Skip to content

Replication Problems #23

@MAlberts99

Description

@MAlberts99

Hi,

I'm currently trying to replicate the results that you obtained on the CANOPUS dataset (8.13% Top--1 Accuracy) using the DiffMS Canopus checkpoint. However, I am consistently getting 0 on all metrics, as shown below:

      test/acc_at_1                 0.0
     test/acc_at_10                 0.0
      test/acc_at_2                 0.0
      test/acc_at_3                 0.0
      test/acc_at_4                 0.0
      test/acc_at_5                 0.0
      test/acc_at_6                 0.0
      test/acc_at_7                 0.0
      test/acc_at_8                 0.0
      test/acc_at_9                 0.0
    test/cosine_at_1                0.0
    test/cosine_at_10               0.0
    test/cosine_at_2                0.0
    test/cosine_at_3                0.0
    test/cosine_at_4                0.0
    test/cosine_at_5                0.0
    test/cosine_at_6                0.0
    test/cosine_at_7                0.0
    test/cosine_at_8                0.0
    test/cosine_at_9                0.0
   test/tanimoto_at_1               0.0
   test/tanimoto_at_10              0.0
   test/tanimoto_at_2               0.0
   test/tanimoto_at_3               0.0
   test/tanimoto_at_4               0.0
   test/tanimoto_at_5               0.0
   test/tanimoto_at_6               0.0
   test/tanimoto_at_7               0.0
   test/tanimoto_at_8               0.0
   test/tanimoto_at_9               0.0
      test/validity                 0.0

I am running DiffMS with the following parameters:

python src/spec2mol_main.py general.name=canopus_test dataset=canopus general.load_weights=checkpoints/diffms_canopus_pl_.ckpt train.eval_batch_size=4096 general.test_only=checkpoints/diffms_canopus_pl.ckpt

What I already verified:

  • Checkpoints are loaded correctly, and the weights of the model correspond to the one in the checkpoint
  • Metrics are working correctly. The molecules are just nonsensical.

Any assistance in replicating the results would be greatly appreciated.

I am using a fresh conda environment with torch 2.3.1 as suggested in the ReadMe. The installed packages are listed below:

Package                  Version     Editable project location
------------------------ ----------- ------------------------------------------------------------------
aiohappyeyeballs         2.6.1
aiohttp                  3.13.2
aiosignal                1.4.0
annotated-types          0.7.0
antlr4-python3-runtime   4.9.3
asttokens                3.0.1
async-timeout            5.0.1
attrs                    25.4.0
certifi                  2025.8.3
chardet                  5.2.0
charset-normalizer       3.4.4
click                    8.1.8
contourpy                1.3.0
cycler                   0.12.1
decorator                5.2.1
diffms                   1.0.0      analytical_v2/mixtures/msms/DiffMS
eval_type_backport       0.3.0
exceptiongroup           1.3.0
executing                2.2.1
filelock                 3.19.1
fonttools                4.59.1
freetype-py              2.3.0
frozenlist               1.8.0
fsspec                   2025.10.0
gitdb                    4.0.12
GitPython                3.1.45
greenlet                 3.2.4
h5py                     3.14.0
hydra-core               1.3.2
idna                     3.11
importlib_resources      6.5.2
ipdb                     0.13.13
ipython                  8.18.1
jedi                     0.19.2
Jinja2                   3.1.6
joblib                   1.5.2
kiwisolver               1.4.7
lightning-utilities      0.15.2
MarkupSafe               3.0.3
matplotlib               3.7.1
matplotlib-inline        0.2.1
mpmath                   1.3.0
multidict                6.7.0
munkres                  1.1.4
myopic_mces              1.0.1
networkx                 3.2.1
numpy                    1.23.0
nvidia-cublas-cu12       12.1.3.1
nvidia-cuda-cupti-cu12   12.1.105
nvidia-cuda-nvrtc-cu12   12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12        8.9.2.26
nvidia-cufft-cu12        11.0.2.54
nvidia-curand-cu12       10.3.2.106
nvidia-cusolver-cu12     11.4.5.107
nvidia-cusparse-cu12     12.1.0.106
nvidia-nccl-cu12         2.20.5
nvidia-nvjitlink-cu12    12.9.86
nvidia-nvtx-cu12         12.1.105
omegaconf                2.3.0
overrides                7.3.1
packaging                25.0
pandas                   1.4.0
parso                    0.8.5
pexpect                  4.9.0
pillow                   11.3.0
pip                      25.2
platformdirs             4.4.0
prompt_toolkit           3.0.52
propcache                0.4.1
protobuf                 6.33.1
psutil                   7.1.3
ptyprocess               0.7.0
PuLP                     3.3.0
pure_eval                0.2.3
pycairo                  1.28.0
pydantic                 2.12.4
pydantic_core            2.41.5
Pygments                 2.19.2
pyparsing                3.2.3
python-dateutil          2.9.0.post0
pytorch-lightning        2.0.4
pytz                     2025.2
PyYAML                   6.0.3
rdkit                    2024.9.4
reportlab                4.4.1
requests                 2.32.5
rlPyCairo                0.2.0
scikit-learn             1.6.1
scipy                    1.13.1
seaborn                  0.13.2
sentry-sdk               2.44.0
setuptools               68.0.0
six                      1.17.0
smmap                    5.0.2
SQLAlchemy               2.0.43
stack-data               0.6.3
sympy                    1.14.0
threadpoolctl            3.6.0
tomli                    2.3.0
torch                    2.3.1
torch_geometric          2.3.1
torchmetrics             0.11.4
tqdm                     4.67.1
tqdm_joblib              0.0.4
traitlets                5.14.3
triton                   2.3.1
typing_extensions        4.14.1
typing-inspection        0.4.2
tzdata                   2025.2
unicodedata2             16.0.0
urllib3                  2.5.0
wandb                    0.23.0
wcwidth                  0.2.14
wheel                    0.45.1
yarl                     1.22.0
zipp                     3.23.0```

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions