP429+sdSKCBQnvcgV67QiSWdatvveVUqohEipQNDaFR7C0396LF1X+92Nqtm326TOo2baZyv9+DOCzGJH3Cncfdcrn2GOF+++Hyy6zOq9vvPFQM1NjVFdXN+l9pZRqiIQKFI3h3ScRau5Bdcn2gJ93b/evlXy7/3DGvJTPxRcLaWnw9tvwj3/A4Yc3vcypqalNel8ppRpC+yjCyGPkdDqR5GTMgUrKly+mfPmh0UaSnOwJJqUFMznoSOYfr5zMoreuISmphkceSeKGG4SkpMiV2el01vu+ZnRVSkVKQgWKxiYFrC+PkYjQptPhVJf9VOezbTpZVYTSgpm8PLeE+zcvZvuuLIYN3MQth91J3w6DaNMmn7rLiDZeOIFCKaUiJaG+djYlzXh9eYxS+/YL+LnUvv3Yvl24+smLGf+fv9A2O5NHH13Dko970/eyQVGZEa2d2UqpWEqoGkU0BZqbUOVI5q/LBjI9H+z2bjz0kOHmm4UPP/wpqjOi29TTE17f+0op1RD6RAlDoIWE3vtxIPd+eRPb93dlxAjDX/8KXbtCLKYw2Gw2sNkgUBOTzab9E0qpiNInShhExLPC3feVnbn+4/sY89Fj2MRJwTlTWLQI0j4oqDOkNtLZZb3LEzQiieiEO6VURGmNIgzGGBzJ7Zj71XBmb7oGkpK57YzFXJ39BGnZGTidTs+EOwB6HR/R7LL+bDYbyX36U73hKysniJsIyX36a41CKRVRCRUoIrEUaiArV9qYuPwJNu/pwnmHv8tdx83kyLQfsbXLos0RR2O32z3pyMuWFVE1NMWzVGo0+ikcDge1O7aDMdgys+hW8BLbxwzDWV5G7Y7tOBwO7IHWSlVKqUZIqK+eTRn1FEhJCVxxBZx3HjjsKTx92u08cepUjkz7EQDnvjJSe/bGGMOehfMRvyGwgrBn4fyIlMWb3W5HUlI9QcJut9Ot4CVsmVlISqoGCaVURCVUjSJSqquttN/33gsOB0ybBrfckknp1FKqtx7az509FsBZUWEtbOSlbHkRWXmRb3oC6DHnBZ+agztYaJBQSkVaQtUoIuHtt2HAALj9djj3XFi3DqZONex/Pnj2WGMMBzZ+HfB4wbZHgn9Q0CChlIoGDRRebrzRCg4HD8LSpfDKK9Cjx6HssYHWo7ClWRPqaoLkggq2XSmlWgoNFF5OOw3+9CdYuxaGDj203RiDs7KC6q3FPokDq7cW46yswOl0YlzDZ/2Zgwd0ISGlVIumfRReRo4MvL2+xIH1pcyora0lOTk50sVVSqmY0EARplCJA+sLFNp3oJRqyRKq6amxK9w14PgBX9fXtKRNT0qpliyhAkWk51GES7O5KqUSWUIFinjR9SGUUolMA0UE1NcHoX0USqmWTANFBNSXhE+T9CmlWjJ9gkWA9lEopRKZBooI0KYnpVQi00ARAfUl/NOFhJRSLZkGigiwliYNUmuw2bWPQinVoukTLAKcTifSxprkbmuXRUqvvtjaWXM5pE0bHR6rlGrRWkSgEJF0EflURIbWv3fs2e12knOs4ODcV0bV5o0495Vha5dFck5f7aNQSrVoUc31JCIFwFBgpzHmWK/tQ4DpgB2Ya4x5uJ5D3QEsilpBI+CoB2bhcDjYOmKwZ1u3+bqQkFKq5Yt2jWIBMMR7g4jYgdnA+UA/YJSI9BOR40Rkmd9PZxE5D1gH7IxyWZvEGMOeBbN9tu1ZMFvzPCmlWjyJ9oNMRLoDy9w1ChE5HbjHGPNr1+spAMaYh4J8/gEgHSuoHAAuMcbUafQXkQnABIAuXbqcXFhYGPmLCaG2dCeOsr3YszpwMDWN1IOVntdtOnaOaVlaq4qKCjIyMuJdjFZF73nsRfOeDx48+DNjTK7/9nikGT8S+M7rdQlwarCdjTF3AYjINUBpoCDh2m8OMAcgNzfXDBo0KELFDc/uwgKcVNFx+GW88847nJOXR2nBTGy1FWQPujymZWmtVq1aRaz/3ls7veexF4973mLWozDGLKhvHxG5ELgwJyenvl0jLtR6FUop1ZLFY9TTDuAor9ddXduaLF5pxt2CrVehlFItWTwCxWqgt4j0EJFkYCTwShzKoZRSKgxRDRQi8jzwEdBXREpEZKwxphaYBLwGrAcWGWPWRuh8UV3hTimlWqOo9lEYY0YF2b4CWBGF8y0Flubm5o6P9LGVUqq1ahEzs8OlNQqllIq8qM+jiAcR2QVs99qUBYSKHsHeD7Q9nG0dgdKwChsZ9V1fpI8Rzr6RvOeBtgfar6Xd94Z+vqn3van3PNA2veeJ9XzpZozpVGerMSbhf4A5jXk/0PZwtgGfNqfri/Qxwtk3kvc8yD0O9PfQou57Qz/f1Pve1Hse5O9B73mCP1+MMYnV9BTC0ka+H2h7uNtiKRLnb8gxwtk3kvc80PZ433Noehka+vmm3vem3vNwyxBNLe2eh3q/pTxfErPpKd5E5FMTYBq8ii6977Gn9zz24nHPW0uNItbmxLsArZTe99jTex57Mb/nWqNQSikVktYolFJKhaSBQimlVEgaKJRSSoXUYtKMt2QiMgi4D1gLFBpjVsWzPK2BiNiw7nkm1rjzZ+JcpFZBRH4BXIX1bOlnjDkjzkVKeCJyNDAD2ANsMvUvLd1gWqNoJBEpEJGdIvK13/YhIrJRRIpF5E7XZgNUAKlYCzWpRmjgPb8YK4V9DXrPm6Qh990Y854xZiKwDNDg3EgN/Ld+HFBkjBkDnBiVAsV6hl+i/ABnAycBX3ttswObgZ5AMvAF1hKuNtf7XYB/xrvsLfWngff8TuBa1z5F8S57S/5pyH33en8R0C7eZW+pPw38t54NvA2sBEZHozxao2gkY8y7WFU9b6cAxcaYLcaYaqAQuNgcWr51L5ASw2ImlIbcc6xaxF7XPo7YlTLxNPC+u5tCyowx+2Jb0sTRwHs+GrjbGHMukBeN8migiKxA64EfKSKXishTwHPArLiULHEFvOfAEuDXIjITeDceBUtwwe47wFhgfsxLlPiC3fNXgcki8iSwLRon1s7sGDDGLMF6cKkYMcZUYj2wVIwZY+6OdxlaE2PM18CIaJ5DaxSRFbX1wFVQes/jQ+977MXtnmugiCxdDzz29J7Hh9732IvbPddA0UixXg9c6T2PF73vsdfc7rkmBVRKKRWS1iiUUkqFpIFCKaVUSBoolFJKhaSBQimlVEgaKJRSSoWkgUIppVRIGihUqyci14jIEV6v54pIvwgct7uIXNmIzy0QkTopGVzbt4rIGtfPZNf2bSLS0W/fZBF53JWO+hsReVlEunq973Ad42sReUFE0hpzjap10EChFFwDeAKFMWacMWZdBI7bHWhwoKjHbcaYAa6fGSH2exBoB/Q1xvQGXgKWiIi43j/gOsaxQDUwMcLlVAlEA4VKSCLyGxH5xPWt+SkRsbt+Fri+RX8lIje5vrnnAv907dtWRFaJSK7rOBUi8oiIrBWRN0XkFNf7W0TkItc+3UXkPRH53PXjXtXtYeAXruPe5Dr/IyKyWkS+FJFrXZ8XEZnlWpDmTaBzE689DSv19E3GGAeAMWY+UAWcG+Aj7wE5TTmnSmwaKFTCEZFjgCuAM40xA7DWo7gKGAAcaYw51hhzHDDfGFMEfApc5fqGfcDvcOnASmNMf2AfcD9wHnAJMM21z07gPGPMSa7zur/p3wm85zru37Cy2ZYZYwYCA4HxItLDday+WIvQ/A4ItXzoI15NT8cF2ScH+NYYU+63/VOgv9+9agOcD3wV4pyqldM04yoR/R9wMrDa1dLSFuthvhTo6VqjYjnwehjHqsbK9w/Ww7TKGFMjIl9hNS0BJAGzRGQAVlDqE+RYvwKO9+p/yAJ6Y61m9rzr2//3IrIyRHlucwW3pmorImtcv78HzIvAMVWC0kChEpEAzxhjptR5Q+QE4NdYbfKXA2PqOVaNOZQQzYnVfIMxxun6Ng5wE/AjcAJWLf1giHLlG2Ne8yvTBfVeUcNsBo4WkXZ+q8ydjLWWNbj6KCJ8XpWgtOlJJaK3gBEi0hlARA4TkW6ukUE2Y8xiYCrWmsRgNSm1a8L5soAfXEve/hZrbeNAx30N+L2IJLnK1UdE0rFW4LvC1YdxODC4CWXBGLMfeAb4q4jYXef6HZCGta6yUg2iNQqVcIwx60RkKvC6iNiAGuB64AAw37UNwF3jWAA8KSIHgNMbccongMWuh/GrwH7X9i8Bh4h84TrHdKzmqs9do492AcOAF7E6mdcB32Kll26oL0XEvTb7IqxrexTY5Nq+AbjEq3akVNg0zbhSSqmQtOlJKaVUSBoolFJKhaSBQimlVEgaKJRSSoWkgUIppVRIGiiUUkqFpIFCKaVUSBoolFJKhfT/mtUUrcRZGsEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApXUlEQVR4nO3de5xVdb3/8ddnDw5XGVMQj4Jy1QTNS6iVppiZNzCV8UKWJ0CJClBPnn5ZPuqcyrC8oIAXSAZvJSoQCpiXPIGXfCholiFKKJiDpYA03BmY/fn98d0bZoa57Nmzr2vez8djHsxee+21vhsW67O+t8/X3B0REZGWiuW7ACIiUpwUQEREJC0KICIikhYFEBERSYsCiIiIpEUBRERE0tIu3wXIhm7dunnv3r3zXYy9bNmyhc6dO+e7GBIBupYkE+pfR6+99to6d++e6ucjGUB69+7N0qVL812MvSxatIghQ4bkuxgSAbqWJBPqX0dm9n5LPq8mLBERSYsCiIiIpEUBRERE0qIAIiIFrX6+PuXvKxwKICJSsNbPqmBdxZTdQcPdWVcxhfWzKvJcMgEFEBEpUO5OfMtmqhbM3h1E1lVMoWrBbOJbNqsmUgAiOYxXRIqfmWGdOlPapz9VC2ZTtWA2AKV9+mOdOmNmeS6hqAYiIgXJ3fGtW6hetbLO9upVK/GtW1QDKQCRCiBmNszMpldVVeW7KCLSSmbGASPHUdqnf53tpX36c8DIcaqBFIBIBRB3n+/uY8rKyvJdFBFpJXdn/cypDdZA1s+cqhpIAYhUABGR6DAzYp26NFgDiXXqohpIAVAAEZGC5O7Et26metVKyoaW02/uYsqGllO9aiXxrRqFVQg0CktECpKZEevchbKh5XQbNR4zo9uo8QDEOqsGUggUQESkYB1w2SjcfXewSAYRBY/CoCYsESlo9YOFgkfhUAAREZG0KICIiEhaFEBERCQtCiAiIpIWBRAREUmLAoiIiKRFAURERNKiACIiImlRABERkbQUfAAxs75mNsPMZue7LCIiskdWA4iZVZjZx2b2t3rbzzazd8xspZn9oKljuPt77j46m+UUEZGWy3YyxfuAqcADyQ1mVgLcCZwJVAJLzOwJoASYWO/zo9z94yyXUURE0pDVAOLuz5tZ73qbTwRWuvt7AGY2C/iqu08EhqZ7LjMbA4wB6NGjB4sWLUr3UFmzefPmgiyXFB9dS5IJrb2O8pHO/RDgg1qvK4GTGtvZzA4AbgSOM7PrE4FmL+4+HZgOMHjwYB8yZEjGCpwpixYtohDLJcVH15JkQmuvo4JfD8Td1wNj810OERGpKx+jsNYAvWq97pnY1mpmNszMpldVVWXicCIi0oR8BJAlwAAz62NmpcBlwBOZOLC7z3f3MWVlZZk4nIiINCHbw3gfBl4GjjCzSjMb7e67gHHA08By4FF3X5bNcoiISOZlexTWiEa2Pwk8menzmdkwYFj//v0zfWgREamn4Geit4SasEREcidSAURERHJHAURERNISqQCiYbwiIrkTqQCiPhARkdyJVAAREZHcUQAREZG0RCqAqA9ERCR3IhVA1AciIpI7kQogIiKSOwogIiKSFgUQERFJS6QCiDrRRURyJ1IBRJ3oIiK5E6kAIiIiuaMAIiIiaVEAERGJiF27cns+BRARkSL3/vtw3XXQqxesXZu782Z1SVsREcmel1+GSZNg7tzwurwctm7N3fkjFUC0JrqIRN3OnTBnDtx+O7zyCuy3H3zve/Dd78Khh+a2LJFqwtIwXhGJqk8+gV/+Evr2hREjwus774QPPgjbcx08IGI1EBGRqHnnHbjjDrj//tA8dcYZcPfdcO65EMtzFUABRESkwLjDc8+F/o0nn4TSUrj8crjmGvjMZ/Jduj0UQERECsT27fDb34b+jTffhAMPhP/5Hxg7Fnr0yHfp9qYAIiKSZ//6V2iWuvvuMAz3M5+BmTPhssugQ4d8l65xCiAiInnyxhuhtvHww2F01dChoZnq9NPBLM+FS4ECiIhIDtXUwIIFIXAsWgSdO8NVV8HVV8OAAfkuXctEKoBoHoiIFKpNm+C++8KIqnffDcNub74ZrrwyzOUoRpoHIiKSRatX70kzMmFC6Bh/9NEQRK67rniDB0SsBiIiUgjc4U9/Cs1Uc+eG/ozy8tC/8bnP5bt0maMAIiKSITt3wuzZYf7GkiWhdnHddTBuXKiBRI0CiIhIK33yCUyfDlOnwpo1cPjhIc3If/5n6CSPKgUQEZE0vf02TJ5cN83IPfcURpqRXFAAERFpAXf4wx9CM9Xvfw/t2+9JM3L00fkuXW4pgIiIpGDbNvjNb0LH+LJle9KMfPvb4fe2SAFERKQJ//wn3HVXaJpat25PmpERI0Ltoy1TABERacCf/7wnzciuXSHNyLXXwpAhxZFmJBcUQEREEpJpRiZNgsWLwwiqb30rTAAstjQjuRCpAKJUJiKSjk2bQrPU5MnRSTOSC5EaaKZUJiLSEqtXh/XEe/YMyQx79IhOmpFciFQNRESkOQ2lGbn44jAM96ST8l264qIAIiJtws6d8NhjoX9j6dLopxnJBQUQEYm0tppmJBcUQEQkkt5+O6y9cf/9YRLgl78M06bBOee0jTQjuaAAIiKR0VCaka9/PXSQt7U0I7mgACIiRa9+mpEePeB//xfGjm27aUZyQQFERIpW/TQjxx4bmqwuvVRpRnJBAUQkotwdq5Vzo/7rQtOS8v75z6GZataskGZk2LCQZuS005RmJJfUlSQSQetnVbCuYgruDoSb8bqKKayfVZHnkjUslfLW1MC8eSFIHH98mMMxdiysWAGPP64cVfmgACISMe5OfMtmqhbM3n1TXlcxhaoFs6nZvGn3TTq5b741Vd74ls1s3OhMngxHHAEXXhhmj99yC1RWhtQjylyUP2rCEokYM6PbqPEAVC2YTdWC2QC0H3AkRt0monUVU4h17sIBl43KS1mh8fJWfW4kdy37JjP+y9i4EU4+GW66CS64ANrpzlUQVAMRiaDaN+WkDocPomphw0/5+a6JJMvrDq+tP4pxr/6UE3/4TaZMMc47D155BV58EcrLFTwKif4pRCIoGSDqbMMpO6+8zlN+2dByuo0an/fO9R07nJnjn+buxdP467+PpGyfjYw76zWum/ZZevVSx0ahUg1EJGJq1y7KhpbTb+5iyoaWs3HhHJy6NY18B4/16+EXv3B6H7SFb//6bLa0P4g773TeuP0hxrf/Lzo8MyXvtSNpXItqIGbWyd23ZqswjZzzAuA8oCsww92fyeX5RYqNmRHr3KVO7SI0Dzk7VrxVZ991FVPyEkSWLw9pRh54ALZtM047qorbrniOS247n5ISw/3brGu/i1jnLnmvHUnjUgogZvYF4F6gC3ComR0DfMvdv9PM5yqAocDH7n5Ure1nA3cAJcC97n5TY8dw93nAPDP7FHALoAAi0owDLhu11zwKw9jx9+W7A0uylgK5qYm4w7PPhvkbTz21J83INdfAUUcdgvvBu8uQDHoKHoUt1RrIJOAs4AkAd/+LmZ2awufuA6YCDyQ3mFkJcCdwJlAJLDGzJwjBZGK9z49y948Tv9+Q+JyIpKBO8DAj1mXvWgmQ9af8htKM/PSnYQ5H9+4Nl7eh11J4Um7CcvcP6v2D1qTwmefNrHe9zScCK939PQAzmwV81d0nEmordVg46U3A79399VTLKyJ11a+VZPspX2lGoi/VAPJBohnLzWwf4GpgeZrnPAT4oNbrSqCpdcDGA18Gysysv7vf09BOZjYGGAPQo0cPFi1alGbxsmfz5s0FWS4pPoV8La1Y0YXZs3vyxz8eSE2NcfLJ6xg+vJJjjqnCDF5+Od8llKTWXkepBpCxhD6LQ4A1hH6I76Z91hZw98nA5BT2mw5MBxg8eLAPGTIkyyVruUWLFlGI5cqFYsvLVOgK7VqqqYEnngjNVM8/D126wHe+AxMmQL9+3YHuzR1C8qC111FKAcTd1wGXp32WutYAtReQ7JnYJhG1flYF8S2bdzeXFMoMaGm9jRuhoiKkFFm1Cg47LKQZGT06LBkr0ZbqKKw+hKak3rU/4+7np3HOJcCAxDHXAJcBX0vjOHsxs2HAsP5KjlMwauc5AuqM/ikbWq6aSJFavToEjXvvhU2b4AtfgF/9SmlG2ppU/6nnATOA+UA81YOb2cPAEKCbmVUCP3H3GWY2DniaMPKqwt2XtaTQjXH3+cD8wYMHX5WJ40nrNZbnqFBmQEvq3OGll8Iw3HnzwrKwF18chuGeeGK+Syf5kGoA2Z7oi2gRdx/RyPYngSdbejwpTskgkgwekP8Z0JK66mp47LHQv7F0KXzqU/D978N3vws9e+a7dJJPqaYyucPMfmJmnzez45M/WS1ZGsxsmJlNr6qqyndRpJaG8jLVXvtBClNIMwJ9+oQJf5s2wd13hzTqEydmJ3jUvyZ0jRS2VGsgRwPfAL7EniYsT7wuGGrCKjz18zLlYwa0tMzy5aG28eCDYRLgmWeGvo6zzgrNVtmiwRbFJ9UAcjHQ192rs1kYiZ7G8jJB9mdAZ1LUhyG7wzPPhP6Np58OE/2+8Y3QvzFoUC7Or8EWxSjVAPI3YD/g42b2E9lLrmdAZ1qUn4y3bQs1jTvugLfegoMOgp/9DL71rbppRrJNgy2KU6oV0v2At83saTN7IvmTxXKlRX0ghatY8xw1t9xqsbbRf/gh/OhH0KtXCBalpSHNyOrVcMMNuQ0eSQ0tgqXgUdhSrYH8JKulyBD1gUimRe3J+PXXQzPVI4/Arl3w1a+GZqpTT4V8f5XGBlsU499zW5HqTPTF2S6ISKEq9mHIyTQjkybBCy/UTTPSt2++SxdosEVxajKAmNmL7n6KmW2COkuZGeDu3jWrpRMpAMX6ZNxQmpFbbw1pRsrK8l26uqIy2KKtaTKAuPspiT/3zU1xWkepTCTTivHJeNWqEDRmzNiTZuTmm0NzVSGnGSn2wRZtUUqd6Gb2YCrb8s3d57v7mLJCe7ySotXYk3HZ0PKCejJ2D81TF10E/fvD1KkwdCi8+mpIPzJ8eGEHj6RiHWzRVqV6SdUZCW5m7YDPZr44IoWnkJ+Mq6vh0UdD/8brr8P++8P/+3+hj0NpRiTbmusDuR74IdDRzDYmNwPVJNbeEGkLCu3JuKqqHb/4Bdx5ZxiS++lPhzQjV1wBnTrltWjShjTXBzIRmGhmE939+hyVSUQakUwzct99n6e6OndpRkQakuow3uvN7BDgMOquB/J8tgqWDnWiSxTVTzPSoQOceeZH/PKXB+ckzYhIY1JdUOomwsJPbwE1ic0OFFQA0URCyYds5cnauhUeeijUOJYvr5tmZNmyFQwadHCrzyHSGql2ol8IHOHuO7JZGJFik408WR9+GPo2pk0LKdWPOw4eeAAuuSQkORQpFKm2mr4H7JPNgogUm3TyZDW13sXrr4cMuL17h/U2vvhFWLwYXnstbFfwkEKTag1kK/CGmT0H7K6FuPuErJRKpAi0NE9WQ7WVj+6dytPLBzJj6RkFm2ZEpDGpBpAnEj8iUkuqebLqr3dRWj6eKd96gWnzh1O59WB693Zuu80YNarw0oyINCbVUVj3Z7sgmaBRWJJrqebJSgaa1Wu7cuPETjw2ditbdp3KSQPWcPtE54ILjJKSXJdepHVSHYW1irrJFAFw94KqZGsUluRSqnmy3OHFF2HSJOPxx/+TmNdwziF/ZGS/R7ngj9PzPilRJF2pNmENrvV7B8ISt/tnvjgixaO5DLI7d1q9NCPOhLOXMrxmIgd1XAcUR1Zfkcak2oS1vt6m283sNeDHmS+SSPFoKE8W54/nnunGnb3hn/+EI4+Ee+5xzq65m53PziqarL4izUm1Cev4Wi9jhBpJEeT2FMm+5I3/rbfCpL8HHzS2b4evfCWsx/GVr0AsZqyf1YG41ruQCEk1CNxa6/ddwGpCM5ZIXmVrFnjq5w/pRSZNCulGOnQIczauvpq90owUclZfkXSk2oR1eu3XZlZCSG2yIhuFEklFNmaBp2rrVnjwQbjjjpBm5D/+A37+85BmpFu3xj9XaFl9RVqjyZnoZtbVzK43s6lmdqYF44CVwCW5KaLI3tKZBZ4Ja9bAj34EvXrB2LHQsWMIJKtXh+1NBQ+RqGmuBvIgsAF4GbgK+BFhPZAL3f2N7Bat5TQPpG1INgO1ZBZ4ay1dGvo3HnkEamrC8rDXXhvSjagSIW1Vc7mw+rr7N919GjACGAicVYjBA7SkbVuwflbF7hqHmXHAyHF13s9k8KipgTlz4JRT4IQT4IknYNw4WLkSfvc7OPXU4gweTeXjEmmJ5gLIzuQv7l4DVLr79uwWSaRh9Zut4vE4ldddWWefZHBpjaoquO22sLZ4eXnIjjtpElRWhj+LOUdV7QAMeyZDrp9VkeeSSTFqrgnrmHpL2SaXtjXA3b1rVksnUktjzValffrT85Z7WT9zaqvmVbz3HkyeHIbebtoUmqduuw3OP59IpBmpn4+r9lyUsqHlOR/BJsWvuSVtI/DfRqKkoeSFPW+5l1gslta8Cnd44YVQs3j88RAoLr0UrrkGBg9u9uNFJdf9RhJ9WkVZikpDyQvXz5xap2M9lSG81dVh9NRnPwunnRaCyPXXw/vvh1UAoxY8kmoHkSQFD0mXAogUjfrJC/vNXUzZ0PI6Q3mbuxGuWxfma/TuDVdcATt2wPTp8I9/wI03wsERXyW2sezB6kiXdCgdiRSN5pIXNhU8li0Lw3Afegi2b4ezzoKZM0Oakbby8J1q9mCRVCmASFFpSTqQeDykGbn99j1pRq64IqQZGTgwxwUvAK0JwCINUQCRotNcOpBkmpHbb4e33w5pRm68EcaM0Uxx5eOSTFIAkchYswbuvBOmTYNPPgkd5A89BBdfDKWl+S5d4VA+LskUBRApekuXhmG4jz4amq0uuCAMwz3llLbTvyGSD5EKIMqF1Xbs2hXmbUyaBC+9BPvuC+PHh58+ffJdOpG2IVLDeJULK/qaSjNy220KHiK5FKkaiOwt3wsuZcq77+5JM7J5c0gzMmlSdNKMiBQjBZAIy+eCS5ngDs8/HwLFE0/sSTNy7bWhg1xE8itSTVhtXe3ZxO5OzeZNOV9wKRNqpxkZMgRefBF++MM9aUYUPEQKg2ogEVG/tgFgGO0HHFk0ifPWroV77nHuusv417/CZL9p05xvfMPo2DHfpROR+lQDiYBGl3ddOJsOhw+qs28hBo+//Q2uvBJ6HbKLH//YOO445+mn4c03nQtik9n6uNaqEClEqoFEQKNpus8rx6nbVLWuYkpBBJFkmpFJk+DZZ6FjR6d84Et8vdu9HH/RYLqfOYG1MyazceEc2g84kv0vHZn3MotIXaqBRERDabodZ+PCOY1mrs2HLVvg7rtD89S554bax403hmy4k8b9hf77vs/GhXN496LT2LhwDsBetSgRKQyqgUREQ2m6d6x4i67nDS+IxHlr1sDUqSHNyIYNDaUZMXx0oha1cM9iUWXnldNtdP5rTCKyNwWQCGgqTXftp/d8JM5bsiQkNUymGbnwwpBm5OSTG04zUr/Jrf5rESkcCiAR0JI03bkIHrt2wbx5IXCkmmbE3Xf3edSWfN199ISCrYVEZbKmSEspgEREIaTprqqCe++FKVPCnI2+fUMQGTkSunZt/vM7VrwF7Gm2WjcjjCRLbm9Ivm/exT5ZU6Q1FEAiIp830pUrncmTjZkzQ5qR005zbr/dGDYs9TQjZkan40+iw+GDdvd5dEv0icS6NNxnk++bd+3h00CdpsOyoeWqiUjkKYBEQFM30vrDXzN1U0umGfnlde/z1GuH0q6dc9llxtVXO4e+MYXY9i6UlLTsJt5gLaqRDvRCuHk3Ony6gCdrimSShvEWuUYnES6YzdbXX2HtjMm7h+wm31s/K/2JeTt2wP33w/HHhzQjr7x9IGMHPMhrEyu4//4QPFqTLiXVxY6SN+/k0OR3LzqtziCCXN28Gxo+reAhbUXB10DM7EjgaqAb8Jy7353nIhWU5iYRblw4Z/c+rXlCD2lGwop/H30EgwbB9Olw+eUd2PLwv8NN/MX7w7lzdBNPfq/kd4bc37wbGj5dKJM1RbItqzUQM6sws4/N7G/1tp9tZu+Y2Uoz+0FTx3D35e4+FrgEODmb5S1WDT4Fjx5P99ETWv2EvjvNSC/48Y9DzeOZZ+DNN+Gqq6BTp/w9gTd2887VJMn6w6cLZbKmSK5kuwnrPuDs2hvMrAS4EzgHGAiMMLOBZna0mS2o93Ng4jPnAwuBJ7Nc3qLU2I0USOvmHo/Dk0/CV74CRx8Nv/1tGEn11lth+5ln7pnDka+beCHcvBsbPl02tDwvkzVFcs2y/R/NzHoDC9z9qMTrzwP/4+5nJV5fD+DuE1M41kJ3P6+R98YAYwB69Ojx2VmzZmXmC2TQ5s2b6dKlS8aPu2vdx9RUbaCk7FO063ZgndcANVUbdu+b3Kch27bFeOaZg5gzpycffNCJbt12cOGFazjvvA8pK9vV4nM3dp5MqdmwHq+pqXOeXes+xkpKKPnUAVk9d75l61qStqX+dXT66ae/5u6DU/18PvpADgE+qPW6EjipsZ3NbAhwEdCeJmog7j4dmA4wePBgHzJkSOtLmmGLFi0iG+VaP6uCODvoNvziPaOwZkxh+6vPsePvy+vOTv/N1L2asSorQ99G7TQjEyfCxRe3p7S0L9B37/MlRn198shManw79u9/Edu1mf0vHRlGgO3azAFDLsn4d60v3/NA8iVb15K0La29jgq+E93dFwGL8lyMtOXiBtfY8NdPHplJhyMGNTo7/dVXQzbcxx4Lw3IvvDCs9veFLzScZiRZ/r2GzyYm/JUNLd+9LZejoJp6LSLZk48AsgboVet1z8S2VjOzYcCw/v37Z+JwrdbQIk/ZmujW0I20ocCy3xXjmTfPmPQFePnlMEN8woSm04zUP67mPogI5GceyBJggJn1MbNS4DLgiUwc2N3nu/uYsrKyTByutWXZa37GrnUf53xJ2eQNvaoKbr0VBgwwLrkkDMW9/Xb44AO47bbUgkftY2rug4hkexjvw8DLwBFmVmlmo919FzAOeBpYDjzq7suyWY58aGiiW03Vhpw/qa9cGWoYPXvCdddB797wu9/BihVw9dWp5aiqL9/DZ0WkMGS1CcvdRzSy/UmyMCS30Jqw8jXRzR0WLw79G/PnQ7t2cNllIY368ce39tiNp44H1URE2pJIpTIppCYsyP2Teu00I6efDn/6E/zwhyEz7gMPpBY84vF4k68190FEkgp+FFaxauhJffWcx6j6zVQgs0/qa9eGZWLvuiv0bQwcCL/+NVx+OXTsmPpxKm8YT3zLFnreei+xWIx4PE7l964k1rkzPX++JxAWQup4Eck/BZAWSnVYbkNP6u26HZjRJ/U33wwd4b/5Tah9nHNOGIb75S83Pgy3MfF4nB0r38F3bKfye1fS89Z7qfzelVSvXom170A8HicW21Nh1fBZEYlUAMl2H0j9YbnxeJz1M6fuHpZbP5g0tK21T+rxOPz+9yFw/OEPoYYxcmToEP/0p1vz7YD27WHHdqpXr+S94UPqbhcRqSdSAcTd5wPzBw8efFUWjl1nAp116szWJS9RvWolZUPL9womSZl6Ut+yJfRj3HEHvPMOHHJImC0+Zgzsv3/636t2ubqccgabnpy713tdTjlDNQwR2UukAkg21Z9Al1Tapz8HjBzH+plTs7KYUWUlTJ0aUqdv2AAnnBCSG5aXwz77ZOQUwJ7vt+WF54hvqtq9PbZvmfo3RKRBkRqFlW0NTaCrXhWaezK9mNGrr8KIEWHexs03wxlnwEsvwSuvhO2ZDB4Q+kDWXHdVneABEN9UFbbXG40lIqIaSAs0NCy3ttYGj127wiS/SZP2pBm55hoYNy4Ekmyr/mdli7ZnQ1tNjihSjCJVAzGzYWY2vaqqqvmdW6j+sNy+cxZR2qduZ326czz+/W+45Rbo1w8uuQQ+/jj0dVRWhu25CB5mRknnkNZ533Mvot/cxex77kUAlORofsf6WRV1/g4zsQSviGRPpGog2exErz0sN9nnUb1qJaV9+tP5hFOIb93c4tnYK1fC5MlQURE6yU87LbweOhRKSjL9DZpmZnQ9cyg7N1Zx4JVXY2YceOXVuDv7dC3Lwez5BrL8tmIJXhHJvkgFkGzb/9KRQK1gcl45B4waRywW2/3U3NwcD3dYtCgMw02mGfna18Iw3OOOy8GXaEZJrKTJ19miLL8ixSdSTVjZlGxeSdr/0pE4zoZH7wP23AAbS9O+Ywc89VQPjjsOvvSlkGbkhhtCmpH77st/8NhdA1i4J3vwuoqwzkeusgcry69IcVENJAWNNa9sXDinTvNKQze6jz5ypk2zRJqRIxk0yPn1r63FaUayrRBqAI3lDlMQESlMkQogrZmJ3tTon6ZurgeMHNfgze2vf4VfXb2C2S/2Zceudpx7LnzpS3/hG2WLKenShY4dM7ugVCbkK3swKMuvSDGKVBNWutl418+qYN2MeqN/ZtQd/WNmWKfOdT6X7ExP7hePw4IFIRfVMcfA3D/1YXiv+bz0swdZsMA55rB32JjDJqGWyuc6H8ryK1J8IlUDSYe7s/X1V9jx9+UAdBu9Z43v9gOOZP9LR+7Oe7V1yUt1Plt53ZVUr1pJuzMvY9adzuTJxooVIc3ITTfBlVe2Iz7vg8SCUr+mZujlBdspXAg1AGX5FSkubT6AALQ/fCA7/r6cqoWzqVo4u852CDfX2sN2q1etBOD9ZRv57Sc/YNaPzuHf/zZOOAEefhiGD0/OFDc8T01CLdVYDQCaH1mW6XI09VpECkebDyBmRvfREwDYuHDO7u1dzxtO99ETdt/Aas8BmXv6t7nv3Ut46sPTcGIMLzeuvRY+97m6adSLrVNYNQARaYlI9YG0hmFNvi4rH8Vzncdx0uEfcfHz03j+oxP5Zr/HWHLT/TzyiPP5zzccPJJNQv3mLqak7FNULZhd0OuHqwYgIqmKVABJJ5VJssO8dtMVEOZDzJjChg3OzTdD377OiBEx1v6rhl+MWMSaT7ow8Qdr6fryzAYDQi4WlBIRyadINWGlm8pk+4plwJ5mq7UzJvPXR17hobuOZvY1Ic3IkCHGLy55ljMOX85BV4WA0GXUeNy90YCQjQWlREQKRaQCSDrMjE7Hn0T7wwfSbdQE/vhHY9LjE1j4HOxTEmfE5cY118Cxx8L6WR8Q31zv8zQdDNQkJCJR1eYDCOypKQwbZixcCN27Gzfc4HznOyUcdFDYp3aqD6xWsr+FSvYnIm2TAkiCmXHJJXDRRSG5YYcOe9cc0kn1ofUtRCSqItWJ3lpXXAGjRkGHDg2/39Jkf+tnVbB2xuQ6HexrZ0zW+hYiEgkKIC3QklQf7s7GZxewceGc3UFk17qP2bhwDhufXVCww3hFRFKlAJKihuZ1lA0tb3Reh7sT6xpycm1cOId3LzqNmqoNAMS6limAiEjRi1QAyeaSti1N9heLxeh16wz26d2vzvZ9evej160ziMUi9VcvIm1QpDrRs7mkLbQ81YeZ0XHQsexc/e7ubR0HHatOdBGJBD0Gt1Cq8zrcnbUzJtfJrwXU6RMRESlmCiBZ4u5sfGoeAO0O7UvfOYuw0vYAbHxqngKIiBQ9BZAssnb7hD9jiVqK1d0uIlLMFECyJBaLUdrvCNinlJ2r3+W94UPwHTtgn1JK+x2hTnQRKXq6i2VJPB7Ht22BndV139hZjW/bQjwez0/BREQyRAEkS2KxGAf/ajqUltZ9o7SUg381XTUQESl6uotlSTwe58Pvj4HqejWQ6mo+/P4Y1UBEpOgpgGRJLBaDDh0brIHQoaNqICJS9HQXy5J4PA7bt0F1NaV9+odhvO07hBrJ9m2qgYhI0YtUAMlmKpOWisVi1GzeRGzfMg65+ddhVFbPw4jtWxa2qwYiIkUuUncxd5/v7mPKysryXRTcnXb77U98UxWfzLxzdzbe+KYq2u23vyYSikjRi1QAKTTtDx8IQNXC2XWy8Sa3i4gUMwWQLDEzuo+eQNfzhtfZ3vW84XQfPUEJFUWk6CmAZJlhTb4WESlWCiBZ4u6smzGFqoWz62yvWjibdTMaXsVQRKSYKIBk0fYVy4DQbNVv7mJKyj5VZ7uISDGL1IJShcTM6HT8SbQ/fODuPo923Q6k63nDKemyr/pARKToKYBkUf0VDAF1oItIZKgJK8tSXcFQRKTYKICIiEhaFEBERCQtCiAiIpIWBRAREUmLRXFCm5mtBd6vt7kMSCVNb3P7teb9bsC6FMpQKFL9OyuU86R7nJZ+TtdSy+laat3+2bqW6l9Hh7l79xTKE7h7m/gBpmdiv9a8DyzN999DNv7OCuU86R6npZ/TtZS/f+NcnaetXEutvY7aUhPW/Azt19r3i0muvkumzpPucVr6OV1LLadrqXX7F+S1FMkmrEJlZkvdfXC+yyHFT9eSZEJrr6O2VAMpBNPzXQCJDF1Lkgmtuo5UAxERkbSoBiIiImlRABERkbQogIiISFqUzj1PzGwI8DNgGTDL3RflszxSvMwsRriWuhLG9d+f5yJJkTKzLwKXE2LDQHf/QlP7qwaSQWZWYWYfm9nf6m0/28zeMbOVZvaDxGYHNgMdgMpcl1UKWwuvpa8CPYGd6FqSelpyLbn7C+4+FlgANPsgolFYGWRmpxKCwgPuflRiWwmwAjiT8J97CTACeNvd42bWA7jN3S/PU7GlALXwWjof2ODu08xstruX56nYUoBaci25+1uJ9x8FRrv7pqaOrRpIBrn788An9TafCKx09/fcvRqYBXzV3eOJ9zcA7XNYTCkCLbmWCDeADYl9anJXSikGLbyWMLNDgarmggeoDyQXDgE+qPW6EjjJzC4CzgL2A6bmoVxSfBq8loA7gCmJ9uvn81EwKTqNXUsAo4GZqRxEASRP3H0uMDff5ZDi5+5bCf/pRVrN3X+S6r5qwsq+NUCvWq97JraJtJSuJcmUjFxLCiDZtwQYYGZ9zKwUuAx4Is9lkuKka0kyJSPXkgJIBpnZw8DLwBFmVmlmo919FzAOeBpYDjzq7svyWU4pfLqWJFOyeS1pGK+IiKRFNRAREUmLAoiIiKRFAURERNKiACIiImlRABERkbQogIiISFoUQKTNM7NvmtnBtV7fa2YDM3Dc3mb2tTQ+d5+Z7ZVRN7F9lZm9kfiZkNi+2sy61du31MxuT6Tq/ruZPW5mPWu9X5M4xt/M7DEz65TOd5S2TQFEBL4J7A4g7n5lMq11K/UGWhxAmvHf7n5s4mdyE/v9AtgXOMLdBwDzgLlmZon3tyWOcRRQDYzNcDmlDVAAkUgys6+b2auJp+xpZlaS+Lkv8dT9ppldm3jSHwz8JrFvRzNbZGaDE8fZbGY3m9kyM/uDmZ2YeP89Mzs/sU9vM3vBzF5P/CRXcbsJ+GLiuNcmzn+zmS0xs7+a2bcSnzczm5pY3OcPwIGt/O6dgJHAte5eA+DuM4EdwJca+MgLQP/WnFPaJgUQiRwzOxK4FDjZ3Y8lrJFxOXAscIi7H+XuRwMz3X02sBS4PPFEvq3e4ToD/+fug4BNwM8Ji/BcCPw0sc/HwJnufnzivMmawQ+AFxLHnUTImFvl7icAJwBXmVmfxLGOAAYCVwBNLSN6c60mrKMb2ac/8A9331hv+1JgUL2/q3bAOcCbTZxTpEFK5y5RdAbwWWBJosWmI+EmPx/oa2ZTgIXAMykcqxp4KvH7m8AOd99pZm8SmqgA9gGmmtmxhGB1eCPH+grwmVr9G2XAAOBU4OFEbeFDM/u/Jsrz34mg11odzeyNxO8vADMycExpYxRAJIoMuN/dr9/rDbNjCAt5jQUuAUY1c6ydvidhXJzQDERiOeLk/59rgY+AYwi1+u1NlGu8uz9dr0znNvuNWuZd4FAz27feqnKfJax1DYk+kAyfV9oYNWFJFD0HlJvZgQBmtr+ZHZYYqRRz9znADcDxif03ETqc01UG/DOxTPE3gJJGjvs08G0z2ydRrsPNrDNhFcFLE30k/wGc3oqy4O5bgPuB2xJrX2NmVwCdgKZqNyItohqIRI67v2VmNwDPmFkM2Al8F9gGzExsA0jWUO4D7jGzbcDn0zjlXcCcxE36KWBLYvtfgRoz+0viHHcQmr1eT4yGWgtcAPyO0Ln9FvAPQurtlvqrmcUTvz9K+G63ACsS298GLqxVmxJpNaVzFxGRtKgJS0RE0qIAIiIiaVEAERGRtCiAiIhIWhRAREQkLQogIiKSFgUQERFJiwKIiIik5f8DbxvNF1CctuAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -867,11 +965,11 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:15.425675Z", - "start_time": "2020-10-09T08:46:15.422157Z" + "end_time": "2020-10-11T03:38:42.394084Z", + "start_time": "2020-10-11T03:38:42.385458Z" } }, "outputs": [ @@ -897,11 +995,11 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:17.081604Z", - "start_time": "2020-10-09T08:46:17.075393Z" + "end_time": "2020-10-11T03:38:43.794429Z", + "start_time": "2020-10-11T03:38:43.789660Z" } }, "outputs": [ @@ -909,7 +1007,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Factual FLOPS on a laptop, from log fit 8.870076e+08\n" + "Factual FLOPS on a laptop, from log fit 7.934571e+09\n" ] } ], @@ -927,11 +1025,11 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 31, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:30:13.809002Z", - "start_time": "2020-10-09T08:30:09.998578Z" + "end_time": "2020-10-11T03:38:51.089545Z", + "start_time": "2020-10-11T03:38:47.401257Z" } }, "outputs": [ @@ -939,7 +1037,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "4.46 ms ± 709 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + "4.45 ms ± 487 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], @@ -955,8 +1053,8 @@ "execution_count": 32, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:19.966699Z", - "start_time": "2020-10-09T08:46:19.960673Z" + "end_time": "2020-10-11T03:38:51.102068Z", + "start_time": "2020-10-11T03:38:51.090876Z" } }, "outputs": [], @@ -983,8 +1081,8 @@ "execution_count": 33, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:46:21.142290Z", - "start_time": "2020-10-09T08:46:20.624505Z" + "end_time": "2020-10-11T03:38:51.944811Z", + "start_time": "2020-10-11T03:38:51.106891Z" } }, "outputs": [ @@ -992,8 +1090,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Simulator inefficiency: 28.295439844627968\n", - "Simulator optimality: 0.03534138382336739\n" + "Simulator inefficiency: 1.9337510525337913\n", + "Simulator optimality: 0.5171296474226614\n" ] } ], @@ -1005,11 +1103,11 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 34, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:30:13.813663Z", - "start_time": "2020-10-09T08:30:13.811189Z" + "end_time": "2020-10-11T03:38:52.758397Z", + "start_time": "2020-10-11T03:38:52.744737Z" } }, "outputs": [ @@ -1042,20 +1140,23 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 51, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T08:30:15.557628Z", - "start_time": "2020-10-09T08:30:15.552781Z" + "end_time": "2020-10-11T03:19:32.887639Z", + "start_time": "2020-10-11T03:19:32.862780Z" } }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Simulator inefficiency: 27.113991518360194\n", - "Simulator optimality: 0.03688132746234916\n" + "ename": "NameError", + "evalue": "name 'FLOPS_matmul' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m--------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Simulator inefficiency: {FLOPS_matmul/FLOP_logfit}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Simulator optimality: {FLOP_logfit/FLOPS_matmul}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'FLOPS_matmul' is not defined" ] } ], @@ -1066,24 +1167,23 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 35, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:12:23.137094Z", - "start_time": "2020-10-09T12:12:22.900853Z" + "end_time": "2020-10-11T03:39:10.751939Z", + "start_time": "2020-10-11T03:39:10.718466Z" } }, "outputs": [ { - "ename": "NameError", - "evalue": "name 'SEED' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-B'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--backend'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'numpy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-M'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--max-memory'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3e8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'-s'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'--seed'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mSEED\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mclick\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moption\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'--min-memory'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m3e6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED,\n", - "\u001b[0;31mNameError\u001b[0m: name 'SEED' is not defined" - ] + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -1098,9 +1198,16 @@ "@click.option('-B', '--backend', default='numpy')\n", "@click.option('-M', '--max-memory', default=3e8)\n", "@click.option('-s', '--seed', default=SEED)\n", + "@click.option('-O', '--ordering_algo', default='greedy'\n", + " ,help=(\"One of (greedy, tamaki, tamaki_{wait_time})\"\n", + " \"'tamki_15' means heuristic solver running for 15 seconds per graph\"\n", + " )\n", + " )\n", "@click.option('--min-memory', default=3e6)\n", "def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED,\n", - " max_memory=2e8, min_memory=1e6):\n", + " max_memory=2e8, min_memory=1e6,\n", + " ordering_algo='greedy', tamaki_time=10\n", + " ):\n", " \"\"\"\n", " Plots times and estimated FLOP for each step of several QAOA energy computation contractions.\n", " \n", @@ -1114,12 +1221,13 @@ " p = 3\n", " N = 1000\n", " \n", - " edges_to_try = 30\n", + " edges_to_try = 20\n", " estimators, maxmems = ex.map_variables(\n", " ('step_flops', 'max_mem'),\n", " d=ds,\n", " edge_idx=range(edges_to_try), n=[N], p=[p],\n", " seed=[seed],\n", + " ordering_algo=[ordering_algo],\n", " )\n", " \n", " \n", @@ -1130,9 +1238,10 @@ " estimators = estimators.T[selector]\n", " \n", " times = ex.map_variable('step_sim_time', d=ds,\n", - " edge_idx=edge_indices, n=[N], p=[p],\n", - " seed=[seed],\n", - " backend=[backend]\n", + " edge_idx=edge_indices, n=[N], p=[p]\n", + " ,seed=[seed]\n", + " ,backend=[backend]\n", + " ,ordering_algo=[ordering_algo]\n", " )\n", " \n", " est_flat = np.concatenate(estimators.T.flatten())\n", @@ -1155,11 +1264,11 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 36, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:13:45.402940Z", - "start_time": "2020-10-09T11:13:42.801460Z" + "end_time": "2020-10-11T03:39:58.588851Z", + "start_time": "2020-10-11T03:39:12.389753Z" }, "scrolled": false }, @@ -1167,12 +1276,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "71f8839f8b234ce2a1b95762f9e7558e", + "model_id": "00c65522a7cd40e4999f31e3da7ba01f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=60.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" ] }, "metadata": {}, @@ -1183,20 +1292,28 @@ "output_type": "stream", "text": [ "\n", - "Selected edges [ 0 2 3 4 10 13 16 28]\n", + "Selected edges [ 0 2 3 4 10 13 16]\n", "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", - " 3145728 83886080 2621440 14680064 13631488 5767168 4194304 7340032]\n" + " 3145728 83886080 2621440 14680064 13631488 5767168]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dali/side-projects-hobby/cartesian_explorer/cartesian_explorer/ExplorerBasic.py:72: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", + " result = np.array(list(tqdm(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fa0707d2e4e34d949272f8d090141867", + "model_id": "6a05b71100b745a3a8b1674130988427", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" ] }, "metadata": {}, @@ -1207,24 +1324,25 @@ "output_type": "stream", "text": [ "\n", - "Lin fit: [2.25974400e-08 2.21825219e-03]\n", - "Log fit: [ 1.26078658 -22.31852001]\n", + "Lin fit: [2.11670890e-08 6.72474995e-03]\n", + "Log fit: [ 1.33334429 -23.18701601]\n", + "Slope-1 log fit: [-18.95265756]\n", "===Results===\n", - "Total time: 10.318\n", - "Simulator fitted flops: 4.9296 G\n", - "Matmul flops: 21.564 G\n", - "Simulator optimality: 0.2286069959285035\n" + "Total time: 9.8551\n", + "Simulator fitted flops: 11.749 G\n", + "Matmul flops: 28.388 G\n", + "Simulator optimality: 0.41387031429035953\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1577a2799ffd4daba683d5d71cda19a5", + "model_id": "fbf71d18456449bc8d67fa0bdb46cee5", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=60.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=40.0), HTML(value='')))" ] }, "metadata": {}, @@ -1235,9 +1353,9 @@ "output_type": "stream", "text": [ "\n", - "Selected edges [ 0 2 3 4 10 13 16 28]\n", + "Selected edges [ 0 2 3 4 10 13 16]\n", "Estimated memories [27262976 1310720 7864320 37748736 11534336 16777216 46137344 436207616\n", - " 3145728 83886080 2621440 14680064 13631488 5767168 4194304 7340032]\n" + " 3145728 83886080 2621440 14680064 13631488 5767168]\n" ] }, { @@ -1251,12 +1369,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "16ea2f0424af43439929d0db8b503e75", + "model_id": "7894f510be9e4a9fbc9687a923902b5e", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=16.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=14.0), HTML(value='')))" ] }, "metadata": {}, @@ -1267,18 +1385,19 @@ "output_type": "stream", "text": [ "\n", - "Lin fit: [ 2.34506798e-08 -3.58409871e-03]\n", - "Log fit: [ 1.26797606 -22.39941682]\n", + "Lin fit: [ 1.61124218e-08 -1.83452513e-03]\n", + "Log fit: [ 1.25167296 -22.48619316]\n", + "Slope-1 log fit: [-19.28927764]\n", "===Results===\n", - "Total time: 9.2619\n", - "Simulator fitted flops: 5.3449 G\n", - "Matmul flops: 21.523 G\n", - "Simulator optimality: 0.24834176328456667\n" + "Total time: 6.3469\n", + "Simulator fitted flops: 5.8295 G\n", + "Matmul flops: 23.118 G\n", + "Simulator optimality: 0.2521579552905311\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABZU0lEQVR4nO2deXyU1fWHnzuThewJCYuswQQFBEGNS9Uq0mqpoFagLYqigFirBBf8CS5V3LUVVALYyipKBQtoFSxuqFXrAlZkL4uERQwkIfueee/vj3dmmJnMTCbLZBnO8/lM8b3zLncu9J733nPO9yitNYIgCILgC0trd0AQBEFo24ihEARBEPwihkIQBEHwixgKQRAEwS9iKARBEAS/iKEQBEEQ/BLW2h0IBikpKTo1NbW1uyEIgtCu+Pbbb/O01p0820PKUCilrgKuSk9PZ9OmTa3dHUEQhHaFUuqAt/aQ2nrSWr+jtb41ISGhtbsiCIIQMoSUoVBKXaWUermoqKi1uyIIghAyhJShkBWFIAhC8xNShkIQBEFofkLKUMjWkyAIQvMTUoZCtp4EQRCan5AyFIIgCCcrtbWwbBnYbM1/75AyFLL1JAjCycgXX8A558BNN8Hatc1//5AyFLL1JAjCyUReHtxyC1x8MezcabYp1fzPCSlDIQiCcDJgGLBoEZx+OixZYrYlJcHy5XDVVc3/vJAyFLL1JAhCqLN1K/z85+ZKorgYtIapU2H3brj+ellR1ItsPQmCEKqUlMC0aXDWWfDNN2bbOefAt9/Ciy9CMKe9kBIFFARBCDW0hjVr4M474ccfzRVDQgL85S8wcSJYWuB1P6RWFIIgCKHEvn1w5ZUwZgwcO2a2TZwIe/aYW08tYSQgxAyF+CgEQQgFqqrg8cfhjDPggw/Mtv794T//gYULISWlZfsTUoZCfBSCILR3PvwQBg6Ehx+Gmhro0AFeeMH0RfzsZ63Tp5AyFIIgCO2VI0fguuvg8svhgL180G9/a0Yz3XknhLWiR1mc2YIgCK1IbS3Mnw8PPgjl5WZbaiq89BL84het2jUnYigEQRBaiW++gT/8ATZvBqvVXDU8/DDcey9ERrZ2704QUltP4swWBKE9UFAAt90GF1wA27aZbcOHw65d5sqiLRkJCDFDIc5sQRDaMlqbCq99+8LLL5vHp5wC//ynKebXp09r99A7IWUoBEFou2it/R6HOtu3w6WXmgqvhYXmVtMDD5iriKuvbu3e+UcMhSCcpLTkxJ2/YjF5i7Ocz9Bak7c4i/wVi4P2zLZCWRlMnw6DB5t5EACXXGJqNj35JERHt27/AkEMhSCchLTkxK21xigrpWjtKucz8xZnUbR2FUZZaUivLP75T+jXD/78Z7OgUHIyvP46fPSR2d5ekKgnQTjJcJ24AVImZjon7oSRY9Bao5pRglQpRcrETACK1q5yPjdh5BhSJmY267PaCtnZpqLrO++YW0xKmbkQjz4K8fGt3buGo0LRmmdkZOhNmza1djcEoc3i+lbvINgTt9aafaMudR6nrfk05IxEdTXMmgWPPWb+t2HA+efDX/8KQ4a0du/qRyn1rdY6w7Ndtp4E4STE9S3fQbCNRN7iLLc2162vUODjj2HQINNBXVlprhwWLDD9Eu3BSPgjpAyF5FEIQmC05MTtunpJGDmGtDWfkjByjJvPoj1z9CjceCMMG2aqvYKp7Lp3b8sqvAaTEPgJJ5A8CkGon5aeuJVSWGJi3ba2UiZmkjByDJaY2Ha7/WSzmdIbffuaJUgBBgwwVxALFpiO61BBnNmCcJLha+IGgjZxJ4+diGEYznsrpUieMAVLO33d/vZbU3rj229NR3V0tBnqescdrSveFyxC8CcJglAfyWMnukU3OYxFsN7uHz1USGGtwezUJJRSaK2ZdqCQxDALj/RMDMozm4Jn5JfjuLAQHnrIXEk4bNzvfgfPP29mWIcqYigE4STF0ygE05FdWGswJ6cEgNmpSdyTXcCcnBKmdo1r9nDcpuLNqN29v4BDayP57IkYcnPN8/r0MaOZ2orCazARQyEIQlBRSjE7NQmAOTklToMxtWucczJuK3gzajd/VMSy6VHw3ygsFk1kpOLhh2HatLYn3hcsxFAIghB0HMbCMQEDbc5IgLtRezG7lBdmWmF5AkqDBkaMUMyZY9aLOJlon54kQRDaFVpr7skucGu7J7ugTYbGKqX4xfYk9HXdYFkC2BQ9usPbb5ufk81IgBgKQRCCjMNIOHwStRf0YmrXOObklLQ5Y3HwIFx7reaqqxQcs4JVw/girl5fwMiRbaefLU2b33pSSsUA84Fq4BOt9fJW7pIgCA1AKUVimMXNJ+HY3kkMs7SJ7aeaGnjhBXj4YU1lldnW4/xa3l8cxssdbMzJKcH2/nbmX3Fxm+hvS9MqhkIptRgYCRzTWg90aR8OvAhYgYVa62eAUcAqrfU7SqmVgBgKQWhnPNIzsU44blvxUXz2Gdx6q1kXAiAqvprzRn3Gyot20LlfJvcvfo3C8kjieqe2aj9bk9baeloKDHdtUEpZgXnAr4EBwHVKqQFAD+CQ/TRbC/ZREIRmpKXCcQMlNxcmTDBrQ+zebeZF3HWX4qeDEbxx8Q5K1q1i36hLKV67imejq3j2qitavc+tRasYCq31v4HjHs3nAXu11j9orauBFcA1wGFMYwHiUxEEoYkYhimxkZ4Or7xitmVkwH//aybOJSQoOnkIJnYKUTn0QGlLE293TqwcwDQQ3YE1wGil1EvAO74uVkrdqpTapJTalOvIiBEEwScnY2nSzZvhggvMrabiYlPhdeFC+PJLswIdnBxKtw2lLRkKr2ity7TWE7TWf/TnyNZav6y1ztBaZ3Tq1KkluygI7Y5HDxW6RRw5IpMePVTYuh0LEsXFZuGgs8829ZnAVHbdtw8mTTohxxHqSreNpS1FPf0I9HQ57mFvCxil1FXAVenp6c3ZL0EIKdqbpEZT0Br+8Q/IzIRjx8y2M84wt54uuKDu+a0hmNgeaLUKd0qpVGCtI+pJKRUG7AZ+gWkgNgLXa623N/TeUuFOEPzjmtvgoC1KajSFPXvg9tvhww9PKLw+/TT88Y/1K7z6EgUMddpUhTul1OvAl8DpSqnDSqlJWutaYArwHrATeKOhRkIKFwlCYLjmMjgIFSNRWQkzZ5orh48+MtvGjjUNR2ZmYDLgbS1Cq7WRmtmCcBISqiuK994z60QcOGAep6fDyy/DZZe1br/aC21qRREsZEUhCPXTniQ1AuXHH2HMGBg+3JThiIgwt5m2bxcj0RyElKGQUqiCUD++JDWmdo1rUUmN5gjPra01cx/69oU1a8y2kSPNBLoZM0yDITSdthT1JAhCC9HakhreigPdk13QoIp3//kPTJ4MO3aYx927m4WERo4MXr9PVkJqRSFbT4IQOPUZhWBtQbmG5zq2uhxbYYW1Rr3Pzc83cyAuugh27jSd0w8+aK4ixEgEB3FmC4JA/orFGGWlztwBR+KZJSaW5LETm/15jXGmGwYsXQr33AOOd8GhQ81VxOmnN3sXT0pOCme2IAgNR2uNUVbqln3syE42ykqDsrJoaHju1q1w4YVmFnVREaSkwIoVsGGDdyNxMsqTBJOQ8lFIZrYgNBzX7OOitasoWrsKwC07ubnxVfHO01iUlsIjj5i1IrQ2E+fuvBMefdTUafJGc/g/BHdCakUhUU+C0DiUUiRPmOLWljxhStCMxO3vf+41PPf29z9Ha43WZhRTejrMnm1uO2VkmKJ+zz/v20g01f8heCekVhSCIDSOmQcLyNnyHdMABWjg9nc/oeuZZzGzV5Lfaw3DwGKx+Dz2RlxVOeM3ref+6CqYmMn9G04UB/rhB1N64/33zXPj403jcPPNJ8T7fOG6pTUnp8TpAwmFZMLWJKRWFIIgNBzDMMjZ8h0LktOYNWkmp67+hFmTZrIgOY2cLd9hGIbPa6f/62Nuf/cT5zmGYXD7u58w/V8f+7xGKcWzV13Bs9FVFK89URzosfBa4r6/gv79FR98YJ47aRL88ANMnFi/kXC9f6jKk7QWYigE4STHYrHwRGk2k/P3sSA5jfCvD7EgOY3J+ft4ojTb5+rAMAyKbJoFyWlOY3H7u5+wIDmNIpv2a2CUci8O9J/cs7nk2dt5+GFFTQ0MGABffWXWikhObtjv8eX/kG2nxhNS4bEuzuzJe/bsae3uCEK7wjAMwr8+UTus5vye9W4huRoHB5Pz9zH/yqF+r3VEVu1Z9TFPbM3kXz8OAzTR0fDMM4rbbwerteG/wVOexFNCXVYW/jkpwmPFmS0IjUNrzbQDhW5t0w4U1vsWbrFYmH/lULe2QIzE0YVzyXrR4Jcb3uBfP5piTCO7f8jXjy9iyhTdKCMBbUeeJNQQZ7YgnOT4ewsH//v7jhUFLiuK29/9xK+x2LhRcfNj49h5uCMAaWnw8suaQft3NktxoNaWJwlFQmpFIQhCw2nsW7jrttPk/H3UnN/T6edwdXA7KCgwa1VfcAHs+rEjERGaZ54xtZqGDTNzOZorC1zqSTQvsqIQBKFRb+EWi4UEq3LzScy/cii8+wkJVuVcUWgNr71mJsoV2H3MI0bA/PmKXr1O3E8m87aLOLMFQWgS/vIoduwwBfy+/NL8rls3s5DQiBGt0VOhPsSZLQhCUPD0RVgsFsrK4L77YNAg00hYrfDQQ7B3b8sYCdF6al5k60kQhIBw3Zryduzg7bfNcqQ5Oebx0KHmKqJv35bpZ0sr4Z4MhNSKQhCE4JC/YrFTWRZO5EHkr1jsPCc7G379a7jmGtNIJCfDypWmwmvfvi3zlt8aSrgnA7KiEATBL66TL0DKxEzn5JswcgxVVZrZsxUzZ0J1tanwOnUqPP44xMWZ92gpRdfWUMI9GRBDIQiCX/xNvttOzeSWAYoffjDPzciAxYtN34QDV0VXoE62tK8trKb219FPQIxEE5GtJ0EQ6sXVWADkVSYx5f1Mhg0zjUR8vGkgvv7a3Ug4rnXkZczJKSHsq4NBldRwbDe54rptJjSckDIUUjNbEIKDY/K1aQuv/fAbhn2wgjfeANBMnAj798OECb4VXltK0dXVJ5Ewcgxpaz4lYeQYN5+F0HBCylBIeKwgND+OyfeL17Zw7aZVPLrlHipsUaTHZrP+gTdYuFDTsWP992gJRVelFJaYWDefRMrETBJGjmkWeZCTFfFRCILgl+JixX2vX84rn2SigagoePZZzW87rCU8LqbeybcpWlKNIXnsxDpZ5uKjaBpiKARB8IrW8PrrcMcdUFjYH4Df/Q7mzIEuXRRaB1YqVSlFxK7vmWzTzDp/KEopZvVOpGL7ZiIKFarPZc3ed9F6al7EUAiCUIf//c+sLvfFF+Zxnz6wZAlceumJcwKdfLXW3HtkK4VrV5F/1NwSyl8yl2lrV5E4cgxaD5WJvI0jhkIQ2gH+9JQCzZgOhPJyM//hL38Bmw3Cw+HRR2HaNIiIaFzffYXXJkpuQ7tBDIUgtHEu25ZDsc1g46CuWCwWDMPg3K05xFstDE3o0GyJbOvWmQJ+DumNK6+El17CTeG1sUhuQ/smpKKeBCHUMAyDYpvB5vIazt2a4zQSm8trKLIZFNTYmJNT4owgcjiJC2uNgCOKDh0yjcLIkaaROOUU02isW9c8RgIkt6G9IysKQWjDWCwWNg7q6jQOjprWQ6LD2TioK0oplFLMySlxRhEFmshWUwOzZ8PDD5vSG1YrzJgBDz5oRjY1F565Da4SICAri/aAGApBaOM4jIXDSADObSgww0sdRsJxXN/E+/nncNNNOKU3LrkEFi4MjsKrr9wGQHIb2glt3lAopU4FHgQStNZjWrs/gtDSOLabXDl3a45zReEtkc2XscjLMyvN/f3v5nHHjvC3v8Ho0aaYX7CQ3Ib2TVB9FEqpxUqpY0qpbR7tw5VS/1NK7VVKzfB3D631D1rrScHspyC0VVx9EkOiw6k5vydDosPZXF5DxtYc7t5/3JnIVntBL6eekmfWs2GYBiE11TQSDoXX7GwYMya4RsKB5Da0X4K9olgKzAWWORqUUlZgHnA5cBjYqJR6G7ACT3tcP1FrfSzIfRSENovFYiHeanH6JFx9FvFWC0nhVjefhENPKTHM4pyIN282t5m2bDHvedZZ8MordcX7BMEXQTUUWut/K6VSPZrPA/ZqrX8AUEqtAK7RWj8NjGzss5RStwK3AvRqrlAN4aSnOXMUGsvHA7u65U04jIW3PAqHsVBKUVwM999vhrhqbdaGePFFuPnmlllBCKFDa4THdgcOuRwftrd5RSmVrJT6K3CWUup+X+dprV/WWmdorTM6derUfL0VGk1r1C1uzmcGUtWtpfBWl9pBXcOlWLnS3GaaP980EhMnwoEDpsKrGAmhobT5PAqtdb7W+jatdZp91eETkRlvO7TGJNuczwykpGZrGML62LMHfv5zGDsWCgqgXz/45htYtAiSkuq/XhC80RqG4kegp8txD3tbkxGZ8bZBa9Qtbu5nuspTF61dxb5Rl7rlARxfuaTNrDYAKivN/If+/U19pg4dICsLtm2Dc89tlS4JIURrhMduBPoqpfpgGoixwPXNcWOl1FXAVenp6c1xO6GReGr7FK5dheJE3eKWeGZz1Er2JTsB+K0h3dJ+jPfeM/0ODumNMWNg7lzo0qXFuiCEOCqYy2Wl1OvAUCAFOAo8orVepJS6EngBM9Jpsdb6yeZ8bkZGht60aVNz3lJoBFpr7pr1AsWR0TywYTnpaz4FaLQWkbf7ezqatdb8MHqos+3U1Z/U2d9vyP1dM4jB3dj5+q6ljMSPP8Ktt8K775rHvXrBq6+ayXOC0BiUUt9qrTM82xv0/yClVHRDztdaX6e1PkVrHa617qG1XmRvf1drfZrd79CsRkJoG2ityV2cRXFkNMsyhvPUsHHkLs5qlBaRN7z5I6a//T63Ll+N464auP3dT5h5sMDnffz132dJzUWmZpHn6qiljERtLTz3HJx6qmkkwsPh6adh714xEkJwCMhQKKUuVErtAHbZjwcrpeYHtWeNQJzZbQPHJFu8dhXPRlcxtWscyzKGc8qAa9yqnDV2UvXmj8hdlEXuwWyWpJ/Hc5NmcurqT5g1aSYLktPI2fIdhmE06Bm+ZCci+/ancvf2VhO5++or00H9f/9n6jP96lewb5+p0RQeHtRHCycxAW09KaW+BsYAb2utz7K3bdNaDwxy/xqFbD21PvkrFmOUlTrfusO+Ouj8rvaCXk1+8/a2LWTpmMKTl/yepadd4GybsPsrHtnzOT2fyPJ2m4Ce4+iraZDmULRuNZF90qnav7fOn8GqsZCfb0pvLF9uHnfpYhYS+vWvm/UxwkmOr62ngJ3ZWutDHv/4bc3RMSE0cWj7AA3SIgoUpRTJE6a4GYqYn13KjLfmsfS+E4Zi+lvz6NAEB7PrNUop5l8xnpyug4jY9T0lfc7n/g3LmT1pJl0GDeHo1s0kWBXPNqORMAxYvBjuugvKykyF1/vugz/9qXkVXgXBH4EaikNKqQsBrZQKB+4EdgavW41Dop7aHg6fhGO7yXEMgamc+mLmwQJytnzHNEBh+iMe7jqIb6e4b9LPmjST+Vc2T6nNvBWLyYlNZUFyGv3TrezsksrGnv3YmZzKkMJKNienMbVrXLNFPW3dCjfccEJ648ILTekN+ecttDSBOrNvA+7AzKD+ERhiP25TSB5F20IpRWKYpY4W0dSucW5aRA3FMAxytnzHguQ0Zk2aSZ9VH/PcpJksTE7ju+iO3LhpPbv+fCPjN61nQXIa0w4UNtl3oLVGl5Vyz6KZTNj9FTu7pAI4/9xcXkNml9gmr5QASkthyhQYPNg0EomJsHKlKQ3emkaiLSYYCi1DQCsKrXUeMC7IfRFCkEd6JvrUImosFouFJ0qzAViQnMaCbw5Dchpnlx/nzCN7mbFhOQp4YMNyIvv0JaH7WU1ynDuKA827/EYOhXVh+lvzWOKyveXKY4eLGh32qzWsXm2GvBYUmFIbU6aYEU0xMa2rOfXoocJmK7kqtD8CdWb3ATKBVFyMi9b66qD1rBG4bD1N3rNnT2t356Qn2IJ6NpuNiG8OO4+PbHuL4ndXo4D4EaNRKArXrWq0g9l1cgS4e/9xso6WklxaSH5sotdrzouJ4D/2OhEN4YcfzKS5zz4zjwcPhtdeg4ED3QMDHJN03uIsLDGxJI+d2KDnNAbXEqueW4hNjWAT2hZNdWa/BSwC3gEaFmfYgmit3wHeycjImNzafTnZCfbkprXm3oPuYdAzKjvwAKaR6DRpqtmoGldFTWtNYa3h5k9x4MtIAFQZRoMMYlUVPP44PPMM2GwQE2NKbzgUXl1DgaF1ssBd5csbU3JVaP8EaigqtdZzgtoTIWQI9uTm+YY7q3cik+YtYFnGcAAWTZzsvH9T5Du8TY5nHtnLlm7eHQVnVBTyy8LjWIb4FEN248MPYfx4+Okn8/jGG00ZcFfxvmBIkzQGx3g0tOSqEBoE6sx+USn1iFLqZ0qpsx2foPZMaLfUJ6jXHPd3OMln9U4kf8lcHtiwnPGb1hNfVU7+krlOR2tTQ3BdVxIA50X6vt/Z27/i3iNb63Xy5uTAyJFw+eWmkUhPNxVely3zrvDqaiwctHQZUYdxdsWzip4QugRqKAYBk4FngFn2z3PB6lRjkczstoOvyQ1oFpXVR3omOo1E0VrTD7Hojsk8lGR1y9huCt4mx4XJaUzpHENml9g6579qlyrxhc0Gs2ebdSLWrYPISHjhBdi1y7/Ca2tlgbs+33UF56/kqhCaBLr19FvgVK11dTA701TER9F2cGQxu5K7aA4KRdG6wLag6nOGWywWrzIb0Di/hOezPR22F23L4evSapRF8XVJFQD9jmbzi73/pTgymlczhvN1iff/i2zcCNddZ8ptAPzmN2YN686d6++H67ad6zYetMzKwleYM9CkMGeh/RCoodgGJAJSv1qoF6fW07rVzuijonWrKF63GoCEEfXvrwfqDHdkgLuG3zbH5OltcvxiYFdnSOivEqM48+Aupr0yEwtmwl9kn76c4hGKW1AAmZknpDd69DCjmS69NPB+BMsYNoRghDkL7YdADUUisEsptRGocjS2tfBYoW3gObkBFK1zqekwyf9E3hRnuLeksMZOZr4mRzC3fgrXngi9zVucxb2LZpI4cgx6YiagWLrUNBJlZRAWBg8/3DjxvmAZw4bi+TwxEicPgRqKR4LaCyHkcNV68ra/7m+ia0ikj+vK47HDRRTWGty/4TWsMbF0/P2EJieF+ZocLTGxbvkZrm/5u3YprrsOvv/evOYXvzAF/Hr2RBDaJYFmZn8a7I40B6L11PZo7P66Y/J1VMdznO+KYRjOlYcGCoaNIyunlMLySJ6l1M3H0Nz5Bt7e8qPHZjJjhmL+OFPMLyUFli6FESOa9qzWTrgTBL+GQin1udb6YqVUCeC6pleA1lrHB7V3DUSc2W2Lpuyva62Z/s775A4bxwN2SY7cxVk8NWwcSWFWpnyxBqOslOQJUwBz5XHH2lUUDRvHsozhLAMIcuaw6z3fegsmTlQUFIDFYtaLeOwxs3Z1UwhkG86zLy0t7yGEPkEthdpaSD2KtkVDpTwc1fGml0eyLGM4mV1jeWDDcufx5OKDPHb4O4rtk2XyhCnO8qca6Hffq857NUftC38cOGAmyjmkN847z3RcN+ei1l9J1uMrl8hqQ2g2fEl4BFrh7tVA2gTBGw11giqlsETHMHP/14zftJ6snFJOGXANyzKGM37Teh47/B0pE6Y4E/pcjYRnHkOw4vyrq03ndHq6aSQSEkyF16++an6FV385KZ6V/hwGxSgrlfwGodkINOHuDNcDpVQYcE7zd0cQTFKum0TP5xbybHSVW/uz0VV0mpiJxWJxbjtp+2fe7DedxuSnHf8MWlLYxx+bSXOPP24m0d16Kxw+DL/9rSYYixdfCXeA3wx42X4Smgu/hkIpdb/dP3GmUqrY/ikBjgL/bJEeCictSimeHnaDW5vjWGtN/pK5ZF10rXMVEbF1E5ldYono05dZ3QY1S+0LV44dg6uugmHDTOmNjn1r2bJF87e/mTLg92QX8OihwiY/xxXPhLu0NZ86DYOrsXBFjITQ3Pg1FFrrp7XWccBftNbx9k+c1jpZa31/C/VROAlxzYwe71KIaE5OCXdnHyd3cRYFa1dR1W8wyzKGM2vSTG5Z8iQVO75nYXIa1f0GA6ZwXVPrJdhs8Pzz0KsXrF0L0dGaS+/cTcHSH1kUU+DW15wdptZTcxX58RUQkDByDJYYU0akNeU9hJODgJ3ZSqnuQG/c61H8O0j9ahLizG4bNKUehTPq6UC2c7vJ4eDu1DsVFR5BkU3TZdAQ1hZWsrm8xnntkOhwrkqKYmavpAY/15Nvv4Xf//6E9Mb118PcuZqaNSec7Q7Gb1rPs9FVzL/8Rops2muRn4d7JDRqTLyNJfgOP5btJ6ExNNWZ/QzwBfAQ8H/2z73N2sNmQEQBWxfXl45HDxVyT3YBhmE4v7snu4CZBwt8Xe6GUorp5T86jYRSik4TM3k2uor7yn+kut9gFiSn1TESYJYlLbJp55t9Y0QIi4rMetUZGaaROPVUU+H1tdc0SUknnO2uzNz/NSo6hiKbdvONOFYb7xVWcPf+440aE28BAfWtNsRICM1FoBXu/gecqbWuqvfkNoCsKFoe16QwwDk5Ttj7DS+PG820A4XMySlhcv4+nijNJiXA0E1fqxLXCdiT/kez+Sj/ezo34g1ba9ykNyIizFKkd94JTxwxK97N6p1I3pK53FceyateVhQpE6Y4f68DR9Jf1tFShkSHs3FQV+c5niughhLsSoLCyYOvFUWgEh4/AOG46DwJggNvSWEzPnqVwooOLMkYzpKvDwEwOX8f9yyaiW5A8SJfobVKKWb1TvRqKHZ2SWXGoV08MOpSFIEX+dm1y9xm2rLFPB4xAhYvNhVePSveGZddz6tHywDTQGhgWcZwErrG8ryPIj9aaz4rqWJzeQ3h9jEZEh3O5vIaLonv0OgJXjSYhGATqKEoBzYrpT7CXRRwalB6JbQrfGkzpdz8oNt59yyayexJM+l65lnMbOS+vONYa820A4VerxsSHU5cVbmb9Ie/ybOiAu67D+bPN6U3TjkFXn/dXeHVVRDQ1QCM37SeBzaY0rAKiOidiu59eZ2+3ZNdwOzUJL4Z2MWtzvfm8hopKSq0eQLNo3gbeBz4D/Cty0cQgLpJYQawIXWQ2zmjbnqcBclp5Gz5jrx6fAYOH4dja9Sx1fTooUK3bach0aYUq+ufm8trKImMdmrO+IsC+uc/oXt3mDvXlN6YOdPMtvYmA+5qLBw45EUUpo/ivrIfnVtKnkV+/vj+59z69zV17nvXS/dzfOUSv+MhCK1JoKKArwS7I0L7xjUpTANPDxvH5vIaBhT8xI6kUwBzS2hAwU/m9tMI39tPnts8s1OT3AT+AGetiASr4pL4Dszqnci0A4WEbd3ImQey6dQ7lfQ1nzp9FBqcTnGAgwc148YpPv/cfOYll5jSG927+1/FeFa8mzVpJvOvHOqstKfPGEKCVdUp8qPRfFEey3/Tz6P/0Wx2dkl13mPEhdfzYd5m8S0IbZaADIVSaj/uooAAaK1PbfYeCe0O16SwiNR0qrP3El9VzvhN67l/w3L6u2gvXbbjSzqkpmNog+Mrl3jVI/Lc5nEYDNfJ17VWhOPP2alJHP/6R2zRVXS66grnKucvnU6nJDKa+UBNDTz6qOapZ0DboGNHs1b1iBGmQz7Ph26SQ7LcYawe/PotHopNZUFyGlEHCpllzxK3xMQys1cSNpvN3Z/SK5HHrRaq9x5kW5dU59iMuulxdnZJ5dnBg5gd5L8nQWgsgfooXL3gHTBLo3Zs/u4I7RHXMM3kCVPIW5xF5rrVGJgrC1dKIqPR4eGUvLvGbxEi5cMh7Hqu60Ts+NNT/hugZtC5vJxTQt7KEj6/O46cHAVKM2RCBf+Z14GoKFWvSivgXvGuz0TmGwZRBwpJDLNgsVicBmb6vz6moFbz1xFDsVgsGIbBH9/9lKQwxW8GDObst//h3LJa88qfeGn2W1JSVGjTNFo91h5G1Sb1ntpbeGyohDe6vuHvHXUpT9klvx0OX9fjZ6Iq6Txpqt9KdZ7hr4E6fT3H79gxgwvG1rL/4wiz4fQqbnqpgiVD6ya/+VJpdd1+8vd3ZRgGGe98xvedU5mUt4+/jhjKbes+YVFKGoOPZfOvY5spfnc1rr8gbsRov2MhCC1FUxPuznb5ZCilbiPw1UiTUUr9Rim1QCm1Uil1RUs9tyXIX7HY6Wz1TBBrLRmGxspPOIxE7qI5KCC+qpzBR/aigYjUdB7YsJzxm9azuVs6szr18/t8120eV4dwfQJ/jx4q5O79x80VggHPP6/p1lOZRiLagEePoRbn1DESjv7Xp5tUXyiq1pqzCnMAWJSSRvjXh1iUkgbAkJz9TiMRP2I0CSPMlUrJutXkLpojshtCmyXQyX6Wy3/XAtmY20/1opRaDIwEjmmtB7q0DwdeBKzAQq31M77uobV+C3hLKZUEPAe8H2C/2zSu2x1/6XQ6NYPO5f4Nr1G8dhXxI8c0uYxnY/rjWt/AQaD1DQzDMN/I160G4IFEKw+UH2dpxnAU8EC2aTS2dEvnnL3f+N12ctvmcfFZ+Nui0VqzvqCCb8qqObbdytd3JfDDDwrQRF1dSuWdx1FR5mTsCFf1XB3keugm5S7OcnOC14fVauXlG8bAa6tYetoFzvabd3/F03G1VPXtT+RpA+g06URkeeXu7Vhj42RFIbRZAo16usz1WCllBcYCuwO4fCkwF8yiYy7XzwMuBw4DG5VSb2Majac9rp+otT5m/++H7NeFBI43WA3kHshmWad+ZhnPkWN4etgNQSvj6Y38FYsxSkvRaIrXrTafiaJy93aq9uz0608A802+sNYgvPuZfHTLuZyjK4keMJjuFui/Y49Zdc6exXxL/j6mrckiv/onnzkOrs5qOOGzqG8cbGUKY2Yyr78fAyjoVQ1P5VF1ag132g2P65aWqx7T9HfeJ9c+/m7aUu+8z7N253ggKKWwduzk1mbt2ImUEb9FXTfJeQ5AyqRMt2NBaIvUVwo1HrgD6I4pK/6h/XgasAVYXt8DtNb/VkqlejSfB+zVWv9gf84K4Bqt9dOYqw/PfijgGeBfWuv/1vfM9oRDw+iBUWbgfrDLeHqGezowykopWreK+CtHEz9iNMX2VQGY2yT+ktZcw1kHdzud78tr2AxwtJTBUWHstIfHOpj/60u5g5kkWBU+l5E0LOPYIb2x6fbOUKkgUsOdx1HXlKIURBu1zOqd6Hd1UhIZzbKM4SR2jWM2pqT5spwSbi0+6KeX7hiG4fRJuLIoJQ3WfeJ0cAfymwShrVDfiuJVoAD4EpgMPIiZW3St1npzE57bHTjkcnwYON/P+ZnAL4EEpVS61vqvnicopW4FbgXo1atXE7rWsjh8EgozectVjbS5jYRDjyl5whQK3liKUVqKoQ2ssXEkT5hCyecfUfzu6jrXWWP8b4v4yloG+L6its755247yvfJaUztGkeufVvLVfupoSuoPXtg9GjYutV+zWXlqBn5qLgThrB31YmKb95WJ0op5l9xMR3sqw23kNwLLg64P1prNtmsgLnd9PINY7jVvg21yWYVP4TQLqnPUJyqtR4EoJRaCPwE9NJaVwa9Zy5orecAc+o552XgZTCjnlqiX03FNcom3r7dhMtE620fvSnPcvhDKrZtpsOAwU6jEN47jfL/fo1R6F3FtGzj5yT9/manYqk3vIWz+uL78hqGRIczY8NrPFlgo6pLKvMNA4vF4ibJXZ9vprIS7r3XlN7QGnr21MQ/lcvOtIo658Ymp9T7Jh9ISG59UU9Wq5XLio5wVlEOL98wxs1nkYiB1Wqtd3wEoa1Rn6Fw6jdrrW1KqcPNZCR+BHq6HPewtzUJpdRVwFXpzV20OEg48g/iPXwS9294jUd6nMUczJVRcxgLpRTJE6ZQsX0z1fv3Up291/ldzQF7sYWwcKh1l+wOT02jev9e+6pHYYn17tT2lrXsj4s+WEnxF29SOiqTpfakNVf/wa3FB9E9fL/Jv/023HwzFBRAeLhZlnTaNE2v76rMcAsPDlYb9a5UvP0GV2PtqpDrmZDnOiazbroOm83mNAoOYyFGQmiv1BceO1i5l0B1lEQtUUoVN+G5G4G+Sqk+SqkITMf42024HwBa63e01rcmJCQ09VYtRvLYiXSamOkW5dNpYibzr7i4Wct4AlgsFqIzLvL5va6tMXW1Hcf2/4m7chRVu3dQtG4VRllpne0T13DWwXbNpfpwaDGFJSVz5pG9zMkpIeyrg86Kdo8e/s7rdYcPw8UXwzXXmEbiiivgxx9h+nSwWhXdyrwbq25lBc7J3bPvnr/BW0iuYRjOFZkjnNmxGvQ2Jp5GQYyE0J7xu6LQWjf5X7dS6nVgKJCilDoMPKK1XqSUmgK8hxnptFhrvb0ZntWuVhQOHJIUhmG4GYVZvRPdtkuagiNHo3zTF16/z7roWoojo3m6QwWl765BA08NG0d8VTmZ75pCdr7kuo+vXEJ4VHemnnkuCVZFpILSvFx2RCVybnQ41Vq7+Sr6H81mWcZwNvbsx87kVCbl72OLy/2ecSlW5KC2Fh59FJ55xvzvzp3h73+HX/zixHU2m41DtRoi6/6+Q7Wa3NcXo8tLncltWmuOLZpDWGwcyWMn+g3JdWReg7tCrlSSE04GGp2Z3ZZpj5nZTclfqA/P0FdLXAJGyYkqgA6j4Mya7lDJM7+80fl275CbSFvzqdcEs8PTb6Nyz07i7RnGxxbN4YlCg/IuPVgwbjS/2HGUIpvBOYf+x7dVmu+7nTDkZx7Ziy0phe1Ric42z0I+n34KY8dCTg5YrfB//wePPWZuObliGAY/W/0h+5JOoSAm3tmeVFZMWsFPXFRyjIKyMmdW+LFFc5hR0YGkmBhmTRjnphvl+vs8j/eNOiEt621MBKG90qTM7PaCaoelUPNXLCZ30RyMUvu2xqIschfN4fD023xuazQEpxN73Soq/7ediNR0NyMBOCOuxn/3AcsyhtNt4G+Yk1PCLfn7nEYCfMt1Z100iqeGjaN43Wr2jbqU4nWrKY2MJjnenKyrNHxfXos1PJx/FbovHGvtRqL/0Wx2/vlG+h/NZnN5De8UVJCXZ3DllTB0qGkkfvYzyM42K855Ggnn/aJjKYiJZ/ym9ez6842M37Segph4aqNjKQo3a1zPqOjA3lGXMqOiA8syhlMcHukWEeU2Nl4kPlzxJ2EuCKFCi8lwtARa63eAdzIyMia3dl8CwTGJF69bTfwIM3+haN0JnaH68hcCwVWWwlXDyJXw3mlYIiJ44INlLDvrcmf7vYtmkjBiNJ0mTXXTQPLsU82Z57KssynJ4arp5JAEPy8mgq9Lq1kQ34sFA9xDlyO1QT+77LZDZbZfTjbxa7vQ/bVTqK6GxERYsgR+85sAfm+HKOCE1LF2aX+y8gjVm9a7Jf9dv2k9T0ZVBqQf5VlW1d+YCEIoEVKGor0RyCR+fMUSkq9r2taT4zmuz4js258Op52BoQ1K3l1D3IjRPHnJ792uc9RacO2nJSa2Tv7BrN6JlG/fzEKP7OtZ55vJZc/36YhhGMzLLXded0enaKxWK3Ny4JaKAnbZ243d4ZTeO4QdeQkoBX/8I8yeDR06BPY71/7wKTMqo3g1Y7iznvWNm9bzTIcKTu87nBoPn8/qwZfxtmFQVM8k74hQc/VJ+BoTQQg1QspQtEdntiNs1ZuhKF63mvDUNDSaFLv0gyuBqs56bploIPK0AXSccIfpLLdYmNnjLBbE9yKzSyzP9+loRgCRRofsAp7v09HZT0/nutaaGe98QNXBbEg+kY1ctX8PM96p4dmrr+DRQ4V8UeYedvtFWQ0jE61M7RrHVzH90bk16Gc7wgcxHEQxaJBmzRpFQ/4qtdaUf7GBB4sKnUYC4MENyymMT6Tm9CupCnf3dFeFR0JNFZWVlXSoxxp5Spg7jIUYCSHUCSkfRXsMj/W27+1KTfY+r34KV9VZ1/vke5QYdbQX2rdMXnvxnzw3aSaPFxrc/q9Pqa2t5elh49jVPZ0uYRa+KqlCa02CVTE4KoyvS6ud5UenHSjk0UOFde6fX1zsNjEDvJoxnPziYmw2G+8UVLC53N1QbC6v4Z3CSmprbXy1MhzrVT3hg1jCozQ8lMuwtwpISzvx2zyf6Q2lFFjDeMqjBsZTw8YRZg3jt9mbvV73uwPfE+ESFuyPhsiKCEKoEFIrimDT3HUjHJN48brVRNpVRV01lsDcIurkUavAW5Gd3EVzKF632ineBzgzqZ/rNoiiSQPpPHAwC4+WcjQ5jagLelNhDeO1b49QqaGzVXHMpjlaa9Dj28P8LjnGGdJapTXvFVbwTVlNHZFCpRThnbt6/X3hnbtisViI8DFExmErb0xLgv+FUYvmhhvgpZcUf8q1OvNHHGKDruJ9npnbrnUwnhp6HcvSz+OW/H28dOVQ/vjuJyzMGI41sSMda6q4ftN6/u5i1K7ftJ6OMTEy4QuCH8RQBEggE1ZDcd33Tp4whdxFdVVKuj/zkpuIn2Py9xbT73B+A24lPKv7DWZBTgmDCys5WmsAUGE1/+or7S/nx2wn3tKP1mqyjpY6j7+3rwa8iRQqpThlwCAya21k5Zy4JrNrLEk9BmGxWBieFM250TVOH4WuhoELOvP93zuAVqSlmdtMZ54JoJgdc2KM/dXO1lrz2OEiCmsNZ85JckoKZ1QU0mXgYCwWCy9dORTe/YTElBTuKtjHqeluQsisGnwZPxz+txgKQfBDSG09BSs81nXCchTOcUxYhbVGk8Ijk8dOJHnCFH6c8UdK3l2DtVcft+9/uPlqbDZbna0lV2PhQNkDWZ0Zw6XmxD07NYmpXeO8CvR5ktkl1ud3vqREHu6RULeiura3Y47fZyVVABifdUCP7MHW5VFYw+HFF2H3buxGwh1H0psjQ9qRue0wWIDz7+XcrTkYhkF1v8Fsj0pkXVEVMw8WOI3FY8MupHevYVSHRxJRU0352V2JqKmmOjyS3r2GUVVVVe/YCMLJSkgZimD5KOqbsBr7NuowMMdXLqE216yKZju4H0uvPlji7L+hpJgfrvuVW16FYZjGKXeh+wqkaN0q9o26lKK1q4js2x/NifvP+OjVRv76E3irLucwmllHS92kL7KOlnJPdgE2m43ZR4rZfFjT4bauML0LlFrgonKi1h7ius6LyV/i29fimiHtwDHmjoirIdHhbC6vIfzrQ8zJKXEeF9nMbHSLxUJERAQW+zMmd0skIiKCyd0SAbBoHbCPQhBORmTrKUACURZtCK6S37q8DJtdudUhpfHAhuUoZUFrg6d+/lviq8q5M+cISTfdTv7iuVT8bzvVe3di7ZhC3C9HUPbN59Rk73Pe36ippnjdahQKA82MigDiS4Gso6Wc2cHKlkqbs21wdDiXxEXWKfbjGBd/0heGoah8KQ6WJ1FuU5BSC0/mYhlUDUYtxsFSSlx8La65Cg7j4U+or+CNpbxbVkq3Adc4v99cXsOtxQfryINXXHwqd+7LY15uOfNyzRoTd3SK5sW0FNl6EgQ/hNSKIpj4UhZtzLaTqzM6f8lcOt58BxGp6Wig2F4856lh40wjYU9eK46MxlZSxMFJ11K0bhU1B38AwBKfgK2kxM1IgBktFZ6aRuG6Vc4M5H5Hs332qbOLqteWShvnRoeT2SWWwdHhbj6KxLC6/2Qe7pFQx3jMTk3isv2J9OypqFnW0TzxlgLUWz+aRgKIt9VgiYohok86RWtPrIYi+qSjomOcY+xPqM9WVsqM8rriTo8cOlHfyhEhBvBiWorbeWIkBKF+QmpFEaw8Ck9lUV/lNBvQT6/OaDAzmwG37GGH3hKAUWz6X3R1FRGp6XR/bgHHl8xDA6490EDUGUOoyd5HfFU54zetJ66qnAhbLWce2cvuS6/icJWNTuFmVNLwpGgKamysKaigR0QY/xnU1fnbpx0oJDHMwsM9Eji+cgl59UhtFxTA9dcr1q8HUMQMKaXsiQIsHQ23cUg2ajAqyqjcv9ftjaVy/16izhgCQMSu75ls08w6f6hzq6li+2YiChUqdaizCl1/e3a3g1+dOpQPVy4h5fcTnEZZY1atc6U5a34IQqgSUoYiWBIe9W2vNGaS8Uy0c91y8qx09+B3693VXL94E4Aesxaa4a/dB1E4aSD3LpqJwjQSz02aSVT2bqYAmV+86TQkjmsToquY98sbKKw1eL5PRywWi129tsDtNzl+q8MoeIblum4VGYbmhRcU998P1dWQnAzLltl4I/9fvNrxvDpjcPahXYzq83OKJpzNmiUPYAEMYNSEp0iMjeEz4N4jWylcu4r8o2ZGdP6SuUxbu4rEkWOAocRbYGBFIdu6pDJ+03ru37Cc32ZmsS0qkT/FpjJfa2dd8unlkSyzCx0+G13lrAECzV9NUBBCiZAyFMHkkZ6JdfIHmurIzl88FzAnR8eWk6ZuANETZw1HgVPd1THpH5w2iagzhlDc82wWJvaieti4E1pLyWmM37+H8NR0olyq2SWOGINGU7R2FUe7DGRBchoWi4XZqUlMO1DodEp7/lbHn76ktg+fncn56Yr9+8FigWnT4P/OWoI+UszNqcO8jsG6U/rRuayIXZ16Muqmx1nzyp8YddPj7OzUk/55h7HZbF6fl+giozGzVxLlmzdy9vavnAKG/8jKZPakmXQ98yxnJnmniZnEz3rBuTrrtOZTZtv70Zw1PwQhFBGZ8VbAVWBu/ohJFIV3YPpb83hq2Di3DOd+R7PZ5bKd4nhjtgBZl42lWFm5f8NyIlPTmXnq+W6rEMeEeOqqjyn8xyvYSkucFeo6/n4CeYuzqNy/hycuuJaFLtIbt+Tv48nSbLca1t7675DarqiN5MmY91m50pxozzkH3nwTevQ4kRF+9p1/ozwyus59oqvKia+uJDc6Hpv1xDuL1VZL5/JiDl0+xLmS8Sbt7TqOcSNGU+KSrBhnlzz3PM9hZB2aTSDZ1YLg4KSQGW8vKKWwRMcS3iedgopKlp52AU/bVwOurHnlT27HiVEdmDVpprkCUVaWZQxn1MSnmXfFjUT06et2ruPt+vjSeXT8/QRSJmaSMimT5LETUUrR8eY7yDpvJNX797hdV71/D3+O7u4sdOSKo83hGF59YDjn/+ttVq5UxMVpVq6ETZugZ88Tq4/o4ddiKNNTnlhWzI4/30himVkcsVZZ6xgJAJs1jNzoeGpra/1KezsSFuNHjMaC+2RfvXuHs8+u22Ppaz4lYeQYZ6U6QRDqJ6RWFC7O7Ml79uyp9/zWJu/viyha/xZPnDvSbTXgwHNF4YhAcqwsRt30uJsD15XMrrHcv2E5JWtX8fKEB6kZdK4ze1lrzd37j/N1aTXflFV7vfahr/+JUVbqrDTnqAZXvXsHu78r5I4d8/jfkRQUmjG91zJ7xkG6/+H2Om/nNpuNi1Z9wJ7k7hS6FBNKLCsmvSyfTZ1SwdsbvdZUndeDglfme5X2dl0R5C3Komidyzkex65FoXw54AVB8L2iCCkfRXuqR6G1RpeXoUuKmOHhvL5h03o29eznNBI37f6KnWf9nG/KajijotAtIsqVycUHefTwdzxjd9J+ljGGtZj1qV/OKeHfxZVclRRFkc2U6Bgc5eOvX8Ofo7uTm5vNs4uz6DQxk9zFWdxXGs13G+9h26enobWiXz946y3o+Pl+r1LbWmvylszltXWrsQED7juR9PefeXdgnHoaA0c/5HOMioqKApL2tsR6nDMpE9SJc0T1VRCaRkitKBy0ho+iMYKBNpuNu19awEc9+rutHDxuTLeKYkb36U7W0VIGHdnL1m7ew3/PjQ7ngrhInuuVwDn/3s62KDNreWRiB9YWVropuE7tGke8BX7auplFLj6KSfn7OGXQEIoN3Eqh/iHlAT5ecTmUWomKMqObJk8+IcbnWUZUa830d94n90A293/+D56++Ld1fCgPfruO3//mHjZ3TnVfVWjNkNxsNl19aUDlSRs7/oIguHNSrChaC0eWdUO2NmYeLGDtnmy2DLkcmzUMa00VtvC6iWMoxdHoBOItMKn4IIs8jMQZFYW8s34+D/c8m9cyhrOxvIaKHd+zctFMfp+ZxWYS60h8A8zqncj0tR/wheGesf1FrZUrv9/IrJFmpbsXUq9k6Z6b4K0OgGb0aM3SpTCroJB7sg1nmLA3kcQSeyTXxp79zAp2jkp2R7NZljEcG3AgsXPdrSelOJDQGZvNRlhYWEDS3iL/LQjBQwxFI/B8czZKS50lTL3JUHh7+y2sNfguuqOzzauRcHwHLDpWSpeuaeAy6aeEWdgelcjYG2Yy6OBObty0nu+7pbOwWzoL7/Ov7XT3/uOsTOpDblgkg6PD2TSoKxlbc/i+Syr5tVU8ZdMYd+yF984FQ0GXWj6Y/AafT/41Dx0zUEo5cxC01nxTVs3XpdVuobXzr7iYyOzjZJEKwM4uqWR2jWX6tu944NAuYqsrKQnz/rtLwiJlsheENoJEPTUQz4JBABpNZN/+bjIUrnvm3pjVO5EBFYUBP7cW5ZTScJBXazA4OhzQzu2jla896vMeQ6LDqTm/J1O7xjH3WBllduP0vV1Qz3F/Y0cC3ZIrmfOv88Ci4Y7jqDU/srxzCT9t+Y6so2YhJYecRtbRUqeR8JTyeD61o1sfnk/tSNdb7uTpDhXcnRxOrcWuHaI1+f0TwD6utRYrJSUlCILQ+oihaACumckOY+EsPHTaALdzfRkJh6GxWCxsOPZtQM/tZIE8m3df0s9jI/j8jC5Mzt/HqxnD6e+xkhgSHc5D3eKciqrTDhQyq3cimV1iGRjtrphqlCqMuzqTe1tn8kqi4bwKbttYhJGVxJ2nxLEsYzgq3NSAyjpa6iaQCHWzm33pYwF0ueVOTr35dkCbRmJAIomJieQPSLQbC01iYmJA4yMIQnAJKUMRrHoULvcnZWIm8SNGu60e4q4c5awF4cBz1QHuhiZ3cRZPnHd1QM8tNry3Z3aJJSncyvGl87hn0Uy37+74Yg0DKwrZXF5DsQHfDOziFPWzWCw836cjkUrTQZnzsrE8Dq7sCd9EEd7R4OaVpdy1ooL5gxPdZNZPGTCI5/t09NofV5FET30sT0E/B7YL+ziNBOA0FrYL+3h7hCAIrUBI+ShaIjz2+MoldYxC1Y4tVGfvrRPrD+4rC4eh0cB95ZG8erQsoGf6KqmjlOKRnonkx8Qye9JMt++q+w3mg2Pf8vT5vyExzILVanV74zcMg2/Laij/XzjM6AQ54eY20/hCIv5QxMLze2Cx1NV8AtO/4Upml1g3n4XjOYHqY3muHGQlIQhti5AyFMHEFMxTbo5rB9XZe4lITSd5whSfsf4OlFJO3aGU0kLyYhN9PjPZAoYBBUC0gnKNcwtpSHT4CWfyedewwK7RNKt3ItMOFDKHNKLOGOJMsnM820FFhaLsgRT4OBpQMLAKnjqGJcWgFu9RQw4l2ayjpZwXE8EFcZFobeZkZHaJda5YHNc2tz6WIAitgxgKL3hGKh16MBOjoowef1mAdtaNOyHrrYHIAWcGlNDl8GtMtau4ftbnTPZ26U10RASHzzqFn+84xv7KWso1xIRZualTDG8XVBBvUZwVG+k0BAlWxSXxHZz1IXy9uTuMhCuLF8OUKQpdEQNxNvhTPpaLK5zf12DWCC8yNM+ndnSG/N5zoIDvy2qcz3Kt4Z0YZuFP3ePrPE/CVgWh/SMJdx7kr1iMrbSETnZBOZvNxrR5L1OkLMzc/zXzf3kjxw4dgOoq4qvKmfLFmzw3aSaJVsWzv77M7709dYeSJ0whb8lc088xcgyd7SsSh6aS1WpGBBmG4ZTe8JfgVl/C2d69cPXVsHMnKKXRvylG3V2I8nxdMGx0iwznSI1BZtdYnk/tyN3Zx8nKKaV7uJXss7tR8MZSZ+6IA5HFEIT2jSTcBYDWmuIP1mI7ngfYcyKWzKVIdXBmFet9u50Kr+M3refJYeN4NTmNqV3jnBO66/1cJ2uHiF3CyDHMu/xGig4UMmvCFBSgYmKdBYIcCWsOPLeOPP/0/G/P45oauOMOWLjQdFwPGgSrV9dywYGDFIbF40lCRRlVRiSERZKVU0pWTqnzu6qK8nrrUkhWtCCEFmIoXNBam6VFj+dRvG41xXbZ6gcAwsLr6Cu5VqC7+9B/yTttgHMl4is7O3nsRAzDoOhAodPHMGvCFNOvYI8Qqs/gNIQ334Sbb4biYoiJgb/+FW64AaqrNeE/1Hq9JtxWS7eiYvKTe9T5rntxHkql+6xLIRpKghB6hFR4bFOxWCz0nLWIsN6nAicKCKmoaO5/f6nP6yL69OX5fj+neN1qZ1hsrv0N2ygrrRMm6ygU5AgXDf/6kNNIJFgV0w4U1gkzffRQYYN+y08/wfnnw6hRUFJiGoe8PPNPMFccpV5qRACURUZjVNdVlQUwqqqc17tuO4Hv3BFBENo3Yig8UEoRPfAssi66lqeGjUMDc87+Fdfe9LjPaxYmp/Hp2ZcRZ69zsHfUpUwvj+TlCQ96nTwdKwSH09nBrN6JvF9U6cw1cM1FeK+woo7B8YZhwH33mTUhvvkG0tJg61Z49VXo4CLrZLPZqIjwLp9RERHJ9i69vX63rUtvbDab3zoRgiCEFmIoXNBak7toDoXrVjtLkz45bBwrBg9zqruefjTb67XfV9Ty1NDrnbWtl2UMp3pgHZ8Qjx4q5J7sAgzDqJO1PO1AITabmV03J6eEsK8OOrenDKP+Cfjjj6FrV/jLXyAsDObMMR3YZ5xR91yr1UqYzeb9RjYbWnn/p6GVhZqaGjefRJpHMSAxFoIQWrR5H4VSqj9wJ5ACfKS1filYz9Ja81RlJEXDxvGnfV8S0acvCz38Ev/zIgee2TWW1fnlzD1Wxly7hMaNm9ZT0acvj4adxcxeJxRWC2sN5thrQzjyIVzzIoZEh3vt28/iO3htBygshNGjYcMG83jECFi50vRJ+OMPX7/NR+lnu0mc9zuazaV7/8vfLrzW53UWiyWgOhGCIIQGQV1RKKUWK6WOKaW2ebQPV0r9Tym1Vyk1w989tNY7tda3Ab8DLgpyfynr2JllGcN59pfjidj1fUDXaUNzZY57Rb3IPn1ZmJxGzpbvMAzDeX+Hb8Ih/b253MxL2DioK1O7xnFVUhSDo93t9+DoMGb1TvSyhQXPPgudO5tGols3+PJLWLu2fiNhsVjI/OJNMg7tcmvPOLSLzC/exGJ4X21YDHPbKXnsRK9Z5xIaKwihR1DzKJRSlwClwDKt9UB7mxXYDVwOHAY2AtcBVuBpj1tM1FofU0pdDfwReFVr/ff6ntuUPAqtNXftz2duPfIaAyoK2XDsW546/zfMySnhjKpitke6h5rekr+PJ0uzSfGYPLXWhH110Hlce0EvM+vbMOj5xR5ywuquHrrWVnL44tOcE/O338K118KhQ+Y205/+ZH4CfZmvqalh8l8XO0N9Xblh03o2d0tnm5cCSQOP7OXbay4lLKzNL0YFQWggvvIogrqi0Fr/Gzju0XwesFdr/YPWuhpYAVyjtd6qtR7p8Tlmv8/bWutfA+N8PUspdatSapNSalNubm6j+/zY4aI6Wk7e2BGVyJPnXcNzvRIYEh3O9sh4MrvEup0TNWAwyb+f4NbmS1FVa41hGORa3RVdHeRaI0wHdIVpIDIyTCNxySWQkwMPPxy4kQDTR7GlW18AJuXuoeb8nkzKNVdF33VL91mLe2eXVGprvYfVCoIQmrSGM7s7cMjl+LC9zStKqaFKqTlKqb8B7/o6T2v9stY6Q2ud0alTp0Z1zOFDyDpa6vOch7rFOQ3CN2XVWCwWrkqKcgrjufJNmXuIaX2KqkopOniR3ADoYLGweLGFjh01b70Fycnw3nvwySea5GS8KtX6w2KxcHm0YlLuHv46chgWi4W/jhzGpNw9XBGlsDnqRHhgs1i9yoIIghC6tPn9A631J8AngZyrlLoKuCo93XtN6UD4qqTS7/fFhrs6qkPB1dUAzE5Nch7fk13gPL8+RVWLxQK2WrC4/7UYB8Mova8TfzhoQVk0d92lmTVLoZRpeDaXVTMkJsJ5T29lSb3x7K8vc0vucxiLmpoaXth0BK0UiWXF/GfeHVx4xzwKY+JRdnkRQRBOHlrDUPwI9HQ57mFvazLNIzPuff8mIyqMCxOiTmRTe6iyBiqp7U9R1WazEVVdSVkHc8Vi1AB/ToZ3Y9Ba0emMGnKfzIEzY1DqhDFyVZJ1NVKuZUl94bk6sFgsREZGckrpccqtEfxn3h1YwWksom3VREZKrQhBOJloDUOxEeirlOqDaSDGAtc3x42buqJQSvHFwC5m7WiXsqNnRoXx5ZmnOCdcb6qsDZHU9qXLZBgGtXZDZXwUBU+nQLkFog1i7j3M4Qe7MP3HGObklDgNg5u0uEd7YyW9tdb89/AXHF+7io4uNTb+M+8OOo4cg9ZnSwisIJxEBDs89nXgS+B0pdRhpdQkrXUtMAV4D9gJvKG13t4cz9Nav6O1vjUhIaEx1zrrLXjWpt5SUcu0A4WA+cbuazunqZLaYWFhVBZFY0zoCn/qBBUKriyBfx1CXVFNeHg4s3q7P9uxsvHM8m5K3QeHeGFHjzyJjiPHSJ6EIJyEBHVFobW+zkf7u/hxTLc0+SsWOyWzE6zKmQTnYEh0OAnWuoqtzamSqjVMm6Ypf7E3GAp61cCfj2HpZUYY6Robjxw4zjuF7j6Uc7b8xDUdoynyqKnt6htpDMljJ9ZZIYmWkyCcnLR5Z3ZDaMzWk0Myu3DtKjRQNOwGNpfXcOOm9fw5uoqnh93AnJwSIpSiyFbQYIdxIHz4IYwdC/n5Fogw4O7jWK5xj7yqtlj56/4c8jvEcmZUGN+eeQrnbPmJLRW17D6QR2VYRB1HOjR9ZeHvWBCEk4OQMhSNcWYrpXiu2yDyf9OF6W/NwyiwcWNkNNb4RGZ17uys5PZNWbVfh7HjXi59qXdiLSw0cyI++cQ8vuYaG+syszGi6/61KKBbwVHyT4llS0Ut4V+fiDCOryjllvSe9TrSBUEQGsNJHxBvGAb5eXksOe0Cnho2jilfvIkClp52Afl5eWiteb5PR65I6OCMLnKI9Tm2pB47XMTd2cfdpMHvzj7uUxpca3jiCVN645NPoFcvM9N61SrNwMJsr9cMOJpNpDZIKit2a08qK6Z3ST6zeyfVcaQ3daUjCIIAIbaiaMzWk1KKxPg4+h3NZlnGcGcxon5Hs0mMj3NOvkd3bmNzfC+3azeX13Buzj6+jUzgv5GmA921bOjZVUU83CPB7a1+40ZzFfHjjxAeDs88A9Onm9/ZbIqzSvPYQt3+DynNY133/hTEuMuEFMTEs9/H7xIEQWgOQmpF0ZioJ601n8Z2cVNQBdjVJZVPY7s4VwkzD39HPw+J8X5Hs3nk0H85u9QsnZqVU0rYVwedpUPPLs1zXl9RYdarPu8800j84heQm3vCSDj68l18F6/9/C6+C4UdvCv9FXSIliQ4QRCCRkgZisaglOLsWu+SHWfXljrfzM8dfK1XY3L+kFF0HTSEMyoK3b47o6KQU848C4vFwksvQceO8M470KmTud304Yfgac+01uBDtdVm2PzKatTU1Hj9ThAEoamElKFQSl2llHq5qKgo4Gu01uBrkq2pceZXFNQaXk8pqDEotBlsj0p0a98elcgPu6FvX83tt5uPmD4djh6FSy/12X9nXvj4TevZ9ecbGb9pPVD/X1RlpX/pEUEQhMYSUj6KxkY9xRw7Qr9aa50CPjHHjzhDYWNqqigPq1s6NLq2iq9L3IsNGbXAU8m8+l4MaHO76e23oYv3XSUnFouFn+/fyuAje3lk31f0Wv0Jj9wzCYCIqnK2nZLm89oqey1rQRCE5iakDEVjKe/em10ejupdXVL5eZT5Hq+1xlJdBV4MhaquIrtIQ7hZQ8L4IBqeSYYKCyrGxj9egdGjvW8ZeQuhvWvnv6k9nkf0iNH2+t1DeGDdcnRSMgv9VJ2Lj4/3+Z0gCEJTCKmtp8ayxV6gx1X627XdYrFAhPc6EZaICG4sO0L8kVqMm7rCIylQqYi8qpC7V/zbp5HIX7HYrb601pr8JXOJ/+VIEkaMpnjdavaNupTidatJGDGa7lmvNffPFgRBCIiQWlE0Njz2V4lRnB8b6TNhrba2lmNeqs4B5Fg68OqrGRSuiAWtoE81/OUYNd1sfBnbz+uqwZENXrR2FYBTdK9o7SpnHeridaud53eaNJWCAvdiR55UVlYSHR0d8O8WBEEIlKCWQm0tGlMK1XNCdz222WxEfXWgTtSR8WUHmJkCJVaINODefCwjyp3fn1VVxMZLB3nNadBaO42Dg4SRY0ieMIX8JXPrtFdecS2ph2zey9hpzYFeYfTo0aNBv1kQBMGVVimF2p7wp2uktaZj2YlIKqPIgnFbF5jWGUos9LnoKKw/5GYkAM5xyaPw9ryUiZluba5GImHkGNLWfErCyDEUrV2FZf1qr/dxXpucHNDvFARBaCghtfUUTI5Hm85iY2E8vJIINgXdarA++RM3DI0hZ9s+FkWeiEqalL/PmUfhDceKwpX8JXNR0THO7SdXY6KjYwiz2agNq/tXFmazER4eXqddEAShOZAVRQBorTG2RWBc1R0WJ5mjlnkcy6ojWNJr+HD/Id5McN/2eTOhBx/uO+Dzfq4+iVNXf+JcOejyMjrefEcdee/k391MUkWx1/slVRSLZIcgCEFDDEU9lJXB1VdbsP2xB+Rb4fxy+NdBLNeVOM/ZbY3ieFgkSWXF7PjzjSSVFXM8LJL/hUVTW1tb556OwkAJI8egomPIXzKX5AlTSBg5Bkt0LMeXziN/xWK382traymJ9C7hURIZ4/U5giAIzUFIGYrGZGb7Y84cSE6G9eutWJJq4aUcLM/nYnEJLkquKiO98CiRNVUUxMQz4L5XKYiJJ7KmirSCHKxW7+GxyWMnkjxhCrq8jKK1q5zGwig3o6GMslI3/0Z4eDhWbWaHT8jdQ835PZmQuwcAqzZk60kQhKARUj6KxmRme2PbNrjmGvjhB7Ba4YEHbBzu/gqvDb68zrmX7/qG8PgENnbq7dZeFR7JwKKjfutSWCwWpw+iaO0qZ6STq4/C9dw/VvxEfrGNl0cOw2Kx8PLIYbB2A8nhViyWfk35yYIgCD4JKUPRVGpqYPx4WLnSrBlx4YXwz39CUhJ0+/hcr9e8d/q53Fh9nMiaaqrCTyTlRdZUk5SS4tOZ7cDhg3ANh/VVcvTZX1+GYRjOezqMRX3PEARBaAoyw7jQty+sWAGJibBuHXzxBaSkmHkUffJ/8l40KP8nXkhIdTMSAFXhETwfn1qvqqu36CfXjG1PPI2CGAlBEIKNzDIu3HUX3H475OXBlVeeaLdarfQ/doCCmHg3VdeCmHj6HzuA9rG1pJXyG43kGf3kmjfhz1gIgiC0JLL15MJdd3lvt1gsdOqVyvhN63lgw3IU8MCG5QAk9Ozl/SI7FRUVxMXFef3ONfrJM2/CEhMrIa+CILQJRMIjQAzD4OA9k6g9sM/ZFtY7jZQnskjYkudTWqNkSOd6NZj8yYcIgiC0FCeFhEdzh8c60FqTtyjLzUgA1B7YxxEP/4In5eXlfr8H//IhgiAIrU1IGYrG1MwO8L6U/meD1+/Kvv3S77Uy6QuC0N4JKUMRLJRSKLtybPyVo0lb8ynxV44GwFKPIbDZvNfAFgRBaC+IMzsAlFLEXz4SW0kJnW6ZilKKTrdMBcASWbfqnSthXkT8BEEQ2hMyiwVI8tiJbk5mh7FQeXmwp8zndbKiEAShvSNbTw3Am9M5wkeJVAf1fS8IgtDWEUPRROrLjJbMaUEQ2jsyizWR+lRbRdVVEIT2jhiKJhIeHo6yy39fZ5f3uG7TegCUyH8LghACtAtntlIqBvgUmKm1Xtva/XHFarUydc9XHCsr5xG7vMcjG5aDxUrnmGisF53a2l0UBEFoEkFdUSilFiuljimltnm0D1dK/U8ptVcpNSOAW00H3ghOL5uGYRjcteVDHvlwGZF90jl19SdE9knnkQ+XcdeWDzEMo7W7KAiC0CSCvfW0FBju2qCUsgLzgF8DA4DrlFIDlFKDlFJrPT6dlVKXAzuAY0Hua6OwWCxYomOI7JNOj+cWYrFY6PHcQiL7pGOJjhFntiAI7Z6gbj1prf+tlEr1aD4P2Ku1/gFAKbUCuEZr/TQw0vMeSqmhQAymUalQSr2rtW5Tr+k9nsiqU1DIYTQEQRDaO63ho+gOHHI5Pgyc7+tkrfWDAEqpm4E8X0ZCKXUrcCtAr17+pb+DgRQUEgQhVGk3s5nWeqk/R7bW+mWtdYbWOqNTp04t2TVBEISQpjUMxY9AT5fjHva2JhMsmXFBEISTmdYwFBuBvkqpPkqpCGAs8HZz3DhYMuOCIAgnM8EOj30d+BI4XSl1WCk1SWtdC0wB3gN2Am9orbc30/NkRSEIgtDMhGQpVKVULnDAozkB8GVBfH3nrd2zzfM4BcgLuLNNw99vas5rAzlXxrdp19d3brDG11tbS42xjG9wacz49tZa13Xyaq1Pig/wckO/89bu2ebleFNb+E3NeW0g58r4BneMgzW+rTnGMr5te3xdP+0m6qkZeKcR33lr92zzd99g05RnN+TaQM6V8W3a9fWdG6zxDeTZwULGN7g023NDcuupNVFKbdJaZ7R2P0IVGd/gI2McXNrj+J5MK4qW4uXW7kCII+MbfGSMg0u7G19ZUQiCIAh+kRWFIAiC4BcxFIIgCIJfxFAIgiAIfmkXFe7aM3aZ9MeB7cAKrfUnrdmfUEMpZcEc33jM+PRXWrlLIYVS6ufAOMy5YoDW+sJW7lJIoZTqBcwBjgO7tdbPtHKXvCIrikbQwMp9GigFOmBKqgv10MDxvQZTWLIGGd+AaMj4aq0/01rfBqwFxAgHQAP//Q4CVmmtJwJntXhnA6UlMgRD7QNcApwNbHNpswL7gFOBCOB7zGJLFvv3XYDlrd339vBp4PjOAP5gP2dVa/e9PXwaMr4u378BxLV239vDp4H/fpOBj4ENwITW7ruvj6woGoHW+t+YS0VXnJX7tNbVgKNyn6PQUgEQ2YLdbLc0ZHwxVxEF9nNsLdfL9ksDx9exPVKktS5p2Z62Txo4vhOAR7TWw4ARLdvTwBFD0Xx4q9zXXSk1Sin1N+BVYG6r9Cw08Dq+wBrgV0qpLODfrdGxEMHX+AJMApa0eI9CC1/jux6YqpT6K5DdCv0KCHFmBxmt9RrMyUwIAlrrcsyJTAgSWutHWrsPoYrWehswprX7UR+yomg+gla5TwBkfIONjG9wadfjK4ai+Qha5T4BkPENNjK+waVdj68YikbQ0pX7TjZkfIOLjG9wCcXxFVFAQRAEwS+yohAEQRD8IoZCEARB8IsYCkEQBMEvYigEQRAEv4ihEARBEPwihkIQBEHwixgK4aRHKXWzUqqby/FCpdSAZrhvqlLq+kZct1QpVUfWwd6+Xym12f6Zam/PVkqleJwboZR6wS5pvUcp9U+lVA+X7232e2xTSv1DKRXdmN8onByIoRAEuBlwGgqt9S1a6x3NcN9UoMGGoh7+T2s9xP6Z4+e8p4A44HStdV/gLWCNUkrZv6+w32MgUA3c1sz9FEIIMRRCSKKUukEp9Y39rflvSimr/bPU/ha9VSl1t/3NPQNYbj83Sin1iVIqw36fUqXUX5RS25VSHyqlzrN//4NS6mr7OalKqc+UUv+1fxxV4J4Bfm6/79325/9FKbVRKbVFKfUH+/VKKTXXXtTmQ6BzE397NKZ89d1aaxuA1noJUAUM83LJZ0B6U54phDZiKISQQynVH/g9cJHWeghmnYpxwBCgu9Z6oNZ6ELBEa70K2ASMs79hV3jcLgbYoLU+AygBngAuB64FHrOfcwy4XGt9tv25jjf9GcBn9vs+j6lyW6S1Phc4F5islOpjv9fpmIVsxgP+yo3+xWXraZCPc9KBg1rrYo/2TcAZHmMVBvwa2OrnmcJJjsiMC6HIL4BzgI32nZYozMn8HeBUe+2KdcD7AdyrGrNmAJiTaZXWukYptRVzawkgHJirlBqCaZRO83GvK4AzXfwPCUBfzIpor9vf/o8opTb46c//2Y1bU4lSSm22//dnwKJmuKcQooihEEIRBbyitb6/zhdKDQZ+hbkn/ztgYj33qtEnBNEMzO0btNaG/W0c4G7gKDAYc5Ve6adfmVrr9zz6dGW9v6hh7AN6KaXiPKrSnYNZ+xrsPopmfq4QosjWkxCKfASMUUp1BlBKdVRK9bZHBlm01quBhzDrGoO5pRTXhOclAD/Zy97eiFkf2dt93wP+qJQKt/frNKVUDGZlvt/bfRinAJc1oS9orcuAV4DZSimr/VnjgWjM2syC0CBkRSGEHFrrHUqph4D3lVIWoAa4A6gAltjbABwrjqXAX5VSFcDPGvHI+cBq+2S8Hiizt28BbEqp7+3PeBFzu+q/9uijXOA3wJuYTuYdwEFMieqGskUp5ajP/gbmb3sO2G1v3wVc67I6EoSAEZlxQRAEwS+y9SQIgiD4RQyFIAiC4BcxFIIgCIJfxFAIgiAIfhFDIQiCIPhFDIUgCILgFzEUgiAIgl/EUAiCIAh++X9coww4xt8gcAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEKCAYAAAAMzhLIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABc80lEQVR4nO2deXhU1fnHP+9MFrInBARlS0hARTZrBBdUpLWioFalVavyExDbyuKCrYKouIsKyCJaEVCUioq4AYKtCLYqm4KyCglbogZIIHvIds/vjzszzExmJpNkJhvn8zx55J7c5cwFz3fOu4pSCo1Go9FovGFp7AloNBqNpmmjhUKj0Wg0PtFCodFoNBqfaKHQaDQajU+0UGg0Go3GJ1ooNBqNRuOTkMaeQDBo06aNSkpKauxpaDQaTbPiu+++y1FKtXUfb5FCkZSUxObNmxt7GhqNRtOsEJGDnsa16Umj0Wg0PtFCodFoNBqfaKHQaDQajU+0UGg0mgbBva6crjPXfNBCodFogk7ukgXkLJjtEAelFDkLZpO7ZEEjz0zjDy1KKETkGhF5LT8/v7GnotFobCilMIqLyF++1CEWOQtmk798KUZxkd5ZNAOkJf4lpaWlKR0eq9E0HZzFwU7c0GG0GTkOEWnEmWmcEZHvlFJp7uMtakeh0WiaJiJCm5HjXMa0SDQftFBoNJqgY99ROOPss9A0bbRQaDSaoOJsdoobOoyUZeuIGzrMxWehadq0yBIeGo2m6SAiWKKiXXwSdjOUJSpam5+aAdqZrdGcoiilXBZp9+Pm/jxN7dHObI1G46Ax8hrcRUGLRPNBC4VGc4qh8xo0tUX7KDSaUwxnH0H+8qWO3IbYITe6hKxq05DGTpPfUYhIlIi8KSLzROTWxp6PRtMS8JTXILj6D3SJDY2dRhEKEVkgIkdEZLvb+GAR+UlE0kXkIdvwDcBSpdRo4NoGn6xG0wLxlNeQv2IpOfO1Kao5ohR89hlcfDH8+mvg799YO4o3gMHOAyJiBV4GrgJ6ALeISA+gI5BpO62qAeeo0bRIPOU1xA65ETDFIuOGyxy/O1Wzpw3D8HnclPj2Wxg4EK6+GrKzITOzxktqTaMIhVLqK+CY23A/IF0ptU8pVQ4sAa4DsjDFApqBqUyjaep4ymtoO2q8QyzsnKoi8eBnX3L3yrUOcTAMg7tXruXBz75s5Jm5smMH/OEPcNFF8NNP8PLLsGsX9OsX+Gc1pYW3Ayd3DmAKRAdgGXCjiLwCfOrtYhG5S0Q2i8jmo0ePBnemGk0zJ/HmkdWEwNlHAadmiQ3DMMivUsxLTHGIxd0r1zIvMYX8KtUkdhaHDsGIEdC7N3z5JTz5JKSnw913Q1hYcJ7Z5KOelFLFwAg/znsNeA3MhLtgz0ujae44RzflLJhN/oqT5ibnSq+n0s7CYrEw9+qBYBOHeRsyITGF0bkZzL16IBZL4323zsmBZ54xdw4icN99MHEiJCYG/9lNSSh+Bjo5HXe0jfmNiFwDXJOamhrIeWk0LRpdYsMVu1jM23DSwNGYIlFUBDNmwAsvQHEx3HEHPPYYdO7ccHNotBIeIpIELFdK9bQdhwB7gN9iCsQm4M9KqR21vbcu4aHR1J5gl9hoLiU8nM1NdhpjR1FeDq+9ZpqWjhwx/RFPPw09eni/prISQurx9b9JlfAQkXeAb4EzRSRLREYppSqBscBqYBfwXm1FQne402jqTjBLbDyemcf9B467lAy5/8BxHs/MC9gzAoGzSIzOzaCifydG52a4+CyCPwdYvBjOOgvGjYOzzzYjmz780LtIVFTAK69A166wd2/g59RYUU+3KKVOV0qFKqU6KqXm28ZXKqW6K6VSlFJP1+G+nyql7oqLiwv8pDUaTZ1QSpFXaTAru9AhFvcfOM6s7ELyKo0m5TC3WCzEWcVlBzH36oGMzs0gzipB3VEoBStXwrnnwm23QVycmRvx5ZdwwQWerzEMWLLEFJO774akJHMnEmh09ViNRhN0nMXBzvj2MUxPSmiy5idnUXA/DjTffgsPPQRffWXuCp56Cm66Cbw9Uin4/HPTmb1lC/TpA88+C4MHm47uutKkTE/BQpueNJqmiYgwPSnBZaypigRQTRSCJRLeciFuucW7SGzYAL/9rSkKeXnw9tvw/fdw1VX1EwlftCih0KYnjaZpYt9ROOPsszjVcM+FeOopyMjwnQuxaxfccINphtqxA2bPht274dZbvYtKoGhRQqHRaJoezman8e1jqLygM+Pbx7j4LE4VcnLg/vuhWzd45x0zF2LfPnj4YYiK8nxNZiaMGgU9e8J//gNPPGGKytixwUuwc6cp5VHUG51HodE0PUSE+BCLi0/CboaKD7EExfzU1EJx3XMh/u//YMoU37kQubmm32HOHNMnMX48TJoEbds22LQdaGe2RqNpEBpq8X48M4+8SsMhSvYdTXyIhcc6xQf8eb5wz4W4/nrTzOQrF6K4GF56CZ5/3hSY4cNNUenSJfjzPSWc2RqNpunSEK1Qm0oorrdciGXLfOdCzJ0LKSkwebJZEfaHH2DhwoYRCV+0KNOTRqM5tRERHt7wEaXRScwixRGOOzo3g4cPHkCSRwb1+fa+EBMnwo8/mmGrn30GV17pPSLJMODdd+GRR0zfwyWXmIJy0UVBnWqtaFE7Ch0eq9E0H9y/3Qfi275SClVcxIT5U1zGJ8yfggpyEyZ7X4ghQ0yT0b/+ZYatesttUApWr4a0NPjzn01n9ooVsG5d0xIJaGFCocNjNYEmGIuZBnKXLHApYx6o1qsiQuKIsUwbNcVlfNqoKSSOGBsUc9fOnabvwZ4LMWdOzbkQGzfCoEGuuRBbtpjNh5piakmLEgqNJpAEazE71VFKYRQXkb98qeP9Bqr1qlKKCQfzmJeYwvDNq9j9/O0M37yKeYkpTDiYF1Cht+dC9OoFa9aYTur0dBgzpuZciP79TYFpyFyI+qB9FBqNB5wXM8ClR0Pc0GGNHm7ZnLGXMVdA/vKljnccG4DWqyLiqNU0Yc1iBJi0ZjHhyd2I63BuQP7O6tIXIjPTjFx64w3TxPT44+Z1MTH1nk6DoMNjNRovOH/TtXMq95EOJPYQ1rvv/wMCKGDu9I/qHcJq/zvLW76UeKcmTM7Hdf27C0QuxN13N14uhD+cEuGx2pmtCSTODXzsaJGoP84hrM8MuhUFPDPo1oCEsNqbMMW7NWGKHzqszk2YysvNhT4lBR591KyztG0bLFjgXSSKi81dR9euMH063Hwz7NljCk1TFQlf6B2FRuOFU21HUVNCXKAS5pRSHF0wmwdLwlmUNtgxPnzzKqZGltE2AO83EHO1l/B+5BGzzMZll8Fzz3kv+Q1mLsTrr5tlNrKz4dprzWZDPXvW9ZM0LKfEjkKjCRTOIhE3dBgpy9YRN3SYiwO2JVFTY6FAOvZFBGtUNFMjy1zGp0aWYQ1Q69X6JPfZcyF+8xvTyRwTY/aJqE1fiG7d4Ouv4eOPm49I+EILhUbjAW99pOOGDsMSGV3t22pzpqZsZsMwAh6l1PqmETw76DaXsWcH3Ubrm0YE6mPVCXsuxNVXQ2HhyVwIbyW8nXMhbrnFdFQvX940cyHqg4560mi8kHjzSBeThYggkVEYJUWOcfuiaYmKJvHm4Gb9BgvnIn2zsgsd2czORfzsvhrnKKW6muHcq8lOT0pwaWrUGH0qdu40ncwffwzt2pkRTXfe6bs664YNZrOhtWshOdnMhfCVO9GcaVEfSTuzNYHGfeegSoqDEv/f2NTUWCiQjn1v1WTHt48JWjVZb7jnQjz5pJkL4W9fiOaUC1EftDNbo6kFLdXBXVOr0mB87sYsBe6cCwFmb4eJE6FNG+/XuOdCPPCA2VsiOrohZtwwaGe2RhMAWmLIbE2NhQzDCIpjvyGqybpTVGRmUKekwMyZZo2lvXth2jTvIpGbC3//u+mgfvttsy9ERoYZKtuSRMIX2keh0dQCwzDIXTjHZSxnwexmLRY1NRayWCweHftArXITGnMHUV4O8+aZpqXDh80+1U8/XXNfiJkzzb4QBQVmX4jHH2/8kt+NgTY9aTR+kvvOAoo3/Y/y/enEDR1G4oixZD1wp+O4uYmF+0JtGAYWJyN7IPMoGquZkHsuxKWXmrkQF17o/Rr3XIhrrjHNVC0hzLUmtOlJo6kHSimMkiLK96cTlpxK4oix5Cyc4ziWSC8Nj5sonvImJhzMc+RNQM2modrsJBq6mZC3XIi1a72LhLdciE8+OTVEwhfa9KTR+IF7iOh902dSEB7J1KHDaGMrX91Y7TZri/PCDbiEp45vHxNwk5A/4beBZP16M2x13TqzhMbixWYJDW8RSUrB55+bzuwtW8wIqOXLm27J78ZA7yg0LYpg9o9wrnr63+TeLEobzDODbnWIxKzsQlbnlTb5MFnncNRZ2YWErD/kktMQDPPZsXcXMnHN2y5jE9e8zbF3FwbsGfa+EBdeaIar2vtC/PnP3kViw4bqfSG2bjWbD2mROIkWCk2zxX1BznlnfsD7Rzg/w16jCKD3L+kAzM4uciy0AP2ifGRoNSFqypuoDTWJs1KKquIiHiwJdxl/sCScqgDknxw6BCNHVs+F8KcvxKmUC1EfWtQr0Ql3pw7utYcMw6Bk09cBTYZztuM7F7KbN+JhFowZzZ25GS7nj2sXzYzk1kH5Rh7onZLdT+CMs8/CX2qqEWXn2UG3sShtsEszoUVpg6uV8agNubkwYQJ0726W2rj3XjNsdfJk72GrWVlmxnXPnvCf/5hRTOnpZh6FryzsU50WJRS6FeqpgacOablOjuX85UvJuOEyR9x/XctMODtgAR7reC6L0gZT0et8ACLO6eNyTbAingLdaa+mvAlvYuE+bhiGX05q5/DbSU7NhOqaiW3PhejaFV56yTQt7dnjXy5Eaiq89ZZrLkRzaR7UmGhntqbZ4av2UOKIsey7caDj3PqUmajmgI01F9RpXeKZcDCP2dlFLtcEo1ZRMDrt1ZQ34el+nsJbJxzMI3T3D4yuUswixfH5R+dm8PDBA0jyydpXj3aM4+iC2RTY54Dpo2jrlrzoi/rkQkydahb5Gz7czK5OSvL7sRpa2I5Cc+rgKUM6ccRYche4JcPNr1/msDc7/vpCs0T2uHbRVF7QmXHtTFuHfTxQOFetDcROyc5jneKr1XKanpTgMWLLV3hrQZXi/vlTXM6fMH8KysncZ98BFbhldhf4mdltGKZp6eyzTRPRmWfCN9/Ahx96F4mKCnjlFXMH8fDDZi+JH380y29okag9ekehaZbYFx9nDo66nqq848QNGUabUePImT+b/BVLObFnBx2nvlrnKqfO3H/gONOTEhicEEH/6DCHT2JGcmsAEkKtATdB2cXCuc5SIJL7/M2L8BXe+mK/yxjDFJfzp42awtyrB7qIUF0yu5WCVavMsNUffoA+fcxciMGDvUckGQa8956ZYJeeDgMGwNKlcPHFfr0SjRf0jkLT7PDYVGjIMKryzEXdUIZ5HnV3+NZkx3+0Y5yL49ouFsHIofAkig3dPMnT7mpal3geOJTPvMQUFyf1vMQUJhzMc5lf4s0jXcTNLhbeSrOvXw+XX36yL8TixbXrCxERYeZCfPWVFolAoHcUmmaHx2+oo8xvqKV7dlC4chmFK5cBEDvkRtqOGt8gdvxgRTvlLJhN3vKljj7Q9mNouIKEnnZXEw7mEWcVRudmMMHJSR2e3I24DufWKbN7507TVPTRR3DaaWYuxOjR/veFSEoyndW+cic0dcAe+teSfs477zylafkYhlHt2DAMtfcPlzh+3M8JxDMamn+sXKP+8ukXqqqqSimlVFVVlfrLp1+of6xc0yDPNwxD3bsvV1m+OaDu3ZfrcvyXT79QP/3hEnXk9ZnKMAx15PWZao/Tsb8cPKjUiBFKWSxKxcQo9eSTShUW+r5m506lrr9eKVCqbVulZs1Sqqysnh/2FAfYrDysqXpHoQk6qh7F5Hzh6R6eTDT1+dbdGKWwnVFKUX5WH+ZlFxJxMI/pSQlMOJjHvMQUR7kN93kF6v3a8bW7CssTEupRVTY392RfCKXgnnvMTnO++kJkZZmRSwsXmn0hHn8c7rtPh7kGFU/q0dx/9I6i6ZDzznyXb5f2b50578wP6HPs993r9u12bx2+3TY1nL/B23/s3+ynHDru+LPzuVMOHQ/KPDwd12XXVVho7hpiY81dxIgR5q7CFzk5Sj3wgFLh4UqFhSl1771KHTlSu8+g8Q1edhRN3oonIl1FZL6ILK35bE1TQqnqiXHBah3qLbImbuiwWvVMaIp4C9MFyN65zWPYavbObQF9v/Z5eDquza6rvNzcPaSmmpFJgwbBtm2wYAF07uz5muJic9eRkmIm1d10E/z0E8yYAW3b1u8zafwjqKYnEVkADAWOKKV6Oo0PBmYCVuB1pdRz3u6hlNoHjNJC0fzwlRgXDCds4s0jXcwu9uc3Z5EA72G607rE83jWFk6U7GRW2mBH2Orwzat4PLIMGNAIs/WMp74QH36o+0I0F4K9o3gDGOw8ICJW4GXgKqAHcIuI9BCRXiKy3O3ntCDPTxNkGrp1aGP7FAKN8y7BPUx3wsE82owYy9RI1yS/qZFltG0iAqnq0ReiRw+zL0RqKvzvf7ovRGMSVKFQSn0FHHMb7gekK6X2KaXKgSXAdUqpbUqpoW4/R4I5P40r7qaKQJgu7OYmZxo6ByBYBON9uePNkexcJ8m9sF59Cu0FEvdciLffrjkX4vPPdS5EU6QxfBQdgEyn4yzbmEdEJFFEXgXOFZGJPs67S0Q2i8jmo0ePBm62pwj+VgGtDc4+CefSDfl+lm5oytT0vgIpIo91iufFznEuJrUXO8fxaMc4x27DOeGtpuJ+wca5L8SuXSf7Qvgq4b1hA/z2t3DllXD8uJkLoftCNB2afHisUioX+Ksf570GvAZmz+xgz6sloVRwOp7VtXRDU8e5airgKBJof185Sxagioscn9kumJaoaK+ZyL548LMvya9SzL16IBaLBcMwGPPZOuKsQmhFOcMPHjDNTcvWMXXBbNi8itAuSZD0+wB/ct8cOgSPPQaLFpllvp980iz97a3kN5g9IB5+GJYtMx3Ts2bBX/6iS343NRpDKH4GOjkdd7SN1RsRuQa4JjU1NRC3O2UIZqvKluZgtldRndYlHqj+vqZ1iSd3TeCqvRqGQX6VYl5iCqxcy9yrB3L3yrXMS0xhdG4GTxZnoZx8Em1HjmPqgtlYS35usHeckwPPPnsyF+Lee836TP7mQkRG6lyIpo4Ee3sqIknAcnvUk4iEAHuA32IKxCbgz0qpHYF6Zlpamtq8eXOgbnfKoJQiZP0hx3HlBZ2b7YIeDNwdy9O6xBO64aQVtaJ/JywWi4vJzU59Ir0Mw3CIg53RuRmOHYa7+NR1B1hbiorMfhAvvGD++f/+z1z8vYW5Ahw7ZorKnDmm0/ruu80EOx3m2jQQke+UUmnu40H1UYjIO8C3wJkikiUio5RSlcBYYDWwC3gvUCIhusNdnfEWgtmc/QiBxtmRPCu70EUkAEchvEBHelksFuZePdBlzC4S9nm5zzOYeMqF+PFH/3IhunY1cyH+9CedC9GcCHbU0y1KqdOVUqFKqY5Kqfm28ZVKqe5KqRSl1NMBfJ7ucFcHfIVgarFwRUQcZic7Ff07ubwvwzACGull31E4c/fKtRiGUaf71RVffSHOOcfzNd76Qrz5pu4L0Zxo8pnZmuDjTwimxkQps7ObMxMO5jGtSzzj28cQZxVyF84JWKSXs9lpdG4GFf07MTo3g3mJKQ0mFsrWF+K882qfC3H22a65EB9/rHMhmiNNPuqpNmhndt15rFN8NadzIFt6tgQ8+Sjs0U5gRj9ZLBZyAxjpZbFYHKW87eamuVcPhJVribOKw/wULL791nRMr1sHyclmLsQtt3gPc7XnQkycCFu2QK9eZi7E1VfrMNfmTNCd2Y2BdmZrgoWn3tH3HzhOfIjFpWlRoB3MhmG4iIL7caDZudN0Mn/8sdkX4tFH/esLMXEifPmlaVZ68kndF6K54c2Z3aJ2FBpNsPF35xVoB7O7KARLJA4dMiOX3nzTLOHtby7EpEmmr0LnQrRMWpRQaNOTpiFoafWkoG59ITIzzfwHnQvR8mlRm0Id9aTR1I6iInjqKTNs9aWXTP/D3r0wfbp3kTh2DP7+d+jWzSy1MX68WRH20Ue1SLRUWtSOQtOyaKxEslOB8nKYN880LR0+DNddB08/7T3MFcxciJkz4fnnoaAAbr/d3EXoMNeWT4vaUWhaDrlLFriEk9qznXOXLGjkmTVvvOVCfPSR71yIV1/VuRCnMi1KKHRmdsugITvjnSp4yoVYscL/XIi//U3nQpzK6PBYTZMk0PWSTmXWr4eHHjqZC/HUU3DzzbXLhXj2WZ0LcSrQKLWeNJq60tCd8VoinvpC7N7tO7fB3hdi8OCTfSG2bNF9IU51tFBogkJ9G/e05M54webQIRg50twJfPGF2XM6IwPGjPGe27B7N9x4I1xwAWzfbjqtd++G224Dq7Vh569pemih0ASc+jqia9sZryFakjYHcnNhwgTo3h0WLzZzIfbtMyu8ekuYy8qCO+80Hdmff24m22VkmCGv4eENOn1NE6ZFhcfqhLvGx9kRDXVr3FObzni5SxZgBLCbXG1oKuG7xcVmDsTzz5t5EcOHm2Gr/vSFmD3b9EmMG2dGNOmS3xpPtCihUEp9CnyalpY2urHncqrivKjnL1/qEIzaOqL96YwXCFGqK40pUHbKy+H1103T0uHDcO21Zna1zoXQBBptetIEnEA5ov2pn2SJjCYsOZX85UvJuOEy8pcvJSw5FUtk8HpyN3b4rmHAO++YYatjxpimpq+/NsNWa8qF6NZN50Joak+tdhQiEqmUKgnWZDQtA2+O6EBHLSmlMEqKKN+f7jJevj+diHP6Bm1HEahdU21RClavNsNWt26F3r3NXIirrvIekWQY8N57MHmy6XsYMADefx8uvjgoU9S0UPzaUYjIRSKyE9htO+4jInODOjNNs6S2juj6ICIkjhhLWLKrTyosOZXEEWOD6i9o6PDd9evh8stNUcjPN53VW7Z4z22wi0pamlm/KTLS7Avx1VdaJDS1x1/T0wzgSiAXQCn1A3BpsCZVV3RmduPjzREdN3RYnRr3+MIwDHIXzvG4o8hdOCeoJqCGCt/dtav2uRAbN7rmQixapHMhNPXDb9OTUirT7X/yqsBPp35oZ3bTwB9HdH2xO5OJiCQsOdVFLMKSU5HIqKD6KJx3Tc5OdAjMziIzEx577GRfiCeeMEt419QX4uGHYdkyM3pp5kyzL4QOc9XUF3+FIlNELgKUiIQC9wC7gjctTXMnmD0bnJ3JdpFw/2+wfRT+hu/WltxcM2x1zhzTfHTvvaZPwldfiKysk30hIiLMXIj779clvzWBw1+h+CswE+gA/Ax8DowJ1qQ0Gl+4O5PBNDfFDR1G4oix5C6cE3AzlzuB3jXVNRfiuefMXAjDMCOgHn7YbF2q0QQSXRRQ02xRSpFxw2WO45Rl6xCRav2km1ofC+f5VFTAa68pnnxS/O4LUVJimpWmTtW5EJrAUq+e2SKSDIwDkpyvUUpdG6gJajS1wZsz2RIZjVHSMIlw7oLkfuyJnHfmo0qKaX3HON57T3jkEUVGhnDhWb/y4Yeney35DaaozJ9v+it+/RWuucYUlV69AvWJNBrP+Gt6+giYD3wKGEGbjUbjB76cyc6O7WBmamdNHodRUkzHF1/HYrFgGAZZD9yJJTKKjk/N9nhN7jsLKN74NWs2JDDjiaNsO3QaZ7fJYt4Fs7l2VEfaXjAOqD4/wzBzHyZPhvR0nQuhaXj8FYoTSqlZQZ2JRuMnvpzJEhlFxDl9g5oIZxgGRkkxZfvTyXrgTjq++DpZD9xJ2f50wpNTPe4slFJs3BbN42+PZUPOb+gU+TPTznuCoR2/oFXXFNqMfK7a/JSCf//bdGZ//725c1i+XPeF0DQ8fvkoROTPQDdMJ3aZfVwp9X3wplZ3tI/i1MBbUT5vvotA8o+Va8jJPMTEVQsQQAHPDh5Jm06def7qQS5isWsXTJyo+PhjoU1MCWOS/8mfkj4lzFIJQNcP1lYTlo0bzWZDX35p+h6eeMLMndAlvzXBpL6Ni3oBo4HngGm2nxcDN73AoBPuGhf3Lx1VVVUuY4ZhBDwz2/24IRLhDMOgwIA3e1/OM4NuRQHPDLqVN3tfToEBD372JXevXMvBgwYjR0LPnoqVn1cx4LZ9ZGS14rauHzpEAnBJDty9G4YNg/79zb4Qs2aZY7ffrkVC03j4u6NIB3oopcqDP6X6o3cUDY97NdXMh8dSlv4TYV260vG5VwDInDAKoyCf2N8NJfGWwFdY9eW7CLT5qbKykrvmv82bvS93jP3fj1/y6og/c9fS9by5vA/WpdFYxcKZV2Wy/S/C6Kq9PPTFW1QeyHB4IkJtPpWSi+5g9k8jWLhQiIyEBx7QuRCahqdeUU/AdiAeOBLISWmaHnXpseBe7rv1HWMozzwA5WWU791F1oQ7MZRB5cF9ABRv/B8KRZtbRgV07sFMhHPGMAx++cddTNyf7iIU9yz/Fw8viuXD7dcjRVA1uBhjVB47TleMzkkn1qjgxgG3cW7fHF67bRi5b7zMvUdj+eLgExybfDoWRPeF0DRJ/BWKeGC3iGzC1Uehw2NbEHXtseCtmirRMVBUSPkBp/IaSamUH0gnomdwMqcbonyIxWJBIqJ4drD5TlQF8Ek0F371MaUFEQw+7yATr/kvl//+Esc1TxzezsORHfkh+Tx+IJVWu/LYunsU37waAcXC2deXseJFC8nJ2kutaXr4KxSPBXUWmkanvk2A7AuyQySA5Dc+Yf+wy13OKz+QHvRy3MEsHwLmjuLpC6/njYQUBi0r4sCHPcjIEEr7nODaWzfzz4SvmVjayuWah0rDeY4sIlpfxsvzYe6COMgNgQEl3DqpnLcGxzWppECNxhm/hEIptS7YE9E0Lr56LPhTstuTE/nAiOs8nps4YmwAZuz67IZqSWre20LulkRav9GaL/Z1oU8fWL7c4BPjG+JChMeqerEoMYXhm1cxac1i09H9m8FkflLIwamtUekCfU4gT+cgvct464LOWiQ0TRqfQiEi/1NKDRCRQswIQMevAKWUig3q7DQNioggkVEuY861k7yZn5ydyOHdziY09SyK//sFqrDAPCEsHModFkuyJtxJeI/ehMTEVjMV2e/n78L5eGYeeZUG05MSHOay+w8cJz7EwmOd4mv3Avx41q5NQvasWNat60NysuL8GUX0u76SIV3iucoYiMViYcCXWzmnNI+JaxaDgkuW7GHJ7Nv5Ym8X2pxZibxwDC4qdeRC3Lf/GDOSW2ux0DRZfAqFUmqA7b869uIUwDAMSjZ97TKW9cCdjoJ73hZwhxN5yDAUioIVH2BJSESFhpmZYXaRiIpBKisoP5BO+YF0YofcSO47C+pcckMpRV6lwazsQgCmJyVw3/5jzD5cxPj2MY6Q00AswDt3Kt66L5KMz8OITDSYNQv2/v44Lx8r5CzDfJbFYkEpxflJnZmVXcj9KfeS+2YS63N+A6dX0uWp4xy6rACxwrh2pnN9VnYhsw8XAWix0DRZ/K319JZS6vaaxjTNF6WUowmQcxkM+3FN5if7zgDMhdnZVxGWlEqrHn0oWPmBY1sa3u1s2owcR+7COfXyi0xPSgBgVnahQzDGtYt2jNd3d5GZaZbtfuMNISoqlAvvK2H9kBzujVRwDMa3j3HsZuzkf7aT6LfPZMW3N0B8FXLvMc66aDsJCVGcHnsG/aPDmJHc2nH++sIyEkKtWiQ0TRZ/ndkutSxFJAQ4L/DT0TQWzqGliSPGsu/GgY7fRZ0/oMZid/Z7ANWc2h2nvY6IULDyg5NjU18NSO9pu1jYRcJ5HvcfOM6s7ELH7qI2C7F7X4h77oFJk4TExAhC1p+0wjqLRFaWTVQWXoxqpZBReXBzARKl+Iku3FVwiJd7tjNNfLZr7IKmRULTlKnJRzERmAREiEiBfRgoB14L8tyc5/EHYAgQC8xXSn3eUM8+lWh90wjHzsIZo6TI74XWW2a0uBW7y1kw2yXXwVlYahMRZfdJOOO8u/D0jd8XvvpCeHrW/QeOMzk2galThdmzoapKGDtGsfb6I+xoddIv0zcylJf7X1xNcLVAaJoDPr8mKqWetfknXlBKxdp+YpRSiUqpif48QEQWiMgREdnuNj5YRH4SkXQReaiGeXyklBqN2UDpJn+eq6kduUsWkDN/tsP0EzvkRuKGDCO829nkL1/qVxkM98zolGXriB1yIwUrPiB/xVLihphjcUOHOe5pGEadS27YF277rqHygs6Ma+faK9RfkaiogLlzISXFrNJ6+eXw449m1zhnkXB+1t9iY5j5vHBGsuLFFxV/+hP89JPCet9xF5EA2FpSwYSDeUHt463RBAt/w2MnikgHoAuu/Si+8uPyN4A5wCL7gIhYgZeBK4AsYJOIfAJYgWfdrh+plLJnhE+2XacJII4cihVm1FLskBsRxLG4h3fv4Vdms3tmNEDbUeMp27MTgMSRY6tVerX7KOrSe1pEiA+xOHYN9jFn7j9w3KdYGAa8+y488ghkZMAllyiWLRMuuujku7GbiuzPmtohgX/+U/jg8QRUtpD0uwo+mBFKz54AQtwhoW9kKFtLKhzP6RsZSpxV9A5C0yzx15n9HHAzsBOosg0roEahUEp9JSJJbsP9gHSl1D7b/ZcA1ymlngWGeni+YBYk/KypVqxt6viqtOruKyjba7ZDd17w/V3g7E7tJ7LyHWGrHae+ilKKCQfzHI5luwjkLllQr5IbY79eRlVxEWrEWCYczGNWdiF35mbwdNEBnu7/B5eIKOfPqxSsXm1Wdd26VejdG259s4g2A8q5MDkBqB5q+0iHeN59V9HjESEjAwYMEN5/XzFgQKjLe82vUmwtqXAImH0ncmlsqybXbU+j8Qd/ndnXA2cqpcpqPNM/OgCZTsdZQH8f548DfgfEiUiqUupV9xNE5C7gLoDOvhoNn4K45xoYhsGEg3mE7f6BB37ZRuKIsVgsFlrfMabOvgJ33MNW7Yu4u2O5PiU37DuhguVLESDuitsZnZvBhPlTUEOHMa1LPADxIRZExPEe/pSdwKRJwtq1ENvJ4IZZJ3jv7kgeOFTOrOxCRHBZ4Me1i2H1asWkScL33ws9e8Knn8KQIZ6zwJ13Oc6RWfZ5aDTNDX+FYh8QilOdp4bE1jTJZ+MkpdRr2BzsaWlp2hBswz3X4OENHzE5Ool5iSmMOHKEvOVLKd2xlYi0iyhc/bHLtc4O59rgLWy1to5lf57jvBO6bflSFBDvtENx3kns2w2LnmrFS18Jp52mGDilhHWX59C5UwwWSyQPb/iI0ugkZpHimPN13x7hu/mhzNwpdOkCixbV3BfisU7x1cQvkJ9bo2lo/BWKEmCriHyBa1HA8XV87s9AJ6fjjraxeiEi1wDXpKam1vdWLYZqi3aX3wIwYs96HvzoZayxcZTvT3fkTVhi4+iy4COOvfGy374CX891Dlv1tFjWtRAh4GI2y7eJhLjNV0TIzITHHhPefjOOsEhFxeg8jt5UwFeRivFOORequIgJ705h3j/eQh0IQb0Wz4dru9AmpoSXXlL89a9CWJh/WeTBrjel0TQk/jYu+gR4EvgG+M7pp65sArqJSLKIhGH6Pz6px/0AUEp9qpS6Ky4urr63alE4i4WdBz96GQGMAtcmTzG/vw6r1UqbkeOIGzqszuW5vYWSOkf9OBcitEc62Z3ZRnGRzwihxzPzuP/AcUfUlL150OyLr+fo/FlmmG+u2dehWzfF4sXQb2QZd3yZj4zIRyJPJgc+kZWPiJA4YiyPX/csxrOtUbedARsjOO+W/aRntuKee4SiDxdw1CkiSynF0QWzyV2yoNbvR6NpTvglFEqpNz39+HOtiLwDfAucKSJZIjJKKVUJjAVWA7uA95RSO+r6IZyepTvcecDTom3vzOZO6XffYBiGY+F0/lbva+F2FwD3UNLx7WPMshZOYmHfDdjDZTNuuMyvJkPO5rS7V64lb/lSpo2awqK0wRS368ivH69g0g3f0rWrYsYMxR/O28X6F9/lgkklvF5R4HKvWdmF5FUa5OQY9PtbGYv/ciGWlZH8X9JSbnr4LbaMszDlWB6GYTA1sgMPloQ7xOLogtk8WBLO1MgOOuxV06LxN+ppP1RfV5RSXWu6Vil1i5fxlcBKf57vL0qpT4FP09LSRgfyvs0Z90V70voPmVgezcK0wQBMWrPYkQpnsZmhchfOQSKjUCXFfpmEcpcswCgqos2ok4t76I+bGN0qkukXDHDsaJRS1Ry6dUm4czGnkcK8f7wFQFpYGLu/6c3v/v0OOWWJXHONotWVG2lX+g0dIq0UfLMWuroWFFClwv8e+oXU1QnkF7Si++XZvGq9h05R2ahNEN+7E3EdzkVEqOh1PovangWbVzHphst4ZtCtLEobzPj2uhSapmXjr+kpDTjf9nMJpmP57WBNShM4RISw3T8wOjeDFzrFUrrpax786GWGb/k3sWUlLvnSRkE+YcmpDpHwxySklKLk+w3kr1hKznzbufNnU7Z3J5VHsl3O9bT4e8vkrukburNYKAPUvyP56YbT+PrVM7F0LGfJJXeTeMVrfPCb9uRHxFC4/iviSgu5ffMq85pKUB9G0+r6RDa/15NLLoF1UxazPPYmet40gJRl64gfOowJ86cw5t+mEE1PSmB8+xgWpQ3mrH+85RAJ7ajWtHT8TbjLdRt6SUS+Ax4N/JTqTnN3Zgejr4JSigd+2Ube8qUcPzyMyPMvpjL3KJP+vQj3O4clpxKZdjFtbhnlWKj9qcEU3r0HZXt3kb9iKfkrTKdywaBbWZTaj5iDeS6hps7hse6Z3LVJuFNKcd/+46j1rVCvJMDeMELPqqTrpB/YPySeP8uDAA5hmHXWJcT+dgirdqSj/hOJei0eskLhnALueLyAhTfGkrukHKOD95wOpRQT17zNrB4n+2xMXPM22M7TaFoq/pqefuN0aMHcYfgbMdVgNGfTU32if3zhHkLqGHc6J3npl44op4hzTrYo9cckJCK0HWUGvxWs+MBx7+ciThBv80t4C491z+T2N+FOKcUtHxbw7tOR8H0rkpMVZ04vYnW/XCxlVtwveyttML2OZrJ72QnK5p0LP4XTPXYfJZOK+XlILO9XljHfiPaZ0+Hsk3DmwZJwpi6YTdsgduzTaBobfxf7aU5/rgQOAH8M+GxOUZyjf6D25bZrwtOi78yxN152dJ1z/vbsySTk7Vu+e9E/C8K0LvE1hsfWNuFu1y6ziutHH8URmWjw7EwzbDU0NIr79pfx+i+VLue/lTYYtTOMjDl9KNsaA+0rkUdy2Pt7K2KNNWetFFVVVWYvbB9hrY91PJdFsZ1dM67TBtOq4BBzPc5Wo2kZ+Gt6cml8bKvVdDOwJxiTqivN1fQkYnaWC0tOdTH12P0Fvr5Z+2Oq8rTohyWn0uGFeS75EvYM7dqYhOw+ifwVriKUt2Ipj7TvCYkpjjFvdZf8yTk42RcCoqLgiSfg3nuFmBj7PMy5lFpP/pNWB0NQ/4yHtVGciK/g/D+uZ/OY05Ew13sP2/UNcnEKvhAR2vfoxXinDHdHxnXHXno3oWnR1FRmPBYYg1ly42PgP7bjCcCPwOJgT7A2NFfTk1IKVVLsSHqzU74/3cUU5Iy/pir3Rd8SGU3xpv9Rvj+92k7CXgK7tiahE3vMyObYITfSdtR4jsyfxUOlrViUmFKt3hFU31n4Ejz3vhDjx8OkSdC2LTgb0OylM848msluklCvx8HKaAhXMDKPP/ZezlPZ3zI0/xZ+ansy1/PMo5k8nvk9ISEjavx70hnXmlMV8RVdIiIfA8cx8yB+C5yG+X/nPUqprQ0xwbqQlpamNm/e3NjTqBWGYTjajtoJTUqh07T5jgXcHyewJ4ezu6gYhuHSB9vXTsSfHUvukgVUFRXSdtR4x/we/ORzCltFMvf3AxxjnrrNeet5HVluIXJpPM8/D4WFJ/tCdOni/R0ePVpFz9FZHPmsEyiB6wuR4flIa4M2RXkM69yOV49Vr0Izpm0kM1Pa6AVfc8ojIt8ppdKqjdcgFNuUUr1sf7YCvwKdlVIngjbTANDchMJ54XfH/i0dcNkxeLrGV6JaMCKqaro/UOPOwTkaanpSAvfsPc6ceYqINxMoOWrhuuvgqaewlfD2THExzJoFU6cq8guAwcXInXnI6VUu57WqKONEaHi169sU55N12dmEhoZW+51GcyrhTShqyqNwFNRXSlUBWU1ZJJprZraIYImMJiy5um+lbM9Oj3kMzuYgO76cwMGuPeTp/s5+DGeRcD625ybM/KUQ6xM5zB4Ug3oxkfPOEr7+Gj76yLtIVFTAq69Caqpi0iS45BLo/f5RLI/kVhOJdiHiIhLj2kczIsfcvVkNA6uvKn8azSlOTc7sPuLaAtXeElUApZSKDersaklz81HYF0vDMDBKiijfn054t7MJ794DpRSFK5dRtneXo3+1847Bn6gk98UZ8Pi7YPJ4Zh6r80rpFxXGjOTWgOnUXl9YxuCECJSCfV9aUc+dDnvDILWca1/P59wrFBd1jvd4T8OA9983O9Glp8MZ51Xy1XshDBgAF22rguLq13QOC+Fw5clGQjOSWqO6XI6s+JLWIRa/eoJrNKcqPoVCKaW/ZgUJu9/AngVdmvETlpg4DKUoWPEBYd3OJqRLVyoP7nNc0/qOMQAOH0P+crMDXZtR1aOSjr270OGXOPbuQqqKChEES3Q0rW8aEZAcjZqw12TaUFTOhqJywBQqu1O7894IPn62FWXftYIzKpBHc+D3xSy3wPdHLDzWKc7NVAX//jdMnAjffw89eyqunVfEpz2Osez0GAaQ4DGju1d49bBXewTWP4dcrkVCo6mBJpc0dyrgnDcRlpxK+f50LDFxVBXmY5woBaB87y5H2Ww7h+68gYgLB2K1WDmxfy9hSamU7tnBsXcXnoxKijR7Rtvvb1847clwcUOGcXT+LApWfBCQHA1fiJi5FP87mMX34XHMPlxkfv4DIcTMjeK9/8UjrauQ+4/BdYWIk4ugXEFVVRUhISEopdi8WXjoIcWaNUKXLopFi4RbbgGrNZr79pe7JPYBjGsXzYzk1ty7L5c5R4qhrNxrBJZGo/GNFopGwFO29MzegygIj3QU6bOXzY4tK2Hc1x9CaBhVeccp+uxDAMKSUik/YNrYW9lMVRIZhVFiLsaJI8aColp+g/24pgqtgSB3yQIqiwr5TftefB8ehzpsRc2Ph5VRFLRSpN26j/CxrdhCBSecNgKtBCJE8ffMAm76cA1P/6svy79LJaK14srHSnm9/UJmt+nB3zP7eO1Dbd/B2HcL7UMtTOsS75r/oDvOaTR+0aKEojkl3DlnSyugIDySRU4VXe2VSYdvXoUKCUUqyl2ut4tEaFIKlqhochfMQWGarZRSCELpT9u9Pj/YImHfNRWs+IDCK5Iw3omHpbGmAv6xkDOv28MKfuTqE2mcCHftH3JCQdGhSl56IpSZK24g0nKC827Zz/cjrSSdSKdk/rvkj5rCvOxC+kaGsrWkotrzNxaXE7L+EGCWDnmxc5xLnsi0LvHa5KTR+InP8NjmSnMIj3XPaLbvIOxiATB88yoe3vgpFBV4uYtrnaa4IcMcYlETDbGjKCw0+O2Y/WxalgylYoatjjoZtjoyN4NvIxPZFRHvuEYVWFBvxSLvxyBKMJxyIYZvXsWkNYuJHzqMxBFjHX24a+LwwS9QQaijpdG0NOoaHqsJAo5w1xVLkWgzcEwwdxLOmMcKS1y813vlLpxD4oixZvOfFUuriUTskBuJHXKj4zhuyDBih9zoUkLc1zx9HXujogJeeQW6d7ew6a0UwnoXkjx9M5bJJ8NWI8pPEJWbTU5ohHnvE4JaFIsa1gH+FUv45UXs2WVgufc40tpwvA/hZKkRb/6FPpGu+RCTo5PIq0MXPY1GY9KiTE/NBecSGSXpu6nIOogqKuSZQbe6nPfMoFuZtGYxBhDaJYWKgxnV7mUXBl9F/6xRMcQOudEl6sk+B287Cm8Z0+6Z1c4YBrz3nhm2mpEBl1yi6Hffdyy/pC0HOc1R8vuttMGUhrViXXQ7rMWlWP4dR+WbiZAbAgNKCBt5hDad8plj6eRy/2cG3crENYu5e+Va2vc+l/wqz4v8DyUVro5rUmDUFCbMn1JjyXSNRlMdLRSNROLNI8n513woLXWIhN0n4eyjAJj0v6UQYn5LDunSlcie53Jiz07K9+7CEp+AJdL0UTgTN2QYhjIc0U32RdG+MPpaJA3DcLQaBZjWJd5h5nHuJ2FHKVi92gxb3boVeveG5csV5/86m7wVS/mi/zxKw1rxlu3znHX4ALvaJrH/+66ULmxH5a+R0PsE8lQO0qeMSoTSYguzsgvpWZrH9oh4epbmsShtMN+fc4F5nH6I7RHxDh+F/b/tQiwcrjQcOwX7riOuw7kuEWRaJDQa/2lRQtGcnNn2QoAVBzMQILasxCESzmaoWFVFeEp3onqfR9VZ57gscEfnzzLzMEqLyV+x1JGsJwj5K5Y6zEzOBf/s1LSTmNYlHsBnPwmADRvgoYdg7VpIToa334ZbbgGLRchdEk3s1TfQreAoP7bpZPvcsOvAWaiH4sn/KRy6liMvHIGLSl36SByPjGHMaZE8sukLHolOYp6tCu32iHhG52YQaxUGJXcizipcGtvKIWZxViGv0iAh1OqY54ud40w/jtPn9FUyXaPRuKKd2Y2IYRjsH3EdqsBcwtzzJhQQc9X1tBt9r8P846l2knPRPzt2Z63dzOQP7rWXpnWJJ3RDpuP3Ff07OQRn1y54+GH48EM47TR45BG46y4IcyvhXVVVxbn/3cmO8FjUzjDUK/HwXQS0r+SSW9P533WtkBAP81OKgj5tiYqKwjAMj/NwLpJo/+8TWfkcr6hiRnJrR9b73SvXEr77ByYnWGssoKjRnMp4c2a3qB1Fc+P4e28Q2u4Mym1C4b5chXc7m6LPPsRqtXrtLgfVm/+A/6YV97LZnnYSdiYczOM+awJPPCEsXHiyL8R990FUlP0Lh2s9pwmH8tie3ZqQudFU/DcO4quQe44R//tfeH31i1xf8Bd2tz6j2rzOOv4r4eEdzXsczKs2D/dOeXbyKg1mHy5y5EtMOJjHvMQURp8FiVcPrLFkukajqY4WijoQiEqsSimqigop37vL6zmtuvegVfcefi1odSn658lhbTffOFPRvxN3b83npckWZi8FK4rx48XRF+LxzDxW769ez+mr9Ap+eTUa9VFrKlqZfSHklgIkSpFPDDddejvn52Z6FIr+x7IQ6VetuqyvvhbOyXTuJrNp/Qe65FHonYRG4z9aKGpJsHpbOxPaJQUJDTUd0UOG0fqmmpvq1BZ7HSbnRde+CPd1Ci9VpcIl/zjBjtfjoQB63ljBxy+GOfpCeKrnVJZv4dVpVng/HjEEuSEf7ih0hLna2XlaEhdu2AYpBjj7UAyDyMM/o5QiPsTi4hupKavafk5NLVi1SGg0/qOFohb47G09xLVuUk27DBHBGm2GrTrnPsRefSPW6Bha33yycF8wFjVv377t0UNjEmM489/x/ONx+Oaoha6/K+eraSH07h3m9T4zDxQx6wULanEsFFlIGFJK3ohjhLSvoEqqp+xYLPDPC69zFQnbL1658DqeLy+vdVc5u5/FGW8tWDUajX9ooagF7jWa7IIR3u1sFCeDAvzdZbS+aQQ5811LhYsIrW8e0SDmkWPvLmRicRGzelznGLt8/zZab+jCyvc7MztDuOQSxelzC+jR36C3l/yJykqh+6oE1KOxkGPmQshf8jh6SzseOBTpMXs6HDgvKpxvSioBaF1xgl8vSuH0bzI4FtoKRAizecb93Q14aoTky1Sl0Wj8QwtFLXGu0WQnvHsPClZ84Pidc1SNrzaj9uxs93amSMPUYqoqLuLBknDbMbChFQunncexn9vQu7dixQq46ioBYjzOpapK8cEHwuTJir17BXpXIk+auRAA52/LZmPPdh6Fogw4LzYC43gme6wRHAttRfimnyG0Fa0rTtC9qpSQkKRafSax9c2ujalKo9HUjA6PrSXuNZoAR4kMZxOSP6GXdn+HvSSFXTwkKpo2Qa5B5Pzt+6ql35OzqAsbcn4DZ1Qw+IEylo+PwmqtHpJrZ/jiIlY/14oj20NI7F7JsdHH4KJSOoRaaBtq4YfSyhrncH5kKN/2Pp2qqipTJGyUnd+BkJC6f4cJdttXjaalckrUegpmK1R7uGfWg38lf8VSYofcSMqydcQNGUbBig84sWeny/n+7AgSbx7Jy1fczoSDeY7FLHHEWJ7u/wcez8xzeXagERG+3lZFzOTTWDH9etILk7j0D2to+342pb8rdIjE/QeOu8xl0yb43e8Ub90WzZEcuHJaET3fO0rUADNhzi4SiX78y9peWkFVVRV/z3Qtevj3zIJ6fWbtuNZoAkuLEgql1KdKqbvi4uJqPtn3fVz+nPvOAkdBOftvSndsJXfJAodvovJotss9aiq4Z793fpViVnYh9+0/hlKKATsOMyu7kOMVVQ5xcl+s60tmJowcqdh8fRvy14fT96pNfP67W8j9Pyu5YlBoKAzDcOw48ioNdu9W/PGP0K8f/PADzJihGPtlAf++MJf/lpRTosxifJt6tadPZCi5rgFO1f6hhQPnRYbw98wCh0+h8oLOjG8fw6zsQu4/cFwX7NNomgja9ORG7pIFVBUV0nbUeEcL0ZLtW6g8uM9hYir83xeo/DzHNaFJKVQcyKjma/BmfnKPjrpoWzYbi137TfSJDOXahAiHkHgqn1FbE0tuLjz3HMyebZ7b68qDFN34C3u7d3Cck1BcwPGok63QR6hYZGE8CxcKERHwtyu38LfL15N0918BHD0ffNEnMpQfPPSMGN8+hjirkF+lalV8UKPRBAedme0HSilKvt9A2d5dKKWwiMXhd5C4eK99HqL7XYLR81wSR4x1iYySyKhqC7enPIzeh3ax0VbLCE4urPbF1ZNI1Ka6a3ExzJwJU6dCYSEMHw5TpsDUnzJ5Lbazy7l2kbD3hVj8QSxVVcKYMfDgg5WEfvZf8pcv5WirCp4ddJtf7/XXskrahFjIqTy5zegbGUqcVZjSOaFW4a8ajabhaVGmp0DQqvs5ABSuXObisFb5ebjvvezHRkkREhlF7sI5Lr4GVVJM7pIFJ893ysNw9EZYOIey/Xtd7uv+7dvewtP5PvZkObuJxtlMZN8l2vtCpKaadZkGDoQff4SFCxVdusCnIXGIUeX6mUqVS1+IpMHl/PSTYvr0Kgbv3sH1XS8ldugwHiwJZ1Z2IcM3r+KXnR+7JOmBKXbl/TrSJyKEI1XKIRLj2kUzvn0MW0sqyK9SHndBWiQ0mqaF3lE4ISK0GWXLk3DrNT374utdelqHJqcyY9wLhG3bzF0LnyYsOZXy/WZ70jYjx5G7cE61EFn3PIy85Ut5ZtCtvJU2mHHtopl9uMjjvM7fls01CREu3769laqYnpSAUsKSJWahvowM6Nyvkj/NLmHJjTE8kZXP6weqeP9IEdkRsdhLtqpK4NNo1MI4yAkh9MICKu8uYk9KBTNVNF+sy2JnRDxtThSRMPxvxM6cw/DNq5i4ZjHPTv+QrdlF9CzNI1oUJ1qfxtaSCh44lM+mXu0J25jl+Cz2Eh+gQ1Y1muaCFgoPKLe9g3NPa2t8ayZ/v5Ipyf1ZlF3EuF5pxA4dhiUyiohz+rok4nnyUTjnYdjLi49rVz37OlLgeFoH+u844ugJffc3HyJOZqtpXeJdchSmdUng88+FiRNhyxbo3Vvx6afwnx4FzD5cyL37ytlYXHHSHyKCMoAvI1GvxUNmKPQ+Qfijv3BWp/1sa5cEYAqYrV2ptbKSMau+4u9ff+h47v/2HeI3wOI595AwdBitLx3DA4fyibMKDxxyjUCzZ0lr85JG03zQzmwnlFIcnT/Loy/C2qUrz/1uOK87+RLuKjjE3N8PAHD4CTJuuMzx+5Rl6zw6sh2JdZgi9OKoKbyemML49jHEWuDVI8XV7PlD4sI5sv0HR7nsxBFjuXvlWkefBrUjjA7z25C1PpSkJDj33mI6Dy1jRldz53Hf/mMuOxalgI2tUK/Gg70vxN/y4KJSEovzKGgVRWWIqzkJQAwDZbFwZ24GT2Zv58HScBalDeb2zat4PqKMtqPGOcp7Ozc7cm9+NK1LfLUeGRqNpnE5JfIoAkGZLR8ibsgwEv50B2FJZhMka1g4c6+6zOXcub8f4DAp2QXAGfcQWWeRiBs6jJRl64gfOozw3T8wOjeDFzvH8XiX1mT2aedynw3nnEahEuYlplB2Vh+OL1/KqJfnMS8xhWFbf+W6FzqjRp9O1m4LAx8rZtcugy7XljH7SKGj7pGLj2NnGOqe01D3tYN8K/JIDvLmr8jFZi7EaQU5VFmsXt/RHTnpvJ6YwunnXOfoyvfwmsUOkQCwWCyOLOk4qzDhYB7TusS7HAcy5Fej0QQPbXpyQkSQsDDCklJJHGlmS8f/6f/4+YHRSFiYVzMKUC0k1nnX4NyG1N4r2z728hW3U/7jFmJtZhr7jsIZe9ayvVz2vvkghy2k3F/C0o39iYoSpkxRrLzyKCciFeHhkR59GOpgCOqf8bA2ytEXgusLEbdmQ7/EnVbNcW9HAS9fcTFvbDnsGLP7bdy7xj3WKd5lZwE1t1XVaDRNjyYvFCJyNnAP0Ab4Qin1SrCepZQiPLkb+cuXkrtwDm1GjuPYGy9TdiCdaaOmMM+DGQXMxc9dALw1x3FuMmRPuJuXmGJWbc0uxKoMqsRCK4ETbqv1C51iSZ89j+e3/43Fn9yAQhg9aCtPLO5L27ZwfH8osw8XOQTMvptRR6yo+XHIymhCW0GFU18ITxRGRPl8T+6COXf6R0xc83Y1YQRzZ+HL8a5FQqNp+gTVRyEiC4ChwBGlVE+n8cHATMAKvK6Ues6Pe1mARUqpGoP365Nw5+5DANMp/fIVt5NfpRwJYs49mvOrzL4Jj3aMq3WNIefQVp/nlQppb1Sw+53TKKqKZvhwGN/jDWK/XUjc0GG0vmMMFovF5V72XAjejwFD6HvbCazD89nSqoxIoEQpR9STMxHlJ6gEKsJaVZ9IVSVYQ7ir4BCPZ23h2UG3OXYHE9e8jdVLxVyllEtyXuUFnbVIaDRNDG8+imALxaVAEeYC39M2ZgX2AFcAWcAm4BZM0XjW7RYjlVJHRORa4G/AW0qpf9X03PoWBfTmlK7JQVvXb8jui6jL7yqBT6KxvhFPZY6VLv2P8slrifTufbKI4HMhbSlObMdcW6tP69pMeC8G9XYcFAu33wYho/N5MySf/tFhnB8ZyvMdY+i8bic5Ma2rPbN14TGORSd4FBGU4i+J4bzcvb1jyJ7o5y6Uzp/PXQz1jkKjaXo0Sma2UuorEUlyG+4HpCul9tkmtgS4Tin1LObuw9N9PgE+EZEVQI1CUR+8OaXbjBwXcDOKXaTdG+0AZtjqF5GoefGQFcoFAxRn3FPA2f1C6N35ZEvP1neMofizdcxLTKHqk3Xs23E+6qUzzL4QF5fw54fLeHNwPBBH3AHDsaAbhuE1kqGmCIeXkhNdPqs/jYR0jwiNpvnSGD6KDkCm03EW0N/bySIyELgBs47cSh/n3QXcBdC5c2dvp/nEPSrJm1PaU6tNT/fytQDaS3AopZh9uIg+ESH8UFpJq6pKSjdFm2Gre8IhpRx54Qg9ev7EK7+/2NPnpl3Pc+kwv4DX3xgAWaHQ6wRdJx+g7cAIlpRUctoB5TF3YXD69yw693fV7jl473cs7XkJJzyYnlpVlNUqk1r3iNBomj9N3pmtlFoLrPXjvNeA18A0PdXlWZ6iktyd0p5abV68PZt+UWHMSG7tV2E75xIcHUKt9IkIIdxiQe0Io2JOIuqHaDijAnksB64oRiywKdfCoB2HKTAUm3u1x2KxYBgG3V87xqGZsVTsTjBzIZ4/AheXckBCuTY2ggtilMcF2WKxYI2vLnAA1vgE4spKPApFXFkJVqv30FlP1LadqUajaVo0hlD8DHRyOu5oG6s3InINcE1qamqd7+EclWS7p0sBP29mlA1FZrbzjOTWLud4q2XkbMLK2huCei0W1kZRkVCJ3H+MMy/Yzof/mswNfZ/kp3ZJZEfGkX2iksOVBmnbsnnlRHt+N76coo1tsJ5eSYcHD/HLUIXY1vCepXm82LkjFovnb+0iQkbvC2lTUkFO1UldbWMV9vW+kHZ7d3PYg/+iXdFx02xVy2Q5Xc9Jo2m+NEbC3Sagm4gki0gYcDPwSSBuHKh+FN4WNW9mlPHtY+gXFcbsw0WErD/kl3NbRLjPmoDxbGvUbWfAxghkVB7y3i/IsEJy4+O4+bbH+MlWRkNhFtBTB0PYcl8cF1xgoWhPKHLPMVov2sev150UCYDtEfGM+Wyd154OhmGQX6VcRAIgp0pRYCgU5rxH5aRT0b8To3LMOlaC6IxqjeYUI6g7ChF5BxgItBGRLOAxpdR8ERkLrMaMdFqglNoRoOfVe0dRE97MKODam8GXSBw7Bs88o3hpNqCi4Y+FyPB8JOFk2Y7c6Hhyo+MBCKsoo+poCEdnJsCKaAhX4JQLYa1UnFOaxw5bPSYwdxSxVu+LuogQ7uVLfbgIl0RAv5x0Xh1yORaLhVeHXA4rviQhwqKFQqM5xdC1nmqBt0ZB/oZ/2vtCPP+8Ir8AuKqYvmOLyUo4wTEvfw32XAh5PwZliJlJ/X/5SGuj2rnu5rCadjWPZ+ZxvKLKpQbUuHbRJIRaHVnVzqJQF5OTRqNpPujGRTVQU7c450ZBdu4/cNyRcOcr/LOyUnj9dXjiCcjOhmuuETqOL2DLaUXsO1HJMdeWEObzT4iZC7E4FoosxF16hPxxlcgZlR7nP6ZtZK2jih7tGFfNMS8iPNrRNN25i4IWCY3m1KRFCUVdTU+eus7lLJiNxZZl7ByltKGojH5RYYiIQxyW5hTRLsTiaDA0rUs8XxWcYEthOe++K0yebPaFGDAAli6Fiy8GpWK4aFsxOVUKC2DfH6hKYHk0akGcIxdC/pJHQWoFvty/zs2N/Ikq0vkNGo3GX1qUUCilPgU+TUtLG12Laxxd54BqPa/tO4s4q9AnMpQNReWOCKc+kaF8W3CCXyoVYC68ZtRTHlvWWGkzP5FbdkCvXrB8OVx9tWuyc//oMDYWl2OAx74Q8mQO0qfMVhPc+6IdAtVCVmta5HV+g0aj8ZcWJRR1QUSQyCjCklNdmg6FJac6el7bi/e5tyi1H49rHw3KbPAz68ty1NwE+L4VUUmK6W/BLbeA8zpuF58Zya1ZX1jGxrVWM8Fudzgkn8yFcKzVNSzaVUp5jW7yhd0P4bwT0X0iNBqNOy1qRRCRa0Tktfz8/JpPtqGUQpUUO9qY2infn44qKXYs6tO6xFfrC21nRlJr7iyJw5jUBnXn6bAvlBkzqti9W7jtNleReDwzz9HneuNGxY67WqPubQd5VmRyDrLoV2RAaTVtsFZW2nYWHj4DUFnp2Xfhi8cz85hwMO9klVmldJ8IjUZTjRYlFHXJoxAREkeMJSzZ1a8RlpxK4oixjh3FhIN5jpakLs88YqXt4CP06mM9mQvx/s/M776JiUvecZ8feZUGMzeU0n1IuUsuhCz5Gbm62CUXwpmYsmLPv3D6HLXB2e9iFy67j8JeWkSj0WhAm55QSpG7cI7HHUXuwjkkjhjLkz8XsL6wzFGPCcyw1ci34yh5P4ZcA/hjIWdet4ftf+zLuZ/vZmfC6Y5v+iEh5mv+5Reh6JkEWJhAulMuRLtY+FNiFB8cK+HXSs8LdJXV6tMEVVuhcM8O130iNBqNN055oRARLJHRhCanUmETC4W5o3jxjF6UH8zDUAYbi00HdtsKKyVLoil8K5biYqHbb48QdZ8iPbqAvaFtzW50Cadz9vFfie7Qmad/LWJcVDxTp8KsWVBVJYz5m+LlwT87ciF+TuuEiPBCp1ji1x+gLDS82jzLLSGm6cnLAl5VVUVoqGfTmK/PPq1LvEv+h3P0lEaj0UALE4q6hMcqpZga1YGjyf2Zek5f5l5xO7/8uIXy/XvZERbP99mF9IkMIaK0jJLPEjm8MA5yQ+jc7yghfz5Am+RSrjinJ58cj+LH0pN+gtAzOrHxWCUhi8N4aZ4iP9/0V0yZopgtx5HskwlzEw7mOb7FW+po8qmq8pCMUQNTDh3n0+OlLmPnb8vmmoQIpnT2XDBQo9GcepzyPgqAwvBIFqUN5plBt7I6r5T5iSm8lTaY8yqL6B0ewtaPwygenox6MRE6ViKvZnP5bcs40O80elkqOV5Z5SISqhJ+eKcV1j914OsXIrn4YmHrVnjzTVMk7LkLlRd0Znz7GIefQEToluO5PmK3nCyfn8Ewqmdq13T+p8dL2VpSQd/IUCr6dzLbsZZU8Onx0lrfT6PRtFxa1I6iLogIc38/gFZuJTiUgtd2dq/WF4KLzIiktxjMWcd/JcYCx/+3BrpfYOZCrI1E/TMeMkNpnZrDu+8nMHCg3UPtO3fBarUSktjG4zytrT2P26ltSKvFYuGahAgAtpZUELrBbBHSNzKUaxIidIisRqNxoGs92XBuR6p2hKFeMXMhOL0SGZ1n9oXwEJHUt+QYl2XtZuf201m9/EIzF6JrOfLXPPr2yOC7qy+oZvP3VS5kyqHjfHysxGWH0jsihCsjLbyQU+a1PWler0RiYmJq9ZnB3FnYRQKgon8nLRIazSmKt1pPekXgZDkLdSDEzIUYbeZCyL3HkHd+pv3QEtoYJzxeW/JTBJtfuJTVLw40cyEeyUHe/JUe5/3KD63PcISeOuOtjLk9se/H0kqGb17F7udvZ/jmVfxYWkmBAtPN7vET1LlX94SDeS5jznkVGo1GAy1MKOqacHfx9mxmZRfS7V9tsGyMQO40cyHkT4VIGByuVByzhrledzAEY3Ibdo85i29/Pg259xjnLNxJxWMJjM7LYFdEPG0rThBnlVot4qHbNjF88yqmRpaRumwdUyPLGL55FeE7t+K9jEfte0S413py95dosdBoNHZalFDU1ZltXxMHTCymzbJfkJH5SJSiX1QovVrZ7E22NVodtWI8Z2s2tD6CyOFH6LsiB/lTIWl7v2XfsMsp378XgOT4GI+tUL0hIjxY8jNTI8toaytQ2HbkOKZGlvFAwQFCqzxnX4dWVdYpj8JbEyZd60mj0TijfRSY367v23/MpS+DM30iQzjx4wF2re4J78eAIfCHQuSOfG7/+UsWjLqV+w8eZ87hk9nTY9tF8VJyol8LrrvPoqqqyqXIn2EYVFRUcMHy//HjGancvnkVD69ZzNODbuWttMH0/iWd9UMHEB5ePf+its/21LpVo9GcGuh+FD6wF+jzJBTqhHDjmvZMfq49FFvgymLkznxHX4glsRfRbvU6Co8ehe4XOK4r/O8XPPTTaUy96nKfz3YvcT7l0HGyf9zCU0UHaGMrcT7hYB4xorh0/4/0+SWdh9csRoCH1ywGIK6sBIvl0jp/dl/HGo1Go4WCk/Z6lzGnvhCTc6zIRcXw13wk1bXek2Gx8EZ4W3K7p7iMv9n9AtqVFPCM2+7A/bnOJc4TR4wl+8ctzEs07zXXMJhwMM/hRxj73So4UerwVNjFQlpFEBp6X73fg0aj0XiiRQlFXTOznZ26RpVi9hLD0Rfi9N9UkP1ENq3OKfBYWiO+tIjcyFiP9z4c4TtcVURoM3IcgKPE+QSAUVOYl5jCPFvY6vj2MbzYOY6fT+9QrSaVAGGnd9BtSjUaTdBoUStLXavH2p26V6cn8P4NcahH2pIYIdz8ehFZm0IYPziUUKOK+OICl2vjiwsIrfLeeU7MOdX4fLtY2K+Ze/VAl3OmJyVgtVqRiEgssa6fzRIbZ45rkdBoNEFCry6YDXymJyWwbJkQVhDCG28osndYeWdUNBaL8ELHWP6w7b/kRbnuHPKiYvndnu/A8FxnSYyqGhdwe9tVxzFw98q1Lufcf+A4hmHQqmt3jIJ84oYOI2XZOuKGDsMoyKdV1+46nFWj0QSNFmV6qg8iwnPPwUsvQXi46x7BMAxWnH2hx+tWnH0hyuLZB2FYrFRUVHiNRrKLhL3tauKIsdy9ci3zElMYnZvB3KsHOnwUAA9HRRM3dJjD8W3fiViiorUTWqPRBA0tFE54s1iFhoYSYVRAcQHHnXYVCcUFtDIqyPNxT18LuIhgcVv82/c+l9G2qCeLxeJSC8oeBeXcutR+nUaj0QQLnUfhB4ZhsG/kH3jyvCG8nTbYMX7b5lX8Y/Nyev9lttcaTCXnnV5jfoN77oK7Y1rnNmg0moZA51HUk6cvupG3ew1k+OZVTFqzmGcG3cqitMEYYbVPcnPHXQTc/RpaJDQaTWOihcIPlFLEFuVzu00kBJi0ZjEKiKgo83mt7uug0WiaO1oo/MBisbCh01kUhoYTM+RG2o0az+H5s9jU5ixa1SAUFRUVRERENNBMNRqNJvC0KKGoS8KdPyilKG17OrvDYxmS3I1NSjHk/D+yu6SCM8sKarxWo9FomjMtKo+irtVja8JisbDl0nMcrUJDN2Q6Woh+07eTz2u1f0Gj0TR3WpRQBBOLxcKmXu1dxjb1ak9IiO9Nmc6Y1mg0zR29ivmJYRicvy3bZez8bdmms9qbeUmbnTQaTQtAC4Uf2EXCbm6q6N/JYYa6eE+e5xwKABHto9BoNM0eLRR+YLFYiLVa6BsZyqZe7R1mqL6RobQO81y+w463EuMajUbTXNBC4Sdf9mzvEAk46bNY1a01Yts1hFeUseP52wm3hcyKzqjWaDQtAC0UtcDdMW2xWAgPDyeqvJTwijK+n3EnIcD3M+4kvKLMHK9De1KNRqNpSrSoPIrG4rt/3kNlWZnjZdrFIiQ8HC5b3ZhT02g0mnqjdxT1RESwRsZUU9wQwBoZo01PGo2m2dMshEJEokRks4gMbey5uKOUQinPjYuUqtJRTxqNptkTVKEQkQUickREtruNDxaRn0QkXUQe8uNWDwLvBWeW9cNisRBzxTVIjGv3O4mJJeaKa3TCnUajafYE20fxBjAHWGQfEBEr8DJwBZAFbBKRTwAr8Kzb9SOBPsBOoFWQ51onlFJQWoIqdK35pAoLzHEd+aTRaJo5QRUKpdRXIpLkNtwPSFdK7QMQkSXAdUqpZ4FqpiURGQhEAT2AUhFZqZRqMrW7RQRLZDRhyamU7093jIclp2KJ1C1KNRpN86cx7CIdgEyn4yzbmEeUUg8rpe4F/gXM8yYSInKXzY+x+ejRo4Gcr0+UUhglRZTvTydu6DBSlq0jbugwyvenY5QUaR+FRqNp9jSb8Fil1Bs1/P414DUwW6E2xJzAc9/rNiPHAWCJ0jsKjUbT/GkMofgZcK7N3dE2Vm+C1Y+iJhJvHunii7CLhRYJjUbTEmgM09MmoJuIJItIGHAz8EkgbhysfhT+4C4KWiQ0Gk1LIdjhse8A3wJnikiWiIxSSlUCY4HVwC7gPaXUjgA97xoReS0/Pz8Qt9NoNBoNIC3R2ZqWlqY2b97c2NPQaDSaZoWIfKeUSnMf19lgGo1Go/FJixIKbXrSaDSawNMiTU8ichQ46DYcB3hTEG+/8zTuPuZ+3AbI8Xuy9cPXZwrktf6cq99v/a6v6dxgvV9PYw31jvX7DS51eb9dlFJtq42aRe1a/g/wWm1/52ncfczD8eam8JkCea0/5+r3G9x3HKz325jvWL/fpv1+nX9alOmpBj6tw+88jbuP+bpvsKnPs2tzrT/n6vdbv+trOjdY79efZwcL/X6DS8Ce2yJNT42JiGxWHqIGNIFBv9/go99xcGmO7/dU2lE0FK819gRaOPr9Bh/9joNLs3u/ekeh0Wg0Gp/oHYVGo9FofKKFQqPRaDQ+0UKh0Wg0Gp80m34UzRVbh74ngR3AEqXU2sacT0tDRCyY7zcWMz79zUaeUotCRC4BbsVcK3oopS5q5Cm1KESkMzALOAbsUUo918hT8ojeUdQBEVkgIkdEZLvb+GAR+UlE0kXkIduwAoowe35nNfRcmyO1fL/XYfY0qUC/X7+ozftVSv1XKfVXYDmgRdgPavnvtxewVCk1Eji3wSfrLw2RIdjSfoBLgd8A253GrEAG0BUIA37A7PNtsf2+HbC4sefeHH5q+X4fAv5iO2dpY8+9OfzU5v06/f49IKax594cfmr57zcR+BJYA4xo7Ll7+9E7ijqglPoKc6voTD8gXSm1TylVDiwBrlMne3wfB8IbcJrNltq8X8xdxHHbOVUNN8vmSy3fr908kq+UKmzYmTZPavl+RwCPKaUGAUMadqb+o4UicHQAMp2Os4AOInKDiPwTeAuY0ygzaxl4fL/AMuBKEZkNfNUYE2sheHu/AKOAhQ0+o5aFt/e7ChgvIq8CBxphXn6hndlBRim1DHMx0wQBpVQJ5kKmCRJKqccaew4tFaXUdmBYY8+jJvSOInD8DHRyOu5oG9MEBv1+g4t+v8GlWb9fLRSBYxPQTUSSRSQMuBn4pJHn1JLQ7ze46PcbXJr1+9VCUQdE5B3gW+BMEckSkVFKqUpgLLAa2AW8p5Ta0ZjzbK7o9xtc9PsNLi3x/eqigBqNRqPxid5RaDQajcYnWig0Go1G4xMtFBqNRqPxiRYKjUaj0fhEC4VGo9FofKKFQqPRaDQ+0UKhOeURkTtE5Ayn49dFpEcA7pskIn+uw3VviEi1sg628f0istX2M942fkBE2ridGyYiL9lKWu8VkY9FpKPT76ts99guIu+LSGRdPqPm1EALhUYDdwAOoVBK3amU2hmA+yYBtRaKGvi7Uqqv7WeWj/OeAWKAM5VS3YCPgGUiIrbfl9ru0RMoB/4a4HlqWhBaKDQtEhG5TUQ22r41/1NErLafN2zforeJyH22b+5pwGLbuREislZE0mz3KRKRF0Rkh4j8R0T62X6/T0SutZ2TJCL/FZHvbT/2LnDPAZfY7nuf7fkviMgmEflRRP5iu15EZI6tqc1/gNPq+dkjMctX36eUqgJQSi0EyoBBHi75L5Ban2dqWjZaKDQtDhE5G7gJuFgp1RezT8WtQF+gg1Kqp1KqF7BQKbUU2AzcavuGXep2uyhgjVLqHKAQeAq4ArgeeMJ2zhHgCqXUb2zPtX/Tfwj4r+2+MzCr3OYrpc4HzgdGi0iy7V5nYjayGQ74ajf6gpPpqZeXc1KBQ0qpArfxzcA5bu8qBLgK2ObjmZpTHF1mXNMS+S1wHrDJZmmJwFzMPwW62npXrAA+9+Ne5Zg9A8BcTMuUUhUisg3TtAQQCswRkb6YotTdy71+D/R28j/EAd0wO6K9Y/v2/4uIrPExn7/bxK2+RIjIVtuf/wvMD8A9NS0ULRSalogAbyqlJlb7hUgf4EpMm/yfgJE13KtCnSyIZmCab1BKGbZv4wD3AYeBPpi79BM+5jVOKbXabU5X1/iJakcG0FlEYty60p2H2fsabD6KAD9X00LRpidNS+QLYJiInAYgIq1FpIstMsiilPoAmIzZ1xhMk1JMPZ4XB/xqa3t7O2Z/ZE/3XQ38TURCbfPqLiJRmJ35brL5ME4HLq/HXFBKFQNvAtNFxGp71nAgErM3s0ZTK/SOQtPiUErtFJHJwOciYgEqgDFAKbDQNgZg33G8AbwqIqXAhXV45FzgA9tivAooto3/CFSJyA+2Z8zENFd9b4s+Ogr8AfgQ08m8EziEWaK6tvwoIvb+7O9hfrYXgT228d3A9U67I43Gb3SZcY1Go9H4RJueNBqNRuMTLRQajUaj8YkWCo1Go9H4RAuFRqPRaHyihUKj0Wg0PtFCodFoNBqfaKHQaDQajU+0UGg0Go3GJ/8Pbmb9SQy8TDQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1303,11 +1422,11 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 37, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T11:13:48.884783Z", - "start_time": "2020-10-09T11:13:48.881981Z" + "end_time": "2020-10-11T03:41:01.528110Z", + "start_time": "2020-10-11T03:41:01.526254Z" } }, "outputs": [], @@ -1318,11 +1437,11 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 38, "metadata": { "ExecuteTime": { - "end_time": "2020-10-09T12:14:46.211984Z", - "start_time": "2020-10-09T12:14:45.839810Z" + "end_time": "2020-10-11T03:41:02.244164Z", + "start_time": "2020-10-11T03:41:01.954889Z" } }, "outputs": [ diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 70ffd972..7c6cb6a8 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -7,6 +7,7 @@ import sys import numpy as np import matplotlib.pyplot as plt +import scipy import qtensor as qt from cartesian_explorer import Explorer @@ -36,15 +37,19 @@ def tn(circuit): return qt.optimisation.TensorNet.QtreeTensorNet.from_qtree_gates(circuit) @ex.provider -def peo(tn): - opt = qt.optimisation.Optimizer.DefaultOptimizer() +def peo(tn, ordering_algo='greedy', tamaki_wait_time=15): + if ordering_algo=='greedy': + opt = qt.optimisation.Optimizer.DefaultOptimizer() + elif 'tamaki' in ordering_algo: + if '_' in ordering_algo: + _, time_str = ordering_algo.split('_') + tamaki_wait_time=int(time_str) + opt = qt.optimisation.Optimizer.TamakiOptimizer(wait_time=tamaki_wait_time) peo, _ = opt.optimize(tn) return tuple(peo) @ex.provider def sim_costs(tn, peo): - opt = qt.optimisation.Optimizer.DefaultOptimizer() - peo, _ = opt.optimize(tn) costs, mems = tn.simulation_cost(peo) return costs, mems @@ -98,16 +103,22 @@ def plot_with_filter(est_flat, times_flat): # Fit times log_fit_coef = np.polyfit(np.log(est_flat_filtered), np.log(times_flat_filtered), 1) fit_coef = np.polyfit(est_flat_filtered, times_flat_filtered, 1) + def fixed_slope(x, shift): + slope = 1.0 + return x*slope + shift + popt, pcov = scipy.optimize.curve_fit(fixed_slope, np.log(est_flat_filtered, np.log(times_flat_filtered)) print('Lin fit:', fit_coef) print('Log fit:', log_fit_coef) + print('Slope-1 log fit:', popt) fit_fn = np.poly1d(log_fit_coef) + fit_fn = fixed_slope # Plot scatter with filtered data plt.scatter(est_flat_filtered, times_flat_filtered, marker='x') min_x = np.log10(est_flat_filtered.min()) max_x = np.log10(est_flat_filtered.max()) + .5 xfit = 10**np.linspace(min_x, max_x, 100) - plt.plot(xfit, np.exp(fit_fn(np.log(xfit))), color='blue') + plt.plot(xfit, np.exp(fit_fn(np.log(xfit), popt[0])), color='blue') plt.loglog() plt.xlabel('estimated FLOP') plt.ylabel('Runtime') @@ -141,9 +152,16 @@ def cli(): @click.option('-B', '--backend', default='numpy') @click.option('-M', '--max-memory', default=3e8) @click.option('-s', '--seed', default=SEED) +@click.option('-O', '--ordering_algo', default='greedy' + ,help=("One of (greedy, tamaki, tamaki_{wait_time})" + "'tamki_15' means heuristic solver running for 15 seconds per graph" + ) + ) @click.option('--min-memory', default=3e6) def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED, - max_memory=2e8, min_memory=1e6): + max_memory=2e8, min_memory=1e6, + ordering_algo='greedy', tamaki_time=10 + ): """ Plots times and estimated FLOP for each step of several QAOA energy computation contractions. @@ -157,12 +175,13 @@ def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED, p = 3 N = 1000 - edges_to_try = 30 + edges_to_try = 20 estimators, maxmems = ex.map_variables( ('step_flops', 'max_mem'), d=ds, edge_idx=range(edges_to_try), n=[N], p=[p], seed=[seed], + ordering_algo=[ordering_algo], ) @@ -173,9 +192,10 @@ def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED, estimators = estimators.T[selector] times = ex.map_variable('step_sim_time', d=ds, - edge_idx=edge_indices, n=[N], p=[p], - seed=[seed], - backend=[backend] + edge_idx=edge_indices, n=[N], p=[p] + ,seed=[seed] + ,backend=[backend] + ,ordering_algo=[ordering_algo] ) est_flat = np.concatenate(estimators.T.flatten()) diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 77152c3c..157ffaad 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=111 > results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=111 --ordering_algo=tamaki_10 | tee results/time_vs_flops.txt From 0fddef5ce78f1ea1cb96963d37771dfaa315be1f Mon Sep 17 00:00:00 2001 From: Actions Runner Date: Sun, 11 Oct 2020 03:45:18 +0000 Subject: [PATCH 091/104] [jlse-results] for `[jlse-run] add tamaki to time-vs-flops, use a different fitting method` --- run/automake/results/result.md | 7 +- run/automake/results/time_vs_flops.txt | 8631 ------------------------ 2 files changed, 1 insertion(+), 8637 deletions(-) diff --git a/run/automake/results/result.md b/run/automake/results/result.md index 1a13c657..9eb71a29 100644 --- a/run/automake/results/result.md +++ b/run/automake/results/result.md @@ -1,10 +1,5 @@ ## Automake run result ### Performance summary: -===Results=== -Total time: 79.116 -Simulator fitted flops: 0.041285 G -Matmul flops: 221.86 G -Simulator optimality: 0.00018608346870725733 \n \n Backend used: mkl (full) @@ -12,4 +7,4 @@ Backend used: mkl (full) ### Performance plot: ![](https://asset.cml.dev/b21650c77b199efc687ad3a73ccb1c89a8d8aaa3) \n -Run date: Sat Oct 10 22:06:50 UTC 2020 +Run date: Sun Oct 11 03:45:15 UTC 2020 diff --git a/run/automake/results/time_vs_flops.txt b/run/automake/results/time_vs_flops.txt index 737f83e5..e69de29b 100644 --- a/run/automake/results/time_vs_flops.txt +++ b/run/automake/results/time_vs_flops.txt @@ -1,8631 +0,0 @@ -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:128 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:128 m:2 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:64 m:8 -Dimensions: f:4 k:2 n:64 m:16 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:8 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:64 m:16 -Dimensions: f:2 k:2 n:4096 m:2 -Dimensions: f:2 k:2 n:4096 m:2 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:128 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:1 k:2 n:8192 m:1 -Dimensions: f:512 k:2 n:8 m:16 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:256 k:2 n:8 m:64 -Dimensions: f:512 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:2 k:2 n:8 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:4 m:16 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:4 k:2 n:8 m:16 -Dimensions: f:64 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:64 m:4 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:4 k:2 n:64 m:4 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:256 m:16 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:16 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:4 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:1 k:2 n:8192 m:1 -Dimensions: f:1024 k:2 n:4 m:32 -Dimensions: f:2048 k:2 n:32 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:2 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:64 m:4 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:8 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:64 m:1 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:16 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:128 m:8 -Dimensions: f:4 k:2 n:64 m:16 -Dimensions: f:2 k:2 n:256 m:16 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:4 k:2 n:256 m:16 -Dimensions: f:8 k:2 n:256 m:16 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:4096 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:32 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:8 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:2 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:128 m:4 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:1024 m:1 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:32 m:16 -Dimensions: f:64 k:2 n:4 m:16 -Dimensions: f:32 k:2 n:2 m:32 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2048 k:2 n:32 m:1 -Dimensions: f:32 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:2 k:2 n:32 m:1 -Dimensions: f:2 k:2 n:16 m:1 -Dimensions: f:2 k:2 n:8 m:1 -Dimensions: f:2 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:4 m:1 -Dimensions: f:1 k:2 n:2 m:1 -Dimensions: f:1 k:2 n:1 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:8 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:4 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:16 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:4 m:32 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:16 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:8 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:32 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:8 m:128 -Dimensions: f:32 k:2 n:1 m:32 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:1 k:2 n:512 m:2 -Dimensions: f:32 k:2 n:1 m:64 -Dimensions: f:8 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:32 m:32 -Dimensions: f:8 k:2 n:16 m:32 -Dimensions: f:8 k:2 n:8 m:64 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:64 m:64 -Dimensions: f:4 k:2 n:64 m:64 -Dimensions: f:32 k:2 n:64 m:8 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:16 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:2048 m:8 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:16 k:2 n:32 m:64 -Dimensions: f:2 k:2 n:256 m:64 -Dimensions: f:1 k:2 n:16384 m:2 -Dimensions: f:4 k:2 n:128 m:128 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:32 k:2 n:64 m:32 -Dimensions: f:1 k:2 n:32768 m:1 -Dimensions: f:512 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:4 k:2 n:256 m:128 -Dimensions: f:32 k:2 n:64 m:128 -Dimensions: f:8 k:2 n:1024 m:64 -Dimensions: f:128 k:2 n:1024 m:4 -Dimensions: f:32 k:2 n:512 m:32 -Dimensions: f:2 k:2 n:65536 m:4 -Dimensions: f:8 k:2 n:2048 m:256 -Dimensions: f:128 k:2 n:512 m:64 -Dimensions: f:64 k:2 n:2048 m:128 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:128 k:2 n:2048 m:128 -Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:1 k:2 n:1048576 m:1 -Dimensions: f:4 k:2 n:131072 m:1 -Dimensions: f:32768 k:2 n:8 m:32 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:2 k:2 n:524288 m:1 -Dimensions: f:4 k:2 n:4096 m:1 -Dimensions: f:64 k:2 n:64 m:4096 -Dimensions: f:128 k:2 n:1024 m:64 -Dimensions: f:2048 k:2 n:256 m:256 -Dimensions: f:131072 k:2 n:512 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:4 m:32 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:16 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:2 k:2 n:32 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:32 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:256 m:4 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:8 m:128 -Dimensions: f:4 k:2 n:16 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:256 m:2 -Dimensions: f:2 k:2 n:128 m:4 -Dimensions: f:1 k:2 n:512 m:2 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:128 m:4 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:2 k:2 n:64 m:32 -Dimensions: f:1 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:8 k:2 n:16 m:32 -Dimensions: f:2 k:2 n:512 m:4 -Dimensions: f:8 k:2 n:128 m:8 -Dimensions: f:16 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:1 k:2 n:2048 m:2 -Dimensions: f:2 k:2 n:256 m:16 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:4 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:128 m:32 -Dimensions: f:8 k:2 n:512 m:8 -Dimensions: f:1 k:2 n:512 m:128 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:16 k:2 n:64 m:128 -Dimensions: f:32 k:2 n:128 m:32 -Dimensions: f:32 k:2 n:64 m:128 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:1 k:2 n:131072 m:2 -Dimensions: f:32 k:2 n:64 m:128 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:1 k:2 n:131072 m:2 -Dimensions: f:32 k:2 n:64 m:256 -Dimensions: f:16 k:2 n:512 m:64 -Dimensions: f:32 k:2 n:1024 m:128 -Dimensions: f:16 k:2 n:4096 m:1024 -Dimensions: f:2048 k:2 n:2048 m:64 -Dimensions: f:2 k:2 n:4194304 m:2 -Dimensions: f:16 k:2 n:8192 m:2048 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:32 k:2 n:262144 m:64 -Dimensions: f:2 k:2 n:134217728 m:1 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:2 k:2 n:33554432 m:1 -Dimensions: f:2 k:2 n:16777216 m:1 -Dimensions: f:1 k:2 n:16777216 m:1 -Dimensions: f:32 k:2 n:4096 m:4096 -Dimensions: f:2 k:2 n:134217728 m:1 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:2 k:2 n:33554432 m:1 -Dimensions: f:2 k:2 n:16777216 m:1 -Dimensions: f:1 k:2 n:16777216 m:1 -Dimensions: f:131072 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:131072 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:134217728 m:1 -Dimensions: f:2048 k:2 n:65536 m:1 -Dimensions: f:2048 k:2 n:32768 m:1 -Dimensions: f:32 k:2 n:524288 m:1 -Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:2 k:2 n:131072 m:1 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:1 k:2 n:16 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:16 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:4 m:32 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:8 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:8 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:32 m:4 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:2 k:2 n:128 m:2 -Dimensions: f:4 k:2 n:64 m:2 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:128 m:2 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:16 m:32 -Dimensions: f:2 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:2 k:2 n:128 m:4 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:8 m:128 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:32 k:2 n:1 m:32 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:16 k:2 n:4 m:16 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:1 k:2 n:1024 m:2 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:4 k:2 n:64 m:16 -Dimensions: f:1 k:2 n:2048 m:2 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:1 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:256 m:16 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:8 k:2 n:32 m:64 -Dimensions: f:16 k:2 n:128 m:8 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:1 k:2 n:2048 m:2 -Dimensions: f:32 k:2 n:64 m:8 -Dimensions: f:8 k:2 n:128 m:16 -Dimensions: f:8 k:2 n:64 m:64 -Dimensions: f:128 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:1024 m:1 -Dimensions: f:2 k:2 n:512 m:1 -Dimensions: f:8 k:2 n:256 m:16 -Dimensions: f:32 k:2 n:64 m:8 -Dimensions: f:2 k:2 n:1024 m:4 -Dimensions: f:2 k:2 n:128 m:128 -Dimensions: f:8 k:2 n:512 m:8 -Dimensions: f:8 k:2 n:128 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:4 k:2 n:128 m:128 -Dimensions: f:4 k:2 n:128 m:128 -Dimensions: f:16 k:2 n:64 m:128 -Dimensions: f:16 k:2 n:256 m:64 -Dimensions: f:64 k:2 n:64 m:128 -Dimensions: f:32 k:2 n:1024 m:64 -Dimensions: f:32 k:2 n:256 m:512 -Dimensions: f:8 k:2 n:1024 m:1024 -Dimensions: f:16 k:2 n:4096 m:1024 -Dimensions: f:2048 k:2 n:2048 m:64 -Dimensions: f:32 k:2 n:4194304 m:1 -Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:2 k:2 n:65536 m:2 -Dimensions: f:2048 k:2 n:64 m:64 -Dimensions: f:8192 k:2 n:16 m:2048 -Dimensions: f:2 k:2 n:67108864 m:1 -Dimensions: f:1048576 k:2 n:64 m:1 -Dimensions: f:32 k:2 n:1048576 m:1 -Dimensions: f:2 k:2 n:4194304 m:1 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:2 k:2 n:65536 m:1 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:2 k:2 n:128 m:1 -Dimensions: f:1 k:2 n:8 m:1 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:1 m:2 -Dimensions: f:1 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:2 k:2 n:2 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:8 k:2 n:1 m:4 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:4 m:8 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:8 k:2 n:4 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:4 k:2 n:2 m:8 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:1 k:2 n:32 m:2 -Dimensions: f:2 k:2 n:8 m:4 -Dimensions: f:1 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:32 m:4 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:32 k:2 n:1 m:4 -Dimensions: f:1 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:4 k:2 n:8 m:4 -Dimensions: f:4 k:2 n:4 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:4 -Dimensions: f:4 k:2 n:4 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:2 k:2 n:16 m:8 -Dimensions: f:8 k:2 n:8 m:4 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:2 k:2 n:32 m:4 -Dimensions: f:1 k:2 n:128 m:2 -Dimensions: f:1 k:2 n:16 m:16 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:4 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:8 -Dimensions: f:1 k:2 n:32 m:8 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:64 m:2 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:8 k:2 n:8 m:8 -Dimensions: f:4 k:2 n:64 m:2 -Dimensions: f:32 k:2 n:1 m:16 -Dimensions: f:4 k:2 n:8 m:16 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:8 k:2 n:16 m:4 -Dimensions: f:1 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:16 m:8 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:32 k:2 n:1 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:4 k:2 n:8 m:2 -Dimensions: f:2 k:2 n:16 m:2 -Dimensions: f:16 k:2 n:8 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:32 m:8 -Dimensions: f:1 k:2 n:32 m:32 -Dimensions: f:2 k:2 n:32 m:16 -Dimensions: f:2 k:2 n:64 m:8 -Dimensions: f:4 k:2 n:32 m:16 -Dimensions: f:1 k:2 n:64 m:32 -Dimensions: f:2 k:2 n:64 m:16 -Dimensions: f:8 k:2 n:16 m:16 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:32 m:32 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:8 k:2 n:32 m:16 -Dimensions: f:4 k:2 n:128 m:8 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:4 k:2 n:512 m:2 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:2 k:2 n:64 m:64 -Dimensions: f:4 k:2 n:64 m:32 -Dimensions: f:4 k:2 n:64 m:64 -Dimensions: f:32 k:2 n:32 m:16 -Dimensions: f:512 k:2 n:4 m:4 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:32 k:2 n:1 m:128 -Dimensions: f:4 k:2 n:256 m:16 -Dimensions: f:4 k:2 n:128 m:32 -Dimensions: f:16 k:2 n:32 m:64 -Dimensions: f:2 k:2 n:1024 m:2 -Dimensions: f:2 k:2 n:256 m:64 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:1 k:2 n:4096 m:1 -Dimensions: f:32 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:16384 m:1 -Dimensions: f:4 k:2 n:256 m:128 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:4 k:2 n:2048 m:128 -Dimensions: f:4 k:2 n:4096 m:64 -Dimensions: f:2048 k:2 n:64 m:64 -Dimensions: f:2 k:2 n:2097152 m:1 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:2 k:2 n:524288 m:1 -Dimensions: f:2 k:2 n:262144 m:1 -Dimensions: f:1 k:2 n:262144 m:1 -Dimensions: f:32 k:2 n:64 m:4096 -Dimensions: f:2 k:2 n:1048576 m:1 -Dimensions: f:131072 k:2 n:1 m:64 -Dimensions: f:131072 k:2 n:32 m:1 -Dimensions: f:32 k:2 n:65536 m:1 -Dimensions: f:2 k:2 n:524288 m:1 -Dimensions: f:2 k:2 n:32768 m:1 -Dimensions: f:2 k:2 n:8192 m:1 -Dimensions: f:2 k:2 n:4096 m:1 -Dimensions: f:2 k:2 n:2048 m:1 -Dimensions: f:2 k:2 n:256 m:1 -Dimensions: f:2 k:2 n:64 m:1 -Dimensions: f:1 k:2 n:8 m:1 -Selected edges [ 7 8 9 23] -Estimated memories [1835008 1610612736 3407872 16106127360 3670016 8589934592 3670016 - 301989888] -Lin fit: [ 4.42116846e-09 -3.02228348e-02] -Log fit: [ 0.87176776 -17.53601154] -===Results=== -Total time: 79.116 -Simulator fitted flops: 0.041285 G -Matmul flops: 221.86 G -Simulator optimality: 0.00018608346870725733 From 2763f8762904f8cd33ef05d264058d27407f1f85 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 23:14:33 -0500 Subject: [PATCH 092/104] [jlse-run] fix typo, revert tee, since it does not fail on failure --- .gitignore | 2 -- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 7 ++++--- analysis/spec/qtensor_specs/time_vs_flop.py | 2 +- qtensor/QAOASimulator.py | 23 ++++++++++++++++++--- qtensor/__init__.py | 1 + run/automake/qsub_entry.sh | 2 +- 6 files changed, 27 insertions(+), 10 deletions(-) diff --git a/.gitignore b/.gitignore index ec0ab8aa..e83b302f 100644 --- a/.gitignore +++ b/.gitignore @@ -14,8 +14,6 @@ dist/ downloads/ eggs/ .eggs/ -lib/ -lib64/ parts/ sdist/ var/ diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index f1b535c6..19242af7 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -1437,11 +1437,11 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 39, "metadata": { "ExecuteTime": { - "end_time": "2020-10-11T03:41:02.244164Z", - "start_time": "2020-10-11T03:41:01.954889Z" + "end_time": "2020-10-11T04:13:46.365119Z", + "start_time": "2020-10-11T04:13:46.294641Z" } }, "outputs": [ @@ -1449,6 +1449,7 @@ "name": "stdout", "output_type": "stream", "text": [ + "Converted QAOA_bench.ipynb.\n", "Converted Time_vs_FLOP.ipynb.\n" ] } diff --git a/analysis/spec/qtensor_specs/time_vs_flop.py b/analysis/spec/qtensor_specs/time_vs_flop.py index 7c6cb6a8..18dbe9c6 100644 --- a/analysis/spec/qtensor_specs/time_vs_flop.py +++ b/analysis/spec/qtensor_specs/time_vs_flop.py @@ -106,7 +106,7 @@ def plot_with_filter(est_flat, times_flat): def fixed_slope(x, shift): slope = 1.0 return x*slope + shift - popt, pcov = scipy.optimize.curve_fit(fixed_slope, np.log(est_flat_filtered, np.log(times_flat_filtered)) + popt, pcov = scipy.optimize.curve_fit(fixed_slope, np.log(est_flat_filtered), np.log(times_flat_filtered)) print('Lin fit:', fit_coef) print('Log fit:', log_fit_coef) print('Slope-1 log fit:', popt) diff --git a/qtensor/QAOASimulator.py b/qtensor/QAOASimulator.py index 0a27af82..6a74e6b4 100644 --- a/qtensor/QAOASimulator.py +++ b/qtensor/QAOASimulator.py @@ -1,16 +1,18 @@ -from qtensor.Simulate import Simulator, QtreeSimulator, CirqSimulator -from qtensor.utils import get_edge_subgraph import numpy as np -import networkx as nx from tqdm.auto import tqdm from multiprocessing import Pool from loguru import logger as log +from qtensor.Simulate import Simulator, QtreeSimulator, CirqSimulator +from qtensor.utils import get_edge_subgraph +from qtensor.lib import graph_hash + class QAOASimulator(Simulator): def __init__(self, composer, profile=False, *args, **kwargs): super().__init__(*args, **kwargs) self.composer = composer self.profile = profile + self._subgraph_energy_cache = {} def _get_edge_energy(self, G, gamma, beta, edge): circuit = self._edge_energy_circuit(G, gamma, beta, edge) @@ -86,6 +88,21 @@ def energy_expectation_parallel(self, G, gamma, beta, n_processes=4): return C +class CachedQAOASimulator(QAOASimulator): + def __init__(self, composer, profile=False, *args, **kwargs): + super().__init__(composer, profile=profile, *args, **kwargs) + self._subgraph_energy_cache = {} + + def _get_edge_energy(self, G, gamma, beta, edge): + graph = get_edge_subgraph(G, edge, len(gamma)) + ghash = graph_hash(graph) + cached_value = self._subgraph_energy_cache.get(ghash) + if cached_value is None: + E = super()._get_edge_energy(G, gamma, beta, edge) + self._subgraph_energy_cache[ghash] = E + return E + else: + return cached_value class QAOAQtreeSimulator(QAOASimulator, QtreeSimulator): pass diff --git a/qtensor/__init__.py b/qtensor/__init__.py index 54846c99..f23c0a79 100644 --- a/qtensor/__init__.py +++ b/qtensor/__init__.py @@ -15,6 +15,7 @@ from qtensor.FeynmanSimulator import FeynmanSimulator from qtensor.ProcessingFrameworks import PerfNumpyBackend, NumpyBackend from qtensor import DebugFrameworks +from qtensor import lib class CirqQAOAComposer(QAOAComposer): def _get_builder_class(self): diff --git a/run/automake/qsub_entry.sh b/run/automake/qsub_entry.sh index 157ffaad..423383a8 100755 --- a/run/automake/qsub_entry.sh +++ b/run/automake/qsub_entry.sh @@ -10,4 +10,4 @@ lscpu echo $PYTHONPATH echo $PATH echo $SHELL -qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=111 --ordering_algo=tamaki_10 | tee results/time_vs_flops.txt +qtensor-specs-time-flop-plot time-vs-flops-plot results/time_vs_flops.png --backend=mkl --max-memory=5e10 --min-memory=1e6 --seed=111 --ordering_algo=tamaki_10 > results/time_vs_flops.txt From e299a3f5aea990fa39f94c65935d690ddb387926 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sat, 10 Oct 2020 23:22:23 -0500 Subject: [PATCH 093/104] [jlse-run] add missing lib folder --- qtensor/lib/__init__.py | 2 + qtensor/lib/graph_hashing.py | 158 +++++++++++++++++++++++++++++++++++ 2 files changed, 160 insertions(+) create mode 100644 qtensor/lib/__init__.py create mode 100644 qtensor/lib/graph_hashing.py diff --git a/qtensor/lib/__init__.py b/qtensor/lib/__init__.py new file mode 100644 index 00000000..391650d5 --- /dev/null +++ b/qtensor/lib/__init__.py @@ -0,0 +1,2 @@ +from .graph_hashing import weisfeiler_lehman_graph_hash +graph_hash = weisfeiler_lehman_graph_hash diff --git a/qtensor/lib/graph_hashing.py b/qtensor/lib/graph_hashing.py new file mode 100644 index 00000000..b0d6df1b --- /dev/null +++ b/qtensor/lib/graph_hashing.py @@ -0,0 +1,158 @@ + +""" +Functions for hashing graphs to strings. +Isomorphic graphs should be assigned identical hashes. +For now, only Weisfeiler-Lehman hashing is implemented. +""" + +""" +DL: + Ripped off from networkx 2.5. There's no reason to ask for a newer version just + because of a single small function +""" + +from collections import Counter +from hashlib import blake2b + +__all__ = ["weisfeiler_lehman_graph_hash"] + + +def weisfeiler_lehman_graph_hash( + G, edge_attr=None, node_attr=None, iterations=3, digest_size=16 +): + """Return Weisfeiler Lehman (WL) graph hash. + + The function iteratively aggregates and hashes neighbourhoods of each node. + After each node's neighbors are hashed to obtain updated node labels, + a hashed histogram of resulting labels is returned as the final hash. + + Hashes are identical for isomorphic graphs and strong guarantees that + non-isomorphic graphs will get different hashes. See [1] for details. + + Note: Similarity between hashes does not imply similarity between graphs. + + If no node or edge attributes are provided, the degree of each node + is used as its initial label. + Otherwise, node and/or edge labels are used to compute the hash. + + Parameters + ---------- + G: graph + The graph to be hashed. + Can have node and/or edge attributes. Can also have no attributes. + edge_attr: string + The key in edge attribute dictionary to be used for hashing. + If None, edge labels are ignored. + node_attr: string + The key in node attribute dictionary to be used for hashing. + If None, and no edge_attr given, use + degree of node as label. + iterations: int + Number of neighbor aggregations to perform. + Should be larger for larger graphs. + digest_size: int + Size of blake2b hash digest to use for hashing node labels. + + Returns + ------- + h : string + Hexadecimal string corresponding to hash of the input graph. + + Examples + -------- + Two graphs with edge attributes that are isomorphic, except for + differences in the edge labels. + + >>> G1 = nx.Graph() + >>> G1.add_edges_from( + ... [ + ... (1, 2, {"label": "A"}), + ... (2, 3, {"label": "A"}), + ... (3, 1, {"label": "A"}), + ... (1, 4, {"label": "B"}), + ... ] + ... ) + >>> G2 = nx.Graph() + >>> G2.add_edges_from( + ... [ + ... (5, 6, {"label": "B"}), + ... (6, 7, {"label": "A"}), + ... (7, 5, {"label": "A"}), + ... (7, 8, {"label": "A"}), + ... ] + ... ) + + Omitting the `edge_attr` option, results in identical hashes. + + >>> weisfeiler_lehman_graph_hash(G1) + '0db442538bb6dc81d675bd94e6ebb7ca' + >>> weisfeiler_lehman_graph_hash(G2) + '0db442538bb6dc81d675bd94e6ebb7ca' + + With edge labels, the graphs are no longer assigned + the same hash digest. + + >>> weisfeiler_lehman_graph_hash(G1, edge_attr="label") + '408c18537e67d3e56eb7dc92c72cb79e' + >>> weisfeiler_lehman_graph_hash(G2, edge_attr="label") + 'f9e9cb01c6d2f3b17f83ffeaa24e5986' + + References + ------- + .. [1] Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen, + Kurt Mehlhorn, and Karsten M. Borgwardt. Weisfeiler Lehman + Graph Kernels. Journal of Machine Learning Research. 2011. + http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf + """ + + def neighborhood_aggregate(G, node, node_labels, edge_attr=None): + """ + Compute new labels for given node by aggregating + the labels of each node's neighbors. + """ + label_list = [node_labels[node]] + for nei in G.neighbors(node): + prefix = "" if not edge_attr else G[node][nei][edge_attr] + label_list.append(prefix + node_labels[nei]) + return "".join(sorted(label_list)) + + def weisfeiler_lehman_step(G, labels, edge_attr=None, node_attr=None): + """ + Apply neighborhood aggregation to each node + in the graph. + Computes a dictionary with labels for each node. + """ + new_labels = dict() + for node in G.nodes(): + new_labels[node] = neighborhood_aggregate( + G, node, labels, edge_attr=edge_attr + ) + return new_labels + + items = [] + node_labels = dict() + # set initial node labels + for node in G.nodes(): + if (not node_attr) and (not edge_attr): + node_labels[node] = str(G.degree(node)) + elif node_attr: + node_labels[node] = str(G.nodes[node][node_attr]) + else: + node_labels[node] = "" + + for k in range(iterations): + node_labels = weisfeiler_lehman_step(G, node_labels, edge_attr=edge_attr) + counter = Counter() + # count node labels + for node, d in node_labels.items(): + h = blake2b(digest_size=digest_size) + h.update(d.encode("ascii")) + counter.update([h.hexdigest()]) + # sort the counter, extend total counts + items.extend(sorted(counter.items(), key=lambda x: x[0])) + + # hash the final counter + h = blake2b(digest_size=digest_size) + h.update(str(tuple(items)).encode("ascii")) + h = h.hexdigest() + return h From c155d73071134916eb5f6f649f73cddad34b7741 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 00:24:08 -0500 Subject: [PATCH 094/104] add sim qaoa to cli --- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 6 +- qtensor/cli.py | 83 +++++++++++++++++++--- 2 files changed, 75 insertions(+), 14 deletions(-) diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 19242af7..24c2a27c 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -1200,13 +1200,13 @@ "@click.option('-s', '--seed', default=SEED)\n", "@click.option('-O', '--ordering_algo', default='greedy'\n", " ,help=(\"One of (greedy, tamaki, tamaki_{wait_time})\"\n", - " \"'tamki_15' means heuristic solver running for 15 seconds per graph\"\n", + " \"'tamaki_15' means heuristic solver running for 15 seconds per graph\"\n", " )\n", " )\n", "@click.option('--min-memory', default=3e6)\n", "def time_vs_flops_plot(filename=None, backend='numpy', seed=SEED,\n", " max_memory=2e8, min_memory=1e6,\n", - " ordering_algo='greedy', tamaki_time=10\n", + " ordering_algo='greedy'\n", " ):\n", " \"\"\"\n", " Plots times and estimated FLOP for each step of several QAOA energy computation contractions.\n", @@ -1504,7 +1504,7 @@ "width": "165px" }, "toc_section_display": true, - "toc_window_display": true + "toc_window_display": false } }, "nbformat": 4, diff --git a/qtensor/cli.py b/qtensor/cli.py index c226e5e1..c0186f21 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -16,12 +16,22 @@ from qtensor.optimisation.TensorNet import QtreeTensorNet from qtensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer from qtensor.optimisation.Optimizer import TamakiTrimSlicing, SlicesOptimizer -from qtensor import QtreeQAOAComposer +from qtensor import QtreeQAOAComposer, QAOAQtreeSimulator +import qtensor.ProcessingFrameworks as backends +import qtensor.optimisation.Optimizer as optimizers @click.group() def cli(): pass +def choose_backend(backend_str): + if backend_str=='numpy': + return backends.NumpyBackend + elif backend_str=='mkl': + return backends.CMKLExtendedBackend + elif backend_str=='exatn': + return backends.ExaTnBackend + @cli.command() @click.argument('filename', nargs=-1) @click.option('-p','--num-processes', default=1) @@ -41,18 +51,15 @@ def sim_file(filename, profile=False, num_processes=1, max_tw=25, backend='numpy ,max_tw=max_tw , pool_type='thread' ) + Backend = choose_backend(backend) if profile: - class PerfExaTnBackend(PerfBackend): - Backend = ExaTnBackend - class PerfMKLBackend(PerfBackend): - Backend = CMKLExtendedBackend - if backend == 'numpy': - backend_obj = PerfNumpyBackend(print=False) - if backend == 'mkl': - backend_obj = PerfMKLBackend(print=False) - if backend == 'exatn': - backend_obj = PerfExaTnBackend(print=False) + class DynamicallyGeneratedBackend(PerfBackend): + Backend = Backend + backend_obj = DynamicallyGeneratedBackend(print=False) kwargs['bucket_backend'] = backend_obj + else: + kwargs['bucket_backend'] = Backend() + if optimizer=='tamaki': kwargs['optimizer'] = TamakiTrimSlicing(max_tw=max_tw, wait_time=23) else: @@ -198,4 +205,58 @@ def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, orderin qaoa_energy_tw_from_graph(G, p, max_time, max_tw, ordering_algo, print_stats=True, tamaki_time=tamaki_time) +@cli.command() +@click.option('-s','--seed', default=42) +@click.option('-d','--degree', default=3) +@click.option('-n','--nodes', default=10) +@click.option('-p','--p', default=1) +@click.option('-G','--graph-type', default='random_regular') +@click.option('-T','--max-time', default=0, help='Max time for every evaluation') +@click.option('--max-tw', default=0, help='Max tw after wich no point to calculate') +@click.option('-O','--ordering-algo', default='greedy', help='Algorithm for elimination order') +@click.option('--tamaki_time', default=20, help='Algorithm for elimination order') +@click.option('-B','--backend', default='numpy') +@click.option('--n_processes', default=1) +@click.option('-P','--profile', default=False, is_flag=True) +def qaoa_energy_sim(nodes, seed, + degree, p, graph_type, + max_time, max_tw, ordering_algo, tamaki_time, + backend, n_processes, profile): + np.random.seed(seed) + if graph_type=='random_regular': + G = nx.random_regular_graph(degree, nodes) + elif graph_type=='erdos_renyi': + G = nx.erdos_renyi_graph(nodes, degree/(nodes-1)) + else: + raise Exception('Unsupported graph type') + gamma, beta = [np.pi/3]*p, [np.pi/2]*p + + + if ordering_algo=='tamaki_slice': + optimizer = TamakiTrimSlicing(max_tw=max_tw, wait_time=tamaki_time) + elif ordering_algo=='tamaki': + optimizer = optimizers.TamakiOptimizer(wait_time=tamaki_time) + else: + optimizer = optimizers.DefaultOptimizer() + + Backend = choose_backend(backend) + backend_obj = Backend() + if profile: + backend_obj = PerfBackend(print=False) + backend_obj.backend = Backend() + + sim = QAOAQtreeSimulator(QtreeQAOAComposer, bucket_backend=backend_obj, optimizer=optimizer) + start = time.time() + if n_processes==1: + result = sim.energy_expectation(G, gamma, beta) + if profile: + print('Profiling results') + backend_obj.gen_report() + else: + result = sim.energy_expectation_parallel(G, gamma, beta, n_processes=n_processes) + end = time.time() + print(f"Simutation time: {end - start}") + print(result) + + cli() From df55d9745f797137e2a91becde8f4bb0b1d424a3 Mon Sep 17 00:00:00 2001 From: Danil Date: Sun, 11 Oct 2020 18:13:09 +0000 Subject: [PATCH 095/104] proper usage of seed in cli.py --- qtensor/cli.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qtensor/cli.py b/qtensor/cli.py index c0186f21..78e694be 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -224,9 +224,9 @@ def qaoa_energy_sim(nodes, seed, backend, n_processes, profile): np.random.seed(seed) if graph_type=='random_regular': - G = nx.random_regular_graph(degree, nodes) + G = nx.random_regular_graph(degree, nodes, seed=seed) elif graph_type=='erdos_renyi': - G = nx.erdos_renyi_graph(nodes, degree/(nodes-1)) + G = nx.erdos_renyi_graph(nodes, degree/(nodes-1), seed=seed) else: raise Exception('Unsupported graph type') gamma, beta = [np.pi/3]*p, [np.pi/2]*p From 8295d154607d1c0b2f2b6f5c0db3c4d86b30e76e Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:24:55 -0500 Subject: [PATCH 096/104] add n_processes to tw estimation --- qtensor/cli.py | 5 +++-- qtensor/toolbox.py | 37 +++++++++++++++++++++++++------------ 2 files changed, 28 insertions(+), 14 deletions(-) diff --git a/qtensor/cli.py b/qtensor/cli.py index 78e694be..0e89c92d 100644 --- a/qtensor/cli.py +++ b/qtensor/cli.py @@ -193,7 +193,8 @@ def generate_qaoa_energy_circuit(seed, degree, nodes, p, graph_type, edge_index) @click.option('--max-tw', default=0, help='Max tw after wich no point to calculate') @click.option('-O','--ordering-algo', default='greedy', help='Algorithm for elimination order') @click.option('--tamaki_time', default=20, help='Algorithm for elimination order') -def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, ordering_algo, tamaki_time): +@click.option('--n_processes', default=1, help='Number of processes.') +def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, ordering_algo, tamaki_time, n_processes): np.random.seed(seed) if graph_type=='random_regular': G = nx.random_regular_graph(degree, nodes) @@ -202,7 +203,7 @@ def qaoa_energy_tw(nodes, seed, degree, p, graph_type, max_time, max_tw, orderin else: raise Exception('Unsupported graph type') - qaoa_energy_tw_from_graph(G, p, max_time, max_tw, ordering_algo, print_stats=True, tamaki_time=tamaki_time) + qaoa_energy_tw_from_graph(G, p, max_time, max_tw, ordering_algo, print_stats=True, tamaki_time=tamaki_time, n_processes=n_processes) @cli.command() diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 1d0c8444..4f924327 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -1,7 +1,9 @@ import networkx as nx import numpy as np +from itertools import repeat from tqdm.auto import tqdm import time +from multiprocessing.dummy import Pool from qtensor.optimisation.TensorNet import QtreeTensorNet from qtensor.optimisation.Optimizer import OrderingOptimizer, TamakiOptimizer, WithoutOptimizer @@ -97,26 +99,37 @@ def qaoa_energy_cost_params_stats_from_graph(G, p, max_time=0, max_tw=None, return tw, mem, flop +def _twidth_parallel_unit(args): + circuit, subgraph, ordering_algo, tamaki_time, max_tw = args + tw = get_tw(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) + if max_tw: + if tw>max_tw: + print(f'Encountered treewidth of {tw}, which is larger {max_tw}') + raise ValueError(f'Encountered treewidth of {tw}, which is larger {max_tw}') + def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, ordering_algo='greedy', print_stats=False, - tamaki_time=15): - twidths = [] - with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: - for circuit, subgraph in qaoa_energy_lightcone_iterator(G, p, max_time=max_time): - tw = get_tw(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) - pbar.update() - pbar.set_postfix(current_tw=tw, subgraph_nodes=subgraph.number_of_nodes()) - if max_tw: - if tw>max_tw: - print(f'Encountered treewidth of {tw}, which is larger {max_tw}') - break - twidths.append(tw) + tamaki_time=15, n_processes=1): + + lightcone_gen = qaoa_energy_lightcone_iterator(G, p, max_time=max_time) + arggen = zip(lightcone_gen, repeat(ordering_algo), repeat(tamaki_time), repeat(max_tw)) + if n_processes > 1: + with Pool(n_processes=n_processes) as p: + twidths = list(tqdm(p.imap(_twidth_parallel_unit, arggen), total=G.number_of_edges())) + else: + with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: + for circuit, subgraph, ordering_algo, tamaki_time, max_tw in arggen: + tw = _twidth_parallel_unit(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) + pbar.update() + pbar.set_postfix(current_tw=tw, subgraph_nodes=subgraph.number_of_nodes()) + twidths.append(tw) if print_stats: print(f'med={np.median(twidths)} mean={round(np.mean(twidths), 2)} max={np.max(twidths)}') return twidths + def qaoa_energy_cost_params_from_graph(G, p, max_time=0, max_tw=0, ordering_algo='greedy', print_stats=False): costs = [] From 4faf854c2464eaf0b579e3c6ba29019fd0bee2c9 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:26:08 -0500 Subject: [PATCH 097/104] fix bug with Pool usage --- qtensor/toolbox.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 4f924327..c373386c 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -114,7 +114,7 @@ def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, lightcone_gen = qaoa_energy_lightcone_iterator(G, p, max_time=max_time) arggen = zip(lightcone_gen, repeat(ordering_algo), repeat(tamaki_time), repeat(max_tw)) if n_processes > 1: - with Pool(n_processes=n_processes) as p: + with Pool(n_processes) as p: twidths = list(tqdm(p.imap(_twidth_parallel_unit, arggen), total=G.number_of_edges())) else: with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: From 2489f90867995b1bcd956b80fb110f27cfcba2c7 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:27:02 -0500 Subject: [PATCH 098/104] fix small api bug --- qtensor/toolbox.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index c373386c..7be8da5e 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -100,7 +100,8 @@ def qaoa_energy_cost_params_stats_from_graph(G, p, max_time=0, max_tw=None, def _twidth_parallel_unit(args): - circuit, subgraph, ordering_algo, tamaki_time, max_tw = args + circ_graph, ordering_algo, tamaki_time, max_tw = args + circuit, subgraph = circ_graph tw = get_tw(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) if max_tw: if tw>max_tw: From dc42b2abce9c7bc8a61dcfbe6d87c1b6bad70834 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:28:50 -0500 Subject: [PATCH 099/104] bugfix --- qtensor/toolbox.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 7be8da5e..2370421a 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -119,8 +119,8 @@ def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, twidths = list(tqdm(p.imap(_twidth_parallel_unit, arggen), total=G.number_of_edges())) else: with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: - for circuit, subgraph, ordering_algo, tamaki_time, max_tw in arggen: - tw = _twidth_parallel_unit(circuit, ordering_algo=ordering_algo, tamaki_time=tamaki_time) + for args in arggen: + tw = _twidth_parallel_unit(args) pbar.update() pbar.set_postfix(current_tw=tw, subgraph_nodes=subgraph.number_of_nodes()) twidths.append(tw) From b5caeee39d47f739be1af657c701c98056546451 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:29:37 -0500 Subject: [PATCH 100/104] bugfix --- qtensor/toolbox.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 2370421a..26b74c95 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -115,11 +115,14 @@ def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, lightcone_gen = qaoa_energy_lightcone_iterator(G, p, max_time=max_time) arggen = zip(lightcone_gen, repeat(ordering_algo), repeat(tamaki_time), repeat(max_tw)) if n_processes > 1: + print('n_processes', n_processes) with Pool(n_processes) as p: twidths = list(tqdm(p.imap(_twidth_parallel_unit, arggen), total=G.number_of_edges())) else: with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: for args in arggen: + circ_graph, ordering_algo, tamaki_time, max_tw = args + circuit, subgraph = circ_graph tw = _twidth_parallel_unit(args) pbar.update() pbar.set_postfix(current_tw=tw, subgraph_nodes=subgraph.number_of_nodes()) From 35adebb6ae713cc196c01473f9062561ddc186bd Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:30:12 -0500 Subject: [PATCH 101/104] bugfix --- qtensor/toolbox.py | 1 + 1 file changed, 1 insertion(+) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 26b74c95..7a0239cb 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -119,6 +119,7 @@ def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, with Pool(n_processes) as p: twidths = list(tqdm(p.imap(_twidth_parallel_unit, arggen), total=G.number_of_edges())) else: + twidths = [] with tqdm(total=G.number_of_edges(), desc='Edge iteration') as pbar: for args in arggen: circ_graph, ordering_algo, tamaki_time, max_tw = args From 77e7341935fc6f275984bdb5fc1600fc9184f4b2 Mon Sep 17 00:00:00 2001 From: Danil Lykov Date: Sun, 11 Oct 2020 13:30:48 -0500 Subject: [PATCH 102/104] bugfix --- qtensor/toolbox.py | 1 + 1 file changed, 1 insertion(+) diff --git a/qtensor/toolbox.py b/qtensor/toolbox.py index 7a0239cb..342021b8 100644 --- a/qtensor/toolbox.py +++ b/qtensor/toolbox.py @@ -107,6 +107,7 @@ def _twidth_parallel_unit(args): if tw>max_tw: print(f'Encountered treewidth of {tw}, which is larger {max_tw}') raise ValueError(f'Encountered treewidth of {tw}, which is larger {max_tw}') + return tw def qaoa_energy_tw_from_graph(G, p, max_time=0, max_tw=0, ordering_algo='greedy', print_stats=False, From 0419e2cf174c241aac0013b07ce00f5eb80d94dd Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Wed, 14 Oct 2020 10:40:35 -0700 Subject: [PATCH 103/104] enabled hypercontractions and added as an option in time vs FLOP --- analysis/spec/notebooks/Time_vs_FLOP.ipynb | 6 ++++-- qtensor/exatn_framework.py | 3 ++- 2 files changed, 6 insertions(+), 3 deletions(-) diff --git a/analysis/spec/notebooks/Time_vs_FLOP.ipynb b/analysis/spec/notebooks/Time_vs_FLOP.ipynb index 24c2a27c..36cd5c6d 100644 --- a/analysis/spec/notebooks/Time_vs_FLOP.ipynb +++ b/analysis/spec/notebooks/Time_vs_FLOP.ipynb @@ -114,7 +114,7 @@ "p = 3\n", "edge_idx = 28\n", "degree = 4\n", - " " + " though I do think a nicer treatment of it would probably be " ] }, { @@ -673,6 +673,8 @@ " qt.ProcessingFrameworks.CMKLExtendedBackend, print=False)\n", " elif backend == 'debug_mkl':\n", " backend = qt.DebugFrameworks.DebugMKLBackend()\n", + " elif backend == 'exatn':\n", + " backend = qt.ProcessingFrameworks.PerfBackend.from_backend(qt.ProcessingFrameworks.ExaTnBackend, print=False)\n", " sim = qt.QtreeSimulator(bucket_backend=backend)\n", "\n", " sim.simulate(circuit)\n", @@ -1486,7 +1488,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.7.6" }, "toc": { "base_numbering": 1, diff --git a/qtensor/exatn_framework.py b/qtensor/exatn_framework.py index 2b05604b..5d46d3bb 100644 --- a/qtensor/exatn_framework.py +++ b/qtensor/exatn_framework.py @@ -143,7 +143,8 @@ def process_bucket_exatn(bucket, no_sum=False, result_id=0): if no_hcon: no_sum = True else: - raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') + # raise Exception('QTensorError: Exatn Hyper-contractions are not supported at the moment') + no_sum = False new_name = f"C{np.random.randint(0, 1000000000)}" exatn.createTensor(new_name, np.empty([2]*len(result_indices), dtype=complex)) From 0ed72df8f916005bafcd34dcac3ac79ad4bd36d7 Mon Sep 17 00:00:00 2001 From: Cameron Ibrahim Date: Thu, 15 Oct 2020 01:07:34 +0000 Subject: [PATCH 104/104] setup.py for mkl backend uses MKLROOT --- .../cpp_connections/vanilia/nparray/setup.py | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/scratchpad/cpp_connections/vanilia/nparray/setup.py b/scratchpad/cpp_connections/vanilia/nparray/setup.py index 470bff09..4626f9cf 100644 --- a/scratchpad/cpp_connections/vanilia/nparray/setup.py +++ b/scratchpad/cpp_connections/vanilia/nparray/setup.py @@ -1,14 +1,21 @@ from setuptools import setup, Extension # use setuptools instead of distutils from tutorial import numpy as np +import os """ Use this before: -export LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_def.so:/opt/intel/mkl/lib/intel64/libmkl_avx2.so:/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so:/opt/intel/mkl/lib/intel64/libmkl_intel_thread.so:/usr/lib/libomp.so +export LD_PRELOAD=$MKLROOT/lib/intel64/libmkl_def.so:$MKLROOT/lib/intel64/libmkl_avx2.so:$MKLROOT/lib/intel64/libmkl_core.so:$MKLROOT/lib/intel64/libmkl_intel_lp64.so:$MKLROOT/lib/intel64/libmkl_intel_thread.so """ -extra_link_args = ['-I', '/opt/intel/mkl/include' - , '-L', '/opt/intel/mkl/lib/intel64/' +# :/usr/lib/libomp.so + +mklroot = os.environ['MKLROOT'] +mklinclude = mklroot + '/include' +mkllib = mklroot + '/lib/intel64' + +extra_link_args = ['-I', mklinclude + , '-L', mkllib , '-Wl,--no-as-needed' , '-lmkl_intel_lp64' , '-lmkl_gnu_thread' @@ -19,7 +26,7 @@ , '-ldl' ] -extra_compile_args = ['-I','/opt/intel/mkl/include' +extra_compile_args = ['-I', mklinclude ,'-std=c++11' ,'-m64' ,'-fopenmp'