-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Description
optimize_multi_plate_design does not really optimize within plate distribution of covariates. Instead, clusters form.
Replacing the parameters p = 1 and penalize_lines = "none" fixes the issue but these cannot be set in optimize_multi_plate_design
Example
samples <- structure(list(Subject.Number = c(1, 2, 3, 3, 4, 4, 5, 5, 6,
7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 16, 17,
17, 18, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 25, 26, 26, 27,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
42, 43, 43, 44, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68), Gender = c("Male",
"Male", "Female", "Female", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Female", "Female", "Female", "Female", "Female", "Male", "Male",
"Female", "Female", "Female", "Female", "Female", "Female", "Female",
"Female", "Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Female", "Female", "Male", "Female", "Male", "Male",
"Male", "Female", "Male", "Male", "Male", "Female", "Female",
"Female", "Female", "Male", "Female", "Female", "Male", "Female",
"Male", "Male", "Male", "Female", "Female", "Male", "Male", "Male",
"Female", "Female", "Male", "Male", "Female", "Male", "Male",
"Male", "Male", "Female", "Female", "Female"), Timepoint = c("DAY 1",
"DAY 1", "DAY 1", "DAY 168", "DAY 1", "DAY 168", "DAY 1", "DAY 112",
"DAY 1", "DAY 1", "DAY 112", "DAY 1", "DAY 112", "DAY 1", "DAY 1",
"DAY 112", "DAY 1", "DAY 1", "DAY 1", "DAY 168", "DAY 1", "DAY 112",
"DAY 1", "DAY 112", "DAY 1", "DAY 1", "DAY 112", "DAY 1", "DAY 112",
"DAY 1", "DAY 112", "DAY 1", "DAY 1", "DAY 112", "DAY 1", "DAY 112",
"DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 112", "DAY 1", "DAY 112",
"DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1",
"DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1",
"DAY 1", "DAY 168", "DAY 1", "DAY 112", "DAY 1", "DAY 112", "DAY 1",
"DAY 1", "DAY 112", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1",
"DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1",
"DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1", "DAY 1",
"DAY 1", "DAY 1", "DAY 1"), Site = c("350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "350545", "350545", "350545", "350545", "350545", "350545",
"350545", "356312", "356312", "356312", "356312", "356312", "356312",
"356312", "356312", "356312", "356312", "356312", "356312", "356312",
"356312", "356312", "356312", "356312", "356312", "356312", "356312",
"356312", "356312", "356312", "356312", "356312", "356312", "356312",
"356312", "356312", "356312", "356312", "356312", "356312", "356312",
"356312"), Previous_treatment = c("Tx naive", "Pre-treated",
"Tx naive", "Tx naive", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Tx naive", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Tx naive", "Tx naive", "Tx naive", "Tx naive",
"Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive",
"Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive",
"Pre-treated", "Pre-treated", "Tx naive", "Tx naive", "Pre-treated",
"Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive",
"Tx naive", "Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Pre-treated", "Tx naive", "Tx naive", "Pre-treated",
"Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Pre-treated", "Tx naive", "Pre-treated", "Pre-treated",
"Tx naive", "Tx naive", "Tx naive", "Tx naive", "Tx naive", NA,
"Pre-treated", "Pre-treated", "Pre-treated", "Tx naive", "Tx naive",
"Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated", "Pre-treated",
"Pre-treated", "Tx naive")), row.names = c(NA, -88L), class = "data.frame")
# make batch container
bc <- BatchContainer$new(
dimensions = list(
"plate" = 1,
"row" = list(values =c(1:8)),
"column" = list(values = c(1:11))
)
)
# initial assignment
bc <- assign_in_order(bc, samples)
# factors to balance
balance_variables <- c("Site", "Timepoint", "Previous_treatment", "Gender")
# running the wrapper
bc1 <- optimize_multi_plate_design(bc,
within_plate_variables = balance_variables,
plate = "plate",
row = "row",
column = "column",
n_shuffle = 2,
max_iter = 3000,
quiet = TRUE
)
# plot site
print(plot_plate(bc$get_samples(remove_empty_locations = FALSE),
column = column, row = row,
.color = Site)
# running it manually
# set scoring function for each balance variable
scoring_funcs <- purrr::map(
balance_variables,
~ mk_plate_scoring_functions(bc, row = "row", column = "column", group = .x, p = 1, penalize_lines = "none")
) %>% unlist()
names(scoring_funcs) <- balance_variables
bc2 <- optimize_design(
bc,
scoring = scoring_funcs,
max_iter = 3000,
quiet = TRUE,
acceptance_func = accept_leftmost_improvement
)
# plot site
print(plot_plate(bc$get_samples(remove_empty_locations = FALSE),
column = column, row = row,
.color = Site)Metadata
Metadata
Assignees
Labels
No labels