-
Notifications
You must be signed in to change notification settings - Fork 15
Description
Thank you for your amazing work. You have mentioned SRDCNN in your article, and I tried to reproduce SRDCNN with SRD in combination with deepcadRT, but the result is bad. Here are my training parameters:
Training parameters ----->
{'overlap_factor': 0.125, 'datasets_path': 'datasets/DataForPytorch', 'n_epochs': 20, 'fmap': 16, 'output_dir': './results', 'pth_dir': './pth', 'onnx_dir': './onnx', 'batch_size': 1, 'patch_t': 464, 'patch_x': 64, 'patch_y': 64, 'gap_y': 56, 'gap_x': 56, 'gap_t': 406, 'lr': 5e-05, 'b1': 0.5, 'b2': 0.999, 'GPU': '0', 'ngpu': 1, 'num_workers': 0, 'scale_factor': 1, 'train_datasets_size': 1200, 'select_img_num': 100000, 'test_datasize': 1000, 'increase_ratio': 2, 'visualize_images_per_epoch': True, 'save_test_images_per_epoch': True, 'colab_display': False, 'result_display': ''}
Image list for training ----->
Total stack number -----> 1
Noise image name -----> noisy_6000frames.tif
Noise image shape -----> (6000, 512, 512)
The loss function i used is L2+Lreg, I have only one GPU. Could you please tell me the specific parameters and loss function for training SRDCNN? How do I solve this problem?
