Skip to content

3. advanced methods #14

@ashlinrichardson

Description

@ashlinrichardson

Implement convenient interfaces to, or occasionally directly implement, contemporary methods for general purpose use within R or python. Caveat: need to be robust to moderately large data. Must be accessible from R and python

  • low-d embedding for visualization: isomap, tsne
  • combinatorical pattern explo: correl and co-occur analysis
  • unsuperv. classif: kmeans, dbscan, hdbscan, mean-shift clust, HAC
  • superv. classif: c45 decision tree classifier, random forest classiifer
  • encodings for categorial data: one hot, etc...

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions