diff --git a/src/UserGuide/Master/Table/SQL-Manual/Basis-Function.md b/src/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
index d8c967202..303809766 100644
--- a/src/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
+++ b/src/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
@@ -156,30 +156,30 @@ SELECT LEAST(temperature,humidity) FROM table2;
### 2.2 Supported Aggregate Functions
-| Function Name | Description | Allowed Input Types | Output Type |
-|:-----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------|
-| COUNT | Counts the number of data points. | All types | INT64 |
-| COUNT_IF | COUNT_IF(exp) counts the number of rows that satisfy a specified boolean expression. | `exp` must be a boolean expression,(e.g. `count_if(temperature>20)`) | INT64 |
-| APPROX_COUNT_DISTINCT | The APPROX_COUNT_DISTINCT(x[, maxStandardError]) function provides an approximation of COUNT(DISTINCT x), returning the estimated number of distinct input values. | `x`: The target column to be calculated, supports all data types.
`maxStandardError` (optional): Specifies the maximum standard error allowed for the function's result. Valid range is [0.0040625, 0.26]. Defaults to 0.023 if not specified. | INT64 |
-| APPROX_MOST_FREQUENT | The APPROX_MOST_FREQUENT(x, k, capacity) function is used to approximately calculate the top k most frequent elements in a dataset. It returns a JSON-formatted string where the keys are the element values and the values are their corresponding approximate frequencies. (Available since V2.0.5.1) | `x` : The column to be calculated, supporting all existing data types in IoTDB;
`k`: The number of top-k most frequent values to return;
`capacity`: The number of buckets used for computation, which relates to memory usage—a larger value reduces error but consumes more memory, while a smaller value increases error but uses less memory. | STRING |
-| SUM | Calculates the sum. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| AVG | Calculates the average. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| MAX | Finds the maximum value. | All types | Same as input type |
-| MIN | Finds the minimum value. | All types | Same as input type |
-| FIRST | Finds the value with the smallest timestamp that is not NULL. | All types | Same as input type |
-| LAST | Finds the value with the largest timestamp that is not NULL. | All types | Same as input type |
-| STDDEV | Alias for STDDEV_SAMP, calculates the sample standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| STDDEV_POP | Calculates the population standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| STDDEV_SAMP | Calculates the sample standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| VARIANCE | Alias for VAR_SAMP, calculates the sample variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| VAR_POP | Calculates the population variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| VAR_SAMP | Calculates the sample variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
-| EXTREME | Finds the value with the largest absolute value. If the largest absolute values of positive and negative values are equal, returns the positive value. | INT32 INT64 FLOAT DOUBLE | Same as input type |
-| MODE | Finds the mode. Note: 1. There is a risk of memory exception when the number of distinct values in the input sequence is too large; 2. If all elements have the same frequency, i.e., there is no mode, a random element is returned; 3. If there are multiple modes, a random mode is returned; 4. NULL values are also counted in frequency, so even if not all values in the input sequence are NULL, the final result may still be NULL. | All types | Same as input type |
-| MAX_BY | MAX_BY(x, y) finds the value of x corresponding to the maximum y in the binary input x and y. MAX_BY(time, x) returns the timestamp when x is at its maximum. | x and y can be of any type | Same as the data type of the first input x |
-| MIN_BY | MIN_BY(x, y) finds the value of x corresponding to the minimum y in the binary input x and y. MIN_BY(time, x) returns the timestamp when x is at its minimum. | x and y can be of any type | Same as the data type of the first input x |
-| FIRST_BY | FIRST_BY(x, y) finds the value of x in the same row when y is the first non-null value. | x and y can be of any type | Same as the data type of the first input x |
-| LAST_BY | LAST_BY(x, y) finds the value of x in the same row when y is the last non-null value. | x and y can be of any type | Same as the data type of the first input x |
+| Function Name | Description | Allowed Input Types | Output Type |
+|:-----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------|
+| COUNT | Counts the number of data points. | All types | INT64 |
+| COUNT_IF | COUNT_IF(exp) counts the number of rows that satisfy a specified boolean expression. | `exp` must be a boolean expression,(e.g. `count_if(temperature>20)`) | INT64 |
+| APPROX_COUNT_DISTINCT | The APPROX_COUNT_DISTINCT(x[, maxStandardError]) function provides an approximation of COUNT(DISTINCT x), returning the estimated number of distinct input values. | `x`: The target column to be calculated, supports all data types.
`maxStandardError` (optional): Specifies the maximum standard error allowed for the function's result. Valid range is [0.0040625, 0.26]. Defaults to 0.023 if not specified. | INT64 |
+| APPROX_MOST_FREQUENT | The APPROX_MOST_FREQUENT(x, k, capacity) function is used to approximately calculate the top k most frequent elements in a dataset. It returns a JSON-formatted string where the keys are the element values and the values are their corresponding approximate frequencies. (Available since V2.0.5.1) | `x` : The column to be calculated, supporting all existing data types in IoTDB;
`k`: The number of top-k most frequent values to return;
`capacity`: The number of buckets used for computation, which relates to memory usage—a larger value reduces error but consumes more memory, while a smaller value increases error but uses less memory. | STRING |
+| SUM | Calculates the sum. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| AVG | Calculates the average. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| MAX | Finds the maximum value. | All types | Same as input type |
+| MIN | Finds the minimum value. | All types | Same as input type |
+| FIRST | Finds the value with the smallest timestamp that is not NULL. | All types | Same as input type |
+| LAST | Finds the value with the largest timestamp that is not NULL. | All types | Same as input type |
+| STDDEV | Alias for STDDEV_SAMP, calculates the sample standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| STDDEV_POP | Calculates the population standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| STDDEV_SAMP | Calculates the sample standard deviation. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| VARIANCE | Alias for VAR_SAMP, calculates the sample variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| VAR_POP | Calculates the population variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| VAR_SAMP | Calculates the sample variance. | INT32 INT64 FLOAT DOUBLE | DOUBLE |
+| EXTREME | Finds the value with the largest absolute value. If the largest absolute values of positive and negative values are equal, returns the positive value. | INT32 INT64 FLOAT DOUBLE | Same as input type |
+| MODE | Finds the mode. Note: 1. There is a risk of memory exception when the number of distinct values in the input sequence is too large; 2. If all elements have the same frequency, i.e., there is no mode, a random element is returned; 3. If there are multiple modes, a random mode is returned; 4. NULL values are also counted in frequency, so even if not all values in the input sequence are NULL, the final result may still be NULL. | All types | Same as input type |
+| MAX_BY | MAX_BY(x, y) finds the value of x corresponding to the maximum y in the binary input x and y. MAX_BY(time, x) returns the timestamp when x is at its maximum. | x and y can be of any type | Same as the data type of the first input x |
+| MIN_BY | MIN_BY(x, y) finds the value of x corresponding to the minimum y in the binary input x and y. MIN_BY(time, x) returns the timestamp when x is at its minimum. | x and y can be of any type | Same as the data type of the first input x |
+| FIRST_BY | FIRST_BY(x, y) finds the value of x in the same row when y is the first non-null value. | x and y can be of any type | Same as the data type of the first input x |
+| LAST_BY | LAST_BY(x, y) finds the value of x in the same row when y is the last non-null value. | x and y can be of any type | Same as the data type of the first input x |
### 2.3 Examples
@@ -686,7 +686,7 @@ FROM
table1;
```
-Result**:**
+Result:
```Plain
+-----------------------------+-----------------------------+
@@ -715,6 +715,59 @@ Total line number = 18
It costs 0.319s
```
+### 4.3 Extract Function
+
+This function is used to extract the value of a specific part of a date. (Supported from version V2.0.6)
+
+#### 4.3.1 Syntax Definition
+
+```SQL
+EXTRACT (identifier FROM expression)
+```
+
+* Parameter Description
+ * **expression**: `TIMESTAMP` type or a time constant
+ * **identifier**: The valid ranges and corresponding return value types are shown in the table below.
+
+ | Valid Range | Return Type | Return Range |
+ |----------------------|---------------|--------------------|
+ | `YEAR` | `INT64` | `/` |
+ | `QUARTER` | `INT64` | `1-4` |
+ | `MONTH` | `INT64` | `1-12` |
+ | `WEEK` | `INT64` | `1-53` |
+ | `DAY_OF_MONTH (DAY)` | `INT64` | `1-31` |
+ | `DAY_OF_WEEK (DOW)` | `INT64` | `1-7` |
+ | `DAY_OF_YEAR (DOY)` | `INT64` | `1-366` |
+ | `HOUR` | `INT64` | `0-23` |
+ | `MINUTE` | `INT64` | `0-59` |
+ | `SECOND` | `INT64` | `0-59` |
+ | `MS` | `INT64` | `0-999` |
+ | `US` | `INT64` | `0-999` |
+ | `NS` | `INT64` | `0-999` |
+
+
+#### 4.3.2 Usage Example
+
+Using table1 from the [Sample Data](../Reference/Sample-Data.md) as the source data, query the average temperature for the first 12 hours of each day within a certain period.
+
+```SQL
+IoTDB:database1> select format('%1$tY-%1$tm-%1$td',date_bin(1d,time)) as fmtdate,avg(temperature) as avgtp from table1 where time >= 2024-11-26T00:00:00 and time <= 2024-11-30T23:59:59 and extract(hour from time) <= 12 group by date_bin(1d,time) order by date_bin(1d,time)
++----------+-----+
+| fmtdate|avgtp|
++----------+-----+
+|2024-11-28| 86.0|
+|2024-11-29| 85.0|
+|2024-11-30| 90.0|
++----------+-----+
+Total line number = 3
+It costs 0.041s
+```
+
+Introduction to the `Format` function: [Format Function](../SQL-Manual/Basis-Function.md#_7-2-format-function)
+
+Introduction to the `Date_bin` function: [Date_bin Funtion](../SQL-Manual/Basis-Function.md#_4-2-date-bin-interval-timestamp-timestamp-timestamp)
+
+
## 5. Mathematical Functions and Operators
### 5.1 Mathematical Operators
diff --git a/src/UserGuide/latest-Table/SQL-Manual/Basis-Function.md b/src/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
index 65ba20146..303809766 100644
--- a/src/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
+++ b/src/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
@@ -686,7 +686,7 @@ FROM
table1;
```
-Result**:**
+Result:
```Plain
+-----------------------------+-----------------------------+
@@ -715,6 +715,59 @@ Total line number = 18
It costs 0.319s
```
+### 4.3 Extract Function
+
+This function is used to extract the value of a specific part of a date. (Supported from version V2.0.6)
+
+#### 4.3.1 Syntax Definition
+
+```SQL
+EXTRACT (identifier FROM expression)
+```
+
+* Parameter Description
+ * **expression**: `TIMESTAMP` type or a time constant
+ * **identifier**: The valid ranges and corresponding return value types are shown in the table below.
+
+ | Valid Range | Return Type | Return Range |
+ |----------------------|---------------|--------------------|
+ | `YEAR` | `INT64` | `/` |
+ | `QUARTER` | `INT64` | `1-4` |
+ | `MONTH` | `INT64` | `1-12` |
+ | `WEEK` | `INT64` | `1-53` |
+ | `DAY_OF_MONTH (DAY)` | `INT64` | `1-31` |
+ | `DAY_OF_WEEK (DOW)` | `INT64` | `1-7` |
+ | `DAY_OF_YEAR (DOY)` | `INT64` | `1-366` |
+ | `HOUR` | `INT64` | `0-23` |
+ | `MINUTE` | `INT64` | `0-59` |
+ | `SECOND` | `INT64` | `0-59` |
+ | `MS` | `INT64` | `0-999` |
+ | `US` | `INT64` | `0-999` |
+ | `NS` | `INT64` | `0-999` |
+
+
+#### 4.3.2 Usage Example
+
+Using table1 from the [Sample Data](../Reference/Sample-Data.md) as the source data, query the average temperature for the first 12 hours of each day within a certain period.
+
+```SQL
+IoTDB:database1> select format('%1$tY-%1$tm-%1$td',date_bin(1d,time)) as fmtdate,avg(temperature) as avgtp from table1 where time >= 2024-11-26T00:00:00 and time <= 2024-11-30T23:59:59 and extract(hour from time) <= 12 group by date_bin(1d,time) order by date_bin(1d,time)
++----------+-----+
+| fmtdate|avgtp|
++----------+-----+
+|2024-11-28| 86.0|
+|2024-11-29| 85.0|
+|2024-11-30| 90.0|
++----------+-----+
+Total line number = 3
+It costs 0.041s
+```
+
+Introduction to the `Format` function: [Format Function](../SQL-Manual/Basis-Function.md#_7-2-format-function)
+
+Introduction to the `Date_bin` function: [Date_bin Funtion](../SQL-Manual/Basis-Function.md#_4-2-date-bin-interval-timestamp-timestamp-timestamp)
+
+
## 5. Mathematical Functions and Operators
### 5.1 Mathematical Operators
diff --git a/src/zh/UserGuide/Master/Table/SQL-Manual/Basis-Function.md b/src/zh/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
index 6ed554c8b..e16267f44 100644
--- a/src/zh/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
+++ b/src/zh/UserGuide/Master/Table/SQL-Manual/Basis-Function.md
@@ -159,8 +159,8 @@ SELECT LEAST(temperature,humidity) FROM table2;
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|
| COUNT | 计算数据点数。 | 所有类型 | INT64 |
| COUNT_IF | COUNT_IF(exp) 用于统计满足指定布尔表达式的记录行数 | exp 必须是一个布尔类型的表达式,例如 count_if(temperature>20) | INT64 |
-| APPROX_COUNT_DISTINCT | APPROX_COUNT_DISTINCT(x[,maxStandardError]) 函数提供 COUNT(DISTINCT x) 的近似值,返回不同输入值的近似个数。 | `x`:待计算列,支持所有类型;
`maxStandardError`:指定该函数应产生的最大标准误差,取值范围[0.0040625, 0.26],未指定值时默认0.023。 | INT64 |
-| APPROX_MOST_FREQUENT | APPROX_MOST_FREQUENT(x, k, capacity) 函数用于近似计算数据集中出现频率最高的前 k 个元素。它返回一个JSON 格式的字符串,其中键是该元素的值,值是该元素对应的近似频率。(V 2.0.5.1 及以后版本支持) | `x`:待计算列,支持 IoTDB 现有所有的数据类型;
`k`:返回出现频率最高的 k 个值;
`capacity`: 用于计算的桶的数量,跟内存占用相关:其值越大误差越小,但占用内存更大,反之capacity值越小误差越大,但占用内存更小。 | STRING |
+| APPROX_COUNT_DISTINCT | APPROX_COUNT_DISTINCT(x[,maxStandardError]) 函数提供 COUNT(DISTINCT x) 的近似值,返回不同输入值的近似个数。 | `x`:待计算列,支持所有类型;
`maxStandardError`:指定该函数应产生的最大标准误差,取值范围[0.0040625, 0.26],未指定值时默认0.023。 | INT64 |
+| APPROX_MOST_FREQUENT | APPROX_MOST_FREQUENT(x, k, capacity) 函数用于近似计算数据集中出现频率最高的前 k 个元素。它返回一个JSON 格式的字符串,其中键是该元素的值,值是该元素对应的近似频率。(V 2.0.5.1 及以后版本支持) | `x`:待计算列,支持 IoTDB 现有所有的数据类型;
`k`:返回出现频率最高的 k 个值;
`capacity`: 用于计算的桶的数量,跟内存占用相关:其值越大误差越小,但占用内存更大,反之capacity值越小误差越大,但占用内存更小。 | STRING |
| SUM | 求和。 | INT32 INT64 FLOAT DOUBLE | DOUBLE |
| AVG | 求平均值。 | INT32 INT64 FLOAT DOUBLE | DOUBLE |
| MAX | 求最大值。 | 所有类型 | 与输入类型一致 |
@@ -251,7 +251,6 @@ Total line number = 1
It costs 0.022s
```
-
#### 2.3.5 Approx_most_frequent
查询 `table1` 中 `temperature` 列出现频次最高的2个值
@@ -716,6 +715,58 @@ Total line number = 18
It costs 0.319s
```
+### 4.3 Extract 函数
+
+该函数用于提取日期对应部分的值。(V2.0.6 版本起支持)
+
+#### 4.3.1 语法定义
+
+```SQL
+EXTRACT (identifier FROM expression)
+```
+* 参数说明
+ * **expression**: `TIMESTAMP` 类型或时间常量
+ * **identifier** :取值范围及对应的返回值见下表
+
+ | 取值范围 | 返回值类型 | 返回值范围 |
+ | -------------------------- | ------------- | ------------- |
+ | `YEAR` | `INT64` | `/` |
+ | `QUARTER` | `INT64` | `1-4` |
+ | `MONTH` | `INT64` | `1-12` |
+ | `WEEK` | `INT64` | `1-53` |
+ | `DAY_OF_MONTH (DAY)` | `INT64` | `1-31` |
+ | `DAY_OF_WEEK (DOW)` | `INT64` | `1-7` |
+ | `DAY_OF_YEAR (DOY)` | `INT64` | `1-366` |
+ | `HOUR` | `INT64` | `0-23` |
+ | `MINUTE` | `INT64` | `0-59` |
+ | `SECOND` | `INT64` | `0-59` |
+ | `MS` | `INT64` | `0-999` |
+ | `US` | `INT64` | `0-999` |
+ | `NS` | `INT64` | `0-999` |
+
+
+#### 4.3.2 使用示例
+
+以[示例数据](../Reference/Sample-Data.md)中的 table1 为源数据,查询某段时间每天前12个小时的温度平均值
+
+```SQL
+IoTDB:database1> select format('%1$tY-%1$tm-%1$td',date_bin(1d,time)) as fmtdate,avg(temperature) as avgtp from table1 where time >= 2024-11-26T00:00:00 and time <= 2024-11-30T23:59:59 and extract(hour from time) <= 12 group by date_bin(1d,time) order by date_bin(1d,time)
++----------+-----+
+| fmtdate|avgtp|
++----------+-----+
+|2024-11-28| 86.0|
+|2024-11-29| 85.0|
+|2024-11-30| 90.0|
++----------+-----+
+Total line number = 3
+It costs 0.041s
+```
+
+`Format` 函数介绍:[Format 函数](../SQL-Manual/Basis-Function.md#_7-2-format-函数)
+
+`Date_bin` 函数介绍:[Date_bin 函数](../SQL-Manual/Basis-Function.md#_4-2-date-bin-interval-timestamp-timestamp-timestamp)
+
+
## 5. 数学函数和运算符
### 5.1 数学运算符
diff --git a/src/zh/UserGuide/latest-Table/SQL-Manual/Basis-Function.md b/src/zh/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
index 219d68208..e16267f44 100644
--- a/src/zh/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
+++ b/src/zh/UserGuide/latest-Table/SQL-Manual/Basis-Function.md
@@ -715,6 +715,58 @@ Total line number = 18
It costs 0.319s
```
+### 4.3 Extract 函数
+
+该函数用于提取日期对应部分的值。(V2.0.6 版本起支持)
+
+#### 4.3.1 语法定义
+
+```SQL
+EXTRACT (identifier FROM expression)
+```
+* 参数说明
+ * **expression**: `TIMESTAMP` 类型或时间常量
+ * **identifier** :取值范围及对应的返回值见下表
+
+ | 取值范围 | 返回值类型 | 返回值范围 |
+ | -------------------------- | ------------- | ------------- |
+ | `YEAR` | `INT64` | `/` |
+ | `QUARTER` | `INT64` | `1-4` |
+ | `MONTH` | `INT64` | `1-12` |
+ | `WEEK` | `INT64` | `1-53` |
+ | `DAY_OF_MONTH (DAY)` | `INT64` | `1-31` |
+ | `DAY_OF_WEEK (DOW)` | `INT64` | `1-7` |
+ | `DAY_OF_YEAR (DOY)` | `INT64` | `1-366` |
+ | `HOUR` | `INT64` | `0-23` |
+ | `MINUTE` | `INT64` | `0-59` |
+ | `SECOND` | `INT64` | `0-59` |
+ | `MS` | `INT64` | `0-999` |
+ | `US` | `INT64` | `0-999` |
+ | `NS` | `INT64` | `0-999` |
+
+
+#### 4.3.2 使用示例
+
+以[示例数据](../Reference/Sample-Data.md)中的 table1 为源数据,查询某段时间每天前12个小时的温度平均值
+
+```SQL
+IoTDB:database1> select format('%1$tY-%1$tm-%1$td',date_bin(1d,time)) as fmtdate,avg(temperature) as avgtp from table1 where time >= 2024-11-26T00:00:00 and time <= 2024-11-30T23:59:59 and extract(hour from time) <= 12 group by date_bin(1d,time) order by date_bin(1d,time)
++----------+-----+
+| fmtdate|avgtp|
++----------+-----+
+|2024-11-28| 86.0|
+|2024-11-29| 85.0|
+|2024-11-30| 90.0|
++----------+-----+
+Total line number = 3
+It costs 0.041s
+```
+
+`Format` 函数介绍:[Format 函数](../SQL-Manual/Basis-Function.md#_7-2-format-函数)
+
+`Date_bin` 函数介绍:[Date_bin 函数](../SQL-Manual/Basis-Function.md#_4-2-date-bin-interval-timestamp-timestamp-timestamp)
+
+
## 5. 数学函数和运算符
### 5.1 数学运算符