Skip to content

Training SRDCNN #11

@Albert22dai

Description

@Albert22dai

Thank you for your amazing work. You have mentioned SRDCNN in your article, and I tried to reproduce SRDCNN with SRD in combination with deepcadRT, but the result is bad. Here are my training parameters:
Training parameters ----->
{'overlap_factor': 0.125, 'datasets_path': 'datasets/DataForPytorch', 'n_epochs': 20, 'fmap': 16, 'output_dir': './results', 'pth_dir': './pth', 'onnx_dir': './onnx', 'batch_size': 1, 'patch_t': 464, 'patch_x': 64, 'patch_y': 64, 'gap_y': 56, 'gap_x': 56, 'gap_t': 406, 'lr': 5e-05, 'b1': 0.5, 'b2': 0.999, 'GPU': '0', 'ngpu': 1, 'num_workers': 0, 'scale_factor': 1, 'train_datasets_size': 1200, 'select_img_num': 100000, 'test_datasize': 1000, 'increase_ratio': 2, 'visualize_images_per_epoch': True, 'save_test_images_per_epoch': True, 'colab_display': False, 'result_display': ''}
Image list for training ----->
Total stack number -----> 1
Noise image name -----> noisy_6000frames.tif
Noise image shape -----> (6000, 512, 512)
The loss function i used is L2+Lreg, I have only one GPU. Could you please tell me the specific parameters and loss function for training SRDCNN? How do I solve this problem?
SRDCNN

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions