diff --git a/PREM_density_example.ipynb b/PREM_density_example.ipynb deleted file mode 100644 index 5b04fe1..0000000 --- a/PREM_density_example.ipynb +++ /dev/null @@ -1,291 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import matplotlib.ticker as mtick\n", - "\n", - "\n", - "%matplotlib inline " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import earth_model.earth_model as earth_model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## PREM's density parameterisation\n", - "\n", - "Some blurb...\n", - "\n", - "$$\n", - "\\rho(r) = \\left\\{\n", - "\\begin{array}{ll}\n", - " \\rho_{0,0} + \\rho_{0,1}r + \\rho_{0,2}r^2 + \\rho_{0,3}r^3 & r\\leq 1221.5 \\; \\mathrm{km} \\\\\n", - " \\rho_{1,0} + \\rho_{1,1}r + \\rho_{1,2}r^2 + \\rho_{1,3}r^3 & 1221.5\\leq r\\leq 3480.0 \\; \\mathrm{km}\\\\\n", - " \\vdots & \\vdots \\\\\n", - " \\rho_{12,0} + \\rho_{12,1}r + \\rho_{12,2}r^2 + \\rho_{12,3}r^3 & 6368.0\\leq r\\leq 6371.0 \\; \\mathrm{km} \\\\\n", - "\\end{array} \n", - "\\right.\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# This implements the PREM density model using \n", - "\n", - "r_earth = 6371 # km\n", - "\n", - "density_params = np.array([[13.0885, 0.0000, -8.8381, 0.0000],\n", - " [12.5815, -1.2638, -3.6426, -5.5281],\n", - " [7.9565, -6.4761, 5.5283, -3.0807],\n", - " [7.9565, -6.4761, 5.5283, -3.0807],\n", - " [7.9565, -6.4761, 5.5283, -3.0807],\n", - " [5.3197, -1.4836, 0.0000, 0.0000],\n", - " [11.2494, -8.0298, 0.0000, 0.0000],\n", - " [7.1089, -3.8045, 0.00002, 0.0000],\n", - " [2.6910, 0.6924, 0.0000, 0.0000],\n", - " [2.6910, 0.6924, 0.0000, 0.0000],\n", - " [2.9000, 0.0000, 0.0000, 0.0000],\n", - " [2.6000, 0.0000, 0.0000, 0.0000],\n", - " [1.0200, 0.0000, 0.0000, 0.0000]])\n", - "\n", - "\n", - "# Turn range of polynomials from 0 - 1 to 0 - r_earth (makes mass easer)\n", - "# and puts density into kg/m^3\n", - "density_params[:,0] = density_params[:,0] * 1000\n", - "density_params[:,1] = (density_params[:,1] * 1000) / r_earth \n", - "density_params[:,2] = (density_params[:,2] * 1000) / (r_earth**2)\n", - "density_params[:,3] = (density_params[:,3] * 1000) / (r_earth**3)\n", - "\n", - "\n", - "# All 14 discontiuities in PREM in km.\n", - "breakpoints = np.array([0.0, 1221.5, 3480.0, 3630.0, 5600.0, 5701.0, 5771.0,\n", - " 5971.0, 6151.0, 6291.0, 6346.6, 6356.0, 6368.0, 6371.0])\n", - "\n", - "\n", - "\n", - "prem = earth_model.Prem(breakpoints=breakpoints, density_params=density_params, \n", - " r_earth=r_earth)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAI1CAYAAACqmnnaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNR0lEQVR4nOzdd3xUVf7/8fekNxhqEkKN0gkdpKmgIKAgIruiwiK4CiqiILL276rrCuq62FgR0BVUFF0RBAuCVJGmQOhVKVJCDRPSy9zfH/y4D4YENMlk7p3J6/l4zMObuWfunMnx8yGfOfee6zAMwxAAAAAAwHaCrO4AAAAAAKBoFGwAAAAAYFMUbAAAAABgUxRsAAAAAGBTFGwAAAAAYFMUbAAAAABgUxRsAAAAAGBTFGwAAAAAYFMUbAAAAABgUxRsAACUkf3798vhcCg5ObnYr12yZIkaN24st9stSXruuefUqlUr73ZQUvv27fXFF194/bgAAO+gYAMABKRhw4bJ4XDI4XAoNDRUcXFxuuGGG/Tf//7XLIK8/X79+/f32vEee+wxPf300woKKtt/qv/v//5PTzzxRJn8TgAApUfBBgAIWL1799bRo0e1f/9+ffvtt7ruuus0evRo9e3bV/n5+VZ375JWrVqlPXv26Lbbbivz9+rTp49cLpe+++67Mn8vAEDxUbABAAJWeHi44uPjVbNmTbVp00ZPPfWUvvzyS3377beaPn262c7lcmnEiBGKjY1VxYoVdf3112vTpk3m/vOnI06ZMkW1a9dWVFSUbrvtNp05c8bcP2PGDH355ZfmrN6yZcvM1//666+67rrrFBUVpZYtW2r16tWX7fesWbPUs2dPRUREXLLNvn37VL9+fT3wwANyu92aPn26KlWqpK+++kqNGjVSVFSU/vznPysjI0MzZsxQvXr1VLlyZT300EMqKCgwjxMcHKybbrpJn3zySfF+uQAAn6BgAwCUK9dff71atmxpXrdlGIb69OmjlJQUffPNN1q/fr3atGmj7t276/Tp0+br9u7dq88++0zz58/XggULlJycrAcffFCSNG7cOA0cONCc0Tt69Kg6d+5svvbpp5/WuHHjlJycrIYNG+rOO++87AzfihUr1K5du0vu37p1q7p06aLbbrtNkydPNk+bzMzM1JtvvqlZs2ZpwYIFWrZsmQYMGKBvvvlG33zzjT788ENNnTpVn3/+ucfxrrrqKv3www/F/2UCAMpciNUdAADA1xo3bqzNmzdLkpYuXaotW7bo+PHjCg8PlyS9+uqrmjt3rj7//HONGDFCkpSdna0ZM2aoVq1akqS33npLffr00b///W/Fx8crMjJSOTk5io+PL/R+48aNU58+fSRJzz//vJo1a6a9e/eqcePGRfZv//79SkhIKHLf6tWr1bdvXz355JMaN26cx768vDxNnjxZV155pSTpz3/+sz788EMdO3ZMMTExatq0qa677jotXbpUt99+u/m6mjVr6uDBg3K73WV+zRwAoHjIygCAcscwDDkcDknS+vXrlZ6erqpVqyomJsZ87Nu3T7/88ov5mjp16pjFmiR16tRJbrdbu3bt+t33a9Gihbldo0YNSdLx48cv2T4rK6vI0yEPHjyoHj166JlnnilUrElSVFSUWaxJUlxcnOrVq6eYmBiP5y5+78jISLndbuXk5PzuZwEA+BYzbACAcmfHjh1KTEyUJLndbtWoUcPjmrPzKlWqdMljnC/4zv/3ckJDQwu97nKrMlarVk2pqamFnq9evboSEhI0a9Ys3XPPPapYseIl3+f8exX13MXvffr0aUVFRSkyMvJ3PwsAwLeYYQMAlCtLlizRli1b9Kc//UmS1KZNG6WkpCgkJET169f3eFSrVs183cGDB3XkyBHz59WrVysoKEgNGzaUJIWFhXks5lEarVu31vbt2ws9HxkZqa+++koRERHq1auXzp4965X327p1q9q0aeOVYwEAvIuCDQAQsHJycpSSkqLDhw9rw4YNGj9+vG655Rb17dtXd911lySpR48e6tSpk/r376/vvvtO+/fv16pVq/TMM8/o559/No8VERGhoUOHatOmTfrhhx/08MMPa+DAgeY1a/Xq1dPmzZu1a9cunTx5Unl5eSXud69evbRy5coi90VHR+vrr79WSEiIbrzxRqWnp5f4fc774Ycf1LNnz1IfBwDgfRRsAICAtWDBAtWoUUP16tVT7969tXTpUr355pv68ssvFRwcLOncKYLffPONrr32Wv31r39Vw4YNdccdd2j//v2Ki4szj1W/fn0NGDBAN910k3r27KmkpCS9/fbb5v7hw4erUaNGateunapXr64ff/yxxP3+y1/+ou3bt1/y+riYmBh9++23MgxDN910kzIyMkr8XocPH9aqVat09913l/gYAICy4zAMw7C6EwAA2Nlzzz2nuXPnKjk52Wfv+dhjj8nlcmnKlCll+j5/+9vf5HK5NHXq1DJ9HwBAyTDDBgCADT399NOqW7eu166Lu5TY2Fi98MILZfoeAICSY5VIAABsyOl06qmnnirz9/nb3/5W5u8BACg5TokEAAAAAJvilEgAAAAAsCkKNgAAAACwKQo2AAAAALApCjaUqcOHD+svf/mLqlatqqioKLVq1Urr16839xuGoeeee04JCQmKjIxUt27dtG3bNo9j5OTk6KGHHlK1atUUHR2tfv366dChQx5tUlNTNWTIEDmdTjmdTg0ZMkRnzpzxxUcMOM8995wcDofH4/yNgSXGzJ9MmDBBDodDY8aMMZ9j/Oxp8uTJatGihSpWrKiKFSuqU6dO+vbbb839jJs9TZgwQe3bt1eFChUUGxur/v37F7p3HmNnTytWrNDNN9+shIQEORwOzZ0712M/4xaY3n77bSUmJioiIkJt27bVDz/8YHWX/hgDKCOnT5826tatawwbNsxYu3atsW/fPuP777839u7da7Z56aWXjAoVKhizZ882tmzZYtx+++1GjRo1jLS0NLPN/fffb9SsWdNYtGiRsWHDBuO6664zWrZsaeTn55ttevfubSQlJRmrVq0yVq1aZSQlJRl9+/b16ecNFM8++6zRrFkz4+jRo+bj+PHj5n7GzD+sW7fOqFevntGiRQtj9OjR5vOMnz3NmzfP+Prrr41du3YZu3btMp566ikjNDTU2Lp1q2EYjJtd9erVy3j//feNrVu3GsnJyUafPn2MOnXqGOnp6WYbxs6evvnmG+Ppp582Zs+ebUgy5syZ47GfcQs8s2bNMkJDQ41p06YZ27dvN0aPHm1ER0cbBw4csLprv4uCDWXm8ccfN66++upL7ne73UZ8fLzx0ksvmc9lZ2cbTqfTeOeddwzDMIwzZ84YoaGhxqxZs8w2hw8fNoKCgowFCxYYhmEY27dvNyQZa9asMdusXr3akGTs3LnT2x8r4D377LNGy5Yti9zHmPmHs2fPGg0aNDAWLVpkdO3a1SzYGD//UrlyZePdd99l3PzI8ePHDUnG8uXLDcMg5vzFxQUb4xaYrrrqKuP+++/3eK5x48bGE088YVGP/jhOiUSZmTdvntq1a6fbbrtNsbGxat26taZNm2bu37dvn1JSUtSzZ0/zufDwcHXt2lWrVq2SJK1fv155eXkebRISEpSUlGS2Wb16tZxOpzp06GC26dixo5xOp9kGxbNnzx4lJCQoMTFRd9xxh3799VdJjJm/ePDBB9WnTx/16NHD43nGzz8UFBRo1qxZysjIUKdOnRg3P+JyuSRJVapUkUTM+SvGLfDk5uZq/fr1HuMlST179vSLsaBgQ5n59ddfNXnyZDVo0EDfffed7r//fj388MP64IMPJEkpKSmSpLi4OI/XxcXFmftSUlIUFhamypUrX7ZNbGxsofePjY012+CP69Chgz744AN99913mjZtmlJSUtS5c2edOnWKMfMDs2bN0oYNGzRhwoRC+xg/e9uyZYtiYmIUHh6u+++/X3PmzFHTpk0ZNz9hGIbGjh2rq6++WklJSZKIOX/FuAWekydPqqCg4LJjamchVncAgcvtdqtdu3YaP368JKl169batm2bJk+erLvuusts53A4PF5nGEah5y52cZui2v+R46CwG2+80dxu3ry5OnXqpCuvvFIzZsxQx44dJTFmdvXbb79p9OjRWrhwoSIiIi7ZjvGzp0aNGik5OVlnzpzR7NmzNXToUC1fvtzcz7jZ26hRo7R582atXLmy0D7Gzj8xboGnJGNqB8ywoczUqFFDTZs29XiuSZMmOnjwoCSZKw9e/M3G8ePHzW9A4uPjlZubq9TU1Mu2OXbsWKH3P3HiRKFvUlB80dHRat68ufbs2cOY2dz69et1/PhxtW3bViEhIQoJCdHy5cv15ptvKiQkxPzdMn72FBYWpvr166tdu3aaMGGCWrZsqTfeeIO48wMPPfSQ5s2bp6VLl6pWrVrm84ydf2LcAk+1atUUHBx82TG1Mwo2lJkuXboUWt549+7dqlu3riQpMTFR8fHxWrRokbk/NzdXy5cvV+fOnSVJbdu2VWhoqEebo0ePauvWrWabTp06yeVyad26dWabtWvXyuVymW1Qcjk5OdqxY4dq1KjBmNlc9+7dtWXLFiUnJ5uPdu3aafDgwUpOTtYVV1zB+PkRwzCUk5ND3NmYYRgaNWqUvvjiCy1ZskSJiYke+xk7/8S4BZ6wsDC1bdvWY7wkadGiRf4xFr5c4QTly7p164yQkBDjxRdfNPbs2WPMnDnTiIqKMj766COzzUsvvWQ4nU7jiy++MLZs2WLceeedRS6bW6tWLeP77783NmzYYFx//fVFLpvbokULY/Xq1cbq1auN5s2bs2xuCT366KPGsmXLjF9//dVYs2aN0bdvX6NChQrG/v37DcNgzPzNhatEGgbjZ1dPPvmksWLFCmPfvn3G5s2bjaeeesoICgoyFi5caBgG42ZXDzzwgOF0Oo1ly5Z53AolMzPTbMPY2dPZs2eNjRs3Ghs3bjQkGRMnTjQ2btxoLvHOuAWe88v6v/fee8b27duNMWPGGNHR0ebfN3ZGwYYyNX/+fCMpKckIDw83GjdubEydOtVjv9vtNp599lkjPj7eCA8PN6699lpjy5YtHm2ysrKMUaNGGVWqVDEiIyONvn37GgcPHvRoc+rUKWPw4MFGhQoVjAoVKhiDBw82UlNTy/rjBaTz95oJDQ01EhISjAEDBhjbtm0z9zNm/uXigo3xs6e//vWvRt26dY2wsDCjevXqRvfu3c1izTAYN7uSVOTj/fffN9swdva0dOnSIsdu6NChhmEwboHqP//5j5lr27RpY96Cw+4chmEY1sztAQAAAAAuh2vYAAAAAMCmKNgAAAAAwKYo2AAAAADApijYAAAAAMCmKNgAAAAAwKYo2AAAAADApijYYFs5OTl67rnnlJOTY3VXUAyMm/9i7PwT4+a/GDv/xLj5L38dO+7DBttKS0uT0+mUy+VSxYoVre4O/iDGzX8xdv6JcfNfjJ1/Ytz8l7+OHTNsAAAAAGBTFGwAAAAAYFMhVnegvCgoKNDu3bsVExMjh8NhdXf8wtmzZyVJhw8fVlpamsW9wR/FuPkvxs4/MW7+i7HzT4yb/7LT2BmGofT0dDVs2FDBwcGXbcs1bD6yY8cONW3a1OpuAAAAALCJ7du3q0mTJpdtwwybj9SoUUPSuUGpUKGCxb0Bipafn6/vv/9ektSjRw+FhJAigECSn5+vmTNnSpIGDx5cohgnTwD2YlVMkgtK5+zZs2ratKlZI1wOM2w+4q+r0qB8ycjIUExMjCQpPT1d0dHRFvcIgDd5I8bJE4C9WBWT5ILSKU5tQCkMwBQUFKTOnTub2wBwMfIEYC9WxSS5wHeYYfMRZtgAAFbjG3EAsIfi1AaUwwAAAABgUxRsAAAAAGBTFGwATFlZWWrfvr3at2+vrKwsq7sDwIbIE4C9WBWT5ALfYdERACa3262ff/7Z3AaAi5EnAHuxKibJBb5DwQbAFB4erq+++srcBhBYvBHj5AnAXqyKSXKB77BKpI+wSiQAAAAAiVUiAQAAACAgcEokAFNBQYGWLFkiSbr++usVHBxscY8AeFNeXp5mzpwpSRo8eLBCQ0OLfQzyBGAvVsUkucB3OCXSRzglEv6Am+oCgc0bMU6eAOzFqpgkF5ROcWoDZtgAmIKCgtSyZUtzGwAuRp4A7MWqmCQX+A4zbD7CDBsAwGp8Iw4A9sCiIwAAAAAQACjYAAAAAMCmKNgAmLKystStWzd169ZNWVlZVncHgA2RJwB7sSomyQW+w6Ij5dCmTZv0yy+/KCgoqNAjODi4yOfP7wsJCVF4eLjCwsIUFhZWaDskJEQOh8Pqj4gScrvdWr58ubkNABcjTwD2YlVMkgt8h4KtHHr//ff1xhtvlNnxLy7kIiIiFBUVpejoaPO/F25f6rmKFSvK6XR6PKKioigIy1B4eLg+++wzcxtAYPFGjJMnAHuxKibJBb7DKpE+YqdVIt98803973//k9vt9ngUFBQUeu7C5wsKCpSfn6/c3Fzl5OSY//Xl/0LBwcFFFnJOp1MVK1ZU5cqVVbVqVfNRrVo1c9vpdLLsLAAAACxXnNqAgs1H7FSwedv5Iu7CQu7C7ezsbGVkZCgzM9Pjv5fazszMVHp6utLS0pSWliaXyyWXy1Xq6fagoCBVqVLFo6A7X9TFxcUpLi5O8fHx5na1atUUHBzspd8SAAAAcA43zoZPhYSEKCQkRFFRUWX2HoZhKCMjwyzeLizkLnykpqbq1KlThR7p6elyu906efKkTp48+YfeMygoSNWrVy9UyJ3fTkhIUK1atVSzZs2AuZdRQUGB1qxZI0nq2LEjBSsQYPLz8zVnzhxJ0q233qqQkOL/GUCeAOzFqpgkF/gOM2w+EsgzbP4gJyenyELufAF37Ngx85GSkqJTp04V61TPSpUqmcVbrVq1ityuXLmy7a+/46a6QGDzRoyTJwB7sSomyQWlwwwbcJHw8HAlJCQoISHhD7XPz8/XiRMnlJKS4lHIXbh95MgRHTp0SOnp6Tpz5ozOnDmjrVu3XvKYkZGRqlWrlurVq1foUbduXdWoUcPya+wcDofq169vbgPAxcgTgL1YFZPkAt9hhs1HmGELXGlpaTp06JAOHTqkw4cPF7l96tSp3z1OWFiY6tSpU2RBd8UVVyg+Pp6ECKBU+EYcAOyBRUdsiIKtfMvKytKRI0d08OBBHThwQPv379f+/fvN7d9++00FBQWXPUZ0dLTq169f5CMhIcHy2TkA9kfBBgD2QMFmQxRsuJz8/HwdPnzYLOQufhw8ePCyq2RGREToyiuvVIMGDcwirkGDBmrcuLFq1KjBzBwASRRsAGAXFGw2RMGG0sjNzdW+ffu0d+/eQo99+/ZddnauYsWKaty4sRo3bqwmTZqY/73iiisUGhrq0TY7O1t/+tOfJEmzZ89WREREmX4uAL7ljYKNPAHYi1UxSS4oHQo2G6JgQ1nJy8vTgQMHPIq4PXv2aPfu3fr1118vOTMXGhqq+vXrexRzdevWVdeuXSXx7TsQiFglEgg8rBLpn1glEihHzhde51dqulBOTo727t2rHTt2aOfOndq5c6e5nZmZqR07dmjHjh0erwkODtbIkSMVFhbmq48AwEfCwsL0/vvvm9tWHQOA91gVk+QC32GGzUeYYYOduN1uHT58uFAht2zZMknS6NGj9frrr1vaRwAAgEDFDBuAywoKClLt2rVVu3Zt9ezZ03z+mWee0YsvvnjZBU4AAADgOxRsAAo5duyYCgoKFBwcbHVXAHhRfn6+vvvuO0lSr169FBJS/D8DCgoKtGXLFklS8+bNyROAxayKSXKB71CwATCdn1n77LPP9N///pcLiIEAk5OTo759+0o6t0hASQq27OxstW7d2jwGeQKwllUxSS7wHQo2AKbz345FRUVx7zYARXI4HEpISDC3AVjLqpgkF/gOBRsA0/l7qAwePFhRUVEW9waAHUVFRenw4cNWdwPA/2dVTJILfCfI6g4AsI+goHMpgUVHAAAA7IGCDYCJgg0AAMBeKNgAmAoKCiRJS5YsUXZ2tsW9AWBH2dnZuu2223TbbbeRJwAbsComyQW+Q8EGoJADBw6YxRsAXKigoECff/65Pv/8c/IEYANWxSS5wHdYdASAKSwsTJLUrl07cxtA4AgLC9OkSZPMbauOAcB7rIpJcoHvULABMIWGhkqSGjRoYG4DCByhoaF68MEHLT8GAO+xKibJBb7DKZEATCw6AgAAYC/MsAEoxOVyye12mwUcgMBQUFCgH374QZJ0zTXXKDg4uNjHcLvd+uWXXyRJV155JXkCsJhVMUku8B0KNgCm8xcNL1iwQFlZWYqOjra4RwC8KTs7W9ddd50kKT09vUQxnpWVpYYNG5bqGAC8x6qYJBf4DgUbANP5b8e4fg3A5TidTqu7AOACVsUkucA3KNgAmCIjIyVJN910E9+UAShSdHS0zpw5Y3U3APx/VsUkucB3ONkUgIlFRwAAAOyFgg2A6XzBxg0wAQAA7IGCDYDpfKGWnJysnJwci3sDwI5ycnI0bNgwDRs2jDwB2IBVMUku8B2HYRiG1Z0oD9LS0uR0OuVyuVSxYkWruwMU6d1339Xw4cMlSVWrVlVSUpKSkpLUrFkz81G1alWLewmgpDIyMhQTEyOp5Ku6eeMYALzHqpgkF5ROcWoDFh0BYLr++uuVkJCgI0eO6NSpU1q+fLmWL1/u0SY+Pt6jgDtf0LFSFGB/oaGheuWVV8xtq44BwHusiklyge8ww+YjzLDBn2RmZmrnzp3aunWrtm3bZj72799/ydfUrFlTzZo1U/PmzdWqVSu1bNlSjRs3JokDAABcpDi1ga0LthUrVuhf//qX1q9fr6NHj2rOnDnq37+/JCkvL0/PPPOMvvnmG/36669yOp3q0aOHXnrpJSUkJJjHyMnJ0bhx4/TJJ58oKytL3bt319tvv61atWqZbVJTU/Xwww9r3rx5kqR+/frprbfeUqVKlcw2Bw8e1IMPPqglS5YoMjJSgwYN0quvvqqwsLA/9Fko2BAI0tPTtX37dm3bts2jmDt06FCR7cPCwtS0aVO1bNnS48FplQAAoDwLmFMiMzIy1LJlS919993605/+5LEvMzNTGzZs0P/93/+pZcuWSk1N1ZgxY9SvXz/9/PPPZrsxY8Zo/vz5mjVrlqpWrapHH31Uffv21fr16xUcHCxJGjRokA4dOqQFCxZIkkaMGKEhQ4Zo/vz5ks4txNCnTx9Vr15dK1eu1KlTpzR06FAZhqG33nrLR78NoOy53W4dPXpUklSjRg1z1cjzYmJidNVVV+mqq67yeP7MmTNmIbd582Zt2rRJmzZtUlpampKTk5WcnOzRvlatWoWKuPr165sxCaBsFBQUaMOGDZKkNm3alCjmfi9PAPAtq2KSXOA7tp5hu5DD4fCYYSvKTz/9pKuuukoHDhxQnTp15HK5VL16dX344Ye6/fbbJUlHjhxR7dq19c0336hXr17asWOHmjZtqjVr1qhDhw6SpDVr1qhTp07auXOnGjVqpG+//VZ9+/bVb7/9Zs7ezZo1S8OGDdPx48f/0IwZM2zwB968gNgwDO3fv98s3s4/fv311yLbR0VFqWXLlmrbtq35aNKkiUJCbP29EuBXWHQECDwsOuKfAmaGrbhcLpccDod5KuP69euVl5ennj17mm0SEhKUlJSkVatWqVevXlq9erWcTqdZrElSx44d5XQ6tWrVKjVq1EirV69WUlKSx6mWvXr1Uk5OjtavX6/rrruuUF9ycnI8ljhNS0srg08MeJ+3CiSHw6HExEQlJiZ6fNGSlpamLVu2KDk52SzitmzZoszMTK1evVqrV68220ZGRnoUce3ataOIA2yAGATsxaqYJBf4RsD8lrOzs/XEE09o0KBBZpWakpKisLAwVa5c2aNtXFycUlJSzDaxsbGFjhcbG+vRJi4uzmN/5cqVFRYWZra52IQJE/T888+X+nMBvhQdHa28vLwyfY+KFSuqS5cu6tKli/lcQUGB9uzZow0bNmj9+vVav369NmzYoLNnz2rNmjVas2aN2fbiIq5t27Zq2rQp/2gAPuKLPAHgj7MqJskFvhMQf+Hk5eXpjjvukNvt1ttvv/277Q3DkMPhMH++cLs0bS705JNPauzYsebPaWlpql279u/2DSiPgoOD1bhxYzVu3FiDBg2SdO7c+L1792r9+vX6+eeff7eIa9OmjTp06KCOHTuqQ4cOql279iXjEwAAwF/4fcGWl5engQMHat++fVqyZInHOaDx8fHKzc1Vamqqxyzb8ePH1blzZ7PNsWPHCh33xIkT5qxafHy81q5d67E/NTVVeXl5hWbezgsPD1d4eHipPx9QXgUFBalhw4Zq2LCh7rzzTkmeRdyFj7Nnz+rHH3/Ujz/+aL4+Pj5eHTp0MIu4du3aqUKFClZ9HAAAgBLx64LtfLG2Z88eLV26tNBS4W3btlVoaKgWLVqkgQMHSpKOHj2qrVu3mjf669Spk1wul9atW2eufLd27Vq5XC6zqOvUqZNefPFFHT16VDVq1JAkLVy4UOHh4Wrbtq2vPi5Q5nJycsyZ4YkTJ9ruS4dLFXF79uzR2rVrtWbNGq1du1abN29WSkqKvvzyS3355ZeSzs2SN2vWzCziOnTooGbNmrEyJVBMds8TQHljVUySC3zH1qtEpqena+/evZKk1q1ba+LEibruuutUpUoVJSQk6E9/+pM2bNigr776ymOmq0qVKub90R544AF99dVXmj59uqpUqaJx48bp1KlTHsv633jjjTpy5IimTJki6dyy/nXr1vVY1r9Vq1aKi4vTv/71L50+fVrDhg1T//79//Cy/qwSCX8QKCs+ZWVlacOGDWYBt3btWh08eLBQu5iYGHXo0EFdunTR1VdfrY4dOzILh4DGKpFA4GGVSP8UMKtE/vzzzx4rMJ6v4ocOHarnnnvOvNF1q1atPF63dOlSdevWTZL02muvKSQkRAMHDjRvnD19+nSPb9Vnzpyphx9+2FxNsl+/fpo0aZK5Pzg4WF9//bVGjhypLl26eNw4GwgkoaGhevbZZ81tfxUZGVloYZOjR49q3bp1ZhH3008/KT09XYsXL9bixYslnZvBa9Giha6++mrz9Vx7ikDijRgPlDwBBAqrYpJc4Du2nmELJMywAfZSUFCgbdu2adWqVVq5cqV+/PFH7d+/v1C7OnXqmMXb1VdfraSkJE6jBAAApVKc2oCCzUco2AD7O3z4sLl4ycqVK5WcnCy32+3RpmLFiurYsaO6du2qrl27qn379uYp2AAAAH8EBZsNUbDBHxiGIZfLJUlyOp3lfln89PR0rV271pyBW716tdLT0z3anD/9smvXrurWrZvat2/PhdewLbfbrR07dkiSmjRpoqCgoGIfgzwB2ItVMUkuKB0KNhuiYIM/4ALiyysoKNCWLVv0ww8/aPny5Vq+fLlOnjzp0SYyMlKdOnVSt27d1LVrV3Xo0IECDrbBoiNA4GHREf8UMIuOAICdBAcHq1WrVmrVqpUeeughc7Zi2bJlWrZsmZYvX64TJ05oyZIlWrJkiSQpIiJCHTt2VLdu3dStWzd17NiRAg4AAPxhzLD5CDNs8AeGYSg/P1+SFBISwukNxWQYhnbs2KHly5ebRdzx48c92kRFRenaa69V9+7d1aNHD7Vo0aJEp6UBJeGNb8TJE4C9WBWT5ILS4ZRIG6JgA8ofwzC0a9cus3hbunRpoQKuWrVqZvHWo0cP1atXz5rOolzgFCYAsAcKNhuiYANgGIa2bt2q77//Xt9//72WL1+ujIwMjzZXXnmlevTooe7du+v6669X1apVLeotAhEFGwDYAwWbDVGwwR/k5ubq6aefliS9+OKLLFdfxnJzc7V27VotXrxY33//vdasWaOCggJzv8PhUOvWrdWzZ0/deOON6tSpEzcnRal4o2AjTwD2YlVMkgtKh4LNhijY4A/49t1aaWlpWrFihTkDt23bNo/9FSpUUI8ePXTjjTeqd+/eql27tkU9hb9ilUgg8LBKpH9ilUgAJRIaGqpx48aZ2/CtihUrqm/fvurbt68k6ejRo/r+++/13Xff6bvvvtPJkyc1Z84czZkzR5LUrFkz9e7dWzfeeKOuvvpqVp/E7/JGjJMnAHuxKibJBb7DDJuPMMMGoDQKCgq0YcMGLViwQN9++63Wrl0rt9tt7o+KitL1119vzr5dccUVFvYWAABcDqdE2hAFGwBvOn36tBYtWqQFCxZowYIFSklJ8djfqFEj9e3bVzfffLO6dOmikBBOqAAAwC4o2GyIgg3+gHuq+CfDMLRp0yazePvxxx/NcZSkSpUq6cYbb9TNN9+s3r17q3Llyhb2FlZyu906ePCgJKlOnTolugcgeQKwF+7D5p8o2GyIgg3+gAuIA4PL5dLChQv11Vdf6euvv9apU6fMfcHBwbrmmmt08803q2/fvmrYsKGFPYWvsegIEHhYdMQ/UbDZEAUb/AHJN/AUFBRozZo1mj9/vr766qtCK082bNhQN998M6dOlhMUbEDgoWDzTxRsNkTBBn9gGIZcLpckyel0cnpDAPr111/11Vdfaf78+Vq+fLny8vLMfZUrV9bNN9+sAQMGqGfPnoqMjLSwpygL3vgDizwB2ItVMUkuKB0KNhuiYANgN2lpaVq4cKHmz59f6NTJqKgo9e7dWwMGDFCfPn1UqVIl6zoKr+EbcQCwBwo2G6JgA2BnBQUF+vHHHzVnzhx98cUX5sIU0rmLya+//noNGDBAt9xyi+Lj4y3sKUqDgg0A7IGCzYYo2OAPcnNzNX78eEnSU089pbCwMIt7BCsYhqGNGzeaxdv27dvNfQ6HQ507d9att96qW2+9lfu9+RlvFGzkCcBerIpJckHpULDZEAUb/AHfvqMou3bt0pw5czRnzhytW7fOY1/Lli01cOBADRw4UPXr17eoh/ijWHQECDwsOuKfilMbsBwYAFNISIhGjhxpbgPSuZtwP/HEE3riiSd06NAhzZ07V3PmzNHy5cu1adMmbdq0SU8//bTatGmjgQMH6rbbbmPmzaa8EePkCcBerIpJcoHvMMPmI8ywAQg0p06d0ty5c/XZZ59p8eLFKigoMPe1a9fOLN7q1atnXScBALAhTom0IQo2AIHs5MmTmjNnjj799FMtXbpUbrfb3HfVVVeZxVudOnUs7CUAAPZAwWZDFGwAyovjx4/riy++0Geffably5d7FG8dO3bU7bffrjvuuIPVJi1gGIZOnjwpSapWrRr3TQIAi1Cw2RAFG/xBRkaGeb+tM2fOcAExSi0lJcUs3lasWKHz/+QEBQWpe/fuGjx4sG699Vbyoo94a9ER8gRgH1bFJLmgdIpTGwT5qE8A/ER+fr7y8/Ot7gYCRHx8vEaOHKlly5bp8OHDevPNN9WxY0e53W4tWrRIw4YNU1xcnG6//XbNmzdPubm5VncZfwB5ArAXq2KSXOAbzLD5CDNs8Adut1tHjx6VJNWoUUNBQXyng7Lxyy+/6OOPP9bMmTO1a9cu8/nKlSvrtttu0+DBg3X11Vfz/6CXeWOGjTwB2ItVMUkuKB1OibQhCjYAKMwwDG3YsEEff/yxPvnkE/Mff0mqU6eO7rzzTg0ePFjNmze3sJeBg/smAYA9ULDZEAUbAFxeQUGBli1bppkzZ2r27NlKS0sz97Vq1UrDhg3ToEGDVL16dQt76d8o2ADAHijYbIiCDf4gNzdXb7zxhiRp9OjRCgsLs7hHKK+ysrL0zTffaObMmfr666/Na9tCQkLUp08fDR06VH369OH/0WLyRsFGngDsxaqYJBeUDgWbDVGwwR/w7Tvs6PTp05o1a5amT5+un376yXy+atWqGjRokIYNG6bWrVuzRP0f4K1VIskTgH1YFZPkgtIpTm0Q4qM+AfADISEhGjp0qLkN2EGVKlU0cuRIjRw5Utu3b9eMGTP04Ycf6ujRo3rrrbf01ltvqXnz5ho6dKgGDx7M/d0uwxsxTp4A7MWqmCQX+A4zbD7CDBsAeE9+fr4WLVqkGTNmaO7cucrJyZEkBQcHq3fv3rr77rt18803c4oOAMCWOCXShijYAKBspKam6rPPPtP06dO1Zs0a8/nq1atr2LBhuueee9SoUSMLewgAgCcKNhuiYAOAsrdr1y5Nnz5dM2bM8LhFwLXXXqt7771Xf/7znxUZGWlhD61lGIYyMzMlSVFRUVz3BwAWKU5twB3uAJgyMjJUqVIlVapUSRkZGVZ3Byi2Ro0aacKECTp48KDmzp2rvn37KigoSCtWrNBdd92lGjVqaNSoUdq0aZPVXbVEZmamYmJiFBMTYxZuxUWeAOzFqpgkF/gOBRsADy6XSy6Xy+puAKUSEhKiW265RfPnz9eBAwf0wgsvqF69enK5XPrPf/6jVq1aqX379po6darH/d7wx5AnAHuxKibJBb7BKZE+wimR8Adut1u//PKLJOnKK69UUBDf6SBwuN1uLV68WNOmTdPcuXOVl5cnSYqOjtbtt9+u+++/X+3bt7e4l2XLG8twkycAe7EqJskFpcM1bDZEwQYA9nH8+HF9+OGHmjZtmnbt2mU+365dO40cOVK33367oqKiLOxh2eC+SQBgD1zDBgDAZcTGxurRRx/Vjh07tGLFCv3lL39RWFiYfv75Z/31r39VzZo1NXbsWO3evdvqrgIAyjlm2HyEGTb4g7y8PE2dOlWSNGLECIWGhlrcI8B3Tpw4offff1/vvPOO9u3bZz7fo0cPPfDAA+rXr5/f3xzWGzNs5AnAXqyKSXJB6XBKpA1RsMEfcLoUIBUUFOi7777T5MmT9fXXX+v8P5M1a9bUiBEjdO+99yohIcHiXpaMN2KcPAHYi1UxSS4oneLUBv79VSEArwoODtaf//xncxsoj4KDg3XTTTfppptu0v79+zVlyhS99957Onz4sJ599lm98MIL6t+/v0aNGqVrr73Wr+5l5o0YJ08A9mJVTJILfIcZNh9hhg0A/FdOTo5mz56tyZMna+XKlebzLVu21MMPP6xBgwYpIiLCwh4CAPwJp0TaEAUbAASGLVu26D//+Y8++OADZWVlSZKqVaumESNGaOTIkapZs6bFPQQA2B0Fmw1RsAFAYDl9+rTee+89TZo0SQcPHpR07obdf/rTnzR69Gh17NjRr06XBAD4Dsv6AyiRzMxM1axZUzVr1lRmZqbV3QFsrUqVKvrb3/6mX375RbNnz9a1116r/Px8ffrpp+rcubM6dOigjz76SLm5uVZ31ZSRkSGHwyGHw6GMjIwSHYM8AdiLVTFJLvAdCjYAJsMwdOTIER05ckRMvgN/TEhIiAYMGKDly5dr48aNuvvuuxUeHq6ffvpJQ4YMUd26dfX888/r2LFjVnfVK8gTgL1YFZPkAt/hlEgf4ZRI+IOCggJt2bJFktS8eXNWfQJK6MSJE5o6darefvttHTlyRJIUHh6uu+66S2PHjlXjxo0t6Zc3luEmTwD2YlVMkgtKh2vYbIiCDQDKn7y8PM2ePVuvv/661q5daz7ft29fjRs3zue3BeC+SQBgD1zDBgCADYSGhuqOO+7Q6tWrtXLlSvXv318Oh0NfffWVunXrpquuukqffvqp8vPzre4qAMCmKNgAmPLy8jR9+nRNnz5deXl5VncHCBgOh0NdunTRnDlztHPnTt1///2KiIjQzz//rDvuuEP169fX66+/rrNnz1rd1d9FngDsxaqYJBf4DqdE+ginRMIfcLoU4DsnTpzQ5MmTNWnSJJ04cUKS5HQ6df/99+uhhx4qk/u5eSPGyROAvVgVk+SC0uGUSAAlEhwcrJtuukk33XQTFw8DZax69er6+9//rgMHDmjKlClq2LChXC6XXn75ZSUmJmrYsGHasWOHV9/TGzFOngDsxaqYJBf4DjNsPsIMGwDgctxut77++mu9+uqrWrFihaRzp1L2799fTz75pNq3b29xDwEA3sIMGwAAfiYoKEg333yzli9frjVr1qh///4yDENz5szRVVddpR49emjx4sXc7wgAyhkKNgAAbKZDhw6aM2eOtm3bprvuukvBwcFavHixevTooY4dO2rOnDlyu91WdxMA4AMUbABMmZmZatCggRo0aKDMzEyruwOUe02bNtWMGTP0yy+/aNSoUYqIiNC6des0YMAAJSUlacaMGcVanS0jI0PR0dGKjo5WRkZGifpEngDsxaqYJBf4jq0LthUrVujmm29WQkKCHA6H5s6d67HfMAw999xzSkhIUGRkpLp166Zt27Z5tMnJydFDDz2katWqKTo6Wv369dOhQ4c82qSmpmrIkCFyOp1yOp0aMmSIzpw549Hm4MGDuvnmmxUdHa1q1arp4YcfVm5ubll8bMAyhmFo79692rt3L6ddATZSt25dvfXWWzpw4ICeeuopOZ1O7dixQ8OGDVP9+vX11ltv/eE/mDIzM0v1xxV5ArAXq2KSXOA7ti7YMjIy1LJlS02aNKnI/a+88oomTpyoSZMm6aefflJ8fLxuuOEGj/vYjBkzRnPmzNGsWbO0cuVKpaenq2/fviooKDDbDBo0SMnJyVqwYIEWLFig5ORkDRkyxNxfUFCgPn36KCMjQytXrtSsWbM0e/ZsPfroo2X34QELREREaOXKlVq5cqUiIiKs7g6Ai8TGxurFF1/UwYMH9dJLLykuLk4HDx7Uww8/rMTERL366qslnjn7o8gTgL1YFZPkAh8y/IQkY86cOebPbrfbiI+PN1566SXzuezsbMPpdBrvvPOOYRiGcebMGSM0NNSYNWuW2ebw4cNGUFCQsWDBAsMwDGP79u2GJGPNmjVmm9WrVxuSjJ07dxqGYRjffPONERQUZBw+fNhs88knnxjh4eGGy+X6Q/13uVyGpD/cHgCA35OVlWVMnjzZqFevniHJkGRUq1bNmDBhgpGWllaofXp6utkuPT3dgh4DAAyjeLWBrWfYLmffvn1KSUlRz549zefCw8PVtWtXrVq1SpK0fv165eXlebRJSEhQUlKS2Wb16tVyOp3q0KGD2aZjx45yOp0ebZKSkpSQkGC26dWrl3JycrR+/foi+5eTk6O0tDSPBwAA3hQREaH7779fu3fv1vvvv68rr7xSJ0+e1JNPPql69erpxRdflMvlsrqbAIBS8NuCLSUlRZIUFxfn8XxcXJy5LyUlRWFhYapcufJl28TGxhY6fmxsrEebi9+ncuXKCgsLM9tcbMKECeY1cU6nU7Vr1y7BpwR8Kz8/X//73//0v//9T/n5+VZ3B8AfFBoaqmHDhmnnzp364IMP1LBhQ50+fVrPPPOM6tWrp+eff77QtdklRZ4A7MWqmCQX+E6I1R0oLYfD4fGzYRiFnrvYxW2Kal+SNhd68sknNXbsWPPntLQ0ijbYXk5OjgYOHChJSk9PV0iI36cIoFwJCQnRkCFDNGjQIH322Wd64YUXtGPHDj333HOaOHGiHnjggVK/B3kCsBerYpJc4Dt++5uNj4+XdG72q0aNGubzx48fN2fD4uPjlZubq9TUVI9ZtuPHj6tz585mm2PHjhU6/okTJzyOs3btWo/9qampysvLKzTzdl54eLjCw8NL8QkB3wsKClLXrl3NbQD+KTg4WHfeeacGDhyo2bNn64UXXtDWrVv18ssvKygoSLVq1fJYfKs4yBOAvVgVk+QC3/Hb325iYqLi4+O1aNEi87nc3FwtX77cLMbatm2r0NBQjzZHjx7V1q1bzTadOnWSy+XSunXrzDZr166Vy+XyaLN161YdPXrUbLNw4UKFh4erbdu2Zfo5AV+KjIzUsmXLtGzZMkVGRlrdHQClFBwcrIEDB2rTpk36/PPP1aJFC7ndbh08eFArVqwo0THJE4C9WBWT5ALfsfUMW3p6uvbu3Wv+vG/fPiUnJ6tKlSqqU6eOxowZo/Hjx5s37Rs/fryioqI0aNAgSZLT6dQ999yjRx99VFWrVlWVKlU0btw4NW/eXD169JAkNWnSRL1799bw4cM1ZcoUSdKIESPUt29fNWrUSJLUs2dPNW3aVEOGDNG//vUvnT59WuPGjdPw4cNVsWJFH/9WAAAonqCgIP3pT3/Srbfeqs6dO2vt2rXc6BYA/IStC7aff/5Z1113nfnz+WvChg4dqunTp+uxxx5TVlaWRo4cqdTUVHXo0EELFy5UhQoVzNe89tprCgkJ0cCBA5WVlaXu3btr+vTpCg4ONtvMnDlTDz/8sLmaZL9+/Tzu/RYcHKyvv/5aI0eOVJcuXRQZGalBgwbp1VdfLetfAQAAXhMUFMQ34QDgZxyGwa3JfSEtLU1Op1Mul4tZOdhWVlaWOnXqJOnc7Sz4ww4ILBkZGapcubLy8vI0Y8YM3XXXXcU+BnkCsBerYpJcUDrFqQ1sPcMGwLfcbrc2bdpkbgMIPHl5eZLOrXRcEuQJwF6siklyge9QsAEwRUREaOHCheY2AFyMPAHYi1UxSS7wHQo2AKbg4GDdcMMNVncDgI2RJwB7sSomyQW+47fL+gMAgJLjEnYA8A/MsAEw5efn67vvvpMk9erVSyEhpAgAnsgTgL1YFZPkAt/hNwvAlJOTo759+0o6dx9Eki+Ai5EnAHuxKibJBb7DbxaAKSgoSO3atTO3AQSWoKAgVahQQWfPni1xjJMnAHuxKibJBb5DwQbAFBkZqZ9++snqbgAoI5GRkWrfvr2WLFmi0NDQEh+DPAHYh1UxSS7wHcphAADKEYfDYXUXAADFQMEGAAAAADZFwQbAlJWVpS5duqhLly7KysqyujsAvCwzM1M//vijJCk7O7tExyBPAPZiVUySC3yHa9gAmNxut1atWmVuAwgshmGYhVpJ78NGngDsxaqYJBf4DgUbAFN4eLjmzJljbgPAxcgTgL1YFZPkAt+hYANgCgkJUf/+/a3uBgAbI08A9mJVTJILfIdr2AAAKIdKekokAMC3mGEDYCooKNAPP/wgSbrmmmsUHBxscY8A2A15ArAXq2KSXOA7FGwATNnZ2bruuuskSenp6YqOjra4RwDshjwB2ItVMUku8B0KNgAmh8Ohpk2bmtsAAovD4VB0dLQyMjJKdQzyBGAfVsUkucB3KNgAmKKiorRt2zaruwGgjERFRalz585atGhRiVd1I08A9mJVTJILfIdFRwAAKEf4JhwA/AsFGwAAAADYFAUbAFNWVpZuuOEG3XDDDcrKyrK6OwC8LDMzUz/++KOkcwsGlAR5ArAXq2KSXOA7XMMGwOR2u/X999+b2wACi2EYpVpwRCJPAHZjVUySC3yHgg2AKTw8XB999JG5DQAXI08A9mJVTJILfMdhGIZhdSfKg7S0NDmdTrlcLlWsWNHq7gAAyqGMjAzFxMRIkqZNm6Z7773X4h4BQPlUnNqAa9gAACiH+L4WAPwDp0QCMBUUFGjDhg2SpDZt2ig4ONjiHgGwG/IEYC9WxSS5wHco2ACYsrOzddVVV0mS0tPTFR0dbXGPANgNeQKwF6tiklzgOxRsAEwOh0N169Y1twEEFofDoYiICGVnZ5f4lEjyBGAvVsUkucB3KNgAmKKiorR//36ruwGgjERFRalbt25asGBBiVd1I08A9mJVTJILfIdFRwAAKEf4JhwA/AsFGwAAAADYFAUbAFN2drb69++v/v37Kzs72+ruAPCyrKwsrVq1SpKUk5NTomOQJwB7sSomyQW+wzVsAEwFBQX68ssvzW0AgcXtdsvlckkq+X3YyBOAvVgVk+QC36FgA2AKCwvT1KlTzW0AuBh5ArAXq2KSXOA7DqOkX7GhWNLS0uR0OuVyuVSxYkWruwMAKIcyMjIUExMjSZo8ebLuv/9+i3sEAOVTcWoDrmEDAAAAAJvilEgAJrfbrR07dkiSmjRpoqAgvtMB4Ik8AdiLVTFJLvAdCjYApqysLCUlJUmS0tPTFR0dbXGPANgNeQKwF6tiklzgOxRsADxUq1bN6i4AKENhYWHKzc0t8SqREnkCsBurYpJc4BsUbABM0dHROnHihNXdAFBGoqOjdcMNN+jrr79WeHh4iY9BngDsw6qYJBf4DiebAgBQjjgcDqu7AAAoBgo2AADKIe7qAwD+wSsFW15enn777Tft2rVLp0+f9sYhAVggOztbgwcP1uDBg5WdnW11dwB4WVZWllatWiVJys3NLdExyBOAvVgVk+QC3ynxjbPT09M1c+ZMffLJJ1q3bp1ycnLMfbVq1VLPnj01YsQItW/f3mud9WfcOBv+4MKb6rLiExB4Lozx//znPxo5cmSpjkGeAKxnVUySC0qnOLVBiRYdee211/Tiiy+qXr166tevn5544gnVrFlTkZGROn36tLZu3aoffvhBN9xwgzp27Ki33npLDRo0KNGHAeA7YWFheu2118xtALgYeQKwF6tiklzgOyWaYbvtttv097//Xc2bN79su5ycHL333nsKCwvTvffeW+JOBgJm2AAAVrvwG/FJkybpwQcftLhHAFA+lfkM2//+978/1C48PLxEp1sAAAAAALgPG4ALuN1uHTx4UJJUp04dBQWxkCwAT+QJwF6siklyge8Uu2BLTU2VYRiqUqWKTpw4oRUrVqhRo0ZKSkoqi/4B8KGsrCwlJiZK4gJiAEUjTwD2YlVMkgt8p1il8Lvvvqt27dqpbdu2mjx5sm699VYtXrxYd9xxh6ZOnVpWfQTgQ1FRUYqKirK6GwDKSHBwsKTS3YeNPAHYi1UxSS7wjWLNsL311lvatm2bMjMzVadOHe3bt0/Vq1dXWlqarr32Wo0YMaKs+gnAB6Kjo5WRkWF1NwCUkejoaPXt21dffvmlwsPDS3wM8gRgH1bFJLnAd4pVsAUHBysiIkIRERGqX7++qlevLkmqWLGiHA5HmXQQAAAAAMqrYp0SGRISYt7JfPny5ebzZ8+e9W6vAABAmSrNKZEAAN8pVsG2ZMkS8xQKp9NpPp+VlaX33nvPuz0D4HM5OTkaPny4hg8frpycHKu7A8DLsrOztWbNGklSXl5eiY5BngDsxaqYJBf4TolunH2x7Oxsbd68WcePH5fb7fbY169fv9IePiBw42z4gwtvqsuKT0DguTDG33zzTT300EOlOgZ5ArCeVTFJLiidMr9x9oUWLFigu+66SydPniy0z+FwqKCgoLRvAcBHQkND9c9//tPcBoCLkScAe7EqJskFvlPqGbb69eurV69e+vvf/664uDhv9SvgMMMGALDahd+Iv/HGG3r44Yct7hEAlE/FqQ1KfUvy48ePa+zYsRRrAAAAAOBlpS7Y/vznP2vZsmVe6Erx5efn65lnnlFiYqIiIyN1xRVX6B//+IfHdXSGYei5555TQkKCIiMj1a1bN23bts3jODk5OXrooYdUrVo1RUdHq1+/fjp06JBHm9TUVA0ZMkROp1NOp1NDhgzRmTNnfPExAZ8xDEMnTpzQiRMnWEEOQJHIE4C9WBWT5ALfKfU1bJMmTdJtt92mH374Qc2bNy90DmtZnm7x8ssv65133tGMGTPUrFkz/fzzz7r77rvldDo1evRoSdIrr7yiiRMnavr06WrYsKH++c9/6oYbbtCuXbtUoUIFSdKYMWM0f/58zZo1S1WrVtWjjz6qvn37av369QoODpYkDRo0SIcOHdKCBQskSSNGjNCQIUM0f/78Mvt8gK9lZmYqNjZWEhcQA4GupH9gkScAe7EqJskFvlPqgu3jjz/Wd999p8jISC1btszjBtoOh6NMC7bVq1frlltuUZ8+fSRJ9erV0yeffKKff/5Z0rl/jF5//XU9/fTTGjBggCRpxowZiouL08cff6z77rtPLpdL7733nj788EP16NFDkvTRRx+pdu3a+v7779WrVy/t2LFDCxYs0Jo1a9ShQwdJ0rRp09SpUyft2rVLjRo1KrPPCAAAAKD8KvUpkc8884z+8Y9/yOVyaf/+/dq3b5/5+PXXX73Rx0u6+uqrtXjxYu3evVuStGnTJq1cuVI33XSTJGnfvn1KSUlRz549zdeEh4era9euWrVqlSRp/fr1ysvL82iTkJCgpKQks83q1avldDrNYk2SOnbsKKfTaba5WE5OjtLS0jwegN1FR0fLMAwZhsE3ZUAAio6ONr/APH9f1ZIcgzwB2IdVMUku8J1Sz7Dl5ubq9ttvV1BQqWu/Ynv88cflcrnUuHFjBQcHq6CgQC+++KLuvPNOSVJKSookFVoQJS4uTgcOHDDbhIWFqXLlyoXanH99SkqKOeV7odjYWLPNxSZMmKDnn3++dB8QAAAAQLlW6ipr6NCh+vTTT73Rl2L79NNP9dFHH+njjz/Whg0bNGPGDL366quaMWOGR7sLT9OUzp0qefFzF7u4TVHtL3ecJ598Ui6Xy3z89ttvf/RjAQBQ5lgkAAD8Q6ln2AoKCvTKK6/ou+++U4sWLQotOjJx4sTSvsUl/e1vf9MTTzyhO+64Q5LUvHlzHThwQBMmTNDQoUMVHx8v6dwMWY0aNczXHT9+3Jx1i4+PV25urlJTUz1m2Y4fP67OnTubbY4dO1bo/U+cOHHJ2xmEh4eX+HQTwCo5OTl6/PHHJZ1b1If/h4HAkp2drbVr10qS8vLySnQM8gRgL1bFJLnAd0o9w7Zlyxa1bt1aQUFB2rp1qzZu3Gg+kpOTvdDFS8vMzCx0KmZwcLC5rH9iYqLi4+O1aNEic39ubq6WL19uFmNt27ZVaGioR5ujR49q69atZptOnTrJ5XJp3bp1Zpu1a9fK5XKZbYBAkJ+frzfeeENvvPGG8vPzre4OAC8rKCjQ4cOHJcnjFjjFQZ4A7MWqmCQX+E6pZ9iWLl3qjX6UyM0336wXX3xRderUUbNmzbRx40ZNnDhRf/3rXyWdO41xzJgxGj9+vBo0aKAGDRpo/PjxioqK0qBBgyRJTqdT99xzjx599FFVrVpVVapU0bhx49S8eXNz1cgmTZqod+/eGj58uKZMmSLp3LL+ffv2ZYVIBJTQ0FA99dRT5jYAXIw8AdiLVTFJLvAdh1HCk9ifeuop9e/fX1dddZW3+/SHnT17Vv/3f/+nOXPm6Pjx40pISNCdd96pv//97woLC5N07hz9559/XlOmTFFqaqo6dOig//znP0pKSjKPk52drb/97W/6+OOPlZWVpe7du+vtt99W7dq1zTanT5/Www8/rHnz5kmS+vXrp0mTJqlSpUp/qK9paWlyOp1yuVyqWLGi934JAAD8QRkZGYqJiZF07pKFRx55xOIeAUD5VJzaoMQF2913362vv/5awcHBuvnmm3XLLbeoR48enL96CRRsAACrUbABgD0UpzYo8TVs77//vo4dO6bPPvtMlSpV0qOPPqpq1appwIABmj59uk6ePFnSQwOwiGEYysjIUEZGBivIASgSeQKwF6tiklzgO6VadMThcOiaa67RK6+8op07d2rdunXq2LGjpk2bppo1a+raa6/Vq6++al7gDMDeMjMzFRMTo5iYGGVmZlrdHQBlqKR/YJEnAHuxKibJBb7j1btdN2nSRI899ph+/PFH/fbbbxo6dKh++OEHffLJJ958GwAAAAAoF0q9SuSlxMbG6p577tE999xTVm8BwMuioqKUnp5ubgMILFFRUbr11ls1Z84cc3GukhyDPAHYh1UxSS7wnVIXbGPHji3yeYfDoYiICDVo0ED9+vVTlSpVSvtWAMqYw+FQdHS01d0AUEYcDodCQkLM7ZIegzwB2IdVMUku8J1SF2wbN27Uhg0bVFBQoEaNGskwDO3Zs0fBwcFq3Lix3n77bY0dO1YrV65U06ZNvdFnAABQSiwSAAD+odTXsJ1fzv/IkSNav369NmzYoMOHD+uGG27QnXfeqcOHD+vaa69l6WDAD+Tm5urpp5/W008/rdzcXKu7A8DLcnJy9NNPP0mS8vLySnQM8gRgL1bFJLnAd0p8H7bzatasqUWLFhWaPdu2bZt69uypw4cPa8OGDerZs2e5Xuqf+7DBH1x4j6b09HROdQACzIUx/uqrr+rRRx8t1THIE4D1rIpJckHpFKc2KPUpkS6XS8ePHy9UsJ04cUJpaWmSpEqVKlF5A34gJCREo0ePNrcBBK6Sfl9LngDsxaqYJBf4Tql/u7fccov++te/6t///rfat28vh8OhdevWady4cerfv78kad26dWrYsGFp3wpAGQsPD9frr79udTcA2Bh5ArAXq2KSXOA7pS7YpkyZokceeUR33HGH8vPzzx00JERDhw7VxIkTJUmNGzfWu+++W9q3AgAAAIBypdQFW0xMjKZNm6bXXntNv/76qwzD0JVXXmme0ypJrVq1Ku3bAAAAAEC5U+pVIj/66CNJ5wq3Fi1aqGXLlmax9re//a20hwfgQxkZGXI4HHI4HMrIyLC6OwDKUEmvYSNPAPZiVUySC3yn1AXbqFGj9NVXXxV6/pFHHjGLOQAAAABA8ZW6YJs1a5b+8pe/aMWKFeZzDz30kD777DMtXbq0tIcH4ENRUVE6fvy4jh8/rqioKKu7A8DLoqKizAXBwsLCSnwM8gRgH1bFJLnAd0p9DVvv3r31zjvvqH///lq4cKH++9//6ssvv9TSpUtZGRLwMw6HQ9WrV7e6GwDKiMPhUERERKmPQZ4A7MOqmCQX+I5Xbppwxx13KDU1VVdffbWqV6+u5cuXq379+t44NAAAAACUWyUq2MaOHVvk87GxsWrdurXefvtt87nzS/sDsL/c3Fz961//knRu0aCSnjIFwJ5ycnK0fv16STJvxVNc5AnAXqyKSXKB7ziMEiwTdd111/2xgzscWrJkSbE7FYjS0tLkdDrlcrlUsWJFq7sDFCkjI8Nc5TU9PV3R0dEW9wiAN10Y4y+//LIee+yxUh2DPAFYz6qYJBeUTnFqgxLNsLGYCBCYQkJCdO+995rbAAJXSZf1J08A9mJVTJILfKdEM2wHDx5UnTp1/nD7w4cPq2bNmsV9m4DCDBsAwGoXfiP+0ksv6fHHH7e4RwBQPhWnNijRsv7t27fX8OHDtW7duku2cblcmjZtmpKSkvTFF1+U5G0AAAAAoFwr0fzljh07NH78ePXu3VuhoaFq166dEhISFBERodTUVG3fvl3btm1Tu3bt9K9//Us33nijt/sNAAAAAAGvRDNsVapU0auvvqojR45o8uTJatiwoU6ePKk9e/ZIkgYPHqz169frxx9/pFgD/EhGRoaio6MVHR2tjIwMq7sDoAyV9Bo28gRgL1bFJLnAd0p1hWBERIQGDBigAQMGeKs/ACyWmZlpdRcA2Bx5ArAXq2KSXOAbLOkCwBQZGal9+/aZ2wACS2RkpG655RZ9+eWXCg0NLfExyBOAfVgVk+QC36FgA2AKCgpSvXr1rO4GgDISFBRkrhLpcDhKfAzyBGAfVsUkucB3SnQNGwAAAACg7DHDBsCUl5en//znP5KkBx98sMSnTAGwp9zcXG3YsEGSlJ+fX6JjkCcAe7EqJskFvlOiG2ej+LhxNvzBhTfVTU9PV3R0tMU9AuBNF8b4+PHj9eSTT5bqGOQJwHpWxSS5oHSKUxuUeoZt2LBh+utf/6prr722tIcCYLHg4GANGjTI3AYQuEr6fS15ArAXq2KSXOA7pS7Yzp49q549e6p27dq6++67NXToUNWsWdMbfQPgYxEREZo5c6bV3QBgY+QJwF6siklyge+UetGR2bNn6/Dhwxo1apT+97//qV69errxxhv1+eefKy8vzxt9BAAAAIByySurRFatWlWjR4/Wxo0btW7dOtWvX19DhgxRQkKCHnnkEe3Zs8cbbwMAAAAA5YpXl/U/evSoFi5cqIULFyo4OFg33XSTtm3bpqZNm+q1117z5lsBKAMZGRmqXr26qlevroyMDKu7A8CGyBOAvVgVk+QC3yn1NWx5eXmaN2+e3n//fS1cuFAtWrTQI488osGDB6tChQqSpFmzZumBBx7QI488UuoOAyhbJ0+etLoLAGyOPAHYi1UxSS7wjVIXbDVq1JDb7dadd96pdevWqVWrVoXa9OrVS5UqVSrtWwEoY5GRkdq6dau5DSCwREZGql+/fpo3b55CQkr2JwB5ArAXq2KSXOA7pS7YRo8erUcffVRRUVEezxuGod9++0116tRR5cqVtW/fvtK+FYAyFhQUpGbNmlndDQBlJCgoyPwC1eFwlPgY5AnAPqyKSXKB75T6GrbnnntO6enphZ4/ffq0EhMTS3t4AAAAACi3Sj3Ddqkbb6anpysiIqK0hwfgQ3l5eZo+fbokadiwYQoNDbW2QwC8Kjc3V5s2bZIk5efnl+gY5AnAXqyKSXKB7ziMS1Vcv2Ps2LGSpDfeeEPDhw/3OCWyoKBAa9euVXBwsH788Ufv9NTPpaWlyel0yuVyqWLFilZ3ByhSRkaGYmJiJJ370iU6OtriHgHwpgtj/IUXXtAzzzxTqmOQJwDrWRWT5ILSKU5tUOIZto0bN0o6N8O2ZcsWhYWFmfvCwsLUsmVLjRs3rqSHB2CB4OBg3XLLLeY2AFyMPAHYi1UxSS7wnRLPsJ13991364033mDW6HcwwwYAsJo3ZtgAAKXnkxm2895///3SHgIAAAAAUIQSFWxjx47VCy+8oOjoaPNatkuZOHFiiToGAADKTilPsAEA+EiJCraNGzcqLy/P3L6Ukt7jBYA1MjMz1bRpU0nS9u3bC91fEQDIE4C9WBWT5ALfKVHBtnTp0iK3Afg3wzB04MABcxsALkaeAOzFqpgkF/hOqa9hy8rKkmEYZlV94MABzZkzR02bNlXPnj1L3UEAvhMREaF169aZ2wACS0REhPr27auvvvpKISEl+xOAPAHYi1UxSS7wnVIXbLfccosGDBig+++/X2fOnNFVV12lsLAwnTx5UhMnTtQDDzzgjX4C8IHg4GC1b9/e6m4AKCPBwcGqXr26pJJftkCeAOzFqpgkF/hOUGkPsGHDBl1zzTWSpM8//1zx8fE6cOCAPvjgA7355pul7iAAAPAeri8HAP9S6hm2zMxMVahQQZK0cOFCDRgwQEFBQerYsaN5XisA/5Cfn69PP/1UknT77beX+JQpAPaUm5urLVu2SDoX7yVBngDsxaqYJBf4TqlvnN2iRQvde++9uvXWW5WUlKQFCxaoU6dOWr9+vfr06aOUlBRv9dWvceNs+IMLb6qbnp6u6Ohoi3sEwJsujPHnnntOzz77bKmOQZ4ArGdVTJILSsenN87++9//rkGDBumRRx5R9+7d1alTJ0nnZttat25d2sMD8KGgoCD16NHD3AaAi5EnAHuxKibJBb5T6hk2SUpJSdHRo0fVsmVLc8DWrVunihUrqnHjxqXuZCBghg0AYDVvzLABAErPpzNskhQfH6/4+HiP56666ipvHBoAAAAAyi2vFGyLFy/W4sWLdfz4cbndbo99//3vf73xFgAAwIu40S0A+IdSn3D6/PPPq2fPnlq8eLFOnjyp1NRUjwcA/5GZmalmzZqpWbNmyszMtLo7AGyIPAHYi1UxSS7wnVLPsL3zzjuaPn26hgwZ4o3+ALCQYRjavn27uQ0AFyNPAPZiVUySC3yn1DNsubm56ty5szf6UiKHDx/WX/7yF1WtWlVRUVFq1aqV1q9fb+43DEPPPfecEhISFBkZqW7dumnbtm0ex8jJydFDDz2katWqKTo6Wv369dOhQ4c82qSmpmrIkCFyOp1yOp0aMmSIzpw544uPCPhMRESEli5dqqVLlyoiIsLq7gDwsoiICN10002SpODg4BIfgzwB2IdVMUku8J1SF2z33nuvPv74Y2/0pdhSU1PVpUsXhYaG6ttvv9X27dv173//W5UqVTLbvPLKK5o4caImTZqkn376SfHx8brhhht09uxZs82YMWM0Z84czZo1SytXrlR6err69u2rgoICs82gQYOUnJysBQsWaMGCBUpOTmZWEQEnODhY3bp1U7du3Ur8xxwA+woODlZCQoKkki/DTZ4A7MWqmCQX+E6pT4nMzs7W1KlT9f3336tFixYKDQ312D9x4sTSvsUlvfzyy6pdu7bef/9987l69eqZ24Zh6PXXX9fTTz+tAQMGSJJmzJihuLg4ffzxx7rvvvvkcrn03nvv6cMPPzTvJfHRRx+pdu3a+v7779WrVy/t2LFDCxYs0Jo1a9ShQwdJ0rRp09SpUyft2rVLjRo1KrPPCACANzkcDqu7AAAohlLPsG3evFmtWrVSUFCQtm7dqo0bN5qP5ORkL3Tx0ubNm6d27drptttuU2xsrFq3bq1p06aZ+/ft26eUlBT17NnTfC48PFxdu3bVqlWrJEnr169XXl6eR5uEhAQlJSWZbVavXi2n02kWa5LUsWNHOZ1Os83FcnJylJaW5vEA7C4/P19z587V3LlzlZ+fb3V3AHhZXl6eeVnAhWeRFAd5ArAXq2KSXOA7pZ5hW7p0qTf6USK//vqrJk+erLFjx+qpp57SunXr9PDDDys8PFx33XWXUlJSJElxcXEer4uLi9OBAwcknbvpd1hYmCpXrlyozfnXp6SkKDY2ttD7x8bGmm0uNmHCBD3//POl/oyAL+Xk5OjWW2+VJKWnpyskxCt3/gBgE7m5ueYXjSX9A4s8AdiLVTFJLvAdv/7Nut1utWvXTuPHj5cktW7dWtu2bdPkyZN11113me0uPv3DMIzfPSXk4jZFtb/ccZ588kmNHTvW/DktLU21a9f+/Q8FWCgoKMhcRKik17cACGzkCcBerIpJcoHveKVg++GHHzRlyhT98ssv+vzzz1WzZk19+OGHSkxM1NVXX+2NtyhSjRo11LRpU4/nmjRpotmzZ0uS4uPjJZ2bIatRo4bZ5vjx4+asW3x8vHJzc5Wamuoxy3b8+HHzf8L4+HgdO3as0PufOHGi0OzdeeHh4QoPDy/FpwN8LzIyUj/++KPV3QBgY+QJwF6siklyge+UuhyePXu2evXqpcjISG3cuFE5OTmSpLNnz5ozX2WlS5cu2rVrl8dzu3fvVt26dSVJiYmJio+P16JFi8z9ubm5Wr58uVmMtW3bVqGhoR5tjh49qq1bt5ptOnXqJJfLpXXr1plt1q5dK5fLZektDQAAKCnumwQA/qHUBds///lPvfPOO5o2bZrHCpGdO3fWhg0bSnv4y3rkkUe0Zs0ajR8/Xnv37tXHH3+sqVOn6sEHH5R07jTGMWPGaPz48ZozZ462bt2qYcOGKSoqSoMGDZIkOZ1O3XPPPXr00Ue1ePFibdy4UX/5y1/UvHlzc9XIJk2aqHfv3ho+fLjWrFmjNWvWaPjw4erbty8rRAIAAAAoM6U+JXLXrl269tprCz1fsWLFMr+xdPv27TVnzhw9+eST+sc//qHExES9/vrrGjx4sNnmscceU1ZWlkaOHKnU1FR16NBBCxcuVIUKFcw2r732mkJCQjRw4EBlZWWpe/fumj59usc9JWbOnKmHH37YXE2yX79+mjRpUpl+PsDXsrKyzHhesWKFIiMjLe4RALshTwD2YlVMkgt8x2GU8pyIK6+8UlOmTFGPHj1UoUIFbdq0SVdccYU++OADvfTSS9q+fbu3+urX0tLS5HQ65XK5VLFiRau7AxQpIyNDMTExks6t+BQdHW1xjwB404Ux/swzz+iFF14o1THIE4D1rIpJckHpFKc2KPUM23333afRo0frv//9rxwOh44cOaLVq1dr3Lhx+vvf/17awwPwofDwcH311VfmNoDAEh4ert69e2vBggUlXtWNPAHYi1UxSS7wnVIXbI899phcLpeuu+46ZWdn69prr1V4eLjGjRunUaNGeaOPAHwkJCREffr0sbobAMpISEiIuTDXhaf9F/cY5AnAPqyKSXKB73hlWf8XX3xRTz/9tLZv3y63262mTZuaU6QAAMA+fu8+pAAAeylVweZ2uzV9+nR98cUX2r9/vxwOhxITE/XnP/9ZQ4YM4R8FwM8UFBRoyZIlkqTrr7++xN/AA7CnvLw87dy5U9K5eC8J8gRgL1bFJLnAd0pcsBmGoX79+umbb75Ry5Yt1bx5cxmGoR07dmjYsGH64osvNHfuXC92FUBZy87ONldC5QJiIPDk5uZq2bJlkqT8/PwSHYM8AdiLVTFJLvCdEhds06dP14oVK7R48WJdd911HvuWLFmi/v3764MPPtBdd91V6k4C8I2goCC1bNnS3AaAi5EnAHuxKibJBb5T4oLtk08+0VNPPVWoWJPOTYs+8cQTmjlzJgUb4EciIyOVnJxsdTcA2Bh5ArAXq2KSXOA7JS6HN2/erN69e19y/4033qhNmzaV9PAAAKAMbd++XWvXrpXL5bK6KwCAyyjxDNvp06cVFxd3yf1xcXFKTU0t6eEBAEAZmjt3rnmteY0aNdSkSRM1btzY478JCQksIAYAFitxwVZQUKCQkEu/PDg4uMQXNAOwRlZWlm688UZJ0rfffqvIyEiLewSgrHTt2lV79uzRkSNHdPToUR09etRc8e28ChUqFCriEhMT9fDDD8vhcJAnABuw6t9u/mbwHYdhGEZJXhgUFKQbb7zxknc2z8nJ0YIFC0q8bHCgSUtLk9PplMvlUsWKFa3uDlCkjIwM8x6KrPgEBJ6iYtzlcmnnzp3auXOnduzYYf73l19++d1/w2+++WY1b97cLOgaN27MfVgBH7Pq327+Ziid4tQGJZ5hGzp06O+2YcERwL+Eh4frs88+M7cBBJaiYtzpdKpDhw7q0KGDR9vc3Fzt3bvXo4g7/8jKypIkzZ8/X/Pnz/d4Xa1atdSkSROPWbkmTZooNjaW0yuBMmDVv938zeA7JZ5hQ/EwwwYACARut1uHDh3yKOLObx8/fvySr6tUqVKhIq5x48ZKTEzkhrsAyp3i1AYUbD5CwQYACHSnT58udGrlzp079euvv+pSf26EhYWpYcOGhWblGjZsqKioKB9/AgDwDQo2G6Jggz8oKCjQmjVrJEkdO3bkW28gwOTn52vOnDmSpFtvvfWyi4ddSknyRHZ2tnbv3l2omNu1a5eys7OLfI3D4VDdunWLXL2yWrVqxe43EKis+rebvxlKh4LNhijY4A+4gBgIbN6IcW/miYKCAh08eLDI6+ROnz59yddVq1atUBHXpEkT1alTR0FBJb7FLOCXWHTEP/lk0REAgcfhcKh+/frmNgBczJt5Ijg4WImJiUpMTNRNN93kse/EiRNFXid34MABnTx5UitXrtTKlSs9XhMZGalGjRoVuk6uYcOGLIqAgGXVv938zeA7zLD5CDNsAACrBcI34pmZmdq1a1eh6+R2796t3NzcIl8TFBSkxMTEQtfJNW7cWJUrV/bxJwAATom0JQo2AIDVAqFgu5T8/Hzt27ev0HVyO3bskMvluuTr4uLiily9slatWswaACgzFGw2RMEGALBaIBdsl2IYho4dO1aoiNu5c6cOHTp0yddFR0cXKuKaNGmiK6+8UmFhYT78BAACEQWbDVGwwR9kZ2frT3/6kyRp9uzZioiIsLhHALzJGwVbIOWJs2fPmqdXXljQ7d27V/n5+UW+JiQkRFdeeWWhUysbN27Mv++whFUxGUi5wAoUbDZEwQZ/UB6/fQfKE7utEmlXeXl5+uWXX4qclUtPT7/k62rWrFnk6pXx8fGcXokywyqR/olVIgGUSFhYmN5//31zG0Bg8UaMl4c8ERoaas6aXcgwDB0+fLjI1StTUlJ0+PBhHT58WIsXL/Z4ndPpNI934SmWV1xxRYnuhQdcyKqYLA+5wC6YYfMRZtgAAAhcZ86c0c6dOwsVc7/88ovcbneRrwkNDVWDBg0KXSfXqFEjZiuAAMcpkTZEwQYAQPmTk5OjvXv3FpqR27lzp7Kysi75ujp16hS6Tq5JkyaqXr06p1cCAYCCzYYo2OAPCgoKtGXLFklS8+bNFRwcbHGPAHhTfn6+vvvuO0lSr169SnQ6HnnCO9xut3777bdCRdyOHTt04sSJS76uSpUqRa5eWbduXcainLIqJskFpUPBZkMUbPAHXEAMBDYWHfEPp06dKvJ+cvv379el/myLiIhQw4YNC83KNWzYUJGRkT7+BPAlFh3xTyw6AqBEHA6HEhISzG0AuBh5ouxVrVpVXbp0UZcuXTyez8rK0u7duwvNyu3atUvZ2dnavHmzNm/e7PEah8OhevXqFZqRa9y4sapWrerLj4UyYlVMkgt8hxk2H2GGDQBgNb4RD0wFBQXav39/kbNyqampl3xd9erV1aRJEzVr1szjUb16dR/2HiifOCXShijYAABWo2ArXwzD0IkTJ4q8n9zBgwcv+brq1asXKuKaNWvGjBzgRRRsNkTBBgCwGgUbzktPT9fu3bu1fft2bdu2zXzs27fvktfJxcXFFVnIVa5c2ce9B/wfBZsNUbDBH2RnZ2vIkCGSpA8//FAREREW9wiAN3mjYCNPBLbMzEzt2LHDo4jbtm2b9u/ff8nX1KhRo1AR17RpU1WqVMln/S7PrIpJckHpULDZEAUb/AHfvgOBjVUiUVLp6elFFnKXO7WyZs2aRRZy/B3kXawS6Z9YJRJAiYSFhWnSpEnmNoDA4o0YJ0+UTzExMWrfvr3at2/v8XxaWlqRhdyhQ4d0+PBhHT58WAsXLvR4Te3atQsVck2aNFGFChV8+ZEChlUxSS7wHWbYfIQZNgAAUF64XC5t375dW7du9Sjkjh49esnX1KtXT82bN/d4NGzYUKGhoT7sOeAbnBJpQxRsAACgvEtNTS00G7dt2zYdO3asyPZhYWFq3LhxoUKuVq1a3PsLfo2CzYYo2OAP3G63fvnlF0nSlVdeqaCgIIt7BMCbCgoK9MMPP0iSrrnmGgUHBxf7GOQJlIWTJ09q69at2rJli/nYunWr0tPTi2zvdDrN4i0pKcncLo8LnVgVk+SC0qFgsyEKNvgDLiAGAhuLjsCfuN1uHThwoFARt2vXLuXn5xf5mlq1ahWajWvcuLHCw8N93HvfYdER/8SiIwBKzOl0Wt0FADZHnoAvBAUFKTExUYmJierXr5/5fE5Ojnbt2uVRyG3ZskW//fabDh06pEOHDunbb78124eEhKhhw4aFCrm6desGzKyQVTFJLvANZth8hBk2AIDV+EYcgezMmTOFTqvcsmWLXC5Xke1jYmKUlJSkli1bmo/mzZuzWiV8glMibYiCDQBgNQo2lDeGYejw4cOFirgdO3YoNze3yNdceeWVHkVcy5YtVbduXRY5gVdRsNkQBRsAwGoUbMA5eXl52rNnjzZv3qxNmzaZjyNHjhTZ3ul0qkWLFh5FXFJSkiIjI33ccwQKCjYbomCDP8jJydF9990nSZoyZUpAX6QNlEfeKNjIEwhkJ0+e9CjgNm3apO3btysvL69Q26CgIDVs2FCtWrXyKORq1Kjh09k4q2KSXFA6FGw2RMEGf8C370BgY5VIoPhyc3O1c+dOJScnexRyJ0+eLLJ9tWrVCp1S2aRJE4WFhZVJ/1gl0j+xSiSAEgkNDdUrr7xibgMILN6IcfIEypuwsDC1aNFCLVq0MJ8zDENHjx4tNBu3a9cunTx5UosXL9bixYvN9qGhoWrSpIlat26tNm3aqHXr1mrZsqVXvsS3KibJBb7DDJuPMMMGAAAQ2LKysrRt27ZChdylVqqsX7++WcCdf8TGxvq417ACp0TaEAUbAABA+WMYhg4ePKjk5GRt3LhRGzdu1IYNG3To0KEi29esWdOjgGvdujWrVAYgCjYbomCDP3C73Tp69KgkqUaNGgFzQ1EA5xQUFGjDhg2SpDZt2ig4OLjYxyBPAN5x4sQJJScna8OGDWYht2fPHhX1p3nlypU9Crg2bdqoYcOGCg4OtiwmyQWlQ8FmQxRs8AdcQAwENhYdAezt7Nmz2rRpk1nAbdy4Udu2bStylcqoqCi1aNFCSUlJevfddyWx6Ig/YdERACUWEkJaAHB55AmgbFSoUEFXX321rr76avO5nJwcbdu2zeN0yk2bNikzM1Nr1qzRmjVrLOsvucA3+C0DMEVHRxf5LR4AnEeeAHwrPDxcbdq0UZs2bcznCgoKtGfPHm3cuFErV67U22+/rdDQUJ/OcpELfIdTIn2EUyIBAFbjFCYg8Bw9elQJCQkKCgpSQUGB1d3BH1Sc2oCrAwEAAAA/dX7xILfbXeSCJfB/FGwATDk5OXrwwQf14IMPKicnx+ruALAh8gRgL/n5+eZ2Zmamz96XXOA7nBLpI5wSCX/A6VJAYGOVSCDwHD58WLVq1ZIknTp1SlWqVPHJ+5ILSodVIgGUSGhoqJ599llzG0Bg8UaMkycAe4mIiDC3fXkvNHKB7zDD5iPMsAEAAMDbsrKyFBUVJenc35sVKlSwuEf4I1h0BAAAACgHzi86IolVIgMUp0QCMBmGIZfLJUlyOp1yOBwW9wiAN7ndbu3YsUOS1KRJkxKdPkWeAOzlwji+cAGSskYu8J2AmmGbMGGCHA6HxowZYz5nGIaee+45JSQkKDIyUt26ddO2bds8XpeTk6OHHnpI1apVU3R0tPr166dDhw55tElNTdWQIUPkdDrldDo1ZMgQnTlzxgefCvCdzMxMVa5cWZUrV/bpSlMAfCMrK0tJSUlKSkpSVlZWiY5BngDsJTs729w+e/asz96XXOA7AVOw/fTTT5o6dapatGjh8fwrr7yiiRMnatKkSfrpp58UHx+vG264weN/6DFjxmjOnDmaNWuWVq5cqfT0dPXt29djWnnQoEFKTk7WggULtGDBAiUnJ2vIkCE++3wAAADAxS6c2XK73Rb2BGUlIAq29PR0DR48WNOmTVPlypXN5w3D0Ouvv66nn35aAwYMUFJSkmbMmKHMzEx9/PHHkiSXy6X33ntP//73v9WjRw+1bt1aH330kbZs2aLvv/9ekrRjxw4tWLBA7777rjp16qROnTpp2rRp+uqrr7Rr1y5LPjNQFqKiopSbm6vc3FzzAmYAuBB5ArCXqKgohYScu8opLCzMp+9LLvCNgLiG7cEHH1SfPn3Uo0cP/fOf/zSf37dvn1JSUtSzZ0/zufDwcHXt2lWrVq3Sfffdp/Xr1ysvL8+jTUJCgpKSkrRq1Sr16tVLq1evltPpVIcOHcw2HTt2lNPp1KpVq9SoUaNCfcrJyfG4iWBaWpq3PzbgdQ6Hg6V5AVwWeQKwl/MxmZ+fr7Fjx6pevXqKjY1VbGys4uLizO34+HizsPPm+6Ls+X3BNmvWLG3YsEE//fRToX0pKSmSpLi4OI/n4+LidODAAbNNWFiYx8zc+TbnX5+SkqLY2NhCx4+NjTXbXGzChAl6/vnni/+BAAAAgGKoWbOm9u7dq88///ySbSpXrqy77rpLw4cPV7NmzXzYO5SWXxdsv/32m0aPHq2FCxd63DTwYhevWmMYxu+uZHNxm6LaX+44Tz75pMaOHWv+nJaWptq1a1/2PQGr5ebm6umnn5Ykvfjiiz49tQKAfyBPAPaSm5ur7t27q379+rr66qt1+vRpHT9+3HwcO3ZMJ06cUGpqqt544w298cYb6ty5s0aMGKHbbrutxKczkgt8x69vnD137lzdeuuthe4/4XA4FBQUpF27dql+/frasGGDWrdubba55ZZbVKlSJc2YMUNLlixR9+7ddfr0aY9ZtpYtW6p///56/vnn9d///ldjx44ttCpkpUqV9Nprr+nuu+/+3b5y42z4g4yMDMXExEg6d21odHS0xT0C4E3eiHHyBGAvfyQmCwoKtHDhQk2bNk3z5s0zF9ZzOp0aPHiwRowYoZYtW3r9fXFpxakN/HqGrXv37tqyZYvHc3fffbcaN26sxx9/XFdccYXi4+O1aNEis2DLzc3V8uXL9fLLL0uS2rZtq9DQUC1atEgDBw6UJB09elRbt27VK6+8Iknq1KmTXC6X1q1bp6uuukqStHbtWrlcLnXu3NlXHxcoc6GhoRo3bpy5DSCweCPGyROAvfyRmAwODtaNN96oG2+8UUePHtX06dM1bdo07du3T2+//bbefvtttW/fXiNGjNAdd9xhFmKlfV94h1/PsBWlW7duatWqlV5//XVJ0ssvv6wJEybo/fffV4MGDTR+/HgtW7ZMu3btUoUKFSRJDzzwgL766itNnz5dVapU0bhx43Tq1CmtX7/enL278cYbdeTIEU2ZMkWSNGLECNWtW1fz58//Q/1ihg0AAAB24Xa7tWTJEk2dOlVz585VXl6eJCkmJkaDBg3SiBEj1LZtW4t7GbiKUxsExLL+l/PYY49pzJgxGjlypNq1a6fDhw9r4cKFZrEmSa+99pr69++vgQMHqkuXLoqKitL8+fM9TrWcOXOmmjdvrp49e6pnz55q0aKFPvzwQys+EgAAAFAqQUFB6tGjhz777DMdOnRIr7zyiho0aKD09HRNnTpV7dq1U5s2bfTOO++w2rnFAm6Gza6YYYM/MAxD+fn5kqSQkJDfXZwHgH9xu906ePCgJKlOnToKCir+97bkCcBevBmThmFo+fLlmjZtmj7//HPl5uZKOnfPtTvuuEPDhw9Xhw4d5HA4yAWlVJzagILNRyjY4A+4gBgIbCw6AgSesorJU6dO6cMPP9TUqVO1Y8cO8/nmzZtr+PDhuvXWW80V0MkFxccpkQAAAABKrGrVqhozZoy2bdumlStX6q677lJERIS2bNmihx9+WPXr17e6i+UGBRsAU1RUlFJTU5Wamlri+7IACGzkCcBeyjomHQ6HunTpohkzZujIkSN666231Lx5c+Xk5EiS2rVrRy4oYxRsAEwOh0OVKlVSpUqVOBcdQJHIE4C9+DImK1eurFGjRmnTpk3m4nsul4tcUMYo2AAAAAD8YQ6HQ40aNZIkc6YNZcevb5wNwLtyc3M1fvx4SdJTTz2lsLAwi3sEwG7IE4C9WBWT51eZPXXqlHJzc8kFZYhVIn2EVSLhD1j9DQhsrBIJBB6rYnLDhg3mjbXJBcVXnNqAGTYAppCQEI0cOdLcBhBYvBHj5AnAXqyKyfMLjYSEhJALyhgzbD7CDBsAAAACxeHDh1WrVi1JUuPGjdWqVSuPR1xcnMU9tDdunG1DFGwAAAAIFG63W9dee61+/PHHIvfHx8cXKuLq16+v4OBgH/fUnijYbIiCDQBgNcMwdPLkSUlStWrVWIobQKmlpKRo06ZNSk5O1saNG5WcnKzdu3erqBIjKipKLVq0UOvWrc0iLikpqVzex42CzYYo2OAPMjIyVKlSJUnSmTNnuIAYCDDeWnSEPAHYh1Uxebn3zcjI0JYtW5ScnGw+Nm/erKysrELHCQoKUqNGjcwCbujQoeXidEoWHQFQYvn5+VZ3AYDNkScAe7EqJi/1vtHR0erYsaM6duxoPldQUKDdu3d7FHEbN27UiRMntGPHDu3YsUOffPKJfv75Z3322We++gh+gYINgCkyMlKHDh0ytwHgYuQJwF6sisnivm9wcLCaNGmiJk2a6M4775R07jTtlJQUJScn69NPP9WMGTN07NixSx7D7XYrKytL2dnZysrKMh+/97PT6dRdd92l8PBw73x4H6NgA2AKCgpSzZo1re4GABsjTwD2YlVMeuN9HQ6HatSooRo1aignJ0czZszQihUr1LZt2yILsNzc3BK/V0xMjFko+hsKNgAAAACWqlOnjrm9YcOG320fEhKiyMhIRUZGKiIiwty++Od169bpt99+06lTp8qy+2WKgg2AKTc3V2+88YYkafTo0QoLC7O4RwDshjwB2ItVMent923Tpo1WrlypY8eOXbYAO//zH71Z9x133KFPP/1UBQUFpeqflVgl0kdYJRL+wBsryAGwL2+tEkmeAOzDqpj0l1wwePBgffzxx5o4caIeeeQRq7tjYpVIACUSEhKioUOHmtsAAos3Ypw8AdiLVTHpL7ng/I26/XmGzb6/XQA+Fx4erunTp1vdDQBlxBsxTp4A7MWqmPSXXBAUFCTp3AqT/irI6g4AAAAAQFlghg0AAPgNwzCUmZkpSYqKipLD4bC4RwBQtphhAxBQMjIyVKlSJVWqVEkZGRlWdweAl2VmZiomJkYxMTFm4VZc5AnAXqyKSX/JBcywAQg4LpfL6i4AsDnyBGAvVsWkP+SCQJhho2ADYIqMjNTu3bvNbQC4GHkCsBerYtJfcgEzbAACSlBQkBo0aGB1NwDYGHkCsBerYtJfckEgzLBxDRsAAACAgMQMG4CAkpeXp6lTp0qSRowYodDQUIt7BMBuyBOAvVgVk/6SC84XbP48w+YwDMOwuhPlQVpampxOp1wulypWrGh1d4AiZWRkKCYmRpKUnp6u6Ohoi3sEwJu8EePkCcBerIpJf8kFjz/+uF555RWNHTtW//73v63ujqk4tQEzbABMwcHB+vOf/2xuAwgs3ohx8gRgL1bFpL/kAmbY8IcxwwYAAAD41jPPPKMXX3xRkpSSkqK4uDiLe3ROcWoDFh0BAAAAEJBq1aplbs+bN8/CnpQcBRsAAACAgHTvvffK6XRKkrKzsy3uTclQsAEwZWZmqmbNmqpZs6YyMzOt7g4AL8vIyJDD4ZDD4VBGRkaJjkGeAOzFqpj0l1wQEhKiPn36SJLy8/Mt7k3JsOgIAJNhGDpy5Ii5DQAXI08A9mJVTPpTLjh/ywEKNgB+LyIiQhs3bjS3AeBi5AnAXqyKSX/KBSEh50oeCjYAfi84OFitWrWyuhsAbIw8AdiLVTHpT7nA3ws2rmEDAAAAELD8vWBjhg2AKS8vTzNnzpQkDR482DznGwDOI08A9mJVTPpTLqBgAxAwcnNzdffdd0uSbrvtNlsnXwDWIE8A9mJVTPpTLqBgAxAwgoODddNNN5nbAAKLN2KcPAHYi1Ux6U+54HzBNm/ePD377LOKioqyuEfF4zDsvg5ngEhLS5PT6ZTL5VLFihWt7g4AAABQLjz77LP6xz/+IUkaOnSopk+fbm2HVLzagEVHAAAAAASsO++809w+dOiQhT0pGQo2AAAAAAGrcePG+vjjjyXZ/ybfRaFgA2DKzMxUgwYN1KBBA2VmZlrdHQBelpGRoejoaEVHRysjI6NExyBPAPZiVUz6Wy5wOByS/LNgY9ERACbDMLR3715zG0DgKe0fVuQJwF6sikl/ywUUbAACQkREhFauXGluA8DFyBOAvVgVk/6WCyjYAASE4OBgdenSxepuALAx8gRgL1bFpL/lgvMFmz/iGjYAAAAA5QIzbAD8Wn5+vubMmSNJuvXWW80bTQLAeeQJwF6sikl/ywWcEgkgIOTk5GjgwIGSpPT0dNsnXwC+R54A7MWqmPS3XEDBBiAgBAUFqWvXruY2gMDijRgnTwD2YlVM+lsuoGADEBAiIyO1bNkyq7sBoIx4I8bJE4C9WBWT5ALfsX85DAAAAACl4M8zbBRsAAAAAAIaBRuAgJCVlaVWrVqpVatWysrKsro7ALwsIyND1atXV/Xq1ZWRkVGiY5AnAHuxKib9LRf4c8HGNWwATG63W5s2bTK3AQSekydPlur15AnAXqyKSXKB71CwATBFRERo4cKF5jYAXIw8AdiLVTHpb7mAGTYAASE4OFg33HCD1d0AYGPkCcBerIpJf8sF/lyw+fU1bBMmTFD79u1VoUIFxcbGqn///tq1a5dHG8Mw9NxzzykhIUGRkZHq1q2btm3b5tEmJydHDz30kKpVq6bo6Gj169dPhw4d8miTmpqqIUOGyOl0yul0asiQITpz5kxZf0QAAAAApUTBZpHly5frwQcf1Jo1a7Ro0SLl5+erZ8+eHhdSv/LKK5o4caImTZqkn376SfHx8brhhht09uxZs82YMWM0Z84czZo1SytXrlR6err69u2rgoICs82gQYOUnJysBQsWaMGCBUpOTtaQIUN8+nmBspafn6+vv/5aX3/9tfLz863uDgAbIk8A9mJVTPprLvDHgs1h+GOvL+HEiROKjY3V8uXLde2118owDCUkJGjMmDF6/PHHJZ2bTYuLi9PLL7+s++67Ty6XS9WrV9eHH36o22+/XZJ05MgR1a5dW99884169eqlHTt2qGnTplqzZo06dOggSVqzZo06deqknTt3qlGjRr/bt7S0NDmdTrlcLlWsWLHsfglAKWRkZCgmJkaSlJ6erujoaIt7BMCbvBHj5AnAXqyKSX/LBV9//bX69u2rdu3a6aeffrK6O8WqDQLqGjaXyyVJqlKliiRp3759SklJUc+ePc024eHh6tq1q1atWqX77rtP69evV15enkebhIQEJSUladWqVerVq5dWr14tp9NpFmuS1LFjRzmdTq1atarIgi0nJ0c5OTnmz2lpaV7/vIC3BQUFqV27duY2gMDijRgnTwD2YlVM+lsu8OdTIgOmYDMMQ2PHjtXVV1+tpKQkSVJKSookKS4uzqNtXFycDhw4YLYJCwtT5cqVC7U5//qUlBTFxsYWes/Y2FizzcUmTJig559/vnQfCvCxyMhIW3zrBKBseCPGyROAvVgVk/6WC/y5YLN/OfwHjRo1Sps3b9Ynn3xSaN/5ATrPMIxCz13s4jZFtb/ccZ588km5XC7z8dtvv/2RjwEAAADAyyjYLPbQQw9p3rx5Wrp0qWrVqmU+Hx8fL0mFZsGOHz9uzrrFx8crNzdXqampl21z7NixQu974sSJQrN354WHh6tixYoeDwAAAAAoDr8u2AzD0KhRo/TFF19oyZIlSkxM9NifmJio+Ph4LVq0yHwuNzdXy5cvV+fOnSVJbdu2VWhoqEebo0ePauvWrWabTp06yeVyad26dWabtWvXyuVymW2AQJCVlaUuXbqoS5cuysrKsro7ALwsMzNT9erVU7169ZSZmVmiY5AnAHuxKib9LRf48wybX1/D9uCDD+rjjz/Wl19+qQoVKpgzaU6nU5GRkXI4HBozZozGjx+vBg0aqEGDBho/fryioqI0aNAgs+0999yjRx99VFWrVlWVKlU0btw4NW/eXD169JAkNWnSRL1799bw4cM1ZcoUSdKIESPUt2/fP7RCJOAv3G63Vq1aZW4DCCyGYZjXcJf0jxbyBGAvVsWkv+UCCjaLTJ48WZLUrVs3j+fff/99DRs2TJL02GOPKSsrSyNHjlRqaqo6dOighQsXqkKFCmb71157TSEhIRo4cKCysrLUvXt3TZ8+XcHBwWabmTNn6uGHHzZXk+zXr58mTZpUth8Q8LHw8HDNmTPH3AaAi5EnAHuxKib9LRf4c8EWUPdhszPuwwYAsJq/3TcJALxl0aJF6tmzp5o3b67Nmzdb3Z1i1QZ+fQ0bAAAAAPye31sh3s78+pRIAN5VUFCgH374QZJ0zTXXeJwWDAASeQKwG6ti0t9ygT+fEknBBsCUnZ2t6667ThKnSwEoGnkCsBerYtLfcgEFG4CA4HA41LRpU3MbQGDxRoyTJwB7sSom/TUXULAB8GtRUVHatm2b1d0AUEa8EePkCcBerIpJf8sF/jzDxqIjAAAAAAKaP80CXoyCDQAAAEBAY4YNQEDIysrSDTfcoBtuuEFZWVlWdweAl2VmZqpZs2Zq1qyZMjMzS3QM8gRgL1bFpL/mAn8s2LiGDYDJ7Xbr+++/N7cBBBbDMLR9+3ZzuyTIE4C9WBWT/pYL/HmGjYINgCk8PFwfffSRuQ0AFyNPAPZiVUz6Wy7w52vYHIY/lpl+KC0tTU6nUy6XSxUrVrS6OwCAcigjI0MxMTGS/OO+SQDgLStXrtQ111yjBg0aaPfu3VZ3p1i1AdewAQAAACgX/HGuilMiAZgKCgq0YcMGSVKbNm0UHBxscY8A2A15ArAXq2LS33IB17ABCAjZ2dm66qqrJHG6FICikScAe7EqJv0tF1CwAQgIDodDdevWNbcBBBZvxDh5ArAXq2LS33KBP/TxUijYAJiioqK0f/9+q7sBoIx4I8bJE4C9WBWT/pYL/HmGjUVHAAAAAJQLFGwAAAAAYDPMsAEICNnZ2erfv7/69++v7Oxsq7sDwMuysrLUvn17tW/fXllZWSU6BnkCsBerYtLfcgHXsAEICAUFBfryyy/NbQCBxe126+effza3S4I8AdiLVTHpb7nAn2fYKNgAmMLCwjR16lRzGwAuRp4A7MWqmPTXXOCPBZvD8Mde+6G0tDQ5nU65XC5VrFjR6u4AAMqhjIwMxcTESPKP+yYBgLf8/PPPat++vWrVqqXffvvN6u4UqzbgGjYAAAAAAY1TIgEEBLfbrR07dkiSmjRpoqAgvtMB4Ik8AdiLVTHpb7mARUcABISsrCwlJSVJ4nQpAEUjTwD2YlVM+msuYIYNgN+rVq2a1V0AUIa8EePkCcBerIpJf8oF52fYjhw5otzcXL9aKIWCDYApOjpaJ06csLobAMqIN2KcPAHYi1Ux6W+5IDQ01NzOyMigYAMAAAAAu2jatKlGjBihbdu2KTg42OruFAsFGwAAAICAFhQUpClTpljdjRKx93IuAHwqOztbgwcP1uDBg5WdnW11dwB4WVZWlrp166Zu3bopKyurRMcgTwD2YlVMkgt8hxtn+wg3zoY/4Ka6QGDzRoyTJwB7sSomyQWlU5zagFMiAZjCwsL02muvmdsAcDHyBGAvVsUkucB3mGHzEWbYAABW4xtxALCH4tQGXMMGAAAAADbFKZEATG63WwcPHpQk1alTR0FBfKcDwBN5ArAXq2KSXOA7FGwATFlZWUpMTJTE6VIAikaeAOzFqpgkF/gOBRsAD1FRUVZ3AUAZ8kaMkycAe7EqJskFvkHBBsAUHR2tjIwMq7sBoIx4I8bJE4C9WBWT5ALf4WRTAAAAALApCjYAAAAAsCkKNgCmnJwcDR8+XMOHD1dOTo7V3QHgZdnZ2erTp4/69Omj7OzsEh2DPAHYi1UxSS7wHW6c7SPcOBv+gJvqAoHNGzFOngDsxaqYJBeUTnFqAxYdAWAKDQ3VP//5T3MbAC5GngDsxaqYJBf4DjNsPsIMGwDAanwjDgD2UJzagGvYAAAAAMCmOCUSgMkwDJ08eVKSVK1aNTkcDot7BMBuyBOAvVgVk+QC36FgA2DKzMxUbGysJE6XAlA08gRgL1bFJLnAdyjYfOT8pYJpaWkW9wS4tIyMDHM7LS1NBQUFFvYGgLd5I8bJE4C9WBWT5ILSOV8T/JHlRFh0xEcOHTqk2rVrW90NAAAAADbx22+/qVatWpdtQ8HmI263W0eOHFGFChUsP8c3LS1NtWvX1m+//caKlX6GsfNfjJ1/Ytz8F2Pnnxg3/8XYFY9hGDp79qwSEhIUFHT5dSA5JdJHgoKCfrd69rWKFSsSUH6KsfNfjJ1/Ytz8F2Pnnxg3/8XY/XFOp/MPtWNZfwAAAACwKQo2AAAAALApCrZyKDw8XM8++6zCw8Ot7gqKibHzX4ydf2Lc/Bdj558YN//F2JUdFh0BAAAAAJtihg0AAAAAbIqCDQAAAABsioINAAAAAGyKgg0AAAAAbIqCrRx6++23lZiYqIiICLVt21Y//PCD1V0qV1asWKGbb75ZCQkJcjgcmjt3rsd+wzD03HPPKSEhQZGRkerWrZu2bdvm0SYnJ0cPPfSQqlWrpujoaPXr10+HDh3yaJOamqohQ4bI6XTK6XRqyJAhOnPmTBl/usA1YcIEtW/fXhUqVFBsbKz69++vXbt2ebRh7Oxp8uTJatGihXkz106dOunbb7819zNu/mHChAlyOBwaM2aM+RxjZ0/PPfecHA6HxyM+Pt7cz7jZ1+HDh/WXv/xFVatWVVRUlFq1aqX169eb+xk7ixgoV2bNmmWEhoYa06ZNM7Zv326MHj3aiI6ONg4cOGB118qNb775xnj66aeN2bNnG5KMOXPmeOx/6aWXjAoVKhizZ882tmzZYtx+++1GjRo1jLS0NLPN/fffb9SsWdNYtGiRsWHDBuO6664zWrZsaeTn55ttevfubSQlJRmrVq0yVq1aZSQlJRl9+/b11ccMOL169TLef/99Y+vWrUZycrLRp08fo06dOkZ6errZhrGzp3nz5hlff/21sWvXLmPXrl3GU089ZYSGhhpbt241DINx8wfr1q0z6tWrZ7Ro0cIYPXq0+TxjZ0/PPvus0axZM+Po0aPm4/jx4+Z+xs2eTp8+bdStW9cYNmyYsXbtWmPfvn3G999/b+zdu9dsw9hZg4KtnLnqqquM+++/3+O5xo0bG0888YRFPSrfLi7Y3G63ER8fb7z00kvmc9nZ2YbT6TTeeecdwzAM48yZM0ZoaKgxa9Yss83hw4eNoKAgY8GCBYZhGMb27dsNScaaNWvMNqtXrzYkGTt37izjT1U+HD9+3JBkLF++3DAMxs7fVK5c2Xj33XcZNz9w9uxZo0GDBsaiRYuMrl27mgUbY2dfzz77rNGyZcsi9zFu9vX4448bV1999SX3M3bW4ZTIciQ3N1fr169Xz549PZ7v2bOnVq1aZVGvcKF9+/YpJSXFY4zCw8PVtWtXc4zWr1+vvLw8jzYJCQlKSkoy26xevVpOp1MdOnQw23Ts2FFOp5Ox9hKXyyVJqlKliiTGzl8UFBRo1qxZysjIUKdOnRg3P/Dggw+qT58+6tGjh8fzjJ297dmzRwkJCUpMTNQdd9yhX3/9VRLjZmfz5s1Tu3btdNtttyk2NlatW7fWtGnTzP2MnXUo2MqRkydPqqCgQHFxcR7Px8XFKSUlxaJe4ULnx+FyY5SSkqKwsDBVrlz5sm1iY2MLHT82Npax9gLDMDR27FhdffXVSkpKksTY2d2WLVsUExOj8PBw3X///ZozZ46aNm3KuNncrFmztGHDBk2YMKHQPsbOvjp06KAPPvhA3333naZNm6aUlBR17txZp06dYtxs7Ndff9XkyZPVoEEDfffdd7r//vv18MMP64MPPpBEzFkpxOoOwPccDofHz4ZhFHoO1irJGF3cpqj2jLV3jBo1Sps3b9bKlSsL7WPs7KlRo0ZKTk7WmTNnNHv2bA0dOlTLly839zNu9vPbb79p9OjRWrhwoSIiIi7ZjrGznxtvvNHcbt68uTp16qQrr7xSM2bMUMeOHSUxbnbkdrvVrl07jR8/XpLUunVrbdu2TZMnT9Zdd91ltmPsfI8ZtnKkWrVqCg4OLvTtxfHjxwt9WwJrnF9F63JjFB8fr9zcXKWmpl62zbFjxwod/8SJE4x1KT300EOaN2+eli5dqlq1apnPM3b2FhYWpvr166tdu3aaMGGCWrZsqTfeeINxs7H169fr+PHjatu2rUJCQhQSEqLly5frzTffVEhIiPl7ZezsLzo6Ws2bN9eePXuIORurUaOGmjZt6vFckyZNdPDgQUn8O2clCrZyJCwsTG3bttWiRYs8nl+0aJE6d+5sUa9wocTERMXHx3uMUW5urpYvX26OUdu2bRUaGurR5ujRo9q6davZplOnTnK5XFq3bp3ZZu3atXK5XIx1CRmGoVGjRumLL77QkiVLlJiY6LGfsfMvhmEoJyeHcbOx7t27a8uWLUpOTjYf7dq10+DBg5WcnKwrrriCsfMTOTk52rFjh2rUqEHM2ViXLl0K3a5m9+7dqlu3riT+nbOUL1c4gfXOL+v/3nvvGdu3bzfGjBljREdHG/v377e6a+XG2bNnjY0bNxobN240JBkTJ040Nm7caN5a4aWXXjKcTqfxxRdfGFu2bDHuvPPOIpfMrVWrlvH9998bGzZsMK6//voil8xt0aKFsXr1amP16tVG8+bNWTK3FB544AHD6XQay5Yt81iqOjMz02zD2NnTk08+aaxYscLYt2+fsXnzZuOpp54ygoKCjIULFxqGwbj5kwtXiTQMxs6uHn30UWPZsmXGr7/+aqxZs8bo27evUaFCBfNvDcbNntatW2eEhIQYL774orFnzx5j5syZRlRUlPHRRx+ZbRg7a1CwlUP/+c9/jLp16xphYWFGmzZtzGXJ4RtLly41JBV6DB061DCMc8vmPvvss0Z8fLwRHh5uXHvttcaWLVs8jpGVlWWMGjXKqFKlihEZGWn07dvXOHjwoEebU6dOGYMHDzYqVKhgVKhQwRg8eLCRmprqo08ZeIoaM0nG+++/b7Zh7Ozpr3/9q5nzqlevbnTv3t0s1gyDcfMnFxdsjJ09nb83V2hoqJGQkGAMGDDA2LZtm7mfcbOv+fPnG0lJSUZ4eLjRuHFjY+rUqR77GTtrOAzDMKyZ2wMAAAAAXA7XsAEAAACATVGwAQAAAIBNUbABAAAAgE1RsAEAAACATVGwAQAAAIBNUbABAAAAgE1RsAEAAACATVGwAQAAAIBNUbABAPAHDRs2TP379zd/7tatm8aMGVOm75mbm6v69evrxx9/lCTt379fDodDycnJXn2fSZMmqV+/fl49JgCg9CjYAAABZdiwYXI4HHI4HAoJCVGdOnX0wAMPKDU11evv9cUXX+iFF17w+nEvNHXqVNWtW1ddunQp0/cZPny4fvrpJ61cubJM3wcAUDwUbACAgNO7d28dPXpU+/fv17vvvqv58+dr5MiRXn+fKlWqqEKFCl4/7oXeeust3XvvvWX6HpIUHh6uQYMG6a233irz9wIA/HEUbACAgBMeHq74+HjVqlVLPXv21O23366FCxea+wsKCnTPPfcoMTFRkZGRatSokd544w2PYxQUFGjs2LGqVKmSqlatqscee0yGYXi0ufiUSIfDoblz53q0qVSpkqZPny7p3OmNo0aNUo0aNRQREaF69eppwoQJl/wcGzZs0N69e9WnT59LtnG73Ro+fLgaNmyoAwcOmP2YMmWK+vbtq6ioKDVp0kSrV6/W3r171a1bN0VHR6tTp0765ZdfPI7Vr18/zZ07V1lZWZd8PwCAb1GwAQAC2q+//qoFCxYoNDTUfM7tdqtWrVr67LPPtH37dv3973/XU089pc8++8xs8+9//1v//e9/9d5772nlypU6ffq05syZU6q+vPnmm5o3b54+++wz7dq1Sx999JHq1at3yfYrVqxQw4YNVbFixSL35+bmauDAgfr555+1cuVK1a1b19z3wgsv6K677lJycrIaN26sQYMG6b777tOTTz6pn3/+WZI0atQoj+O1a9dOeXl5WrduXak+JwDAe0Ks7gAAAN721VdfKSYmRgUFBcrOzpYkTZw40dwfGhqq559/3vw5MTFRq1at0mf/r737CYlqjcM4/oy4sNQUdCgFF+ZISDk0MVIT4p8SBA0hFcUW4giBBZOmgbiQCEE08g/hYmB2ExIZbg1dGYIoIgxZIKU0GOhKUbFGK+2u7nCHGbvd1HsP3u9ndea8533fc85mePi955yhIVVVVUmS+vv71dbWpoqKCkmS2+3W6Ojogc5raWlJmZmZys3NlclkCglYkfj9fqWmpkZs29raUmlpqQKBgMbHx5WQkBDS7nQ6g9fS2toqh8Oh9vZ2FRcXS5IaGxvldDpD+sTGxioxMVF+v1/5+fm/e5kAgENEhQ0AcOwUFhbK5/NpenpaLpdLxcXFcrlcIce43W7Z7XaZzWbFxcXJ4/FoaWlJkrSxsaGVlRU5HI7g8dHR0bLb7Qc6r7q6Ovl8Pp07d0737t0LWaYZSSAQUExMTMS2mpoabW1taWxsLCysSZLVag1unz59WpKUnZ0dsm97e1ubm5sh/U6cOKEvX7788jUBAI4WgQ0AcOzExsbKYrHIarXq6dOn2tnZCamoDQ0N6f79+6qvr9fY2Jh8Pp+cTqe+fv16oHlNJlPYc27fvn0Lbl+6dEkfP35UR0eHAoGAqqqqVFlZue94ycnJ+77dsqSkRG/evNHU1FTE9r8uATWZTPvu29vbC+m3trYms9m87zkBAP5dBDYAwLH38OFDPXnyRMvLy5KkiYkJXb16VXfv3pXNZpPFYgl5AUdCQoJSUlJCwtD37981Ozv703nMZrNWVlaCvz98+BBWrTp16pSqq6vl8Xj04sULDQ8Pa21tLeJ4NptN8/PzYSFQku7cuaOuri6VlZXp9evXf38TfsHi4qK2t7dls9kOZTwAwMHxDBsA4NgrKCjQ+fPn1dnZqYGBAVksFnm9Xo2Ojio9PV3Pnj3TzMyM0tPTg30aGxvV1dWlzMxMZWVlqbe3V+vr6z+d59q1axoYGNCVK1e0t7en1tbWkKpWX1+fUlJSdPHiRUVFRenly5c6c+aMEhMTI45XWFioz58/6927d7pw4UJYu8vl0u7urm7cuKFXr14pNzf3t+7PnyYmJnT27FllZGQcaBwAwOGhwgYA+F9obm6Wx+PRp0+f1NDQoPLyclVXV+vy5ctaXV0N+05bS0uLamtrVVdXJ4fDofj4eN28efOnc/T09CgtLU15eXm6deuWHjx4oJMnTwbb4+Li1N3dLbvdrpycHPn9fo2MjCgqKvLfcVJSksrLyzU4OLjvnE1NTXr06JFKSko0OTn5D+5IuOfPn+v27dsHGgMAcLhMPyKtswAAAIYwNzenoqIiLSwsHOlHut++favr16/r/fv3EV9iAgD4b1BhAwDAwLKzs/X48WP5/f4jnWd5eVler5ewBgAGQ4UNAAAAAAyKChsAAAAAGBSBDQAAAAAMisAGAAAAAAZFYAMAAAAAgyKwAQAAAIBBEdgAAAAAwKAIbAAAAABgUAQ2AAAAADAoAhsAAAAAGNQfGUzANJPFSwwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(0, 6371, 0.5)\n", - "ax.plot(rs, prem.density(rs), 'k')\n", - "\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Density (kg/m$^3$)')\n", - "\n", - "ax.axvline(1221.5, ls=':', c='k')\n", - "ax.axvline(3480, ls='--', c='k')\n", - "ax.axvline(3630, ls=':', c='k')\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Mass and moment of inertia\n", - "\n", - "$$ M = 4\\pi \\int_0^{R_{e}} \\rho(r) r^2 \\,\\mathrm{d}r.$$\n", - "\n", - "Moment of inertia:\n", - "\n", - "$$I = \\frac{2}{3} 4\\pi \\int_0^{R_{e}} \\rho(r) r^4 \\,\\mathrm{d}r.$$" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mass of the Earth is: 5.973178452676284e+24 kg\n", - "Earth's moment of inertia is: 8.020207731256643e+37 kg m^2\n", - "I/MR**2: 0.3307995553696299\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAI1CAYAAADsLNpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNI0lEQVR4nOzdd1hU19YG8HcGho5gQ7ETsUSxg4ot9t6NvcbERJMYo9EklptYciXlu6bcRBM1diMaFVtU1NhbNCiKYu8NsVBnhgFm9veHZm6wBZiyzwzv73l4PMycOWeRnbVgzT6zj0oIIUBERERERERQyw6AiIiIiIhIKdggERERERERPcYGiYiIiIiI6DE2SERERERERI+xQSIiIiIiInqMDRIREREREdFjbJCIiIiIiIgeY4NERERERET0GBskIiIiIiKix9ggERGRU7l69SpUKhViY2Pz/NqdO3eiatWqMJlMAICpU6eidu3a1g0QQFhYGNauXWv14xIRkeXYIBERkdUMGzYMKpUKKpUKGo0GJUqUQJs2bbBgwQJz02Ht83Xv3t1qx/vwww8xefJkqNW2/fX4r3/9Cx9//LFN/psQEZFl2CAREZFVtW/fHnfu3MHVq1exZcsWtGjRAmPGjEHnzp2RnZ0tO7znOnjwIC5cuIDevXvb/FydOnVCSkoKoqOjbX4uIiLKGzZIRERkVe7u7ihZsiRKly6NunXrYtKkSVi/fj22bNmCRYsWmfdLSUnBm2++iYCAABQqVAgtW7bEiRMnzM//dXnbTz/9hLJly8LLywu9e/dGcnKy+fnFixdj/fr15lmr3bt3m19/+fJltGjRAl5eXqhVqxYOHTr0wrgjIyPRtm1beHh4PHefK1euIDg4GKNGjYLJZMKiRYvg7++PTZs2oUqVKvDy8sKrr74KrVaLxYsXo0KFCihcuDBGjx4No9FoPo6Liws6duyIFStW5O0/LhER2RwbJCIisrmWLVuiVq1a5s/dCCHQqVMnJCQkYPPmzYiJiUHdunXRqlUrPHz40Py6ixcvYtWqVdi4cSO2bt2K2NhYvPPOOwCA8ePHo0+fPuYZqzt37qBRo0bm106ePBnjx49HbGwsKleujP79+79wBmvv3r0IDQ197vOnTp1C48aN0bt3b8yZM8d8GZ5Op8N3332HyMhIbN26Fbt370bPnj2xefNmbN68GUuXLsXcuXOxevXqHMerX78+9u3bl/f/mEREZFOusgMgIqKCoWrVqjh58iQAYNeuXYiLi0NiYiLc3d0BAP/3f/+HdevWYfXq1XjzzTcBABkZGVi8eDHKlCkDAPjvf/+LTp064T//+Q9KliwJT09PGAwGlCxZ8qnzjR8/Hp06dQIATJs2DdWrV8fFixdRtWrVZ8Z39epVlCpV6pnPHTp0CJ07d8bEiRMxfvz4HM9lZWVhzpw5qFixIgDg1VdfxdKlS3H37l34+PigWrVqaNGiBXbt2oW+ffuaX1e6dGlcv34dJpPJ5p95IiKi3GNFJiIiuxBCQKVSAQBiYmKQnp6OokWLwsfHx/x15coVXLp0yfyacuXKmZsjAAgPD4fJZMK5c+f+8Xw1a9Y0bwcGBgIAEhMTn7u/Xq9/5uV1169fR+vWrTFlypSnmiMA8PLyMjdHAFCiRAlUqFABPj4+OR578tyenp4wmUwwGAz/+LMQEZH9cAaJiIjs4syZMwgKCgIAmEwmBAYG5vjM0F/8/f2fe4y/Gqy//n0RjUbz1OtetGpcsWLFkJSU9NTjxYsXR6lSpRAZGYnXX38dhQoVeu55/jrXsx578twPHz6El5cXPD09//FnISIi++EMEhER2dzOnTsRFxeHXr16AQDq1q2LhIQEuLq6Ijg4OMdXsWLFzK+7fv06bt++bf7+0KFDUKvVqFy5MgDAzc0tx+IHlqhTpw7i4+OfetzT0xObNm2Ch4cH2rVrh7S0NKuc79SpU6hbt65VjkVERNbDBomIiKzKYDAgISEBt27dwrFjxzBz5kx069YNnTt3xpAhQwAArVu3Rnh4OLp3747o6GhcvXoVBw8exJQpU/Dnn3+aj+Xh4YGhQ4fixIkT2LdvH9577z306dPH/JmjChUq4OTJkzh37hzu37+PrKysfMfdrl077N+//5nPeXt747fffoOrqys6dOiA9PT0fJ/nL/v27UPbtm0tPg4REVkXGyQiIrKqrVu3IjAwEBUqVED79u2xa9cufPfdd1i/fj1cXFwAPLrkbPPmzWjWrBmGDx+OypUro1+/frh69SpKlChhPlZwcDB69uyJjh07om3btggJCcHs2bPNz48YMQJVqlRBaGgoihcvjgMHDuQ77kGDBiE+Pv65n2/y8fHBli1bIIRAx44dodVq832uW7du4eDBg3jttdfyfQwiIrINlRBCyA6CiIjoSVOnTsW6desQGxtrt3N++OGHSElJwU8//WTT80yYMAEpKSmYO3euTc9DRER5xxkkIiKixyZPnozy5ctb7XNNzxMQEIAZM2bY9BxERJQ/XMWOiIjoMT8/P0yaNMnm55kwYYLNz0FERPnDS+yIiIiIiIge4yV2REREREREj7FBIiIiIiIieowNEhERERER0WNskJzMrVu3MGjQIBQtWhReXl6oXbs2YmJizM8LITB16lSUKlUKnp6eaN68OU6fPp3jGAaDAaNHj0axYsXg7e2Nrl274ubNmzn2SUpKwuDBg+Hn5wc/Pz8MHjwYycnJ9vgRndLUqVOhUqlyfP11I0yA4+YoIiIioFKp8P7775sf49gp05w5c1CzZk0UKlQIhQoVQnh4OLZs2WJ+nuOmXBEREQgLC4Ovry8CAgLQvXv3p+5dxfFTpr1796JLly4oVaoUVCoV1q1bl+N5jpvzmT17NoKCguDh4YF69eph3759skPKHUFO4+HDh6J8+fJi2LBh4o8//hBXrlwRO3bsEBcvXjTv8/nnnwtfX1+xZs0aERcXJ/r27SsCAwNFamqqeZ+RI0eK0qVLi+3bt4tjx46JFi1aiFq1aons7GzzPu3btxchISHi4MGD4uDBgyIkJER07tzZrj+vM/n0009F9erVxZ07d8xfiYmJ5uc5bsp35MgRUaFCBVGzZk0xZswY8+McO2XasGGD+O2338S5c+fEuXPnxKRJk4RGoxGnTp0SQnDclKxdu3Zi4cKF4tSpUyI2NlZ06tRJlCtXTqSnp5v34fgp0+bNm8XkyZPFmjVrBAARFRWV43mOm3OJjIwUGo1GzJs3T8THx4sxY8YIb29vce3aNdmh/SM2SE7ko48+Ek2aNHnu8yaTSZQsWVJ8/vnn5scyMjKEn5+f+PHHH4UQQiQnJwuNRiMiIyPN+9y6dUuo1WqxdetWIYQQ8fHxAoA4fPiweZ9Dhw4JAOLs2bPW/rEKhE8//VTUqlXrmc9x3JQvLS1NVKpUSWzfvl288sor5gaJY+dYChcuLObPn89xczCJiYkCgNizZ48QgnnnKJ5skDhuzqd+/fpi5MiROR6rWrWq+PjjjyVFlHu8xM6JbNiwAaGhoejduzcCAgJQp04dzJs3z/z8lStXkJCQgLZt25ofc3d3xyuvvIKDBw8CAGJiYpCVlZVjn1KlSiEkJMS8z6FDh+Dn54cGDRqY92nYsCH8/PzM+1DeXbhwAaVKlUJQUBD69euHy5cvA+C4OYJ33nkHnTp1QuvWrXM8zrFzDEajEZGRkdBqtQgPD+e4OZiUlBQAQJEiRQAw7xwVx825ZGZmIiYmJsdYAUDbtm0dYhzYIDmRy5cvY86cOahUqRKio6MxcuRIvPfee1iyZAkAICEhAQBQokSJHK8rUaKE+bmEhAS4ubmhcOHCL9wnICDgqfMHBASY96G8adCgAZYsWYLo6GjMmzcPCQkJaNSoER48eMBxU7jIyEgcO3YMERERTz3HsVO2uLg4+Pj4wN3dHSNHjkRUVBSqVavGcXMgQgiMGzcOTZo0QUhICADmnaPiuDmX+/fvw2g0vnA8lcxVdgBkPSaTCaGhoZg5cyYAoE6dOjh9+jTmzJmDIUOGmPdTqVQ5XieEeOqxJz25z7P2z81x6Nk6dOhg3q5RowbCw8NRsWJFLF68GA0bNgTAcVOiGzduYMyYMdi2bRs8PDyeux/HTpmqVKmC2NhYJCcnY82aNRg6dCj27Nljfp7jpnzvvvsuTp48if379z/1HMfPMXHcnEt+xlMJOIPkRAIDA1GtWrUcj7388su4fv06AJhXRXuyc09MTDR3+CVLlkRmZiaSkpJeuM/du3efOv+9e/eeeqeA8sfb2xs1atTAhQsXOG4KFhMTg8TERNSrVw+urq5wdXXFnj178N1338HV1dX835Vjp0xubm4IDg5GaGgoIiIiUKtWLXz77bfMOQcxevRobNiwAbt27UKZMmXMj3P8HBPHzbkUK1YMLi4uLxxPJWOD5EQaN2781FKn58+fR/ny5QEAQUFBKFmyJLZv325+PjMzE3v27EGjRo0AAPXq1YNGo8mxz507d3Dq1CnzPuHh4UhJScGRI0fM+/zxxx9ISUkx70OWMRgMOHPmDAIDAzluCtaqVSvExcUhNjbW/BUaGoqBAwciNjYWL730EsfOgQghYDAYmHMKJ4TAu+++i7Vr12Lnzp0ICgrK8TzHzzFx3JyLm5sb6tWrl2OsAGD79u2OMQ72XBGCbOvIkSPC1dVV/Pvf/xYXLlwQy5cvF15eXmLZsmXmfT7//HPh5+cn1q5dK+Li4kT//v2fuYRmmTJlxI4dO8SxY8dEy5Ytn7mEZs2aNcWhQ4fEoUOHRI0aNbiEpgU++OADsXv3bnH58mVx+PBh0blzZ+Hr6yuuXr0qhOC4OZK/r2InBMdOqSZOnCj27t0rrly5Ik6ePCkmTZok1Gq12LZtmxCC46Zko0aNEn5+fmL37t05bo2g0+nM+3D8lCktLU0cP35cHD9+XAAQs2bNEsePHzcv+8xxcy5/LfP9888/i/j4ePH+++8Lb29v8982SsYGycls3LhRhISECHd3d1G1alUxd+7cHM+bTCbx6aefipIlSwp3d3fRrFkzERcXl2MfvV4v3n33XVGkSBHh6ekpOnfuLK5fv55jnwcPHoiBAwcKX19f4evrKwYOHCiSkpJs/eM5rb/u9aDRaESpUqVEz549xenTp83Pc9wcx5MNEsdOmYYPHy7Kly8v3NzcRPHixUWrVq3MzZEQHDclA/DMr4ULF5r34fgp065du545dkOHDhVCcNyc0Q8//GCutXXr1jUvx690KiGEkDN3RUREREREpCz8DBIREREREdFjbJCIiIiIiIgeY4NERERERET0GBskIiIiIiKix9ggERERERERPcYGiYiIiIiI6DE2SGRmMBgwdepUGAwG2aFQHnHsHBPHzXFx7BwTx81xcewclyOOHe+DRGapqanw8/NDSkoKChUqJDscygOOnWPiuDkujp1j4rg5Lo6d43LEseMMEhERERER0WNskIiIiIiIiB5zlR2ALRmNRpw/fx4+Pj5QqVSyw1G8tLQ0AMCtW7eQmpoqORrKC46dY+K4OS6OnWPiuDkujp3jUtLYCSGQnp6OypUrw8XF5bn7OfVnkM6cOYNq1arJDoOIiIiIiBQiPj4eL7/88nOfd+oZpMDAQACP/iP4+vpKjoboadnZ2dixYwcAoHXr1nB1deqUJCqQsrOzsXz5cgDAwIED85znrBNEyiIrJ1kLLJeWloZq1aqZe4TnceoZJEdcNYMKFq1WCx8fHwBAeno6vL29JUdERNZmaZ6zThApi6ycZC2wXG57A7aeRBKp1Wo0atTIvE1E9CTWCSJlkZWTrAX2wxkkIiIiG+K7vkREypDb3oDtJxERERER0WNskIiIiIiIiB5jg0QkkV6vR1hYGMLCwqDX62WHQ0QKxDpBpCyycpK1wH64SAORRCaTCX/++ad5m4joSawTRMoiKydZC+yHDRKRRO7u7ti0aZN5m4icj6V5zjpBpCyycpK1wH64ih0RERERETk9rmJHRERERESUR7zEjkgio9GInTt3AgBatmwJFxcXyRERkbVlZWVh+fLlAICBAwdCo9Hk6fWsE0TKIisnWQvsh5fYEUnEG0gSOT9L85x1gkhZZOUka4HlctsbcAaJSCK1Wo1atWqZt4mInsQ6QaQssnKStcB+FD2DdOvWLXz00UfYsmUL9Ho9KleujJ9//hn16tXL1es5g0RERLLxXV8iImVw+BmkpKQkNG7cGC1atMCWLVsQEBCAS5cuwd/fX3ZoRERERETkpBTbIH3xxRcoW7YsFi5caH6sQoUK8gIiIiIiIiKnp9gLGDds2IDQ0FD07t0bAQEBqFOnDubNm/fC1xgMBqSmpub4IlIyvV6P5s2bo3nz5tDr9bLDISIFYp0gUhZZOclaYD+K/QySh4cHAGDcuHHo3bs3jhw5gvfffx8//fQThgwZ8szXTJ06FdOmTXvqcX4GiZSKn00gcn5cxY7IuXAVu9zLNGbii/1f4L0G78HPw092OI7/GSSTyYTQ0FDMnDkTAFCnTh2cPn0ac+bMeW6DNHHiRIwbN878fWpqKsqWLWuXeInyw93dHatWrTJvE5HzsTTPWSeIlEVWTjpaLbj08BL6remHP2//idP3TiPy1UjZIeWaYhukwMBAVKtWLcdjL7/8MtasWfPc17i7uzvE/zBEf3F1dUXv3r1lh0FENmRpnrNOECmLrJx0pFoQfy8eryx6Bfd191HEswgG1hgoO6Q8UWyD1LhxY5w7dy7HY+fPn0f58uUlRURERERERC9y8eFFtF7SGvd191E3sC7W9V2Hsn6OdUWXYhuksWPHolGjRpg5cyb69OmDI0eOYO7cuZg7d67s0Iisxmg04vDhwwCAhg0bwsXFRXJERGRt2dnZiIqKAgD06NEDrq55+9XLOkGkLLJy0hFqwbXka2i1pBXupN9BjYAa2D54O4p4FpEdVp4pdpEGANi0aRMmTpyICxcuICgoCOPGjcOIESNy/XreKJaUzhE/cElEecNFGoicCxdpeLbbabfRbGEzXEq6hCpFq2DPsD0o4VNCdlg5OPwiDQDQuXNndO7cWXYYRDajUqkQHBxs3iYiehLrBJGyyMpJJdeCe9p7aL2kNS4lXUKQfxB2DNmhuOYoLxQ9g2QpziAREZFsSn/Xl4jIEkn6JLRc0hKxCbEoU6gM9g7bi6DCQbLDeqbc9gaKvVEsEREREREpV5ohDR2Wd0BsQiwCvAOwY/AOxTZHecEGiYiIiIiI8kSXpUOXFV3wx60/UMSzCHYM3oEqxarIDssq2CARSZSRkYFOnTqhU6dOyMjIkB0OESkQ6wSRssjKSSXVAkO2AT1X9sSea3tQyL0QogdFo0aJGlJjsiZFL9JA5OyMRiM2b95s3iYiehLrBJGyyMpJpdSCLGMW+q3ph+hL0fDSeGHzgM0ILRUqLR5bYINEJJGbmxsWLlxo3iYi52NpnrNOECmLrJxUQi0wmowYsm4I1p1dB3cXd2zotwGNyzWWEostcRU7IiIiIiJ6IZMwYcSGEVgQuwAatQZRfaPQqXIn2WHlCVexIyIiIiIiiwkhMGbLGCyIXQC1So1fev3icM1RXvASOyKJjEYj4uLiAAA1atSAi4uL5IiIyNqys7MRHR0NAGjXrh1cXfP2q5d1gkhZZOWkrPMKITDx94n4/uj3UEGFRd0W4dVqr9rl3LLwEjsiiXgDSSLnZ2mes04QKYusnJR13hl7ZuCT3Z8AAH7s9CPeCn3LLue1hdz2BpxBIpJIpVKhVKlS5m0ioiexThApi6yclHHeWYdmmZujWW1nOXRzlBdskIgk8vLywq1bt2SHQUQKxjpBpCyyctLe5/3xzx/xwbYPAAAzWszA2PCxdju3bFykgYiIiIiIzBbHLsao30YBAD5u/DEmN50sOSL7YoNEREREREQAgFWnV2H4huEAgPfqv4eZrWYWuMt72SARSZSRkYHevXujd+/eyMjIkB0OESkQ6wSRssjKSXucd+O5jRi4diBMwoQ36ryBr9t/XeCaI4Cr2BFJxdWpiJwfV7Ejci7Ouordjss70OmXTsg0ZmJAjQFY0n0JXNTOdVsBrmJH5ADc3Nzw/fffm7eJyPlYmuesE0TKIisnbXne/df3o1tkN2QaM9Gjag8s7r7Y6ZqjvOAMEhERERFRAXX01lG0WtIKaZlpaB/cHuv6roO7q7vssGwit70BP4NERERERFQAnbx7Eu2WtUNaZhqaV2iOtX3WOm1zlBe8xI5IIpPJhEuXLgEAKlasCLWa71kQORuj0Yh9+/YBAJo2bQoXl7xdtsI6QaQssnLS2uc9e/8s2ixtg6SMJDQs0xAb+m2Ap8bTGqE6PF5iRyQRP3xN5Py4SAORc3GGRRouJ11G04VNcTvtNuqUrIOdQ3fC38PfSpEqFxdpIHIQfn5+skMgIoVjnSBSFlk5aY3zXku+hpaLW+J22m1UK14N2wZvKxDNUV6wQSKSyNvbG8nJybLDICIFY50gUhZZOWmN895MvYmWS1riWso1VC5aGTsG70Axr2LWCdCJ8EJmIiIiIiIndyftDlotaYXLSZfxUuGXsHPITgT6BsoOS5HYIBERERERObFEbSJaLWmF8w/Oo7xfeewcshOlC5WWHZZisUEikshgMGDYsGEYNmwYDAaD7HCISIFYJ4iURVZO5ve8D3QP0HpJa5y5fwZlCpXBzqE7Ud6/vA0jdXxcxY5IIq5OReT8uIodkXNxpFXskvRJaLWkFY4nHEegTyD2DNuDSkUr2TpUxeIqdkQOQKPR4MsvvzRvE5HzsTTPWSeIlEVWTub1vCkZKWi3rB2OJxxHgHcAfh/ye4FujvKCM0hERERERE4kzZCGdsva4dDNQyjqWRS7h+1GSECI7LCky21vwM8gERERERE5CW2mFp1XdMahm4dQ2KMwdgzZweYoj3iJHZFEJpMJd+7cAQAEBgZCreZ7FkTOxmg04tixYwCAunXrwsXFJU+vZ50gUhZZOZmb8+qz9Oga2RV7r+1FIfdC2DZ4G2qXrG2X+JwJGyQiifR6PcqUKQOAH74mclYZGRmoX78+gPzlOesEkbLIysl/Om9GdgZ6rOyBnVd2wsfNB9GDohFaKtQusTkbNkhEkrm6Mg2J6MVYJ4iURVZOPu+8mcZM9P61N6IvRcNL44XNAzajYZmGdo7OebDiEknk7e2NrKws2WEQkYKxThApi6ycfN55s4xZ6Le6Hzad3wQPVw9s7L8RTcs3tXt8zoQXMhMREREROaBsUzYGRw1G1NkouLm4YX2/9WgZ1FJ2WA6PDRIRERERkYMxCRNeW/8aVp5eCY1ag7V91qJtxbayw3IKbJCIJDIYDHjnnXfwzjvvwGAwyA6HiBSIdYJIWWTl5N/Pm5GRgVGbRmHZyWVwVbtiVe9V6FS5k91icXa8USyRRFqtFj4+PgC4OhWRs7I0z1kniJRFVk7+/bzvrnsX38d+D7VKjV96/oK+IX3tEoOjy21vwEUaiCTSaDT49NNPzdtE5HwszXPWCSJlkZWTf51315Vd+P7P7wFXYH6X+WyObIAzSEREREREDuCrA1/hwx0fAgC+a/8dRjcYLTkix5Lb3oCfQSIiIiIiUrjZR2ebm6OIVhFsjmyIl9gRSSSEQEpKCgDAz88PKpVKckREZG0mkwlnzpwBALz88stQq/P23iTrBJGyyMjJJSeW4J3f3gEygHHh4/BR449sfs6CjJfYEUnED18TOT8u0kDkXOydk2vi16DP6j4wGUzATNjtvM6Il9gRERERETmwzRc2o/+a/jAJE4bUGiI7nAKDDRKRRF5eXsjMzERmZia8vLxkh0NECsQ6QaQs9srJ3Vd3o9eqXsgyZaFfSD/83Otn1gI74WeQiCRSqVRctpeIXoh1gkhZ7JGTh28eRudfOiMjOwNdKnfBku5L4OriCrjY9LT0GGeQiIiIiIgUIjYhFh2Wd4A2S4vWL7XGqt6roHHhmyT2xAaJSKLMzExMmDABEyZMQGZmpuxwiEiBWCeIlMWWOXn2/lm0XdoWyRnJaFy2Mdb1XQcPVw+bn5dy4ip2RBJxdSoi58dV7Iici61y8nLSZTRd2BS3026jbmBd7ByyE34efjY/b0GS296An0Eikkij0WD8+PHmbSJyPpbmOesEkbLYIidvpt5E6yWtcTvtNqoXr47oQdE5miNbnZeejTNIRERERESSJGoT0WxhM5x7cA7BRYKxd9heBPoGyg7LKfE+SERERERECpakT0LbpW1x7sE5lC1UFjsG72BzpAC8xI5IIiEEsrOzAQCurq5QqVSSIyIiazOZTLh+/ToAoFy5clCr8/beJOsEkbJYKyfTDGnosLwDTtw9gRLeJfD7kN9R3r+8zc9L/4wzSEQS6XQ6uLm5wc3NDTqdTnY4RGQDer0eQUFBCAoKgl6vz/PrWSeIlMUaOanP0qNrZFf8cesPFPEsgu2Dt6NS0Uo2Py/lDhskIiIiIiI7yTRmoteqXth9dTd83XwRPSgaNUrUkB0W/Q0vsSOSyMvLC0lJSeZtIqInsU4QKYslOZltysbAtQOx5eIWeLp64rcBvyG0VKjNz0t5wwaJSCKVSgV/f3/ZYRCRgrFOEClLfnPSJEwYsXEEVsevhpuLG9b1W4em5Zva/LyUd7zEjoiIiIjIhoQQGLNlDBbFLoKLygWRvSLRtmJb2WHRc3AGiUiizMxMzJw5EwAwadIkuLm5SY6IiJSGdYJIWfKTk1N2TsH3R78HACzqvgg9Xu5hl/NS/ij2RrFTp07FtGnTcjxWokQJJCQk5PoYvFEsKZ1Wq4WPjw8AID09Hd7e3pIjIiJrszTPWSeIlCWvOfn5/s8x8feJAIDZHWdjVNgou5yXnpbb3kDRM0jVq1fHjh07zN+7uLhIjIbI+lxdXfH222+bt4nI+Via56wTRMqSl5z84cgP5uboy9Zf5rs5yut5yTKKnkFat24dYmNj830MziARERERkQyLYxdj2PphAIApTadgRssZcgOiXPcGil6k4cKFCyhVqhSCgoLQr18/XL58+YX7GwwGpKam5vgiIiIiIrKnNfFrMHzDcADAmAZjML3FdMkRUV4otkFq0KABlixZgujoaMybNw8JCQlo1KgRHjx48NzXREREwM/Pz/xVtmxZO0ZMRET0NCEE7t27h3v37kGhF20QkRVtubAF/df0h0mYMLz2cMxqNwsqlUp2WJQHir3E7klarRYVK1bEhx9+iHHjxj1zH4PBAIPBYP4+NTUVZcuW5SV2pFhardZ8T4Pk5GR+4JLICVljkQbWCSLleFFO7rm6B+2Xt0dGdgb6VO+DX3r+Ahe1dT5Dz1pgOadYpOHvvL29UaNGDVy4cOG5+7i7u8Pd3d2OURFZLjs7W3YIRKRwrBNEyvKsnDx66yi6rOiCjOwMdKrUCUt7LLVac/Si85L1OUyDZDAYcObMGTRtmvs7DhMpnaenJ27evGneJiJ6EusEkbI8Kyfj7sah3bJ2SMtMQ4sKLfBr71/h5mLd+xSxFtiPYhuk8ePHo0uXLihXrhwSExPx2WefITU1FUOHDpUdGpHVqNVqlC5dWnYYRKRgrBNEyvJkTl54cAFtlrZBUkYSGpRugPX91sNTY/0GhrXAfhTbIN28eRP9+/fH/fv3Ubx4cTRs2BCHDx9G+fLlZYdGRERERIRbqbfQemlr3NXeRc0SNbFl4Bb4uvvKDosspNgGKTIyUnYIRDaXmZmJb7/9FgAwZswYuLlZdzqeiBwf6wSRsvyVk7osHVb5rsL1lOuoVKQStg3ahsKehW1+XoC1wNYcZhW7/OCNYknpLF3dioiUzxqr2LFOECnH33MSk4DAIoE4+PpBVPCvYLfzshbkj9OtYkfkjFxdXc2fq3N1ZToSOSNL85x1gkhh1EDZZmVxI+UGCnkWwtZBW23eHAGsBfbEGSQiIiIiolwQQuCtTW9h3rF5cHdxR/SgaLxS4RXZYVEu5bY3UNsxJiIiIiIihzV191TMOzYPapUav/T6hc2Rk+L8HBERkQ0JIaDT6QAAXl5eUKlUkiMiovyYc3QOpu+dDgCY3XE2er7cU3JEZCucQSKSSKvVwt/fH/7+/tBqtbLDISIb0Ol08PHxgY+Pj7lRygvWCSL5Vsevxjub3wEATKo/CR+1/sjuOclaYD9skIgkS0lJQUpKiuwwiEjBWCeI5Nl9dTcGrh0IAYG36r2FiU0nSstJ1gL74CV2RBJ5enri/Pnz5m0ioiexThDJcyLhBLpFdkOmMRM9X+6JHzr+ABVUUnKStcB+2CARSaRWq1GpUiXZYRCRgrFOEMlxJekK2i9vj1RDKpqVb4blPZfDRe0CAFJykrXAfniJHRERERHR39zT3kO7Ze2QkJ6AGgE1sL7feni4esgOi+yEM0hEEmVlZWHu3LkAgDfffBMajUZyRESkNKwTRPaVnpmOTr90woWHF1Derzy2DtoKfw9/8/OycpK1wH54o1giibRaLXx8fAAA6enp8Pb2lhwREVmbpXnOOkFkP1nGLHSL7IYtF7egqGdRHBh+AFWKVcmxj6ycZC2wXG57A84gEUnk4uKCV1991bxNRM7H0jxnnSCyDyEE3tj4BrZc3AJPV09sGrDpqeYIkJeTrAX2wxkkIiIiIirwPt7xMb448AVcVC5Y3289OlXuJDsksrLc9gZcpIGIiIiICrRvD3+LLw58AQCY12Uem6MCjg0SERERERVYK0+txNjosQCAmS1n4rU6r0mOiGRjg0QkkU6nQ+nSpVG6dGnodDrZ4RCRDWi1WqhUKqhUKmi12jy/nnWCyHZ+v/w7BkcNhoDA6Pqj8XGTj//xNbJykrXAfrhIA5FEQgjcvn3bvE1E9CTWCSLbOH7nOHqs7IEsUxZ6V+uNr9t9DZVK9Y+vk5WTrAX2wwaJSCIPDw8cP37cvE1E9CTWCSLru5x0GR2Wd0BaZhqaV2iOpT2WwkWdu5XhZOUka4H9cBU7IiIiG+K9S4iUJVGbiMYLGuPiw4uoVaIW9gzbAz8PP9lhkR1wFTsiIiIior9Jz0xH51864+LDi6jgXwFbBm5hc0RP4SV2RBJlZWVh+fLlAICBAwdCo9FIjoiIlIZ1gsg6Mo2ZeHXVqzh6+yiKeRVD9KBoBPoG5vk4snKStcB+eIkdkUS89IbI+Vma56wTRJYzCRMGrR2EFadWwEvjhZ1DdqJBmQb5OpasnGQtsFxuewPOIBFJ5OLigo4dO5q3icj5WJrnrBNElhFC4L0t72HFqRVwVbtiTZ81+W6OAHk5yVpgP5xBIiIiIiKnNXX3VEzbMw0qqPBLr1/QL6Sf7JBIEi7SQEREREQF2nd/fIdpe6YBAH7o+AObI8oVNkhERERE5HSWn1yOMVvHAACmN5+OUWGjJEdEjoINEpFEOp0OlSpVQqVKlaDT6WSHQ0Q2oNVq4e3tDW9vb2i12jy/nnWCKO9+O/8bhq4bCgB4r/57mNJsitWOLSsnWQvsh4s0EEkkhMDFixfN20TknCz5Y4Z1gihv9l3bh1d/fRVGYcSgmoPwdfuvoVKprHZ8WTnJWmA/bJCIJPLw8MD+/fvN20RET2KdIMq9Ewkn0GVFF2RkZ6Bz5c5Y0HUB1CrrXjAlKydZC+yHq9gRERHZEO9dQmQfFx9eRJMFTXBXexdNyzVF9KBoeGo8ZYdFCsJV7IiIiIioQLiddhttlrbBXe1d1CpRCxv6b2BzRPnGS+yIJMrOzkZUVBQAoEePHnB1ZUoSUU6sE0Qv9lD/EO2WtcPV5KuoWLgitg7aCn8Pf5udT1ZOshbYDy+xI5KIl94QOT9L85x1guj5tJlatFnaBoduHkKgTyAODD+AoMJBtj2npJxkLbBcbnsDtp5EEqnVarzyyivmbSJyPpbmOesE0bNlGjPx6q+v4tDNQ/D38Me2wdts3hwB8nKStcB+OINERERERA4l25SN/mv6Y3X8anhpvLBj8A6Elw2XHRYpHBdpICIiIiKnYxImvLHhDayOXw03FzdE9Y1ic0RWxQaJiIiIiByCEAJjtozB4hOL4aJyQWSvSLSt2FZ2WORk2CARSaTX61G7dm3Url0ber1edjhEZANarRbFixdH8eLFodVq8/x61gmi/5m8czK+P/o9VFBhUfdF6PFyD7vHICsnWQvsxyqLNGRlZSEhIQE6nQ7FixdHkSJFrHFYIqdnMplw4sQJ8zYROaf79+/n+7WsE0SPROyLQMT+CADA7E6zMajmIClxyMpJ1gL7yXeDlJ6ejuXLl2PFihU4cuQIDAaD+bkyZcqgbdu2ePPNNxEWFmaVQImckYeHB7Zt22beJiJ6EusEEfD9ke8xaeckAMCXrb/EyNCR0mKRlZOsBfaTr1Xsvv76a/z73/9GhQoV0LVrV9SvXx+lS5eGp6cnHj58iFOnTmHfvn2IiopCw4YN8d///heVKlWyRfwvxFXsiIhINt67hMgyi2MXY9j6YQCAfzX7F6a3mC43IHJYue0N8tUg9e7dG5988glq1Kjxwv0MBgN+/vlnuLm54Y033sjraSzGBomIiGRjg0SUf6vjV6Pv6r4wCRPGNBiDr9t9DZVKJTssclA2bZAcBRskUrrs7GxER0cDANq1awdXV967mcjZWNogsU5QQbX5wmZ0j+yOLFMWXq/zOuZ1maeI5khWTrIWWI4NEtggkfLxnWUi52dpnrNOUEG05+oetF/eHhnZGehbvS+W91wOF7WL7LAAyMtJ1gLL5bY3sLj1HDdu3DMfV6lU8PDwQHBwMLp168aV7YieQa1WIzQ01LxNRM7H0jxnnaCC5sitI+i8ojMysjPQuXJnLO2xVDHNESAvJ1kL7MfiGaQWLVrg2LFjMBqNqFKlCoQQuHDhAlxcXFC1alWcO3cOKpUK+/fvR7Vq1awVd65wBomIiIjIccTdjcMri15BUkYSWlRogd8G/AZPjafssMhJ5LY3sLj97NatG1q3bo3bt28jJiYGx44dw61bt9CmTRv0798ft27dQrNmzTB27FhLT0VERERETurs/bNovbQ1kjKS0LBMQ2zov4HNEUlh8QxS6dKlsX379qdmh06fPo22bdvi1q1bOHbsGNq2bWvRjfLygzNIRERERMp38eFFNFvYDHfS76BWiVrYNXQXCnsWlh0WORm7zSClpKQgMTHxqcfv3buH1NRUAIC/vz8yMzMtPRWR09Hr9WjcuDEaN24MvV4vOxwisgGdTocKFSqgQoUK0Ol0eX496wQ5u6vJV9FycUvcSb+D6sWrY8eQHYpujmTlJGuB/Vi8SEO3bt0wfPhw/Oc//0FYWBhUKhWOHDmC8ePHo3v37gCAI0eOoHLlypaeisjpmEwmHDx40LxNRM5HCIFr166Zt/OKdYKc2Y2UG2ixuAVupN5AlaJV8PuQ31HMq5jssF5IVk6yFtiPxQ3STz/9hLFjx6Jfv37Izs5+dFBXVwwdOhSzZs0CAFStWhXz58+39FRETsfd3R1RUVHmbSKiJ7FOkLO6nXYbLZe0xNXkq6hYuCJ+H/I7SviUkB3WP5KVk6wF9mO1+yClp6fj8uXLEEKgYsWK5nXaZeJnkIiISDbeu4ToaXfT76L54uY4e/8sKvhXwJ5he1DOr5zssMjJ2e0zSMuWLQMA+Pj4oGbNmqhVq5b5F8GECRMsPTwREREROZH7uvtovbQ1zt4/izKFymDnkJ1sjkhRLG6Q3n33XWzatOmpx8eOHWtunojo2YxGI3bv3o3du3fDaDTKDoeIFIh1gpxJkj4JbZa2wanEUwj0CcTOITsRVDhIdlh5IisnWQvsx+JL7LZu3Yp+/fphw4YNaNasGQBg9OjRWLt2LX7//XdUrVrVKoHmBy+xI6XjpTdEzs/SPGedIGeRkpGCNkvb4OjtowjwDsDuobvxcvGXZYeVZ7JykrXAcrntDSxepKF9+/b48ccf0b17d2zbtg0LFizA+vXrsWvXLq5cR/QPVCqV+R5iKpVKcjREZAuW5jnrBDmDNEMaOv7SEUdvH0VRz6LYMXiHQzZHgLycZC2wH6st0jBnzhyMHTsWxYsXx65duxAcHGyNw1qEM0hEREREcumydOi4vCP2XNsDfw9/7ByyE3UC68gOiwogm84gjRs37pmPBwQEoE6dOpg9e7b5sb+W+iYiIiKigiUjOwPdIrthz7U98HXzRfSgaDZHpHj5apCOHz/+zMcrVqyI1NRU8/Oc/iMiIiIqmDKyM9A9sjt2XN4Bb403tg7aivql68sOi+gf5atB2rVrl7Xj+EcRERGYNGkSxowZg2+++cbu5yeyBb1ej65duwIANmzYAE9PT8kREZG16XQ6hIWFAQCOHj0KLy+vPL2edYIc0V/NUfSlaHhpvPDbgN/QqGwj2WFZhaycZC2wH4sXabCHo0ePYu7cuahZs6bsUIisymQyYceOHeZtInI+QgjEx8ebt/OKdYIczbOao1cqvCI7LKuRlZOsBfaj+AYpPT0dAwcOxLx58/DZZ5+9cF+DwQCDwWD+PjU11dbhEVnE3d3dfL8wd3d3ydEQkRKxTpAjeVZz1LxCc9lhWZWsnGQtsB+rrWJnK0OHDkWRIkXw9ddfo3nz5qhdu/ZzL7GbOnUqpk2b9tTjXMWOiIhk4b1LqKDIyM5Aj5U9sPXiVqdtjsix5XYVO7UdY8qzyMhIHDt2DBEREbnaf+LEiUhJSTF/3bhxw8YREhERERGbI3Imir3E7saNGxgzZgy2bdsGDw+PXL3G3d2dU47kUIxGI44dOwYAqFu3LlxcXCRHRERKwzpBSvf35sjT1dPpmyNZOclaYD8WX2L32WefYcqUKdaKx2zdunXo0aNHjsE3Go1QqVRQq9UwGAz/+D8GbxRLSsdLb4icn6V5zjpBSvZkc7R54Ganbo4AeTnJWmA5m9wo9sMPP8zxvRAC8+fPNy+G8OWXX+Yj1Gdr1aoV4uLicjz22muvoWrVqvjoo4/YNZNTUKlUKF++vHmbiJyPpXnOOkFKlZGdgZ4rexao5giQl5OsBfaTpwZp1apVaNiwITp27GheqtTV1RXVq1e3emC+vr4ICQnJ8Zi3tzeKFi361ONEjsrLywtXr16VHQYR2ZClec46QUr0V3O05eKWAnFZ3d/JyknWAvvJ0yINZ86cQXBwMDZu3IjGjRtj6NCh8PX1xdChQzF06FBbxUhERERECvGs5qhFUAvZYRFZTZ5mkDw9PfHZZ5/h4sWLGD9+PKpUqQKj0Wir2J6ye/duu52LiIiIiHLSZ+nRc1XPHAsysDkiZ5OvZb6Dg4Oxbt06NG7cGAMHDrR2TEQFRkZGBrp3747u3bsjIyNDdjhEZAN6vR5hYWEICwuDXq/P8+tZJ0gptJladFnRxdwcbRqwqUA2R7JykrXAfvK8ip1er8fDhw9RunTpHI+fPn3aJp9FsgRXsSOl44o0RM6Pq9iRM0gzpKHzis7Ye20vfNx88NuA39CsfDPZYUnBVewcl01WsVu9ejXGjh2LIkWKQAiBefPmoUGDBgCAwYMHm9dmJ6LccXNzw9y5c83bRERPYp0g2VIyUtBheQccunkIhdwLYevArQgvGy47LGlk5SRrgf3kaQapdu3a2L59O4oXL44///wTQ4cOxeTJkzFgwADUqVMHx48ft2WsecYZJCIiko3v+pIjS9Inod2ydjh6+yj8PfyxbdA2hJUOkx0WUb7YZAYpKysLxYsXBwCEhoZi79696NmzJy5evMj12ImIiIicyH3dfbRZ2gaxCbEo6lkUO4bsQO2StWWHRWRzeVqkISAgACdPnjR/X7RoUWzfvh1nzpzJ8TgR5Y7JZMLp06dx+vRpmEwm2eEQkQKxTpAMd9PvosXiFohNiEWAdwB2D9vN5ugxWTnJWmA/ebrE7ubNm3B1dUXJkiWfeu7AgQNo3LixVYOzFC+xI6XjpTdEzo+LNJCjuZ12G62WtMLZ+2cR6BOInUN3omqxqrLDUgwu0uC4bHKJXZkyZZ77nNKaIyJHUaxYMdkhEJGNWZrnrBNkLzdSbqDlkpa4+PAiyhQqg51DdqJS0Uqyw1IcWTnJWmAfeV7m++9u3ryJOXPm4ODBg0hISIBKpUKJEiXQqFEjjBw5EmXLlrVmrHnGGSQiIiKi3LmafBUtF7fEleQrqOBfATuH7ERQ4SDZYRFZTW57g3w3SPv370eHDh1QtmxZtG3bFiVKlIAQAomJidi+fTtu3LiBLVu2SJ1ZYoNERERE9M8uPryIlotb4kbqDVQsXBE7h+5EOb9yssMisiqbN0hhYWFo0qQJvv7662c+P3bsWOzfvx9Hjx7Nz+Gtgg0SERER0YvF34tH6yWtcSf9DqoUrYKdQ3eilG8p2WERWV1ue4M8rWL3d6dOncLIkSOf+/xbb72FU6dO5ffwRAVCRkYGBg4ciIEDByIjI0N2OERkA3q9Hs2bN0fz5s2h1+vz/HrWCbKlmNsxaLawGe6k30FIQAj2DNvD5ugfyMpJ1gL7yfcM0ksvvYR//etfeO211575/MKFCzFjxgxcvnzZogAtwRkkUjquSEPk/LiKHSnV/uv70emXTkg1pCKsVBi2DtqKIp5FZIeleFzFznHZZBW7vxs/fjxGjhyJmJgYtGnTBiVKlIBKpUJCQgK2b9+O+fPn45tvvsnv4YkKBDc3N/Nlqm5ubpKjISIlYp0gW9h2aRu6R3aHPluPZuWbYWP/jSjkzjeTc0NWTrIW2I9Fq9itXLkSX3/9NWJiYmA0GgEALi4uqFevHsaNG4c+ffpYLdD84AwSERHJxnd9SWmizkSh35p+yDRmokNwB6zusxpeGi/ZYRHZnM0Xafi7rKws3L9/H8Cj9dk1Go2lh7QKNkhERCQbGyRSkqUnluK19a/BKIzoXa03lvVcBjcXzkZQwWDzS+z+TqPRIDAw0BqHIipQTCYTrl+/DgAoV64c1Op8r5tCRE6KdYKsZc7ROXh789sAgNdqv4Z5XebBRe0iOSrHIysnWQvsx2b/ZW/cuIHhw4fb6vBETkGv1yMoKAhBQUH5Wt2KiJwf6wRZwxf7vzA3R+/Vfw/zu85nc5RPsnKStcB+bNYgPXz4EIsXL7bV4YmchpeXF7y8eO03kTOzNM9ZJyi/hBCY/PtkfPz7xwCAKU2n4Jv230Ct4uyDJWTlJGuBfeT7ErsNGza88HmZy3sTOQpvb29otVrZYRCRDVma56wTlF8mYcL7W9/Hf4/8FwDwResv8GHjDyVH5fhk5SRrgf3ku0Hq3r07VCoVXrTGg0qlyu/hiYiIiCifsk3ZGLFxBBbFLoIKKvzQ8QeMChslOywih5Dv+dXAwECsWbMGJpPpmV/Hjh2zZpxERERElAv6LD1eXfUqFsUugovKBUt6LGFzRJQH+W6Q6tWr98Im6J9ml4gIMBgMGDFiBEaMGAGDwSA7HCKygYyMDHTq1AmdOnVCRkZGnl/POkF5kZKRgvbL22P9ufVwd3HH2r5rMajmINlhORVZOclaYD/5vg/Svn37oNVq0b59+2c+r9Vq8eeff+KVV16xKEBL8D5IpHS8PwqR87M0z1knKLfupt9F++XtEZsQi0LuhbCx/0Y0K99MdlhOR1ZOshZYzub3QWratOkLn/f29pbaHBE5Ao1Gg88++8y8TUT0JNYJyo0rSVfQdllbXHx4EQHeAYgeFI3aJWvLDsspycpJ1gL7ydcM0vXr11GuXLlc73/r1i2ULl06r6exGGeQiIhINr7rS7YWdzcO7Za1w530OwjyD8K2wdsQXCRYdlhEipPb3iBfn0EKCwvDiBEjcOTIkefuk5KSgnnz5iEkJARr167Nz2mIiIiI6AUOXD+AZoua4U76HdQIqIEDww+wOSKyUL4usTtz5gxmzpyJ9u3bQ6PRIDQ0FKVKlYKHhweSkpIQHx+P06dPIzQ0FF999RU6dOhg7biJnIIQAvfv3wcAFCtWjEvjE9FTWCfoeX47/xt6/9ob+mw9GpdtjI39N6KwZ2HZYTk9WTnJWmA/+V6kAXi0Ms/mzZuxb98+XL16FXq9HsWKFUOdOnXQrl07hISEWDPWPOMldqR0vPSGyPlxkQayhWUnl2HYumEwCiM6VuqIX3v/Ci+Nl+ywCgQu0uC4bL5IAwB4eHigZ8+e6NmzpyWHISIiIqJc+ubwNxgbPRYAMKjmICzougAaF35on8haLGqQiMgy3t7evF8YkZOzNM9ZJ+gvQghM2TkFM/fPBACMaTAGs9rNglqV79taUj7IyknWAvthg0RERESkcFnGLLy56U0sil0EAPisxWeY1HQSP4dCZANskIiIiIgULD0zHb1/7Y2tF7dCrVLjx04/YkS9EbLDInJanJMlkshgMOD999/H+++/D4PBIDscIrKBjIwM9O7dG71790ZGRkaeX886UbDdTb+L5ouaY+vFrfB09cT6fuvZHEkmKydZC+zHolXslI6r2JHScUUaIufHVewovy48uID2y9vjctJlFPMqhk39N6FBmQaywyrwuIqd47LLKnYAoNfrIYSAl9ejpSWvXbuGqKgoVKtWDW3btrX08EROTaPRYNKkSeZtIqInsU4UTEduHUGnXzrhvu4+gvyDsHXQVlQuWll2WAR5OclaYD8WzyC1bdsWPXv2xMiRI5GcnIyqVatCo9Hg/v37mDVrFkaNGmWtWPOMM0hERCQb3/WlvPrt/G/os7oPdFk61Aush98G/IYSPiVkh0Xk8HLbG1j8GaRjx46hadOmAIDVq1ejRIkSuHbtGpYsWYLvvvvO0sMTERERFRjzj81Ht8hu0GXp0K5iO+wetpvNEZGdWdwg6XQ6+Pr6AgC2bduGnj17Qq1Wo2HDhrh27ZrFARI5MyEEtFottFot721ARM/EOlEwCCEwfc90jNg4AkZhxNBaQ7Gx/0b4uPnIDo2eICsnWQvsx+IGKTg4GOvWrcONGzcQHR1t/txRYmIiL2sj+gc6nQ4+Pj7w8fGBTqeTHQ4RKRDrhPPLNmXjrU1v4dPdnwIAJjedjIXdFkLjws+ZKJGsnGQtsB+LG6RPPvkE48ePR4UKFdCgQQOEh4cDeDSbVKdOHYsDJCIiInJW6Znp6B7ZHfOOzYNapcbsjrPxWcvPeANYIomsssx3QkIC7ty5g1q1akGtftRzHTlyBIUKFULVqlUtDjK/uEgDKZ0QwvwukJeXF38hEjkhS/OcdcJ53U67jc6/dMbxhOPwcPXAil4r0L1qd9lh0T+QlZOsBZbLbW/A+yARERER2dnJuyfR6ZdOuJl6E8W9imND/w1oWKah7LCInJrd7oM0ffr0Fz7/ySefWHoKIiIiIqcRfTEavX/tjbTMNFQtVhW/DfgNLxV+SXZYRPSYxQ1SVFRUju+zsrJw5coVuLq6omLFimyQiF4gMzMT06ZNAwB8+umncHNzkxwREVmbwWDAW2+9BQD46aef4O7unqfXs044l7kxc/H2b2/DKIxoXqE51vZZi8KehWWHRXkgKydZC+zHJpfYpaamYtiwYejRowcGDx5s7cPnKQ5eYkdKxhtIEjk/S/OcdcI5mIQJk36fhC8OfAEAGFxzMOZ3nQ83F/6R62hk5SRrgeXsdondsxQqVAjTp09H586dpTZIRErn6uqKMWPGmLeJiJ7EOuH49Fl6DFs/DKtOrwIATH1lKj555RN+yN5BycpJ1gL7sdkiDfv370eXLl2QlJRki8PnCmeQiIhINr7rW7Dd095Dt8huOHTzEDRqDX7u+jMG1+Kbx0Qy2G0G6bvvvsvxvRACd+7cwdKlS9G+fXtLD09ERETkkM4/OI+OyzviUtIl+Hv4I6pvFJpXaC47LCL6BxY3SF9//XWO79VqNYoXL46hQ4di4sSJlh6eiIiIyOHsvbYXPVb2wEP9QwT5B2HzwM2oWkzevSGJKPcsbpCuXLlijTiICiReekNE/4R1wvEsOL4AIzeNRJYpCw1KN8CG/hsQ4B0gOyyyEi7S4PzUsgMgIiIicgZGkxETtk3A6xteR5YpC32r98WuobvYHBE5mHzNII0bNw4zZsyAt7c3xo0b98J9Z82ala/AiAoCLy8vJCYmmreJyPlYmuesE44hzZCGAWsHYNP5TQC4Up0zk5WTrAX2k68G6fjx48jKyjJvE1H+qFQqFC9eXHYYRGRDluY564TyXU2+ii4ruuBU4il4uHpgUbdF6BvSV3ZYZCOycpK1wH5stsy3EnCZbyIiIrKlA9cPoMfKHrinu4eSPiWxvt961C9dX3ZYRPQMNl3m+58uq/uLSqXCf/7zn/ycgqhAyMzMxFdffQUAmDBhAtzceEd1ImdjMBjMvzdnzZoFd3f3PL2edUK5lp5Yijc2voFMYybqlKyDDf03oEyhMrLDIhuTlZOsBfaTrxmkFi1a5Pg+JiYGRqMRVapUAQCcP38eLi4uqFevHnbu3GmdSPOBM0ikdFyRhsj5WZrnrBPKYxImTNk5BRH7IwAAPV/uiSXdl8DbjWNTEHAVO8dl0xmkXbt2mbdnzZoFX19fLF68GIULFwYAJCUl4bXXXkPTpk3zc3iiAsPV1RVvvPGGeZuI6EmsE8qSnpmOwVGDse7sOgDApCaTMKPlDKhVXBi4oJCVk6wF9mPxZ5BKly6Nbdu2oXr16jkeP3XqFNq2bYvbt29bFKAlOINERESy8V1f53Et+Rq6r+yO2IRYuLm44eeuP2NQzUGywyKiXMptb2Dx2x2pqam4e/fuU48nJiYiLS0t38edM2cOatasiUKFCqFQoUIIDw/Hli1bLAmViIiIKF/2XtuL0HmhiE2IRXGv4tg1dBebIyInZXGD1KNHD7z22mtYvXo1bt68iZs3b2L16tV4/fXX0bNnz3wft0yZMvj888/x559/4s8//0TLli3RrVs3nD592tKQiYiIiHJFCIE5R+eg1ZJWuK+7jzol6+DoiKNoVLaR7NCIyEYsvsROp9Nh/PjxWLBggfneSK6urnj99dfx1VdfWfVSgiJFiuCrr77C66+/nqv9eYkdKZ1Wq0VAwKM7rCcmJvLSGyInZI1FGlgn5Mg0ZuLdze9i3rF5AIB+If3wc9ef4aXhTToLMlk5yVpgOZsu0vB3Xl5emD17Nr766itcunQJQggEBwdbddCMRiN+/fVXaLVahIeHP3c/g8EAg8Fg/j41NdVqMRDZik6nkx0CESkc64T9JaQnoNeqXjh44yBUUOHz1p9jQqMJUKlUskMjBZCVk6wF9mG1JTC8vb1Rs2ZNax0OABAXF4fw8HBkZGTAx8cHUVFRqFat2nP3j4iIwLRp06waA5EteXp64sqVK+ZtInI+luY564T9/Xn7T3SP7I5babfg5+6HFb1WoEOlDrLDIoWQlZOsBfZj8SV2f4mPj8f169eRmZmZ4/GuXbvm+5iZmZm4fv06kpOTsWbNGsyfPx979ux5bpP0rBmksmXL8hI7IiIiypWlJ5ZixMYRMBgNqFqsKtb3W4/KRSvLDouIrCC3l9hZ3CBdvnwZPXr0QFxcHFQqFf463F9T0Eaj0ZLD59C6dWtUrFgRP/30U67252eQiIiIKDeyTdn4aPtHmHV4FgCgS+UuWNZzGQq58+8HImdht2W+x4wZg6CgINy9exdeXl44ffo09u7di9DQUOzevdvSw+cghMgxQ0Tk6LKysvDNN9/gm2++MS9yQkTOJTMzExMmTMCECROeusoiN1gnbO+h/iE6Lu9obo6mNJ2Cdf3WsTmiZ5KVk6wF9mPxDFKxYsWwc+dO1KxZE35+fjhy5AiqVKmCnTt34oMPPsDx48fzddxJkyahQ4cOKFu2LNLS0hAZGYnPP/8cW7duRZs2bXJ1DM4gkdLxBpJEzs8aq9ixTthObEIseq7siSvJV+Cl8cLi7ovxarVXZYdFCiYrJ1kLLGe3VeyMRqN5sIoVK4bbt2+jSpUqKF++PM6dO5fv4969exeDBw/GnTt34Ofnh5o1a+apOSJyBC4uLhgwYIB5m4joSawTtrPkxBK8tektZGRnIMg/COv6rUPNEtZdcIqcj6ycZC2wH4tnkJo2bYoPPvgA3bt3x4ABA5CUlIQpU6Zg7ty5iImJwalTp6wVa55xBomIiGTju77Kk2nMxNitYzH7z9kAgI6VOmJZj2Uo7FlYcmREZEt2m0GaMmUKtFotAOCzzz5D586d0bRpUxQtWhQrV6609PBEREREVnMz9SZ6/9obh28ehgoqfPrKp/jXK/+CWmXxx7KJyElY3CC1a9fOvP3SSy8hPj4eDx8+ROHChXkzNSIiIlKM3Vd3o+/qvkjUJsLfwx/Ley5Hx0odZYdFRApj0dslWVlZaNGiBc6fP5/j8SJFirA5IsoFrVaL4sWLo3jx4uaZWCKiv2OdsJwQAv938P/QeklrJGoTUatELcS8GcPmiPJFVk6yFtiPRTNIGo0Gp06dYjNEZIH79+/LDoGIFI51Iv/SDGkYvmE4VsevBgAMrjkYP3b+EV4aL8mRkSOTlZOsBfZh8SV2Q4YMwc8//4zPP//cGvEQFSienp7mhUw8PT0lR0NEtmBpnrNO5N/Z+2fRY2UPnL1/Fhq1Bt+2/xYjQ0fyjV2yiKycZC2wH4tXsRs9ejSWLFmC4OBghIaGPrU6z6xZsywK0BJcxY6IiKhgWnlqJd7Y+AbSM9NRyrcUVvdejfCy4bLDIiKJ7LaK3alTp1C3bl0AeOqzSHyHhoiIiOzJkG3AuOhx5iW8m1dojshekSjhU0JyZETkKCxukHbt2mWNOIgKpKysLCxatAgAMGzYMGg0GrkBEZHVZWZmYubMmQCASZMmwc3NLU+vZ53IvctJl9Hn1z6IuRMDAJjUZBKmtZgGV7XFf+4QmcnKSdYC+7H4Ejsl4yV2pHS8gSSR87M0z1kncmfd2XUYtm4YUgwpKOJZBMt6LEOHSh1kh0VOSFZOshZYzm6X2BFR/rm4uKBbt27mbSKiJ7FOvFiWMQsf7/gYsw4/+sxzeJlwrHx1Jcr6lZUcGTkrWTnJWmA/nEEiIiKyIb7razvXU66j7+q+OHzzMADgg/APENEqAhoXXnpERE/jDBIRERE5rc0XNmNw1GA81D+Ev4c/FnVbhG5Vu8kOi4icABskIiIichjZpmz8a+e/8PmBR/dfDC0VilWvrkJQ4SDJkRGRs1Bb4yD79u3DoEGDEB4ejlu3bgEAli5div3791vj8EROS6fToUKFCqhQoQJ0Op3scIhIgVgn/ud6ynW0WNzC3By9G/Yu9r+2n80R2ZWsnGQtsB+LG6Q1a9agXbt28PT0xPHjx2EwGAAAaWlp5mVNiejZhBC4du0arl27Bif+OCARWYB14pGoM1Go/WNt7L++H75uvlj56kr8t+N/4e7qLjs0KmBk5SRrgf1YfIndZ599hh9//BFDhgxBZGSk+fFGjRph+vTplh6eyKl5eHjgyJEj5m0icj6W5nlBrxP6LD3GbxtvvvFrWKkwrOi1AhWLVJQcGRVUsnKyoNcCe7J4FTsvLy/Ex8ejQoUK8PX1xYkTJ/DSSy/h8uXLqFatGjIyMqwVa55xFTsiIiLHFX8vHv1W90NcYhwAYEKjCfis5Wdwc8nbzXaJiAA7rmIXGBiIixcvokKFCjke379/P1566SVLD09EREQFjBACPx//Ge9teQ/6bD0CvAOwpPsStAtuJzs0IioALG6Q3nrrLYwZMwYLFiyASqXC7du3cejQIYwfPx6ffPKJNWIkclrZ2dlYuXIlAKBv375wdeXCkkTOJjMzE99++y0AYMyYMXBzy9vsR0GrEykZKXhz05tYdXoVAKDNS22wpMcSlPQpKTkyokdk5WRBqwUyWeVGsZMnT8bXX39tvpzO3d0d48ePx4wZMywO0BK8xI6UjjeQJHJ+luZ5QaoTh28eRv81/XE1+Spc1a6Y2XImPmj0AdQqqyy6S2QVsnKyINUCW7HrjWL//e9/Y/LkyYiPj4fJZEK1atXMA0hEz6dWq9G6dWvzNhHRkwpCnTCajPjq4FeYsnMKjMKIlwq/hBW9VqB+6fqyQyN6iqycLAi1QCnyNYM0bty4XO87a9asvB7eajiDREREsvFd3xe7nnIdQ6KGYM+1PQCA/iH9MafTHPh5+EmOjIicjU1nkI4fP57j+5iYGBiNRlSpUgUAcP78ebi4uKBevXr5OTwREREVAL/E/YK3f3sbKYYU+Lj54Lv232FY7WFQqVSyQyOiAixfDdKuXbvM27NmzYKvry8WL16MwoULAwCSkpLw2muvoWnTptaJkoiIiJxGckYy3tn8Dn6J+wUAEF4mHEt7LOW9jYhIESxepKF06dLYtm0bqlevnuPxU6dOoW3btrh9+7ZFAVqCl9iR0ul0OoSFhQEAjh49Ci8vL8kREZG1WXqJnbPViT1X92Bw1GDcSL0BF5ULPnnlE0xqOgmuaq7IRY5BVk46Wy2QwW6LNKSmpuLu3btPNUiJiYlIS0uz9PBETk0Igfj4ePM2EdGTnKVOZBoz8cmuT/DlgS8hIBBcJBjLeixDgzINZIdGlCeyctJZaoEjsLhB6tGjB1577TX85z//QcOGDQEAhw8fxoQJE9CzZ0+LAyRyZh4eHuZLVj08PCRHQ0S2YGmeO0OdOHPvDAasHYDYhFgAwBt13sDX7b+GjxtXvCXHIysnnaEWOAqLL7HT6XQYP348FixYgKysLACAq6srXn/9dXz11VdSV+vhJXZERETyCCEw++hsjN8+HhnZGSjqWRTzu85H96rdZYdGRAVQbnsDq9woFnh0jfWlS5cghEBwcLAiljFlg0RERCTHjZQbeGPjG9h2aRsAoH1weyzougCBvoGSIyOigsquN4oFAG9vb9SsWdNahyMqELKzs7Fp0yYAQOfOneHqyg8pEzmbrKwszJ07FwDw5ptvQqPR5On1jlYnhBBYenIp3tvyHlIMKfBw9cCXrb/Eu/Xf5fLd5BRk5aSj1QJHlu8bxc6YMQPe3t7/eNNY3iiW6Pl4A0ki52dpnjtSnUhIT8Bbm97ChnMbAAANyzTEom6LUKVYFcmREVmPrJx0pFqgVDa/Uexfnzd68qaxf8d3ioheTK1Wo1GjRuZtIqInOUqd+PX0rxj12yg80D+ARq3B9BbTMb7ReC7fTU5HVk46Si1wBlb7DJIScQaJiIhkc/Z3fR/oHuCdze9g5emVAIDaJWtjSfclqFGihuTIiIhysttnkPR6PYQQ5ptVXbt2DVFRUahWrRratm1r6eGJiIhIoTae24g3N72JhPQEuKhcMLnpZExuNhluLm6yQyMiyjeLG6Ru3bqhZ8+eGDlyJJKTk1G/fn24ubnh/v37mDVrFkaNGmWNOImIiEghUjJS8H70+1gUuwgAUK14NSzuvhihpULlBkZEZAUWX8B47NgxNG3aFACwevVqlCxZEteuXcOSJUvw3XffWRwgkTPT6/UICwtDWFgY9Hq97HCISIGUVid+O/8bQuaEYFHsIqigwoRGExDzZgybIyowZOWk0mqBM7N4Bkmn08HX1xcAsG3bNvTs2RNqtRoNGzbEtWvXLA6QyJmZTCb8+eef5m0ioicppU480D3AmK1jsDxuOQAguEgwFnVbhMblGkuLiUgGWTmplFpQEFjcIAUHB2PdunXo0aMHoqOjMXbsWABAYmIiF0Yg+gfu7u7mexq4u7tLjoaIbMHSPJddJ4QQ+DX+V7y7+V3c092DWqXG2IZjMb3FdHhpvOweD5FssnJSdi0oSCxexW716tUYMGAAjEYjWrVqhW3bHt0xOyIiAnv37sWWLVusEmh+cBU7IiKi/LuTdgdvb34b686uAwBUL14dC7otQP3S9eUGRkSUD7ntDayyzHdCQgLu3LmDWrVqmddlP3LkCAoVKoSqVataevh8Y4NERESUd0IILD6xGGOjxyI5IxmualdMajIJk5pOgrsr37kmIsdkt2W+AaBkyZIoWbJkjsfq1+e7S0T/xGg0YufOnQCAli1bwsXFRXJERGRtWVlZWL780ed2Bg4cCI1Gk6fX27tOXEu+hrc2vYXoS9EAgHqB9bCg2wLULFHTpuclchSyfnfzbwb7scoM0u+//47ff/8diYmJT31obMGCBZYePt84g0RK5+w3kCQiy/PcXnXCJEyYc3QOPv79Y6RnpsPD1QPTmk/DuPBxcFVb5f1UIqcg63c3/2awnN1mkKZNm4bp06cjNDQUgYGBUKlUlh6SqMBQq9WoVauWeZuI6En2qBNxd+Pw5qY3cfjmYQBAk3JN8HPXn1G5aGWbnI/Ikcn63c2/GezH4hmkwMBAfPnllxg8eLC1YrIaziAREZFsSn7XV5elw/Q90/GfQ/9Btikbvm6+iGgVgVFho6BW8Q8wInIudptByszMRKNGjSw9DBEREdlR9MVojPptFK4kXwEA9Hy5J75r/x1KFyotOTIiIrksfnvojTfewC+//GKNWIiIiMjG7qbfxYA1A9B+eXtcSb6CMoXKYH2/9VjTZw2bIyIiWGEGKSMjA3PnzsWOHTtQs2bNp1bnmTVrlqWnIHJaer0eHTp0AABs2bIFnp6ekiMiIqWxVp0wCRN+PvYzPtzxIZIzkqFWqfFe/fcwvcV0+Lr7WjNkIqcm63c3/2awH4sbpJMnT6J27doAgFOnTuV4jgs2EL2YyWTCnj17zNtERE+yRp2IvxePtza9hf3X9wMA6pSsg3ld5qFeqXpWi5OooJD1u5t/M9iPxQ3Srl27rBEHUYHk7u6OVatWmbeJyPlYmueWvF6bqcW/9/0b/3fw/5BlyoK3xhszWszA6AajuXQ3UT7J+t3Nvxnsxyr3QVIqrmJHREQFkRACUWej8P7W93Ej9QYAoHPlzvi+w/co719ecnRERHLYdBW7cePGYcaMGfD29sa4ceNeuC8/g0RERGQ/Fx5cwOgtoxF9KRoAUN6vPL5p/w26VenGS9+JiHIhXw3S8ePHkZWVZd5+HhZiohczGo04fPjRjRkbNmwIFxcXyRERkbVlZ2cjKioKANCjRw+4uubtV29u64QuS4eIfRH48uCXyDRmws3FDRMaTcCkppPgpfGy7IcgIjNZv7v5N4P98BI7IomUfANJIrIOS/P8n14vhMCGcxswZusYXEu5BgBoV7Ed/tvhv6hUtJIVfgIi+jtZv7v5N4Pl7HajWCLKP5VKheDgYPM2EdGTXlQnLj28hPe2vofNFzYDAMoWKotv2n+DHlV7sKYQ2Yis3938m8F+OINERERkQ7Z411ebqcWXB77EFwe+gMFogEatwfhG4zG56WR4u/FdZSKiZ+EMEhERkZMRQmDFqRX4aMdHuJl6EwDQ5qU2+G+H/6JKsSqSoyMicg5skIiIiBzAn7f/xJitY3DwxkEAQAX/Cvi/Nv+Hni/35OU2RERWxAaJSKKMjAz06tULALBmzRp4eHhIjoiIlObKvSto1qHZoxmjPoC3lzcmNZ2EceHj4OHKmkFkb7J+d/NvBvuxuEHS6/UQQsDL69ESoteuXUNUVBSqVauGtm3bWhwgkTMzGo3YvHmzeZuI6C+GbAO+OfwNZvw+A9oYLQCgX/V++L9O/4fShUpLjo6o4JL1u5t/M9iPxQ1St27d0LNnT4wcORLJyclo0KABNBoN7t+/j1mzZmHUqFH5Om5ERATWrl2Ls2fPwtPTE40aNcIXX3yBKlV4jTU5Dzc3NyxcuNC8TUTOJ695LoTA+nPrMX7beFxKugQYgaBhQRhYYyA+efUTaDQaW4dMRC8g63c3/2awH4tXsStWrBj27NmD6tWrY/78+fjvf/+L48ePY82aNfjkk09w5syZfB23ffv26NevH8LCwpCdnY3JkycjLi4O8fHxuV4BiKvYERGRI4lNiMX4bePx+5XfAQCBPoH4ovUXGFhzINQqteToiIgcm91WsdPpdPD19QUAbNu2DT179oRarUbDhg1x7dq1fB9369atOb5fuHAhAgICEBMTg2bNmlkUMxERkZLcSLmBKbumYOmJpRAQcHdxxwfhH2Bi04nwcfORHR4RUYFicYMUHByMdevWoUePHoiOjsbYsWMBAImJiVadtUlJSQEAFClS5Ln7GAwGGAwG8/epqalWOz+RLRiNRsTFxQEAatSoARcXF8kREZG1ZWdnIzo6GgDQrl07uLr+71dvqiEVX+z/ArMOz0JGdgYAoF9IP8xsORNBhYMAsE4QKY2snGQtsB+LL7FbvXo1BgwYAKPRiFatWmHbtm0AHn2GaO/evdiyZYvFQQoh0K1bNyQlJWHfvn3P3W/q1KmYNm3aU4/zEjtSKlvcQJKIlOVZeZ5lzMK8Y/MwdfdU3NPdAwA0LdcU/9f2/1C/dP1/fD0RySMrJ1kLLGe3S+xeffVVNGnSBHfu3EGtWrXMj7dq1Qo9evSw9PAAgHfffRcnT57E/v37X7jfxIkTMW7cOPP3qampKFu2rFViILIFlUqFUqVKmbeJyLkJIbD+7Hp8uONDnH9wHgBQuWhlfNn6S3St0vWZdYB1gkhZZOUka4H9WDyD9Lxlvl9++WW0a9fO4gBHjx6NdevWYe/evQgKCsrTa7lIAxERyfb3d30bzWmEg3cf3ei1mFcxTGs+DSPqjoDGhSvTERHZmt1mkGy1zLcQAqNHj0ZUVBR2796d5+aIiIhICf7+PuTBGwfh4eWBcQ3H4aMmH6GQO9+8IyJSGovXDD127BiaNm0K4NHnkUqUKIFr165hyZIl+O677/J93HfeeQfLli3DL7/8Al9fXyQkJCAhIQF6vd7SkImIiOzCaDLig20fmL/vF9IP5989j3+3+jebIyIihbK4QbLVMt9z5sxBSkoKmjdvjsDAQPPXypUrLQ2ZSDEyMjLQu3dv9O7dGxkZGbLDISIrMmQbMGDtAMyNmWt+bH7X+Sjrl7fPxrJOECmLrJxkLbAfiz+DVLNmTbzxxhvo0aMHQkJCsHXrVoSHhyMmJgadOnVCQkKCtWLNM34GiZSOK9IQOac0Qxp6ruqJHZd3wDXbFdmfZQPIX56zThApC1exc1x2+wzSJ598ggEDBmDs2LFo1aoVwsPDATyaTapTp46lhydyam5ubvj+++/N20Tk+O5p76HjLx3x5+0/4a3xxq99f8XlkpcB5C/PWSeIlEVWTrIW2I/FM0gAkJCQYF7mW61+dNXekSNHUKhQIVStWtXiIPOLM0hERGRPV5Ovou3Strjw8AKKeRXD5gGbEVY6THZYREQEO84gAUDJkiVRsmTJHI/Vr1//OXsTERE5n7i7cWi3rB3upN9Beb/yiB4UjSrFqsgOi4iI8sgqDRIAxMfH4/r168jMzMzxeNeuXa11CiKnYzKZcOnSJQBAxYoVzTOwRORY9l/fjy4ruiA5IxkhASHYOnArShcqDQAwGo3Yt28fAKBp06ZwcXHJ07FZJ4iURVZOshbYj8WX2F2+fBk9evRAXFwcVCqV+X4Pf93h12g0Wh5lPvESO1I6fuCSyPFtPLcRfVb3QUZ2BhqXbYyN/TeisGdh8/OW5jnrBJGycJEGx5Xb3sDi1nPMmDEICgrC3bt34eXlhdOnT2Pv3r0IDQ3F7t27LT08kdPz8/ODn5+f7DCIKB8WHl+IHit7ICM7A50rd8a2wdtyNEfWwjpBpCyycpK1wD4svsTu0KFD2LlzJ4oXLw61Wg21Wo0mTZogIiIC7733Ho4fP26NOImckre3N5KTk2WHQUR5JITAVwe/wkc7PgIADK01FPO6zIPGRWP1c7FOECmLrJxkLbAfi2eQjEajebqvWLFiuH37NgCgfPnyOHfunKWHJyIiUhSTMGH8tvHm5ujDRh9iYbeFNmmOiIjI/iyeQQoJCcHJkyfx0ksvoUGDBvjyyy/h5uaGuXPn4qWXXrJGjERERIqQZczC8A3DsezkMgDA/7X5P3zQ6APJURERkTVZPIM0ZcoUmEwmAMBnn32Ga9euoWnTpti8eTO+/fZbiwMkcmYGgwHDhg3DsGHDYDAYZIdDRC+gzdSiW2Q3LDu5DC4qFyzuvtguzRHrBJGyyMpJ1gL7scqNYp/08OFDFC5c2LySnSxcxY6UjivSEDmGB7oH6LyiMw7fPAxPV0+s7rMaHSt1zNVruYodkXPhKnaOy+Y3ih0+fHiu9luwYEF+T0Hk9DQaDb788kvzNhEpz42UG2i3rB3O3D+Dwh6F8duA3xBeNjzXr7c0z1kniJRFVk6yFthPvmeQ1Go1ypcvjzp16uBFh4iKisp3cJbiDBIREVnizL0zaLusLW6m3kRp39KIHhSN6gHVZYdFRET5YPMZpJEjRyIyMhKXL1/G8OHDMWjQIBQpUiS/hyMiIlKUvdf2ontkdyRlJKFqsaqIHhSNcn7lZIdFREQ2lu9FGmbPno07d+7go48+wsaNG1G2bFn06dMH0dHRL5xRIqL/MZlMuHXrFm7dumVe7ISI5Ft5aiXaLG2DpIwkhJcJx77X9uW7OTIajTh69CiOHj0Ko9GY59ezThApi6ycZC2wH6st0nDt2jUsWrQIS5YsQVZWFuLj480fJJOFl9iR0vEDl0TKIoTAfw79BxO2TwAA9KjaA8t7LoenxjPfx+QiDUTOhYs0OC6bX2L3JJVKBZVKBSEEu1qiPHB1tVoaEpEFjCYjxmwdgx+O/gAAGNNgDP7T9j9wUbtIjox1gkhpZOUka4F9WHQfJIPBgBUrVqBNmzaoUqUK4uLi8P333+P69evSZ4+IHIG3tzeysrKQlZXFd4KIJNJl6dBrVS/8cPQHqKDCrLaz8E37bxTRHLFOECmLrJxkLbCffLehb7/9NiIjI1GuXDm89tpriIyMRNGiRa0ZGxERkc3d095DlxVd8MetP+Du4o5lPZfh1Wqvyg6LiIgksWiZ73LlyqFOnTovvCHs2rVr8x2cpfgZJCIiepELDy6gw/IOuJR0CUU8i2B9v/VoUq6JVc/Bzw0QESmDzT+DNGTIkBc2RkT0zwwGA8aNGwcAmDVrFtzd3SVHRFRwHLxxEF1XdMUD/QME+Qdhy8AtqFKsiuywnsI6QaQssnKStcB+rLaKnRJxBomUju8sE8nxS9wvGL5+OAxGA0JLhWJT/00o4VPCJufiKnZEzoWr2Dkuu69iR0R5p9Fo8Omnn5q3ici2hBCYunsqpu+dDgDoXrU7lvVYBm832/2hYWmes04QKYusnGQtsB/OIBERUYGgz9Jj+IbhiDwVCQD4sNGHiGgdAbXKogVdiYjIQXAGiYiI6LG76XfRfWV3HL55GK5qV/zY6Ue8Xvd12WEREZECsUEikkgIgZSUFACAn58fFz4hsoG4u3HovKIzrqdcR2GPwljbdy2aV2hut/ObTCacOXMGAPDyyy9Drc7bjBXrBJGyyMpJ1gL7YYNEJJFOp0PhwoUB8AOXRLaw+cJm9F3dF+mZ6ahUpBI2DdiEykUr2zUGvV6PkJAQAPnLc9YJImWRlZOsBfbDC6+JiMjpCCHw3R/focuKLkjPTMcr5V/B4TcO2705IiIix8MZJCKJvLy8kJmZCQBwdWU6EllDpjETozePxtxjcwEAw2sPx5zOc+Dm4iY5svxhnSBSFlk5yVpgP/yvSySRSqXiUp1EVnQ3/S56reqFAzcOQAUVPm/9OSY0muDQ1+qzThApi6ycZC2wHzZIRETkFGJux6D7yu64mXoTfu5++KXXL+hYqaPssIiIyMHwM0hEEmVmZmLChAmYMGGCedqciPLul7hf0GRhE9xMvYkqRavgjzf+cJrmiHWCSFlk5SRrgf3wRrFEEmm1Wvj4+ADgijRE+WE0GTHp90n48uCXAICOlTril56/wM/DT3Jk/2NpnrNOECmLrJxkLbAcbxRL5AA0Gg3Gjx9v3iai3EvOSMaANQOw5eIWAMDEJhMxo8UMuKhdJEeWk6V5zjpBpCyycpK1wH44g0RERA7n7P2z6BbZDecfnIenqycWdFuAfiH9ZIdFREQKxhkkIiJySuvOrsPQdUORakhF2UJlsa7fOtQNrCs7LCIichJskIgkEkIgOzsbwKN7GjjyUsREtpZtysa/dv4Lnx/4HADQtFxTrO6zGgHeAZIjezGTyYTr168DAMqVKwe1Om/rI7FOECmLrJxkLbAfrmJHJJFOp4Obmxvc3Nyg0+lkh0OkWPe099B+WXtzczS24Vj8PuR3xTdHAKDX6xEUFISgoCDo9fo8v551gkhZZOUka4H9cAaJiIgU7citI+i1qhdupt6Et8YbC7otQJ/qfWSHRURETooNEpFEXl5eSEpKMm8T0f8IIfBTzE8Ys3UMMo2ZqFK0Ctb2XYtqxavJDs2uWCeIlEVWTrIW2A8bJCKJVCoV/P39ZYdBpDj6LD1G/TYKi08sBgD0fLknFnZbiELuBW9FUtYJImWRlZOsBfbDBomIiBTlctJl9FrVC7EJsVCr1Pi81ecY32g8P5BMRER2wQaJSKLMzEzMnDkTADBp0iS4ublJjohIrjXxazB8w3CkGlJR3Ks4Vr66Ei2CWsgOSyrWCSJlkZWTrAX2wxvFEkmk1Wrh4+MDAEhPT4e3t7fkiIjkMGQbMH7beHx/9HsAQKOyjbDy1ZUoU6iM5MgsZ2mes04QKYusnGQtsBxvFEvkAFxdXfH222+bt4kKoksPL6Hv6r6IuRMDAPio8UeY0WIGNC4ayZFZh6V5zjpBpCyycpK1wH44g0RERNKsjl+N1ze8jlRDKop6FsWSHkvQsVJH2WEREZET4gwSEREpVkZ2Bj6I/gCz/5wNAGhctjFW9FqBsn5lJUdGREQFHRskIiKyq4sPL6LPr31wPOE4AODjxh9jeovpTnNJ3ZOEELh//z4AoFixYlyNj4hI4dSyAyAqyLRaLTQaDTQaDbRarexwiGxu+cnlqPtTXRxPOI6inkWxecBmRLSOcNrmCAB0Oh0CAgIQEBAAnU6X59ezThApi6ycZC2wH84gEUmWnZ0tOwQim0s1pOKdze9g2cllAIAm5ZpgRa8VTrFKnT2wThApi6ycZC2wDzZIRBJ5enri5s2b5m0iZ3ToxiEMXDsQV5KvQK1S45Nmn2Bys8lwVfNXUG6wThApi6ycZC2wH/52IpJIrVajdOnSssMgsgmjyYiZ+2Zi2p5pMAojKvhXwPKey9GobCPZoTkU1gkiZZGVk6wF9sMGiYiIrO5a8jUMihqE/df3AwAG1BiA2R1nw8/DT3JkREREL8YGiUiizMxMfPvttwCAMWPGwM3NTXJERJaLPBWJkZtGIsWQAl83X8zuNBuDag6SHZbDYp0gUhZZOclaYD+8USyRRFqtFj4+PgCA9PR0eHt7S46IKP+SM5IxZusYLDmxBADQsExDLO+5HC8VfklyZHJZmuesE0TKIisnWQssxxvFEjkAV1dXDB061LxN5Kh2XN6B19a/hpupN6FWqTG56WT8q9m/nHr57tyyNM9ZJ4iURVZOshbYD2eQiIgo33RZOny0/SN8f/R7AEDFwhWxuPtiNC7XWHJkREREOXEGiYiIbOrwzcMYum4ozj84DwAYFToKX7b5Ej5uPpIjIyIiyj82SERElCeZxkxM3zMdEfsjYBImlPYtjQXdFqBtxbayQ1MkIQR0Oh0AwMvLCyqVSnJERET0ImrZAbzI3r170aVLF5QqVQoqlQrr1q2THRKRVWm1Wvj7+8Pf3x9arVZ2OET/KO5uHBrMb4B/7/s3TMKEQTUHIW5UHJujF9DpdPDx8YGPj4+5UcoL1gkiZZGVk6wF9qPoGSStVotatWrhtddeQ69evWSHQ2QTKSkpskMg+kdZxix8ceALzNg7A5nGTBT1LIqfOv+EXtVYm+2BdYJIWWTlJGuBfSi6QerQoQM6dOggOwwim/H09MT58+fN20RKdPzOcQzfMByxCbEAgK5VumJu57ko4VNCbmAFBOsEkbLIyknWAvtRdIOUVwaDAQaDwfx9amqqxGiI/plarUalSpVkh0H0TBnZGZi+Zzq+PPAljMKIop5F8V2H79A/pD8/R2NHrBNEyiIrJ1kL7MepGqSIiAhMmzZNdhhERA7v4I2DeH3D6zh7/ywAoE/1Pvhvh/8iwDtAcmRERES2pehFGvJq4sSJSElJMX/duHFDdkhEL5SVlYUffvgBP/zwA7KysmSHQwRtphbvb30fTRY0wdn7Z1HSpySi+kZh5asr2RxJwjpBpCyycpK1wH4c5kaxKpUKUVFR6N69e65fwxvFktJptVr4+Dy6Z0x6ejq8vb0lR0QF2Y7LO/DmxjdxJfkKAGBY7WGY1XYWCnsWlhyZY7M0z1kniJRFVk6yFliON4olcgAuLi549dVXzdtEMiRqEzEuehyWxy0HAJTzK4e5neeiXXA7yZE5B0vznHWCSFlk5SRrgf0oegYpPT0dFy9eBADUqVMHs2bNQosWLVCkSBGUK1fuH1/PGSQiouczCRPmH5uPj3Z8hOSMZKigwrv138W/W/4bvu6+ssMjIiKyKqeYQfrzzz/RokUL8/fjxo0DAAwdOhSLFi2SFBURkeM7lXgKb216CwdvHAQA1A2si586/4TQUqGSIyMiIpJL0Q1S8+bNoeAJLiIih6PL0mH6nun4z6H/INuUDR83H8xoMQPv1n8XrmpF/0ogIiKyC6daxY7I0eh0OpQuXRqlS5eGTqeTHQ45uS0XtqD67Or44sAXyDZlo3vV7oh/Ox7vN3yfzZENabVaqFQqqFQqaLXaPL+edYJIWWTlJGuB/fA3IpFEQgjcvn3bvE1kC1eSrmBs9FisP7ceAFC2UFl83/F7dK3SVXJklBusE0TKIisnWQvshw0SkUQeHh44fvy4eZvImnRZOnyx/wt8ceALGIwGuKhcMKbBGExrMQ0+bj6yw6NcYp0gUhZZOclaYD+KXsXOUlzFjogKIiEEos5GYWz0WFxPuQ4AaBXUCt91+A7VileTHF3Bw3uXEBEpg1OsYkdERHlz5t4ZvLf1Pey4vAPAo8vpZrWbhV4v94JKpZIcHRERkfKxQSKSKCsrC8uXP7o558CBA6HRaCRHRI4q1ZCK6Xum49s/vkW2KRvuLu6Y0GgCPm7yMbzdOGPhyFgniJRFVk6yFtgPL7EjkoiX3pClsk3Z+PnYz/jXrn/hnu4eAKBL5S74ut3XqFikouToCLA8z1kniJRFVk6yFliOl9gROQAXFxd07NjRvE2UF1svbsUH2z5A/L14AEDlopXxdbuv0bFSR8mR0d9ZmuesE0TKIisnWQvshzNIREQO5lTiKYzfNh7Rl6IBAEU8i2DqK1MxMnQkNC685IKIiOhZOINERORk7qbfxSe7PsH84/NhEiZo1BqMrj8aU5pNQWHPwrLDIyIicgpskIiIFE6bqcW3f3yLiP0RSM9MBwD0erkXvmj9BT9nREREZGVq2QEQFWQ6nQ6VKlVCpUqVoNPpZIdDCpNlzMKco3MQ/N9gTN45GemZ6QgtFYq9w/ZidZ/VbI4chFarhbe3N7y9vaHVavP8etYJImWRlZOsBfbDGSQiiYQQuHjxonmbCABMwoRVp1dhys4puJR0CQAQ5B+EGS1moH+N/lCr+N6Wo7HkjxnWCSJlkZWTrAX2wwaJSCIPDw/s37/fvE0FmxAC0ZeiMfH3iYhNiAUABHgH4JNmn2BEvRFwc3GTGyBJwTpBpCyycpK1wH64ih0RkQIcvnkYH+/4GHuu7QEAFHIvhA8bfYgxDcfAx81HcnRkCd67hIhIGbiKHRGRA/jz9p+YtmcaNp3fBABwd3HH6Pqj8XGTj1HUq6jk6IiIiAoeNkhEEmVnZyMqKgoA0KNHD7i6MiULipjbMZi6Z6q5MXJRuWBY7WH49JVPUdavrOToSElYJ4iURVZOshbYDy+xI5KIl94UPDG3YzBtzzRsPL8RAKBWqTG45mBMaTYFwUWCJUdHtmBpnrNOECmLrJxkLbAcL7EjcgBqtRqvvPKKeZuc17E7xzBtzzRsOLcBwKPGaFDNQZjSdAoqFa0kOTqyJUvznHWCSFlk5SRrgf1wBomIyIYO3zyMiP0RORqjgTUGYkqzKahctLLk6IiIiAoOziAREUkihMD2y9sRsT8Cu6/uBvCoMRpQYwCmNJ2CKsWqyA2QiIiInosNEhGRlRhNRkSdjULE/ggcu3MMAKBRazC45mB82PhDNkZEREQOgA0SkUR6vR7h4eEAgEOHDsHT01NyRJQfmcZMLDu5DF8c+ALnH5wHAHhpvPBm3TcxLnwcV6Ur4LRaLSpUqAAAuHr1ap4/WM06QaQssnKStcB+2CARSWQymXDixAnzNjmW5IxkzD82H9/+8S1upt4EAPh7+GN0/dF4r8F7KOZVTHKEpBT379/P92tZJ4iURVZOshbYDxskIok8PDywbds28zY5hstJl/Ht4W+xIHYB0jPTAQCBPoEYFz4Ob9V7C77uvpIjJGfCOkGkLLJykrXAfriKHRFRLgghcODGAcw6NAvrzq6DwKPSWb14dYxtOBYDaw6Ehyt/YdHTeO8SIiJl4Cp2RERWkGXMwur41fj68Nc4evuo+fH2we0xruE4tH6pNVQqlcQIiYiIyJrYIBFJlJ2djejoaABAu3bt4OrKlFSKO2l3MP/YfPwU8xNupd0CALi7uGNIrSF4v+H7qFa8muQIqaBgnSBSFlk5yVpgP7zEjkgiXnqjLEII7Lu+Dz8c/QFrz6xFtikbABDgHYB3w97FyNCRKO5dXHKU5GgszXPWCSJlkZWTrAWW4yV2RA5ArVYjNDTUvE1ypBnSsOzkMsz+czZOJZ4yP964bGO8HfY2er3cC+6u7hIjJEdmaZ6zThApi6ycZC2wH84gEVGBdfLuScyNmYslJ5YgLTMNwKP7Fw2qMQijwkahdsnacgMkIiIiq+EMEhHRM6QaUrEibgV+Pv5zjkUXqhStgrfD3saQWkPg7+EvL0AiIiKSig0SETk9IQT2X9+Pn4//jF/jf4UuSwcA0Kg16FqlK0aFjkLLoJZcjY6IiIjYIBHJpNfr0bp1awDAjh074OnpKTki53I3/S4Wn1iMn4//jPMPzpsfr1a8Gl6v8zoG1xzMRRfI5nQ6HapVe7TqYXx8PLy8vPL0etYJImWRlZOsBfbDBolIIpPJhIMHD5q3yXK6LB3Wn12PZXHLEH0xGkZhBAB4a7zRL6QfXq/zOhqWacjZIrIbIQSuXbtm3s4r1gkiZZGVk6wF9sMGiUgid3d3REVFmbcpf4wmI3Zd3YVlJ5dhzZk1SM9MNz/XsExDvFHnDfSp3ge+7r4SoyTKH9YJImWRlZOsBfbDVeyIyGGdSDiBZSeX4ZdTv+B22m3z40H+QRhUcxAG1RyEykUrS4yQiPcuISJSCq5iR0RO6cy9M/g1/lesOr0Kp++dNj9e2KMw+lbvi0E1B6FR2Ua8hI6IiIjyhQ0SkURGoxH79u0DADRt2hQuLi6SI1Km5zVFbi5u6FK5CwbVHIQOwR14M1dySqwTRMoiKydZC+yHl9gRScRLb57vr6bo1/hfcSrxlPlxjVqDNhXboE+1PuhWtRvvWUSKZ2mes04QKYusnGQtsBwvsSNyACqVyrz8b0G/JMwkTDhy6wjWn12PDec3IP5evPm5vzdFXat0RWHPwhIjJcobS/OcdYJIWWTlJGuB/XAGiYik0WfpsfPKTqw/tx4bz29EQnqC+bm/mqLe1XqjW5VubIqIiIjIIpxBIiJFuqe9h80XNmP9ufWIvhQNXZbO/Fwh90LoENwBXat0RcdKHXn5HBEREdkdGyQisqlsUzaO3DqCLRe2YOulrYi5HQOB/01clylUBt2qdEPXKl3RvEJzuLm4SYyWiIiICjo2SEQS6fV6dO3aFQCwYcMGeHp6So7IOm6l3kL0pWhsvbgV2y9vR3JGco7na5esja6Vu6Jb1W6oU7IOr6Ump6bT6RAWFgYAOHr0KLy8vPL0emetE0SOSlZOshbYDxskIolMJhN27Nhh3nZUaYY07Lu+Dzuv7MT2y9tx8u7JHM8X9iiMthXbokNwB7St2BaBvoGSIiWyPyEE4uPjzdt55Sx1gshZyMpJ1gL7YYNEJJG7uzuWLVtm3nYU+iw9Dt44iJ1XdmLn1Z04eusojMJofl4FFcJKh6FDcAe0D26PsFJhcFHzfg1E+eGodYLIWcnKSdYC++EqdkT0j/RZehy9fRS7r+7Gzis7cejmIWQaM3Ps81Lhl9CyQku0DGqJNhXboJhXMUnREikL711CRKQMXMWOiPLtnvYeDtw4gP3X9+PAjQOIuR2DLFNWjn1K+5ZGy6BHDVGLCi1Q3r+8pGiJiIiIrIcNEpFERqMRx44dAwDUrVsXLi72vwzNJEw4/+A8Dlw/YG6KLjy88NR+gT6BaFq+qXmWKLhIMBdXILIDJdQJIvofWTnJWmA/bJCIJMrIyED9+vUB2O/Sm1upt3Dk1hEcvX300deto0gxpDy1X/Xi1dGkXBM0LtsYTco1QQX/CmyIiCSQUSeI6Plk5SRrgf2wQSKSSKVSoXz58uZta3uge4CYOzE4eusojtw+gqO3juJO+p2n9vNw9UD90vXRuGxjNC7bGOFlw1HEs4jV4yEqiCzNc1vXCSLKG1k5yVpgP1ykgcgJmIQJFx9exImEEzhx9wRiE2Jx4u4J3Ey9+dS+LioXhASEIKxUGMJKhyGsVBhCAkKgcdFIiJyIiIjIPrhIA5GTeqh/iDP3ziAuMc7cCMXdjYM2S/vM/YOLBCOsVBjql66PsFJhqBNYB16avN2okoiIiKigYINEpEBCCCSkJ+DM/TOIvxePM/fOIP7+o3/vau8+8zWerp4ICQhB7ZK1UatELdQqWQs1S9REIXfOnhIRERHlFhskIokepD7Aq31ehTZLiy6TuuBq+lWcuX8GZ+6fQXJG8nNfV86vHKoXr45aJWo9aohK1kKlIpV4M1YiBdLr9WjWrBkAYO/evfD09MzT6zMyMtCvXz8AQGRkJDw8PKweIxHlnqycZC2wH34GicjG9Fl6XEq6hAsPLuDCwwv/+/fhBdx+cBuY+XjHSQDc/vc6tUqNioUr4uXiL6NasWqP/i1eDVWLVYWPm4+MH4WI8sHSG8XyRrNEyiIrJ1kLLMfPIBHZiTZTi2sp13A1+SquJT/+N+V//yakJzz/xS6AV08vlPAugfDa4agSUAVVilZBteLVUKloJXi48t0hooLOzc0Nc+fONW8TkVyycpK1wH44g0T0HEIIpBhScDvtNm6n3cat1Fv/2067hRupN3A1+Sru6+7/47H8PfxRqUglVCpaCcGFg1GpaCXz91xOm8i58V1fIiJl4AwS0TMIIZBqSMU93T3c097DPd09JGoTzdsJ6Qm4lfa/RkiXpcvVcf3c/VDBvwIq+FdAeb/yj/71L2/+vohnEd6zgIiIiMgBKL5Bmj17Nr766ivcuXMH1atXxzfffIOmTZvKDoskMwkT0gxpSM5IRlJGEpIzkh9t65NyPPZA/8Dc/Pz1b6YxM0/nKuxRGKV8S6GUbymULlQapXwebZcpVMbcCPl7+Ofv5zCZcObMGQDAyy+/DLVana/jEJHzYp0gUhZZOclaYD+KbpBWrlyJ999/H7Nnz0bjxo3x008/oUOHDoiPj0e5cuVkh0e5YDQZkZGdYf4yGA3IyM6ALksHbaYW6ZnpT31ps579eHpmOlIMKUjSJyHFkAKTMOU7Lm+NN4p7F0dxr+II8A4wb5f0KfmoEfItjVK+pRDoG2jTewbp9XqEhIQA4KU3RPRsrBNEyiIrJ1kL7EfRDdKsWbPw+uuv44033gAAfPPNN4iOjsacOXMQEREhObrcyzRmYtP5TRBCQEDk+BfAU48JPH48F4/l9RhCCJiECdmmbPNXlikrx/cv+vr7vpnGzP81PtmGHI3QX81Qtinbpv9tPVw94O/hD38PfxT2KPzoX8/C8Hd/9FgRzyLm5qe49+NmyKs4PDV5W2bXlooVKyY7BCKyMUvznHWCSFlk5SRrgX0otkHKzMxETEwMPv744xyPt23bFgcPHnzmawwGAwwGg/n71NRUm8aYW9pMLXqt6iU7DOlc1a7wcPWAu4s7PDWe8HHzefpL879tbzfvHM95a7z/1wA9boocfZU3b29v3Lt3T3YYRGRDluY56wSRssjKSdYC+1Fsg3T//n0YjUaUKFEix+MlSpRAQsKzl02OiIjAtGnT7BFenmhcNGhSrgkAQAUVVCpVjn8BPPXYXx/oz81jeT2Gi8oFrmrXZ35p1JrnPvfkl5uLGzxcPXJ8ubu65/zexd38uKtasf+7EREREREBUHCD9JcnV/4SQjx3NbCJEydi3Lhx5u9TU1NRtmxZm8aXGz5uPtj32j7ZYRARERER0T9Q7PIXxYoVg4uLy1OzRYmJiU/NKv3F3d0dhQoVyvFFpGQZGRkYOHAgBg4ciIyMDNnhEJEN6PV6NG/eHM2bN4der8/z61kniJRFVk6yFtiPom8U26BBA9SrVw+zZ882P1atWjV069YtV4s08EaxpHS8gSSR87M0z1kniJRFVk6yFljOKW4UO27cOAwePBihoaEIDw/H3Llzcf36dYwcOVJ2aERW4ebmhq+//tq8TUT0JNYJImWRlZOsBfaj6Bkk4NGNYr/88kvcuXMHISEh+Prrr9GsWbNcvZYzSEREJBvf9SUiUobc9gaKb5AswQaJiIhkY4NERKQMTnGJHZGzM5lMuH79OgCgXLlyUKsVu24KEUnCOkGkLLJykrXAftggEUmk1+sRFBQEgO8sE9GzsU4QKYusnGQtsB82SESSeXl5yQ6BiGzM0jxnnSBSFlk5yVpgH2yQiCTy9vaGVquVHQYR2ZClec46QaQssnKStcB+ePEiERERERHRY2yQiIiIiIiIHmODRCSRwWDAiBEjMGLECBgMBtnhEJENZGRkoFOnTujUqRMyMjLy/HrWCSJlkZWTrAX2w/sgEUnE+6MQOT9L85x1gkhZZOUka4HleB8kIgeg0Wjw2WefmbeJiJ7EOkGkLLJykrXAfjiDREREZEN815eISBly2xvwM0hERERERESP8RI7IomEELh//z4AoFixYlCpVJIjIiKlYZ0gUhZZOclaYD9skIgk0ul0CAgIAMBLb4jo2VgniJRFVk6yFtiPUzdIf328KjU1VXIkRM/29ztip6amwmg0SoyGiGzB0jxnnSBSFlk5yVpgub96gn9agsGpF2m4efMmypYtKzsMIiIiIiJSiBs3bqBMmTLPfd6pGySTyYTbt2/D19dX+nWaqampKFu2LG7cuMEV9RwMx84xcdwcF8fOMXHcHBfHznFx7PJGCIG0tDSUKlUKavXz16pz6kvs1Gr1C7tDGQoVKsT/gR0Ux84xcdwcF8fOMXHcHBfHznFx7HLPz8/vH/fhMt9ERERERESPsUEiIiIiIiJ6jA2Snbi7u+PTTz+Fu7u77FAojzh2jonj5rg4do6J4+a4OHaOi2NnG069SAMREREREVFecAaJiIiIiIjoMTZIREREREREj7FBIiIiIiIieowNEhERERER0WNskOxg9uzZCAoKgoeHB+rVq4d9+/bJDqlA2bt3L7p06YJSpUpBpVJh3bp1OZ4XQmDq1KkoVaoUPD090bx5c5w+fTrHPgaDAaNHj0axYsXg7e2Nrl274ubNmzn2SUpKwuDBg+Hn5wc/Pz8MHjwYycnJNv7pnFdERATCwsLg6+uLgIAAdO/eHefOncuxD8dOmebMmYOaNWuab1wYHh6OLVu2mJ/nuDmGiIgIqFQqvP/+++bHOHbKNHXqVKhUqhxfJUuWND/PcVO2W7duYdCgQShatCi8vLxQu3ZtxMTEmJ/n+EkgyKYiIyOFRqMR8+bNE/Hx8WLMmDHC29tbXLt2TXZoBcbmzZvF5MmTxZo1awQAERUVleP5zz//XPj6+oo1a9aIuLg40bdvXxEYGChSU1PN+4wcOVKULl1abN++XRw7dky0aNFC1KpVS2RnZ5v3ad++vQgJCREHDx4UBw8eFCEhIaJz5872+jGdTrt27cTChQvFqVOnRGxsrOjUqZMoV66cSE9PN+/DsVOmDRs2iN9++02cO3dOnDt3TkyaNEloNBpx6tQpIQTHzREcOXJEVKhQQdSsWVOMGTPG/DjHTpk+/fRTUb16dXHnzh3zV2Jiovl5jptyPXz4UJQvX14MGzZM/PHHH+LKlStix44d4uLFi+Z9OH72xwbJxurXry9GjhyZ47GqVauKjz/+WFJEBduTDZLJZBIlS5YUn3/+ufmxjIwM4efnJ3788UchhBDJyclCo9GIyMhI8z63bt0SarVabN26VQghRHx8vAAgDh8+bN7n0KFDAoA4e/asjX+qgiExMVEAEHv27BFCcOwcTeHChcX8+fM5bg4gLS1NVKpUSWzfvl288sor5gaJY6dcn376qahVq9Yzn+O4KdtHH30kmjRp8tznOX5y8BI7G8rMzERMTAzatm2b4/G2bdvi4MGDkqKiv7ty5QoSEhJyjJG7uzteeeUV8xjFxMQgKysrxz6lSpVCSEiIeZ9Dhw7Bz88PDRo0MO/TsGFD+Pn5caytJCUlBQBQpEgRABw7R2E0GhEZGQmtVovw8HCOmwN455130KlTJ7Ru3TrH4xw7Zbtw4QJKlSqFoKAg9OvXD5cvXwbAcVO6DRs2IDQ0FL1790ZAQADq1KmDefPmmZ/n+MnBBsmG7t+/D6PRiBIlSuR4vESJEkhISJAUFf3dX+PwojFKSEiAm5sbChcu/MJ9AgICnjp+QEAAx9oKhBAYN24cmjRpgpCQEAAcO6WLi4uDj48P3N3dMXLkSERFRaFatWocN4WLjIzEsWPHEBER8dRzHDvlatCgAZYsWYLo6GjMmzcPCQkJaNSoER48eMBxU7jLly9jzpw5qFSpEqKjozFy5Ei89957WLJkCQDmnSyusgMoCFQqVY7vhRBPPUZy5WeMntznWftzrK3j3XffxcmTJ7F///6nnuPYKVOVKlUQGxuL5ORkrFmzBkOHDsWePXvMz3PclOfGjRsYM2YMtm3bBg8Pj+fux7FTng4dOpi3a9SogfDwcFSsWBGLFy9Gw4YNAXDclMpkMiE0NBQzZ84EANSpUwenT5/GnDlzMGTIEPN+HD/74gySDRUrVgwuLi5PdeaJiYlPvRNAcvy1ys+LxqhkyZLIzMxEUlLSC/e5e/fuU8e/d+8ex9pCo0ePxoYNG7Br1y6UKVPG/DjHTtnc3NwQHByM0NBQREREoFatWvj22285bgoWExODxMRE1KtXD66urnB1dcWePXvw3XffwdXV1fzflWOnfN7e3qhRowYuXLjAnFO4wMBAVKtWLcdjL7/8Mq5fvw6Av+tkYYNkQ25ubqhXrx62b9+e4/Ht27ejUaNGkqKivwsKCkLJkiVzjFFmZib27NljHqN69epBo9Hk2OfOnTs4deqUeZ/w8HCkpKTgyJEj5n3++OMPpKSkcKzzSQiBd999F2vXrsXOnTsRFBSU43mOnWMRQsBgMHDcFKxVq1aIi4tDbGys+Ss0NBQDBw5EbGwsXnrpJY6dgzAYDDhz5gwCAwOZcwrXuHHjp25hcf78eZQvXx4Af9dJY88VIQqiv5b5/vnnn0V8fLx4//33hbe3t7h69ars0AqMtLQ0cfz4cXH8+HEBQMyaNUscP37cvNT6559/Lvz8/MTatWtFXFyc6N+//zOXzyxTpozYsWOHOHbsmGjZsuUzl8+sWbOmOHTokDh06JCoUaMGl8+0wKhRo4Sfn5/YvXt3jqVrdTqdeR+OnTJNnDhR7N27V1y5ckWcPHlSTJo0SajVarFt2zYhBMfNkfx9FTshOHZK9cEHH4jdu3eLy5cvi8OHD4vOnTsLX19f898aHDflOnLkiHB1dRX//ve/xYULF8Ty5cuFl5eXWLZsmXkfjp/9sUGygx9++EGUL19euLm5ibp165qXKSb72LVrlwDw1NfQoUOFEI+W0Pz0009FyZIlhbu7u2jWrJmIi4vLcQy9Xi/effddUaRIEeHp6Sk6d+4srl+/nmOfBw8eiIEDBwpfX1/h6+srBg4cKJKSkuz0UzqfZ40ZALFw4ULzPhw7ZRo+fLi55hUvXly0atXK3BwJwXFzJE82SBw7ZfrrvjgajUaUKlVK9OzZU5w+fdr8PMdN2TZu3ChCQkKEu7u7qFq1qpg7d26O5zl+9qcSQgg5c1dERERERETKws8gERERERERPcYGiYiIiIiI6DE2SERERERERI+xQSIiIiIiInqMDRIREREREdFjbJCIiIiIiIgeY4NERERERET0GBskIiIiIiKix9ggERGRYg0bNgzdu3c3f9+8eXO8//77Nj1nZmYmgoODceDAAQDA1atXoVKpEBsba9XzfP/99+jatatVj0lERJZjg0RERBYZNmwYVCoVVCoVXF1dUa5cOYwaNQpJSUlWP9fatWsxY8YMqx/37+bOnYvy5cujcePGNj3PiBEjcPToUezfv9+m5yEiov9v725DmlzDOID/J4ovmzqykQsjV1OTUlosaiGlFRkqQhYb7YO4SipxWRaJQYUIZZFW6gdjFWFFuIikonKfKsXeLEZv9DJrGbhPjQprS9s8H87O6DlunWqzzuH8f5+257qf67qf58u4uO/n2Y9hg0RERCFbvnw5HA4H7HY7jh49iosXL6KioiLsdSZMmID4+Piw5/1aS0sL1q1bN641ACA6Ohp6vR4tLS3jXouIiL4fGyQiIgpZdHQ0kpOTkZKSgmXLlkGn08FisfjjHo8Ha9euhUKhQGxsLDIyMnD48GFBDo/Hg+rqakilUiQlJWH79u0YHR0VjPn7FjuRSITOzk7BGKlUihMnTgD4c7tcZWUl5HI5YmJikJqair179wa9jvv378Nms6GwsDDoGK/Xi/LycqSnp+P169f+eRw5cgRFRUWIi4tDZmYmbt68CZvNhtzcXIjFYmg0GvT39wtyFRcXo7OzEy6XK2g9IiL6tdggERFRWL18+RJXr15FVFSU/5jX60VKSgrMZjOePHmCXbt2YceOHTCbzf4xjY2NOH78OI4dO4aenh44nU6cP38+pLk0NzfjwoULMJvNePbsGU6dOoXU1NSg42/cuIH09HQkJCQEjA8PD0Or1aKvrw89PT2YOnWqP1ZfX4/S0lJYrVbMmDEDer0e69evR21tLfr6+gAAlZWVgnxqtRojIyO4c+dOSNdJREThE/m7J0BERP99ly5dgkQigcfjgdvtBgA0NTX541FRUairq/N/VygU6O3thdlshlarBQAcOnQItbW1WLlyJQCgra0NXV1dIc1rYGAAaWlpyMnJgUgkEjQ0gdjtdkyePDlgbGhoCIWFhXC5XLh27RoSExMFcYPB4L+WmpoaaDQa7Ny5E/n5+QCAqqoqGAwGwTlisRhSqRR2ux2LFi362cskIqIw4goSERGFLC8vD1arFbdv34bRaER+fj6MRqNgTFtbG9RqNWQyGSQSCUwmEwYGBgAA79+/h8PhgEaj8Y+PjIyEWq0OaV5lZWWwWq3IyMjApk2bBNv+AnG5XIiJiQkYW716NYaGhmCxWMY0RwCQnZ3t/zxp0iQAQFZWluCY2+3Ghw8fBOfFxsbi06dP331NREQ0vtggERFRyMRiMZRKJbKzs9Hc3IzPnz8LVozMZjO2bNmCNWvWwGKxwGq1wmAwYHh4OKS6IpFozHNKIyMj/s9z5szBq1evUF9fD5fLBa1Wi1WrVgXNN3HixKBv3ysoKMCDBw9w69atgPGvtxSKRKKgx7xer+A8p9MJmUwWdE5ERPRrsUEiIqKw2717Nw4cOIDBwUEAQHd3NxYsWICKigqoVCoolUrBCwsSExMhl8sFzceXL19w7969b9aRyWRwOBz+7y9evBizGpOQkACdTgeTyYSOjg6cO3cOTqczYD6VSoWnT5+OaboAYOPGjWhoaEBxcTGuX7/+zzfhO/T398PtdkOlUoUlHxERhY7PIBERUdjl5uZi5syZ2LNnD1pbW6FUKtHe3o6uri4oFAqcPHkSd+/ehUKh8J9TVVWFhoYGpKWlITMzE01NTXj37t036yxevBitra2YP38+vF4vampqBKs2Bw8ehFwux+zZsxEREYGzZ88iOTkZUqk0YL68vDx8/PgRjx8/xqxZs8bEjUYjPB4PioqKcOXKFeTk5PzU/flLd3c3pk2bhunTp4eUh4iIwocrSERENC6qq6thMpnw5s0bbNiwASUlJdDpdJg3bx7evn075n+Stm7ditLSUpSVlUGj0SA+Ph4rVqz4Zo3GxkZMmTIFCxcuhF6vx7Zt2xAXF+ePSyQS7Nu3D2q1GnPnzoXdbsfly5cRERH45y8pKQklJSU4ffp00JqbN29GXV0dCgoK0Nvb+wN3ZKwzZ86gvLw8pBxERBReotFA+wiIiIj+px4+fIilS5fCZrON65/SPnr0CEuWLMHz588DvvSBiIh+D64gERERfSUrKwv79++H3W4f1zqDg4Nob29nc0RE9C/DFSQiIiIiIiIfriARERERERH5sEEiIiIiIiLyYYNERERERETkwwaJiIiIiIjIhw0SERERERGRDxskIiIiIiIiHzZIREREREREPmyQiIiIiIiIfNggERERERER+fwBrfNIjunhWqAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(\"Mass of the Earth is:\", prem.mass(prem.r_earth), \"kg\")\n", - "print(\"Earth's moment of inertia is: \", prem.moment_of_inertia(prem.r_earth)[0], \"kg m^2\")\n", - "print(\"I/MR**2:\", prem.moment_of_inertia(prem.r_earth)[1])\n", - "\n", - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(0, 6371, 0.5)\n", - "ax.plot(rs, prem.mass(rs)/1e24, 'g')\n", - "\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Mass inside radius ($10^{24}$ kg)')\n", - "\n", - "ax.axvline(1221.5, ls=':', c='k')\n", - "ax.axvline(3480, ls='--', c='k')\n", - "ax.axvline(3630, ls=':', c='k')\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Gravity and pressure\n", - "\n", - "$$g(r) = \\frac{G M(r)}{r^2} $$\n", - "\n", - "$$P(r) = \\int_{R_e}^r -g(r) \\rho(r) \\,\\mathrm{d}r $$" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Surface gravity: 9.821911198154556 m/s^2\n", - "Pressure at center of Earth: 364.090030472167 GPa\n", - "Pressure at CMB: 135.83753335912658 GPa\n", - "Gravitational potential at surface: -62.57539624344266 MJ/kg\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAI1CAYAAAB7Ub/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADZJklEQVR4nOzdd1hT5/s/8HfYG0RZogKK2iruVfcCVMAtbuuq1jpbVx1t1bZq1Q4/rda6ceEWBEUBRQXU1oED3AsniINNIJCc3x/8zLfUCQmchLxf15XLkJzznDuePDfcZzyPRBAEAUREREREREQA9MQOgIiIiIiIiDQHi0QiIiIiIiJSYpFIRERERERESiwSiYiIiIiISIlFIhERERERESmxSCQiIiIiIiIlFolERERERESkxCKRiIiIiIiIlFgkEhERERERkRKLRCIi0jmJiYmQSCS4ePFisdeNiorCRx99BIVCAQCYP38+GjZsqN4AATRr1gz79u1Te7tERETvwyKRiIjK1IgRIyCRSCCRSGBoaAgHBwd4eXlhw4YNysJL3dvr1auX2tqbOXMm5s6dCz290v0V+u2332LWrFml8n9CRET0LiwSiYiozHXt2hVJSUlITEzEoUOH0LFjR0yZMgV+fn4oKCgQO7y3OnXqFG7dugV/f/9S35avry/S09MRHh5e6tsiIiL6NxaJRERU5oyNjeHo6AhnZ2c0btwYc+bMwf79+3Ho0CEEBAQol0tPT8fYsWNhb28PKysrdOrUCZcuXVK+/+pSz9WrV6Nq1aowMzODv78/0tLSlO9v2rQJ+/fvV569PH78uHL9u3fvomPHjjAzM0ODBg1w+vTpd8a9Y8cOeHt7w8TE5K3L3Lt3D+7u7vjiiy+gUCgQEBAAGxsbHDhwALVr14aZmRn69euH7OxsbNq0Ca6urqhQoQImTZoEuVyubEdfXx8+Pj7Yvn178f5ziYiIVMQikYiINEKnTp3QoEED5X14giDA19cXycnJCAsLw/nz59G4cWN07twZL1++VK53+/Zt7Nq1C6GhoTh8+DAuXryICRMmAACmT5+O/v37K89cJiUloVWrVsp1586di+nTp+PixYuoVasWBg0a9M4zmdHR0WjatOlb309ISEDr1q3h7++PVatWKS9JzcnJwe+//44dO3bg8OHDOH78OPr06YOwsDCEhYVhy5YtWLNmDfbs2VOkvebNmyMmJqb4/5lEREQqMBA7ACIiolc++ugjXL58GQBw7NgxxMfHIyUlBcbGxgCAn3/+GcHBwdizZw/Gjh0LAMjNzcWmTZtQpUoVAMAff/wBX19f/PLLL3B0dISpqSny8vLg6Oj42vamT58OX19fAMCCBQtQt25d3L59Gx999NEb40tMTETlypXf+N7p06fh5+eH2bNnY/r06UXey8/Px6pVq1CjRg0AQL9+/bBlyxY8ffoUFhYWqFOnDjp27Ihjx45hwIAByvWcnZ3x4MEDKBSKUr8HkoiI6BX+xiEiIo0hCAIkEgkA4Pz588jKykLFihVhYWGhfNy7dw937txRrlOtWjVlgQgALVu2hEKhwI0bN967vfr16yufOzk5AQBSUlLeurxUKn3jpaYPHjyAp6cnvvnmm9cKRAAwMzNTFogA4ODgAFdXV1hYWBR57b/bNjU1hUKhQF5e3ns/CxERkbrwTCIREWmMa9euwc3NDQCgUCjg5ORU5B7CV2xsbN7axqsi89W/72JoaPjaeu8aTbRSpUpITU197XU7OztUrlwZO3bswOjRo2FlZfXW7bza1pte+++2X758CTMzM5iamr73sxAREakLzyQSEZFGiIqKQnx8PPr27QsAaNy4MZKTk2FgYAB3d/cij0qVKinXe/DgAZ48eaL8+fTp09DT00OtWrUAAEZGRkUGhFFFo0aNcPXq1ddeNzU1xYEDB2BiYoIuXbogMzNTLdtLSEhA48aN1dIWERHRh2KRSEREZS4vLw/Jycl4/Pgx4uLisGjRIvTs2RN+fn749NNPAQCenp5o2bIlevXqhfDwcCQmJuLUqVP45ptvcO7cOWVbJiYmGD58OC5duoSYmBhMnjwZ/fv3V96D6OrqisuXL+PGjRt4/vw58vPzSxx3ly5dEBsb+8b3zM3NcfDgQRgYGKBbt27Iysoq8XZeiYmJgbe3t8rtEBERFQeLRCIiKnOHDx+Gk5MTXF1d0bVrVxw7dgy///479u/fD319fQCFl1+GhYWhXbt2GDVqFGrVqoWBAwciMTERDg4Oyrbc3d3Rp08f+Pj4wNvbGx4eHvjzzz+V748ZMwa1a9dG06ZNYWdnh5MnT5Y47qFDh+Lq1atvvd/RwsIChw4dgiAI8PHxQXZ2dom39fjxY5w6dQojR44scRtEREQlIREEQRA7CCIiopKYP38+goODcfHixTLb5syZM5Geno7Vq1eX6nZmzJiB9PR0rFmzplS3Q0RE9F88k0hERFQMc+fOhYuLi9ruc3wbe3t7/PDDD6W6DSIiojfh6KZERETFYG1tjTlz5pT6dmbMmFHq2yAiInoTXm5KRERERERESrzclIiIiIiIiJRYJBIREREREZESi0QiIiIiIiJSYpGogx4/foyhQ4eiYsWKMDMzQ8OGDXH+/Hnl+4IgYP78+ahcuTJMTU3RoUMHXLlypUgbeXl5mDRpEipVqgRzc3P06NEDjx49KrJMamoqhg0bBmtra1hbW2PYsGFIS0sri49YLs2fPx8SiaTI49Vk4QD3m7ZYvHgxJBIJvvzyS+Vr3HeaadWqVahfvz6srKxgZWWFli1b4tChQ8r3ud801+LFi9GsWTNYWlrC3t4evXr1em1uS+4/zRQdHY3u3bujcuXKkEgkCA4OLvI+91v58+eff8LNzQ0mJiZo0qQJYmJixA6JAEAgnfLy5UvBxcVFGDFihPDPP/8I9+7dE44cOSLcvn1bucxPP/0kWFpaCnv37hXi4+OFAQMGCE5OTkJGRoZymXHjxgnOzs5CZGSkEBcXJ3Ts2FFo0KCBUFBQoFyma9eugoeHh3Dq1Cnh1KlTgoeHh+Dn51emn7c8mTdvnlC3bl0hKSlJ+UhJSVG+z/2m+c6cOSO4uroK9evXF6ZMmaJ8nftOM4WEhAgHDx4Ubty4Idy4cUOYM2eOYGhoKCQkJAiCwP2mybp06SJs3LhRSEhIEC5evCj4+voK1apVE7KyspTLcP9pprCwMGHu3LnC3r17BQBCUFBQkfe538qXHTt2CIaGhsLatWuFq1evClOmTBHMzc2F+/fvix2azmORqGO+/vproU2bNm99X6FQCI6OjsJPP/2kfC03N1ewtrYW/vrrL0EQBCEtLU0wNDQUduzYoVzm8ePHgp6ennD48GFBEATh6tWrAgDh77//Vi5z+vRpAYBw/fp1dX8snTBv3jyhQYMGb3yP+03zZWZmCjVr1hQiIyOF9u3bK4tE7jvtUqFCBWHdunXcb1omJSVFACCcOHFCEAT2O23x3yKR+638ad68uTBu3Lgir3300UfCrFmzRIqIXuHlpjomJCQETZs2hb+/P+zt7dGoUSOsXbtW+f69e/eQnJwMb29v5WvGxsZo3749Tp06BQA4f/488vPziyxTuXJleHh4KJc5ffo0rK2t0aJFC+Uyn3zyCaytrZXLUPHdunULlStXhpubGwYOHIi7d+8C4H7TBhMmTICvry88PT2LvM59px3kcjl27NiB7OxstGzZkvtNy6SnpwMAbG1tAbDfaSvut/JFJpPh/PnzRfYVAHh7e3M/aAAWiTrm7t27WLVqFWrWrInw8HCMGzcOkydPxubNmwEAycnJAAAHB4ci6zk4OCjfS05OhpGRESpUqPDOZezt7V/bvr29vXIZKp4WLVpg8+bNCA8Px9q1a5GcnIxWrVrhxYsX3G8abseOHYiLi8PixYtfe4/7TrPFx8fDwsICxsbGGDduHIKCglCnTh3uNy0iCAKmTp2KNm3awMPDAwD7nbbifitfnj9/Drlc/s79SeIxEDsAKlsKhQJNmzbFokWLAACNGjXClStXsGrVKnz66afK5SQSSZH1BEF47bX/+u8yb1r+Q9qhN+vWrZvyeb169dCyZUvUqFEDmzZtwieffAKA+00TPXz4EFOmTEFERARMTEzeuhz3nWaqXbs2Ll68iLS0NOzduxfDhw/HiRMnlO9zv2m+iRMn4vLly4iNjX3tPe4/7cT9Vr6UZH9S6eOZRB3j5OSEOnXqFHnt448/xoMHDwBAOVrmf4/gpKSkKI/0ODo6QiaTITU19Z3LPH369LXtP3v27LUjRlQy5ubmqFevHm7dusX9psHOnz+PlJQUNGnSBAYGBjAwMMCJEyfw+++/w8DAQPn/yn2nmYyMjODu7o6mTZti8eLFaNCgAf73v/+xz2mJSZMmISQkBMeOHUOVKlWUr3P/aSfut/KlUqVK0NfXf+f+JPGwSNQxrVu3fm0Y8Js3b8LFxQUA4ObmBkdHR0RGRirfl8lkOHHiBFq1agUAaNKkCQwNDYssk5SUhISEBOUyLVu2RHp6Os6cOaNc5p9//kF6erpyGVJNXl4erl27BicnJ+43Dda5c2fEx8fj4sWLykfTpk0xZMgQXLx4EdWrV+e+0yKCICAvL499TsMJgoCJEydi3759iIqKgpubW5H3uf+0E/db+WJkZIQmTZoU2VcAEBkZyf2gCcpylBwS35kzZwQDAwNh4cKFwq1bt4Rt27YJZmZmwtatW5XL/PTTT4K1tbWwb98+IT4+Xhg0aNAbh5euUqWKcOTIESEuLk7o1KnTG4eXrl+/vnD69Gnh9OnTQr169Ti8tAqmTZsmHD9+XLh7967w999/C35+foKlpaWQmJgoCAL3mzb59+imgsB9p6lmz54tREdHC/fu3RMuX74szJkzR9DT0xMiIiIEQeB+02RffPGFYG1tLRw/frzItEE5OTnKZbj/NFNmZqZw4cIF4cKFCwIA4ddffxUuXLignBKB+618eTUFxvr164WrV68KX375pWBubq7824bEwyJRB4WGhgoeHh6CsbGx8NFHHwlr1qwp8r5CoRDmzZsnODo6CsbGxkK7du2E+Pj4IstIpVJh4sSJgq2trWBqair4+fkJDx48KLLMixcvhCFDhgiWlpaCpaWlMGTIECE1NbW0P1659WouKENDQ6Fy5cpCnz59hCtXrijf537THv8tErnvNNOoUaMEFxcXwcjISLCzsxM6d+6sLBAFgftNkwF442Pjxo3KZbj/NNOxY8feuO+GDx8uCAL3W3m0cuVKZa5t3LixcqoaEpdEEARBnHOYREREREREpGl4TyIREREREREpsUgkIiIiIiIiJRaJREREREREpMQikYiIiIiIiJRYJBIREREREZESi0QiIiIiIiJSYpFIxZKXl4f58+cjLy9P7FCoGLjftBf3nfbivtNO3G/ai/tOO3G/aSbOk0jFkpGRAWtra6Snp8PKykrscOgDcb9pL+477cV9p52437QX95124n7TTDyTSEREREREREosEomIiIiIiEjJQOwAxJafn4/Y2FjY29tDT4818/tkZWUBAG7cuAELCwuRo6EPxf2mvbjvtBf3nXbiftNe3HfaSdP2m0KhQEpKCtq0aQNDQ0OxwxGNzt+TeOzYMXTq1EnsMIiIiIiISENERUWhY8eOYochGp0/k1i9enUAhV8ER0dHkaMhel1BQQGOHz8OAOjQoQMMDHS+2xKVOwUFBdi1axcAoH///sXu58wTRJpFrD7JXKC65ORkdOrUSVkj6CqdP5P46NEjVK1aFQ8fPkSVKlXEDofoNdnZ2crLL7KysmBubi5yRESkbqr2c+YJIs0iVp9kLlAda4NCPLxApOH09PTQqlUr5XMiov9iniDSLGL1SeYCUhcWiUQaztTUFCdPnhQ7DCLSYMwTRJpFrD7JXEDqwkMMREREREREpMQikYiIiIiIiJRYJBJpOKlUimbNmqFZs2aQSqVih0NEGoh5gkiziNUnmQtIXXhPIpGGUygUOHfunPI5EdF/MU8QaRax+iRzAakLi0QiDWdsbIwDBw4onxNR+aNqP2eeINIsYvVJ5gJSF86TyLlQiIiIiIgIrA1e4T2JREREREREpMTLTYk0nFwuR1RUFACgU6dO0NfXFzkiIlK3/Px8bNu2DQAwZMgQGBoaFmt95gkizSJWn2QuIHXh5aY8pUwaLjs7GxYWFgCArKwsmJubixwREambqv2ceYJIs4jVJ5kLVMfaoBDPJBJpOD09PTRo0ED5nIjov5gniDSLWH2SuYDUhUUikYYzNTXFxYsXxQ6DiDQY8wSRZhGrTzIXkLrwEAMREREREREpsUgkIiIiIiIiJRaJRBpOKpWiQ4cO6NChA6RSqdjhEJEGYp4g0ixi9UnmAlIX3pOoIdJy03Dk7hEY6BkoH4Z6hkV+NjU0hYWRhfJhamAKiUQiduhUyhQKBU6cOKF8TkT0X8wTRJpFrD7JXEDqwiJRQySmJcJ/t3+x1tGT6CkLRhsTG1QyqwQ7MztUMqtU5LmjhSOqWFVBFasqMDfiUMjaxtjYGLt27VI+J6LyJTs7G59//jkAwNDQEHPnzsXs2bPh4ODwwW0wTxBpFrH6JHMBqQvnSdSQuVBuPL+BsQfGIl+ejwJFwWuPfEU+pPlSZMmykJ2fXeLtVDCpgCpWVVDVuiqqWFaBq40r3G3dUbNiTbjbusPCyEKNn4qIiN7l1q1b6NOnDxISEoq8bmpqivHjx2PmzJmwt7cXKToiIt2jKbWB2FgkauEXQSEokJOfgyxZFrJkWcjMy0Rqbiqe5zzHs+xneJ7zvPB5zjM8y3mGpMwkPMx4iCxZ1nvbdrRwRE3bwoKxdsXaqOdQDx72HqhqVZWXthIRqdH+/fvx6aefIiMjA46Ojti9ezeysrIwb948nDlzBgBgZmaG8ePHY8aMGSwWiYjKgDbWBqWBRaIOfREy8jLwMP0hHmU8wqOMR3iY8RB3U+/i9svbuPXyFp7nPH/rutbG1vCw94CHvQfq2ddDfYf6aOzUmJevlgG5XI6///4bAPDJJ59AX19f5IiISBVyuRzfffcdFi1aBABo06YNAgMDlf28V69eOHLkCObNm4ezZ88CAExMTDBy5EhMmzYNNWrUeGObzBNEmkOsPslcoDpdqg3ehUUivwhKablpuP3ydmHR+OIWrj6/ioSUBFx/fh0FioLXlteT6OHjSh+jmXMzNKtc+KjvUB/GBrwGXp2ys7NhYVF4GXBWVhbMzVmYE2mrFy9eYPDgwYiIiAAATJkyBcuWLYNMJnutnwuCgEOHDmHBggXKM4t6enro168fZs6ciSZNmijbZZ4g0ixi9UnmAtWxNijEgWtIycbEBk0rN0XTyk2LvC6Ty3Dj+Q0kpCQgPiUe8SnxuJB0AY8zH+PKsyu48uwKAi4GAAAM9QzRwLEB2lRtg7YubdGmWhvYm/MSKVVIJBK4u7srnxORdjp//jz69u2L+/fvw8zMDOvWrcOgQYMAADKZ7LXlJRIJfHx80K1bN5w4cQJLly7FoUOHsGvXLuzatQudO3fGjBkz4OXlxTxBpGHE6pPMBaQuPJPIowUllpSZhHNPzuHsk7OFj8dn8UL64rXlalesjbbVCgvGdi7t4FbBTYRoiYjEs2HDBowfPx55eXlwd3fHvn37UK9ePeX7H3r0//Lly1i2bBm2b98OuVwOAKhVqxYmTpyI4cOHw8rKqvQ/DBFROcbaoBCLRH4R1EYQBNxPv4/TD08j5kEMYh7EICEl4bXl3Gzc4FXdC141vNDJrRNsTW1FiJaIqPTl5eVh8uTJWLNmDQCge/fu2Lx5M2xsbIosV9xLxO7fv4/ly5djw4YNyMjIAABYWFhg+PDhmDBhAj7++GP1fxgiIh3A2qAQi0R+EUrVS+lLnHxwErEPYhHzIAZnn5wtcn+jBBI0rdxUWTS2qtoKRvpGIkZMRKQeDx8+RL9+/XDmzBlIJBL88MMPmD17NvT09F5btqT3EWVmZmLLli1YsWIFrl27pnzd09MTY8aMQc+ePTlXGhFRMbA2KMQikV+EMpUly8KJxBOIvBuJyLuRuPrsapH3rYyt0NW9K7rX6o5u7t1Q0ayiSJFqjtzcXPTt2xcAsHfvXpiYmIgcERG9T2xsLPr27YuUlBTY2toiMDAQXbp0eevyqg42IZVK0aFDB9y/fx8pKSl49au9YsWKGDZsGEaPHg0PD4+SfyAiKhaxfnfzbwbVsTYoxCKRXwRRPc54jCN3jyiLxpTsFOV7ehI9tK7aGt1rdUeP2j1Qu1JtESMVD0cqI9Iuq1evxqRJk5Cfn48GDRogKCgIbm7vvhdb1X7+7/WvXLmCwMBABAQE4PHjx8plmjdvjtGjR2PgwIG8d5GolHF0U+3F2qAQi0R+ETSGQlDg7OOzCLkRgtCboYhPiS/yfu2KtdG/bn/41/GHh72HzozalZ+fj23btgEAhgwZAkNDQ5EjIqI3kclkmDJlCv766y8AQP/+/bFhw4YP+iNN1X7+pvXlcjnCw8Oxfv16hISEoKCg8FJ/ExMT+Pn5YfDgwejWrRvPNBCVArF+d/NvBtWxNijEIpFfBI2VmJaIAzcPIORGCI4nHke+Il/5nq4WjESkmVJSUtCvXz/ExMRAIpFg4cKFmDVrlsbkppSUFGzZsgUbNmzA1av/d5m/tbU1+vbti8GDB6NDhw6ceJuIdB5rg0IsEvlF0ArpuekIvRmK3Vd34/Dtw5DJ/29OsVcF49D6Q1GrYi0RoyQiXRQXF4devXrh4cOHsLKyQmBgIHx9fcUO640EQcClS5cQGBiI7du349GjR8r3HB0d0bdvX/Tp0wft2rWDgQGnUiYi3VOc2mDV2VVYdW4VEtMSAQB17eviu3bfoVvNbgCAEcEjsOnSpiLrtHBugb8/+1v5c15BHqZHTMf2hO2QFkjR2a0z/vT9E1WsxK1LWCSySNQ67yoYWzi3wKcNPsWAugPKzaA3crkc8fGFl97Wq1ePR/qJNMj27dsxatQo5ObmolatWti/fz8++uijYrdTUFCA8PBwAECXLl2KXaCVJE8oFArExsYiMDAQu3fvxsuXL5Xv2draokePHujduze8vLxgamparHiIdJ1Yv7v5N4PqilMbhN4Ihb6ePtxt3QEAmy5uwrJTy3Dh8wuoa18XI4JH4Gn2U2zsuVG5jpG+UZHp37448AVCb4YioFcAKppWxLSIaXgpfYnzY89DX0+8/ccikUWiVsvIy0DIjRAExgci4k4E5ELh5NKGeobwreWLYfWHwbemL4wNtHcIeN6ETqR55HI55syZg6VLlwIAfHx8sG3bttfmP/xQ6hy4piTry2QyREREICgoCCEhIXj+/LnyPXNzc3Tr1g3du3dHly5d4ODgUKy2iXQRB67RXqrWBrZLbLHMaxlGNx6NEcEjkJabhuCBwW9cNj03HXbL7LCl9xYM8BgAAHiS+QRVf6uKsMFh6OL+9lGxSxuvJSGtZmVshaH1h2Jo/aFIzkrG9vjt2HJ5Cy4kX0Dw9WAEXw9GBZMKGFp/KMY0HoN6DvXEDrnYJBIJKleurHxOROJKTU3F4MGDcfjwYQDA7Nmz8cMPP4h6xF7VPGFkZAQ/Pz/4+fmhoKAAsbGxCAoKQlBQEB4+fIg9e/Zgz549AIAmTZqgW7du6NatG5o3b87LUoneQKzf3fybQX0yMzORkZGh/NnY2Pid887KFXLsvrob2fnZaFm1pfL144nHYb/MHjYmNmjv0h4LOy+Evbk9AOB80nnkK/LhXcNbuXxly8rwsPfAqYenRC0SeSaRZxLLpYSUBGy5tAXb4rfhceb/DQH/SZVPMLbxWPSv2x/mRjy6RkTFc/36dfTo0QO3bt2CqakpNmzYgIEDB6rcrqYe/RcEAefPn8f+/fsRFhaGuLi4Iu9XqFABXl5e8Pb2RqdOnd471QcRkaZ7VRv817x58zB//vzXXo9/Go+W61sityAXFkYWCOwbCJ+aPgCAnQk7YWFkARcbF9xLvYdvj32LAkUBzo89D2MDYwTGB2Lk/pHI+yavSJveW7zhZuOG1d1Xl8pn/BAsElkklmtyhRxH7h7B2ri12H9jPwoUhUPAWxlbYUi9IRjbZCwaOjYUN0gi0gqRkZHw9/dHeno6qlWrhuDgYDRq1EgtbWtqkfhfycnJCA8Px6FDhxAREYHU1NQi77u4uKBjx47Kx5v+0CIi0mSvaoOrV6/C2dlZ+frbziTK5DI8SH+AtNw07L26F+surMOJESdQx67Oa8smZSbBZbkLdvTbgT4f93lrkei1xQs1KtTAX35/qf8DfiAWiSwSdcbTrKcIuBiAtXFrcSf1jvL15s7NMan5JPjX8dfqexeJqPSsXLkSU6ZMgVwuR+vWrbFv3z7Y29urrX1tKRL/raCgAGfOnMHhw4cRFRWFf/75RzkX4ys1atRAhw4d0Lp1a7Rq1Qq1atXiJXBEpNFUrQ08N3uiRoUabz0LWPOPmvis0Wf4us3XiLoXhc6bO+PlzJeoYFpBuUyDvxqgV+1eWNBxQYk/h6r0RNsyURlzsHDA122+xs1JN3Fk2BEMqDsAhnqGOPP4DIYFDYPLchfMPz4fSZlJYodaRG5uLvz9/eHv74/c3FyxwyHSKQUFBZgwYQImTpwIuVyOTz/9FEePHlVrgagOYuQJAwMDtGrVCt9//z1iY2ORmpqKw4cP4+uvv0bz5s2hp6eHO3fuYP369Rg1ahQ++ugjVKpUCX5+fli4cCGOHTuGrKysMomVqKyJ9bubfzOIT4CAPHneG997kfMCD9MfwsnSCQDQxKkJDPUMEXk3UrlMUmYSElIS0KpqqzKJ9214JpFnEnVaSnYK1p5fiz/P/YknmU8AFI6M6l/XH5ObT0aLKi1EjlA7zzAQlQdpaWno378/IiMjIZFIsHjxYsycObNUzoSJPbppacjIyEBMTAyio6Nx+vRpnD179rU/WvX09FCvXj00btwYTZo0QePGjdGgQQOYmZmJFDWRenB0U+1VnNpgztE56ObeDVWtqyIzLxM7Enbgp5M/4fCQw2hZtSXmH5+Pvh/3hZOlExLTEjHn6Bw8SH+AaxOuwdLYEkDhFBgHbh1AQM8A2JraYnrkdLzIeSH6FBgckox0mr25Pea2m4uZrWci6HoQfv/nd5x8eBKB8YEIjA9Ec+fmmPrJVPSt0xcGeuJ0FyMjI6xYsUL5nIhK3+3bt+Hn54cbN27AzMwM27ZtQ69evUpte6r2c03ME1ZWVvD19YWvry+Awmk2Ll26hFOnTuHUqVM4ffo0Hj58iEuXLuHSpUvYuLFwHjE9PT189NFHysKxYcOGqFu3Luzs7MT8OETFIlaf1MRcUJ49zXqKYUHDkJSVBGtja9R3qI/DQw7Dq4YXpPlSxKfEY/OlzUjLTYOTpRM6unbEzn47lQUiAPzW9TcY6Bmg/57+kOZL0bl6ZwQMChC1QAR4JpFnEuk1cUlx+OPMHwiMD4RMLgMAuNm4YVrLaRjZaCTMDHmEm6g8O378OPr06YPU1FRUqVIFoaGhaNiwodhhlUuPHj3CuXPnEBcXp3wkJb35kn97e3vUrVtX+fDw8EDdunVRoUKFNy5PRFQSrA0KaXSRGB0djWXLluH8+fNISkpCUFBQkSO5giBgwYIFWLNmDVJTU9GiRQusXLkSdevW/eBt8ItAb/Ms+xn+PPsnVpxdgec5hRNLVzStiEnNJ2FC8wmoZFZJ5AiJSN3WrVuHL774AgUFBWjevDmCg4Ph5OQkdlg6JSkpCRcuXMD58+dx/vx5xMfH4+7du29d3snJCbVq1YK7uztq1qyJmjVrwt3dHe7u7rxslYiKjbVBIY0uEg8dOoSTJ0+icePG6Nu372tF4pIlS7Bw4UIEBASgVq1a+PHHHxEdHY0bN27A0tLy7Q3/C78I9D45+TkIuBiAX07/gruphX+omBqYYnSj0ZjacircKpTuvGAKhQJ37hSOxlqjRg3o6XG8KSJ1k8vlmDFjBn777TcAwMCBA7FhwwaYmpqW2fZjYmIAAG3btoW+fvEuMyrveSI7OxvXrl3DlStXkJCQgCtXruDKlSt48ODBO9dzdnZWFowuLi6oVq0aqlWrBhcXF1SpUoWX41GpEatPlvdcUBZYGxTS6CLx3yQSSZEiURAEVK5cGV9++SW+/vprAEBeXh4cHBywZMkSfP755x/ULr8I9KEKFAXYd20flp5civNJ5wEA+hJ9DK0/FHPbzkXNijVLZbu8CZ2odGVkZGDQoEEICwsDACxYsADffvttmU7VUB4HrikLGRkZuHbtGm7fvo1bt24V+ffly5fvXFcikcDR0VFZNFatWhWVK1eGo6MjnJyc4OjoCEdHR9jY2HDaDh2iUCiQnZ2NjIwMZGZmKv/99/O3vZednY2cnBzk5OQgKysLycnJAAq/a9bW1rCxsSny+NDXrKysPvjAka7mAnVibVBIaweuuXfvHpKTk+Ht7a18zdjYGO3bt8epU6feWiTm5eUhL+//hqXNzMws9VipfDDQM0D/uv3hX8cfxxOPY8nJJQi/E45NlzZhy+UtGFxvMOa2nYuPKn2k9m1bW1urvU0iAh4+fAhfX1/Ex8fDxMQEmzZtQv/+/cUOq0R0MU9YWVmhRYsWaNHi9ZGoX758qSwa79y5g4cPH+L+/ft48OABHjx4AKlUiqSkJCQlJeGff/556zaMjY2VBaOTkxPs7e1RsWJFVKxYEba2tq89t7W1hYGB1v55pVUEQUBubi6ys7Pf+/jQYq80/i4UBAFpaWlIS0srcRuWlpbvLCZf/WxiYgJzc3NIJBIkJSWhevXqPJtIJaK1WezV0RkHB4cirzs4OOD+/ftvXW/x4sVYsEC8iSlJ+0kkEnR064iObh1x9vFZfB/9PQ7cPICtl7di2+VtGOAxAN+0/QZ17T/83th3MTc3V+kXCxG9WVxcHPz8/JCUlARHR0eEhISgWbNmYodVIswTr7O1tUXz5s3RvHnz194TBAHPnz9XFoz379/Hw4cPkZSUhOTkZCQnJyMpKQlpaWnIy8vD/fv33/m3xX9ZWVnB1tYWVlZWsLS0hKWlpfL5m16zsLCAiYkJTE1NYWJionz89+fiXoZclhQKBQoKCpCfn4/8/Hzk5uaq9MjJySlS5GVlZb1W+OXk5EChUJTK59HX1//g/ffqX3Nzc5ibm8PMzEz5MDc3h56eHjIyMpCWlob09HRlwfjq8d/X/v1zTk4OACgL2IcPH37wZ6hZsyaMjY3h4uICNzc3uLq6FvnXzc0NlSpV4plyeiOtLRJf+e8XWxCEd37ZZ8+ejalTpyp/fvz4MerUqVNq8VH51sy5GUIHhSIuKQ4/RP+A4OvB2JGwAzsSdqBfnX74rt13qOdQT+wwieg/Dhw4gIEDByI7Oxt169bFwYMH4eLiInZYVEYkEgns7OxgZ2eHJk2avHW53NxcPH36tEjx+PTpU7x8+RIvXrxQ/vvqeWpqKoDCy2AzMjLUHrehoSFMTExgYGBQ5KGvr//Wn/X19aGnp4dXdxf9+9/3vZafn68s/N73b2kVax/q1Rm0tz2KW/CZmJiotXiqXLlyidaTyWRIT0//oOLy36+lpqYiKSkJeXl5uHnzJm7evPnG9s3NzeHq6lqkcPx3McnRg3WX1haJjo6OAArPKP575LmUlJTXzi7+m7GxMYyNjZU/l0YSJ93T2KkxggYE4WLyRfwY/SP2XtuLPVf3YO/VvRhUbxAWdFgAd1t3scMkIgArV67E5MmToVAo4OnpiT179ujkpZr0fiYmJnBxcfngAwhyuRypqal4+fIlXr58+drljW97npWVVeQsmlQqVf5bUFCgbP/VWTptIJFIXjsT+qEPY2PjdxZ8/32YmZlp9FlWVRgZGSkPaBRXQUEBHj16hHv37uHevXtITEws8u+TJ0+QnZ2tHAjqTaytrd96FtLV1VV5/yOVP1pbJLq5ucHR0RGRkZFo1KgRgMKjLSdOnMCSJUtEjo50VUPHhtjTfw8SUhKw4MQC7Lm6B4Hxgdh1ZRdGNxqNb9t9C2cr52K1mZeXp7zHdvXq1UUOchDRh/vvCKajR4/GqlWrYGhoKHJkqmOe0Az6+vqoVKkSKlVS3xRJBQUFrxWQBQUFKCgogFwuL/Lv254rFApIJBLlmbF///uu1wwNDWFgYFDk3ze99qZlDA0NdfoyRrH65H+3++osYceOHd+47IMHD4oUjv9+npKSgvT0dFy8eBEXL1584/YqVar01gLSxcWlzEaIJvXT6NFNs7KycPv2bQBAo0aN8Ouvv6Jjx46wtbVFtWrVsGTJEixevBgbN25EzZo1sWjRIhw/fpxTYJDGiEuKwzdR3+DQ7UMAABMDE0xoNgGz2sz64HkWOVIZkeqys7MxdOhQBAcHAwAWLVqEWbNmacwfsRzdlKh8EatPqnO7OTk5r519/Hcx+ery6ndxdHRUFqr/fbi4uMDExKTE8ZUW1gaFNPpM4rlz54oc+Xh1L+Hw4cMREBCAmTNnQiqVYvz48UhNTUWLFi0QERHxwQUiUWlr7NQYYUPCEHM/BnOi5iD2QSx+Of0L1pxfg2ktp2Fqy6mwNH7399XQ0BBLly5VPiei4klOTkb37t1x7tw5GBsbIyAgAAMHDhQ7rCJU7efME0SaRaw+qc7tmpmZoU6dOm8duyM9PR2JiYlvPAt579495TQgycnJ+Pvvv9/YhqOjIzw8PDBq1CgMGDCAI7FqEI0+k1gWeLSAyoogCDh8+zDmRs3FheQLAAB7c3t83+F7jG48GgZ6Gn3MhkgrXblyBb6+vrh//z4qVqyI/fv3o3Xr1mKHRURUrgmCgNTUVGUR+d/HqyLy3yZMmIAVK1aIFPH/YW1QiEUivwhUxhSCAnuv7sXcqLm49fIWAKCOXR0s81qGbu7dNObyNyJtd/ToUfTt2xfp6emoWbMmDh48iJo1a4odFhGRzntVRN67dw+hoaH4448/EBUVhQYNGogdGmuD/49FIr8IJJJ8eT7+OvcXFpxYgBfSFwCAzm6d8bP3z2jo2FC5nEKhQFJSEgDAycmJl2IQfYCAgACMGTMGBQUFaNOmDYKDg1GxYkWxw3oruVyOuLg4AEDjxo2LPVIj8wSRZhGrT2prLsjIyICVlZXYYQBgbfAKi0R+EUhkablpWBSzCP/753+QyWWQQILhDYfjx44/wtnKmQNSEBWDIAj4/vvvMX/+fADAoEGDsGHDBo0cHOHfOHANUflSHgau0VWsDQppx+EFonLMxsQGS72W4vqE6xjoMRACBARcDEDNP2piwfEFyMnPUU6KTERvV1BQgLFjxyoLxNmzZ2Pr1q0aXyCqC/MEkWYRq08yF5A6sEgk0hBuFdywve92/D36b7Su2hrSAinmn5iPpgFNse3iNshkMh4RJHqL7Oxs9OrVC+vWrYOenh5WrVqFRYsWac2lVqoyNzdXTrTOPEEkPrH6JHMBqYtu/PYk0iItqrRAzMgY7Oy3E1WtquJB+gMM2DMAHTZ1wMXki2KHR6Rxnj17ho4dO+LgwYMwMTHBvn37MG7cOLHDIiIi0losEok0kEQiQf+6/XF94nUs6LAApgamiL4fjSZrmmDcgXF4lv1M7BCJNMKdO3fQqlUrnD17FhUrVkRUVBR69uwpdlhERERajUUikQYzMzTD1598jX7J/eCe6w6FoMDq86tRa0Ut/O/v/yFfni92iESiOXv2LFq2bInbt2/D1dUVJ0+eRMuWLcUOSxR5eXmYMGECJkyYgLy8PLHDIdJ5YvVJ5gJSF45uyhGMSMP9e6Sy8Ovh+Pr418rLTj+u9DGWd10O7xreIkZIVPbCwsLg7++PnJwcNGrUCGFhYXB0dBQ7rBLj6KZE5QtHN9VerA0KcegjIg1naGiIefPmAQA6uHXAuZrnsOHCBsyJmoNrz6+hy9Yu6F6rO37t8ivcbd3FDZaoDGzYsAFjx46FXC6Ht7c39uzZA0tLS7HDUsm/+7mhoWGZr09E6iVWn2QuIHXhmUQeLSAtlZabhu9PfI8/zvyBAkUBDPUM8dUnX+Gbdt/A0li7/2AmehNBEPDDDz8o/wD69NNPsXbtWhgZGYkcGRERlResDQrxnkQiLWVjYoNfu/yKy+Muo0uNLshX5GPpqaWotaIWNl3cBIWgEDtEIrUpKCjA559/riwQ58yZg4CAABaIREREpYBFIpGGEwQBaWlpSEtLw5tO/H9s9zEODTmE0EGhcLd1R3JWMkbsH4GW61vi70d/ixAxkXrl5OSgd+/eWLt2LfT09PDnn39i4cKFkEgkYoemNgqFAleuXMGVK1egUBT/AM/78gQRlS2x+iRzAakLi0QiDZeTk4MKFSqgQoUKyMnJeeMyEokEfrX8cGX8FSzzWgZLI0uceXwGLde3xGchn+FFzosyjppIPVJTU+Hl5YUDBw7AxMQEe/fuxRdffCF2WGonlUrh4eEBDw8PSKXSYq//IXmCiMqOWH2SuYDUhUUiUTlipG+E6a2m4+akmxjZcCQAYP2F9ai9ojY2XtjIo4qkVR4/fox27drh1KlTsLGxwZEjR9CrVy+xwyIiIir3WCQSaTgzMzPIZDLIZDKYmZl90DqOFo7Y0HMDYkfGop59PbyQvsCokFFoH9AeV1KulHLERKq7efMmWrdujYSEBFSuXBkxMTFo3bq12GFprJLkCSIqPWL1SeYCUhcWiUQaTiKRwNDQEIaGhsW+B6t1tdY4P/Y8lnktg5mhGWIexKDh6oaYfWQ2cvJ5GQpppnPnzqF169a4f/8+atasiZMnT8LDw0PssDSaKnmCiNRPrD7JXEDqwiKRqJwz1DfE9FbTcW3CNfSs3RMFigL8dPIn1FlZBwduHhA7PKIijh49io4dO+L58+do0qQJYmNj4erqKnZYREREOoVFIpGGk8lkmDFjBmbMmAGZTFbidqpZV0PwwGAEDwhGVauquJ9+H923d0fvnb3xOOOxGiMmKpndu3fDx8cHWVlZ6Ny5M44dOwZ7e3uxw9IK6soTRKQeYvVJ5gJSF4mg4yNZcMJM0nTZ2dmwsLAAAGRlZcHc3FzlNrNkWfj+xPf49fSvkAtyWBlbYannUoxpMgZ6Eh47orK3atUqTJgwAYIgoF+/fti6dSuMjY3FDqvMqNrPSyNPEFHJidUnmQtUx9qgkIHYARDRuxkaGmL69OnK5+pgYWSBpV5LMaz+MHwW+hnOPD6DcQfHYXvCdqztvhY1K9ZUy3aI3kcQBPzwww+YN28eAGDcuHFYsWIF9PX1RY6sbKnaz0sjTxBRyYnVJ5kLSF14JpFHC0jHyRVy/P7P7/jm2DfIyc+BiYEJ5refj2mtpsFAj8eRqPQoFApMnjwZK1euBADMmzcP8+bN42ALREQkGtYGhXhdGZGO09fTx1ctv0LCFwnwrO6J3IJczDo6C83XNseFpAtih0fllEwmw+DBg7Fy5UpIJBL88ccfmD9/PgtEIiIiDcAikUjDCYKA/Px85OfnozRP/LtVcEPE0Ahs7LkRFUwq4ELyBTRb2wyzj8yGNF9aatsl3ZOVlQU/Pz/s3LkThoaGCAwMxMSJE8UOS1QKhQKJiYlITEyEQqEo9vpllSeI6MOI1SeZC0hdWCQSabicnBwYGRnByMgIOTmlO7ehRCLBiIYjcHXCVfjX8YdckOOnkz+h4eqGOPngZKlum3TDy5cv4enpicjISJibm+PAgQMYOHCg2GGJTiqVws3NDW5ubpBKi39QpizzBBG9n1h9krmA1IVFIhG9xtHCEbv8dyFoQBCcLJxw88VNtN3YFtMjpvOsIpVYcnIyOnTogH/++Qe2trY4evQovL29xQ6LiIiI/oNFIpGGMzMzQ2pqKlJTU2FmZlam2+71US9cnXAVIxqOgAABv5z+BY3XNMaZx2fKNA7Sfvfv30fbtm0RHx8PR0dHnDhxAi1atBA7rHJDzDxBRK8Tq08yF5C6sEgk0nASiQQ2NjawsbERZVAPGxMbbOy5ESEDQ+Bo4Yjrz6+j5fqWmHt0LvIK8so8HtI+169fR5s2bXD79m24uroiNjYWHh4eYodVroidJ4ioKLH6JHMBqQuLRCL6IN1rd8eV8VcwuN5gKAQFFsUuQtO1TRGXFCd2aKTBLly4gHbt2uHRo0f4+OOPERsbixo1aogdFhEREb0Di0QiDSeTyTB//nzMnz8fMplM1FhsTW2xrc827O2/F3ZmdkhISUCLdS0w//h8yOTixkaaJzY2Fh06dMCzZ8/QpEkTREdHw9nZWeywyiVNyhNEJF6fZC4gdZEIOj4+LifMJE2XnZ0NCwsLAIVTB5ibm4scUaFn2c8wPmw89lzdAwBo6NgQW3pvgYc9LyMkIDw8HL1794ZUKkW7du0QGhoKKysrscPSWKr2c03NE0S6Sqw+yVygOtYGhQzEDoCI3s3AwADjx49XPtcUduZ22O2/GzsTdmJ82HhcTL6Ipmua4ifPnzC5xWToSXihgq7as2cPBg8ejPz8fPj4+GDPnj0wNTUVOyyNpmo/19Q8QaSrxOqTzAWkLjyTyKMFRCpLzkrGZyGf4eCtgwAAz+qeCOgZAGcrXlqoazZs2IAxY8ZAoVBgwIAB2Lx5M4yMjMQOi4iI6IOwNijEQ/1EpDJHC0eEDgrFKt9VMDUwxZG7R1BvVT3lpaikG5YvX47Ro0dDoVBgzJgx2LZtGwtEIiIiLcQikYjUQiKRYFzTcbjw+QU0cWqC1NxU+O/2x4jgEcjIyxA7PCpFgiBgwYIF+OqrrwAA06dPx+rVq6Gvry9yZNpDEAQ8e/YMz549g45f4ENERBqARSKRhsvOzoahoSEMDQ2RnZ0tdjjvVbtSbZwefRpz286FnkQPmy5tQoO/GiD2QazYoVEpEAQBU6dOxfz58wEACxcuxNKlSzk/VzHl5OTA3t4e9vb2yMnJKfb62pYniMo7sfokcwGpC4tEIi1QUFCAgoICscP4YIb6hvix0484MeIEXG1ckZiWiPYB7fFN1DfIl+eLHR6piVwux9ixY7F8+XIAwB9//IE5c+awQBSJtuUJovJOrD7JXFB2Vp1dhfqr6sNqsRWsFluh5fqWOHTrkPJ9QRAw//h8VP6lMkwXmqJDQAdcSblSpI28gjxMCpuESksrwXyROXps74FHGY/K+qO8hkUikYYzNTXFo0eP8OjRI60bIbJNtTa4NO4ShjcYDoWgwMKYhWi9oTXuvLwjdmikooKCAowYMQLr1q2Dnp4eAgICMHHiRLHD0lnanCeIyiOx+iRzQdmqYlUFP3n+hHNjz+Hc2HPo5NoJPXf0VBaCS08uxa+nf8UKnxU4O+YsHC0c4bXFC5l5mco2vjz8JYKuB2FHvx2IHRmLLFkW/AL9IFfIxfpYADi6KUcwIioje67uwdjQsUjNTYWlkSVW+63GoHqDxA6LSkAmk2Hw4MHYu3cvDAwMEBgYCH9/f7HD0mqc24yISDOoWhvYLrHFMq9lGNVoFCr/WhlftvgSX7f5GkDhWUOHnx2wxHMJPm/6OdJz02G3zA5bem/BAI8BAIAnmU9Q9beqCBschi7uXdT62YqDZxKJqEz0q9MPl8ZdQttqbZEpy8TgfYMxav8oZMt4z4Q2yc3NRd++fbF3714YGRlh7969LBCJiKjcyczMREZGhvKRl5f3zuXlCjl2JOxAdn42WlZtiXtp95CclQzvGt7KZYwNjNHetT1OPToFADifdB75ivwiy1S2rAwPew+ceniqdD7YB2KRSKThZDIZli1bhmXLlkEmk4kdjkqqWldF1PAofNfuO0ggwcaLG9F0bVNcSr4kdmj0AbKzs9G9e3ccOHAAJiYmCAkJQY8ePcQOi1C+8gRReSBWn2QuUJ86derA2tpa+Vi8ePEbl4t/Gg+LRRYw/tEY4w6MQ9CAINSxq4PkrGQAgIOFQ5HlHcwdlO8lZyXDSN8IFUwrvHUZsfByU15uShquvF6GdjzxOIbsG4InmU9grG+MX7x/wfhm4znoiYbKzMyEr68vYmJiYG5ujgMHDqBDhw5ih1VuqNrPy2ueINJWYvVJ5gLVvaoNrl69CmdnZ+XrxsbGMDY2fm15mVyGB+kPkJabhr1X92LdhXU4MeIE0nLT0HpDazyZ+gROlk7K5ceEjMHDjIc4PPQwAuMDMXL/SOR9U/QspdcWL9SoUAN/+f1Veh/0PQxE2zIRfRADAwMMHz5c+by86ODaAZfGXcLI/SNx4OYBTDw0EUfuHcH6Hutha2ordnj0L6mpqejatSvOnDkDKysrHD58GC1bthQ7rHJF1X5eXvMEkbYSq08yF6iPpaUlrKys3ruckb4R3G3dAQBNKzfF2Sdn8b+//6e8DzE5K7lIkZiSk6I8u+ho4QiZXIZUaWqRs4kp2SloVaWVOj9OsfHbQ6ThjI2NERAQIHYYpaKSWSWEDAzBH2f+wIzIGQi+HozzT85jW59taOvSVuzwCMCzZ8/g7e2NixcvwtbWFhEREWjSpInYYZU7qvbz8pwniLSRWH2SuUB8AgTkyfPgZuMGRwtHRN6NRCOnRgAKzzqeSDyBJZ5LAABNnJrAUM8QkXcj0b9ufwBAUmYSElISsNRzqWifAeA9iUQkMolEgsktJuP06NOoaVsTDzMeosOmDlgcsxgKQSF2eDotKSkJHTp0wMWLF2Fvb4/jx4+zQCQiIvr/5hydg5j7MUhMS0T803jMPTq38HaaekMgkUjwZYsvsShmEYKuBSEhJQEjgkfAzNAMg+sNBgBYm1hjdKPRmBYxDUfvHsWFpAsYGjQU9ezrwbO6p6ifjWcSiUgjNHZqjPNjz2NC2ARsubwFc6LmIPZhLDb32oyKZhXFDk/nPHjwAJ07d8bt27fh7OyMo0ePonbt2mKHVW4JgoCcnBwAgJmZGe/NJSLSAk+znmJY0DAkZSXB2tga9R3q4/CQw/Cq4QUAmNl6JqQFUowPG49UaSpaVGmBiGERsDS2VLbxW9ffYKBngP57+kOaL0Xn6p0RMCgA+nr6Yn0sABy4hgPXkMbLzs5W3jj9+PHjcn8TuiAI2HhxIyaETUBuQS6qWVfDrn670KJKC7FD0xl3795Fp06dcP/+fbi6uuLo0aOoXr262GGVa+oYuEaX8gSRphOrTzIXqI61QSFebkqkBdLT05Geni52GGVCIpFgVKNR+Hv033C3dceD9Adou7Etfv/nd+j4Ma0ycf36dbRt2xb379+Hu7s7oqOjWSBqCV3KE0TaQKw+yVxA6sDLTYk0nKmpKW7evKl8risaODbA+bHnMTpkNPZc3YMph6cg5kEM1nVfB2sTa7HDK5fi4+Ph6emJlJQU1KlTB0eOHIGTk9P7VyTR6WqeINJUYvVJ5gJSF15uylPKRBpNEASsOLMC0yKmIV+RD3dbd+zx34MGjg3EDq1cuXTpEjp37owXL16gQYMGiIyMhJ2dndhh6QzObUZEpBlYGxTi5aZEpNEkEgkmtZiEmJExqGZdDbdf3sYn6z/B+rj1vPxUTeLi4tCpUye8ePECTZs2RVRUFAtEIiIiHcYikUjD5efnY+XKlVi5ciXy8/PFDkc0Laq0QNzYOPjU9EFuQS4+C/0MI/ePhDRfKnZoWu3cuXPo3LkzXr58iebNmyMyMhK2trZih0XFxDxBpFnE6pPMBaQuvNyUp5RJw/EytKIUggJLTy7F3Ki5UAgKNHJshL3998KtgpvYoWmdM2fOwNvbG+np6WjZsiUOHToEa2ve7ykGdYxuyjxBpDnE6pPMBapjbVCIA9cQaTh9fX3069dP+VzX6Un0MKvNLLRwboEBewbgQvIFNF3bFNv7bod3DW+xw9Map0+fRteuXZGRkYE2bdogLCwMlpaW71+RSoWq/Zx5gkiziNUnmQtIXXgmkUcLiLTWw/SH6LurL84+OQsJJPix04+Y3WY2JyJ/j5MnT6Jr167IyspCu3btcPDgQeWRZyIiIl3G2qAQ70kkIq1V1boqokdG47NGn0GAgLlRc9FnVx9k5GWIHZrGio6ORpcuXZCVlYWOHTsiLCyMBSIREREVwSKRiLSaiYEJ1vZYizV+a2Ckb4Tg68FovrY5rj27JnZoGuf48ePo1q0bsrOz4enpiQMHDvB+FSIiInoNi0QiDZeTkwNnZ2c4OzsjJydH7HA01pgmYxAzMgZVrKrgxosbaL6uOfZe3St2WBrj6NGj8PHxQU5ODry9vRESEgIzMzOxw6L/Lzs7GxKJBBKJBNnZ2cVen3mCSLOI1SeZC0hdWCQSaThBEPDkyRM8efKE8wK+R3Pn5jg/9jw6uHZAliwL/Xb3w6wjsyBXyMUOTVQRERHw8/ODVCpFt27dsH//fpiamoodFqkR8wSRZhGrTzIXkLpwdFMiDWdiYoILFy4on9O72ZvbI3JYJGYdmYVfTv+CJSeXIC4pDjv77UQF0wpih1fmDh8+jF69eiEvLw9+fn7Ys2cPjI2NxQ6L1Ix5gkiziNUnmQtIXTi6KUcwIiq3dibsxKiQUcjJz4G7rTtCBobgY7uPxQ6rzISFhaF3796QyWTo2bMndu7cyQJRQ3FuMyIizcDaoBAvNyWicmuAxwCcGnUKLtYuuP3yNlqsa4EDNw+IHVaZCA0NRa9evSCTydCnTx/s2rWLBSIRERF9EBaJRBouPz8fAQEBCAgIQH5+vtjhaJ0Gjg1wdsxZtHNph0xZJnps74GfYn8q1/dq7N+/H3379kV+fj78/f2xY8cOGBkZiR0WlSLmCSLNIlafZC4gdeHlpjylTBqOl6Gph0wuw5RDU/DX+b8AAIM8BmFdj3UwMyxfI3zu378f/fr1Q0FBAQYOHIgtW7bAwIC3n2s6Vfs58wSRZhGrTzIXqI61QSH+5UCk4fT19eHj46N8TiVjpG+EVX6r0MCxASYdmoTtCdtx88VNBA8MRhWr8vFLIDQ0FP7+/iwQtZCq/Zx5gkiziNUnmQtIXXgmkUcLiHTOicQT6Le7H57nPIeDuQP2DdiHVlVbiR2WSg4cOIA+ffogPz8fAwYMwNatW1kgEhERFRNrg0K8J5GIdE571/Y4O+Ys6jvUx9Psp+i4qSM2XNggdlglFhYWVuQeRBaIREREpAqtLhILCgrwzTffwM3NDaampqhevTq+//57KBQKsUMjIg3nauOKk6NOou/HfSGTyzA6ZDS+PPwl5Aq52KEVy+HDh5XTXPTt2xfbtm1jgUhEREQq0eoiccmSJfjrr7+wYsUKXLt2DUuXLsWyZcvwxx9/iB0akdrk5OSgZs2aqFmzJnJycsQOp1yxMLLALv9dmN9+PgDgf//8Dz129EBmXqa4gX2g8PBw5TQXvXv3xvbt22FoaCh2WFQC2dnZMDc3h7m5ObKzs4u9PvMEkWYRq08yF5C6aPXh5tOnT6Nnz57w9fUFALi6umL79u04d+6cyJERqY8gCLh9+7byOamXnkQP8zrMQ137uhgWNAxht8LQekNrhA4KhYuNi9jhvVVkZCR69eqFvLw89OrVCzt27GCBqOVU+YOOeYJIs4jVJ5kLSF20ukhs06YN/vrrL9y8eRO1atXCpUuXEBsbi+XLl791nby8POTl5Sl/zszUjjMGpLtMTEwQGxurfE6lo1+dfnCxdkGPHT0QnxKPFutaYP/A/WhRpYXYob3m6NGj6NGjB3Jzc9GjRw/s3LmT8yDqOOYJIs0iVp9kLiB10erRTQVBwJw5c7BkyRLo6+tDLpdj4cKFmD179lvXmT9/PhYsWPDa67o+ghERFXqY/hDdt3fHpaeXYKxvjE29NmGAxwCxw1KKioqCn58fpFIpunfvjj179rBALAc4txkRkWbg6KaFtPqexJ07d2Lr1q0IDAxEXFwcNm3ahJ9//hmbNm166zqzZ89Genq68nH16tUyjJiINF1V66qIHRWL7rW6I0+eh4F7B+L7E99rxGU7x48fVxaIvr6+2L17NwtEIiIiUjutPpNYtWpVzJo1CxMmTFC+9uOPP2Lr1q24fv36B7XBowWk6QoKChAUFAQA6N27N0euLCNyhRxfH/kav5z+BQAwpN4QrOuxDiYG4ly+c+LECfj4+CAnJwc+Pj7Yt28fjI2NRYmF1E/VM4nME0SaRaw+yVygOtYGhbT6m5OTkwM9vaInQ/X19TkFBpUreXl56N+/P4DCPx6Z8MuGvp4+fvb+GbUr1sb4sPHYFr8N99LuIWhAEOzN7cs0lujoaGWB2LVrV+zdu5cFIhXBPEGkWcTqk8wFpC5a/c3p3r07Fi5ciGrVqqFu3bq4cOECfv31V4waNUrs0IjURk9PD+3bt1c+p7I1pskY1LCtgb67+uLUw1Nosa4FDg4+iDp2dcpk+7GxscoC0dvbG0FBQRyMoBxStZ8zTxBpFrH6JHMBqYtWX26amZmJb7/9FkFBQUhJSUHlypUxaNAgfPfddx98nw5PKRPRh7jx/AZ8A31xJ/UOrIytsLf/XnhW9yzVbZ48eRJdu3ZFVlYWvLy8sH//fpiampbqNomIiHQZa4NCWl0kqgO/CET0oV7kvECfXX0QfT8aBnoGWNd9HYY3HF4q2zp9+jS8vb2RlZUFT09PhISEsEAkIiIqZawNCvE8NBHRB6poVhERQyMwuN5gFCgKMGL/CCw4vkDtI5+eO3dOeQaxU6dOPINIREREZYpFIpGGk0qlaNiwIRo2bAipVCp2ODrP2MAYW3pvwZw2cwAA80/Mx6iQUZDJZWpp/+LFi/D29kZGRgbatWuHkJAQmJmZqaVt0lzZ2dmws7ODnZ0dsrOzi70+8wSRZhGrTzIXkLpo9cA1RLpAoVDg0qVLyuckPj2JHhZ2XggXGxeMPzgeARcD8CjjEfb474G1iXWJ201ISICXlxdSU1PRsmVLHDhwgJOq65Dnz5+XeF3mCSLNIlafZC4gdWGRSKThTExMEBERoXxOmmNsk7GoalUV/rv9ceTuEbTZ2AZhg8NQ1bpqsdu6ceMGPD098fz5czRt2hSHDh2CpaVlKURN5RHzBJFmEatPMheQunDgGt6cSkQqikuKg2+gL5KzklHZsjIODj6Iho4NP3j9O3fuoF27dnjy5AkaNmyIo0ePwtbWtvQCJo2TnZ0NCwsLAIVzm/EMMhGROFgbFOI9iUREKmrs1Bj/fPYP6trVxZPMJ2i7sS3Cb4d/0Lr3799Hp06d8OTJE9StWxcREREsEImIiEhULBKJNFxBQQEOHjyIgwcPoqCgQOxw6C2qWVdD7KhYdHTtiCxZFnwDfbE+bv0713n06BE6duyIBw8eoFatWjhy5Ajs7OzKKGIqT5gniDSLWH2SuYDUhZeb8pQyaThehqZdZHIZPgv5DFsubwEAfNP2G3zf8XtIJJIiyyUlJaF9+/a4desWatSogRMnTsDZ2VmMkEkDqNrPmSeINItYfZK5QHWsDQpx4BoiDaenp4emTZsqn5NmM9I3wqZem+Bq44ofon/AjzE/IikrCX/5/QUDvcKU++zZM3h6euLWrVtwcXFBVFQUC0Qdp2o/Z54g0ixi9UnmAlIXnknk0QIiKiVrz6/FuIPjoBAU8Kvlh539dkKaIUWnTp1w+fJlODs7Izo6GtWrVxc7VCIiIgJrg1d4JpGIqJSMaTIG9ub2GLh3IA7cPIAOGztAtlGGy5cvw9HREVFRUSwQiYiISOPwPDQRUSnq+VFPHBl2BDbGNjibdBaXmlyCrZstjh49ilq1aokdHhEREdFrWCQSaTipVIrWrVujdevWkEqlYodDJdCwYkNUP14dSAdgB+h/rg95RbnYYZEGycnJgaurK1xdXZGTk1Ps9ZkniDSLWH2SuYDUhZebEmk4hUKBU6dOKZ+TdpFKpejRowfiouJgmWAJu6l2uJt5F203tkXIoBC0c2kndoikAQRBwP3795XPi4t5gkiziNUnmQtIXVgkEmk4Y2NjBAUFKZ+T9sjLy0Pv3r0RFRUFCwsLROyJQO0GtdFjRw/EPoiF9xZvBPYNRJ+P+4gdKmk55gkizSJWn2QuIHXh6KYcwYiISkF+fj769u2L0NBQmJmZITw8HG3atAEASPOlGLxvMIKvB0MCCVb6rMQXzb4QOWISE+c2IyLSDMWpDRbHLMa+6/tw/fl1mBqYolXVVljiuQS1K9VWLjMieAQ2XdpUZL0Wzi3w92d/K3/OK8jD9Ijp2J6wHdICKTq7dcafvn+iipV4tQnvSSQiUjO5XI6hQ4ciNDQUJiYmCA0NVRaIAGBqaIo9/nvweZPPIUDA+LDx+O7YdyW6zJCIiIjEceL+CUxoNgF/j/4bkcMiUaAogPdWb2TLsoss19W9K5KmJSkfYUPCirz/5eEvEXQ9CDv67UDsyFhkybLgF+gHuUK88Qt4uSmRhpPL5YiJiQEAtG3bFvr6+iJHRO+iUCjw2WefYdeuXTA0NERQUBA6der02nL6evpY5bsKlS0rY97xefgh+gckZyVjle8q6OtxH1PxME8QaRax+iRzQdk6PPRwkZ839twI+5/tcT7pfJExB4z1jeFo4fjGNtJz07H+wnps6b0FntU9AQBb+2xF1d+q4sjdI+ji3qX0PsA7sEgk0nC5ubno2LEjAF6GpukEQcCUKVMQEBAAfX197Ny5E127dn3r8hKJBN+1/w5OFk4Yd3Ac1satRWpuKrb23gpjA95LQh+OeYJIs4jVJ5kL1CczMxMZGRnKn42Njd97n2d6XjoAwNbUtsjrxxOPw36ZPWxMbNDepT0Wdl4Ie3N7AMD5pPPIV+TDu4a3cvnKlpXhYe+BUw9PsUgkojeTSCSoU6eO8jlpJkEQMHv2bKxYsQISiQQBAQHo3bv3B607pskYVDSriEF7B2HP1T1Iz03HvgH7YGFkUcpRk6ZQtZ8zTxBpFrH6JHOB+rz6f3xl3rx5mD9//luXFwQBU8Onok21NvCw91C+3s29G/zr+MPFxgX3Uu/h22PfotOmTjg/9jyMDYyRnJUMI30jVDCtUKQ9B3MHJGclq/UzFQeLRCINZ2ZmhitXrogdBr3HokWLsGTJEgDAX3/9haFDhxZr/T4f90HY4DD03NETkXcj4bnZE2FDwl47Gknlk6r9nHmCSLOI1SeZC9Tn6tWrcHZ2Vv78vrOIE8Mm4vLTy4gdFVvk9QEeA5TPPew90LRyU7gsd8HBWwffObq5AEHUQp8D1xARqWj58uX45ptvAAC//PILxo4dW6J2OlfvjKjhUbA1tcU/j/9Bu43t8CTziTpDJSIiog9gaWkJKysr5eNdReKksEkIuRmCY8OPvXdEUidLJ7jYuODWi1sAAEcLR8jkMqRKU4ssl5KdAgdzB9U/SAmxSCQiUsHatWvx1VdfAQAWLFiAqVOnqtRec+fmiBkZA2dLZ1x5dgWtN7TG7Ze31REqERERqZEgCJgYNhH7ru9D1KdRcKvg9t51XuS8wMP0h3CydAIANHFqAkM9Q0TejVQuk5SZhISUBLSq2qrUYn8fFolEGk4qlcLLywteXl6QSqVih0P/EhgYiM8//xwAMGPGDHz77bdqabeOXR3EjoqFu607EtMS0WZDG1xKvqSWtkkz5eTkoG7duqhbty5ycnKKvT7zBJFmEatPMheUrQlhE7D18lYE9gmEpbElkrOSkZyVDGl+4f99liwL0yOm4/TD00hMS8TxxOPovr07KplVQu+PCsctsDaxxuhGozEtYhqO3j2KC0kXMDRoKOrZ11OOdioGiaDjE3MVZ8JMIjFwkm3NFBwcjH79+kEul+OLL77AypUr1X7vwNOsp+i6rSsuJl+EtbE1Dg4+iNbVWqt1G6QZVO3nzBNEmkWsPslcoLri1AaSBW/+vb+x50aMaDgC0nwpeu3shQtJF5CWmwYnSyd0dO2IHzr+gKrWVZXL5xbkYkbEDAQmBEKaL0Xn6p3xp8+fRZYpaxy4hkjDGRsbY+vWrcrnJL6IiAgMGDAAcrkcn376qXJEU3VzsHDAseHH0H17d8Q+iIXXFi/s7b8X3Wp2U/u2SLsxTxBpFrH6JHNB2RLmvftcm6mhKcKHhr+3HRMDE/zh8wf+8PlDXaGpjGcSeSaRiIohJiYGXbp0gVQqRb9+/bB9+3YYGJTu8bac/Bz47/ZH2K0wGOgZYHOvzRhUb1CpbpPKFo/+ExFpBtYGhXhPIhHRBzp79ix8fX0hlUrh4+ODbdu2lXqBCABmhmYIHhCMwfUGo0BRgCH7huDPs3+W+naJiIhIN7FIJNJwcrkcZ8+exdmzZyGXy8UOR2ddvnwZXbp0QWZmJjp27Ig9e/bAyMiozLZvqG+ILb23YEKzCRAgYELYBCyJXVJm2yfNxjxBpFnE6pPMBaQuvCeRSMPl5uaiefPmAHgZmlhu3rwJLy8vpKamomXLlggJCYGpqWmZx6En0cMf3f5ABZMK+DHmR8w6OgtZsix83/F7USfcJfExTxBpFrH6JHMBqQuLRCINJ5FI4OLionxOZSsxMRGdO3dGSkoKGjZsiLCwMOW9Y2KQSCT4odMPsDCywKyjs/BjzI/Izs/GL96/8PuhxVTt58wTRJpFrD7JXEDqwoFreHMqEb3FkydP0LZtW9y9excff/wxTpw4ATs7O7HDUlpxZgUmHZoEABjTeAxW+a6Cvp6+yFERERFpL9YGhXhPIhHRGzx79gyenp64e/cuqlevjiNHjmhUgQgAE5tPxIYeG6An0cPauLX4NPhTFCgKxA6LiIiItByLRCKi/0hLS4O3tzeuXbuGKlWq4OjRo6hcubLYYb3RyEYjEdgnEAZ6BgiMD4T/bn/kFeSJHRYRERFpMRaJRBouNzcXvXr1Qq9evZCbmyt2OOVednY2/Pz8cPHiRTg4OODo0aNwdXUVO6x3GuAxAPv674OxvjGCrwej546eyMnPETssKgapVIpmzZqhWbNmkEqlxV6feYJIs4jVJ5kLSF14TyKvOyYNx0m2y45MJkOPHj0QHh4OGxsbnDhxAvXr1xc7rA925O4RZYHYzqUdQgeFwsrYSuyw6AOo2s+ZJ4g0i1h9krlAdawNCnF0UyINZ2RkhDVr1iifU+mQy+UYMmQIwsPDYWZmhrCwMK0qEAHAs7onIoZGwCfQB9H3o+G52ROHhx6Gramt2KFRKWOeINIsYvVJ5gJSF55J5NECIp0nCAI+++wzbNiwAUZGRjhw4AC8vLzEDqvEzj85jy5bu+CF9AXq2ddD5LBIOFg4iB0WvQOP/hMRaQbWBoV4TyIR6TRBEDBt2jRs2LABenp62LFjh1YXiADQpHITHB9xHI4WjohPiUe7gHZ4lPFI7LCIiIhIS7BIJNJwCoUCV65cwZUrV6BQKMQOp9z58ccf8dtvvwEANmzYgN69e4sckXp42HsgekQ0qlpVxc0XN9FuYzskpiWKHRaVEuYJIs0iVp9kLiB1YZFIpOGkUik8PDzg4eFRolEP6e3++OMPfPfddwCA5cuXY/jw4SJHpF41K9ZE7KhY1KhQA/fS7qF9QHvcTb0rdlhUCpgniDSLWH2SuYDUhUUikRaoVKkSKlWqJHYY5crmzZsxefJkAMCCBQswZcoUkSMqHdWsq+HEiBOoVbEWHqQ/QLuN7XDrxS2xw6I3ULWfM08QaRax+iRzAakDB67hzalEOic4OBj9+vWDXC7Hl19+iV9//RUSiUTssEpVUmYSOm/ujGvPr8HJwglRw6PwUaWPxA6LiIhIo7A2KMQziUSkU44ePYoBAwZALpdj5MiR+OWXX8p9gQgATpZOOD7iOOrZ10NSVhLaB7RHQkqC2GERERGRBmKRSEQ64++//0bPnj0hk8nQp08frFmzBnp6upMG7c3tETU8Cg0dGyIlOwUdN3XEpeRLYodFREREGkZ3/joi0lK5ubkYMmQIhgwZgtzcXLHD0Vrx8fHo1q0bsrOz4eXlhcDAQBgYGIgdVpmrZFYJRz89iiZOTfA85zk6be6EuKQ4scPSeVKpFB06dECHDh1KNNgE8wSRZhGrTzIXkLrwnkRed0wajpNsq+727dto27YtkpOT0apVK0REROj8/2Nabhq6bu2Kfx7/AxsTG4QPDUdz5+Zih6WzVO3nzBNEmkWsPslcoDrWBoV07zA6kZYxMjJSzuNnZGQkcjTa59GjR/D09ERycjLq16+PAwcO8JcmABsTG0QMi4DPNh+cfHgSnps9cXjoYbSq2krs0KgEmCeINItYfZK5gNSFZxJ5tICo3Hr+/DnatWuHa9euwd3dHbGxsXBwcBA7LI2SJcuCb6Avou9Hw8LIAmGDw9DWpa3YYekcHv0nItIMrA0K8UwiEZVLGRkZ6Nq1K65du4YqVargyJEjLBDf4FVh2HNHTxy9dxRdt3XFgUEH0NGto9ihERER0QdITEtEzP0YJKYlIic/B3bmdmjk2Agtq7aEiYFJidpkkUik4RQKBR48eAAAqFatmk6NxllSUqkU3bt3x/nz51GpUiVERkbCxcVF7LA0lrmROUIHhaL3zt4IvxMOn0Af7B+4H941vMUOjT4Q8wSRZhGrTzIX6JbA+ED8/s/vOPP4DOzN7eFs5QxTA1O8lL7EndQ7MDEwwZB6Q/B166/hYlO8v4PUUiTm5+cjOTkZOTk5sLOzg62trTqaJSIUFjxubm4AeBnah5DJZOjXrx+io6NhZWWF8PBwfPQRJ41/H1NDUwQPDEa/Xf1w8NZB9NjeAyGDQlgoagnmCSLNIlafZC7QHY1XN4aeRA8jGo7ALv9dqGZdrcj7eQV5OP3oNHYk7EDTtU3xp8+f8K/r/8Htl/jwQlZWFlavXo0OHTrA2toarq6uqFOnDuzs7ODi4oIxY8bg7NmzJW2eiP7FzMwMZmZmYoeh8eRyOYYPH46wsDCYmpriwIEDaNy4sdhhaQ0TAxPsG7APPWv3RJ48Dz2290DEnQixw9IZqvZz5gkizSJWn2Qu0A0/dPwB58aew8TmE18rEAHA2MAYHVw74C+/v3BtwjW42rgWq/0SDVzz22+/YeHChXB1dUWPHj3QvHlzODs7w9TUFC9fvkRCQgJiYmIQFBSETz75BH/88Qdq1qxZ3M2UCd6cSlQ+CIKAL774AqtXr4aBgQFCQkLQrVs3scPSSjK5DP67/RFyIwQmBiYIGRgCrxpeYodFRERU6lgbFCpRkejv74/vvvsO9erVe+dyeXl5WL9+PYyMjPDZZ5+VOMjSxC8CUfkwa9YsLFmyBBKJBDt27ED//v3FDkmr/bdQDB0UCs/qnmKHRUREVKq0vTaQ5kuRr8gv8pqVsVWx2+EUGFr+RSAiYNmyZZg5cyYAYM2aNRgzZozIEZUPMrkM/Xb1Q+jNUBaKRESkE7SxNsjJz8HMyJnYdWUXXkhfvPa+/Dt5sdss9j2JUqkUjx8/fu31K1euFHvjRPR+eXl5GDNmDMaMGYO8vDyxw9E4GzZsUBaIS5YsYYGoRkb6Rtjtvxvda3VHbkEuum/vjiN3j4gdVrmUm5sLX19f+Pr6Ijc3t9jrM08QaRax+iRzgW6aETEDUfei8KfvnzDWN8a67uuwoMMCVLasjM29NpeozWKdSdyzZw+++uor2NraQhAErF27Fi1atAAANG7cGHFxcSUKQkzaeLSAdAsn2X674OBg9O3bFwqFAjNmzMDSpUvFDqlcyivIQ7/d/XDg5gGYGJjgwKAD6Fy9s9hhlSuq9nPmCSLNIlafZC5QnTbWBtV+q4bNvTejg2sHWC22QtzncXC3dceWS1uwPWE7woaEFbvNYk2B8eOPPyIuLg52dnY4d+4chg8fjrlz52Lw4MHQ8atWiUqNoaEhfvzxR+VzKnTs2DEMHDgQCoUCo0aNwpIlS8QOqdwyNjDGHv896LurLw7eOoju27vjwOAD6OTWSezQ6P9jniDSLGL1SeYC3fRS+hJuNoVTn1gZW+Gl9CUAoE21Nvji4BclarNYRWJ+fj7s7OwAAE2bNkV0dDT69OmD27dvQyKRlCgAIno3IyMjzJ07V+wwNMr58+fRs2dP5OXloVevXli9ejVzUCkzNjDG3v57lYWiX6AfC0UNwjxBpFnE6pPMBbqpeoXqSExLhIuNC+rY1cGuK7vQ3Lk5Qm+GwsbEpkRtFuueRHt7e1y+fFn5c8WKFREZGYlr164VeZ2IqLTcuHEDXbt2RWZmJjp06IDt27fDwKBYx7uohF4Vir41fSEtkMIv0A9R96LEDouIiEinjWw4EpeeXgIAzG4zG3+e/RPGPxrjq/CvMKPVjBK1Wax7Eh89egQDAwM4Ojq+9t7JkyfRunXrEgUhJm287ph0iyAIeP78OQCgUqVKOn3G7NGjR2jdujUePHiAxo0b49ixY7CyKv6wzqSavII89NnVB2G3wmBqYIqDgw+io1tHscPSaqreR8Q8QaRZxOqTzAWqKw+1wYP0Bzj35BxqVKiBBo4NStQGp8AoB18EKt94E3qhFy9eoG3btrh27Rpq1aqFmJgY2Nvbix2WzvpvoRg2JAwdXDuIHZbW4sA1ROULB67RXtpUGygEBX459QuCbwQjX54Pz+qe+K79dzAxMFG57WJPgfFfUqkUOTk5yp/v37+P5cuXIyIiQtWmiYgAFP6i8/HxwbVr1+Ds7IyIiAgWiCJ7delpN/dukBZI4Rvoi+OJx8UOi4iISGcsiV2CWUdnwdzQHE6WTvj19K+YfGiyWtpWuUjs2bMnNm8unH8jLS0NLVq0wC+//IKePXti1apVKgdIpOvMzc0hCAIEQdDJI4J5eXno06cPzpw5A1tbW0RERMDFxUXssAiAiYEJ9g3Yh27u3ZCTnwPfQF/EPogVOyytpGo/1/U8QaRpxOqTzAW6JeBSAP7o9gcihkVg/8D9CB4YjM2XNqtl1gmVi8S4uDi0bdsWQOE8ig4ODrh//z42b96M33//XeUAiUh3yeVyDBs2DJGRkTA3N0dYWBjq1Kkjdlj0L68KxS41uiAnPwc+23zw96O/xQ6LiIio3Lufdh9+tfyUP3ep0QUCBDzJfKJy2yoXiTk5ObC0tAQAREREoE+fPtDT08Mnn3yC+/fvqxwgEekmQRAwYcIE7N69G4aGhggKCkKLFi3EDovewMTABEEDgtDJrRMyZZnourUrzj05J3ZYRERE5ZpMLoOpganyZ4lEAiN9I+TJ81RuW+Vx493d3REcHIzevXsjPDwcX331FQAgJSWFow4SqUFeXh6+/vprAMCSJUtgbGwsckRl49tvv1XOf7ht2zZ4eXmJHRK9g6mhKUIGhqDbtm6IeRAD7y3eiBoehYaODcUOTSvk5uZi2LBhAIAtW7bAxKR4gw7oap4g0lRi9UnmAt3z7bFvYWZopvxZJpdhYfRCWJtYK1/7tcuvxW5X5dFN9+zZg8GDB0Mul6NTp06IjIwEACxevBjR0dE4dOiQKs2/1+PHj/H111/j0KFDkEqlqFWrFtavX48mTZp80PraNIIR6SZdHKls+fLlygNOf/31Fz7//HORI6IPlZmXiS5bu+D0o9OoZFYJx4Yfg4e9h9hhaTyObkpUvnB0U+2lTbVBh4AO753mRAIJooYXf07jEp9JnDNnDnr16oV+/fqhTZs2SEpKQoMG/zcPR+fOndG7d++SNv9BUlNT0bp1a3Ts2BGHDh2Cvb097ty5Axsbm1LdLlFZMjQ0xJw5c5TPy7stW7YoC8SFCxeyQNQylsaWODTkELy2eOHsk7PovLkzTow4gY8qfSR2aOWaruUJIk0nVp9kLtAtx0ccL7W2S3wmceTIkTh48CD09fXRvXt39OzZE56enmV6WnvWrFk4efIkYmJiStyGNh0tICrvQkND0bt3b8jlcnz11Vf45ZdfOBGwlkqVpqLT5k64mHwRThZOODHiBGpWrCl2WBqLR/+JiDQDa4NCJR64ZuPGjXj69Cl27doFGxsbTJs2DZUqVUKfPn0QEBCA58+fqzPONwoJCUHTpk3h7+8Pe3t7NGrUCGvXrn3nOnl5ecjIyFA+MjMzSz1OInq/mJgY9O/fH3K5HJ9++il+/vlnFoharIJpBUQOi0Q9+3pIykpCp82dcC/1nthhERERlRtpuWlYdfb/phwcsm8I+uzso3z47/ZHWm5aidpWaXRTiUSCtm3bYunSpbh+/TrOnDmDTz75BGvXroWzszPatWuHn3/+GY8fP1ZlM2919+5drFq1CjVr1kR4eDjGjRuHyZMnK+dtfJPFixfD2tpa+eBw+qTpBEFAdnY2srOz1TLvjSa6ePEi/Pz8kJubi+7du2PdunXQ01N58GUSWSWzSjjy6RF8VOkjPMp4hE6bO+FB+gOxwyqXdCFPEGkTsfokc4FuWXt+LU4+PKn8OeRGCPQkerA2sYa1iTXin8Zj+d/LS9S2ygPXvE1KSgpCQ0MREhKCtm3bYvr06WrfhpGREZo2bYpTp04pX5s8eTLOnj2L06dPv3GdvLw85OX937Cwjx8/Rp06dXT+lDJprvJ+Gdrt27fRpk0bPH36FG3btkV4eDhMTU3fvyJpjaTMJLQPaI9bL2+hRoUaODHiBJytnMUOS6Nw4Bqi8oUD12iv4lxuujhmMfZd34frz6/D1MAUraq2whLPJahdqbZyGUEQsODEAqw5vwapualo4dwCK31Woq59XeUyeQV5mB4xHdsTtkNaIEVnt8740/dPVLF69/ZbrGuBee3nwaemDwDAcrElLo27hOoVqgMAgq4F4fvo73Hh8wvF/n8otUP19vb2GD16NPbv318qBSIAODk5vXYm8OOPP8aDB28/Um1sbAwrKyvl49Ucj0RU9p48eQIvLy88ffoUDRo0QGhoKAvEcsjJ0glRw6PgZuOGO6l30HlzZyRnJYsdFhERkUpO3D+BCc0m4O/RfyNyWCQKFAXw3uqNbFm2cpmlJ5fi19O/YoXPCpwdcxaOFo7w2uKFzLz/u+Xty8NfIuh6EHb024HYkbHIkmXBL9APcoX8ndu/8/IO3G3dlT/XrlgbRvpGyp8bODbArRe3SvTZVJ4nESic3+ny5ctISUmBQqEo8l6PHj3UsYk3at26NW7cuFHktZs3b8LFxaXUtklU1szMzJCVlaV8Xl6kpqaiS5cuSExMhLu7O8LDw2Ftbf3+FUkrVbGqgqjhUWgf0B43XtxA582dcXz4cdiZ24kdmkZQtZ+X1zxBpK3E6pPMBWXr8NDDRX7e2HMj7H+2x/mk82jn0g6CIGD5P8sxt+1c9Pm4DwBgU69NcPjZAYHxgfi86edIz03H+gvrsaX3FnhW9wQAbO2zFVV/q4ojd4+gi3uXt24/Jz8HMrlM+fO5seeKvJ8ty4ZCUPx3tQ+icpF4+PBhfPrpp28cqEYikUAuf3cFrIqvvvoKrVq1wqJFi9C/f3+cOXMGa9aswZo1a0ptm0RlTSKRlLvLRbKzs+Hn54eEhAQ4OTkhIiICDg4OYodFpczVxhVRnxYWilefXYXnFk9EfRqFimYVxQ5NdKr28/KYJ4i0mVh9krlAfTIzM5GRkaH82djY+L2zOKTnpQMAbE1tAQD30u4hOSsZ3jW8/68dA2O0d22PU49O4fOmn+N80nnkK/KLLFPZsjI87D1w6uGpdxaJ1StUR1xS3FvnIz735BzcKri9/8O+gcqXm06cOBH+/v5ISkqCQqEo8ijNAhEAmjVrhqCgIGzfvh0eHh744YcfsHz5cgwZMqRUt0tEJSeTydCvXz+cOnUKNjY2iIiIgJtbyRIYaZ8atjVw9NOjcLRwxOWnl+G91bvEI68RERGVljp16hQZ7HLx4sXvXF4QBEwNn4o21dooi7ZXt1Y4WBQ9EO5g7qB8LzkrGUb6RqhgWuGty7xN749645uob964XFJmEuYdn4feH5Vs3nqVzySmpKRg6tSpop0F8PPzg5+fnyjbJioLMpkMCxYsAADMmzcPRkZG71lDcykUCowYMQKHDx+GmZkZwsLC4OHx5qNfVH7VrlQbRz89ig4BHRCXFIdu27ohclgkLIwsxA5NNHl5efj8888BAKtXry72nMPlKU8QlQdi9UnmAvW5evUqnJ3/b5C19+XliWETcfnpZcSOin3tPQmKTuklCMJrr/2XAOG9U4HNbD0Te6/tRa0/amFY/WGoVbEWJBIJrj+/jq2Xt8LZyhlft/76nW28jcqjm44aNQqtW7fG6NGjVWlGNJwwkzRdeRmpTBAETJ48GStWrICBgQFCQ0PRtWtXscMiEV1+ehkdAjogNTcVHV074uDggzA11M2Bizi6KVH5wtFNtVdJaoNJYZMQfCMY0SOii1zeeTf1Lmr8XgNxY+PQyKmR8vWeO3rCxsQGm3ptQtS9KHTe3BkvZ74scjaxwV8N0Kt2LyzouOCd206VpmL20dnYdWWX8socGxMb9K/bH4s6L1Je+lpcKp9JXLFiBfz9/RETE4N69erB0NCwyPuTJ09WdRNEOs3AwABTpkxRPtdW33//PVasWAGJRILNmzezQCTUd6iP8KHh6Ly5M44lHkO/3f0QNCCoyMhs9GHKS54gKi/E6pPMBWVLEARMOjQJQdeDcHz48dfu/3OzcYOjhSMi70Yqi0SZXIYTiSewxHMJAKCJUxMY6hki8m4k+tftD6DwUtGElAQs9Vz63hgqmFbAX35/YZXvKjzLeQYAsDOze+9ZyPdR+UziunXrMG7cOJiamqJixYpFApJIJLh7965KAZY2nkkkKn0rVqzApEmTAAArV67E+PHjRY6INEnM/Rh02doF0gIp+n7cFzv67YCBnm79ccOj/0REmqE4tcH4g+MRGB+I/QP3F5kb0drYWnllzJLYJVgcuxgbe25EzYo1sShmEY4nHseNiTdgaVw4Fd8XB77AgVsHENAzALamtpgeOR0vcl7g/Njz0NfTL70P+w4qF4mOjo6YPHkyZs2aBT29Upt2sdSwSCQqXYGBgcrBpBYsWIDvvvtO5IhIE0XciUD37d0hk8swrP4wBPQKgJ5E+36nlBSLRCIizVCc2kCy4M1n6zb23IgRDUcAKDzbuODEAqw+vxqp0lS0qNICK31WFhmRNLcgFzMiZiAwIRDSfCk6V++MP33+RFXrqm/ddtetXfFd++/Qqmqrd8aYmZeJP8/+CQsjC0xoPuGdyxb5bKoWiba2tjh79ixq1KihSjOiYZFIVHoOHTqEHj16oKCgAJMmTcL//vc/lS9/oPJr//X96LurL+SCHOOajMOfvn/qzPeFRSIRkWbQltpgfdx6zDs+D5bGluhRqweaVm6KypaVYWJggtTcVFx9dhWxD2IRdisMfrX8sMxr2TuLzv9SuUj86quvYGdnhzlz5qjSjGi05YtAuktb/3g8deoUPD09IZVKMXjwYGzZskUrrzagsrUjYQcG7x0MAQKmtZyGZV7LdKJQ5MA1ROULB67RXtpUG8jkMuy5ugc7r+xEzP0Y5cA1EokEdezqoEuNLhjTeEyRS2E/lMo3fcjlcixduhTh4eGoX7/+awPX/Prrr6pugoi0TEJCAnx9fSGVStGtWzcEBASwQKQPMtBjIHLyczA6ZDR+Of0LLIwsML/DfLHDIiIi0jhG+kYYXG8wBtcbDABIz02HtECKiqYVYahv+J61303lIjE+Ph6NGhWO1pOQkFDkPV04+ktU2szMzJCSkqJ8rukSExPRpUsXpKWloVWrVtizZ89rB4+I3mVUo1HIlmVj8uHJWHBiAcwNzTGj9QyxwypVqvZzbcsTROWdWH2SuUC3WZtYwxrWamlL5SLx2LFj6oiDiN5CIpHAzs5O7DA+SEpKCry8vPDkyRN4eHjgwIED/CVFJTKpxSRk52dj9tHZmHlkJsyNzDG+WfkdFVfVfq5NeYJIF4jVJ5kLSF1KdP3XgwcPirX848ePS7IZItIiGRkZ6Nq1K27fvg1XV1eEh4ejQoUK71+R6C1mtZmFuW3nAgAmhE3ApoubRI6IiIhIN5SoSGzWrBnGjBmDM2fOvHWZ9PR0rF27Fh4eHti3b1+JAyTSdTKZDAsXLsTChQshk8nEDueNcnNz0bNnT1y4cAH29vaIiIhA5cqVxQ6LyoEfOv6AKS0KJ4YeFTIKu6/sFjmi0pGXl4cJEyZgwoQJyMvLK/b62pAniHSJWH2SuYDUpUSjm758+RKLFi3Chg0bYGhoiKZNm6Jy5cowMTFBamoqrl69iitXrqBp06b45ptv0K1bt9KIXS20aQQj0k2aPlJZQUEB+vfvj6CgIFhaWuL48eNo3Lix2GFROSIIAsaGjsW6C+tgoGeA4AHB8K3lK3ZYasXRTYnKF45uqr1YGxQq0T2Jtra2+Pnnn/Hjjz8iLCwMMTExSExMhFQqRaVKlTBkyBB06dIFHh4e72+MiN7JwMAAn332mfK5JhEEAePGjUNQUBCMjIywf/9+FoikdhKJBH/5/YWcghwExgei766+ODj4IDpX7yx2aBpDk/MEkS4Sq08yF+iutNw07Lm6B3de3sGM1jNga2qLuKQ4OJg7wNnKudjtqTxPorbj0QKikps9ezZ++ukn6OnpYc+ePejdu7fYIVE5li/PR/89/RF8PRhmhmaIGBqB1tVaix2WWvDoPxGRZtDG2uDy08vw3OwJaxNrJKYl4sbEG6heoTq+jfoW99PvY3PvzcVukxOXEVGJ/Prrr/jpp58AAKtXr2aBSKXOUN8QO/ruQJcaXZCTnwOfQB/EJcWJHRYREZGopoZPxYiGI3Br0i2YGJgoX+9Wsxui70eXqE0WiURUbJs3b8a0adMAAIsXL1Ze2kJU2owNjLFvwD60c2mHjLwMdNnaBdefXxc7LCIiItGcfXIWnzf5/LXXnS2dkZyVXKI2WSQSabjs7GyYm5vD3Nwc2dnZYoeDAwcOYNSoUQCAqVOn4uuvvxY5ItI1ZoZmCB0UiiZOTfA85zm8tnjhftp9scMSlablCSJdJ1afZC7QTSYGJsjIy3jt9RsvbsDOvGTzZrJIJNICOTk5yMnJETsMxMbGwt/fH3K5HJ9++imWLVsGiUQidlikg6yMrXB46GF8XOljPMp4BK8tXnia9VTssESlKXmCiAqJ1SeZC3RPz9o98X3098iX5wMAJJDgQfoDzDoyC30/7luiNlkkEmk4U1NT3Lt3D/fu3YOpqalocVy+fBl+fn7Izc2Fn58f1q1bBz09phASTyWzSogcFglXG1fcenkLXbZ2Qao0VeywSkTVfq4peYKIConVJ5kLdNPP3j/jWfYz2P9sD2m+FO0D2sP9d3dYGltiYaeFJWpT5dFNR4wYgVGjRqFdu3aqNCMabRzBiKis3b17F61bt0ZycjLatGmD8PBwmJmZiR0WEQDg9svbaLuxLZKzktGySktEDouEuRFHByUiouLT5tog6l4U4pLioBAUaOzUGJ7VPUvclsqnATIzM+Ht7Y2aNWti0aJFePz4sapNEpEGSU5Ohre3N5KTk1GvXj2EhoayQCSN4m7rjoihEahgUgGnH51Gn119kFeQJ3ZYREREpa5AUQCD7w2QkJKATm6dML3VdMxsPVOlAhFQQ5G4d+9ePH78GBMnTsTu3bvh6uqKbt26Yc+ePcjPz1e1eSKdl5+fj+XLl2P58uVl3qfS09PRtWtX3LlzB25ubggPD4eNjU2ZxkD0Ieo51EPYkDCYG5oj4k4EhuwbggJFgdhhfTCZTIYZM2ZgxowZkMlkxV5fzDxBRK8Tq08yF+geAz0DuNi4QK6Qq7VdlS83/a8LFy5gw4YNWLduHSwsLDB06FCMHz8eNWvWVOdm1EabTymTbhBrku3c3Fx06dIF0dHRcHBwQGxsLNzd3ctk20QldfTuUfgE+kAml2Fkw5FY12Md9CSaf++sqv1crDxBRG8mVp9kLlCdNtYGGy9sxO6ru7G1z1bYmtqqpU0DtbTy/yUlJSEiIgIRERHQ19eHj48Prly5gjp16mDp0qX46quv1Lk5Ip2gr6+PwYMHK5+XhYKCAgwcOBDR0dGwsrLC4cOHWSCSVuhcvTN29tuJfrv6YePFjbA2tsavXX4t96PwipEniOjtxOqTzAW66fczv+P2y9uo/EtluNi4wNyw6MGBuM/jit2mymcS8/PzERISgo0bNyIiIgL169fHZ599hiFDhsDS0hIAsGPHDnzxxRdITdW8Uee08WgBUWkSBAGfffYZNmzYAGNjY4SHh6N9+/Zih0VULJsvbcbw4OEAgAUdFuC79t+JHNG78eg/EZFm0MbaYMHxBe98f16HecVuU+UziU5OTlAoFBg0aBDOnDmDhg0bvrZMly5deB8TkZaYNWsWNmzYAD09PezYsYMFImmlTxt8ivTcdEw+PBnzjs+DtbE1pnwyReywiIiI1K4kReD7qFwkTpkyBdOmTXtttENBEPDw4UNUq1YNFSpUwL1791TdFBGVsp9//hlLly4FAKxduxa9evUSNyAiFUxqMQlpuWn47vh3+DL8S9iY2GB4w+Fih0VERKTxVC4S58+fj88///y1IvHly5dwc3ODXK7ekXaIdE12djZcXV0BAImJiaV2GVpAQABmzJgBAFiyZAlGjRpVKtshKkvftPsGablp+PXvXzEqZBQsjS3R5+M+YoeldmWVJ4jow4jVJ5kLdJPeAr133nsv/6749ZjKReLbbmnMysqCiYmJqs0TEYDnz5+XavshISH47LPPAADTp0/HzJkzS3V7RGVFIpHgZ++fkZabhg0XN2DQ3kE4OPigyvNHaaLSzhNEVDxi9UnmAt0TNCCoyM/5inxcSLqATZc2YUGHd9+v+DYlLhKnTp0KoPAX8HfffVfkTKJcLsc///zzxvsTiah4TE1NkZCQoHyubtHR0RgwYADkcjlGjBihvNyUqLyQSCRY030NMmQZ2HN1D3rt6IXIYZFoWbWl2KEpqdrPSztPEFHxiNUnmQt0U8+Per72Wr86/VDXvi52XtmJ0Y1HF7vNEheJFy5cAFB4JjE+Ph5GRkbK94yMjNCgQQNMnz69pM0T0f+np6eHunXrlkrbly5dQvfu3ZGbm4sePXpg7dq15X6qANJN+nr62Np7KzLzMhF+Jxw+gT44MeIE6jvUFzs0AKr389LME0RUfGL1SeYC+rcWzi0wJnRMidYtcZF47NgxAMDIkSPxv//9D1ZWViVtiohEcOfOHXTp0gUZGRlo27YtduzYAQMDtU6dSqRRjA2Msbf/XnTZ2gUnH56E9xZvxI6Khbst5wAlIqLyRZovxR9n/kAVq5JN46HyX4QbN25UtQkieof8/HwEBAQAAEaMGAFDQ0OV20xKSoK3tzeePn2KBg0aICQkhJelkE4wNzLHgcEH0HFTR1xMvgivLV44OeokKltWFjUumUyGRYsWAQDmzJlT5OqcD1EaeYKISk6sPslcoJsqLKkACf7vSjABAjLzMmFmaIatfbaWqE2J8LaRZ95h6tSp+OGHH2Bubq68N/Ftfv311xIFVla0ccJM0i3qnmQ7LS0N7du3x+XLl1G9enWcPHkSjo6O6giVSGs8zXqKNhvb4PbL2/Cw90D0iGhUMK0gWjyq9nN15wkiUo1YfZK5QHXaWBsEXAwoUiTqSfRgZ26HFs4tSvy7rURnEi9cuID8/Hzl87fhvU1EqtPX10fPnj2Vz1UhlUrRo0cPXL58GQ4ODoiIiGCBSDrJwcIBkcMi0XpDaySkJMBvux8ihkbA3Eg7/6BSZ54gItWJ1SeZC3TTiIYj1N5mic4klifaeLSAqCQKCgrQp08fhIaGwtraGidOnECDBg3EDotIVAkpCWi3sR1Sc1PR1b0r9g/cDyP94l3qqQ48+k9EpBm0sTY4fPswLIws0KZaGwDAyjMrsTZuLerY1cFKn5UlOpuop+4giUjzKBQKfPbZZwgNDYWJiQlCQ0NZIBIB8LD3wMHBB2FmaIbDtw9jRPAIKASF2GERERF9sBmRM5CRlwEAiH8aj6kRU+FT0wd3U+9iasS7bw18G5WLxJEjR+Lo0aPQ8ROSRBpLEATMnDkTmzZtgr6+Pnbu3Im2bduKHRaRxmhZtSX29t8LAz0DbE/YjimHpvB3GhERaY17qfdQx64OAGDvtb3oXqs7FnVehD99/8ShW4dK1KbKReKLFy/g6+uLKlWqYNq0abh48aKqTRLRv+Tk5MDV1RWurq7Iyckp9vo//fQTfvnlFwDAunXr0KNHD3WHSKT1urp3xeZemyGBBCvOrsAP0T+IHVKxqJoniEi9xOqTzAW6yUjfCDn5hfv7yN0j8K7hDQCwNbVVnmEsLpWnwAgJCUFaWhp27dqFwMBALF++HLVr18bQoUMxePBguLq6qroJIp0mCALu37+vfF4cf/31F+bMmQMA+OWXXzBixAh1h0dUbgyqNwgvpC8w6dAkzDs+D5XMKmF8s/Fih/VBVMkTRKR+YvVJ5gLd1KZaG0wNn4rWVVvjzOMz2NlvJwDg5oub4s2TCAA2NjYYO3Ysxo4di0ePHmH79u3YsGEDvvvuOxQUFKhjE0Q6y8TEBGfOnFE+/1A7d+7E+PGFf+DOnTv3vdPVEBEwsflEvMh5gfkn5mNi2ETYmtpioMfAUt9uSfu5utYnIvUSq08yF+imFT4rMP7geOy5tgerfFfB2coZAHDo1iF0de9aojbVOrppfn4+Dh48iK1bt+LgwYOwtbXF48eP1dV8qdDGEYyI3ufw4cPo3r07CgoK8MUXX2DlypWckoboAwmCgMmHJmPF2RUw0DPAgUEH0MW9i9hhERFRGWBtUEgto5seO3YMY8aMgYODA4YPHw5LS0uEhobi4cOH6mieiIrh5MmT6NOnDwoKCjBo0CCsWLGCBSJRMUgkEvyv2/8wyGMQChQF6LOrD/5+9LfYYREREb1RXFIc4p/GK3/ef30/eu3ohTlH50Aml5WoTZWLxCpVqsDHxwfPnj3D6tWr8fTpU2zcuBGenp7Q0+MMG0SqKigowLZt27Bt27b3Xr596dIl+Pr6QiqVwsfHB5s2bWI/JCoBPYkeAnoFoEuNLsjJz4HPNh9cSblSatuTyWRYtmwZli1bBpms+L/Qi5MniKj0idUnmQt00+cHPsfNFzcBAHdT72Lg3oEwMzTD7qu7MTNyZonaVPly0zVr1sDf3x8VKhR/kkZNwFPKpOk+dJLtW7duoW3btnj69CnatGmD8PBwmJmZlWWoROVOtiwbnls88fejv1HZsjJOjjoJVxtX9W/nA/t5aa1PROolVp9kLlCdNtYG1j9ZI25sHGrY1sCS2CWISoxC+NBwnHxwEgP3DsTDr4p/dafKA9eMHTsWAHD16lU8ePDgtSOgHG6fSDV6enrw9PRUPn+Tx48fw8vLC0+fPkWDBg0QGhrKApFIDcyNzHFw8EG029gOV55dgfcWb8SOioW9ub3YoRXxIXmCiMqOWH2SuUA3CYIAhaAAABy5dwR+Nf0AAFWtq+J5zvMStanymcS7d++id+/eiI+Ph0QiUQ63++oeKLlcrkrzpU4bjxYQ/duLFy/Qrl07XL16Fe7u7oiNjYWDg4PYYRGVK48zHqP1hta4n34fjRwb4fiI47AytlJb+zz6T0SkGbSxNui0qROqWleFp5snRoeMxtUJV+Fu644TiScwPHg4Er9MLHabKh9imDJlCtzc3PD06VOYmZnhypUriI6ORtOmTXH8+HFVmyeid8jMzISPjw+uXr0KZ2dnREZGskAkKgXOVs6IHBYJOzM7XEi+gB7beyC3IFfssIiIiLC863LEJcVh4qGJmNt2Ltxt3QEAe67uQauqrUrUpspnEitVqoSoqCjUr18f1tbWOHPmDGrXro2oqChMmzYNFy5cUKX5UqeNRwuIACA3Nxe+vr6IiopCxYoVER0djTp16ogdFlG5diHpAjps6oCMvAz0+qgXdvvvhoGe6lMO80wiEZFmKE+1QW5BLvQl+jDUNyz2uiqfSZTL5cpfbJUqVcKTJ08AAC4uLrhx44aqzRPpvJycHNStWxd169ZFTk4OACint4iKioKFhQUOHTrEApGoDDRyaoSQgSEw1jdG8PVgjA0dCzVON1xib8oTRCQesfokc4HuSstNw7q4dZh9ZDZeSl8CAK4+u4qU7JQStafy4U8PDw9cvnwZ1atXR4sWLbB06VIYGRlhzZo1qF69uqrNE+k8QRBw9epV5XOFQoExY8YgODgYRkZG2L9/P5o1ayZylES6o71re+zstxN9dvXBxosbUcmsEpZ6LRU1pv/mCSISl1h9krlAN11+ehmdN3eGjYkNEtMSMabJGNia2iLoWhDup9/H5t6bi92mykXiN998g+zsbADAjz/+CD8/P7Rt2xYVK1bEzp07VW2eSOeZmJjg2LFjAABjY2PMmDEDAQEB0NPTw86dO9GpUyeRIyTSPT0/6ol13ddhVMgoLDu1DJXMKmFm65LNRQUU7ecmJiZlvj4RqZdYfZK5QDdNDZ+KkQ1HYqnXUlgutlS+3q1mNwzeO7hEbap8T+KbvHz5EhUqVFCOcKrJytN1x1T+LVq0CHPnzgUAbNy4ESNGjBA3ICId9/OpnzEjcgYAYH2P9RjVaJTIERERkSqKWxtE34/GslPLcP7JeSRlJSFoQBB6fdRL+f6I4BHYdGlTkXVaOLfA35/9rfw5ryAP0yOmY3vCdkgLpOjs1hl/+v6JKlYfVpv8e55Ey8WWuDTuEqpXqI77afdRe0Vt5H5T/IHWVLonMT8/Hx07dsTNmzeLvG5ra6sVBSKRNlm1apWyQPztt99YIBJpgOmtpuPr1l8DAMaEjkHw9WBxAyIiojKVLctGA4cGWOGz4q3LdHXviqRpScpH2JCwIu9/efhLBF0Pwo5+OxA7MhZZsiz4BfpBrviwqQRNDEyQkZfx2us3XtyAnbld8T7Q/6dSkWhoaIiEhAQWhESlqKCgAHPnzsX48eMBAN9++y2+/PJLcYMiIqXFnRdjdKPRUAgKDNwzEMfuHSt2G/n5+Vi5ciVWrlyJ/Pz8Yq9fUFCA4OBgBAcHo6CgoNjrE5F6idUnmQvKXrea3fBjpx/R5+M+b13GWN8YjhaOyoetqa3yvfTcdKy/sB6/eP8Cz+qeaOTUCFv7bEV8SjyO3D3yQTH0rN0T30d/j3x54e8PCSR4kP4As47MQt+P+5boc6l8uem0adNgaGiIn376SZVmRMPLTUnTnTlzBi1atAAAjBw5EuvXr+eBGSINU6AoQP/d/RF0PQiWRpY4PuI4Gjs1/uD1VZ0Cg1NoEGkWsfokc4HqXtUGr+agfsXY2BjGxsbvXFeyQPLGy02DrwfDSN8INiY2aO/SHgs7L4S9uT0AIOpeFDpv7oyXM1+igmkF5XoN/mqAXrV7YUHHBe+NOSMvAz7bfHDl2RVk5mWismVlJGclo2XVlggbHAZzo+J/D1QeuEYmk2HdunWIjIxE06ZNX/sy/vrrr6pugkhnPXv2DP7+/gAAKysrLF++nAUikQYy0DNAYN9A+GzzwbHEY+i6tStiR8WiVsVaZbJ9PT09tGrVSvmciMQlVp9kLlCf/04tNm/ePMyfP7/Y7XRz7wb/Ov5wsXHBvdR7+PbYt+i0qRPOjz0PYwNjJGclw0jfqEiBCAAO5g5Izkr+oG1YGVshdlQsou5FIS4pDgpBgcZOjeFZ3bPY8b6icpGYkJCAxo0Lj5b+995E/jFLVHIymQx9+/bFgwcPUKNGDfzzzz+wsrISOywiegsTAxMEDwxGx00dEZcUB68tXjg56uQHDzygClNTU5w8ebLUt0NEH0asPslcoD5vOpNYEgM8Biife9h7oGnlpnBZ7oKDtw6+8xJVAcIH1VIFigKY/GiCi+MuopNbJ3RyU8+o9yoXia+G2SUi9REEAePHj0dMTAysrKwQGhqKihUrih0WEb2HlbEVDg05hLYb2+Lmi5vosrULokdEo6IZ+y8RkTaxtLQslYPzTpZOcLFxwa0XtwAAjhaOkMllSJWmFjmbmJKdglZVWr23PQM9A7jYuHzwIDcfqsTnoaVSKQ4cOKD8efbs2Zg6daryMXPmTOTmFn+4VSICfv/9d6xfv145F+LHH38sdkhE9IHsze0RMTQCzpbOuPrsKnwDfZElyxI7LCIi0gAvcl7gYfpDOFk6AQCaODWBoZ4hIu9GKpdJykxCQkoCWlV9f5EIAN+0/Qazj87GS+lLtcVZ4jOJmzdvxoEDB+Dn5wcAWLFiBerWrQtTU1MAwPXr1+Hk5ISvvvpKPZES6Yjjx49j2rRpAICff/4Z7du3R7NmzQAA0dHRyj5GRJrLxcYFEcMi0HZjW/zz+B/03dUXoYNCYaRvVCrbk0qlaNeuHQDmCSJNIFafZC4oe1myLNx+eVv5873Ue7iYfBH/r737jorievsA/l16FWyAWFFsiBUUsWIsUTEJoqJiI0Zjg2AwGo29osYWFWwYewFU1ESNJSo2VCyEplixgtgVWMruzvsHb/YXokaBhdldvp9zOGfZac96vQ/7zJ25U864HMoZl8OMkzPQq34vVDKvhORXyfjpz59QwaQCetbrCQCwMLLAN02/wbgj41DeuDzKGZfDD0d/QEOrhp98T+Hyi8tx68Ut2C62RXXL6jDVzz9HzJURVwr8uQpdJG7btu2dAnD79u2oWbMmAGDr1q0ICgpikUhUAPfv34eXlxfkcjkGDRqEsWPHIjMzE5cuXQIAKBQKkSMkok/lUNEBB70PouPmjjhy+wgGRwzGNs9t0NXRVfmxFAoF8wSRGhGrTzIXlLxLjy+hw6YOyt8DjgQAAIY0HoJV7qsQlxaHzX9txqusV6hkXgkdanRAaO9QmBuaK7dZ2nUp9HT04LXLC9JcKTrW7IiN/Td+8t+Lr+p+BQlUOxdMoYvEGzduoE6d/83aZmRklG8WpRYtWmDMmDFFi46oFJFKpfD09MTTp0/RtGlTrFmzBhKJBIaGhspLuwt70zQRicOligv29N2DHtt7IDQhFOWNy2Nl95XvTEZQ1H7OPEGkXsTqk8wFJc+thhuE6R9+ouDhgYc/ug8jPSOs6L4CK7qvKFQMM9xmFGq7/1Lo5yQaGxsjJiYGdevWfe/y69evo0mTJmp/XyKfk0jqQBAE+Pj4YPPmzahQoQIuXbqE6tWrix0WEalIaHwo+u/uDwECprWb9knPvSIiopKnSbVBZm4mxh8Zj71Je5Erz0Wnmp2wvNtyVDCpUOR9F3rimipVqiA+Pv6Dy2NjY9X+H5ZIXQQFBWHz5s3Q1dVFWFgYC0QiLdPXsS+CugcBAGadmoXlF5aLHBEREWm66SemY+NfG+Fe2x39HPvh6J2jGHVglEr2XejLTbt3745p06bB3d0dRkZG+ZZJpVLMnDkT7u7uRQ6QSNudOnVKee/uzz//jA4dOuRbLpfLcfz4cQDAZ599Bl1d1d/PRETFb1TzUXiW+QzTTk6D/x/+KG9cHgMaDQAA5ObmYtu2bQCAAQMGQF9fv0D7Zp4gUi9i9UnmgtJlz/U9WP/levRz7AcAGNhoIFr/2hpyhbzI978X+nLTJ0+eoEmTJjAwMICvry/q1KkDiUSC69evY+XKlZDJZLh69Sqsra2LFGBx06QhZdI+Dx8+hJOTE9LS0uDt7Y2tW7e+c69SRkYGzMzMAADp6ekwNTV9366ISAMIgoCxf4zF8ovLoaejh3399qF77e5F7ufME0TqRaw+yVxQdJpUGxjMNsBd/7uoXKay8j3juca44XsDVS2qFmnfhR5JtLa2xrlz5zBq1ChMnDgRf9eaEokEnTt3RnBwsNoXiERiysrKgqenJ9LS0tC4cWOsW7funQIRAHR0dNC4cWPlayLSXBKJBEu7LsVz6XNsi9uG3mG9cXTQUTQp36RI+2WeIFIvYvVJ5oLSRS7I33m0kp6OHmQKWZH3XeiRxH968eIFbt3Kez6Ivb09ypUrV+TACiMwMBA//fQT/P39sWzZsk/aRpPOFpD2EAQB33zzDTZs2IBy5crh0qVLsLOzEzssIiohufJcfLXzKxy6dQiWRpb4o+8faGnXEgDP/hMRiUmTagOdmTroVrsbDHX/N5Ptbzd+w2d2n+V7VuKevnsKvO9CjyT+U7ly5dCiRQtV7KrQoqOjsXbtWjRq1EjUOIg+xerVq7Fhwwbo6OggNDSUBSJRKaOvq49dXrvQZUsXnH1wFh67PICyAF6KHRkREWmKIU2GvPPewEYDVbJvlRSJYktPT8eAAQOwbt06zJkzR+xwiP7TmTNn8N133wEAFixYgE6dOokcERGJwUTfBL/1/w3tN7ZHXFocMAjAr2JHRUREmmLDVxuKbd9acbHymDFj4O7u/klftrOzs/HmzRvlz9u3b0sgQqI8jx49Qu/evSGTydC3b1+MGzfuo9tIpVK4ubnBzc0NUqm0BKIkopJS1rgs/hj4B2pY1ADKARgI3H55u8D7YZ4gUi9i9UnmAlIVjR9J3LlzJ65cuYLo6OhPWj8wMBAzZ/IhxlTysrOz0atXLzx58gQNGzbE+vXr3ztRzb8pFApERkYqXxORdrE1t8W+3vvQ+JfGgA3QYmMLTGozCT+2+RFGekYf3wGYJ4jUjVh9krmAVEWji8QHDx7A398fR44ceedZjR8yadIkBAQEKH9/9OgRHBwciitEIiU/Pz9cuHABZcuWRURExCdPTGFoaIiwsDDlayLSPg42DljeZDnWpaxDXEYcZkTOwNa4rQjqHoQutbp8dHvmCSL1IlafZC4gVVHJ7KZi2bt3L3r27JnvQaFyuRwSiQQ6OjrIzs7+6ENENWkGI9Jca9euxYgRI6Cjo4ODBw/i888/FzskIlJDgiAgPDEcY/8Yi5T0FACAVwMvLOmyJN9zsIiIqHiwNsij0fckduzYEXFxcYiJiVH+ODs7Y8CAAYiJiflogUhUEqKiouDr6wsAmDdvHgtEIvogiUQCrwZeuO57HWNdxkJHooOwhDDUC6qHpVFLVfLsKyIioo/R6CLR3Nwcjo6O+X5MTU1Rvnx5ODo6ih0eER4/foxevXohNzcXvXv3xoQJEwq8D7lcjrNnz+Ls2bOQy+XFECURiU0mkyE8PBzh4eGQyWQoY1gGS7suxeVvL6NllZZIz0lHwJEAOK11wrkH597ZnnmCSL2I1SeZC0hVNPpy0/dxc3NDkyZNsGzZsk9an0PKVFxycnLg5uaGqKgoNGjQAOfPn4eZmVmB95ORkaHcjg/ZJtJO/9XPFYIC66+sx4/HfsTLrLwHKQ5rOgzzO81HeZPyH92eiEqeWH2SuaDoWBvk0eiJa97n5MmTYodABADw9/dHVFQULC0tsXfv3kIViEDe5Wf29vbK10RUuuhIdDDcaTg86nlg4rGJ+DXmV4RcDUHE9Qgs7LwQPk18mCeI1IxYfZK5gFRF60YSC4pnC6g4hISEYPjw4ZBIJDhw4AC6desmdkhEpMYKcvb/zP0zGHVgFOLT4gEAraq2wir3VWhk3ahEYiUi0masDfJo9D2JROro/PnzGDNmDABgzpw5LBCJSKXaVGuDK99ewaLOi2Cqb4pzD86h2ZpmCDgcgDfZb8QOj4iItACLRCIVSk1NRa9evZCTkwNPT09MmjRJ7JCISAvp6+pjXKtxuO57Hb0dekMuyLH0/FLUWVEHW/7aglJ+kRARERURi0QiFcnJyUGfPn3w+PFj1K9fHxs3blTJ/QBZWVlwd3eHu7s7srKyVBApEWmLKmWqILxPOPb12QeTLBM8yXiCwXsHo+2GtohJjRE7PKJSS6y/3fzOQKqidRPXEIklICAAZ86cQZkyZbB3716Ym5urZL9yuRwHDx5UviYi+reO1Tsi8+dMwBUw6WqCsw/OwmmtE0Y5j8KsDrNQzric2CESlSpi/e3mdwZSFRaJRCqwYcMGBAUFAQC2bduGOnXqqGzfBgYG2LBhg/I1EWmfovZzAwMDbAjJ2779F+0x6cQkhCaEIig6CKEJoQjsGIihTYdCR8ILiIhKglh/u/mdgVSFs5tyBiMqoujoaLRt2xbZ2dmYOXMmpk2bJnZIREQ4cfcE/A75IeFpAgCguW1zrOy+Ei0qtxA5MiIi9cXaIA9PKRIVQVpaGjw9PZGdnY2vvvoKU6ZMETskIiIAQAe7Drg64iqWfr4UZQzLIPpxNFxCXDBs/zA8zXgqdnhERKTGWCQSFZJMJoOXlxcePnyIunXrYvPmzdDRUX2XksvliImJQUxMDO8vINJSMpkMBw4cwIEDByCTyQq8/YfyhL6uPsa2HIsk3yQMaTwEALD+6nrUWVkHQReDIFMU/FhE9HFi/e3mdwZSFV5uyiFlKqRx48ZhyZIlMDMzQ3R0NOrVq1csxynIQ7aJSDMVtZ9/6vZn75+F7yFf5cynja0bY2X3lWhTrU3hgyeid4j1t5vfGYqOtUEejiQSFcLOnTuxZMkSAMDmzZuLrUAEAIlEAltbW9ja2qrkkRpEpH0+NU+0rtYal4ZfQnD3YJQ1Kou/nvyFthvaYlDEIDx++7gEIybSbmL97eZ3BlIVjiTybAEVUHx8PFxcXJCZmYmJEyciMDBQ7JCISMOJcfb/WeYzTP5zMtZdWQcBAkz1TTG57WR87/o9jPSMiv34RETqiLVBHo4kEhXAq1ev0LNnT2RmZqJTp06YM2eO2CERERVKBZMKWPPFGlwcfhEtq7RERm4Gfjr+ExyCHBBxLQKl/BwyEVGpxiKR6BMpFAoMGjQIt27dQvXq1bFjxw7o6uqKHRYRUZE42zrj3NBz2NpzK2zNbXH31V14hnmi85bOiE+LFzs8IiISAYtEok80d+5c/P777zA0NMSePXtQoUKFEjluVlYW+vTpgz59+iArK6tEjklEmqWoeUIikWBAowFI8k3ClLZTYKhriD/v/onGqxvD96Avnmc+L4aoibSXWH+7+Z2BVIX3JPK6Y/oEBw8eRI8ePSAIAjZs2AAfH58SOzZnKiPSfiU1u+mnuvvyLsYfHY/d13YDAMoalcWsDrMw0nkk9HT0irRvotKAs5tqLtYGeZjpiT7i9u3bGDBgAARBwKhRo0q0QAQAAwMDrFy5UvmaiLRPUfu5qvOEXVk77PLahRN3T2Ds4bGIfRILv0N+WH1pNZZ1XYZONTsV+RhE2kysv938zkCqwpFEni2g/5CZmQlXV1fExsaiZcuWiIyMZNIlolJFppAh5EoIphyfgufSvMtOv6r7FRZ1WQT7cvYiR0dEpFqsDfLwnkSiDxAEAcOHD0dsbCysrKywa9cuFohEVOro6ehhpPNI3PS7CX8Xf+hKdLEvaR8aBDfAxGMT8Tb7rdghEhGRirFIJPqAFStWYPv27dDV1UVYWBgqV64sShwKhQI3b97EzZs3oVAoRImBiIqXXC7HyZMncfLkScjl8gJvXxJ5oqxxWSzrugyxo2LRpVYX5MhzsODsAtRZWQcbYzZCITA/Ef1NrL/d/M5AqsLLTTmkTO9x+vRpfPbZZ5DJZFi6dCnGjh0rWiy8CZ1I+6nbxDUfIwgCDtw8gO8Pf49bL24ByHuUxtLPl6JNtTbFemwiTcCJazQXa4M8HEkk+pfHjx+jT58+kMlk6N+/P/z9/cUOCRYWFrCwsBA7DCJSYyWZJyQSCXrU6YH4UfH4ufPPMDcwx6XHl9B2Q1v0Ce+DOy/vlEgcROpMrL/d/M5AqsCRRJ4toH/IycmBm5sboqKi0LBhQ0RFRfEsHBEVO00/+/8k/QmmnZiGkKshUAgKGOgawN/FH5PbToaFEb+sEpHmYG2QhyOJRP8QEBCAqKgoWFhYYM+ePRr3RY2ISAzWZtZY88UaxIyIQeeanZEjz8HP536G/Qp7BEcHQ6aQiR0iEREVAItEov+3adMmBAUFAQC2bdsGe3tO7U5EVBANrRvi8MDDOOB9APUq1MOzzGcYc3AMGq1qhEM3D4kdHhERfSIWiUQArl69ipEjRwIApk+fDnd3d5Ej+p/s7Gz4+PjAx8cH2dnZYodDRGpInfKERCJB99rdETsyFiu7rUR54/K49uwaum/vjq5buyI+LV7U+IhKglh9Up1yAWk23pPI645LvefPn8PZ2RnJycno3r07fvvtN+joqM/5E02/V4mIPk7TZjctiFdZrzDn1Bwsv7AcuYpc6Eh0MLzZcMzqMAtWplZih0dULDi7qeZibZBHT+wAiMQkl8vh7e2N5ORk1KpVC1u3blWrAhEA9PX1sXDhQuVrItI+Re3n6pwnLI0ssajLIoxyHoUfj/2I3dd2Y83lNdgetx2T206Gf0t/GOkZiR0mkUqJ1SfVOReQZuFIIs8WlGqTJ0/GvHnzYGxsjPPnz6NRo0Zih0REpNVO3TuFgMMBuJxyGQBQw7IGFnRagD4OfSCRSESOjohKO9YGedRryISoBO3duxfz5s0DAISEhLBAJCIqAe2qt8PF4Rex2WMzKptXRvKrZPTd1RdtNrTBxUcXxQ6PiIjAIpFKqaSkJAwePBgAMHbsWHh7e4sc0YcpFAo8evQIjx49gkKhEDscIioGcrkc0dHRiI6OhlwuL/D2mpYndCQ6GNR4EJJ8kzDTbSZM9E1w7sE5uIS4wHu3N5JfJYsdIlGRiNUnNS0XaINT907hix1fwHaxLSQzJdh7fW++5YIgYMbJGbBdbAvjucZw2+iGhLSEfOtky7Lhd9APFRZWgOk8U3y540s8fPOwBD/Fu1gkUqnz9u1b9OzZE2/fvkW7du2U1+6rK6lUiipVqqBKlSqQSqVih0NExSArKwstWrRAixYtkJWVVeDtNTVPmBqYYlr7abjpdxM+TXwggQQ74neg7sq6+OHID3ghfSF2iESFIlaf1NRcoMkycjLQ2LoxVnZf+d7lC88uxJKoJVjZfSWih0fDxswGnbd0xtvst8p1xv4xFhHXI7Cz906c+foM0nPS0WN7D8gVBT9pqCosEqlUEQQBQ4cOxbVr12Bra4vQ0FCNuLFbT08PenqcZ4qIPkyT84StuS02fLUBl7+9jE41OyFHnoPFUYthv9wei88tRraMU/mT5hGrT2pyLtBE3Wp3w5zP5sCzvuc7ywRBwLILyzC57WR41veEo5UjNnlsQmZuJrbHbQcAvM56jfVX12Nxl8XoVLMTmlZqiq2eWxGXFodjd46V9MdRYpFIpcqiRYuwa9cu6OvrY9euXbCxsRE7pI8yNTVFbm4ucnNzOZU1Eb2XtuSJppWa4sjAIzg04BAcrRzxMuslfjj6A+oF1cOOuB1QCLx8jjSDWH1SW3KBOnj79i3evHmj/CnMcyfvvrqL1PRUdKnVRfmeoZ4h2tdoj3MPzwEALqdcRq4iN986tua2cLRyxLkH54r+QQqJRSKVGn/++ScmTpwIAPjll1/g6uoqckRERPRvEokEXe27ImZEDNZ/uR625rZIfpUM7z3ecAlxQWRypNghElEp4ODgAAsLC+VPYGBggfeRmp4KALA2s873vrWptXJZanoqDHQNUNa47AfXEQOLRCoV7t+/j379+kGhUMDHxwcjR44UOyQiIvoPujq6GNp0KG763cScDnNgZmCGS48vwW2TG77Y8QUSnyaKHSIRabHExES8fv1a+TNp0qRC70uC/I/3EQThnff+TYAg6mOBWCSS1svKykKvXr3w7NkzNGvWDMHBwRr1LK7s7GyMGTMGY8aMKdSlDkSk/bQ5T5jom2Byu8m4/d1tjHYeDV2JLn6/8TsarmqIEb+NEPVMO9GHiNUntTkXlDRzc3OUKVNG+WNoaFjgfdiY5d3W9O88lZaZphxdtDGzQY48By+lL/Ovk5EGa9P8I5AliUUiaT0/Pz9cunQJ5cqVw+7du2FsbCx2SAUik8kQHByM4OBgyGQyscMhIjVUGvKElakVgtyDkDA6AR71PKAQFFh7ZS3sl9tj5smZSM9JFztEIiWx+mRpyAWaxM7SDjZmNjh656jyvRx5DiKTI9GqSisAgFMlJ+jr6OdbJ+VtCuLT4tGqaqsSj/lvnPqItNq6desQEhICHR0d7Ny5EzVq1BA7pALT19fH9OnTla+JSPsUtZ+XpjxRt0JdRPSNwJn7Z/DDkR9w4dEFzIicgdWXV2Om20wMbToUejr8ekPiEqtPlqZcoC7Sc9Jx68Ut5e93X95FTGoMyhmXQzWLahjrMhbzTs9D7XK1Ubt8bcw7PQ8m+ibwbpj3jG4LIwt80/QbjDsyDuWNy6OccTn8cPQHNLRqiE41O4n1sSARBEEQ7ehq4OHDh6hatSoePHiAKlWqiB0OqVB0dDTatGmDnJwczJs3r0jXkhMRkfoRBAG7Endh0p+TcPvlbQCAQ0UHLOi0AO613TXq1gIiUg8FrQ1OJp9Eh00d3nl/SOMh2OixEYIgYGbkTKy5vAYvpS/hUsUFQd2D4GjlqFw3S5aF8UfGY3v8dkhzpehYsyOCuwejqkVVlX62gmCRyCJRK/19/+GDBw/g4eGBPXv28MsCEZGWypHnYFX0Ksw6NQsvpC8AAG413LCw00I0r9xc5OiISJOwNsjDexJJ68jlcvTv3x8PHjxA7dq1sXHjRo0uEAVBwKtXr/Dq1SuU8nM6RFpLoVAgISEBCQkJUCgK/izA0p4nDHQN4N/SH7e/u40JrSbAUNcQJ5NPokVIC3iFe+HG8xtih0iljFh9srTnAlIdFomkdaZPn45jx47BxMQEe/bsgYWFhdghFUlmZibKli2LsmXLIjMzU+xwiKgYSKVSODo6wtHREVKptMDbM0/ksTSyxILOC3DD7wYGNx4MCSQITwyHQ5ADRv0+CilvU8QOkUoJsfokcwGpCotE0iq//fYb5s6dCwAICQmBo6PjR7YgIiJtU82iGjZ5bMJfI/9Cjzo9IBfkWH15NexX2GPK8Sl4nfVa7BCJiNQai0TSGrdu3cKgQYMA5D32on///iJHpBomJibIyclBTk4OTExMxA6HiNQQ88T7NbRuiN/6/4ZTPqfgWsUVmbmZmHt6Lmotr4WlUUuRLeNz5Kh4iNUnmQtIVVgkklbIzMxEr1698Pr1a7i6umLRokVih6QyEokE+vr60NfX1+h7K4mo+DBP/Le21dvi7NCziOgbgfoV6uO59DkCjgSgzso62PzXZsgVcrFDJC0jVp9kLiBVYZFIGk8QBIwcORKxsbGwsrJCeHg4DAwMxA6LiIjUiEQigUc9D8SOikXIFyGobF4Z91/fx5C9Q9BkTRMcuHGAE30QEf0/Fomk8VavXo0tW7ZAV1cXoaGhqFy5stghqVROTg7Gjx+P8ePHIycnR+xwiEgNMU98Oj0dPXzT7Bvc9LuJBZ0WwNLIEvFp8eixowfab2yPqAdRYodIWkCsPslcQKrC5yTyWSga7cKFC2jbti1yc3OxcOFCjB8/XuyQVC4jIwNmZmYAgPT0dJiamoocERGpWlH7OfNE4b2UvsT8M/Ox/OJyZMmyAAAe9Tww77N5qF+xvsjRkaYSq08yFxQda4M8emIHQFRYT58+Re/evZGbmwtPT0/88MMPYodULPT19ZWfTV9fX+RoiKg4FLWfM08UXlnjsljQeQH8XPww4+QMbIjZgL3X92J/0n583eRrzHCbgSplSu8XRSocsfokcwGpCkcSebZAI8nlcnz++ef4888/UbduXVy8eBFlypQROywiItJw155ew0/Hf8Le63sBAEZ6RviuxXeY2GYiyhqXFTc4Iip2rA3y8J5E0khTp07Fn3/+CRMTE+zevZsFIhERqUT9ivUR0TcCZ4eeRdtqbZEly8LCcwtRc3lNzD8zHxk5GWKHSERU7FgkksbZt28fAgMDAQDr169HgwYNRI6oeAmCgNzcXOTm5nLmPSItpVAokJycjOTkZCgUigJvzzyheq2qtkKkTyR+7/87HK0c8SrrFSb9OQn2K+wRdDEIOXJOCkIfJlafZC4gVWGRSBrl5s2bGDx4MADA398f/fr1Ezmi4peZmQkDAwMYGBggMzNT7HCIqBhIpVLY2dnBzs4OUqm0wNszTxQPiUQC9zruiBkRgy09t8DO0g6p6anwPeSLuivr8hmL9EFi9UnmAlIVFomkMTIyMtCrVy+8efMGrVu3xs8//yx2SEREVAro6uhiYKOBuO57HcHdg2FjZoPkV8kYsncIGq1uhIhrERy1ISKtwiKRNIIgCBgxYgTi4uJgbW2NsLCwUjNrl4mJCV6+fImXL1/CxMRE7HCISA0xT5QMA10DjGo+Cre/u40FnRagrFFZJD5NhGeYJ1xCXHDszjEWiwRAvD7JXECqwiKRNEJwcDC2bdsGXV1dhIWFwdbWVuyQSoxEIoGlpSUsLS0hkUjEDoeI1BDzRMky0TfBhNYTcMf/Dqa0nQJTfVNEP45G5y2d0XFzR5x/eF7sEElkYvVJ5gJSFRaJpPaioqLw/fffAwAWLFiAdu3aiRwRERERYGlkidmfzcbt727D38UfBroGOJF8Aq7rXfHVzq8Q9yRO7BCJiAqFRSKptbS0NPTp0we5ubno3bs3AgICxA6pxOXk5GDGjBmYMWMGcnI4mx4RvYt5QlzWZtZY1nUZbvrdxNAmQ6Ej0cH+pP1ovLoxBu4ZiNsvbosdIpUwsfokcwGpikQo5RfP84GZ6ksmk6FLly44ceIE6tWrh4sXL8Lc3FzssEpcRkYGzMzMAADp6ekwNTUVOSIiUrWi9nPmCfVy/dl1TDsxDeGJ4QAAPR09DGs6DFPaTUHlMpVFjo5Kglh9krmg6Fgb5NETOwCiD5k8eTJOnDgBU1NT7Nmzp1QWiACgp6eH0aNHK18TkfYpaj9nnlAv9SrUQ1ifMFxJuYIpx6fg0K1DWH15NTb+tRG+zX0xsc1ElDcpL3aYVIzE6pPMBaQqHEnk2QK1FBERAU9PTwBAaGgovLy8RI6IiIiocE7fO41Jf07C2QdnAQBlDMvgB9cfMLblWJgbls4ToETqirVBHt6TSGrnxo0bGDJkCADg+++/Z4FIREQarW31tjj99Wkc8D6AJjZN8Cb7DaadnIaay2ti0blFyMzlQ8+JSL2wSCS1kpGRAU9PT7x9+xZt2rTBggULxA6JiKjYCYKAp0+f4unTp3zOnpaSSCToXrs7Ln97GaG9Q1GnfB08y3yG8UfHo9byWlhxYQWyZdlih0lEBIBFIqkRQRAwfPhwJCQkwMbGBmFhYdDX1xc7LNFlZGRAX18f+vr6yMjIEDscIioGmZmZsLKygpWVFTIzCz6qxDyhOXQkOvBq4IWE0Qn49ctfUcOyBlLTU/HdH9+h9oraWHt5LXLluWKHSUUkVp9kLiBVYZFIamPlypXYsWMHdHV1ERYWhkqVKokdktqQyWSQyWRih0FEaox5QrPo6ejh66ZfI8k3CavcV6GyeWU8ePMAI34fgbor62JTzCbIFGxPTSZWn2QuIFVgkUhq4ezZs8pnIC5atAht27YVOSL1YWxsjIcPH+Lhw4cwNjYWOxwiUkPME5rLQNcAI51H4tZ3t7Ds82WwNrXG3Vd34bPPBw2CG2BH3A4oBIXYYVIBidUnmQtIVTS6SAwMDETz5s1hbm4OKysreHh4ICkpSeywqICePHkCLy8vyGQy9O3bF/7+/mKHpFZ0dHRQuXJlVK5cGTo6Gt1liaiYME9oPiM9I/i39Mft725jYaeFKG9cHjee34D3Hm80Xt0YEdcieL+qBhGrTzIXkKpo9P+eyMhIjBkzBufPn8fRo0eVD1/nNdia4+/C8PHjx6hfvz5CQkIgkUjEDouIiEgUpgamGN96PO7438HsDrNhYWiB+LR4eIZ5wnmdMw7cOMBikYiKnVY9J/Hp06ewsrJCZGQk2rVr90nb8Fko4ho/fjwWLVoEMzMzREdHo169emKHpHZycnLwyy+/AAD8/f1hYGAgckREpGoZGRkwMzMDAKSnp8PU1LRA2zNPaK+X0pdYErUEyy4sQ3pOOgCgZZWWmN1hNjradeSJVTUlVp9kLig61gZ5tKpIvHXrFmrXro24uDg4Ojq+d53s7GxkZ/9viulHjx7BwcGh1P9HEMPu3bvRu3dvAEB4eLjyNeVX1C+PRKT+itrPmSe037PMZ1h4diFWXlwJqUwKAGhXvR1md5iNdtU/7cQ4lRyx+iRzQdGxSMyjJ3YAqiIIAgICAtCmTZsPFohA3n2MM2fOLMHI6H2uX7+Or7/+GgAwbtw4Foj/QU9PD0OGDFG+JiLtU9R+zjyh/SqYVMDCzgsR4BqAwNOBWH15NU7dO4X2G9ujc83OmN1hNlyquIgdJv0/sfokcwGpitaMJI4ZMwYHDhzAmTNn/rPq50ii+NLT09GiRQtcu3YN7du3x7Fjx5jIiIiICuDB6weYe3ou1l9dr3xURo86PTDLbRaaVmoqcnREmosjiXk0euKav/n5+WH//v04ceLERxvT0NAQZcqUUf6Ym5uXUJQE5I34Dhs2DNeuXUOlSpWwc+dOFohEREQFVNWiKlb3WI0k3yT4NPGBjkQHv9/4Hc3WNkOvsF6IfRIrdohEpME0ukgUBAG+vr7Ys2cPjh8/Djs7O7FDoo/45ZdfEBoaCj09PYSHh8PGxkbskIiIRCcIAjIyMpCRkcGZK6lAapatiQ1fbUDi6ET0d+wPCSTYc20PGq9ujN5hvRH3JE7sEIlIA2l0kThmzBhs3boV27dvh7m5OVJTU5GamgqpVCp2aPQeZ86cwfjx4wEAixcvRuvWrUWOSDNkZGTA0tISlpaWfLwLkZbKzMyEmZkZzMzMkJmZWeDtmSeoboW62N5rO+JGxcGrgRckkGD3td1otLoR+oT3QXxavNghlipi9UnmAlIVjS4SV61ahdevX8PNzQ2VKlVS/oSGhoodGv1LSkoK+vTpA5lMhv79+8PPz0/skDTK69ev8fr1a7HDICI1xjxBANDAqgFCe4cidlQs+jj0AQDsStyFRqsaoe+uvkhISxA5wtJDrD7JXECqoNE3g/GSHM0gk8nQr18/pKamwsHBAWvXruVznQrA2NgYN27cUL4mIvo35gn6N0crR4T1CUPckzjMOjULuxJ3ISwhDOEJ4fBq4IVp7afBoaKD2GFqLbH6JHMBqYrWzG5aWJzBqPhNmDABP//8M8zMzHDp0iXUrVtX7JCIiNQKn21GxS32SSxmRc7C7mu7AQASSNDXsS+mtpvKYpHoH1gb5NHoy01J/UVERODnn38GAGzYsIEFIhERkQgaWTfCLq9diBkRA8/6nhAgYGf8TjgGO8J7tzeuPb0mdohEpEZYJFKxuXnzJnx8fAAA33//PXr37i1uQBoqNzcXQUFBCAoKQm5urtjhEJEaYp6gT9XYpjF2e+3G1RFX0bNeTwgQsCN+BxoEN8CAPQNw/dl1sUPUCmL1SeYCUhVebsoh5WKRmZkJV1dXxMbGonXr1jhx4gT09fXFDksj8TI0Iu1X1H7OPEGFdTXlKmadmoW91/cCAHQkOujv2B9T201F3Qq8+qewxOqTzAVFx9ogj0ZPXEPqSRAEjB49GrGxsbCyskJYWBgLxCLQ1dVVjsLq6uqKHA0RFYei9nPmCSqsppWaIqJvBK6mXMXMyJnYl7QP2+K2YUf8Dng39MbUdlNRp3wdscPUOGL1SeYCUhWOJPJsgcqtW7cO3377LXR0dHDs2DF06NBB7JCIiIjoE1xJuYKZkTOxP2k/gLyRxQENB2Bqu6moXb62yNERFT/WBnl4TyKp1OXLl+Hr6wsAmDt3LgtEIiIiDdKsUjPs67cPl4Zfwhd1voBCUGBL7BbUC6qHwRGDkfQsSewQiagEsEgklXnx4gV69+6NnJwcfPHFF5gwYYLYIREREVEhONk6YX///YgeHo0edXooi0WHYAd47/ZG4tNEsUMkomLEIpFUQqFQYPDgwUhOTkbNmjWxadMm6Ojwv5cqZGZmonLlyqhcuTIyMzPFDoeIikFGRgYkEgkkEgkyMjIKvD3zBBUXZ1tn/Nb/N1wcdhFf1v0SCkGBHfE74BjsCK9wL8Q+iRU7RLUkVp9kLiBV4bd4UonAwEAcOHAAhoaG2LVrF8qWLSt2SFpDEAQ8fvwYjx8/Rim/hZiIPoB5gopb88rNsa/fPlz59oryOYvhieFovLoxeob2xJWUK2KHqFbE6pPMBaQqnN2UiuzYsWOYNm0aACA4OBhNmzYVOSLtYmRkhKtXrypfExH9G/MElZSmlZpit9duxD2Jw9zTcxGWEIa91/di7/W9cK/tjqntpsKliovYYYpOrD7JXFCyZpycgZmRM/O9Z21qjdQfUgHkFe0zI2di7eW1eJn1Ei6VXRDUPQgNrBqIEW6BcHZTzmBUJA8fPkTTpk3x7NkzDB06FOvXrxc7JCIijcNnm5Gmuvb0Guaenosd8TugEBQAgM9rfY6p7aaidbXWIkdHVHAFqQ1mnJyBXYm7cGzwMeV7uhJdVDStCABYcGYB5p6ei40eG1GnfB3MOTUHp+6dQpJvEswNzYv1cxQVLzelQsvJyYGXlxeePXuGJk2aYOXKlWKHRERERCWofsX62Oq5FdfHXIdPEx/oSnRx+PZhtNnQBh03d0RkcqTYIRIVKz0dPdiY2Sh//i4QBUHAsgvLMLntZHjW94SjlSM2eWxCZm4mtsdtFznqj2ORSIU2fvx4REVFwcLCArt27YKxsbHYIWml3NxcbNy4ERs3bkRubq7Y4RCRGmKeILHVLl8bG77agBt+NzC82XDo6ejh+N3jcNvkhnYb2uHYnWOl6h45sfokc4HqvH37Fm/evFH+ZGdnv3e9my9uwnaxLex+sUO/Xf1w5+UdAMDdV3eRmp6KLrW6KNc11DNE+xrtce7huRL5DEXBy015uWmhhIaGol+/fgCAffv24csvvxQ5Iu3Fy9CItF9R+znzBKmbe6/uYcHZBVh/dT1y5DkAANcqrpjWfho+r/U5JBKJyBEWL7H6JHNB0f1dG/zb9OnTMWPGjHzvHbp5CJm5mahTvg6eZDzBnFNzcP3ZdSSMTkDS8yS0/rU1HgU8gq25rXKbb3/7Fvde38PhgYeL+6MUCSeuoQK7du0ahg0bBgCYOHEiC8Ripquri+7duytfE5H2KWo/Z54gdVPdsjqC3YMxue1kLDy7EGuvrEXUwyh029YNzrbOmNZuGnrU6aG1xaJYfZK5QHUSExNRuXJl5e+GhobvrNOtdjfl64ZoCNcqrqi1vBY2/bUJLau0BABIkP//uCAI77ynjjiSyJHEAklPT0eLFi1w7do1dOjQAUeOHIGeHs81EBER0Yelpqdi0blFWHVpFTJz857f18SmCaa2mwqPeh7QkfAOKFIPRa0NOm/pDPuy9hjfejxqLa+FK99eQdNK/5v5/6udX8HSyBKbPDapMmyVY4+kTyYIAr799ltcu3YNlSpVwo4dO1ggEhER0UfZmNlgUZdFuOt/Fz+2/hGm+qaISY1Br7BeaLy6MXbE7YBcIRc7TKIiyZZl49rTa6hkXgl2lnawMbPB0TtHlctz5DmITI5EqyqtRIzy07BIpE8WFBSEHTt2QFdXF2FhYbC2thY7JCIiItIgVqZWmN9pPu6NvYcpbaegjGEZxKfFw3uPN+oF1cP6K/+7h5FI3f1w5AdEJkfi7su7uPDwAnqH98ab7DcY0ngIJBIJxrqMxbzT8xBxLQLxafHw2esDE30TeDf0Fjv0j2KRSJ/k/PnzCAgIAAAsXLgQbdq0ETmi0iMzMxO1a9dG7dq1kZmZKXY4RFQMMjIyYGpqClNTU2RkZBR4e+YJ0jTlTcpj9mezkeyfjFlus1DOuBxuvbiFYb8Ng/1ye6y4sALSXKnYYRaaWH2SuaBkPXzzEP1390fdlXXhGeYJA10DnB92HtUtqwMAJrSegLEtx2L0wdFwXuuMR28f4cigI2r/jESA9yTynsRP8PTpUzRr1gwPHz5Er169EB4errU3mqsjzlRGpP04uymVduk56VhzaQ0WRS1CanoqgLxRx4CWARjVfBTKGJYROcKC4eymmou1QR7eUEb/SS6XY8CAAXj48CHq1KmDX3/9lQViCTMyMsKZM2eUr4mI/o15gjSdmYEZxrUahzEtxmDD1Q1YcHYB7r2+h4l/TsT8s/Ph18IP/i7+KG9SXuxQP4lYfZK5gFSFI4k8W/Cfpk+fjlmzZsHExAQXLlyAo6Oj2CEREWkdnv0nyi9Xnosd8TsQeCYQ159dBwCY6ptipPNIjHMdh0rmlUSOkLQVa4M8vCeRPujQoUOYNWsWAGDNmjUsEImIiKhE6OvqY3DjwYgfFY/wPuFoYtMEGbkZWBy1GHa/2GH0gdFIfpUsdphEWotFIr1XcnIyBg4cCAAYNWqU8jWVPJlMhvDwcISHh0Mmk4kdDhGpIeYJ0la6Orro7dAbV769ggPeB9Cqaitky7Ox6tIq2C+3x5C9Q5QjjepErD7JXECqwstNOaT8juzsbLRp0waXLl1C8+bNcfr0aRgaGoodVqnFy9CItB8nriH6NIIgIPJeJOadnqd8/pwEEvRy6IWf2vyU76HlYuLENZqLtUEeTlxD7xg7diwuXbqEcuXKITw8nAWiyHR0dNC+fXvlayLSPkXt58wTVFpIJBK41XCDWw03XHx0EfNOz8O+pH3YlbgLuxJ3oXvt7pjcdjJaVRX3YeVi9UnmAlIVjiTybEE+W7ZsweDBgyGRSHDw4EF07dpV7JCIiIiIPijuSRwCzwQiNCEUCkEBAGhfvT0mt52MTjU7cVZ2KhDWBnl4ioGU4uLiMGLECADA1KlTWSASERGR2mto3RDbe21Hkm8Svmn6DfR19BF5LxJdtnaBS4gL9lzboyweiejTsEgkAMCbN2/Qq1cvSKVSdOnSBdOmTRM7JCIiIqJPZl/OHiFfhuD2d7fxXYvvYKxnjOjH0egV1gsOQQ749eqvyJHniB0mkUZgkUgQBAFff/01bt68iapVq2Lbtm3Q1dUVOyz6f1KpFE2aNEGTJk0glUrFDoeIikFGRgYqVqyIihUrIiMjo8DbM08Q/U9Vi6r4pdsvSB6bjMltJ8PSyBJJz5Pwzf5vUPOXmlgStQRvs98Wawxi9UnmAlIV3pPI646xZMkSjBs3Dvr6+jh9+jRcXFzEDon+gTOVEWk/zm5KVHzeZL/B2strsSRqCVLSUwAAZY3KwreFL/xa+KGiaUWVH5Ozm2ou1gZ5OLtpKXf69GlMmDABALB06VIWiGrIyMgIR44cUb4mIvo35gmiDytjWAY/tPoBfi38sCV2CxaeXYibL25i9qnZWHRuEYY3G44A1wBUt6yusmOK1SeZC0hVOJJYis8WpKamolmzZkhJSUH//v2xbds2zgBGRCQCnv0nKjlyhRwR1yMw/8x8XE65DADQ09GDd0NvTGg1AQ2sGogcIYmpNNcG/8R7EkspmUyG/v37IyUlBQ4ODli7di0LRCIiItJ6ujq66O3QG9HDo3F00FF0tOsImUKGzX9thuMqR3y18ytEPYgSO0wiUbFILKWmTJmCkydPwszMDLt371aewSb1I5PJcODAARw4cAAymUzscIhIDTFPEBWcRCJBp5qdcGzwMVwcdhG96veCBBLsT9qPVr+2QvuN7XHo5iEU5qI7sfokcwGpCi83LYVDyvv27YOHhwcAIDQ0FF5eXuIGRP+Jl6ERaT9OXEOkHpKeJWHh2YXYErsFuYpcAEAj60aY2Hoi+jToAz2dT5vOgxPXaK7SWBu8DyeuKWVu376NIUOGAAD8/f1ZIGoAHR0dODs7K18TkfYpaj9nniBSjboV6mL9V+sxs8NMLI1aijWX1yD2SSy893hj8vHJGN9qPHya+MBY3/g/9yNWn2QuIFXhSGIpOlsglUrh6uqKv/76C61atcKJEydgYGAgdlhEREREaumF9AWCLgbhlwu/4Ln0OQDAytQK/i7+GOk8EuWMy4kcIalaaaoN/gtPMZQivr6++Ouvv1CxYkWEhYWxQCQiIiL6D+WMy2Fq+6m4N/YelnddjmoW1ZCWkYbJxyej2tJq8D/kj7sv74odJpHKsUgsJdavX49ff/0VOjo62LFjBypXrix2SEREREQawdTAFH4ufrjldwubPTajkXUjZORmYPnF5bBfYY++u/oi+lG02GESqQyLxFLg6tWrGDNmDABg9uzZ6Nixo8gRUUFIpVK0bt0arVu3hlQqFTscIioGmZmZqFGjBmrUqIHMzMwCb888QVQy9HX1MajxIMSMiMGRgUfQpVYXKAQFwhLC0CKkBdpvbI/fb/yOjMwMUfokcwGpCu9J1PLrjl++fAknJyfcvXsXPXr0wL59+3gjs4bhTGVE2o+zmxJprr9S/8LiqMXYEb8DMkXeYyfqlKuDGxtvALFA+ivObqpJtL02+FSc3VSLKRQKDBkyBHfv3kWNGjWwefNmFogayNDQEBEREcrXRET/xjxBJJ7GNo2xuedmzOs4D8svLMeay2tw48UN4EvAwtMCi6MXY0yLMShvUr7YY2EuIFXhSKIWny0IDAzETz/9BENDQ5w7dw7NmjUTOyQiInoPnv0n0h5vst8g5EoIlp1fhgdvHgAAjPWM4d3QG6OcR8HJ1knkCOm/aHNtUBAcVtJSJ06cwJQpUwAAK1euZIFIREREVALKGJZBgGsAbn93G9s8t6GJTRNIZVKsv7oezuuc0WJdC2y4ugGZuQW//5iopLBI1EKPHj1Cv379oFAo4OPjg2+++UbskKgI5HI5Tp48iZMnT0Iul4sdDhGpIeYJIvUil8tx9vRZ2D63RfQ30Tj99Wn0d+wPfR19RD+OxtD9Q1F5SWV8/8f3SHqWpNLjMheQKvByUy0bUs7NzUWHDh1w9uxZNG7cGOfOnYOJiYnYYVER8DI0Iu3HiWuItMuH+mRaRhp+vfor1lxeg+RXycr1P7P7DKOcR+Grul9BX1df5celT6dttUFhceIaLfPjjz/i7NmzKFOmDHbt2sUCUQtIJBI4ODgoXxOR9ilqP2eeIFIvH+qTVqZWmNhmIia0noDDtw5j1aVVOHDzAI7fPY7jd4/DxswGw5oOw7dO36KqRVWVHZeooDiSqEVnC8LDw+Hl5QUAiIiIgIeHh7gBEREREdF/uvfqHtZeXouQqyFIy0gDAOhIdNCjTg+Mch6FLrW6QEfCO8RKijbVBkXB/3FaIikpCUOHDgUATJgwgQUiERERkQaoblkdczvOxYPvH2Bnr51oX709FIIC+5P2o9u2bqi9ojYWnl2IZ5nPxA6VShGOJGrB2YKMjAy4uLggISEB7du3x7Fjx6CnxyuJiYiIiDRR4tNErL60Gpv+2oQ32W8AAAa6Bujj0AffOn2LttXa8nLSYqINtYEqcCRRwwmCgBEjRiAhIQE2NjbYuXMnC0QtI5VK0blzZ3Tu3BlSqVTscIioGGRmZqJBgwZo0KABMjMLPi0+8wSReilqn3So6IDl3ZbjccBjhHwRAqdKTsiR52Bb3Da039ge9YLqYeHZhUhNT1XpcYn+xpFEDT9bsGrVKowePRq6uro4ceIE2rZtK3ZIpGKcqYxI+3F2UyLtUhx9MvpRNFZfWo3QhFBk5GYAAHQluvii7hcY1nQYPrf/HNnSbOaCItL02kBVOOSkwS5evAh/f38AwIIFC1ggailDQ0Ns3bpV+ZqI6N+YJ4jUS3H0yeaVm6N55eZY1nUZwhLCEHI1BOcfnsfe63ux9/peVDavjMGNBmPJhiWw0rdiLqAi4Uiihp4tePbsGZycnHD//n14enpi165dvDadiEhDcSSQiAojPi0e66+sx5bYLXgufa58v6NdR3zT9Bv0rN8TRnpGIkaoeTS1NlA13pOogeRyOQYOHIj79+/D3t4ev/76KwtEIiIiolLG0coRS7suxaOARwjtHYrONTtDAgn+vPsnvPd4o9LiShjx2wicuX8GCkEhdrikQVgkaqA5c+bg8OHDMDY2xu7du2FhYSF2SFSM5HI5oqOjER0dDblcLnY4RKSGmCeI1EtJ90lDPUN4NfDCIe9DiHCLwDD7YahiXgWvsl5h7ZW1aLuhLWotr4Upx6fg+rPrxR4PaT5ebqphQ8qHDx9Gt27dIAgCNm3ahMGDB4sdEhUzXoZGpP04cQ2RdhGrT/7zuK/fvEb002hsjduKXYm7kJ6TrlzP2dYZgxoNQj/HfrAytSqR2DSFptUGxYUT12iQ+/fvw9vbW/nYCxaIpYNEIkH16tWVr4lI+xS1nzNPEKkXsfrkP4+rp6uHjjU7omPNjgjqHoT9SfuxNXYr/rj1By49voRLjy8h4HAAutTqgkGNBuGrel/BRN+kxGIl9caRRA05W5CdnY127drh4sWLcHJywpkzZ2BkxBuRiYiIiOjTpWWkITQ+FFtityD6cbTyfTMDM/Sq3wsDGw1EhxodoKujK2KU4tGU2qC4sUjUkP8IY8aMQXBwMMqWLYsrV66gRo0aYodERERERBos6VkStsVtw9bYrbj76q7yfVtzW3g7emNgo4FobNNYxAhLnqbUBsWNRaIG/EfYvn07BgwYAAA4cOAAunfvLnJERERERKQtBEHAuQfnsDV2K0ITQvEy66VyWUOrhhjYaCD6OfZDNYtqIkZZMjShNigJnN1UzSUkJGD48OEAgClTprBALIWysrLg4eEBDw8PZGVliR0OERUDqVSK5s2bo3nz5pBKpQXennmCSL2I1ScLe1yJRILW1VpjVY9VSBmXgoi+EehVvxcMdA0QlxaHH4/9iOrLqqP1r62x4sIKpKanFuOnIHXAkUQ1Plvw9u1bNG/eHElJSejUqRP++OMP6OqWzuvDSzPOWkik/Ti7KZF2UYfZTVVx3JfSl9iVuAtb47bi9L3TEJBXNkgggVsNN/Rz7AfP+p6oYFKhyLGrC3WuDUoSZzdVU4Ig4JtvvkFSUhKqVKmC7du3s0AspQwMDLB27VrlayKif2OeIFIvYvVJVR+3rHFZDHcajuFOw/H47WOEJ4RjZ8JOnH94HieST+BE8gmMPjAanWt1Rr8G/eBRzwMWRnx+tzbgSKKani1YtmwZvv/+e+jr6+PUqVNo2bKl2CEREVEx4UggEWmS5FfJCEsIw874nbiaelX5voGuAbrZd0PfBn3xRd0vYGZgJmKUhaOutUFJY5Gohv8Rzp49Czc3N8hkMixfvhx+fn5ih0RERMWIRSIRaaobz28gND4UOxN2IvFpovJ9Yz1jfFH3C/Rt0Bfd7LvBWN9YxCg/nTrWBmLQiolrgoODYWdnByMjIzg5OeH06dNih1RoaWlp8PLygkwmQ79+/eDr6yt2SCQyhUKBhIQEJCQkQKFQiB0OEakh5gki9SJWnxTjuHXK18HU9lORMDoBcaPiMLntZNiXs4dUJkVYQhh6hfWC9SJrDIoYhAM3DiBHnlMicZWk4Ohg2P1iB6M5RnBa64TT9zS3Fvmbxo8khoaGYtCgQQgODkbr1q2xZs0ahISEIDExEdWqfXyaXnU6WyCXy9GlSxccP34c9evXx8WLF5Vnlqn04ggDkfbjxDVE2kVbJq4pLEEQcCXlCnbG70RoQigevHmgXFbWqCw863uin2M/uNVwg56Oek2RUtDaIDQ+FIMiBiHYPRitq7bGmstrEHIlBIljEjX6kSEaXyS6uLigWbNmWLVqlfK9+vXrw8PDA4GBgR/dXp2KxMmTJ2PevHkwNTVFdHQ06tevL2o8pB4yMjJQo0YNAEBycjK//BFpoaL2c+YJIvUiVp9Ux1ygEBQ4//A8QuNDEZYYlu/xGVamVuhVvxc62nVE62qtYWNmI2KkeQpaG7iEuKCZTTOs6vGPWiSoPjzqeiCw08drEXWl0UViTk4OTExMEB4ejp49eyrf9/f3R0xMDCIjI9/ZJjs7G9nZ2crfHz16BAcHB9GLxIMHD8Ld3R0AsGPHDvTr10+0WIiIiIiIVE2ukOPUvVMITQjFrsRdeC59rlw2pe0UzP5stojR5fm7SExMTETlypWV7xsaGsLQ0DDfujnyHJjMNUF4n3D0rP+PWuSQP2KexCDS591aRFNo9D2Jz549g1wuh7W1db73ra2tkZr6/od8BgYGwsLCQvnj4OBQEqF+VLNmzdCuXTv4+fmxQCQiIiIiraOro4sOdh2wusdqpIxLwaEBhzDSaSSa2DSBa1VXscPLx8HBIV/N8L4rFJ9lPoNckMPa7F+1iJl1vhFTTaReFwEXkkQiyfe7IAjvvPe3SZMmISAgQPn73yOJYrOxscGff/7JCQeIiIiISOvp6+qjq31XdLXvKnYo7/W+kcQPkeA9tQjeX4toCo0eSaxQoQJ0dXXfGTVMS0t7Z3Txb4aGhihTpozyx9zcvCRC/SR6enp8CDK9IysrCwMGDMCAAQOQlZUldjhEVAykUinc3Nzg5uYGqVRa4O2ZJ4jUi1h9krlAdczNzfPVDO8rEiuYVICuRPedUcO0jLR3Rhc1jUYXiQYGBnBycsLRo0fzvX/06FG0atVKpKiIVEsul2P79u3Yvn075HK52OEQUTFQKBSIjIxEZGRkoa4oYZ4gUi9i9UnmgpJloGsAJ1snHL3zr1rkzlG0qqLZtYjGX24aEBCAQYMGwdnZGa6urli7di3u37+PkSNHih0akUoYGBhg6dKlytdERP/GPEGkXsTqk8wFJS+gZQAGRQyCs60zXKu4Yu3ltbj/+j5GOmt2LaLRs5v+LTg4GAsXLkRKSgocHR2xdOlStGvX7pO2VadHYBARUemkLs82IyIq7QpTGwRHB2Ph2YVISU+Bo5Ujln6+FO2qf1otoq60okgsChaJREQkNhaJRETqgbVBHo2/3JRI2ykUCty/fx8AUK1aNejoaPStxERUDJgniNSLWH2SuYBUhUUikZqTSqWws7MDwBEGIno/5gki9SJWn2QuIFVhkUikAUxMTMQOgYiKWVH7OfMEkXoRq08yF5AqsEgkUnOmpqbIyMgQOwwiKkZF7efME0TqRaw+yVxAqsILlYmIiIiIiEiJRSIREREREREpsUgkUnPZ2dkYPnw4hg8fjuzsbLHDIaJikJWVBXd3d7i7uyMrK6vA2zNPEKkXsfokcwGpCp+TyGehkJrj89OItF9R+znzBJF6EatPMhcUHWuDPJy4hkjN6evrY86cOcrXRET/xjxBpF7E6pPMBaQqHEnk2QIiIhIZz/4TEakH1gZ5eE8iERERERERKfFyUyI1JwgCnj17BgCoUKECJBKJyBERkbphniBSL2L1SeYCUhUWiURqLjMzE1ZWVgB4GRoRvR/zBJF6EatPMheQqpT6IlGhUAAAUlJSRI6E6P0yMzOVrx89egQTExMRoyGi4lDUfs48QaRexOqTzAVF93dN8HeNUFqV+olroqOj0aJFC7HDICIiIiIiNXHx4kU0b95c7DBEU+qLRJlMhqtXr8La2ho6OuLO4/P27Vs4ODggMTER5ubmosZCn47tprnYdpqLbaeZ2G6ai22nmdhuBadQKPDkyRM0bdoUenql96LLUl8kqpM3b97AwsICr1+/RpkyZcQOhz4R201zse00F9tOM7HdNBfbTjOx3aiw+AgMIiIiIiIiUmKRSEREREREREosEtWIoaEhpk+fDkNDQ7FDoQJgu2kutp3mYttpJrab5mLbaSa2GxUW70kkIiIiIiIiJY4kEhERERERkRKLRCIiIiIiIlJikUhERERERERKLBKJiIiIiIhIiUWimggODoadnR2MjIzg5OSE06dPix1SqXLq1Cl88cUXsLW1hUQiwd69e/MtFwQBM2bMgK2tLYyNjeHm5oaEhIR862RnZ8PPzw8VKlSAqakpvvzySzx8+DDfOi9fvsSgQYNgYWEBCwsLDBo0CK9evSrmT6e9AgMD0bx5c5ibm8PKygoeHh5ISkrKtw7bTj2tWrUKjRo1QpkyZVCmTBm4urri0KFDyuVsN80QGBgIiUSCsWPHKt9j26mnGTNmQCKR5PuxsbFRLme7qbdHjx5h4MCBKF++PExMTNCkSRNcvnxZuZztRyonkOh27twp6OvrC+vWrRMSExMFf39/wdTUVLh3757YoZUaBw8eFCZPnizs3r1bACBERETkWz5//nzB3Nxc2L17txAXFyf07dtXqFSpkvDmzRvlOiNHjhQqV64sHD16VLhy5YrQoUMHoXHjxoJMJlOu07VrV8HR0VE4d+6ccO7cOcHR0VHo0aNHSX1MrfP5558LGzZsEOLj44WYmBjB3d1dqFatmpCenq5ch22nnvbv3y8cOHBASEpKEpKSkoSffvpJ0NfXF+Lj4wVBYLtpgosXLwo1atQQGjVqJPj7+yvfZ9upp+nTpwsNGjQQUlJSlD9paWnK5Ww39fXixQuhevXqgo+Pj3DhwgXh7t27wrFjx4Rbt24p12H7kaqxSFQDLVq0EEaOHJnvvXr16gkTJ04UKaLS7d9FokKhEGxsbIT58+cr38vKyhIsLCyE1atXC4IgCK9evRL09fWFnTt3Ktd59OiRoKOjI/zxxx+CIAhCYmKiAEA4f/68cp2oqCgBgHD9+vVi/lSlQ1pamgBAiIyMFASBbadpypYtK4SEhLDdNMDbt2+F2rVrC0ePHhXat2+vLBLZdupr+vTpQuPGjd+7jO2m3n788UehTZs2H1zO9qPiwMtNRZaTk4PLly+jS5cu+d7v0qULzp07J1JU9E93795FampqvjYyNDRE+/btlW10+fJl5Obm5lvH1tYWjo6OynWioqJgYWEBFxcX5TotW7aEhYUF21pFXr9+DQAoV64cALadppDL5di5cycyMjLg6urKdtMAY8aMgbu7Ozp16pTvfbadert58yZsbW1hZ2eHfv364c6dOwDYbupu//79cHZ2Rp8+fWBlZYWmTZti3bp1yuVsPyoOLBJF9uzZM8jlclhbW+d739raGqmpqSJFRf/0dzv8VxulpqbCwMAAZcuW/c91rKys3tm/lZUV21oFBEFAQEAA2rRpA0dHRwBsO3UXFxcHMzMzGBoaYuTIkYiIiICDgwPbTc3t3LkTV65cQWBg4DvL2Hbqy8XFBZs3b8bhw4exbt06pKamolWrVnj+/DnbTc3duXMHq1atQu3atXH48GGMHDkS3333HTZv3gyA/Y6Kh57YAVAeiUSS73dBEN55j8RVmDb69zrvW59trRq+vr6IjY3FmTNn3lnGtlNPdevWRUxMDF69eoXdu3djyJAhiIyMVC5nu6mfBw8ewN/fH0eOHIGRkdEH12PbqZ9u3bopXzds2BCurq6oVasWNm3ahJYtWwJgu6krhUIBZ2dnzJs3DwDQtGlTJCQkYNWqVRg8eLByPbYfqRJHEkVWoUIF6OrqvnOGJi0t7Z0zQiSOv2d/+682srGxQU5ODl6+fPmf6zx58uSd/T99+pRtXUR+fn7Yv38/Tpw4gSpVqijfZ9upNwMDA9jb28PZ2RmBgYFo3LgxfvnlF7abGrt8+TLS0tLg5OQEPT096OnpITIyEsuXL4eenp7y35Vtp/5MTU3RsGFD3Lx5k31OzVWqVAkODg753qtfvz7u378PgH/rqHiwSBSZgYEBnJyccPTo0XzvHz16FK1atRIpKvonOzs72NjY5GujnJwcREZGKtvIyckJ+vr6+dZJSUlBfHy8ch1XV1e8fv0aFy9eVK5z4cIFvH79mm1dSIIgwNfXF3v27MHx48dhZ2eXbznbTrMIgoDs7Gy2mxrr2LEj4uLiEBMTo/xxdnbGgAEDEBMTg5o1a7LtNER2djauXbuGSpUqsc+pudatW7/zeKcbN26gevXqAPi3jopJSc6SQ+/39yMw1q9fLyQmJgpjx44VTE1NheTkZLFDKzXevn0rXL16Vbh69aoAQFiyZIlw9epV5WNI5s+fL1hYWAh79uwR4uLihP79+793aukqVaoIx44dE65cuSJ89tln751aulGjRkJUVJQQFRUlNGzYkFNLF8GoUaMECwsL4eTJk/mmdc/MzFSuw7ZTT5MmTRJOnTol3L17V4iNjRV++uknQUdHRzhy5IggCGw3TfLP2U0FgW2nrsaNGyecPHlSuHPnjnD+/HmhR48egrm5ufK7BttNfV28eFHQ09MT5s6dK9y8eVPYtm2bYGJiImzdulW5DtuPVI1FopoICgoSqlevLhgYGAjNmjVTTuFPJePEiRMCgHd+hgwZIghC3vTS06dPF2xsbARDQ0OhXbt2QlxcXL59SKVSwdfXVyhXrpxgbGws9OjRQ7h//36+dZ4/fy4MGDBAMDc3F8zNzYUBAwYIL1++LKFPqX3e12YAhA0bNijXYdupp6FDhypzXsWKFYWOHTsqC0RBYLtpkn8XiWw79fT3c/P09fUFW1tbwdPTU0hISFAuZ7upt99++01wdHQUDA0NhXr16glr167Nt5ztR6omEQRBEGcMk4iIiIiIiNQN70kkIiIiIiIiJRaJREREREREpMQikYiIiIiIiJRYJBIREREREZESi0QiIiIiIiJSYpFIRERERERESiwSiYiIiIiISIlFIhERERERESmxSCQiIo3m4+MDDw8P5e9ubm4YO3ZssR4zJycH9vb2OHv2LAAgOTkZEokEMTExKj3OypUr8eWXX6p0n0RERB/DIpGIiIqdj48PJBIJJBIJ9PT0UK1aNYwaNQovX75U+bH27NmD2bNnq3y//7R27VpUr14drVu3LtbjDB8+HNHR0Thz5kyxHoeIiOifWCQSEVGJ6Nq1K1JSUpCcnIyQkBD89ttvGD16tMqPU65cOZibm6t8v/+0YsUKDBs2rFiPAQCGhobw9vbGihUriv1YREREf2ORSEREJcLQ0BA2NjaoUqUKunTpgr59++LIkSPK5XK5HN988w3s7OxgbGyMunXr4pdffsm3D7lcjoCAAFhaWqJ8+fKYMGECBEHIt86/LzeVSCTYu3dvvnUsLS2xceNGAHmXjvr6+qJSpUowMjJCjRo1EBgY+MHPceXKFdy6dQvu7u4fXEehUGD48OGoU6cO7t27p4xjzZo16NGjB0xMTFC/fn1ERUXh1q1bcHNzg6mpKVxdXXH79u18+/ryyy+xd+9eSKXSDx6PiIhIlVgkEhFRibtz5w7++OMP6OvrK99TKBSoUqUKwsLCkJiYiGnTpuGnn35CWFiYcp3Fixfj119/xfr163HmzBm8ePECERERRYpl+fLl2L9/P8LCwpCUlIStW7eiRo0aH1z/1KlTqFOnDsqUKfPe5Tk5OfDy8sKlS5dw5swZVK9eXbls9uzZGDx4MGJiYlCvXj14e3tjxIgRmDRpEi5dugQA8PX1zbc/Z2dn5Obm4uLFi0X6nERERJ9KT+wAiIiodPj9999hZmYGuVyOrKwsAMCSJUuUy/X19TFz5kzl73Z2djh37hzCwsLg5eUFAFi2bBkmTZqEXr16AQBWr16Nw4cPFymu+/fvo3bt2mjTpg0kEkm+ou59kpOTYWtr+95l6enpcHd3h1QqxcmTJ2FhYZFv+ddff638LD/++CNcXV0xdepUfP755wAAf39/fP311/m2MTU1haWlJZKTk9G+ffvCfkwiIqJPxpFEIiIqER06dEBMTAwuXLgAPz8/fP755/Dz88u3zurVq+Hs7IyKFSvCzMwM69atw/379wEAr1+/RkpKClxdXZXr6+npwdnZuUhx+fj4ICYmBnXr1sV3332X7xLY95FKpTAyMnrvsv79+yM9PR1Hjhx5p0AEgEaNGilfW1tbAwAaNmyY772srCy8efMm33bGxsbIzMz85M9ERERUFCwSiYioRJiamsLe3h6NGjXC8uXLkZ2dnW/kMCwsDN9//z2GDh2KI0eOICYmBl9//TVycnKKdFyJRPLOfYu5ubnK182aNcPdu3cxe/ZsSKVSeHl5oXfv3h/cX4UKFT44K2v37t0RGxuL8+fPv3f5Py+vlUgkH3xPoVDk2+7FixeoWLHiB2MiIiJSJRaJREQkiunTp2PRokV4/PgxAOD06dNo1aoVRo8ejaZNm8Le3j7fJC4WFhaoVKlSvgJMJpPh8uXL/3mcihUrIiUlRfn7zZs33xmVK1OmDPr27Yt169YhNDQUu3fvxosXL967v6ZNm+L69evvFJ4AMGrUKMyfPx9ffvklIiMjP/6P8Alu376NrKwsNG3aVCX7IyIi+hjek0hERKJwc3NDgwYNMG/ePKxcuRL29vbYvHkzDh8+DDs7O2zZsgXR0dGws7NTbuPv74/58+ejdu3aqF+/PpYsWYJXr17953E+++wzrFy5Ei1btoRCocCPP/6Yb/Ru6dKlqFSpEpo0aQIdHR2Eh4fDxsYGlpaW791fhw4dkJGRgYSEBDg6Or6z3M/PD3K5HD169MChQ4fQpk2bQv37/O306dOoWbMmatWqVaT9EBERfSqOJBIRkWgCAgKwbt06PHjwACNHjoSnpyf69u0LFxcXPH/+/J3nKI4bNw6DBw+Gj48PXF1dYW5ujp49e/7nMRYvXoyqVauiXbt28Pb2xg8//AATExPlcjMzMyxYsADOzs5o3rw5kpOTcfDgQejovP9PZPny5eHp6Ylt27Z98Jhjx47FzJkz0b17d5w7d64A/yLv2rFjB4YPH16kfRARERWERHjf9TJERET0QXFxcejUqRNu3boFc3PzYjtOfHw8OnbsiBs3brx3IhwiIqLiwJFEIiKiAmrYsCEWLlyI5OTkYj3O48ePsXnzZhaIRERUojiSSEREREREREocSSQiIiIiIiIlFolERERERESkxCKRiIiIiIiIlFgkEhERERERkRKLRCIiIiIiIlJikUhERERERERKLBKJiIiIiIhIiUUiERERERERKbFIJCIiIiIiIqX/A2LZzWi9F2WPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(\"Surface gravity:\", prem.gravity(6371), \"m/s^2\")\n", - "print(\"Pressure at center of Earth:\", prem.pressure(0.0), \"GPa\")\n", - "print(\"Pressure at CMB:\", prem.pressure(3480.0), \"GPa\")\n", - "print(\"Gravitational potential at surface:\", prem.grav_potential(6371)*1E-6, \"MJ/kg\")\n", - "\n", - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(0, 6371, 0.5)\n", - "ax.plot(rs, prem.gravity(rs), 'k')\n", - "\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Gravity (m/s$^2$)')\n", - "\n", - "ax2 = ax.twinx() \n", - "ax2.plot(rs, prem.pressure(rs), 'g')\n", - "ax2.set_ylabel('Pressure (GPa)', color='g')\n", - "ax2.tick_params(axis='y', labelcolor='g')\n", - "\n", - "\n", - "ax.axvline(1221.5, ls=':', c='k')\n", - "ax.axvline(3480, ls='--', c='k')\n", - "ax.axvline(3630, ls=':', c='k')\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "py311", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/PREM_travel_times_example.ipynb b/PREM_travel_times_example.ipynb deleted file mode 100644 index 302eda6..0000000 --- a/PREM_travel_times_example.ipynb +++ /dev/null @@ -1,394 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import obspy.taup\n", - "import obspy.taup.taup_create\n", - "\n", - "%matplotlib inline " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import earth_model.earth_model as earth_model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tabulate the model\n", - "\n", - "Because we have to" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " depth: [ 0. 15. 15. 24.4 24.4 44.4 64.4]\n", - " radius: [6371. 6356. 6356. 6346.6 6346.6 6326.6 6306.6]\n", - "density: [2600. 2600. 2900. 2900. 3380.74820907\n", - " 3378.57460995 3376.40101083]\n", - " vp: [5.8 5.8 6.8 6.8 8.11061727 8.09825437\n", - " 8.08589148]\n", - " vs: [3.2 3.2 3.9 3.9 4.49100712 4.48363591\n", - " 4.47626469]\n", - " qkappa: [57823. 57823. 57823. 57823. 57823. 57823. 57823.]\n", - " qshear: [600. 600. 600. 600. 600. 600. 600.]\n" - ] - } - ], - "source": [ - "prem = earth_model.Prem()\n", - "# Get a table of PREM values every 10 km going inwards\n", - "# and dealing with the discontiuities \n", - "table = prem.tabulate_model_inwards(20)\n", - "# Print the firs few depths\n", - "# note the discontiuities\n", - "print(np.record.pprint(table[0:7]))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Build an Obspy `TauPyModel`\n", - "\n", - "And clean up the mess" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "model_name = 'model'\n", - "tvel_filename = model_name + '.tvel'\n", - "taup_filename = model_name + '.npz'\n", - "f = open(tvel_filename, 'w')\n", - "f.write(\"P name\\n\")\n", - "f.write(\"S name\\n\")\n", - "for d, vp, vs, rho in zip(table.depth, table.vp, table.vs, table.density):\n", - " f.write(\"{:10.3f} {:10.4f} {:10.4f} {:10.4f}\\n\".format(d, vp, vs, rho/1000.0))\n", - "\n", - "f.close()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "P name\n", - "S name\n", - " 0.000 5.8000 3.2000 2.6000\n", - " 15.000 5.8000 3.2000 2.6000\n", - " 15.000 6.8000 3.9000 2.9000\n", - " 24.400 6.8000 3.9000 2.9000\n", - " 24.400 8.1106 4.4910 3.3807\n", - " 44.400 8.0983 4.4836 3.3786\n", - " 64.400 8.0859 4.4763 3.3764\n", - " 80.000 8.0762 4.4705 3.3747\n" - ] - } - ], - "source": [ - "# Look at the top of the tvel file (just to see what it looks like)\n", - "!head \"$tvel_filename\"" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Building obspy.taup model for 'model.tvel' ...\n", - "filename = model.tvel\n", - "Done reading velocity model.\n", - "Radius of model is 6371.0\n", - "Using parameters provided in TauP_config.ini (or defaults if not) to call SlownessModel...\n", - "Parameters are:\n", - "taup.create.min_delta_p = 0.1 sec / radian\n", - "taup.create.max_delta_p = 11.0 sec / radian\n", - "taup.create.max_depth_interval = 115.0 kilometers\n", - "taup.create.max_range_interval = 0.04363323129985824 degrees\n", - "taup.create.max_interp_error = 0.05 seconds\n", - "taup.create.allow_inner_core_s = True\n", - "Slow model 891 P layers,940 S layers\n", - "Done calculating Tau branches.\n", - "Done Saving ./model.npz\n", - "Method run is done, but not necessarily successful.\n" - ] - } - ], - "source": [ - "# Build a taup model and store it in a numpy compressed file\n", - "obspy.taup.taup_create.build_taup_model(tvel_filename, output_folder='.', verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "taup = obspy.taup.tau.TauPyModel('./'+taup_filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Clean up at the end (don't want to keep these file)\n", - "os.remove(tvel_filename)\n", - "os.remove(taup_filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create plot of raypaths and travel times\n", - "\n", - "This now becomes easy" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAMWCAYAAADmkYnmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3Qc1dmHn9lV7733ZklW78U2NoRQjQ0BY8AEQkvo+QIhEMAhQAgpEEIIhARICE5oIcFAIAGCG66SbKv33nvXStoy3x/rXSRbNtZqVSzf55w90uzO3LkzOztzf/dtkizLMgKBQCAQCAQCgUCwQCgWuwMCgUAgEAgEAoHg7EKIEIFAIBAIBAKBQLCgCBEiEAgEAoFAIBAIFhQhQgQCgUAgEAgEAsGCIkSIQCAQCAQCgUAgWFCECBEIBAKBQCAQCAQLihAhAoFAIBAIBAKBYEERIkQgEAgEAoFAIBAsKBaL3QGBQCAQmB9ZllGpVIyMjDA8PHzCX8P/o6OjaDQadDrdSV///Oc/kSSJyy+/HIVCcdKXhYUF9vb2ODg44OjoiKOjo/H/qe/Z2NggSdJinyKBQCAQLCJChAgEAsESZnh4mPb29hNeg4ODDA0NMTIywtDQkFFUGITF6OgoWq0WAKVSib29PXZ2dtja2k572djYTBMSkiQhSdK0/0dGRpAkiZqaGmRZRpZldDrdtP8Nr/HxcVQq1bTX2NjYjP0xCBaDQHFycsLBwQEnJyecnZ3x9fU94eXo6LiYX4dAIBAIzIQky7K82J0QCASCswlZlhkcHKS9vZ22tjajsGhra6O1tdX4XmdnJ6Ojo1haWuLu7o67uztubm64urpiZ2eHjY2NUUjY2NhgbW1t/N8gMuzs7LC0tEShUJzQB8PLnBiEy/GWDp1Oh1qtZmxszChOxsfHGR8fZ2Jiwvi/4f2xsTH6+/vp6+ujt7eX3t5e1Go19vb2eHt74+vri5+fH/7+/vj5+RlFiuF/Z2dnYW0RCASCJYwQIQKBQDAPDAwMUFVVZXxVVFTQ1NRkFBcTExNYW1vj4eGBu7s7rq6uuLq64ubmhouLC87Ozri4uODm5jZtQG2wQAAoFAqUSiVKpRILCwuUSiWWlpZYWFhgZWWFhYUFlpaWxs9neimVymnCwbCfqX8N+5v6/9S/U19arRaNRjPjS6vVolar0Wg0TE5OotFojMtardb40ul0xv0ZxJNBuPX19TEwMMDg4CADAwP09fXR399Pf38/vb299PT0GM+tQawEBQURHR3NihUriIqKIjIyEhcXl4W5EAQCgUAwI0KECAQCgYmMj49TW1trFBqVlZVUVFRQXV1NT08Prq6uBAQE4O/vj4+PD+7u7ri4uBgFh6Ojo3Gwb3BVUigUWFlZYW1tbbRk2NraTrNy2NjYYGFhsWxn+mVZRqPRGK0jBmuJwbVLpVIxMTHB5OSkUbAolUrjtsPDw0ZhMjAwQG9vLx0dHbS2ttLS0kJ/fz8eHh5ERkZOEydRUVGEh4djY2OzmIcvEAgEZwVChAgEAsEp0Gq1NDU1nSA0qqqqaGlpwcbGhsDAQPz9/Y0uQd7e3vj5+eHs7GxsQ5Iko8vU1NiMmcSF4PQ5mVgxCBaDq5csy0ahMjg4SFtbG52dnUZXuNbWVpqbmxkfHycgIICoqKgTBEpQUJCxDYFAIBDMDbOIEIOJXTAzBncIgUCwtBkfH6e4uJiCggLy8/PJy8ujvLwcnU6Hv78/AQEBxpgDg9Dw8PBAkiSjm5SNjY0xuNoQdO3g4CAyQi0isiwzPj5uDNw3BPOPjIwwPj5udPuSZZmenp5pAqWtrY2WlhZaW1tRKBTExMSQnp5OWloaqampxMfHC8uJQCAQmMCcRcjIyAgtLS1mD25cTkiSREBAAA4ODovdFYFAcAyVSkVRUdE0wVFRUYGdnZ3RLSc0NJSgoCB8fX2xsLAwCg1LS0vs7e1xcnIypp91cHDAzs7uhABwwdJGp9MxNjZmFCfDw8MMDQ0xOjqKWq02ChSNRkN7eztNTU3U19cb3fDGxsaIiYkhLS3NKEwSEhKwtbVd7EMTCASCJc2cRIhWq6W6uho7Ozs8PT3FLN8MyLJMd3c3Y2NjREZGCouIQLAIqFQqCgsLTxAcDg4OREVFERYWRmhoKKGhofj6+gL6wamtrS2urq7TrBr29vbCZeosQaPRMDo6Os160t/fj0qlMorN9vZ26uvrqa+vp66ujqqqKkZGRoiOjp5mMUlMTBTCRCAQCKYwJxEyPj5OfX09ISEh4uZ6ClQqFQ0NDYSGhgqzvUAwz6jVag4fPkxeXh55eXnk5+dTWVmJk5MTkZGRhIeHExISQmhoKD4+PoBecNjZ2RkDxg3ZqYTYEMyERqMxZucyBMCPjY0ZhUlHR4dRmNTW1lJdXc3w8DArVqwgLS2N9PR00tPTSUlJwdLScpGPRiAQCBYHs4gQMbg+NeI8CQTzh1qtpqCggJ07d/K///2Pffv2YWlpSXR09DTB4e3tDUwXHIZ0uE5OTkJwCOaERqNhaGhoWtrgqcKks7OT+vp6GhoaqK2tpaKiArVaTU5ODueddx5r164lNTVViBKBQHDWIETIAiDOk0BgPk4mOhITE1m5ciXR0dEEBwejUCiMgsNQ4E8IDsFCciphotPpaGxspKKigtLSUgoLC4UoEQgEZxXLVoSEhITQ1dWFQqHA0dGRTZs28cwzzyzK4GMpnyeBYKlzMtGRkJBgFB0hISHGAGI3Nze8vLyMRf5EHJZgKaHVao1FF7u6uujr6zMmPGhoaDCKkqKiommiZN26dcJ9SyAQLCuW9XTgp59+yqpVq6iurmbNmjVER0dz++23L3a3BALBKTDEdEwVHRYWFkbRcemll84oOjw8PKZVFhecHENlckMl86lV2I+vhA4wPDwMgKOjI8BJK6srFIppldiFADwRpVKJm5sbbm5uREREGCvB9/T04OnpSXh4OBdddNE0UfLxxx/z85//HK1WO81SIkSJQCA4k1nWIsRAZGQkq1evprS0dLG7IhAIZqC+vp4PP/yQjz76iH379qFUKo3uVZdccsk00eHq6oq3t/dZKTpkWWZyctJYlE+tVhuFxNTXVIEx02uqAdzCwgKFQjGjqDC8RkdHAbC3tzeKk5lEi06nQ6PRGNuWJMkoSmZ6KZXKGd+3tLQ0FnG0srJa1t+xJEm4uLjg4uJygijx8PAwihLQ/04qKir497//zVNPPWUUJZdeeinr168nNDR0kY9GIBAITp+zQoRUVlayZ88ennjiicXuikAgQB8cfujQIT744APef/99qqurSUhIIC0tjUsuucQ4mJIkCTc3t2UvOmRZNlb2nlr5e+qy4T1DnRJra2ssLS1nHNQbKq9/3cBfqVSa/XzKsjxNBH2dINJoNExMTExbVqvVRpElSdIJVeUNleePX14O18apRIm7uzthYWHTRElZWRmvv/469913H1FRUWzYsIENGzaQnp4uatYIBIIljVljQta/8CXdwxPm7N+MeDpa8+Fdq065TkhICL29vUbT99VXX83PfvazRbkpi5gQgQBGR0f5/PPP+eCDD/jwww8ZHx8nMzOTlJQUkpKSjMU8l6PomJycZGRkhNHRUUZHR2cUFwBWVlYzDrCPf28h3Zy0Wi0FBQUApKamLvi+v06UjY+PMzk5CTDjebO3t8fe3h4HBwesrKwWrO/zxVRR0tnZSV9fH6AvHHz06FEKCgo4dOiQ/pm8fj0bNmzgG9/4BnZ2dovcc4FAIJiOWS0h3cMTdAyNm7PJOfHJJ5+watWpxYpAIJg/2tra+Oijj9i+fTv/+9//8PT0JDMzk3vvvZfY2FiUSiWWlpb4+vri5+eHu7v7GRtHoNVqpxW2M4iOkZERJicnsba2NhY7tLGxwdnZ+YRB81Kcua6oqODJJ58E4OmnnyY2NnbB9q1UKo0i4lTodLoZxYlKpaKnp4eRkREmJiawsrIyfgeG4pOG5TPlujveUqLVaunt7aWtrQ0XFxdyc3PRarWUlZVx5MgR7rjjDnp6ejjvvPPYsGEDl156KX5+fot9GAKBQGBeEeLpaG3O5hZ9PwKBYHbIskxRURHbt2/n/fffp6ioiNjYWDIyMnjmmWcICgpCp9Ph6OiIv78/Pj4+ODk5nTHWDp1Ox9jY2DSxYfhfpVKhVCqnDW69vLyMA94zNYD40KFD0/5fSBFyuigUCuzs7E45269Wq6d9Z0NDQ7S1tTEyMoJWq8XW1vYEgWJvb4+dnd2SFIcGlEolXl5eeHl5kZiYyNDQEO3t7Tg7OxMXF8cNN9xAY2MjR48e5YUXXuCOO+4gMTHR6LaVkJBwxvz+BALB8mJZp+jdtm3bkrCELOXzJBDMFbVazY4dO9i+fTvbt2+nr6+P9PR0UlNTSUpKws3NDZ1Oh7u7O/7+/nh7e2Nra7vY3f5a1Go1AwMDxsrYg4OD0wK0j59Jd3BwWDZxCVO54447aGlpASAwMJDf//73i9wj82KIxzleVBr+B/337ezsjIuLi/HvmSAqVSoVnZ2dtLa20tvbi0KhoK+vj6NHj5Kfn09+fj5ubm5GQbJu3boz4rgEAsHy4KwITBcIBOZFlmX279/Ptm3beOutt7C0tCQrK4tbbrmF+Ph4rKysUCgU+Pj44Ofnh6en55IuEDg5OWkUG1MFh62trXHQGRAQgKOjI7a2tkt6ZtyctLW10dLSglKpA6C5uZn29nZ8fX0XuWfmQ5Ikozuch4fHtM90Oh0qlYrh4WEGBwfp7e2lrq4OlUqFvb39NFHi7Oy85GJObG1tCQkJISQkBI1GQ3d3N21tbbi7u7Nu3TomJycpLi7myJEjXH/99ajVajZv3sz1119PVlbWshPUAoFgabFsLSFLCXGeBMuFyspKtm3bxhtvvEFfXx9r1qwhNzeXlStXIssydnZ2RjcrV1fXJTmImZycnGbhGBgYYGxsDFtb22mDShcXF6ytz27Xz+3bt/Pqq6+SsHIQWYbiMmduvvlmNmzYsNhdW1QmJiamCdaBgQFUKhV2dnbGa8dwHS01YQL6SYT+/n46OjpobW1lbGwMSZIoLS1l79697N69G3d3d7Zs2cKWLVtYsWLFYndZIBAsQ5bu1KRAIFgSdHR08NZbb/HXv/6V0tJSsrKyuO6660hNTcXCwgI7OzuCg4Px8/P72gDihUaj0dDf309/f79xsDg2NoadnZ1xkBgcHGwMEhdMJy8vD4D05H5k9CIkPz//rBch1tbWeHt74+3tbXxvYmLCeI319/fT0NBgvNYMosTV1RVXV9dFtwoaUl+7ubkRGxvL6OgobW1t2NnZsXLlSm666SYKCgrYvXs3v/zlL1m5ciU33HADmzdvnnbMAoFAMBeEJWQBEOdJcKYxMjLCv/71L9544w127NhBfHw8a9asISMjA0dHRywsLAgKCiIwMBAnJ6fF7q4RjUZDX18fPT099Pb20t/fj42NDa6urtMsHEtxdnqpMTo6ypYtW9Bqtfzh2SMgw/fuS0apVLJt27YlJziXIgarm8Fi0t/fz/j4OK6urri7u+Ph4YGbm9uii5KpDA0N0dzcTFNTExqNhuHhYQ4dOsSuXbsoKSlh3bp1fPvb32bjxo3GtNoCgUBgCkKELADiPAnOBNRqNZ999hlvvPEG27dvx8/Pj7Vr15KdnW2c/fT39ycoKAg3N7cl4Wp1MtHh4eFhfIn6CHqmVjQ//qXT6U6ogp6fn89rr71GgN8Yv/9VEQB3/jCRljZbbrrpJtLS0k6orq5QKGYskDi1IvvZztjYGD09PcbXUhUlsizT29tLc3Mzra2tyLJMZ2cnBw4cYOfOnbS1tbFhwwa+/e1vc/755y+JPgsEgjMLcdcQCM5iZFnm0KFDvPHGG7z11lsolUrWrVvHz3/+c8LDw9HpdHh5eREcHIyXl9ei11I4legIDg4mNTV12YoOWZbRaDTT6mFMTk6iVqtPqzK5Vqs1Cg2tVntSkWD4u3//fgAyUgaMfUhP7qelzZb9+/fj6Oho7Jfh7/Eix1CRXZKkaZXaT1XJ3dLS0li00fCysLBYNiLGzs6OoKAggoKCAL0o6e7upre3l6NHjxpFiYeHB+7u7osmSiRJMgr5hIQEurq6aGxsxMvLi40bN1JbW8u+ffu48cYb0Wq1XHPNNWzZsoWMjIxl810JBIL5RVhCFgBxngRLja6uLl577TX+9Kc/0dXVxerVq1m1ahVxcXHIsoyrq6sxzmMxU3aeSnQYZo7t7OzO6EGPLMuo1eqTVgOfuqzValEqlcYih9bW1qcc2M800G9ubuYHP/jBaffv51tLiV0xDEBphSM/fmLlaW/7m9/8hoCAgK8VSMe/DMc+0zGfrIq8jY0NlpaWZ/y1YLCU9Pb2TrOULLYoMaBWq2lra6OhoYGBgQEkSaK4uJi9e/eyZ88evLy8uPXWW7npppvw8vJatH4KBIKlj7CECARnCbIss2vXLl588UXef/994uPj2bRpE2lpaVhaWhoDzAMCAha1jsfIyAgdHR10dHTQ19dnFB1BQUGkpKSckaJjcnJyxuKGhoG2TqdDqVSeMMh2dXU9YaA9V6tAfn7+aa+bnd7Liohh43J05DDZ6b3sz3M/re3z8vIIDw+fdR8NzGT9MZyzwcHBae9ptVoUCoXxfM1UfHCpxwJJkmSsEB8cHDxNlPT09NDU1MTExARubm74+Pjg4+Oz4HEZlpaWBAcHExwcjEqlorm5GTs7O+Lj47n55pvJz8/n3XffZevWrVx++eXcfvvtnHPOOWfcb1YgEMw/whKyAIjzJFhM+vr6eP3113nxxRfp7u7m/PPP59xzzyUgIAClUml0DVmsAHOdTmdMF9rR0cHY2BgeHh74+Pjg5eV1xogOjUYzYyX1kZER1Go11tbW04ob2traniAuFoKRkRF+97vfGd2tUhIGuOvWWuzttCesa22t4/hTL8swMXFinZTRMSUv/Cmcw0UuAOTk5HDXXXct2CD5eLGiUqmmfQcTExNYWVkZRcnxldHPhJgGgyjp6uqio6ODnp4e7OzsjILE1dV10WrYDA4OGgPatVotLS0tfPHFF3z22Wd4enpyxx13cMMNN+Dm5rYo/RMIBEsPIUIWAHGeBAuNoZjgiy++yD/+8Q9WrFjBN7/5TbKysrC0tMTV1ZXw8HB8fHwWZdCiVqvp7u6mvb2drq4uALy9vfHx8cHT03PJVm2WZdk4sJ06wB0ZGWF8fBwLC4sTqqgb/l9KxyTLMv/+97957bVX0Wi0eHuO88N7qokMGzWpvepae371u0g6u22wsFBy0003c8kllywp8ahWq08qEjUaDTY2Nsbva+r3Z29vv6SOYyqG31FHRwednZ3A4v+OdDodHR0d1NbW0t/fj1qt5sCBA3z66adUVlZy5ZVXcscdd5Cdnb1kz6tAIFgYhAiZwp49e7jrrrsoLCw0a7vL7TwJli4qlYo333yT5557jvr6er7xjW9w3nnnERISgiRJBAcHExISsiipNcfGxozWjt7e3mkzuEsl29ZUZFlmeHh4WkG6wcFBZFk2uswcP2i1trZecsdxKqqrq/nlL39JZ2cnFkod37mukUu+2XmC9eNkyDJ89F8f/vL3IDRaBd7e3jzwwANERkbOb8fNiCzLTExMnCAqR0dHGR0dRZKkaVXRXVxccHR0XHLfsyzL9PX1nWBRNIiSxUjYMDIyQkNDA42NjciyTH19PV988QWff/45YWFh3HvvvVxzzTWL6v4pEAgWj2UrQkJCQujq6kKhUODo6MimTZt45plniIiIYNu2baxatQqAp59+mpdffpkdO3YQEhJyQhsnW7ehoYFzzz3X6CoSEhLCk08+OWMRr6V8ngTLg4aGBl588UX+9Kc/4erqyiWXXMKqVauwtbXF2dmZ8PBwfH19FzS7lSzLDAwMGAdFw8PDuLu74+Pjg7e395KqMaDT6RgZGZlW02FwcBAAJycnY30RFxcXHBwcFs3lZT443j0rO72Xu26tw8H+RPesaduNKvndH8M5kK93r8nOzubuu+9eUt/rXDn+uhgYGGBoaAgAZ2fnabVnltp1YYit6uzspLe3F0dHR6Pod3FxWVARpdVqaW9vp7a2lsHBQVQqFXv27OHjjz+mv7+fW2+9lTvvvJPg4OAF65NAIFh8lr4T7Bz49NNPWbVqFdXV1axZs4bo6Ohpn59KgBzP8es2NDQQFhZGTU0NOp2OP/zhD2zevJnW1lbh8ypYEGRZ5n//+x/PP/88//nPf8jKyuL+++8nISEBgMDAQMLCwhY01kOWZXp6emhtbaWjowOtVou3tzeRkZF4eXkticDg0xlYBgcHL8mB5Xzg4ODAgw8+aHTP2p/nzsSEkp/8qOKU2/36hUiOFLksWfcrc6BQKHBycsLJycmYUvf466exsZGiIn0dlaUkWB0cHIiIiCAiIoLJyUk6Ozvp7Oxk3759KJVKfHx88Pf3x8PDY96/N6VSSUBAAAEBAQwNDVFXV4ednR0XXHABhYWFfPrpp/zmN7/hoosu4t577+Xcc89ddteSQCA4kWUtQgxERkayevVqSktLje/NJEB27tzJLbfcQk1NzbTtv06sKBQKbrzxRu68807q6uqECBHMK+Pj47z++us888wzdHd3c8EFF/Diiy/i7e2NlZUVERERBAUFLag/+ODgIC0tLbS0tKDT6fD39yc1NRV3d/dFH8RPTk4a05329/dPExwuLi6Ehobi7Oy8JF1sFgpJkrj00kuxsrLihRdeoL7p6113Go6t873v3c43v/nN+e7ikmEmYWJw3TO47R0vTKam2F0MIW5lZUVgYCCBgYHodDp6enro6OggPz8fhUJhFAjOzs7z3hcnJyeSkpJYuXIlTU1NWFlZkZiYSGdnJ59//jlXXnklXl5e/OAHP+CGG24Q3gMCwTLmrBAhlZWV7NmzhyeeeIKPPvqIZ599liNHjpyWBeR01tVqtfz5z3/G3t6eiIgI8x+AQAAMDQ3x0ksv8eyzz2Jvb8/GjRvJzc3F0tISd3d3IiMj8fT0XLCB9NjYGK2trTQ3NzM2Noavry9JSUl4enouqvCYKjp6e3sZHBzEwcEBDw8PQkNDjTPUZ6vgOBVVVVUAZKT0f+266cn9fLrDm+rq6rNKhMyEJElGYRIYGAjohYnBYtLX10dZWRkjIyM4Ozsba9wshihRKBR4eXnh5eVFXFwc3d3dNDc3s2fPHuzs7AgMDFyQNN2WlpaEh4cTFhZGd3c31dXVeHl5cdVVV7F3715+8YtfsHXrVu677z5uv/12Y3FMgUCwfDCrCLn+o6vpVfWYs8kZcbf14I1L3/7a9S666CKUSiVubm7ceOON3HTTTTz55JN89tlnbNq06WsFCHDKdevr63FxcUGpVBIeHs57772Hi4vL7A9IIDgF3d3dPPfcc7zwwgsEBgby3e9+l9TUVJRKJcHBwYSFhWFvb78gfZmcnKStrY2Wlhb6+vrw9PQkMjISX1/fRUtxeirRERkZibu7u5hNPQ20Wq0xLiQns9f4fnWtPX98PQSA225sMGbQys3q5dMd3uzfv5/vfe97CxpvdCYgSRKOjo44Ojoahcn4+LjxWp0qSgyCZKFFiUKhTybg7e2NWq2mo6ODlpYWysvLcXNzIzAwcN4LlkqSZBRFo6Oj1NXVYW1tzTnnnENBQQF//etf+dnPfsbdd9/Nvffei6en57z1RSAQLCxmHTX0qnroGusyZ5Nz4pNPPjEGlU/lj3/8Iw899BCPPPIITz755CnbONW6oaGhJ7huCQTmoqmpiV//+te88sorxMXF8aMf/Yi4uDgsLCyIjIwkJCRkQVyutFotnZ2dtLS00NnZiZOTEwEBAaSlpS3K4N4gOgyDOSE6Zocsy2i12mlVzLVaLSUlJQwPD+PkqCY+ZuiEzFcADz620phBKz5mCCdHNUNDQ+zdu5e4uDiUSuW06uxKpVJYnKZgY2ODv78//v7+wNISJZaWlkaXrfHxcVpbW2loaKCoqAhvb28CAgLw9vaeV7Fpb29PfHw80dHRNDQ0YGlpSVpaGiUlJbz//vs8++yz3HLLLdx///1GVziBQHDmYlYR4m7rYc7m5m0/gYGBfP7556xatQpnZ2d++MMfmmVdgcAcVFRU8POf/5y33nqL7OxsfvaznxEREYGlpSUrVqwgKCho3medZVmmt7eXlpYW2trajAOU2NjYBc9+pNVq6e7uNlaNPttFh06nY2JiYlr1cIOYMAiKqcszvQxIkmQUDDt37gQgO70P1fj0zFdOgY70a7uhzYY//TWUknIn7rq1jqy0Pj7d4c0nn3yCSqUy7tuQdFGSpGnCZKbX8Z9PrRBvbW296DFF88lsRImHhweenp4LYnGysbEhPDyc8PBwhoeHaWlpobS0lKNHj+Ln50dAQADu7u7zJjAtLS2JjIwkLCzMGDcSHx9PdXU127dvJzIyks2bN/PQQw+dkHBGIBCcOZhVhJyOi9RSISIigk8//ZS1a9fi7OzMbbfdZpZ1BQJTyc/P52c/+xkff/wx5513Hs8995zRNzs6Oho/P795H5ANDw/T1NREa2srWq0Wf39/srKycHV1XdAZ7fHxcTo7O+no6KC7uxtra2u8vLyWtejQarXTxMXU19T3JycnAYyDdSsrKywtLY2DeUtLS2xtbU9r4G8Y0Gq1Wv76178C4OU5wf89HE/XlMKDninu3PnpbVxblc2XpZ3sz3OnrsGeb67TW76bm5v5xje+Ma290xVEGo2GsbExtFotarWayclJ4zGDPqh6qiiZWmV+6vvLwR3sVKKkuLiYiYkJPD09jWmuF+J34OjoSExMDNHR0fT399PS0kJeXh5KpRJ/f3+CgoLmLV5DqVQSGhpKcHAwbW1t2NraEhkZSXNzMx9++CGJiYlcfPHFPPzww6Slpc1LHwQCwfxxVgSmn4yEhAQ+/vhjLrjgAhwdHfH19TXLugLB6SLLMjt27OBnP/sZ+/bt4+KLL+bFF1/E09MTJycnoqOj8fb2nlcBoNPpaG9vp6Ghgb6+Pnx9fUlISMDLy2vBZqEN2YUMNUUGBgZwcXHBx8eHmJiYZZG5SqfTGQvgGQrijY2NGcWFWq1GkqQTLAF2dna4ublNG4Sb20JQVFTE8PAwAH97JxCdLE0rPNg12gkStER28pRrLs8UHKazG/72rj7WYWhoiOLiYpKSkgCMrlhzYarF53hxNjw8PE2gybKMpaWl8bzZ2dlNKyJpb29/RlpUpoqSqb+RxsZGCgsLjb8RHx+fef+NSJKEm5sbbm5uxMXF0dXVRUtLCzt37sTNzY2QkBB8fX3n5TwbMnj5+/vT2dmJg4MDAQEBXHnllXz88cesXr2a3NxcHn74YdauXXvG3ysEgrOFZVuscCkhzpPgeHQ6HR9++CFPPvkkVVVVrF+/ngsvvBAnJyfc3NyIjo6eV3cHgNHRURoaGmhubsbCwoLg4GCCgoKwtraet31OxZAq1GDxWIxZXnMjyzLj4+MnVN42CA5JkowDY8PfqYJjsSquv/DCC3z66afG5ezsbO644w7s7e2RZRm1Ws2F/zqXCbWKf2tuxnJSyQtHCznY0WHc5pvf/CZ33XXXgvfdUPF8qlAxnHPDX1mWjcLk+Er3NjY2Z+SgdSZroUGQLGRq7ImJCZqammhsbESj0RAUFERwcPC8JsswuItWVFTQ19fH0NAQ//nPf/jwww+JiorikUceYf369Wek8BQIziaECFkAxHkSGNDpdLz11ls88cQT9PT0sHHjRs477zzs7Ozw9vZmxYoV85phTafT0dHRQUNDA729vXh7exMSErJgqX0NRdM6Ojro6urCwsLCOHDy8PA4Y1xqNBoNQ0NDJwiN0dFRtFqtcfZ96my8g4MDtra2ZjvPsiyj0WgYHx//Wnenr3OLevvttxkcHEShUJCZmUlMTMwJ/Xx1+CXatK18T5PNjbo0ZFnm/Y5S3jzcgEYHHi72XLHpulnFf8z0srGxwcLCwqznSaVSTfueDP+Pjo6iVCqniULDd+bk5LRoGd9miyFuyvDb0mg0xqxXhvpB840sy3R3d9PQ0EBHRweenp4EBwfj4+Mzr2JgYGCAyspKOjs7GRsb43//+x/vv/8+Hh4ePProo2zevFmIEYFgiSJEyAIgzpNAlmU++eQTfvSjH9Hd3c2mTZtYu3YtFhYW+Pv7s2LFinkN+B4fH6exsZGGhgYkSSI4OJjg4OAFuR5HR0dpb2+no6ODvr4+nJycjMLD2dl5yc9Cq9VqBgcHjYXoBgYGGBkZwdraetqM+tSB7FwGPbIsMzk5OWN8yPHv6XQ6FAoFlpaWJg/8lUolQ0ND/P3vf+eSSy4x1jqSJMn43ciyzOP7t/Kfhn/jJTuwXf0dJGAYiS6Hw3x0ZJBrV3vhmHEnaisPkwWRWq02HtPxMR8zxYFYWVnN6foxuMgdL1BGRkaYmJjAwcHBWP3c2dkZZ2fnBS0CagqyLDMwMGAUJENDQ7i5ueHj44Ovr++CpPM23G8aGxuRZZmQkJB5v98MDw9TVVVFa2srGo2GnTt38s477+Dp6ckvfvELLrrooiV/rxEIzjaECFkAxHk6u9m/fz8PPPAAxcXFXH311VxwwQVYWFgQEhJCZGTkvBYF6+vro76+nra2Ntzd3QkLC5v3GBPQu2i0trbS0tLCwMCA0c3Kx8dn3ougzQWD4DCIjYGBAUZHR7GxsZk2GHVxcTH5t6zVaqcNeFUq1TSBMTExgU6nOyFT1MkG5Oa0GpyK14r+xItHngfgA+cH8OpWAbDXcozVIQ0ATFq5Y51xP5KFad/xVOvOyYTX1IxgCoViWpyMjY0Ntra204Shqda18fFx4zVguCbGx8eNwsRwHSx1YTI2NjbNbcvFxcUYXzHfrpeyLNPZ2UldXR29vb34+fkRGhqKm5vbvO1TpVJRXV1NQ0MDarWaTz/9lLfffpv4+Hh+9atfkZWVNW/7FggEs0OIkAVAnKezk7KyMh588EE+//xzLr/8ctavX4+dnR1BQUFER0fP27Wg1WppbW2lvr6ekZERAgMDCQ0NnfeKwxqNxljsrKurC1dXV+NgZ6GrQp8OarV62gBzJsFhGGTO9rvS6XRGF6DjXbZUKhVKpdI4ULa1tZ1RYCw1V6Adjf/jhzu/D8CjId/jkir9wLvd0p4B1wpWOusD22X3eBRxN827MJoqVqYKlannXavVGkXJ8bEgtra2s7ZYGYTJ1GtmfHwce3v7E0TqUhQmk5OTxsmB/v5+vLy8CAgIwMfHZ96vt+HhYerr62lubsbBwYHQ0FD8/f3nzQVzfHyciooKmpqaGBsb48MPP+Rf//oX559/Pk8//TQxMTHzsl+BQHD6CBGyAIjzdHbR3NzM1q1befPNN7ngggu44oorcHV1xcfHh5UrV86bO8T4+Dh1dXU0NjZiZWVFaGgogYGB8zoYMviBG+qJ2NraEhgYSEBAAHZ2dvO2X1NQqVTGquo9PT2Mjo5ia2trHDTOVnAYAqKPFxmG/4EZ40IcHBwWLQB9LjQNNXLFvy4FYF3gefy8fzX06SurP6X25O7IvThb6muQSGHrkYLOW7S+wsJ9P+Pj49NEyeDgICqVCnt7e2PRQQ8PjyVnARwdHaWlpYWWlhZUKpWx/sd8x4ep1Wqam5upr69ncnKS4OBgwsLC5u3ZODIyQllZGR0dHfT39/Ovf/2L//znP1x77bX89Kc/NVazFwgEC48QIQuAOE9nB729vTz11FO8+OKL5OTksGnTJnx9fY0pLecr4Hx0dJSamhqamprw9PQkLCxsXgcSsiwzODhoHMAABAQEEBAQsKRiPGYSHS4uLsaBoaur62m7o8iyzNjY2AmuWmq12qwz7UsZrU7Lmr9nMaEdJ9AxiPfin0O3cwcAw15+3FfXyyvJRwCQkVAk3o7kGrWYXT4pX2epsrKyOkGc2tnZnfa1PTExQX9/v/HaGxgYMIoSw/W3VETJYv2eDRMYdXV1dHd3ExQURERExLxN0gwMDFBSUkJfXx/t7e2888477Nu3jzvvvJOHHnoId3f3edmvQCA4OUKELADiPC1vRkdHee655/jFL35BTEwM11xzDeHh4Tg4OBAXF4enp+e87HdwcJDq6mra29vx8/MjMjISJyenedkXLN7M6emiUqmMg76ZRIe7u/tpWYUMgmOq2BgcHESj0eDk5DRtcOro6Ljk3Kbmk+s/upry3jIkJHZv3ofle9vhmFVhm386/W17uDeiDgDZ0gFF6n1INq6L2eVZo9FoGB4envbdDw0NYWFhMc3dysXF5bSFiVqtpre3d8mLkpksmwZBMp8B7UNDQ1RXV9PW1jbv97Lu7m5KSkoYGRmhtraWv//971RWVvKjH/2I73//+0vOgisQLGeECFkAxHlanqjVal599VV+8pOf4ObmxvXXX098fDzW1tbExcXh6+s7L4Pz3t5eqqurF2T2cCYf8sDAQLy9vRd98G0O0SHLMqOjoye40xgEx9SZcCcnpzMmhfB88dMvH+HD2u0A/PWSt4hu06I7eAAAOWoF3ypW8H3vnaz11Ltp4RCAlHwPknLpxQTNBq1Wy9DQ0LR4EIMwOd5iYm9v/7W/+zNBlCxGjNfxVt2oqKh5CWKXZZn29nZKSkqYmJigqKiIbdu20d/fz2OPPcbNN9+8JGN6BILlhhAhC4A4T8sLnU7HP/7xD3784x+jVqvZsmULmZmZWFpaEhMTQ1BQkNndcGRZpquri+rqagYHBwkJCSE8PHxeridZlunv76ehoYHW1lacnZ0JDAzEz89vwQoZzoRWq6W3t5f29na6u7tNEh1arZb+/n6jm9bAwAA6nW5GC8fZLjhmYlvp6zyX/2sAtuY8zvrgS9D+/W+gVoNSSeN569n8l/28k36AYDt99iy8kpFivr0krGXmRKvVTrOYDAwMMDw8jEKhwMXFxRgL4urq+rXXkkGUGAT14OAg9vb2eHl5GYsPLub1ODExQVtbG83NzQwODuLv709ISAiurq7z8r2Oj49TW1tLQ0MDzs7OREZG4uXlZfZ96XQ6mpqaKCsrQ6PRcPDgQbZt24alpSVPPfUUV1555bJyqRQIlhrLWoTs3r2bBx54gPLyciwsLEhMTOTVV18lNDR0Qfux1M+T4PTZvXs33//+92lpaeHaa6811vqIiooiPDzc7AMFWZZpa2ujuroalUpFWFgYYWFh8zJLp1araWlpoaGhgbGxMQIDAwkJCZlXF6+vY2JiYlpxQysrK2MBttmIDsMAr6+vD0tLS+OMs4uLC05OTmKgcZocaNvHXZ99F4BrY6/nB+kPoD14ALmoCAApOZnXVO68uzuPf2QewsFCq38/9BKk4PMXrd8LhU6nM1pMDIJCrVbj5uY2LRbpdEWJ4dpXq9XTig8u5mTA0NAQDQ0NNDc3Y2dnR0hICAEBAfNyT5qcnKS+vp66ujpsbW2JjIzEz8/P7GJEo9FQV1dHVVUVGo2GHTt28OabbxIQEMBzzz3HmjVrzLo/gUCgZ9mKEMNs8auvvsrGjRsZGxvjs88+IzU1laCgoAXty1I+T4LTo729nfvuu4/t27ezefNmLrzwQqytrQkPDycyMtLs7glarZaWlhaqq6vR6XREREQQFBQ0Ly5QAwMDNDQ00NLSgqOjIyEhIfj7+y+Ku5Usy4yMjNDR0WHMZuPs7GysMeLk5HTKAcjXiQ4PD4/TcpcRzEzPWDcXvnsuAJm+2fz+m39EHhlB+9abIMtgbQ1XX8O1rxfgNFLBH1MKj20pIcXdjOQRt3idXwQM7n4GQWKKKJFlmaGhITo6Omhvb2doaMiYbc/Hx2feU2+fDI1GQ2trKw0NDQwPDxMQEEBISMi8JODQaDQ0NTVRU1ODQqEgMjKSwMBAs08eTE5OUl1dTW1tLZOTk3z88ce8/fbbbNiwgWeeeQZfX1+z7k8gONtZtiIkLy+P9evX09HRsdhdWdLnSXBq1Go1v/vd7/jJT35Ceno6W7ZswcPDg4CAAGJiYszut63RaGhoaKC2thYLCwsiIyMJCAgw+8N2ai2R+R5AfB06nY6+vj6j8FCpVMbiht7e3qc8x1qtdtqs8/Giw93dHQcHByE6zIQsy3zj7TUMTgzgbuvBfzfps2Npd+xArqkGQJGTQ5tfGBc9v4fr/aq4P7JWv7HSGinl/5DsfRar+4uOQWRPdb2aKkoM1rlTiRKVSjWt+KCtra1RkLi5uS2KVe/4iYz5qgGi0+mMkzMajYaIiAiCg4PNPmGiUqkoLy+npaWF7u5utm3bRkFBAY899hh33323iBcRCMzEshUhg4ODhIaGcsUVV3D11VeTmZm5aG4lS/k8CU7Orl27uP322xkbG+PWW28lISEBR0dHkpKSzD5YV6vV1NXVUVtbi729PZGRkfMS2K5Sqaivr1/QWiIzoVar6erqoqOjg87OThQKBd7e3vj4+ODp6XnSQcVUS0lXV5cQHYvAd/97EwUdeQB8fvVuXGxckXt70f7zPf0KDg4or97MB0Xt3Pv2EZ5PKOZS3079ZzYeSKn/h2Q5f5mWziQM1/PUVNIGUWKIBznV9azRaOju7jb+jnQ6nfF35OXltSi/6+NrgISGhpp9ssYQWF5dXc3o6Cjh4eGEh4ebXYwMDAxw9OhRhoeHKSws5JVXXsHe3p6XXnpJuGgJBGbArCJEl/8MTA6Zs38zY+WEIu2+r12tpKSEX/ziF3z22Wf09/dz1VVX8dJLLy24+VqIkDOLtrY27rvvPj744AOuvfZaLr74YqysrIiLiyMoKMisA1ydTkdDQwOVlZXY29sTHR1t9pS3sizT29tLXV0dnZ2deHl5ERoauuCpddVqNe3t7bS0tNDT04ODg4NxBvdUAa4ns5R4e3vj4eEhRMcC88uDT/FOxZsA/OGC10jzSQdA+8knyC3NACjWrUMREcn/vX2U/xQ38U5GHiud9BXVcY1Civ8ukkIE/h/PVFHS2dk5K0uHIaGE4XcyMjJitNr6+vouqCAxpPqtr6+nq6sLb29vwsLCcHd3N/u9rbu7m4qKCsbGxoiKiiIkJMSs1iBZlmlqajJm0vr444958803hYuWQGAGzCtC9v0EJgfN2b+ZsXJGkfPTWW1SUFDAVVddxaZNm3j66afnqWMzI0TImYFareb555/nscceIyMjg+uuuw4PDw+CgoKIjY01a9yHLMu0tLRQUVGBUqkkJiYGHx8fsz6gtVotzc3N1NXVMT4+bpyVXMg8+Dqdjq6uLpqbm+no6MDR0dE4KDpVWmG1Wk1nZ6fxdbqWEsH888+qd3lq/+MA3J/xIJtjrgNAbm9D+9FH+pXc3FBe8S2GJzRc/PwedKo+3s86iIe1Wv+5/xoUkVcsRvfPKOZi6RgdHTWK/uHhYXx9fQkICMDLy2tBXbZGR0dpaGigsbERW1tbo/XVnK5asizT0dFBeXk5Wq2W6OhoAgICzHo/nZycpKysjKamJnp6eti2bRt5eXn89Kc/FS5aAoGJLGtLyPHcf//9VFRU8JHhQblACBGy9Nm5cyd33HEHKpWKW265xeh6lZycjLOzs9n2Y0i1W1ZWhlqtJjo6msDAQLM+LNVqNY2NjdTU1GBlZUV4ePiCBpobZmSbm5tpbW3FwsLCWPDsVC6Ro6Ojxlnc3t5eHB0djQOu+UoFKpg9RV1HuemT6wG4PPJbPJzzGKD/3rUfbIeuLgAUF1yIIiiI/IY+Nv1xPynO/WxLL8BKoX/kSCuuQfLNXJRjOBOZauno7OxkeHgYd3d3o5XkVKJ+aGjIWGhUq9Xi5+dHYGDggv6uDIHshqBvQzyHOQfvBqtFZWUllpaWxMbGmj2171QXraKiIv70pz9hZ2fHSy+9xDnnnGO2/QgEZwPLNiakoqKCTz75hKuvvho/Pz+qqqpYv3491113HVu3bl3Qvizl83S2Y3C9+vDDD7nmmmvm1fWqr6+PsrIyhoaGiIqKIjQ01KyzgRMTE9TV1VFfX4+DgwORkZFmt66ciuHhYeNAR61W4+/vT0BAAG5ubjP24WTuI4ZBlahcvDQZmRxh7ZvZACR4JvLaxduMn+kaGtB99ql+wccHi/WXAfDsZ5U8/0UNm/xbeDquXP+5pERKugvJeWFTpi8XDKK9s7PztN0bZVmmr6+P5uZm2trasLS0NE4QLJSbssFqUV1dzcjICKGhoYSFhZk17bBWq6W+vp6qqiqcnJyIjY01a9HDqS5ahixaf//737nssst45pln8PPzM9u+BILlzLIVIa2trXz/+9/nyy+/ZGhoCHd3d6688kqefvrpeav2ejKW8nk6W1Gr1fz2t7/lpz/9KRkZGWzZsgV3d3eCg4OJjY016+zc8PAwZWVldHd3Ex4eTkREhFnbV6lU1NTU0NjYiJubG5GRkXh4eCyI+BgfH6e1tZXm5maGh4fx8fExunzMJLAM8SktLS10dHQseiCtwDTW/+MC2kfbsLe0Z+c1+43XmizLaP/xLgwMAKBcfxmSjw9qrY6rXt7P0eYBfhJdwQ3B+tgRLB2RUn+AZOO6SEeyPJgp0YPht3iyOAytVmt0lezs7MTR0ZHAwED8/f0X5DklyzI9PT1UV1fT19dHcHAwERERZg1iV6vV1NTUUFtbi5eXFzExMWYVW2q1mtLS0hNctB577DHuuececT8TCL6GZStClhLiPC0tdu7cye233874+Pi8ul6pVCoqKipoaWkhKCiIFStWmPX7Hx4epqamhpaWFry9vYmMjMTVdf4Hc8cHmLu7uxMQEICfn99JH7ozuYP4+/svWkpRwdz4v//dxZ6WXQB88K3/4Ofgb/xMV1WFbtdOAKSgIJQXXAhAY+8oFz+/hwm1mr+kHibHvV+/gYM/UtI9SBaLV4BvOWFI5NDa2nra7pBqtZq2tjZaWlro7e3Fw8ODwMBAfHx8FmQg3d/fT3V1NZ2dnQQEBBAREWFWsTA+Pk5lZSVNTU0EBAQQHR1tVrEzODjIkSNHTnDRevHFF1m7dq3Z9iMQLDeECFkAxHlaGvT19XHPPffw/vvvT3O9io+PN2tchqHgVX19PT4+PkRHR+Pg4GCWtkHvk1xVVTVvD+yZkGXZWAugtbUVe3t748DmZA9zlUpltJKMjIwsWmCswPz8/vBv+XPxKwD85twXWB34lS+8rNWiffstGB0FQPmtK5GOucK8k9/MA+8V4WI5yfbsQwTaqvQbucchxd2EJInrwpycLDGEv7//KX+3hgmD0dFR/P39jTWE5tu6OnVixcfHh8jISLOmQx8ZGaGiooKOjg5CQ0PNWmj2ZC5aV1xxBc8///yCTBAJBGcaQoQsAOI8LT4ffvght956KyEhIdx22214eHiY3fVKo9FQV1dHdXU1rq6uxMbGmu0BanBjqqqqmjfXhZlQq9XGqsijo6PGooYnsxjNNKO6GClCBfPLf+r+zSN7HgTgzpR7+U78LdM+1xUXozuwHwApIhLlunWA/jq++60jfFTUTpj9KNuz87BXHsuYFbAORcSGhTuIswxTLJiDg4M0NDTQ3NyMg4MDISEhBAQEzHuSi7GxMWpra40uplFRUWZN7zswMEBZWRn9/f1ERkYSFhZmtmNSq9WUlZXR2NhIT08Pf/zjH2loaOCVV17h0ksvNcs+BILlghAhC4A4T4tHf38/d999Nx988AG33HILa9euxcHBgdTUVLO5XsmyTGtrK6WlpdjY2BAbG4unp6fZ2p7vIM6ZmM3gQ6fT0dnZaYzzOJ3ZVsGZTU1/FZs/+BYAF4RexM/W/HLa57JajfbNv8PEBEgSyqs3Ix2z1g2Pq7nkd1/S1DdGrlsvr6cdQSEdy5gVdTWSX/bCHsxZiMFKaUjfa4gf8fb2ntFKOdvJCHMx38k2uru7KSsrY3x8nLi4OPz8/MzW9uDgIAUFBYyMjLBjxw5eeeUVNm7cKKwiAsEUhAhZAMR5Whw++ugjbrnllmnWjxUrVhAZGWk2d6ChoSGKi4sZHh5m5cqVZstNL8synZ2dlJeXMzExMS/pLI9Hq9XS1tZGfX09Q0NDRjeMmR6Yhiw7LS0ts0rDK1geqLVqVv89A41OQ5hLBO9s+NcJ62gL8pEPHwZAWhmHMifH+FlRywDf+sM+1FqZawJa+NlKQ8YsBVLC95BcoxbkOATT47U0Gs0ps9od75bp5OREaGgofn5+Zs30dzxqtZqGhgZqa2uxtrYmJiYGb29vs91rW1paKC0txdHRkfj4eLPdw3Q6HdXV1VRWVtLT08PLL79MU1MTr7zyCpdccolZ9iEQnMkIEbIAiPO0sPT39xtjP2655RbWrVuHg4MDaWlpZnu4qNVqqqqqqKurIzQ0lBUrVphNIPT29lJWVsbIyIixAvB8PuBVKpWxmJilpaWxmNhMxzMxMUFTUxONjY1MTk5+bRpewfLlmg++RXV/FUpJye7rDmKtnG6dk8fH9dYQjQaUSpTXXoc05f73yp46nvxYLz6eiKvhOv96/QdKG6SU/0Oy916wYxGcOLFgZWVFSEgIgYGBM1pe1Wo1zc3N1NfXo1arCQ4OJiQkZF6tn1qtloaGBqqqqnBwcCA2NhZ3d3eztK1Wq6moqKChoYGwsDCioqLMdk8fGhoiPz9/mlXk8ssv5/nnnzdrzItAcKYhRMgCIM7TwvHvf/+bW265haCgIG677TY8PT2JiooiKirKLNaPqa5X9vb2JCQkmE3YDA0NUV5eTnd3NxEREYSHh8+b5cMQY1JfX09HRwdeXl6Ehobi6ek54+xnb28vDQ0NtLe34+bmRkhICD4+PvMqjgRLm617fszHdR8CsO3St4l2jz1hHe3+fcglJQBIKSkoU9OMn8myzM2v5/NFZRcKZN5ZVUaKfZv+QxsPpJTvI1mZL6GD4PTRarV0dHTQ0NBAX18ffn5+hISEnNQ60t3dTX19PV1dXfj4+BAWFjavExNqtZra2lpqamrw9PQkJibGrPfhoqIiRkdHWblyJf7+/mY5Dp1OR1VVFVVVVXR3d/Pyyy/T3NzMq6++ysUXX2yGngsEZx5ChCwA4jzNPwMDA9x7772899573HLLLZx77rnY29uTnp5u1ofTfLhejY2NUVFRQWtrKyEhIURFRc1bzIdWq6WlpYW6ujpUKpVx9nKmasuTk5M0NzfT0NDAxMQEQUFBBAcHL1hRM8HSZlvp6zyX/2sAtuY8zmWRl5+wjjwygvatN0GWwdoa5TXXIk0R1n2jk1z0/G46hyawV2rYcV4RHlKv/kPnMKTEO5AU8xsELTg1w8PDNDY20tTUhLW1tdE6MlNWqdHRUaNV1dbWlrCwMAICAuZtsmJiYoLKykoaGxvx9/cnOjraLEVO59NFa3BwkPz8fEZHR/niiy945ZVX+Na3vsVvf/tbYRURnHUIEbIAiPM0v3z88cfcfPPNBAYGctttt+Hl5WVW64daraaystL4HZrL9WpiYoKqqioaGhrw8/MjOjp6RjFgDtRqNY2NjdTU1GBlZUV4eDj+/v4zBpoPDAxQX19Pa2srzs7OhISEzLvPt+DM41D7Ae749FYANsdcx/0ZD864nnbnTuTqKgAUmVkoEhKmfX6grpdrXzmATgZ/m3G+OPcIltoR/Yfe6UjR1wpXvyWAVqultbWVxsZGBgcH8ff3JywsbMbgdI1GQ2trK7W1tUxOTs57TNvo6CgVFRW0t7cTEhJCZGSkWSZypt77zemiNdUq0tXVxR//+EdaWlp49dVXueiii+bcvkBwpiBEyAIgztP8MNX6cfPNN3Peeedhb29PWlqaWbK2zJfrlUajMboSuLu7ExMTM29ZZk43u4xOpzMGpQ8ODhIYGLgg2W8EZy4D4/184+01AKR4p/HHC/8843pyf7++ijqAnZ0+U9Zx4vc3n1fx2/9VA7DOb5xXEvYjyRoApNBLkILPn6ejEJjC4OAg9fX1tLS04OzsTFhYGL6+vidM+hyf3S8sLIywsDCz1eaYqV9lZWX09fUZXVrNkXp3vly0ZrKKXHXVVfzmN78RVhHBWcGyFiG7d+/mgQceoLy8HAsLCxITE3n11Vd5/fXXaWlp4ZVX9MW2iouLOf/883nqqae46aabTrpdaGioSf1Y6ufpTOSTTz7h5ptvJiAgYF6sH1Ndr+Li4szy0NHpdMagSjs7O2JjY/Hw8JhzX2dCpVJRU1NjzLMfGRmJh4fHCccwPj5OQ0MDDQ0NWFhYGIPS52uQIFheXPTOeXSrunC0cuSLzXtP+hvRfvYpckMDAIrcVShip8ePaHUy175ygIP1fQD8IEnFXd5fGj+XYm9E8kqal2MQmM7k5CRNTU3U19ej1WoJDQ0lODj4hOecLMv09PRQXV29IHWOenp6KCsrY2xszJjcY67Phfly0TreKvLyyy/T2trKa6+9xoUXXjjn9gWCpcyyFSGDg4OEhITw6quvsnHjRsbGxvjss89ITU3ltddeM4qQ4wXIqbYLCgoyqS9L+TydaQwNDfH973+fd955Z16sH/PhemWwqJSXl6NQKIiNjTVrrvupjIyMUF1dTUtLC97e3kRGRs6YYndgYICamhra29vx8PAgLCwMLy8v4fYimBX3fH47+1r1YuGjb32Kj4PvjOvJPT1o//VP/YKDg94actygsHNonEt+t4eekUkA/nb+ENmKg/oPJQukpDuRnE2bCBLML4aU4vX19fT09ODn50d4ePiMs/n9/f1UV1fT2dlJQEAAkZGRODiYPwGBwQpTVlaGTqcjJibGLJNJ8+WeO9Uq8r///Y9XX32VTZs28dxzz4m054Jly7IVIXl5eaxfv56Ojo4TPnvsscdoaWnh3nvvnSZAvm47U1nK5+lM4vDhw1x55ZW4urpy++234+XlRWRkJCtWrDCL9aOtrY2ioiIcHBzM5nrV3d1NaWkpk5OTrFixgqCgoHkZ6A8MDFBdXU1HRwcBAQFEREScEEB+fNX1oKAgwsLC5mUAIDg7eKHgOf5S8ioAz577O9YErj3putr/fILc3AyA4pxzUEStOGGdfbU9bHn1IDoZJElm38YuvMeK9B9a2OszZtmZpxCoYH4YGRmhrq6OpqYm3N3diYyMnLHa+fDwMNXV1bS2tuLj40NkZOS8uCDpdDqam5upqKjA2tqalStXmqWYrMFFa2RkhISEBPz8/MzS18rKSqqrq+nq6uLFF19kcHCQd999l5SUlDm3LxAsNZatCBkcHCQ0NJQrrriCq6++mszMTOOg8rHHHuN///sf1dXV0wTI121nKkv5PJ0JyLLM888/z0MPPcTVV1/Nxo0bjZmvzGH9mJiYoKioiO7ubuLj482S9UqlUlFSUkJXVxdRUVGEhYWZPbD7eFERHBxMeHj4CdlhDLOUVVVVC1p1XbD8+W/9Jzy8+wEAvpd0F7ckfvek68qdnWg/2K5fcHJGedVVJ1hDAH6/o4ZffVoJgJeDBbsuqMJ6pFb/oUjde8ZgiEerq6vD0dGRqKioGQsMjo2NUVtbS2Nj4ylFy1zRarXU1dVRVVWFt7c3K1eunLM7mMFFq7i4GE9PTxISEsxyXx0cHCQvL4+RkRHef/993nnnHZ5++mnuvvtuYa0WLCvMKkI0//onqFTm7N/M2NpicfkVX7taSUkJv/jFL/jss8/o7+/nqquu4qWXXuKZZ57hmWeewcnJiYKCAnx8fE5rO1NTkwoRYjp9fX185zvf4cCBA/zgBz8gJiaG4OBg4uLizDKob2tro7CwEHd3dxISEub8/eh0Ompra6msrMTX15eVK1ea/Ts/XVGh0+lobW2lurqayclJwsPDCQkJmdeq64Kzi/qBOq7avgGA84LP5xdrnz3l+tqPPkJu19cCUZx7LorwiBPW0elkbvmrvn4IwKoQe15PPoA0dsw67RSMlHgnklLELZ0JTK12bmVlRVRUFH5+fidYr09XtMyV8fFxSktLaW9vZ8WKFYSHh8/Zkj4+Pk5hYSF9fX0kJiaaxSqi1WopKSmhsbGRsrIynn32WbKzs/nLX/4yo4utQHAmYl4R8ve/weioOfs3M/b2WFx73aw2KSgo4KqrrmLTpk3Y2NjQ3NyMJEkcOnSIXbt2nfRHPXW7p59+2qTuChFiGvv372fTpk0EBARw55134uLiQkpKillu8BMTExQXF9PV1UVCQoJZfIW7u7spKipCkiQSEhLmJei8q6uLsrIyxsfHTyoqtFotTU1N1NTUABAREUFQUJBIsSswOxqdhnP+nsWEdoIgp2D+eflHp1xf19qK7uN/6xdcXVF+68oZf3cDY5Nc8rsvaR3QT2p9f5Un97h+BJND+hU8EpBW3ogkzd0NU7AwnO59aaposbGxITY2Fi8vL7P3p6enh6KiImRZJiEhYc4uWobYv6KiIry8vIiPjzeLVaStrY3Dhw8zMDDACy+8QFtbG++88w5ZWVlzblsgWGyWtSXkeO6//34qKipIS0ujpaWFP/7xj2zevJmmpiY+//zzk/rGG7b76KNTP2BPhhAhs0On0/GrX/2Kxx57jG9/+9tccsklODo6kpmZaZZCVIbYD1dXVxITE+f8nUx1vYqOjiY0NNQsMSpT6e/vp6ysjMHBQSIjI2d075r68La2tiYyMnLGGUeBwJx8+6PNlPWWIiGx69oD2Fme/DcqyzLaDz6Ark4AFOd/E0VIyIzrFrUMcOUf9jOp1QHwxiZ/ckfeBO2EfoWAc1BEnFggUbC0MaQDr6qqOqWF1uA+VV1djYuLCzExMWa3AOh0Ourr66moqMDLy4u4uLg5u2gZrCL9/f1mixUZGxvj4MGDDA8P89FHH/HGG2/w2GOP8cMf/lDc3wVnNMs2JqSiooJPPvmEq6++Gj8/P6qqqli/fj3XXXcdOp3OmB1LrVZz2WWXMTk5yb///W8aGhpOut3WrVtN6stSPk9Lja6uLrZs2UJJSQk/+MEPjPEUsbGxc77ZTk5OUlRUZDbrx0K4Xo2MjFBeXk5nZydhYWFERESckD53ai0QR0dHIiMj58WNQSCYiSf3Pcb71e8B8NpFb5DwNal0dU1N6P77H/2ChwfKjZef9Fp940Ajj24vAcDB2oLPvu2Jd9M2QC9MpIjLkQLOMctxCBaW03UrnZycpLq6mvr6ery9vYmJiTF7Mg1zu2hNjRXx8vIiISFhzmnPdTodpaWl1NfXU1VVxbPPPkt8fDzbtm0zS6C9QLAYLFsJ7ejoyL59+0hNTcXe3p5vfOMbXHLJJTz44PSqvpaWlvzzn/9ErVazadMmbG1tT2s7gfnZuXMnCQkJTExM8Otf/5qYmBgyMzOJi4ubswBpa2vjiy++QKvVcu655845+Lyrq4sdO3bQ0tJCVlYWqampZhUgKpWKo0ePsmPHDiwtLTnvvPOIjY2d9iBTqVQUFRXx2WefMTAwQEZGBqtWrZq39L8CwUxEukYZ/6/qr/ra9aXAQHB31y/09CC3tJx03S2ZQWxM0s8kj0xouPGDEdTh3zJ+Lte8j9xdZGLPBYuJJEn4+PiwevVqMjIyGBgY4LPPPqO4uBjVFI8KKysrVq5cyXnnnYelpSU7duygsLBw2jpzxcbGhtTUVLKysmhubmbHjh10d3eb3J4kSQQGBnLuueei1Wr54osvaG9vn1MfFQoF8fHxZGZmEhMTw69//WvGx8dJSEhg165dc2pbIFgslq0lZCkhztOp0Wq1PPHEE/ziF7/g5ptv5pvf/CYuLi6kp6fP2TQ+OTlJcXExnZ2dZsl8Nd+uV2q1murqaurq6vD29iY6OvqEhAjHzwzOV2pLgeB0ONJZwK3/uRGAb0Vt4qHsR792G119PbrPP9MveHujXH/ZSX+XoxMaNr64l+quEQCuSPbn12kt0PS5fgWFpb6GiFPIXA9FsMgYUo13dnYSGhpKZGTkCRaE4eFhKioqjNbhyMhIsybbMLeL1lSriLe3N/Hx8XO2iqhUKg4dOsTg4CCffvopr776Kg8++CCPPPKIiP0TnFEIEbIAiPN0ctra2rj22mupq6vjvvvuMz54oqOj5zyb397eTmFhoVliP+bb9Wqq/7OzszOxsbEn+D9rNBrjOm5ubsTExAjxIVh0RiaHWftmDgAJnom8dvG2r91GlmW0//gHDPQDoLz0UiTfk/vO13QNc9nv9zI2qQXg5xvjuNpxN3QV6FewtEdKFjVElgsDAwOUlZXR399vjIGzsLCYts7pxMnNBXO7aE2NFUlMTMTXd+bCnqfL1JoidXV1PPvss4SFhfHmm2/OuW2BYKEQImQBEOdpZv773/9y3XXXkZyczK233oqDgwPp6elz9m81t/XDkPVKoVCQkJCAu8GVxAwcX0grNjYWT0/Paf3V6XQ0NjZSWVmJra2tcR2BYKlw2XsX0jbSiq2FLbuuPYDiNLJW6Wpq0O34AgDJ3x/lxZeccv0PCtu4560jAFhZKPjnbRnE9r4JA/psS9i4IyXfi2QtqksvF7q7uykrK0OlUhEdHU1QUNA0ISDLsnGdiYkJoqOjCQwMNKt1uqenh+LiYnQ63ZyzaMmyTHNzMyUlJWazinR3d5OXl8fw8DCvvPIKR44c4W9/+xsXXHDBnNoVCBYCIUIWAHGepqNWq3nkkUd44YUXuO2221i3bh1ubm6kp6fPOaVhR0cHR48excXFhcTExDmZ0dVqNWVlZTQ3NxMTE2NW1ytZlmlvb6e8vBxZlomJicHPz2+a+JBlmba2NsrLy5EkiZiYGHx9fUW8h2DJcd8X97CreQcA/7r83wQ6BX3tNrJOh/bdd2BIn3ZXedkGJG/vU27zkw9KeH1/IwB+zjZ8+L1UXKtfhtFj/vYOAUhJdyFZiPvscsFwrywrKwM46b2ytbWVioqKeblXGly0ysvLCQwMJDY2dk4uYCqVisLCQgYGBkhKSjqhVtlsmZiYIC8vj76+Pnbs2MHLL7/MPffcwxNPPCHqQgmWNEKELADiPH1FT08P3/rWt2hubua+++4jMDCQ6OhoIiMj55ypqqysjMbGRuLj4wkMDJyz9ePIkSPY29uTlJSEvb29yW0dz+DgIEVFRYyOjrJixQqCg4NPEDeGeiDzNbsnEJiTl4/+nj8V/gGAX6x9lvOCzz+t7XQVFej27AZACgxCeeGFp1x/UqPjmlcOUNCod+PKDHVj25YVKAt/BxP693CJQkq4DUlhcYqWBGcaOp2OpqYmKisrjfVDjrdKTLUa29vbk5CQgLOzs9n6MDo6ypEjR1CpVCQlJZnFKlJcXExwcPCcM0DKskxVVRWVlZU0NTXxzDPPEBQUxHvvvTcvNasEAnNgFhESEhIy5wDi5YxKpaKhoeGsFyHFxcVceumlBAcHc+edd+Lk5ERmZiZubm5zand0dJT8/HxkWSYtLW1O6Rs1Gg2lpaU0NzcTGxtLaGio2WbT1Go1FRUVNDQ0EBYWxooVK07wczb4Qg8MDMyLn7NAMB980fg5D+z8PwBuTriN25PvPq3tZK0W7Ttvw4g+6Fy58XKkrxnYdQ2Nc+kLX9I1rK8XclNuKI+uc0M+8jxoxvQreaUgxWwRxQyXIRqNhvr6emP9kNjY2BNi4zQaDZWVldTV1RESEkJ0dLTZLAKyLFNfX09ZWRmBgYGsXLnyhPv4bBgZGSE/Px9JkkhLS5vzhFdvby+HDh1iaGiIF154gebmZj766CPi4uLm1K5AMB/MSYRotVqqq6uxs7M7wY9doMfgszo2NkZkZORZO6B8//33uf7669m4cSNXXnklrq6uZGZmztn9qq2tjSNHjhgfBnM5v93d3Rw9ehRbW1uSk5PNZv0wzHiVlZXh5OREfHz8CRmvptYDOVlWGIFgqdIy3MzGf14MwOqAc/jNeS+c9ra6sjJ0e78EQAoKQnnBqa0hAAWN/Wz+037UWv3j69mrErk8XI1c+CLo1PqVAtaiiNg4uwMRnDGcTv2Q4eFhioqKGB4eJjY2ds4W8qlMtYokJyfPydqg1WqNk1/JyclzLnA4MTHBwYMH6e/v591332X79u1s27aNDRs2zKldgcDczEmEgH7w1NLSwhybWdZIkkRAQIDZCyydCciyzJNPPsnTTz/NvffeS3Z2NoGBgSQkJMzJ9KzVaikpKaG1tZWkpKQ53bTn0/phcL0aGxsjPj7+BD/l8fFxo/k8MDCQFStWCKui4IxDlmXWvZnLiHoYT1svPtn0v9PfVqtF+/ZbMDoKnJ41BODvh5r48b+KAbC2UPDe93JYad2MXPIqoH8eSeEbkALXzf6ABGcMKpWKyspKmpubCQoKYsWKFdM8DgyxdSUlJdjZ2ZnVRWuqVSQoKIjY2Ng5WUXa2to4evQo/v7+xMXFzWlSTafTUVRURHNzM/v27eP555/noYce4uGHHxYTxoIlw5xFCOgHhGq12hz9WZZYWlqelRaQsbExbrjhBvbs2cNDDz1EaGgo8fHxhIaGzqnd4eFh8vPzUSqVpKWlYWdnZ3JbPT09HDlyxOzWD7VaTXl5OU1NTYSFhREVFTXt4TQ1F72npycxMTEnWEcEgjOJ7/33ZvI7DgHw3007cLc9/ZlhU6whAA/9q5g3DzUB4O9iywd35uI2dBi56m3jOlLMFiTvtNPui+DMZHh4mPLycrq7u2es4WRw0aqvryc4ONisLlrmtIoY3It1Oh1paWlzfi7U19dTXFxMXV0dTz/9NOeccw5//vOf5/TcFAjMhVlEiEBwPM3Nzaxfvx6dTsf999+Pu7s7mZmZcw6Qa25uprCwkNDQUGJiYky2pmg0GsrKymhqaiImJoawsDCzzA6djutVb28vRUVF6HQ64uPj8fLymvN+BYLF5jd5v+JvZX8F4PlvvESO/6rT3tZUa8iERss1fzrA4aYBALLD3HnjpgyUzZ8hN3yiX0lSIMXfhuQWPbsDEpyRdHV1UVxcfNKU6sPDwxQXFzM0NGRWFy1Zlqmrq6O8vHzOVhGdTkd5eTn19fUkJiYSGBg4p7719PRw8OBBent7+fWvf41SqeSDDz6Yc7sCwVwRIkRgdvbt28eGDRvIyMjg5ptvxsnJiZycnDnNvGg0GoqKiujs7CQlJQXvr0nleSqmWj+SkpLM5iZ3Oq5X5ix+JRAsJT6p+4hH9zwEwB3J93BTwq2z2n6aNSQ4GOU3T6/OQeexQPXuY4HqN+eG8sglMcjV70LbPv1KSmt96l5HMeg6G/i64rKGtL/FxcVmd9EaGRnhyJEjjI+Pz9kq0tHRwZEjR/Dx8SE+Pn5Orl6jo6Ps37+foaEhXnnlFfLz83n//ffJyckxuU2BYK4IESIwK6+99hp33XUXN954IxdeeCFeXl6kpaXN6eY5NDREXl4e1tbWpKammhwzMV/Wj9m4Xnl5eREXFyfiPgTLjvqBOq7arg98PS/4fH6x9tlZbX+CNeTyK5BOcwCX39DHNa8cMAaqP7cpiQ1Jvsilf4YefdwIlg76YoaiqvpZg0qloqSkhK6urpO6aFVVVVFXV0dQUBAxMTFmcdEyp1VEpVJRUFDAxMQE6enpODmZXoxTrVaTn59Pd3c3//nPf/jLX/7C73//e77zne+Y3KZAMBeECBGYBY1Gw/3338+f//xnfvjDH5KQkEBkZCTR0dEmD/RlWaaxsZGSkhIiIiKIiooy2XLQ19dHQUEBNjY2JCcnm8X6YXC9Ki0txdnZeUbXq6nVdoXrlWA5o9VpOefNbMY1KvwdAtj+rU9m3YaurBTd3r3A7KwhANsONvLI+yXAlEB1H1vkoj/AYJ1+JWtXpJR7kaxdZt03wZnLVBet+Pj4E6wT8+WiZbCKTExMkJKSYnI6ep1OR2VlJbW1tcTFxREcHDyn52p5eTk1NTUUFxfzy1/+kptuuolf/epXc5osFAhMQYgQwZzp7+/nqquuora2lgcffBA/Pz9SUlLw9/c3uU21Wk1hYSE9PT2kpqaaXBRKlmVqamqorKwkOjqa8PBwszxcxsbGOHr0KMPDw8L1SiA4xk0fb6GouxCAHdfsxdFqdrO2c7GGyLLMQ/8q5q28ZgB8nW3YfmcunjY65KO/+6qqup03UtLdSFZnX7bCs5nZuGg5OjqSlJRkluBtWZapra2loqKCFStWEBERYfIzqLu7m4KCAjw8PEhMTJyT1aalpYUjR47Q1tbG008/TUREBO+88w6urq4mtykQzBYhQgRzory8nEsvvRRvb2/uuecenJ2dyc7OPqF41GwYHBwkLy8POzs7UlJSTC7wODExweHDhxkZGSEtLc0sN1eDdaa0tBQ/Pz/i4uKmPQiE65XgbOYXB37Gu5VvAfCHC14jzSd91m3MxRpyfKB6cqALb96ahbVuBPnI72C8R7+iYxBS4h1IFmdv8dizla9z0VKr1ZSUlNDW1sbKlSvnZHWYSn9/P/n5+Tg4OJCSkmJyjazx8XEOHz7M2NgY6enpc4plGRgYYP/+/QwODvLb3/6W7u5uPvroI6KjRRIHwcIgRIjAZD7++GOuueYaLr74YjZv3oyzszNZWVlzqgrf1tbG4cOHiYyMJCoqyuSbf09PD/n5+bi7u5OUlGQWP9+p1o+kpKQTguN7enooKipClmUSEhJMtt4IBGcq71f/kyf3/QSA76fdz5aVN8y6jblYQwC6hsfZ+Pu9tA2OA3BFsj/PXJUI433IR34Lk0P6FV0i9VmzlOZJ0yo4szC4aEmSREJCwgkuWp2dnRw9etSsVhG1Ws3Ro0fp6+sjNTXV5KB1WZapqqqipqZmzsUNx8fHOXDgAAMDA7z11lt88sknvPXWW1x00UUmtykQnC5ChAhM4g9/+AM/+MEPuOuuu1i9ejV+fn4kJSWZXA9l6k01JSUFX19fk9uprKykpqZmzr6zU9s8lfVjYmKCkpIS4XolOOup6C1ny0ebALgo7BKeWP20Se3MxRoCUNI2yFV/2I9KrQXgwQuj+d454cij7XqLiGZMv6J7HNLK7yApzr46ToITXbTi4+OxsrIyfj7VKhIXF0dQUJBZnicNDQ2UlpYSERHBihUrTG6zra2NI0eOGGMmTW1Hq9Vy9OhR2tra2LNnDy+88AK/+c1v+O53v2tSewLB6SJEiGBWyLLM448/zjPPPMOPf/xjYmNjWbly5ZwyTWk0Go4cOcLAwACZmZkmZ/9QqVQcPnyY8fFx0tLSzJJyUaVScfToUYaGhma0frS1tVFUVISrqysJCQnC9UpwVqPWqln99ww0Og1hzuG8s/F9k9qZqzUE4JOSdm7/22EAJAn+uCWN82O9kYcakI++CLpJ/Yre6UjR1yBJYuLgbEWlUlFUVER/fz8JCQknWBYMVhEnJyeSkpLMcp83uB3b2tqSkpJicptDQ0McPHgQFxcXkpOTTQ4uN2T0Ki0tpaysjKeeeor77ruPrVu3igrrgnlDiBDBaaPVarnrrrv4xz/+wdatWwkJCSE9PR0fHx+T2xwbG+PgwYNYWlqSnp5usp9sV1cXBQUFeHl5kZiYOOcsH7Is09TURElJyYzWj8nJSYqKiujq6iI+Pp6AgABxoxYIgOs+3ERlXzkKScHuaw9gY2Ha4EpXWopun+nWEIDn/1fNs59XAWBvpeS923OI9nFC7qtELv4jyHpLCf5rkCIuF7/hsxhZlmlpaaG4uBhvb+8FsYpoNBoKCwvp6uoiNTXV5OyJExMT5OXlodFoyMjImJPrWEdHB3l5edTX1/PEE09w1VVX8bvf/c5kLweB4FQIESI4LcbHx7n22mspKCjgkUcewdfXl5ycHJNTDoK+cvihQ4fw8/MjPj7eJBemqZVlExISCAoKMrk/Br7O+tHe3k5hYSGurq4kJibOKQZGIFhuPLHvJ2yv/icAf754G/GeiSa1I2s0aN95e07WEFmWufutI3xUpM+MFeBqy/Y7cnF3sEbuLkQu/QugfwRKIRchhcxe6AiWF+Pj4xQWFtLf309iYuIJrsHmtooYUr0XFRURFhZGdHS0yc/C4uJi2trayMjIOKFS/Gzo7e1l//79tLe38+STT5KWlsbf/vY38awTmB0hQgRfy+DgIJdddhnd3d38+Mc/xt3dndzc3DkVTWpsbKS4uJiVK1cSGhpqUhtjY2Pk5+ej1WpJS0s7oUbHbJlq/TD4Bx9v/SguLqazs1NYPwSCk/BOxZv88uBTAPwo82Guit5sclvmsIaMq7Vsenk/Ra2DAGSEuLHt5kysLBTI7QeQj2XzApAivoUUsNrk/gqWB19nFZmcnDTGAZrLKjI8PExeXh6WlpakpqaabM2or6+ntLSU+Ph4goODTe7P0NAQe/fupbe3l5/97Gd4eXnxwQcfmK2yvEAAQoQIvob29nYuuOACbG1tue+++3B1dWXVqlUmz/7odDpKSkpobW0lLS3N5AxS7e3tHDlyBH9/f+Li4uZsKp5q/UhMTDzBxUxYPwSC06Oo6yg3fXI9ABsir+DRnJ+a3NYJ1pCNlyOZcM/oGBznst9/SdfwBABXpwXy9BXxSJKE3LwDuXa7cV0pZguSd5rJfRYsH1QqFYWFhQwMDMxoFeno6ODo0aM4OzubxSqi1WqN1ozk5GSTE7R0d3eTn59PQEAAK1euNDlRytjYGHv37qW/v59f//rXTExM8N///ndOLtgCwVSECBGclOrqas4//3wiIyO54447cHV1JScnZ9qM0GyYnJwkLy+PiYkJMjMzsbe3n3UbWq2WsrIympqaSEpKmlNBRAMtLS0UFhbi6+tLXFzcCTNewvohEJw+KvUY57yZjU7WEe0Ww7b178ypvWmZsgIDUV5oWurQo80DXP3H/UxodAA8ekksN6/SW2F1df+Gps+OralAirsJySNuTv0WLA8M7lIlJSVfaxVJTEwkICBgzvs0PJOCgoKIjY01aZJtdHSUgwcPYmNjQ1pa2pye23v37mVgYIDf//731NTU8PnnnxMREWFSewLBVIQIEcxIfn4+F154IevWrWPLli14enqSkZFhcsD30NAQhw4dwtHRkZSUFJPqdoyPj3Po0CF0Oh3p6ekmiZipaDQaiouLaW9vn3HWyTDL5eLiQmJiosh8JRCcJle9v4H6wTosFBbsufYQlnOoxSFrtXpryMgIAMrLLkPyNm0mdvvRVu59+ygACgn+dH0a58V4I8sycvU/oE0vdlBYIiV8F8lFDLQEeqZaRZKSkma0lh85csToyjvX5CgjIyPk5+ejUCjIyMgwyfquVqs5fPgww8PDZGRkmOxCrdFoOHToEN3d3bzxxhvs3LmT//73v6SmpprUnkBgQOQkFJzAZ599xrp167j88sv59re/jb+/P1lZWSbfVDs6OtizZw/+/v5kZGSYJED6+/vZtWsX9vb2rF69es4CZGhoiN27dzMyMsK6deumCZDJyUkKCgo4fPgwsbGxZGZmCgEiEMyCaPcYADQ6DbUDNXNqS1IqUSSnGJd1+fkmt7UhyZ+71+mFhU6Gu986QknbIJIkIUV+C7yO7UenRi7+E/Jw85z6Llg+2NrakpmZSWxsLIcPH+bw4cNMTk4aP/f19WXdunWMjIywe/duhoaG5rQ/BwcH47Nu165d9Pf3z7oNS0tLMjIy8Pf3Z8+ePXR0dJjUFwsLC7KysvD39+eGG25g48aNrF27ls8//9yk9gQCA0KECKbx1ltvsWHDBr773e9y2WWXERoaSmpqqkk+pbIsU11dTX5+PklJScTExJjkytTS0sLevXsJDw8nJSVlTvEfhsKDu3fvxtfXl9zc3GkCo6Ojgy+++AK1Ws26devMEnAoEJxtrHCLMf5f2Vcx5/akqCg4Nosrt7Wha2szua3/+0YUlyboJx3GJrXc/HoeHYPjSJICKfo6cIvVr6idQC58CXnE9H0JlheSJBEUFMS6deuYnJxkx44d0wb2tra25Obm4uPjw+7du2lsbGQuziZKpZKUlBTCw8PZu3cvLS0tJvU5JiaGpKQk8vPzqa6uNqlPCoWC1NRUQkNDp40R3nrrra/fWCA4CXOzFwqWFc899xwPP/wwP/rRj0hOTiYmJsZkv0+dTmfMf75q1SpcXFxm3YYsy8b0u+np6Sekyp0tarWaoqIiuru7ycjImJaTXavVUlpaSnNzM/Hx8QQGBgrxIRCYSPQUEVLRW8aGyMvn1J6kUKBISUW3cwcAuvw8pPWXmfQbVSgkfn1lIm0DKg43DdA5NMFNr+fx7nezsbe2gJU3Ihf9AQbrQDOGXPgiJN2NZD+3+49g+WCwijQ3N1NQUDAtdkOhUBAbG4uHhweHDx+mp6eHhIQEkzwAQC8iIiIicHR0JD8/n6GhIZMm9Pz9/bG3t+fgwYOMjIyQmJg468lFSZKIi4vDxsYGWZZxcHDg5ptvprOzk3vvvXdWbQkEIGJCBOgH+w899BB/+MMfePjhh1mxYgXJyckEBgaa1J5Go6GgoIDR0VGys7NNcmVSq9UUFBQwMjJCZmbmnNPvDgwMkJ+fj62tLampqdP8aw2+t5IkkZaWNmdXL4HgbGd4coh1b+YCkOCZxGsXvzHnNmWdDu17/4CBAQAUF16EwsR7FEDvyAQbX9xLc78KgPOivfjj9WkoFRKyZhy58CUYbtSvbOWMlHw3ku3s6pQIlj+jo6Pk5eUBkJaWhoODg/Gz8fFxCgoKUKlUpKenzzm97fDwMAcPHpxTbKVKpWL//v3Y29uTmppqspt1c3MzR44coaqqiieffJLbb7+dp556SkzeCWaFECFnORqNhttuu42PP/6YrVu3EhgYSGZmpsmVWycnJzl48CAAmZmZJmXkGBkZ4eDBg9jZ2ZGammpyVg/QC6z6+nrKysqIjIwkKipq2k3SkIUkODiY2NhYk1MZCgSC6Wx47yJaR1qwsbBl1zX7USrmXnFZV1eH7n/H/NA9PFFu3DinQU9N1zCXv7SP4XENADfmhPDY+pUAyOox5MLfw0irfmVrV6Tke5BsXOd0DILlx9SsjcdnyJJlmaqqKqqrq4mNjSU0NHRO1+zk5CT5+fmMj4+bnGXSHM9pgK6uLg4ePEhzczOPP/44F198MX/6059EdXXBaSNGXGcxGo2GLVu28MUXX/Dzn/+c4OBgVq1aZbIAUalUfPnll1hZWZmcyre7u5vdu3fj7e09p5sj6K0peXl5VFdXk5WVxYoVK4w3f41Gw9GjRykqKiIlJYW4uDghQAQCM7LiWHD6uEZF01CjWdqUQkPB7Vgl6J5u5Ma5tRvh5cjLW1KxUOjvC3/Z18Dr+xr0+7K0Q0q4HeyOZUGa6Ecu/D3yxOCc9ilYfiiVSuLj40lJSaGoqIijR4+i1WoBvQvTihUryMrKorq6mry8PNRqtcn7srKyIisrCy8vL3bt2kV3d7dJbRie0V9++SUqlcqkvnh5ebFq1SqCg4P5+c9/zhdffMGWLVvQaDQmtSc4+xCjrrMUtVrN5s2bOXToEI8//ji+vr6cc845uLqaNss3PDzMnj17cHNzIz09fdYzIbIsU1dXx8GDB4mLi5uzKOjr62Pnzp3odDrWrl2Lh8dXbhSGzFjDw8OsXbvW5IJQAoHg5EyNCynvLTVLm5IkoUj7qpCgriB/ToG/ADnhHjx1ebxx+acflfJFRad+f1YOSIl3gO2xAomqHuTCF5Enh+e0T8HyxNfXl7Vr1zI8PMyuXbumZcjy8PBg7dq1aLVadu7cSV9fn8n7USgUxMXFsXLlSg4ePEhdXd2sfwdKpZL09HRcXV3Zs2cPw8OmXdOurq6cc845+Pr68vjjj3Pw4EE2b948J6ElOHsQIuQsZHJykquuuoqjR4/y+OOP4+XlxZo1a6b5ss6Gvr4+9uzZQ2BgoEnBboYg9qqqKnJycggKCjKpH6AXMzU1Nezbt4/Q0FAyMzOxtrY2fmbIjOXj40Nubi52dnYm70sgEJycWPeVxv/Le8vM1q4UFASGqul9fch1dXNuc1NaILefEw7oU/fe+fcjFDYP6Pdn7aQXIjZu+pXHOvVZs9Sjc96vYPlhZ2c3LUNWU1OTUSBYW1uTlZVFaGgo+/bto6amZk4iOjg4mJycHKqqqigsLESn081qe4VCQVJSEoGBgezZs8dkYeTg4MCaNWvw8vLipz/9KUePHmXTpk3TUhgLBDMhYkLOMiYmJrjyyiuprKxk69ateHp6snr1apMH4x0dHeTn5xMbG0tYWJhJ/Tl06BBarXbO9TgmJyc5fPgwQ0NDpKWl4ebmZvxsamaslJQUk13OBALB6TEwPsA33l4NQKJXMq9e9Fezta1raUH3ycf6BWdnlFdehTRHd0qdTuaet4/wUVE7AO72Vvzz9hyC3fU+97KqF/no72BiQL+BYyBS4h1IFqKGkGBmurq6KCgowMvLi8TExGlB4H19feTn5+Pk5ERKSsqcXI9VKhUHDx5EqVSSkZFhnHibDXV1dZSVlc0pE+XY2Bh79uyhu7ubxx9/nOjoaN59912T+iM4OxCWkLOI8fFxNm7cSHV1NY899pjRAmKqAGlqaiI/P5/k5GSTBMjg4CC7du3C1taWVatWzUmADA8Ps3v3biRJYu3atdMEiGE/4+PjrF27VggQgWABcLFxwd9BH6Bb2VeBRmc+P3HJ3x8MFasHB5Fr5lYQEb5K3ZsRqr939I5OcsOfD9E7MqHfp6273iJieSxT33AzctEfkTUTc963YHni5eXFunXrGB8fZ+fOnQwOfhVP5Obmxtq1awGM7sGmMvUZumvXrmn7OV3CwsJITk4mLy+PpqYmk/phZ2fHmjVr8PT05LHHHqOqqorLL7+c8fFxk9oTLH+ECDlLUKlUbNiwgcbGRrZu3YqHhwerV682aeBvKEJYXFxMZmYm/v7+s27DUEU9JCRkTmkCDW3t3r3bWJHdMKNkyIxlcBXLycmZlppXIBDML7EeepescY2KhsF6s7UrSRLKqbEhhwuQZ+mKMhM2lkr+dH0aUd5619SG3jFu/ms+qsljQcZ2XnohYnEsI9FQPXLJK8ha4XYimBkbGxtycnKMLk/19fVGFywrKysyMzPx8/Nj9+7ddHZ2mrwfCwsLUlNTCQkJMbk6ur+/P5mZmRQXF5tc1NDW1pY1a9bg4eHB1q1bqa+vZ8OGDUKICGZEiJCzAJVKxfr162ltbTW6YK1Zs8ZkAVJaWkptbS25ubl4GnyzZ0FjYyP5+fmkpKSckDJ3tn0xVGRPTEycVsDJkBmrqqrqhMxYAoFgYYiZFhdinuB0A5Kvn94iAjA8jFxZaZZ2nW0t+cuNGXg76V1IjjYPcPdbh9Fo9SJHcvBFSrwdDG5YA9XIpa8hm9HSI1heTM2QVVVVRX5+vjFwW5IkYmNjSUxMNGZzNNVLXpIkoqKiSElJIT8/n0YTssd5enqSm5tLbW0tpaWlcxIinp6ebN26lZaWFtavXy+EiOAEhAhZ5hhcsDo6Onj00Ufx8PBgzZo1JlkEdDodhw8fpqOjg9WrV8+6CrohX3pJSQlZWVn4+fnNug8GtFothw8fpq6ujlWrVk3Ly27ITKLVak/IjCUQCBaOqcHpZT3mFSEAitTjrCFmSg3q52LLX27MwMFab6H9vLyLn3z41YBMcgxASvguKI/5uvdVIJf+RQgRwSkxZMjSaDTs2rVrmgtWQEAAubm51NXVcfjwYWOKX1Pw8/MjMzOTkpISqqqqZi0kXFxcWL16Ne3t7Rw+fHjWAe+gtwCtXr0aT09PHn30Udrb29mwYQMTE8J9UfAVQoQsYyYmJrjiiitobm7mkUcewd3dndWrV5sUJKbRaDhw4ADDw8OsWrVq1gWSZFmmpKTEKBrmIgwM9UhGR0c555xzpomhzs5Odu/ejZ+fH1lZWSIgTiBYRKLdp6bpNV+GLAOStzdScLB+YWwMudR8QifG14mXt6RiqdRbUP92sIkXd9Z+tW+nEKT420BxrGp1bwly2V+RdaYPHgXLH0OGrJlcsAzpbkdHR+dUvwP0Fo1Vq1ZRV1dHSUnJrIWIvb09q1evNlZpN6X2h0GIuLu788gjj9Dc3Mzll18uhIjAiBAhy5TJyUmuvPJK6urqePTRR+ckQCYnJ9m7dy+yLJObmztrK4pOp6OgoIDOzk5Wr16Ns7PzrPtgoL+/n127duHo6DitL4bUvHl5eSQmJhIbGyvcrwSCRcbBypEgpxAAqvoq0OjMXztAkZZu/F9XeBTZjGlBcyM8+NW3Eo3Lv/q0kvcOtxiXJZdwpPhbvxIiPUXIZa8LISI4Jce7YE1N1WtjY0Nubi6Ojo7s2rWL/v5+k/fj7OzM6tWr6ezspKCgYNYWDUNfdDode/fuNSnlrrW19TQhUldXx1VXXSXqiAgAIUKWJWq1mquvvtqYhneuAmTfvn3Y2NiQlZWFpaXlrPty4MABRkZGWL169awtKFNpbm5m7969REZGkpycbCyIqNVqOXLkiDFOZaprlkAgWFxi3WMBmNRNUjtQ+zVrzx7JzQ0pIlK/MDGBrqjQrO1vTPbnRxdGG5d/9F4Ru6u+qlItuUYhxd0ihIhg1hhcsGprazly5IjRBUupVJKcnExERAR79+6lubnZ5H0YLBojIyMcOHBg1oN/S0tLsrKysLGxYd++fSYJEYNFxMPDg0cffZSKigquvvpqIUQEQoQsNzQaDddccw3FxcXTsmCZEgMyMTHB3r17sbOzM6kKumF7gNzcXJNdowzB8MXFxWRkZBAeHm60coyPj7N3715GRkbmVPFdIBDMDzHT4kJK5mUfitRUOFYnRC4uRh4bM2v731sTxrez9G5fGp3M7X8roLTtqzSoktsKIUQEJmFwwRoZGWHv3r3G4G1JkoiIiCAjI4Pi4mKTg8RBb43Izc0FYO/evbN2hzJUV7ezs2Pfvn0muVNNjRHZunUrRUVFXHvttSa5eQmWD0KELCM0Gg1btmzh8OHDPPbYY8ZChKZkwZqYmGDfvn04ODiQlpY26yroo6Oj7NmzBwcHB5MsKAbUajUHDx6ko6PDWJHVgME1y8HBwSQ3MYFAMP8Y0vQClJk5Q5YByckJKfpY/IlGg+7oEfO2L0n8ZP1KLlipL+I2Oqnlxr/k0dL/ldjRC5GbQTqWblwIEcFpYnB7sre3P8EFy1DPq6Ojg4MHD5psPTBYNBwcHNizZw+jo6Oz2l6hUJCWloa9vb3JQsTW1tYoRH7yk5+Qn5/P9ddfP6cgfMGZjRAhywRZlrnttts4cOAAjz322JzqgBisC46OjqSmps5agAwODrJnzx68vb1N2t7AyMgIu3fvRpZl1qxZg4ODg/GzlpYW9u7dS3h4+DTXLIFAsLRY4RaDhN5yWT4PGbIMKJKT4Vi9Ibm8HHloyKztKxUSv706mZQgFwC6hye44c+H6B/9yj1FcotGir/lOCEigtUFX49SqSQlJYXw8HD27t1LS8tXsUcODg6sWbMGWZbZvXs3IyMjJu1DoVCQmpqKt7c3e/bsmXVRQ8P2jo6O06w2s2GqEPnpT3/K/v37ufXWW0228gjObIQIWSb8+Mc/5uOPP+YnP/nJnCqhGwSIs7MzKSkpsxYQ3d3dfPnll4SFhREXF2dycHh3dze7d+/Gx8dnmiXF4JpVWFhIeno6ERERIgBdIFjC2FnaEeocBkDNQDUT2vnJjCPZ2SHFxesXdDp0hwvMvg8bSyWvfjudMA99bFtt9yg3/iWP0YmvXEpOFCKFyOVCiAi+HoMLVnp6OoWFhZSVlRkH5wZLho+PD7t376anp8fkfcTFxREWFsaXX34563YUCgUpKSk4OzubLEQMldW9vLz4yU9+wscff8zDDz8863YEZz5ChCwDnnvuOV566SW2bt2Kl5cXq1atMkmAGFLfurq6miRA2traOHjwIHFxcXMqQmhoZ+XKlaxcuXJaAcKDBw/S3t7OmjVr8Pb2Nql9gUCwsMQcc8nS6DTU9FfP234UCQlwLPZMrq5G7usz+z5c7a14/TsZeDnq91PYMsD3thUwoflKZOiFyBTXrG4hRASnj7e3N2vWrDE+C6cWNjQ8Fw8cOEBbW5tJ7RuKGsbFxZnUjkGIuLq6mpxK2M7OjlWrVuHl5cXWrVv5/e9/z29/+9tZtyM4sxEi5Aznrbfe4uGHH+bhhx8mMDCQnJycaW5Lp4vBAuLu7k5ycvKsBUR9fT2HDx8mLS2NYEPefhM4WTvHu2Y5OjqavA+BQLCwxBzLkAXz65IlWVujSPwqpa4uP29e9hPoZsdfb8rAyUYvMvbU9PCDdwrR6r5yKZHcYmYQIm8IISI4LRwdHVmzZg06ne4EF6zg4GDS0tI4fPgw9fX1Ju9jLu1IkkRycjLu7u4mW0QcHBzIyckhMDCQRx99lB//+Me89dZbs25HcOYiRMgZzGeffcZNN93EAw88wIoVK8jMzDQpO5RBgLi5uZGUlDRrAVJZWUl5eTk5OTn4+PjMev+gd7MqLy+fsR2Da5a3tzeZmZlYWVmZtA+BQLA4rPSIM/4/X8HpBqSVcXDMEiw3NiJPKQZnTqJ9nPjzjenYWOofo/8ubufR7dOLwkluMdOD1buPCiEiOG2srKzIysrC29ub3bt30939VWpoHx8fcnJyKC8vp6KiwuSYCh8fH7KzsykvL6eqqmpW20qSRFJSEm5ubiYLEVdXVzIzM4mKiuKHP/whN910E59//vms2xGcmQgRcoaSn5/PFVdcwR133EFycjLJycnTMkedLoYsWC4uLrO2gMiyTEVFBXV1deTm5uLm5jbr/YO+mGFhYSFNTU2sWrVqWjutra1G16y4uDiTg9wFAsHiEem6AqWkTx5RPt8ixMICRUqKcVmXd2jegl5Tg9146bpULBT6++bfDzXxzGfTB3KSuxAiAtNRKBTExcWxcuVKDh48SGtrq/EzNzc3Vq1aRWNjI4WFhSZf5+7u7sZ6JRUVFbPa1mARcXFxMTlrlpeXF8nJyaSkpHD77bdz+eWXU1Bg/pguwdJDjOjOQKqrq7nwwgvZvHkz55xzDrGxsQQGBs66HUMdDycnJ1JSUkwSIA0NDeTm5ppcBV2r1ZKXl0dfXx9r1qzBycnJ+FldXR1HjhwhPT19Ti5eAoFgcbGxsCHcJQKAuoFaxjWz9yGfDdKKaDh2L5Hb25GnDNzMzboVXjxzVSKG2+cLO2p45cu66f0xCpFjWfyEEBHMkuDgYNLT0zly5Ah1dV9dX05OTqxZs4be3l7y8vJMTnfr7OxMbm4uDQ0NlJeXz0rQGISIk5OTyUIkMDCQ2NhY1q5dy9VXX80FF1xAdfX8xY8JlgZChJxhtLe3c/7557Nu3Touu+wyQkNDiYiImHU7hkrojo6OJgmQ8vJyGhsbyc3NnSYcZoNarWb//v1MTk6yatUqYzphWZYpKyujsrKSnJwcEYAuECwDDMHpWllLVV/lvO5LUihQpKUZl+fTGgKwIcmfxy79qh7Kk/8u573DLdPWmVGIlL2OrBPF2gSnh7e3Nzk5OVRUVEwTCoa0t+Pj4+zfv9/kWiJOTk7k5ubS2Ng4ayFiCFZ3cHAwubJ6REQEoaGhbNiwgbVr13L++efT0dEx63YEZw5ChJxBDA4OcsEFFxAZGcmWLVvw9fVl5cqVX7/hcRgEiL29/azreBgEQnNzM7m5uSYHiBsycVlYWJCdnW2M89DpdBw9epSWlpYTXLMEAsGZy7TK6fPskgUghYWDu7t+oacHeQ4BvKfDDTkhfP+8SOPyA+8V8Xn59HgUyT12uhDpKUIueQ1Za9qgUXD24ebmxurVq2lububo0aPodDpAHz+Sk5ODhYWFyRmrQB8Qn5ubS1NT07QUwaeDoY6IoaChKUJk5cqV+Pr6cv311xMREcE3v/nNWdczEZw5CBFyhjA+Ps5ll12Gra0td9xxB56enrO2YIC+qvr+/fuxtbWddSV0WZYpKSmhpaVlTgJkeHiYPXv24OLiQkZGBhbHCoxpNBry8vLo7+9n9erVIgOWQLCMiJ0qQuYxQ5YBSZJQpKUbl3V5ecjHBmzzxb3nRXJDtt51VKuTufPvhzlY3zu9X+6xSPG3gUJf+4i+MuSSPyHPU/0UwfLD0dGR1atX09/fP80Fy8LCgoyMDJydndmzZ4/JRQ0dHR1ZtWoVLS0tlJaWzlqIpKWlYWtry/79+9FoZmfpkySJlJQUPDw8uPPOO7GxseGyyy4zKehdsPQRIuQMQKvVcu2119LV1cV9991nHLzPNkhbp9Nx6NAhLCwsTBYg7e3trFq1yqQ0wAD9/f18+eWXBAQEkJSUZOzD5OTkjK5ZAoFgeRDhGonlsYF3aU/xguxTCgwEH1/9wtAg8iyDbme9P0niJ5eu5LJEPwAmNDpueT2fktbpM7mS2wqkhO+CUl9rhP4q5KKXkTVioCU4PWxtbVm1apXRs8FgdVAoFCQnJxMQEMCePXvo7+83qX0HBwdWrVpFW1sbJSUlJgkRCwsLDh06ZLTWzGb7zMxMXFxcuO++++jq6uK6664zOd5FsHQRImSJI8syd955JwUFBTz88MO4urqSm5trtB7Mpp0jR44wOTlJRkYGSqVyVtsaBEhubi729vazPQwAurq62LdvH1FRUcTGxhqtOAbXLIM5WaTgFQiWH1ZKK6LcogFoHGpgaGL+XSwkSUKZmWlc1h0uQDbBRWQ2KBQSv74ykbVRngAMT2j49p8PUd05PL1vLhFICd8DpY3+jcE65MKXkNVj89o/wfLBysrK6M481QVLkiRiY2OJiopi3759dHV1mdS+vb09ubm5tLe3z9oiolQqycjIYHJykiNHjsw6JsvCwsKYdfPhhx8mPz+fu+++e15juwQLjxAhS5zHH3+c9957j0ceeQR3d3dWrVo160G6QUT09/eTlZWFpaXlrLYtKyujra1tTgKkubmZQ4cOkZiYSHh4uPF9g2uWq6sr6enpsxJHAoHgzCLOI974/0LEhQBIXl5IoaH6BZUKXXHRvO/TykLBS9elkhasr9vUNzrJda8epLF3dHrfnEORku4EC31dE4YbkQtfRJ40zY1GcPZhYWFBeno6rq6u7Nmzh+Hhr8RueHg4iYmJHDp0iObmZpPaNwiR1tbWWceIWFpakpWVRX9//6xFDOhFVm5uLu7u7jz66KO8++67PPHEE7M9BMESRoiQJcwf/vAHnnnmGbZu3Yqvry+5ubkmuSnV1NTQ2tpKdnY2NjY2p72dQYAYYkBMFSANDQ0UFRWRkZFBQECA8f2+vj6+/PJLAgMDp7lmCQSC5cnUooUl3QvjkgWgSM/AkENXLipCHpt/a4OtlZLXbkwn3l+fvrxreIJrXzlI++D0gGHJMRAp6S6wPObiOtKCXPh75Mnh45sUCGZEoVCQlJREQEAAX375JX19fcbPAgICyMjIoKioiIaGBpPaNwiR5ubmWWfNsrGxITs7m5aWFmpqama9bzs7O3Jzc/Hx8eHRRx/l17/+NS+//PKs2xEsTcSob4ny8ccf84Mf/IAf//jHhISEkJOTY1Iq3KamJqqqqsjKypqViDDUAWlubiYnJ8fkGJC6ujpKS0vJysqaVkyxs7OTffv2sWLFCmJiYmYdYC8QCM484jwTjP8vVFwIgOTsjBQTo1/QaNAdXphCaE42lrz+nQyivPX3z9YBFde9cpDu4elB6JKDH1LS3WB1rN7SaDvykd8hTwwsSD8FZz4GF6wVK1awb98+Oju/yszm5eVFVlYWpaWl1JuYJc7BwcGYNWu2BQ3t7e3JysqiqqqKpqamWe/bycmJ7OxsQkND+fGPf8z//d//8cknn8y6HcHSQ4iQJUh5eTmbN2/mrrvuIjY2lvT0dJNS1XZ0dBgtEC4uLrPatrKy0lgHxNQsVbW1tZSXl5OdnY27IVUmemGUl5dHcnIyYWFhJrUtEAjOPAIdg3Cy0k+mlPYUL6h/tyIlFY65osoVFcgDAwuyXzd7K7bdlEmIu97lqq5nlOtfO8jA2PTYFMneGyn5brDWu3Ch6tILkfG+45sUCE5KWFgYycnJ5OXlTXPBcnd3Jzs7m7KyMmpra01q29HRkZycHBobG6msnF2tH0NCnaKiomkC6XRxd3cnPT2d2NhY7rrrLjZv3jxrMSRYeggRssTo7+/n0ksv5eKLL2b16tWsXLkSHx+fWbfT19dHfn4+ycnJeHp6zmrbyspK6uvrycnJMVmA1NTUGIsNThVQdXV1FBcXk5mZib+/v0ltCwSCMxNJklh5LC6kb7yP9tG2hdu3rS2KhET9giyjyzu0YPv2crJh282Z+Dnr3WErOoa54c95jExMT18q2XrohYiNh/6N8V7kI88jj3UvWF8FZz7+/v7GAf9Uy4ebmxvZ2dlUVFSY5BoFeqtETk4OdXV1VFVVzWpbT09Po0Ca6jJ2uvj4+LBy5UpWr17NRRddxKWXXmpy9i/B0kCIkCWERqPhqquuwtvbm2uuuQY/Pz+TLAXDw8McOHCA2NjYWQ/06+vrqa2tNdn9C6C6upqqqipycnJwdXU1vj/VMjJbYSQQCJYHcZ5fBacvZFwIgBQfD8fi6uSGBuTOhavGHOBqx99uycLDQZ+Wt7BlgJtfz0M1OT3tqGTjhpR8F9gdc1+dGEA++jvkUVE5WnD6eHl5zWj5cHNzIycnh6qqKqqrq01q2yBEampqZu3e5e/vT2xsLAcOHJgWRH+6hIWF4efnx+bNm/H09OSqq66adS0SwdJBiJAlxP33309tbS333HMPzs7OJCUlzTpWQqVSsX//fkJDQ2ctYNra2ozxG87OzrPa1kBlZSXV1dXk5ORMcwE7mWVEIBCcXayckiFrIeNCACRLSxSpacZl7cGDC+oSFuphz7abM3Cx1buFHazv47vbChhXHydErF30MSL2x2qcTA4hH30BeaR1wfoqOPMxCI7KysppQsTV1ZWcnBzjhKEpODs7k5mZSWlpKW1ts7NohoWFERoayv79+2dd2V2SJJKSknBxceHee++lpqaGH/7wh7NqQ7B0ECJkifDaa6/x5z//mQcffBBnZ2eysrJmna7WUPDPy8uL6OjoWW3b3d3N4cOHSUtLM1kkVFZWUldXR25u7jQBcjLLiEAgOPuYliFrgUUIgLRiBRjuT52dyI2NC7r/aB8n/npTBg7W+lpPu6u7ueNvh5nQHCdErBz1WbMcjmUUVI8gH/098tDsA3sFZy8GwWGYIDTg4uJCbm4utbW1JgsRd3d30tLSOHz4MD09PbPaNjo6Gk9PT2OR4tmgVCqNk6UPPfSQcfwkOPMQImQJsHfvXu666y4eeOAB/Pz8yMnJmVUqXdC7ch08eBB7e3sSEhJmZUEZHBzk0KFDxMfHmxR/AnqhUVdXR05OzjQrSmVlJTU1NScIE4FAcHbiauOG/7GBdUVvORqdekH3LykU+pS9x9AdOog8y4rOcyUhwIU/35iOnZV+oumLyi7uevMIk5rp/ZAs7ZES7wCnEP0bmjF9HZEB0wKLBWcnLi4uRvepqYLD2dnZ+L6prlk+Pj7Ex8dz8OBBBgdPvwCpJEkkJiZib2/PwYMHZ10N3ZD618/PjwceeIA777yTffv2zbb7gkVGiJBFpqmpiY0bN3LjjTcSHx9PSkrKrF2hdDodBQX6lJNpaWmzqrcxOjrK/v37iYyMJDg4eFb7NWC4gWVnZ0/re0VFhdEyYqp7l0AgWH4Y4kImtOPU9JsWIDsXpOBg8D424TI4iFy58Fl20kPceO2GdGws9ffrz8o6ueetI6i1xwsRO31ldedjRV6148hFf0DuLVvoLgvOYAxCpLa2dlpmK4MQqa6uNjlrVnBwMJGRkezfv5/R0dGv3+AYCoWCtDS9e2R+fj66WU4GuLi4kJKSQnx8PDfccAMbN240uSijYHEQImQRGRsb47LLLiMjI4MLL7yQyMjIWQeSy7JMYWEho6OjZGZmzsqFa2Jigv379+Pv709kZORsuw9gNOUeHwNSWVlJQ0MDubm5Jge4CwSC5cnUuJBFccmSJJSZmcZlXUEBsnphLTIAWWHuvHZDOtYW+kfxf0o7+P7bR9EcL0QsbJASvgtux9xsdWrkkleQu44sdJcFZzDOzs7k5uZSX18/TYi4uLiQnZ1tdKk2BcP4Zf/+/UxMTHz9BsdQKpVkZmYyOjpKYWHhrGO0/P39iYiI4KKLLiItLY3LLruMsQUoRiowD0KELBKyLHPjjTei0+m4+eabTYrjAL0Voquri+zsbKysrE57O7Vazf79+3FxcSEuLs6kYoF1dXVUVFSQnZ19ggAxuGYJASIQCI4nbhGD0w1I3t5IoaH6BZUKubhoUfqRE+7Bn65Pw+qYEPl3cTv3vVuIVjd9MCYprZDibgHPJP0bsg657K/IbfsXuMeCM5mTpdh1dXUlOzub8vJykwoaSpJEXFwcLi4uHDhwAPUsRL2VlRXZ2dl0dXWZlDo4JiYGT09PbrnlFrRaLd/5zncWNOGEwHSECFkkfvazn7F7927uv/9+nJycSEtLm7UQ6OjooLKykszMTGyPpZ08HXQ6HXl5eVhZWZGSkmKSAGloaDCm250abD41NkQIEIFAMBMr3GNQSvrA7NIFTtM7FUVaOhy7/+kKC5EXaQZ1TZQnL1+XipVS/0jeXtjGD/8xgxBRWCDFfht8so69IyNXvY3c9MUC91hwJmMQIrW1tdNiQQxCpKysjIaGhlm3K0kSycnJWFpakpeXNyv3KltbWzIzM6msrKSjY3bpqCVJIj09HScnJ+6//3527drFU089NdvuCxYBIUIWge3bt/Pzn/+chx56CHd3d3JycrCwsJhVG0NDQxQUFJCcnDyrgG9Zljl8+DCTk5Okp6fPKn7EQHNzszGV79RMWobYkOOD0wUCgWAq1kprotyiAKgfrGNkcmRR+iG5uCDFxOgXNBp0hw8vSj8A1kV78eJ1KVgo9KLon0daeehfReiOFyKSAmnF1RCwzvieXPcBurp/i9lfwWnj7OxMdnb2CbEgbm5uZGVlUVpaSktLy6zbVSqVpKenMzk5yeHDh2d1Tbq4uJCcnExBQcGsa4hYWFiQnZ2Nu7s7Dz74IE899RTbt2+fbfcFC4wQIQtMcXExW7Zs4d577yU0NJTMzEzs7Oxm1cbk5CSHDh0iLCxsVjEksixTUlLCwMAA2dnZWFpazrb7dHV1UVhYSHp6Ou7u7sb3p8aGCAEiEAi+DoNLloxMeW/povVDkZwCx+6FckU58sDAovXlGzHevHBNMspjQuSd/BYe3l4ygxCRkMIvQwq9+Ks3mz5Drn4PWV7YTF+CMxdDsPrxsSDu7u6kp6dz9OhRurq6Zt2upaUl2dnZDAwMUFJSMish4u/vT1hYGAcPHpx16l57e3syMzMJCwvj3nvvZcuWLZSUlMy2+4IFRIiQBaSnp4f169ezceNGsrOziY+Px8PDY1ZtGFypHB0dZx1DUl1dTWtrK9nZ2VhbW89qW4D+/n7y8vJISkrCy8vL+P7JYkMEAoHgZCx2cLoByc4ORUKifkGW+X/23ju8rupM27/3Keq99967LFlywbhiiOmQUAIkk0BCSIOElMn8vpnM96VMCkkoCenJEAglIcR0iAH3qmJZsmRZktV77+3o7P374+gcSbZs7y2re93XxTXWnrP2WVJU1rvf53kf+fixJdsLwA0pgTx9z1Qh8tKJev6/3SWzFyLhO5Fi7py62HwI5cxfUWSRIC1Qh9WUfr4XxM/Pj4yMDPLy8ujp6dF8X3t7e9avX09TU5Nmn0dCQgKurq5zmpjl4+NDamoq69ev59Zbb+Wmm26iq6tL0z0Ei4coQhYJk8nEnXfeSVhYGB//+McJDQ0l0mqK1EBpaSljY2OavRx1dXW2MbrOzs6a33dgYIBjx46RkJBASEiI7Xp9ff2s3hCBQCC4FNYxvQCnO5bGFG5FSkuDyd+LSn09cpN2Gcp8cmNqID//RDqTdQgv5TXwrdeKL/CIAEghm5ASPontz3l7gWVylln9hCLB1c10L8j0EbchISEkJCRw7NgxBge1SyadnZ1Zv349FRUV1GkIBZUkiTVr1jA6OkppqfYuaWRkJCEhIXziE58gNDSUO+64Q5NRXrB4iCJkkfjP//xP6uvr+dKXvoSnpydpaWma71FXV0djYyO5ubmapFStra2UlJSQm5s7J6nUyMgIR48eJTw8nOjoaNv1trY2iouLycnJmXPKukAguDoJc4vAxegKWDohS+lnkAwGdGvX2j6Wjx1b9ADD87k1I5hf3JVh64i8WtDIN/5+6oLxvQBSQA5Symdh0uxPdznKqV+jmNRnNgiubry8vFi7di2nTp2ira3Ndj06Oprw8HCOHDnCyMiI5vu6u7uTk5NDSUmJJsO50WgkNzeXhoYGTQWMlfT0dDw9Pfnyl79MfX09//Vf/6X5HoKFRxQhi8D777/P008/zeOPP46bmxu5ubmaDeFdXV2UlJSwdu1aTZ2Mvr4+8vPzWbNmjWbpF1g6OMeOHcPX15dEq4ET6O7uJi8vj8zMTHx9fTXfVyAQXN3oJB1JPskAdI100jbcdpkVC4sUEws+k7/LurtRpo0vXSpuzQjmmXsybWb1fxY18bW/XaQQ8UlBSn8E9A6WC/21KCefQRnrXcQdC1Yyfn5+ZGZmkpeXR3d3t+26dQSu1tG7Vnx9fVmzZg35+fmaUtWdnZ1Zu3YtJSUlmiVVOp2O3Nxc3NzcePzxx3nqqad4//33tW5dsMCIImSBaW5u5r777uPhhx8mLCyM3NxczX6M4eFhTpw4QXJysqZCYmxsjOPHjxMXF0dQUJDWrWM2mzl+/DiOjo6kp6fb5F9WaVZSUpLmcEWBQCCwMj0vZMklWZKEft0628dyfh6KRmPsQrArNZBffXINRr3l9++bxc18ZZZkdQDJIxop48sw2WFiuBWl8CmUYe3mYsHVSXBwMElJSRw/ftw2oUqSJNLT03F0dOT48eOYzWbN9w0KCiI2Npbjx49rCjP09fUlOTmZvLw8zSGE9vb25OTkEBYWxsMPP8x9991HS0uL1q0LFhBRhCwgZrOZe++9l8zMTLZu3UpCQoJm2dLExAQnTpwgKChIk4dElmVOnDiBl5fXnNLQFUUhPz8fRVHIzs62dW6s0qzIyEiioqI031cgEAispPhOyVJLO5d+io0UGDgjwFA+dWppNzTJ9ckB/GZajsi7p1v54ouFjE1ceBiUXEOQ1jwKDpPTC8d6UE4+hTLQcMFrBYLZiIqKIjw8nKNHj9okWDqdjuzsbGRZpqCgYE7yybi4OLy8vDRniERERBAYGMiJEyeYmNA2dMHb25v4+Hi2bt1KZmYm995775yKKMHCIIqQBeR73/seNTU1fO5zn5tTMaAoCidPnsRoNJKamnr5BdPWFRcXYzabycjI0BxGqCgKp06dYmhoiNzcXFuGyfj4OEePHsXX13dO6e4CgUAwnWSfFNu/SzuXthNiRZeTC5MPXZSSYpQ5GHIXgu2J/vzugSxbsvqesjYeeaGQUdMshYijD1LmV8F5sgNuGkIp+iVKz9JLzAQrA6sE6+jRo7ZRuQaDgXXr1jEwMMCpU6c0FyKSJJGRkcHExATFxcWq10uSRGpqKgaDgZMnT2p+X2vx8+CDD1JdXc33v/99TesFC4coQhaIffv28eMf/5jHH38cFxcX1q5dq7kYqKiooLe3d0YnQg01NTW0trbOKCC0cPbsWdrb21m/fj12dnbAlDTL2dl5hjRLIBAI5oq3ow+Bkwflsq4yJpbBaFnJzQ0pebI4MpuRT5xY2g1NY0u8H3/69FocjJa/Bx+dbefzzxfMXojYu1ukWe6THWvzGErxb1HaixZxx4KVilWC5ezsPEOCZWdnx4YNG2hra+Ps2bOa72swGMjNzaW1tXXGSODLodPpWLt2Lb29vVRo9GtJkkR2djZubm58/etf50c/+hH79+/XunXBAiCKkAWgo6ODe+65hwcffJDIyEjWrl2r2QfS3NxMVVWVZg9JR0cHZWVl5OTk4OjoqHXr1NTUUF1dzfr1623rZVkmPz8fQHNBJBAIBJfCOqp3dGKE6t5zl3n14qDLzITJ37vKuSqUOQS2LRTXxPjw53/LwdGoB+BAZQcP/SWfkfFZChGjE1LaF8DbMgAAxYxS9hxK44HF3LJghaLT6cjKygKYkdnh6OjI+vXrqa6u1lRIWHF0dCQnJ4eysjI6OjpUr7N6PCorK2lubtb0ng4ODqxdu5aoqCg++9nPcs8992h6b8HCIE6T84wsy9x///3Ex8ezc+dOYmNjNU+P6uvro7CwkDVr1uDm5qZ63dDQEHl5eaSlpc1pZG5zczOlpaWsW7cOV1eLsfF8aZZer9d8X4FAILgYM0MLl4ckS7K3R5eVbfvYfOzoko4QPp/1Ud4895kcnO0sv48PVXXymedOMDR2YSdJ0tshJX8WAnImrygoVa8hn3tDpKsLLou1czE0NDRDQuXm5sa6desoLS3VXBCAZSRwamoqeXl5DA2pHyXt7u7OmjVrKCws1DRpCywm99jYWK6//npiY2N54IEHNIchCuYXUYTMMz/96U8pKSnh4YcfxsPDQ7N3wmQykZeXR2xsLIGBgZrWHT9+nLCwMMLCwrRum46ODgoLC8nOzp5RwJSXl9PR0TFDmiUQCATzxXRz+umOpUtOPx8pMRE8PCwftLWhzOGJ70KSE+nFXz6bi6u9RXJ7rLqbf/vfEwzOVojo9Ejx90LYdVMXGz4S6eoCVdjZ2bF+/Xra29spLy+3Xffy8iI7O5vCwkI6Ozs13zc8PJywsDCOHz+uafSvddJWXl6e5pHB8fHxuLu784UvfIHi4mKeeOIJrdsWzCOiCJlHjh49yn//93/z+OOP4+7urtkHYu06ODk5ERcXp2ldQUEBjo6OJCUlad734OAgeXl5pKamEhAQYLteXV1NbW3tDGmWQCAQzCcJXonoJ0P2TncuoyJEp0OXO21k7/HjKBon8yw0WeGePP9gLm4Olq9fXm0PD/zxOP2jFx7MJElCF3UjUuzHgcm/S+0FKMW/Q5kYXcRdC1YiVgmWVbJtJSAggNTUVE6cODGnVPWkpCQcHBwoLCzU1G2Mi4vDyclJs0Fep9ORk5ODu7s7X//61/nud7/LsWPHNO9bMD+IImSe6Onp4a677uJTn/oUsbGxZGdnaz6419XV0dnZyZo1azQVL2fOnGFwcHBOfg1rByU8PJzw8HDb9aamJsrKysjNzbVJswQCgWC+cTA4EOtpmRxY03uOwfHlMY0KQAoNRbJmIQ0OoJQu/Rjh88kI9eDFh9bh4WgE4GRDL5/8/TG6h2bPOJGCr0FK/gzoLK+ntwLl5NMoY9qkLYKrD1dXV9atW0dZWRlNTU2263PtaMDU6N+BgQHOnDmjep0kSaxZs4bOzk7q6+s1vaejoyPZ2dnExcXxwAMPcNddd9HT06PpHoL5QRQh84CiKPzbv/0bISEh3HjjjURFReHv76/pHv39/Zw+fZqsrCwcHBxUr2tsbKSmpobc3FyMRqPmfRcUFODk5DSjg9LR0cHJkydZu3btnLwlAoFAoAWrJEtB4UxX6RLvZgpJkmZ2Q06eRJnMTVhOpAS78+Ln1uHlbJHMnm7u567fHaW1b/YOh+SbhpT+RTA4WS4MNaMUPoky1LpYWxasULy8vFi7di0nT56cYexOTk7GyclpThkidnZ25ObmUlNTQ2Njo+p1Dg4OZGVlUVJSQn9/v6b39Pf3JzIykptuuomgoCA+85nPLCvf19WCKELmgWeeeYZjx47xpS99CVdXV82SqImJCfLy8oiOjtZkYu/p6aGoqIjs7Ow5dSvKysoYGhoiOzvb1nmZLs3SWkgJBALBXJiRnL6MJFkAkrc3Uvykt89kQi4oWNoNXYSkQDde+dw6/N0sU72q2gf5xG+PUN89e8q05B45GWo4+aBprMfSEemtnvX1AoEVf3//C0zl1jG4g4ODlJWVab6nq6sr2dnZFBUV0dvbq3qdr68v0dHR5OXlaQ4yTE5OxtXVlS9/+cscOXKEX/7ylxp3LbhSRBFyhRQUFPDv//7vfP3rX8fDw4Pc3FzNkqiSkhLs7e2Jj49XvWZ0dJQTJ06QkJAwp2KhoaGBurq6GR2U6eb26dIsgUAgWEisY3oBTncsjwlZ09FlZ8Pk70ml/AxKd/cS72h2Yv1defXhDYR5WTocDT0jfPw3R6hoG5j19ZKTP1LmY+ASYrkwMYxy6lmUjuWRFC9YvswmwTIajeTm5lJXV0dDQ4Pme/r7+5OQkMDx48cZHVXvU4qPj8fe3p6SEm0PMHQ6Hbm5uXh4ePD1r3+db3/72xQWFmrdtuAKEEXIFdDf388nPvEJ7r77bhITE1mzZg1OTk6a7tHQ0EBraytZWVmqixez2cyJEydsTwC00tPTw6lTp8jOzsbFxQW4uDRLIBAIFpowtwhcjJZu7unOkmUni5CcnNClZ1g+UBTk48eW3R6thHo58feH1xPrZ/nd3j4wxt2/O0pxY++sr5fs3Syhhp6TD8GUCZTS/0VpPLhIOxasVKym8ukSLGtH49SpU3PyWURHR+Pj48OJEydsAYmXw5pn0traqrn4cXJyYs2aNSQlJXHXXXfxiU98QrO0SzB3RBFyBTz22GN4enpy2223ER4eTlBQkKb1AwMDnDp1ijVr1mgysZeVlSHL8pySy0dGRjh+/DiJiYn4+fnZrl+JuV0gEAiuBJ2kI9nHklLeNdJJ2zL0JkipqWB9aNPYiKLRDLuY+Ls58Mrn15Ma7A5Az7CJT/7hOMdrumZ9vWRwQEr9HPhbs1EUlKp/IJ97U2SJCC6K1VQ+ODg4w1Tu5+dHQkICJ06cYESjh0qSJDIyMpBlWZOsy9HRkczMTIqLizVP6QoKCiIsLIzbbrsNd3d3vva1r2laL5g74rQ5R959913+9re/8cgjj+Ds7ExKSoqm9Wazmfz8fCIjIzXJqVpaWqivr2ft2rWagwOtHRQ/Pz+ioqJs16/E3C4QCATzwQxJ1jIJLZyOZDCgy8mxfSwfO4qi8kntUuDlbMeLD+WSE2nxfAyOTfCpP51gb/ns6e+SzoCUcB+E7Zi62PAhSvmLIktEcFEuZiq3ely1dDSs6PV6srOzqa+vp6WlRfW6gIAAwsPDycvL0/yeqampuLi48MUvfpFXXnmF9957T9N6wdwQRcgc6O3t5cEHH+TBBx/Ez89vTgXB6dOn0ev1JCYmql4zPDzMyZMnycjIwNnZWdP7KYpCUVERkiTN6KBcqbldIBAI5oMUn+UZWjgdKSoarFlK/f0op5ffyN7puDoYee7fctgSZxl4MjYh87nn83mrePaEa0uWyE0zs0Ta8lFKRJaI4OJMN5VbJVjTzxpFRUWa5YsuLi6kp6dz8uRJhodnH64wG0lJSeh0Ok5r/NnU6/WsXbsWPz8/2/lOayK7QDuiCJkDjz32GCEhIWzfvp3Y2Fjc3d01rW9qaqKpqUmT9EmWZQoKCggKCiLYOrdeA1VVVXR2dpKTk2MrmK7U3C4QCATzxcxOyDItQiQJ/foNto/lk4UoGg5IS4GjnZ7fPZDNjamBAEzICl95+STPH6u76JoLskR6KlBOPoUyKrIUBLNjNZWfOHHCZirX6/Xk5OTQ2dnJuXPnNN8zJCSEoKAgCgoKkGV1skCrRKyxsZHm5tmL7Yvh7u5ObGws27dvJygoSMiyFgFRhGjknXfe4dVXX+Xzn/88zs7OmiZaAQwNDVFUVERGRoYmE3t5eTkmk4nU1NTLv/g82traOHv2LLm5ubYMkis1twsEAsF84ungRbCL5QHLma4yJmRtoWeLheTjg5QwbWRv3oml3ZAK7Aw6nr4nk7uzQwFQFPjP10/z8z0VF31CfWGWSAtK4S9Q+pevF0awtMxmKndwcCAnJ4fy8nLa2to03zMlJQWTyUR5ebnqNc7OzmRmZnLy5EnbCGG1xMfH4+zszMMPP8zf/vY33n33Xa1bFmhAFCEaOF+GpdXELcsy+fn5hIaGajKxt7e3U11dPSfZ18DAAPn5+WRkZODh4QFMSbOAOZnbBQKBYCFInpRkjZlHqeqpWuLdXBxd9lqwswQDKhUVKO2z+yyWE3qdxI/uSOWRzVMPnZ7+qJL/2H0as3yRQsQ9EmnNY+DoY7kw3o9S9AzKMhyjLFh6rKZyRVE4deqUrcD19PQkIyOD/Px8BgZmHxd9MQwGA9nZ2VRXV9Ou4ecsKCiI0NBQ8vPzVXdRYKqTMl2WpSW3RKANUYRo4NFHHyU0NJTt27cTFxenWYZVVlaGoigkJyerXjMyMkJBQQFpaWmaPRvj4+McP36cyMhIQkJCbNfPnTt3gTRLIBAIlpqVIMkCkBwd0WVl2T42Hz2ybEf2TkeSJL59QwL/eePUGPaXTtTzxRcLGDXNbuSVnPwsWSLuk8NMZBNK6Z9RGvauiM9ZsLhYJVgdHR0zJFghISFERkZy/PhxxsfHNd3Tzc2NtLQ0CgoKNOWHJCcnoyiK5vDE6bKskJAQHnvsMU3rBeoRRYhK3n77bV577TUefvhhnJ2diYuL07S+tbWVuro6srOzVR/8FUWhsLAQf39/wsLCNL2fda2rq+sM83tbWxvl5eXk5OTYpFkCgUCwHJienF66zJ+2S0nJ4OFp+aC9HaWycmk3pIEHr4nkqbszMOotXfD3S9v41J9P0DcyuwROsnOxSLP8rIWXgnLudZTKv6PIy3dCmGBpcHR0nFWClZiYiIuLC4WFhZoL2NDQUPz8/GZkklwO65Sturo6Wlu1jf22yrI+//nP8+qrr/LOO+9oWi9QhyhCVNDT08NDDz3Egw8+iK+vr2YZ1vj4OEVFRbYRcGo5e/Yso6OjpKWlXf7F53Hu3DkGBgZYs2aNTW41XZrl6emp+Z4CgUCwkMR7J2LQGYDl3QkBkHQ6dOvX2z6WTxxH0fiEdym5NSOYP35qLU52lodiJ2q6uft3R2nrn/1Js6QzICXeD+HXT11sPoJS8nsxOUtwAbNJsCRJYs2aNfT392s2qlunbY2MjFBRUaF6nYuLC6mpqRQVFWnqwAhZ1uIgihAVPProo4SFhbFt27Y5ybBKSkrw8PAgNDRU9ZqOjg6qqqrIzs7GYDBoer/u7m7Ky8vJysqy5X6YTKZZpVkCgUCwXLDX2xM3mdxd21fD4Lg2/fhiowsJQQoPt3wwMoJcdHJpN6SRa+N8eemhdXg5W/wt5a0D3PHrI1R3zB72JkkSusiPWfJEpMmOfk+5mJwlmJXpEiyTydJls7OzIzs7m/Lycs2J6gaDgbVr11JZWUlnZ6fqdaGhoXh4eFBSou3Bhru7O3FxcWzfvp3Q0FAeffRRTesFl0cUIZfh7bff5p///KdtGpZWGVZLSwttbW2aDOBjY2MUFBSQnJysueAZHx8nPz+fhIQEvLwsIVVWI7qzs7OmXBKBQCBYbJInJVkKCqWdyzuHA0C3bj1MdsaVkhKUFZYtkB7qwasPryfE0xGApt4RPv7bo5xq6L3oGilgLVL6I2JyluCyJCYm4uzsPCMrxMvLi/j4ePLz823FiVrc3d1JTk4mPz+fsbExVWusXZS2tjZN4YcAcXFxtmlZr732Gm+//bam9YJLIynCWXZRenp6SExM5N5772Xr1q1s2bIFNzc31evHx8f56KOPSE5OVt0FURSFY8eO2SZCaJlcpSgKeXl5yLJMbm6ubW1NTQ0VFRVs2bIFe3t71fcTCAQrG1mWGRsbY3R0lLGxMUwmE2azmYmJiVn/M5vNmEwmFEWxHRgURWFw0PJk3MXFxfZ7RZIkJEnCaDSi1+sxGAyz/qfX6zEajdjb2+Pg4IC9vf0l5axvn3uT7x76DwAeyfwKD6Z9foG/SleOOe8EyuTEQSksDP31NyzthuZAe/8on/rzCcpbLd0nJzs9v74vi82TQYezoQy3o5T8DkYmn0rrjEiJDyD5apcQC1YvY2Nj7Nu3j7i4OCIjI4Gps441JFDrWSc/P5+JiQnWrVunem19fT1lZWVs27YNu8npdmro7+9n37597N27l5dffpmysjIhaZ8nRBFyCe6//36qqqr4j//4D+Li4kiwzoZXSUFBARMTE+Tk5Kj+IamsrKS2tpYtW7bYpFRqqa6uprKyckax0dfXx8GDB1m3bh0+Pj6a7icQCJYvExMTDA0NMTQ0xOjoqK3QsP57dHTUpoG2t7fH3t7+ooXC9ILBYDCg0+lsRQZgm7Xv7OwMYCtSZFm2FS8XK2ys/42NjdmeXNrZ2eHg4GD7z1qgODg40K108W8ffBKATSFb+MX2Zxb7S6sZxWTC/LdXYDK4UHfDx9BpkN8uF/pHTXzuL/kcr+kGwKCTeOLj6dyWefGAXGV8EKX0T9BXPXlFQoq6GUK3ivHvAhudnZ0cO3aMTZs22RQesxUnajGZTOzbt4+IiAhiY2NVrVEUhePHj2M0GsmaNt1ODeXl5VRUVPDDH/6Q2NhYnn/+eU3rBbMjipCL8Oabb3Lffffx5JNPEhERwZYtWzSZ0VtaWjh58iTbtm1TPYWqu7ubI0eOsHHjRs1Vdm9vL4cOHZpRbJhMJvbv309oaKjmUEWBQLD0yLLM8PAwg4ODDA4OMjQ0ZPv36OgoBoMBZ2fnGQf68w/1l+s8LCbTOzOzFU2jo6MMDg7yo+7/x6gygovelSdTnsXFxcX2n5OT07L5fKYjV1Yi79tr+cDDA/2dH0dahvu8HKMmM4+9UsR7pVPThL55fTxf3Bx90aJCkSdQyl+C9oKpi35ZSPF3I+nVP3EWrG7Onj1LQ0MDW7ZssXldZytO1NLT08Phw4fZsGGDTX5+OUZGRti7dy+ZmZkEBgaqfi9Zltm7dy91dXU8+uijvPjii9x8882a9iu4EFGEzEJ3dzeJiYncd999bNmyRbMMa2xsjL1792qSYU1MTLB3714iIyOJiYnRtN/Zig3riN7R0VE2bNggnkgJBMucsbExent76e3tpa+vj/7+foaHh5EkCWdnZ9shfPq/7ezsVt3PtqIofPlfD3O89SgAP0t7BkeTk60IUxQFJycn3NzccHd3x8PDAw8PjyWXmiqKgvmNN6DdMpJUt24dutSVKUsyywr/9cZp/np8yuPxyZww/t8tyRj0sxdWiqKg1L4Hde9PXXQJRkr+LJKj90JvWbACUBSFI0eO4ODgMGNyp7U42bx5s2YFSFVVlU09onaIT0NDA6WlpVcky3rppZc4c+aMkGVdIdrGLl0lfPWrXyUyMpItW7YQHx+vqQAByzQsT09PTVOoysrKcHBwIDo6+vIvnoaiKBQXF+Po6DjDNF9fX09HRwdbtmxZdYcUgWClMzo6Sl9fn63o6O3tZXR0FGdnZzw8PPDy8iIiIgIXFxccHR2vqp9hSZJI8k22FSF2fkZygnMAy++7kZERBgcH6e/vp7e3l4aGBoaGhnBwcLAVJB4eHri7uy9qFpIkSeg3bMC8+58AyAUFSNExSE5Oi7aH+UKvk/j+rSkEezjyk/fPAvDiiXpa+kb45b1rcLa/8OggSRJS5MdQXIJQzvwV5HEYbEIp+DkkfxrJU9tQF8HqQ5IksrKy2Lt3Lw0NDbb8s7i4ODo7OykuLp5RnKghOjqalpYWzpw5Q2pq6uUXYJna1dzcTHFxMdnZ2arfy83NzXbOOnr0KF/96leFLOsKEUXIeezbt4/du3fz9NNP4+LiolpraKW5uZn29na2bdum+geps7OT+vr6ORUMsxUb/f39lJSUiEBCgWAZoCgKAwMDdHZ20tnZSU9PD6Ojo7i4uODh4YG3tzfR0dG4u7trfgq4WvFymHpy3js2NcZTkiScnJxwcnLCz8/Pdt1kMtmKur6+PhobGxkcHMTBwQFPT098fHzw8fHB1dV1QQs6ydcXKT4B5Ww5mEzIx4+h37ptwd5vIZEkiS9uiSHYw5FvvHoKk1lh79kO7vn9Mf746Wz8XGf/2yL5poOTH8rpP1oM6xNDKKd+DdG3QIh4KHa14+DgQFZWFidOnMDT09P2M2ktTurr6wm3jr1WgSRJZGZmsm/fPgIDA1V5X63Tsj766COam5sJCgpS/X5xcXE0Nzfz+c9/nq9+9avs37+fzZs3q14vmIkoQqZhMpl45JFHuPfee/Hx8SErK0uT9nhsbIzi4mJSU1NVH/4nJiY4efKkLUlUC7MVGxMTE+Tn5xMVFTXjj7RAIFgczi86urq6MJvNeHt74+3tTVRUlCg4LoOHg4ft372jvZd9vdFotBUaVqyFSXd3N21tbZSVlaHX6/H29l7QokSXk4O5tgbGxlCqqlASEpAC1R9ylhu3ZgTj5+bA55/PZ2B0gpKmPm5/9gjPfWYtMX6us66RnANhzddRzjwP3WewJqwz0AjCJ3LV4+fnR1RUFHl5eWzevBm9Xn9BcaJFgeLi4kJiYiInT55k69atqmRZDg4OpKamUlxcjLe3t2o5p06nIysri8HBQe655x4eeeQRTp06JX6fz5GV55pbQJ5++mlGR0fZtWsX4eHhcwolnIsMy9HRkaioKE3vdbFi4/Tp0xiNRs2TvAQCwdywFh3V1dWcOHGC9957jwMHDtDa2oqHhwe5ubns2rWL9evXExcXh4+Pj/iDdRk87adMptM7IVqwFiZxcXGsX7+eXbt2kZubi4eHB62trRw4cID33nuPEydOUF1dzcDAAPNhkZQcHNCtzbF9bD58GEWWr/i+S8n6KG/+8YUNBLlbHnY19Y5w52+Ocrym66JrJKMTUurnIOy6qYvtBZPBht0LvWXBMichIQGj0TgjQNBanFjH72ohKioKBwcHysrKVK8JCQnB09NzTiGGYWFh3HjjjYyMjPDMM8t/gt9yRRjTJ2lubiY+Pp7vfOc7pKens3PnTk0HhebmZoqKijRNw7JOhdiyZYvmLsjJkycZHBxk48aNtm5NY2MjxcXFbN26FUdHR033EwgE6pFlme7ublpbW2ltbWVkZGTGE3YPD49lOcFppVDeVcb9b90NwB1xn+A/1v/XvL+HLMv09vbO6Fg5OjoSEBBAQEAAXl5ec/7fUJFlzG+8Dh0dAOhy16FLW5km9em09Y/ymf/No6ylHwA7vY6ffjyNWzMuPsIXQOk4NeUTATC6IqU+hOSmXnYjWH0MDw+zb98+0tLSbA9vZVnm8OHDuLq6kpGRoel+g4OD7Nu3T1MkwejoKB999BEZGRmaZFkmk4l//etfFBUV8aMf/YiKigpN07YEFoQca5LHH3+cnJwcUlNTSUlJ0VSAjI2NcerUKdLS0hZFhtXY2EhLSwtbt261/ZEcHBzk1KlTZGVliQJEIFgATCYT7e3ttLa20tbWhk6nw9/fn+TkZHx9fVVPZhFcHg/7qYkzvWO9C/IeOp0OLy8vvLy8iIuLY2Jigo6ODlpbW8nPz0eWZfz9/QkICMDPz0/T3wRJp0O/cSPm3bsBkAsLkKKjkSZzVlYq/m4O/O3h9Xzxr4UcqOxg3Czz6CtF1HQO8ej22ItK22w+kZI/wmgnmAZQin4JCfch+WUs7ichWDY4OTmRmZlJYWEhHh4euLi4oNPpyM7OZu/evfj4+GhSliymLMtoNJKSkoIsy6xdu5bHH3+cF198UfVeBRZEJwSLGf2mm27imWeeITIyks2bN2vSCefl5aEoiqbUz1OnTjEwMMDGjRs1vdfIyAgfffQRa9assVXdZrOZgwcP4uPjQ0pKiup7CQSCSzMyMkJzczOtra10dXXh4uJie1Lu6ekpTLYLxOjECNf81SJpWuOfze9u+POivr+iKPT09Ng6XYODg3h7exMQEEBQUJDqBz3mgwdRys8AIEVHo9+2fSG3vWiYzDL/9fppXsprsF27LSOIH9+Zhr1Bf9F1imkI5fSfoO+c7ZoUeSOE7RA/S1cxJSUldHV1sWnTJvR6y/dPS0sLhYWFbNu2TdODVUVROHz4MG5ubqSp7D4qisKJEyfQ6/WapmUpisL+/fuprq7mK1/5Cu+8844wqWvkqi9CTCYT6enpbNy4kZtvvpnNmzdr8oI0Nzdz6tQptm7dqroL0tHRwfHjx9m6dastgVgNiqJw7Ngx7O3tWbNmje16SUkJ3d3dbNq0SUhABIIrxGQy0dzcTENDA93d3bbDZ0BAgKafV8GVcc1fcxidGCHKPZq/3bZ7SfcyNDRkK0i6urrw9vYmJCSEoKCgS3ZIlNFRS5L6ZFK8bteN6IIvLV1aKSiKwu8PVvM/75VjPUWsjfDkt/dn4+V8ceO5Ik+gnH0F2vKmLvqvtQQb6kQ38WpElmUOHjyIl5fXjDG7BQUFjI+Ps27dOk1FqlWWlZubi6+vr6o1c5Vl9fX1sX//ft544w2OHj1KUVGR8Pxp4Ko/sT799NOMjIywa9cuwsLCNBUgJpOJ4uJiUlJSNMmwioqKSEpK0nygqa+vp7+/f0a3o7W1lfr6erKzs0UBIhDMEbPZTHNzs81YXltbS2BgIDt37mTjxo1ER0eLAmSR8bD3AOZuTJ9PnJ2diY6OZuPGjezcuZOAgABqa2ttxvbm5mbMZvMF6yQHB3Q5ubaP5SOHUWZ53UpEkiQ+f200v74vCwej5W9PXm0Ptz17mKr2wYuv0xmQEj5p6YBYactDOfVrFNPQQm9bsAyxSrDq6+tpbW21XU9NTaWvr4/6+vpLrL4QqyyrqKhItcHdKssqKSnBZDKpfq/pJvWhoSFhUtfIVX1qbW5u5r//+7956KGHsLOzIzk5WdP6s2fP4uLiokmzWFpaiqOjI5GRkZrea2RkhNOnT5Oenm5L+BwfH6eoqIjU1FRxQBIINKIoCp2dnRQVFfH+++9TWlqKq6srW7ZsYfPmzURHR4ucnSXEWoT0jfUhK8tnupQ1VHbz5s1s2bIFV1dXSktLef/99ykqKqKzs3PGlC0pPh6sEwx7e1FOn16inS8MNyQH8LfPr8fP1aKlr+8e5o5fH+ZwVedF10iShBR+HVLSp0E3+dS47xxKwS9QhtoWY9uCZYazszMpKSkUFRUxPm4ZYGBnZ0dGRganT59mZGRE0/2ioqJwdHSktLRU9ZqQkBCcnZ2pqKjQ9F5JSUnY2dnx0EMP8d3vfpeWlhZN669mruoi5PHHH2ft2rWkpaVpNqP39/dTU1NDWlqa6jZhR0cHDQ0NZGZmamotKopCUVERgYGBBAQE2K6XlJTg4eFBaGio6nsJBFc7IyMjlJeXs2fPHvLy8tDpdKxbt44dO3aQmJiIq+vs2QeCxcXTwTKm16yYGRgfWOLdzI6rqyuJiYns2LGDdevWodPpyMvLY8+ePZSXlzMyMmJJUt94DUz+zpcLC1AGL94pWImkhXiw+4sbSQiw/Oz0j07wqT+f4MUTl36CLfllImV8CYyTP3OjnSiFv0DpPrvQWxYsQ8LCwvDw8OD0tEI9ICCAwMBAioqKNI3QtoYYNjQ00DE5pU7NmrS0NKqrq+nv71f9XnZ2dqSkpJCenk52djaPP/646rVXO1dtEbJ//37efPNN7r//flxdXQkLC1O9VlEUSkpKiIyMVB2oYzKZOHny5BXJsKZrJa0TetLT04WhTyC4DIqi0NbWxvHjx9mzZw+9vb2kpaVx/fXXk5aWhpeXl/g5WmbMDCxceknWpZAkCS8vL9v3VGpqKr29vezZs4fjx4/TbjYjJSZaXjwxgXzs2NJueAEI8nDk1S9sYHuCpetjlhX+458lfO+tMszyxQ+PklsEUtbXwXlSh28eRSn+LUrTocXYtmAZYU0yb2lpuUCW1d/fr1mW5ezsTFJSkiZZlpubG5GRkZSUlGgqesLCwnB1deWBBx7g9ddf58CBA5r2erVyVRYh1mT0e+65Bx8fH82diaamJgYGBoiPj1e9pqysDGdn5znLsDIyMmydGqsMKyUlRYzjFQguwfj4OJWVlXzwwQecPHkSNzc321PrgIAA4aNaxizGmN6FQKfTERgYaOuuubm5cfLkSQ4MDGKe/B2u1FQjNzYu8U7nHxd7A797IJsHN079nfvj4Ro+95d8+kcvrrOXHDyRMr8K3lZJtIxS+Sry2VdQzOr1+YKVj6OjI6mpqTNkWUajcc6yrMjISM2yrPj4eAYGBmhqalK9RpIkMjIy8PHx4d577+WRRx7R5C25Wrkq/wI/88wzDA8Pc+ONN87JjH769GlN8i2rDCsjI2NOMqygoCD8/f1t14UMSyC4NL29vZw8eZL333+f9vZ2kpOT2blzJ4mJiTg5OS319gQq8HCYKkJ6VmjCtpOTE4mJiezcuZP4tDRqp03qmTh4EGUVHlL0Oon/vCmJH96eikFn+Xv30dn2yxvWDQ5IKQ9CyNapiy1HUU4+LRLWrzJCQ0Px8PCYkWTu7++/aLIso9FIcnIypaWlmgoJDw8PwsLC2LVrF4ODg/zyl79UvfZq5aorQlpaWvjud797xWb0YJVjFmVZpri4mMTExHmZhtXS0iJkWALBLCiKQmtrKwcPHuTQoUPodDo2b97Mxo0bCQoKEl2PFYbVmA4rqxMyGzqdjqCgIOJ23YjZ25LkrBscoOPVv9Pa3KzpULVS+GROGM99Jgd3R8vDuuqOIW579jAfnLm48VySdOhibkVK+OSUYX2wASX/CZTu8sXYtmAZYJVltbW1zZssKzExkeLiYmRZ3ZCLKzGp29vb87nPfU6Y1FVw1f1Vfvzxx8nOziY9PX1RzOjnzp1Dp9NplmENDw/PKsM6deqUkGEJBNOQZZnGxkb27dtHUVER/v7+7Ny5k/T0dNWeLcHyY3onZLl7QtQiSRJ2W7fC5O90r8FBRvftY9/evTQ2Nqo+IK0UNsb48OaXr7EZ1gfHJnjoL/k8/WEl8qV8IgE5SJmPgoO35cLEMErxb5Fr3kFZRpPSBAuHo6PjBdOypsuyhoeHNd0vMjISSZI4d+7c5V/M/JjUs7Ky+MY3vqFpn1cbV1URcuDAAV5//XUeeOCBRTGjj4yMcPbsWdLS0jQ9hRUyLIHg8pjNZmpra/nwww85c+YMERERXHfddcTFxdnGWAtWLjM6IaukCAGQPD3RXbcTJv8mhAwNkgqcOXOGDz/8kNra2lkzR1YqYV5OvPbIBm5MDbRd+/kHFTzyYgGDYxc3C0uuIUhZj0/ziShQ9y9LnsiY+kOhYOVyMVlWUFCQZlmWTqcjLS2Ns2fPqvaVuLm5ERERMSeTuouLC/fffz+7d+8WJvVLcNUUIbIs89hjj3H33Xfj4+Oj2Z8xFzP66dOnCQwMxNvbW9Ne6+rqGBgYEDIsgWAWTCYTlZWV7Nmzh+rqahISEti+fTuRkZHo9fql3p5gnrCO6AXoWQaBhfOJLjgY3ebNto89zlWxLSyMhIQEqqur2bNnD1VVVavG2OpkZ+CX92byrevjrZOKeb+0jdufPUxt58UDCiWjE1LKg0iRN2E7rvRWouT/FKWncuE3LlhSpsuypsuaUlJSGBgYoK6uTtP9fHx8CAwMnDEC+HIkJCQwMDBAc3Ozpn1nZmbi6+vL3XffzWOPPbYqJZfzwVVThLz66qs0Njaya9cuQkJC8PDwUL3WZDJRWlpKcnKyavlWe3u7zRCrheHhYUpLS8nMzLxAhpWamipkWIKrlvHxcc6cOcOePXtoaWkhPT2drVu3EhoaKvweqxCv6UXIaNcS7mRh0MXEolubY/tYOXiAYEli69atpKen09zczJ49ezhz5oxNjrKSkSSJL26J4U+fXourgwGAyvZBbvnVIfadbb/EOh1S+A5Lnojd5BAZ0wDKqWdRat8X8qxVjlWWderUqQtkWaWlpZplWcnJybS3t2s2qZ8+fVqzST0kJIRdu3bR0NDAq6++qmmfVwtXxV9uk8nEd77zHe69917s7OxItM5rV0lFRQXOzs6qk9FlWaakpISEhARNicvTZVh+1oRdoLi4GE9PT03J7ALBasFsNtvG7HZ3d5OTk8OmTZsIDAwUXcFVjJu9O3rJcljtHFl9RQiAlJ6OlJRk+UBRkD/YA91dBAYGsmnTJtauXUt3dzcffPABlZWVq0KmtTXejze+dA2xfi6AJdjwM8/l8ey+qks+LZY8opGyvwGeVjWCglL7LkrJ71BM2g6igpXFfMqyHBwcSEhIWBSTemJiInZ2dnzyk5/kO9/5zqrpbM4nV0UR8sc//hGz2czWrVuJjo7W1E3o7++nurp6UczoDQ0NF8iwmpubaW9vFzIswVWHLMvU1dXxwQcf0NTURHZ2Nhs3bsTHx0f8LFwF6CSdrRvSvVqLEElCt34DUni45YLJhPm991D6+5EkCV9fXzZs2EB2djZNTU188MEH1NXVrXgDe6SPM//84kZ2Jlk8j4oCP3n/LF9+6STD45fwidi5IqU9jBSxC5j8HdBdjlLwc5QhMYVotXI5WVZDQ4Om+83FpJ6amkp1dTUDAwOq38fR0ZGoqCi2bt2KyWTiT3/6k6Z9Xg2s+iJkaGiI7373u9x3330YDAZiY2NVr7Wa0SMiIjSb0VNTUzVJRKySr9TUVJsMa2xsjOLiYlJTUzV1VASClYyiKDQ3N7N3714qKytJSUlh8+bNM7qDgqsDb0eLn65ntBt5lcpuJJ0O3bbtYP3+Hh7G/M7bKEMWr4QkSfj5+bF582ZSUlKorKxk7969NK/w0b4u9gZ+c18WX98RZ7v2dkkLd/z6CPXdF+9sSJIOKWInUvojYJwcez/aiVLwC5SOUwu9bcESYQ0xPF+WlZKSQllZmaYuw1xM6u7u7kRERFBcXKzp5y4uLg6DwcB9993Hd7/7Xc3ysdXOqi9CnnzySby9vcnNzdU8Nae5uZmBgQESEhJUr7Ga0X18fDTt88yZM7i7uxMYODVB5PTp00KGJbiq6Ojo4MCBAxQXFxMVFcW2bdsIDg4WnY+rFK/JIsSsmOlb4Vkhl0IyGNBffwN4TI4lHhiwFCKjo1OvkSSCg4PZtm0bUVFRFBcXc/DgQTo7O5do11eOTifx1e2x/OFT2bjYW6R35a0D3PLLQxyquvTnJXnGWaZnuUz+fZTHUUr/jFz9tvCJrFJCQkLw9PScIcsKCgrCzc2N8nJtOTJWk7qWJPW5mNTt7OyIi4tj3bp1eHl58eSTT2ra52pnVRchXV1d/PjHP+b+++/HaDQSHR2teu3ExASnT59eFDN6X18fdXV1pKam2g5bnZ2dtLS0aJKBCQQrlf7+fo4ePcqJEycIDAxkx44dREZGCsP5VY6349TDnK5VKsmyIjk4oN+1C1wtmRr09mJ+9x2U80zpVqnvjh078Pf35/jx4xw9elRTlsFyY0eiP7u/uJEoH0tno3fExKf+dJzfH6y+tE/EwQsp86vglzV1sX4PSskfhE9kFWLN7mhpabEV31apVG1tLX19fZrul5ycTFtb25xM6hMTF5cNnk9UVJStG/LjH/+Y7u5uTftczazqv/A//OEPSUxMJDU1lcTERE3jO6urq3FwcFgUM3pxcTHR0dG4Tv7xsaasx8fHi2lYglWNyWTi9OnT7N+/HxcXF1vOh8FgWOqtCZYB3g5T4827RlbuE3+1SM7O6HfdCE5OlgudnZjffx9llgOPwWAgPj6e6667DhcXF/bv3695gs9yIsbPhd1f2sj2BIssTVbgB++c4bFXihgZv7ghX9LbISXejxR9K1M+kTKUwl8In8gqxNHRkfj4+BnGcldXV1t3cDFM6g4ODlRXV6t+H4PBQFJSEmlpacTHx/PDH/5Q9drVzqotQhoaGnj22We59957sbe31xRMOD4+TmVlJUlJSZrM6JIkzcmMPjw8TFzclC62pqYGRVE0dW4EgpWEoig0Njby4Ycf0tvby+bNm0lNTRUhg4IZTO+EdK/CMb2zIbm5WQoRe3vLhdYW5A/2oFxkMpadnR2pqals3ryZ3t5ePvroIxobG1ekX8TNwcjvH8jmq9tibNdeP9XMx397hMaeS/lEJKTQrUhpXwDDZAE30mHxibQXLfCuBYtNdHQ0iqJQU1NjuxYfH8/w8PCimNSTkpKorKzUNDo7LCwMe3t7PvnJT/KrX/2KxsZGTftcrazaIuS//uu/2LBhA9HR0aSkpGiSdVRWVuLp6Ymvr6+q1881Gd1kMlFWVkZqaqrtye/o6Cjl5eWa7yUQrBT6+/s5fPgwp0+fJiUlhY0bN6oe/CC4urB6QmD1y7GmI3l6ov/YLpiUAisNDcj79qJc4mmtm5sbGzdutMlFjhw5siIlWjqdxNevi+c3963B2c6iXiht7ueWXx3maPWlvwckr/hJn0iw5YI8jlL2v8jn3kCRV/54Y4EFnU5Hamoq5eXljE76pgwGw6KZ1H19ffH09KSyUn1gpk6nIyUlhejoaNavX893v/td1WtXM6vylFtWVsZLL73EXXfdhYuLywyz9+UYGRmhpqaGJOvsdhVciRndzc1txv5KS0vx8/NTXQAJBCuF6dIrDw8Ptm/fTkhIiPA8CS7K1eQJOR/J19diVp+UESvV1ciHDl3aIyFJhISEsH37dtzd3Ve0ROuGlED++cWNRHhbOhvdQ+Pc/8fj/OlwzaW/Bo7eSJmPgn/21MWGjyzhhqt4uMHVhp+fH35+fjOM5UFBQbi6ui6KST0pKYmamhrVhQtAYGAgzs7O3H333fz1r3/lzJkzmva5GlmVRch3vvMdbrjhBgIDA0lJSdF0yCkvLycgIEB1onpHR8eczej19fWzmtGn54QIBCud6dKrvr4+26hRtQMfBFcvV5sn5HykwEB0O66Dyb8Rytly5COHLyu1so4utUq0PvzwwxUp0Yrzd+X1L13D5jjLQzmzrPD/3irjyy+dZGD04oWVpLdDSrgPKeYOkCaPOX3nUPJ/itJVthhbFywCKSkptLS00NVleUBhNa7X1dVpNqknJSVpMql7eHgQEBCgqeCxmugDAwPZuXMn3/nOdzTtcTWy6oqQo0ePsmfPHm6//Xa8vLw0dRT6+/tpbGxUPZJXURRKS0uJi4ubkxk9MjJSmNEFq5qRkRGOHz9uk15t2LBBSK8EqvGeJse6Wjwh56MLC0O3dZvtY6WsDPnw5QsRmJJopaSkcPr0aY4fP67pye1ywN3RyJ8+vZZHNk95JN8uaeHWXx2mvPXicjNJkpBCrkXK+DLYe1gumoZQSn4n5FmrhIuZ1CMjIzWb1B0dHYmLi6O0tFT1uoSEBBobGzUFGPr6+uLl5cUdd9zBv/71L44dO6Z67WpkVRUhiqLwrW99i9tvvx1PT0/NHYXy8nLCwsJwcXFR9fqmpibGxsaIiorS9D5WM3p8fLztmjCjC1YTiqJQX1/P3r17MRqNbNu2TUivBJpxtXPDqLN0zK7GTogVXXQ0ui1bpzoiZ8ouK82yYpVobdu2DaPRyN69e6mvr19RXRG9TuLbNyTw2/uzcHWw+CerO4e47dnDvFpwaYOv5B6FlP1N8J6mVmj4COXk0yhXmcRvNRIdHY0sy7Oa1LWav6OiohgbG6OpqUnV611cXAgLC9Msq0pJScHLy4vbb7+db33rWyvqZ3G+WVVFyLvvvktJSQk333yzJkkVQHd3N+3t7TMKg0shyzJnzpwhISFB0+hfqxk9JSXlAjO61pR1gWA5Yu1+lJWVsWbNGrKyssTUK8GckCTJZk7vvsoPjLrYWHRbtkwVIuVnkA8dVH2AsbOzIysri8zMTMrKylZkV+T65ADe+vI1JAdZuqmjJplvvHqKf3+tmFHTJcb4Gp2RUh5Cir4NpMm/1wN1KAVPiJT1Fc6lTOqlpaWa/FB6vZ6EhATKy8tVj+yNj4+nvb1dU/aHVcp10003UVxczHvvvad67Wpj1Zx4ZVnm29/+NnfffTdOTk6aPBqKolBWVkZ0dLRqWVVtbS06nY7Q0FBN+ywvL8fNzY2goCDbNasZ3c/PT9O9BILlhKIoNDQ0zOh+BAQELPW2BCscbweLOb1nrAfzVS6h0cXEzuyIlJcjHzyg6UlqYGDgjK5IQ0PDinoSG+7tzD++sIF7c6bG7r+c18Advz5CXdfQRddZxvhusZjWrV6jiRFLynrFqyjmlWfeF1iwnp/Kyqb8PnM1qYeGhiJJEnV1dape7+DgQFRUFGfOnNH0c5SUlISzszN33XUX3/72t1UXPauNVVOEvPzyy3R0dLBz507CwsJwdnZWvba9vZ2BgQFiYmIu/2IsaeoVFRUkJSVp6lz09fVRW1s7w4ze1dUlzOiCFc/o6CgnTpygtLSUzMxM0f0QzBtWX4isyPSO9SzxbpYeXUyMxSNiM6ufRT6wX9MBaHpXpLS0lBMnTtieIq8EHIx6/uf2VH72iXQcjJa/wWUt/dz0y0O8V9p6ybWSWxhS9jfAN2PqYvMhlJNPogy3L+CuBQtJSkoKzc3NF5jUtSap63Q6EhMTOXv2rOpU9NjYWPr6+mhvV//94+LiQmhoKNdffz3t7e28/PLLqteuJlZFESLLMt/73ve46667MBqNqo3lMNUFiY2NVT2t59y5czg5OWl6yms1o0dFRQkzumBV0djYyEcffYTBYGDbtm2aRmILBJfjah7TezF00dHotm2fKkQqKiyFiManqdauiMFgsIUcriTuXBPC7i9uJMrH8tBxYHSCL7xQwP/ZXXJpeZbBESnp00hxd8Gk54jBJpSCn6G05S/G1gXzjNVYPh9J6oGBgTg5OakOMDQajcTFxVFWVqbpfRITEzEajdx1111873vfuyq7IauiCHnzzTfp7Oxky5YtREREaJpU1djYiMlkUp10PjY2RlVVlaY0dYCWlhaGhoYuMKPLsizM6IIVycTEBCdPnqS4uJiMjAzR/RAsCF4OXrZ/X+2+kOnooqLQbT+vENmvvRCxdkUyMjIoLi6mqKhI9RPg5UBCgBtvfPkabkydevjxwvF6bvnVIc62XnxqkSRJSEEbkNZ8DZwmpdDmMZQzLyCXv4hiHlvorQvmmZiYGGRZpra21nYtPj6eoaEhWlpaVN/HmopeVVXF2Ji674PIyEhMJpNqUztYpFwRERFs2bKFzs5O3nrrLdVrVwsrvghRFIXvf//73HbbbRgMBmJjY1WvlWWZ8vJyTebyyspKvL29NQUTWk3s8fHxwowuWBX09/dz4MABhoaG2Lp16wyPk0Awn0zvhHSOqJvhf7Wgi4xCt33HVCFSVYn80UcoZu3emaCgILZu3crAwAAHDhxYUWnrLvYGfnlvJj+8PdUmz6poG+TmXx3iL0drLx1u6BJkSVkPyJm62HoCpeDnKIPqD66CpcdqUj9z5swMk3p8fDxnzpzR1Gnw8fHBy8tLdSq6Xq+f0/vExsZiMBi49dZb+d73vrei/FnzwYo//e7du5eKigq2b99OcHCwJllTbW0ter1etbl8eHiYmpoaEhMTNe3RavwLDw+3XTt79iy+vr7CjC5YUSiKQl1dHQcOHCAwMJANGzYIKaFgQfFz8rf9u0MUIRegi4y0BBpOPsxSaqqR//UvlDl0MxwdHdm4cSOBgYEcOHCAurq6FXMokiSJT+aE8eaXriEhwCJ5Hp+Q+a83Svnc8wX0DI1ffK3eHl3CJ5ES7gPdZDd3uA2l8OcozUdXzNdAYDGp+/r6cvbsWdu18PBw2+AULSQlJVFbW8vw8LCq14eGhqLT6WZ0Yi6Ho6MjwcHB7Nixg4qKCvbt26dpjyudFV+E/OAHP+Dmm2/GyclJ9XhdsIzKPXv2LImJiaplVeXl5QQFBeHu7q76fcxmM+Xl5SQmJto6HoODg9TX12suZgSCpcRkMlFYWMiZM2fIycmZ8T0tECwUvk5TgbPtQ21LuJPliy4iAt3OnTDZ0VcaGzC/8zaKSinJjHtNGnNzcnI4c+YMhYWFmsacLjWx/q7s/uJG/m19hO3aB2fauOHpAxw5d+msGSlgLVL24+A82dmVTSgVr6Cc+QvKxMox7l/tJCYmUl9fz+DgIGD5nraO3jVr6BK6u7sTGBioesKWTqcjKSmJiooKTZLGuLg4nJycuOmmm/jBD36get1qYEWfIPLz8zl69Cg33HAD/v7+qkMGAaqrq3FxcVFtLu/v76epqUmT6d36Pvb29jPkKmfOnCE0NNRmUBcIlju9vb3s37+f0dFRtmzZIjp4gkXD12nqe03IsS6OLjQM/cd2gXXASlsb5rffQpljFoifnx9btmxhdHSU/fv309vbO3+bXWAcjHr++5Zk/vipbLycLZ2Ntv4x7vvjcX76fjkm88XlMpKTv8UnEnTN1MX2kyj5T6AMaHuSLlgaXF1dCQ0NnVE8BAcHY29vPyPUUA0JCQk0NTWplicGBARoMrVb9+vn58fHPvYxDh8+TEFBgaY9rmRWdBHygx/8gBtuuAE3NzdNXZCJiQnOnTtHfHy86i7ImTNnCA8P1zT612QyUVlZOcPE3tvbS1tbm6b9CgRLhaIoVFdXc+jQIUJDQ9mwYYOmwQ8CwZXi7eiNhOX3Z7sYoXpJpMBA9DfdDNaf0a4uzG+8gTJHf4eDgwMbNmwgNDSUQ4cOUVNTs6KkSdsT/Xn3q5vYGG0Z86wo8Kt95/jEb49S331xiY2kN6KL+zhS8mdAP/m1HO1EKXwSpVHbOGTB0hAfH09ra6uteLaazSsqKjR19pydnQkPD1edii5JEgkJCZw7d05TNyQhIQE3Nzc+9rGPXVXdkBVbhJSXl/POO+9w44034uXlpSkdvba2FmdnZ3x9fS//YixZHh0dHZoLh8rKStzd3We8T1lZGZGRkUJHL1j2mM1mioqKqKioYP369ZqKdoFgvjDojLbU9I5hIce6HJKPD/qbbwHrA7P+PsxvvI7SeWkp0kXvJ0nEx8ezbt06zp49S1FRkSZJy1Lj7+bA85/N5ds3JGDQWX5/FTX0suvpg7xedOlJRpJvOlL2N8F1MhhRMaNU/RPl9B9RTBcPRhQsPY6OjkRGRs4IMPT19cXd3V212dxKXFwcHR0dtgySy+Hr64uTk5PqwEOwpKh7eXmxa9cu3n77bc0hiyuVFVuE/M///A/btm3D19dXk0TKbDZz7tw5YmNjVR2orDkiMTEx2Nvbq36fkZERqqurZ3RB2tvb6e3t1TTBSyBYCkZHRzl8+DD9/f1s3rwZb2/vpd6S4CrG19HyIKdrpOuqT01Xg+ThYSlErP7FkRHMb72JfAU5ID4+PmzevJn+/n6OHDmyosINdTqJRzZH8+oXNhDm5QTA4NgEj75SxON/P8Xg2MWfWEuO3kiZX4WQrVMXu06j5P8UpU+btEewuMTGxtLb20tHh0XGae2GVFdXM6JBpujg4EBMTIzqHBBJkoiLi6OqqkpTwZ6QkICfnx9bt27lRz/6kep1K5kVWYTU19fz8ssvc8stt+Dm5qbpgNTY2IjBYFAdqNbW1sbg4KDmLI+Kigr8/f3x9PQEZoYiiiwFwXLG6v9wdnbmmmuuEV07wZLjOzkhy6yY6RntXuLdrAwkV1f0t9wK/pPTxUwm5PfeRa6omPM9HR0dueaaa3ByclpxPhGAjFAP3v7KNdyeEWy79o/CRm565iDFjb0XXSfpDOhibkVK/RwYJjtMY70oJ59BqduDolx9IXMrATs7O2JjY2cUD56envj5+VGh8ecgOjqawcFB2trUdWMDAwMxGAyaAkC9vb1xdXXllltu4aWXXtI8zWslsiKLkCeeeIL169cTEhJCQkKCaomIoihUVlZq6oKcOXOGuLg41WnqMPv0q+bmZsbGxlSHIgoES0FTUxOHDh0iKiqKNWvWqM7PEQgWkukTsjpGhC9ELZKDA/pdNyKFR1guKAry/n2Y807M2deg1+tZs2YNUVFRHDp0SFM423LA1cHIL+7O4Bd3peNsZ/n9Vts1zJ2/OcJvD5xDli+RKeKdbJFnuUdNXpFRat5GKf4tyvjFgxEFS0dkZCSjo6MzwgrPn56lBmsq+pkzZ1R3Q2JjY6msrFT9syZJEomJiYSGhrJu3TqeeOIJ1ftbqay4IqSjo4M//OEP3HbbbTg6OuLv73/5RZM0NzcjyzIhISGqXt/a2srY2BgRERGa9midfmWd1jVbWKFAsJywFtxFRUVkZ2erLtQFgsXAb9qErPYhUYRoQTIY0O3YgZSUZLumFBUhf7AHZY6jd60HrOzsbIqKilQfzJYTt2eG8M5XN5EeYpGsmcwK//NuOZ/+8wnaBy4uNZMcPJDSvwThO2FyYAI9Zy3yrG515mXB4mENKywrK7OFCFqnZ6k1m1uJiIhgbGxMdTckJCQEWZZpbm5W/R7+/v44Ojpy22238fvf/57OOXq5Vgorrgh56qmnSElJITo6ek5dkJiYGFXZBtbXR0dHa3oa3NPTc8H0q/r6eiRJIiwsTPV9BILFwmQyceLECZqamrj22mtVj60WCBYLn2lFiAgs1I6k06HbsBHd+vVT6eq1tZjffANFw9Pg8wkICGDTpk00NTVx4sSJFZUnAhDu7czfH97AFzZHW78sHKzq5GNPHWRv+cWLXUmnRxe5Cyn9EbBzs1wc70cp/i1y5T9QzBcPRhQsPtazV319ve1afHw8bW1tmiSFer2e6OhoKioqVBXdOp2O6Ohozd2Q+Ph4YmJiSE5O5qmnnlK9v5XIiipC+vv7eeaZZ7jtttuws7Obkb1xOdrb2xkZGVFdCHR1dTE4OKi5C3L+9KuJiYkLwgoFguXCyMgIhw4dwmw2c+2114rsGsGyZHonREzImhuSJKFLSUV3/Q1TWSJdXZh3/xOlfe7dJTc3N6699lomJiY4dOiQJsPvcsDOoOPfb0jghc/m4udqGT7TNTTOZ57L4/+9VcbYxMWNxZJnnEWe5TVtOE7TQZSCn6EMzH0IgGB+sYYIlpeX28bmzjY9Sw0REREMDg6qnpQVHh7OyMiIzRyvhuDgYIxGI7fddhtPP/206oySlciKOhX/+te/JjQ0lJSUFOLi4jQd6isrK4mKilIth6qoqCAyMlKTF6S9vZ2+vr4Z06+qq6txdHRUbYQXCBaLgYEBDh48iKenJ+vWrRMDEwTLFut0LBBZIVeKLjQU/a23gfWBg3VyVm3tnO9pZ2fH+vXr8fDw4ODBgwwMrDx/xMYYH9796ia2J0wVvH86XMPtzx6hqv3i3SLJzhUp9WGkmDtBN3leGG5DKfwFSv0HwrS+TAgMDMTR0ZHq6mrbNev0rHYNRbjRaCQyMlL1mF+DwUBUVJQmI7xOpyMuLo60tDRCQkL4zW9+o3rtSmPFFCGjo6P8/Oc/54477sBgMGiSNnV3d9PX10dUVNTlX4xlOlB3d7fq18Ps06/Gx8cvCCsUCJYD3d3dHDx4kNDQUNLT00WXTrCssU7HAugcFnKsK0Xy9ER/2+1I1odjZjPyB3uQNT4Vno5OpyMjI8MWbNjdvfKmmHm72POHT2Xzf29Oxs5g+Z1Y1tLPTb88yPNHay8qqZEkCSlkE1LW4+Ay6TlVzCjVb6EU/QpFTHRbcqzjeSsrKxkft8jlZpuepYaoqCi6urpUS7kiIyNt50q1hIeHo9frueOOO/jZz362okZia2HFnDyee+45nJ2dycrKIjY2VpNPo6KigoiICNVdjcrKSsLDwzXlgrS1tTE6OjqjcKmsrMTLy0t1KKJAsBi0tbVx5MgREhISSExMFAWyYNnjbu+Onc7ycKddyLHmBcnBAd3HdiHFTHbuFQX58KErmpxlne4THx/PkSNHVBt4lxOSJPHpDRG8/sWNxPhZhsuMmmT+841SPvWnE7T0XVxuJjkHIK15DMK2YzOt951DyfsJSmv+ijPvrzZ8fX3x9PSc0cWIiopidHRU0/eqvb094eHhqrshdnZ2mronYPGfxMTEkJ2djbOzM88995zqtSuJFVGEKIrCz3/+c2677Tb0er0mn0Z/fz8dHR2qcz4GBgZobW0lJiZG0/4qKipmmNhHRkaoqamZMaZXIFhq6uvrycvLIzMzU1OnTyBYSiRJso3p7RTG9HlD0uvRbdmClJ5hu6YUFSHv348iz11GFBUVRWZmJnl5eTPMwCuJxEA33vzSNTywLtx27WBVJzufPMBrhY0X74roDOiibkbK+DLYW3LCMI+ilL+AUvYXFNPwYmxfcBGSkpKoqamxeZesZnMt5nGw5Ia0traqHvMbHR1Ne3u7Jn9HZGQker2eW2+9lV/84hersohdEUXIRx99RHt7Oxs3biQ8PFyTT6OyspKwsDAcHBxUvb6qqoqQkBBNAW2zmdgrKyvx9/fHw8ND9X0EgoWksrKSkpIScnNzCQ4OvvwCgWAZYZ2Q1TfWx+jE6pQmLAWSJKHPyUG3YYPtmlJZgfzeeyjjc5/yFBwcTE5ODiUlJVRVVc3HVhcdRzs937s1hb98JocAN8sZYmB0gq///RSP/LWQrsGxi66VPKKR1n4L/LOnLnacRMn7MUrP3AMjBVeGh4cH/v7+M74nIyIiGBgYUG02B3ByciI4OFh1d8PBwYGwsDBN3RCj0Uh4eDjXXHMNra2t7N27V/XalcKKKEKeeuoprr/+eoxGo6ant0NDQzQ3N6vuaoyMjNDY2KipCwKWw910E/vY2Bj19fUzDOoCwVKhKAqnT5/m3LlzbNy4UcgDBSuS6ROyhC9k/tElp6DbsQMmu/lKUyPmN15HuYLJPH5+fmzcuJGqqipOnz69Yp/kXhvny/uPXcttGVMTOd8rbeX6pw6wp+ziMh7J4Igu8X6kpE+DwclycbwP5dSzyFW7Ucwra6TxaiE2Npa6ujrGxixFpFaz+fT7NDY2qp4IFxMTQ3NzM0NDQ6rfIyoqCqPRyA033LAqx/Uu+yKktraW9957jx07duDt7Y2zs7PqtVVVVQQFBaleU1VVhb+/v6Yxpb29vXR1dc0ojqqrq/H29hZdEMGSoygKJ0+epKWlhU2bNonvScGKxW+aOb1tuHUJd7J60UVGof/YLrD6IXt6MP/ztSuanOXh4cE111xDS0sLJ0+eXLGFiLujkSfvzuTZT67B08nywLFzcJzPPZ/PN149Rf/oxQsKyS8TKftb4BE3dbFxH0rhz8Uo3yXAw8MDLy+vGZOytJrNwRJ6eH5X5VI4OzsTFBSkqTPo7OyMt7c3O3bs4N1336Wurk712pXAsi9Cnn32WdatW4e/v7+mzsLo6KimbsTY2Bh1dXXExcVd/sXTON/EbjKZqK6uFl0QwZIjyzKFhYX09PSwadMmTQW8QLDc8HeeCtFsHRJFyEIhBQZaRvi6W5LEGR9H3vMvzEeOoJgvnplxKVxcXNi0aRM9PT0UFhbakqtXIrtSA3n/sWvZkTjVmXu1oJGPPXWQg5UX79BZkta/gBR9G0iTUQFDLZZCpPZ9FHluX1vB3IiLi6OmpsYWsGlvb69ZLgUXdlXUvL6+vl7TtKuYmBj8/f3Jzc3l2Wef1bS/5c6yLkJGRkb4/e9/z/XXX4+9vb0mGUl1dTW+vr64ubmpfr2Xl5emJ8VWE/t003ttbS1ubm54e3urvo9AMN9YC5C+vj42btyo2hMlECxXApynspbaRBGyoEju7pYRvpGRtmtK6ekrkmc5ODiwceNG+vr6Vnwh4ufqwO8fyOYnd6bhYm8pKJp6R3jgTyf499eKL9oVkSQdUugWpKyvg/OktEuRUWrfRSl8EmWoZbE+haseb29vXFxcqJ3W5YuJidFkNgfw9PTEy8uLmpoaVa93c3PD19dX9evBImu0s7Pj+uuv5/e///2KCwS9FMu6CHnppZfw8vIiLS2N6Oho1aNEzWYzdXV1qv0jJpOJmpoazd2LqqoqgoODcXJysr3vuXPniI2NFWNPBUuGLMsUFBQwMDAgChDBqmFmJ0Qc1hYayc4O3fYd6DZeY/OJ0NmJ+bV/IE+TsWjBWogMDAxQUFCwogsRSZK4KzuUdx/dxPqoqYeOL+c1sPMXB9hbfvEAPMklyFKIhO/EdgwbbEDJfwKl/kMRcLgISJJEXFwc586dwzzZ4dNqNrcSGxtLdXW1ratyOaKioqitrbW9r5q9xsTEkJ6ejoeHBy+//LKm/S1nlm0RoigKTz75JLt27QLQFE7Y1NSEnZ2d6s5JXV0dLi4u+Pj4qH4Pq4l9euFSX1+Pvb09/v7+l1gpECwc1gJkcHCQDRs2aMq6EQiWMwHTihDRCVkcJElCl5SE/tZbwW1SnmUyIX/4Aebjx+Y0xtfe3p4NGzYwODi44gsRgFBPJ/76YC7fuzUFZztLsdbaP8pnnsvj638rond49gljks6ALnKXJVfE6ndSzCjVb6KcfBplWH2Kt2Bu+Pv7Y2dnR0NDg+2aVrM5gI+PD87Ozqr9Gr6+vtjZ2dHc3Kz6Paxn4F27dvHkk0+uWG/V+SzbIuTo0aPU1NRwzTXXEBoaqmksb01NDZGRkaq6EWazmaqqKs3di/NN7LIsz+k+AsF8YZVgiQJEsBrxdPCyBRaKTsjiInn7oL/9dqToqcmRSnEx8rvvoswhyXl6IbLSpVkAOp3EA+vCef+xa9kUM/Uw87WTTVz35AH+VXbxollyC0PK+gaEbsMWcNhfi5L/U5TG/aIrsoBIkkRsbCyVlZW270Gr2fzcuXOa7hMXF0dVVZWq7oYkSURGRs4wxl8Oo9FISEgImzZtorq6mmPHjqleu5xZtkXIs88+y44dO3B0dNQ0lre7u5vBwUFCQ0NVvb6hoQE7OzsCAgIu/+JJZjOxNzU1ARAUFHSxZQLBgmGdgtXf3y8KEMGqRCfp8HO2PDEWxvTFR7KzQ7d1K7oNG2HyQZvS3IT5n6+hdHZqvp+1EOnv71/RU7OmE+LpxF8+m8OP70jFddIr0jEwxuefL+ArL52ke+giXRG9EV30LUiZXwHHySJGNqFU/ROl6FcoI9q/vgJ1WDOzpnclYmNjqa2tZVxDTk5AQAB2dnY0NqqbdhYaGsrAwAA9PT2q3yM6OhpHR0d27Nixagzqy7II6erq4tVXX2X79u24u7urNpeDpQuitnOiKArV1dWa/CbW95huYlcUhcrKSmJiYtDpluWXVLCKsRYgvb29ogARrGqs5vQh0yCD4wNLvJurD0mS0CUno7/xJrAG+g4OYn7jdWSNOnqYKkR6e3tXTSEiSRJ3rw3jX1+7lq3xU5LwN4ubue4X+3m75OJdPMk9Cin7mxC8aepi3zmUvJ+gNB1eFV+f5YZOpyMmJmZGYrrVbK6lUyFJEtHR0VRXV6v638loNBIWFqbpPdzc3HB3d2fbtm38/e9/p7u7W/Xa5cqyPDH/5S9/IT4+noiIiBmTpy7H6Ogozc3NRE6b6HEpurq6GB0d1ZQePdsI3ra2NsbHxzX5VgSC+aK0tJSuri5hQhesesSY3uWBFBiI/rbbweq7NJuR9+3FfOSw5jG+VrN6V1cXZWVlC7DbpSHQ3ZE/fXotP/9EOu6OloeiXUPjfOnFQh75awEdA7OPdJX09uhi70RK/xI4eFkuyuMolX9HKf4Nyqj6J+cCdYSFhTE2NkZb21TwpFazOVi6KiMjI6qT1yMjI2lublY93hcspvbIyEji4uL4y1/+onrdcmXZFSGKovDss8+yc+dOJEkiMDDw8osmqaurw9vbW3XYYHV1NeHh4RgMBk3vMd3ErigKFRUVREdHo7dOEBEIFomqqioaGxtZv369KEAEqx5hTl8+SC4u6G++BSk+wXZNKS3F/PZbKBoSocFSiKxfv576+npNQW7LHUmSuGNNCHseu5adSVMDa9493cp1v9jPqwWNF31qLnnGWgIOA9dPXew5i5L3Y5SW46IrMo/o9Xqio6NndEO0ms0BDAYD4eHhqsfvurq64u3tPWNM8OUICgpCkiR27tzJr371qxX/fbDsipD9+/fT0dHB+vXrCQ8PV32wl2WZ2tpa1f6RkZER2traVHdNYHYTe1dXF4ODg0RERKi+j0AwH9TX13P27FnWrVuHi4vLUm9HIFhwpmeFCHP60iPp9eivvRbdpk1glSK3tVlS1qdNHFKDi4sL69ev5+zZszOmFa0G/Nwc+O39WTxzbyZezpbhCr0jJr7x6inu++NxajtnL9okgwO6+LuR0h4Gu8npZOZRlLMvoZz+A8pY32J9CqueiIgIBgYGbF2M2Ub4qr1Pa2ur6ulakZGR1NbWqh7OoNfrCQsLY/369XR0dHDgwAHVe1uOLLsi5Nlnn+W6667DYDBoOti3trYiSZLq8bg1NTX4+fnZMj7U0NjYeIGJvbKyksjISE3TuwSCK6WtrY3i4mJycnI0BWwKBCsZf9EJWZboEhLR33ILODtbLoyMIL/3LuZDh1A0yFk8PDzIycnh1KlTM6QxqwFJkrg5LYg9j13LTWlTxfSRc11c/9QBnt1Xhck8+0FU8kpEWvtt8F87dbGr1NIVaT2x4p+GLweMRiORkZEzMkICAgIwGo2qzeYAzs7O+Pn5qe5uBAQEIEmSpu9365nzuuuuW/EG9WVVhLS3t7N79262bduGp6enpqe7dXV1hIeHqx7LW1dXp6kLMpuJvbe3l66uLk3TuwSCK6W7u5u8vDwyMzNVZ+EIBKuBmZ0QUYQsJyRfP/R33IkUMjWZUjlThvm111Da1Wde+Pr6kpmZSV5e3qow3p6Pt4s9v7x3DX/6dDbBHhZz/9iEzE/eP8vNvzzEyfrZPR+S0Qld4n1IKQ+BcVJyPjGMUv4iSslvUUZX39dqsYmKiqKrq4ve3l7AUjhGRUWpNptbsXY31I7rDQ8P1yTJcnFxwdPTk61bt7J7927aNfx8LTeWVRHypz/9idTUVEJCQjQZ0oeGhujs7CQ8PFzV67WGGYLl4DcyMjLDxH7u3DnCwsLENCLBojEwMMCxY8dISkrSNFBBIFgNiNT05Y3k4IDuhhtmpqz392F+43XMBfmqww2Dg4NJSkri+PHjDAyszilo2xL8+ddj1/Lgxkh0k89Oy1sHuOM3R/jvN0oZHJuYdZ3kk4KU8+/gt2bqYne5pSvSdFDkilwB9vb2hIWFzcgICQkJYWRkRFNBrDWMMDw8nM7OToY0eKmioqIIDQ0lOTmZP//5z6rXLTeWTRGiKAq/+93v2LlzJ3q9XlNuR21tLf7+/qqNuVrCDK2cb2K3TuISXRDBYjEyMsLRo0eJjIwU33eCqxJnozOudpanwEKOtTyxpazfcefU9CxFQSksxPz66yiTT5kvR1RUFBERERw9elRTevVKwtnewH/elMTuL24kKdASRaAo8L9Ha7nuF/v54MzsEh3J6Iwu6VOWrojNKzKGUvkPlJPPoAytLinbYhIVFUVzczOjkyGcBoNB8yhdrWGEDg4O+Pv7azLBBwYGotfr2blzJ7/73e9WrCRv2RQhJ06coKOjg+zsbMLCwlTnbciyTH19vWr/SE9PDwMDA6rDDMFy+GttbZ3xHnV1dfj4+AhDsGBRMJlMHDt2DD8/PxISEi6/QCBYpVi7IW3Drcjiqe+yRfLwQH/LreiysmzhhnR2YH7tH8ilp1UdmhISEvD19eXYsWOaRqWuNNJCPHjjSxv5j48l4GC0nH1a+kZ56C/5fPGvBbT3z55Kb+uKBG6Yuthfg5L/E5S6PSiytnHJAmzTT6cXBJGRkZrM5jAVRtirsuiOiIigvr5etUFdp9MRFhbG2rVraW9vJy8vT/XelhPLpgh54YUX2LRpky3ARS0tLS0YjUbV0qq6ujpCQkI0Gclra2vx8/PDedJ0J8syNTU14mm0YFFQFIXCwkLs7e1JS0vT1METCFYbVl/IhDxBt9DBL2sknQ7dmiz0t94K7tYn9mbkI0eQ333nsqN8JUkiPT0de3t7CgsLV+zTXjUY9Do+f200ex7bzKZYH9v1d063sv0X+3nheB2yfOHnLxkc0cXfNZkrMrlOMaPUvI1S+HOUgdU1aWwxOH9ilbOzM76+vpp8G0ajkZCQENVrfH190ev1tLSol5lag7k3bdrECy+8oHrdcmJZFCEmk4mXXnqJjRs34uTkpCkhvba2VrUh3WQy0djYqGnq1mwm9paWFgwGA35+fqrvIxDMlfLycgYGBsjOzlbdIRQIViszzOmDwheyErCZ1pOSbdeUpibMr/4d+dylc0F0Oh3Z2dkMDAxQXl6+0FtdckK9nPjLZ3J48q4MvCfH+Q6MTvB/dp/m9l8f4XTT7GN5Jc9YpLXfgtBtwOR5aLAJpeAXyNVvopjHF+kzWPn4+/uj0+lmFARRUVHU1dVpHtfb2NioqosnSRIRERGaCh13d3ccHR3ZsGEDL7744orsFi6LE82ePXvQ6/WkpqZq6oIMDAzQ3d2tek1jYyOurq6aRpo2Nzdf0Gmprq7W7CkRCOZCU1MT1dXV5ObmYmdnt9TbEQiWHGFOX5lIBgP6jRvRfWwXWEfjj48jf/QR5o8+RLlEarSdnR05OTlUV1fT1NS0SDteOiRJ4rbMYD742mY+nhViu36qsZdbfnWI775xmr6RCw+ckt4OXfQtSGu+BrZiXYb6D1Hyf4rSe+6CNYILmc3T4evri8FgUG02B8vIaVdXV9UjfsPCwuju7mZwcFD1e4SHh5Oamoper+eDDz5QvW65sCyKkOeff56tW7eiKIomr0Z9fT2BgYGqplMpikJtba3mUMHzTey9vb309fVp2qdAMBd6e3s5efIkWVlZuLq6LvV2BIJlQYAoQlY0upAQ9Hd+HGmanFk5dw7zP15FvsRhzc3NjaysLE6ePKlaZ7/S8XS244mPp/Py59YR62fxn8oKPHe0ju0/38/uk02zStQktzCkrMeRInaBNDmlbKQDpegZ5IpXUSZm95gIpggLC6Ovr4++PkvnyTquV20auhVrd0ONlNDe3p6AgADq6+tV3996Ft2yZQvPP/+8pr0tB5a8CBkYGGD37t2sX78eT09PHB0dVa1TFIWmpiZCQkIu/2IshvTh4WFNY037+vro7++fUXDU1NQQEhIinkoLFpTR0VGOHz9OfHy8pklxAsFqJ9A5yPZvUYSsTCQHB/Tbd6Dbug2sf0uHhpDffQfz/n0oo7MfkgMCAoiPj+fEiRO26UVXA+uivHn7K5v49xsScDRaiorOwTEe+1sR9/7hGFXtF44xlnQGpIidSNnfBLdp8QXNh1DyfoTSVbZY21+R2NnZERISMqMbEhoaSn9/v60wUUNwcDDDw8P09Mye/3I+oaGhNDY2qvY/OTo64uHhwYYNG9i9e7emLspyYMmLkN27dxMcHEx0dLTqnA+Arq4uzGazal9GbW0toaGhthG7atcEBwfbTOzj4+M0NTVpCjkUCLRiNpvJy8vDx8eHmJiYpd6OQLCsCHSZKkKaB1e/NGc1o4uJsXRFpj0cVCoqMP/9b8iVFbMexGJiYvD29iYvL0+TPn+lY2fQ8YXN0Xzw9c1cn+xvu36supuPPX2QH79XzvD4hdkiknMAUuajSDG3g26y4BvrRSn5HXLpcyhj6g/UVxuRkZE0NTXZvBZGo5Hg4GBNvg2DwUBoaKjqNX5+fpjNZrq6ulS/R0REBNHR0QQFBbF7927V65YDS16EPP/882zZsgVZlgkKCrr8gkkaGxsJDg5WZdS1Fg9apFgmk4mGhoYZaxoaGnB3d8fdOuVDIJhnFEWhuLgYWZbJyMgQviOB4Dx8HH0x6CwPk1oG1euzBcsTycUF3cd2WQIOrVMrR0eR9+1DfuftC3JFJEkiIyMDWZYpLi5e1ROzZiPYw5Hf3p/Nnz6dTainRTliMiv8ev85rvvFAd4rbb3gayJJOqSQzUhrvw2e8VP/j46TKCf+B6XpkAg5nAV3d3fc3NxoaJiaMGY1m09MzB4mORsRERE0NTUxPn754QA6nY6goCDVPhKAoKAgZFlm8+bNK06StaRFSGtrK3v37mXdunX4+fmpHptrNps1SbGampps30xqaWpqwsXFxWZin6unRCDQQm1tLW1tbeTk5KC3Jg4LBAIbep3eNiGrebD5qjuErkZsAYefuAspcppXpLnZkitSWIgyreuh1+vJycmhra1N01Pp1YQlcX0zX9kag53ecpRr6h3hCy8U8Kk/nZhdouXojZT2BaSET4LBEjmAeRSl8lWUwidRBtQffK8Wzvd0eHh44OzsrKlIcHNzw93dXfVQhdDQUJqbm1V3+qzDk9avX89HH31EW9vKCatc0iLklVdeISUlBX9/f01SrLa2Nuzs7PD09FT1+sbGRk1G8ukFh/VJdFdXF2NjY5q6NQKBFnp7eyktLWXt2rWqvVECwdVI0KQka8g0SP94/xLvRjBfSM7O6HfsQHf9DWANAjabkQvyMb/2D5RpI1MdHR3Jzs6mtLRUk0Z/NeFop+fxnfG89+gmromZyhY5WNXJDU8d5PtvlzEwOnOKliRJSAE5SDnfgYCcqf/HQD1Kwc+Rq3ajTFx8UtnVRnBwMKOjo3R3WzKJ5jJKFyAkJER14eLp6YnRaNRUTISHh+Pv709ycjKvvPKKpr0tJUtahDz33HNs3rwZSZI0ZW40NjYSEhKiSqoyNDRET0+PpuKht7eXoaGhGZ2Wuro6wsLCxNNpwYJgMpnIz88nNjYWb2/vpd6OQLCsCXKZ+t3cInwhqw5dWBj6j38CKS1tKm29txfzW29i3r/fZlz38fEhNjaWvLy8FZmRMF9E+brw/Gdz+M19awj2sDzAmpAV/nCohq0/28+rBY0XBB1Kdi7oEj6JlPEVcLJ6TGRo3IeS9z8onSWL/FksT/R6/QWejuDgYAYHB1Wbza1renp6GLpMQCdYCh0tRQtYsk0kSWLz5s0899xzqtctNUtWhJw9e5bS0lJycnIIDg5WfbgfHx+nra1NtRSrsbERPz8/VWN8rdTW1hISEmIzsY+NjdHc3KypWyMQqMXqA3FyciIuLm6ptyMQLHtmmtOFL2Q1IhmN6HPXob/9Dpj2kFKpODvDuB4XF4ejo+NV6Q+ZjiRJ3JASyAdf28yj22OxN1iOd52DY3zj1VN8/LdHKJkl6FDyiEbK/iZS5C6QJgf3jPWinP4jcskfUEbVH7RXKxERETQ3NzM2mWVjNBo1mc3BMn7Xz89PdWEREhJCW1ub6uJar9cTFBREbm4up0+fpqKiQvXelpIlK0JeeOEF1q1bh6urq6aAwpaWFtzc3FTlJiiKolmKZTKZLjCxNzQ04OXlJbIaBAtCfX09HR0drFmzRhjRBQIVBIkJWVcNkrc3+ptvQbdx4wXGdfObb0BXF1lZWXR0dGjKV1itONrp+dqOOD74+mZuSJ4a715Ybwk6/M5rxXQPzTRISzoDUvjOC43rXactxvWGfSjy1TOJ7HxcXV3x9PS8wKA+fXKWGqzdDTXFsqurK25ubprCEcPCwnB1dSU3N5cXXnhB9bqlZEmKEEVReOGFF7jmmmswGAx4eXmpXtvQ0KC6C9LX18fIyAj+/v6Xf/EkLS0tODs72yZgCUO6YCHp7++npKSENWvW4ODgsNTbEQhWBNPlWKIIWf1IOh26pOQLjOu0tWH+52sY806QlZxMSUkJ/f3CIwQQ6unEb+7P4vnP5hDtazGhKwq8lNfAlif28odD1YxPzJyIJTn5WozriQ+AcfKhqzyOcm43SuHPUfrrFvvTWDacb1B3d3fH2dmZ1tZW1fcICAhgZGREtYdJqyTL29sbg8HApk2beP7551dEZ3BJipBjx47RNfn0IiwsTPXT3+HhYbq7u1UHDjY2NhIUFKQpG8TqN7HS3d3N+Pi4CIwTzDsTExPk5+cTHR2tyRMlEFztTO+EiDG9Vw824/oNN8C0UflKeTmeH33IGgd7CvLyNI1PXe1sivXlvUev5f/sSsTF3nIW6h+d4Ptvn+H6Jw/wwZm2GYdVSZKQ/LMsxvWgDcDk+WywCaXwycnE9ZEl+EyWlsDAQMbHx20GddBeJBgMBk3jd4ODg+nq6mJkRN3XW5IkwsLCyMrKoquri+PHj6ve21KxJEXI888/z7XXXmsLcVFLU1MTvr6+qp4YW6VYarsmYEmp7uzsnLHGmkciDOmC+aakpASj0Uh8fPzlXywQCGx4O/pg1FmkOaITcvWhCw1Df+fH0eXmTkm0xsfxq6khq7GB2kOHVsRT4MXCqNfx0KYoPnp8Mx/PCrF5/Wu6hnjoL/nc/8fjnGmZ2UGSjE7o4u5CynwUnK1Fv2JJXD/xPyjtJ6+qr7Feryc4OHhGARESEkJHRwejk4MS1KBFkuXg4ICPj4+mQscaym3thix3Fr0IMZlMvPzyy2zcuBEnJydN2R1apFgdHR0A+Pr6qr5/U1MT3t7etvGosixryiMRCNTS2NhIa2sr2dnZqgI3BQLBFDpJZzOnt4iskKsSSa9Hl5aO/q67kaYN9HAaHyeisoKRf7yK3NQkvjem4efqwBMfT+eNL11DTsSUDP7wuS5ufOYg3/lnCZ2DM8fzSu4RSFmPI0XdMpW4Pt6PUvYcSslvUYY7FvNTWFJCQkJoampCli0yNkdHR7y9vVXnf4BlohtMnVEvR2hoqOZMEicnJzZu3MjLL7+87KfGLfrpZ+/evRiNRpKTkzVNm+rr62N4eJjAwEBVr9cyxtfK+UVOW1sbRqNRk2dFILgco6OjFBcXk56eLvJABII5EuRikeUOTwzTN9a7tJsRLBmSkxP6zVvQ33rbjCladj09yO+8jflvr2DOz0OZJqO52kkNdueVz6/j1/etsaWuywq8dKKerU/s4zf7zzE2MWVEl3R6pLBtSDn/Dt7JUzfqLkfJ+xFyzTso5sunga90vLy8MBgMtLe3265plWTpdDpNawICAhgaGtKUhRMeHk5KSgp6vZ69e/eqXrcULHoR8vrrr7Nu3ToURdGU3dHY2EhgYKAqf8fExATNzc2aOhgDAwMMDAzM2JNViiUmFgnmC0VROHXqFP7+/iL4UiC4AsSYXsF0JD8/9Lfcim7HDvCYFmTc349y8iTmf7zKxD9eRT5ZiHKVhhtOR5IkPpYSyJ6vbebbNyTY/CIDYxP86L1yrvvFAd493TLTL+LghZTyEFLyZ8Fu0pOjmKHuXxaJVsfqHpNsze+YPiUrKCiI/v5+BgYuTKi/GCEhITQ3N6vyLhmNRgICAjQVOkFBQSiKwrp163jjjTdUr1sKFrUIURSF119/nczMTJycnHB2dla9Tou/o7W1FUdHR9uEKzU0NjYSEBCAcVJfajKZaG1tFVIswbzS2NhIT08PqampS70VgWBFY+2EADQPqv8DLVi9SJKELjIK/Z13Im+6lm57e2Ycibu7kfPzMf/tFSb++U/k4mKUwcGl2u6ywMGo55HN0ex9fAv3rg21+UXqu4d55K+F3P27Y5ysn8oKkSQJyTcNKec/IHQ7SJN+2bEelNI/rXqJVkhICK2trTaZk9FoxN/fX1OR4O7ujqOjo+pEdC0+EgBnZ2ecnJxYs2YNr7/++rIuDBe1CCkuLqanp4e0tDTVE64AOjs7kWVZtb9DqxRrtiKnubnZNqdZIJgPRkZGKCkpIT09HTs7u6XejkCwoglxnTZAZKDhEq8UXG1IOh12CQmYr9vJ/oBAzGvXwvmj+js7kI8fw/zSi0y88QZyaSnK8PDSbHgZ4Otqz//ckcbbX9nE+ihv2/UTtd3c/usjfOnFQmo7p9K+JYM9uuibkbK/BZ7TQnatEq3qt1HMM/0lqwFrTl1LS4vtmtYiYbaOyqXw8/NDlmW6urpU7zM4OJiUlBS6urooKSlRvW6xWdQi5PXXXyc7OxuDwaBp5G1TUxPBwcGqDLxjY2O0t7dr6mD09PRgMplmjEnVOllLILgU02VYan1NAoHg4oS4Tk1WbBBFiGAWAgMD8QwKomhsHP3Nt6C/5150OTng7T3zhW2tyEcOY37xr5jfeRu5vBxlbPUdoNWQFOjGiw/l8rsHsojymVKrvF3Swo5f7Oe/3yila5p5XXL2R0p7BCnp38Dew3JRMUP9HpQTP0LpOLWsn8TPhfMLCH9/f0wmEz096tPlQ0JCaG9vt6WwXwqdTkdQUJAmA3xAQAD29vZkZ2fz+uuvq1632CxqEbJ7926ysrLQ6/V4enpefgGWw1tra6vqoqWpqQlPT0/VUi+wGNKDgoJsY3hHRkbo6urS1K0RCC5FQ0MDvb29QoYlEMwT04sQ0QkRXIzU1FR6enpobGxEcnVFl56B4Y470X/iLnRZWeDhMfViRUFpakI+eADzC89jfv895KpKlPHVb7qejiRJ7EwK4P3HruV7t6bg42Lp3E/ICv97tJbNT+zjl3srGRk3214v+WVYskXCzpdo/Rml+Dcow+qkRyuB8/M79Ho9QUFBqjsbYJFMeXp6qk5EDwwMpLW1VXVB5+npiU6nIzs7m927d6ve12KzaEVIc3MzxcXFZGRkEBgYqFoq1dvbi9lsto01uxxaOxiyLNPc3Dwjr6SpqQkfHx8xuUgwL4yMjHD69GkyMjKEDEsgmCdc7dxwn3zy2thfv7SbESxb7OzsSE9Pp6SkZEbom+ThgW5NFvqPfwL9HXciZWSAq+vUQllGqa9H3rvXUpB8sAe5phrlKgpCNOp1PLAunH3f2Mqj22NxNFqKi8GxCZ74VwVbfraXV/LqmTBbRtZKent0UTcjrf0WeE7Lv+o5i5L3E+Sq11dF0OFso3mtZnPr+F41aJmS5ePjw8TEhOopWZIkERAQQEZGBqdOnZohH1tOLFoR8tZbb5GUlISXl5cmOUprayv+/v6qpFjWMWZaOhjt7e3o9foZY3iFFEswX0yXYWmRIAoEgssT6hoGQNtwG6MT6gPDBFcXgYGB+Pv7c+rUhdIgSZKQvL3Rr81Bf/c96G+9DSklFZycpl5kNqPU1CB/8IGlINn7EXJ9PYrZzNWAi72Br+2IY/83tvDJnDD0OstD5Lb+Mb79Wgkfe/ogH05LXpec/JHSvoCU/Bmwn1S9KGZo3Ity/AcoLcdQFPWH9eXI+QWEt7c3er1+xvjeyxEcHExPTw9DQ0OXfa1Op8PPz4/W1lbV9w8KCsLLy4vExETeeust1esWk0UrQl5//XVycnI0GcxhqghRQ0tLCz4+PpqeNluzQaydGeuoNaHbF8wHTU1NQoYlECwQ083pIjldcClSU1Pp7e29pK7eIivyQ79+PfpP3of+ppuREpPAwWHqRSYTSlUV8vvvYf7rC5gPHLCEImp4Ar5S8XNz4Ie3p/L+o5u4LmnqXFbZPsiDf8nnnt8fo6ihF7BO0Uq3ZIuE7wTdZLK9aRDl7MsoBb9A6atZgs9ifggKCmJgYID+fkvSvNVsrmVKlp2dHb6+vqoLi4CAAE1FiK+vL7Isk5OTs2x9IYtShAwNDfHhhx+SmZmJt7e3qqwPgOHhYQYGBlQXIVq8IzD7GN7zR/UKBHPFZDJx+vRpUlJShAxLIFgAQt3CbP8WvhDBpbCzsyMlJYXS0lJVKdKSJCEFBqK/5hr0992P7mO7LMns03+Xj42hnC23hCK++FfMhw+jaNDtr1Ri/Fz5/QPZ/P3h9WSGetiuH6/p5rZnD/PIXwuoarfkZkh6e3SRu5DW/jv4pk/dZLAB5eRTyGXPo6zAsNHZ8jvOH9+rBn9/f9WFhb+/P/39/TNkhZfCYDDg7e1NZmYmH3zwAcPLcPrbohQhH3zwAb6+voSFhWmSSrW2tuLt7a3qADc+Pk53d7emIqSlpWXGGF7rqN7p/hCBYK6cPXsWV1dXMeBAIFgggqdPyBK+EMFlCA4OxtnZmYqKCk3rJJ0OXUiIJZn9/gfQ7dyJFB0N0x+ojoyglJVifvMNzC+9iPnokVVfkKyN8OK1Rzbw6/vWEOE9JV9793QrO588wON/P0VDj+XgKzl6o0v+DFL6l8B5mtKkvQDl+A9R6vagmNUf3pcD54/mdXNzw9nZWZP/IiAggK6uLsZVDD+ws7PDy8tLUzckODiY8PBwfHx8+OCDD1SvWywWpQh54403yM3NRZZl1V0N0CbFamtrw83NTZOZ/HzvR1dXFxMTEzNG9QoEc6G/v5+amhpSU1NVD2EQCATasHpCQHRCBJdHkiTS0tKorq62yWg030OvRxcegX7bdktBsm07UkQETE7XBGBoCOX0aUtB8uJfMR8+hNzcvColW9OT1//fLcn4uNgDICvwj8JGtv1sH9994zTtAxbPluQZi5T1DaTYYOoGGAABAABJREFUj4NhsnCRx1Fq3kbJ+9GKSl339/dnYmKC7u5u27XQ0FBNkiwnJydcXV1Ve0m0SrL8/f2RZXnZpqcveBEiyzJvvvkmmZmZuLq6qi4STCYTXV1dqjsbbW1tmqVYnZ2dM7wfjY2NqvNIBIKLoSgKJSUlREZGirBLgWABEYGFAq24ubkRGRlJSUnJFR92JaMRXXQ0+ut2WgqSzVuQQkNh+oOn4WGUsjLkt9+yFCQHDyA3Nq66gsSo1/Gp9REc+OYWvn1DAu6OFkm7yazw3NE6Nv90Hz95v5y+EROSTo8UfA1S7v8HwZuwHUVHuyyp66eeRRlQf5BfKnQ6HcHBwTOKjsDAQDo7OzVJsrQUFgEBAZru7+joiIuLCxkZGbzxxhuapnctBgt+2s7Ly2NsbIykpCSCgoJUr+vo6MDJyQkXF5fLvlaWZc1FSHt7Oy4uLrY8EWseiZDOCK6UpqYmBgYGiI+Pv/yLBQLBnPFy8MZp8mlqw4CQYwnUER8fz8DAgKbwt8sh2dmhi4tDf8PH0D/wKUtBEhY2s0MyMoJSXo787juWKVv79626KVtOdgYe2RzNgW9u5StbY3Cym8xfM5l5dt85rvnJR/xqbxVDYxNIRmd0sXciZX8TPGKnbtJbiVLwM+TyF5e9XyQ4OJiWlhZbQevs7IyLi4umKVkBAQG0tbWpKhBcXFxwcnKio6ND0x6Tk5MZHR0lPz9f9brFYMGLEOtULL1er2niVEtLi+qiorOzE4PBgLu7u+r7n29i7+npQZblGaN6BQKtTDeji+EGAsHCIkmSLbSwZbCFCXllacoFS4PRaCQ5OVm1SV0rkr29pSC5/gZLh2TrtgslW2NjKBUVlilb1rG/tbWrJofE3dHI4zvj2f+NrXxmQwR2estxc2B0gp/+6yybn9jLHw5WMzJuRnIJREr/omWkr4M1zV6B1hMox3+IXPMuysTyTLD38vJCluUZaelaJVMeHh7o9Xq6urpUvV7r/QMDA9Hr9ctyStaCFyG7d+9mzZo1GI1G1dIUWZZpb2/XLMVSq72frXOiJY9EILgYZ8+excXFRXTUBIJFImRyQpZZmaB1UP0fZsHVTUhIyJxM6lqR7OzQxcRYJFsPfArd9h1IUVEw/SHV+Lhl7O+ef2F+/i+Y9/wLubICZXTlZ9/4utrz3ZuT2fuNLdydHcpkxAidg+N8/50zbPrpXv54qIaxCXlypO93kKJvBcOkdF8eh7r3UU4sz3wRnU53wYQrLZ0NmAoW1CLJamtrUy0ndHNzw2g0smbNmmWXnr6gJ+6amhoqKys1p6RbK0o1XQmrjEqL4b27uxudToenp6ftmtbxvgLB+VjN6GlpacKMLhAsEsIXIpgL82FS1/yeRiO6qCj023dYOiTX7USKiZ1ZkExMoNTWIu/bZ+mQvP02culplMHBRdnjQhHs4ciP70xjz9c2c1NaoM020zk4xvfeLuPan+7lz4drGDNLSKFbkXL/DwRfC9LkMXW835Ivkv8ESvfZpftEZuH8IsTT0xNJkmYY1i+HtQhRU1hYz8Zq7y9JEoGBgWRkZFBRUUFtba3qfS00C1qEvPnmm6SlpeHi4qLJD2ItKtQc5AYGBhgbG5tTAKL1/kNDQwwODoqpWIIrorS0lIiICGFGFwgWkekTsoQvRKAFNzc3IiIiKC0tXfT3lgwGdBER6LdutXRIrr8BKT5hZjCioqA0NyEfOYL5pReZ+Oc/kU8WovT0rJgJUucT7evCL+9dw3tfvZZdKVMPftsHxvi/b5Wx+Ym9PHekljEc0MXeYckX8ZkW9jvUjFL8a+Ti36EMLY/Op7+/P4ODg7bkc2tno62tTfU9fH19GRsbY2Bg4LKvlSRJU74IWMIVXV1dSUtL480331S9bqFZ0CLkrbfeIjs7G7BE2qtFS1eitbUVX19f9NO1lpfA2jk5X4rl4+MjNPyCOdPR0UF3d7cwowsEi0zItKwQ0QkRaCU+Pp7u7m46OzuXbA+SXo8uLAz9tdeiv+9+9DffgpSaBq6uM1/Y2YGcn4/51b9j/tvfMB8/jqJBlrOciA9w5dn7snj3q5u4IXnqPNbWP8Z33yxlyxP7eP5oLeN23uhSHkTK+DK4THU96S5DyfsJcsWrKONL2yUyGo14e3tfIMnSkhei1+sXND3degbPzs7m7bffVr1uoVmwIsRkMnHkyBGSkpLw8vJSXSQMDAwwPDysuiuhVUY1ODjIyMjIjM6JVjmXQDAdRVEoKysjNjZWJKMLBIuM6IQIrgQ7OztiYmIoKytbFod5SadDCghAv24d+rvvQX/nx9FlZcH5D3L7+1CKT2F+43XMf30B88GDyA0NK27SVmKgG7+5P4u3v3INO5OmzmGt/aP85xulbH1iH88fq2PMORIp6+tICfeBnXUIkQzNh1COfx+l/oMlDTs8v/Ph6+vLyMiIqs7G9HuoLSx8fX0ZHh5mUKVMT6/X4+XlRWJiIocOHWJimQxAWLAipLCwEL1eT2RkpKYDfltbGz4+PhimJ5FehNHRUXp7ezUHIPr6+trurzWPRCA4n5aWFkZGRoiKilrqrQgEVx2+Tn4YdZYuduMKyBYQLD+io6MZHh7W9OR6MZAkCcnLC92aLAx33In+nnvRrV+PFBg4M4tkZASl/Azye+9ajO0f7EGuWFnG9uQgd373QDZvfeUadiROnema+0b5z9dPc+1P9/LHQ7WMeGUi5f5/SBG7QDf50M88ilL9FsqJH6K0FSyJef38/A6DwYCvr68mSZa/vz+9vb2MqvjfzWg04uPjozm4MCoqCr1eT2Fhoep1C8mCFSH79u0jPT0dAB8fH9XrtHQ22tra8PDwwGG6hlLj/dvb23F1dbXlhQgEWpBlmTNnzhAfH6+qcBYIBPOLXqcneNKc3jTQgLzMpucIlj8Gg4H4+HjOnDmz7MLcpiO5uqJLSUV/082T4YibkcLDZ47+NZlQamqQ91uM7RNvvI5cVITS3b0sOj2XIyXInT98Kps3v3wN2xOmFDHtA2N8/50zXPOTvfzqQB0DAVstYYeB64DJgmysB+XM8ygFP0PpPrOon+9s+SBafRsODg54eHioLlzmKslKTU1l3759qtctJAtWhHz44YckJycjSZLq/I6JiQm6u7sXTIo1NjZGT0/PjM6JkGIJroSGhgYURSE8PHyptyIQXLVYfSFj5jE6h9WHeAkEVsLDw1EUhYaGleErkhwc0MXFo995vcXYvuM6y6Qte/upFykKtLUh553A/I9XMb/yMuYjR5CbGpe9bCs12J0/fnotb375Gq5PnjqjdQ+N88S/Ktj444/42f5WekPusIQdek7zYw42oRT/1pK83r94Es3zi4KAgAC6u7sZHx+f8z0uhZ+fH93d3aqlVe7u7kiSREpKCh9++KHqPS0kC1KEWP0gCQkJeHl5qR5X2t3djYODA05OTpd9rdlspqOjQ1MR0tbWhru7O46OlvnTc0laFwismM1mysvLSUxMFPkyAsESInwhgitFp9ORkJBAeXk55mV+QD8fyWhEFxlpmbR1/wMWY3t6Onh4znzhwABK6Wnkd95ZMbKt1GB3fnt/Nu8/ei23pgfZckYGRif45d4qNv74I76/r5eOyM8gpT0y07zeW4lS+HPk0v9FWYSHE+fngzg6OuLm5qZJkhUQEEBHR4eq70EnJyfs7e1nBCVeCp1Oh5eXFwkJCRw+fHhZ+EIW5ORUUFCAwWAgIiJCU5ehq6sLHx8fVUVLR0cH9vb2uJ4/PeISnN85mS0vRCBQS3V1Nfb29prGTwsEgvkneEZWiPCFCOZGcHAw9vb2VFdXL/VW5ozN2J6Ti+ETn0B/9z0WH0lQ8EwfyQqTbcUHuPLUPZl89HVL6KFRb/lcRkxm/ni4hk0/2cv/OTBOU9QXkBI/NS15HegoQsn7H+SKv6GM9S3YHj09PdHpdDPyO7RKplxdXbG3t6ej4/JFkyRJ+Pj4aJrsNt0XUlBQoHrdQrEgRci+fftsgW1a/CCdnZ2qR/l2dnbi5+enustiNpsvSGHXkkciEExnfHycyspKkpKSxPePQLDETO+ENIpOiGCOSJJEUlISlZWVNoPxSkdyc7P4SG68Ef2nPm1JbFcr22pcfrKtCB9nfnxnGvu/sZV/Wx+BvcFyjB03y/z1eD1bfnaAbxzQcy7iy0ixd4LRxbJQkaH5CMrxHyDXvIMyMf/dn9nyOwICAmhvb1fdXZMkCT8/P9WFhdYixHrGTk9PXxa+kAUpQqx+EJ1Op8kP0tPTo7po6ezs1FTgdHV1YWdnZwuSmy0vRCBQy7lz53B3dxcBlwLBMkBkhQjmC19fX9zd3amqqlrqrcw7kp2dJbFdrWzr3Xcw/+U5zO+/h1xWhqJh3OxCE+ThyH/fksyhb23j4WujcLazmPPNssI/Chu57qkjPPSBA4UBX4bwG0A/WXTJ41D3L5Rj30Np2Iciz68k6fzkc3d3dwwGA11dXarv4e3trakI6enp0ewLSU5OXha+kHkvQqb7QazR9WrQ4gcZHx+nr69PcwDi9K7HbHkhAoEaTCYTNTU1xMXFLfVWBAIBEOQSjE6y/DlrWEQjqmD1IUkScXFx1NTUrJpuyGyolm1NTKDU1yMfPoT55ZeY+PvfMB89umy6JL6u9nznY4kc/vY2Ht0ei5vD1JTKD8vb+fgfCrjjXVf2uX8OJWgTSJOTxCaGUM7tRjn+A5SWYyjy/Hwu1nwQa36HNT1diyTLx8eHvr4+Vd9/Tk5OODg4zJCAXYrpvpAjR44s+ff4vBchBQUFGI1GzX4Qa2dDTdHS1dWFi4uLptG87e3tF0zFmp4XIhCopba2FhcXF02dOIFAsHAY9UYCnAMBiydkOWraBSsHHx8fnJ2dqaurW+qtLBoXyLa2bUeKi4PJQT42entRTpcsuy6Jh5MdX9sRx5F/387/uTGRQPep82FRQy+ffeks29/w4g27T2H2XTO1cKwH5ezLKHk/mpeMEWs+yPSiw9/fX5XHw4qDgwMuLi6quieSJOHt7a2p0+Lv709kZOSyyAuZ9yJkrn6Qrq4u1Z0Nq4FdLSMjIwwNDc24//lFiUCgBrPZzLlz54iNjRVeEIFgGWGVZA2aBugdUzctRiCYDWs3pKqqasVNypoPJDs7dNHR6DdvQX/f/ehvvwNddjb4+y/7LomLvYGHroniwDe38ou70kkImBpeVNs1zGNvNLLun4G8It+FyX3aWN+RDkvGSP5PUTqKr+hBhr+//4y8EG9vb5v6Ri1avB5afSHW8/Ny8IXMexGyXP0g7u7uGI2WVF2z2Ux3d7d4ki3QTENDA3Z2dsJLJBAsM8LcprJ66vqvnifYgoUhICAAOzu7FZMbslBIkoTk44Mucw2GW261ZJJo6pKUovT3L/q+jXodt2eG8O5XN/HcZ3LYED31ELpraJzv7Okhc3ckfx6+mVHnyKmFQy0opX9CKfg5StfcAg+tPg1rAWs0GnF3dxe+kFmY1yJkMfJB5uIHOb9o6e3txWg04uLiovoeAoEsy1RWVoouiECwDIlwnzpI1PbVLOFOBKsBSZKIjY2lqqpqWaeoLzaSvb3GLslhzK+8zMTfXsF8+DByXR2KhvC+K96vJLE5zpcXH1rHm1++hpvSAm1ZI8PjZr53cJTkf8bw8/YdDNgFTy0cbEAp+S3KyadReio1vaeLiwsGg4He3l7btbl0KxbKFyJJ0rLxhcxrETLdD6JlatBC+0HOL0K0vJ9AYKW5uRmwzJIXCATLiwi3qSKkThQhgnkgODgYWZZtv/sFM9HUJenrQykrRf7X+5j/8hwTb76BXFiI0t6OskhFXmqwO7+8dw37v7GVT68Px8FoOQIrCvzypET6m4l8t3o9PbppA4v6a1BO/Qr51LMofbWq3sfq05hedGgtQrT6Qnx8fDT7QiIiIjAYDEvqC5lXV/a+fftIT0+fkx8kPDz88i9EuxRrNj9IZ2enOEgKNKEoCpWVlcTExIh0dIFgGSI6IYL5RqfTERMTQ2VlJcHBweLB5WWQ7O2RoqMhOtoiY+rqQmmoR25ogPZ2y2kfLP+3tRW5tRUK8sHeHikoCCk4BCkkBElDCPVcCPVy4v/eksJj2+N4Ma+evxytpa1/DJB4vtKFFyrT+XhYN99KqMFbmvSX9VSg9FSgeCUhRdyA5BZ2yffw8fGhubmZ+HiL78Tb25uhoSFGRkZwPL9Au8Q9Ojs7Vcm/vb29qa9XPxnQ+iA+LS2Nffv2kZubq3rtfDKvp6nF8INoNaV3dXXh4eFxgR9Ei5xLIGhra2NsbIywsEv/4hEIBEuDn7M/DgbLH3dRhAjmi/DwcMbGxmYYjQWX54Iuyac+je66nUhJSeB23vlwbMyS3n7ooMXg/sormA8fQq6tXVDplqezHV/aEsOhb23j6XsyyQj1AEBB4u/13uT+K4tvnk6hc2KadL+7DKXw58jFv0Xpr73ovX18fOju7ha+kMswb50Qqx/k5ptvXtZ+kJ6eHuEHEWimqqqKqKgo9Hr9Um9FIBDMgk7SEeEWQXn3GZoGGxk3j2Ont1vqbQlWOHq9nqioKCorK8VEzStAsrNDioiAiAgAlIEBlKZGlMZGlOZmGBubenF/H0pZH0pZmcVn4ueHLiQEKTgYfP2Q5lmNYNTruCU9iFvSgzhZ38Ofj9TyTkkLEzL8oymQ15v9uTO4mcfj6vAxDlsWdZ9B6T6D4hlv6YxM68SCxRdiNBrp7e21nVmtnY2QkBBV+/Lx8aGgoIDx8XHs7C79u2y6L0SNHWK6L+T555/HZDLZHtYvJvP2v2RhYSFGo5Hw8PA5+UHUMFc/yPSixdpJEW1VgVp6e3vp7e0lMjLy8i8WCARLhlWSJSuyCC0UzBsRERH09vbS19e31FtZNUiurugSEtHvuM6S3n7rbeiysiEgcKbBXVGgrQ25oADzG29Ypm699y5ycTFKZ+e8ZwJlhnny9D2ZHPrWNr60JRpPJyMTio5XGkPYuHc9/1GaSMvYNDlVz1mUk09ZPCO91VOf36QtQfhCLs28dULy8vJISEiwpTGqRfhBBMudmpoaQkNDl+QpgUAgUM8MX0h/DdGeMUu4G8Fqwc7OjpCQEKqrq8nMzFzq7aw6JJ0O/PyQ/PzQrVmDMj6O0tJi65QwvfgzmVAaGlCso5OtfpKgYKSgIJiUGV0pAe4OfPP6BL6yLZbdRU38+XAtZ9sGeLkxhH80BXF7UDNfiq4h1HHUssDqGfGIRYq4HskjBm9v73nxhXR1dREYGHjZ12r1hXh5eaHT6YiPjyc/P39JfCHzWoRER0cjy7JmP0hWVpaq13d1dREbG6t6T52dnbP6QdLS0lTfQ3B1Mz4+TmNjI5s3b17qrQgEgssgzOmChSIqKooDBw6QnJx8WWmM4MqQ7OyQwsNh8gG1Mjhok20pzU0wPfRv0k+i1Ez+vDs7IwUGIQVPFiZXKL13MOq5Z20Yd2eHcuRcF38+UsOH5e38rSmE15qDuC2whS9G1xDhNLmn3kqUokoUt0j8fXI53d2F2WxGr9fP8IVokWRVVqobEezj48OpU6eYmJjAYLj88d7NzQ1ZlomOjiY/P1/Ve8w381aE5Ofnc9ttt+Hk5KRaN9/T07OgfpDzTezCDyLQSl1dHV5eXri5uS31VgQCwWUQRYhgoXBzc8PDw4O6ujpND0MFV47k4oKUkAAJCRb5VW8vSnMTSlMzSkszTDevDw2hVFWiVE0e3N3cpjolgYFIKs6bs+5BktgY48PGGB8ae4Z56UQ9r+Q38GpzMP9sCeTWwFa+HFVNhPNkMdJfg0N/DVudHRmpMuIcvRXJ4KDZF+Lt7U1+fr4mX0hPTw++vr6XfC2AwWDAycmJyMhIXn/9dVX7mW/mpQgZGRnh7NmzREZGapJi9fT04Onpqeq1c/WDpKSkzLiH8IMI1KIoCrW1tSQnJy/1VgQCgQpC3cKRkFBQRFaIYN6JioqitLSUmJgYcY5YIiRJAk9PJE9PSE6xZIx0dVmKkuZmlNZWmD4hqr8fpb8fpbzc8rG7u6UYCQxECgicU6ckxNOJb16fwKPb43i/rJUXjtXxWo2O11sCuDmglYcj64h3HQTASTcCLe+jtO9D8c0k0Cmak9W9qt9rui/kcpIsSZLw8PCgt7dXVREC4OnpSWRkJOXl5ZpkYvPFvBQhp06dws3NDX9/f9VFBUBfX59q6ZbwgwgWm/b2dsxms6oZ3QKBYOmx19sT5BJM02AjtX01KIoiDouCeSMgIIDi4mLa29vFpKxlgqTTga8vkq8vpGegmM3Q3o7S3Iz8/7P358FxZdd9wP99va/oFehGYweIhQvAfTjicDhDakZypBnNuOLEI1uOEiVKxUrJkh1XXJbtKqtSseIkdjZVnJSVX6XKjsdS/X6WJVvbDMVlhuRwAzeAIPa1ge4GGuh9X97vD/D1ACCWewE0ugGcTxWLRPO913c4TfCdd865Z2Z6cT7J0mGIoRDEUOjjoMRoXBaUwGhk/p6hUsjwZpcLb3a5MOSL4P/dnsT/774Kf+upxjnbAv5F4wTO2581iudSgPcWLLiFM4IW6eE0lLVnIWg2vmeWsicsfSFSEMLKarXC4XDAaDTi8ePHO94Xsi1BSHd3dyE9aTabmc8LBoPMTemBQIBrd6K1+kGOHj3KfA2yv42Pj6OhoYGGExKyizSamjAddSOejWMuPosqPd0sku0hk8nQ0NCA8fFxCkLKlCCXA8+CCtnJkxAzGYhe72Kju8cDzC0ZmggAkcjidsGDg4tf6/XPghIXhOrqxXIuhqCk1WHEH37uMP7tL7TjBw9n8Je3J/BPu21oM0TxxfpJvFHthVGxODNEL08A7veRd1+CYG6F4HwBqOyCsMaW4larFWNjbJldqWSQlXTP3traiu7u7k0FIaIo4kc/+hE++OADfP3rX4fL5WI+d1uCkHv37hWa0llr59PpNOLxOFPQks/nEQ6HuQKctfpB9Ho98zXI/pVIJODz+dDZ2VnqpRBCODSamnBj+kMAiztkURBCtlNDQwMuXbpUktIVwk9QKiHU1QF1dQCwGJTMzi4PSp4NFATwrKdkGOLw8OLXOh0Ep/PjoMRsXjco0akU+PwL9XjndB2eeML4m/tu/Ic7Bvy7/nZ82jGLX6qZwSesC5AJgAARCA5CDA5CHFJDqDwOwXESMDVDkH3cW20ymRAOh5HP5zd8KGo2mxGPx5l6SICtN6fncjn8+Z//OX784x8DAK689x5+9Z/+U+bztyUIuXv3Lj73uc9Bp9MxdeQDi1kQnU7H9IcUjS7W1vE0lK/sB5HKuSg1T1hMTEygqqqKadMEQkj5WNmc/kL1iyVcDdlrdDodqqqqMDExgY6OjlIvh3ASlMrFoYfPSvPFbBaYk4ISL0Sfd3lQEo9DHB2FOPpsBohGA8HhhOBwQHA6AJsdwir3vYIg4IjLhCMuEz5VFcdgWI7bs7X4l49qYZFH8YsuD/5hzUxhVy3hWbmW6L0FUWmAYO+CUHUMMLXAaDQCWLwX3uhBv0qlglarRSgU4mpOb2xsxN///d8z/Al+LJFI4D//5/+Mu3fvFl4b+Og6sJNBSCKRQH9/P772ta8VrR8kGAwWRsyzyGQyiMViy9YzPz9P/SCEiSiKmJycpK2cCdmFaIcsUmwNDQ3o6elBe3s7Pdjc5QSFAqh2QaheLCEScznAP1fIlIg+H5DJfHxCMglxYhzixPji1zIZYK+E4HRAqHIsBicrHl46Ku3IZWbwT37lJcTTWbzXO4P/+/NH+D9TLTiiX8A/rJnBZ50+GJ6VawmZKOC5CdFzE3mFHrLKLtRXyBEMzDNVG22lOT2ZTDJtALWwsIB/9+/+HUZGRqAAcEyWxr28CtPzC0zvKdlyEPL48WMYDAY4nU6unbGCwSBzeRXPsdLxWq0WarUawOJNZTAYpF2OCJP5+cV9vauqqkq9FEJ2VC6XQzKZRDKZRDqdRj6fhyiKWFhY/IfFarVCEATIZDKoVCpoNBpoNBrmbdl3AgUhpNgcDgcePnz4XNk32f0EuRxwOCE4nMCx44u7b/n9EL3PghKvd/mWwPk8MOuDOOtDodOkouLjgMThgMVswtOnTyGKInQqBd4+UQ/t3FMc7DyGx/4cftTjwR9/OINz1ll8xunDq3Y/NPLFZnpZNgZ4PsIRAJmx28hHDkGwHQKsHRDUqz/I521Ot1gsqK6uhk6nw+PHj/HCCy+se/zk5CS++c1vYm5uDjoB+MeyOEyCiHt5FfzpDJKJBDSMpYpbDkK6u7vR1tYGoHhN6cFgkKspfWWWJRaLcfWrkP3N7XajpqaGGtLJnpRKpRAMBhEMBhGNRgtBRzKZRDabhSAIUKvVUKvVkMlkEAShEISEQiGIooh8Po9UKoVUKgVRFKFQKAoBibSlpNlshtlsLjwM2ilmtQUmtQmhVIi26SVFIZPJ4HK54Ha7KQjZ45ZOc0fX0cU5JYHAYtDh9S1mSsKh5SdJ2wI/m1ViUCpxXBCQunkTKqcDgtUGs8mEdDyCN7oO4I0uF2Kpo/h5/yx++tSHb96cwUmjF59x+nCh0g/ts4BEiQzgfwTR/wgAkNK6oKo8DMHaDlQ0QpAt3tKbzWauyenSvXtbWxu6u7vXDUIePXqEb33rW4jH47AKebwjT8AqiBBFQAsRCQgY63mMgy+wNbhvOQi5d+8empubN9WUzlKOJTWls5ZuAc9nTkKhEIxGI91Ukg3lcjnMzMzgxRepjpzsfplMBvPz8wiFQoXAI5lMQq/Xw2w2w2g0wm63LwsgVCoVc4mJKIpIp9PLAplkMolIJIKpqSnEYjFoNJpCQGIymWCz2Qq7FhaDIAhoqGjC47mH8MV9iGVi0CtpQxKyverq6nDr1i10dnaWVSaQFJcgCIDVCsFqBToOAgDERAKiz1f4Af/c8r6STAaVAND3BPm+JwCAE4KApFqN3MQ4BIsFWrMFb9aZ8eaRLuRwFN2TAfz86Sz+rGca9ZjEpx2zOG/3w6z8eAaKKjEDTM5AnHwfWSiRrWiGtuoQTPomxGJRZDIZpu+1JpOJqTn95z//Ob797W8jl8uhTsjhH8kT0AnSnwtQJeQwISow/PjBzgUhd+/exRtvvMHVlB4KhZaVS61HakqXGnNYBINB1D3bCUH6midLQ/Yvn88HpVLJ1d9ESDmJxWLwer3wer2Yn5+HTqeD2WyGzWZDS0sLTCbTtgUBS7Mmqz0oymQyywKgqakpxONx2Gw2OJ1OOJ3OouxY2GhaDEIAYDI8joM2KsUl28tisUCpVGJ2dpZpfgPZuwStFkJjI9DYCEDqK/E/C0q8i4FJIrH8HFGENplcbHpf9hsCYDLhlNmMU5VmCM218InNuOpJ4J/dG4FWFsMnLLN41e5HpylSOE2BDBThAYjhASgBnNerEbg/B3vDcQjWdgiqte+hFQoFtFotmpqa8KMf/ei53xdFEe+++y7++q//GgBwSMjgc/IUFCueVVUJeUyIwKi0sxiDLQUhyWQS/f39+OpXv8p108bbD7KZpvSl1w8Gg9SUTpi43W7U1tZSsyHZNURRRCAQKAQe0WgUdrsd1dXVOH78eEl3eFMqlbDb7ctKVuLxeGGtT548KfQUOp1OWCyWbfm7t7IvhIIQst0EQUBtbS2mpqYoCCHLLPaVLPaDAF0QRRHu/n6EJ8Zx0OGAuLCA/Pw8xFAIz9XniCIQDEJ81tMhAqgE8I8A/EMLkNPpkNA2YiLZgv/vXAqp9AJqDWEcts3Dpk1AkC2GNCZFCkg8AfqfQASwAAvS+kaYqjugtbc9NyTRarWiqakJT58+Xdacnslk8O1vfxtXrlwBALwkS+NVWRqrfZuuFBbLxqY8XuY/qy0FIT09PdDpdKiuruYOQnh3xmIVCoWg0WiWNaWHQiFqSicbymQy8Pl8OHjwYKmXQsiGEokEJicnMTExgWw2C4fDgY6ODlRWVha13GmrdDodmpub0dzcjEwmg7m5OXg8Hty6dQsKhQINDQ2or6/f0gwGak4nO6G2thZXr15lLnsh+5MgCDA4negZG8OhY8chEwTIAbz305/iVFsbzAKAQBBiMAAxEARCweXlXM/IAMjicSjjcXQC6AQAJYCUEZgxQgQQFUXkFVno1EnIlRkIigygyMCsSAHpXiDyEOKwiPmcHgFFHZTWA3DWH4bFbC40p/f29uLUqVOIRqP41re+hZ6eHsgA/AN5Esdl2efWJanCYhAyE46secxKWwpCNtuUHgqFUF9fz3wsawM78HyWJR6PI5vNcpVzkf1pZmYGFRUV9FkhZUsURczNzWFsbAw+nw9VVVXo7OyEw+HYlT1vSqUSLpcLLpcL+XwePp8PExMTGBgYgMPhQFNTEyorK7mzIxSEkJ1gNBpRUVGBmZkZrvsUsv9UVFQgm80iHo8XSlBNFgsW8nlYDxwAluy9JObzi5Pcw6FnTe4RIBJGen4eslgMclFc410AvSAAOSUQXwyKVztSFHIwK3Iwy5PA9EPg6T04BBH5rAytDU7cu3cPcrkc/+t//S94PB6oIOIfypNokT0fGC0lZUKiORHBeT/Mto03bdhSELJ0UjprtmK1cqm1SFkM3l23VpZiVVRUUOMY2ZBUikVIucnlcpiamsLo6ChSqRQaGhrQ2dm5p4ZpymQyVFdXo7q6GvF4HOPj4+ju7oZarUZzczPq6uqYv4+7DDVQypTI5DMUhJAtEUUR0UwEc/E5zMVnMZ/wYz4xD39iDvMJP9yBKfhn/BDv5KGSq6GSq6CWa6BRqKGSq6GWq6GWa6CWq6BWaKCWf/y6RqEpHK+WjlWoP/61XA21QgOVXA3Ns69VcjXkMrqf2W3kcjkqKioQDAYLQYjZbEYoFHruWEEmA0wmCCvuqzPhMD64dg2f+eQnIUQiEKNRZKMhZMJB5GMRIBaHPJ6EMpnBuo9tRDmQkQOZj4eFa7AYB12oacL7l94vTEAHgCOyLFzC+gEIAKgFwIw8gpBhsPsuXvjUP9jwnC0FIXfv3sVnPvMZaLVarknprE3pkchiSodnUnooFKKmdMItkUhgfn4eJ0+eLPVSCCkQRRFutxv9/f2Qy+VoaWlBbW3tnn+ootPpcOjQIbS3t8PtdmNkZARDQ0Po6Ohg6tlSyBSoq2jAaHAYk+EJ5PI5unEjz0lk4phLLAYXc/E5+Jf8ei7ue/Z7c0jlkhtfLL3xIdtFIVMsCVSeBTIKDRSCAkq5EkrZ4g+FTAHFkl9Lv6eQKZ79vPxrpVwJhaCA4rlrKCAX5Is/ZHLIBBnkMgXkggwy6fVnr8kEGRSCAjKZbMU5z44R5JDJFl8XIEAQhMLP5UQURYgQn/2chygCeSzOTRLFPEQAOTGLbD6LXD6HrJhDNp9Z/HU+i5wo/fzxMdPyKXgmpuHKuZAVs/DH5zA2PYZh3QBSuRRSuSSS2SRSudSzn5NIZlNI5RKLP2eTmAvN4X//6NuI5+KIZaLI5p8vj5IrBVihQ5VoQBUMiz8/+7VN1MEq6mCDDkY8P5TwZH0Dbj3pgcVqhyAIEEUR9/NKPBKVaEcGR2VZNAk5yNb431Ul5BEUZRjp7S1uEJLL5fD06VP8q3/1r4o6Kb2iooK5zCCTySAajS67figUoqYxsqGZmRnYbDamSaGEFJsoipidnUVfXx8ymQw6OjpQV1dXdv9QF5tcLi/0iExNTeHp06cYHh7GoUOHUFVVte6fR6OpCaPBYWTyGXiiM6itqFvzWLJ3iKKIeDaOhcQ85pPz8K8ILvyJxZ9n47OIZaLb8p5KQQmD0oC8IC7eTGaTEFcthNke2fzijW0sEyvae5TK0sAEECAIz16TXhdk0u88+/sv/d5qrwlLgggR+UJgkYeIxa8BEflnX0uBR17MF/c/cmjF13c4z4+v/9s5QcQcYpgTYngC36rHyAUFbCozahSVqJFbUSVUoComh6xFhdv/n7tIJJOIxWL44IMP8P7772NsbAx9UKIvp0SFDOhCGkdlGViE5Z/zKiGPQREYH2fLQG86CJmcnEQ+n0d1dTXXEECezARvKZbUlC7dSEqT0qnRmGzE6/XC6XSWehmEYGFhAX19fYhEImhra0NjY+Oez3xsRBAE1NfXo6amBuPj47h//z6MRiMOHToEq9W66jmNFY2FX4+HxygI2cVEUUQkHcZCch7zifmPf07MYyG5gIXkPBYSC4XXmTIXDAxKI6p0VbDrKlGpq4Jda4ddWwmb1g671r74s64SngkPZmdncfbs2cJ6s/ns4pPsXArpXAqp7OKT7lQuvfhzNvXs6Xdq1a/TuTRS2SXnF66x9jGZfGZb/rtLSQoGlrxAllAJKqhkKpi0ZuhVBhiUeuiVBhhUBuiVBuiffa1X6hGZjwJp4NjBY9CrPn7doDJCJXt+HtTAwAD6dH0Q8b8wNTWFxsZGvPHGG3jjjTcwMjKCS5cu4dq1awhHo7gOFa7nVWgUsjgqy6JDyEIpLAYhAOCe8zP992w6CBkcHERNTQ0UCgV3uRRr3T3PVHXp2qs1pdOkdLIeaaDbsWPHSr0Uso+lUin09PTA6/WipaUFZ86coR13VpBK0urr6zE8PIybN2/C6XSiq6sLKpVq2bErm9PP1Z7f6eWSNeTyOYTTIQSTQQRTgY9/TgURTC7+HEguYCExv/hzcmFbb7A1Ci0qtYuBRaWuEpXajwMN6XW71g6tkq3nqrq6upC1VCqVEARhsfRJroQBO7fRiSiKz8qAMsjms8jkM8jkMsiKWWRyGWSevZ7NL/5a+nrd33v2c17MIZfPISfmkROzyOfzyIm5xR/53OLvi4uv5cUcstJrS88R88++XvwhPstELAYeSwOQpaVQi19BymJIGYwlX0vHYUk2Q7rOYubk4wyKrPD14g8ZZIAgQFbIwMgWXy+UiS0eL3uWYfn4fDwrU1ssVVPIFJDL5FDIlB9//exn6dcyQY6RoRG0H2iDRq2FQqaAZ8oDa4UV9a6GxT4huQaaZ71DaoUGGrmm0EuklqsxOTmJyclJvPzyyxt+HqRt0E9Vrz0BfSmDwVDYLGRwcBCNz+aeAEBLSwtaWlrwz/7ZP8OtW7dw6dIlPHr0COOiAuM5BX4qAIeFDGqf9Y744knk8/kNK5m2FITU1tYin88zByH5fB6xWIxp96HNNqWvLMWipnSykdnZWRgMhqIMTSOExczMDB4/fgyLxYLXXnuNygI3oFQqcfDgQTQ1NeHRo0e4fPkyurq64HK5Csc0mpoLvx4Jsg/PIuxEUUQym0A4HUYkHUEkHUY4FUYoFVwMKJYGGMnF10KpAMKpcFHKlUxqM2waG6xaG6waG2xaG2xa+7Jgo1JXCb3SsK2ljXq9HgaDAbOzsyWdSSYIwmJPh2zLc6hJkVwJXUF7dXvhe1W/rB+xWAwnG9j6Uc1mM3p6eiCK4oafYYPBgFgsxhQMAIuf43w+j5qaGgwODuJTn/rUc8eoVCqcP38e58+fx+zsLC5fvoxLly5hdnYW90Ul7mPxwVlaXBz+vFE7xKY/qQMDA3C5XBBFkfnmLR5fLGRj2f89FotBFEWuLMvKoYS8M0bI/kSlWKRU0uk0Hj9+jNnZWXR1daGmpmbf9X1shUajwQsvvAC3242HDx/C4/Ggs7MTKpUKzeZmCBAgQsRIYGURNpHkxTyi6QjC6XDh53Dq419HngUY4dSSXxdeD6/aGLtdZIIMFrWlEFRYtbaPg4xnv7ZorLBpbbBoLFDISpc5dDqd8Hq9NBiZrMtsNiMYDBaCELPZjOnpaebzjUYjRFFELBbb8P5Y2j0xkUgw3acbDAaIogiXy4WBgYENj6+qqsI777yDf/yP/zF6enpw6dIlfPTRR0inF3dp8Pv9xQtC+vv7cejQISiVSuadsWKxGPR6PVNEFo1GmY8FPm5KX7k9LzWlk/VIswlefPHFUi+F7DMejwePHj2CxWLBxYsXKfuxSYIgoK6uDpWVlYWsyNGjR1FdXY26inpMhicwEhzZcztkZfNZxDMxxDNxRDPRwq9j2RjimRhiz74u/Dq7+OvFjMXHWYtYJlrUJuql9EoDzGozzBrL6j+rLTBrPv65QmXaNf/PnE4nbt26xfzUmexPZrMZHo+n8LXJZEI0GkU2m2W6l5bJZNDpdExBiEwmg16vL9xPb0ShUECpVKK6uhr9/f0b/8cseZ+jR4/i6NGjiEaj+OCDDxAIBApzBNd9T+Z3WWFwcBAXLlzgKmGJRqPMmQ0pYGEViUSgVqupKZ1wWVhYgEwm49rhjZCtyOVy6OnpwczMDDo7O5m2nCUbW5oVefDgAXw+H1rMrZgMTyCVS8IdmUKDqbGoa/i4IXmxUTidzyz+nEshlUsXGozThV+nkcmlC69J5yWyiULQsFYwkcqlivrfsh6D0ogKdQUMKiMqVBUwqipgfPZrg8q4apBhUpmglO/dHieLxQKZTIaFhQXY7RsPaSP7k8lkQn9/f6GcShpZEQ6H19xkYyWDwYBoNAqHw7GtxwKLJVkOhwM//OEPmY5f7f0+85nPMB+/qSAkmUzC7XbD5XJxNX3zBCE8x652fCqVQiaToenXZF1erxcOh4NuAsmOSCaTuHv3LvL5PC5cuMBUmkrYSVkRu92OO3fuQB35OLt0ZfLnOFLZtUpQkF722tKgYNnv55efk1nx+9LPO5VV2Aq5oECFejFwMKoqCsFDhariueBi5XF6pWHXZCd2kiAIcDgc8Hq9FISQNVVUVCCdTiOVShUemkuBAm8QwkKv1yMWY9/KuaKiAi6XC1NTU0ilUkwz/bZiU0HIyMgINBoN7HY7101+LBZjrpeMRqNc06tXBiHRaJRriCLZf0RRhNfrxeHDh0u9FLIPBINB3L59G3a7HceOHaMNM4pIq9Xi3LlzGP5gAAgsvvbt+/+1pGvaKqVMCZ1SD71SD51SB51iya+l1xVLfq3UQ6/UQa80FH6tUyxuz6lVaOnBSxE4nU48efIEhw8fpj9fsiqFQgGtVotoNLosCOEJFAwGA9xuN/OxMzMzzNc2Go2w2+1Qq9UYGRnBoUOHmM/djE3doQ8ODhYGZ/FmK1hLrHgzIbFYbFlJDe/5ZP+JRqNIJBKorKws9VLIHjc9PY0HDx6gvb0dBw4coBuUHSCXy/HmC2/hz6f+DFlxe5unlTIlVHI11HIVlHIV1HI1VHIVVLLF11RydeH3VdLvLT3u2Xab0q9VhestvqZRaBeDBqW+EGzs5VKmvaKyshKJRALRaJSqMMiapOyElDHT6/UIBoPc57PgyZpIx8tkMtTV1WFwcLB8g5Camhqu7XlzuRwSiQTT8dlsFslkkrvfZGnmhLenhOw/c3NzsNlslC0jRSOKIvr7+zE6OopTp07RLmw7rErvwJ9c/O94b/CnmJ+bh91SCVdV9YogQLUiYPj412q5CkrZ8uBBJVdBJlDjMXmeQqGAzWbD3NwcBSFkTSsDA57MhnR8IpFgamaXjs3lckzZ95Xb9Bbbpu6+BgYGUF1dDVEUC1uAbSQWi0GhUDDVl/EcC2DV7cqi0SjVZZJ1+f1++oyQohFFEQ8fPoTf78fLL79MQ1NL5KXal/FS7csIh8O4ffs2KlGJo0eOUjaKFIXdboff70dzc/PGB5N9yWAwwO/3L/taGkvB8n1JrVZDoVAgFottOIZCrVZDLpcjFosx/Ruk1+u5tundqk09zunv70d1dTU0Gg3zVnRSKRbLH7BUSsX6j0QymUQul1uW+aByLLIeURQxPz9PQQgpinw+j/v372N+fh7nzp2jAKQMVFRU4Ny5c/D7/bh//z7y+Xypl0T2ILvdjvn5+WcTuwl53spMiE6nQy6XQzKZZDpfEATmkiypbYK1JEsmk0Gj0XBv07tZmwpChoaG4HA4trR71XYdKx2/dKaINJmdghCylkgkglwut2yuDCHbIZ/Po7u7G6FQCOfOnaMdsMqI1LAeCoXQ3d1NgQjZdmazGblcDpFIpNRLIWVKCiCkQFUul0On03H3brAez9sXIm3TOzRU/CGv3EFIMBiE3+8v6va8vP0cKxveE4kEALbJ7GR/8vv9sFqtNFSKbCtRFPHgwQNEIhG89NJLNICwDGk0Grz00kuIRCJ48OABPbEm20omk8FqtS4rtyFkKamNIR6PF17bTAM5TxDCs/uWyWRCdXU15ubmEAqFmM/bDO47sKGhIVgsFphMJu7dq3ZqRgjvtHWy/1A/CNluUg9IIBDA2bNni76/Otk8tVqNs2fPIhAI4NGjRxSIkG0l9YUQspqlk8wlm9mml/X4le/Fcm2z2Qyz2Vz0bAj3XfrAwEBhF6pibc/LW0q1WlM6lWKRtVA/CCmG/v5++P1+yoDsElJGZG5ubkdqn8n+QX0hZCMrMxm8gQLP8ZvJsgBAbW1t0ZvTuYMQaXveXC7HfKOfTqeRTqeZjpeO3Uo5FgUhZD3UD0K22/T0NEZHR3HmzBkqA91FtFotzpw5g9HRUUxPT5d6OWSPoL4QspGVjeWbCRSk++XtPFY6PpfL7cg2vdxBSH9/P5xOZ6GDnkU0GoVarYZSufGwJZ5jgcUm0Hg8vizooBkhZD1+vx82m43K9ci2CAaDePDgAU6ePEm7YO1CFRUVOHnyJB48eMA1MIyQtVBfCNnIarNC4vE482YZSqUSarWaKXCRjmUt39JoNBAEYUd2yOK+C5ucnITNZoNarWbeQreY/SCxWAyCICx7+kiZELIeKQghZKuSySRu376N9vZ2GkS4izmdTrS1teHOnTvM22QSsh7qCyHrWRmEaLVaCIKwrFmd5RrF6AsRBAEajQY2mw2Tk5PM69kM7iDE4/HAbDZzNV3yZCY22w8iBUQ8k9nJ/hQIBGC1Wku9DLLL5XI53L17F3a7HQcOHCj1csgWtba2wmq14u7du8jlcqVeDtnlrFYrAoFAqZdBypRery9MMgc+nv1RrL4Q1rkiErVaDbPZDI/Hw3zOZnAFIaIowufzwWKxME9KBxafFvKUbm2lHyQWi0Eul9PONGRVyWQSyWRywymjhGykp6cH+Xwex44do+nbe4AgCDh+/DhyuRx6enpKvRyyy5lMJiSTSaRSqVIvhZQhjUZTmGQuKeY2vVqtlivLq9VqYTab4fP5irrBAlcQEgqFkEqlYLFYuJoveYKQRCLBde3VtuflmbZO9pdQKASDwcDcc0TIajweD2ZmZvDCCy9ALpeXejlkm8jlcpw5cwYzMzNFfwJI9jalUgm9Xk99RmRVq00y592mV6vVFubibUStVnMFITqdDhaLBclkEuFwmPk8XlxBiMfjgVqthtFo5A5CWDMTPAELsDjshXbGIqyCwSDtikW2JJ1O49GjR+js7KSdsPYgrVaLzs5OPHr0iHk3GUJWYzabKQgha1ptm16eIESj0TBn2jQaDVcQotFoUFFRAbVaXdQHMlxByMzMDOx2OwRB4Cp3Yg0sRFFEKpXiCkJWXps3k0L2l2AwSKVYZEseP34Mi8VSmJdE9p7a2lpYLBYqyyJbQkEIWc/KEinebIUUWLCUS20mCBEEAXa7HTMzM8zn8eLOhEi7CrEGCjyBRSaTQT6f31IQwptJIfsLZULIVszMzGB2dhZHjx6lks89TBAEHD16FD6fj8qyyKaZTCaEQqFSL4OUqZWBAW+goFarkc/nkclkmN4rlUox93dI99FWq7V8MiEejwcWiwW5XI75Rl9KFbEcn0wmIZfLoVAomK6dy+WQyWSWZWV4Mylk/0ilUtSUTjYtlUrh8ePH6OzspO8x+4BGo6GyLLIlZrMZiUSCmtPJqlZmPjQaDTKZDPPufEqlEnK5nClwke6Tecq3crlceQUhMzMzsFgsANgzIclkEiqVimkwHG8WI5VKPVcaxtN/QvaXYDAIvV5PTelkU3p6eqgMa5+hsiyyFdScTtazMvPBGyisdo21yOVyKJVK5kyLtBaLxVI+5VjT09OwWq2QyWTM2QqewII3CJECDqksQhRFKscia6JSLLJZCwsL8Hq9VIa1z0hlWR6PBwsLC6VeDtmFqC+ErGVliZT0UJ23d6MYzelKpRIymQwWiwXT09PM6+HFnQkxm81QqVTM5/BkJrbalJ5OpyGKIgUhZFWhUIiCEMJNFEX09fWhpaWFvrfsQxqNBi0tLejr6yvqfvlkb6K+ELKW1Xo6NtNAzno8T8ACACqVCmazuXwyIR6PByaTiavciSew2EwmZOnxqVQKCoWCOUtD9pdwOIyKiopSL4PsMrOzs4hEIjQVfR87cOAAIpEIZmdnS70UssuYTKaizlkgu9dqPR2baU7nCUJ4r20ymcqnJ8Tn88FsNhdtUCFvP8fK46kfhKwln88jHo/TDBnCRcqCtLW1US/RPqZUKtHW1kbZEMLNYDAgHo8jn8+XeimkDG11hyzeTMhmp6YXC3MQEolEEIvFYLVaodPpmN+g2D0htD0vYRGPxyEIAs2QIVzcbjcymQwaGxtLvRRSYo2NjchkMnC73aVeCtlFtFotBEFAPB4v9VJIGVotCOFtTGc9fjNT061WK6LR6LKhituJOQjxeDxQqVQwmUxFzYTw7o5FQQhhEY1GodfrqamYMMvlcujv70dHRwfkcnmpl0NKTC6Xo6OjA/39/fRUmzATBAF6vb5oN3FkdyvnTIhGo4HJZIJSqSxaSRZXEGK1Wjc1LZ3l+O2Ylk5BCFlLNBqlUizCZWpqCnK5HHV1daVeCikTdXV1kMlkmJycLPVSyC5iMBgQi8VKvQxShlZmMnizFdLxrFPTebMsMpkMNputPIKQYk5Lz2azXEMQgecDHBpUSNYSi8UoCCHMRFHE6OgoWlpaKHtGCgRBwIEDBzA6Okq9IYQZZULIWlYbWMibrcjlcshms0zHsgYs0vFAcaemc2dC8vk8840+z5a5vNPS8/k80un0c5kQakwnq5HKsQhhMTc3h1QqRYMJyXNqa2uRSqXg9/tLvRSySxgMBgpCyKpWK8dKp9PMJZ/SPA+WwEWj0UAURaTTaea15fP58smEWCwWrjkcyWSysAUZy7FLBw9uREoprdwdizIhZDVUjkV4jI2NoaGhgXpByHPkcjkaGhowOjpa6qWQXYKCELKW1cqxAPap6YIgcE1NVygUXD0koijCbDaXPggJhUKFXbFYsxWpVIo5M7HZaeky2eJ/Ak1LJ2vJZrNIJpMUhBAmiUQCPp+PdsQia2psbITP50MikSj1UsguYDAYkEwmmUpmyP6yskRKJpMVfWo667HSvb5OpyvawE3mICQcDheaVFizFZlMhnlv/XQ6zd3wvjTgyGazXKViZP+IxWJQKpVQqVSlXgrZBSYnJ1FVVcW1FTnZX3Q6HSorK6lBnTBRqVRQKBTUnE6es1pPx2aa01kDC6VSuWxC+3oEQYBMJoNWqy3awE3mICQajUKr1XKVJ2SzWeasSSaT4Zp0nkqllt1UJpNJyGQympZOnhOLxaDT6ajBmGxIFEVMTEygoaGh1EshZa6hoQGTk5PUoE42JG3TS0EIWUmhUDzX08ETVEjXYM2yyeVyroycXC6HRqNBJBJhPocHdyakWEEIz7HS8UuzLNLXdKNJVqIyPcIqEAggm83C4XCUeimkzDmdTmQyGQQCgVIvhewCvLsekf1BEAQolcplgYFCoUAul2O+Bk8QwnMsUEZBSCQSgUaj4Q4UWI/P5XLc114aEPEGMWT/oCCEsPJ6vXA4HIVeM0LWIpPJ4HA44PV6S70Usgvwzmgg+8fKwIA3UNgXQUg0GoVarebOhLAev5lMyNLjKQgha6H5MYSV1+tFdXV1qZdBdgmn00lBCGFCmRCylp0OQnizLGq1umi7u3EFIRqNhrnRHChuOdbKzAkFIWQtlAkhLGKxGKLRKCorK0u9FLJLVFVVIRqNUq0/2RBvszHZP8o5E6JUKqHRaEofhMRiMe5yLJ4SK8qEkGKhIZaEhdfrhd1u53rQQvY3pVIJu91O2RCyIcqEkLWsbBbfTMlUsYIQhUIBrVZb2iBEFMXC7lg825wWuzGdghDCgjIhhIXX64XT6Sz1MsguQyVZhAX1hJC1rCyR2ky2opiZEK1Wi1gsVpSdAJmCkGQyiXw+D61WW7TGdApCSDHk83mk02kKQsi6MpkM5ufnKQgh3JxOJ+bn55n33if7kxSE5PP5Ui+FlJndUI6Vy+WKEkQzBSFSV7xOpyubnpDVghCepnmyP0h/aagci6xnfn4eOp2OBhQSbtLnZmFhodRLIWVM+jeIsiFkpa0GIcUux5L+XSzGDlnMQYhcLodSqSyrOSFLj+fd4pfsD1I/CG25StYTCoVgNptLvQyyS5nNZgSDwVIvg5QxmUwGlUpFfSHkOduRCWHd8Woz11apVJDL5aULQqLRKPR6PfdEctbAQhRFKsciRZFKpSgLQjYUDAYpCCGbRkEIYUF9IWQ121WOxdKzwTsxXZrortPpitKczpwJkdIxxQhCpBrJrWRZKAghq8lkMvS5IBuiIIRshclkQigUKvUySJnjvbkk+8PKz4VcLuee5SGKIlO/0WbmhACLZaclzYRotdplC2LB2qch/eGzXnu1zAkFIWQ1VKZHNpJKpZBMJmEymUq9FLJLmc1mJBIJespN1kVBCFnNWpkQ1t2opHscls/WZrIsAIq2TS9zJoQ3CMnlchBFken4bDYLQRCY6/alKG5pgENBCFkNfS7IRoLBIPR6Pc0HIZumVCqh1+upJIusi4IQsprV5oSwZjaAxX4jQRCYg5B8Ps987aVBSEkb07VaLXNQAXwcKLAGIQqFAoIgbPradLNJVkOfC7IRKsUi24H6QshGKAghq1ktEwKwZTYAQBAE5s8W77XlcjlEUSxtECKVY/EEIdJ/IGs5Fm+ZlyAIlAkhG6LPBdlINBqF0Wgs9TLILmc0Gos2VZjsDRSEkNWs/FzwZDbWusZapPtmni19pSCkZOVYsVgMGo0GoigyN4/zZDe2ujOW9BrNCSErURBCNpJMJmmYJdkyjUZD26+SdfHuTET2h5XN4jyZDQlrMzvvtcsiCMlms4V+DdaSqXw+z9zjwXMssFiOtTTgEEWRGpDJqigIIRuhIIRsB9p+lWyEd2cisj+sFhTw7pDFc7xMJmPuCZHu+QVBKMpnl+nOf2mQwBqEiKJYlGOl41cLWniuQfYHCkLIRigIIduBMiFkI1SORVYj3bsu3Q1LEATm3bE2czzv2uRyOXPgwqNoQQiPzQQhq31NQQhZaWXWjJClcrkcstksBSFky9RqNTKZDD3pJmuiIISsZrV712IFFbzXXpoJKWkQsnQhLHgDC94gZK3/aYQsRcMKyXqSySQEQYBKpSr1Usgup1arIQgCZUPImigIIetZmQnhwRu08AY4PCVcXNdlOWhpEFIMW432ihUtkt1vrdI9QoDFIES6eSRkKwRBgFqtpiCErKlYN3Jkd1utHGu1rze6Bm92g+fYkmdCyq0nZOnxVI5F1sL72SL7SzqdhlqtLvUyyB6hVquRTqdLvQxSpujfIrKa7SjH4g0sdm05FqtilmOtdTz9BSeroc8FWQvvznyErKeYddxkb6DPB1lLOVcFlU05VrEa07dyPP2lJmuhzwZZD2XKyHaichuyHgpSyWp2enesXZkJKedyLAndTJCV6CaTrIc+H2Q70U0m2Qh9PgiLzXwvKUYQsvScks0JIYQQQgghhJDtwhSELE0xFyvdsx1pJ3rCQFaiJ5NkPfT5INuJMmtkI/T5ICw2872kWNVH0jnFmLnGHIRI/1AXcyLjZo+nv9RkLfTZIOuhIIRsJ9rogKyHglSymtV2eN2uNoXtOFb6uRjf27iDEFbFHpxCmRDCij4XZC3USEy2E91kko3Q54OsZaufjWJ+tor1gGVPlGOtNeiFEHrSTdajUqmQSqVKvQyyR6RSKahUqlIvg5Qp+reIrGath+q8mRCeY/d8JoRHOUd/ZHcr1rZyZG/QaDRIpVJ0c0C2TBRFpFIpaDSaUi+FlCkq1yOrWWvgdjHLsXjXVjZBSLGyG9SYTopBqVQim82WehmkTGk0GoiiSFOuyZZJwSwFIWQt2WwWCoWi1MsgZWplTwiPYg8I33XlWDy2Op6eyrHIWuRyeVH2tiZ7g1wuh0KhQDKZLPVSyC6XSqWgVCqLsoMM2RsoCCGr2Y5yLN7323XlWOXWE7JaiQ0FIWQlhUJBmRCyLo1GQ0EI2bJkMklZELIuCkLIanZ6d6zNrC2Xy5UuCFEoFNxBCM+uM7w71Kx8ui0IAuRyOd1skudQEEI2QkEI2Q7JZBJqtbrUyyBlLJvNUqaMPGe14DSXy3F9VniO5ymtWpoJKdmcEL1ej2QyyTW2Xbr5YwlaeG8UVzteoVBQ2Q15DgUhZCMUhJDtQJkQspFcLkeZEPKclcGpKIrcWTPWIIT32tlsFoIgIJFIwGAwMK+HFVMQYjAYkEgkIAgC8w2d9B/IEhhsJggRRXHZtelmk6yGPhdkIwaDAZFIpNTLILtcJBIpyj/SZO+gciyympWfi3w+D1EUuT4rrJ8t6b55VwUhRqOROwiRIjKW43myJmtdm242yWroc0E2YjabEQwGS70MsssFg0GYzeZSL4OUMQpCyGpWfi6kexbWzwpPdoP32rlcrhCEGI1GpnN4cAUhAFtQASwGCqxBi5TZYO0LkYIQyoSQjdDngmzEbDYjFoshk8mUeilkl8pkMojFYhSEkHVREEJWs7JMT8o+sPZt8GROstksZDIZ87Wl+6eSBiFSOdbSBbFg7dOQ/uBYry0IwnM3l3SzSVZDGxaQjajVamg0GoRCoVIvhexSwWAQWq2WGtPJuigIIatZLROiUCiYd7viyW7wfgaXBiElLceKx+PLFsSCNTCQIjKexnIKQggLGlZIWFBJFtmKUCgEk8lU6mWQMkdBCFnNys8F785YPJkT3h3apPuneDxe2kxILBZDPp8vShCyWmaD99oUhJDVqNVqpFKpUi+DlDkKQshWUD8IYUHbOJPVrJUJ4T2fJXPCu0NbNptFPp9HPB4vbSYkl8shk8lsKVuxXceudjyV3ZDVaDQapFIprjk0ZP8xmUwUhJBNoyCEbCSfzyOdTtM2zuQ52xGEsGY3NnPtdDqNXC5X2sZ0YDEdw9O8uZNBCM0JIauRnjpRNoSsx2azIR6PF8pOCWElfW6sVmupl0LKmPRvEGVCyEpbDUJ4shubCUKkfxdLFoRoNBrIZDIkEomilGPxHrva8VSORVYjk8mgUqloGB1Zl1KphM1mg9frLfVSyC7j9Xphs9mgVCpLvRRSxqRSLNZdicj+sV3lWNt9LLC4818ymYRcLi9KAM30t0EQhMIOWel0mvniFISQckATsQkLp9NJQQjh5vV64XQ6S70MUuaoH4SsZWU51WYChWIGIYlEAnq9nnm3Lh7MIbler0cymeS60efp06AghBSL1BdCyHqcTif8fj/NCyHMMpkM/H4/BSFkQ8lkkvpByKpWmxNSTuVYxdqeF+AIQgwGA5LJZNn0hKwMcCgIIWuhTAhhodfrYTAYMDc3V+qlkF1idnYWBoMBer2+1EshZS6VSlEQQla1G8qxyiIISaVS3LtjsR5PmRBSLGq1moIQwsTpdMLj8ZR6GWSXoFIswooyIWQtOx2E8M4JSaVSpQ9CjEYjdzkWT2DAu8XuygCHghCyFsqEEFZOpxM+n4+2dCYbyufz8Pl8FIQQJtQTQtZSzpmQXC6HZDJZlJ2xAI4gpKKiAslksqzmhCwtDZO+FkWR+Rpkf6AghLCyWCxQKBTw+XylXgopc16vF0qlEhaLpdRLIbsAZULIakRRfK6xfDPZij0fhEi7YxUrCFEqlVxBiFqtXrZTl0aj4Z7oTvYHvV6PeDxOASrZkCAIaGhowMTERKmXQsrcxMQE6uvri7JjDNlbRFFELBaj3iHyHGki+dIANZVKcWXNeAIL3onpZROESJmQfD7PfDOnVCqZG9lVKhXXDkYrn24rFArIZDJ64k2eo9frkclkuLaXJvtXfX09ZmdnaXAhWVM8Hsfc3Bzq6+tLvRSyC6TTaWSzWQpCyHOkGRxLAwPeTQx4gpZMJsM800gUReTzeSQSCVRUVDCvhwdzEGIymQr/KLNmG9RqNXNgwVsyI227KtVuC4JAZTdkVQqFAhqNBtFotNRLIbuAVquFw+HA+Ph4qZdCytT4+DgcDge0Wm2pl0J2gWg0Co1Gw/UEmuwPUpmelFHN5/PcQQhPvxHPsdK9fjweh8lkYl4PD+YgpLq6GoFAAIIgMN/oazQaZDIZphIuKahgzbJIf4hLgxwKQshaDAYDBSGEWVNTEyYmJrjKT8n+kMvlMDExgebm5lIvhewS0Wi0aLsLkd1tZVAg3dOyBgqiKDL3G+VyOWSzWeYAJ5lMQhAEBINBVFdXM53DiysIWVhY4Cp5UqlUzEGLRqMp/AGxkMlkUKlUy65NQ+nIWgwGA2KxWKmXQXaJyspKqNVquN3uUi+FlBm32w21Wg273V7qpZBdgoIQspaVAUQymYRKpYJMxnZ7nslknuspWe+9BEGASqViXptMJsP8/Hx5BCHz8/OFhbEQBIF5RoNCoYBcLt9USZaE5kGQtej1esqEEGaCIKC5uRkjIyO0oQEpEEURw8PDaG5upoZ0wiwWi1EQQla1svSKdxe11XpK1jt2aekXy/EAsLCwUD5BiCiK3A3kLMfzBCxLr70yE0JBCFkNlWMRXnV1dcjlcpiamir1UkiZmJqaQj6fp4Z0wiUajVJTOlnVauVYvE3prIEF76waaTOqssmEZDIZhEIhJBIJ5jfgCQx4g4iVQQsFIWQtUjkWPdUmrORyOTo6OtDf30+9IQS5XA79/f3o6OhgLpUgRNqelzIhZDWrlWPxZkJ4ejx4rx0KhZDJZEofhBiNRuj1eiwsLHBtXVnMIIQyIYSVTqeDKIpcATQhtbW1UCqVtFMWwfj4OJRKJWpra0u9FLKLJBIJiKIInU5X6qWQMrRaEMKbrWA9njfLEo/HsbCwAIPBULQgmutxjsPhQDAYLGomZCulXtSYTtYik8mg0+moJItwEQQBhw4dwuDgIPPMI7L3ZDIZDA4O4tChQ9QLQrhEo1HodDrKnpFVlXMmJJFIIBgMwuFwMJ/Di+tvRXV1NUKhENeNPk+fx1YzIWq1Gtlslqamk1VVVFQgHA6Xehlkl6mqqoLRaMTw8HCpl0JKZHh4GEajEVVVVaVeCtllQqFQ0Qa9kd1NGmGxlSCEJ7uxmWuHQqGilWIBnEGIy+VCMBjkmjzNk53YamM6z5bAZP8xmUwIBoOlXgbZZaRsyMjICH1v2YeSySRGRkYoC0I2JRQKFW3QG9ndUqkUZDLZsgnmxc6E8JR6pdNpBINBuFwu5nN4cQUhNTU1WFhYQD6fZ842FLsnZOmAQ5qaTtZjNpspCCGbYrVa4XQ68ejRI9rcYB8RRRGPHj1CdXU1rFZrqZdDdqFgMAiz2VzqZZAyJAUF0sMNaffZYk5LZ722NH8kEAigpqaGeT28uDMhgUAAAPusEI1Gg3Q6jXw+z3Qs7+5YK7cMpr4Qshaz2YxYLEa1/WRTOjs7EQgEaIDhPuJ2uxEIBNDZ2VnqpZBdKJPJIBaLURBCVrUyKOCdlr7aNdaSy+WQyWSYg5BUKgVBEBAIBMonE1JdXY1AIMA1VFD6wyzG1HS5XA6lUkkDCwkTtVoNjUaDUChU6qWQXUitVqOrqws9PT30PWYfSCaT6OnpwdGjR5knDBOyVDAYhFar5bqpJPvHaoMKlUol5HI50/mr9ZSs914Ae4AjTUsv5qBCYBNBSDGnpiuVSshkMtqmlxQNlWSRrXC5XKiqqqKyrD1OKsNyOBxF/QeY7G3UD0LWs9WdsVbrKVnvvZaWfrEcDxR3WjqwiXIsv9+/qanpLIHBdkxN12q1NAuCrMlsNlMmhGxJV1cXlWXtcVSGRbYD9YOQ9SQSiefKsTbTlM46LZ332qIowu/3l1c5ViqVQiQS4Z4Vwhq08GYydDodYrFY4WuDwUCzIMiaKBNCtkqlUuHo0aPo6emhBx57UCKRoDIssi0oCCHriUajy4YAxmIx6PV65vOL1ZQuHR8Oh5FKpconE2IymaBWqxEIBIo2sJA3k7Ey6JC+plIJshqTyYRoNErN6WRLqqur4XK5cOfOHeRyuVIvh2yTXC6H27dvw+VyURkW2RJqSifrEUXxuSAkGo1yBSGJRAJarZbp2M1MSw8EAtBoNEWdc8MVhAiCAIfDgUAggHg8znweTxBiMBiWZTZ4j9fr9cjlcrRDFlmVRqOh5nSyLTo7OyGTyfDw4UN66LEHiKKIBw8eQC6XUxkW2bJQKASNRkNN6WRVyWQSuVxuWdCxMijZCM/xK0u/WI6XpqUXcz4SVxACLD4BDAaDXDf5er2eObDQ6/Vc5VTS8dJNgFwuh1arpZIssiaLxYKFhYVSL4PscnK5HKdPn4bf76dp6nvA0NAQFhYWcPr0aebdaQhZy8LCAiwWS6mXQcpULBaDVqstfK8RRRGxWIwrCOE5nrfUK5VKIRgMFj0jzB2E1NfXY35+ftmQwI3wBBa8PR16vR6iKC4r4aK+ELIeu91e2OWNkK3QaDQ4c+YMBgYG4PV6S70csklerxeDg4N44YUXuJ4WErIWv98Pu91e6mWQMrUyi5FIJCCKInQ6Hdc1WAMLnoBFFEUkk0nMz8+jvr6eeT2bwR2EdHR0wOv1Ip/Pc5VYpVIppjp8nmMBQCaTQafTLQs6eDIvZP+RghCWAZqEbMRsNuP48ePo7u5GOBwu9XIIp3A4jO7ubhw/fpzq98m2yOfzWFhYoCCErGm1fhCdTgeZjO22PJPJIJVKMQUW0rGsAYu0M5bH40FHRwfTOZvFHYS0tbVhenoacrmcOdugUqmgUqmYjpeO3UpfCGVCyHqMRiPkcjntkkW2TU1NDZqbm3H79m3aMWsXSSQSuH37Npqbm1FTU1Pq5ZA9IhgMQi6Xw2g0lnoppEytLI/aTD+IdL+8ncdKx8vlckxPT6OtrY15TZvBHYS0t7cX9sfnudHnaTjfbF/I0veiIISsRRAE2Gw2+P3+Ui+F7CEdHR2orKzEjRs3aGDqLpBMJnHjxg1UVlYW/Wkf2V/8fj9sNltRG3rJ7rba9rzF6gfZTIADLM5Lam9vZz5vM7iDkNbWVgQCAYRCoS0FCuvhDSJW26Y3FotRuQ1Zk91upyCEbCtBEHD06FFYLBbcvHmTdugrY6lUCjdv3oTFYsHRo0fpZpFsK+oHIevJ5/PPBRG82/MWqx9EunYwGEQwGERrayvzeZvBHYSYzWbY7XbMzMxw1T/zBBa8PR0rsyzSvslUFkHWYrfbsbCwQIEq2VaCIOD48eMwGo2UESlTUgbEaDTi+PHjFICQbUX9IGQj0oiLpU3oxdyelzfACYVC8Hg8qKyshMlkYj5vM7iDEGAxG+Lz+baUrdiuY6Xjl2Y+ZDIZd0kX2V+oL4QUi0wmw8mTJ2EymXD9+nV6GFJGEokErl+/DpPJhJMnTzI3gRLCivpByEakfhDpAUgul0M8Hi9qEMJb6uXz+YqeBQE2GYR0dHTA4/EgmUwyP0mWAgWWbX15p55rNBrI5XJqTifMqC+EFJNMJsOJEydgt9tx/fp12jWrDITDYVy/fh12ux0nTpygAIQUBfWDkI2sDAri8Tjkcjnz9uDSTBGW7MZqk9nXI+18uxM7YwGbDELa29vh8XggCALz5HS9Xo9sNstUJ81zLLB4Q0nN6YQX9YWQYpJ6RGpra/Hhhx/SHJES8nq9+PDDD1FbW0s9IKSoqB+EbGS17XmXZkY2kkqlkM1mmYKQVCr13GT29cRiMQiCgJmZmaI3pQObDEKkbXplMhnzjT7PJHOFQgGNRrOlvhCaFUI2UllZifn5eWSz2VIvhexRgiDg4MGDOHbsGO7du4ehoSHmDC/ZOlEUMTg4iHv37uHYsWM4ePAgBSCkaLLZLObn51FZWVnqpZAytloQwluKpdVqoVAomI+VJrNvJBaLQSaT7cj2vMAWgpCpqalCmocVzza9m5mcTpkQwsNgMECr1WJubq7USyF7XE1NDc6dO4exsTHcv38fuVyu1Eva83K5HLq7uzE+Po5z587RHBBSdHNzc9BqtVw3lGT/WVlKtZnteVkzG5sJcPL5PKampso3CGlpaUEymYTf70ckEmE+b6e36U0kEvSUm6xJEAQ4nU4qkyE7wmw24/z584jH49SwXmSJRAIffvghEokEzp8/T5PQyY7wer1wOp2UbSNrymazSCQSW96et1hN6ZFIBH6/H6lUCi0tLcznbdamghCNRoPa2tqibtO71SBErVZDpVJxBUlk/3E6nfD5fFQiQ3aERqPB2bNnYTKZcOXKlUJGmWwPURQxNTWFK1euwGw24+zZs8zNnoRshSiKhSCEkLWEw2GoVCqo1erCa8XcnpcnayKtb2ZmBnV1dcvWWCyb3h6kra0NPp+Pu2+jWLNCKioqkEqlCvvyC4IAk8lEW7CSdVmtVuTzeQQCgVIvhewTcrkcx44dw/Hjx/HkyRPcuXOH5olsg2QyiTt37uDJkyc4fvw4jh07xlwHTchWBQIBiKIIq9Va6qWQMhYKhWAymQrZskQigVQqhYqKCuZr7MT2vDtRigVsIQiRtunNZDLMJU9SYMGyrS/v1HOFQgGDwbAs6DCbzRSEkHXJZDI4HA4qySI7rrq6GhcvXoRCocDly5cpK7JJUvbj8uXLUCgUuHjxIqqrq0u9LLLPeL1eOBwO2vqZrCsYDC4rDw2FQjAYDExN5sDiFrrxeJwpu7HaZPb1ZLNZZDKZHdueF9hCENLe3o6ZmRkIgsCcsZCmQ7LUQkvblfGUZK0MOsxmM0KhEPP5ZH+ivhBSKiqVCidPnqSsyCatzH6cPHkSKpWq1Msi+xCVYhEWK4OQlV9vJBKJFMZSbEQaoaHVapmuHY1Gd3R7XmCL5Vhut5trm15pkjlLn8ZmyqlWBh0mkwnhcJh2oiHrqqqqQjQapS2dSckszYpcunQJT58+RSaTKfWyylYmk8HTp09x6dIlyn6QkovFYohGo6iqqir1UkgZy+VyiEQiz2VCeIKQYDC4rJxrPVLDO2t2bqe35wW2GIRMT08jm81yZStMJhNzdoK3nGpl0KLT6aBQKGhaMVmXUqmEzWajbAgpKSkrcvbsWczPz+PSpUsYGRmhhyhL5HI5DA8P49KlS5ifn8fZs2cp+0FKzuv1wm63Q6lUlnoppIyFw2EoFIplmQneTAhP0CL1n7CKRqPIZDKYmZnZsSCErQhtFfX19ZDJZPB4PFz7r5vNZszPzzMdazKZMD4+znxtk8mEZDKJZDIJjUYDQRAKgYzFYmG+Dtl/pJKsndiSjpD1WK1WvPTSS5idnUVfXx9GRkbQ0dGBurq6fbv1p9T30d/fD6VSiRMnTqCqqmrf/nmQ8uL1eikTRzYkBRzS9y3pfpUnUAgGg2hqamI+1mazMV87FArB4/FAEATU1dUxn7cVmw5C5HI5Dh48iMnJSa4bN5PJhNHRUaZjzWYzwuEw8vk8UzpJqVTCYDAgFAoVtmXkybyQ/cvlcuHJkyeFAJaQUhIEAQ6HA1VVVXC73ejv78fw8DBaWlpQW1u7b3Z9yuVycLvdGB4eRj6fx8GDB1FbW0vBBykbyWQS8/PzOHHiRKmXQsrcyixGMBjkbkoPh8PMQUswGOS6Pw8Gg5iamsKhQ4d27N+YTQchAHD69GmMjY3hxRdfRDabZfqDNJvNhS3JNtqD2Gg0AlhMEbFuXyaVZDkcjsL7DQ0NMZ1L9i+tVgubzYbp6WnKhpCyIT2RcrlcmJqawsjICPr6+tDQ0IDGxsbCZh97TTwex/j4OCYmJqBWq9HS0lLIvhNSTqanp2Gz2Zibf8n+FQwG0draWviatx9Ean2Q7o3XI42sYA1YpCGKY2NjOH36NPOatmpL39FPnTqFkZERyGQy5myDUqmEXq9n6vXYbHP6yh2yqDmdsKitrYXb7S71Mgh5jlwuR2NjIy5cuIBTp04hEong0qVL+OijjzAzM8O8lXk5y+fzmJmZwUcffYRLly4hEong1KlTuHDhAhobGykAIWXJ7Xajtra21MsgZS6XyyEcDj+XCeEtxWJtSg8Gg9Dr9cx9SqFQCDKZDMPDwzh16hTzmrZqS5mQkydP4nd+53cA8NWercxWsBxbX1/PdG2z2YyRkZHC11Jz+sodCQhZyeVy4fHjx4hEIkxPGgjZaYIgoLKyEpWVlUgkEpicnMSTJ0/w8OFDOBwOOJ1OVFVV7ZoG2Uwmg9nZWXi9Xvh8PiiVStTX1+PYsWP0ZJmUvUgkgnA4DJfLVeqlkDInNaUvzV5vplyK9T6Wt+Fdeng/NDSEkydPMp+3VVsKQjo7OxGPx+HxeLiassxmM/OEarPZjImJCeZrS83pUrnX0mwKBSFkPUqlEg6HA263GwcPHiz1cghZl1arRXt7O9ra2hAIBOD1ejEwMIDu7m7Y7XY4nU44nc6yK9mKx+Pwer3wer3w+/0wGAxwOp148cUXYbFYqN+D7BputxsOh2PXBP2kdFZOSt9sU3pjYyPzsVarlfnagUAAHo8H8XgcR44cYT5vq7YUhGg0GnR0dGBsbIy5Wx9YDCzGxsaYj338+DFEUWT6x2lpudfSvhCanE5Y1NbW4smTJ+jo6KCbIbIrCIIAq9UKq9WKQ4cOIRaLwev1wuPxoLe3FzqdDmazGWazGSaTCWazecdumjKZDILBIEKhEILBIILBIOLxOGw2G5xOJ44ePco0dIuQciOKItxu947esJHda7VJ6TzlUlJTOs/2vM3NzczrW1hYwNjYGA4ePLijm/NsKQgBPm5Oj8fjzM3pJpOJuTldGjcfiUSYm9OloIOa0wkvh8OBhw8fIhAIcD1FIKRc6PV6tLS0oKWlBZlMBgsLCwgGg5ifn8fIyAiSyST0ej3MZjOMRiM0Gk3hh1qtLmSQWYiiiFQqVWiClH5EIhEEg0HEYjFotdpC8FNXVwer1UpPjsmuFwgEkMlkaEAhYbKyKZ23Ooe3KT2RSDBfv1RN6cA2BCGnTp3C//2//xcymQzhcJjpxk2lUkGn0yEUCm34F1gmk6GiogKhUIgrCFk6i8RkMiESiTBv9Uv2L7lcDpfLBbfbTUEI2fWkEsOl/XepVKqQlYhGo/D7/YUgIpPJQBCEZcGITCYrBCWiKCKfzy8LPkRRhFKpLAQxGo0GRqMRdXV1MJvNGz5oImQ3mpqagsvl2jfbZZPNW6spnWeGB09TOm+WRWpKHxkZwZe+9CXmNW2HLQchJ0+exDe+8Q0AfDVoUraC5SmCdCzr8JSVs0iksfU8qSyyf9XW1uLu3bs4cuQIBa1kz1Gr1c8FJpJcLlfIZqTT6WVBB4BlQYlKpSpkUOhGjOwn0k5uO/3UmOxOkUhky03pPNPPN7PrFgAMDg7uaFM6sA1BSFdXF6LRaGFiKGsNWjGb01fOIlk6OZ2CELIRm80GuVyO2dlZOJ3OUi+HkB0jl8uh1+upT4OQdfh8Psjlcq4n2WT/CgQCy7IYvDM8gMVAoaGhgflYi8XCtT6pKb2rq4v5vO2w5ce8Wq220JzOGlQAfJPMzWYzQqFQ4WncRqTm9KXrsdls8Pv9zOsj+5cgCKivr8f4+Hipl0IIIaTMTExMoL6+njYvIUzm5+dht9sLXwcCAa5yKVEUuQYb8j5wDwQCGBsbQ0dHx442pQPbEIQAi83p4+PjheZ0FmazGfF4HOl0esNjpeZ0qTGHhd1uX9YXYrfb4ff7mQMZsr81NDRgdnYW8Xi81EshhBBSJuLxOGZnZ5mfSpP9TRRF+P3+ZVkzv9+/LCjZSCQSAfDxvfB60uk0EokE16T0eDyO8fHxkpQXbksQsnRyejgcZjpHak5n2TpXak7n2WZ3ZebDYrEgk8kgFosxX4PsX1qtFg6Hg6sMkBBCyN42MTEBh8NBwzQJk2g0ikwms6w8ijcIkTZmYulRDQaD0Ol0UKlUTNcOh8OFpvSdnJQu2ZYg5OTJk4UtcHkCBZ75HRaLBQsLC8zXttvtCAaDyGQyABZrna1WK5VkEWaNjY2YmJhAPp8v9VIIIYSUWD6fx8TEBPPAOELm5+dhtVoLm3dkMhmEQiGufqKFhQXmHo/dMildsi1ByNGjRxEOh+Hz+bgCBZ6+EKmcipVWq4Ver1+1JIsQFlVVVZDL5fB6vaVeCiGEkBLzer2Qy+U0G4QwW5n1mJ+fh16v58qk8WROeIOQhYUF+Hw+RCKRHW9KB7YpCNFqtWhvb+duTrdYLMzH22w2RKNRJJNJ5uuv7AuRSrSoL4SwEAQBjY2NGBsbK/VSCCGElNjo6CgaGxupIZ0wkfpBlgYQvKVYyWQS0WiUKXMiiuKWmtJLUWK4bUMQTp06VWhOz+VyTOdYLBYkk0mm5l+VSgWTybQsqNjIWn0hPA3uZH9raGjAwsICc68TIYSQvScUCnFtk0qI1A+yNCjgDULm5+dhMpmYejzi8TiSySRz6ZbUlF6KSemSbQtCTp8+XWhOZy2xUigUsFgszCVSvNvsrtUXwhPIkP1NpVKhtraWsiGEELKPjY2NoaamhrnhlxC/37/lfhCeoMXv98NisUChYBsBWOqmdGCbg5D+/n7k83muvhCewIL6QkgpNDU1YWpqimk7aUIIIXtLOp2G2+1mHsZMCPD8fJDN9oOwBi0r328jCwsLyOfzGBgY2P1ByIkTJ5DJZDAxMYHZ2Vnm83iCAuoLIaVgNpthNptpeCEhhOxD4+PjMJvNXBOuyf5Win4QnoAFAHw+H8bHx5HNZnHixAnm87bTtgUhSqUSZ8+eRX9/PxYWFphv8q1Wa1H7QlYGOdQXQjbjwIEDGB0dZe53IoQQsvvlcjmMjo6itbW11Eshu8h29IP4/X7ufhCr1cp0bVEUsbCwgP7+fpw9e5Z5evt227YgBAA++clP4smTJ8jn82XTF2Kz2agvhGyZw+GAWq3G5ORkqZdCCCFkh0xMTECtVtO2vITLdvSD8JRX8faDhEIhiKKIJ0+e4JOf/CTzmrbbtgYhr776Kh49elRIC7GivhBS7gRBQGtrK4aHh2l4ISGE7AP5fB7Dw8NobW2lbXkJl52eD8LbDyK1JTx69Aivvvoq83nbbVuDkJMnTyKTyWB8fHxTfSEsJVyb7QtZGnTwvB8hEpfLBQCYnp4u8UoIIYQU2/T0NGQyWeF7PyEsRFF8Ligo136QXC5Xsn4QYJuDkN3SF2I2m6kvhHCTyWRobW3F0NAQBbCEELKHiaKIoaEhHDhwADLZtt4qkT0uGo0im81uSz8IS6/Gbu0HAbY5CAF2pi+Et5zKZrMhFAo91xdCJVmEV11dHdLpNLxeb6mXQgghpEi8Xi/S6TTq6upKvRSyy0j9GSv7QXiHFO71fhCgCEHIq6++isePH2+qL4Q1u8HbnL5aX0hVVRV8Ph/zNQgBFgPYlpYWyoYQQsgeJYoiBgcHceDAgcKNJCGsfD7fso0M5ufnYTAYoNFomK/BO6SQN8sCoOT9IEARgpClfSE8N/nF7gtZGXQ4nU7Mzc0hm80yX4MQAGhsbEQ0GqVMGiGE7EF+vx+xWAwNDQ2lXgrZZbLZLObm5uB0Oguv+Xw+VFZWMl+Dtx9kfn6eux9kbGys5P0gQBGCkKV9IYFAoGz6QpxOJ3w+X2E9BoMBWq0Wc3NzzNcgBFj8jDc1NWFwcLDUSyGEELKNpCxIU1NTSWvlye40NzcHrVYLg8EAYPHz5PV6lwUlGylmP0g+ny+bfhCgCEEIUL59Iel0GuFwGMDilqtOp5Nq+8mmtLS0IBQKce0CRwghpLzNzc0hFArhwIEDpV4K2YWkgEPa0jkUCiGbzdJ8kDUUJQjZbF+I3W5nzm7Y7XbMzs4yZ1rkcjmqqqqWBR0rsyOEsFKpVGhtbUVfXx99fgghZA8QRRF9fX1obW0t+RNisvuIogifz7cs6+H1elFVVcXcWySKImZnZ4vWDyLdY5dDPwhQpCDk5MmTyGaz3H0hUsM5y01dZWUlUqkUIpEI8/VXZj6sVivy+TwCgQDzNQiRNDc3I5VKYWZmptRLIYQQskXT09NIpVJobm4u9VLILhQIBJDP55eVRvGWYkUiEaRSKaYeEulBP08Q4vP5MDo6ilwuh5MnTzKfVyxFCUJ2Yl6IXC5HZWUlVzmVw+FAKBRCIpEAsDj3weFwUEkW2RS5XI6Ojg48ffqUpqgTQsguls/n0d/fj46ODtoRi2yK1+uFw+EozJVJJBIIh8NwOBxc16isrGT6DMbjcaRSKVgsFqZrL+0Heemll5hLuIqpaBN4pL4QURS5+kKsVitznT1vT4darYbFYnlulyzaqpdsVl1dHQRBwMTERKmXQgghZJMmJiYgCALNBSGbtjLr4fV6YbVaoVKpNn2N9czOzsJqtXL3g/T29pZFPwhQxCDk1VdfxaNHjwCAqy+EJ7BwOBwIBoNcW/WuvH5VVRUikQhisRjzNQiRyGQyHDx4EAMDA7TdMyGE7ELZbBYDAwM4ePAgTUcnmxKLxRCNRpfNB1nZH7KRZDKJYDDInDnhLfWS+kF6enrKoh8EKGIQcuLECeRyOYyNjXFlGpxOJ/x+f2G6+Xo0Gg3MZjP39ZfOB1EqlbDZbFSSRTaturoaOp0Oo6OjpV4KIYQQTiMjI9DpdKiuri71Usgu5fV6YbfbCxsaSPNCeEqxfD4fzGYz01DDTCYDv9/PFYQs7Qcp9XwQSdGCEKkvpK+vDwsLC8jlckznGQwG6HQ65vkdvCVZq80HoZIsshWCIODQoUMYGhpCOp0u9XIIIYQwSqfTGB4exqFDhwrbqhLCS+oHkUjzQoxGI9c1WIOKubk56HS6wjySjeRyOSwsLODp06c4d+5cWfSDAEUMQgDgjTfewL179wCAe7Aga2AhZTZYg5zV5oPwZF8IWY3dbofVasXAwECpl0IIIYTRwMAArFYr1w5DhCyVyWQwPz//XD8IT2Ytl8s9N2l9PZstxbp37x4++9nPMp9XbEUNQt588008fvwY0WiUaxtTnvkdRqMRarWaa/L5yuvr9XoYDAYaPEe25PDhwxgfHy8MxCSEEFK+wuEwxsfHcfjw4VIvhexiPp8PBoMBer0ewMdT0nlKsebm5qBWq5kyJ6vNI9nIzMwMIpEIHj9+jDfffJP5vGIrahDS1NSE1tZWPHz4EB6Ph3mrXmm7sYWFhQ2PlTIbPOVUq80HoenpZKsqKirQ1NRUGNRJCCGkPImiiMePH6O5uRkVFRWlXg7ZxVYGBIFAAKIoLpsXspGVk9bXI90bs15fFEV4PB48fPgQbW1taGxsZF5XsRV9G4i3334b9+/fRyaTYX5CLJPJnptuvh5p1gfrjd9q80GkQIbmPZCtaG9vRywWw/T0dKmXQgghZA1utxuxWAxtbW2lXgrZxfL5/KpT0pfOC9mIlDnhKcVyOBzMPUzhcBiZTAb379/H22+/zXTOTil6EPLWW2/h9u3byOVy8Hg8zOdVV1czByF2ux3ZbJZ5HgnwfObDYrFAJpMxZV8IWYtSqcThw4fR29tLPUaEEFKGMpkMnjx5gsOHDxd2MyJkMxYWFiCTyZYNDOTt1wgGg8jlcrDZbEzH817f4/Egl8vhzp07eOutt5jP2wlFD0JOnz4NjUaDvr4+rr6QyspKxONxRKPRDY/dzOTzqqoqRKPRwnwQqayLnmCTraqpqYHRaKQmdUIIKUMDAwMwGo2oqakp9VLILjc9PY3q6upCVmK1eSEb4cmcRKNRxONxVFZWcq3xyZMn0Gq1OHXqFPN5O6HoQYhMJsObb76JBw8eIBKJIJFIMJ3HO7+DNwhRKpWw2+3LsjO1tbWYnp6mkiyyJYIgoLOzE2NjY9SkTgghZSQcDmNsbAydnZ20JS/Zknw+j+npadTW1hZe83g8y+aFsOAtxeK5fiKRQDQaxcOHD/Hmm2+W3TDOHVnN5z73Ody+fRsymYx7sCDr8Q6HA+FwmDnIARaDDrfbXfjaZrNBoVDQLllky6Qm9Z6eHmpSJ4SQMkDN6GQ7+Xw+KBSKZQ3iU1NTy4KSjcTjcUQiEebMCW8pls/ng0wmw61bt/C5z32O+bydsiNByGuvvYa5uTlMTk5ylTs5nU7Mz88zDYBTqVSwWq1c2ZDq6mpEIpHC02pBEFBbW4upqSnmaxCylvb2dkQiESrxI4SQMjA9PU3N6GTbuN1u1NbWFjJq4XAYsViMaz6I1+uFzWaDSqXa8Nh0Oo2FhQWuIGR6ehoTExPw+/147bXXmM/bKTsShOj1enzyk5/EgwcPMD8/j2w2y3SeTqeD0WhkzobwbrOrVCrhdDqXZUNqa2vh9XqpqZhsmVKpxJEjR9Db20uT1AkhpITS6TR6e3upGZ1si0wmA6/Xuyzr4Xa74XQ6uT5fPPM+fD4fKioqoNVqmY7PZrOYn5/HgwcP8Nprr0Gn0zGva6fsWHHYW2+9hTt37kAmk21qsCCL6upq+P1+rhu+uro6uN3uQslMRUUFjEYj105ehKylpqYGZrMZPT09pV4KIYTsWz09PTCbzdSMTrbFzMwMjEZjoaxPFMVCZoRVKpUq6pT0ubk5yGSystwVS7JjQcgbb7yBvr4+LCwscN3g88zv0Ov1MJlMXOUvVVVVyOVyy7bmXdkrQshmCYKAo0ePwufz0TBMQggpAY/HA5/Ph6NHj1IzOtkWKwOO+fl55HI5rl2xZmZmYLFYCpPW15PP5zE7O8s9JX1hYQFPnz7FG2+8wXzeTtqxIMTlcqGrq4t7errZbIZcLoff72c6njeAkMlkcLlcy/pAampq4Pf7uZrcCVmLVqvFkSNH8PDhQyrLIoSQHZROp/Ho0SN0dnYyl7EQsp5EIoH5+fllWTW32w2Xy8W1+xRP5sTv90OhUMBkMjEdLw1AfPjwIY4ePcrVp7KTdnSvrrfffhvd3d3I5/MIBAJM50jzO1ifItfU1CAQCBTmf7Coq6vDzMwMcrkcgMWbRpvNRg3FZNvU1dVRWRYhhOywnp4eWCwWrjIZQtYzPT0Nm81WCGpzuRxmZmZQV1fHfI1YLIZAIACXy8V0vMfjgdPpZM7kBQIB5PN53Lt3r+ympC+1o0HIW2+9hbt37yKdTnOVptTU1DDP71Cr1aiqquLKhlgsFiiVymVb81JJFtlOS8uyqN+IEEKKj8qwSDG43e5lAYfP54NSqVw2NZ3lGlVVVVCr1Rsem8/nMTMzw9XP5PV6kUqlcO/evbLtBwF2OAjp6uqC1WpFT08PV5bBbrdzNbRLAQRryZe0Ne/SoMPlci3bvpeQrdJqtejs7MSjR4+oLIsQQopoaRmWRqMp9XLIHhEOhxGJRJaVN63cqncjUhM7a+ZkdnYWMpkMNpuNeZ3T09Po7e2FzWZDZ2cn83k7bUeDEEEQ8NZbb+HBgweIx+PMJVOrBQnrcTqdSCQSCIVCzGtbuTXvatv3ErJVtbW1sFgsVJZFCCFFRGVYpBhWbsObyWTg8/m4PmehUAiJRAIOh4P5PXmCnFgshng8jvv37+Ott94q6yzgjs9vf+utt3Dr1i0IgoCZmRnm82pra+HxeJhmjCgUCrhcLq4Awmg0wmg0LltTbW0tpqenaeI12TZLy7J4Pv+EEELYzMzMUBkW2XarZTBmZmYKox1YSU3sCoViw2OleSQ8/SYzMzMQBKFsp6QvteNByIULF5DJZPDkyRNMTEwwn2cymaDT6Zjr6XlLsoCPZ4ZIHA4HMpnMsu17CdkqjUZT2CmOdmAjhJDtk0gkCjsCURkW2U4LCwvIZrPLtuHlnQ2Sz+e5zvF6vdDr9YV5JCwmJibQ29uLXC6HCxcuMJ9XCjsehCiVSrzzzju4ceMG4vE4V8/FyiBhPZWVlQDANRixpqYG8/PzhRtDmUyGmpoaKski2662thbV1dW4d+8e04YLhBBC1iftBuRyuWgoIdl2brcbNTU1hW14V9uqdyPSuAnpHnUjU1NTXEFOOBxGPB7HjRs38M4773BNby+FHQ9CAODXfu3X8MEHHyCbzS6bz7GRmpoazM3NIZlMbngsbx8JsPiE2m63LztHKsmStu8lZLt0dnYik8lgYGCg1EshhJBdr7+/H5lMBkeOHCn1Usgek8vlMD09vSwgcLvdqKys5Mq48fR3JJNJ+P1+riBkamoK2WwWH374IX7t136N+bxSKUkQ8uKLL8Jms6G7uxuTk5PMJVM6nQ5Wq5V5Z63a2lrMzMww9ZEsPWdpEGK1WqFSqWjaNdl2CoUCp06dwsjIyLLtoQkhhPCZnZ3F6OgoTp06xVRrTwgPj8cDlUoFq9VaeI23FCubzWJmZob5nJXzSDYiiiImJyfR3d0Nm82GM2fOMK+tVEoShAiCgC984Qu4fv06stksV88FT0mWyWSCVquFz+djvn51dTVisVhhZy1BENDY2Ijx8XHmaxDCqqKiAp2dnbh//z5Tho8QQshyyWQS9+/fR2dnJ1ftPCGsxsfH0djYWMhghEIhxGIxOJ1O5mt4vV5otVrmqee8Qc78/PyyLMhu2JShJEEIAHzhC1/ArVu3EIlEMDk5yXyey+Uq7NO8Eakki6fkS6lUoqamZlnQUVdXh4WFBab3JIRXfX09Kisr0d3dTTuxEUIIB1EU0d3djcrKStTX15d6OWQPikQiCAQCy3aoGh8fR01NDVfPBU8pljSnjnWiOgBMTk4iEong9u3b+MIXvsB8XimVLAhpb2/H4cOHcefOHa6eC6VSCYfDwZwNqa2txezsLFKpFPPaGhsb4Xa7C2VcarUaLpeLazcvQlgJgoCuri4kEgkMDg6WejmEELJrDA4OIpFIoKura1c8+SW7z/j4OFwuV2G6eSaTwdTUFBobG5mvkUqlMDs7y5zZcLvdcDgczEFOLpfDzMwMbt++jSNHjqCtrY15baVUsiAEAL74xS/i2rVrEEWRqyaeZ/tdvV4Pi8XCNZPBbDZDr9cvC3QaGhowOTlJDeqkKJRKJU6dOoWhoSHMz8+XejmEEFL2/H4/hoaGcPr06bLfBYjsTrlc7rmAY3p6GgaDARaLhfk609PTsFgs0Ov1Gx4rzSPhKcXy+XwQRRHXrl3DF7/4RebzSq2kQcgv//Ivo7e3Fz6fjyvLIM3vCAQCTMfzlmQt7QORAh2bzQa1Wk0D5kjRmM1mHD58GHfv3qX5IYQQso5EIoF79+7h8OHDzDX2hPCanp6GRqMpNKSLoljoD+HBE1QEAgFkMhnmierA4mwQn8+HJ0+e4Jd/+Ze51lZKJQ1CnE4nLly4gFu3bmF2dhaZTIbpPLlczjURvaamBqFQiGsmSU1NDWKxGILBIABqUCc7o7GxEQ6HA3fu3KGsGyGErCKXy+HOnTtwOBzcN4OE8FjZkB4MBhGLxbhnd4TDYeZ5IlNTU3C5XJDL5UzHZzIZzM3N4aOPPsLFixe5gpdSK2kQAizODLl69SpkMhlXlkGa38Ey6E2lUj3XbL4RpVKJ2tra5xrUQ6FQYecsQrab1B8ik8nw8OFDalQnhJAlRFHEw4cPIZPJqA+EFJX08HplQ3ptbS3XNtBST4lKpdrw2Hw+z7WNLwDMzMxAJpPh2rVru2I2yFIlD0J+8Rd/ETMzMxgZGeEqybLZbJDL5cy9JI2NjYUhLqwaGxsxPT1dyNBIwczY2BjzNQjhJZfLcfr0afj9fgwPD5d6OYQQUjaGh4cxPz+P06dPMz8pJmQzxsbGlu2AlclkMD09zZV9k4Zys54zOzsLuVwOm83G/B7j4+MYGRnBzMwM3n77bebzykHJgxCDwYC33noLH330EQKBAHMtvCAIqKmpYS7Jslgs0Ol0zIMOgcU5IxUVFcv6SZqamuB2u5FOp5mvQwgvjUaDM2fOYGBggAZlEkIIFucsDAwM4IUXXuCaUk0Ir3Q6Dbfbjebm5sJrU1NTqKio4OpBmp6ehk6nY25in5qaYt7GFwDi8TiCwSBu3ryJt99+GwaDgXlt5aDkQQiwWJJ15coVCILA1UBeX18Pj8fDtP3uZns6mpqaMDY2ViiLMZvNMJlMXOskZDPMZjOOHz+O7u5umlFDCNnXwuEwuru7cfz4cZjN5lIvh+xxk5OTMJlMhYBDFEWMjo6iqamJ6zore0rWk0ql4PV6uebdSA/ir1y5sutKsYAyCUJef/115HI59PT0cA0uNBqNsFqtzOfU1tYiEokUms1ZuFyuQtOPpLm5eVlgQkix1NTUoLm5Gbdv36bsGyFkX0qn07hz5w6am5uZm3sJ2SxRFDE2NrYsCzI3N4dsNsv1+QsGg4hEIsz9HZOTk7BarVzZjImJCfT09CCfz+P1119nPq9clEUQolQq8fnPfx43btxAPB7n2sWqsbERExMTTAHBas3mG5HL5WhoaFjWB1JdXY1sNss124SQzero6IDRaMS9e/eYNmIghJC9Ip/P4+7duzAajejo6Cj1csg+4PP5kM/nUV1dXXhtdHQUDQ0NkMnYb5ulJnaWGTab2fo3FAohkUjg5s2b+JVf+RWuZvlyURZBCAB84QtfwIcffohMJsOVDamurn4uU7EeaRo663bA0jmzs7OIxWIAAJlMhqamJoyOjjJfg5DNEgQBJ06cQCqVwuPHjykDRwjZF0RRxKNHj5BOp3HixAnaCYvsiLGxMTQ2NhYCjlgshrm5Oa4AIZPJwO12M58zNzeHXC63LPDZyNTUFDKZDD744AN84QtfYD6vnJRNEPLCCy+gqqoK9+7dw+TkJPMTX5lMhvr6eubshtlshtFo5Orp0Gq1cDqdy96joaEBfr8f0WiU+TqEbJZSqcSLL76I2dlZ9Pf3l3o5hBBSdP39/Zibm8OLL75IE9HJjohGo/D7/WhoaCi8NjY2BqfTCa1Wy3ydqakpGI1G5v6l8fFx1NfXM2da8vk8JicncffuXTgcDpw+fZp5beWkbIIQQRDw5S9/Ge+99x5yuRzXjkCNjY3w+XxIJpNMx69sNmfR3NyMiYmJwha/Go0GLpeLsiFkx2i1WnziE5/A+Pg4fe4IIXva6OgoxsfH8YlPfILr5o+QrRgdHYXL5SrsvpbNZjE5ObmsP2Qjq/WUrCeRSMDn8y0LfDbi8XiQy+Xw3nvv4V/+y3+5a7OEZROEAMCXvvQl9Pb2wu12Y2RkhPk8vV4Pu93OPGekpqYG6XSauYQLAKxWK7Ra7bItfltaWjA5Ocm0Oxch28FoNOLMmTPo6+vj2m6aEEJ2i+npafT19eHMmTMwGo2lXg7ZJ1KpFCYnJ9HS0lJ4ze12Q6vVwmq1Ml9nbm4O6XQaLpeL6fjJyUnY7Xbo9Xrm9xgdHcXU1BSePHmCL33pS8znlZuyCkKqqqrw1ltv4fLlywgEAlylTg0NDcwN6qs1m29EEAQ0NzdjZGRk2Xa9NpuNnkqTHWW1WnH69Gk8ePCAK5AmhJByNzs7iwcPHuD06dNcN36EbNXo6ChsNluhhEralre5uZkr0yD1lLAM0xRFERMTE1z9JtFoFIFAAFeuXMHbb7+NyspK5nPLTVkFIQDwla98Be+//z4ymQzXLlZOpxOiKMLn8zEd39TUhNnZWcTjceb3qK2tRTqdXlYq1trairGxMa5Gd0K2yuFwoKurC3fu3OHacpoQQspVMBjE3bt3cfToUTgcjlIvh+wjmUwGo6OjaG1tLbzm9XqRyWSYt9gFFpvYZ2dnmYMKr9cLURS5Pu/SPed7772Hr3zlK8znlaOyC0JeeeUVVFZW4tatW5iYmEAul2M6TyaTobGxkTkrodVq4XA4uLIhcrkcBw4cwNDQUCEbYrPZYDAYuIcgErJV9fX1aG9vx61bt2iDBELIrhaNRvHRRx+hvb0ddXV1pV4O2WfGx8dRUVEBm80GYDFDMTg4iJaWFqaMxtLr8DSxr9yJayO5XA6Tk5P46KOP4HA4cP78eea1laOyC0IEQcBXvvIVvPfeexBFER6Ph/nchoYGzM/PM0+XXtlszvoe0u4J0nrb2towMjLCHDARsl0OHDiA2tpafPTRR8wbMxBCSDlJJpP46KOPUF9fjwMHDpR6OWSfyeVyGBkZQWtra6Hsyu/3IxaLcZVJZbNZTExMME9Vj0QimJ+f53qPmZkZiKJYyILs1oZ0SdkFIQDwxS9+EQMDAxgbG+NqUJd2rGLNbthsNmg0Gq4GX6VSiebmZgwNDRVeczgcUKlUXPNNCNkuhw8fhs1mw40bNygQIYTsKslkEjdu3IDNZsOhQ4dKvRyyD01OTkKtVi8riRoaGkJzczPXAMDp6WlotdpCNmUjY2NjcLlcUKvVzO8xOjqKsbExDA4O4p/8k3/CfF65KssgxGq14pd+6Zdw+fJlhEIhrgnqTU1NhQEuG1mt2ZxFc3MzFhYWCrX4giCgtbUVw8PDNNGa7DhBEHD8+HGYzWbcvHmTdmsjhOwKqVQKN2/ehNlsxvHjx3f9U12y++TzeQwPDy/LggQCASwsLHBvyzsyMsLcxC4N5uZ5j3A4jFAohMuXL+Mf/aN/tCc2bijLIARYbFC/dOkSEokE1+5TVqsVBoOBeRhhXV3dc83mG1GpVGhoaMDg4GDhtZqaGgCLqTJCdpoUiFRUVFAgQggpe6lUCjdu3EBFRQVNQyclI1XCLN1Od2hoCI2NjVCpVMzX8Xq9SKfTzE3s0jBDi8XC/B4jIyNIJBJ4//33d31DuqRsg5BPfOITaG5uxvXr15kzGxKeYYSrNZuzOHDgAHw+X6H/RCaTbeo6hGwXmUyGEydOwGAwUCBCCClbUgbEaDRSAEJKRhRFDA0NobW1tdAYHolE4PP5ls0KYbnO4OAgDhw4wLwtL88wQ2Axc+J2u/Hhhx/iwIEDePHFF5nPLWdlG4QIgoCvfe1r+NGPfgQAXP0WvMMIVzabs9BqtaitrV3WG1JfX49UKsW8TTAh200mk+HkyZMUiBBCypIUgBgMBpw8eZJ5VyBCtpvP50M6nV62G9vQ0BBqa2uZd7cCPm5iZ514zjvMEPj4HvjHP/4xvva1r+2ZwL2s//Z//vOfRyAQwOPHj7n6NqRhhKxlXEqlEk1NTcsCChYHDhzA9PR0YdaIXC5HS0sLZUNISUmBiNFopGZ1QkjZkJrQjUYjBSCkpFbbgjcej2N6enrZrBAWUhO7UqlkOn50dJR5mKG01uHhYTx69AjBYBDvvPMO1/rKWVl/B9Bqtfjyl7+Mn/3sZ0ilUlzToZubmzE3N8fc1L6y2ZyF0WiE0+lctoNXY2NjYds1QkpFKs0ymUwUiBBCSk4KQEwmE06cOEEBCCmp+fl5RKPRZdvjDg8Pw+l0wmAwMF+Ht4k9HA5jbm6OeRtfAJidnUU6ncbPfvYzfPnLX+bK0pS7sv8u8JWvfAW3bt2Cz+fjylRoNBrU19czn6NWq59rNmfR2tqKiYmJQtnLZrMqhGw3KRCxWCz48MMPaaAhIaQkotEoPvzwQ1gsFgpASFkYHBxEU1NTIXuRSqUwOTm5qSxIQ0MDcxP70NAQ6uvrodFomN9jeHgYPp8Pt27d2jMN6ZKy/07Q2NiIX/iFX8ClS5cwPz+PWCzGfO6BAwcwMzPDfM7KZnMWZrMZNpttWelXc3Mz5ufnubIqhBSDtGtWdXU1rl+/Tp9JQsiOCgaD+PDDD+FyuWgbXlIWgsHgc9mL0dFR2Gw2mM1m5utITeysAzZjsRhmZma4BnLGYjHMz8/j0qVL+MxnPsPcd7JblH0QAgBf+9rX8LOf/QyZTIZru169Xg+Xy4Xh4WGm46Vmc9bjJa2trRgbGyvs4KVWq7myMIQUkyAIOHLkCA4cOIAbN25wlTUSQshmzc7O4saNG2htbcXhw4cpACFlQcpeSEMCpXvLzWRBeJrYh4eH4XK5oNfrmd9jdHQUmUwGP/3pT/G1r32Na327wa4IQi5evIiqqircuHEDExMTXNv1tra2YnJykrkm/sCBA3C73UgkEszvYbPZYDAYMD4+vux9fT4fPXkmZePAgQPo7OzE7du3C3ujE0JIMUxPT+POnTvo6urievJLSDEFg8Hnshfj4+OoqKhgnnQO8DexJ5NJ7nKvTCaDiYkJXL9+HU6nExcuXGA+d7fYFUGIIAj4rd/6Lfzt3/4tcrncspv9jVRUVKCysnJZ8/h6pGZznmyIIAhoa2vDyMgIcrkcgMWsSlNTE54+fcp8HUKKrb6+HqdPn8aDBw+4soqEEMJqdHQUDx48wOnTp5dtf0pIqfX19aGpqamQvchmsxgZGVk2MZ3FyMgIVxP7yMgIqqqqUFFRwfweY2NjyOVy+MEPfoDf/M3f3JOZxF0RhADAF7/4RcRiMXR3d2NoaKhws8+ira0N4+PjzBmUlc3mLBwOBzQazbIbu9bWViwsLFD5CykrDocDZ8+excDAAJ4+fUrbSRNCtoUoiujr68PAwADOnj0Lh8NR6iURUjA3N4dgMLgsGzE2NgaNRsP1WU2lUpiYmGDOaqTTaYyNjXFlQXK5HIaHh3Hv3j3EYjF88YtfZD53N9k1QYhGo8Fv/dZv4W/+5m+QzWa5hhdarVaYTCbmJ79msxlWq5XrSbEgCDh06BCGhoaQTqcBACqVCq2trejr66MbPVJWrFYrzp07h6mpKTx8+BD5fL7USyKE7GL5fB4PHz6E2+3GuXPnYLVaS70kQgqkAPnAgQOFnazS6TSGhoZw6NAhriwDbxP72NhY4b6S1cTEBHK5HP7mb/4G/+bf/Buu3bR2k10ThADAr//6r2Nqagq9vb0YGBjgunFqbW3F6Ogostks0/FtbW3Lms1ZVFVVwWQyLWtIb25uRiKRgMfjYb4OITvBaDTi5ZdfRjAYxK1btwrBMyGE8Ein0/joo48QDAbx8ssvw2g0lnpJhCzj8XiQTCaX7Yg1NDQEs9mMqqoq5uvwNrFns1mMjo6ira2N+T3y+TwGBwfR09MDt9uNX//1X2c+d7fZVUFIRUUFvvrVr+Jv//ZvkclkMDMzw3xuVVUVtFotcwZltWZzFocOHcLY2FihsV2hUKCjowNPnz6lp82k7Gi1Wpw7dw5yuRwffPAB83BPQggBFoevffDBB1AoFDh37tyeGqRG9oZ8Po++vj60t7dDoVAAABKJBMbGxnDo0CGua42Pj8NoNDI3sU9MTECr1aKyspL5Paanp5HJZPD9738fv/Ebv7Gng/pdFYQAi9v19vb2Ynh4GP39/cxlToIgoLW1FcPDw0zBgHT80mZzFhaLBQ6HAwMDA4XX6uvrIYoiVwkZITtFqVTihRdeQE1NDT788EN4vd5SL4kQsgt4vV58+OGHqKmpwQsvvFAY/EZIOZHuverr6wuvDQwMwOFwcM0FyeVyGBkZQVtbG1P5Vj6f5256F0URAwMDGBoawpMnT/bktrxL7bogpLKyEv/iX/wL/OAHP0AikYDP52M+1+VyQSaTwe12Mx3vdDqhVqu5syEHDx7E1NRUYeihTCbDwYMHMTAwwFwORshOEgQBBw8exLFjx3Dv3j0MDQ1RHxMhZFWiKGJoaAj37t3DsWPHcPDgwT25cw/Z/bLZLPr7+3Ho0CHIZIu3vJFIBFNTUzh48CDXtcbHx6FWq5mb2N1uN2QyGVwuF/N7+Hw+JBIJ/OAHP8CXv/xl2O12rjXuNrsuCAGA3/7t38ZHH30Et9u9qWwI6w2WdGM2ODjI1RtiMBhQX1+P/v7+wmsulwtqtRpjY2PM1yFkp9XU1ODcuXMYHR3F/fv3ubKAhJC9L5fL4f79+xgbG8O5c+dQU1NT6iURsqaxsTFotVpUV1cXXnv69Cnq6+uZt9cFFntBBgcHmQNuKVDnzYI8ffoUU1NTuHXrFn77t3+beX271a4MQurr6/HOO+/ghz/8IcLhMObn55nPra2tRTabZW4UdzgcMBgMzHNGJG1tbfD5fAgEAgBW3z2LkHJkNpvxyiuvIB6P4/r161yDOwkhe1cikcD169cRj8dx/vx5rlIWQnbaartfBQIBzM7OcjWKA4tzPgwGA3MWxOPxIJvNcs3JmZ+fRyQSwQ9/+EN8/vOf3xczdnZlEAIAv/u7v4vLly9jbm5uWcZhI3K5HC0tLVzZkEOHDmF4eJhrbohWq0Vzc/Oy7XmrqqpgNpuX7Z5FSDnSaDQ4e/YsKioqcO3aNfj9/lIviRBSQn6/H9euXUNFRQXOnj27Z7cMJXuHtPuV1BQubdPb3NzMtYFCMpnE8PAwDh8+zJwFGRwcxIEDBwolYCz6+/sxOzuLK1eu4Hd/93eZz9vNdm0Q0tHRgc985jP40Y9+hIWFBQSDQeZzGxsbEYvFmIcI2mw2VFZWLms2Z9Ha2opQKLTsfVbunkVIuZLL5Th27Bja29tx69YtDAwMUJ8IIfuM1Ch769YttLe349ixY5DL5aVeFiHrWm33q7m5OYRCIa6hgQAwODiIyspK5jkfc3NziMfjaGhoYH6PYDCIhYUF/PjHP8ZnP/tZtLe3c61xt9q1QQgA/N7v/R5+8pOfIBwOcwUICoUCLS0tXP0kBw8exMTEBGKxGPP7KJXK54YVms3m53bPIqRcCYKApqamwmDDmzdvIplMlnpZhJAdkEwmcfPmTUxNTeHll19GU1MTNaCTXWFgYABOp7NQMihlQdra2rh2cYvFYpiYmGBuYhdFEf39/WhpaSlsB8yiv78f4XAYP/nJT/B7v/d7zOftdrs6CDl16hTOnj2Ln/70p/D5fIhGo8zntrS0IBaLMW9HWlFRgZqaGq7SL2BxWGEqlVo202Tl7lmElDupT0Sj0eDq1auYnZ0t9ZIIIUU0OzuLq1evQqPR4JVXXoHJZCr1kghhIu1+1dHRUXhtenoaqVQKTU1NXNfq7+9HTU0NKioqmI73er2Ix+NoaWnhWu/s7Cx+8pOf4KWXXsLJkye51rib7eogBFjMhvzd3/0d4vE4dzakvb0dT58+Zc6GdHR0YGZmBqFQiPl95HL5c8MKpd2znj59ynwdQkpNqVTixIkTOHjwIO7cuUMDOAnZg6TBbnfu3MHBgwdx4sQJmv9BdpWVu1/l83n09/ejo6ODq5QwFArB4/EsC2bWI/3daWtr48qCDA4OIh6P4+/+7u/2VRYE2ANByIULF9DW1oaf//znmJ6e5uq1aGxsRC6Xw9TUFNPxOp0OTU1N3MFDXV0dBEHAxMRE4bX29nbMzc3RE2WyqwiCgIaGBpw/fx4ejwc3btyg/iZC9ohEIoEbN27A6/Xi/PnzaGhooPIrsqvMzs5ibm5uWU/FxMQEBEHg3m2qr68PjY2N0Ol0TMdPTU0hn8+jsbGR+T0SiQSmp6dx6dIldHR04NVXX+Va426364MQQRDw+7//+/jbv/1bZLNZrp2nZDIZOjo60N/fzzwPobW1FfPz81y7Ba02rFCj0aCjowM9PT30NJnsOhUVFTh//jyMRiOuXLmyrNyQELL7zMzM4MqVKzAajTh//jxz+Qkh5SKXy+Hx48c4ePBgYfe2bDaLgYEBHDx4kGunKr/fj4WFBeYm9lwut6n3GRoaQjabxQ9+8AP8/u///r4L+nd9EAIAb775Jux2O65evYrx8XGuxtna2loolUrmIYJqtRoHDhxY1mzOorq6Gnq9flnJWFNTE2QyGfcMEkLKgUKhwLFjx9DV1YWHDx+iu7ubZuAQssuk02ncu3cPDx8+xNGjR3Hs2DGuUhJCysXIyAjkcvmyTMTAwAD0ev2yYYUbkZrYDxw4ALVazXTO2NgYVCoV1/DOZDKJ8fFxXL16FXa7HW+88QbzuXvFnghCZDIZ/uAP/gDf+973kMlkuJrHpTkgPFPRW1paEI/HmZvapffp6urC6OhooSFdJpOhq6sLAwMDVNJCdq3a2lpcvHgR2WwWly9fZh4ESggpLY/Hg8uXLyOXy+HixYs0/ZzsWolEAoODg+jq6ipkIiKRCEZHR9HV1cWVYfB4PFzN5bzT1CVPnz5FJpPB9773PfzBH/wBVwZlr9gz/8XvvPMOKisr8d5772FycpJrK92qqipUVFRgeHiY6XiFQoG2tjb09fVxlVKZTCY0Njaip6enkEWx2Wyorq5Gb28v83UIKTcajQYvvPACDh8+jAcPHlBWhJAylk6n0d3djQcPHuDw4cN44YUXaPgg2dV6e3vhcrlgs9kALGYzHj9+jMbGRq6d3fL5PJ4+fYr29nbmjODQ0BBMJhOqqqqY3ycajWJqago/+9nPUFVVhXfeeYf53L1kzwQhMpkMf/zHf4zvfve7iMfjePLkCfO5UjZkZGSEuZSrsbER+Xyeuald0tHRgXA4vKyG/vDhw5idnaUmdbKrSY1/lBUhpHxJ2Y9sNouLFy8WNk4hZLeS7p+WDiacmZlBJBJh3tlKMjU1BVEUmQcNJpNJjI6OcmdB+vr6EIvF8L3vfQ9//Md/vC+zIMAeCkIA4B/8g3+Azs5O/N3f/R28Xi/XFHWr1YqqqirmbX6lZnOepnZgcZvTQ4cOobe3l5rUyZ4kZUUOHTpEWRFCygRlP8helM/n0dPTg46OjmXN6L29vTh8+DDX9tK5XK6wlS9rUDAwMICqqirmaerA4nR0r9eLv//7v0dXVxd+4Rd+gfncvWZPBSGCIOA//af/hO9///sIBALcJU4HDx7E5OQk89DDmpoaqNVqjI6Ocr1PXV0ddDodNamTPUsQBNTX1+PChQvIZDK4fPky3G4312YOhJCtE0URbrcbly9fRiaTwYULFyj7QfaMkZERyGSyZUMIBwYGoNPpUFtby3Wt0dFRqNVq5t6oaDSKyclJ5mnqkt7eXiwsLOD73/8+/uN//I/7+u/ingpCAODFF1/E66+/ju9///tYWFjA3Nwc87lGoxG1tbXMje2CIODw4cMYHBzk2pFLalIfGxtb1qTe2dlJTepkT9FqtThz5gyOHDmC3t5e3LhxA+FwuNTLImRfCIfDuHHjBnp7e3HkyBGcOXMGWq221MsiZFskEgkMDAxsSzO61Nh++PBh5vP6+/tRW1sLo9HI/D5zc3NYWFjA3/zN3+BTn/oUXnzxReZz96I9F4QAwH/4D/8BP/3pT+HxeNDb28v19LWjo4OrlKuyshJVVVVcPSjAYpN6fX39siZ1u91OTepkzxEEAbW1tfjkJz8Js9mMa9euobe3l3k3OkIIn0wmg97eXly7dg0WiwWf/OQnUVtbu6+fuJK9p7e3F9XV1VtuRgcWezQcDgcqKyuZjpdKqnh6TkRRRE9PDzweD9577z1861vf4lrjXrQng5CDBw/iV37lV/C9730P0WiUqzlWq9WiqakJfX19zOccOXIEHo+Ha4ChtM5wOLxsfVKTOk8Gh5DdQKlU4siRI3jllVcQCoXw85//vNAESAjZOlEUMTU1hZ///OcIhUJ45ZVXuOviCdkNpGb0w4cPF17bbDO63++Hx+NZdq2N9PX1oampiSuz6PF4EIvF8N3vfhe/+qu/yl3GtRftySAEAL75zW/i5s2bGBkZQW9vL1fDd2trKwKBAHMgoNVq0d7ejsePH3O9j9Sk3tPT81yTOu+1CNktKioqcPbsWRw5cgRPnjyhEi1CtoFUetXX14cjR47g7NmzNPWc7EnrNaMfOnSIK+jO5/N4/Pgx2tvbmQOKubk5BINB5mnq0vv09vZieHgYH330Eb75zW8yn7uX7dkgpK6uDl/5ylfw7rvvIpVKYXJykvlclUqF1tZWrqnoLS0tEEWRefL60nXqdDoMDg4WXmtqaoIgCNSkTvaspSVaFosF165dQ09PD+2iRQindDqNnp6eQunVxYsXqfSK7GnrNaPX1dVxXWtsbAyiKDIPJlw6TV2lUjG/z+TkJFKpFN59913863/9r7mb5veqPRuEAMA3vvEN9Pf3o6enB0+fPuXaSre5uRnJZBJut5vpeGn6eX9//6aa1EdGRmiSOtl3lEolDh8+jFdeeQXRaBTvv/8+BgYGCplBQsjqstksBgYG8P777yMajVLpFdkXpGb0zs7OLTejJ5NJ9Pf3L2ts34jb7UYymURzczPz+2SzWfT19eHx48cYGBjAN77xDeZz97o9HYTYbDb823/7b/EXf/EXyGQyXJkFhUJRKBdhbaDdSpN6Q0PDqk3qjx8/ppp5sudVVFTgE5/4BM6cOQOv14tLly5hbGyMShIJWSGfz2NsbAyXLl2Cz+fDmTNn8IlPfIJKr8ieJzWeV1dXw263F17r6enZVDP6kydPuJrRM5kMnjx5giNHjjBPUwcWt/7NZrP4f//v/+F3fud3uGaK7HV7OggBgK9//etYWFjA7du3MTg4yFXu4XK5YDQambfsBba3Sf3IkSMIBALM2RhCdju73Y7z58+jq6sLo6OjNF+EkGeWzvuQnvq+/PLLhZsxQvY6t9uNQCCAzs7OwmszMzMIh8M70oze398Po9EIl8vFfE46ncbg4CBu3bqFhYUFfP3rX+da516354MQvV6Pb37zm/jLv/xLZLNZDA0NMZ8rCAI6OzsxPj7O3Di7HU3qUuZFrVajq6sLPT09XCVehOxmgiDA5XLhwoULaG1txZMnT3Dt2jXMzs5SMEL2HVEUMTs7i2vXruHJkydobW3FhQsX4HK5qO+D7BuJRAI9PT04evRooRdD2op6J5rRQ6EQxsfHuUu+BgcHC1mQb37zm9DpdMzn7gd7PggBgH/+z/85lEolrly5gpGREa4+i4qKCjQ3N3OVRW2lSd1oNC6bE+JyuVBVVYVHjx7RDRjZV2QyGRoaGvDaa6+hpqYG9+7dw82bNzE3N0d/F8ieJ4oi5ubmcPPmTdy7dw81NTV47bXX0NDQwFy/TsheIIoiHj16BIfDgerq6sLrvb29MBqNO9KM/vjxYzQ3N3MNJkwkEhgdHcWVK1egVCrxpS99iWud+8G++E6mVCrxR3/0R4Wdsp4+fcp1fltbG2KxGFeTemdn56aa1I8dO4aZmRn4fL7C611dXVSWRfYtuVyO1tZWvPbaa7Barbh79y4+/PBDeDweCkbIniOKIjweDz744APcvXsXNpsNr7/+OlpbWyGXy0u9PEJ23NTUFILB4LIyLJ/Ph5mZGRw7dmxHmtHj8Tja2tq41v306VOk02n81V/9Fb71rW/RphGr2BdBCAD80i/9Empra/GTn/wEbrebeSI68PEOPjxN6lVVVZtqUtfpdDh8+DAePnxYeC+VSoWjR4+ip6eHdssi+5ZKpcLBgwfx+uuvw+Vy4dGjR7hy5QqmpqaogZ3sevl8HlNTU7hy5QoePXqEmpoavP766+jo6KCbF7JvJRIJ9Pb2PleG9fDhQxw+fJi7vOnJkyeoqqraVDM6z9/DYDAIt9uNH//4x6irq8Mv/dIvca1zv9g3QYhMJsN//a//Fd/97ncxNzeHhw8fcj1FrampgdFoxMDAAPM5m21Sb2hoeK4sq7q6Gg6Hg8qyyL6nVCpx4MABvP7662hubsbAwAB+/vOfY2xsjGsbbkLKQS6Xw+joKC5duoSBgQE0Nzfj9ddfx4EDByj4IPvaRmVYDQ0NXNeTmtGPHDnCfM5mmtFFUcSDBw8wNzeH7373u/hv/+2/Uf/WGvZNEAIA58+fx1tvvYW//Mu/RCQS4RpgKDWpj42NcTep9/T0cD2pXassq7OzE8FgEFNTU8zXImSvksvlaGxsxMWLF3Hw4EGMj4/j/fff594Fj5BSkHbNef/99zExMYFDhw7h4sWLaGxspLIrQrB+Gdbx48e5buw304weDocxPj6Ozs5OrveanJxENBrFX/7lX+Ltt9/Gyy+/zHzufsO+0fEe8Sd/8idob2/Ho0ePIJPJUF1dzTz1sqKiAk1NTXj8+DFeeuklpg9lS0sLJicnMTY2xtwEBSyWZR05cgQPHz7ExYsXoVQqC2VZDx48QGVlJfNfJEL2MplMhtraWtTU1GB2dhZDQ0MYHBxEbW0tmpubaX4CKSvhcBijo6Nwu90wm804fvw4qqqq6EkpIUtIZVgnTpx4rgzryJEj3Pc/W2lG5/k3JJ1Oo7e3F48ePUJ3dzfeffddrnXuN/sqEwIsljX94R/+Ib7zne8glUqhr6+P6/z29nbEYjFMT08zHS9NP3/69ClisRjXe9XX16OiooLKsghhIAgCHA4Hzp07h3PnzkEURVy7dg3Xr1/HzMwM9Y2Qksnn85iZmcH169fxwQcfQBTFwufU4XBQAELIEkvLsJxOZ+H1np4eVFRUoL6+nut6sVgMT58+5W5Gj8Vi3M3ofX19SKVS+PM//3N885vfXLZ+8rx9F4QAwFe/+lXodDr8+Mc/xuTkJEKhEPO5UpN6b28v1yT1uro6PHjwgCtwoLIsQjZHesL86U9/Gg6HA0+ePMF7772Hp0+fIh6Pl3p5ZJ+Ix+N4+vQp3nvvvcJ05k996lM4fvw4zGZzqZdHSFlarQzL6/XC4/Fw74Yl9WfU1dVxN6MfPnyYuxl9cnISP/7xj2EwGPDVr36V+dz9al8GIUqlEn/2Z3+Gd999F36/nzs42EyT+qFDhxCPx7lnh2i12kJZ1tLdso4dO4be3l7aLYuQdahUqsL2vsePH0c4HMalS5dw69YteDweyo6QbZfP5+HxeHDr1i1cunQJ4XAYx48fx2uvvYbW1lbm8l9C9iNpKOGxY8cKf1fS6TQePXq06TKsRCLBNRl9YGAARqMRNTU1zOeIooiHDx9ibm4O7777Lv7sz/4MCsW+63jgJoj7uKbn85//PHw+H37zN38TXV1dXDsthMNhXLt2Da+88gpzveDc3Bxu376NCxcuQK/XM7+XKIq4desW1Go1Tpw4UXi9u7sbmUwGZ86coXQ+IYwSiQQmJiYwOTmJXC4Hl8uFuro6WCwW+ntENkUURQQCAUxNTWFmZgZyuRz19fVoaGig3j1CGK11r3P//n2kUim8+OKLXN+jY7EYrly5gjNnzjBnQTZzbwcAExMTePz4Mf70T/8U1dXV+Ku/+ivmc/ezfR2mSU3qjx8/hkwmg8vlYk69baZJfWlZFus5wMdlWZcvX4bX6y3UGHZ2duLy5cuYmprirpEkZL/SarXo6OhAe3s75ufn4Xa7cevWLSiVStTW1qK2tpZrKi7ZvyKRCNxuN9xuNzKZDFwuF06fPg2bzUYBLSGcJicnEQ6HceHChcJrUhnWxYsXi16GtV3N6DxVMvvdvizHkrhcrkKTejqd5h4s2N7ejmg0yjXJ/PDhw0gkElsqy5K2H5XKsnp6erib3gnZ7wRBgN1ux7Fjx/DpT38ahw8fRiQSwdWrV3Ht2jWMjIwgmUyWepmkzCSTSYyMjODq1au4evUqIpEIjhw5gk9/+tM4duwY7HY7BSCEcIrFYs8NJUyn05veDWt0dJS7DGurzejf+c538Id/+IfLZpqQ9e3rcixgsQHp6NGjeOmll/Dmm2/ilVdegclkYj5/ZmYGjx49woULF6DRaJjO2e6yrJ6eHiwsLODll19m3vmBELK6TCaDmZkZuN1uzM/Pw2azwel0wul0cv19JXtHLBaD1+uF1+stfCZqa2u5sueEkNXlcjl8+OGHsNlsy5rRN1tyHo1GcfXqVbz44ouw2+1M5ySTSVy+fBnHjh3jGkwYCoVw7do1/PCHP8RHH32Ehw8f0vcEDvs+CAGAa9eu4bOf/Sz+x//4H2hqasIrr7zC9YG/e/cuRFHE6dOnmc979OgRIpEIV1kWsFjPfvnyZZw4caIQbUt/ge12O9ckUELI+hKJBDweD7xeL/x+PwwGQyEgoR6SvUvq8ZACj2g0CrvdDqfTierqaurzIGQb9fT0YH5+Hi+//HJhUKfH48H9+/dx8eJFrr9voijixo0bqKioQFdXF/M5d+7cgVwux6lTp7je69q1axgdHcVXv/pV/OQnP8H58+eZzycUhBR8/vOfx+zsLL7+9a9zN6mnUilcvnwZnZ2dqK2tZTonm83iypUraG5u5hpiCCymDB8/fowLFy4U/nJGo1Fcu3ZtWXBCCNk+mUwGs7Oz8Hq98Pl8kMlkhX3sKysraSeUXS6bzWJubq7w/zefzxf+/1ZVVdHTTUKKQAo2Xn311UKmOR6P4+rVq+jq6mK+p5KMjIxgdHQUFy5cYP6ePDU1hSdPnuDChQtQq9XM7yU1o/+X//Jf4HQ6qRl9E+hfzWe20qSuVqtx9OhRPHz4EHa7naksS6FQ4Pjx47h16xYcDgcMBgPzWmtrazE3N4d79+7hpZdegkwmg8FgKExTN5lM0Ol0zNcjhGxMqVSipqYGNTU1yOfzWFhYgNfrxZMnT5BIJGCz2WC322G322E2m6k0sszl83kEg0H4/X74/X7Mz89Dq9XC6XTi1KlTsFqt9P+QkCKKx+N48OABjh49WghA8vk8uru74XK5uAOQaDSKp0+f4sUXX2QOQJLJZGFLYJ4AJJPJoLe3F48fP8bdu3cxODjItVayiDIhS/zJn/wJvv3tb+NP//RP0dzcjKNHj3Kdf+/ePeRyObzwwgvMZRqPHz9GOBzmLsvKZrP44IMP4HQ6cejQocLrDx8+LJR50T+ghBSfKIqIRqOYm5sr3MzmcjlYrVYKSsrIyqBjYWEBcrm8EDxWVlbCYDBQiR0hOyCfz+PGjRswGo04duxY4fW+vj54vV6cP3+eK7ssiiKuX78Ok8lU9DIsYPFea2xsDL/5m7+J3/iN38Bv/dZvcZ1PFlEQssRWm9RTqRSuXLmCw4cPo66ujumcrZRlhcNhfPDBB3jhhRdQVVVVuN5qwQkhZGeIoohIJLLsCfvSoMRqtcJkMlF5T5FlMhmEQiEsLCysGnTY7XYYjUYKOggpASnYeOWVVwp9ILOzs7hz5w7Onz/PtUUusFiGNTY2hldffbXoZVhLm9Fv3ryJR48e0ffzTaJyrCWUSiX+5//8n3jjjTfwiU98At3d3Xj11VeZn2Cq1Wp0dXXh4cOHqKysLHpZVkVFBTo7Owv1lBqNBgqFAqdOncIHH3wAu91eCE4IITtDEARUVFSgoqICzc3NzwUlY2NjSCaT0Ov1MJvNhR8UmGxeJpNBMBhEKBRCMBhEMBhELBaDRqOBxWKB0+nEkSNHKOggpAzMzs5idHR0WQCSTCbR3d2Nzs5O7gBkJ8uwpHIxv9+Pd999Fz/+8Y/p+/YWUCZkFV/4whcwPDyMb3zjG2hvb0d7ezvX+ZstywqFQjh37hz3QJ779+8jmUzi7NmzhXMnJibw9OnTQnBCCCkfyWRy2Q1zKBRCIpEoBCYmkwkmkwkGgwFarZZunJ8RRRGJRALRaBShUKjwZxiLxaDVamEymZYFdfS9j5DykkwmCxUj0pBlURRx8+ZNaDQanDhxgvse6Pr16zCbzcu2993onM2WYfX392NwcBB/9Ed/hNbWVvzFX/wF1/lkOcqErOK///f/joMHD+Lq1asAgOrqaq7IvKurC5cvX4bb7WYuyzp06BCuXr2KkZERHDhwgPm9BEFAV1cXrl27hsHBwULAVF9fD7/fj+7u7mXBCSGk9DQaDTQaDRwOR+G1VCpVCEoCgQAmJiYQj8chCAL0ej0MBkPhZ+mHSqXac3+3RVFEOp1GNBot/IjFYoWfRVGETqdDRUUFTCYT6urqYDabuZ5mEkJ2niiK6O7uRlVV1bJ7o8HBQSQSCa4Ht5KRkRGkUikcPHiQ+Ry3241AIICLFy9yvVc4HMbg4CCuXLmC8fFx/OQnP+E6nzyPgpBVWK1WfOc738Gv/uqv4siRI7h37x5XWZZKpSrsVMVTlnXixAncvHkTNpsNFouFeb1KpRKnTp3C9evXC/XOawUnhJDypFar4XA4lgUm+Xwe8Xh82Y242+1GNBpFMpmEQqGAXq8vBDUajQZqtfq5r8ulKT6fzyOVSiGZTBZ+rPw6Foshm81Co9EUgi2bzYb6+noYDAbodLqy+e8hhLCTgo2lwwf9fj+Ghobw8ssvc5c1BQIB9Pf34+zZs8xlWIlEAj09PTh+/HhhMjuLfD6Pu3fvwu/34zvf+Q7effddrvs0sjoqx1rH0rKstrY2dHR0cJ3f3d2NbDbLFd0PDQ1hfHwcr776KvdfyNHRUQwNDeHVV18tPBUMhUL48MMPuSaHEkLKXzabRSwWQywWW/VmPpVKIZVKAVh8MCL1jK38IZfLn3tNJpMVvmet/N4l/ZMhiiLy+Tyy2eyyH7lc7rnXstkskskk0uk0gMWAa7VgSaPRQK/XQ6/X09wVQvYQv9+PW7du4eWXXy5s+JNKpXD16lW0tbWhqamJ63qZTAZXr15FY2MjWltbmc4RRRG3b9+GUqnEyZMnud5PKsP69//+36OtrY3KsLYJBSHrCAQCOHjwID7/+c/jwoULePXVV7nKstLpNC5fvsy1W5Yoirh161ahwZy3NvLu3bvI5XJ48cUXC+eOjY1hcHBwWXBCCNn7lmYeUqnUqsHBaoFDPp8HsPg9RfoBLAYk0g8AkMlkGwY00g8pyCinzAwhpPiknUPb29sLwYZ0ryOXy3H69Gnue5179+4hm80uu9fZyOTkJPr6+nDx4kWuLIi0G9aVK1fw13/91+jr66MsyDahR03rsFgs+D//5//gnXfewZEjR3D37l1cuHBhU2VZdru9MN18PYIg4MSJE4WaQ56nA4Ig4Pjx48/1ljQ2NsLv9+P+/ftcf2EJIbubTCaDVqtl+t5DCCHbTdo8x2azobGxsfD68PAwotEoXn31Ve57kvHxcSwsLHCdm0gk0Nvbu6kyrHv37mFubg7f+c538N3vfpcCkG1Ej6M28NnPfha/+Iu/iP/9v/83YrEY91TM6upqOBwO/P/bu/P4xupyf+Cf7vu+L2nTfd/3YQZEuSCIDqKAKHpV3C4iXC94BUTZFFABAUEEWa6yDSAygyyiyDZ0T/e9aZu2SdM0bdKkWZvt/P6Y3zkkbWemJ0nXed6vV16UzuQknbbJ+Zzn+X6fvr4+bLboFBQUhNraWgwNDUGr1fJ6PLbMODo6CrVaDeBEOKmsrITBYMDIyAiv4xFCCCGEuGNkZAQGgwGVlZVcYFCr1RgbG0NtbS3vtnOtVouhoSHU1NRsurODYRj09fUhKSkJKSkpvB5vfHwcBoMBjz/+OC699FJcdNFFvO5PTo1CyCY8/PDDkEqleO+99zA+Ps47GJSVlUGj0UAqlW76PvHx8cjNzUVnZydsNhuvx4uNjUVhYSFEIhHXgx0QEICGhgZIJBLIZDJexyOEEEII4UMqlWJ6ehoNDQ1c2LBYLBCJRCgsLORdUbDZbOjs7EReXh6vNa5SqRQajWbTW/iytFotxsfHud1OH3roIV73J6dHIWQToqOj8dRTT+HJJ5+EUqmESCTieqY3IzAwEJWVlRgYGIBer9/0/QoKChASEoL+/n7ezzknJweRkZHo7u7mKjARERGora1Fb28vlpeXeR+TEEIIIeR0lpeX0dfXh9raWkRERAD4pDUrMjISOTk5vI7HVjNCQkKQn5+/6fvp9Xq3d8MSiURQKpV48skn8dRTTyE6OprXcyanRyFkky666CJ86UtfwhNPPOFWW1ZycjIyMzO5QYabwa4PWVhYwOzsLK/HY+/LThJlJSUlobCwEB0dHTCbzbyOSQghhBByKiaTCR0dHSgsLERiYiL3+ZGREej1et4DCYET1QylUomamppN39dut6OzsxOZmZkuW59vxtjYGAwGA5544gl8+ctfxoUXXsjr/mRzKITw8NBDD0Emk7ndllVcXAwfHx8MDQ1t+j4hISGoqalBf38/dDodr8cLDAzcsAUrJycHCQkJ6Ojo2HQgIoQQQgg5Fbvdjo6ODiQkJLhUO2QyGSQSCRoaGnhVJIATQwL7+/tRU1OzqblrrKGhIfj6+qK4uJjX42m1WojFYvz73/+GTCbDgw8+yOv+ZPMohPDgaVuWr68vamtrIZVKIZfLN32/xMREZGdnc9vv8uHcgqXRaACcqJJUVFQAAHp7eze9YJ4QQgghZCMMw6C3t5c7x2ArFsvLy+jt7XVpzdosm80GkUiE7Oxsl6rK6cjlckilUtTW1vLaEty5Deupp56iNqwtRiGEpwsvvBBf/vKXubassbExXvcPCwtDVVUVent7YTAYNn2/wsJCBAQEYGBggO9TRlJSEgoKCtDe3s61YPn5+aG+vh5LS0uYnJzkfUxCCCGEENbk5CSWlpZQX18PPz8/AIDZbOZas/i2RAHA4OAgAgICeA2LNhgM6OnpQVVVFcLCwng9HtuG9cc//hGXX345tWFtMQohbnjwwQchk8nw73//G2KxmHdbVmpqKtLS0nhVUnx9fVFTUwO5XI65uTnezzk3Nxfx8fEuLVjBwcGor6/H6OgoFhYWeB+TEEIIIWRhYQGjo6Oor6/nWqbY1qz4+HjeC9GBEy1ccrkcNTU1m65msJWM9PR0pKam8no85zas+fl5/O53v+P9nAk/FELcwLZlPfXUU1AqlW61SZWWlsLhcPCa2xEaGupWFQX4ZFYIu8ME24IVExODyspKiEQi3mtOCCGEEHJm0+l0EIlEqKys5LbddT7XcJ4Rsll6vR59fX2oqqpCaGjopu83PDwMh8OB0tJSXo/HLmJn27CefvppREVF8ToG4Y9CiJsuvPBCXH755XjsscdgMBgwODjI6/5+fn6ora2FRCLhVYVISUlBRkaGW8GHbcFSKpWYmpriPp+eno6srCy0t7dzc0UIIYQQQk7FYrGgvb0dWVlZSE9P5z4/OTmJxcVFl9aszbLb7RCJRMjIyOA1XFChUGBmZgZ1dXW8H5MdofCHP/wBV1xxBS644AJe9yfuoRDigQcffBDLy8s4evQoZmZmeC02B04sGq+oqEB3dzdMJtOm71dcXAxfX1+3FpWHhISgoaEBIyMjUCqV3OeLiooQHh6Orq4uXovtCSGEEHLmYVufIiIiUFRUxH3euTUrJCSE1zHZxe18d7UymUzo6elBeXk5wsPDeT2mXC7H7Owsjh49Cq1WS21Y24hCiAciIyPx17/+FS+99BKGh4fR3d0No9HI6xgCgQDJycm8Tv49XVQeExODiooKiEQibniij48PampqYDQaMTw8zPuYhBBCCDlzDA8Pw2w2u8z9YFuzKioqeE9EBzZe3H46DocDXV1dSE5OhkAg4PV4RqMR3d3dGB4exssvv4xXXnkFkZGRvJ83cQ+FEA9VV1fj3nvvxQMPPACNRoP29nbelYSysjKsrq7y2mnL00XlAoEAmZmZaG9vh9VqBQAEBASgoaEBs7OzmJmZ4X1MQgghhOx/MzMzmJ2dRUNDAwICAgAAVqsV7e3tEAqFvMMA8EkFpaGhgdc8kLGxMayurqKsrIzX4zkcDrS3t0Oj0eCBBx7Ar3/9a1RXV/N92sQDFEK84Ec/+hGamprw6KOPQqfT8a4k+Pv7o66ujuuh3CxPF5UXFxcjLCwMIpGIa+sKDw9HXV0dBgYGaMcsQgghhLhQKBQYGBhAXV0dtwUuwzAQiUQIDw/nPRwQcF3czmcux+LiIiYnJ1FXVwd/f39ejzk0NASdTodHHnkEBw4cwLXXXsvzWRNPUQjxAh8fH/zf//0f5ubm8Oabb2Jqaor3CXxkZCRKS0vR1dXFzfLYDE8WlZ+sBSshIQFVVVXo7OyEWq3mdUxCCCGE7E9qtRoikQhVVVVISEjgPj80NASj0YiamhreO2GdbHH76ZjNZnR1daGsrIx3C9XCwgIkEgneeOMNyOVyPPPMM7yfN/EchRAviYmJwUsvvYS//OUvGB8fh0gk4rXYHAAyMzMRHx+P7u5uXgvOi4qKEBER4daicrYFa2ZmxqUFKy0tDcXFxWhra6OtewkhhJAznE6nQ1tbG4qLi5GWlsZ9fqPWrM062eL202EYBt3d3YiPj0dGRgavxzSZTBCJRBgfH8ezzz6Ll19+2a31K8RzFEK8qKmpCbfffjseeOABaLVadHZ28goTPj4+qKiogNFoxPj4OK/7VVdXw2QyubWoPDw8HPX19RgYGIBCoeA+n52djaysLLS2tvIOVIQQQgjZH0wmE1pbW5GVlYXs7Gzu82xrVn19Pe9dqYCNF7dvxvj4OIxGIyoqKnjdz+FwoKOjA1qtFg888ADuuOMONDY28n7exDsohHjZT37yE5SVleHxxx+HRqPB6Ogor/sHBASgrq4OYrGY15a/zovKZ2dn+T5txMfHo7q6GiKRyKUFq7CwEAkJCWhtbaUZIoQQQsgZxmKxoLW1FYmJiSgsLOQ+z7ZmVVdXIz4+nvdx3a2gyOVyiMVi1NXV8a68jI2NQavV4o9//CPKy8tx44038n3axIsohHiZr68vnnvuOYyPj+Of//wnxGIxr8XmABAVFYXq6mr09PRgZWVl0/cLCwtDXV0d+vv73VrLkZqaipKSErS1tXGPy1ZnwsLC0N7ezntAIiGEEEL2JpvNhvb2doSFhaG8vJyrOqysrKCtrQ0lJSVITU3lfVy1Wr1ucftmaLVadHd3o7q6mvdE88XFRYjFYrzzzjsQi8V49tln4etLp8E7if71t0BCQgKOHDmCp556ClNTU+js7MTq6iqvY6SmpiI3Nxft7e287puQkIDi4mJ0dHS41ULFllqdW7B8fX1RW1sLABCJRDTMkBBCCNnn2PkbAFBbW8udsLOtWWzLNl9GoxEdHR0oLi52Wdx+Oqurq2hvb0deXh7v4GM2m9HZ2YmpqSk8/fTTOHLkCK/HJluDQsgWOeecc/DTn/4UDzzwAPR6Pe/1IQCQn5+P6OhodHZ28jrxz8rKQnJyMtrb22Gz2fg+dRQUFCApKcmlBcvPzw8NDQ0wGAzo6+vj/bUQQgghZG9gGAZ9fX0wGAxoaGjgBgdaLBa0tLQgOTkZBQUFvI9rs9nQ0dGB5ORkXgHG4XCgs7MTMTExyM/P5/WY7PbBKysreOCBB3DTTTfhnHPO4fvUyRagELKFfv7znyMrKwt/+tOfoFarIRaLed3fx8cHVVVVsNlsGBgY4HW/8vJy+Pn5obe3l3dgYFuwwsPDXYJMYGAgmpqasLi4yHutCyGEEEL2hpGRESwuLqKpqQmBgYEATgSItrY2REREuLRmbRbDMOjp6YG/vz+v+zMMg4GBAdhsNlRVVfF+3PHxcajVajz55JPIzs7Grbfeyuv+ZOtQCNlCfn5+ePHFF9HT04P3338fo6OjvNdq+Pv7o76+HnK5HBKJZNP38/X1RX19vVvhB/hkhoiPj49LC1ZISAiampowPT2Nqakp3sclhBBCyO41OTmJmZkZNDU1ISQkBMAnW+n6+vq6NQsEOBEGlpeXUVdXx2stxvT0NObn51FfX897IKFKpcLY2Bjef/999Pb24sUXX+SqOmTnUQjZYqmpqXj++efx+OOPY3Z2lvcaDwAIDQ1FfX09hoaGeC1yDwoKQkNDA8bHx3nttMViW7BMJpNLC1ZERAQaGhowPDyMubk53sclhBBCyO4jk8kwMjKChoYGREREADhRiejt7YXJZHJpzeKD3dGqoaEBQUFBm77f4uIihoaGUFdXh9DQUF6Pubq6io6ODszOzuLxxx/HCy+8gJSUFL5PnWwhCiHb4IILLsB1112H+++/HysrK2hvb+e9uDsuLg5lZWUQiUQwGAybvl9UVBRqa2vR3d2NpaUlvk8dAQEBaGxsxOLiIkZGRrjPx8bGoq6uDj09PVAqlbyPSwghhJDdQ6lUore3F3V1dYiNjeU+PzIyApVKhcbGRt5b4gIngkR3dzdqa2t57WhlMBjQ2dmJsrIyxMXF8XpMh8OB9vZ2rKys4P7778f111+P888/n+9TJ1vMh6EVxtvCarXivPPOA8MwuOGGG5CZmYnKykrexxkYGMDi4iIOHTrE68VgZmYGg4ODOHjwIO9t7QBAr9fj+PHjyM/PR05ODvd5qVSK/v5+NDU1ubxoEUIIIWRvUKvVaG1tRXl5OQQCAff5yclJjI+P49ChQ24NI9RoNGhubkZZWRmvyeZWqxXHjx9HQkICysrKeD9uT08PZmdncd9998HPzw//+te/3ApQZGtRJWSbBAQE4NVXX8Xs7Cz++te/QiqV8lrjwSopKUFwcDC6u7t5LTjPzMxEXl4eWltbeVVSWOHh4WhsbMTo6ChkMhn3eYFAgOLiYrS2tmJ5eZn3cQkhhBCyc9gAUlxc7BJAZDIZRkdH0djY6FYAMRgMaGtrQ35+Pq8AwjAMuru7ERwcjJKSEt6POzU1BZlMhldeeQVSqRSvvvoqBZBdikLINoqPj8cbb7yBo0ePorW1FQMDA7xbpNiZHTqdjvcOVXl5eUhLS0NrayvvdSkAEBMTg7q6OvT29rq0YGVlZaGwsBCtra3QaDS8j0sIIYSQ7be8vIy2tjYUFRW5bJnr3JoVExPD+7hmsxmtra1IS0tDbm4ur/uOjo5Cp9O5zCbZrKWlJQwODqKlpQXHjh3DG2+8wbuVi2wfCiHbrLS0FM899xweeughSCQStLe3865MBAYGor6+HlNTU7wWhvv4+KC0tBTR0dFobW2F1Wrl+/SRmJiIiooKdHZ2QqVScZ/PyclBfn4+WlpaoNVqeR+XEEIIIdtHo9GgtbUVBQUFyM7O5j6vUqnQ2dmJyspKJCYm8j6u1WpFW1sboqOjUVpaymsnrbm5OUxNTaGhoYHbGnizDAYD2tvbMTU1hYcffhjPP/88SktL+T59so0ohOyAw4cP4+abb8Y999wDlUqF1tZW3kMFIyMjUVNTg56eHl7VBx8fH1RXVyMwMJD3EESWQCBASUkJ2traXLYczs3NRV5eHgURQgghZBfTarVoaWlBXl6eyzpPtVqNtrY2lJSUID09nfdx7XY7Ojo6EBgYiOrqal4BRKPRoKenBzU1NdzOXJtltVrR2toKlUqFe++9F7fccgu+8IUv8H36ZJtRCNkhP/vZz3DOOefgvvvuw8rKCkQiEe+hguzE0vb2dphMpk3fz9fXF3V1dbBYLLzXlrCEQuGGa0HYF7SWlhasrKzwPi4hhBBCts7KygpaWlq4C4cs57UhQqGQ93HZYYQ2m433LBCTyYT29nYUFBQgOTmZ9+OyE9F/+9vf4pxzzsEtt9zC9+mTHUAhZIf4+PjgmWeega+vL5588kkolUq3ppDn5uYiMTERra2tsFgsm75fQEAAmpqaoNFoMDg46FYQOdlakPz8fGRnZ1MQIYQQQnYRNoBkZ2cjPz+f+/zJ1oZsFjvVXKPR8N7K12KxoLW1FYmJibzXjwCfTHf/05/+BH9/fzzzzDNuDVMk249CyA4KDQ3F3//+d3R2duIf//gHxGIx7+F/Pj4+qKioQFhYGNrb22G32zd936CgIDQ1NWFubs6tqeqA61oQ5yBSUFCArKwsNDc3U2sWIYQQssO0Wi2am5uRlZWFgoIC7vMnWxvCh1gshlwuR1NTE69hhHa7He3t7QgLC0NFRQXv8CCTyTAxMYG3334bXV1deP3113kPNSQ7h0LIDhMIBDh27Bj+7//+DwMDA+ju7ua9w5Svry9qamoAACKRiNc6j7CwMDQ1NUEsFmNmZobX47JOthaEfUGjNSKEEELIztFoNGhpaUFOTo5LADnZ2hA+ZmZmIBaL0dTUhLCwsE3fz+FwQCQSAYBbO2Gxa0j6+/vx5z//GceOHXPZYpjsfhRCdoEDBw7gkUcewW9+8xvI5XK0trbCbDbzOoa/vz8aGhpgMBjQ39/Pq70qKioK9fX1GBgYgEKh4Pv0AZxYC5Kbm7thEMnNzUVzczNt30sIIYRss+XlZW4NiHMLFhtA1q4N4WN+fh4DAwNoaGjgNQiZYRj09fXBYDCgoaEBfn5+vB6X3QJYLpfjt7/9LR599FE0NTXxffpkh1EI2SW+/e1v41vf+hbuvfdeaLVatLW18WqtAk5s3dvU1OTW+pKEhARUV1dDJBK57HjFB7sWZG3gyMvL41q2aKAhIYQQsj2Wl5e5VivnoMFOMmdbqt2hUqnQ1dWF6upqxMfH87rv6OgoFhcX0dTUxHsrXrvdjra2Nmi1Wtxzzz3c+RPZe3wYd1Ykky1hs9nw2c9+FgaDAT/96U8hEAh4b3EHADqdDsePH0dhYSHv/k6JRIKRkRGcddZZvK5qOBOLxVxp1nnI0eTkJEZHR9HU1ITY2Fi3jk0IIYSQ02N3uyoqKnI5F2CDSV5entsVEHZ9iTsL2aempjA2NoaDBw/y3oqXnaYulUpx7733IiIiAm+//Tb8/f15HYfsDlQJ2UX8/f3xyiuvQKlU4siRI5DL5ZiamuJ9nIiICDQ2NmJ4eJj3QvesrCyurcrdna3Yysfa7XtzcnK4bX2dJ64TQgghxHuUSiW33a5zAFGr1WhpaVlXGeHDeYtfvgFkbm4Ow8PDaGho4B1AgBMBRi6X48iRI1haWsLLL79MAWQPo+/cLhMTE4M33ngDDQ0NyMjIAMMwCAsL471vdmxsLGprayESiRAYGIiEhIRN3zc/Px8OhwMtLS0466yz3HqhyM3NhY+PD1paWlwqH1lZWfD390dHRweqqqqQlpbG+9iEEEII2ZhMJkNvby8qKipcFmqfrDLCx8rKCpqbm9dt8bsZi4uL6OnpQV1dnVvdEAqFAkNDQ/j444/x9ttvo7293aXbguw9VAnZhYqKinDkyBE88sgjGB4eRmdnp1vrNJKTk1FeXo6Ojg7ei8ILCgqQmZmJ5uZm6HQ63o8NuFY+VCoV93mBQIC6ujr09PS4VekhhBBCyHqTk5Po7e1FXV2dSwBRqVQbVkb40Ol0aGlpgVAodNlhazM0Gg06OjpQXl6OpKQk3o+tUqnQ2dmJ4eFhPPLIIzhy5AgKCwt5H4fsLhRCdqmLLroIDzzwAO6++25IJBK326MyMjKQn5+PtrY2GAyGTd/Px8cHhYWFyMjIQHNzM/R6Pe/HBk5UPkpKStDW1ubSgpWUlIQDBw5gbGwMw8PDbg1LJIQQQsiJtRLDw8MYHx/HgQMHXE70lUol2traUFJS4tYgQgDQ6/Vobm5GRkYG75N/g8GAtrY25OfnIyMjg/djr6ysoLW1FRKJBHfffTd+97vf4cILL+R9HLL7UAjZxX7wgx/ghhtuwF133YX5+Xk0NzfDZDLxPk5ubi7S09N5b/3r4+ODoqIiCAQCNDc38woxzoRCIVeRkclk3OdjY2Nx8OBBrnTMZ74JIYQQQk7M2+jt7YVMJsPBgwddWp1kMhk6OjpQUVEBoVDo1vENBgOam5shEAhQVFTEa7Mcs9mMlpYWpKenuzUN3Wg0orm5GfPz87jrrrtw44034vvf/z7v45DdiXbH2uUYhsE111yDt956C7/61a+QlJSEc845h/eWduyOEjqdDmeddRYCAgJ43XdoaAhyuRxnnXUWr2FEzpRKJTo7O1FYWOgyFMlkMqG1tRVhYWGoqamhRWaEEELIJthsNnR1dcFgMKCpqQkhISHcn7E7UtbV1SExMdGt47MBJDU1FSUlJbwCiNVqRXNzMyIiItza6dNiseDDDz/EwsICbrnlFlx88cV49NFHeR+H7F4UQvYAu92Oyy67DCMjI7jjjjuQkJCAQ4cO8T5ZdzgcaGtrA8MwaGxs5DUciGEYDA4OYn5+3qMgsry8jLa2NmRmZrpcUbFYLGhvbwcANDQ08A5ZhBBCyJnkZO+bDMNgZGQEMzMzaGxsdHvxNhtAUlJSUFpayuvkn53l4evri4aGBt7T0G02G44fPw6lUonbb78dxcXFePnll3kPNSS7G4WQPcJsNuOCCy6AyWTCzTffjKSkJDQ2Nrr1i93c3Izg4GDU1dXxuj8bRNiKSHh4ON8vA8CJ3tKWlhYkJCSgoqKCew52ux0ikWjDKzqEEEIIOcG5g6C2tpY7OWdbs1QqFZqamjx6n25ubkZaWhrvCojD4UBnZyfMZjPOOussty6Yslv533PPPQgNDcU777yDoKAgvl8G2eUohOwhWq0Whw4dQmJiIn70ox8hLS0NNTU1bpU4W1paEBoaitraWt5BZHh4GDKZDAcOHHBr+17gxAtoW1sbQkJCUFtby71IORwO9PX1cZNU3T0+IYQQsh/pdDq0trYiMTER5eXl3Hu4zWaDSCSCyWRCY2Oj2xfydDodtwakuLiYdwARiUQwGo04cOCAW63jXV1dmJubw+9//3ssLi7io48+cnt4MtndaGH6HhIVFYV33nkHExMTeO655zA/P4+hoSHexwkMDMSBAwdgMBjQ1dXFa0G4j48PiouLucXq7m7fGxISgoMHD8Jms6GlpQUWiwUA4Ovri8rKSggEAhw/ftytrYkJIYSQ/UitVuP48eMQCAQunQTsxUWbzYaDBw+6HUDYOSAZGRluBZCuri63AwgADA0NYX5+Hs8++ywmJibwzjvvUADZxyiE7DEpKSn417/+hffffx/Hjh2DRCLBxMQE7+OwQUSv16O7u5t3ECkqKuLmiLg7WT0gIABNTU0IDg7G8ePHuZ2/2OMXFhaipaUFCwsLbh2fEEII2S8UCgVaWlpQWFjosqbSZDLh+PHjCA4ORlNTE6+NZ5yxk9DXrtncDIfDge7ubuj1ejQ1NbkVQCYmJiCRSHDs2DF88MEHePfdd3kPaiZ7C4WQPSgvLw/vvPMOXnrpJXz44YcYHh6GVCrlfZygoCAcOHAAKysr6Onp4TWrgw0KQqEQzc3N0Gq1vB8fAPz8/FBXV4e4uDh89NFHLoEmOzsbVVVV6OzsxMzMjFvHJ4QQQva6mZkZiEQiVFVVuQwbXFlZwUcffYT4+HjU1dW5vXBbq9WiubkZWVlZvAMIwzDo6enBysoKDhw44NbaDalUiuHhYXzwwQd46aWX8M4777i1pS/ZWyiE7FE1NTX429/+hj/84Q/o7u5GT0+PyzDAzWKDiEaj4R1EAKCwsBDZ2dlobm52u3XKx8cHFRUVyMzMxMcff+xynLS0NDQ0NGBoaAiDg4M0S4QQQsgZw+FwYHBwEENDQ2hoaEBaWhr3Z2q1Gh9//DEyMzNRXl7u9ta1KpUKzc3NyMnJ4T0JnQ0gGo3G7QCiVCrR09OD7u5uPPbYY3jttddQU1PD+zhk76GF6XvckSNHcPXVV+P2229HYWEhDh486NZ2fGazGR9//DHi4uJQWVnJ+8VMIpFgaGgItbW1HpVPT3YcvV6P9vZ2biE7beFLCCFkP7NYLBCJRDCbzWhoaHDZGl+hUEAkEnk0Bd3T4zAMw+3EdfDgQQQHB/N+/OXlZXz88ccYHR3F7bffjqeffhpXXHEF7+OQvYlCyD7w0EMP4bbbbsPdd9+NzMxMnHPOOW5ty2cymdDc3IzY2FhUVVXxDiJyuRzd3d0oKytDZmYm78c/3XGsViu6urqg1+vR0NBAO2cRQgjZl3Q6Hdrb2xEeHo6amhqXdR4zMzMYGBhAdXU1UlNT3X4MT47DVkDUajXOOusstxbC6/V6fPjhh5iensYtt9yCu+66C9dddx3v45C9i0LIPnHzzTfjmWeewT333IOUlBScffbZCA0N5X0cs9mM5uZmREdHo6qqivcckqWlJbS3tyMvLw95eXlul4cXFxfR2dmJzMxMlx062CFMEokEtbW1SEpKcuv4hBBCyG60sLAAkUi0bn0GwzAYGhrC7Ows6uvrER8f79bxGYaBWCyGWCxGQ0MD7+M4HA6uBeuss85yqwJiNBrx0UcfQS6X4+abb8bVV1+Nu+++m/dxyN5GIWSfYBgGV199Nd577z3ceeedSExM9CiItLS0IDIyEtXV1byDiFarRWtrK9LS0nhPWXXGtmCx80ycrwTJZDL09vaisLAQOTk5bj8GIYQQshswDIPJyUmMjo6isrIS6enp3J9ZrVZu/kZDQ4PbQwjZocNzc3Noamrivf0tuwsWuwjdkwCiVCrxi1/8Ap/+9Kfx1FNP0fv4GYhCyD5it9tx1VVXob29HXfeeScSEhJw9tlnu1UmXV1dRUtLC1cK5htEDAYDWltbER0d7VaQYbEtWAaDYd0L7/LyMjo6OrjJ6+7uCkIIIYTsJLvdjt7eXiwtLaG+vt5lbeepWrP4PgZbwWhqanJZY7IZ7BwQvV7v9iJ0k8nkEkAaGxvx3HPP0fv3GYpCyD5js9nwla98Bb29vbj99tuRmJiIQ4cOeRREwsLCeE9WZ+/f2tqKwMBA1NXVuf3CyU5pn5mZQW1tLRITE7k/M5vN6OjoAADU19e7dVWGEEII2SkmkwkdHR3w8fFZ9z62sLCArq6uda3JfFmtVnR2dsJqtaKxsZF3gHCehN7U1ORRAFlcXMTtt9+OqqoqvPjii/D39+d9LLI/UAjZh6xWKy6//HIMDQ3h9ttvR3x8PM4++2y3TtDZKazsrlR8r1awL3wWi8XtFy6WVCpFX1/fuhYsu92Ovr4+LC4urruCRAghhOxWJ6voO7dmVVRUQCAQuP0Ynl4QtNvtEIlEMJlMbk9CN5vNLgGkrKwML730ktsXJ8n+QCFkn7JYLPjSl74EsViMX/ziF1xrljshwGKxoLW1Ff7+/qivr+f9osH2kLpbAna2vLyM9vZ2JCYmnvQFe20vLSGEELLbbMeFNU9bo61WKzo6OmCz2dyehG42m3H8+HEsLi7ijjvuQEFBAV599VUKIIRCyH62urqKL37xi5iensYvfvELxMfH49ChQ24FEZvNho6ODlgsFjQ2NvKuqni6GM7Z6UrXG+0qQgghhOwGbIvx9PT0ul0e2RZjhmFQX1/vVis1y9NNYsxmM9ra2hAUFIS6ujq32qZWV1fx0UcfYWlpCXfeeSeys7Px2muv0awvAoBCyL5nNptx+PBhzM3N4ec//zni4uLcDiLstnzLy8tuVTQ83RbQ2WYW8YWFhaG6utqjFjBCCCHEW1ZXV9Hd3c1ttuI874ptzYqPj0dlZaVHi7UXFxfR0dGB/Px85Obm8g4gBoMBLS0t3NwwdzaXYSsgarUad955JwQCAY4dO0bvyYRDIeQMYDab8fnPfx7z8/O49dZbuSDizhoRdp9ymUyGxsZGREdH8z6GtwYtMQyDiYkJjI2NbbidYW9vL9RqNWpqajwKPIQQQoinlpaW0NXVhdjYWFRWVm7ZtvPswN/y8nJkZGTwvr9Go0FbWxvS09NRUlLi1nNhA8jS0hJ++ctfIjU1FX//+99p8xjigkLIGcJkMuGSSy6BVCrFrbfeyrVmuVPqZU/+x8fHUV9fj4SEBN7HUCgUEIlEyM/P92ioIXDqwU7T09MYGhpCXl4e8vPzqT2LEELItmIYBmNjY5iYmEBJSQmEQuGWDOBlGAbj4+MQi8Wora1FcnIy72OwFZSCggLk5ua69TxMJhMXQO666y5kZGTg2LFjFEDIOhRCziBmsxmXXnoppqamXNaIuNtzOjs7i/7+flRVVSEtLY33/bVaLdrb27mrQp5s08e2YEVERKCqqsql31Sr1aKzsxMhISGoqamhF0JCCCHbwmQyobu7G2azGbW1tS7rIS0WC7q7u6HX69e1ZvFls9m46n9DQ4Nb6y7n5ubQ09PjdgUF+GQbXnYNSE5ODl577TVqwSIbohByhlldXcVll12G0dFRbtesQ4cOuTVZHfikolFcXIzs7Gy3nk9HRwfsdjsaGho8WoTHvqCvrKygtrYWsbGx3J/ZbDb09fVBqVSipqbGZdYIIYQQ4m1KpRJdXV3cbo7OF9rUajVEIhEiIyNRXV3t0UJtk8mE9vZ2+Pv7o66uzq0T/qmpKQwPD6Ours7taozRaHTZBauoqAh//etfaRE6OSkKIWcgi8WCK664AgMDA7jtttu47XvdDSJqtRptbW3IyspCYWEh75Ynh8OB/v5+KBQK1NfXu4QHvpy36l3bW8swDKRSKfr7+5GdnY3CwkK3J7kTQgghG3E4HBgdHcXU1NS6qoLzWkZvrP9Qq9Xo6OhAcnIyysvLeb+nse1g09PTaGxsdPv912AwuASQ8vJymgNCTotCyBnKarXiyiuvRHd3NzdZ/eDBgwgPD3freDqdDq2trdzAJXdeCCUSCYaHhz0qBbPUajW6urq49iznK0MrKysQiUQICAhATU2N2+GLEEIIcWY0GtHV1QWr1Yq6ujqXFit2Zyy9Xo/a2lqPB+uym7wUFxcjKyvLrQuA7DySpqYmt9vB9Ho9F0Buu+021NbW4oUXXqAAQk6LQsgZzGaz4aqrrkJbWxtuu+02JCYm4sCBA26/MJpMJrS2tiIsLMyt6erAiUVxnZ2dyMjIQHFxsUeVCqvVym0pvHaHLLvdjoGBAcjlclRVVSElJcXtxyGEEELm5+fR09PDzeVwfg9kd8aKiYlBVVWVRyfoDocDw8PDmJ2dRV1dnVubw9hsNnR1dcFgMKCpqcntVujl5WW0tLRAqVTijjvuQFNTE5599lmP1niSMweFkDOc3W7Hd7/7Xbz11lv4xS9+AYFAgIaGBrfXTFgsFrS3twMAGhoa3OoFNRgMaG9vR3BwMGpraz3qJz3dDlkymQx9fX3IyMhASUkJtWcRQgjhxW63c6GgsrLSZaMW5x2r1u6M5Q6LxQKRSASz2YyGhgbe87rYY3j6Pg2cWPPS3t4OqVSKO++8ExdddBH+9Kc/eTTfhJxZKIQQMAyDW265BY899hhuvfVW5Ofno6qqCgKBwK3jeeMKi9VqRVdXl1d2DQFO7HsuEok23CFLr9dDJBLBx8cHtbW1br2oE0IIOfMYDAZ0dnYCAGpra11ams1mM7q6umAymVBXV+fWjlXOnHeBrK6udqua4o2OBQCQSqXo6enB+Pg4fvnLX+Kaa67Br371K9oGn/BCIYRwHnroIdxyyy34yU9+gurqahQXF7u9Tzjba6pUKtHQ0ODWUENv7p8OnAg2/f39WFxcRHV1tUu1x/lKVmlpKTIyMujFlBBCyIYYhsHs7CwGBwe59mHnE3rnnbHKy8s9Xh9xsnlYfGg0GrS3t3O7dblb+Z+YmMDw8DC6u7vx29/+Fvfccw+uu+46t45FzmwUQoiLI0eO4Nvf/jauueYanHPOOcjKynJ7YqrzLiDuzhIBvDtJln3jGBgY2HCHLIVCgd7eXkRHR6OiosKjLYMJIYTsPyaTCX19fdBqtaioqHAZCui8M1ZZWZnHF7Sc30crKyuRnp7u1nHY91F2CKG77+lDQ0OQSCT44IMP8Nhjj+GZZ57BFVdc4dZzIoRCCFnn3XffxRe/+EVcccUVOHz4MFJSUlBdXe32VROFQoGuri7upN+dF7/l5WV0dHQgPj4elZWVHvecOu+QVVtb6xI2LBYLBgcHoVAoUFpaCoFAQFURQgg5w7HbvA8MDCAlJQWlpaUu6ylMJhNEIhGsVitqa2sRGRnp0ePZ7Xb09vZiaWnJKx0FNTU1bk1RB06Eq+7ubszPz+PYsWN46aWX8Nprr+G8885z63iEABRCyEl0dXXhggsuwKc+9Sl8/etfR0JCAurr693e8WJlZQUdHR0e9bKazWZ0dHTA4XCs6711h81mw+Dg4El3yKKqCCGEEOCT6odGo0FlZeW6k3l2Z6zU1FSUlpZ6vDsUu1bR19cX9fX1LusYN8tqtaK7uxs6nc6jtZU2mw3t7e1YWlrCs88+iw8//BD/+Mc/UFNT49bxCGFRCCEnJRaL8R//8R/Izc3FD3/4Q0RHR+Oss85yeycNi8WCzs5OrK6uur2rh/PajYqKCrdL087YHbI2urJlsVgwMDCAhYUFqooQQsgZhq1+DA4OIikpCWVlZRu+RygUCq+/J2201mSzvLXLpMViQXNzMzQaDR599FFMTk7iX//6l9vrRQlxRiGEnJJCocD555+P4OBg3HjjjYiJicHBgwfdrgo4HA4MDQ1BKpW6vb854HrVqayszOP2LJPJhN7eXqysrKzr8WUfr6+vj6oihBByhjhd9YOtlkdFRaGystLj94XTVec3i523JRAIPNp63mg0orm5GWq1Gvfffz9WV1fxzjvvuN3SRchaFELIaWm1WnzhC1+AUqnEz372M8TFxeGss87yqN+VnfRaUlKCrKwst45xqsm07nDe7SQlJQVlZWUubWPOVZGysjKkp6dTVYQQQvaZzVQ/BgcHMT8/77XdFJ3XKdbU1CA0NNSt583OxSorK0NmZqZHz6e5uRkqlQq/+tWvkJSUhNdff93jdS6EOKMQQjbFbDbja1/7GkQiEW699VakpKTgwIEDiI2NdfuYKpUKHR0dXDXDnas1zjuRlJeXe6VdyrkqUllZuW5rYLYqEhMTg4qKCrd6dQkhhOw+ztWPioqKDdcK9vX1ITIy0ivVj9Pt2LhZDocDAwMDmJ+fR11dHeLi4tx+TiqVCq2trVAoFLjzzjtRV1eHF154AUFBQW4fk5CNUAghm2a323Httdfir3/9K37+858jKysLdXV1HpVmjUYjOjo64O/vj7q6Ordf5Jz3ZK+oqPB4USBVRQgh5MzBMAxkMhkGBgY2rH5YrVbuJN9b1Q92dpVSqURNTY3L7Co+VldX0dnZCZvNhvr6ereqKCyFQoHOzk5IJBLcdddduOyyy/D73/+epqCTLUEhhPDCMAzuuusu3HfffbjllltQXFyMkpISZGdnu/2CbLPZ0NPTA41Gg/r6erenyppMJnR3d3ttOi17zM1WRcrLy2mtCCGE7DEmkwn9/f1YXl7esPqxsLCA3t5er1U/gBNtzp2dnQgJCUFNTY3bFXWtVouOjg5ER0ejqqrK7QtwDMNgamoKQ0NDGB4ext13340bb7wRP//5z+kCG9kyFEKIWx5//HH8+Mc/xrXXXotDhw4hNTXVo/kdDMNgfHwcExMTqK6udntBHnscsViMkpISCIVCj19Anasi7PaLG1VF5ufnUVBQgJycHLcXAhJCCNkeDocDk5OTGBsb4yrea6sf7EJxb1U/nNdt5OXlIT8/3+1jyuVy9PT0IDc316PjsPNI5HI5jh8/jkceeQQPPvggvve977l1PEI2i0IIcdvbb7+Nr3zlK7jwwgtx5ZVXIioqCo2NjR6tkZDL5eju7vb4xXlpaQkikQhxcXGorKx0ay7JWkajEb29vdDpdBtWRZaWltDf3w+GYVBWVuZ2aZ0QQsjWUiqVGBgYgK+vL8rKyhAfH+/y52z1IyIiAlVVVV6pflitVvT09GB5eRk1NTXrHnOznC/aVVVVITU11e3nZDab0dbWBo1GgyNHjuDtt9/GkSNHcOGFF7p9TEI2i0II8cjo6CguvvhiJCYm4rrrrkNUVBSamprcmuzKYsvUoaGhqK6udjvUrK6uoru7G3q9HrW1tYiJiXH7ObEYhsHMzAyGhoY2rIo4HA5IJBKMjo4iMTERpaWl1KJFCCG7hMlkwuDgIJRKJQoLC5GVleVSud6K6gcALC8vQyQSITw8HNXV1W6vfzSbzeju7obRaPS47Vij0aC1tRVarRYPPfQQFhcX8cYbb6CwsNDtYxLCB4UQ4rHl5WVcdtllmJycxE033YTU1FRUV1cjLS3N7WNarVb09fVhaWkJNTU1bs8TYRgGExMTGBsbQ2FhIXJycrzyhuJcFSkrK0NKSorLcc1mM4aGhqhFixBCdoG1rVclJSUuF7gYhoFcLsfg4CAiIiJQWVnp0QJv5+NOTk5idHQUBQUFyM3Ndfs9SKlUoru7G/Hx8aioqPCowi+TydDT0wO5XI577rkHeXl5ePnll71ysY6QzaIQQrzCZrPhJz/5CZ5++mn87//+L8rKypCbm4uioiK3X3Cdty7MyclBQUGB2yfyarUa3d3dCAoKQlVVFcLDw906ztrnJ5VKMTw8jMjISJSVla2bVaJSqdDf3w+Hw0EtWoQQsgOcW6/Ky8vXbV+r0+kwMDCAlZUVFBcXe2WrdwDQ6/Xo6enB6uoqqqur3d7S3uFwYGxsDJOTkygrK/OoOsMwDEZGRjAxMYGBgQH85je/wdVXX43f/OY3Hu8qSQhfFEKIVz3zzDP44Q9/iG9+85v47Gc/i4SEBNTV1Xn04raysoLOzk4EBQWhpqbG7fYmm82G4eFhzM7OoqioyKMdvZxZrVaMjIxgdnYWWVlZKCgocPl6qUWLEEK23+lar2w2G8bGxiCRSJCZmYnCwkKvrB9kd5oaGRlBZmYmioqK3H4PNJlM6OrqgsViQW1trUfDAq1WK0QiERYXF/H222/jz3/+Mx599FF861vfcvuYhHiCQgjxupaWFlxyySWoq6vD1VdfjcjISDQ1NSEsLMztY9psNgwMDEChUKCqqsqj2SRLS0vo6elBcHCw16oiwIm1LP39/TAajSgtLUVqaiq1aBFCyDZzOByYmJjA+Pg4UlNTUVxcfNLWq9DQUJSXl3tlS3fgk+qH2WxGVVWV24vPgRMzO3p6epCcnIyysjKPLuYZDAa0trZiZWUFTz75JEQiEY4ePYoDBw64fUxCPEUhhGwJqVSKL3zhC7Db7bjxxhsRFxeHhoYGj16Q2eP29/dDKBSiqKjI7ZP4raqKUIsWIYTsHKVSif7+fvj5+Z209aq/vx86nQ4lJSVeGzTrXP3IyMhAcXGx26HB4XBgeHgYMzMzKC8vh0Ag8Oi5LS0tob29HSqVCvfddx/8/Pzw+uuve3xcQjxFIYRsGaPRiG9+85v46KOPcNNNNyE7OxtlZWXIysry6Lg6nQ4ikQh+fn6ora31aPEgWxUJCQlBVVWVR9UaZ1arFaOjo5iZmTlti1ZCQgKKiorWhRVCCCGbo9PpMDIygsXFRRQVFUEoFG5L6xVwovrR29sLk8nkcfXDYDBAJBLB4XCgrq7O40q9RCLBwMAApqamcO+99+Kcc87BM88845VF94R4ikII2VIMw+BXv/oV7rnnHlx//fVoamqCQCBAeXm5R61Idrsdg4ODmJubQ2VlpUf7pDtXRYqLi5GVleW1CbGbadEaGxvD7OwsBAIBCgoKaL0IIYRskslkwtjYGKRSKTIyMlBQULBtrVferH4AnwwfTE9PR2lpqdvDf4ETF7r6+vogk8nQ0tKChx9+GLfccgtuueUWmoBOdg0KIWRbHDt2DFdddRUOHz6Myy67DDExMWhoaHB7r3QW+6ItEAhQUlLi0Yv24uIient7vV4VYRgGMpkMQ0NDiIiIQHl5+bqqh16vx+joKBQKBbKyspCXl+cyuZcQQsgnLBYLxGIxJBIJkpOTUVhYuK5qsFWtV8CJikVPT49Xqh/sRTWZTObx8EHgxIys9vZ2LC8v45VXXsGxY8fw3HPP4fDhwx4dlxBvoxBCts3AwAA+//nPQyAQ4Nprr0VkZCQaGhrc3raQxZavGYZBbW2tR+Vrm82GoaEhSKVSr1dF2Bat6elpZGdnr2vRAk4MjxoeHoZGo0FeXh6ysrJo20RCCPn/bDYbpqamMDExgejoaBQXF68bjsu2Xk1NTUEoFHq19YphGEgkEgwPD3ul+qHX69HZ2QlfX1/U1tZ6fPFLpVKho6MDKysreOSRRyCVSvHGG2+gtLTUo+MSshUohJBttbS0hC996UuYnZ3FDTfcwJXP8/PzPTrZd17IV1ZW5vE+71tVFQE+adEyGAwoKChAZmbmuta0xcVFDA8Pw2w2o6CgABkZGbSTFiHkjOVwODA7O4uxsTEEBwejuLh43RBbh8OBmZkZjI2NISwszKutV4Br9aOystLtIbrAJ5uYDAwMIDMzE8XFxR69xjMMg/Hxca699/7770dmZiZeffXVdYvzCdktKISQbWe1WvHzn/8cDz/8ML7//e/j3HPPRWxsLOrq6jxuz1IoFOjt7UV0dDQqKio8Wl9htVoxPDwMqVSKoqKidXvMe4JhGMzPz2NkZAQMw6CwsBBpaWkuwYntZR4ZGQEAFBcXr5vMTggh+xn7Wjk8PAxg49dBhmEwNzeH0dFR+Pj4oKioyKuvlexGIiMjI1zrryfVD5PJhL6+Pmg0GlRWVnq05TxwYm2hSCSCWq3G+++/j8cffxzXX3897rzzTq9VgAjZChRCyI5555138LWvfQ1VVVX4zne+g4iICNTV1Xl0dQk40Ss8MDCAhYUFlJaWeqUq0t/fD19fX5SVlXm8zbAzh8MBqVSK0dFRBAUFcVf3nJ8vewVwdHQUISEhG14BJISQ/YatCJtMJhQWFq6rCDMMw/2d1dVVFBYWQiAQeLVqvLS0hP7+fjAMg/Lycq9UPwYHB5GUlISysjKP1/4tLi6is7OTm//R29uL559/HhdccIFHxyVkO1AIITtKLpfjq1/9KqampvA///M/yM7ORl5eHgoLCz2+ijU/P4++vj6vVEUcDgcmJycxNjaGlJQUlJSUuOzA4im73Q6JRILx8XFERUWhuLgYMTExLn+H7YUWi8WIiYnZsBeaEEL2OnZt3PLyMvLy8pCdnb2u8rC8vIzh4WFotVrk5+cjKyvLo41J1vL2cFnn6kdFRQVSUlI8en4OhwOjo6OYmJjA1NQU7r//fuTm5uKFF17w+NiEbBcKIWTH2e12/PKXv8S9996Lq6++Gueffz6io6NRV1fn8Xa1zlWRsrIyj3dHMZlMGBwchFKpRGFhoVdbtIATLWBisRhTU1NITEzccH6I864wSUlJyMvLozBCCNnzNBoNxGIxFhYWTrpLIDsPRKlUchetvNly5DzDKTExEaWlpR69D7G7Iw4MDHit+mEymdDR0QGtVot33nkHTz/9NG6++Wb87Gc/82oQI2SrUQghu8YHH3yAr3zlK8jPz8cPfvADREVFoba2FklJSR4fm62KxMTEoKKiwuMqhlKpxMDAAHx8fFBeXu7VFi3gxJvM+Pj4KeeHmEwmTExMYGZmBrGxscjPz0dcXBytGSGE7BkMw0ClUmF8fBxqtRqZmZnIzc3d8PXuVPNAvMGbrVfAiWpKX18flpeXvVL9AICFhQWIRCJotVr88Y9/hFgsxpEjR3DOOed4fGxCthuFELKrLC4u4qqrrsLAwAD+53/+hyuzl5SUeFxxsFgs6O/vh1Kp9EpVZKtbtIAT2zeOjIyc8srg6uoqpqamIJFIEB4ejvz8fCQlJVEYIYTsWgzDQKFQQCwWQ6/XIysrC9nZ2es2J1lb+S0qKvJ4ivha3m692orqh8PhwNDQECQSCcbGxvC73/0O5eXlePbZZ2mNINmzKISQXcfhcOC+++7Dbbfdhq9//eu4+OKLERERgYaGBoSGhnp8fLlcjv7+fq9VRUwmE4aGhrCwsLAlLVrAif7nkZERbn5Idnb2urK71WrF9PQ0JicnERgYiLy8PKSlpdHWvoSQXcPhcGBubg5isRgWiwU5OTkQCoXrWqpsNhskEgnEYvFJ54F447mwrVdJSUkoKSnxuAV4K6ofRqMR7e3tWFlZwRtvvIHnnnsOd9xxB2688UZ6fSd7GoUQsmu1trbi8ssvR3p6On74wx8iOjoa1dXVHk+TBU5UDwYGBqBUKlFeXr5ue1x3sLtobVWLFnCiDYydH3KyN2+73Y7Z2VlMTEwAAHJzc5GRkUG9woSQHbP2dSkvLw8CgeCUF1O2cjdAb7deOVc/EhMTUV5e7nH1Azhx0ay7uxsajQaPPPII5HI5Xn75ZTQ2Nnp8bEJ2GoUQsqstLy/jm9/8Jtra2vDjH/8YxcXFyMjIQFlZmVdOquVyOfr6+hAbG+uVqsh2tGgxDIOFhQWIxWLodLqTtjE4HA7I5XKIxWKsrq6eNLQQQshWcQ4VQUFByMvLQ2pq6ror+Gxb6dTUFCIjI5GXl7clbaUmkwnDw8OYn59HYWEhsrOzPa4mOFc/ysvLvXKhzG63Y2BgALOzsxgeHsYDDzyAAwcO4Jlnnlm3cyIhexWFELLrMQyD3//+97jppptw+eWX45JLLkF4eDjq6uq8Mg3XuSrijbUigGuLVn5+/obtU55iF3SKxWKoVCpkZGQgNzd3XcvaZkMLIYR4y2ZDhdFoxMTEBGZnZxEXF4e8vLwt2WDDbrdjamoK4+PjXmu9Wlv9KCsr88rrqlarRWdnJ/R6PV577TW88sor+PWvf41rr72W1vqRfYVCCNkzuru7cdlllyEqKgrXXHMNEhMTkZeXh4KCAq/0xbJrRcLDw1FeXo7IyEiPj7m4uIihoaEtG6TFYre2VCgUSEtLQ15e3rqtfTcKLdnZ2V5f5EkIOXPp9XpMTU2dNlTodDqIxWLMzc0hOTl5y7YaXzsQtqSkxCvtXSsrK+jv74fBYEBZWZlXqh8OhwNjY2MQi8VQKpX4wx/+AK1Wi7/+9a+oqqry+PiE7DYUQsiesrKygh//+Md46aWX8O1vfxvnnXcewsLCUFtb65WqiNVqxfj4OKamppCVlYWCggKP25cYhsHc3BxGRkbg6+uLoqIipKSkbMkVLb1eD7FYDJlMxs0Q2ah0r9FoMDk5Cblcjvj4eGRlZdGOWoQQt7DVVolEgqWlJaSmpiInJ2fDULG8vMzNAklPT0deXt6WXAhhGAbz8/MYGRkBwzAoLCz0yto/q9WK0dFRTE9PIzs7G/n5+V5pcdVqtRCJRDAYDPj3v/+Np556CldccQV+97vfeeWCGCG7EYUQsie9/fbbuPrqq5Geno7vfe97Xq+KrKysYGBgADqdDiUlJV5p0XI4HJiZmcHY2BhCQ0NRXFy8JYvXgRPtYJOTk5ienkZsbCzy8vIQHx+/7mswm82YmZmBRCKBn58fsrKykJGR4ZUFlYSQ/c1isWB2dhYSiQQOhwNCoRCZmZnr1sExDIOlpSWIxWKo1WoIhULk5OR43A51MktLSxgeHobRaERBQQEyMzM9fl9gW6+GhoYQERGBsrIyr4SDtdWPxx9/HHK5HE899RQ++9nPenx8QnYzCiFkz9JoNPjxj3+MV155BVdffTU+85nPeLUqwlYwhoaGEBYW5rUWLZvNhsnJSUxMTCA2NhbFxcVeeb4bWV1dhUQiwdTUFMLCwpCfn4/k5OR1YcThcGB+fh5TU1PQarVIT09HVlbWlj0vQsjepdVqIZFIIJPJEBUVhezsbKSkpKw70WdngYyPj8NgMCA7OxvZ2dlbdpFDq9VieHgYarUaubm5yMnJgb+/v8fHdW69Ki0tRWpqqleqxhtVPy6//HL87ne/o9deckagEEL2vLfeegtXX301BAIBVxXJz89Hfn6+V6oizi1aQqEQhYWFXim/r66uckO4UlNTUVhYiLCwMI+PuxGr1YqZmRlMTEwgMDAQ2dnZSE9P3/ANWqPRQCKRYG5uDpGRkRAKhUhLS6Mtfgk5g9ntdszNzWF6ehorKytIS0tDdnb2hifLNpsNMpkMU1NTsFqt3M583ggEGzEYDBgdHcX8/DyEQiHy8vK8skB8q1qvHA4HxsfHMT4+DqVSiSeeeAIymQxPPfUULrzwQo+PT8heQSGE7AsajQbXX389Xn31VZeqSF1dndf6abeiRQs4sTvM6Ogo5ubmkJmZiYKCgi3bucput3MnByaTCRkZGcjKytow/FitVkilUkxPT8NsNkMgEEAoFK5b8E4I2b90Oh2mp6chlUoRHBwMoVAIgUCw4cm4wWCARCLB7OwsQkJCuIsdW3UBw2w2Y3x8HDMzM0hLS0NhYaFXBtpuVesVsHH148tf/jIefPDBLVmYT8huRiGE7CvOVZHvf//7SEhI8GpVhGEYyOVyDA4OerVFCzgRckZGRrC4uMi1EmzVTA+GYaBWqzE1NQWFQoGEhARkZ2cjISFhXbBi/+709DTkcjliYmIgFAqRkpJC1RFC9iG73Y75+XlMT09jeXkZqampEAqFiI2N3fD1YXFxEVNTU1hcXERycjKys7M3/LveYrVauZbWhIQEFBUVeTUkDAwMeL31yrn6sbi4iMcffxxSqRRPPfUULrroIi88c0L2HgohZN9ZXl7G9ddfj9deew3f+c53cO6553q9KrJVLVoAoFKpMDw8DL1ej/z8fAiFwi092TeZTJiensbMzAz8/f2RnZ190iudq6urXHXEYrEgLS0N6enpW3rCQQjZeuzFBqlUCrlcjsDAQK7qsVFllq2UTk1NwWazITMzE0KhcMsWmwMnwtH09DTGx8cRHh6O4uJixMXFeeXYW9V6BZy4wNTZ2QmDwYD33nsPTz31FC699FI89NBDVP0gZzQKIWTfevPNN3H11VdDKBTie9/7HuLj471aFQG2rkWL3fJyZGRk26ad2+12yOVySCQSrudbKBQiOjr6pNURmUyGubk5+Pv7Iz09Henp6bSdJCF7yMrKCmQyGWQyGex2O1JTUyEQCBATE7Ph771Go8H09DS3ZiwrKwupqalbeqFk7dT1oqIir20pvrb1qry83Gstp2urH0888QRmZ2fx5JNP4nOf+5xXHoOQvYxCCNnXlpeXcd111+Ho0aNcVSQ8PBw1NTVe233EuUUrODgYxcXFXhmGxR57YWEB4+Pj0Ov12zbtXKvVYnp6GjKZDGFhYdzi9I1CkMPhgFKphFQqhUKhQEREBNLT05GWlralV0UJIe4xmUyYm5uDTCaDTqdDcnIyBAIBEhMTN7xAY7VauUXpBoMB6enpEAqFW76DEzt1XSKRIDw8HPn5+V6dZ7S4uIjh4WGYzWavtl4BJ15Du7q6oNfr8f777+PJJ5/EF7/4RTz00EMbzm4i5ExEIYScEf7+97/ju9/9rktVJDMzE8XFxV6rLthsNkxNTUEsFiMmJgbFxcVeK7WvnXaemZmJnJwcryzCPBV2l5vp6Wno9XpucfrJTj6sVivm5+chlUqhUqkQFxeH9PR0pKambmkVhxByalarFXK5HDKZDCqVCvHx8UhPT0dKSspJfzc1Gg1mZmYglUoRHh4OoVB40l31vMloNGJiYuK0U9fdpdFoMDw8jOXlZeTl5SE7O9trX5PVasXQ0BBmZ2extLSEJ554AtPT03jyySdx8cUXe+UxCNkvKISQMwZbFXnttdfwla98BZ/73OcQGBiI0tJSZGRkeO0NzmKxcFvvJicno7Cw0KsTgTUaDcRiMRQKBdLS0pCXl7ctO1YtLy9zbRhhYWFc+9XJqh0bXW1NT09HUlKS19rhCCEn53A4sLCwAJlMtukqpclk4tqzDAYD15a5HVfvdTodxGIx5ubmkJycjLy8PK+umdDr9RgZGcHCwgKysrKQl5fntZklDMNgdnYWg4ODsFgsePPNN/Hiiy/i0ksvxcMPP0zVD0I2QCGEnHE++OADXHPNNTCZTPjOd77D9QBXVVV5tb3AZDJhdHQUMpkMGRkZKCgoWDdJ2BM6nQ4TExOQyWRISkpCXl7etrzRWa1WKBQKyGQyLC4ubqra4dx3brPZkJaWhrS0NMTGxlIgIcSLHA4HVCoV5HL5ptdrra2SJCQkcFWSra56ACcucIjFYiwsLCA9PR25ublevbBiNpsxNjaG2dlZCAQCFBQUeLVVVKPRoLe3FzqdDn19fXjyyScRGhqKxx57DOecc47XHoeQ/YZCCDkjWa1WPPzww7j99ttRV1eHq666CvHx8cjIyEBJSYlXW4d0Oh1GRkagVCqRk5OD3Nxcrx7fZDJhYmICMzMziI2NRV5eHuLj47dltyqz2cxVO1ZWVpCUlMRVOzZaqOq8oH1+fh4OhwNJSUlITk5GYmIitWwR4gar1YqFhQXu5uvri5SUlFPuXGe327kqycLCAiIjI7kqiTcvlpwMwzBYWlqCWCyGWq1GZmYmcnNzvRoOrFYrxGIxpqamkJiYiKKiIq+GG4vFguHhYa716tlnn4VIJMIdd9yBH/3oR/R6RshpUAghZzS5XI4bbrgBf//737e0RQsA1Go1RkZGoNVqkZ+fj6ysLK/uKLO6ugqJRIKpqSmEhYUhPz8fycnJ27Z1rk6n46odVqsVqampSE9PP2kvN8MwWF5ehkKhgEKhgF6vR1xcHJKTk5GcnLxl0+MJ2Q8MBgP3u6NSqRAREcEF+o12tgI+WVsmk8kgl8sREBDAVUm2awgpwzBQKBQYHx+HwWBAdnY2srKyvLrZht1uh0Qiwfj4OKKiolBUVITY2FivHf9krVeHDx/G/fffj5SUFK89FiH7GYUQQgB8+OGH+K//+q91LVqVlZVe7UlmGAZKpRLDw8OwWq0oKCjwetixWq2YmZnBxMQEAgMDkZOTg7S0tG1pqwA+CRfsvAE/P79Nbd+79qQqPDycCyQnO6ki5EyxUWiPj4/ngsepQjufbXi3is1mw9zcHCYnJ2GxWJCbm4vMzEyvVgscDgekUilGR0cRGBiI4uJiJCYmevVr3Kj1KiwsDH/4wx+o9YoQniiEEPL/Wa1W/P73v8dtt922rkWruLjYawsYgRMnFHNzcxgZGYGfnx+Kioq8XrWw2+3cMDGz2cwNE9vOCgO7fS/bfsUujE1JSTnl87BarVAqlVAoFFx7CXuylZCQsG2BipCdZLPZsLi4yP0e8GlfNBgM3E51BoOB2xjiZNvwbhWDwcANQw0JCUF2djbS09O9WgVmqyvDw8NwOBwoKipCWlqaV19PT9Z6deedd+Laa6+l1itC3EAhhJA15ufnccMNN+DYsWO48sort7RFy+FwcBOAQ0NDUVhYiISEBK8+BtuCIZFIoFAokJiYiKysLK8/zumw2/fKZDIsLS1tutLhcDigVqu5K8AmkwkJCQlISkpCfHw8wsPDqUpC9gWGYaDX67G0tISFhQUsLi4iJCSE+z051UYOJ6uUnG4b3q36OhYXFyGRSKBUKpGcnIysrCyvbrPr/Dijo6MwGo3Iz8+HUCj0ashybr1aXV3FW2+9hRdffBGXXHIJ7rvvPmq9IsQDFEIIOYkPP/wQ11xzDQwGA77zne+goqIC4eHhqKqq8mqLFnDiiufk5CQmJycRFhaGvLw8pKSkeP3k2mQyYXp6GtPT0wgMDERWVhYEAsG2X8Vzt9LBnqQpFAoolUqo1WoEBAQgPj4ecXFxFErInuIcOpaWlqBSqWC1WhEbG4vExEQkJyef8ufZuVKiUCjAMMyObvRgtVohlUohkUhgsVggFAohFAq9PrSUYRjMz89jfHwcRqMROTk5yMnJ8XqFVKPRoKenB3q9Hn19ffjTn/6E8PBwPPbYYzj77LO9+liEnIkohBByClarFY888gh+8YtfoLa2Fl//+te5q4tFRUVef3O12Wzceg5/f3/k5eUhPT3d6+0TdrsdcrkcU1NT0Ol03ARkb4erzThZpSM5ORlJSUmn/De22+3QaDTcSRyFErKbOYcOlUqFpaUlLnTEx8cjPj4e0dHRp2xVMplMXHhnKyUpKSlISkrasS2vNRoNpqenIZPJEBERgezsbKSmpnq15Qr4ZM3HxMQEbDYbt67E2+HDZDJhZGSE24b8ueeeQ1dXF+644w5qvSLEiyiEELIJ8/PzuPHGG3H06FFcccUVuOiiixAYGIjs7Gzk5+d7db0IcOLkWiaTQSwWw+FwICcnZ0vebIH1JxBCoXBbF7KvpdPpsLCwAIVCAbVajcjISK4dJSoq6pSB4lShhA0mFErIdvFG6GAYBlqtlgvpKysriI2N5UL6du1qtRa70Hx6enrLL2SwF2cmJyfh6+uLvLw8CAQCrwcui8WC8fFxTE1NwWKx4K233sJLL71ErVeEbBEKIYTw8NFHH+G///u/IZPJcOWVV+Lcc8+Fv78/8vPzkZ2d7fUTd4ZhIJfLIRaLYTKZuO0svR16gBNVH5lMhunpaRiNRggEAgiFwlPuaLXVLBYLF0gWFhYQEBDAnXzFxcWd9ork6SolMTExiIyMpIGJxCscDgdWVlawvLzsdugATvwuqlQq7mffZrNx7VlJSUlb8vu/WSsrK5ienoZUKkVoaCiEQiHS09O3pDpgsVi4bcdDQkKQl5eH1NRUr19EsNlsmJqawvj4OGw2G95//3288MILEAgEePDBB6n1ipAtQiGEEJ4cDgdeffVV3HzzzbBarfja176GxsZG+Pv7o7i4GBkZGV4/qWUXYI6Pj0Or1UIoFCInJ2dLhoqxC1ynp6cxNzeHqKgoboiZN/fy58tut0OlUkGhUGBxcRF6vR5RUVEuVY7NhBLnE0StVgu73Y6IiAhER0cjOjoaUVFRiIyM9HorCdlf7HY7VlZWoNVqodFooNFosLKyAn9/f+7nkg26mw0dbFjWarUIDw/n2hLj4uJ29OdxdXXVZShpamoqhELhlm3xazabMTk5CYlEgujoaOTn52/JRhoOhwMzMzMYGRmBzWZDW1sbnn/+eQQEBOCee+7Bl7/8ZaqaErKFKIQQ4iar1Yqnn34at912G2JjY/G1r30N5eXlCAoKQmlp6ZYsLAdODD0Ui8VQKpXIyMhAbm7ulm27a7FYuJOP5eVlJCYmIj09HcnJyTu+Ta7JZHI5cTMYDLxDCcMwMBqN3EmkRqOBVquFzWZDZGQkF0qio6MpmJzB2MDh/DPiHDjYABsdHY3Q0NDT/t5vFDrCwsK4n934+PhtmVp+KjabDQqFAjKZDEqlEjExMdzFiK2qxBgMBkxMTGB2dhaJiYnIy8vz6pBBFruwnd3xqq+vD88//zyWl5dxxx134Nvf/jat+yBkG1AIIcRDRqMRDz74IH7961+joKAAX/3qV5GTk4OwsDCUlZUhISFhSx53ZWUFYrEYcrkcqampyMvL29LWKYPBwA08M5lM3ET07d7q92S8EUqA9cGEvdJts9k2rJjsdBgj3mWz2dZVOHQ6Hfz9/V3CRlRU1KYCB3D60BEXF+f1TS7c4XA4sLS0xE1UDwkJgUAgQHp6OkJDQ7fscbVaLcRiMebn57f8tWxxcREDAwMwGAyYnJzE888/j/Hxcdx00024/vrrt/TrJIS4ohBCiJeoVCrcc889ePTRR9HU1IQrrrgCKSkpiI2NRWlp6ZbtPOV89TAhIQHZ2dlbGgzYhbJsIAHATUQ/3cLx7bRRKImOjnZpk9lsexnDMDCZTOsqJhaLBSEhIQgLC0N4eDh3CwsLQ2hoKK012aUcDgeMRiMMBgP0ej13MxgMMJlMCAwMXFfhCAkJ2fTP9urqKpaXl3d96AA++X2WSqWYm5sDsD2/z2yL6dTUFBYXF7e8qqvRaDA4OAi1Wo35+Xm89NJLaG1txbXXXoubb755SyouhJBToxBCiJdJpVLcdttteOGFF3D++efj0ksv5XazKS4uRnh4+JY8rtlshkQi2dYZIOyJhPOVU/YEZjsns2/GRqEkODh43dXtzbbBMAyD1dVV7uR17cksAC6cOIeUsLAwBAcH75qwtl8xDAOz2ezyvWE/Xvv9cf7ehIeHIygoaNPfH7PZ7FI10Wg0MJvNuzZ0sHaqsrnRLJGsrKwtaz/T6/UYHh7mdtv729/+hn/+85/42te+hjvuuAPp6elb8riEkNOjEELIFhkZGcFNN92Ef/3rX/jiF7+Iz3/+8wgNDUVGRgYKCwu37E3XeQaIXq+HQCBAVlbWlm/labPZsLCwAKlUum095J6wWq3rTh7XBhP2ajjf75XD4YDJZFp38qvX62EymeDn58ed+IaEhCA4OBhBQUEIDg7mbtTmdWo2mw1ms5m7ra6uwmw2u/y72+12hISErAsZ7L8730qV2Wxe16bHBo61YXY3rinYaI2XQCBAUlLSlv+86XQ6SCQSzM7ObuksEZbZbMbIyAikUikMBgPeeOMNvPbaazj//PNxzz33oKioaEselxCyeRRCCNlibW1t+N///V/09/fjiiuuwPnnn4+AgAAIhULk5eVt6RXS5eVlTE1NQS6XIy4uDllZWUhOTt7yq/Crq6uQy+XcyU5CQgI3yXk391w7BxP2v3q9ngsmzi067oZIu92+LpSwJ9DsybTD4YCfn59LKNkoqLBhZb9UVRiGWRcunAOG881ut8PX13fDfxPn0OHuSa7JZFoXUldXVxEeHu7ys0U9AdIAABqlSURBVLBbAwfLaDS6DDdkLw6kpqZu+W53DMNAoVBAIpFApVIhNTUV2dnZiImJ2bLHNJlMEIvFmJ6ehtVqxTvvvIOXX34Z5eXl+M1vfoPGxsYte2xCCD8UQgjZBgzD4B//+Ad++tOfQqlU4vLLL8enPvUp+Pv7Iy0tDQUFBVvWpgWcuCo4MzOD6elp+Pj4IDMzE5mZmduyA4/BYOAGralUKkRGRnKBJDo6etefQFutVpedkdhgEhQUtOEV9tDQUI+u7jIMA6vVetoT8dXVVe5EPCAgAP7+/tzNz8/P5f/X3jb6cx8fH+57sfbjtc+P/e/aj202m8vNbrev+9yp/txqtboEMOeAsVHYCAgI8Ojnx263w2g0blixcg4c7C0yMnJXBw7gxPdCo9Fwv3M6nQ5xcXHcwM/taJNkX29mZmbAMAyEQiGEQuGWhh6dTofx8XHMzc3BarXiww8/xMsvv4zExET8+te/xmc/+9ld/1pDyJmGQggh28jhcODIkSO46667sLS0hMOHD+O8885DaGgoEhMTUVhYuGUL2NnHX1hYwPT0NJaWlpCUlAShULhtO1xZLBYolUruyqyfnx93cpSQkLBntsBld1Bae+JqMBhgt9sRGhp60hYgb/07O1cNNnOCf7og4A2bCUCnC0reru6wmwpsFDSMRiP8/PzWrdkJDw/fUzuf2e12LC4ucsHDbrdzQT8xMXFb2iHZ9WHT09NQKBRISEiAUChEUlLSlm7QoNFoMDo6CqVSCaPRiHfffRfHjh1DfHw8fvGLX+CKK66gDSII2aUohBCyAxwOB9544w3cddddGB8fx8UXX4wLL7wQkZGRiI2NRWFhIeLi4rY0GBgMBszMzGB2dhb+/v7IzMxERkbGtg0kdDgc3PBBhUKB1dVVbjhbUlLSjs9JcAe7GPpkJ7w+Pj7rTnjXXu3fqau1p6pwONtsxWS7sBsEOFeI1gZDhmFOGgz36iYBZrOZm6i+uLiIoKAgLtDHxcVt24n36uoqZmdnMT09DbvdjoyMDGRmZm5pxYVhGKhUKoyOjkKtVmNlZQVvv/023njjDRQUFODWW2/FxRdfTOGDkF2OQgghO4hhGHzwwQf41a9+hebmZlx00UW46KKLkJCQgIiICBQVFSEpKWlLT5IcDgfm5+cxPT0NtVqN5ORkCAQCJCYmbtubOMMw0Ol0XCDRaDSIjo7mTqoiIiL25ImiM3ZbWOeTY4PBwJ08W61W+Pj4IDAwcF3b0UatSfv9BMvhcKwLF2tb1MxmMywWCxiGQUBAAPfvExYWtq5Fbq//e+2m3xGHwwGlUgmpVAqFQoHY2FgIhUKkpKRs6b8zu8ZkdHQUOp0OSqUSb731Ft5++20cPHgQP/vZz3DOOefs+dcKQs4UFEII2SVEIhHuvvtuvPnmm/j0pz+Nz3/+8xAIBAgJCUFBQQHS0tK2/ERKr9djZmYGc3NzsNvtSE1NhUAgQExMzLa+sW90lTcxMRFxcXG7Ypr0VrDb7RueaK/9nMViAQAEBQVxt820P23UAuXr6+v17yvDMHA4HG61htlsNqyurnI3ABuGsrXrQ4KCgvZMKx8fZrMZS0tLUKlUUCqVO1otZBgGy8vLkEqlkMvl8PPzQ3p6OjIyMrZ0PRtwIvTMzc1hbGwMJpMJUqkUr7/+Ot5//3187nOfw89+9jPU1NRs6XMghHgfhRBCdpnR0VHce++9ePHFF9HY2IhLLrkEubm5CAgIQEFBATIyMrb8hIttd2DnfwQEBHDzP7Z6q9+12H5358Fv4eHh3PyF/RpKTmajCgHf9R/sy76Pjw8XTtjWqrXtVc6fW9uq5fw5hmFOefzNhqQzreLjzDl0LC0tQa/XIyoqips3shPrpnQ6HTdPxGq1cvNEtrpdFDjxuz8zM4Px8XFYrVaIxWIcPXoU7e3tuPLKK3HTTTehsLBwS58DIWTrUAghZJeanZ3F/fffjz/96U8oKSnBJZdcgrKyMvj7+yM3NxdZWVnbslOP3W7HwsICZDIZFhYWEBkZyc3/2ImTf6vV6jJ08EwPJXydrFJxsrUgzh+faj2Ij4/PtlRa9pPThY64uLgd2Y3LbDZjbm4OUqkUOp0OSUlJSE9PR1JS0raEIKvVColEgomJCdjtdvT39+Po0aMYGhrCd7/7Xdx4440QCARb/jwIIVuLQgghu9zi4iIeeugh/P73v0d6ejouvfRS1NbWws/PD5mZmcjOzt626eRWq5Wb/6FSqRAfHw+BQIDk5OQd27rUYrFApVJxJ3LOoYQ9kaNQQnYDs9nsEqDXho7Y2NgdG+xptVoxPz8PmUyGpaUlxMXFcfNEtut322AwYGpqCjMzM7Db7RCJRPjb3/4GmUyG6667Dtdffz3i4+O35bkQQrYehRBC9oiVlRX88Y9/xP3334+wsDAcPnwYBw8eREBAAOLi4pCbm4vExMRtu/JsMpm4Ng2DwYDk5GSkp6dv64L2jZwqlMTGxiIqKmpfLHQnuxu7kFyr1UKtVq8LHXFxcYiLi9ux0AF8ssBcJpNBoVAgLCyMa7vcyiGqzhiGgVKpxMTEBFQqFaxWKz7++GMcO3YMRqMRN9xwA37wgx9sexsoIWTrUQghZI8xm83485//jAceeAALCwv47Gc/i/POOw9JSUkIDAxEbm4uMjIytrUyodVquUDicDiQmpqKlJQUxMfH73hPPxtKlpaWsLy8jJWVFQBwmXgdHR1NwYS4zeFwQK/XQ6PRcFPWtVotACAyMhIxMTFc8NjJ0ME+16WlJczPz0Mul8PX15cLHlFRUdv2PKxWK2ZnZzExMQGLxYKFhQW8++67+Mc//oHk5GT8+Mc/xn/+539SFZOQfYxCCCF7FMMweO+99/Dwww/jrbfeQmNjIy644AJUVFQAANLT05GTk4PIyMhtfU4qlQpzc3NQKBSw2WxITEzkdvPZ6RMwwPWEkT1ZZE8Yo6KiuFASHR2N8PDwHQ9RZHdZ+/Oj0Whcgu1u/PlhT/IVCgWUSiX8/f2RnJyMtLS0bVlg7mxlZQWTk5OQyWQAgL6+Przzzjtoa2vDRRddhOuvvx7nnnsuXRAg5AxAIYSQfWB6ehqPPfYYnnjiCcTExOCiiy7CoUOHEBISgqioKGRnZyM1NXVbd9ZhGAYajYY7+VlZWUFsbCw312Crt/Xkg22dOdmV7LUVk91wYkm2nsPhWPdzsVcqaXq9npspolarERkZyf3uRUVFbetztdvtkMvlmJycxMrKCkwmE44fP44333wTGo0G3/ve93DNNdcgMzNz254TIWTnUQghZB8xmUw4cuQIHnzwQUxNTeG8887Dpz/9aWRlZcHHxweZmZkQCoU7EgCMRiMXSJaWlhAaGsqdFMXGxu6qEzjAtaffuWqydvq28wTunZx4TtzDTlxfO+Heecq9c9jYrWuKGIaBWq3mgofRaER8fDxXhQwNDd3256TX6yGRSDA7OwuGYSCRSPDee+/h3XffRXZ2Nv77v/8bX/nKV7Zt/QkhZHehEELIPsQwDFpbW/HYY4/hlVdeQX5+Ps4//3w0NTUhICAAMTExyMnJQXJy8o5c1bdarVhcXIRCocDCwgIAICkpCcnJyUhISNixnbZOh2EYbtK588mqwWCAyWSCv7+/y6Ru54CyW7+mM4XVat0waBgMBthsNoSEhGz4vQsLC9t1gYO1G3+PHA4H5ufnMTk5CY1GA6vVitbWVvzzn//E+Pg4LrvsMlxzzTVobGzctf+uhJDtQSGEkH1OrVbjL3/5Cx599FEsLi7iP/7jP3DuuedCIBDAz88PGRkZEAgE27oo1dmpruAmJiYiNDR0T5ys2Gy2kwYUi8WCoKAgl1ASEhLiMpSPQopnrFaryxBHk8nkEjpWV1cRGBjo8j1wDhr+/v47/SWcFsMwMBqNUCqVu66iqNVqIZVKMTs7C7vdDqlUivfffx//+te/kJiYiGuuuQbf+MY3EBsbuyPPjxCy+1AIIeQMwTAMPvroI/zhD3/A0aNHUVJSgvPPPx91dXUICAhASEgIMjMzIRAIdrQ9Ym0ve3BwMDeEMD4+fs+EEmcWi2XdVXiTycSdNDscDvj5+XGhhA0mG/1/QEDAnvv63cUwDKxWKzcZng0YG/2/3W6Hr68v928VEhKyrhq1GzZG4IMNHexckaWlJayuru6atVUmkwlSqRQzMzMwmUywWq3o7OzEP//5TwwNDeGLX/wi/uu//gtnn332GfMzSwjZPAohhJyBlEolnnnmGTzxxBNQKpU4dOgQzjrrLJSWlgIAoqOjIRQKt3VQ2UZsNhvUarXLFrv7IZQ4cz7RPt3JtvOJNnuy7TyhnL35+fkhICCA+3jtn2/HJPONJrOz09ltNhusViv38dqb89e8NqCdLJzth4C2NnSoVCqYzWZui9/4+HjExMTsaNWGHVg6PT0NjUYDABgYGEBLSwuOHz+OxMREfO9738O3vvUtJCYm7tjzJITsfhRCCDmDMQyDzs5OPPvss3jxxRfh5+eHT33qUzhw4ABycnLgcDiQmJiIjIwMJCUlbevuWhs5WShhZzDsh1ByMgzDwGazuYST1dXVDU/iT3biz77c+/j4uAQWPz8/7t/Mx8eHu7H/v/Z5sP9lb+z/2+12l2Cx9vE2CkQb3YKCglzChb+//779np4qdMTFxSE2NnbHW8XsdjsWFhYwMzODxcVF+Pr6YnJyEs3Nzfjwww9ht9vx1a9+FVdddRXq6ur25feKEOJ9FEIIIQBOXOF899138eyzz+Lo0aNITU3Fpz71KTQ2NiIpKQk+Pj5ITU1FRkbGts8WOJnNhJKwsLCdfpq7wqkqE3a7fV24cP7YOUysDSjOH7OBZicqL3uBc+hgf2Z3Y+hgn6tKpcLs7CzkcjkYhsHCwgJaW1vx4YcfQi6X45JLLsE3vvENnHfeebviORNC9hYKIYSQdfR6PY4ePYpnn30W7733HkpLS3H22WejoaEBERER8Pf35xa0b+cwxNM5WShhh8ext722NoDsTRaLxWWooUaj2bWhg7WyssItMLfZbNDpdGhvb8eHH36IoaEhfPrTn8Y3vvENHD58eFfN+iGE7D0UQgghp6RQKPDSSy/hL3/5CwYHB9HQ0IBDhw6hpqYG/v7+CA0NRWZmJlJTU3dd1cFms2F5ednlJNBoNCIkJMQllERFRSEoKGinny7Zw1ZXV11mymg0GphMJoSGhrr8rO30mo6NGAwGyOVyzMzMwGg0wmazQSQS4eOPP0Z7eztKS0vxn//5n7jiiiuQlJS000+XELJPUAghhGza+Pg4nnvuOTz77LNQqVQ4dOgQDh48iJKSEm6IX1paGpKTkxETE7MrW3AsFsu6AYQGg4ELJuxQuujoaAomZEOrq6suYUOr1cJkMiEsLMzl5ycqKmpXVt0YhsHy8jIUCgXm5ua4oYyDg4Nobm7G8ePHERcXh69//eu46qqrkJ+fv9NPmRCyD1EIIYTwxjAM2tra8Nxzz+HFF1+Ev78/GhsbUV1djbKyMgQGBsLX1xfJyclITU1FQkLCrrv668xqtbqcUGo0GhgMBpdWLnZSdkhIyI4MeCTbz+FwwGg0Qq/XuwRXs9mMsLAwl5+N6OjoXT3rxWazYXFxEXK5HAqFAg6HAxaLBQMDA+ju7kZbWxtsNhuuvPJKfP3rX0dDQ8OuvIhACNk/KIQQQjxitVrx/vvv4/XXX8exY8egUqlQW1uLmpoaVFVVITY2Fg6HA3FxcUhLS0NSUtKOziHZLKvVumHFBMC6YXfsx0FBQXTitscwDAOz2ewyw4X92Pn7vbbCsZsDB8tkMmFhYQFzc3NQqVTw9fWFWq1Gb28vOjs70dXVhbi4OBw+fBhf+MIXcO655+6Jr4sQsj9QCCGEeA3DMBgYGMCxY8dw9OhR9PX1obi4GHV1daiqqkJmZiYcDgciIiKQmpqKlJQUREZG7pkTd4fDwU3iXnvCajKZ4OfnxwWStQGFTu52ltVq3fD7ptfrYbfbNxxuyE623yuVL4ZhsLKygvn5eczNzUGv18PX1xczMzPo6elBR0cHRkZGUFlZicOHD+Pw4cMoKyvbM79/hJD9hUIIIWTLzM/P44033sCxY8fw7rvvIj4+Ho2NjaisrERJSQk3VC8lJQWpqamIi4vb8Vkk7rLb7RteTdfr9bBYLAgKCkJYWBjCwsIQEhKy4dC9vfq17zS73b7hkEeTyQSDwQCDwYDV1VUEBgZuGDTCwsL27L+93W6HSqWCXC7H/Pw8NwRyaGgIPT09aG9vx9LSEs477zwcPnwYF198MVJSUnb6aRNCCIUQQsj2MBqNePfdd/H666/j9ddfh9lsRn19Paqrq1FZWYmIiAgAQGxsLJKSkhAXF4eoqKg9cxX6VCwWi0uLj/PJMnvCDAABAQEuwWSjCeHBwcF79oSZL7vdvu7faqOp8larFQA2/Ldiw0ZYWNiuXCTOl8PhgFarhUqlwsLCAtRqNQBAp9Oht7cXXV1d6OzsRHBwML7whS/g8OHD+MxnPoPQ0NAdfuaEEOKKQgghZNs5HA50dnbi9ddfx9GjRzE+Po7y8nLU1taiqKgI2dnZAE4MwGNDSXx8PKKiovZl6wjDMC4n1mtPsp0/xzAM/P39ERwcjICAgE1PId/o7zlPSvfm1+I8NX3t1PbNTHe3Wq0wm82w2Wzw8fE5aRhz/tx+XY/DMAw0Go1L6GDftqempjAyMgKRSIT+/n4UFBRwbVa1tbX7IsATQvYvCiGEkB03PT2Nv//973jzzTfx8ccfw8/PD2VlZSgtLUVRURGysrIAnDmh5GQYhoHFYuFCidVq5XWiz/65w+HgjslONAdw0kno7McbTVNnPwbATWRn+fr6njQAnSogBQQEcAEjMDDwjPsea7VaLC0tbRg6RkdHMTg4iIGBAdjtdhw8eBCf+9zn8PnPfx5CoXBnnzwhhPBAIYQQsqvYbDZ0d3fjgw8+wL///W80NzfDz88PFRUVKCkpQWFhIYUSD7Fhgb2xoWSjYOH8ubXhZO3n2NDB3uhK/OmdKnRIJBKMjo5iaGgIfX19sNvtOOuss/CZz3wGn/rUp1BdXb2rt74mhJBToRBCCNnVrFbrulDi7++P8vJylJaWorCwEEKhED4+PvD19UVMTAySkpIQGxuLqKioM2b9BNkbbDYbVlZWoFarNxU6Dhw4gM985jM499xzKXQQQvYVCiGEkD1lo1ASEBCA8vJyrlIiFArh6+sLh8OB0NBQxMTEIDY2FtHR0YiMjKQTObIt2MCh0WigVquxvLwMo9HI/WxOT09zoaO/vx9Wq3VdpYO2diaE7FcUQgghe9rJQklBQQFycnKQlZWFrKwsJCUlAYBLMImJieGGz1EwIZ6w2WzccMvl5WWXwAEACwsLkEgkkEgkmJycxNjYGIUOQsgZjUIIIWRfYUOJSCRCZ2cnRCIRRkdHERERgby8POTk5EAoFCIrK4ubl+BwOBASEoLY2FgKJuS01gYOtVoNk8nEBY75+XkucExNTUEsFkOn06GwsBC1tbWoq6tDbW0thQ5CyBmNQgghZN8zmUzo7+9HV1cXF05GR0cRFhbGBRO2YrI2mLCBxHnAHYWTM4PNZnMZPMkGj5MFjsnJSYjFYhgMBhQWFnJho6amBuXl5QgJCdnhr4gQQnYPCiGEkDOS2WxeF0xGRkYQGhrKBZPs7GwIBAKkpKQgICAADocDDMMgICAAYWFhiIyMREREBBdQwsLCaEeoPcbhcHBT1fV6PXQ6HVZWVmAwGGC1WrkND6xWK+bn5yGVSiGRSDAxMQGxWAyj0Yji4mLU1ta6BI7g4OCd/tIIIWRXoxBCCCH/n9lsxsDAgEs71/DwMBiGQWpqKtLS0pCamoqUlBQkJSUhNTUV8fHx3EJjhmG4Kd1s9YS9BQcH0/bBO4RhGJjNZuj1eu6m1Wq56fVs0HA4HFhaWoJcLsfCwgLm5+chl8sxNzcHuVwOHx8fFBcXu1Q4ysrKEBQUtNNfIiGE7DkUQggh5BTsdjukUinGx8cxPj6OsbExjI6OYnx8HFKpFEFBQRAIBBsGlKioKO4YzpO/Q0JCEBoauuEEcFojwI/Vat1wwrzRaITJZHKZNM9u16zRaDA/P78uaEilUqyurkIgECA/Px+FhYUoKChAfn4+8vPzIRAIaMtnQgjxEgohhBDiJrPZjKmpqXUBRSwWY3FxEdHR0UhPT0daWhpSUlIQFxeH6OhoREdHIyYmBpGRkVx1xG63Azgx8C8wMPCUYSU4OBj+/v77trLCMAxsNtu6YLE2XFgsFm7QIhsOGIbBysoKlpeXodFooNFooFKpMD8/j7m5OchkMmg0GiQkJCAvL29d0MjOzqZWKkII2QYUQgghZAtoNBqIxWIuoIyOjmJ2dpa7Am82mxEUFIT4+HjExsZyO3M5784VHR3NDV1k15qwbV/AicDi5+fH3fz9/REQEMD9l/14oxv799kws3Ya+trJ6KyNJqmzH7PhwWazwW63u0xld75ZrVZYrVbuY/bvszc2WLBtUuzXrdVqoVarodFo1m2Hq1aroVarsbS0hNXVVQQHByMpKQkpKSnIyMhwCRt5eXlclYoQQsjOoBBCCCHbjL1az7YCzc/Pr1t/wIYVvV6PgIAAxMXFITY2lqumhIaGIiQkZF07V3BwMEJCQrg/Cw0NRWBg4LoF887BwZvWBhqWw+GAxWKB0WiE2WyGyWRyaZdyvplMJhiNRq6KoVaroVKpYLVaER4ezoWLtet02M+lpKS4VJkIIYTsPhRCCCFkF9Pr9VxIYYOKQqGAVqvFysoKdDodd3NeeG0wGLgWLz8/P4SGhnLBZe3Nx8cHfn5+XOWBDRHOHwOfBBe2GuP8sd1uB8MwXLhwvhmNRhiNRpfnw253zN4iIiK4W2RkJKKiorhg4XwLDw/fse8FIYQQ76EQQggh+5DzjlBsQHH+r3NoYVugTnZzDg++vr4nvfn5+a0LFezHzp8LCgqiKgUhhJzhKIQQQgghhBBCthVN1SKEEEIIIYRsKwohhBBCCCGEkG1FIYQQQgghhBCyrSiEEEIIIYQQQrYVhRBCCCGEEELItqIQQgghhBBCCNlWFEIIIYQQQggh24pCCCGEEEIIIWRb/T/bYrhAVb6tdAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10,10), subplot_kw={'projection':'polar'})\n", - "\n", - "arrivals = taup.get_ray_paths(source_depth_in_km=500,\n", - " distance_in_degree=80,\n", - " phase_list=[\"P\", \"S\", \"PKP\", \n", - " \"PKIKP\", \"PKiKP\",\n", - " \"S\", \"SKS\"])\n", - "\n", - "ax = arrivals.plot_rays(fig=fig, ax=ax, legend=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAMWCAYAAABsvhCnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3ikVdn/P8+k9z5pk9572fRkm4h0FpSyIAgCwksTfxQFgRUFAV8FERFFUVRQEfUVBBcFlC1sTbak9957zySZ8vz+yM5DsptddiaTsrvnc11zZep5zkymnO+5v/d9S7IsywgEAoFAIBAIBALBElCt9gQEAoFAIBAIBALBmY8QFgKBQCAQCAQCgWDJCGEhEAgEAoFAIBAIlowQFgKBQCAQCAQCgWDJCGEhEAgEAoFAIBAIlowQFgKBQCAQCAQCgWDJCGEhEAgEAoFAIBAIlowQFgKBQCAQCAQCgWDJ2K72BAQCgUBgfWRZRqvVMjExwfj4+Al/TecnJyfR6/UYjcaTnv7v//4PSZK48sorUalUJz3Z2tri4uKCq6srbm5uuLm5KefnX+fo6IgkSav9EgkEAoHAyghhIRAIBGuY8fFxuru7TziNjo4yNjbGxMQEY2NjilAwiYXJyUkMBgMANjY2uLi44OzsjJOT04KTo6PjAnEgSRKSJC04PzExgSRJNDQ0IMsysixjNBoXnDedpqen0Wq1C05TU1OLzsckQkyiw93dHVdXV9zd3fHw8CAwMPCEk5ub22r+OwQCgUBwCiRZluXVnoRAIBCcS8iyzOjoKN3d3XR1dSlioauri87OTuW63t5eJicnsbOzw8fHBx8fH7y9vfHy8sLZ2RlHR0dFHDg6OuLg4KCcNwkHZ2dn7OzsUKlUJ8zBdLImJjFyfETCaDSi0+mYmppSBMf09DTT09PMzMwo503XT01NMTw8zNDQEIODgwwODqLT6XBxccHf35/AwECCgoIIDg4mKChIER6m8x4eHiIqIhAIBCuMEBYCgUCwDIyMjFBXV6ecampqaGtrUwTDzMwMDg4O+Pr64uPjg5eXF15eXnh7e+Pp6YmHhweenp54e3svWCSbIgUAKpUKGxsbbGxssLW1xcbGBjs7O2xtbbG3t8fW1hY7Ozvl9sVONjY2C8SA6Tjz/5qON//8/L/zTwaDAb1ev+jJYDCg0+nQ6/XMzs6i1+uVywaDQTkZjUbleCZBZBJjQ0NDjIyMMDo6ysjICENDQwwPDzM8PMzg4CADAwPKa2sSIKGhocTHxxMXF0dsbCwxMTF4enquzBtBIBAIziGEsBAIBAILmZ6eprGxUREPtbW11NTUUF9fz8DAAF5eXmg0GoKDgwkICMDHxwdPT09FRLi5uSkLeJNNSKVSYW9vj4ODgxJxcHJyWhCNcHR0xNbW9qzdkZdlGb1er0QxTFENk61Kq9UyMzPD7OysIkJsbGyUx46PjytiY2RkhMHBQXp6eujs7KSjo4Ph4WF8fX2JiYlZIDhiY2OJiorC0dFxNZ++QCAQnLEIYSEQCASnwGAw0NbWdoJ4qKuro6OjA0dHR0JCQggODlbsOP7+/gQFBeHh4aGMIUmSYlean+uwmGAQnD4nEyAmEWKyWcmyrIiP0dFRurq66O3tVWxonZ2dtLe3Mz09jUajITY29gTRERoaqowhEAgEghOxirAwhbcFi2OyIggEgrXN9PQ05eXlHDp0iJKSEoqLi6mursZoNBIcHIxGo1E8/Cbx4OvriyRJikXJ0dFRSUA2JSa7urqKSkiriCzLTE9PK8ntpoT3iYkJpqenFcuVLMsMDAwsEB1dXV10dHTQ2dmJSqUiISGB7OxssrKyWLduHSkpKSLCIRAIBMdYsrCYmJigo6PD6gmAZxOSJKHRaHB1dV3tqQgEgmNotVrKysoWiIiamhqcnZ0VS0xERAShoaEEBgZia2uriAc7OztcXFxwd3dXSqm6urri7Ox8QpK0YG1jNBqZmppSBMf4+DhjY2NMTk6i0+kU0aHX6+nu7qatrY3m5mbFAjc1NUVCQgJZWVmK2EhNTcXJyWm1n5pAIBCsOEsSFgaDgfr6epydnfHz8xO7cYsgyzL9/f1MTU0RExMjIhcCwSqg1WopLS09QUS4uroSGxtLZGQkERERREREEBgYCMwtOJ2cnPDy8loQfXBxcRF2pXMEvV7P5OTkgijH8PAwWq1WEZDd3d00NzfT3NxMU1MTdXV1TExMEB8fvyCykZaWJsSGQCA461mSsJienqa5uZnw8HDxhXkKtFotLS0tREREiJC5QLDM6HQ6Dh8+THFxMcXFxZSUlFBbW4u7uzsxMTFERUURHh5OREQEAQEBwJyIcHZ2VpKqTVWZhIAQLIZer1eqUpmSxKemphSx0dPTo4iNxsZG6uvrGR8fJy4ujqysLLKzs8nOziYzMxM7O7tVfjYCgUBgPawiLMSC+dSI10kgWD50Oh2HDh1ix44d/Oc//2Hv3r3Y2dkRHx+/QET4+/sDC0WEqbSru7u7EBGCJaHX6xkbG1tQAne+2Ojt7aW5uZmWlhYaGxupqalBp9NRUFDAeeedx6ZNm1i3bp0QGgKB4IxGCIsVQLxOAoH1OJmQSEtLIykpifj4eMLCwlCpVIqIMDWVEyJCsJKcSmwYjUZaW1upqamhsrKS0tJSITQEAsEZz1krLMLDw+nr60OlUuHm5sY111zDc889R3R0NG+88QZFRUUAPPvss7zyyit8/PHHtLS0cNttt9HQ0KCMcar7fu5zn8PZ2RlJkggPD+epp55iy5YtJ8xlLb9OAsFa52RCIjU1VRES4eHhSpKtt7c3arVaaSwn8poEawmDwaA0+uvr62NoaEgpCtDS0qIIjbKysgVCY/PmzcI6JRAI1jxn9bbdBx98QFFREfX19WzYsIH4+PgFt88XCuHh4bS0tJx0rMXuGxkZSUNDA0ajkV/84hds3bqVzs5OvL29l/mZCQRnL6YciflCwtbWVhESl1566aJCwtfXd0GHasHJMXW4NnXEnt/N+/iO2gDj4+MAuLm5AZy0Q7dKpVrQ0VuIuhOxsbHB29sbb29voqOjlY7iAwMD+Pn5ERUVxUUXXbRAaGzfvp1nnnkGg8GwIKIhhIZAIFhrnNXCwkRMTAzr16+nsrJSue54oXAqPuu+KpWKm2++mbvvvpumpiYhLAQCM2lububdd9/lvffeY+/evdjY2CjWpksuuWSBkPDy8sLf3/+cFBKyLDM7O6s0gtPpdIo4mH+aLxoWO80PVNva2qJSqRYVCqbT5OQkAC4uLorgWEyIGI1G9Hq9MrYkSYrQWOxkY2Oz6PV2dnZK40B7e/uz+n8sSRKenp54enqeIDR8fX0VoQFzn5Oamhr++c9/8vTTTytC49JLL+Wyyy4jIiJilZ+NQCA41zknhEVtbS27d+/mySef5L333uP555/nyJEjpyUqTue+BoOB1157DRcXF6Kjo63/BASCswyj0cjBgwf5xz/+wdtvv019fT2pqalkZWVxySWXKAskSZLw9vY+64WELMtKh+j5HaTnXzZdZ+qj4eDggJ2d3aILdVMH789azNvY2Fj99ZRleYGw+SyRo9frmZmZWXBZp9MpwkmSpBO6k5s6mB9/+Wx4b5xKaPj4+BAZGblAaFRVVfG73/2OBx54gNjYWLZs2cKWLVvIzs4WPVUEAsGKY11h8UoWTPRYdchFcQ2AO0o+824XXXSREna++eabueWWW3jqqaf48MMPueaaaz5TVACnvG9zczOenp7Y2NgQFRXF3/72Nzw9Pc1/PgLBOcDk5CQfffQR//jHP3j33XeZnp4mNzeXyy67jPT0dKWB5NkoJGZnZ5mYmGBycpLJyclFBQOAvb39CYtmNze3E65bSYuRwWDg0KFDAKxbt+4zjz0/SmGNYy8mtCYnJxkcHFSum52dBVhUgLi4uODi4oKrqyv29vZLntNKczpC49JLL2ViYoKjR49y8OBBXnrpJRwdHbnsssvYsmULn//853F2dl7tpyIQCM4BrCssJnpgvNOqQy6F999/X0m8ns8vf/lLHnnkER577DGeeuqpU45xqvtGREQoid4CgeBEurq6eO+993jnnXf4z3/+g5+fH7m5udx3330kJiZiY2ODnZ0dgYGBBAUF4ePjc8b68g0Gw4JmaiYhMTExwezsLA4ODkqDPUdHRzw8PE5YCK/FHeaamhrlu+/ZZ58lMTFxxY5tY2OjCINTYTQaF432aLVaBgYGmJiYYGZmBnt7e+V/YGp4aLp8przvjhcaBoOBwcFBurq68PT0pLCwEIPBQFVVFUeOHOGuu+5iYGCA8847jy1btnDppZcSFBS02k9DIBCcpVhXWLgGWHW45TpOSEgIH330EUVFRXh4ePDQQw9Z5b4CwbmOLMuUlZXxzjvv8Pbbb1NWVkZiYiI5OTk899xzhIaGYjQacXNzIzg4mICAANzd3c+YqITRaGRqamqBgDCd12q12NjYLFiwqtVqZRF7pibZHjx4cMH5lRQWp4tKpcLZ2fmUu/I6nW7B/2xsbIyuri4mJiYwGAw4OTmdIDpcXFxwdnZek4LPhI2NDWq1GrVaTVpaGmNjY3R3d+Ph4UFycjI33XQTra2tHD16lJdeeom77rqLtLQ0xTKVmpp6xnz+BALB2se6wuI07ElrhejoaD744AM2bdqEh4cHt99+u1XuKxCca+h0Oj7++GPeeecd3nnnHYaGhsjOzmbTpk184xvfwNvbG6PRiI+PD8HBwfj7++Pk5LTa0/5MdDodIyMjSofl0dHRBUnMpsVncHCwcvls8fnPp7i4eMH5m2++efUmswTs7OyUzurzMeW3zBcdAwMDtLS0LPh/e3h4KB3ZPT0916RQlCQJDw8PPDw8iI+PR6vV0tvbi7e3N6GhoVxxxRUMDQ1x9OhRPvroI5599lm8vb0VkbF58+Y1+bwEAsGZwzmRvH0yUlNT2b59OxdccAFubm4EBgZa5b4CwdmOLMvs27ePN954gzfffBM7Ozvy8vK47bbbSElJwd7eHpVKRUBAAEFBQfj5+a3ppnSzs7OKgJgvIpycnJSFpEajwc3NDScnpzW9g21Nurq66OjowMbGCEB7ezvd3d1n1fefJEmKFc3X13fBbUajEa1Wy/j4OKOjowwODtLU1IRWq8XFxWWB0PDw8FhzORxOTk6Eh4cTHh6OXq+nv7+frq4ufHx82Lx5M7Ozs5SXl3PkyBFuvPFGdDodW7du5cYbbyQvL++sE8kCgWD5OWsb5K0lxOskOFuora3ljTfe4PXXX2doaIgNGzZQWFhIUlISsizj7OysWJy8vLzW5MJkdnZ2QSRiZGSEqakpnJycFiwUPT09cXBwWO3prirvvPMOv/71r0lNGkWWobzKg1tvvXXRRqDnEjMzMwtE6MjICFqtFmdnZ+W9Y3ofrTWxAXMbA8PDw/T09NDZ2cnU1BSSJFFZWcmePXvYtWsXPj4+3HDDDdxwww3ExcWt9pQFAsEZwtrdQhQIBGuCnp4e3nzzTX7/+99TWVlJXl4eX/7yl1m3bh22trY4OzsTFhZGUFDQZybZrjR6vZ7h4WGGh4eVBeDU1BTOzs7Kwi8sLExJpBYsxGSDys4YRmZOWJSUlJzzwsLBwQF/f3/8/f2V62ZmZpT32PDwMC0tLcp7zSQ0TFas1Y7emco4e3t7k5iYyOTkJF1dXTg7O5OUlMQtt9zCoUOH2LVrF//7v/9LUlISN910E1u3bl3wnAUCgeB4RMRiBRCvk+BMY2Jigr///e+8/vrrfPzxx6SkpLBhwwZycnJwc3PD1taW0NBQQkJCcHd3X+3pKuj1eoaGhhgYGGBwcJDh4WEcHR3x8vJaEIlYi7vIa43JyUluuOEGDAYDv3j+CMjwPw9kYGNjwxtvvLHmRORaxBQdM0U2hoeHmZ6exsvLCx8fH3x9ffH29l51oTGfsbEx2tvbaWtrQ6/XMz4+zsGDB9m5cycVFRVs3ryZr3zlK1xxxRVKiWiBQCAwIYTFCiBeJ8GZgE6n48MPP+T111/nnXfeISgoiE2bNpGfn6/sUgYHBxMaGoq3t/easDmdTEj4+voqJ1G/f475nbGPPxmNxhO6aZeUlPCb3/wGTdAUP/thGQB3P5RGR5cTt9xyC1lZWSd06VapVIs25Zvf2ftcZ2pqioGBAeW0VoWGLMsMDg7S3t5OZ2cnsizT29vL/v372bFjB11dXWzZsoWvfOUrnH/++WtizgKBYPUR3wQCwTmMLMscPHiQ119/nTfffBMbGxs2b97MM888Q1RUFEajEbVaTVhYGGq1etVr/Z9KSISFhbFu3bqzVkjIsoxer1/Qr2F2dhadTndaHa4NBoMiHgwGw0kX/qa/+/btAyAnc0SZQ3bGMB1dTuzbtw83NzdlXqa/xwsXU2dvSZIWdPw+VUdwOzs7pVGg6WRra3vWCBNnZ2dCQ0MJDQ0F5oRGf38/g4ODHD16VBEavr6++Pj4rJrQkCRJEeepqan09fXR2tqKWq3miiuuoLGxkb1793LzzTdjMBi47rrruOGGG8jJyTlr/lcCgcB8RMRiBRCvk2Ct0dfXx29+8xt+9atf0dfXx/r16ykqKiI5ORlZlvHy8lLyJlaz/OSphIRph9fZ2fmMXsjIsoxOp1u0G/fxlw0GAzY2NkpjPQcHh1Mu1hdbvLe3t3P//fef9vye2VZJYtw4AJU1bnz7yaTTfuyPf/xjNBrNZ4qe40+m577Yc55/Ov46Ozu7M/69YIpoDA4OLohorLbQMKHT6ejq6qKlpYWRkREkSaK8vJw9e/awe/du1Go1X/va17jllltQq9WrNk+BQLA6iIiFQHCOIMsyO3fu5OWXX+btt98mJSWFa665hqysLOzs7JQkbI1Gs6p9JiYmJujp6aGnp4ehoSFFSISGhpKZmXlGConZ2dlFG+qZFs9GoxEbG5sTFs5eXl4nLJ6XuntfUnL6/YbysweJix5XLsfHjJOfPci+Yp/TenxxcTFRUVFmz9HEYlEa02s2Ojq64DqDwYBKpVJer8Ua3q313BpJkpRO42FhYQuExsDAAG1tbczMzODt7U1AQAABAQErnudgZ2dHWFgYYWFhaLVa2tvbcXZ2JiUlhVtvvZWSkhL+8pe/sG3bNq688kruvPNONm7ceMZ9ZgUCgWWIiMUKIF4nwWoyNDTE7373O15++WX6+/s5//zz+dznPodGo8HGxkaxZaxWErbRaFRKX/b09DA1NYWvry8BAQGo1eozRkjo9fpFO3JPTEyg0+lwcHBY0NHZycnpBMGwEkxMTPDTn/5UsTplpo5wz9cacXE2nHBfBwcjx7/0sgwzMyf28ZicsuGlX0VxuMwTgIKCAu65554VW/geL0C0Wu2C/8HMzAz29vaK0Di+w/aZkCNgEhp9fX309PQwMDCAs7OzIjK8vLxWrcfK6OiokvRtMBjo6Ojgv//9Lx9++CF+fn7cdddd3HTTTXh7e6/K/AQCwcoghMUKIF4nwUpjamD38ssv89e//pW4uDi+8IUvkJeXp3QgjoqKIiAgYFUWIjqdjv7+frq7u+nr6wPA39+fgIAA/Pz81mz3X1mWlcXq/EXrxMQE09PT2NraLliszj+/lp6TLMv885//5De/+TV6vQF/v2ke+no9MZGTFo1X3+jCD38aQ2+/I7a2Ntxyy61ccskla0oQ6nS6kwo/vV6Po6Oj8v+a//9zcXFZU89jPqbPUU9PD729vcDqf46MRiM9PT00NjYyPDyMTqdj//79fPDBB9TW1nLVVVdx1113kZ+fv2ZfV4FAYDlCWKwA4nUSrBRarZY//elPvPDCCzQ3N/P5z3+e8847j/DwcCRJIiwsjPDw8FUpEzk1NaVEJQYHBxfstK6VKlPzkWWZ8fHxBU3QRkdHkWVZsascvxB1cHBYc8/jVNTX1/O///u/9Pb2Ymtj5KtfbuWSL/SeEKU4GbIM7/07gN/+MRS9QYW/vz/f/OY3iYmJWd6JWxFZlpmZmTlBKE5OTjI5OYkkSQu6a3t6euLm5rbm/s+yLDM0NHRC5M8kNFajqMHExAQtLS20trYiyzLNzc3897//5aOPPiIyMpL77ruP6667blWtlwKBwLqctcIiPDycvr4+VCoVbm5uXHPNNTz33HNER0fzxhtvUFRUBMCzzz7LK6+8wscff0xLSwuf+9znFOtFeHg4Tz311JKbQa3l10lwdtDS0sLLL7/Mr371K7y8vLjkkksoKirCyckJDw8PoqKiCAwMXNGqTrIsMzIyoix0xsfH8fHxISAgAH9//zVVA99oNDIxMbGg58Do6CgA7u7uSv8LT09PXF1dV81ushwcb43Kzx7knq814epyojVqweMmbfjpL6PYXzJnbcnPz+fee+9dU//XpXL8+2JkZISxsTEAPDw8FvRGWWvvC1OuUm9vL4ODg7i5uSlC3tPTc0WFkcFgoLu7m8bGRkZHR9FqtezevZvt27czPDzM1772Ne6++27CwsJWbE4CgWB5WPum0iXwwQcfUFRURH19PRs2bCA+Pn7B7fNFRXh4OC0tLURGRtLQ0IDRaOQXv/gFW7dupbOzU/hCBWsOWZb5z3/+w4svvsi//vUv8vLyePDBB0lNTQUgJCSEyMjIFc2dkGWZgYEBOjs76enpwWAw4O/vT0xMDGq1ek0kz57OYjEsLGxNLhaXA1dXVx5++GHFGrWv2IeZGRu+862aUz7uRy/FcKTMc81an6yBSqXC3d0dd3d3pTzs8e+f1tZWysrm+nysJRHq6upKdHQ00dHRzM7O0tvbS29vL3v37sXGxoaAgACCg4Px9fVd9v+bjY0NGo0GjUbD2NgYTU1NODs7c8EFF1BaWsoHH3zAj3/8Yy666CLuu+8+Pve5z5117yWB4FzhrBYWJmJiYli/fj2VlZXKdceLiuNRqVTcfPPN3H333TQ1NQlhIVgzTE9P87vf/Y7nnnuO/v5+LrjgAl5++WX8/f2xt7cnOjqa0NDQFfVXj46O0tHRQUdHB0ajkeDgYNatW4ePj8+qL8xnZ2eV0p3Dw8MLRISnpycRERF4eHisSXvLSiFJEpdeein29va89NJLNLd9tm2m5dh9/ud/7uQLX/jCck9xzbCY2DDZ5kyWuePFxvxysashru3t7QkJCSEkJASj0cjAwAA9PT2UlJSgUqmURb+Hh8eyz8Xd3Z309HSSkpJoa2vD3t6etLQ0ent7+eijj7jqqqtQq9Xcf//93HTTTSLKLxCcYZwTwqK2tpbdu3fz5JNP8t577/H8889z5MiRk4oKmAvdvvbaa7i4uBAdHb2yExYIFmFsbIyf//znPP/887i4uHDFFVdQWFiInZ0dPj4+xMTE4Ofnt2KL46mpKTo7O2lvb2dqaorAwEDS09Px8/NbVTExX0gMDg4yOjqKq6srvr6+REREKDvJ56qIOBV1dXUA5GQOf+Z9szOG+eBjf+rr688pYbEYkiQpYiMkJASYExumyMbQ0BBVVVVMTEzg4eGh9GBZDaGhUqlQq9Wo1WqSk5Pp7++nvb2d3bt34+zsTEhIyIqUnLazsyMqKorIyEj6+/upr69HrVZz9dVXs2fPHn7wgx+wbds2HnjgAe68806lIaNAIFjbWFVYGEueg9kxaw65OPbuqLIe+My7XXTRRdjY2ODt7c3NN9/MLbfcwlNPPcWHH37INddcs6ioaG5uxtPTExsbG6Kiovjb3/6Gp6en9Z+DQHCa9Pf388ILL/DSSy8REhLCHXfcwbp167CxsSEsLIzIyEhcXFxWZC6zs7N0dXXR0dHB0NAQfn5+xMTEEBgYuGrlOk8lJGJiYvDx8RG7nqeBwWBQ8iwKcgeV6+sbXfjl78IBuP3mFqVyVGHeIB987M++ffv4n//5n1Xvyr7WkCQJNzc33NzcFLExPT2tvFfnCw2TyFhpoaFSzSXc+/v7o9Pp6OnpoaOjg+rqary9vQkJCVn2JpmSJClCZ3JykqamJhwcHNi4cSOHDh3i97//Pd///ve59957ue+++/Dz81u2uQgEgqVj3ZXA7BjMjlp1yKXw/vvvK0na8/nlL3/JI488wmOPPcZTTz214LaIiAgaGhpWaooCwUlpa2vjRz/6Ea+++irJycl861vfIjk5GVtbW2JiYggPD18Ru5PBYKC3t5eOjg56e3txd3dHo9GQlZW1Kgt2k5AwLdCEkDAPWZYxGAwLumEbDAYqKioYHx/H3U1HSsLYCRWfAB5+IkmpHJWSMIa7m46xsTH27NlDcnIyNjY2C7p829jYiMjQPBwdHQkODiY4OBhYW0LDzs5OsUtNT0/T2dlJS0sLZWVl+Pv7o9Fo8Pf3X1YB6eLiQkpKCvHx8bS0tGBnZ0dWVhYVFRW8/fbbPP/889x22208+OCDig1NIBCsLawrLOxXKEl0iccJCQnho48+oqioCA8PDx566CErTUwgWDo1NTU888wzvPnmm+Tn5/P973+f6Oho7OzsiIuLIzQ0dNl3h2VZZnBwkI6ODrq6upRFR2Ji4opX/TEYDPT39yvdh891IWE0GpmZmVnQhdokEEwiYf7lxU4mJElSRMCOHTsAyM8eQju9sOJTdKAd5dIITl0u/Or3EVRUu3PP15rIyxrig4/9ef/999FqtcqxTcUGJUlaIDYWOx1/+/xO4w4ODqueo7OcmCM0fH198fPzW5HIkKOjI1FRUURFRTE+Pk5HRweVlZUcPXqUoKAgNBoNPj4+yyYa7ezsiImJITIyUsnDSElJob6+nnfeeYeYmBi2bt3KI488ckJRFoFAsLpYVVicjj1prRAdHc0HH3zApk2b8PDw4Pbbb1/tKQnOcUpKSvj+97/P9u3bOe+883jhhRcUr3N8fDxBQUHLvsgaHx+nra2Nzs5ODAYDwcHB5OXl4eXltaI7z9PT0/T29tLT00N/fz8ODg6o1eqzWkgYDIYFgmH+af71s7OzAMoC3N7eHjs7O2WBbmdnh5OT02kt5k2LVIPBwO9//3sA1H4z/L9HU+ib1+zu4ngHLtzzEH6ttgwfdmBfsQ9NLS58YfNcc8P29nY+//nPLxjvdEWOXq9namoKg8GATqdjdnZWec4wl3g8X2jM71Y+//qzwYp1KqFRXl7OzMwMfn5+SsnmlfgcuLm5kZCQQHx8PMPDw3R0dFBcXIyNjQ3BwcGEhoYuW/6DjY0NERERhIWF0dXVhZOTEzExMbS3t/Puu++SlpbGxRdfzKOPPkpWVtayzEEgEJjHOZG8fTJSU1PZvn07F1xwAW5ubgQGBq72lATnGLIs8/HHH/P973+fvXv3cvHFF/Pyyy/j5+eHu7s78fHx+Pv7L+ui3mg00t3dTUtLC0NDQwQGBpKamoparV6x3WJTVR1Tz4uRkRE8PT0JCAggISHhrKjYZDQalaZrpiZsU1NTimDQ6XRIknTCjr2zszPe3t4LFtbW3skvKytjfHwcgD+8FYJRlhY2uxvrJAGJfWFdPBeZxe//PUpvvyN/+Mtc7sDY2Bjl5eWkp6cDKDaopTA/MnO84BofH18gumRZxs7OTnndnJ2dFzQudHFxOSMjH/OFxvzPSGtrK6WlpcpnJCAgYNk/I5Ik4e3tjbe3N8nJyfT19dHR0cGOHTvw9vYmPDycwMDAZXmdTZWrgoOD6e3txdXVFY1Gw1VXXcX27dtZv349hYWFPProo2zatOmM/64QCM5kztoGeWsJ8ToJjsdoNPLuu+/y1FNPUVdXx2WXXcaFF16Iu7s73t7exMfHL6vVAGBycpKWlhba29uxtbUlLCyM0NBQHBwclu2Y8zGVvTRFJlZjN9bayLLM9PT0CR2cTSJCkiRlsWv6O19ErFbn7pdeeokPPvhAuZyfn89dd92Fi4sLsiyj1+l4/Q/Z/NJexZWuwdzrEsNLH/Szv2FKecwFF1zA3XffveJzN3XOni8+TK+56a8sy4rYOL5juqOj4xm5EF0sqmcSGStZ5nlmZoa2tjZaW1vR6/WEhoYSFha2rAUlTFbNmpoahoaGGBsb41//+hfvvvsusbGxPPbYY1x22WVnpJgUCM50hLBYAcTrJDBhNBp58803efLJJxkYGOCKK67gvPPOw9nZGX9/f+Li4pa1CpnRaKSnp4eWlhYGBwfx9/cnPDx8xcrUmhp19fT00NfXh62trbIY8vX1PWPsLHq9nrGxsRPEw+TkJAaDQdkln79r7urqipOTk9VeZ1mW0ev1TE9Pf6bV6LMsSX/+858ZHR1FpVKRm5tLQkLCCfN0an2Eb3vYYI+Kf4Wsx0Wy4Z9HxvjNriGMRhkPDw+uvfZas/IpFjs5Ojpia2tr1ddJq9Uu+D+Zzk9OTmJjY7NA6Jn+Z+7u7qtW6cxcTHlIps+WXq9Xqj2Z+tssN7Is09/fT0tLCz09Pfj5+REWFkZAQMCyLvBHRkaora2lt7eXqakp/vOf//D222/j6+vL448/ztatW4XAEAhWECEsVgDxOglkWeb999/nW9/6Fv39/VxzzTVs2rQJW1tbgoODiYuLW9ak6OnpaVpbW2lpaUGSJMLCwggLC1uR9+Pk5CTd3d309PQwNDSEu7u7IiY8PDzW/G6xTqdjdHRUaX42MjLCxMQEDg4OC3a+5y9Ol7KQkWWZ2dnZRfMtjr/OaDSiUqmws7OzeDFvY2PD2NgYf/zjH7nkkkuUvj2SJCn/G1mWGX/nK1wwNddk9EGvWK5xn7NB1c5E8G7pDNdffz3u7u6fKWJOdbtOp1Oe0/E5FIvlVdjb2y/p/WOypx0vOiYmJpiZmcHV1VXpom3qyr6SjSctQZZlRkZGFJExNjaGt7c3AQEBBAYGrkhpatP3TWtrK7IsEx4evuzfN+Pj49TV1dHZ2Yler2fHjh289dZb+Pn58YMf/ICLLrpozX/XCARnA0JYrADidTq32bdvH9/85jcpLy/n2muv5YILLsDW1pbw8HBiYmKWtRHV0NAQzc3NdHV14ePjQ2Rk5LLnbMCcPaKzs5OOjg5GRkYUi1NAQMCyN95aCiYRYRIQIyMjTE5O4ujouGCB6enpafFn2WAwLFjEarXaBaJhZmYGo9F4QoWkky2yrbm7f0p2Pc2W5j/TiREPyY4Pwj+PZJwFSYWU+ziSo9eSDzE/CnMyMTW/EpZKpVqQd+Lo6IiTk9MCsWdpFGx6elp5D5jeE9PT04rYML0P1rrYmJqaWmCZ8vT0VPIVltv2KMsyvb29NDU1MTg4SFBQEBEREXh7ey/bMbVaLfX19bS0tKDT6fjggw/485//TEpKCj/84Q/Jy8tbtmMLBAIhLFYE8Tqdm1RVVfHwww/z0UcfceWVV3LZZZfh7OxMaGgo8fHxy/ZeMBgMdHZ20tzczMTEBCEhIURERCx751q9Xq802Orr68PLy0tZwKx0d+HTQafTLVg0LiYiTAtHc/9XRqNRsd8cb5fSarXY2Ngoi18nJ6dFRcOas+FU/51tex5lu93cQv3d2KvwnznWoTuoCFXsVSs6nfkCZL74mP+6GwwGRWgcn1vh5ORkdmTJJDbmv2emp6dxcXE5QXiuRbExOzurCP7h4WHUajUajYaAgIBlf7+Nj4/T3NxMe3s7rq6uREREEBwcvGz2x+npaWpqamhra2Nqaop3332Xv//975x//vk8++yzJCQkLMtxBYJzHSEsVgDxOp1btLe3s23bNv70pz9xwQUX8MUvfhEvLy8CAgJISkpaNivC9PQ0TU1NtLa2Ym9vT0REBCEhIcu6wDH5qk39LpycnAgJCUGj0eDs7Lxsx7UErVardOceGBhgcnISJycnZSForogwJQ0fLxxM54FF8yxcXV1XLUl7SQzW87fXi3jGSw3AQ/7ZXO3sC8ZZkGyQch+zStTCWqzU/2d6enqB0BgdHUWr1eLi4qI0uvP19V1zkbrJyUk6Ojro6OhAq9Uq/SmWO99Kp9PR3t5Oc3Mzs7OzhIWFERkZuWy/jRMTE1RVVdHT08Pw8DB///vf+de//sX111/Pd7/7XaUrukAgsA5CWKwA4nU6NxgcHOTpp5/m5ZdfpqCggGuuuYbAwEClPONyJWVPTk7S0NBAW1sbfn5+REZGLuviQJZlRkdHlUUJgEajQaPRrKmcicWEhKenp7LY8/LyOm0riCzLTE1NnWCT0ul0Vt0RX9MYDTT80IetAXMLsY1Ofvww417o3Dl3e1AhqtirV3GCp89nRZTs7e1PEJzOzs6n/d6emZlheHhYee+NjIwoQsP0/lsrQmO1Ps+mTYmmpib6+/sJDQ0lOjp62TZeRkZGqKioYGhoiO7ubt566y327t3L3XffzSOPPIKPj8+yHFcgONcQwmIFEK/T2c3k5CQvvPACP/jBD0hISOC6664jKioKV1dXkpOT8fPzW5bjjo6OUl9fT3d3N0FBQcTExODuvrSu9KditXY4TxetVqss5BYTEj4+PqcVvTGJiPkCYnR0FL1ej7u7+4IFp5ub29qzLC0jxlfWcZ6jjnFkvFR2/Pvzr0DDX8Ewcyxq8SiS4/L551cCvV7P+Pj4gv/92NgYtra2C6xOnp6epy02dDodg4ODa15oLBaBNImM5Uz6Hhsbo76+nq6urmX/Luvv76eiooKJiQkaGxv54x//SG1tLd/61rf4xje+seYirQLBmYYQFiuAeJ3OTnQ6Hb/+9a/5zne+g7e3NzfeeCMpKSk4ODiQnJxMYGDgsiy4BwcHqa+vX5FdvsU82SEhIfj7+6/6gtoaQkKWZSYnJ0+wsphExPwda3d39zOmHO6y8febuW/wIHuO5Vn8JeNewlyDoe3DudsD81HFXbuKE1weDAYDY2NjC/IrTGLj+MiGi4vLZ37uzwShsRo5U8dHX2NjY5cl0VuWZbq7u6moqGBmZoaysjLeeOMNhoeHeeKJJ7j11lvXZI6MQHAmIITFPHbv3s0999xDaWmpVcc9216ncx2j0chf//pXvv3tb6PT6bjhhhvIzc3Fzs6OhIQEQkNDrW6BkWWZvr4+6uvrGR0dJTw8nKioqGV5P8myzPDwMC0tLXR2duLh4UFISAhBQUEr1jxvMQwGA4ODg3R3d9Pf32+RkDAYDAwPDysWqZGREYxG46KRiHNeRCzG3uf4TfGPeNnTF4DHg/K5fNOPkfc/CYbpuQpROY8iOZ39thKDwbAgsjEyMsL4+DgqlQpPT08lt8LLy+sz30smoWESyaOjo7i4uKBWq5WGd6v5fpyZmaGrq4v29nZGR0cJDg4mPDwcLy+vZdk8mZ6eprGxkZaWFjw8PIiJiUGtVlv9WEajkba2NqqqqtDr9Rw4cIA33ngDOzs7nn76aa666qqzy84oEKwAZ62wCA8Pp6+vD5VKhZubG9dccw3PPfcc0dHRvPHGGxQVFQHw7LPP8sorr/Dxxx8THh5+whgnu29LSwuf+9znlFB4eHg4Tz31FFu2bDlhLmv5dRKYx65du/jGN75BR0cH119/vdKLIjY2lqioKKv/+MuyTFdXF/X19Wi1WiIjI4mMjFyW3TSdTkdHRwctLS1MTU0REhJCeHj4stqrPouZmZkFDfXs7e2Vpl/mCAnTom1oaAg7OztlZ9jT0xN3d3exeDhdGj7g0F+v5I7ASAAudw3i8cv+hty5G1r/PXefgDxU8VtXcZKrh9FoVCIbJpGg0+nw9vZekNtzukLD9N7X6XQLGt6tpsAfGxujpaWF9vZ2nJ2dCQ8PR6PRLMt30uzsLM3NzTQ1NeHk5ERMTAxBQUFWFxh6vZ6mpibq6urQ6/V8/PHH/OlPf0Kj0fDCCy+wYcMGqx5PIDibOavNwR988AFFRUXU19ezYcMG4uPjF9x+KlFxPMfft6WlhcjISBoaGjAajfziF79g69atdHZ2LmuNbsHq0N3dzQMPPMA777zD1q1beeSRR3BwcCAqKoqYmBirWwMMBgMdHR3U19djNBqJjo4mNDR0WexHIyMjtLS00NHRgZubG5GRkQQHB6+K1UmWZSYmJujp6VGquHh4eBAQEEBcXBzu7u6nXFScSkgEBweTlpZ2WlYVwUlQJ5M0o8UGMABl0yMw0oCk2YjcsXMuatFzEDns80hOvqs82ZXHFK3w9PQkPDxcsdqZREZzc/NpCQ07Ozul70tqaipjY2P09PTQ1NTE0aNHlSpzAQEBy15G+njc3d1JTU0lMTGRzs5OWlpaqKysRKPREB4ebtUiFfb29sTFxREVFUVbWxuVlZVUV1cTExNDSEiI1TYETJtD4eHh1NfXo1KpWL9+Pdu3b+eiiy5iy5YtPPfccwQGBlrleALB2cxZLSxMxMTEsH79eiorK5XrFhMVO3bs4LbbbqOhoWHB4z9LgKhUKm6++WbuvvtumpqahLA4i9DpdPz0pz/lO9/5DtnZ2fz0pz/F19cXjUZDQkKC1X3Qer2elpYWGhsblR87jUZj9R31+b0uxsfH0Wg0FBUVLVvlqlNhNBoZGhpSxIRWq8XPz4+QkBCysrJO+RobDIYFu8PHC4nU1FRcXV2FkLAWboE4OnoRrzdQaWtDi36K4f4yvNXpELIJueVfgBG59QOk+OtXe7arjiRJSpUwk9CYmJhQhO/xQsMURZsvNCRJUrp+x8XFodVqlUhGTU0NTk5Oisjw9vZeseibra0tYWFhhIWFKZsTn3zyCW5ublbvUWFra0tkZCTh4eHKhktNTQ3R0dGEhYVZbRPE3t6epKQkIiMjqa6u5oorrqCwsJA33niDuLg4nnjiCe69916RfyEQnIJzQljU1taye/dunnzySd577z2ef/55jhw5clqRitO5r8Fg4LXXXsPFxYXo6GjrPwHBqrBz507uvPNOpqamePjhh0lNTcXNzY309HSrL8B1Oh1NTU00Njbi4uJCSkrKsiR/a7VampubV7TXxWLodDr6+vro6emht7cXlUqFv78/SUlJ+Pn5nXShMD+i0dfXJ4TESiNJoE4hbaKeSve5DZTyngNsTPoKaDZCx07Qa6GnBDn0fCTn5amIdqYiSRJubm64ubktEBqmnJ/5QsOUX3H8+9nJyYnw8HDCw8PR6/X09/fT09NDSUkJRqMRf39/AgICUKvVK/a59vT0JD09naSkJNrb26mvr6eyspKwsDAiIiKstgGjUqkIDQ0lJCSE7u5u6uvrqa2tJSoqiqioKKsJDCcnJzIzM4mMjOTo0aPcf//9lJaW8uKLL/LrX/+an//858IeJRCcBKsKixvfu5ZB7YA1h1wUHydfXr/0z595v4suuggbGxu8vb25+eabueWWW3jqqaf48MMPueaaaz5TVACnvG9zc7OyuxQVFcXf/va3VdnxFViXrq4uHnjgAf7xj39w/fXXc/HFF2Nvb09ycjKhoaFWXbQajUZaWlqora3FxcWFrKwsq5dvlWWZwcFBmpqa6O3tRa1Ws27duhUvE6vT6eju7qajo4OBgQFcXV0JCAggLy/vlEmgJ4toBAUFCSGxGqiTSe8/wh+PCYvSsVY2zIwiOXhAyGbk5u2AEbnlX0iJN67uXNc484VGRETEAqHR29v7mREJW1tbAgMDCQwMVIou9PT0UFtby6FDh5ToamBg4IqIDDs7OyIjI4mIiKC/v5/m5mY++ugj/P39iYyMxMfHxyqfVUmSCAoKIjAwkP7+fmpqamhublbsTNaK2nh6erJx40ba2tpQqVQ8//zzwh4lEHwGVhUWg9oB+qb6rDnkknj//feVxOv5/PKXv+SRRx7hscce46mnnjrlGKe6b0RExAm2KcGZi06n48UXX+SJJ54gJydHsT2FhoaSmJho1TwKWZbp6OigpqYGGxsb0tPTCQgIsOoC2WAw0N7eTlNTE9PT04SFhXHeeeetaJ12o9FIX18f7e3t9PT04ObmhkajUXIdToZOp6O3t1c5nW5EQ7AC+KeQdmhSuVg6MwIjDeC/DoI3QPtO0E9C32Hk0POQXINWb65nGMcLDXMiEpIk4e3tjbe3N4mJiUxOTtLd3U1TUxOlpaUEBgai0WhQq9XLbpeSJAm1Wo1arWZycpKWlhYOHjyIk5OTEiW1hk3KdBw/Pz96enqorq6msbGR+Ph4NBqN1URMWFgYgYGBVFVVcfnll1NQUMAbb7xBbGws3/3ud4U9SiCYh1V/nX1WKFlvqccJCQnho48+oqioCA8PDx566CGr3Fdw5rJjxw7uuusutFrtAttTRkYGHh4eVjuOqWxsVVUVOp2O+Ph4QkJCrCoodDodra2tNDQ0YG9vT1RU1IomY5t2Ttvb2+ns7MTW1haNRsPGjRtPWWFqcnJSiUoMDg7i5uaGv7//Z0Y0BCuMOgUfowGNwUCHjQ3VM+PMDFbj6L8OydYRwj6P3PgOICM3b0dKuW21Z3zGcrKIRF1dHYcOHcLHx0eJZhwv1E3W3OjoaMbGxujo6KCsrAyDwUBQUBAhISEr8rlycXEhKSmJuLg4Ojs7aWxsXJAfYY0FuSRJBAYGEhAQQFtbG9XV1TQ0NJCYmGi1MrX29vakp6cTHh7O0aNH+X//7/9RVlbGiy++yKuvvsrPf/5zNm7cuOTjCARnOlZdaZyOPWmtEB0dzQcffMCmTZvw8PDg9ttvt8p9BWcWJtvTu+++y3XXXbestqehoSGqqqoYGxsjNjaWiIgIq5annZmZoampiebmZlxdXUlLS7N6FORUjI+PK525dTodwcHB5Obm4u3tvegc5i+Uenp6mJiYwNfXl8DAQDIyMkQH3LWKOgmANO04Ha6ezGKkpucAaQlfnvs/BxVC+w6YHYXBCuSxFiT38NWc8VnBYhEJU45SZWWlYi0MCAg4QTC4u7uTmJhIQkICQ0NDtLe3s3//fuzs7JTO2stdXcqU7B0aGkpPTw/19fXU1dURERFBZGSkVUromqILGo2G5uZmDh06pDx3axVVOd4e9eMf/5jt27dz8cUXc/nll/Pcc88RFCSidIJzl3PaT5Camsr27du54IILcHNzO6VX0pz7CtY+Op2On/zkJ3z3u99VbE8+Pj6EhYWRmJho1bD2+Pg4VVVV9Pf3ExUVpTTTsxZarZaGhgZaW1vx9vYmOzsbX1/fFREU09PTdHZ20t7ezvj4OAEBASQnJ6NWqxcVTaZ8j46ODnp6ehRrR1xc3IommwqWgKMHeISSNj3OP109ASgd7yBNOwDOfkg29hB+AXLdWwDITf9ESr97FSd8duLi4qIkLc8vhrB//35UKhUBAQFoNJoFeQ2SJCnNJFNSUhSb4o4dO3BzcyMkJITg4OBl7bc0P7owMDBAfX09H374IWFhYURHR1sl0dvGxkaJiDQ0NLB3717UajUJCQlWEVAmARMUFERlZSWXXXYZ+fn5C6pHff3rXxffZ4JzkrO2Qd5aQrxOa4sdO3Zw5513Mj09zW233bZstietVktNTQ0dHR2EhoYSFxdn1f//+Pg4DQ0NdHR04O/vT0xMDF5eXlYb/2Qcn4Tt4+ODRqMhKCjopD+kJitGR0eHYsUIDg5e0fKYAivyh0tpbPmIazUxAGxw8uW5wqeQggsBkI0G5IPPwPRcMQ8p7S4kr9hVm+65hKnYQWdn5wIrokajOakVUafT0dXVRUdHB4ODg/j6+hISEkJAQMCKLI6Hh4epr6+nt7cXjUZDdHS0VSMo09PT1NbW0tbWhkajIT4+3qqlwkdHRzly5Ajj4+OUlZXxq1/9CmdnZ15++WU2bdpkteMIBGcCQlisAOJ1WhsMDQ3x9a9/nbfffnuB7SklJcWqeQ6zs7PU19fT3NxMQEAA8fHxuLq6WmVsmGtoV1dXt2w/woshy7JSq76zsxMXFxdlsXKyH2itVqtEMyYmJlY0eVSwzHz4MMY9P+D8sERGVSrcVbZ8kH4vtim3KHeRew8hV78+d8EtFCnz/4k8mRXmZMUTgoODT/m5NW0CTE5OEhwcrDS+W+7/3/zNkoCAAGJiYqxaaXFiYoKamhp6enqIiIiwanNTWZZpa2ujoqKC2dlZtm/fzh//+Ee++MUv8uKLL67Ipo9AsBYQwmIFEK/T6vPuu+/yta99jfDwcG6//XZ8fX2tbnvS6/U0NTVRX1+Pl5cXiYmJVvtRNFmI6urqGBoasqpt4FTodDqlu+7k5KTSXfdkkZ3Fdj5XstylYIUo+wP83w08qA5lh8vcLvifNBuJ/tyLSNKcaJRlI3LJD2GyGwAp6RYkv9RVm/K5jiWRxtHRUVpaWmhvb1ea/Gk0mmUvBDE1NUVjY6Ni74yNjbVaqVqY25ypqqpieHiYmJgYIiMjrfacdDodVVVVtLa2MjAwwC9/+UtaWlp49dVXufTSS61yDIFgLSOExQogXqfVY3h4mHvvvZd//OMf3HbbbWzatAlXV1fWrVtnNduTLMt0dnZSWVmJo6MjiYmJ+PlZpzGYLMtKouPExIRVEx1PhTkLCqPRSG9vr5I3cTq7ooIznJ4y+EUaf3D34cc+c/lmD3nHcs3GHyO5hyp3kwcqkCtenbvgHICU/U1FeAhWD1M0saOjQ8mN0mg0+Pv7LxpNNHeDwVocX5AiJibGqgUp+vv7qaqqYnp6muTkZIKCgqw29ujoKIcOHWJiYoKPP/6YV199lSuuuEJELwRnPUJYrADidVod3nvvPW677bYFUYq4uDhiYmKsZsUZGxujvLyc8fFxkpKSrFY7XZZlent7qa6uZmZmxqqlGU+GwWCgq6uL5uZmxsbGFAvEYj+CsiwzNDRER0fHafu4BWcR+hl42pVqW1tuDI4G4PPOap7JeRgp7HzlbrIsIx/5CYy1ACDF34AUkLUaMxachPn5T3q9nuDgYDQazaLV3I63RLq7uxMREUFQUJBVK9wdj06no6WlhcbGRhwcHEhISMDf399q37UdHR1UVlbi5uZGSkqK1b7DjEaj0h18YGCAV155hba2Nl599VUuueQSqxxDIFhrWEVYhIeHi53JU6DVamlpaRHCYoUYHh5Wciluu+02Nm/ejKurK1lZWVb7wdDpdNTV1dHU1ERERARxcXFWW/QPDg5SVVXFxMSE0kl2OX+0Te/P1tZW7OzslAZWiz2fmZkZ2traaG1tZXZ29pSLEMFZzsup6PvKOS8skUmVCh8be7YnfRWbjHsW3E0erkcu/dncBUcfpJxHkFTndEHCNcnxmwX29vaEh4cTEhKyaIRUp9PR3t5Oc3MzOp2OsLCwZV8LGAwGWlpaqKurw9XVlcTERHx8fKwytk6no6amhpaWFiIjI4mNjbXad/rY2BglJSULohdXXnklL774olVzSASCtcCShIVOp6OhoYGgoKBlD4meyYyOjtLV1UV0dLTwmS8z//znP7ntttsIDQ3l9ttvx8/Pj9jYWGJjY60SpZhve3JxcSE1NdVqYmVsbIzq6mr6+/uJjo4mKipq2d4vppyN5uZmenp6UKvVRERE4Ofnt+gu5eDgIC0tLXR3d+Pt7U14eDgBAQHLKngEa5z/uxHK3uDr/mHsdZ4rHvDX4ELCNr84V3J2HsbSn8NwLQBSzJeQgtev+HQFp4/BYKCnp4eWlhaGhoYICgoiPDz8pFGM/v5+mpub6evrIyAggMjIyGXdbNDpdDQ2NtLQ0ICfnx8JCQlW/R4uKytjcnKSpKQkgoODrfI8jEYjdXV11NXV0d/fzyuvvEJ7ezu//vWvufjii60wc4FgbbAkYWGqgqDT6QgKChKVXhbBaDTS1dWFnZ2d1RuuCT5lZGSE++67j7/97W/cdtttfO5zn8PFxYXs7Gyr/uAsh+1pamqKmpoaOjs7CQ8PJzY2dtlyKAwGAx0dHTQ1NaHVapVdxuO79sJcdav29nZaWlqYmZkhNDSUsLCwZa9AJThD2PMj+PAhXvPw5WfeAQA86p3AFYXfRfJOWHBXeawN+fDzcxfsXJFyH5vr0i1Y84yPj9Pa2kpbWxsODg5KFGOxakqTk5NK9NPJyYnIyEg0Gs2ybUDMzMxQW1tLa2srwcHBxMfHW6Wx5nLao0ZHRykpKWFycpL//ve/vPrqq3zpS1/iJz/5iYheCM4KliQsYG7x0dzcjNFotNaczjpUKhURERFWK2snWMj27du59dZbCQkJ4fbbb0etVls1SqHT6aitrVXyZKxle5qZmaGuro6WlhaCgoKIj49fdIFvDXQ6Ha2trTQ0NGBvb09UVBTBwcGLJmOPjIzQ3NxMZ2cnHh4ehIeHL7uHWnAG0vghvP4Fjjo4c1tQJAAXuwTwRMY9qKK2nHB3Y+Vvof/o3IWwC1BFXLRycxUsGYPBQGdnJ62trYyOjhIcHExkZOSibgW9Xk9nZyeNjY3Mzs4ue47Y5OQkNTU1dHd3Ex4eTkxMjFU2Z+Z/91vTHjU/etHX18cvf/lLOjo6+PWvf81FF4nPheDMZsnCAuY+JLOzs9aYz1mJvb29iOYsA/OjFLfeeivnnXceLi4uZGVlWcWat1y2J71er4TxfXx8SEhIWDYr4elWVTFF1pqbmxkdHSUkJGRFqr4IzmAm+uBH/swisTkiiRkg0MaRd+KuRpX9zRPuLk/1Ixc/A7IRVPZIuY8iOYj315nI6Ogozc3NdHR04OHhQWRkJIGBgSf8zh1f1S4yMpLIyMhl22QbHR2lqqqKoaEhxU5qjTKyy2WPWix6cfXVV/PjH/9YRC8EZyxWERYCwUrz/vvvc+utt6LRaJYlSjHf9pScnGyVHxKj0agkHjo7O5OYmIivr++S57oYWq2WhoYGpQ58TEwMvr6+JzyH6elpWlpaaGlpwdbWVkncFtE1wWnxo0CY6OGOoBgOHdsh/kdwIYEbfohkf6Jlzlj/N+jcPXchsABV3DUrOVuBlZmdnaWtrY3m5mYMBgMRERGEhYWdUKRElmUGBgaor69fkT48AwMDVFVVMTU1pRTAWOrvwnLZo46PXrzyyit0dnbym9/8hgsvvHDJ4wsEK40QFoIzirGxMb7xjW/w1ltvLUuUYjlsT6bIR3V1NSqVisTERKvWYp/PxMQE9fX1dHR04O/vT0xMzKLlYkdGRmhoaKC7uxtfX18iIyNRq9UiB0hgHq9fCI3/5hVPNb/yUgPwPZ8kLsp+CMl/3Ql3l2fHkQ88BYYZQIWU8y0kZ/8VnrTA2pjKYzc3NzMwMEBQUBBRUVGL7roPDw9TX19Pb28vGo2GmJgYXF1dl2VOPT09VFVVYTQaSUhIsMoG0XJZY+dHL/7zn//w61//mmuuuYYXXnhBlPAWnFEIYSE4Yzh8+DBXXXUVXl5e3HnnnajVamJiYoiLi7NKlKKrq4uysjJcXV2tZnvq7++nsrKS2dlZ4uLili2Bf2RkhPr6enp6etBoNERHR5+QZH189+7Q0FAiIyOX5UddcI7w4bdgz/9S7OjCnYERAFzpGsQjSTejir9u0YfILR8gt2yfu+Cbiir5lpWarWAFmJiYoKmpiba2Nnx8fIiJiVm0a/b4+Dj19fV0dnYSEBBATEzMsth/jEYj7e3t1NTU4ODgQFJSklUamJrsURMTE6SmphIUFGSVudbW1lJfX09fXx8vv/wyo6Oj/OUvfyEzM3PJ4wsEK4EQFoI1jyzLvPjiizzyyCNce+21XHHFFUrFJ2tEKWZmZigrK6O/v5+UlBSrVHvSarVUVFTQ19dHbGwskZGRVk9+Pl4ohIWFERUVdUJVFNNuYl1d3Yp27xacA5T9Ef7vy0xLEhvDkzEgE27rzFuRFyHlfWfRz5FsmEE+8H2YHQNAyrgPySNipWcuWGZM+V1NTU24ubkRGxu7aFO7qakpGhsbaW1tPaUQWSoGg4Gmpibq6urw9/cnKSlpyVYskz2qvLwcPz8/UlNTrfK9Ojo6SnFxMRMTE7z99tu89dZbPPvss9x7770iqixY8whhIVjTDA0N8dWvfpX9+/dz//33k5CQQFhYGMnJyVZZqHd1dVFaWoqPjw+pqalLbmBoNBppbGyktraWwMBAkpKSrN4U8XSFgtFopLOzk/r6emZnZ4mKiiI8PFz0UhFYj75KeDkZgFuisikzagH4l2Y9PvnfOanNSe7ai1z31twF9wikjK+LBdNZyvyu2fb29sTGxi5anv50hchSmZ6eprKyku7ubuLi4oiKilpyxHt6eprS0lKGhoZIS0uzSvTCYDBQUVFBa2srVVVVPP/88+Tn5/Pb3/52UXurQLBWEMJCsGbZt28f11xzDRqNhrvvvhtPT08yMzOt8qU9MzNDeXk5fX19pKamWsV729/fT1lZGZIkkZqauiyJ2X19fVRVVTE9PX1SoWAwGGhra6OhoQGA6OhoQkNDRblYgfUx6OFpVzDM8NOgBH7nMPcee9Y3hfPS7kDSbFz0YbLRgFzyA5jqA0BKugXJL3XFpi1YeU73e2m+EHF0dCQxMRG1Wm31+QwMDFBWVoYsy6Smpi7ZHmXKpSsrK0OtVpOSkmKV6EVXVxeHDx9mZGSEl156ia6uLt566y3y8vKWPLZAsBwIYSFYcxiNRn74wx/yxBNP8JWvfIVLLrkENzc3cnNzrdL8yJRL4eXlRVpa2pIjCvNtT/Hx8URERFi9vPDw8DBVVVWMjo4SExOzqLVq/g+yg4MDMTExonGlYPl5ZR10H+YTZ3e+4R8KwLVuGh6IvhJV6u0nfZjcX4Zc+Zu5C85qpKxvIamE+D3bMZW2rqurO2Uk1WRdqq+vx9PTk4SEBKvv1BuNRpqbm6mpqUGtVpOcnLxke5QpejE8PGy13IupqSkOHDjA+Pg47733Hq+//jpPPPEEDz30kPh+F6w5hLAQrCn6+vq44YYbqKio4P7771fyExITE5f8BTo7O0tZWZnVohQrYXuamJigurqa3t5eIiMjiY6OPqEU7PxeFW5ubsTExCyLhUAgWJS3b4GjrzEhqdgcnoSMTIydK3/QFCEVPo1ks7j1TpZl5CMvwlgzAFLs1UhBhSs5c8EqcrqWztnZWerr62lubsbf35+EhASrF5ywtj1qfu6FWq0mNTV1ySW8jUYjlZWVNDc3U1dXx/PPP09KSgpvvPGGVZLRBQJrIYSFYM2wY8cOtm7dSlxcHHfccQceHh5kZWXh77/0cpTWjlL09fVRXl6OSqUiJSXF6rYnrVZLbW0t7e3thISEEBcXd8JOmlarpb6+/jOrrwgEy8r+n8C/vgHAlxM2UzvdjwR8qNmAR8bXkbzjTvpQebQZ+chP5i7YuSLlPoZka11xLljbmIpQ1NfXMzg4eNIeF/O/E0NDQ4mNjbV6Hwxr26PmRy/S0tIIDAxc8hx7e3spKSlhdHSUV155hbq6Ot588002blzcdigQrDRCWAhWHYPBwJNPPskPfvADbr31Vr7whS/g6elJdnb2kn84ZmdnKS8vp7e31yoVn5bb9qTT6aivr6epqQl/f3/i4+NPKBt7/A7ecpVpFAhOi+Yd8LvNADyXcAF/mu4E4Id+qWyMvQZV9JZTPtxY+Rr0l85dCP08qshLl3O2gjWMqWx2b28vERERxMTEnLDTPz4+Tk1NjRLFjYmJsWpBCmvbo+ZHL/z9/UlJSVly9EKr1XLw4EFGR0f54IMP+PWvf83DDz/MY489JnLpBKuOEBaCVaWrq4vrr7+epqYmHnjgAeXHJD4+fsk7793d3ZSWllolSrHctqf5fmIPDw8SExNP8BPr9XrlPt7e3iQkJAhBIVh9tMPwA28Adobm8oDNJABb3UK4X7MBVc7Dp3y4rB1APvgMyAaQbJFyv43k6L3s0xasXUZGRqiqqmJ4eFjJKbO1tV1wn9PJO1sK1rZHWTt6Mb/nRVNTE88//zyRkZH86U9/skpkRCCwFCEsBKvGv//9b7785S+TkZHB1772NVxdXcnOzl5y+NnaUQpTtSeVSkVqaio+Pj5Lmt98jm/elJiYiJ+f34L5Go1GWltbqa2txcnJSbmPQLBmeD4UxtoZd/TgvKAwjLKRaDtX/hiUi5T3BJKj5ykfbmx8B9o/nrugzkSV+JXln7NgzdPf309VVRVarZb4+HhCQ0MXLO5lWVbuMzMzQ3x8PCEhIVaNIg8MDFBeXo7RaFyyPUqWZdrb26moqLBa9KK/v5/i4mLGx8d59dVXOXLkCH/4wx+44IILljSuQGApQlgIVhydTsdjjz3GSy+9xO23387mzZvx9vYmOzt7yeX5enp6OHr0KJ6enqSlpS0phK3T6aiqqqK9vZ2EhASr2p5kWaa7u5vq6mpkWSYhIYGgoKAFgkKWZbq6uqiurkaSJBISEggMDBQ5FIK1xx8vg7r3ALgx/QqqR+dKin6gWY9X4leQAk9dGlPWTSEf/D7o5qIdUsY3kDzCl3XKgjMD03dlVVUVwEm/Kzs7O6mpqVmW70qTPaq6upqQkBASExOXZL/SarWUlpYyMjJCeno6AQEBS5rfzMwMxcXFDA0N8fHHH/PKK6/w9a9/nSeffFL0LRKsOEJYCFaUgYEBvvSlL9He3s4DDzxASEgI8fHxxMTELLlCU1VVFa2traSkpBASErLkKMWRI0dwcXEhPT0dFxcXi8c6ntHRUcrKypicnCQuLo6wsLATBIupX8Vy7cIJBFblP4/B7u8D8JP8O3i9Zw8Az/gmc174F1AlffUzh5A7P0Gu/+vcBffwuY7cQkQLjmE0Gmlra6O2tlbpb3F89GB+dNfFxYXU1FQ8PDysNofJyUmOHDmCVqslPT3dKtGL8vJywsLCllz5UJZl6urqqK2tpa2tjeeee47Q0FD+9re/LUtPJYHgZAhhIVgxysvLufTSSwkLC+Puu+/G3d2d3NxcvL2X5qeenJykpKQEWZbJyspaUilCvV5PZWUl7e3tJCYmEhERYbXFjU6no6amhpaWFiIjI4mLizvBN2zyFo+MjCyLb1ggWBYq/wJ/uQaAT3Ju5xv9ewG4yjWYb/pnIBU89Zk9Kuaa5v0vTPUCICXehKTOWN55C8449Ho9zc3NSn+LxMTEE3LN9Ho9tbW1NDU1ER4eTnx8vNV27mVZprm5maqqKkJCQkhKSjrhe9wcJiYmKCkpQZIksrKylryJNTg4yMGDBxkbG+Oll16ivb2d9957j+Tk5CWNKxCcLkJYCFaEt99+mxtvvJErrriCq666Ci8vL3Jzc5dsferq6uLIkSPKF/xSFuH9/f0cPXoUJycnMjIyrBalMO1MVVVV4e7uTkpKygmVnub3qzhZNRSBYM0yWA8/jQVgMvYyPqdvwyAbiLBz5s9B+XPRB4+IzxxGHqxCLv/l3AVHb6TsR07aB0NwbnM6/S3Gx8cpKytjfHycxMTEJUey5zM/epGRkbGkqIDBYFA2tDIyMpbcVG9mZoYDBw4wPDzMX/7yF9555x3eeOMNtmw5dYU2gcAaCGEhWFZkWeapp57i2Wef5b777iM/P5+QkBBSU1OXFPY1GAxUVFTQ2dlJenr6kr6IlzNKYbI9TU1NkZKScoLvd3p6Wgldn6xfhUCw5jEa4VlPmB0H9xC+Gr+e8v4yALZrivCNvAxVxMWfOYwsy8hlv4DhWgCkyMuQQs9bzpkLznCO728RFxe3oGKfKVetoqICZ2dnq9qj5kcvQkNDSUxMXFL0oquri6NHjxIcHExycvKSNsqMRiNlZWW0t7ezd+9eXnzxRR555BEeffRRYTEULCtCWAiWjampKW666SZ2797NI488QkREBCkpKUREfPbO5akYHx+npKQEGxsbsrKycHZ2tnisgYEBjhw5YvUohU6no7q6mra2NiIjI4mNjV3wgzO/Vrqfnx8JCQknRDEEgjOK32yAtt0A/OzCp3mt9o8APOmbxAUBOajW3X9aw8gTXcglPwRksHFEyn0UyV58NgSnZnx8nOrqavr7+xftMWSyRzU3NxMWFmZVe5Q1oxcma6/RaCQrK2vJvwvNzc2Ul5fT1NTEs88+y8aNG3nttdeW9LspEJwKISwEy0J7ezuXXXYZRqORBx98EB8fH3Jzc5ecRNbe3k5paSkREREkJCRYHPXQ6/VUVVXR1tZGQkICkZGRVtnFOR3b0+DgIGVlZRiNRlJSUlCr1Us+rkCw6rz/DTgw10V7/6U/5Z7KVwC4wjWIb/skIhU8iWR/evlPxto/Q/e+uQtBBahir1mOGQvOQvr6+igvLz9pefDx8XHKy8sZGxuzqj1KlmWampqorq5ecvTCaDRSXV1Nc3MzaWlphISELGluAwMDHDhwgMHBQX70ox9hY2PDP/7xjyWPKxAshhAWAquzd+9etmzZQk5ODrfeeivu7u4UFBQsaYdEr9dTVlZGb28vmZmZ+Pv7WzzW/ChFenr6kpK953M6tidrNlwSCNYUR38Hb98MwPTnvs+m1r+gN+oJsXXib8EFSAlfQfLPPK2h5Nlx5ANPgWEGkJCyHkRyDV6+uQvOKj6roamphG15ebnV7VETExMcOXKE6enpJUcvenp6OHLkCAEBAaSkpCzJZjU5Ocm+ffsYGxvj1VdfpaSkhLfffpuCggKLxxQIFkMIC4FV+c1vfsM999zDzTffzIUXXoharSYrK2tJX4hjY2MUFxfj4ODAunXrLM5BWK4ohTm2J7VaTXJyssijEJx99JbDz1Pnziddy9dcHTjSdxiAd4ML8Q9ejyrhy6c9nNz2EXLTXG8MPKKQ0u8R3nCBWWi1WioqKujr6zupPaquro6mpiZCQ0NJSEiwij3KmtELrVbLoUOHmJmZITs7G3d3d4vnpdPpKCkpob+/n3/961/89re/5Wc/+xlf/epnl4MWCE4XISwEVkGv1/Pggw/y2muv8dBDD5GamkpMTAzx8fEWLwZkWaa1tZWKigqio6OJjY21eId/aGiIQ4cO4ejoSEZGhlWiFCbbU2VlJR4eHovanuZ3bRW2J8FZjUEHT7vNRRl8Ynll/df5VekvAPiOTyKXeMch5X/3tL8PZKMeufhZ0A4AICXejKROX67ZC85i5tujUlJSTogiLJc9yhS9mJmZITMz0+LS6kajkdraWhobG0lOTiYsLGxJv6vV1dU0NDRQXl7O//7v/3LLLbfwwx/+cEkbgAKBCSEsBEtmeHiYq6++msbGRh5++GGCgoLIzMwkONhy64JOp6O0tJSBgQHWrVtncSMiWZZpaGigtraW+Ph4oqKirPKDMTU1xdGjRxkfHxe2J4HAxC9zoKsYgJJbPuZ/Pr4XgEtdAtnmm4i07kEkN81pDycPVCBXvDp3wcELKecRJBtRhllgPubYo9zc3EhPT7dKgrMsyzQ2NlJTU0NcXBzR0dEW/wb19/dz6NAhfH19SUtLW1J0paOjgyNHjtDV1cWzzz5LdHQ0b731Fl5eXhaPKRCAEBaCJVJdXc2ll16Kv78/X//61/Hw8CA/P/+EhkXmMDo6SnFxMc7OzmRmZi748jeHmZkZDh8+zMTEBFlZWVb5wjRFUSorKwkKCiI5OXnBl7uwPQnOad79Hzg0l7Q985X/8Lm932TGMEOgjSPvaAqRIi5BCjv/tIebKz/7CgzXACCFX4gUfuGyTF1wbvBZ9iidTkdFRQVdXV0kJSUtKTown+HhYUpKSnB1dSUzM9PiHk7T09McPnyYqakpsrOzl5QbMjIywr59+xgdHeUnP/kJ/f39vPfee8THx1s8pkAghIXAYrZv3851113HxRdfzNatW/Hw8CAvL89iIQBzdbwPHz5MTEwMsbGxFn+hDwwMUFJSgo+PD+np6Vbxzc6PUqSnp5+QQD4wMEBZWRmyLJOammpxlEUgOGMpeQXe+5+58xf+hDtHyyjuOQDA34MKCPZJRJV5n1lDypO9yCU/ANkIKjuknG8jOYpdVcHSMNmjJEkiNTX1BHtUb28vR48etWr0QqfTcfToUYaGhli3bp3Fid2yLFNXV0dDQ8OSG+pNT0+zf/9+RkZGePPNN3n//fd58803ueiiiyweU3BuI4SFwCJ+8YtfcP/993PPPfewfv16goKCSE9Pt7ihz/wvyszMTAIDAy0ep7a2loaGhiV7UeePeaooxczMDBUVFcL2JBB0FsOvcubOp93Eq5H5/OLoSwA86p3AFrdgpMKnkOzM6xdjbPg7dOycu+CXjirpZitOWnCucrw9KiUlBXv7T61286MXycnJhIaGWuX3pKWlhcrKSqKjo4mLi7N4zK6uLo4cOaLkIFo6jsFg4OjRo3R1dbF7925eeuklfvzjH3PHHXdYNJ7g3EZk6gjMQpZlvve97/Hcc8+xbds2EhMTSUxMXFKFJb1ez5EjRxgZGWH9+vUWV73QarUcPnyY6elp1q9fb5XygVqtlqNHjzI2NkZWVtYJUYquri7Kysrw8vLivPPOE7YnwbmNOgUkG5AN0HOErML74OjcTYdmhtniFgRDNeC/zqxhpbALkHsPgW4C+o8ijzQgeUZbf/6CcwqVSkVMTAwajYaysjL++9//kpqaqkQA7OzslIiAaeGdnp6+pO95SZKIiIjA29ub4uJiBgcHyczMtGjMoKAgXF1dOXDgAGNjY2RkZFiUgG1jY0NmZiaenp7Isoy3tzcPPfQQPT09bNu2TVRjE5iFiFgIThuDwcA999zDX//6V7Zt20Z4eDjZ2dkEBARYPObU1BQHDhzAzs6O7Oxsi32nfX19HDp0CLVaTVpa2pKrW8iyTFtbGxUVFYtGKWZnZykrK6Ovr4+UlBQ0Go348hUIAF5Ohb5ykGzQfWuYzX87j2m9Fj8bB94LLkTyz0KVeKPZw8pd+5Dr/jx3wSVorreFJCKDAusgyzIdHR2Ul5fj7++/ItELvV5PaWkpfX19rFu3zuKqgTMzMxQXF6PX68nJyVmSbaunp4fi4mKam5t58sknufrqq/npT39qsRtBcO4hhIXgtJienub666/n0KFDPPbYYwQGBlJQUGBx+TyY60B98OBBgoKCSElJscg+NL9DaWpqKqGhoRbPx8T8KMViuRTd3d2Ulpbi5eVFWlraknJKBIKzjr/fBKW/nzv/tWLurXqVfV17APhLUD5hTn5IhU+aLQpk2Yh86HmY6ABAirkaKbjQqlMXCKanpyktLWV4eJi0tLQTbLmm3At3d/clRy/g07LlZWVlREZGEh8fb/FvYXl5OV1dXeTk5JzQcdwcBgcH2bdvH93d3Tz11FNkZWXxhz/8QfzWCU4LISwEn8no6CiXX345/f39fPvb38bHx4fCwsIlNeppbW2lvLycpKQkIiIiLBpjamqKkpISDAYDWVlZJ/SQMJf5UQqT3/b4KEV5eTm9vb0iSiEQnIz9P4F/fWPu/KWv8FsHG146/AIA3/KO40tuGqSM+5A8zP/cy6NNyEdenLtg64KU+yiS3dKTagWC+XxW9GJ2dlbJq7NW9GJ8fJzi4mLs7OxYt26dxVGH5uZmKisrSUlJISwszOL5jI2NsWfPHgYHB/n+97+PWq3mH//4h9U6lAvOXoSwEJyS7u5uLrjgApycnHjggQfw8vKiqKjI4l0ao9FIRUUFnZ2dZGVlWVw5qbu7myNHjhAcHExycvKSw7TzoxRpaWkn2LtElEIgOE1adsFvN86dz/ofKnLv4ubt1wNwnrOaZ/xSIPR8VJGXWDS8sep16Ds0dyF4PaqYL1lj1gLBCWi1WkpLSxkZGVk0etHT08PRo0fx8PCwSvTCYDAoUYeMjAyLi5j09/dTUlKCRqMhKSnJ4mIiU1NT7Nmzh+HhYX70ox8xMzPDv//97yXZnwVnP0JYCE5KfX09559/PjExMdx11114eXlRUFCwYOfGHGZnZykuLmZmZobc3FxcXMyrDANzX7xVVVW0tbWRnp6+pCZ8Jjo6OigtLSUwMJDk5OQTdqZElEIgMIPpMXj22K5mcA6GW/dy3pvrmdCN466y5QPNBlRuGlRZD1k0vDw9gnzwaTDOAqq5XAtXy8ttCgSnwmRVqqio+MzoRVpaGhrN6TeAPBmm36TQ0FASExMt2jibnJzkwIEDODo6kpWVtaTf7T179jAyMsLPfvYzGhoa+Oijj4iOFsUTBIsjhIVgUUpKSrjwwgvZvHkzN9xwA35+fuTk5FicFD02NsbBgwdxc3MjMzPTor4S09PTHDx4EKPRSHZ2tkXCZD56vZ7y8nK6u7sX3R0y7UZ5enqSlpYmKj4JBKfLizEw1AC2jvDIOA/tepCP2/4DwO8Dsol3cEfKfwLJwdOi4eXWD5Gb/zl3wSMSKf1eIfgFy8r86EV6evqiUe0jR44oNtqlFhCZmJigpKQElUpFTk6ORVFynU7H4cOHGR8fJycnx2L7sl6v5+DBg/T39/P666+zY8cO/v3vf7NunXnV3QTnBqKkhuAEPvzwQzZv3syVV17JV77yFYKDg8nLy7P4i7Knp4fdu3cTHBxMTk6ORaJieHiYnTt34uLiwvr165csKsbGxti1axcTExNs3rx5gaiYnZ3l0KFDHD58mMTERHJzc4WoEAjMITBz7q9+GgZqyAnMU246MD00d2aw2vLxQzaD0zEb5WgT9BZbPpZAcBo4OTmRm5tLYmIihw8f5vDhw8zOziq3BwYGsnnzZiYmJti1axdjY2NLOp6rq6vyW7dz506Gh4fNHsPOzo6cnByCg4PZvXs3PT09Fs3F1taWvLw8goODuemmm7jiiivYtGkTH330kUXjCc5uhLAQLODNN99ky5Yt3HHHHVx++eVERESwbt06izyasixTX19PSUkJ6enpJCQkWLSr2NHRwZ49e4iKiiIzM3NJ+RSmZne7du0iMDCQwsLCBaKhp6eH//73v+h0OjZv3myVpDyB4JzDJCwAug+TG5SvXCyenlsgyUNVFg8vqWyR5uVWyI3/QNZNWTyeQHA6SJJEaGgomzdvZnZ2lo8//njBYt3JyYnCwkICAgLYtWsXra2tLMUUYuovERUVxZ49e+jo6LBozgkJCaSnp1NSUkJ9fb1Fc1KpVKxbt46IiIgFa4Q333zT7LEEZzeiQZ5A4YUXXuDRRx/lW9/6FhkZGSQkJFjsozQajUp97qKiIjw9Pc0eQ5ZlpZRsdnb2CWVfzUWn01FWVkZ/fz85OTkLaoYbDAYqKytpb28nJSWFkJAQISgEAksJyPj0fM8RQtJuJMAlkJ7Jbo7OjDBtNOA4VIts1COpLPsZkrzjkf3SoL8UdBPIzduRYq+y0hMQCE6OKXrR3t7OoUOHFuRCqFQqEhMT8fX15fDhwwwMDJCammpRpB7mhEF0dDRubm6UlJQwNjZm0SZdcHAwLi4uHDhwgImJCdLS0szeMJQkieTkZBwdHZFlGVdXV2699VZ6e3u57777zBpLcPYiciwEyLLMI488wi9+8QseffRR4uLiyMjIICQkxKLx9Ho9hw4dYnJykvz8fItsRDqdjkOHDjExMUFubu6SS8mOjIxQUlKCk5MT69atW+BXNXlZJUkiKytryTYrgeCcZ7IffnhMuIdtgK/u5Ht7tvGPhr8D8JI6gxwnb6TUO5G84yw+zMJEbglp3f1IbpZ9bwkEljA5OUlx8ZwVLysrC1dXV+W26elpDh06hFarJTs7e8mlWsfHxzlw4MCSchW1Wi379u3DxcWFdevWWWxxbm9v58iRI9TV1fHUU09x55138vTTT4sNOYGwQp3r6PV6br31Vn7729/y9NNPEx8fT15ensWiYnZ2ln379jE7O2txWVqTR1WWZTZs2LAkUSHLMk1NTXzyySeEhIRQUFCwQFR0dHSwc+dOfH19rZK7IRAIABc/cD9WHafnKBiNC+xQB4/lWSzFDgUgOXoihV947JKMXPcXZNm4pDEFAnMw5f35+Piwc+fOBXYlR0dHCgoKCAkJYffu3TQ1NS3JGuXm5saGDRswGAzs3r2byclJs8dwcnKiqKhowW+1JYSEhJCXl0dcXBxPP/00r732GrfeeisGg8Gi8QRnD0JYnMPo9XpuuOEG/vvf//LMM88QFhZGUVHRAouQOWi1Wj755BPs7e0tLkvb39/Prl278Pf3Jzc31+ISeTAX9SguLqa+vl75AjTtpuj1eo4ePUpZWRmZmZkkJydbXOtbIBAsginPYmYMhhvJDshRbjqoJHAvTVgAoNkIzscq9Iy3Qff+pY8pEJiBjY0NKSkpZGZmUlZWxtGjR5UFtiRJxMXFkZeXR319PcXFxeh0OouPZW9vT15eHmq1mp07d9Lf32/RGKbf6E8++QStVmvRXNRqNUVFRYSFhfHMM8/w3//+lxtuuAG9Xm/ReIKzA7GSOkfR6XRs3bqVgwcP8r3vfY/AwEA2btyIl5eXReONj4+ze/duvL29yc7ONjvB2hRZOHDgAMnJyUte6A8NDbFjxw6MRiObNm3C19dXuc1UEWp8fJxNmzZZ3IRIIBCcguMSuL2dfIj1mrM91c6OM2LQgbYfecr8hdF8JJXNwkTupveQZyeWNKZAYAmBgYFs2rSJ8fFxdu7cuaAylK+vL5s2bcJgMLBjxw6GhoYsPo5KpSI5OZmkpCQOHDhgUSTExsaG7OxsvLy82L17N+Pj4xbNxcvLi40bNxIYGMj3vvc9Dhw4wNatW5ckngRnNkJYnIPMzs5y9dVXc/ToUb73ve+hVqvZsGHDAm+oOQwNDbF7925CQkIsSggzJXrX1dVRUFBAaGioRfOAOYHS0NDA3r17iYiIIDc3FwcHB+U2U0WogIAACgsLcXZ2tvhYAoHgFARlfXq+qwRAKTsrAyVK1KJyyYeSvGJAfaymvn4Kuem9JY8pEFiCs7PzgspQbW1tyqLfwcGBvLw8IiIi2Lt3Lw0NDUuyRoWFhVFQUEBdXR2lpaUYjebZAFUqFenp6YpVy1Kx4+rqyoYNG1Cr1Xz3u9/l6NGjXHPNNRbbrARnNkJYnGPMzMzwpS99iaqqKp544gn8/PzYsGGDxQvsnp4e9u7dS3x8vEWVKmZmZpSunhs3bsTb29uiecCcYDLt3hQUFBAdHa3Mx9QoqLq6mpycHBITE4X1SSBYTgLnNc86JiwWlp09lmdhDTsUIEVtAZtj+VM9+5FHm60yrkBgLqbKUDk5OVRWVnL48GHFHmSq8lRQUKBE6ZeyAPf29mbjxo2MjIywZ88eZmZmzHq8qRxtfHw8e/fupbe316J5ODs7K+LiiSeeoLKykquuusrs+QjOfMTK6hxienqaK664gvr6ep544gklUmGpqGhra6OkpISMjAwiIyPNfvzo6Cg7d+5UksmW0oRufHycXbt2IUkSmzZtWiBQTMeZnp5m06ZNFueQCAQCM3AL+DSBu+sQGI2kqzOwU81Vsjk4Mzp322iDVXpQSA7uSBEXKZfl+r8iG0UiqWD1UKvVbN68menpaXbs2MHo6Khym7e3N5s2bQJQrLmWMv83dOfOnQuOc7pERkaSkZFBcXExbW1tFs3DJC78/Px44oknqKur48orr2R6etqi8QRnJkJYnCNotVq2bNlCa2sr27ZtU6ogWbKYNzW+Ky8vJzc3l+DgYLPHMHXjDg8PX1LJO9NYu3btUjp7mxK+ZVmmublZsWkdXxFKIBAsMyY71Ow4DNXjZOdMqjodgE7dJJ06LchGGKqx0vGKwCVo7vxEJ3Tttc64AoGFHF8Zqrm5WbE/2dvbk5ubS1BQELt27bI4WgBz3bHXrVtHeHi4xV22g4ODyc3Npby83OJGek5OTmzYsAFfX1+2bdtGc3MzW7ZsEeLiHEIIi3MArVbLZZddRmdnJ9u2bVPsT5aKisrKShobGyksLMTPz8/sMVpbWykpKSEzM5PY2FiL617P7+ydlpa2wIplqghVV1d3QkUogUCwQiySZ5EbuEjZ2cEKqxxOUtkgxV6tXJab/4k8a/lOsEBgDeZXhqqrq6OkpERJbpYkicTERNLS0pQqhpbmXUiSRGxsLJmZmZSUlNDa2mr2GH5+fhQWFtLY2EhlZeWSxIWfnx/btm2jo6ODyy67TIiLcwQhLM5yTPannp4eHn/8cXx9fdmwYYNFO/dGo5HDhw/T09PD+vXrze6mLcsydXV1VFRUkJeXR1BQkNlzMGEwGDh8+DBNTU0UFRWh0WiU20wVOQwGwwkVoQQCwQpyigRumGeHGqyymm1J8ogAU2lbwzRy4ztWGVcgWCqmylB6vZ6dO3cusD9pNBoKCwtpamri8OHDS+oHERQURG5uLhUVFdTV1ZktDjw9PVm/fj3d3d0cPnzY7KRwmIvUrF+/Hj8/Px5//HG6u7vZsmWLyLk4BxDC4ixmZmaGL37xi7S3t/PYY4/h4+PD+vXrlSpJ5qDX69m/fz/j4+MUFRWZ3UhOlmUqKioUIbCUxb6pX8bk5CQbN25cIHB6e3vZtWsXQUFB5OXlWfRcBQKBlVgkgTvBJxE3+7mml8XTwxhkGQzTMNpotcNKkZeD7bHcsd4S5OF6q40tECwFU2WoxexPptKtk5OTS+ovAXORh6KiIpqamqioqDBbXJga/5m6fVvSm8IkLnx8fHjsscdob2/nyiuvFOLiLEcIi7OU2dlZrrrqKpqamnj88ceXJCpmZ2fZs2cPsixTWFhodrTDaDRy6NAhent7Wb9+PR4eHmbPwcTw8DA7d+7Ezc1twVxMZWaLi4tJS0sjMTFRWJ8EgtXGxRc8w+fOdx8GowEblQ1ZAbkAjBmmqTtmVZIHrGOHApDsXZEiL1Euy3VvIRtEXX3B2uB4+9P8srOOjo4UFhbi5ubGzp07GR4etvg4Hh4erF+/nt7eXg4dOmR25ME0F6PRyJ49eyyqXuXg4LBAXDQ1NXH11VeLPhdnMUJYnIXodDquvfZaamtr2bZt25JFxd69e3F0dCQvLw87Ozuz57J//34mJiZYv3692ZGO+bS3t7Nnzx5iYmLIyMhQmvAZDAaOHDmi5H3Mt0UJBIJVxmSH0k3BwFySdu4CO9SxhdOgZX7ukxKYD+4Rc+e1/chtH1pvbIHACpjsT42NjRw5ckSxP9nY2JCRkUF0dDR79uyhvb3d4mOYIg8TExPs37/f7AW9nZ0deXl5ODo6snfvXovEhSly4evry+OPP05NTQ3XXnutEBdnKUJYnGXo9Xquu+46ysvLF1R/siSnwtRjwtnZ2aJu2qbHAxQWFlpsSzIljJeXl5OTk0NUVJQSjZienmbPnj1MTEwsqXO4QCBYJoKyPz1vyrMImicsdMfsHtODMGl+JZuTIUkqpNhrQDr2M9f2H2Qrji8QWAOT/WliYoI9e/YoCc6mfhc5OTmUl5dbnEgNc1GDwsJCAIt6XZi6dDs7O7N3716LrEzzcy62bdtGWVkZ119/vUUWK8HaRgiLswi9Xs8NN9zA4cOHleZ3lpaUnZmZYe/evbi6upKVlWV2M7nJyUl2796Nq6urRZEOEzqdjgMHDtDT06M03zFhskW5urpaZNESCAQrwCIJ3CFuoQQeKwt7dLIXrSlx20rVoUxIroEQct7cBdmAXPtnZNn8RFSBYDkxWY5cXFxOsD+Z+k319PRw4MABi3f5TZEHV1dXdu/ezeTkpFmPV6lUZGVl4eLiYrG4cHJyUsTFd77zHUpKSrjxxhuXlKguWHsIYXGWIMsyt99+O/v37+eJJ55YUp8KUxTAzc2NdevWmS0qRkdH2b17N/7+/hY93sTExAS7du1ClmU2bNiAq6urcltHRwd79uwhKipqgS1KIBCsMQIzPz1/TFhIkkRecAEAOlnP4WN2KGvmWZiQws4Hp2PFIsaaoXu/1Y8hECwVGxsbMjMziYqKYs+ePXR0dCi3ubq6smHDBmRZZteuXUxMTFh0DJVKxbp16/D392f37t1mN9IzPd7NzW1BdMUc5ouL7373u+zbt4+vfe1r1rVBClYVISzOEr797W+zfft2vvOd7yypo7ZJVHh4eJCZmWm2KOjv7+eTTz4hMjKS5ORkixOo+/v72bVrFwEBAQsiHiZbVGlpKdnZ2URHR4skbYFgLePkCd4xc+d7jsKxJOr8oELlLvv1xxYo463IM2NWPbxkYz9niTqG3PgPqx9DILAGJvtTdnY2paWlVFVVKQtuU8QhICCAXbt2MTAwYPExkpOTiYyM5JNPPjF7HJVKRWZmJh4eHhaLC1OHbrVazXe+8x22b9/Oo48+avY4grWJEBZnAS+88AI///nP2bZtG2q1mqKiIotEhamMq5eXl0WioquriwMHDpCcnLykxnemcZKSkkhKSlrQ9O7AgQN0d3ezYcMG/P39LRpfIBCsMCY7lH4a+ioByAnMxUaaizTu1w59et/BSqsfXvKKBf9juR6GaeSGv1v9GAKBtfD392fDhg3Kb+H8Znqm38X9+/fT1dVl0fimRnrJyckWjWMSF15eXhaXxXV2dqaoqAi1Ws22bdv42c9+xk9+8hOzxxGsPYSwOMN58803efTRR3n00UcJCQmhoKBggWXodDFFKnx8fMjIyDBbFDQ3N3P48GGysrIICwsz+/ifNc7xtig3NzeLjyEQCFaYRfIsXO3dSPZLBaBV20+3fm5xYq0u3McjRW0B22NV6fqPIA9WLctxBAJr4ObmxoYNGzAajSfYn8LCwsjKyuLw4cM0NzdbfIyljCNJEhkZGfj4+FgcuXB1daWgoICQkBAef/xxvv3tb/Pmm2+aPY5gbSGExRnMhx9+yC233MI3v/lN4uLiyM3NtagqkklUeHt7k56ebraoqK2tpbq6moKCAgICAsw+PsxZnKqrqxcdx2SL8vf3Jzc3F3t7e4uOIRAIVolFhAVAflCBcn6/bmruzHAdssH8kpafhWTvihS9Rbks1/0F2SAadQnWLvb29uTl5eHv78+uXbvo7+9XbgsICKCgoIDq6mpqamoszlEICAggPz+f6upq6urqzHqsJEmkp6fj7e1tsbjw8vIiNzeX2NhYHnroIW655RY++ugjs8cRrB2EsDhDKSkp4Ytf/CJ33XUXGRkZZGRkLKiYdLqYqj95enqaHamQZZmamhqampooLCzE29vb7OPDXAO90tJS2traKCoqWjBOZ2enYotKTk62OBFcIBCsIoEZwLHvlvnCIrhIOa/kWRh1MGzeAue08c8Gz2P5HjPDyC3/Wp7jCARWQqVSkZycTFJSEgcOHKCzs1O5zdvbm6KiIlpbWyktLbVYXPj4+Cj9NGpqasx6rCly4enpaXG1KLVaTUZGBpmZmdx5551ceeWVHDp0yOxxBGsDsUo7A6mvr+fCCy9k69atbNy4kcTEREJCQswex9Rnwt3dnczMTItERUtLC4WFhRZ30zYYDBQXFzM0NMSGDRtwd3dXbmtqauLIkSNkZ2cvyV4lEAhWGQc38I2fO99bBvq5xUe8dwIeDp4AHBxrRX+sFOxyVIeCuUXQXG8L27kr2ncij3ec+kECwRogLCyM7Oxsjhw5QlNTk3K9u7s7GzZsYHBwkOLiYotLt3p4eFBYWEhLSwvV1dVmiRSTuHB3d7dYXISEhJCYmMimTZu49tprueCCC6ivrzd7HMHqI4TFGUZ3dzfnn38+mzdv5vLLLyciIoLo6GizxzF11HZzc7NIVFRXV9Pa2kphYeECMWAOOp2Offv2MTs7S1FRkVIaV5ZlqqqqqK2tpaCgQCRpCwRnAyY7lFEHveUA2KhsyA3MB2BSr6XCZIcarFi2fhOSsx9S2BeOXTIi14neFoIzA39/fwoKCqipqVmw+DeVcJ2enmbfvn0W97pwd3ensLCQ1tZWs8WFKaHb1dXV4g7d0dHRREREsGXLFjZt2sT5559PT49oanmmIYTFGcTo6CgXXHABMTEx3HDDDQQGBpKUlGT2OCZR4eLiYnafCdOiv729ncLCQouTqE0VqGxtbcnPz1fyJoxGI0ePHqWjo+MEW5RAIDiDOVmeRfC8PAvTQkY3AWNtyzeX0M+B87E8rvF26Ny9fMcSCKyIt7c369evp729naNHj2I0zolie3t7CgoKsLW1tbhSE8wljRcWFtLW1rag3O3pYOpzYWqiZ4m4SEpKIjAwkBtvvJHo6Gi+8IUvmN1vQ7C6CGFxhjA9Pc3ll1+Ok5MTd911F35+fmZHGmCuO/e+fftwcnIyu6O2LMtUVFTQ0dGxJFExPj7O7t278fT0JCcnB1tbW2VuxcXFDA8Ps379elH5SSA4mziJsMibn8A91aecX67qUACSynZhb4umfyJrB5fteAKBNXFzc2P9+vUMDw8vsD/Z2tqSk5ODh4cHu3fvtriRnpubG0VFRXR0dFBZWWm2uMjKysLJyYl9+/ah1+vNOrYkSWRmZuLr68vdd9+No6Mjl19+uUWJ4YLVQQiLMwCDwcD1119PX18fDzzwgLIgNzeR2Wg0cvDgQWxtbS0WFd3d3RQVFVlU0hZgeHiYTz75BI1GQ3p6ujKH2dnZRW1RAoHgLCEgHY71raCrWLnaz1lNtNdcQnX1WCsjxxrosUx5FiYkz0gwiRrj7DFLlOj+KzgzcHJyoqioSHEgmKIDKpWKjIwMNBoNu3fvZnh42KLxXV1dKSoqoquri4qKCovEha2tLQcPHlSiKuY8Pjc3F09PTx544AH6+vr48pe/bHH+iGBlEcJijSPLMnfffTeHDh3i0UcfxcvLi8LCQmWX35xxjhw5wuzsLDk5OdjY2Jj1WJOoKCwsxMXFxdynAUBfXx979+4lNjaWxMREJdpiskWZQrminKxAcBZi7wzq5LnzfRUw8+luqqkLt4zMQenYz9JUD/JU//GjWBUp8nI4ljzOcB30HFjW4wkE1sTe3l6xEs+3P0mSRGJiIrGxsezdu5e+vr7PGGlxXFxcKCwspLu72+zIhY2NDTk5OczOznLkyBGzRbutra1SbfLRRx+lpKSEe++9V4j/MwAhLNY43/ve9/jb3/7GY489ho+PD0VFRWYvvE3CYHh4mLy8POzs7Mx6bFVVFV1dXUsSFe3t7Rw8eJC0tDSioqKU6022KC8vL7Kzs80SPAKB4AxDkzv3VzZC96flJPMW62cBMFC+rNORbB0XWqIa3kaeEX5uwZmDra0t2dnZeHl5sXv3bsbHx5XboqKiSEtL4+DBg7S3t1s0vklcdHZ2mp1zYWdnR15eHsPDw2YLE5gTToWFhfj4+PD444/zl7/8hSeffNLcpyBYYYSwWMP84he/4LnnnmPbtm0EBgZSWFhokUWooaGBzs5O8vPzcXR0PO3HmUSFKafCUlHR0tJCWVkZOTk5aDQa5fqhoSE++eQTQkJCFtiiBALBWUpwzqfnOw8qZ9P9M3Gwmftu2j/SqCxA5IHSZZ+S5JMI/sfyPwzTc43zxK6o4AxCpVKRnp6ORqPhk08+YWhoSLlNo9GQk5NDWVkZLS0tFo1vEhft7e1mV4tydHQkPz+fjo4OGhoazD62s7MzhYWFBAQE8Pjjj/OjH/2IV155xexxBCuHWMmtUbZv387999/Pt7/9bcLDwykoKLCorGtbWxt1dXXk5eWZJQxMfSra29spKCiwOKeiqamJyspK8vLyFjTw6+3tZe/evcTFxZGQkGB2ErpAIDgDCc799HzHp7YjBxsHsgKyARiYHqTB9tgGylgr8szIsk9Lir4S7I59xw1WQP+RZT+mQGBNTPanuLg49u7dS29vr3KbWq0mLy+PyspKmpubLRrf1dVVqRZlbhM9FxcX8vLyqKuro63N/Gpv7u7u5OfnExERwbe//W3+3//7f7z//vtmjyNYGYSwWINUV1ezdetW7rnnHhITE8nOzrao7GpPT48SKfD09DTrsbW1tUqfCkurMzU2NlJdXU1+fj4+Pj7K9W1tbRQXF5ORkUFkZKRFYwsEgjMQvwSwP7aA71yYz5AfXKic3z9/R3SZk7gBJDsXpJirlMty/f8hz1pWUUcgWE0iIyPJyMiguLh4gf3Jx8eH/Px8qqqqaGxstGhsNzc3CgoKaG1tpba21qzHmorOlJWVLRA9p4uPjw/Z2dkkJiZyzz33sHXrVrMFjmBlEMJijTE8PMyll17KxRdfzPr160lKSiIgIMDscYaGhigpKSEjIwM/Pz+zHltbW0tzczMFBQUWi4qGhgalwd18UdTU1ER5eTm5ubkEBwdbNLZAIDhDUdl8WnZ2rAPGupSbFuRZTHx6vdxftiJTk9Tp4Js6d0E3gdzw9xU5rkBgbYKDg5VF/PwIhbe3N/n5+dTU1FhkS4K56EFBQQFNTU3U1dWZ9Vg/Pz9F9My3a50uAQEBJCUlsX79ei666CIuvfRSi6teCZYPISzWEHq9nquvvhp/f3+uu+46goKCLNrRHx8fZ//+/SQmJpq9eG9ubqaxsdFi6xVAfX09dXV1FBQU4OXlpVw/P4JhrtgRCARnCfPtUPPyLMLcwwl0CQLg6GAlWnuPuRtGGpB1kysyNSnmKrB1nrvQdwh5oHJFjisQWBu1Wr1ohMLb25uCggLq6uqor6+3aGyTuGhoaDDbWhUcHExiYiL79+9fkGh+ukRGRhIUFMTWrVvx8/Pj6quvNrtXhmB5EcJiDfHggw/S2NjI17/+dTw8PEhPTzc790Cr1bJv3z4iIiLMFiVdXV1KPoSHh4dZjzVRW1tLfX09BQUFC+xXJ4tgCASCcwzNfGHxqR1KkiTFDqUz6igxLfAxwuDKLPAlB3ek6CuUy3LdW8h6yzoYCwSrjUlE1NbWLhAXXl5eFBQUKJuAluDh4UFubi6VlZV0dXV99gPmERkZSUREBPv27TO7Q7gkSaSnp+Pp6cl9991HQ0MDDz30kFljCJYXISzWCL/5zW947bXXePjhh/Hw8CAvL8/s0qumJnNqtZr4+HizHtvf38/hw4fJysqyeOFfW1tLU1MThYWFC0TFySIYAoHgHOQkCdwAhcHrlfN7tQPK+ZWyQwHgnw3ex74/Z0eRG/+xcscWCKyMSUSYNv1MeHp6UlhYSGNjo8XiwsfHh6ysLA4fPszAwMBnP2Ae8fHx+Pn5KY1xzcHGxkbZAH3kkUeU9ZNgbSCExRpgz5493HPPPXzzm98kKCiIgoICs8rCwpyN6sCBA7i4uJCammpWpGN0dJSDBw+SkpJiUT4HzImHpqYmCgoKFkQ7amtraWhoOEFsCASCcxT3IHA7ZtHsKgbjp910swNzsVPN9dnZ01+KbHcsx2u4Flk/syLTkyQJKfZasHGYu6J7H/KwZQsvgWAt4OnpqViX5osIDw8P5XpLbVEBAQGkpKRw4MABRkdPvweMJEmkpaXh4uLCgQMHzO6qbSpjGxQUxDe/+U3uvvtu9u7da+70BcuAEBarTFtbG1dccQU333wzKSkpZGZmmm1DMhqNHDo012wqKyvLrH4Qk5OT7Nu3j5iYGMLCwsw6rgnTl1J+fv6CudfU1CgRDEutVQKB4CzEZIeanYCBTyu7ONs5k3msp0TPZDdNLv5zNxh1MFS9YtOTHL2QIi9TLss1f0LWT6/Y8QUCa2MSF42NjQsqOpnERX19vcXVosLCwoiJiWHfvn1MTp5+PpRKpSIra+7zXlJSgtFoNOu4np6eZGZmkpKSwk033cQVV1xhcSNAgfUQwmIVmZqa4vLLLycnJ4cLL7yQmJgYs5OtZVmmtLSUyclJcnNzzbJPzczMsG/fPoKDg4mJiTF3+gBKGPX4nIra2lpaWlooLCy0OAlcIBCcpZzCDlWk2aCc3zf7aRdueZm7cJ9AUAF4Rs+dnxlGbnxnZY8vEFgZDw8PCgsLaW5uXiAuPD09yc/PV+zMlmBav+zbt4+ZmdOPLtrY2JCbm8vk5CSlpaVmN6cMDg4mOjqaiy66iKysLC6//HKmpqY++4GCZUMIi1VClmVuvvlmjEYjt956q0V5ETAXLejr6yM/Px97e/vTfpxOp2Pfvn14enqSnJxsUYO6pqYmampqyM/PP0FUmGxRQlQIBIITOEkCN0Ch5tM8i0+GqsDULG+wEtm4ctVfJEmFFHfdQkvU4MpFTQSC5eBk5WK9vLzIz8+nurraoiZ6kiSRnJyMp6cn+/fvR6fTnfZj7e3tyc/Pp6+vz6IyuAkJCfj5+XHbbbdhMBj46le/arZAEVgPISxWie9///vs2rWLBx98EHd3d7Kyssxe3Pf09FBbW0tubi5OTk6n/Tij0UhxcTH29vZkZmZaJCpaWlqU0rHzE7Ln51oIUSEQCBYlcB1Ix35+jotYhLqHEeIWCkBp31EmPI5FDQzTsMK5DpKTD1LUFuWyXPsmsk7shgrObEziorGxcUFuhUlcVFVV0dLSYva4kiSRkZGBnZ0dxcXFZlmbnJycyM3Npba2lp6eHrOPm52djbu7Ow8++CA7d+7k6aefNnf6AishhMUq8M477/DMM8/wyCOP4OPjQ0FBAba2tmaNMTY2xqFDh8jIyDArKVqWZQ4fPszs7CzZ2dlm5WOYaG9vV8rSzq8gZcq1OD6BWyAQCBbg4Ap+SXPn+8phdqEv2xS1MMgGDsqfLk5W3A4FEJgPXvOqRDX838rPQSCwMh4eHuTn55+QW+Ht7U1eXh6VlZV0dHSYPa6NjQ3Z2dnMzs5y+PBhsyIHnp6eZGRkcOjQIbN7XNja2pKfn4+Pjw8PP/wwTz/9NO+8I+yLq4EQFitMeXk5N9xwA/fddx8RERHk5ubi7Oz82Q+cx+zsLAcPHiQyMtKsnAxZlqmoqGBkZIT8/Hzs7OzMnT59fX2UlpaSnZ2Nj4+Pcv38XAshKgQCwWdiskPJRug+vOCmouBP8yz2jLXAsUpRDJQjy+YleC4VSZKQ4raCzbFKfb0lqyNwBAIrY0roPj63wsfHh+zsbI4ePUpfX5/Z49rZ2ZGfn8/IyAgVFRVmiYvg4GAiIyM5cOCA2WVoXVxcyM3NJTIykvvuu48bbriBiooKc6cvWCJCWKwgAwMDXHbZZVxxxRXk5+eTkpKCr6+vWWOYbExubm5m52TU19fT2dlJfn4+Dg4OZj0WYHh4mOLiYtLT01Gr1cr1J8u1EAgEgpNyigTujIB1OB7LrdjbtRejKWKgm4BR8/3fS0Vy9ESK+aJyWa79M/LsxIrPQyCwNqbE7eNzK9RqNenp6RQXFzM8PGz2uA4ODuTn59PZ2Wl23kR8fDxubm4WVYry9fUlJSWF/Px8tmzZwqWXXsrg4KBZYwiWhhAWK4ROp+NLX/oSoaGhXHXVVYSEhBAREWH2OJWVlczMzJidG9Ha2qqUhHVxcTH7uOPj4+zfv5/4+Hg0Go1yfVtb26K5FgKBQHBKgnM+PX9cAreDjQPZAXPCY1A7QJ39p1FQeWAFm+XNxz8bfJLnzusmkOv/ujrzEAiszPzcivnlWjUaDfHx8ezfv5+JCfOFtIuLC/n5+dTV1dHa2nraj5MkiczMTKanp6msrDT7uBEREWg0Gq6++mpCQkL44he/aFYyuWBpCGGxQjz++OO0tbVx99134+XlRWpqqtljtLa20tHRQW5urlk2pp6eHsrLy8nNzbXIpqTVatm3bx9hYWFERUUp1/f29lJWVkZOTo7F3boFAsE5ijoJ7I5tchwXsYCF1aH2THZ/muzdX7YqFV/mGuddA7bHrKv9R5H7Dp/6QQLBGYK3tzfZ2dmUlpbS29urXB8VFUVYWBh79+5Fq9WaPa6Hhwc5OTmUl5eblZRtZ2dHbm4u7e3tZokSE2lpaXh5eXHPPffQ1tbGtm3bzB5DYBlCWKwA//73v3nxxRd54IEHcHd3Jzc31+yk6cHBQcrLy8nOzjYr4jA6OkpJSQmZmZlm265gLtKyf/9+/Pz8SEhIUK4fGhqiuLiYjIwM/Pz8zB5XIBCc46hsIGiuORZj7TDeveDmouBPhcXenv3gGTt3YWYYJsxPKrUGkoM7UuxVymW57q/IM2OrMheBwNqo1WoyMjIoLi5maGhIud5UztXcMrIm/Pz8yMzMpKSkxKzu3C4uLmRnZ1NeXm62nUmlUpGbm4u7uzsPPPAAP/nJT/j3v/9t7tQFFiCExTLT1dXFl7/8Ze644w5CQ0PJzc01O79hamqKgwcPkpSUZJY4mJmZ4cCBA8TGxhIUFGTu1DEYDBw4cAAnJyfS0tIU65XJFpWYmGh2Qz+BQCBQWNDP4uCCmwJcA4k61qCuor+cUY9PraNy/yrZoQBJnQl+6XMX9FPIdW+JmvmCs4bg4GASExM5cOCAUplJkiTS0tJwcnLiwIEDGAwGs8cNCgoiJiaGAwcOmNVAz8/Pj6SkJIqLi81ufOfg4EBOTg6hoaHccccdfPnLX6a7u/uzHyhYEkJYLCMGg4HrrruOjIwMNm/eTHx8vNmWIb1ez8GDBwkKCjIrJ8NoNHLw4EG8vb0t6qotyzIlJSXIskxWVpYSYTHZoiIiIoiMjDR7XIFAIFCYn2dxCjuUjMy+mTHgWF5Zv/kdeq2JFHMV2LnOXRisgN7iVZuLQGBtIiMjCQsLY9++fYr9SaVSkZWVhdFo5NChQxZ9/mJjY/H29ja7x0V4eDiBgYEcPHgQvd68Jpk+Pj7ExcWxefNmMjIyuO666ywSRoLTRwiLZeTJJ5+kubmZr33taxYt8GVZ5siRI9jZ2ZGSkmLW48rKyjAYDKSnp5vdAE+WZUpLS5mcnCQ3N1fpsTE7O8u+ffvw8/OzqEu4QCAQLCD45B24AQrn2aH29BaDx7HNDG0fTK7ezqNk74oUd61yWa7/P+TpkVWbj0BgbUz2p3379illX21tbcnLy2N8fJzSUvPFvSRJpKeno9frKSs7/VwpSZJISUnB1taWI0eOmH1ck6C59dZbaWpq4qmnnjLr8QLzEMJimdixYwc/+MEPeOCBB3B1dSU7O9vsBX5dXR0jIyMLIganQ3NzMz09PQtEgTnU1tbS19dHfn4+9vb2wKe2KBcXlwW2KIFAILAYDw24HbNpdhbDcbuYaep0XO3cANjXuQej36dFL+T+oys1y0WRfFPA/1iOiGEaufZPwhIlOGsw2Z9cXFwW2J/s7e0pKCigt7eX2tpas8e1tbUlNzeXnp6eBeVtPwuVSkV2djYjIyPU1dWZdUxJksjKysLd3Z3777+fZ599lp07d5o7dcFpIoTFMtDf38/WrVu59dZbiYiIIDs72+y8iq6uLhoaGszOyejv76eqqoqcnBycnJzMnTrNzc00NTWRn5+vPN5oNFJSUgJgtsgRCASCU2KKWsyOw0DNgptsVXbkBeUDMDY7RoVki2KH6ju66gt5KfqLYCqFO1wLXXtWdT4CgTVRqVSsW7cOYEFPCScnJ/Lz82lqajJLHJhwcnIiJyeHqqoq+vv7T/txppyJ+vp6urq6zDqmo6Mj2dnZREZGcsstt7B161azji04fcQK0coYjUZuuOEG4uLi+MIXvkBMTIzZVZNGR0c5fPgwmZmZuLu7n/bjJicnKS4uJjU11aLyr11dXVRWVpKXl4eb29wu4fG2KBsbG7PHFQgEgpNyin4WsLDs7N7eQ2vGDgUg2TnPdeU+htz4DvJU7ykeIRCcWZgiDJOTkwvsS+7u7uTl5VFZWWn2Ih/mytumpKRQXFzM5OTkaT/Ow8ODzMxMDh8+bFaFKZhLBI+JieGCCy4gJiaGG2+80ewGfILPRggLK/PDH/6Q8vJy7rjjDjw9Pc3ORdDpdBQXFxMTE0NgYKBZjztw4AChoaGEhoaaO+3/z96fRzeWXff96PdinmcS4DzPZI2sobu6VV3VpW65Jdttv+WWZcuO8yTLkRNbipRlR/9EXsuxE7/lOLJlK3m24/xkKZbs6NndGiy1e6jquWtmkVUkq1jFeR5BAiAmAvf9AVwMLA7nkAABAvuzVi8dAOdcnG6BwPnevb97Y2FhAbdu3UJ3d3eaKBkcHMTCwkJaWhRBEETGqNy+AzcAPFHxVGL87tQ7EEqPJR7nOh0KAAR7G1Ae32M0DLH/2xCjZA4lCgeVSoUnnngC8/PzGBxMRhVtNhu6u7tx69YtLC4ucl+3pqYG1dXVuHr1KlcZW6nC1PXr17nL37a0tMBsNuPf/Jt/g97eXvzxH/8x77aJXSBhkUE++OAD/N7v/R6+/OUvw2w2c/sqpOiATqdDc3Mz17qbN29Cq9Wivb2de99erxfXr19HV1cXXC5X4vnh4WGMjo6mpUURBEFklPJuJNKbtohYOLQOtNs7AAAPlgcxq3Uhn9KhAEBo+BlAWxp74J2AOPqT3G6IIDKMlP4kpUtLuFwudHV14dq1a3vqzt3e3g6NRoNbt25x/S03NzdDp9Nxm8hlMhlOnz4Ns9mML33pS/jqV7+KDz/8kHvfxPaQsMgQKysreOmll/Crv/qraGpqQnd3N/dhfGxsDIuLizhx4gSXIBkYGIDX692T/0GKdNTU1KCmpibx/NTUFPr7+3HmzJlEWhRBEETGURuB0s7YeK4PCD1eq/7pqvOJ8Xvzt/IqHQoABLkKQvuvJLuDj78O0T288yKCOGQYjUacPXsW/f39mJqaSjy/18gDkCxj6/F4MDAwwLxOEAScOHECi4uLGB8f53pPrVaL7u5uNDc341d+5Vfw0ksvYWVlhesaxPaQsMgAoiji137t11BZWYmPf/zjqK+vh9Pp5LrG2toa7t69i5MnT0Kj0TCvm5ycxMjICM6cOQOlUsm975s3b0Kn06VFOhYWFnD79m2cOnVqT14NgiAILqR0KDECzNx87OWnK59JjN+evJJ36VAAIBirINT+VPyRCHHw2xA3AjndE0FkGpvNhlOnTuH27dtp5ueOjg7odLo99bhQqVQ4c+YMRkZGMDk5ybxOo9Hg5MmT6Ovrw9raGtd7Op1O1NXV4ROf+ATKy8vxr//1v86L6GchQMIiA3z961/Hhx9+iH/7b/8tjEYjdzrSxsYGrl+/joaGBi6j98rKCnp6etDd3b2nqEJ/fz98Ph+6u7sTEZLUtChecUQQBLEnKnb2WbTYWuHUxb6Prs9cxbq5CfmWDgUAqH42GU0JLEN8+I+53Q9BZAGn0/mY8Voq6er1etHf3899TaPRiO7ubvT09MDtdjOvKykpQUNDA65fv87dPK+jowNGoxH/7t/9O7z//vv48z//c85dE1tBwmKf3Lx5E//xP/5HfOlLX4LFYsGZM2e405H6+vqgVqvR0tLCvCYQCODatWtobW3dkwCYmJjA2NhYWqQj1QCemhZFEASRVdIM3I/nOwuCgKcqY+lQ4WgY15bu5V06FAAIggxC6y8D8niJ8NlrEOd7crongsgGW6U/KZVKnDlzBmNjY5iYmOC+ptPpRGtrK65evYpAgD3a19LSArVajb6+Pq73k8lkOHPmDCwWC770pS/hd3/3d3Hr1i3ebRObIGGxD9bW1vALv/AL+OQnP4m2tjacOHECOp2O6xoTExOYnZ3FyZMnmQVJJBLBtWvXEkqdl5WVFdy5cwfd3d0wGAwAtk+LIgiCyDol7YAq9l20lYEbAD5S9UxinK/pUAAgaO0Qmv5ficfig3+AGHTnbkMEkSUk43Vq+pMUebhz586efAsNDQ1wOBy4du1aoinfbkj9NmZnZ7kFjU6nw4kTJ9De3o6XXnoJv/ALv8CdVkWkQ8JiH3zxi1+E1WrFiy++iJqaGpSXl3Ot93g8uHPnDk6cOMFl9O7v70c0Gt1TB2y/34+rV6+ira0NpaWlief3YwAnCILYFzJ5vDoUgLVJYO3xuvjdZaehVcS+J9+dfBsRWyfyMh0KAJyngJKjsfHGOsTB70AUqV4+UVhIxmuv15tmvC4tLUVrayuuXbsGv9/PdU1BEHDs2DFEo1GulCqtVovjx4+jt7eXuzpVeXk5qqur8eKLL8JsNuPf//t/z7WeSIdOkHvkxz/+Mf7hH/4Bn//856HX69HZ2cm1PhKJ4MaNG6irq+NKZZqZmcH4+DhOnTrF3axOinSUlpaivr4+8fx+DOAEQRAZIdVnsUXUQi1X40xZrAv3SmAZ/Z6xvEyHAmKHI6H5pfSu3FPv5HZTBJEFtjNeS55RnsiDhFwuR3d3N8bHxzEzw/537XK5UFNTg+vXr3O/Z1dXFwwGA37zN38Tf//3f4+f/IRKRu8VEhZ7wO124zOf+Qw+85nPoLS0dE+H/Lt370Iul6OtrY15zfr6Om7fvo1jx45Br9dzvZ8oiujp6YEgCGmRjv0awAmCIDLCLo3yAODplHSodybfytt0KAAQlHoIrb+UeCw++j5E79QOKwjicJJqvJbSn1LPGj09/BFFg8GAo0eP4vbt21hff7wE9Xa0t7dDJpPh7t27XO8nl8tx6tQplJaWJs53vJ29iRgkLPbAF7/4RVRWVuLZZ59FU1MTzGYz1/qpqSlMTU1xpR1Fo1HcvHkT5eXlqKio4N7zw4cPsbi4iNOnTydE0H4N4ARBEBljl4gFADxV+TSEePrTWxNXAMdR5G06FADB1gLETecQIxD7vwkxEsztpggiC0jG62vXriWM13K5HKdPn8bi4iIePXrEfc3KykqUl5fj5s2biEbZUgml9KzJyUlMTz+eUrkTZrMZTU1NePbZZ1FeXk4pUXuEhAUn//zP/4zvfe97+NznPge9Xs9VyQkAfD4fenp6cOzYMS6j9+DgIMLhMLq6uni3jLm5Ody/fx9nzpxJ9MjYrwGcIAgio5jKAVNlbDx9A4g+nspg1zrQWRL7Dhx2P8R0aC1v06EkhPqfBgzxm0Hr8xAfvpzT/RBEttjKeK3RaHD69GkMDg5ibm6O+5qdnZ0Ih8MYHBxkXqPX63H8+HHcvn07UQ6XlZaWFuj1evzGb/wG/uEf/gE//vGPebdc9JCw4GBzChSv0TkajeLGjRuoqqriMnrPz89jeHh4TylXHo8HN27cwLFjx2CxWAAk06IA7MkAThAEkRUqz8b+N+QFFrY2bqY2y8v3dCgAEGQKCO2/CshUsSdmPqAStERBIhmvRVHEnTt3EhFEq9WKY8eO4caNG/B4PFzXVCgU6O7uxvDwMObn55nXlZeXo6qqCjdu3GCOdgDJiEdqShRPXw2ChAUXX/jCF1BVVYVnn30Wzc3N3ClQ/f39EEURHR0dzGv8fj9u3ryJI0eOcHsgQqEQrl69irq6OlRWViaef/To0WNpUQRBEDlnl0Z5wKaysxNX8j4dCgAEnRNC088nHosP/h5iYDmHOyKI7CClPy0sLKSlP1VWVqKurg5Xr15FKBTiuqbJZMKRI0dw8+ZNrv4WHR0dEEWRu2FfakpUZWUlvvjFL3KtL3ZIWDDyox/9CP/4j/+I3/iN34Ber0dzczPX+tnZWYyNjaG7u5v5MC+KIm7dugWn04nq6mqu95PWGo3GNIP43NwcBgcHcfr06URaFEEQRF5QubvPosHSiPJ4atHN2RvwCQJgrou96J8H1mezvcu94ToDlByPjTf8EPu/BXGLdC+COOxotdot05/a2tpgMBhw69Yt7hsAVVVVKC0tTeuZsRtSdamxsTHMzvJ9L0gpUZ/73Ofwve99D//8z//Mtb6YIWHBwMrKCj772c/iM5/5DEpKSrhToEKhEHp6ehLlzFi5f/8+AoEAjhw5wr3nR48ewePx4MSJE4lUp9S0KKvVyn1NgiCIrFJ2EhDiN162iVgIgoCn44boiLiBD6bfgyD1jACAhTvZ3uWeiJWg/QVAHf/uXRuBOPYvud0UQWSJrdKfBEHAiRMnsLa2xm3mlqpM+f1+PHjwgHmdwWBAV1cXenp6uCIllBK1d0hYMPCFL3wB1dXVuHjx4p5SoPr6+mCxWFBVVcW8ZmFhAQ8fPkR3dzcUCgXX+y0vL2NwcBAnT55M9KUIh8NbpkURBEHkDSod4IwXqFi4BwS3bnT1dNX5xPjtibeSzegAiHkqLABAUOpifgvpp3fsXyC6+avlEMRhIDX9KRwOA4j1veju7sbg4CB3Z26FQoFTp05haGgIi4uLzOuqqqpgsVjQ19fH9X5msxnNzc149tlnUVVVhS984Qtc64sVEha78KMf/Qj/9E//lKgCxZsCNTMzg7m5OS6TdDAYxM2bN9HR0cEtYkKhEG7cuIHW1lbYbDYASbO2Xq/n6ptBEARx4Eg+CzEaqw61BSedp6BXxnr5vDf5NiJKA2CKp0P5ZiD6+KvPHBSCuQ5C7cfij0SIA9+CGOarXEMQh4W2tjbo9fq0XhY2mw0tLS24ceNGQnCwYjab0dHRgRs3biAYZCvdLEU75ubmuBruAUBzc3OiStQ//uM/4kc/+hHX+mKE71Z4kbGysoLPfOYz+OxnP4uSkhKcOnWKOwXqzp076OrqglarZVojeSPsdjtqa2u59isJCJPJlFZCdnR0FMvLy3jmmWeoAhRBFBHRaBTBYBCBQADBYBDhcBiRSAQbGxtb/hOJRBAOhyGKYuIQIIoivN5Y5MBgMCS+QwRBgCAIUCqVkMvlUCgUW/4jl8uhVCqhVquh0WigVqt3/h6tPAPc/P/GxlNXgbpnHpuilCtxtvxJvDH2GtZCa+hfvIuukqMQ10ZiExbuAPrnMvWfMfPUXIp14159BATdEO//PdDxr+n7mSg4pPSnK1euYHR0FHV1sRsAjY2NWFxcxO3bt3Hq1Cmuz35tbS0WFxdx69YtnD17lmmtVqtFZ2cn7ty5A7vdDpVKxfReMpkMp06dgs/nw2c/+1l89rOfRX9/P6WT7wAJix34rd/6LdTW1uLChQtobm6GyWTiWt/X1wer1cqVevTw4UN4vd49iYCRkRGsrKykrV1dXcW9e/dw9uxZqNVqrusRBJG/bGxswOfzwefzIRAIJMSDNA4EAomcYrVaDbVaveXBX61WQ6/XJ0SAQqGATCZLCAcAiVrwen0sSiAJj2g0mhAkqQLF7/c/JlqCwWDiDqNKpYJGo0n8I4kOjUYDo7kdifp32/gsAODJiqfxxthrAIAPpt9DV+svAY9eju1voQdCbf4KC0GQAW2/AvHG/wfYWAcWe4Hpd4GKp3O9NYLIOGq1GidPnsSHH34Im80Gs9m8reBgQSpre+XKFTx8+BBNTU1M66qqqjA9PY2+vj6cPHmS+f1MJlMiW+WDDz7Ab//2b+Nb3/oW8/pig4TFNvzgBz/A97//fXzta1+DwWDYcwrUxYsXmQXC8vIy7t+/j3PnziW8Eay43W709/enCYhwOIzr16+jqakJDoeD63oEQeSeaDSK9fV1eL1eeL1e+Hy+xDgQCEChUECv1ycO5VqtFlarNe2gvmuE4ABJjaBsFkJra2sIBALweT14TqaDMrqO0PDbGOjpgd5ggCH+j06ng0wmwxPlTyau+/7Ue/iNY/8WorEa8IwDvmmI6wsQdCU5/LfdGUFjAVo/BfHu/wKAWOM8Uy0EI7sXjyAOCw6HA01NTbh+/TqeeeaZxE2NzYKDFaVSie7ubrz33nuw2+2J1O+dkFKiLl++jJmZGZSVlTG/X3NzM6ampvC5z30OX/jCF/CDH/wAP/3TP828vpggYbEFy8vLiZCXw+HgrgIVDAYTKVCsJV03NjZw8+ZNtLa2cofYwuEwbty4kSYgRFFEb28vtFottygiCOLgCQaDcLvdcLvdWF1dxdraGtbX1yEIAvR6feJgXVlZmRirVKpDlT4jk8mg1Wp3TA0VRRHi4llg9E2oQkvQbixjeTmE8fFx+Hw+iKIInU4Hk8mEKl01JtbH0b94F+7ACswlxyB6xmMXWrgTSznKYwRHF8TK88DkW4AYgXjv/wFOfhmCUpfrrRFExmlubsbi4iLu3LmTqFiZKjjOnz/PdVPVarWitbUVt27dSoiV3dBqtejq6tp3StSv//qvY2BggFKitoCExRb89m//Nurq6vDMM8+gpaXlQFKg+vv7odFo0rwRLGwnIMbHx7GwsEC+CoLIQwKBAFZXVxNCwu12IxAIQK/Xw2KxwGazoba2FgaDAVqttqj+hgVBgOA6Coy+CQBoLlEBNacBxL7v/H4/vF4v1tbW0DrfgYn1cYgQ8dc/+UtccnZDKs4dmb8NRZ4LCwAQ6n8a4upILNISWIr7LX6tqP4/J4oDQRBw8uRJXL58GRMTE4n+XJLg6O3tTSuRz0JDQwNmZmYwMDCArq4upjWVlZWYnp5Gb28vuru7md+LUqLYyI/4eB5x5coVvPzyy/jc5z4Hg8HAnLsnMT09jfn5ea4qUIuLixgfH8fx48e5f0wkAXHy5MnE2rW1NfT19eHEiRPUBI8gcowoilhbW8Pw8DCuXbuGV199Fa+++iru3r0Lr9cLu92OkydP4oUXXsClS5fQ3d2NxsZGlJaWQqfTFecBU5+SwrS+kBgKggCdTofS0lI0NjbiUtdHE69pXBoYSmqwLoulRMh8U7jy6iu4du0ahoeHsba2lp9duWUKCO3/ClDEoziLd4Cpd3K7KYLIEhqNBidPnkRvb29af4uTJ09ifn4e4+PjXNcTBAHHjx/H2NgYcwlaKSVqfn4e09PTXO/X3NwMg8GAz33uc/inf/onvPXWW1zriwGKWKQQDofx+c9/Hp/61KfgcDhw8uRJ7hSo3t5e7hSo27dvJzpS8iAJiNQu2hsbG7hx4wbq6+tRWlrKdT2CIPaPKIrweDxYXFzE4uIilpaWEIlEYLfbYbfbUV9fD7PZzO2jKip0KZ6w9e0PCw5tUoD4hXU0NjYiiiPA5BUAwLHWSswHjZibm0N/fz/kcjnsdjscDgccDgeMRmNeCDdBawdafxni3b8GAIiPXon5LUzVOd4ZQWSe0tJS1NfXJ9Kf5HJ5QnBcu3YNVquVK1PEYDCgra0Nt2/fxoULF5hSojQaDbq6utDb2wu73c5c3EYmk+HkyZPwer34xV/8RXz+85/HnTt36Ps8BRIWKfzZn/0ZAoEAXnjhBdTU1OypEd5eUqC0Wi3q6+u53ms7AXH37l0olUq0trZyXY8giL0hlWNdWFhIExI2mw0OhwONjY2wWCx5Y6A+FKSarncUFkkBsuiPRTYEtRlSXMKsASw1sdSFaDQKt9uNxcVFzM7OPiY0SkpK0srpHjSCoxNi5TMxUSRGIPZ/k/wWRMHS2tqKpaUl9PX14dixYwCSguPGjRv4yEc+wtUcuL6+HtPT0+jv78eRI0d2X4BkSlRfXx9XSpTZbEZ1dTU+/vGP44033sDXv/51fOlLX2JeX+iQsIgzPT2N3/u938NXvvIVqFQqtLe3c6+fn5/nqgIlpUDtxQfR19f3mICYnJzE9PQ0Lly4QIcYgsgi0WgUy8vLmJ2dxezsLPx+f+KASkIiA6RGLHwL205zpAiQBSllSp1yQyi4mhjKZDLYbDbYbDY0Nzc/JjTu3bsHrVYLl8sFl8sFm8124P8fCvWfiPstxuJ+i+9SfwuiIJHu/F+5cgUOhyNxQ1YSHHfv3k0IDhaklKgrV66gvLycqRKmlBL15ptvYnp6GuXl5czv19HRgampKXz2s5/FV7/6VXzqU5/iqjJVyJCwiPPlL38Zp0+fRldXFzo7O7nCWlIVqCNHjhxICtTk5CRmZmbSBITX68WdO3dw8uRJ5mZ8BEGwEw6HMT8/j9nZWczNzUEmk8HpdKKjowMlJSVcd9eIXWBMhVLL1TCpTFgLrWEpHrGAypJ4XQy6sd2RfLPQ2NjYwMLCAmZnZ3Hjxg1Eo1E4nU64XC6UlpYeSKqDIFMAHf8K4o0/Tva3mHobqDyf9fcmiINGp9Ph+PHjuHXrFiwWCwwGA2QyGbq7u3H58uU0wcHCQaZEKZVKdHZ2IhqN4tSpU/jyl7+Mv/u7v2PeayFDt9QQM2z/4Ac/wKc//WkYjcZEpQJWpA9kRUUF8xrp7hhvCpTf78edO3dw/PjxhICIRCK4ceMGampq4HK5uK5HEMT2+P1+PHr0CO+99x5+/OMf4/79+9BqtTh79iyef/55HD9+HGVlZSQqMo2eLRUKSPosFv2LMXP2NhGL3VAoFCgrK8Px48fx/PPP4+zZs9Bqtbh//z5+/OMf47333sOjR4/g9/u5/lV4ETQ2CK2/lHgsPvo+xDU+QytBHBbKyspQXV2NGzduIBKJAIiVhD1+/Dju3LnD/fdWX18PrVaL/v5+5jWVlZWwWq3o6+vjeq/q6moYjUZ8+tOfxiuvvEJG7jhFLyzC4TB+8zd/E5/61Kdgt9u5KzNNT09jcXERR44cYV63sLCAiYkJ7vcSRRE9PT0oKytLC7n19/dDEATu9C2CIB4nHA5jbGwM7777Ll577TXMzs7C5XLh2WefxcWLF9He3g6bzUbpKdlEYwGE+M/TbsIiHt0IRoLwhj3pwiLk3tPbC4IAm82G9vZ2XLx4Ec8++yxcLhdmZ2fx2muv4b333sPY2BjC4fCerr/r+zs6gcoLsQdiBGL//wMxvJ6V9yKIXNPR0QFBENLEQFlZGVwuF3p6eriquUlduaWKmaxr9lIlSkq/cjgc+NSnPoXf/M3fzNp3wmGi6IXFn/3Zn8Hv9+OFF15AdXU1l2E7HA6jt7cXnZ2dXClQPT09aG9vh16v59rr+Pg41tbW0NnZmXhudnYW4+Pj3E38CIJIEolEMD09jWvXruEnP/kJRkdHUVZWhueeew7nzp1DQ0MD998rsQ9kckAb76S7vvPhwKFNFq9YXF+MpRMp4+mlHBGLndDr9WhoaMC5c+fw3HPPweVyYXR0FD/5yU9w7do1TE9PJ+62Zgqh/hOAqSb2ILAM8f538rJcLkHsFyn9aXx8HLOzs4nnu7q6sLq6yl2CVkqJ6unpwcbGBtMaKSWqr6+PSxykGrl9Ph++/vWvc+21ECnqk6hk2P7sZz8LlUqFjo4OrvX3799PdMJlRUqBqqur43ovv9+Pu3fv4ujRo4lOkaFQCD09Pejq6qJDD0FwIooiFhcX0dPTg1dffRX37t2D0WjEM888g/Pnz6OhoYH6wOQSyZjNGLEAgAX/fGwgRS1CaxDFaEa3JTUyPX/+PJ555hkYjUbcu3cPr776Knp6erC4uJgRASDI5BDafw1QxKtCLfYlyugSRKGh1+vR2dmJnp4ehEIhAIBKpcKxY8dw9+7dPadE3bt3j3lNZWUl9Ho9Hjx4wPVe7e3tUKlUCSP3zMwM1/pCo6iFxZe//GWcOnUKR44c4TZsr62tYWRk5MBToFI9FH19fbBYLKiqqmK+FkEUO36/H4ODg3jttddw/fp1yGQynD17FpcuXUJbWxuMRmOut0gASQN3yAuEA9tOS+1lsShFN1RxYSFGY+uzhNFoRFtbGy5duoSzZ89CJpPh+vXreO211zA4OLhvP4agsUJo++XEY/HRDyC6H+132wSRl1RXV8NiseDu3buJ51wuF8rKyvaUEnX8+HFMTExwpUQdOXIk0VCTFZVKhc7OThw9ehTd3d348pe/zLy2EClaYfHWW2/t2bAtiiL6+vpQV1fH3MQlHA7j9u3b+0qBSm1XL1Wm4enwTRDFiiiKmJubw9WrV/Haa6/B7XbjyJEjeP7553HkyBHyTOQje2iSt+iPz0vzWWQmHWonJE+G9Jnq6uqC2+3Ga6+9hqtXr2Jubm7PUQzB3gFUSx3GoxD7vwkxyH7oIYjDguR1mJmZeSwlam1tjTslSq/Xo729nSslymQyoa6uDn19fVx/s5KR+1d+5Vfwyiuv4O233+baayFRlMJC6rD9i7/4i3A4HNwRhKmpKXg8HrS0tDCv6e/vh16v33MK1LFjxxIRFSkFqrOzk0rLEsQOhEIhDA0N4fXXX8ft27dhMpkSd5ddLhf5kvIZxspQ2zXJS5AhnwUrMpkMZWVliSiYyWTC7du38frrr2NoaCiR5sGDUPdTgKUp9iC0FhMX0cx6OggiH9Bqtejq6kpLiVIqlXtOiaqrq+NOiWppaYHH48HU1BTzGsk0Lhm5P//5zxetkbsof1W//vWvY319HR//+Mf3ZNi+e/cuV+qUlAJ17NixPaVAlZeXw+l0Jp6nFCiC2Bm3243bt2/j1Vdfxfz8PDo6OvDcc8+hra0NOh11Mj4UMEYsSnRJ83aySZ4lOSHozuy+ONDpdGhra8Nzzz2Hjo4OzM/P49VXX8Xt27fhdrPvSxBkENp/NZnitfoI4sg/Z2fTBJFjqqqqYLFY0sq/Op3OA0uJUiqV6OjowL1797jEgcViQXV1NV544QV4vV78+Z//OfPaQqLohMXMzAy++tWv7tuwzdqzIhqNore3F21tbRmpAjUzM0MpUASxBaIoYnZ2Fu+88w7effddyGQynD9/HufOnUN5eTlFJw4bacJih+7bKRGLZJO85M0i8YAjFlshk8lQXl6Oc+fO4fz585DJZHj33Xfx7rvvYnZ2lumgJKiMEDr+VbIM78QbEBfv7ryIIA4hUkrU3NxcxlKi2tra0Nvbi2iUrZjDfozcarUav/7rv160Ru6i+6X98pe/jO7ubhw9evRADNuPHj2CTCbjToFaX1/fMgXqzp07lAJFEClEo1FMTk7iypUr6OnpgdPpxHPPPYejR48ye6CIPETHlgqlVeqgV8Zu2iQjFqmpUO4sbG7vmEwmHD16FM899xxKS0vR09ODK1euYHJyctdDj2Cuh1D/M4nH4sC3Ifp3rppFEIcRrVb7WJWo1JSo9XW+vi51dXUQBAGPHrEVP8iEkfvkyZP4D//hP3DtsxAoKmHx9ttv45VXXsGv/MqvHIhh2+/34/79+zhy5AjX3VJKgSKI3YlEIhgdHcUbb7yBgYEB1NbW4qMf/Siam5sTJZmJQwxjKhSQTIeaX5+Pd9+2JF/MM2EhoVKp0NzcjI9+9KOora3FwMAA3njjDYyOju7cE6PyPFByLDaOBCDe+98QI/y+DYLId7ZLiSovL+dOiZLJZDhy5Aju37/P7NMwmUyora3dk5HbYDDg05/+NF5++eWiM3IXjbCIRqP44he/iE9+8pNwOBzcfoe9GLbv3r2LsrIy2O12rr2OjY3B4/FQChRBbEE4HMbQ0BBee+01DA8Po7W1Fc8++yzq6uogl8tzvT0iU3AIC6cuVoY7GAlgNbgKQakD5PEeJIGVbO0wI8jlctTV1eHZZ59Fa2srhoeH8dprr+Hhw4db5ncLggCh5RcBqRqWdwri0D8e8K4JIvukpkSlphR1dnbC4/FgbGyM63oOhwNlZWVp5Wx3o7W1FR6PZ08duUtKSvDJT34SX/ziF4uquWXRCIvvfe97mJycxAsvvIDKykpYLBbmteFwGPfu3UNHRwdz6tT8/HzCNMrD+vo67t27h+PHjz+WAtXV1UUpUETREgqFMDAwgNdeew0zMzM4evQoLly4gKqqKvJPFCKpVaF88ztOdeqT/X3m1uM52Rpr7H+DKxlvkpcNZDIZqqqqcOHCBRw9ehTT09N47bXXMDAw8FglKUGhgdDx/wZk8cjc7IcQZz7Mwa4JIrtIKVF37tx5LCXq3r173ClRUhEFXiP33bt3uY3clZWVeOGFFzAxMYHvfe97XPs8zBTFr3E4HMZXvvIVfOpTn4JKpUJbWxvX+gcPHkCv1zN32I5Go+jr60NraytX597UFKjS0mSlk97eXlitVq4O3wRRKEQikUTJ2OXlZZw+fRpPP/00ysrKKHpXyOiTaaDwzu04NU1Y+OLCQh0XFmIECHkyvbusIQgCysrK8PTTT+PUqVNYXl5OlKpNTZESDGUQml9KPBaH/n8QPZO52DJBZJVMpkRpNBq0trYeiJG7ra0NKpUKv/RLv4SvfOUrRVN+tiiExf/6X/8LkUgEFy5cQENDA9dd/7W1NQwPDx+IYXtiYuKxFKjp6WnMz89TChRRdESjUYyNjeH111/H1NQUuru7ce7cOTgcDvpbKAaUGkAd97N5Z3ecuqWw0NiSE/I8HWorBEFASUkJnnzySXR3d2Nqagqvv/46xsbGEgciwdUNlJ+LLYiGY36LMN8dXILId3ZLiZqYmOC63l6M3F1dXRgeHobHw36TQqvVor6+HhcuXEA4HMbf/M3fcO3zsFLwwsLn8+GrX/0qfvmXfxkKhQJNTU3MayXDdm1tLbdhu6uriys9Q0q36urqSqRABYNB9Pb2oquriyvyQRCHGVEUMT09jcuXL2NoaAidnZ04f/58WhSPKBIMccHg2zli4dI9LiwEKRUKAILLGd/aQSEIAkpLS3H+/Hl0dnZiaGgIly9fxvT0NERRhND4c4AxXogksARx8O+KKp+bKA6kxnmbU6I6OzvR39/PFQ3Yi5HbbDajtrYWvb29XH9fzc3NUCgU+OVf/mV89atf5U7dOowUvLD42te+BrvdjjNnznBXi5menobH40FrayvzGsmw7XA4dp+cwsDAAMxmM8rKytKuRSlQRDGxsLCAt99+G729vaivr8fFixdRUVFBEYpiRUqHCq4B4e0PADt6LIBDGbHYjCAIqKiowMWLF1FfX4/e3l688847WFp2Q+j4NUARb/y4dBeYeDOneyWIbFBZWQmr1ZqWElVeXg6TyYTBwUGua0lGbp6O3HsxckvV386ePQubzYavfe1rXPs8jBS0sFhaWsIf/dEf4dOf/jSUSiUaGhqY125sbODu3bsHYtheXV3F2NgYurq6EgeoxcVFzMzMcKVgEcRhZW1tDR988AGuXbuGsrIyXLp0CXV1dWTKLnYMbD6LrT0WyVQosQCEhYSUZnvp0iU4nU5cvXoVH96+D3/NzwOI/VaIwz+CuDqc240SRIaRekvMzMxgcXEx8VxXVxdGR0exusrXDLOjowNzc3N7MnJvbGwwv099fX0iavFHf/RHWF4+vBFUFgr6V/sP//AP0dbWhq6uLrS1tXGVohweHoZGozkQw3Zvby8aGhpgNBoT1+rt7UVLSwtVgSIKmnA4jLt37+Ktt96CwWBI9KFQKBS53hqRDxiSgmGndCidUgejKvb9OSfNS0uFKhxhIaFQKNDS0oKPfvSjMBgMeLNnBgvaY/FXoxD7/xZi2JfLLRJExtFqtWhpaUkzXxuNxkQU7yCM3BqNBsPD7MJdoVCgvb0dR44cQUtLC/7wD/+Qee1hpGCFxcTEBL7xjW/gU5/6FNRqNVczvFAohKGhIbS3t3MZtgVB2JNhe319Hc3NzYnnRkZGIIoiV4SFIA4ToihicnISb7zxBtxuN86fP4+uri5qbEekw1EZqlQXmzu/PoeoGAVURkCI30wKFO4dQpVKha6uLpw/fx5DoXosR+ORmqCb/BZEQdLQ0ABRFDEyMpJ4rqWlBevr6wdi5G5vb8fQ0NBjZaB3orq6Gmq1Gr/0S7+Ev/iLv8DkZOFWcCtYYfGf/tN/wpNPPomGhgZ0dnZypVQMDQ3BarWipKRk98nYe4ftcDiM/v5+dHV1Je7QBgIBDA4Ocl+LIA4La2treO+993D37l10dnbi3LlzzMURiCIjLRWKrTJUOBrGSmAZgiBLlpwtoFSo7TCZTDj31FMI1f8CQmI8fXfpHjD5Vm43RhAZRiaToaurC4ODgwgEAgBiUYGDMnKXlJTAarViaGiI6306OzvR0NCAJ554Al/96leZ1x42CvLk2t/fj+985zt46aWXYDAY0gzRu+H3+zEyMoL29nbmNfsxbJtMprT93bt3D6WlpcyihiAOC6lpTxaLBc8++ywqKyvJQ0RsD2MqFLDZZ7EpHSoSKIoyrIIgoLy2DfKOX008Fx7+SdHUzyeKh9LSUpSWlqaZr8vLy2E0Gg/EyN3e3o6RkRFmMQIAZWVl0Ov1+OQnP4n/83/+DwYGBrj2eVgoSGHxla98BR/72MdQVlaGzs5OroPL4OAgXC4Xc2fuhYWFPRu2x8fHtzRsp/axIIjDTmra0+rqaqJsJmtRBKKI0XNELLYoOVvoPovtUJZ2AaZYWq5CDODNN17D5OQkpUURBUVnZydmZmawtLQEIGnuHhsb4zZyt7e3cxm5LRYLXC4Xl4iRjOZlZWV47rnn8JWvfIVrj4eFghMWH3zwAV577TX83M/9HGw2G9ed/7W1NUxOTjKXlxVFEffu3UNzc/OeDNt1dXVk2CYKGr/fj6tXrybSnp588klKeyLYYawKBQCuLUrOCoe8Sd6+UKgTw862Zty9exdXr17lusNKEPnMdkbuuro6biO3VqtFc3Mz7t27x7yutbUVk5OTXE3zSkpKYLPZ8PM///P4l3/5F3z44YfMaw8LBSUsRFHE7/zO7+Dnfu7nYLVaue/8Dw4Oorq6GgaDgWn+1NQUgsEg6uvrud5HMmy3tLQkniPDNlFIiKKI8fFxXL58GUqlEhcvXqS0J4Kf1IgFVyqUVHI2tZdF4Rq4t0SeFBblTjsuXrwIpVKJy5cvY3x8nKIXREHQ0NCAaDS6pZGb1yBdX1+PYDCIqakppvkGgwHV1dXcKU2dnZ2w2Wz4uZ/7OfzO7/xOwf0tFpSw+PGPf4y+vj789E//NFc6EwAsLy9jfn4+7bC/E9FoFAMDA2htbeUqYysZtjs7Ox8zbPN26yaIfESKUvT39+PEiRM4efIkVXsi9oZSA6jNsTGjeRsAZiVhoU363sTAUsa3l9fIUv7mIiGoVCqcPHkSx48fR39/P0UviIJgJyP3vXv3uPxFcrkcra2tGBwcZC4/29LSgvn5ea7eFFIa1Sc+8Qn09vbiJz/5CfPaw0DBnGKj0Sh+93d/F5/85Ceh0+m4PA+iKKK/vx8NDQ3MKU2jo6OQyWSoqqri2ufg4CBMJhPKy8sTz0mG7dLSUq5rEUQ+IYoiJiYm0qIULpdr94UEsRNSOhRjuVkAmPPNxAYae3KCfzHTO8tvUiIWiAQTw7KysrToxcTERMHdMSWKC+n81N/fn3hur0buqqoqCIKAsbExpvkajQb19fUYGBjg+jtqb2+HXq/HSy+9hN/93d9lFjKHgYIRFt/97nexsLCA5557DtXV1dDr9cxr5+fn4fF40NjYyDR/Y2MDDx48QHt7O1eEYXV1FaOjo2mG7aWlJTJsE4eeQCCAa9eu4d69ezh+/DhFKYjMIVWGCnmA0PaVnTQKDexxITHjjQsLtQkQ4s0W/UUWsZCn/P1F0+vtp0Yv7t27h2vXriXu9hLEYaSzsxPT09OPGbl5O3LLZDK0tbXh/v37zN21m5qasLq6ivn5eeb3MRgMqKqqwvPPP4/5+Xl897vfZV6b7xSEsIhGo/j93/99vPTSS1AqlczmayAZrWhqamKuUvPo0SPodDquu7GSYbu+vp4M20RBMTk5iTfffBMKhQIXL17kKu9MELuSWnJ2l3SocmMFAGDBP49gJBjrZaGNG7gDS0V1Z17YJmKRihS9UCgUePPNNwu6aRdR2Ejm60x05C4rK4NOp2NumqdUKtHc3Iz+/n6u92lra4NSqcRLL72E3//93y+YqEVBCIsf/OAHWFxcxDPPPIPa2lquCk2Tk5MIh8PMHbODwSAePnzI1ZUbAGZmZuDz+R4zbEejUTJsE4eSjY0N3L59G729vTh27BhFKYjsYEymjcIzvePUMn1FYjzjjc/VxH0W0TAQWsv07vIXebrHYjuk6MWxY8fQ29uLnp4e5ju1BJFPNDY2IhqNYnR0NPFcS0sLfD4fZmZmmK8jddd++PAhgsGtRflm6urqEA6HmY3fQCyNqra2Fs888wwWFxfxwx/+kHltPnPohYUoivjP//k/48UXX4RCoUBTUxPz2mg0isHBQS4D9tDQEOx2O1czPMno3dLSQoZtoiBYW1vD22+/DZ/PhwsXLqR5hggio3AIiwrjFsJCm+qzKKJ0qDRhsfvhqLy8HBcuXIDH48Hbb7+NtbUiEmFEQSAZuQcGBtKM3C0tLRgYGOCKCDgcDthsNubu2nK5fE/v09TUBIVCgZ/92Z/F7//+7xdEVPXQn2gvX76MBw8e4Nlnn0VFRQVXStHo6CjkcjmzAXt9fR0jIyNoa2vj2qNkjqupqUk8d//+fZSUlJBhmzhUiKKIsbExvP322ygrK8OTTz5JaXxEduGJWBiSc6e8sTuHQqqBO1BEBu60VKjtIxapaLVanDt3DmVlZXj77bcxNjZWEAcdongoLS1FSUkJ7t+/n3iupqYmUVyEh/b2doyOjmJ9fXtvVypVVVWQyWRpEZPd0Gq1qKiowKVLl/DgwQNcuXKFa4/5yKEXFn/wB3+An/7pn4ZOp2MuFQvEyr7ev38fbW1tzClNg4ODKC8vh9lsZn6fSCSCwcFBtLW1JSITXq8X4+Pj3AKFIHJJOBzGrVu3MDAwgNOnT6d9pgkia6QJi53TDMoNqRGL+NzUkrNFFbHY3WOxFZJ59fTp0xgYGMCtW7e4SnYSRK5pa2vD+Pg4vF4vgNhnWiojG4lEmK9jNptRVlbGXFlKJpOhvb0dDx484EonbG5uhk6nwyc+8Qn8wR/8AfO6fOVQnwpu3LiBDz74AB/72MfgdDqZG9sBwPDwMAwGA7MBe21tDVNTU1zGcOl91Gp1WqrIwMAAqqqqEiZugsh33G433nrrLQQCATzzzDMUaSMOjpT0pt0iFqnCYjohLFIjFsUkLJJeQ3GDv19FaWkpnnnmGQQCAbz11ltwu90Z3BxBZA+j0Yiqqqo0QVBRUQG1Wp3WSI+F1tZWTE1NMacGulwuLuO3tN/S0lL81E/9FN577z3cvHmTa4/5xqEWFn/wB3+Aj33sYzCZTFzRio2NDTx69AgtLS3M0YqBgQHU1NRwlbENh8MYGhpKM3q73W7Mzc1x7ZcgcoUoihgeHsa7776LqqoqPPnkk1zFEQhi3xhTqoztIixc+jIIiH3XTifM20Xay0KRkqK4B2EBxMylTz75JKqqqvDuu+9iZGSEUqOIQ0FLSwtmZ2cTglgyZD948IArAqfX61FTU8PcXVsQBLS2tuLRo0dcUYvW1laYTCb81E/91KGPWhxaYTE4OIh//ud/xsc//nHYbDauLtujo6PQ6/UoKSlhmr+0tISFhQVuMTA0NASz2Zz2Pv39/airq6O8dCLviUQi6OnpwYMHD/DEE09wCXGCyBhqI6CKR3d3ERYquQqlulg0TYpYCHIVoDLFJhRTKpRSlxzvUVgAsYNSS0sLzp49i/v376Onp4crnYQgcoFWq0VdXV1a07ySkhKYzWZmQ7ZEc3MzFhYWEj0ydqOkpAQ6nY65yR4Q68Zts9nwwgsv4Ec/+hF3Y7984tAKi//yX/4LLl68iJKSEq70pEgkgkePHqGpqYnpkCT1uWhsbIRard51voTf78fw8HBatGJ+fh5ut5urchVB5IJAIID33nsPa2trOH/+POx2++6LCCJbSD6LtSlglzvmZfF0qJXAMvzhuOlS8lmEPRA32P0GhxpFqrBgM5/uhMPhwPnz57G2tob333+fGuoReU9TUxPcbjcWFhYAJKMWw8PD8PvZxbZGo0FjYyNznwpBENDc3IyHDx9yifDW1laUlpbiwoUL+K//9b8yr8s3DqWwGB8fx3e/+138zM/8DEwmE9ehZ3JyEgqFgrmJ19zcHLxeL3eviQcPHsDpdMJqtQJIb8RHtf6JfEbyU+j1ejz11FMUXSNyjynunQj7gKBnx6npPost0qGKxWchVwPxtDCE9x6xSEWr1eKpp56CTqcj3wWR96hUKjQ1NaUJAqvVitLSUjx48IDrWg0NDfB6vZibm2OaX1ZWBoVCwdV00m63w2g04md+5mfwne98h7uKVb5wKIXFH//xH+OJJ55AZWUlWltbmdMzRFHE0NAQV7RiYGAAzc3NzF25ga2rPk1PTyMYDDI34iOIXDA1NYV3330X9fX1OHHiBHN/F4LIKhwlZ8tTSs4m0qG0xeezEAQh6bPIQMRCQi6X48SJE6ivr8e7777L1RCMIA6auro6BAKBtAZ5m6tGsSB11x4YGGCOWjQ1NWFoaIjZlyQIAtra2lBVVYWzZ8/ij//4j5n3l08cOmGxsLCAv/7rv8aLL74IrVYLp9PJvHZ6ehrRaBSVlZVM82dnZxEMBlFbW8u1R6nqk1SlaqsGeQSRT0giuqenB93d3czimyAOBC5hsVVlqBQ/nX8hkzvLb6R0qH14LLZCOjR1d3ejp6eH+bBFEAeN1CCvv78/0bhOqhrFasiWqK2tRTAYZI5aVFZWIhqNYnp65++sVJxOJ7RaLV588UX81V/9FRYXD9+NkEMnLP70T/8UnZ2daGho2FO0orGxkan2vjS/oaGB667tysrKY1WfxsfHIQgCqqurma9DEAdFOBzGtWvXMDU1hY985CPMJZgJ4sDYYy+LhLDQJcsji+tFJCyUUsTCD1Fk7wbMisvlwtNPP42pqSlcu3aN+l0QeYl09hofH08819LSgrm5Oa50PrlcjoaGBjx48IBJSMtkMjQ0NHBHLVpaWtDY2IiOjg786Z/+KfP+8oVDJSzW1tbw9a9/HS+++CJUKlVab4jdmJ+fh9/vZz7cLy0twev1ckcrNld92tjYeKxBHkHkC36/H++++y4ikQg+8pGPUG8VIj/h6WWRMnfKE89vTotYzGdyZ/lNouSsyNUkjweTyYSPfOQj2NjYwLvvvstliiWIg0BqXDc4OJgoAbtV1SgWamtr4fV6mStE1dTUwO/3JwzkLFRUVECpVOLFF1/En/3ZnzH30MgXDtVJ93/8j/+BqqoqdHZ2orm5meugPjQ0hPr6euZUpAcPHqCuro7LWzE/P4/V1dW0qk/Dw8PQarXMZnGCOCg8Hg/eeecdWK1WnD17looKEPkLRyqUU+eCQhb7np/0xsyPgkKTLDm7XkzCIjMlZ3dDpVLhiSeegMViwTvvvAOPZ2eDPUEcNGVlZdBqtRgeHk48J1WNmp9n/05QKpWoq6tjLlmrUChQX1/PZRaXyWRobm7GkSNHUFlZif/5P/8n89p84NAIi0AggD/5kz/Bz//8z0OhUHClFS0vL2N1dRX19fVM891uN5aXl5nnA1tXfQqFQo81yCOIfGB5eRnvvPMOqqqqcPToUYqmEfkNh7CQy+SoMMR8dBNrE8kUBClqEfZCDGfOzJzXpAqLsC+rbyWTyXDs2LFEM73l5eWsvh9B8CCVmh0aGkIoFAKwddUoFurr67G0tMScRlVXV5c4V7JSU1MDuVyOn//5n8d/+2//7VCVdz40p4lvfvOb0Ov1OHnyJJqamrh8Dw8ePEBtbS1z9GFoaAg1NTVcfSvm5uYQCATSxMjQ0BBsNhtzIz6COAjm5ubw/vvvo7W1FW1tbSR6ifwntfv22u5ViKpMsRtPwUgAi5JZO8VnUSyVoaAyJMch9go4e0WqatPS0oL333+f2eRKEAdBSUkJrFZrWrShvr4egUCA67OqVqtRU1PDHLVQqVRcUQ4g5udobGxEd3c39Ho9vvnNbzKvzTWHQliIoog/+ZM/wYsvvgi5XM7le1hbW8PCwgJzHwqPx4PZ2Vk0NjZy7e/BgwdpRm+/34+RkZG0krMEkWvGx8dx/fp1HD9+nCsiRxA5RaEGdPEmd7tELACgypiMaE+sxQybQhH6LARlimcqfHDpSfX19Th+/DiuX7+eZpgliFzT3t6OkZGRhBdIMmTzGKyBWF+L2dlZ5pK1DQ0NmJ+f5/JL1NXVQS6X42d/9mfx3//7fz80ldcOhbB48803MT8/j3PnzqGmpobL9zA0NITq6mpoNBqm+Q8fPkRlZSVXU7CtjN5DQ0NwOp2wWCzM1yGIbDI0NIS+vj6cOXMGFRUVuy8giHxCSofyTAPRnSscVRqrEuMJT7zJVFplqOIQFgcdsUiloqICp0+fRl9fHx4+fHig700Q22GxWOB0OtM+k7W1tfB4PMyGbADQ6XSoqKhgjkJoNBpUV1dzRS2USiVqamrw1FNPYXZ2FpcvX2Zem0sOhbD40z/9Uzz//PNQKpVcd1l9Ph+mp6eZow9+vx+Tk5Nc0QogdmBLNXoHg0GMj4+nmbgJIleIooi7d+/i0aNHOHfuHKXmEYcTU7z/UDQM+HYWBlIqFABMeuJ3zHUpn/tiKTmrTAoLMXywwgIASktLce7cOTx8+BB37949NHdcicKmqakJY2NjCAZjldJ4Ddmp15mcnGSuhNbY2Ijp6Wn4fOx+p/r6eiiVSnzsYx87NKVn815YjI6O4ic/+QkuXboEu90OvV7PvPbhw4coLy9nXvPw4UM4nU6ukptutxtLS0tpgmd4eBh2u52iFUTOEUURt2/fxszMDJ5++mn6TBKHF1MyCoG1iR2nbpUKBY0diZ+8YmmSlxqxyIGwAGJ3iJ966inMzMzg9u3bJC6InGOxWGCz2dIqRPEasoFYo73N0Y+d0Ov1KC8v54rg6fV62O12XLp0CT/+8Y8xNjbGvDZX5L2w+MY3voGzZ8/C6XRyRQACgQBX1CAYDGJsbAzNzc1c+9ts9A6HwxgeHqZoBZFzotEobt26hZWVFTz99NNcopwg8g5zSiXA1Z2FRZmhDHIh5neTUqEEmQLQ2mIT1ueL44Cb6rE44FSoVAwGA55++mmsrKzg1q1biQ7IBJErmpubMTIykmjqqFaruVOVgMejHyzzx8fHuao8NTY2wul04syZM/jGN77Btb9ckNfCwu/346/+6q/w/PPPQ61Wc6VwDA8Po6SkBCaTiXm+zWbjuqMrGb1TjeGjo6MwmUyw2+3M1yGITCOJitXVVZw7d47ZY0QQeYuZPWKhkClRZoh5MiY94yklZ+M+i2gICK1mY5f5hVIHIF717QDN21uh0Whw7tw5rK6ukrggco7dbofBYMDo6GjiucbGRi5DNgBYrVbYbDaMjIwwzTeZTCgpKWGeD8RSClUqFZ5//nn81V/9Vd43ocxrYfGd73wHNpsNR44cQUNDA3NZzEgkgrGxMWY/RjgcxsjICHeU4eHDh6ioqIBOp0u876NHj9DU1EQlPImcEY1GcfPmTXg8HhIVROGQmgq1S8QCSKZD+cI+rATi9eOLzGchCDJAGY9U5jBiISGJC4/Hg5s3b5K4IHKGIAhobm7Go0ePEIlEAPAbsiWampowPDyciH7sRn19PUZHRxPvy7LXxsZGHD16FBaLBd/97ne59nfQ5K2wEEURX/va1/DCCy8AAFdDvKmpKahUKuYIx9jYGAwGAxwOB/N7SEbvVDEyPj4OtVoNp9PJfB2CyCSSqPB6vXjyySe5erEQRF6TGrFY3b2E6VaVoQRtai+LIqkMJRm4w968SP9Sq9V48skn4fV6SVwQOcXpdEKlUmFiInmjgteQDQAOhwN6vZ7Z/1BSUgKVSoXp6d1LZ0tIZ+AXXngBX/va1/Lib3k78lZYfPDBBxgZGcFTTz2FqqoqrhKzIyMjqKurY4oaRCIRPHz4kDvKsNnoHY1G93QdgsgUUvoTiQqiIJGqQgG7pkIB6ZWhJhKVoVJLzhZ+xAIAoIr7LKJhIBLK7V7ipIoLSosicoUgCGhqasLQ0FDiMygZsh89esR1nebmZjx8+JApCiEIAurq6tLM47uhVCpRWVmJp59+GsPDw/jwww+Z1x40eSssvvGNb+DSpUvQarVcJWaXl5fh9XpRVVW1+2QAExMTUKlUcLlczO+xldF7airWDba8vJz5OgSRKaTqT2trayQqiMJEoQb0cWHAkQoFAJNrW5WcLbKIBZBzn0UqkrhYW1ujalFEzpB6OqVGD5qamjA6OopQiF2Iu1wuqFQqTE5OMs2vqqqCx+PBysoK83s0NDRAq9Xi0qVLeW3izkthsbS0hO9973t49tlnYTabmQ3YQCxawRrhEEURw8PDXP4N6T1Sjd6iKGJoaAiNjY2QyfLyPylRwEiiwu12k6ggChupMpR3Bohs7Di1ypSaChUXFiozII//fRSLsFCn/H4G2bv+HgSSuHC73SQuiJwgk8nQ2NiY1nlbMmTzRBQEQUBDQwOGh4eZPsdKpRLV1dVc72EymWA2m3Hx4kX83//7f7G8vMy89iDJy1Pw3/7t36KlpQW1tbVpFZd2IxAIYHp6GnV1dUzzl5aWEAgEuLoQb1VOdm5uDqFQiMsHQhCZ4t69e1haWiKjNlH4SGJBjMY6cO9AuaESMiH2EzcRT50SBAHQxT1wgSWIeZIalE0ElTn5IOTO2T62QzJ0Ly0tob+/P9fbIYqQ6upqBINBzM3NJZ7jNWQDseiH3+9n7uBdV1eH6elp5lK1QMz4XVdXh+bmZvzt3/4t87qDJO+EhSiK+MY3voHnnnsOgiCgrKyMee3Y2Bjsdjtzg7vh4WHU1NRAoVBwvUeq0VsURTx48AANDQ2Qy+XM1yGITPDw4UNMTk7iiSeeIFFBFD4cJWdVchVc+tjvR6L7NpAUFhCLI2qhThEWeRaxkNBoNHjiiScwPj7O1TyMIDKBXC5HQ0NDWtSC15ANAAqFAjU1NcylZI1GI+x2e1rJ290oLy+HIAh47rnn8Bd/8Rd5GeXLO2Hx1ltvYWFhAU888QRqamqYD+vRaBSjo6PMfgy/34+5uTnm6AawtdF7aWkJXq8XtbW1zNchiEwwPj6O+/fv4+zZszAYDLsvIIjDjmlvlaHWQmtwB2K5zII+xU+3PpvR7eUlqmQqlBjM394dBoMBTzzxBO7fv59WpYcgDoLa2lp4PJ5EtGGrcrSs15mdnWWuKlVXV4fR0VHmAgZyuRzV1dV44oknsLCwgLfffpt5bwdF3gmLb3zjG/joRz8KhULBdVifnZ2FIAjMpV5HRkZQWlqa6EHBwuTk5GNG76GhIdTV1XFVrSKI/TI3N4fe3l6cPn2aq6kjQRxqzHy9LGpMtYnx6NpobKBLfn+LvjkUPGpLcpyHqVCpWCwWnD59Gnfu3ElLSyGIbKNUKlFXV5fWw8LlckGpVDIbsgFAr9ejtLSUOQrhcrkgCALX5106c370ox/NSxN3XgmL+fl5vPzyy7h48SKsVivXXdixsTHU1NQwl5gdGxvjilZsZfR2u91YWlriqlpFEPtleXkZ169fx/Hjx7m60RPEocfEngoFADXm2sR4dDWenqBPuflUDBGLPDZvb0VJSQmOHz+O69ev5605lShM6uvrsbS0BLfbDSAWtaivr2c2ZEtIUQjW0rM1NTVc6VAGgwFWqxUXLlzAyy+/jPn5/ErpzCth8Td/8zfo6upCZWUll2nb5/NhcXERNTU1TPN5G+gBscOc3+9PM3o/evQI1dXVVIWHODA8Hg8+/PBDtLe3cxUdIIiCwJxSIIMhYlFrTt48GpOEhcYGyOIRZl/hCwtBrgbkcf9VHqdCpVJRUYH29nZcvXoVHk/+lMglChu1Wo3q6uq0HhaVlZXw+/1cIpe3AV5NTQ0WFxfh8/mY36O+vh5VVVXo6OjA//7f/5t53UGQN8JCFEX85V/+JZ577jnI5XKuvhKjo6NwOp3M5lWeBnoSm43eUgUqilYQB4Xf78cHH3yAuro6+twRxYmxDBDivjuGiEWtKSksRldHAQCCIEsauP2LEKM7l60tCKR0qNBqXpo9t6K+vh61tbX44IMPuLogE8R+qK+vx/T0NAKBAICYIZu3LCxvAzyNRgOn08llFC8rK4NcLsdzzz2Hv/zLv8yrv+u8ERbXrl3DwsICuru7UV1dzdwPIhqNYnx8nNmPsbKyAo/Hw9xAD4gd6GZnZ9PeY2xsDA6Hg0yzxIEQDofx4YcforS0FK2trbneDkHkBpkcMMabkDKYt0v1TmgUWgDA2FpKpZaEgbtYKkPF06GiYWBjPbd74aC1tRUlJSX48MMPucp+EsRekap+ph7y6+rquAzZQLIBnpRWtRu1tbUYHx9nNnHLZDJUV1fj1KlTmJ+fx/Xr15n3lm3yRlh8+9vfxtNPP51oGsLKzMwMlEolc1rT2NgYKisruczWo6OjKC0thV6vBxATMyMjI3TXmDgQRFHErVu3oFarceTIEa5IG0EUHJKBe30RCO/8Qy8TZAkD95RnEuFI7HAq6FJ8FkWQDpVm4A66c7ULbgRBwNGjR6FWq3Hr1q28uitLFC6bKzXp9XqUlJRw+SCUSiUqKyuZ15SUlEAul2NmZob5PaRm0E8//TS+/e1vM6/LNnkhLMLhML7zne/g3Llz0Ol0XJ22R0dHmU3b4XAYk5OTXNWmtjJ6z8zMQKFQoLS0lPk6BLFXBgcH4fF40N3dTZ3dCcJSmxwzRC0kYRERI5j0xNOnUkrOikVg4BY0tuSDeNndw4JMJkN3dzc8Hg8GBwdzvR2iCHA6nZDJZGmH/Pr6eoyNjXGXnp2cnGSKtgmCgNraWi7xYjabodVq8eSTT+Lv/u7v8iaqlxenlNdeew1yuRxdXV1c0QqPx4Pl5WXmNZOTkzAajVzlOaenpx+LiAwPD3N7NAhiL0xNTWF4eBhnzpyBSqXK9XYIIvekCouV3RtRpRm4pXSolJKzKIqSs9bkOMDWFTifUKlUOH36NIaHhzE1NZXr7RAFzlYeiZKSEigUCmZDNhArn2w0GpnL1VZXV2N5eRler5f5PWpqatDV1QW5XI7XX3+deV02yQth8a1vfQsXLlyAKIpc3ofx8XGUlZUxVWUSRRGjo6Pcjew2G73dbjdWV1e59kkQe8HtduP27ds4efIkczd5gih4UoWFe3TX6VuWnNXYACFWiKMoSs6mRCzEQxaxkDCZTDh58iRu377NnLdOEHuluroaq6urWF2NVVKTSs+ydtWWkKIQLGl8arUaLpcL4+O7R2IlpLPoM888g29961tce8sWORcWHo8HL7/8Mp544glYrVZotVqmdaIoYmpqCpWVlUzzV1ZWsL6+zlWic3V1FWtra2kiYmRkBJWVlXT3mMgqgUAAV69eRUtLC1eFNIIoeDiFRWrEQhIWgkwO6OKprP6Fwq8MdYhToVJxuVxoaWnBtWvXElV7CCIbqFQqVFZWpkUtqqqqsLa2lhAbLFRUVGB9fR0rK2x/d1VVVZicnGT2E2m1WlgsFjz55JN4+eWXuaId2SLnwuLll19GRUUFGhoamPtQAMDS0hIikQizz2F0dBRVVVWJcrGsayoqKhJG71AohKmpKa7GegTBSyQSwfXr1+FwONDY2Jjr7RBEfsEpLKqNyVTZMan7NpD0WYhRwL+Yka3lLWoLgHjqbuBwN51rbGyE3W7H9evXufLdCYKXuro6TE1NJbwLSqUSFRUVXD4IhUKBqqoq5jWlpaWIRCJYWmJPWaytrUVDQwPKy8vx8ssvM6/LFjkXFt/61rfwzDPPIBqNory8nHnd5OQkKioqmMyskiDgSYMKh8OYmJhIWzMxMQGz2Qyz2cx8HYLgQRRF9Pb2IhqN4tixY+TjIYjNpDbJYxAWWqUOLn0ZgFjEQroTKKT5LAo7HUqQyQF1/HcreLiFhSAIOHbsGKLRKHp7e6lSFJE1zGYzTCYTJiaSPXMkQ/bGBnuUs7a2FlNTUwiFQrvOlclkKC8vZ/ZlAEB5eTmi0SjOnz+fF+lQORUWs7OzuHz5Ms6ePYvS0lLmErCRSIQrDWpqairxAWFlamoKBoMhYfTeq0eDIHgYHR3F3NwcTp8+DblcnuvtEET+oVAne1kwCAsgWRnKE/JgRbpjr0+WnBV97CUeDy1SOlTYBzESzO1e9olcLsfp06cxNzfHdfeYIHjZ7JGwWCzQ6/VcB3+TyQSz2cxceKCqqgrT09PMETmpwNATTzyBN998E3NzuS1IkVNh8fd///fo7OyE0+nkSoOam5uDSqWC1WrdfTJi0Q0es3WqiJDuGC8tLSEYDHJFVQiCB7fbjXv37uHUqVPMXiOCKEos8XRU39yuvSyArX0W0Kd8lxeDsEirDHV4fRYSWq0W3d3duHfvHlfOO0HwUFFRgUAggOXl2A2JvZSFBYDKykpmMWK1WqFUKrkEQk1NDZxOJzo6OvD3f//3XHvLNDkVFt/85jdx/vx5CILA1RNicnISlZWVTGkiPp8PKysrXILA7XbD5/OlRUTGxsZQXV1Nd5GJrBAOh3Hjxg00NTXBbrfnejsEkd/sx8AtlZzV2gFZvAiHj72E5KElzcB9uNOhJBwOB5qamnD9+vW8qeFPFBZyufwxj0RFRQW8Xi+zIVtas7KyAp/Pt+tcQRC4hAgQ670hCALOnz+Pb37zm8zrskHOhMX9+/dx7949nD59GhUVFcwH9lAohLm5OeY0qMnJSZSWljKVpJUYHR1FZWVlwugdDAYxPT3NFVUhCFYkX4VOp0Nzc3Out0MQ+U8GSs4Kgixp4PYvQdw43OlBu3GYm+TtRHNzM7RaLfktiKxRW1uL6elpBIOx7wilUsllyAZipWRLS0uZxUJlZSXm5uaYBbNcLkd5eTnOnDmDu3fv4sGDB8x7yzQ5Exbf/va3cfbsWRiNRq6meDMzMzCZTEx1/UVR5E6DCofDjxm9JyYmYLPZqJcAkRXGx8exsLCAEydOkFmbIFjgFBZ15vrEeMSdLB+ZTIcSgfUCT4dK62Vx+JrkbYcgCDh58iQWFha46v8TBCtGoxFWq/UxE3dqxSgWpCgEiwA2Go0wmUxcDfmqq6thNBpx5swZfPvb32Zel2lyIixEUcS3v/1tPPXUU1AoFLDZbLsvijMxMcEcrVhdXYXf74fT6dx9cpyZmRno9fpE5ScybRPZZG1tDX19fThx4gQ0Gk2ut0MQhwNOYeHQlsCkihXveOQeSjwvGMqSk7wFLiy0KSmW/sIRFgCg0Whw4sQJ9PX1YW1tLdfbIQqQzSZus9kMvV6P2Vn2inIulwt+v5/ZE8SbDmW326FQKPD000/jW9/6Vs4ieDkRFh9++CGWlpZw8uRJVFdXM9+lXV9fx/LyMnOTu8nJSZSXl3P1rpD8GxLLy8sIhULUpIzIOBsbG7hx4wYaGhq4PEYEUfRwCgtBENBgifWEmV+fhycUP3ymGLjFQvdZqK2AEP/J9y/kdi9ZoLS0FPX19bhx4wZXKVCCYKGsrAyhUChh4gb4D/4KhYKrlGxFRQWWlpbg9+9eoAKIfc9VV1fj5MmTWFpawtWrV5n3lklyIiy+9a1v4SMf+UiicQgrU1NTKCkpYbqzK6VBsUY3gFi348XFxbQ1Ur8MMm0Tmaavrw9KpRItLS253gpBHC7MVUg0fGMsOdtgbUqMH7kfxQb6lIhFgVeGEmRyQBOPWvgXC9KP0NraCqVSibt37+Z6K0SBIZfLUVFRkSYKKisrsbCwwNUFnicdSqPRwOFwcIkXqRG0FLXIBQcuLMLhML773e/i3Llz0Ol0XL0leNKgFhZid2RKSkqYrz81NQW73Z4o9RmNRrn6ZRAEK5OTk5idnUV3dzdTk0eCIFJQqAFTPHLNKCzqLQ2J8aOVWDqUoDIA8RQpeKcL8rCdhjb+exgNAaHCSxmSyWTo7u7G9PQ0c88AgmClsrISU1NTiEajAGIlj+12O9dnzeFwAEieUXejqqqKu2eGTqfDuXPn8N3vfjcn1dIO/ERz+fJlKJVKdHR0cFVZWl1dxfr6OsrKynafDL6StBKbhcvc3ByUSiWXB4QgdiMQCKC3txdHjx6lfhUEsVekdCjfPBBa33W6lAoFAI/cD5MvSOlQG+sFedhOQ+tIjv2LudtHFtFqtTh27Bju3LnDdSeZIHbDZrNBoVBgfn4+8RxvOpRMJuNa43K54PP5uHq11NTUoLOzE3K5HJcvX2ZelykOXFi88sorOHv2LERR5OotMTk5ibKyMia/xMbGBqanp7kiDR6PBx6PJ21PUhoUVeohMoUoirhz5w6cTic1WySI/cDps9hWWKQZuAvbZyEUgbAAgPLycjidTty5c6fwo1DEgSH1l0itDlVeXo61tTV4PB7m61RWVmJ6eprJC6RUKuFyubjES3l5OURRxNmzZ/H973+feV2mOFBhIYoiXnnlFRw/fhw6nQ56vZ55HY9fYnZ2FlqtNlHZiYXJyUm4XC4olUoAsZSt2dlZSoMiMsrk5CRWVlbQ1dWV660QxOGGU1hYNFbY4wfrYcljAUAopg7cKcJCLGBhAQBdXV1YWVnhOpARxG5UVlZidnY2kWKkVCrhdDq5PmdmsxlarZa5szaPLwMA9Ho9dDodTpw4gVdeeeXAxfWBCove3l6srKzgyJEjzJWdAGBxcRHRaJTZL8GbBrWVcJmenk7UESaITOD3+9HX14ejR49CpVLlejsEcbjhFBYA0BD3WawElrEslVxNMXAXfGUobcpvaAFWhkpFpVLh6NGj6Ovro5QoImNIfdRmZpI3IXgP/ltFPnaitLQU0WgUS0vsZaIrKirQ2dmJpaUl9PX1Ma/LBAcqLF555RV0d3dDoVBwlW+dmppCRUUFk8k1GAxifn6eK9KwsrKCcDicVvKTt6IUQexEagoUq0+IIIgdSBMWI0xLGiyplaHi6VB6FxI/hQWeChVrkieVnC3siAUQKxFKKVFEptksCpxOJ8LhMFZW2DvaV1ZWYn5+PtHNeydkMhnKy8u5TOIulwtqtRrd3d145ZVXmNdlggMVFi+//DJOnjwJuVwOq9XKtEYURczOzjILkampKVitVuY0KyBm2i4vL0+UlPX7/VhaWuKKqhDETkxMTMDtdlMKFEFkCktdcrzCKiwe91kIMgWgjzdRXZ+FGDn4KioHRazkbLwYiX+hKA7blBJFZJrN/SXkcjnKy8uZIxBALF3JarUyd9YuKyvD7Ows89+s1WpNVEl7+eWXmfeVCQ5MWExPT6O3txfHjh1DWVkZc5qS2+1GJBJJlOjaDd5IQzQaxfT0dFo/jampKTgcDqrYQ2QEv9+Pu3fv4tixY5QCRRCZwlwNyOLFPJYf7jw3ToN1OwN3/DdDjBa+z0IX/y2NBAu/ChbSU6JYG40RxE5sVWZWMmRLpWhZ4KkO5XA4sLGxwVwdShAEuFyuRIW01NStbHNgwuKHP/wh2tvbYbPZuFJBZmdn4XQ6mdKgpJJcPJGG+fl5yOXytJKylAZFZIrUFCjq3k4QGUSuAMzxkuUrjwCGO3l15tReFklhIRhTvu+9BX5nW+dMjtfZzKOHHUqJIjLNZlFgt9shl8vTStHuRkVFBVZWVuDz+XadK5PJUFpaitnZWebrl5eXw2azoa2tDT/84Q+Z1+2XAxMWr7zyCk6fPs1lwgaSwoKFmZkZOBwOrrvCUu8KKYIilQ2jPHgiE0xNTVEKFEFkC1s8AhHyAr7dzcgGlQGuuFn7kfth8pBpSAoLscCFhaBLucHhKw5hAcRSotxuNzXOIzJCeXk5PB4P1tZiUT/JkM2TcqdSqVBSUsIsFlwuF5ewKCkpQTQaxenTpw/UZ3EgwsLn8+GNN97A8ePHYbfbmXpRAMD6+jo8Hg+zsODxYgBbl5TdXHaWIPZKOBzG3bt30dnZSSlQBJENbMkIBFYebT8vBcln4Qt7MSfdsTekRLk9hS0sEn4SAGKRRCyA2CGus7MT9+7dy0k3YqKw2Kq/xOZStCw4nU5mseB0OrG2tsac0qdQKGC323H8+HG8/vrrWF/fvZFoJjgQYfH666+jpKQE1dXVXGlKs7OzsNvtTIeyUCiE5eVlLmExMzOTVlJWKjub6rcgiL1y//59GI1GKgJAENnCmiIs9uKzWBkCAAgKTbIUq3caYjSSsS3mHWmpUOx3PwuBiooK6PV6PHjwINdbIQqAzWVmTSYT9Ho9l5/B5XJhaWkJoVBo17kqlQo2m40ralFRUYGamho4HA68/vrrzOv2w4EIi+9///s4c+YMotEoc/QB4EuDmpubg8lk4jJcb/ZSLC0tYWNjI63sLEHshbW1NYyMjKCrq4s6txNEtkiNWCyzRiySJWdTG+UlDdwbBe09EJR6QGmIPSiiVCgglq5y5MgRDA8PJ1JYCGKvOJ1ObGxsYHl5OfFcVVUVVzqUTqeD0Whk9mbwpkM5nU5Eo9ED7cKddWERjUbxgx/8AMePH4fRaGQ++IfDYSwtLTFHIObm5rjToBYXF9O8FJOTk8z9MghiO0RRRF9fH+rq6qjBIkFkE1sy+sCeCpVi4HYPJcZFaeAOeyCGDyY9Il8wmUyoq6tDX18fGbmJfSGTyVBRUZEmJMrKyrC4uMiVDsUjFlwuF9f1tVotDAYDjh07hu9///tcVav2StZP0NevX0cwGER7ezvKy8uZ1y0sLECn08FgMOw6NxqNcguL+fl5GAyGRL8LqV8Gpa0Q+2VqagoejwctLS253gpBFDbW+uSYMRWq1lwPAbEo4pYlZwGIReSzKOTozHa0tLTA4/GQkZvYNxUVFZiZmUmIVL1eD4PBwFUdyuVyYW5ujunQbzAYoNPpsLCwe7GK1D12dHQgEAjgxo0bzOv2StaFhVQNSi6Xc1VampmZYRYKi4uLUCgUMJvNzNffbPReWVlBNBpNKztLELykGrapAABBZBmlFjDGb1gxpkJpFBpUmaoBAMPuYUTF+I95qoG7wCMWQhGWnE1FqVSio6ODjNzEvrHZbIhGo2ldt3nTlSwWC+RyOZaWlpjm816/rKwMcrn8wKpDZV1YvPzyyzhx4gSUSiVzWkg0GsX8/Dx3GhRrLvtWEQ6efhkEsR3379+HwWCgyBdBHBRSOtT6AhD0MC2RKkMFIwFMe2J3rQWVAVBbYxO8UxDF7KcM5IyUkrNikfksJCorK8nITewbmUz2WGUnnggEkGxmx5MONTc3x5zKZzKZoFQqceLEiQPpwp3VU/TIyAiGhoa4u21Lyo8leiClMPGYwpeXlyGTyWC1WhPP8ZaqJYjNSIbtI0eOkGGbIA4KK7+Buz7FZ/EwxWcByWcRCQL+xUzsLj8p4spQEmTkJjLFZmFhtVohCEKaqXs3JGHBIhakszHr9QVBQFlZGY4dO4YHDx5gdHSUeV97IavC4gc/+AGOHDkCg8HA5a+QhALL4czj8SAYDO6p6Z50fZ/PB6/XS9WgiH1x79491NbWkmGbIA4S2x5KzqZUhkr1WQjFkg6lNgNydWzsK05hAcTu5NbW1uLevXu53gpxiHE6nfB6vYkO2lIEYm6OPRpYUlKCYDAIj2f3qKsgCFz9L4BYQz+j0YgjR47gBz/4AfO6vZBVYfHDH/4Q3d3dAGLtzlnhiR7Mzs6ipKQEcrmcab4U4dicBuVwOCgnntgzCwsLWF5eJsM2QRw01r03yQOAhyspEQtDsodRIRu4BUEA4h3IEVyBuMHWcKsQaWlpwfLyMhYXCzhCRWQVpVIJu93+WDoUTz8LuVye1S7c0hm8u7sbP/rRj5jX7YWsCYtwOIz3338f7e3tsNlszAd/j8eD9fV15ugBbwqT1+uF3+9Pi3DwplIRRCqiKKK/vx9NTU3UYZsgDprUkrOMqVA15hooZbEbSUMr95MvFFPJWX1KFoGP/QBUaKhUKjQ2NqK/v5/KzxJ7ZnOEoqSkBH6/nykCkXoNVrFQUlKC9fV1eL1epvlyuRw2mw1tbW149913sbGxwbwvXrImLG7dugW5XI66ujquQ/vc3BwcDgcUCsWucwOBANxuN3fTvZKSksT1eftlEMRmZmZm4Pf7UV9fv/tkgiAyyx5SoRQyZSJqMb42hoB0x15lApTG2NgzWdAHTcGQIiy807nbSB7Q0NCA9fV1rjvMBJHK5v4SCoUCJSUlXOlQTqcTbrcbgUBg17lKpRIOh4O7WV59fT3kcjlu3brFvI6XrAmLK1eu4OjRowAAh8PBvI4nAjE3NweLxQKNRrPn68/Pz8NoNCb6WRAED9FoFAMDA2hpaWESwwRBZBitFdDEC3EwpkIBQLOtFQAQFaN4uBITJIIgAMa4z2JjHQi6M7nT/CIlYiEWccQCiB0CW1paMDAwcCANxIjCY6v+Fbw+CI1GA4vFwixG9poO1dXVhStXrjCv4yVrwuKNN95AR0cHBEFg7i8htUbPVhpUMBjEyspKWoSD0qCI/TAxMQFRFFFTU5PrrRBE8SJFLVYngI0g05JmW9IP9WBlMPlCis8CnolM7C4/MaT0lSryiAUA1NTUQBRFTEwU8P/nRFbZfNB3uVxYXl5GKBTa8zV2orS0FMvLy8xpTWazGYIgoLOzE2+88QbznnjJirCQ/BWtra2w2WzMpTeXl5eh0Wig0+l2nRuJRLCwsMAlLObm5mA2m6HVagHsrWM3QUhEIhEMDg6ira2N+p8QRC5J+CxEwD3KtKTZmiIslpM+CyHFZyEWsM9CUGiTfTt80wWd9sWCTCZDa2srBgcHEYlEcr0d4hCyuX+FVquFyWTiSodyuVxYWFhg+gzqdDqo1eq05nw7IZPJYLPZ0Nraivfeey9rPousnIZu3rwJhUKB2tparmjA0tISHA4HkxBZWFiAWq2G0Whkvv7mCMdW/SwIgpXh4WGo1WquUsoEQWQBK7/PIi1isZwasUgxcBdwZSgAgOSziASBAHvN/UKloqICarUaw8PDud4KcQixWq2QyWRp/SV405WMRiPUajUWFhZ2nSsIAhwOB1dFs1Sfxc2bN5nX8ZAVYXHlypVEkzAef8Xi4iJzWdrFxUWUlpYyR0Mikchj3bx5+mUQRCqhUAhDQ0Nob2+nzw9B5Bp7si8Fltg6KRtURlTE+1YMrTxAVOq0rbEBilhUmypDFReCIKC9vR1DQ0MJEy5BsLJVfwmXy4X5+XnmKJggCCgtLWUWC7zCQjpjHz16NGs+i6wIC8lfIZPJuPwVKysrzEJkcXGRS7QsLS1BpVIlmpdt1c+CIFh59OgRzGYzNVUkiHzA3pwcMwoLIGng9m/4MRn3UwiCkIxahNYgBgu3K7NAPovHKCkpgdlsxsOHbJEvgkhlcwdts9kMhUKBpaUl5mvY7XYuYbGyssLts+jo6MiazyLjwiLVXyG1NWeBx18RCoWwurrK3XQvNTqxVT8LgmAhHA5jZGQEzc3Nu08mCCL72FMaU3IIiyYrQzpUIUct0ipDTeVwI/mDIAhobm7GyMgIRS0IbqT+FVJ/CakLN086lMPhwOrqKtPnT6fTQaPRpKVf7USqz+L999/Pymc848Li5s2bUCqV3P4KKQLBIkSWlpZgMBi4yszOz88/Vg0qtZ8FQbAyOjoKg8HAFTEjCCKL6GyANn6jafH+znNTSPVZ3N/GwA3P+L63l7doS4B4o0CKWCRxOBzQ6/UYGxvL9VaIQ4bUvyJVSDidTibPhIRGo4HBYGCKcgiCALvdzhURcTqdqKury1o/i4wLi736K5aWlpgjEJLJmxW/3w+fz5d2/c1CgyBYiEQiePToEZqamshbQRD5hJQO5ZkCgmzdaFviqVDApoiFKVk+WlwbzcTu8hJBJgf08XQo/wLEjd0bcxUDUtTi4cOHVCGK4MbpdKb1s7Db7YksGVZ4vBO8Pgvp/Jwtn0XGhUW++ivMZjOUytidmUgkguXlZbrjTHAzMTEBlUpF3hyCyDccKelQjJWhXPoyGFWxyoJDKymRDo0dUBpi47Xxwi7Fmhqd8VI6lITL5YJKpaK+FgQ3ku9BEqVKpRJms7lofBYZFRYH0b9iL/6KzULE7XZDqVTCYDAwX4MgotEohoaGKFpBEPlImoGbLR1KEISEgXt+fR4r8ZKrgiAkoxYb64CfPY3hsCEUS0NATgRBQFNTEx4+fEjduAkuDAYDFAoF3G534rm9RBWy5bMQBCGrPouMCotUfwVPtZxs+ys2Cwue9yMIienpWA5yRUVFjndCEMRj7LUy1HaN8ky1yUkFnA6FImkIuBcqKioQjUYT3/0EwYLke0gVErzCgtdn4XA4uH0WtbW1UCgUGfdZZFRYXLlyBUePHt2TvyJbaVBb+St4r0EQoihiaGgIjY2N1GWbIPKRPVaGSjdwb+ezKGATr74MEOSxcaE3BOREJpOhsbERQ0NDhZ0OR2SczULCbrfD5/NlzWfBkzolXVsQBBw5ciTjPouMnpAOwl/Ba9xeWlqCxWJ5zF/Bk0pFEHNzcwgGg6iurs71VgiC2ApbA4B4FHoPvSwA4P7yQPIFY3XyegUsLASZImngXp+DGAnmdkN5Rk1NDYLBYJoZlyB2w+FwYHl5uSh9FhkTFofFX7GyskL+CoKbhw8for6+HnK5PNdbIQhiK5RawBwX/ov3AcY7zA2WBqhkKgDAwFJSWAgKDaCPF2nwTkOMhDK63bwi0bdDpLKzm5DL5aivr8fQ0FCut0IcIgwGA5RKZUZ8FqHQ7t89+eSzyJiwuHXrFpRKJWpqavbkr2Bhr/6KVCEiRTzIX0Gw4na74Xa7UVdXl+utEASxE1JlqOAq4GMzXCtkSjRaY/6M8bVReEMppWqNUjpUtKDThNL7dhTuv+deqa2thdvtxurqaq63QhwSJEtAMfosMiYsrl+/jtbW1kRXP1bIX0HkOyMjI6iqqkqk0xEEkafs0cDd7uhIjFPToYQUn0XRGLgLuSHgHlGpVKisrMTw8HCut0IcIjanMu3VZ8EqFnh9FjabDTKZDC0tLbhx4wbzut3IqLBoaGhANBrNG3/F4uIi+SuIfREKhTA5OUnRCoI4DOyh5CwAtNrbE+OBpf7kCymVoQrbwF2RYuAu4H/PfVBfX4+pqSmmtBSCADLjs+BtlMfjszCZTIhGo2hoaMhPYXHjxg3U1tZCp9Mx56GvrKxk1V+xWYiQv4LgZWxsDDabDSaTKddbIQhiN/YYsWhLExb3ki/onYBcHRsX8IFbkCsBQ3nswfo8xA32O6rFgslkgsViwdhY4X4OiMySCZ+F3W7n9lmsrKwwXVuhUECn06Gurg7Xr19n3tNuZERY+P1+3L9/H3V1dVxpUCsrK7BarUxzyV9BHDSiKGJ0dJSiFQRxWNhjydltDdyCLF4dCkDQDTHgzsQu8xNjatoXpUNtRX19PUZHR6n0LMFELnwWFoslTcjshtVqRV1dHQYHB7lStHYiI8Lizp07MJlMcDqdzEIBAFZXV5nTpshfQRw08/PziEQicLlcud4KQRAsmKuSEYZF9lQohUyJpng/i5iB25N8MbVRXiFHLUwppbTJZ7ElLpcLkUiESs8SzBx0PwteYWGz2eB0OmE0GtHb28u8bicyIixu3ryJpqYmALF/KVbcbjfz/JWVFa5oyHb+ChIWBCujo6OoqamhhngEcViQyQFbY2y8/BCIRpiXpqZDDaY0yhOKpVFesfx77gOZTIaamhqMjo7meivEIcFut+/bZ2Gz2ZjTm3iFhXQGb2pqws2bN5nX7URGTkw3btxIGLdZc9FDoRDW19eZhEU0GsXa2hqXaNnOX6HX65mvQRQvfr8fc3NzqKmp2X0yQRD5g1RyNhoG3KPMy1IN3INpBu4iqQylLQEU2th4bYzSfbahpqYGc3NzGUsbIQobyWeRKgx406HMZjPW1tYQjUZ3nWuxWLC+vs5cZCAbBu6MCIvr168njNsKhYJpjdvthk6ng0ql2nWu1xurK85jut7sr5DSoMhfQbAwNjaG0tJSpsICBEHkEakGbo50qHZ7suRsqoFbUBkBTfy3xDMBkSMKcphI85OEPUDQndP95Cs6nQ6lpaVk4iaY2Kq/BK+wMBqNAJJn4Z1QqVTQarXMPVckA3dtbW3GDNz7FhZ+vx+Dg4Ooq6vLmr/C7XYn2o+zEA6H4fP50vbDW6qWKF5EUcT4+Dhqa2tzvRWCIHhxtCXHiwPbz9tEvaU+xcDdn/6i5D+IhgHfzH53mL+kRWfo4LwdNTU1GB8fp6gOwcTm/hJWqxU+n4+527UgCDCbzcwpTvsxcAcCAeZ127FvYdHb2wuDwQCXy8XlgeDxV/DMleZrtVqo1TETnyiK3NcgipelpSVEIhGuDvIEUQhEIhH4fD4sLS1hZmYGU1NTmJycRG9vL3p7ezE5OYmpqSnMzMxgaWkJPp8vkTucN5SkCIsFdmGRbuAeSzNwC6kG7gJOhxKM5LNgwel0IhKJcOXJE8WL1WrF6upqQoiq1WpoNBquTu48YmEvwqKsrAw6nS4jBm62vKUduHnzJpqbY6Fn3sM/a/662+3mKvm5ORri8/m4/B9EcTM5OYmKigoybRMFSTAYhNvthtvthtfrRSAQSPyzsbEBQRCgVquhVqshk8kgCAKWl5cBIPHjGI1GEQwGEQwGIYoiFAoFNBpN4h+DwQCLxQKLxZK4wXNgOFqTY46IBRAzcN9b7AMQM3B3u07FXthkbBYqntr3NvOStMpQJCy2QyaToby8HJOTk5QJQeyK0WjExsYG1tfXEz5f6fDP+vkxm83M6XcWiwXj4+yV3aSze3NzM27evInTp08zr92KfQuLGzduoL6+fk/GbZZUKMm4zZo2BTwe4VhdXYXRaKSDIrErkUgE09PTOHv2bK63QhD7JhwOY2lpCaurqwkxEQgEoNfrYbFYYDQa4XA40kSBSqViTjsVRRGhUChNnAQCAXg8HkxMTMDn80Gj0SREhtlsht1uT1TrywpqI2CsADxTsYiFKAKM/z5tKT6LwaX+pLAwVMY6U4uRgk4RElRGiBobEFhO+EkEGVvD22KjqqoKH374Ibq6upibAhPFiVwuh8lkgtvtfkxYsGKxWNDb2wtRFHf9fjabzYlUK5bvWrPZnFED976FxfXr1/GJT3yCy7i9urqalqq0E5JZRTKvsOB2u1FVVZX2mNKgCBbm5uagVCq5/EIEkU/4fD7Mzs5idnYWS0tL0Ol0sFgssNvtaGhogNlsztjBPjW6sdXNn3A4nCZqJiYmsL6+DrvdDpfLBZfLlZ1KfSVtMWERWAF8C4CBLa0xteRs/2KKgVumgGiojN3F989DDK9DUBZoYQdTXUxYRMOAdyK9jweRwGq1QqlUYn5+HmVlZbneDpHnSEKioqIi8XhiYoJ5vVS8yOPx7HoTX61WQ6vVwu12o6SkZNdrKxQKaLVa1NXV4Uc/+hHznra93n4WBwIBDA4O4rd+67e4DmK8/oq9GLdTr5/6fyZB7MTk5CQqKyupehhxaBBFESsrKwkx4fV64XA4UFZWhuPHj+e0splSqYTD4UgL96+vryf2eu/evYRHz+VywWq1ZuZvz9EGDL8eGy8OMAsLycAdioYwuLzZwF2TTA/yjAG2tscvUAAI5nqI8/F69u5hEhbbIAgCKisrMTExQcKC2BWLxYKpqanEY96ogkwmS0Q9WLKDJLM3i7AAYr0y6urqMDAwgEAgAI1Gw7RuK/YlLPr6+qDT6VBWVsYtLHgrQrGyuroKjUaTZtxeXV1FR0fHLiuJYiccDmNubg5tbYV5YCAKC7/fj/HxcYyNjWFjYwNOpxOtra0oKSnJbqrRPtHpdKivr0d9fT3C4TAWFhYwMzODDz/8EAqFAjU1NaiuroZWq937m2w2cNeeZ1qmkCnRbGvF3cVejK+NYS24CpM69vsjmGohTr0dm7hWuMIClvrEUFx9BAEXc7iZ/KayshJXrlxhPhwSxYvZbEZ/f38ilUlKPV1dXWX2WVgsFmbDN89cIN3AfffuXXR3dzOv3cy+hMVejdurq6uorq7efWJ8Lk+Tss3RkPX1dWxsbHClUhHFyfT0NEwmE31WiLxFFEUsLCxgZGQEc3NzKC0tRVdXF5xO56H0kCmVSpSXl6O8vBzRaBRzc3MYGxvD/fv34XQ6UVdXh5KSEv4oxh5LzgJAZ0kX7i7GKqP0L97D2YonYy+kGbhHUbAxTZ0TUOiBDR+wOgJRjMZ6XBCPYTQaYTKZMD09Tc1UiR0xmUz7NnBbLBYuAzdPqtXmDtz7ERb7+rZI7bjNGlXYKlVpO6RoA2+1qc1pUCaTicxVxK5IaVAEkW9EIhGMjo7i8uXLuHnzJoxGIy5duoSzZ8+irKzsUIqKzchkMpSVleHs2bO4dOkSjEYjbt68icuXL2N0dJSvrO0eS84CQKejKzHuW7yTfEFjA5TxJq1rhdvDQBBkgDlehXFjHfDN5XZDeU5lZSUmJydzvQ0iz0k1cEvwRhWk+SzfPRaLhatXhmTgbmxs3LeBe1+/RtevX0ddXR20Wi1Xx21W47bHE6sjztNxe7MQIeM2wYLf78fS0hJ5cYi8QhRFTExM4M0338Tw8DAaGhrw3HPPob29vaC7wut0OrS3t+O5555DQ0MDhoeH8eabb2JiYoLtQK8vBbTxvkoL93aeu4lOx5HE+O5CX2IsCELSb7CxDqzPc133MCFYGpIPVh/lbiOHgIqKCiwtLcHv9+d6K0Ses1lI8DS9A9IN3LvB2ysj1cC93w7cexYWkUgEAwMDqK6uzmrHbZPJxHw3LhwOw+v1pl2f5/2I4mV6ehp2u31fhiWCyBSiKGJubg5XrlzBwMAAWlpacOHCBdTU1BRV9FUul6OmpgYXLlxAS0sLBgYGcOXKFczNze0sMAQBKI1HHjzTgG9x+7mbqDBWwqKO/abdXexLex/BnNJPqZAP3OZUn8VwDjeS/2g0GtjtdszMFHBHdiIjbBYSFosFXq+XOaogGbh5fBa8JW2rqqrQ39+/r8anexYW4+PjiEajKCsr42o8xxNB4E2Dkozb0uGQOm4TrMzOzsLlcuV6GwSB5eVlvPfee7h16xaqq6vx7LPPorq6uqgrlQmCkPbf4tatW3jvvfcSjfu2xHU0OZ7v237eFu/V4egEAKwG3ZjypKS5pNzJF90FLCwMlYBMFRuvDhds2lemcLlcmJ2dzfU2iDxHOuhLf0/SeXVtbY37GpmeC8SET1lZWSJSvlf2LCwePHiAiooKKBQK7lQlnogFr7DYyrhNHbeJnZCaiJGwIHJJMBjEjRs38P7778Nut+PSpUtoaGgoqgjFbsjlcjQ0NODSpUuw2+14//33cePGDYRCoccnO5MpTZjr5XqfzpKkz0IycgMADFXJA7f7YcEeuAWZPJn2FXTH+loQ2+JyubC4uMh855koTiQDd2ra3F4O/6zzzWYzl4fDYDAkCmo8ePCAed1m9iUsKisrEY1GmYVFNBqFz+djqrqzV+P25jQoMm4TuzE/Pw+DwZCdRl0EwcD09DQuX76MSCSCS5cuoa2tjcpX7oBSqURbWxsuXbqESCSCN998E9PT0+mT9iMsUn0Wiyk+C5k8aWwOrQKBJe69HxaElLKzoHSoHdHr9TAYDJifL1zfDbF/5HI5jEZjmjDg9VnwGLgNBgN8Ph+i0SjTtfV6PaLRKCoqKnIjLO7fv4/y8nKIosh8IFtfXwcApvrkPp8PoihyRUO2qghF/gpiNygNisgVoVAIN27cQE9PDzo7O3H69Gny+XCg0Whw+vRpdHR0oKenBzdv3kxGL0o6AKkoLKewkFKhgHQDN7DJ2Ox+uJdtHw7IZ8EFpUMRLGyOUPBGLIxGI0RRhM/n23WuVOCDtbCAwWCAKIooLy/H/fv3mfe0mT0Li8HBQZSVlUGpVDJXhPL5fNDr9UxmbK/XyzwXSBq3qSIUwYNUO5+EBXHQzMzM4M0330QkEsHFixep4/seEQQBVVVVuHjxIjY2NvDmm2/GjLQqHWBvik2avwtE2c2IJrUZ1fFUoPvLAwhFUlKtzI2JYUH7LEy1gNS/opD/PTOEy+XC3Nwc891hojjZLCTMZjO8Xi82NjaY1stkMuh0OiZhIZPJoNfr4fV6ma6tUCigVCpRVlaGwcFBpjVbvu9eFz548ABOp5MrfcTr9TJHICQRworH40mU1wLIuE2wsby8DJlMxlXZjCD2QyQSQU9PD27fvo2Ojg6KUmSI1OjF7du30dPTA1GqDLURAJb5ogtSP4twNIwHyyk/sqZqQBZPUyvgylCCXAUYq2IP/PMQQ7uXuCxmrFYrZDLZzgUFiKJH8j1IqUxS+wUeA7fBYGAWCzxzgVg6lNPpPPhUqEAggMnJSZSXl3MZo3mEBc/creYHg0GEw2HqokzsyOzsLJxOJ90pJg6EQCCA999/H6urq7hw4QKqqqros5dBpOjFhQsXsLq6irGgJfni7J1t121FV8l2PgtF0tgcWIYYWNnHjvMcc2o/C0qH2glBEOB0OikditgRk8mEUCiEYDCYeI738M8zX6/XM0U3UvdXXl6OiYmJtD3ysCdh8ejRI2g0GjgcDq6Du8/nOzBh4fV6uRr3EcWHKIrkryAODLfbjbfeegs6nQ5PPfUUk9eM2BtarRZPPfUUNuwpHbj3UxlqYdPaFP9BIfssBPJZcCH5LAq1Whixf6RGdKnCQDJZs5LNiIXRaITD4YBarcajR3uLyO5JWDx48CBxp4338M+a3sQrLDaLFt71RPHh9Xrh9/tRUlKS660QBc7U1BTeffdd1NfX48SJE1Sp7gCQy+VoeOLnEo/9Y9e41jdZm6GWqwGkRywAQLAUic8itSGgm4TFbpSUlMDv93Md5IjiY3MUgccHsdX6ndhLNEQmk6GqqmrP6VB7FhYVFRVcpWYjkQj8fj/T/I2NDQQCAW7/Rup8Xo8GUXwsLCzAbrdTVIvIGqIoYmBgAD09Peju7kZTUxOlPh0ggqUWUMWi6uJsDwYGBpjvJitksTaMYwABAABJREFUSrTYYhGPSc8E3KkpT6YaQIiLw9UCjlgo9YC+LPbAOwlxI5DbDeU5CoUCdrsdCwsLud4KkcdsPuzv5fDv9/uZDN/SXNZO2pkoObsnYXH//v1Edz6pnNVu+Hw+KBQKqNXqjM4FkCi9RRELgofFxUU4HI5cb4MoUERRRE9PDyYnJ/H0009Tyl0ukMmAsuMAAF1oAQuPbuHOnTvM4iK9UV6Kz0KuiokLAPAvQgyyN6E6dCR8FmJBm9UzhcPhwOLiYq63QeQxWwkLqcUCC2q1GgqFgilqoVarIZfLmSMcer1+3yVn9yQspFKzGo2GuRysFFFguVsniQLWO3uBQACRSCQtQkHCgtgJURSxtLREwoLICtFoFLdu3cLS0hKeeuopriIXRIapvZAYnnX6sbi4iFu3bjGVBT1ScjQxvjPfk/5iqrG5gNOhBGtzYiwuDeRwJ4cDh8OBpaUl8lkQ27JZWOh0OkQiEQQCbBFBQRCY06EkywJrREQmk0Gj0eyr5OyehMXQ0BCcTue+zNWZmivNT+15IXX4JmFBbIfH40EkEqFyxETGiUajuHnzJlZXV8mknQ/UXUwMVZPv4qmnnsLq6ipu3ry5q7g4Wno8Mb4zfyvttdRGeWIBp0PB2pzsZ7HMnkpWrFgsFkQiEXg8VJ6X2BpJFEh/S3K5HDqdLmuVofZacnZoaIh5TSrcwsLtdmNxcTGrpWZ5/RGb/RVSl0H6QSe2Y3FxETabjTniRhAsiKKI27dvw+Px4Ny5c9SfIh+oPAMo4r8FI29Co1bj3Llz8Hg8uH379o4H5RJdKSoMFQCAe4t3EY6Eky+a6pD4CS3kiIVCk6yCFVgC/OQf2AmZTAabzUbpUMS2SBaC9fX1xHPZLDnLW3XKbDajrKwMCwsLWF3lT/PkPlUNDQ3BarXCbDbvq2rTTmSi1CxP126i+CB/BZFpJE/FysoKnnzySWaPGJFlFGqg+qnYeG0CWH4EtVqNJ598EisrK7t6Lo7EoxbBSBCDy/2J5wWFOtlAbn2uoBvICbaUsr3LlA61G+SzIHZiq47Yeyk5y+Ob4BUtFosFFotlT1EL7pP3/fv3UVlZmXhzVnhKzfKmMZFxm+CB/BVENhgcHMTi4iJFKvKRlHQojLwJINap+9y5c1hYWNgxl/hYWjpUT/qLluLwWSBFWIgkLHaFfBbEbmyOOOyl5Gy2UqGk83NlZeWeDNzcwkIqNRuJRJgP76FQCKFQiGm+NHc/qVAkLIidIH8FkWmmpqYwPDyMM2fOUApmPlKXNHBLwgKIpcueOXMGw8PDmJqa2nJpus/idtpraf0sCrlikr4MUMVTn1dHIEbZSlcWK+SzIHZjs/l6L4d/6bycybnS/EgksueSs9zCYnBwEC6XK+EcZ8Hr9UKtVkOpVGZ0LhAzSq6vr6cJCephQezE4uIi7HY7pcoRGcHtduP27ds4efIkVX/KV8pOJvpZYORNIOVOsslkwsmTJ3H79m243e7HltZbGmCMr+2Z3+TJMNcBiFcvLOQO3IKQrIIVCQLerUUYEYN8FsRubFVydn19nalaHQAolUqo1WomMSLNZU2d0mg0EARhz5WhuE9W4+PjsNvtUKvVzOVgs+mv8Pl8EAQh7S4hRSyInZCEBUHsl0AggKtXr6KlpYX6VOQzcgVQez42Xl8A5u+lvexyudDc3Ixr1649VvJRJshwpOQYAGAlsIwJz3jiNUGhBeLmbvhmIIbZc6QPG6lVsKifxe6Qz4LYic3CQqvVQhCENEM3yzWy4bMQBAEajQZ2ux3j4+O7L9gEt7CYmZmBxWLhMibyRBD26q+QRA5Ph2+iOFlZWYHNZsv1NohDTiQSwfXr1+FwONDY2Lj7AiK3pPosRi8/9nJTUxNsNhuuX7/+WJfaY84TiXHPXHrZ2TSfxepwRraal6T07RAL2U+SIWw2G1ZWVnafSBQler0+rSO21JsiWz4L1r4XEmq1GhaLBTMzM8xrJLiEhSiKmJubg9VqZe64DcTu6vGkTe3HX+Hz+SCXy6kiC7ElgUAAgUAAZrM511shDjl9fX2IRqM4duwYc/SWyCFbGLhTEQQBx48fRyQSQV9fX9prR+MRCwC4s9CTvi7VZ1HA6VDQOwFF/Hd/dRiiyJayUayYzWYEAgEEg8Fcb4XIQzQazWMdsbNZclar1TI34JPmWywWzM3NcRch4BIWq6urCAaDsFqtXAZFHmHh9/u5rr1VqVmert1EcbG6ugqDwcDs4SGIrZiZmcH09DROnz4NuVye6+0QLJR2Adp4CuToFWALA7JcLseZM2cwPT2ddqeu3dEJhUwBYIuIhdTjASjoylCCIEtGZzbWyWexC0qlEnq9fkvfDkFs1RGbt+SsVqtN9G3bDbVazSUsdDodrFYrAoEA1tbWmNcBnMJiZmYGarUaRqORW1iwRhB4RAgQazBCFaEIVtxuN1WDIvZFKBTCnTt30NXVRRWgDhMyWbI6VMANzPZsOU2r1aKrqwt37txJVFHRKDRos7cDAMbWRrESWE7MF5T6WNUkAPBOQdxg+6E/jAjW1uSDJSo7uxsWi4WEBbEtW5Wc5REWGo2GOSKm0Wi4hIVGo4HJZIJareZOh+ISFtPT03A4HBAEgSvViFUsiKKIYDDIJSw2X5s34kEUF263m9KgiH3R29sLq9Wa6OdDHCJ2SYeSqKyshNVqTUuJOlaa9Fk83s9CSocSC9tnYUsKCzGlWSCxNSQsiJ3YnJ7EG1WQxAJLqtJehIUgCHA4HJienmZeB+whYiFV02E9/POIhXA4jGg0ui9hwRvxIIoLilgQ+2F6ehrz8/M4evQopVseRlKFxfAb204TBAFHjx7F3Nxc4m7d0dJjidc3CwuhSIzNgtYO6OLVz9bGIIbY88GLEbPZjNXV1Vxvg8hTNh/2eQ//arUa0WgU4XCY6b2CwSCzX0I6R9tstuxGLGZmZmC1WhGJRJgP71KYhmV+IBCAXC6HQqFgunYkEkE4HE6LnvBGPIjiIRgMknGb2DPBYBC9vb3o6uqi75jDir0ZMJbHxuPvABvbN4zSaDRpKVHpjfJ2qAxVwMICAGDviA9EgKIWO2KxWOD3+8nATWzJ5giFRqNBOBx+rCrddiiVSsjlciYxIp2TeVKnIpFI9oXF9PQ0rFZr4k1ZCAQCUKlUTM3IeKMNwWDwsbQsHj8HUVy43W7o9XoybhN7oq+vj1KgDjuCANQ9GxuH14HJD3ecnpoSZdXYUG2qBQD0L91DYCP5Yy6ojICuNPbAM1HYPgtHR2IsLt3bYSZBBm5iJzZHKHgP/1tdYzvkcjmUSiVzRETai9VqzW4q1NTUFGw2G2QyGXNUgUcs8AoLSURIKQmiKFIqFLEtlAZF7JXl5WXMzs5SClQhUP9scjyyfToUkEyJmpmZwfLyMo7FoxYb0Q0MbD5UW1vigyiw8iCDG84zTLXJsrPLgxCjGzndTr5DPgtiOzanJ0k3ynm9ENkwcCuVSshkMlitVkxN8VWA445YWCwWqFQq5jU8EYT9GrdDoRBEUSRhQWzJ6uoqCQuCG1EU0d/fj4aGBvpuKQTqUoTFDj4LCY1Gg4aGBvT396f3s5i/nTZPsLUlxmIBV0wSBBkQr5CFSLCwzeoZgHwWxHZs5ZHYi8madT6PCAEAlUoFi8WSffO22WzmSjXiEQt7iVikzg8Gg1AoFMzRFKK4WFtbg8lkyvU2iEPG/Pw8PB4PddcuFMyVMa8FAExdBYK7G5AbGxvh8XhQpahJPNezSVjA0gjI4mmWywPcTaUOE4IkLEDpULthNpu5+wAQxcFWHom9GLh5hAXvtc1mc3Y9FnNzc7BYLFlrjsfrj9g8n/wVxHZEo1Gsr69TjxOCCyla0dzcTN6cQkKKWkQ3gLG3dp2uVCrR3NwM9+gqrJqYz7B3vgfRlO7TglyVLDsbWgV8fHf5DhXWViSOD4v3ClpE7ReDwYD19XVEo9SpnHic/VaG4o1Y7LX7Ng/MwsLj8cDn88Fms0Gn0zG/QbY9FlRqlmBhfX0dgiBQjxOCi8nJSYTDYdTW1uZ6K0Qmqb+UHA+/zrSktrYWGxsbaDbEejmshdYw4k5PA0pNhyrkBnKCUgdY4h3HA4uAfz63G8pjtFotBEHA+vp6rrdC5CFbCQte8zbr/L1037bZbPB6vWmN/HaDWVjMzMxApVLBbDZnNWLBWxWKhAXBgtfrhV6vJ+MtwUwkEsHg4CBaW1shl8tzvR0ik9RdBIT4z9+jf2FaIpfL0draClvIkXjuzsKmdKhUn8Vy4QoLABDsyepQWKKys9shCAL0ej3XwYwoHvI5YqHRaGA2m6FUKrnSobiEhc1m21PXbZb5mei6TcKC2A6v10tpUAQXExMTkMvlqKqqyvVWiEyjtQAVZ2LjhX5gdZJpWVVVFerUyZ4VPXObDNy6EkBbEnuwOgIxXMB3qclnwYzBYIDP58v1Nog8ZHPEgTeqIM1n7b7NGw2RyWSw2+3ZExbZ7Lq9sbHB1XgPeFy0UHM8Yjt8Ph8JC4IZURQxPDyMhoYGinIVKg3PJcfDrzEtEQQBH2k7D4UQ89vcmL36+A96ImpR4GVntaWANh69cQ8XtojaJxSxILZjqyZ5vFGFSCSCjY3dyz5L1852923uiEU0GmU+vPOUf+Xtuh2NRhEKhR6LWJB5m9gKKRWKIFhYWFhAMBikZniFTKqwePgq87K66jrUKWP+gvn1edzflPIk2FPSoVbu72+PeYwgCClduKPAymBO95PPGAwGEhbElmyVChUKhZjN/lK/CRYxotFoIIoiQqEQ896i0Wh2IxZWq5WrT0QgEEiU02KZm9rsbjekcM7mqlAUsSC2glKhCB5GRkZQU1ND3opCpuI0oDbHxsOvAdEI0zK5XI5zZU8nHr89samqlLkBEOKfm5X7BV0xKdVnIZLPYltIWBDbsVUqFMDefVsQBK7u2wqFgsuTIYoiLBZLdoTF6upqohoUa1QhGAwyRxD22nVbJov9K1DXbWI7NjY2EAgESFgQTPj9fszNzVElqEJHrkh24fYvAzO3mJd+ovNnEuO3Jy6nvSbIVYBZqpi0DPgX973VvMVcD8jjv/FL/RAZxVmxYTAYEAgEmNJViOJic3qSTCbLevdt1rnSWV+n03E1eWQWFmtrawkjB2tUIRwOM9d+D4VC3KbwVBGxsbHBlaZFFA8+nw9KpZKrYzxRvIyPj6O0tJSrrDZxSGl4PjlmrA4FALWOOlSqY6b+weUBrASW014XrC3JB4WcDiVTALZY+V1srANrozndT76iUqmgUCjIwE08xlYeib0YuFnFglKpTOv0vROCIEAmk0Gr1XI1eWQWFl6vF1qtlis1YGNjgzm6EQ6HuTpmB4PBtINiIBCATCajrtvEY/h8Puh0OjLhErsiiiLGxsZQU1Oz+2Ti8NPw0eSYQ1gAwCnXmcR4c3UoWJsTQ3E1vddFoZGeDnU3hzvJX6SSsyQsiM0oFIrHPBI8QkG6Bms0TC6Xc0XO5HI5NBoNPB4P8xruiEW2hAXPXGl+ajREekyHR2IzlCJHsLKysoKNjQ04nc5cb4U4CKx1gK0pNp54Hwiw35V7qi7ps7g1dyP9RUMFIIv/Pq2N7XeX+Y2tHUD8d3fxbkF7SvYDb7UfojgQBAFKpTLtsK9QKBCJsKcV8ggLnrlAloWFx+OBRqPhPvyzzo9EItzXThU5vMKEKB5IWBCszM7Owul0JrxbRBHQGE+Him4Ao1eYlx13nYQQP1DfmruZ9pogkwOGeEWxwBLEUOEadwWVIekp8S8A63O53VCewttDgCgeNh/2eQ//h1ZYeL1eqNVq7ogF6/y9RCxS55OwILaD+psQrMzOzqKsrCzX2yAOktSys4/Yy86a1GbUGuoAAA+WB+ENbfrhNaWk03kKO2ohOLqSDxYpHWorKGJBbMdBCwveaIhareaqasYlLDQaDbMZG8huKtTmCAcJC2I7KGJBsODz+eD1elFSUpLrrRAHSe0zybQljn4WAHCy/BQAQISIO/M9aa8JptrEWFwu8B4Pjs7EUFzqy+FG8hdeQy5RPORzxEKpVEKj0WRHWPh8Pu5UKJ70JopYENmCGicSLMzOzsLhcHDdPCEKALURqD4XG688ApYeMi89WdadGPfMbypXa2tN9rNYuANRZGt4dRgRtA5AH4/0rY1DDLJ7VYoFilgQ27HZUL2XdKVsCQuFQgGtVpt5YSGKYqIqFE/Jzmybt0lYECxQxIJgYXZ2Fi6XK9fbIHJB48eSY450qOOlJxPj23PpwkJQaJKlWENrwOrIvraY99ilqIUILN3L6VbyEfJYENuxOT1pL1GFbEYstFotfD4fc2EGJmERCAQQjUah1WqzZt4mYUFkg2g0ilAoRMKC2JFwOIylpSUSFsVKaj+Lhz9hXubQlaDSEOtncXexF2vB9CZSQsmxxFhc6NnPDvOeVJ+FuEjpUJuRhEU0WriRK2JvHIZUqEgkwiyMmYSF5AbX6XR547HYSljwGMuJ4kD6Q6BUKGInlpaWoNPpqCleseI6CujjJYZHrwARtgZSAHC++gIAYCO6gSvjb6a/6OhMSYfqLeh0KBgrAZU5Nl55AHGD7s6nIv0GUdSC2Mx+hUW2U6Gk30XWylDMwkIul0OpVOZVH4vU+bzlaoniQPJXUPlQYidWV1dhsVhyvQ0iVwgCUH8pNg55gckPmZd+tDYZ7XhtND2NSlBoAakLd2gV8M3se6v5iiDIkiZucQNYKXDDOicymQwqlYp8FsRjZCJiwVrpaS/XVqlUkMvlmRUWXq8Xer2eu7M1q1gQRZFSoYisEAwGKVpB7Irb7SZhUeykdeF+jXlZh6MLDnWskti1mQ/hDqykvS5IPgsAKPDqUEJqdShKh3oM8lkQW5GpVCgWDwRv522pM7hOp2M2cDNHLKRQSDaEhZRzuJ9oCAkLYivC4TB9LohdIWFBoD5VWPwL8zJBEHC+PJYOFREjeH/q3fQJKcJCXL6/ry3mPZYmQB6/kbPUDzHKXi+/GOA9MBLFwebPhVwu5+41IYoik39nL30sgJgVIuMRC61Wm/YmLLD6HqT/oKzX3irCQcKC2ApKkSN2IxgMIhAIwGw253orRC4xlQMlHbHx9HXAv7Lz/BQuSmlUAD6Yfj/9RW0JoLbGxquPIEYK9461IFMAtrbYg411YHU4txvKM0hYEFuxXcSCtQqTdMZh+WztJRoCgKvkLHPEgldYRCIRiKLINH9jYwOCIDDnwUtqK1W0kLAgtoI+F8RuuN1u6PV66l9BJLtwi1Fg+A3mZSfKuqESYnfqr06/j2iKSVsQhGTUQowU/GE7rTrUEnXhToWEBbEVW/WxYI1AADH/jiAIzMIiGo0yXztVWGTcvK3VapmFApA8/LMKC4VCEfsC3uO16QBJbAV9LojdoDQoIoEkLACudCilXIlWQ+xO/XJgGQ82eSkEa3NiLK4M7W+P+Y6tDRDiR4vFPua7rsUACQtiK7aKWABsEQggdvOC9bPFe225XA5RFDMvLKRUKB5hIW2aNRWKN8VKEASKWBC7Qp8LYje8Xi+MRmOut0HkAzUfSXoEHv0LwHEoPm5PNst7LB3K0pQcrzzYzw7zHkGpAyyNsQeBZcA7mdsN5REkLIit2Py54IlAbHeN7ZDOzTzlaSVhkdFUKJ/PB41GA1EUmQ3WPFGI/VaEkp6jPhbEZkhYELtBndmJBCodUP1UbLw6Biw/ZF56qvRMYvzhJmEhqAyAvjz2wDsFMezb91bzGaHkeGIszt/O4U7yC96KPERxsNlQzROBkGA1fPNeO2vCYmNjI+F/YE1XikajzJ4JnrlALBUqVUSIokgmXWJLSFgQu0HCgkijYW/Voeps9bDJ7QCAO/O3sR5eT58g9bOACBR6OpSjC4njxUIPpUPF4a3IQxQHWx30eStD8cyXyWTMHgvpzC8IAvv1WSalHvxZhYUoilmZK83fSojwXIMoDkhYELtBwoJIo35v/Sw0Gg0alLGUp43oBm7MXkt7XbAm06FEd4GnQ6kMgPTvG1gGPBO53VCeQKlQxFZIZ9dUAS4IApcg553Puze5XM5uJmeZtBdhwcNehMVWj0lYEJvZHN0iiFQikQg2NjZIWBBJXMcAnSM2HnkTiLAdBNVqNerkDYnH70xcSZ9gbkiampcLW1gAgFCakg61QOlQAAkLYmu2OrtmSyjwXjs1YpFxYZF6cRZ4xQKvsNju/wiCSIUa5BE7EQgEIAgCVCpVrrdC5AsyGSD1pQh5gKlrO8+Po1ar0aBshDpu/n5r4jIiKQ3iBIUaMNXFHgQWIa7PZXTbeYejKymk5ikdCiBhQezM5ogFD7xChPfvkSd9iltYZIP9fuHQFxaxHdulzREEEBMWarWabkoQ6aSmQw2zpUMJggCDxoiTjlMAYmVn7y72pc+xdyQfLN7b9zbzGUGpB6Qyu8EVYG0stxvKA3gOZ0TxsFUq1FaPd7sGbxSCZ25WIhb55rFInU+pUMR28H62iOIiFApBrVbnehtEvtGwN5+FWq3GacfZxOMr42+mT3AkhYW4VNjCAthUHYrSoei3iNiSTKRC8YqFvEqFYiWbqVDbzac/WmIr6HNBbAdvRTqiSDBXAfZ4FafJD4HAGtMyQRDQ7TgDWTwF6Mr4G+npDTonoC2JPVgdgbi5clSh4egChLjHbb4Hokh36ynDgtiOfM7eyWoqVLbM2/uZT3+oxHbQZ4PYCYpoEdsideEWIzETNwMymQwGhQHHnbFmeROecYysDqdPSqRDRYHlgQxtNj8RlLpYJ24ACK0Cbva+IIVINg25xOHloKtC5U3EIp9ToSTogEBshg6OxE7Q54PYFklYAMCjV5mWSD/Yz1RdTDy3OR0q1WchLt3d3x4PAYKzOzEW527kcCf5AQkLgoW9iNBsCIvUNRntY0EQBEEQRUXtM4BMGRs/fBXg+CE+X30hMX7MZ2GuB+Tx8sZLAxCjBd4wzd6e/PdduAMxEsrtfgiCyCpMwiI1typboZZMhHzoTgCxGQo9EztBnw9iW9QGoObp2Ng9Aizt3i1bioCVGyrQbGsFAPQv3cWcbzYxR5DJAXs8PSgSADanShUYglwFlByNPYgEgSKI0uwERUgJFvYSTc9WlpC0hrUnGLOwkH58s9nZb6/z6Q+V2A76bBA7QcKC2JHGjyXHD3+y6/TUtOHUdKi3J66kzRPsnYlx8aVD3czhTnILpV4SW7FVZdNMWQQyMVf6X9ZCJ9zCgpVsN+ugiAXBCn0uiO2guvLEjqQJix/vOj31B/uZ6u19FjFDc/znd+le4X9HWRoAtSU2Xh6AGPLmdDu5hIQFsR37/Wxk87PFU0GxIFKhtmsuQhB0R5rYCZVKhWAwmOttEPlKaSdgrIiNR68AYf+O04PBYKKLe5O1GRWG2Nobs9exFlxNzBOUOsAc78LtXwTW5zO+9XxCEGRA6YnYAzEKFGlPC/otIrZiuxvlvBELnrmHMmLBQz6rNOJww1MijSg+NBoNgsEg/eATWyMIyajFRgAYe3vbqaIoIhgMQqPRxJcKOB+PWkTEDbw9+Vb6pR3JdCgUQ7M8qg5FfXOILdmuyXM2U6F495ZVYZGtKASZt4lsoFQqsbGxkettEHmKRqOBKIoIhahSDbENTT+VHA9tnw4lCVRJWADAxZpkB+83Rjd18LYXWRduQzmgL489WBuDuL6Q2w3lgI2NDSgUilxvg8hTNnsseMh2U+q8SIXiYb+tyykVitgOuVzOXHuZKD7kcjkUCgUCgUCut0LkK3XPJrtH72DgDgaDUCqVaZVTjpQchSPeafvq9PvwpngLBF3ppi7cvszvPc9IjVpgvvhM3CQsiK3IRCoU7/vlRSpUvnkstkpvIWFBbEahUFDEgtgRjUZDwoLYHq0FqHoiNl66D6yMbDktEAikRSsAQCbIcKH6WQBAKBrCu5ObUqkS1aEKvws3gLjPIn4jcO5G0f1mk7AgtuKgq0LtZW+RSCSzwkKhUHALC55qK7yVWTbfhRYEAXK5nA6QxGOQsCB2g4QFsSuNKelQ20QtAoEA1Gr1Y88/W5vs4P3m+OtprwmOlHSoxSJIh9JYAEtj7IF/EfCM53Q/B83GxgZzLwCieNhKcEYiEa7PCs98nrSm1IhFRvtY6PV6BAIBrpbe0oGORYjwHv62mq9QKCjlhXgMEhbEbpCwIHYltezsNj6LrSIWAHC89ASsGhsA4L3Jd+APrydfNNUBCl1svFwEXbixycQ9ez2HOzl4IpEIRSyIx9gsOEVR5I5usQoL3mtvbGxAEAT4/X4YDAamNUzCwmAwwO/3QxAE5kOatGmWw/5ehIUoimnXpgMksRX0uSB2w2AwwOPx5HobRD7jOgbonbHxyBtA+HEh6vF4tvzhlcvkeKbqAgAgGAng/en3Eq8JMnm8pwXiXbgfZXzreUfJEUCmjI3nb0GMhHO7nwOEUqGIrdj8uYhGoxBFkeuzwvrZks7NORcWRqORW1hIyollPk90Y7tr0wGS2Ar6XBC7YbFY4Ha7c70NIp+RyYDmj8fG4fVYT4tNuN1uWCyWLZc/W5NMh9pcHUpIrQ61WARduBVaoORo7MHGOrDUl9sNHSAkLIit2Py5kM4srJ8VnigE77UjkUhCWBiNRqY1XMIidVO7IZfLmYWIFIFg9VlIwoIiFsRu0OeC2A2LxQKfz4dwuHjunBJ7oOnjyfGDH6a9FA6H4fP5thUW3WWnYFKZAADvTr6FYCSlKaOtFRDiP8WLfUVhaBZcZxJjceZqDndysJCwILZic4qcFCVg9UHwRDg2NjYgk8mYry2dnzIuLKRUqNQ3YYHV9yD9x2C9tiAIjx0Y6QBJbAWZ+ondUKvV0Gg0WF1d3X0yUbw0fDSZwvPgh0CKAHC73dBqtVuatwFAIVPifDwdan1jHR9OvZ94TVDqAEtT7EFwBfBOZmf/+YSlAdDYY+OVBxADK7ndzwFBwoLYiq0iFgqFgrnKE08UgvczmCosMp4Ktb6+nvYmLLAe9iXlxGO+JmFBsEAN8ggWKB2K2BW1Eah9JjZeHQPmk1WcVldXYTabd1ye2izv9bF/SXtNKDmSGIuLhZ8aJAgyCK7T8UciMHstp/s5KEhYEFux+XPBWxGKJ8LBW5lMOj+tr69nPmLh8/kQjUazIiy2ikDwXpuEBbEVarUawWBw94lEUUPCgmCi+RPJcUo61E7+Cokz5U/AoIz9ML89cTk9HcreBam/AxZ6M7TZPMd1GomeFrPXIIrsJecPK9uVJCaKm+0iFrzrWSIcvJXJNjY2EI1Gsb6+nvmIRSQSQTgc3ldUIVNzt5pPKS/EVmg0GgSDQa4+KUTxYTabSVgQu9O8tc+CRVio5Co8Ux1Lh/KFffhgKqU6lNoEmGpjD9ZnIa7PZ2rHeYugsQLW5tiDwBLgLuyKWNFoFKFQaMuSxERxkwlhwRqF2Mu1Q6EQIpFI5s3bQCwUwmNwPEhhQX0siK2Q7g5R1ILYCbvdjvX19UTKJ0Fsia0BcMTLw05+APgWE58bm8226/JLtc8nxm/skA6FxeKIWghlKSbu2cI2cUu/QRSxIDazX2HBE4XYi7CQfhczKiw0Gg1kMhn8fn9WUqF45241n1KhiK2QyWRQqVTUAI3YEaVSCbvdjtnZ2Vxvhch3pHQoMQo8/AlmZ2dht9uhVCp3XXqm7AkYVbEf57fGLyOwkfK95OhKDMViSYeydyUbBC7cgbjhz+1+soiUBsVajYcoHjKVCpXpuUCs4l0gEIBcLmcWxUyfcEEQEpWhQqEQ84ZIWBD5AHVWJlhwuVwkLIjd2eSzmJ2dhcvlYlqqlCvxTPWzAOLVoVKb5WkdgL489sAzDjHoztSO8xZBrgScJ2MPomFg/lZuN5RFyF9BbMfmVKa9HP6zKSz8fj/0ej1zlSpm6azX6xEIBLgO7zy+BxIWRLaQfBYEsRMulwuLi4vUz4LYmaonAY0FACA+/AmWFtiFBQBcSmmW99roq2mvpadDFX51KGBTT4vpDwq2j0cgECB/BbElW/WxyKdUKJ5SswCHsDAYDAgEAnnjsdgsWkhYENtBEQuCBb1eD4PBgIWFhVxvhchn5Aqg8WMAACG4iorIKPR6PfPy02VnE83y3p64sikdKqXsbJGkQwnGSsBYHXvgnQQ8Y7ndUJYIBoMkLIgtOQypUFkTFsFgkLsqFOt8ilgQ2UKtVpOwIJhwuVyYmZnJ9TaIfCclHaomwBdZSE2H8m/48d7UO8kX9WWAxhEbux9BDHn3vdXDgFB+LjEWp9/fYebhhSIWxHYctLDg7WMRDAazIyyMRiN3KhTPYZ+3XOxm0ULCgtgOilgQrLhcLszNzVF5YmJnGj8GUYj9fFoW3uVe/tGU6lD/MvLjxFgQBCCRDhUtmnQolB4HFNrYeP42xLAvt/vJAuSxILYjnyMWkUgEgUCAuSIUwCEsTCYTAoFAXvWxSE3Lkh4Xan7m/5+9P4+O47zu/OFvdaOBbgANNNYGGvu+gwQIECQlUaIkWrslL7FlRx7Pz4lnfvGM7UzGmUyc5Jx45n2TePLasbM5duRMEsuWJS+SLFsLRZGiuAEEQALEvm+NpbH0vqKXev9oVKEbAIF6sC/3cw6Pn66qp+qhTKCfW/d+75fYPBRYEFJJSEhAREQEDAbDXi+F2M9EJ2FRWwcAkJsGgbkepun16Q1IUAbb017Tfwh7SGaCSzkujvm5ti0v9SDAySMBbX3wQ8ALzDTv7YJ2AMpYEGvB8/wq8fVmsgoHMrAQukLtVGChUCiYAouoqKiwDlVKpZLZGZw4GsTExMDpdFLQSWwIx3HIycnB2NjhrPMmto/p+FPLH+78C9PcCFkEHs05DwDw+D34cOLy8kl1FrAUdMA0cETLoa4fqt/XPM/D4XAwaXGIo4HgbB0adHo8HqbsFkuwwOq8vSsZi0AgIPkHXqFQSBZ7R0ZGMnXuWfkWOiIiAjKZjN5ME6uIiYmB1+tlapVMHF2ys7MxOztLZnnEPXE6neiNrAMvW/KuaPs3wMf2++WxvCfF8buryqGOL306OuVQXIwW0BQFP7jmAPPA3i5oG1lcXITP56PAgliF4BERutlnFfqzBCJer1eS5w4QDIgDgQBcLhfi4uIkr0dyYBEfHy9+0UrNCkRFRUkOFljLVYQWokItNMdxVPJCrElERASUSiXs9qPx5o/YGiqVClqtFqOjo3u9FGKfMjo6ioTMYnClzwUPOOeA/l8z3aM69Ti00VoAQOPUTZjdZvHcUSyHAgBOd0Yc8yEeHwcdu90OpVLJ9KaYOBoIJXKCR0QgEGAOLFj0OyzXCnt9p9OJ+Ph4yeuRHFikp6fDZDKB4zjJm3elUgmv1yupfEoIFKRmQ4T/MKGBCwUWxL2IjY2lwIKQTF5eHsbGxphKP4mjgd/vx9jYGPLz84Ha310+cftFpvvIOBk+kvdE8J68D++PXVg+ubIc6hCKmdckuQpQLJVczHeA91j2dj3bhN1uZ+qqQxwdVm70hT2t1M0/z/OS9Tt+vx8+n09y0OJ2u8FxHMxmM9LT0yXNARgDC6PRyFRuFBkZKTkQUSqV4l9aCjKZDJGRkWH3JiM04l7ExsbC4TgiX87ElklJSUFUVBT0ev1eL4XYZ+j1ekRFRSE5ORnIfxSIzwmeGHwHsEww3euxpcACWKsc6tjSpyNUDiWLANKXtCt8AJhu2tsFbRMUWBD3YmVQ4Ha7ERkZCZlM2vbc6/Wu0mis9yyO4xAZGSl5bTKZDAsLCzsXWCwsLIgPkwLHcZI9BCIiIiCXyzdVDiVAfgXEvYiJiaGMBSEZjuOQn5+PoaGhQyUiJbYGz/MYHBxEfn5+cPMvkwE1XxDOAnf+L9P9ShLLkB2XCwC4Y2jFrGO5G1lYOdRs29YWfoDgdKcBBMtC+Okb4PmD3/rZ4XBQYEGsycqyJ9buYWtpNNa7NrTsSsr1AGA0Gnc2sOB5nllkLeV6liAk9N4rMxYUWBBrQaVQBCtZWVnw+/2YmGB7C00cXiYmJhAIBJCdnb18sOb/gbARxp0fAgHp5XMcx4lZCx48Loy+s3xSnQ1EJQTH5v4jUw7FKROBpPLgB48ZWOje0/VsB3a7nYTbxJqsVQrFKtyWGiyweqkIDZt2NGPh9XphsVjgcrkkP4Bls88aGKwMRCiwIO6FUApFb58JqcjlcpSWlqK3t5e0FgT8fj96e3tRWloaXqYQnwUUPh4cW8aB4feZ7htaDrXaLO948AN/dMqhgNWtZw8yQqtZylgQa7FWKRRrxoJFM8F6b4vFAq/XuzOBhVqtRkxMDIxGI1Mbxp0MLChjQUglOjoaPM8zBcUEkZmZCYVCQR2iCIyOjkKhUCAzM3P1yS2IuHPj81CSWAYA6F7owrh12UOFE3UWR6s7FBJLl7M1xl7wroW9Xc8WcLlc4Hke0dHRe70UYh+yVmDBmlWQej1rNsTpdMJoNCI2NpYpMJYcWACAVquF2Wze0YzFVsqsSLxN3AuZTIbo6GgqhyKY4DgO5eXl6O/vl+zJQxw+vF4v+vv7UV5evnbJQfHTQExqcNz7OuCYZ7r/vbIWiMsBojTBsekIlUNxspDWszz46Rt7up6tYLfbER0dLVmMSxwt9nPGwuVywWw2Q6vVSp4DMAYW6enpsFgsTJt3Ft3EVjMWUVFR8Pl85L5NrElcXBysVuteL4M4YKSmpkKtVmNwcHCvl0LsEYODg1Cr1UhNTV37gohI4Njng+OAF7j7I6b7fyT3cXH87sjbYslmWHcoPgDMdzKv/cCSfgrg5MHxdCN4/8E0OLVYLEzmYsTRQbBj2EpgwZKF2My9LRYLUxkUwBhY6HQ6mM1mJgdjlizCVsXbLO1tiaNHfHw8zGbzXi+DOGAIWYuhoSH63XIEcbvdGBoaune2QqD2d5bHt18EGPRcabHpOJ5aCwAYsQxjwNQvnjuyZnmR6uWgyusAZm/v7YI2icViYTIXI44OHo8HMpkszAl7pzMWLGVWi4uLMJvN0Ol0kucAjIFFRkYGjEYjAoGA5KzATmssQk31yH2bWA+NRkOBBbEpEhMTkZaWhvb2dmoAcITgeR7t7e1IT09HYmLi+hcnlwDZ9wfHc92AvpHpWaHlUO+M/Gb5RFg5VN+RKYcCAC7zQXHM6z88kD97ZrMZGo1mr5dB7EOEjb7wwkLourqTrttS7y34Y5hMJmRkZEheD7CJjIXJZBIXKAWlUonFxUUEAhv3ot5MV6iV7W9JZ0HcC41GA4fDQbXyxKaoqqqCyWQi07wjhF6vh8lkQlVVlbQJWxBxP5r7Eci5YC/6d4Z/A/9S21qOkwEpNcGL+AAwd5fpvgcZLi4nGFgBgGMKMB+sckSv1wuHw0GBBbEmKzf6rK7ba93jXvj9fni9XsmBhcfjAcdxMJlMO5uxSE9Ph8lkYjKyE/4D7YT7tlwuh0KhIJM8QhJRUVFQKpWwWCx7vRTiABIVFYXq6mp0dHTQ75gjgNvtRkdHB44dOybZqRblnwSilurpO38KuKVruhKUibgvM5jxmHXOomXmlniOS60Rx/wBLQnaLFxGaNbiyh6uhB2z2QyVSsW0USSODmuZ4ykUCsjlcknz19JorPcsQHrQIrhus5rjAZsILHbSfVuhUEAmk1HLWWLHoHIoYivodDqkpqZSSdQhRyiB0mq1bF+qkTFA1WeDY68zGFww8GT+M+L4N0NvLp9QZwHK5ODYPAjec4RejqQcAyKXNAoLXeBdbB239hLSVxDrsdWOUGtpNNZ7VmjZlZTrAXbXbWATpVDz8/Obct+WstnfDvdtlUpFXgXEPdFoNJSxILZEdXU1lUQdcphLoEKp/eLyuPX7TFMfyHoQ6kg1AODS+EU4vUHPKI7jADFrwQNz7ezrOqBwMjm4jCXtCnjwk1f3dD0skL6CWA+Xy7WqFGozwm2prtus9+Z5HvPz8ztfCuXxeGCz2Zi9LKQGIqwZh+joaDgcy2K22NhY8iog7gllLIitEhkZiWPHjqGjo4NeYhxCXC4XewlUKLpaIP1EcDx9G5hqlTw1Sh6F80utZ90+Fy6NXxTPcUtdowCAn73Dvq6DTPppQLb0Vna6CbzvYFQlUGBBrIfdbg8znnM4HIiJiZE8f6eE28L1VqsVHo9nZzMW8fHxiIqKgslk2jGTPNaMw8pAQvhMZQrEWsTHx8Nut5OAm9gS6enp0Ol0uHXrFvx+/14vh9gm/H4/mpqaoNPpmL9Mw6j7z8vjFrasxVMFHxXHbw39ShxzselAdFrwg3UEvNu4+fUdMLjIWCB1KVjzu4EQ/cl+hYTbxHrwPL8qsLDb7UyBhcvlgkqlknTtZly3TSYTlEolsw8LU2DBcRy0Wi1MJhOcTqfkeSyBRWxsbFgGgvX6mJgY+P1+6gxFrIlSqSQBN7EtVFVVQSaToa2tjV5kHAJ4nsedO3cgl8s3VwIVSuVngKWSJnT8hEnEXZ1yDJnqLABA8/QtGBwz4rnQrAVm27a2xgMGl3lWHPP6K+D5jTtN7iUWiwVKpZKE28SauN1u+P3+sEBiZaCxESzXryy7knK94LotVZchwOwxn56eDrPZzLRxj4mJkRwsxMTEMJUyCdcLX+xyuRwqlYrKoYh7kpCQAKPx6LztI3YGuVyO+vp6zM/Pkyv3IWBgYABGoxH19fWSu7Lck6hYoPq3g2OvIxhcSITjODxVEBRx8+Dx9nCIp8VR7g4VqwMSSoIf3AvAfMfeLmgDjEYjEhIS9noZxD7F4XBApVKJv2t4nofD4WAKLFiuZy2z8ng8MJvNm8rcMgcW2dnZWFhYCDOm2wiWYIFVIxETEwOe58PKp0hnQaxHcnKy2N2MILaCUqlEQ0MD+vr6MDMzs/EEYl8yMzOD/v5+nDx5kumt3rqcCCmHav0+kxP3E/lPi+O3ht5cNoGNTgl2iAIAux6807AtSz0ocFnnxDE/fmlfZwrn5+eRnJy818sg9ikrsw0ulws8zyM6OprpHlKDBZYghOd5uN1uLCwsIDs7W/J6BJgDi9LSUszMzCAQCDCVN3k8Hkl17SzXAoBMJkN0dHRYIMGSISGOHkJgIcW0kSA2QqPRoKamBq2trbBapZe8EPsDq9WK1tZW1NTUbG89fPpxQFcfHM+0AVMtkqdmqrNQs1T2NGwZQq+xWzwXJuI2SBeGHwoSSoCYpQ41tjHAOrK367kHgUAARqORAgvinqylr4iOjoZMJm1b7vV64fF4JAULwrVSgxChI9T09DRKS0slzQmFObAoLi7G5OQk5HK55KxAZGQkIiMjJV0vXLsVnQVlLIj1UKvVkMvl1B2K2DYyMjKQn5+PpqYm6hR1gHC5XGhqakJ+fj4yMjK2/wHbJOIO87RIrQWwVPNsaN3Xb+23G47jVmUt9iNmsxlyuRxqtXqvl0LsU1aWJm1GXyHsl7fzWuF6uVyOyclJFBcXS16TAHNgUVJSIvZvZ9m8s4iyN6uzCH0WBRbEveA4DklJSZifPzhGS8T+p7S0FCkpKbh+/TqZdB4A3G43rl+/jpSUlE29lZNE5fMhTtwvA27pTSMeyT2PSFlwI/DO8FvwBYJZfC4qHkhY+rJ3LwDW0e1c8f4ntSbcMG8floPNz88jKSmJWfRKHB3WajW7U/qKzQQtQNDPp6SkRPI8AebAoqioCCaTCRaLZUub//VgDQzWajnrcDio1IW4J8nJyRRYENsKx3E4duwYEhIScOPGDepMt4/xeDy4ceMGEhIScOzYsZ3bAEbGANUvBMdeJ5OIWx0Zhwezg2/nzR4TbkxeF89x2hPi+KiVQ3GyCHCZDy594sFPXNnT9awF6SuI9QgEAqsCA9ZWszulrxDubTabYTabUVRUJHmeAHNgodFokJycjKmpKaZ6YpZggVUjsTIbIvT1pZIE4l4kJyfDaDRS8ElsKxzHoaamBmq1mjIX+xQhU6FWq1FTU7Pzb5VPrCiHYihdCve0CCmHSq5eNoybvQM+4NvqKg8WutOAfKmNq6EZ/KJtb9cTAukriI0Q7BpChdo72WqWNWixWCyYnp5GSkoK4uPjJc8TYA4sgGDWwmAwbCmrsF3XCteHZihkMhlzORVxtCCdBbFTyGQynDhxAvHx8bh27Rq94NhHuFwuXLt2DfHx8Thx4oRkoeSWSKsGMk8Fx4Z2QN8keeop3WkkKhMBAB9OfACrJ1hKxUUogeTK4EU+B2Ds3c4V73u4CBWQfib4IeAFP3ltbxcUAukriI0Q9BXCSw2/3w+n07mjgQVrmZXBYNhUtgLYZGBRWlqK6elpuN1uyW98hc2/FKEZq3u2UqmEXC4nATchGdJZEDuJTCZDbW0tkpOTce3aNeoWtQ+wWq24du0akpOTUVtbuztBhUBY1uJ7kqdFyBR4LO9JAMBiYBEXxy6I5zhtnTg+auVQwJJhHrf0/+HkNfC+/VF6SPoKYiNWbvSdTifkcrnkVteC54WULMRaDt/rIXR83WxHKGCTgUVJSQmmp6fBcZxkB+6YmBj4fD5Jdccs1wLBTSIJuAlWSGdB7CSC5iIzMxNXr14ln4s9ZGZmBlevXkVmZubOairuReWnAeWSWVrnK4BD+u+de3aHSigFFEsbi4VO8L6jVXbHKROWOmQhmLWZvrG3C1qC9BXERqzVajY0g7ERHo8HPp9PUmDh8XhWOXyvh8PhAMdxmJqa2pRwG9hkYCG0nJXJZJI37yyO2BEREVAqlVvSWZCXBbERKSkpWFhYgM93xOqTiV2D4ziUlZXh+PHjaGlpwcDAwJFqD7rX8DyP/v5+tLS04Pjx4ygrK9ubN8kKFVDzheDY7wHa/q/kqSWJpSjQFAIA2mfvQG+dAABwMjmQsuTEHfACc+3buuSDAJf9qDjmJy6D90vzv9opfD4fFhYWkJKSsqfrIPY3awUWrGVQKpUKERERkq8VHL43wuFwQCaTbbrVLLCFwGJiYkJMsUiFpeXsZhy4KWNBsBAbGwuVSoW5ubm9XgpxyMnIyMD999+PkZER3L59G36/f6+XdOjx+/1obW3F6Ogo7r///p3xqWAhzNPinwCJZcQcx4VnLYaXsxZHvhwqJi0oZAeARSswc2tP1zM3NweVSsW0SSSOHivLmDbTalZqBmIzQUsgEMDExMTuBhYFBQVwu92Yn5+HzSa9G8Nut5x1uVz0Npq4JxzHIS0tjUpUiF1Bo9Hg7NmzcDqdJOreYVwuF65evQqXy4WzZ89ur6P2ZkkqAgo+EhybhoGhC+tfH8LjeU+CWzLFe2vozeWsV1wOoFwquzEPgPdI98k4LHA558UxP/E++MDeBe0zMzNIS0sjfQVxT3w+H1wu15Zbze6UcNtms2F+fh4ejwcFBQWS54WyqcBCqVQiMzNzR1vObjWwiIqKQmRkJFPgQxw90tLSYDAYqDyF2BWUSiXOnDmD+Ph4XL58Wcz8EtsDz/OYmJjA5cuXodFocObMGcmCyF2h/kvL4+Z/lDwtNUaLk+nBzlKTdj3a59oABF+OQPS04IHZ29u00IMDp84K6k0AwG3cs/8GPM+LgQVB3Aur1YrIyEhERUWJx3ay1SxLdkNY39TUFLKyssLWyMKm22IUFxfDYDAw6yB2yssiLi4OHo9H7BvPcRzi4+OpnSixLomJiQgEAjCZTHu9FOKIIJfLcfz4cdTU1KCrqwu3bt0iv4ttwO1249atW+jq6kJNTQ2OHz8uua541yh6CojLCo77fw2YRiVPfargGXH8m6FfiePwcqiWLS/xIBKWtRi/CJ7ffX8ik8kEnueRmJi4688mDg4WiwXx8fFiVsvlcsHj8SAuLk7yPXaj1exmy6CALQQWQstZr9crudxICBaktKhldc+OiIhAbGxsWCCh0WgosCDWRSaTQavVUjkUseukp6fj4YcfRkREBC5dukTZi00iZCkuXbqEiIgIPPzww0hPT9/rZa2NPCJEa8EDrT+QPPVc9iNQRQTNX98beRcef7BrIhedAqizgxfZJ8E7prdzxQcCTlMAxOcHPzgNwHzHrq9hZmYGWq12d9sYEwcOs9kcVpppsVgQGxsrSYgNBNvBOp1OSVmItRy+18Pn88Hr9W6p1SywhcCipKQEU1NT4DhOcmZBcBmUUlsstN5iKYdaGUhoNBpYLEev5pRgg3QWxF4RGRmJEydOUPZik6zMUpw4cQKRkZF7vaz1qfmdZdfs2y8CEv0XVIpoPLL0Zt7uteHqxAfiuaMu4gYALjskazH23q4H6VQGRUhhZWCx8vNG2Gw20WJhIwQ7CJVKJenedrt9y61mgS2WQun1eqaWs4IjthTdw2ZKmVYGEvHx8bBardSBhViX1NRU2O12ak9M7Bmh2YuLFy+ip6cHXu/ets7cz3i9XvT09ODixYv7P0uxEnUaUPbx4Ng5B/T8UvLUe3papNZA/Do3tO5JKdCek1gKxGYGx3b9rrqROxwO2O12pKam7toziYOH3++HzWZblbFgCSzMZnNYKdV6CKJwqVm07Wg1C2wxsJicnITP52PKKsTHx0vOIrCWMq0MRKKjoxEREUGut8S6KBQKJCUlUdaC2FOE7MWZM2ewsLCAixcvYmhoiF6MhOD3+zE4OIiLFy9iYWEBZ86cORhZipVsUsR9Iq0e2pjgW/Ebk9dgdC0AALhIdXBjDQAeE2AZ2balHhQ4jluhtXhv1549MzOD5ORkKBSKXXsmcfCwWq2IiIgIyyCwZixYAhFBzyEVu90Or9eLqampvQkssrOzIZPJMD09zbRxZwkWWDMW8fHxcLvdYQJu0lkQUqByKGK/kJiYiPvuuw+1tbUYHx/H+++/j/Hx8SOtv+B5XvxvMTExgdraWtx3330HVyib8wCQUhEcj18DZu5KmibjZHgy/2kAgJ/3463hX4vnOLE71NEVcSO5CojWBseWYfDmoV15LJVBEVIQgggh2yDsV1k2/yyByGaClunpaXAch6ysLMnzVrLpwEIul6OsrAzj4+NMHXVYMxZWq1WygFuhUCA2NnZVORTpLIiN0Ol0WFhYoPp2Yl/AcRy0Wi0eeughlJWVoa+vD5cvX8bY2NiRymD4/X6MjY3h0qVL6OvrQ1lZGR566CFotdqD7RXAceFZi5bvSZ76dMGz4vhXA68tB5zJlYBsKXMze2fPXaj3Ao6Thbtxj7274890u91YWFg4OKV4xJ6xMttgNpuZhdtWq1VyIMIaWJjNZkxMTKC8vHxLHfW21L6gvr4eIyMjTEZ0Go1GbK+1EWq1GgCYS62oMxTBikqlQlJSEiYnJ/d6KQQhIrw5evjhh5Gfn4+hoSFcuHAB3d3dojDvMOJ0OtHd3Y0LFy5gaGgIBQUFeOSRR5CVlXWwA4pQql8AIpe6tbT/CHBLy/znxOeiJrUWADBsGULnfDDbwcmjgJRjwYv8bmBh9zsj7QtSawFlUnBs6t/xrMXk5CSSkpIkC2SJo4ugjxBg1VcIe2Fhb7wegv2C1CBEMO4bGRlBfX295DWtxZYCi7q6OgwNDUEmk0nOCigUCsTExEja7G9WwL0ysCABNyGFzMxM6PX6vV4GQaxCLpcjNzcX586dQ11dHWw2Gy5evIibN29iampKclZ3PxMIBDA1NYWbN2/i4sWLsNlsqKurw7lz55Cbm3v42ngq44LBBQB4HcDdH0me+mzRx8XxGwOviWMu7aQ45mdubX2NBxBOJgeX8xHxMz/69o4+T6/XIzMzc0efQRx8/H4/rFbrqowFaxmUVOG22WxGTEyMZN2PxWKBTCbD4OAg6urqNp6wDlv6TX3ixAn09/cDwJZE1tt1LbA6sBAE3OTATWyETqeD1WqlfyvEvoXjOKSkpKChoQHnz59HYmIiurq68M4776C1tRWTk5MHqpuU1+vF5OQkWltb8c4776CrqwuJiYk4f/48GhoakJKScngyFGtR93vL4+Z/BCTqaB7JOY8YRbDd5IWRt+H0LmWvNAWAckl3YuwD7zFv42IPENo6QJUcHJsHwZsGduQxNpsNVqsVOp1uR+5PHB4E4bZguwBsrlRpp/QVwr55YGAAJ06cWP/iDdhSYFFVVQWn04np6WkmnQWLvwSrF4Ug4BZKrciBm5CKQqGAVqulrAVxIFCpVCgpKcGjjz6KU6dOQaVSoa+vD2+//TZu3LiB4eHhfVku5XQ6MTw8jBs3buDtt99GX18fVCoVTp06hUcffRQlJSVHp6wkrRrIvj84nusGxq5KmqZSROMjuY8DAJw+J94bDWoJOE4GaIUyBh44oiLuYNbicfEzP/LWjjQ/0Ov10Gq11A2K2JCVjtubFW6z6CtY7m0ymTA9PQ2n04nKykrJ89ZCmmLkHiiVSpSWlmJkZAR5eXmS52k0GoyMSGuHp9FocPfuXfA8L+nNVWiplVarFe9BgQUhhczMTHR1daG0tPRwvyklDg0cxyExMRGJiYkoLy+Hw+HAzMwMpqen0dnZiejoaGg0Gmg0GsTHx0Oj0ezaRsjr9cJsNsNiscBsNsNsNsPpdCIpKQlpaWk4duyYJKOnQ039l4KdoYBg1iL3rKRpzxZ9HK8N/AIA8MbAL/Fs0ccAAFxavSha5mduAVmPHM3fZdpaYPy9oBO3dQQw9QKJZdt2e57nodfrt7wJI44Gazlus5QqCcJtllaz+fn5ktdnNBoxMjKCsrIyKJVKyfPWYkuBBbAs4HY6nfD5fJLU7fHx8aKAOyoqat1rBStym82GuLg4SWsSAonQwGJgYGdSocThQqvVoq2tDSaT6eC2siSONDExMSgoKEBBQQG8Xi+MRiPMZjMWFhYwNDQEt9uNmJgYaDQaqNVqKJVK8U9UVBSioqIkb0R5nofH4xGFgsIfm80Gs9kMh8MBlUolBjRZWVlITEykN7yhlH0ciEkFHLNAzy8A2zSg3rjDUEVyFfI1hRg2D+LuXBtGzMPI0+SDUyWDjy8ALEOAcxawjQFxuTv/99hncJwMyH0cfPe/AQD4kbeBhO17YWQymeD1eskUj5CE2WxGUVFR2OedFG67XC7J999O4TawDYFFXV0d/vVf/xUymQxWq1XSZiwyMhLR0dGwWCwb/lDKZDLExcXBYrEwBRYLCwvi5/j4eNhsNgQCgcMnACS2FblcDp1OB71eT4EFceARyvuElyxA8EtHyB7Y7XbMz8+LgYHX6wXHcWEBhkwmEzdjPM8jEAiEBRQ8z0OhUIiBiVKphFqtRlZWFjQazYYvj448EVFA7e8CV/8CCPiAlu8D5/58w2kcx+HZwo/hb1r+GgDwq8HX8NW6/x48l3YSvCXYDYmfaQZ3BAMLAMEuWTHpgGMasI0DC91AcsW23HpiYgI6nW5LbTmJo8G9hNtJSUmS78Ei3GbNhgjC7aGhIXzhC1+QvKZ7seXA4sSJE/j6178OIPgXl7oZE7IKUqJ94Vqphh3x8fEYHh4WPwuW5ixpJOLokpmZiebmZlRWVlIgShw6oqKiVgUbAn6/X8w6LC4uhgUSAMICjcjISDHTQZurLVL3/wLXvgnwfqDln4AHvg5EbOwm/lTBM/i7238DX8CH3wz9Cv+l9iuIkCmCG+qBXwCBRWD2NviC58DJj16WKJi1eAJ8178AWOoQlVS+5ayF0MFsO97uEocfm822pnC7oKBA8j1YXLQ3020KAPr7+7cs3Aa2KN4GgOrqatjtdszMzMBoNEqex6J7YNVIrPTKIAdugoWkpCTI5XLMzs7u9VIIYleRy+WIiYlBUlIS0tPTodPpkJmZiaysLGRlZSEzMxM6nQ7p6elISkpCTEwMBRXbQXxWsCQKABwGoPtnkqZplAl4MOscAMDoNuLqxIcAAC5Cuexp4XMBC53bvuQDQ3IVELvUDtauB+a37u9hMBggl8uZ3jgTRxeTyRSWbWD1mAB2tiNUqHC7urpa8rx7seXAQqVSiQLunXTgtlgskrs6CALu0PUkJSVhfn5e8vqIowvHccjOzsbo6OheL4UgiKNCw1eWx01/K3lamKfF4C/FMZe2/Db9qHpaAMHf51zeE+JnfvRt8PzWfF/GxsaQnZ19NEXxBDMLCwtITk4WP5tMJqZSJZ7nmcz0NhNYjIyMoLS0dMvCbWAbAgsgKOAeHR0VBdxS0Gg0cDqdWFxc3PBaQcDN4sCdnJwcprNITk7G/Pz8jrScIw4fOTk5mJ2d3ZftOgmCOIRk3wek1QTHk7cAfZOkaQ3pp6GNSQMA3Ji8hlmHIXhCUwhEJQTHxl7wHult2w8dieWAOic4dkwDc+2bvpXT6cTs7CxycnK2aXHEYYbneczPz4dlt+bn58MCjY0QvLWEvfB6LC4uwuVyMTluO51OjI6Obltp37YEFqEO3FarVdIcQcAtpTxJEHCzlDKtzFAkJCTA6/XC4XBIvgdxdFGpVNBqtRgbG9vrpRAEcRTguE1lLeQyOZ4peBYAEOAD+PXQr5ZuJwPSQjwtZpq3c7UHitVZi3c2nbUYGxuDVqs9Ol4rxJaw2+3wer1ISEgQj7EGFkLzIimaT7PZjOjoaERGbqzRAoLGfYJwe6uO2wLbElicOHFCbOe6FZfs9UhISGDScCQnJ8NsNosutHK5HImJiVQORUgmNzcXY2NjCAS2ljYnCIKQROXzQPTShqPrVcA6JWnaM4XPieNfDb6GwNKmmUs7KR7nZ5qOdsY+oQSIX+rr7zRsyjwwEAhgbGwMubm527s24tCysLCAxMREUYvm9XphsViY9DlGozEsMFmPvXTcFtiWwOLYsWOwWq0wGAxMm38WnYVQyiQVlUqFmJiYNcuhCEIKqampkMvlmJmZ2eulEARxFFAogRP/OTgO+IDW70ualqHOxMn0BgCA3jaB24ZWAACnSgY0S73zXXOAZfhetzj0BLMWT4qf+ZG3wfu9TPeYmZmBXC4n7wpCMiuzEwsLC4iJiWHKeLFkOFgDC6PRCIPBAJvNti3CbWCbAguVSoWSkhJmAXdCQoLk65OSkmC32+F2uyXff6XOQiiPOtJvbQjJcByH3NxcyS7xBEEQW6b+9wBuqdNWyz8BPo+kaR8tXBZxv9a/3FWKSz8ljvnpm9uzxgMKpylcdt/2mIDJq0zzh4eHkZubS6JtQhKCviI0KGAtg3K73bDb7ZIyHDzPb0m4vV3lfdvWpL+urk4UcPv9fklzEhIS4Ha7JQlkIyMjER8fHxYobMS9dBYsInDiaJOTkwOj0ShZO0QQBLEl4jKA8k8Gx47ZYEmUBB7OeRSaJbH2+2PvweReqh5IrgIiljYMc+3gfa7tXvGBgst/BsCS4eP4RfBeaQ06LBYLzGYzibYJyQj6itCNPmtgsbCwgPj4eEmaCafTCbfbLblsShBub5fjtsC2BRb19fWigFtqeVNERAQSEhIklyextoy9l86CJTghjjaRkZHIzMykrAVBELtHw5eXx43fBSRk2SPlkXimMCji9gV8eHPwDQAAJ48EUpdqpwNewHB725d7kOBidYB2SaTqc4Ifvyhp3sjICDIyMiSLYglifn5+y/oKlkBkfn4eCQkJiIiQ5n29E8JtYJsDi97eXgQCASadBUuwQDoLYi/Iy8vDxMSEpNbIBEEQWybrDJBeGxxPtwL6RknTPlb8SXH8Wv/Pl0XcoeVQM9LudZjh8p4EuKXNl/5D8O71S7IXFxeh1+uRn5+/C6sjDgsr/Ss2q6+QGoisfN5GGI1GBAIB9PX17c/Aora2Fl6vF2NjY0yOxSwbfdJZEHuBRqOBRqMhwzyCIHaHTbaezY7LEUXcE7ZxtCwZ43HqzGX3adsEePvkti73oMEpE4DMs8EPvA/8yFvrXj86OgqNRsPklEwcbfZCX8EShABBB/nR0VH4fD7U1tZKnrcR2xZYKBQKnDlzBr29vTAajZI37omJiTuqs1gZuJDOgtgMhYWFGB4elqwfIgiC2BIVnwaiU4Lj7p8DVmnBwMeLf0sc/6JvWZ8RLuKmrAWX/eiy9sTQAt6+dmtfv9+P4eFhFBUV7eLqiIPOdugr5ufnmfUViYmJku7N8zyMRiN6e3tx5swZyS7gUti2wAIAHnnkEXR1dSEQCOwbnUVSUhLpLIgto9VqERUVhfHx8b1eCkEQRwGFEqgLaT3b8k+Spj2Y9TASlcHNxQfjlzHvWvq+TK0FZEubB0Mrc6vVwwaniAaXfX7pEw9++NdrXjc2NoaoqChqMUswsR36CpbSJlZ9hcViAc/z6OrqwiOPPCJ5TVLY1sDioYceQnt7u5iSkQrpLIj9DsdxKCoqwuDgIBnmEQSxO9T9v4BsaaPQ8n3Au3EZsEKuwEcLPwYA8PM+vDn4OoDgRhopx4IX+ZzAfMdOrPhgkfEAEKUJjo3d4E0DYacDgQAGBwdRVFRELWYJJnbbv4JVXyFIAtrb2/HQQw9JnieFbQ0sTpw4Aa/Xi9HR0U3pLKSUT21WZxEaSLA8jyAEdDodAGBy8mjXJxMEsUuEtp51zgFdr0ia9lzxJ8AttVQNE3GnNYjXUDkUwMkV4aZ5w2+G7QsmJychk8nE3/0EIQWe51dt9PervsLv92+rvgLY5sDioOgsNBoN6SwIZmQyGYqKijAwMEBBKUEQu0OoiFti69lMdRZO6c4AAKbsk2icuhE8oSkEVEubG3M/eBeVBENbB8SkB8e2cWCuDUBwszYwMIDCwkLIZNu6VSIOOXa7HT6fb1v0FVK0D/tJXwFsc2AB7I7OgrWUKSkpCRaLZZXOgsqhCFaysrKwuLiImZmZvV4KQRBHgcxTgG6pFeTMHWDihqRpoSLuX/YFnbg5jqOsxQo4TrZkmheEH3kLfMCPmZkZLC4uIisraw9XRxxEBL3DSn0FqzHeQdRXADsQWDz00EO4e/fupnQWUrMQrALutXQWqampMBgMku9BEEAwKC0oKKCsBUEQu8Oq1rN/J2naA1lnkaIKCo6v6q9gzrlUnpx2EuJX/0wT+AB1ukNiGRBfEBy75sDP3EJ/fz8KCwvFzSFBSMVgMISJ/RcWFhAbGwulUin5HqzGeKzZEAA7oq8AdiCwCNVZsGzcd1pnsTKQSEtLw9zcHHw+n+R7EAQA5Obmwm63U8aLIIjdoeJTQMzSRqX754BFv+GUCJkCzxYJIm4/3hj4JQCAi4oHkiuDFy1agYXOHVnyQYLjOHD5T4uf/cNvweWwIicnZw9XRRxEfD4f5ubmkJaWJh4zGAxISUmRfA9WfcXCwgKzvmJkZGRH9BXADgQWoToLk8m0b3QWaWlpMBgM4npiY2OhUqkwNzcn+R4EAQT/jefl5aG/v3+vl0IQxFEgIirYIQoAeL/k1rPPFX0CMi74Nf/awC/gX8pOcEv6CwDgp6SVVh12uPg8IKkCACD32XA81bHttefE4Wdubg4qlQqxsbEAghv/mZmZsEBjI3ZSXxEIBHZUXwHsQGAB7F+dxeLiIqxWK4DgG4q0tDSqlSc2RUFBASwWC1P3M4IgiE0T2nq2VVrr2bTYdNyX8QAAwOCYwY3Ja8ETCcWAcukNp6kPvIuyrwDA5T0ljlNkVCpNsCMEEUJ7YovFAp/PdyT8KwR2JLDYrM4iOTlZchYiOTkZs7OzkjMicrkcqampYYHEyiwGQUglMjISRUVF6O7upn8/BEHsPOr0YEkUADjngY4fS5oWJuLuF0TcMnC60+Jxfurm9q3zAMMLnhYAOPnGbscEEQrP8zAYDGHZiZmZGaSmpkrW6vA8j9nZ2R3TVwh77J3SVwA7FFicOHECPp+PWWchiLKlbNRSUlLg8Xhgs9kk339lhiIxMRGBQAAmk0nyPQhCID8/Hx6PB1NTU3u9FIIgjgINX10e3/wbSa1nz2TcD21McKNzffIqZuzTwRNpDQC3tNmZaQIfIL3h7ERIeWtk3N4thDiQmEwmBAKBsLIk1jIom80Gj8cjSZMhvLxnCSwMBgOGh4fh9/tx4sQJyfNY2JHAYjf8LORyOVJSUphKmbRaLSwWC1wuF4CgL4FWq6VyKGJTyOVylJaWoqenh9y4CYLYeTJPAln3BcdzXcDQextOkcvkeK7o4wCAAB/A6wO/AABwkWoguTp4kdcOzN/dkSUfFAKBACZHepYPRMXv3WKIA8nMzAy0Wq3oe+JyuWC1WqHVapnukZKSIinD4XQ64fF4kJCQIOneofqK++67T3L5FCs75voi6Cx4nmfSWSQmJkquW2fVSERFRSEhIWFVdyhqO0tslqysLHAch7Gxsb1eCkEQR4HTf7A8vvktSVOeLfw45EvZidcHfglfIOjpFC7iPtrlUGNjY4jiPOJnLpICC4KNldmJmZkZJCYmIjJSelkdS4ZjdnYWiYmJzPqKzs7OHdNXADsYWDz00ENob28HACadBUuwoNVqYTabmdrOrrx/amoqbDYbHA6H5HsQhIBMJkNZWRn6+vqodTFBEDtP6bNAQn5wPHQBMGzcLjY1RouzWecAAPOuOVwefz94QlMIqJZKLswD4J1H8yWbz+dDX18fslJDyp+iqBSKkI7D4YDdbg/zr1ipt9gIt9sNs9ksOcPBWmYl6Cs6Ojp2TF8B7GBgUVtbC7/fj5GREaaMQFpaGubn50WX7PVQKpXQaDTM9w/1r1AoFEhKSqJyKGLTpKenIzo6GsPDw3u9FIIgDjsyOXDq95c/N/6NpGmfKn1eHL/a8zKAJf8GylpgaGgI0dHRUEeFlG1TxoJgYGZmBsnJyWL7VsHPgqUMymAwQKPRSDLS83q9mJ+fZwosQvUVO+FfIbBjgYWgs+ju7obRaITfL83dMzY2FtHR0ZL9JVjLodbyr6ByKGIrcByH8vJyDAwMYHFxca+XQxDEYef4/7OsAbj7EmDf+PurLu0k8uKDmY47s7cxYOwLnkg7CXBLpRQzt8D7N36pd5hYXFzE4OAgysvLAY91+QRpLAgGBH2FgOBnoVarme4hNVCYm5tDdHS06JexEX6/H0ajET09Pbj//vt3TF8B7GBgAQBPP/00WlpaAIDZzE5qsCBkIKQGLmv5V7BkSQhiLZKTk5GYmIi+vr69XgpBEIedqFig7j8Hx/5FoPkfN5zCcRx+KzRr0ffT4HFFDJB6PHjQ5wTm2rd7tfuavr4+JCYmBjvrLIboQSOlbwiJo43X68XCwsIqfUV6errke/j9/lWO3eux2TKolpYWPPXUUxtcvTV2NLB45plncPfuXdjtdqaWnCz+Emq1GlFRUUwO2ivvHxMTg9jYWDI7I7ZERUUFRkdHRRNGgiCIHePkl5cN85r/EfC6NpzyVMFHEaOIAQC8Pfwb2BaXDGPTQ8qhpo+OE7fVasXo6CgqKoKO2/AsBRaKWHCynXujSxwuDAYDYmNjERMT/NkS3LZZyqDm5uYQFRUlKcOxll/GRkxNTcFms+Hu3bt45plnJM/bDDsaWOTl5aGoqAhtbW2Ynp6W3HZWaJ1lNBo3vFbIQLCUMq3lX0Eu3MRWiYuLQ15enmgOSRAEsWPEZ4Yb5t19acMpMYoYPJkf3FS4fS68OfjG0r3ygOilTYplGLxjeidWvK/geR53795Ffn4+4uLigr+zlwIt8rAgWFi5yTeZTOB5PszPYiNWOnavh7A3lnp/nucxPT2NtrY2FBcXIzc3V/K6NsOOBhYA8Nxzz+H27dvwer2S3+TKZLJVLtnrIXhRSN3MreVfIQQn5EdAbIWSkhI4HA5MTk7u9VIIgjjshLWe/RtAwvfXp0o/I45/3vcKAnxgDRH34c9a6PV6OBwOFBcXBw94HQC/VFJN+gpCIoFAYE237VA/i40QMhwsZVBarVZSEAIEM3Nerxe3b9/Gc889J2nOVtjxwOLZZ59FU1MT/H4/pqelvwVJT0+XHFgkJyfD5/NJ9ssAVmcoEhISIJPJJGVJCOJeKBQKVFRUoLOzkzQ7BEHsLLoTQM6DwfF8DzD07oZT8jT5qE9rAACMW8fQJHSC0tYBsmBHG8w0g/d77nGHg4/X60VXVxcqKirELj7h+goKLAhpGI1GyGSyMJM6Vv2D2WyG3+9HUlKSpOtZ7z89PQ2/349bt27h2WeflTxvs+x4YFFfXw+lUonu7m4mnUVKSgqcTifsdvuG127GQTs1NRV2u130rxBKquhNM7FVMjIyoFarSchNEMTOE5q1uCHNMC80a/FqryDijgZSa4IH/W7AcHvblrjf6Ovrg1qtRkZGxvJBT0hgQR4WhEQmJyeRnp4uZg/W8rPYCJYMh91uh9PpREpKCtMau7q6oFKpUFdXJ3neZtnxwEImk+GZZ57BnTt3YLPZ4HJtLDAD2P0lWAMLhUKB5OTksCxKZmYmJicnqRyK2BIcx6GqqgojIyMk5CYIYmcpfhpILAyOR94HZjbu6vRA1oPQxgTfeF7TX8GkTQ8A4DIeEK/hJ68eSq2Y1WrFyMgIqqqqwktJFpd/V5PrNiGFQCCAyclJZGZmisemp6fD/CykwFoGxXJ/l8sFu92OtrY2PPPMM5LLs7bCzj8BwEc/+lE0NTVBJpMxm9lJvV6r1cJqtUoOXIBgIKHX68XPSUlJiIiIoO5QxJYRhNwdHR2H8suZIIh9gkwGnPpvy59vbmyYFyGLwMeLfwsAwIPHL/pfBQBw6iwgLjd4kWMKsBwu08+Vgu0wwjIWFFgQG2MwGBAREREmop6YmAgLNDbC6XTCZrNJznCwlkEZDAbIZDI0Njbiox/9qOR5W2FXAotHH30Uc3NzGB8fZyo1SktLw8LCgiTTscjISCQmJjJlLdLT02Gz2cS3yhzHITMzExMTE5LvQRD3oqSkBDabjcrrCILYWY5/HlAu1Xh3/ASwbaxn/FjRJ6BY0lS8MfBLuH1uAKuzFoeJycnJcMF2CHyYxoJKoYiN0ev1yMzMFDNfVqsVDoeDyb9iZmYGSUlJiIyM3PDaxcVFGI1GpsBicnISY2NjmJ+fx6OPPip53lbYlcAiJiYGjzzyCO7cuYOFhQX4fD5J86Kjo6FWqyVnLVhbxioUCqSlpYVlLTIzMzEzM0PCW2LLKBQKVFZWorOzkxy5CYLYOSJjgLr/NzgOeIFb/7DhlERVEh7N/QgAwOKx4L3Rd4InUo4BiiU33/m74D3mHVjw7rO4uIjOzs5wwXYo5LpNMOD1ejEzMxOWndDr9UhLS2Mqg2LxozAYDIiLi4NKpZJ0vc/nw8LCAu7cuYNHH30U0dHRkte1FXYlsACC3aFu3boFmUy2KTM7KaSnp2N+fp5pE5eVlQW9Xi+Wq8TFxUGtVjN1sCKIe5GRkQGNRoOOjo69XgpBEIeZk/91uatTy/eAReeGU0JF3D/t+Ql4ng8awwmtZ/kAeKFr1AGno6MDGo0mXLAdipix4JYDK4K4B1NTU1Cr1WJJHc/zYgZDKh6PZ0fdtufm5iCTyXatG5TArgUWTz/9NLq7u2E0Gpk27Sz+EjExMYiPj2cqPUlNTYXf7w9rM7tSe0EQm4XjOBw7dgwGg4EMGAmC2DnidEDVUqDgMgLt/7bhlMrkapQllQMA+ow9aJsNdoIKOnEvbQ+mboAPSKsy2K9MT0/DYDDg2LFj9+79L2QsItXgZPLdWxxxIFkZRCwsLMDv9zN1g5qamkJCQoLo2L0egUAAs7OzzG7bRqMRPT09ePrppyXP2yq7FljodDpUV1czu3BrNBrI5XLMz89Lup41KJDJZNDpdGG6ioyMDMzPzzMJwQniXqhUKlRWVqKtrY1KogiC2DnCRNzfBgL+dS/nOA6fKXtB/Pxyz4+Dx5UaIKUqeNBrA+Y27jS1X1lcXER7ezuqqqruWULC84EQ120qgyLWx+VyYWFhISz7pdfrodPpmLousWQ45ufnERERgfh4af8+BdO9trY2HDt2jEn3sVV2LbAAgi7cra2tCAQCMJlMkuYI/hJS3/ZmZGTAZDKJ/hRSyMrKwtTUFPz+4C9hlUqFpKQkEt0S20ZWVhaVRBEEsbOkHwfyHgmOjYNA7xsbTjmf+ziSVMkAgA/G38eUPfi9Fy7ivrbtS90tOjo6kJCQsP4GbtEGYOllJ3lYEBswOTmJpKQkMVD1+/2YmppCVlaW5Hs4HA6YTCbodDpJ109PTyMtLU2y27bJZEIgEEBLS8uuuG2HsquBxbPPPovm5mYsLi4ylYVkZGRI9peIiopCamoqU9YiISEBCoUirM0slUMR20loSRTpdwiC2DHu+x/L4+vfBDaoDlDIFfitkk8DAAJ8AD9bMsxDfAEQs/SW0zoC3nbwvg8llUABYR4WlLEgNkKv14cFEQaDAQqFIsx9W8o9UlNTERUVteG1gUAAU1NT99YHrcHMzAw8Hg9aWlp2VV8B7HJgUV1djcTERHR0dDBlA5KTk5lE30JQILXcSmgzGxpI6HS6sFa0BLFVVCoVqqqq0N7eTiVRBEHsDAXnAe2x4HjyFjC2ccvYjxf/lth69rX+X8DpdYLjOHAZ94vXHLSsRWgJlFKpXP/iEA8LjjIWxDpYrVbYbLaw0qKVbWc3QhB6S81wzM7OQiaTISkpSfI6Jycn0dnZiaSkJFRVVUmetx3samDBcRyeffZZ3LlzB06nU3K50lob//VIS0uDy+WCxWLZ+OIlVraZXasVLUFslczMTCQkJFBJFEEQOwPHAff94fLn6/9nwymJqiQ8nv8UAMDuteE3Q78KnkitA+RLm/LZVvBe6SXGe42kEiiBMA8LylgQ92ZlS1mv1wuDwcDUDcpiscDlckGr1Up+Jkvg4nA44HQ6cfv2bTz77LOS520XuxpYAMFyqMbGRnAch6mpKcnzMjMzMT09LckDIyIiAjqdjikoUKvVUKvVYWvKzMzE5OQkOScT20ZoSRTLv3+CIAjJVHwKiM8Ojgd+A8x2bThlpYg7wAfARUQB6Q3BgwEvMN20E6vddqampqSVQC3Bk4cFIYG1Mg1TU1OiTYFUBKF3RETEhtcKfhks+o2pqSlwHLerbtuh7Hpgce7cOXi9XnR1dWFsbEzyvPj4eERHR0uuT2cthwKWPS0EtFotvF5vWCtagtgqSqVS7JBGnccIgth25Arg9B8sf77x/9twSnFiCU6k1QMAxq2juDl5HQDA6ULKoaauBzso7WNcLpfYCWfDEiiB0IwFBRbEPTAajfD5fGEtZVm9KwKBANOcmZkZxMTEiH4ZUhgbG0NnZyf8fj/OnTsned52seuBhUKhwPPPP4/r16/D6XQyaRhWbvzXIyUlBQCYzPgyMjKwsLAgbvZkMhkyMjKoHIrYdjIzM5Geno6WlhZJTQkIgiCYqPkdQLkkJr37Y8Cy8ffYZ8p+Wxy/3PMSAICLTgESSoMH3QvAwsbZj71C6IKj0+mYhK5hrttUCkXcA71ej4yMDLGl7FptZzdCsE4Q9qgbMTExwRS4WK1WOJ1OXL9+Hc8//zyTC/h2seuBBQB87nOfw4cffgifzxfmH7ERGRkZmJubg9vt3vBaVl0GEHyTnJycHDZHKIcSWtESxHZRVVUFr9eLvr6+vV4KQRCHjahYoP5LwXHACzR9d8MpD2Q+hIzY4CapceoGRszDAAAu86x4Da+/sv1r3SZ6e3vh9XpRWVnJNlHIWHByQBG9/QsjDjx+vx+Tk5Nhm3y9Xo+UlBTpmTGw6SXcbjfm5+eZAouJiQn4fD5cvXoVn/vc5yTP2072JLA4deoUkpKS0NraivHxccnlStHR0UhMTJTcUSozMxNTU1OSdBmhc0IDi8TERERGRpJrMrHtREREoK6uDkNDQ2GtjgmCILaFhi8D8qV2li3fB9zrNzSRy+T4VOlnxc8/XTLMQ2IpoFoq/zAP7svWs7OzsxgeHkZdXZ2k2vUwhK5QkXHguD3ZFhH7nOnpaURGRiIxMVE8xloG5fP5MDU1JXnOSr+MjeB5HuPj42htbUVSUhIaGhokr2072ZOfII7j8MILL+DatWvw+XxMGgaWcqj4+HioVCoYDAbJ909PT4fD4RA7SnEch9zcXIyOjkq+B0FIJS4uDlVVVbh9+7akTBxBEIRkYrXA8f8YHC/agsHFBjxb9DFERwTf2v966FeweCzgONm+zlq43W7cvn0bVVVVTLXoAMAH/IDXHvxArWaJezA6Oorc3Fwx02CxWOBwOJCWlib5HjMzM1CpVJLds1kDl4WFhbBsxW53gxLYs9D8hRdeQGNjI2w2G8bHxyXP0+l0Yh/hjRDKoVjKrRQKBTIyMsICiaysLBiNRknPJAhWsrOzkZKSgtbWVupARhDE9nLmvwNY2mA0fgfweda9PDZSjWcKnwMAePxuvD7wi+CJtHpgKeDA7O3wTkp7CM/zaG1tRUpKCrKzs9lvQOZ4xAbYbDaYTKawzkyjo6PIyMhg0jCwlEEJPmpSnbkBYHx8HDabDU1NTXjhhRc2nrBD7FlgUVJSgoqKCty6dYtJw6BQKKDVaiVnLTIzMzE7OwuPZ/1fpqHk5uZCr9eLJVRRUVHQ6XRMXawIQiocx6G6uhoulwv9/f17vRyCIA4TSUVA2ceCY/s00PGTDad8uuyz4JaCkVd7X4Yv4AMnjwLSTwcv4P3gp67v1IqZ6O/vh8vlQnV19ebe0FJHKGIDRkdHodPpRJdsr9eLiYkJ5ObmSr6Hx+PB7Oys5AyEXq+HVquVHLj4/X5MTU2hqakJlZWVKC4ulry27WZPiwk///nP48qVK+B5nqnGnKWVbExMDBISEpg8AzQaDWJiYsKCl5ycHIyPj5OIm9gRFAoF6urqMDAwgIWFhb1eDkEQh4n7/sfy+PpfAxt0osuOy8H9S6VPBscMLo1dBIAlJ+6lbcPUdfB+706sVjLz8/MYGBhAfX395rvfhGReuEgqhSLC8fv9q4KIyclJxMbGIiEhQfJ9JicnkZCQgJiYmA2vFfwyWMqgDAYDeJ7HlStX8PnPf17yvJ1gTwOLT3/60+js7ITBYGDKBgj+EiaTSdL1rOVQoboKIXhJSkpCVFQUmZoRO4ZGo0FFRQWam5vJ34IgiO0jswHIfiA4nu8JmuZtwGfKl0spXur6N/A8D06ZAKQcCx702oHZ2zuxWkm4XC60tLSgoqJCcs36moSVQkk3OSOOBpOTk1AqlaJom+d5UW/BAkugYDKZ4PV6JTtzA0HvCoPBgK6uLnz6059mWtt2s6eBRVpaGs6dO4fGxkbMzs7C65X29kMulzM5a2dkZMBisTB5ZmRkZMDhcMBsNgMgETexO+Tm5kKr1eLWrVuUHSMIYvsIzVpc++aGl9enNaA4Mehf0b3QiTuGVgAAl/mgeA2vv7InujC/349bt25Bq9Uyb/BWIQi3AUARu7V7EYeOlaJts9kMh8PB7C1htVol+11MTExAp9NBLpdLut7r9WJubg43b97Eww8/zBSQ7AR73lftc5/7HD744APIZDKmbIDgLyHFXCwyMnKVIHsjFAoFMjMzV4m4LRaL2DGKILYbQW8hk8nQ1tZGYm6CILaHoieBlIrgeOI6MHZ13cs5jsPnKpZLKn7U9W/B4/G5gDoneNAxBZgHd2K194TnebS1tUEmk21eVxF6P69j+QMFFkQIwgvplaLtzMxMppbGgkYjMjJyw2sDgQBTS1oAmJqagkwmw5UrV/bMuyKUPQ8sPvaxj2FqagpDQ0NM5VBJSUmQy+WStRm5ubmicYhUcnNzMTk5KWZShABlZGRE8j0IghW5XI76+nrMz89jcHB3v7QJgjikyGTA/X+0/PnqX2445XzuY9BGB99+XtV/gFHLkmFeVnjWYjcZHBzEwsIC6uvrJb/RXZfQjEUkBRbEMiMjI2Gdn7xeLyYnJ5myZIIRtNQ5s7OzkMvlSEpKkvyM0dFRDA0NYWpqCs8995zkeTvFngcWsbGxePbZZ3Hz5k2YTCbJteUcxyEjI0NyOVRCQgKio6Mlm+sBQR+MuLi4MH1GXl4e9Ho9FhcXJd+HIFhRKpVoaGhAX18fmTMSBLE9VD4PxC9lGwbfBqbvrHt5hEyBz5QvvwH9cde/BwfJx4AoTXC80AXeObcDi13NzMwM+vr6cPLkSSa343VZpIwFsZrFxUXo9Xrk5+eLxyYmJhAXF8ek6ZmcnER0dLRkoffExITklrQA4HQ6YTabcePGDTz33HOIjd37f8N7HlgAwXKoy5cvg+M4JpF1dnY2pqenJbWS3axGIi8vDyMjI2JJikajQXx8PNM6CWIzaDQa1NTUoLW1lTxUCILYOnIFcN8fLn++9lcbTnmu6BOIWdpw/2boTSy45sHJ5EsdogCABz/54Q4sNhyr1YrW1lbU1NRAo9Fs342FjAUnX3YpJ4484+PjiI+PF4MInucxPDyMvLw8pvus1Gish8fjwczMDJMfi/By/fLly/uiDArYJ4HF+fPn4ff70dHRwWSWp1arkZiYKHlOZmYmbDabKMiWgk6nE4UxAvn5+WHBBkHsFBkZGcjPz0dTUxNlyQiC2Do1XwBiUoPj7p8DCwPrXh4bGYuPF38SALAYWMTPen8aPJF+GpAt1YxPN4VrFbaZxcVF3Lp1C/n5+ZIFsJIRAgtF7J45FRP7C57nMTIyEpatmJubg8/nY/r3ZzabYbPZJOslxsfHkZiYyJR1GBsbQ0dHBwKBAM6fPy953k6yLwILhUKBz3zmM7h+/TqcTidT96bc3FyMjY1J2uSvJcjeCLlcjpycnDBdRXp6Onw+H5P3BkFsltLSUqjVarS0tEhqVkAQBHFPFCrg1H8LjvkAcP3/bDjl02W/DTkXFKv+rO+ncPtc4BQxQNrJ4AWBRWDqxo4sNxAIoLm5GWq1GqWlpdt6b57nASEgIn0FsYTBYEAgEEB6erp4bHh4GDk5OZDJpG+bBaG3FI+VzbSxtVgscLlcuHHjBj772c8yCcp3kn0RWADACy+8gKtXr8Lr9TJlLdLT01dlFNZDcNWW2tpWmDM7OwuHI/gLSCaTIS8vD8PDw5LvQRCbheM41NbWwuPx4O7du5QpIwhia9T/HhC1ZAbX9m+AZX2tYlpMGj6S9zgAwOKx4M3BNwAAXNZDwJJDN6//EHxAenMUKfA8j/b2diwuLqK2tnb7Mwo+F8AvtfUmfQWxxMjICHJzc8UgwuFwYG5ujmnT7/V6odfrJc+Zm5uD3+8PC2Y2YmJiAl6vFx9++CFeeOGFjSfsEvsmsDh58iRSU1PR0tKC8fFxyW9mZTIZsrOzJWchNBoN1Go1k0ZCpVIhLS0t7Bk5OTmYn5+H3W6/90SC2CYUCgVOnTqF2dlZ9Pb27vVyCII4yCjjgfr/EhwHvMDNb2845YWQ1rM/7v53+AN+cKpkIKU6eNBrAwwt27rM3t5ezM3N4dSpU5t31l4Pn3N5rIje/vsTBw673Y75+Xnk5OSIx0ZGRpCWlgaVSiX5PhMTE1Cr1ZL1QKOjo8jOzpacEQkEAhgfH0dzczO0Wi3q6+slr22n2TeBBcdx+OIXv4gLFy7A7/czdcLJzc2FwWCA2+2WdP1KQbYU8vPzMTY2JrarVSqV0Ol0lLUgdg2VSoXTp09jdHSU/t0RBLE1Tv0+ELHUWan1B4BzYd3LSxJLcTL9FABAb5vAlYnLAAAu65x4DT9xGTy/PeWaw8PDGB0dxenTp5k2dEx4QwKLiJideQZxoBgeHoZOpxO7jvl8PoyPj4fpLTZiLY3GerhcLhgMhrBgZiOmp6fh9/tx4cIF/Kf/9J/2lT5o3wQWAPCFL3wBnZ2d0Ov1GBoakjwvJiYGycnJkn0wMjIysLi4KLl8CgASExOhUqnC2tUWFBRgfHxcUlcqgtgO1Go1Ghoa0N3dzdQ6mSAIIozYVKD2d4NjrwNo+rsNp3yu4j+K45e6/hUAwMXlAvFLGyinAVjo2fLSJicn0d3djYaGBqjV6i3f755QxoIIwePxYHx8HAUFBeIxvV4PlUqFxMREyfeZm5vD4uIidDqdpOvHx8eRnJyMmBjpwe3w8DAmJibQ1dWFL3zhC5Ln7Qb7KrBITU3Fs88+i0uXLsFkMjGVGeXk5EgWca8lyN4IjuOQn5+PoaGhsNazSUlJ9PaY2FUSExNRX1+PO3fuMAXHBEEQYZz5GiBbEnw2/S3gWb+t9SndGRRoCgEAd+fa0T7bBgDgsh4Wr+EnLm1pSbOzs7hz5w7q6+uZNnObIiSw4CJ2KCtCHBiGh4eRlJQkli8JLWbz8/OZMgKCRkOKgSPP8xgbG2PSb9jtdphMJly+fBnPPfccUlJSJM/dDfZVYAEAX/rSl/Dee+/B6/UydW9KS0sDz/MwGAySrs/Ly8Ps7CycTufGFy+RmZmJxcXFsDKtoqIijIyMMInBCWKraLVaVFdX49atW0ztkwmCIEQ0OUDVZ4NjtylYErUOHMetmbVAUjmgWmphaxkCb5XegCUUs9mM5uZmHDt2DFqtdlP3YCKsFIoyFkcZr9eL4eFhFBUVicdmZmbg9Xolt4sFgkLv2dlZyYHCzMwMeJ5n+vcu7DkvXLiAL33pS5Ln7Rb7LrB48MEHkZKSgsbGRoyNjcHv90uaJ5PJkJubKzl7oFKpoNVqmbIWcrkchYWFGBgYELMWSUlJiI2NZTbeI4itkp2djZKSEjQ2NlITAYIgNsf9/xNCZyfc/DbgW7+097G8J5GyFER8MH4J49YxcJxshdaCPWtht9tx8+ZNlJSUICsri3n+pvC5lsdUCnWkGR0dRVxcHJKSkgAEMwn9/f0oKCiQlHkIvQ+L0HtlB6qN8Pv9GB8fx82bN6HVanH27FnJa9st9l1gwXEcvvSlL+HChQvgeR7T09OS5+bk5GBhYUGyS/FKQbbUZwhdA4T1FhcXY2hoSHIQRBDbRWFhITIzM3Hz5k3JzQsIgiBEUsqA0ueCY9sU0P7v616ukCvw6bJgloMHj590/yh4Qlu33LJ1rh28a17yEtxuN27evIns7GwUFhay/g02De+jjAUR3KwPDQ2hqKhILHman5+Hw+FgKlHy+XwYGxuT7M5ts9mwsLDA9IypqSnwPC9mK/aTaFtg3wUWAPD5z38efX19GBkZYRJxC52apGYhkpKSoFQqmUSwCoUC+fn5GBhYdivVarWIjIxk8t8giO2ioqICSUlJuH79OgUXBEGw88AfL4+vfRPwr/+y7RMlv4XopY34m4Ovw+Q2gpMrwGUIb0958Porkh7tdrtx/fp1JCUloby8fDOr3zxUCkUgKJ6OiooKK0caGBhAfn4+k+nc5OQkVCqVmPXYiJGREeh0OkRFRUl+xvDwMEZGRtDf34//8B/+g+R5u8m+DCwSExPxyU9+EpcuXYLFYmFy4s7LyxNNQzZiLUG2FPLz82E0GsXado7jUFRUhMHBQXJGJnYdjuNQU1MDjUaDGzduUJcygiDYyKgH8h4Jjk1DQPfP171cHRmHZ4s+DgDw+D34ed8rS/e5D5BFBsfTTeAFV+t74PF4cOPGDWg0GtTU1Oz+29ewUigSbx9FAoEABgcHw7IVJpMJRqORucXs0NCQZKG3YAbN8gyr1QqLxYJLly7ht37rt3a+ucEm2ZeBBRAUcV+8eBEul4up61JiYiJiY2MlG+BlZWWtEmRvRGRkJHJyctDf3y8ey8jIABBMUxHEbiMEF3FxcRRcEATBzgNfXx5f/f8CG7wk+0z5C5BzwdrzV3t/CrfPDU4RA6Q3BC8ILAJTN+453+Px4Pr164iLi9sZV20phAY+lLE4kggVK6GtYQcGBpCbm4vIyEjJ95mZmcHi4qJkobdgoJeQkCD5GUNDQ3C5XHjvvff2pWhbYN8GFqdPn0Z+fj6uXbsmOQMhwGKAt5YgWwqFhYUwGAyinkMmk23qPgSxXchkMtTW1iI2NpaCC4Ig2Mg7B2QGDfAw2wn0vbHu5brYDDyS8xEAgMltxFvDbwIAuMwHIYjB+cmr4AOry6qETIVard67oAJYzlhwEYBsB5y9iX0Nz/MYGBhAUVGRKJ622WwwGAxhXhZS7tPf34/CwkLJLWZZDPSAYIZDr9fj6tWrKCwsxKlTpyTP3W32bWDBcRy++tWv4je/+Q0AMOkXWA3wVgqypaBSqZCZmRmmtcjOzobH45Hc8pYgthuZTIYTJ05QcEEQBBscB5z9s+XPV/43sMFLshcqPi+OX+r6dwT4ADhVMpBcFTy4aAVmb4fNEYKK2NhYnDhxQnI3nB1BEG8rovelCJbYWQwGAxYXF8O6kA0MDCAzM5PJ7V0Qekt1zmY10AOW98BvvfUWvvrVr+7rf6/7NrAAgM985jMwmUy4e/cukw5CMMCTWkKlUCiQl5cXFiRIobCwEJOTk6IXhlwuR0FBAWUtiD1FCC7UajUJugmCkE7RE0D6ieB45g4w8Na6l5cnV+BEWj0AYNw6iqsTQcF2eOvZy+L3oSDUVqvVex9UAMvibTLHO3Ks1U7W6XRicnIyzMtCCoLQW6GQlvUaHh6WbKAnrHVwcBDt7e0wm814/vnnmda32+zrwEKlUuGLX/wi3n33XXg8HiaX4fz8fMzNzUkWfq8UZEtBrVYjLS0trHNVbm6u2EKMIPYKoSwqPj6egguCIKTBccDZP13+LCFrsaZhXlwuoF56e+uYBkz9YlARHx+P2traPQ8q+IA/qAMBSF9xBFlYWIDdbg9r9To4OIi0tDTExsZKvg+r0NtqtWJubk5yS1og6Ea/uLiId999F1/84heZsil7wb4OLICgiLuxsREGg4Epo6BUKpGdnS15TlRU1CpBthSKioowNjYmlpxsNvtBENuNEFwkJCTg6tWrZKJHEMTGlHwUSF0qZZpsAoYvrnv5mYz7kRcf3FTdmb2Nzrm74DguLGvhG72Iq1evIiEhYV8EFQAAf8jLlgjl3q2D2BP6+/uRl5cnZhk8Hg/Gx8c3la3IycmRLPQeGBhAdnY2lErp/+YGBwdhMBjQ2Ni4r0XbAvvgp3t9cnNz8fjjj+PixYtYWFiAw7F++7pQCgsLMTU1JXnOSkG2FDQaDZKSksLKrvLz87GwsMCU/SCInUDoFpWeno5r167Rv0mCINZHJluRtfhf62YtZJwML4RkLX4kZC2SqwBlsB2m3DqA3FTl3rSUvRe+kMBCLt1HgDj4mM3mVVmG4eFhJCUlQaPRSL6PIPSWaurocDgwNTXFZALpcDiwsLCAixcv4sknn5Ss49hL9n1gAQBf/epX8e6778Lr9TK1no2JiYFOp8Pg4KCk6wVBttTrBYqKijAyMiJ2roqKimLKlhDETsJxHCorK1FYWIjr168zlRQSBHEEKf8EkFwWHI9fA0bXN7t7Iv8pJCmDpmCXx9+H3joBTiaHPb5WvKYgxrh/ggoA8Ic0tpBTxuIoIWQZBGM6YW+5mWwFi9B7cHAQOp0OMTExkp8xPDwMr9eLd955B1/96leZ1rdXHIjA4uGHH0ZqaiquX7+OsbExptazRUVFGB8fl1xjXlhYCL1eD5fLtfHFSyQlJSE2Nhajo6NhzzUYDPSGmNg3FBYWoqqqCk1NTUxu8wRBHDFkcuDsnyx//vB/r3t5pDwSny77bQBAgA/gJz0/wuTkJG4OLS5fZB3ZiZVuntDAIoIyFkcFs9m8KsswOjqKuLg4yY7ZALvQ2+12M5daeb1ejI2N4dq1a0hLS8O5c+c2nrQPOBCBBcdx+IM/+AO8/vrr8Pv9YRv4jYiLi0NKSkqYwHo9BEE2S9aC4zgUFxdjaGgIfr8fQDD7kZeXh56eHsn3IYidJjs7G/X19bhz5w5T9o8giCNGxaeBxKXN18glYPzeZncA8ImST0G51F3pjf5f4nrrNRyvvw9QJQcvsOnX9LTYM8IyFhRYHBW6u7uRl5cnZhl8Ph+GhobCnLelMDQ0xCT0HhoaQmpqKuLi4iQ/Y2RkBH6/H2+88Qb+23/7b/sr47cOByKwAIDPf/7zcDgcaG1txcDAgLiBl0JxcTFGR0clZzpWCrKloNVqoVQqwzZrRUVFMBqNVHpC7Cu0Wi3OnDmDvr4+9PT0UGtkgiBWI48Id+PeIGsRHxWPZws/BgDwBDyYTZ2BVqtd7g7F+wD71E6tlp2QwIKjwOJIMDc3B7PZHJY1GBkZgVKpDP5blYjH48HY2Jjk7MPi4iJGRkaYshV+vx+Dg4NoaWmBw+HA5z//+Y0n7RMOTGChVCrxB3/wB/jlL38Jn8/HZJiXmJiI+Ph4yW9oNRoNEhMTmd7ochyH8vJyDAwMYHExmP6NjIxEUVERuru7afNG7CsSExNx//33Y2JiAm1tbQgEAnu9JIIg9hvVLwCa3OB48B1gsvmelwYCARzja8EtuW5fmHwbAMDFhYhNbWM7tVJ2SLx9pOB5Ht3d3SgsLBQ7OC0uLmJgYADl5eVM2QBWoffIyIi4r5TK2NgY/H4/fvnLX+K///f/ztRFaq85MIEFAPze7/0eJiYm0NnZib6+PqbNUFFREYaHh+HzSUvFFhcXhwmypZCamor4+Pgw0XZ+fj5cLhemp6cl34cgdgO1Wo0HHngAZrMZjY2NYkBMEAQBAJArgPv/5/LnK2tnLRYXF3Hz5k0oXJGoSQ0a7E3ZJzFlnwRCAgveuo8CC3/I7zsSbx96pqen4Xa7wzpBDQwMQKPRIDU1VfJ9WIXePp8Pw8PDKC4ulvyMQCCA/v5+dHR0QK/X4/d+7/ckz90PHKjAIi4uDl/+8pfx+uuvw+v1YmpKelo1NTUVKpVKcqZjLUG2FMrLyzEyMiKKvyMiIlBaWoqenh56K0zsO1QqFe6//37I5XJ8+OGHkg0lCYI4Ihz/j0BcZnDc/yYw3RZ22mq14sMPP0RERATuv/9+nNQ1iOdaZ5qB2AyAi1i6eD8FFqEZC2keBMTBJBAIoLu7GyUlJYiICP5bdLlcGBkZQXl5OdO9RkdHoVarJQu9x8bGoFKpkJKSIvkZk5OT8Hq9eO211/CVr3wFarWaaY17zYEKLIBg69nOzk4MDg6it7dXcokRx3EoKirC4OCgpA2+cH2oIFsKCQkJ0Gq16OvrE49lZ2eD53mm8i2C2C0UCgVOnjyJjIwMXL16FTMzM3u9JIIg9gsRUcB9f7T8+cP/jzicmZnB1atXkZGRgZMnT0KhUOBEWr14vnWmGZwsAlBnBA+45sB7pXtR7SR8WFcoylgcZoS9V3Z2tnisr68PWq2WybfC7/djaGgIxcXFkkqnAoEAszCc53n09fVhYGAAXV1dB6bFbCgHLrBISUnB7/7u7+KNN96Ay+WCwWCQPFen00Emk0Gv10u6Pi0tDVFRUcxZi7KyMkxMTIhGezKZDGVlZejr65NcikUQuwnHcSgrK8Px48fR0tKCgYEB0gURBBGk9neA2LTguOcX4A2dGBgYQEtLC44fP46ysjJx41SRXIWoJc1C60xLcI46RGdh3Scv2Kgr1JHA5/Oht7cX5eXlouO7zWbDxMQEysrKmO41OjqKqKgoyUJvvV4PmUwGnU4n+RkGgwEulwtvvPEGvvjFLyI5OZlpjfuBAxdYAMDXvvY13Lx5E3q9flNZC6mbJmGz1d/fz6S1iI2NRXZ2Nnp7e8VjOp0OUVFRGBnZZ728CSKEjIwM3H///RgeHsbt27eZsnUEQRxSFCrgzB+KHxd+/XWMjIzg/vvvR0ZGRtilkfJIVKccBwBMO6YwZZ8EF5crnueto7uwYAlQYHEkGBkZgUqlQnp6unisp6cH2dnZklvFAkFtRX9/f1gQvR48z2NgYIA5W9HT04OJiQk0Njbia1/7muT17ScOZGCRnZ2N559/Hr/61a9gtVqxsLAgeW5mZiZ8Pp9kMbVWq0VsbKxkHwyB4uJiGAwGmEwmAGt3jSKI/YhGo8GDDz4Ip9OJa9euMZlFEgRxSDnxn8BHxQMAEiffxdkTpfcsIzmRVieOW2eawwTc+6YzlI8Ci8POWl2fTCYTZmdnmcTUQNCHIjY2VnK2Ynp6Gj6fD1lZWZKfsbCwAJvNhl/96lf4zGc+wzR3P3EgAwsA+OM//mNcunQJc3NzYZmBjZDL5SgoKGDKWpSXl2NwcJDJ10KlUiE/Pz+s1Wxqaio0Gk1Y1yiC2I8olUqcOXMGcXFxuHLlCubn5/d6SQRB7CHzNjdGEx8BAMgCi1AOvnHPa1fqLKBMBBRLb4et4/ujzJIyFoceoeuTIJwWWs7m5+eLBnlScLvdGBwcREVFheRsRX9/PwoLC8XyKyn09vZidnYWly9fxh//8R9LnrffOLCBRWlpKZ588kn85je/gdFohNlsljw3NzcXDodDsnFdUlISUlJSwgTZUigqKoLFYgl7zsquUQSxX5HL5Th+/DhKSkrQ2NiIvr6+/bEhIAhi1xDEpI2NjVDUf3H5RPcv7jlnpc6C47jlrIXPCbj2gWksBRaHmrW6Ps3NzcFisTAZ1QFAf38/UlJSJPtQzM3Nwel0IicnZ+OLlzCbzTAajXjrrbfw1FNPoaSkhGmN+4kDG1gAwJ/8yZ/g7bffhtVqZdr0R0REoKCggEmfUVZWhrGxMTgc0jtaKBSKVQZ5Go1mVdcogtivcByHvLw80Uzvxo0bcLvdG08kCOLA43a7cePGDUxMTOCBBx5AZs1jQNLShmfsQ8C+dvOUtXUWoQLufVAOJbSblSnAyeR7uxZi2+nr60NaWppYridkK4qLi6FQKCTfx+FwYGxsTLLQm+d59Pb2oqCgQGxtK4Xe3l5YrVa8/fbb+JM/+RPJ8/YjBzqwqKurw5kzZ/DOO+/AYDDAbrdLnltQUACHwyG5tWZcXBwyMjKYyq6AoEGex+MJ89xY2TWKIPY7gu5CqVTigw8+wOzs7F4viSCIHWR2dhYffPABlEolHnzwQcTHxwMcB5R/YukKHuh9/Z7zV+ks1PvMKE/IWFC24tAhdH0qLS0Vj01OTsLj8SAvL4/pXr29vcjIyEBcXJyk62dmZuB0OlFQUMC03tnZWbz99tu47777cOLECaY17jcOdGABBLMWb775JpxOJ3PWoqSkBD09PZKzFqWlpZiamoLFYpH8HLlcvsogT+ga1dPTI/k+BLHXKBQK1NbWoqysDLdu3SLTR4I4hAhmYrdu3UJZWRlqa2vD3/CWf3J53P3ze95nlc4iLhvAUn36fhBwC87bFFgcOlZ2fQoEAujt7UVpaSnkcunZKYvFgunp6bAAZT2En53i4mKmbEV/fz+cTifefPPNA5+tAA5BYHHu3DkUFxfj/fffx+TkJJN2ITc3F36/HxMTE5Kuj46ORl5eHnNAkJWVBY7jMDa2/Mu0pKQEc3Nz9OaXOFBwHIecnBycPXsW09PTuH79OumFCOKQ4HK5cP36dczMzODs2bPIyclZLVZNOw4k5AfHI5cB59pdGVfpLCJUQHRq8KR9Erx/j7sjBpZayMukl8UQ+5/Z2VnMzc2FaRTGxsbAcRxzl6Xu7m7k5uYiOjpa0vUTExMIBALIzc2V/AyXy4XJyUlcvHgRpaWleOihh5jWuB858IEFx3H40z/9U7z++uvw+XxMHZdkMhlKS0vR29sruV9/UVERFhYWmLrkrGWQp1QqUVpaio6ODnrrSxw44uLicPbsWajValy+fDms1I8giIPH1NQULl++DLVajbNnz9679IPjgLKlcijeD/Su3R1qLZ2FKODmA4B9cpv/BowElsxqZdLfLBP7G7/fj7t376KsrAxKZdBN3efzoa+vD2VlZUwdmubn52E0GiULvf1+/6aeMzAwAJ/PhzfeeAN/+qd/KtnzYj9z4AMLAHjmmWeQnJyMDz74AKOjo0zi0szMTCgUCsnGdVFRUSgsLAwTZEshPT0dMTExYeVaeXl5kMlkzB4ZBLEfiIiIwPHjx1FdXY22tja0traSRwtBHDAWFxfR0tKCtrY2HDt2DMePH9+4jENyOVS4zmK/CLh5PhAMigDKWBwihoaGIJfLwzIGfX19iImJCTPI2whB6F1YWIioKGmlciMjI4iMjFxlGLkebrcbo6Oj+OCDD5CcnIynn35a8tz9zKEILGQyGf7sz/4Mr776KrxeL5PAWvCpYHHXLigogNPplCz8Fp5TXV2N4eFhUbQtk8lQXV2Nvr4+KichDiyZmZl4+OGH4fP5cOnSJcnmkwRB7C3T09O4dOkS/H4/Hn74Yemboox6IG6prGT4IuAyr3nZKp3FfhFwC9kKgDIWhwSXy4X+/n5UV1eLGQObzYbh4WFUV1czZQKmp6eZBNisrtwCPT098Hq9ePXVV/Fnf/ZnTJmO/czh+FsAeP7555GSkoILFy5gfHycqS1samoq4uLiMDg4KOn6iIgIFBcXo7u7m6mMKT4+Hrm5uejo6BCzHUlJSUhPT0dnZ6fk+xDEfkOpVOLkyZOoqKjAnTt3KHtBEPuYxcVFtLa24s6dO6ioqMDJkyfF0hFJhHaHCniB/jfXvGylzgIx6YAsMnjSOrqFv8EWCYS8RKSMxaGgs7MTOp0OSUlJAIJZh7t37yI3NzfY0UwigUAAPT09KCkpkSzAHhgYQHx8PFJTUyU/x263Y2JiAu+++y5SU1Px/PPPS5673zk0gYVMJsM3v/lNvPLKK3A6nejq6pI8V8haDA0NSS6jys3NRSAQkCz8FigtLYXVag2rSa+oqMDs7CwJuYkDjSCOo+wFQexfhCyFz+fDww8/LDYXYSasHGpts7yVOotp5wygXsp0eEzgF/eo5TplLA4Vwv4p1AxvamoKNptNckcngYmJCfA8L9nczu12Y3h4mDlb0d3dDYfDgVdffRXf/OY3D022AjhEgQUAPPHEE6iqqsKbb76JmZkZJjfuxMREpKamSm5ZKwiyWYTfQLBlZ3l5OTo7O0nITRxKhOxFeXk5ZS8IYp+w5SzFSjJPA7FLdeuD7wCetYOEVX4W+0FnQRmLQ0MgEEBHRwdKS0vDBNudnZ2oqKhgMsPz+/1iW1qpG/2+vj6kpqZKduUGgi7bMzMz+PWvf43q6mo8/vjjkuceBA5VYMFxHP76r/8ar732GkwmE3N5UVlZGcbHxyUb7WVkZCAqKgrDw8NMz8nKykJ0dDQJuYlDC8dxyM7Oxrlz5+D1enHp0iXo9XqmhgcEQWwdnueh1+tx6dIleL1enDt3bvNZilBkMqDs48Gx3wMMvLXmZSt1FqECbt4qrWnKtkMZi0PD0NAQZDJZmPFdX18foqOjkZmZyXSv4eFhREVFSdYa2e12jI+PS3blFujs7ITRaMRrr72G//N//s+h6AQVyqEKLADg1KlTOH/+PF577TUYjUbMzc1JnqtWq5GZmSlZ/M1xHCoqKtDf38/UiUoQco+MjIQJuauqqkjITRwqVCoVGhoaUFlZic7OTly/fh1Wq3Wvl0UQRwKr1Yrr16+js7MTlZWVaGhogEql2r4HiC7cuGd3qFU6i7gQ52PLXgUWlLE4DLhcLvT19W2LYFsQf1dUVEie19vbi8zMTKjVasnPmZubg9FoxC9/+Ut85CMfwalTpyTPPSgcusACAP7qr/4K77zzDqanp9HZ2cn0lrS0tJSpjColJQWpqalMmg4gKOTOzs4OE3InJyeTkJs4dHAch8zMTDzyyCPQaDS4cuUKOjs7JXdhIwiCDa/Xi87OTly5cgUJCQl45JFHkJmZuf1vRrMfAKJTguOBt4BF56pLVuksvDZAGRTYwjYBPjR7sFtQxuJQ0NnZifT09C0LtoGg5kGr1SIlJUXS9UI5E4uGg+d5dHR0YHp6GhcuXMBf/uVfMq3xoHAoA4uysjJ89rOfxauvvgq73c4kIFWpVMjLy0N3d7fkOZWVlZienmYyzRPWabVaw9YnCLlZMi0EcRBQKBSorKzEgw8+CIvFgvfff18UyhEEsXV4nsfExATef/99WCwWPPjgg8x15kzII4DS54JjrzOotViDVTqL+KWsRcAL2PQ7s7b1oIzFgUcQbFdUVIjHNivYnp+fx/T0dNi9NqK7uxt5eXlMGcDp6Wk4HA688sor+O3f/m3mEqqDwqEMLADgG9/4Bm7cuIGhoSF0dnYyiaKLiopgMpkkb+5VKhVKSkpw9+5dpucIQu6Ojo5VQm7WexHEQSEuLg5nzpxBZWUlurq6qDyKILYBoeypu7sblZWVOHPmzL3ds7cTCWZ5q3UWIeVQe6GzCMlYcJSxOHCsJ9guLy9nCqQDgQDu3r2LkpISyUHC3NwczGazZFdu4TmdnZ0YHBzEzZs38Y1vfEPy3IPGoQ0ssrKy8KUvfQkvv/wyPB4PxsfHJc+NjIxEUVERk7t2QUEBeJ6X7OAdus7o6Gj09/eLx/Ly8sBxHAm5iUNLaHlUQkICrly5go6ODuoeRRCMLC4uoqOjQyx7evjhh3em7Ole5J0DlAnBcf+vAe9qveEqnUX8cmDB74XOgjIWB5r1BNtZWVlM9xoZGQHP85LN8EJduSMjIyU/Z3x8HB6PBy+//DL+y3/5L8zC8oPEoQ0sAODrX/86ent70dHRgZ6eHqa2sPn5+XC73dDrpaVpBRft3t7eTQm5h4aGyJGbOHIoFApUVFTgwQcfhN1ux3vvvYe+vj4xg0cQxNr4fD709fXhvffeg91u3/myp3shVwClzwbHizZg+L1Vl6zUWUzxfkC+1OrWMrz75ZCksTiwCILtqqqqLQu23W43ent7w8TfG6HX6+F2u5Gfny/5OT6fD93d3bh79y76+vrw9a9/XfLcg8ihDiySkpLwP/7H/8CPfvQjeL1epgxARESEWKohVWS6FSF3Tk7OmkLuu3fvUg06ceiJi4vD6dOn0dDQgJmZGVy8eBEjIyNUDkgQKwgEAhgZGcHFixdhMBjQ0NCA06dP707Z072QVA61rLNomWkB4nODH7x2wMWmT9wylLE4kAji7PT0dCQnJ4vHOjo6NiXY7urqYhJse71edHV1obKyUrIrNxBsY+vz+fDjH/8Yf/RHf8TkeXEQOdSBBQD8/u//PoxGI5qamtDf389UaqHT6aBWqyW3nwW2V8hdWVkJk8kkOWtCEAed5ORknD17FtXV1RgeHib/C4JYItSPQng7+8ADD4gbrD0l/1Egaimw6fsV4Fv9PVuX3iCOm6cbwcWFvPHdbZ1FWMZCvrvPJjaNXq+HyWRCVVWVeGxqagpWq3VXBNu9vb1Qq9XQ6XSS5ywuLqK/vx+NjY0wGo34/d//faZ1HkQOfWARExODb3zjG3jppZfg8/kwMDAgeS7HcaiqqsLo6Khkcel2CLmFDElUVBSqq6vR0dHBVF5FEAcZjuOg0+lw7tw5FBUVoaurC1euXMHs7CwFGMSRg+d5zM7O4sqVK+jq6kJRURHOnTsHnU63f4y1IqKA4meCY7cZGLm06pLK5EpER0QDAJqnm8DH5Yrndl1nwYeURXMUWBwEXC4XOjo6cOzYMVHbILRV3g3BtsViwejoKHO5VX9/v5it+MY3voHo6GjJcw8qhz6wAIDf+Z3fgUKhwOXLlzE0NMSkW4iLi0N+fj5TSdJWhNxqtTrMx0Kn0yE1NRXt7e20qSKOFDKZDDk5OXj00UeRkZGBlpYW3LhxA3Nzc/SzQBx6eJ7H3Nwcbty4gZaWFmRkZODRRx9FTk6O5HrwXSXULK/nF6tOR8gUqF0qh1pwL2CI90Lcgux6YBHy0o/bh/8tiTB4nkd7ezu0Wi3S09PF452dnVCr1bsi2L579y7y8/OZzPBcLheGh4dx+fJlKBQKfOELX2Ba50HlSPxEKRQK/MVf/IXYIaqnp4dpfnFxMRwOB5OQu6qqalNC7uPHj2NqagoGg0E8Xl1dTSVRxJFFLpejqKgIjz76KBITE9Hc3IyrV69ienqaAgzi0MHzPKanp/Hhhx+iubkZSUlJOH/+PIqKiiCX7+O364WPA4qY4LjnNcC/ugFDfVpIOZThNqDOCH5wzoD3OnZjlUEosDhQTExMwGw2h5VAGQwGTE1N4fjx47si2HY6nSguLmZad09PDxYXF/GTn/wEf/mXf7n7jRX2iCPzE/XJT34SmZmZePvtt6HX6yU7awPLnWtYhNypqambEnJHR0ejoqICbW1t4rMiIyNx7NgxdHR0UJco4sgSGRmJsrIynD9/HjqdDu3t7bh8+TImJiZI5E0ceAKBACYmJnD58mW0t7cjIyMD58+fR2lp6cHYkChUQPFTwbFrARj7cNUlDbpT4rh5ugkI87MY3eEFhhAWWOzjYI2Ay+VCZ2fnqhKotrY2VFRUMJcWdXV1ITU1dVOCbZafQ7PZDL1ej7feegtZWVn45Cc/ufGkQ8KRCSxkMhm+853v4JVXXsHc3Bza2tqY3nZmZGRArVajr69P8pzNCrlzcnJWlUSlp6dDq9VSSRRx5FEoFCgsLMT58+eRn5+Pvr4+vP/++xgZGWFqKU0Q+wG/34/h4WFcvHgRfX19yM/Px/nz51FYWHgwAopQykLKodboDlWgKUKiMtgR57ahBX51tnhuV3UWlLE4EGxUApWTk8N0P0GwXVlZKXnOZgTbPM/jzp07mJubwyuvvILvfve7+0cPtQscqZ+os2fP4tlnn8VLL70Em83GZJonCLlHRkaYhdwdHR1Mb1TvVRJVVVUFs9mMiYkJyfciiMOKXC5Hbm4uHn74YZSVlWF0dBTvvfcec/c3gtgLhG4x7733HsbGxlBeXo6HH34Yubm5+7vkaT2KngQilvwpen4JBMIDfY7jULdUDuXwOtDlDykV3sXAgg8LLI7Ohu+gsV4JVE1NDdNmfTOCbavVitHRUVRVVTE9a3x8HHa7HS+99BKee+45PPDAA5LnHgaOVGABAN/61rfQ2tqK9vZ2dHZ2Mm1A4uLikJeXxyzkFvqOsxAdHY3Kyso1S6I6OzupJIoglpDJZMjMzMRDDz2EmpoazM7O4sKFC2hra5P8EoAgdgur1Yq2tjZcuHABs7OzqKmpwUMPPYTMzMz9KcpmISo2qLUAAIcBmLix6pKTIeVQLfOdwFIGA7Zx8IFdMsakUqh9j1ACdfz48VUlUJWVlZKDA4GtCLZZPGIWFxfR2dmJ9vZ2tLa24lvf+hbTOg8DB/y3GDvp6en48z//c7z44ovweDzo7u5mml9SUgKHw4HJyUlJ1wsu2j09PXA42MRp2dnZiIuLo5IogpAAx3HQarW4//77cf/994PneVy5cgXXrl3D1NQU6TCIPSMQCGBqagrXrl3Dhx9+CJ7nxX+nWq32cJVJbGCWdzLEz+JWqM4i4AXsu9SgJKzd7JHbBu17Qkug0tLSxOMdHR2Ii4tDdnb2OrNX43A40NPTwyzYdjgczILt7u5ueDwe/PM//zO+8Y1vhK3/qHAkf6K+/OUvIzo6Gm+99RbGx8dhsVgkzxWE3J2dnUyO3FlZWbhz5w5TMEAlUQSxOTQaDWpqavDYY49Bq9Wiq6sLFy5cQE9PD5xO514vjzgiOJ1O9PT04MKFC6LL70c+8hHU1NRAo9Hs9fJ2huKnl92se34JrAjodbEZyFQH24PenWuDOzakdn23yqHCvoeP5DZoX7NWCdTMzAymp6eZu0AJeoesrCxmwXZFRQWzYHt8fBxvvfUWYmNj8eUvf1ny3MPEkfyJUigU+N73voeXX34Z8/PzzBv+zQi5y8vL4XQ6mUuiVCrVmiVRx48fp5IogtiAyMhIsVVtTU0NrFYrLl68iMbGRkxPT1MWg9h2AoEApqen0djYiIsXL8JqtaKmpgaPPvooioqKxLKOQ4syHij4SHBs1QOTTasuqV/KWvgCPrQtLmfyd03ATRmLfYtghBdaArW4uIj29vZNl0C5XC4mh+2+vj6o1WpkZGRInsPzPNra2jA3N4eXX34Z3/ve9xAREcG01sPCkf2JevDBB/HRj35014TcCoUCNTU16O7u3nRJVEdHh3gsLS2NSqIIQiJCmVRDQwPOnz8PjUaDjo4OvPvuu2hvb4fRaKSfI2LT8DwPo9GI9vZ2vPvuu+jo6IBGo8H58+fR0NBw+MqdNiK0HKrrZ6tOh5ZDNZsHAPmS4Nsysjs/h9QVal8ibM7T09PDSog6Ozs3XQLV3d2N48ePS97kW61WjIyMbEqwbbPZ8NJLL+HZZ5/F2bNnmdZ6mDjSP1Hf+ta30NzcjLt37zKVNgGbE3JvtSRqenoaMzMz4nEqiSIIdlQqFUpLS3H+/HnU19eD53nx7XJPTw9sNtteL5E4INhsNvT09IhZMJ7nUV9fL/pPsL5dPTSUPrtcDtX16qpyqFCjvKDOIjf4wWsD3As7vz4KLPYl4+PjsFqtYe1gd7MEigTb28OR/onS6XSikHtxcZHZzK6kpAR2u53JEbuiogIul2tLJVFCJyuhJKqjo4M5C0IQRx2O45CcnIzjx4/jscceQ0VFBWw2Gz744ANcuXIFQ0NDcLvdG9+IOFK43W4MDQ3hgw8+wAcffACbzYbKyko89thjOH78OJKTk49WdmItVAlA4WPBsW1yVXcojTIBxYmlAIB+Yy8s0anLJy3Du7BACiz2Gw6HY5UR3uLi4qa7QA0PDzOXQG1VsP3iiy/iz//8z8M8N44iR/4n6itf+QpUKtWmhdzV1dXo7OyUvAGJiIjA8ePHN10SFR8fH9YlKi0tDdnZ2WhpaaF6cYLYJHK5HDqdDidPnsTjjz+O3NxczMzM4MKFC7h+/TqGhoYoeD/COBwODA0N4fr167hw4QJmZmaQl5eHxx9/HCdPnkR6evrB9Z7YKSo+vTzuemXV6Yb0YNtZHjxaFpezhLx5FwILyljsK/x+P5qbm5Gdnb2qC5RGo2EugbLb7ejp6UFNTY3kEii3242Ojg5UVVUxCbYtFoso2I6JiTmygu1QjvxPVKiQe2FhgblMSafTITk5eddLoqanp8Xj5eXl4HmeuXUuQRCrUSgUyMnJwX333Yfz588jPT0dBoMB77//Pi5duoTu7m7SZBxyBM1Ed3c3Ll26hPfffx8GgwHp6ek4f/487rvvPuTk5Bw8Z+zdpOSjgDwqOO7++SqzvPpQnYVlZNlPwjK482ujwGJfIexdysvLxWNC6fexY8eYS6Da2tqQnZ2N5ORkyXPa29uRmpq6KYft+fl5UbBNvxMosAAQFHI/88wzmxJyA0B1dTUWFhYke1sAyyVRw8Nsb2dUKhWOHTuGO3fuiB2h5HI56urqMDY2FhZwEASxNVQqFfLz83HmzBk88cQTKCkpgcvlQmNjI959913cuXMH09PT8Pl2ydiL2DF8Ph+mp6dx584dvPvuu2hsbITL5UJJSQmeeOIJnDlzBvn5+UdXN8GKMg4oeiI4ts8AYx+Gna5JrUWELPg2uXmmGYjLCZ5wzYP3SK8c2DpHvGxtj5mensb4+Djq6+vFrJ/T6cSdO3dw7NixTZdAhQYpG6HX62EymcLa20qBBNtrczR7Ya3Bt771LZSUlODu3buQyWTQ6XSSI8+oqCgcO3YMbW1tSE5OhlKp3HBOREQEampq0NjYCK1Wi9jYWMlrzczMxNzcHFpaWnDfffdBJpMhNjZWDDji4+MRHR0t+X4EQWyMQqFARkYGMjIyEAgEYDQaMTMzg66uLrhcLiQlJSE5ORnJycnQaDQH30X5kBMIBGA2mzE/P4/5+XksLCxApVIhLS0NdXV1SExMpP8Pt0rFp4He14PjrleBvHPiKZUiGtUpx3Db0IoJ2zgmoxIgNve0DAGptbu9WmKXCQ0gYmJiAAR/LltbW6HT6ZCZmcl0P6EE6tSpU8wlUMePH0dUVJTkZ3m9XnR2duLu3btobm5Gf38/01oPM/Rbc4mVQm7WsiKdTofU1FSm9q/JycnIzs5GW1sbc1lFVVUVvF4vent7xWOZmZnQ6XRobW0lvQVB7CAymQzJycmorKzEI488goceeghpaWkwm81oamrCW2+9hRs3bqC/vx9Go5F+HvcBQjDY39+PGzdu4K233kJTUxPMZjPS0tLw0EMP4ZFHHkFlZSWSk5MpqNgOip8GIpbeOHf/AvCHZ/ZOpp8Wx7c8ZnG8KzqL5aft4rMIgXsFEL29vfB6vWGdoaQglCXtRgkUAHR1dWFxcVF02D7qgu1Q6DdnCKFC7rGxMSYhNxDc7JtMJqYuUeXl5ZsqiYqIiEBdXR2Gh4cxOzsrHq+srFwVcBAEsXNwHAe1Wo38/HxR/H327Nl7Bhrz8/NMra2JzeH1ejE/P3/PQOLs2bOi+Do/Px9qtZq6OW03UbFA8VPBsXMOGL0cdvp0xn3iuMk0CHFLYt4FnQWxpwgBRGj50ezsLIaHh1FXV8dsLjc8PAyPx7MrJVCCYPs3v/kNoqOjSbC9AiqFCkGhUOAf//Ef8fTTT+P06dNobW3FQw89JPnNVVRUFKqrq9HW1oaUlJQdL4mKi4tDVVUVbt++jYceeghKpVIMOD788EMkJycjNTV14xsRBLFtcByHuLg4xMXFIT8/HzzPw2aziSU3IyMjcLvdiImJgUajEf/Ex8eT8G+TeL1emM1mWCwWmM1mmM1mOBwOKJVKJCQkIC0tDZWVlRQ87AUVnw6KtwGg8xWg4Lx4qjSxDPFR8bB4LGg2NMNX9HFE2PWAcwb8oh1cpPTvQ+LgIAQQDz74oKircLvdaG1tRVVVFZOHBLC7JVBCpkUQbL/11lv0e3sFHE+tTVbxwgsvYHBwEF//+tdRUlKCkpISpvktLS3w+/04efKk5C+xu3fvwmKx4P7772fugHD79m243W6cOXNGnDs2Noaenh4x4CAIYv/gdrvDNsEWiwUul0sMNuLj4xEfH4/Y2FioVCraDC/B8zxcLhfsdjssFov439DhcEClUiE+Pj4sUKPfffuARSfw16mA1wEoE4CvzQARkeLpP77yNbw3+i4A4MWq/4Rq6xAAgKv4AriU6h1ZUqDnx4ChOfick38MLlq7I88hVuN2u3H58mVUVFSIbWR5nseNGzegVCpRW1vLvAe6du0aNBqN5MwDz/O4deuW2PiGhd7eXvT39+Mv/uIvUFRUhB/96EdM848ClLFYg7/9279FWVkZPvjgAwBAeno6UwRdXV2NS5cuQa/XIysrS9Kc8vJyfPDBBxgaGkJhYaHkZ3Ech+rqaly5cgX9/f1iEJSdnY35+Xm0traGBRwEQew9SqUSSqUSWu3yhsbj8YiBhslkwtjYGJxOJziOQ0xMDGJjY8X/Ff5ERkYeup9tnuexuLgIu90u/nE4HOL/8jyP6OhoxMXFIT4+HllZWdBoNExvHYldJDI62Hq282XAbQJG3l/uFgWgQXdGDCxuuRcghBK8ZWjHAgtib+B5Hq2trUhNTQ3bG/X398PlcjG9jBUYGhqCx+NBWVmZ5DlCCdTDDz/M9Cyr1Yr+/n5cvnwZo6OjePvtt5nmHxUosFiDxMREvPjii/jt3/5tVFZWoqWlhakkKjIyUuzQxFISVVtbixs3biApKQkJCQmS16tQKFBXV4dr166JnWnuFXAQBLE/iYqKglarDQs2AoEAnE5n2OZar9fDbrfD7XYjIiICMTExYqCiVCoRFRW16vN+ESIHAgF4PB643W7xz8rPDocDPp8PSqVSDKCSkpKQnZ2N2NhYREdH75u/DyGRik8FAwsgWA4VElicChFwN5oG8LsxqQB4wDy0y4skdhohgGhoaBADiPn5eQwMDOCBBx5gLikymUzo7e3FmTNnJJdAuVwudHR0oKamRnT4lkIgEEBzczPm5+fx4osv4uWXX2bapx0lKLC4B8888ww++tGP4gc/+AG+/vWvo7+/H6WlpZLnp6enY2pqCu3t7ZKj8MTERJSUlIiBDMsPmUajQXl5uagLiYqKgkKhQH19Pa5evSoGHARBHByEVtJraa98Ph8cDgccDoe4QXe5XDCZTOJnj8cDIPiyQ9Bgrfwjl8tXHZPJZOLvrJW/u4TqWZ7nEQgE4PP5wv74/f5Vx3w+H9xuNxYXFwEEg6iVAVBcXByUSiViYmIQExPDLN4k9jGFjwNRcYDHGmw/6/MAEcEMU1psOnLj8zBqGUHXQhdsSWVQu+cB+yR4nwtcxA77hlAx+K4QGkAIP9sejwetra2oqKhAfHw80/28Xi9aWlpQUlKCxMRESXOELlBarZa5i1N/fz8cDge+//3v47nnnsPTTz/NNP8oQb+51+Hv/u7vUFZWhsuXg50sdDodU0lUVVUVc0lUYWEh5ufn0dbWhrq6Oqa0YF5eHubn53H79m2cOnUKHMchPj4eFRUVYQEHQRAHn4iICFGLcS9CMwQej2fNDf/i4iJcLlfYMaE9Ls/z4h8gGGQIf4Bg4LNWkKJSqVYFK0IgsZ8yKMQuoVACJc8Cd38EeCzA4LtA6UfF06d192HUMgI/70cLgKDbBQ9YRoAk6V1+iP2Jx+NBS0tLWAAh6EMTEhKQm5vLdD/BXTs2NpapdHxiYgJms5m5BMpisYglUOPj43jnnXeY5h81KLBYh4SEBPzwhz/E888/j8rKSjQ3N+PcuXObKolKTk6W5CDJcRxqa2vFGr68vDzJ6+U4DjU1Nau0Grm5uasCDoIgDj8ymQwqlYrcoom9p/LTwcACALpeCQssGnSn8XLPSwCAJucczsmC31G8ZQjcTgQW9B24awgBRFJSUlgAMTg4CLvdjoceeoh5TzI6Ogqj0cg01+VyobOzc1MlUC0tLZibm8OLL76IV155hUqgNoBeG23AU089hY997GP4/ve/D4fDweyumJ6eDq1Wy2ScFxUVhbq6OnR1dTF7aSgUCpw4cQK9vb0wGo0AggHH8ePH4XA40NPTw3Q/giAIgtgy+ecBpSY47vsV4HWJp05o6xAhC77nbDT2LH9X7orOgmqhdpKenh44HA4cP35cDAKMRiP6+vpQV1fHrKuwWCzo6urCiRMnJFdgbFcJ1Mc//nE8+eSTTPOPIhRYSOBv//ZvMTExgUuXLqG/v39TxnlmsxkTExOS5yQnJ6OwsBDNzc3w+XwbTwghMTERpaWlaGlpEWuaFQoFGhoaMDIywmTgRxAEQRBbJiISKP1YcLxoBwaWO+qoFNE4nloLAJhyTEMfER08YRsH71/c7ZUS28TExARGR0fR0NAgBhCLi4toaWlBaWkp85t/n8+H5uZmFBUVMWlGhRKozRjh9ff3iyXt3/3ud5nmH1UosJCARqPBD3/4Q7z44ouYnZ1FS0uLWIMshcjISBw/fhwdHR2w2+2S55WUlEClUuHu3bvMay4oKEBcXBxu374tvv1Rq9Woq6tDW1sbTCYT8z0JgiAIYtNUfnp53PVK2KlTuuXuUE2BpZdpfACwju7CwojtxmQyob29HXV1dVCr1QCWy6Li4uJQUFDAdD8h66BSqVBcXCx5nt1u33QXqJaWFszOzuLFF1/ED3/4Q2g0GqY1H1UosJDIk08+iU984hP4wQ9+sKmSqLS0NOTk5IjmeVIQ9BYGgwHj4+NMzxPmCo6UAlqtFqWlpbh16xbcbjfTPQmCIAhi0+Q9DKiSguP+XwOLDvHUKd194rjJaRDHPLWdPXC4XC7cunULpaWlSE1NFY/39PTAbrczm+ABwazD7OwsTpw4IXmu3+9Hc3MzcnJywtp4S6Gvrw8OhwM/+MEP8MlPfhJPPPHExpMIABRYMPHd734Xer1+0yVR5eXl4DgOXV1dkueoVCqcOHECd+/ehc1mY3peZGTkmuVPBQUFSElJwa1btyQHOQRBEASxJeQKoOzjwbHXCfS9KZ4qTixBgjLYNrTF2Acfv1QVYB7cgYWEbH0kah8Jafj9fty6dQspKSlhWQm9Xo+RkRE0NDQwZQ6AoDHd3bt3ceLECUm+YAJdXV2QyWQoL2drAGCxWDAwMID3338fer0e3/nOd5jmH3UosGBgqyVRMpkMdXV1mJiYwNTUlOR5qampyM/PR3NzM3MgEFr+ZDabAQSzGceOHQMAtLW1SRaVEwRBEMSWqPrM8lgwzQMg42RoSD8FAHD4nOgQvpasY+D93u1dQ2hnR55erm0XQhtYYY8hZBZMJpPYQl8oi5KKz+dDS0sL8vPzw7IfGzE1NYWJiQnU1dUxtbcOLYH64Q9/SCVQm4ACC0aeeOIJfPKTnxRLovr6+pjmx8TEoKamBm1tbXA4HBtPWKK0tBQKhQIdHR2sS4ZWq0VJSQmamprE8ie5XI6TJ09ifn4eQ0OUaiYIgiB2gZyzQOxSZ56BtwHXst7vlO6MOG4SRNu8b/t1Fpx8eUyBxbYxNDSE+fl5nDx5EnJ58L+x2+0Wy6JYy5EAoLOzEwqFgsmg2OFw4M6dO6ipqUFMTAzT84QSqH/6p3/Cpz71KSqB2gQUWGyC73znO9Dr9Xj//fcxMDDAXBKl0+mQkZHBlPGQyWQ4ceIEpqamMDk5ybzmwsJCJCcnh5U/KZVKnDx5Er29vTAYDBvcgSAIgiC2iEy+LOIOeIGeX4qnGkIF3I5pccybB7Z3DWGBhfSqA+LeGAwG9Pb24uTJk2K5klAWlZyczCzWBoLlU1NTUzhx4oTkrIOQccjMzIROp2N6XmgJ1PT0NP7mb/6Gec0EBRabQiiJ+uEPf4jZ2dlNlShVVlYiEAgw+UpER0dvKtsBLHtZCJ0VhPKnhIQEHD9+HC0tLcwaDoIgCIJgpjKkHKrjJ+IwJToVBZqgsWu3ZQRmIWth2u7AgkqhthObzYaWlhYcP35cbCEbutcI9bCQit1uR3t7O2pqahAdHS15Xnd3NwKBACorK5meJwi9hRKof/mXfxFdwgk2KLDYJE888QQ+9alP4Xvf+x4cDgc6OzuZ5svlctTV1WFkZIQpW5Ceno7s7OxNBTNC+dPs7CyGh4fF45mZmcjLy0NTU5Poe0EQBEEQO0JGPZCw9AZ75DJgW85OnMm4HwDAg0ejoK2wjYP3e7bv+aEZiwAFFlthcXERTU1NyMvLQ2Zmpnh8aGgIc3NzYWVRUvH7/WhpaUF2djaTod3MzAzGxsZQX1/P/EzBDuAf//Ef8elPfxqPPfYY03xiGQostsB3vvMdmEwmvP766xgbG2MSZANBYfWxY8dw+/ZtuFyujScsUV5eDplMtinhtUqlQkNDA3p6ejA7OyseLysrQ2xsLFpbW5kE6QRBEATBBMeFiLh5oOtV8ZQQWADATe+S7xPvBywj2/d4GWkstgOh7EitVqOsrEw8HloWpVKpmO4pCMBZuzm5XC7cuXMH1dXViI2NZXrm1NQUxsfH8frrr8NisVAJ1BahwGILxMXF4ec//zleeeUVdHd34/bt23A6nUz3yMrKQlpaGtOGfqvC64SEBBw7dgwtLS2iYR/HcThx4gScTie6u7uZ70kQBEEQkrlHOdTx1FpELzlvN1rHEFh6ebatOgvSWGwL3d3dcLvdYb4UQlnUsWPHmJ21gbUF4BsRCATQ2tqKtLQ0ZGVlMT3P6XTi9u3b6O7uxquvvoqf/exniIuLY143sQwFFluktrYWf/VXf4Vvf/vbMJvNaGpqYn7jX1VVBY/Hw9RhaqvC66ysLOTk5KCpqQlebzDdrFAo0NDQgPHxcYyNjTHfkyAIgiAkkVoOaINtzzF5CzAGX5Ip5ArUpzcAAEyLNvQuLmn/TNvoZ0FdobbM2NgYxsfH0dDQAIVCAQDwer1oampCbm4u8wYfWM50NDQ0MPlV9PX1wePxoKqqiul5gUAATU1NMJvN+Pa3v41vfvObqK2tZV02sQIKLLaBL3/5yzh9+jT+4R/+ATabjfmNf0REBOrr68WaRKlsVXhdXl6OmJgYtLS0iCVVsbGxqK+vR0dHB3WKIgiCIHaOME+Ln4rD+zIfEMc3fMEW6bBNgBfGW4XE21tiZmYGHR0dqK+vF9u58jyPlpYWxMbGMhvSAeECcBbfiLm5OQwNDaG+vh4RERFMz+zq6oLNZsPf//3f48yZM/iv//W/Mq6aWAsKLLYBjuPwr//6r5icnMRvfvMbDA8PM2/K4+LiUFlZidbWVtFrQgpbEV7fq/wpJSUFNTU1aG5uhtFoZLonQRAEQUii8vnlccdPRBfsMxkhgYVb8LkIAJZhbAth4m0qhWLBaDSipaUFNTU1SElJEY93dXXB6XTixIkTzB2g7iUA3wi3243W1lZUVVUxly8ZDAaMjIzg17/+NaampvB//+//ZV43sTYUWGwTCQkJeOWVV/Dv//7v6O/vR0tLC5MgGwBycnKQnJyM27dvM4myy8rKoFarNyW8FsqfxsbGwsqfMjIyUF5ejsbGRmpDSxAEQWw/mhwga8kUb64bMAQNYNNi0pC/1Ha2yz4J81J3qG3TWZDz9qaw2WxobGxEeXk5MjIyxONrlUVJ5V4C8I3geR63b99GcnIysrOzmZ7pcrnQ0tKC/v5+/OhHP8Krr766KT0IsTYUWGwjp0+fxp//+Z/j29/+NiwWC5qbm5kCBI7jcOzYMTidTvT39zPNq62thcvl2pTwOjY2FidPnkRHRwdmZmbE4/n5+cjLy8PNmzeZgySCIAiC2JCqzy6PO18Wh/eFtJ1tci8ED26XzoLE28y4XC7cvHkTeXl5yM/PF48LZVEnT55k7sYErC0Al0J/fz+cTieOHTvGNC8QCODWrVuwWCz49re/jW984xs4deoU87qJe0OBxTbzh3/4h6iqqsL3v/99mM1m9Pb2Ms1XKBSor6/HwMAAU/vaUOH1+Pg467KRnJyM2tpatLS0hJU/lZaWIiUlBTdv3iSPC4IgCGJ7Kf+t5Y1+x8sh5VDLbWdveJe6Ldr14L1snRfXhDQWTCwuLuLmzZtITU1FaWmpeFwoi6qtrUVycjLzfTeb6ZiamsLAwADq6+uZMyR9fX2wWCz4p3/6J1RXV+NrX/sa67KJDaDAYpuRyWR46aWX0N/fjwsXLmBgYIBJkA0A8fHxqK2txZ07d2C1WiXPi4mJQX19Pe7evbspbYROp0NFRQUaGxvF5wpZlJiYGDQ1NTGb8hEEQRDEPYlNBfIfCY4tY8DETQAr2s46ZpfazvLbo7OgrlCS8fl8aGpqQkxMDKqrq8XsgNVqRWNjIyoqKqDT6ZjvazQaVwnApWCxWHD79m3U1tYyO2PPzc1hYGAA7777LgYGBvCjH/0IMhltg7cb+i+6A6SkpOCnP/0pfvjDH2J4eBjNzc3weNhcQ3U6HQoLC9HU1MQ0NyUlBeXl5bh169amypeENGdo+ZNMJkNdXR0AoKWlhQz0CIIgiO0j1NNiqRwqrO2szyG2nd0WnQWVQklC8IcAgLq6OnETLpRFCeXSrDidTty6dQvl5eVhAvCN8Hg8aGpqQlFREXMw43a70dzcjOHhYfzLv/wLfvrTnzI9m5AOBRY7xIMPPog/+qM/wre//W3Y7XZmvQUAFBcXQ6PRoLm5mWkzn5eXh7S0NDQ1NcHn87EuHSUlJdBqtWHlT3K5HA0NDXA4HGhvb2f+uxAEQRDEmpR9DJBHBcddrwL+4PdWWNtZl6Cz2IbAItR5O0AZi7XgeR7t7e1wOBxoaGgQzeoWFxdx48YNpKWloaSkhPm+Pp8Pt27dQlpaGlNQEggE0NzcjISEBBQXFzM9U2iFa7Va8e1vfxv/83/+Tzz44IOsSyckQoHFDvJnf/ZnyMvLwz//8z/DaDRiYIDtFyLHcaipqYHP50NHRwfTvOrqasjlcrS1tTEHAUL5U2xsbFhwEhkZidOnT2Nubo5ZO0IQBEEQa6KMB4qfCo4ds8DoZQAr2s4KRnmOKfCL9q09Lyxjwf7y7SjQ09ODubk5nD59GpGRkQCCQUFjYyPUanVYWZRUeJ7HnTt3EBERwTSf53l0dHTA5/OhpqaG+bn9/f0wGo148cUXkZ+fjz/90z9lmk+wQYHFDiKXy/Hyyy/jzp07uHz5Mnp7e5m1DxERETh58iSmpqYwMjIieZ5MJsPJkyc3FdAAyx4XHMeFlT+pVCqcPn0ao6OjGB7epp7iBEEQxNEmtByq4ycAVrSddc2LbWdh3mJ3KNmykRofoMBiJUNDQxgbG8Pp06ehUqkALLeFlclkm/KqAIIbfJPJhPr6eiZtw+joKKanp3Hy5ElmE7yFhQX09fXh8uXLaGtrw8svvyxmX4idgQKLHUan0+HHP/4xvv/972N8fJxZMwEA0dHROHnyJLq6upiE4FFRUWhoaEB/fz9ThykBofzJ5XKFlT+p1Wo0NDSgu7sbk5OTzPclCIIgiDCKnwIi1cFxzy8Bb9Aodq22s7ypb2vPkoV0Egp4t3avQ4Zer0dPTw8aGhqgVgf//+B5Hm1tbXC5XGFlUSwInZwaGhoQFRUled7c3By6urpQX1+P6Ohopmd6PB7cunUL4+Pj+P73v4+f/OQnSE9PZ106wQgFFrvAY489hq985Sv41re+BavViqamJmYBdFJSEqqqqtDS0gKHwyF5Xnx8POrq6nD79m3Mz8+zLh0KhQKnTp3C3Nwcenp6xOOJiYmor6/HnTt3MDs7y3xfgiAIghBRqIJaCwDwWIGBtwCsaDvrWsr4m6T7PK1JaGDhp8BCYHZ2Fm1tbaivr0diYqJ4vKenBwsLCzh16hRze1cgGBzcvn0bdXV1TJ2cHA4HmpubUVVVhaSkJKZnBgIBNDU1wWq14lvf+ha++tWv4iMf+Qjr0olNQIHFLvG///f/RnZ2Nv7hH/4BJpMJd+/eZb5HTk4OMjMz0dTUBK9X+i/DtLQ0VFVVoampCRaLhfm5KpUKZ86cwdjYGIaGhsTjWq0Wx44dQ3Nz86ba2xIEQRCESFg51I8BrGg76zEF2866F8C72F+UicgpY7ESo9GI5uZmHDt2DFqtVjy+VlkUC2azGbdu3UJ1dTXS0tIkz/N6vWhqakJWVhZycnKYn9ve3g6TyYS///u/R05ODv7X//pfzPcgNgcFFruEQqHAL37xC4yPj+PnP/85JiYmmDQTAhUVFVAqlbh9+zaTKDsnJwdFRUW4efMmU8ZDIDY2FqdOnUJvby/0er14PCsrC+Xl5bh58yZMJhPzfQmCIAgCAJD/KBCTGhz3/xpwmVe0nXWLbWe3lLWQRS6PKbCA0WjEzZs3UV5ejqysLPG4Xq9Hb28vTp06tSlXbYfDgcbGRhQXFyM7O1vyPJ7ncfv2bSiVSlRUVDA/d3h4GHq9Hj/72c8wMTGBX/ziF5vKtBCbgwKLXSQ5ORm//vWv8frrr+PmzZvo6OhgLk8SPCVsNhtzZ6aioiJkZGTg5s2bzDoPAEhISEB9fT3a2trCyp/y8vJQWlqKmzdvwmw2M9+XIAiCICCPWM5a+BeB7p8DWNl2NvidyW8psKCMhYDJZEJjYyPKysrC2r+GlkUlJCQw39f9/2/vzOPjKuv9/57Jvu97Jvu+tUmTtmmbFhBBFimoCCjoBbyoyBW98POyXGWTRQUFBFEEucruBi0ookjbtEmTJk3aZm32fZ9kksxkJpnl/P4IM2SStM1M9vR5v17n1dOZzHPOJDPnPJ/nu3x0Oo4ePUpERAQJCQk2vba+vp7x8XEr74yFMjQ0RHV1NcXFxezbt4/333/f5jQqweIQwmKFycjI4LXXXuOZZ56htbWV0tJSmyMIzs7ObN26lZaWFpuKp2UyGRkZGfj6+nL06FGb0qnMBAcHW9KflEql5fH4+HiSkpIoLi62K91KIBAIBAKybvx0/9RrwKy2s7pPIuMjDUj2mtuJGgtgOk3p6NGjJCcnExcXZ3lcqVRSVlbG5s2bCQ4OtnlcvV5PSUkJvr6+ZGRk2NRBqru7m5aWFrZt22Zpc7tQNBoNpaWltLS08Oyzz/L666+TkZFh6+kLFokQFqvA3r17uffee3n88cdRKpUcPXrUZiM7b29vtmzZQmVlpU1RAplMRk5ODs7OzjYb75lRKBSkp6dTUlJiVVuRkJBAYmKiEBcCgUAgsI/wLRDwifFa+yFQdVi3nZ1UTbedNUyA2s6uhKLGgtHRUYqLi0lMTCQ+Pt7y+PDwMCUlJaSnpxMZGWnzuEajkWPHjuHs7ExOTo5NokKlUlFZWcmWLVssHakWil6v5+jRoyiVSp544gnuu+8+rrrqKltPX7AECGGxStx///3s2bOHJ598krGxMcrLy202sjM7X5aWlqLVahf8OrlcTl5eHlNTUzbXapiJiYmZt7bCfJEqLi5mbGzM5nEFAoFAcB4jk1lHLT7xtPi07SyUWFy47UuHksnkn5rknYfCYmxsjOLiYstioJmZtRYxMTE2j2s2wDMYDDZ7VWi1WkpLS0lOTrapyNt8XLOz9s9+9jP27NnDfffdZ+vpC5YIISxWCZlMxiuvvIJcLuell15iYGDALjfrhIQEgoODOXr0KFNTUwt+nZOTE/n5+ahUKqqrq+0SF2eqrUhKSiIuLk6IC4FAIBDYTuZXPt0/9SpIErsid1seOqyd9nNakjoL08LvmxsBs6iIi4sjKSnJ8viZai0WitkdW6VS2dyWdmpqiqNHjxIcHGxzPQZ86hL+29/+FkdHR1555RW7DPwES4MQFquIu7s77733HmVlZfzjH/+gsbHRZsM5mUzGpk2b8PDwoLS0FKPRuODXuri4kJ+fT3d3t13u3GBdWzFTXCQnJxMbG0tRUZFIixIIBALBwvGPA8XO6f3BWug7yabgbLw+MdA7qhvBIJlgtAXJ3hoJs7A4j2osRkdHKSoqIjY2luTkZMvjZ6q1sIXGxkZ6enrIz8+3yQDPaDRSWlqKh4cHmzZtslkQdHV10dTUxAcffMDx48fZv3+/zUZ6gqVFCItVRqFQsG/fPv7v//6PqqoqKioqbO6sJJfL2bJlCwDl5eU21U14eHiQn59PY2Mj7e3tNh3XzJlqK8wXKVFzIRAIBAKbmFXE7Sh3tJjlqU16Tk6OTqcxjdneth34tM7iPEmFUqlUFBcXEx8fbyUqzlRrYQvt7e00NjaSn5+Ph4fHgl9nMpkoLy8HsKsDlLkm49SpU/z+979n3759Vu1yBauDEBZrgB07dvDcc8/x05/+lJ6eHo4ePYpOp7NpDEdHR7Zt24ZGo+HUqVM2pTb5+PiwdetWqqqq6Ovrs/X0genaioSEhHnFRUJCAkVFRaIVrUAgEAgWRvq1IHec3q96A0xGCiIvsDx9eMLcdva0fePLzx9hMTIyYqmpmJn+ZBYVs2stbKG3t5eqqiq2bdtmk6u2JEmcPHkSjUbDtm3bcHBwsOm45na2PT09/OxnP+P5558nPz/f1tMXLANCWKwRbrnlFm6++WaeeOIJRkdHKSkpsSmtCabb0Obn59tVrxEUFEROTg7l5eV2u2ibaytmi4jExERLupQw0RMIBALBOXEPgMTLp/fVvdB6gPyInTh8UnR9xOy8bW+dhdkkzzhlV43hemFkZMSS5jRTPKhUKoqKiizpzPagVCo5fvw4OTk5BAYG2vTa+vp6BgcHyc/Pt7mtrNFopKSkhNHRUR5//HHL/EmwNhDCYg3x5JNPEh8fzzPPPINKpeLEiRM2X/Dc3NzIz8+ntbWVlpYWm14bHh5uaSNrb+qS+eI1W0QkJCSQnJxMcXGx3cJFIBAIBOcRVt2hXsfHxYdNwZsB6DBM0K6fgPEuJL1tXlAAOJrrAKQNG7UYHh6muLiYlJQUqzQncwTDvOhnD6Ojo5SWlpKenk54eLhNr21paaGtrY38/Hzc3Nxseq0kSZw4cQKVSsXTTz9NYmIiP/vZz2waQ7C8CGGxhnB0dORPf/oTAwMDvPXWW/T09NgsDgC8vLzYvn07tbW1NheDx8bGWlKa7O3oZL5YzW5FGx8fb2lRO9O5WyAQCASCOSRdCS7e0/u1f4GpCat0qOmohQSqJtvHdphRYGycXNRprkUGBgYsrWNnFmSbxcbsCIYtzGxXa2sHqe7ubmpra9m2bZvNXhUwLUp6enp46623GBoa4o9//COOjo42jyNYPoSwWGP4+fnx/vvv8/e//53Dhw9TU1NjV92Dv78/ubm5VFZWMjg4aNNrk5KSiI2Npbi4mPHxcZuPDWeOUMTGxpKVlcWxY8dsFj0CgUAgOI9wcoO0L03vT41Dw3sUKD5tO3tkwtx21o46CwfXT/cNttU0rnW6uro4duwYWVlZVhN/s09Famqq3YXaY2NjFBUVzWlXuxAGBweprKwkLy8Pf39/m4/d19dHTU0Nhw8f5oMPPuD999/Hz8/P5nEEy4sQFmuQ1NRU3nrrLZ577jlqa2spKyuzK30oNDTUMom3tXA6OTmZ6OhoioqK7BYXMyMUSqXS8rhCoSAvL4/Kykq7IjICgUAgOE+Y1R0q2jsWhVcUACcmRxk36e2rs9igEYvm5mZOnDhBXl6eVYckpVI5bwTDFsbHxykuLiYmJsaqs9RCUKlUFrETEhJi87GVSiVlZWXU1tby3HPP8dZbb5GSkmLzOILlRwiLNcrll1/Oz3/+cx577DFaW1vtTk2KiooiKSmJkpISNJqF56HKZDJSUlKIioqiqKgItVpt87FhOkJhrtuYmf4UEhLCjh07OH36NLW1tRu6eE4gEAgEdhK9B7wjp/eb/oFsYshilmdE4qhWCdohJK3yLIPMg+PGEhaSJFFbW0tDQwM7duywmrwPDAxQUlJCenq6XeZ3AGq1mqKiIqKiomye0Gs0GkpKSkhKSiIqKsrmY4+NjXH06FFaW1t57LHH+MUvfsFll11m8ziClUEIizXMt771Le666y4eeeQRent7KSoqQqvV2jxOQkICkZGRNrexlclkpKamolAoKCoqskmYzCQmJsYSOenq6rI87u/vz65du+jq6uLEiRM2+W8IBAKB4DxALv/UidtkgJo/sltxgeXpI2ZBYWM6lMwqYrG+U6FMJhMnTpygq6uLXbt2WaUZmdOiNm3aRExMjF3jazQaioqKUCgUpKam2mRip9PpKC4uJjIy0i5X7YmJCYqKiujt7eWRRx7h7rvv5pvf/KbN4whWDiEs1jg/+tGP+NKXvsSPf/xjlEolR44cYWpqyqYxZDIZ6enp+Pn5UVJSgl6/8A4YMpmMtLQ0IiIiFiUuFAoFW7du5eTJkzQ3N1se9/LyoqCggJGREcrKyjAYDHaNLxAIBIINyqx0qM3BOXg4eQJQrB3CIJmQhm1rsW5dY7F+IxYGg4GysjJGRkYoKCiwKohubm7m5MmTbN26lcjISLvGN4uKiIgI0tLSbBIVer2ekpIS/P39SU9Pt9lVe2pqiqKiIpRKJY888gjXXnstP/zhD219C4IVRgiLNY5MJuO5555jy5YtPProo4yMjFBUVGTzBFwmk5GdnY2zszPHjh2zySPDLEzCwsIWJS6Cg4PZsWMHDQ0NVulPbm5u7Nq1i6mpKY4ePWqzcBIIBALBBiYkE4Izp/e7SnBStZMfvgOAMZOBqslRGGlAMtng/bQBaixm3jN37dplad06Oy0qODjYrvHNoiIsLMxmYWA0Gjl27BguLi5kZ2fbLCoMBgNFRUUMDw/z6KOPkpeXxy9/+UubxxGsPEJYrAMcHBx44403CA4O5sknn7QUQdmaOiSXy9m6dSsGg4Hy8nKbXi+TycjIyCAsLIwjR47YXXPh5+dHQUHBnPQnZ2dnduzYgbOzM0eOHLEr5UsgEAgEG5RZnhYFM9KhDmuHptOZxtoXPp7j+k6F0mq1HDlyxOreCdNpUZWVlXR3d1NQUGB31yS1Ws2RI0cIDw8nIyPDpgm9yWSivLwcg8FAXl4ecrltU02TyURpaSkqlYqnnnqKkJAQ3njjDZvduQWrgxAW6wRXV1f279+PTqfj+eefZ3BwkIqKCpuLnh0dHcnPz0er1dotLiIjIxfVLcrT05OCggKLQDJHXxwcHMjLy8PPz4/Dhw/bPb5AIBAINhiZNwCfTG5PvcbO8J3IZdNTmKJPXLilERvSoWamQq2ziMX4+DiHDx/G39+fvLw8y4TbYDBw7NgxRkdH2bVrF56ennaPf+TIESIjI22OVJhFhVarJT8/32aPCUmSqKioYGhoiOeff57JyUn27duHi4vLuV8sWBMIYbGO8PHx4cMPP6SpqYnXXnuN3t5eampqbB7HvMKh0Wg4fvy4zeIiLS3NUtBt7+TfnP5kMBgoLi62pD/J5XI2b96MQqHg8OHDwqVbIBAIBOCjgJgLpveHm/BVNpEZtAmAVv0EXfoJsKXOYkYqlLSOaiyGh4c5fPgwCoWCTZs2WaIBU1NTFBcXYzAYrNKibMXsUxEVFWVzTYXJZOL48eNMTExYRVFsoaamht7eXl599VWampr48MMP8fHxsXkcweohhMU6IywsjH/9618cOHCAffv20draSlOT7a6jZnGhVqupqKiwWVykpqZafC7sdeh2cnIiPz8fV1dXDh8+bEl/Mo+fkpJCcXEx/f39do0vEAgEgg2EVRH3qxREzjDL0w7BeCfS1ALTdNdhV6i+vj6Ki4tJSUmx6s6k1Wo5fPgwrq6u5Ofn4+TkZNf4Zkft6Ohom7s/mUwmKioqUKvV5Ofn2yUqmpqaaG1tZd++fRw8eJCPPvqI0NBQm8cRrC5CWKxDEhMT+fDDD3n77bc5dOgQtbW1dHZ22jyOi4sLO3bsYGxsjMrKSpvSqsyT/5iYGIqKihgdHbX5+PBp+lNAQACFhYVWIiUuLo7s7GzKyspob7chd1YgEAgEG4+0L4LjJylMVW9SELbT8tRh7RAgLdwsz3F9pUK1t7dTXl5Odna2lcHd2NgYhYWFBAYGWqVF2cro6ChFRUXExsbaLCokSaKyspKxsTF27NhhV9pSZ2cntbW1HDx4kLfffpsPP/zQrva0gtVHCIt1ypYtW/jrX//Kr371KyoqKqisrLQyoFsoZnGhUqlsFhcAKSkpxMXFWbo32INMJmPTpk1ER0dz5MgRq3EiIiLYtm0bNTU1VFdXC68LgUAgOF9x9YHkvdP7WiVxA/WEe0YAUKFToTYZFl5nYdVudu1GLEwmE9XV1dTU1LBt2zYiIiIszw0PD3PkyBGio6PJysqyu2OSUqmkqKiI+Ph4mx21zaJCpVLZLSoGBgaorKykoqKCF154gXfeeYctW7bYPI5gbSCExTrms5/9LL/73e/42c9+xunTpyktLWVkZMTmcVxdXdm5cyfDw8OcOHHCZnGRnJxMamoqxcXF9PX12Xx8+NTpe75xgoKC2L17N/39/ZSUlIh2tAKBQHC+svnrll3ZqT9YuXCXaJUwXL+we5jjjBoEw8RSn+WSMDU1RUlJCQMDA+zZs4egoCDLc+a0KHPasL2ioq+vj6NHj5KamkpSUpJNr5UkiRMnTjA8PMzOnTtxdXU994tmMTIyQmlpKadPn+ZnP/sZr7zyChdffLHN4wjWDkJYrHOuv/56HnvsMR599FE6OzspLi62qxWsWVwolUq7IhexsbHk5ORQXl6+qLSlM43j6enJ7t27kcvlFBYWio5RAoFAcD4S91nw/CTvvuFv7A7Mtjx1WDsEU2Og6T3nMDK5w6d1FmtQWIyPj1NYWIhcLqegoAAPDw/Lc+a0qJycHGJjY+0+xmLGMUcqlEql3aJCrVZTXFxMR0cHP/7xj3n88ce57rrrbB5HsLYQwmIDcOedd/Ltb3+bhx9+mIGBAY4cOcLEhO0XSnOnppGREZsLugHCw8PZvn071dXVNDQ02CxOZo5jTn+qqamxjOPk5MS2bdsIDw+nsLBQFHULBALB+YaD46dF3CY9OQMNeDhNT7qLPnHhXnB3KEf36X/1a8s3qb+/n8LCQsu90FyMLUmSJS1q+/bthIeH2zW+JEk0NDRQXV1t1zjmQu2RkRG7O1BNTExw5MgR+vv7efjhh/nOd77Dd7/7XZvHEaw9hLDYIDz22GNcfvnlPPTQQwwMDFBYWGiXuDBHLkZHR+0SF4GBgezatYuWlhaqq6vtFhfm9Ke+vj5KSkrQ6/XAp+1uN23aRFlZGU1NTXYfQyAQCATrkE1fs+w6V73GjohdwLQL94lJFdKChcUnE2LDxJq4j0iSRFNTE2VlZWzatMmq3ater6ekpIT+/n52795NYGCg3ceorq6mpaWFXbt22TyOWVSMjo7aHamYmJigsLCQgYEBHn74Ya644goeffRRm8cRrE2EsNggyGQyfvvb35Kfn8+DDz7I0NCQVQtXWzCLi/HxcZt9LmDab6OgoID+/n67Xm/GnP4kk8koLCy0SvGKjIxk586dNDc3U1lZidFotOsYAoFAIFhnhGRC6CcpUD3l7PH5tOD40MQgjDYjLaTTk9MnEQvJCKbVrd0zGo1UVFTQ3NzMzp07iYyMtDw3Pj7OoUOHkMlk7N69227jO6PRyPHjx+nv76egoMBmfwizT8X4+LjdosLcGndwcJAHHniA/Px8fvvb39pdIyJYewhhsYFwcHDg1VdfJScnhwcffJDBwUG7xYW5W5RarbbZoRvAw8ODgoIC1Gq1VcTBVszpT6GhoZYVDjN+fn7s2bMHtVpNUVEROt3a7ewhEAgEgiVkRhH3rv46HOXTDs+FE0NIJgOoms89hjkVClY1HUqr1XLkyBE0Gg179uzBz8/P8lx/fz+HDx8mLCzMKi3KVvR6PaWlpWg0mjk1GwvB7Kit0Wjs7v6k1WopLCxkcHCQhx56iNzcXF599VW7W+QK1iZCWGwwHB0defPNN8nMzOThhx+2RC7smXS7uLiwc+dOJiYmKCsrszkqYH49QFFREZOT9vUKl8lkpKenk5mZybFjx6zSn8zRFU9PTw4dOmRXVyyBQCAQrDMyvwKfiAnP6rfJDckDoNeoo1GvXlg61BroDDUyMkJhYSFeXl5WUYCZaVGZmZmkp6fbvao/OTlJUVERgF2iwGg0UlZWZnHUtkdU6HQ6Dh8+zNDQEA899BBZWVm88cYbODo62jyWYG0jhMUGxMnJibfffpvk5GQrcWHPxN7s0K3T6eyKPDg5ObF9+3Y8PT05fPgwGo3G5nMwo1Ao2LlzJ01NTVbpTw4ODmRnZxMfH09RURFdXV12H0MgEAgE6wCPIEi8fHp/vIc9bmGWpw5ODMJw3bnHmBmxMKx8xKKzs9PiH5GdnW1ZuTcajVRWVlrSohQKhd3H0Gg0HD58GE9PT7Zv325zxMNc26HT6dixY4ddjtozRcXDDz9Mamoqb7/9tt3RF8HaRgiLDYqzszN//vOfiYuL48c//jFKpXJR4mLnzp3IZDK7Uo7kcjlbtmwhJCSEw4cP2+3SDZ+mP42Pj1udi0wmIyEhgby8PE6ePEltbe2aKMYTCAQCwTIxo4h7d1+tZb9wYhC0g0jaobO+XOa0OhELSZKoqanh1KlT5OXlkZCQYIlG6HQ6ioqKGB8fZ/fu3VZpUbYyOjrK4cOHCQkJYcuWLcjltk35zOcil8vZuXOnXaJicnLSIioeeeQREhIS+POf/yxExQZGCIsNjIuLC3/9619RKBSLFheOjo5s374dLy8vSy6oLchkMjIyMoiLi+PIkSMMDZ39gn82zG1xPTw85qQ/hYSEsHv3bnp6eigpKbE7/UogEAgEa5ykK8F1euIdcvpvpPmnAtCgV9Nj0ILyHFELqxqLlREWk5OTlJSU0Nvby+7duwkJCbE8NzIywqFDh/Dw8LC7jauZwcFBjhw5Qnx8PBkZGTanUZkjHV5eXmzbts2ulCWdTkdhYSHDw8P8+Mc/Jjo6mr/+9a92CRTB+kEIiw2Oq6sr+/btIywsjEceeYShoSEKCwvtqrmQy+Xk5OQQGhrK4cOHUalUNr1eJpORlJRERkYGJSUl9PT02HwOZhwcHMjJySEuLm5O+pOXlxd79uzB0dGRgwcPLkrECAQCgWCN4ugCmTdM7xu07HH6dHW/cGIQabj2DC80v35lU6GGhoY4ePAgjo6O7NmzBy8vL8tzXV1dlrSonJycRRU09/T0UFpaSmZmJomJiTaLCpVKZSkYz8nJsTnSAXPTn8LDw3n33Xftqs8QrC+EsDgPcHV1Zf/+/URERPDwww8zODhIYWGhXd2izIXU5nqGwcFBm8eIjo4mNzeXioqKRRnpyWQyEhMT501/cnJyIjc3l6SkJEpKSjh9+rRIjRIIBIKNxqZPu0Nd0FNt2T80MQSqJiTjWdrIzkiFkpYxFUqSJOrr6ykpKSEpKYnc3Fwr07va2lpOnjw5Jy3KnuOcPn2aiooKcnNziYqKsnmMwcFBioqKSEhIsCvSAdbdnx5++GEiIyN577337GpPK1h/CGFxnuDm5sa+ffuIiYmxKui2V1wkJiaSmZlJaWkp3d3dNo8RGhpKQUEBbW1tHD9+HIPBYPMYZmamPx07doypqSnLecbGxlJQUEBnZyfFxcWiJa1AIBBsJCLyIDAFgLiOYhQe00XcJyZVjOonQNV45teuQCqUVquluLiY7u5uCgoKiI2NtUzWp6amKC0tpaenZ05alK0YDAaOHz9Oe3s7BQUFhIaG2jxGd3e3JdKRkJBg13nMbikbGxvL/v37hag4jxDC4jzC1dWVd955h6SkJB588MFFOXQDREVFkZubS2VlJS0tLTa/3sfHhz179lh6eNsjcsx4eXmxe/duJEni4MGDDA8PWx3nggsuwNXVlQMHDlh5YQgEAoFgHSOTWYq4ZcAeh2nzOCMSRdohpLPVWTjN8HIw2N+x8EwMDAxw8OBBXF1d2bNnj5Uh3fDwMAcPHgRg9+7dVmlRtmK+h+p0ujnHWSgtLS1UVlaSl5dnV6QDPnXUHhwc5MEHHyQ5OVmkP52HCGFxnuHi4sKf//xn0tPTl0RchIaGsmPHDurr66mrq7M53cjsdeHr68uhQ4esBIGtODs7s23bNuLi4iguLrbyu3B0dCQnJ4f09HSOHTtGbW2t3Y7gAoFAIFhDZN3EtKyAC7qrLA8f0g6CsubM9yWnGQ7WU+olOx2TyURtbS3Hjh0jPT2dLVu2WIqfJUmisbGR4uJi4uLi2LZt26KKmYeHhzl06BC+vr52eUyYU7Hq6+vZsWOH3VETjUZjMbF98MEHyczM5C9/+Yso1D4PkUki8fy8RK/Xc8MNN1BRUcGDDz5IcHAwu3btwtPT89wvnofx8XGOHj1KUFAQmzZtsrnYS5IkWltbqa2tJSsry+4VEzPDw8McP34cLy8vsrOzrS62Y2NjlJeX4+TkxJYtW3B3dz/LSAKBQCBY8/zhs9DyEUbgc0nbGdGrcZXJ+Wfkbty23Y/MY25qkCRJSId/ACY9eIQhz/ufRZ/GxMQEx48fR6/Xk5eXZxWJmJycpKKiArVaTW5u7qJayQK0t7dTVVVFWlqaVYrVQjGZTJw8eZLBwUHy8/Ptjpqo1WoOHz7M4OAgDzzwALm5ubzxxhuipex5iohYnKc4OTnx1ltvsXXrVn70ox/R29u7KOdqLy8vCgoKGBkZsculWyaTWVZvqqurqa6uXlREwd/fnwsuuAC5XD6nM5S3t7elI8fBgwfp7e21+zgCgUAgWAN8UsTtAOyWTRdl6yQTZboRUM7fHUomk32aDrUEEYve3l4OHjxodY8xY+4I5eDgwAUXXLAoUWEymaiurqampsYSpbdVVBgMBsrKyhgZGaGgoMBuUWFukdvX18ePfvQjtm/fzptvvilExXmMEBbnMY6Ojrz++utcdNFF3HvvvbS3t3PkyBG7axDM/hJTU1MUFxdbiqhtISgoiD179jAwMEBJSYldY5hxcnIiLy9v3s5QDg4ObN68maysLCoqKqiqqhKpUQKBQLBeSb0GnKcj7nt6aywPH9Keo+2s0ycTar0aSbLvHmA0GqmqqqKiooJNmzaxadMmS7tYc6cmc0eovLy8RU26p6amKCkpYWBggD179hAUFGTXGEePHmVqampRfhkDAwMcOXKE9vZ27r33Xi666CJee+01uzwvBBsHISzOcxwcHHj55Ze5+eabue+++ywXwM7OTrvGc3Z2Jj8/H2dnZ7sLsj08PCgoKEAul1NYWMj4+Lhd5wKfdobatWvXvJ2hIiMj2bNnj8U80FbjP4FAIBCsAZw9IO1LAGwdH8RVPj15PzwxiFHVjHQmnwpnc/qvZFdnKLORnFKpZM+ePURERFie0+l0FBcX09nZOacjlD2Mj49TWFiIg4MDBQUFeHh4nPtFszAXejs7O7Njxw67ayA6OzstC3b33Xcft9xyCy+//PKi/DcEGwMhLATIZDIef/xxHnroIR544AEqKiqorKykqanJrvEcHR3Jy8vDz8+PwsJCm430YDrasG3bNsLDwyksLKS/v9+uczHj6+vLnj17cHV15eDBg1ZRGU9PTwoKCvD39+fgwYO0t7cLzwuBQCBYb3ySDuUqSeSbpie4IyY9J3XDMNIw/2tmFnDrF54OJUkS7e3tHDx4kICAAAoKCqxqFAcGBjhw4MC8HaHsob+/n8LCQsLDw9m6datdUQ+VSkVhYSF+fn7k5eXZLQKampqorKykoqKCBx54gIcffpjHHntsUaJJsHEQ8SqBhTvvvJOQkBBuueUWbr/9dmQyGTqdjvT0dJsvGHK5nM2bN9PU1MSRI0fIzs62WslZCDKZjLS0NLy9vSkrKyMlJYX4+Hi7L15OTk7k5OTQ0dHBsWPHiIuLIyUlBblcjoODA5mZmQQFBXHixAl6e3vZtGmT3SFigUAgEKww0bvBNxZUrXxmoIkDwZEAfDwxQI6yBlnQprmvcbZdWGi1Wk6ePMno6Chbtmyx8owwmUzU19fT0tJCZmYmUVFRi5pwS5JEU1MTp0+fZvPmzURGRto1TldXFydOnCA5OdluEz5JkqipqaG1tZVDhw7xwgsv8Morr3DdddfZdU6CjYkQFgIrrr/+egIDA7nmmmtQqVTs3bsXnU5HTk6OzZ2ezEZ6Xl5eHD9+nLGxMVJSUmy+oEVGRuLh4cGxY8cYHR1l8+bNdq+0yGQyoqOj8fPzo7y8HKVSSW5urkVAhIaGctFFF1FdXc2BAwfIyMhAoVCIlRiBQCBY68jlkH0zHPgRuybGcEKOHhMHJwb5b2UdMsmETGZ9H5M5eWGJT5+jgFuSJDo7O6mqqiIsLIwLL7zQKpVIq9VSXl6OXq9n9+7deHt7L+rtGI1GTpw4wdDQELt27cLX19fmMSRJoq6ujtbWVnJzc+0yzoNpwVRRUUFvby/79u3j7bffZv/+/Vx88cV2jSfYuIh2s4J5OX78OJdeeikXXHABN910E0FBQWzdutXuoqyxsTGOHTuGl5cXOTk5doVxdTodx44dw2QykZuba3drXDMGg4Hq6mp6enrIzs4mLCzM6vm+vj5OnDiBr6+viF4IBALBekDVAU/HABLfi0jhiPP0Peul0Fw27XgYmZfC6selvmNI9W8AIEv8IrKIgnmHNUcpVCoVmzdvnjNB7+3tpbKykvDwcDIyMhZdwKxWqykvL0cul7N161a7nKv1ej0VFRWMj4+zbds2uzs/GQwGSktLGRoa4tVXX+XQoUP84x//YMuWLXaNJ9jYCGEhOCONjY189rOfJSEhge985zv4+vqyc+dOu4u9pqamKCsrY3Jykm3bttlVeGY0GqmtraWjo4NNmzbZHRaeSVdXFydPniQsLIyMjAyr9zc1NUVVVRX9/f0ieiEQCATrgVcvheZ/8p6nLw8FTd8jvuodxfeyv4ss5lKrH5WUtUhVL07/J/pS5LGXWT//SZSiurqakJAQMjMz571H9PX1Lfk9KSoqirS0NLsi9BqNhtLSUlxdXcnNzV3UfbuoqAiVSsXzzz9Pc3Mz//rXv0hISLBrPMHGRwgLwVnp6+vjkksuwdXVlbvvvhs/P79FtaczmUzU1NTQ2dlJXl6eXa3ywHp1KDMzc9GdKLRaLSdOnGBsbIxNmzbNuxp18uRJEb0QCASCtU712/Dn6xmVO3BJdCpGIMzBlXdTrsch9y6rH5XGOpAqfj79n/CdyJOutTx3riiFOart4+PD5s2bF31fOFcUfaEMDg5SVlaGQqEgPT3d5jRmMxMTExQVFTE8PMxTTz3F5OQkH374od3pVILzAyEsBOdkdHSUq666ioGBAe6//34CAgLYuXPnovJHzY6h6enpxMbG2jXG2RxO7UGSJDo6OqiuriYsLIzMzEyrlK2Z0YvMzEwiIyNF9EIgEAjWGnodPBUOuhG+ExZHqas7AL8PzSPtgl8gc/m0Q5OkG0EqeWj6P4GbkGfcvKAoRXV1Nb29vWRkZCy6QBum04XLy8txcnJiy5YtuLu72zyGJEm0tbVRU1NDZmYm0dHRizqfoqIilEoljz76KCEhIezfv3/RdSOCjY9oNys4Jz4+Pnz44YekpaVx//3309XVRWFhIcPDw3aPGR0dTX5+PvX19Zw8edIuczp3d3d27txJaGgohw4doqOjY1FtYs2F3RdddBGTk5N8/PHHVm1unZ2d2bJlC9nZ2dTU1HDs2DErTwyBQCAQrAGcXCHrqwBcpB6xPHxgYgCUNbN+dkZK7tQYWq2W0tJSamtryc7OZsuWLVaioq+vjwMHDjA5OclFF11EdHT0ors+tbe3U1hYSGhoKDt37rRLVJhMJk6dOsXp06fJz89flKhQKpUUFhbS3d3NfffdR1paGh9++KEQFYIFISIWggVjNBq54447+POf/8wPf/hDYmNjycvLW1RYdGJigmPHjlm8L1xcXOwaZ2BggOPHjxMcHMymTZsWXTgnohcCgUCwjumthN/koJQ7cFl0KiYgytGdP2XcgsOmb1r9qOnI/WDQYHD04qOx/HmjFHq9nqqqqiWNUuj1ek6dOsXAwABbtmwhODjYrnEmJycpKyvDYDCwdetWu4SJmb6+PsrKymhtbeWRRx7h2muv5Ze//KUwvhMsGCEsBDYhSRKPPPIITz75pGUlIz09nbi4OLsvsgaDgcrKSlQqFVu3brXbSEir1VJRUYFWqyUvL2/RhkTmMc21F5s3byYkJMTqeXPthZ+fH1lZWaL2QiAQCNYKv86BvkpuC42lwm06MvFm+A4SLnwWmeOni1iGYz9BPtGLSZIxmHw3YeHWnkv9/f2cOHECb2/vJamlgOkU47KyMtzc3NiyZYtdXZ/M4xw7dgxfX1+ys7PtXlSTJImWlhZqamqora3lscce4+677+aHP/yhWDQT2IQQFgK7+M1vfsP3v/997rjjDgoKCggPD1+Uv4QkSTQ0NNDU1EROTo7dRWvmcRobG0lPTycmJmbRF8WZ0QtzK8H5ohe9vb0kJycTHx9vd7GcQCAQCJaI0ufgg//iLW9/ngwIB+AbPrF8c+ePkQVlYTKZaG5uxrP9bUIchwCQbX8QmasvMB1RMBdTL1WUYmYdRGJiIklJSXaP2dPTQ2VlJQkJCYsax+yX0dPTw+HDh3nuued4+umnue222+waT3B+I4SFwG4++OADrr/+ei677DJuuOEGfHx82L59u90rLzB9oayoqFj0BXdoaIjy8nICAgLYvHmzXb4Zs5mYmODEiROMj4/PG70YGhri1KlTSJJEZmam3WFtgUAgECwBE8PwVBgDmLg8KgWAeCcP3sz+L4YCPktVVRVyuZxtAd24DpcDIMu+E5lPrCVK4eXlRXZ29pJEKfR6PZWVlYyMjLBlyxYCAwPtGmfmQlx2djbh4eF2n5NOp6OkpASVSsVbb73FBx98wFtvvcVll1127hcLBPMghIVgUdTX13PllVcSHBzMd7/7XXx8fMjPz7fLIdSMOUTs7u5OTk6O3UJlcnKSiooK1Go1ubm5+Pn52X1OZsyFdjU1NfNGL0wmE62trdTX1xMcHExGRoZIjxIIBILV4k/XQ83b3BwWR9Un3aHeDN9Nw9RlpKSkEhsbi6zrAFLLewCYkr5KVb/jkkYpAEZGRigvL8fT05OcnBy76wl1Oh0VFRVMTEwsOuVXpVJx9OhRRkdHeeaZZxgcHOT9998nJSXF7jEFAiEsBItmZGSEa6+9lubmZu655x7Cw8PJyckhIiLi3C8+A3q9npMnTzI0NMSWLVvs9ruQJImmpiZOnz5NSkoK8fHxS3KTmBm9yMzMJCwszGpcnU5HTU2NSI8SCASC1aTpn/DapbzmHcDTAdMptt/2jefG/MdxCU4FQOqvQKr7AwCNhiSU7pvZvHnzooqgzUiSRHNzM/X19SQnJ5OQkGD3PWhgYICKigoCAwPZtGnToiLxXV1dVFZW0tPTw+OPP05iYiJ//OMfl2QBTnB+I4SFYEkwGAz8v//3//jd737HD37wAzIzM0lISCA1NdXui6i5tqGqqor4+HiSk5PtnpwPDw9TUVGBi4sL2dnZeHp62jXO7PPr7OyktrYWb29vMjMz53hpKJVKTp06hclkEulRAoFAsNKYjBh/Hk2fboC9imQAUpy9+MPW/0EevxcATV89bvW/BkDtlYFXzq1LsgClVquprKxkcnKSnJwc/P397XsLJhOnT5+mubmZzMzMRUVRJEmirq6OpqYmqqqq+OlPf8qtt97KT3/600V3UxQIQAgLwRLzyiuv8J3vfIf/+I//4HOf+xxBQUHk5eUt6oI1NjZGWVkZLi4ubNmyxe7UIoPBQG1tLR0dHaSmpi6qk9VM9Ho9dXV1dHR0EBsbS3JystX7FelRAoFAsPJotVqqq6vxrfw5iT1vcWNEAvXO06m1f427gvDtj3C6oYHO1gYu8Tw0/SLfBOSb71jUcc0dlurq6oiOjiY1NdXue6BWq+X48eNMTU2Rm5u7KC8JvV5PeXk5g4ODfPDBB/z+97/n+eef5+abb7Z7TIFgNkJYCJac4uJirr76avLy8rj11lvx9vYmPz8fDw+Pc7/4DBgMBqqqqujr6yM7O3tR3hlDQ0NUVlbi6uq6ZNELmK4NOXXqFBMTE2RkZBAeHi7SowQCgWCFMZlMNDU10dDQQHh4OOnhbrj8Oo3/8wnkOf/pe8e3fONIcbsJyS2ErKwsvKp/CnoNOPsg3/GQ3cc2Ryl0Oh3Z2dl2F2jDtKdEZWUloaGhZGZmLmqBTqPRcPToUcbGxnjppZcoLy/n3XffZceOHXaPKRDMhxAWgmWhs7OTq666CqPRyN13301AQADbtm1b1EXWPO6pU6eIiYkhNTXV7on5ckUvRHqUQCAQrB4DAwOcOnUKBwcHsrKyCAgImH7i/y6it+sIn/8kHSrWyZ0X0/4b301fRiaTYar4BYy1AyAr+CkyB+czHWJeZkYpoqKiSEtLs1sImEwmamtraW9vJysrC4VCYdc4ZoaGhigtLUWpVPLkk0/i4ODA/v37Fz2uQDAfQlgIlo2JiQn+4z/+g8LCQu655x7i4uLIzMwkNjZ2UeOOj49TXl6Og4MDubm5iyqwM0cv3NzcyM7OXlRUZSZ6vZ76+nra29vPmR4VFBREamrqHAEiEAgEgoUxPj5OXV0dg4ODpKamEhMTY7XwZDz5Og7v3Mg3whM44TKdDvVa3OWkFPwEAFPda9D/ScvZ3P9B5rlwLyW1Ws2JEyfQarWLjlJoNBrKy8sxmUzk5eUtOqLe2tpKVVUVLS0tPPHEE+zZs4dXXnllSQrTBYL5EMJCsKxIksSjjz7K448/zp133kl+fj4KhYKsrKxFpQEZjUaqq6vp7u5m8+bNi+rjPTN6kZaWNt1+cImcRheSHnX69Gk6OjpQKBQkJyeL+guBQCBYIFqtltOnT9PZ2UlUVBTJyclWLcolSaKnp4eaUxVcUPE19rvKeSJw+n5xo3cUd176O2TuIUht/0Bq+wcAsvRbkAVlnfPYSxmlgE8N7yIjI8nIyLDbcBamF69OnjxJV1cXxcXFPPvss9x3333cd999wklbsKwIYSFYEfbt28eNN97I3r17ufbaa/Hz82Pbtm129/I2Y74QKxQK0tPTF3UhHhwc5MSJE0sevZAkia6uLmpqavDy8prO550VnVCr1dTX19PX10dsbCyJiYk4O9sWihcIBILzhampKRobG2ltbSU0NJSUlJQ5q/vj4+OcOnWK8fFx0tPTiax/jtGjT3FpVCpGGQQ7uPDezh/jEPs5pP7jSHWvAiCLuwpZ1EVnPb5Go6GysnJJohTmhbKurq5FG97BtIdTaWkpIyMj/OlPf2Lfvn289tpr7N27d1HjCgQLQQgLwYpRVVXF5z//eRQKBXfccQfe3t5s27bN7hZ8ZsyhY0mSyM3NXVTo2GAwUFNTQ2dn55JHL8zpUW1tbcTFxc1Jj4Jpw6La2lpUKhWJiYnExsaKFoACgUDwCQaDgZaWFpqamvD19SUtLW2OIavBYOD06dO0tLQQExNDSkrKtOfDcAs8G8/3wuI48olZ3q+jLyH3gqeQxtqRKn4xPUBYPvLk6+Y9viRJtLa2UltbuyRRCrVaTVlZGXK5nNzc3EUvaCmVSo4dO8bY2BjPPfccnZ2dvP/++2RkZCxqXIFgoQhhIVhRhoaG+OIXv0hHRwd33XWXJXSdlJS0qAn8zGK3zMxMFArFosZbrugFfJoepdFoSE5OJjo6ek5a2ODgILW1teh0OpKTk4mKihIdpAQCwXmLyWSio6OD06dP4+rqSlpa2hzjVJPJRHt7O6dPn8bDw4OsrKy5ztSvfo5/9JXwv8HThcvXeIZz32WvgpMnUtF90z/jE488+7/mnMPMKMXmzZvtNm6FTxt9VFVVER0dTVpa2qKu8ZIk0dDQYEmtfeqpp4iOjuYvf/nLpwXsAsEKIISFYMXR6/X88Ic/5Nlnn+Wb3/wmF154If7+/uTl5S06Naqvr48TJ07g6+vLpk2bFlWvoNfrqa2tpbOzk9TUVGJjY5dsci9JEr29vdTV1SFJEikpKURERFiJIXNucF1dHQBpaWlzHL4FAoFgI2O+VtbW1gLzXwclSaK7u5v6+npkMhmpqalnvlbWvcvEH7/IJdFp6GTgLXfkH7sexTn2ckzFP4KpMXB0R7bzUcvrzc026urqLGm3i4lSaLVaTp48iUqlYvPmzYtqnw7TtXrl5eUMDw9z4MABfvOb33DnnXfy8MMPL8qdWyCwByEsBKvGhx9+yFe/+lWys7P5xje+gZeXF3l5eYtaBYLp3Nuqqir6+/vJyMhYkujFqVOnkMvlZGZmLrpl7kxMJhOdnZ3U19fj4uJiWYWbeb7mlbr6+nrc3NzmXakTCASCjYY5cqvVaklJSZkTuZUkyfIzk5OTpKSkoFAozr4AZDTA09Hc7+7Ch+7TkeinFBew56JfYjr5AoycBkCW/xAyFx+GhoY4deoUkiSRlZW1JFGK6upqQkJCyMzMXHQt3eDgIGVlZRZ/ihMnTvD6669z6aWXLmpcgcBehLAQrCo9PT185StfoaWlhf/+7/8mLi6OxMREUlJSFr0y39vby8mTJ5ckemEymWhubub06dOEhYWRnp5u1XlksRiNRlpbW2loaMDHx4e0tDT8/PysfsacW9zY2Iifn9+8ucUCgUCw3jHXmo2MjJCYmEhcXNycCMHIyAi1tbWMjo6SlJREbGzswpt3HHiQI8ee4nuhMQB81j2Yx654C6mnCLoOAqBPuYXqbv2SGZrOjFJs2rSJsLCFt7OdD5PJRH19PU1NTbS0tPDUU0+RkJDAG2+8seixBYLFIISFYNUxGo38+Mc/5oknnuDWW2/lkksuwdfXl7y8vEW3Xp0ZvcjMzCQyMnJRgkWr1VJdXc3AwAApKSlLmh4F0+lXjY2NtLS0EBwcPK+/xcxuKCEhISQmJgqBIRAI1j0qlYrGxkb6+/vP2B3P7FcxMDBgWYiyOd1ntAvD09FcGp3GqAxcZHI+3PljPNyDkU6/CUDdZBIT/nlkZGQs6j5k7gpYVVW1ZFEKrVbLsWPHGB0d5cMPP+R3v/sd9957L/fff/+iOiMKBEuBEBaCNcPBgwe5/vrrSUpK4lvf+hY+Pj7k5uYSEhKy6LHN0Qs/Pz82bdq06GjDwMAAVVVVyGQysrKyljQ9CqZvHA0NDWf1t9BqtTQ1NdHe3o6/vz9JSUkEBASIGgyBQLBukCQJpVJJQ0MDw8PDREdHk5CQMO/17mx+FTbz5tU8PnKCv3hML9w8GL6TnSm349P8OwB0vlm4b77F/vGZrn04efIkIyMjSxKlAOjv76e8vJzR0VF+/etf09jYyFtvvcWePXsWPbZAsBQIYSFYUwwODnLjjTdSVVXFf//3f1tC3Onp6YuODExNTXHq1CkGBgaWJHqx3OlRMN2KsK6u7qwreJOTk7S0tNDa2oqnpydJSUmEhIQIgSEQCNYskiTR19dHY2MjarWa2NhY4uLi5jTwmB2hTU1NXbQbNQCN/+DEn7/IN8LjANjm6s91Xrex070MGYCXAvmWu+waejmiFCaTiZqaGlpbWzl9+jS/+MUvyMrK4tVXXxU1d4I1hRAWgjWHyWTiySef5IEHHuCmm27iyiuvxMvLi23btuHu7r7o8Xt6ejh16tSSRS+0Wi01NTX09/cvS3oUTOcT19XVWfwt4uLi5oS89Xo9bW1tNDc34+zsTGJiIhEREaJNrUAgWDOYTCa6u7tpbGxkamqK+Ph4YmJi5qQzGQwGWltbaWxsPKNfxSJPBNOz8Vzj60m3DGTAX3LuInKiC7RDIHdCVvATZDLbrp/LEaWYmJigtLSUsbEx3n//fV577TUeeugh7r77bnF9F6w5hLAQrFmOHj3Kl7/8ZSIjI/nOd76Dr68vOTk5i3YlhelV/qqqKgYGBsjKyprT6tUezN2jlis9CqZTsMz+Fme6IRuNRjo6OmhqagIgISGBqKgokXsrEAhWjdnXpcTERBQKxVkXSJazC97Q0BCj79/Lx2N/5zc+0yat3wpI55aYz8JQFQCyvHuQeSysFezMKEVwcDBZWVmLjlLA9EJYRUUFKpWK5557jp6eHv74xz+yffv2RY8tECwHQlgI1jQjIyP8x3/8ByUlJXz/+98nLS2NqKgoMjMzl2Si3NPTw8mTJ/H391+S6MVKpEdJkkR/fz+NjY2Mj4+fMYXAZDLR09NDY2Mjk5OTZxQiAoFAsFzMFAouLi4kJiYSHh4+Z6XdnNLZ0tKCt7c3iYmJy5LSqdVqqa2tpbe3l7SYIFz3f4arImIBUDi68Zfc/4beEgBkKTciC80955gzoxRZWVlLsvhlNBqpqqqio6OD2tpafv7zn7Njxw5eeeWVOR0DBYK1hBAWgjWPJEn88pe/5J577uHLX/4yV199NZ6enuTl5c11VbWDmdGLpai9AOv0qKSkpHlTlxaLueixsbERpVJJVFQUCQkJc9LFFipEBAKBYKlYqFCYmJigqamJjo4OAgICSExMXJYmFEajkZaWFhoaGggJCSE9PX26QPzdm/nW8DHKHaaFzlvJ1xGnG5p+UeQe5AnXnHHM2VGKzMzMJbmujo6OUlZWhlqt5p133uFPf/oTP/nJT7jjjjtE7ZxgzSOEhWDdUFFRwbXXXouPjw+33347wcHBJCYmkpycvCR5pubaC09PT7KysvD29l70mIODg9TU1CzcvMlOzG0a+/r6iIiIIDExcU6b2vmESFxc3NIUQgoEAgHTDSdaWlrOKRTGx8dpbGyku7ub0NDQZWubPduEND093Tq1qqeCv715CQ8ETtdCXO8dw3/7xU8/5xOHPPu78447NjbGqVOn0Gg0ZGZmLkmUwmQycfr0aRobGxkYGOBXv/oVo6Oj/PnPfyY7O3vR4wsEK4EQFoJ1xdjYGN///vd5++23ueWWW7j44ovx8PAgNzd3SaIXer2ehoYGWlpaiI2NJTk5edGpQ5Ik0d3dTV1dHXK5nNTUVMLCwpZl5UmtVtPY2EhXV5fF42K+sLlKpaK5uZmenh4CAwOJjY0VnaQEAoFdmKOira2tDA0NER4eTnx8/LxCYWRkxOJVERkZSWJi4rIsbkiSRG9vL3V1dUiSREpKyhlr6bQv7+RSx3EmkPCQOfBx/BXI9BqQOyMreMKqgFuv11NfX09bWxtxcXEkJSUtSXrp6Ogo5eXlaDQa/v3vf/Pyyy9z3XXX8Ytf/GJJFrkEgpVCCAvBuuSDDz7g1ltvJTIykttuu23JoxdjY2NUVVUxPj5Oenr6kqRHmUwm2tvbOX36NO7u7qSlpS1LgTdMp2I1NzfT1taGv78/iYmJBAYGznkPOp2O9vZ2WltbcXBwIDY2lqioqCUpOhQIBBubqakpOjo6aG1txWQyERMTQ3R09Jy6MkmSGBoaorGxkeHhYWJiYoiPj1+0AeqZGBoaora2lomJCZKTk4mOjj77faH6bR4++gD7nacFwv7ozxKKCfi0gNuc9lRTU4OXlxeZmZlLMuGfHaX4zW9+Q09PDy+//DKf+9znFj2+QLDSCGEhWLeoVCq+//3v86c//Ylbb72Vz3zmM0savTBHGmpqavDw8Fiy9CiDwUBzczNNTU34+/uTlpa2JOc7H5OTk7S2ttLS0oKHhwdJSUmEhobOERgmk4ne3l5aWloYHR0lMjKS2NjYZTsvgUCwfhkdHaW1tZWuri58fHyIi4sjLCxszuTd7FXR0NCARqMhLi6OuLi4ZVu4GB0dpba2luHhYRISEoiPj8fR0fHcLzTqqXwugf/0nb6+/69/Kld5Tac2yVJuZNw9yZL2lJGRQXh4+JJEd+eLUnz5y1/mF7/4hbj2CtYtQlgI1j1///vfufXWW1EoFJboRVJSEklJSUsSvZiZHhUTE0NKSsqShL4nJyctxk/h4eGkpKTg4eGx6HHnQ6/X097eTlNTE87OzsTFxREZGTnvTVelUtHa2kp3dzfe3t7ExMQQEREh2tUKBOcxRqOR7u5u2traGBsbIyIigri4uHknwAaDga6uLlpaWtDr9ZaOdAua5NuBRqOhvr6e3t5eYmJiSExMtLmIWjr0Y65p+xNdmNju6s+zIdM1DUrXdEoGQ5c07clkMtHQ0EBDQwMDAwO8+OKLdHV18fLLL3PZZZctenyBYDURwkKwIVCpVNx555385S9/sYpe5OXlLVl+6nKkR8F0V5T6+nq6u7uJjo4mOTl52To2GY1Gyw1fq9USFRVFbGzsvIJGr9fT2dlJW1sbOp0OhUJBTEzMnKJwgUCwcRkfH6etrY3Ozk5cXV2JiYlBoVDMO8HWaDS0trbS0dGBm5ubZQFjuRYldDodDQ0NtLe3ExERQUpKiv0mquoBXnptJ792c8VH7si/FHsAGJMFIs/+7pLdR+aLUnzpS1/i6aefXpbidYFgpRHCQrChmBm9+OY3v0lQUNCSRi8kSaKnp4fq6uolTY+CaeFSV1fH4OCgJYy/XJ4TkiQxPDxMS0sLfX19BAUFERcXR1BQ0ByxZP7ZtrY2enp68PPzIyYmhrCwMBHFEAg2IEajkd7eXtra2hgZGSE8PJyYmBj8/f3nvT4MDg7S0tLC4OAgoaHTq/vz/exSodfrLemkQUFBpKamLsl1uPcvX+EqdRUS8H7EToIdXect4LaHmVGKwcFBfvOb39DZ2cnLL7/M5ZdfvuhzFwjWCkJYCDYcIyMj3Hnnnbzzzjt84xvf4MILL1zy6MVypUcBKJVKamtrUavVJCUlERMTs6wTeK1WS1tbG+3t7Tg6OhIXF3fGFcnJyUlLFGNqaoqIiAgiIyOXdRIhEAiWH/MCQmdnJz09PTg7O1uiE/NFUM0RzZaWFgwGA9HR0cTExCxbQTZMC562tjYaGhrw9PQkLS2NgICAJRlbr9fTdvSvPNPyGCUyE08EZnKRRzAAsrz/QeYRZvfYY2NjlJWVodFo+Pjjj3n55Zf5whe+wDPPPCOiFIINhxAWgg3L3/72N2699VZiYmK47bbbCAwMXNLoBSxfepS5fWNdXd2KuWYbjUZ6enpobW215FDHxMTg6+t7xihGV1cX3d3dODo6EhkZSWRkpGiNKBCsI8bGxujq6qKrqwuj0Uh4eDgKhQI/P795v/cqlYq2tjZLDVZsbCzh4eHLuvgx2707NTV1ydpjz+72pDl9F/c5aLjRO4rv+iUCIEu6Dll4vs1jz45SvPjii3R0dPDSSy9xxRVXLPrcBYK1iBAWgg3NyMgI3/3ud3n33Xct0QtPT0+2bNmyZF03ZqZHubq6kpaWZm3AtMix+/v7aWhoQK1Wr5hr9ujoKG1tbXR1deHh4WEp4J5P2JhMJgYGBujs7KSvrw8vLy8iIyOJiIhY1tVLgUBgH1qtlu7ubrq6uhgfHyc0NBSFQkFwcPC8iy56vd5SuK3RaIiMjCQmJmbZOxeZ3btbW1vx9PQkKSlpSf12BgcHqa2tRafTWbo9Gare5LITP0Xh7MnLobnTPxiShzz1qzaNPTo6yvHjx1Gr1Rw4cICXXnqJa665hmeeeWZebyGBYKMghIXgvOC9997jP//zP62iF9HR0aSlpS1ZFMBgMNDS0kJjYyN+fn6kpaUtWZh7tmt2dHQ08fHx9hcqLhBzd5e2tjbUarWlgPtMEwq9Xk9vby+dnZ0olUoCAgKIjIwkPDx8WaMtAoHg7Oj1enp6eujq6kKpVBIYGEhkZCRhYWFn/G6qVCra29vp7OzE09OTmJiYM3aTW0omJiZoamo6p3u3vahUKmpraxkZGSExMZG4uLhP35NRzy9e3cYfZQY+jtqDi8wBXAORb//fBY2t1+upqamho6ODoaEhXnzxRdra2njppZe48sorl+T8BYK1jBAWgvMGc/TinXfe4frrr+eKK67A2dmZjIwMoqKiluymNTU1ZWkjGxoaSkpKypI6y6pUKhobG+nr6yMiIoLExMQV6dQ0MjJiSYHw8PCwpD6dKSox36poZGQkISEhS5aKJhAIzozJZKK/v5+urq4FRxO1Wq0lNUqj0VhSIldilX18fJzGxka6u7sJDQ0lMTFxSWsQ1Go1dXV19Pf3ExsbS2Ji4ryeGq3/+n9c2/MPXgzZwmbX6ePL8h9G5nLmNE9Jkujo6KC6upqpqSn+9re/8eabb/KFL3yBZ599VkQpBOcNQlgIzjsOHjzI7bffjlar5Rvf+AZZWVl4eXmRnZ29pKF9rVZLfX09XV1dREVFkZycPMeRdjGMj4/T1NREV1cXISEhJCYmrsjNS6/X09fXR1dXF4ODgwuKSszM4zYYDERERBAREYG/v78QGQLBEmIymVAqlfT09Cy4/ml2NCMoKMgSzVju6ARML1o0NjbS399PZGQkCQkJS7pYotPpOH36NB0dHSgUCpKTk8+epqke4Na/XsYuHwVf94kBQJZ+M7KgTfP+uEql4sSJE4yPj3Py5Eleeukl3N3deeGFF9izZ8+SvQ+BYD0ghIXgvESv1/Pss8/y4IMPkpeXx4033khgYCBRUVGkp6cvadrO+Pg4dXV1DAwMEB8fT0JCwpKOr9VqaWpqor29HX9/fxITEwkMDFyRLk06nc4SlRgbGyMkJMQSlZivmHNm0Xdvby8mk4mQkBBCQ0MJDg4W6VICgR3o9Xr6+/stm1wuJyws7Kwd24xGoyWa0d/fj7e3tyWasZQLIGdCkiSGhoZobGxkeHiY6OhoEhISlrQuS6/X09jYSEtLC8HBwaSmpi5YsLz356v4t2mcnwd/IiYi9yBPuMbqZ6ampqitrbWkPb366quUl5fz0EMP8V//9V/ieiY4LxHCQnBe09PTw1133cV77723rOlRAMPDw9TV1TE6OkpSUhKxsbFL2kllcnKS1tZWWlpa8PDwICkpidDQ0BVrAzs+Pm6JSuj1esLDw4mMjDxjbrQkSYyMjNDX10dfXx9qtZqAgABCQ0MJDQ1dNhdygWAjoNFoLN8dpVKJl5eXRaTP19EJPq3V6urqoqenBycnJ0s0Y6WMLyVJoq+vj4aGBjQaDXFxccTGxi5pQwqj0UhraysNDQ34+PiQmpqKv7+/TWNoO4/y5UP/xb7IXdNjuofitPUey3uYL+1p7969PPXUU4SF2d+aViBY7whhIRAAhw4d4tvf/vac9KjNmzcvaY6vJEkMDAxQW1uLXq8nOTl5yQWMXq+nvb2dpqYmnJ2diY+PJyIiYkVSGuBTwWDuh+/g4LCgVrSzJ0qenp4WkXGmiZJAcL4wnxAPDAy0iImzCXFbWsouFwaDge7ubpqbm5mamiIhIYHo6OglXdU3mUx0dnZSX1+Ps7MzaWlpBAcH2/0eH39jN9cGJhPn7IFJknDY/TNGxyfmpD15eHjwq1/9SqQ9CQQIYSEQWNDr9fzyl7/kgQcemJMelZaWNgpcincAACevSURBVG+Rn71IkkR3dzd1dXU4ODiQmpq65NEFo9FoMbDS6XQWA6uVjASYW9GaU5/MxaNhYWFnPQ+9Xs/AwAB9fX2W1A7zBCooKGjFRJJAsJoYDAYGBwct3wNbUgc1Go2lQ5tGo7E0TzhTS9nlQqPRWAw43dzciIuLIzIyckmjteYoSG1tLSaTidTUVCIiIhZ9Pa0r/QV1A8Vc7RUBQJP7JdT3GazSnh5++GHuuOMOkfYkEHyCEBYCwSx6e3u566672LdvHzfccMOypkeZTCaLk6y7uzspKSkEBQUt6THM6Q+tra309fURHBxMbGzskh/nXJhb0XZ1dTE0NLTgiITJZGJ4eNiyUqvVagkKCiIkJITAwEA8PT1FNEOwIZAkCbVazdDQEP39/QwODuLm5mb5npyt2cGZIhrnaim7XO9jcHCQ1tZWBgYGCA0NJTY2dklbxs48Tn19PRMTEyQlJRETE7N0wslk5NfvXsVt/tNGeSdV8Pz7at58802uvvpqnnzySZH2JBDMQggLgeAMHDp0iNtvvx2NRsM3vvENNm3ahKenJ9nZ2UuaHgXTK5PNzc00Nzfj4eFBYmIiYWFhSz5h1mq1tLW10dbWhrOzM7GxsSgUihVfbbM3ImGeePX19TEwMMDw8DBOTk4EBgYSEBAghIZgXTFTSAwNDaFUKtHr9fj7+xMcHExoaOhZP88zIxp9fX1IkrSqzRD0ej2dnZ20trYyNTVFTEwMMTExS26UKUkSvb29NDQ0MDExQXx8PPHx8UseyVSpVHz8r29xdVAo/z7ewW1Pf4y7dwQvvPACu3fvXtJjCQQbBSEsBIKzoNfree655/jRj35Ebm4uN910k2UVMDU1dclvmAaDwVIf4ejoSGJiIpGRkUueumA0Gunp6aGlpYXx8XGLk+5SC6aFcKaIRGhoKCEhIWf9HRuNRlQqlWViJoSGYC0zU0golUqGhoYsQiIwMJDAwEB8fX3Pmiak1Wotgtwc0QgLCyMkJGTV2jerVCra2tro6urCy8uLuLg4wsPDlzTdCT6toWhqasJgMFjqNJZaUGi1Wurq6qZbavc18c4bz9PUJ+fiz1zCz3/xiyVNixUINhpCWAgEC6C3t5e7776bd999l+uuu47LL78cZ2dn4uLiSEpKWvIbjdFopKuri8bGRkwmE/Hx8ctyA4W5k4KYmJgVLfaezfj4OP39/fT19TE8PIy3t7clFcTHx+esIuFsQsMsNoTQEKwUSyEkJElidHTUIrzHxsbw9/e3CO+V6uY0G3Mxdltb27IvTpgXXJqbm5HL5SQmJqJQKJZcRE1NTdHQ0EBLSwtTU1P8/e9/5+233+aqKy5BozMCcMEFF/Cd73xnSbtYCQQbCSEsBAIbKCws5Hvf+x5dXV3ccMMNXHjhhTg6OpKUlERcXNyST8YlSaKnp4fGxka0Wq2lNeNyrJjp9Xq6urpoa2tjYmIChUJBTEzMWTs5LTdTU1MWkdHf34+Tk5NlQhUQEHDOVI9zRTT8/Pzw9vYWJn2CJcFkMjE2NsbIyIjdQgKmv4tKpdLy2TcYDJbUqJCQkFVdMR8bG6OtrY3Ozk7c3d2JiYkhMjJyWdKupqamLC203dzcSExMJDw8fMkXBgwGAy0tLTQ0NGAwGDhw4ABvvPEGCoWCp59+mt27d3PHHXfQ0dEBQGBgIDfddBN79uwR1w6BYBZCWAgENmIymfjLX/7Cvffei16v56tf/Srbt2/H0dGRtLQ0oqKilvxmYy5SbGhoYHR0lJiYGOLj45fFyMpcBNrW1kZ3dzc+Pj4W46zVXKUzGo0olUr6+voYHBxErVbj4+NjFY1YiNCYOekbHR3FaDTi5eWFr68vvr6++Pj44O3tveRpHIKNhdFoZGxsjNHRUVQqFSqVirGxMRwdHS2fS7N4XaiQMAvg0dFRPD09LSmBAQEBq/p5nJyctDLCDA8PJyYmZtna1ep0Opqbm2ltbcXX15ekpKRlaTZhMplob2+nrq4Og8FASUkJr7/+Ok5OTjz++ON86Utfshzz5ZdfZt++fVavj4+P5+abbyYrK2tJz0sgWM8IYSEQ2Iler+d3v/sdDzzwAP7+/nz1q18lKysLFxcXMjIylqX4GqaN9hobGxkYGCAqKoqEhIRlayE7NTVlmVCMjIwQHBxMZGQkoaGhq97yVavVWk3GNBqNzUJDkiQmJiYsE0OVSsXo6CgGgwFvb2+L0PD19RVi4zzGLCJmfkZmigizKPX19cXd3f2c3/v5hISHh4flsxsYGLgi7tdnw2Aw0NfXR1dXFwMDA/j5+VkWGJYrYqLRaGhqaqKjo4Pg4GASExNtNrZbCObi7+rqaiYnJzl58iSvv/46IyMjPPTQQ9xyyy1zrh0vvvgi77//PtvlU7ghUYwrk6bp6dPWrVv5+te/jkKhWPJzFQjWG0JYCASLZGJigqeffpqf/OQnJCcn85WvfIX4+Hg8PDzIzMwkKChoWY47NjZGY2MjPT09hIeHk5iYuKxpSxqNxmKypdVqLc7aK9229kwshdCAuWLDvCJtMBjmjWystsASLC0Gg2FOJGJ8fBxHR0crAeHj47MgEQHnFhIBAQFL3gjCHkwmE0NDQxZnbjc3NxQKBZGRkbi7uy/bcUdHR2lsbKS3t3fZr2WDg4NUVVWh0Whobm7m9ddfp6GhgXvuuYc777zzjO/zhRde4IMPPmC3fJLdDno0Ehw2OVNhcsYEyOVyLr30Um644YZVaYIhEKwVhLAQCJYIpVLJ448/zvPPP09+fj7XXXcdYWFh+Pv7k5GRsWw3m5mrfEFBQcTFxS3rZN9cTGoWGYDFWftcxdUryXxCw9fX1ypFZaGpXZIkodVq50Q2pqamcHNzw8PDA09PT8vm4eGBu7u7yL9eo5hMJiYmJtBoNKjVasum0WjQarU4OzvPiUS4ubkt+LM9OTnJyMjImhcS8On3ubOzk+7ubmBlvs/m9M6WlhYGBweXPfqqUqmorq5meHiY3t5e3n77bY4ePcodd9zBvffee87IyHPPPcc///lPLpBPsstBb3lcKcn4t9GFBml6gcHNzY0vfvGL7N27VxR4C85LhLAQCJaYzs5OHnjgAd544w0uueQSvvCFL1i6uKSlpeHp6bksx9XpdLS2tq6oR4V5cjBzhdM8KVlJh++FMJ/QcHV1nbMKvdAUFEmSmJyctExIZ09QAYvgmCk8PDw8cHV1XTMCbKMiSRI6nc7qb2Pen/33mfm38fT0xMXFZcF/H51OZxXdUKlU6HS6NSskzKxWBHI+r4vY2NhlS/1Sq9XU1tZausz99a9/5Z///Cdf/epXeeihh4iMjFzQOM888wz//ve/uUg+yY4ZwsJMu0nORyYXeqXpdElR4C04XxHCQiBYJurq6rjnnnv417/+xTXXXMPnP/953N3diYqKIiUlZdlupDM9KtRqNQqFgtjY2GVvS2kwGOjv76ezs3PFcrIXg16vnzMhnC02zKvWtv6tTCYTWq12zoRWrVaj1WpxcHCwTGbd3NxwdXXFxcUFV1dXyyZSrM6OwWBAp9NZtsnJSXQ6ndXv3Wg04ubmNkc4mH/vtk74dDrdnBQ5s4iYLVBX2pxuIcxXM6VQKAgJCVn2z9v4+Ditra10dHQsq9eFGZ1OR11dHZ2dnWg0Gt5//33eeecdLrnkEh5//HFSU1NtGu/nP/85Bw8e5GL5JNvnERYAkgQ1kiMHTC6MStPiLC4ujltuuUUUeAvOG4SwEAiWmZKSEn7wgx9w6tQprrvuOi655BKcnJyIiYkhMTFxWVcyR0ZGaGlpoaenh4CAAGJjYwkNDV321fLJyUl6enosE5igoCCLI/By5movlpliw/yvWq22iI2Z6TH2CkOj0ThHaJgnxeYJsslkwsHBwUpozCc+zAJko0Q/JEmaIxhmioaZm9FoRC6Xz/s7mSkk7J24arXaOcJzcnIST09Pq8/CWhURZiYmJqwM9cyCPzw8fNlTdSRJoq+vj9bWVpRKJeHh4cTFxeHn57dsx9RqtTQ2NtLW1oZer+fDDz/kj3/8I1lZWfz0pz9l+/btdo37s5/9jMOHD3OJfJKtZxAWZgwSHDM5UWRyZpLp7+bNN9/MNddcY9exBYL1hBAWAsEKIEkS//jHP/if//kfBgYG+PKXv8wFF1yAo6MjERERJCcnL1uKFEyv3rW3t9PW1oZMJiM6Opro6OgV6Tyj0Wgs5l5KpRJvb2+LyPD19V3zk2K9Xm/VEcgsNlxcXOZdCXd3d1/UKqwkSej1+nNOricnJy2TaycnJxwdHS2bg4OD1f9nb/M9L5PJLH+L2fuzz8/87+x9g8FgtRmNxjmPne15vV5vJapmiob5BISTk9OiPj9Go5GJiYl5I0szRYR58/b2XtMiAqb/FiqVyvKdGx8fJyAgwGIyuRIpiubrTXt7O5IkERMTQ0xMzLIKmfHxcRoaGuju7kav13Po0CH++Mc/EhwczE9+8hM+97nPLeqz8sQTT1BcXMzn5DpyHQxn/VlJglrJkY+MzowzHRW74YYbuOGGG+w+vkCwXhDCQiBYQUwmE2+99RaPPPIIQ0ND7N27l4svvhh3d3eCg4NJSUlZ1o4iJpOJ/v5+2traGBoaIiQkhJiYmBXr7DQ1NcXAwIBlBdXBwcEy4QkKClo37VzNnYNmT0Y1Gg1GoxF3d/czpt8s1e955ur+Qibt55rcLwULETXnEj9LHYUxF97PJx4mJiZwcHCYUwPj6em5rjp+GY1GBgcHLWLCaDRaxHtwcPCKpCKa663a2tro6+sjKCiImJgYQkJClrXGQKVSUV9fz8DAABMTE3z00Ufs27ePwMBAfvSjH3HdddctyfEfffRRSktLudxBR478zN+XXknOP40udH5Sa+HrKOfmb3yDCy67Ys0voggES4EQFgLBKmAymXj//fd55JFHaGho4Morr+Syyy7D29sbf39/UlJSCAgIWNYbkUajob29nY6ODhwdHYmOjiYqKmrFOpmYTCaL4V1fXx+Tk5MWQ7CQkJBV7+NvD+aC4TNNYmUy2ZxJ7OxV+dWafJwtEjGThUY2VgpzEf3MSM5ssSdJ0hnF3notpNfpdBZn7sHBQVxcXCwiPSAgYMUKhicnJ+no6KCtrQ2j0UhUVBTR0dHLGhmRJAmlUkl9fT3Dw8OMjY3xwQcf8P7775OcnMz//u//cuWVVy7p7+Dhhx+mvLycKx10bJ5HWKglGQeNzpyQHAEZjsDleTnceNcPcF3D6Z8CwVIjhIVAsIpIksTBgwd59NFHKSoq4vLLL+fyyy8nKCgILy8vUlNTCQkJWdaJj8lkore3l7a2NoaHhwkNDUWhUBAcHLxikxNJkhgfH7eIDJVKha+vr2Wi5OXltS4nfzMxtzidOeHVaDSWCbFer0cmk+Hs7Dwn5We+tKCN3mnGZDLNEQyz08N0Oh1TU1NIkoSTk5Pl9+Ph4TEnPW29/77W0nfEZDIxMDBAZ2cnfX19+Pv7ExMTQ1hY2LL+ns01G/X19YyPjzMwMMDf//53PvjgA3bt2sX999/Pnj17luX38MADD1BZWclVDjqyZggL4yf1FIdNzkx9Uk+RGxnKbT+4l9CY2CU/D4FgrSOEhUCwRigvL+exxx7jb3/7GxdddBGf//znUSgUuLm5kZycTERExLJPjtRqNe3t7XR3d2M0GgkPD0ehUODn57eiE/v5VmODg4MJCAhYE67Ey4HRaJx38jz7sampKQBcXFws20JSj+ZLP5LL5Uv+d5UkCZPJZFdalsFgYHJy0rIB8wqt2fUWLi4u6yaNzhZ0Oh1DQ0MolUoGBgZWNaonSRIjIyN0dnbS09ODg4MDkZGRREVFLWt9GEwLme7ubk6fPo1Wq6Wzs5P9+/dz4MABrrjiCu6//362bNmyrOfwv//7v5w6dYprHHSkyw1IEjRJDvzL6MLwJ3UUEe4u3PbNb5F94WeW9VwEgrWMEBYCwRqjvr6eJ554gjfffJPt27dz9dVXk5CQgJOTE8nJyURFRS37JMqcamD2p3BycrL4Uyx329rZmPPHZ5qNeXp6WvwBNqrQOBPzreTbWk9hvuzLZDKL4DCnNc1ObZr52Ow0qZmPSZJ01vEXKnzOt8jMTGYKiaGhIdRqtZV7/GrUIY2Pj1v8LvR6vcXvYrlTNWH6u9/e3k5DQwN6vZ7GxkbeffddSktLueGGG7jnnntISUlZ1nMwc++991JTU8MXHbQEyUz80+hCyyemeJ5yGdddcRlX3vKfG1LgCgS2IISFQLBG6ejo4KmnnuK3v/0t6enpXH311WRmZuLo6EhCQgKxsbEr0qHGaDTS399PV1cX/f39eHt7W/wpVmNCr9frrYzuznehYStniiicqbZi5v7Z6itkMtmKREQ2EucSEgEBAavShUqn09Hd3U1nZyfj4+OEhIQQGRlJSEjIikyc9Xo9ra2tNDU1YTQaOXXqFO+++y41NTX853/+J3fffTcKhWLZz2MmP/jBD6ivrydSZqRbkiMhwwGJizPT+foP7sHTx3dFz0cgWKsIYSEQrHEGBwd55pln+OUvf0lkZCRf+MIXyM3NxcHBgejoaOLi4lbM5Vqv11v8KZRKJYGBgSgUCkJDQ1etDefU1BRKpdIyOZspNMyTMyE0BGsBnU5nJYpnCwl/f/9VM5PU6/X09vbS1dXF0NAQAQEBFr+LlfpuazQaWlpaaG9vx2g0Ul5ezl//+le6urr47ne/y5133klgYOCKnMts7rrrLhobGy3/zwwO4Jv/7wdEJdtmtCcQbHSEsBAI1gljY2P8+te/5qmnnsLDw4O9e/eya9cunJycCAgIICEhgeDg4BVbIdZqtZYUCY1GQ2hoKJGRkSta9D0fZxMa/v7++Pj4bIhicMHaxlxsPTo6yvDw8BwhERAQQEBAwKq60puLsLu6uujr68PDw8OS8ricxp0zkSSJgYEBmpqaUCqV6PV6jhw5wr59+5iYmOCuu+7iW9/61oqnYM7mhz/8ISdPniTMy4Obv/pVtl9+5aqej0CwVhHCQiBYZ+h0On7/+9/z85//nP7+fj73uc9x8cUXExISgrOzMwkJCURFRa1oBGF0dNQiMkwmE+Hh4YSFhREYGLjqOfJmoTE0NMTIyAhjY2MAVs7Jvr6+QmwI7MZkMqFWq60c20dHRwHw9vbGz8/PIiZWU0iYz3VoaIje3l56enqQy+UWMeHj47Ni56HX6+no6KCpqYmpqSn6+/v56KOP+Mc//kFoaCjf//73+frXv75moo2Dg4O0tLRYosUCgWB+hLAQCNYpkiTx8ccf8+yzz/L3v/+d7du3c+mll7Jp0yYAIiMjiY+Px9vbe0XPSalU0t3dTV9fHwaDgeDgYEsXm9WeVIH1JNA8ATRPAn18fCxCw9fXF09Pz1UXRoK1xezPj0qlshKra/HzY5649/X1MTAwgKOjI6GhoURERKxIEfZMxsbGaG5upqurC4CTJ0/y4YcfUlJSwuWXX86dd97JhRdeKES+QLBOEcJCINgAtLW18cILL/Diiy/i5+fH5ZdfTkFBAW5ubvj4+BAXF0d4ePiKrrRJkoRKpbJMaMbGxvD397f03V/uFpW2YE5bOdOK8+zIxlqYLAqWH5PJNOdzsV4iXmq12uJ5MTw8jLe3t+W75+Pjs6LnajQa6enpobm5mbGxMbRaLYcPH+Zvf/sbKpWK2267jdtvv53o6OgVOyeBQLA8CGEhEGwgtFotb731Fk8//TQtLS1cfPHFXHTRRcTGxiKTyYiOjiYmJmZVJvUTExMWkTE0NIS7u7tlouPv77+mJmVgnSM/M7ox28V5ppPzajpnC+zD7Nw92yl9plv6TAGxVmt0JElieHjYIiYmJiYIDAy0RAvdV8H9Wa1W09raSkdHB5Ik0drayscff8xHH31EXFwc3/ve97j++utXrJ5DIBAsP0JYCAQbEEmSOHr0KC+88AJ/+tOfSEpK4pJLLiE/Px8nJyf8/PyIj48nNDR0VVbf9Xo9g4OD9PX10d/fD0BISAihoaEEBQWtWoepcyFJksUxe+YEVKPRoNVqcXR0tHJ8nik61up7Ol/Q6/XzigeNRoPBYMDNzW3ev52Hh8eaExFm1uL3yGQy0dvbS3NzMyqVCr1ez9GjR/nnP/9JQ0MD1157Lbfffjvbt29fs79XgUBgP0JYCAQbnOHhYf7whz/w/PPPMzg4yGc/+1kuvPBCFAoFDg4OREVFoVAoVrRwcyZnW2kNDg7G3d19XUxADAbDGUXH1NQULi4uVkLDzc3NyghOCI/FodfrrYwDtVqtlZCYnJzE2dnZ6m8wUzw4Ojqu9ls4J5IkMTExwcDAwJqL/I2OjtLZ2UlHRwdGo5HOzk4OHDjAv/71L4KDg7n99tv52te+hr+//6qcn0AgWBmEsBAIzhMkSaKwsJBf/epXvPvuu6Snp3PJJZeQl5eHk5MTbm5uREdHo1AoVjU1YXZuuKurq8X4LjAwcN0IjZlMTU3NWS3XarWWibDJZMLBwcEiNMxiY77/Ozk5rbv3by+SJKHX6y0O42bRMN//jUYjcrnc8rtyc3ObEzVaC80DbMEsJMy+F0NDQ0xOTq6ZWiWtVktnZyft7e1otVr0ej1lZWX885//pKamhmuuuYZvf/vb7N69+7z5zAoE5ztCWAgE5yEDAwO88sorvPjiiwwMDFBQUMDOnTvJyMgAwNfXl5iYmBU1x5oPg8HA8PCwVbvYjSA0ZjJz8nyuCfTMybN5Aj3T6dq8OTg44OTkZNmf/fxKOGLP5/Btdvk2GAzo9XrL/uxt5nueLbrOJLg2guiaLSSUSiU6nc7SrjYwMBA/P79Vja6YTTLb2tpQqVQAVFVVUVxczOHDhwkODua2227j5ptvJjg4eNXOUyAQrA5CWAgE5zGSJFFWVsarr77Km2++iYODAxdccAE7duwgPj4ek8lEcHAwUVFRhISErHr/9jMJDbNHwEYQGmdCkiQMBoOV4JicnJx3Yn6mybz5ci+TyaxEiIODg+V3JpPJLJv5/7PPw/yveTP/32g0WomF2cebT+TMt7m4uFgJBkdHxw37Nz2bkAgICMDf33/V07SMRiP9/f20t7czODiIXC6nubmZoqIiDh06hNFo5Ctf+Qo33ngjeXl5G/JvJRAIFoYQFgKBAJheifzoo4949dVXeffddwkPD+eCCy5g+/bthISEIJPJCA8PJyoqasV735+JhQgNDw+P1T7NNcHZIghGo3GOYJi5P1MgzBYdM/fNImU1IiTrgZlCwvyZXYtCwnyuSqWSjo4Oenp6kCSJ/v5+jh49yqFDh+jp6eHqq6/ma1/7GhdffPGaOGeBQLD6CGEhEAjmoFareffdd3n11Vf5+OOPycjIYPfu3Wzbtg0vLy8cHR0tRd8racB3Ls4kNMyGZeZtveXaC9YnU1NTVkZ6KpVqzQoJM2NjY5YibIPBwPj4OKWlpRw6dIiamhouuugivva1r7F379415UUjEAjWBkJYCASCs9LX18fbb7/NH/7wB6qrq9m2bRsFBQVs2bIFR0dH3N3diY6OJjw8fM1FBwwGAyMjI1YTu4mJCdzc3KyEho+PDy4uLqt9uoJ1zOTkpJXniUqlQqvV4u7ubvVZW+0aifnQaDT09PTQ3t7OxMQEBoOB8vJyjhw5QmlpKRkZGXz961/nuuuuIyQkZLVPVyAQrGGEsBAIBAumoaGB1157jVdffRWlUklBQQG7du0iPT3dYhwXERFBaGgofn5+azL9ZWpqao7pnUajsYgNsxGar6+vEBuCeZmcnLQSEKOjo2i1Wjw8PKw+Pz4+PmsyOiZJEiMjI/T19dHd3W0xAqyurqaoqIjDhw8TEBDATTfdxI033khSUtJqn7JAIFgnCGEhEAhsRpIkSkpKeO2113jzzTdxdHRk+/bt5OTkkJmZibOzM3K5nNDQUMLDwwkKClpzq7Qz0ev1VpNElUqFRqOxSqMyOy67ubmtiqmgYOUxmUxMTEygVqutxKhOp8PDw8Pqs+Hr67umvUgMBgODg4P09PTQ19eHyWRiamqKqqoqKioqKCkpwWAwcMMNN3DTTTexbdu2NbkwIBAI1jZCWAgEgkWh1+s5cOAA+/fvZ9++fSiVSnJzc9myZQvZ2dn4+/tjMpkICAggIiKCkJCQVfXJWCh6vX7eyAYwx2DNvO/i4iImY+sMSZLQ6XRWHiPm/Zl/79mRiLUsIsxotVr6+/vp7u5GqVQil8sZHh7mxIkTlJWVcfz4cQICAti7dy9XXXUVF1544bp4XwKBYO0ihIVAIFgyJEmiqqqKffv28e6773Ly5EnS0tLIy8sjOzub6OhoTCYTXl5ehIeHExYWhre397qZjJtMJouj8+xJqFarxcHBwSIyZosOMWFbXfR6/bx/N7VajdFonNdQz+yQvl4iVJIkMTY2Rm9vL93d3ajVauRyOe3t7VRWVnLs2DHq6urYvHkze/fuZe/evWRmZq6b759AIFj7CGEhEAiWjd7eXt5//3327dvHRx99RGBgINu3b2fz5s2kp6dbjNzCwsIIDw8nICBg1b0y7MVoNM676q1Wq5mamsLFxQUPDw88PDxwc3Ob1+htvb731cZoNM5rLKjVatFoNGg0GiYnJ3F2dp5XPHh4eKzb373RaESpVNLT00Nvb6/FeLCmpobKykpKS0sZGhri4osvZu/evVx55ZWEhYWt9mkLBIINihAWAoFgRZiYmOCjjz5i//797N+/H51Ox9atW8nJyWHz5s14eXkB4O/vT0hICAEBAfj4+Kyb1eKzMTU1ZZVeM3MCbJ4EAzg5OVmJjfmcpl1dXdftJNhWjEbjnN/VfO7ker0eYN7flVlAeHh4rMlCalsxmUyMjo6iVCrp7+9neHgYgPHxcU6cOMHx48cpKyvD1dWVq666ir179/KZz3wGd3f3VT5zgUBwPiCEhUAgWHFMJhNlZWXs37+fd999l4aGBrKyssjNzSU1NZW4uDhg2nTNLDQCAwPx8fHZkGkbkiRZTZZnT5xnPiZJEo6Ojri6uuLk5LRgN+v5fm6m4/ZSvpeZ7tuz3b8X4hKu1+vR6XQYDAZkMtkZBdbMxzZqfYskSahUKishYb5tt7S0UFdXR3l5OadOnSI5OdmS4pSbm7shRLlAIFhfCGEhEAhWnba2Nt577z3+9re/ceTIERwcHMjMzCQjI4PU1FRiY2OB80donAlJkpiamrIIDb1eb9Pk3fy8yWSyjGl2xgbO6Kht3p/Pldu8D1icvc3I5fIzipqziR4nJyeLaHB2dj7v/sajo6MMDQ3NKyTq6+uprq6mqqoKo9HIrl27uOKKK/j85z9PTEzM6p68QCA47xHCQiAQrCkMBgMVFRUcPHiQf//73xQVFeHg4MCmTZtIT08nJSVFCI1FYhYA5s0sNOYTCzMfmy04Zj9mFhLmTayYn5uzCYnW1lbq6+upqanh5MmTGI1Gdu7cyWc+8xkuuOACcnJy1nQbZ4FAcP4hhIVAIFjT6PX6OULD0dGRrKwsMjIySElJISYmBplMhlwux8/Pj5CQEPz9/fHx8Tlv6hEE6wODwcDY2BjDw8MLEhI7duzgM5/5DBdeeKEQEgKBYM0jhIVAIFhXzCc0nJycyMrKskQ0YmJikMvlmEwm3N3d8fPzw9/fH19fX7y9vcXkTLAimEWESqVieHiYkZERJiYmLJ/NtrY2i5A4deoUer1+TkRCtCkWCATrCSEsBALBuuZMQiM5OZn4+HhiY2OJjY0lJCQEwEps+Pn5WQzPhNgQLAaDwWAxVBwZGbESEQD9/f20trbS2tpKc3Mzp0+fFkJCIBBsOISwEAgEGwqz0CgvL6esrIzy8nLq6+vx8vIiMTGR+Ph4YmJiiI2NtfTzN5lMuLm54e/vL8SG4JzMFhHDw8NotVqLiOjt7bWIiJaWFhobGxkfHyclJYXc3Fzy8vLIzc0VQkIgEGw4hLAQCAQbHq1Wy6lTpzh+/LhFcNTX1+Ph4WERG+bIxmyxYRYZM03VhOA4PzAYDFZmh2YxcSYR0dzcTGNjIxqNhpSUFIuA2LJlC1lZWbi5ua3yOxIIBILlRQgLgUBwXqLT6eaIjbq6Otzd3S1iIy4uDoVCQVhYGE5OTphMJiRJwsnJCQ8PD7y9vfHy8rKIDg8PD9EJaZ1hMpks7txqtZrx8XHGxsbQaDTo9XpLUwC9Xk9vby+dnZ20trbS1NREY2MjExMTpKWlkZubayUiXF1dV/utCQQCwYojhIVAIBB8gk6no6qqyiqVqra2FkmSCA8PJyIigvDwcMLCwggJCSE8PJzAwEBLMa4kSRa3Z3OUw7y5urqKVrirhCRJ6HQ61Gq1ZRsdHbW4oJvFg8lkYmhoiJ6eHvr7++nt7aWnp4fu7m56enqQyWSkpaVZRSIyMzNxcXFZ7bcoEAgEawIhLAQCgeAsGI1GOjs7aWhooKGhgdOnT1NfX09DQwOdnZ24uLigUCjmFR0+Pj6WMWY6SLu5ueHu7j6vk7TIubcNvV4/r1P5xMQEWq3WyrHc3HpYpVLR29s7Rzx0dnYyOTmJQqEgKSmJlJQUkpOTSUpKIikpCYVCIdoXCwQCwVkQwkIgEAjsRKfT0dLSMkd0NDY2Mjg4iK+vL5GRkURERBAWFkZAQAC+vr74+vri5+eHt7e3JYphNBqBaZM5Z2fnswoQV1dXHB0dN2wERJIkDAbDHLEwWzBMTU1ZzP3ME35JkhgbG2NkZASVSoVKpUKpVNLb20t3dzddXV2oVCqCgoJITEycIx7i4uJEGpNAIBDYiRAWAoFAsAyoVCoaGxstoqO+vp6Ojg7LSrlOp8PFxYXAwED8/f0tHalmdqXy9fW1GP2ZazfMKVcwLUIcHBwsm6OjI05OTpZ/zfvzbeafNwuU2a7asx22zcznyG3eNwsCg8GA0Wi0cveeuen1evR6vWXf/PPmzSwWzClK5vc9OjrK8PAwKpVqTmvX4eFhhoeHGRoaYnJyEldXV0JCQggLCyMqKspKQCQmJlqiSQKBQCBYOoSwEAgEghXGvKpuTsPp7e2dk89vFiBqtRonJycCAgLw9/e3RD3c3d1xc3Obk0rl6uqKm5ub5Tl3d3ecnZ3nFJXPFANLyWyRYsZkMjE1NcXExAQ6nQ6tVmuVqjRz02q1TExMWKINw8PDKJVK9Ho9np6eFsEwu+7F/FhYWJhVNEggEAgEK4MQFgKBQLCGUavVFuFhFh99fX2Mjo4yNjbG+Pi4ZZtZnKzRaCzpVQ4ODri7u1vEyOxNJpPh4OBgiRCYhcHMffhUjJijJjP3jUYjkiRZBMPMbWJigomJCavzMbfuNW9eXl6WzdvbGx8fH4tYmLl5enqu2t9CIBAIBGdHCAuBQCDYgMzshGQWHTP/nSlEzOlHZ9pmCgK5XH7GzcHBYY5QMO/PfMzFxUVEEwQCgWADIoSFQCAQCAQCgUAgWDTCyUkgEAgEAoFAIBAsGiEsBAKBQCAQCAQCwaIRwkIgEAgEAoFAIBAsGiEsBAKBQCAQCAQCwaIRwkIgEAgEAoFAIBAsGiEsBAKBQCAQCAQCwaIRwkIgEAgEAoFAIBAsGiEsBAKBQCAQCAQCwaL5/zJ3vYW9nextAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10,10), subplot_kw={'projection':'polar'})\n", - "\n", - "arrivals = taup.get_ray_paths(source_depth_in_km=500,\n", - " distance_in_degree=150,\n", - " phase_list=[\"P\", \"S\", \"PKP\", \n", - " \"PKIKP\", \"PKiKP\",\n", - " \"S\", \"SKS\"])\n", - "\n", - "ax = arrivals.plot_rays(fig=fig, ax=ax, legend=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAINCAYAAADSoIXVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrAUlEQVR4nOzdd3xV9f3H8dfd9ya52RvC3jLEASIbBQRrqQO1TrRq68/Sqh1Wq9bRamtrbRXrqFbUVm0dOBBEQRkiKKAyZO+dhOx19/n9cUNICDPk5ma8nz7u494z7rmfewy5953v93y/JsMwDEREREREROSUmKNdgIiIiIiISGugcCUiIiIiItIIFK5EREREREQagcKViIiIiIhII1C4EhERERERaQQKVyIiIiIiIo1A4UpERERERKQRKFyJiIiIiIg0Amu0C4i0UCjE3r17cbvdmEymaJcjIiIiIiJRYhgGZWVlZGdnYzY3fjtTqw9Xe/fuJScnJ9pliIiIiIhIM7Fr1y7at2/f6Mdt9eHK7XYDsG3bNpKTk6NcTevh9/v5+OOPGTduHDabLdrltBo6r5Gh8xoZOq+RofMaOTq3kaHzGhk6r5FRWFhI586dazJCY2v14epgV0C32018fHyUq2k9/H4/MTExxMfH6x98I9J5jQyd18jQeY0MndfI0bmNDJ3XyNB5jQy/3w8QscuFNKCFiIiIiIhII1C4EhERERERaQQKVyIiIiIiIo2g1V9zdSIMwyAQCBAMBqNdSovh9/uxWq14PJ6jnjeLxYLVatUQ+CIiIiLSJrT5cOXz+di3bx+VlZXRLqVFMQyDzMxMdu3adczwFBMTQ1ZWFna7vQmrExERERFpem06XIVCIbZt24bFYiE7Oxu73a5WlhMUCoUoLy8nLi7uiBOwGYaBz+cjPz+fbdu20b1794hM1CYiIiIi0ly06XDl8/kIhULk5OQQExMT7XJalFAohM/nw+l0HjU0uVwubDYbO3bsqNlXRERERKS1UlMCqEUlgnRuRURERKSt0DdfERERERGRRqBwJSIiIiIi0ggUrkRERERERBqBwlULNWXKFEwmEyaTCbvdTrdu3XjooYcIBALRLk1EREREpE1q06MFtnQXXHABL730El6vl1mzZnHbbbdhs9m4++67o12aiIiIiEibo3BVi2EYVPmDUXltl81y0nNsORwOMjMzAbj11luZMWMG77//vsKViIiIiEgUKFzVUuUP0ud3c6Ly2msfHE+M/dT+d7hcLgoKChqpIhERERERORm65qoVMAyDuXPnMmfOHMaMGRPtckRERERE2iS1XNXisllY++D4qL32yZo5cyZxcXH4/X5CoRBXXXUVDzzwQOMXJyIiIiIix6VwVYvJZDrlrnlNafTo0TzzzDPY7Xays7OxWltO7SIiIiKGYeALhij3Bin3BSj3BkiJsZMZ74x2aSINom/jLVhsbCzdunWLdhkiIiIiRxWqHjCszBsOT+XeAOW+YPV9AH/QqLN/j7Q4hStpsRSuREREROSUGECFL0hVVThEHQxSZd4AFb4AIePYz3fZzMTZrcQ6rKTG2pukZpFIULgSERERkeMyDANPIESpx18ToMo8AUq9fqpyBjJ744GjPtdsgli7FbfDSpzDSpzdUn1vJdZhwWrWGGvSOihctVDTp0+PdgkiIiLSCgVCoerQdCg8HVwOHK0JymTGbII4RzhAHQxRbnv4PsZuwXyS83mKtEQKVyIiIiJtkMcfpNQToMTrp9QTqGmRqvAFj/ocExBrt+B22nA7rMQ7rLissGzxIi4cdx52u7r0SdumcCUiIiLSShmGQZU/RInHT6knHKJKPH5KPAF8wdBRn2e3mIl3hlug4p1W4h22mtYoi7luC5Tf78cc9GFSy5SIwpWIiIhIS3fweqiSKn9NeArf++uNxldbrN1CQnUrVILTFg5STisO68nPvykiClciIiIiLYovEKLY46ekyl9zX+Lx4ztKiDIRvhYqwXkwQB0KURpIQqRxKVyJiIiINEPBkEGZN0BxlZ/iKl/43hOgyn/ka6IOD1EJLltNq9ThXflEJDIUrkRERESizOMPUlTlrw5S4RapUo//qPNDxdgsJFaHpwSXlcTqFimFKJHoUrgSERERaSIhw6DcG6Coyn8oTFX6qAoceXAJm9lEossWDlIuG4nVLVJ2i7rziTRHClciIiIiERAMGZR4/BRV+imq8lFYGW6RCh6lOcrtsNYEqcTqIBVrt2gUPpEWROFKRERE5BQFQiGKq/wUVvoprPRRVBUeaOJIMcpiCrdGJVWHqKSYcPc+m1qjRFo8/StuoaZMmYLJZMJkMmG32+nWrRsPPfQQgUCA+fPnYzKZKC4urtl/79699OvXjxEjRlBSUlJvn5N5jslkwmKx0KNHDy677DK2bt3atG9eREQkigKhEPnlXjbklbFkRyGz1u3nrZV7+WRjPit2F7OtsJLi6mBlt5jJcDvolR7HkI7JXNg7g8sGZDOuZzpnd0iie1ocqbEOBSuRVkItVy3YBRdcwEsvvYTX62XWrFncdttt2Gw2hgwZUme/LVu2MHbsWPr06cObb76Jy+U67rGP9ZwNGzYQGxvLt99+yy9+8QsuuugiVq1ahcWiOTFERKR1CYaM6hYpH4WVPgoqwwNNHKlFymk1kxxjJynGRrIrfB9jU7c+kbZE4aoFczgcZGZmAnDrrbcyY8YM3n///TrhatWqVYwfP54xY8bw8ssvY7Ue/3/58Z6Tnp5OfHw8sbGx3HvvvVx77bVs3ryZnj17Nu4bFBERaUKGYVDqDVBQcTBIhYc/P9IlUgeDVHKMLRyoXHZcNrOClEgbp3BVS3h286qovLbT6jrlX8gul4uCgoKa5S+++IKrr76aq6++mqeeeuqEjn+yzznYouXz+U6pdhERkaZW6Q9SUBEOUYXVgcp/hCRlt5hJqQ5RB28xdvXWEJH6FK5q8QSqGP7a4Ki89qKrvsRli2nQcw3DYN68ecyZM4epU6fWrL/44ou54oormDZt2gkf62Ses3//fv7617/Srl07tVqJiEizFggZHKjw4Xens3RnMYVVASqPMBmvxWwi2WUjJdZOSnWQ0oh9InKiFK5asJkzZxIXF4ff7ycUCnHVVVfxwAMPsGzZMgAmTZrEjBkzWLRoEcOHDz+hY57Ic9q3b49hGFRWVjJgwADefvtt7HZ7o70vERGRU2EYBhW+IAeqW6UOVHgpqqy+Tioph92lXgBMQLzTRurBIBUbHrXPrCAlIg2kcFWL0+pi0VVfRu21T9bo0aN55plnsNvtZGdn17s26rnnnuPXv/41EyZMYNasWYwYMeK4xzyR5yxatIi4uDicTift2rXDbNYIRyIiEj3BkEFRlY/8ch8HKsJhynOESXkdVjOB0kJ6d25PuttJcoxdo/SJSKNSuKrFZDI1uGteNMTGxtKtW7ejbjeZTDz//POYzWYmTpzIhx9+yMiRI495zBN5TufOnYmPj6e0tLRR3oeIiMjJ8AbCrVLhMOWloNJXb9AJE5AUYyM11lHTMmU3hZg9exm9BvXEZrNFpXYRad0Urlo5k8nEs88+i8ViqQlLo0aNavTniIiIRMLBLn555d7qQOWl1Buot5/DaiY11l4TppJj7FjNdbv3+f3+pipbRNoohas2wGQy8fTTT2M2m7nwwguZOXPmcS/MbchzRERETlXIMCip8pNfHaTyy71UHaGLX7zDSmqcnbTqMOV2WPU5JSJRp3DVQk2fPv2o20aNGoVh1O0fYTKZmDZtWp1RAGvvc7LPCYXqf9CJiIicrJBhUFgZ7uKXV+4lv8KLP1j388hsguQYO6mxdtLiHKTF2nFYNRS6iDQ/ClciIiLSZIKhcJjKK/fWdPULHHbBlNVsqglS6bEOkmNtWDV4koi0AApXIiIiEjG1w1RuuZcD5T6Ch/WUsFtM1S1SDtLdDpJcGg5dRFomhSsREZEoCwVD5O4qIatTUrRLOWUhw6Co0k9umYfcci/5FT6Ch7VMOaxm0uMcpMc5SIuzk+i06XopEWkVohquHn30Ud555x3Wr1+Py+Xi3HPP5U9/+hM9e/as2WfUqFEsWLCgzvN+/OMf8+yzzzZ1uSIiIo3KMAxWfb6D9/+5jLKiKh58/UqsjpYVMgzDoNjjJ7fMS15ZuKuf/xhhKiPOQbxTg0+ISOsU1XC1YMECbrvtNs4++2wCgQD33HMP48aNY+3atcTGxtbsd/PNN/PQQw/VLMfEtJy5qERERI5k88p9vPfcMrauyQUgNt7B3m2FdOiVEuXKjq/cG2B/mYfcsnBXP+9ho/nZLCYy4hxkuJ2kxzlIUJgSkTYiquHqo48+qrM8ffp00tPTWbFiBSNGjKhZHxMTQ2ZmZlOXJyIi0uj2bCnk/ee/Ys2SXQDYHBbGXN6P86/sT4zb0SznYvIGQuSWedhf5iW3zEO5L1hnu9VsIi3WTobbSYbbQaKumRKRNqpZXXNVUlICQHJycp31//nPf/j3v/9NZmYmF110Effdd59ar0REpEUp2FfGzH8tZ9nHmzEMMFtMnHthTyZMOYPE1NjjH6AJBUMGByq87C/zsr/MQ2Fl3cBnAlJi7WS6nWS6HSTH2LGYFaZERJpNuAqFQtx+++0MHTqUvn371qy/6qqr6NixI9nZ2axatYq77rqLDRs28M477xzxOF6vF6/XW7NcWloKhGdlP/yvgX6/H8MwCIVCmrfpJB2c7+rg+TuaUCiEYRj4/X4sFs1JcjwHf0ab41+uWzKd18jQeT0x5cUePv7PShZ/sIGgP/z78vRRnZg4ZSDpOQlA3XMYjfNqGAblviD7y33Vg1D46w1CEe+wVF8zZSc1xobNcmho9FAwQCh4+FGbH/3MRobOa2TovEZGpM+nyTh85tgoufXWW5k9ezaff/457du3P+p+n376Keeddx6bN2+ma9eu9bY/8MADPPjgg/XWv/baa/Vau6xWK5mZmeTk5GC320/9TUg9Pp+PXbt2sX//fgKBQLTLERFpMgFfiB0rqti+vJKgL/xRm9zBRvfhcSRk2qJcHRgmM0FnPCFnPEFXPIbVUXeHoB+LpxSLpxSzpwxzUF/wRKTlq6ys5KqrrqKkpIT4+PhGP36zCFc//elPee+991i4cCGdO3c+5r4VFRXExcXx0UcfMX78+Hrbj9RylZOTw759+0hJqXuRsMfjYdeuXXTq1Amn09k4b6aNMAyDsrIy3G73MS9S9ng8bN++nZycHJ3jE+D3+/nkk08YO3YsNlv0v3y1FjqvkaHzemQBf5AlH25kzqsrKS/2ANC+ewoX3XQmPc/KPu7zI3VeDcOgxBNgf7mP/WVeCir91P4CYDZBaoydjLjwrTUOQqGf2cjQeY0MndfIKCgoICsrK2LhKqrdAg3DYOrUqcyYMYP58+cfN1gBfPvttwBkZWUdcbvD4cDhcNRbb7PZ6v1gBoNBTCYTZrMZcwub+X3KlCm8/PLLQPi9dejQgeuuu4577rmHzz//nNGjR1NUVERiYiIAe/fuZfz48SQlJfHBBx/wzTffMHr06JrjpaenM2zYMP785z/TpUuX477+wa6AB8/f0ZjNZkwm0xHPvxydzldk6LxGhs5rmGEYfLNgG+8/t4z8PeEu6Wnt4rnoprMYOLoL5pO8JqkxzqsvGGJ/qYe9pR72l3qoOmxUP7fDSlZ8+LqpjDgHVkvL+ixsKP3MRobOa2TovDauSJ/LqIar2267jddee4333nsPt9vN/v37AUhISMDlcrFlyxZee+01Jk6cSEpKCqtWreKOO+5gxIgR9O/fP5qlNwsXXHABL730El6vl1mzZnHbbbdhs9kYMmRInf22bNnC2LFj6dOnD2+++SYul6tm24YNG3C73WzatIlbbrmFiy66iFWrVun6KBGRk7Bl9X5m/ONLtn2XB4A7ycXEG85g6Pd6YbE2XWAxDINST4C91YEqv9xbp3XKYg4PkZ4d7yQr3kmco9lcei0i0ipE9bfqM888A4QnCq7tpZdeYsqUKdjtdubOncvf/vY3KioqyMnJ4dJLL+Xee++NQrXNj8PhqBmi/tZbb2XGjBm8//77dcLVqlWrGD9+PGPGjOHll1/Gaq37vzw9PZ3ExESysrK4//77ufrqq9m8eXOdiZxFROTIcncV896zy1i5aDsAdqeV867sz/lX9sMZ0zTX8gZDBnnlXvaUVLG31EPFYcOkux3WmjCVHufQqH4iIhEU9W6Bx5KTk8OCBQuaqJpwPUZVVZO9Xm0ml+uU+7a7XC4KCgpqlr/44guuvvpqrr76ap566qnjHv9gi5bP5zulOkREWruyoipmvfQ1n3+wjlDQwGQOD6s+8YamGVa9yh8Mt06VVLG/zEug1sh+ZhOkxzlol+AiK96JW61TIiJNRr9xazGqqtjbPTotNtmbNmBq4NxdhmEwb9485syZw9SpU2vWX3zxxVxxxRVMmzbtuMfYt28ff/nLX2jXrp1arUREjsLnCfDp/1bzyWsr8VTP/dT33A5M+vHZZHdOPs6zG+7gYBR7SqrYU+KhoLLuH8FcNjPZ8S6yE5xktqFrp0REmhuFqxZs5syZxMXF4ff7CYVCXHXVVTzwwAMsW7YMgEmTJjFjxgwWLVrE8OHDj3iM9u3bYxgGlZWVDBgwgLffflvD0ouIHCYUDLH0o03MfHE5JQcqAejQM5WLbx1MjzOOPwJgg17TMMgt87C7xMOekqp63f2SY2y0qw5USS5bqxvZT0SkJVK4qsXkcpG9aUPUXvtkjR49mmeeeQa73U52dna966mee+45fv3rXzNhwgRmzZrFiBEj6h1j0aJFxMfHk56ejtvtbnD9IiKtkWEYrP1yN+8+8yV7txUBkJwZx/dvPpszz+t60iMAHo8/GGJ3iQdvSic+WJ+PP3iou5/FBBluJ+0SnGQnuIixaeAhEZHmRuGqFpPJ1OCuedEQGxtLt27djrrdZDLx/PPPYzabmThxIh9++CEjR46ss0/nzp1rhmsXEZFDdm44wLvPfsmGFXsBcMXZueC6gYy8uA+2RryOyRsIsqfEw+7iKvaVeQgZQGwKwaCBw2omO95J+wQXmW519xMRae4Urlo5k8nEs88+i8ViqQlYh4/OKCIihxQfqOD955fx5UebALDazIy85DTGX3s6sfGNMxl6pS/A7hIPu4qr6g2XHmuz4C3Yw9ABvclMiMGs7n4iIi2GwlUbYDKZePrppzGbzVx44YXMnDlTffNFRA7j8wSY999VfPyflfg8AQDOOr8rF910FqnZ8ad8/HJvgF3FVewqrqo3IEWiy0ZOgov2iS5iLAazZ39FWuwABSsRkRZG4aqFmj59+lG3jRo1qt4w9yaTiWnTptUZOfB4Q+GLiLQFhmGwYt4W3n32K4ryKgDofFo6l04dQuc+6ad07FKPn13FVewsrqK4yl9nW2qsnZxEF+0TXHUm8/X7/YcfRkREWgiFKxERabO2fZfL29OWsu27PACS0mP5wa2DOXNMlwa38Jd6/OwsqmJncSUl1S1gACbC80/lJIZbqFwakEJEpNVRuBIRkTanKLec955fxrJPNgNgd1kZd9UAzruyP/YGDFZR6vGzs7iKnUVVlHgOtTyZgEy3g5ykGNonOHFYFahERFozhSsREWkzvFV+Pnl9FXNfX4nfG5436pwJPbjo5rNITI09qWOVewPsLKpkx2Fd/kxAVryzpsuf3aoR/kRE2gqFKxERafUMw2DZJ5t599mvaiYB7to/g0t/OoSOvdJO+DiVviA7iyvZWVRJQWX9FqoOSTEKVCIibZjClYiItGq7Nh7gf3//gq2rcwFIyYzjB/83mIEjO5/QdVXeQJBdxVVsL6okv/zQKH8mIN3toGNiDO0T1eVPREQUrkREpJWqKPXwwQvL+fz99RghA7vTyvhrT+e8y/sddxLgQDDE7hIPO4oq2VfqqTMPVVqsnY5JMRqUQkRE6lG4EhGRViUUDLF45gY+eGEZFSVeAM4c04WLbx1MUkbc0Z9nGOwv9bC9qIo9JVUEQociVZLLRsekGDokuYi166NTRESOTJ8QIiLSamxdk8v//vYFuzYeACC7cxKTbz+XHgOzj7i/YRgUVvrZXlTJjqJKvIFQzbY4u4WOyTF0TIohwWlrkvpFRKRlU7gSEZEWr6Sgkvee+4ovP9oEgCvOzoU3nsmIH/TBcoTBJSp8AbYXVrKtsJIy76G5qBxWMx0SXXRKjiElxt7gua5ERKRtUrhqo6ZPn87tt99OcXFxtEsREWmwYCDEgne+48N/rcBTPXrfkIk9mPTjQbiTXHX29QdD7CquYlthJXnl3pr1FhO0SwgHqqx4J2YFKhERaSCNFdtCTZkyBZPJhMlkwm63061bNx566CECgQDz58/HZDLVCU579+6lX79+jBgxgpKSEq644go2btxYs3369OkkJibWeY1169aRk5PD5MmT8fl8TJ8+veY1rVYrp512GjfeeCN5eXlN9K5FRA7Zsno/f/zRO7w9bSmeSj8de6Xxy2cncc1vRtYEK8Mw2F/mYcn2Qmas2ceXO4tqglV6nIPBHZK4uF82Qzun0C7BpWAlIiKnRC1XLdgFF1zASy+9hNfrZdasWdx2223YbDaGDBlSZ78tW7YwduxY+vTpw5tvvonLFf7ScfD+SJYtW8aECRO4+OKLee655zCbwzk8Pj6eDRs2EAgEWLJkCVOnTmXfvn3MmTMncm9URKSW8hIP7z33FV/M3ABAbIKDST8exJCJPTGbw+GozBtgW2EF2woqqfQHa57rdljpnBxDp+QYDUwhIiKNTp8sLZjD4SAzMxOAW2+9lRkzZvD+++/XCVerVq1i/PjxjBkzhpdffhmrNfy//FjdAj/99FMmTZrE//3f//GnP/2pzjaTyURmZiahUIixY8cydepU7r//fqqqqo4Z1kRETpVhGCz9aBPv/uNLyks8AJx7YU8m/WQQcQlOAsEQ2wsq2VZYQV6t+ahsFhMdE2PonKLrqEREJLIUrmozDPBXRue1bTFwih/4LpeLgoKCmuUvvviCq6++mquvvpqnnnrqhL5QzJgxg6uuuooHHniAu+6664ReMxQKEQgEjruviEhD7dtexBuPf87mlfuB8CiAV/5yGF36ZlBQ6WPtziJ2FFXWGT490+2gS0os7RJcWM0KVCIiEnkKV7X5K+GRo8+BElH3lIM9tkFPNQyDefPmMWfOHKZOnVqz/uKLL+aKK65g2rRpJ3Sc8vJyJk+ezD333HNCwWrLli0899xznHXWWbjd7gbVLiJyLD5PgNkvf83cN1YRCoYnAp54wxkMvbgPO0s9zF6fS4nn0B934uwWOqfE0lnd/kREJAr0ydOCzZw5k7i4OPx+P6FQqKbFadmyZQBMmjSJGTNmsGjRIoYPH37c47lcLoYNG8Y///lPfvjDH9K7d+96+5SUlBAXF0coFMLj8TBs2DBeeOGFRn9vIiJrluzkf08spmB/OQD9h3VkzE/OJi8Y4oP1uRxspLKYICcxhi4pMaTHOdTtT0REokbhqjZbTLgFKVqvfZJGjx7NM888g91uJzs7u+Z6qoOee+45fv3rXzNhwgRmzZrFiBEjjnk8i8XCu+++yyWXXMLo0aP57LPP6gUst9vN119/DUBsbCwZGRk1g12IiDSGotxy3nxyCSsXbQcgtUsSI24dRGWcjeUFFTX7JblsdE2JpWNSDPYjzGUlIiLS1BSuajOZGtw1LxpiY2Pp1q3bUbebTCaef/55zGYzEydO5MMPP2TkyJHHPKbD4eCdd97hsssuY/To0Xz66af06dOnZrvZbKZbt26EQiFKS0sb7b2IiAQDIea/vYaZ/1qBzxMgqVcq/S7vi5HiIg/AF8RmNtExOYauKbEkx9ijXbKIiEgdCletnMlk4tlnn8VisdQErFGjRh3zOQ6Hg7fffpvJkyfXBKzTTjutaQoWkTZpx7p8/vPnheTuKyPjnBxyRnfCmuAkVL09JcZO19RYOia6sFrUSiUiIs2TwlUbYDKZePrppzGbzVx44YXMnDnzuM+x2+289dZbXH755TUBS0SksXmr/Hzw4nJWLN9D5rk5DBqYhbm6i5/NbKJTcgxdU2NJcqmVSkREmj+FqxZq+vTpR902atQoDMOos85kMjFt2rQ6IwdOmTKlzuPaywA2m40ZM2bULPft27fePiIiDbX6q118Mncz7n4Z9B+aU7M+2WWjW2ocHZPUSiUiIi2LwpWIiDSpfXnlzP18O2TGkjWhOwAmw6BTSizdU+NIiVUrlYiItEwKVyIiEnEhw2BPSRUrNuRTZbdg7ZwY3lDlp1+HJLpnxuPQiH8iItLCKVyJiEjEeANBthRUsmF/KZ6QAXYLRsigclsxZ/VKY8Dp7TQvlYiItBoKVyIi0uiKq/xszC9ne2EFwepLQP3lPvK+2kPvdvFccVk/LGqpEhGRVkbhSkREGkXIMNhb4mFDfjl55d6a9eW7S9m3cAfxgRDX3jmUjJzE6BUpIiISQQpXIiJySvzBEFuKytiYX06FLxheaRgUrMplz/zt+HLLufjWwZz7vV6YzeoCKCIirZfClYiINEi5L4AvsT0fbjhAIBTu+2cFClbsY+MH6/EWeTjtnBx++NgFJKXHRbdYERGRJqBwJSIiJ8wwDPIrfGzIK2N3iQfiMyBk4HZY8W8qZP7TSwl4gsS4HVz321EMGtdNA1aIiEiboXAlIiLHFTIMdhZVsSG/jMJKf816c1UJ3d1JfPTnxezZUgjAgOEdueKOYSSkxkSrXBERkahQuBIRkaPyBUNsOVDBxvxyKv3h66nMJuicHEvHOBuvPrKAz5dXEQoZxCU4ufz2czljTBe1VomISJukcXBbqPz8fG699VY6dOiAw+EgMzOT8ePHs3jx4miXJiKtQIUvwDd7inlvzT6+3VtCpT+Iw2qmX2Y8k07LIq3cz3M/m8W2ryoJhQzOHNOFe1+9jDPP66pgJSIibZZarlqoSy+9FJ/Px8svv0yXLl3Izc1l3rx5FBQURLs0EWnBiip9rMsrZ2dRJdXTUxHvtNIr3U2npBhCgRCzXvqaT15biREysMeYueaukZw5ultU6xYREWkOFK5aoOLiYhYtWsT8+fMZOXIkAB07dmTQoEFRrkxEWiLDMNhf5mVdXhm5ZYfmp0qPc9A7PY6seCcmk4ldGw/wyiML2Ls1fG3Vmed1Ib5nKf2HdYxW6SIiIs2KwlUthmHg8wSi8tp2p/WEu9LExcURFxfHu+++yznnnIPD4YhwdSLSGh0cpGJdXhnFVeFBKkxAhyQXvdLdJMfYAQgGQsz59zfMfvlrQkGDuEQnP/zlME4b0p5Zs2ZF8R2IiIg0LwpXtfg8Ae4cPz0qr/3XOVNwuGwntK/VamX69OncfPPNPPvss5xxxhmMHDmSK6+8kv79+0e4UhFp6fzBEFsLKlifd2iQCqvZRJeUWHqmxRHnOPTRsHdbIa8+soCdGw4AcPrIzlz5i6G4E134/f4jHl9ERKStUrhqoS699FIuvPBCFi1axNKlS5k9ezaPPfYYL7zwAlOmTIl2eSLSDHn8QTYeKGdTfjm+YPiKKofVTM+0OLqlxuGwHhrjKBQMMe+/q5n54nIC/hAxbgdX3HGuBqwQEZGoMwIBfN98i2f+fOx9T8M1YUK0S6qhcFWL3Wnlr3OmRO21T5bT6WTs2LGMHTuW++67j5tuuonf/e53ClciUke5N8D6vDK2FlQSNMKhKs5hpXd6HJ2TY7GY64al3F3FvPrIArZ9lwdA33M7cNUvh2veKhERiZrgvn14FizA89kCPIsWYZSUAOAcP07hqrkymUwn3DWvOerTpw/vvvtutMsQkWYiPPJfGTuLqmpG/kuOsdEnw027BBfmw1qgDMNgwTtreffZL/F7gzhjbVw2dQjnTOih1ioREWlShteL96tleObPx7tgAf516+tsNyUm4BwxAtcF46NU4ZEpXLVABQUFTJ48mRtvvJH+/fvjdrtZvnw5jz32GJMmTYp2eSISRYZhkF/uY21uKftqjfyX6XbQO8NNRpzjiEGpOL+Cf/9xAeuW7QGg11ntuPquESRnxDVZ7SIi0rYFtm/HM38+ns8W4F28GKOq6tBGkwn76afjGD0K56hR2E8fgMliiVqtR6Nw1QLFxcUxePBgnnjiCbZs2YLf7ycnJ4ebb76Ze+65J9rliUgUGIbBnlIPa/eXUVDpA8Ij/+UkuuidcWjkvyNZ8ekW3nh8MZVlXmx2Cxf/32BGXNxHrVUiIhJRocpKvF8sCbdOfTafwPbtdbab09JwjhqJc/QoHMNHYElOikqdJ0PhqgVyOBw8+uijPProo9EuRUSiLGQY7CiqZF1uGSXVU0mYTdAlJZZe6W7cjqP/mq8s8/K/v33Bsk82A9ChVyrX/3Y0mR0Tm6J0ERFpYwzDILBxI57P5uOZvwDvl1+Cz3doB6sV+9ln4RwVbp2y9emNyWw++gGbIYUrEZEWKBAyqodTL6PCFx5O3WY20S0tjp5pcbhsx+4qsX7FHl59ZAHF+RWYLSbGXzuQCdcNxGJtWR9iIiLSvIVKS/Es+hzv/Pl4PptPcN++Otst7duHw9TokTiGDsXsdkep0sahcCUi0oL4AiE2HShnQ3453kAICA+n3istjm5pcdgtxw5Hfm+A9/+5jE//twaAtHbxXH/vKDqflhHx2kVEpPUzQiH8q1fjmb8Az/z5+FZ8DcHgoR2cDhxDhuAcORLnqJFYu3VrVd3QFa5ERFqAKn+QDfnlbM4vxx8Kj/0Xa7fQO91N55RYrObjfzDt2niA6b//jP3biwEYNqk3l/zf4BY9SqqIiERf8MABPAsWhlunFiwkVFBQZ7u1a1eco0eFr50aPBiTyxWVOpuCwpWISDNW4QuwLreMrQUVVM/7S4LTSu8MNx2TYuoNp34koWCIua+vYua/VhAMhHAnu7jmrhH0HdIhwtWLiEhrZPj9+L7+uubaKf/q1XW2m+LicAwbWn3t1EisOTlRqrTpKVyJiDRDpR4/a3PL2F5YWTNHVUqMvXqOKucJd6Eoyivn5T/MZ9M34T7uA4Z34qpfDScu0RmhykVEpDUK7N5d09XP+/lijLKyOtttffvWjOxnP/NMTLa22StC4UpEpBkprPSxNreMXcWH5vbIcDs4LcNN+lHmqDqab+Zv47U/L6KyzIvdZWXyz85lyERNCCwiIsdnVFXh/fLLcOvUgoUENm2qs92clIRj5Iiaa6cs6elRqrR5UbgSEYkywzDIr/Dx3f5S9tea+Ld9gpM+GfGkxB59jqoj8Vb5eeupJXwxcwMQHmL9hvvGkJ6T0Kh1i4hI62EYBoEtW6q7+s3Hu3QpeA59JmE2Yz/jjJrWKVu/fs1yEt9oU7gSEYkSwzDYV+rhu9wyDlQcmvi3Y1IMfTLcJDRgoImdG/J56aHPyNtVgskEY68awIU3non1OEOzi4hI2xMqLcX7+eKa7n7BPXvqbLdkZuIYPSrcOjV8GObExKjU2ZIoXImINLGQYbC7uIq1uWUUVfmBQxP/9k53E3eMiX+PesyQwbw3VvHBC8sJBkIkpsVy/W9H0eOM7MYuX0REWqjjDpNut+MYPLimdcraQ13JT5bClYhIEwkZBtsLK1mbW0aZNwCA1WyiW2osvdLdx53492iK8yt45ZH5bFixF4DTR3bmql8NIzZeg1aIiLR1wbw8PAsW4lmwAO/CRfWHSe/SJTxE+siROIacgzkmJjqFthIKVy1Ufn4+999/Px9++CG5ubkkJSUxYMAA7r//foYOHUqnTp24/fbbuf3224Fw96Nf/epXPP/887z//vuMGjWKlStXct9997F06VJKS0vJzMxk8ODBPPXUU6TrokSRRhMIGWwrqGBdXhkVvvBfCO0WEz3S4uiRFofD2vAueysXbec/f1pIRakXu9PK5J8NYciFPfWXRhGRNsrw+fAuW453wYLwMOnffVdne80w6Qcn8e2gaTkak8JVC3XppZfi8/l4+eWX6dKlC7m5ucybN4+Cw/4aARAMBrn55puZOXMmn332GWeeeSb5+fmcd955fO9732POnDkkJiayfft23n//fSoqKqLwjkRaH38wxOYDFazPK8MTCAHgtJrple6mW2osNou5wcf2Vvl5e9pSFn+wHoCcHqnccP9oMjokNkbpIiLSQhiGQWDb9pow5f3iC4zKyjr72Pr1wzlyRJsfJr0pKFy1QMXFxSxatIj58+czcuRIADp27MigQYPq7ev1evnhD3/I8uXLWbRoET179gRg8eLFlJSU8MILL2C1hn8MOnfuzOjRo5vujYi0Ut5AiI35ZWzML8dXPfNvjM1C7ww3XVJisZpPrVVp16YCXnrwU3J3FmMywflX9ud7N52lQStERNqIUFkZ3sXVA1EsWEhw5846282pqTUtU44Rw7Gkpkap0rZH4aoWwzAIhozj7xgBFrPphLvxxMXFERcXx7vvvss555yDw+E44n7l5eVceOGF7N69m8WLF5NTa3bszMxMAoEAM2bM4LLLLlMXIpFGUOUPsj6vjM0HKghU/y5xO6z0yXDTKTkG8yn+OzMMgwXvrGXGP5YS8IdISI3h+t+OoueZ7RqjfBERaabqDESxYEF4IIpA4NAONhuOs87CMSocqGx9+mAyN7x3hDScwlUtwZDBm6v2RuW1J/fPxmo5sS9eVquV6dOnc/PNN/Pss89yxhlnMHLkSK688kr69+9fs9/DDz+M2+1m3bp1pKWl1TnGOeecwz333MNVV13FT37yEwYNGsSYMWO47rrryMjIaNT3JtLaVfgCrMstY0tBBQf/PpPosnFahpv2ia5TDlUAlWVe/v3HhaxctB2AfkM7cs1vRhCXoEErRERao2BuLilLllLy0Rx8ny8mVFhYZ7u1U6dwmBo5EsfQczHHxkapUqlN4aqFuvTSS7nwwgtZtGgRS5cuZfbs2Tz22GO88MILTJkyBYBx48Yxd+5cHnnkEZ544ol6x/jDH/7AnXfeyaeffsqXX37Js88+yyOPPMLChQvp169fE78jkZan1ONnbW4Z2wsrOdjmnRprp0+Gm+x4Z6O1CG9dk8u/HvyUotxyrDYzF//fYEZecppanEVEWhHD48H71Vd4FizEu2AB/nXr6QR4qreb4uJwDD330EAUHTtGsVo5GoWrWixmE5P7R2dOGEsDrsFwOp2MHTuWsWPHct9993HTTTfxu9/9riZcnXfeeUydOpVJkyYRCoX4+9//Xu8YKSkpTJ48mcmTJ/PII48wcOBA/vKXv/Dyyy+f6lsSabWKqnys3V/GzuKqmnUZcQ5Oy3STHudotNATChnMfW0lH7y4nFDQIK1dPDc+cB4deqrvvIhIS2cYBoGNG8PDpC9ciG/JUgyP59AOJhMVOTmkf/8iYkZrIIqWQuGqFpPJdMJd85qjPn368O6779ZZN27cOD744AO+//3vYxgGTz755FGfb7fb6dq1q0YLFDmKAxVe1u4vY0/poQ+/dvFO+mS6SY098rWPDVVaWMkrf5jPumV7ADjr/K5c+YthuGLtjfo6IiLSdIKFhXgXLapunVpIcP/+OtvNGek1LVOWc85hxdKldJk4EZtCVYuhcNUCFRQUMHnyZG688Ub69++P2+1m+fLlPPbYY0yaNKne/ueffz4zZ87koosuIhQKMW3aNGbOnMkbb7zBlVdeSY8ePTAMgw8++IBZs2bx0ksvReFdiTRPhmGQV+7lu/1l5JZ7a9Z3SHTRJ9NNkqvxw876FXt4+eHPKC2swuawcPnPz9XcVSIiLZDh8+FbsaKmdcq/ajUYtQZPczpwDB6Mc8QInCNHYO3Vq+Z3vd/vj1LVcioUrlqguLg4Bg8ezBNPPMGWLVvw+/3k5ORw8803c8899xzxOWPGjOHDDz/ke9/7HoZhcOeddxITE8MvfvELdu3ahcPhoHv37rzwwgtce+21TfyORJofwzDYW+phbW4ZByp8AJiATskx9MlwE+9s/L8iBgMhZk3/mjmvfoNhQFbnJG58YAzZnZMb/bVERKTxGYZBYMuWcMvUwkVHnnOqd28cI8NhynH22ZhcrihVK5GgcNUCORwOHn30UR599NGj7rN9+/Z660aNGkV5eXnN8vPPPx+J8kRavNwyD1/vKaG4KvxXQ7MJuqbE0jvDTaw9Mr82i/LKeemhz9iyKtxFZOhFvbhs6hDsTv2aFhFpzoIFBeGufgsX4V24iOC+fXW2m1NTcY4YEQ5Uw4dh0ajMrZo+tUVEDhMIGRRX+bGaTXRLjaVXuhtXBCfoXb14B68+uoCKUi/OGBs//NVwzjqva8ReT0REGi48qt8yPIvCYcq/Zk3dHRwOHIMGhVumRozA1ruX5pxqQ6Iarh599FHeeecd1q9fj8vl4txzz+VPf/oTPXv2rNnH4/Hwi1/8gjfeeAOv18v48eP5xz/+obmYRCRisuOdnNk+kY5JMTiskftADPiDvPfcV3z6v/AHc4eeqdzwuzGkt0+I2GuKiMjJMUIh/GvXVbdOLcT71Vfg8dbZp6ar34jhOAYNUle/4wgZIXxBH/6Qr/o+QCDoJ2D48Qf94eWQn6ARJBAKEAwFCRiB8GMjSDAUJGQECRohQkaQkGFgGCFChA49NkIYGBjV17gZGFT5q1ixfXlE31tUw9WCBQu47bbbOPvsswkEAtxzzz2MGzeOtWvXEls9Edodd9zBhx9+yJtvvklCQgI//elPueSSS1i8eHE0SxeRVsxkMtEjLS6ir1Gwv4wXfzePHevyARg9uS+TfjwImz1yLWQiInJiAnv2hMPUos/xLvqcUEFBne3mjHScw6uvmxo+DEtaWpQqbVyBUABPoIpKfyWVgUqqApVU+iupClRRFajEE/BUP67CE6jCE/Acug968AS8eIMevEEvvqAXb8Bb/diHL1R9H/QTNAJRe4/BqmBEjx/VcPXRRx/VWZ4+fTrp6emsWLGCESNGUFJSwosvvshrr73GmDFjAHjppZfo3bs3S5cu5ZxzzolG2SIip2TNkp28/Pv5VJZ5iXE7uPbukfQfpskgRUSiJVRcjHfJkvB1U4s+J7BtW53tppgYHEOG4BgxHOeI4Vi7d68Z1S9UnId/6fuEtn+DsW8d1jG3YB0wpknrNwyDykAlZb4yyn2l1ffllPsP3pdTXr2uwl9Ohb+i5lbpr6heV4k36Dn+i0WAzWzDarZiM9vCjy02rCYrVrMVizl8bzVZsJgtWE1WzGYLFpMZs8mC2WQ+dMOMyWTGbDJhNpkBU/i/6sF2fQEfq3atAtZF7L00q2uuSkpKAEhODo+MtWLFCvx+P+eff37NPr169aJDhw4sWbLkiOHK6/Xi9R5qqi0tLQXCw1kePqSl3+/HMAxCoRChUKjR309rVtPEWn3+jiYUCmEYBn6/H4tFf5E/noM/oxp+tXE1l/MaDIaY9dI3zHt9NRDuBnj9/SNJyXRHvbaGaC7ntbXReY0cndvIaInn1fB48a1Yjm/xF/gWf0Fg9Wqo/X3GYsE2YAD2YUOxDxmMNdOFsXUFxs4VBN56nVDZLkyBfCzWMiyOALU7kFctScLoM7xBdQVCfkq8JZR4SyisLGC9by2+jVVUBCso85VS6i2lzBe+lfrKKPWV1ASnoNF4LTIWkwWX1UWMLRan1UWM1YXT6sJlCd87rU5c1fdOixOn1YXD4sBpceKwOHBYHdjNDuwWO3aLA4fl4GM7NrMdu9mGzWLHbrZjNVubdKqRgoICssiK2PFNhlF7sP3oCYVCfP/736e4uJjPP/8cgNdee40bbrihTlgCGDRoEKNHj+ZPf/pTveM88MADPPjgg/XWv/baa8TExNRZZ7VayczMpH379jgcjTsBqIR5vV52797Nvn37CAYj2wwr0px5y4Os+rCUot3hLx85p7voOTIOs1VzV4mIRFwwSMyuXcSv34B7wwbitmzFHDjYNc3A7AgRah8LGXYsyWCNDeA0FeGwlGFzejAd5/LboNeM3+PCE4pne/oF7Og7CcMI4TE8VBgVVBoVVIYqqTQqqDAqqDIqqQxVUGVUhbcZlVSFKvHiPfYLHYcZC06TE6fJiaPm3lHz2I6jZp3d5Ki+t+MwObFjr1m20LSBpylVVlZy1VVXUVJSQnx8fKMfv9m0XN12222sWbOmJlg11N13382dd95Zs1xaWkpOTg6jR48mJSWlzr6hUIht27ZRWlpKWloaNput1f4gNTbDMKioqCA2NvaI5+xga1VpaSmxsbGMHTsWs0bKOS6/388nn3zC2LFjNRt7I4r2ed30zT5e+cMCyor8OFxWrvjFUM4Y3bnJ62hs0T6vrZXOa+To3EZGczyvRihEYONG/F8swffFEnzLl2ChGKs7gMUdxHpmAGt89WN3ALP92G0NRhCCVQ4CoQT89lSqYjIoScokLy2T7emp7ImBIk8RRZ5CiryFFHmeoMRb3KDWJBMm3PZ44u3xGFWQk5ZDgjOBeHsCbru7+j4+/NiRgNvmrl6Ow2Fx6rvscRQcdv1cY2sW4eqnP/0pM2fOZOHChbRv375mfWZmJj6fj+LiYhITE2vW5+bmkpmZecRjORyOI7ZC2Wy2I/6D79KlC/v27WPfYXMSyLEZhkFVVRUul+uY/4hjYmLIysrCbrc3YXUt39F+XuXUNPV5DYUMPv73t8z81wqMkEF2l2Ruevg8MnISm6yGpqCf18jQeY0cndvIiOZ5NYIBAmu/xL9kNqF1izH2rsNsLcPpDhCXHsAy+fiXfwQrzPgrHXiNOMptCeTHJLDL7WZdopNvkgz2GiVU+A/OF5ofvnlXw65jHzfO5ibJmUSSM4lEZxJJzmQSHAkkOcL3ic4kEh2JJFTf3HY3FrMFv9/PrFmzmDhmon5eG1Gkz2VUw5VhGEydOpUZM2Ywf/58Oneu+5fcM888E5vNxrx587j00ksB2LBhAzt37mTIkCGNUoPdbqdDhw4EAgF1WzsJfr+fhQsXMmLEiKP+kFosFqzW1tusLHIs5SUeXv79fNZ+Gf7UPWdiD664fagmBRYRaaiqIijaCkXbMIq2YOxaTWjXakwl2zGbS7FZwAaQUH07TMhnIlBmJVBmoSLgosDiZLvdxtoYM2uS7GzrbKUsxkTN6Ad4q2+A79BxbGYbya4UUpwpJDmTSXalkOxMJtmZQpIziWRXeH2SIxykbBYFo7Ykqp/yt912G6+99hrvvfcebreb/fv3A5CQkIDL5SIhIYEf/ehH3HnnnSQnJxMfH8/UqVMZMmRIo44UaDKZ9Fesk2SxWAgEAjidTp03kcNs+y6XF383j6K8Cmx2C5ffMZRzL+x5/CeKiLRlfg+U7KgJUBRtheLwvVG0DZO3pGZXU/XNDNWJCowQBMstBEqtBMqsBMss5Bk2djodbIizsynNxu5sC3vSLPhsdf/wazaZSXIm09OVRoorhVRXGimuVFJcKaS4Ukh2ptQsx9nc+sOxHFVUw9UzzzwDwKhRo+qsf+mll5gyZQoATzzxBGazmUsvvbTOJMIiIs2NYRjMf+s73vnHUkJBg/T28fzoofNp3y3l+E8WEWntQiEo21sTmOoGqG1QtueoTz0YZYKV5prgVDtEBcqsrEqzs7G9jR0ZFnZ0NbMnzULQbiPVlUJqTDpprjTOjEljvCuVVFcaqTFpNfdJjiQsZo1qLKcu6t0Cj8fpdPL000/z9NNPN0FFIiINU1Xh4z9/Wsg388Nzowwc3Zmrfz0CV6yuNxSRNqRW1706Iap4G0bxdkxB37GfjhlLgaUmMB28P/jYCIQHxyqIN7FgaCIHhmXg69YBd2YOqTHptI9JZ2BMOmnVYSrRmVQ935FI01DnfxGRU7RvexH/vPcTcneWYLGaueS2wYy85DR1GxGR1sfvgeLtdVqcLIVbGLlzJZbvrgNf6VGfagICwH6rjT1WO3tsdvZa7ey12thjs7PHaufW16oYvK7+NfC5o/tTddl44s4cTHpSe3q70hhg0R+vpPlRuBIROQVff7aVV/+4AF9VgMS0WG56+Hw690mPdlkiIg0TDEDp7kNd9Yq3YRRtI1C4EYq2Y6vMr/cUM5BYa/mAxRoOTNbq8GSzsbv6cbE9luTYDDJiM8mIzSAjJpPTYzMYF5NBRmwGKUP9WJ//N/a+fYm5fDLm2FgA2td7VZHmSeFKRKQBgoEQ7z33FfP+uxqAHgOzuPGB83AnuaJcmYjIMRgGlOfWCU+Bgk34CzdiKt6OvTwXs1F32HITNWNGAFBuMle3OtmqW57s7LHZyLW7CMa3JyGuXXV4yiQ9JoPhsZlkVi8nOpKO3aqfAjx+egTeuEjTULgSETlJpYWV/OuBT9n0bXh+vLE/7M9FN5+Nxap+/SLSDFQV14SnUNEWPAfWESjYhLlkB87yXKyHXfdkpe4XQh8m9lV31TvYbW+vzUFlbDrBxI7ExeeQGZdNRnVo6utIY82SNVx24WQc9vpzjYq0JQpXIiInYdt3ubxw/zyK8ytwuGxce/dIBo7qfPwniog0Fl9l+Lqn4m34Dmyg8sB3BAo3YynZias8F6e/qmZXMxBz2NNDQJ7Fxh7boZanQmc83vgsQgmdiEnuRkZcNpmxmXSJyeTcuCzSXOlHna/J7/ez3bxDA0eIoHAlInJCDMNg0bvreOupJQQDITI6JHLLH8aS2TEx2qWJSGsT8EHJTkJFW6jI/w5P/lqCRZuxlOwipjyPWF95za726tvhCs0W9la3PO2zOSiPTcXnbgdJXXCm9CDN3Z6s2Cz6xGYxOjaTOHtck709kdZM4UpE5Dh8ngBvPP45X87ZBMDpIztz7d0jcMZopCoRaYBQEEp34y/cRGnuSjz5awkVbcVauouY8nzc3jLMGJgBd/XtcLWvezrgiKMiNh1/fHvMSV1wpvUmNaETmbFZDIjN5DxXmuZwEmkiClciIsdwYG8pz9/7CXs2F2Iym/jBjwdx3pX9NMy6iBxdKATl+6jMX0Np7io8B9YTKtqCrXQPMRX5JHhLsRoGNsLjNxyJx2Sq6bJX5EqgMi6DYHw7zEndcKX1ISW5O5mxWZwdm0mc/UjxS0SiQeFKROQovlu6i+kPf0ZlmZe4RCc/euA8epyRHe2yRCTaDINQ2V5Kc1dSmrcKb8EGjKKt2Er3EFt5gCRPGTYjRAz1r3c6yF89aMR+m5OSmESq4jIIxnfAnNyVmLTTSE7pRZa7HefEpGM1H/laJxFpfhSuREQOEwoZzH75a2ZP/xrDgI6907j54fNJStc1CSJtgmHgL91DUe7XlOWuxlewHqN4O/ayvcRVFpDkKcNhhEik7vxOtR2cLDffHkOpKwmPO5NgQgesyd2JTe1DUlpfsuLbk3O8oclFpEVRuBIRqaWqwsfLD3/G6i92AjBsUm8umzoEm13XK4i0GkaIysItFO7/mvL8NfgLNmEq2Y69bB/uykKSveU4jBDpwNGmBA8CeVYbB+yxlMak4HVnYiR0wJrSg7i000hOH0CGuz3tbUdruxKR1kjhSkSkWu7OYp675xNydxZjtVu48hfDGDKhR7TLEpGTZISClBZsoDj3G8rzvsNfuAlTyU4cZfs5s+IAxrdVxBjGUbvsQfVw5VYbBQ435THJeN1ZkNAJW0oP4tL7kpJxOunudmSpy56I1KJwJSICrFmyk5ce+hRPhZ/EtFhu+f1YOvZOi3ZZInIEoaCfwrxVFOd+S2X+OgJFmzGX7MJVnkt8VTEp/koSDIOEYxwjCByont+pPCYFvzsbEjvhSO1JXFp/UjMHkBGbRaa67InISVC4EpE2zTAM5rz6LTNfXI5hQNf+Gdz00PnEJ6srj0i0+H0VHMj9mtLc1VQVrCNYuAVL6R5cFXkkVpWQ4q8iFUg9xjECwAGbg2JnPBUxaQTi22EkdGT7ARNnDbuUzHZnk+FKJqOJ3pOItA0KVyLSZnkq/fz7jwv4Zv42IHx91eSfDcFq0/VVIhHlq4DiHWzZ8SkluSsxirdhLdtLTMUBkjwlJAd8ZAFZxziEHxMHbE6KXQlUxaZXD1PeFWdqLxIyBpCWOZBMWyyZtZ/j95M7axYdO47BZlN3PhFpfApXItIm5e8p5fl7PmbvtiIsVjOX334uw77fO9plibR8hgGVB6BkJxTvgJIdh+4PrqsqAKDrMQ7jNZnIt8dS6krEE5dOKD4Ha3I3YlJ7k5gxkOS008iyOo4ZwEREmprClYi0OeuW7eZfD3xKZZmX+GQXNz88li791DlI5IQE/VC2tzow7awVnnYeClD+yuMfx5FAodPNXou1eqS9jtiTuxGb1pfkjNNJTO5Be7M58u9HRKQRKVyJSJthGAZz31jFu89+hREy6Ng7jVt+P5bEtNholybSfHhKqoPSzlqtTzsPhaeyvWCEjn+cuExI6AAJHSGxY/17ZwLJQHLE35CISNNRuBKRNiHoN/j3o4tYMW8rAOdM6MGVdw7F5tCvQWlDggEo33eU4FR985Yc/zgWe3Vwqg5PNY87hINTfA7YnJF/PyIizYy+VYhIq1eUW85XbxRRlpeP2WLi0p8OYeQlfTBpiGVpTQwDqgqhZFc4JJXuqhWaqh+X7TmxVidXcv3glNjx0LrYdFCXPRGRehSuRKRV2/TtPl64fy7lxQFiExzc9ND59BiYHe2yRE6erxJKd9cKTrXC08EgdSLXOpltEN++VliqdYvPCd874iL/fkREWiGFKxFptRa9t47//W0xoaCBO93KHX+7iIz2SdEuS6S+oB9K90DpLkyF2+iWOw/zR3OgfM+hlqfqEfaOKzb9UEhKyKkfoGIz1OokIhIhClci0uoEAyHenraEBe+sBWDg6M4k9ysnOUN/jZcoOHidU+nucEg62OpUuvvQ4/L9gAGEP5hPA9h7hGPZ4+oHp9rL8e3B5mq69yYiInUoXIlIq1JZ5uXF381j/fI9AFx081mMueI0Zs+eHeXKpFWqHZxqwlN1aDq4XL7vxK5zsjggvj2h+PbsKTWR3XswlqROdUOUMwF0raCISLOlcCUircb+HcU8d/cc8naXYndZuf63ozh9RGf8fn+0S5OWKOALDzt+MDjVu1W3OJ1IcDJbwd3uUOtSfE7141r3sWlgMhH0+/l61iwyR0/EYrNF/n2KiEijUbgSkVZh7Ve7+NcDn1JV7iMpI46fPDqO9t1Sol2WNFfesvA1TmV7qoPSnkOh6eC6irwTO1a94FQdnuLbH1qn65xERNoEhSsRadEMw2D+W9/x9tNLMUIGXfplcMvvx+JO0nUnbVIoFA5FZXurQ9KeWoGp1mNv6Ykdz+KA+Hb1Q1Ptm4YlFxGRagpXItJiBfxB/vvEYr6YuQGAcyb24Mo7h2GzW6JcmUSEtzwcjMr21mp12lN3Xfk+CAVO7HiO+HCLU3y76tBUK0S5qx/HpOgaJxEROWEKVyLSIpUVV/HPe+eyZdV+TGYTF986iDGX99PEwC1RwBu+dqm0OiQd8XYSrU2YIC4T3NnVYandobBU87gdONwRfVsiItL2KFyJSIuzZ0shz909h4L95Thjbdxw/xj6DukQ7bLkcEF/ODSV7YWyfeH78n31g1PlgRM/pt19KCC5s+uGJXd2+HFcJlj08SYiIk1Pnz4i0qKs+nwH0x/+DG+Vn9R28fzk0XFkddLEwE3K74Hy/ZiKd5FVvATz8h1QmVs/QJ1MaLI4qsPRUW4Hw5Nam0REpBlTuBKRFsEwDD55bSXvP78Mw4AeA7P40UPnE5fgjHZprYNhhLvdle0Lh6Py/YceH37vKQbCHyCDALYd47hmG7izIC6rOihl1QpN7Q49diXp2iYREWnxFK5EpNnz+4K8/udFfDlnEwDDJvXm8p+fi8WqEdqOK+CF8txwWKp9q6huaaq9LlB14se12DHisijyO0nM6Y25pltedXg6GKZcyRpJT0RE2gyFKxFp1sqLPTx/7ydsWbUfs8XEZVOHMPKS06JdVnQF/VCRfygkHQxPFQdDVK0w5Sk6uWM74quDUVb42qWax4fdOxMJBAIsmjWLiRMnYtZktyIiIgpXItJ87d9RzDO/mcOBPaU4Y23c9OD59B7UPtplRcbBFqaKvEOBqfZ9Rd6hxydzLROEu+bFZR7hlhEOS7XX2WMi8/5ERETaAIUrEWmWNqzYwz/vm0tVuY+UzDhufeyCljVwhWFAVVF1WDr8llt3uTwXvCUnd3yTBWLTwoEoNqNWWKq9XH3T9UwiIiJNQuFKRJqdxTPX88bjnxMKGnQ+LZ0fPzIOd5IrukUZRnggh4p8qMyve1+RV/04r+7yiU5me5DZBrHp4ZAUm3Ho/vB1cZngStG1TCIiIs2MwpWINBuhkMF7z33F3NdXAXDW+V255q4R2BwR+FUVCkJlQbiLXeWBuuHo8PBUmR/e52TDEoAzMRyO6twy6q+LywjvqxYmERGRFkvhSkSaBW+Vn5d/P5+Vi7YDMPGGM5g45QxMJxI2QqHwwA11wtIBqAovW8rzGLR9LZaXH4Oqg9uKAOPkC7XHQUxauEvewfvYjOr7WmHp4Dar4+RfQ0RERFqkUw5XXq8Xh0NfHkSk4YoPVPDsbz5m18YDWG1mrvl5f84ebIcdC8OBqargsPvCOuGJqkIwQkc9vhnIAjjSZU3OJIhJrRuWjnVv07xaIiIicmQnHa5mz57NG2+8waJFi9i1axehUIjY2FgGDhzIuHHjuOGGG8jOzo5ErSLSUhgG+KvCocdTFG4lqnlceCggVRWya1eIZz8eSnFVHHG2cm7p9zRdv94CXzfgdR3x4aB08OZKgZhUgs4kVm/ZR9+zR2CNz6renhaeg8miBnwRERFpHCf8rWLGjBncddddlJWVMXHiRO666y6ys7NxuVwUFhayZs0a5s6dy8MPP8yUKVN4+OGHSUtLi2TtIhJpfk94EIfaIelgQDre46DvuIdffaA///ruJnxBJ5kxe7l1wDRSXQfAZA4HH1cKxKQc+d6VHG5Nqg5QuJLBaj/i64T8fnaUzOK03hNB8zGJiIhIhJxwuHrsscd44oknmDBhAuYjjFB1+eWXA7Bnzx6eeuop/v3vf3PHHXc0XqUicvIC3nA48hSDp+TQY2+tx7VvVUXVj6vvA55Te32zNdztzpVUfZ9cHY6S+ezbHN5eHY9hmOjVx8GP7hhHTNo14X0cCRoJT0RERFqcEw5XS5YsOaH92rVrxx//+McGFyQihLvVecvDIchbGg5G3pLq+9KjPD5sX2/pqYcjAEzhUexcyXVD0hEfVy8ffGyPqzf6XSgY4u1pS5k/+zsAhn2/F5ffPhSLVWFKREREWrZGudggGAyyevVqOnbsSFJSC5rkU6QxGQb4KsBXBt6ycLip97j0mNus3jImVBRi/bbqmAM0nDRHAjgTwiGp9s1Ra50rqfpxUt1lu7vRWpF8ngDTH/6UlYt2APCDWwdx/pX9T2xEQBEREZFmrkHh6vbbb6dfv3786Ec/IhgMMnLkSL744gtiYmKYOXMmo0aNauQyRRqRYYS7y/krwmHoiPfl1bfajw+/lYXvvWXVjyto0NDetZiAOlcNmcyHgpEjITxgw8HHzurl426PB7PllOpqDGVFVTzzmznsWJeP1W7huntGcuaYrtEuS0RERKTRNChcvfXWW1xzzTUAfPDBB2zbto3169fz6quv8tvf/pbFixc3apHShoSC4VHmAlVHuK+sdTt8ufLQPkcNTNX3/srGbRWqxwQOdzjU2N2HPY4PL9d+XGu/gCWGBUu/ZsTY72GLSwVbTKuYVDZ3ZzFP/+ojCvaVEZvg4MePjKNrv8xolyUiIiLSqBoUrg4cOEBmZviL0axZs5g8eTI9evTgxhtv5O9//3ujFihNJBSEoD88wlvQG27ZOca9yVtB+8KvMH2bBwSOsJ+n7s1fVf246rDlw9aF/E37vi2OcICxx4ItNnxvj6t+HHeEW2w4CNVedzAsHXx8CoHI8Pspd+aBO7vVjGq3eeU+nrvnEyrLvKS2i+e2xy4gPSch2mWJiIiINLoGhauMjAzWrl1LVlYWH330Ec888wwAlZWVWCzR7350RGW7wVoZ7hKGcdg9R1hXvd4wwq0cJ3LjsH1DQTCC1fehWo+PdB8IPw4Fai1X34L+cOioeRw4zrL/UFAKHQxMB2+1lmtvO8mWHCtwJsCOxvnfc0QWO1hdYHOFA8uxbtZa+9hjqx/H1g1Nh6+zxWiOowhbPnczrz66gIA/ROfT0vnxo+NwJ7qiXZaIiIhIRDTom+UNN9zA5ZdfTlZWFiaTifPPPx+AL7/8kl69ejVqgY3F9tzp4Ih2FS2I2Rpu1bE6jngfstgpKCojJaMdZpuz7nars+7N4ggHJKszHIKszrrLR9vWDK4TkoYxDIOP/7OS959fBsDpIztz/b2jsDsUZkVERKT1atA3nQceeIC+ffuya9cuJk+ejMMRTi0Wi4Xf/OY3jVpgYzHMdrBUd9UymQBTra5bpkPrjrTdZAkPLHDUm+kY2yzhkHDMe2v4sdl65GWLDcy26ntr+LHZemj94Y/N1nCrT83Nduix2Xac9dX3xwk2Qb+fL2bNYuLEiZhbSfc1aRzBQIj/PrGYxR+sB2DM5f24+P8GYza3/GvHRERERI6lwX9GvuyyywDweA7No3P99defekURErhzL6SkRLsMkVbNU+njxd/NY+2XuzGZTVw2dQijLj0t2mWJiIiINIkGTV4TDAZ5+OGHadeuHXFxcWzduhWA++67jxdffLFRCxSRlqE4v4Inps5k7Ze7sTks3PL7sQpWIiIi0qY0KFz94Q9/YPr06Tz22GPY7Ydm5enbty8vvPBCoxUnIi3Dni2F/Pkn77F7UwHuJBd3PHkR/Yd1jHZZIiIiIk2qQeHqlVde4fnnn+fqq6+uMzrggAEDWL9+faMVJyLN37plu/nrbe9TnF9BRodEfvnM9+nYOy3aZYmIiIg0uQZdc7Vnzx66detWb30oFMLvb+J5ikQkapbM2sBrf15EKGjQbUAmP35kHDFuDcspIiIibVODwlWfPn1YtGgRHTvW7fbz1ltvMXDgwEYpTESaL8Mw+OiVb5j54goAzjq/K9f8ZiQ2u4bPFxERkbarQeHq/vvv5/rrr2fPnj2EQiHeeecdNmzYwCuvvMLMmTMbu0YRaUaCgRD/+9tiPn8/3AV43NUDuOjmszXUuoiIiLR5DbrmatKkSXzwwQfMnTuX2NhY7r//ftatW8cHH3zA2LFjG7tGEWkmfJ4A/7xvLp+/vx6TCSb//Fwm/XiQgpWIiIgIpzDP1fDhw/nkk08asxYRacbKSzw8+5s5bPsuD6vdwg33jeb0kZ2jXZaIiIhIs9GglqsuXbpQUFBQb31xcTFdunQ55aJEpHkp2FfGX297n23f5eGKszP1rxMVrEREREQO06CWq+3btxMMBuut93q97Nmz55SLEpHmY9emAv7xq9mUFlaRlB7LbX+ZQFanpGiXJSIiItLsnFS4ev/992sez5kzh4SEhJrlYDDIvHnz6NSpU6MVJyLRtX7FHv7520/wVPrJ7pLMbX++gMS02GiXJSIiItIsnVS4+sEPfgCAyWTi+uuvr7PNZrPRqVMnHn/88UYrTkSiZ9knm3n10QUEAyG6D8zix38YhyvOHu2yRERERJqtkwpXoVAIgM6dO7Ns2TJSU1MjUpSIRI9hGMx7YzUznvkSgDNGd+G6347SHFYiIiIix9Gga662bdvW2HWISDMQChm88/RSPntzDQCjJ/flktvO0VDrIiIiIiegQeHqoYceOub2+++/v0HFiEj0+H1BXvnDfL7+bCsAF//fYM6/sn+UqxIRERFpORoUrmbMmFFn2e/3s23bNqxWK127dlW4Emlhqip8PH/Px2z8Zh8Wq5nr7hnJWed3i3ZZIiIiIi1Kg8LVN998U29daWkpU6ZM4eKLLz7lokSk6ZQWVvKPX33Erk0FOFw2bnlkLL3ObBftskRERERanAZNInwk8fHxPPjgg9x3332NdUgRibADe0t5/LYP2LWpgLhEJ7c/eaGClYiIiEgDNajl6mhKSkooKSlpzEOKSITs3lzA078MTw6ckhnHTx+fSHpOwvGfKCIiIiJH1KBw9eSTT9ZZNgyDffv28eqrrzJhwoQTPs7ChQv585//zIoVK9i3bx8zZsyomUsLYMqUKbz88st1njN+/Hg++uijhpQtItU2fbuPZ++eg6fCT7uuydz25wkkpMZEuywRERGRFq1B4eqJJ56os2w2m0lLS+P666/n7rvvPuHjVFRUMGDAAG688UYuueSSI+5zwQUX8NJLL9UsOxyOhpQsItVWLtrOvx78lIAvSNf+mfzk0XHEuPXvSkRERORURXWeqwkTJhy3pcvhcJCZmdkoryfS1i2euZ7X//I5Rsig/7CO3PC7Mdgdjdo7WERERKTNavbfqubPn096ejpJSUmMGTOG3//+96SkpBx1f6/Xi9frrVkuLS0FwsPF+/3+iNfbVhw8lzqnjStS59UwDOa+tpoP//U1AIMv6M7ldw7BZDbaxP9D/bxGhs5rZOi8Ro7ObWTovEaGzmtkRPp8mgzDME72SRUVFfzxj39k3rx55OXlEQqF6mzfunXryRdiMtW75uqNN94gJiaGzp07s2XLFu655x7i4uJYsmQJFovliMd54IEHePDBB+utf+2114iJ0TUl0vYYhsGGz8rZ+U0VAJ0HxdBtWCwmkynKlYmIiIg0rcrKSq666ipKSkqIj49v9OM3KFz98Ic/ZMGCBVx77bVkZWXV+5L285///OQLOUK4OtzWrVvp2rUrc+fO5bzzzjviPkdqucrJyWHfvn3HbPGSk+P3+/nkk08YO3YsNpst2uW0Go19XgP+IK899jlffxruynvx/w1i5KV9Tvm4LY1+XiND5zUydF4jR+c2MnReI0PnNTIKCgrIysqKWLhqULfA2bNn8+GHHzJ06NDGrueYunTpQmpqKps3bz5quHI4HEcc9MJms+kHMwJ0XiOjMc6rp9LPi/d/xrqvdmO2mLj27lEMGtetkSpsmfTzGhk6r5Gh8xo5OreRofMaGTqvjSvS57JB4SopKYnk5OTGruW4du/eXZM2ReToyks8/OPXH7FjXT52p5WbHj6f0wbnRLssERERkVbN3JAnPfzww9x///1UVlae0ouXl5fz7bff8u233wLhUQi//fZbdu7cSXl5Ob/61a9YunQp27dvZ968eUyaNIlu3boxfvz4U3pdkdasOL+CJ6Z+wI51+cTGO/jZ3y5UsBIRERFpAg1quXr88cfZsmULGRkZdOrUqV7z2tdff31Cx1m+fDmjR4+uWb7zzjsBuP7663nmmWdYtWoVL7/8MsXFxWRnZzNu3DgefvhhzXUlchR5u0uYducsCvaXk5gWy08fn0BWp6RolyUiIiLSJjQoXB1r0ImTMWrUKI41nsacOXMa5XVE2oI9Wwp46hezKSusIq1dPFOfmEhKpjvaZYmIiIi0GQ0KV7/73e8auw4ROQVbV+fyj7s+oqrcR7tuyfz0LxOIT9bUAyIiIiJNqdlPIiwix7buq908f+8n+DwBuvTN4NY/jSfGra6zIiIiIk3thMNVcnIyGzduJDU1laSkpGNOQFpYWNgoxYnIsX09fyvTH/qMYCBEn8Htuemh83G4NFyriIiISDSccLh64okncLvD12/87W9/i1Q9InKCvpi5ntf+8jlGyGDg6M5MuXc0Vpsl2mWJiIiItFknHK6uv/76Iz4WkaY39/VVzHjmSwCGXtSLK+8citnSoJkVRERERKSRnNI1V3l5eeTl5REKheqs79+//ykVJSJHZhgG7/9zOR//+1sAxv6wP5N+MuiY3XRFREREpGk0KFytWLGC66+/nnXr1tUbSt1kMhEMBhulOBE5JBQy+N/fFrPo3XUATLrlbMZdc3p0ixIRERGRGg0KVzfeeCM9evTgxRdfJCMjQ381F4mwYCDEK4/MZ/ncLZhMcMWdwxg+qXe0yxIRERGRWhoUrrZu3crbb79Nt27dGrseETmMzxPghfvn8t3SXZgtJqbcO5ozz+sa7bJERERE5DANugL+vPPOY+XKlY1di4gcpqrcx7Rfzua7pbuwOSz85NHxClYiIiIizVSDWq5eeOEFrr/+etasWUPfvn2x2erOq/P973+/UYoTacvKiz1M++Vsdm08gDPWxq1/uoBu/TOjXZaIiIiIHEWDwtWSJUtYvHgxs2fPrrdNA1qInLqSA5U8c9fH7N9eTFyik5/+ZQI5PVKjXZaIiIiIHEODugVOnTqVa665hn379hEKhercFKxETk1VaZCn7pjN/u3FJKbFcsdTFylYiYiIiLQADWq5Kigo4I477iAjI6Ox6xFp0/J2lfDV60V4y0OkZLn52RMTSc2Oj3ZZIiIiInICGtRydckll/DZZ581di0ibdqeLYU8dcdsvOUh0jskcOe0ixSsRFohwzDYnFfOi59vY/3+0miXIyIijahBLVc9evTg7rvv5vPPP6dfv371BrT42c9+1ijFibQVO9bn8/QvZ1NR6sWdZmXqXy8gMS022mWJSCOp8Ab4YksBn23IY8HGfPYUVwHw09Hd6JWpP6KIiLQWDR4tMC4ujgULFrBgwYI620wmk8KVyEnYvHIfz9w1B0+ln469U+kyBtxJrmiXJSKnwDAMth6o4LMNeczfkM9X2wrxBUM12+0WM4M7J9Mjwx3FKkVEpLE1KFxt27atsesQaZPWfbWb5377MX5vkO4Ds/jRQ2P4dP4n0S5LRBqgyhdk6dYC5m/M47MN+ewsrKyzPSfJxZhe6YzskcY5XVKIsTfoI1hERJox/WYXiZKVi7bzrwfmEfCH6DM4h5t/fz4msxHtskTkJOwsrOSz9Xl8tiGPJVsL8Abqt06N7JnG6J7pdEmNxWQyRbFaERGJtBMOV3/84x/5+c9/jst1/O5KX375JQcOHODCCy88peJEWqvlczfz8h/mEwoanD6yMzfcPxqrzYLf7492aSJyDN5AkK+2FfLZhnzmb8xja35Fne3ZCU5G9UxndM90zu2aQqxDf8MUEWlLTvi3/tq1a+nQoQOTJ0/moosu4qyzziItLQ2AQCDA2rVr+fzzz/n3v//N3r17eeWVVyJWtEhLtnjmel7/8yIMAwaN78Y1d43EYm3QwJ0i0gT2FFcxf0O4q98XWw5Q6Ts0n6PVbOKsTkmM6hEOVD0y4tQ6JSLShp1wuHrllVdYuXIl06ZN46qrrqK0tBSLxYLD4aCyMtyvfODAgdx0001MmTIFp9MZsaJFWqpP/7eat6ctBWDYpN5cccdQzGZ9ERNpTvzBEMt3FFUHqjw25pbX2Z7udjCquqvf0G6pxDttRzmSiIi0NSfVX2HAgAH885//5LnnnmPVqlXs2LGDqqoqUlNTOf3000lNTY1UnSItmmEYzHn1Wz54YTkA513Zn4tvHaS/cIs0E7mlHuZvyGP+xnw+33SAMm+gZpvZBGd0SGJ0z3RG9UyjT1a8/u2KiMgRNagzuNls5vTTT+f0009v5HJEWh/DMHjvuWV88tpKAC688UwmXD9QX85EoigUMli5u5jPNuQxb30e3+2tO5lvSqydkT3SGNUznRHdU0mMsUepUhERaUl0pa1IBIVCBm89+QUL3lkLwMX/N5jzr+wf5apE2qYyj5/PNx9g3vo85m/I40C5r2abyQT92yUyurq7X792CeqyKyIiJ03hSiRCQsEQ//nzIpbO2ojJBFfcOZThk/pEuyyRNmVHQQXz1ufx6fo8vtxWgD94aLoDt8PKiB5pNXNPpcY5olipiIi0BgpXIhEQDIR45ZH5LJ+7BZPZxLV3j2Tw+O7RLkuk1fMHQ6zYUcSn6/OYtz6XLYcNld4pJYbzemVwXu90zuqYjF0jdYqISCNSuBJpZMFAiJce+pRv5m/DbDFxw+/GcMaoLtEuS6TVKqrwMX9j+NqpBRvzKfMcGozCajZxdqdkzuuVzphe6XRJi4tipSIi0tqdUrjavHkzW7ZsYcSIEbhcLgzD0EX60qb5fUFe/N08Vi/egdVm5kcPnk//YR2jXZZIq7P9QAUfr93Px2tz+XpnEaFDvf1IirExumc4TA3vnkaCS0Oli4hI02hQuCooKOCKK67g008/xWQysWnTJrp06cKPfvQjkpKSePzxxxu7TpFmz+cN8M97P2Htl7ux2i3c8oexnDY4J9plibQKhmGwZm8pH38XDlQbcsvqbO+V6WZMr3TO65XO6TlJWDQYhYiIREGDwtUdd9yB1Wpl586d9O7du2b9FVdcwZ133qlwJW2Ot8rPc/d8zIYVe7E5LPzkj+PpdWa7aJcl0qL5gyG+2lZY00K1r8RTs81iNnFO52TG9cnkvN7ptE+KiWKlIiIiYQ0KVx9//DFz5syhffv2ddZ3796dHTt2NEphIi2Fp9LHM3fNYfPK/ThcNm7903i6n54V7bJEWqRKX4AFG/P5+Ltc5q3PpbTW9VMum4VRPdMY1yeD0T3TNfeUiIg0Ow0KVxUVFcTE1P8rYWFhIQ6HhrKVtqOq3MfTv5rNtu/ycMbauO3PE+jSNyPaZYm0KMWVPj5em8vHa/ezaNMBvIFQzbaUWDvn985gXJ8MhnZLxWmzRLFSERGRY2tQuBo+fDivvPIKDz/8MAAmk4lQKMRjjz3G6NGjG7VAkeaqotTDtF/OZuf6A8S4Hfz08Ql07JUW7bJEWoTCCh9zvtvPrDX7WLKlgECtESk6JMcwrk8G4/pkcmZHXT8lIiItR4PC1WOPPcZ5553H8uXL8fl8/PrXv+a7776jsLCQxYsXN3aNIs1OWXEV034xm92bCohLcPLTv04kp3tKtMsSadbyy7zMWbuf2av3sXRbIcFagap3VjwXnJbJ+NMy6Jnh1sizIiLSIjUoXPXt25eNGzcybdo03G435eXlXHLJJdx2221kZelaE2ndSgoqeerOWezbVoQ72cXP/jqR7C7J0S5LpFnKK/XwUXUL1VfbCusMmd43O54J/bKYcFqm5p8SEZFWocHzXCUkJPDb3/62MWsRafaK8yt48o4Pyd1ZQkJqDD//24VkdEiMdlkizcq+kio+WrOf2Wv2s2xHIUatQDWgfQIT+mYxoW8mHVNio1ekiIhIBDQ4XHk8HlatWkVeXh6hUKjOtu9///unXJhIc1OYW87fb/+QA3tKScqI4+d/u5C0dvHRLkukWcgr9fDh6n3MXL2PFTuK6mwbmJPIhf2yGN83kxwNmS4iIq1Yg8LVRx99xHXXXceBAwfqbTOZTASDwVMuTKQ5ObC3lL/f/iGF+8tJyXLz879fSEqmO9pliURVcaWfL3JNvPHScr7cXrfL31kdk5jYL4sLTsskO9EVvSJFRESaUIPC1dSpU5k8eTL3338/GRkadlpat9xdxTx5+yyK8ytIbx/Pz/52IUnpuj5E2qYKb4BP1uby/sq9LNyUTyBkAQoBOKNDIhf1z2ZC3ywyE5zRLVRERCQKGhSucnNzufPOOxWspNXbt72IJ2//kNLCKjI7JfKzv15IQqq6NUnb4vEHmb8xnw9W7mXe+lw8/kNdwdvFGPxwaA8mDWyvLn8iItLmNShcXXbZZcyfP5+uXbs2dj0izcaeLYU8eceHlBd7yO6SzM+emIg7Sd2bpG3wB0N8saWA91fu5ePv9lPmDdRs65wSy0UDsplwWhobly1k4vDO2Gy2KFYrIiLSPDQoXE2bNo3JkyezaNEi+vXrV+9D9Wc/+1mjFCcSLbs3F/DkHR9SUeIlp0cqP318AnHq5iStnGEYLN9RxHvf7mHWmv0UVvhqtmUlOLmofzYXDcimb3Y8JpMJv9/PxijWKyIi0tw0KFy9/vrrfPzxxzidTubPn19nskeTyaRwJS3ark0FPHXHh1SUeunYK42fPj6BGLcj2mWJRMy2AxXM+GY3M77Zw66iqpr1KbF2JvbL4qL+2ZzVMQmzWRP7ioiIHEuDwtVvf/tbHnzwQX7zm99gNpsbuyaRqNm54QBP3TmLyjIvnfqkc9ufL1CwklapsMLHzFV7eeebPXy7q7hmfazdwvjTMpl0ejuGdk3BatHveBERkRPVoHDl8/m44oorFKykVdm5IZ8n75hFVbmPzqelc9ufJ+CKs0e7LJFG4/EH+XR9Hu98s4f5G/IIVI+dbjbB8O5pXDKwHeP6ZOKyW6JcqYiISMvUoHB1/fXX89///pd77rmnsesRiYod6/J56hfhYNWlbwb/9+cLcMUqWEnLZxgGy7YXMeOb3Xy4eh+lnkMDU5yWHc/FA9vx/QHZpLt1TaGIiMipalC4CgaDPPbYY8yZM4f+/fvXG9Dir3/9a6MUJ9IUtq3NY9ovZuGp8NO1fwb/99gFOGMUrKRlO9p1VFkJTiad3o5LBrajR4YmwhYREWlMDQpXq1evZuDAgQCsWbOmzrbag1uINHdb1+Ty9C9n46n007V/ZnWw0pDS0jKVVPl5f+Ve3v56d73rqCb0y+KSge04p3OKBqYQERGJkAaFq88++6yx6xBpcltX5/L0r8LBqvvpWfzkj+MVrKTFCYUMFm85wJsrdvPRd/vxBcIT/FrMJoZ3S+ViXUclIiLSZBoUrkRaus2r9vOPX32Et8pPj4HhYOVwKVhJy7GrsJI3V+zm7a93s6f4ULe/XpluLjuzPZMGtCNNI12KiIg0qRMOV5dccgnTp08nPj6eSy655Jj7vvPOO6dcmEikbPp2H/+46yN8VQF6npnNTx4dj92pvzNI81flCzJ7zT7eXLGbJVsLatbHO61MOr0dk89sT792CeqeLSIiEiUn/I0yIeHQB3ZCQkLEChKJpI3f7OWZu+bg8wTodVY7fvzoOOwOBStpvgzD4Jtdxby5YjczV+6lzBse7c9kgmFdU7nszPaMPy0Tp03d/kRERKLthL9VvvTSSzz00EP88pe/5KWXXopkTSIRsWHFHp75zRz83iC9z27HLY8oWEnzlVfmYcY3e3hzxW4255XXrM9JcjH5zBwuPbM97RJdUaxQREREDndS3ywffPBBfvKTnxATExOpekQiYv2KPTxbHaz6DM7hlt+fj03BSpoZfzDEp+vzeHPFLj7bkE+wepJfp83MxL5ZTD4rh8GdkjXan4iISDN1Ut8uDcOIVB0iEbPuq908d8/H+H1B+g7J4aaHx2LTyGnSjOwsrOSNZTt5c8Vu8su8NesH5iRy+Vk5XNg/i3inBlwRERFp7k76T/e6UFpakrVf7eK5ez4h4AvS79wO/Oih8xWspFnwBULMXZfL61/tZNHmAzXrU+PsXHpGeyaf2Z5u6ZrkV0REpCU56XDVo0eP4waswsLCBhck0li+W7qL5+8NB6v+wzryowfPw6qL/iXKth+o4PVlO3n7690cKPfVrB/ePZWrBnXgvF4Z2K3mKFYoIiIiDXXS4erBBx/UaIHS7K3+Ygcv3DeXgD/EgOGduPGBMQpWEjXeQJCP14Zbqb7YcmgI9TS3g8vPbM+VZ3cgJ1nXsoqIiLR0Jx2urrzyStLT0yNRi0ijWL14B/+8by7BQIjTR3bmxt+NwaKWAImCrfnlvLFsF299vZvCinArlckEI7un8cNBHRjTKx2bRT+bIiIircVJhStdbyXN3cpF23nxd/MIBkIMHN2ZG+5TsJKm5QuE+Oi7/fznyx18ue1QF+mMeAdXnJXD5Wfl0D5JrVQiIiKtkUYLlFbj24XbePF38wgFDc4c04Xr7x2tYCVNZk9xFa9/tZM3lu2suZbKbILRPdO58uwOjO6ZhlWtVCIiIq3aSYWrUCgUqTpETsk387fxrwfDweqs87ty3T2jFKwk4kIhg883H+DVL3cwb10u1dNSke52cOXZHbjy7ByyNdGviIhIm6FZVKXFW/HpFqY//BmhoMHZY7tx7d0jFawkokqq/Ly5Yhf/WbqTbQUVNeuHdEnh2nM6MrZPhq6lEhERaYMUrqRFWzFvC9N/Hw5Wg8Z349rfjMSsL7USIav3lPDq0u28v3IvHn+4Jd/tsHLpGe25enAHumdoXioREZG2TOFKWpR3n/mS/TtLuOpXw9j0zT5eevgzjJDBORN6cPWvhytYSaPz+IPMXLWPV5fuYOXu4pr1vTLdXDekE5MGZBPr0K9SERERUbiSFuT1xz/n8/fWAfBBopMlszeGg9XEHlz96xGYzRrNUhrPjoIKXvtqJ/9dtoviKj8AdouZif0yufacjpzRIUkjqIqIiEgdClfSIiycsbYmWAEKVhIRoZDB/I15vLJkBws25XNwgNR2iS6uGtyBK87KITXOEd0iRUREpNlSuJJmb92y3fz3icV11h3qCqhgJaeuzOPnrRW7eXnJdrYXVNasH9kjjWvP6cjonulY9HMmIiIix6FwJc3a/h3FTPvF7HrrB1/QPXyNlb7wyinYfqCC6Uu289aK3ZR7AwC4nVauOCuHawZ3pFNqbJQrFBERkZZE4UqarYpSDw9f+2a99YMv6M41d43Q4BXSIIYRnptq+hfb+XRDXk3Xv65psUw5tzOXDGynASpERESkQaL67XThwoVcdNFFZGdnYzKZePfdd+tsNwyD+++/n6ysLFwuF+effz6bNm2KTrHSpIKBEL/+3qv11g8er2AlDeMNwmvLdjH2bwu59l9fMW99OFiN7pnGKzcM4pPbR3LtOR0VrERERKTBovotoqKiggEDBnDjjTdyySWX1Nv+2GOP8eSTT/Lyyy/TuXNn7rvvPsaPH8/atWtxOp1RqFgiYdfGA8QlOEnKiAPCofpnY16st9/g8d255jcKVnJydhdVMn3xNv7ztYWqYHhQlFi7hcln5nDdkI50SYuLcoUiIiLSWkQ1XE2YMIEJEyYccZthGPztb3/j3nvvZdKkSQC88sorZGRk8O6773LllVc2ZakSIe88vZR5/11Ndpdkfjv9UgAevvatevsNGt9NwUpOmGEYfLmtkOlfbOfjtfsJGQAmOiS7mHJuZy47sz3xTlu0yxQREZFWptn2f9m2bRv79+/n/PPPr1mXkJDA4MGDWbJkyVHDldfrxev11iyXlpYC4Pf78fv9kS26DTl4Lk/lnBbnVzDvv6sB2Lu1EL/fzxt/WUzuzuI6+501titX/uJcgqEgwVCwwa/XEjTGeW3LfIEQs9bs519f7GDd/rKa9UM6J9HXfoCfXTYYp8MO6Bw3Bv28RobOa+To3EaGzmtk6LxGRqTPp8kwDl7OHV0mk4kZM2bwgx/8AIAvvviCoUOHsnfvXrKysmr2u/zyyzGZTPz3v/894nEeeOABHnzwwXrrX3vtNWJiYiJSuzTMx4/n1TweeWsquRs8rP+0vM4+WX2c9B3vxqRRAeUYKgOwONfEov1mSvzhnxWb2eDsVIMRmSGy9E9fREREgMrKSq666ipKSkqIj49v9OM325arhrr77ru58847a5ZLS0vJyclh9OjRpKSkRLGy1sXv9/PJJ58wduxYbLaT7171wQsrgHC4uuD60+ncKZ0Fz3xcZ5+zzu/CVb8e1qa6Ap7qeW1rdhZWMn3JTt5etYdKX7hVM93t4NrBOVx5Vg6JMeFzqPMaGTqvkaHzGjk6t5Gh8xoZOq+RUVBQENHjN9twlZmZCUBubm6dlqvc3FxOP/30oz7P4XDgcDjqrbfZbPrBjICGnNeSA5XMe311zfLZ53Xj4evqXmd19rhuXHf3yDYVrGrTz+uxrdhRyD8Xbat1PRX0ynRz07AuXDQgC4fVcsTn6bxGhs5rZOi8Ro7ObWTovEaGzmvjivS5bLbhqnPnzmRmZjJv3ryaMFVaWsqXX37JrbfeGt3i5JTcc8l/Dj1+6ZL6wWps2w5WcmSBYIiP1+byz0Vb+WZXcc36Ed3TuHl4Z4Z1S8VkUvdRERERiZ6ohqvy8nI2b95cs7xt2za+/fZbkpOT6dChA7fffju///3v6d69e81Q7NnZ2TXXZUnLM/NfK2oej76sL4/c8E6d7WeP7cZ19yhYySHl3gD/W76LlxZvY1dRFQB2i5kfDMzmR0O70DPTHeUKRURERMKiGq6WL1/O6NGja5YPXit1/fXXM336dH79619TUVHBLbfcQnFxMcOGDeOjjz7SHFctVGlhJbOnf12z/Nlba+psP+v8rgpWUmNfSRXTv9jOa1/tpMwTACDRZePaczpy7ZCOpLv1e0BERESal6iGq1GjRnGswQpNJhMPPfQQDz30UBNWJZFy9w8OdQeMT3ZRWlhVs3zmmC5cd88oBSthw/4ynlu4hfdX7iVQfUFV55RYbhzWmcvOaI/LfuTrqURERESirdlecyWty+yXv66zXDtY9R2Sw/X3jsZiVbBqqwzDYNn2Ip5dsIVPNxwaon9Q52RuHtaF83qlY9Zw/CIiItLMKVxJxJUVVzHzxRVH3NapTzo3PTxWwaqNCoUM5q3P45kFm/m6evJokwkuOC2TH4/oyuk5iVGtT0RERORkKFxJxP3m+/8+4vqElBh+/vcLsambV5vjC4R4f+Venlu4hU154Ymj7RYzl57RjpuHd6FLWlyUKxQRERE5eQpXElEf/+fbo2773WuXY3foR7AtqfAGeH3ZTl78fBv7SjwAuB1Wrj6nIzee24n0eA1SISIiIi2XvtlKxJSXeHjvuWVH3PaX2dfjcGlCvLaioNzLy0u28/KSHZRU+QFIczu4cWhnrh7cgXinfhZERESk5VO4koi566JXj7j+sZnX4oq1N3E1Eg27Civ556Kt/G/FLjz+EBAe+e+WEV24eGA7nDZ1CRUREZHWQ+FKIuLT/60+4vrfv/VDYtX1q9Vbt6+UZxdsYebqfQSrh1Pv3y6BW0d1ZVyfTCwa+U9ERERaIYUraXSVZV7enra03vq7/3UJSekaqKA1+3pnEU9/tpl56w8Npz68eyq3juzKkC4pmEwKVSIiItJ6KVxJo/vVha/UW3fLH8bSvltKFKqRSDMMg6XbCpn26SYWbykAwGyCif2y+MnIrvTNTohyhSIiIiJNQ+FKGtWi99bWW/e9H53JgOGdmr4YiSjDMJi/MZ+nP9vM8h1FAFjNJi49oz23juxKp9TYKFcoIiIi0rQUrqTReCp9vPH44jrr+g7JYcL1Z0SpIomEUMjg43W5TPt0E2v2lgJgt5q58qwcbhnRhfZJMVGuUERERCQ6FK6k0fzigpfrLLuTXdzyh3FRqkYaWyAY4sPV+3h6/mY25oYn/nXZLFxzTgduHtZFc1SJiIhIm6dwJY3iyTs+rLfut9MvxWI1R6EaaUy+QIh3v93DP+ZvZntBJRCe+Pf6cztx49DOJGtYfRERERFA4UoawbqvdrNhxd46637zwsW4E11Rqkgag8cf5M3lu3h24Vb2FFcBkBRj40fDOnPtOZ1I0CTQIiIiInUoXMkp2betiGm/nF1n3ZT7RpPTIzVKFcmpqvAGeO2rnTy/aCv5ZV4AUuMc/HhEF64a1IFYh35tiIiIiByJviVJg1WVBvnTTe/VWTfm8n6cPbZblCqSU1HuDfDKku38c9FWiir9AGQnOPnJyK5cflYOTpslyhWKiIiING8KV9Ig5SUeFv2zoM667M5J/OAng6JUkTTUkUJVx+QY/m9UVy4e2B67rpsTEREROSEKV3LSPJV+7r3kjXrrf/7k9zSARQtypFDVOSWWqWO68f0B2Vgt+n8pIiIicjIUruSkBPxBfnHB9Hrr7/7XJcQlaCjulqDCG+CVpTt4fuEWhSoRERGRRqRwJScsFDL4+Xn/qrf+6rtG0L5bShQqkpOhUCUiIiISWQpXckIMw+A3k16tt95mt3DuhT2jUJGcqApvgFeX7uD5RVsprPAB0Cklhp+N6a5QJSIiItKIFK7khDz243epKPHWW//HD66OQjVyIo4WqqaO6c4khSoRERGRRqdwJcf1z/vmsnP9gXrrh9+cogEsmqFKXzhUPbdQoUpERESkKSlcyTG9PW0J3y7YVm/9oAu64YovjUJFcjQef5D/fLmTZxZs5kC5QpWIiIhIU1O4kqOa+/oqPv3fmiNuu+pXw5g1a1YTVyRH4guEeHPFLp76dDP7Sz0AdEgOX1P1g9MVqkRERESaisKVHNFXH29ixjNfHnHbE5/cABhNW5DUEwiGePfbvfx93kZ2FVUBkJ3g5GfndefSM9pjU6gSERERaVIKV1LP2q928fLv5x9x2xV3DMXusOL3+5u2KKkRChl8uGYfT8zdyNb8CgDS3A5+OqobVw7KwWG1RLlCERERkbZJ4Urq2LEun6d/+dERt7XvnsKIi/s0cUVykGEYzF2Xx+OfbGD9/jIAEl02bh3VlevO6YTLrlAlIiIiEk0KV1Ijd2cxj/343aNuv+Opi5quGKlhGAaLNh3g8U82sHJ3CQBuh5WbhnfhxqGdcDttUa5QREREREDhSqoV5ZXz0DVv1izHJjjqzGs19YmJOGP0Jb6pfbmtgMc/3shX2wsBcNks3DC0E7cM70JijD3K1YmIiIhIbQpXQnmJh3sve71m+exx3Vj28eaa5XMm9KDXme2iUVqbtXJ3CX//bAuLNoXnF7NbzVw7uCO3jupKapwjytWJiIiIyJEoXAkvPfhpzePv/ehMZr64ombZbDFx2dQh0SirTdqSX8GLG82sWhoeqdFqNnHl2Tn8dHR3MhOcUa5ORERERI5F4UroN7QD65fv4fu3nM37zy+rs+2WP4zFFafuZ5G2r6SKv83dxJsrdhEyzJhNcPHA9tx+XndykmOiXZ6IiIiInACFK2HUpX0ZdWlf/vbzmXXWnz22G/3O7RilqtqG4kofzyzYwvQvtuMNhADolxTiT1cPo0+7pChXJyIiIiInQ+FKgPCkwZu+2VezHJfo5LKfqTtgpFT6Arz0xXaeXbCFMk8AgEGdkvnF+d3Yv+YLuqfHRblCERERETlZCldCUV55vUmDr7hjKHG6xqfR+YMh/rt8F3+ft4n8svBojL0y3dw1vhejeqYRCASYtSbKRYqIiIhIgyhctXGhYKjOSIEAp4/oxMBRnaNUUesUChl8uGYfj3+8ge0FlQDkJLn4xdiefH9ANmazKcoVioiIiMipUrhq4x790Yw6yzFuB5ffMRSTSV/2G8PBCYAfm7OeNXtLAUiNszN1dHd+OKgDdqs5yhWKiIiISGNRuGrDFr23lr1bC+usu2zqOSSkaHS6xrByVzF/mrOeL7YUABDnsHLz8C78aFhn4hz6pyciIiLS2ugbXhuVt7uENx5fXGddn8E5DBrfPUoVtR5b8sv5y8cbmL1mPwB2i5lrzunIbaO6kqIJgEVERERaLYWrNigYCPHgVf+rs84ZY+OqXw5Td8BTsL/Ew9/mbeTNFbsJhgxMJrhkYHvuOL877ZPUGigiIiLS2ilctUF3ff/Veut+cOtgkjI0/HdDlFT5+cf8zXXmqjq/dwa/GteTnpnuKFcnIiIiIk1F4aqN+fBfK6gq99VZ131gFkMv6hWlilouXyDEq0t38NSnmyiu8gNwdqck7hrfi7M6JUe5OhERERFpagpXbcjODQeYNf3rOutsDgtX/3qEhgI/CYZhMHP1Pv48ZwM7C8PDqndPj+M3F/RiTK90da0UERERaaMUrtoIvzfAn26eUW/9928+m7R28VGoqGX6alshf5i1jpW7iwFIdzu4c2wPLjujPVaLhlUXERERacsUrtqI28e+VG9d59PSGXXpaVGopuXZkl/OHz9azydrcwGIsVv48Yiu3Dy8MzF2/TMSEREREYWrNuE/jy2st85qM3PNXSMwq7XlmPLLvPx93kZeX7aLYMjAYjZxxVk53H5+d9LdzmiXJyIiIiLNiMJVK7dhxR6+mLmhZjk2wUFFiZcJ159BZqekKFbWvFX6Arz4+TaeXbCFCl8QCI8A+JsLetItXSMAioiIiEh9CletWFW5jyfvmFWz3O/cDqz+YiftuiYz9qoBUays+QqGDN5asYu/zt1IbqkXgAHtE7h7Qm/O6ZIS5epEREREpDlTuGrFfjnx5ZrH4645nY///S0ms4mr7xqBxarugLUZhsH8jfn8cfZ6NuSWAdA+ycWvx/fie/2yNJqiiIiIiByXwlUr9fSvZtc8PvfCnnw1ZxMA513Rj4690qJVVrO0Zk8Jj85ex+ItBQAkuGxMHd2Na4d0xGG1RLk6EREREWkpFK5aobLiKtZ+ubtm2Ww1U5xfQWq7eC684cwoVta87C2u4s9zNjDj2z0A2C1mppzbidtGdyPBZYtydSIiIiLS0ihctUKhgIHNYcHvDTL1iYk8VX3d1dW/Go7dqf/l5d4Azy7Ywj8XbcUbCAEwaUA2vxzfk5ykmChXJyIiIiItlb5pt0IJqTE8PnsKwWCIR294G4ChF/WixxnZUa4sug4OVvGXTzaSXxYerGJQ52Tundib/u0To1uciIiIiLR4CletlMVq5oMXlpO3u5SE1BguvnVwtEuKqsWbD/Dwh2tZvz88WEWnlBjuntCbcX0yMJk0WIWIiIiInDqFq1Zq54YDzPvvKgCuvHMYrjh7lCuKjs155Tw6ex3z1ucBEO+08rPzunPdOZ2wa8REEREREWlECletUDAQ4j+PLSQUNDhjdBf6D+sY7ZKaXFGFj7/P28S/v9xBIGRgNZu45pyO/HxMd5Ji22bQFBEREZHIUrhqhea9sYrdmwqIjXcw+edDol1Ok/IFQryyZDtPfrqJUk8AgPN7p3P3hN50TYuLcnUiIiIi0popXLUyuTuL+XD61wBcOnUI8cmte/S73UWVvLxkOxcPbM/OwkoenbWOHYWVAPTOiufeib0Z2i01ylWKiIiISFugcNWKhEIG/3lsEQFfkN6D2jNoXLdolxQxhmHwk/+sYM53uQD8c9G2mm1pbge/GteTS89oj8WswSpEREREpGkoXLUin7+/ji2r9mN3WfnhL4e12lHwFm8+wNUvfllvvcNq5pbhXfjxyK7EOfSjLSIiIiJNS99AW4mi3HLefeYrACbdcjYpme4oV9T4Kn0BBj86j7Lqa6lqu/j0dvxqfE+yE11RqExEREREROGqVTAMgzf++jneKj9d+mYw4gd9ol1So3t+4RYemb2+3vqzOiZx74V9OD0nsemLEhERERGpReGqFVg+dwtrluzCajNz9a+HY7a0nvmbdhZWMuLPn9Vb3z7JxT0TejOhb2ar7f4oIiIiIi2LwlULV1ZcxVtPLgHggusGktkpKcoVNY5QyGDqG9/w4ep99bbdM6EX15/bCYfVEoXKRERERESOTOGqhXvrySWUl3ho1zWZsVcNiHY5jWLp1gKu/OfSeuuvHtyBO8/vQUqcIwpViYiIiIgcm8JVC7ZmyU6Wz92CyWzi6rtGYLW17JacMo+fC5/6nJ3V81QddFp2PH+5bAC9s+KjVJmIiIiIyPEpXLVQVRU+Xv/L5wCMubwfHXulRbmihjMMg38v3cF9739Xb9szV5/BBafpuioRERERaf4Urlqo959bRnF+Bant4vnejWdGu5wG23aggtGPz6+3/rZRXZk6pjvOFt4aJyIiIiJth8JVC7R55T4WvrsWgKt/NRy7s+X9b/T4g9z33hreXLG7zvp2iS7e+skQshI0X5WIiIiItCwt71t5G+f3BvjPY4sAOPd7PelxRnaUKzp58zfkMWX6snrrX7/5HIZ0SYlCRSIiIiIip65ZT4j0wAMPYDKZ6tx69eoV7bKiatbL35C3q4SElBguvnVwtMs5KftLPPR7cE69YHXj0M5s/cNEBSsRERERadGafcvVaaedxty5c2uWrdZmX3LE7Np4gLmvrwTgijuHEuNuGUOSB4Ihnvx0M09+uqnetm/vG0tijD0KVYmIiIiINK5mn1SsViuZmZnRLiPqgoEQ//nTQkJBg4GjOzNgeKdol3RClm0vZPJzS+qtf/G6szivd0YUKhIRERERiYxmH642bdpEdnY2TqeTIUOG8Oijj9KhQ4ej7u/1evF6vTXLpaWlAPj9fvx+f8TrjZS5r69m16YCYtx2Lvm/QVF/Lwdf/2h1FFX6uPKFr9h6oO6cVcO7pfDCNWdgNpui/h6ao+OdV2kYndfI0HmNDJ3XyNG5jQyd18jQeY2MSJ9Pk2EYRkRf4RTMnj2b8vJyevbsyb59+3jwwQfZs2cPa9aswe12H/E5DzzwAA8++GC99a+99hoxMTGRLjkiKgoDLHm1kFAA/r+9+46K4mr/AP5dYClSRaWpFGMFQUHQYI2Kgr1rkKgYE6OBiBrLq8YWY32VJBpjSdEUo8bE3hFRsStFrKCIDUFiAUX67v394ev8si5Yd1mQ7+ecnDNz7507zz7scffJzN5xCzBHdbeyu5KeUgB7bulhd6r6z/kmehTBoXz+CYiIiIjoLZCTk4OBAwciKysLFhYWGp+/TBdXz8rMzISTkxPCw8MxbNiwYscUd+WqZs2aSEtLQ5Uq5W/BBKVSYOnnu5GccAf1vB0wYl6HMvFA3cLCQkRERKBDhw6Qy+UAgJjrD/D+T+qrAA5r7oRxHerAQL9Mr59SJhSXV3pzzKt2MK/awbxqD3OrHcyrdjCv2nHv3j3Y29trrbgq87cF/puVlRXq1q2LK1eulDjGyMgIRkbqCz3I5fJy+caM3nIRyQl3YGhigKDxrWFoWLYWf5DL5chXytBwxp5i+3eHtUJ9O82/cd925fX9WtYxr9rBvGoH86o9zK12MK/awbxqlrZzWa4uJWRnZyM5ORn29va6DqVUPMjIxuZlJwAA3T/2QRX74m+F1BUhgPB9l4strEa1q4PLX3ViYUVEREREFUaZvnI1btw4dOvWDU5OTrh9+zamT58OfX19BAYG6jo0rRNCYF34EeTlFMLFzQZternqOiQVsTcyMfqEAYAUtb5toS3hXt2y9IMiIiIiItKhMl1c3bp1C4GBgbh37x6qVauGli1b4vjx46hWrZquQ9O6mP1Xce7oDRjI9RA0sTX0ysjvlbJyC/Hu3EjkFirU+gJ9amJ6NzcYy/V1EBkRERERkW6V6eJq3bp1ug5BJ7Iz87Dhm6MAgIDBnrB3rqzjiJ5cSZu8+RzWnrxRbP9fn/jC29m6lKMiIiIiIio7ynRxVVH99d0xZGflwcGlMjoMbKTrcLD/0h18+MvpYvtcqlTCts9awcyIbyUiIiIiqtj4jbiMOX/8Jk7tvQKZngxBE1vDQIe32GU8ykPTOZEl9g+prcAXg1tCLufbiIiIiIiI34rLkLycAqxdGA0AaNevIZxdbXQSh1Ip8NGvp7E/MaPEMccntMGJQyUXXkREREREFQ2Lq1JQVKhAdlYerKqaPnfc1pWn8CDjMao6mKPrMO9Sik7VxthbGLvhTIn9Qc0c8VWPhigqKirFqIiIiIiIyj4WV6UgrP3PAIDJq/qgWg0LKAqVMDFTfRjw1bN3cGjTBQBA4PhWMDQu/T/NP4/yn1tY8YHAREREREQlY3GlZUd3JErb+bmFGNNhFQzkepi3dRBMTJ8UWIUFCqxZcAhCAO92rov6TarrJFZTI32YGRkgO1/9qtSVrzrBoIwsB09EREREVBaxuNKyNfMPSdt//m959aJCpcpCFXvXxCP9eibMK5ug96fNSj3Gp76NvKxWWM3o5org5i46ioiIiIiIqPxgcaVFZ6KvSdv9wppjw7dPiiubGhaQGz4prtKuPcCe3+L/N8YXphbGpR0mhBBwmbxTrf3oxHZwsDIp9XiIiIiIiMojFldatHJKhLS97YdT0vbEH3sDeLIq3x8LoqEoUsK9uSO82tYq9RhLWm49eXZn6OvJSj0eIiIiIqLyij+i0ZLL8WnSdtu+DZGXUwgAcG1WE8aV5ACAw1su4uq5OzAykWPAmBaQyUq3mPn9xHW1wmpGN1dcm9uFhRURERER0SvilSst+WbUdmk76q9z0vaIuR0BAA/uZGPLipMAgB6f+KCyrVmpxVaoUMJtxh4UFClV2veNaY3aNualFgcRERER0duEV6604GbSXWm7vvf/r/z3Xh836BvoQQiB9V8fQV5OIVzcbNCqp2upxRZ34wHqfLFLrbBKmN6RhRURERER0RvglSstmPfRJmn70ulUabvvKF8AQNyBFJw9egP6BnoImtgaeqV0C96Y9fHYFJ+q1n51dudSi4GIiIiI6G3F4krDMm5lSdtmVsbIzswDAPT9zBcymQyPH+ZJS7L7D2oMe+fKWo/pn0f58JmzT63d380WKz7w1vr5iYiIiIgqAhZXGjZz4J/S9tPCCgDa9msIANj0/Qk8epALOycrdAxqrPV4fjl6DdO3nVdrX9DHA/29a2r9/EREREREFQWLKw3KvPu42PbhszsAABJjUnFsZxJkMiBoQmvpWVfakF+kgPvMvWq/rQKAiNGtUceWv68iIiIiItIkFlcaNPfDjcW2N2rljIL8Ivyx8DAAoFVPV9Ryt9VaHEeT72LgjyfU2j9u5YJJAQ34+yoiIiIiIi1gcaUhOY/yVW4DfGrc8h4AgJ2rYnE39SGsqpmi+3AfrcXx+4nr+GLzOZU2PRkws3tDDHrXSWvnJSIiIiKq6FhcaUh46LZi211cbXAz6S4i1ycAAN4f2wImpoZai+Ng0j8q+6aG+vhuoBfa1rPR2jmJiIiIiIjPudKIgrwipKU8UGufsXYAFEVKrFkQDaVCwKttLbi30O7Voz5eNaRtOwtjbBjRnIUVEREREVEp4JUrDfh+4m61NlMLI1SrboF96xJwM+kuKpkboV+Yr1bj2H0uDWHr4wEAbg4W+GmwD+wsjbV6TiIiIiIieoLF1RtSFClxOS5NrX3amv64e/shtv90GgDQO6QZLKwraSUGIQR+OpyC2bsuQgigXT0bLAn0hKkR/7xERERERKWF377f0OpZUWptzq42MLUwwqqZ+1GYr0BdLwe826muVs6vUAp8uf08fjl2HQAw6F0nTO/qCgN93vFJRERERFSaWFy9AaVSIDbqqlr76G+74MTuy7h0OhVyQ30EjmsJmUzzy5/nFBRh1Lo47LuYAQCY0rkBPmrpopVzERERERHR87G4egMbvj2q1ubt9w7ycgqxcelxAECXD5vApoalxs+d8SgPw345jbOpWTA00MM3/Rujs7u9xs9DREREREQvh8XVaxJC4NCmC2rtQ75oi1++isLjh/moWacK2vV31/i5k+48wtDVp5CamQtrU0P8MKgJmjhZa/w8RERERET08lhcvaadq2PV2joHe+HCiZs4vS8ZMj0ZBk5oBX0Dzf726WjyXXzyewwe5RXBpYopVgX7wLmqqUbPQUREREREr47F1WvauUq9uGr/vju+GvwXAKBdf3c41qum0XP+HXsL/9mYgEKFgLdTZawc5A1rLT6QmIiIiIiIXh6Lq9dQ3O2Agya1wdYfTuNBxmNUdTBH1w+baOx8Qggs3n8FX+9LAgB0cbfHon6NYCzX19g5iIiIiIjozXC97tew/usjam22jpY4tPE8ACBwXCsYGmumbi0oUmL83wlSYfVJ61pY8r4nCysiIiIiojKGV65eUUxkslrbyPn+WLMgGkIAzQLqoL53dY2cKyu3EJ+uicGR5HvQkwFf9miID5o5aWRuIiIiIiLSLBZXr+jnmfvV2m4m3UVaygOYWRmjd8i7GjlPamYuhq4+iaQ72ahkqI+lgV5oW99GI3MTEREREZHmsbh6BRdP3lJrGzazPX75KgoA0C+sOcwsjd/4POdSszD0l1P451E+bMyN8HOwDxo6aP5ZWUREREREpDn8zdUr+G7cLrW2A3+fQ1GhEg19a6JJu1rFHjdr+wV89OtpZOUWAniyQEVJ9l+6g/4rj+GfR/moZ2uOzZ+2YGFFRERERFQOsLh6SSkXMtTaAgZ7IjnhDoxM5BgwtiVkMpnamCmbz+KnIynYd/EOjiXfhfOkHej23WEUKpRqY387fh0f/XoaOQUKtKxdFRtG+MLBykQrr4eIiIiIiDSLtwW+pIUjtqjsyw31ceCvcwCA7sO9YW1rpnbM9oTbWHPihrQ/Ys2TZ2Odu/1QZZxSKTBv9yWsjL4KAOjXpAbm9HKHXJ+1LxERERFRecHi6iWkXXug1ubS0BZJsbfh4maD1j1d1fqv/pON0LVxxc43v/f/F055hQqM/TMeO8+lAwA+71AXoW1rF3sVjIiIiIiIyi4WVy/hq8F/qbUlxd6GvoEeBk5oBb1nrjDlFijQLvxgsXN93qEuBvg4AgDuPy7Ax7+dRsz1B5Dry7Cgjwd6edbQ/AsgIiIiIiKtY3H1AvfvZKu1mVoa4XFWPjoGNYKDi7VKnxACDabvLnaugU0d8Vm7OgCAlLuPMXT1SVy7lwMLYwOsGOQN31pVNP8CiIiIiIioVLC4eoHZQ9SvWj3OyoetoxX8B3mq9fl9XfwVq/fqVsOcXu4AgNPX7uPj307jQU4halQ2wepgH9S2Mdds4EREREREVKpYXD3Ho8xc5OUUFts3cEIryA31Vdrm776E5H8eq42tVc0Uq4c2BQDsOJuGMX/Go6BICY/qlvhxiDdszN/82VhERERERKRbLK6e49kVAp9q1bMBanvYqbRFJWZg2cFktbH6ejLsH/sehBBYGX0Vc3ddAgB0cLXFtwMao5Ih/wRERERERG8DfrMvQV5OAe7efqTWblXNFD2GN1Vpu/UgB0NXnyp2nitfdUKRQonp285Ly7IHN3fG1C6u0NfjioBERERERG8LFlclWDJ2V7Ht/Uc3h4mZobSfX6RAywVRxY5Nnt0ZOQUKhK6NRVTiP5DJgC86u2JYSxetxExERERERLrD4qoYhflFuHYhQ63d8z0XNGrlrNJWb2rxKwNe+jIAd7Pz8eEvp3D+9kMYGejh2/c9EeBmV+x4IiIiIiIq31hcFeOn6ZFqbSZmhugX1lylre/yo8Uef2ZaR1y/l4Ohq0/idlYeqpga4sfB3vB0rKyVeImIiIiISPdYXD1DUaTE2aM31Np7f9oMllUqSftLD1zB6esP1MYd/097nE3NwsjfY/Aov+jJSoHBTeFoXUltLBERERERvT1YXD0j7sBVtbY6nvbw7VJP2j929R7+uydRbdy+Ma0RfeUfTNp4FkVKgaYu1lj5QRNYVTJUG0tERERERG8XFlf/olQKbF6huuqfgaE+Bo5rBZnsycp+GY/yEPjDcbVj/x7hi61n0rB4/2UAQPdGDvhvXw8YGeirjSUiIiIiorcPi6t/OXvkOh7cyVZp6xLsBZualgCAIoUSTeeo/x5rWZAX1py4gY1xqQCAkPfewecd6kGPS60TEREREVUYLK7+RwiB9eFHVNqq17ZG+/c9pP3aX6gvzz6lcwP8cuwajl+9D309GWb3bIj3fRy1Hi8REREREZUtLK7+59LpVGTdy1FpC5rQGvoGegCAYb+oPyR4gHdNrD99E1cysmFmZIClA73Qpm61UomXiIiIiIjKFhZX//PzjP0q++36u8Op/pNC6ddj1xB5SfW5V+7VLRF5KQN3s/NhZ2GMn4N94GpvUWrxEhERERFR2cLiCkDy2XTkPMqX9ivbmKLrsCYAgDM3MzFt63m1Y65kZCO3UIH6duZYFewDe0uTUouXiIiIiIjKHhZXAL4N26GyHzShNYxM5MjMKUCP74+ojdeTAbmFCrSuUw1LB3rC3FheWqESEREREVEZVeGLq5tJd6EoUkr7Tf1ro0HTGlAqBRrPiij2GKUAAn1q4sseDSHX1yutUImIiIiIqAyr8MXVvI82qez3CfEFALjO2F3iMRP862Fkm3ekZ18RERERERFV6OIq/doDlf3gqW1hZmWMsX/GI69QqTbeUF8P/+3rgR6Nq5dWiEREREREVE5U6OJq1uC/pG09fRm8/d5B3I0H0sOA/83SRI4fBnmjqYt1aYZIRERERETlRIUtru7cyFTZn7F2ANIf5qHXsqNqYx2tK2FVsA/eqWZWStEREREREVF5U2GLqy8/2CBtN+9SDybWJmgyfY/auMY1rfDjYG9UNTMqzfCIiIiIiKicqZDFVWryfZX9AWNboNN3h9XG+bvZ4pv+njAx1C+t0IiIiIiIqJyqkMXVnKF/S9ufhXfGlK3ncTkjW2XMsBYumNy5AfT1uCIgERERERG9WIUrrhIOX1fZj1EUYf3pmyptM7q5Iri5S2mGRURERERE5VyFK65WTN4rbb//XVcMWhur0v/DIG90cLUt7bCIiIiIiKicq1DF1a+zD6jsP1tYbQ1pAY8aVqUXEBERERERvTUqVHF1Ys9laXuXr71KX/SEtqhZuVJph0RERERERG+JClNcZdzMkrbvm8uh/NdCFWemdYSliVwXYRERERER0VtCT9cBlJbwT7dL28fcq0rbibMCWFgREREREdEbqzDFVf1m1QEAV6qbAbInV61S5nSGkQGfYUVERERERG+uwtwWeLqmOc4q9JFt+uQq1dXZnSGT8RlWRERERESkGeXiytXSpUvh7OwMY2NjNGvWDCdPnnzlOa48zJMKq8RZAdDjw4GJiIiIiEiDynxxtX79eowdOxbTp09HbGwsGjVqBH9/f2RkZLzSPFM710dwc2ecmdaRtwISEREREZHGlfniKjw8HB9//DGGDh0KV1dXLF++HJUqVcLPP//8SvO0eKcKZnRz4+IVRERERESkFWX6N1cFBQWIiYnBpEmTpDY9PT34+fnh2LFjxR6Tn5+P/Px8aT8r68kS7Pfv39dusBVMYWEhcnJycO/ePcjlLFg1hXnVDuZVO5hX7WBetYe51Q7mVTuYV+14WhMIIbQyf5kuru7evQuFQgFbW1uVdltbW1y6dKnYY+bOnYuZM2eqtdetW1crMRIRERERUfly7949WFpaanzeMl1cvY5JkyZh7Nix0n5mZiacnJxw48YNrSSwonr48CFq1qyJmzdvwsLCQtfhvDWYV+1gXrWDedUO5lV7mFvtYF61g3nVjqysLDg6OsLa2lor85fp4qpq1arQ19fHnTt3VNrv3LkDOzu7Yo8xMjKCkZGRWrulpSXfmFpgYWHBvGoB86odzKt2MK/awbxqD3OrHcyrdjCv2qGnp52lJ8r0ghaGhoZo0qQJIiMjpTalUonIyEj4+vrqMDIiIiIiIiJVZfrKFQCMHTsWQ4YMgbe3N5o2bYpvvvkGjx8/xtChQ3UdGhERERERkaTMF1cDBgzAP//8g2nTpiE9PR2NGzfG7t271Ra5KImRkRGmT59e7K2C9PqYV+1gXrWDedUO5lU7mFftYW61g3nVDuZVO7SdV5nQ1jqEREREREREFUiZ/s0VERERERFRecHiioiIiIiISANYXBEREREREWkAiysiIiIiIiINeKuLq6VLl8LZ2RnGxsZo1qwZTp48qeuQypW5c+fCx8cH5ubmsLGxQc+ePZGYmKgyJi8vDyEhIahSpQrMzMzQp08ftYc+0/PNmzcPMpkMo0ePltqY19eTmpqKDz74AFWqVIGJiQnc3d1x+vRpqV8IgWnTpsHe3h4mJibw8/PD5cuXdRhx+aBQKDB16lS4uLjAxMQE77zzDmbNmoV/r4fE3L7YoUOH0K1bNzg4OEAmk2Hz5s0q/S+Tw/v37yMoKAgWFhawsrLCsGHDkJ2dXYqvoux5Xl4LCwsxceJEuLu7w9TUFA4ODhg8eDBu376tMgfzqu5F79d/GzFiBGQyGb755huVduZV3cvk9eLFi+jevTssLS1hamoKHx8f3LhxQ+rndwR1L8prdnY2QkNDUaNGDZiYmMDV1RXLly9XGaOpvL61xdX69esxduxYTJ8+HbGxsWjUqBH8/f2RkZGh69DKjYMHDyIkJATHjx9HREQECgsL0bFjRzx+/FgaM2bMGGzbtg0bNmzAwYMHcfv2bfTu3VuHUZcvp06dwooVK+Dh4aHSzry+ugcPHqBFixaQy+XYtWsXLly4gEWLFqFy5crSmAULFmDx4sVYvnw5Tpw4AVNTU/j7+yMvL0+HkZd98+fPx7Jly/Ddd9/h4sWLmD9/PhYsWIAlS5ZIY5jbF3v8+DEaNWqEpUuXFtv/MjkMCgrC+fPnERERge3bt+PQoUMYPnx4ab2EMul5ec3JyUFsbCymTp2K2NhYbNy4EYmJiejevbvKOOZV3Yver09t2rQJx48fh4ODg1of86ruRXlNTk5Gy5YtUb9+fRw4cAAJCQmYOnUqjI2NpTH8jqDuRXkdO3Ysdu/ejd9//x0XL17E6NGjERoaiq1bt0pjNJZX8ZZq2rSpCAkJkfYVCoVwcHAQc+fO1WFU5VtGRoYAIA4ePCiEECIzM1PI5XKxYcMGaczFixcFAHHs2DFdhVluPHr0SNSpU0dERESINm3aiLCwMCEE8/q6Jk6cKFq2bFliv1KpFHZ2duK///2v1JaZmSmMjIzE2rVrSyPEcqtLly7iww8/VGnr3bu3CAoKEkIwt68DgNi0aZO0/zI5vHDhggAgTp06JY3ZtWuXkMlkIjU1tdRiL8uezWtxTp48KQCI69evCyGY15dRUl5v3bolqlevLs6dOyecnJzE119/LfUxry9WXF4HDBggPvjggxKP4XeEFysur25ubuLLL79UafPy8hJTpkwRQmg2r2/llauCggLExMTAz89PatPT04Ofnx+OHTumw8jKt6ysLACAtbU1ACAmJgaFhYUqea5fvz4cHR2Z55cQEhKCLl26qOQPYF5f19atW+Ht7Y1+/frBxsYGnp6e+OGHH6T+lJQUpKenq+TV0tISzZo1Y15foHnz5oiMjERSUhIA4MyZMzh8+DA6deoEgLnVhJfJ4bFjx2BlZQVvb29pjJ+fH/T09HDixIlSj7m8ysrKgkwmg5WVFQDm9XUplUoMGjQI48ePh5ubm1o/8/rqlEolduzYgbp168Lf3x82NjZo1qyZyi1u/I7wepo3b46tW7ciNTUVQghERUUhKSkJHTt2BKDZvL6VxdXdu3ehUChga2ur0m5ra4v09HQdRVW+KZVKjB49Gi1atEDDhg0BAOnp6TA0NJQ+oJ5inl9s3bp1iI2Nxdy5c9X6mNfXc/XqVSxbtgx16tTBnj17MHLkSIwaNQq//PILAEi5478Lr+4///kP3n//fdSvXx9yuRyenp4YPXo0goKCADC3mvAyOUxPT4eNjY1Kv4GBAaytrZnnl5SXl4eJEyciMDAQFhYWAJjX1zV//nwYGBhg1KhRxfYzr68uIyMD2dnZmDdvHgICArB371706tULvXv3xsGDBwHwO8LrWrJkCVxdXVGjRg0YGhoiICAAS5cuRevWrQFoNq8Gmgqa3m4hISE4d+4cDh8+rOtQyr2bN28iLCwMERERKvdQ05tRKpXw9vbGnDlzAACenp44d+4cli9fjiFDhug4uvLtzz//xJo1a/DHH3/Azc0N8fHxGD16NBwcHJhbKjcKCwvRv39/CCGwbNkyXYdTrsXExODbb79FbGwsZDKZrsN5ayiVSgBAjx49MGbMGABA48aNcfToUSxfvhxt2rTRZXjl2pIlS3D8+HFs3boVTk5OOHToEEJCQuDg4KB2B9GbeiuvXFWtWhX6+vpqK3zcuXMHdnZ2Ooqq/AoNDcX27dsRFRWFGjVqSO12dnYoKChAZmamynjm+fliYmKQkZEBLy8vGBgYwMDAAAcPHsTixYthYGAAW1tb5vU12Nvbw9XVVaWtQYMG0gpLT3PHfxde3fjx46WrV+7u7hg0aBDGjBkjXXllbt/cy+TQzs5ObVGmoqIi3L9/n3l+gaeF1fXr1xERESFdtQKY19cRHR2NjIwMODo6Sp9j169fx+effw5nZ2cAzOvrqFq1KgwMDF74WcbvCK8mNzcXkydPRnh4OLp16wYPDw+EhoZiwIABWLhwIQDN5vWtLK4MDQ3RpEkTREZGSm1KpRKRkZHw9fXVYWTlixACoaGh2LRpE/bv3w8XFxeV/iZNmkAul6vkOTExETdu3GCen6N9+/Y4e/Ys4uPjpf+8vb0RFBQkbTOvr65FixZqjwpISkqCk5MTAMDFxQV2dnYqeX348CFOnDjBvL5ATk4O9PRUPy709fWl/8vK3L65l8mhr68vMjMzERMTI43Zv38/lEolmjVrVuoxlxdPC6vLly9j3759qFKliko/8/rqBg0ahISEBJXPMQcHB4wfPx579uwBwLy+DkNDQ/j4+Dz3s4zfvV5dYWEhCgsLn/s5ptG8vsYiHOXCunXrhJGRkVi9erW4cOGCGD58uLCyshLp6em6Dq3cGDlypLC0tBQHDhwQaWlp0n85OTnSmBEjRghHR0exf/9+cfr0aeHr6yt8fX11GHX59O/VAoVgXl/HyZMnhYGBgZg9e7a4fPmyWLNmjahUqZL4/fffpTHz5s0TVlZWYsuWLSIhIUH06NFDuLi4iNzcXB1GXvYNGTJEVK9eXWzfvl2kpKSIjRs3iqpVq4oJEyZIY5jbF3v06JGIi4sTcXFxAoAIDw8XcXFx0qp1L5PDgIAA4enpKU6cOCEOHz4s6tSpIwIDA3X1ksqE5+W1oKBAdO/eXdSoUUPEx8erfJbl5+dLczCv6l70fn3Ws6sFCsG8FudFed24caOQy+Vi5cqV4vLly2LJkiVCX19fREdHS3PwO4K6F+W1TZs2ws3NTURFRYmrV6+KVatWCWNjY/H9999Lc2gqr29tcSWEEEuWLBGOjo7C0NBQNG3aVBw/flzXIZUrAIr9b9WqVdKY3Nxc8emnn4rKlSuLSpUqiV69eom0tDTdBV1OPVtcMa+vZ9u2baJhw4bCyMhI1K9fX6xcuVKlX6lUiqlTpwpbW1thZGQk2rdvLxITE3UUbfnx8OFDERYWJhwdHYWxsbGoVauWmDJlisqXU+b2xaKioor9N3XIkCFCiJfL4b1790RgYKAwMzMTFhYWYujQoeLRo0c6eDVlx/PympKSUuJnWVRUlDQH86ruRe/XZxVXXDGv6l4mrz/99JOoXbu2MDY2Fo0aNRKbN29WmYPfEdS9KK9paWkiODhYODg4CGNjY1GvXj2xaNEioVQqpTk0lVeZEEK82rUuIiIiIiIietZb+ZsrIiIiIiKi0sbiioiIiIiISANYXBEREREREWkAiysiIiIiIiINYHFFRERERESkASyuiIiIiIiINIDFFRERERERkQawuCIiIhUymQybN2/WdRhaUVBQgNq1a+Po0aMljrl27RpkMhni4+NLLzAtuXDhAmrUqIHHjx/rOhQiogqBxRURUQUQHBwMmUwGmUwGuVwOW1tbdOjQAT///DOUSqXK2LS0NHTq1Oml5i1vhdjy5cvh4uKC5s2b6zqUUuHq6op3330X4eHhug6FiKhCYHFFRFRBBAQEIC0tDdeuXcOuXbvQtm1bhIWFoWvXrigqKpLG2dnZwcjISIeRaocQAt999x2GDRum61AAPLmKVhqGDh2KZcuWqfyNiYhIO1hcERFVEEZGRrCzs0P16tXh5eWFyZMnY8uWLdi1axdWr14tjfv31aiCggKEhobC3t4exsbGcHJywty5cwEAzs7OAIBevXpBJpNJ+8nJyejRowdsbW1hZmYGHx8f7Nu3TyUWZ2dnzJkzBx9++CHMzc3h6OiIlStXqoy5desWAgMDYW1tDVNTU3h7e+PEiRNS/5YtW+Dl5QVjY2PUqlULM2fOfG4BERMTg+TkZHTp0kWl/eTJk/D09ISxsTG8vb0RFxenduy5c+fQqVMnmJmZwdbWFoMGDcLdu3el/kePHiEoKAimpqawt7fH119/jffeew+jR49Wec2zZs3C4MGDYWFhgeHDhwMADh8+jFatWsHExAQ1a9bEqFGjVG7jy8/Px7hx41C9enWYmpqiWbNmOHDggNR//fp1dOvWDZUrV4apqSnc3Nywc+dOqb9Dhw64f/8+Dh48WGJuiIhIM1hcERFVYO3atUOjRo2wcePGYvsXL16MrVu34s8//0RiYiLWrFkjFVGnTp0CAKxatQppaWnSfnZ2Njp37ozIyEjExcUhICAA3bp1w40bN1TmXrRokVTMfPrppxg5ciQSExOlOdq0aYPU1FRs3boVZ86cwYQJE6RbGKOjozF48GCEhYXhwoULWLFiBVavXo3Zs2eX+Fqjo6NRt25dmJubS23Z2dno2rUrXF1dERMTgxkzZmDcuHEqx2VmZqJdu3bw9PTE6dOnsXv3bty5cwf9+/eXxowdOxZHjhzB1q1bERERgejoaMTGxqrFsHDhQjRq1AhxcXGYOnUqkpOTERAQgD59+iAhIQHr16/H4cOHERoaKh0TGhqKY8eOYd26dUhISEC/fv0QEBCAy5cvAwBCQkKQn5+PQ4cO4ezZs5g/fz7MzMyk4w0NDdG4cWNER0eXmBsiItIQQUREb70hQ4aIHj16FNs3YMAA0aBBA2kfgNi0aZMQQojPPvtMtGvXTiiVymKP/ffY53FzcxNLliyR9p2cnMQHH3wg7SuVSmFjYyOWLVsmhBBixYoVwtzcXNy7d6/Y+dq3by/mzJmj0vbbb78Je3v7EmMICwsT7dq1U2lbsWKFqFKlisjNzZXali1bJgCIuLg4IYQQs2bNEh07dlQ57ubNmwKASExMFA8fPhRyuVxs2LBB6s/MzBSVKlUSYWFhKq+5Z8+eKvMMGzZMDB8+XKUtOjpa6OnpidzcXHH9+nWhr68vUlNT1V7/pEmThBBCuLu7ixkzZpT4uoUQolevXiI4OPi5Y4iI6M0Z6La0IyIiXRNCQCaTFdsXHByMDh06oF69eggICEDXrl3RsWPH586XnZ2NGTNmYMeOHUhLS0NRURFyc3PVrlx5eHhI2zKZDHZ2dsjIyAAAxMfHw9PTE9bW1sWe48yZMzhy5IjKlSqFQoG8vDzk5OSgUqVKasfk5ubC2NhYpe3ixYvw8PBQaff19VU7V1RUlMrVoKeSk5ORm5uLwsJCNG3aVGq3tLREvXr11MZ7e3urzZ2QkIA1a9ZIbUIIKJVKpKSk4OrVq1AoFKhbt67Kcfn5+ahSpQoAYNSoURg5ciT27t0LPz8/9OnTRyW3AGBiYoKcnBy1eIiISLNYXBERVXAXL16Ei4tLsX1eXl5ISUnBrl27sG/fPvTv3x9+fn7466+/Spxv3LhxiIiIwMKFC1G7dm2YmJigb9++ags4yOVylX2ZTCbd9mdiYvLcmLOzszFz5kz07t1bre/ZAuqpqlWr4uzZs8+dt6RzdevWDfPnz1frs7e3x5UrV156LlNTU7W5P/nkE4waNUptrKOjIxISEqCvr4+YmBjo6+ur9D8t9j766CP4+/tjx44d2Lt3L+bOnYtFixbhs88+k8bev38f77zzzkvHSUREr4fFFRFRBbZ//36cPXsWY8aMKXGMhYUFBgwYgAEDBqBv374ICAjA/fv3YW1tDblcDoVCoTL+yJEjCA4ORq9evQA8KSCuXbv2SnF5eHjgxx9/lM7zLC8vLyQmJqJ27dovPaenpyeWLVumcqWuQYMG+O2335CXlycVZcePH1c7199//w1nZ2cYGKh/bNaqVQtyuRynTp2Co6MjACArKwtJSUlo3br1c2Py8vLChQsXSnwdnp6eUCgUyMjIQKtWrUqcp2bNmhgxYgRGjBiBSZMm4YcfflAprs6dO4e+ffs+NxYiInpzXNCCiKiCyM/PR3p6OlJTUxEbG4s5c+agR48e6Nq1KwYPHlzsMeHh4Vi7di0uXbqEpKQkbNiwAXZ2drCysgLwZAW8yMhIpKen48GDBwCAOnXqYOPGjYiPj8eZM2cwcOBAtWdpvUhgYCDs7OzQs2dPHDlyBFevXsXff/+NY8eOAQCmTZuGX3/9FTNnzsT58+dx8eJFrFu3Dl988UWJc7Zt2xbZ2dk4f/681DZw4EDIZDJ8/PHHuHDhAnbu3ImFCxeqHBcSEoL79+8jMDAQp06dQnJyMvbs2YOhQ4dCoVDA3NwcQ4YMwfjx4xEVFYXz589j2LBh0NPTK/F2y6cmTpyIo0ePIjQ0FPHx8bh8+TK2bNkiLWhRt25dBAUFYfDgwdi4cSNSUlJw8uRJzJ07Fzt27AAAjB49Gnv27EFKSgpiY2MRFRWFBg0aSOe4du0aUlNT4efn90p/AyIienUsroiIKojdu3fD3t4ezs7OCAgIQFRUFBYvXowtW7ao3XL2lLm5ORYsWABvb2/4+Pjg2rVr2LlzJ/T0nnx8LFq0CBEREahZsyY8PT0BPCnIKleujObNm6Nbt27w9/eHl5fXK8VqaGiIvXv3wsbGBp07d4a7uzvmzZsnxenv74/t27dj79698PHxwbvvvouvv/4aTk5OJc5ZpUoV9OrVS+X3TWZmZti2bRvOnj0LT09PTJkyRe32PwcHBxw5cgQKhQIdO3aEu7s7Ro8eDSsrKykP4eHh8PX1RdeuXeHn54cWLVqgQYMGJd6i+JSHhwcOHjyIpKQktGrVCp6enpg2bRocHBykMatWrcLgwYPx+eefo169eujZs6fKVTKFQoGQkBA0aNAAAQEBqFu3Lr7//nvp+LVr16Jjx47PzQ0REWmGTAghdB0EERFRaUhISECHDh2QnJxc7AIVmvL48WNUr14dixYt0ulDiwsKClCnTh388ccfaNGihc7iICKqKHjlioiIKgwPDw/Mnz8fKSkpGp03Li4Oa9euRXJyMmJjYxEUFAQA6NGjh0bP86pu3LiByZMns7AiIiolvHJFRET0huLi4vDRRx8hMTERhoaGaNKkCcLDw+Hu7q7r0IiIqBSxuCIiIiIiItIA3hZIRERERESkASyuiIiIiIiINIDFFRERERERkQawuCIiIiIiItIAFldEREREREQawOKKiIiIiIhIA1hcERERERERaQCLKyIiIiIiIg1gcUVERERERKQB/wf/xnCDDIEFsQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10, 6))\n", - "\n", - "ax = obspy.taup.plot_travel_times(source_depth=10, phase_list=[\"P\", \"S\", \"PKP\", \n", - " \"PKIKP\", \"PKiKP\",\n", - " \"S\", \"SKS\"],\n", - " ax=ax, fig=fig, verbose=True, show=False)\n", - "\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# NB - extracted from table VId\n", - "p_dists = np.array([23.0, 31.0, 41.0, 51.0, 61.0, 71.0, 81.0, 91.0])\n", - "p_times = np.array([263.57, 332.83, 415.35, 490.78, 559.81, 621.73, 676.86, 724.39])\n", - "p_error = np.array([0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3])" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There were 8 epicentral distances without an arrival\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAIjCAYAAAAAxIqtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWHElEQVR4nO3de1yUZf7/8ffNqAgoo4IipggeyBOmptumm2ZZamqGZVhuYVl2sNROW9pqWZukm26/bDMtt8NuR1PK2sysrDTNKM9ZHhA8RRmogwJqzly/P1jm2wgoMAMzwOv5eMxD57rvmfnMeFu+ua75XJYxxggAAAAAUGFB/i4AAAAAAKo7ghUAAAAAeIlgBQAAAABeIlgBAAAAgJcIVgAAAADgJYIVAAAAAHiJYAUAAAAAXiJYAQAAAICXCFYAAAAA4CWCFQB46eKLL9bFF19cac//6KOPyrKsSnv+isjMzJRlWXr55Zf9XYpPjRkzRrGxsRV+/Oeffy7LsvT555/7rKaaxNvPNzY2VmPGjPFZPQDgSwQrANXSyy+/LMuy3Lf69esrPj5ed911l3755Rd/lxcwnnvuOb+Gn23btunRRx9VZmam32qoDP7+XFE+P/30kx599FFt3LjR36UAqMHq+LsAAPDGY489pri4OB0/flyrV6/WvHnz9OGHH2rr1q0KDQ31d3l+99xzzykyMtJvP+Xftm2bpk+frosvvtirmYpAU9rn2rdvXxUUFKhevXr+KQwl+umnnzR9+nTFxsaqW7du/i4HQA1FsAJQrQ0ePFg9e/aUJN1yyy2KiIjQnDlz9N577+m6667zc3UoD2OMjh8/rpCQEH+XUmFBQUGqX7++v8sAAPgBSwEB1CiXXHKJJCkjI+OM57lcLv2///f/lJCQoPr166tp06YaNGiQvv32W/c5L730ki655BI1a9ZMwcHB6tSpk+bNm1emOo4fP65HH31U8fHxql+/vqKjozVixAilp6dLKv27OGX97lJZaouNjdX333+vL774wr1k8vffBTty5IgmTZqkVq1aKTg4WO3atdPMmTPlcrk8nufIkSMaM2aM7Ha7GjVqpOTkZB05cuSsn8HLL7+skSNHSpL69+/vrqHoPcfGxmro0KFavny5evbsqZCQEM2fP7/M72/o0KFq06ZNia994YUXugN3kf/85z86//zzFRISoiZNmmjUqFHat2/fWd/H6c70uZb053rxxRerS5cu2rx5s/r166fQ0FC1a9dO77zzjiTpiy++0AUXXKCQkBCde+65+uSTT4q95oEDB3TzzTcrKipKwcHB6ty5s/71r38VO2/u3Lnq3LmzQkND1bhxY/Xs2VOvv/76Gd/PyZMnNW3aNJ1//vmy2+0KCwvTRRddpJUrV3qcV3RtPvXUU1qwYIHatm2r4OBg9erVS2lpacWe991331WXLl1Uv359denSRampqWf7aN2MMfrb3/6mli1bKjQ0VP3799f3339f7LxDhw7p/vvvV0JCgho0aKDw8HANHjxYmzZtcp/z+eefq1evXpKkm266yf1nVvR3bNWqVRo5cqRiYmIUHBysVq1a6Z577lFBQUGZ6wUAiRkrADVMUXCJiIg443ljx47Vyy+/rMGDB+uWW27RqVOntGrVKn399dfuf5DPmzdPnTt31pVXXqk6dero/fff15133imXy6Xx48eX+txOp1NDhw7Vp59+qlGjRmnixIk6evSoVqxYoa1bt6pt27Zev8+y1Pb000/r7rvvVoMGDfTwww9LkqKioiRJ+fn56tevnw4cOKDbbrtNMTExWrNmjSZPnqysrCw9/fTTkgr/gTt8+HCtXr1at99+uzp27KjU1FQlJyeftca+fftqwoQJeuaZZzRlyhR17NhRkty/StL27dt13XXX6bbbbtOtt96qc889t8zvLykpSTfeeKPS0tLc/3CWpD179ujrr7/W3//+d/fYE088oalTp+raa6/VLbfcol9//VVz585V3759tWHDBjVq1KjMn/2ZPtfSHD58WEOHDtWoUaM0cuRIzZs3T6NGjdJrr72mSZMm6fbbb9f111+vv//977rmmmu0b98+NWzYUJL0yy+/6I9//KMsy9Jdd92lpk2batmyZRo7dqxyc3M1adIkSdILL7ygCRMm6JprrtHEiRN1/Phxbd68WevWrdP1119fam25ubl68cUXdd111+nWW2/V0aNHtXDhQg0cOFDffPNNsaVzr7/+uo4eParbbrtNlmVp1qxZGjFihHbv3q26detKkj7++GNdffXV6tSpk1JSUpSTk6ObbrpJLVu2LNNnPG3aNP3tb3/TFVdcoSuuuELr16/X5ZdfrpMnT3qct3v3br377rsaOXKk4uLi9Msvv2j+/Pnq16+ftm3bphYtWqhjx4567LHHNG3aNI0bN04XXXSRJKl3796SpEWLFik/P1933HGHIiIi9M0332ju3Lnav3+/Fi1aVKZ6AUCSZACgGnrppZeMJPPJJ5+YX3/91ezbt8+8+eabJiIiwoSEhJj9+/eX+tjPPvvMSDITJkwodszlcrl/n5+fX+z4wIEDTZs2bTzG+vXrZ/r16+e+/69//ctIMnPmzCn1+VeuXGkkmZUrV3ocz8jIMJLMSy+95B575JFHzOn/uS5rbZ07d/aorcjjjz9uwsLCzI4dOzzGH3roIWOz2czevXuNMca8++67RpKZNWuW+5xTp06Ziy66qFidJVm0aFGJ79MYY1q3bm0kmY8++qjYsbK8P4fDYYKDg819993ncd6sWbOMZVlmz549xhhjMjMzjc1mM0888YTHeVu2bDF16tTxGE9OTjatW7c+43sypvTPtaQ/1379+hlJ5vXXX3eP/fjjj0aSCQoKMl9//bV7fPny5cU+17Fjx5ro6GiTnZ3t8VqjRo0ydrvd/VkNHz7cdO7c+ay1n+7UqVPmxIkTHmOHDx82UVFR5uabb3aPFV2bERER5tChQ+7x9957z0gy77//vnusW7duJjo62hw5csQ99vHHHxtJZ/18Dx48aOrVq2eGDBni8fdxypQpRpJJTk52jx0/ftw4nU6Px2dkZJjg4GDz2GOPucfS0tJKvV5LutZSUlI8riEAKAuWAgKo1gYMGKCmTZuqVatWGjVqlBo0aKDU1FSdc845pT5m8eLFsixLjzzySLFjv29r/vvv+jgcDmVnZ6tfv37avXu3HA7HGZ8/MjJSd9999xmf3xsVra3IokWLdNFFF6lx48bKzs523wYMGCCn06kvv/xSkvThhx+qTp06uuOOO9yPtdlsJb63ioiLi9PAgQOLjZfl/RUt+3r77bdljHGf/9Zbb+mPf/yjYmJiJElLliyRy+XStdde6/Femzdvrvbt2xdb8lYZGjRooFGjRrnvn3vuuWrUqJE6duyoCy64wD1e9Pvdu3dLKpwxXLx4sYYNGyZjjEf9AwcOlMPh0Pr16yVJjRo10v79+0tclncmNpvN3WzD5XLp0KFDOnXqlHr27Ol+7t9LSkpS48aN3feLZoCKas7KytLGjRuVnJwsu93uPu+yyy5Tp06dzlrPJ598opMnT+ruu+/2+PtSNDP3e8HBwQoKKvynjNPpVE5Ojho0aKBzzz23xNpL8vtrLS8vT9nZ2erdu7eMMdqwYUOZngMAJJYCAqjm/vnPfyo+Pl516tRRVFSUzj33XPc/tEqTnp6uFi1aqEmTJmc876uvvtIjjzyitWvXKj8/3+OYw+Hw+Efj6c9/7rnnqk6dyvtPbEVrK7Jz505t3rxZTZs2LfH4wYMHJRUuq4uOjlaDBg08jhct2fNWXFxcieNlfX9JSUl69913tXbtWvXu3Vvp6en67rvv3EsZpcL3aoxR+/btS3ytouVrlally5bFQrXdblerVq2KjUmFSwcl6ddff9WRI0e0YMECLViwoMTnLvqzevDBB/XJJ5/oD3/4g9q1a6fLL79c119/vfr06XPW+l555RXNnj1bP/74o3777Tf3eEl/PkWBtUhRyCqqec+ePZJU4uddlsBT2uObNm3qEeik//uu5HPPPaeMjAw5nU73sbMtBy6yd+9eTZs2TUuXLnW/hyJl+SEFABQhWAGo1v7whz8Ua1LgC+np6br00kvVoUMHzZkzR61atVK9evX04Ycf6h//+EexBg/lVdrM1e//YViZtblcLl122WX6y1/+UuLx+Pj4sz6HL5TUAbA872/YsGEKDQ3V22+/rd69e+vtt99WUFCQu2mGVPheLcvSsmXLZLPZir3e6aGxMpT0umcaL5qBK3qvf/7zn0v9XlvXrl0lFX53bfv27frggw/00UcfafHixXruuec0bdo0TZ8+vdTa/vOf/2jMmDG66qqr9MADD6hZs2ay2WxKSUlxf2exPDVXpRkzZmjq1Km6+eab9fjjj6tJkyYKCgrSpEmTyvT3wOl06rLLLtOhQ4f04IMPqkOHDgoLC9OBAwc0ZswYr/+eA6hdCFYAap22bdtq+fLlOnToUKmzVu+//75OnDihpUuXevyEvizLxtq2bat169bpt99+K3U2pOgn76d31yv6af2ZlKe20gJc27ZtdezYMQ0YMOCMr9W6dWt9+umnOnbsmEcA2b59+1nrPNPrn0l53l9YWJiGDh2qRYsWac6cOXrrrbd00UUXqUWLFu5z2rZtK2OM4uLifBYYfbWk82yaNm2qhg0byul0nvXPSir8PJKSkpSUlKSTJ09qxIgReuKJJzR58uRS28C/8847atOmjZYsWeLxvkpaKlsWrVu3llQ4U3i6slw3v3/877s+/vrrr8VmlN555x31799fCxcu9Bg/cuSIIiMj3fdL+/PasmWLduzYoVdeeUU33nije3zFihVnrRMATsd3rADUOldffbWMMSX+FL/op+5FP5X//U/hHQ6HXnrppTI9f3Z2tp599tlSn79169ay2Wzu7zIVee655876/OWpLSwsrMTW6Ndee63Wrl2r5cuXFzt25MgRnTp1SpJ0xRVX6NSpUx6tzp1Op+bOnXvWOotev+g5y6q8n31SUpJ++uknvfjii9q0aZOSkpI8jo8YMUI2m03Tp08vNqtijFFOTk6ZaytS2ufqazabTVdffbUWL16srVu3Fjv+66+/un9/+vuoV6+eOnXqJGOMx/K+kl5D8vy8161bp7Vr11ao5ujoaHXr1k2vvPKKx1K6FStWaNu2bWd9/IABA1S3bl3NnTvXo6bfL+/8fe2n/5kuWrRIBw4c8Bgr7Tos6b0bY/T//t//O2udAHA6ZqwA1Dr9+/fXDTfcoGeeeUY7d+7UoEGD5HK5tGrVKvXv31933XWXLr/8ctWrV0/Dhg3TbbfdpmPHjumFF15Qs2bNlJWVdcbnv/HGG/Xqq6/q3nvv1TfffKOLLrpIeXl5+uSTT3TnnXdq+PDhstvtGjlypObOnSvLstS2bVt98MEH7u/LnEl5ajv//PM1b948/e1vf1O7du3UrFkzXXLJJXrggQe0dOlSDR06VGPGjNH555+vvLw8bdmyRe+8844yMzMVGRmpYcOGqU+fPnrooYeUmZmpTp06acmSJWX+7km3bt1ks9k0c+ZMORwOBQcHu/en8sX7kwrDX8OGDXX//fe7g8jvtW3bVn/72980efJkZWZm6qqrrlLDhg2VkZGh1NRUjRs3Tvfff3+Z3s/ZPtfK8OSTT2rlypW64IILdOutt6pTp046dOiQ1q9fr08++USHDh2SVPi5NW/eXH369FFUVJR++OEHPfvssxoyZIi7dXtJhg4dqiVLligxMVFDhgxRRkaGnn/+eXXq1EnHjh2rUM0pKSkaMmSI/vSnP+nmm2/WoUOH3Htsne05mzZtqvvvv18pKSkaOnSorrjiCm3YsEHLli3zmIUqqv2xxx7TTTfdpN69e2vLli167bXXiu1v1rZtWzVq1EjPP/+8GjZsqLCwMF1wwQXq0KGD2rZtq/vvv18HDhxQeHi4Fi9eXGxmDADKpCpbEAKArxS1W09LS6vQ40+dOmX+/ve/mw4dOph69eqZpk2bmsGDB5vvvvvOfc7SpUtN165dTf369U1sbKyZOXOmu5V6RkaG+7zT260bU9jC+eGHHzZxcXGmbt26pnnz5uaaa64x6enp7nN+/fVXc/XVV5vQ0FDTuHFjc9ttt5mtW7eWqd16WWv7+eefzZAhQ0zDhg2NJI86jx49aiZPnmzatWtn6tWrZyIjI03v3r3NU089ZU6ePOk+Lycnx9xwww0mPDzc2O12c8MNN5gNGzaUqd26Mca88MILpk2bNsZms3m0Im/durUZMmRIiY8p6/srMnr0aCPJDBgwoNQ6Fi9ebP70pz+ZsLAwExYWZjp06GDGjx9vtm/f7j6nrO3WS/tcS2u3XlIb9NLevyQzfvx4j7FffvnFjB8/3rRq1cp9PV166aVmwYIF7nPmz59v+vbtayIiIkxwcLBp27ateeCBB4zD4Tjje3G5XGbGjBmmdevWJjg42HTv3t188MEHxT6Lonbrf//730us+ZFHHvEYW7x4senYsaMJDg42nTp1MkuWLCnz5+t0Os306dNNdHS0CQkJMRdffLHZunWrad26dbF26/fdd5/7vD59+pi1a9eW+HfyvffeM506dTJ16tTxuHa3bdtmBgwYYBo0aGAiIyPNrbfeajZt2lTm6xsAiljG+OHbpgAAAABQg/AdKwAAAADwEsEKAAAAALxEsAIAAAAALxGsAAAAAMBLBCsAAAAA8BLBCgAAAAC8VOM3CHa5XPrpp5/UsGFDWZbl73IAAAAA+IkxRkePHlWLFi0UFOTbOaYaH6x++ukntWrVyt9lAAAAAAgQ+/btU8uWLX36nDU+WDVs2FBS4YcXHh7u52oAAAAA+Etubq5atWrlzgi+VOODVdHyv/DwcIIVAAAAgEr5ihDNKwAAAADASwQrAAAAAPASwQoAAAAAvESwAgAAAAAvEawAAAAAwEsEKwAAAADwEsEKAAAAALxEsAIAAAAALxGsAAAAAMBLBCsAAAAA8BLBCgAAAAC8RLACAAAAAC8RrAAAAADASwQrAAAAAPASwQoAAAAAvESwAgAAAFBpshwFWpOerSxHgb9LqVR1/F0AAAAAgJrprbS9mpy6RS4jBVlSSmKCknrF+LusSsGMFQAAAACfy3IUuEOVJLmMNCV1a42duSJYAQAAAPC5jOw8d6gq4jRGmTn5/imokhGsAAAAAPhcXGSYgizPMZtlKTYi1D8FVTKCFQAAAACfi7aHKCUxQTarMF3ZLEszErso2h7i58oqB80rAAAAABST5ShQRnae4iLDKhyGknrFqG98U2Xm5Cs2IrTGhiqJYAUAAADgNL7s5hdtD6nRgaoISwEBAAAAuNW2bn6+QrACAAAA4Fbbuvn5CsEKAAAAgFtt6+bnKwQrAAAAAG61rZufr9C8AgAAAICH2tTNz1cIVgAAAEAN44tW6bWlm5+vEKwAAACAGsSXrdJRdnzHCgAAAKghaJXuPwQrAAAAoIagVbr/EKwAAACA6mj/fmnlysJf/4dW6f5DsAIAAACqm4ULpdatpUsuKfx14UJJtEr3J78Gqy+//FLDhg1TixYtZFmW3n33Xfex3377TQ8++KASEhIUFhamFi1a6MYbb9RPP/3kv4IBAAAAf9u/Xxo3TnK5Cu+7XNJtt7lnrpJ6xWj1g/31xq1/1OoH+9O4oor4NVjl5eXpvPPO0z//+c9ix/Lz87V+/XpNnTpV69ev15IlS7R9+3ZdeeWVfqgUAAAAqBpZjgKtSc8uveHEzp3/F6qKOJ3Srl3uu9H2EF3YJoKZqirk13brgwcP1uDBg0s8ZrfbtWLFCo+xZ599Vn/4wx+0d+9excSQvAEAAFCzlKlVevv2UlCQZ7iy2aR27aq2WHioVt+xcjgcsixLjRo1KvWcEydOKDc31+MGAAAABLoyt0pv2VJasKAwTEmFv86fXzgOv6k2wer48eN68MEHdd111yk8PLzU81JSUmS32923Vq1aVWGVAAAAQMWUq1X62LFSZmZhV8DMzML78KtqEax+++03XXvttTLGaN68eWc8d/LkyXI4HO7bvn37qqhKAAAAoOLK3Sq9ZUvp4ouZqQoQAR+sikLVnj17tGLFijPOVklScHCwwsPDPW4AAABAoKNVevXm1+YVZ1MUqnbu3KmVK1cqIiLC3yUBAAAAlSapV4z6xjdVZk6+YiNCCVXViF+D1bFjx7Trd20hMzIytHHjRjVp0kTR0dG65pprtH79en3wwQdyOp36+eefJUlNmjRRvXr1/FU2AAAAUKIsR4EysvMUFxlW4VAUbQ8hUFVDljHGnP20yvH555+rf//+xcaTk5P16KOPKi4ursTHrVy5UhdffHGZXiM3N1d2u10Oh4NlgQAAAKg0ZWqVDr+qzGzg1xmriy++WGfKdX7MfAAAAECZldYqvW98U2afaomAb14BAAAABLpytUpHjUSwAgAAALxU7lbpqHEIVgAAAICXaJWOgG63DgAAAFQVbzv60Sq9diNYAQAAoNbzVUc/WqXXXiwFBAAAQK1WWke/LEeBfwtDtUKwAgAAQK1GRz/4AsEKAAAAtRod/eALBCsAAADUanT0gy/QvAIAAAC1Hh394C2CFQAAACA6+sE7LAUEAABAtZflKNCa9Gw6+cFvmLECAABAtearPagAbzBjBQAAgGqLPagQKAhWAAAAqLbYgwqBgmAFAACAaos9qBAoCFYAAACottiDCoGC5hUAAACo1tiDCoGAYAUAAAC/yXIUKCM7T3GRYV4FIvaggr8RrAAAAOAXtElHTcJ3rAAAAFDlaJOOmoYZKwAAAFSN/fulnTul9u2VcaJ+qW3SWdKH6ogZKwAAAFS+hQul1q2lSy6RWrdWpw8X0SYdNQrBCgAAAJVr/35p3DjJ5Sq873Kp0T136+nekbRJR43BUkAAAABUrp07/y9UFXE6dWWDAvV6sD9t0lEjEKwAAABQudq3l4KCPMOVzSa1a0ebdNQYLAUEAABAhWQ5CrQmPfvsnfxatpQWLCgMU1Lhr/PnF44DNQQzVgAAACi3cu9BNXasNHCgtGuX1K4doQo1DsEKAAAA5VLaHlR945ueeVlfy5YEKtRYLAUEAABAuWRk55W6BxVQWxGsAAAAUC5xkWHsQQWchmAFAACAcom2hyglMYE9qIDf4TtWAAAAKLekXjHqG9+UPaiA/yFYAQAA1EJZjgJlZOcpLjKswqGIPaiA/0OwAgAAqGXK3SodwFnxHSsAAIBapLRW6Wfd5BfAGRGsAAAAahFapQOVg2AFAABQi9AqHagcBCsAAIBahFbpQOWgeQUAAEAtQ6t0wPcIVgAAALUQrdIB32IpIAAAQDWT5SjQmvRsOvkBAYQZKwAAgGqEPaiAwMSMFQAAQDXBHlRA4CJYAQAAVBPsQQUELoIVAABANcEeVEDgIlgBAABUE+xBBQQumlcAAABUI+xBBQQmghUAAEA1wx5UQOBhKSAAAAAAeIlgBQAAUIXY3BeomVgKCAAAUEXY3BeouZixAgAAqAJs7gvUbAQrAACAKsDmvkDNRrACAACoAmzuC9RsBCsAAIAqwOa+QM1G8woAAIAqwua+QM1FsAIAAKhCbO4L1EwsBQQAACgD9p8CcCbMWAEAAJwF+08BOBtmrAAAAM6A/acAlAXBCgAAoDT79yvn/eVq5sj2GGb/KQCnI1gBAACUZOFCqXVrdbkhUV/Nu0nXbvrYfYj9pwCcjmAFAABwuv37pXHjJJdLkmQzRjM+elbNc7PZfwpAiWheAQAAcLqdO92hqkgd49LCPo3UZEh/QhWAYghWAAAAp2vfXgoK8gxXNps69z1fIlQBKAFLAQEAAE7XsqW0YIFksxXet9mk+fMLxwGgBMxYAQCAGi/LUaCM7DzFRYaVfRnf2LHSwIHSrl1Su3aEKgBnRLACAAA1mleb+7ZsSaACUCYsBQQAADUWm/sCqCoEKwAAUGNlZOe5Q1URNvcFUBkIVgAAoMaKiwxTkOU5xua+ACoDwQoAANRY0fYQpSQmyGYVpis29wVQWWheAQAAarSkXjHqG99UmTn5io0IJVQBqBQEKwAAUONF20MIVAAqlV+XAn755ZcaNmyYWrRoIcuy9O6773ocN8Zo2rRpio6OVkhIiAYMGKCdO3f6p1gAAAAAKIVfg1VeXp7OO+88/fOf/yzx+KxZs/TMM8/o+eef17p16xQWFqaBAwfq+PHjVVwpAADwlyxHgdakZ9MiHUBA8+tSwMGDB2vw4MElHjPG6Omnn9Zf//pXDR8+XJL06quvKioqSu+++65GjRpVlaUCAAA/8GpzXwCoQgHbFTAjI0M///yzBgwY4B6z2+264IILtHbt2lIfd+LECeXm5nrcAABA9cPmvgCqk4ANVj///LMkKSoqymM8KirKfawkKSkpstvt7lurVq0qtU4AAFA52NwXQHUSsMGqoiZPniyHw+G+7du3z98lAQCACmBzXwDVScAGq+bNm0uSfvnlF4/xX375xX2sJMHBwQoPD/e4AQCA6ofNfQFUJwG7j1VcXJyaN2+uTz/9VN26dZMk5ebmat26dbrjjjv8WxwAAKgSbO4LoLrwa7A6duyYdu3a5b6fkZGhjRs3qkmTJoqJidGkSZP0t7/9Te3bt1dcXJymTp2qFi1a6KqrrvJf0QAAoEqxuS+A6sCvwerbb79V//793ffvvfdeSVJycrJefvll/eUvf1FeXp7GjRunI0eO6E9/+pM++ugj1a9f318lAwAAAEAxljHGnP206is3N1d2u10Oh4PvWwEAUMWyHAXKyM5TXGQYs04A/K4ys0HAfscKAABUb2zuC6A2CdiugAAAoPpic18AtQ3BCgAA+Byb+wKobQhWAADA59jcF0BtQ7ACAAA+x+a+AGobmlcAAIBKwea+AGoTghUAAKg0bO4LoLZgKSAAAAAAeIlgBQAASpTlKNCa9GxapANAGbAUEAAAFMPmvgBQPsxYAQAAD2zuCwDlR7ACAAAe2NwXAMqPYAUAADywuS8AlB/BCgAAeGBzXwAoP5pXAACAYtjcFwDKh2AFAABKxOa+AFB2LAUEAAAAAC8RrAAAAADASwQrAABqoCxHgdakZ7P3FABUEb5jBQBATbJ/v1a+v1oPf39CPzWMVJAlpSQmKKlXjL8rA4AajRkrAABqioULZVq3Vv87r9Oq527StZs+lstIU1K3MnMFAJWMYAUAQE2wf780bpwsl0uSZDNGMz56Vs1zs+U0Rpk5+X4uEABqNoIVAAA1wc6d0v9CVZE6xqXYwz/JZlmKjQj1U2EAUDsQrAAAqAnat5eCPP+3fsoK0r4m52hGYhf2owKASkawAgCgJmjZUlqwQLLZJEnGZtOeGXP0zhMjaVwBAFWAroAAANQUY8dKAwdKu3bJatdObVu29HdFAFBrEKwAAKhJWrYsvAEAqhRLAQEAAADASwQrAAACSJajQGvSs9l3CgCqGZYCAgAQIN5K26vJqVvkMlKQJaUkJtB4AgCqCWasAAAIAFmOAneokiSXkaakbmXmCgCqCYIVAAABICM7zx2qijiNUWZOvn8KAgCUC8EKAIAAEBcZpiDLc8xmWYqNCPVPQQCAciFYAQAQAKLtIUpJTJDNKkxXNsvSjMQuiraH+LkyAEBZ0LwCAIAAkdQrRn3jmyozJ1+xEaGEKgCoRghWAAAEkGh7CIEKAKohlgICAAAAgJcIVgAA+Aib+wJA7cVSQAAAfIDNfQGgdmPGCgAAL7G5LwCAYAUAgJfY3BcAQLACAMBLbO4LACBYAQDgJTb3BQDQvAIAAB9gc18AqN0IVgAA+Aib+wJA7cVSQAAAAADwktfB6sSJE76oAwAAAACqrXIHq2XLlik5OVlt2rRR3bp1FRoaqvDwcPXr109PPPGEfvrpp8qoEwAAAAACVpmDVWpqquLj43XzzTerTp06evDBB7VkyRItX75cL774ovr166dPPvlEbdq00e23365ff/21MusGAMCnshwFWpOezaa+AIAKsYwx5uynSRdeeKH++te/avDgwQoKKj2PHThwQHPnzlVUVJTuuecenxVaUbm5ubLb7XI4HAoPD/d3OQCAAPRW2l5NTt0il5GCLCklMUFJvWL8XRYAwMcqMxuUOVhVVwQrAMCZZDkK1GfmZ3L97v+GNsvS6gf70+EPAGqYyswGPukK6HQ6tXHjRh0+fNgXTwcAQJXJyM7zCFWS5DRGmTn5/ikIAFAtVShYTZo0SQsXLpRUGKr69eunHj16qFWrVvr88899WR8AAJUqLjJMQZbnmM2yFBsR6p+CAADVUoWC1TvvvKPzzjtPkvT+++8rIyNDP/74o+655x49/PDDPi0QAIDKFG0PUUpigmxWYbqyWZZmJHZhGSAAoFwq9B2r+vXra9euXWrZsqXGjRun0NBQPf3008rIyNB5552n3Nzcyqi1QviOFQCgLLIcBcrMyVdsRCihCgBqqID7jlVUVJS2bdsmp9Opjz76SJdddpkkKT8/XzabzacFAgBQFaLtIbqwTQShCgBQIXUq8qCbbrpJ1157raKjo2VZlgYMGCBJWrdunTp06ODTAgEAAAAg0FUoWD366KPq0qWL9u3bp5EjRyo4OFiSZLPZ9NBDD/m0QAAAAAAIdF7vY3X8+HHVr1/fV/X4HN+xAoCaL8tRoIzsPMVFhrGUDwBQqoD7jpXT6dTjjz+uc845Rw0aNNDu3bslSVOnTnW3YQcAoCq8lbZXfWZ+putfXKc+Mz/TW2l7/V0SAKAWqlCweuKJJ/Tyyy9r1qxZqlevnnu8S5cuevHFF31WHAAAZ5LlKNDk1C3uDX5dRpqSulVZjgL/FgYAqHUqFKxeffVVLViwQKNHj/boAnjeeefpxx9/9FlxAACcSUZ2njtUFXEao8ycfP8UBACotSoUrA4cOKB27doVG3e5XPrtt9+8LgoAgLKIiwxTkOU5ZrMsxUaE+qcgAECtVaFg1alTJ61atarY+DvvvKPu3bt7XRQAAGURbQ9RSmKCbFZhurJZlmYkdqGBBQCgylWo3fq0adOUnJysAwcOyOVyacmSJdq+fbteffVVffDBB76uEQCAUiX1ilHf+KbKzMlXbEQooQoA4BcVbre+atUqPfbYY9q0aZOOHTumHj16aNq0abr88st9XaNXaLcOAAAAQKrcbOD1PlaBjmAFAAAAQArAfazatGmjnJycYuNHjhxRmzZtvC4KAAAAAKqTCgWrzMxMOZ3OYuMnTpzQgQMHvC4KAFB7ZDkKtCY9m72nAADVWrmaVyxdutT9++XLl8tut7vvO51Offrpp4qNjfVZcQCAmm3pB+v05hufaXejFjpoj1RKYoKSesX4uywAAMqtXMHqqquukiRZlqXk5GSPY3Xr1lVsbKxmz57ts+IAADXXkbnzNGTieF1pjJyWpcmD7tYUWeob35TOfgCAaqdcwcrlckmS4uLilJaWpsjIyEopCgBQw+3fL/uku2T9r3+SzRjN+OhZfRnXQ5k5+QQrAEC1U6F9rDIyMnxdBwCgNtm5U9b/flhXpI5xqc2RLMVGhPqpKAAAKq5Cweqxxx474/Fp06ZVqBgAQC3Rvr0UFCT9LlydsoI06rr+zFYBAKqlCu1j1b17d4/7v/32mzIyMlSnTh21bdtW69ev91mB3mIfKwAIUAsXSrfdJjmdMkE2OZ6eq0Z33+HvqgAANVhlZoMKzVht2LCh2Fhubq7GjBmjxMREr4sCANQCY8dKAwdKu3bJatdOjVq29HdFAABUWIX2sSpJeHi4pk+frqlTp/rqKeV0OjV16lTFxcUpJCREbdu21eOPP64KTLIBAAJRy5bSxRcX/goAQDVWoRmr0jgcDjkcDp8938yZMzVv3jy98sor6ty5s7799lvddNNNstvtmjBhgs9eBwAAAAC8UaFg9cwzz3jcN8YoKytL//73vzV48GCfFCZJa9as0fDhwzVkyBBJUmxsrN544w198803PnsNAAAAAPBWhYLVP/7xD4/7QUFBatq0qZKTkzV58mSfFCZJvXv31oIFC7Rjxw7Fx8dr06ZNWr16tebMmVPqY06cOKETJ0647+fm5vqsHgDA/8lyFCgjO09xkWF08gMA1HoBvY/VQw89pNzcXHXo0EE2m01Op1NPPPGERo8eXepjUlJSNH369CqpDwBqq7fS9mpy6ha5jBRkSSmJCUrqFePvsgAA8BufNa+oDG+//bZee+01vf7661q/fr1eeeUVPfXUU3rllVdKfczkyZPd3/VyOBzat29fFVYMADVflqPAHaokyWWkKalbleUo8G9hAAD4UYVmrPLy8vTkk0/q008/1cGDB+X63QaPkrR7926fFPfAAw/ooYce0qhRoyRJCQkJ2rNnj1JSUpScnFziY4KDgxUcHOyT1wcAFJeRnecOVUWcxigzJ58lgQCAWqtCweqWW27RF198oRtuuEHR0dGyLMvXdUmS8vPzFRTkOalms9mKBTkAQNWJiwxTkCWPcGWzLMVGhPqvKAAA/KxCwWrZsmX673//qz59+vi6Hg/Dhg3TE088oZiYGHXu3FkbNmzQnDlzdPPNN1fq6wIAShdtD1FKYoKmpG6V0xjZLEszErswWwUAqNUqFKwaN26sJk2a+LqWYubOnaupU6fqzjvv1MGDB9WiRQvddtttmjZtWqW/NgCgdEm9YtQ3vqkyc/IVGxFKqAIA1HqWMcac/TRP//nPf/Tee+/plVdeUWhoYC/9yM3Nld1ul8PhUHh4uL/LAQAAAOAnlZkNKjRjNXv2bKWnpysqKkqxsbGqW7eux/H169f7pDgAAAAAqA4qFKyuuuoqH5cBAAAAANVXhZYCVicsBQQAAAAgVW42COgNggEAlSPLUaA16dls6gsAgI+UeSlgkyZNtGPHDkVGRqpx48Zn3Lvq0KFDPikOAOB7b6Xt1eTULXIZKciSUhITlNQrxt9lAQBQrZU5WP3jH/9Qw4YNJUlPP/10ZdUDAKhEWY4Cd6iSCjf5nZK6VX3jm9IyHQAAL5Q5WCUnJ5f4ewBA9ZGRnecOVUWcxigzJ59gBQCAFyrUFbDIwYMHdfDgQblcLo/xrl27elUUAKByxEWGKciSR7iyWZZiIwJ7T0IAAAJdhYLVd999p+TkZP3www86vamgZVlyOp0+KQ4A4FvR9hClJCZoSupWOY2RzbI0I7ELs1UAAHipQsHq5ptvVnx8vBYuXKioqKgzNrIAAASWpF4x6hvfVJk5+YqNCCVUAQDgAxUKVrt379bixYvVrl07X9cDAKgC0fYQAhUAAD5UoX2sLr30Um3atMnXtQAAAABAtVShGasXX3xRycnJ2rp1q7p06aK6det6HL/yyit9UhwAAAAAVAcVClZr167VV199pWXLlhU7RvMKAAAAALVNhZYC3n333frzn/+srKwsuVwujxuhCgAqV5ajQGvSs5XlKPB3KQAA4H8qNGOVk5Oje+65R1FRUb6uBwBwBm+l7dXk1C1yGSnIklISE5TUK8bfZQEAUOtVaMZqxIgRWrlypa9rAQCcQZajwB2qpMJNfqekbmXmCgCAAFChGav4+HhNnjxZq1evVkJCQrHmFRMmTPBJcQCA/5ORnecOVUWcxigzJ5/W6QAA+JlljDFnP81TXFxc6U9oWdq9e7dXRflSbm6u7Ha7HA6HwsPD/V0OAFRYlqNAfWZ+5hGubJal1Q/2J1gBAFAGlZkNKjRjlZGR4dMiAABnF20PUUpigqakbpXTGNksSzMSuxCqAAAIABUKVgAA/0jqFaO+8U2VmZOv2IhQQhUAAAGizM0rnnzySRUUlO0L0uvWrdN///vfChcFAChdtD1EF7aJIFQBABBAyhystm3bppiYGN15551atmyZfv31V/exU6dOafPmzXruuefUu3dvJSUlqWHDhpVSMAAAAAAEmjIvBXz11Ve1adMmPfvss7r++uuVm5srm82m4OBg5efnS5K6d++uW265RWPGjFH9+vUrrWgAAAAACCQV6grocrm0efNm7dmzRwUFBYqMjFS3bt0UGRlZGTV6ha6AAAAAAKQA7AoYFBSkbt26qVu3bj4tBgAAAACqozJ/xwoA4L0sR4HWpGcry1G2ZkAAAKB6oN06AFSRt9L2anLqFrmMFGRJKYkJSuoV4++yAACADzBjBQBVIMtR4A5VkuQy0pTUrcxcAQBQQxCsAKAKZGTnuUNVEacxyszJ909BAADAp7wKVrt27dLy5cvdGwdXoMEgANQKcZFhCrI8x2yWpdiIUP8UBAAAfKpCwSonJ0cDBgxQfHy8rrjiCmVlZUmSxo4dq/vuu8+nBQJATRBtD1FKYoJsVmG6slmWZiR2UbQ9xM+VAQAAX6hQ84p77rlHderU0d69e9WxY0f3eFJSku69917Nnj3bZwUCQE2R1CtGfeObKjMnX7ERoYQqAABqkAoFq48//ljLly9Xy5YtPcbbt2+vPXv2+KQwAKiJou0hBCoAAGqgCi0FzMvLU2ho8e8FHDp0SMHBwV4XBQAAAADVSYWC1UUXXaRXX33Vfd+yLLlcLs2aNUv9+/f3WXEAAAAAUB1UaCngrFmzdOmll+rbb7/VyZMn9Ze//EXff/+9Dh06pK+++srXNQJA4Ni/X9q5U2rfXjptOTQAAKi9KjRj1aVLF+3YsUN/+tOfNHz4cOXl5WnEiBHasGGD2rZt6+saASAgHJk7T6Z1a+mSS6TWraWFC/1dEgAACBCWqeGbT+Xm5sput8vhcCg8PNzf5QCoppZ+sE5DrrxQtt//J9NmkzIzmbkCAKCaqMxsUKGlgJJ0/Phxbd68WQcPHpTL5fI4duWVV3pdGAAEiixHgd584zNdefrPoZxOadcughUAAKhYsProo4904403Kjs7u9gxy7LkdDq9LgwAAkVGdp52N2ohp2V5zFiZIJusdu38WBkAAAgUFfqO1d13362RI0cqKytLLpfL40aoAlDTxEWG6aA9UpMH3a1TVuF/Nk9ZQXI8PZfZKgAAIKmCM1a//PKL7r33XkVFRfm6HgAIONH2EKUkJmiKLH0Z10NtjmRp1HX9deXQC/xdGgAACBAVClbXXHONPv/8czoAAqg1knrFqG98U2Xm5Cs2IlTR9hB/lwQAAAJIhboC5ufna+TIkWratKkSEhJUt25dj+MTJkzwWYHeoisgAAAAACkAuwK+8cYb+vjjj1W/fn19/vnnsizLfcyyrIAKVgAAAABQ2SoUrB5++GFNnz5dDz30kIKCKtT/AgAAAABqjAqlopMnTyopKYlQBQAAAACqYLBKTk7WW2+95etaAAAAAKBaqtBSQKfTqVmzZmn58uXq2rVrseYVc+bM8UlxAOArWY4CZWTnKS4yjI5+AADA5yoUrLZs2aLu3btLkrZu3epx7PeNLAAgELyVtleTU7fIZaQgS0pJTFBSrxh/lwUAAGqQCgWrlStX+roOAKgUWY4Cd6iSJJeRpqRuVd/4psxcAQAAn6H7BIAaLSM7zx2qijiNUWZOvn8KAgAANVKZZ6xGjBihl19+WeHh4RoxYsQZz12yZInXhQGAL8RFhinIkke4slmWYiNC/VcUAACoccocrOx2u/v7U3a7vdIKAgBfiraHKCUxQVNSt8ppjGyWpRmJXVgGCAAAfMoyxpizn1boscce0/3336/Q0Orzk97c3FzZ7XY5HA6Fh4f7uxwAfpLlKFBmTr5iI0IJVQAA1FKVmQ3KFaxsNpuysrLUrFkznxZRmQhWAAAAAKTKzQblal5RjgwGAAAAALVGubsCsk8VAAAAAHgq9z5W8fHxZw1Xhw4dqnBBAAAAAFDdlDtYTZ8+na6AAAAAAPA75Q5Wo0aNqlbNKwBUb1mOAmVk5ykuMoxufgAAIGCVK1jx/SoAVemttL2anLpFLiMFWVJKYoKSesX4uywAAIBi6AoIICBlOQrcoUqSXEaakrpVWY4C/xYGAABQgnLNWLlcrsqqAwA8ZGTnuUNVEacxyszJZ0kgAAAIOOVutw4AVSEuMkxBp60+tlmWYiNC/VMQAADAGRCsAASkaHuIUhITZPvfdzttlqUZiV2YrQIAAAGp3F0BAaCqJPWKUd/4psrMyVdsRCihCgAABCyCFYCAFm0PIVABAICAx1JAAAAAAPASwQoAAAAAvESwAgAAAAAvEawAAAAAwEsEKwCVJstRoDXp2cpyFPi7FAAAgEpFV0AAleKttL2anLpFLiMFWVJKYoKSesX4uywAAIBKEfAzVgcOHNCf//xnRUREKCQkRAkJCfr222/9XRaAM8hyFLhDlSS5jDQldSszVwAAoMYK6Bmrw4cPq0+fPurfv7+WLVumpk2baufOnWrcuLG/SwNwBhnZee5QVcRpjDJz8tmTCgAA1EgBHaxmzpypVq1a6aWXXnKPxcXF+bEiAGURFxmmIEse4cpmWYqNCPVfUQAAAJUooJcCLl26VD179tTIkSPVrFkzde/eXS+88MIZH3PixAnl5uZ63ABUrWh7iFISE2SzLEmFoWpGYhdmqwAAQI1lGWPM2U/zj/r160uS7r33Xo0cOVJpaWmaOHGinn/+eSUnJ5f4mEcffVTTp08vNu5wOBQeHl6p9QLwlOUoUGZOvmIjQglVAADA73Jzc2W32yslGwR0sKpXr5569uypNWvWuMcmTJigtLQ0rV27tsTHnDhxQidOnHDfz83NVatWrQhWAAAAQC1XmcEqoJcCRkdHq1OnTh5jHTt21N69e0t9THBwsMLDwz1uAAAAAFCZAjpY9enTR9u3b/cY27Fjh1q3bu2nigAAAACguIAOVvfcc4++/vprzZgxQ7t27dLrr7+uBQsWaPz48f4uDQAAAADcAjpY9erVS6mpqXrjjTfUpUsXPf7443r66ac1evRof5cGAAAAAG4B3bzCFyrzC2oAAAAAqo9a27wCgP9kOQq0Jj1bWY4Cf5cCAAAQ8Or4uwAAgeettL2anLpFLiMFWVJKYoKSesX4uywAAICAxYwVAA9ZjgJ3qJIkl5GmpG5l5goAAOAMCFYAPGRk57lDVRGnMcrMyfdPQQAAANUAwQqAh7jIMAVZnmM2y1JsRKh/CgIAAKgGCFYAPETbQ5SSmCCbVZiubJalGYldFG0P8XNlAAAAgYvmFQCKSeoVo77xTZWZk6/YiFBCFQAAwFkQrACUKNoeQqACAAAoI5YCAgAAAICXCFYAAAAA4CWCFVDT7d8vrVxZ+CsAAAAqBcEKqMkWLpRat5YuuaTw14UL/V0RAABAjUSwAmqgLEeBvl29WWbcOMnlKhx0uaTbbmPmCgAAoBLQFRCoYd5K26vJqVt0QeZmvVEUqoo4ndKuXVLLlv4pDgAAoIZixgqoQbIcBZqcukUuI2U0biHn/zb5dbPZpHbt/FMcAABADUawAmqQjOw8uUzh738Oj9TkQXfrlPW/v+Y2mzR/PrNVAAAAlYClgEANEhcZpiBL7nD19nmX66s252vpoChFdOtMqAIAAKgkzFgBNUi0PUQpiQmy/W8JoM2yNCH5YkUMHUioAgAAqETMWAE1TFKvGPWNb6rMnHzFRoQq2h7i75IAAABqPIIVUANF20MIVAAAAFWIpYAAAAAA4CWCFQAAAAB4iWAFAAAAAF4iWAEAAACAlwhWAAAAAOAlghUQYLIcBVqTnq0sR4G/SwEAAEAZ0W4dCCBvpe3V5NQtchkpyJJSEhOU1CvG32UBAADgLJixAgJElqPAHaokyWWkKalbmbkCAACoBghWQIDIyM5zh6oiTmOUmZPvn4IAAABQZgQrIEDERYYpyPIcs1mWYiNC/VMQAAAAyoxgBQSIaHuIUhITZLMK05XNsjQjsYui7SF+rgwAAABnQ/MKIIAk9YpR3/imyszJV2xEKKEKAACgmiBYAQEm2h5CoAIAAKhmWAoIAAAAAF4iWAEAAACAlwhWAAAAAOAlghUAAAAAeIlgBQAAAABeIlgBPpLlKNCa9GxlOQr8XQoAAACqGO3WAR94K22vJqdukctIQZaUkpigpF4x/i4LAAAAVYQZK8BLWY4Cd6iSJJeRpqRuZeYKAACgFiFYAV7KyM5zh6oiTmOUmZPvn4IAAABQ5QhWgJfiIsMUZHmO2SxLsRGh/ikIAAAAVY5gBXgp2h6ilMQE2azCdGWzLM1I7KJoe4ifKwMAAEBVoXkF4ANJvWLUN76pMnPyFRsRSqgCAACoZQhWgI9E20MIVAAAALUUSwEBAAAAwEsEKwAAAADwEsEKAAAAALxEsAIAAAAALxGsAAAAAMBLBCtAUpajQGvSs5XlKPB3KQAAAKiGaLeOWu+ttL2anLpFLiMFWVJKYoKSesX4uywAAABUI8xYoVbLchS4Q5UkuYw0JXUrM1cAAAAoF4IVarWM7Dx3qCriNEaZOfn+KQgAAADVEsEKtVpcZJiCLM8xm2UpNiLUPwUBAACgWiJYoVaLtocoJTFBNqswXdksSzMSuyjaHuLnygAAAFCd0LwCtV5Srxj1jW+qzJx8xUaEEqoAAABQbgQrQIUzVwQqAAAAVBRLAQEAAADASwQr1Ez790srVxb+CgAAAFQyghVqnoULpdatpUsuKfx14UJ/VwQAAIAajmCFmmX/fmncOMnlKrzvckm33cbMFQAAACoVwQo1y86d/xeqijid0q5d/qkHAAAAtQJdAVHtZTkKlJGdp7jIMEW3by8FBXmGK5tNatfOfwUCAACgxiNYoVp7K22vJqdukctIQZaUkpigpAULCpf/OZ2FoWr+fKllS3+XCgAAgBrMMsYYfxdRmXJzc2W32+VwOBQeHu7vcuBDWY4C9Zn5mVy/u4JtlqXVD/ZX9NGcwuV/7doRqgAAACCpcrMBM1aotjKy8zxClSQ5jVFmTr6i27QkUAEAAKDK0LwC1VZcZJiCLM8xm2UpNiLUPwUBAACg1iJYodqKtocoJTFBNqswXdksSzMSuyjaHuLnygAAAFDbsBQQ1VpSrxj1jW+qzJx8xUaEEqoAAADgFwQrVHvR9hACFQAAAPyKpYAAAAAA4CWCFQAAAAB4iWAFv9q077BeWJWuTfsO+7sUAAAAoML4jhX85r5FG7V4/QH3/at7nKPZI7v5ryAAAACggqrVjNWTTz4py7I0adIkf5cCL23ad9gjVEnS4vUHmLkCAABAtVRtglVaWprmz5+vrl27+rsU+MA3mYdKHP92D8EKAAAA1U+1CFbHjh3T6NGj9cILL6hx48b+Lgc+8IfYJiWO92zNny8AAACqn2oRrMaPH68hQ4ZowIABZz33xIkTys3N9bgh8DQLr1+ucQAAACCQBXywevPNN7V+/XqlpKSU6fyUlBTZ7Xb3rVWrVpVcISoiIzuvxPHMnPwqrgQAAADwXkAHq3379mnixIl67bXXVL9+2WYyJk+eLIfD4b7t27evkqtERcRFhinI8hyzWZZiI0L9UxAAAADghYAOVt99950OHjyoHj16qE6dOqpTp46++OILPfPMM6pTp46cTmexxwQHBys8PNzjhsATbQ9RSmKCbFZhurJZlmYkdlG0PcTPlQEAAADlF9D7WF166aXasmWLx9hNN92kDh066MEHH5TNZvNTZfCFpF4x6hvfVJk5+YqNCCVUAQAAoNoK6GDVsGFDdenSxWMsLCxMERERxcZRPUXbQwhUAAAAqPYCeikgAAAAAFQHAT1jVZLPP//c3yUAAAAAgAdmrAAAAADASwQrVNimfYf1wqp0bdp32N+lAAAAAH5V7ZYCIjDct2ijFq8/4L5/dY9zNHtkN/8VBAAAAPgRM1Yot037DnuEKklavP4AM1cAAACotQhWKLdvMg+VOP7tHoIVAAAAaieCFcqtTWRYieOxEaFVXAkAAAAQGAhWKLeQeiV/NS80uG4VVwIAAAAEBoIVyi0uMkxBlueYzbKYsQIAAECtRbBCuUXbQ5SSmCCbVZiubJalGYldFG0P8XNlAAAAgH/Qbh0VktQrRn3jmyozJ1+xEaGEKgAAANRqBCtUWLQ9hEAFAAAAiKWAAAAAAOA1ghUAAAAAeIlgBQAAAABeIlgBAAAAgJcIVgAAAADgJYJVLbRp32G9sCpdm/Yd9ncpAAAAQI1Au/Va5r5FG7V4/QH3/at7nKPZI7v5ryAAAACgBmDGqhbZtO+wR6iSpMXrDzBzBQAAAHiJYFWLfPrjwRLHPytlHAAAAEDZEKxqkciG9UoZD67iSgAAAICahWBVi1zWsXmJ4wM6RlVxJQAAAEDNQrCqRaLtIZo5IkHW/+5bkmaOSFC0PcSfZQEAAADVHl0Ba5mkXjHqG99UmTn5io0IJVQBAAAAPkCwqoWi7SEEKgAAAMCHWAoIAAAAAF4iWAEAAACAlwhWAAAAAOAlghUAAAAAeIlgBQAAAABeIlhVM5v2HdYLq9K1ad9hf5cCAAAA4H9ot16N3LdooxavP+C+f3WPczR7ZDf/FQQAAABAEjNW1camfYc9QpUkLV5/gJkrAAAAIAAQrKqJT388WOL4Z6WMAwAAAKg6BKtqIrJhvVLGg6u4EgAAAACnI1hVE5d1bF7i+ICOUVVcCQAAAIDTEayqiWh7iGaOSJD1v/uWpJkjEhRtD/FnWQAAAABEV8BqJalXjPrGN1VmTr5iI0IJVQAAAECAIFhVM9H2EAIVAAAAEGBYCggAAAAAXiJYAQAAAICXCFYAAAAA4CWCFQAAAAB4iWAFAAAAAF4iWFWhTfsO64VV6dq077C/SwEAAADgQ7RbryL3LdqoxesPuO9f3eMczR7ZzX8FAQAAAPAZZqyqwKZ9hz1ClSQtXn+AmSsAAACghiBYVYFvMg+VOP7tHoIVAAAAUBMQrKrAH2KblDjes3XjKq4EAAAAQGUgWFWB81o11tU9zvEYu7rHOTqvFcEKAAAAqAloXlFFZo/sphv/2Frf7jmsnq0bE6oAAACAGoRgVYXOa0WgAgAAAGoilgICAAAAgJcIVgAAAADgJYIVAAAAAHiJYAUAAAAAXiJYAQAAAICXCFYAAAAA4CWCFQAAAAB4iWAFAAAAAF4iWAEAAACAlwhWAAAAAOAlghUAAAAAeIlgBQAAAABeIlgBAAAAgJcIVgAAAADgJYIVAAAAAHipjr8LqGzGGElSbm6unysBAAAA4E9FmaAoI/hSjQ9WR48elSS1atXKz5UAAAAACARHjx6V3W736XNapjLiWgBxuVz66aef1LBhQ1mW5e9yar3c3Fy1atVK+/btU3h4uL/LAYrhGkUg4/pEoOMaRSAruj63bdumc889V0FBvv1WVI2fsQoKClLLli39XQZOEx4ezn9wEdC4RhHIuD4R6LhGEcjOOeccn4cqieYVAAAAAOA1ghUAAAAAeIlghSoVHBysRx55RMHBwf4uBSgR1ygCGdcnAh3XKAJZZV+fNb55BQAAAABUNmasAAAAAMBLBCsAAAAA8BLBCgAAAAC8RLACAAAAAC8RrFApUlJS1KtXLzVs2FDNmjXTVVddpe3bt3ucc/z4cY0fP14RERFq0KCBrr76av3yyy9+qhi12ZNPPinLsjRp0iT3GNcn/OnAgQP685//rIiICIWEhCghIUHffvut+7gxRtOmTVN0dLRCQkI0YMAA7dy5048VozZxOp2aOnWq4uLiFBISorZt2+rxxx/X7/uhcY2iqnz55ZcaNmyYWrRoIcuy9O6773ocL8u1eOjQIY0ePVrh4eFq1KiRxo4dq2PHjpW7FoIVKsUXX3yh8ePH6+uvv9aKFSv022+/6fLLL1deXp77nHvuuUfvv/++Fi1apC+++EI//fSTRowY4ceqURulpaVp/vz56tq1q8c41yf85fDhw+rTp4/q1q2rZcuWadu2bZo9e7YaN27sPmfWrFl65pln9Pzzz2vdunUKCwvTwIEDdfz4cT9Wjtpi5syZmjdvnp599ln98MMPmjlzpmbNmqW5c+e6z+EaRVXJy8vTeeedp3/+858lHi/LtTh69Gh9//33WrFihT744AN9+eWXGjduXPmLMUAVOHjwoJFkvvjiC2OMMUeOHDF169Y1ixYtcp/zww8/GElm7dq1/ioTtczRo0dN+/btzYoVK0y/fv3MxIkTjTFcn/CvBx980PzpT38q9bjL5TLNmzc3f//7391jR44cMcHBweaNN96oihJRyw0ZMsTcfPPNHmMjRowwo0ePNsZwjcJ/JJnU1FT3/bJci9u2bTOSTFpamvucZcuWGcuyzIEDB8r1+sxYoUo4HA5JUpMmTSRJ3333nX777TcNGDDAfU6HDh0UExOjtWvX+qVG1D7jx4/XkCFDPK5DiesT/rV06VL17NlTI0eOVLNmzdS9e3e98MIL7uMZGRn6+eefPa5Pu92uCy64gOsTVaJ379769NNPtWPHDknSpk2btHr1ag0ePFgS1ygCR1muxbVr16pRo0bq2bOn+5wBAwYoKChI69atK9fr1fFN2UDpXC6XJk2apD59+qhLly6SpJ9//ln16tVTo0aNPM6NiorSzz//7IcqUdu8+eabWr9+vdLS0ood4/qEP+3evVvz5s3TvffeqylTpigtLU0TJkxQvXr1lJyc7L4Go6KiPB7H9Ymq8tBDDyk3N1cdOnSQzWaT0+nUE088odGjR0sS1ygCRlmuxZ9//lnNmjXzOF6nTh01adKk3NcrwQqVbvz48dq6datWr17t71IASdK+ffs0ceJErVixQvXr1/d3OYAHl8ulnj17asaMGZKk7t27a+vWrXr++eeVnJzs5+oA6e2339Zrr72m119/XZ07d9bGjRs1adIktWjRgmsUtRpLAVGp7rrrLn3wwQdauXKlWrZs6R5v3ry5Tp48qSNHjnic/8svv6h58+ZVXCVqm++++04HDx5Ujx49VKdOHdWpU0dffPGFnnnmGdWpU0dRUVFcn/Cb6OhoderUyWOsY8eO2rt3ryS5r8HTu1RyfaKqPPDAA3rooYc0atQoJSQk6IYbbtA999yjlJQUSVyjCBxluRabN2+ugwcPehw/deqUDh06VO7rlWCFSmGM0V133aXU1FR99tlniouL8zh+/vnnq27duvr000/dY9u3b9fevXt14YUXVnW5qGUuvfRSbdmyRRs3bnTfevbsqdGjR7t/z/UJf+nTp0+x7Sl27Nih1q1bS5Li4uLUvHlzj+szNzdX69at4/pElcjPz1dQkOc/IW02m1wulySuUQSOslyLF154oY4cOaLvvvvOfc5nn30ml8ulCy64oHwv6FXrDaAUd9xxh7Hb7ebzzz83WVlZ7lt+fr77nNtvv93ExMSYzz77zHz77bfmwgsvNBdeeKEfq0Zt9vuugMZwfcJ/vvnmG1OnTh3zxBNPmJ07d5rXXnvNhIaGmv/85z/uc5588knTqFEj895775nNmzeb4cOHm7i4OFNQUODHylFbJCcnm3POOcd88MEHJiMjwyxZssRERkaav/zlL+5zuEZRVY4ePWo2bNhgNmzYYCSZOXPmmA0bNpg9e/YYY8p2LQ4aNMh0797drFu3zqxevdq0b9/eXHfddeWuhWCFSiGpxNtLL73kPqegoMDceeedpnHjxiY0NNQkJiaarKws/xWNWu30YMX1CX96//33TZcuXUxwcLDp0KGDWbBggcdxl8tlpk6daqKiokxwcLC59NJLzfbt2/1ULWqb3NxcM3HiRBMTE2Pq169v2rRpYx5++GFz4sQJ9zlco6gqK1euLPHfnMnJycaYsl2LOTk55rrrrjMNGjQw4eHh5qabbjJHjx4tdy2WMb/bJhsAAAAAUG58xwoAAAAAvESwAgAAAAAvEawAAAAAwEsEKwAAAADwEsEKAAAAALxEsAIAAAAALxGsAAAAAMBLBCsAAAAA8BLBCgDgwbIsvfvuu/4uo1KcPHlS7dq105o1a0o9JzMzU5ZlaePGjVVXWCXZtm2bWrZsqby8PH+XAgA1HsEKAGqBMWPGyLIsWZalunXrKioqSpdddpn+9a9/yeVyeZyblZWlwYMHl+l5q1sIe/755xUXF6fevXv7u5Qq0alTJ/3xj3/UnDlz/F0KANR4BCsAqCUGDRqkrKwsZWZmatmyZerfv78mTpyooUOH6tSpU+7zmjdvruDgYD9WWjmMMXr22Wc1duxYf5ciqXD2rCrcdNNNmjdvnsefMQDA9whWAFBLBAcHq3nz5jrnnHPUo0cPTZkyRe+9956WLVuml19+2X3e72ehTp48qbvuukvR0dGqX7++WrdurZSUFElSbGysJCkxMVGWZbnvp6ena/jw4YqKilKDBg3Uq1cvffLJJx61xMbGasaMGbr55pvVsGFDxcTEaMGCBR7n7N+/X9ddd52aNGmisLAw9ezZU+vWrXMff++999SjRw/Vr19fbdq00fTp088YHr777julp6dryJAhHuPffPONunfvrvr166tnz57asGFDscdu3bpVgwcPVoMGDRQVFaUbbrhB2dnZ7uNHjx7V6NGjFRYWpujoaP3jH//QxRdfrEmTJnm858cff1w33nijwsPDNW7cOEnS6tWrddFFFykkJEStWrXShAkTPJbunThxQvfff7/OOecchYWF6YILLtDnn3/uPr5nzx4NGzZMjRs3VlhYmDp37qwPP/zQffyyyy7ToUOH9MUXX5T62QAAvEewAoBa7JJLLtF5552nJUuWlHj8mWee0dKlS/X2229r+/bteu2119wBKi0tTZL00ksvKSsry33/2LFjuuKKK/Tpp59qw4YNGjRokIYNG6a9e/d6PPfs2bPdQebOO+/UHXfcoe3bt7ufo1+/fjpw4ICWLl2qTZs26S9/+Yt72eKqVat04403auLEidq2bZvmz5+vl19+WU888USp73XVqlWKj49Xw4YN3WPHjh3T0KFD1alTJ3333Xd69NFHdf/993s87siRI7rkkkvUvXt3ffvtt/roo4/0yy+/6Nprr3Wfc++99+qrr77S0qVLtWLFCq1atUrr168vVsNTTz2l8847Txs2bNDUqVOVnp6uQYMG6eqrr9bmzZv11ltvafXq1brrrrvcj7nrrru0du1avfnmm9q8ebNGjhypQYMGaefOnZKk8ePH68SJE/ryyy+1ZcsWzZw5Uw0aNHA/vl69eurWrZtWrVpV6mcDAPABAwCo8ZKTk83w4cNLPJaUlGQ6duzovi/JpKamGmOMufvuu80ll1xiXC5XiY/9/bln0rlzZzN37lz3/datW5s///nP7vsul8s0a9bMzJs3zxhjzPz5803Dhg1NTk5Oic936aWXmhkzZniM/fvf/zbR0dGl1jBx4kRzySWXeIzNnz/fREREmIKCAvfYvHnzjCSzYcMGY4wxjz/+uLn88ss9Hrdv3z4jyWzfvt3k5uaaunXrmkWLFrmPHzlyxISGhpqJEyd6vOerrrrK43nGjh1rxo0b5zG2atUqExQUZAoKCsyePXuMzWYzBw4cKPb+J0+ebIwxJiEhwTz66KOlvm9jjElMTDRjxow54zkAAO/U8W+sAwD4mzFGlmWVeGzMmDG67LLLdO6552rQoEEaOnSoLr/88jM+37Fjx/Too4/qv//9r7KysnTq1CkVFBQUm7Hq2rWr+/eWZal58+Y6ePCgJGnjxo3q3r27mjRpUuJrbNq0SV999ZXHDJXT6dTx48eVn5+v0NDQYo8pKChQ/fr1PcZ++OEHde3a1WP8wgsvLPZaK1eu9JgFKpKenq6CggL99ttv+sMf/uAet9vtOvfcc4ud37Nnz2LPvXnzZr322mvuMWOMXC6XMjIytHv3bjmdTsXHx3s87sSJE4qIiJAkTZgwQXfccYc+/vhjDRgwQFdffbXHZytJISEhys/PL1YPAMB3CFYAUMv98MMPiouLK/FYjx49lJGRoWXLlumTTz7RtddeqwEDBuidd94p9fnuv/9+rVixQk899ZTatWunkJAQXXPNNcWaNdStW9fjvmVZ7qV+ISEhZ6z52LFjmj59ukaMGFHs2OnhqUhkZKS2bNlyxuct7bWGDRummTNnFjsWHR2tXbt2lfm5wsLCij33bbfdpgkTJhQ7NyYmRps3b5bNZtN3330nm83mcbwo6N1yyy0aOHCg/vvf/+rjjz9WSkqKZs+erbvvvtt97qFDh9S2bdsy1wkAKD+CFQDUYp999pm2bNmie+65p9RzwsPDlZSUpKSkJF1zzTUaNGiQDh06pCZNmqhu3bpyOp0e53/11VcaM2aMEhMTJRWGh8zMzHLV1bVrV7344ovu1zldjx49tH37drVr167Mz9m9e3fNmzfPY4auY8eO+ve//63jx4+7A9nXX39d7LUWL16s2NhY1alT/H+bbdq0Ud26dZWWlqaYmBhJksPh0I4dO9S3b98z1tSjRw9t27at1PfRvXt3OZ1OHTx4UBdddFGpz9OqVSvdfvvtuv322zV58mS98MILHsFq69atuuaaa85YCwDAOzSvAIBa4sSJE/r555914MABrV+/XjNmzNDw4cM1dOhQ3XjjjSU+Zs6cOXrjjTf0448/aseOHVq0aJGaN2+uRo0aSSrsdPfpp5/q559/1uHDhyVJ7du315IlS7Rx40Zt2rRJ119/fbG9ss7muuuuU/PmzXXVVVfpq6++0u7du7V48WKtXbtWkjRt2jS9+uqrmj59ur7//nv98MMPevPNN/XXv/611Ofs37+/jh07pu+//949dv3118uyLN16663atm2bPvzwQz311FMejxs/frwOHTqk6667TmlpaUpPT9fy5ct10003yel0qmHDhkpOTtYDDzyglStX6vvvv9fYsWMVFBRU6hLLIg8++KDWrFmju+66Sxs3btTOnTv13nvvuZtXxMfHa/To0brxxhu1ZMkSZWRk6JtvvlFKSor++9//SpImTZqk5cuXKyMjQ+vXr9fKlSvVsWNH92tkZmbqwIEDGjBgQLn+DAAA5UOwAoBa4qOPPlJ0dLRiY2M1aNAgrVy5Us8884zee++9YsvMijRs2FCzZs1Sz5491atXL2VmZurDDz9UUFDh/z5mz56tFStWqFWrVurevbukwjDWuHFj9e7dW8OGDdPAgQPVo0ePctVar149ffzxx2rWrJmuuOIKJSQk6Mknn3TXOXDgQH3wwQf6+OOP1atXL/3xj3/UP/7xD7Vu3brU54yIiFBiYqLH95kaNGig999/X1u2bFH37t318MMPF1vy16JFC3311VdyOp26/PLLlZCQoEmTJqlRo0buz2HOnDm68MILNXToUA0YMEB9+vRRx44dS12WWKRr16764osvtGPHDl100UXq3r27pk2bphYtWrjPeemll3TjjTfqvvvu07nnnqurrrrKY3bM6XRq/Pjx6tixowYNGqT4+Hg999xz7se/8cYbuvzyy8/42QAAvGcZY4y/iwAAoCps3rxZl112mdLT00tsRuEreXl5OuecczR79my/bkh88uRJtW/fXq+//rr69OnjtzoAoDZgxgoAUGt07dpVM2fOVEZGhk+fd8OGDXrjjTeUnp6u9evXa/To0ZKk4cOH+/R1ymvv3r2aMmUKoQoAqgAzVgAAeGnDhg265ZZbtH37dtWrV0/nn3++5syZo4SEBH+XBgCoIgQrAAAAAPASSwEBAAAAwEsEKwAAAADwEsEKAAAAALxEsAIAAAAALxGsAAAAAMBLBCsAAAAA8BLBCgAAAAC8RLACAAAAAC/9f0wBimZK7R/hAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10, 6))\n", - "\n", - "ax = obspy.taup.plot_travel_times(source_depth=550, phase_list=[\"P\"],\n", - " ax=ax, fig=fig, verbose=True, show=False, legend=False,\n", - " max_degrees=100, npoints=50)\n", - "\n", - "ax.errorbar(p_dists, p_times/60, yerr=p_error/60, fmt='r.')\n", - "ax.set_title(\"P calculated travel times and data\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# NB - I've added 100 degrees to all PKP distances\n", - "# I've a feeling this is a typo in table VIf...\n", - "pkp_dists = np.array([146.00, 148.00, 150.00, 152.00])\n", - "pkp_times = np.array([1180.50, 1186.11, 1191.25, 1195.87])\n", - "pkp_error = np.array([0.3, 0.3, 0.3, 0.3])" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There were 472 epicentral distances without an arrival\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiDUlEQVR4nO3deViVdf7/8dcNIptwVETFBUENtSRTY0xNzXItTbBcssmlxWq0RWumsKysGRn7ljZtZsvYVFOZJVppmeWe1ahpSpYriOJRA/OQgKKc+/eHP04dWQQ8cBaej+viujz3dt734VZ58bnv98cwTdMUAAAAAOCC+Lm7AAAAAADwBYQrAAAAAHABwhUAAAAAuADhCgAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK4AAAAAwAUIVwAAAADgAoQrACjFm2++KcMwtGnTJneXUiEZGRkyDENvvvlmtb1HTEyMxo8fX23Hr4onnnhChmG4uwyXMwxDTzzxRJX3Hz9+vGJiYlxWj6+5kM939erVMgxDq1evdmlNAHwD4QqAxyoOOMVfQUFBiouL0+TJk3XkyBHHdsU/7Hz44YdO+xcWFmrIkCHy8/PTv//970odE65z6NAhPfHEE9q6davbanj33Xf13HPPue39q4MnfK6onGXLll1QaAbg+eq4uwAAOJ8nn3xSsbGxOnnypNavX6+5c+dq2bJlSktLU0hISKn7nD59WjfeeKOWLVum1157TbfeeusFHxNVc+jQIc2YMUMxMTG67LLL3FLDu+++q7S0NN1///1uef/qUN7n+tprr8lut7unMJRp2bJleumllwhYgA8jXAHweIMHD9bll18uSbr99tsVERGh2bNna8mSJbrppptKbH/69GmNHDlSn376qebNm6fbbrvtgo+J2uPkyZOqW7eu/Py89+aOgIAAd5cAALWS9/7PAaDWuvrqqyVJ6enpJdadOXNGo0eP1pIlSzR37lzdcccdF3TM/Px83XnnnYqIiFB4eLjGjh2rX3/9tcT+n332mfr06aOwsDCFh4crISFB77777nnfNysrS7fddpuaNWumwMBAxcbG6u6771ZhYaEk6dixY3rwwQcVHx+vevXqKTw8XIMHD9YPP/xQofP6+eefNXLkSEVGRio4OFjt2rXTI4884lhf1rM5FXmWqSK1rV69WgkJCZKkCRMmOG7H/OOzYd99950GDRoki8WikJAQ9enTR19//XWJ91u/fr0SEhIUFBSkNm3aaN68eRX6DK666iotXbpU+/fvd7x/8TkX31L6/vvv69FHH1Xz5s0VEhKi3NzcCp3fkSNHVKdOHc2YMaPE++7cuVOGYejFF190LDt+/Ljuv/9+tWzZUoGBgWrbtq1mzZpV6VGm832u535fi5/Je+aZZ/TSSy+pdevWCgkJ0YABA3TgwAGZpqmnnnpKLVq0UHBwsIYNG6Zjx46VeN/PPvtMvXr1UmhoqMLCwnTdddfpxx9/dNrm8OHDmjBhglq0aKHAwEBFRUVp2LBhysjIKPectm3bpvHjx6t169YKCgpS06ZNdeuttyonJ8dpu+Jrc8+ePRo/frzq168vi8WiCRMmKD8/32nbU6dOacqUKYqMjFRYWJiuv/56HTx4sIKfsnTw4EElJiYqNDRUjRs31pQpU3Tq1KkS261bt04jRoxQdHS0AgMD1bJlS02ZMkUFBQWObcaPH6+XXnpJkpxuTS72zDPPqEePHoqIiFBwcLC6du1a4lZnAJ6PkSsAXmfv3r2SpIiICKflZ86c0U033aTU1FS99NJLuvPOOy/4mJMnT1b9+vX1xBNPaOfOnZo7d67279/v+KFcOvsc16233qpLLrlEycnJql+/vrZs2aLPP/9cY8aMKfM9Dx06pD/96U86fvy4Jk6cqPbt2ysrK0sffvih8vPzVbduXe3bt0+LFy/WiBEjFBsbqyNHjmjevHnq06ePduzYoWbNmpV5/G3btqlXr14KCAjQxIkTFRMTo7179+qTTz7RP/7xjwp/NmWpSG0dOnTQk08+qccee0wTJ05Ur169JEk9evSQJK1cuVKDBw9W165d9fjjj8vPz0/z58/X1VdfrXXr1ulPf/qTJGn79u0aMGCAIiMj9cQTT+jMmTN6/PHH1aRJk/PW+cgjj8hms+ngwYOaM2eOJKlevXpO2zz11FOqW7euHnzwQZ06dUp169bVjh07znt+TZo0UZ8+ffTBBx/o8ccfdzrmggUL5O/vrxEjRkg6G9T79OmjrKws3XnnnYqOjtaGDRuUnJwsq9VaqWfCzve5luW///2vCgsLdc899+jYsWN6+umnNXLkSF199dVavXq1HnroIe3Zs0cvvPCCHnzwQcezipL09ttva9y4cRo4cKBmzZql/Px8zZ07V1deeaW2bNniCHM33HCDfvzxR91zzz2KiYnR0aNHtWLFCmVmZpbbZGPFihXat2+fJkyYoKZNm+rHH3/Uq6++qh9//FHffvttibA/cuRIxcbGKiUlRd9//71ef/11NW7cWLNmzXJsc/vtt+udd97RmDFj1KNHD61cuVLXXXddhT7jgoICXXPNNcrMzNS9996rZs2a6e2339bKlStLbLtw4ULl5+fr7rvvVkREhP73v//phRde0MGDB7Vw4UJJ0p133qlDhw5pxYoVevvtt0sc41//+peuv/563XzzzSosLNT777+vESNG6NNPP61wzQA8gAkAHmr+/PmmJPPLL780f/nlF/PAgQPm+++/b0ZERJjBwcHmwYMHTdM0zVWrVpmSzFatWpmSzJdeeumCj1m8XdeuXc3CwkLH/k8//bQpyVyyZIlpmqZ5/PhxMywszOzWrZtZUFDg9F52u73c8xs7dqzp5+dnbty4scS64n1PnjxpFhUVOa1LT083AwMDzSeffNJpmSRz/vz5jmW9e/c2w8LCzP3795dZ17hx48xWrVqVeP/HH3/cPPe/iFatWpnjxo1zvK5obRs3bixRW3EdF110kTlw4ECnmvLz883Y2Fizf//+jmWJiYlmUFCQ07ns2LHD9Pf3L1Fnaa677rpSz7P42mndurWZn5/vtK6i5zdv3jxTkrl9+3anbS+++GLz6quvdrx+6qmnzNDQUHPXrl1O2z388MOmv7+/mZmZ6VgmyXz88cfLPaeyPlfTLPl9Lb4+IiMjzePHjzuWJycnm5LMTp06madPn3Ysv+mmm8y6deuaJ0+eNE3TNH/77Tezfv365h133OH0PocPHzYtFotj+a+//mpKMv/v//6v3NpLc+7nb5qm+d5775mSzLVr1zqWFV+bt956q9O2SUlJZkREhOP11q1bTUnmX/7yF6ftxowZU6HP97nnnjMlmR988IFjWV5entm2bVtTkrlq1apya09JSTENw3C6ZidNmlTm9XruMQoLC82OHTs6XUMAPB+3BQLweP369VNkZKRatmyp0aNHq169ekpNTVXz5s2dtiu+RSs2NtZlx5w4caLT8yt333236tSpo2XLlkk6+9v23377TQ8//LCCgoKc9i3vtjq73a7Fixdr6NChjme/Sts3MDDQ8exPUVGRcnJyVK9ePbVr107ff/99mcf/5ZdftHbtWt16662Kjo6ucF2VUdXaim3dulW7d+/WmDFjlJOTo+zsbGVnZysvL0/XXHON1q5dK7vdrqKiIi1fvlyJiYlO59KhQwcNHDjQJecybtw4BQcHV+n8hg8frjp16mjBggWOZWlpadqxY4dGjRrlWLZw4UL16tVLDRo0cJxrdna2+vXrp6KiIq1du9Yl51KeESNGyGKxOF5369ZNkvTnP/9ZderUcVpeWFiorKwsSWev8+PHj+umm25yqt3f31/dunXTqlWrJEnBwcGqW7euVq9eXerts+X54+d/8uRJZWdn64orrpCkUq+nu+66y+l1r169lJOTo9zcXEly/B299957nbaraFOTZcuWKSoqSjfeeKNjWUhIiCZOnFhu7Xl5ecrOzlaPHj1kmqa2bNlSoff74zF+/fVX2Ww29erVq0J/lwB4Dm4LBODxXnrpJcXFxalOnTpq0qSJ2rVrV2qzgaefflrPPfecbrzxRn3xxRfq2bPnBR/zoosucnpdr149RUVFOZ4fKb6dsGPHjpU6p19++UW5ubnn3c9ut+tf//qXXn75ZaWnp6uoqMix7txbGP9o3759VaqrMqpaW7Hdu3dLOhtsymKz2XTq1CkVFBSU+F5IUrt27Rw/RF+I0gJ5Rc+vUaNGuuaaa/TBBx/oqaeeknT2lsA6depo+PDhju12796tbdu2KTIystQajh49esHncT7nBu3ioNWyZctSlxcHpOLvVfGziecKDw+XdDaQzpo1Sw888ICaNGmiK664QkOGDNHYsWPVtGnTcms7duyYZsyYoffff7/EZ2Gz2c57Lg0aNHDUHB4erv3798vPz09t2rRx2q5du3bl1lFs//79atu2bYlfRpS2f2Zmph577DF9/PHHJUJlabWX5tNPP9Xf//53bd261em5Ll+cxw3wZYQrAB7vT3/6U6mjO+eKiorSihUrdOWVV+q6667TmjVr1KlTpws6prvNnDlT06dP16233qqnnnpKDRs2lJ+fn+6//36XtNou6we3PwaJ6qqteJv/+7//K7NFe7169UptIOBq545aSZU7v9GjR2vChAnaunWrLrvsMn3wwQe65ppr1KhRI8c2drtd/fv319/+9rdSa4iLi3PtSZXC39+/UstN05T0+/fq7bffLjUk/XHU6/7779fQoUO1ePFiLV++XNOnT1dKSopWrlypzp07l1nbyJEjtWHDBv31r3/VZZddpnr16slut2vQoEGlXk/nq7mmFBUVqX///jp27JgeeughtW/fXqGhocrKytL48eMr9Hdh3bp1uv7669W7d2+9/PLLioqKUkBAgObPn1+hxjgAPAfhCoBPad26tZYvX64+ffpo4MCBWrduXakjHhW1e/du9e3b1/H6xIkTslqtuvbaayXJ8VvxtLQ0tW3btsLHjYyMVHh4uNLS0srd7sMPP1Tfvn31xhtvOC0/fvy40w/u52rdurWjrvI0aNBAx48fL7F8//795e5XmdrKCnDFn114eLj69etX5vsUdzosHj35o507d563zvJqKE9lPvvExETdeeedjlsDd+3apeTkZKdt2rRpoxMnTpR7rpVRkyMaxd+rxo0bV6j+Nm3a6IEHHtADDzyg3bt367LLLtOzzz6rd955p9Ttf/31V3311VeaMWOGHnvsMcfy0r7nFdWqVSvZ7Xbt3bvXabSpotdMq1atlJaWJtM0nT7rc/ffvn27du3apf/85z8aO3asY/mKFStKHLOs79lHH32koKAgLV++XIGBgY7l8+fPr1CtADwHz1wB8Dnx8fFaunSpTpw4of79+zueG6mKV199VadPn3a8njt3rs6cOaPBgwdLkgYMGKCwsDClpKTo5MmTTvuW9xt0Pz8/JSYm6pNPPtGmTZtKrC/e19/fv8RxFi5ceN5zioyMVO/evfXvf/9bmZmZZdbVpk0b2Ww2bdu2zbHMarUqNTW13ONXprbQ0FBJKhHiunbtqjZt2uiZZ57RiRMnShz/l19+cbzPwIEDtXjxYqdz+emnn7R8+fLz1llcQ0VvzypWmc++fv36GjhwoD744AO9//77qlu3rhITE522GTlypL755ptSaz5+/LjOnDlTqfrK+lyrw8CBAxUeHq6ZM2c6/X0oVvy9ys/PL/H3oE2bNgoLCyt3BLJ4FOrcz7syHRTPVfx39Pnnn6/SMa+99lodOnTIqR16fn6+Xn31VaftSqvdNE3961//KnHMsr5n/v7+MgzDacQ4IyNDixcvrlCtADwHI1cAfFL37t21aNEiDR06VP3799e6desq9BzQuQoLC3XNNddo5MiR2rlzp15++WVdeeWVuv766yWdHXWZM2eObr/9diUkJGjMmDFq0KCBfvjhB+Xn5+s///lPmceeOXOmvvjiC/Xp00cTJ05Uhw4dZLVatXDhQq1fv17169fXkCFD9OSTT2rChAnq0aOHtm/frv/+97+OkanyPP/887ryyivVpUsXTZw4UbGxscrIyNDSpUu1detWSWdvZ3vooYeUlJSke++919FeOy4u7rwP0le0tjZt2qh+/fp65ZVXFBYWptDQUHXr1k2xsbF6/fXXNXjwYF1yySWaMGGCmjdvrqysLK1atUrh4eH65JNPJEkzZszQ559/rl69eukvf/mLzpw5oxdeeEGXXHKJUzAsS9euXbVgwQJNnTpVCQkJqlevnoYOHeqS8ys2atQo/fnPf9bLL7+sgQMHqn79+k7r//rXv+rjjz/WkCFDNH78eHXt2lV5eXnavn27PvzwQ2VkZJQ7Gnmu8j5XVwsPD9fcuXN1yy23qEuXLho9erQiIyOVmZmppUuXqmfPnnrxxRe1a9cux9+Xiy++WHXq1FFqaqqOHDmi0aNHl3v83r176+mnn9bp06fVvHlzffHFF6XOZVdRl112mW666Sa9/PLLstls6tGjh7766ivt2bOnQvvfcccdevHFFzV27Fht3rxZUVFRevvttxUSEuK0Xfv27dWmTRs9+OCDysrKUnh4uD766KNSG3p07dpV0tkmGwMHDpS/v79Gjx6t6667TrNnz9agQYM0ZswYHT16VC+99JLatm1boesbgAdxS49CAKiA4nbopbUq/6PidtoLFy4ssW7BggWmn5+fmZCQYObm5lb4mMXbrVmzxpw4caLZoEEDs169eubNN99s5uTklNj+448/Nnv06GEGBweb4eHh5p/+9CfzvffeO+857t+/3xw7dqwZGRlpBgYGmq1btzYnTZpknjp1yjTNs+3AH3jgATMqKsoMDg42e/bsaX7zzTdmnz59zD59+jiOU1ordtM0zbS0NDMpKcmsX7++GRQUZLZr186cPn260zZffPGF2bFjR7Nu3bpmu3btzHfeeafCrdgrUptpmuaSJUvMiy++2KxTp06JOrds2WIOHz7cjIiIMAMDA81WrVqZI0eONL/66iunY6xZs8bs2rWrWbduXbN169bmK6+8UmqdpTlx4oQ5ZswYs379+o62/aZZ/rVTmfMzTdPMzc01g4ODTUnmO++8U2odv/32m5mcnGy2bdvWrFu3rtmoUSOzR48e5jPPPOPU8l8VaBVummV/rmW1Yj+3RXpZ51/W35NVq1aZAwcONC0WixkUFGS2adPGHD9+vLlp0ybTNE0zOzvbnDRpktm+fXszNDTUtFgsZrdu3ZzamZfl4MGDjmvVYrGYI0aMMA8dOlTisyj+nv/yyy+l1pyenu5YVlBQYN57771mRESEGRoaag4dOtQ8cOBAhT/f/fv3m9dff70ZEhJiNmrUyLzvvvvMzz//vEQr9h07dpj9+vUz69WrZzZq1Mi84447zB9++KHEtX7mzBnznnvuMSMjI03DMJyu3TfeeMO86KKLzMDAQLN9+/bm/PnzK3x9A/AchmnW8JOfAAAAAOCDeOYKAAAAAFyAcAUAAAAALkC4AgAAAAAXIFwBAAAAgAsQrgAAAADABQhXAAAAAOACTCJcCrvdrkOHDiksLEyGYbi7HAAAAABuYpqmfvvtNzVr1kx+fuWPTRGuSnHo0CG1bNnS3WUAAAAA8BAHDhxQixYtyt2GcFWKsLAwSWc/wPDwcDdXAwAAAMBdcnNz1bJlS0dGKA/hqhTFtwKGh4cTrgAAAABU6HEhGloAAAAAgAsQrgAAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAAC4AOEKAAAAAFyAcAUAAAAALkC4AgAAAAAXIFwBAAAAgAsQrgAAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAAC4AOEKAAAAAFyAcAUAAAAALkC4AgAAAOBRrLYCbdibLautwN2lVEoddxcAAAAAAMUWbMxUcup22U3Jz5BSkuI1KiHa3WVVCCNXAAAAADyC1VbgCFaSZDelaalpXjOCRbgCAAAA4BHSs/McwapYkWkqIyffPQVVEuEKAAAAgEeIbRQqP8N5mb9hKCYixD0FVRLhCgAAAIBHiLIEKyUpXv7G2YTlbxiamdRRUZZgN1dWMTS0AAAAAOAxRiVEq3dcpDJy8hUTEeI1wUoiXAEAAADwMFGWYK8KVcW4LRAAAAAAXIBwBQAAAAAuQLgCAAAAABcgXAEAAACACxCuAAAAAMAFCFcAAAAA4AKEKwAAAABwAcIVAAAAALgA4QoAAABAhVhtBdqwN1tWW4G7S/FIddxdAAAAAADPt2BjppJTt8tuSn6GlJIUr1EJ0e4uy6MwcgUAAACgXFZbgSNYSZLdlKalpjGCdQ7CFQAAAIBypWfnOYJVsSLTVEZOvnsK8lCEKwAAAADlim0UKj/DeZm/YSgmIsQ9BXkowhUAAACAckVZgpWSFC9/42zC8jcMzUzqqChLsJsr8yw0tAAAAABwXqMSotU7LlIZOfmKiQghWJWCcAUAAACgQqIswYSqcnBbIAAAAAC4AOEKAAAAAFyAcAUAAAAALkC4AgAAAAAXIFwBAAAAgAsQrgAAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAODlrLYCbdibLautwN2l1Gp13F0AAAAAgKpbsDFTyanbZTclP0NKSYrXqIRod5dVKzFyBQAAAHgpq63AEawkyW5K01LTGMFyE8IVAAAA4KXSs/McwapYkWkqIyffPQXVcoQrAAAAwEvFNgqVn+G8zN8wFBMR4p6CajnCFQAAAOCloizBSkmKl79xNmH5G4ZmJnVUlCXYzZXVTjS0AAAAALzYqIRo9Y6LVEZOvmIiQghWbkS4AgAAALxclCWYUOUBuC0QAAAAAFyAcAUAAAAALkC4AgAAAAAXIFwBAAAAgAsQrgAAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAAC4AOEKAAAAqCZWW4E27M2W1Vbg7lJQA+q4uwAAAADAFy3YmKnk1O2ym5KfIaUkxWtUQrS7y0I1YuQKAAAAcDGrrcARrCTJbkrTUtMYwfJxbg1XKSkpSkhIUFhYmBo3bqzExETt3LnTaZuTJ09q0qRJioiIUL169XTDDTfoyJEj5R530aJFGjBggCIiImQYhrZu3VqNZwEAAAA4S8/OcwSrYkWmqYycfPcUhBrh1nC1Zs0aTZo0Sd9++61WrFih06dPa8CAAcrLy3NsM2XKFH3yySdauHCh1qxZo0OHDmn48OHlHjcvL09XXnmlZs2aVd2nAAAAAJQQ2yhUfobzMn/DUExEiHsKQo0wTNM0z79Zzfjll1/UuHFjrVmzRr1795bNZlNkZKTeffdd3XjjjZKkn3/+WR06dNA333yjK664otzjZWRkKDY2Vlu2bNFll11W5nanTp3SqVOnHK9zc3PVsmVL2Ww2hYeHu+TcAAAAULss2JipaalpKjJN+RuGZiZ15JkrL5SbmyuLxVKhbOBRDS1sNpskqWHDhpKkzZs36/Tp0+rXr59jm/bt2ys6OrpC4aqiUlJSNGPGDJccCwAAAJCkUQnR6h0XqYycfMVEhCjKEuzuklDNPKahhd1u1/3336+ePXuqY8eOkqTDhw+rbt26ql+/vtO2TZo00eHDh1323snJybLZbI6vAwcOuOzYAAAAqL2iLMHq3jqCYFVLeMzI1aRJk5SWlqb169fX+HsHBgYqMDCwxt8XAAAAgO/wiJGryZMn69NPP9WqVavUokULx/KmTZuqsLBQx48fd9r+yJEjatq0aQ1XCQAAAABlc2u4Mk1TkydPVmpqqlauXKnY2Fin9V27dlVAQIC++uorx7KdO3cqMzNT3bt3r+lyAQAAAKBMbr0tcNKkSXr33Xe1ZMkShYWFOZ6jslgsCg4OlsVi0W233aapU6eqYcOGCg8P1z333KPu3bs7NbNo3769UlJSlJSUJEk6duyYMjMzdejQIUlyzJ3VtGlTRrwAAAAAVAu3jlzNnTtXNptNV111laKiohxfCxYscGwzZ84cDRkyRDfccIN69+6tpk2batGiRU7H2blzp6PToCR9/PHH6ty5s6677jpJ0ujRo9W5c2e98sorNXNiAAAAAGodj5rnylNUppc9AAAAAN9VmWzgEQ0tAAAAAMDbEa4AAAAAwAUIVwAAAADgAoQrAAAA1DpWW4E27M2W1Vbg7lLgQ9zaih0AAACoaQs2Zio5dbvspuRnSClJ8RqVEO3usuADGLkCAABArWG1FTiClSTZTWlaahojWHAJwhUAAABqjfTsPEewKlZkmsrIyXdPQfAphCsAAADUGrGNQuVnOC/zNwzFRIS4pyD4FMIVAAAAao0oS7BSkuLlb5xNWP6GoZlJHRVlCXZzZfAFNLQAAABArTIqIVq94yKVkZOvmIgQghVchnAFAACAWifKEkyogstxWyAAAAAAuADhCgAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK4AAAAAwAUIVwAAAADgAoQrAAAAAHABwhUAAAA8htVWoA17s2W1Fbi7FKDS6ri7AAAAAECSFmzMVHLqdtlNyc+QUpLiNSoh2t1lARXGyBUAAADczmorcAQrSbKb0rTUNEaw4FUIVwAAAHC79Ow8R7AqVmSaysjJd09BQBUQrgAAAOB2sY1C5Wc4L/M3DMVEhLinIKAKCFcAAABwuyhLsFKS4uVvnE1Y/oahmUkdFWUJdnNlQMXR0AIAAAAeYVRCtHrHRSojJ18xESEEK3gdwhUAAAA8RpQlmFAFr8VtgQAAAADgAoQrAAAAAHABwhUAAAAAuADhCgAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK4AAAAAwAUIVwAAACiX1VagDXuzZbUVuLsUwKPVcXcBAAAA8FwLNmYqOXW77KbkZ0gpSfEalRDt7rIAj8TIFQAAAEpltRU4gpUk2U1pWmoaI1hAGQhXAAAAKFV6dp4jWBUrMk1l5OS7pyDAwxGuAAAAUKrYRqHyM5yX+RuGYiJC3FMQ4OEIVwAAAChVlCVYKUnx8jfOJix/w9DMpI6KsgS7uTLAM9HQAgAAAGUalRCt3nGRysjJV0xECMEKKAfhCgAAAOWKsgQTqoAK4LZAAAAAAHABwhUAAAAAuADhCgAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK4AAAAAwAUIVwAAAADgAoQrAAAAL2W1FWjD3mxZbQXuLgWApDruLgAAAACVt2BjppJTt8tuSn6GlJIUr1EJ0e4uC6jVGLkCAADwMlZbgSNYSZLdlKalpjGCBbgZ4QoAAMDLpGfnOYJVsSLTVEZOvnsKAiCJcAUAAOB1YhuFys9wXuZvGIqJCHFPQQAkEa4AAAC8TpQlWClJ8fI3ziYsf8PQzKSOirIEu7kyoHajoQUAAIAXGpUQrd5xkcrIyVdMRAjBCvAAhCsAAAAvFWUJJlQBHoTbAgEAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAAC4AOEKAAAAAFzAreEqJSVFCQkJCgsLU+PGjZWYmKidO3c6bXPy5ElNmjRJERERqlevnm644QYdOXKk3OOapqnHHntMUVFRCg4OVr9+/bR79+7qPBUAAAAAtZxbw9WaNWs0adIkffvtt1qxYoVOnz6tAQMGKC8vz7HNlClT9Mknn2jhwoVas2aNDh06pOHDh5d73KefflrPP/+8XnnlFX333XcKDQ3VwIEDdfLkyeo+JQAAAAC1lGGapunuIor98ssvaty4sdasWaPevXvLZrMpMjJS7777rm688UZJ0s8//6wOHTrom2++0RVXXFHiGKZpqlmzZnrggQf04IMPSpJsNpuaNGmiN998U6NHjz5vHbm5ubJYLLLZbAoPD3ftSQIAAADwGpXJBh71zJXNZpMkNWzYUJK0efNmnT59Wv369XNs0759e0VHR+ubb74p9Rjp6ek6fPiw0z4Wi0XdunUrc59Tp04pNzfX6QsAAKCqrLYCbdibLautwN2lAKhBddxdQDG73a77779fPXv2VMeOHSVJhw8fVt26dVW/fn2nbZs0aaLDhw+Xepzi5U2aNKnwPikpKZoxY8YFngEAAIC0YGOmklO3y25KfoaUkhSvUQnR7i4LQA3wmJGrSZMmKS0tTe+//36Nv3dycrJsNpvj68CBAzVeAwAA8H5WW4EjWEmS3ZSmpaYxggXUEh4RriZPnqxPP/1Uq1atUosWLRzLmzZtqsLCQh0/ftxp+yNHjqhp06alHqt4+bkdBcvbJzAwUOHh4U5fAAAAlZWenecIVsWKTFMZOfnuKQhAjXJruDJNU5MnT1ZqaqpWrlyp2NhYp/Vdu3ZVQECAvvrqK8eynTt3KjMzU927dy/1mLGxsWratKnTPrm5ufruu+/K3AcAAMAVYhuFys9wXuZvGIqJCHFPQQBqlFvD1aRJk/TOO+/o3XffVVhYmA4fPqzDhw+roODs0LnFYtFtt92mqVOnatWqVdq8ebMmTJig7t27O3UKbN++vVJTUyVJhmHo/vvv19///nd9/PHH2r59u8aOHatmzZopMTHRHacJAABqiShLsFKS4uVvnE1Y/oahmUkdFWUJdnNlAGqCWxtazJ07V5J01VVXOS2fP3++xo8fL0maM2eO/Pz8dMMNN+jUqVMaOHCgXn75Zaftd+7c6eg0KEl/+9vflJeXp4kTJ+r48eO68sor9fnnnysoKKhazwcAAGBUQrR6x0UqIydfMREhBCugFvGoea48BfNcAQAAAJC8eJ4rAAAAAPDWueI8Zp4rAAAAAPDmueIYuQIAAADgEbx9rjjCFQAAAACP4O1zxRGuAAAAAHgEb58rjnAFAAAAwCN4+1xxNLQAAAAA4DG8ea44whUAAAAAjxJlCfaqUFWM2wIBAECt4a1z5wDwDoxcAQCAWsGb584BPIXVVqD07DzFNgr1ypGl6ka4AgAAPq+suXN6x0XyAyJQQfyC4vy4LRAAAPg8b587B3A3b5/ct6YQrgAAgM/z9rlzAHfjFxQVQ7gCAAA+z9vnzgHcjV9QVAzPXAEAgFrBm+fOAdyt+BcU01LTVGSa/IKiDIQrAABQa3jr3DmAJ+AXFOdHuAIAAABQIfyConw8cwUAAAB4OSbI9gyMXAEAAABejPmnPAcjVwAAAICXYv4pz0K4AgAAALwU8095FsIVAAAA4KWYf8qzEK4AAAAAL8UE2Z6FhhYAAACAF2P+Kc9BuAIAAG5ntRUoPTtPsY1C+cEQqALmn/IMFxyuTp06pcDAQFfUAgAAaiHaSAPwFZV+5uqzzz7TuHHj1Lp1awUEBCgkJETh4eHq06eP/vGPf+jQoUPVUScAAPBBtJEG4EsqHK5SU1MVFxenW2+9VXXq1NFDDz2kRYsWafny5Xr99dfVp08fffnll2rdurXuuusu/fLLL9VZNwAA8AG0kYavs9oKtGFvNr8wqCUqfFvg008/rTlz5mjw4MHy8yuZyUaOHClJysrK0gsvvKB33nlHU6ZMcV2lAADA5xS3kf5jwKKNNHwFt7zWPoZpmub5N6tdcnNzZbFYZLPZFB4e7u5yAADwaQs2ZmpaapqKTNPRRpofQOHtrLYC9Zy1ssQvDtY/1JfGE16mMtnAJd0Ci4qKtH37drVq1UoNGjRwxSEBAEAtQRtp+KLybnnlGvddVZpE+P7779cbb7wh6Wyw6tOnj7p06aKWLVtq9erVrqwPAADUAlGWYHVvHcEPnfAZxbe8/hG3vPq+KoWrDz/8UJ06dZIkffLJJ0pPT9fPP/+sKVOm6JFHHnFpgQAAAIC3ibIEKyUpXv7G2YRVfMsrv0DwbVV65iooKEh79uxRixYtNHHiRIWEhOi5555Tenq6OnXqpNzc3OqotcbwzBUAAABcwWor4JZXL1eZbFClkasmTZpox44dKioq0ueff67+/ftLkvLz8+Xv71+VQwIAAAA+h1tea5cqNbSYMGGCRo4cqaioKBmGoX79+kmSvvvuO7Vv396lBQIAAACAN6hSuHriiSfUsWNHHThwQCNGjFBgYKAkyd/fXw8//LBLCwQAAABczWorUHp2nmIbhTKqBJe54HmuTp48qaCgIFfV4xF45goAAMB3MbkvKqPan7kqKirSU089pebNm6tevXrat2+fJGn69OmOFu0AAACAp7HaChzBSpLspjQtNU1WW4F7C4NPqFK4+sc//qE333xTTz/9tOrWretY3rFjR73++usuKw4AALiX1VagDXuz+cETPqO8yX2BC1WlcPXWW2/p1Vdf1c033+zUHbBTp076+eefXVYcAABwnwUbM9Vz1kqNef079Zy1Ugs2Zrq7JOCCMbkvqlOVwlVWVpbatm1bYrndbtfp06cvuCgAAOBe3DoFX+XyyX3z8iTDOPuVl+fCSuGNqtQt8OKLL9a6devUqlUrp+UffvihOnfu7JLCAACA+5R36xSd1eDtRiVEq3dcpOsn983KkuLiXHMseKUqhavHHntM48aNU1ZWlux2uxYtWqSdO3fqrbfe0qeffurqGgEAQA0rvnXqjwGLW6fgS6Iswa4JVf/5z+9/7tBBevVV6bbbLvy48EpVui1w2LBh+uSTT/Tll18qNDRUjz32mH766Sd98skn6t+/v6trBAAANczlt04BvujgQemee35/bbdLd955djlqpSqNXElSr169tGLFClfWAgAAPEi13ToFlMOrJvfdvftsoPqjoiJpzx6pRQv31AS3qlK4at26tTZu3KiIiAin5cePH1eXLl0c814BAADv5rJbp4AK8LrJfS+6SPLzcw5Y/v5SKY3fUDtU6bbAjIwMFRUVlVh+6tQpZWVlXXBRAAAAqF28skNlixbSCy/8/trfX5o3j1GrWqxSI1cff/yx48/Lly+XxWJxvC4qKtJXX32lmJgYlxUHAACA2sFrO1T+5S/S9defvRWwbVuCVS1XqXCVmJgoSTIMQ+PGjXNaFxAQoJiYGD377LMuKw4AAAC1g1d3qGzRglAFSZW8LdBut8tutys6OlpHjx51vLbb7Tp16pR27typIUOGVFetAAAA8FF0qIQvqFJDi/T0dFfXAQAAgFqODpXwdlUKV08++WS56x977LEqFQMAAIDajQ6V8GZVClepqalOr0+fPq309HTVqVNHbdq0IVwBAAAAqHWqFK62bNlSYllubq7Gjx+vpKSkCy4KAAAAnsOrJvYF3MgwTdM8/2YVs337dg0dOlQZGRmuOqRb5ObmymKxyGazKTw83N3lAABQAj/soqZ43cS+gItVJhtUaeSqLDabTTabzZWHBAAA5+CHXdSUsib27R0XSagHSlGlcPX88887vTZNU1arVW+//bYGDx7sksIAAEBJ/LCLmuS1E/sCblKlcDVnzhyn135+foqMjNS4ceOUnJzsksIAAEBJ/LCLmuTVE/sCbsA8VwAAeBF+2EVNKp7Yd1pqmopMk4l9gfNw6TNXAACgevHDLmoaE/sCFVelcJWXl6d//vOf+uqrr3T06FHZ7Xan9fv27XNJcQAAoCR+2EVNY2JfoGKqFK5uv/12rVmzRrfccouioqJkGIar6wIAAOXgh10A8DxVClefffaZli5dqp49e7q6HgAAAADwSn5V2alBgwZq2LDhBb/52rVrNXToUDVr1kyGYWjx4sVO648cOaLx48erWbNmCgkJ0aBBg7R79+5yj3n69Gk9+eSTatOmjYKCgtSpUyd9/vnnF1wrAACAp7HaCrRhb7astgJ3lwJAVQxXTz31lB577DHl5+df0Jvn5eWpU6dOeumll0qsM01TiYmJ2rdvn5YsWaItW7aoVatW6tevn/Ly8so85qOPPqp58+bphRde0I4dO3TXXXcpKSlJW7ZsuaBaAQAAPMmCjZnqOWulxrz+nXrOWqkFGzPdXRJQ6xmmaZrn38xZ586dtXfvXpmmqZiYGAUEBDit//777ytfiGEoNTVViYmJkqRdu3apXbt2SktL0yWXXCJJstvtatq0qWbOnKnbb7+91OM0a9ZMjzzyiCZNmuRYdsMNNyg4OFjvvPNOhWrJzc2VxWKRzWZTeHh4pc8FAACgOlltBeo5a2WJlvzrH+rLs3iAi1UmG1TpmaviAFSdTp06JUkKCgpyLPPz81NgYKDWr19fZrg6deqU0z6SFBwcrPXr15f7XsXvJ539AAEAADwVk0kDnqlK4erxxx93dR0ltG/fXtHR0UpOTta8efMUGhqqOXPm6ODBg7JarWXuN3DgQM2ePVu9e/dWmzZt9NVXX2nRokUqKioqc5+UlBTNmDGjOk4DAADA5ZhMGvBMVXrmqiYEBARo0aJF2rVrlxo2bKiQkBCtWrVKgwcPlp9f2WX/61//0kUXXaT27durbt26mjx5siZMmFDuPsnJybLZbI6vAwcOVMcpAQAAuETxZNL+/386HCaTBjxDhUeuGjZsqF27dqlRo0Zq0KBBuXNbHTt2zCXFde3aVVu3bpXNZlNhYaEiIyPVrVs3XX755WXuExkZqcWLF+vkyZPKyclRs2bN9PDDD6t169Zl7hMYGKjAwECX1AwAAFATmEwa8DwVDldz5sxRWFiYJOm5556rrnpKZbFYJEm7d+/Wpk2b9NRTT513n6CgIDVv3lynT5/WRx99pJEjR1Z3mQAAyGorUHp2nmIbhfLDLqodk0kDnqXC4WrcuHGl/vlCnDhxQnv27HG8Tk9P19atW9WwYUNFR0dr4cKFioyMVHR0tLZv36777rtPiYmJGjBggGOfsWPHqnnz5kpJSZEkfffdd8rKytJll12mrKwsPfHEE7Lb7frb3/7mkpoBACjLgo2ZSk7dLrsp+RlSSlK8RiVEu7ssAEANqVJDi2JHjx7V0aNHZbfbnZZfeumlFdp/06ZN6tu3r+P11KlTJZ0Nb2+++aasVqumTp2qI0eOKCoqSmPHjtX06dOdjpGZmen0PNXJkyf16KOPat++fapXr56uvfZavf3226pfv34VzxIAgPOz2gocwUo622hgWmqaesdFMrJQCzGCCdROVZrnavPmzRo3bpx++uknnbu7YRjldubzBsxzBQCorA17szXm9e9KLH/vjivUvXWEGyqCuzCCCfiWap/n6tZbb1VcXJzeeOMNNWnSpNzmFgAA1Aa0xobECCZQ21UpXO3bt08fffSR2rZt6+p6AADwSsWtsaelpqnINGmNXUsxuS9Qu1UpXF1zzTX64YcfCFcAAPwBrbHBCCZQu1UpXL3++usaN26c0tLS1LFjRwUEBDitv/76611SHAAA3obW2LUbI5hA7ValcPXNN9/o66+/1meffVZinS80tAAAAKgqRjCB2svv/JuUdM899+jPf/6zrFar7Ha70xfBCgAA1HZRlmB1bx1BsAJqmSqFq5ycHE2ZMkVNmjRxdT0AAAAA4JWqFK6GDx+uVatWuboWAAAAAPBaVXrmKi4uTsnJyVq/fr3i4+NLNLS49957XVIcAACAK1ltBUrPzlNso1Bu2QPgcoZpmub5N3MWGxtb9gENQ/v27bugotytMrMwAwAA77BgY6Zjgl8/Q0pJiteohGh3lwXAw1UmG1Rp5Co9Pb1KhQEAALiD1VbgCFbS2XmopqWmqXdcJCNYAFymSs9cAQAAeJP07DyniX0lqcg0lZGT756CAPikCoerf/7znyooKKjQtt99952WLl1a5aIAAHA1q61AG/Zmy2qr2P9l8C2xjULlZzgv8zcMxUSEuKcgAD6pwuFqx44dio6O1l/+8hd99tln+uWXXxzrzpw5o23btunll19Wjx49NGrUKIWFhVVLwQAAVNaCjZnqOWulxrz+nXrOWqkFGzPdXRJqWJQlWClJ8fI3ziYsf8PQzKSO3BIIwKUq1dDihx9+0IsvvqgPP/xQubm58vf3V2BgoPLzzw6pd+7cWbfffrvGjx+voKCgaiu6utHQAgB8h9VWoJ6zVjrdEuZvGFr/UF9+sK6FrLYCZeTkKyYihO8/gAqptoYWnTp10muvvaZ58+Zp27Zt2r9/vwoKCtSoUSNddtllatSo0QUVDgCAq5X3rA0/XNc+UZZgvu8Aqk2VugX6+fnpsssu02WXXebicgAAcK3iZ23OHbniWRsAgKvRLRAA4NN41gYAUFOqNHIFAIA3GZUQrd5xkTxr48GstgKlZ+cptlEo3x8AXotwBQCoFXjWxnMt2JjpmODXz5BSkuI1KiHa3WUBQKVxWyAAAHAbq63AEayks8/GTUtNYz4yAF7pgsLVnj17tHz5csfkwpXo6g4AAFBuN0cA8DZVClc5OTnq16+f4uLidO2118pqtUqSbrvtNj3wwAMuLRAAAPiu4m6Of0Q3RwDeqkrhasqUKapTp44yMzMVEvL7P36jRo3S559/7rLiAACAb6ObIwBfUqWGFl988YWWL1+uFi1aOC2/6KKLtH//fpcUBgAAaocyuznm5Un16p3984kTUmio+4oEgAqoUrjKy8tzGrEqduzYMQUGBl5wUQAAoHY5bzfHrCwpLq7mCgKAKqjSbYG9evXSW2+95XhtGIbsdruefvpp9e3b12XFAQCAWuw///n9zx06SG+84b5aAKACDLMKLf7S0tJ0zTXXqEuXLlq5cqWuv/56/fjjjzp27Ji+/vprtWnTpjpqrTG5ubmyWCyy2WwKDw93dzkA4NOYPBalOnhQatVKstt/X+bvL2VkSOc8lgAA1aky2aBKtwV27NhRu3bt0osvvqiwsDCdOHFCw4cP16RJkxQVFVWlogEAtQ+Tx3o+t4Xf3budg5UkFRVJe/YQrgB4rCqNXPk6Rq4AoPpZbQXqOWul0xxH/oah9Q/1ZQTLQ7g1/DJyBcBDVPvIlSSdPHlS27Zt09GjR2U/5zdL119/fVUPCwCoJcqbPJZw5X5WW4EjWEmS3ZSmpaapd1xkzXx/WrSQXnhBmjTp7Gt/f2nePIIVAI9WpXD1+eefa+zYscrOzi6xzjAMFRUVXXBhAADfVjx57LkjV0we6xk8Ivz+5S/S9defvRWwbVuCFQCPV6Vugffcc49GjBghq9Uqu93u9EWwAgBUBJPHerbi8PtHbgm/LVpIV11FsALgFar0zFV4eLi2bNni9V0By8IzVwBQc6y2gpKTx8IjLNiYqWmpaSoyTUf4peEIgNqm2p+5uvHGG7V69WqfDVcAgJpz3slj4TajEqLVOy6S8AsAFVSlkav8/HyNGDFCkZGRio+PV0BAgNP6e++912UFugMjVwAAAACkGhi5eu+99/TFF18oKChIq1evlmH8flO2YRheH64AAAAAoLKqFK4eeeQRzZgxQw8//LD8/KrUEwMAAAAAfEqVklFhYaFGjRpFsAIAwE2stgJt2Jstq63A3aUAAP6/KqWjcePGacGCBa6uBQAAVMCCjZnqOWulxrz+nXrOWqkFGzPdXRIAQFW8LbCoqEhPP/20li9frksvvbREQ4vZs2e7pDgAAODMaitQcup2xwS/dlOalpqm3nGRdPMDADerUrjavn27OnfuLElKS0tzWvfH5hYAAMC10rPzHMGqWJFpKiMnn3AFAG5WpXC1atUqV9cBAAAqILZRqPwMOQUsf8NQTESI+4oCAEiq4jNXAADfR8MEzxRlCVZKUrz8//+dIv6GoZlJHRm1AgAPUOGRq+HDh+vNN99UeHi4hg8fXu62ixYtuuDCAADus2BjpuO5Hj9DSkmK16iEaHeXhf9vVEK0esdFKiMnXzERIQQrAPAQFQ5XFovF8TyVxWKptoIAAO5FwwTvEGUJ5vsBAB6mwuFq/vz5evLJJ/Xggw9q/vz51VkTAMCNaJgAAEDVVOqZqxkzZujEiRPVVQsAwAMUN0z4IxomAABwfpUKV6Zpnn8jAIBXo2HChaERCADUXpVuxc48VgDg+2iYUDU0AgGA2q3S4SouLu68AevYsWNVLggA4BlomFA5NAIBAFQ6XM2YMYNugQAAnINGIACASoer0aNHq3HjxtVRCwAAXqu4EcgfAxaNQACgdqlUQwuetwIAoHQ0AgEAVGrkim6BAACUjUYgAFC7VSpc2e326qoDAACfQCMQAKi9KnVbIAAAAACgdIQrAAAAAHABwhUAeBGrrUAb9mbLaitwdykAAOAclW7FDgBwjwUbMx2T1PoZUkpSvEYlRLu7LK9htRUoPTtPsY1CeSYKAFAtCFcA4AWstgJHsJLOzqU0LTVNveMiCQoVQDAFANQEbgsEAC+Qnp3nNDmtJBWZpjJy8t1TkBcpK5hyayUAwNUIVwDgBWIbhcrvnHnc/Q1DMREh7inIixBMAQA1hXAFAF4gyhKslKR4+RtnE5a/YWhmUkduCawAgikAoKa4NVytXbtWQ4cOVbNmzWQYhhYvXuy0/siRIxo/fryaNWumkJAQDRo0SLt37z7vcZ977jm1a9dOwcHBatmypaZMmaKTJ09W01kAQM0YlRCt9Q/11Xt3XKH1D/XlmaEKIpgCAGqKWxta5OXlqVOnTrr11ls1fPhwp3WmaSoxMVEBAQFasmSJwsPDNXv2bPXr1087duxQaGhoqcd899139fDDD+vf//63evTooV27dmn8+PEyDEOzZ8+uidMCgGoTZQkmFFTBqIRo9Y6LVEZOvmIiQvgMAQDVwq3havDgwRo8eHCp63bv3q1vv/1WaWlpuuSSSyRJc+fOVdOmTfXee+/p9ttvL3W/DRs2qGfPnhozZowkKSYmRjfddJO+++676jkJAIBXIJgCAKqbxz5zderUKUlSUFCQY5mfn58CAwO1fv36Mvfr0aOHNm/erP/973+SpH379mnZsmW69tpry32v3Nxcpy8AAAAAqAyPDVft27dXdHS0kpOT9euvv6qwsFCzZs3SwYMHZbVay9xvzJgxevLJJ3XllVcqICBAbdq00VVXXaVp06aVuU9KSoosFovjq2XLltVxSgAAAAB8mMeGq4CAAC1atEi7du1Sw4YNFRISolWrVmnw4MHy8yu77NWrV2vmzJl6+eWX9f3332vRokVaunSpnnrqqTL3SU5Ols1mc3wdOHCgOk4JAFAKq61AG/ZmM+8UAMDrufWZq/Pp2rWrtm7dKpvNpsLCQkVGRqpbt266/PLLy9xn+vTpuuWWWxzPZMXHxysvL08TJ07UI488UmowCwwMVGBgYLWdBwCgdAs2Zjom+PUzpJSkeLogAgC8lseOXP2RxWJRZGSkdu/erU2bNmnYsGFlbpufn18iQPn7+0s624EQAOAZrLYCR7CSJLspTUtNYwQLAOC13DpydeLECe3Zs8fxOj09XVu3blXDhg0VHR2thQsXKjIyUtHR0dq+fbvuu+8+JSYmasCAAY59xo4dq+bNmyslJUWSNHToUM2ePVudO3dWt27dtGfPHk2fPl1Dhw51hCwAgPulZ+c5glWxItNURk4+Xf0AAF7JreFq06ZN6tu3r+P11KlTJUnjxo3Tm2++KavVqqlTp+rIkSOKiorS2LFjNX36dKdjZGZmOo1UPfroozIMQ48++qiysrIUGRmpoUOH6h//+EfNnBQAoEJiG4XKz5BTwPI3DMVEhLivKAAALoBhcq9cCbm5ubJYLLLZbAoPD3d3OQC8gNVWoPTsPMU2CmXUpRIWbMzUtNQ0FZmm/A1DM5M68swVAMCjVCYbeHRDCwDwBjRlqLpRCdHqHRepjJx8xUSEEEwBAF7NKxpaAICnoinDhYuyBKt76wiCFQDA6xGuAOAClNeUAQAA1C6EKwC4AMVNGf6IpgwAANROhCsAuABRlmClJMXL3zibsIqbMnCLGwAAtQ8NLQDgAvlqUwY6IAIAUDmEKwBwgShLsE8FEDogAgBQedwWCABwQgdEAACqhnAFAHBCB0QAAKqGcAUAcEIHRAAAqoZwBQBwQgdEAACqhoYWAIASfLUDIgAA1YlwBQAola91QAQAoLpxWyAA1EZ5eZJhnP3Ky3N3NQAA+ATCFQCfZrUVaMPebNqIlycry90VAADgE7gtEIDPYiLccvznP7//uUMH6dVXpdtuc189AAD4AEauAPgkX50I1yUjcQcPSvfc8/tru126886zywEAQJUxcgXAJ5U3Ea63Nmlw2Ujc7t1nA9UfFRVJe/ZILVq4plgAAGohRq4A+CRfmwjXpSNxF10k+Z3zz7+/v9S27YUXCgBALUa4AuCTfG0i3PJG4iqtRQvphRd+f+3vL82bx6gVAAAXiNsCAfgsX5oIt3gk7o8B64JG4saNkyZNOvvnHTukuLgLLxIAgFqOkSsAPi3KEqzurSO8OlhJ1TASFxoqmebZL4IVAAAuwcgVAHgJXxqJAwDAFxGuAMCLRFmCCVUAAHgobgsEAAAAABcgXAEAAACACxCuAMAFrLYCbdibXbV5pwAAgE/gmSsAuEALNmY6Jvj1M6SUpHiNSoh2d1kAAKCGMXIFABfAaitwBCvp7DxU01LTGMECAKAWIlwBcAtfuY0uPTvPaWJfSSoyTWXk5LunIAAA4DbcFgigxvnSbXSxjULlZ8gpYPkbhmIiQtxXFAAAcAtGrgDUKF+7jS7KEqyUpHj5G4aks8FqZlJH5qICAKAWYuQKQI0q7zY6bw0koxKi1TsuUhk5+YqJCPHa8wAAABeGcAWgRvnqbXRRlmBCFQAAtRy3BQKoUdxGBwAAfBUjVwBqHLfRAQAAX0S4AuAW3EYHAAB8DbcFAvBpvjKfFgAA8HyMXAHwWb40nxYAAPB8jFwB8Em+Np8WAADwfIQrAD6pvPm0AAAAqgPhCoBPKp5P6498YT4tAADguQhXAHwS82kBAICaRkMLAD6L+bQAAEBNIlwBcGK1FSg9O0+xjUJ9IowwnxYAAKgphCsADrQuBwAAqDqeuQIgidblAAAAF4pwBUASrcsBAAAuFOEKgCRalwMAAFwowhUASTXfutxqK9CGvdncdggAAHwGDS0AONRU63IaZwAAAF/EyBUAJ1GWYHVvHVGtI1Y0zgAAAL6IcAWgRtE4AwAA+CrCFYAaReMMAADgqwhXAGpUTTfOAAAAqCk0tABQ42qqcQYAAEBNIlwBcIsoSzChCgAA+BRuCwQAAAAAFyBcAQAAAIALEK4AAAAAwAUIV4CXsNoKtGFvdrVPtltT7wMAAOBraGgBeIEFGzOVnLpddlPyM6SUpHiNSoj22vcBAADwRYxcAR7OaitwBB5JspvStNQ0l48s1dT7AAAA+CrCFeDh0rPzHIGnWJFpKiMn3yvfBwAAwFcRrgAPF9soVH6G8zJ/w1BMRIhXvg8AAICvcmu4Wrt2rYYOHapmzZrJMAwtXrzYaf2RI0c0fvx4NWvWTCEhIRo0aJB2795d7jGvuuoqGYZR4uu6666rxjMBqk+UJVgpSfHyN84mH3/D0Mykji6fgLem3gcAAMBXubWhRV5enjp16qRbb71Vw4cPd1pnmqYSExMVEBCgJUuWKDw8XLNnz1a/fv20Y8cOhYaGlnrMRYsWqbCw0PE6JydHnTp10ogRI6r1XIDqNCohWr3jIpWRk6+YiJBqCzw19T4AAAC+yK3havDgwRo8eHCp63bv3q1vv/1WaWlpuuSSSyRJc+fOVdOmTfXee+/p9ttvL3W/hg0bOr1+//33FRISQriC14uyBNdI2Kmp9wEAAPA1HvvM1alTpyRJQUFBjmV+fn4KDAzU+vXrK3ycN954Q6NHjy5zpKv4vXJzc52+AAAAAKAyPDZctW/fXtHR0UpOTtavv/6qwsJCzZo1SwcPHpTVaq3QMf73v/8pLS2tzFGuYikpKbJYLI6vli1buuIUAAAAANQiHhuuAgICtGjRIu3atUsNGzZUSEiIVq1apcGDB8vPr2Jlv/HGG4qPj9ef/vSncrdLTk6WzWZzfB04cMAVpwAAAACgFnHrM1fn07VrV23dulU2m02FhYWKjIxUt27ddPnll59337y8PL3//vt68sknz7ttYGCgAgMDXVEyAAAAgFrKY0eu/shisSgyMlK7d+/Wpk2bNGzYsPPus3DhQp06dUp//vOfa6BCoPpZbQXasDdbVluBu0sBAABAKdw6cnXixAnt2bPH8To9PV1bt25Vw4YNFR0drYULFyoyMlLR0dHavn277rvvPiUmJmrAgAGOfcaOHavmzZsrJSXF6dhvvPGGEhMTFRERUWPnA1SXBRszlZy6XXZT8jOklKR4jUqIdndZAAAA+AO3hqtNmzapb9++jtdTp06VJI0bN05vvvmmrFarpk6dqiNHjigqKkpjx47V9OnTnY6RmZlZ4hmsnTt3av369friiy+q/yRQ61ltBUrPzlNso9BqaWFutRU4gpUk2U1pWmqaesdF0jIdAADAgximaZruLsLT5ObmymKxyGazKTw83N3lwIPVxIjShr3ZGvP6dyWWv3fHFerempFZAACA6lSZbOAVz1wBnqisESVXPxMV2yhUfobzMn/DUExEiEvfBwAAABeGcAVUUXp2niNYFSsyTWXk5Lv0faIswUpJipe/cTZh+RuGZiZ15JZAAAAAD+PRrdgBT1Y8ovTHgFVdI0qjEqLVOy5SGTn5iokIIVgBAAB4IEaugCqq6RGlKEuwureOIFgBAAB4KEaugAvAiBIAAACKEa6ACxRlCSZUAQAAgNsCAQAAAMAVCFfABbLaCrRhb7bLW7ADAADAu3BbIHABzp1E+OlBbXRjnw5nV544IYWGurdAAAAA1BhGroAqKm0S4Sc+3vH7BllZ7ikMAAAAbkG4AqqotEmEE7d9+fuLDh2kN96o2aIAAADgNoQroIqKJxEu1jQ3WzO+fOX3BXa7dOed0sGDNV8cAAAAahzhCqiicycRbnP8kPzNc4ayioqkPXvcUB0AAABqGg0t4LOstgKlZ+cptlFotc1D9cdJhFufjJPef/TsiFUxf3+pbdtqeW8AAAB4FsIVfNK5XfxSkuI1KiG6Wt7r90mEI6QXXpAmTTq7wt9fmjdPatGiWt4XAAAAnsUwzXPvY0Jubq4sFotsNpvCw8PdXQ4qyWorUM9ZK52aTfgbhtY/1LfaRrCcHDx49lbAtm0JVgAAAF6uMtmAkSv4nNK6+BWZpjJy8msmXLVoQagCAACohWhoAZ9zbhc/6ezIVUxEiHsKAgAAQK1AuILPObeLn79haGZSx5oZtQIAAECtxW2B8EmjEqLVvmmYNmb8qoSYBurUsoG7SwIAAICPI1zBJ9Vkt0AAAABA4rZA+CCrrcARrCTJbkrTUtNktRW4tzAAAAD4NMIVfE553QIBAACA6kK4gs+hWyAAAADcgXAFn0O3QAAAALgDDS3gk0YlRKt3XKQycvIVExFCsAIAAEC1I1zBZ0VZgglVAAAAqDHcFggAAAAALkC4Qo2z2gq0YW82rdEBAADgU7gtEDWKyX0BAADgqxi5Qo1hcl8AAAD4MsIVagyT+wIAAMCXEa5QY2IbheqcuX1lGGJyXwAAAPgEwhXcyzz/JgAAAIA3IFyhxqRn55XIUqbEbYEAAADwCYQr1JjYRqHyO+e+QH/D4LZAAAAA+ATCFWpMlCVYKUnx8jfOJix/w9DMpI6KsgS7uTIAAADgwjHPFWrUqIRo9Y6LVEZOvmIiQghWAAAA8BmEK9S4KEswoQoAAAA+h9sCAQAAAMAFCFcAAAAA4AKEKwAAAABwAcIVHKy2Am3Ymy2rrcDdpQAAAABeh4YWkCQt2Jip5NTtspuSnyGlJMVrVEK0u8sCAAAAvAYjV5DVVuAIVpJkN6VpqWmMYAEAAACVQLiC0rPzHMGqWJFpKiMn3z0FAQAAAF6IcAWF1vUvdXlIAJcHAAAAUFH89AzlFRaVujz/tL2GKwEAAAC8F+EKim0UKj/DeZm/YSgmIsQ9BQEAAABeiHAFRVmClZIUL3/jbMLyNwzNTOqoKEuwmysDAAAAvAet2CFJGpUQrd5xkcrIyVdMRAjBCgAAAKgkwhUcoizBhCoAAACgirgtEAAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK68gNVWoA17s2W1Fbi7FAAAAABloFugh1uwMVPJqdtlNyU/Q0pJiteohGh3lwUAAADgHIxceTCrrUAPLzobrCTJbkoPp25nBAsAAADwQIQrD7Z5/68yz1lmmtL3+391Sz0AAAAAyka48mBmiWhVvBwAAACApyFcebDLWzWUcc4yQ1LXVg3cUQ4AAACAchCuPFiUJVj/HB7v+Cb5Sfrn8HhFWYLdWRYAAACAUtAt0MONSohW77hIZeTkKyYihGAFAAAAeCi3jlytXbtWQ4cOVbNmzWQYhhYvXuy0/siRIxo/fryaNWumkJAQDRo0SLt37z7vcY8fP65JkyYpKipKgYGBiouL07Jly6rpLKpflCVY3VtHEKwAAAAAD+bWcJWXl6dOnTrppZdeKrHONE0lJiZq3759WrJkibZs2aJWrVqpX79+ysvLK/OYhYWF6t+/vzIyMvThhx9q586deu2119S8efPqPBUAAAAAtZxbbwscPHiwBg8eXOq63bt369tvv1VaWpouueQSSdLcuXPVtGlTvffee7r99ttL3e/f//63jh07pg0bNiggIECSFBMTUy31AwAAAEAxj21ocerUKUlSUFCQY5mfn58CAwO1fv36Mvf7+OOP1b17d02aNElNmjRRx44dNXPmTBUVFZX7Xrm5uU5fAAAAAFAZHhuu2rdvr+joaCUnJ+vXX39VYWGhZs2apYMHD8pqtZa53759+/Thhx+qqKhIy5Yt0/Tp0/Xss8/q73//e5n7pKSkyGKxOL5atmxZHacEAAAAwId5bLgKCAjQokWLtGvXLjVs2FAhISFatWqVBg8eLD+/ssu22+1q3LixXn31VXXt2lWjRo3SI488oldeeaXMfZKTk2Wz2RxfBw4cqI5TAgAAAODDPLoVe9euXbV161bZbDYVFhYqMjJS3bp10+WXX17mPlFRUQoICJC/v79jWYcOHXT48GEVFhaqbt26JfYJDAxUYGBgtZwDAAAAgNrBY0eu/shisSgyMlK7d+/Wpk2bNGzYsDK37dmzp/bs2SO73e5YtmvXLkVFRZUarAAAAADAFdwark6cOKGtW7dq69atkqT09HRt3bpVmZmZkqSFCxdq9erVjnbs/fv3V2JiogYMGOA4xtixY5WcnOx4fffdd+vYsWO67777tGvXLi1dulQzZ87UpEmTavTcAAAAANQubr0tcNOmTerbt6/j9dSpUyVJ48aN05tvvimr1aqpU6fqyJEjioqK0tixYzV9+nSnY2RmZjo9g9WyZUstX75cU6ZM0aWXXqrmzZvrvvvu00MPPVQzJwUAAACgVjJM0zTdXYSnyc3NlcVikc1mU3h4uLvLAQAAAOAmlckGXvHMFQAAAAB4OsIVAAAAALgA4QoAAAAAXIBwBQAAAAAuQLgCAAAAABdwayt2T1XcQDE3N9fNlQAAAABwp+JMUJEm64SrUvz222+Szs6ZBQAAAAC//fabLBZLudswz1Up7Ha7Dh06pLCwMBmG4e5y4GVyc3PVsmVLHThwgHnS4NG4VuENuE7hDbhOfZtpmvrtt9/UrFkz+fmV/1QVI1el8PPzU4sWLdxdBrxceHg4/8DCK3CtwhtwncIbcJ36rvONWBWjoQUAAAAAuADhCgAAAABcgHAFuFhgYKAef/xxBQYGursUoFxcq/AGXKfwBlynKEZDCwAAAABwAUauAAAAAMAFCFcAAAAA4AKEKwAAAABwAcIVAAAAALgA4QqooLVr12ro0KFq1qyZDMPQ4sWLy9z2rrvukmEYeu6550qsW7p0qbp166bg4GA1aNBAiYmJ1VYzah9XXKe7du3SsGHD1KhRI4WHh+vKK6/UqlWrqrdw1Crnu07Hjx8vwzCcvgYNGuS0zbFjx3TzzTcrPDxc9evX12233aYTJ07U4FnA113odZqRkaHbbrtNsbGxCg4OVps2bfT444+rsLCwhs8ENYlwBVRQXl6eOnXqpJdeeqnc7VJTU/Xtt9+qWbNmJdZ99NFHuuWWWzRhwgT98MMP+vrrrzVmzJjqKhm1kCuu0yFDhujMmTNauXKlNm/erE6dOmnIkCE6fPhwdZWNWqYi1+mgQYNktVodX++9957T+ptvvlk//vijVqxYoU8//VRr167VxIkTq7t01CIXep3+/PPPstvtmjdvnn788UfNmTNHr7zyiqZNm1YT5cNdTACVJslMTU0tsfzgwYNm8+bNzbS0NLNVq1bmnDlzHOtOnz5tNm/e3Hz99ddrrlDUalW5Tn/55RdTkrl27VrHstzcXFOSuWLFihqoGrVNadfpuHHjzGHDhpW5z44dO0xJ5saNGx3LPvvsM9MwDDMrK6uaKkVtVpXrtDRPP/20GRsb67rC4HEYuQJcxG6365ZbbtFf//pXXXLJJSXWf//998rKypKfn586d+6sqKgoDR48WGlpaW6oFrXV+a7TiIgItWvXTm+99Zby8vJ05swZzZs3T40bN1bXrl3dUDFqq9WrV6tx48Zq166d7r77buXk5DjWffPNN6pfv74uv/xyx7J+/frJz89P3333nTvKRS1V3nVaGpvNpoYNG9ZQdXAHwhXgIrNmzVKdOnV07733lrp+3759kqQnnnhCjz76qD799FM1aNBAV111lY4dO1aTpaIWO991ahiGvvzyS23ZskVhYWEKCgrS7Nmz9fnnn6tBgwY1XC1qq0GDBumtt97SV199pVmzZmnNmjUaPHiwioqKJEmHDx9W48aNnfapU6eOGjZsyO2rqDHnu07PtWfPHr3wwgu68847a7hS1KQ67i4A8AWbN2/Wv/71L33//fcyDKPUbex2uyTpkUce0Q033CBJmj9/vlq0aKGFCxfyjy2qXUWuU9M0NWnSJDVu3Fjr1q1TcHCwXn/9dQ0dOlQbN25UVFRUDVeN2mj06NGOP8fHx+vSSy9VmzZttHr1al1zzTVurAz4XWWu06ysLA0aNEgjRozQHXfcUdOlogYxcgW4wLp163T06FFFR0erTp06qlOnjvbv368HHnhAMTExkuT4ofTiiy927BcYGKjWrVsrMzPTHWWjlqnIdbpy5Up9+umnev/999WzZ0916dJFL7/8soKDg/Wf//zHvSeAWqt169Zq1KiR9uzZI0lq2rSpjh496rTNmTNndOzYMTVt2tQdJQIlrtNihw4dUt++fdWjRw+9+uqrbqoONYWRK8AFbrnlFvXr189p2cCBAx2dASWpa9euCgwM1M6dO3XllVdKkk6fPq2MjAy1atWqxmtG7VOR6zQ/P1+S5Ofn/Ls3Pz8/x+grUNMOHjyonJwcxy+punfvruPHj2vz5s2OZwFXrlwpu92ubt26ubNU1GLnXqfS2RGrvn37qmvXrpo/f36Jf1vhewhXQAWdOHHC6bdR6enp2rp1qxo2bKjo6GhFREQ4bR8QEKCmTZuqXbt2kqTw8HDdddddevzxx9WyZUu1atVK//d//ydJGjFiRM2dCHzahV6n3bt3V4MGDTRu3Dg99thjCg4O1muvvab09HRdd911NXou8F3lXacNGzbUjBkzdMMNN6hp06bau3ev/va3v6lt27YaOHCgJKlDhw4aNGiQ7rjjDr3yyis6ffq0Jk+erNGjR5c6vQBQFRd6nWZlZemqq65Sq1at9Mwzz+iXX35xHIsRVh/m7naFgLdYtWqVKanE17hx40rd/twW16ZpmoWFheYDDzxgNm7c2AwLCzP79etnpqWlVX/xqDVccZ1u3LjRHDBggNmwYUMzLCzMvOKKK8xly5ZVf/GoNcq7TvPz880BAwaYkZGRZkBAgNmqVSvzjjvuMA8fPux0jJycHPOmm24y69WrZ4aHh5sTJkwwf/vtNzedEXzRhV6n8+fPL3V/fvz2bYZpmmZNBTkAAAAA8FXc+AkAAAAALkC4AgAAAAAXIFwBAAAAgAsQrgAAAADABQhXAAAAAOAChCsAAAAAcAHCFQAAAAC4AOEKAAAAAFyAcAUAcAnDMLR48WJ3l1EtCgsL1bZtW23YsKHMbTIyMmQYhrZu3VpzhVWTHTt2qEWLFsrLy3N3KQDgVQhXAIAyjR8/XoZhyDAMBQQEqEmTJurfv7/+/e9/y263O21rtVo1ePDgCh3X24LYK6+8otjYWPXo0cPdpdSIiy++WFdccYVmz57t7lIAwKsQrgAA5Ro0aJCsVqsyMjL02WefqW/fvrrvvvs0ZMgQnTlzxrFd06ZNFRgY6MZKq4dpmnrxxRd12223ubsUSWdH0WrChAkTNHfuXKfvMQCgfIQrAEC5AgMD1bRpUzVv3lxdunTRtGnTtGTJEn322Wd68803Hdv9cTSqsLBQkydPVlRUlIKCgtSqVSulpKRIkmJiYiRJSUlJMgzD8Xrv3r0aNmyYmjRponr16ikhIUFffvmlUy0xMTGaOXOmbr31VoWFhSk6Olqvvvqq0zYHDx7UTTfdpIYNGyo0NFSXX365vvvuO8f6JUuWqEuXLgoKClLr1q01Y8aMcgPE5s2btXfvXl133XVOy//3v/+pc+fOCgoK0uWXX64tW7aU2DctLU2DBw9WvXr11KRJE91yyy3Kzs52rP/tt9908803KzQ0VFFRUZozZ46uuuoq3X///U7n/NRTT2ns2LEKDw/XxIkTJUnr169Xr169FBwcrJYtW+ree+91uo3v1KlTevDBB9W8eXOFhoaqW7duWr16tWP9/v37NXToUDVo0EChoaG65JJLtGzZMsf6/v3769ixY1qzZk2Znw0AwBnhCgBQaVdffbU6deqkRYsWlbr++eef18cff6wPPvhAO3fu1H//+19HiNq4caMkaf78+bJarY7XJ06c0LXXXquvvvpKW7Zs0aBBgzR06FBlZmY6HfvZZ591hJm//OUvuvvuu7Vz507HMfr06aOsrCx9/PHH+uGHH/S3v/3NcQvjunXrNHbsWN13333asWOH5s2bpzfffFP/+Mc/yjzXdevWKS4uTmFhYY5lJ06c0JAhQ3TxxRdr8+bNeuKJJ/Tggw867Xf8+HFdffXV6ty5szZt2qTPP/9cR44c0ciRIx3bTJ06VV9//bU+/vhjrVixQuvWrdP3339fooZnnnlGnTp10pYtWzR9+nTt3btXgwYN0g033KBt27ZpwYIFWr9+vSZPnuzYZ/Lkyfrmm2/0/vvva9u2bRoxYoQGDRqk3bt3S5ImTZqkU6dOae3atdq+fbtmzZqlevXqOfavW7euLrvsMq1bt67MzwYAcA4TAIAyjBs3zhw2bFip60aNGmV26NDB8VqSmZqaapqmad5zzz3m1Vdfbdrt9lL3/eO25bnkkkvMF154wfG6VatW5p///GfHa7vdbjZu3NicO3euaZqmOW/ePDMsLMzMyckp9XjXXHONOXPmTKdlb7/9thkVFVVmDffdd5959dVXOy2bN2+eGRERYRYUFDiWzZ0715RkbtmyxTRN03zqqafMAQMGOO134MABU5K5c+dOMzc31wwICDAXLlzoWH/8+HEzJCTEvO+++5zOOTEx0ek4t912mzlx4kSnZevWrTP9/PzMgoICc//+/aa/v7+ZlZVV4vyTk5NN0zTN+Ph484knnijzvE3TNJOSkszx48eXuw0A4Hd13BvtAADeyjRNGYZR6rrx48erf//+ateunQYNGqQhQ4ZowIAB5R7vxIkTeuKJJ7R06VJZrVadOXNGBQUFJUauLr30UsefDcNQ06ZNdfToUUnS1q1b1blzZzVs2LDU9/jhhx/09ddfO41UFRUV6eTJk8rPz1dISEiJfQoKChQUFOS07KefftKll17qtLx79+4l3mvVqlVOo0HF9u7dq4KCAp0+fVp/+tOfHMstFovatWtXYvvLL7+8xLG3bdum//73v45lpmnKbrcrPT1d+/btU1FRkeLi4pz2O3XqlCIiIiRJ9957r+6++2598cUX6tevn2644Qanz1aSgoODlZ+fX6IeAEDpCFcAgCr56aefFBsbW+q6Ll26KD09XZ999pm+/PJLjRw5Uv369dOHH35Y5vEefPBBrVixQs8884zatm2r4OBg3XjjjSUaOAQEBDi9NgzDcdtfcHBwuTWfOHFCM2bM0PDhw0usOzdAFWvUqJG2b99e7nHLeq+hQ4dq1qxZJdZFRUVpz549FT5WaGhoiWPfeeeduvfee0tsGx0drW3btsnf31+bN2+Wv7+/0/risHf77bdr4MCBWrp0qb744gulpKTo2Wef1T333OPY9tixY2rTpk2F6wSA2o5wBQCotJUrV2r79u2aMmVKmduEh4dr1KhRGjVqlG688UYNGjRIx44dU8OGDRUQEKCioiKn7b/++muNHz9eSUlJks4GiIyMjErVdemll+r11193vM+5unTpop07d6pt27YVPmbnzp01d+5cp5G6Dh066O2339bJkycdoezbb78t8V4fffSRYmJiVKdOyf9uW7durYCAAG3cuFHR0dGSJJvNpl27dql3797l1tSlSxft2LGjzPPo3LmzioqKdPToUfXq1avM47Rs2VJ33XWX7rrrLiUnJ+u1115zCldpaWm68cYby60FAPA7GloAAMp16tQpHT58WFlZWfr+++81c+ZMDRs2TEOGDNHYsWNL3Wf27Nl677339PPPP2vXrl1auHChmjZtqvr160s62wHvq6++0uHDh/Xrr79Kki666CItWrRIW7du1Q8//KAxY8aUmEvrfG666SY1bdpUiYmJ+vrrr7Vv3z599NFH+uabbyRJjz32mN566y3NmDFDP/74o3766Se9//77evTRR8s8Zt++fXXixAn9+OOPjmVjxoyRYRi64447tGPHDi1btkzPPPOM036TJk3SsWPHdNNNN2njxo3au3evli9frgkTJqioqEhhYWEaN26c/vrXv2rVqlX68ccfddttt8nPz6/M2y2LPfTQQ9qwYYMmT56srVu3avfu3VqyZImjoUVcXJxuvvlmjR07VosWLVJ6err+97//KSUlRUuXLpUk3X///Vq+fLnS09P1/fffa9WqVerQoYPjPTIyMpSVlaV+/fpV6nsAALUZ4QoAUK7PP/9cUVFRiomJ0aBBg7Rq1So9//zzWrJkSYlbzoqFhYXp6aef1uWXX66EhARlZGRo2bJl8vM7+9/Os88+qxUrVqhly5bq3LmzpLOBrEGDBurRo4eGDh2qgQMHqkuXLpWqtW7duvriiy/UuHFjXXvttYqPj9c///lPR50DBw7Up59+qi+++EIJCQm64oorNGfOHLVq1arMY0ZERCgpKcnp+aZ69erpk08+0fbt29W5c2c98sgjJW7/a9asmb7++msVFRVpwIABio+P1/3336/69es7PofZs2ere/fuGjJkiPr166eePXuqQ4cOZd6iWOzSSy/VmjVrtGvXLvXq1UudO3fWY489pmbNmjm2mT9/vsaOHasHHnhA7dq1U2JiotMoWVFRkSZNmqQOHTpo0KBBiouL08svv+zY/7333tOAAQPK/WwAAM4M0zRNdxcBAIAn27Ztm/r376+9e/eW2qDCVfLy8tS8eXM9++yzbp20uLCwUBdddJHeffdd9ezZ0211AIC3YeQKAIDzuPTSSzVr1iylp6e79LhbtmzRe++9p7179+r777/XzTffLEkaNmyYS9+nsjIzMzVt2jSCFQBUEiNXAAC4yZYtW3T77bdr586dqlu3rrp27arZs2crPj7e3aUBAKqAcAUAAAAALsBtgQAAAADgAoQrAAAAAHABwhUAAAAAuADhCgAAAABcgHAFAAAAAC5AuAIAAAAAFyBcAQAAAIALEK4AAAAAwAX+H55Fs0xgdxaVAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(10, 6))\n", - "\n", - "ax = obspy.taup.plot_travel_times(source_depth=0, phase_list=[\"PKP\"],\n", - " ax=ax, fig=fig, verbose=True, show=False, legend=False,\n", - " max_degrees=153, npoints=500)\n", - "\n", - "ax.errorbar(pkp_dists, pkp_times/60, yerr=pkp_error/60, fmt='r.')\n", - "ax.set_title(\"PKPbc calculated travel times and data\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.13" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/PREM_velocity_example.ipynb b/PREM_velocity_example.ipynb deleted file mode 100644 index 866abe5..0000000 --- a/PREM_velocity_example.ipynb +++ /dev/null @@ -1,363 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import earth_model.earth_model as earth_model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## PREM and sesimic wave velocities\n", - "\n", - "P- and S-wave velocities are parameterised in PREM in a similar way to density. For example\n", - "$V_P$ can be written:\n", - "\n", - "$$\n", - "V_P(r) = \\left\\{\n", - "\\begin{array}{ll}\n", - " p_{0,0} + p_{0,1}r + p_{0,2}r^2 + p_{0,3}r^3 & r\\leq 1221.5 \\; \\mathrm{km} \\\\\n", - " p_{1,0} + p_{1,1}r + p_{1,2}r^2 + p_{1,3}r^3 & 1221.5\\leq r\\leq 3480.0 \\; \\mathrm{km}\\\\\n", - " \\vdots & \\vdots \\\\\n", - " p_{12,0} + p_{12,1}r + p_{12,2}r^2 + p_{12,3}r^3 & 6368.0\\leq r\\leq 6371.0 \\; \\mathrm{km} \\\\\n", - "\\end{array} \n", - "\\right.\n", - "$$\n", - "\n", - "with $V_S$ written in the same way. However, PREM is both anisotropic (in the upper mantle, for\n", - "$6151.0\\leq r\\leq 6346.6 \\; \\mathrm{km}$) and anelastic (at all depths). We will ignore the anisotropy\n", - "(although adding that may be an interesting thing to do) but we do need to consider anelasticity.\n", - "\n", - "A single value is applied to the bulk, $Q_{\\kappa}$ and shear, $Q_{\\mu}$, quality factor for each layer. This\n", - "is the inverse of the dissipation (e.g. $q_{\\kappa} = Q^{-1}_{\\kappa}$) and can be used to calculate the\n", - "seismic velocities at periods other than 1 s (which is the reference period used in PREM). For a period $T$, \n", - "velocities are given by:\n", - "\n", - "$$V_S(r,T) = V_S(r,1)\\left(1-\\frac{\\ln T}{\\pi} q_{\\mu}(r)\\right)$$\n", - "\n", - "and \n", - "\n", - "$$V_P(r,T) = V_P(r,1)\\left(1-\\frac{\\ln T}{\\pi}\\left[\n", - " \\left(1 - E\\right)q_{\\kappa}(r) \n", - " + Eq_{\\mu}(r)\\right]\\right)$$\n", - " \n", - "where $E = \\frac{4}{3}\\left(\\frac{V_S(r,1)}{V_P(r,1)}\\right)^2$" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# This implements the PREM density model using \n", - "\n", - "r_earth = 6371 # km\n", - "\n", - "# Note use of isotropic approxmation from footnote in paper\n", - "vp_params = np.array([[11.2622, 0.0000, -6.3640, 0.0000],\n", - " [11.0487, -4.0362, 4.8023, -13.5732],\n", - " [15.3891, -5.3181, 5.5242, -2.5514],\n", - " [24.9520, -40.4673, 51.4832, -26.6419],\n", - " [29.2766, -23.6027, 5.5242, -2.5514],\n", - " [19.0957, -9.8672, 0.0000, 0.0000],\n", - " [39.7027, -32.6166, 0.0000, 0.0000],\n", - " [20.3926, -12.2569, 0.0000, 0.0000],\n", - " [ 4.1875, 3.9382, 0.0000, 0.0000],\n", - " [ 4.1875, 3.9382, 0.0000, 0.0000],\n", - " [ 6.8000, 0.0000, 0.0000, 0.0000],\n", - " [ 5.8000, 0.0000, 0.0000, 0.0000]])\n", - "\n", - "\n", - "vs_params = np.array([[ 3.6678, 0.0000, -4.4475, 0.0000],\n", - " [ 0.0000, 0.0000, 0.0000, 0.0000],\n", - " [ 6.9254, 1.4672, -2.0834, 0.9783],\n", - " [11.1671, -13.7818, 17.4575, -9.2777],\n", - " [22.3459, -17.2473, -2.0834, 0.9783],\n", - " [ 9.9839, -4.9324, 0.0000, 0.0000],\n", - " [22.3512, -18.5856, 0.0000, 0.0000],\n", - " [ 8.9496, -4.4597, 0.0000, 0.0000],\n", - " [ 2.1519, 2.3481, 0.0000, 0.0000],\n", - " [ 2.1519, 2.3481, 0.0000, 0.0000],\n", - " [ 3.9000, 0.0000, 0.0000, 0.0000],\n", - " [ 3.2000, 0.0000, 0.0000, 0.0000]])\n", - "\n", - "q_kappa_params = np.array([1327.7, 57823.0, 57823.0, 57823.0, 57823.0,\n", - " 57823.0, 57823.0, 57823.0, 57823.0, 57823.0,\n", - " 57823.0, 57823.0])\n", - "\n", - "q_mu_params = np.array([84.6, np.inf, 312.0, 312.0, 312.0, 143.0, 143.0,\n", - " 143.0, 80.0, 600.0, 600.0, 600.0])\n", - " \n", - "# All 14 discontiuities in PREM in km.\n", - "breakpoints = np.array([0.0, 1221.5, 3480.0, 3630.0, 5600.0, 5701.0, 5771.0,\n", - " 5971.0, 6151.0, 6291.0, 6346.6, 6356.0, 6371.0])\n", - "\n", - "# Turn range of polynomials from 0 - 1 to 0 - r_earth\n", - "vp_params[:,1] = vp_params[:,1] / r_earth \n", - "vp_params[:,2] = vp_params[:,2] / (r_earth**2)\n", - "vp_params[:,3] = vp_params[:,3] / (r_earth**3)\n", - "# Turn range of polynomials from 0 - 1 to 0 - r_earth\n", - "vs_params[:,1] = vs_params[:,1] / r_earth \n", - "vs_params[:,2] = vs_params[:,2] / (r_earth**2)\n", - "vs_params[:,3] = vs_params[:,3] / (r_earth**3)\n", - " \n", - "prem = earth_model.Prem(breakpoints=breakpoints, r_earth=r_earth, vp_params=vp_params,\n", - " vs_params=vs_params, q_mu_params=q_mu_params,\n", - " q_kappa_params=q_kappa_params)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGQCAYAAAB/K27fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde7xVc/7H8dfndDtdVLogkopEKZVEjcsxcql0oSgzoVxCDDFmfm6TSwwzQhlyHUIoJNLQoHEYyiUVIZWiEdINle71/f3x3ds5nU7n7H3OXnutffb7+Xisx9lnnXXW/rR87D5913d9vuacQ0RERESClxN2ACIiIiLZQoWXiIiISJqo8BIRERFJExVeIiIiImmiwktEREQkTVR4iYiIiKSJCi8RiRQz22Zmc8zsMzP72MyuNLMyf1aZ2bWFXjc1s08T/L1hZnZ27HW+mXUs4/u3MbOxZfldEal4VHiJSNRscM61c861Bk4AugM3lON815Z+yI7MrDJwLvB0Od4XAOfcXKCxmTUp77lEJPOp8BKRyHLOLQeGAJeaV8nM7jCzD83sEzO7EMDM8szsbTObZGafm9kDZpZjZrcD1WMjaE/FTlvJzB6Ojai9ZmbVi3nr3wKznHNbC++MnfNxM7sl9v06M/ubmX1kZm+YWafY6NhiM+tV6FdfBgak+vqISOZR4SUikeacW4z/rNoDOA/42Tl3OHA4cIGZNYsd2gn4I9AG2B84zTl3NQUjaL+PHdcCuC82ovYT0LeYt/0N8FGRfZWBp4AFzrnrY/tqAvnOucOAtcAt+FG6U4GbC/3uTODosvz5RaRiUeElIpnAYl9PBM42sznA+0B9fCEF8IFzbrFzbhvwDHDULs71lXNuTuz1R0DTYo5pBKwosu9B4FPn3K2F9m0GpsZezwXecs5tib0ufN7lwN67/NOJSNZQ4SUikWZmzYFt+OLFgD/ERrDaOeeaOedeix1adOHZXS1Eu6nQ6234kayiNgC5RfZNB44zs8L7t7iCBW+3x8/tnNte5Ly5sXOKSJZT4SUikWVmDYEHgHtjBc6/gYvNrErs5weaWc3Y4Z3MrFnsCcj+wDux/VvixydhHnBAkX3/BF4BnotNvk/GgUBCT1OKSMWmwktEoiY+Gf4z4A3gNeCm2M8eAT4HZsXaQjxIwcjSDOB2fIHzFTAptv8h4JNCk+sT8SpwTNGdzrm7gFnAk0m2uDgO+FcSx4tIBWUFo+QiIpnJzPKAq5xzp6TwnJOAPzvnFpbzPNWAt4Cjij4lKSLZRyNeIiLFuxo/yb68mgBXq+gSEdCIl4iIiEjaaMRLREREJE1UeAXAzOqa2fNm9oWZzTOzzmZWz8xeN7OFsa+7Fzr+GjP70szmm9lJhfYfZmZzYz+7x8ys+HesWMzs69ife46ZzYzt0/VLUKy7+2wzmxL7XtcuAWaWa2YfmF8f8jMzuym2X9evFGa2r5m9Gfu8+8zMLo/t17VLgJk9ambLrdA6orp2qWdmJ8eu2ZdmdnVogTjntKV4Ax4Hzo+9rgrUBf6On+cBfu7I32KvWwEfA9WAZsAioFLsZx8AnfG9i14FuoX9Z0vT9fsaaFBkn65f4tfvSvwag1N07ZK6bgbUir2ugm/QeqSuX0LXrhHQIfZ6N2BB7Pro2iV2/Y4BOuAb9Mb36dql9hpXil2r5vi/lz8GWoURi0a8UszMauP/J/ongHNus3PuJ6A3viAj9rVP7HVvYLxzbpNz7ivgS3w/okZAbefcDOez5olCv5ONdP0SYGaNgR74tgtxunYJcN662LdVYptD169UzrnvnXOzYq/X4vug7YOuXUKcc28Dq4vs1rVLrU7Al86vbrEZGI+/lmmnwiv1muOXGnksdrvnEfMNHvd0zn0P/kMKv+4c+A+nbwr9/tLYvn1ir4vuzwYOeM38wsNDYvt0/RIzCvgzvot6nK5dgmK3aefgu+S/7px7H12/pJhZU6A9fsRQ167sdO1Sa1fXLe1UeKVeZfyQ8f3OufbAL/hh4l0p7h68K2F/NviNc64D0A24xMx2amRZiK5fjJmdAix3zhVd3HmXv1LMvqy8dnHOuW3OuXZAY/wowiElHK7rV4SZ1QImAsOcc2tKOrSYfVl97ZKga1c2kbk+KrxSbymwNPYvZYDn8YXYD7GhYGJflxc6ft9Cv98Y+C62v3Ex+ys859x3sa/L8d3HO6Hrl4jfAL3M7Gv8MPpvzWwcunZJi00PyAdORtcvIeaXZZoIPOWceyG2W9eu7HTtUmtX1y3tVHilmHNuGfCNmbWM7Toev8TJZOCc2L5zgJdirycDA8ysmpk1A1oAH8SGltea2ZGxJ1POLvQ7FZaZ1TSz3eKvgRPxS8Do+pXCOXeNc66xc64pMAD4j3NuILp2CTGzhmZWN/a6OtAV+AJdv1LF/pz/BOY5v6xSnK5d2enapdaHQAvz67lWxX9GTg4lkjBm9Ff0DWgHzAQ+AV4EdgfqA9OAhbGv9Qodfx3+aYv5FHoKBeiILzoWAfcSa3hbkTf8HLmPY9tnwHWx/bp+yV3HPAqeatS1S+yatQVmx/6//RQYruuX8LU7Cn/b5hNgTmzrrmuX8PV7Bvge2IIfmTlP1y6Q69wd/8TtovjfLWFs6lwvIiIikia61SgiIiKSJiq8RERERNJEhZeIiIhImqjwEhEREUkTFV4iIiIiaaLCK2SFlsSRJOnalY+uX/no+pWdrl356PqVT9jXT4VX+PQ/UNnp2pWPrl/56PqVna5d+ej6lY8KLxEREZFskBENVKtWreqqVKkSdhiB2Lp1K5UrVw47jEiI56Jf7aJ0unblo+tXPiVdv2RzOdnjM51yr3zScf2Cysko5Ho6rt/69eu3OOeqFvezjMj8tm3bMnPmzLDDEBERESmVmX2yq5/pVqNExrhx4xg3blzYYYiU25gxYxgzZkzCxyv3JWqCyknleobcauzYsaPTiFfFl5eXB0B+fn6ocYiUV7K5rNyXqAkqJ7Ml183sI+dcx+J+lhG3GiU7vP7662GHIBIK5b5ETVA5qVwPsPAys0eBU4DlzrlDivzsKuAOoKFzbmVQMUhmqagPUIiURrkvURNUThY975YtW1i6dCkbN24M5P2ClpubS+PGjZO6XkGOeI0F7gWeKLzTzPYFTgD+F+B7SwYaO3YsAIMGDQo1DpF0U+5L1ASVk0XPu3TpUnbbbTeaNm2acU/1OudYtWoVS5cupVmzZgn/XmCT651zbwOri/nR3cCfgehPLpO0Gjt27K//U4pkE+W+RE1QOVn0vBs3bqR+/foZV3SBb4lRv379pEfr0jrHy8x6Ad865z4u7SLHWvoPAWjSpEkaopOwVfTJlpI9ks1l5b5ETVA5Wdx5M7HoiitL7GlrJ2FmNYDrgOGJHO+ce8g519E517Fhw4bBBiciIiJZJy8vj3//+9877Bs1ahRDhw4N7D3T2cdrf6AZ8LGZfQ00BmaZ2V5pjEEi7OGHH+bhhx8OOwyRchs5ciQjR45M+HjlvkRNUDkZtVw/88wzGT9+/A77xo8fz5lnnhnYe6at8HLOzXXO7eGca+qcawosBTo455alKwaJtgkTJjBhwoSwwxAptylTpjBlypSEj1fuS9QElZNRy/V+/foxZcoUNm3aBMDXX3/Nd999x9atWznmmGM49dRTadWqFRdddBHbt29PyXsG2U7iGSAPaGBmS4EbnHP/DOr9JPO98cYbYYcgEgrlvkRNUDlZ0nmHDYM5c1L7fu3awahRu/55/fr16dSpE1OnTqV3796MHz+e/v37Y2Z88MEHfP755+y3336cfPLJvPDCC/Tr16/cMQX5VOOZzrlGzrkqzrnGRYuu2MiXeniJSIXjHPz8M3z4ISxe7F9nwCIhIlmp8O3GwrcZO3XqRPPmzalUqRJnnnkm77zzTkreT53rJTLia9sFOalRJB1+/BHmzoVOnQr2Va4M9ev7rUGDHV/Pnz+GWrXgz38eSuvWkMEPeUkFEdTncUnnLWlkKkh9+vThyiuvZNasWWzYsIEOHTqQn5+/0xOLqXr6UoWXRMbLL78MqPCSzFepUnUAbr8d9twTVq2ClSv91/jrBQsK9m3d6nP/ySeH0qIF9O0Lp50GHTuqCJNwBPV5HMXP+Vq1apGXl8e55567w6T6Dz74gK+++or99tuPCRMmMGTIkJS8nxbJFhFJseeegzPOgE8/hdatSz7WOVizBpYvh2nTYOJEePNN2LYN9t3XF2B9+0KXLlCpUnriF0mXefPmcfDBB4cdBpMmTeK0005j3rx5HHTQQeTn53PzzTfTsGFD5s6dyzHHHMOYMWPIydl5hlZxfwYtki0iElFmUKeO31q0gIsu8qNgL7/si7D774fRo/3IWZ8+vgjLywMt7yiSOqeeeipFB6Jq1KgRyBOY6ezjJVKi0aNHM3r06LDDECm3558fAYxI+PiiuV+/Pgwa5IuvFSvgmWfgmGNg3Dg48URfhMV/nqFrC0vEBfV5rM95FV4SIdOmTWPatGlhhyFSbp9+Og1IPJdLyv3atWHAAHj2WV+EvfginHKK/9qrFzRs6H/+3HOwbl2K/gCS9YL6PM6Uz/m8vLykevElQ3O8RERSrHXrPD7/HD79NL/UOV5ltXmznws2caIvwlasgNxcOOEEf0uyZ09flIlEWVTmeJVHsnO8NOIlIpKBqlaFk06Chx6C77+H/HwYMgQ+/hjOOw/22svfnrzrLt9LTESiQYWXREay69uJVBTlzf1KleDYY/0k/K+/hlmz4PrrfePWP/4R9t8fDj0UbrgBZs9WM1cpXVCfx/qc11ONEiEzZswIOwSRlKhVq35Sx6cy982gfXu/3XSTH+166SV/O/KWW+Dmm6FJE387sk8fOPpo39xVpLCgPo/1Oa85XiIiKZdMH690WrECpkzxRdhrr/knIuvV85P1+/TxT0zWrBl2lJJNwp7jlZeXxzXXXMNJJ530675Ro0axYMGCX7vsl0ZzvEREpFgNG8LgwX4EbOVKeOEFX3S9/LJv1NqgAfTuDY895os0kYqu8DqNcYXXawyCCi+JjNtvv53bb7897DBEyu2pp64Brkl4uZ8wcr9mTTj1VHj8cfjhB/jPf/zk/Dlz4Nxz/eT8Y4+Fu++Gr75Ka2gSAUHlZNQ+5/v168eUKVPYtGkTAF9//TXfffcdBxxwAMcccwzt2rXjkEMO4b///W/K3lN39iUy5syZE3YIIimxcGFy81jCzv0qVeC44/w2apSfgP/ii3678kq/tW3rb0eeeqqfqK81JCu2oHKyxPMOG+Yr/1Rq167E1bfr169Pp06dmDp1Kr1792b8+PH079+fp59+mpNOOonrrruObdu2sX79+pSFpMJLIqPocK9ItohS7ptBhw5+u/lmWLRo58n5++1XMDn/qKM0Ob8iCiono5TrcfHbjfHC69FHH2XdunWce+65bNmyhT59+tCuXbuUvZ/+dxERkV3af/+CUa/lywsm5z/wgG9fUb++b9Z66qm+eWv16mFHLBmrhJGpIPXp04crr7ySWbNmsWHDBjp06ADA22+/zb/+9S/OOuss/vSnP3H22Wen5P00x0siY8SIEYwYkfj6diIVRabk/h57+Plfkyf7yfnPPw/dusGkSX5SfsOGcPrp8PTTvoeYZK6gcjKKuV6rVi3y8vI499xzf51Uv2TJEvbYYw8uuOACzjvvPGbNmpWy99OIl0TG/Pnzww5BJCXq1Wuc1PGZmPu1akHfvn7bvNl3zp80yY+GPf+8nzf229/6kbDevf1kfckcQeVkVHP9zDPP5LTTTvv1Vmh+fj533HEHVapUoVatWjzxxBMpey/18RIRSbFnn4X+/eGzz6BVq7CjSa/t2+H9930RNmkSfPmlnzfWubMvwk491d++FIHw+3ilgvp4iYhIaHJyfJH197/DggUwdy7ceCOsXw9/+hMccIB/KvLGG/26khnwb3+RlFLhJZExfPhwhg8fHnYYIuU2duwwYFjCx1fU3DeDQw6B4cN9i4rFi/2i3XXq+Kcj27Xzo19//CO88w5s2xZ2xBIXVE5W1FxPhuZ4SWR88803YYcgkhJLliTXiyhbcr9ZM7jiCr8tX+4n6U+aBPfe6wuyPfbw88FOPdXPD6tWLeyIs1dQOZktuV4SzfESEUmx1q3z+Pxz+Oyz/Kyb41UWa9bAK6/4IuyVV2DdOqhdG3r0gH79/JOTalNRMc2bN4+DDjoIy9COvM45vvjiC83xEhGJggz9uyTtateGAQNgwoSChbxPPx1ef90/Ndmwof/5xIl+rphUHLm5uaxatYpMGAQqyjnHqlWryM3NTer3dKtRIuOaa64B4Lbbbgs5EpHySfbvEOV+gdxcP9LVo4dv0vrWW/Dcc35B7wkToEYNv7D36adD9+7+e0m9oHKy6HkbN27M0qVLWZGhq7Ln5ubSuHFy7WNUeElkrFq1KuwQRFKiUaMDmTcv8eOV+8WrXBmOP95v994Lb79dUIQ9+6wvunr0KCjCatYMO+KKI6icLHreKlWq0KxZs0DeK6o0x0tEJMUmTPC3xj7/HDK8RVEkbdu2YxH2ww9+DljhIqxWrbCjlGymOV4iIlJhVKoExx0HY8bAt9/Cm2/C4MHw3//6xrV77OHnhj37rOaESfSo8JLIuOqqq7jqqqvCDkOk3B56aAgwJOHjlftlV6kS5OXBfff5Iuytt+C882DGDF+E7bknDBzon5bcsiXsaDNHUDmpXFfhJRGyYcMGNmzYEHYYIuX2/fcLgAUJH6/cT41KleCYY+Af/4BvvvEjYWee6YuuHj2gUSO4+GJ/m3L79rCjjbagclK5rjleIiIp16pVHvPmweef52uOVwRs3gz//jc88wy89JK//di4sZ+Hd+aZ0L69Wn9IammOl4iIZK2qVaFnT3j6ad8x/+mnfbE1ahQcdph/AOKmm/zakiJBU+ElkTFs2DCGDUt8fTuRikK5nz41a/pRrsmT/dOQDz3kb0HedBO0bAmHH+5vVa5cGXak4QoqJ5XrKrxERFKuadN2QLuww5BS1KsHF1zg54J98w3ceadvVXHZZb4Y69PHL2O0aVPYkUpFEtgcLzN7FDgFWO6cOyS27w6gJ7AZWAQMds79VNq5NMdLRDJJvI/XvHlw0EFhRyPJmjsXnngCxo2DZct8gTZgAJxzjh8R03wwKU1Yc7zGAicX2fc6cIhzri3+kZ9rAnx/ERGRpLVpA3fc4UfBXn0VTjoJHn0UjjgCWrWC227zPxMpi8AKL+fc28DqIvtec85tjX37HpDcAkdSoV1yySVccsklYYchUm7/+MdAYGDCxyv3o6lyZTj5ZD8Zf9kyePhhv2D3tdfCfvtB165+VKwidkcIKieV6+HO8ToXeDXE95eIqV69OtWrVw87DJFyW716KbA04eOV+9FXpw6cf77vAbZoEdxwA3z1FZx1lp8PdumlMGdO2FGmTlA5qVwPuI+XmTUFpsTneBXafx3QETjN7SIAM/u19XOTJk0OW7JkSWBxioikUryP17x5+ZrjVYFt3+4LsUcegeef95PwDzvMF2hnnumLNclOkerjZWbn4Cfd/35XRReAc+4h51xH51zHhg0bpi9AERGRBOTk+OWKxo2D77/3bSi2bPHd8Rs1gkGD4J13IAP6lEsapbXwMrOTgf8DejnntHSp7GDIkCEMGZL4+nYiFYVyP/PtvnvB7cYPP4Szz4YXXoCjj/YNWkeO9M1bM0VQOalcD7DwMrNngBlASzNbambnAfcCuwGvm9kcM3sgqPeXzFO/fn3q168fdhgi5daiRWegc8LHK/crDjPo2BEeeMCPgj32GDRoAH/6E+y7L/z+9/Duu9EfBQsqJ5XrWqtRRCTlxo/3c3zUx0vi5s3zxdjYsbBmDbRtC0OH+kKsVq2wo5NUi9QcLxERkWxz8MEwejR8951fpignBy66CPbeG/7wB/j887AjlHRR4SWRMXjwYAYPHhx2GCLldvfdfYG+CR+v3M8eNWv6ZYpmzYLp06F3b1+ItW7tJ+o/+yxs3hx2lMHlpHIdKocdgEjcvvvuG3YIIimxdu0qIPGlZZT72ccMOnf22113+blg998P/fv7JyIvuQQuvNDPDwtDUDmpXNccLxGRlIv38frii3xatgw7GskU27bB1Km+LcW//w25ub5B6+WX+xExyRya4yUiIhJxlSpBjx6++PrsM9+S4skn4ZBD4MQT4ZVXfNNWyWwqvCQyBg4cyMCBia9vJ1JRKPelqFat4MEHYelS+OtffSHWo4fff//98Msvwb5/UDmpXFfhJRHSsmVLWuq+jFQArVsfDxyf8PHKfdmV+vXhmmvg66/9Yt21a/s2FI0b+/3LlgXzvkHlpHJdc7xERFLumWfgd7+DL75Ac7wkpZyD997zE/JfeAGqVIFzzoGrroIWLcKOTuI0x0tERKQCiD8N+dxzMH8+DB4Mjz/uC/x+/fxyRRJtGvHCN7T76ivf0K4sW5UqULVqwValip8kKckZMGAAAOPHjw85EpHyadeuGx9/DF988WpCI17KfSmPH36Ae+6BMWPgp5/guOPg//7PT8hPtKVJUUHlZLbkekkjXurjhW9Yd8UVqT1nTs6OxVhxW7VqUKNGwVa9+o7fl7Tttpu/11+7tn9dpUpq4w9Du3btwg5BJCU2b96Q1PHKfSmPPfeEW2+Fq6+Ghx/2tyFPPhkOPdQXYGeckfxgQFA5qVzXiBcAS5bAggX+Md1kt23bYOtW32m4uG3Lll3/bONG2LAB1q/feduQ3Oc2ubkFhVi8GCv8fXxf3bpQr57fdt+94HWdOhqlE0kV9fGSMG3e7Cfi//3vfo3IAw+E66/364dW1nBLWmjEqxT77ee3KHHOF2bFFWXr18PatX6h1fhW9Ps1a+Cbb3bcv2nTrt/PzBdf8UKsaGFWrx7ssQc0bOi/xl9XrZq+ayIiIqWrWhUGDfJ9wCZNgptv9q9vvhmuu84vzF0R7pJkKhVeEWXmbz1Wr+4fJ06FTZvg559h9Wq//fhjwevivv/664LXu2raV6fOzgVZ0e/33NMvgbH77iXPN+jb169tN3HixNT8gUVCluj8GuW+BCEnB/r2hVNPhcmTfeE1eDCMGAHXXuuLsV0VYEHlpHJdhVdWqVatoBhKxvbtfsRsxQpYvtxvxb3+8kuYMcN/X1yhVq0a7LUX7L23L8SKbvvv3znp2ESiqH37U5g3L/HjO3fuHFwwkvVycqBPH78g95QpvgA7/3zfmHXiRChu2lVQOalc1xwvCcD27X6UbMUK/7TNDz/4J0e//37n7ccfd/zd6dP9o9IimSzex2v+fD+/RiRKnINXX/WLcP/4o58P1qtX2FFVLJrjJWmVkwMNGvjt4INLPnbjRt95OT/fD4GvXp2WEEVEspYZdO8OH3zgR8H69IE77oArryx7+wlJnBqoSqhyc6FpU2jbFqAXN92kf3ZJ5hsxIg/IS/j4Xr160UtDDpJmjRr5f/T27es73194oX8SH4LLSeW6RrwkInJyAI6nTZuwIxFJv+OPT3xdR5FUqlEDJkyAG26AW26BRYvg+eeDy0nlugoviQhfeF1Ojx5hRyKSfpdffnnYIUgWy8nxTzoeeKCfdH/kkTBlyuWBrP2oXNetRomInFgm7qpthYiIBOuss2DaND/X9ogj/G1IST0VXhIJvvDqxq23dgs7FJG069atG926KfclfEcdBe+/D5s3d+PEE1Ofk8p13WqUiPDLFfWkffuwIxEpvyOOOCOpPl49e/YMLhiRJDVvDscc05NXX039uZXrKrwkIvyI11C6dg07EpHyO+GEoYwdm/jxQ4cODSwWkbI44oihvPqqn/6Rk8J7Y8p13WqUiNAcL6lINm1aD6wPOwyRMvN3IWDbtnDjqIhUeEkk+MKrK7fdpiEvyXx33NEd6J5wM8quXbvSVcO9EiFjx3YFuqb8H8PKdd1qlIjwhVd/OnUKOxKR9Ovfv3/YIYjs4NBD+7NoUepHvJTrKrwkInzhdQFHHx12JCLpd8EFF4QdgsgOunS5gBdeSH3hpVzXrUaJCM3xEhGJjvhnsuZ4pZ5GvCQS/P/keVxzDdSpk0+rVtCiBVStGnZkIsHLy8sDIF8dKyUixozJA2DbtvyUnle5rsJLIqJ+fdhvv0EsWQJnnOH3VaoEBxwArVoVbAcfDC1b+vXFRKLq6KMHJdXHa9CgQYHFIlIWRx45iC+/TP2Il3IdzDkXdgyl6tixo5s5c2bYYUgarF8P8+fDvHnw+ecFW+EPADNo1qygECtclO22W7jxiwA89RQMHAgLFhDIenciQXvgAbj4YnjlFTj5ZBJ+Qlc8M/vIOdexuJ9pxEsiY8uWLVSpAu3bV9mpg/3mzbBwYUEhFi/MXnvN/yyuceMdR8jatoXWraFWrfT+WSS7rV27MvaqQULHb9myBYAqVaoEFJFIctq120LdutC9exUOPxyuuAL69YPypqhyXSNeEiFlufe/dSssXrxjMRZ/vWFDwXHNm0ObNgVb27b+NmZl/dNDAnDwwXl88QUsWJCf0IiX5r1I1OTl5bFtG/zud/mMGuVHb/fZBy69FC66COrWLft5oeLneigjXmb2KHAKsNw5d0hsXz1gAtAU+Bo4wzn3Y1AxSGY5//zzk/6dypXhwAP91qdPwf7t2+Grr2Du3B23l18ueHKyWjU/Kla4GGvTBvbaS8Pqkl5lyX2RIMVzcuBAuPBCePVVuPtuuOYaeOYZv5B2bm7Zz5vNAhvxMrNjgHXAE4UKr78Dq51zt5vZ1cDuzrn/K+1cGvGSVNmwwY+GFS3Ivv++4Jj69QsKsXbtoH17X6DpCUtJVLIjXiKZ4qWX/D9yL7sMRo8OO5roCmXEyzn3tpk1LbK7N5AXe/04kA+UWnhJdli/3q9tVyPARxarV4cOHfxW2MqVOxdjjzziJ/uDL7pat/ZFWIcO/mvbtpo7JiVLdOQ0Hbkvkoxd5WTv3nD55b7oOvFE6NEjNefNJoHO8YoVXlMKjXj95JyrW+jnPzrndi/tPBrxyg5Ru/e/bZt/mnL2bL/NmuW/rlrlf27mb3G2b7/j1iCx+dRSgcVHvBYuzOeAA0o/Pmq5L1JSTm7aBEccAd99B5984qdnpMFkVbIAACAASURBVOK8FUlGPtVoZkOAIQBNmjQJORpJh4svvjjsEHZQqZLvGdayJQwY4Pc5B0uXFhRjs2fD9OkwfnzB7zVu7EfFOnWCww+Hjh2hXr1w/gwSjq5dL+aLLxI/Pmq5L1JSTlarBk8/7T/bzjnHz//KSXAdHOV6+ke85gN5zrnvzawRkO+ca1naeTTiJVG3ahXMmVMwKvbRR/4poLgDDvBFWLwYa99eTWArsngfr4ULSWjESyQTPfigf8LxzjvhyivDjiZaojTiNRk4B7g99vWlNL+/RNjPP/8MQJ06dUKOJHn168Pxx/st7qefYOZM+PBDv739tn8aCPxo2iGH+CIsXpC1bl3+HjkSDatWfRN7tW9Cx2dy7kvFlEhODhkCU6fC1VfDccexU//Fsp63ogvyqcZn8BPpGwA/ADcALwLPAk2A/wGnO+dWl3YujXhlh2y49//ddwWFWHz7MdZQpXp1P3TfpYvfOneGhg3DjVfKRnO8JNMlmpOrVsGhh/oHjT76CGrWTM15M11YTzWeuYsfHb+L/ZLlLrvssrBDCNzee/ungnr39t87B4sW+QLs/fdhxgy46y7429/8z1u0KCjEunTxbS0SnUshmSMbcl8yS6I5Wb8+PPmkH+2/4gp46KHUnLciU+d6kYjZsMH/y3H69IJtxQr/szp14Mgj/WhYly7+yaLatcONV3aW7IiXSKa79lq47TZ47jm/tFC2i9IcL5FdWrnSr2/XIMv7MVSvDkcd5TcoGBUrXIjddJPfn5Pj51Uce6zfjjpKT1BmIuW+RE2yOXnTTfDGG3DBBf4fhPvuYnqjcl0jXhIh2XLvPxV+/hk++AD++1946y1/m3LTJt9brE2bgkLs6KNhjz3Cjjb7aI6XZLqy5OSXXxY0mf7Pf/xDRKk4bybSiJdkhD/+8Y9hh5Ax6tSBE07wG8DGjb4Qe+stvz3yCPzjH/5nBx9cUIgdeyw0ahRe3NmiW7c/JtXHS7kvUVOWnDzgALjvPt/b6/bb4brrUnPeikYjXiIV0ObNvpXF22/7Quydd2DdOv+zVq2ga1e/HXus5ogFYdw4OOssPwKw//5hRyOSPs75HnYTJvjPnSOPDDuicJQ04qXCSyJj2bJlAOyVzPoTkpCtW31j1zffhGnTfEG2caO/FXDEEQWF2BFHaDHwVLjjjvn8+c/w5ZctEyq8lPsSNeXJyZ9/hnbt/NSH2bP9CH0qzptJVHhJRsiWe/9RsHGjb13xxhu+EPvwQ9i+3ffgOeaYgkKsTZvEF3qWAvE5Xl9+mZ9Q4aXcl6gpb07OmOHnmA4Y4EeAU3XeTFHmOV5mlgucAhwN7A1sAD4F/uWc+yzVgUp2u/rqq8MOIWvk5vpO08cdB7fe6rvs5+f7QuyNNyA+DaNRI+jWzW9du0LduiWeVspIuS9RU96c7NwZbrgBhg+Hk0/2tx9Tcd6KYJcjXmZ2I9ATyAc+ApYDucCBwHGx1390zn0SdJAa8RJJr6VL4fXX/XIgr73mC7NKlXzvsHghduihGg3blWRHvEQqom3b/D/u5szxtxyz6f+FMt1qNLMezrl/lXDSPYAmzrnAKyIVXtnhm2/8+nb77qoBjIRi61Z47z149VW/zZ7t92s0bNeSLbyU+xI1qcrJ//3P/yOtZUvf/mbZsuzI9ZTN8TKzHKCWc25NqoJLhAqv7JAt9/4z3fffw7//7YuwwqNhRx9dsBxSs2ZhRxkuzfGSTJfKnHz+eTj9dN/d/t13U3feKCtXHy8zexq4CNiGv+VYx8zucs7dkdowJdtdf/31YYcgCWjUCAYN8lt8NOyVV2DyZL9W2xVX+En5vXr5Iuyww7Jvfcleva5Pqo+Xcl+iJpU52a8fnHeeX1Lojjuu59BDU3bqjFTqiJeZzXHOtTOz3wOHAf8HfOSca5uOAEEjXiKZYtEiX4C99JK/rbB9u18YvFcvv/32t1CtWthRBu/JJ+Hss9XHSyRu3Tr/j7BffoFPPqn4S5uVNOKVyL9Dq5hZFaAP8JJzbgsQ/R4UknEWL17M4sWLww5DymH//f2IV34+LF8Ojz/uGyg++SR07w4NGvhbDhMmFDR0rYiWLJkDzEn4eOW+RE2qc7JWLXj6afj228XccUd253oiI16X4Ue5PgZ6AE2Acc65o4MPz9OIV3bQPJeKa+NGv3bbSy/57YcffEuLbt18IXbKKbDbbmFHmTqa4yWZLoicdA5ycvLYbz/4+uvUnTeKyjTHy8w6A+855+4B7im0/3/4dhIiKXXTTTeFHYIEJDfXj3h17w5jxsC778Jzz8HEiTBpkr/9eNJJvgjr2XPHTteZLNF2G8p9iZogctIMqlS5iS5dUn7qjFJSO4kHgE7AAmAqMNU5tyyNsf1KI14iFdP27b7D9XPP+Sefvv3WL1l04ol+Qm6fPplZhMVHvBYtyqd587CjEYmO2rXh/PPhrrvCjiRYZZrj5Zy7yDnXAbgR2B0Ya2YzzOyvZnaMmVUKJlzJVvPnz2f+/PlhhyFplJMDv/kNjBrl+/3MmAGXXuon3w4aBHvu6QuwF17wtysrKuW+RE1QOVmp0nx++CG7cz3ZPl7V8bcZuwGdd1XNpZpGvLKD5rlInHPw/vvwzDMwfryfqF+nDvTtC7/7HeTl+d5hUZXsiJdyX6ImqJysWTOPTZtgxIh8LrvMrw9bEZW7gaqZ7Q7sS6E5Yc65WSmLsBQqvLLD9OnTAeiS7RMAZAdbt/qJ+U8/7Ue+1q71vcQGDPBF2GGHRW/pouHDpzNiBCxa1CWhwku5L1ETVE4+9dR07r8f3n23C3vsAdddBxdeWPHazJSr8DKzEcAgYDGwPbbbOed+m8ogS6LCS0QANmyAKVPgqad809YtW+DAA33PrLPPhqisQhLv47VoEZrjJVKMGTN8J/v8fGjSxC+offbZULnUtu6Zobx9vM4A9nfOHeucOy62pa3okuzx6aef8umnn4YdhkRY9er+yccXX/QtKR5+GPbaC66/Hvbbz0/Kf+YZX6CFaeHC6cD0hI9X7kvUBJWT8fN27uxHsl9/3f8/fN550Lq17/G3fXvp58lkiYx4TQQuds4tT09IO9OIV3bQPBcpq8WLfbPWxx+HJUv8fLABA/wE/SOOSP+tSM3xkkwXVE4Wd17n/IoX118Pn37qF9W+9VbffiZq0wgSVd5bjR2Bl4BPgU3x/c65XqkMsiQqvLLDhx9+CMDhhx8eciSSqbZv97cuxo717Sk2bICDDvIF2Fln+eWL0iHZwku5L1ETVE6WdN5t2/yI1/Dh/jZ9587w17/6h2kyTXkLr8+AB4G5FMzxwjn3ViqDLIkKLxFJ1po1vj/YY4/5hq05Ob5D/oUX+matQT4VqT5eImW3ZYv/x9NNN/nefiec4EfAMunfJeWd47XSOXePc+5N59xb8S3FMYowZ84c5sxJfH07kZLUru3njbzzDixYAH/+M7z3HvTo4deUvOUW+O67sKP0lPsSNUHlZCLnrVIFLrjALzJ/990wezZ06gRXXZXycEKRyIjXXfhbjJPZ8Vaj2klISmmeiwRt82a/VuSDD8K0aX7Uq1cvPwp2wgl+VCwV4iNeixfn06xZ6ccr9yVq0jnHqzRr1/r/PzdsgI8/Tmk4gSnTWo2FtI99PbLQPgfoyUZJqVGjRoUdglRwVav6pyJPPx0WLvRPRT72mF8vsmlT/6/s887zHfPL43e/G8Xw4Ykfr9yXqAkqJ8ty3t128/Mzv/wygIBCkMiIV65zbmORffWdc6sCjawQjXiJSFA2bfKF14MP+on5VarAGWfAZZf52xtl8cQTcM45/mnLREa8RKRkffv6KQNz54YdSWLKO8dropn9OjJmZnsBr6UqOJG4Dz/88NcnXkTSpVo133rizTfhiy/g4ov9o+1HHOG3ceN8cZaMzz57A3gj4eOV+xI1QeVkWc9r5ttOVASJjHhdAPQA+uKXDZoMXOWcS1vxpRGv7KB5LhIVa9f6nmD33gvz5/tbjxdeCBdd5JcrKo3meEmmi9IcL/DTAz7/HD77LKXhBKZcc7yccw+bWVXgRaApcKFzLvGWzCIJuvfee8MOQQTwc0ouvRSGDvWdtf/xDxgxwvcUOv10+MMffI+hVFHuS9QElZPlOW9FGfHaZeFlZlcW/hY/2jUHONLMjnTO3RV0cJJdDjnkkLBDENlBTo7v+XXSSX5i7333waOP+mWJOnf2j7f37l3+nmDKfYmaoHKyrOetSLcaS5rjtVuhrRYwCfiy0D6RlJo+fTrTp2swVaLpgAN8T6Fvv/UjYMuW+Qm/LVvCmDGwfn3Zz63cl6gJKifLet6KVHiVOscrCjTHKztonotkkm3b/NOQd9wBH3wA9er5W5OXXupzWXO8JJNFbY7XgAG+ker8+WV73/XroUaNsv1uWZRpjpeZPQTc45zbaXlyM6sJ9Ac2OeeeKkNAVwDn4/uBzQUGF21ZIdnnwQcfDDsEkYRVqgT9+vlRr3ffhZEj/bImd9wBzZsnl8vKfYmaoHKyrOdNdLHslSv9BPyi28qVfv3Wvn3L9PYpVdLk+jHAcDNrg18gewWQC7QAagOPAmUpuvYBLgNaOec2mNmzwABgbLLnkoqlZcuWYYcgkjQzOOoov82f729HPv64z+Xc3MTOodyXqAkqJ8t63qK3GlevLr7AWr684JjataF1az9H86mn/DSBKNhl4eWcmwOcYWa1gI5AI2ADMM85V8bBvh3et7qZbQFqABFZMU3C9NZbfgnQY489NuRIRMqmZUt44AE46qiXWboUGjXqmdDvKfclaoLKyfKcd+FC6NrVF1jLlhXsr1XLF1innOK/xrd99vEF2+rVvvCKysyqRNpJrAPyU/WGzrlvzWwk8D98IfdacT3BzGwIMASgSZMmqXp7ibAbbrgB0DwXyXyPPHInAFdfnVjhpdyXqAkqJ8t63tat/VPGa9bAySfvWGDtu2/JtyLjP8uYwivVzGx3oDfQDPgJeM7MBjrnxhU+zjn3EPAQ+Mn16Y5T0u/RRx8NOwSRUCj3JWqCysmynve66+DaaxOf61VY1hdeQFfgK+fcCgAzewHoAowr8bekwmvevHnYIYiEQrkvURNUTpbnvGUpugr/XlQKr1LXajSzVHdR+x++CWsNMzPgeGBeit9DMtAbb7zBG28kvr6dSEWh3JeoCSonw8j1qBVeiYx4PRBbMmgs8LRz7qfyvKFz7n0zex6YBWwFZhO7pSjZ7ZZbbgGga9euIUcikl7KfYmaoHIyjFzPuMLLOXeUmbUAzgVmmtkHwGPOudfL+qbOuRuAG8r6+1IxPfnkk2GHIJISyeaycl+iJqicDCPXM67wAnDOLTSz64GZwD1A+9htwmudcy8EGaBkj3333TfsEERSItlcVu5L1ASVk2HketQKr0TmeLU1s7vx87B+C/R0zh0ce313wPFJFpk6dSpTp04NOwyRcpswYQITJkxI+HjlvkRNUDkZRq5HrfAqda1GM3sbeBh43jm3ocjPznLOBT5uqLUas4PWq5OKItlcVu5L1ERtrcby2LgRqleH226Dq69Oz3uWaa3GQl4oWlyZ2eXOudHpKLoke4wfPz7sEERCodyXqAkqJ8PI9fiI1/btaX/rYiVSeJ0NjCqybxAwOuXRSFbba6+9wg5BJBTKfYmaoHIyjFyP2q3GXRZeZnYm8DugmZlNLvSj3YBVQQcm2efll18GoGfPxJZZEakolPsSNUHlZBi5njGFFzAd+B5oANxZaP9a4JMgg5LsdOedPs30l49kG+W+RE1QORlGrmdM4eWcWwIsATqnLxzJZs8//3zYIYikRLK5rNyXqAkqJ8PI9YwpvMzsnVjz1LVA4XANcM652oFHJ1mlQYMGYYcgkhLJ5rJyX6ImqJwMI9czpvByzh0V+7pb+sKRbPbCC74X72mnnRZyJCLlM3b0aLjvPgbVrOk/9c0gJ6f4r2a8sHo1AKc1bQpNmsB++xVsTZvCXnv540XSJKjP4zA+5zOm8IozsyOBz5xza2Pf1wJaO+feDzo4yS733HMPoMJLMt/Yxx6DhQsZ1KUL1KvnP/Gd88+zF/P1nm+/BeC0atXgvfcgVoj9qmpV2HffnQuy+OvGjaFKlfT/QaXCCurzOIzP+YwrvID7gQ6Fvl9fzD6RcnvppZfCDkEktf76Vzj22FIPe+nnn/2LOnX817Vr4X//g6+/hiVLdtymToXvv9/xBDk5sPfexRdl++3nR9Fq1EjpH00qtqA+j8P8nM+kwstcofb2zrntZpbQGo8iyagT/0tHJMvslPu77QatW/utOBs3wjff7FyULVkC06fDhAmwbduOv9OwYfFFWXyrWzeQP5tkpqA+j8P6nDfLrMJrsZldhh/lAhgKLA4uJMlW8bXt+vfvH3IkIumVdO7n5kKLFn4rztat8N13xRdmc+fClCm+eCusTp3iC7J4sdawYcE9G6nwgvo8DutzPtMKr4uAe4DrY9+/AQwJLCLJWvff72t7FV6SbVKe+5Ur+9uLTZrA0Ufv/HPnYPny4guzJUvgrbdgzZodf6d6dX++pk2L3/bcU4VZBRLU53FYn/MZVXg555YDA9IQi2S5V155JewQRFLilb/+FXr0SPz4dOe+mS+U9twTOnUq/pifftq5IIvPOfvoI1i5csfjc3N3HCErrjDTk5kZI6icDOtzPqMKLzNrDPwD+A2+n9c7wOXOuaUBxyZZpoYm/0oFUSM3179IcAQokrlft67fDj20+J+vW1dQjBXeliyB2bNhxYodj69WbddFmQqzyAkqJ8PK9YwqvIDHgKeB02PfD4ztOyGooCQ7jRs3DoCBAweGHIlI+YyJPbk1NMHjMzL3a9Uq+QGAX34pvjD7+uuSC7NdFWfqZZZWQeVkWLkepcLLXCmRmNkc51y70vYFqWPHjm7mzJnpejsJSV5eHgD5+fmhxiFSXnnt2sHHH5P/1ltwzDGlH5+NuV9SYfb11zsXZlWrFhRl++8PzZv7r/HXu6nXdyoFlZNh5XpuLlx+Ofztb+l5PzP7yDnXsdifJVB4vQGMBZ6J7ToTGOycOz6VQZZEhVd22LJlCwBV1AhSMlyyhZdyvxi//FLQy6zwtnix34o2mW3YsKAYK1qUNWqk0bIkBZWTYeV65cq+w8rGjX5wNWglFV6J3Go8F7gXuBs/x2t6bJ9ISukvHakwkrynodwvRs2acPDBfivOTz/5AmzRoh2/Tp8O48f7VQHicnOhWbPii7JmzfzPZQdB5WRYuX7ggTBvnq/ld9WFJV0Searxf0CvNMQiWW7s2LEADBo0KNQ4RFImwcn1yv0yqFsXOnTwW1GbN/u/YYsWZYsWwZtv+tG0wvbZp6Av2oEH+q1FC1+YpWN4JIKCysmwcv2662DgwGjM89pl4WVm/8CPcBXLOXdZIBFJ1tJfPpKtlPspVrUqHHCA34pyzs8fK1qQLVwIkybt2CYjJ8fPKYsXZIULsyZNoFKltP2R0q2iFV7xO82RLrwATaqStMqqicVSoeXfdRd07Zr48cr99DGDPfbw25FH7vzzH3/0RdiCBQVfFyzwtzDXri04rmpVf7uycEHWogW0bOmfwMzwZrJB5WRYuR7/z1H4DnRYdll4OeceL/y9mdV0zv2yq+NFREQy3u67+6ayRRvLOgc//LBzQbZwoV+4fNOmgmPr1CmYn1Z4a9q0Qo+SRVmmjHgBYGadgX8CtYAmZnYocKFzLtEWNSIJefjhhwG44IILQo5EpHxGPvssAFcleLxyPwOY+ZGsvfba+UnVbdv8ouULF8IXX/hZ3PPmwSuvwGOPFRyXm+tHxuKFWKtW/muLFpGbSxZUToaV6xkx4lXIKOAkYDKAc+5jMyv9+WiRJMUXT9VfPpLpprz3HgBXJXi7Sbmf4SpVKmj0ekKR3uKrV+9YjH3+Obz/Pjz7bMHwS06Ov20ZL8gOOQTatIGDDgqtIAsqJ8PK9Ywa8QJwzn1jO36AbAsmHMlmb7zxRtghiIRCuV+B1asHXbr4rbD162H+/IKCLL69+irEel1RqZKfM9amTUEx1qaNL/AC7ksWVE6GleuZNuL1jZl1AZyZVQUuA+YFG5aIiEgFVqMGtG/vt8K2bPFzx+bOLdg++ABiI0VAwXJN8UIsXpQ1bJjeP0MGiRdemTLidREwGtgHWAq8BlwSZFCSncaMGQPA0KGaPijZRbkvv6pSpWANzAEDCvavXQuffbZjQTZpEjzySMExe+7pFzWPF3Tt2/uWGmUYHQsqJ8PK9Uy71WjOud8HHolkvZdffhnQXz6S+apXrZrU8cp9KdVuu/n2F4VbYMSftIwXYp98AnPmwJ13wtat/phatXYuxlq39u0wShBUToaV61G61ZjIWo0Lga+ACcBE59xP6QisMK3VKCIZ5fXX4cQT4Z134De/CTsayTabNvlJ/LNnF2xz5hR07I+PquXlwc03Z8UC41OmQM+e8OGH0LHYFRRTq1xrNTrnWphZJ2AAcJ2ZfQ6Md86NS3GcIiIiUl7Vqu08f2z7dvjyyx2LsXvugddegxdfDH8Bw4BFacQroRu/zrkPnHNXAp2A1cDjpfyKSNJGjx7N6NGjww5DpNxGjBvHiCSOV+5L4HJyfA+x/v3h9tvh3//2RdcPP/ghoClTdjg8qJwMK9ejNMer1MLLzGqb2Tlm9iowHfgeX4CVmZnVNbPnzewLM5sXa9IqWW7atGlMmzYt7DBEym3anDkkk8nKfQnF8cfDRx/5Cfg9e8JNN/06JBRUToaV61Ea8Upkcv3HwIvAzc65GSl639HAVOdcv1iLihopOq9ksMmTJ4cdgkgolPsSmv3283MRL7oIbrzRF2JPPhlYToaV65nWTqK5K20GfhLMrDZwDDAIwDm3GdicqvOLiERGhi+ULFmienUYOxYOPxyuuMJ/nTTJT8CvIOK3GqMw4lXqrcZUFl0xzYEVwGNmNtvMHjGzmkUPMrMhZjbTzGauWLEixSFIFI0cOZKRI0eGHYZI2in3JXRmcOml8J//wJo1jOzQgZHnnJPytwkr1zNtxCuI9+wA/ME5976ZjQauBv5S+CDn3EPAQ+DbSaQ9Skm7GTNSdSdbJFz1k3w8X7kvkXH00fDRR8xo3RqefhoeT+2zdGHlepQm14dReC0Fljrn3o99/zy+8JIsN3HixLBDEEmJicOHw0knJX68cl+iZJ99mDhsmJ9s71xKb5mHletRmlyfyFONj5tZ3ULf725mj5b1DZ1zy/DrP7aM7Toe+Lys5xMREZEUqxwbl9m2Ldw4UiQ+4rVkCaxZE24siYx4tS3crd4596OZtS/pFxLwB+Cp2BONi4HB5TyfVAC33347AFdfrQFQyWzX/POfANyW4EiBcl+i5vZ33gHg6m3bCoqwVJw3pFyvEeudMGiQf5bgjDPS+vY7SORq5pjZ7s65HwHMrF6Cv7dLzrk5QBqa9ksmmTNnTtghiKTEjHnzkjpeuS9RM2fZMv9i61bfCT9V5w0p1w87zPeIXbNmx+Uuw5BIAXUnMN3Mno99fzpwa3AhSbYaP3582CGIhEK5L1Ez/pxz4MorCxbbTtV5Q8r1nBzo0SOUt95JIms1PmFmM4HfAgac5pzTnCwREZGKKn57McWFl5RQeJlZbefcmtitxWXA04V+Vs85tzodAUr2GDHCr273l7/8pZQjRSoW5b5EzYjXXgPgL1u2pPa8yvUSR7yeBk4BPgIcfrSr8NfmgUcnWWX+/PlhhyCSEo0bNPAvEpxcr9yXqJm/apV/0bo1dO4MXbr47fDDoeZOPc8TP69yHUt9Y/rU69ixo5s5c2bYYYiIJGbqVOjWDWbMCH8mr0hZbNwIzzwD774L06dD/IGRSpXgtNPg4YehTp1wY4wwM/vIOVfsQ4QJPZ1oZm2BpoWPd869kJLoREREJFpyc2HwYL8BrF4N770H06bBPffAnDkVbj3HdEmkgeqjwKNAX6BnbDsl4LgkCw0fPpzhw4eHHYZIuQ174AGGJXG8cl+iZqecrFcPuneHO+/8dT1HjjgCnnuufOfNQomMeB3pnGsVeCSS9b755puwQxBJiTmLFyd1vHJfoqbEnDz6aJg1C/r1851I//xnuPXWhBqtKtcTmONlZv8E7gyzhYTmeIlIJslr2xbmziVfc7ykItu8GS6/HB54ALp29XPC4g+WZLmS5niVeqsReByYYWbzzewTM5trZp+kNkQRkQoohYsLi0RO1apw//3wz3/Cf/8LHTv6kTApUSKF16PAWcDJFMzv6hlkUJKdrrnmGq655pqwwxBJO+W+RE1SOXnuub7w2r4dfvMbeOKJ1Jy3gkpkjtf/nHOTA49Est6qeN8YkQx34D77wNy5CR+v3JeoSTonDz8cZs6EAQPgnHPggw/grrv8qFh5zlsBJTLHawxQF3gZ2BTfn852EprjJSIZ5dVX/RNg773nn/wSyRZbt8LVV/unH486yj/1uNdeYUeVduWd41UdX3CdiNpJiIiULgMaU4sEonJlGDnST7SfNQs6dPCNhOVXiSySPTgdgYhcddVVAIwcOTLkSETKZ8g99wDwUIKT65X7EjXlzskBA6BVKzj1VDj2WBg9Gi66iKv+9KfynbcCSKSB6t/NrLaZVTGzaWa20swGpiM4yS4bNmxgw4YNYYchUm4LvvuOBUkcr9yXqElJTrZt6+d9de0KQ4fCeeexYd26rM/1ROZ4zXHOtTOzU4E+wBXAm865Q9MRIGiOl4hkll/7eL3/PnTqFHY4IuHavh1uvBFGjPAtJ6ZMgT33DDuqQJV3jleV2NfuwDPOudUpi0xEREQqtpwcuPlmePFFPwL26KNhRxSqRAqvl83sC6AjMM3MGgIbgw1LstGwYcMYNiyZFe5EKgblvkRNIDnZuzfDzBj2QtqaIkRSqYWXc+5qoDPQ0Tm3BfgF6B10YCIimapds2a0A3WuFymqcmXYti3sKEK1yzleZvZb59x/zOy0ZNL2qQAAG1BJREFU4n6uPl4iIrvwr3/BKaf4JpKHHx52NCLRseeekJsLvXpB+/bQrh20bg3VqoUdWUqVNMerpHYSxwL/ofjlgRyQ3WOFIiIikpy//AXGj4exY+Hee/2+ypV98dWunS/G2reHQw+FOnVCDTUouyy8nHM3xL6qj5ekxSWXXALAfffdF3IkIuUzMNajaFyCxyv3JWqCyslL5s2DQw/lvrffhkWLYPZsv82ZA1OnwuOPFxzcvHnBqFj79r4TfgUoxkptoGpmewJ/BfZ2znUzs1ZAZ+fcPwOPTrJK9erVww5BJCWWrlyZ1PHKfYmaoHLy1/Pm5ECLFn4744yCA77/3hdh8WJs9myYONH/7NhjIT8/kLjSKZE+Xq8CjwHXOecONbPKwGznXJt0BAia4yUimSWvTRv49FPyP/zQ9y0SkbJbswb69oVly5JafD5M5e3j1cA59yywHcA5txXI7kcSREREJD1q14a6dX0j1gqg1FuNwC9mVh8/oR4zOxL4OdCoJCsNGTIEgIceeijkSETSS7kvURNUTpb5vDk5JRde69b525Tffbfz1+++g59+gjFjoHPnckSfGokUXlcCk4H9zexdoCHQL9CoJCvVr18/7BBEUqLzQQfBp58mfLxyX6ImqJws83lzcuCLL+Cuu3YsqOKv167d+Xdyc2HvvaFBAz9f7MMPI1F4lTrHCyA2r6slYMD8WCPVtNEcLxHJKFOmQM+e/oNec7xEyu/SSyH+hGW8oGrUaMevRffVreubGP/0E+y+O9x9N6RphYgy9fEys8OBb5xzy5xzW83sMKAvsMTMbtSajSIiuxD/B60614ukxsiRcMklsNdeBQVVonJi09kj0jG/pMn1DwKbAczsGOB24An8/C5NRJCUGzx4MIMHq22cZL6+t91G3ySOV+5L1ASVk2U+b24uHHywH7lK9h80lSr5rxGZnF/SHK9KhUa1+gMPOecmAhPNbE7woUm22XfffcMOQSQlVhU336QEyn2JmqByMpRcj9iIV4mFl5lVjrWPOB4YkuDviZTJzTffHHYIIqFQ7kvUBJWToeR6Bo14PQO8ZWYrgQ3AfwHM7ADUTkJEREQyQXzEK+qFl3PuVjObBjQCXnMFjz/mAH8o7xubWSVgJvCtc+6U8p5PMt/AgQMBGDcu0RXuRCIuwbkoyn2JmqByMpRcz6BbjTjn3itm34IUvfflwDygdorOJxmuZcuWYYcgkhLHt22bVB8v5b5ETVA5GUquR2zEK6E+Xil/U7PGwOPArcCVpY14qY+XiGSUyZOhd2/46CPo0CHsaESkUiW49loYMSItb1fetRqDMAr4M7H1H0VEREQCk5MTmVuNaS+8zOwUYLlz7qNSjhtiZjPNbOaKFSvSFJ2EacCAAQwYMCDsMETKrdtNN9EtieOV+xI1QeVkaLnuXPHLCoUgjLYQvwF6mVl3IBeobWbjnHMDCx/knHuIWKPWjh07pv9+qKRdu3btwg5BJCU2bNrkXyQ4uV65L1ETVE6GluvbtsG998KNN0LIa6OGMsfr1zc3ywOu0hwvEalI8g45BD77jPxZs6B9+7DDEZFzz4XHHoMFC6BFi8DfLopzvERERETS44QT/NcIPNkYagd651w+kB9mDBIdffv61e0mTpwYciQi6aXcl6gJKidDy/UItZTQ0j8AGzf6LSfHz8nIydn162QX55SEde7cOewQRFLilMMPh88+S/h45b5ETVA5GVquR6jwCnWOV6ICn+M1ahRccUXix++qOMvJgcqVoUoVvxV+ncxWrZpfib16df+18FZ0366+r14datQoSDYRSZ+XXoI+fWD2bNDEeZHwTZwI/frBJ59AmzaBv11Jc7w04gVw7LFw992+Et6+3T92WpbX27bB1q2wZYvfCr8ublu/vvj9mzYVjMLFn44qqxo1oFYtv9WsmdzXWrWgTh2/1a7tv9asqVE/kdJkwD9oRbJKhEa8VHiBf+ooqk8ebd++YyG2cSNs2FDy9xs3wi+/+G3duuK//vBDwffr1vkiMBGVKhUUYYULsuK22rWhbl3YfXe/1avnv1apUuype/XqBcDkyZNTdfVEQpF3/fVA4hNYlfsSNUHlZGi5rsJLEpaT428bVq8e7Pts3+6Lr8LF2dq18PPPsGaN/1p4K7xv6VI/nyW+b+vWkt+rVq2CIqxevV9fH795M/z2t8H+OUUi6Pjjjw87BJEdBJWToeV6pUr+qwoviYycnILbi3vuWfbzOOdH4AoXaT/+CKtX7/w1/nrePFi+nMtXroRhw1L3ZxLJEJdffnnYIYjsIKicDC3XNeIlFZaZn1dWowY0apT47334IXTqFIn/KURSRvMhRaIhQoWXHnmTyOgGdBs+POwwRNKuW7dudOuWzOqOIsEKKidDy/UIFV4a8ZLI6Al+1Eskw53RpUtSfbx69uwZYDQiyQsqJ0PLdRVeIkWYMRSgR4+wIxEpt6HdusHDDyd+/NChAUYjkrygcjK0XI9Q4aVbjRIt6n8kFcD6TZtIsEGLiKSDCi+RIszoCnSN9T8SyWTdb7mF7pDw5PquXbvStWvXQGMSSUZQORlarleO3eA7+WR44YX0v3/hUEJ9d5FC+gMcdVTYYYikXf/+/cMOQWQHQeVkaLnesSPceKPvN9m8eTgxxKjwksi4AOCkk8IOQyTtLrjggrBDENlBUDkZWq7n5sINN4Tz3kXoVqNEg/odiYhIFlDhJZGRB+Rde23YYYikXV5eHnl5eWGHIfKroHJSua5bjRIVZgwCrdUoFcKgvDzfxyvBkdxBgwYFGo9IsoLKSeU6mMuAx/c7duzoZs6cGXYYEqTZs6FDB3jxRejdO+xoRMpn4kTo1w8++QTatAk7GhFJMzP7yDnXsbif6VajRMYWYMvWrWGHIVJuK9esYWUSx2/ZsoUtW7YEFo9IsoLKSeW6Ci+JCjNOAE6IyFMnIuXRb+RI+iVx/AknnMAJJ5wQWDwiyQoqJ5XrmuMlEXI+gJpIShY6//zzww5BZAdB5aRyXYWXRIUZAwGy/GkXqWASnFw/cODAgAMRSU5QOalc161GiZD1wPqNG8MOQyTt1q9fz/r1Wt1RoiOonFSuq/CSCOmOX+NOJNt0796d7t27hx2GyK+Cyknlum41SlSYcTFoySCpEC4+8UT4/PPEj7/4/9u7+yA7y/qM499rYhBUXsSkQkkiBCHIYA2wKBAqq01r1KQpqWMySrSkSKZjB6MwTgTGgQ7QKBMmrbyUKDSU0IYZiMX4kpooG23jSxZYYGOyENLoIokhtQQroiC//nGekLNrYs6zJ/e5n91zfWbO7Nnn3Gf3t7+5dnPnOfd57r9JWI1Zeaky6ax74mUVMhtgypTcZZg1bfaUKbBkSePjvUm2VcyI2yS7QvxSo1WDxG5g9y9/mbsSs6b179pFPzS8uH737t3s3r07aU1mZaTKpLPuiZdVyExg5qJFucswa9rcL3yBuSXGz5w5k5nescEqJFUmnXW/1GgVcilAmy+6tPZ06aWX5i7BbIBUmXTWPfGyqpCYBXD22bkrMWu5WbNm5S7BbIBUmXTW/VKjVcguYFebv/Zv7WnXrl3s2lVmd0eztFJl0ln3GS+rCqm2t93ixXTNm5e7GrODo8HF9R/4QG1nx66uroTFmDUuVSaddU+8rEIuA5g+PXcZZk27bPr0UtfxuuyyyxJWY1Zeqkw66554WYXMAOjoyF2GWdNmnHlmufEzZiSqxGxoUmXSWc+wxkvSeEkPSNokaaOkT7S6BqsgiR3AjmefzV2JWdP6nn6avhLjd+zYwY4dO5LVY1ZWqkw663nOeL0EXBYRD0k6HHhQ0pqIaPy8vI1IcwCWLKHrYx/LXYpZU+Z/8YsAdDU4fs6cObXxbbzuxaolVSad9QwTr4jYDmwv7v9C0ibgOMATr3YmsRCgzS+sZyNMg4vrFy5cmLgQs3JSZdJZz7zGS9LxwOnAD3LWYdUwDeBtb8tdhlnLTZs2LXcJZgOkyqSznvE6XpJeB9wHLIiI5/bx+CWSuiV1P/PMM60v0Fqun9oed2bDXkSp4f39/fT39ycqxqy8VJl01jNNvCSNpjbpujsiVu5rTEQsjYiOiOgYO3Zsawu01pOYC8y9+ebclZi13Ny5c5k7t8zujmZppcqks57hpUZJAm4HNkXEja3+/lZdVwFccEHuMsyadtWsWXDddY2Pv+qqhNWYlZcqk856njVeU4C5wGOSeopjV0TE1zPUYlUhMRXgrW/NXYlZ06buyXGDi+unTp2asBqz8lJl0lnP867G/wQa+2tkbWUrwI4dTMxdiFmTerZtA2Byg+O3bt0KwMSJTr9VQ6pMOuu+cr1VyDyApUvpWrAgdylmTVlw551A49fxmlfsT9rO1zayakmVSWfdEy+rColrAIoNVM3ayTXXXJO7BLMBUmXSWffEyyrkfIBTTsldhlnLnX/++blLMBsgVSad9YzX8TIbQKKP2h53ZiNGg4vr+/r66Osrs7ujWVqpMums+4yXVch8gNtvp+vyy3OXYtZS8+fPB9p73YtVS6pMOuueeFmFXA/wwQ/mLsOsadfPng1XX934+OuvT1eM2RCkyqSz7omXVYXEuQAnn5y7ErOmnVsyx+eee26iSsyGJlUmnXWv8bIK6QV6f/KT3GWYNW3944+zvsT43t5eent7k9VjVlaqTDrroCi5mWsOHR0d0d3dnbsMS+nJJ+l885vhlFPo2rQpdzVmTek89VTYtImuvr6GzuJ2dnYC7b3uxaolVSbbJeuSHoyIjn095pcarTJuAJgzJ3cZZi13ww035C7BbIBUmXTWPfGyCjkLoI23kbD2ddZZZ+UuwWyAVJl01r3Gy6pCogfo+fGPc1di1nI9PT309PTkLsPsFaky6az7jJdVyAKAu++m66qrcpdi1lILiv1JR/q6Fxs+UmXSWffEy6pCYgnAhz6UuxKzpi258EK48sqGr1y/ZMmSxBWZlZMqk866J15WIZMBJkzIXYZZ0yYff3y58ZMnpynEbIhSZdJZ9xovq5ANwIatW3OXYda0tb29rC0xfsOGDWzYsCFZPWZlpcqks+7reFlVbNtG5wknwKRJdG3enLsas6Z0vuUtsHkzXY8/DieddODxbXJtIxs+fB2v5vg6XjYs3ARw4YW5yzBruZtuuil3CWYDpMqks+6Jl1WFxGkA48blrsTs4Glwcf1pp52WuBCzclJl0ln3Gi+rkPXA+ieeyF2GWcutX7+e9evL7O5ollaqTDrrPuNlFXIFwH330XXddblLMWupK664Ahj5615s+EiVSWfdEy+rConbAD7ykdyVmDXttnnz4NOfbnz8bbclrMasvFSZdNY98bIKmQRwzDG5yzBr2qRjjy03ftKkRJWYDU2qTDrrXuNlVSGxDljX15e7ErOmrXroIVZBw4vr161bx7p165LWZFZGqkw6676Ol1VFfz+dEybAySfT5cmXDXOvXMdryxY48cQDj2+TaxvZ8OHreDXH1/GyYeEOgIsuyl2GWcvdcccduUswGyBVJp11T7ysKiQmAowdm7sSs5abOHFi7hLMBkiVSWfda7ysQtYCazduzF2GWcutXbuWtWvL7O5ollaqTDrrPuNlVSFxLcDXvsbUG2/MXY3ZwdHg4vprr70WgKlTp6asxqxhqTLprHviZRVyF8C8ebnLMGvaXfPnwyc/2fj4u+5KWI1Zeaky6ax74mUVMh7g6KNzl2HWtPFveEO58ePHJ6rEbGhSZdJZ9xovqwqJ1cDq3t7clZg17Z7vf597SoxfvXo1q1evTlaPWVmpMums+4yXVcgigNWrmZa7ELMm3frtbwMwu8HxixYtAmDaNKffqiFVJp11T7ysKiRWAFx8ce5KzA6eBhfXr1ixInEhZuWkyqSz7omXVcgxAEcckbsMs5Y7xnuUWsWkyqSznmmNl6RpkvokbZG0MEcNVj2rgFWPPpq7DLOWW7VqFatWrcpdhtkrUmXSWc9wxkvSKOBm4E+Bp4ANkr4SET9qdS1WIRKLAdasYUbuWsxabPHixQDMmOH0WzWkyqSznuelxrcDWyJiK4CkFcBMwBOvNncvwAsvwDnn5C7FrCn3vvBCufH33puoErOhSZVJZz3PxOs4oL/u86eAdwweJOkS4BKACRMmtKYyy2fsWMZcdBH89Ke5KzFr2pgjjoDzzoNx4xobP2ZM4orMykmVSWc9z8RrX2/zid85ELEUWArQ0dHxO4/bCDNqFCunTwdg1qxZmYsxa86yZcsA+KvRoxsav3LlSsDZt+pIlUlnHRTR2jmNpHOAqyPiPcXnnwGIiL/f33M6Ojqiu7u7RRVaLp2dnQB0dXVlrcOsWWWz7Oxb1aTKZLtkXdKDEdGxr8dynPHaAJwk6QTgp8Ac4EMZ6rCKuf/++3OXYJaFs29VkyqTznqGiVdEvCTpb4H/AEYBd0TExlbXYdVz5JFH5i7BLAtn36omVSad9UwXUI2IrwNfz/G9rbruuae2u93s2Y1utGI2Mjj7VjWpMums+8r1ViG33nor0N6/kNaenH2rmlSZdNYzLK4fCi+ubw/PP/88AK95zWsyV2LWnLJZdvatalJlsl2yXrXF9Wb7NNJ/Ea19lM2ys29VkyqTznqmvRrN9mX58uUsX748dxlmTbvlllu45ZZbGh7v7FvVpMqks+6XGq1C2uX6Ljby+TpeNtz5Ol7N8UuNNiysWbMmdwlmWTj7VjWpMumse+JlFTK6we1VzEYaZ9+qJlUmnXWv8bIKWbZs2St73Jm1E2ffqiZVJp11T7ysQvwLae3K2beq8cQrnWGxuF7SM8CPE3+bMcCuxN9jJHP/muP+DZ171xz3b+jcu+aM5P69KSLG7uuBYTHxagVJ3ft7B4IdmPvXHPdv6Ny75rh/Q+feNadd++eXGs3MzMxaxBMvMzMzsxbxxGuvpbkLGObcv+a4f0Pn3jXH/Rs69645bdk/r/EyMzMzaxGf8TIzMzNrEU+8AEnTJPVJ2iJpYe56qkDSHZJ2SuqtO3a0pDWSnig+vr7usc8U/euT9J6642dKeqx47B8lqdU/Sw6Sxkt6QNImSRslfaI47h4egKRDJf1Q0iNF764pjrt3JUgaJelhSV8tPnf/GiRpW/Fz90jqLo65fw2QdJSkeyVtLv7+nePeDRIRbX0DRgFPAhOBQ4BHgFNz15X7BrwTOAPorTv2eWBhcX8h8Lni/qlF314NnFD0c1Tx2A+BcwAB3wDem/tna1H/jgXOKO4fDjxe9Mk9PHDvBLyuuD8a+AFwtntXuo+fAv4V+GrxufvXeO+2AWMGHXP/GuvdncDFxf1DgKPcu4E3n/GCtwNbImJrRPwGWAHMzFxTdhHxHeDngw7PpPZLRfHxL+qOr4iIX0fEfwNbgLdLOhY4IiK+F7XfpH+pe86IFhHbI+Kh4v4vgE3AcbiHBxQ1/1d8Orq4Be5dwySNA94PfKnusPvXHPfvACQdQe0/7bcDRMRvIuJZ3LsBPPGq/WPYX/f5U8Ux+11vjIjtUJtYAH9QHN9fD48r7g8+3lYkHQ+cTu3MjXvYgOJlsh5gJ7AmIty7cpYAnwZerjvm/jUugG9KelDSJcUx9+/AJgLPAP9cvMz9JUmvxb0bwBOv2mnMwfxWz3L218O2762k1wH3AQsi4rnfN3Qfx9q2hxHx24iYDIyj9j/g037PcPeujqTpwM6IeLDRp+zjWNv2rzAlIs4A3gt8XNI7f89Y92+vV1FbonJrRJwO/JLaS4v705a988SrNpMeX/f5OODpTLVU3c+KU8AUH3cWx/fXw6eK+4OPtwVJo6lNuu6OiJXFYfewhOJlii5gGu5do6YAfy5pG7WlE++WtBz3r2ER8XTxcSfwZWpLUty/A3sKeKo4Qw1wL7WJmHtXxxMv2ACcJOkESYcAc4CvZK6pqr4CfLS4/1Hg/rrjcyS9WtIJwEnAD4tTyr+QdHbxjpSP1D1nRCt+3tuBTRFxY91D7uEBSBor6aji/mHAVGAz7l1DIuIzETEuIo6n9vfs2xFxIe5fQyS9VtLhe+4Dfwb04v4dUETsAPolTSoO/QnwI9y7gXKv7q/CDXgftXedPQlcmbueKtyAfwO2Ay9S+9/HXwNvAL4FPFF8PLpu/JVF//qoe/cJ0EHtj9aTwE0UF+0d6TfgPGqnxh8Feorb+9zDhnr3R8DDRe96gc8Wx9278r3sZO+7Gt2/xno2kdo77R4BNu75N8H9a7h/k4Hu4vf334HXu3cDb75yvZmZmVmL+KVGMzMzsxbxxMvMzMysRTzxMjMzM2sRT7zMzMzMWsQTLzMzM7MW8cTLzMzMrEU88TKzSpD0W0k9knolrdpzEdUSz79a0uXF/b+TNPUg1HSYpHXF3pGdkr7axNdaIemkZmsys+HNEy8zq4pfRcTkiDgN+Dnw8aF+oYj4bESsPQg1zQNWRsRvD8LXupXaxtVm1sY88TKzKvoecBzUNhqX9C1JD0l6TNLMPYMkXSmpT9JaYFLd8WWSPlDc3yZpTHG/Q1JXcf/84gxbj6SH92wTM8iH2cdWJZLOKp4zsTjTdqekbxbfa5akzxe1ri727AT4LjBV0qsOSofMbFjyxMvMKkXSKGp7vO3ZM/UF4IKIOAN4F7BYNWdS24vwdGAWcFbJb3U58PGImAz8MfCrQXUcAkyMiG2Djp8L/BMwMyK2FodPBN4PzASWAw9ExFuLr/l+gIh4GdgCvK1knWY2gnjiZWZVcZikHuB/gKOBNcVxAddLehRYS+1M2BupTZa+HBHPR8RzlN/c/r+AGyVdChwVES8NenwM8OygY28BlgIzIuIndce/EREvAo8Bo4DVxfHHgOPrxu0E/rBknWY2gnjiZWZV8avi7NObgEPYu8brw8BY4Mzi8Z8BhxaPNbLZ7Evs/Vu353lExCLgYuAw4PuSThlcT/34wnZqZ+BOH3T818XXfBl4MfZugvsyUP/S4qEMOrNmZu3FEy8zq5SI2A1cClxerI86EtgZES9Kehe1iRnAd4ALinceHg7M2M+X3AacWdz/yz0HJZ0YEY9FxOeAbmDAxCsi/hcYJal+8vUstZcOr5fUOYQf72Rg4xCeZ2YjhCdeZlY5EfEw8Ai1NVx3Ax2Suqmd/dpcjHkIuAfoAe6jtnh9X64B/kHSd4H6dycuKC5d8Qi1s1Df2MdzvwmcN6i2n1Gb5N0s6R2N/kyS3kjtrN72Rp9jZiOP9p4RNzOzepJOBz4VEXMPwtf6JPBcRNzefGVmNlz5jJeZ2X4UZ94eKN5p2axngTsPwtcxs2HMZ7zMzMzMWsRnvMzMzMxaxBMvMzMzsxbxxMvMzMysRTzxMjMzM2sRT7zMzMzMWuT/AbIIUK/Vl1L3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(0, 6371, 0.5)\n", - "ax.plot(rs, prem.vp(rs), 'b', label='Vp')\n", - "ax.plot(rs, prem.vs(rs), 'r', label='Vs')\n", - "\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Seismic velocity (km/s)')\n", - "ax.legend()\n", - "\n", - "ax.axvline(1221.5, ls=':', c='k')\n", - "ax.axvline(3480, ls='--', c='k')\n", - "ax.axvline(3630, ls=':', c='k')\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3.558227707897195\n", - "3.5274008549889566\n", - "3.4657471491724787\n", - "3.4060505248782986\n" - ] - } - ], - "source": [ - "print(prem.vs(1000.0))\n", - "print(prem.vs(1000.0, t=10.0))\n", - "print(prem.vs(1000.0, t=1000.0))\n", - "print(prem.vs(1000.0, t=60*60*24))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11.10541122721928\n", - "11.113289239204116\n", - "11.12904526317379\n", - "11.14430114164584\n" - ] - } - ], - "source": [ - "print(prem.vp(1000.0))\n", - "print(prem.vp(1000.0, t=10.0))\n", - "print(prem.vp(1000.0, t=1000.0))\n", - "print(prem.vp(1000.0, t=60*60*24))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAGQCAYAAADrzcctAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZzN9ffA8dfbjLFEkiX7vmSbprJFSSG0UBT6tpCQSHxbaftKv0K0KEnLhBBaCBWytyhSMbYoSkYkQ9aEcX5/nHvdawxzZ7lz5849z8fjPuZ+Pvdz732/9ckc7+UcJyIYY4wxxpicIU+oG2CMMcYYY3wsODPGGGOMyUEsODPGGGOMyUEsODPGGGOMyUEsODPGGGOMyUEsODPGGGOMyUEsODPGhB3nXLJzbpVzbp1zbrVz7gHnXIb/PnPOPeb3vJJzbm2A7xvgnLvT83yJc65+Br+/nnNufEbea4zJfSw4M8aEo39EJE5E6gCtgGuB/2Xi8x5L+5JTOeeige7Ae5n4XgBEZA1QzjlXIbOfZYwJfxacGWPCmojsAnoB9zkV5Zwb4Zz7zjmX4Jy7B8A519w594VzboZzbr1zbqxzLo9zbhhQwDMSN9nzsVHOubc8I3OfO+cKpPLVVwM/iMhx/5Oez5zgnPs/z/FB59xw59z3zrkFzrmGnlG2Lc65dn5vnQ10yeo/H2NM+LHgzBgT9kRkC/r3WUngbmCfiDQAGgA9nXOVPZc2BB4E6gFVgQ4iMhDfSNxtnuuqA695Rub+Bjqm8rVNge9TnIsGJgObROQJz7lzgCUicilwAPg/dLTvJmCI33tXAldkpP/GmNzFgjNjTG7hPD+vAe50zq0ClgPF0GALYIWIbBGRZGAKcPkZPutXEVnlef49UCmVa0oDf6U49wawVkSe9Tt3FJjreb4GWCoixzzP/T93F1DmjL0zxkQMC86MMWHPOVcFSEYDHAf084yExYlIZRH53HNpymLCZyou/K/f82R0RCylf4D8Kc4tA65yzvmfPya+IsYnvJ8tIidSfG5+z2caYyKcBWfGmLDmnCsBjAVGe4KgecC9zrm8ntdrOOfO8Vze0DlX2bOzszPwlef8Me/16bABqJbiXDzwGfCBZ8NAetQAAtolaozJ3Sw4M8aEI+8C/nXAAuBz4GnPa28D64EfPCkx3sA3QvUNMAwNgn4FZnjOvwkk+G0ICMQcoFnKkyLyIvADMDGd6T2uAj5Nx/XGmFzK+UbbjTEm93LONQceEpHrs/AzZwCPiMjPmfycfMBS4PKUuz+NMZHHRs6MMSbjBqIbAzKrAjDQAjNjDNjImTHGGGNMjmIjZ8YYY4wxOUiuCc6cc/2dc2s9Gb0HeM6d75yb75z72fOzqN/1g5xzvzjnNjrnWoeu5ZnnnPuvp99rnXNTnHP5I6jvNT0Lw72P/Z56h5HS//Occx86535yzm1wzl0WKX0HcM795pxb4/lvv9JzLpL6H+Wc+9E594nnONf33fP32wqnNVXXOeee9pzP9X0HcM6Vd84t9vz/vs45199zPlL6/45zbpfzq3+bK/suImH/AOqiu68KoruyFqBJJ59H13GArg0Z7nleG1gN5AMqA5uBqFD3I4N9L4vuOivgOX4f6BYJfU/lzyIK2AlUjJT+AxOAHp7nMcB5kdJ3T59+A4qnOBdJ/X8Are35SaT0Hc1jV8jzPC+aaLhxJPTd05/SwCWe54WBTZ4+Rkr/mwGXoMmevedyXd9zy8hZLeBbETksuqB2KVoapT36ywvPzxs9z9sDU0XkXxH5FfgFLesSrqLR1ALRaID6B5HTd38tgM0ispUI6L9z7lz0L6p4ABE5KiJ/EwF9T0NE9N85Vw64Dk0d4pXr+y7qoOcwr+chREDfAURkh4j84Hl+AM23V5bI6f8XwJ4Up3Nd33NLcLYWaOacK+acKwhcC5QHLhCRHaA3NFp3D/RG3ub3/kTPubAjItuBkcDvwA60puDnREDfU9EFLckDkdH/Kmj5oHGeqa23nSZbjYS+ewnwudOi4r085yKl/y8Dj6BVB7wiou+e6dxVaEWI+SKynAjpuz/nXCXgYnT0MOL67yfX9T1XBGcisgEYDsxHa9itBs62Jd2lci4st6165tbbo0O2ZYBznHO3n+0tqZwLy777c87FAO2AD9K6NJVz4dr/aHR4/3URuRg4hA7pn0lu6rtXUxG5BGgL9HXOnZYU1k+u6b9z7npgl4ikLLx+xrekci4s+w4gIskiEgeUQ6s+1D3L5bmq717OuULAR8AAEdl/tktTORf2/Q9Q2PY9VwRnACISLyKXiEgzdMjzZ+BP51xpAM/PXZ7LE9GRNa9y6FRgOGqJFmn+S7SY8nSgCZHRd39tgR9E5E/PcST0PxFI9IwaAHyIBmuR0HcAROQPz89daLb/hkRG/5sC7ZxzvwFTgaudc5OIjL6f5JnGXwK0IYL67rTU2EfAZBGZ7jkdMf1PRa7re64JzpxzJT0/KwAd0OmtWUBXzyVdgZme57OALs65fM65yujmgRXZ2+Is8zvQ2DlX0Dnn0HVXG4iMvvu7Fd+UJkRA/0VkJ7DNOVfTc6oFWrYo1/cdwDl3jnOusPc5cA26xCHX919EBolIORGphE7nLxKR24mAvjvnSjjnzvM8L4D+A/UnIqDvAJ6/5+OBDaKlwrwiov9nkPv6HuodCVn1AL5EfzGtBlp4zhUDFqKjaAuB8/2ufxzdubERaBvq9mey70+jfzmtBSaiO1Miou+e/hQEkoAifuciov9AHLASSAA+BopGUN+reP5/Xw2sAx6PpP/2fn1qjm+3Zq7vOxAL/Oi559cCT0VK3z19uRydmksAVnke10ZQ/6eg66uPoSNjd+fGvluFAGOMMcaYHCTXTGsaY4wxxuQGFpwZY4wxxuQgFpwZY4wxxuQgFpwZY4wxxuQgFpwZY4wxxuQgEROc+ZV2iTjW98gVyf2P5L5DZPc/kvsOkd3/3NL3iAnOgFzxHyyDrO+RK5L7H8l9h8jufyT3HSK7/7mi75EUnBljjDHG5Hi5KgltTEyM5M2bN9XXjh8/TnR0dDa3KGewvme+797/T7RySviw//aR2XcR4fjx45zp78PcLpL/20Nk9z/c+n748OFjIhKT8nz49CAAsbGxrFy5MtTNMMYYY4xJk3MuIbXzNq1pTAAmTZrEpEmTQt0MYwJi96sx4S1XjZwZEyxvv/02ALfffnuIW2JM2ux+NSa8WXBmTADmz58f6iYYEzC7X40JbxacGROASF1YbcKT3a8mUMeOHSMxMZEjR46Euim5Wv78+SlXrlzA/29acGZMAMaPHw9At27dQtoOYwJh96sJVGJiIoULF6ZSpUphtxs9XIgISUlJJCYmUrly5YDeYxsCjAnA+PHjT/7CMyans/vVBOrIkSMUK1bMArMgcs5RrFixdI1O2siZMQFYsmRJqJtgTMDsfjXpYYFZ8KX3z9hGzowxxhgTEklJScTFxREXF0epUqUoW7bsyeOjR49m6DMnT55MbGwssbGxNGnShNWrV2dxq4PPRs6MCcBbb70FQM+ePUPcEmPSZverCRfFihVj1apVAAwePJhChQrx0EMPZeozK1euzNKlSylatChz5syhV69eLF++PCuam21s5MyYAEybNo1p06aFuhnGBMTuVxPJmjRpQtGiRQFo3LgxiYmJp12TnJxMt27dqFu3LvXq1eOll17K7maelY2cGROABQsWhLoJxgTM7leTIQMGgGcUK8vExcHLL2f6Yzp37szGjRtPO//AAw9w5513nvF98fHxtG3b9rTzq1atYvv27axduxaAv//+O9NtzEoWnKXH0qVQsCBceCEULhzq1hhjjDERISMjwYsXLyY+Pp6vvvrqtNeqVKnCli1b6NevH9dddx3XXHNNVjQzy1hwlh59+sD69fq8fHmoVUsftWv7nhcvHto2mqAYM2YMAH369AlxS4xJm92vJkOyYIQrWNI7cpaQkECPHj2YM2cOxYoVO+31okWLsnr1aubNm8drr73G+++/zzvvvBOUtmeEBWfpMWMGrFsHGzboY/16eOstOHzYd02JEr5AzT9wK1sWbLty2Jo9ezZgv+xMeLD71eQ26Rk5+/333+nQoQMTJ06kRo0aqV6ze/duYmJi6NixI1WrVs1xCZstOEuP6tVh2TK46iodRTvvPDhxArZt8wVr3sDt/fdh717fewsXTj1oq1wZoqJC1ycTkDlz5oS6CcYEzO5XE8mGDBlCUlLSyX+cREdHs3LlylOu2b59O3fddRcnTpwAYOjQodnezrNxIhLqNmSZ+vXrS8r/AFlqxw4oU8Z3XKrU6dOatWrpeYBdu04P2tav18/xypcPatY8PXCrXl1fM8YYY4Jkw4YN1KpVK9TNiAip/Vk7574Xkfopr7WRs/QoWRKmT4ejR2HrVl+w9e67cOCA77qRI+HBB3VEbOVKuPlmHWnz+vtv+OmnUwO3777T0TZvsBwVBVWqnBr41a6tmxEKFcrefhtGjRoFQP/+/UPcEmPSZverMeHNgrP02LcPOnTQ52XKaMDUsCG88IJOT3oDrSuv1GvWroWHH4ZLLoFKleDTT+GJJ04dJevWTUfJYmJ07dqmTaePtn36KRw/7muHdzNCysAtlUWPJmssXLgQsF92JjzY/WpMeAtqcOacOw94G6gLCNBdRL7xe/024FHP4UHgXhFZ7XntN+AAkAwcT23YL9sVKABTp8Kvv/oCp/HjITYWLr8ckpKgc+dTg6+pUzVwAsifH0qXhm++gSlTfJ8bFQXVqvneM2AA3HqrjqI5B8eOwebNpwdtb76Z+mYEb9BWu7Y+Spe2zQiZNGvWrFA3wZiA2f1qTHgL9sjZKGCuiNzsnIsBCqZ4/VfgShHZ65xrC7wJNPJ7/SoR2R3kNgYuOVmDppdeggkT4MgRGDfON1KWPz906qSB06xZEB+v5+fMgTZt9PWiReHuu3WkLV8+OHQIfv7ZF3B98gl4/7U7dKgGYJs26XTm/v2aquOee/TniRPw+++nrmfbsEEDQv+EekWK+AI1/0f58ha0GWOMMTlM0IIz59y5QDOgG4CIHAVOqWIqIsv8Dr8FygWrPVkiORn+7/+gaVM93rRJ15JNmQI1akCePJpq4/nn4bLLNHBasQIaeeLNnTvh66/hvfd8nxkVpe+pWVOvXbdO33fOOVCnDtxwg055gn63Z4v8aSk76taFW26Bcp4/wj//9AVr69frY/ZsX8AIunbNf4TN+6hUSftiTho5ciRApmu+GZMd7H41JrwFc+SsCvAXMM45dxHwPdBfRA6d4fq7Af/93wJ87pwT4A0ReTO1NznnegG9ACpUqJBVbU9dkSLw2GO+47p1dWPAeefp8aFDOhJVoIAer12rAdOXX+q0Z82a0LMn3HYb7NnjG/GqWFGvnzLl1CSA3rVlR49qgPb44/Cf/8Aff5w5ZUedOvq9pUrBV19pG/v29b2+e/epAdv69TB/vo4EehUooCN1KYO2KlUgOjKXKX7zzTdpX2RMDmH3qzHhLWipNJxz9dHRsKYistw5NwrYLyJPpnLtVcAY4HIRSfKcKyMifzjnSgLzgX4i8sXZvjPoqTTSa9s2ndLs3FkDu3fe0SnNP/7QdWDjx8OwYRq8lSgBGzdCQoK+17sxYNcu+PxzPdepE3zwgU5pekfMLr4YbrrJF6wB3Huv/qxaFerXB2/yvquv1qDNP+CqWhXy5tVp0JRB2/r1OornVaSIjgr27GnTocYYkwuEOpVGUlISLVq0AGDnzp1ERUVRokQJAFasWEGMd+YoHSZPnszw4cMBKFSoEK+//joXXXQRAHPnzqV///4kJyfTo0cPBg4cmEU9SVt6UmkEMzgrBXwrIpU8x1cAA0XkuhTXxQIzgLYisukMnzUYOCgiI8/2nTkuOEvNwYM6ZekcfPaZBmhTp+o04sCB8OKLusg/OhomTYIff9TUHM7BokValNYbiG3YoGvXvH2+5hodkfMGbhUr6utNmsC//+pO0/Xr4bfffO3Jm1d3i3qDtTZtdErW68ABTfvhTRmyaBG0bg1vv+2bQjXGGBOWQh2c+Rs8eDCFChXK9HT8smXLqFWrFkWLFmXOnDkMHjyY5cuXk5ycTI0aNZg/fz7lypWjQYMGTJkyhdreTXtBliPynInITufcNudcTRHZCLQA1qdoVAVgOnCHf2DmnDsHyCMiBzzPrwGGBKut2co/R9m11+rD6957dXTLO3W4Zg0sXOgbpXrnHV2T9uOPevz557opwKthQ123tmSJBnYA7dvDxx/r5oMKFfSalJsR1q/XoG/6dP3uyy7T6c+mTXWkrH17nZK99FL44gtND1K3rk7Bdu0aEaNow4YNA8jWf2UZk1F2v5pI1qRJk5PPGzduTGJiIqAjcdWqVaNKlSoAdOnShZkzZ54WnH3wwQc8/fTTREVFUaRIEb744qyTdkER7AVE/YDJnp2aW4C7nHO9AURkLPAUUAwY4/QXvDdlxgXADM+5aOA9EZkb5LaGXsWKvvVnAMOH67Sn13XX6TSl1+DBGmS1aaPHu3fDFVdo0HbggAZpJUvqa0ePwoIFmpLDP9HtE0/AzJmaR23iRE3pcfiwPurV8+VO++or/f6779ZNDfffD3fdBR99pDtKS5cO1p9KjrBq1apQN8GYgNn9ajKsefO0r7n+evCObjVvrvk6u3XT30E333zqtUuWZEmz0lv43Cs+Pp62bdsCWrKpfPnyJ18rV64cy5cvP+09Q4YMYd68eZQtW5a//TMfZKOgBmcisgpIOVw31u/1HkCPVN63BbgomG0LG/6jUrfeeuprM2dqYlyvAwd0NAy0lmffvprmo1Ej3VBw770QFwfnn+/bydm4sV6/eTN07+77zsqVfZsRQHO5DRgAr7yiwd/bb+tnDBqkmxBGj9b25dJRtKlTp4a6CcYEzO5Xk9ukp/C51+LFi4mPj+err74CILVlXC6V31lNmzalW7dudOrUiQ7exPPZLDK33uUWJUrow2vyZN9zEXjuOd+6sKNHdU3boEHw9NM6LRkbqyNloMHY1Kma8HbLFt+GgH/+0dc3boTXX9cAb/58XXfWu7eOovXtqztQP/pIr/GO1hljjAkv6R3p8r++ePEsGylLKb0jZwkJCfTo0YM5c+ZQzDMDVK5cObZt23bymsTERMr418v2GDt2LMuXL+fTTz8lLi6OVatWnfyM7GLBWW7lHNx+u+84JkZH1v79V48PHNAA7fzz9fiPP6BLF52ifOop+OsvTYJbqZK+XrGiTp++9pquW+vWDd54A+bO1VG0lSv1fV98AWPHQseO2dnboHvmmWcAePLJ0zYbG5Pj2P1qcpv0jJz9/vvvdOjQgYkTJ1KjRo2T5xs0aMDPP//Mr7/+StmyZZk6dSrv+ecd9di8eTONGjWiUaNGzJ49m23btmV7cGaZRiNJvnxw7rn6vGhRzZF2ww16XKwYzJihI2Kgo2evv66Jc0F/JiTAkCHwyy+ak+2//9UNBC1bwvbtsGyZBnE336z52JKSsr+PQbJx48ZU/9VmTE5k96uJZEOGDCEpKYk+ffoQFxdHfc9a7ejoaEaPHk3r1q2pVasWnTp1ok6dOqe9/+GHH6ZevXrUrVuXZs2anUzDkZ2ClkojFMIilUY4SU7Wn1FRsHq1JuCdPFnLVvXuDe3aaQ63xx7TeqFff63XDxumQVzx4joS5w0AjTHG5Cg5KZVGbpeeVBo2cmbOLCpKHwAXXQSffqrVEEqWhIIFdb3bOefoJoNOnfTaAwd03dqXX+p17drpFGiIdrwYY4wx4caCM5N+SUm609M75Tl/vuY+a95ca3cOG6YloL77TlN1TJqk69vmhm82lKeeeoqnnnoq1M0wJiB2vxoT3mxDgEm/EiU02a03We6dd+oo2fjx8P33WgO0Xj2tehAbq7t3evWCtm219NMLL2iqjzDiv8PHmJzO7ldjwpsFZyZj8ub1PR81Snd7rlqlqTYGD4ZWrTQA69RJ86W9+SbMnq2lqD7/XKsdXH11yJqfXuPGjQt1E4wJmN2vxoQ3m9Y0mTdzJnzyiabdmDEDXnpJ63nWq6clnvbt0ynPvHm1NmdMDLRoAffd50uaa4wxxhjAgjOTFWJiwFsSY8wYTbGRkKDr0h58EGrUgJtugmefhX79dPqzf3/NmXbRRVoaKocbNGgQgwYNCnUzjAmI3a/GhDcLzkzW6ttXKwXExsKFF2qVgpUrYd48HSnbtUtLShUtqrU+T5yAZs3ggQd81QhyoKSkJJJyUd42k7vZ/WrCRVJSEnFxccTFxVGqVCnKli178viot3xgOk2ePJnY2FhiY2Np0qQJq1evPvna3LlzqVmzJtWqVWOYX+3qPXv20KpVK6pXr06rVq3Yu3dvpvuWGZbnzATPb7/p1OYDD+jo2KJFmuS2WDF47z1NwTFxoo62vf461KwJEyZoLVBjjDFBl5PynA0ePJhChQrxkLeoegYtW7aMWrVqUbRoUebMmcPgwYNZvnw5ycnJ1KhRg/nz51OuXDkaNGjAlClTqF27No888gjnn38+AwcOZNiwYezdu5fhw4dnUc+U5TkzOUPp0jrFeffdmm7j1Vd1rdnkyTB9uk6HVqyowdn8+Tpy1qSJ1v/0lpkyxhhj0qFJkyYULVoUgMaNG5OYmAjAihUrqFatGlWqVCEmJoYuXbowc+ZMAGbOnEnXrl0B6Nq1Kx9//PFpn7tjxw6aNWtGXFwcdevW5csvvwxaH2y3pgmefPm0UoDXihVQqJAWZY+J0QoC+/fr8wkT4IMPdFfnsGG6s3PCBLj00tC134/3X3IjR44McUuMSZvdrybDmjc//VynTtCnDxw+DNdee/rr3brpY/duLd/nL4sKoae38LlXfHw8bdu2BWD79u2U966PRguhL1++HIA///yT0qVLA1C6dGl27dp12me99957tG7dmscff5zk5GQOHz6cqT6djQVnJnucOAFlymhlAee0sPrixVCnjm4amDMHbrtNi6h36KD50Bo10pxpjz+uAVwI/ZOD18MZk5Ldrya3SU/hc6/FixcTHx/PV55NZ6kt43LOBfx5DRo0oHv37hw7dowbb7yRuLi4dLcpUBacmeyRJ4+OiHnVqQPt2+u6tKeegjZtdOcmwJ9/akqO0aN15G3WLB1Fi40NSdMBXnvttZB9tzHpZferybCzjXQVLHj214sXz7KRspTSO3KWkJBAjx49mDNnDsWKFQN0pMw/QXNiYiJlypQB4IILLmDHjh2ULl2aHTt2ULJkydM+s1mzZnzxxRd8+umn3HHHHTz88MNnHbXLDFtzZkJj2TJ9fPKJ5kVbskR3dB48CAMH6o7OuDjd+fnHH1C/vqbiOH481C03xhiTzaZNm8aqVatOe6QWHP3+++906NCBiRMnUqNGjZPnGzRowM8//8yvv/7K0aNHmTp1Ku3atQOgXbt2TJgwAYAJEybQvn370z5369atlCxZkp49e3L33Xfzww8/BKm3NnJmQqV/f90oUKgQ3H8/7N0LHTvq8csvay60Bx+Eyy/X9WcvvKB1Oj/+WEfRatfO1uYOGDAAgJdffjlbv9eYjLD71USyIUOGkJSURJ8+fQCIjo5m5cqVREdHM3r0aFq3bk1ycjLdu3enTp06AAwcOJBOnToRHx9PhQoV+OCDD0773CVLljBixAjy5s1LoUKFePfdd4PWB0ulYUJv2TINwsaP18WkFSvqpoHOnXVn59GjMHy41vS87z4dXXvmGU3RERWVLU20X3YmnNj9agKVk1Jp5HbpSaVhwZnJGRISNCeac5pm47nntIj6dddpio1Fi3QX0fDhMHSojqA1aaIBXfXqoW69McaEJQvOso/lOTPhJzZWA7MjR7TEU9myGoTNnw9r1mhx9e+/12LpPXvCpEmwfr1uIhg1SneDGmOMMbmArTkzOUv+/DB1KhQpogFb69bw2We6Lu3GG2HAAN0oUKYMXHWVBmoDBujuznfegSpVgtKsvn37ArYLzoQHu1+NCW82cmZyniuu8KXN+OADGDcO9u3TupwrVsDy5TpS1qePrkuLj4cfftD3jB2r69WyWIECBShQoECWf64xwWD3qzHhzUbOTM7WujVER+tIWoECmkenQwe45RbNRn3smO76bNlSf957r6bfiI+HChWyrBmWad2EE7tfjQlvNnJmcrYrr/SVgPJWF+jdW6cxN2/WHZwAS5dqhYExY+Cbb3RzwTvvBGUUzRhjjAkmC85M+Ni9W4OtQYN0erNECVi9Ws9NnQp33aXr0xYsgIsv1pG066/XJLaZ1KtXL3r16pUFnTAm+Ox+NeEiKSmJuLg44uLiKFWqFGXLlj15fPTo0Qx95uTJk4mNjSU2NpYmTZqwevXqk6/NnTuXmjVrUq1aNYb5Va3Zs2cPrVq1onr16rRq1Yq9e/eefG3o0KFUq1aNmjVrMm/evIx3Nh0sODPho0ED+PFHna68+GJNs9G8uY6m3Xcf9Oihgdm11+rzl1/21e+cNClTo2jFihU7WQLEmJzO7lcTLooVK3Yy23/v3r3573//e/I4JoM1lStXrszSpUtJSEjgySefPPkPleTkZPr27cucOXNYv349U6ZMYf369QAMGzaMFi1a8PPPP9OiRYuTgdv69euZOnUq69atY+7cufTp04fk5OSs6fxZWHBmwou3SO2ePTBligZjoIHY229rYFa1Ktxxh051LlwItWrpcYcOWrczA4YOHcrQoUOzqBPGBJfdryaSNWnShKJFiwLQuHFjEhMTAVixYgXVqlWjSpUqxMTE0KVLF2bOnAnAzJkz6dq1KwBdu3bl448/Pnm+S5cu5MuXj8qVK1OtWjVWrFhx2ncOHDiQ2rVrExsby0MPPZTpPgQ1OHPOneec+9A595NzboNz7rIUrzvn3CvOuV+ccwnOuUv8XmvjnNvoeW1gMNtpwtD552vi2scf1+MhQ6BrV01Ou3OnTml+9hm0a6elokaMgDlzdBTt/fdD23ZjjMmpmjfX5N6gG66aN9eZB4DDh/V42jQ93rdPj6dP1+Pdu/V49mw93rkzy5rVuXPnk9Od/o+0SijFx8fTtm1bALZv30758uVPvlauXDm2b98OwJ9//hbVl1QAACAASURBVEnp0qUBKF26NLt27UrzPV579uxhxowZrFu3joSEBJ544olM9zfYuzVHAXNF5GbnXAxQMMXrbYHqnkcj4HWgkXMuCngNaAUkAt8552aJyPogt9eEk3PP9T0fPBg2bIAvv9Qpzfh4ePddePVV6NIFnnpK021066bpNz76CF57TXd/BuCuu+4CYNy4cVnfD2OymN2vJreZ5g0I02Hx4sXEx8fz1VdfAZBaRSTnnY05g0Dec+6555I/f3569OjBddddx/XXX5/utqYUtODMOXcu0AzoBiAiR4GUq/vaA++K9v5bz0hbaaAS8IuIbPF81lTPtRacmdRNmwZbtmiC2pUrYeRIuP12uPVWePJJTb1Ru7ZOdb74Ijz9NCxZAm+8oclt0+D/Lydjcjq7X02GLVnie54376nHBQueelykyKnHxYufelyqVJY1q3PnzmzcuPG08w888AB33nnnaecTEhLo0aMHc+bMObn+sly5cmzbtu3kNYmJiZQpUwaACy64gB07dlC6dGl27NhByZIl03yPV3R0NCtWrGDhwoVMnTqV0aNHs2jRosx1WESC8gDigBXAeOBH4G3gnBTXfAJc7ne8EKgP3Ay87Xf+DmD0Gb6nF7ASWFmhQgUxRt56SyRPHpEVK0R+/VWkcGGR3r1F9u8Xue02ka5dRVatEomLEwGR228X2bMn1K02xphst379+lA34aT//e9/MmLEiEx/ztatW6Vq1ary9ddfn3L+2LFjUrlyZdmyZYv8+++/EhsbK2vXrhURkYceekiGDh0qIiJDhw6Vhx9+WERE1q5dK7GxsXLkyBHZsmWLVK5cWY4fP37K5x44cED+/PNPERFJSkqSokWLptqu1P6sgZWSSmwTzGnNaOASoJ+ILHfOjQIGAk/6XZPaeKKc5fzpJ0XeBN4ELXyeqRab3OGWW+DAAahfX2t13nWXTm/OnavrIapX15qcy5fDs8/qY9Ei3VDgWZtgjDEmPA0ZMoSkpCT69OkD6MjWypUriY6OZvTo0bRu3Zrk5GS6d+9OnTp1AF3Q36lTJ+Lj46lQoQIffPABAHXq1KFTp07Url2b6OhoXnvtNaKiok75vgMHDtC+fXuOHDmCiPDSSy9lug9OgpSk0zlXCvhWRCp5jq8ABorIdX7XvAEsEZEpnuONQHN0WnOwiLT2nB8EICJn3X5Uv359WblyZZb3xYSxPXs0EOvSRTcL/PIL9O0Lr7yiwdq0aboOrV8/WLdONxK88IIO1/u5/fbbAZjkXRhrTA5m96sJ1IYNG6hVq1aomxERUvuzds59LyL1U14btN2aIrIT2Oacq+k51YLT14zNAu707NpsDOwTkR3Ad0B151xlz0aCLp5rjUmfqCgtAXXbbZqwdsAASE6GPHlg40aYPFnXpj33HAwcqHU869XzpejwqFmzJjVr1jzDlxiTs9j9akx4C/ZuzX7AZE+AtQW4yznXG0BExgKfAdcCvwCHgbs8rx13zt0HzAOigHdEZF2Q22pyoyJFdLrSq3BhOOccTUh7xRU6BbpqFbRvr6Nm8+ZpQttWrbRO5/PPQ6FCPPnkk2f+DmNyGLtfjQlvQQ3ORGQVusDf31i/1wXoe4b3foYGb8ZkDRHYvl0T2Tqn1QOmTtWktbfdpqNmn38Or7+ua9BeekmnPseN0xqfxhhjTDawCgEmcjin+c/eeEOPb75ZNwscPw7vvaf5z/Ln13qchw9r0to8eaB5c7rUrEmXW24JbfuNCVCXLl3o0qVLqJthwkSw1p4bn/T+GQd7WtOYnMe70+bDDzUZ7YoVMGqUjpiNHKmF0l96SdekrV4Njz5K3GuvwYkToW23MQGKi4sLdRNMmMifPz9JSUkUK1YszYSsJmNEhKSkJPLnzx/we4K2WzMUbLemSbfERChXTp8/+yz897+aaHHiRChTBlq00HQc3qLqWViOxBhjQu3YsWMkJiZy5MiRUDclV8ufPz/lypUjb968p5w/025NGzkzkc0bmH33HTzxBJx3HnTvDo8+qs8nTNDRtdmzISYmtG01xpgsljdvXipXrhzqZpgUbM2ZMQANGugas549oUAB3aW5fz80bgzbttExTx467t8f6lYaE5COHTvSsWPHUDfDGJNBNnJmjFebNvrz2DHNe3bRRZoj7Z13uKxAAd9aNWNyuMsuuyzUTTDGZIKtOTMmNR99pDnSWraETz6Be+6B3bvh339D3TJjjDG5hK05MyY9/KeEtm6FvXvh6NHQtccYY0zEsDVnxqSldGnaHT1Ku1C3w5gAtWvXjnbt7I41JlzZyJkxaenQgRb588OhQ6FuiTEBadGiRaibYIzJBAvOjAlA/2j7X8WEj/79+4e6CcaYTLBpTWMCYRsBjDHGZBMLzowJQNvkZNqGuhHGBKht27a0bWt3rDHhyuZqjAnADfnza/4zY8LADTfcEOomGGMywYIzYwLQp0wZLYRuTBjo06dPqJtgjMkEm9Y0JhD79oW6BcYYYyKEBWfGBKBlcjItQ90IYwLUsmVLWra0O9aYcGXTmsYEoHPhwvDXX6FuhjEB6dy5c6ibYIzJBAvOjAlAz+PHQ90EYwLWs2fPUDfBGJMJNq1pTCD27tWfIqFthzHGmFzPgjNjAtDcOZoDnDgR4pYYk7bmzZvTvHnzUDfDGJNBNq1pTAC6lSoF+/fbyJkJC926dQt1E4wxmWDBmTEB6Fa2LGzaZCNnJixYcGZMeLNpTWMCcGzzZo6BBWcmLBw7doxjVtHCmLBlI2fGBKBVUhIAS2zXpgkDrVq1AmDJkiWhbYgxJkMsODMmAD0KFoRDhyA5OdRNMSZNPXr0CHUTjDGZYMGZMQG4PW9efWJTRSYM3H777aFugjEmE4IanDnnfgMOAMnAcRGpn+L1h4Hb/NpSCyghInvSeq8x2enwP/8AUNCmNU0YOHz4MAAFCxYMcUuMMRmRHSNnV4nI7tReEJERwAgA59wNwH9FZE8g7zUmO1175AgAS2zkzISBa6+9FrA1Z8aEq5w0rXkrMCXUjTAmNfcWLQr//GNrzkxYuPfee0PdBGNMJgQ7OBPgc+ecAG+IyJupXeScKwi0Ae5L73uNyQ6dK1eGP/4A50LdFGPSZIXPjQlvwQ7OmorIH865ksB859xPIvJFKtfdAHydYkozoPc653oBvQAqVKgQjD4Ywz5PKo0iNq1pwsC+ffsAKFKkSIhbYozJiKAmoRWRPzw/dwEzgIZnuLQLKaY0A32viLwpIvVFpH6JEiWyqunGnKL9vn20B8ifP9RNMSZN7du3p3379qFuhjEmg4I2cuacOwfIIyIHPM+vAYakcl0R4Erg9vS+15jscn/58rBjh6XSMGHh/vvvD3UTjDGZEMxpzQuAGU7X6EQD74nIXOdcbwARGeu57ibgcxE5lNZ7g9hWY86qw8GD+mTPHqhcObSNMSYNHTp0CHUTjDGZELTgTES2ABelcn5siuPxwPhA3mtMqOzeuxeA4p6UGsbkZLt3awai4sWLh7glxpiMyEmpNIzJsW72TGcuOf/8ELfEmLTdfPPNgOU5MyZcWXBmTAAerFMHli6FEydC3RRj0vTggw+GugnGmEyw4MyYANxw3nn6xFMWx5ic7IYbbgh1E4wxmRDUVBrG5BY7t25lJ4B3Y4AxOdjOnTvZuXNnqJthjMkgGzkzJgBdfvsNgCU2rWnCQJcuXQBbc2ZMuLLgzJgADCxVCv7+G2y3pgkDAwcODHUTjDGZYMGZMQFoExWlT/bvD21DjAlAmzZtQt0EY0wm2JozYwKw7eBBtgH8+2+om2JMmrZt28a2bdtC3QxjTAbZyJkxAbjDk4R2ScGCIW6JMWm74447AFtzZky4suDMmAA8UbUq/PgjiIS6Kcak6Yknngh1E4wxmWDBmTEBaFmhggZnMTGhbooxaWrZsmWom2CMyQRbc2ZMALbs388WAE8ZJ2Nysi1btrBly5ZQN8MYk0E2cmZMALpv3gzAkpIlQ9wSY9LWvXt3wNacGROuLDgzJgBPX3IJ/P67lW8yYeHpp58OdROMMZlgwZkxAbhy92598ssvoW2IMQG48sorQ90EY0wm2JozYwKwcf9+NoJVCDBhYePGjWzcuDHUzTDGZJCNnBkTgHuSkgBYUqNGiFtiTNruuecewNacGROuLDgzJgDPtWoF48dDHhtsNjnfc889F+omGGMywYIzYwLQxDl9snNnaBtiTACaNGkS6iYYYzLBhgGMCcDaxETWgu3WNGFh7dq1rF27NtTNMMZkkI2cGROA+1avBmBJfDz89RfExuqjenWItv+NTM5y3333AbbmzJhwZb9VjAnAiKuugmnT4O+/YfhwSE7WF/Llg9q1fcGa92HJak0IjRgxItRNMMZkggVnxgSggXd0bNAguPtu+OknSEjwPebNgwkTfG8oWfL0gK1WLcifPzQdMBGlQYMGoW6CMSYTLDgzJgCrdu0CIO7ff3W07KKL9OHvr79gzZpTg7YxY3y50aKioEaNUwO2evWgQgXwbjgwJgusWrUKgLi4uBC3xBiTERacGROAAZ6EnktKlDjzRSVKwNVX68MrOVmrCvgHbCtW6BSpV5EiGqT5B2z16kHhwkHqjcntBgwYANiaM2PClQVnxgTg5ZtuglGjYMuW9L0xKgpq1tTHLbf4zu/fD2vX+gK2NWtg0iQ971W58qkBW2wsVKumn2nMWbz88suhboIxJhOciIS6DVmmfv36snLlylA3w+RGEyZAt246Bbl1q5578kkoWhQeeECPjx/P3M5NES2u7h+wJSTAxo1w4oReU6AA1KlzasAWGwvFi2eqe8YYY7Kfc+57Eamf8ryNnBkTgO8OHYKqVWnw4ou+k6tX+3ZlikC5chqs+QdO9epBxYqBVRZwTq+tWBFuuMF3/p9/YMOGUwO22bPhnXd815QufXrAduGFuj7ORJzvvvsOsI0BxoSroI6cOed+Aw4AycDxlNGhc645MBP41XNquogM8bzWBhgFRAFvi8iwtL7PRs5MsDS/+GLYtIkl336rAVBKx47BM8/4Aij/6c/ChaFuXQ2YOnSAa67Jmkb9+eepAVtCAqxbB0eP6uvR0XDzzfDqqzayFmGaN28O2JozY3K6UI6cXSUiu8/y+pcicr3/CedcFPAa0ApIBL5zzs0SkfVBbKcxZzS6Z0/o21cDotSCs7x5YcgQ3/GBAxoo+QdP77+v06LXXAO7dsGll8Irr8BNN+las61bdW1aTExgjbrgAmjVSh9ex4/Dpk36nd98o7tFFy2CsWP1e0xEGD16dKibYIzJhJw6rdkQ+EVEtgA456YC7QELzkxI1PVOS7ZqpVOZd9wBI0fquXXroEoVXQ/mVbgwNG6sDy8RHWEDTa/RvDmUKaPHS5ZA+/Ya5F144elTo2XLBpZuIzpak+LWrg2dO2tOtq5ddcTutts0GDz//Mz+cZgcrm7duqFugjEmE4IdnAnwuXNOgDdE5M1UrrnMObca+AN4SETWAWWBbX7XJAKNUvsC51wvoBdAhQoVsrLtxpy07MQJqFSJJp0766hX6dL6wrFjcPHFmjKjWjVfMNW2LaRc7+Ocb1SsQgWYONH3WsOGMHmyb5Ttiy/02KtoUf3cN9/U0bW//9Zdm2ml26hXD5Yvh6FDddp14UJ46y24/vqzv8+EtWXLlgFWAN2YcBXsNWdlROQP51xJYD7QT0S+8Hv9XOCEiBx0zl0LjBKR6s65W4DWItLDc90dQEMR6Xe277M1ZyZYzriG5+hRXZzvDarWrIHNm+G552DgQNi5U0fEvLnLvMFbIGvA9u71pdvwfv6MGTqdOWwYPPYY7NunAdrChbBnj3529eqpp9tYtUpH0RIS9OfLL8N552X6z8bkPLbmzJjwcKY1Z9mWSsM5Nxg4KCIjz3LNb0B9oDowWERae84PAhCRoWf7DgvOTLBs3LgRkpOpWbt22hcfOqRrv4oU0TQY996rwdVuv6WXU6ZAly6aOmPxYg2qatcOvLzTypXw1VfgSTbKTTfBxx/r8/z5ffU+//OfU9ekHT2qI2hDh0KpUvD229CmTWDfacLGRk/S5Jo1a4a4JcaYs8n24Mw5dw6QR0QOeJ7PB4aIyFy/a0oBf4qIOOcaAh8CFdEdmpuAFsB24DvgP54pzzOy4MwEzY8/ap6zSy/1pbB47z1o1AiqVk37/SK6mWDNGn106ACVKsG4cdC9u16TJ4+OesXGwvPP6+tHjuhUaFqpOI4cOT3dxo8/akDYvTu8+KIGi14rV+ro2fr10KMHvPACnHtuBv5gjDHGZFQogrMqwAzPYTTwnog865zrDSAiY51z9wH3AseBf4AHRGSZ5/3XAi+jgdo7IvJsWt9pwZkJlqXz58Mnn3Blu3bQooVOIRYrpkHUww/raNmdd8L998OVV2rSWJG0s/n7l3fyBm5r1sCyZbrx4NlndZTLm4rDOz16+eVpJ7w9cgSeflrbWKaMBpNXXHHq64MHw4gRmqMtPh5atsz0n5UJvaVLlwJw5ZVXhrglxpizCfm0Znaw4MwEy2lreE6c0KDq3HN1evCXX+DaazXQad9e14o1bAgffaSbA/bsge+/192b6amZuWgRzJzpC96SkjSx7MGDGpyNGQO//uoL3GrVOj3x7IoV0KuXVjlIWawd4NtvdVTQOwX7/PNQqFBG/phMDmFrzowJDxacGZMJWzxJZatUqRLoG2D0aM2NVrWqrge76SYNhBo1gu++01qagwZpcCeSdqoMEdixQ4Oxpk313N136+d4E89GRenI3rx5enzsmKbn8P/8gQO1OLt/Mtx//oEnnoCXXvJNt9qoS9hK9/1qjAmJMwVnAdSUMcZUqVIlfb/oqlTRdV7e9WhXX607KmNj9finn3Qxft68ejx2rKbi2LtXj3/7TdeQ+f/jyTmdnvQGZqBTkYcO6dqxadM08PJOXR4+DJdcojtHk5P13P79MGsWfPnlqe0tUEDXnX3xha5va94c+vfXzzZhJ933qzEmRwl45Mw5VxQog64N+01ETgSzYRlhI2cmWBYsWABAy6xck3XihG+h/2efaXA1frwGYf/9L7zxhlYaiIrS6dHERA2YAvX333DPPVqZ4NJL9bPr1tW1Znny6EaDxYs1cPPv16FDmqbjlVc0YBw//tSA0OR4QblfjTFZLkPTms65IkBf4FYgBvgLyA9cAHwLjBGRxUFpcQZYcGaCJdvX8GzapGvAvAXQu3bVNWtr1+px79667mzSJD3evFk3EKS2nu3DD6FPHw3W/vc/ePRR32aCVq1gwQIN4kaMOPX9S5bAXXdpWakHHtAUHP5VEEyOZWvOjAkPGQ3O5gPvArNF5O8Ur10K3AGsEZH4LG5vhlhwZoJl2zYtWFG+fPnQNeLwYShYUJ8PGaLHw4bp8aWX6u7Rzz/X4zfe0LQcV1+tx7t3Q79+Gmh9+aVvF+k//8BTT+mUZoUKOk3aooXvOw8e1N2oY8dqZYIJE3TNnMnRcsT9aoxJk20IMCY3mzNH16+1bKnr1EqUgE6ddDenv0OH4JxztATVuHE6IpY3rxZJ79ZNR+x699Ydm/6jaPPn6+aD7dvhkUc0BUfKXaHGGGPSJVMbApxzTT2JZHHO3e6ce9E5VzGrG2lMTjV37lzmzp2b9oWh0ratb92YcxpEPetJDfjjj3DLLfDXXxqYgW/zQKNGmqbjssu0vNODD+qoW716msbDq1UrnVLt3l1H6y69VBPZmhwpx9+vxpizCnS35uvAYefcRcAjwFZ0utOYiDBs2DCGeacQw0G+fFosHWDdOl2v5p8Qt18/3WSwfTvUr6/TpNHRMHKkTnvGxOj05pAhvvece64WTf/sM91V2rgxPPmkL42HyTHC7n41xpwioGlN59wPInKJc+4pYLuIxHvPBb+JgbNpTRMsO3fuBKBUqVIhbkkGHT2qAZeILuzv0UPTcuzerTtA33tPpyuHD9frDx/WvGdt2+qoWco8bHv36o7SCRM0PciECRAXF5q+mdOE/f1qTITI1Joz59xSYC5wF9AM3bW5SkTqZXVDM8OCM2PSsG6djpS9/LLu0PSaOVOnNkuW1BqgRYtqMOf1xBO62/OVV06t8zlrln7O7t26sWDgQF/uNmOMMWeV2SS0nYF/gbtFZCdQFhiRhe0zJkebPXs2s2fPDnUzMq9OHU2A27OnHn/7LWzbpiWnSpbU3GsdOmjpqVWrfO/791/d2ZmyAHu7droWrVMnDc4aN/al+zAhk2vuV2MiVFqpNOahI2ZzROSnbGtVBtnImQmWXJk36sQJqF1bU3B8/bXv/Mcf647NpCR4/HFNSOudEnVOg7Zx47TygHeDAcD06fq+fft0N+fDD6ddnN0ERa68X43JhTKa56wU0MbzqAEsR4O1hSJyMEhtzTALzkyw7N69G4DixYuHuCVZbPNmXV9Wr56uS/vzTyhfXgu19++vSW5jYzVgq1xZ3/Pyy5qCo3JlDdKaNfN93l9/acLbDz/U0bfx47UYu8lWufZ+NSaXydC0pojsFJHxItIFqI/u0LwUmOecW+CceyQ4zTUmZylevHju/EVXtaoGZqApMurU0TJR558PEyfqWrTzzoMLLvC9Z8AArR4AWhzdvwZniRLwwQeaqmPzZrj4Yt0B6q3tabJFrr1fjYkQARc+F5ETIvKNiDwlIk2BLsD24DXNmJxj+vTpTJ8+PdTNCK4779R1Y+XK6fGRI7qmbMkSrUxw+LCuR/vhBx0tS0jQlByvvAIXXXRqMfVOnXTzQdu2Or3ZrJkmuDXZIiLuV2NysUB3a1YG7gcqAicXkYhIu+A1Lf1sWtMES8St4fn9d13cP3asBmigwVibNlpd4LHHdAdnTAwsXarJaX/9Fe6/X9eiectMiWiajvvu000FQ4dqQJdyY4HJUhF3vxoTpjKbSmM1EA+sAU54z4vI0qxsZGZZcGaCZd++fQAUKVIkxC3JJtu3a6D1wgtQqZLv/N69Oq357rs6HTpunFYLOHhQ02i89ho0aADLl5+aF+2PP6BXL/j0Ux1FGzcOqlTJ9m5Fioi7X40JU5kNzpaLSI6vdmzBmTFB0q+fFj6/7z49/uQTzW9WtaqOnHkDscWLdTNBx466G/Tff6FAAX1NRJPV9u+va9Cef153d9oomjEmQmU2z9ko59z/nHOXOecu8T6yuI3G5FjTpk1j2rRpoW5GaBw7plOWf/zhO3f99ZrPbOJEDcx27dJam1ddpYEZaI3Oiy4CT7Z6nNPi6mvXQtOm0LevVh/47bfs7lGuF9H3qzG5QKAjZ0OBO4DN+KY1RUSuDmLb0s1GzkywRPwaHhEd7YqO1g0Bixfr9Ka3Xmfv3vD22/Doo7qpIF8+vWbyZK3H6dypJaBE9PoHHtDjF1/UklL+U6EmwyL+fjUmTGR2WvMnIFZEcnSFYwvOTLAcPnwYgILehe6R7OGHNf/Z+vW+4up//621NseP13Qc48drmSiv33+Hm2/WHGlNmvjOb92qmwkWLYLWrTWQK18+O3uTK9n9akx4yOy05mrgvKxtkjHho2DBgvaLzuv553UKs2hR327MQoV0kf+nn2qg1rgxTJ3qe8+ff+rj8svhoYe0FBRAxYowf75uJPjyS6hbVwO7AP7RaM7M7ldjwlugwdkFwE/OuXnOuVneRzAbZkxOMmnSJCZNmhTqZuQMzkHZsvr888/httvgo4/0+NprdU1Znz5wtWfVw/HjuoNz7VrdsfnCC5qc9ptv9PU8efT6NWsgLg7uukvTd/ivcTPpYverMeEt0GnNK1M7b6k0TKSwNTxnIAILF2ogliePJpqtXBny5tXXk5N1k0CTJlpvM39+HSm7+25N1/HggzBkiJ4H3eH56qswaJCee/VV+M9/bC1aOtn9akx4yOyas7YiMifFud4iMjYL25hpFpyZYDl27BgAeb1Bhznd4cNQowY0b65r0rzn7r8f4uO1xua4cdCoEezfr9Obb70FF16oU5mN/LL1bNqkI2jLlsGNN2oyXP8SUuas7H41Jjxkds3Zk865kzsznXOPAu2zqnHG5HR58+a1X3RpKVgQRo3SXZyghdSjo3VX5ty5cOCAjqA9+qhWFnjzTZg3T+tyNm+uRdO9atSAL76AESNgzhzdZGCpIQJm96sx4S3Q4Kwd8Jxz7grn3LNAQ885YyLC+PHjGT9+fKibkfN17Ojbpfl//wcNG2r1gNatdc1Z9+4wY4ZOXwJcc42uNfvwQy2aDrBli/6MitLRtR9/1GoCXbpozU7/IM6kyu5XY8JbQMGZiOxGg7HXgDLAzSJyLK33Oed+c86tcc6tcs6dNt/onLvNOZfgeSxzzl0U6HuNyU72yy4D6teHFi10JydAkSI6jfn9975C6s89p6No112n13z2mY6aLVjg+5xatXR6c+hQmDlTR9GsqPdZ2f1qTHg765oz59wBwP+CGOC455yIyLln/XDnfgPqe4K71F5vAmwQkb3OubbAYG+ZqLTemxpbc2ZMDrV1K9x6q05l1q2r595/Hzp31rJQ48dr+o19++Cll7SwekyMptzwln8CHX3r2lUT4f7nP/DKK1CsWEi6ZIwxmZWhNWciUlhEzvV75BeRQt7zmW2UiCwTkb2ew2+Bcpn9TGNMDrR9u9bc9I6igU5RzpunI2hNm2py25gY3dUZE6OBWu3a8PjjWqMTNLD79lvd4fn++3o8e3ZIumSMMcFy1uDMOVcpjdedc+5sAZUAnzvnvnfO9UqjLXcD/jtC0/NeY4Lqrbfe4q233gp1M8JXkyZaUaBSJT0eMgSWL9c1Z2vXaummkSO1mLqXc5qi47nndIr0++/1fN688OST8N13ULKk5kTr1k2T3xrA7ldjwl1a05ofoAHcTOB74C8gP1ANuApoAfxPROaf4f1lROQP51xJYD7QT0S+SOW6q4AxwOUikpTO9/YCegFUqFDh0q1btwbceWMC1bJlSwAW+K+FMhmzd68WJsTMxgAAIABJREFURL/jDnj2Wd/5BQugQgVdc7Z3r9bnLFhQ16H17KkVBgYO1MAsXz59z9GjuvHgueegVCld09a2bWj6lYPY/WpMeMhwnjPnXG3gNqApUBo4DGwAPgM+FJEjATZgMHBQREamOB8LzADaisim9Lw3JVtzZkyY2L9fA6x8+WD1ak2n4V9z85Zb9Py4cTrl6V+7s25dmDABLrnEd/3KlboWbf16TXD74otwbqZXXhhjTFBlOM+ZiKwXkcdFpLmI1BSRi0XkPyIy6WyBmXPuHOdcYe9z4BpgbYprKgDTgTv8A7NA3muMCWPnnusb/XriCV1/5l1XBtC7t46KXXEFPPCArkEbNw4++UTXrjVsqCNoR4/q9fXr6yaBgQP1urp1T93xaYwxYSTQPGcZcQHwlXNuNbAC+FRE5jrnejvnenuueQooBoxJkTIj1fcGsa3GnNWYMWMYM2ZMqJuRO733ni7qz5dPy0GtWqUpONas0SDtpZe05uaaNZpyY+1aref5f/+nmwO88uXTdBtff63Toa1awb33ap61CGP3qzHhLaDyTeHCpjVNsLT1rGOaM2dOGleaTJk4Uacnv/xSpzMBFi3SEbFPPtENAF5r1kC9evp8wQJo1kxH2EBTcDz5pE5vVqyoo2meepORwO5XY8JDpmprhgsLzowJcwcPaiB13326W3PfPk1eK6LHyckavN1zj055glYUqFFDU248/fSpn/f117qT85dfoF8/HVk755xs75YxxqQmU7U1nXNNPWu/cM7d7px70TlXMasbaYyJcIUKaRDlnG4CqFsXhg/XY4DERK0WcOWVWsPz0CEt7TRzpm4Y8F7jXYvWtKlOk95/P7z6qk6PfvVVaPpmjDEBCnTN2evAYU95pUeArcC7QWuVMTnMqFGjGDVqVKibEVliYnTXZosWeiyiU5QJCdC3rxZZv+ginQK97jo47zw4flyfN2youz1BR8pGjYIlS3TkrVkzePBBnfrMpex+NSa8BRqcHRed/2wPjBKRUUDh4DXLmJxl4cKFLFy4MNTNiCwFC+qaMW8h9f/9D3r10nJOr74KixdrwNazpwZlANHRmuB2505939NPwzFPGeArr9TArndv/dyLLz51Q0EuYverMeEt0ODsgHNuEHA78KlzLgrIG7xmGZOzzJo1i1mzZoW6GZEtOVmDsKgoPW7eXIOtmTM1KDt0SKcs27eHdes0PcfgwdCokV4HOm06ZgzMn68jZ02b6maDIwGlawwbdr8aE94CDc46A/8Cd4vITqAsMCJorTLGmJSefRbi4/X51q2aJuPYMS2cDlr+6YordM1avnwweTLMmKF1PevXh2ee8Y2itWypuz27d9c1bZdeqolsjTEmB0irtuZo51wTEdkpIi+KyJcAIvK7iNiaMxMxRo4cyciRZy1QYbKDd2PAkiUwdeqp9TQfekgX/o8eDbGxes2NN+ooWseO8NRT0LixBmWgiXDfegvmzNFdoY0bn5rYNozZ/WpMeEtr5Oxn4AXn3G/OueHOubjsaJQxOc0333zDN998E+pmGK+uXTWFhreQeny8VhgYNQqWLoU8eeCqq3RtWvHiMGUKfPQRbNsGP/546me1aaOJbe+4QxPbNmigOzzDmN2vxoS3gPKcedJmdPE88gNTgKlnqoUZKpbnzJgItHkzXHihri97/HE9d+iQjpTdc4/mQEtO1rVqf/+tedOc02CtZk1N1+E1e7ZuOti9W0fRBg2CvLa81hgTHFmWhNY5dzHwDhArIlFZ1L4sYcGZMREqIUEDrXz5YONGKFZMR8xAd3R26qTVBYYP100B3rVqdepoQOZvzx6dHp08WXd0Tpjgq0RgjDFZKLNJaPM6525wzk0G5gCbgI5Z3EZjcqxhw4YxbNiwUDfDnElsrK825223wTXX6HPQUbPy5eH11zXIWrRIR8OWL4c33tBrtm3TqU2A88+HSZNg+nRNaHvppVpZwJuuIwzY/WpMeEtrQ0Ar59w7QCLQC/gMqCoinUXk4+xooDE5wapVq1gV5uuQIoJz8M47msfMOQ3Q9u/X4y+/1KCsRQvd6Zk/P5Qpo+97+OHTg7CbbtLNBDfeCI89Bk2awIYNoetbOtj9akx4O+u0pnNuMfAe8JGI7Mm2VmWQTWsaY07x5pu6Du3bb6FqVTh8WNeSTZ6sU6HeQup//aVVBz74QDcEjB8PtWv7Puf996FPH639+cwz8MADvnxrxhiTQRma1hSRq0TkrXAIzIwx5jRNm+o0Z5Uqepw/P7zwgq5LK1lSpzyff17Pv/8+TJumu0AvvhiGDfONonXqpKNobdvCI49oPrVNOWo/lDEmFwk0Ca0xEe2ZZ57hmWeeCXUzTHr9f3v3HSdldfZ//HOo0utShFWUXiQgiCKiokTFAioaIWKNwQJRRDRiwajPo1hi8ImKgGL9RTFGo1gRe0WKqEhRmtKrIEhd9vz+uO7bmV1mloFl996Z/b5fr3nN3GXuPQcOcHGd1rYtjBoV20i9Y0d4/XWbsQm2o8CNN9pYtHfftSBs9mw44wybqdmtW6wrs359G4f27LMwd65tov7gg5CbG139klB7FUlvCs5EUjBv3jzmzZsXdTGkMDZutIVnGzSInTvuOPj0U8uc9exp+24ecIB1bz73nC3T0bEj/OMfdr9zlombNcvGrg0ZYttILVgQSZWSUXsVSW97vZRGSaYxZyJSIO9juwzcey80bGiLz27dauuiPfAAnHCC7b0JsGqVTR7o3NkmBeR/1tNPwzXX2NIc995r95bR/3lFJDX7bZ2zkkzBmYikZNcuy5QdfLAN/g998YUFV1262OSBnByoVs0CsTJl4LXXrJszfkLA0qVw2WXw9tsW2D3+eGznAhGRAhRqnTOR0m7EiBGMGDEi6mLI/lK2LEyeDI88Ysc//ghPPAFHHmmBGVimrF07y6KF2bDXXrOZnrt2xZ7VuLHtzzluHEydauPXxo6NrbMWAbVXkfSm4EwkBUuWLGHJkiVRF0P2p7JloXJl+/zII7YrwMqVsev9+0OVKnDyyfDnP9t6aaNHw/vvQ4UKNsHgoYcsUHPOsmfffmvB3eWX256dEbUZtVeR9KZuTRGR3FybpRnus/n++zbQf/t227PzvvugUSN4/nlbjBZsU/Wrr4auXS3r1rJl7FljxtjCtmXL2mzRiy+OjXUTEQmoW1NEJJkyZWKB2aef2tix8eNt5ubIkfDZZ7YuWrhfJ8DgwfDMM7FlNR54wLJoZcrYxIBvvrGZnpdeaktzLF8eTd1EJO0oOBNJwfDhwxk+fHjUxZDicPTRtpbZgAF2vGqV7RowdSq0aGFjyQYPtgkAAwbY4rS//z1cd50tzREuTnvoobaP54MP2nvbtvbcYuitUHsVSW8KzkRSsG7dOtatWxd1MaQ4hGuZVawIO3bYrM4LL4x1S27YYN2evXrBn/4ElSrBK6/AU09ZoPa739m6aGEW7eqr4euvbTuoCy6wPTtXrSrSKqi9iqQ3jTkTEUnGe1sao1EjC8a8t9eOHXDHHXDPPbZW2rhxdn35chg40HYh6N7dZnpWrGjP2rXLxp/dfDNUrQoPPwznnRdt/UQkUhpzJiKyt8JZmL162fHYsTZRYNs2uOsuWxetZk246CLbFP3AA2HiRFs77eijY4EZ2OSA666DmTNtE/Z+/Wy7qDVroqiZiJRgCs5EUjBs2DCGDRsWdTEkatWq2R6b4d6cRxwB06fbmmlVq1p27KOPLFgbOdLu+fJLm2CwdKkdt2plkw7uvtu6Q9u2tT079yO1V5H0puBMJAVbt25l69atURdDovbHP9q+m87Bzz9D3762gG379nZ9/HjLrF18sV0H6+pcu9YCu1C5crbh+vTpkJ1tz/njH2E/jRNTexVJb0U65sw5txjYBOwCcvL3qzrnHPAgcCqwBbjYez8juHZKcK0s8Jj3fuSefp7GnIlIsfn0Uzj7bNsd4PDD7dz27XDnnZY1q1/fukFPO83WPitTxsaq/eUv8Ne/2mxOsH0577nHxrDVrm3f6d07unqJSLGJcsxZD+99h0Q/HOgFNA9eA4HRAM65ssDDwfU2QH/nXJtiKKuISGq6dYPFi2OB2WOPwYIF8D//A1OmWKB1+ulw662x7Z++/dYWsm3f3iYE5OZC+fJwyy22VEeDBtCnj3WLhpk3ESl1ou7W7AM87c0XQE3nXEOgCzDfe7/Qe78DeD64VyQSQ4YMYciQIVEXQ0qaSpXsffNmC8IeeMCOO3WCadMs6AonE+Tm2vlZs+CYY2yttBNPhEWL7Prvfmfj02691fbvbNfOsnL7QO1VJL0VdXDmgUnOuenOuYEJrjcC4jeAWxqcS3Z+N865gc65ac65aWs060lEolC1qq1ldv/9dvzjj7YY7Z13xrZ7uvZaWy+tShULuh57DGbMsI3SH3nEgrcKFax7c8oUqFULTj3VZotu3Bhd3USk2BV1cNbNe3841j05yDl3bL7riTab8wWc3/2k92O99529952zsrIKV1qRJEaNGsWoUaOiLoaUZPXq2bIaYGPKevSAX3+1Y+8t2HruOZudOXGiLWA7a5Z1jw4aZIvdLl5s93fqZJMFhg+3fTsPO8xmhKZI7VUkvRVpcOa9Xx68rwZexror4y0FsuOOGwPLCzgvIlLy/fOfNrasShU7XrLENlD/8ksL4vr0sa2fqlSBt96ySQDTpllX5g8/2HcqVrS11D77DCpXti2irrwSNm2KrFoiUjyKLDhzzlVxzlULPwMnAbPy3fYqcKEzRwEbvfcrgKlAc+fcIc65CkC/4F6RSAwaNIhBgwZFXQxJF1lZlgkDeOMNW3T2vfdsI/SpU2HECMuerVtny3L8+c+WRbvhBmjWzL63bZu9H3kkfPUVDBsGY8bYZIL33y/wx6u9iqS3osyc1Qc+cc59DXwJvO69f8s5d4Vz7orgnjeAhcB8YBxwFYD3PgcYDLwNzAFe8N5/V4RlFSlQpUqVqBQO/hbZG0cdBddfb5MAwIKx22+3Lszmza3L88EHLYs2YoRdX7gQmjSxwA5s4sF998HHH9saaSecYHt2ht2m+ai9iqQ37a0pIlJctm+3YO2CC2DoUDs3e7bN1KxTBx59FM4807pBr7nGgrbs7LzP2LIFbrrJrjVtaltFhYGfiKQV7a0pIhK1HTssEGvVKnauTRsbb9awIZx1lu0UULmybemUnW2Ztb59bVya93Zt1Cj44AOb4XnssRboaUcAkYyh4EwkBQMHDmTgwESrwYjshWrVLNN16ql2PG6czexs08YmC9x+u20P1aOHBV5gEwA2boTLL4eTT4affrLzxx0H33xjkwT+8Q/o0ME2YkftVSTdKTgTSUGdOnWoU6dO1MWQTDN7tg32L1fOdgoYMcKyaPffb7sK7Npl2zu98w6MHm0zN9u1s6DOe1tf7eGHbZmNbdtsWY6//pU6NWqovYqkMY05ExGJ0o4dtvjszz9bd+WNN8Z2HrjvPgvURo+2fTwXLbL10d5/37Jo48bFxqT98ovN6Bw3zgK4L76ILeUhIiWSxpyJiJREFSrY+2uv2bpm8+bFrp18MjRubGPO+vWzTNnkyZYt++QTC8Ief9yyaNWr27i0hx+2ZTm++Saa+ohIoSk4E0nBJZdcwiWXXBJ1MSSTXXCBLUDboYMdv/66zcb84gvbTP2ll2x3gUmT4KqrLPg6/HDb3um552LPad6cS4BL7rwzkmqISOEpOBNJQXZ2Ntn5lzQQ2d+aNLH3pUttSY077rCxaDffbNs5NWliGTKAQw+Fd9+1TdL/8Ac799NPUKYM2UC2trMTSVsacyYiUhJ99JHtBlCzJqxcaV2aVarYIrUAt91m3ZrnnmvHP/8MrVvbLM4XXrDuzxNPjK78IrJHGnMmIpJOjj02tpH6hRfaTMzwP9Pbt9uenH/4g71Wr4YaNSzD1quX3bNrVzTlFpFCU3AmkoIBAwYwYMCAqIshpdWIERZ4lQn+yvYePv3UJhC88oqNRXvxRRg8GFq0YAAw4O67Iy2yiOw7BWciKWjZsiUtW7aMuhhSWh1zTGxc2cSJ0LIlLFgAw4fDjBlwyCFw8cWwYgV89RUtgZblykVZYhEpBP3pFUnBrbfeGnURREz9+tCliwVkYFmzzz6zxWwPPBDKleNWsLFnIpKWlDkTEUknXbrYFk8VKtjYs1694MMP4Ygj7PqMGfa+cmV0ZRSRQlFwJpKCfv360a9fv6iLIZLXihWwZIkFaaEaNegH9HvttciKJSKFo25NkRR0CBcGFSlJmjSBmTNtb06AZ5+Fn36iA9jsTRFJSwrORFJw4403Rl0EkcTCwMx7ePRRWLmSGwGaNYuyVCJSCOrWFBHJBM7Be+9BuORLTk605RGRfabgTCQFffv2pW/fvlEXQ6RgFSpAdjZ9gb7aLUUkbalbUyQFXbt2jboIIqnZtImuANWqRV0SEdlHCs5EUjBs2LCoiyCSmo4dGQZw/PERF0RE9pW6NUVEMkm4xdOOHdGWQ0T2mYIzkRT07t2b3r17R10MkT3bsoXeQO8334y6JCKyj9StKZKCE088MeoiiKRm7lxOBM3WFEljCs5EUnDNNddEXQSR1HTsyDUA7dpFXRIR2Ufq1hQRySQNGth7rVrRlkNE9pmCM5EU9OrVi169ekVdDJE9O+AAegG9vvgi6pKIyD5St6ZICs4444yoiyCSmrVrUWsVSW8KzkRScNVVV0VdBJHUNG7MVWATAv7+d2jd2l4HHxxbZkNESrQiD86cc2WBacAy7/3p+a5dD5wfV5bWQJb3fr1zbjGwCdgF5HjvOxd1WUVE0l44S3PjRohfPLlSJWjVygK1Nm1iQVuzZlC+fDRlFZGEiiNzdg0wB6ie/4L3/j7gPgDn3BnAtd779XG39PDery2GMooUqGfPngBMnjw54pKI7EFODj0BKlVi8ooVMGeOvWbPtvdPP4V//St2f7ly0Lz57kFby5ZQuXJUtRAp1Yo0OHPONQZOA/4XGLqH2/sDzxVleUT21XnnnRd1EURSs30754FlymrXhm7d7BVv82aYNy8WsM2ZA7NmwSuvwK5ddo9z0KTJ7kFb69ZQs2YxV0qkdHHe+6J7uHMvAncD1YBh+bs14+6rDCwFmoWZM+fcIuBnwANjvPdjk3x3IDAQ4KCDDur0448/7vd6iIikjc2bbdPz7t3ho4/27rvbt8P8+XmDttmzLZDbvj12X8OGeYO28L1ePQvqRCQlzrnpiYZtFVnmzDl3OrDaez/dOXf8Hm4/A/g0X5dmN+/9cudcPeAd59xc7/1uf9MEQdtYgM6dOxddpCkikg4qVLD3zz+Hzp1h4EB7eW9BVtOmyceYVawIbdvaK96uXbB48e5B21NPwaZNsftq1cqbZQs/Z2drMoLIXijKbs1uQG/n3KnAAUB159yz3vsBCe7tR74uTe/98uB9tXPuZaALsJf/DRTZP44//ngAPvjgg0jLIbJH3nN87doAfBC8A7BsmQVKDz8MV10FP/0EY8fGAqlWrZKPMStb1oK6pk0hflkZ72H58t2Dtldegccei91XuXLebtEwaGva1Ma8iUgeRfanwns/HBgOEGTOhiUKzJxzNYDjgAFx56oAZbz3m4LPJwF3FFVZRfbk4osvjroIIqnJyeHi9evh3HPhhRdi56tVs0zX0Ufb8ezZMHJkbIwZ2HIb+ceXdegAVaok/lnOQaNG9vr97/NeW7t298kIH34Izz4bu6d8eWjRYvegrWVLOOCA/fPrIZKGinTM2W8/JBacne6cuwLAe/9ocO1i4BTvfb+4+w8FXg4OywH/8t7/755+TufOnf20adP2c+lFRNKI9xaEzZ8Pp51W8AD+cIxZGESFr7lzYds2u+fDD+HYY+39+efhzjuhbl37boUKez/GbNMme3580DZnDixYALm5do9zcOihiScjVN9t4r9I2ko25qxYgrPiouBMisrOnTsBKK/1oCQN7GzTBubM4bfW2qABnHMO/POfdvzll9C4sQ3sTxRc5ebCjz9a0NS9u2Xdxo+3ddOWLLFM2g03wJgxsbXT4l+HHLL33ZXbtsEPP+wetM2bBzt2xO5r1Gj3oK1NG8jK2pdfKpFIKTgTKQSNOZN0cnyzZlCxIh+MHBkLcpo1g5tvtsxa9eo2q7N69VhwddZZ0KePPWDXLhtnlp/3sWDujTfgzTdjwdSKFbH7KlSw7sq2bW1NtTJlYOVKqFHDlvjYGzk5sGhR3qBt9mzLvm3eHLuvTp3EQVvjxppBKiVWsc/WFMkkl112WdRFEEnZZQsXQu/eNng//76w3sN//xvrvpwzByZNshmVffrAhg1Qv35sYdrwdcwxdk/o1FPtFdq4cffu0dWrY7M0//Qnm5Qwc6YdP/KIjSvb09pp4SK5zZtbneLrsXTp7pMR/vMfWLcudl/VqhaA5g/a9iW7J1JMlDkTEck069fbDMn33oMZM2D4cMuExWe+8svNtUBq7Vq4995Y4LZwoV179FG4/HL4/nsYMmT3rsz4maGJvPmmZbrOPdeOGze2YC0Urp0W/2rXztZO21tr1uyeaZszJ+/PC7N7+YO2Fi1sSRGRYqBuTZFC2LJlCwCVtZ2NpIHf2uttt8HTT8OqVXbhmmvgiy9gyhQ7njrVArJOnZI/bNs2mzRQv76N65oyxYK0efNikwbAgq9TToHvvoN33411lybrVozvrsz/CtdO69/fukW9h8GDLbN30kl2nJubuOu1IBs3xoLO+KBt4UJ7Jtivx6GH7h60tWplY+9E9iN1a4oUwqlB943GnEk6yNNe/+d/Yhc6dsy7ltmIERa4zZgRO65cGW680Y43brRxae3axb5z5JHWNblrV2zSwNy5tuQGwPvvWxAYCrsVX3rJukV//NGCukMPTd5duXy5PbdGDTv3yy/WXdm8uQVnCxdamcJlOOIDqebNk2e+atSw8h95ZN7zW7daRjB/0PbmmxBMBgKs/PmX/Wjd2maviuxHypyJpGDChAmA9tiU9JBye124EH7+OZY5O+88m4k5frwdH3aYBSHB8xg/3oKRrl2TP9N7G2uWPxv26qs2GWDYMPj7322Ns2bNYgvg3n67jQELu1cTCa8tWQIPPhh79uLFeTNfTZvac2+4wfYV3bbNgqy9zXzl5NgSH/mDtrlz4ddfY/dlZSUO2ho10mQEKZC6NUVEZO+MG2djvvr0seCnWjX485/hH/+w46OPhksvtXNgGbXmzZMvWgvWHTplyu7dmMuX2/X+/eGzz2JBW+vW0L59wQHhli323PwB4T//CSecABMnWnbuyy/hiCNg2jR7hUFUVtbeBVG5uRYg5l/2Y/ZsC3ZD1aolDtoOOWTvu2QlI6lbU6QQNm7cCECNsJtFpATbb+01DLrAgpdly2Jrjm3dauPQwm7S9eut2/T+++G662zw/y23wEUX2fkwEdCypb3ixe9S0LOnBS5z5sDHH1vg1aEDfPWVXR882MoQv+3UQQfZz+jYMXE9WraEu+6K/dyJE+GOuE1natfefTJC69b23ERZvDJlbDeFgw+2cXah+KxhfNA2aZItDByqWNHKsjddslKqKHMmkgKtcybpJJL2umWLjdE67DAbCzZ7tmWpnn3W1lD75hvo0cO6SHv2tFmhU6bYEh3JgsgwQ7VhA/zud3auTx/LrK1dG7vvrLNsTBtYd2fjxhbsNGsW2wg+XqJlOMJX/HPDMXf//rd1Af/1r7Hv72135YYN1h2aP9MW3yUb7mEaBm1t28LZZ+/92nCSNpQ5EymEq6++OuoiiKQskvZauTL07Rs7btPGuivDLZkqVbJlNA4+2I4/+cSCqrCr8ZNP4KGHLPPWuLGN6YrPUIVeecXe4/fubNjQzm3dCkOHxn5mGOxcey1ccYVl6GbMsGxbdra9Tj45bz3C5y5aFNsqatIkK18YnJ12ml3Pn2lr1Sp5l27NmnDUUfaKt2WLTUbIH7S9/rqNeRs3DrTOYqmjzJmIiBS/zZstm9axowVuL70E119vwVqdOhaoXX217SxQr54tAfLdd3DBBYmzYfHPjZ95OWeOBY1//KNtD9Wihd3XuHFsTNtFF9mkiNxcy4glyort2BH7ufffD59+as+ePz9vt+xBB9kzTzzR6hOWqWrVvfv1WbPG6v3gg/brIBlJEwJECmFt0NVRV1PmJQ1kRHudPt26SW++2YKl666zhXA3bbKM2siRtsju22/b9QULLHiK38Ugv19+sTXY4tc6mzvXxoOdfTZ88IFl8/JnxArqet2xI/Hm8W3bwjPP2D0HHghnnmm7InhvgWc45izZOnAbN1q27YEHLPMnGUndmiKFcM455wAacybpISPaa6dOeRfHvfdeC1LCAfrVqllmKQxshg+3SQM//GDHo0dbIHTVVXYc7il61ll5f473scxXnTrQr58FV6+/HltSZMoU6NLF9hN9+um8gVu4y0CbNonr4b0tHxJeX7YsbyYsXAcu/pnxG7mHXbRSqig4E0nBddddF3URRFKWke21bFnLMoUGDbJX6IYbrCsw9NprFtiEwdlxx0GTJhZcAbz1lnVBtmkT22PzsMMsqAutX2+ZtcMOs+M1a6zb9YUX8q6rtny5zVz94IO8Y9Fq1LDgcejQ2DMbNbKFf/Ovnfbee7FMG8QWD47vMpVSQ92aIiKSmXJyYoHXyJGWGQuXB2nQwAb2P/64HffvD716wYUX2vHq1cnXPwsH8c+ZY5m6W2+1+y65BJ58MnZfw4Y2y/SNN+z6999bpqxhw8TP/eWXWJdr+/Zw+OFw992xHRsk46hbU6QQVq5cCUCDBg0iLonInqm9BsrF/ROXP8D58MPYQrA7d1rGa/16O962zQKo22+3tdpycmxXgzPOsExb5cq29lq4ZVVo3Di46aa8Y8+2bYsFYldeaRmy6tVjXZlHHw0DB9r1atWs+7RLl9iSHp9/vn9/TSQtKDgTSUG/fv2ANB9mjU6oAAAbAUlEQVTDI6WG2msK4hfCLV/eZoOGdu2yWZLhsheLF1tw17ChBWeLF8Ppp8OoUbZmWzhDtE2bxPuFhu64w8a8hYHb22/DihWx4KxDB+uKbd3a9h6F5BMRJKMpOBNJwY3qVpA0ovZaSFWq2E4EoWbNbBHZMNO2Y4etn1arlh1PmWJB2rvv2nZRs2ZZd+nQoTZ7NFyio1s3e8ULd1wAC/i+/dYmNvz733Zuw4aiq6eUWBpzJiIiUhhr19pkgJ49bfmL//zHxq59951NQnjqKQvUZs60YG3uXNtxoGfP5Gu2bdhgwd/AgTBmTHHWRopRsjFnCTYNE5H8lixZwpIlS6IuhkhK1F6LWd26cM45FpiBLXq7aVNsZ4OmTW13hHAM4HPP2fi1MDkyfrxNSAhnZq5bFxun9v33xVcPKTHUrSmSggsuuADQGB5JD2qvJUD8hunHHGOv0LXXWnAWbnK+fr3t9Rl2m95wgy3AC7YllZQ66tYUScHkyZMB6NmzZ8QlEdkztdc0F+5iMHiwdYsuWhR1iaSIaPsmERGRdLFunXWXNmhgMzolI2nMmUghLFy4kIULF0ZdDJGUqL1mgJ077X3btkiLUTXfhu2TJ0+me/fuec7t3LmTevXqsXr1ajp06JDnVadOHc4///ziLHJG0JgzkRRceumlgMbwSHpQe80A4eSCypWjLUc+PXr04MILL2Tp0qU0DrbTevvtt+nYsSP16tVj5syZv927bNkyjjzySG655Zaoipu2FJyJpOD222+PuggiKVN7zQDly0ddgoTKli3LOeecw4QJE37bw/X555+nf//+ee7z3nPhhRdy00030bp16yiKmtY05kxERKSk2bnT1kA7+GDbkSAiVatWZfPmzXnOff7551x99dVMnTqVbdu2kZ2dzfz586kRt5vBvffey8cff8zEiROLu8hpJbIxZ865ss65r5xzryW4drxzbqNzbmbwGhF37RTn3Dzn3HznnJa7lkjNmzePefPmRV0MkZSovWaAcM2z7dujLUcCXbt2Zd26dSxYsIDXXnuN7t275wnMZsyYwcMPP8z48eMjLGV6K45uzWuAOUD1JNc/9t6fHn/COVcWeBj4PbAUmOqce9V7P7tISyqSxOWXXw5oDI+kB7XXDFCxYixzVgKdd955PP/883z11Vd5ujS3bNnC+eefz5gxY8jKyoqwhOmtSIMz51xj4DTgf4Ghe/HVLsB87/3C4DnPA30ABWcSibvuuivqIoikTO01Azhn+26W0EVo+/fvz7nnnsvPP//MM88889v5a6+9lpNOOolTTjklwtKlv6LOnI0CbgCqFXBPV+fc18ByYJj3/jugERC/98hS4MgiK6XIHhx99NFRF0EkZWqvGSAcD75pU6TF2LJly2+zMgGGDh3K0KFDad++PeXLl+ekk06iUqVKgG0bNnbsWFq3bk2HDh1++0779u15+umni73s6azIgjPn3OnAau/9dOfc8UlumwEc7L3f7Jw7Ffgv0BxwCe5NOHPBOTcQGAhw0EEHFbrcIonMmjULgHbt2kVcEpE9U3vNIBEvQJubm5v0WtjOQtnZ2WTSJMMoFWXmrBvQOwi6DgCqO+ee9d4PCG/w3v8S9/kN59wjzrm6WKYsO+5ZjbHM2m6892OBsWCzNfd/NURg8ODBgMbwSHpQe80A4cbndetGWw6JRJEFZ9774cBwsFmZWJflgPh7nHMNgFXee++c64LNHl0HbACaO+cOAZYB/YA/FlVZRfbkvvvui7oIIilTe80QZcpAlSpRl6J02LIFVq+GNWvsfdMm6NcvsuIU+yK0zrkrALz3jwLnAFc653KArUA/bznRHOfcYOBtoCwwPhiLJhKJI444IuoiiKRM7TVDVK4MwXgu2Us7dligFQZb4SvZ8a+/5v1++fJw3nmxDGYx0yK0IikItySJH+QqUlKpvWYI56B6ddi4MeqSRG/XLli/PrVAa/Vq2LAh8XPKl4d69WKvOnXg449hyZK89730Epx5ZpEHZ8kWodX2TSIpGDJkCKAxPJIe1F4zRJkymZs5896CzlQCrdWrYd06SDQ5oUwZG5dXrx5kZUHHjrHAKysrbyCWlQU1auQNuDp02D0wu/JKOPHEyLJmoOBMJCWjRo2KuggiKVN7zRC5uZBv66QS7ddfUwu0wuOdOxM/p2bNWEDVsiV075440KpXD2rXhrJl9628ubnQujUceKD9zOeeg9mzbeHfiDecV7emiIhISeSc7RSwbVs0Pz8ct5VqV+KWLYmfU6VK8mxW/nN169rOCMVh40YLys49F5580oK8ihWL52cH1K0pUghTp04FNNBa0oPaawbJydl/z9q1y7oHU+1KTDbWrUKFvEFVy5YFB14RZ6GSqlABWrWy8pewMio4E0nB9ddfD2gMj6QHtdcMUlAWyXsb+J5KoBWO20rUWxY/bqtePejUqeAMV/XqkY7H2q/mzbP6lDAKzkRS8NBDD0VdBJGUqb1mCOdsXNbIkYkDrzVrko/bqlUrFlS1agXHHpu8a7FWrX0ft5XOVq2yYHXHjqhLshsFZyIp0DY4kk7UXjNEuXIWfA0fDlWrxoKq7GzLbiWbkVic47ZKknAGaJkylg3bsAFeeCFvMBv/vnKlfe+TT6ItdwIKzkRS8NlnnwHaUFrSg9prBjnoIJgzp8SNiSoW3tts1USBVXy37SmnwNChsHWrZQHvvhtuvNGCs8svt2dVrx4LXg85BLp0sSBu7FibrVnCKDgTScFNN90EaAyPpAe11wxx2WXQoEHmBGbe23Ib8QHWmjW29tjZZ9s9558PbdvCTTfZ/TVrJl7frGrVWLAVjqOrXBlGjYJu3ew4O9vWMMvKSjwL84cfLDjr0aNo6lsICs5EUjBmzJioiyCSMrXXDDF5MnTebZWFkmXLFutKbNjQjt94w7Jdf/iDHV92GXz9dSwY27p192ccfXQsOMvNjQVjZcrAgw9a1ivsvs3KsleyxXmvuSb2uWxZaNw4edmrV4chQ6BNm72rczFQcCaSgpYtW0ZdBJGUqb1miLVrYe7c4v2Z27fbNklhsPXOO/DNN8m7Fn/91e5dvtzuHz3aslVhcJaTY2Pg2rTJG2Dlfw8991ze8gweXHR1LVMGpkyxzNnhhxfdz9kHCs5EUvDhhx8CcNxxx0VcEpE9U3vNEBs2FD44y78BeLL3Dz6wrr/rr4ennoqtcfb44zBhQt49KbOyoEWLWHAVBnIATzwBBxwQO37yycKVvyjt2GF1LlMm6pLsRsGZSApuu+02QGN4JD2ovWaIgw7avVtu507LqOUPrvr3t0Dp1Vfhnnvg9ddtvNZtt9lSHPmVKxfrIqxXz7onK1a0jFf79jaOyzl46CEYMyb1tc3q1t0/dd8XubmW9QuD0fB16qn2a/nRR/C3v8XOr1pl37vjjujKnISCM5EUjB8/PuoiiKRM7TVD1KhhQdKxx8YCsfXrE997+OEWZJUrZ5mrrVstOOvTB5o02b0rsWbNxMHWMcfYK1QSgq0KFSw4XLsW/v3vvJMJVq+2pUZOOgnefx969tz9Of/9rwVnzlm2rFkz6NrVfh0OOgiOOqr467YH2ltTRESkJBo0yMaALVhQ8HitrCzbALwEds/l4b3tUpB/tmb79jbDcs0ay9yF59eutQDtgQfg2muti7d1a3tWrVqxut90k2XHVqyw4C0+Ixh+LpcgF/XDD5ZxvO++yGZsam9NkUKYPHkyAD0T/a9MpIRRe80Q33xjA+nffz/qkiQWZrZ27YL69e3cmDG2uGt8Zuvkk23dsR078g7+D113nQVnlSpZt22LFnYcBljh2MlmzWziQd26NgYuv4YN4eqrUy9/2bJW7mLe7DwVypyJpOD4448HNIZH0oPaa4Z48UULHM44o/h+5rp1NhYrPrNVq5ZlmMAyW999Z+fXrbMArW9fKytYQLV2rWXywqzV2Wdb5gvgkUdiWa/4HQ0SBVulQLLMmYIzkRQsWbIEgOzs7IhLIrJnaq8Z4sgjLZB56619+/6uXZbZ+uUXaNrUzr38sq07Fp/Zysqy7kCAI46A/P+OHnUUfP65fb7kEntefNdhmzZw4ol2fe1aGyuXDsFWbq4t9RHhVlfq1hQpBP0jJ+lE7TVDLFsWW9IitHGjnY/PbG3caIPiAW6/PbafZJjZqlcvNjPxqafglVfyZrZq1449/9ZbbeZmfGarTp3Y9SeeKLjMUU4gyMmxOmdl2fi7WbPgww/hiiusC/P5521HgMmT7fqf/2yB7+uvQ4cO0ZU7AQVnIil4K/if6ymnnBJxSUT2TO01Q/z6qwVhbdtaNqtSJVsKYtSovPc5B8OGWbaqRg1o1Qq6d48FWA0axO595hmbzZkss9W7d5FVZ6/l5Fj969Sx7t0FCyyQGjDAAsp33rFlMF54wcabjRsHV11l49IaNrS12/7yFzj3XPt1yMmx15Yttv3Tn/5kszbbto26prtRt6ZICjSGR9KJ2muGGDUKXnrJAotx46yLc/p0mD8/lvUKM1vp0I2Yk2OTBWrWtOBo5UrbEeDMM20z8q++sh0BHnoIOna0QOz00+GLL6yL99VXbWmQqVNtW6v33rPg7Ikn7PuzZ9vkiQEDLEj95RfYts2yeSV0JqvGnIkUwsqVKwFoEP8/UJESSu1VikVurm3VVLWqBYibNtlszRNPtOBqyRLLWt16K5x2Gnz7rS2b8cILdn7mTLvvxRdtUsHs2TbbcuRIC76WLYOJEy0ga9jQ1m779df0WDYkRcmCs8yonUgRa9Cggf6hk7Sh9pohRoyw1f6L06JFsX0yvYd777UMFdiaa0ccYeO2wIKxJk1iWzTt3GnbP330kR1XqWKLx4ZrjDVpYsFbp0523LatTVgINz1v0ybvZu+NGtl4sXB7qEqVSnQWbH/K/BqK7AcTJ05k4sSJURdDJCVqrxli9mz4/vvCPWPRIli4MHb8z3/Glr0Ay3KNGBE77tAhFhA6Z92Gb7xhxxUqWKBUvbodV69ue2/26mXHtWrZ5IRwrbHatWHSJFvnDKBaNRg4EA491I7Ll7fvpLItVCmjbk2RFGgMj6QTtdcMtngxbN4M7drZ8fjxlrG6/HI77tcPKle28wCHHWaLt778sh23aWMB2L/+ZccDB9rxVVfZ8Ysv2rIbHTva8ZYtlrFSAFUkNOZMpBDWrl0LQN0op4mLpEjtNYP85S+2bdE779jxaafZQPrp0+34lFNs0HsYiI8YYbMxb7rJjidNsgxXuH/kjh2RrusleWmdM5FC0D9ykk7UXjNIq1aWCQvdcovNegy9/rqt4RW644683z/ppLzHCszSgoIzkRS89NJLAJwdDlwVKcHUXjPIoEF5j7t2zXscH5hJxijy4Mw5VxaYBizz3p+e79r5wF+Dw83Ald77r4Nri4FNwC4gJ1HaT6S4/N///R+gf+wkPai9iqS34sicXQPMAaonuLYIOM57/7NzrhcwFjgy7noP7/3aYiijSIFeeeWVqIsgkjK1V5H0VqRLaTjnGgOnAY8luu69/8x7/3Nw+AXQuCjLI7KvatSoQY0aNaIuhkhK1F5F0ltRr3M2CrgByE3h3j8Bb8Yde2CSc266c25gsi855wY656Y556atWbOmcKUVSWLChAlMmDAh6mKIpETtVSS9FVm3pnPudGC19366c+74PdzbAwvOjok73c17v9w5Vw94xzk313v/Uf7veu/HYt2hdO7cOXPWBZESZfTo0QCcd955EZdEZM/UXkXSW1GOOesG9HbOnQocAFR3zj3rvR8Qf5Nzrj3W7dnLe78uPO+9Xx68r3bOvQx0AXYLzkSKwxvhCtkiaUDtVSS9FVm3pvd+uPe+sfe+CdAPeC9BYHYQ8BJwgff++7jzVZxz1cLPwEnArKIqq8ieVK5cmcrxaw2JlGBqryLprdjXOXPOXQHgvX8UGAHUAR5xtjVEuGRGfeDl4Fw54F/e+7eKu6wioWeffRaAAQMG7OFOkeipvYqkN23fJJIC7VUo6UTtVSQ9aPsmkUJ4J9zXTiQNqL2KpDcFZyIpKF++fNRFEEmZ2qtIeivqdc5EMsKTTz7Jk08+GXUxRFKi9iqS3hSciaRA/9hJOlF7FUlvGTUhwDm3BvixiH9MXaC07vdZmusOpbv+pbnuULrrX5rrDqW7/qW57lA89T/Ye5+V/2RGBWfFwTk3LdHMitKgNNcdSnf9S3PdoXTXvzTXHUp3/Utz3SHa+qtbU0RERKQEUXAmIiIiUoIoONt7Y6MuQIRKc92hdNe/NNcdSnf9S3PdoXTXvzTXHSKsv8aciYiIiJQgypyJiIiIlCAKzgDn3GLn3LfOuZnOuWnBub8555YF52Y6506Nu3+4c26+c26ec+7kuPOdgufMd879nwt2bi/JEtU9OP+XoH7fOefujTufMXWHpL/3E+J+3xc752bG3Z8x9U9S9w7OuS/Cc865LnH3Z0zdIWn9f+ec+zw4P9E5Vz3u/oypv3OupnPuRefcXOfcHOdcV+dcbefcO865H4L3WnH3Z0zdIWn9zw3+vst1znXOd3/G1D9J3e8Ljr9xzr3snKsZd3/G1B2S1v/OoO4znXOTnHMHxt0fTf2996X+BSwG6uY79zdgWIJ72wBfAxWBQ4AFQNng2pdAV8ABbwK9oq7bPta9BzAZqBgc18vEuierf77rfwdGZGL9k/zeTwrLDpwKfJCJdS+g/lOB44LPlwJ3ZmL9gaeAy4LPFYCawL3AjcG5G4F7MrHuBdS/NdAS+ADoHHdvRtU/Sd1PAsoF5+4phb/31eOuXw08GnX9lTnbe32A57332733i4D5QBfnXEPsN/hzb79zTwNnRlnQQrgSGOm93w7gvV8dnC8Ndf9N8D+hPwDPBadKQ/09EGaLagDLg8+loe5g/zh/FHx+B+gbfM6Y+gfZwGOBxwG89zu89xuwOj4V3PYUsXpkTN0hef2993O89/MSfCVj6l9A3Sd573OC274AGgefM6buUGD9f4m7rQr29yBEWH8FZ8YDk5xz051zA+PODw5SnePjUvyNgCVx9ywNzjUKPuc/X9IlqnsLoLtzbopz7kPn3BHB+UyrOyT/vQfoDqzy3v8QHGda/RPVfQhwn3NuCXA/MDw4n2l1h8T1nwX0Dj6fC2QHnzOp/ocCa4AnnHNfOecec85VAep771cABO/1gvszqe6QvP7JZFL9U6n7pVgmCDKr7lBA/Z1z/xv8vXc+MCK4P7L6Kzgz3bz3hwO9gEHOuWOB0UBToAOwAuveAkth5ucLOF/SJap7OaAWcBRwPfBCkEXKtLpD4vqH+hPLmkHm1T9R3a8ErvXeZwPXEvwPk8yrOySu/6XB5+lANWBHcG8m1b8ccDgw2nvfEfgV68ZMJpPqDqW7/gXW3Tl3M5AD/L/wVIJnpGvdoYD6e+9vDv7e+3/A4OD+yOqv4Azw3i8P3lcDLwNdvPervPe7vPe5wDggHBi9lNj/psHSv8uD840TnC/REtUdq8tL3nwJ5GJ7jGVU3SFp/XHOlQPOBibE3Z5R9U9S94uAl4Jb/k2GtntI+ud+rvf+JO99JywwXxDcnkn1Xwos9d5PCY5fxP7BWhV01xC8r467P1PqDsnrX9D9mVL/pHV3zl0EnA6cH3TVhfdnSt0htd/7fxEbzhBZ/Ut9cOacq+KcqxZ+xgZGzgr/kgqchXV3ALwK9HPOVXTOHQI0B74MugE2OeeOCrJMFwKvFFtF9kGyugP/BU4IzrfABk2uJYPqDgXWH6AnMNd7H5+6zpj6F1D35cBxwW0nAGGXbsbUHQr8c18vOFcGuAV4NPhKxtTfe78SWOKcaxmcOhGYjdXxouDcRcTqkTF1hwLrn0zG1D9Z3Z1zpwB/BXp777fEfSVj6g4F1r953G29gbnB5+jqvzezBzLxhfVBfx28vgNuDs4/A3wLfBP8BjWM+87N2P+o5xE3QwPojP0DtwB4iGCR35L6KqDuFYBng7rMAE7ItLoXVP/g2pPAFQm+kxH1L+D3/hhgenB+CtAp0+q+h/pfA3wfvEbG1yXD6t8BmBb8/fZfbBhDHeBdLCB/F6idiXUvoP5nYRmR7cAq4O1MrH+Sus/HxlbNDF6PZmLdC6j/f4K6fANMBBpFXX/tECAiIiJSgpT6bk0RERGRkkTBmYiIiEgJouBMREREpARRcCYiIiJSgig4ExERESlBFJyJiIiIlCAKzkQkrTjndjnnZjrnZjnnJjrnau7l9//mnBsWfL7DOddzP5SpUrAPbVnn3PHOudcK8azn8y2KKSKljIIzEUk3W733Hbz37YD1wKB9fZD3foT3fvJ+KNOl2JZnu/bDs0YDN+yH54hImlJwJiLp7HOgEYBzrqpz7l3n3Azn3LfOuT7hTc65m51z85xzk4GWceefdM6dE3xe7JyrG3zu7Jz7IPh8XJCpm+mc+yrc9imf80mwfYtz7ojgO4cGGbunnHOTgp91tnPu3qCsbznnygdf+xjoGezvKiKlkIIzEUlLzrmy2N54rwantgFnee8PB3oAf3emE9AP6IhtZn/EXv6oYcAg730HoDuwNV85KgCHeu8X5zt/NLY3Zx/v/cLgdFPgNKAPtkXa+977w4Jnngbgvc/FttP53V6WU0QyhIIzEUk3lZxzM4F1QG3gneC8A+5yzn0DTMYyavWxgOpl7/0W7/0vxIK5VH0KPOCcuxqo6b3PyXe9LrAh37nWwFjgDO/9T3Hn3/Te78T27S0LvBWc/xZoEnffauDAvSyniGQIBWcikm62Blmsg4EKxMacnQ9kYZu1d8A2rz4guJbKJsI5xP5ODL+H934kcBlQCfjCOdcqf3ni7w+swDJ5HfOd3x48MxfY6WObG+cC8d2YB5AvQycipYeCMxFJS977jcDVwLBgvFYNYLX3fqdzrgcWvAF8BJwVzKisBpyR5JGLgU7B577hSedcU+/9t977e4BpQJ7gzHv/M1DWORcfoG3Auinvcs4dvw/VawF8tw/fE5EMoOBMRNKW9/4r4GtsTNn/Azo756ZhWbS5wT0zgAnATOA/2ID7RG4HHnTOfQzEz7ocEizb8TWWzXozwXcnAcfkK9sqLBB82Dl3ZKp1cs7Vx7KDK1L9johkFhfLqouIyL5wznUEhnrvL9gPz7oW+MV7/3jhSyYi6UiZMxGRQgoyeO8HM0gLawPw1H54joikKWXOREREREoQZc5EREREShAFZyIiIiIliIIzERERkRJEwZmIiIhICaLgTERERKQE+f+Kb6BixOth8QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(5500, 6300, 0.5)\n", - "ax.plot(rs, prem.vs(rs), 'r', label='T = 2 s')\n", - "ax.plot(rs, prem.vs(rs, t=20.0), 'r-.', label='T = 20 s')\n", - "ax.plot(rs, prem.vs(rs, t=200.0), 'r--', label='T = 200 s')\n", - "ax.plot(rs, prem.vs(rs, t=2000.0), 'r:', label='T = 2000 s')\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Vs (km/s)')\n", - "ax.legend()\n", - "\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "ax.annotate('LVZ', (6200, 4.5))\n", - "\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bulk and shear modulus\n", - "\n", - "(I think I may have a slight error in the parameters, bulk modulus for r=0\n", - "a bit off compared to paper).\n", - "\n", - "$$ Vp = \\sqrt{\\frac{\\kappa + \\frac{4}{3} \\mu}{\\rho}} $$\n", - "\n", - "and\n", - "\n", - "$$ Vs = \\sqrt{\\frac{\\mu}{\\rho}} $$" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "mu = 176.07640790034003 GPa\n", - "kappa = 1484.0316146920004 GPa\n" - ] - } - ], - "source": [ - "print('mu = ', prem.shear_modulus(0), 'GPa')\n", - "print('kappa = ', prem.bulk_modulus(0), 'GPa')" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGQCAYAAAAeM0ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhdVb3/8fc3c5pOSTo3Q+faOR0oraJUZvgxafFSFZBBq4BCFUQKCiIqqAXhiohwrYVbBZQLMihjEXBo6Ty36dwmbdM2aTo3bYb1++PsYqxpe05ydvYZPq/nOU/O2dlnn283n4SVtddey5xziIiIiEjsSQm6ABERERFpmhpqIiIiIjFKDTURERGRGKWGmoiIiEiMUkNNREREJEapoSYiIiISo9RQE5G4Zmb1ZrbYzFaY2RIz+5aZNft3m5nd1eh5LzNbHub7ppjZNd7z98xsTDM/f5iZzWjOe0Uk8aihJiLx7rBzrsQ5NwQ4F7gIuLcFx7vr1Lv8OzNLA64Hft+CzwXAObcMKDCzopYeS0TinxpqIpIwnHM7gcnA1y0k1cx+ZmbzzGypmX0VwMwmmNkHZvaSma00syfMLMXMHgSyvR6633mHTTWzp7weu7fMLLuJjz4LWOicq2u80Tvm02b2Q+/1ATP7iZktMLN3zGys1/u2wcwubfTWV4FJ0T4/IhJ/1FATkYTinNtA6HdbF+AGYK9z7jTgNOArZtbb23UscBswDOgLfNY5dyf/6qH7ordff+CXXo/dHmBiEx/7CWDBcdvSgN8Ba5xz3/W25QDvOedGA/uBHxLqBfwM8ING750PfLI5/34RSSxqqIlIIjLv63nANWa2GPgQyCfU8AKY65zb4JyrB54FzjjBsTY65xZ7zxcAvZrYpzuw67htvwaWO+d+1GjbUeAN7/ky4H3nXK33vPFxdwI9TvivE5GkoYaaiCQUM+sD1BNq7BjwDa+HrMQ519s595a36/ELHZ9o4eMjjZ7XE+opO95hIOu4bf8EPm1mjbfXun8tsNxw7NjOuYbjjpvlHVNEkpwaaiKSMMysM/AE8JjXIHoTuNHM0r3vDzCzHG/3sWbW27tD9Erg79722mP7R2AV0O+4bb8B/gL80bvZIBIDgLDuNhWRxKaGmojEu2OD/1cA7wBvAfd53/sfYCWw0Jtm49f8q+dqNvAgoQbRRuAlb/uTwNJGNxOE43XgU8dvdM49DCwE/jfCKUM+Dfw5gv1FJEHZv3rhRUSSg5lNAG53zl0cxWO+BNzhnFvbwuNkAu8DZxx/F6mIJB/1qImIRMedhG4qaKki4E410kQE1KMmIiIiErPUoyYiIiISo9RQixFm1tHMXjCz1Wa2yszGm1memb1tZmu9r7mN9p9qZuvMrNTMzm+0fbSZLfO+999mZk1/YuIws03ev3mxmc33tuncRcCbwX+Rmb3mvdb5OwUzyzKzuRZaX3SFmd3nbde5C4OZFZrZX73fdyvM7FZvu85fGMxsupnttEZr0ercRZ+ZXeCds3VmdmcgRTjn9IiBB/A08GXveQbQEfgpobEqEBr/8hPv+WBgCZAJ9AbWA6ne9+YC4wnNH/U6cGHQ/7ZWOHebgE7HbdO5i+wcfovQOpWv6fyFfc4MaOs9Tyc0oe44nbuwz193YJT3vB2wxjtHOn/hnb9PAaMITap8bJvOXXTPcap3rvoQ+v/yEmBwa9ehHrUYYGbtCf3Q/QbAOXfUObcHuIxQAw7v6+Xe88uA55xzR5xzG4F1hOaE6g60d87NdqGUPdPoPclG5y5MZlYA/D9CU1kco/N3Ci7kgPcy3Xs4dO7C4pzb7pxb6D3fT2guup7o/IXFOfcBsPu4zTp30TUWWOdCK5gcBZ4jdC5blRpqsaEPoeVnfutdfvofC03K2dU5tx1Cv9QIrV0IoV9mZY3eX+5t6+k9P357onPAWxZa6Hqyt03nLnyPAHcQmin/GJ2/MHiXjBcTWgXhbefch+jcRczMegEjCfVK6vw1n85ddJ3ovLUqNdRiQxqhLuxfOedGAgcJdVufSFNjCNxJtie6TzjnRgEXAjeb2X9MPNqIzl0jZnYxsNM5d/yC4id8SxPbkvb8OefqnXMlQAGhHoqhJ9ld564JZtYW+D9ginNu38l2bWJb0p+/MOncNU9MnB811GJDOVDu/TUO8AKhhtsOr2sa7+vORvsXNnp/AbDN217QxPaE5pzb5n3dSWh2+bHo3IXrE8ClZraJULf+WWY2E52/iHhDFd4DLkDnLmwWWqrr/4DfOede9Dbr/DWfzl10nei8tSo11GKAc64CKDOzgd6mswkte/MK8CVv25eAl73nrwCTzCzTzHoD/YG5Xlf3fjMb5925c02j9yQkM8sxs3bHngPnEVoSSOcuDM65qc65AudcL2AS8K5z7ip0/k7JzDqbWUfveTZwDrAanbuweP/W3wCrXGiprWN0/ppP5y665gH9LbQmcAah35GvtHoVrX33gh4nvLukBJgPLAX+BOQC+cAsYK33Na/R/ncTuhullEZ36QBjCDVU1gOP4U1qnKgPQuP7lniPFcDd3nadu8jP5QT+ddenzt+pz9dwYJH3M7scuEfnLqLzdwahy0hLgcXe4yKdv7DP37PAdqCWUM/PDTp3vpzniwjdkbz+2P9fWvuhlQlEREREYpQufYqIiIjEKDXURERERGKUGmoiIiIiMUoNNREREZEYpYaaiIiISIxSQy0ONVomSSKkc9cyOn/Np3PXMjp/LaPz13xBnzs11OKTfuCaT+euZXT+mk/nrmV0/lpG56/51FATERERkf+UsBPeZmRkuPT09KDL8EVdXR1paWlBlxG4Y9kNrXwSHp27ltH5a75TnbtI89yc/MczZa9lWuP8+ZXJoLPeWtk7dOhQrXMu4/jtCZv64cOHM3/+/KDLEBERETklM1va1HZd+pS4NXPmTGbOnBl0GSJR8fjjj/P444+Hvb/yL7HGr0wme9YT9tLnmDFjnHrUEtuECRMAeO+99wKtQyQaIs2z8i+xxq9MJkvWzWyBc27M8dsT9tKnJL6333476BJEAqP8S6zxK5PJnnU11CRuJerNIiLhUP4l1viVyXCOW1tbS3l5OTU1Nb7UEE1ZWVkUFBSEfb7UUJO4NWPGDACuvfbaQOsQCYLyL7HGr0yGc9zy8nLatWtHr169YvpOaOccVVVVlJeX07t377Deo5sJJG7NmDHjox9gkWSj/Eus8SuT4Ry3pqaG/Pz8mG6kQWiKkfz8/Ih6/nQzgYiIiMS1VatWMWjQoKDLCFtT9Z7oZgL1qImIiIjEKDXUJG499dRTPPXUU0GXIRIV06ZNY9q0aWHvr/xLrPErk8medTXUJG49//zzPP/880GXIRIVr732Gq+99lrY+yv/Emv8ymQ8Zf26667jtddeY8+ePVx44YW89NJLLT6m7vqUuPXOO+8EXYJIYJR/iTV+ZTLS405Zu5bFBw5EtYaStm15pH//U+63bNkybrjhBi677DIeeOABPv7xj7f4s9VQa6YF+/ez6+hR0sxINSOtiUd2Sgo5qakfPVJj/G4UERERaZ6GhgZWrVrFF77wBW6++eaoNNJADbVmu3/TJl6uqoroPZlmHzXa2qWmkpeeTl5aGvnp6eQf97xLejo9MjPpnpFBm9RUn/4V8e3Yuog33XRTwJWItD7lX2KNX5mM9Ljh9Hz5Ye3atfTo0YNf//rX3HDDDXzrW9+KyiTAaqg108/69uXOoiLqnPvoUQ8fPa9taOBwQwMH6+s56H09UF8fel1fz/76enbX1bGppoYF+/ezu66Oww0NTX5Wx7Q0emRk0CMz86OvxZmZ9M7Opk9WFsVZWWSkJN9ww1dffRXQ/6gkMWRnZ0e0v/IvscavTMZL1pctW8a5557LWWedxdChQ3nmmWe44YYbWnxczaMWQw57jbeq2lp2Hj3K1qNH2XbkCNua+FrX6L+bAQWZmfTOyqJ3VhZ9s7MZ2KYNg9q0YUCbNmQmYSNORESSRyzMo3bvvffStWtXbrrpJmbPns3VV1/N6tWrSUv7zz6xSOZRU49aDMlOTaVnaio9MzNPul+Dc2w7coSNNTVsqKlh4+HDoa81NbxTXc3TO3Z8tG8K0Cc7m0Few21QmzYMyclhaE4O2bqkKiIiEhX33XffR8/Hjx/PunXronJcNdTiUIoZBVlZFGRl8ckmvn+ovp41hw6xqvHj4EHe2L2bWq8nLgX4WJs2lLRty8i2bSnxHp0yMlr139ISjz76KAC33nprwJWItNz9998PwPe+972w9lf+Jdb4lclkz7oaagmoTWoqJe3aUdKu3b9tr2toYENNDcsOHmTJgQMsPnCAv+3dy+937vxon54ZGYxu145x7dszrn17xrRrR7smum1jwaxZs4Dk/eGVxHIsz+E21JR/iTV+ZTLZsx6b/wcWX6SlpDDAG7c2sXPnj7ZXHj3KkoMHWXzgAIv272f+/v284t3RmgIMycnhdK/hdnq7dgzOySElBqYaeeWVV4IuQSQwyr/EGr8ymexZV0NN6JSRwdkZGZydm/vRtt21tczdt48P9+9nzr59/N+uXfzP9u1A6C7UT3bowJkdO3Jmhw6UtG1Lmm5YEBERiTo11KRJeenpXJCfzwX5+QA451h7+DBz9u3jb3v38v6ePbzq9bq1S03ljEYNt9Ht2pHeCg23Y+si3n777b5/lkisUf4l1viVyWTPuhpqEhYz++iy6TXdugGw7cgRPtizh/e9htvrGzYA0D41lbNyczk/N5fz8vLoE+H8UOGaPXu2L8cVCUK+90dRuJR/iTV+ZTLZs6551CRqdh49yvt79vB2dTVv7t7NliNHAOiblcV5eXmcn5fHpzt2pH2M3pwgIiLxKRbmUYuE5lGTQHTJyOBzXbrwuS5dPrpU+ubu3bxVXc0zFRX8ats20sw4o0MHLs3P55L8fPq1aRN02SIiIjFLI8DFF8culX6joIBXhw1j9xln8F5JCbcXFlJZW8u31q+n/9y5DJ47lzvXr+cfe/dSH2Hv7oMPPsiDDz7o079ApHVNnTqVqVOnhr2/8i+xxq9MxlPWJ0yYQGlpKQBVVVUMHTq0xcdUj5q0ioyUlNDNBh078kCfPmw8fJhXq6p4pbKSh8rL+UlZGZ3S07k4P5/LO3Xi/Nxcsk6xcsLixYtbqXoR/0U6Dkf5l1jjVyYjPe7aKWs5sPhAVGtoW9KW/o+cerH3devW0d9bFH7p0qUMGzasxZ/tW0PNzKYDFwM7nXNDj/ve7cDPgM7OuUpv21TgBqAeuMU596a3fTQwA8gG/gLc6hJ1YF0S6Z2dzS0FBdxSUMDeujre2L2bVyor+VNlJTMqKmibmsol+fl8rnNnLsjLa3K5q+eeey6AykVig/IvscavTMZL1jdv3kzPnj1J8WY9WLp0KcOHD2/xcf3sUZsBPAY803ijmRUC5wJbGm0bDEwChgA9gHfMbIBzrh74FTAZmEOooXYB8LqPdUsr65CWxpVdunBlly7UNjTw1z17+OOuXby0axfP7txJ29RULm7UaGujNUpFROQEwun58sPixYv/rWG2YMECrrzyyhYf17cxas65D4DdTXzr58AdQONescuA55xzR5xzG4F1wFgz6w60d87N9nrRngEu96tmCV56Sgrn5eXx1MCBVHz847w9fDhf6NKFd6qrmbhiBV3+8Q8mrVjBK5WV3PuDH3y0PqJIsrn//vuVf4kpfmUyXrK+ZMkSampqAFi7di0vv/xybF/6bIqZXQpsdc4tsX9fgqgnoR6zY8q9bbXe8+O3n+j4kwn1vlFUVBSlqiUoaSkpnJOXxzl5efyyf38+2LuXP+7axQu7dvH8rl2k//3v9M3OJryVEUViW0FBQUT7HxuwLBIr/MpkvGR98eLFZGdnM2LECIYPH86gQYN4+umnw16/90RaraFmZm2Au4Hzmvp2E9vcSbY3yTn3JPAkhOZRa0aZEqPSUlI4KzeXs3Jz+e9+/Xinupof/+Qn/H3vXg7V1+tyqMS9mTNn+rq/iN/8ymS8ZH3p0qUsWrSIdu3aRfW4rTk9R1+gN7DEzDYBBcBCM+tGqKessNG+BcA2b3tBE9sliaWnpHBhfj6XeTO5N+jeEhERCdD+/ftJSUmJeiMNWrGh5pxb5pzr4pzr5ZzrRagRNso5VwG8Akwys0wz6w30B+Y657YD+81snIWulV4DvNxaNUtse/Phh2H6dBqCLkQkCqZMmcKUKVPC3v+ee+7hnnvu8bEikcj4lcl4yHq7du1Ys2aNL8f2c3qOZ4EJQCczKwfudc79pql9nXMrzOwPwEqgDrjZu+MT4Eb+NT3H6+iOT/Hs3bYN9u8/8bVwkTgS6VxRZWVlPlUi0jx+ZTLZs+5bQ8059/lTfL/Xca9/BPyoif3mAy2f2lcSzhcffph569bp0qckpd/+9rdBlyDyb/zKZLJnXUtISdw6Fl5d+hQRkUSlJaQkbr364INQXY37+MeDLkWk1R1bF/SBBx4IuBKREL8yGe5xnXMcN/VXTIp0cSU11CRuHaquhr171aMmCWHAgAER7V9VVeVTJSLN41cmwzluVlYWVVVV5Ofnx3RjzTlHVVUVWVlZYb/HEnXZzDFjxrj58+cHXYb46ImtW7lx7Vq2jx9Pt8zMoMsREZGA1NbWUl5e/tHKALEsKyuLgoIC0tPT/227mS1wzo05fn/1qEncOvZXk3rURESSW3p6Or179w66DF+ooSZx6/9+8IPQGLXx44MuRaTFJk+eDMCTTz4Z1v633347ANOmTfOtJpFI+JXJZM+6GmoSt+pqauDIEU3PIQkh0skyDx8+7FMlIs3jVyaTPesaoyZxa/r27dxQWsqmceMojmBgpkgsmjBhAgDvvfdeoHWISDBONEZN86hJ3DoW3kT9Y0NERESXPiVuPXvPPVBdTcPppwddikirO7Yu6COPPBJwJSIhfmUy2bOuhprErWMz5WiMmiSCkpKSoEsQkRikMWoSt363YwdXrVrFmrFj6d+mTdDliIiINJvGqEnCORbeIw2aSU1ERBKTGmoSt56/+2545BHOXrKER8rKqKmvD7okkWa76qqruOqqq8Le/+abb+bmm2/2sSKRyPiVyWTPusaoSdzq17Ejn8/OZmdODt9cv55pZWV8t7iY67t3JyNFf4NIfCkvL49o/+zsbJ8qEWkevzKZ7FnXGDVJCH+truZ7Gzfyj3376JWVxb3FxVzVtStparBJnNA8aiLJTWPUJKF9OjeXv40cyevDhpGflsZ1paUMmTePZ3fs0F2hIiISt9RQk7g1efLkj9ZHhNAi7Rfk5zNv9Gj+NHQomSkpfGHVKkbMn89Lu3ZpYlxJKMfnXyRofmUy2bOuMWoSt/Lz85vcbmZc1qkTl+Tn88ddu7h340Y+u2IFo9u25f7evbkgLw8za/K9IkEZP358RPufKP8iQfErk8medY1Rk4RX19DA73bu5L5Nm9hYU8OZHTrwk759Ob19+6BLExERATRGTZJYWkoKX+rWjdVjx/LL/v1ZdegQ4xYuZOLy5aw+eDDo8kRERE5IDTWJW9dddx3XXXdd2PtnpKRwU8+erD/9dO7r1Yu3qqsZOm8ek0tL2XrkiI+VipzaxIkTmThxYtj7R5p/Eb/5lclkz7rGqEncKiwsbNb72qalcU+vXnytRw9+tHkzv9q2jZk7dnBrQQHfKSykY3p6lCsVObWqqqqI9m9u/kX84lcmkz3rGqMmSW/D4cPcs3Ejv9u5k9y0NO4uLubmHj3ISk0NujRJIppHTSS5aYyayAn0yc5m5uDBLBw9mrHt2nH7+vUMmDuXGdu3U5+gf8iIiEh8UENN4lakayOeysh27XhjxAhmjRhB14wMristZcyCBbxbXR21zxCJlmjnX6Sl/MpksmddY9Qkbg0cONCX456Vm8vcUaN4fudOvrNhA2cvWcKl+fn8tG9fBrZp48tnipx99tkR7e9X/kWay69MJnvWNUZN5CQO19fzaHk5P96yhcMNDdzUowf39OpFvm44EBGRKNIYNZFmyE5N5c7iYtaefjo3dOvGY1u30u/DD3m4rIyjDQ1BlyciIglODTWJW5MmTWLSpEmt8lldMzJ4YuBAlowZw7j27blt/XoGz53Li1pDVKLkwgsv5MILLwx7/9bMv0g4/MpksmddY9QkbpWUlLT6Zw5t25bXhw/njaoqbl+/nokrVvDJDh14pF8/RrVr1+r1SOI4fPhwRPsHkX+Rk/Erk8medd/GqJnZdOBiYKdzbqi37WfAJcBRYD1wnXNuj/e9qcANQD1wi3PuTW/7aGAGkA38BbjVhVG0xqiJ3+oaGpheUcF3N26ksraWr3Tvzg9796ZzRkbQpUkc0jxqIsktiDFqM4ALjtv2NjDUOTccWANM9YobDEwChnjvedzMjs02+itgMtDfexx/TJFApKWkMLlHD9aMHcuUggKmV1QwYO5cflFeTp3Gr4mISBT41lBzzn0A7D5u21vOuTrv5RygwHt+GfCcc+6Ic24jsA4Ya2bdgfbOudleL9ozwOV+1SzxJdK1Ef3SMT2dh/v1Y8mYMYxp145b1q1j5IIF/FXzr4mPYiX/Isf4lclkz3qQY9SuB573nvck1HA7ptzbVus9P357k8xsMqHeN4qKiqJZq8Sg8ePHB13Cvxmck8Nbw4fzp8pKvrV+PWctWcLnOndmWt++FGVlBV2exLiLL744ov1jLf8ifmUy2bPu6zxqZtYLeO3YGLVG2+8GxgCfdc45M/slMNs5N9P7/m8IjUfbAjzgnDvH2/5J4A7n3CWn+myNUZMgHa6vZ1pZGQ9s2QLAnUVFfLuwkGytHyoiIk2ImXnUzOxLhG4y+GKjmwLKgcJGuxUA27ztBU1sF4lp2ampfK9XL1aPHcsl+fncu2kTg+fN4+XKyqBLExGRONKqDTUzuwD4DnCpc+5Qo2+9Akwys0wz603opoG5zrntwH4zG2dmBlwDvNyaNUvsuvTSS7n00kuDLuOkirKyeH7IEP46YgRtU1O5fPlyLl22jM01NUGXJjFmwoQJH935GY54yL8kF78ymexZ922Mmpk9C0wAOplZOXAvobs8M4G3Q+0u5jjnvuacW2FmfwBWAnXAzc65eu9QN/Kv6Tle9x4iEa+NGKQJubksHD2aR8rL+f6mTQyaO5d7e/XimwUFZKRo3mmJXDzlX5KDX5lM9qxrrU+RVralpoYp69bxUmUlg9u04fEBAzizY8egy5KAaR41keQWM2PURJJdUVYWLw4dyqtDh3KooYEJixfzpVWr2Hn0aNCliYhIjFFDTeJWpGsjxpqLO3VixWmnMbWoiGd37uRjc+fy5LZtNCRoL7dEV7znXxKPX5lM9qxrrU+JW5dccspZWmJem9RUftynD1d37cpNa9fy1TVr+G1FBb8eMIDhbdsGXZ60ov/6r/+KaP9EyL8kFr8ymexZ1xg1kRjhnGPmjh3ctn491XV1fKewkO8WF5OluddERBKexqiJxDgz4+pu3Vg1dixf7NKFH23Zwoj58/lgz56gS5NWcOjQIQ4dOnTqHUUkqaihJnHrnHPO4Zxzzgm6jKjLT09nxqBBvDV8OLXOcebixXyttJS9dXWnfrPErYsuuoiLLroo7P0TNf8Sv/zKZLJnXWPUJG5deeWVQZfgq3Pz8lh22mncu3EjPy8v59WqKn7Zvz+Xd+4cdGkSAxI9/xJ//MpksmddY9RE4sD8ffv4cmkpSw4eZGKnTvyif3+6Z2YGXZZEkeZRE0luGqMmEsfGtG/PvNGjeaB3b16rqmLQ3Ln8z7ZtJOofWiIiEqKGmsStSNdGjHfpKSncWVzMstNOY2S7dnxlzRouXLqUMq0bmpSSLf8S+/zKZLJnXWPUJG5de+21QZcQiP5t2jBrxAie2LaNO9avZ+i8eTzcrx/Xd+uGt4auxKFI85ys+ZfY5Vcmkz3rGqMmEsc2Hj7M9aWlvLdnDxfk5fHkgAEUZmUFXZaIiERIY9Qk4dTW1lJbWxt0GYHqnZ3NrBEjeKx/fz7Ys4eh8+bxm+3bNXYtDlVWVlJZWRn2/sq/xBq/MpnsWVdDTeLWueeey7nnnht0GYFLMePmnj1DY9fatuXLpaVctGwZ5Rq7FleuuOIKrrjiirD3V/4l1viVyWTPusaoSdz68pe/HHQJMaVPdjbvlpTw+NatfGfDBobOm8fP+/XjWo1dS0jKv8QavzKZ7FnXGDWRBLT+8GGuX72aD/bu5ZL8fJ4aOJCuGRlBlyUnoXnURJKbxqhJwtHaiCfWNzubv5aU8HDfvry1ezfD5s3jlQjGP0nsU/4l1viVyWTPuhpqErciXRsx2aSY8c3CQhaMGUPPzEwuW76cr5SWsl9rhiYE5V9ijV+ZTPasa4yaxK0bb7wx6BLiwpCcHD4cNYp7N23iJ1u28G51Nf87aBAf79Ah6NKkkUjzrPxLrPErk8medY1RE0kif9+zh6tXr2ZLTQ1Ti4q4p1cvMlLUsS4iEjSNUZOEs3fvXvbu3Rt0GXHljI4dWTJmDNd268aPtmxh/MKFrDp4MOiyBCgrK6OsrCzs/ZV/iTV+ZTLZs64eNYlbukuuZV7atYvJa9ZwoL6en/bpw9d79tQ0HgGKNM/Kv8QavzKZLFk/UY+axqhJ3LrllluCLiGufaZzZ8a3b88NpaXcsm4db1dXM33gQDppGo+4oPxLrPErk8medfWoiSQ55xyPbd3K7evXk5+ezsxBgzgrNzfospJOsvQaiEjTNEZNEk6kayNK08yMbxQU8OGoUXRIS+OcJUu4a8MGahsagi5NTkL5l1jjVyaTPeu69Clx69i6iOqBiI6Sdu2YP3o0U9at4wFvGo9nBw+md3Z20KVJE5R/iTV+ZTLZs66GmsSt2267LegSEk5OaipPDRzIebm5fKW0lJL583liwAA+37Vr0KUlvEjzrPxLrPErk8medY1RE5Emba6p4QsrV/LPffu4tls3ftGvH23T9LediIgfNEZNEk5FRQUVFRVBl5GwirOyeL+khHuKi3mmooJRCxaweP/+oMtKWKWlpZSWloa9v/IvscavTCZ71tWjJnFLd8m1nvf37OGLK1dSWVvLf/fvz1e6d9eca1GmedQk3mketZbRPEOLTl8AACAASURBVGqScO68886gS0gaZ3bsyKIxY7h61Sq+umYN7+/Zw68HDNCl0AAp/xJr/Mpksmfdtx41M5sOXAzsdM4N9bblAc8DvYBNwH8556q9700FbgDqgVucc29620cDM4Bs4C/ArS6MotWjJhJ9Dc7xwJYt3LNxI/2zs/njkCEMa9s26LISQrL0GohI04IYozYDuOC4bXcCs5xz/YFZ3mvMbDAwCRjivedxM0v13vMrYDLQ33scf0xJUpGujSgtl2LG3cXFzBoxgr319Zy+cCHTt28nUYdQxDLlX2KNX5lM9qz71lBzzn0A7D5u82XA097zp4HLG21/zjl3xDm3EVgHjDWz7kB759xsrxftmUbvkSR39dVXc/XVVwddRlKakJvL4jFj+Li3BNW1q1dzsL4+6LKSivIvscavTCZ71lt7gElX59x2AOfcdjPr4m3vCcxptF+5t63We3789iaZ2WRCvW8UFRVFsWyJRd/97neDLiGpdc3I4M0RI/jh5s3ct2kT8/fv549DhjA4Jyfo0uJSpHlW/iXW+JXJZM+6r3d9mlkv4LVGY9T2OOc6Nvp+tXMu18x+Ccx2zs30tv+G0Hi0LcADzrlzvO2fBO5wzl1yqs/WGDWR1vPO7t18cdUqDtTX88SAAVzdrVvQJYmIxJVYmUdth3c5E+/rTm97OVDYaL8CYJu3vaCJ7SJs2LCBDRs2BF2GAOfk5bFozBjGtGvHNatXc/OaNRzVWqERWbx4MYsXLw57f+VfYo1fmUz2rLd2j9rPgCrn3INmdieQ55y7w8yGAL8HxgI9CN1o0N85V29m84BvAB8S6mX7hXPuL6f6bPWoJT7dJRd76hoauHPDBh4qL2d8+/b8ccgQemZmBl1WXNA8ahLvNI9ay7T6PGpm9iwwAehkZuXAvcCDwB/M7AZClzU/B+CcW2FmfwBWAnXAzc65YyOTb+Rf03O87j1EuO+++4IuQY6TlpLCtH79OL19e65bvZpR8+fzhyFDOLNjx1O/WSKi/Eus8SuTyZ51rUwgIr5YefAgn12+nHWHD/PTvn35ZkGBVjM4iWTpNRCRpsXKGDWRqIl0bURpXYNzcpg7ejSXderEbevXM2nlSg7U1QVdVsJQ/iXW+JXJZM+61n+RuPXVr34VUA9ELGuflsYLQ4bws7Iypm7YwLKDB3lp6FAGtmkTdGlxT/mXWONXJpM962qoSdz68Y9/HHQJEgYz446iIsa0a8eVK1dy2oIFPP2xj/GZzp2DLi2mRJpn5V9ijV+ZTPasa4yaiLSaspoarlixgrn793NXURH39+5NisatiYhojJoknuXLl7N8+fKgy5AIFGZl8cHIkXy5e3d+vGULly9fzj6NWwPgn//8J//85z/D3l/5l1jjVyaTPevqUZO4pbvk4pdzjl9t28at69bRPzubl4cOpX+Sj1vTPGoS7zSPWsu0+jxqIn772c9+FnQJ0kxmxk09ezK4TRs+t3IlYxcu5NlBg7ggPz/o0uKG8i+xxq9MJnvW1aMmIoHadPgwly9fzrKDB3mwTx9uLyxMyvnWkqXXQESapjFqknAiXRtRYlOv7Gz+MWoUEzt35o4NG7hq1SoO19ef+o1JTvmXWONXJpM967r0KXFrypQpgHogEkFOairPDx7MyC1buHvjRkoPHeKloUMpzMoKurSYpfxLrPErk8medV36lLh17C+skpKSgCuRaHqtspIvrFpFdkoKLw4dyic6dAi6pFYRaZ6Vf4k1fmUyWbJ+okufaqiJSMxZdfAgly1fzqaaGp4YMIDru3cPuiQREV81e4yamRWY2e1m9rKZzTOzD8zscTP7f2amMW4SmHnz5jFv3rygyxAfDMrJYe6oUUzo2JEbSkv59vr11CfoH5XHvPPOO7zzzjth76/8S6zxK5PJnvWT9qiZ2W+BnsBrwHxgJ5AFDAA+DYwG7nTOfeB/qZFRj1ri011yia+uoYFb163j8W3buDQ/n98NGkTbtMQcWqt51CTeaR61lmnuPGoPOeeamg54OfCimWUARdEoUCRSjz32WNAliM/SUlL45YABDM7J4da1azlj0SJeGTaMIt1koPxLzPErk8medY1RE5G48Obu3fzXihVkp6Tw8rBhnN6+fdAlRVWy9BqISNNaNI+amfU3sxfMbKWZbTj2iH6ZIuGLdG1EiW/n5+Uxe9QoclJTOXPRIp7bsSPokgKl/Eus8SuTyZ71cAd7/Ba4F/g5obFp1wHJN3W4xJS77roLUA9EMhmck8OHo0bx2RUr+PyqVaw6dIjv9+qVlCsZKP8Sa/zKZLJnPaxLn1533GgzW+acG+Zt+5tz7pO+V9hMuvSZ+EpLSwEYOHBgwJVIazvS0MDX1qxhRkUFV3buzG8/9jGyU1ODLqtFIs2z8i+xxq9MJkvWW7ooe403FcdaM/s6sBXoEs0CRSKV6D+0cmKZKSlMHziQQW3acOeGDWysqeHloUPplpkZdGnNFmmelX+JNX5lMtmzHu48aFOANsAthKbkuAr4kl9FiYTj/fff5/333w+6DAmImXFHUREvDhnC8oMHOX3hQlYcPBh0Wc326quv8uqrr4a9v/IvscavTCZ71k956dPMOgPFwDrn3J5WqSoKdOkz8ekuOTlmwf79XLxsGYfr63lx6FDOys0NuqSIaR41iXeaR61lmnXp08y+DPwYWA/0NrPJzrlXfKpRJCLTp08PugSJEaPbtePDUaO4aOlSLli6lP8ZOJBrunULuixfKf8Sa/zKZLJn/VRj1KYAQ5xzu8ysD/A7QA01iQl9+vQJugSJIUVZWfxj1CgmLl/Ol1avZmNNDfcUFyfsHaHKv8QavzKZ7Fk/1Ri1o865XQDOuQ1A/I7UlYQT6dqIkvg6pKXxl+HDubZbN76/aRPXrl7N0YaGoMvyhfIvscavTCZ71k/Vo1ZgZv99otfOuVv8KUvk1H74wx8CcM455wRcicSSDO+O0D5ZWdyzaRNlR47w4pAhdExPD7q0qFL+Jdb4lclkz/qpFmU/6Z2dzrmno15RlOhmgsRXVlYGQGFhYcCVSKyaWVHB9aWl9M/O5s/DhtErOzvokk4o0jwr/xJr/MpksmT9RDcTaK1PEUlof62u5jPLl5OVksJrw4YxJsHWCBWRxNCstT7N7Awzu6bR6xfM7F3vcZYfhYqE64033uCNN94IugyJcZ/OzeWfo0aRlZLCmYsX82plZdAlNen555/n+eefD3t/5V9ijV+ZTPasn+rS5yzgG865ld7rZcC1QA5wl3PugtYosjnUo5b4kmVuHYmOiiNHuGT5chbu388v+/fnaz17Bl3Sv9E8ahLvNI9ayzR3Can2xxppnrXOuQXeAR+IZoEikXruueeCLkHiSLfMTN4rKWHSypXcuHYtW48e5QdxvKC78i+xxq9MJnvWTzU9R8fGL5xzn230smtzP9TMvmlmK8xsuZk9a2ZZZpZnZm+b2Vrva26j/aea2TozKzWz85v7uZJYunXrRrcEn9RUoisnNZWXhgzhhm7d+OHmzXy5tJTaOJ2+Q/mXWONXJpM966dqqK02s/93/EYzuxgobc4HmllPQmuGjnHODQVSgUnAncAs51x/YJb3GjMb7H1/CHAB8LiZpTbnsyWxRLo2oghAWkoKTw0cyD3FxUyvqODy5cs5WF8fdFkRU/4l1viVyWTP+qkufX4T+LOZXQEs9LaNBj4OXNzCz802s1pCi71vA6YCE7zvPw28B3wHuAx4zjl3BNhoZuuAscDsFny+JICHHnoIgEsuuSTgSiTemBn39e5Nz8xMblyzhk8vXsyfhw2jc0ZG0KWFTfmXWONXJpM96+Esyp4JfJFQjxbACuD3zrmaZn+o2a3Aj4DDwFvOuS+a2R7nXMdG+1Q753LN7DFgjnNuprf9N8DrzrkXmjjuZGAyQFFR0ejNmzc3t0SJA5Xe3XudOnUKuBKJZ69UVnLlypUUZGby5vDh9AlorrVI86z8S6zxK5PJkvXmLspuXk/WCVdE9fYJezI2b+zZZUBvYA/wRzO76mRvaWJbk5/nnHsSeBJCd32GW5PEp0T/oZXWcWmnTrw7YgQXL1vG+IUL+cvw4Yxu167V64g0z8q/xBq/MpnsWT/VGLW/mtk3zKyo8UYzyzCzs8zsaeCkqxc04Rxgo3Nul3OuFniR0KXUHWbW3Tt+d2Cnt3850Hg64gJCl0olyb344ou8+OKLQZchCWB8hw78Y+RIslNSOHPRIt7cvbvVa5gxYwYzZswIe3/lX2KNX5lM9qyfah61LOB6Qpc+j/WAZRNq4L0F/NI5tziiDzQ7nVAP3WmELn3OAOYDRUCVc+5BM7sTyHPO3WFmQ4DfExqX1oPQjQb9nXMnHf2redQSX7LMrSOtZ9uRI1y0dCkrDh1i+sCBXN2Kd5ppHjWJd5pHrWVavISUmaUDnYDDzrk9LSzmPuBKoA5YBHwZaAv8gVCDbQvwOefcbm//uwk1GOuAKc6510/1GWqoJb69e/cC0KFDh4ArkUSyt66Ozy5fzrt79vBgnz7cUVjYKnOtRfo/I+VfYo1fmUyWrGutTxGRMB1taODa1at5dudObu3Zk4f79SPF58ZasvQaiEjTmrsygUjMOrYu4pVXXhlwJZJoMlJSmDloEN0yMvh5eTlVdXVMHziQ9JRTDettPcq/xBq/MpnsWVdDTeLWr371KyB5f3jFXylmPNS3L53T07lr40Z219byxyFDaJMaG/NtK/8Sa/zKZLJnPaxLn2aWQ2hsWoOZDQA+Rmgus1q/C2wuXfpMfIcOHQKgTZs2AVciie6pbdv42po1jGvfnleHDSMvPT3qn7F1715WHjzIGV27kh1GY1D5l1jjVyaTJesnuvQZbj/+B0CWt/zTLOA6QndrigSmTZs2Cf+DK7HhKz168IchQ5i/fz9nLl7MtiNHov4Zj1ZWct6aNeT94x+cv2QJD5eVseLgQU70x7TyL7HGr0wme9bDbaiZc+4Q8FngF865zwCD/StL5NRmzpzJzJkzgy5DksTEzp15ffhwNtXU8IlFi1jr/ZUfLXOeeQb+9Ce+2r07ZUeOcNv69QydN4/C2bO5fvVqntuxg6raf13EUP4l1viVyWTPeriXPhcBNwE/B25wzq0ws2XOuWF+F9hcuvSZ+HSXnARh/r59XLhsGSnAG8OHMzJKqxj0PP10dh49Su2iRQBsqanh7epq3ty9m3eqq6muq8OAMe3acV5uLn++5hrap6XxvvIvMULzqLVMi6bnMLMzgduAfzjnfmJmfQjNZ3ZL9EuNDjXUEl+t17uQ7sN4IZGTKT10iPOWLKG6ro5Xhg5lQm5ui4/Z8/TT2XX0KEe9hlpj9c4xf/9+3tq9mzd372bOvn3U19XRNjWV6wsKuKu4mK5xtKC8JCa/ficny+96zaMmIhJF5TU1nLd0KRsOH+a5wYO5vHPnFh2vx+mnU3mChtrx9tbV8W51NS9VVvL7HTvITEnh1oICvl1YSG6C/89MJFG16GYCM/urmb17/CP6ZYqEL9K1EUWiqSAri7+NHElJ27ZMXLGC6du3t9pnd0hLY++f/8xZH37IqrFjuaxTJx7YsoXec+bwo82bOVBX12q1iBzj1+/kZP9dH+6lz9GNXmYBE4E659wdfhXWUupRS3zJMm5BYtuBujomrljBW9XV/KRPH+4oKmrWcXqMHUtlbW1YPWrwn/lfeuAA39u4kVeqqkJzvxUV8bUePciKkXnfJPFpjFrLRP3Sp5m975w7s8WV+UQNNRFpLUcbGrhm1Sqe37WL2wsL+WmfPhGvD/q10lL+VFlJxSc+0aJa5uzdy3c3bmTWnj0UZGZyT3Ex13brFlOrKojIf2rppc+8Ro9OZnY+0C3qVYqIxKGMlBR+N3gwN/XowbSyMr66Zg31Ef4RHK3RwuM6dOCdkhLeHTGCwsxMJq9Zw6C5c5lZURFxTSISvHCXkFpA6PeIAXXARuAGv4oSCcdTTz0FwFe+8pWAKxGBVDMe69+f3LQ0frRlC/vq6nhm0CAywuzJWvKb34RmYA+zR+1U+f90bi7/6NiRP1dV8d2NG7l69Wp+uHkz3+vVi0ldupDq8yLzknz8+p2c7L/rddenxK1zzjkHgHfeeSfgSkT+3c+2bOGODRu4KC+PF4YMCWtJqB5jx1JZV8fRhQvD+oxI8t/gHH+qrOS+TZtYevAgA7Kz+V5xMZO6dCFNl0QlSvz6nZwsv+ubNUbNzD57soM6516MQm2+UENNRIL0623buHHNGj7VoQOvDBtG+7STX8DoMXYsVXV1HAmzodYcDc7xcmUl32/UYPtucTGfV4NNJHAnaqid6tLnJSf5ngNitqEmIhKkr/boQfvUVK5ZvZqzlyzh9WHD6HSSSWlb49pGihmf6dyZyzp14mWvh+2a1au5f/NmvqcGm0hM0qVPiVuPP/44ADfddFPAlYic2GuVlVyxYgV9s7N5e8QIemRmNrlf97Fj2R1Bj1o08t/gHK94PWxLDh6kn3dJ9AtqsEkz+PU7OVl+17d0Cal7mtrunPtBFGrzhRpqie/CCy8E4PXXXw+4EpGT+2t1NZcuX07n9HTeGTGCPtnZ/7FP4ac+xa7aWmpmzw7rmNHM/7EG232bN7P4wAH6ZWcztaiIq7p2DftmCBG/ficny+/6ljbUbmv0Mgu4GFjlnLs+eiVGlxpqIhJL5u7bx4VLl5KVksLbI0YwOCfn377/5dWreWP3bso//vGAKgTnHK9UVXHfpk0sOnCAwsxMvl1YyJe7dw/rhggRab4WzaPmnHuo0eNHwASgZ5RrFBFJWGPbt+f9khIagE8tWsT8ffv+7fuxMAjFzLisUycWjB7N68OGUZyVxS3r1tFrzhx+4k05IiKtq7l92m2APtEsRCRSjz76KI8++mjQZYiEbWjbtvx95EjapaVx1pIlvL9nz0ffW/z44+yPYD1DP/NvZlyQn8/fRo7k/ZISRrZty50bNlA8Zw73bNxI5dGjvnyuxDe/Mpnsv+vDXZlgmZkt9R4rgFIgec+axIRZs2Yxa9asoMsQiUjf7Gz+PnIkBZmZXLB0KX+pqgJg25w51EQwXKO18v+pjh15Y8QI5o0axVkdO3L/5s30mjOH29atY9uRI75/vsQPvzKZ7L/rwx2jVtzoZR2wwzkX033gGqMmIrFs19GjXLB0KUsPHmTmoEFMufhiquvqqPFxHrVoWHnwIA9s2cKzO3aQasb13btzR2EhvZu4QUJEwtesMWrH1vcE9jd6HAbae9tFRKQZOmdk8G5JCePbt+fzK1dSESeXEwfn5PC/gwax5vTTua5bN6Zv307/Dz/kmlWrWH7gQNDliSScU136XADM977uAtYAa73nC/wtTeTkpk2bxrRp04IuQ6TZOqSl8cbw4ZyfF/q790hDQ9jvDTr/fbKzeWLgQDaMG8etBQX8365dDJs/n4uXLuVve/aQqHN0yon5lcmgsx60k65M4JzrDWBmTwCvOOf+4r2+EDjH//JETmx2mPNNicSyNqmpvDx0KMWdOkX0vljJf8/MTB7q14+7iot5fOtW/nvrVj61eDHj2rfnjsJCLuvUiRQtAJ8U/MpkrGQ9KOGOUVvgnBt93Lb5TV1LjRUaoyYi0voO1dczo6KCaWVlbKypYUB2Nt8uLOTqbt3I1OS5IifUonnUgEoz+66Z9TKzYjO7G6iKbokiIhLv2qSmclPPnqwZO5bnBg8mJzWVr6xZ89FcbHs1F5tIRMJtqH0e6Ay8BPwJ6OJtEwnMgw8+yIMPPhh0GSJRMXXqVKZOnRr2/rGe/7SUFK7s0oUFo0fz9vDhDMvJ4c4NGyicPZs71q9nq6b2SDh+ZTLWs+63k45RO8Y5txu41czaAw3OOd3aI4FbvHhx0CWIRE2k43DiJf9mxjl5eZyTl8fC/fv5WVkZD5WV8Uh5OVd37crthYUMOm45LYlPfmUyXrLul3DHqA0DngGOTclRCXzJObfcx9paRGPURCSeTJgwAYD33nsv0Dpaw4bDh3m4rIzpFRUcbmjg0vx87igq4hMdOgRdmkhgWjpG7dfAt5xzxc65YuA24MkWFNPRzF4ws9VmtsrMxntztr1tZmu9r7mN9p9qZuvMrNTMzm/u54qISPD6ZGfz2IABbB43jnuKi/n73r2csWgR4xcu5IWdO6nX1B4iHwm3oZbjnPvrsRfOufeAlvRVPwq84Zz7GDACWAXcCcxyzvUHZnmvMbPBwCRgCHAB8LiZpbbgsyVB3H///dx///1BlyESiETIf+eMDO7r3Zst48fzi3792Hn0KJ9buZIBH37IL8rLOaAbD+KKX5lMhKy3RFhj1IANZvY94H+911cBG5vzgd44t08B1wI4544CR83sMmCCt9vTwHvAd4DLgOecc0eAjWa2DhgLJPfEKkJpaWnQJYhETUFBQUT7J1L+c1JT+XpBATf27MnLlZVMKyvjlnXruHfTJr7Wowff6NmT7pmZQZcpp+BXJhMp680R7hi1XOA+4AzAgA+A7zvnqiP+QLMSQpdNVxLqTVsA3Apsdc51bLRftXMu18weA+Y452Z6238DvO6ce6GJY08GJgMUFRWN3rx5c6TliYhIDJi9dy8PlZXxYmUlaWZ8sWtXvlVQwLC2bYMuTcQXJxqjFu5dn9XALVGqJQ0YBXzDOfehmT2Kd5nzBJqa0rrJ1qVz7km8sXNjxozRIAcRkTg1vkMHXujQgfWHD/NIeTnTt29nRkUF5+XmcnthIefk5mJa8UCSwEkbamb2ysm+75y7tBmfWQ6UO+c+9F6/QKihtsPMujvntptZd2Bno/0LG72/ANjWjM+VBHPPPfcA8IMf/CDgSkRabsqUKQA88sgjYe2fLPnvm53NL/r3575evXhi2zZ+sXUr5y1dyvCcHL5VWMjnu3QhQysexAS/MpksWT+RU/WojQfKgGeBD2m6dysizrkKMyszs4HOuVLgbEKXQVcCXwIe9L6+7L3lFeD3ZvYw0APoD8xtaR0S/8rKyoIuQSRqIp0rKtnyn5eezl3FxdxWWMizO3bwUHk5165ezV0bNvCNnj35ao8e5KanB11mUvMrk8mW9eOddIyad3fluYRWIRgO/Bl41jm3okUfGhqn9j9ABrABuI7QHah/AIqALcDnvIl28Zasuh6oA6Y4514/1WdoHjURiSfJNI9aNDjneKu6mofKyni7upqclBRu6N6dKQUF9M7ODro8kYidaIxaWDcTeAfIJNRg+xnwA+fcL6JbYnSpoSYi8UQNteZbcuAAD5eV8fudO2lwjomdO3NbYSGnt28fdGkiYWv2hLdmlmlmnwVmAjcD/w28GP0SRSIT6dqIIolE+f+XEW3b8vSgQWwaN45vFxbydnU14xYu5IyFC3lp1y5NoNtK/Mpksmf9VDcTPA0MBV4H7ovlJaMk+VRVVQVdgkjUDBgwIKL9lf//1DMzkwf79uW7xcVMr6jg5+XlfHbFCvplZ/PNggKu7daNNqmaL90vfmUy2bN+qjFqDcBB72XjHQ1wzrmY7VfWpU8RkeRW19DAS5WVPFRWxof795OXlsaNPXrw9Z496aYJdCXGtHiMWrxRQ01ERCB048E/9+3jobIy/lRZSboZV3XtyrcKCxmS05LVEEWip0UT3orEottvvx2AadOmBVyJSMtNnjwZgCeffDKs/ZX/8JkZn+jQgU906MDaQ4d4pLyc31ZUML2iggvy8ritoICzNYFui/mVyWTPuhpqErcOHz4cdAkiUbNmzZqI9lf+m6d/mzb8csAAftC7d2gC3fJyzl26lBHeBLqTNIFus/mVyWTPui59iojEAE3PEYwjDQ38bscOHi4rY8WhQ/TIyNAEuhKIZk/PISIikqgyU1K4vnt3lp12Gq8PG8bgnBymbtxI4ezZ3Lp2LRuTvDdHgqeGmsStKVOmfLQ+okiyUf6jy8y4ID+ft0eMYPGYMUzs3JnHt22j34cf8rkVK5izd2/QJcY8vzKZ7FlXQ01EJAaUlJRQUlISdBnCf06g+051NeMXLeITmkBXAqAxaiIiIidxoK6O6RUVPFJezsaaGvpmZfHNwkKu7daNHE2gK1GiMWoiIiLN0DYtjVsKClgzdix/HDyYTunpfH3tWopmz+buDRvYfuRI0CVKAlNDTeLWzTffzM033xx0GSJRcdVVV3HVVVeFvb/y3/rSUlK4oksXZo8axd9HjuTMjh15YMsWes2Zw3WrV7P8wIGgSwyUX5lM9qxrHjWJW9nZ2UGXIBI15eXlEe2v/Aen8QS667wJdKdXVDCjooLzc3O5rbCQc5JwAl2/MpnsWdcYNRGRGKB51OJbVW3tRxPo7qitZbg3ge7nNYGuhElj1ERERHySn57O3cXFbB4/nukDB1LvHNeuXk2vOXN4YPNmqmtrgy5R4pQaahK3Jk+e/NH6iCLJRvmPTZkpKVznTaD7xvDhDMnJ4S5vAt1b1q5lQwJPoOtXJpM96xqjJnErPz8/6BJEomb8+PER7a/8xzYz4/y8PM7Py2PJgQM8XFbGE9u28cutW/lMp07cVljI+A4dgi4zqvzKZLJnXWPUREREWsHWI0d4bOtWnti2jT11dYxv357bCgu5vFMnUpPsxgP5TxqjJiIiEqCemZk80KcPZePG8Wi/flQcPcoVK1Yw4MMPeay8nIP19UGXKDFIDTWJW9dddx3XXXdd0GWIRMXEiROZOHFi2Psr//Hr2AS6a08/nT8OHkyXjAy+sW4dhd4EujuOHg26xGbxK5PJnnWNUZO4VVhYGHQJIlFTVVUV0f7Kf/xLNeOKLl24oksX/rl3L9PKynhgyxYeKivj2m7duL2wkH5t2gRdZtj8ymSyZ11j1EREYoDmUROA0kOHeKisjKcrKqh1jomdO/OdwkLGtG8fdGniM41RExERiXED27ThyYED2TRuHHcUFvLW7t2ctnAhZy9ezFu7d5OonStyYmqoSdyKdG1EkUSi/Ce2aiPxMAAAIABJREFU7pmZPNi3L2Xjx/PTPn1YdegQ5y9dyqgFC3h2xw7qGhqCLvE/+JXJZM+6xqhJ3Bo4cGDQJYhEzdlnnx3R/sp/cmiflsa3i4q4paCA3+3YwU+3bOELq1Zx18aN3FZQwPXdu9MmNTXoMgH/MpnsWdcYNRERkTjR4ByvVlXxky1bmL1vH/lpaXyjoICv9+xJfnp60OVJC2iMmoiISJxLMeOyTp34x8iRfFBSwvgOHfj+pk0UzZ7NrWvXsrmmJugSJcrUUJO4NWnSJCZNmhR0GSJRceGFF3LhhReGvb/yn9zMjE927Mirw4axbMwYPte5M49v20bfOXO4auVKlh440Oo1+ZXJZM+6xqhJ3CopKQm6BJGoORzhYt3KvxwztG1bZgwaxP29e/Pz8nKe3LaN3+3cyQV5eXynsJAzO3bEWmGJKr8ymexZ1xg1EZEYoHnUJFqqa2t5fNs2Hi0vZ1dtLePat2dqUREX5+eTojVFY1bMjVEzs1QzW2Rmr3mv88zsbTNb633NbbTvVDNbZ2alZnZ+UDWLiIjEutz0dO4uLmbzuHE83r8/FUePctny5YyYP5/fx+jUHnJiQY5RuxVY1ej1ncAs51x/YJb3GjMbDEwChgAXAI+bWWzciyyBinRtRJFEovzLqWSnpnJjz56sHTuW//3Yx2hwji+uWsXAuXN5cts2jkS5weZXJpM964GMUTOzAuD/AT8CvuVtvgyY4D1/GngP+I63/Tnn3BFgo5mtA8YCs1uxZIlB48ePD7oEkai5+OKLI9pf+ZdwpaWkcFW3bnyha1deqazkx1u28NU1a/j+pk3cVljIV7t3p21ay5sDfmUy2bMeyBg1M3sBeABoB9zunLvYzPY45zo22qfaOZdrZo8Bc5xzM73tvwFed8690MRxJwOTAYqKikZv3ry5Nf45IiIiccM5x7t79vDjzZt5d88e8tLSuKWggG/07Eme5mILTMyMUTOzi4GdzrkF4b6liW1Nti6dc08658Y458Z07ty52TWKiIgkKjPj7NxcZpWUMHvkSM5oNBfbt9evZ/uRI0GXKI0EMUbtE8ClZrYJeA44y8xmAjvMrDuA93Wnt385UNjo/QXAttYrV2LVpZdeyqWXXhp0GSJRMWHChI/u/AyH8i/RMK5DB1725mK7vFMnHi4ro9ecOdy4Zg0bIpwyxq9MJnvWW32MmnNuKjAVwMwmELr0edX/b+/e4+Oq6/yPvz5zSyaXpkkTer/TlpZysUChBYHVuiKIIKLosgrLAq4/VhbRx4rAruK6KOvdVVBcWRR0wceCiyh3RW5FEGihhZK2tKUNbZPm0msmyUzm+/tjTq5N2sllcubyfj4e88iZM2fOfPJ9fJJ88j3f7/eY2TeBS4BveF8f8N7yW+BXZvYdYAowD3hxrOOW7DPUeyOK5BPlv4ymxWVl3L1oETfNns03t27ljh07+On27Xz8iCO4bsYMFpeVHfYcmcrJQs91X9dR61WofdDMJgC/BmYAW4GPOueaveNuAC4DEsA1zrmHD3duraMmIrlE66hJNtne3s536+q47Z13OJBMct6ECXxp5kxOHjfO79Dy1mBj1LTgrYhIFlChJtmoKR7nh++8w/fr6mhJJHjP+PHcOHMmZ47R3Q4KSdZMJhAZLUO9N6JIPlH+y1iYEA7z5VmzePuUU/jW3Lmsa23lPa++ymmrVvFwUxO9O3sylZOFnuu616fkrHPPPdfvEERGzcc+9rEhHa/8l7FUHgrx+enTuWrKFO7YuZNbtm7l7DVrWFJWxg0zZ3J+dXXGcrLQc12XPkVERGRIOpJJfllfz81bt7IxFmNRSQk3zJzJx2pqCAV0sW44dOlTRCSLtba20tra6ncYImmJBAL83eTJrDvpJH61cCEGXLxuHVesX+93aHlHlz4lZ61YsQKAJ554wudIREbu7LPPBtKfTKD8l2wQCgT4xMSJXHTEEVSeckpqXa0XXhjVzyj0XFehJjnroosu8jsEEd8o/yWbBMyY9P73k4nhVIWe6yrUJGddccUVfocg4hvlv2SbaRdcQHsyOernLfRc1xg1ERERGbGgGaNfpol61CRnaYFQKWTKf8k2L11+OYlkEl5+eVTPW+i5rkJNctall17qdwgio2ao+az8l2wz/UMfYk8iMernLfRc1zpqIiIiMmLnrVnD1vZ2Vp140FJgkgatoyZ5Jx6PE4/H/Q5DZFQ0NjbS2NiY9vHKf8k6iQSJDORkoee6Ln1Kznrf+94HFO64BckvF154IZB+Piv/JdusvPJKWjMwRq3Qc12FmuSsyy+/3O8QRHyj/JdsM/cjH2Fre/uon7fQc11j1EREssDpp5xOvDHO/TfcT7gqTGhCiHBVmPCEMKGqEIGwRqpIdvvUunX8T0MDH6iq4pwJEzi7qorpxcV+h5UzBhujph41yVld90UsKSnxORKRkWuva6f9nXZqL6sd8PVgebC7aAtPCJOoSBCqDFExrYLo/CglC0oomV9CsDQ4xpGLpFxbU0NJPM5jBw7wYFMTAMeUlnJ2VRX/OHUq04ZZtBX673oVapKzhnpvRJGs5gCDkzedTKIpQbw5TrwpPuj2Fc9egYs7vpv4bp/TFE0rIrrAK9y8R3RBlOIZxVjA/PnepCBc442zfOvJJ3mztZWHmpv5fVMT366r4+76eh497jiOLi0d8nkL/Xe9CjXJWZ/5zGf8DkFk1Hzi6E+wd99eorOiMOvwx3/x3i8C8O4PvZvYxhitta20vtlKrDa1XX93PZ17O7uPDxQHiM6LUnJUT/HWVciFxulPgYxc1+9kM2NhaSkLS0v5/PTpvLZ/P2e99hrvXrWKh445hlMqKoZ13kKlMWoiIllg/VXr2fXrXZy669RROZ9zjo76ju7CresRq40R2xyDnhqOyKTIwL1ws4oJhDQ2TkZucyzG+159lR0dHdx39NGcNWGC3yFlHY1Rk7yzZ88eACqG+N+ZSDbasW8HTZ1NaR9/uPw3M4omFVE0qYjxZ4zv81qyI0nsrVh34dZVxO26bxeJpp6V5S1sFM8ppmR+CdF50VSP3LzUdtG0Il1KlT4OlZOzo1GeW7KEs157jXPXruUXRx3FJyZOHPF5C4F61CRnFfr93yS/nDz1ZDoaOlgVX5XW8ZnK/47GXr1w61uJbYgRWx8jtjFGsq3nltuB4gDRI6PdBVx3ETc/SmRSBDMVcYUmnZzck0hw3po1PL1nD98/8kg+O23aqJw3H6hHTfLO1Vdf7XcIIqNrCLVNpvI/Uh0hUh2h4tS+vRcu6Wh/pz1VuG2I0bqhldj6GK3rWmn6XRMu3vNPf7AseHAR5/XKhavDKuLyVDo5WREK8cixx/KJdeu4euNGtra3c8ucOQQOkROF/rtePWoiIlng5Kkn07Grg1Ud6fWoZRPX6Wjb2pYq4Lp64boe/cbDBSuC3ZdPexdw0XlRwpVh/74JGVOJZJJrNm7kR9u385Hqau5auJBosLCXllGPmuSdrvsiVldX+xyJyNjLpvy3oBGdHSU6O0rVX1f1eS0ZT9K2pS3V+7ahp4jb+/xeGu5pSC1L4glNCPUUcfOjfQq6ULn+XGW7oeRkKBDgP+fNY240yuffeou61at54JhjmBiJjOi8+Ug9apKzCmXcghSGofao5UP+d7Z10rapredSaq+euPa6vrciCk8MDzipIXpklGBJYffEZIvh5uRvdu3i4nXrmBiJ8NAxx7Cw31pr+ZDr6VCPmuSdz3/+836HIDJq/u64v2PPc3vSPj4f8j9YHKR0USmliw5eBLWztZPYxthBRVzT75uI18f7HFs0rejgSQ3zokTnRgkUaXmRsTLcnPxwTQ1/Kiri3DVrWPbKK9y3eDHvrawc8XnzhXrURESywPrPrGfX/bs4tX501lHLZ4m9ib5F3Pqe7d7LixCA4hnFA85MLZ5VrPunZpktsRjnrFlDbWsr3z3ySP5x6tSCmniiHjXJOzt37gRg0qRJPkciMnKbdm+iJdHCqaRXqBVy/ofGhShfUk75kvKDXou3xHtmpvaa2FD/y3o69/Se1UBqXN0AkxqKZxRjwcIpEEbLSHNyVjTK80uW8LfejNBX9+/nR/Pn09LQMKLz5jr1qEnOKpRxC1IYTp5yMh2NhTVGbSw554g3xgecmdq6oZXkgZ414ixiROdEB5zUUDRVC/0OZrRyMukcX96yha+9/TbLxo2Da64hEgjkfa6rR03yznXXXed3CCK+Uf4PjZkRqYkQqYlQsbzfGnHO0bGz46CZqbENMVoeb+m70G80QHRuqoDrMx5unhb6Ha2cDJjxb7Nnc2xpKZe++SbR88/ntvnzR+XcuUiFmuSss846y+8QRHyj/B89ZkbR5CKKJh98uy2XdLTXtR80qeHA6wdoenCQhX4HKOIKYaHf0c7Jjx5xBEEzPpJMUnPccaN67lwy5oWamU0HfgFMApLA7c6575tZFXAvMAvYAnzMOdfivedLwN+TWjbxaufco2Mdt2Sfbdu2ATB9+nSfIxEZe8r/sWEBo3hGMcUziql8b2Wf15KJJO1b+xVx62Pse3kfu+7b1Weh39D40MAzU/Nood9M5OTkSAQaGlLnrqw8/Bvy0JiPUTOzycBk59wrZlYOvAycD1wKNDvnvmFm1wGVzrkvmtki4H+ApcAU4AlgvnOuc+BPSNEYtfynMTqST5ZOWUq8Ma4xanki2eEt9DvAzNT2re19FvoNV4d7xsMtKKHkqBJKFpTk3PIimcjJVfv2seTd7+bo0lLWPvfcqJ03G2XNGDXn3A5gh7e9z8zWAVOB84AzvcN+DvwJ+KK3/x7nXDuw2cw2kiranh/byCXb3HjjjX6HIDJqPrPkM0NaR035n90CkQAl80somV/CBCb0ea3PQr+9Jja0PNZC/c/re50EimcXdxdu3Y+jSggfkX2XUjORk8WBAHzyk1RXVPDC3r2cVF5+yPuC5iNfZ32a2SzgaWAxsNU5N77Xay3OuUoz+yHwZ+fc3d7+nwEPO+f+d4DzXQlcCTBjxowT3n777cx/EyIio6D2H2pp/L9GTt2pddQKWWJvIlW81cZofbOV1trUI7Y+1mdSQ7Ai2KdwK1lQQnSBd6eG4vy5U0NbZycfe+MNHm5uJuEcUyMRzq+u5oKaGk6vqCAUyJ0ex8PJmh61LmZWBtwHXOOc23uI/wwGemHA6tI5dztwO6QufY5GnJK9Nm3aBMCcOXN8jkRk5NY1rmN3fHfa66gp//NTaFyIcSeOY9yJ4/rsd0nvxve1se7irbW2lZY/tlB/V79euFnF3UVcdEG0u5DL9KzUTORkcTDI90pL+WokwtqKCu5vbOSOnTv50fbtTAiF+FB1NRdUV7OispLiPL2puy89amYWBn4HPOqc+463rxY40zm3wxvH9ifn3AJvIgHOua97xz0KfMU5d8hLnxqjlv80RkfyicaoyXAl9idSS4vUtnb3wsVqU5dVk629euHGBVOXY4/yCriuYm5elGB05EVOpnKy/3lbOzt5tLmZ+xsbebCxkT2dnZQFg5xTVcWHa2o4u6qK8lDuLWoxWI+aH5MJjNQYtGbn3DW99n8TaOo1maDKOffPZnY08Ct6JhP8AZinyQTy1FNPAXDGGWf4HInIyC2dspREY4JXOl5J63jlvxxO19Ii3ZdPa3uKufZtvW56H4DonCglR5dQenRp9yO6YGiXUTOVk4c6b0cyyZO7d3P/rl38X2MjDfE4ETPeU1nJeRMmcPHEiTlTtGVToXYa8AywhtTyHADXAy8AvwZmAFuBjzrnmr333ABcBiRIXSp9+HCfk+lC7fWPv07Tg02pFaoDdH/F6LtvgOe9jw9EAljYsLARCAewyCDbYcMivbbDRiASIFAcIBD1Ht52MBo8/P7igFbXFskiQy3UREai80BnajZqbYwD6w7Q+norB14/QGxDDJfw6oIARI+MUnp0KSWLUkVc+YnllMwr8Tf4QXQ6x/N79vCbxkYeaGzkrbY2vjh9Ot+YO9fv0NKSNWPUnHPPMvC4M4D3DvKefwf+PWNBDUPVWVUUTStKjZZLpv5z6f7qDn4+4DGdDhd3JDuSuHhq23U4Og904jq81+LJ7v3d213v6XCDjNZLj0WMYGmQYNkgj/L0XguNCxGqCBEsD45p8VdbWwvAggULxuwzRbKF8l9GIlgapPz4csqP73u/1GRHktb1rd2F24E3UkVc428bu9eFG//e8Uz/wnSq3l/VZ8xbpnIy3fMGzTht/HhOGz+eb82dy4TnnuNAMnnI9+SC3OgPzEKTL53sdwg453AJRzKWJBlL0hnrJNmW7H6ejCVJtnn7ez3vc+yBJJ37O/s82re1k9iX6H7e+x54h2SpMRCh8anCbaCvwYpBXh8fIlQVIhBKfwbPpz/9aUBjdKQwKf8lEwKRAGWLyyhbXNZnf7I9VcA1P9RM3Q/qWPOBNZQuLmXatdOY+DcTCRQFMpaTwzmvmREg9Xcy16lQy2FmPZdGGXf444fLJR2drb2KuX19txN7E3Tu6SSxO0Fij/fwttu2ttG5xnttb6LnYvcgguOChKvChKpChCd4X6vCfba7XvuXT/8L4Zr8WNFb5HMnfY69z+5N+/ibb745g9GI9BUoClB2TBllx5Qx7XPTaLingW3f3kbtZbVsvn4zUz87la9e91VC40a/rBhurgfMDvcnJyeoUJPDsoARKgsRKhtZujjn6Nzfq6Db3VPgxVviJJoTxJt7fW1K0PZ2W/fz/j9xQYIEJgRI7kwOqSdOJBstmbSEpqKmtI9fvnx5BqMRGVwgEmDSpyYx8ZMTaflDC9u+tY3NN2wmUBJg5rdnwiin5nBzPQAkB+lRc87RmkzSHI/TnEjQ0vU1kaA5HqclkSBkxr/OnOn7Wm0q1GTMmBmh8hCh8hAM8VZwLulI7E30KeKe+c9naP59M8valymTJee9svMV9nbsZXmaf+XWrl0LwOLFizMZlsigzIyqFVVUrahi/5r9PHD2AzTc0cCF/3DhqH7OcHO9E/jJjh3dBVlLItGnKIuncVn0ozU1HFNWdtjjMsnXOxNkkpbnyH/L5i4jtinGS/teGnFvn4jflk5ZSqIpwSvt6c361Dpqkm1OrDwRkvDSntH92zvcXD/ntdf4Q0sLk4uKqAyFqAqFqAyHqQqFqAqHD9pX6e2vCoV4vKWFC15/nVUnnMDx5eWH/7BRkDWzPkVGy/UfvJ53fvDOiGa+iuSqb37zm36HINLH5476HJ17D7nE6bAMN9d/f+yxw/7MoDebNRvGuKlQk5x1/IzjKadchZoUpJNOOsnvEET6OLb6WNrb2w9/4BD5ketdo9IGG+M2ljQCW3LW69tfZyMbVahJQVq9ejWrV6/2OwyRbrUHaqndWzvq5/Uj17t61Ea/f3Do1KMmOeumB24iRoxL3CV+hyIy5q65JnUHPo1Rk2xxy9pbSOxOsOJXKyieWUzxrGIikyMjXgjdj1wPdF36zIIeNRVqkrO+/OEvU/etOvWoSV64ftn17H5md9rHf+9738tgNCJDd9NHb2L7rdtZd/G67n0WNopmFFGxvILJV0ym4rSKPnczSIcfud51ubFThZrI8C2etphiilWoSV5YWLWQpnD666gdf/zxGYxGZOjO/tHZdP5HJ21vt/U8trTRtqmNxgcaqb+rnpKjSph85WQmfWoS4QnpLVjuR65rMoHIKFi9dTV11HGqO9XvUERGbOU7K9nbnv46an/5y18ATSqQ7NE7J0sXlfZ5rfNAJw2/bmDH7Tt469q32HTdJmourGHKlVOoOP3QvWx+5Ho2TSbQOmqSs5bNW0ZsY4wXd71IpDridzgiI7J08lISzVpHTXJXujm5/7X97PjpDnbetZPOPZ1E50dTdzr424kUzywe9nlH09O7d3PG6tU8cdxxvLeyckw+U+uoSd75t4/+G9u+vk2XPqUg/fCHP/Q7BJE+0s3JsmPLmPef85hzyxwaft3Azjt3svnGzWy+cTMVZ1Qw6VOTqLmwpvu+oX7kelCTCURGbuHUhYQIqVCTgqRbR0m2GWpOBkuCTL50MpMvnUxsS4z6u+up/0U9tX9fy4arNlD94WomfnIii963aMzv59x96XNMP3VgWkdNctZLm19iLWtVqElBWrlyJStXrvQ7DJFuI8nJ6Kwos26cxdLapSz58xImXTaJ5kebWXP2Gn468ac8+ZsnRznaQ+tanuPrb789pp87EI1Rk5y1bP4yYhtivLDjBYomFfkdjsiIaIya5LrRzslkR5LtP97OB//pg5QdW8azrz47KudNx95Egopnn6UmHKbh1LGZsKYxapJ3bvmbW9hy0xb1qEleuOnUm4a0jtpPfvKTDEYjMnSjnZOBSIDx7xnPtVxL8Z5iXjvnNSITI0QmRghPDKe2J0W694WqQkNeo20w40Ih/t+UKdzb0DAq5xsJFWqSs46cfCRJkirUJC/MHj+blkhL2scvWLAgg9GIDF0mcrLkqBKWX7Oc1vWtdOzsYP+r+4nXx3GJg3/xW8h6CjiviJv2T9MoO65sWJ8dNiOeBVcdVahJznp+w/NsYxvL3DK/QxEZsSe3Psn+2H6WkV4+P/XUUwCcccYZmQxLJG2ZyMlAKMA757/T57zOORItCTp2dtBRn3rE6+N9nnfUd9D8aDPBsiDzfjAv9b6kI9mWTD1iqa+dsc6e57G+r83Y10bHMf5PJ9AYNclZyxek/sv687Y/Uzzt4LV3RHKJxqhJrstUTg73vM8d8RzxXXGCFUGSsSSuY+j1zmV3wqZLzhzy+4ZDY9Qk73z70m+z+frNfoch4os77rjD7xBE+shUTg73vLNvns2+l/YRKA4QjAYJFAcIRAMDfu3/+p6Ve1h/xXrCbVD17LPULl1KTcSfhdVVqEnOmnXELNpp1xg1KUhz5szxOwSRPjKVk8M975TLp8Dlw/vM9rp2AC6urKFxYoTigH+rmalQk5z19LqnqaOOU9wpfociMuaeeOIJAFasWOFzJCIpmcpJP3I9UJQqzD57xBQq543NLaQGo0JNctb3f/d9WmnlKneV36GIjI4hrCzwta99DVChJtkjUznpR65bJPXDuPOOnVSeqUJNZFh+cMUP2PSFTeTrhBgpLLecfgt7ntmT9vF33XVXBqMRGbpM5aQfuR6dGwWg6aGmMf/s/lSoSc6aVj2N/ezXGDXJC5PLJlMcSn/28vTp0zMYjcjQZSon/cj1yBERpl49lZ0/3znmn92f7vUpOeuPa/7Ii7yoQk3ywkNvPcQTrU+kffwjjzzCI488ksGIRIYmUznpV64HogGSsSTtO9txnf79odE6apKzli9cTuubrTy/8fnubmqRXLV08lISLQleadM6apKbsm0dtZF6++a32XxDagmo5fXLiRyR2eU5tI6a5J0fX/VjNn52o8aoSUG65557/A5BpI9M5aRfuT7l01MI14RxnY5gedCXGECFmuSwiZUTaaZZlz6lIE2aNMnvEET6yFRO+pXr4QlhplwxxZfP7i1nxqiZ2VlmVmtmG83sOr/jEf89tuoxVrJShZoUpAcffJAHH3zQ7zBEumUqJws913NijJqZBYH1wPuAOuAvwCecc28M9h6NUct/yxctp3VdKyvfXEnJghK/wxEZEY1Rk1yXb2PUxtpgY9RypVBbBnzFOfd+7/mXAJxzXx/sPSrU8t8bt7/Bhk9vYMpxUwhG/Rs/IDIadqzfQSAa4AN1H0jr+MbGRgCqq6szGZZI2jKVk4WS67k+mWAqsK3X8zrg5P4HmdmVwJUAM2bMGJvIxDdz3j+Hzg91kmxL+h2KyIhNO3Ea488cn/bx+f5HS3JPpnKy0HM9Vwq1gW6sclBXoHPuduB2SPWoZToo8ddDLz8El8AFF1zgdygiI3bnnXcCcCmXpnX8/fffDyj/JXtkKicLPdd16VNyVqGMW5DCMNR8Vv5LttEYtZHJ9UuffwHmmdls4B3g48Df+BuS+O2BBx7wOwQR3yj/JdtkKicLPddzolBzziXM7B+BR4EgcIdz7nWfwxKfVVRU+B2CiG+U/5JtMpWThZ7rOVGoATjnHgIe8jsOyR733nsvABdddJHPkYiMPeW/ZJtM5WSh53rOFGoi/d12221A4f7wSmFT/ku2yVROFnqu58RkguHQZIL819raCkBJiRa7ldw31HxW/ku2yVROFkqu5/pkApGD5PsPrRSWoeaz8l+yTaZystBzPWfu9SnS3913383dd9/tdxgio+LWW2/l1ltvTft45b9km0zlZKHnui59Ss4qlLV1pDBoHTXJdVpHbWR06VPyzuOPP+53CCK+Uf5LtslUThZ6rqtQk5wVDof9DkHEN8p/yTaZyslCz3WNUZOcdeedd3bfH1Gk0Cj/JdtkKicLPddVqEnOKvQfXilsyn/JNirUMiNvJxOY2S7g7Qx/TDXQmOHPyGdqv+FT242M2m9k1H7Dp7YbmXxuv5nOuZr+O/O2UBsLZvbSQDM0JD1qv+FT242M2m9k1H7Dp7YbmUJsP136FBEREclSKtREREREspQKtZG53e8Acpzab/jUdiOj9hsZtd/wqe1GpuDaT2PURERERLKUetREREREspQKtWEys7PMrNbMNprZdX7Hkw3M7A4zazCztb32VZnZ42a2wfta2eu1L3ntV2tm7++1/wQzW+O99gMzs7H+XsaamU03syfNbJ2ZvW5m/+TtV/ulwcyKzexFM3vVa7+bvP1qvzSZWdDMVpnZ77znars0mdkW7/tebWYvefvUfmkys/Fm9r9m9qb3O3CZ2q8X55weQ3wAQeAtYA4QAV4FFvkdl98P4HRgCbC2177/AK7ztq8DbvG2F3ntVgTM9toz6L32IrAMMOBh4AN+f29j0HaTgSXedjmw3msjtV967WdAmbcdBl4ATlH7DakNrwV+BfzOe662S7/ttgDV/fap/dJvv58Dl3vbEWC82q/noR614VkKbHTObXKkENjIAAAF90lEQVTOdQD3AOf5HJPvnHNPA839dp9H6ocQ7+v5vfbf45xrd85tBjYCS81sMjDOOfe8S/3k/aLXe/KWc26Hc+4Vb3sfsA6YitovLS5lv/c07D0car+0mNk04Bzgv3rtVtuNjNovDWY2jtQ/+T8DcM51OOd2o/brpkJteKYC23o9r/P2ycEmOud2QKoYAY7w9g/WhlO97f77C4aZzQLeRapXSO2XJu/S3WqgAXjcOaf2S9/3gH8Gkr32qe3S54DHzOxlM7vS26f2S88cYBfw396l9/8ys1LUft1UqA3PQNe9NX12aAZrw4JuWzMrA+4DrnHO7T3UoQPsK+j2c851OueOB6aR+g978SEOV/t5zOyDQINz7uV03zLAvoJsu15Odc4tAT4AXGVmpx/iWLVfXyFSQ2Zuc869CzhA6lLnYAqu/VSoDU8dML3X82nAdp9iyXb1Xpc03tcGb/9gbVjnbfffn/fMLEyqSPulc+5+b7fab4i8yyZ/As5C7ZeOU4EPmdkWUsM43mNmd6O2S5tzbrv3tQH4DanhMWq/9NQBdV4POMD/kirc1H4eFWrD8xdgnpnNNrMI8HHgtz7HlK1+C1zibV8CPNBr/8fNrMjMZgPzgBe9Lu59ZnaKN2PnU73ek7e87/VnwDrn3Hd6vaT2S4OZ1ZjZeG87CqwA3kTtd1jOuS8556Y552aR+l32R+fc36K2S4uZlZpZedc28NfAWtR+aXHO7QS2mdkCb9d7gTdQ+/XwezZDrj6As0nNzHsLuMHveLLhAfwPsAOIk/rv5u+BCcAfgA3e16pex9/gtV8tvWbnACeS+kX3FvBDvIWZ8/kBnEaqm/41YLX3OFvtl3b7HQus8tpvLfCv3n6139Da8Ux6Zn2q7dJrszmkZiG+Crze9fdA7TekNjweeMn7+f0/oFLt1/PQnQlEREREspQufYqIiIhkKRVqIiIiIllKhZqIiIhIllKhJiIiIpKlVKiJiIiIZCkVaiIiIiJZSoWaiOQsM+s0s9VmttbMHuxa9HYI7/+KmX3B2/6qma0YhZiiZvaUd+/RM83sdyM41z1mNm+kMYlI7lKhJiK5LOacO945txhoBq4a7omcc//qnHtiFGK6DLjfOdc5Cue6jdTN0kWkQKlQE5F88TwwFVI3tzezP5jZK2a2xszO6zrIzG4ws1ozewJY0Gv/nWZ2obe9xcyqve0TzexP3vYZXg/eajNb1XXroH4uZoBb15jZSd575ng9eT83s8e8z7rAzP7Di/UR776vAM8AK8wsNCotJCI5R4WaiOQ8MwuSukdg1z1324APO+eWAH8FfNtSTiB1P8t3ARcAJw3xo74AXOWcOx54NxDrF0cEmOOc29Jv/3Lgx8B5zrlN3u65wDnAecDdwJPOuWO8c54D4JxLAhuB44YYp4jkCRVqIpLLoma2GmgCqoDHvf0G3GxmrwFPkOppm0iquPqNc67VObeXnsIuXc8B3zGzq4HxzrlEv9ergd399i0EbgfOdc5t7bX/YedcHFgDBIFHvP1rgFm9jmsApgwxThHJEyrURCSXxbzerZlAhJ4xahcDNcAJ3uv1QLH3Wjo3OE7Q8/ux6304574BXA5EgT+b2VH94+l9vGcHqR6+d/Xb3+6dMwnEXc+Nl5NA70udxfTruRORwqFCTURynnNuD3A18AVvfFcF0OCci5vZX5Eq5ACeBj7szcwsB84d5JRbgBO87Y907TSzuc65Nc65W4CXgD6FmnOuBQiaWe9ibTepS5k3m9mZw/j25gOvD+N9IpIHVKiJSF5wzq0CXiU1Bu2XwIlm9hKp3rU3vWNeAe4FVgP3kRqsP5CbgO+b2TNA79mb13hLgbxKqpfr4QHe+xhwWr/Y6kkVhT8ys5PT/Z7MbCKpXsMd6b5HRPKL9fS2i4jISJnZu4BrnXOfHIVzfQ7Y65z72cgjE5FcpB41EZFR5PXsPenNRB2p3cDPR+E8IpKj1KMmIiIikqXUoyYiIiKSpVSoiYiIiGQpFWoiIiIiWUqFmoiIiEiWUqEmIiIikqX+P08kCITL4E4PAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# What does it look like?\n", - "fig, ax = plt.subplots(figsize=(10,6))\n", - "\n", - "rs = np.arange(0, 6371, 0.5)\n", - "ax.plot(rs, prem.bulk_modulus(rs), 'c', label='$\\kappa$')\n", - "ax.plot(rs, prem.shear_modulus(rs), 'm', label='$\\mu$')\n", - "\n", - "ax.set_xlabel('Radius (km)')\n", - "ax.set_ylabel('Modulus (GPa)')\n", - "ax.legend()\n", - "\n", - "ax.axvline(1221.5, ls=':', c='k')\n", - "ax.axvline(3480, ls='--', c='k')\n", - "ax.axvline(3630, ls=':', c='k')\n", - "ax.axvline(5701, ls=':', c='k')\n", - "ax.axvline(5971, ls=':', c='k')\n", - "\n", - "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", - "secax.set_xlabel('Depth (km)')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/earth_model/__init__.py b/earth_model/__init__.py deleted file mode 100644 index 7c13b17..0000000 --- a/earth_model/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""PREM-like Earth models""" diff --git a/earth_model/earth_model.py b/earth_model/earth_model.py deleted file mode 100644 index 1f7f5ed..0000000 --- a/earth_model/earth_model.py +++ /dev/null @@ -1,462 +0,0 @@ -#!/usr/bin/env python -# coding=utf8 -""" -Support for PREM-like 1D Earth models - -""" - -import numpy as np - -from . import peice_poly as pp - - -# Default parameters for isotropic PREM -_r_earth = 6371.0 -_bps = np.array([0.0, 1221.5, 3480.0, 3630.0, 5600.0, 5701.0, 5771.0, - 5971.0, 6151.0, 6291.0, 6346.6, 6356.0, 6371.0]) -_density_params = np.array([[13.0885, 0.0000, -8.8381, 0.0000], - [12.5815, -1.2638, -3.6426, -5.5281], - [7.9565, -6.4761, 5.5283, -3.0807], - [7.9565, -6.4761, 5.5283, -3.0807], - [7.9565, -6.4761, 5.5283, -3.0807], - [5.3197, -1.4836, 0.0000, 0.0000], - [11.2494, -8.0298, 0.0000, 0.0000], - [7.1089, -3.8045, 0.00002, 0.0000], - [2.6910, 0.6924, 0.0000, 0.0000], - [2.6910, 0.6924, 0.0000, 0.0000], - [2.9000, 0.0000, 0.0000, 0.0000], - [2.6000, 0.0000, 0.0000, 0.0000]]) -_density_params[:, 0] = _density_params[:, 0] * 1000.0 -_density_params[:, 1] = (_density_params[:, 1] * 1000.0) / _r_earth -_density_params[:, 2] = (_density_params[:, 2] * 1000.0) / (_r_earth**2) -_density_params[:, 3] = (_density_params[:, 3] * 1000.0) / (_r_earth**3) -_vp_params = np.array([[11.2622, 0.0000, -6.3640, 0.0000], - [11.0487, -4.0362, 4.8023, -13.5732], - [15.3891, -5.3181, 5.5242, -2.5514], - [24.9520, -40.4673, 51.4832, -26.6419], - [29.2766, -23.6027, 5.5242, -2.5514], - [19.0957, -9.8672, 0.0000, 0.0000], - [39.7027, -32.6166, 0.0000, 0.0000], - [20.3926, -12.2569, 0.0000, 0.0000], - [4.1875, 3.9382, 0.0000, 0.0000], - [4.1875, 3.9382, 0.0000, 0.0000], - [6.8000, 0.0000, 0.0000, 0.0000], - [5.8000, 0.0000, 0.0000, 0.0000]]) -_vs_params = np.array([[3.6678, 0.0000, -4.4475, 0.0000], - [0.0000, 0.0000, 0.0000, 0.0000], - [6.9254, 1.4672, -2.0834, 0.9783], - [11.1671, -13.7818, 17.4575, -9.2777], - [22.3459, -17.2473, -2.0834, 0.9783], - [9.9839, -4.9324, 0.0000, 0.0000], - [22.3512, -18.5856, 0.0000, 0.0000], - [8.9496, -4.4597, 0.0000, 0.0000], - [2.1519, 2.3481, 0.0000, 0.0000], - [2.1519, 2.3481, 0.0000, 0.0000], - [3.9000, 0.0000, 0.0000, 0.0000], - [3.2000, 0.0000, 0.0000, 0.0000]]) -# Turn range of polynomials from 0 - 1 to 0 - r_earth -_vp_params[:, 1] = _vp_params[:, 1] / _r_earth -_vp_params[:, 2] = _vp_params[:, 2] / (_r_earth**2) -_vp_params[:, 3] = _vp_params[:, 3] / (_r_earth**3) -# Turn range of polynomials from 0 - 1 to 0 - r_earth -_vs_params[:, 1] = _vs_params[:, 1] / _r_earth -_vs_params[:, 2] = _vs_params[:, 2] / (_r_earth**2) -_vs_params[:, 3] = _vs_params[:, 3] / (_r_earth**3) -_q_kappa_params = np.array([1327.7, 57823.0, 57823.0, 57823.0, 57823.0, - 57823.0, 57823.0, 57823.0, 57823.0, 57823.0, - 57823.0, 57823.0]) -_q_mu_params = np.array([84.6, np.inf, 312.0, 312.0, 312.0, 143.0, 143.0, - 143.0, 80.0, 600.0, 600.0, 600.0]) - - -class Prem(object): - - def __init__(self, breakpoints=_bps, density_params=_density_params, - vp_params=_vp_params, vs_params=_vs_params, - q_mu_params=_q_mu_params, q_kappa_params=_q_kappa_params, - r_earth=_r_earth): - - self.r_earth = r_earth - - self.density_poly = pp.PeicewisePolynomial(density_params, breakpoints) - self.vp_poly = pp.PeicewisePolynomial(vp_params, breakpoints) - self.vs_poly = pp.PeicewisePolynomial(vs_params, breakpoints) - self.qk_poly = pp.PeicewisePolynomial(q_kappa_params, breakpoints) - self.qm_poly = pp.PeicewisePolynomial(q_mu_params, breakpoints) - - # setup polynomials for mass. This is 4*pi*\int rho(r)*r^2 dr - r2_params = np.tile(np.array([0.0, 0.0, 1000.0**3]), - (breakpoints.size - 1, 1)) - self.r2_poly = pp.PeicewisePolynomial(r2_params, breakpoints) - self.mass_poly = self.density_poly.mult(self.r2_poly) - self.mass_poly = self.mass_poly.antiderivative() - #  integrating this gives mass: - self.mass_poly.coeffs = self.mass_poly.coeffs * 4.0 * np.pi - - # setup polynomials for MOI. This is 2/3*4*pi*\int rho(r)*r^4 dr - r4_params = np.tile(np.array([0.0, 0.0, 0.0, 0.0, 1000.0**5]), - (breakpoints.size - 1, 1)) - r4_poly = pp.PeicewisePolynomial(r4_params, breakpoints) - self.moi_poly = self.density_poly.mult(r4_poly) - self.moi_poly = self.moi_poly.antiderivative() - #   integrating this gives MOI: - self.moi_poly.coeffs = self.moi_poly.coeffs * 4.0 * (2/3) * np.pi - - # Setup polynomial for gravity - G = 6.6743E-11 - gravity_poly = self.density_poly.mult(self.r2_poly) - # evaluate this to get int(rho.r^2 dr) - gravity_poly = gravity_poly.integrating_poly() - # constants outside integral - gravity_poly.coeffs = gravity_poly.coeffs * 4.0 * np.pi * G - over_r_sq_poly = pp.PeicewisePolynomial( - np.zeros((breakpoints.size - 1, 1)), breakpoints, - np.zeros((breakpoints.size - 1, 3))) - over_r_sq_poly.negative_coeffs[:, 2] = 1.0/1000.0**2 - gravity_poly = gravity_poly.mult(over_r_sq_poly) # Mult by 1/r^2 - self.gravity_poly = gravity_poly # Evaluate to get gravity at r - - # Setup polynomial for pressure: - # integrate from r to r_earth to get pressure - self.pressure_poly = self.gravity_poly.mult(self.density_poly) - self.pressure_poly = self.pressure_poly.antiderivative() - # Pressure units (/1E9) and density units (*1000.0) - self.pressure_poly.coeffs *= 1000.0 / 1.0E9 - self.pressure_poly.negative_coeffs *= 1000.0 / 1.0E9 - - def density(self, r, break_down=False): - """ - Evaluate density in kg/m**3 at radii r (in km) - """ - return self.density_poly(r, break_down=break_down) - - def vs(self, r, t=1, break_down=False): - """ - Evaluate s-wave velocity (in km/s) at radius r (in km). - - Optionally corrected for period (t), default is 1 s. - """ - vs = self.vs_poly(r, break_down=break_down) - if t != 1: - qm = self.qm_poly(r, break_down=break_down) - vs = vs * (1.0 - ((np.log(t)/np.pi)*np.reciprocal(qm))) - - return vs - - def vp(self, r, t=1, break_down=False): - """ - Evaluate p-wave velocity (in km/s) at radius r (in km). - - Optionally corrected for period (t), default is 1 s. - """ - vp = self.vp_poly(r, break_down=break_down) - if t != 1: - qm = self.qm_poly(r, break_down=break_down) - qk = self.qk_poly(r, break_down=break_down) - vs = self.vs_poly(r, break_down=break_down) - e = (4/3)*((vs/vp)**2) - vp = vp * (1.0 - ((np.log(t)/np.pi)*(((1.0-e)*np.reciprocal(qk)) - - e*np.reciprocal(qm)))) - return vp - - def qkappa(self, r, break_down=False): - qk = self.qk_poly(r, break_down=break_down) - return qk - - def qshear(self, r, break_down=False): - qm = self.qm_poly(r, break_down=break_down) - return qm - - def bulk_modulus(self, r): - """ - Evaluate bulk modulus (in GPa) at radius r (in km) - """ - vp = self.vp_poly(r) * 1000.0 # m/s - mu = self.shear_modulus(r) - density = self.density_poly(r) - return ((vp**2 * density) / 1e9) - mu - - def shear_modulus(self, r): - """ - Evaluate shear modulus (in GPa) at radius r (in km) - """ - vs = self.vs_poly(r) * 1000.0 # m/s - density = self.density_poly(r) - return (vs**2 * density) / 1.0e9 - - def mass(self, r, r_inner=0.0): - """ - Evaluate mass inside radius r (in km) - """ - if np.ndim(r) == 0: - m = self.mass_poly.integrate(r_inner, r) - else: - m = np.zeros_like(r) - for i in range(r.size): - if r[i] == 0: - m[i] = 0 - else: - m[i] = self.mass_poly.integrate(r_inner, r[i]) - return m - - def moment_of_inertia(self, r, r_inner=0.0): - """ - Evaluate moment of inertia inside radius r (in km) - - Return a tuple of moment of inertia (in kg m^2) and - the moment of inertia factor (I/MR**2, dimensionless) - which is 0.4 for a uniform density body, and decreases - as the core becomes more dense than the crust/mantle. - - """ - if np.ndim(r) == 0: - moi = self.moi_poly.integrate(r_inner, r) - else: - moi = np.zeros_like(r) - for i in range(r.size): - if r[i] == 0: - moi[i] = 0 - else: - moi[i] = self.moi_poly.integrate(r_inner, r[i]) - - r_in_m = r * 1000 - m = self.mass(r) - moif = moi / (m*(r_in_m**2)) - return moi, moif - - def gravity(self, r): - if np.ndim(r) == 0: - if r == 0.0: - return 0.0 - g = self.gravity_poly(r) - else: - g = np.zeros_like(r) - for i in range(r.size): - if r[i] == 0: - g[i] = 0 - else: - g[i] = self.gravity_poly(r[i]) - return g - - def grav_potential(self, r): - """ - Evaluate the gravitational potential at radius r in J/kg - """ - G = 6.6743E-11 - if np.ndim(r) == 0: - phi = -1 * self.mass_poly.integrate(0.0, r)/(r*1000)*G - else: - phi = np.zeros_like(r) - for i in range(r.size): - if r[i] == 0: - phi[i] = 0 - else: - phi[i] = -1 * self.mass_poly.integrate(0.0, r[i]) / \ - (r[i]*1000)*G - return phi - - def pressure(self, r): - """ - Evaluate pressure (in GPa) at radius r (in km) - """ - if np.ndim(r) == 0: - p = self.pressure_poly.integrate(r, _r_earth) - else: - p = np.zeros_like(r) - for i in range(r.size): - p[i] = self.pressure_poly.integrate(r[i], _r_earth) - return p - - def tabulate_model_inwards(self, min_step): - """ - Return a record array representing the model handling discontiuities - - This method creates a numpy record array with the model evaulated - at all depths with a minimum spacing of min_step km. All breakpoints - are also included in the output. If the densioty is discontinuoius, - the depth is represented twice, first with the value above the - discontiuity, then with the value below it. This representation can - be used to construct travel time curves (for examople). - - The record array contains fields: - - depth (in km) - radius (in km) - density (in kg/m^3) - qkappa (dimensionless quality factor) - qshear (dimensionless quality factor) - - and is ordered such that element 0 is at the surface and the last - element (element -1) is at the center of the planet. - """ - # Keep the data as we get it - radii = np.array([]) - depths = np.array([]) - densities = np.array([]) - vps = np.array([]) - vss = np.array([]) - qks = np.array([]) - qms = np.array([]) - - nbps = len(self.density_poly.breakpoints) - 1 - for i in range(nbps): - j = nbps - i - k = j - 1 - rs = np.arange(self.density_poly.breakpoints[j], - self.density_poly.breakpoints[k], -min_step) - ds = self.r_earth - rs - dens = self.density(rs, break_down=True) # As we go inwards - vp = self.vp(rs, break_down=True) # As we go inwards - vs = self.vs(rs, break_down=True) # As we go inwards - qk = self.qkappa(rs, break_down=True) # As we go inwards - qm = self.qshear(rs, break_down=True) # As we go inwards - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - - # Look at the breakpoint. If it is discontinous in - # value put add it here (i.e. so we have above followed - # by below for the next step). Othersie we can skip it - # (and it gets adder in the next iteration). But we need - # to hadle k = 0 carefully (always stick in the origin) - if k == 0: - # Add the value at r=0 - rs = self.density_poly.breakpoints[k] - ds = self.r_earth - rs - dens = self.density(rs) - vp = self.vp(rs) - vs = self.vs(rs) - qk = self.qkappa(rs) - qm = self.qshear(rs) - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - elif (self.density(self.density_poly.breakpoints[k]) != - self.density(self.density_poly.breakpoints[k], - break_down=True)): - # Add the value above the inner boundary of this layer - rs = self.density_poly.breakpoints[k] - ds = self.r_earth - rs - dens = self.density(rs) - vp = self.vp(rs) - vs = self.vs(rs) - qk = self.qkappa(rs) - qm = self.qshear(rs) - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - - result = np.core.records.fromarrays( - [depths, radii, densities, vps, vss, qks, qms], - names='depth, radius, density, vp, vs, qkappa, qshear' - ) - return result - - def tabulate_model_outwards(self, min_step): - """ - Return a record array representing the model handling discontiuities - - This method creates a numpy record array with the model evaulated - at all depths with a minimum spacing of min_step km. All breakpoints - are also included in the output. If the densioty is discontinuoius, - the depth is represented twice, first with the value above the - discontiuity, then with the value below it. This representation can - be used to construct travel time curves (for examople). - - The record array contains fields: - - depth (in km) - radius (in km) - density (in kg/m^3) - qkappa (dimensionless quality factor) - qshear (dimensionless quality factor) - - and is ordered such that element 0 is at the center of the planet - and the last element (element -1) is at the surface. - """ - # Keep the data as we get it - radii = np.array([]) - depths = np.array([]) - densities = np.array([]) - vps = np.array([]) - vss = np.array([]) - qks = np.array([]) - qms = np.array([]) - - nbps = len(self.density_poly.breakpoints) - 1 - for i in range(nbps): - j = i - k = j + 1 - rs = np.arange(self.density_poly.breakpoints[j], - self.density_poly.breakpoints[k], min_step) - ds = self.r_earth - rs - dens = self.density(rs) - vp = self.vp(rs) - vs = self.vs(rs) - qk = self.qkappa(rs) - qm = self.qshear(rs) - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - - # Look at the breakpoint. If it is discontinous in - # value put add it here (i.e. so we have above followed - # by below for the next step). Othersie we can skip it - # (and it gets adder in the next iteration). But we need - # to hadle k = 0 carefully (always stick in the origin) - if k == nbps + 1: - # Add the value surface - rs = self.density_poly.breakpoints[k] - ds = self.r_earth - rs - dens = self.density(rs) - vp = self.vp(rs) - vs = self.vs(rs) - qk = self.qkappa(rs) - qm = self.qshear(rs) - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - elif (self.density(self.density_poly.breakpoints[k]) != - self.density(self.density_poly.breakpoints[k], - break_down=True)): - # Add the value above the inner boundary of this layer - rs = self.density_poly.breakpoints[k] - ds = self.r_earth - rs - dens = self.density(rs, break_down=True) - vp = self.vp(rs, break_down=True) - vs = self.vs(rs, break_down=True) - qk = self.qkappa(rs, break_down=True) - qm = self.qshear(rs, break_down=True) - radii = np.append(radii, rs) - depths = np.append(depths, ds) - densities = np.append(densities, dens) - vps = np.append(vps, vp) - vss = np.append(vss, vs) - qks = np.append(qks, qk) - qms = np.append(qms, qm) - - result = np.core.records.fromarrays( - [depths, radii, densities, vps, vss, qks, qms], - names='depth, radius, density, vp, vs, qkappa, qshear' - ) - return result diff --git a/earth_model/peice_poly.py b/earth_model/peice_poly.py deleted file mode 100644 index 93a780f..0000000 --- a/earth_model/peice_poly.py +++ /dev/null @@ -1,291 +0,0 @@ -#!/usr/bin/env python -# coding=utf8 -""" -Peicewise polynomials like PREM - -""" -import numpy as np - - -class PeicewisePolynomial(object): - """ - Peicewise Polynomials a different way - - The SciPy PPoly class defines a function from - polynomials with coefficents c and breakpoints x - evaluated at a point xp thus: - - S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) - - This is not helpful for PREM, so we create a new class defining - the function: - - S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) - - Note some important differences between this and PPoly! - - The module also supports negative powers set by passing the c_neg - parameter. The c_neg[:, 0] coefficients are for ln terms used for - integrals. - """ - - def __init__(self, c, x, c_neg=None): - assert len(x.shape) == 1, "breakpoints must be 1D" - self.breakpoints = x - if len(c.shape) == 1: - c = np.expand_dims(c, axis=1) - c = np.append(c, np.zeros_like(c), axis=1) - assert len(c.shape) == 2, "Positive coefficients must be 2D" - self.coeffs = c - if c_neg is not None: - if len(c_neg.shape) == 1: - c_neg = np.expand_dims(c_neg, axis=1) - c_neg = np.append(c_neg, np.zeros_like(c), axis=1) - assert len(c_neg.shape) == 2, "Negative coefficients must be 2D" - self.negative_coeffs = c_neg - else: - self.negative_coeffs = None - - def __call__(self, xp, break_down=False): - if np.ndim(xp) == 0: - value = self._evaluate_at_point(xp, break_down) - else: - value = np.zeros_like(xp) - for i in range(xp.size): - value[i] = self._evaluate_at_point(xp[i], break_down) - return value - - def _evaluate_at_point(self, x, break_down=False): - """ - Evaluate piecewise polynomial at point x - """ - coef, neg_coef = self._get_coefs(x, break_down) - value = 0 - for i, c in enumerate(coef): - value = value + c * x**i - if neg_coef is not None: - for i, c in enumerate(neg_coef): - if i == 0 and c != 0.0: # Hum - avoid these... - if x == 0.0: - raise ValueError # Cannot do ln(0) - else: - value = value + c * np.log(np.abs(x)) - elif x == 0.0 and c != 0.0: - raise ZeroDivisionError - elif c != 0.0: - value = value + (c / x**i) - # The c == 0.0 case can be ignored - adding 0.0 - return value - - def _get_coefs(self, x, break_down=False): - """ - Return coefs at x - - If x falls on a breakpoint, we take the coefficients from - 'above' the breakpoint. Unless break_down is True, in which - case we take the coefficients from 'below' - """ - if x == self.breakpoints[-1]: - # We use the last coefficients for the outside point - pos_coef = self.coeffs[-1, :] - if self.negative_coeffs is None: - neg_coef = None - else: - neg_coef = self.negative_coeffs[-1, :] - return pos_coef, neg_coef - if break_down: - for i in range(self.breakpoints.size): - if ((x > self.breakpoints[i]) - and (x <= self.breakpoints[i+1])): - pos_coef = self.coeffs[i, :] - if self.negative_coeffs is None: - neg_coef = None - else: - neg_coef = self.negative_coeffs[i, :] - return pos_coef, neg_coef - else: - for i in range(self.breakpoints.size): - if ((x >= self.breakpoints[i]) - and (x < self.breakpoints[i+1])): - pos_coef = self.coeffs[i, :] - if self.negative_coeffs is None: - neg_coef = None - else: - neg_coef = self.negative_coeffs[i, :] - return pos_coef, neg_coef - return None, None - - def derivative(self): - deriv_breakpoints = self.breakpoints - deriv_coeffs = np.zeros((self.coeffs.shape[0], - self.coeffs.shape[1]-1)) - for seg in range(self.coeffs.shape[0]): - for i in range(self.coeffs.shape[1]): - if i == 0: - continue # Throw away term for x**0 - deriv_coeffs[seg, i-1] = self.coeffs[seg, i]*i - - deriv_neg_coeffs = None - if self.negative_coeffs is not None: - deriv_neg_coeffs = np.zeros((self.negative_coeffs.shape[0], - self.negative_coeffs.shape[1]+1)) - for seg in range(self.negative_coeffs.shape[0]): - for i in range(self.negative_coeffs.shape[1]): - if i == 0: - # c ln(|x|) term -> c/x - deriv_neg_coeffs[seg, 1] = self.negative_coeffs[seg, i] - else: - deriv_neg_coeffs[seg, i+1] = -1 * \ - self.negative_coeffs[seg, i]*i - deriv = PeicewisePolynomial(deriv_coeffs, deriv_breakpoints, - deriv_neg_coeffs) - return deriv - - def antiderivative(self): - antideriv_breakpoints = self.breakpoints - antideriv_coeffs = np.zeros((self.coeffs.shape[0], - self.coeffs.shape[1]+1)) - for seg in range(self.coeffs.shape[0]): - for i in range(self.coeffs.shape[1]): - antideriv_coeffs[seg, i+1] = self.coeffs[seg, i]/(i+1) - - antideriv_neg_coeffs = None - if self.negative_coeffs is not None: - antideriv_neg_coeffs = np.zeros((self.negative_coeffs.shape[0], - self.negative_coeffs.shape[1]-1)) - for seg in range(self.negative_coeffs.shape[0]): - for i in range(self.negative_coeffs.shape[1]): - if i == 0: - assert self.negative_coeffs[seg, i] == 0.0, \ - "Cannot take antiderivative of ln(|x|) terms" - if i == 1: - # c/x term -> c ln(|x|) which we put in i=0. No change - # in sign or division - antideriv_neg_coeffs[seg, 0] = \ - self.negative_coeffs[seg, i] - else: - antideriv_neg_coeffs[seg, i-1] = -1 * \ - self.negative_coeffs[seg, i]/(i-1) - antideriv = PeicewisePolynomial(antideriv_coeffs, - antideriv_breakpoints, - antideriv_neg_coeffs) - return antideriv - - def integrate(self, a, b): - # antiderivative = self.antiderivative() - integral = 0 - lower_bound = a - for bpi, bp in enumerate(self.breakpoints): - if bp > lower_bound: - if self.breakpoints[bpi] >= b: - # Just the one segment left - add it and end - integral = integral + (self(b, break_down=True) - - self(lower_bound)) - # print(integral, lower_bound, b, 'done') - break - else: - # segment from lower bound to bp - # add it, increment lower_bound and contiue - integral = integral + (self(bp, break_down=True) - - self(lower_bound)) - # print(integral, lower_bound, bp) - lower_bound = bp - - return integral - - def integrating_poly(self): - """ - Returns a piecewise polynomial that represents the definite - integral self between 0 and the evaluation point. - """ - antiderivative = self.antiderivative() - ip_coeffs = np.zeros_like(antiderivative.coeffs) - # Inside each segment, the integral between 0 and x - # is the integral between the lower bound of that - # segment and the upper bound, plus the integral - # for all other segments. These are all constants - # so can be added to the constent term in this - # segment's antiderivative (we dont need the last breakpoint) - for bpi, bp in enumerate(antiderivative.breakpoints[0:-1]): - ip_coeffs[bpi, :] = antiderivative.coeffs[bpi, :] - # Subtract antiderivate on inner boundary - ip_coeffs[bpi, 0] = ip_coeffs[bpi, 0] - antiderivative(bp) - # add all the other segments - if bpi > 0: - ip_coeffs[bpi, 0] = ip_coeffs[bpi, 0] + \ - antiderivative.integrate(0, bp) - return PeicewisePolynomial(ip_coeffs, antiderivative.breakpoints) - - def mult(self, other): - # FIXME - for this approach brakepoints need to be same place too - assert self.coeffs.shape[0] == other.coeffs.shape[0], \ - 'different number of breakpoints' - mult_breakpoints = self.breakpoints - mult_coefs = np.zeros((self.coeffs.shape[0], - self.coeffs.shape[1]+other.coeffs.shape[1]-1)) - mult_negative_coefs = None - if ((self.negative_coeffs is not None) and - (other.negative_coeffs is not None)): - assert np.all(self.negative_coeffs[:, 0] == 0.0), \ - "Cannot multiply ln(x) terms in self" - assert np.all(other.negative_coeffs[:, 0] == 0.0), \ - "Cannot multiply ln(x) terms in other" - mult_negative_coefs = np.zeros((self.negative_coeffs.shape[0], - (self.negative_coeffs.shape[1] + - other.negative_coeffs.shape[1] - 1) - )) - elif (self.negative_coeffs is not None): - assert np.all(self.negative_coeffs[:, 0] == 0.0), \ - "Cannot multiply ln(x) terms in self" - mult_negative_coefs = np.zeros((self.negative_coeffs.shape[0], - self.negative_coeffs.shape[1])) - elif (other.negative_coeffs is not None): - assert np.all(other.negative_coeffs[:, 0] == 0.0), \ - "Cannot multiply ln(x) terms in other" - mult_negative_coefs = np.zeros((other.negative_coeffs.shape[0], - other.negative_coeffs.shape[1])) - - for seg in range(self.coeffs.shape[0]): - for i in range(self.coeffs.shape[1]): - - for j in range(other.coeffs.shape[1]): - mult_coefs[seg, i+j] = mult_coefs[seg, i+j] + \ - self.coeffs[seg, i] * other.coeffs[seg, j] - if other.negative_coeffs is not None: - for j in range(1, other.negative_coeffs.shape[1]): - index = i - j - if index >= 0: - # Still a positive index, includes 0 (cost terms) - mult_coefs[seg, index] += self.coeffs[seg, i] * \ - other.negative_coeffs[seg, j] - else: - # negative index - put in -1*index of neg results - mult_negative_coefs[seg, -1*index] += \ - self.coeffs[seg, i] * \ - other.negative_coeffs[seg, j] - - if self.negative_coeffs is not None: - for i in range(1, self.negative_coeffs.shape[1]): - for j in range(other.coeffs.shape[1]): - index = j - i - if index >= 0: - mult_coefs[seg, index] += \ - self.negative_coeffs[seg, i] *\ - other.coeffs[seg, j] - else: - mult_negative_coefs[seg, -1*index] += \ - self.negative_coeffs[seg, i] * \ - other.coeffs[seg, j] - if other.negative_coeffs is not None: - for j in range(1, other.negative_coeffs.shape[1]): - neg_index = i + j - mult_negative_coefs[seg, neg_index] += \ - self.negative_coeffs[seg, i] * \ - other.negative_coeffs[seg, j] - - # TODO: handle non-overlapping breakpoints (first chop the - # segments). Also implement do poly * const etc. - - mult_poly = PeicewisePolynomial(mult_coefs, mult_breakpoints, - mult_negative_coefs) - return mult_poly diff --git a/notebooks/PREM_density_example.ipynb b/notebooks/PREM_density_example.ipynb new file mode 100644 index 0000000..7f6e832 --- /dev/null +++ b/notebooks/PREM_density_example.ipynb @@ -0,0 +1,291 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as mtick\n", + "\n", + "\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from prem4derg import OneDModel, R_EARTH" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## PREM's density parameterisation\n", + "\n", + "Some blurb...\n", + "\n", + "$$\n", + "\\rho(r) = \\left\\{\n", + "\\begin{array}{ll}\n", + " \\rho_{0,0} + \\rho_{0,1}r + \\rho_{0,2}r^2 + \\rho_{0,3}r^3 & r\\leq 1221.5 \\; \\mathrm{km} \\\\\n", + " \\rho_{1,0} + \\rho_{1,1}r + \\rho_{1,2}r^2 + \\rho_{1,3}r^3 & 1221.5\\leq r\\leq 3480.0 \\; \\mathrm{km}\\\\\n", + " \\vdots & \\vdots \\\\\n", + " \\rho_{12,0} + \\rho_{12,1}r + \\rho_{12,2}r^2 + \\rho_{12,3}r^3 & 6368.0\\leq r\\leq 6371.0 \\; \\mathrm{km} \\\\\n", + "\\end{array} \n", + "\\right.\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# This implements the PREM density model using \n", + "\n", + "r_earth = R_EARTH # km\n", + "\n", + "density_params = np.array([[13.0885, 0.0000, -8.8381, 0.0000],\n", + " [12.5815, -1.2638, -3.6426, -5.5281],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [5.3197, -1.4836, 0.0000, 0.0000],\n", + " [11.2494, -8.0298, 0.0000, 0.0000],\n", + " [7.1089, -3.8045, 0.00002, 0.0000],\n", + " [2.6910, 0.6924, 0.0000, 0.0000],\n", + " [2.6910, 0.6924, 0.0000, 0.0000],\n", + " [2.9000, 0.0000, 0.0000, 0.0000],\n", + " [2.6000, 0.0000, 0.0000, 0.0000],\n", + " [1.0200, 0.0000, 0.0000, 0.0000]])\n", + "\n", + "\n", + "# Turn range of polynomials from 0 - 1 to 0 - r_earth (makes mass easer)\n", + "# and puts density into kg/m^3\n", + "density_params[:,0] = density_params[:,0] * 1000\n", + "density_params[:,1] = (density_params[:,1] * 1000) / r_earth \n", + "density_params[:,2] = (density_params[:,2] * 1000) / (r_earth**2)\n", + "density_params[:,3] = (density_params[:,3] * 1000) / (r_earth**3)\n", + "\n", + "\n", + "# All 14 discontiuities in PREM in km.\n", + "breakpoints = np.array([0.0, 1221.5, 3480.0, 3630.0, 5600.0, 5701.0, 5771.0,\n", + " 5971.0, 6151.0, 6291.0, 6346.6, 6356.0, 6368.0, 6371.0])\n", + "\n", + "\n", + "\n", + "prem = OneDModel(breakpoints=breakpoints, density_params=density_params, \n", + " r_earth=r_earth)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2sAAAI1CAYAAABIRmKjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfoZJREFUeJzt3Qd4FNX6+PE3kAQIIL333jsoIKAIgogFxIaI2OCKDUWxYP9d28VrLyh6BQuKFUSUJh1E6R0p0jtIhwCB7P95z70z/00ISLLJzJnN9/M8w57sTnY3O5yz88455z0xoVAoJAAAAAAAq+Tw+w0AAAAAAE5HsAYAAAAAFiJYAwAAAAALEawBAAAAgIUI1gAAAADAQgRrAAAAAGAhgjUAAAAAsBDBGgAAAABYiGANAAAAACxEsAYAQBbZsGGDxMTEyKJFi9L9u5MmTZJatWrJqVOnzM/PPvusNGzYMNPfY/PmzeW7777L9OcFAESOYA0AEJVuvfVWEyjpFhcXJyVKlJBLL71UPv74Y0lOTs6S1+vSpUumPd8jjzwiTz75pOTMmVOykr7GY489liWfCQAgMgRrAICoddlll8n27dtND9fYsWOlbdu20q9fP7niiivk5MmTYquZM2fKn3/+Kd26dcvy1+rUqZMcOnTIfD4AALsQrAEAolauXLmkZMmSUqZMGWncuLEMHDhQfvjhBxOYDBs2zN1v//79cuedd0qxYsXkvPPOk0suuUQWL17sPu4MQfzggw+kXLlykpCQINdff70cOHDAffyTTz4xz+305k2dOtX9/XXr1plAUX+vQYMGMnv27LO+7xEjRphewNy5c59xHw3mKleuLPfee6+EQiHz9xQsWFDGjBkjNWrUMK917bXXytGjR817q1ixohQqVEjuv/9+d2il0p67yy+/3LwmAMAuBGsAgGxFAzENmL7//nv3vuuuu0527dplgrj58+ebwK5du3ayd+9ed5+1a9fK119/LT/++KOMGzdOFi5cKHfffbd57OGHHzbBm9OTp1vLli3d333iiSfMPjp3rXr16tK9e/ez9uzNmDFDmjZtesbHlyxZIq1atZKbbrpJ3nnnHRMcKg3M3nrrLRN46XvUgLFr167y888/m+2zzz4zAee3336b4vnOP/9885oAALvE+v0GAADwWs2aNU3A4ww5nDNnjgnWtCdO/fvf/5ZRo0aZoKZPnz7mvmPHjsmnn35qeunU22+/LZ07d5ZXX33V9N7lyZNHjh8/bsqpaaCm+6rnnntO6tSpY4I/fR9p2bhxo5QuXTrNx3799VczjFMDwIceeijFY0lJSTJ48GCpUqWK+Vl71jRA27lzp+TLl09q165tevimTJkiN9xwg/t7+lqbN28289Zy5OA6LgDYghYZAJDt6LBBpzdKhzsePnxYihQpYgIaZ1u/fr0ZaugoX768G6ipFi1amOBm1apVf/t69evXd8ulSpUytxocnkliYmKaQyA3bdpkhkc+/fTTpwVqSoc+OoGa0qQqOvxR/57w+1K/tgaa+rdosAkAsAc9awCAbGflypVSqVIlU9ZATQOo8DlmDp0Dlhk0G6XDCRLPln2xaNGism/fvtPu1zl12gv25Zdfyu23327m153pdZzXSuu+1K+twz3z5s1rgjYAgD3oWQMAZCuTJ0+WpUuXupkWdX7ajh07JDY2VqpWrZpi06ApvFdr27Zt7s+//fabGTKoyTxUfHx8isQdkWjUqJGsWLHitPs1mNIEItrr1rFjR5PFMTMsW7bMvCYAwC4EawCAqKXD+jQQ27p1qyxYsEBefPFFufrqq82cr1tuucXs0759ezOkUddImzBhgknzr/PCdE7YvHnz3OfSAKlXr15m2KQm49CsippUxJmjpsMNdR6cDovcs2ePmT+WURqI6Vy6tGgP2E8//WSCS027rz2DkdK/p0OHDhE/DwAgcxGsAQCilmZE1CGOGkhppkZNrKHZEjXFvrPYtA4L1EyJbdq0kdtuu81ka7zxxhtNkg+d3+XQnrZrrrnGpLnXwEbnob333nvu47179za9bJrFUYcrzpo1K8Pvu0ePHrJ8+fIzzofTOWiauVLn3mnikiNHjmT4tTSQ1eBU/3YAgF1iQtrSAwCAM9J11DQ7pKbe98qAAQPk4MGDJtV+Vnr00UfN/LghQ4Zk6esAANKPnjUAACykwzArVKhw1kQkmaF48eLyz3/+M0tfAwCQMWSDBADAQpqJcuDAgVn+OmktAQAAsAPDIAEAAADAQgyDBAAAAAALEawBAAAAgIUI1gAAAADAQgRryDK6ds/NN98sRYoUkTx58ki9evVSLDCrq0Y8/fTTZg0kfVwXpl2zZk2K59i7d69Zb+i8884zk+3vuOOO0xaA1UVoW7dubRasLVeunAwaNIijGmGKcl13KnyrWbOm+/ixY8fknnvuMcdV13rq1q2b7Ny5M8VzbNq0yaz9lJCQYDLNaQrykydPpthn6tSp0rhxY8mVK5dZv2rYsGEct0z08ssvm2P3wAMPcOwsN3jwYLNmm7ZzuukC3bqGmoM6Z6+XXnpJmjVrJvnz5zdtnS6snnptPI6fnaZPny5XXnmllC5d2rSVujRHOM5Ros+7775r1tzU88ULLrhA5syZI4Gg66wBmW3v3r2hChUqhG699dbQ77//Hlq3bl1o/PjxobVr17r7vPzyy6ECBQqERo0aFVq8eHHoqquuClWqVCmUmJjo7nPZZZeFGjRoEPrtt99CM2bMCFWtWjXUvXt39/EDBw6ESpQoEerRo0do2bJloS+//DKUJ0+e0AcffMBBzaBnnnkmVKdOndD27dvdbffu3e7jd911V6hcuXKhSZMmhebNmxdq3rx5qGXLlu7jJ0+eDNWtWzfUvn370MKFC0M///xzqGjRoqHHH3/c3Uf/PyQkJIT69+8fWrFiRejtt98O5cyZMzRu3DiOWyaYM2dOqGLFiqH69euH+vXrx7Gz3OjRo0M//fRTaPXq1aFVq1aFBg4cGIqLizNtmqLO2atjx46hoUOHmmO1aNGi0OWXXx4qX7586PDhw+4+HD876XfTE088Efr+++91veHQyJEjUzzOOUp0GTFiRCg+Pj708ccfh5YvXx7q3bt3qGDBgqGdO3eGbEewhizx6KOPhlq1anXGx5OTk0MlS5YMvfLKK+59+/fvD+XKlcsEXEpP4rUBnTt3rrvP2LFjQzExMaGtW7ean997771QoUKFQsePH0/x2jVq1ODIRhCsaYCcFj1GehL5zTffuPetXLnSHKfZs2e7X4A5cuQI7dixw91n8ODBofPOO889To888ogJCMPdcMMN5sQHkTl06FCoWrVqoYkTJ4YuuugiN1jj2AWLtmsfffQRxy1gdu3aZdrDadOmmZ+pd8GQOljjHCX6nH/++aF77rnH/fnUqVOh0qVLh1566aWQ7RgGiSwxevRoadq0qVx33XVmaEijRo3kww8/dB9fv3697Nixwwx9dBQoUMB0S8+ePdv8rLc69FGfx6H758iRQ37//Xd3nzZt2kh8fLy7T8eOHc0wlH379nF0M0iHo+rQkMqVK5thqDqsUc2fP1+SkpJSHDcdIlm+fPkUx02HvJYoUSLFMTl48KAsX77c3Sf8OZx9nOdAxukQVR2Cmvrz5dgFw6lTp2TEiBFy5MgRMxyS4xYsBw4cMLeFCxc2txy/YOIcJbqcOHHC1MXw70U9l9Sfg3DeQbCGLLFu3TozD6NatWoyfvx46du3r9x///3yySefmMc1UFPhJ/TOz85jequBXrjY2FjzJRi+T1rPEf4aSB8NmHX+2Lhx48wx1C8tnRN46NAh85lqYKxB9NmO298dkzPtowFdYmIihyyD9CR/wYIFZh5Nahw7uy1dutTMAdU5nHfddZeMHDlSateuzXELkOTkZDNH9MILL5S6deua+6h3wcQ5SnTZs2ePuRB2tnNOm8X6/QYQvV9a2iP24osvmp+1Z23ZsmXy/vvvS69evfx+eziLTp06uWVNeqDBW4UKFeTrr782iWBgp82bN0u/fv1k4sSJZvI0gqVGjRqyaNEi0zPz7bffmnZy2rRpfr8tpLNXW7/nZs6cyecGINPQs4YsoRke9apwuFq1arnD6UqWLGluU2cR1J+dx/R2165dKR7XjIKaITJ8n7SeI/w1EBntRatevbqsXbvWfKY6nGD//v1nPW5/d0zOtI9mwiMgzBgd4qH1RTNsag+0bnqy/9Zbb5myXkHk2NlLe6w1K2qTJk1Mz2iDBg3kzTffpM4FxL333itjxoyRKVOmSNmyZd37aTODiXOU6FK0aFHJmTPnWc85bUawhiyhw0BSpy9evXq16aFRlSpVMhVk0qRJ7uM6BE7nouk8DaW3GhToSahj8uTJptdOe3ucfTT9rs6jcmjPgl6lLlSoEEc3E+hSCX/++acJwPVEMi4uLsVx0+OsQXj4cdMhXeGBth4TDcScAF73CX8OZx/nOZB+7dq1M5+79s44m/Zu65xDp8yxCw5t544fP06ds5zmptBATYet6veTfreFo80MJs5Rou9iWJMmTVKcd2gbqz8H4rzD7wwniN7U4bGxsaEXXnghtGbNmtDw4cNNqvbPP/88RVpcTZv6ww8/hJYsWRK6+uqr00zd36hRI5P+f+bMmSbLXXjqfs20pan7e/bsaVIna2pWfR1S92fcQw89FJo6dWpo/fr1oVmzZpkU/Jp6X7OcOWmoNTX15MmTTer+Fi1amC116v4OHTqYVNaajr9YsWJppu4fMGCAySb57rvvkro/C4Rng+TY2euxxx4z2QO1zmlbqD9r1tsJEyaYx6lz9urbt69ZgkbbzPDlTo4ePeruw/GzN3OuLi+jm54Ov/baa6a8ceNG8zjnKNFlxIgRJuP4sGHDTLbxPn36mHPQ8MzVtiJYQ5b58ccfzUm7Vo6aNWuGhgwZkuJxTY371FNPmWBL92nXrp1ZYyjcX3/9ZYKzfPnymdTvt912m2lgw+kabbpMgD5HmTJlTAOLjNMU+qVKlTLrkejnqT+Hr4+nwfTdd99tUotrwNW1a1dzchJuw4YNoU6dOpk17zTQ0wAwKSkpxT5TpkwJNWzY0LxO5cqVzVpFyNpgjWNnp9tvv92sS6l1QS9saFvoBGqK42YvPclPawtvzzh+dtLvoLSOXa9evczjnKNEn7fffttcbNa2VlP56xq+QRCj//jduwcAAAAASIk5awAAAABgIYI1AAAAALAQwRoAAAAAWIhgDQAAAAAsRLAGAAAAABYiWAMAAAAACxGswUrHjx+XZ5991twiWDh2wcRxCy6OXTBx3IKLYxdcxwN4fsk6a7DSwYMHpUCBAnLgwAE577zz/H47SAeOXTBx3IKLYxdMHLfg4tgF18EAnl/SswYAAAAAFiJYAwAAAAALxfr9BrKLU6dOyerVqyVfvnwSExPj99ux3qFDh8zt1q1bTZc1goNjF0wct+Di2AUTxy24OHbBdcii88tQKCSHDx+W6tWrS86cOc+4H3PWPLJy5UqpXbu2Vy8HAAAAwHIrVqyQWrVqnfFxetY8UqpUKfeA5M+f36uXBc7ZyZMn5ZdffjHl9u3bS2wszQMQjfV8+PDhptyjR49013PaCcAuftVJ2oLM6eXTjhwnRjgTetY8EsTsM8hejhw5YobpKu2Wz5s3r99vCYBl9Zx2ArCLX3WStsC72IBL5wCMHDlySMuWLd0yAKRGOwHYxa86SVvgHXrWPELPGgDAb1wNB4BgxQZcPgcAAAAACxGsAQAAAICFCNYAGImJidKsWTOzaRkAUqOdAOziV52kLfAOCUYAGMnJyTJv3jy3DACp0U4AdvGrTtIWeIdgDYCRK1cuGTNmjFsGEH0iree0E4Bd/KqTtAXeIRukR8gGCQAAAECRDRIAAAAAAoxhkACMU6dOyeTJk035kksukZw5c/LJAFEmKSlJhg8fbso9evSQuLi4dP0+7QRgF7/qJG2BdxgG6RGGQcJ2LJYLRL9I6zntBGAXv+okbYF3sQE9awCMHDlySIMGDdwyAKRGOwHYxa86SVvgHXrWPELPGgDAb1wNBwA7kGAEAAAAAAKMsU4AAAAAYCGCNQBGYmKiXHzxxWbTMgCkRjsB2MWvOklb4B0SjGTDtM2jR482E0NTb5ruNa37wx+Lj483q9brbXjZuSUxRXAlJyfLtGnT3DIA0E4AdvPru5tzBu8QrGXDyeXXXnttlj2/BnWpg7k8efJIQkKCSSerm1M+232ahlbTmeqm6Uydcmws/2Wzih6rr7/+2i0DiD6R1nPaCcAuftVJ2gLvkA0ym2WD1PdxxRVXmCsi4Zsubpj6vtSPnTx50vTMnThxQo4fP25u9WcvaTDnBG6pA7mCBQtK4cKFpUiRImluuXPn9vS9AgAAAJHEBgRr2SxYy2yhUMgEbeEBXHhZb3Vcs/boHT161NyeqRx+ny7sqJ+Vs2XGOGwN9IoWLXpaEFesWDEpWbKklChRwmxO2auFJQEAAJC9HGRRbHghJibGdIXrlj9//ix7He3B0//U4QGcbuH37d+/X/bu3St//fWX7Nmzx9zqpvdp76AGg5s2bTLbudBgLa0gzimXLVvWbMWLF4+KuXr6Gf3222+m3Lx5czOkFUB00RESI0eONOWuXbume2g57QRgF7/qJG2Bd+hZ80i09qwFgQ7h1M8/dRDnbLt27ZKdO3fKjh073Ntjx46d8/PryU7p0qVN4FamTJkUt05ZH9c5fDZjsVwg+kVaz2knALv4VSdpCyJHzxrwP9rrpfPZdKtSpco5De08dOiQCdzCg7jw8vbt22Xr1q3mZ71SfS49dtojV758ealYsWKKrUKFCmZzGls/e0mrVq3qlgGAdgKwm1/f3ZwzeIeeNY/QsxadNFDTgG3Lli1m0wAu/NYp6/y9v6Pz6VIHcs5WuXJlk1UTACLB1XAAsAM9a4AHdAikM9zxbD11Ovxy8+bNpvdtw4YN7rZx40Zzq/PtdB/d5s2bl+bz6GtUq1bNXEEL37S3kGQoAAAA0YeeNY/Qs4az0WDNCdxSb+vWrTP/f86mVKlSpwVyNWrUMPfRIwfAQc8aANiB1P2WIVhDRmnPnCZCWbNmjaxdu/a0TbNdnm1MeaVKlaRmzZpSq1atFLe6bEE4TarSrVs3U/7uu+9Ylw6IQpEGa7QTgF38qpO0BZEjWLMMwRqyigZrqQM4Dez++OMP02N3tjly4QGczo275pprPM8oBcA7ZIMEogvZIIOLOWtANlG4cGE5//zzzZa6R06XJVi5cqUJ3HRzyjp3TufHzZgxw2zhNJlJXFycx38FAC/oEiJDhw51y17/PoDM5VedpC3wDnPWPELPGmy7Erdq1aoUQdySJUtk9erV5vF9+/aZpQ4AAACQ+ehZA3BGOsSxcePGZgtfhsDpUdOFxAEAAOCvWJ9fH4AldNikIykpydf3AiBr6EWZ8ePHm3LHjh3N8iPpcerUKVm6dKkp16tXT3LmzJkl7xOA3XWStsA7BGsAjOPHj7ufxNGjR/lUgCit51dccYWbSCi9wZpmgGvUqJH7+yQiAvzlV52kLfAOwRoAI0eOHGn2sgFA+HIgpUuXdssAsmedpC3wDsEaACMhIcFcZddhUl6t0wIgeO3E1q1b/X4bAHyuk7QF3vn/l9IBZHtO7xoJRgAAAPxHsAbg/zcIBGsAAADWIFgD4E4WdrJAJiYm8qkASLOduO6668ymZQDZs07SFniHRbE9wqLYCMJC2fny5TNlTQNct25dv98SgCys5xnJHBfp7wPIXH7VSdqCyLEoNoB0iY+PN4lF9GoZaycB0VvP33nnHbfs9e8DyFx+1UnaAu/Qs+YRetYQBIUKFZL9+/fLqlWrpHr16n6/HQAAgGwdGzBnDcD/bxBIMAIAAGAN1lkD4KbrdxbD1rXWAESfU6dOyYwZM0y5devW6R7yrO3En3/+acpVqlRxL/AA8IdfdZK2wDsEawDcDJD79u0z5aNHj/KpAFFI56S2bds2w8kItJ1whkiTYATwn191krbAOwRrAFwxMTGmd41FsQGcic6xAGAPv+okbYE3CNYAGHo1rlSpUrJt2zaTFRIA0monNAkRgOxdJ2kLvMNgcwD/v0EgwQgAAIA1CNYAnBasaRICAAAA+ItgDYBx/Phx+euvv0yZBCMAztRO3HrrrWbTMoDsWSdpC7zDotgeYVFs2O7IkSOSL18+U9Z03jVq1JA6deq4W926daVq1aoSG8tUVyAa6nlGMsdF+vsAMpdfdZK2wLvYgLMuAEZcXJx06tRJJk+ebK6YrVixwmzffPON+wnFx8ebIE4Dt/BArnLlyulerwmAP/V80KBBbtnr3weQufyqk7QF3qFnzSP0rCEoNHX/li1bZPny5e62bNkyE7jplbS0aPbIWrVqmSCufv360qBBA7MVL17c8/cPAAAQLbGB1XPWpk+fLldeeaWULl3arP80atQo97GkpCR59NFHpV69eqbLV/e55ZZbTNrxcHv37pUePXqYD6FgwYJyxx13mG7icEuWLJHWrVubE85y5cq5VyjCae9CzZo1zT76mj///HMW/uWAf7SuaT247LLL5KGHHpKPP/5Y5syZYxqV9evXy48//igvv/yy9OzZUxo3bmzqhC60u3DhQvnss89kwIAB0qFDBylRooRZCkB76x577DH58ssvTcB38uRJDi8AAEDQe9bGjh0rs2bNkiZNmsg111wjI0eOlC5dupjHNAq99tprpXfv3uYK/r59+6Rfv34mi928efPc59ATxe3bt8sHH3xgArzbbrtNmjVrJl988YV5XE9AdeX39u3by+OPPy5Lly6V22+/Xd544w3p06eP2efXX3+VNm3ayEsvvSRXXHGF+d1//etfsmDBAtOTcC7oWYPtdCFsrStKgywnM+Tf0TqnQZz2wGn9Wbx4sdnWrl1reulS0+BOh05qvW3YsKG51d44vZgCIGtpfdXvLqUXW9I7fDmj7QSArOFXnaQtiNy5xgZWB2upr/aHB2tpmTt3rpx//vmyceNGKV++vKxcuVJq165t7m/atKnZZ9y4cXL55ZebYV7aGzd48GB54oknZMeOHWY+jtJeAO3F++OPP8zPN9xwgxn+NWbMGPe1mjdvbk4033///XN6/wRrsF1mTxbW59Dhk07wtmjRItOLfaahlBUrVjQnj3pxxtmKFi0a0XsAkBIJRoDoQoKR4MqWCUb0j9WgzrlCP3v2bFN2AjWlPWh61eH333+Xrl27mn2018wJ1FTHjh1Nz5n21hUqVMjs079//xSvpfuED8tMTRM0hKdQ1QMC2C4zMz1q4KcXNXQLvxK3bt06N4BzNr3AsmHDBrN9//337v4VKlRIEbwRwAH+IyMsYBe/6iRtgTeiJljTOTM6h6179+5udKq9ZakTHOh/rMKFC5vHnH0qVaqUYh+da+M8psGa3jr3he/jPEdadMjkc889l2l/H5DVtCdNhwpnJb1Qoun/devWrZt7//79+03P2/z5882mQ5nXrFljgjjdwgM47TV3Aje9EEMAB0RXOwHA/jpJW+CdqAjW9D/p9ddfb+bH6LBGG+j8t/DeOO1Z06QNAE6nPeAXX3yx2cJ7yjVpiRPA6bZ69WrZtGmT2XRYdPgQygsuuMDdnMQnAAAAQRYbLYGaXn3X9aHCx3yWLFlSdu3alWJ/zUSnGSL1MWefnTt3ptjH+fnv9nEeT0uuXLnMBiBjdBx36gBOL3poAKc9b+EBnDOE8quvvnJ70HVOaXgAV61aNTNMGgAAIChioyFQ0+FSU6ZMkSJFiqR4vEWLFmZ4lZ7Q6VAppQGdzpvRkzdnH00wos/lLCY4ceJEs/CvDoF09pk0aZI88MAD7nPrPno/EC10jqXTG/zaa69ZebFBL8ZcdNFFZgvvgdPgTeeh6vbbb7+ZizR6n27vvvuu2U/rc3jwpsmIUrcZAILfTgDZiV91krbAO1Zng9Rscpr+WzVq1Mj8J2zbtq2Zc6bpSTV1v6Yg1iyN4XPK9HEnYYim7tdeMM3a6KTu13kuTup+PdHTwEzXhdI5b5q9TlP3v/766ylS9+vJoa4t1blzZxkxYoS8+OKLpO5HVPEro1Rm0yZNe9qd4E03vWATnvDHob1trVq1kgsvvNBs2hbQ+4ZoRjZIILqQDTK4oiIbpF4V1+DM4Vw56NWrlzz77LMyevRo87MOdwqnvWzO0Knhw4fLvffeK+3atTPJDTSpwVtvveXuqx/ShAkT5J577nETFTz99NNuoKZatmxpgrsnn3xSBg4caE7wNBPkua6xBgSB9iw/88wzbjmoNNjSOWy66bIb6sSJE2bZgPDeN+2Rd7ahQ4ea/bT+a33XwE2DOG0T6DlANIm0nkdLOwFEC7/qJG2Bd6zuWYsmrLMG2EXnruqyHLNmzTLbnDlzTFbZcBqoaU+80/umgRxDJwEAQKSiblHsoCNYA+ymvW86rHrmzJluALd79+7T9qtZs6a0bt3a9N7r8OgyZcr48n4BAEBwEaxZhmANttPrNnp1R+mVnuw+d0s/Dx0i6QRuGsStWrXqtP10zTgN2pzgjSU6YDNNsLVy5UpTrlWrlpkekB60E4Bd/KqTtAWRI1izDMEabBctCUay0p49e0zgNmPGDJk6dapZRkBPfsNVrlzZDdz0VhfxBmxBghEgupBgJLiiIsEIANhEE5BcffXVZlPawGqPmwZu06ZNM1kn161bZ7aPP/7Y7FOpUiU3cNOESQRvAADgXDFnzSP0rMF2OqRBF413FpXO7sMgM1rPNXjTwE0DOA3eTp06lWKf6tWrm+y07du3N8Gbs54jEISr8LQTgF38qpO0BZFjGKRlCNaA7OfQoUNm2KQGb7qkyNy5c1MMm9T5Qro8gAZuumm2ydy5c/v6nhHdGO4MAHYgWLMMwRqA/fv3m8Dtl19+Mdsff/yR4kPRQE0zTTo9b7qGZM6cOfngkGkI1gDADgRrliFYQxBS1z/xxBOm/MILL0h8fLzfbynqbdmyRSZNmmQ2Dd62b9+e4vHChQvLJZdcIpdddpnZWCYAfgdrtBOAXfyqk7QFkSNYswzBGmzHFXd/6fh/Tanu9LrpnDcdRhmuXr160qlTJxO46SLdBNRIL7JBAtGFbJDBRTZIAOkSFxcnDz/8sFuGt3RSeO3atc12//33S1JSkpnjNmHCBBk7dqwpL1261GyDBg0yvSM6XFIDNw3gKlSowCFDltdz2gnALn7VSdoC75AN0iP0rAGIdI23iRMnmsBt/PjxsmvXrhSP16xZ0+11a9OmDYlKAACwGMMgLUOwBiCzaEbJRYsWmcBt3LhxMnv27BRLBOTJk8f0ul155ZVyxRVXSOnSpfnwAQCwCMGaZQjWYDvWTAl2lkmd56aBm25bt25N8bguD6CBm26NGjViDb1sHuhv2rTJlHWBdl0+Ij1oJwC7sM5acBGsWYZgDbYjwUj0fHEvWbJExowZIz/++KPMmTPH3OfQXjbtbdPATXvftBcO2QcJRoDoQoKR4CJYswzBGmxHsBaddu7cKT///LMJ3DRZiR5nB8Mlsx+CNSC6EKwFF8GaZQjWYDvtfTlw4IApFyhQgKFyUejYsWNmSQCn180ZDudo1qyZXHPNNdK1a1epUaOGb+8T9p7Y0U4AdvGrTtIWRI5gzTIEawBsol+0ugyABm1pDZfUJQQ0aNOtcePGBO9Rgh50ALADwZplCNYA2GzHjh0yevRo+f7772Xy5MlmnTeHJqLQoE173XQx7pw5c/r6XpFxBGsAYAeCNcsQrMF2J06ckBdffNGUBw4cKPHx8X6/JfiYXfKnn36SkSNHmuUBjh496j5WrFgxueqqq0zw1r59e8mVKxfHKRsFa7QTgF38qpO0BZEjWLMMwRpsxxV3pCUxMdEkJtHATXve9u3b5z6WP39+k1Xy+uuvl44dO7IQdwCQYASILiQYif7YINbTdwXAWrGxsXL33Xe7ZcDJGHn11VebTYdGTp8+3QyVHDVqlGzbtk2++OILs+kXje6jgdull15Kj1uU1nPaCcAuftVJ2gLvxITCZ5Qjy9CzBiDaFlf+/fff5ZtvvpGvv/46xULceqWwS5cuJnDToZIMqQUAICWGQVqGYA1ANAduv/32m3z11VcmeNu+fbv7WMGCBc38Ng3cdBHuuLg4X98rAAA2IFizDMEagOwSuM2aNcv0tn377bcmy6SjcOHCJnC76aab5KKLLiKrpA90MM2ePXtMuWjRoizJAAA+IVizDMEagjBJWXtBnGyA6c0SB6R26tQpmTlzphu47dq1y32sdOnS0r17dxO4NWrUiKAhQAlGaCcAe/hVJ2kLvIsNcmTCawGIEidPnjQbkBl0PTbtQXv33XdNMhJdv613797mxEJ/fvXVV6VJkyZmAe7nn39e1q1bxwcfALQTgF38qpO0Bd4gwYhH6FlDEIavOXONSpUqJTlycC0HWeP48eMybtw4GT58uPz4449y7Ngx97EWLVpIjx49zBw3XdMNdvWs0U4AdvGrTtIWRI5hkJYhWAOAtNtGXQpAAzftedMTAKdXrkOHDiZw08ySDMvNHKynCAB2IFizDMEaAJydXh0eMWKEWbdt3rx57v0aqF133XVy6623SuvWren1jQDBGgDYgWDNMgRrsN2JEyfkzTffNOV+/fqxNhZ8tWrVKhO0aY/bn3/+6d5fsWJF6dWrl9xyyy1SuXJlX99jdgzWaCcAu/hVJ2kLIkewZhmCNdiOK+6wNdX8r7/+Kp988olZx03bUkebNm1M4Ka9bvnz5/f1fWanbJCR/D6AzOVXnaQt8C42iM2E1wIQBWJjY82Jr1MGbBATEyMXXnih2fTq8ahRo2TYsGEyceJEmT59utnuu+8+ueaaa8wwybZt2zJMMgvrOe0EYBe/6iRtgXfIBukRetYAIPNs2bJFPv/8cxO46ZBJR7ly5cwQydtuu02qVKnCRw4AsBLDIC1DsAYAWTNMcs6cOSZo0+Qkuiis45JLLjHrunXt2lVy5crFxw8AsAbBmmUI1gAga+l6baNHj5aPP/5YJkyYYAI5VbhwYdPbduedd0qdOnWy9WHQz+To0aOmnJCQYIaZAgDsjQ1Y9RaAO1m4YMGCZtMyEDS5c+c2i2nrgtvr16+Xp59+WsqWLSt79+6VN954Q+rWrSstW7aUoUOHZtv/4xqoaTIC3ZygLT1oJwC7+FUnaQu8Q7AGwKVXd3QDgq5ChQry3HPPyYYNG+Snn34yQyF1oe3Zs2fL7bffLqVKlZK77rrLrOfm9MDh3NBOAHbxq07SFniDBCMeYRgkbJecnOyuZ6WJGXLk4FoOosuOHTvM3LaPPvooxdptDRs2lD59+sjNN98c9UsARJpum3YCsItfdZK2IHLMWbMMwRoA2EFPMqZNm2aCtu+++06OHz9u7tcgpmfPntK3b1+pV6+eRCPWRgIAOzBnDQCANOiVZ12Pbfjw4bJ161Z5/fXXpUaNGqanafDgwVK/fn1p3bq1fPnll24gBwCAHxgG6RF61mC7pKQkGTJkiCnrkLC4uDi/3xLgGZ23NmXKFBOsjRw5Uk6dOmXuL1asmMkiqXWiYsWKkt171mgnALv4VSdpCyLHMEjLEKzBdgyPAv5r27ZtZojkBx98YMpKU9x37txZ7r77bunYsWNg53RGWs9pJwC7+FUnaQu8iw1iM+G1AEQBzZR37bXXumUguypdurRJ+//444/Ljz/+aHrbfvnlFxkzZozZKlWqZDJJao+bruGWneo57QRgF7/qJG2BdxgG6RF61gAguFavXi3vv/++WaNt//795r48efKYhCT33XefWcMNAIBzxTBIyxCsAUDw6ULSI0aMkLffflsWLVrk3t+uXTu5//77zVBJeqYBAH+HbJAAAGSyhIQEs6j2ggULZPr06dKtWzczf23SpEly9dVXS/Xq1eWNN95gcXkAQKYI5gxpAFnSY1CmTBmzaRnAmWnCEU3v/+2338q6devkkUcekUKFCpnygw8+KGXLljXDI3X4pE00KYC+d920nF60E4Bd/KqTtAXeIVgD4KYu18x3umkZwLmpUKGC/Otf/5LNmzebeW21a9c2Wdneeecds37b5ZdfLuPHj4+KekU7AdjFrzpJW+AdgjUARu7cuWXhwoVm0zKA9NGU2f/4xz9k2bJlMnHiRLnyyitND9bYsWPlsssuM4ttDxs2LNALbdNOAHbxq07SFniHbJAeIcEIAGQ/a9euNT1s//nPf0xvmypZsqRJRqLp/3XopJdYGwkA7ECCEQAAfFa1alWTcESHSA4aNMjMK9mxY4cMHDhQypUrJ/369ZP169f7/TYBAJZiGCQAIykpyQzR0k3LADJPwYIFZcCAASYByaeffmqGRGov11tvvWUCuuuvv17mzJlj/UdOOwHYxa86SVvgHYZBeoRhkLAdw6MA8XRyvqb7//e//22Sjzg0w+TDDz8sV1xxhVkSwLZ6TjsB2MWvOklb4F1sEJsJrwUgCuhCvpq1zikDyDqaeKR9+/ZmW7Jkibz22mvyxRdfyIwZM8ym67XpcgA9e/aU+Ph4a+o57QRgF7/qJG2Bd+hZ8wg9awCAs9HU22+//bYMHjzYXVRb57g99NBD0rt3b/fqOQAg+8QGBGuWHRAAQPZ26NAh+fDDD+XVV181AZwqXLiwySCpC21rGQAQbGSDBAAggPLnzy/9+/c3yUiGDBliEpDs3btXnn32WSlfvrzpadu6davfbxMA4AGyQQIwjh49KtWqVTOblgH4K1euXGb44x9//CFfffWVNGzY0Ezq1/ltlSpVMo+tWbMmXc+pv68JCHTTcnrRTgB28atO0hZ4x+pgbfr06XLllVdK6dKlzWTsUaNGnZZN6+mnn5ZSpUpJnjx5zETt1F9cejWyR48eZuihpk6+44473IVJHTq5WzNw6Wrsuu6NroWT2jfffCM1a9Y0+9SrV09+/vnnLPqrAX9ofdIFfHXTMgA76ER+Te2/YMECGTt2rLRp08akzf7oo4+kRo0a5rGFCxem6yQroyd1tBOAXfyqk7QF3rE6WNOrfg0aNJB33303zcc1qNI1at5//335/fffzZXCjh07yrFjx9x9NFBbvny5TJw4UcaMGWMCwD59+qQYL9qhQwepUKGCzJ8/X1555RUz1ESHnjh+/fVX6d69uwn09AuxS5cuZlu2bFkWfwKAd/RCxMyZM82mZQB20YuWl112mUybNk1mzZpl0vvrCZNeTGzcuLG5uJnVa7XRTgB28atO0hZ4JzAJRvRLauTIkSZIUvq2tcdNx+7rmjRKk3eUKFHCLAx44403ysqVK6V27doyd+5cadq0qdln3LhxJsXpli1bzO9r1q0nnnhCduzY4aZHfuyxx0wvng49UTfccIMJHDXYczRv3twMSdFA8VyQYAQAkNmWLl0qL7/8sowYMUKSk5PNfRrQ6aiTFi1anLY/ayMBgB2iPsHI+vXrTYClQx8d+gdfcMEFMnv2bPOz3urQRydQU7q/LjSqPXHOPjqkJHwdG+2dW7Vqlezbt8/dJ/x1nH2c10nL8ePHzUEI3wAAyEw6LH/48OHm4uKtt95qhkzqRcmWLVuaUSN6tR0AEFyBDdY0UFPakxZOf3Ye09vixYuneDw2NtakPQ7fJ63nCH+NM+3jPJ6Wl156yQSPzqZz4QCbnTx50gyn0k3LAIJDkwsMHTrUXGjUIfv6XafD/3U+9iWXXCJTp07NlNehnQDs4ledpC3wTmCDNds9/vjjplvT2TZv3uz3WwLOSnuDNVGBbloGEDxVqlQxiUc02ZbOz46Li5MpU6ZI27Zt5aKLLjLlSNBOAHbxq07SFngnVgKqZMmS5nbnzp0mG6RDf9a5ZM4+u3btOu1KgGaIdH5fb/V3wjk//90+zuNnSrmsGxAUOjxYT+acMoDgqlixonzwwQdmTva//vUvE8Bpgi3ddG6Ert2WkXpOOwHYxa86SVvgncCekekaMxosTZo0yb1P54XpXDRnUrXe7t+/32R5dEyePNlMwta5bc4++uWlaZAdOnRE0yEXKlTI3Sf8dZx90pq8DQSVLn+hQ6V00zKA4NNFtDWjsi6wfd9995mLiPpdqUm7MlLPaScAu/hVJ2kLvGN1sKbroS1atMhsTlIRLW/atMl80TzwwAPy/PPPy+jRo01GrFtuucVkeHQyRtaqVctkxdKFQzWdsaY6vvfee02mSN1P3XTTTSa5iI7x1xT/uvDom2++Kf3793ffR79+/cyE7VdffdVM4tbU/vPmzTPPBQCA7cqUKWOWutGsyoqF7wEgGKweBqkBkY6zdzgBVK9evUx6/kceecSkIdZx+dqD1qpVKxNUha8zoVmyNKhq166d6bLt1q2b+cJyaPKPCRMmyD333CNNmjSRokWLmpTH4WuxaVatL774Qp588kkZOHCgmcitqf3r1q3r2WcBAECkEhIS+BABIEACs85a0LHOGmyXmJjoDu3VZSkYCglEH72g2alTJ5PiX5Nf5c2bN12/TzsB2MWvOklb4F1sYHXPGgDv6FzOxYsXu2UA0evUqVMZ+j3aCcAuftVJ2gLvEKwBMHT4sA4JdsoAoo/O944E7QRgF7/qJG2BdxgG6RGGQQIA/DZ+/HiTeMtJ4pXeYZAAAG9jA6uzQQIAAABAdsUwSADugvF61V117NhRYmNpHgCkRDsB2MWvOklb4B3OxgAYx48flyuuuMIdHkWwBkSfSOes0U4AdvGrTtIWeIdgDYCh6xA2bdrULQOIPk7d1uQAGanntBOAXfyqk7QF3iFYA2Do2ixz587l0wCiWK5cucxt+fLlM7QeE+0EYBe/6iRtgXe4fA4AQDYR6TBIAIC3CNYAAAAAwEIEawCMxMREufDCC82mZQDR59ixY+Z23bp1cvTo0XT/Pu0EYBe/6iRtgXeYswbASE5Oll9//dUtA4g+oVDITbvtlNODdgKwi191krbAOwRrANzEAyNHjnTLAKJPpHPWaCcAu/hVJ2kLvBMTysilNaTbwYMHpUCBAnLgwAE577zz+AQBAJ775Zdf5NJLL3XXZMqbNy9HAQAsjg2YswYAAAAAFmIYJADj1KlTMmPGDFNu3bq15MyZk08GQAq0E4Bd/KqTtAXeIVgD4GaJa9u2rSkzPAqITpHOWaOdAOziV52kLfAOwRoA9ySudu3abhlA9HHqdlxcXIbqOe0EYBe/6iRtgXcI1gAYCQkJsnz5cj4NIIrlzp3b3JYvX97U+fSinQDs4ledpC3wDglGAADIJug1B4BgIVgDAAAAAAsRrAEwEhMTzfpLumkZQPTRpABq06ZNcvTo0XT/Pu0EYBe/6iRtgXeYswbASE5ONgvmOmUA0ScUCpnbpKQkt5wetBOAXfyqk7QF3iFYA2DkypVLPv/8c7cMIPpEOmeNdgKwi191krbAOzGhjFxaQ7odPHhQChQoIAcOHJDzzjuPTxAA4LkpU6bIJZdcYsqspwgA9scGzFkDAAAAAAsxDBKAcerUKVmwYIEpN27cWHLmzMknA0SZSIdB0k4AdvGrTtIWeIdgDYCbJe788883ZYZHAUgL7QRgF7/qJG2BdwjWALhX3CtUqOCWAUQfp27r1feM1HPaCcAuftVJ2gLvEKwBMBISEmTDhg18GkAUy507t7ktV66cqfPpRTsB2MWvOklb4B0SjAAAkE3Qaw4AwUKwBgAAAAAWIlgD4E4W7tKli9m0DCD6OHV727ZtkpiYmKHfp50A7OFXnaQt8A5z1gC4aXh/+OEHtwwgep04cUKSk5PT/Xu0E4Bd/KqTtAXeIVgDYMTHx8uQIUPcMgCkRjsB2MWvOklb4J2YUCgU8vD1sq2DBw9KgQIF5MCBA3Leeef5/XYAANnQ9OnT5aKLLjJl1lMEAPtjA+asAQAAAICFGAYJwND5KytXrjTlWrVqSY4cXMsBok2kqftpJwC7+FUnaQu8Q7AGwNDMcHXr1jVlhkcBSAvtBGAXv+okbYF3CNYAuIoWLcqnAWQDkVx9p50A7OJXnaQt8AbBGgBDr8bt3r2bTwOIYnny5DG3ZcqUydAVeNoJwC5+1UnaAu8wKQUAgGwi0jlrAABvEawBAJDNsGoPAGSjYC0pKUk2b94sq1atkr1792bGUwLw2LFjx6RHjx5m0zKA6OPU7V27dpkEARn5fdoJwB5+1UnaggAsin3o0CH5/PPPZcSIETJnzhw5ceKEuVKnQyzKli0rHTp0kD59+kizZs0y/10HEItiw3ZHjhyRfPnymTLZIIHoNGvWLGnVqlWG6zntBGAXv+okbYF3sUGGEoy89tpr8sILL0iVKlXkyiuvlIEDB0rp0qXNxGXtWVu2bJnMmDHDBGwXXHCBvP3221KtWrVI/h4AWSw+Pl5ef/11twwAtBOA3fz67uacwfKete7du8uTTz4pderUOet+x48fl6FDh5oDevvtt0t2Rs8aACDoPWsAgAD0rH355ZfntF+uXLnkrrvuyshLAAAAAEC2xjprAIzk5GTZtGmTKZcvXz6iRXMBRGfqftoJwC5+1UnaAouDtX379plEIoULFzaL8OnctBo1avztkEgAdtPMcJUqVTJlhkcBoJ0A7OfXdzfnDN5JV/j90UcfSZMmTaRp06YyePBg6dq1q0yaNEluvPFG8xiAYEtISDAbgOgWSQ8b7QRgF7/qJG2BhT1rb731lixfvtxE09rVun79eilWrJiZGHfRRRfJnXfemXXvFECW0qtxmooXQPRyTuhKlSqVoSvwtBOAXfyqk7QFlgZrsbGxJj2/blWrVjWBmtJMJpGOgwcAAAAAZHAYZM6cOd3V0adNm+ber2NkAQBAMGRg1R4AgO3B2i+//GLS8Tu9aY6jR4/KkCFDMv/dAfCMrovYu3dvs2kZQPRx6vbevXvdi6/p/X3aCcAeftVJ2gLLF8VOTRv8JUuWyK5du0wqz3BXXXVVpE8fFVgUG7bTMe/58uUzZbJBAtHpt99+kxYtWmS4ntNOAHbxq07SFli+KHa4cePGyS233CJ79uw57TGdx3bq1KlIXwKAB+Li4uT55593ywBAOwHYza/vbs4ZAtSzVq1aNenQoYM8/fTTUqJEicx7Z1GGnjUAQNB71gAA3sYGES9zvnPnTunfvz+BGgAAAABkooiDtWuvvVamTp0qftAhlk899ZRZuV2XE6hSpYr885//TJHlSsva66dryug+7du3lzVr1qR4Hp1o3aNHDxPVFixYUO64447TMlzqnLzWrVtL7ty5pVy5cjJo0CDP/k7AC1pXdu/ebTYyxQGgnQDs59d3N+cM3ol4zto777wj1113ncyYMUPq1at32njZ+++/X7LKv/71Lxk8eLB88sknUqdOHZk3b57cdtttpkvReV0NqnQxb91HgzoN7jp27CgrVqwwgZfSQG379u0yceJESUpKMs/Rp08f+eKLL9xuSh3qqYHe+++/L0uXLpXbb7/dBHa6HxANNKtr8eLFTZnhUQBoJwD7+fXdzTlDgIK1L7/8UiZMmGACH+1hC18cW8tZGaz9+uuvcvXVV0vnzp3NzxUrVjTvZ86cOW7U/8Ybb8iTTz5p9lOffvqpGbI5atQoufHGG2XlypUmScrcuXOladOmZp+3335bLr/8cvn3v/8tpUuXluHDh8uJEyfk448/lvj4eBMYLlq0SF577TWCNQAAAAB2DoN84okn5LnnnjOT4zZs2CDr1693t3Xr1klWatmypUyaNElWr15tfl68eLHMnDlTOnXqZH7W97Bjxw7TI+bQXrcLLrhAZs+ebX7WW+0hcwI1pfvnyJFDfv/9d3efNm3amEDNob1zq1atkn379p1x/QntkQvfAJvp1Ti9wKEbSQeA6OTUbb1omZF6TjsB2MWvOklbEKCeNe1xuuGGG0xw47XHHnvMBEE1a9aUnDlzmjlsL7zwghnWqDRQU6mzVOrPzmN663QfO2JjY6Vw4cIp9tEhlKmfw3msUKFCp723l156yQSxAAAAAJAREUdYvXr1kq+++kr88PXXX5shijq3bMGCBWZemg5d1Fu/Pf7446a30dk2b97s91sCAMAgiRAAZJOeNe3N0iQe48ePl/r165+WYETndWWVAQMGmN41nXumNMHJxo0bTa+WBpElS5Z0lxfQbJAO/blhw4amrPvs2rUrxfOePHnSZIh0fl9v9XfCOT87+6SWK1cuswFBoUN3H330UTd5D/9/geis50ovIh47dsxNtJWe36edAOzhV52kLQhQz5pmRmzUqJEZBrls2TJZuHChu2kSjqzORJN6+KUOh0xOTjZlHbqowZTOa3PosEmdi+YsCqq3+/fvl/nz57v7TJ482TyHzm1z9pk+fbrJFOnQzJE1atRIcwgkEER6keLNN980m5YBRB/n+1FPtPRia3rRTgB28atO0hYEqGdtypQp4pcrr7zSzFErX768ydCoAaL25GlafScb5QMPPCDPP/+8VKtWzU3drxkeu3TpYvapVauWXHbZZdK7d2+Tll8Dsnvvvdf01ul+6qabbjLzz3T9Nb16oUGpVorXX3/dt78dyGzaKz5w4EC3DAC0E4Dd/Pru5pzBOzGhDA5c14WmNR1+kyZNxC+HDh0ywdfIkSPNUEYNrrp3727em5O5Uf+8Z555RoYMGWJ60Fq1aiXvvfeeVK9e3X0eHfKoAdqPP/5oeuq6detm1mbLly9fikWx77nnHpPiv2jRonLfffe53c7nQnv0NBOlDj3RxbcBAPCaLm3jjBphPUUA8M+5xgYZDta092rMmDEmKNIerquuukratWuXIr090n9AAADIKnrB8fzzzzdlgjUAsD82yPCcNV0gWtPW6yLU+fPnN8MNtcdJe6V04WntrQIQHHrd5siRI2YjUxwA2gnAfn59d3POEJAEIzpksHXr1iYbpC4QrYk7dHjFBx98YIYk6kLSmkp/69atmfeOAWRZwh4d+qublgGAdgKwm1/f3ZwzeCdTV7LWZB2PPPKIzJo1SzZt2mTS58+YMcP0vgEAAAAAzl2G56whfZizBttpU+BclUtISDDZVAFEl+XLl0vdunWlSJEisnv37nTXc9oJwC5+1UnaAu9ig4hT9/fv3z/N+/U/iy62qSnzNflI4cKFI30pAFlI62zevHn5jIEo5pzI6W1GTupoJwC7+FUnaQu8E3GwpmubLViwwCyuqYtEq9WrV5vFqWvWrGnS5GtAN3PmTKldu3ZmvGcAABABBtUAQDaZs6ZrrbVv3162bdsm8+fPN9uWLVvk0ksvNWueaXIRTTTy4IMPZs47BpAlTpw4IU888YTZtAwg+iQlJblp+48fP57u36edAOziV52kLfBOxHPWypQpIxMnTjyt10zHxXfo0MEEa9rzpuU9e/ZIdsWcNdhO0/46C8Gz/hIQnfSCatOmTTNcz2knALv4VSdpCwI0Z01fYNeuXacFazpxWd+EKliwIFfqAcvFxsZKv3793DIA0E4AdvPru5tzhgD1rPXo0UNmz54tr776qjRr1szcN3fuXHn44YelZcuW8tlnn8mIESPMemvz5s2T7IqeNQBA0HvWAAAB61nTBbB1PtqNN94oJ0+e/O+TxsaaNdZee+0187MmGvnoo48ifSkAABABluQAgGy6zppeoVu3bp0pV65c2R0/i/+iZw0A4DedQ96kSRNTpmcNAOyPDSLOBvnll1+aWw3O6tevbzYnUBswYECkTw/AIzpZ2Fl7ScsAQDsB2M2v727OGbwTcbDWt29fGTt27Gn369DIzz//PNKnBwAAAIBsKeI5a8OHDzfrqY0ZM0ZatWpl7rvvvvvk+++/lylTpmTGewTggYSEBJPZ1SkDiD5O3dahNxmp57QTgF38qpO0BQEK1jp37izvvfeeXHXVVWa9tf/85z/yww8/mECtevXqmfMuAWQ5HUJRrFgxPmkgGyQYcYZNZeT3aScAe/hVJ2kLvJMpCzLcdNNNsn//frnwwgvNf5hp06ZJ1apVM+OpAQAAACBbylCw1r9//zTv10CtcePGpqfN4aTvB2C3EydOyCuvvOImB4qPj/f7LQHIZElJSeb26NGjcvz4ccmVK1e6fp92ArCLX3WStsDy1P1t27Y9tyePiZHJkydn5H1FHVL3w3aa2cnJ5EpKbyA6LVq0SBo1apThek47AdjFrzpJW2D5otgkDgGijy5mf+edd7plAKCdAOzm13c35wyW96xt2rRJypcvf877b926VcqUKSPZGT1rAICg96wBAAKwKHazZs3kH//4h8ydO/eM++gLf/jhh1K3bl357rvvMvIyAAAgE2UkAyQAwD8Z6i9dsWKFvPDCC3LppZdK7ty5pUmTJlK6dGlT3rdvn3l8+fLlJtnIoEGD5PLLL8/8dw4AAAAAUSxDPWtFihQxWR63b98u77zzjlSrVk327Nkja9asMY/36NFD5s+fL7NnzyZQAwJCJwvrkCjdtAwAtBOA3fz67uacwTsRzUTMkyePXHvttWYDEHyazhtA9MqMYZC0E4Bd/KqTtAXeIOUbAPfiy/r1690ygOij0xWUpvrOSD2nnQDs4ledpC3wDsEaACNHjhxSsWJFPg0gyuu508PmlNP7+7QTgD38qpO0BZbPWQMAAAAAZC161gAYSUlJ8u6775ryPffcI3FxcXwyQBTWc3Xs2DE5ceKExMfHp/v3aScAe/hVJ2kLLF8UG+nHotiwnWZ20nksisVygei0dOlSqV+/fobrOe0EYBe/6iRtgXexQcQ9a7169ZI77rhD2rRpE+lTAfBRzpw55aabbnLLAEA7AdjNr+9uzhkC1LPWpUsX+fnnn6VChQpy2223meCtTJkymfcOowQ9awAAvy1btkzq1atnyvSgA4D9sUHECUZGjRolW7dulb59+8pXX31lMtJ06tRJvv32W3dsPAAAAADAh2yQxYoVk/79+8vixYvl999/l6pVq0rPnj2ldOnS8uCDD8qaNWsy42UAAAAAINvI1NT927dvl4kTJ5pNx7JefvnlZjJz7dq15fXXX8/MlwKQBZOF9cKLbloGANoJwG5+fXdzzuCdiBOM6FDH0aNHy9ChQ2XChAkmy9QDDzxgJjs64y9Hjhwpt99+u+llA2CvPXv2+P0WAGQhXQw7UrQTgF38qpO0BQEJ1kqVKiXJycnSvXt3mTNnjjRs2PC0fdq2bSsFCxaM9KUAZKE8efKY5ANOGUD0yZ07t1vHM1LPaScAu/hVJ2kLApQN8p///Kc89NBDkpCQkOJ+fdrNmzdL+fLlI32PUYFskAAAv61fv14qV65svrMZ7gwA2SAb5LPPPmvS/6a2d+9eqVSpUqRPDwAAAADZUsTDIM/UMacBnDPcAoD9dP7psGHDTPnWW2+VuLg4v98SgEzmLKlz4sQJs8XHx6f792knAHv4VSdpCwIwDFJT9as333xTevfunWIY5KlTp0wKf80IOWvWrMx7twHGMEjYTodE5cuXz5RZLBeITitWrJA6depkuJ7TTgB28atO0hZ4FxtkuGdt4cKF5lZjPU3PH351TssNGjSQhx9+OKNPD8BjenHl6quvdssAQDsB2M2v727OGQKUYOS2224zvWtniwhBzxoAwH8rV640a58qetABIIp71hy6vhoAAAAAIHPFZnS+mqbs13Gxzty1M3nttdcy+t4AAAAAINuKzeh8NSejlDN3LS0xMTEZf2cAPHX06FF3eJQmIUi9diIA0E4AdvGrTtIWWB6sTZkyJc0ygODS6asbN250ywCiT6QXUWknALv4VSdpC7wT8Zy1xMREc8CcSF7/w4wcOdJE+R06dMiM9wjAA7ou4pw5c9wygOiTK1cuN2tzRuo57QRgF7/qJG1BgLJBakB2zTXXyF133SX79++XGjVqmC+BPXv2mPlqffv2zbx3G2CsswYA8NumTZukQoUKJmg7duyY328HALKtg+eYDTJHpC+0YMECad26tSl/++23UrJkSdO79umnn8pbb70V6dMDAIBMwlxyAMhmwyB1gmH+/PlNecKECaaXLUeOHNK8eXN3DC0A+508eVK++uorU77hhhskNjbi5gGAZU6cOOHWdy3rSJj0oJ0A7OJXnaQtCNAwyPr168udd94pXbt2lbp168q4ceOkRYsWMn/+fOncubPs2LEj895tgDEMErY7cuSI5MuXz5RZLBeITqtWrZKaNWtmuJ7TTgB28atO0hYEaFHsp59+Wm666SZ58MEHpV27diZQc3rZGjVqFOnTA/CI9oi3b9/eLQMA7QRgN7++uzlnCFDPmtLes+3bt0uDBg3c/yiamUajROcKXnZHzxoAwG+rV682icAUPegAkA161pQmFdEt3Pnnn58ZTw0AAAAA2VKmBGuTJk0y265duyQ5OTnFYx9//HFmvAQAAAAAZCsRD2597rnnzFprGqzp2mr79u1LsQEIBs3sWqdOHbNpGQBoJwC7+fXdzTlDgHrW3n//fRk2bJj07Nkzc94RAF/o9NUVK1a4ZQDRJ9J11mgnALv4VSdpCwLUs6brtLRs2VL8snXrVrn55pulSJEikidPHqlXr57MmzcvxX8mzVhZqlQp87hmzFmzZk2K59i7d6/06NHDTO4rWLCg3HHHHWbidbglS5aYxb9z584t5cqVk0GDBnn2NwJe0P/bU6ZMMZuWAUSfXLlymVtNBpaRek47AdjFrzpJWxCgbJCPPvqoWd/hqaeeEq/pMEtdHqBt27bSt29fKVasmAnEqlSpYjb1r3/9S1566SX55JNPpFKlSuZ9Ll261FyFcP5Td+rUyWSz/OCDDyQpKUluu+02adasmXzxxRdutpbq1aubQO/xxx83v3/77bfLG2+8IX369Dmn90o2SACA3/QCZ9myZc3Cufp9BwDwx7nGBhEHa/369ZNPP/3ULI6tW1xcXIrHX3vtNckqjz32mMyaNUtmzJiR5uP6p5UuXVoeeughefjhh819+oGUKFHCDN288cYbZeXKlVK7dm2ZO3euNG3a1OyjC3tffvnlsmXLFvP7gwcPlieeeMIsURAfH+++9qhRo+SPP/44p/dKsAYA8Nu2bdukTJkyBGsA4LNzjQ0iHgapwwMbNmxohlQsW7ZMFi5c6G6LFi2SrDR69GgTYF133XVSvHhx08v24Ycfuo+vX7/eBFjOYoFKP5QLLrhAZs+ebX7WWx366ARqSvfXv+f3339392nTpo0bqKmOHTvKqlWrzphE5fjx4+YghG+AzU6ePGkuQOimZQDRx+lN08zNGelZo50A7OJXnaQtCFCCER0j65d169aZXq/+/fvLwIEDTe/Y/fffb4KqXr16mUBNaU9aOP3ZeUxvNdALp8NDChcunGIfHUKZ+jmcxwoVKnTae9Ohl5opEwgKvcDQtWtXU9Y5m1oPAERvsKZzzlOPhvk7tBOAXfyqk7QF3gn02Zh+2WiP2Isvvmh+1p417d3TDJUarPlJ57ZpEOnQnjVNTALYSnuTnWRBWgYA2gnAbn59d3POELBgTeeMaXKOP//8U7799lszHv6zzz4zvVGtWrWSrKIZHnW+WbhatWrJd999Z8olS5Y0tzt37jT7OvRnHbrp7KOLeafu2tUMkc7v663+TjjnZ2eftDJuOVm3gCDQbKk6BxRA9Io0dT/tBGAXv+okbYF3Ig7BNTDS+Vt60HSemnaLKp0s5/R4ZZULL7zQzBsLt3r1aqlQoYIpa7CowZQu2B3ew6Vz0Vq0aGF+1tv9+/fL/Pnz3X0mT55seu10bpuzz/Tp01OM7584caLUqFEjzSGQAAAAAOB7sPb888+bYYea2CN87LsGUgsWLJCs9OCDD8pvv/1mgsK1a9eaVPtDhgyRe+65x72C+MADD5j3qMlINOX+LbfcYjI8dunSxe2Ju+yyy6R3794yZ84cc3Xi3nvvNZkidT910003mXlwuv7a8uXL5auvvpI333wzxTBHAAAAALAqWNOeLc2UmJpmXdQeq6yka6GNHDlSvvzyS6lbt67885//NGuf6QLXjkceeUTuu+8+sx6a7q+TLzU1f/jCgcOHD5eaNWtKu3btTMp+HbqpQV/43zJhwgSTXbJJkyZmKQBdaPtc11gDgiAxMdHUEd20DCD6RDoMknYCsItfdZK2wDsRr7NWuXJlE9houvv8+fPL4sWLzX269trLL79sFp8G66zBfkeOHDEL3Cu9qJE3b16/3xKALMiiXKVKlQzXc9oJwC5+1UnaAu/WWYs4wYgOH9SFsT/++GNzxU4X3NR1yXQR6qeeeirSpwfgEU2IM2bMGLcMIPqErxeakXpOOwHYxa86SVsQoJ41/XWdM6brih09etQ9gBqs6bBEpC96BgAgq+jaoJodWS+uaiItAIDdsUHEwZpDF9fUJB/aBavp9J0uWaTvgAAAkFV02RnNkkywBgDZYBikXpUbNmyYfP/997JhwwbT+Gu6/GuvvVZ69uwZ8URmAN45deqUWbZCXXLJJZIzZ04+fiDKOEvQ6HVaLYdncT4XtBOAXfyqk7QF3slwz5r+2pVXXik///yzNGjQwGRT1PtWrlxpUuRfddVVMmrUqMx/xwFFzxpsx2RhIPqRYASILiQYCa4s71nTHjVdKFoXnG7btm2KxzTC13XMNCOkrmsGwH45cuQwF16cMoDoE+mIF9oJwC5+1UnaggD0rHXo0MF0tz722GNpPq5JR6ZNmybjx4+P9D1GBXrWAAB+0/VCdXkdxRIdAGB/bJDhEHzJkiVy2WWXnfHxTp06mTXXAACAfcaNGyd//vmnmXsCALBThodB7t27V0qUKHHGx/Wxffv2ZfTpAQBAJsudO7db1mRgznI71atXl1q1aplN56Drrd6XJ08ejgEABDFY0ytxsbFn/nXNRnPy5MmMPj0AjyUmJpoecTV27FhO0oAoFD7Upm7durJmzRo5fvy4SQymW+r5bRUrVkwRwGnG56efftpkkaSdALLvdzfnDAGYs6YTC/U/x5lWS9fGX4dYMLziv5izBtuRDRLIfvVce9o2btxoMjn/8ccf5tbZ/m50TMuWLU3A5wRyupUrV44ERYCHyAYZXFmeDbJXr15/uw+ZIIHg0AsvX3/9tVsGEP31XEfBaMIR3Tp37uzup9dxd+/enSKA0/KKFStk8+bNZp9ff/3VbOESEhKkRo0aKQI4LVerVo12BfCgTnuFc4YA9KwhfehZAwBEy5X8VatWndYbp0MqnUW30xqNowFh6nlxeluwYEHP/wYACEpsQLBm2QEBACCIdJ66LrqdujdOb/U78ExKlix5WgCnt2XKlIl4XTgAsBXBmmUI1mA7nV/622+/mXLz5s3N8CgA0RdQjRw50pS7du161kRhmdVO6ACeHTt2nNYTp+WtW7ee8fd0bl3qAE63KlWqmAQnAPz77uacIXIEa5YhWIPtSDACRL9I63lmtxP63egMqQwP5tauXXvGBGUaYFatWvW03jjd8ufPH9H7AYKGBCPBleUJRgBEFx1upCdAThkAsrqd0BOUZs2amS3ciRMnzILd4QGc3uqmQaJTTq1s2bJp9sbp2q+0a4hGfn13c87gHeaseYSeNQCA34Leg65DKrds2ZIigHN65Xbu3HnG39Or16kDOC3runHpHQoKAJmBYZCWIVgDAPgt6MHa2ei6cKmDOL3VpCfJyclp/k58fLxZViB1lsrq1atH1WcDwD4Ea5YhWAMA+C2ag7UzOXbsmFlWIHUgp3PlEhMTz/h7FSpUSDNLZbFixTx9/wCiE8GaZQjWEIQTmm7dupnyd999J7lz5/b7LQGwLFiLpnZCe9s2bdqUZpbKPXv2nPH3ihQpkua8OA3udD05wEt+1cloagv8QrBmGYI12C47XnEHshvbskHaSoO1tNaL27hxo5k3lxY9Wa1Ro8Zp8+J0SCUnssgqZIMMLrJBAkgXnbsxdOhQtwwg+kRaz7NLO1G0aFFp1aqV2cIdPXpUVq9efdq8OL1PexoWL15stnDa26aJTNLqjStUqJDHfxmijV91Mru0BTYgG6RH6FkDACA66Zpw69evTzNL5f79+8/4e8WLF08zS2W5cuVYagCIcgfPcZ01gjXLDggAAIgOOmRy165dac6L27x58xl/T4eX6pDK1FkqdT0tejGA6ECwZhmCNQThyvDSpUtNuV69epIzZ06/3xKATHby5EkZP368KXfs2DHda4zRTmQenfOnGSlTz4vTzJV6nNKi7XKVKlVOy1Kpm14QRvbjV52kLYgcwZplCNZgu+ySOADIzkgwYr+kpCSzNlzqeXF6e+jQoTP+XunSpdOcF1eqVCmGVEYxEowEFwlGAKRLTEyM+bJ3ygBAO+G9uLg4MwRSt9RDKrdt25bmvLjt27ebx3SbPHlyit/TqRdO71v4sErtoUtvzyrs49d3N+cM3mHOmkfoWQMA+I0e9Oik8+E1eEs9L+7PP/80w9XOFBTqHLjatWtLnTp13E2XGtDHAGQthkFahmANAOA3grXs5fjx4yZgSz0vTm91GYK0aG+bBmzhAZxuGtgRxAGZh2DNMgRrAAC/EaxBJScny5YtW0zgtmLFClm+fLksW7bMlM80L84Znpk6iGM4JZAxBGuWIViD7XRB1549e5ryZ599Jrlz5/b7LQGwLFijnYhuOi9OlxTQ4C180yBO/++kJVeuXGkGcZUrVyarsAf8qpO0BZEjWLMMwRpsxxV3IPqRDRIZ7YnbtGnTaUGc9sydaTilBg2ayCR1EFepUiXJkSMHByKTkA0yuMgGCSBddKHVd955xy0DiD6R1nPaiexJg6uKFSuarXPnzimCuA0bNqQZxGnPy6JFi8wWLk+ePCYjZeogrkKFCgRxGeBXnaQt8A7ZID1CzxoAAMgONAPl+vXrTwviNLGJJj1Jiw7P1aBNF3YO34oWLer5+we8wDBIyxCsAQCA7OzkyZNmwe/UQdyqVavkxIkTaf5OyZIlTdBWt25dN4DT5QYSEhI8f/9AZiJYswzBGmynw1k0xbPS7F7MKQCis8djxowZpty6det0J4CgnUBWSEpKkjVr1sjSpUvNppkp9VYDuzMtyKxLCaTuhdPvrvT+nw46v+okbUHkCNYsQ7AG25FgBIh+JBhBkGjGUu15c4I4Z9uzZ0+a++t8OO11Cw/gtEdOe+c0wItGJBgJLhKMAEi3AgUK8KkBoJ2AFXQe2wUXXGC28OUFdu7cmSJ40544DeoSExNl/vz5ZgtXpEiR03rhNIhzlrEIOr++uzln8AYJRjxCzxoAwG/0oCOah/jqsMnUvXBr1641Q/bSossI1K9fXxo0aOBuLC0ArzAM0jIEawAAvxGsIbvR3jZd1Dt1ELdjx44098+fP7/peWvYsKEbwGkvXHoXkAf+DsGaZQjWAAB+I1gD/kvnvWnQtnjxYnfToZRpZaXU+W7VqlVL0QOnW9myZaN2LhyyHsGaZQjWYDtd++Yf//iHKX/wwQeSK1cuv98SAMuCNdoJRHtWSl1GIDyA003nyKWlUKFCpwVwmuAkd+7cnr1nv+okbUHkCNYsQ7AG23HFHYh+ZIME0k+DtdQB3MqVK808udR06YCaNWueFsRpRsqsQDbI4CIbJIB0iYuLk0GDBrllANEn0npOO4HsqESJEtKhQwezhfcs6Vy41EHc3r173cW+v/jiC3f/4sWLS6NGjdytcePGUrly5YjXRfOrTtIWeIdskB6hZw0AACB66bICW7duPS2AW716tXksrWQmmsgkPICrVasWF0yziYMHD5rlDw4cOCDnnXfeGfcjWLPsgAAAACB6HD161CQzWbhwobstWbLE9M6lpnPONPukE7zprS4vkJCQ4Mt7R9YhWLMMwRpsp+vQbN++3ZRLlSoV8dAMAPbROTYLFiwwZT0R1Pk16UE7AWReMpM//vgjRQCnm54vpqbfxzVq1EgRwOmmCU78qpO0BZEjWLMMwRpsR4IRIPqRYASwlwZA69evdwM3vbCit2fKRlmhQgXT6/bjjz+anw8dOuRme81qnDNEjgQjANItNjaWTw0A7QTgA+0Vq1KlitmuvfZa937tOQsP3nTToG7jxo1mc4wYMULuvPNOz94v5wze4MwMgKHrLemwDAA4E9oJwHs6vFG3yy+/3L1v3759smjRIhO4ffTRR2YpgV27dnn2nmgLvEOwBgAAAASIzldr27at2XQh7zOt+4bgI4MAAAAAEFBOoiCCtehEsAbA0BTC99xzj9nSSicMALQTgH11cubMmaZ87NgxT1+XcwZvsM6aR8gGCduR2QmIfmSDBKK3Tvfv319effVVz1/38OHDZg4b0odskADSJS4uTp555hm3DCD6RFrPaScAu2idbN68ufz222+evy7nDN6gZ80j9KwBAAAgsz366KMyaNAgT3vW4F1swJw1AAAAIKBIMBLdSN0PwAiFQubqjtIrPTExMXwyQJRJTk42Kb5VrVq1zCK86UE7AdhF66SzRurJkyc9fV3OGbwRVT1rL7/8sjnBfOCBB9z7NDOOZqspUqSImQjZrVs32blzZ4rf27Rpk3Tu3FkSEhKkePHiMmDAgNP+w0+dOlUaN24suXLlkqpVq8qwYcM8+7sALxw9etSs26KblgFEn8TERKlbt67ZtJxetBOAXbRO/vvf/zZlLzM50xZ4J2qCtblz58oHH3wg9evXT3H/gw8+KD/++KN88803Mm3aNNm2bZtcc8017uO6JoUGaidOnJBff/1VPvnkExOIPf300+4+69evN/vowoO6WrwGg3feeaeMHz/e078RAAAASAvrrEWnqAjWNGVojx495MMPPzS9Ag7tnv3Pf/4jr732mlxyySXSpEkTGTp0qAnKnKw5EyZMkBUrVsjnn38uDRs2lE6dOsk///lPeffdd00Ap95//32pVKmSmbSpw0buvfdeufbaa+X111/37W8GMpv2LOv/ed20DAC0E4Dd9Pv6//7v/0zZy+kLnDN4JyqCNR3mqD1f7du3T3H//PnzzTje8Ptr1qwp5cuXl9mzZ5uf9bZevXpSokQJd5+OHTuaDC3Lly9390n93LqP8xxp0a5ofY7wDbCZNvKailc35qsBoJ0A7Kff1zpFR02ZMkXuvvtuefbZZ+W9996T7777TmbMmCGrVq1y55dl5utyzuCNwCcYGTFihCxYsMAMg0xtx44dEh8fLwULFkxxvwZm+pizT3ig5jzuPHa2fTQA0zH/efLkOe21X3rpJXnuuecy4S8EAAAA0lamTBl32s7gwYPP+DG1atVK+vTpY0aHpXXuCjsFOljbvHmz9OvXTyZOnCi5c+cWmzz++ONmvQuHBnblypXz9T0BZ6PDH5944glTfuGFF8yFDgCgnQDs/u5euHChSaCnwdjevXtl165dKTZNrKfnoTNnzjTb/fffLz179pTevXub0WUZfV3OGbwR6EWxR40aJV27dnXXl3AmV2rXrKYj1gQgOnxx3759KXrXKlSoYJKEaPIRTSQyevRokzjEoVcmKleubHrsGjVqJG3atDGZIN944w13H537ps9xrt3KLIoN2x05csRkTHXmgebNm9fvtwTAsnpOOwHY5VzrpCbY03NXze+wceNG9/7mzZuboO2GG25IV3tAWxC5c40NAt2z1q5dO1m6dGmK+2677TYzL01Xc9eeLB1PO2nSJHPFQem4XU3V36JFC/Oz3movgl550LT9Snvq9EOrXbu2u8/PP/+c4nV0H+c5gGigdeXhhx92ywCiT6T1nHYCsMu51snSpUubnjAd+fXLL7/IkCFD5IcffjAJ93TTDghN1qfDJLWjIrNeF9m8Zy0tF198scnq6PSC9e3b1wRamo5fA7D77rvP3K8ZIZ2eON1f/xMPGjTIzE/TrmFNzf/iiy+6PW26Jo0mMrn99ttl8uTJpgv5p59+MolGzgU9awAAALCFDo/U82Ptbfvzzz/d+zV7ugZt3bt3l/z58/v6HqPZucYGUZEN8mw0vf4VV1xhetZ0OGPJkiXl+++/dx/XIZRjxowxt9pTdvPNN8stt9zipkFVmrZfAzPtTWvQoIFJ4f/RRx+dc6AGAAAA2EST5elItNWrV5tRaDoUUnvJNJv6P/7xDylVqpQZIqlJ/KKsbydQoq5nzVb0rMF22hScPHnSlGNjY0nfD0Sh5ORkMxVA6TI2Or87PWgnALtkdp3cvXu3fPrpp6a3TacOObSzQgM3HSqpeSBoC7yLDQjWPEKwBtsxWRiIfiQYAaJLVn13azCma7Rp0PbNN9+Y9YOVpvzXHjgdieasQUxSsoxhGCQAAACAdNMeOp0+9Nlnn5lMkm+++abUqVPHrC+s89ycQM3psUfWifo5awDOTUJCglnmQjctAwDtBGA3L767CxcubBLraQZ2TdB36623pljfeNasWVnyuvgvgjUA7lU0HYeuW6Rj3gFEJ9oJIPvWSX1+Tcan67Vp9nRdg1jpQtzIOgRrAAAAAM6ZJsbQDOvKmc+GrBHoRbEBZJ4TJ064awsOHDhQ4uPj+XgB0E4AFvPru1tfd926dW6SE2QdskF6hGyQsB3ZIIHoRzZIILr49d0d/rqDBg2SAQMGePK62TE2oGcNwH8bg9hYufvuu90ygOgTaT2nnQDs4led1NeqUaOGWYvNWecNWYOeNY/QswYAAIBooYtkf/TRR6ZXSJONNGzY0N1q1arFdIq/waLYliFYAwAAQLQYNWqUdO/eXY4dO3baY3FxcWZdtvAArkGDBiZrJf6LYM0yBGsAAL+FQiHZs2ePKRctWpRlOgBEnGhk5cqVsmjRIlm4cKG51U3nYaWlYsWK0qhRoxRBXLly5bJlW3TwHOesMQzSsgMC+EUnCztXvPbv3+/ZJGUAwUowQjsB2MOvOnm219WLQhs3bnQDN2fT+9JSqFAhN3Br166ddO7cWbKDgwRrdiFYg+3IBglEP7JBAtHFhmyQ5/q6unj24sWLUwRwK1asOC1ByfLly6V27doS7Q6SDRJAeuTJk0e2bNnilgGAdgKwm1/f3Rl53cKFC0vbtm3N5tAFtTVg08Dt0Ucfld27d8vOnTvTDNZCoZAkJSVJYmKi2XSunFM+28/6Gh06dDA9d0HEMEiP0LMGAPAbPegAbKXBlPa8qXr16p0WgB07dkySk5Mz9NzVq1c3ywzYhJ41AAAAAIFQvnx5N1hbunTp3+6fO3du06vnbGn9rAlQxo0bJ3/99ZcEFSvfAjC0QXvzzTdNuV+/fqyPAuA0tBOAXfyqk1nxukOHDpWpU6eatP9nCr7y/K+cK1euc8og+ccff5hg7dSpUxJUDIP0CMMgYTuGRwHRjwQjQHQJUoIRP6xZs8YMgdRM7GdaTsAvDIMEkC6xsbHSq1cvtwwg+kRaz2knALv4VSeD0hbkzJnT3NKzhr9FzxoAAADgnQ0bNkilSpXM0MmjR48GMjbI4em7AgAAAAAP5IyCnjV7+y0BAECm0nWKnKvLCQkJ5zRBHwCCKkeO//ZLZTTlvw3oWQPgThYuWLCg2bQMIPpooKZJAXTLyJAg2gnALn7VyaC0BTnpWQMQTWzLlATAPrQTgF38qpNBaAty/K9nTUcV6BbE0QQMgwRg6OTb1atXu2UASI12ArCLX3UyKG1Bzv/1rDlDIcN/DgqCNQDu1adq1arxaQA4I9oJwC5+1cmgtAU5/tezFuRgjTlrAAAAAKJOzrDgLKgZIelZA2AkJSXJkCFDTLlPnz4SFxfHJwMgBdoJwC5+1cmgtAU5Uw2DDKKYkM62Q5ZjUWzYTrM5aYY4dfjwYcmbN6/fbwmAZfWcdgKwi191MihtQWJiolmmxDkXz58/vwQtNqBnDYB79enaa691ywCiT6T1nHYCsItfdTIobUFOetZwruhZAwAAALxz8uRJd4jmK6+8Ig8//HDgYgMSjAAAAACIOjnDetYGDRokQUSwBgAAACDqxMTEyM8//xzobJAEawCMo0ePSpkyZcymZQDRR5MC6MmLblpOL9oJwC5+1ckgtQVVq1Z1h0QGEQlGABiaGHbbtm1uGQBSo50A7OJXnQxSWxD3vzlrBGsAAi137tyycOFCtwwAtBOA3fz67g7SOUNs7H/7pgjWAAR+Em7Dhg39fhsALEY7AdjFrzoZpLYgNuDBGnPWAAAAAESl2P8Fa8nJyWYLGuasATCSkpJk+PDhptyjRw93jDcAOGgnALv4VSeD1BbE/i9YczJC5sgRrL6qmJDtswKjBItiw3aaGS5fvnymfPjwYcmbN6/fbwmAZfWcdgKwi191MkhtweHDhyV//vymrJkr8+TJI0GKDehZA+COP7/88svdMoDoE2k9p50A7OJXnQxSWxAb1rOmSVFatmwpQULPmkfoWQMAAAC8dfLkSYmPj3eXGFi3bp1UqlQpMLFBsAZtAgAAAEA6etb+7//+z/1569atEiQEawAAAACi1pNPPinVq1c35aCl6yBYA+BOuq1WrZrZtAwg+mhSAE0EoJuW04t2ArCLX3UyiG1BTExMIIM1EowAcBuvtWvXumUA0SmSEyvaCcAuftXJILYFMQRrAIIsd+7cMnPmTLcMALQTgN38+u4O4jlDDMEagCDT1LsXXnih328DgMVoJwC7+FUng9gWxPwvWAsa5qwBAAAAyBZCARm26WDOGgB3HZKRI0eacteuXVMsIgkAtBOAffz67g7iOUMMwyABBNnx48fl+uuvN+XDhw8HouEF4C3aCcAuftXJILYFMQRrAIIsR44cctFFF7llANEn0npOOwHYxa86GcS2ICagwVpMKGjvOKAOHjwoBQoUkAMHDsh5553n99sBAAAAso369evL0qVLZeLEidK+ffvAxAbBCIUBAAAAIJv1rBGsAQAAAIhqMQRrAIIsMTFRGjZsaDYtA4g+R44ckWLFiplNy+lFOwHYxa86GcS2ICagwZr9qVsAeCI5OVkWL17slgFEpz179mT4d2knALv4VSdpC7xDsAbAyJ07t0yYMMEtA0BqtBOAXfyqk0FsC2LoWQMQZDlz5pRLL73U77cBwGK0E4Bd/KqTQWwLYgIarAU6wchLL70kzZo1k/z580vx4sWlS5cusmrVqhT7HDt2TO655x4pUqSI5MuXT7p16yY7d+5Msc+mTZukc+fOkpCQYJ5nwIABZmX2cFOnTpXGjRtLrly5pGrVqjJs2DBP/kYAAAAAkSFY88G0adNMIPbbb7+ZNROSkpKkQ4cOKSZNP/jgg/Ljjz/KN998Y/bftm2bXHPNNe7jp06dMoHaiRMn5Ndff5VPPvnEBGJPP/20u8/69evNPm3btpVFixbJAw88IHfeeaeMHz/e878ZyCp6geKnn34yW+qLFQBAOwHYx6/v7iCfM4QC1rMWVYti79692/SMaVDWpk0bs8icZrz64osv5NprrzX7/PHHH1KrVi2ZPXu2NG/eXMaOHStXXHGFCeJKlChh9nn//ffl0UcfNc8XHx9vyvqfcdmyZe5r3XjjjbJ//34ZN27cOb03FsWG7fQih/Y+q8OHD0vevHn9fksALKvntBOAXfyqk0FsC5o1aybz5s2TMWPGmE4Yv51rbBBVCUb0j1WFCxc2t/Pnzze9beGrlNesWVPKly/vBmt6W69ePTdQUx07dpS+ffvK8uXLpVGjRmaf1Cud6z7aw3Ymx48fN1v4AQFsliNHDmnatKlbBhB9Iq3ntBOAXfyqk0FsC2ICOmctaoI1TSGqwdOFF14odevWNfft2LHD9IwVLFgwxb4amOljzj7hgZrzuPPY2fbRAEzXlsiTJ0+a8+mee+65TP4rgayj/4/nzp3LRwxEsUjrOe0EYBe/6mQQ24KYgAZrwQiFz4HOXdNhiiNGjBAbPP7446anz9k2b97s91sCAAAAsqWYgAZrUdGzdu+995rxp9OnT5eyZcu695csWdIkDtG5ZeG9a5oNUh9z9pkzZ06K53OyRYbvkzqDpP6s40vT6lVTmjVSNwAAAADIdj1rGhlroDZy5EiZPHmyVKpUKcXjTZo0kbi4OJk0aZJ7n6b211T9LVq0MD/r7dKlS2XXrl3uPppZUgOx2rVru/uEP4ezj/McQDTQIb06jFg3LQOIPkePHpWKFSuaTcvpRTsB2MWvOhnEtiCGnjV/hj5qpscffvjBrLXmzDHTzCra46W3d9xxh/Tv398kHdEA7L777jNBliYXUZrqX4Oynj17yqBBg8xzPPnkk+a5nZ6xu+66S9555x155JFH5PbbbzeB4ddff20yRALRNO9Tl69wygCij17k3Lhxo1tOL9oJwC5+1ckgtgUxBGveGzx4sLm9+OKLU9w/dOhQufXWW0359ddfN1lqdDFszc6oWRzfe++9FCuw6xBKzf6oQZymHu3Vq5f83//9n7uP9thpYKZrtr355ptmqOVHH31knguIFnpxQnupnTIA0E4AdvPruzuI5wwxAQ3WomqdNZuxzhoAwG9BXBsJADKDDtnU3sDvvvtOrrnmGglKbBDoOWsAAAAAcK49a0ETFdkgAUTu1KlTMmPGDFNu3bq1GSIMALQTgL38+u4O4jlDTECHQRKsATCOHTsmbdu2NWWGRwFIC+0EYBe/6mQQ24IYgjUAQaaNmLNcRVCHCgDI2npOOwHYxa86GeS2gJ41AIGUkJAgy5cv9/ttALC4ntNOAHbxq04GsS2ICWjPGglGAAAAAES1mID1ADoI1gAAAABEtRh61gAEWWJiolx66aVm0zKA6HP06FGpU6eO2bScXrQTgF38qpNBbgtCARsGSTZIAEZycrL88ssvbhlA9NGTlBUrVrjl9KKdAOziV50MYlsQE9CeNYI1AEauXLnk888/d8sAkBrtBGAXv+pkENuCmIDOWSNYA/DfxiA2Vnr06MGnAeDMJw20E4BV/KqTQWwLYgLas0aCEQAAAADZQihgwRo9awCMU6dOyYIFC0y5cePGkjNnTj4ZACnQTgB28atOBrEtiAlozxrBGgDj2LFjcv7555vy4cOHJW/evHwyAFKgnQDs4ledDGJbEEOwBiDItBGrUKGCWwYQfSKt57QTgF38qpNBbAtiAvI+U6NnDYCRkJAgGzZs4NMAolik9Zx2ArCLX3UyiG1BTEB71kgwAgAAACBbCBGsAQAAAIA9YuhZAxBkOlm4S5cuZtMygOiTmJgozZo1M5uW04t2ArCLX3UyiG1BDHPWAASZpuH94Ycf3DKA6JOcnCzz5s1zy+lFOwHYxa86GcS2ICagPWskGAFgxMfHy5AhQ9wyAKRGOwHYxa86GeS2IESwBiCI4uLipHfv3n6/DQAWo50A7OJXnQxiWxAT0J41skECAAAAiGoxAQ3WGAYJwJ2/snLlSlOuVauW5MjBtRwAKdFOAHbxq04GsS2IIcEIgCDTzHB169Y15cOHD0vevHn9fksALEM7AdjFrzoZ5LYgRM8agKAqWrSo328BgOX1nHYCsItfdTJobUHM/3rWFi9eLEHCMEgAhl4V2717N58GEMUiree0E4Bd/KqTQWwL4uLizO2CBQskSAjWAAAAAES1e++9V/bt2ydXXnmlBElMKGgDNwPq4MGDUqBAATlw4ICcd955fr8dAAAAAJbHBvanbgHgiWPHjkmPHj3MpmUA0UeTAlx88cVm03J60U4AdvGrTtIWeIeeNY/QswbbHTlyRPLlyxfIzE4AvKnntBOAXfyqk7QF3sUGzFkDYMTHx8vrr7/ulgEgNdoJwC5+1UnaAu/Qs+YRetYAAH7jajgA2IE5awAAAAAQYAyDBGAkJyfLpk2bTLl8+fKSIwf5hwCkRDsB2MWvOklb4B2CNQCGZoarVKmSKZNgBEBaaCcAu/hVJ2kLvEOwBsCVkJDApwFEuUjrOe0EYBe/6iRtgTcI1gAYejVOkw8AiF6R1nPaCcAuftVJ2gLvMCkFAAAAACxEsAYAAAAAFiJYA2AcP35cevfubTYtA4g+x44dk86dO5tNy+lFOwHYxa86SVvgHRbF9giLYsN2LJYLRL9I6zntBGAXv+okbYF3sQEJRgAYcXFx8vzzz7tlAEiNdgKwi191krbAO/SseYSeNQCA37gaDgDBig2YswYAAAAAFmIYJAAjFArJnj17TLlo0aISExPDJwMgBdoJwC5+1UnaAu8QrAEwjh49KsWLF/d8kjKA4KCdAOziV52kLfAOwZpH9AqEMz4VsHUui0P/n546dcrX9wPAvnpOOwHYxa86SVsQOScmcGKEMyHBiEe2bNki5cqV8+rlAAAAAFhu8+bNUrZs2TM+TrDmkeTkZNm2bZvkz5/f97lAGslr4Kj/Oc6WfQb24dgFE8ctuDh2wcRxCy6OXXBx7NJHe9QOHTokpUuXlhw5zpzzkWGQHtGDcLao2Q8aqBGsBRPHLpg4bsHFsQsmjltwceyCi2N37jR1/98hdT8AAAAAWIhgDQAAAAAsRLCWDeXKlUueeeYZc4tg4dgFE8ctuDh2wcRxCy6OXXBx7LIGCUYAAAAAwEL0rAEAAACAhQjWAAAAAMBCBGsAAAAAYCGCNQAAAACwEMFaNvPuu+9KxYoVJXfu3HLBBRfInDlz/H5L2c706dPlyiuvNCvWx8TEyKhRo05b0f7pp5+WUqVKSZ48eaR9+/ayZs2aFPvs3btXevToYRaeLFiwoNxxxx1y+PDhFPssWbJEWrdubY51uXLlZNCgQZ78fdHqpZdekmbNmkn+/PmlePHi0qVLF1m1alWKfY4dOyb33HOPFClSRPLlyyfdunWTnTt3pthn06ZN0rlzZ0lISDDPM2DAADl58mSKfaZOnSqNGzc2mbWqVq0qw4YN8+RvjEaDBw+W+vXru4u0tmjRQsaOHes+zjELjpdfftm0mQ888IB7H8fPTs8++6w5VuFbzZo13cc5bvbaunWr3HzzzeZ7TM9B6tWrJ/PmzXMf5xzFByFkGyNGjAjFx8eHPv7449Dy5ctDvXv3DhUsWDC0c+dOv99atvLzzz+HnnjiidD3338f0io4cuTIFI+//PLLoQIFCoRGjRoVWrx4ceiqq64KVapUKZSYmOjuc9lll4UaNGgQ+u2330IzZswIVa1aNdS9e3f38QMHDoRKlCgR6tGjR2jZsmWhL7/8MpQnT57QBx984OnfGk06duwYGjp0qPk8Fy1aFLr88stD5cuXDx0+fNjd56677gqVK1cuNGnSpNC8efNCzZs3D7Vs2dJ9/OTJk6G6deuG2rdvH1q4cKH5v1C0aNHQ448/7u6zbt26UEJCQqh///6hFStWhN5+++1Qzpw5Q+PGjfP8b44Go0ePDv3000+h1atXh1atWhUaOHBgKC4uzhxHxTELhjlz5oQqVqwYql+/fqhfv37u/Rw/Oz3zzDOhOnXqhLZv3+5uu3fvdh/nuNlp7969oQoVKoRuvfXW0O+//26+j8aPHx9au3atuw/nKN4jWMtGzj///NA999zj/nzq1KlQ6dKlQy+99JKv7ys7Sx2sJScnh0qWLBl65ZVX3Pv2798fypUrlwm4lJ7A6+/NnTvX3Wfs2LGhmJiY0NatW83P7733XqhQoUKh48ePu/s8+uijoRo1anj0l0W/Xbt2meMwbdo09zhpEPDNN9+4+6xcudLsM3v2bPOzBmc5cuQI7dixw91n8ODBofPOO889Vo888og5yQl3ww03mGARmUPrxkcffcQxC4hDhw6FqlWrFpo4cWLooosucoM16pzdwZpeUEwLx81eep7QqlWrMz7OOYo/GAaZTZw4cULmz59vhtQ5cuTIYX6ePXu2r+8N/9/69etlx44dKY5TgQIFzJBV5zjprQ59bNq0qbuP7q/H8/fff3f3adOmjcTHx7v7dOzY0Qzb27dvHx95Jjhw4IC5LVy4sLnV+pWUlJTi2Omwn/Lly6c4djqkpESJEimOy8GDB2X58uXuPuHP4exDPY3cqVOnZMSIEXLkyBEzHJJjFgw6tFiHDqeuFxw/u+nwfR3uX7lyZTNsX4eAK46bvUaPHm3OLa677jozTL9Ro0by4Ycfuo9zjuIPgrVsYs+ePeZEJfwkUenPGhzADs6xONtx0lttRMPFxsaaoCF8n7SeI/w1kHHJyclm3syFF14odevWdT9XDY41kD7bsfu743KmfTSgS0xM5LBlwNKlS80cQp0DeNddd8nIkSOldu3aHLMA0OB6wYIFZs5oatQ5e+kFRp1rO27cODNvVE/ydQ71oUOHOG4WW7dunTle1apVk/Hjx0vfvn3l/vvvl08++cQ8zjmKP2J9el0ACPSV/mXLlsnMmTP9fis4BzVq1JBFixaZ3tBvv/1WevXqJdOmTeOzs9zmzZulX79+MnHiRJMoCcHRqVMnt6wJfjR4q1Chgnz99dcmaQXsvRCpPWsvvvii+Vl71vS77v333zftJvxBz1o2UbRoUcmZM+dpmen055IlS/r2vpCScyzOdpz0dteuXSke12yCmiEyfJ+0niP8NZAx9957r4wZM0amTJkiZcuWTXHsdLjx/v37z3rs/u64nGkfzWTISU7GaI+nZtVs0qSJ6aFp0KCBvPnmmxwzy+lwOW3rNDOqjh7QTYPst956y5S1x5k6Fww64qB69eqydu1a6p3FNAu1jjoIV6tWLXcIK+co/iBYy0YnK3qiMmnSpBRXUPRnnbsBO1SqVMk0huHHSYe/6Vw05zjprQYEeiLjmDx5sjmeevXS2UeXCNA5VA69Oq09DIUKFfL0b4oWmg9GAzUdQqeftx6rcFq/4uLiUhw7nSOoX3Lhx06H5IUH23pcNBBzviB1n/DncPahnmYerSvHjx/nmFmuXbt2pr5or6iz6VV/nf/klKlzwaBLy/z5558mGKCttJcO7U+9JM3q1atNr6jiHMUnPiU2gU+p+zWr4LBhw0xGwT59+pjU/eGZ6eBNZjNN266bVsHXXnvNlDdu3OimxdXj8sMPP4SWLFkSuvrqq9NM3d+oUSOTWnfmzJkmU1p46n7NtqWp+3v27GlSlOux13TwpO7PuL59+5olFaZOnZoiHfXRo0dTpKPWdP6TJ082qftbtGhhttSp+zt06GDS/2s6/mLFiqWZun/AgAEmm+S7775L6v4IPPbYYyZj5/r160190p81c+qECRM4ZgEUng1SUefs9NBDD5m2UuvdrFmzzHIlukyJZtFVHDd7l8iIjY0NvfDCC6E1a9aEhg8fbr6PPv/8c3cfzlG8R7CWzeiaTXoyqeutaSp/XacL3poyZYoJ0lJvvXr1clPjPvXUUybY0uC6Xbt2Zn2ocH/99ZcJzvLly2fSvt92220mCAyna7RpCl59jjJlypgGFhmX1jHTTddec2hAfffdd5vU8PoF17VrVxPQhduwYUOoU6dOZt07PXnRk5qkpKTT/o80bNjQ1NPKlSuneA2kz+23327WDdLPUgNjrU9OoMYxC36wRp2zky43UqpUKVPv9PtHfw5fq4vjZq8ff/zRXFTUc4eaNWuGhgwZkuJxzlG8F6P/+NWrBwAAAABIG3PWAAAAAMBCBGsAAAAAYCGCNQAAAACwEMEaAAAAAFiIYA0AAAAALESwBgAAAAAWIlgDAAAAAAsRrAEAAACAhQjWAAA4RxdffLE88MAD7s8VK1aUN954I0s/v7/++kuKFy8uGzZsMD9PnTpVYmJiZP/+/Zn6Oo899pjcd999mfqcAIDIEKwBAKLKrbfeaoIZ3eLi4qRSpUryyCOPyLFjxzL9tebOnSt9+vSRrPTCCy/I1VdfbQLDrPTwww/LJ598IuvWrcvS1wEAnDuCNQBA1Lnssstk+/btJvB4/fXX5YMPPpBnnnkm01+nWLFikpCQIFnl6NGj8p///EfuuOMOyWpFixaVjh07yuDBg7P8tQAA54ZgDQAQdXLlyiUlS5aUcuXKSZcuXaR9+/YyceLEFEMLu3fvLmXKlDHBVr169eTLL79M8RxHjhyRW265RfLlyyelSpWSV1999bTXCR8GqcMUtTdv0aJF7uM6VFHv06GLat++fdKjRw8T5OXJk0eqVasmQ4cOPePf8fPPP5u/pXnz5mcN6Dp16iQXXniheT3nfXz99dfSunVr8zrNmjWT1atXm57Apk2bmr9Jf2f37t0pnuvKK6+UESNGnNNnDADIegRrAICotmzZMvn1118lPj7evU+HRDZp0kR++ukn87gOZezZs6fMmTPH3WfAgAEybdo0+eGHH2TChAkm4FqwYEFE7+Wpp56SFStWyNixY2XlypWmF0t7tM5kxowZ5n2eiQZnl156qSQnJ5tgtGDBgu5j2pP45JNPmvccGxsrN910kxkO+uabb5rnXbt2rTz99NMpnu/888+XLVu2uPPjAAD+ivX59QEAyHRjxowxvUcnT56U48ePS44cOeSdd95xH9ceNZ2j5dDEGuPHjze9URqwHD582Aw//Pzzz6Vdu3ZmH53PVbZs2Yje16ZNm6RRo0amd0v93Ty0jRs3SunSpdN8bMeOHXLDDTeY3rkvvvgiRTCq9O/TYY2qX79+pidx0qRJpgdO6dDKYcOGpfgd57X0dbN6jhwA4O8RrAEAok7btm1Nr5UOZdQ5a9qz1K1bN/fxU6dOyYsvvmiCs61bt8qJEydMUOfMP/vzzz/NfRdccIH7O4ULF5YaNWpE9L769u1r3of2dnXo0MEM0WzZsuUZ909MTJTcuXOn+Zj2qGlg+dVXX0nOnDlPe7x+/fpuuUSJEuZWh3uG37dr164Uv6NDJp2hlQAA/zEMEgAQdfLmzStVq1aVBg0ayMcffyy///676SlzvPLKK2Y44KOPPipTpkwx88y0F0oDtIzS3jsVCoXc+5KSklLso/PEtNfqwQcflG3btpleu/AevtR0iKTOc0tL586dZfr06WZYZVo0E6ZD57CldZ8Onwy3d+9ec6tz6gAA/iNYAwBENQ2iBg4caOZvaU+VmjVrlkmHf/PNN5uArnLlyiYBh6NKlSomsNEgz6FBU/g+qTkBjmahdIQnGwnfr1evXmaIpSYnGTJkyBmfU4dMnikYe/nll83zaMB3pn3SS+fv6d9dp06dTHk+AEBkCNYAAFHvuuuuM0MF3333XfOzzvPShByaeEQTffzjH/+QnTt3uvvrfDed06VJRiZPnmyCGF2/zek9S4sOIdSsjRpE6XNqchINEMNpQg9NWKLJPZYvX27m1tWqVeuMz6m9fbrfmXrX/v3vf5vskpdccon88ccfEilNPOJkkAQA+I9gDQAQ9XTO2r333iuDBg0y89g0iGrcuLEJhi6++GKT5l/nj4XToZIauGg6e03936pVq7NmZlQ65FKTmuh+DzzwgDz//PMpHtckII8//riZT9amTRsTQJ4tVb7OMdP3qXPrzkTn5F1//fUmYDtbz9+50PfSu3fviJ4DAJB5YkLhg+sBAIBVdHkB7eHT3r2z9exFSpcTeOihh2TJkiUmuAUA+I/WGAAAi2kikTVr1pislbrId1bRHkddoJtADQDsQc8aAAAAAFiIOWsAAAAAYCGCNQAAAACwEMEaAAAAAFiIYA0AAAAALESwBgAAAAAWIlgDAAAAAAsRrAEAAACAhQjWAAAAAMBCBGsAAAAAIPb5fzBxqeDad2U4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(0, 6371, 0.5)\n", + "ax.plot(rs, prem.density(rs), 'k')\n", + "\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Density (kg/m$^3$)')\n", + "\n", + "ax.axvline(1221.5, ls=':', c='k')\n", + "ax.axvline(3480, ls='--', c='k')\n", + "ax.axvline(3630, ls=':', c='k')\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mass and moment of inertia\n", + "\n", + "$$ M = 4\\pi \\int_0^{R_{e}} \\rho(r) r^2 \\,\\mathrm{d}r.$$\n", + "\n", + "Moment of inertia:\n", + "\n", + "$$I = \\frac{2}{3} 4\\pi \\int_0^{R_{e}} \\rho(r) r^4 \\,\\mathrm{d}r.$$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass of the Earth is: 5.973178452676284e+24 kg\n", + "Earth's moment of inertia is: 8.020207731256643e+37 kg m^2\n", + "I/MR**2: 0.3307995553696299\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAI1CAYAAADsLNpwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhPFJREFUeJzt3Qd8FMXbwPEnuXRq6L13kCa9Se8d6VUUFRuKoIKKYkPxL3ZQUASkS+9BehGk9957bwnpyb2fGci9iQKSXHK7t/l9/ayZvbvcLbeZuX1uZp7xsNvtdgEAAAAAiCfvAQAAAADcQ4AEAAAAAPcRIAEAAADAfQRIAAAAAHAfARIAAAAA3EeABAAAAAD3ESABAAAAwH0ESAAAAABwHwESAAAAANxHgAQAsJRTp06Jh4eH7Nq1K9G/u3LlSilZsqTExMTo/Q8//FDKly+f7MdYrVo1mT17drI/LwDAeQRIAIBk06dPHx2cqM3b21uyZ88ujRo1kvHjx0tsbGyKvF7btm2T7fneeustee+998Rms0lKUq/xzjvvpMh7AgBwDgESACBZNW3aVC5evKh7cpYuXSr16tWTAQMGSMuWLSU6Otq07/aGDRvk+PHj0qFDhxR/rWbNmklwcLB+fwAA5kKABABIVr6+vpIjRw7JnTu3VKxYUYYOHSrz58/XwcCECRMcj7t165Y899xzkjVrVkmfPr3Ur19fdu/e7bg/bnjbzz//LHnz5pWAgADp1KmT3L5923H/xIkT9XPH9VqtWbPG8fsnTpzQwZn6vXLlysmmTZseedzTp0/XvV1+fn4PfYwKoAoVKiSvvPKK2O12/e/JmDGjLFq0SIoXL65f6+mnn5bQ0FB9bAUKFJDAwEB57bXXHMP2FNVD1bx5c/2aAABzIUACAKQ4FfyoIGXOnDmO2zp27ChXrlzRgdP27dt1MNWgQQO5ceOG4zHHjh2TmTNnysKFC2XZsmWyc+dOeemll/R9gwYN0gFTXI+V2mrUqOH43XfffVc/Rs1FKlasmHTt2vWRPVjr16+XSpUqPfT+PXv2SK1ataRbt27yww8/6IBMUcHQd999p4MddYwqSGvXrp0sWbJEb7///rsO8mbNmpXg+apUqaJfEwBgLl5GHwAAIHUoUaKEDjLihrNt2bJFB0iqx0n53//+J/PmzdOBxPPPP69vCw8Pl0mTJuneKOX777+XFi1ayFdffaV7qfz9/SUiIkKX/0kFR+qxyvDhw6V06dI64FLH8SCnT5+WXLlyPfC+v/76Sw8RVEHXm2++meC+qKgoGTNmjBQuXFjvqx4kFRRdvnxZ0qZNK6VKldI9WatXr5bOnTs7fk+91tmzZ/U8JE9Pvq8EALOgRQYAuIQakhbX66KG0oWEhEjmzJl1EBG3nTx5Ug9ji5MvXz5HcKRUr15dBxSHDx/+z9crW7aso5wzZ079UwVkDxMWFvbA4XVnzpzRQ++GDRv2r+BIUcPq4oIjRSWmUEPr1L8n/m3/fG0V3Kl/iwrwAADmQQ8SAMAlDh48KAULFtRlFRypoCX+nKE4ak5PclBZ9OLEBWaPyhqXJUsWuXnz5r9uV3OkVG/PtGnTpG/fvnq+1MNeJ+61HnTbP19bDSVMkyaNDpQAAOZBDxIAIMWtWrVK9u7d68gQp+YbXbp0Sby8vKRIkSIJNhWoxO+9uXDhgmN/8+bNejiaSoig+Pj4JEh+4IwKFSrIgQMH/nW7CmBUEgbVu9SkSROdfS457Nu3T78mAMBcCJAAAMlKDRlTwc/58+dlx44d8tlnn0mbNm30HJ5evXrpxzRs2FAPl1NrGC1fvlynBFfzfNQcn23btjmeSwUlvXv31kPyVEIDlQ1OJWaIm3OkhrKpeU1qyN21a9f0fKCkUsGPmhv1IKqnZ/HixTqgUym6VQ+Ys9S/p3Hjxk4/DwAgeREgAQCSlcrkpobPqeBFZZhTyQlUljeVjjtuAVY15ExleKtTp44888wzOstcly5ddKIENV8njupRat++vU6JrYIJNa9o9OjRjvv79eune5NU9jk1FG7jxo1JPu7u3bvL/v37Hzq/Sc0pUhn31Fwqlfzh7t27SX4tFTyqgFD92wEA5uJhVy09AAAmo9Y5UlntVJpuVxk8eLDcuXNHp+VOSW+//bae7zR27NgUfR0AQOLRgwQAwH1qiF/+/PkfmcwhOWTLlk0+/vhj3ncAMCGy2AEAEC+D3tChQ1P8/XhQunAAgDkwxA4AAAAA7mOIHQAAAADcR4AEAAAAAPcRIAEAAADAfQRIFqPW1ujRo4dkzpxZr/7+xBNPJFh0UWV1HzZsmF6jRN2vFms8evRogue4ceOGXg8kffr0esLys88++69FEdXCjLVr19aLOObNm1dGjhzpsn+jVdMZq3Vh4m8lSpRw3B8eHi4vv/yyPq9qLZYOHTrI5cuXEzzHmTNn9NosAQEBOkOWSlccHR2d4DFr1qyRihUriq+vr15fZsKECS77N6YGn3/+uT53r7/+uuM2zp05jRkzRq+ppNo5talFa9UaR3E4b+Y1YsQIqVy5sqRLl063dWqx4X+uXcX5M6d169ZJq1atJFeuXLqtVGn84+MaxXp+/PFHvSaeul6sWrWqbNmyRdyCWgcJ1nDjxg17/vz57X369LH//fff9hMnTtiDgoLsx44dczzm888/t2fIkME+b948++7du+2tW7e2FyxY0B4WFuZ4TNOmTe3lypWzb9682b5+/Xp7kSJF7F27dnXcf/v2bXv27Nnt3bt3t+/bt88+bdo0u7+/v/3nn392+b/ZKj744AN76dKl7RcvXnRsV69eddz/4osv2vPmzWtfuXKlfdu2bfZq1arZa9So4bg/OjraXqZMGXvDhg3tO3futC9ZssSeJUsW+5AhQxyPUX8PAQEB9oEDB9oPHDhg//777+02m82+bNkyl/97rWjLli32AgUK2MuWLWsfMGCA43bOnTktWLDAvnjxYvuRI0fshw8ftg8dOtTu7e2t2zSF82ZeTZo0sf/222/6XO3atcvevHlze758+ewhISGOx3D+zEl9Nr377rv2OXPmqDU47XPnzk1wP9co1jJ9+nS7j4+Pffz48fb9+/fb+/XrZ8+YMaP98uXLdrMjQLKQt99+216rVq2H3h8bG2vPkSOH/csvv3TcduvWLbuvr68OchR14awara1btzoes3TpUruHh4f9/Pnzen/06NH2wMBAe0RERILXLl68eAr9y1JHgKSC0gdR50hduP3xxx+O2w4ePKjP06ZNmxwfOp6envZLly45HjNmzBh7+vTpHefprbfe0kFYfJ07d9YXG3BOcHCwvWjRovY///zT/tRTTzkCJM6de1Ht2i+//MJ5czNXrlzR7eHatWv1PvXOPfwzQOIaxXqqVKlif/nllx37MTEx9ly5ctlHjBhhNzuG2FnIggULpFKlStKxY0c97KBChQoybtw4x/0nT56US5cu6WF1cTJkyKC7PDdt2qT31U81rE49Txz1eE9PT/n7778dj6lTp474+Pg4HtOkSRM9xEGtDI+kUUMd1bCDQoUK6SGOasicsn37domKikpw3tTwu3z58iU4b2o4Zfbs2ROckzt37sj+/fsdj4n/HHGPiXsOJJ0a/qiGN/7z/eXcuYeYmBiZPn263L17Vw+147y5l9u3b+ufmTJl0j85f+6JaxRriYyM1HUx/ueiupZU++5w3UGAZCEnTpzQ4+qLFi0qQUFB0r9/f3nttddk4sSJ+n4VHCnxL6Lj9uPuUz9VcBWfl5eX/uCJ/5gHPUf810DiqCBVzQdatmyZPofqg0LN8QoODtbvqQpGVeD6qPP2X+fkYY9RQVRYWBinLInUhfWOHTv0vIh/4tyZ2969e/WcPjUn78UXX5S5c+dKqVKlOG9uJDY2Vs/5q1mzppQpU0bfRr1zT1yjWMu1a9f0l0+PuuY0My+jDwDJ+0Ghen4+++wzva96kPbt2yc//fST9O7dm7faxJo1a+Yoq4njKmDKnz+/zJw5UyfTgDmdPXtWBgwYIH/++aeegAr3Urx4cdm1a5fugZg1a5ZuJ9euXWv0YSGRvbfqc27Dhg28bwCSDT1IFqIy06lvP+MrWbKkY6hWjhw59M9/Zj9T+3H3qZ9XrlxJcL/KhKYy28V/zIOeI/5rwDmqt6hYsWJy7Ngx/Z6qrupbt2498rz91zl52GNUBi+CsKRRwwdUfVGZAVVPq9rUBfZ3332ny+qbMs6deameWZXN8cknn9Q9gOXKlZNvv/2WOucmXnnlFVm0aJGsXr1a8uTJ47idNtM9cY1iLVmyZBGbzfbIa04zI0CyEDXE4J+pTo8cOaJ7IpSCBQvqP8qVK1c67lfDq9TcIjXuXlE/1YW4uvCLs2rVKt07pXo14h6jUnWqeTFx1Dfo6tvYwMDAFP93pgYqrfrx48d10Ksu3ry9vROcN3WeVeAb/7yp4ULxg1t1TlTwExc0q8fEf464x8Q9BxKvQYMG+n1XvRBxm+rFVXPI4sqcO/eh2rmIiAjqnMmp+f0qOFJDItXnk/psi4820z1xjWK9L6CefPLJBNcdqo1V+25x3WF0lggkb5phLy8v+6effmo/evSofcqUKTqt8+TJkxOk0FQpFufPn2/fs2ePvU2bNg9M812hQgWdKnzDhg06O1f8NN8qQ5BK892zZ0+dZlWlcVSvQ5rvpHvzzTfta9assZ88edK+ceNGna5bpelW2ZniUtaqNLarVq3Sab6rV6+ut3+m+W7cuLFOe6tSd2fNmvWBab4HDx6ss+D9+OOPpPlOAfGz2HHuzOudd97RWc9UnVNtodpX2TqXL1+u76fOmVf//v31chWqzYy/NEJoaKjjMZw/82b8VEtRqE1dgo4aNUqXT58+re/nGsVapk+frjMlT5gwQWdJfv755/U1aPyMu2ZFgGQxCxcu1BfK6g+yRIkS9rFjxya4X6XRfP/993WAox7ToEEDvQZIfNevX9cBUdq0aXWa6GeeeUY3avGpNZRUSnH1HLlz59aNGpJOpdvOmTOnXi9AvZ9qP/76VSqAfemll3QaYhXktGvXTl8QxHfq1Cl7s2bN9JpUKrhSQVdUVFSCx6xevdpevnx5/TqFChXSa4kgZQMkzp059e3bV68bp+qC+jJBtYVxwZHCeTMvdWH9oC1+e8b5Myf1GfSgc9e7d299P9co1vP999/rL3hVW6vSfqs1Nt2Bh/qf0b1YAAAAAGAGzEECAAAAgPsIkAAAAADgPgIkAAAAALiPAAkAAAAA7iNAAgAAAID7CJAAAAAA4D4CJDioFeQ//PBD/RPuhXPnnjhv7otz5544b+6Lc+e+Itzw+pJ1kOBw584dyZAhg9y+fVvSp0/PO+NGOHfuifPmvjh37onz5r44d+7rjhteX9KDBAAAAAD3ESABAAAAwH1eYmExMTFy5MgRSZs2rXh4eBh9OKYXHBysf54/f153h8J9cO7cE+fNfXHu3BPnzX1x7txXsImuL+12u4SEhEixYsXEZrOlzjlIBw8elFKlShl9GAAAAABM4sCBA1KyZMnU2YOUM2dOx5uQLl06ow8H+Jfo6GhZsWKFLjds2FC8vCxdJYFUW8+nTJmiy927d090PaedAMzFqDpJW5A8vVmq8yQuRkiVPUjumDUDqcvdu3f1EFBFdfmmSZPG6EMCYLJ6TjsBmItRdZK2wHWxAV9XAwby9PSUGjVqOMoAQDsBmJtRn91cM7gOPUgAAKQgvvUFAPfqQeIrawAAAAC4jwAJAAAAAO4jQAIMFBYWJpUrV9abKgMA7QRgbkZ9dnPN4DokaQAMFBsbK9u2bXOUAYB2AjA3oz67uWZwHQIkwEC+vr6yaNEiRxmA9Thbz2knAHMxqk7SFrgOWewAAAAAWN4dstgBAAAAQOIwxA4wUExMjKxatUqX69evLzabjfMBWExUVJRMmTJFl7t37y7e3t6J+n3aCcBcjKqTtAWuwxA7wEAsIAlYn7P1nHYCMBej6iRtgeuG2NGDBBjI09NTypUr5ygDAO0EYG5GfXZzzeA6pu5BOn/+vLz99tuydOlSCQ0NlSJFishvv/0mlSpVStYoEQCAlMK3vgBgDm7fg3Tz5k2pWbOm1KtXTwdIWbNmlaNHj0pgYKDRhwYAAADAokwbIH3xxReSN29e3WMUp2DBgoYeEwAAAABrM+2khwULFuihdB07dpRs2bJJhQoVZNy4cY/8nYiICN11Fn8DzCwsLEzq1q2rN1UGANoJwNyM+uzmmsF1TDsHyc/PT/8cOHCgDpK2bt0qAwYMkJ9++kl69+79wN/58MMPZfjw4f+6nTlIMCvmJgDWRxY7wFrIYvf4ImMi5YsNX8hrVV+TDH4ZxGhuPwcpNjZW9yB99tlnel/1IO3bt++RAdKQIUN0QBX/TVDD9ACz8vX1lZkzZzrKAKzH2XpOOwGYi1F10t3aguM3jkuX2V1k24Vtsv/qfpn+9HRxF6YNkHLmzCmlSpVKcFvJkiVl9uzZD/0d9cfiDn8wQBwvLy/dQwrAupyt57QTgLkYVSfdqS04cPWAPDXhKbkWek0y+WeS7k90F3di2gBJZbA7fPhwgtuOHDki+fPnN+yYAAAAADzcsRvHpOGkhjo4qpizoszrPE/yZnCvEV2mDZDeeOMNqVGjhh5i16lTJ9myZYuMHTtWb4BVxMTEyObNm3W5WrVqYrPZjD4kAMksOjpa5s6dq8vt2rXT3wInBu0EYC5G1Ul3aAtO3zotDSY1kIshF+WJbE/Inz3/1D1I7sa0SRqURYsW6XlFav0jleJbzS/q16/fY/8+C8XC7EjSAFgfSRoAayFJw4NdCL4gdX6rI8dvHpfimYvL2j5rJXva7GImbp+kQWnZsqXeAKvy8PCQIkWKOMoAQDsBmJtRn91mvma4eveqHlangqOCGQvKil4rTBccWaYHyVn0IAEAjEZPMQAruxl2U+pPqi+7Lu2SPOnzyLo+66RgYEFx59jAtAvFAgAAADCv4IhgaTalmQ6OsqXJJit6rjBtcJQYBEgAAAAAEiU0KlRaTWslf5//WydiUMFR8SzFLfEuEiABBgoPD5cWLVroTZUBgHYCMDejPrvNdM0QER0h7We0l7Wn10p63/QS1CNInsj+hFiFqZM0AFanUnYuWbLEUQYA2gnA3Iz67DbLNUNUTJR0md1Fgo4HSYB3gCzptkQq5aokVkKABBjIx8dHfvvtN0cZgPU4W89pJwBzMapOmqEtiImNkV7zesm8Q/PE1+YrC7oskJr5aorVkMUOAAAAwCPF2mOl34J+Mn7XePH29Ja5nedKi2It3OpdI4sdAAAAAKfZ7XYZsHSADo48PTxlaoepbhccJQZD7AADqTHEe/fu1eUnnnhCbDYb5wOwmOjoaAkKCtLlJk2aiJdX4j56aScAczGqThr1una7XYasHCI/bP1BPMRDJrSZIE+XelqsjCF2gIFYQBKwPmfrOe0EYC5G1UmjXvfjtR/LsDXDdPmnFj/JC5VeEHf1uEPs6EECDOTh4SG5cuVylAGAdgIwN6M+u4143VGbRjmCo1GNR7l1cJQYBEiAgQICAuT8+fOcAwC0E4CbMOqz29Wv+9O2n+TN5W/q8sf1PpY3qr8hqQULxQIAAABwmLhrovRf3F+X36n5jrxb+91U9e4QIAEAAADQZu6fKX0X9NXl16q8Jp81+CzVTQMgQAIMFB4eLh07dtSbKgMA7QRgbkZ9drvidRceXijd53TXax49V+E5+brp16kuOFLIYgcYiOxUgPWRxQ6wFqtmsVtxYoW0mNpCImMipdsT3WRS20li87TW8iNksQPcgI+Pj/zwww+OMgDrcbae004A5mJUnUzJ191wZoO0md5GB0ftSrSTiW0nWi44Sgx6kAAAAIBUauv5rdJgUgMJjgyWpkWayrzO88TXy1es6HF7kJiDBAAAAKRCey7vkSaTm+jgqG6BujKn0xzLBkeJwTpIgIFiY2Pl+PHjuly4cGHx9OQ7C8BqYmJiZP369bpcu3ZtsdkSN2yFdgIwF6PqZHK/7qFrh6TR743kZvhNqZanmizoskD8vf2T6WjdG0PsAAORpAGwPpI0ANZihSQNJ26ekNq/1ZYLwRekQo4Ksqr3Ksnol1Gs7s5jDrGjBwkwmKqoAEA7AbgPoz67k+N1T986LfUn1tfBUamspWR5z+WpIjhKDAIkwEDq259bt25xDgDQTgBuwqjP7uR43XN3zkn9SfXl9O3TUixzMVnRc4VkCciSbMdoFUx4AAAAACzuYvBFna1ODa8rFFhIVvVaJTnT5TT6sEyJAAkAAACwsCt3r+jg6Mj1I5I/Q34dHOVOn9vowzItAiTAQBEREdKnTx+9qTIA0E4A5mbUZ3dSX/d66HVpOKmhHLx2UPKkz6MTMuTPmD9Fj9XdkcUOMBBZ7ADrI4sdYC3ulMXuZthN3XO089JOyZk2p6zts1aKZi4qqdUdstgB5uft7S0jR450lAFYj7P1nHYCMBej6mRiX/d2+G29CKwKjrKlySYre61M1cFRYtCDBAAAAFhIcESwDo42ndskmf0zy5o+a6RMtjKS2t15zB4k5iABAAAAFnE38q60nNZSB0eBfoGyotcKgqNEYh0kwECxsbFy8eJFXc6ZM6d4evKdBWA1MTExsmPHDl2uWLGi2Gy2RP0+7QRgLkbVycd53bCoMGk9vbWsO71O0vum14vAls9R3iXHZyUESICBwsLCJE+ePC6f6AnAdcLDw6VKlSpJrue0E4C5GFUn/+t1w6PDpd2MdrLq5CpJ65NWgnoESaVclVxybFZDgAQYzMuLagiAdgJwJ0Z9dj/sdSNjIqXjHx0l6HiQBHgHyJJuS6RanmouPz6r4MoMMJD69icqKopzAIB2AnATRn12P+x1o2KipMusLrLoyCLx8/KThV0XSu38tV1+fFbChAcAAADADUXHRkvPuT1l7qG54mPzkfld5kv9gvWNPiy3R4AEAAAAuJlYe6w8M/8ZmbF/hnh7esucTnOkceHGRh+WJRAgAQaKiIiQl19+WW+qDAC0E4C5GfXZHf91VfKX/ov6y+Q9k8XL00tmdpwpLYq1cNmxWB0LxQIGunv3rqRNm1aXyWIHWJOz9Zx2AjAXo+pk/Nd9Zd4r8sOuH8TTw1Omtp8qnct0dskxpJaFYknSABjI29tbPvjgA0cZgPU4W89pJwBzMapOxr3u6pOr5YdtP+ir+F9a/UJwlALoQQIAAADcwJcbv5S3Vryly981/U5erfqq0YdkyR4k5iABAAAAJjd662hHcDSiwQiCoxTEEDvAQHa7XX+LoahvNDw8PDgfgMXExsbKwYMHdblkyZLi6Zm47yZpJwBzMaJOTto9SV5e/LJIuMjA6gPl7Zpvp/hrpmYMsQMMxORrwPpI0gBYi6s/u2cfmC2dZnWS2IhYkc/u3UZip6RhiB0AAADgxpYcXSJdZ3fVax71KtfL6MNJNZiDBBgoICBAIiMj9abKAEA7AZibqz6715xaIx1mdpCo2CjpUqaL/NrhV64ZXIQ5SICB1Lhl0nsDoJ0A3IcrPrs3n9ssLae2lPDocGlVrJVMajtJvGxeIrYUfVncRw8SAAAAYBK7Lu2SZlOayd2ou9KwUEOZ2XGmeNtYK9GVCJAAA6nu+cGDB+tNlQGAdgJIvZ/dh64dksa/N5Zb4bekZt6aMq/zPPHz8kvx10VCZLEDDEQWO8D6yGIHWEtKfXafuHlCav9WWy4EX5CKOSvKql6rJINfhhR/3dTkzmMuFMscJMBAagzzoEGDHGUA1uNsPaedAMwlJerkuTvnpOGkhjo4Kp21tAT1CEoQHKXU6+LB6EECAAAADHLl7hWp81sdOXz9sBTJVETW9VknOdPl5HykANZBAgAAAEzsZthNPedIBUd50+eVFT1XEByZAEPsAAPZ7XaJjo6+Vxm9vHTqUADWEhsbK2fOnNHlfPnyiadn4vIj0U4A5pJcdTI4Ilhnq9t9ebdkT5NdVvZaKfkz5k/x18V/I4sdYKDQ0FDx8fHRmyoDsJ6wsDApWLCg3lQ5sWgnAHNJjjoZFhUmrae3lr/P/y2Z/DPJnz3/lKKZi6b46+LxECABAAAALhIZEykdZnaQNafWSDqfdDohwxPZn+D9NxGG2AEGCggIkJs3bzrKAEA7AVj3szs6Nlq6z+kuS48tFX8vf1ncbbFUylUpxV8XiUOABBhIjR/OmDEj5wAA7QRg8c/uWHus9FvYT2YdmCU+Nh+Z12We1M5fO8VfF4nHEDsAAAAgBakECwOWDpAJuyaIzcMm0ztMl8aFG/OemxQ9SICBIiMj5bPPPtPloUOH6omXAEA7AVjrs/u9Ve/JD1t/0OUJbSdIu5LtXPK6sNhCsR9++KEMHz48wW3FixeXQ4cOJftiUIBR7t69K2nTptXlkJAQSZMmDScDsBhn6zntBGAuia2Tn2/4XIasHKLLo5uPlv6V+7vkdZH02MDUPUilS5eWFStWOPZVznfAStTf9EsvveQoA7AeZ+s57QRgLompkz9u+dERHI1sODLJwVFiXxcW7kGaN2+e7Nq1K8nPQQ8SAAAAjDBx10TpM7+PLr9X+z35uP7HnAiDPW5sYOokDUePHpVcuXJJoUKFpHv37o6VyB8mIiJC/8PjbwAAAIArzT4wW/ou6KvLA6oOkI/qfcQJcCOmDZCqVq0qEyZMkGXLlsmYMWPk5MmTUrt2bQkODn7o74wYMUJHhXFb3rx5XXrMAAD8kxqocfXqVb2ZdNAGgGS09OhS6Tq7q07r3bd8XxnVZJRO0Q33Ydohdv9069YtyZ8/v4waNUqeffbZh/YgqS2O6kFSQRJJGmBWasJl3JoG6m+cCZeA9SRHkgbaCcA8HlUn155aK02nNJXw6HDpVLqTTG0/VWyethR/XaSiJA3xqT+IYsWKybFjxx76GF9fX70B7iQ6OtroQwBgcrQTgPnr5NbzW6XVtFY6OGpRtIX83u73ZAuOHvW6SH5uEyCpb92OHz8uPXv2NPpQgGTj7+8v586dc5QBgHYCcL/P7r2X90qTyU0kODJY6hWoJ390/EN8bMm7ThHXDK5j2gBp0KBB0qpVKz2s7sKFC/LBBx+IzWaTrl27Gn1oQLLx9PSU3Llz844CoJ0A3PSz++j1o9Lo90ZyM/ymVM1dVeZ3mS/+3sn/pSfXDK5j2gBJReYqGLp+/bpkzZpVatWqJZs3b9ZlAAAAwGjn75yXhr83lMt3L0vZ7GVlafelks43ndGHBasGSNOnTzf6EIAUFxkZKd9++60uDxgwQHx8krc7HoD7o50AzFknQ6NCZWa6mXLm9hkpmqmoLO+xXAL9A1P8dRWuGVKW22SxSwoWioXVs1sBSB1Z7GgnAPOIXydlqEjOTDnlr2f/kgIZC7jsdblmSBrLZbEDrMjLy0t69+7tKAOwHmfrOe0EYDKeInnr5JWzt89Kev/0sqzHshQPjhTaAtehBwkAAAB4DGrg1QuLXpBxO8aJr81XgnoEyVMFnuK9s1gPkqdLjwoAAABwUx+u+VAHR54enjK1w1SCI4tiTA8AACn8jXNoaKguBwQEiIeHB+834IbGbB0jH637SJdHNx8t7Uu2N/qQkELoQQIMpCZcZsyYUW+qDMB6VHCkJlarLS5QSgzaCcB4sw7MkpeXvKzLQ6sMlbcbvu3yz27aAtchQAIMpsbBqg0AaCcA81lzao10n9Nd7GKXF558QYbUHmLYZzfXDK7BEDvAQP7+/nLkyBFHGQBoJwDz2H1pt7SZ3kYiYyL1kLofm/8oHuJhyGc31wyuQ4AEGMjT01OKFi3KOQBAOwGYzMmbJ6XplKZyJ+KO1MlfR6a0nyI2T5u+z4jPbq4ZXIchdgAAAEA8V+9elSaTm8ilkEvyRLYnZH6X+eLn5cd7lErQgwQYKCoqSsaOHavLzz//vHh7e3M+ANBOAAYKiQyRFlNbyNEbRyV/hvx6IdiMfhkN/+zmmsF1WCgWMJDKSKMyWykhISGSJk0azgdgMc7Wc9oJwHWiYqL0nKOlx5ZKZv/MsrHvRimepbgp6iRtgesWiqUHCTCQzWaTp59+2lEGYD3O1nPaCcB1a5Y9t/A5HRz5e/nLom6L/hUcGVknaQtchx4kAAAApHrvrHhHvtj4hdg8bHrOUYtiLVL9e5Jae5BI0gAAAIBU7dvN3+rgSBnXahzBUSpHgAQAAIBUa8a+GfJG0Bu6/Fn9z+SZCs8YfUgwGAESYKDQ0FDJnTu33lQZgPWoidUeHh56U+XEop0AUs7KEyul59yeYhe7vFrlVXmn1jumrZO0Ba5DkgbA4AmhFy5ccJQBgHYCcI2dF3dKuxntJCo2SjqW6ihfN/laf5Fh1s9urhlchwAJMJCfn5/s3LnTUQYA2gkg5Z24eUKaTWkmwZHBUrdAXfm93e9i87SZ+rObawbXIYsdAAApiLVLAHO5cveK1BxfU47dOCblspeTtX3WSga/DEYfFlyALHYAAABAPCGRIdJyaksdHBXIWECWdl9KcIR/YYgdYKCoqCiZMmWKLnfv3l28vb05HwBoJ4AUEBkTKU/PfFq2XtgqWQKySFCPIMmZLqfbfHZzzeA6DLEDDMTQG8D6nK3ntBOA82LtsdJjTg+Ztm+aBHgHyKpeq6RqnqpJei6j6iRtgeuG2NGDBBjIZrNJ8+bNHWUA1uNsPaedAJzP/vba0td0cOTl6SWzO81OcnBkZJ2kLXAdepAAAABgWR+u+VCGrx0uHuIhUztMlS5luhh9SDAISRoAAACQqn3393c6OFJ+bP4jwREei+fjPQwAAABwH1P2TJEBywbo8kd1P5L+lfsbfUhwEwRIgIFCQ0OlaNGielNlANajJlarSdxqU+XEop0AEm/xkcXSe15vXX6tymvyXp33ku1tNKpO0ha4DkkaAIMnjh47dsxRBmBNzlxE0U4AibP+9Hp5+o+nJcYeIz3K9pCvm34tHh4eyfY2GlUnaQtchwAJMJCfn59s2LDBUQYA2gkg6XZf2i2tprWS8OhwaVmspYxvPV48PTwt8dnNNYPrkMUOAIAUxNolgGscu3FMao2vJZfvXpba+WrrhWD9vf15++FAFjsAAACkCheCL0ij3xvp4Khc9nKyoOsCgiMkGUPsAANFR0fL3Llzdbldu3bi5UWVBEA7ASTGjbAb0mRyEzl165QUDiwsy3osk4x+GS332c01g+swxA4wEENvAOtztp7TTgCPqB+Rd3XP0aZzmyRn2pyyse9GKRhYMEXfMqPqJG2B64bY8XU1YCBPT0956qmnHGUA1uNsPaedAB4sMiZSZ6tTwZHqMVrec3mKB0dG1knaAtehBwkAAABuJTo2WrrO7iqzDsySAO8AWdFzhVTPW93ow4LJkaQBAAAAlhNrj5XnFjyngyMfm4/M7TyX4AjJijE9AAAAcAtqsdQBSwfIxN0TxeZhk+kdpkvjwo2NPixYDAESYKCwsDApX7683lQZgPWoidVZs2bVmyonFu0E8P/eXfWu/LD1B/EQD5nQdoK0K9nO5W+PUXWStsB1kiVJQ1RUlFy6dElCQ0P1B0CmTJmS42kBy4uNjZXdu3c7ygCs6dq1a0n+XdoJ4J4R60fIiA0jdHl0i9HSo2wPQ94ao+okbYEbBEjBwcEyefJkmT59umzZskUiIyN1t6eHh4fkyZNHGjduLM8//7xUrlw5eY8YsBA/Pz9Zvny5owwAtBPAv/2w5QcZumqoLo9sOFJerPRiqvvs5prB5FnsRo0aJZ9++qkULlxYWrVqJVWqVJFcuXKJv7+/3LhxQ/bt2yfr16+XefPmSdWqVeX777+XokWLilkzVQAAkFJYuwRwzsRdE6XP/D66/H6d9+Wjeh/xlsJ86yBt3bpV1q1bJ6VLl37g/Spg6tu3r/z000/y22+/6WDJiAAJAAAA7ktlquu7oK8uD6g6QIbXHW70ISEVYB0kwEDR0dESFBSky02aNBEvL9ZuBqzG2R4k2gmkVkuOLpG209tKVGyUPFvhWRnXapyeymE0o+okbYHrepAIkAADMfQGsD5n6zntBFKjtafWStMpTSU8Olw6l+4sU9pPEZunTczAqDpJW2DyIXbxDRw48IG3qwhfTSYrUqSItGnThsx2wAN4enpKpUqVHGUA1uNsPaedQGqz5fwWaTmtpQ6OWhZrKb+3+900wZGRdZK2wHWc7kGqV6+e7NixQ2JiYqR48eL6tiNHjojNZpMSJUrI4cOHdbC0YcMGKVWqlLgSSRoAAADcx97Le+WpCU/JzfCbUq9APVncbbH4e/sbfViwiMeNDZwOe1XvUMOGDeXChQuyfft2vZ07d04aNWokXbt2lfPnz0udOnXkjTfecPalAAAAYFGHrh2Shr831MFRtTzVZEHXBQRHcM8epNy5c8uff/75r96h/fv367WQVICkephU2ZmF8pKCHiQAAADzO3bjmNT5rY5cDLko5bKXk9W9V0ugf6DRhwWLcVkPknqBK1eu/Ov2q1ev6oNQMmbMqBeSBZBQWFiY1KxZU2+qDMB6QkNDpUCBAnpT5cSinYDVnbp1SupPrK+Do9JZS8uKXitMHRwZVSdpC1zHKzmG2Kk1j7766iupXLmyY52kQYMGSdu2bfX+li1bpFixYs4fLWAxsbGx8tdffznKAKxHDdQ4ffq0o5xYtBOwsrO3z0q9ifXk7J2zUjxzcVnZa6VkCcgiZmZUnaQtcKMA6eeff9bzi7p06aLzs+sn9fKS3r17y6hRo/S+Stbwyy+/OH+0gMX4+vrK3LlzHWUAoJ1AanEh+ILUn1Rf9yAVDiysg6PsabOL2Rn12c01g+sk2zpIKg/8iRMndLlQoUKO/PBGYg4SAMBorF0C/NvlkMtSd2JdnZihQMYCsrbPWsmXIR9vFawxB2natGn6pwqIypYtq7e44Gjw4MHOPj0AAAAs5FroNZ2tTgVHedLnkVW9VhEcwVScDpD69+8vS5cu/dftatjd5MmTnX16wNLU+mFr1qzRmyoDAO0ErOxm2E1p9Hsj2Xdln+RMm1MHRwUDC4o7Meqzm2sGNxpit3jxYunevbssWrRIatWqpW979dVXZc6cObJy5Uo9/8goDLGD2TH0BrA+Z+s57QSs4nb4bR0cbb2wVbKlySZreq+RkllLirsxqk7SFrguNnA6SUOLFi1k9OjR0rp1a70e0q+//irz58+X1atXk7kO+A8eHh6ONcRUGYD1OFvPaSdgBcERwdJ8anMdHGX2zywreq5wy+DIyDpJW+CGSRpUkDRw4EDJmjWrDo6KFCkiRqMHCQAAwFihUaHSfEpzWXt6rWT0y6iH1VXIWYHTAmv1IKlA6EFUcFSxYkUdLMWJS/UNAACA1CU8OlzaTG+jg6N0PukkqEcQwRFML0kB0s6dOx94u+o1UpFZ3P0MGQIAAEi9wVHb6W1lxYkVksY7jSzrsUyq5K5i9GEBKRMgqSF0rvb555/LkCFDZMCAAfLNN9+4/PWBlBAWFqbn7ykLFiwQf39/3mjAYkJDQ6Vy5cq6vHXrVgkICEjU79NOwJ2Do6DjQRLgHSCLuy2WGnlriBUYVSdpC1zH6SQNrqA+UH7++We9xhJgJbGxsbJixQpHGYD1qKm+Bw4ccJQTi3YCVgiOnirwlFiFUXWStsB1TB8gqfSJKo34uHHj5JNPPnnkYyMiIvQWRw33A8zM19fXsV6YKgMA7QSsFhzVLVBXrMSoz26uGdwwi11K6d27t2TKlEm+/vprqVu3rpQvX/6hQ+w+/PBDGT58+L9u/69MFQAApBTWLkFqCo7azWgny44ts2xwhNSRxc5TTGz69OmyY8cOGTFixGM9Xs1RUv/guO3s2bMpfowAAACpHcERrMS0Q+xUcKMSMqjFZ/38/B6765FhSnAnMTEx+ksARaXIt9lsRh8SAJOhnYA7BUf+Xv6W7zkyqk7SFrjREDs1L+i9996T5DZv3jxp165dgj869YehUod7enrquUb/9QfJQrEwO4beANbnbD2nnYA7BUdLui+xdHBkZJ2kLTDpQrFvvfVWgn0VW/3yyy+OZAgjR46U5NKgQQPZu3dvgtueeeYZKVGihLz99tt80w5LUAF//vz5HWUA1uNsPaedgJmDo/Yz2qeq4MjIOklb4DqJCpBmzpwp1atXl2bNmjlSlXp5eUnp0qWT/cDSpUsnZcqUSXCbitAzZ878r9sBd6XWQzl16pTRhwHAxPWcdgJmDo6WHluaKobVmaFO0ha4TqKSNBw8eFAKFy4sCxculJo1a+oMcyqQUT/VBgAAgNQXHNUrWM/owwKM6UFSKwWrOUfHjh2TQYMGSfHixfW8IFdZs2aNy14LAAAACYVFhUn7mf8/rI7gCFaUpDTfRYoU0UkUVC+SWsQVQNKEh4dL27Zt9abKAKwnLCxMKleurDdVTizaCZjF3ci70mpaK0dwtKjbolTZc2RUnaQtMHEWO9W437hxQ3Lnzp3g9v3796fIXCRnkMUOZkdGGsD6yGIHKwiOCJaW01rKutPrJK1PWt1zVCd/HUmNyGLnvlIki92sWbPk9ddflyxZskhsbKyMGzdOqlatqu/r2bOnIyc8gMfj4+MjY8eOdZQBgHYCZnM7/LY0m9JMNp3bJOl908uy7suket7qkloZ9dnNNYNJe5DKly8vQUFBkj17dtm+fbtOzDB06FDp1q2bVKhQQXbu3ClmQg8SAMBo9BTDnd0MuylNJjeRrRe2Ska/jLK8x3KpnLuy0YcFmKcHKSoqSgdHypNPPinr1q3Ti7mqpA2s4QIAAGAd10KvSaPfG8muS7sks39mWdFrhZTPUd7owwLMlaQhW7ZssmfPHsd+pkyZ5M8//9Tpv+PfDuDxqKGqav6e2lQZAGgnYAaXQy5LvYn1dHCULU02WdNnDcGRwZ/dXDOYdIjduXPn9MKwOXLk+Nd9Gzdu1FntzIQhdjA7ht4A1keSBribC8EXpMGkBnLo2iHJmTanrOq9SkpkKWH0YZkGSRrcV4oMscuTJ89D7zNbcAS4C5X0BIC1OVvPaSfgKmdvn5X6k+rLsRvHJE/6PLKq1yopmrkoJ8AkdZK2wKRpvuO7du2ajB8/XjZt2iSXLl3St6nepRo1akifPn0ka9asYiR6kAAAAB7PqVunpP7E+nLy1kkpkLGADo4KBhbk7YNlPG5skKSFYpWtW7dKsWLF5LvvvtMvVKdOHb2psrqtRIkSsm3btqQ+PQAAAFxE9RjV+a2ODo4KBxaWtX3WEhwh1UpyD1K1atWkXLly8tNPP/0rg516yhdffFEnblC9S0ahBwkAAODRDlw9IA0nNZSLIReleObies5RrnS5eNtgOSneg7R792554403HpjeW92m7tu1a1dSnx5IFcLDw6V79+56U2UA1hMWFiZ169bVmyonFu0EUtL2C9t1z5EKjspkK6N7jgiOzFknaQvcoAepYMGCMnz4cOnVq9cD7580aZIMGzZMTp06JUahBwlmRxY7wPrIYgez2nBmg7SY2kLuRNyRyrkqy7IeyySTfyajD8v0yGLnvlIki118gwYNkueff162b98uDRo0cCwge/nyZVm5cqWMGzdO/ve//yX16YFUwcfHR77++mtHGQBoJ+AKy48vl7bT20pYdJjUyV9HFnZdKOl9H37BCOM/u7lmcJMsdjNmzNB/ICpIiomJ0bfZbDZ58sknZeDAgdKpUycxEj1IAACj0VMMs5l7cK50md1FImMipVmRZjKr0ywJ8A4w+rAA08QGTgVIcaKionTK77j87N7e3mIGBEgAAKMRIMFMft/9uzwz/xmJscdIx1IdZXL7yeJjYwQDUoc7KT3ELj4VEOXMmTM5ngpIVWJjY+XMmTO6nC9fPvH0THLeFAAWRTuB5DJm6xh5aclLuvxM+WdkXKtxYvO08Qa7SZ2kLXCdFDujZ8+elb59+6bU0wOWoDJaqYQnaktKdisA1kc7geTwxYYvHMHRa1Vek19a/0Jw5GZ1krbAAgHSjRs3ZOLEiSn19IBlBAQE6A2AdTlbz2knkFRqJsW7K9+Vd1a+o/ffq/2efNP0G/H0YMSCM4yqk7QFrpHkIXYLFix45P0nTpxI6lMDqUaaNGn0/AQA1uVsPaedQFLF2mPl9WWvy/dbvtf7XzT8Qt6q+RZvqJOMqpO0BW4QILVt21YvCPuoHA8PWkQWAAAAKSs6Nlr6LewnE3ZNEA/xkB+b/yj9K/fnbQceQ5L7V1VShjlz5ugJYw/aduzYkdSnBgAAQBKFRYXJ0zOf1sGRzcMmk9pNIjgCXBEgqbWO1PpHD/NfvUsARCIiIqRfv356U2UA1hMeHi4tWrTQmyonFu0EEuN2+G1pOqWpzD88X3xtvjKn8xzpUbYHb2IyMqpO0ha4TpLXQVq/fr0ef9m0adMH3q/u27Ztmzz11FNiFNZBgtmxPgpgfc7Wc9oJPK7LIZd1cLTr0i5J75teFnZdKHXy1+ENTGZG1UnaAjdYB6l27dqPvF/9sRgZHAHuQK0h9sknnzjKAEA7gaQ4efOkNJ7cWI7dOCbZ0mSToB5BUj5Hed5MC312c81g8h4ktTiWWhjrcZ0/f15y584trkYPEgDAaHzri5S29/JeaTK5iVwMuSgFMxaU5T2XS5FMRXjjgSTGBkmag1S5cmV54YUXZOvWrQ99jHrhcePGSZkyZWT27NlJeRkAAAA8wsYzG6XOhDo6OHoi2xOyse9GgiPASUkaYnfgwAH59NNPpVGjRuLn56cTNuTKlUuXb968qe/fv3+/VKxYUUaOHCnNmzd39jgBS1IduNeuXdPlLFmykBofAO0EHtviI4ul4x8dJSw6TGrmrannHAX6B/IOWvSzm2sGN0jSoISFhcnixYtlw4YNcvr0ab2v/lAqVKggTZo00b1HRmKIHcyOoTeA9ZGkASlh8p7J0mdeH4mxx0jzos3lj45/SIB3AG+2C5CkwX2leJIGxd/fX55++mm9AQAAIOV9s/kbeSPoDV1WKbzHtx4v3jYS/QDJxakACYBzVLZH1gsDrM3Zek47gTjq7+i9Ve/JZxs+0/sDqg6QUU1GiadHkpe1hBvVSdoC1yFAAgAAMLmomCh5ftHzMmHXBL3/Sb1PZGjtocxdBVIAARIAAICJhUSG6GQMy44t071FP7X4Sfo92c/owwIsiz5ZwEARERHy+uuv602VAVhPeHi4dOzYUW+qnFi0E6nb5ZDLUndCXR0c+Xv5y/wu8wmODGZUnaQtcJMsdmZHFjuYHVnsAOsjix2S6uj1o9J0SlM5cfOEZAnIIou6LpKqearyhhqMLHbuyyVZ7BSV2lvFWAEB91JLqnTfc+fOlVKlSknjxo2dfXrA0ry9vWXo0KGOMgDQTkDZcn6LtJjaQq6FXpOCGQvKsh7LpFjmYrw5qfizm2sGN+pBUkFQ+/bt5cUXX5Rbt25JiRIl9AlUC2iNGjVK+vfvL0ahBwkAYDR6ipGUBWA7zeokoVGh8mTOJ2Vxt8WSPW123kjARbGB03OQduzYIbVr19blWbNmSfbs2XUv0qRJk+S7775z9ukBAABSjV92/CJtprfRwVGTwk1kTZ81BEeAizkdIIWGhkq6dOl0efny5bo3ydPTU6pVq6YDJQAPpzpw1bfLarPwdEAATqCdSD3n+aO1H0m/hf0kxh4jvcv1loVdF0pan7RGHxpMUidpC9woQCpSpIjMmzdPzp49K0FBQY55R1euXHlk1xWAe18wpE2bVm+qDAD/RDthfdGx0fLCohfkgzUf6P13a78rv7X5TbxtzE01I6PqJG2BGwVIw4YNk0GDBkmBAgWkatWqUr16dUdvUoUKFZLjGAEAACy7xlHb6W1l3I5xeo2j0c1Hyyf1P2EBWMDd03xfunRJLl68KOXKldPD65QtW7boHiSVtMEoJGmA2anqF/ftk8oE6eHhYfQhATBZPaedsK4LwRek5dSWsvPSTvHz8pNpHaZJ2xJtjT4smLRO0ha4LjZgHSQAAAAX23N5j07jfe7OOckakFUWdF0g1fJU4zwAVlgH6aOPPvrPIXgAAAC4J+hYkHT8o6MERwZLiSwldBrvQoGFeHsAk3A6QFKLwsYXFRUlJ0+eFC8vLylcuDABEvAIkZGRMnz4cF3+4IMPxMfHh/cLsJiIiAh54YUXdPnnn38WX1/fRP0+7YS1jN0+Vl5a/JLOVFe3QF2Z02mOBPoHGn1YcIM6SVvgOikyxE51X/Xp00fatWsnPXv2TO6nT/ZuNMAoLCAJWJ+z9Zx2whpi7bEydOVQ+WLjF3q/Z9me8kvrX8THxhdj7saoOklb4EZD7B5EvaCKrFu1amVogASYneppHTBggKMMALQT1hMWFSZ95veRmftn6v0Pn/pQhj01jMQ8bsqoz26uGVwnxZI0bNiwQQdIN2/eFKPQgwQAMBrf+qZuV+9elTbT28imc5vE29Nbfm39q/Qsx5fHgKV7kL777rsE+yreUim/f//9d2nWrJmzTw8AAOCWjlw/Is2nNJfjN49LRr+MMrfzXD3vCIC5OR0gff311wn21TpIWbNmld69e8uQIUOcfXoAAAC3s+70Omk3o53cCLshBTMWlCXdl+iMdQBSQYCkMtYBSBqG3gCgnbCe8TvHy4uLXpSo2CipmruqXuMoW5psRh8WkglJGqzP0+gDAAAAsIKY2BgZvHywPLvgWR0cdS7dWVb3Xk1wBKSGHqSBAwfKxx9/rNMaqvKjjBo1KqnHBlheQECAXLlyxVEGYD3O1nPaCfcQHBEs3eZ0k0VHFul9MtVZl1F1krbA5AHSzp079YKwcWUASePh4aHn7AGwLmfrOe2E+Z26dUpaTWsl+67sEz8vP5nQZoJ0LtPZ6MNCCjGqTtIWWCDNtxmQ5hsAAKSkjWc26mQMV0OvSo60OWR+l/lSJXcV3nQgtaX5/q9hdfEj3a+++iopLwGkCpGRkfLll1/q8uDBg8XHhxXVAauJiIhwfG6qYee+vr6J+n3aCfP6fffv8tzC5yQyJlIq5KigkzHkSZ/H6MNCCjOqTtIWmLwHqV69egn2d+zYIdHR0VK8eHG9f+TIEbHZbPLkk0/KqlWrxCj0IMHsyGIHWJ+z9Zx2wnxi7bHy3qr3ZMSGEXq/fcn2MqntJEnjk7hzC/dEFjv3laI9SKtXr3aU1bdh6dKlk4kTJ0pgYKC+7ebNm/LMM89I7dq1k/L0QKrh5eUlzz33nKMMALQT5hYSGSI95/aUeYfm6f2htYbKx/U/Fk8PEgOnFkZ9dnPN4EZzkHLnzi3Lly+X0qVLJ7h937590rhxY7lw4YIYhR4kAIDR6AGyjtO3TkvbGW1l16Vd4mPzkV9b/yo9yvYw+rAAJHNs4JkcL3T16tV/3a5uCw4OTvLzjhkzRsqWLasPXm3Vq1eXpUuXOnm0AAAAibfu9DqpNK6SDo6yBmTV6xsRHAHW5HSA1K5dOz2cbs6cOXLu3Dm9zZ49W5599llp3759kp83T5488vnnn8v27dtl27ZtUr9+fWnTpo3s37/f2UMGAAB4LGqgzZitY6TBpAZyLfSaTsawtd9WqZG3Bu8gYFFOD7ELDQ2VQYMGyfjx4x1rI6kxkipAUhk+EjsZ9VEyZcqkn1M99+NgiB3cYehNtmzZdFktOpec9QWAdZI00E4YQ2Wne2XJKzJuxzi936VMFz2sLsCbhb1TM6PqJG2ByZM0/HNV39GjR+vA5fjx4/q2woULJ+sfS0xMjPzxxx/6D0MNtXtUKlW1xX8TALNTXzIAAO2EuVwKuSQdZnaQv87+JR7iIZ83/FwG1xislzABjPrs5prBNZIt9YYKiNScoeS0d+9eHRCFh4frb9/mzp0rpUqVeujjR4wYIcOHD0/WYwBSkr+/v5w8edJRBmA9ztZz2gnX23Zhm7Sd3lbOB5+XDL4ZZFqHadKsaDMDjgRmZFSdpC1woyF2cQ4cOCBnzpzRi1jF17p16yQ/p3ou9ZyqG2zWrFnyyy+/yNq1ax8aJD2oBylv3rz/2Y0GAAAQt/hrv4X9JCImQkpkKSHzu8yXYpmL8eYAqWiIndMB0okTJ3SiBtXbo7qd454urgtaDY9LLg0bNtTD937++efHejxzkAAAwOOIjo2Wt/98W0ZtHqX3WxVrJZPbT5b0vnzBCliFy9J8DxgwQAoWLKgnqan5SCrL3Lp166RSpUqyZs0aSU6xsbEJeogAd6cSm3zzzTd6i0tyAsBa1GiIwYMH6+2foyweB+1EyrsRdkOaT2nuCI7eq/2ezOsyj+AIpqqTtAWu43QPUpYsWWTVqlV6/pGKyLZs2SLFixfXt7355puyc+fOJD3vkCFDpFmzZpIvXz69ntLUqVPliy++kKCgIGnUqNFjPQc9SDA7FpAErC85stg58/t4NLWuUfsZ7eXkrZM6O93EthPl6VJP87bBdHWStsCNstipIXTp0qVzBEsXLlzQAVL+/Pnl8OHDSX5e1SPVq1cvuXjxov6HqAAsMcER4A5sNpt069bNUQYA2gnXmbR7kryw6AUJjw6XghkL6l6jstmTN+EUrMeoz26uGdyoB6l27dq6p6ht27b6j+XmzZvy3nvvydixY/Uir/v27ROj0IMEADAa3/qac32jN5a9IaO3jdb7zYs2l8ntJkugf6DRhwbACj1IKhhSjb/y0UcfScuWLXXQlDlzZpkxY4azTw8AAJBszt05Jx3/6Cibz23W6xt98NQH8v5T74unh9PTsgFYhNMBUpMmTRzlIkWKyKFDh+TGjRsSGBjIYmoAAMA01pxaI51ndZYrd69IRr+MMqX9FN17BADxeTqbTaNBgwZy9OjRBLdnypSJ4Ah4DKr3NWvWrHqL64kFANqJ5KVmE/zvr/9Jw0kNdXBULns52f78doIjuNVnN9cMbtKD5O3tLXv27Em+owFSoWvXrhl9CABMjnYi6YIjgqXvgr4y68Asvd+zbE/5qeVPOmMd4G51krbATYbY9ejRQ3799Vf5/PPPk+eIgFTE39/fkchElQFYj7P1nHYi6Q5dOyTtZrTTP709veXbpt/Ki5VeZJQLnGJUnaQtcKMsdq+++qpMmjRJihYtKk8++eS/csGPGnVv0TUjkMUOAIDUaca+GfLcwuckJDJEcqXLJbM6zpLqeasbfVgAUkMWOxVBV6xYUZePHDmS4D4PDw9nnx4AAOCxRURHyMCggY4U3nUL1JXpHaZL9rTZeRcBPBanA6TVq1c7+xRAqqUSnUyYMEGX+/Tpo+f1AbCWyMhI+eyzz3R56NCh4uPjk6jfp514fCdunpBOf3SS7Re333u/aw2V4fWGi5en05c7gOF1krbAjYbYmRlD7GB2LCAJWJ+z9Zx24vHMOzRP+szrI7cjbksm/0x64ddmRZsl4YwB5qyTtAVuNMQOQNLZbDZp06aNowwAtBOJExUTJe+seEdGbb4357l6nuoy4+kZkjdDXv6YYKnPbq4ZXIceJAAAUhDf+qacM7fP6IVfN5/brPffrP6mjGgwQrxtDFcG8G/0IAEAAMtacnSJ9JzbU26E3ZCMfhllQpsJ0qbEvW/1AcAZDLEDAABuIzo2Wt5f9b58vvHe+ouVclWSmU/PlIKBBY0+NAAW4ZkcT7J+/Xq9YGz16tXl/Pnz+rbff/9dNmzYkBxPD1hWaGioFChQQG+qDAC0E48eUldvYj1HcPRK5VdkwzMbCI6QKj67uWZwowBp9uzZ0qRJE726786dOyUiIkLfrrJDxKU1BfBgKonk6dOn9WbhhJIAnEA7cc/cg3Ol/E/lZcOZDZLOJ51OxPB98+/F18uXvy+kijpJW+BGQ+w++eQT+emnn6RXr14yffp0x+01a9bU9wF4OD8/P9myZYujDMB6nK3nqb2dCIsKk0HLBzkWfq2cq7JM6zBNCmcqbPShIZUyqk6m9rbArbLYBQQEyIEDB3Q3Y7p06WT37t1SqFAhOXHihJQqVUrCw8PFKKyDBACA+zpw9YB0mdVF9l7Zq/cH1xgsn9T/RHxsiVtsFwBcmsUuR44ccuzYMR0gxafmH6lACQAAIDHUd7e/7vxVXlv6moRFh0m2NNlkUttJ0qRIE95IACnO6QCpX79+MmDAABk/frx4eHjIhQsXZNOmTTJo0CB5//33k+coAYuKjo6WGTNm6HLnzp3Fy4vEkoDVREZGyrfffqvL6vPSxydxvR+prZ24HX5bnl/0vMzcP1PvNyrUSCa1myQ50uYw+tAAQ+tkamsL3HqInfp1lYxhxIgRjkwevr6+OkD6+OOPxUgMsYPZsYAkYH3O1vPU1E6oBV+7zu4qp26dEi9PL/ms/mfyZo03xdMjWZLuAsnCqDqZmtoCtx9ip3qN3n33XRk8eLAeaqdOmJp7FHcCATycp6enNGzY0FEGgNTYTsTExsiXf30p7616T2LsMVIosJBOxFAldxWjDw0wTZ1MDW2BW/cgDRw48LEfO2rUKDEKPUgAAKPxre9/r23Ua24vWXt6rd7vWqarjGkxRjL4ZXDJ+QGQetxJyR4ktd5RfDt27NDjIosXL673jxw5IjabTZ588smkPD0AAEgFpu6dKi8tfkluR9yWtD5p5bum30mf8n306BQAMEqSAqTVq1cn6CFS6b0nTpwogYGB+rabN2/KM888I7Vr106+IwUAAJZwK/yWvLzkZR0gKdXzVJff2/3O2kYArJGkIXfu3LJ8+XIpXbp0gtv37dsnjRs31lntjMIQO5idSmxSuXJlXd66dateVwyAtTg7xM5q7cTaU2ul59yecvbOWbF52GTYU8NkaO2hOikD4A6MqpNWawssnaRBvdDVq1f/dbu6LTg42NmnByxNfT+hFlqOKwOAVduJyJhIGbZ6mIzcOFLsYpcimYrI5HaTpWqeqkYfGuAWddIqbYE7cDpAateunR5O99VXX0mVKveyzfz99986q1379u2T4xgBy/Lz83MMWVVlANbjbD23Qjtx8OpB6Tanm+y6tEvvP1fhOfm66dd63hHgboyqk1ZoC1LNEDvV3afWPFILxUZFRenb1MJVzz77rHz55ZeG5mhniB0AAMZRlxijt46WQX8OkvDocMnsn1l+af2LtC3RltMCwLSxgdMBUvwx1sePH9flwoULm2LxKgIkAACMcfb2WXlu4XOy/Phyvd+0SFMZ33q85EyXk1MCwNpzkOKogKhs2bLJ9XRAqqDS4y9atEiXW7ZsqXtfAViLGl0xduxYXX7++efF29vb0u2E+t719z2/y2tLX9Ppu/28/GRkw5HySpVXSN8NSzCqTrpbW5AqF4r9+OOPdVD0X4vGslAs8HAsIAlYn7P13J3aiUshl+SFRS/IgsML9H61PNVkQpsJUjzLvXUSASswqk66U1uQaheKjZtv9M9FY+NjoTfg0Tw9PaVGjRqOMgC4azvxx/4/pP/i/nI97Lp4e3rLR/U+kkE1BpG+G5ZjVJ10l7bACpJtDpIZMQcJAGA0q3/rez30ul70dcb+GXq/fI7yMqntJHki+xNGHxoAGDsHCQAApC4LDy+U5xc9r4fWqUVf3639rrxb513xsfkYfWgAkGROB0hhYWF6Qmbcar6nT5+WuXPnSsmSJaVJkybOPj0AADCZ2+G35fWg12XCrgl6v1TWUjKx7USplKuS0YcGAE5zegBjmzZtZNKkSbp869YtqVq1ql40tm3btjJmzBjnjxCwMPUFQ+XKlfWmygBg9nZi8ZHFUmZMGR0ceYiHDK4xWLY/v53gCKmGUXXSbG2BlTndg7Rjxw75+uuvdXnWrFmSPXt2nbhh9uzZMmzYMOnfv39yHCdgSbGxsbJt2zZHGQDM2k6ouUYDlg2QKXun6P0imYroDHU189U07JiA1FQnzdIWpAZOB0ihoaGSLl06XV6+fLm0b99eZ9aoVq2aHm4H4OF8fX0daxqoMgDrcbaeG91OqGH0fxz4Q15Z8opcDb0qnh6e8ka1N3SWugDve8PrgdTEqDppdFuQmjidxU4tDvvcc89Ju3btpEyZMrJs2TKpXr26bN++XVq0aCGXLl0So5DFDgCApLsYfFFeWvKSzDs0T++XzlpaxrcZL1VyV+FtBeB2Hjc2cHoOkhpGN2jQIClQoIBUqVJFB0dxvUkVKlRw9ukBAICLqe9O1RyjUqNL6eDIy9NLhtUZpucaERwBsLpkWQdJ9RJdvHhRypcv71gcdsuWLTpCK17cuNWz6UGC2cXExMiqVat0uX79+mKz2Yw+JADJTC2sPmXKvXk73bt3F29vb1O3E6dvnZYXFr0gQceD9P6TOZ/UvUZls5dN0dcF3IVRn91cM7guNkiWAGnlypV6u3Llyr8mjY0fP16MQoAEs7P6ApIAnK/nrmonYu2xMmbrGHln5TsSEhkifl5+MrzucBlYfaDuQQLg2jr5T1wzuNFCscOHD5ePPvpIKlWqJDlz5nT0IAH4byqhSbly5RxlADCindh7ea9e8HXzuc16v1a+WvJr61+lWOZinBDAJJ/dXDO4jtM9SCooGjlypPTs2VPMhh4kAIDRzPytb2hUqHy09iP5atNXEh0bLel80smIBiOkf+X+OlsdAFiJy3qQIiMjpUaNGs4+DQAAcKGgY0HSf3F/OXnrpN5vX7K9fNf0O8mdPjfnAUCq5vTXQyrF99SpU5PnaAAAQIq6HHJZus3uJk2nNNXBUZ70eWR+l/kyu9NsgiMASI4epPDwcBk7dqysWLFCr4n0z+w8o0aN4o0GHiIsLEyaNWumy0uXLhV/f3/eKwAp0k6oJAy/7vhV3lrxltwKv6WH0L1W5TW94Gs633sLvgMw72c31wxuFCDt2bNHp/dW9u3bl+A+EjYAj6ayPq5du9ZRBoCUaCcOXD2gU3dvOLNB71fIUUHGtRonT+Z6kjcccJPPbq4Z3ChAWr16dfIcCZAK+fr6ysyZMx1lANbjbD135vfvRt6VT9d/Kv/7638SFRslabzTyMf1PpZXq75K6m7AzT67uWZwnWRZB8msyGIHAEiN1Ef73ENz5fVlr8vZO2f1bS2LtZQfmv0g+TPmN/rwAMB6WewGDhwoH3/8sU5VqsqPwhwkAABc5+j1o/Lq0lcl6HiQ3s+fIb980/QbaVO8DUPfAeAxJClA2rlzp0RFRTnKD8McJODRYmJiZPPmewszVqtWTWw2G28ZYDHR0dEyd+5cXW7Xrp14eXmlSDuh1jQasX6EjPxrpETGRIqPzUcG1xgsQ2sPlQDvgGT4lwBITJ1MblwzuA5D7AADmXkBSQDmqOf/9ftqON2CwwtkwLIBcvr2aX1bk8JN5Ptm30vRzEU5jYBFPru5ZnCjhWIBJJ3qZS1SpIijDACJaSeO3zgury17TZYcXaL386bPq4fTtSvRjjYFsNhnN9cMrkMPEgAAbvatr8pON3LjSPli4xcSERMh3p7eMqjGIHm39ruSxoeeaAB4EHqQAACwGDWcbtq+afL2irfl3J1z+rZGhRrp4XTFsxQ3+vAAwBIYYgcAgBvYdmGbnmf019m/9H6BjAXkf43+J+1Ltmc4HQAkIwIkwEDh4eHSoUMHXZ49e7b4+flxPgAkcPLqSanTrM69HqNOImkC0ujMdAOrDxQ/L9oMILV8dnPN4EYBUlhYmO7yDwi4l0L09OnTOp1pqVKlpHHjxslxjIBlqZSdS5YscZQBIE5EdIR8s/kb+Xjlx3J3+119W5fSXeR/Lf4nudPn5o0CUtlnN9cMbhQgtWnTRtq3by8vvvii3Lp1S6pWrSre3t5y7do1vUhs//79k/S8I0aMkDlz5sihQ4fE399fatSoIV988YUUL84Ya1iHj4+P/Pbbb44yAOtJbD1XXzrOPzxfBi0fJMdvHheJESnYp6B0f6K7DHt6mP6MBZD6Pru5ZnCjLHZZsmSRtWvXSunSpeWXX36R77//Xi8eq7ochw0bJgcPHkzS8zZt2lS6dOkilStX1ovsDR06VPbt2ycHDhx47AxAj5upAgAAM9h1aZcOjFaeXKn3c6bNKV80/EK6l+0unh6eRh8eALg1l2WxCw0NlXTp0uny8uXLdW+Sp6enXllYDbdLqmXLliXYnzBhgmTLlk22b98uderUcfawAQAwjbO3z8p7q9+T33f/Lnaxi6/NV96s/qYMqT1E0vrcSxEOAHANpwMktVDWvHnzpF27dhIUFCRvvPGGvv3KlSvJ2mujIj0lU6ZMD31MRESE3uJHiYCZqfHEe/fu1eUnnnhCbDab0YcEIJmpURDq81Fp0qSJeHn9/0fvnYg78sWGL2TU5lESHh2ub+tSpot8Vv8zKRhYUO/TTgDmYlSdpC1woyF2s2bNkm7duumT1qBBA92LFDeHaN26dbJ06VKnDzI2NlZat26t5zht2LDhoY/78MMPZfjw4f+6nSF2SE0LSAIwfz2PiomScTvGyYdrPpSroVf1fbXz1Zb/Nf6fVMld5T9/H4BxjKqTtAVuNMTu6aefllq1asnFixelXLlyjttVsKR6lZLDyy+/rOcfPSo4UoYMGSIDBw5M8CbkzZs3WY4BSAkeHh6SK1cuRxmAtekEDIfmy1sr3pIj14/o24plLiYjG46U1sVbP7AdoJ0AzMWoOklb4EY9SA9L812yZEk9lMBZr7zyisyfP1/3RhUseG+4weMiSQMAwGjxv/WtMaaG/HX53kKvWQKyyPC6w6VfxX7ibSMzHQBYpgcppdJ8q6Dr1Vdf1cHWmjVrEh0cAQBgBvG/h/zr7F/iF+AnA6sNlLdrvS3pfcmwCgBm43TO0B07dkjt2rUd85GyZ8+ue5EmTZok3333nVPD6iZPnixTp07VWfIuXbqkN9VjBQCAO4iJjZE3l7/p2FcJGI68ckQ+bfApwREAWDVASqk032PGjNHdX3Xr1pWcOXM6thkzZjh7yIBphIeHS8eOHfWmygCsIyI6QrrN6SZjt4913PZL618kb4bEzY2lnQDMxag6SVvgRnOQypYtK88995xOyFCmTBm9flH16tX1ekUtWrTQvT5GYQ4SzI6MNIA1BUcES/uZ7WXFiRXiFe0l0Z9EJznjFe0EYC5ksXNfLpuDNGzYMJ3mW61/pDLXqeAorjepQoUKzj49YGk+Pj7yww8/OMoA3N/Vu1el+dTmsu3CNknjnUb+6PyHnMhxIsn1nHYCMBej6iRtgRv1ICmqlyguzbcaXqds2bJFR2YlSpQQo9CDBABwpVO3Tknj3xvL0RtHdZa6Jd2WSOXclTkJAJCaepCUHDly6C2+KlUSLnQHAICV7b28V5pMbiIXQy5K/gz5JahHkBTPUtzowwIAJFKyBEjKgQMH5MyZMxIZGZng9tatWyfXSwCWExsbK8ePH9flwoULO3pgAbiXDWc2SKtpreRW+C0pk62MLOu+THKnz63vi4mJkfXr1+uyyvpqs9kS9dy0E4C5GFUnaQvcaIjdiRMndIKGvXv36hV+454ubmVh9cFgFIbYweyYfA24v4WHF0qnWZ0kPDpcauatKQu7LpRA/8Bkq+e0E4C5kKTBfT1ubOB0yDtgwAC9iOuVK1ckICBA9u/fL+vWrZNKlSrpBV4BPJqqqGoD4H5+2/mbtJvRTgdHLYu1lOU9lycIjpIL7QRgLkbVSdoCNxlit2nTJlm1apVkyZJFdzGqrVatWjJixAh57bXXZOfOnclzpIAFqW+Sb926ZfRhAEgkNVriy7++lLdXvK33e5frLeNajRNvm3eyv5e0E4C5GFUnaQtcx+keJDWELm6hWBUkXbhwQZfz588vhw8fdv4IAQAwkVh7rAxaPsgRHL1V4y35rc1vKRIcAQDcsAdJLQ67e/duPcyuatWqMnLkSJ2nfezYsVKoUKHkOUoAAEwgKiZK+i7oK5P3TNb7/2v0P3mzxptGHxYAwEw9SO+9957OqqEMHz5cTp48qbP0LFmyRL799tvkOEbAsiIiIqRPnz56U2UA5nU38q60md5GB0c2D5tMbDvRJcER7QRgLkbVSdoCN1so9p9u3LghgYGBjkx2RiGLHcyO7FSAe7geel1aTmspm89tFn8vf5nVaZY0L9r8sX6XLHaAtZDFzn2l+EKxffv2fazHjR8/PqkvAViet7e3HpYaVwZgPmdvn9ULwB68dlAC/QJlcbfFUj1vdZfVc9oJwFyMqpO0BW7Qg6Sy1alEDBUqVHCsffQgc+fOFaPQgwQAcMbBqwel8eTGcu7OOcmdLrcE9QiS0tlK86YCgBtK8R6k/v37y7Rp0/Sco2eeeUZ69OghmTJlSurTAQBgKutOr5O209vKzfCbUiJLCR0c5cuQz+jDAgCYNUnDjz/+KBcvXpS33npLFi5cKHnz5pVOnTpJUFDQI3uUAPw/leDk/PnzeotLdgLAeDP2zZBGvzfSwVH1PNVl/TPrkxwcqeUwtm7dqjdVTizaCcBcjKqTtAVumKTh9OnTMmHCBJk0aZJER0fL/v37JW3atGIkhtjB7EjSAJiL+kj8atNXMvjPwXq/XYl2MqX9FPH39k/yc5KkAbAWkjS4rxQfYvegOUkqa536cEnKN2RAauXllWzVEIATYmJjZMCyAfLj1h/1/oCqA+Srxl+JzdNm+PtKOwGYi1F1krbADdZBUvnY1TykRo0aSbFixWTv3r3yww8/yJkzZwzvPQLcQZo0aSQqKkpvqgzAGKFRodJhZgcdHHmIh4xqPEq+afqNKYIj2gnAXIyqk7QFrpPk8Pell16S6dOn67lHKuW3CpSyZMmSvEcHAEAKu3r3qrSa1kr+Pv+3+Np8ZXL7yfJ0qad53wEglXIqzXe+fPl0mu9HLQg7Z84cMQpzkAAAj3L0+lFpNqWZHL95XDL5Z5L5XeZLrXy1kvVNY64hAKSSOUi9evV6ZGAE4PGGqQ4cOFCXR40aJb6+vrxtgIv8dfYvaT2ttVwPuy4FMxaUpd2XSvEsxU33/tNOAOZiVJ2kLXDDLHZmRA8SzI5vlgFjTN07VfrO7ysRMRFSKVclWdR1kWRPmz1FXossdoC1kMXOfbk8ix2AxPP29pYPPvjAUQaQstR3gh+u+VA+WveR3m9boq1MbjdZ0vikMW09p50AzMWoOklb4Dr0IAEAUoWwqDDpu6CvTN83Xe+/VeMtGdFwhHh6OJXQFQDgJuhBAgDgvsshl6XtjLay+dxm8fL0kp9a/CTPVnyW9wcA8C8MsQMMHu6jxsEqakwsiU+A5Lf38l5pOa2lnLl9RgL9AmVO5zlSt0Bdl73VsbGxcvDgQV0uWbKkzgKbGLQTgLkYVSdpC1yHAAkwUGhoqAQGBupySEgIi8UCyWzJ0SXSeVZnCYkMkaKZisqiboukWOZiLn2fw8LCpEyZMkmu57QTgLkYVSdpC1yHgdcAAMtR37R+9/d3egFYFRw9lf8p2fzcZpcHRwAA90MPEmCggIAAiYyMvFcZvaiOQHKIjImUV5e8KmN3jNX7fcv3lTEtx4iPzcct32DaCcBcjKqTtAWuwxUZYCA1bpn03kDyJmPoMLODbDy7UTzEQz5v+LkMrjHYref30U4A5mJUnaQtcB0CJACAJWy/sF1nqjt355xk8M0gUztMleZFmxt9WAAAN8McJMBAqot+8ODBeovrrgeQeFP3TpVav9XSwVHxzMXl7+f+tkxwRDsBmItRdZK2wHVYKBYw0N27dyVt2rS6TBY7IPFiYmNk6MqhMvKvkXpfBUVT20+VDH4ZLFPPaScAczGqTtIWOI+FYgE3oMYwDxo0yFEG8Phuhd+SbrO7ydJjS/X+kFpD5ON6H4vN02apek47AZiLUXWStsB16EECALidQ9cOSZvpbeTI9SPi7+Uv49uMly5luhh9WAAAE6MHCQBgSfMOzZPe83rLnYg7kjd9XpnXZZ5UzFnR6MMCAFgEWewAgxezjI6OvlcZvbzcOhUxkNKiY6Pl/VXvy+cbP9f7tfPVllmdZkm2NNlM/ebHxsbKmTNndDlfvnzi6Zm4/Ei0E4C5GFUnaQtchyx2gIFCQ0PFx8dHb6oM4MGu3r0qTSc3dQRHb1R7Q1b2Wmn64EgJCwuTggUL6k2VE4t2AjAXo+okbYHr0IMEADC1Lee36MVfVQrvNN5p9HyjTqU7GX1YAACLIkACDBQQECA3b950lAEkHE7y8/afZcCyARIZE6nXN5rTeY6UyloqVb1NtBOAuRhVJ2kLXIcACTCQGrecMWNGzgHwD2FRYdJ/cX+ZuHui3m9fsr381uY3Se+bPtW9V7QTgLkYVSdpC1yHAAkAYConbp7QQ+p2Xdolnh6e8nmDz2VQjUEkMQEAuAQBEmCgyMhI+eyzz3R56NChesInkJrNPjBb+i7oq1N4Zw3IKjOeniH1CtaT1Ix2AjAXo+okbYHrsFAsYKC7d+9K2rRpdTkkJETSpEnD+UCqFBEdIYOWD5Iftv6g92vkraGDozzp80hqr+e0E4C5GFUnaQucx0KxgBtQ6ye89NJLjjKQGh2/cVw6z+os2y9u1/tv13xbPq73sXjbvMUKnK3ntBOAuRhVJ2kLXIceJACAYWYdmCXPLnhWD6nL7J9ZJrWbJM2LNueMAACSHT1IAADTCo8OlzeD3pTR20br/Zp5a8q0DtMkb4a8Rh8aACCVY0wPAMCljt04Jp3+6CQ7L+3U++/UfEc+qveRZYbUPWg9p2vXrulylixZyMYHACbnafQBAKmZmnDp7e2tN1UGrG7KnilS8eeKOjhSQ+qWdFsiIxqOsGxwpISGhkq2bNn0psqJRTsBmItRdZK2wHXoQQIMFh0dbfQhAClOzTF6ecnLMnnPZL1fK18tPaTOClnqXIF2AjAXo+okbYFrECABBvL395dz5845yoAVbTq7SbrP6S4nb53UC78OqzNM3q3zrnh58hH0OGgnAHMxqk7SFrgOn06AgTw9PSV37tycA1hSTGyMfLb+Mxm+drjE2GOkQMYCMqX9FL3GER4f7QRgLkbVSdoC1yFAAgAku9O3TkuPuT1kw5kNer/bE91kdPPRksEvA+82AMDUCJAAA0VGRsq3336rywMGDBAfHx/OB9ze9H3T5cVFL8rtiNuSziedjG4xWnqU7WH0Ybkt2gnAXIyqk7QFrsNCsYCBVEaatGnT6nJISIikSZOG8wG3dSv8lgxYNkAm7Z6k96vlqaaH1BUKLCSpmbP1nHYCMBej6iRtgfNYKBZwA15eXtK7d29HGXBXK06skGfmPyPn7pzTiRjerf2uvF/nfUun73ZVPaedAMzFqDpJW+A69CABAJIsNCpU3v7zbflh6w96v3BgYZnYdqLUzFeTdxUAYCr0IAEAUtTmc5ul97zecuT6Eb3fv1J/GdlopKT1uTf0BAAAd8SYHgBAokTGRMpHaz+SERtGSKw9VnKnyy3j24yXxoUb804+gN1ul9DQUF0OCAgQDw8P3icAMDFPMbF169ZJq1atJFeuXPoDZd68eUYfEpDsEy4zZsyoN1UGzG7v5b1S9Zeq8un6T3VwpLLT7e2/l+DoEVRwpCZ0qy0uUEoM2gnAXIyqk7QFrmPqHiT1h1CuXDnp27evtG/f3ujDAVLE7du3eWdhelExUfLFxi/k43Uf6x6kzP6Z5eeWP0uHUh2MPrRUgXYCMBej6iRtgWuYOkBq1qyZ3gCr8vf3lyNHjjjKgBntvLhT+i7oK7su7dL7rYu3lrEtx0r2tNmNPrRUgXYCMBej6iRtgeuYOkBKrIiICL3Fz1QBmJmnp6cULVrU6MMAHig8OlzPNRq5caTE2GN0r9F3zb6TrmW6Mo/GhWgnAHMxqk7SFriOpQKkESNGyPDhw40+DABwe3+d/UueXfCsHLp2SO93Kt1Jvm/2vWRLk83oQwMAIPUmaUisIUOG6LGZcdvZs2eNPiTgkaKiouTHH3/UmyoDRrsbeVdeX/a61BpfSwdHOdLmkLmd58qMp2cQHBmEdgIwF6PqJG2B67jNQrEqi93cuXOlbdu2yb4YFGBkIhKV2UoJCQmRNGnScDJgmBUnVsjzC5+Xk7dO6v0+5fvIqMajJNA/kLNiYD2nnQDMxag6SVvgPBaKBdyAzWaTp59+2lEGjHDl7hUZGDRQpuydovfzZcinkzA0KdKEE2KCek47AZiLUXWStsB1TN2DpKLyY8eO6XKFChVk1KhRUq9ePcmUKZPky5fvP3+fHiQAeDi1jtEvO36Rt1e8LbfCb4mHeMgrVV6RT+t/Kul80/HWAQAsxRI9SNu2bdMBUZyBAwfqn71795YJEyYYeGQA4N72XdknLyx6QSdjUCrmrKjXNaqUq5LRhwYAgKFMHSDVrVtXTNzBBQBuJzQqVKfu/mrTVxIdGy1pfdLKx/U+1j1HXp6m/kgAAMAlLJXFDnA3oaGhkjt3br2pMpCSlh5dKqVHl5YvNn6hg6O2JdrKgZcOyOvVXic4SuGJ1SrRkNpUObFoJwBzMapO0ha4Dl8XAgZSPaQXLlxwlIGUcPLmSXkj6A2Zf3i+3s+bPq/80PwHaV28NW+4G6CdAMzFqDpJW+A6BEiAgfz8/GTnzp2OMpDcw+m+2PCF7jGKiIkQm4dNBlQdIMPrDddD6+AeaCcAczGqTtIWuI6ps9g5iyx2AFIj1azPPTRX9xqduX1G39agYAP5rtl3UiprKaMPL9Vh7RIAMAdLZLEDACTOwasH5bVlr+lFX+OG041qMko6lOyg58AAAIBHI0ACDBQVFSVTptxbnLN79+7i7e3N+UCS3Im4o7PTffv3tzoBg6/NVwbXGCzv1HpH0vi4ZpV3pAzaCcBcjKqTtAWuwxA7wEAMvYGzVDD0645f5f3V78vV0Kv6tlbFWsnXTb6WwpkK8wZboJ7TTgDmYlSdpC1wHkPsADdgs9mkefPmjjKQGMuOLZM3l78pB64e0PvFMhfTgVHzovf+pmCNek47AZiLUXWStsB16EECADez78o+GbR8kAQdD9L7mfwzyYdPfSgvVnpRvG0M0wQA4EHoQQIAi7kcclmGrR4mv+z8RWLtseLt6S2vVnlV3qvzngT6Bxp9eAAAWAJJGgDA5O5G3tXJF0ZsGCEhkSH6NpWV7ouGXzDPCACAZOaZ3E8I4PGFhoZK0aJF9abKQHxRMVEyZusYKfJ9EXl31bs6OKqUq5Ks67NOZnWaRXDkJtTEajWJW22qnFi0E4C5GFUnaQtchx4kwOAFPY8dO+YoA4oaPjdz/0x5b9V7cvzmcX1bwYwF5eN6H0vXJ7qKpwffbbkbZy6iaCcAczGqTtIWuA4BEmAgPz8/2bBhg6OM1E19+KnEC0NWDpFdl3bp27KlySbD6gyTfk/2Ex+bj9GHCAPQTgDmYlSdpC1wHbLYAYAJbD63Wd5Z8Y6sPb1W76f3TS9v1XhLBlQbIGl97q23AffE2iUAYA5ksQMAN7DtwjYZvna4LDqySO/72nx1Zrp3ar0jmQMyG314AACkOgyxAwwUHR0tc+fO1eV27dqJlxdVMrXYfmG7fLj2Q0dgZPOwSZ/yfeSDpz6QvBnyGn14MBHaCcBcjKqTtAWuwxA7wEAMvUmdgZHqMVp4ZKHeVwkXepbtqdcyKpKpiNGHBxPWc9oJwFyMqpO0Bc5jiB3gBjw9PeWpp55ylGFdOy7u0IHRgsMLHIFRj7I95L3a70nRzEWNPjyYuJ7TTgDmYlSdpC1wHXqQACCFky+oBV7jB0bdn+iue4yKZS7Gew8AgIvQgwQABqbr/vPEnzowWnNqjSMw6vZEN91jVDxLcc4NAAAmxYxwAEgmMbExMvfQXB0YqSF1irent55j9FbNtwiMAABwAwRIgIHCwsKkevXqurxp0ybx9/fnfLihyJhImbxnsnyx8Qs5cv2Ivi3AO0Cer/i8DKw+kKx0qZyaWF2gQAFdPnXqVKIndNNOAOZiVJ2kLXAdAiTAQLGxsbJ7925HGe7lVvgt+WXHL/Lt39/KuTvn9G0Z/TLqdYxeq/qaZAnIYvQhwiSuXbuW5N+lnQDMxag6SVvgOgRIgIH8/Pxk+fLljjLcw4mbJ+Tbzd/K+F3jJSQyRN+WM21O3Vv0wpMvSDrfdEYfIiyEdgIwF6PqJG2B65DFDgAeM/HCxrMbZdSmUTLv0Dyxi13fXjpraXmj2hvSvWx38fMiyMW/sXYJAJgDWewAIBlExUTJrAOz5OvNX8vWC1sdtzct0lQGVhsoDQs1FA8PD95rAAAsgiF2gIGio6MlKChIl5s0aSJeXlRJs7gYfFHPL/p5+89yPvi8vs3X5iu9yvWS16u9LqWyljL6EJFK0E4A5mJUnaQtcB2G2AEGYuiN+YbRrT+zXn7c+qPMOThHomOj9e3Z0mSTVyq/Ii9WelGypslq9GEildVz2gnAXIyqk7QFzmOIHeAGPD09pVKlSo4yjBEcEazTdI/eNlr2XdnnuL1m3pryUuWXpEPJDuLr5cvpgSH1nHYCMBej6iRtgevQgwQg1dpzeY+M3T5WJu2eJMGRwY71i3o80UP6V+4v5XOUN/oQAQBAMqEHCQAe1DhG3JFpe6fJrzt/TZB0oXjm4rq3SM0xUmsZAQCA1IkZ4QBSxdyiDWc26KDojwN/SGhUqL7d29NbWhdvLf0r9Zf6BeuTjQ4AABAgAUYKCwuThg0b6vKKFSvE39+fE5KMLodclom7J+rA6Mj1I47bVQa6Zys8Kz3L9iTpAlJcaGiolCp1L+vhgQMHJCAgIFG/TzsBmItRdZK2wHXoQQIMFBsbK3/99ZejDOep3qH5h+bL5L2TJehYkMTYY/TtabzTSJcyXXRgVC1PNXqL4NIezNOnTzvKiUU7AZiLUXWStsB1CJAAA/n6+srcuXMdZSRNTGyMrD61Wmeim31wtoREhjjuU8HQcxWek06lO0k633S8xXA7tBOAuRhVJ2kLXIcsdgDc1u5Lu3VQNHXfVLkQfMFxe8GMBaVH2R56K5a5mKHHCLB2CQCYA1nsAFjSwasHdaKFmftnyv6r+x23B/oFSufSnXVQVCNvDYbQAQCAJGGIHWCgmJgYWb9+vS7Xrl1bbDYb5yMRQZGPzUdaFWulg6JmRZqxmCssiXYCMBej6iRtgeswxA4wEENv/jsoUtu+K/sct6vU3I0KN5JOpTpJmxJtWLMIlq/ntBOAuRhVJ2kLnMcQO8ANeHh4ONL/qnJqFmuPlS3nt+gMdAuOLJADVw88MChS6xYF+gcaeqyAK+s57QRgLkbVSdoC16EHCYBhwqLCZNXJVTL/8HxZeGShXAq59K+gqGOpjtKmeBuCIgAA4BR6kACY0tW7V2XJ0SU6KAo6HqTXLYqT3je9nkukeomaF23O8DkAAOByJGkAkKKiY6P10LmlR5fKsuPLZPuF7WKX/18sM0/6PLqHSAVFdQvU1YkXAAAAjEKABBgoLCxMWrdurcsLFiwQf39/S5yP83fO696hZceWyZ8n/pRb4bcS3F8+R3lpXay1TrJQIUeFVD//CtYWGhoqlStX1uWtW7dKQEBAon7fqu0E4K6MqpO0Ba5DgAQYKDY2VlasWOEou6vgiGBZf2a9nk+kAqI9l/ckuF+tUdS4cGM9fE79zJkup2HHCria3W6XAwcOOMqptZ0ArMKoOklb4DoESICBfH19ZfLkyY6yOyVX+OvsXzogWnVqlWw9v1Vi7DGO+z3EQyrnrqwDoqZFmkrlXJXF5skaT0BqaicAqzKqTtIWuA5Z7AA8VkC09cJWWXNqjQ6KNp3bJJExkQkeUyiwkNQvUF/qF6yvs89lCcjCOwuwdgkAmAZZ7AA4lWlu49mNsuHMBv1TJVaIio1K8Jjc6XLrYEht9QrUk/wZ8/OOAwAAt8cQO8BAMTExsmPHDl2uWLGi2Gw2QxZoPXL9iGw8s9ERFB29cfRfj8uZNqfUzl/b0UtUJFMRkisAqaSdAGB8naQtcB0CJMBA4eHhUqVKFV0OCQmRNGnSuCTDnEq7rYbM6e38VrkdcftfjyudtbTUyldLauatqX8WyFiAgAhIJe0EAPPVSdoC1yFAAgzk4eEh+fPnd5ST2/XQ67L94nYdBG25sEX/vBhy8V+P8/Pykyq5q+hgSG3V81aXTP6Zkv14gNTI2Xqe0u0EAPeok7QFrkOSBsAC1DC5YzeOye5Lu2X35d2y69Iu/fPcnXP/eqzNwyZlspXRmeVUpjn1U+1727wNOXYAAABXIEkDYFE3wm7IwasHZe+VvY5AaO/lvXI36u4DH6/mCqkgSPUQqZ8VclaQAO/ELVQJAACQWjDEDjAhtZjkpZBLcvDaQTlw9YAOiA5cu/fz8t3LD/wdfy9/3RNUPkd5KZe9nJTLUU7KZi8r6X3Tu/z4AQAA3BUBEmCg63euy9Odnta9P62GtpJTIad0UKS2W+G3Hvp7+TLk00kUVCCkA6Ic5aRopqIsxgqYUFhYmNSpU0eX161bJ/7+/omemN2lSxddnj59uvj5+aXIcQIwd52kLXAd5iABLlhk9fjN43L0+lGdPtvx88ZRuXD9gshn9x84VER8/v/3PD08pXBgYSmZtaSUylLq3s+spaRElhKS1ict5w1wE3fv3pW0adMmOeOVs78PIHkZVSdpC5zHHCTARe5G3pXTt0/LqVun5PSt+z/j9m+f1kPlHsomEtA+QLKnyS7Vy1eX4tmKS/HMxXUgVDRzUZ1dDkDq5uPjI2PHjnWUAaTOOklb4Dr0IAGPmAek1ge6EHxBb2r9IEc5+LycvXNWB0HXQq/953uY0S+jHgKngp4igUX0z7h90mkD1sa3vgBgDvQgAQ8Jeu5E3JGroVfl6t2r+ueVu1ccZdXbo4KfuEAoNCr0sd7HDL4Z9EKqasufIf+9nxnv/8yQXwdBrF8CAABgfqZP0vDjjz/Kl19+KZcuXZJy5crJ999/71i9GKl73Z/giGCdyOBm+E39U5fDbia47XrYdUfwE/czMiYyUa8V6BcoudLl0lvu9LklV9p75Tzp8zgCIdVDlKR/R2ysHDx4UJdLliwpnp6eSXoeANZFOwGYi1F1krbAdUwdIM2YMUMGDhwoP/30k1StWlW++eYbadKkiRw+fFiyZctm9OHhMcTExkh4dLhji4iJ0D9Vz4yauxMSGfKvTWV0e9DtalND3lQQpH6qICmp0ninkaxpskrWgKySLU02RzlH2hz3AqF0ufXPnOlypuiaQSq7VZkyZXSZydcAaCcA8zPqs5trBtcxdYA0atQo6devnzzzzDN6XwVKixcvlvHjx8s777wj7kL1WCw6skgP79L/xfup/PM29Z++/TFuS+xzqJ8qsIiOjXZsUbFRCfYftcV/rPp3OQKf6HuBzz+DIfW4lKSSGKjeG7Wpnh790z9QMvreu00NbYsLftRPHQwFZBV/78Sl2U1JWbJkMfoQAJi8ntNOAOZiVJ2kLUjlSRoiIyMlICBAZs2aJW3btnXc3rt3b7l165bMnz//X78TERGht/gTsfLmzSu3b9+W9OmNWyxT9XhkGplJUjsvTy8d0PjafHWAolJV/2vz/v9yGp80Ce5TvT6OAOh+UESWNwAAAKSKJA3Xrl2TmJgYyZ49e4Lb1f6hQ4ce+DsjRoyQ4cOHi9l427ylVr5auuyh/vPwSPBT3/6P2+Im9D/ObYl9DpuHTQcrD9q8Pb0fet8/Nx+bjw5Q4m++Xr4J922+jtvV7wAAAABmZqkr1iFDhug5S//sQTKa6v1Y/8x6ow8DAAAAwH8wbcosNcbSZrPJ5cuXE9yu9nPkyPHA3/H19dXdZfE3wMzCw8Ole/fuelNlANajJlbXrVtXb6qcWLQTgLkYVSdpC1zHtHOQFJW5TqX0Vqm949Ib5suXT1555ZXHStLwuOMMAaOwgCRgfc7Wc9oJwFyMqpO0Bc5z+zlIihoup5IyVKpUSQdKKs23+uOIy2oHuDsfHx/5+uuvHWUAoJ0AzM2oz26uGVzH1D1Iyg8//OBYKLZ8+fLy3Xff6Z6lx0EPEgDAaHzrCwDm8LixgekDJGcQIAEAjEaABADmYIkhdoDVqXl1Z86c0WU1v87T07R5UwAYhHYCMBej6iRtgesQIAEGUhmtChYs6PKJngDcB+0EYC5G1UnaAtchQAIMFhAQYPQhADB5PaedAMzFqDpJW+AaBEiAgdS3Tmp+AgDrcrae004A5mJUnaQtcB0mPAAAAADAfQRIAAAAAHAfARJgoIiICOnXr5/eVBmA9YSHh0uLFi30psqJRTsBmItRdZK2wHVYBwkwEOujANbnbD2nnQDMxag6SVvgPNZBAtyAt7e3fPLJJ44yANBOAOZm1Gc31wyuQw8SAAApiG99AcC9epCYgwQAAAAA97EOEmAgu90u165d0+UsWbKIh4cH5wMA7QRgYkZ9dnPN4DoESICBQkNDJVu2bC6f6AnAfdBOAOZiVJ2kLXAdSwdIKtKOG28ImFH8lbjV32lMTIyhxwPAfPWcdgIwF6PqJG2B8+JigrgYIVUmaTh37pzkzZvX6MMAAAAAYBJnz56VPHnypM4AKTY2Vi5cuCDp0qUzfG6HilhVsKZOyKOyZsB8OHfuifPmvjh37onz5r44d+6Lc5c4KuwJDg6WXLlyiaenZ+ocYqf+4Y+KDo2ggiMCJPfEuXNPnDf3xblzT5w398W5c1+cu8en0nz/F9J8AwAAAMB9BEgAAAAAcB8Bkov4+vrKBx98oH/CvXDu3BPnzX1x7twT5819ce7cF+cuZVg6SQMAAAAAJAY9SAAAAABwHwESAAAAANxHgAQAAAAA9xEgAQAAAMB9BEgu8OOPP0qBAgXEz89PqlatKlu2bHHFyyKedevWSatWrfTKyR4eHjJv3rwE74/KVTJs2DDJmTOn+Pv7S8OGDeXo0aMJHnPjxg3p3r27XowtY8aM8uyzz0pISEiCx+zZs0dq166tz3XevHll5MiRnAcnjBgxQipXrizp0qWTbNmySdu2beXw4cMJHhMeHi4vv/yyZM6cWdKmTSsdOnSQy5cvJ3jMmTNnpEWLFhIQEKCfZ/DgwRIdHZ3gMWvWrJGKFSvqjEBFihSRCRMmcO6SaMyYMVK2bFnHwoXVq1eXpUuXcs7c0Oeff67bzNdff91xG3XOnD788EN9ruJvJUqUcNzPeTOv8+fPS48ePfTnmLoGeeKJJ2Tbtm2O+7lGMYDKYoeUM336dLuPj499/Pjx9v3799v79etnz5gxo/3y5cu87S60ZMkS+7vvvmufM2eOytponzt3boL7P//8c3uGDBns8+bNs+/evdveunVre8GCBe1hYWGOxzRt2tRerlw5++bNm+3r16+3FylSxN61a1fH/bdv37Znz57d3r17d/u+ffvs06ZNs/v7+9t//vlnznUSNWnSxP7bb7/p93PXrl325s2b2/Ply2cPCQlxPObFF1+0582b175y5Ur7tm3b7NWqVbPXqFHDcX90dLS9TJky9oYNG9p37typ/xayZMliHzJkiOMxJ06csAcEBNgHDhxoP3DggP3777+322w2+7Jlyzh3SbBgwQL74sWL7UeOHLEfPnzYPnToULu3t7c+j5wz97FlyxZ7gQIF7GXLlrUPGDDAcTt1zpw++OADe+nSpe0XL150bFevXnXcz3kzpxs3btjz589v79Onj/3vv//Wn0dBQUH2Y8eOOR7DNYrrESClsCpVqthffvllx35MTIw9V65c9hEjRqT0S+Mh/hkgxcbG2nPkyGH/8ssvHbfdunXL7uvrq4McRV00q9/bunWr4zFLly61e3h42M+fP6/3R48ebQ8MDLRHREQ4HvP222/bixcvzrlIJleuXNHnYe3atY7zpC68//jjD8djDh48qB+zadMmva8CIk9PT/ulS5ccjxkzZow9ffr0jnP11ltv6QuL+Dp37qwDNCQPVTd++eUXzpmbCA4OthctWtT+559/2p966ilHgESdM3eApL7EexDOm3mp64RatWo99H6uUYzBELsUFBkZKdu3b9fDteJ4enrq/U2bNqXkSyMRTp48KZcuXUpwnjJkyKCHQ8adJ/VTDaurVKmS4zHq8ep8/v33347H1KlTR3x8fByPadKkiR4SdvPmTc5JMrh9+7b+mSlTJv1T1a+oqKgE504NKcmXL1+Cc6eGK2TPnj3Beblz547s37/f8Zj4zxH3GOqp82JiYmT69Oly9+5dPdSOc+Ye1LBVNSz1n/WC82duami4GkpeqFAhPSRcDS9WOG/mtWDBAn1t0bFjRz0EvEKFCjJu3DjH/VyjGIMAKQVdu3ZNXxzEvzBT1L66IIc5xJ2LR50n9VM1XPF5eXnpC/X4j3nQc8R/DSRdbGysngdRs2ZNKVOmjON9VQGpCl4fde7+67w87DEqiAoLC+O0JcHevXv1nDA1p+vFF1+UuXPnSqlSpThnbkAFtDt27NBzAP+JOmde6ks9NXdy2bJleh6gurBWc2KDg4M5byZ24sQJfb6KFi0qQUFB0r9/f3nttddk4sSJ+n6uUYzhZdDrAkCiv9Het2+fbNiwgXfODRQvXlx27dqle/1mzZolvXv3lrVr1xp9WPgPZ8+elQEDBsiff/6pk83AfTRr1sxRVklSVMCUP39+mTlzpp74D/N++ad6kD777DO9r3qQ1GfdTz/9pNtNGIMepBSUJUsWsdls/8qopfZz5MiRki+NRIg7F486T+rnlStXEtyvsqCpzHbxH/Og54j/GkiaV155RRYtWiSrV6+WPHnyJDh3aijrrVu3Hnnu/uu8POwxKgMbFxZJo3r2VDbAJ598UvdElCtXTr799lvOmcmpoViqrVMZHVUvudpUYPvdd9/psupZpc65B9WzXqxYMTl27Bj1zsRU9lzVux5fyZIlHcMjuUYxBgFSCl8gqIuDlStXJvimQO2rsfgwh4IFC+oGKP55UkOr1NyiuPOkfqqLcHXxEGfVqlX6fKpv6eIeo9KJqzkxcdS3sOqb9MDAQJf+m6xC5dRQwZEanqXeb3Wu4lP1y9vbO8G5U3O+1AdL/HOnhnvFD3DVeVHBT9yHknpM/OeIewz1NPmouhIREcE5M7kGDRro+qJ6/+I29e22ms8SV6bOuQe1DMXx48f1BThtpXmpYeP/XL7iyJEjuvdP4RrFIAYlh0hVab5VNrQJEyboTGjPP/+8TvMdP6MWXJORSaV4Vpv6sx81apQunz592pFCU52X+fPn2/fs2WNv06bNA9N8V6hQQafh3LBhg87wFD/Nt8oSpNJ89+zZU6czVudepY4mzXfS9e/fX6dfX7NmTYLUtaGhoQlS16rU36tWrdJpvqtXr663f6b5bty4sU4VrlJ3Z82a9YFpvgcPHqyz4P3444+k+XbCO++8ozMNnjx5Utcnta8yPi5fvpxz5obiZ7FTqHPm9Oabb+q2UtW7jRs36qUN1JIGKvunwnkzbzp9Ly8v+6effmo/evSofcqUKfrzaPLkyY7HcI3iegRILqDWVFEXcGo9JJX2W62jA9davXq1Doz+ufXu3duRRvP999/XAY4KaBs0aKDXb4nv+vXrOiBKmzatThH9zDPP6MArPrWGkkrXqZ4jd+7culFD0j3onKlNrY0URwWxL730kk4jrT5U2rVrp4Oo+E6dOmVv1qyZXpdKXTCoC4moqKh//Y2UL19e19NChQoleA0kTt++ffW6Huq9VMGoqk9xwRHnzP0DJOqcOamlCXLmzKnrnfr8Ufvx19LhvJnXwoUL9Rd56tqhRIkS9rFjxya4n2sU1/NQ/zOq9woAAAAAzIQ5SAAAAABwHwESAAAAANxHgAQAAAAA9xEgAQAAAMB9BEgAAAAAcB8BEgAAAADcR4AEAAAAAPcRIAEAAADAfQRIAABTq1u3rrz++uuO/QIFCsg333yToq95/fp1yZYtm5w6dUrvr1mzRjw8POTWrVvJ+jrvvPOOvPrqq8n6nAAA5xAgAQCc1qdPHx1AqM3b21sKFiwob731loSHhyf7u7t161Z5/vnnJSV9+umn0qZNGx2MpaRBgwbJxIkT5cSJEyn6OgCAx0eABABIFk2bNpWLFy/qi/2vv/5afv75Z/nggw+S/d3NmjWrBAQESEoJDQ2VX3/9VZ599llJaVmyZJEmTZrImDFjUvy1AACPhwAJAJAsfH19JUeOHJI3b15p27atNGzYUP78888Ew9a6du0quXPn1gHOE088IdOmTUvwHHfv3pVevXpJ2rRpJWfOnPLVV1/963XiD7FTQ+BUr9WuXbsc96thcOo2NSxOuXnzpnTv3l0HVv7+/lK0aFH57bffHvrvWLJkif63VKtW7ZFBVLNmzaRmzZr69eKOY+bMmVK7dm39OpUrV5YjR47oHq9KlSrpf5P6natXryZ4rlatWsn06dMf6z0GAKQ8AiQAQLLbt2+f/PXXX+Lj4+O4TQ23e/LJJ2Xx4sX6fjVMrmfPnrJlyxbHYwYPHixr166V+fPny/Lly3WQs2PHDqeO5f3335cDBw7I0qVL5eDBg7q3RvXcPMz69ev1cT6MCogaNWoksbGxOgDMmDGj4z7VY/bee+/pY/by8pJu3brpoYbffvutft5jx47JsGHDEjxflSpV5Ny5c475TgAAY3kZ/PoAAItYtGiR7iWJjo6WiIgI8fT0lB9++MFxv+o5UnNu4qjkBEFBQbrXRQUJISEhemjb5MmTpUGDBvoxan5Onjx5nDquM2fOSIUKFXQvjvJf84pOnz4tuXLleuB9ly5dks6dO+teqKlTpyYIABX171ND5pQBAwboHrOVK1fqniZFDdubMGFCgt+Jey31uik95wkA8N8IkAAAyaJevXq6d0YNk1NzkFQPSocOHRz3x8TEyGeffaYDovPnz0tkZKQOpOLmEx0/flzfVrVqVcfvZMqUSYoXL+7UcfXv318fh+rVady4sR7+V6NGjYc+PiwsTPz8/B54n+o5UsHcjBkzxGaz/ev+smXLOsrZs2fXP9VQwvi3XblyJcHvqOF4ccP2AADGY4gdACBZpEmTRooUKSLlypWT8ePHy99//617hOJ8+eWXeqjZ22+/LatXr9bzhlRviwqKkkr1Uil2u91xW1RUVILHqHk/qnfmjTfekAsXLujeqfg9Wf+kht+peUsP0qJFC1m3bp0esvcgKoNfHDUn6UG3qaF58d24cUP/VHOkAADGI0ACACT/h4unpwwdOlTPx1E9MsrGjRt16uwePXroIKpQoUI6iUGcwoUL62BCBVZxVKAS/zH/FBdUqOx5ceInbIj/uN69e+vheyrBw9ixYx/6nGo43sMCoM8//1w/jwqyHvaYxFLzsdS/u3Tp0snyfAAA5xAgAQBSRMeOHfUwtB9//FHvq3k7KqmBSt6gkiW88MILcvnyZcfj1fwlNUdHJWpYtWqVDhzU+kpxvUQPooanqWxzKnBRz6kSPKigLD6VFEElfVAJEvbv36/nSpUsWfKhz6l6tdTjHtaL9L///U9nxatfv74cOnRInKWSN8RlvgMAGI8ACQCQItQcpFdeeUVGjhyp5yWpwKVixYo6AKlbt65OCa7mA8WnhuGpYEGlvlZpwmvVqvXIjHKKGs6nEkOox73++uvyySefJLhfJVIYMmSInh9Up04dHbQ9Kq22mjOkjlPNlXoYNceqU6dOOkh6VA/X41DH0q9fP6eeAwCQfDzs8QduAwAAnYpc9WSpXqxH9WA5S6Uef/PNN2XPnj06oAQAGI/WGACAByRjOHr0qM62pxa+TSmqZ00tWktwBADmQQ8SAAAAANzHHCQAAAAAuI8ACQAAAADuI0ACAAAAgPsIkAAAAADgPgIkAAAAALiPAAkAAAAA7iNAAgAAAID7CJAAAAAA4D4CJAAAAACQe/4PQvlxThFnO70AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Mass of the Earth is:\", prem.mass(prem.r_earth), \"kg\")\n", + "print(\"Earth's moment of inertia is: \", prem.moment_of_inertia(prem.r_earth)[0], \"kg m^2\")\n", + "print(\"I/MR**2:\", prem.moment_of_inertia(prem.r_earth)[1])\n", + "\n", + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(0, 6371, 0.5)\n", + "ax.plot(rs, prem.mass(rs)/1e24, 'g')\n", + "\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Mass inside radius ($10^{24}$ kg)')\n", + "\n", + "ax.axvline(1221.5, ls=':', c='k')\n", + "ax.axvline(3480, ls='--', c='k')\n", + "ax.axvline(3630, ls=':', c='k')\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gravity and pressure\n", + "\n", + "$$g(r) = \\frac{G M(r)}{r^2} $$\n", + "\n", + "$$P(r) = \\int_{R_e}^r -g(r) \\rho(r) \\,\\mathrm{d}r $$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Surface gravity: 9.821911198154556 m/s^2\n", + "Pressure at center of Earth: 364.0900304721668 GPa\n", + "Pressure at CMB: 135.83753335912647 GPa\n", + "Gravitational potential at surface: -62.57539624344266 MJ/kg\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAI1CAYAAAB7Ub/vAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyVhJREFUeJzs3QV4VMfXBvCXuJDgBHd3d5fg7u5uLcVdihQKpTgUd3dNkOBuxd1dggSI53vO5Mv+SQuFJJvcu7vvr8/tzm42u5e7mdl77syciRUSEhICIiIiIiIiIgBWPApEREREREQUhkEiERERERERGTBIJCIiIiIiIgMGiURERERERGTAIJGIiIiIiIgMGCQSERERERGRAYNEIiIiIiIiMmCQSERERERERAYMEomIiIiIiMiAQSIREVmUe/fuIVasWDh//nyEf3fv3r3ImjUrgoKC1P0RI0YgT548Rt/HIkWKYP369UZ/XSIioh/BIJGIiGJM69atVYAmm62tLdzc3FCxYkUsWLAAwcHB0fJ+tWvXNtrr9evXD0OGDIG1tTWik7zHgAEDouWYEBERfQ+DRCIiilGVK1fG06dPVY/ezp07UbZsWfTq1QvVq1dHYGCgbj+Nw4cP4/bt26hXr160v1eVKlXw4cMHdXyIiIhiGoNEIiKKUfb29kiSJAmSJ0+OfPnyYdCgQdi8ebMKiBYtWmR43tu3b9G+fXskSpQIrq6uKFeuHC5cuGD4edhQzzlz5iBlypRwcnJCw4YN8e7dO8PPFy9erF47rPfSy8vL8Pt37txRAar8Xu7cuXHs2LH/3O9Vq1apXk8HB4dvPkeCyHTp0qF79+4ICQlR/564ceNi27ZtyJw5s3qv+vXr49OnT2rf0qRJg3jx4qFnz56GIaxCeiqrVq2q3pOIiCimMUgkIiLNSQAogdqGDRsMjzVo0AAvXrxQweOZM2dUQFm+fHm8efPG8Jxbt25hzZo12Lp1K3bt2oVz586ha9eu6md9+vRRQWNYz6VsxYoVM/zu4MGD1XNkbmKmTJnQpEmT/+zJPHToEAoUKPDNn//9998oUaIEmjZtiunTp6ugVEhAOHXqVBXwyT5KoFqnTh3s2LFDbUuXLlWB7rp168K9XqFChdR7EhERxTSbGH9HIiKir8iSJYsKtMKGdp48eVIFidLzKH7//Xds2rRJBVMdO3ZUj/n6+mLJkiWqV1JMmzYN1apVw6RJk1RvpaOjI/z8/FT5nyRAlOeKkSNHInv27CrolP34mvv37yNZsmRf/dnRo0fVcFkJPH/55ZdwPwsICMCsWbOQPn16dV96EiUwfP78OWLHjo1s2bKpHs39+/ejUaNGht+T93r48KGal2hlxWu6REQUc/itQ0REuiDDM8N632RYqY+PDxIkSKACqbDt7t27akhnmFSpUhkCRFG0aFEVVF2/fv2775crVy5DOWnSpOpWgtJv+fz581eHmj548EANQx02bNi/AkQhQ0zDAkQhyXpkmKn8e7587J/vLQGu/FskyCUiIopJ7EkkIiJduHr1KtKmTavKEiBK4PblHMIwMsfPGCS7apiw4PS/sokmTJgQ3t7e/3pc5kxKr9/KlSvRtm1bNX/yW+8T9l5fe+yf7y3Dap2dnVWwSEREFJPYk0hERJrbt28fLl68aMgcKvMPnz17BhsbG2TIkCHcJsHal714T548Mdw/fvy4GpopSWKEnZ1duIQwUZE3b15cuXLlX49LECeJaaSXsVKlSiorqTFcunRJvScREVFMY5BIREQxSoZPSgD4+PFjnD17FmPHjkWtWrXUnL6WLVuq51SoUEENHZU1Dj08PNRyGTLvT+b8nT592vBaEpi1atVKDU+VJC+SJVSS1YTNQZRhnTLPUYafvnr1Ss0PjCwJAGWu5NdIj9/27dtVUCvLV0hPaFTJv8fd3T3Kr0NERBRRDBKJiChGSYZPGUoqAZxkHpWELZL9U5aqCFukXoZfSubPUqVKoU2bNir7aOPGjVXyGJm/F0Z6FuvWrauWi5CASuYZzpw50/DzDh06qF5FyUoqw0KPHDkS6f1u1qwZLl++/M35jjLHUDKxytxKSYjz8ePHSL+XBNASFMu/nYiIKKbFCpFvMyIiIhMj6yBKtlNZwiKm9O3bF+/fv1dLVkSn/v37q/mPc+fOjdb3ISIi+hr2JBIREf0gGe6aOnXq/0xwYwyJEyfG6NGj+bkQEZEmmN2UiIjoB0lm1UGDBkX78fraUhpEREQxhcNNiYiIiIiIyIDDTYmIiIiIiMiAQSIREREREREZMEgkIiIiIiIiAwaJFkjW32revDkSJEgAR0dH5MyZM9zi1LIqyrBhw9Q6ZvJzWdT65s2b4V7jzZs3as0wV1dXlcihXbt2/1o8WhawLlmypFrsOmXKlJgwYUKM/RvNNd2/rB335ZYlSxbDz319fdGtWzf1ucp6bfXq1cPz58/DvcaDBw/U+m1OTk4qe6Kk8w8MDAz3HC8vL+TLlw/29vZqDbpFixbF2L/REowfP159dj/99JPhMX52+jRr1iy17qK0c7IVLVpUrYMYhp+bfo0bNw4FCxaEi4uLautq1679r/Ut+fnp08GDB1GjRg0kS5ZMtZWyzM2XeI5ifmbMmKHWzZXzxcKFC+PkyZNa7xIJWSeRLMebN29CUqdOHdK6deuQEydOhNy5cydk9+7dIbdu3TI8Z/z48SFx4sQJ2bRpU8iFCxdCatasGZI2bdqQz58/G55TuXLlkNy5c4ccP3485NChQyEZMmQIadKkieHn7969C3Fzcwtp1qxZyKVLl0JWrlwZ4ujoGDJnzpwY/zebi+HDh4dkz5495OnTp4bt5cuXhp937tw5JGXKlCF79+4NOX36dEiRIkVCihUrZvh5YGBgSI4cOUIqVKgQcu7cuZAdO3aEJEyYMGTgwIGG58jfg5OTU0jv3r1Drly5EjJt2rQQa2vrkF27dsX4v9ccnTx5MiRNmjQhuXLlCunVq5fhcX52+rRly5aQ7du3h9y4cSPk+vXrIYMGDQqxtbVVbZrg56ZflSpVClm4cKH6rM6fPx9StWrVkFSpUoX4+PgYnsPPT5/ku2nw4MEhGzZskHW8QzZu3Bju5zxHMS+rVq0KsbOzC1mwYEHI5cuXQzp06BASN27ckOfPn2u9axaPQaKF6d+/f0iJEiW++fPg4OCQJEmShEycONHw2Nu3b0Ps7e1VoCckeJCG+9SpU4bn7Ny5MyRWrFghjx8/VvdnzpwZEi9evBA/P79w7505c+Zo+pdZRpAogfnXyGckJ69r1641PHb16lX1OR07dszwxWtlZRXy7Nkzw3NmzZoV4urqavic+vXrpwLRLzVq1EidcFHUfPjwISRjxowhnp6eIaVLlzYEifzsTIu0a/PmzePnZmJevHih2sMDBw6o+6x3puGfQSLPUcxPoUKFQrp162a4HxQUFJIsWbKQcePGabpfFBLC4aYWZsuWLShQoAAaNGighuDkzZsXf/31l+Hnd+/exbNnz9QQ0zBx4sRR3f/Hjh1T9+VWhpjK64SR51tZWeHEiROG55QqVQp2dnaG51SqVEkN9/H29o6hf635kWG/MgQnXbp0arivDB8VZ86cQUBAQLjPTYaipkqVKtznJkOL3dzcwn0m79+/x+XLlw3P+fI1wp4T9hoUeTIUWIb6/vP48rMzDUFBQVi1ahU+fvyohp3yczMt7969U7fx48dXt/z8TBPPUcyLv7+/qotffi/KuaTc53mH9hgkWpg7d+6oeTYZM2bE7t270aVLF/Ts2ROLFy9WP5cAUXwZSITdD/uZ3EqA+SUbGxv15fvlc772Gl++B0WMBOoyP3DXrl3qM5QvS5nz+eHDB3VMJSCX4P2/PrfvfSbfeo4Ekp8/f+ZHFkkSXJw9e1bNk/onfnb6dvHiRTXHV+bodu7cGRs3bkS2bNn4uZmQ4OBgNQe4ePHiyJEjh3qM9c408RzFvLx69UpdgPuvc07Sjo2G700afVlKD+DYsWPVfelJvHTpEmbPno1WrVrxM9GxKlWqGMqSTEOCxtSpU2PNmjUqwRDp08OHD9GrVy94enqqSflkWjJnzozz58+rnqh169apdvLAgQNa7xZFsBdfvucOHz7M40ZE9IPYk2hhJGOpXAX/UtasWQ3DFpMkSaJu/5kVU+6H/UxuX7x4Ee7nkiFTMp5++ZyvvcaX70FRI72GmTJlwq1bt9QxlWEbb9++/c/P7XufybeeI5kdGYhGjgylkfoiGWOlx102CTKmTp2qynLFlJ+dfkkPvWT5zZ8/v+oJzp07N/7880/WORPRvXt3bNu2Dfv370eKFCkMj7PNNE08RzEvCRMmhLW19X+ec5J2GCRaGBlu88804Ddu3FA9UiJt2rSqYu7du9fwcxlqKHMNZR6OkFsJRuTkN8y+fftUL6X0boU9R9JYyzy5MNKTIlfl48WLF+3/TksgS47cvn1bBf5yAmtraxvuc5PPWYL/Lz83GTr3ZYAvn4kEgGEXDuQ5X75G2HPCXoMirnz58uq4S29U2Ca9+TKnNKzMz850SDvn5+fHOqdzkvNEAkQZHizfT/Ld9iW2maaJ5yjmdxFO6uKX5x3Sxsp9nnfoALP3WBZJwW9jYxMyZsyYkJs3b4YsX75cLXmwbNmycOmlJf3w5s2bQ/7++++QWrVqfXUJjLx586plNA4fPqyyNn65BIZkjpMlMFq0aKFSkEuKY3kfLoEReb/88kuIl5dXyN27d0OOHDmilrKQJSwka19YOndJ8b5v3z61BEbRokXV9s8lMNzd3VVKeFnWIlGiRF9dAqNv374qO+qMGTO4BEY0+DK7KT87/RowYIDKhil1TtpCuS9ZnD08PNTPWef0q0uXLmopJ2kzv1w26NOnT4bn8PPTbyZoWaZJNjlNnTx5sirfv39f/ZznKOZFzg8lg/6iRYtU9vyOHTuqc9AvM7GTNhgkWqCtW7eqYEEqZZYsWULmzp0b7ueSYnro0KEqyJPnlC9fXq0R9qXXr1+roDB27NhqCYU2bdqohv1LssaiLLchr5E8eXLVsFPkyVIUSZMmVesJyfGU+1+ubylBfNeuXVWKfgn06tSpo06KvnTv3r2QKlWqqDUrJcCUwDMgICDcc/bv3x+SJ08e9T7p0qVTa41R9AaJ/Oz0qW3btmpdWakLckFF2sKwAFHwc9MvCS6+tn3ZnvHz0yf5DvraZ9eqVSv1c56jmB9Zk1kucktbK0tiyBrcpL1Y8j+tezOJiIiIiIhIHzgnkYiIiIiIiAwYJBIREREREZEBg0QiIiIiIiIyYJBIREREREREBgwSiYiIiIiIyIBBIhERERERERkwSKQI8fPzw4gRI9QtmQ5+bqaLn53p4mdnmvi5mS5+dqaJn5s+cZ1EipD3798jTpw4ePfuHVxdXXn0TAQ/N9PFz8508bMzTfzcTBc/O9PEz02f2JNIREREREREBgwSiYiIiIiIyMAGFi4gIACHDx9G4sSJYWXFmPl7fHx81O3169cRO3bsGPiEyBj4uZkufnami5+daeLnZrr42ZkmvX1uwcHBePHiBUqUKAFbW1tYKoufk7h//36UK1dO68+BiIiIiIh0Yt++fShbtiwslcX3JKZLl87wh5AkSRKtPw+ifwkMDISXl5cqlylTBjY2Fl9ticyynq9Zs0aVGzZsGOF6znaCSF+0qpNsC6Lu2bNnqgMpLEawVBbfk/jo0SOkTJkSDx8+RIoUKbT+PIj+5ePHj4bhFzIkw9nZmUeJyMxEtZ6znSDSF63qJNuCqGNsEIpdEkQ6J3NlixUrZigTEbGdINI3rb67ec5AxsIgkUjnHB0dceTIEa13g4h0jO0Ekb5oVSfZFpCxsFuCiIiIiIiIDBgkEhERERERkQGDRCKd+/z5MwoWLKg2KRMRsZ0g0jetvrt5zkDGwjmJRDoni7qePn3aUCYiYjtBpG9afXfznIGMhUEikc7Z29tj27ZthjIRmZ+o1nO2E0T6olWdZFtAxsJ1ErlOIhERERERcZ1EA85JJCIiIiIiIgMONyXSuaCgIOzbt0+Vy5UrB2tra613iYiMLCAgAMuXL1flZs2awdbWNkK/z3aCSF+0qpNsC8hYONyUw01J5z5+/IjYsWOrso+PD5ydnbXeJSLSWT1nO0GkL1rVSbYFUcfYIBR7Eol0zsrKCrlz5zaUiYjYThDpm1bf3TxnIGNhkEikc46Ojjh//rzWu0FEOsZ2gkhftKqTbAvIWNgtQURERERERAYMEomIiIiIiMiAQSKRzn3+/BllypRRm5SJiNhOEOmbVt/dPGcgY+GcRJ148uEJjj08Bhsrm29uTrZOiG0XGy72LurW3toesWLF0nrXKZoFBwfjwIEDhjIRmZ+QkJAo/T7bCSJ90apOsi0gY2GQqBMnH59E/bX1I/Q71rGsVbAoW3zH+EjolFBtiZwSGcqyJXVJipSuKZHcNTkcbByi7d9A0cPe3h5r1qwxlInIvLx8+VKtjSicnJwwYcIE9O7dG3HixPnh12A7QaQvWtVJtgVkLFwnUSfrJB64dwBD9w9FYHDgv7aA4AAEBAXgc+Bn+Pj74FPAp0i/jwSNEjCmcE2htrRx0yJjgozIED8D0sdLD0dbR6P+u4iI6NtOnjyJevXqqXW5vhQvXjwVKPbs2ROurq48hEREFhYbaI1Bogn+IQQFB+FjwEcVMMr2we8D3nx+g1efXqnt5aeX4coylPXhu4cqyPweCSAlYMwYPyOyJMyCHIlzIKdbTrg5u3FoKxGREYeX/vXXX+jRowf8/f2ROXNmrF27FpcvX8bIkSNx7do1Q7D4yy+/qOcxWCQiin6mGBtEBwaJFvKHICck3r7eePT+kQoY1e37h7jjfQc339zEzdc38c7v3X/2QKqAMXFOdZsnSR7kcsvF4asxICgoCMePH1flIkWKwNraOibeloiiMbFEt27dsHDhQnW/Tp06mDdvHvbu3avu16xZExs2bMCoUaMMwaIMPe3SpQt69eqFJEmS/Os12U4Q6YtWdZJtQdRZSmzwPQwS+YdgCCJff36NW29uqYBRAscrL6/g4ouL6rHgkH9Pura1slW9jAWTFVRbgWQFkD1xdpVkh4zn48ePiB07tir7+PjA2dmZh5fIRN27d08NLz179iysrKwwduxY9OvXD58+ffpXPZeTvdWrV2P06NGGYNHOzg6tWrVCnz59kClTJsPrsp0g0het6iTbgqhjbBCKQSKDxO/6HPAZV19dxcXnF1XQKNvZp2fVcNZ/crRxRP5k+VEiZQmUTF0SxVIWQ1yHuN9/E/omOXnMnTu3Kl+4cEEltiAi0+Ph4YEmTZrgzZs3SJgwIVatWoXy5ct/98ROshVu27YNv/32G44ePaoek8zW0gMpwaL0UkjvJNsJIv3Q6rub5wxRx9ggFINEBomR7nl88O4BTj05hVOPT+H009M4/eQ03vu9D/e8WIilhqWWSFUCJVOVVIFjMpdkkXtTIiITJEHeuHHjMHToUNV2FixYEOvWrUOqVKkifPX/yJEjKljcunWr4bH8+fOje/fuaNy4MRwcmMGaiCgqGBuEYpDIINFoZEiqDFU99ugYDt0/hEMPDqlhq/+UNWFWVExXERXTV0SZNGXUEh5ERObo3bt3aNmyJbZs2aLud+jQAVOnTv1XMBfRIWJXrlzBpEmTsHz5cvj5+anHEiRIoF5f5i5+GYASEdGPY2wQikEig8Ro9cznGQ4/OGwIGs8/O48Q/G/RaJm/WDRFURU0uqd3V/Mara2YmIWITN+lS5dQt25d3Lx5U61dNmPGDLRr186o84hevXqF+fPnY+bMmXjw4IF6TOY6SvKbjh07wt3dncmuiIgigLFBKAaJDBJjlCzVse/uPnje9oTnHU/cfXs33M8TOSVC1YxVUSNTDRU0uti7wNL5+vqqRBdi/fr1HE5GZAIkO6n0IErwJ716UncLFCgQbckm5HdKly6N+/fv4/Xr14bHJTNf69at0bZtW6RNmzYK/yIiMoXvbp4zRB1jg1AMEhkkaur2m9sqWJRt75294ZbhsLO2Q9k0ZVXAWCNzDaSKY5nDp5ipjMi05h/KOoeyfIUoV66cylAqiWqis55/+fsnT55Uw1CXLl2qkuSEkX2RnkxJeOPo6BiJfx0RRaZOMrupaWFsEIpBIoNE3QgIClBDU7fe2Iot17fgtvftcD/PlzQfGmRroLb08dPDUgQEBKgTPtGsWTPY2tpqvUtE9BUfPnxAixYtsHnzZnX/p59+wsSJE2FjYxPt9fxrvy9zFWVfZDiqp6enSpojXF1d1TDYpk2bomzZsj+0f0RkGt/dPGeIOsYGoRgkMkjUJTmZufbqmgoYZTv68Gi4tRotNWAkIn26desWateujcuXL6u1DOfMmaOGeeqFDENdtGgRFi5cqMph3Nzc0LBhQxUwFi5cWC2tQURkyRgbhGKQyCDRJLz8+BIbr23EmstrsP/e/n8FjI2yN0LTnE2RwjWFpvtJRJa5/mGjRo3w9u1bJE2aFBs3blQBl16Hw8paiytWrMCaNWvCzV9Mly4d6tevr4ajFipUSCXAISKyNBGJDWadmoVZp2fh3tt76n72xNkxrNQwVMlYRd0vs6gMDtw/EO53OuXvhNnVZxvuy5JyXbZ3wf67+1XG/1a5W2FchXEquaOWGCQySDSbgFHWZCyXthxa5GqBulnrmk3Sm6CgIFy8eFGVc+bMyUyFRDoa8TB58mT069dPBV+yqL0kqEiWLOJrwQYGBmL37t2qXKlSpQgPAY1MOyHD0mQYqgSMmzZtUnOowsi/QXpGJWCUhDgc5k5kGt/dPGeI2dhg6/WtKit/xvgZVfb+xecXY+LRiTjX6ZwKGCVIzJQgE0aVDZ2nLpxsneBq7xr6eQUHIc+cPEgSOwkmVpyIpx+eouWmluiQrwPGlh8LLTFIZJBo8gHjhqsbsPzicrXExpcVsE6WOmiZuyXKpy1v0stqMHENkf58/vxZLTGxbNkydV+yh8oyFLLURWQYM3FNZH9/+/btqhdUbmV+ZZh48eKhRo0aqF69OipWrIi4ceNG6LWJLBET11hubBD/t/gq4GuXr50KEvMkyYMplad89bk7b+5E9ZXV8aT3E7jFdlOPzT49G/339MfLvi9VEketcCwJmbREzonQqUAnHGxzEHd63sGoMqPU1ZxPAZ9U4FhpWSWk/CMlBu8djLve4ZfbMBUyR0iu6svG+UJE+jiBKFWqlAoQpXdg2rRpmDdvXqQDRD20ExJUytzElStX4uXLlypQbN++PRIlSgRvb28sWbJE/VyytJYsWRJjx47FuXPnDMlwiMi4dTKyeM5gPB8+fMD79+8NmyQD+y/SK7jq0ip8DPiIoimLGh6X89GEExIix8wcGLhnoDpHDXPs0THkTJzTECCKSukr4b3fe1x+cRlaYk8iexLNjpy0nHx8EksuLMGqy6vU2oxhKqariI75O6Jm5pqaXp0hItMk8/kkM+jz58+RIEECNa9PlpYw1xEDMnTtyJEjKkvqzp07cfXq1XA/T5IkiRoeKz2Mkik1MkNtiYj0GBv80/DhwzFixIh/PX7x+UUUnV8UvoG+ak7hinor1JrfYu6ZuUgdJzWSuSTD38//Vj2EhZIXwoZGG9TPO27tiPvv7mN389DpBkKCSOexztjRdIdhbqMWGCQySDRr/kH+ajmNv87+Bc/bnmq8uEjklAht8rRB+3ztkTFBRq13k4hMgKw7KL1r/v7+yJUrl5rHZ6wF6vUaJP6TZEaVYFG2vXv3hpvHKDJnzqyCRdnKlCmDxIkTa7avRERRiQ2uXLmC5MmTGx6X0SJfGzEi55qSfOad7zusu7IO887Nw4HWB5AtUbZ/PXff3X0ov6Q8bvW4pbLzM0jUMQaJlkOGm84/Nx8Lzi3AU5+nhsdlzmLPwj1RLWM1k567SETRQ5LSDBkyBOPGjVP3JZmLDL8MC+osKUj8kgy9Onz4MHbt2oX9+/fj7Nmz/xp+mj17dhUsFitWTG2pU6fmsHkiMuvYoMKSCkgfLz3m1Jjzr5999P+I2ONiY1ezXaiUoRKG7R+mOjPOdz4f7nw13dR0ONvxLPImzQutcE4iWYy08dLi13K/4sHPD7Cp0SY1FEAyou69uxe1VtVCxmkZMenoJHh/9oae+Pr6okGDBmqTMhHFHAneZFmIsABx4MCBWLdunVEDRFNtJ+SKevny5TFx4kScPn1aLachvau9evVSPa1C1o2cMWOGWkxcel1lOGq9evXw+++/q6G7bNPIXGn13c1zBu0FhwTDL+jr8xfPPwsNBpO6JFW3RVMUxcUXF/Hi4wvDczzveKrsp1/riYxJHG7K4aYW7f7b+5h5aqYaGhA2d1Eyo7bM1RI9CvfQvIKaag8Dkbl8P9SsWVMlaLGzs1PJaVq0aBEt76V1dtPo8OrVKxw4cACHDh3CsWPHVE+jLPXxJTmuuXPnRv78+ZEvXz615ciRQ9MkQETGwOymlhEbDNwzUM0bTBUnFT74fcCKiyvw25Hf1BzDdPHSqfvSKZHAKYGak/jz7p/Vmt4yHPXLJTBkzuKEChPwzOcZWmxsoaZDcQkMjTFIpLBJwlKRp56Yqq7ofDkUtU+xPirTlFaZRWUts7lz56qypNznemVE0e/kyZOoVasWnj17pjJ8ytIQxYsX1209N4V2QpYNkR5HCRilF1FuX7z439XzMLLvEiiGBY158uRRw1bjxImjyX4TRYZWddIU2gJzig3abW6nRqTJNKY49nGQyy0X+hfvj4rpK+Lhu4dovrE5Lr24pIaZpoyTUi3PNqTUEMM6iWEdFl22d4HXPS842zmjVe5WGF9hPGysIrZerrGxJ5E9ifQFmU9z8P5BTD05FZuubVJDBoSkJ+5XvB8aZW8EW2s2uETmbPXq1WjdurUatiXBytatW5EmTRqtd8ss29s7d+7gzJkzqpdRNim/efO/jNRfkgQSEizKZyK3smXLlg0uLi4xvu9EZL4YG5hAkHjw4EE110G+NJ4+faqu5NauXdvwc9l1SUf7119/4e3bt+oq76xZs5Ax449nq+QfAn2LXNmRnsW5Z+fCx99HPZbSNSV6F+2thgFImmMiMh/ynTJq1ChDivNq1aphxYoVcHX93xVfiv7P4MGDB+GCxosXL6rv6m9JlSqV+t4P2zJkyKBu06VLx2GrRBRhjA1MIEiUFNuyPpPMVZB1qf4ZJP72228qmcDixYvVhPihQ4eqLxNJWevg4PBD78E/BPoeSWQz+/Rs/HniTzz/+Fw9Fs8hHroW7IoehXqEWwA1ujIr3r59W5XTp08PKyvmmyKKjqGQbdq0Ub2I4pdfflHfMdbW1jG2HqHM3ROyWH1E39fc24l3796p7/ZLly6pZDhhm1xA/haZIhAWQMoxkcyqcj9sk55JGxtth3OR+dKqTpp7WxATGBuYQJD4z8b+yyBRdluypMkXeZ8+fQxfIm5ubli0aBEaN278Q6/LPwT6UbJI6rK/l2Hi0Ym48fqGeszBxgGd8ndSQ1Fl0nF00GNCCiJzIoGGzD88deqUChpmz56Ndu3axeg+mGPimpggQ1OvXr2Kmzdv4tatW+FuP3z48J+/KyfPEih+GTgmTZoUSZIkMdzKJsNZtZqTTjFPLthIHZK/n/fv33/19luPST389OmT2uQ1nj9/bvhbixs37r82mWf7I4/J3+CPBnuW2hYYE2ODUCZ7Ce3u3bsqoUCFChUMj0nFKly4sJoM/60gUdZ1ki3M975EiMJIQCjDTNvmbavWtBl/eDxOPD6hehilp1F+JpOVZWKysTFhA1H0kNEnMqxUEhTEjx8f69evV+v6mSJLbCfkM5OpJv9MKiQXkl++fGkIGqVnRT7j+/fvq+GsUvb391e3ssmopW9xcnIyBIwSPCZOnBgJEiRQ7/3lbVg5Xrx4MdYDbenkc5ZRABIY/df2raDva4/J86Ojd08uaHxrvu33yEUKGfb+I8GljKSTwFB+RxJDyXxqXuQgiwoSJUAU0nP4Jbkf9rOvkeGpI0eOjPb9I/NlFcsKtbPURq3MtVRGq5EHRuLwg8OYcWoG5p6Zq4LIASUGIE1c4yS6kMZe5twSkXF5eHioNRDlxDBTpkzYvn27ms9mithOhCcnxRLMyfa1rLRy0i69PBIwfrnJ+UPYJj3M8rchvUKSYEe2HyUn6xIwSg+QnNzL7Zflfz4mn5+c3Ds6OqrbsO2f9/U8dFCOqWTWlGVOJACXxE9R2b4X+IX12kXXgDjJCvpfn9nXytKDJxcV5POU27AtbLSbfJeH3X65/fOxL+/LsZB/ozwmm1zo+FEyL1feXwJFmZb1z1vZ5G+VQSSZ1XBTSZ8tDf+TJ0/Ulb0wDRs2VM8Nm1fyvZ7Ex48fq+xoP5LmluhrpApJ2uJRB0epWyFpiyWF8eCSg5E2XloeOCKdkTUPO3furIaWlS5dGhs2bFAn9VrhEDF9ks9FgkkJGMMCR+mhlB6h169fq+3LsvRGRSdZV1LWkJQARoZGS4+l3IZtX97/siznRWGne3L7Zflbj0nQJwFfWOD3X7eyaX06KQG1BGdf2yR4+9GAPexWL2t1SpAYFiBGJLiUv0v5m/3e5yL/1n8Gjl8Gk5aYPZjDTU28J1GGfQhpvL8MEuW+rKn0LVLpv6z40d2gk/mTL9+yacuqTZbPGHVglOphnH9uPpZcWIKO+TuqYDGpy//+TolIG3LiO3jwYIwfP17db968uQoY9XJCSPoiAYb0xsj2IyRY8vb2NgwtDBvS+K0hjmFl6RGTYZNhvWhhZbmVCxlhpIdONlMgvZ7/7An90U3q47cCvq9t0lum517WqAg7Jv8cOfcjpFNEOkFkipZs9+7dC1eWc2b5+7tw4YLavkaGUX+rF1KSQclnTObJZINE+eOUQHHv3r2GoFD+0E+cOIEuXbpovXtkoUqlLoU9Lffg6MOjGO41HHvu7FHDUBecW4BehXuhb/G+iO8YP8KNfKdOnVR5zpw5PJkliiQ56Zb1D8NGmsgSSrKZw1ArthP6ID18YcNcjUV66/4ZQErgKI/LFlb+2mNhW5iwv3W5/bL8rcfk3xO2SY/kj95Kj6elL+KuVZ385/vKEPpvDaOXixMyfPWfQWTY7Ze95KdPn/7qa8i5+Ld6ISUZlPwtkGnS9XBTmWgsE85F3rx5MXnyZJQtW1YNCZI/PElPLleDv1wC4++//+YSGKQb++/ux6B9g3D80XF1P459HPQt1he9ivT64XUWOQyNKOpkiKBMV5CpCnLyKuvrtmrVSjeHltlNicyLVt/dxnxf6Xz5Z+D4ZW/k95I/ysUGySAsAePXtpQpU+oyiORwUxPoSZSrFhIUhundu7e6lS92WeaiX79+qjJ07NhRjb8uUaIEdu3a9cNrJBJFNxmCerTtUWy7sQ2D9w3GxRcXMWT/EEw9OVUNQZXlM+xt/vvqopzQTpgwwVAmooi5ceMGqlatqjJcSpIGmX/45XeLHkS1nrOdINIXreqkMd9X5ivmypVLbf8kfUwytPprw1jDbqXXWwIu2Q4fPvzNIDJfvnxqjniVKlWitL9kQT2JMYFXCyimBIcEY/Wl1Ri6fyhue4cudJsuXjqMLz8e9bPVN4shb0R6IwvUSw+iDJuSK9c7duxA1qxZtd4tIiKzFrYMjQSL39okiPzSxIkTDWufa4mxQSgGiY8eqe5uZjelmBIQFKDmKMrSGU99nqrHiqYoiknuk1A0ZVF+EERGsmLFCrRp00Yl+ihUqBC2bNkSqeQPREQUPUGkjPCQeeJr1qzByZMndbHSAGODUAwSGSSSRj76f8TvR3/HhKMT8Cngk3qsQbYGGF9hvOph/DIbo6RdF5LJ11wzuBEZ8+RjzJgxap66qFu3LpYuXWpYr0yPJNHI2bNnVVmGXkV0MXa2E0T6olWdNNW2QOY/yvBWPWBsEIpBIoNE0tiTD08wbP8w1bsYghDYWtmiR6EeGFJqCOI5xmPiGqIIkEyOkuFalrUQMnRJkpzp/USJiWuIzIs5JK6xVIwNQun7W5PIAiRzSYZ5NefhfOfzqJiuIgKCAzD5+GSkn5oe005MQ2BwoGFBZCL675MjmX8oAaIEhTNmzFBzXPQeIBoL2wkifdGqTrItIGOwjG9OIhOQyy0XPFp4YGezncieKDu8fb3Rc1dPFF9aHLuu71KLNPOKINHXvXjxQmUs3b59u8pwLRlMu3btajGHS9oGaSPYThBZdp1kW0DGwiCRSGcqZ6isehVnVZuFBI4JcPnlZVRYWgF1VtfBHe87Wu8eke5I4oPixYvj1KlTSJAgAfbt24datWppvVtEREQmi0EikQ7ZWNmgc4HOuNHjBnoW6gnrWNbYdG0Tss7IikF7B8HH30frXSTSBQkMixYtilu3bqklLo4cOaLuExERUeQxSCTSsfiO8TGh3AQ0eNUAKfxTwD/IH+MOj0OmaZmw9MJStfYikaWSNQ/LlCmj0qjnzZsXx44dQ+bMmWGJ/Pz80K1bN7VJmYgss06yLSBjYXZTZjclnfsyU9mq86sw6MAgw7DTIimK4M/Kf6JQ8kIa7yVRzFqwYAE6duyolo5wd3fHunXr4OLiYrIfA7ObEpkXZjc1XYwNQjFdIpHO2draYvjw4apcJ2sd1M5eG38c/wO/HvwVxx8dR+F5hdE6T2uMLTcWSV2Sar27RNG+BuLo0aMNdaJly5b466+/YGdnZzb1XMox/ftEZFxa1Um2BWQs7ElkTyKZ8PqKA/cOxJILS9T92HaxMbTUUPQq3Av2NvZa7x5RtKyBKBlLJSgUgwYNwq+//opYsWLxaBMRkVEwNgjFOYlEJry+4uLai3G83XE13FSS2fTf0x85ZuXA1utbVY8LkTkN3apTp44KEGXdw5kzZ2LMmDEMEImIiKIBg0QinZNg7+3bt2r7WuBXOEVhHGt3TAWMSWInwa03t1BzVU1UWV4FV19e1WSfiYzp1atXKFeuHLZt26bWQFy/fj26dOliVgc5ODgYly9fVpuUjd1OEFHM0qpOsi0gY2GQSKRznz59Qrx48dQm5a+ximWFlrlb4kb3GxhQfADsrO2w+/Zu5JqdCwP2DMBH/48xvt9ExvDgwQOUKFECJ0+eRPz48bF3717Url3b7A7u58+fkSNHDrVJOTraCSKKOVrVSbYFZCwMEonMiIu9C8ZVGIcrXa+gZuaaCAwOxG9HfkP2mdnVEFQiU3LlyhUUK1YM169fR8qUKdUaiHKfiIiIoheDRCKdc3Jygr+/v9qk/CPSx0+PzY03Y0vjLUgdJzXuv7uvhqDWWV0HD949iPZ9JooqWfNQehAfP36MrFmz4ujRo8iSJQsPrBHbCSIyvzrJtoCMhUEikc5J5kZJaS1bRLM41shcA5e7Xkb/4v1hY2WDTdc2IduMbPj96O8ICAqItn0mioqdO3eiQoUK8Pb2RpEiRXDo0CGkSJGCBzWa2gkiMp86ybaAjIVBIpGZc7ZzxvgK43Gu0zmUSFUCHwM+oq9nX+Sfmx9HHx7VeveIwlm+fDlq1qyp5tVUrlwZe/bsQYIECXiUiIiIYhCDRCKdk6Eqffv2VZuUIytH4hw40PoA5tecj/iO8XHxxUUUX1AcHbZ0gPdnb6PuM1Fk/Pnnn2jevLlaD7FZs2bYsmULnJ2deTBjsJ0gItOuk2wLyFhihVh4rmwumEmmsD5c7NixVdnHx8coJ82vPr1Cf8/+WHB+gbovS2fMqDoDdbPWjfJrE0WUfA0NGTIEY8eOVfd79eqFyZMnq/UQLUVU63l0tBNEFHla1Um2BVHH2CCUzf/fEpFOyXyGPn36GMrGkNApIebXmo9WeVqhw9YOuPH6BuqtqaeCxOlVpiOpS1KjvA/R90ivoax5OG/ePHVfAsUBAwZY3Ly6qNbz6GgniCjytKqTbAvIWNiT+OiRSq3+8OFDJkYgi+Qb6IvRB0arpTKCQoIQ1yEuJrlPQps8bSzuRJ1ilq+vL5o2bYqNGzeqXsM5c+agffv2/BiIiEgzjA1CWc5YHiL6KgcbB4wpPwanO55GvqT58Nb3LdptaYeKSyvijvcdHjWKFu/evVOJaSRAtLe3x7p16xggEhER6QSDRCITmK8VEBCgtuicQpwnSR6caH8CEypMUIHj3rt7kWNmDkw+NhlBwUHR9r5keZ4/f44yZcrgwIEDcHFxwa5du1CnTh1YsuDgYNy7d09tUtZrO0FE+q6TbAvIWBgkEumcLAVgZ2enNilHJ1lLsW/xvrjY5SLKpCmDz4Gf8YvHLyg6vyguv7gcre9NluH+/fsoUaIEzp8/j8SJE6tAUQJGS/f582ekTZtWbVLWcztBRPqtk2wLyFgYJBLRv2SInwH7Wu7D3OpzEcc+Dk49OYV8c/NhwpEJ7FWkSLt+/TpKliyJW7duIXXq1Dh8+DDy5s3LI0pERKQzDBKJdM7JyQne3t5qk3JMkaQ1HfJ3wJVuV1A1Y1X4B/mj/57+KLGwhMqGShQR586dUwGiJAnLkiWLChAzZszIg2ji7QQR6atOsi0gY2GQSKRzEqzFjRtXbVpkG03mkgzbmmzDgpoL4GrviuOPjiP37NyYcnwKgkMiPneKLM+RI0dQtmxZvHz5Evny5cPBgweZTdrM2gki0kedZFtAxsIgkYh+6EunTd42aq5ixXQV1bIZP+/+GWUWlcHtN7d5BOmbPDw84O7urrKZSk/ivn37kChRIh4xIiIiHWOQSKRz/v7+GDFihNqkrKVUcVJhd/PdmF1tNpxtnXHowSHkmp0LM0/NZK8i/cv69etRvXp1lUihSpUqKotpnDhxeKTMvJ0gIu3qJNsCMpZYIRaeK5sLZpLeffz4EbFjx1ZlHx8fODs7Qw/uet9F2y1t4XXPS90vl7YcFtZaqAJJokWLFqFdu3ZqOYeGDRti6dKlKssfRU8912s7QWSptKqTbAuijrFBKJv/vyUinbKxsUHXrl0NZb1IGy8t9rbcq3oRJaHNvrv7kGtWLsyqNgtNcjbRevdIQ3/++Sd++uknVW7fvj1mz54Na2trfibRWM/12k4QWSqt6iTbAjIW9iQ+eoSUKVOqjHspUqQw2oElsiS33txCi40tVFIb0TRnU8yoOgNxHeJqvWsUg2RgyujRozF8+HB1v3fv3vj999+ZSIWIiEwGY4NQnJNIREZZV/FQm0MYWWYkrGNZY8XFFapXMWwoKllGgPjLL78YAkQJFhkgEhERmSYGiURkFDZWNhhWehiOtD2igsaH7x+i3OJy6OfZD36BfjzKZiwoKAgdOnTAH3/8oe5PnToVQ4YMYQ9iBINsWSJENgtPFUBERDrAIJFI52QSuq2trdqkrHeFUxTGuU7n0CFfB4QgBBOPTkTheYVx+cVlrXeNoimTXpMmTTB//nxYWVlh8eLF6NGjB491BEkG2MSJE6tNyubeThCZO63qJNsCMhYGiUQmIDAwUG2mIrZdbMytMRebGm1CQqeEuPD8AvLPzY+pJ6ZyqQwz4uvrizp16mDt2rUqc+m6devQsmVLrXfLYplaO0Fk7rSqk2wLYs6sU7PU9BrXca5qKzq/KHbe3Gn4uawr3W17NySYkACxx8ZGvTX18NznebjXePDuAaqtqAanMU5IPDEx+nr0RWCw9m05g0QinXN0dFSTqGWTsimplaUWLna5iCoZqsAvyA+9dvVSDeGLjy+03jUywtVqWQNxx44d6u9y69atKmAkbZhyO0FkjrSqk2wLYlYK1xQYX2E8znQ8g9MdT6NcmnKotaqWYfTUz7t+xtYbW7G2wVocaH0ATz48Qd01dQ2/HxQcpM6L/IP8cbTdUSyuvRiLLizCsP3DoDVmN2V2U6JoJ3OsZp2ehV88flFX1ZLEToKldZaiQroKPPom6P3796hWrRoOHz6s1gHbvn07SpUqpfVumTSubUZEZB6xQfzf4mNixYmon60+Ek1MhBX1VqiyuPbqGrLOyIpj7Y6hSIoiqtex+srqeNL7Cdxiu6nnzD49Wy0t9rLvS9hZa7e+MHsSiSjaxYoVC10LdsWpDqeQPVF2PPN5Bvel7hi0dxACggL4CZiQN2/eoEKFCipAjBMnDjw9PRkgEhGR2fnw4YO6KBq2+fn9dxI+6RVcdWkVPgZ8RNGURXHm6RkEBAeEuyCeJWEWpIqTCsceHlP3jz06hpyJcxoCRFEpfSW893uveS4HBolEJpAYZOLEiWqTsinLkTgHTnY4iU75O6mkNuMOj0OpRaVw7+09rXeNfoBk3ixXrhxOnTqFBAkSYN++fShSpAiPnQ6YUztBZA60qpNsC4wnW7Zs6mJo2DZu3LivPu/i84tqvqH9r/bovK0zNjbaiGyJsqkL4tIT+M81o92c3dTPhNx+GSCqn////bDnaMVG03cnou8KCAhAv379VLlr164qQYgpc7J1wuzqs1E+bXl02NoBxx8dR57ZeTCv5jzDcAzSn6dPn6J8+fK4evUq3NzcsGfPHuTIkUPr3SIzbSeITJ1WdZJtgfFcuXIFyZMnN9y3t7f/6vMyJ8yM853P453vO6y7sg6tNrVS8w9NHYNEIp2zsbFBq1atDGVz0SB7AxRMXhBN1zdVwy0arG2gehj/qPQHHG2ZeENPHjx4oALEW7duqfkZe/fuRaZMmbTeLbMS1Xpuru0EkanSqk6yLTAeFxcXuLq6fvd50lso60OL/Mny49STU/jz+J9olKORSkjz1vdtuN7E5x+fq9wMQm5PPj4Z7vXCsp+GPUcr/CYh0jm5crVo0SKYozRx06irbcO9hmP84fGYc2YODj84jNX1VyN74uxa7x4BuH37thpiKoFimjRp1BDTtGnT8tjorJ6bcztBZIq0qpNsC7QXHBKsMrrnT5oftla22HtnL+plq6d+dv3VdbXkhcxZFEVTFMWYQ2NU1vfEzonVY553POFq76qGrGqJcxKJSFO21rYYW34sPFp4qKtml19eRoG/CmDhuYX8ZDQmQ0tLliypAkTpOTx06BADRCIiov83cM9AHLx/UOVWkLmJct/rnhea5WyGOA5x0C5vO/T26I39d/fjzJMzaLO5jQoMJbOpcE/vroLBFhtb4MKzC9h9azeG7BuCbgW7wd7m68NbYwp7EolIFyT714XOF9ByY0vsvr0bbbe0xaEHhzC96nQ1j5Fi1oULF1CxYkWVrCZ79uxqDmKSJNoOfTH3ZWI+ffqkyk5OTiojMBER6duLjy/UectTn6eIYx8HudxyYXfz3aiYvqL6+R+V/4DVbivUW1NP9S5K5tKZ1WYaft/ayhrbmmxDl+1dUHR+UTjbOaNV7lYYVXYUtMZ1ErlOIpnA+mlhE6cfP34MZ2dnmPswjXGHxmGY1zBVltTQ6xquQ6YEnAMXU06fPg13d3d4e3sjb9688PDwQMKECWPs/S1RVNdJtLR2gkjvtKqTbAuijrFBKA43JTIB7969U5slsIplhcGlBmNPiz0qTfTFFxeRf25+rLm8RutdswhHjhxRSWokQCxcuLCag8gA0TRYUjtBZAq0qpNsC8gYONyUSOccHR1x48YNQ9lSlE1bFuc6nUOT9U1w4P4BNFrXCIfuH8Lv7r9rPk7fXO3fvx81atRQV6JLlSqFbdu2qexupH+W2k4Q6ZVWdZJtARkLh5tyuCmRrgUGB2L4/uEYe3isul8wWUGsabBGZUYl4/H09ETNmjXh6+ur5iJu2rRJzY0j0xhuSkRExsHYIBSHmxKRrtlY2WBM+THY3nQ74jvGV+sP5ZuTD9tubNN618zGrl27VA+iBIhVq1bFli1bGCASERFZMAaJRDoXEBCAGTNmqE3Klqpqxqo42/EsCicvDG9fb9RYWQMD9gxAUHCQ1rtm0nbs2IFatWrBz89PBYobNmyAg4OD1rtFEcR2gkhftKqTbAvIWDjclMNNSec4DC08/yB/9PXoi6knpxqWzlhZbyUSOjH7ZkRt3boV9evXh7+/P2rXro3Vq1fDzs7OSH+5FNPZTTlclUg/tKqTbAuijrFBKCauIdI5a2trdSIfVrZ0dtZ2+LPKnyieqjjabm6LPXf2qOynGxpuQP5k+bXePZMhcw4bNmyorjrXq1cPK1euhK2trda7ZbGiWs/ZThDpi1Z1km0BGQt7EtmTSGSyLr24hDqr6+DWm1uwt7bH7Oqz0TpPa613S/fWr1+Pxo0bIzAwUAWKy5YtY4BIRETEnkQDzkkkIpOVI3EOnOpwCtUzVYdfkB/abG6Drtu7qiGp9HVr165Fo0aNVIDYpEkTLF++nAEiERERhcMgkYhMWlyHuNjceDNGlhmJWIiFWadnofSi0nj8/rHWu6Y7q1atUoFhUFAQWrRogaVLl8LGhrMOiIiIKDwGiUQ69+nTJyRPnlxtUqZ/s4plhWGlh2Fb020qaDz+6Liap3jw/kEerv8nPYbNmjVTAWLr1q2xcOFCznHVEUk2EStWLLVJOaLYThDpi1Z1km0BGQuDRCKdCwkJwZMnT9QmZfrvZTJOdziNnIlz4vnH5yi/pDymnphq8cdt8eLFqucwODgY7du3x/z58xkgmhm2E0T6olWdZFtAxsJxRkQ6J2vWnTt3zlCm/5Y+fnoca3cMHbZ2wMpLK9FrVy+cenIKf9X4Cw42lnf8FixYoAJDOXHo1KkTZs6cCSsrXh80N2wniPRFqzrJtoCMhdlNmd2UyCxJUPTniT/Rx6MPgkKCUDBZQWxstBHJXZPDUvz111/o2LGjKnft2hXTpk1jgKhTXNuMiEgfGBuE4uVkIjJLMrfrpyI/waOFB+I7xle9iQX/KogTj07AEsyePdsQIPbs2RPTp09ngEhEREQ/hEEikc7JYueLFi1Sm5QpYsqlLaeWycieKDue+jxVmU+XXFhi1odxxowZ6NKliyr//PPPmDJligqayXyxnSDSF63qJNsCMhYON+VwU9I5DkMzjg9+H9BiYwtsvr5Z3e9dpDd+q/gbbKzMa2q2zDns1q2bKvft2xe//fYbA0QLqOdsJ4j0Ras6ybYg6hgbhDKvsyMiM2RtbY2qVasayhQ5LvYu2NBoA0Z4jcDog6Mx+fhkXH55GSvrrUQ8x3hmM8SUAaJl1nO2E0T6olWdZFtAxsKeRPYkElmctZfXovXm1vgU8AkZ42fEliZbkCVhFpiyuXPnquylok+fPpgwYQJ7EImIiCKIsUEozkkkIovTIHsDHGl7BKnipMLNNzdReF5h7Li5A6Zq3rx5hgBR5iAyQCQiIiKLDRKDgoIwdOhQpE2bFo6OjkifPj1Gjx5t8QtnE9H35UmSRyW0KZmqJN77vUf1FdUx8chEk2s/ZB3EDh06qHKvXr0wadIk9iASERGR5QaJkpBh1qxZKrX71atX1X25gi5rgRGZi0+fPiFjxoxqkzIZT2LnxNjTcg865uuIEISg355+aL+lPfyD/E3iMEvWvPbt26tyjx498McffzBANFGSbEISW8gm5YhiO0GkL1rVSbYFZCwmnbjm6NGjqFWrFqpVq6bup0mTBitXrsTJkye13jUio5GerVu3bhnKZFx21naYXX02ciTOgZ92/4QF5xfgzts7WN9wvVpfUa+WLFmCtm3bqr8JSVbz559/MkA0cVE5kWQ7QaQvWtVJtgVkLCYdJBYrVkwla7hx4wYyZcqECxcu4PDhw5g8efI3f8fPz09tYT58+BBDe0sUOQ4ODurvOqxMxidrCPYo3APp46dH43WN4XXPC0XmFcG2ptuQKUEm3R3yZcuWoXXr1upkQNZDlNETXAfRsrGdINIXreok2wIyFpPObhocHIxBgwapIaaS8lfmKI4ZMwYDBw785u+MGDECI0eO/NfjDx8+RIoUKaJ5j4lI7y4+v4gaK2vg/rv7iOcQT/Uolk1bFnqxfPlytGzZUrV/nTt3xowZM2BlZdIzB4hrmxER6Qazm4Yy6TOLNWvWqBOmFStW4OzZs1i8eDF+//13dfstEkC+e/fOsF25ciVG95mI9C2nW06caH8CRVIUgbevN9yXuWPBuQXQAxlOHxYgduzYkQEiERERRQuTHm7at29fDBgwAI0bN1b3c+bMifv372PcuHFo1arVV3/H3t5ebWHev38fY/tLFBmBgYHYuHGjKtepUwc2NiZdbU2CW2w37Gu5D223tMWqS6vQbks7XHt1DeMrjIdVLG2ura1evRrNmzdXAaIkq5GkXexBpDBsJ4j0Ras6ybaAjMXG1Cf5//MkSYadykkUkbmQObQNGzZUZR8fHwaJMcTR1hEr6q5AlgRZMOLACEw8OlGtqbiszjI42zkjpkdNNGvWTLVtkqxmzpw5DBApHLYTRPqiVZ1kW0DGYtJBYo0aNdQcxFSpUiF79uw4d+6cSlojJ1FE5kIuhJQuXdpQppgjyWCGlxmukte02dwGm65tQsmFJbG1yVYkd00eI/uwbt06NG3aVM25lmQ1f/31F/8OzFBU6znbCSJ90apOsi0gYzHpxDWSmXTo0KGqO//FixdIliwZmjRpgmHDhsHOzu6HXoOTU4noRxx7eAy1VtXCy08vkcwlGbY33Y48SfJE68Fbv349GjVqpAJEGUI/f/58NVqCiIiIogdjAzMIEo2BfwhE9KPuvb2H6iuq4/LLy4htFxvrGqxDpQyVouUAbtq0CQ0aNFDzS1q0aIGFCxcyQCQiIopmjA1CcewaEdEPShM3DQ63PYxyacvBx98H1VZUw7yz84x+/LZv367mskiAKHMRGSASERFRTGKQSKRznz9/Rp48edQmZdJWXIe42NlsJ1rmbomgkCB02NoBQ/YNUQvbG4OHhwfq1auHgIAANdR00aJF7EG0AB8/fkSiRInUJuWIYjtBpC9a1Um2BWQsJp24hsgSSEbLCxcuGMqkPTtrOyyqtQhp4qTBqIOjMObQGDUUdX7N+bC3+d8SOxHl5eWFWrVqqex0kjJ96dKlzGZrQV69ehXp32U7QaQvWtVJtgVkLAwSiXTOwcFB9S6FlUk/mU9Hlh2J1HFTo9O2Tlh+cTkef3iMDQ03IJ5jvAi/3pEjR1C9enX4+vqiWrVqWLVqFWxtbaNl38n8sJ0g0het6iTbAjIWJq559AgpU6bEw4cPkSJFCqMdWCKyHB63PVB/TX188P+ArAmzquGoEjz+qJMnT6JChQoqY7O7uzs2b97MCwIWRoaYxo4d27CmmrNzzK7FSUREoRgbhOKcRCKiKHJP745DbQ4huUtyXH11FUXmF8GZJ2d+6HfPnj2LSpUqqQCxTJkyakkf9hgTERGRlhgkEumcZLiUbJeySZn0KXeS3Dje/jhyueXCM59nKL2oNLbf2P6fv3Px4kVUrFgRb9++RfHixbF161Y4OTnF2D6T+WA7QaQvWtVJtgVkLBxuyuGmpHMchmZa3vu9V0NPPe94wiqWFWZWnYlOBTr963lXr15F6dKl8fLlSxQqVAienp5wdXXVZJ/J9Os52wkifdGqTrItiDrGBqGYuIZI56ysrFCgQAFDmfTN1d4V25tuV8lsFp5fiM7bO+Opz1MMLz1cJbsRN2/eRPny5VWAmDdvXuzatYsBooWLaj1nO0GkL1rVSbYFZCzsSWRPIhFFA1k3cYTXCLVEhuiYryNmVJuBh/cfolSpUupKZc6cObF//34kSJCAnwEREZEOMDYIxZ5EIqJoXCIjqUtSdN3eFXPPzsW9V/dwbcw19QWUJUsW7NmzhwEiERER6Q6DRCKiaNS5QGckdk6MpuubwuOBB1AaSGufFns99yJx4sQ89kRERKQ7nOBEpHOfP39WmS9lkzKZnuLxi8PNww2Qjy8VYNPRBkHOQVrvFunIp0+fkCZNGrVJOaLYThDpi1Z1km0BGQt7Eol0Ljg4GEePHjWUybS8evUKFSpUwINLD+D2zg2xmsfCzbc3UWxBMexqtgvZE2fXehdJJ3NY79+/byhHFNsJIn3Rqk6yLSBjYZBIpHP29vZqgfWwMpkOb29vuLu749KlS0iaNCkOrj8Iu0R2qLysMq6+uooSC0tgW5NtKJ6quNa7SiaO7QSRvmhVJ9kWkLEwuymzmxJRNHj//j0qVqyIkydPqrmHBw4cUMlqxJvPb1B9RXUce3QMDjYOWFVvFWplqcXPwYJxbTMiItOLDcYdGocN1zbg2qtrcLRxRLGUxfBbhd+QOWFmw3PKLCqDA/cPhPu9Tvk7YXb12Yb7D949QJftXbD/7n7EtouNVrlbYVyFcbCx0q4/j3MSiYiMTOaUVa9eXQWIsrzF3r17DQGiiO8YH3ta7kHNzDXhG+iLumvq4q8zf/FzICIiMiEH7h9At4LdcLzdcXi28ERAcADcl7njo//HcM/rkK8Dnv7y1LBNqDjB8LOg4CBUW1EN/kH+ONruKBbXXoxFFxZh2P5h0BKDRCKdCwoKgpeXl9qkTPrm5+eHOnXq4NChQ4gTJw48PDyQI0eOfz3PydYJ6xuuR/u87REcEoyO2zpi9IHRkZqPRsR2gkhftKqTbAti1q7mu9A6T2uVXyB3ktxYVGuR6hU88/TMv77zk8ROYthc7V0NP/O47YErL69gWZ1lyJMkD6pkrILRZUdjxqkZKnDUCuckEumcr68vypYtq8o+Pj5wdnbWepfoGwICAtCoUSMVGMrntGPHDuTLl++bx0uGkcytMVetpTj64GgM8xqG159fY3KlybCKxWt49OPYThDpi1Z1km2B8Xz48EFNHflyvuf35pe+83tnGDH0peUXl2PZ38tUgFgjUw0MLT1UBY5Cpp7kTJwTbrHdDM+vlL6SGn56+cVl5E2aF1pgkEhkAouyZ8uWzVAmfZKrt61bt8bmzZvVl8iWLVtQrFix7/6efKajyo5CIqdE6LmrJ/488aeaszi/5nzYWtvGyL6T6ddzthNE+qJVnWRbYDzZ/v/zCzN8+HCMGDHim8+XUUE/7foJxVMWR47E/xtB1DRnU6SOkxrJXJLh7+d/o/+e/rj++jo2NNqgfv7M51m4AFGE3ZefaYVBIpHOOTk54fLly1rvBv0HGSLauXNnrFixAjY2Nli/fj3KlSsXoWPWo3APdeWx1aZWWPr3Urz1fYvV9VfD0daRx94CRLWes50g0het6iTbAuO5cuUKkidPbrj/vV7Ebtu74dKLSzjc9nC4xzvm72go53TLqUYPlV9SHrff3Eb6+OmhVxzPREQUxQDx559/xrx582BlZaUCxWrVqkXqtZrlaoZNjTepjKdbb2xFleVV8N7vf0NdiIiIKGa4uLjA1dXVsP1XkNh9R3dsu7kN+1vtRwrX/86IWjh5YXV7680tdStDUJ/7PA/3nLD78jOtMEgkIoqCYcOG4c8//1Tl+fPno0GDBlE6ntUzVcfu5rvVpHbJmlZ2cVm8+PiCnxEREZEOLxR339EdG69txL6W+5A2Xtrv/s75Z+fVrfQoiqIpiuLii4vhvus973iq84BsicIPeY1JDBKJdO7z589qvT3ZpEz6MX78ePz666+qPH36dDUn0RhKpS4Fr1Zeap7i2adnUXJhSZUtjcx72ZTs2bOrTcoRxXaCSF+0qpNsC2JWtx3dVEKaFXVXwMXeRc0hlO1zQOhnLkNKJXP5mSdncO/tPWy5vgUtN7VU3/O53HKp57ind1fBYIuNLXDh2QXsvrUbQ/YNUUtr2Nv89xDX6BQrxMLzrUdkwUwiLXCRbX2SoLBHjx6q/Ntvv6Ffv35Gf48br2+g4tKKKkCU4SuyBlOWhP9bb5HMR1TrOdsJIn3Rqk6yLYjZ2CDWyK8nJVpYa6FaGuPhu4dovrG5mqsoayemjJMSdbLUwZBSQ8Itg3H/7X2VzdTrnhec7ZzRKncrjK8wXmVB1woT1xDpnIyBX7ZsmaFM2lu0aJEhQBw6dGi0BIgiU4JMONL2iAoUr726pnoUdzbbiQLJCkTL+5HpYjtBpC9a1Um2BTErZPh/97VJUHig9YHvvk7quKmxo9kO6Al7EtmTSEQRsGbNGjRp0gTBwcEqYc2kSZOiPb35q0+vVBKb009OI7ZdbGxpvAVl04auv0XmgVf/iYj0gbFBKM5JJCL6Qdu2bUOzZs1UgNixY8cYCRBFQqeEakJ8ubTl4OPvowLGTdc2Rfv7EhERkWVikEhkAou0nzp1Sm1SJm3s3bsX9evXR2BgoAoUZ86cGaMLJMuE+O1Nt6N2ltrwC/JD/TX1sfzv5TH2/qRvbCeI9EWrOsm2gIyFcxKJdM7X1xeFChWK8cnv9D9HjhxBzZo14efnhzp16qg5idbW1jF+iGT9xLUN1qL9lvZYfGGxyoT2KeATOuTvwI/LwrGdINIXreok2wIyFgaJRDonvVWpU6c2lClmnT17FlWrVlXLElSqVAkrV66EjY2G2casbLCg1gI42zpj5umZ6LitIz4GfMRPRX7SbJ9I+3rOdoJIX7Sqk2wLyFgYJBLpnJOTE+7du6f1bliky5cvw93dHe/fv0epUqWwYcMGXWSYtYplhelVp6s02ROPTsTPu39WcxUHlxzMCwkWWs/ZThDpi1Z1km0BGQvnJBIRfcWtW7dQoUIFvH79Wg0ZkqQ18uWrF3K1+LcKv2FUmVHq/tD9QzFw70BY+NK3REREZAQMEomI/kEW0C1fvjyePXuGXLlyYefOnXBxcdHdcZJAcWjpoZjkPknd/+3Ib+ixsweCQ4K13jUiIiIyYQwSiXROJqHXrl1bbVKm6PXixQvVg/jgwQNkzpwZHh4eiB8/vq4Pe++ivTG72mzEQizMODUD7ba0Q1AwM+Gaks+fP6NgwYJqk3JEsZ0g0het6iTbAjIWzkkk0jlJZ71582ZDmaLP27dvVXKaGzduIFWqVPD09ISbm5tJHPJOBTqpOYqtNrXCovOLVNbTpXWWws7aTutdox8ga2+ePn3aUI4othNE+qJVnWRbQMbCIJFI5+zs7DB37lxDmaKHZC+tXr06zp8/rwLDPXv2IGXKlCZ1uJvnag4nWyc0XtcYay6vUYGiLJkhS2eQeWM7QaQvWtVJtgVkLLFCLDzLwaNHj9SJoMxBSpEihda7Q0Qa8Pf3V+sg7t69G3HjxsWBAwfUXERTtevWLtRZXQe+gb4ol7YcNjfejNh2sbXeLfoPHz9+ROzYoZ8R10MlItIOY4NQnJNIRBZNhuY0a9ZMBYiSvXTHjh0mHSCKyhkqY1ezXSow3Hd3Hyotq4S3vm+13i0iIiIyEQwSiXRO5ifJen2yRWauEn2bDKTo1KkT1q1bp4bobNq0CUWLFjWLQ1Y6TWnsabEHcR3i4ujDo6iwpALefH6j9W5RNGE7QaQvWtVJtgVkLAwSiXROMh3myJFDbZHJekjfDhD79OmD+fPnw8rKCitXrkTFihXN6nAVTlEY+1vtR0KnhDjz9AzKLymPV59eab1bFA3YThDpi1Z1km0BGQuDRCITkDBhQrWR8YwZMwaTJ09WZQkU69ata5aHN0+SPCpQTOycGOefnUfZxWXx4uMLrXeLoqGes50g0het6iTbAjIGJq5h4hoiizNt2jT07NlTladMmYJevXrB3F17dQ3lFpfDU5+nyJowK/a23IukLkm13i0iIiJdYWwQij2JRGRRlixZYggQR4wYYREBosiSMAsOtD6AFK4pcPXVVZRZXAaP3z/WereIiIhIhxgkEpHFkMQ0bdu2VWUJDocNGwZLkjFBRhUopoqTCjde30DpRaXx4N0DrXeLiIiIdIZBIpHO+fr6qiUaZJMyRc7evXvRqFEjteRF69at1XzEWLFiWdzhTBcvnQoU08ZNi9vet1WgeO/tPa13y+JJsokyZcqoLTJJLthOEOmLVnWSbQEZC+ckck4i6RwX2Y66EydOoHz58upYSoKa1atXw8bGBpbs4buHKLekHG69uYWUrilVcpv08dNrvVsWK6r1nO0Ekb5oVSfZFkQdY4NQln2WRGQCZP2+P/74w1CmiLl48SKqVKmivjhliYsVK1ZYfIAoUsZJqXoUJZnN9dfXUWpRKexruQ+ZE2bmn5gJYjtBpC9a1Um2BWQs7ElkTyKR2bp16xZKliyJZ8+eoWjRovD09Iyxq7mm4pnPM7V+4pWXV5AkdhKV9TRbomxa75bF4dV/IiJ9YGwQinMSicgsPX78WPUcSoCYK1cubN++nQHiV0hg6NXKC7nccqmAscyiMrj4/GLMf2BEREQUaZKI7tD9Q9h9azfOPj0Lv0C/yL8Yh5sS6V9wcDAePAjNQJkqVSpYWfHazve8evVKBYj37t1DhgwZ4OHhgXjx4sXAp2WaEjknUkNNKy6tiHPPzqHs4rLY03IP8iTJo/Wu0Q9iO0GkL1rVSbYFluXe23uYdWoWVl1ehUfvHyEkJMTwMztrO5RMXRId83VEvWz1YBXLKuaHmwYEBKir9Z8+fUKiRIkQP358mAp2KZPecRhaxLx//x7lypXDmTNnkCJFChw+fBipU6eOpk/HvHh/9kalZZVw6skpxHeMjz0t9iBv0rxa75ZFYOIaIvPCxDWmy1Rig547e2LxhcWolL4SamSqgULJCyGZSzI42jrizec3uPTikupZlADSOpY1FtZaiILJC0Z/4poPHz5g2bJlWLVqFU6ePAl/f38VvUpKeTmg7u7u6NixIwoW/PGdIaKvc3Jy4qH5AbJ0QI0aNVSAmDBhQjUHkQHij4vnGA+eLTxVoHji8QlUWFpBzVFkj6Jp1HO2E0T6olWdZFtgGZxtnXGn5x0kcErwr58ldk6McmnLqW14meHYdWsXHr5/GKEgMVI9ibK+2JgxY5A+fXp1QlaoUCEkS5YMjo6OePPmDS5duoRDhw6phasLFy6MadOmIWPGjNAjU7laQETfH9FQp04dNffQ1dUV+/fvR758+XjYIuGd7ztDoCg9igwUiYjIUjA2iEKQ2KRJEwwZMgTZs2f/z+f5+flh4cKFKh1v27ZtoUf8QyAyfTIHo3nz5li5ciUcHBzUHETJakrGCxRlzmLuJLl5SImIyKwxNgjFJTDYk0hk0uQ6V48ePTBjxgy1/uHmzZtRtWpVrXfLbAJF92XuOPn4JBI4JlA9igwUiYjInJlqbLDuyjqsubxGZTn1D/IP97Oznc5G+PWsIjPnR1LL/9Ply5cj/OZE9H3SI9+hQwe1SZnCGzlypAoQZT70kiVLGCAaURyHONjdfLeaDP/682u1nuKFZxf4JxgNfH19Ua1aNbVJOaLYThDpi1Z1km2BZZp6YirabG4DN2c3laVcvrdlruId7zuokqFK9Pckrlu3Dj/99JNKCCHDu/766y8151DI3J+zZyMepWrNVK8WkOVgdtNvk/nOPXv2VGUJFLt27Rpjn4sleev7Fu5L3VXWU+lR3Ndqn1pXkYyH2U2JzAuzm5ouU4wNskzPguGlh6NJziZwGeeCC50vIF28dBi2f5jKdDq96vQIv2aEspv++uuvKmugm5ubum3VqhUGDRqEpk2bhluXg4iMx9bWVtW9sDKFWr58uSFAlN5EBojRJ65DXHi08DAEitKjKHMUc7rl5J+jTrCdINIXreok2wLL9ODdAxRLWUyVHW0c8cHvgyq3yNUCReYXif4gUbIHSoAo8ufPj4MHD6psgrdu3VJDvYjI+CTx0+DBg3lov7Bjxw60bt1alWU+4tChQ3l8YihQrLi0Ik4/OY1yS8oxUNQRthNE+qJVnWRbYJmSxE6iegxTx02NVHFS4fij4yqHwN23dyPdkRehOYmJEyfG33//bbgfP358tQ7Z1atXwz1ORBRdjhw5gvr16yMwMFCNYpgyZQovUsVgoCjrKBZIVgCvPr1SgeLF5xdj6u2JiIjoK2Q9xC3Xt6hymzxt8PPun9VF3UbrGqFOljqI9jmJMkZXsgcmSZLkqyduxYsXh6kxxXHHZFmkir569UqVZT6wJffay8Wo0qVL4+3bt6hSpYrKZMohuDHP+7O3ynoqPYoJnRJif6v9yJE4hwZ7Yj6iOn+J7QSRvmhVJ9kWWGZsEBwSrDYbq9BBoqsurcLRh0eRMX5GdCrQCXbWdhF+TS6BYYJ/CGRZmLgm1J07d9SFqGfPnqlbWQvRyclJ40/HsgNFuUp55ukZJHJKpJLZMFCMPCauITIvTFxjukwtNjj+6Di2Xt+qlr0on648KmeobJTXjfASGF9bEuPTp0+G+/fv31fDv+QEjojIGCQwrFixorrNmTMntm7dygBRY/Ec46mhp/mT5sfLTy9RbnE5XH7BpZCIiIhicm3E4guK488Tf2LeuXmotqIafj/6uz6CxFq1aqm1yYQMAZMlMSZNmqQenzVrljH2kciiybAzGT4iW0SHoJkDaVcqVaqkehLTpk2L3bt3I168eFrvFn0RKOZLmi80UFxSDtdeXeOx0aCeW3o7QaQ3WtVJtgWWZdzhceiQrwPeDXgH7/7e+LXsrxh7aKw+gkRZG7FkyZKGdRQl+6n0JkrgOHXqVGPsIxFZKBmlUKNGDTUXUdoWSZSVNGlSrXeL/hEo7mmxB3mT5MWLjy9Uj+LN1zd5jIiIiKLZ9VfX0adYH1hbWav7vxT7BR/8P6jvY82DRDmJc3FxUWUZYlq3bl1YWVmhSJEiKlgkIooMWXKnYcOGOHz4MOLEiaN6ENOnT8+DqdNAUZbHyJk4J576PFU9ine972q9W0RERGbtU8AnuNq7Gu5LghoHGwf4+PtE+bUjtE7i12TIkAGbNm1S6yXKSdzPP/+sHn/x4gVcXf+300QUOX5+fujfv78q//bbb7C3tzf7QxkcHIy2bdti+/btcHBwwLZt25A7d26td4v+g2Q53dNyD8osKoOrr66i7OKyONjmoFqvib7P19cXLVq0UOWlS5eqv/uIsMR2gkjPtKqTbAssz7yz8xDbLjQ7tggMDsSi84vU93KYnoV7xnx2UxliKmuVBQUFoVy5cmo4mBg3bhwOHjyInTt3Ijo9fvxYVUJ5H+nVlKB14cKFKFCggFlmMCLLY2nZTaVJkotNf/75J6ytrdUyF9WqVdN6t+gHPf3wFKUXlcbNNzeRPl56HGh9AMldk/P4fQezmxKZF2Y3NV2mFBukmZLmu8urxEIs3Ol1J+Z6EocNG6aS08ii1iVKlMDTp0/DXekvX7686l2MTt7e3ioVftmyZVWQmChRIty8eZNJLcisyDqAgwYNMpTN3dixY1WAKBYtWsQA0cQkdUmqlsOQQPG292019FQCxSSx/72+LhmPpbUTRHqnVZ1kW2BZ7v10L9peO9I9iTIUTIaA2dnZqcQSNWvWVIGh3I8pAwYMwJEjR3Do0CGLuFpAZO5mz56NLl26qLIEij17Rnx4BOnD/bf3UWpRKTx49wDZEmWDVysvJHJOpPVu6ZaljRggItIrxgZGGG4q84YkSJM1y2RImPQmylpm0sNYvXp1xI8fH9EpW7ZsKjW+fJgHDhxA8uTJ0bVrV3To0OE/x2rL9uVwVXkdBolE2lqzZg0aN26shpsOHToUo0aN4kdi4u5430GphaXw+MNj5HLLhX0t9yGBUwKtd0uXGCQSEemDKQWJnwM+Y+/dvaieqbq6P3DPQPgF/S/OsY5ljdHlRqtkNjGa3VSymMryFxMmTMD169dx4sQJtU7inDlzkCxZMpQqVQq///67CsSig6ybJmsxZsyYUSXNkR4I6XlYvHjxN39H5kpKpsSwTQJEIj2ToElOIGWL4hRi3ZLMyM2bN1f/PqnHI0eO1HqXyAjSxUunhp7KUNO/n/8N92XueOv7lsc2GlhCO0FkSrSqk2wLLMviC4sx58wcw/3pp6bj6MOjOPfsnNqWXVyGWacit259lBPXfMvLly+xZcsWtUkg2adPH6O/hwxtlQQ1R48eNTwmQeKpU6dw7Nixr/4OexLJ1Jh7D8Px48fVUHVJPNWoUSMsX75cJawh83Hl5RWV9fTlp5colLwQPFt4hkvZTUxcQ2RumLjGMnoSxx0ahw3XNuDaq2twtHFEsZTF8FuF35A5YWbDc3wDffHL7l+w6vIq+AX6oVKGSphZdSbcYrsZniNTM7ps74L9d/erTKWtcrfCuArjYGP13+ljSi4siX7F+qFG5hrqvss4F1zofEFdpBXL/l6GGadm4Fi7r8dF0bpO4rdIEpl27dqpYajRESAKWVT7nz2BWbNmxYMHD775O5KCWJbmCNvC1ngkoph3+fJllZhGAkR3d3csWbKEAaIZkjmJsjxGfMf4OPn4JKour2qUNZyIiIi0dOD+AXQr2A3H2x1XF0ADggPUqJmP/h8Nz/l518/YemMr1jZYqxK5PfnwBHXX1DX8PCg4CNVWVIN/kD+OtjuKxbUXY9GFRRi2f9h33//Wm1vI6ZbTcF+GlVrF+l94Jxdm5UKtJuskhq3v9Pfff6u1EWWe4pckoU10kcymMsz1Szdu3EDq1Kmj7T2JYpqTk5PqQQwrm4t79+6pwPDNmzcoUqQINmzYEKOJryhmyZxE+QItv6Q8jjw8ghora2B70+1wsjWfv2kt67m5thNEpkqrOsm2IGbtar4r3P1FtRYh8e+JcebpGZRKXQrvfN9h/rn5WFFvBcqlLaees7DWQmSdkRXHHx1HkRRF4HHbQwVye1rsUb2LeZLkweiyo9F/T3+MKDMCdtbfPjeSKRzSOxnmZd+X4X4eHBIc7ucxGiTu2rULLVu2xKtXr/71M1m3Q9ZPjC6yllqxYsVUyvyGDRvi5MmTmDt3rtqIzIXUI3MbYioXlCRAfPLkCbJnz47t27eb3b+R/i1f0nzY3Xw3KiypAK97Xqi1qha2NtkaqQn15iaq9dwc2wkiU6ZVnWRbYDwfPnzA+/fvw41GlO2/vPN7p25l5IyQYFF6Fyukq2B4TpaEWZAqTioce3hMBYnHHh1DzsQ5ww0/rZS+khp+evnFZeRNmveb75fCNQUuvbgUbnjrlyQfgDwnMqI83LRHjx5o0KCBymwqvYhfbtEZIIqCBQti48aNWLlyJXLkyIHRo0djypQpaNasWbS+LxFFnjS4lStXVmuaSq+/JJ2K7kzIpB8y9EWuvDrbOmPPnT2ou7pupK9yEhERRZds2bKFS3YpyS//i/Ta/bTrJxRPWRw5EudQjz3zeaZ6AuM6xA33XDdnN/WzsOd8GSCqn////bDnfEvVDFUxzGuYmvf4tcynIw+MRLWM1aBJT+Lz58/Ru3dvuLmF/8fFFFlqQzYic+Xv72/I9jl8+HCTHpIpQ9NlCPq5c+fUvGVPT0+1dA1ZFpnYv6PZDlReVhk7b+1E4/WNsab+GthaW+4i8JJUrVOnTqosGcK/d7XanNsJInOgVZ1kW2A8V65cCXeO8r12udv2bqpX73Dbw4gpg0oOwpora5B5emZ0L9gdmRJkUo9ff30d009OR2BwoHqOJtlN27Ztq+YGSpIaU2RKa6GQZTKX7KaBgYGoX7++SmYlSaO8vLyQN++3h1CQ+ZOexOorqqs1nZrmbIoltZfA2soyM9tGtZ6bSztBZC6Y3dR0RSY26L6jOzZf34yDrQ8ibby0hsf33d2n5uJ79/cO15uYekpq/FT4J/xc9GeVoGbL9S043/m84ed3ve8i3dR0ONvx7H8ONw17rgxN9bzjaVhuRYYdV0xXETOrzTRkOo3xnsTp06er4aaHDh1Czpw5YWsb/kqwLElBRJFnY2ODXr16GcqmSBqtDh06qABRrsTJ0jgMEEnmaKxruA51VtfBiosr1BDUOdXnqC83srx2gsicaFUn2RbE/PlNj509sPHaRni18goXIIr8SfPD1soWe+/sRb1s9dRj119dV0teFE1ZVN0vmqIoxhwagxcfXyCxc2L1mAR8slSUZAf/HnlPmcbx5vMble1UZIifwTAvMrKi3JM4f/58dO7cGQ4ODkiQIEG4L3cpy4L3esaeRKLoJU1M3759MWnSJLW8hWQxjc6sx2R61lxegybrm6j5HL0K98Iflf6wuECRPYFERKYXG3Td3lVd5NzceHO45DFx7OPA0dZRlbts64Idt3aozKcS+ElQKWS5i7AlMPLMyYNkLskwocIENQ+xxcYWaJ+vPcaWHwutRDlITJIkieotHDBgAKysom3ZxWjDIJEoev3222+qfRCLFi1Cq1ateMjpXxadX4Q2m9uo8pCSQzC63GiLOkoMEomITC82iDXy6xc0ZZmL1nlaq7Iklfll9y9YeWmlml4hmUtlGGiS2EkMz7//9r4aMiqZv53tnNEqdyuMrzAeNlbf7oXuvK0zhpQa8kPZS1dfWq3mJzbL9ePJPW2MMUG2UaNGJhkgElH0+uuvvwwBovQkMkCkb5Ev008Bn9BtRzf8euhX9SU5oETo3w4REZEehQz/fl+bLPM0o9oMtX1L6ripVUK3iEjklAjZZ2ZX2VRrZKqBAskKqN5IeT9vX2+19uLhB4ex6tIq9fjcGhFbIjDKQaKc9K1evRqDBkUucw4RmWcPw/r169VQdDFw4ECVBZnov3Qt2BUf/T+i355+GLh3oJqj2KNw6LAcMs92gshcMXENRTcZcdO9UHfMOzsPM0/PVEHhl1zsXNTcfwkOK2eoHOHXj3KQKGshTpgwQa11litXrn8lrpk8eXJU34KITMy+ffvQtGlTtV6qJKwZM2aM1rtEJqJv8b7w8ffBqIOj0HNXT9Wj2DZvW613i4iISHdkPcXBpQarzfuzt0qI8znwMxI6JUT6eOmjNL8/ykHixYsXDVkKL126FO5nlpZ4gCg6ODk54cWLF4ay3p05cwa1atVSQ9Hr1auHWbNmsS2gCBlRZoQKFCcfn4z2W9rDydYJjXM0NuujGNV6bmrtBJG506pOsi2wXPEc46nNWKIcJO7fv984e0JEXyUXW2TheVNw48YNVKlSRQ13K1euHJYvX64ymhJF9G/+d/ff1RzF2WdmqyxvEijWzGy+WXGjWs9NqZ0gsgRa1Um2BWQskco28+DBgwg9//Hjx5F5GyIyIVLPK1asiJcvXyJ//vzYtGmTWhORKLInOjLJv0WuFiojW4O1DeB525MHk4iISK9BYsGCBdGpUyecOnXqm8959+6dymyYI0cOlcCCiCJHhm3KnD7ZpKxHb968gbu7u7qAlClTJuzcuRMuLi5a7xaZOKtYVlhQawHqZq0L/yB/1FpVC4fuH4I58vPzQ7du3dQmZXNsJ4gsiVZ1km0BabpO4uvXr9Uf/YIFC+Dg4KB6DZIlS6bK3t7euHLlCi5fvox8+fJh6NChqFq1KvSK6ySS3uk9a6HsX4UKFXD8+HHVDhw9ehSpU6fWerfIjEiAWHtVbey8tVNla9vXap9K9W1OolrP9d5OEFkaZjc1XYwNojAnMUGCBCprqQSK27dvx+HDh3H//n18/vwZCRMmRLNmzVCpUiXVi0hEUWNjY4P27dsbynoiVyzr16+vAsR48eLBw8ODASIZnZ21HdY3XI+qK6qqhYYrLasEr1ZeyOmWk0fbBNoJIkukVZ1kW2C5AoMD1Xfk7Te30TRnU7jYu+DJhydwtXdFbLvQi4jR3pNoTni1gChyZHmL5s2bY+XKlSqb2p49e1C0aFEeToo2H/w+wH2ZO44/Oo7EzolxqM0hZEqQySyOOHsCiYj0wRRjg/tv76Py8spqCQy/QD/c6HED6eKlQ6+dveAX5IfZ1WfHzJxEIrJscm3pp59+UgGiXLWUeccMECm6yVXRnc12Ik+SPHjx8QXKLymvvhiJiIgsWa9dvdQ0DO/+3nC0dTQ8XidrHey9uzdSr8kgkYgiTIaaT5s2TZUXL16MypUr8yhSjIjrEBcezT2QNWFWPHr/CBWWVsBzn+c8+kREZLEOPTiEISWHqOkZX0oTNw0ev4/cKhMMEolMYBiaJKGQTcpamz17tkpIJaZOnYqmTZtqvUtkYRI5J4JnC0/15XfrzS01BNX7szcsmd7aCSJLp1WdZFtgmYJDghEUEvSvx+ViqozCiQwGiUQm4NOnT2rT2tq1a9G1a1dVlkCxR48eWu8SWajkrsmxp8UeJImdBH8//xvVVlTDR3/LDo700k4QkbZ1km2B5XFP744px6cY7sdCLPj4+2C413BUzRi5VSaYuMYEJ6eS5SWIkfUHRapUqWBlpc21HUlMI8vZBAQEoHPnzpg5c6Za8JxISxefX0TpRaXh7euNiukqYmuTrbC3sbe4eq6XdoKItK2TbAssMzZ4+O6hSlwjOSNuvrmp5ifefH0TCZ0S4mCbgyrZW4wHia1atUK7du1QqlQpmCJT/EMgimmnTp1C2bJl1TAWWfJi1apVsLa25gdBunDi0QmVxOZjwEfUzVoXq+uvho0Vl4EgIiLLiQ0CgwOx+tJqXHh+QfUi5kuaD81yNguXyCYionxZ4927d2oh7YwZM2Ls2LF4/DhykyOJSJ+uXbuGKlWqqABR6vqyZcsYIJKuFE5RGJsbb1YT9jdc3YAOWzuo+RlERETmLiAoAOmnplc9h81yNcOEihMws9pMtM/XPtIBolGCxE2bNqnAsEuXLli9ejXSpEmjTijXrVunhqURUdRIPZoyZYraYrpOyVU0d3d3vH79GgULFsSGDRtgb296Q/nI/JVPV171IFrHssai84vQe3dvNezGVPj7+6Nv375qk7IptRNEpJ86ybbA8tha28I30Nfor2v0OYlnz57FwoULMW/ePMSOHVstti2JLqSnUY9MtUuZLIdWi2xLYFiyZElcvXoVmTNnxuHDh5EwYcIYeW+iyFp6YSlabmqpyiNKj8DwMsMtop5r1U4Qkb7qJNsCy4wNxh4aixuvb2BezXlGm25h1EkbT58+haenp9pkvpIkubh48SKyZcuGCRMm4Oeffzbm2xFZBKlLYctMxNQ8QPlCq1atmgoQpYH08PBggEgmoUXuFnjn9w49dvbAiAMj1LqKvYr0grnTop0gIv3VSbYFlunUk1PYe2cvPG57IKdbTjjbhr8osaHRhpjvSZRu7S1btqjeQzmRzJUrF9q3b68qhqurq3rOxo0b0bZtW3h7628dK1O8WkAUnWSoW40aNVR9jh8/Pg4dOqQu9BCZkl8P/oqh+0PX81xYayFa52kNPePVfyIifTDF2KDN5jb/+XP5HozxnsSkSZOqdLtNmjTByZMnkSdPnn89R7Iixo0bN6pvRUTRTOqyZCyWANHJyQnbt29ngEgmaXDJwXjr+xaTjk1Cuy3t4GrvqjKfEhERmZuFkQgCoz1xTa9evVTEPWPGjHABonRQhq0PIwHi3bt3o/pWRBSNpM727NlTLW9ha2urktQUKVKEx5xMkqzhObHiRLTL205lOm2yvgk8b3tqvVtEREQmIco9iSNGjECnTp1Ur8OX3rx5g7Rp0yIoKCiqb0Fk0WQYmmQNFvfu3Yu2ye+jRo1SF3vk5HrJkiWoVKlStLwPUUyRv+U51efgvd97rL2yFrVX18aeFntQNGVRs/sQYqqdICJ910m2BZYp7Z9pEQuxvvnzO73uxHyQ+K0pjZL4wsHBIaovT0QAXr16Fa3HYebMmeqCj5g2bRoaN27M405mwdrKGsvqLlOB4u7bu1F1RVUcaH0AudxywdxEdztBRKZRJ9kWWJ6fCv8U7n5AcADOPTuHXbd2oW+xvpF6zUgHib179zZcqR02bFi4nkTpPTxx4sRX5ycSUcQ4Ojri0qVLhrKxyfqm3bt3V+Xhw4ejW7du/IjIrNhZ22F9w/WotKwSjjw8Avel7jjU5hAyJshoNvU8utsJIjKNOsm2wDL1+kYW7xknZ+D009ORes1IZzeVZDTiwIEDKFq0KOzs7Aw/k7J0sffp00e36yOacgYjImORBDXVq1dXWYplPdPp06erCz9E5kgS2ZRdXBbnn51HqjipcLjNYaSMk1Lr3SIiIh0xp9jgjvcd5JmdB+8Hvo+5nsT9+/er2zZt2uDPP/80LHdBRKZBevvr1q2rAsRGjRph6tSpDBDJrMmaibub70bJhSXVosMVl1ZUPYqJnBNpvWtERERGt+7KOsR3jB+p343ynERZH5GIoo8EcYsWLVLl1q1bq8yjUXX16lVUrVpVTXCvWLGiSlTDBbjJEiR2TgzPFp4osaAErr++jirLq2B/q/1wsXfRfH3SsWPHqvKgQYPCjc7Rqp0gosjTqk6yLbBMeefkDZe4JgQheObzDC8/vsTMajNjbripzEccPXq0ytQUNjfxWyZPngw9M6cuZTJPxl5kW5amKV68uPrbL1SoEPbu3Wt4fSJLcf3VdZRYWAKvPr1CubTlsL3pdjjYOJhsPTd2O0FEUaNVnWRbYJmxwUivkeHuW8WyUqNkyqQpgywJs8RcT+K5c+fUlYqw8rdwbhNR1EkPX61atQzlqGY8c3d3Vw1glixZsH37dgaIZJEyJ8yMXc12ocziMth3dx+abWiGNfXXqGyolt5OEJHp1km2BZZpeJnhRn/NSCeuMRemeLWAKDI+fPiA8uXL49SpU+pv/siRI+qWyJLtv7sflZdXhn+QP9rnbY+5NeZqcoGTV/+JiPTBFGODs0/PwtbKFjndcqr7m69txsLzC5EtUTaMKDNCZfmOKKto2E8i0hk/Pz+VpEYCxAQJEqispgwQiYCyactiZb2VamjOvHPzMGjvIB4WIiIyKZ22dVIJ2cIymjZa1whOtk5Ye2Ut+nn2i9RrRjlIbN++Pby8vKL6MkQUTWTd0pYtW2LPnj1qTsSOHTvUUFMiClU3a13MrT5XlccfGY9JRyfx0BARkcmQADFPktD16ddeXovSaUpjRb0VWFRrEdZfXa9NkPjy5UtUrlxZ9Ur07dsXFy5ciOpLEtEXPn36pNYdlU3KESGjyWX9wzVr1qjMahs3blTJaogovHb52mF8+fGq3MezDxafX2wx7QQRmU+dZFtgmUJCQhAcEqzKe+7uQdUMVVVZ1gKWBG2aBImbN2/G06dPMXToUDWULV++fMiePbtK5X3v3r2ovjyRxZOKf//+fbVFdAqxpNKfOzd0jtXy5cvVchdE9HX9ivdDn6J9VLndlnbYcn2LRbQTRGQ+dZJtgWUqkKwAfj30K5ZeWIoD9w6gWqZq6vG73nfh5uymzTqJIl68eOjYsaPaZLLnypUrsWDBAgwbNgyBgYHGeAsii+Xg4ICTJ08ayj9q4sSJGD8+tGdkzpw5aNCgQbTtI5E5kIspEypOwOvPr9WE/4ZrG2J3891q2I5e67mxfp+IjEurOsm2wDJNqTxFZenedG0TBpccjAzxM6jH111Zh2Ipi2mf3VSWxZCU+suWLVO38ePHx+PHj6FnppjBiOh75s2bhw4dOqjyb7/9hn79IjdpmcgSBQYHov6a+th8fTNc7V3h1coLeZPm1Xq3iIgoBphTbOAb6AvrWNawtbbVJrvp/v371Qmpm5sbWrduDVdXV2zbtk0dZCKKWevWrUOnTp1UuX///gwQiSLIxspGZTwtnbo03vu9V0tk3Hx9k8eRiIh06eG7h3j0/n9x18nHJ/HTrp+w5MKSSAWIRgkSkydPjqpVq6pFumXu0/Pnz9VQU1mPTYu1pojMjQzZlvmEsn1v+LanpyeaNm2K4OBgdeFm3LhxMbafRObE0dYRmxtvVtniXnx8Afdl7njy4Um0vZ+/v78aIi6blKOznSCi6KdVnWRbYJmabmiq1v0Vz3yeoeLSiipQHLxvMEYdGKXNcNO//vpLzXWKGzcuTJE5dSmTefrRRbaPHTuGChUqqMxmUidlbrC1tXUM7y2ReXnu8xwlFpbArTe3kCNxDhxsfRDxHONpVs+j6/eJyLi0qpNsCywzNoj3Wzwcb3ccmRNmxtQTU7H68mocaXsEHrc90HlbZ9zpdSfmE9eEzXu6cuUKHjx48K8roDVr1ozqWxBZNCsrKxX8hZW/5tKlS6hWrZoKEN3d3bF06VIGiERG4BbbDZ4tPFF8QXFcenEJ1VdWh0dzDzjbOZtcO0FE5l8n2RZYpoCgANjb2Kvynjt7UDNTaPyVJWEWPPV5GqnXjHKQeOfOHdSpUwcXL15Uw0vDOibDhprKQt5EFHmOjo5qGOl/1UEJDL29vVG0aFFs2LAB9vahDQURRV2auGlUltNSC0vh6MOjqL+2vhqKamdtZzLtBBFZRp1kW2CZsifOjtmnZ6NaxmrwvOOJ0WVHq8dlmkQCxwSRes0oX9ro1asX0qZNixcvXsDJyQmXL1/GwYMHUaBAAXh5eUX15YnoP8gapbL2odzmzJlTZRXmMDMi45OhptubboeTrRN23dqF1ptaGxYuJiIi0tJvFX7DnDNzUGZxGTTJ0QS5k+RWj8t6v4WSF9KmJ1HmQe3btw8JEyZUXdyylShRQiXM6NmzJ86dOxfVtyCir3jz5o3qQZSexHTp0mH37t1qzVIiih5FUxbF+obrUWNlDay8tFJdnZ1aZSqTtBERkabKpCmDV31fqYzcX86b75i/o7q4qUlPogwndXFxUWUJFJ88Cc3+ljp1aly/fj2qL09k8WSeYfbs2dUm5bCJ6TIHUeYiJk2aVA1pkVsiil6VM1TGktpLEAuxMP3UdIw+GDqkR4/tBBFZXp1kW2C5QhCCM0/PYM7pOfjg90E9JtMiIhskRrknMUeOHLhw4YIaclq4cGFMmDABdnZ2ajkM6d0goqiReb6SGCqs7Ofnp+YBHz9+XPUcenh4sK4RxaAmOZvg9efX6LGzB4Z7DUdCp4ToWrCrrtoJIoJF1km2BZbp/tv7ak3fB+8ewC/QDxXTV4SLvQt+O/wb/IL8MLv67JgPEocMGaJ6NcSoUaNQvXp1lCxZEgkSJMDq1auj+vJEFs/BwQH794eufWNra4vmzZurnkOZA7xjxw51oYaIYlb3Qt3x+tNrjDgwAt13dEd8x/honKOxUeq5lGP694nIuLSqk2wLLFOvXb1QIFkBXOh8AQkm/C9RTZ2sddBha+hKFDG+TuK35kpJD0dYhlM9M8W1UMgySVXt1KmTWptUgkVJUiNJa4hIuzrZc2dPNezUxsoG25psQ6UMlfhxEBGZsIjGBgfvH8TEoxNx5skZtdzExkYbUTtLbcPPJdHZ4guLw/1OpfSVsKv5LsP9N5/fqNEpW69vhVUsK9TLWg9/VvkTse1C19r8HgkMj7Y9qtZJdBnnooLFdPHS4d7be8g2Ixs+Df4Us3MSAwICUL58edy8eTPc4/HjxzeJAJHIlAwcOFAFiJIcasWKFQwQiTQm33PyJS6Z5AKDA1F3TV0cf3Rc690iIqIY9NH/I3K75caMqjP+cz7701+eGraV9VaG+3mzDc1w+cVltS7vtqbbcPDBQXTc2vGH90GybQeF/HvZwUfvH6lhp5ERpeGm0pvx999/R+UliOg7AgMD0a1bNzXPV8ht/fr1edyIdECu+C6qvUhdBd59ezeqLq+KQ20OqTWrInrRNayOd+zYUX2/RrSd2LZtmyrLtA8bmyjPJiGiKNCqTrItiHlVMlZR23+xt7ZHkthJvvqzqy+vqqWVTnU4pYaMimlVpqnvk9/df0cyl2Tf3Qf39O6YcnwK5tYI/R6R5Go+/j5q3nzVjFW1GW76888/q4W7x48fD1PE4aakd/IlU6NGDVUeMWIEhg8frvUuEdFXriRXWFpB9STKF/qRtkeQJm6aHz5OMrc/duzQYUU+Pj4RXu80qr9PRMalVZ1kW2C82ODKlStInjy54XGJd2T7L7FGxvrqcNNN1zapTKOyPEW5NOXwa7lfkcApdO7ggnML8IvHL/Du7234HRmd4vCrA9Y2WKvmFX7Pw3cPVeIaCetuvrmpgs2br2+qxGoH2xxEYufEET4ONsa4YrFgwQLs2bMH+fPn/1clmDx5clTfgshiyVDuFi1aqHKiRInQt29frXeJiL7C2c4Z25tuR6mFpXD55WW4L3XH4baHI/XFHBkyDL1YsWKGMhFpS6s6ybbAeLJlyxbuvlykl4v1ESVDTetmrYu0cdPitvdtDNo7CFWWV8GxdsdgbWWNZz7P/vVdIfPcJSGa/OxHpIyTUs1DXH1pNS48v6B6EdvlbYdmOZvB0dYxwvus9gFRJOu05cuXT5Vv3LgR7mecl0gUeW/fvlU9iHJbpEgRlSWNWQuJ9Eu+0Hc3343iC4qrK7mVl1WGV2svuNq7Rvt7Ozo64siRI9H+PkSk7zrJtsB4rnylJzEyvsx8ndMtJ3K55UL6qenhdc8L5dOVj/J+BgQFIMuMLCp5WrNczSD/GUOUg8Sw9L5EZDzSQ9+oUSNcv35dDXnYuHEjA0QiE5DcNblKPCCB4rln51BzZU2Vwc7BhstSEBGZEhcXF7i6Gv8in2QdlWGgt97cUkGizFV88fFFuOfIcFOZ6/6teYxfsrW2hW+gr9H3M9L9358/fzZMyA3LvNi7d2/D1q9fP/j6Gn+HiSyBDCv18PBQayFu2bIFSZJ8v5EgIn3ImCCj6lF0sXPBgfsH0GR9aPZTIiKiR+8fqXV2k7okVQejaIqieOv7Vi2hEWbf3X0qY2nhFIV/6IB1K9gNvx35zajfNZHuSVy8eLFap00yNonp06cje/bsqptbXLt2DUmTJlWJbYjoxy1btgxTpkxR5aVLlyJz5swoWLCgun/w4EFDHSMi/cqbNC+2NNmihpxKwgJJZT6/5vxom4YhF25LlSqlymwniLSnVZ1kWxDzfPx9VK9gmLved3H+2Xk1BUG2kV4jUS9bPdUrePvNbfTb0w8Z4mdQayWKrImyqnmLsuj97Oqz1fDR7ju6q2GqP5LZVJx6cgp77+yFx20PNaTV2TZ8jpgNjTbEXJC4fPly1Vv4JVm7LV26dIYT3RkzZjBIJIqAc+fOoUOHDqo8dOhQ1K1bV2UqO336tHosODiYx5PIRJRJUwar669W6ycuPL9QDS+aUHFCtLyXtA1sJ4j0Q6s6ybYg5p1+chplF5c13O/t0VvdtsrdCrOqzcLfL/7G4guLVW+hBH2yXMXosqNhb/O/OY7L6y5XgWH5JeXV0kr1stbD1CpTf3gf4jrEVYGoMUU6SLx16xZy5sxpuC8JNb7M3lSoUCG1thsR/ZhXr16hTp06aph21apVDRm0ZKJ02NDuyE6aJiJt1MpSC/NqzEPbLW0x8ehEFSj2Kx7+Aqsx6jnbCSJ90apOsi3Q5oJgyPBvrygo0w++R3ocV9RbEel9WFhrIYwt0uskSrf5+fPn1VC4r5Hhpnny5NH9vESuk0h6SVRTqVIl7Nu3DxkzZsTJkycRN25crXeLiIzk96O/o69n6BI2EjS2y9eOx5aISIdMKTYIDgnGxCMTseXGFvgH+aN82vIYXnp4pJe9MEriGjlosvzFt/z999+6P7BEejFgwAAVIMrCu5s2bWKASGRm+hTrg37FQnsQO27riI1XN2q9S0REZOLGHByDQfsGIbZdbCR3SY4/T/yJbjuMM5Iz0kGiDIcbNmzYV3sKZdLsyJEjUa1atajuH5HZW7lyJSZNmmRICPXPxVuDgoLg6empNikTkWkaX2G8WtxYrvxKxtP9d/+3hFRAQAAWLVqkNilHFNsJIn3Rqk6yLbAsS/5egplVZ6ohrZsab8LWJlux/OJy9T2j2XDT58+fq+GkdnZ26N69OzJlyqQel3XdJNOpDJ+TJBxubm7QM1PqUibzc+HCBRQtWlRdWBk0aBDGjBnzr+dI4hrpYRQ+Pj5wdg6fsYqITIekJ2+4tiE2XtuolsjY32o/8ifLH+V6znaCSF+0qpNsCywrNrD/1R63etxCyjgpDY85/OqAWz1vIYVrCm0S10jwd/ToUXTp0kUNlQuLNSW9d8WKFTFz5kzdB4hEWnr9+jVq166tAsTKlStj1KhRX32eJITKnTu3oUxEpsvGykYlJ6i6vCr239uPKsur4HDbw0jukDxKr8t2gkhftKqTbAss78Kjg41DuMdsrW3VMhqa9SR+6c2bNyrbqciQIQPix48PLYwfPx4DBw5Er169DOvMmdPVAjIf0tNepUoV7NmzB+nTp8epU6cQL148rXeLiGLIe7/3KmX62adnkSpOKng29kTmpKGJ4DhigIhIO6YUG1iNtEKVjFVgb/2/DLpbb2xFubTlwq2VGKPrJH5JgkJZ8kJLcpI9Z84c5MqVS9P9IPoRgwcPVgGiDD+RRDUMEIksi6u9K3Y224mSC0vixusbqLWuFiDJ6D5rvWdERGQqWuVp9a/HmudqbpTXNkqQqDW56tqsWTP89ddf+PXXX7XeHaL/tGbNGkyYELqg9sKFC5EjRw4eMSILlNg5MTyae6D4guK49voa0EyyEGi9V0REZCqiY33EMGYxwalbt24qk2qFChW++1w/Pz+8f//esH348CFG9pEobGmYNm3aqHL//v3RoEGD7x4YmbNYpkwZtUmZiMxH6rip4dHCA/Ed4gMyqqkx8Pzj8wi/DtsJIn3Rqk6yLSBjMfmexFWrVuHs2bNquOmPGDdunFqegyimydzdOnXq4NOnT3B3d/9qJtOvCQ4OxoEDBwxlIjIv2RJlw7q661BuUTkgHZBvQT6MKTcGnQt0hrWV9Q+9BtsJIn3Rqk6yLSBjMekgUSaUSpIaWYPGwSF8Zp9vkcQ2vXv3Ntx//Pjxv9alI4qOdYuaNm2KO3fuIG3atGptRGvrHzv5s7e3V0NUw8pEZH5Kpi2J8ZnHY+7Tubjjewfdd3bHwvMLMavaLBRMXvC7v892gkhftKqTbAvIWIyS3VQrkvBDema+PNmWk3FZhkNSAMvQ0u+diJtSBiMyXbIGovRiOzo64tixY4a02EREXwoKDsKcM3MwaO8gvPN7h1iIpXoUpWcxniMzIBMRRTfGBmYwJ7F8+fK4ePEizp8/b9gKFCigkthI+Ud7aoii07p161SAKBYsWMAAkYi+SYaXdi3YFde7X1cZ6kIQglmnZyHLjCxYemGpYU1iIiKi6GTSQaKLi4vKDPnlJksKJEiQgBkjSRcuXbqE1q1bq3KfPn3QuHHjCL+G9I4fOXJEbVImIvNcO3Xt2rVqk7JbbDcsrbMU+1vtR9aEWfHi4wu03NRSra145eWVf/0+2wkifdGqTrItIGMx6eGmXyNZpPLkyYMpU6b80PPZpUzRxdvbGwULFsTt27dVr/euXbtgYxPxacAfP35E7NixVZmLbBOZp/+q5/5B/ph8bDJGHRiFz4GfYWNlg1+K/oKhpYbC2S70eWwniPRFqzrJtiDqGBuYQeKar/Hy8tJ6F4jUlTwZ9iwBYurUqVUW3sgEiELm2GbIkMFQJiLLYmdthwElBqBxjsbotasXtlzfgt+O/IaVl1ZiauWpqJWlFtsJIp3R6rub5wxkLGbXkxhRvFpA0WHo0KH49ddfVaIaGWqSN29eHmgiMsrVfwkSe+7sifvv7qv7NTLVwNQqU5EmbhoeYSKiKGJsYAZzEon0aMOGDSpAFPPmzWOASERGVTNzTVzuehkDSwyErZUttt7YimwzsmHMwTHwC/Tj0SYioihjkEhkRFeuXEGrVq1U+eeff1ZrIxIRGZvMRRxbfiwudL6AMmnKqLmKQ/YPQY5ZObDj5g4ecCIiihIGiURG8u7dO9SuXVsNFZMEShMmTDDK6/r6+qJatWpqkzIRUZisibJiX8t9WFB9Aez97XHrzS1UW1ENNVfWxB3vOzxQRBrR6rub5wxkLJyT+OgRUqZMiYcPHyJFihRGO7BkWYKDg1GrVi1s27ZN/T2dOXMGiRIlMsprM1MZkfmLaj1Xvx8/NlAasClpg8DgQNhb26N/8f7oX6I/nGydomnPieibdZLZTU0SYwMzzW5KpIVRo0apANHe3h4bN240WoAo7OzssHDhQkOZiMxPVOu5+v05ob+fr1I+/LLnF+y5swejDo7C4guL8UelP1A7S21mSCaKIVp9d/OcgYyFPYnsSaQo2rx5sxpmKhYvXoyWLVvymBKRpiRx+YarG/Dz7p/x8P1D9Zh7ene1ZEbmhJn56RARfQNjg1Cck0gUBdeuXUOLFi1UuWfPngwQiUgXZK20etnq4Vr3axhScohaa9HjtgdyzsqJ/p794ePvo/UuEhGRjjFIJIqkDx8+oE6dOuq2VKlS+P3336PlWAYFBeH8+fNqkzIRmZ/AwEBs375dbVI2VjshcxFHlxutlsyolrEaAoIDMOHoBGSenhmrLq1SPY5EZD7f3TxnIGPhcFMON6VIkBOr+vXrqzURkydPrhLVuLm5RcuxZOIaIvNnlMQ1P/D7225sQ69dvQyZT0unLo3pVacjR+IcUf43EFHE66Sx8Zwh6hgbhGJPIlEkyPIWEiDKBPH169dHW4AYNmwsWbJkapMyEVFk24nqmaqrXsXRZUfD0cYRB+4fQJ7ZefDTrp/w1vctDyyRiX9385yBjIU9iexJpAjas2cPKlWqpJa9mD17Njp16sRjSEQmd/X//tv7+MXjF6y/ul7dT+iUEGPKjUG7vO1gbWUd7e9PRKRHjA1CsSeRKALu37+Pxo0bqwCxbdu26NixI48fEZmk1HFTY13DdfBo7oGsCbPi1adX6LStE/LPzY8D9w5ovXtERKQhBolEP8jX1xf16tXD69evUaBAAcyYMYPDP4nI5FVMXxEXOl/An5X/RFyHuLjw/ALKLC6Dhmsbqt5GIiKyPAwSiX4wUU3Xrl1VgpoECRJg3bp1cHBwiLHgtEGDBmqTMhGRsdsJW2tb9CzcEzd73ESXAl1gFcsKa6+sRZYZWTBs/zB89P/Ig05kAt/dPGcgY+GcRM5JpB8wZ84cdO7cGVZWVti9ezcqVKgQY8eNmcqIzF9MZTf9UX8//1tlQfW656XuJ3dJjgkVJ6BJjiYcQUGkQZ38UTxniDrGBqFs/v+WiL7h+PHj6NGjhyqPGzcuRgNEIRlUp0+fbigTkfmJaj03djuRyy0X9rXch43XNqrkNvfe3kOzDc0w49QMNSy1QLICUX4PInOm1Xc3zxnIWNiTyJ5E+g/Pnz9H/vz58fjxYzUfce3atbyKTkQWxTfQF5OPTcaYQ2PwKeATYiEWWudpjbHlxyJJ7CRa7x4RkVExNgjFOYlE3xAQEIBGjRqpADFLlixYuHAhA0QisjgONg4YVHIQbnS/gRa5WiAEIVh4fiEyTcuECUcmwC/QT+tdJCIiI2OQSPQN/fv3x4EDB+Di4oKNGzeqWy3Ichs3b95Um5SJyPwEBQXBy8tLbVLWYzuR3DU5ltRZgmPtjqFQ8kL44P8B/ff0R45ZObD1+laV4IuIYq5Ofg3PGchYONyUw03pK1atWoUmTZqo8oYNG1CnTh3NjhMnoROZP70lrvme4JBgLL2wFAP2DsAzn2fqsYrpKmKS+yTkdMsZre9NZAqYuMZ0MTYIxZ5Eon+4ePEi2rVrp8oDBw7UNEAMEydOHLUREemhnZAlMlrlaaWGoA4oPgB21nbwvOOJPHPyoNPWTnju85wfFFk8rb67ec5AxsCeRPYk0hfevn2LAgUK4Pbt26hYsSJ27twJa2trHiMiilamPmLgjvcdNfR03ZV16r6LnYuax/hTkZ/UnEYiIlPB2CAUexKJvhjH36JFCxUgpk6dGitWrGCASET0A9LFS4e1DdbiUJtDankMma84cO9AZJmeBasureJ8RSIiE8Mgkej//frrr9i2bRscHBzUPMSECRPy2BARRUCJVCVwov0JLK2zFClcU+D+u/tosr4Jii0ohuOPjvNYEhGZCAaJRAB27NiBESNGqGMxa9Ys5MuXTzfHxc/PD61bt1ablImI9NxOyHzF5rma43r36xhVZhScbJ1UgFh0flE0Xd8U99/e13T/iMy5TuqpLSDTxjmJnJNo8WR4qcxDlPmIXbp0wcyZM3V1TEx9rhIRmV9204h48uEJhuwbgkXnF6k1Fu2t7dG7aG8MLDEQLvbaLC1EFN2Y3dR0MTYIZfP/t0QW24hL9lIJEIsUKYIpU6ZAb2xtbTFhwgRDmYjMT1TruZ7biWQuybCg1gL0KNQDvT16w+ueF8YdHof55+bj17K/om3etrC2YoIwMi9a1Uk9twVkWtiTyJ5EiyULPzdv3lwlqEmcODHOnj2L5MmTa71bRERm3e5uub4FfT374uabm+qxnIlzYnKlyaiQroLWu0dExJ7E/8c5iWSxpk2bZshgunbtWgaIRETRLFasWKiVpRYudb2EKZWmIJ5DPFx8cREVl1ZEjZU1cO3VNX4GREQ6wCCRLNLBgwfxyy+/qPKkSZNQqlQp6HlpjsePH6tNykRkfoKCgnDq1Cm1Sdnc2wk7azv0KtILt3reQq/CvWBjZYNtN7Yhx8wc6La9G158fKH1LhJFiVZ10tTaAnNw8P5BdZEr2aRkiDUyFjZd2/SvERTD9g9D0klJ4TjGERWWVMDN16EjKcK8+fwGzTY0g+s4V8QdHxftNreDj78PtMQgkSzOkydP0LBhQwQGBqJp06bo2bMn9Ozz589IkSKF2qRMRObH19cXhQoVUpuULaWdiO8YH1MqT8HlrpdRM3NNBIUEYebpmcgwNQPGHByDTwGftN5FokjRqk6aaltgyj76f0Rut9yYUXXGV38+4cgETD0xFbOrzVZLBDnbOaPSskrwDfxfWy8B4uUXl+HZwhPbmm7DwQcH0XFrR2iJQSJZFH9/f9SvXx/Pnz9Hzpw5MXfuXDX8Se9sbGzURkRkju1EpgSZsLnxZuxvtR/5k+bHB/8PGLJ/CDJNy4SF5xYiKDjivatEllonTbktMEVVMlbBr+V+RZ2sdf71M+lFnHJiCoaUGqKG2udyy4UltZeorM9hPY5XX17Frlu7MK/mPBROUVitNzutyjSsurRKPU8rDBLJovz88884duwY4sSJgw0bNugqTfy3yD4GBASozRT2l4hinrm0E2XSlMHJDiexvO5ypI6TGo8/PEbbLW2Rd05e7L61W+vdI9J9nTSXtkAPPnz4gPfv3xu2yKw7efftXTzzeRYuMVcchzgqGDz28Ji6f+zRMcR1iIsCyQoYniPPlzVnTzw6Aa0wSCSLsXjxYsMaiMuXL0eGDBm03iUiIvoHOTFqmrMprnW/ht8r/q5OniS5TeXlleG+1B3nn53nMSOiaJctWzbVqRC2jRs3LsKvIQGicHN2C/e43H/28ZnhOYmdE4f7uczTluH4Yb+vBQaJZBFkeYvOnTur8ogRI1CtWjWtd4mIiP6Dg40Dfin2C273vI3eRXqrZDeedzyRb04+tNrUCg/fPeTxI6Joc+XKFbx7986wDRw40KKONoNEMnuvX79G3bp1VTIICQ6HDh0KUyLDG7p166a2yAx1ICLzZ87thFxNn1RpEq51u4bGORojBCFYcmEJMk3PhIF7BuKd7zutd5FIN3XSnNuCmObi4gJXV1fDZm9vH+HXSBI7ibp9/vF5uMflfhLnJIbn/DOjc2BwoMp4Gvb7WmCQSGZNUslLBtP79+8jffr0WLp0KaysTOvPXrKwyjBZ2aRMRGSJ7UTaeGmxst5KnGx/EqVTl1aZAccfGY/0U9OrzIH+Qf5a7yKR5nXSEtoCU5I2bloV6O29s9fw2Hu/92quYdGURdX9oimK4q3vW5x5csbwnH139yE4JFjNXdQKUx+RWRs2bBg8PDzg5OSkEtXEixcPpsbW1hbDhw83lInI/ES1nltSO1EweUGVBVXWVey3px+uvbqGXrt6YdrJaRhXfhzqZa1nElmrybxpVSctqS3QCx9/H9x6c8tw/673XTV3WkZBpIqTCj8V/gm/HvoVGRNkVEHj0P1DkcwlGWpnqa2enzVRVlTOUBkdtnbA7OqzERAUgO47uquRE/I8rcQKkdysFuzRo0dImTIlHj58qNaUIfOxefNm1K4dWgFXrFiBJk2aaL1LRERkRDIka/7Z+RjuNdwwnEuuyv/u/juKpSzGY01E0R4beN3zQtnFZf/1eKvcrbCo9iK1DIa0UXPPzFU9hrLExcxqM9XSP2FkaKkEhltvbFXJu+Ri19QqUxHbLrZmnyCDRAaJZunmzZsoUKCASlncq1cvTJkyRetdIiKiaLyS//vR3zHx6ER8CvikHqubtS7GlhuLzAkz87gT0Q9jbBDKtCZnEf2Ajx8/qkQ1EiCWKFECEydONOnjJleg3r59qzYL7/gnMlvBwcG4fPmy2qQcUZbeTsjV9hFlRuBWj1vokK+DuhK/4eoGZJ+ZHZ22dtJ0QWqyTFrVSUtvC8h4GCSSWZEGsVOnTrh06RLc3NywZs0akx+T/+nTJzWXUjYpE5H5+fz5M3LkyKE2KUcU24lQSV2SYm6Nufi789+ombkmgkKCMPfsXGSYmgGD9g5SQ72IYoJWdZJtARkLg0QyK5LNa/ny5bC2tlYBYtKkSbXeJSIiimHZE2fH5sabcajNITU38XPgZ4w7PE5lQp10dJLKjEpERN/GIJHMxrFjx/Dzzz+r8oQJE1CqVCmYA8nM6u/vrzYpExGxnfgxkiDicJvDKmDMliibSg7Rx7MPMk3LhEXnFyEoOIh/TGRW3908ZyBjYZBIZuH58+eoX78+AgIC1G1YsGgOJJW7DJmVjWndiYjtRMTbUBl6KkNQF9RcgBSuKfDw/UO02dwGuWfnxtbrWzl3i8zmu5vnDGQsDBLJ5MlisY0bN8aTJ0+QJUsWLFiwgMEUERGFY21ljTZ52+BG9xuYWHEi4jnEw+WXl1FzVU2UXFgSRx4c4REjIvp/DBLJ5A0ePBheXl6IHTs2NmzYABcXF5gTGarSt29ftUmZiIjtROQ52jqiT7E+uNPrDgYUHwBHG0cceXgEJRaWQK1VtXDl5RX+gZHJfnfznIGMheskcp1EkyZBYb169VRZEtU0aNAA5rikhwTAwsfHB87OzlrvEhHprJ6znYi8x+8fY+SBkZh/bj6CQ4LV8hmyCPbIMiORMk7KKLwyWTKt6iTbgqhjbBDK5v9viUzO9evX0bp1a1Xu3bu3WQaIQuYz9OnTx1AmIvMT1XrOdiLykrsmV8tm9C7aG4P3DVbrKy48vxArLq5Aj0I9MLDkQMR3jB+FdyBLpFWdZFtAxsKeRPYkmiS5Ula4cGG18HTJkiWxd+9eBlBERBRlxx8dR/89/XHw/kF1P459HAwoMQA9C/eEky0zTBOZO8YGoTgnkUxOSEgIOnTooALEJEmSYPXq1QwQiYjIKIqkKAKvVl7Y3nQ7cibOiXd+7zBw70BknJYRc07PQUBQAI80EZk9BolkcqZNm4aVK1fCxsYGa9euRdKkSWHuQbEs7SGblInI/AQHB+PevXtqk3JEsZ0w/jICVTNWxblO57Ck9hKkjpMaTz48QeftnZF1RlY1FFXmLxLprU6yLSBjYZBIJuXIkSP45ZdfVHnixIkoUaIEzN2nT59gZ2enNikTkfn5/Pkz0qZNqzYpRxTbiehbNqNF7ha43v06plaeisTOiXHb+zaabWiGPLPzcI1F0l2dZFtAxsIgkUzGs2fP0LBhQ7UuYqNGjdCrVy+td4mIiCyAvY09ehTugds9b2NMuTFqnuLFFxfVGovFFxSH1z0vrXeRiMioGCSSSZDAsHHjxnjy5AmyZs2KefPmqeFAlsDJyQne3t5qkzIREdsJbcS2i41BJQeFW2Px2KNjKLu4LNyXuuPU41P84yRNv7t5zkDGwiCRTMLAgQNx4MABteaQrI0YtvaQJZBgOG7cuGqzlMCYiCKG7UTMkiUxxlUYp3oWuxXsBlsrW3je8USheYVQb009XHl5JYb3iPRGqzrJtoCMhUEi6d769evx+++/q/LChQuRJUsWrXeJiIgISV2SYnrV6WrOYsvcLRELsdQ6izln5UTrTa1x7+09HiUiMkkMEknXrl27htatW6uyLEpbv359WBp/f3+MGDFCbVImImI7oS9p46XF4tqLcbHLRdTJUkdlPl18YTEyTcuEHjt64JnPM613kSzku5vnDGQssUIsPKc+F8zULx8fHxQqVAhXr15F6dKlsWfPHrXshaX5+PGjYXitHBNnZ2etd4mIdFbP2U7oi8xNHLxvsBqCKpxsndCrcC/0LdYX8Rzjab17FAO0qpNsC6KOsUEoyzvjJpMg1y7atWunAkRZB3HVqlUWGSAK+Xd37drVUCYi8xPVes52Ql8KJi8IjxYe2H93PwbtG4Tjj45j3OFxmHlqJvoV76cCRmc7XvAzZ1rVSbYFZCzsSXz0CClTpsTDhw+RIkUKox1YipopU6bg559/Vo2dl5cXihcvzkNKREQmedFz642tqmfx0otL6jE3ZzcMLjkYHfN3VMtrEJF+MDYIxTmJpDuHDh1C3759VXnSpEkMEImIyGRJtsmamWvifKfzWF53OdLHS4/nH5+j566eyDQ9E+afnY+AoACtd5OIKBwGiaQrT58+RcOGDdW6iE2aNEGPHj203iUiohjpbXr58qXaLDxVgNmytrJG05xNcbXbVcyuNhvJXJLhwbsHaL+1PbLOyIplfy9DUHCQ1rtJRKQwSCTdCAgIQKNGjfDs2TNkz54dc+fO5bqA/z8J3dbWVm1SJiLz8+nTJyROnFhtUo4othOmw9baFp0KdMKtHrcw2X0yEjklwm3v22ixsYVaOmPt5bUqOyqZNq3qJNsCMhYGiaQbAwYMUENNXVxcsGHDBkNWMILqWZWNiOhb2E6YFkdbR/xc9Gfc6XUH48qPQzyHeLj66ioarmuIvHPyYvO1zexVNnFa1Um2BWQMDBJJF9asWYPJkyer8uLFi5EpUyatd0k3HB0d1SRq2aRMRMR2wnzEtouNASUG4G6vuxhRegRc7V3x9/O/UXt1bRSaVwi7bu1isGiCtPru5jkDGYtJB4njxo1DwYIFVc+TDNGpXbs2rl+/rvVuUQTJMhdt27ZV5X79+qFOnTo8hl+wsrJC8uTJ1SZlIqJ/Yjth+uI4xMHwMsNVsDiwxEA42zrj9JPTqLK8CkosLKGW0yDToVWdZFtAxmLSZ5wHDhxAt27dcPz4cXh6eqo5be7u7py3ZUI+fPiAunXrqs+sbNmyGDNmjNa7REREpJn4jvExtvxYNQy1d5HecLBxwNGHR1FuSTmUW1wORx4c4adDRNHOrNZJlKxw0qMowWOpUqV+6He4Fop25E9PMpmuW7dOXWk7c+YM3NzcNNwjffL398eff/6pyr169YKdnZ3Wu0RERiYXysLmYfv4+MDZOWILrbOdMF9PPjzB2ENjMffMXAQEhy6VUTlDZYwuOxoFkhXQevdIZ3WSbUHUMTYwwyDx1q1byJgxIy5evIgcOXJ89Tl+fn5qC/P48WNky5YNDx8+RIoUKWJwb0nmIP7yyy8q85cE9kWLFuVBiYaTRyIy/3rOdsL83X97H78e/BULzy9EUEjoUhm1MtfCqLKjkMstl9a7Rzqpk2wLoo5BYigbmIng4GD89NNPauH1bwWIYfMYR44cGaP7Rv928OBBNf8wLFhkgPhtNjY2aNWqlaFMROYnqvWc7YT5Sx03Nf6q+Rf6l+iPUQdGYfnF5dh8fbPaGmZvqJLeZE2UVevdJI3rJNsCMhaz6Uns0qULdu7cicOHD/9njyB7ErX35MkT5MuXD8+fP0ezZs2wdOlSrodIREQUAVdfXsWIAyOw5vIadd8qlhWa5WyGYaWHIUP8DDyWRJHEnkQzSFwTpnv37ti2bRv279//3SGj9vb2cHV1NWySGZVijiQXknmIEiBKj++cOXMYIBIREUWQ9Bqurr8aFzpfQO0stREcEoylfy9FlulZ0G5zO9z1vstjSkSWGSRKJ6gEiBs3bsS+ffuQNm1arXeJvqNv3744cuSICtA3bNjA+XVERP//fSZziWQzkwE+FENkPuLGRhtxqsMpVMlQRc1XXHB+ATJNz4T2W9ozWCQiywsSZfmLZcuWYcWKFapH8NmzZ2r7/Pmz1rtGX7Fq1SpDpq8lS5aoJEP0fXLSGDduXLVJmYjMz6dPn1SSC9mkHFFsJ0gyne5otgNH2x6Fe3p3BAYHYv65+SpY7LClA+69vceDFIO0qpNsC8hYTDpInDVrFt69e4cyZcogadKkhm316tVa7xr9w+XLl9G+fXtVHjBgAGrVqsVjFAHydy4bERHbCfovRVMWxe7mu3Gk7RFUTFdRBYvzzs1DxmkZ0WlrJ5Ullcz7u5vnDGQMJp0qkUNyTMOHDx9Qr149dXWrXLlyGD16tNa7ZFIcHR1x48YNQ5mIiO0EfU+xlMXg0cIDhx8cxsgDI7Hnzh7MPTtXLaHRNm9bDCo5CKnipOKBNLPvbp4zkLGYTXbTyGIGo+glf16NGjXC2rVrkTx5cpw9exaJEyeO5nclIjItXNuMotuh+4dUsLj37l5139bKFu3ytsPAkgMZLBJ9gbGBGQw3Jf2bOnWqChBl3R65ZYBIREQU80qmLok9LffgQOsDKJe2HAKCAzD7zGxkmJoBXbd3xcN3D/mxEJEBg0SKNpLFtE+fPqo8adIkFC1alEc7ksuGzJgxQ21SJiJiO0GRVSp1KextuRderbxQNk1ZFSzOOj0LGaZlQLft3fDo/SMeXBP+7uY5AxkLh5s+eoSUKVPi4cOH311jkX7cixcvkDdvXjx58kQNN125ciXXQ4wkDkMjMn9RredsJyiyvO55YYTXCBy4f0Ddt7O2Q4d8HTCgxACkcOV5UWRpVSfZFkQdYwMzSFxD+hQUFIQmTZqoADFLliyYN28eA8QosLa2Rv369Q1lIjI/Ua3nbCcossqkKQOv1l4qWBzuNRwH7x/EjFMz8NfZv9AxX0cVLCZ3Tc4DbCJ1km0BGQt7EtmTaHSDBw/G2LFj1VWzkydPIlu2bMZ/EyIiIjJ6srmwYPHQg0PqMXtre3TMHxosJnNJxiNOZo+xQSjOSSSj2rp1qwoQxV9//cUAkYiIyETEihULZdOWVcltZN5iiVQl4Bfkh2knpyHdn+nQc2dPzlkkshAMEslo7ty5g5YtW6py9+7d1ZBTIiIiMr1gUTKgHmx9EHta7EHxlMUNwWL6qelVNtQH7x5ovZtEFI0YJJJR+Pr6qrH3b9++ReHChVU2UzKOT58+qTUmZZMyEZkfSTYhJ+aySTmi2E5QdJC/x/LpyuNQm0PwbOGJkqlKwj/IPzQb6tQM6LClA+543+HB11GdZFtAxsIgkYyiR48eOHfuHBImTKjWQ7Szs+ORNeIcEUkCJJuUiYjYTlBMB4sV0lXAwTYH1dIZYesszjs3D5mmZUKbzW1w8/VNfig6+O7mOQMZC7ObUpQtXLjQkMF0xYoVakkRMh4HBwcVgIeViYjYTpBWSqcpjb1p9uLIgyMYfXA0dt/ejUXnF2HJhSVokqMJBpccjKyJslr8B6TVdzfPGWLWCK8RGHlgZLjHMifI/H/t3Ql8DVffB/Bf9oWIaiQRS2INsSUSidRSitpq6UNoqa0ppaLUUrRF3z62F7XHEhS1BamlqKfWxC4RVCX2vSmxNYgsJJn3c44n8yaKitzkzr339/18RubOHfdO7smcO/855/wPzoScketpGWkY+utQhMeFIz0jHS0qtcDc1nPhUtQFWsfspsxumi8nTpxAYGCg7G763XffYfTo0br62yQiMhmc24wMVXRCtAwWt5zbIh+bwQxB1YPwTcNvUNOlpr4Pj6hAY4NvI79FRHwEdvbYqW6zNLeEk72TXO+/pT+2nt+KpR2WwtHGESHbQmBuZo4DHx/QfMmwuym9NjH+UIxDFAFiq1at5NQXREREZDr8S/tj84ebcbTPUXSo2gEKFKyNW4ta82uh49qOOH7jaWsakbGyNLeEa1FXdckOEO+n3cfi44sxrcU02UXb180XS9ovwcHrB3H4j8PQOgaJ9Np93nv16oWLFy/C3d0dy5cvh7k5/5wKwpMnT7B06VK5iHUiItYTpDXiAnhDlw34rd9vCPIKki2K60+vR52wOmi3uh1iEmJgSvT13c1rBt15+PAhHjx4oC7p6enP3e/8vfNw+95NThPTbX03NfNv7I1YOXZXjOfNVtWpKso5lsOh64egdexuyu6mr2Xy5MkYMWKETFBz4MAB+Pn56fpvk/6L3dCIjF9+z3PWE6Q18bfjMX7feISfCkeWkiW3tarUCqMbjUZg2UAYO32dk6wLdBcbPGvs2LH49ttvc23bdn4bkh8nw9PJEzce3pDjExMeJuBU/1PYfG6zTOqU/k3u4NJ/oT+aeDTB/zb/X2gZE9dQnkVGRmLUqFFyfdasWQwQC5iFhQVat26trhOR8cnvec56grTGq6QXVv5rJcY0GoMJ+ydg5cmV2HZhm1xEy4oIFhu5N4Kx0tc5ybpAd+Lj4+UUJtlsbGz+tk+ryq3U9VoutRBQJgDuM9xll2s7KzsYMrYksiUxT27cuAEfHx8kJiaie/fuWLZsmcxqSkRERPQiF+9dxMT9E7Hst2XIyMqQ2952fxtj3h4jW1V4LUHGEhvUXVgXzco3Q/OKzdH0x6b4a8RfKG5bXH1eBJGDAwbji8AvoGUcREZ56ufeuXNnGSDWrFkT8+fPZ6VORERE/6hiiYpY1G4Rzg88j36+/WBlboWoq1HyIrrhkoay2x7nAiZDl/w4Wd4QKeVQCr6lfOXf+a5Lu9Tnz945K8csGkKXawaJ9MpEF9P9+/fDwcEBERERsLe356dHREREr8yjuAfmvTcPFz+/iJC6IbCxsMGB6wfQelVr+Ib5yukEsscwEmndsO3DEHUlCleSrsispe+veR8W5hZyzlBHW0cE+wRjyPYh2HN5D2L/jJVjFAPLBKJemXrQOgaJ9ErWr1+P77//Xq6LTF1VqlThJ1dIUlJSULlyZbmIdSIyPiLZhEhsIRaxnlesJ8jQlHUsi9mtZ+PSoEsYUm8I7K3scfzmcQStC0L1udXx428/4kmm4Wb01tc5ybqgcP3x4A98+NOH8Jzjic7rOuNNuzdxOPgwShYpKZ+f3nI63qv8npwOptHSRnKKjPVd1sMQcEwixyT+o3PnzsnkNCIV8NChQzF16tTC+Nuk/2KmMiLjx+ymZOrupNzBrCOzMDt6NpLSktRWxxH1R6CXdy/YWtrCkDC7qeFibPAUs5vSP96R6tSpkwwQGzRogIkTJ/ITK2S2traym2/2OhER6wkyNmIC8u+afIdhbw3D3Ji5mHZomuzC139rf3wX9XT7p76fooh14UwlYajf3bxmIF1hSyJbEl9IDCDv2bMnli9fDhcXFxw7dgxubm46++MjIqKn2GOAKLeUJylYdGwRphycIrv0CaIr36CAQRgYMDBXtkgiXWJs8BTHJNILhYWFyQDR3Nwc4eHhDBCJiIioUIgxip8HfC4T3CxquwiVSlTC3dS7GBM5BuWml8OonaNw69EtlgZRAWGQSM919OhRfP7553JddDFt3LgxPyk9ycjIwLp16+Qi1omIWE+QqbC2sEZwnWCcHnAaq/61CjWca+Dh44eYdGASPGZ4YNC2Qbh+/zq0Rl/f3bxmIF1hd1N2N/2bu3fvwtfXF1evXkX79u2xYcMGzoeoR+yGRmT8mLiG6NWI6TE2n92M8fvGI+bPGLlNzEXXo3YPjGwwUrY4agET1xguxgZPMXEN5ZKVlYXu3bvLALFixYpyugszMzN+Snokuvu+/fbb6joRGZ/8nuesJ8hUmJuZo33V9mjn2Q47L+2UwWLU1SgsPr4YS04sQZfqXfBVw69ki6MpfnezLiBdYUsiWxJzGTduHEaPHi2zYx06dAje3t46+2MjIiIi0rUD1w5gwv4J+OX8L+q29p7t8XXDr1G3dF1+4JQnjA2eYrMEqXbs2IExY8bI9blz5zJAJCIiIs2rX64+tnbdimN9j6GTVyeYwQybzm6C/yJ/NF/eHLsu7ZIZ24no1TFIJOn69evo2rWrrEQ/+eQT9O7dm58MERERGQyfUj5YF7QOcZ/FoWftnrAws5BdUpstbyYDxp/if0JmVqa+D5PIIDBIJDx+/BhBQUG4c+cOfHx8MHv2bH4qGpKamipbdcUi1onI+IgkFyVLlpSLWM8r1hNE/69ayWpY2mEpLnx+ASF1Q2BraYujfx5Fp3Wd4DXXC4uPLUZ6RnqBfmT6OidZF5CucEwixyTKqS5EYFi8eHHExsaiQoUKOvsDo/xjdlMi48fspkQFR8ynOPvIbMyJmYOktCS5zc3BDUPqDUFf375wsHHQ+Xsyu6nhYmzwFLObmrjw8HC15XD58uUMEDVIJBHavn27uk5ExHqC6NU5F3HGv9/5N76s/yXCYsMw7fA0/PnwTwzbMUxmRw3xD8FA/4EoWaSkwX9385qBdIUtiSbckhgfHw9/f395t2vUqFGYMGGCvg+JiMgksccAUeERXU1XnFyByQcn49zdc3KbnaUdPqnzCYYGDoV7cXcWhwkz5dggJ45JNFEPHz5Ex44d5YXJO++8g++++07fh0RERERU4GwsbRBcJxjxn8UjIigCvqV8kZqRitnRs1FxVkX02NADp26dYkmQSWOQaIJEBtM+ffrgzJkzcHNzw+rVq2FpyZ7HWpWRkYGtW7fKRawTEbGeIMo/C3MLdPTqiJg+MdjZfSeaVWiGTCUTy08uR815NdFudTscvH7QoL67ec1AusLupibYpCzGIIpkNSIwjIyMRP369fV9SPQS7IZGZPyYuIZIG0QW1En7J2H96fVQ8HRuxYblGmJkg5FoVakVzMzMXul1mLjGcJlibPA8bD4yMYcOHcKQIUPk+pQpUxggGgBzc3P4+fmp60RkfPJ7nrOeININPzc/RHSOwNk7ZzHl4BT8+NuP2HdtH/at2oeazjVlsNi5emdYmltq8pxkXUC6wpZEE7pbcPv2bdSpU0feIRHzIq5Zs+aV74gRERERmZqEBwmYfng6FsQuQPLjZLnNo7gHhgUOQy/vXihiXUTfh0g6ZkqxwcuwWcJEZGZmomvXrvIP39PTE4sXL2aASERERPQSpYuVxtR3p+Lq4Kv4d5N/w8neCVeSriBkWwjKzSiH0btHIzE5kZ8hGR0GiSbi22+/xc6dO2Fvb4+ffvoJDg66nziWiIiIyBiVsCuBbxp9I4PF2a1mo3zx8riXeg/j9o2D+wx39N3cF2funNH3YRLpDINEEyAya40bN06uL1y4ENWrV9f3IVEepKamyrGjYhHrRGR8UlJS4OHhIRexnlesJ4gKh72VPUL8Q3B+4HmsC1oH/9L+SM9Mx8JjC1EttJrMiLr36l55Huvju5t1AekKxyQaeb/jK1euyHGIf/31Fz777DOEhobq+5Aoj5jdlMj4MbspkeFOK3bg+gFMPTgVP5/9Wc2I6uvqi9jZscBpIPlBMooUKZyxi7xmyD9jjw1eFbObGrG0tDR06tRJBoj+/v6YNm2avg+JXoONjQ02bNigrhMRsZ4g0gaRALBBuQZyERlRpx2ahmW/LUPszVggCHC2dkbYyTD08e2DotZFC/x4eM1AusKWRCO+W/Dpp58iLCwMb775Jo4dO4Zy5crp+5CIiOg5ePefyHjcenQLodGhCI0Jxd3Uu3Jbcdvi6FW7F/r59YOnk6e+D5FMNDbIC45JNFI//vijDBDFHa6VK1cyQCQiIiIqBM5FnPE/Tf4H1764hrmt56JSiUpISkvCjCMzUDW0Kpr+2BQR8RF4kvmE5UGaxSDRCJ08eRL9+vWT62PHjkWLFi30fUiUz+lLIiMj5SLWiYhYTxBpm/i+jj4QjWqPqiGuXxy2dt2K96q8BzOYYffl3QhaFySzoo7ZMwbX71/X6fvymoF0gd1NjaxJ+f79+/Dz88OFCxfQsmVLmdnU3Jz3AgwZu6ERGT8mriEyjXP6atJVhMWGYdHxRbJbqmBuZo62Vdqiv19/NK/YXD7W9fuS6cYGr4uJa4wsw1bv3r1lgCjGH65YsYIBohEQXYa9vLzUdSIyPvk9z1lPEGnLi85J9+LuGN90PMY2HosNpzdg3tF5iLoahU1nN8mlwhsV0M+3H3r79IaTvZPO3pcor9iSaER3C6ZOnYrhw4fDysoK+/fvlxlNiYiIiEi74m/HY/7R+TIr6oP0B3KbjYUNgqoHydbFwDKBDPgKkTHFBvnBfohGYu/evRg5cqRcnzlzJgNEIiIiIgPgVdILs1rNwp9D/sTCtgtRp1QdpGemY8XJFaj/Q314L/DGvJh5eJj+UN+HSiaELYlGcLfg5s2b8PHxkT+7deuG5cuX844TERERkYEOH4r5M0Z2RQ0/FY60jDS5Xcyz+FHNj9DXty98Svno+zCNljHEBrrAlkQDl5GRgS5dusgAsXr16liwYAEDRCOTmpqK5s2by0WsE5HxSUlJkXW4WMR6XrGeINKW/JyTYiyhf2l/LGm/BAlDEjDt3Wmo8mYVJD9OxvzY+agTVgd1FtTB3Ji5cmoNXb0vUU5sSTTwuwUjRozA5MmT4eDggJiYGHh6coJWY8NMZUTGj9lNiYyLrr+7Revinit7ZGbUDWc24HHmY7nd1tIWQV5BCPYJRiP3RvImE7ObmnZsoCvMbmrANm7cKANE4YcffmCAaKRsbGxkptrsdSIi1hNEpvXdLVoX3yn/jlzupNyR4xUXHVuEuNtxWH5yuVwql6iM3rV7Y87SOShuWZzXDJQvbEk00LsFYpoLX19fPHjwAF988QWmTZum70MiIqLXxB4DRPQ6rYvRCdEyWFx9ajUePXkkt1uYWeC9Ku/hkzqfoGWllrA0Z5uQKcQGusYg0QD/EERXgsDAQJw8eRL169fHnj175LQXRERkmBgkElF+iMyna+PWYvHxxTj0xyF1u2tRV3St0RUf1foI3q7ezFthpLFBQWDiGgO8azRgwAAZIDo7O2PNmjUMEI1cZmamHG8qFrFORMR6gkjbCvu728HGAcF1grGv1z6ENwxH1/Jd8abdm7iZfBPTDk+TyW5qzquJSfsn4dr9awV+PGT42JJoYHcLFi1ahD59+sDc3Bw7d+5EkyZN9H1IVMDYwkBk/Ji4hsi46Ou7O+f73rt/D/tu7JPjFTef3SznXszW2KOxnE6jk1cnONo6FsqxGQpDiw0KCjspG5Bjx44hJCREro8fP54BookQg9Xd3d3VdSIyPvk9z1lPEGmLvs7JnO9rY2mDdp7t5CKmyoiIj5AJb6KuRiHySqRcBvwyQD4vuqOK8YvWFtaFdqykbWxJNJC7Bffu3ZOJaq5cuYK2bdvKzKaiNZGIiIiI6FWJ7qYrT66ULYyn75xWt4vuqV2qd0H32t0RUDrAZG9MG0psUNAYJBrAH0JWVhbatWuHrVu3okKFCjh69CjeeOMNfR8WERERERlwnosTN0/IYHHV76uQ+ChRfa5SiUqyO2q3Wt3kuikxhNigMDBINIA/hAkTJuDrr7+W890cOnQIPj4++j4kIiIiIjISGVkZ2H15twwY159ej5QnKepz9crUQ/da3eX4RecizjB2hhAbFAYGiRr/Q9i1axfeffdd2ZooktYEBwfr+5CokKWlpeGDDz6Q6+Hh4bC1tWUZEBmZ1NRUNGrUSK7v3bsXdnZ2efr/rCeItEVf56Qu3jf5cTI2ntkoxy/uuLQDWUqWOv/iO+XfwQc1PsD7Vd/HG3bG2atN67FBYWGQqOE/hISEBNlqePv2bXz88cdYvHixvg+J9IDZTYmMH7ObEhkXLWQ31cX7iik0Vv++Git/X4nYG7HqditzK7So1AIfVP9AJr4RU3AYCy3HBoWJ2U016vHjxwgKCpIBore3N+bMmaPvQyI9sba2RlhYmLpORMR6gkjb9PXdrev3dS3qii8Cv5DLhXsXsDZuLcJPheP3W79jy7ktcrG1tEWbym1k0ps2VdrA3speB78J6RtbEjV6t2Dw4MGYOXMmHB0dERsbi4oVK+r7kIiIqICwxwARGZL42/FYc2oNwuPCce7uOXV7EasiaF+1vQwYW1RsIafhMDRajQ0KG4NEDf4hrF27Fl26dJHrmzZtkplNiYjIeDFIJCJDzZD6W+JvsnVRLFfvX1Wfc7RxxL+q/UsGjGIso5WFFQyBFmMDfTCKifZCQ0Ph4eEhB+cGBAQgOjoahurMmTNqcpqRI0cyQCSZtCguLk4uYp2I6FmsJ4i0RV/nZGG/r5hL0dvVG5OaTcLlQZdxOPgwBgcMhpuDG+6n38eSE0vQcmVLuE1zQ78t/RB5JRKZWZkwNqHRofCY4QHbcbYIWBSA6ATDjUWMpiVxzZo16NGjB+bPny8DxBkzZmDdunU4e/YsnJ2dDepugRhgLH6H+Ph4NGnSBNu3b4elJYeNmjq2MBAZPyauITIuxpK45nWJjKj7r+2XrYsR8RG4nXJbfa5U0VII8gqSWVLF9Boi0NSSvMYGa06tQY+NPTC/zXwElAnAjMMzsC5+Hc6GnDXoKUMMPkgUQVXdunXVxC7iroko2IEDB8qWOEMJEkUxdOvWDatXr0apUqVw/PhxuLi46O14SDtEhS9ayoUrV67orcInIu2e56wniLRFX+ekFusCMQfjnst7sCZuDX46/ROS0pLU58o5lpMBY2OPxnir7FsoYVcC+pbX2CBgUQDqutXFnNb/jUWULJSdXhYD/QdiZIN/jkW0yqCDRJEB1N7eHhEREejQoYO6vWfPnkhKSpLj+Z6Vnp4ul5zTTHh5eek9SJw3bx4+++wzWFhYIDIyEg0aNNDbsRARERER6drjzMfYfnG7DBjFXIxiTsZsi9ouQnCdYM0EifHx8ShdurS63cbGRi7P/j724+0R0TkCHarmiEU29pTB8KYP/h6LGAqDHpN4584dZGZm/q3FTTy+efPmc//PxIkTZcbQ7EUEiFrQtGlT1KhRA5MnT2aASERERERGx9rCGu9VeQ/L31+OW8Nu4afOP6GXdy94lfSSXTW1xMvLK1fMIGKIZ91JuYNMJRMuRZ6JRYq4yDkmDZnJDXgbNWoUhgwZ8reWRH2rUqWKTLgjku8QERERERkzOys7mf1ULFoU/5yWRFNi0C2JTk5OsntmYmJiru3isaur63P/jyjgYsWKqYuDgwO0ws7OTnODd0n/0tLS5HhVsYh1IjI+qampaNy4sVzEel6xniDSFn2dk6wLdMfBwSFXzPC8INHJ3gkWZhZIfPRMLPIoEa5Fnx+LGAqDDhKtra3h6+uLXbt2qdtE4hrxODAwUK/HRqQrokv1qlWr5CLWicj4iO+uqKgoubxO2nrWE0Taoq9zknVB4Xef9XXzxa5LOWIRJUs+Dixj2LGIwXc3FV1HRaIaPz8/+Pv7yykwRGan3r176/vQiHR2M2T69OnqOhER6wkibdPXdzevGQrfkHpDZKIaPzc/+Jf2l1NgPHryCL29DTsWMejsptnE9BdTpkyRyWq8vb0xa9YsOTXGq9DKFBhERGS6tDK3GRGRqXud2GBO9BxMOThFJqvxdvXGrJazNJeIxySDxPxgkEhERPrGIJGISBsYGxhJd1MiYyfGJ127dk2ulytXDubmBj2UmIgKAOsJIm3R1znJuoB0hUEikcaJTIfly5eX6+yGRkSsJ4i0T1/f3bxmIF1hkEhkAOzt7fV9CESk8fOc9QSRtujrnGRdQLrAIJFI48TdRzFeiYiMV37Pc9YTRNqir3OSdQHpCgc3ERERERERkYpBIhEREREREakYJBJpXHp6Ovr06SMXsU5ExictLQ1t2rSRi1jPK9YTRNqir3OSdQHpCudJfI0JM4kKE+dPIzJ++T3PWU8QaYu+zknWBfnH2OApJq4h0jgrKyuMGzdOXSciYj1BpG36+u7mNQPpClsS2ZJIRER6xrv/RETawNjgKY5JJCIiIiIiIhW7mxJpnKIouHPnjlx3cnKCmZmZvg+JiDSG9QSRtujrnGRdQLrCIJFI41JSUuDs7Fzog9+JyHCwniDSFn2dk6wLSFdMPkjMysqSH8SNGzd09qES6brCz5aQkAB7e3t+wERGJr/nOesJIm3R1znJuiD/smOCrP/GCKbK5BPXxMTEwN/fX9/lQEREREREGhEdHY26devCVJl8kJiRkYHjx4/DxcUF5ub6zePz8OFDeHl5IT4+Hg4ODno9Fnp1LDfDxbIzXCw7w8RyM1wsO8PEcss70YKYmJgIHx8fWFqabqdLkw8SteTBgwdwdHTE/fv3UaxYMX0fDr0ilpvhYtkZLpadYWK5GS6WnWFiudHr4hQYREREREREpGKQSERERERERCoGiRpiY2ODsWPHyp9kOFhuhotlZ7hYdoaJ5Wa4WHaGieVGr4tjEomIiIiIiEjFlkQiIiIiIiJSMUgkIiIiIiIiFYNEIiIiIiIiUjFIJCIiIiIiIhWDRI0IDQ2Fh4cHbG1tERAQgOjoaH0fkknZu3cv2rZtCzc3N5iZmWHjxo25nlcUBWPGjEGpUqVgZ2eHZs2a4fz587n2uXfvHrp164ZixYqhePHiCA4ORnJycq59Tp48iYYNG8pyLlu2LCZPnlwov5+xmjhxIurWrQsHBwc4OzujQ4cOOHv2bK590tLSMGDAALz55psoWrQoOnbsiMTExFz7XLt2DW3atIG9vb18neHDhyMjIyPXPpGRkahTp47MFFepUiUsXbq0UH5HYzVv3jzUqlVLni9iCQwMxLZt29TnWW6GYdKkSbLOHDx4sLqNZadN3377rSyrnEvVqlXV51lu2paQkICPPvpIfpeJ65CaNWvi6NGj6vO8TiGdU0jvwsPDFWtra+WHH35Q4uLilD59+ijFixdXEhMT9X1oJuOXX35Rvv76a2X9+vWKOC02bNiQ6/lJkyYpjo6OysaNG5XffvtNadeunVK+fHklNTVV3adly5ZK7dq1lcOHDyv79u1TKlWqpHz44Yfq8/fv31dcXFyUbt26KadOnVJWr16t2NnZKQsWLCjU39WYtGjRQlmyZIn8PE+cOKG0bt1aKVeunJKcnKzu069fP6Vs2bLKrl27lKNHjyr16tVT3nrrLfX5jIwMpUaNGkqzZs2U48ePy78FJycnZdSoUeo+ly5dUuzt7ZUhQ4Yo8fHxyuzZsxULCwvlP//5T6H/zsbi559/VrZu3aqcO3dOOXv2rPLVV18pVlZWsiwFlpv2RUdHKx4eHkqtWrWUQYMGqdtZdto0duxYpXr16sqNGzfU5fbt2+rzLDftunfvnuLu7q706tVLOXLkiPxO+vXXX5ULFy6o+/A6hXSNQaIG+Pv7KwMGDFAfZ2ZmKm5ubsrEiRP1elym6tkgMSsrS3F1dVWmTJmibktKSlJsbGxkoCeIwEH8v5iYGHWfbdu2KWZmZkpCQoJ8PHfuXOWNN95Q0tPT1X1GjBiheHp6FtJvZvxu3bolyyEqKkotJxF4rFu3Tt3n9OnTcp9Dhw7JxyIoNDc3V27evKnuM2/ePKVYsWJqWX355Zfy4iqnLl26yCCVdEecH4sWLWK5GYCHDx8qlStXVnbs2KG8/fbbapDIc07bQaK4kfk8LDdtE9cKDRo0eOHzvE6hgsDupnr2+PFjxMbGyu6L2czNzeXjQ4cO6fXY6KnLly/j5s2bucrI0dFRdgvOLiPxU3Qx9fPzU/cR+4uyPHLkiLpPo0aNYG1tre7TokUL2T3yr7/+4setA/fv35c/S5QoIX+Kc+vJkye5yk50rypXrlyushPddlxcXHKVy4MHDxAXF6fuk/M1svfhOaobmZmZCA8Px6NHj2S3U5ab9oku3KKL9rPnBctO28QwCTGsokKFCnJ4hOhqL7DctO3nn3+W1xdBQUFySISPjw8WLlyoPs/rFCoIDBL17M6dO/ICKecFqiAei8CE9C+7HF5WRuKnqLhzsrS0lMFKzn2e9xo534NeX1ZWlhwXVb9+fdSoUUP9XEVQLgL4l5XdP5XLi/YRgWRqaiqL7TX9/vvvcpyoGOfZr18/bNiwAV5eXiw3jRMB/bFjx+SY4GfxnNMucWNTjKX+z3/+I8cEi8BCjJF/+PAhy03jLl26JMuscuXK+PXXX9G/f398/vnnWLZsmXye1ylUECwL5FWJiPTQsnHq1Cns37+fn72B8PT0xIkTJ2QLcEREBHr27ImoqCh9Hxa9xPXr1zFo0CDs2LFDJuAiw9GqVSt1XSSNEkGju7s71q5dKxOhkLZvgoqWxAkTJsjHoiVRfN/Nnz9f1ptEBYEtiXrm5OQECwuLv2VbFI9dXV31dlz0/7LL4WVlJH7eunUr1/MiO6bIeJpzn+e9Rs73oNcTEhKCLVu2YM+ePShTpkyushNdupOSkl5adv9ULi/aR2Tl5MXV6xOtvCJTrK+vr2yVql27NmbOnMly0zDRLVHUdSLTr+gtIRYR2M+aNUuuixZ2nnOGQfSwqFKlCi5cuMBzTuNEZnXRyyKnatWqqd2FeZ1CBYFBogYuksQF0q5du3LdMRKPxdgc0r/y5cvLCjhnGYluhmKsYXYZiZ8iEBEXUNl2794ty1Lcrc3eR0y1IcbIZRN340VryhtvvFGov5OxEHmGRIAouimKz1uUVU7i3LKysspVdmIMqPhizVl2ottjziBflIsIALO/lMU+OV8jex+eo7olzpf09HSWm4Y1bdpUni+iBTh7ES0cYnxb9jrPOcMgpmi6ePGiDEBYV2qbGEbx7PRO586dky3BAq9TqEAUSDocyvMUGCJT5tKlS2WWzL59+8opMHJmW6SCz9Qnpj8Qizgtpk2bJtevXr2qppYWZbJp0ybl5MmTSvv27Z87BYaPj49MT71//36Z+S/nFBgie5yYAqN79+4yzb8odzGtAqfAeH39+/eXU5NERkbmSuuekpKSK627mBZj9+7dcgqMwMBAuTw7Bca7774rp9EQ01qULFnyuVNgDB8+XGZHDQ0N5RQY+TRy5EiZhfby5cvynBKPRTbg7du3s9wMTM7spgLPOW0aOnSorCvFOXfgwAE57Y+Y7kdkhRZYbtqebsbS0lIZP368cv78eWXlypXyO2nFihXqPrxOIV1jkKgRYt41cSEr5ksUU2KIufao8OzZs0cGh88uPXv2VNNLjx49WgZ5IqBv2rSpnNstp7t378qgsGjRonL6hN69e8vgMycxx6JIYy1eo3Tp0rJSp9f3vDITi5g7MZsI5D/77DM5vYL4Un3//fdlIJnTlStXlFatWsl5K8VFk7iYevLkyd/+Rry9veU5WqFChVzvQXn38ccfy3m/xOcpgnJxTmUHiCw3ww4Sec5pk5i2p1SpUvKcE98/4nHOefZYbtq2efNmeUNTXD9UrVpVCQsLy/U8r1NI18zEPwXTRklERERERESGhmMSiYiIiIiISMUgkYiIiIiIiFQMEomIiIiIiEjFIJGIiIiIiIhUDBKJiIiIiIhIxSCRiIiIiIiIVAwSiYiIiIiISMUgkYiIiIiIiFQMEomIyKA1btwYgwcPVh97eHhgxowZBfqed+/ehbOzM65cuSIfR0ZGwszMDElJSTp9n5EjR2LgwIE6fU0iIqJ/wiCRiIgKXK9evWQQJRYrKyuUL18eX375JdLS0nT+XjExMejbty8K0vjx49G+fXsZkBakYcOGYdmyZbh06VKBvg8REVFODBKJiKhQtGzZEjdu3JABz/Tp07FgwQKMHTtW5+9TsmRJ2Nvbo6CkpKRg8eLFCA4ORkFzcnJCixYtMG/evAJ/LyIiomwMEomIqFDY2NjA1dUVZcuWRYcOHdCsWTPs2LEjVxfODz/8EKVLl5ZBXs2aNbF69epcr/Ho0SP06NEDRYsWRalSpfD999//7X1ydjcV3UFF6+WJEyfU50WXULFNdBEV/vrrL3Tr1k0Gl3Z2dqhcuTKWLFnywt/jl19+kb9LvXr1XhpItmrVCvXr15fvl30ca9euRcOGDeX71K1bF+fOnZMtn35+fvJ3Ev/n9u3buV6rbdu2CA8Pf6XPmIiISBcYJBIRUaE7deoUDh48CGtra3Wb6Hrq6+uLrVu3yudFl9Hu3bsjOjpa3Wf48OGIiorCpk2bsH37dhnoHTt2LF/HMnr0aMTHx2Pbtm04ffq0bLUTLXgvsm/fPnmcLyKCwubNmyMrK0sGwcWLF1efEy2n33zzjTxmS0tLdO3aVXa7nTlzpnzdCxcuYMyYMblez9/fH3/88Yc6/pGIiKigWRb4OxAREQHYsmWLbC3LyMhAeno6zM3NMWfOHPWzES2IYgxeNpGw5ddff5WtbyJQSk5Olt08V6xYgaZNm8p9xHi9MmXK5OvzvXbtGnx8fGRrnvBP4wyvXr0KNze35z538+ZNdOnSRbZGrlq1KlcQLIjfT3QfFQYNGiRbTnft2iVbHAXRhXXp0qW5/k/2e4n3LegxkERERAKDRCIiKhRNmjSRrXSiy6gYkyha0jp27Kg+n5mZiQkTJsigMCEhAY8fP5bBZPb4wosXL8ptAQEB6v8pUaIEPD0983Vc/fv3l8chWvfeffdd2RX2rbfeeuH+qampsLW1fe5zogVRBLRr1qyBhYXF356vVauWuu7i4iJ/im61ObfdunUr1/8RXVOzu7ASEREVBnY3JSKiQlGkSBFUqlQJtWvXxg8//IAjR47IlsFsU6ZMkd0uR4wYgT179shxhKLVTQSGr0u0VgqKoqjbnjx5kmsfMQ5QtNJ98cUX+PPPP2UrZc4WzWeJrqhiHOPztGnTBnv37pXdV59HZHbNJsYoPm+b6Kaa07179+RPMWaSiIioMDBIJCKiQieCt6+++kqOzxMtc8KBAwfktBIfffSRDCQrVKggE7tkq1ixogyoRHCZTQRrOfd5VnZgJbKqZsuZxCbnfj179pRdWUXSm7CwsBe+puia+qIgcNKkSfJ1RKD5on3ySozPFL939erVdfJ6RERE/4RBIhER6UVQUJDskhkaGiofi3F8ItGLSGgjEsh8+umnSExMVPcX4xnFmD2RvGb37t0yeBLzL2a3Fj6P6KopspCK4E28pkh6IwLTnESiGJEIRySNiYuLk2Mnq1Wr9sLXFK2bYr8XtSZOnTpVZkt95513cObMGeSXSGiTnRGViIioMDBIJCIivRBjEkNCQjB58mQ5TlEEb3Xq1JFBWOPGjeV0GWJ8YE6iS6oImMS0EGIKjQYNGrw006gguraKZDliv8GDB2PcuHG5nhfJZUaNGiXHCzZq1EgGri+bckKMIRTHKcZOvogYc9m5c2cZKL6spfNViGPp06dPvl6DiIgoL8yUnAM1iIiI6B+JaTpEi6ZozXxZS2Z+iWk5hg4dipMnT8qgmoiIqDDwG4eIiCiPRIKa8+fPyyysZcuWLbDPT7SwLlmyhAEiEREVKrYkEhERERERkYpjEomIiIiIiEjFIJGIiIiIiIhUDBKJiIiIiIhIxSCRiIiIiIiIVAwSiYiIiIiIiEEiERERERER/R1bEomIiIiIiEjFIJGIiIiIiIhUDBKJiIiIiIgI2f4P6jl9Zyjbg8sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Surface gravity:\", prem.gravity(6371), \"m/s^2\")\n", + "print(\"Pressure at center of Earth:\", prem.pressure(0.0), \"GPa\")\n", + "print(\"Pressure at CMB:\", prem.pressure(3480.0), \"GPa\")\n", + "print(\"Gravitational potential at surface:\", prem.grav_potential(6371)*1E-6, \"MJ/kg\")\n", + "\n", + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(0, 6371, 0.5)\n", + "ax.plot(rs, prem.gravity(rs), 'k')\n", + "\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Gravity (m/s$^2$)')\n", + "\n", + "ax2 = ax.twinx() \n", + "ax2.plot(rs, prem.pressure(rs), 'g')\n", + "ax2.set_ylabel('Pressure (GPa)', color='g')\n", + "ax2.tick_params(axis='y', labelcolor='g')\n", + "\n", + "\n", + "ax.axvline(1221.5, ls=':', c='k')\n", + "ax.axvline(3480, ls='--', c='k')\n", + "ax.axvline(3630, ls=':', c='k')\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py311", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/PREM_normal_modes_example.ipynb b/notebooks/PREM_normal_modes_example.ipynb similarity index 100% rename from PREM_normal_modes_example.ipynb rename to notebooks/PREM_normal_modes_example.ipynb diff --git a/notebooks/PREM_travel_times_example.ipynb b/notebooks/PREM_travel_times_example.ipynb new file mode 100644 index 0000000..5b1b686 --- /dev/null +++ b/notebooks/PREM_travel_times_example.ipynb @@ -0,0 +1,393 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import obspy.taup\n", + "import obspy.taup.taup_create\n", + "\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from prem4derg import PREM, tabulate_model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tabulate the model\n", + "\n", + "Because we have to" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " depth: [ 0. 15. 15. 24.4 24.4 44.4 64.4]\n", + " radius: [6371. 6356. 6356. 6346.6 6346.6 6326.6 6306.6]\n", + "density: [2600. 2600. 2900. 2900. 3380.74820907\n", + " 3378.57460995 3376.40101083]\n", + " vp: [5.8 5.8 6.8 6.8 8.11061727 8.09825437\n", + " 8.08589148]\n", + " vs: [3.2 3.2 3.9 3.9 4.49100712 4.48363591\n", + " 4.47626469]\n", + " qkappa: [57823. 57823. 57823. 57823. 57823. 57823. 57823.]\n", + " qshear: [600. 600. 600. 600. 600. 600. 600.]\n" + ] + } + ], + "source": [ + "# Get a table of PREM values every 10 km going inwards\n", + "# and dealing with the discontiuities \n", + "table = tabulate_model(PREM, 20.0, outwards=False)\n", + "# Print the firs few depths\n", + "# note the discontiuities\n", + "print(np.record.pprint(table[0:7]))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Build an Obspy `TauPyModel`\n", + "\n", + "And clean up the mess" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model_name = 'model'\n", + "tvel_filename = model_name + '.tvel'\n", + "taup_filename = model_name + '.npz'\n", + "f = open(tvel_filename, 'w')\n", + "f.write(\"P name\\n\")\n", + "f.write(\"S name\\n\")\n", + "for d, vp, vs, rho in zip(table.depth, table.vp, table.vs, table.density):\n", + " f.write(\"{:10.3f} {:10.4f} {:10.4f} {:10.4f}\\n\".format(d, vp, vs, rho/1000.0))\n", + "\n", + "f.close()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "P name\n", + "S name\n", + " 0.000 5.8000 3.2000 2.6000\n", + " 15.000 5.8000 3.2000 2.6000\n", + " 15.000 6.8000 3.9000 2.9000\n", + " 24.400 6.8000 3.9000 2.9000\n", + " 24.400 8.1106 4.4910 3.3807\n", + " 44.400 8.0983 4.4836 3.3786\n", + " 64.400 8.0859 4.4763 3.3764\n", + " 80.000 8.0762 4.4705 3.3747\n" + ] + } + ], + "source": [ + "# Look at the top of the tvel file (just to see what it looks like)\n", + "!head \"$tvel_filename\"" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Building obspy.taup model for 'model.tvel' ...\n", + "filename = model.tvel\n", + "Done reading velocity model.\n", + "Radius of model is 6371.0\n", + "Using parameters provided in TauP_config.ini (or defaults if not) to call SlownessModel...\n", + "Parameters are:\n", + "taup.create.min_delta_p = 0.1 sec / radian\n", + "taup.create.max_delta_p = 11.0 sec / radian\n", + "taup.create.max_depth_interval = 115.0 kilometers\n", + "taup.create.max_range_interval = 0.04363323129985824 degrees\n", + "taup.create.max_interp_error = 0.05 seconds\n", + "taup.create.allow_inner_core_s = True\n", + "Slow model 891 P layers,940 S layers\n", + "Done calculating Tau branches.\n", + "Done Saving model.npz\n", + "Method run is done, but not necessarily successful.\n" + ] + } + ], + "source": [ + "# Build a taup model and store it in a numpy compressed file\n", + "obspy.taup.taup_create.build_taup_model(tvel_filename, output_folder='.', verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "taup = obspy.taup.tau.TauPyModel('./'+taup_filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Clean up at the end (don't want to keep these file)\n", + "os.remove(tvel_filename)\n", + "os.remove(taup_filename)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create plot of raypaths and travel times\n", + "\n", + "This now becomes easy" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAMWCAYAAADmkYnmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWUHGXWhm/1TNzd3d0DSbCgIUgI7u6+wLKwwu6/sMAu7g6Lu0uwJSEQdw8xAhGIu890/ef5er6ZymRmUtU23T33PafOdPd0V1d3V333fa86ruu6olAoFAqFQqFQKBRJQihZb6RQKBQKhUKhUCgUQEWIQqFQKBQKhUKhSCpUhCgUCoVCoVAoFIqkQkWIQqFQKBQKhUKhSCpUhCgUCoVCoVAoFIqkQkWIQqFQKBQKhUKhSCpUhCgUCoVCoVAoFIqkQkWIQqFQKBQKhUKhSCqyk/t2CoVCoUgGmEO7Y8cO2bp1q2zZsmWfv/b2tm3bJCcnR8LhcLHbBx98II7jyPDhwyUUChW7ZWdnS5UqVaRq1apSrVo1s9nb3scqVqxo9qdQKBSKsgsVIQqFQpHCQCz89ttv+2ybNm2SzZs3GyHBXysqrLBgy83NNfvIysoy4qBy5cpSqVKlvTYEgVdIIA7YvLfZJ38XLVpkxA0b4sR72247d+404se7bd++vcjjsYLFCpTq1aub2/ytUaOGNGrUaJ+N5ykUCoUi/eG4WBCFQqFQJA0su4gIxMTKlSvzhQW3V6xYkf/YqlWrDHkvV66c1KlTx2y1a9eWWrVqGUGBgLBCgq1ChQr5t63I4Hm8HlFR+BjsFk9Y4VI40oFA2bNnjxEkVpwgWNh27dqVf9s+zvM2bNgg69evl3Xr1pmN1yNcGjRoYARJ48aNpUmTJuavFSn2NiJGoy0KhUKRulARolAoFAnAxo0bZcGCBfnb/Pnz5ddff80XFxBvREPdunWNuEBYsCEyatasaUg0f7nvJdQ2AgEQFkQV2EiF4i+Cg9vly5c3f7lv/1/Uxv+8wsG+j/evfT/vbe9f70a0g/Suojb+h5Dg9u7du81fe5//2Y3PaN/Piicr3BAlfLfc5i/3EStsCJW1a9fmf7dWrDRv3lw6duwoHTp0kPbt20u7du3Md6tQKBSK0oOKEIVCoYgSeOwXL16cLzR++uknIzYWLlxoyDCiomnTpsZb37BhQyM2IL9WcJBaZMm+TVWCdCMgINE2ksFfb5SDDQGRqZ5+BAfCxEZHbLTEpnbxl/sIGStYEFP2taSmWWGCUEGc/P777ybKtHz5cvM44g8x4hUnbG3atDHfr0KhUCgSCxUhCoVCUQIQB0QwCgsNbkNoIazNmjUzQsOmBOGBJy2ICIbdB4LBpkx5azOKEhcK/yhOrFjBYlO9ECdWqBBFIeWNiJRNhUOgLFu2zDwX4YggKSxQiKjYfSgUCoUiBUSIDbErioZNh1AoFKkNCOisWbNkypQpMnnyZJk0aZLMmzfPeNsRGZBTW3NghQYedQSGTZNCSNjialt0zaYdoUoP/C78trZw3xbz85fHbdoXzyOC5RUo3EZsIlJ4TqdOnaRfv37St29f6dOnj3Tr1k0jJwqFQlEaIoRFnAVa69tL+JIdx5AXiIhCoUgN4CmfOXPmXoKDCAdRCpuW06pVK+P9RnQQobBCA8cCBdIIDdt+lo3XFi4AV6Q2+E2JmFhxQioXAoWGADjXrEAh4oIoISr2888/56fh8VqECaLECpPu3bubKJdCoVAoEiRCiICQ+4zhrVevXsbmJ8cCvt41a9YYQ0X+sUZEFIrSERwzZszYR3AgHBAcrVu3NoKDDcFhySlEktoNb1QD8aEpU2UDCA/EiDd6Qj0J55MVmwgTRAnbkiVLjDDhuaRyeSMmPXr0UGGiUCgU8RIhhLFZeFu2bKmLawnAYC1dutQQHC14VCgSC7zXU6dONUKDDdFBHQdCAkcAEQ7WLK5HisWt4MCZYgvGbXcqFRuK4sSJ7c5lC+BxNFlhQhG8FSZETHDWEWGhvgRRgjhh6927t4mqKRQKRVlEXESIkmv9nhSK0hQdRDhGjRol//vf/2Ts2LGG2OGJ9goOajgKCw7bDheBooJDEaswIVLibRvsFSbUmGAvcUghTIjEce4OHDhQjjjiCDnssMNMxERFiUKhKCtQEZIEqFhTKOKH4kQH6S5dunQx4qNFixaG/FnBYQf8qeBQpIow4dz85ZdfjBiZM2eOSRdUUaJQKMoSMlaE4P1cvXq1WewpHD399NPlgQceKBVvZyp/TwpFuooOin+t6OB6twXECI769evnD/nTOixFKoFaSjt0ERvFX9vwgCiJFSU0TfCKksGDB2v6lkKhyChkdEP6r7/+Wg466CCTj3vIIYcYsnLVVVeV9mEpFAofNR1e0YHzwIqO448/vkjRQatc72RxRfGwk8ntJHPvFPbCk9AB9QwAhw4obrI6v4d3ErsKwH3Bd8I5y9a2bdv8SfC0BqbBCymExx577F6i5IsvvpB77rnH/Gbe9C2tKVEoFOmMjBYhFhSjHnzwwca7pFAoUg9ECj/99FP57LPPjOiAqNn0quOOO24v0UFaFfUdZVF0QEyZEm6H8iHYrJDwbl6BUdTmDYAjGPheixIVdqNDFKAzmBUnRYkWxAz7t+C1VpQUtfE7F/U4kS47xJHp8Zn8G/PZSBNkKyxKOMetKLHXCaLk888/l7vvvjtflCDMTzjhBBNtVygUinRBmRAhdMb54Ycf5M477yztQ1EoFHnF4RMnTpRPPvlEPvroIxOtJNJB5yBEhyVTEDQ8xpkuOiCedrK3d/K39759zM4pgaTztyhSbyev74/4czve3yfH5xVB+xNEbHwu733ElRVZHF/hqfJ28nzh+5lwbpQkSurUqWPaSXtFydy5c+Xll1+Wm2++2bSbHjZsmNnovqUzaxQKRZmpCTnh8R9lzZZdkmjUq1ZBPr32oBKfg+d03bp1+aHvM844Q/71r3+VyqKsNSEKhRhv+rfffmuEB1EProsDDjjApJT07Nkzf5hnJooOohfMjuA7YCtKXAC8/kUR7MKPJTPNCRFBTQ6ge1Oy33t/ooy/fL+gqO+N6A0b5xffb7rDK0rouEVNCeD8mj59uvmtEPjGJp9wghEkRx55pGnQoFAoFBkbCUGA/L55p6QKRowYYWpCFApF6WDlypUmxerjjz829R3kvCM8brjhBuncubMhtHjzGRDYuHFj4+lN1zoCCLN3sJ0VHfyFJEOQ7bBDCCICqzBpTkXPNek/d911l7l97733mt8tWeBcsCJif5G1osQJM5og6/wGPIYIsb+BHT5p76fLeVc4UsJ5h8ONa43HBg0aZB4jQjJt2jS5+uqrzXdAHQmChNQtrjWFQqHIKBFChCIZSNb7KBSK4F5auvogOkiz4jaktX///qY7XfPmzQ1hpMC5SZMmZlggMzrSJdrBsdNi1Ss27G0IL0TWS24pmLeEN13nP+BV995OpgjxC8Qbnv6SvP2kdnl/M1rnQty5D2mvVKnSPgKF2+wzFcWhBecc5xkbdVR8Lqa4I3K7du0qF1xwgWkFTJTk8ccfN6KE59m0LdIg0+X6UygUmYWMbtH72muvpUQkJJW/J4UiVkDuRo4caYQHG+kh5KOTukOaFelVkHeiHAgPUq0gfOnwuZjvYCdj89dboF3Yk87fTKlL8ALSunz5cnO7WbNm8sQTT0gm1uMUFpX2NuD3hdQTabB/00FUIoxJ2VqxYoWJliCmuD4RJJMnTzYb16cVJLQBTofPpVAoMgNlojBdoVDEn7iNGzfOCP233nrLEJcDDzxQLr30UunWrZtJe4HwEOkg9YM0rFSeSE66lBUbXsGBWLKks2nTpiaCw2Op7BmPJ4gUIECyssLm/rJly4yXnfS5TAGi0abDUYfkBeIZIk+LYs4JiPySJUvMYwgTryjhb6rVnHCu4pBjo+B/zZo15jfFIYDg4LyfNWuWSds677zzjPA+88wzzW2u50wT1AqFIrWQsZGQVIJ+T4pM6jSH8Hj11VeNR5X5O+Sg00qXpYTUFZtmRSvdVCQxEC9vhIONFCsIm5dUshHZKMsgsvXCCy9I9y6bBEsxa24NueSSS4zXvCyDyIlXsPIXYcL5b88dex6lmjABXKtMb//9999NlITzn2uVNvZjxoyR0aNHG6Fy7rnnmq1Dhw6lfcgKhSIDkbquSYVCkRKAqBDteOWVVwxJwUN6zjnnmHQrohsQrxYtWpiIx/4KiJMNvL+QLTZLFiFcHLMliRy7LRJX7I1JkyaZv/16bRC8VYgQUnjKugjhXCGtkM0rTOw5xvnGoEF7rllRgjBnK+2ooG19zUaND1E/IiQcKw6Fiy++2HTZQoz85z//MY9RW0KUxPuZFQqFIhZoJCQJ0EiIIt1APvyHH35oIh7Ue5BiRdSDAnNSkiBRFJlTI0BheSqJDiI0dAMidQYySJQW4ueNcKSidzrVADHFC07R9tMPThNUyJU39zKF0ETDUk1wpiJs1M1GTDgfsQecj0QaSP9CCJS2KPGCwnbS7n799VdzPZGKRkOC77//XmbPnm3SuM4//3w56aST8ttqKxQKRTRQEZIEqAhRpAPIB//mm2+M8CANh8jGYYcdJgMGDMj3fpJqhfiAOKVCqlVxogNyZzedjyD7TDQvvPF44SnoRDxefPFFadp4uzxx30zz+DV/7CHLV1YynnIGSxaerk6tTFEDEr0T2cs6iI5wvtotVUUJ5wDXFIKElC3uU+Q+fvx4GTVqlImcEBFDkBx11FEpccwKhSK9oKuGQlGGAbHAy4nwIOUKLzeeznvuuUfatGljyCmtP0lZ4m9pz1IoSXRwjKSIZaro4Lfi83vnYeBpRzz6mUzO/63Q4HZxIsH+pfEA6N97Y/4xkJaFCOF/RMTscRUncuxEdjbvpPaSJrnT5MAObbQbj2eKiOH8RMizWVFCwTjnM12rrCjhnEaYlJYo4fu2Qp42vqtXrzatflkHiIIsXrxYxo4dKxdeeKE5n8466ywTOSNamim/lUKhSCw0EpIEaCREkWqAUODlfu6558ztgw8+2LSzZq4AZBISZOs8SrNlZ0miw3qOIXXpTHr4vhESxU0D996H7EHW7ZBD/pZE7Isi+ni2b7rpJt/Hd88dc6Rzhy3m9pz51eTPd3bx/dqHHnrIdBXbn0AqvNnPXtRnLm6KPBvnarqfCzZSwvnujZSUtiix4FwlCkLNC2lmfN902KKg/YcffjAi5bLLLjPRMm4rFApFcdBIiEJRRgDBIa/7ySefNIMEqfM4/fTTTVoN5M0WmEMaS3OOB/UoFMOzIUCs6MBz3Lt377QUHUQsihpuaIk2EQSIdmGSDfksTLRjjQqQZuUXA/qtkw5tIwIEdGy3xTw2blId34XtRNTiGf2x3xk1Ft7HECtEdOz3VdTwwVSvBeJ3tRPiuRa9ooSNOg0+O0KEDnRsya7LYK3g2Ng4hxG1XJOsJ3RO4/x699135Y477pDhw4fLVVddJYceemjaXbMKhSLx0EhIEqCREEVpAiL/8ssvG/FB2gf524cffrgRGxBfmxpSWgXmEHDbLpQN0oXogGDhSU0X0QFZLmqSOhveY8ixd7ghJLmwuEgGOJ7HHnssP92qd/eNcu1li6VK5dx9nluhQlgKf/VkX+3ate+clG3bs+Tx59rI1Jk1zf2BAwfKtddemzSSXFisQJC9vwHkHRFiRUnhyejpUNNgRQnRS64VhAnXhxUkiNbSmmGDKLQF7QhC5st89913ps6MOUEMvaTDFgJKoVAogIqQJEBFiKK0hgkiPN577z3T5//oo4827XXxZEJW8FBDXEqDtEDKEUQMvoNQAYrfOR4IS6pObeZ7tcTWS3DZuM4hsoWnqNvbqfSZ+Byff/65vPjiC5KTkysN6u2UP16/UNq1jkwID4qFi6vIfY+1k1VrEFNZcvHFl8hxxx2XUuKRc644kYiAQQja38v7+/E3lT5HUdcRgoSi8VS4jnAqcDzUjOBc4BgpZv/666/NnKFTTz3VCBIaXqTq96pQKJIDFSEekM+K527GjBlx/ZJVhCiSBby/b775pjz88MNmkOiRRx4pRxxxhJmYjMEnhYLbpdFaEw+ujXaQ7+714KZKt63CRJ32pN6BdPzlcZsyU5i0Eu1Itc9REhYuXGjmQEBgs7PCctE5v8hxR6/aJ/pRHIiKfPZVQ/nvG80lJzdkCPCtt94q7dq1k3QBvydRksKikvts/J7eqej8pSg/1X5nPgdRz8IRRStKSqNhA98jtSMUtHN8rElER7799ltp3bq13HDDDaagvTTTPxUKRekhY0UIRAsPK15eDAa57w888IC0bdvW9LinCBfce++98swzz5hZCLym8D6Key4LKyktNlWE5951111FDvFK5e9JkRngfCTqQaE5UQ680Jy3GHeIE1GPRo0aJbW7FUsLxN2SIgg9hbUQIohRKs0YwHsLYfLOdGADpKnZ+SJsHHdppbwkIz2Lmo9rL1siVavklvy6bVny2LNtZPzkSHoNnu3rrrsupX7XeJ8XbMzRAFxX3tkzqXZe2NoqBCaiHztoRT/Hm0wRRXoWUU+iI1xXOEtw+n3xxRcmWkIh+zXXXGOcJAqFouwg9ZNgYwDhX4gY3j4GrXXs2HGv/5ckQAqj8HMhfXhyFi1aZAzV008/babJ0k9dc14VySL5//vf/+TRRx+VL7/80qRa3XLLLaadJmCQIOdoMms9OCby1LkOIECQDwQHnnHqO1KhMNgPsYQMpSKxTAT4jLfddlt+ehZF57t2Zcnf/zS/xNfd/3g7mTazZsqmX8UD/PZcP2y2pW7h8wcv/8yZM1NOsPLeON3YaIyAGGGjrS7OCMQIc3+IliT6d+P9qEFj41pbsmSJceAdc8wxJvMAW00ntWOPPdZER3DwZdq5pFAoypgIsYAA0YJ0zpw5JQoQBjBdeumlRlgEESsYGXql48lhcVURokgkiKxRaE5kj3xwDDlREMg+JB/SAWFKZj443k0KUdkgaZAbZnYQ+ShtEg8Bs+1O8bp6BQdEkQglt1MxxSZZ4HMff/zx5vx5/PHH5edf95+6szTvOVdeeZWpNyorKEqY2NQ9m7ZXWJh4W+yWhhDnPXFKsHF9ci3gJKCTFZ/HCgSug0SD76Nnz57SpUsXU8TOsfXo0cMIJNK0qBnBYUEbaQrZNXtAochclAkRQjEcod8777xTPvvsM3nwwQdl2rRpviIgfp6Lt/ell14yOeEQQIUiEYA8P/XUU+ac5FxjYNigQYOM2IDcILYpRk0WkSbnnIgHHXG4TboX5IJjKE3h4RUd/IUY4hWGBCI4rIe6rAqOkrBgwQLzt3/vDft9LoMLvx7ZwESay5IIKQqcS1aYQPStMLERE2o15s6da+5D9O2Mm9IQJVybkHw25gLhyOAaxkYSneD4k9Gmm3WLNFGitRwD5xHHdNppp5mZI//+979Nm9+bb77ZtPm1wzEVCkXmIK4i5LzPzpB1O9ZKolGnUl159fi39/s8QruEgYlMEKlgeBJ1G7QMpEZkfwIElPRc6jwgNLwHi+n7779v7isU8QQGmkJzPNQQhCuuuMJEGTjvSBvCiCNKkkXwGVRGxANiheBA/CBASqvFaUmig2OD6Kk3df/AmWLrQgYesG6vzlfPvhxZ/y6/cGl+B61BB64zIoTXXHnllUmtN0oXYQJxZrPChCimPVe9osQKkmSLEgQJEVQ2ulgRHeHanjdvnrGbHHeiB5byPVlRRCMAsglo8MBskSlTpsgrr7wi//rXv0y9EalarDkKhSIzEFfWgABZvT3SbjMVMGLEiPyici+effZZuf322+Wvf/2rESUloaTn4lUtnLqlUMQLpCrcf//98vzzzxuP5Z/+9CfzF7IPuUYYJyPlCnJKqgTkhL94e/GUMuSwNMi9FR2WzKnoCAY89Pym3inm3J49e7ZJKapebY9067R5n85X4LZ/dMnvoMVzeC4ROjzXnJsIEe90djaNOBWA64VURbZUEyWsJTZli+MiykntI2lliBSuef4mUmziTGHoIfWbvDfHxDrDucmAVaLApExT+2ZT4RQKRfoiO94RimQg1vdhkSX3FIHCgv/HP/4xLs9VKOKB+fPnyz333CNvvfWW6TiEF5A0Pwwy8z4wvon2OkNUIUcIDyIflqB07tw56d2PIMhEg+zU6LIuOsjpp6Wsd3q4FRNWUHjvF7VZIBCsYKAmDgzot1527Ny781X1ZtVkQ+4akZUV5blXWsnsedVNB60D+6430RAcPnQ8su9tmy6yf68wKWor/H/vhHhul3ZNUaqIEjaiAMmIOHFcRPfZEKasA9RUTp8+3URGECRcd4kSmKw3XNtEeW3dCOKElK2PP/7Y/I9GMDgICzecUSgUZVSE+EmRShVA6ujIcdhhh5lF/vLLL4/LcxWKaEGRKIKDtpXM9iAFy+ZmY2gx/okmZBAOjD5eUAgl5IiuWxTWJtOjDRkj6kJ6CAIEMkq6RiaLDr5vr7jwbt7HiQQBS9YhaJA2S+a5zTnjh/hbQst7k/YC6tfbJX/4SzdZ7Rk8WK93Hbnm68vl7AUD5Mc5q0wHrSVLq8jRgyORb2oKmEnj3Z9fQcRGTRHPJSWIz2c/M+DzeUWJd8q89/FMSAcrSZTMmjXLfCcIEdvmOhnXAelknTp1MmsQjR0QJJMmTTLfN8eJUyRR9Rq8BxkHpJ3iDOG8Zg3gfPv0009NQfvQoUPlL3/5i4mYKBSK9EKZKEwvDrQyhfDRXYhFlLz2eDxXofALPMY0PUB80DoTg0qnK4gGaU8YfshGIgUAnnV6+JP+QJ0H5zbnO6Q/WV5o213IzhShmJf6KsgWBCgTOlfxPdsBeHYgHuTbigsIOJ+xcCSAYmHy870kPN4RAlJu+P7B6+80k7Dr7DV4cPW2VSKOyPJ2q+TuWoPkgSlTZdUakdffjdQ6kJIFSaYxAbCpWPGK+BQWZxyrV6Bx/iC+7PfGd+YdIsmWjhEVryjxXiN036K1rb1G2BJ9jbBvzkM2Uu+Yw4UgIYLGY6SHsnYk4nu2Hbz4HnBO8Ltyn05a2GW6X9KkAzGCszDd1wqFoqwgY4cVphL0e1IURbDw5FFnREeiE044QYYMGWKEBwYd8ZHIdAcAGUZ44FXEK463Ea8mBDcZsK1CbcSjNLy88QbLKdd74cnbVnDwe1pibP96BUdpTVyn6QHRXgvSAK+++mpzfHwmBNKQDw+XXXt2yOc5l0i53Vny+PQZMuH33/NfQ4esa6+9ttQmnnuFiv3O7V+eY4VJ4Un3fPfpSFqLihZaQZLM1th870RPEUZEtVhDWEsS2SzDpouSuorjBBHMrCTW1Pbt25saTtbUdBSeCkVZgoqQJEBFiMJLvKn1oF00BJw2u6ReQZAg3tR8JLLDGu8PaUF8YMR5TzyYyWrta4emcQx4UhE/ljiR854uKTWQLYhPYaHBX9KKrPfd643nL+kk8fqeIWIcB+vL/tKd9pcW9fbbb5taG0jbAQccYKJPhY/zhS1PycrcFXJlzgC5MNzXvP9Hv8+RN6culZywSN2aVeTk088JVP9R1IYo4G88vyfqVby/k73NxjF5RaH9zXAIlFbHt2jrpuy1xW9qu17Z+UGJBt8zx8DawjGwpiBGuLYTKQaImtKGn8+O0GeAK0XsrCd/+9vfTO2IihGFIjWhIiQJUBGiwEBTvEuHKww1bZ9JG4DkkGKA+EhkwTfnIJ5KCALkDnLAloxoA0SPdC+ICV5LyJ0VHtRYpboXmigABN0OomODxOJ59nrUvUQ2FtLDuYJYK6o+pPBjiErei1SkaIk//0dQvfHGG2bquZ11xO9ifxuO6Z/j7pAvl34u9d2q8vGei8jOki3iyOqqU+WzaZvk7IPrS7X+18ie8nWjFkR81/YzFa75KKoOBHIdy/ljU+QKCxQ2vmt+Tzv9nHOVLZlDQKMBvxXnqBUk/LZEV7neSJdKRjtvu96wcTw4OhK93pCqRlSZejbOJdLE3nnnHSOGmDlCy/5UX2sUirIGFSFJgIqQsg3mKJBbT878GWecYeqKIH8YZvLtEzkUDNJPyiRFnaRo0G0m0TUmAAIHGSBnHEJk06zYEj0ELR6Cw4oNNsgp5MlLRvkbLaGChHsJL156r8DgL+S4cKeo4gh5PKMGJeHFmc/Jk9MeNbc/qXGr1F+zw9weU267HNxyqbm9u3wdqdD/FnGyK8Uc3SlOeHk7giFWvHUy/OX88grDaKNrvI89B+w5wWNWmNjzINWFCdEBb9oWx2zrKxKdesnvyXsz+4PIK801SN9GFCUKXE900cLhwvVMmiGRPrpr3XfffabRhkKhSA2oCEkCVISUTdBi87bbbjMtnocPH25ylEm7Imeamo9EeQUhuQgAxAckl9a6GP5ETxyGFNphZ6Ra0VHLkp1kT4X2AwiKl2AWJTgsyQz6WyEibApQ4ZQtHocYW6IMaS5KYKRaKtDIX/4nfxx1o7n9t5ZXynELIsT7t3JVZGOt+dKlRqSw3a3TTUJdL064MPKKFa9Q8X7vXAtWlBSuBeHxoBErK0y85wyPse/CIjUVhQkRNuscoNMVzSe4RnEOJPp8I1LBmkQNGt8/axJrQ6JSMPldqBmhXgUhRr3Ihx9+KEcddZTce++9JuVQoVCULlSEJAEqQsoWMLJ33HGHvPnmmybqcfLJJxtCjqHv0qVLwtIhOM/wOJICAenHyCNAEkmGbB64nScCseM9ITYIrlQC5NROVecvooDjtaQxqOCwBdGFRYa9DYqqC2ErrQL0WPDr5l/k5A+PN7cHNztC7tlwsMj6yGT1u/fUk+vajZEa5SIzSJzWJ4jT/IhSPd5k/T5cd15Rwm3ONfZnhw7yN9UigHwHXLdsHK+d/5Ho+jDEP2skggRRRJoWEdpEOWX4vXEI4SBBeCFEKGI/++yz5f/+7//yp9krFIrkQ0VIEqAipGwAcnv33XebFrsDBw40dR/kYNuWlokqOIdMLFq0yHj8IBAY9EQSCcgdRMsSGAB5YUulGo+iRAe/gSWGCEO/6Sh8ZryphVO1IFTx9LSnMnLDuXLIGwfKrtyd0qxac3m/28MSHjXS/G9L/cZy85J18nyvaea+K46EelwlTq32korYX6QKEV9YnCKq/Z7biB8Irz33OFesKLHnX6qIktK6nq0DA8cJf4kQU4+UKCcNvwGT10lRpUaNehHaol9zzTVm6CG/iUKhSC5UhCQBKkIyG5AXBgtS/EiI/6yzzjKThiGiiA8EQSIAcSD3GYOKF5P6Eoq+M81z6hcckyV9RYkONj9RISs4vGKD75r0H75fLzklxS3V0qYSifM+O0PmrZsrjjgy+syxUu79jzkxzP9ea9JPNqz8QW5ou8Tcd8tVlVCfm8WpWEvSCfzOpA55f3uKu/mdvelWbH6FCWKVczPVRUlRkU0rSBJZ0M73y1rGeyZ6LePzIUYQnIsXLzYNGeiuRdOQG2+8MeUiuApFJkNFSBKgIiQzAbF44YUX5O9//7uJdpx33nmm+BHvOuKDKEgiyDlEBoOdDO9hUTnkpC9Q3F7a5DseogPSxesKp9NYweH1hHM/XVoIJwr/9+Nf5dPFH5vbrxz3lnRcmSvhCePNfbd9BzllVkhubDBKDqsXSdOSqk3F6XW9OFmpVxMUBNSWQJS99SBWmBSOmHAt7u+6TwdRUho1XoWjusz8SEQRO9c9zhvECFErhnW+9tprZo37xz/+IZdccklK1vQoFJkGFSFJgIqQzAKpHO+99578+c9/NmTi3HPPNbMVMFpEQhAG8U7DwWhCBBAfkCA6axFtSUQeNe+FMaa7DAIEYoXwwEOZrEGGxRFBSBvkAQEWjehgH3w2m6YF+eP3LCrCUdYFR1F4bc7L8vDk+83tOwb+U05ocZzkvvE6rJox6fLLESfImf8dJ+/0Gy8tKke6Z0n9XuJ0Oj8lomXxBOeSN2LCxn2ufc4hWwsCed/fuWRFiRXUXOOIEkS/HT5YmucjRJ0oBbUcHBtChDWIz5aI3xWbSZSCNYjrksgI30W834trH8FDzQiia8KECUaMsI6QWstE9kxKqVQoUg0ZLUJGjx5tWqPOmzfPeKx69OhhPNccbzKR6t+TItg5Rcge7yCFjXbWBx47REG8iQKXJ8Yf8YHnn3oPtkR46SBCfC4MP+lICA+IRiJTvPyQH+9wQzywdgBbENFhCR754LzGepwhi3w+JRr+MH7lWLn2myvM7bM7nyc39btVcieMF3fmTPOY06uXvLijjrw7epK8d8BEqZqdG3m81XHitDhKMh2QWhsxsYKC6wpvvrcWya8osec+973DB0vTGcDnY41AkJC6xBpBhCQRaxKRWGwndSNEhhAjOEPiLUYQILwHc0a4PXLkSNNYhM9Fqu0hhxwS1/dTKBQZLkKstxjRwVRqSNU333wjffr0MZ7qZCKVvyeFP+B9v/nmm+Xjjz82E3iHDBliiADCA8MY7/QEyDOCAPEBsSHlivM2ESlQECZIBe9HBIDrBk9naaRbsRyRqw3xst1s8ITaGSMIhpIIyP5EB5ufdBlF0Vi7fY0Mefdwc/uARgPkiaOfFZdWuG+9yY8nAjk+4yw5++UpUn3rfHm294y8VzridL1EnLpdy9RXa9P9rCCJRpSwD4g/1wPrELdttz22RLfeLg6QdSKlrB1EgCDsrB2JaMDBexGxIFULhwFrLk6SeDsPED2suURhuP3FF1+YGSPDhg2TBx54wKTYKhSK+CFjRcikSZPMXAYW7tJGKn9PipIBYXjsscdM3Ue/fv1M6hXkAYNL6lW887Yxthh1jCAiAGPLe8Xb2HpniSSaQOwPiCzEghUeRHzscEO8viV9x3wOr9e5sOiA5NEgQEVHfIC5OPLtQ2TTro1Sp1Jd+er0SHes3JEjxV200NwODRwoKxu3lmMf/UHOa7xAbmm3OPLirAri9P6DOFUaSlmFFdne1CuvKLHRuZJECdeHd/gg14cVJOynNKJ6hR0ZiZoBwlphnTOslThnaPEbb4cJ3zEZFLwX3zEpWlOmTDH1Itddd53WiygUcUJGR0I4LmY0MKWanP3SSitJ5e9JUTy+//57ueqqq0wU7bLLLpPu3bsbA9uzZ8+4k3WICOkAiA889YiPRBS2Y1w5F5M5S6S4z0t6FUQKQgVxQnBApBAgxZEKb6SE16voSD6u+OpimfL7JHP72zNGS82KtcRdt05yP3g/8oSqVSXrjDPlk5m/yQ1vT5NHu8+S4xutivyvYl1x+vxBnHKJ67SUTrDns7eVtBUlth6kJBENEYck2+sIkm6vI15fGtd14RkgrDHxdtbYwnLECJEmItJs8RYjiKvp06cbR82MGTPk+eefN+vzU089pSlaCkWqiZDw5AdEdm+WhKN8dQn1vXm/T6PzBW1TScMiReO0004zi0eyw9cqQtIL1GCQevXJJ5+Yuo+hQ4cawk7HK1Ki4ikMIA14EGkRiXFjknq8W95yiUNwEDkQFcgJ12yyW+tCUCAOeBchW5Ar68EtqcC1uEgJZAvPsUY6kov/TLhb3pn/prn99DEvSt+G/czt3BEjxF2+zNwODR4sobbt5A9vT5cvZ/0q7/SfJF2qRyaqS6324nS7QpyQFv6XJEq4VoNEOmxDCXudsB8btcWhkUxBYlv9wg9wFnCtUstGZDLeaxvvw2R0nEXU5hHRjWc0iPcgFcx20iJFi3oRTdFSKFJNhIz9u8juTZJwlK8hoYH/F+glhFIRIQyQu/feeyWZUBGSHoAkP/rooybk3r9/fznnnHOMEUd4dO7cOa51H1x2kHGMJykLpHZBMuJpoElVwiuJ+OActF7JZPbBR0BAQjgOiBEOAEuKSmorzG8BCbOb30iJIvH4YMG7cve4f5rbt/S/Tc7sdI657f62UnI/+yzypNq1JevkU2TLrhwZ+ugPEt6xXj46cILUrbAn8v8mh0io3cn6c+0HsUQ6iBBY0Y8nn2uOa4/XJTNli+PA0UL0FUFlo6/xTNViPeU7IoWKdQ9nDp81nuspkR26aCFIEImkaJH2zdR1TdFSKKJDRkdCCuOWW24xpO8zayiTBBUhqY9Ro0bJ1Vdfbbzsl156aX7qVa9evUxhdLxb7WLMINoYSwxyPI0l+8XgU8SJcCJNIZmF5tYji/Cg7oT3tQPPSkqJhKxYLy6RG75/S7gS1QpUERwzV0+Xi0ecZ24Pb3eK/GXgP/J/99xPPhZZvdrcDx0zRELNm8vkpevl9GfHSe8aG+S1flOkfChicpwOZ4nT6AD9CXzCG+lAkCAsiCzYKElJop5idjtoFJJOhynWnWReV7aQ3RZ923qOeEZobNSCyDL7xXkU79a+3hQt5os899xzxrFDlsWhhx4at/dRKMoCMrYmBLExYsQIUw/CgkvrPQrV8W7fcccdST2WVP6eyjps6tWnn35qJp0nMvWKlCLEB4SAtAHOh3h6A0kVIOrBuUaKEnUl8Y6ulASMsiU6CCGED8KDFJKijqG49BFLqnRycWpi6+6tctibA8zt7vV6yItDX8v/X3jpUgl/83XkTsOGkn3Ciebmg9/8JI9+t0hOb7Jc7u06L/J/J0ucnteKUyO5LdMzBVa0I0j8pjdyzbEO4SBg7YOoWwdBstKUbdSCeg6uedZBUrXi2XYYocU6iN3H8YEYiefQQ2+Klu2ixeT1E0880XTRgnMoFIoyLELwuDDP4ccffzSkD48Rg4dIxUrUtNd0/J7KKiDJjzzyiAmlk3pF1yvOETxzGKx4eucg54gP0iqISuABjOf+id4Q9SD6gaFFfEDmkyE+OLe51iA1fE4IkE35KEpg2foUhApEpLQLaRXR4YT3jpHftq2UKuWqyKizxuWfayYa8t67uIvN/awTThSnYUPZkxuW054ZJ9OXbZS/d5wvF7SI1I5IuWri9LlJnIq19KeIc6MHey0WV4cBUbepkrwGEUJ0BOdBMuwU5wriCTGCMGLtZW2MZxE73wtrI9EX1hfSXuMpttj/nDlz9knRIqX3+uuv1/VMoSirIiSVoN9T6qVe0fWK3yWRqVeIAyJyEG6iKh06dIjrdQLpx8Cyf4g84gMPaLILzCE5kB28f8WJiKLSQSA7pdVSVBEb/vC/a+WH5d+b25+c8qU0rtok/3/hBQsk/P0oc9tp3lyyjhlibv+ybpupD9m1Z4/8t89UGVhnQ+QFVZuI0/N6cbJLbwBfJsE2csA54DcdkmuayAjXJ04CnBgIEoRMMhwDREQRI4ghjhMxEk+xwFpPihZigf2TBhtPsUM3zmnTpu2TovXkk0+agbYKhaJoqAhJAlSEpAYwzHinPvroo71Sr7p16xbXugw78AqBjhHH4JEqEc+cZNIMEmWwiwK+CjsLAGJD/rklNsUZc0SYjZKQdlFahbGK+OOJqY/IS7OeN7cfOvxxObhZQS68m5sruW+/Rb6QuZ91yqni5KXCvDN5mdz6/kypWW63fDxgojSrtCPyojpdxel6sTiOnhfJaAyBA6Ck69Y6DEj54rl2hlCio6texwprJ46VeLZDZx3CMcR3gfM0noNmi0vRYkwADU+S4SBSKNINKkKSABUhpQ9qPpj1gTG9/PLLjacv3qlXFF5Sk4EAweCw73gZUJvGhPhIVOpCcR5SOxUZQmKHGhYXMSrKo1oaLUIVicWXSz6Xv/5wm7l9Te8b5KJul+71//CsWRIeP87cdtq2k6zBg/PP4+vemiafzfxNWlfZJh8PmCRVsvI6ZjWlre8w/elSKIKJh59rHxGDI4Vrn9ckuskF7XZJobIpptTQxbO9Lw4VUmSJwCBEqEmJ12fie2bfHDvf87PPPmu+Q2aMHH/88XF5D4UiU6AiJAlQEVJ6wMjQPpGZH6ReERrHmPbp0yduqVcQK4g6ucGkWyE+aCObLkWcsZIPvK1EZWydhx9vqyK9sWjDAjnzk1PM7WNaHSv/OuQ/e/3f3bNHct98g24JIo5jhhc6edG6LTv3yHGP/Si/rt8ug2qvk5f7TpOQk9cxq/0Z4jSOFL0rEgcbpbTte239CGmdRUUpgzoj0qXZBnV6CAZsNM1IEGTx2jdrKKMBWLdHjhxpRMhJJ52kURGFwgMVIUmAipDSAa2YER7e6Ad1GRiyeKUDUeswa9YsY8i7dOkSt970iA+IPX3vMcSJaGdZGNRqEMXA4PO5bBpGUWkEtssOJCZIG15FZmBP7h45+I3+khPOkdY128o7wz7c5zm5UyaLO3Wque106SpZAwfm/2/m8o1yytNjZU+uK2c1XS7/6mI7ZoXE6X6lOLXaJ+/DlHF467WI5pbU1a5wWibXOo4RyHs8O/0VJYJ4T6IjOGAoMEcwxWut5bPjRMKBQnpuvNYwHDQ4kKhHISryzDPPmJQtBMlxxx0Xl/dQKNIZKkKSABUhyY9+2NoPRMjgwYONF61v375xMy4YRVKj8NJhhBE38RIIpDHhncODZicAJ9LA4xW1w8T4DHaYWFGfB0GEEeW55D3vrw2vInNx1ienyMINCyTLyZLR50yQCll7R+fcnTsj0ZCcHJGsLMk6+xxxPI0Znv9hidz1RUR83Nl1kZzT5OfIP7IqitP7D+JUaZDcD1TGUdixQK0Eaw9rQVGRV9ZAIqU4LbiNk4TnJzL6iaOEtYq1lzWdqDNpWvEAn4F6EfZPtJm1N15rOkJv8uTJe0VFhg8fbqIi8ax5USjSDSpCkgAVIcnD559/boQH3aiIfpAWhTFhi0f0w5t6RXE2nbXiJWwwVEQ+SBEg8kE730RFPmyNCQSCFCqKxREffF9FeT95LsaZnHIEB2SDtIhEiiNFauOOH/4sXyz51Nx+7fi3pWOdzvs8J3fcWHFnzza3nd69JatP373Oq0tenizf/bRaQuLKOwfNld5VVkb+WbGuOL1vFKd8/Bo6KIKRfdYFrnmECZEOrvnioiOsWawlFMGzLkDiE+mYQDAQFaGInTWLyEg812E6XJF2RnQbR0s8PgdREcQTG98XURFE3AsvvGCapCgUZREqQpIAFSGJBykCN9xwg7z//vtGhBx++OFGJPTr1y+uxikRqVcUYeKBQ9xg6BFMiar5gFzg6SSCQwTEei+LmrZMpAMjCREhAoKw4/nJGmqmSG28NudleXjy/eb2HQP/KSe2G77Pc9ytWyX3rTdhqiIVKkjWWWeL4xHW67ftlmMfHS2rNu+SKlk5MvKImVLXWRf5Z43W4vS4WpxQYougFSWD9Y7IJxFQ1iUbHSmqqxTE3UZViYggRlgnE+WsYF0i1Yn3QyzQiTAeQ04TmaJFrQhREb6r7777zkRFTjnlFDO3SqMiirIGFSFJgIqQxIJWiJdccokxjEQ/8OrHM/qB1w1DZ2fixCv1CgOKVwyjjacRA1qUGIgH+AwYajyHkAeiLBjtogrNEXR8VkQRhaeQjkTnfCvSDxN/Gy9Xf32ZuX1mp3Pklv6RblmFkTtqlLgLF5jboQMOlFD37nv9f/ySdXL28+Ml7Io0qbhTvjt8mpTL3Rr5Z4N+4nQ8W1P9UgA4MFgTWEcg0qwfiIyiitOpLeG5RCtwZiS6pg1CjyOHSC3rFXV/8XDkeNf+eKZoeaMiRI/ooIXoISpy7LHHxrx/hSJdoCIkCVARkvjoByLkiCOOMCSe2o94dG1JVOoVBtqmEpDPTCpBorrM+O0ug1G0RekQDARdMrrfKNIXG3dukCPfPsTc7t2grzw75KUin+du2BCZog4qV450yiokfh/6doE88r+F5vbgxjvl+e7jxHFzzH2n1XHitDgqsR9GEQisEawVEGfWCAg6bbgLO30Kd/fjeWzxms1R1HFRT0cKmU1pjUfr3USlaBUVFTnttNPkoYce0qiIokwgo0XI6NGj5dZbbzV59ixEPXr0MJ6Gl19+2SyeXPCAFJujjjpK7r77brn44ouLfR2fMxO/p3TEiBEjjPAg1J+I6Ic39YrWjfEwOhB9W1RJygBFlXTsSgRItULk2D77iA/eq/Bn4NzkmNg4121ReqJIgiKzcOw7R8iaHaulWvlq8t2ZY4q9RnK/+VrcpUvN7dCggyTUee/6kdywa6IhE35eb+7f1HOHXNvgx/z/O50vFKd+z4R+FkVwEOUgTQv7RqSE9YOIR2E7B82gOxRiJBlzjngvxAiprra5R6x2IVEpWoWjItSK4Px68cUXZciQITHvX6FIZWSsCMHDwMKDeKA3N4vRN998Y+ZDcHFbEVJYgJT0OnLiM+17SjcgDm688UZ55513EhL9SETqlY2oIGoxhIiPePa69wJvI4ae85sWloiPolrsEkVCpJC+gDjBO4mQ0w5XiiC4/turZOyKiFj47JSvpWHVRkU+z127VnI//CByp2rVSDSkEClctXmnHPfYD7J2625z//WjNsuA0ITIP51scXpeI06N6BxBisTCthRn3UQAkL5JFKKoGge6F7JG8XycSKxRRGkTcUxEYRAjEH0izvFwJiUqPdcbFfnf//5nOMjpp58uDz/8sLY9V2QsMlaETJo0SU444QSzCBXGP/7xD0PSSOXxCpD9vS4Tv6d0wtSpU+XUU081pPqqq64ypBkDhhGIR/SDdCRC7hjEeKVe0QUFzxkeQ44TIZsIoo+owLBz3mLY8TIWLiAvPHWdY0F8JIIAKMoGHp/ysPx39gvm9oOHPyaHNDus2OfmfjlC3GXLzO3QoYdKqH2HfZ4zdvFaOfeFCaY+xHFcGXvSammwfWbkn9lVIh2zKsdnEKgiMcARQgooERLSTVmji5p2TpSZNQsHDU4ZnpeIwmwECA02qBmhToR0qngMk7UpWnxe7AXCKx7HisDheyEq8uSTTxpx8u6770rv3r1j3r9CkWrIWBHChctxnXzyyXLGGWfIAQcckE8qESF4GrjQvQJkf6/LxO8pHcApSj/122+/3fwmRKhs56t4RD+om8CYIBgIscej6xXpULNnzzaGhHQAyH68C7sLiwpSHPA+Fu4OY72UPC+ZU9cVmY+vfh4hfxl9q7l9Zc9r5dIeVxT7XHfVKsn95OPIneo1JOu00/aJhoAnRi6S+77+ydyuXzVbvj9mgVTYujjyT23dmzaw9WhsOERYB4saMEi2ATVypI6WJFpiBeliHAvrIMeBGIk1HcymaJFRgbBBjMRjXYWH4BBlvWbeFZH/e++9V6677jqNVisyCnEVITmE23fskISjUiXJHn7yfp8GCfz3v/9t0qkIAVPw9dRTT8kDDzxgNsTFlClTjBfGz+uibU2qIiR6QK4vuugiGT9+vNx0000mpA7Zpk4jHqSe6MeMGTOM0cOAxCoS8WRhUPFmUaiJoYu38PQrKjgWvIyIbSIxCBRSDRM5dV1RtvDzxiVy2sfDzO0jWhwl/z7swRKfn/vZZ+L+FpkFEjr8cAm1abvPc8JhVy59JTI/BBzUsoq83Gu8ONvzotPVW4jT4xpxsrRuKR3gnXZOrRlihKhB4ei1X9ESK7DHRKdJRSU6zboYaySdfWJHsFfUkMYjKoJogosgzkgpe/DBB2XAgAHy3//+t8gUW4UiHRFfEfLG6/TKk4SjShXJPvucQC9BbCAmyLHkWAnPsrhNnDhRvv/++2Ivau/r8EREAxUh0WHcuHHmeycycc0115hQPSHpeCzwGDy8V0QqEB/xyBUmkkJEhf2wz0QUnXO8GCTOqeJEBcaLVAhqPgCpWaReaYtdRbyRE86RQ984UHbl7pLm1VvIB8M/K/H54RUrJPzF55E7tWpJ1imnFnndbdy+W4577EdZsTHi1LrxoHpyfa3PRHZvjjyhbndxulwojhN7GqYiOfC7LnlFC7aaGjpSb+MNaldYr6FArNexpmjZ2j/2yfESVY9HVARHGanIpNw+/vjj5j6RkQMPPDDmfSsUpY2MjoQUxi233GLyQiliJoRKb+4zzzzTLIzffvttsbnx9nWffVaygS0OKkKCAQ/+fffdZ9Lmzj//fDnuuOOMZ4zUuHgMorK1HwhPvFaxRiq8qVfM+uB6iEeNihdE5BAfhOlJVygqvctrvDF+PK8oj6NCEU+c/9mZMnfdHHHEke/PHi+VyxV/jWJucj/5RGT1KnM/dNTREmrZssjnzly+UU59epzszg2b+6+e3kQGbX1TJHdX5AlND5VQ230HJCpSG7YdOJHckiK0Nn2KSC4OKKLg8Y4AcCxwGOw7woEIe6wpWjYqwpodr1oRUtYmTJhg6mjgIa+++qqxj3/84x91fVekNTK2JoRFhTau1BCwCLDgUXB+zjnnmIXHdseCuJ144olmMfz8888NiSvudXfccUfGfU+pBoj8ueeea0g96Ve2ngJvWKxkmt8Y8RGv6EcyUq9It6KrFulXfA94Dwu3z/XOAkGsIT4SkcagUBSFu8b+Qz5a+L65/eKxr0r3/bTSDf/6q4S/+jJyp25dyTppeLHn6qvjf5G/fTzb3K5aIVu+Ob+eNPj1NfZiHnPaDhen6aH6w6Qh/KaVsm4jRFjfWNcQI/FuphHvFC1vrQjiBnsTa9tz7A3HyPfAd0Z6FtGW1157LS6F9gpFaSBjXaSQsbFjx5rWuhQxH3nkkcajfttte0/1xfvywQcfGDFC6g9eED+vU8Qfo0aNMos1pPr+++83xoboB96pWAUInjeGQeFdO/zww2MuPkfIjBw50hgawuKcL/EUIERXpk+fbt6Dc5RWxAgxryHjOYgqapcI1ffv318OOuighLX/VSiKQrta7fNvL9gQmYxeEpxmzUTq1IncWbtW3OXLi33uuQc0l5N6RjzJW3flyIWfbJU9bU7J/7+76CNx1+R1z1KkFVijWKsOPvhgs3axhrGWQdxZ2yxY83DwsAayFrImEmnwPidWsHazhrOWk6rNe5BeG8tnY94Stgabg+1B4MQCbCCiA5uIbcRGIp6wmaSUKxTpiIyNhKQS9HsqGSzSd955p2kGwOyPo48+2oTf6X4Va2gcLxpGDY9bPDpfJTr1CjGM14/IBl4/3qNwQ4TCnsFEtbZUKPxg2qopctmXF5rbp7Q/XW4f8Lf9vib8888S/vabyJ0GDSTrhBOLvS637cqRk54cIwtXbzX3T+7VRO7vu1zk128jTwiVi8wQqV50WpcifWBbjbNes7aythWOIJCSRKaDjQ7znHg224h3ipY3KsJ6jR2KNSqCHaKelfTcr7/+2swUwVH617/+VWv/FGkFFSFJgIqQkiMUZ599tiHdN998c77hgXzH6s3H84THLB61H4lOvfLmP9N2mKhH4fznnJyc/OcwBR1vmIoPRWlj6+4tctibA83t7vV6yItDSZcqGaY25L33RDZuMPezjj9enEbF584vWr1FTnxijGzfnWvu33NSVzmj2miR1VMiTyhXRZxeOkMkk8QINXDUVdgauOzs7MB1cqmUouWtFcEeYUfiNVMEu0B6Ft/Bm2++GfO+FYpkQUVIEqAipGh89dVXptamV69ectlll5k8X6Ifsea3xjv6YbteYYAIfdPON1GDtBAffH7v8fIc2jRicPDI2ecoFKmCE98fIiu3rpBK2ZVMcXrIR9eq8KJFEh75nbntNGkiWUOPK/H5n8xYKde/Nc3cLp8dkg8u7y+d170psjHSbUkq1hGn1w3iVIh9yKgiNcDai9DA849jim5aXiGAmLXPIY2X55AGFc/oNF20sCesw7F20eJ4We+JpscrKsLnZ6YIESLqXKdNmyavv/66HHPMMTHtV6FIBlSEJAEqQvZNOSJsTLvByy+/XAYPHmw8+wiQWFsaMjGcWgoiBHibYgmjc5wYN4wGUYd4pl5hjPCwUXTObfZPIwSv+OBxIkU8h8d5Dh4urfdQpBpu/u56+X7ZSHP7w+GfS7Pqzff7Gjccltx332H0tLmfdeIwcRo0KPE1f/9ktrw87hdzu3GNivLplX2k1sJnRLbl5dtXbSpOz2vFydb04EyBXStZi0FxayXtcXHmJGKttClarMWIHBxBsaSAIaqIihDx6dmz5z6zyoICAYYQYU4J9SzPPPOMXH/99SbNWedCKVIZKkKSABUhe3uVTjnlFEPsSb9iQcd7RTg91k5VGCkiBniX2G+s0Q88SjQnwEjwN14gfYDIyrZt20yYn+GLhcWNnQeSKO+eQhFPPDP9CXluxtPmNgMLGVzoB+H58yX8w2hz22nWXLKGDCnx+btzwnLW8+Nlyi+RNK4DWtWW187tIFkzHhPZFXlMarYXp/vl4oT2Tt9RpDdY42mnT0TYzg8pHJXwRo1Zs4lckN4aL7BmYxcQEdiFeERFiLJgA2LtAMn+6JrFZ+d7YiAzkaP3338/ITOrFIqUESH0+I61gDiTwYJF69+yXsDPYnv88cebBZfhg0ysp9MHUZBYDcPkyZPNIswMmFjaN1J3QR4wxgGjwG8WL28akRU8dZwL5O4iQArnOdtcaP4mIs9ZoUgEvvvlW7l11B/M7Uu6Xy5X9brO1+vc3FzJfedtelGb+6Zd736I3erNO+X4x3+U1Vsi80IuHtRK/ja4trjTHhXJ2R55Uv3e4nQ6V4cZZiBYo+Eddn4I63Th2jieAxmnVgJ+giMnXhEB7AzvzzqNc4j6wMLreBDQnhj7hZ3BfsXq8Fq3bp0pWt+8ebPJNsCWMVuEAnuFIqNECMW0LAQMkCucx67YO2eVYUOQyrJKKD/66CM577zz5KSTTpJTTz3VFF0jQGJNvyJdCc+UNQaxfL/8TqRyIaipU4lX9MN6vDBaCC8iNYU7XnnngRTXFUahSFUs37JMTvpgqLl9cNND5aEjHvf92vDcuRIe86O57TBB+5iSoyGASMiZz42TPbkR8/XgaT1keJs94s54UiS8J/KkpodJqO1J0X0gRcrDz/wQ6iSIOvMXsRJrhLy4qAj2IpZoA1zKOr/YV6wDDomgM9yQIvh3331XPv74YzNPZNiwYTHtV6FIKRFiyRPt52LcTUaDRY/i6HgPWEoHcF7cddddcu+998oNN9wgAwYMMIaAMHksoWcWbYr7yAMmLB7Lop3I6IdNvUKEIj4K5ykTTbThc74XoiMaVVSk43U++M1BsnXPFqlXqb6MOP1//l9LNOTtt2B1vqMh4I2Jv8qfP5xlblfIDsn7Vw6ULhWWiTv7BfZqHnfaDBOn2eCoP5ci9YEIYA1l/Sb9iDXUm3Fga+uwFzhM45mi5Y2K8N7Yj1iiIhwnjjAG6RK5iMWpRmoatofvhdlnjz76qNx+++3yl7/8RR3GiswRIZYQkmqiKBqEgctiBATifcEFF8gPP/xgFj/IPUScv7EArxbha75TwtcYllhqVPBmxTv6wfVAZANxQUoVk9+9xsnbi54oIl68wtERhSKdcOVXl8jk3yea21+dPlLqVKqb0GgIuP3DWfLmxF/N7SY1K8kn1wyS2punirvg7fznmLSsBn0DfhpFugG7wJpLRLuoGU42RYt1l5TgeKZoxTMqYtOLsRHYt1jtAp+XVGhS03AGHnroofLSSy/FZDcVipQSIQpFYeB9OeGEE8xCesstt5i2tqRfxVogx37pKoKBgbhHG03BIOG9QiSwH4RCPKIfflKvyNnFQ8V3w/8ZiKVQpDsemnSfvD73FXP70SOfkoFNDkp4NGRXTq6c9dx4mfrrRnN/QOs68urF/SVr2TfiLh0ReZITEqfb5eLU7hjdB1OkFWjqAekurqU6YoX/UzMRzxQt1n6IPkIo1qgItoH9ICDo8sgxxgKcbaRnYXuYtI4D75NPPol5vwpFrFARoog7CP2Se9q/f38zAR0yPnDgwJg8L4gGiDs1E7179zY5wPGIfpDKFa80OT+pV/EcfqVQpBJGLPlM/vbD7eb21b2ul4u7Xxbo9XtFQ1q0kKyj/c05WJVXqL4mr1D9kkGt5K/HdRJ34bsiK8dGnpRVIdK6t5qSrrKA/Q2XtW1/ESPxTtEiRR37wnofa1SElvPsixa+2JRYUr2IsIwbN86IL+aJEG2hVhPbrFCUFlSEKOKKF198Ua699lq58MILZciQIcbLT0g5lsWTRZMe6BSx9+nTJ+qaiURFP4KkXvF9kOurdR+KTMPPG5fIaR9HCl9p0Uur3iDYJxoy/GRxfBK4yUvXm9a9tlD94dN7yrCejcSd85LI2kjdiJSrGhlmWFkHfZYVkB5FLQjRkeJStGhrSwSD6AV2IR4pWvGMivAZpkyZYorNmaWFUy8WW4X4IGXtyy+/lP/+97/yxBNPyEUXXRT1PhWKWKAiRBEXsJiTdkWu6R//+EfjWaLDEwt/tESfhZye7xiRtm3bGnIfbeSAIU4s5HjD8E7FI/phU6+IbuBFKyr1yjttV1OvFJmM3HCuHPrmANmZs0OaVG0qH5+Slw4VAOG5cyQ8ZkzgaAh4bcIv8tePZu9dqN6wkrgznxbZtCTypAq1xOnNVPW9W7oqyk6KFutw4ehEolK0bFQEAUEEP9p29NgPojpEd3BiUdMSi11FHC1atMh85v/85z9y8cUXy3333ReTs1ChiAYqQhQxgzaAp512mlkgb7vtNtOpigWXDh+xeGyo/YDEE/2IdigUCy6LLQs4gogUqHgYF1Ku6GKC8dLUK4Uigou/OFdmrplhbo88a4xUK189adEQrnUK1d+atMzcb1Sjonx8zSCpVzEs7vTHCqaqV24gTs/rxClf9roVlmUESdHCmUSqbjyKt9kv70sknDRcHGrR2iAiGDjTEFHUisQStaGrKQKJjlwUrHNc77zzjmmfr1AkCypCFDEBjwoDCKnRuP76601EgDa8hYdHBa2tIP0KA4CYiXbAI96nqVOnGm8UKWHxWFxtdIboB2ILr5TXEGjqlaIs49/j/yXv/vSWuf30MS9K34b9khoNKVyo3qtZTXnzsgOlQniruNMeE9m5NvLEas3F6XG1ONlld3hsWcX+UrRwgPF/yDlCJZaoQ2FnHalQROGxa9HOyKLWBLuGI4z0rFhqWRiKS50INveRRx4xIofBhnwvCkUyoCJEETW++OILOeuss2To0KFy5plnmsXwwAMPjGkqPAs/CyypXKRfRbv4E0FhwaczCh6teOT5eqMf7LNwcTzvSWE6QoV0tGijNwpFuuKjhR/IXWP/bm7f2PcWObfLBYH3EUs0BKzeslNOemKMrNy009w/uVcTeeC0HiI714s77RGR3ZsjT6zZLtI1Kys+bVoV6ZmihY1hvS6cokUTFNb7eEZFEDjsk/RgIvzRFq1jY6hlIcof63BDRM348eONIHnrrbdkxIgR5u+xxx4b9T4VCr9QEaKICk8//bTcdNNNpgj94IMPNosgC3W081C8iypeIsLl0e6HcDv7iTV31m/0g4gLnjPteqUo65i/bp6c+9np5vaxrY+TOw++N6r9xBINAbNXbpLTnh4nO/bkmvu3DekoVx7aRtxtv0UiIjnbI0+s01WcLheJEyp7c5wU+6ZokVpbvnz5IqMirPsUmcfDnixdutTYE1KgSNGKdp8cFylVtmYy2v0w6w1xxP6Y6/X444/LQw89JFdccUVU+1Mo/EJFiCLwAvrPf/5THnjgAfnzn/9sivgIWcfSaYqidhZSPDHMEom2+wdhdqIoeHZIv4pHy0X2yeJMwWJR0Q8WbaIfpHrhTdOuV4qyjD25e+TgN/pLTjhHWtdoI++c9FFU+4k1GgJGzP5Nrnp9qrnN0vTsuX3lqM4NxN28VNzpT4qEd0ee2KCfOB3PEsfRdtllFazzrOOkTLGOF44s2KgItgk7EI913qYdsy8cb9HuE9vEDBBSoImKRFtcbjt6IY7oInn33XfLzTffLHfccYdOWFckDCpCFIG8JUQ+3nvvPbMwtWzZ0uSk0sM8lhQnFlAiC+wr2jxZQusU7NECl4K9WLt8sCDTchcvWFHRj927dxujxfviPWvatKku1AqFiJzz6eny0/p5EnJCMvrs8VIxOzpyFZ4zR8Jjo4+GgEf/t1Ae/HaBuV2lfJa8f9VA6diwurjrfxJ31rOoncgTmxwiTtvheg2XYbDmU6xNihbOpmRERXDA0YAFO0J6VrSDa4nGI2jYH/O5YkkdYzYJ+6Kt/J133mmazjz22GNRZzkoFCVBRYjCF4gunH322Ybo//WvfzWha4YcRdtyEDC9deLEiYbks+BH037XO1kWDxaGIdHRD9KuMBxEPxA8sdTAKBSZhjvH/l0+XviBuf3S0NekW70eUe3HzcmR3HfejikaArG87q1p8tnMSGesprUqycdXD5I6VSuIu2aGuHP+y7PM/5yWx4rTMrjQUWSerWN9JyrC+l44NTjeURHb6h2nFhkFFIVHawsRUIgkhEjhSfFBbTMF69i6u+66y2QWvP7662rrFHGHihCFr7DxiSeeaDpnkILF4jZo0KCYhiZRY8GCSSoX3UmijaJQfE6EhkWy8IyOWKIfNj+4cPSDY8YIafRDoSga78x/U/4z4W5z+08H/EVO63hm1F9VPKIhO/fkyunPjJOZKzaZ+/1b1pbXLjlAymeHxP1tvLh53bzMe7Q9RZymB0d9vIqyERXBFtg6wHhFRWh4QgQCm0NUJNpoBg45Uqo4ZmoiowVOuDFjxhhB8q9//ctEaT755JO4TZZXKICKEEWJYJE95phjjLeH/FC8/wcddFDU3h+8NSzeK1asMMIh2g5SHBd1JMwiwQjEGir2Rj/wfhVOMdPoh0LhDzNXT5eLR5xnbg9rd7L8beD/Rf3V7RMNOWm4OFGsGb9v2iknPvGjrN6yy9w/o28zuffkboY4ustGirv44/znOp3OFadB36iPWZE5wC4QFaFesaioCKlL2A2IeTyiIjjUbDSD+o5oG7TgMMRBR5owjr5oh/zi6EOIEBW6//77TdrXV199FVMKtkLhhYoQRbFYuHChHHXUUaZd7tVXX20ECClYXo9QEOA9wtPDQkYBepUqVaJapCmaI2LBoh/LQEQLPF4YGhZ8BE1hj5dGPxQK/9ixZ7uZnB52w9Kxdid57YR3Yvr69uqU1ayZZA2JrnXo9GUb5Yxnx8munLC5/7fjOsslB0WisOEln4v8+k3eM0PidL1YnLpdYzpuRWbApkvhPNtfVAShAvGPl00iwkLzl2icbNu2bTP1lqQL4/CLxW4jRBBiTzzxhOk8+e2335qOXApFrFARoigSeFGGDBkigwcPlnPPPddELMgzjbbgmwgD9R+kTNEJJJq5HeTqsg+iKRSxRyNivKCID4GB8SjK62S9XHQdwbho5yuFwh9O+2iY/LxpiWSHsuWHsydKuRhmcZhOWURDtm4197NOPFGcBtF5Yj+evkJueHu6uR1yRJ47r68c0amBIZruwvdEVkbEjoTKidP9CnFqKtFS7BsVwQFWVLSc6LxN5Y21OQpDdrHDRDGwvdHUHlJMT8dIUr3YR7Qp1NhKbC8RlldffVVGjRplIiKkjSkUsUB7Eir2wTfffGPEx/Dhw+X888830QaGEEa7qELm6T3OflgIoxEghIO///57IzyYSxKrAEEUjR492iz0fFavAMHzQwE+izdeKKI2KkAUCv/oWKeT+Uur3sUbF8X01TlZWRLq1Tv/fnjy5Kj3NaxnE7lucERYhF0xRevMFCEty2l3ikj9vPcJ7xF31nPiblkW07ErMgfYAGwBNgHbwIatsMCGYEuwKdgWbEwsYLK6tXXYPmxgUGBrsbnYXmwwtjgaYPvhAOznggsukJNOOkkOO+wwExFRKGKBihDFXmBS6rBhw8yQIorRKRrH2xFNTineRVK68ObgOerUqVNUxXuEpgkHt2nTxkRRYqn/sIMHMRIYDQrsvQKDRfq7774zHiQMSjwKDhWKsoYOtSMiBPy0fn7M+3PatxfJ8+K6K1dKeOXKqPf1hyPby/HdI06H7btz5ZKXJ5maEeaEOB3PEandOfLE3F3iznhK3K3Rv5cis4AtwCZgGxAgI0eO3IvYY0uwKURJsDHYGmxOtMDWYfOwfdhAbGE0x4ztxQZji7HJ0RwTHAAuACfwcgQ4g0IRLWKLFyoyCg8//LD85S9/kT/96U8mPYmFK9q8T1KmbP9zCtlJaQoKFkrbfpf0q8KtcoMCYUEbRELKeIe8PdmpNaGjCLm/hNKbNWum4kOhiBLUgljMXzdXhrUbHtN36YRCEurdR8KjRpr74cmTxDnhxKiu0VDIkftP7SErN+6Qqb9ulFWbd8nFL0+Sd68YIFUqZIt0uVDcmU+LbFpiJqu7M54U6XmdOFViW38UmRcVwV4QNffWbkDWuV23bl0TLVm7dq1pHx9NBgDgHMcOk8qMiCDCEo1DjygGURXqRIjWkGIc1LnIe1I3SWoY9plozSWXXGI6Rt5www0BP5lCoTUhijyyf/vtt8vTTz9tREiHDh2MCIGIR5s/ysJMYdyAAQOiSmVCMLAPFksW+1jb75LHywLOseDN8ebX2txbFlgK+GJN9VIoyjq27N4sg98cZG53r9dTXhz6asz7dMNhyX3/PS5mcz805FgJRblGgXVbd8lJT46RZRt2mPtHdKwvz57XV7JCjrg5O00URLb8Enly+Rri9LpOnErB5pQoMh/YORquAOwHxNxbx4gdo54ER1qs7W2p7UBExFJbybEwAwQ7hy2MNs0aAUYNzIIFC8wskauuuspMWdfMAUUQaGF6GQeC4fLLL5cvvvjCTEFHeED6o53cSoiaRRKwn2g6ciAK2Ad90lkko+3qYQUWkRQ6atHlq3379nstkrYLCf3U8V5F28pQoVDsjWHvHysrti43E9O/P2ucZIVin7gcXrJEwv/Ly0OvW0+yTjopJtKzaPUWGf7UWNmyM8fcv3BgS/nHCV3MbXcPUZAnRLauiDy5Qi1xel0vTsVaMX8ORWbB27WxcIcsbBBEnTQobAzpTLGcs9hYnGYInGi7TMbDTgMyHdgPguSf//ynDB06VJ577jmdrq7wDWVcZVyA0PmKGoh77rnHEHFSp6IVIHhYfvzxR7OgRdvKl1QpcmlJvYplcbTRFDxULP4U1RHhsYs/n53OV6Rn4VEixKwCRKGIHzrkFafvzNkhv27OiyjECIfBprXzJkGvXSPuL7Htt239avLMuX0km1ZZIvLfsUvl5bFLI+9VrrI43a8SqZzXBWnXBiNK3F2RoYcKhQVpWKTxYkuwKdgWhIk5jxzH2B5sELYIm4RtihbYRPaFnaZgHZsZzT6sjcZmY7ujAccAZ4A7wCHgEnAK7KtC4QcqQsooWATPPPNM03YPDwZF2oceeqiZBRJtmJjuG7Vr1zZh56DF43iLlixZYrwqCIJYRcH69etNG0FqU+jiQX5u4c5YHDP/i3YglEKh8FcXMm/dnLh8VRC6UN+CQYLhKZNjKvwFA9vUlbuHd8u//3+fzZHv5q+KvF/5quL0uFqkUt6AxB1rTY2Iu3tLTO+pyExgS7Ap2BYEgrdDFjaI/yFOsE3YqGiBbcRGMogQm4ntDHodYKOx1dh8bDfHHA14PdyBzw6X4HjgFrEILUXZgYqQMghCsaeddprx1rBo4M045JBD9splDQIWUxYxUrmiKXazReyErPHOUOQXLViIGaY0duxYE/YmmlKhQoV9OmPRvYQuJqR8KRSK+KNznUhaE5i3bm7c9uuwPtip6evXi7tkScz7PL1vM7nq0Db5rXuveWOazFgWqT1xKlSPCJGKtSNP3r4q0jVrT2SKu0LhBTbF2yGLFC0rELBFRDGwTdgobFUsIpoIBDYT24kNxZYGAbaarlnYbmx4tMII7gCHgEv83//9n+EWp59++l4tjBWKoqA1IWUMTCs/9dRT5aeffjI1IAwhpBd5tGSc9oTkp5Lr2rp166iOh2gM3qFY53Gw4NGNBO8TBYJEZYrqjEXIPNqUM4VC4Q8bd26UI98+2NzuUb+XvHDsK3H76sLLl0t4xBeROzVqSNapp5kOWjHtM+zK9W9Pk89m/mbu16lSXj64aqC0qBPJuXd3rBN3+mMiuyLiRKo1M+LEyY5+zVJkNqiZoDAde4ODzlsEDuHHdjJAEJsUS+ox6VREIIhu0PnROt6CgGgKdS2xdKLcvn27ETPYWRycHTt2lHfffTeq41GUDWgkpAyBQjaGDJGX+o9//CM/AhKtAMHDwyJKJ61oBMimTZtMyBrhQV5pLAKEUDJeJ9I1CHl7BYh9Hz4//1MBolAkHjUr1pQmVZvmzwphcGG84DRpImInVm/aJO6i2AYielv39m8VWTvWbdstF7w00XTRMu9ZqU4kIlIur1PflmXiznxW3JzI/xWKwsDWMFME20MKFrbIAhuFPQI2PThaeG0ots77Pn6BDceWU7OCbY8GcAk4Bc5NOAYRGoYe8/kViqKgIqSMAE8JA4ZIRyICQn4qEZBoiL8dQjhr1iwTvaD/eLRT1Fu2bBlTm0C7LxZxO5HdepRsZyybKkbY2tuaV6FQJBad63bJL05fuunnuO0XZ0OWtzZk6hTTwjdWVCyXJc+d11faN4ikpi5dt10ueWWy7NidV2RcuX5EiGTndSTa/LO4s58XN1fTThTFnFMVKxrbY1OesEk2BQtbhQ1t3LixsWHM24gW2FBsKTY12uno2FCOB9se7VBDOAVCBI4B1+Dzwj1UiCiKgoqQMiJATjjhBFmxYkV+ChaLRLQChKF+ixcvNnmv7CsoEEJEUAhBF26ZG+1EdkLd3gFOtjMWnpjCnbEUCkVy0GmvupD4FKdbOI0aRyIiYMsWcX/6KS77rVGpnPz3wv7SoHokhWT6so1y3VtTJSc3InKcqo3E6XGViE3D2rhQ3DkvihvHSI8is+DtkIVNwmbZwm3+RzozNsx2c4y2ToR9YVOxrbwHtjYosOnYdmw8tj4WIcK+4By0woeDqBBRFIaKkDKSgoVX5G9/+5vxTrA4RBMRoOiNmgv2RRQl6BR02y999uzZZjHG+xMtqCHhWMhjJQzt7ctuO5PwnMKdsRQKRekUp89dG18RAkJ9CkVD4tQatHHNSkaIVGWCuoh8O2+1/P3TAkLmVGsqTvcrRLLyct3Xzxd3zn9ViChKhO2QRQtbbJQ3BQsbBvnHpmHbbIvfqM7fxo1NRANbi80NKiSw7dj43377zRxL0IJ3AMdgHwgRuAf7IiJCHahCYaEiJIPBxX7yySebQUJ//etfpU6dOmZRiKZIjEVz/PjxZtGE9AcdkMQiyIJoRUMswsDOI2FSLa0BvWKIcDZhbRZhhI4WxCkUpYeOebNC4t0hy8Jp0ECcFi0id7ZvF3dO/IROp0bVzQyRclmRCOrrE36VJ0ctLnjv6i3F6Xa5SChvavW62eLOfUXccPTkUZH5sB2yikrBsu1usW2xzO8AkH9sLTYX2xtUiGDj4Qt2Sns0sz+sEIF7wEHgItSIqBBRWKgIyVDQKYouWCxAeCFiESDsa8yYMWYRw1MTNIqCF4UOISy2HEONGjUkWmzYsMF4kKpVq7bXsdjWvISzCWsT3tb0K4WidFG1fDVpXr2lub3AFKfHf3ZAqG+//NvhGdPFjWNb0EFt68p9p/TIv3/f1z/J+1OX5993arYRp9tlBUJk7Uxx576sQkRRIgqnYHlb9WLTsG3YOGwdNi9aYGuxudhebHDQiIY9Fl4HB4im5S6cwytE4CSMCNA5IgqgIiQDwcV9xhln5LfhjVWA0M+cxQjvTbly5QIfCxGUrVu3mmMIGkHxAi8KC2G7du1MFw87EJGw9bRp0/LrVLypWQqFonTRuU5n83d3eLcs3lgQSYgXnNq1xWnbLnJn1y4Jz5wR1/2f1KuJ/GlIx/z7f3p/poxeUDCl2qnVXpyul6oQUQSGTcHCdmHDbAoWtg0b17ZtW2PzsH3RwkY0sMHY4qDkH5uP7YcDwAWiESI2IkIGBE7R+fPnG46iQkShIiTDQMj0rLPOMt0tvF2woqkBIWTKAkjbvWimoNvXAxbaaFOjbDE8n4nuV23atMmPclDzwnuwwMYy8V2hUCS+OH3u2tkJeY9Qnz702DW33VmzxN2+Pa77v/KQ1nL+gZG0r5ywK1e9PkXmrCxog+rU7qBCRBEVbAoWNgxbZou3sXGIEGweti/aInGA7cUGA94jaDqUna4OF0CIRJNO5a0RgZswt+vss8+OKs1LkTlQEZJB4GI+99xzTSEZPbrtIMJoumCxyLDYMAmVwX9Bp6CT00qbQF4fTQTFAk8J+agUw9uJrIVTs3iPaNLEFApF8tr0grlx7pBl4VSvLk7HvPqTnBwJT58W3/07jvz9hC5yTJfIELdtu3Plwv9OkuUbthcSIpeIOHntxjU1SxEw7YmoReEULDvPCxuILYw2emAjGthLbDM2OgjgAHABjjFaIQIXsULk73//u+ngdd5558VUhK9Ib6gIyRDgIbn88stNuBUBEsscEBtdICeVvuNBBQiDkljkmLoazest8AxRuMdnYxFm8bSg5R/HSFTEm5qlUChSCx1qdxJHIpHLeQnokGUR6tWLYQnmtjtvnribN8d1/1khRx45o5f0bh5phLFmyy4zzHDDtoL0FKd2R3G6XVpIiGixusLH+ZWVZVrrYtOwbdg4C2wfNhBbiE3ENkYDbDE2GduMjQ461NC+Hm7gjdpEK0T+7//+T8aNGyeXXXZZ1FEeRXpDRUiG4M9//rN88cUXxrsQyyR0K0AoaGNBDCog1qxZY7p6MH21a9euUReHsx8W24YNG+4VSbGpWTNmzDDhYcLVWoCuUKQuKperLK1qtDa3F21cKLtyE9Oi06lcWZyu3SJ3wmHTsjfeYJjhC+f3k9Z1I7Vti9dsMxGRbbtyShAiM8Sdp0JE4eMczkvBwrZh4+bOnZtPzm0kA5uIbVy7dm3U74FtxkZjq4PuB04AN4AjRCtE7GR1uAqcBe7yl7/8JfB+FOkPFSEZgIcfflieeuopk2fJRU1bvmgEiG19S45qNAJk5cqVJlzMAhfLEEK7ny5dupjNO4CQx+k3zgKGN0ehUKQ+OuWlZOWEc2TRhoUJe59Q9+4kwJvbLkPf1q+P+3vUqlJeXr6ov9SvFnmfGcs3ypWvTZFdObmFhIgnNWuNChGFf2DbsHHWFnoHG1q7SNYD/49lqCG2Opr9WCECV4i2lTAcBa4CZ4G7PPHEE/LII48E3o8ivaEiJM3x1ltvGQ8CW7NmzWTgwIF7pS0FjYDQSYv0pqAC4ueffza1KOSMtrB9+6NAcfspnJpFOFihUKQHOuV1yEp0SpZToYKEehS01A1PnpSQ92lWu7K8cnF/qV4xIjJ+WLRWbnpnhuSGC1JKHNLQ9hEir2r7XoUvYOOwdbTHLZyChW3ERmIrsZnRIpb9wBHgCnCGaCMicBU4C9yFrllkdMBpFGUHKkLSGN98841cfPHFcuutt0qHDh3MhNRoukNZAVK7dm3p2bNnYAFCK+B58+aZxYRQcTRAXLCPovZjU7PwDvEZy5cvH9V7KBSK0kGXul0TXpxu4XTpipvV3HZ/+UVczzC4eKJjw+ry0oX9pGK5iBn9fNZv8reP9x4KZ4SIt1h9zXQVIgrfwNaRgoXtwwZiCy2wkdhKbCYtb6OtqWA/AwYMMPthunoQwBXgDHCHaIUInAW7TmTmj3/8o+E03377beD9KNITKkLSFHSVYBr61VdfbbwRbN7OUUG7YDF1PGgEhEWPxY/hQ3T2YCGKBnh6yH/99ddfTXjWu58VK1bkp2YROo62yF2hUJQe2tXqIFlOpHnEvESLkOxsCfXunX8/PGliwope+7SoLU+d00eyQ5F1842Jv8oD3+xN5Jw6KkQU0QObh+3DBmILsYkW2Eps5i+//GJsaLTnOdEMO68Emx5NRAQOEW3XLLgL+yDF66qrrjJT1RmuqMh8KKNLQyxcuFCGDBkiZ555pukvzuRVwplBYed4VK9e3Vz80QiQpUuXmsUr2inotOZjYuz69etN6JljsUDcMMCJIr1YUrwUCkXpomJ2RWlTs625vWTjYtmZEzyHPAicDh1F8tYS97ffxPUQt3hjcIf68sBpPcQun4+PXCTP/7ikGCGS18VPIyKKgMAGYguxidhGC2wmtnPdunXGlkbb7hYbji3HphMVCSJorBDhWKIVInAYuMxhhx1mBhkec8wxhusoMhsqQtIMFGUfddRRMnjwYDnxxBOlVatWpptGtJPQyTuNRoCwSOF9YdHyCocgoNiO9nwcC94c206Y/dMVhDQvws1agK5QZE5xeq6bKwvW/5TQ93JCIQn17ZuUaAgY1rOJ/OP4gnkod30+T96funz/QmTuy+KGdVibwh+whdhEHIBeoWDb3pIOhU2NdpYIthybjm0PKkRssTp1HtFOVofLwGmGDRtmxAhch/koisyFipA0Aj298Q60a9fODCVs1KiRCdFGK0AYOhR0jocVCMuWLTOLVbQF4rYTV3Z2tslHtXUepGZNnz7d9EgvnJqlUCgyZHJ6glOygNO6DXkmkTtr14obQwGvH1wwsKXceES7/Pu3vj9Tvp23dz2KU6fz3kKEOSKzXxQ3NzrSqCh7wCYiOLDB2EpsJsCGIlCwqdF2rALYdGw76dHeFsFB5ojYgYbRCBE4DdyGIYaIkqOPPjrwPBNF+kBFSJoADweRDzwe1IEw6CdoBMNOVcdTwn6CTkJnMZo9e7YRCLEIkC1btphBSeSQ9u/f3yya9tgIJzMtlkVWO2ApFJmDzl4RksAOWRasjaG+/fLvhydNEjePsCUKNxzRTi4YEEkdpVPWNW9MlQk/r9tXiHS7XCQUmX0k6+eKO/s5cRM0P0WRecA2YiOxld4ULGwpNpXUKmxstEMN2T9OQGw9c7mCChG4BRwDroFdD3rdwm0YuHzNNdeYafJwn2iK3hWpDxUhaQAWmLPPPltWr14tN998cz55D1qkjcdk4sSJZqGKVoCQDsbiFE0bYMCiiZemadOmpquGPQY8JkWlZikUisxA21rtpFwe8Z6zdlZS3tOhVq5ho8idzZvEDVh0G/j9HEf+fnwXObFHY3N/V05YLn15ssxesbcn16ndQZzuV4hkRWaNyIYF4s58RtwcJVoKf8BGYittZoONOmBTqc/AxiJEsLnRABvP/pkhgu2PRojANeAcNloT5PV0zILrwHngPuecc07U9S6K1IWKkBQHFz7eADpFMAuEdnZEIWz0IMh+KGhjoULAZGVlRSVAeG9CrdGAhYTFklZ8FKDZKI5NzbLhZG3Bq1BkHspnlZf2tTua279sXiqbdyU+xYI1JuuAA/LvM0XdjSJFJAhCIUfuP7WHHNa+nrm/ZVeOnP/SRFm4asvex1azrTjdrxTJqhh5YNMScWc8Je6e7Qk9PkXmAFtp05m9KVic99hYbC02F9sbDbD12Hxsf9CICBwDrgHngHsErcmC49ium3AfOoJed911Ca3tUiQfKkJSHP/85z/l/fffl7/+9a+mjR6eiaAk3YoIPCL0HC9Xrlyg15IXijckFgFC/ioekR49ekibNm32Sc1CXNH5I4g4UigU6YWudbsltS4EOPXri9OqVeTOjh0SnjUz4e9ZPjtkWvf2bRGZ27R+224554UJ8su6bXsfW41W4vS8RiQ7MtdEtvwi7ownxd0dXRqNouwBso7txIZiS7GpFthabC62FxscixChNXDQGhG4BpwD7hFUxAC4Du8N92GY4bvvvit33nlnFJ9CkapQEZLCePrpp+WBBx6QO+64wxRqcTFGk6a0aNEis4DgMSG/MqgAsTUg0QoQWv7NnDnTeEUIEVvQlhfvDa35vKlZCoUi84cWzl6TnJQsEOrXH/ewue3OnCnu9sRHGyqVz5IXL+wn3ZpE2pev3rJLzn5+gvy2ae+CYadaM3F6XitSLi/FdetycWc8Ie7uvSMnCkVxwHZiQ7Gv2FRsqwWPYXuxwdjiWIQIQiZo1yw4B9wDHgEXCYrKlSub92aoIkLk/vvvl2eeeSbwfhSpCWV9KYovvvhCbrrpJvnzn/8sLVu2NGlK0bTCpcMFU1DxRgQREXYOCIsO7x1tDQj9zPGA8P7eYYqrVq0yYWImvXfq1Clwgb1CoUg/dK3XPf92supCgFOjhjidOkXu5OSYtKxkoHrFcvLyRf2lfYPI+rli4w455/kJsmbL3kXoTtXG4vS8TqR83rylbb+JO+0xcXdtTMpxKtIfNgULm4ptxcZaYHuxwdjin6PsEgcHsF2zgg40hHvw/nARXh8UcB+EDO174UR/+MMfZMSIEYH3o0g9qAhJQeBpYBDhtddeaxYVQq3RtKqlv7aNQFDgFQTM6LBzQKLtUsX0VT4LiwfhVAsWITp6UDzXunXrqPatUCjSD82qNZfq5avni5Bk5neHevchP8TcpkDd3Zgcgl+7Snl57eIDpGWdSMrVkrXb5LwXJ8jG7XvXpjhVGojT6zqRCpEULtmxOiJEdhZ4tRWK/QGbim3FxnpTsLDB2GKyG7DN0QAugFMSbgBHCALbUAdO4hVIfsHxw4XgRHAjOFJQMaRIPagISTGQO3n88cfL0KFDTQs+emYThgwKwrEUcrEY0c43CFhc8Jaw2EQrQAi72mGDXgFFZGTWrFmm80WTJk2i2rdCoUhfb22XvLqQ9TvXy2/bVibvvStVklD3HpE7rmsGGCYL9atXlNcuOUAa14ikw87/fYtc8NIk2bpr7/alTqW6ESFSsW7kgZ3rxJ32qLjb1yTtWBXpD2yrJfzeyAe2GCECeY8mNcpGJbDr2HIiG0EAF7ECyZsy5hdwITgR3OjYY481XCna7l+K1ICKkBQC/bRPO+00MxX1rLPOksaNG0cVKaAwbfz48cZjEJTos2DhJYk2/QssXLjQLE7sg2K5oiIjQYWRQqHIDHSt161U6kKA060bvU3NbXfpUnFXJW8ac9NaleX1Sw+UulUjbXlnLN8ol7w8SXbs3rvtqFOxtji9rhWpnJe+umujuNMfE3ebTo5W+AcpWEVFPhAi2GZsNLY6FiGCkAma3gUngZvAUbxF9H4BJ4IbEQmBR8CZgs4iUaQOVISkEG655RazWFx//fVm2BCFZkFrJWjRx7wNcieDChg6YNn6Dd4/GhD9YGFjgfKmgBUXGVEoFGULNhKS7LoQ4JQrJ6E+ffPv506YkNSUsFZ1q8hrl/SXmpUiaWETfl4vV7w2RXbuKSREKtSM1IhUyZtxsnuzuNMfF3friqQdqyL9YQUHttcrRHAO8rh1GEYDOAIZDXAGuEMQwE3gKHCVoJPd4URwI/jFDTfcYLjFH//4x4BHr0gVqAhJEbz44ovy0ksvyW233WYuboRA0Ha1duAfHpCOHSP9+P1izZo1MnXqVDNgKFqRwEJHiJY6Eq8AKS4yolAoyniHrCSLEOB06ECCeuTOqlXi/vJLUt+/Y8Pq8srF/aVqhcisp9EL18jVr0+VXTmFhEj5apGuWVXzOgru2Sru9CfE3Ry8sFdRdmEFh3UQWmCjsdWIk2iFCHUacAa4w9q1awO9Fo5CJMMOKQ4CuJF1lt5+++35/EmRflARkgIYM2aMKbS69dZbTZiRBSNIK11AOHLChAmmC0X37t0DRVA2bdpk+oh369YtqvoTwOKGAOHYvVEUFj48FYWFiUKhKJuoVbG2NMkj1vPXzZOc8J6kvr8TCkVa9uYhPHGCuAEnOseK7k1ryksX9pPK5SOOpu9+Wi3XvjlNdufsfRxOuSri9LhapHrLyAM52yNzRDZGV1isKJvA9tr0Ka/gwFbbx6NNzYIzwB3gH3AJv4CjMMMEzsJrg05Dt61/4UxwJ4Y60xVMkV5QEVLKoFPUSSedJBdeeKG5kHv37h04FSocDpuJ6gCvRJB5G9u2bTOeiHbt2kmLFi0kGtgFjAXBe+wUv9nISLTpXQqFInPrQnbl7pRFG6IrkI0FDmtdgzyHy6ZN4v6U/C47/VrWlhcv6CcVy0XW62/mrpLr35ome3ILC5HKkcnqNfKGvObuFHfm0+Kum5v0Y1akvxAh8uHtbGWFCDY82q5ZcAc4BFwCTuEXcBU4C6CRDlwm6GeCM8GdLrjgAsOloh3KqCgdqAgpRWzfvl1OPPFE08ViyJAh5iIOWkhOPvOMGTPMhU9+ZpAUrl27dplFg/fkvaOBDeUWrgFhkWMwEgIk2gJ3hUKR+XUhpZKS5TiSdcAB+ffDU6aIuye5ERlwYOs6RohUyI6Y4i/n/C43vj1dcgoLkeyK4nS/QqR2XppteI+4s58Xd/W0pB+zIn2B4MAmU0zuFSLYbpyINqU6Glj+AqeAW/gFnAXuAoeBywSt0eI927Zta7plIWjgVHArRXpARUgpgQuN6AfK/5JLLomqjsNGIVavXm0WkPLly/t+3Z49e8xiweLTtWvXqIYFslgR7eC9CwsQm5qlAkShUBRG11IsTrdwGjQQp1WryJ0dO8SdNbNUjmNgm7ry3Hl9pXyeEPl81m9y87szJDe8NxlzssqL0/VSkXo9Iw+4YXHnviLuynGlcdiKNEVxLXapHcGW08EymoGGcAi4BFyAzldwDL+Au/DecJloWgcz8Jj6kksvvdSkdV100UVJbTihiB4qQkoJ//rXv2T06NGmIxaLAgo+qBBgGCGEHy9Cpby2k36A8KFPNxc+ocxoBAhRDttu11ts7q0NUQGiUCiKQoc6nSTLiRRmz0lym14vQn37wZ7M7TBe2FLyoB7Svp48c04fKZ8VMckfz1gpf3yvCCESyhan8/kiDQ/Me8QVd8Hb4v76XSkctSLdhQiZDN5aECtEaOuLjQ8KuARzQMqVK2c4RpD0KjgMXAZOA7cJ+r4MMuRzwam+//57ufvuuwMfvyL5UBFSCvj444/lnnvuMV0d6C7BYpCdHTHIfrF582ZTB8IFH6TgG+8AnSzoRsFFG6R+xIKcS9vK19tJy9aGFC5OVygUCi8qZFWQ9rXbm9s/b1oiW3dvLZUvyKlZU5xOnSJ3cnIkPHWqlBYGd6wvT57TW7JDEVH0wbQVcvuHMyVcWIg4IXE6nCHSdHD+Y+6STyS85HP1/ip8AxuN4ChcC4JNx7Zj45cvXx74GyW9Cm4Bx4BrBIlIwGXgNHCboDNE4FB8HjgVXUYRIXAtRWpDRUiSwbTwc8891/S3pk82yr9y5cqB9sHFTTcrem0HqSFhMZg9e7Zs3LjRXKx4K4KCcCl5mywyXOxF1YaoAFEoFH5TslxxZd66OaX2hYV69RbJWwvd+fPE3bix1I7lyE4N5PGzeklWnhB5Z/Jy+cvHs4sQIo44bU4Up9XQggd//Ubche+L6ya305ci/YvVC9eCYNux8dOnTzc2PyjgFnAMuAacI4gQgdPAbeiYFbR1L5224FS8Ho4F1+L9FakLFSFJBH20TzjhBNPBgQuUjg5169YNtA+bSlWtWrXANSR4PFasWGHeu0KFyNTeINiwYYN5bwYFUcOyv9oQhUKhSNXidAuncmUJde8RueO6Ep4wXkoTQ7o2kkfPLBAib078Vf7y0ayihUiLo8Vpe0rBgyt/FHfe6+KGdYK0wh9sUXrhWhBsPLYem4/tDwo4BvuFcwSt84DbwHGi6ZgFp4Jb8d7Dhg2T448/XtatWxfw6BXJgoqQJIEirVNOOUWaN28up556qjRr1sxEQoKCECmdJ4LWcvzyyy/5bXTxFgQFoVGKzVgcmjZtuleL4aJqQxQKhcJPm14we03pFIVbON2740Y1t91ff5XwiuBpKPHEcd0ayYOn9ZA8HSJvTlomt34wc58aEeA0PVicjmcXmPPVUyKds3L9dyhSlG14a0G8LW6x9dh8bP/WrcFTJuEa7JcsCTiIX8Bt4Dg7d+40nCco4FYc+2mnnWa41sknnxyoUF6RPKgISRL+9re/GcLOQB0ueAYKBgUXMTmahBuDpFJR5EUaGK+LJlVqx44dppMWvcDbtMnrVW+GDa+SmTNnmhbD0U5ZVygUZRPNq7eUquWq5UdCSrObjZOdLaF+/fLvh8ePT/oAw8IY1rOJPHR6z/yIyHtTlsst787Yp30vcBr2F6frxXyQyAPr54s74ylx9/if2aAo28CGk4JFujW23QKbj+1nECBcICjgHHAEOEiQgnM4DpwFURREwFgwCBGuxSBouNcdd9wReB+KxENFSBLw1VdfyaOPPio333yz6d7AhRW0IJxwIhcxi0SQSAYTTAlp4lUImvoF8B7gBaH9HW3wLNavX2/CtBSR8T+FQqEIgpATks51u5jb63aslVXbC4hPacBp206kbt5atn69uJ72paUpRB47s1d+sfqH01fIH94pRojU7SpOj6tEsipGHti8VNxpj4m7q/RqXBTpBVKwsOnYdmx84Ra4QVvvWvBaOAhcJMhUdbgOnAfuEzSlCo4F14Jzwb0eeeQRw8UUqQUVIQnGypUr5ZxzzpErrrjCpGJxUQStx2DwDoXoXbp0CSQkSNuiuKt9+/bSuHHjwMdOv21eT+s8vAo2/cumZnXu3DnwcEWFQqEoal5IqadkMcDwQNv6ViQ8eZK4AQtjE4Gh3RrJE2f3lnJZkfX305kr5boiJqsDp2YbcXpeK5IXYZLtv4s79RFxtwcvLlaUTWDTse3YftuhimsDDgAX4HG4QVDAQRhoyOuDDDNEwMB9EEZBhxDCtYjCwL3gYHCx3377LfCxKxIHFSEJBBfqWWedZTwLgwcPNrmVQdOWcnJyjADhAg5SQ0IxF6/j/aKZhk5qBF4L/jLDxEZubGoWx0IHCoVCoYgWXesVpKXOWVv6XWycRo32GmDI7JBUwDFdGsrTnjkiI2b/Lle/MVV25exLBp1qTcXpfYNIxbzuhbs2iDvtEXG3FOT6KxQlAdtOCha23qZgwQHgAnALWuhGkz6JQxROEnSGSMuWLaVRo0aG08CJgoBOXx06dDAcDC4GJ4tGRCkSAxUhCcSdd95puk1cdtllUYkBLvJp06aZ3Ei6PQR5HbUaXGh0twg6jJDXkxe6bds2E7mxM0xol8eihGcimunuCoVC4UWXul3zb89ZW7qREItQ/wNgXOY2U9TdKApyE4EjOjWQZ8/rkz9Z/Zu5q+Sq16bKzj1FCJFKdcXpdb1IlbwI+J5t4k5/XNwNpZ9ipkgP2BQsbL5tlQsXYIYIERI4QlAhAheBkyAk4Ch+X8/r4EC8P5wo6Pta8XPJJZeYbp533XVXoNcrEgcVIQnCqFGj5N///rfJRaxatarJawwqBugoQZ9tbyTCDxA+FIB5BUQQ0DOc3uB0tWCqujc1ixxNb2qWQqFQRIs6lepKozyiPHfdXMlJgdayTvXq4nTJE0e5uRKeOFFSBYd1qC8vXtBPKpaL2IPvflotl786pWghUqFGJDWrRl7EOneXuDOfEXf19GQftiINYVOwsPneFCw4AbNFKF6HKwQFnARuAkfxtgTeH+BA8Cg4Edwo6GeBR1EfctNNN8m9995rpqorSh8qQhKANWvWyJlnnmlUN2lLXDhB60CoJaG3dtAaEt6bNnvkQZK/GRQsCngKECD29YRNSc0CQQWRQqFQ+GnVuzNnhyzZWDC5uTQR6tWLhHJz2128SNwoBrYlCge1rSsvXdhfKpXLMvdHL1wjl74yWXbsLkKIlKssTvcrRepEGgCImyvu3JfFXT462YetSENg6/v06WNue2d2wA3gCHCFIELCgtfDUeAqcJagNR6MG4AjBUHFihUNFyPV7OKLLzYcLch7KxIDZZNxBhcpUzrJQTz66KNNClbQ7lF0j5g6darpJoFy9wvSp8i1pP1vNC1zuajpyU24lUFBRaVmZWVFDJ9CoVDEf2hhaqRkORUqSKhP3/z7uePHlWoL4cIY0LqOvHxRf6lSPrIe/7horVz08kTZtmvfSJKTVV6cLheLNOyf94gr7qIPJLz4E52urvAduYADeFOo4CZwBThDUEEA4CikWMFZ2HeQlr9wIzhSkE5bAC4GJzvmmGPM3/POOy/wMERFfKEiJM647777TDs5OjEwiTRo7QTt77gouUAoxAryOkKmdIFgCwo8AlzURDq8AoZJ6PzPm5qlUCgUiShOn72m9CanF4ZDS/KaNSN3Vq0SNwqPbyLRv1VteeXiA6RahUjK7fgl6+XC/06UrUUJkVCWOB3OEml+VMGDy77T6eoKX8D2wwFI04YTWMAV4Axwh7Vr1wb+Nil+h6/AXYK0/rWdtuBKQVsG4yBGyFx55ZVGVN1///2Bj1sRP6gIiSMo4PrHP/5h6kA4yYPWgdioQ+XKlU0hVZDX0a2CECet9YKCSahczHglGjZsmP84odalS5fulZqlUCgU8UTH2p0kK2/IHkMLUwVOKCShAzwteydMEDdgZ55Eo0+LWvLqJQdI9YqR72/S0g1y3gsTZPPOfYkZtijU+jhx2p3KvYLp6jOfFTdnZ7IPXZFmsClYNmXbAs4Ad6BzVTRT1eEspEohZIJEG+FIcKWgBfKkmJHSBUejPuTvf/+7GTmgKB2oCIkTNmzYIKeffrqcf/75RqHjHQhK3JkKijeBUGMQ8TJv3jxz8UdTr2EjKHgk2CxWrFhh8jUJw9rULIVCoYg3KmZXlHa1Ip0Df964WLbuTo1uVMBp1kwcOwtp6xZx55R+G+HC6Nmsprxx6YFSs1I5c3/aso1y9nPjZf22omecOE0OEqfLRSKhyPNl4wJxpz0q7q5gqS2Ksge4AClYcAM4QqwRDW/rXzpuwWX8Ao4EV4IzMRE9COBmvCdChpQsuBscTpF8qAiJA1DhF154oTRt2lSOO+44U/jUoEGDQPvYvHmzzJ492xSB4RXwi+XLlxvPBGKBVr5Bj5sICt4EbwSF9Cva4BHJiaa2RKFQKKJJyXLFlXnr5qTMl2eiB95oCO1B8+YmpBK6Nqkhb1x2oNSuEkmZnb1ys5z+7Dj5fVPREQ6nXndxelwtkl058sC2leJOfVjcbb8n87AVaQg4AdwAjuAt7GagIFwimhkipHvBYeAycBq/gCvBmUiBh0MFARyNxkHHH3+8Se+66KKLUqruq6xARUgc8Nhjj5lw3jXXXGM8BUFTouiZTTpUmzZtAhWxo9ynT59uFH000Qq8GRSE8XobefGmZgUVUgqFQhHz5PQUSskCTp064nTIq+3bs0fCU6ZIKqJzo+ry9mUHSoPqka5ei1ZvldOeGSu/ri96yrRTo1XeUMPanqGGj4q7sSDVRqEoCnCDwkXltg0uHAJuERRwGF4Pp6ENr1/AmeBOHEvQQYYIJ9732muvlbFjx8rjjz8e+LgVsUFFSIxA9d92220mt5BCdNR80JQoVDyt5yiY8oudO3eaHEwK36MRC8uWLTPpX94Iire43ZuapVAoFMlo0wtmr0mNDllehPr2FclbJ93588Rdv15SEe0aVJP3rhgozWtHIhzLNuyQU58eKwtWbSny+U7lBuL0ulGkatPIAznbxZ3xpLhrUmNSvCJ1UVQKFlwCTgG3gGMEBVwGTsM+4Th+AXeCQ8GlggCuxvHC3eBwf/rTn0xtiiJ5UBESAwj/nXbaaXLGGWeY6aLkJxKODAIuVIb2EFL0K14YGoQAsR6AoCCCQjEXXgcGKZaUmqVQKBSJRvPqLaVquWr5kZBUS4twKleWUI+ekTuuK+EJ41PuGC2a1a4s714xQNrVj6ztq7fskjOeHSczlxftXXYqVI8MNayV5wRzc8Sd819xl/+QzMNWpCFsUbk3BctGNOAY0dRZwGnq1q1rOI4dkOh3nglcKqj4gfPA3fgs1IbA6YKmdimih4qQGHDjjTdKrVq15KSTTjJeAfIKg4BCLC5ULoAgReyEOultHc3k8h07dhgvA6Kpfv36cSluVygUilgQckLSpW5kSvm6HWtlVQrWJjjduolYp83y5eIGLIZNJhpUryhvXz5AujWpYe5v2L5Hzn5+gkz4eV2Rz3eyK4rT7TKRBn09s0Tel/DiT3WWiGK/ReVwB29ROdyCiAZCAs4RBHCanj17Go4TJK0LDtWrVy/Tdjdoly64G1EduBxds/7whz8Eer0ieijbjBIjRoyQd955R6666iqpUqWKdO0aMaB+gcJnAimFUUHSqX777TfTCYLCsKCDA20EhQWC4vl4FLcrFApF3FOyUmRooRdOdraE+tuBfyJhBhj69NSWBihSf+PSA8w8EcD8kPNfnCgj5xc9/d0JZYvT8RyR5kcWPLjsf+LOf0PccGq1JlakDoorKrc1rkEiGhZwG8QNXAfO4xe0C8YhTH1I0PekxoXMkKuvvlrefvtt+fLLLwO9XhEdVIREAYqmLrnkErNB6KMRBHTC4jVEJPxi+/btpiMFXgKETxAQKqXgCy+DN4ISa3G7QqFQxANd66bm0EIvnNZtYDqRO5s3izs79Vr2elGtYjl5+cL+clj7SMOTXTlhuezVyfLZzKInXEdmiRy/9yyRVZPFnaWzRBT+isptCpaXa/B40PRFBAGvh/PAffyCtCoiNHCsIICPweXgdJbfBZ3IrggOFSFRpmHRjveII44wM0EI3wUB/bXZgqQ+EZok75KwYRPbtz4AFi1aZPppM6THCqZYi9sVCoUiMZGQFBUhjiNZAwbm3w9PmypuAIJUGqhUPkuePa+vHNetkbmfE3bluremyavjfyn2NfvMEtnALJFHxN2psxQUJReVwylsUTlcA84B91i8eHHgrw6eBeeB+8CBgqSIEZVZubJosV0c4HJwOrgd76tpWYmHipCA+OKLL+S9996Tyy+/3EQjgnS0ArSzwytANCNIEfv8+fNNBwpChkGxatUq+emnn0zI1M4gibW4XaFQKOKJWhVrS5OqEQfLvHVzJSccbOhZsuDUrStOR0/L3kkTJdVRPjskj57ZS87o28zcxyn9t49ny4PfLCjWQ73vLJHfxJ36kLibU7cWRlG6KKqoHM6BEIHDwEWCglR3uA+v9wu4GfUhRFFsC2G/gNPx+iuuuMKk3JN6r0gcVITEkIYVtIgbJU8dSLNmzQIVsa9evVqWLFkSVdoXxe+8J6KHNnTe1CwQTXG7QqFQJAJd8lKyduXulEUbFqXslxzq249keHPbXbBA3NVF11mkErJCjtx7cje56tACp9Oj3y2UP380W3LDbgmzRG4UqVQ38sDuzeJOf0zcFGyjrCh92KJyOAZNd6zApYEPj8NF4CRBkJ2dbbgWHAgu5BdwLLgW7+k3iuKNpHjTsoLMLVEEg4qQALjhhhvMSU2orn379oHTsOj0wEXJgBy/oLMEocju3bsHrtnYvXu36YRF8TthTQvCooVTsxQKhaK0kQ4pWcCpVElCffrk388dNzZlW/YWJol/GtJR/nZcQRv2Nyf+Kle/MUV27im6kNepXD8yS6RGXjOT8B5x57wk7rKRafGZFcmFTcFimro3BQsOAheBk8BNgqB69eqGA8GFgswPgWtxjgYdnuhNy+K4ScFXJAYqQnzi888/lw8++MCE6AjVIUKCgP7VDPBBYfsl/lw8DM4h15L2cUFgX4tw8Ra/Ew4lrMkiYVOzFAqFItUmp89JcW+707mLSM1akTurV4u7cKGkCy45qJU8ckZPKZcViYJ/NWeVnP/SRNm0o+gUOKd81UhqVn0rvFxxF38s7sJ3xQ2nbocwRemAdrlFpWDBRSg4h5sEFbA4gIlOeGeS+O2yBfeCg0WTlkXqPSn4pOIr4g8VIT5At4dLL73UhOWooQiahoXqJ/3JtoDzC+o4UP14AIICDwRhT2aQ2HQrb2oW4VGFQqFIJXSo00myQ9kpHwkBTigkoQED8u+HJ04QN6CHtzQxrGcTeeH8flK5fMQpNvHn9Wao4arNO4tv4dvpXJEWxxQ8uHKsuLOeEzfHv3daUTZQVAoWXAROwjDAoIXqttsW2SELFizw/To4F9wLDhYkAqNpWcmBihCfaVhEIg4//PCo0rBmzZpl6jFQ8n5BKJOOVggeciKDYP369cYDwQRRO/eDwq6iUrMUCoUiVVAhq4K0z5vcvXTTz7J1d7D88WQj1LSpOC1aRO7s2CHh6dMknXBI+3ry5qUHmpkiYP7vW+Tkp8bKkjVbi2/h2+rYyDwRJy+iv2G+ds5SFAlvChYcxM4VgdfAUYJOVIcLURu7cOFCk1LuF3AvOBhcLAjgenA+0rLYB1xQEV+oCPGRhvXhhx/md8MKmobFoB3CkUEKwHft2mVCjuQzBhU8KH08D7TKq1279l6F6Bx/kLkkCoVCkWx0yUvJcsWVOWtTew4HCB04ALepue3OmiVums0W6NGsprx3xQBpWquSub9i4w459ZlxMmNZ8cW4TsN+4vS4SjtnKfYLOAfcwzsrBG5CuhNcxYoTv4ATwY14LVwpSBQFLhZk+CGA89luWaTkwwkV8YPjamVZsUClcwGdddZZMnjwYDnssMNMgVQQQfDdd9+ZC8ZvFISfY/z48fkdIYJ0ruK1TAqlEwTteO1rmWRK+JLjr1Chgu/9KRSK9AZrAYaatE7+YvBpnZmTk1Pkxv94DmuJNQ383bp1a35qg11X+MtGtJXca9asojb+x3NYe6hD429J6ayfL/5U/v7jn83tq3pdJ5d0v1xSHbmTJoqb13HQad5cso4ZIumG1Zt3mroQoiGANK2nzukjh+YNOiwK7vbVZpCh7MjzSofKidPpPNPeV6GwYO0ZNWqUIfRERrxcxw4JDMp1ECGsWQceeKDv1zKBnSJ1slqIyPgF6WMc/8iRI+Wtt94y+9CU9vhARUgJOPfcc01K1J///Gdz8RBdCAKiGVwkFGj5vUgIMy5dutQIBptK5Re0sOP1XrHBxM8ffvjBXKj071YoFJkB1hZ64LMhMqzQsLfZbA406wFbcULBKxj4i0iwIgPYXvt4BIEVKYgcK16KEzZ249is5xICgCCxmxUobOvddXLht2eb5x3c9DB56IjHJNXhIu7eeVskb3BhaMixEgqQfpsq2Lxzj1z2ymSZ8PN6cz875Mj9p/aQk3oVPyDX3b1V3DkvimxakveII07rE0SaDdb274p8kD6F6Dj44IPzMzyKEid+gbOE17Zs2dJ0svID1ixSw+BWpKsHAeljOHPvvvtu836vvvqq/rpxgIqQYvDpp5/KOeecIw8//LA5ySH2QYrRCfkxKAfF7bcLFbUcY8eOlUGDBgVW2fSx/vHHH/cSG1yk33//vYnCBB2qqFAoSh+Q/O3bt5tIBBtiwN5GZCAYEAZeQl+Y1O8v8lBakZmiRBMbn+3e9f+Une4OqZpVTR7u+qSJwNiNIa+p8nm8CC9cKOFRIyN3ataUrFNONcXr6QZa9d749nT5ck5BN6E/HtNBrj60TbGiwg3niDv/TZHVUwoerN9HnA5niJPl3+OsyGzQbGfZsmWGT9la16LESZBslTFjxsjAgQPz08/3BwrbiWgwzLBRo0aB1i5eR6ctakPeeOMNOeGEEwIdr2JfqAgpRgyQhoUI4WIJmoaFYeVkDZKGhaeQ1+ANaNu2rQRBUWLDtujFqHOB6kBChSK1wbqBM4GNCCYpAAgQrl2EhiXh3ttEFDLt2mbtuvbrK2TC7+PM/Qe6PyaV9lTOF2H8HyHCmgxpoeCUrbRTTTmu3E8+EVkdaUkaOvBACXVLz7Qkhhfe8clseX1CwXT0s/s3l3+e2EWys4oWViY6tvRLkV++KniwahNxulwsTqU6yThsRYqDcwRHK84Rb+dOK04OPfTQwBkgZKvY7BG/TXx4rzlz5sSUlvXmm2/KvHnzNC0rRgRru1RGcP311xsxwEkNqQ8iQAAdGIhkBOlCRY4hF2abNgXTbP1e1DNnzjR9ub1F8+Q+0mGLz5BpJEWhSHfgHEBoWNHBxmMIDAg1Xj0isAgNru2ydA3zWTvX65IvQsrXLyf9m/TPX+/wZCJIIAR8bxAKxAnrpxUkbAiUZM5C4rizBg6U3I8+NPfDU6aI06atOJUrS7qB6ep3DesqTWpWkv989ZN57I2Jv8pvm3bI42f1lioV9qUOJn2v1bHiVm0s7rzXRcK7RbauEHfKgyJdLhCnVrCmLorMA+cIaVCQeK5bO/8M7kJEBC7jFSd+AGci8wRBQCteP4CbrVy50rwftbd+ARe0PGvcuHGGK2paVmxQEVIIqNyPPvpIHn30UUMA/OYaWnBir1692ihsvxcSFx+iIRrBUJTYwDgjhHQgoUJR+oA40yef65yNFAIEB+sLZLlOnTrGkEKag3oBMxW1KxZ4zjfuKmjjyRpHFISNwWXeaLAVdfxdvny5ESqIEBxCpKiyMbw1kYLOqVdPnA4dxf1pPgcl4QnjJWvw4ZKO4Hu6+rC2Rojc8t4M2ZPrysif1siZz42XFy7oK/WrFS3wnHo9RCrXF3f2C5GC9Zxt4s54SqTNiSJN1SlW1sE1iRCZOHGiuTbtNWnFCZymhW177QO8ltQquBvpVX5qX223LBoHwdkaN27s+/0QIbyGjqmIELJQiOAoooOKEA8wZFdddZXphsWJzEURJPeYdAqUNWrcrweONCxqR+wk0SAoSmywP7pGtG7dei8jrVAoSkd0rFu3zhRuIzbYuDZVcJSMmhVr5t/euLP4VrEWiDcrNAoLE9Jrac1JtJnCe36DRIqSUP/+krv0ZwyCuIsWiduxoziN/JOcVBxqWL96Rbn81cmyZWeOzFqxSYY/OVZevqiftK1frcjXOFUaifS+Sdx5r4qsn5c/YV22LBfROpEyD7gJ6yDdPCHwXJeFxUmQDBS4ExwKLkUnUz9pWbwfXA3OxprgN50TTshx4uQ488wzDWecMWOGOpCiRPpVzSUQRD/wUA4dOtQo8WiGEkaThkW6BRdkEBQnNmbPnm0uhqCdvBQKRWyig+50GNAvv/xSRo8eLb///ruJdNAumzVlwIABxosG+dWIR8moVaF2kZGQILDChO+c757fgN+C34Tfht+I34rfjN+O3zAeHeudihUl1C+SPgZyx4wRNxyWdMaA1nXk/SsHSuMaFfNniZzy9DiZ8PO6Yl/jlKssTrfLRJofVfDg6il5gw0j3bcUZRdwFK5R7wBBK05s+90g4HUICziVX8DV4GzRDDEkley4444z6aGPPZb6HfxSFVqYngfCa9R/3H777SZMd/TRRwciCryeYTxBumHZrhCkUgWNgqD4UeJ00rLRGlIQUPV4AhA2CoUiMaBTCh52yCwbhsjrYYfopmIHp3TB/HVz5dzPzjC3T25/mvx5wB0J+Q1J3/JGrFg3GzZsaDbqcqL9DREduZ98LLJmjbkfOuBACXVPzyJ1L1Zt3ikX/XeSzP1ts7lfPisk953a3URLSoK7ZkZBnQgoV02cbpeKU91/2o0i80DjDdKounfvnu+85bqk4xVRyp49ewbaH5yI/QUZSYDjmbQs3itIWhaR1q+//trwvnvvvde07w3SbUsRgaZj5eHmm282aU2E57p27RpIgJCGRTiOCykZaViIDQqxEBvWSHLxcQyECVWAKBTxB0aHei9EB+k9XHsNGjQwXfDq1avnuzOLYv+oWaGgRfnGXftPx4oG/H4IDTaiJazJ1Nfx++KJhQzx+yJI8NAGsQm05s0aNEhyP/rI3A9PpUi9jTh5c1bSFQ2qV5R3rhggV78+VUYvXCO7c8Nyw9vT5ee12+SGI9oVm9qWXycy6wWRnWtF9mwRd/rjIh3PEad+MKKpyBxQ20U9B508cdzAhbguKRanPgQhESSzJJlpWawHcEXWCYYtwiFp26sIBo2E5BWjH3/88SakRlcschSD5AmT10gYP8jUTwQD4X8iGUHeC48rqp0OElZ1k2/OQEIuWC4KhUIRH3C9EeWEmOIpx8hZTzlh/LLUtSqZ2JmzQw56PZLS1LtBX3l2yEtJfX/WcxoI2EgXTh4ICr873lK/jp7cH34Qdz41EWJESNbhR0gmYE9uWO74eLa8OWlZ/mMn9Wws/z6lu1TIzir2de6ebeLOZrDh4vzHnFbHiTQ/Uq+lMgzSoVhfmRVCfQjA0Yo4IbskiGOVa5dICjUlOIb9voa0TN47SLcsXkdhOumc1113nXzxxRdapB4QZV6E4N0k/QoxwOAZBEiQWhAICoIC1e03CoK3jamdvMZOIPZ7wpO+hVJHhHgvYFJDuIA1BUShiH1N4LqmhSTXlSWfbEGuV0VsQIQgRlrXaCPvnBSJKJQWaAFsBQlkiXMCDy2CpKQIibtzZ2SSet6k+NDQ4yTUpOTUpXQB9ui5H5bIPV/OF1tK069lLXnm3L5Su0rxsxfMYMOf3hZZNangwQb9IoMNQxpNLIsgmoAjlaikt83ulClTZPfu3Sa9KojDx6ZlUQNGlDqRaVk0v0CIfPLJJ6ZtL+lZWvPnH2U+aZlidLydFC1SaBREgEBWCOERfQiShsVJ2rlz58CEhtZ1dMTyRjswijyOelcBolBEB6KJCA9bWM7wKyKN1IbhoKCFrgqQ5KJmhZoxFabHE/z2nAOcC5wTCFLOEVvYzrnDOVRkkXr/A/Lvh8eOEbeI56UjIIWXH9JGnjqnj1QsF6ESk5ZukJOeHCOLVm8t/nWhbHE6nh2JgFismmTa+BIpUZQ92BQsuAycxgJBAsnn8SCwaVlwLb8F7jYtC6cu3C6aInWcFVqkHgxlWoRgOP7xj3/IpZdeaqZmktsdBEz55GQPkrPIlE5Ci6R9BQFCic5XRG3shE88BFxkXDhKkBSK4J5cCpK5hr766itzbVIMSaMIIqKQzmQOu1MULUI27dokYTd1ukvZobKcI5wrnDOcO5xDnEucU94uW06HDrT9idzZuFHc2bMlkzCkS0N55/IBUr9aJJf+1/Xb5eSnxsiYRWuLfY0ZbNjiKHE6XyASyoskbVos7pSHxN0WmTivKFuAw+Bg5RqC2wC4DpEJuA8cKGi3LLgW16ZfwOU4DorMgwCnMscKl/z73/9uUskU/lCmRQiFRNRxkDcYtBidiMTPP/9sXus3TEgaFikeFGIFCS1i0Lgw8czigbNAsVPM1axZM9/7UijKOjBm8+fPl2+++cbUc+GFI9x/5JFHGu8ZpFJR+qhVMdKmN9fNlS27t0gqgnOFc4Zzh3OIc4lzinOLc4xzzUxSH3QQzDu/SN3dWnykIB3RvWlN+ejqQdKxYeTa2bwzR85/aaKZsl4SnPq9xOl5jemWZbBzrbhTHxJ3fWRKu6JsgYgCnAbRYQHngfvAgYK00LZDDOFccC+/r4HTUeMBx/MLBAgcEicxER24pcIfyqwIIYfv008/lXPPPdcYEk5+v+BCQAAQzfA7UIfwHh0bYknD8uZK2g49nPRaHKtQ7P+a5XqhFguCSGtWjM0xxxxj/pKLrNdRKg8sLP2UrJLAucM5ZM8p1mrOMc41zrnVubnidOoUeXJOjoTHj5dMQ+OaleS9KwfKER0jUZ/csCt//nCW3PnZXHO7ODjVW4rT5yaRKnl5+Lk7xZ35jLgrfkzWoStSBHaSOZGEwmlZcKCgaVlwLThXkLQsOB3cDo4XRPTAIeGS5513nnz88cdmDpFi/wiV5cnoTLuko1TQyMSKFStMZyvmivgFA3S4IKJNwyIkaSM1Ng0L5a3teBWK4sG1snDhQvn222+NEwADY73WeNi0jqpst+lNBDin8Nza6BrnHOfe6C1bJTdvDXd/XiLh5csl01C1QrY8e15fuWRQgZ17YczPctkrk2XzzuLz7J2KtcTpdb1IHZsSHRZ34XsS/ultcXP95+cr0h9wGkSHNy0L7hNtWhacK2haFtwOjgfX8ws4JMcIpzzrrLMMxwxSW1JWUSZFCIVDDMmhkCiaYnQuhCDpWzYNixM0mjQsOjXQr95C07AUipKBFxriR54+sz2o96KgmNQZetMrUh81KxaIkA1pOmGbc41zjnOvQ/fustTTqSeH9r0ZSFKyQo787fjOcvfwbpIditi7735avf+C9eyK4nS9RKTp4IIHfxsn7rRHdcJ6GQMp5qRleSeZw4GSlZYFt8NmIFyCCAmOGU5JoyM6dD3++OO+X1tWUeZECGE+CodiLUZv4rPNIq3n6KCFIYpHNyyOX9OwFIp9gWEihE+rxx9//NF4pCkepqMRQl6jHulZmJ5ukZCiwLnHOdh+6HGSWycyyTm0dYusee9d+X3lykCkKl1wdv/m8vJF/aVGpYizbsmabUaIfDuv+MJzxwlJqO0w0z0rv2B96zJxJ98v7vr5yTp0RYqkZcF14pWWBQeDi8HJEl2kzhiFyy67TIvUfaDMiRAKhigc4gRPRjH64sWLjQEKmoZFpKaoNCxmkmgalkJRAIzK8uXLTV94vGR4zPA8c437rdlSpHYkJNVrQvwCu1F+8GBcreZ+7a1bZeeoUTJq5EhzDvslSOmCQW3ryqfXHpRfsL51V45c+spkefR/CyVcUp1Iw/7i9LpBpGKdyAM5202dSPjnL8RNoU5pisSBFKrC3bK8aVlwpCCAg3H9wcmSVaTep08fueWWWwIdZ1lDmRIhFApRMEThUDKK0cldJHLCiRzEC6tpWArF/sFcBmY1/O9//5N58+ZJy5Yt5aijjpL27dvnt7FWZEgkJENECHBq1ZLQUUcTHjH3m27bKrQc4RzmXOacLmrmSLqiee3K8sFVA+W4bo3yH3vw2wVy1RtTjCgpDk61puL0udlTJ+KK/PJ1ZJ7ILv+kUJF5aVlEFYOmZcHB4GJwMr91JXA97Eo0RepkzND46KOPPtIi9RJQZkQIHqYbb7xRzjjjDFM4FLQ+I5pidNQ6OYxM1w2CX375xbyXpmEpFPuCHF2Kzek8hJeqY8eOcsQRRxgHQVZWln5lGdaiF2xIgYGF8QRT00OHHpp/v+biRXJ48+bmXOac5txetGhRxhS2Vi6fLY+f1UtuPaaD7VQsX81ZJcOfHCNL1xY/oNApV9nUiTitji+gKxsXijv5PnE3LEzS0StSIS3LO3sDbgRHgisFAdwPTuZtAbw/cE3yXsyVC1qHwrR2OCfcMxNTLuOBMiNC3nvvPRPupmCIXD/UtV9gCChQon7Eb/oWxbC2IDYICDHyXpzAhdOwyIfUbliKsgquA7zFEDQMEsZp8ODBxlum9R6Zh9peEbJznWQaQm3bSahf//z77g+jpYnjmHOacxvSw7nOOW/TUdIZELOrD2srL17QT6pVzDaPLVy9VU584kcZ9dPqEl4XEqfFkZF5IuXzmsjs2SLujCfFXfqVpmeVkbQsOFDhtCy4UtC0LDgZ3CxokTrCJWiROlwTzklRPBxUUUZFCCfO7bffbtqmkaZBgVIQUJhEgZLfyehEXQjfoaCDTFz2pmHVtxN2RUwxVa1atQJNZlcoMgWkptg2u+vXr5f+/fvLwQcfbDxaOtsjc1G9Qg3JciJkde2OzBMhwGHOU+fOkTuuK+FvvxFZv86c25zjDNPlnOfc5xrIhDStwR3qyyfXHCTt6lfNH2x40cuT5MlRi0r0Fjs124jT9xaRWjYbwRV36QhxZz0r7p5gRFRRdtOy4GRws2QUqcM14Zxnn3224aCZEtmMJ8qECHnhhRfM4o2HqU2bNoGiCRQkER5PRjE6arlwGhbeMFS7DiVUlDVgIAi3Q8BIh6ShBJ2uCKmr+Mh8hJxQfjRkfaaKEMeR0ICB4rRoEXlgzx7J/fJLcTdvNv8jnWPgwIHm3Oca4Frgmkj3AvZWdavIh1cPkqM7R1rPwyH/89VPcu2b02T77hLqRMpXE6f7FeK0HMq9yIPr54s75UFxtxWk6yjKVloW3CnRRepkosAFeT+/gGu2bt3acE8EyIsvvhjoOMsCMl6EbNu2zbRJO+eccyQ7O1vatWsXuBidwqSgxeicsEFSRGzKF6+zaVi7du0yap3HgkRUFIp0Btcd4nvkyJHG+4uhodWuNzqoKBuoU6lO/pyQcIZ2RXJCIQkdfoSIPb+3b5fcLz4Xd9u2fALEuc81wLXANcG1wTWSznnmDDZ8+pw+ctOR7fMf+3zWb3LyU2Pl1/XbS07Panm0OD2uEimX1/Z+51pxpzwk7poZyTh0RSkOMSyclsU1wTDoIFGGaIrUmScHF4STBbnuaJQC94SDwkWDpo9lOjJehDz88MOmMPyAAw4I3DWHRR7VS+guaDE63togIO+Xk5zXevelaViKsgTydOlix0KPB+nwww83M3k08lE2UTtPhOS6ubIpzWeFlAQnO1uyjhkiUjOvLfGWLREhsnNnwXMcx1wLXBNcG1wjzMRZu3atpCtCIUeuP6KdPH9+XyNKwPzft8iJj/8oPy4q+XM5tdpHumdVzUtTDu8Wd85LEl7yudaJZChIi4ITedOySMnCSTx//vyoitSDTFKPpkgdzgn3PPDAA6V27dqGkyrKiAhZt26d/Pvf/zZt0lDMpGL5RU5OjhEByShG37Rpkwmxo/It2cKwEHYMkgamUKQrSHscN26cTJw40RiGI4880oTMteC8bKNOpQJnzroMTcmycCpWlKyhQ0WqRWZqyMaNkjviC3ELFaXbVF+uEfLiJ0yYYK6dILMMUg1HdmogH109SFrXjUQ2Nu7YI+e/OEGe+2FJyXUiFWuL0+t6kfp9Ch789RtxZz2vdSIZCDu7A25kxbdNlaK1NVwqCOBqpHhFU6QOR/QLnAY2GgInpc5LUQZEyN13320KgzhB+RukfSe5f6RAJaMYHY8WAonZJXZfPEY7YO2GpchkEEJnQf/+++9NX3U754MFW6GoY4fVGRGSvh5/v3CqVJGsoceJVK4ceWDtWsn96itxiyA8XCPYCK4Zrh2uoaAdfFIJbetXlY+uGSRHdIykpTHL8F9fzJMb354uO3YXX5DvZJUXp9O54rQZ5qkTmSvu1Ie0TiQDASfivPcWlsOdbHQwGUXqvA6O6Bdcq0xSR0Bx7HBTRYaLEAqVnnzySdMRq0KFCoEGE5JvSN4tJ02QYnSeG00xOjmCEC8LprJzIQWJ3CgU6QTOb1pmM5xt48aNJt8dZ4EOGVQUFwlZn4FteouCU716RIhUqBB54PffTNcst5jOWFwzXDtcQ1xL3333nbm20rFepHrFcvLceX3l+sPb5j/28YyVcuozY2X5hpLqRBxxmg0Wp/uVItl5Am7HmkidyOrpyTh0RRIBN+L8hitZQO7hUskoUocbwhGDtM6Gg8JF6ZT1xBNPmGtUkcEi5I477jBdRThZKVwKktbByUXeIZ1JEjkZHY8VBVUYEOv53blzp8ltDLovhSJdQNrImDFjjNeWa5OOV34bPyjKZk1IWUjHKjxVPevYoeR/mPvusmUSHjVS3BK8tVxDXEs2XWTs2LFpmaJFnchNR3WQp8/pLVXKR7IX5qzcLCc+MUbGLSn5HHBqd8irE2lSUCcy978SXvyJuOH0b2+siABuBG+CK8GZABwqWUXqcEM4IlwxyPtwfHDSAQMGmCJ1RYaKEE7CN998U04//XQTpvYWe+8PnISoa5RuMorRMRze46NIik4ofgWQQpGOqVf0fGfKOaFtrXlSFIeyVBNSGE69epFi9bw0YnfJEgn/+GPJNRKOY64pri0anaRzitaQro1MG9+WdSKRjfXbdsu5L0yQF8dEMgWKg1Opjji9bhBp0LfgwWXfRYYbZnBzg7IGeBKbt7CcInVSs5JRpA5HhCv6FS6A92DeCFPUX3/9dcMByzoyUoQwFGbIkCHmB0d5BiE5nLwNGzb0PVGdgqZoi9F//fXXIovRvXNCFIpMSr3ivLetRv02fFCUXZS1mpDCcBo1ktCRR6EuzH33p/kSHjtmv6lWtnWpTdHi2kvHFK32DarJx9ccJIe2jzjlcsOu/POzuWaeyJade0quE+l4jjhtT6YHcuTBTYvFnXyfuOvmJuvwFQkG5ziciSZE3sJ1Gv0ELVJHVAQpUocjwhWDCB5bRA83Pfroow1XLevIOBFCl5BvvvlGhg8fbtqhBYkoELpmofbbkpcFHeVMPUc0xejkImoxuiKTgZeI7j029YoUSU29UgSdE1KWakIKI9S8uYQGH55/3507V8Jj9i9EvClaXHtcg1yLQTy3qYAalcrJixf0k6sObbPXPJFhT4yR+b9vLrlOpOkh4vS8VqRCnlNxzzYzYV3TszK7SB1uFbRInX3B5eB0fl8HV4QzBhlgCCeFm5588sny9ddfy/jx46UsI6NECCfOrbfeagQI+XpBIwooWoqHSOHyAybYMlCQrgzRFKNz8VhoMboi065FIn0MVcMry2wDTb1SBEW18tWlXKhcmY2EWITatJHQYYMLIiLz5u43NatwihbXINci1yTXZjpFRbJCjvxpSEd55tw+Uq1ipH5yydptctKTY+S9KSUX+Do1WovT948idbrsnZ417VFxy1iKXyaCGgsESFFF6kGLv+FycDq4nR/AFeGMQdOq4KYIkeHDhxvOmk7XYryRUSJkxIgRpk3uCSecECilCtC3mbQqrzAoCZz0nHgo4SCtf20xOidh4WL0oFPWFYpUjn5wnvfu3Vv69OmjXa8UUQECbYvT15dxwhhq105Chx1WIETmz5Pwjz/4JjB00eJa7NWrl7k20zEqckyXhvLZtQdJl8aRRhY794TllvdmyG0fzJSde0po41uuijhdLxWnzUnkakUe3PKLuFPu1ynrGVykTlQjSD0UXA5Ox778tuyFM8Idg8z+sKlcxx9/vInYfPnll1JWkTGMlxPmT3/6kyn4qVy5cqAaDRZxFmUUtd+0KgbjcPI3a9Ys0HFychMip4CqcDE6m0KRruA6IsrnjX6w0CoUsaBOxUhx+oZdGyS3jHc4CrVtt3dEBLL0w+hAnlTy0b1REa7ZdPLEtqhTRd6/cqCc1b+g7f5bk5bJyU+NlV/WbdtPG9/DIkXrttYoZ0dkyvqC98TNTb/ifUUElj/B42ItUofTca5QV+IHcEYiKDilg1xH1KBUqVLFNFCCu/oVPZmGjBEhb731likootiH8Bg/rl+gYsnpa9u2oDd5SWBS5oIFC8xJFCRyQaEU4sVbjE5BlRajK9IdeKCYdo6gxtOq0Q9FvOtCwm5YNu7aUOa/2FDbtpEakfxi9Z8kPPr7QATIGxXhmuXatV7kdEDFcllyz/Bu8sBpPaRiuYgNnvvbZjn+8R/lyzm/l/hap3pzcfreIlKvZ8GDK38Ud9rD4m5fnehDVyQIRD5Wrly5T5F60EnqcDqGW9Oy1+9U9Hbt2pn3gEv6BalczZo1k2OOOca8Dg5bFpERIgQFeeeddxpFiXfHb2G5NwrCSeS3Ww9DbYi2BPHy2mJ0FLMWoysyCeTdMiCNEDge1iAtsRWK/aEst+ktsUbk8CMKhMiCBREhEtCbaqMiXLt2yGE64ZTeTeWjqwdJ67oRp+OWnTly5WtT5K8fzSo5PSu7kjidLxCn/ekieTVHsnWFuFMeEHfV5GQdviKOsIXl8ZikznUBx/M7wBDuyHvDJYO8T6dOncxr4a5w2LIYDckIEfLpp5+a9raHHXaYtGzZMlCnKhZdcgb9TjqnaGnRokWBpqkDoh3btm3bpxidk04noyvSEXiJpk2bZhb4nj17avRDkRDUrlg7/3ZZrwvxItS6tYSOKCREvg8uRGxUhGuYa3n69Om+PcCpgI4Nq8sn1x4kx3UrcH68NuFXOfGJH+Wn37eUnJ7VeKA4vf8gUjkvFTp3l7jzXpPw/DfEzd2VjMNXxBFks8CpiH5YwLngXnAwv7BT0eF6cD4/gEPCJf0WtYOKFSsazgp3hcN+9tlnUtaQ9iIE1XnXXXfJSSedZLw5RDT8gpOVfMEgxeVMyKxTp06gwYS2iJ2LQYvRFZkA2lmPHj3aLO6DBw/eq8ZJoUhUJGTtDn89/MsKQq0QIkcWCJFFCyX83Xfi5gavneEa5lomNZlrO52mrVetkC2Pn9VL7h7eLT89a8GqrXLCEz/KK+OWljzcsGrjyJT1hv0LHvx9orhTHhR3q3/iqih92CJ1+Ja3SB3uxWNBIg1wPDpY+Z2KDoeM5n3atWtnjnHYsGEmGpJO9VnxQNqLEArrqM9gQmyTJk1MSM4vUMucOH6Ly2n5RvSCEFoQ2MK/Fi1a5D9GviH9orUYXZFO4DymYA+SQsiauR9BrjmFIijqV26Qf3uNipB9EGrVKjLQMK8+0f15iYS//lrcKKIZXMvMFeHa5hrnWk8XUoT3+uz+zeXTaw6Sjg2rmcd254Tljk/myGWvTpEN23YX/9qsChLqeLYZcCih8pEHt68Sd+qD4q4clzbfgSJSpA63gmNZwL1s45QgIBoCT4T7+QFcEiHkjcT4ueaaNGkiRx55pOGyo0aNKlM/Y9qLkH/961+mJS/5e37b6wLCZpykCAq/aVVETfAW1ahRw/f75ObmmtfxPraIfevWraZPe1Axo1CUJrhmpk6dajw9/fv33+ucVigShXqVCwbOrt62Sr/oIhBq2VJCRx+NO9bcd5cvk9wvPhfXZypJUYW5XONc61zzQdqcljbaNahm6kQuHNAy/7Fv562SIY+OlrGLS5414zTsJ07fm0Wq5EV2w3vEXfC2uPNeETcnfQr3yzo4f+FYcC17TtvWu3Ayv4DrIcj9dtjifRAuiIkgKY3t27c3HJaWvXDasoS0ZhCTJ082E9KHDBkiDRo08D1kECxZssQ8329xOaFpcv2CFL3b96lQocJe6Sos7ChmW6CuUKQ6Nm7cKN9//70JcZO/qhE8RbJQz+brazpWiQg1ay5Zxw6lSjbywKpVkvv5Z+JGOQuEa5xrnWuea581IJ26Z/3jxC7ywvl9pXaVSGRj1eZdcs4LE+S+r+bLntzi02Wcyg0idSKNDyp4cPU0cSffL+6WYJ50RekAbgXH8ooHog1wMe9QQz+A88H9/KYnwimDFLXb4+V6O/bYY2XMmDEyZcoUKStIaxGCYkSAMHcjSBQEhcoJwmv8RkEQDoT0grT+xXtEPqG3iJ2FfNWqVYGOV6EoLRDCRkj/+OOPZlEn/SpI4weFIh4teh2JrJ+rtYVqiXAaNZKs40+g4jXywLp1kvvJJ+JGWd/Btc41z7XPGgCBS6fUpCM6NZAR1x8sg9pE2jxz6E+MWiynPTNOfl1ffIqNk1VOQu1PFafLRSJZed/lzrXiTn1Y3OXB2iErSgdwrN9//z1fPNtic6IUQSJ7cD64n9+p6LwPwgWOGSQa0rFjR8NlESJlKRqStiIEhfvFF1/IcccdZ4qHgkxHJ1+PE4u8QT+g7zQzSIIKBwQI4Tzv+9DCjS4KmkevSHUQtqZTDov2gAEDAol2hSJeyA6Vy5+avma7pmPtD07dupJ1womwp8gDmzdJ7icfi7t2bXT7cxxz7R944IEmhZk1IUhKS2mjQfWK8urFB8ifhnSU7FBk/Zq+bKMMffQH+Xh6yZ2MnHo9xOn7R5FqeYMR3VxxF30o7uwXxN1T/GBERekDjgXX8g4whIvByfwWm3vTpeCAdgbJ/sD7EA3xO/AQwGHhskOHDpXPP/888JDFdEXaipB77rnH9Dfnxw6SIsXiiUKlI4EfQmXniND6jVCeX+zYscN4kL1REAbSoMqDdPBSKEoDpGAQFiYEfeihh5qOcApFaaFepXr5c0LK+tR0P3Bq1owIEVu/uGOH5H72qYRjmANCtyDWAtaEsWPHptVww1DIkasObSPvXTlQmteubB7buitHbnh7utz87gxzuzg4ROJ6XS/SdHDBg+tmizv5PnE3BUvtUSQXcC04FwLCGw2Bm8HRgkQE4YB+54DwPggXWvwGEewdO3Y0aVl0qbv33nulLCAtRQgFR0yXPPHEE034KghBYi4I7dD8DlQjdYripqCzPPAeU6dSq1atfYYi0pddoUj1+g+ihQcddJBG7RSljnp5HbJy3VzZsHN9aR9OWsCpVk2yThwm0iCvu9iePRL+coSEFyyIybvMmoCXN93qREDPZjXl8+sOkuE9m+Q/9v7U5XL8Yz/IzOXFfxYnlC2htsPE6XaZSHZehGnXRnGnPSbuL9+I65a9IXPpALgWnMsrHuBkEH04WhDAAeGCcEI/gGPCNYMMAK1Tp46pD4Hbvvnmm4G7eaUj0lKE3H///SY9pGnTpkY5+k0R4SQkDBckCkIeIIrW7zT14rpfrVy50gy98TsUUaEoDVCAR+43U2Z79+7te36OQpGsDllrdqzWL9snnIoVJWvoceK0yOsU5boS/n6U5E6aGHVdA2sCawNrBGtFkOFsqYBqFcvJQ2f0lIdO7yFVykfWt6XrtsspT4+VZ0YvlnC4hJkidbpE0rNqtM57JCzuz5+LO/MZcXcXPxhRUXqAcxG18w4rLNw9K8hUdDih32gIXBPO6fdacxzHHBs1WKQ/wnUzHWknQgirPf/882Y4IV4Zog1+gRBgiAzixQ8oakI4MNEyCGz3K9utq6hhhQpFKsEKbvK9+/bt61uoKxTJQH1Ph6zV21SEBIGTnS2hI48Up3Pn/Mfc6dMl/O034kbZetcSLNYK1gy/xCyVMLxXU/ni+oOlR9NIytqeXFfuGTFfLnhpoqzeUnyqmVOxpjg9rhFpcTT3Ig9u+CmSnrXeX/GyInmwwwqJhtghgrZ7lt9icwu4IJzQbzQErsl7wj39okGDBobbwnGfe+45M0k9k5F2IuSRRx6Rrl27mtBYNFEQ8vr8zDawz+d9gniDN2zYsE/3KxQ3x9m8eV5xm0KRQqBTyMSJE41H85BDDvHdtlqhSBbqekSIDiwMDicUktDAQRIaMKBguvrSpZL76SfiBvAGFwZrxcEHH2zWDtaQdJonAlrUqSLvXjFQrjy0jf1a5IdFa+XYR36QkfOLF7tOKEtCrYaK0+MqkfLVIw/u3mwiIuGF74ubW/xgREXyYbkXXMwCjgZXC5JSCBeEE5LK5Ud0wzV5ftBoSIcOHQxX7dKli+G8mYy0EiEUxD322GNGIZLr5529sT9QFE4hkl8hQBcEQnVBoyCFu1/Roq3wsEKFIlXANUFKBcVzCBCdXaNI9UiIdsiKDpCbUNduEjpmSMEsEVr4fvShuKujjy5Rl8naga1jLQlS8JsKKJ8dktuGdJTXLj5A6leLNJ9Zt223XPTyJPnnZ3NlV07xhcVOrfaR9KzanuY4K34Qd8oD4m6JvgmAIr6wQwThYrZtblHds/wATgg39Nspi/a+XBO2ON4PmjRpYtK/4LqPPvqo7xkl6Yi0YsVPPfWUCaERCSE3LwipR4mSw+o3HQqlywkapBYEobNp06a9ul/RhYGT3W8hvEKRLGzZskV++OEHU6hH/qk2TFCkencsoLNCYkOoWTPJGnYSOSl7d85aujTqfbJ2UKdJm1HWFNaWdMOgtnXNTJEjOhYI3hfH/CzDnxwri1YXHy1yylcTp9sV4rQ9RSSUxxe2rxJ36kPi/vqtFq2nCOBgcDE4WeHuWXA3v4ATwg39tvmFc8I9gxTCh0Ihw3G7d+9uUrqefvppyVSkjQihsOjBBx+Uk08+2fyoQVKb1q9fb8QBJ4IfcFLyGr/PL6771e7du/cZVqhQpAI4vyELiPoePXpolE6RFt2xwNrt/j2KiqLh1KolWScNN8MNDXJzTY1IOKBXuDBx6tmzZ/5gQ9aYdEOdqhXk+fP7yv+d0MVESMDc3zbL8Y//IK+OW1psSg323Wl6sDh9bhap2rRgpsiSz8Sd/oS42tGt1GHb88LJ4GbFdc/yA7ghkRC/qVyIFssr/aJFixYm/QvO+8ADD6RVS+yMFCEvv/yyaRnap08fc9IEqdNAgRJC8xvV4CTlBAgyF4TcQk4Sr3BhPwyf8TsUUaFIBjhX6fNPTRVpgiqQFamOGhVqSPlQxLmzWgcWxq1zVujYoeK0bVfQOWvMjzF1zrLdfchpZ43xW8CbSuAzXDCwpXx89SBpWz/SXGbnnrD87ZM5cv6LE+W3TcWnmzlVGorT+0aR5kcUFK1vWizupP+I+/vktCvezzTAxYj8e6MYcDa4W5BzFW4IR/QbDUHsBImeADgudSE0f4D7woEzEWkhQrhwiYKQH8cPE6ROg1w6cvH8zvkgjExXLH78IMeH0PEWsZMD+PPPP+/VplehKG1QmDdp0iTp1atXoEifQlHaxNC26V27QyMhcftes7IkdNhh4vTouXfnrO+/Fzevk1A0YG1hjWGt8RYDpxM6Naoun15zkJx3YIv8xyhaP/rh0fLB1OXFR0WYKdL6BHF6XitSITInTHJ3ijv/NXHnviLunu3J+giKIkA0BG5ma5dssXmQ4nHAa+CKftv88nzSvoLUd7Rq1coc37Bhw+Shhx7KSBGbFiLku+++Mz/eoEGDjPoMUqfBiUXqFhMv/YAJl+Tg2cLyaIvYeV9arZEjq1CkAjgnZ82aJQcccIApfFMo0rFD1qZdm2RnTmamJpSWwMvq319CAwfmP+YuXCDhL78UNy9tJRqwxvTv39+sOdjVdESl8lly57Cu8spF/aVh9QiH2LIzR256d4Zc9fpUWbd1V7GvdWq2EaffrSIN+hY8uGaauJP+Le6G6AdGKmIDnAxu5j0n4W44oP0WmwMGdnKO+41uwEHhokGiIeXKlTOclwGhCJ6RI0dKpiEtRAgtyo455hjzgwTx3m7bts30Z/Yb1UAZM90ySBQEcFJ5i9jpI433x1ugrlCUFvCezJ49WxYvXmyEvKYHKtK9Q5bWhcQfoS5dzTwRyYvmuyuWS+4nH4sbQ2ceJlOz5kD4WIPS1ZN7SPt68tWNh8hJPQs6cn4553c55pHR8s3c4tN4nOxKEup0rjidLxDJrhx5cPcmcWc8KeFFH4mbm14tjTMFcLNffvnFcLVois29+4Ez+u0IB7eEk8JN/aJ169bm+IYMGZKR7XpTXoQsXbpUvvzySznyyCPNSHty4/yChY82vn5fw/NRyEHalFJshHr2iiO6L3CsGgVRlDYw+tOmTTPTYunnr+ekIl1R31Ocvmr776V6LJmKUKvWknXsUJLeIw9s2CC5H34QU+cs1hw8uaxBrEXpKkRqVConD5/RS548u7fUqhxxOK7dulsue3Wy3PLeDNm8s3hB4dTvJU7fW0Vqti94cPkocac+qK18SwGck9TrejtlBS02B3DFwlGVkgAXhZMGiQxWqVLF8Ek48IgRI4x4yiSkvAh58sknTftQfuggkQUKjYJEI1DE/Li0RQuCwkXsDGvixNYoiKK0waTWqVOnmgGaCJAgAl6hSDU0qFIwRPP3bSpCEgU6ZpkWvjUik8Rl924Jf/O15I4dK25u8TMzSkLVqlXNGsRaxJpkJ1enI4Z2a2SiIkd2KojMvTdluRlw+MPCNfuZtH6lOG1OIkQSeXDbbxEhsvQrccPRfbeK6ADXozbEDtiEwwVNlyoqquLn+XDTIN2u2rZtazgwqdRw4kxCSosQQlyMrScVixMkSBoJQoDnM0jJ7/NRxkE8xbaI3Vv0TuSG90S5KhSlLUBoTU06hN+aKIUiVdGwSsGspVUqQhIKp0aNSAvfVq3yH3PnzI4pPYs1iLWINSndhUj9ahXlufP6yn9O6S5VK0QExYqNO+S8FyfKbR/MLDYq4jghcZodJk6fm0Sq5KV2uWFxl44Qd+rD4m77LZkfo0wDjoY4hrN5yX6QYnNAty24I4LGD+CHcFO/z7dpjXTYggvDidNtIGjaipA333zT/LgMbIHo+20lyvRnlKnf+hGUMCdE0OgFITUKkyhQsu9L3j370banitICxn3KlClGJKsAUWRmJETJWqLhlC8voSOOlNCgg/LrRGTtWsn94H0Je9JYohEirE2sUeksRLDxp/dtJiNuOFgGtC5wOr41aZkc/dBoGTm/+AF4TtXGESHS4ugCGrZ1mbiT7xf31//pgMMk/X5EQ+BscLdois0t4Hw4sm1UZX+AmyJ+cn1GFjlWBBIzvXCUv/XWW5IpSFkRQt7oww8/LEOHDjX3gwwnXLFihVGNfiMnCBYUcd26dX2/hy1i9woXQmxEbAibKRSlKUDw5AwcODDQrBuFIpXR0CNCNBKSHEB+Qp07S9awYSLV89Kz9uyR8P++ldwJ46Nq48uaxNrEGpXuQgQ0q1VZXr/kANNFq0r5iFj7ffNOuejlSXLTO9Nl4/bdxbfybTU0MlfE1juZAYefijvtUXG3+5/irYgOcDW44rJly6IuNgdwR9Kd/dZrwE1535UrV/p+D8uB4cRw43StrUobETJu3DgTnaCgjQmsQdry8jo6HfiJRqBEiWgEjV4ULmJnIY1mPwpFvFOwVIAoMhG1KtbOH1iokZDkwqlTV7KGDxenTUHnSHfmTAmPGCFuFJOcvUIk3VOzQCjkmHki1Ioc3LbAmfnBtBVy1MOj5eu5xdcwOdWbi9PnFpFmhxcMONy8VNzJ94m7/HuNiiQQcDU4G5EPew7aYnMiJEGjKnBAP9ENng9HXRIgoggHZnwEtVW8bvz48ZIJSFkRQvEN3QCY1xGkLe/69evNwoZw8QMUMIq0YcMCL1s0RexEXwCdDxSK0uqCxSAkjYAoMhEhJyT1q0Q8xlqYXkrpWYMHS2jgIFiUecxducJ0z3LXro1aiLBmpXPXLC+a1qosr1zcX/59cjepllcrsmbLLrn81Sly3ZvTZP22YqIiWeUk1OZEcXpdJ1IpT8SE94i76ENxpz8h7o7g36/CH+zMLG9UAmFCutTuAHNy4JBwSaIofgBH3bJli2nW4BeUJcCJ4caZUqCekiKENmnvvfeeHHHEEVKjRg3fxeU2CuI3csKih6IMUm9i38NbxM5+UNLk7IVCKfmVKsqAAKG1oAoQRVkoTt+2Z6ts3b2ltA+nbKZndekiWccdL2IH+m7dagrWwwHz6L1ChLUrU4QI39EZ/ZrL1384RAZ3KEgJ/3TmSjnqoe/l81nF1zM5NVqL0/ePIk0OLnhw02JxJ/1H3BVjMuL7STXA2eBu3onpttg8SKSC3x0uyWv8/E5w1ObNmwd6D7gwnPjwww+Xd9991zjd0x0pyZhfeeUV6dChg5li6e08tT/Q8gw1S5jLr9jhNUGmRxfVgnfVqlVGMQepW1Eo4oU5c+aYc1mL0BWZDm3Tm0JtfE8aTnJ75IHcXAmPGim5Y8cEbuNri9VZw+bOnSuZgkY1KsmLF/STB0/rYWaMgHXbdss1b0yVq16fYiIkRcHJqiChdqeI0+MakYq1Iw+Gd4u78F1xZz4t7k7/nnOFP8DdyHCBy0VbbA7gktSS+J283qpVK8NZ/bb3BWQG8ToyceDK6Y6UEyEoSMJMRx99tFGWjRoVtGXcH0iRou2a32GDnGDM+MjOzg70Ht4ido53wYIFRixl2Q4iCkWSQA4q4d8BAwZoG15FxkOL01MHTtWqknXCieJ06Jj/mDtnjuR+/pm4ASZCWyHCGkZzlyCD3FIdcJiTezeVb248RI7uXNCwZsTs301UhPkixXnNnVrtIgMOGw0oeHDDT+JO+re4v03QqEgcAXeDw3mjIUGLzQFcEk7pt/1utWrVDGf1tgneH0j557yCIz/xxBNpfx6knAj5/vvvZc2aNWZB4sf0S+wpKuKH9Fs/glpF9fqNmhRXxI7ipQaFqI1CkUxgsH/66SczzBNhrFCUpVkhWpxe+nCysiTrkEMkdPDB5LVEHly1KjJl3dNxyA9Yw7D7rGnebkWZgPrVK8oz5/aRx87qJbWrRJorbNyxx0xaP+eFCbJ0bdGizcmuKKEOZ4jT/QqR8nndyXJ3ivvTm+LOfl7cXZuS+TEyGnA4ajRsFKOoFr5+98OsEb/dtVq1amW4q9/mDHBiIjdcK3Dl0aNHSzoj5UQIUZCjjjrKKMogxJ4fnZPGb3tclCoDYOyMDz/A41y4iB3lzEkUpHuXQhErENAzZ86U/v37BxqwqVBkSjqWtulNHYQ6dpKsE08UqVIl8sCOHRL+coTk/vijuAHSWVjLWNNmzJixV2pMJgB+ckL3xiYqcnz3AjE9dvE6OeaR0fLkqEWyJ7doIurU7iROvz+JNOhX8OC6OZGoyO8T094bngqAw8HlvDNC4Ho87rfYHBA9gVv6jW40bNjQnBtBznfLOeHK6V6gnlIiZPXq1fLRRx+ZohsKg4J4dwmZETnx25aX5weJghRVxE4xHao5SPcuhSJWUIw2adIk6dWrl+9ZOApF5kVCim97qkg+nHr1JevkU8RpWtCZ0p03V3I/+EDc1f5nXrCmsbaxxmVC4W1h1KlaQR4/q7e8eEFfaVIzUty/Kycs//nqJznh8R9l2q9F13w45SpLqNM54nS9VKRcXsp5znZx578h7qxnxN2Zed9VsgGXg9PB7QBcj8f8FpsXjm74bdfbokWLQClZcGM48uDBgw1nhjunK1JKhLz44ovSrVs30ws5SEH6tm3bZO3ateaHTMQwQ8BiSHjNW8ROmI6wmA6EUyQLhIvpD965c+dADRUUikyATk1PbTgVK0poyJC9p6xv3mS6Z+VOmex7uCFrG2vchAkTzJqXiTi8YwP5+sZD5JJBrSSU5zud//sWOfnpsfKPT+bI1l05Rb7OqdtVnP63idTvXfDg+vmRqMiKH3SuSAyAy8HpvDNC4KNwvyCCOOgwwhYtWhgOC5f1C8QRnWC7dOkiL730kqQrUkaEoDKfffZZU2xDzluQuR0oSNKwKG6L9zDD4orYbScujYIokgUWQoZ4cu7qeacoi6hSropUKx/xAms6VopPWT/5lILuWa4r7tSpkvvxx+LmeZn3B9Y4UrJZ84JMr04nVKmQLX87vrN8dPUg6dwoMooAh/t/xy01hevfzis6RccpV0VCnc+PREXya0V2ibvwfXGnPSbutsxKZUsmOO/gdnA8AOcL2ko36DDCihUrGg4bpAiepk1wZTgz3DldU/JSRoRMnDjRFNn07dvX/OB+521QzEOBrt/6EQbD4FnxO8wQsABSc+J9D04WuidoQbAiGaBNIBEQck07dizoRqNQlNVoyKrtv0vYTe9J25kMp2ZNyTpxmIT69Mkfbihr10juB+9LeM5sX6SJtQ6vMmtfkFap6YbuTWvKJ9cMkj8f21Eqlotwn9827ZRLX5ksV78+RVZv3llyVKTRwIIHN/8s7uT/iPvLN+KGg7VLVkRSneB2XkGAoAhSbO4dRmhTu/aHli1bGi7rt0AdjgxX7tevn0nHIn0xHZEyIuS1114z4+jtABe/+O2338xr/KZWcWIRXgtSSE6kBfJHwRHgJCGaot5oRTKAsZ46daoJFXfv3j1QBE+hyNS6kJxwjqzXPPiUhhMKSah3H8kaNkykhvXY50p47FgJj/hiv618Wet69Ohh1j7WwHT19vpBdlZILj+kjXxz46FycLu8qeki8sXs3+WIh76X1yb8IuHwvp/fya4koQ6n580VyXudmyvuz5+LO/VBcbdkVqexZKBwxyq4HxwzSN0GHBOu6fc19erVM5ENOK1f2MHccGc4dDoiJUQIHo4333zTDCyiW1WQCen8wH4L0nkfuhwE6bpVVBE7JwkhOoSJQpFozJ8/33hUiBL6jRAqFGWiOH2rf4OtSIGi9c5d8h9zV6yQ3PfelfDikueCsOax9rEGshZmOprVriyvXNRfHj69p9TJa+e7ZWeO/PWj2TL8qbEye8Wm4ueK9LtVpNnh3Is8uHWFuFMekvCST8XN3Z3Mj5HWIDWK884rCHA6wwWDtuuFc/qJ4jmOY54fROgwPb1SpUoycOBAeeONN9IyWpgSjOabb74xCpCi9CBREBYlioX8voaTgeEwQVqakhtYONJCnl/QmhKFIhrQRIHz7YADDjCFbgpFWYcWp6cnnOxsyRo0SELHDhWxrfF375bwd99J7nf/E7eEqdGsfbTuZS1kTcx0wC1O6tVEvv3DoXJqn6b5j89YvlFOfOJH+fsns2XTjn0Jp5NVXkJtThSn9x9E8sV6WOTX/4k7+T5xNxYUXCuC1XTAAXE++y02B3BNOKffFr/Nmzc3nJbZc36BEx7uDIf+9ttvJd2QEiLk1VdfNa3GCLUGqdUgf47iHD/dqdg3CjPoUMHCRezk923atCnQcSoU0YBzbdq0adKnTx+zkCkUir2npuvAwvRDqGlTyTrlVHE8re1dBsK9/56ESyBrZEiwFrIm+s2zT3fUqlJe7j+1h7x12YHSrn5kZAEZWS+P+0WOePB7+WjaiiJT1JzqzcXpc7M4LYeiTCIP7lgj7vTHJLzgPXFziq4xUewtCOB6bN52vX6noVvY6IafVMIKFSqYpkxwW7+wXPSwww4zXDrdUOoihGgGfY6Z/kjfY0JLfsAPikeEnDu/Benbt28P1NaUk2/z5s17CQ5OQN5TvdKKRILOHLSn7NChQ6BOcQpFpqNRlcb5t1WEpG8r36wjjpTQ4MMJc0Qe3LbN1Inkfj9K3LzORIXBWsiaSCMb272oLODA1nXk8+sOltuGdJRK5SKiYu3WXXLjO9PlrOfHy6LV+7YxdkLZ4rQ8Wpy+fxSp7hlfsPJHcSfdK+66ucn8CGkHOB5czxsNgQvCCa0w8QM4J9wTDuoHzZo1M5ETv/VPcGYiLqRkwaWDRFFSAaUuQvjS+JGYC+J3zgdgoAy5eX7rMlCi/Li2xa7f13Bstoh99+7dRvgEGXKoUAQF5zWdLujQ0bZtW/0CFQoPGlUtECErt2Z+ak4mI9S2bSQq4nEOugsWSO6770h44YIiiRhrYp06dcwaGSQ/P91RPjskVx7aRr696VA5pkuD/MfHL1kvxz76g/z7y/myffe+s0WcKg3F6XWDOG2Hi4TyBN+ujeLOelbCc14Wd5d/Ql3WANeD89laC7ggnDBI3QacE+7p9zX169c35zUcN0i0BQ7duHFjw6nTCaUuQggfEUaiCwFfoF+gFDkZ/BTqWvEQJBWLk27ZsmV7vYb7FAKxKRSJAEZ35syZ5nro2bOn1h0pFIVQt1I9yQ5FnEm/bfWfn61ITThVq5o6ETPg0Hat3LlTwqNGSfiLz/eZK0JaDGsjayRrZSZ3zCoKTFl/5ty+ZuJ6s1qRzJE9ua489f1iOeqh0fLlnN/3+U4cJyRO00PF6fcnkVodCv6xZpq4E+8Rd8WPOuSwCMD1SAOE+xUuNs/JKXqYZFHgNXBQuOj+EAqFDBf2W0cCeD7Xw6GHHpp2KVmlKkLouzxy5Eg58MADjfrz2zYXlRgkFYvn2pPJL3gN/aJtEXu0NSUKRRBwjq1atcoUYVJoplAo9kZWKCu/Q9bKrSvLHAnN6AGHp50uTitPrcjKlZG5IrTn9UQ9WBtZI1krg3ilMwmRieuHynWD20r5rAiVW7Fxh1z52hQ5/8WJRadoVaojTvcrxel4tkh2ZOSA5O4Ud+F74k59WNwt/olvWUHhmg44IS17g4gEuCcc1G9ThWbNmpkCeL+RPts8ibKG7777zlwX6YJSFSFvv/22dO3a1bRDC5KKxRdMvh41JH7AyRKkkNwrOGxBOqGxXbt2BYrWKBRBQLHlnDlzzPAhv7VRCkVZROO8lKxte7bK5t2bS/twFHGCU6WKZB15pISOGcLUuIK5IlMmGzHielqmskbSupc1M0iOfiahUvksufnoDvLlDQfLQW0LZov8sGitDHnkB7nr87myZefeXbTgNE7D/uL0v12kYf+Cf2z5VdwpD0p40Ufi5hTfqaysgYwb6o/oWhVtK12A09yvcKlVq5YRFkHEBBwaLt2lSxfDrdMFpSpCXn75ZRM+4kcNMnODH5If1E+L3G3btpmCoCDiATLI67yRFvpD0y1BvdOKRID0v8mTJ0u7du1MvrNCoSgejasWrM2/aV1IxiGErT31NHG6dy+Ytr5xo+R+9qnkfv99fuE6dXOsmdSHpOOMhHihdb2q8urF/eXpc3qbdC2QE3bl+R9/lsEPfC/vTVm+z6BDp3xVCXU8W5ye14lUtjUmYZHlo8SddI+4a2eVwidJPcD5Ctd0IEwoAPdbbG5fw/PhlvuD4ziBRAtAgPA6ODXcOl1QaiLkp59+Mh4MQqr8OH7JPTl1qEO/qVj8iAgcP218LTjZ2L8tYicCQmgsSLRGoQhaB8Kgzvbt2+sXp1AEKk7XupBMhFOunGQdcKBkDT+Zat38x90FP+1VuM6aSVSkLNaHeAEBHdK1kZktcsMR7aRCdii/i9Yt782QU58ZK7OKGHTo1GxjOmg5rWjnm11QuD77BQnPel7cnf6JdqaCyAccEC4IiFIEKTYHcFC4qF9h0bRpU8N1/YprODTOdmaKzZ49WxYsWCDpgFITIYyYpxaE+QdBBhQywZL8Oj9zE1iQgqZi8YMXLmKnKKl27do6q0GRENATfM2aNdK7d28tRFcoAqRjAe2Qldlw6tSRrBNOlNCgQfsUrud++gm50mZ+CGtokPkKmZyi9Ycj25suWkO6FLR3n/prZNDh7R/MlPXbdu/bzrfF0fsWrq+bHSlcXzZK3HDZ6URWGPBNUqQKF6h7O2f5gY1u+BHL1apVM1w3yHBEuDSvQ4jAsdMBpSJC+AH4gg466CATbYDg+wUngd8oCHmiO3bsMGGqICKHoiPbAUsL0hWJBD3HZ82aZQRIxYoV9ctWKAKmY6kIyXw4oZCEOv8/e+cBJ2dVr//f7Kb33hNCEkJPgNB7ExBpVkDxevXq9dpQr3i9tr9yvXYsKLZrwXtRBBtFegu9t0ACaaT33vvu/D/fsznJm2F295x3ZnanPF8/a5JldmZ25p1znuf82qFvKly35cut4Za/W8fnnrVJhx7q1lLWVGE2sm83++UVk1ya1tiBTUXoaN8/PbfQTr9msv3m8Tm2Y1fjvq9zt4FNhesHv9+s4+6D3sYdln3jVsu++EPLbphfsy9tboE6GhGtSIOlUJhzgyYNrWEaEZmSRSo3mvqUU05xXbIqITLYLibk6aefdoXenF7g3EJqO4CBLxQHhQ4c5M0jPBUzG8TXm3h4PFLANDBOFBta/FEHQn/vmJooIWqdZCREbXprsHD9vPNQgXu+n50+3fo+9KAd1aWzvfDcc1HtU6udUw4YaPd8+lT7yvkHW4/OTVpow7Zd9t93vm7n/vhRe+D15fuIVVe4PnhSU+H6sBP5TtN/2LTYddBqmri+1WqNoUOHOi3oC9TTmAS0aEz73eHDhzutjHEJgfcOTY225ucYeFzutIsJwaGdeuqpe4a4hELoizZkISfGPhUrNGoCdEBYtWrVPj/j55GoIF0UG07tyC1lArAQIpz+XQdYx7qm1BxFQmqPupGj3JDDuuOO25uitWOHDZo71yYtWmjzHn+8Ik6B24qO9XX24VPG2EOfO83eNYmmPk3fn7t6s334/563K377jL2+dN8IUqZjN6sb/x436NC6e9OfbZq4TorWipdq6jVGA6IFkwYCrUgaINqxFClZXbp0cc0XYoyOH8rtoyHlTpubEPLnbrrpJjvppJNcIW7M7I6YVCwuDMC0xJgcwlm+PSrDX2LmkQgRCosKYVxaTIYM3BRC7KUuU7enOJ1ISC2JIdFEpr7e6iZMtPr3XGqZREOPbjt22OhZM23r3/5qjYsX69pIMKhnF7vmXRPt9k+cbMeO3psG/8Qbq+1tP33MvnjLq66QPUmm92jLTPqcZcZctHfi+o4Nln3tfy376q8su6VJa9UCaEE0IdoQ0IpoxtD5H4CpSGrUEFMRO5MEbY3GRmuXe9e4Nlc/DCfk9JdexjHdpsihIx2LkFix2/g2Z3LoTMBzjalZEaI1ODWhk8vEiRM1D0SIlAzr0ZSWu2XXFlu/fd+p2qJ2yHTrZvWnnW71F1+yTxetTmvXuonrDX++2Rqef86yiTSaWufw4b3t5n893n7xvqP2TF2ng++fnl1gZ1zzsP3ykTds+669heiZunrLjDrTMsf+p1n/Q/fe0Zrpln3uO9Y49y7LNrQ+DbzSQQsSZVixYkXqlCwOHWN+ZsiQIa6tb8wsHLQ1M/iI3qC5y5k2NyG33Xab64rFyVXM7A7eMAxISH0H+aB0FIiJYGzcuNF9JZ+TT8WKMTJCtATX/ZQpU1yzBA2+FCI9atMrkmQGDbL6iy62urPPNuuTGGS8YYNlX3rJGv72V9tFdOSlFy1bo8MNk6Br3nrYULv/s6fZF847aE+9yMbtu+w790y3t/zoUbt76tJ960W69LPMYR+2zKEfMuu0uyYn22A2/76mFK2V1d0m2c/vSHbJYh+nGQL6MRTuA426K6B2iYNwjEiM0eE58T6gtW+//XYrZ9rUhPCiYEKOPPJIFy6is0Doz8XUd5DmQpjMd7gKgfvnjeYNB0JY3I9SsUQx4TpjYNHhhx+uF1aIIkRCYMmm8A1aWFWLxLr9x1j9O99pjaecams6d6aKYS9r1ljj88+76MiuW26xRmaLbNpktUyXjvX2sdPG2uTPnW6XHzNyT73IgjVb7GN/fNEu/Z+n7aUFa/ctXB84wTLHfsls5FnkxTX9h+1rLTvtd1WfooUmRBv6NCc0I4eKMSYBbYpGXR44ET2mjgTQ1mhsum6iucvZGLapCSEFBQE2YcKE4A5XQLE4OXih9R2xqVj5TA4u1fdpFqIY0OGCYnTSsDp12p1bK4RIxYieiQYiG/eeTApBS99OBx1kDW85xx4ZMtQajjmGkdL7vjCrVlrjM09bw59utF23326N06ZZdsuWmn3xBvbsbN9+xwS781On2Alj+u/5/rPz1tjbf/GkfeLGF23eqr3TvjMdOlvd2Astc/R/mPUd/+YUrTl3WrZh3/qSasDPqWOcQ1qTkC+i0hJ0z0QD0/EqFDQ2KVn8DLqjXGlTE4IjoxCXlKqYlrcU/fCChhTwMtGSfL2YCAbGCFebbJMa21lLiNA0rNC6JiFE84zoubez4kKZEJEH1tq+w4bZy9t3uIGH9ZddbnXHHstAhX1vuHyZNT75hDXc+EdruOtOa5w+3bK7p2PXGocM7WU3fvg4+5/3T7IxA/Zmq9z56lI7+0eP2Ndvn2arE8Xrme6DLTPhY5Y55J/NOvfZm6K14H7LPvsdy66cUtYn8WnINRDs62hItGTMfaxYsWLPFPaWQPuSYhVTAI/GZko7mhvtXa60qQm59dZbXf9iimWYPhkCFy+hr1DTwpvEfYemegEXE2+wb8PLiTXuMSZaI0Rr19i6deuUhiVECUyIIiGiOUh9RRxysJjp2dPqJh5hHd7xTjf4sG7SJLM+u4UzZLOWpfvRY49awx9usIZ777HG2bMsu6P6i65zT+rPOWSI3fuZU+0bFx9mA3o0Re53NWbt90/Ns9OuediumzzLtu5o2JuiNeiIptkio3JTtK637Cu/tOyWsNSjSiB3fgfaEQ0ZGtkANGrfvn2DJ6JjqNHCoYaO+8a8YELQ3lbrJoQXmnSsI444wr2YoalSCLeGhoY9bc1aIzaCQYiL55acV4KR4fF8q14hCoGFaurUqe7aVxqWEMWhZ6de1nv3yeuiDQv0soq8sOaSAktKSnLoW6ZPH6s7apLVv+vdVv+Od1rmiCPMeu6eEg6NjZZdsMAaJ09uMiQP3G+Nc+dYtoYGITJf5P3H72cPX3WGffqsA6xrxyZzsWn7Lrvmvpl2+g8m283PLbBdDU0tazP1na1uzIWWOYYUrcT8q7UzLPvc96xx9m1VMegwX2teX2zu2/eGMCKiSxaalEL20C5ZaGwO79EdZGEk08dq0oTccccddsghh7gWZzHpKDg/Ql0hqVi+jVlMBINwGC422YZXqViiFGlYMSmIQojWGdlzlPtz+Zbltm1X+MAwUVugOViDWYtzT5LdKX7//lZ/zLFWf+llrtVv5rDDzbp123ujhgbLzp1rjQ880GRIJj9kjQsWWLZhbxvbaobOWZ89e7w9ctXp9t5jR1l9XdMh8vIN2+0Lf3/V3vqTx+zBxOT1TDdStP7NMod+0Kxz370pWosmW/aZb1p26dOWzYaL9XIk10BgStCSyfa9rTF8+HAXpUO7tgYamJIBNHEoRGfQtgcffLDT4DVtQshJO/bYY6MKzJMmJAScHm4x5rTZzwbxkRnfak15+6IYcFKiNCwhSl+crsnporW0LNbilvLqm9KKBln9CSdY/XvfZ/UXXGiZgw9hdPXeG+3cadnZs63x3nus4Y9/sIZHH20aihhxAl6pDOrVxb719sPt3k+fYm85ZK8um7Vik/3L/z1vl/36aXt54bpEF62JTbNF9jvHrG73ZPudmyw74ybLvvAjy66fa5UKAh+tiGZMFpvHdMnq1KmT08OhxoKDzBgTwn2judHe5VoX0iYmBJf34IMPuta8uMWQWR/AcELe5FATElM70lwb3txWvUKkheuLNCw6VCgNS4jiM7JXUyQEVBciWoI1mLV42rRpQVOknYgeOtTqTz7Z6t93hdW99fymyezJQ87t2y07Y3rTUESK2p94wrIRefuVyrhBPe3X7z/a/vLRE+zIkXtrap6Zu8Yu+fkT9rE/vmCzV2zcm6K1//mWOeY/zQZO3HsnmxZa9qVrrfG1GyxbgcNG883vyG3fG8LgwYODjQW3xfQk0wpbAq2N5kZ7P/DAA05T16QJ4ZfHkY0aNSoqVYo3hhcwRMDt2LHD1qxZE2VCiJwk2/D6Vr3J+hAh0jJjxgx3fanBgRClYXiyQ5bqQkRr18vw4a4geObMmdEtf+tGjGiazH7F+63unHMsM3YsKm/vjbZutexr06zhH7e7tr8NTz1Z9YbkmNH97O8fO9FNXh/df2/62t1Tl9k5P37UPveXKbZwbZPwzXTtb3WHftAyEz9h1j2Rkr/iBcs+8y3Lzr/fsg3h4r0cyG3Ni5bk+oqpvxgyZIgrckfDtgZamPSqmGgI1zwT1MkSQovXpAlhYuNxxx3nwkKhUY3YVCyGvnABxBST59Z+cCFQ+JNs1StEGjitmDt3rksBCG3CIIRIVxMCioSI1mAtZk7ZnDlz9qTRxJKpr7e6/UZb/ZlnNRmSM8+yzOjRtEjae6PNmy07dWqTIXERksetccmSqkzZSk5e/6+LDrUBPTq77zdmzf724iI78wcP29dun2orNjbVbGX6HmCZSVdZ5oB3mXXYbVwad1h27p1uvkglTV1Hn6IZOQD3cIgdk5LVrVs3d1gZWksSm5LFc0R7l+v09JKbEH75f/zjHy4cxAsdahIIZ2EKQiMbmJDYVCyGICZrP7hwQueRCNEcLKB0Ytl///017FKIEqKBhSIWDitZm1mjCxW7mY4drW7sWKt/yzlNhuS00y1DJkXy4GnLFsu+9po13nlHkyF57FFr5PS8ygwJnbT+6YTR9ujnT7cvnHeQ9e7alNK+syFr//vUfDvt+w/b9+6dbuu37rRMXb1lhp9smeO+bDb8lL1SdNvqpqnrU35u2Y3hQr69QCuiGZOmA02JtoxJyRoSYSy4bcz9o7l79OjhumRhQmK6d7UFJVfbzz33nBvGQmcsCnlCWblypXOIvHitwYsaa0Jwndy3nyfi55EodUYUCoWP1DIdeGCiRaEQouj069Lfuu0+TV24UW16RRiszazRMcPfWiPTqZPVjR9v9ee91erf/09NhmTUqH0jJKRsTZ9ujXff1dRl65GHq67LVrdOHexjp421Rz9/hn3qjHHWrdPu+Ws7G+znD79hJ3/vIfvZ5Nm2efsuy3TsbnUHvNMyR3/erM8Be+9k3SzLvvADa5x+Y9nXi6AZSb/yhhZNibaM6ZI1ZMgQp2FDDAL3jTZGI8c8x0MPPdS2bdtmzz//vNWUCfFdsWhdFtNxijc11FTgCinA6d27d/D95xax0yaNCyDZqleIQorR1dxAiNLiOtLsrgtZummp7WqsrJxy0T6wNiPKQovUY8l07txkSM49rylCcsaZb07Zoqh95symLlu+7e+8eVUzh4RIyOfOOdAeueoM++CJo61TfZPc3Lhtl33/vhl22jWT7TePzXEDDzM9hlpm4sebWvp28dPss2bLnnX1Io1z77bsrvKcYI9mRDsmp6XHpkz16dPHaWSyf0KIvX+0N/dfjl2ySm5CmNR41FFHuQ+9LwBvDd5QXGRsKlZo7n2+yEnMPBIhWipG56RCETUh2oYRuztkNWR32bJN4RuzqG2oB01TpJ4qQjJuXFPKFhGSs862zJgxOKG9N9qxo6nt7/33WcMN/2cN999njbNmWnZb5c++Gdizs33twkNt8lWn26VHj7TdI0Zs1aYd9t93vW6nfH+y/fbxubZ9V+Pulr5ftMzYi8067E7db9xhNv9eyz5bnvNF0Iy5Ha5iIhvJwYIxKVncf2g6IdobDY4WL7fp6SVV3BTmzpo1K3pKuneUIVEJn0YVU/BOEREXDmPt07b3FaK5YnQKH1WMLkTboLoQ0V5F6qlqSMaMsfqzzm6KkLzlHMuMO2BfQ7Jrl2XnzbPGhx9uipDceac1Tptq2U2brJIZ3qerffedE1wB+wUT0INN31+1abt9487X7NTvT7brn5hr2xsylhl5hmWO+4rZ8FNpTdZ0wx0bmuaLPH+NZdfMsHIi14SgLbm+kgXrrTFktwkJMRZeG4feP88FDY4Wx3TPmzfPasKEUJDOh5yT4Zh6EG8qQoQceZ3UnKQZgOjvnzkmmzZtUlcsURCE9kePHq1idCHaqUOW6kJEDJwQs2azdrc1mQ4drG70aKs/44ymCMm551nmwIP2HYyYzVp2yWJrfPJJ1/Z31y23WONLL1p27dqK6SCVy9iBPey6y4+ye6481c4/bO/B74qN2+3qO15zaVr/++Q8225drO6AdzTNFxlw+N472LzEsq/8whpf+R/Lbi6PyCd6Eg3pJ5/7yAbRilAGDhzotCyatjW4/5j5IoAGpzkUmhxtXhMmhDHxRx99tPs78z5CiYlKcFvePPLdQvCRk9xULHooK4dfpIUiMU4lVIwuRNvia0JAbXpFLKzZrN3UlrYXru3vqFFWf+qpbjBi/YUXWebwCWY9e+57w1UrrfH5563hr3+xhj//2RqeecayEWk55cSBQ3raz983ye6+8hQ779C9emz5hu32tX9Ms9OvedhueGqe7ejU3+oO+xfLHPFJsx57RyrYmtcs+9z3rHHmXy27o32jRGhHNG5uSlbMvJD6+vqSTk/3GhxNfuedd1rVmxCKvZ588knXFYvQUahJwAUy1TF0VkdsGhVulWmTychJbDqXEEnYAF577TU74IADNBldiDZGkRBRCAyAGzdunFvDy0HMMxgxM2SI1R9/vNVfepnVv/NdVjdpEipy3xtuWG/ZV6ZYw+23WcMf/2ANjz1mjQsXVlynrYOH9rJfXjHJ7vzUyXbOIXt12LIN2+yrt0+zMzAjT8+37d33t8ykf7fMQe8z6+SbEDWaLXncss/8t2UXPNCuww5zIx9oTLRmSGQjjbHg/tHKaNoQ0OBo8YMPPtgef/xxN9+kqk3Iiy++6H5p+nHHCHzeRKISdLtqDdqNrVu3LnoAIm+ev//YeSRC5MJpB4vNGIoNhRBtysBug6xjXVNO/aIKmC0gyo+xY8c6QRdzct0WkHaT6dfP6o6aZB3e8U6rv+xyqzvhBMvQaTSZru5a/75ujffc3VTY/sD91jizsgrbDx3W2/7n/UfbHZ862c4+eK+mW7J+m331tqmuZuS3j8+zrf2OdPNFMqPPN6vr1HSjhm2WnXOHZZ/9lmWXv9Auxeu58zvQmGjNmJSswYMHO02Ltg2JvqCVYwcXolPQ5mj0qjYhDz/8sE2cONH9nRcqlJjIBm8urc26JHMoI++fLlzkyfl5IULEQPeL119/3YX0Q4yzEKK41NfV2/CeTWkaizcutMYy654jyh/WbtZw1vJyG+aWJNOzp9UddrjVX3Dh7uGIp1lmv/32bf27c6dl5861xkeaCtt33X6bNb78smXXrCmLSE9rHDast/3mn462f3zyZDvroEH71IzQTevk7022nz063zYOoXj9y2ZDj+eVabrR9rWWff0GN2Mku+b1Nv19880Hia3b6NKli9O0ocYlbUrW4Ycf7jR6VZuQBx980PXhxsmHzu8gPERuZqlSsSj6ofNWMnKiVCxRCAsJf2ezth8bgRCiXetCtjdst1Vbwod4CeFhDWctZ02vBDJduljd+AOt/pxzmwrbz35LU6etzp333ggRTqvY5561hr/91RpuvskannzSGhcvKvu0rcOH97bffuAYZ0bOPXSvZluzeYddc99MO+m7D9kPHllm60a8o2nYYd/EcOBNiy37yq+aJq9vaLshprmmgH+jaXfs2JH6PloCrcz9h6ZWocXR5MwxQ6NXrQnx9SAHHXSQy0ELbVfKi4kTZBpkazQ0NLhi4BgTgrvkTWCMfdpJ60Ikr8Hp06e7HEvNlxGi/VBdiCgU1nA0C2s6a3sl4Vr/7r9/U6etK97fVNhOJkqfvWMIHBs3WnbaVGu8666KSdvCjPzqiqPt3k+fahdPHLZnzghDD6+bPNuZkf9+eJ2t3P+DlpnwsX2L15m8/uIPrXHa7y3bBocTufNB0Jp0YItJyRoyZIjTtiHXIFq5c+fO+wxKbO0aR5NznT/xxBNlURdSEhPywgsvuPAmre9i6jWozSB1K8S08Cbx4pNKFUpu5CTfvBAhQqG/PNdgTPtpIUTx8elYoLoQkfo6Gj7crems7ZXKnsL2Y4+zDu9+tytud3Ukw4bvW0dSYWlbdNO69rIj7aF/bxp62LG+6XfZurPBfvvEXDvle5PtK4/usMVj/s0yB/9TYvI6gvFlyz73bWuc+WfLbl9fsueIlkRTJud3xKZM9ezZ012DaNzWQCujmWM6uyXrQtDqVWlCyDXzA9ti6kF4IUNb+XJbQlGhURZcZe4U9ph5JEIkIbzKIE66v+n6EaJ8IiGLNrZd+oWoLljLWdNZ232BcaWT6dWrqY7kbW+z+n/6QNPE9tC0rUXll7Y1ekB3N/TwkavOsH8+YbR17tAkY3c0NNofn1lgp//gUbvq0Xp7Y/QnLXPAO8069mj6QWrFljxp2We+aY1z77LsruJHf/LN70Bzoj1Do2uZTMZp21BjEWtCvMamZrsc6kLqSlkPgiOMqQchpBRqWnjRYwwOURZa8REaa25eiBChvPHGG+7aDq1fEkKUDs0KEcWCjkas7bNnz666FzXTqVPTxPbQtK2777KG//tfa7j3HmukhXFEu9lSM6xPV/v6RYfa4/9xpn301DHWvVNTcX5DY9b+9uIie8u1T9qHH+hiLw75pNl+55nV7zZdjTvM5t9n2ae/YdmFD1u2sbgpSbmTz7mWyAxCg8YYhVURJgTtHFsXgkYvh7qQulLWg/jR9cWuB+EUev369dEDEJNRj3zzQoQIvcbnzp1r48eP1wsmRBkwrMdwq8s0bWcL27AQVVQfaATWdtb4aomGFJS2tWuXZRcssMYnHreGm/5ku/7yZ2t46qmyiZIM7NnZvvjWg+2JL5xpnz7rAOvVZW+Xygenr7B3/eYFe8fdPe3h3h+x7LBTmAzZ9B93bbbsG7e6yEh26dOWbSzO7+Lng/j5HX56ekxK1oABA5zGDbn+0Mxo52QKWGhdCFq9va/xopsQcszoXxxbD+IjGyGmBUdJK7SY1ryEw3K7YiXnhQgRyrx589z1FxOJE0KUjo71HW1I96F7akLKMaddVA6s7bRcnT9/vtUKb0rbOvMsy3DQtruRzx7WrbPs1FfLLkrSp1sn++zZ4+3J/zzLvvK2g21o77368OWF6+xDf5phZ93ez27v9E/WMPCovT9IW98ZN1n2ue8UZcaInw+SNB1oz5AaDw/aFo0REj1BM3MgHxNp4fkww68c5oXUlUs9CC9gaGTDF7CHgivdvHnzPvefa0qECIG8TlKxmI6uWhAhyi8la9POjbZue1i3GCFaioaQklVpnbKKlrY1dqzVn3a61b/vCqt/+zus7uijUa9lHyXp0bmDffjkMfbo58+wH71noh00ZG/zonmrt9hnbl9kx98y1G5ufI/t7J1o67t1ZdOMkee/b9mVrxR0kIG2TM4LQXv67JtQBkTUesTWhXj9XA51IXW1Ug/CcyFCAywqhK50ki1ioYc8tUWqJRKivBjVa++snvkbaucEW5QG1njW+kqZG1LSqe0DBljdkUdZh4subppJEhUlmWbZDRva/Hl3rK+ztx85wu6+8hT73w8eayeO3XsIvXrzDvvi/WvtyFv3t+u3XGjbuu+/9wc3L7XstN9Z9oUfWnZ1uoGHvk7DG1i0JxpUdSElNiFtMR8kTT1IrmlZt26duygIdwkRCr2/6ZqiKIgQ5cfo3nuFxLz1c9v1uYjKB/3CWk80pJynqLc1mc6dI6MkT7huW7v+fLM1PPGENc6fb9mI4X0FP99Mxk4bP9Bu/PDxbvDhBROG7pk1smVHg33jsW126C3j7IcrzraNnYbv/cFNCy376q8s+9JPLLt2VtRjoi1Jy0JrFhKtWF+iuhBek3KpC6krVT1ITNegUteD5JqQmMcTwrNkyZI9veSFEOXF6F57Tch8mRBRBFjrMSB+7RcFREnWr7fsa9Os8b57XZRk1z9ut8YXX7TsihWWbSOTx+DD6y4/yrX3/cAJ+1mXjk0SmGDHdS9lbOI/DravzTnB1tYlGhZtmGvZKT+zRqavr58X9Di+TiNpOmJNSJfIuhDuP7YuBK2OWWrPupCiVmWTW0aOWZp6kP322xtKL2YqVr56EO5DQlLEQEiWKMi4ceM0HV2IMkSREFFsSCtnzWftRzPo4LL1KElm7FizsWOb0phWr7bswgXWSEobNRI+tYk/ly2zRoq3X3jezSzJDBtmmeEjLDNihGUihlCnYWS/bnb1RYfZZ84abzc+t8D+76l5tnzDdn4Du2FWD/vDrIn2rlFr7D8Ommv9M7vry9bOtCxf/Q6xzOjzLNNr72yifKBTMa8HHthUd4IGRYuiSZmkHsKA3cYlJP2b+1+wILwzoD+Ip4Yb7X7cccdZxUdC2qIeJLYondv36dPnTfUgMelcQixfvty2b99uo0a1vPAIIdqHQd0HW5cOTZu70rFEseCAlLU/WWgsUkRJ6Lj1lnMsc8ghZr1y9OH27U3T2x9/rKnA/WZStx63xnnzSpq61bd7J/vE6ePcrJGfXHakHTGyj/t+1jL2lwX97bj7Jtnnpx5mq3YlUvfXvGbZF39oja/8yrIbmo+MoFPRmqoLaaNIiK8HufDCC8u6HgTDo3oQEQt5wWMY8lS/u8e4EKKsYE7I6F6jbfqa123xpkW2o2GHdarv1N5PS1Q4rPms/URD1FGzsI5bmdGjzfhC6DMQcfEiy9JJi3S37UQidrOB1C2+XmuqMxk0yOqIkJAKPXCQm3FS7CL2iyYOc18vLVhr1z85z+56dantajT72+KhdtuSwfbO4Uvsc+Pn24COW5p+aM3rluWr74FNkZFETRqQSoXWpC7Ea1Yf2RgxYkTQ8xowYIArc0D70iQhtC4kpBwiWRdyww03OA3vD+vbkqK9k+SU8QtwapCmHiSEtPUgSdPiIykKq4pQWET4oq+2EKL8U7Ias40aWiiKd12NHu32AA5BRXEg5aruoIOt/uy3NE1vv/gSq5t0tNmQofsWuJO6tXy5Nb7wgjXcfntT16177rbGV16x7KpVRZ8JdOSovi4qQnTkE6ePtb7dOtqubJ3dvGiEnTT5BPvStINt6fZEOtXaGZZ96dqmmpF1c/b+frvLElQX0kaRkOeee845Kj+NMRTVg4hyh8m5I0eObJdTAiFEyrqQDXNtbN9xevlEwXAKzen1nDlz7Mgjj9QrWmRcZGPQIMsQ8TjqKJeClV26dE+khKL2PezcadmFC92Xw9eTDBvu/rTevYtyyDykdxf7/LkH2afOPMBufXmxXf/EPJuxfKPdtGiE/W3xMHv7sCX2ibFzbWTXbfvWjPQ5wDKjz7VMn3HuALwYdSGrV6+2oUObhrEWsy4ErY5m5/k9//zz7VIXUlQTMnbsWNdJIrYeZNKkSUG3542gZV4oONB89SAU4ggRAmHQRYsW2WmnnaYXTIgyR8XpolSQkvXoo4+6utfWUmNEEVK3aFa0u2FRdtOmPWlb2SWL6Tj0pnoSvhzdu1tmKEXuu41JgaMYunSst8uOGWWXHj3SnnxjtV3/5Fx7cPoK+/PiEfb3JcPskqFL7eNj59robruf07pZln15lmV77W+DBxxnU9esdtqTtL7kvJCYlKxZs2YF33bKlClOW9P1qjV69erlNDvaHRPSHhTNhPALXHLJJS4vLTRvHgNSynqQ3CJ21YOIWObPn+9OC/iwCiHKG5kQUSrYAzjUZE+IOQwVhYORyBx0kNlBBzWlXzEUccliyy5eYtmlSxCIe2+8ebNlZ89yX7vfuL2RkqFDLROgN/M+h0zGTho3wH0tWrvF/vTsArv5+YX21yXD7ZalQ+3iocvsk2Pm2Ojuu83IhrnWZcNcO6N7V9s6u6N1H3uGZTp0ia4L6d+/v9PXMXUhaN2BAxNthpsBo8LPkGp+2223WcWaEEJLM2bMcL9ITCoWL1Tfvn1LWg9y2GGH7XMfqgcRobDYzZs3z518CSHKn5G99rOMZSxrWc0KESWJhkybNs217VVdafvgXve+fS2Ddjz0sKYZI7QCxpQQKaHt765de39gwwY3sT07fXrTv0nXwozwNWRoqkjJiL7dXKrWp88ab/e+tsz+8PR8+/vcOrtt6RC7cMgy++j+8+3AnpvcbbvVbTVbeq9lVzxs2YFH2tBuY+2lOXuHGMbMC2ktJYvXBqNM/VKICQE0ONp9+vTpUWliZWVCCP9wSkDniFBTAUQ2QlO3NB9EtDW0ZCSMGtKjWwjR/nSu72zDegx33bFo08tBgsSiKBbsBa+88orbG9Qpq4zqSQYOtAyie+IRlm1ocDNJMCSNpG7RWjk5DJGhiXx5U9Kz5z6mxP07sKakU4c6u3DCMPc1a/lG++MzC+xvL3ayW5cOtZP7r7EPj55vpw7YPUCwYbvZsqetrz1tx2W62o7ZO6zjiBMt06V1zeyjJyF1Id6EhELggGu5Z8+e7tpu67qQopgQWoj58CQvQCi8UKFDComaxHQnaq4ehGGKQoRAFITrk8ItIUTlpGRhQrbs2mIrt6xw80OEKAbsBewJ7A0yIeVJhnKA3aaibtIky1LIvmxZU6H70qVmKxNDE4FWwXzNnJmoKeHnh7k/XTpXgCk5YHBP+/pFh9p/nHeg3fbyEvvDM/Ptn1/ob+N7bLIPjFpgFwxdZj07NDQ9RP1Ws0X3W+OiByxDIfuQY80GTrBMMy3FMQo0yAnBpwyG4jU7Gh4tn8aEcNhz5513upqpz3zmMzaMBgFtaULIV/NF6aG58+S3bdmyJci0cL8bNmyIMjjN1YN07949+D5E7UJYkgGFhx9+eHs/FSFEpAl5YvFjezpkyYSIYoIJeeCBB9oldUXEk+nY0TIjR5rxhWDGlBApSZoSoif71JTMdl+Obt0sM2TIXlPSp0+LpqRbpw52+bGj7LJjRtq0pRvs7y8usu8828O+Mf1AO3fwCnvX8CV2Qr81VpdhPjv1LTMty9eszpYZeKRlBk8y6z3GMnV7a6vJGEIDo4VbOxRFJ6OtQ2pIilGczgH/r3/9a7vrrrvcvyffd5+975//uW1NCJ2xLrroIlfgElKR76Mg3D7kRdq0qSm3jry4tPUgPp1LoXkRAicJzLsJaZoghCjf4vRjhx7frs9HVBfsCewN7BGMJRAVaEoYesgXpoT6kZXelCyz7PJl+5qSLVssO2eO+3J06WKZwUMsM3iwZYYMNus/wDJ5dC9a87Bhvd3XOYO22MwN9fbMihH2r1NGWN/6Tfb2YUvdAETfVSuzO10ry1fHHpYZMMEyg44w6z3WpUp5LdzaQT+aGnNMuUNMcTqzcO64446o1xIjfs011zgP4Jnx1ONmbWlCeBIUtHz6058uWT0IhoXbhhoIJj/Sizn5fIiMDN990QnRWmiRXttq5SxE5aEOWaItoiGvvvqqm6+gg83KxhkIF+VoSiFyNSWrVu6JlGSXL3ezSfawbZtl589zXw4iEwMGOkOSGTS4yZzkHF4OHjjAGnYusX9670m2Zccuu2/qEvv9g1PstwvH2mHd1zgz8rYhy63H7nStzM5NZkuftOzSJ62xQ3erGzjBRvWqt3VrVwdlGxVSnL5t27agBlCUN3zjG9+wN954wxmJI+p22PONnWzx6jUWQ8EmhEIWIhQUbMV0xuIFCk2virmtvz1OsHPnzntEJd9TlyMRAoaVECOnXULUElz3bEJ8Ec4nTM/6yYYDrPGILlICOHFjs+IrtC17WyATIkoN9SAvv/zym9K+RZXUlLhIxxCzI45s6r7FZPZlu00J3beSLYH57yuWW5Yv/z3qSLwhoWFTn972+uuvu7WUdK1LjhplXVe+bgcffoS9sqrB7nx1qX33sSV2cr8Vdv6Q5Xb6gFXWpb6pmL5u12azpU8ZeT075z5jjRsPsUz/Q8z6HWSZzr2LUpyOCaHonYgImv7YY49t8fYc0l599dW2cuVK65Yxe0/dFuudyToTsmrHTtu2dat1CUxVLNiEUMgyfvz4khalc9uYovTcKAtRkZh6FVHbMJyQqJkK0kU1sn37drem8kV435sOvhhyhcngAIcvPgP825sQ1lY2UtZT7ocv/k1I3xsS31KS/YAvfxjUVvTp3Nd6d+5t67evV5teURL4XFB8y14hE1I709xtwsSmOSVr1zaZjmXLmyIlGxIT3ZNtgXfPKunRsaMdmcnY9ieftE5ETPr1tz69e9uOLRvtggnj7IIJw2zz9oluCOI9ry+3q59cYpN6LnOG5IyBq6zrbkPS0XaarZpi2VVT3L+3dx1mnQYeapl+B5r1Gm2ZuiZJz7obMznda3e0PJq+JRNCN9xvf/vbru6kX6bRLqvfav0yWVfr39WyttUyNvfVV+zgY49rGxNCIQu9s9MUpYekY/mi9NDUrXyREzZOcuokKkXISfCSJUvs+OOVRy4qH1JTOa1lDfTGA7NBgw7WSNZFRFTSQBDhCE0xYUNmPU8aGb42btxoCxcudAdA3Kc3JKzjDN/yXQtLAc99v1772ysrX7blW5bb5p2brXtHNSQRxWXkyJH29NNPu+Yl5RQJFKXFrY1EhMn8Oehg973s1q3OjPgv0rn2qSvZudNcYtRr06zxtWnuW0dlMratc2drmD/PzTzp2qevXTiyj1142ARrsIn2woK19uDrK+wXry62UbbAFbWfOmCV9em4dwZKp61LzBYsseyC+22XdbRdvcZY10GHWO/u+9vmzZvc+h+y1rIuhxSnP/jgg3bdddc5nTQy02Dvrt/qIiFNr4vZoEyDzc92sNmvvNR2JoSClAsuuCCqKJ0NMZkuFVKU7gtzQmCjZYFI/jsmSiNqFzpi8aGNqW8SopxA+C9btsx9YUBYm1n/EP9sMmw4xTIByahJvoMiNsGkAcKYcADFcyGFl69SdCwkJQsTAgs2zLOD+2vgqCgu7BF8jpgZEjK/QVQvma5dLTN6tBlfe+pKVu02JRS7L6eAet+fyWatK/UlFL3v8x8ybqDi0X362NED+1hmzAhbnh1jDy/dah98/g3rWrfZTui7wqVsHd57454f62A7rcOGGZbdMMNY3U/t3tnWvrjSBux3pIuUZDo1r6HR7mhyMo5otZvvsOlPf/qT3XTTTe7fh2R22kX1261DzlnVoEyjzc+azfGdxUptQjjxopDlU5/6VJRoi60HSVOUnrx/7kNF6SIEwusjRoxQsaGoGNggaEHujQcHN0Q3EEZHHnlku3Z4Q6TxXJIpK5gQ/1yZPu1rCvliHylGoW9uXYhMiCg2XKfsFRhrmRDx5rqSpnoQswlujV40fbptmD/PDh482LJr1lgjU97Xr7c3Ndwlr2ndOsvurunAoBBFebeZvbOvWUO3bra162ibv22s/XXldtu+Y42N6LHBDu2/2vp33WqZuiZL07vDdrOt08ymT3P3scb62o7uo6330IOs64DxbxqSSL0fJoTalWRxOpqa6MfkyZPdv0+q22Gn1+1wXimXgZmmtLGFS5e1jQmhOwQbHB/AWBMS2xkrFE7dePGSRel8T0XpojX4sBEJOfjgphCrEOUMnQnJ+6VVKLUcFMvSMpSOKKVMdyoU9gxSePniM0dx49KlS11qCydy1AqOGjWqoBkMKk4XbQEm5OGHHw5OexG1a1h7DBlir86da4cccaTVZTJGAt9999xjR48fb30Q9GsxHmstu3ad2fp1+6Zz7QbDUrdli3XcssWYYOammHHZbe9ptqSnMxubqNnrsMu6dd5m9R13WqbDTrMOO60PpmTHVLONL1t2dtZWN3S3tR1GWsd+42zIqEOtb58+e4rTp06dakcffbQ70KL+A63PY7+1fpsdWbc3HSyXQdZkQpZs2BuhKakJSVuUjilgkwm9bWgBe74oC6dubNAx6VyiNqEWhLomXSuiXOFQBdHO9FwMMx3cyEnHgFRizRvCjQJfvshJ5nfCVM2YMcP9TpzMYapioyMyIaItYK9gz2DviNEpovbgOkGLokl9Cmrvvn1tTWOj9Rs3zizRe8l15GKKOwXvrsh9o9nGDbZj9Wqr27zZ6pMT33PozlrZ0NFsS5MpznfLbKbB+nRosD7128wWv2z2+vM2OJO1xl11dsB+Q1xdCHVOv/zlL90BUSfL2jvrt9nYujcbo3yRkE0NWVu3epX16T+gtCYkOSk9NFqRL12qOXwUI7brVm4qFm++CsdEaCqWEOUGhYCkfcyZM8d1pELwYD6qaZgmJoqTOL7YqOfNm+cOuohqEzWhzi90HR/WY7h1rOtoOxt3unQsIdKCDtm0c6Ot3LLSVm5ZYau3rrLVW1fbqq0r3d8XrV1oq5assuyzjdapvrN1qu9kneu7WJcO/L2zdXZfXawz3+/An3u/36VDlz23b7pdZ+vcwf+M/ze36Wxddv+bv9cnpmmLyoC1Cy2KJvUmpE+fPk7j5u3IRRlCjq7euWGDPfrII3b+WWdZBpOyaZPt2rTedm5YZ42bN5pt3mL1W7ZZx207rcVjm2y92U6+9g4LJ/kKH3TG8P3t/gfu3zMBHQ6r22XDMi0bEOicMetjjbbO6mzmC8/Zsee8tbQmhKL0888/34XNYyalhxal02EldlI6b6iK0kWa1BaKeCdNmqQXT5QNLpd40SJXe8cmxqEPRrnaD1UwV4cccogbBsfvz0CsWbNmuXSzkJqtDnUdbGSv/WzOutm2YMN8a2hskHATb2Lrzi22cmuTucBkrEr8feWW5bv/20rb3rCt9VcvMTqi1HB97zUqu41Mhy7WIdPBOtZ3dAacL27XIfF3/9/c392f+/6b/859dHjTfXSw+kx901ddvdVl6qzefa/O6vz3d3+P/8Z9cKiw78/svk2m3urqmr6f4X8Z9/9lV4fJ2uv+5/5kXpJZo/uT7zW6CENDdpftatzl1pdd2Qbb1biz6e98L+v/3HubxfULben8xTasYZjtyu6yVVtW2tzFc212txm2vWG7u8627drm/t70J//m+1ub/ty1zVauX2m/uvM629KwxTbv3OTuO5f6jhnrZ91sULaHDbIeTX/u/nv/bDfrl+1m/a2b9XTWY18mjdrPnp72qvXtN8C9J/y+LzZ2tCnZjnag7bSJdbts/0yD1TXzdlGcvi5bZ29MnVpaE8LJHAUs//Zv/1bSSek4x9A0A6Is5LAl75/HU9GYaA3C6XTsCZkUKkSpYeGn685rr73m1jXEN4cr5bZRlxrMlq8RIRLEnjN79mxnUEhFa+n1ICULE0I0ZOmmJTai196OiaK6Pztbdm2xNVtX2+ptq53QS5qLVVub/lyxZYUTccWgY6aj9ejYwxoz2SYxuWubE7ClAuHJF+2nq42kMXH/yuz+nv9+ps7/l92ff//f8n0vkzARWWvcYywwEU3/JmGpcfe/vfHg3yWlaXzIXp61OLa0/J8bMllbaZttZWazTbPleW9Tn+lg/Tv1seEdBtrw+n42KNPLBm2ut7qxneyZ3z1nW7dtc1lLjz76qN1///0uBfg162ivNXS0XnWU2++wiXU7rW8m+yYTMjNrNm9eWAQ6tQmhIJI0LAR+zBDAmM5YsalYvijdC0k/KV2FxqI16NRDdx4h2hsGA2I+iARTczd69Oiqj3y0BmICI0KXQ9K0XnzxRZePjxmhq0s+RvdqapcJ8zbMlQmpYNjLN+7YYGu2rXapUHv+dH9f4/69ZuuaPd8PilwE0KNjTxvUbZAN6DbQBvJn1wE2oHOAAhwAAMFXSURBVOtA6+/+HND0Z7eBtnT+UndocOKJJ+55vpgEd5LdsN12OGPSdNK9vWFH05/u3/7rzf/ewe12JX5+z300fxsMd6XjzUDiGyJBp0wn61TXyXp37WPdO/WwHh27W/eOPaxHpx7uT2Yi+T83rt7kInRHHHyEde+09/s9OvV095F7iEMt3mvdXrOs/dId+rD3MIKDL6LRDzzwgD3yyCO2YdMme9w62eONnWx0ZpeLjhyU2WUd3ayQJgO3aOUqK6kJmTlzptsQSMOKTZcKzbuPmaru7ztfUbompYuQgW5HHHGEXijRblDrQRcSDDFpV8cdd5w67uTgU9IwJEREnnzySXd4MGHCBDdksaXi9JNHnNo2b6RoFVJTNuxYb+u2rbN129fu/XP7Olu3renPtZiLraub/ty2pqgCu0uHrjawa5OxGIjB6LrXaPjvYzK6dgyrueIw1kctabaAuHOpT/UdrYe1XVMcxHtTGtBOZ4J4zXY27HSpP/zJv5uiKE1/9/9u8b/t/rMx2+Det4Zso0sx4hCax3JfjQ1N/939t6a/7/LfS/4Mf7p/N301mQ0fnUgakGQqVNO/uIH/n4tgJP7tb+dumUij4t9NkZO9ERTSxfZGVTJWR98n96ePwNQ1fX9PmljT7et2R1j2/nxTWhwRBVLL3N/r+LPj3n/v/tP/nZS0N2a9YQeOG29dOnd131+6cKn169XPRg3br6lOyNUT7a4R6tDF/dvXEvFFAICvU045pdXrwbdBP3po8xPQk6DlfbMQND4mxMO6y9cHP/hB18kQQ8L09HnZDjavoYPdkzE7NLPTRuyuHVm+ZZu7RlrLZCrIhGAmeJBQE8JtCe+EdB9KW5Sem4qlonTRGpxgcQ2XYmiaEKHpgK+88opLbT377LOVFtgKbJREuOmexUb40EMPOSPC5ukZ3XvMnr+/sS58eJYIh316266ttmHHBtu4Y6OLVmzYvsHWYya25xgM9+c6W799rbtNKdKVenfuY/279Ld+Xftbvy79rX9XvgbsYzb4kxPhYqY2snewh7CXtOdMMn4nV9NRV/AcalEiJq+fbAcOPXDPWjW9brrTxZP2C6tHRRNzWMVnr7VrmGuS+w4xA/465rZcw2j8c84550234bDn1FNPdV9c76y9GBL+/mK2o73oegab7cg2DX9urRwi9ZVK2IYXkRciVLwRmYCQ/u+8cNx3TJQldyhh7IwRUZsoFUu0Fzt27HDmgwUcEc36VWt1H4VA6u2xxx7ritdffvll106SrmFslGP6jHEnlojdN9bmJmELD6fTm3ZsdEbC/4lJ8H/fuNtg8L09f9/z/Q15C2OLBafOfTv33WMq+HOPydj9975d+jmz0bdLX3cK3V4QkWMv0WBk0ZqJQJt6E9KnTx9bvHhx8IvGIT7aGI3cmj723RNpvBOi07k/7pvnhsZvDeryLrvsMnvPe97jjBFm5KmnnnL7Gqxatap0JoRuLeTjciIV2hmLF40XIsSRUWAeettkUXpue14VpYuW8LMJjj/+eL1Qok1BMHOKT/TjzDPPVPQjJZg2ivaZJ+KjIhMnTnRr/8heo1x3rDfWvVF1HbIQ/1t2brYtO7fYpp2b9vx98y7+3OyKlvn3nr/vavp7U8Rib9SC4uxSFlEnIQLRp3Mf69Olb/4/O/e1Pl32/tmrU++Kec8wIaSphJ46i9oEjcra7+ndu7fTrpQOhGhpri3MRYgJ4bboaK+nW4PHR9OzdqLxQ+FxWHP54rEoZl+7du2eOYItPqalhFDNGWecEZXCwpMLjWx4wxIKRZy0/VVRuogtAuYDFNPhTYhCoLMgp0akYHFqH9JyVsRFRV566SV3uDC2zwHOhFDEu2jjQtuv994c51KwtyC5qVB4R+POpj9dIfGOPQXGFBT77+10hcpN3/M/t3XX1j2moTkzwW3bCwq2e3Xu5Qpce3XqZT3dV9Pf+V4+k9G7U29XI1GtsIewl7CnDBjQ+pA2UZtgOhD4Pp2q6+6RFRs2bGi2yUYu6Gj0NANdi3lbQHdz29tvvz3o9vkej9EdoaQyIdu2bXMLPSGbmKLvGBMSc9t8t6fIk+iIpl+LliB8zgdOIlC0BaydzFfitJRDnJDUVBEfFUEEPvvss9Z5496W25MXPGiHDZyQxxQ0/ZnPFOzz3xv3/Rlul+9+2iqqUAgU02IiMA4YCG8e+DPXXOTejmhGpUQn2vraYy9hT5EJEc2BZiZdCY3aZXcnV28UYk1IqKngUD/m+aHt6Y7FcwyZ6VcIqUwIrbp48figxYh8XojQfEle4Jjp1bkmhH/HDFEUtQcnEWwYhx56aHs/FVEDkB76zDPPuHWTTmy13na3lLD2n3zyyTb70Rlma5u+d92LP7ZKhsFx3Vz7ze7WrWM369Yh8Xf//Q6Jv7s/uznT4P/Oz2AwunboqoOXEqVk0Y2IPUUHWyIfaFLWJzRql4QJiTEK3J5AQOhtibqHgqZnj8J8oPUpuyglHdKmYvnBWbHRitAUq9hICG9gMqUm9udF7cE1QsEWueRClBIKD0kRYgL4uHHjJFDaAEzehcdebL9e+AvXorTYhqCTa5nZyToyrbq+s5ta3amu6Xv8N//fm/7On4nb7W636f/eac/9NX2PFrLONDhj0WQqqjmVqVpgL2FPYW9RFoZoLToxYHfaHv/mkCqUmOhGTNTE3560QjQ+Wr9sTQgRjZj2vORB8+EMuT0FOqQtxNabJCMnsTUlovZYuXKlm5KuaJkoZbSN/N85c+bY0UcfrYGYbcyg7oPtB2f+xO6beY+tXrnaBvQdaMMGDc0xAd4UvNk8OJNRt6954E+6NgmRC3sJewp7i0yICDUGPSIiG/726OmQYnZ/WzR4SPQ9t01vqUllQmjdRfU8G6xvAdYamAJerJD8spjbQr52ZbzByssULUH7OF0jolSwLtE2luuMwVIamto+nDTiFPdF4SfpcANtoE08bKKiUaIksKfwmR8zZu+cGiGSoFW5Rjw+HStk9gegjdHI/ExrYyi4LeaD24bsQZiQmDa9hZLqOIeTPUwI+Wyhreh8KlbIC+xTqUJzKoma4PKSkQ+lY4mW4EPGlHSZEFEKOEl68cUX3TVGbYIMSPvDe8B7webPe8N7JESxYU/hc980sVuI1iMh3bp1cxoWLRsC2jg0JcuXTYSmZKHp0faxbXrb1ITMmjXLdYEopHtVsW6bb6aIn8yumhDRUktnPvTJuTJCFAPWnxdeeMHWr1/vRK86YJVfwTrvDe+RjIgoNuwp7C3sMULkwxuI7G6jSqQCIxJbuxF6+9i6EN+mF61fdiaE4hlOkkrZnje2niO34J38N9DmL5qDa5h2eBoqJYoJmwoF6AiQk046SQMIyxBO+XhveI94r3RiLYoJewp7SzLdRogkvoxhy5YtBRWQx5iQmO5bpHgRCaG2iQObsjIhOCO6UPEkY7tXtdWMkNhp66L2UD2IKFUNCJNiTzzxxJL3Vxfp4b3hPeK9Ysq6jIgoRV2IEK1NMvekadMbevvcxwq5byJ6fJU6GhKt0ilU8V2oStWeNzaVKl9RulKxRHOoHkSUAvJnER6KgFRWRITTvrbIfRa1g+pCRGwko3ukUYi5fZooC6D1S12cXpe2PS85j6FCn+mQfIXc3t+2kHQsmRDREqoHEaWYA0Ib3uOOO05poBUEKbu8Z7x3vIdCFAPVhYjWyC0s75HCKHi9XMzb+tuj8duiTW+0CeHEiKmgvoI+BF5Ywt8dO3Ys6m2BwkLy6pIGRzNCREtwWk0vd6XriWJAnRy1BZMmTVIXrAqE2kbeO97DmIFhQjSH6kJEmlkhW7ZsCW6WgUZGK4cYF3/b0PQttD1dtdqiQ1a0CVmwYIETcPxCoS10S1kPwn3zPJJF6IqEiBATIkSh0FKR2RNMQudwRlQmvHfjx4+3Z599NrhNphAtoboQEWNCunbt6rRssli9vepCeB4YEXQSmr+sTMjSpUtdqDGm6DImMpG2HsQbopjJ7KI2oRiV7iVCFAJrzXPPPefExrhx4/RiVjgHHHCAWxd4T3lvhSgEriX2GiHygSbeunuSeXL2R6nqQkLninjQ+Gh9NH/ZmBAKepcvX+66Y4VOSgdOlmJStwqpB+FFpueyOtOI5q5FvlqbMipEa7z66qsudH7EEUdo+nYVgAg48sgjnSjgvRWiENhj2Gu2b9+uF1K8CTRx/e5J5m3RppdIS0yUl9tjQtD8peweGGVC6BfMBwoTEjODI8aE4Axj7jtfe96YaeuituAa5voIrTkSIh+cDi1ZssSOPfZYt5GI6oD3kkJ13ttSnwCK6oY9hgNS1RmJ0EnmPSLb9KKV/Vy81uBgPsaEEGhA6/MzGzZssLIwISzK/CI9e/aMNiGhkYkYwwLkz6kzlgiFDUFT0kUh0GGE2RKHH364OmFVIextvLe8x6HdZITIB3uNTIiIadO7OcKEoJVDI23cNsaEcHuadqDdS3kgE2VCOB0i/xkHF5PuFGosCPnwgsaYkNz7jo2kiNqCDUGpWKIQXnnlFXdC5OclieqD95b3WGlZohBkQkRMilTnyGiFNxYh6VJpTAhaH82P9i+bSIjvKhRqFGKMxc6dO12OdSEmJDaSImoLRUJEIbAYr1ixwiZOnKiUzyqGzZf3mHxopWWJtHDgRQqwECHGoEukUcC0oJnRzqFRk9D6Dq+jabBQNpEQnginQxTuhQp9HyoKuT0vPjm5HTp0CLpvngcvfjIqExtJEbUD14aK0kUh1w9REFJ1tMZUP7zHSssShUZCyM5QcbrIR+ecyAdrDpo2tDsfdUdo5hDj4nVyTPoWz6OsTAingJgQCN2EeXE6deoUNBguNorBi5mbGhZTfyJqLwpCzqWK0kUaSM1RGlZtobQsUQgqThct0SUn8hFrFPLdR3NgVrgeQyMt/rmw55VNOtbixYudK8JQhEYrYoxFrAnxhsN3wiLMpHQs0RxKxRJpWbNmjS1btkxpWDWalsVJINeAELGoLkSEpkhldh+qx9ZulKI4HcOC1seEoP3LJhLCB4rIRigxkYlCi9LpZMKbqVQJkQ9yc9UZS8TCmvLaa6/Z2LFjtbbUIOwnvPdcA6Xsly+qE9WFiJiaji4pCshDbx9jWACtj2Yqm0gIp0F8oGLSnWKMRZpISPL2PBYRmtAojagt6HVNyzkhYqAQfePGjZqKXsOMGzfOXQNcC0LEgGYq5ZwFUbl0zFPTkaY4PcaExN4312/Z1ITQKQRXVKpBhbH1HLm3Vz2IaA5OG5gpkxxsKURoFGT8+PGqJapxscA1oGiIiIU9h72HPUiIYnfI6hIZCUk7Nb3dTQinQAxRoSaESYqhlLomRO15RQhsAuRbaoaMiGHRokUuVD569Gi9cDUO1wDXAteEEKGw57D3sAcJEWJCtkcWpofePs3UdDQ/AxWTQxXbxYQQjiE/jNBMKSMhsd2xZEJECHyA6IzlmxgI0Rq0J5w+fboddNBBLmQuahuuAa4FrgmdaotQ2HPYe0ol4kRl06WMIyHcHs1PJLhUKVlRJgRHlGZaesjtizEtXZ2xRHOwASgVS8SwcOFCJzxHjhypF044uBboGLNgwQK9IiIY9h4ySYRoLZLROTJa4W8fOjU9NsrCeseQ8rIwIaWclr5r166oIYj5DI4GFYrmYAOQCRGhsHbNmTPHdUVS9Ex4uBYoUufaUKcsEYoiISJmYOG2yGgF2hkNHXLbUMPibw+lHFgYHQkhDB1qFGJa5sZOS+d5cP+5kRANKhQtpWMJEcLKlSvdoQbD6oRIwjXBtbFq1Sq9MCIIDsCUjiVC07F27NgRnPLp53mEGBfuG03O/YfA7XkeZRMJYWhJzBwOXhTfgix28GBr+JBSbncszQgR+VA6lohh7ty5tt9++6kWRLwJ9jOuDaIhQoQgEyJi0rEgNG0KzRwzNZ2D/pgaEjQ/HbLa3YQw6M13xQqNVvAihkYm0k5LxwGCpqWL5iBMyfWidCwRwtatW11LQnXEEs3BtcE1wrUiRGuw97AHhaTMiNqiS06KFJq21FPTQ2/rtT7aHw9QCoJNCMN2fJFKaLSCdoZEQkIgPBRb8J40LXy4Y1LFRG3Vg3Ad0t1NiNag6HjQoEFRrchFbcG1MXDgQBWoiyDYexB0Kk4XITUdnVMUp4caC7RQckJ7S6D10fx0xC3VwM26mHQWnkhMq0pe1NCoCS9KzKRzXvCkqOQN48XStHSRCws/okEFxqI1OI2aP3++S7cRoiW4RjCsKlAXoW16ZUJELh06dHhTTUeMqfD3ERplQ8PHROS4PUaJWYFlEQkplQmJua2/fTLK4v8toSlyUa2QCGXt2rVuLRk8eLBeNNEiQ4YMcYdnXDNCtEZs1yNRG2QyGaddk8YALUx0pBQmJOa2ZWVCeAI8kVijEHp7XvDY+04aolgTI2oHmRARyrJly5wB8bVmQjQH1wjXCteMEMWe0SBqhw45xiDWKNSECSEdixBRbCQk9PZpIiHJ28uEiObQ/BgRCoJy6NChesFEcDREJkSEoEiIKBcT0hAZZUH7l6rFdJQJ4UMUWmhe6nSs3MiJTIhoDkVCRAjka7POUXAsRAg0MOCaUa6/aI3YYmNRO3Qo40gImh/t3+4mhEU2Nh0rJsVKkRBRKjTEUoTAifaAAQOiDlpEbcO1wjWjaIhoDUVCRGixeIcUKVOlMiHcnqZU7WpC6P7hu2PFtDktdWG6IiEiBEVCRAgISdJrhIhBKVkiBNWEiNAUqQ4pohWljISg/QlElKITYF2oiGMGB0+kVIXpMiGiFHDdMoNG82NES9DlaPXq1TIhIpUJ4doJ7b0vatuEsCcJUWnpWA0NDSVprBBkQnxVPLMWyqUmJF8kJKZoXtQG/kMTMwhT1B6ISNY3DSgUsfjrZs2aNXrxRLP4PUgdskSxTUh9idOx/L5Yig5ZwSaEXxIDUk5zQpK3j23xK2oDXw+ilquiJdavX299+vTRiyRSwbWzbt06vXqiWdiDSGdXcbooRSSkIbDjVZr75rpF+7ebCaEehGmfsRPJQ40FeWZKxxKlgFMnRUFEayAgZUJEWmRCRAiqCxGlTMfKBtRsxE5M9xPdiYaUojg9OBLiwzGlMCE+R7KQKIta9Ip8kKetCJloDZkQUQi9e/d20TQhWiJWXIravC7q6+ujZ3lgQELqjdLMCQE8QLtGQihKTz6hEELrNPyLH3rf+SInMiEiH0rTEyHRMlIkEJJCpI2EbN26Vfn+okVkQkTIddEhIrLhbw8hBjdNlAVK1aY3OBISa0IQf7yAIbfnBclkMsF5+97FJQ2OTIho7tpSJES0FgUh3VTzQURauHa4hlQXIlpCJkSEzgnJBkY2AO2Mhg41Idxv6H0nTUi7FqbzBEJNRdIohJoQbseLmPa+JTZFS9eWEM2hVCxRDFQXIlpDJkSEXBcdIiIbgHYOvbZi7xuDhPZvVxPi07FiTIj/BUPTsWLTvHjRFQkRxb62RO3B+tazZ8/2fhqiwuEaKtVUYVEdyISIkOuiLiKyEXtted0c09LXm5B2S8diUiJdHXgiocXjMdGNQjtj+e9pTogo9NoStQf1IBpmKQqFa0jtV0UxOxOJ2qBDTrF4TGQjtpg99r7LwoTwZH29RmjKFPlmoTUeMbcFXuik4eAFUgGyyIdMiGgNmRBRDNR+VRS7M5GoDTrkMQWxHbJibo/eDq0J8ZqfP0tx7dbFmoRQE4IxKMVt/e3zmZaY+xC1gUyIaA2ZEFEMFAkRraF0LJGPzG7tmuyGxfdCu2OluX3M/XqTE2pcysKExJDGhOT7t0yIaC1qJkTu9YFRVTqWKBSGojKXSCfdojlkQkQ+Mnn0b6lMRex9JyMh7WpCkk+kFMYi1oQ096YJkUTDCkVrURDWjU6dOumFEgWbEK4l1YWI5pAJES2RzYmExBBrWmINTkwKV9T9xpqQUlCo2yuVWxSVT3Ope0IAgtGLRyEKgWuIa0kmRLS1kBPVl44FpUrHShMgaPdISLnVhCRvr3QsUaxrS9QWO3bscMJRiGLAtcQ1JUQ+tBeJ0Osik6ImpCbSsUIpZTpWc7fXB1wU49oStUNsZz4hWqKUedyiOtD1IUp1bWRLuPaUTTpWqQrTC7m9PtSiWNeWqC0UKRPFROk2oiVkUkVz10VbdseqyEhIOadjeXTiLQq9tkRtoetDFBOJTBGy5ghRirUkWwITkvyZdpsTIoQQQgghhBBtakKSIeZShXuKEXbSCYMo9NoStYWuD1FMFFkTIWuOEKVYSzIlyj7yP1OKmWvBJsQLuVJOZEx7e32oRbGuLVFbyISIYqJGB6IlZFJFc9cF5HZ9LUaZQjFu6/8sRROXaBNSLoNTFAkRpbq2RO2gQmJRTCQyRWvoYEyU6trIlPDQtVQHLFWRjtXcoBchdNItWoJJ6du3b9eLJIoC1xLXlBD5kEYRoddFNkUkJOa2VR8JqRb3JyqbUrWVE9VBly5dnHCUOBCFwjXEtcQ1JUQ+lK4nmls7Ci01SGMsKtKElCq6ocJ0UQo6duxou3bt0osr8oJgZO3RlGtRKN7MyoSI5mAv6tChg14gkZdMTk1IOQ0Ir7h0rBgKHU+vdCzRHHRzKEVva1E91weiYNu2be39VEQVmBAOPUrRQUZUBzIholTpWDFUZDpWudWE5EuxUUqFyAWBqUiIaAlOrmVCRKFwDSkKIlpCJkSUQ3esNM+Nw9x2MyEIuVgTEtN1JrZDTe7pNi8835PYFLnIhIjWkAkRxTIhnTt31ospmgWNokiZCEnTa2hoiLpWYm4fk1qVjIS025yQ7t27uwU2Zmy7F38hpiVWKOa7Pd9T2o0o9NoStYdMiCgGioSI1kCjqCZEtGZOs9lsdNQs1ITE3je3Rftv3brVevTo0T4mhAfmCfBEQgWd/wVDjEEaE8ILmbxviU1RjGtL1B6sbxs3bmzvpyEqHK6hUmzSonpQOpYIuS4aGxudxo0xIaHXltfNFWVCevbsGW1CvCMLuX1M1KS5+5bYFC1dW0I0R58+fWzdunV6gURBcA1xLQnRHDIhIuS62LVbs4QahZjoRux9Y1q8CcELtKsJgRgTEmpafGQjtC7EmxBFQkTItSUTIloC4bh582bbuXOnXiiRCq4driGZENESMiEiJE1v1+7oQ2jdRkzkhPvmfkPv2+undjUhPh0r+YRCCK3T8C9c6H3z5uSKS4lNkQ81LBCtQTExdSHr16/XiyVSR0G6du2qwnTRIjIhIuS62LX736HdrmKiG7HXYNKEtGs61pYtW/Z5QiGEGgPvyGIKy2VCRAgaVihCUEqWKAQMbO/evfUiihaRCREh10VDZGesmMhJbIc2r+HxAO0aCSHUTMinFCYkX2Qj9r4VCRHNnXIzREyIlpAJEYWgehARgto4i5hISCgxkZPYDm3cN9ofE9KukRCeOHmvhUQrinXbfLdX2o3IB2k2mJCYOTSi9uAUW8XpIi0yIaI12IN27NihgZaiJCakPjC6kea+uW7R/u1amA44oZjizbY0IZoTIvLhh4cpGiJaon///m5982mnQoTir5t+/frpRRPN4vcgDbQUxTYhDRHRjTQmxO+L7WZCOE0m14zClFKkY8XeNt/tlY4l8sF126lTJxcGF6Kl2iGMyLJly/QiiSi4Zrh2uIaEaC0VK7QrkagddhUpHavYtwUCD1y7RFpKYaCDPg3kmfkOWYRlQpEJEeWAJmKLEIYMGSITIlKZEK4dIVpC9SAiNJ1qVwqjUEoTgvbv3r17cLeuGIItOU+AD1FMtCKmTkOREFHquhAhWgIhuWrVKs0LEVEbNNeMTIhoDfQTe5EQIXNCOpRROlap2vNGmRCeAB+icqkJyTU4SscSzaFIiAg9aGGdW7lypV4wEcSKFSvcNcO1I0RLcBAmEyIqNR2rRzmYED5Esd2xQm+vSIgoFeQxqiZEhMCJ9tKlS/ViiSCUiiVCUSRElIsJqY+cE4L2b3cTQlV8bDpWjLGIbbGba3AUCRHNoUiIiDEhy5cvV0tnEdRylWtFqVgiBNWEiEqMhDQ0NLhrtxSdsaJMSK9evdwTKac5IcnUMP/vbDYbfB+iNpAJEaH07dvXrSWISyFai4LQEYtrRojWUCRE5CObzb6psDxNtKLqTYjvjlUqE8JiHmNCSLFJdupCaMZOdBe1Afna9LmWQRWtQfeP/fbbz+bPn68XS7QI18ioUaNK0jFGVBfsPZs3b1btkGh2InmXRNMC0p9i2uHGGIvYiellFwnhxQoVcxiL0EJ2ZjnEdDDKPd3mRaX/tnL/RT4TwnUY015a1C4ISwqONbhQNAfXBg0MuFaEaA32HoSiGhiIXLbtnsGRNAaxTQxiTAtaKHSmEVofzU8AAg/Qriakd+/eezbl0GgDL0qosYhNmfFtV3mBgNMopd2IfPDh5trYtGmTXiDRKl27drXBgwfbvHnz9GqJvHBtcI1wrQjRGuw97EExJ9CittL0MrsjqmjaWBMSU28Uc1uv9dH+eIB2NSFDhw61tWvXuhcq1CzwIuK6QlK4vKkIjbL4FzFpcmRCREvphDIhIpT999/fpdvEpJ+K2oBrgmtjzJgx7f1URIXA3lOq7kKistmWYwq8pg01Cmjm0Hoj1i6MRajB4X7R/OvWrXMeoN1NyJo1a6JSnkixCjUtvCj+BQqB58H9J+9bQ+lEc7ABkJMrRAgDBw50m8CiRYv0gol94Jrg2hgwYIBeGRGETIhojm05BoJ/o23RuCFw0J9bU9LSY6HJuf8QuD3PY/Xq1eVhQngi/omFwC8bOqOBMCV5cWlSsjyaByGag1xcRUJEKKxdnHS/8cYbamgg9jl1nD17trs2VJAuQuEATJEQkY/tOalXsV3U8tWUhKZ+hdweCECUjQlhEY4tIA+5fYxhSd53biREhekiH0rHErGMHDnSRWcXLlyoF084uBY4dVRBuoiBAzAVpYvQdKwukUXpocYidlaNb0ZVNpEQwj7r1693lfKhxBiDWBORa1pkQkRr6Vhq0ytC4XTpoIMOsunTp6s2RLhrgGuBayI0VUII355XkRARmo7VJTISElPjEXvfaH60f7ubEHoE4+QJy8S0riylCVEkRITSrVs3txnEGGghRowY4doZqlOW4BrgWuCaECIU9hz2HvYgIUJMSOfIaEXo7WOjLGh9ND8GulQmOuo4h5aEVMmXMhJSSKqXCtNFc3ByySaguhARAyHuQw45xGbOnBk880hUH7z3XANcC6oFETGw57D3KHomKi0SsnXrVqf50f6lIsqEEI4hNBNjFGLqPAqNhPBYdNfS1HSRD4btbNiwQS+OiGLQoEEuEkxBsqhNeO+5BrgWhIgBzVSqQW+istm5e4RFISYkJrqR5r65fkuVihVtQoYNG+ZcUczk6ZjoRKGF6TEtgUXtwbAdrl8h0kRD6JSltaX24D3nvVcURKQBEVeqQW+istm+fbuLkCUnmJc6EhKT6oXWRzOh/cvChAwfPtzlh1EtHxptKHVNSHLAoaami5bo06ePTIhIRb9+/WzIkCE2ZcoUNTeoIdhbeM85CeQaECIWRBx7jxDNmYLM7s5WvvtsKaelh963nz/CkHK0f9lEQnhCEGMscFP8MqXojpXbMlh1IaI52AjoUqLcfpGGww8/3K1/GmBYO/Be857z3gsRC3sNe45MiAgxBdsjp6Xnu4/mIO2L6zHUhPBcMEesf2UTCeE0iCcUM1TQv5ilmJrO8yCMpYGFIvRa5BojPC5EmutnwoQJ9uqrryotqwZgz+K9njhxYvCEYSFyoyBdu3aNEpWitgcVduzY0WnbtDUlLT0WxERNSBUr5aDCVCaklFPTefH5pdWmV5QKpWSJQuBEiOJkpWXVRhoWXWFKuQGL6kb1IKKUnbG256kpCU39Crk9lJUJYQNetWpVqqnpIcaiGFPTOXXQLAjRkglRJEQUAtEQpWVVN0rDEsVA9SCiJbZu3fqmdKw0Remh09Jj7xutj+Yvq3QsXqSNGzdGzwoJNS2xdSH03ybn0sNAFc2CEM2hSIgoFFJzSNEhVUcHHtUH76nSsEQxkAkRLbFp06Z9hgCiZRkK3t5F6f72jDRAu5dNJIQ2c/zCnAKWamBhbCQj13T4f/uOWULkXsNcHypOF4XAoszp0LPPPutyckV1wHv5zDPPuPdWaViiEFSULloCjbopx4Tw7xgTglZGM5dqWjpan58p5ZybKBNCyIccWZ4YT7AUJoQ3JBnZiL09byAbSUy6mKgduBZVnC6KAR2TyMd9+eWXdehRJaLgpZdeckWh6oYlCoW0X/YaFaWLfKCJGxoa9jEduaakNWJun5v6FTMtPbSOpOQmBDgd4onFiHxe5FBjwW1j0qn87X3kgw0EZ6iULNEcffv2dcVWQhQCa80xxxzjcmY1Tb3ymTVrllsXeE9Du9MI0RxcS+w1QuQDTdy1a9c9aw0alu/FmJCY28emeqHx0fqljghHm5BRo0a5DlnJIYHFNBaxNR3cN88jmcKluhDREgMGDNjT5U2IQuBk6bjjjrMZM2bYsmXL9GJWKLx3M2fOtGOPPTbqtFCI5uBwgr1GiJAoxtatW52Wpc45lJj0rRjDwvMgUoNOQvOXlQk56KCD3ILN8MGYFCtMS0gefsxtgXQI3rSkcYmJvIjaNSEhAzSFCGl2cOSRR9oLL7zgCvlEZcF7xnvHe6ihcqIYsLcQCZEJEc2Rrx6kW7duTtOGgEZGK4cYC3/bUMPiO2MtXbrUaf6yMiHjx4+3xYsXuxBSaMSCbjJ8hdze37aQuhBFQkRL9OzZ012/hBqFKAbDhw+3MWPGuKJmdcyqHHiveM9473gPhSgG7C3sMew1QoSkR21KUQ/i9XIxb+tvz/WL1kfzl5UJOfDAA10PdYhJm4opOE9bF5J8LNWEiOagyKp///4uXC5EseDEaODAgfbEE09oonoFwGkf7xXvWalP+0Rtwd7CHlPKgl5Rfe15e5SoHiSNwQG0Ppq/rEzIAQcc4Lpj0fmhEKPQErEmIl+bXt4gpduI5iBMLhMiigmCg/khFKM++eST6tBXxpCawHvEe8V7JrEoionqQURLoE1zTcSmyPa8paoH8fdNNI8vNH9ZmRByZhFwS5Ysicp/jjEWsTUduVEW3zdZaRGiObiGydmVURXFBDFLbQFpGIqIlHcEhPeI90oGRBQT1YOI1vAjLrolitBL2Z431uAQZKAehCgxs9XKyoQAzmj58uUFRSuKddt8kQ8Ke2JTukRtoboQUSpYfyZNmuQW78cff1yHIWUEB1O8J7w3vEehRaBChKJ6EBFaD5LZna7HvBCMSSlNSGyqFxq/1FEQSLUCkz+LS+JEKfQk2RuFkLa+sVPPaalIEY2K00UoqgsRpQRxe9RRR7mIG6JXXbPaH94D3gveE94bGRBRClQPImJNwZYtW5yGDW0P7meKhEQ38k1mbwnf+bYtOmOlNiEUqvAEEXKhk9N5sXbt2hWUJx1zW+B5qDhdxKK6ENEWNSIjRoywxx57THNE2hHayvMe8F6oBkSUEtWDiDTtebsnIiOtgTZGI4eYEG6bO5m9JTA3PA9KLkpdlJ7ahPg2vZwkhaY8xUwy79Chg3OEhdSFaFaIaA3yHZkXwodZiFLAYn7wwQfbEUccYc8//7ybyh0a4RWFw2vNEEJee94D3gvVgIhSwV7CnsLeIkSMCekRmYqFnkYrh97WT2ZvDXQ02r4t2vMWZEIWLly4J8xTija9aSanq02viIFrjA/nypUr9cKJksIMipNPPtnmzp1rL774ojuZEqWF15ghhPPmzXOvveaAiFLDXsKeEiMoRe2Rm0q1OUV73tDIRhqDQ0oWGr9sTcjYsWNdzhhhx40bN5Ztm16KEHXKLZqDE9EhQ4YoTUa0CXQWPPXUU10KqwrWSwtrP+lX/Mlrrknooq3S/thTFG0TzYEmZV0qtD1vjxIVpaPp0fakcaH1y9KEkCpFbm0p2/QWakI6d+7spkPGmCRRe7Bh0AVCKTKiLWDtPPHEE113psmTJ++JKIviwGvJa8pri/HgtQ4t9hSi0GvPmxAhmgPNjDZFo7ZFe96YqIl/fmj7kSNH7vMcS0Xq/oSEaRBvsXUbpZoV0qtXL+fciNAAJxFs9LTLE6I5+vXr50KPDOAUoi0gN5f6BGZUTJs2zZ599llNWC8CrP28lrymvLa8xqF50EIUCnsIRoQ9RYiWZnCgTX20bOvWrU67omHLqT1vW6RiFWRCfJvenTt3Bqc8eWMR0tY3duo5BTr8TNJ0cBImEyJaggKswYMHKyVLtDlDhw61M888061dDz30kKIiBUY/eA15LXlNeW2FaEuIgrCXqPWzaAk0aTI9dP369U67hhSZA5qYlN6Q6Ea+yewtgZZH07dVe96CTAituwjZ4OZCIxZ+OmTIJHPfriwmJSvXdPBv3mAhWkJ1IaK9ICzP0DxFRYoT/eC15DUVoq1RKpZIY0LW5fy7NSgx8GMpWsOP0KBZQgjo7bZsz1twOtaiRYui2vT6SeYhdRpp0qlyTQc/T36bOtGIlhg0aJC7hmPS/4QoVVTkgQcesNdff92dSIn88NrwGvFaKfoh2hv2DvYQ9hIhmgMtiv7NjYT0iTAhaOJkOldL+IL30OhcW7fnLdiE8EQJ38REK3jxQqMTselUuaaFyAsblKYVi5bo2LGj9e/fXylZoiyiIhRTM2sAgf3GG2/oECVnE589e7Z7bXiNeK0U/RDlEAVh+C17iRDNgRZFkyYjE+siIyExpsXXn4SClueAh0hIW5mQsCS0PIwaNco5JnLHYvqv8+KxeYTAi0eP91C4PeF5vuiIglP0RqZv377B9yNqNyWrLVrSCdESFLaedNJJtmLFCnvttdecESE/l24ltdr609d9TJ8+3Qm9o446yp061+rrIcoL9g7VIYnW8IbDr1vbduvVGKPAfey///7Bt+WANRRMC5qe58d+U9YmhK4jTJ9dsGBBlHDjxZ4zZ07QbXmzcI4U14SEk9icKMDhhfRtGWMiL6J2GTZsmMsr9wZWiPaETYAiV4Q2aa+IbyIArLW0R6+Vrk9EPvj9+d3ZB9hz+P1lPkS5wJ7BwSrGWIiYKMa6deuii9LRxKGmhfuP0efcnsOeQw45pM32mNQmBI455hg3Afj44493aVkhLyRvgG9J1loP4p49e+4JEYW2L/MpWWzg/vFmzZoV9LOidiE8yokBKYaKhohywZ9IYZLZHIiKEB3Zb7/9bPTo0XuafVQbFFQSBZ8/f77bJ/hM+ui7EOUEewZ7R2jxr6hd0KYHHHBA6nqQTbtLH7w2bgk/siLUsPghimh6tH1bUdCKfvTRR7tNkY0hNNpAtIJCmZBaj7TF6bkdslScLkLghJVTVyHKDU6lMB1nnHGGW3cpbqQu4qmnnnL5u6GtzMsZfgd+F34nfjd+R35Xfmd+dxkQUY6wZ7B3CNFaVBctmhsJ6R2ZihValM5t0dqhdUpoeNZYos6su21FQZEQCgK/8IUvROee5UYrQm7LKVgIvMEYo9zi9NyOBELkwmnzK6+84q6VkJMGIdoaNp+BAwe6L06tSIcljfDll1926ym1TaRwVUqBLEWQ1L6QU8+ALJ43az2DBnWyLMod9gqEJXuHECFF6cno9boU6VKhOja24N0f3pM5hLavCBNy+OGHu7A5hSwxRVm8MKETqrktIfnY4nSf7pWMpsiEiJZAACHkONki91yIcgaRTi93upiwniLkZ8yYYS+88ILr1IMh4avcUrbYM3iufK1atcrlRPM8SeulgYjqPUSlwF7BnlEppl+Uz6T0tEXpo0ePDr4tTU5CYQ9By7M+H3bYYVYRJoQCXrq2kEMWWq0PmAF+JvS2nE7THSVkc0qmeyXrQjQ5XYRAWJ2TZa5riSFRCXCdstnwRUEhvd4R+GwoU6dOdSaENZAvNjz+bCvRRKSDtZcNmD/5YpMjao7xmDhxYtDQLSHKDTQJJqQtBZuorknp3SPSpXxRekx73jFjxgQ/vzVr1jhdzgFsWzbnKciEJIvT2VhCi9PZCEOL0/24ecKeocXp3nSoOF3EwjVDagunAjGnCEKUC2xshPj5wgSwubAe0sGHVFVO37gN6yRph2w4/ov12EeQQ4UY67gvgvRfrNc8JoaIiI03PxTZ87nSybGodNgj+HxpQKFIU5Qem52zKbIoHY0dev/tVZReFBNCAcvvf/97V9CCSwsRbgzl4nQOp9baB5j7xXxw2xgTkpxFwgbIphja6lfUdgEw+b2ccMmEiGpJMUzW37FB+agEGxspUd5EIKowIEkzwprpTQmmg3U0aT74O4/jTQx/slFiOFiLWztoEqISoVsde0WttMsWxS9K7x8xwyOmKD02yuKL0jmk+tCHPmQVZUIoYPnSl74UnYPmoxUhpwj+tqHDU3Jnkfix9TGhLFHbKVnPPfecC7PLtIpqA1OQa0ySm6WPZuzYsWMf0wFJU8Jhko+gSIiJWsJ3cmvrU2NRmXAIXmhR+vqI6edpum7BzJkz27QovSgmZMKECe40zU8MDc1BK2Vxeu4skuTkdJkQ0RqcTiCq6NpD3roQtQLXPYc2qtMQonno5MZnJeYkW9QuaN1kFCN2hgegX5kPFXpbmnykKUpH07clBecmke/ri9NDTUXsJHOMA7f1p3GhxenJ58NiQdqBEK3BQkGbUIalCSGEEEk4FGWPUPMSEQLlAXQs9KBNY9Klstls1GDD2AN3ng8aHi3flkXpUJQCCUKSCDZfnB4CLxC3J+TfGr443RfmhMAbnqwL4d+YkFAjI2obThyIhHCNCiGEEMCewN4Qeiotahs0J9ozGTXj30lTEpLOldTCLYGmJhMoZlI61zQavj3SC4tiQpKT06m7CMEXp4e0zvXF6TFtdnMjH4SmKLqkW4sQIRE+cuZj0gCFEEJUN+wJ7A0apilC4PAc7ZlMj4o1Iet3N2YKqVFFJ6Ot0dghoNl9UXpbTkovqgmhkIUpixBjFGLmd/AG0moyFN5g7ps3H8jfpGheKVkiFIYCseFQhCiEEKK2YS9gTwgdGCcEGTloT9+8A02KqYipJ1qzZk1wjUelTEovqglh4BRuimKtGKMQUxfi06lC4ZSCnLt8KVlChEDnNhYOmi4IIYSobdgL2BM0G0SEkhv1QJOiTWMiaasiIiexJgTNjnYn5auti9KLZkJ4MQ888MDo4nScXejtcY2EtegokLYuxKdoqS5EhEDRISdeXNdCCCFqG1r/syeoIF3E1IMkDURsKta2bduc9g2JnPB4hRSlt0eKYdEm95FL5ovT6TUfakJ4gUOKf8lvI3KSNBVp60JiCtxFbUPxIScFobVOQgghqg+yNmLapArh60GSpiDWhKxevdpp35AaD7Q0mjo0dcsXpbfHpPSimxB+AV+cHppixfAWXqzQFKnYNrvN1YXEGBlR2/DBZ3ihoiFCCFG7sAcMHz48uOBXCPRqofUgqyJMC7dFU6OtK6EovegmZPr06a5wK6YuJMZYqC5EtAf777+/LVy4MKidtBBCiOqCtX/RokXBw5iFyDcfJG09SP9A05L7eK2BVkezz5gxo/JNyFFHHeVcHp0j6KEdSoyxUF2IaA8IpfKl4YVCCFF7sPazB8RMuBa1TXvUg6yKMCxAQTrXNmlZaPiKNiFMfjzxxBNdNAR3FVr8TaiqlHUhuSZHdSEiDePGjXNFiaH1TkIIISof1nzW/gMOOKC9n4qosXqQVatWRdeDoKlDQKOj1dHsaPfQ6e1la0LgrLPOsmnTprnwTrnUhXB71YWIQmE4VefOnW3BggV6MYUQokYgu4O1X215RVvXg6yOSK+KrQfhuWBE0Oxo9/aiqCbk9NNPtylTpuwJC4WiuhBR7tCSkZOw2bNna3ihEELUAByosuaz9qstryjn+SCrI+tB/LgKNDvavSpMCNMWcXvkmKWpCwlJ4UpbF5I0RTGPJ4Rn2LBh7s/FixfrRRFCiCqHtZ7uQX7tFyIEtGWuKSjXepCGhoZ2qwcpugmplLoQcvQ0L0TEwmbEidisWbNkYIUQoopBv7DWUw/I2i9EKJgHir2LUQ/SMaBWo1LrQaDon6y2qAuJbdWLO+S55M4LibkPIWDkyJGuXeOyZcv0ggghRJXCGs9az5ovRAy+PiO3HiR2SOGAKq8HKYkJIbfslVdeSVUXEhrdiC1OJwePXLzk/VNkRjhKiBhYVMaOHatoiBBCVCnol5kzZ7ooiBeSQoSCtkw2MkB79ujRw7p06VKyIYUDIqMs0N71ICUxIcm6kBiRX+q6kFzTMWTIEFu5cqULmQkRw+jRo931p0iaEEJUH6ztmzdvtv3226+9n4qoMNCUaEs0pgftOXDgwJLVg6xevTq6HmTu3LntXg9SEhOSrAtZu3Zt2dSFcEHwwvvngyslQsLFIkTsNc4UdU7KhBBCVF8UhDW+PXPlRWWCpkRbojH99URqX9KUtGc9SGNjY9nUg0BJqq3KtS6E/M4NGza4f9Nuj4tCuf0iDaRkcW3HdIETQghR/iKStZ1ULCFi8YbDt3TmWiI6ovkgbWhC0taFYCxCoxvcFgEYGmkhr5OUrKTpyI2OCBEK0Tg6Zb322mu6foQQogpAC7Cms7a39wmxqMzrB02ZjHqgOdGeobVF2WzWadtS1YN4jV0O9SAlMyHUheD8YutCfMF5iCkgv2779u22cePG4PvPjXwQviJaQ9qYELGMGTPGXYNLlizRiyeEEFUwF4Q1nbVdiFjQkmjKZGpUbCrWxo0b3TUYUkPiD/pjTAiafM6cOa4eBK1elSakLeaF4Cp5k2LSqQYPHuxCY1u3bnX/pvc331NKlkgD1+BBBx1kr7/+uqaoCyFEBYN4RLOwpqsjlkgDWhJN6efKoDUpAeB7MfcxcODAoGsQrYxhoZQhth7kpJNOCm7pW0pKNoHH14VgQGLqQjAioXn2sTUdnTt3dm9WbpcsteoVaaGHPLmf8+fP14sohBAVCms4a7nmgoi05EY9+DealvTttPfREmhl7j92PsjUqVPbfT5IyU0IuWbknEFMXUiMscBdrlu3LqpVb+79k6tH+It2fELEwonHwQcfbDNmzFC7ZyGEqEBIH2cNZy3XdHSRBjQkbXWT80Fy60NaY9u2bU7ThkZOYlO9fD3Iq6++Whb1ICU1IfQeJueMXsQxkQZeUEyLn27eEgx+6dOnT/T9J+eDkDpGLYpSskRahg4dat26dXN5lkIIISqLN954w63hrOVCpAENSW2Gb2jg54XEpGItX77cadqQoYZoZLRyjAlJ1oO093yQkpsQXxdCpwly0PilQ6C3MotB6PyO2JSsfPNBlJIlCoEQ/iGHHOKmqNMGWgghRGXAmj179my3hvu2qkKkrQfJnRfSs2fPqPsYEmgquH+0sp9H0hpocLQ4Nawnn3xyWdSDlNSEwAUXXGDPP/+8+3vsYMFQY+EjG6EmJ998kJjoixD54ASE3ExC+kIIISoD1mzW7pgOQ0IkQTuicXPrQWIiaw0NDW+atF6KVCw0+dve9jYrF0pqQi688EI3L4Q8uZg2pjHzO3CZFJzHTD7Pvf/u3bs7N6nBc6IQDj30UNeW2g/EFEIIUb6wVrNms3YLkRb0JBoSLZmckh6TirVy5UqnZUMiJ/nmkbQGGpz6ZzQ52rwmTMj+++/vhv68/PLLtnTp0uBWvb7dGKGj0MhGTF1Ivvkgmp4uCqVXr17umveDOoUQQpQnrNGs1cwEYe0WIi25hgBtyfWVnBcSO2m9Jbw2Dr1/ngsaHC0+fvx4Gz16tNWECYFLLrnEXnzxRReuCj0hpjtF7nTzlvCzPkKFX775IN7IYE6ESMuBBx7oumQw9EoIIUR5smjRIrdWI8qESAuaMd+U9OS8kNbI7o6cxKRicf+hNUxobzQ4WhxNXk6U3IRcfPHF9swzz7h8N5xYKOTShZoQcjnpRBA6jyRf5IPoCxdMSPRFiJYaMhDapw+3aoyEEKL8YG1mjhlrte9mJEQa0Ixox+TAwNh6jXXr1jmNTKfWEGLvH+3N/T/77LNOk9eUCTnmmGNcuzG6ZMXUhTAxkmmQ1JO0RprJ50RauG8/H8SndekEWxTK8OHDXV6nitSFEKL8YG1mjWatFqIQ0IwcmvuoRL55Ia2xLCJywn2jjdHIMc8R0023rqOPPtpqyoTwolIE89JLL7miGMbYhxA7vyPWhHD/RFCS0ZkRI0a4N0spWaIQWIwOP/xwNyNHRepCCFE+sCazNrNGqyWvKAS0IpoR7ehBUybnhYSwLDIVK+b+0dwYF+pB0OLlNoyzTZ7NRRdd5FKy+OVjBwuG3h4TwuISanKAC4e8UA+mh97J6pIlilWkzmRSFakLIUT7o2J0UUzQp2jGZIH4woUL9zElrbFlyxZ3QB8aOYlNxeI5or2ffvppp8XLjTYxIWeffbZrP7ZgwYKodCdeaHobhwyA69Spk7sQYqIhhNB48/1pNaciXDxcREIUo0id60spfkII0f6wFqsYXRQLDrHRjD6ihpbk+oqZD7Js2TJ3AI6GbQ20MDUoMSaEa37+/PluFh5avCZNCL2TzzrrLJeShamgiDwEpkGStxkaDYlts0s4i59JRkO4oLgPFRWLQuH6Ouyww1yRuiapCyFE+8EazFqsYnRRDNCIaMVk1AMtiaaMScVaHjHvg9uSZUFtRwhobTQ32hsDgqYuN9osOYyKfCrzCQulGSwYAu4Ttxcj+EaOHOkuHJ8ywxuM8Ynp5CVEc1D42KdPH5eWJYQQon1gDWYtVjG6KAY0WkIr+hkzaEgfGQll+/btJZ2Szn2jucuxK1abm5ALLrjAdcgilBQj8GPmdxBx6d27d1T6C3l4tC5LtubNrRURIi2EaSdOnOiu4ZgonRBCiOKA5mANZi1WMbooBrmGg4gDWjKmK9aSJUtca18/ab0l0MDUK8dOSUfbvv76606D17QJGTZsmE2YMCF6ejonF/X19S7CEUKsgcAl8tySdSCclPB4MUXuQjQHoVPSsrj2lZYlhBBtB2vulClTXDes0DQWIVoCbYjpSEbV0J1oyZjuU4siIidoUorgOWiPGYCI7sB8x9SptCVt2quLSY0vvPCCc3SMtQ/Bz+8IPUXmouC+/fyP0JQsHCMuFlioKBRSQbEoFlxjSssSQoi2T8PitDkmTUaIlkAbohG9qUU7oiHZ50NBo65du9YZlxA4vEcLh0byuG+09vPPP192U9LbzYSQk/bcc8+5k4mY1BSMRej8js6dO7twWEw0hAWKQqJka16lZIlSpWWp3kgIIUqP0rBEKUBfJg0H+zoaMjk1PeQ+Bg0a5DRra6B9MTkx9UxobGpOMCHlWg/S5iaEdCza6HIyERNlYDBLTEG7NxChKV++NW/SuOBOk+17hSgUTk1ICSA1QGlZQgjRNmlYXbp00UstigKaEG2YTG/KbdXbGr6IfWRg5IQDcjQw0ZdQ0Nh0g+Nn+AyUK21qQniDcGS0C2NAS2jKVD6T0BKErMjZW79+ffBzy23Nm699rxCFwnXGaYm6ZQkhROlQGpYoBblteNGMREJi0v3QpmjUwYMHBz9mjMlBW6OxX3zxRae5y7kZQ5vPb+cFYXIjLwrhpVB4AwithswYoXiHSEaMgaDVGl/J58Rj4iY18VqUIi0r5voXQggRBmurumGJYpMvgsG15kc7hOKL2Dt06BA8jySm3oTnhNYo1ynp7WpCzjjjDPeiTps2zU1xDIWOAAxaCc2nj03JSs4M8eBSea7J9r1CFAqpAb5TnDqwCSFE8WBN9R2BlIYliglakIPwZBve2Nkg1HfE/MyyZctcC18/jyQEtDWpWBTMo7nLmTY3IYSwLrvsMnviiSdcuCim5iLXJLTEwIED3Z8xgxEp+qHtmheG5ODxPaVkiWLDAkROKUVjIQ0XhBBCtIzvBsQps4YSimKDFuS68m1487XqbQ0/bsJr1NZgfESMyUFTo63R2GjtmOntNWFC4P3vf789+uijzlEm53O0Bm80pmLbtm1FryMBTk0ogk/+jE/J8u17hSgWFIsRaZsxY4ZeVCGEKJDp06e7NZW5TEIUEzQgWjBpCNCKmImYiFtMfce2bducaYkxIWhqtPVjjz3mtHa50y4m5Pjjj3cV+8wMWbBgQXDKFOlYdNcK7azFG0duXEgdSfJnkiaEx+vUqZOmXYuiQz7o0UcfbW+88cY+7aGFEELEwRo6Z84ct6aG5NoLEQOlAGhBNGHaVCy0KJo09GcW58wjaQ20NJoabc3PHXfccVbutIsJwQFeccUV9vjjj7s3JabmIiYlizoS3jwK1EIhRYbOAr6zFs919OjRNm/evOD7ECIU8jyJiNDFIiTCJ4QQYl9YO1lDWUtjcueFCAUNiBb0EQw0IlqRTlmhUN+BJg2der4o0uSQGpaMgpRzV6x2NSGACaFyn37LOLdQyPX0fZpDU7JiUr7InyPtK2k6MD4YpZDHFCKWUaNGuZAupxfqxCaEEOGwZrJ2soaylgpRbNB+TCBPdqhCI6IVY2ouYlKxNu6eUxc6UR3Q0vzcM8884zR2JdBuJuTAAw+0Qw891J599tmomgvecLpWhUZDeMMJ0zI5MhTcLvfv07iYaMmFENPNS4hQWJDolkWR28yZM/XCCSFEIKyZrJ2soZVw8isqDwwHGtBPN6fuiMNttGIoaFC0aGhkY9GiRU7rhpocNDSpXhgQaqLGjx9vlUC7mRD4wAc+YI888og7yYjJiY9pv0trM4bDxcxk6NOnj/u5pNHZb7/9nMtUgbooBSw05DLPmjXLhVSFEEK0DEW7rJnHHHNM2XcBEpUJmi/XcHBw3qNHD6ctQ+FnuD3aMnQeyYiIVCzKDvg5NDXaulJoVxNy6aWXul7GvHgxUQY/v4PwWAixKVnJOhBvdCjywQVrwJwoFZhfooPPPfec5ocIIUQLEP2gHS9rZmiOvRCxYB7ofuUL0tGEvj4khhhTsXbtWqdxQyeqAxoaLc0MPrR1pdCuJoSCHgapUBtCJIQXPYT6+vqoiejk7VFEFDOThJ+h6GjdunXu3ypQF20BCxsLD2mKiroJIcSbYW1kjWStjBWDQhRSkI4mRBvGzu7gK3SeyMKFC53GReuGgHZmfMVTTz1lZ555ZpR5qWkTAlTwP/zww274S0yUwc/vCBn0Rlu13GLz1iC0y2PkFqhjZnznLCFKVR/C54GpvypUF0KIvbAmsjayRqoORJQSf3idW5CONoxpA+1rStCirdHY2BjVxhe4PZ8HUrEqYTZIWZmQt7/97e4FZFZCTEoW6VG4xNBaEpysH+ISCj+D0fERGm9m5s6dG3wfQsTCdU2OM/nOs2fP1gsohBC7YU2kbo41MvSkWIg0oPWSHbDQgmjCmOibH8od+jMrVqxw1zUaN8bkoKHR0pdccolVEu1uQijuufjii10YiTw48jxDT4y5OEJTsigIYthh6KBDIM+UnuPJepL999/fPeaOHTuC70eIWMhBZdAQ09TpLS6EELUOayFr4rHHHhs1pVqIWNB4aL0xY8bs+R5aEE0YU4OE5kR7hhaxL1y4MLiNL2zZssWliD355JPOgKCpK4l2NyFA+Gjy5MnuRY8pIKcnOFMsQ9rvpq3pwHTghn1aDMXDXIAxz1OINHCtHXnkka4HvmbUCCFqGdJiWAtZE1kbhSgldENF63nDgQacM2eO04SF1JS0xPbt253Rjpl34w/i0dCVlopVNibkLW95iys0e/XVV6MGF/bs2dN1LAj9GdwlYs4Xm4dAHp8v+vHgjJPGRIhSQbSP643e34q+CSFqEdY+CtFZC0OLe4VIC9oOjZeMgqABSa2Kuf7QmmjO0PqOBQsWOE0bE82gjAHtTC0JWrrSKAsTQr7d5Zdfbk888YQLLcV0scJh8iaEGIJ8xeatQW4eM0KSdSBDhw51F2PMbBMh0nLQQQc5w007ypBGDEIIUS2w5tG2nDWQtVCIUkOrW647tJ6HKAhakALwUHwRe8gMm2yK1r8UzlPCQCrWe9/73qhi+XKhLEwIMGL+sccec1GHmGgIF0lupCJkGnpoO2D/MxgO2rIBFyEhOS5KIUoNYdyjjjrKhWpfeeUVReCEEDUBwmzKlCkuEsIaqInooi3g0Bnd5w0H2g+NGWMQ0JhozdCfWblypcsIShqf1qAsgMd59NFHnYauRMrGhFBoNmjQIHfaiwkJPfHlIiF/LjS6QS4pJyoxNR1du3Z1M02Sj4EjpnvRpk2bgu9HiLRwknL88cc7Mzx9+nS9kEKIqoe1DnHG2qeJ6KItQNOh7dB4SVOCBkQLhoLGRGuG1i/NmzfPadnQSAsaGa1MlJC5IHSLq0TKxoRwwvGRj3zE7rvvPucGYzoC4TQJn23bti1VsXkI5AaS9uVb/NKZg3oRRUNEW8ECeMIJJ7jFStedEKKaYY1jrWPNixF/QhR63aHtfPc1NB9iP1kfkqampCW2bt3qNGzS+LQGTZnQymjmf/3Xf63YKGHZmBD40Ic+ZFOnTnUhLHoeh9K9e3cbMGBA8JwRCosI74amcAHFQiyEyRa/Y8eOdRdnSHcuIYoBJyu07n3ttdei2k0LIUSlwNrGGsdax5onRFuAlkPToe086FG0HxowFLQlGhMzE8KCBQuchkXLxpgloi3Tpk1z2rlSKSsTQjoWM0MeeughNzMkJtUJBxlaoJ6v2Lw1cJm4WsxRsl0vA2V0Ki3aEhZDQq8vvfRSlJEWQohyh5RT1jbWuBjhJ0ShoOXQdD6FyrflRfvFRBp8TUnIMM1sNuu0a0y9CdoYjUxbXmaDDBw40CqVsjIh8PGPf9zuv/9+V2wT08WKfD3eTEJaoSlZLHZ04wqFLge422Sq2AEHHOAuuJhCdyEKhRzQCRMmuLaVMS2nhRCiXGEtI8d94sSJbo0Toq1Aw2E40HQetB7fD22x64vY0ZahpmLZsmVOu8Zc715zkoqFZq5kys6EnHbaac7VPf30084dkvMWAsU8vOmhUQnCa7zpMdEQXO24ceNs1qxZe6IhuGZ6OscOQRSiUChiO/DAA91nRQ0ShBCVDGvYU0895da0kSNHtvfTETUGGo5p6Gg6QOPNnDnTpWaFRDSS9xNTxD43pxNXa6CJSd/is4KGPfXUU62SKTsTQsgLZ4fD4yKg+CYUUqxWr14dPF06t9g89DF89wT/fMePH+/StEINkxDFAlPMKQ0LUmhjBiGEKCdYu1jDOFhhTROiLUG7oeGIgvi0KzQeUY2YNCm0JJoydKr6xo0bnWaNeYwlS5Y4beyjIJVakF62JgQ+8IEP2IwZM5xDjClQ9x2rQqMbOF5+JqbAlzaBmBeiIR7caKdOnaLmmwhRLA499FB3LTPsU0ZECFFJsGaxdrGGHXLIIe39dEQNgnbr3LnzPilRaDy0XswAQLQkERAfTWmNuXPnOs3KY4dCtg8/R5Tmn/7pn6zSKUsTQjHau971LlegzkTImAnqOFA/wCVNsXkI/MyaNWv25OJzPzjo2bNna6K1aHO4/o488khXTMfkVHVrE0JUAqxVrFmsXaxhlX6qKyoP5m2g3ZJREIq+0XixbXnRkqFF7H4w95iIx0ALo4nRxu9+97uronFDWZoQIMz0wAMPuP7JMd2neFOo0QgdRkjuaW6xeWsQ9SAtCyeabPvrQ2VCtJcRIadVRkQIUQkGhAgIa5amoYv2wmfCJNvpEgUhRQqtFwoaEi0ZWsTuhxn27ds3+DEwOWhimjdVekF62ZsQBhThEB9//PHgyEaaYYT5is1D4GfoxOXrTygqSnM/QhQLrkE2c0y4jIgQotwjIIgwGRDRXqDV0GxEQXxhOJoObZecFRJyPxxKowFD2/LGDDMENDAzSx577DH3OMcff7xVA3XlfLL76U9/2u68807375h6i9hhhLnF5iGQ94fjTdaGUFTH4hraJliIYsNCOmnSJBkRIURZGxAOS1irQrsCCVFs0GpoxWQ3NjQd2i60u1WyiD104nnsMMOkBr7rrrucNq6W1MWy/vRffvnlLjfvlVdeiarb8MMIQ9O4KDYnepI0FCHgRgnl+VkjPC7uWdEQUQ5GhFNGFasLIcqtCJ21SQZEtCf5WvCi5dB0yVkhIfgidrRkCGjT0GGG/rlStzJlyhRXi3zZZZdZtVDWJgQn+pGPfMTuvfded3oSMx2aC4Lbhxa15xabh8BCSj/oZAcvLizfdk2I9k7N6t27t4yIEKJsDAhrEmuTIiCiPUGjkQGTbI+L0EfTEaULJbaIHU2KNg1t4wsMPyRyghZGE8dEacqdsjYhQPENw9gIm8VEKmi9S3pU6M/QIi232DwEHDN9oX1HorRRFSFKZUQofCOPVAMNhRDtAWsPaxBrkQyIKAfQemg1H71Aw5HylCYKgnYMLWLn9mhTNGoomCM0MFq4WgrSK8aE4FLPO+881ykL50reXUy6FN2qQn8mt9g8BFoL0hM6mfqFI+a5xkRVhChl16yhQ4e6Jg+6JoUQbQlrDgaE/He14RXlck3mRi/QcGg5NF0ovog9dMAmWhRNGjOQc/PmzU5PooHPP//84LqTSqHsTQhQhEMYiu4AMe16u3fv7hY+XGRMsXno7T04Zzod+A5eRFViojBClNqIHHbYYW7hIx0iJq1RCCHSQhoJaw57JENVq6WYVlQ2PnrhhwR6bZkmChJTxI62RJOiTUOZM2eOe3733HOP08LVRkWYkDPPPNMGDRrkFjNSn2La9XJREWILnSSNUKMNGr2YQ8E9k0M4b968fR4Xh6yTZ1EucG0ffvjh9swzz+zpjS6EEKWANebZZ5+1CRMmRJ38ClFK0GS50Qu0G/NqQiedpyliR4PGpnvt3LnTaV6yGKhVOeOMM6zaqAgTwunJv//7v9utt95qDQ0N+4j91uDCGjhw4D7F4yHF5jHREJ7f+PHj3WPw/ABnTL7h66+/Hnw/QpQaInTHHHOMvfTSS1FRRSGECIW1hTWGtSbZ/lSI9ua1115z2sxHL3bt2uW0W3Jiegj8TEwRO7fnMB1NGsrcuXOdprztttvss5/9bFVGEivChMAHPvABlxv3wgsvuBCYF/shYBAwLqERlNxi8xAGDx7sCo2Swo77Ie9Q6S+inOBaPfHEE23GjBnOJGu4phCiGLCWIPJYW1hjWGuEKBfQYkRCktEIhD7aLeZaRRuiEUOjGnS24nFioiANDQ3uMPz555932hcNXI1UjAnhIiEa8ve//90515jhhf369XNtAUNPfilM4mdiTopxqIcccogzSFxwQLcELjoWZQk9UU5wfZ988sm2cOFCe/nll62xsbG9n5IQooJhDWEtIZ2ZtYU1RohyM8ikYflOVmg1NBvaLSbKEFvEjgHxujKU+fPnOyOC5v3c5z4X1U2rkqgYEwIf+9jHnGiaOnWqO2mJEU6YAS4cDExo9CRZbB4CoTbMTrIgne4L1JcsXbo0+H6EaAtIPTzllFPcyRCt/7x5FkKIGFg7nnrqKbeWsKawtghRTqDBqMtIdsRCq2EO0G6hxBaxozm5PZoylMbGRtdC+NVXX3WmHu1brVSUCSGX7lOf+pSrDeFCoNVZKFxk5ACGRlDyFZuHgKPGvPjC9g4dOthBBx3k0l502izKDT4TnFoyufXRRx8NHu4phBDAmsHawV7HWlJNg9REdYD2Igpy4IEHuusU0GhoNTRbDGhCTHZoETsRDT4T1CaHsnjxYqdxb7nlFrvyyiur2tRXlAkBWpQRCSFXbvr06cFpToTacK78XIgZ8LdPFpuHwDAmcguJ1CSLgXmeMSlkQrQVDGs69thjbfjw4a6f/7Jly/TiCyFahbWCNYO1gzXED34Topzw2gst5kGjodVi5oKgBdGERDVC0rfQmrFF79ls1j03ojTTpk2ryra8FW1CcJMf/vCHXbcAnCyt1kKhPzNTpAlvhUDnA/pIx0ZDDj74YJc25oce8ph8jwsrNB1MiLaEBZJr9IgjjnCFcCyAqmMSQuSDtYE1grWCNYO1oxo794jKB83FgTURD7QYoM3QaFy3MaAF0YShRexoTR4T7RnK8uXLnbZF437kIx+xAQMGWDVTcSYErrrqKpd/yhucJhoSKrC8MCM3L6Y2hDQuHDfPzcNFyMVL+E+IcoUTTVIqyGF98cUXo6KAQojqhzWBtYG9jLWCNUOIcoXrlHSooUOH7vke6fFotND2uoAGRAuGGm5v1GOjIK+//rozSNRponWrnYo0IVw8l112md1+++0uH5WR9qEw3RJnHFoojuPlQg2dM+IhXIejXbt2bbPds4QoRwhPn3baaW4YE0OSYgZ3CiGqF9YC1gTWhlNPPTUqlUWItiZf9ys02YoVK6IKxQENiBYMjYKgMdGaMXNyVq9e7aI0aNvLL7+8JmbsVKQJgS9+8Yv20EMPub7PyYhDa1CAO3bs2KhoCBcwtSQxc0Nw3nRhSLbnpTieRTvZPUuIcoR2gPT5pxnEI488YqtWrWrvpySEaEdYA1gLWBNYG6q1ZaioHnz3K18U7tv0os1iGijQVQsNeOihhwZHQYia0A7Yp4CFMH36dGeQJk+e7DRuLVCxJoSOU+eff77deeedbiAgrQFDGT16tBv+EjpEkC4IXMTJYvMQCMOtX79+n8fJ7Z4lRLmCYSffm44ihIa5/lUnIkRt4QtlWQNYC1gTWBuEKGfydb9Ci6HJYoYGAoYCDRg654PHIVq43377BT/GunXrnJa966677G1ve5v7rNUCFWtC4Mtf/rLdfffdLiUrxiDQoo1oSEw9CXmAtFrDvIRCp5DcYYW48tzuWUKUK5z67L///nsGGz755JPuVEgIUf3wWeczz2ef+R+sBSpAF5UAGovmQj5l0EdBSMOK6eKG5kP7hRax8zhoSzSmbwccwvTp052WRdOibWuFijYhRx99tAsL33PPPa7+YtOmTcE/ywXCxRXajpQQNAV4MalfQNiPNK7kTJPc7llCVEqdCCkYDz/8sAsZCyGqFz7jfNb5zPPZZxCvEJWA735Fxkxy9gZaDCMdA5oP7YcGDAFNSRQEjRnzfFesWOEMyEknnWSTJk2yWqGiTQjgGP/xj3+4Nz02GkK4i04EodEQLmjMBOG8UAhb5w4r9N2z+J4QlQKnR0cddZQz0c8++6wGcApRxYPd+IzzWeczr/kfopLI7X7FNY2ZQIvFpBKi9SgwT5qZkM8O0ZaYKMjMmTOdhkXL1lIUpCpMyBlnnOHe8AcffNA53ZhaC2pDaDeIYw6hW7duzkXHmgc6HBDCJqTnwQCRN6gTZVFJcB2T50pnHBbnJ554QvVNQlQJ7J98pjnN5TPOZ13pV6KSQFOhrZI1FWgvruPYblMYCnQi2i8EtCRGhJ+J+cwtXrzYHnjgAWd2Tj/9dKslKt6EcGF95StfsVtvvdW1Q4vpPEXXAt50HHLoPARqPGijFtMtKN+wQkLcPParr74aNMFdiHKC0DQipWfPnq6TRzLdUAhRefAZ5rPMZ5rPdmj6iRDlAjrulVdecXrLd29Dc6G9+F5Mpyo0HoXioUXsPHaax5k1a5Z7jgwnRMvWmumveBMCF154oZsqSf4qEy1jCmeZG0KoOXSIIAMHabuWLDYPgUE53bt33ydljKgKF2vsDBIhygHCzXTKmTBhgr388sv2wgsvaAaOEBU4S4HJ53yGJ06c6D7TMakkQpQLaCnSrZKRCDQX2is5rLA1fBE7Wg/NFwIaslOnTlHDO7dt2+Y0K9oVDXvBBRdYrVEVJgQh/9WvftX+/Oc/u6mWMcXjfg5IzFR0Co7I3wstavePg1hjErUvSOd58z0+JGrZKyoVjPyZZ57pTnOY3RM6CFQI0b7wWeUzyykun2FNPxeVChoKHYem8pEItBaai+/FRBj4XMQUl8dOU/e8/vrr7mfRrmjYmAhKtVA1vzET1OnjfN9999mCBQuiWukyRJDQM8NoQuCUiDoUnHJMKhXdRXDopGD5KAozSHDoU6dODb4fIcoNQt/HHnusG+b00ksvKSoiRJlHP4hc8lnlM8tnV8MHRSWDhho2bJjTVIDGIjULzRXT2Q1NhzmgpiQ0IkhKFY+BlgyFbq4LFy60e++91/0cGrYWqRoTgoP87ne/azfffLNzsNOmTYuOhhDKC03l4sLmYg0tavdQB0Iv6GQOPZsAxVQqUheVjC/8U1REiPKPfhC55LPqG6cIUal4/ZQcTIjGIhIS2tnKg6bDwIQOGkQzEm2JjYJwiL1582YXBUG71mIUBKrqt37rW99qhx9+uGtzRqpUzBR1JmHiRkPb/Ppi85iidqD+hA8Krl1F6qKaoyJc54qKCFEeKPohqhEOg8kuwWwki9HRWBzwxrSXRsv5Vr6hpgDNiHYMnaYOaFM06h133OFSxc477zyrVarKhOBCv//979stt9xia9eujU5xwlSQyhU69JD8WYqWcMExcPJEyzcVqYtqhc8ifdppoU3OKyevixYtimrmIIQoHD5zfPb4DPJZ5DOp6IeoFshgwTAkhxCirdBY1CvGgJZD04XWRqEV0Yyh09Q9aFM6b91yyy32ve99r6YjkVVlQuD444+3t7zlLe7N5U2mX3QotCbkog0tbOfCwWlTkBTTkcsXqdNNIVmkThRHReqimujatasdd9xxdthhh7mFlxkEpCMKIUoPnzU+c3z2+AzyWeQzKUS1FKOjmYpRjO4L29F0oT+HVkQzoh1DQZOiTf/+97/bOeec4zRrLVN1JgS+853v2D333ONyX1l8Y05fCcPFpHJRDE8oLqYGBShi4qQ4WaROizYVqYtqgwWdhfqss86yPn362COPPOI+l6Hd6IQQcfDZ4jPGZ61v377us8dnsJZPXEX1wTWOZiq0GN3XaAwePNhpupiUqpiaE54fmg9tShOlb3/721brVKUJITT23ve+1xX8EC6LaRnKKRFhPS7IUDhh4jFiBhj658lJVfL5+SL1mAiOEJUAubl8Vk477TRbv369Pfjgg3uKAIUQhcNnic8Uny0+Y3zWYvPihaikYnSu70KL0dFu6LDkfbUGGhGtGBNZ5DEoRqeB0vve977oNK5qpCpNCFx99dX25JNPunxB3HJMK10mZFJTEmoEuAhp54YDj3kcX6SOM84tUo+9LyEqBdphn3jiic6QEEFUipYQxUu9Qhzx2eIzpqnnotaK0dFUMaab+0JvoeFCDQXakEhI6DR1/zg8P0ZBPPXUU06jiio2IRTeffzjH7c//elPtn37dlc8FApTL7m4YqaiM9SG24ZOXk8+TwqoyEX04K4Jm2uSuqiFFC3SRUgbYVOhg48QIhw+M3x2fOoVbXeVeiVqtRgdTRUDmg3tFjqYMDlNHa0YChoULYom/cQnPhFdNF+tVK0JgS996UuucIgFmuEzMa10x4wZ44rN6SoSgp9+zuOlKVLnQ6VJ6qLW4MSKEDhpI6RO3n///W4z8ZFBIUR++IzwWeEzw2dHqVeilorRaeRTaDE6Wg3Nlixsbw00IT+HRoz5rGJciLjw3NGmogZMCMVK//Ef/2E33HCDK9SLiSwwKdOni4QW0BZSpM5gnHxF6ly0ypkX1Q5pIyeccILr3kOx3wMPPOBOqJSSKMS+8Jngs8FnZPny5e4zw2dHqVei2vGF52gjNJL/HtopTTE6Wi2mGB0tyM+gDUOnqQMGCSPyxz/+0b7whS9EzRSpdqrahMBnPvMZ1w7tmWeecSlPMekew4YNc63XQlv2FrtInfuiNiU0GiNEpcPGcuqpp7qTKRZuzRcR4s3zPvyp7ymnnLJHjAlR7XD9o4mIgiSL0dFObVGMjhZEE6INQ0Fzoj2ffvppp0XRpKKGTEj37t1dAdAf/vAH50RnzZoV/LOE9bjY582bFzzboBhF6j7ywtAcNhq+F5PiJUQlw+eORZ6hatRmcfJEvjudUBQVFLUG1zzXPp8BPgt8Jvhs8BlRy11RS2lYaKGJEyfuqcXwrajbohidbnNowdiULwyIj4KgRalbETVkQuBf/uVf3AU6efJkl5LFxRwKIW5y/2LSogopUsdlJye9s9GQ4jVlyhQJMFFTkKNLmuLZZ5/tJtg+//zzruMdnUlkRkS1wzXOtc41z7XPZ4DPAp+J0Px1Iarls4AGInWKVCwPWgnN1BbF6GhAtGDMYEK0JlFLtCca9EMf+lDU86wFamIl483/1re+tadTFkXqMYwfP971do4pUieCkqZI/YgjjnDhRXJ9PThvpWWJWqW+vt6d/iLAyKV97rnn7LHHHnOhdJkRUW1wTXNtP/roo+5ap7bxLW95i/sM8FkQotZg9g0tcZNpWGgktBKaqS2K0bds2eK0YAxoTdKxbrzxRjeYUPN6atSEwLve9S7XEu3uu+92F1ToRPRkB5+YInWiF2mK1AnV8Vgvv/zynsci9EgIklBkTBRHiGqCzwG1UwgyIoScjHHCxAalAnZR6XANcy1zTXNtE/ngWifXXeJF1CpoHiIeuWlYaCS0Umx6E5oMbZamGD3mc4jGRGveddddLlKDBhU1bEJwvD/+8Y/dpEpC3FzAMaeobAiE4WivVuoidcLtuWlZhCAJRSotS9Q6bAT0aEegER7nM8mEaELsMW24hSgHuGZJ2aDbFdcy1zTXNte4zIeoZVpLw0IrpSlGR5uVshid5/3SSy85rYnmvPbaa1W/VesmBOi6c/HFF7sidfpKxwww9EXqCJ3YInUiGDEntc2lZfH4uGtOy4SodUhNoS0jw9mIkFA0yMyE2C54QrQHvmsO1+z8+fNdcS3XMte00q6EaDkN68gjj4wS9mmK0dF67Cs8fsxjoS2Z3YPWvOSSS1wXO5Gf8EbHVcIPfvADdxHiromO4K5Dp15SpM6ETi7kk046KeiipPCJCxLzEloEBYQYcetEbNiYOBHzaVk4bEKJoR8kIaoZPsekWhKtpIsQHfAQd3yPU2XNTxDlBMKGyAepGn369HFiivQQdboS4s1pWEcdddSb0rDQRrH6p5Bi9Jg9hMMFnjca84UXXnC1yKJ5aioSApiOr3/96/ab3/zGFakzxTIGDAxF6osXL46apE6BEj8Xw6hRo9zFr7QsIVoHEUfY/uSTT3ZfbCK0NX388cfdyZnqRkR7wbXHNci1SME516a/TrlmZUCEyJ+GNWTIkD3fJ6sETYQ2igHthQaLLUbn52KL0dGUaMtf//rXriVv8vmLN1NzJgQ+9alPuUgDBUNEKej/HFukjjGImaROYRIRjJg6FKVlCZEOf8J87rnnuo2MwsL77rvPbUR0ORGiLeBa45rj2vPTmc855xx3bXKNCiHC0rCWLVvm6jliu2H5+gw0WGwxOlovthgdTYm27NGjh9OaomVq0oRwUf3iF79wYTIKlWLNQZoidfJ92ZBiZ4cQcvRpWcluWXwQMULqliVE8/BZ8e19EX6kwlAAzPRaNjRFR0Sx4Zri2uIa41rjmuPa4xrkWgxN/xWilocSonH8Z4UUJyIjadOwuM+YyehoOzQeWi8UNCQ6jWJ0tCUas0OHmqt4iCaTreFG+5dffrkrcvrsZz/rwnQxnRbYWEj1OO2004LzBbk4n3nmGTftlknuofAWsaExQZ38SA/5hhiT4447TuF8IQJhQ6IQmBMrOhPR9YRTsr59++pzJFLBGs0sJ05wSbuisJyUEfYU1e4JUZjWefHFF12K0/HHHx+1RpNORctrNFJoFCSNtgP2FGpIfvjDH7q0f2aDiNapaZvmi9S5cMgTRIyEht7SFKkn07JCfyaZlvXQQw+5kKTPMSRUyffY+GJzJIWoVRCFzF7gs7969WqX+8vGx2efYna+YqbiitqFLotcP3xxIMQecswxx7gBg6rzECIODoYwARzU5qZh0aCn1GlYxSpGj8mSqXVqMh3Lw4bhi9S5iGIHCyJiaMMWOkkdCAlyEltIWpZvP+rTsghdxha9C1HrsKENGDDAfYaoHeGziah8+OGH3UnYG2+84abrCpGEa4Jrg+uEL64Z1mauIa4lrikZECHiQMPkDiVE66TthkUHutg0rEKL0dGSaMrkTBPRMjWdjgWcXnHRE5m48MILXQiud+/ewT9P6B33i3Pv0qVLu6RlYULWrFnjelGHdn4QQjS/JvC5ZkMiUsKpNtFHvmI+r6J6QJhwIsuXvyaImMVEz4UQ+SEt9rHHHnOfq2QxetqUcw6HOSAgfYtDgdDDBTJLOEiIGUxIYyMOrW6//XZ76qmnnGnSmhBOzZsQ4AJ629veZj/96U9dihVGJOaCf+6555xBIAwf+nMYF07QYtKyAGfPBwUT4t22/wDzYYuZBCqEaP3zRioA4pMmFnQ88YZENSTVX+PhjQeihvWV9511V3UeQhQPDlIx9xyk+kGdrLvUgpCGFfN547P7xBNPuHQqan1Df+bZZ591j3300UdHPRb6kagLnbDuvvtuNxRbhCMTkihSZ9DZZz7zmegidcJwGAMcPKdjIezatcsVTJF7GDPEEDihJW+RSIr/cLJJ8mFImhMhRPHgRI41AlFKQwuijr6PPTnH6oRS2bAmE6X27y9drvz7yzBBnW4KUXy82Tj99NP3RJrpJEokAy0Wqqk8pEpiCtBHoWsydbWk4/MzZJrEFqP/6Ec/cuuEitHjqenC9GIVqXPRktJFGI7TspC0LD4ctG0kvYqNjhPWUPhQslk+//zzLpLC8+Xn/TR10smYgyKEKB6sB7Rs5AuBSgokgpXNi4gJqQR8/vliBoRSI8sb3kP6+hPh4ouTWA51EBOchvbr10/voRAlBLOBZkG7eAPC55I0LDRYrAHhMJa5PKRhhRoQ0rB8S+AYA8KhFDUsaEayYWbOnBn1XEUTioTkGJHrrrvOtVgjQsEHIwZMAalRxx57bHCKFRcw3SBi07I4tWPyLhsmM0g8GCGf5iURJETpISTP5sfBgBezrAOIWJmS8jUdmEjSL7x5JJrFYY6KyoVom88jaVN0IsQAJIu8OdwhrSkmusw6/Pjjj7tD2FKnYXmtRYMhRjxceeWV9u///u9RPy+akAkpYpE6aVmkWNGNgbZwpU7LwrxgRDA9pAu0ZE6EEG0DGxsHAckT9qQp4U/WFaX3lH49p2gUs5HPdPCFAJLpEKLt8WYDneXrQEh3xRRgQGJa5Po0LEwBaV2lTsNKFqM/+eSTrsZX63k6lI6VgIvo5z//uV1wwQV2wgknuJAgF3RoRIGLGAeOQ+ZUrdRpWXxIqUPx+ZQ8HveHo8eIsMl6cyKEaBsQtXw2+eJwIdeUsFGSAkD6AWlb/kvGpDDDQZQDccCffNHRijWRBgIcytC0Q6ZDiPYHs0HdRtKAsCaiudA0sQakLdOwfLoYazmT0e+66y4ZkAJQJCQPV1xxhc2ePdu+9KUvuToRvtoiLYsN9OSTT44eyIMJ4QN14okn7vlZCqb4UHpzIoQoH/i8JgUzf6euxBsTDAlfHEpQp6DT+r3rHa8TooPXzL+GGA5eJ16zpKnT2idE+a19PmPED1nmc01Egc8rzXViNRBpWHzmk+19S5WGNX36dFf/8a1vfcsOOOAAu+GGG6J+XuyLIiF5+MlPfmIHH3yw684AdJuKceZEQ+iWRRer0LQsUqd4PEKK48aNC34sPqw8HqFBPhjeMPHhxqnj2JPmRAjR/rDZ8kX0M5nO6U0J7WE5SKBwk88u5gRD4v/0Xwz1qrbPNgKBIWUYDf+FyfB/8t9pvMGajNFgjUWAxJxmCiHaHj67aBIyNJLaCO3C4ULMwa0HzcTaiWYLBW3GGkv739gUeJ4rJmrevHmuJa8oDJmQPJCzzeTL973vfS6ET2QjJi0LYeA7VcWkZXECwGkAOcukEIRCGhluntMAn+/cnDkRQpQniGhMSdKYEPrHiCSFOBsof3KiyLqBMfGmhi/uJ/ff5dKkgt8HwcBz91+5/+b3pLaN5+7NFusaByv8HQNSLr+PECIcbzaSwwc5LJ01a5abERJbV4GRIDLBQWtoGhaPTxoWafB+Mnvo2kUXLJ4v+pBUrBidJvKjdKzAtKzx48fbQQcdZDHg+NlMY9w9H0YcNqYn9gNJjiU/z8/6U0HSFRhkGDM5VAhR/rC2INj5yifm+TdfwGbra8Zyv0hJyP0eIt+vWblrF6eZ/k82Zp5H8otU1Nzv8cVzIsIBrE/5zBJ/Yqr40twVIaoHxDu1r5gN3/CH9YkMEPQVg6Jj68D42dGjR7u0qBBYs5555hmnrSZNmpQqDeub3/yme75KwyoOMiGtuGxCfAwypHsC4j4mLYsNl7SsmG5ZfEj4oPoC89jcSJw6IgDT4X+WQlg+PElzIoSofpKRB/7MZw7yGQd+zq8p/gtYU/wXYFZaMzT+y5uMcorMCCFKj+8cSkaGNxte67BmHHPMMdFahwwV1qqk1mmNBQsWuK5cpGHFREF8Nyx+h5tuusndh6IgxUHpWC3ARfbb3/7WLrvsMpeWhcDHjKRJyyIK4aebtwQfJtKyfM5hzOkAP0uIMbe2hJMCTiEoYI/5wAohKhvWKtadkLVHCCGKjW+eQ0olWsRDlglppRyOxmoStBEtt2N+ljQshgumScPC8DAHijSsm2++WQakiOg4qhXe9ra32dvf/nb71a9+5dIeYqdiUtROjjd9pP1pYmtwUkgUhP7VOPAYfJiR0CEfUuBDShs6nj8ds4QQQgghSg2aA+2BBvGGAW0yY8YMp3Ni087RRGgjdE5oZgfaCw2GFkOTxYDm4/mjAd/xjnfY+eefH/XzomVkQgK7ZTHUhtQqLshYY0DbODrecB+hEDkhkkH0hZBjbGE99Su4d5+DzQedYjBSsyhsFUIIIYQoFWgeohZoD2820CRoEzRKbEoTWghNRA1ITI0rzwMNFtrC14PWQ/P5bqfXXntt1M+L1pEJCYD2j6RlEYpjyA4fIJ8zHQKhP04B6MhA+DEU8idJo2CGSCxMX6d+hTCoj8AwqIuTB4YpUu8ihBBCCFFs0BhEH9AcaI9kahbaBI0Sg49moIkoDA8FzZW2GxZaD82H9kMDogVFcZEJCYQQ3Dvf+U77n//5n1RpWUzs3W+//fYMMgzB14csX77cFVTF4H/WTxL1EI7kBIJBPRSrCiGEEEIUC+ov0BhoDWaCeNAiaJLYgYQ+moEhIA0r9GfRWkRO0F7J1uchkC6G1kPzvetd77K3vvWtUT8vwpAJiYBQHCG5tGlZDCTkw0M+Yyi4fj50REM2btwY9Xi4/nwpWJxAML+ERSLUEAkhhBBCtASaAm2BxkhGO9AgaBE0SUxEwg8JRAOhhULmrnnQWjTnQHvFgLZj3MGDDz7onvePf/zjqJ8X4ciEtGFaFh8GQpM4+iVLlgT/HCcJY8aM2dN+N4ZkChY5kYARomsX8P3QgnkhhBBCiHygJdAUXmP4iAWpWXw/mZoVUweC1kIDJaMqrYHGQmvxmDEtwZNpWOg9pWGVFpmQSAjJEZrzaVmE7GJgCBe5iXwg+flQCGtS2EVuYyyEIakvYUiPT8GiNzdDFGndSztfIYQQQoi0oCXQFGgLNAagOXxqVmxKFNBWF+0TMywabcVoBLQWmitNGtYvf/lLe8973qM0rBIjE5ICQnOE6AjVEbKLTcsaNmyYDR8+PCqSgpMnFIm7X7x4cfRzptMW3SSSKViENVksaOdL3YkQQgghRCxoCLQEmsKnTPnULLRHbCE6oLPQPGif0GiGj2SMGDHCaa20aVhLly61H/3oR9HPWcQhE1JAWhZfhOzSpEkx/JAPS8zcjm7duqWKoiRnhfgOEz4FixZ5fJ8PbWzNiRBCCCFqG7QDGgIt4dvuJrVGckZIKBSw8/NoHrRPKEwzR1uhsWLwRew+Det3v/ud9e7dO+o+RDwyIQWkZRGq+8UvfuEMASHDGAhVkqtIoVZMFIJBO6NGjUplfHwKFh+yOXPm7Pk+JwZMZiddy88VEUIIIYRoCTQD2gENgZZIpmYxZTyZmhUK2gZTg9aJGS64bNkymz9/vh1zzDHRj+lHKPz85z+3Sy+91M4999yonxfpkAkpMC2Lgqtbb73VXfgxxeZAgRbFW/TNpqVdKHR6IDSZpqicblt0pyACgxnxHHzwwdajRw974YUXoorthRBCCFF7+NQntAwaIl9qFpojTXF7bFcrNBR1IBMmTHBaJga0G2MQ0HKkZCkNq+2QCSkABu789a9/tZtvvtmFADETW7ZsibqPkSNHuhkiMeK/0KJywqWYHxYPPzyRUCl5lzx/fhchhBBCiOZAK1B4npz74VOz0BixE9GbK25vDbQTGgothaaKAc2DduN3+fOf/2x/+ctfnLYTbYNMSIHw4fvOd75jP/zhD10LXMKSsZGEww8/3LZv3x7VaavQonI+qAzw4fnu3LnTfY8OFERJOBEgsiOEEEIIkQsaAa2AZkA7AFoCTTF69OhoM5CMoHCfMfNA0E5oKLRUDGg1ni/aDQ333e9+12k60XbIhBSBT33qU3bCCSfYz372M3cKEBtJ6NChg8th9DmUoRRaVE6ok/Z1/LxP6yKMyXMhP1Ids4QQQgiRW3uBRkAr+Ba4aAi0BBoidjhgbnE7zX9CQTOhnXguaKkYGGbI41533XV24okn2ic/+cno5y0KQyakCBCG/P3vf+9a5955552u6DtWwBP+o5sDIUU/yyOEQorKm0vBYtIpHSkofl+zZk3UfQohhBCiOkETYBbQCGiFpKBHS6ApYjthNVfc3hpoJTQTEZDYFCo0Go2B7rjjDlcTcv3110c/b1E4MiFFgqgEtSH/93//ZzNnznQf0phicyA9in7a5CfGFJxTEEZhWJqicp+CRWg1mYLFHBNOM55++mm17hVCCCFqHKIGaAK0ARqhpdSsQovbWwONhFZCM9FFKwa0GY+JVrvhhhtcLUia+hVRODIhRYSUrK9//esut5AOC0QSYswELpxiLk4T+HDE/Bx5jHyw0hSVEz6lvoTwKmFWz5gxY9zJxFNPPRVtqIQQQghRHaAB0AJoArRBbmoWGiK2K1Vzxe0hoJHQSmimmJ/D9DBAEY2GVrv66qvt+OOPj37eojjIhBSZz3/+8y40+Ktf/coVO1FkFQOnCOQ2MrUzpuVvsqicr1g4TWAR4HQgmYJ10EEHuZAri49miAghhBC1BXs/GmDQoEFOE+SmZqEd0BCxpI2goI3QSGil2MgLRewYkF/+8peune9VV10V/bxF8ZAJKTL0tv7DH/7gXPp9993nPigxxebAlE4+1PS83rBhQ/DPUSDGh/KVV15JVcsxbNgwO/TQQ1241T+uj85w3+Rsxg5IFEIIIURlsmvXLrf3owEQ7T7qgEZAK6AZ0A6xoFFyi9tDwECQhoVGip1ojhZDk917773uT1Kx0Gyi/dCrXwKIHNx0003229/+1hWpk5ZF+7gY+FCPGzfOffhjfpbHJl+TcGOaFCofak2mYPEhZbo7cOqhYYZCCCFEdePnbwAawAt2n5rlU7ZjIY0KjYJWSRa3twZaCE10wAEHRBsfUr7QYmiy3/3ud06jxTy2KA0yISXitNNOsy984Qsu55CBgLH1ITB+/HjXqo6fjRH+LAoM7eHDyilGLAceeKANHjx4nxQshgYRMt28ebNNmTIl+ncRQgghRGXAHs9ez57P3u8HB6IJnnzySacx0AqxoEkwIPx8jIFBA6GFKCBHG8X+LhygEr1Bk/3nf/6n02ii/ZEJKSFf/epX3Yfs17/+tQs9Ev6LgbAnbfD40BK2jPk5wqYsGi+//HK0YfApWBSZJY1Mp06dXPE9Ic3YWhchhBBCVAavv/662+vZ89n7AS1AChadrJKpWaGgRUgzZ55HzM/zc2ggHh9NFPu4pMejwX7zm9+46M1XvvKVqJ8XpUMmpIRgAv70pz+5D93kyZOdcI+t1eDDStcJCrHoaR0KYVN+Lo35Sc4Q4c9kClbXrl3dojRv3jwX1hRCCCFE9cDwP4rG2evZ85OtdNEWaWaBeDOwdu1aVwcSU4uB3li6dKnTNLEDCVevXu2K0dFgHMqiyXxUR7Q/MiElhrzFP/7xj65bFl0gYms8oFu3bu7DxzCgmCL3zp07uzAqH/yYTlsen4JF/mcyBYtTEL5Paz0GNAohhBCi8lm0aJGLgrDHs9cDez8CHi2QTM2KwXe04ufRJqGgedA+GBe0UAxoLVK/0F5osBtvvNGGDh0a/dxF6ZAJaQPOPfdcu/LKK+0HP/iBy0nEiMQWd/fv39+1/uUkghzNUOgeQUEZ3SRWrVoV/dxpf0cPbRYCFiZPv3793KJAlGfFihXR9yuEEEKI8oG9HLPB3s4e72HvJ6KAFohtiQvoBzQIWiSmoxVahzoQtA8aKAY0FloLzYX2+vSnP23nnHNO9HMXpSWTVYVxm7Bz5047++yz3YnC5z73OTcd/Ygjjoi+H/Ii+UCfcsopUYsBodWpU6faySefHN3WDiiuf+yxx1xB2NixY/d8f+HCha4lMGHb5KIlhBBCiMqA1G2a0VCrMXLkyH1Ss8imQHOkGUbIvLQnnnjCGYmYyeZoJjQHHaz42Vg4ICUCcs0117jIzf3335/KQInSokhIG8HF/7e//c19KP7617868R5T4+GhJ3eXLl3cqUKMf8T00NaORSYmkuJh8eEUhLoWwrUeFiva7HG/5HoKIYQQovIMCHt50oCw17Pns/enMSBoDQrZObyMMSBoGzQOWgfNEwv1qjz3v/zlL05rob1kQMoTmZA2hImid9xxh916663uA09UIzZFys/s2LhxY3SHKkzI8OHD3WPH1qUArfEI0xKuTaZg0QGMKarcL6ceQgghhCh/ODzEKBx88MH7tMxNpmax98fCXA40AZqDmWcxoG3QOMnZJKGgqcj6oI3wbbfd5jRXbCqXaDtkQtqYww47zE1Uv/baa10khJzF2MgE7fIoVMftxxSG082Cx2f2CIsD4c5YBg0a5Nr3kqdJjqiHFC1OO/jgM9FUCCGEEOULh4ZoAeZ90LrWw97OHk/KOHt+LGgLjA1aA80R00kLTYO2oYDdtwYOBS2FpuLnf/KTn7imQDy+KF9kQtqBiy++2L74xS/at7/9bfdhZxGIHSrYq1cv1yaPvMeY6AOLwVFHHeU+3LFDED2EawmRssgkWw5z2kG0RUZECCGEKF84LGSvZs9O1nmyp7O3s8ePGDEi+n4bGhpcRyo0BlojxoCgZdA0aBvfmSvG+KCl0FTf+c537Etf+pJddNFF0c9ftC0yIe3El7/8ZTexk6IpujfQ9Sq2R4CfWIrzp3VeKIQ3CbEy+TS2tsQzevTovLUgfkFjceP3EkIIIUT5wN7MHu0PDvPVhrDHx+KHEXKoGjsLBA2DlkHToG3STkT//ve/77QVJkSUPzIh7QSnA9dff737kDLFk/zLNFPIWUQIl7JwYCpCoUiLjlacPJA/mcaINFcLQloWoV0ZESGEEKL8DAh7NHt1a7Uhofip5miB2Fa+aBd0BFomtn4kOd3917/+tRtmiLZKM0xRtD0yIe0Ig3f+8Y9/uLSoe+65xw3yiR3+xweNGo3u3bu7UwRCoaEwMAgjwmOmmaqeWwuSNCKcZrCQ0ZpPNSJCCCFE+8JezJ7M3swe3VptSAxoCAYSoilihhGiWdAuaBi0TKx5oAvW7Nmz7e6777YXXnjBbr/99uihhqL9kAlpZ6ivoIPD73//e3eKQHpUbIcpoinkUAIhyZg6Dz74LBosIMwSSUNztSB+QVONiBBCCNF+oCvYizk4TBqQ5mpDYkA7oCHQEmiKUNAqaBZI0wnL15Awq+x///d/nZZKthgW5Y9MSBlw4okn2nXXXWff+9733EkCJxK0t4uBECTdJOgOwQcyJr2K4YV028IELVu2LMVv0FQLghnJZ0T4Pqcvat8rhBBCtC2kWvkakGQKljcgubUhMSxdutRpB/RHzCBkNMqUKVOcZuFnGSiYpgUwmok6kJ/97GfOBInKQiakTPjQhz5kH/zgB11XBxYGcjNjUquAbhR8CNPUlzCVlE4WnEokO17F4GtBcg0Hi5tP2dJAQyGEEKJtYM/1qVZJo+EnmfuU6jTQiYoUKLQDc9BiQKNQx4FmiW3FizZCI6GV6DLq9ZOoPDLZNBXJoiTQUeK8885zJwNf+MIXXFgxtsUdMOTnsccec0XjsfmdzC6hyOukk06KOtVIQljWh2aTQ47eeOMNt/Dw/X79+qW6byGEEEK0ju92RbF5Ugt4Y4IpSRsB8fUlaQrZmeMxY8YMO/nkk6Nb8fpp6kxC59CWn6cehGwQUXkoElJG8CH6y1/+4iIZN910kwsz8mGNhQ8l3Slee+216EJ3FhOfVpW2xa6PfOS27+XExbf1TU5cF0IIIUTxYI/17XaTBgRjwv6eGxlJ2+I31oCgSdAmpGDFGhBAE6GN0EhMR//zn/8sA1LByDqWGUQO7rjjDvcBHTVqlHP9FHrF9s0m0kChF+lVhDpJtwoFA0HBGIsMEZE0CwWLExEc7iMZ+WDBwmwxzOjII4+04cOHR9+3EEIIIZrvGPXyyy+7blPJQu3mIiOxBoQISG6L3xBIv6KQnBkiabIhqFmdNm2aPf744y76QVetZLaFqDwUCSlDWCBw+RSrc2JAC980dRoYlwkTJjjBH1sUzinJfvvt5xYb0rvSkIx8kDvqYVFkEWIxShPpEUIIIcSbIe0ZA8IemzQg7MH5IiMxoAU4WGSQYbLDVghoELQImmTw4MHRj83zRwuhidBGaCRSzkVlIxNSppx//vn2wx/+0L71rW+5Oo206VFEUzitoIiLWpNQiGLwAefnMSKbNm2yNBD5OPTQQ93jJ1OwWIToCkZeKIuKSpOEEEKIdLCHspfOnDnT7a1Joc/eyx7MXpxmECGgAdACaIJY8Y/24PHRIvx8LGgfDBRaCE30ox/9yN761rdG348oP2RCyph/+7d/s8997nP2jW98w7XBYwHYunVrqtSoESNGRLf+xYgQleE0hceOMTFJODXxERnCxB7CsRSm+dBxzHwTIYQQQjTN22APZS9lT02mOvE99l5Ss9iL08DejwZAC6AJYprloDk4REWDpJmGvmXLFvfYaCC00FVXXWUf/ehHo+9HlCfqjlUBpxsf//jH7a677rJvfvOb7nTjtNNOi25p5ztKEE6lzqNjx45RP0seJsVg/GzMMKIknMYQTuUUJTkUCWOFQeJ+GbqoLhdCCCFEWFdN2uRiFKi/7Nq165s6UpKaNWjQoIIMyLBhw1wkJcaA7Ny50/0sdaVpOn3u2LHDHnnkEVu+fLl96UtfsgsuuMDNA4m9H1G+yIRUAPTEfve73+1a51599dWuyPyUU06JFuuclhASxVTQPStmOBA/M3XqVHcaUYgRoVsWz4F6k+SJCosNRWZAUX6syRJCCCFqieb2TfZr9AKTzNnr0xZvewMydOhQO+yww6LEv5/lwRR0nlvsNHTMFaMGOLz8+te/7mpZ6IQVO9RQlDcyIRUCIc1zzz3XRQ2++MUvuogIi0uaDzaLSpcuXdzpSMzPeyPiIyI9evRInVtKeBYzRYjYPwcWLbp55TvREUIIIcSbMwjohOnFuU/NopCbfbSQfRqtQAfL2AgIz4GsB3QLWiHNgalv5c8wwm7dutm9995rnTt3TvGbiHJGJqSCYDgQERDCqp/61Kfc4kD6UpoQJyaADzaLV6wRofiNPFOK39K07/ULKKckGA2eg1+kWHymTJmyZ5Jq2vsXQgghqhHSqhHpaAHqLf0eziEjB3nsrxxSpj3I4/59DQgRiFgDwnOglgONkCZ1nPQy5on89Kc/dVrg0UcfTT08WZQ3KkyvIPgQchowe/Zs+8Mf/uBSo6jViIVFgcWBiAMf9piCcBYjFiVfrJ62fS+LIwV0LJoYIowRsJgeccQR7v4JxaZpTSyEEEJUI+yJ7I3skclMAn+4yJ7K3prWgPg5IHSxSmNA0BRpDQigadA2N9xwg9M6aB4ZkOpFJqTCIDfz/vvvt8mTJ9ttt93mWtbxQU1rRAi5UrAea0So5/BzRNJOVqc4nmgHqWEsqr7zl79/CthZVClKE0IIIWoZhvWxJ7I3Jmsq2TvZQ9lL2VNjGs/km4SeW7MZAhoCLYGm4DmkMSBoGTQN2ubhhx+2Bx54IHpQs6gsZEIqkAMOOMCdDtx8882ucwTpUQsXLoy+H/IrMSIsPAwOjJnV4Y0CLf8wIqSKpYE8VmpT+vfv70KuSUPDQCWmqpNbSoGdEEIIUYuwB5LmxJ6YHDbInsneOWDAALeXpi3cZg9nL2eOSKwBQTugIXguaIo0tRtoGLQM5gNtg8ZJ09JXVBYyIRUKtSB///vf7ec//7k7fWABSA4DjDUiTDONNSLAiQwLIotX2tQpFjvCypy+PP744/vcD3UvdNYgREtRvGaJCCGEqBXY89j72APZC9kTPeyV7JnsndSGpG1dSxE7ezit82MnoXsDgoZIa0DQLtwHWuYXv/iF3XLLLU7jiOpHhekVzk033WT/8i//4lrYYQjIBU3Tjo8uFixmRCSoyYhdzAihskhSZF5I+LS5+yHESytCX8iuFr5CCCGqGeo8iH6wP2NAkq3xSc3ivxUyBb3Q+8GA+E5caA/SwdK07Ud7MM8EHfO73/3OLr300uj7EZWJTEgVcO2119rXvvY1+9a3vuVORBhmmKYtH3mlnIYwbZWQb6wRoXUvJxmHH364ex5pae5+GHxE0RuGhAVZnbOEEEJUIzR94eCNvZyoQLLOg9SsV1991Q0AZIhgWgq5Hx8BIRpDG940hfDs5aSUz5s3zw0jZCL6lVdeGX0/onKRCakSmB1y/fXXu57aFK+feuqprgVvLJy4YET69OnjjEjsHJJVq1a5hZO6Fb7Shodpy0ctCCYk2aHDD2EiYkJEhHkpQgghRLVAMxaiE7n1Gex/ZAosWLDAjj32WFcHkgbuZ9asWe6LA73Y+yFFzKdgYUDSREDooEUtC4eO6BcyOjhIFbWFTEiVwKLCh/ihhx6y//qv/3L9wwsxInTI6NWrlzshiTUiFLjRw5zc1dgpq0l8CpafZ5I8CWJOCWFgUtDIY037GEIIIUS57ONvvPGGS00iLXrEiBH7ZAL4+RsYh7RDCP3QYeZw0MUqtv2t74Lli9ALMSDUgvy///f/7Mwzz7Tf/va32sdrEJmQKoKJ41dccYUT7hgRJpJjRNKESbdv3+6MiA8FxxoRZpBgRIiopDEyuSlY3F/uwksu6bPPPrtn8nrariBCCCFEe+/fHKyRTUCUI1nb2VJqVuxj+AgGBiRZYxIzB4QDwrRF6KR9Jw0IQxWZe6b9uzaRCakyGFR02WWXucWMIi8iIkxZL8SIsFDFTlb3P48RoYic1oFpF04/pZ38VZ4Hv1MyaoMRARbuNKcyQgghRHuBMGcfI6Kfu4+RmoXwz01NTnOgR4ozfyL8Yw1EchI6BqYQA0K6NfqElO8//elP1qFDh+j7EtWBTEgVwiLznve8x+WO8kEn35OISBqB7qew+q5UsacVfuHjftIuXMk+4lOmTHlTChanO3yfhS33BEkIIYQoV5qL6CdTs/g+E9LTUuiBIHssBgQTkXYSOgeGSQNC4xnmgaQ9nBTVgUxIlYLof+c73+kKzwh5+tSsNCaA+2IB47QCkR+7aPgc0rQh4NwFm7A00ZDmFuzcXFohhBCi3GiLg7VCU6M5SMQkkWWRdhI6BoSJ7vw+V199tZtF8re//U0GRMiEVDOcfrz97W937e8wIkRESM1KY0RYgFiIMCSEcmOjKoUWw8WErvN1FRFCCCHKAZ9izN6c2+XRpxhzG/a3NKnUxWoSw3N5+umnnWYggpImbQodQgSEWhdqVRluzDBCzfoSoEhIlcMicvHFFzvx/9WvftUNI0xrRHxbPqIRaSIahbYFjC3i4/lx8lNICpgQQghRLBDlZAb4ZivJeVc+NYu9kYh+IcXaRB24r/Hjx9u4ceOiDQjPj1RsPzcsTXMZHwFhlggGhJSy2267TXuy2INMSA3AQnDhhRfa0qVL7Stf+coeI5KmRsT3KadFLhERQryxFGvQEs9l9uzZNmPGjLztDDEpLH50EynE8AghhBCFwqEZReYIe/asUrWd9wN/J0yYYKNGjYr+eVKniYCwpzJJPc1z8QaE3/m///u/3V7/j3/8Q81jxD7IhNQIpDBdcsklLgcVI+JTs9KEer34nzlzpotCUG8Sy7Jly1zaFKc0hQw1bG2wE+FuTBOPwWMpPUsIIURbwl7EYRn7JqJ+9OjRJRnAy32xL5NtwH0NGTIkdQSFug0iKGn1hjcgTEHHCBEBUfdKkYtMSA3BycQ73vEOmzNnzj41ImlzTpna+sorr7hQLTmnafJVSZvyp0KFtOnzKViEtnk+yXxTHocOXfyeREW0EAohhGgLEOREJdh/MQbJekhqLPlvzN3ITc1KU7fpo//cV5q6S9K2SblOG0FJtuH1NSBEdagBUVq0yIdMSA3mo7773e92XaR81yyMSJrJ6smIBv3LKThL83w4daHGg4WzkCI8v6AzyZXFHnOTXKDpNsKAJIxIctaIEEIIUWzYb0i/8t0ckwdtmAX2zl69ernU5EIKtRH+HMJx/xSQpxH8HE5SLM/Pp43GMEMk2QWLzIS//vWvKkIXzSITUoMg1i+99FJXl/G1r31tT/vetEaExZT8UdKhyGeNTXmi4J2ICoaG9K6keYgl2ao3N7eW/0Y6Go+FYeK/p53kLoQQQjS3p7EHIexzowrJWsZi1H+w/3KQR+oVjxW7p/l0MFKXqfNMu/9SyJ40IDwXzQERrSETUqNQuH355Ze7yIGfrH7yySdbjx49UqdD0QrQD1xKsxCSE8tJTCGh4OTCzAmUT89KngwRKeEEiqJAoiJpzZcQQgiRGw1g72GPJaqQTLHynbFIvyJaX+hgXd/khUwEDgHTHAD6eSR0vEybDsbv4w0IB5v8bjfeeKPmgIhWkQmpYUhRuuKKK1wUg4UDI8I01LQLIyFhjAitcdNMVwcWMeo3MCEsrIVEKtgEfEvh3A5ZpH+xeNNFBJMydOjQ1I8jhBBC0IGSPcfP5Ujugb4zFvsre04hk8IxDxzYUZeJ0UnTHIb9n+dDBAMDkjYVmv2VVr6knhEB4b5uuOGGgmo8Re0gE1LjIMY/8pGP2F133eVqROjjTW1G2poJUr3ITQXuJ02eK4si90EBOWamkFzZ1jpk0RaRkyBMD11LlJ4lhBAidh/1poAmK8lGLcmOVbmdsdLusUTyKXRnj42d11WsfRowHtwPac4UoZ9//vn261//uqD5JqK2kAkRbpH80pe+ZL/4xS9c+16EOic1GJI0FOOEhSgG91GMriG+7zkLd74OWTwG/42NAdOTZlEXQghRe7DPEb0H9o9kSjNGgX2MLAEiFmk6VjXXBZJi9jTRlGJkLADGg6gPBos5IB//+Mftm9/8ptrgiyhkQsQerr32WmdGPv/5z7sFjnSotH3Cfa4pJyWYiDRDDYvZP90bG4rSSfni90tGe5InWYTRiYxopogQQojm9if2i6lTp+5JH04K+mRnLOocC0m/amkeVuxhHCbGd+tKG/mnsJ79kvqW73//+/btb3/brrzyylT3JWobmRCxDzfddJN96EMfcqcap512mlvw0k5MTXYBSTtLpNiTZP3GQT1Ivg5ZdOjisTBNLNKFtAwWQghRfRBN4JCNGVTsE8mhgMnOWIcffnjBB1rJfZRUL6aYF7KP+iGEafd0Ups5GHz44Ydd9sT111/vum0KkQaZEPEmHnjgAXv729/uFpaLL77YFW0TOUh7aoKw50TIi/40ix/Fb7QhpLichbjQnNNkhyyiLEmzQb4sp1s8b6IipKUpKiKEELWNb/POIRb7IvtDsp4Cc8K+QtSdfYUZIIVAhB7jQFF7MTIKSEVOM0XdmysiHxTfM/2c9rsMITz77LNT3Z8QIBMi8oJpOPfcc+3000+397///a77BjM80na8QPRjIgrJZSW/lvtgMczNvU1bu4LZaK5DlqIiQgghktEPUpo4CMsV874z1rBhw5w5KbQ7lK9V5PCPvTdZxxgKZgjjQC1JIbWV7JWkcWGG6Hz1yCOP2D333ONMjRCFIBMimoVuHm95y1tc6PYTn/iEO4U56aSTUnfSIMJAAR+90tN29UjWbhAGTxuaTuI7ZOU72eI5c+pFPq6iIkIIUZvRDw6sqEskxSrfHsGhVbH3pHy1Jm3dZZLf74knnnDm62c/+5kbBnz//fenrhcVIolMiGgRFtZzzjnHLWRXXXWV63HOUMO0tRJEMcgpZVFP298899SJTaHQ9CxOuQh7E7HJzfH1j8emoFoRIYSoDVqLfvhoOV2v+O+F1hC2Fp2PnbdFKnEhrecZvIgBYfjvD37wA3eAeO+996ZO6RIiF5kQ0SoU31100UWu28eXv/xl69+/v4uIFJLv6ie9skBS/F7sybSFdjth8cfcJNPGklER/hsnXqoVEUKI2ot+8N84nCpWN8VknSJpTt26dStoLhbPeb/99ivo+WBAVq9e7Vrv8jrcfvvtBde5CJFEJkQE12O8733vc4sks0QQ6UxX79evX+pXkMWNGg8fzUhzWpPsREIbxGIUkSejIpxu5bYG9lERokJETdLk6gohhCjv6Afre75aQf47YrwY0Y/WOjbG7IXcB/sTh3IcFhayNzNLhN+VIYTc34033midO3dOfZ9C5EMmRETVY3zyk5+0v/71r/bVr37VRTBYnAoJzRLNwIhQxMd9pV3kkj3Z2TgKLQpUVEQIIWoH1nxqMRDy+aIfRNy9yC9W9MPPrmL/IvqRnF0VA2lSpF+RzkURe5ooigfjwX3RTesb3/iGvfvd77af/vSnmoIuSoJMiIheqFmYrrnmGjfYkKI5Uqo4wUm7ILNwUt/ByRMLaNqpspxg0QmkWNNpY6MiRGI0V0QIISoL1nnMAK3g80U/SMFlHyhW9MOnOSP2uS8MSNqIOvfDQR71itSRpD2AY28no4BULpq/fOtb33J1oBw4Ku1YlAqZEJGKX/3qV/bZz37WRUZOOeUUl1JVyPwOFsCZM2e6oUy08E1bkOfvh85emKPRo0cXvIAmoyK+/WK+WhEMCYOgGKiYthBQCCFE20AKE92eGATo6wBzox++ULxY0Y9k3cYBBxxg48ePT32fPC8O8OhUVcj9+Hkk3N9jjz1m1113nf34xz+2f/3Xf011f0KEIhMiUnP33XfbZZddZm9961vt8ssvd5GH448/vqAaCRZBohmFLs70M6d+hbxYzFGauST5UsdYqOm5ni8qwmNymsYmw2aWNrQuhBCitJACxeERB0as1wzCzRf9oOEJEYZiRD8wNZgGIi5EP3IfM82hHc+Nw7FC6j2ffvppl4lw0003uX2dP9nXhSg1MiGiICgKv+CCC5zgvvLKK50ROeGEE1JNds0NU5PXSlQkrakhTxZDw9An+qSTMlUoLP509uIUK19UhJM1cml5XXhN+O9K0RJCiPJJvSK6gQmhCJzaxmTkuhTRD8B4cDDGkF32tbT1j5gG9jUOxQpNO8Z4UIDOnnvttde61r533HGHe12EaAtkQkRRFleK1whr/+d//qcT5yyyw4cPT32fbATUWhBd4MQo7TwRTAOnRYTbWVhJlSrGhpKMinCKRig/eb9sFBgVpWgJIUT5pV6Rrps84GKvwHhgQIh+EO0upMA7eb88LgdTpOuSOpV2D8I4YUCIoFC7UkiEnyJ8ojL8zt/+9rdd9sGf//znohzWCRGKTIgoChSXf/7zn7ff/e539h//8R9OmLPYHnzwwakX3GTrQswDC3jaWguGLbF4c/pE+JrTqGL1kqeIj4JFfufcWSW0OiRFiw1QKVpCCNG+qVc0EMltX8thEv+dBiQ0WylGq3cgCo/QJyrPwVzalvbsH5gnzAz7SCHRGfat119/3R3O8Tt/73vfs3/5l39xfxbaVVKIWGRCRFG5/vrr7ROf+IT98z//s5133nkugkHIuJDFjY2B9CwMBFGRtOlNGCUMA8YGc1RIR6/cqA2LOvdLaB+zlPx9laIlhBDll3rFnoC4J4WWwX7cphj1g77TFPsC98t+k3YP5Heg/TwNUEgrLmRYIHsVKWGkXVH78b//+7/2s5/9zD74wQ+mvk8hCkEmRBSdJ5980i655BJnPjhhYdGkTqR79+6p75PNglMbepgTyShkNgkpXpxOEYovVlQEyKsl6kGqFrnEpKUpRUsIIdoWDn446ad4m3WY6EZzqVekXBEdKUZL92T0g5Rc9pe0xefAfsd9sd8RASnkMG/z5s2u/oNDvd/85jfOjNx6661u6LAQ7YVMiCgJpClddNFFrvUfvcYJfx933HEFLcj+fhH6tN7ldCltelapoiJK0RJCiPaDqAd7BO3im0u94r/zJ3UhI0aMKNra76MfpEthfNKaBkwU+xNNUPgdSA8rBA7ennnmGZcezIwvXpvbb7+94PsVolBkQkTJICJAWtajjz7qCtYR+pzmEBIvBDYPTnFYSAlPF1I86KMipHhxalVItCY37E0hIptIaylapKxhhHLrSYQQQoTvCxgAUo1YTzmoaovUKx/9oFEJqVOFRj+IWLC/sUeQTVBopJ7flywCDNJ3vvMdO+2001zadDGK7oUoFJkQUVI4HfrmN7/pum98+tOfdmlZnL5wulPIQD8iLITSFy9e7LqYFNInPRkV4fQK01CsCbEhKVpsjDw2rwtmRS19hRAiDIQ/ayhRciIQrKFtlXpVzOhHcvgg0Rn2i7TDfwETQ4dJumCRIv2Tn/zEvvSlL7kvTUAX5YJMiGgTbrvtNrviiivs4osvdu18aQNIelbaXum5izYCntB6IYs2J2icZhU7KsJGxUZAy16iHWyCuVEPTtKIipADjAmiXWJycq8QQoi9UKg9a9Ysd9JPzQSRjdyoQalSr3zEgr2nGNEPf6jGPlHo8EGgGxfpV7TP/8tf/uL23z/84Q9u/xWinJAJEW0GIeELL7zQGYZPfvKTrmAdI5K2bWFu+BqxT3pWIeFroiKYBU7Vih0V8Sla8+bNc6lpuSlafngUURn+xIjw+GqbKIQQe9doog8UnjMUl3U6dziuT73idqRlFTP1in0G48M6XYzoBwdQdH8kM4D9q9DDL+o+nn32WVeAft1117m9jAGERFaEKDdkQkSbQg3GO9/5Tpd+9LnPfW5P+Hz8+PEFif1kIR91J4X2eS9VVCSZooV54ncnPzk3NY3H5/chXYvb8DoVkr4mhBCVDGs8+wbmgnQrxH/uEFtuwx7AbVizi5l6lRv9IA047RDdZBMTDufYA/h9ClnjuT+6gfn03h/84Afufv/2t7+9qThfiHJBJkS0OUQEvvrVr7oc1Y9+9KN2xhlnuGgIRXiFpmeRzoR54GSMibKF1FfwPDECbBQUOub2mC8ENgymqZNLzN85qWPCfNI4+VxmbgNsUrmT2YUQoprxayVrcXPrILehPpBIM99nvS7mWukbibAW+9TfQqIfmBjqNYh4Y2YKaTkPHFaRDcBQ3smTJ9uvfvUrV4P5X//1X0WLAAlRCmRCRLtx77332vve9z4Xafjwhz/s6iQwIoWcLvlcYU6Xli9f7kLQxYiKELnAgBBlKbTNcO7mhslh88SA+dO95PP1J4DcBlOV7wRQCCGqDR8RRrRzUJMbEcZ8+NtQB8FtWO+LGTUmes/6z2MRWSlG9IP6j8GDB7v9pNDaP35/0rn8/A8O4f74xz/aueeeW9D9CtEWyISIdoWT/ve+970ud/ff//3fXa0EtRBsJoWeYnF6xmlTMaIiGIE33njDhbo5YeMkLNmBpVAoTOSkjXA66QMYDYr38+VCU4zJf8uXCy2EEJWOr42jsJr9gH0hN/LAf+M2pLeSzkukupDGJPmiC9QHso+QEjt27NiCzE0y+sF+xD5SCOxJHExRG8O+QPrVuHHj7MYbbyz4voVoK2RCRLuDAP/v//5v18OcCevnnHOOE9dERQptV5uMinDqVGh3FDYSTrEYiIVRKmaKlk8Bw2SwqQwaNCjv/JBkVxhO09ikZUaEEJUOAp21jfW6uS6Bfh4Ia7A/tCpmylFyhhNrMNH0QvYh3x2RfahY0Q/2IYrPMWBkFPzud7+zL37xi/blL3+5qEZMiFIjEyLKhocfftguu+wyd6r1b//2by4iQLcQFu5C8VERIgicQhUaxWADZFPB0BCiL2aKlt9kiIq0ND+E23AKRiEmNTW8bhQgqmZECFEpINLp6MR6R00DxdSc6Odb71qaB1JuqVc+msK+Q9SmGNEPwKBR/4EB+eUvf+lM20033eSGEApRaciEiLKC/FbmiSDwSc/yYXbSnwqNOBBBYIPBQBQjKlLqFC3fvpFTv5ZOBsmFJnLC6R3tiXnNMG4yI0KIcgWhTyMRRDTrHOsbkY3c5iS5kV+iw4VOES916lUpoh/sNzxHXgf2nB/96EfOKN1www2qERQVi0yIKDtYbK+55hr72te+Zu9///vtggsucClJzBRh4m0x6lAwI8WKinBCx+aAUShFihZwkoYZ8fND2Kxzw+6kcjGDBGPEhsft6Lil1r5CiHJa3+lkhbHAYCD4meWRm1JFDRyCm9s1Nw+kmKlXmAUOkgpNAS5F9GPLli1u+CDF58z8YPDg1VdfbVdddZXWd1HRyISIsuWpp56y97znPS5i8YlPfMJtQEcddVTB02R99IBTKqIinCbltsctpItWqVK0gOfr54c0t3lTY0MaF6laQGoD6QvKFRZCtBe56xKHJKSatnSYUspugMVOvUpGP6gl4T4LjX74Q7MXX3zRHUAxfJB///nPf7bjjz++4PsWor2RCRFlDadJ//zP/2xPP/20ffazn3UbEoKa8HYxRDULOqdW1FQUIyrSFilabHZEXTghpEizuTQGngu/H7fDdDVnWoQQolQkTQVrFOaDg6TcCK1PK+WrV69e7nalSCslcs1BDqlXRK5ZOwuNFiejH5iPYhyUYdowNBg3nu8Pf/hDO/HEE+36669/U+dEISoVmRBR9iC6f/rTn9p//ud/usjIJZdc4nKC6Z5VjGm4yahIMWpFclO0qNHIlz5VrIJOTAZ/Ys6IeuSmrIWaFiGEKBahpoJUI6IjiG0aa3C7UjTYQNTzXCiAL1bqVW70g/2jGOsqRefM/qBW5pZbbrG//OUv9t3vftc++clPqtZPVBUyIaJiICT97ne/2xmPj3/8427RZ8OikLAYdQ++VgSDw2kWG2ehkKKFGSnVIK3c1pYUepJaxuuS29o3n2nBjBS7yFMIUbsgnBH7rZkKDkRYi6gPYWJ4qVqN5w6ExXwUI72L+gz2i82bNzvzUYzoB8+VKDqvC4diP//5z50h+etf/+qG+gpRbciEiIqChZ+0rJtvvtk+9KEP2dlnn23du3d3rXyLERUhdYCTMjZRIgYYnELTlxD/bLQUlmNA6O5CqlYpulchANjAOJ3zM0Tyhe4xLaRHYLyoXeF3VUctIUQafLSVIm9qLRDkpH/mMxWkLPlZIESdWaNKcRDCcyLlinWXv3MIVIzaP/YIDA0pZhziEOkuRoorZoPWu5iaBx980H7729/apZde6rpgFeNATIhyRCZEVCR33323G2zIJvav//qvRY+KYHYIsXNax8lZMVK0OOVipgcnXaRMUd9SiuJ1nw6GyWCjpN6F14bHyv0dyGXmOSEeSBfDjBAhKUZBpRCiuqG7FREP1g/WN2rOmPORWweHCcCcYD6YBcLtMCmFpkM1B49FHQWpXuwJPKdC9wWfekVkmygz0Y9imIPc6MevfvUrdziECTnvvPMKvn8hyhmZEFGxcJpPVIR8WQzJWWedVdSoiI9gsOlwv8VK0aL1JAaBPGgMAmakGM83H6SBIRCI7PA7cGpH6kOuGWEj5NSQ23Eih+nCkJTqeQkhKhfWCNYVRDlrBBEBoru5Qt/PAiG6zAk/t+OrVIccPC/MB0aH+jiMTocOHYqaesUEdSI9xYhk54t+UPdI9ENrr6gFZEJExXPXXXc5E0K9hY+KILb5KkZUJJmixQkeYf1ihN8xCH4IF5sa94tRKAX8DkQ8MD4IAIQARiPfBo254zlhwDBd/M6kMajFrxC1C4XdrAlEVxHlrAmsI/nEMgctGBTWTNYe35mvGIYgH4h4UqQ4SOFxiPwWo0C8VKlXHPqwp/BF9ON//ud/3OuFCXnrW99a8P0LUSnIhIiqAOH86U9/2v72t7/tExWhg1ax8mlLkaIFpAyw0bHBkzZA+kCpOlchJLw4IGWL1CsiHvnMDxswBZ1swKRtYfLY4HML3oUQ1QvrHWsAawFpVqwBrAX5xDhmgAMMUrRItfKHHaU6wGBdQshzwIIp4iCnGANtS5V61Vz0413vepf9+Mc/LklhvhDljEyIqNqoyEc/+lHXBaWYURE2J/J1p06dWtQULW9yKKKko5ZPJSjVTA9+D1IWMCOkS/A6IRj4M9dY+dsiRPjdKXRHiJB+oeiIENUHhxVEFfjMU0hOpJbPPOmj+dYH1izWEv4k3ZO1JN9tiwUHJD6llTWLZh/FNAkcNhU79SoZ/eB1ovYDY4cJOf/884vy3IWoNGRCRNXBpklUhP7qH/7wh+2MM84oelSkVClaQPtc8prpdIV54v5LKfaJiCA2OE0kXQIB0dxJJylkPjpCUSqnj5x0llJwCCFKjz9s4PPNYQNpmz7qkS8y6yOlrIGkXxHF5falKjb35oi1h7WXjlrU09H+txiUKvXKHzAx9wNj89BDDznj8Y53vMOuvfZaRT9ETSMTIqqWO++800VF2BipFaE7VDGjIqVM0fItL4mMtNW0czZ4xAfpFD7nm8ckRaC56AgpC6SRYV743flSO0khKgc+63yO+WIN4OQf40HEM9/nntRXhLqvGSOdk58p5UFJ7tR1Ih/Faimem3pFdLtYKae50Q9qP0hV+81vfmNve9vbivIYQlQyMiGi6qMiV155pd166617oiKcoE2aNKlo3UeSKVrkTHM6V4xhWEkzwiZGZKStpp2TksCmz+ZMFMkXp+czQWy0FFdyKkpqFxs4ZoTbl/JUVAiRPvqJieDzzQEKKVQYD5p65DugwQT4onRO8/l8syaUuoOTn7rOwQjrNgdIxZxnhDEg6kxtSTFTr/wa+sILL7h1e/Lkyc54vP3tb3fRj3yzm4SoRWRCRE3wj3/8wz7ykY/sExUhfQDDUKzoAikJbJh0vGKT4b6LVWiYO+2c5050pBhFmC3hu9wgPthMfXF6c+IDsUIuOYaE50mqBIKFzb2UURwhRMvw2eSwhM8zn03WQD6b1HY199kk6kGaJp9nTACf/ea66hUTmnVQ79Ha1PW08HthPjik4r452CnW78TrTFSF5868EqIfrJ+YkAsuuKAojyFEtSATImouKkKtyGWXXebC4eQ9cwJGl6hibXDUSvjWu5wwUi9SzInAbKDcP1EHog1som3RsYrXz6dhEB3x6VfNRTvynbZye04yi5UOJ4RoHqKURFL5DIZGKfnc+vQsoh4+LbMtTu9ZJ1jbWDdYL1jbitkxioMUUlx5TYgqc//FmlnCQRHGg4g4ewDpwH/6059c7cdPfvITRT+EyINMiKg5Hn74Yfv4xz/uNltStHwO8JFHHlnU9ALun0JHNnNMDq13cycJF7phc1rI/SPs2VDbQihw0oeg4XFJZwiJdiTzzomuIGz4oqBdhkSI4hoPIh1EPULrtXKjJKST+ihJqaMe/oAD84E54HHpDljMgxXSrZhKjkkgmstaXMxUUQ6GXn75ZbcmT5kyxUU9iFL/4he/sNNOO61ojyNEtSETImoSNl1Op77+9a+7rllXXHGFS0/ALFBgXszUITYmTt+omyCFig22mPeP2cGMkDaBqMeM8Lu0RbcqNncf7cBoYIZ8tCNfoWqyoJ20LQQTt+XUk3x0pWwJkW49Q8D7L4w9BqKlznUUofsoCX9iUHyUpJiHJc3BWkC6EuaDNYEUU9bGYpoDXhfunzRZ1hcK2otpboh4kNblU69uuOEGNwPk6quvtk996lNaz4RoBZkQUdNw+ve5z33O1YyUMkUL2GgxIxQsUmBJOkAxO8pQxEkKGBsu6VI8BuK+rVrnYrZ8tIPNn8gIoqa5XG5ECCegRFX4IlWC2/Kc+SrV9HghqgFSpfxnh+gF4tob+nydrZK1ZXxGWfsw/T5K0lZDSHkOPGeabfA7UI/BWljMZhsYLNZCHoPoNuYDM1Ysmku9uvjii+0HP/iBM4BCiNaRCRHCzB555BH72Mc+9qYUrSOOOKKoOclsXkREOD1DqJMWUGyzw/0SFSE6gqEi+sLpZlukVSTNhZ83gNEKad+bK6qoo/GGpDlRJUStkM+0E/H0xqMl0x7ThrdUkIZJ1JQ2uwh3oh5EP4oZ/SSyyrpDGixrH81BiIAU83fMl3rFa//zn/9cqVdCRCITIkRCvP/0pz+1r33ta29K0WIzK1YBoxcUbMhERhDpnNQVO2qB2PDDxEib8sPE2jLC4Nv3+vQrXxjLSWFLz4P3gp9DbPn0Ei+2yFdvK0MlRHuCcKfuyn8OYtIXMfW+Ux1/940hmmvDWyp4bD8MlVQrIh88j2JGgX10hcMdXiPWUw5eirmeNpd69V//9V/2yU9+UqlXQqRAJkSIHNi4SdG67bbb7PLLLy9pihYbpp8ATCEjnbQQ2cV8DJ+CQXoCGzUihPSHYj9Oa/j2vRgSNvHQSAevEals/gSYaBXPHTGGSeR+FCUR1QCfVSIcfD4wHRgQhLv/nLTUyKG5SElrbXhL9Xvw3FlzOEzgubPmFLPNbvJxiHzQ1pcUVA5aimmykqlXpLzeddddLvXqkksusWuuuUapV0IUgEyIEC2kaNFFi5M8UrQmTpzoBC9dtIqZouVPPElT4IsIAcXlCIdii2sEPKaHL4wVwoC0jLYuCE8b6fAijZ/j5zEnPHfEFgJHpkRUqungi8MCPhuYDQ4L+Dy0ZLKTkRK+uL/2bPTAcyfygvkgcoAh4KvYQ0v5PTnQ4PAG80HKKV/FjpCSevXSSy+594jUq1//+tfu/aDr1amnnlrUxxKiFpEJEaKVTfW6666z//f//p8dffTR9v73v3/P6SIh/2JvrogKX8/BhooZ4bGKnT5Bqhb1GqRqkdvsJyAX21yF0FykAyGFoGrpNeb3QCh4ESdTIirFdGA4+NObDtYVvvgMtpSqxOfDm3cfKeHAgs9Ke7W85jPIwQZRTlIuSbmi7qSYKVfJmg/WR9ZKX1dSbPPBa0yqrG9D/oc//MFNP6frlVKvhCgeMiFCBMCp21VXXWW33nqrXXrppXb++ee7SAKbLSkAxawX8eKaDZD2kmy8nPKVYrPNJyAwI21ZyJ4LpgiBhdDCVFDM7tNR6HTTUnSoJVPioyVK3xKVZDq4DzrqeZNOkTk/7016W3W1aq7QnLWj1AcZ/nCGSDEmi8MZIrjFNlxEb4iucDjD30m9uvnmm5V6JUSJkAkRIoJHH33UPvOZzzjBTr3IGWec4cQ6RgRDUmzhjgAhYoEZ4XTOt7MstukBxBG/F6KCFAc2eURFSx2tSg1CwBsS/sRQePGFoWgt3aS1SAm1KPx+GpgoigEHBpgEajPSmg7gZ/h5f+0jwn16Ftd+KT7/ofD7sUYQkaCOjTUCA1KK1C8+/77tOBEfzAcRlmKnqfL68hgYEP4+efJku/HGG90a+OMf/1ipV0KUCJkQIVIIjb/97W/2xS9+0YmF973vfXb88cc7A0IXLYrXiy1qfQEmmySnomz8REdKMVTMF7giNDjpJPrgh5gVs5d/LBgKhBmijNeCE2aeWzLKEWJKkgKR15LvcZqMOOSL+8SYFDuVRFQXXDcIcq4hjC5f/Jt1wF+X3uiGmg5vlrlPInY+LZH7ac/rkYLs5FBSjMD/b+9Mf+Uc3zh++xvEC4qURlGO4hTpgmOrpa22YmuDhoTghRKChHgj1oRYUoSE2NIiQatFW0tLq6fU0tbSRougSMT/8Mvnkqu53b9npjNz5lnn+0nuPM/MmXaefa7vfW3jx4/PrcQv1fzweiBAuCeZ5MmjkAbPcjwshF4hPkZHR8Orr75qz5EHHnggXHzxxSp6IUSOSIQI0SMYDs8//7yV9GWmEzFCfxEMdSpp5ZFYDszm4xkhMRvBQ1x0XmV3mYl04wPjndlYBAmGUdllcvEMxYYbBQS6FSUILrw+bkQyMAAxSBAiLkpYSpgMLi444mskFhwuYBl4B/Z132eJDu5hv3YZRXQtbwf3AIKfe59nDYLDJyPy8sRwD5PvQTUqnjV4PvrZZDBNbPeKVySdIz54xpH3cc0116jkrhAFIBEixBjBiMVl/9BDD1nzwYULF5qXAqNiaGjIZvDyACMIMUK4FjOT/GDnGTqFgeANzxAA3hG96FK/eYqSLGHiM90YZVkek7LFmOgvnOfUw0HOA+c5Fhuc/04ERyeig2uz30UuevUMsH3eUZ1tIiSJ+5x9zQuOB88yhEHezzK8qNu3b7fnA94WxAce5jvvvDMsXrw41/0UQvwXiRAh+gRGBi78JUuWhKlTp1oCO94QZvLwjORVeSqePUQQkDeSpzDwRFkXJOAd0feVOF62KOEcxGEynYaXsc/8f6nHBE8RhhoGJeEzPniNMaNck2qCsY3Q5JogrM8HrznPzPSnHg7Oc6fXNrPrzKpXXXTE9zM5Hng9i7qfPcSUXAyWeXt1uWfxfOBJRuyQcL5p0yardkVobR4eFyFEeyRChOgz/JgTokVi48yZM8NFF120t5oNOSMYqXlAHDUx1EX2AHFDIp45dQOmyM7svYoSQl7S2e1Ow2DYd4xNN15TYxZcnMQihXW+oypiralwfrgn4nPj6+n5ic8NS8Rpp+eH74i9Jgzeq6roKNuzmdVLhGdVXuFnnG86nXu1vTfffDOsWbPGwmcJvWKfhRDlIBEiRE6Q7IiLf+3atWH+/Plhzpw5NjvOjB+d0fP60Y17gPADjBDhRz7vUp6EsVDNBwOjqBjysRpDqfGYChOfDe/2XDHTjmGXGr8M3ifJ2A1fjFP+fwxflj4U5rXv6w1j3weCkGV83LkXOL6pyPDj3q2niv8/DdNzwZGK2aIbBfaa48XzgYpbeV9vhLQhPPDY5tlLxOG88AzmecT9t3LlyvDWW2/ZxBAea/o8CSHKRSJEiJyh4srtt98etm3bZiFa/AhioDADSOxznjOkGBqIEUQJs7GIETwyec/CYxDynW7sMLvqnZyrHHMdCxNfYsy6MIlDdHoVkRjGqShxA9qNaUQMxlksSrKEiouVpnhV8F6k4iIWGPHgOCIiso5JLDp6NXI5L6lIZTv4f+NroaqCwyHsLG5u6JMDCIC8q91xPvluxAdeSL4T8cE25AXnjfwSPMLcz6tXrw6vv/66FQ15+OGHrZKhEKIaSIQIUQD8GL///vvhjjvuMC/BpZdeGkZGRsyAxFNAQnteYVqA0UYpSn6YMVhpfMgoogIPBrc3WsMQIeHUBQlGXNUNaAyZuDKSCxMMuKwZdkTWWGZ3uVb4zn0Z4rx2QxwjmGvJB98fv05H1t85D34u0vV0+3yZriMg4sH2pe+1+zv7HQuwWGBkiQ32eyzXD9+PkZ7lsYoFhw+u3SoLDuA8cI36PYcHggkIb/hZRJikP28YbA8TLow8RQ/7SYI5nh6uo/Xr15v4wNtD0ZDzzjuv8s8aIQYNiRAhCgQDa9myZeHee++1vIS5c+eGs88+2wxXfiwJ08orgd2/nxlRxAjfjxjAOCiqwhXhIIgwn5nF2HTjiG2oS28Or6CUGq6sY9hyPluFAPXrOMdeg04M/H0JgX7QiQDal1Dqt3fHiwpkCQ0ECNuR5uywrFPlM84hXg4XHrx2oc9zpYhwSM8P49nCNnA/82xhO/Is0IDg2rFjhz1XOJ8ffPBBWL58ueXi3HPPPeZ9VoEIIaqJRIgQJYAYIEYZMcLs3ezZs8P5559vhg9J7IgRZi/zFAYYY8xUEqONsYVnhHyVohoScgy8+SCDmWdvzobhUnafhLEkQ7cyeDmfqcGbzvaXNVvbzsMR06nHpCi8QEDsIUqFIZ9pJQzrWiSAffWO6hj/XDsu6Hl2FGV4c7x5hiA+ED88Q3iW5Olx4Xzy7EB8kGzOhMB7771nz1S8ynfffbc9UyU+hKg2EiFClAg/puvWrQv33Xdf2LhxY7jgggtsYIyTvEnyJAZ5nkYSYoCSlRgR/KBjxJCsygxqUT/iHAfCKVyQMLuJR8iNKo5FHQ3FrLKwsXHMcOOZEBL2kVnrNOwoKzSp6QYWxysVF2mIGgPvGtcPYVJ+fDCA0xC5uh+vKt0jnBs8DyR9sy1MnOD1oCR5nsfZc0wQHxwLtuHdd981ATJjxoxw1113hdNPP732zwohBgWJECEqwpYtW8L9998fVq1aFc4880yrpoUYIISH2T1yR/I2pDCO8Y4QV82sJomkbAOJpEX+sGfN8iKKmOGtQjfpPOB4Zxna6XsY3cAx8dFJ+FNWCBTXU7/PK4YiRmovoWEM9tcHZImyND+E13UJ5esGzjdhk8z6Y3CX6S3kvFJkAuFB0QmONwnueD7yzGcDrieeSTt37rTQOrZhxYoV4eOPPw6zZs0y8TE8PJzrNggh+o9EiBAVg1m+Bx98MCxdutQqucybN8+aeDHTixjhRz9vg8vDHbz/B9/t/T/yLvXbKt49bvyG0eP9F5oqSrrxEHSb/+EhVggQFyceWpWGV8XvpaFa8XuMdv9/pyJp0Dw+rUQHSyYFqL7l/UbKyJvC4+D9RPDWeT+RvMNFgeuJSRFCVvluql69/fbbYfPmzWHBggVWAp3QVSFEPZEIEaKiEGf9yCOPhOeeey4cc8wxJkaGhobMWEOUUG63iEo9GAJ4JTBCWJK34v0/yjD+MUbipoODLkr65alolQsSr7fLB2EU4WkZJNHB9VxGNS62C88DHgdECF4X7nmWRYgg7nHK+u7atcuuTcqbIz6+++67cO2114bbbrvNPLRCiHojESJExcEL8Pjjj4cnn3zSDAE6sE+ZMsWMARJAqbtfVHdyjAPv/4HhhKGEMUB4SFmlSwlPYlvckItFiRtyEiWiCmDcxwI6FR3kVpTV2JN7m9ww7m22jfvG+4kUdW+TI0VfI7wfiA9CVOlwzjbddNNNYfHixXachBDNQCJEiJpABZhnnnnGvCOIDsr7koyJgYDBgHeEvImiZp6JzfYwDYwHhAhGS5EJ7d2KEow8jL4mJLqLeiSSc/1R8CEVHdyzjLJER5xgzj1M/hXPFQ+7zLOJanqc2Aa8HtyziKENGzZYmV0KOdx6663h+uuvLzwMVAiRPxIhQtRwNvXFF18Mjz76qIVH0YSLXiOESmDQIEbIGynSM4Gh5YIEw4bZUyrlYGyVHdPvogQjkMRaxBzEHa9ZSpiIXuGaR2BQscq7rLMEwhcp7ODCo0zR4dvKvYDXA68m96cLD+6FokBsEHKK+OAe5VlGjw+aujKhccstt4RFixbJiylEg5EIEaKmMIP40UcfhSeeeMLKVJLEfu6554bJkyfb3zEqJkyYYEZQkduEwU88OTOr5BvgGfFqPmUbYKnB6MaiG4wYYS5KGHhQyhZRolqk1w8jFrZVvH7cyOeexOtAvg73JHldRSSYx3Csdu/ebRMWsHXr1rB69eowOjpq5ckJuTrjjDPkqRRiAJAIEaIB0OPj6aefDs8++6zNuvJjfuqpp1pIBUYReSN4J4qsrIMgwUBz4wfjg3Ao72uQd1nPXkJnWs1kpx6TKhiWohjBkV4XdfGkIZS8pwjhYFzHfu+xzUVuK/kdeF0QHxw/Qjk//fRTK0fOMb3uuuvCjTfeaDluQojBQSJEiAbBj/uyZcvCY489ZgmehGnRc4RKWhgd/MjTVKwMAUB8twsSwkFoIOdGEeKkSgZcGtMfe03S7ttxB+4yO56LsXVcTzvcx13uY7FR1Zwi9gOx4cKDbScEzL2QXLNFwzGkyhVhV2wf63hvCbtiYuTmm28Ol19+eWH5J0KIaiERIkQD4Qd/06ZN5h154403wsSJE8PMmTPD1KlTLVcEbwmhWhgoZczqEw9O1S+MJYQJYCixPfRCKKvSVifH1Tudx8YqrxGAhLnEnbpjgVLVfRoUuOayhAavCRvEEM46d4yqCY4q30d4j8g3weuBcGcbeRatWbPG+n1ccskl5vUgfLSqx1UIUQwSIUI0HGZHX3rppbBkyRIzWM455xyLuaa0LuFZJLGzXmRSaqczuOSTMINbB2MFQ7aVQCEmHy9JLEoweuOmfBIpYwNjN27iiCiMRQd/IycpPgex0EBAVh3uFe4P8jqq5lHES0hfEbwehF+xTkfztWvX2n2M8LjqqqtsG4UQAiRChBgQMGA++eST8NRTT1njLxog4h056aSTzADGKCZcC0FSZnhEGsuOke5NCBl1ESUxiJB0Fh4j2Y1mZo8RhC5KXJhkveZc1W3/x3LNIi68M7wLjKzXGL549fxYcQ2n3qgqFEboRXR4XxEG+12V3CquYcQGfT1Y51x98cUX5vWgseD8+fPDDTfcEE477bSBuWaFEJ0jESLEAMJM6gsvvGCJ7KyTxD59+vRw7LHH2t+JfSd3pMhGZa28CwiRuMRuE0RJK0N7X8Z2bGi7sR13KPeBoOG8+Xr69yI6mWd1Zvfu7CzZZ19PR7zPqUBrJc6aINBS0cF1zzHwEr8M1sv02njDUophEG4F27dvD5999pklm+P1INH86quvtnUhhGiFRIgQAwxGDzOXL7/8cli6dKkZeyMjI2HatGmWM4IBiCFByBax5kVW1+pGlHgPhiaIknbniv2PxQkjy4hvZfjzfwDHJxYsDD9mLH3463Q7fOnDX/M9sbBIvy9LEGUNhEUsLnivqee0nejgmsbrUXaoGOeUnBM8HoR0ImLJ+di4cWNYv369/X3hwoXhiiuuMM9qE8+VEKL/SIQIIfbOcFK1BkFCuBZeEAQJCaQIEAwL3kOQFN1bYCyihFAc0d4zwUjFRbwei4lUoMTrLmjK8LzUTXT4NVtF0eHbyjaS44Hng9cIEZLMER68N2/ePMvzoApfFbZZCFEvJEKEEP8HOQsIEQQJJTUJ0yKu+5RTTrHypBgcntBeZDPEXkWJN4/zUbfcAFFPyAWKmxoyqio6HPp4eII59xNlqjdv3mzCgzwPSn4jPObOnVupXj9CiPohESKEaAsJ4q+99ppV2Pr2229NiJBDMjw8bMYT4U8ktOMlqZrXASMKIRIbgcxEk7QcixIqgxH+I0SvEBoX95RhkKzN/RFfa2XndGRBwQQ8G4RbcX9w32zZsiVs2LDBBAiTEIsWLQqXXXaZeUWFEKIfSIQIITqGOv+vvPKKeUjwNiBGZsyYYZW2vInfuHHjrGoPxlYVQ3CYnU4bEGKEuTDxpnQMCRPRSnDEYoNrCMGBCI+vH9ar6HXjXkWcM8GwZ8+evU0ZmWQgz4MEc7w0V155peV50GdICCH6jUSIEKInI2Z0dNQECQntzOySO3LiiSeGoaEhM7zIA0CM4CGhcVrVZn/TfJjYoGSJMIlDubxTNmKljAaPonjIocFAJzwxFq6EVCE44muDZZV7veDdIKkcjwfig31DkFPZ6quvvrL7mc8sWLDAxAcezypOIgghmoNEiBBizAY8TclWrFgRli9fbh6SKVOmWLjWCSecYDHvGDzMrOIlIZyjzD4k3exXlscE0mZ3vo7nRIZb/QQ1oiLu4eLr8flOPRxVFhwO3hmSyfF2cF8insmZ+uabb6wq3pdffmn3JfkdF154oTUxrcN+CSGagUSIEKKvBh0zq4gREtu3bt0aJk2aZGU7ESTkjiBI8CjgITnwwAMtsb0uhjvb7p24U4OV96kM5YIkFSgy7soXlVnnjUF1sKzmht7Zvi6eL+4/Esv//PNPEx7sG9tOrsfXX38dPv/88/DDDz+E448/3oQHA89lXe4/IUSzkAgRQuQGxtDKlStNlFD+l4pAhG1hBJFH4k31ECOIEmZly+5F0isYslmz6QzCXvCSYNwyMGyzmu7Vdd+rcOyzmjwiDDkPDF4TJpglNFiv67Fn3/FyEGbF/eZNIKlkhfAgsZxKcZTRRXTMnj3b7jchhCgbiRAhRCEQW48QIWyLgaF48sknWx4JogTvCBC+RcgWgoSwl7rMQrcDERKH+MTGshvMgCCLhUlWh3BGXQ3mbsGYTo9VVld5DG/IOlYuNlhWMUm8F28coYEID0KtCK8CSukSZkWIFaFW7DshVgiPs846y4pGCCFElZAIEUKUYkhhKCFGCNui6tZxxx1nuSRHH310OPzww/99QO23315RghcFUdLE0BHCaGLDOjWy4/f4LEn+GJmIlk67kGd9Lu6U3s99ibump13bO+nujqhgX3nN9rUSY/F7Tc3H4XiSkxSLDm8e+dNPP1l4FeV0t23bFo488si9YVbcS00Q8EKI5iIRIoQonV9++SW88847YdWqVdabAOOYWHX6EyBKDjvssIESJa3A+MSr4qIEY70bQ9//jgh0vKM5tOqE7utZ3dR9Hbwju8P/20oAtRNIiCsXGHgvBu0c4+kghCpLdOzYscNK6ZJ7xfmkRPasWbPCnDlzwvjx48vefCGE6BiJECFEpcCIpWTounXrwocffmh9CzBSJ0+ebHkkRx11lETJGHGx4MNFSZawiN9LxUn6nosOH5qJH5vo+Pnnn010kN9BkQdEx/Tp0y28amRkxEIZq1z6Wggh2iERIoSoNMz2p6IEw4vwLTwliBJmgDGEMXppkoinBI8JnpJByZ8Q9QDRRwUrxEYnomPatGkmOiifK9EhhGgSEiFCiNqLEsJ3ECXuKUGUIEiY4SchF2GCKKHHAyWBNXssihQc5HQgNuhSToEGvzYJQ3TRQU4H13bq6VBpZyFEU5EIEUI0UpSQpDthwgQL3WLgHYFYmDC8+ZyEiRir4PDmloiNWHAAXg88HYzdu3eHnTt3SnQIIQYaiRAhRCNFCRWDqMDFktlmSgAfccQRJkzwlCBMvF8CwoTeHXhLJExEt4IDLwc9SVxw0K/DBQfJ5D/++KOV0MVLR9UqmneylKdDCDHISIQIIRoPBiLhLvRQcHGCMKF3hAsT95ikwsQ9JXGDO3lNBkdsxI0nXXi0Ehx4OBAcfB7B4WJjeHjYwgW5noQQQvyLRIgQYiChzG0qTOi5QKiWCxP6lRxyyCEmTAjxQpiQRMw6goT8EjwsLlAYqghVLzin3lUdoYHHgjwOXuNV84IHrCM4fvvtNxMcu3btMsFByNWkSZNMbMSCg/LCQgghWiMRIoQQkTCh/0IczvX999+b8DjooIPCuHHjbIkoIceEdfqVeKIxn/Mu3e498cH7g9TvokpwXji3iAwfeDW8e70LDc4hpXL/+OMPy+FAdLC+Z88eW/I5BEfs4aCfDT1NhBBCdIdEiBBCtIEyqcx+09WdQUIxoVys8z4GKN6SLIGCEPH/I+78TVgOHpesDuCqhtQdeCiyOszjoSBsKu407+WaCalCYKRCg/PJ5zmfEydOtJAqChywzuB9lXwWQoj+IBEihBA9gnFL4nEqUAjT+fvvvy2f5OCDDzaBgjjZf//97T0GCfCEc7l3BKECzMjTJbydWGGQl9JUzwqCgXyMVFik4oLu8d5o0cUB/5ZwKhLGERuMf/75x8QGQuP333+39w444AALu0uFBiF4CqUSQoj8kQgRQogcwNBFjLhAQZz8+uuve2fgMagRGoRzUZXLK3PF1blYetNFzzXxsC/gPYxvHwgTPCm+9PWs4Z93MZN2Q087oztZndR93cUDA1EVd2WPB94Lhq/75324sPAwKd9vQqioRMWxTcvh8j6DcCoECkICjxTi79BDD/2P2EB8uJdKCCFEOUiECCFEwfhsvYcCsUzzD1yskL+AmMCLgiBxbwoeEjwlaTgXS973v/E5PCtpwnwsHPpJKmgcRASeCzwZCDC8GXG4VDx4n8+5FwNxwRLBQn6Ni4s0T8ffYxl7mYQQQlQPiRAhhKgwiBAXKS5U/vrrL/MEIGSo5uQjTrwm6dpDvPB6IEZcuKQDY53PuOfBRUS8Di5a3BsTr/NdLF1cxANBwYi3x8sd+6DKmA8EBJ4KFxbx4LNCCCHqj0SIEEI0vCKUC5R4GYsWD4FqNWLxgDBpNfh7Kip8PX4Pj428FEIIMdhIhAghhBBCCCEK5b9BwkIIIYQQQgiRMxIhQgghhBBCiEKRCBFCCCGEEEIUikSIEEIIIYQQolAkQoQQQgghhBCFIhEihBBCCCGEKBSJECGEEEIIIUShSIQIIYQQQgghQpH8D9tiuEBzHWP8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,10), subplot_kw={'projection':'polar'})\n", + "\n", + "arrivals = taup.get_ray_paths(source_depth_in_km=500,\n", + " distance_in_degree=80,\n", + " phase_list=[\"P\", \"S\", \"PKP\", \n", + " \"PKIKP\", \"PKiKP\",\n", + " \"S\", \"SKS\"])\n", + "\n", + "ax = arrivals.plot_rays(fig=fig, ax=ax, legend=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAMWCAYAAABsvhCnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQeYJFX1t0/Nzuacc2Bzgg0suyxLWnKUICAIKIKooIh/EBXFCAp+ggFQwQAqKiigZJCcWRbYvGxObM45zIbp73lv952p6e2ZqVtdnc/7PP1Md093dXV11b3nd0/yYrFYTBRFURRFURRFUdKgLJ03K4qiKIqiKIqiqLBQFEVRFEVRFCUS1GOhKIqiKIqiKEraqLBQFEVRFEVRFCVtVFgoiqIoiqIoipI2KiwURVEURVEURUkbFRaKoiiKoiiKoqSNCgtFURRFURRFUdKmPP1NKIqiKPkGvU93794tO3bskO3btx/0197fuXOn7N+/XyorK2u9/ec//xHP8+S8886TsrKyWm/l5eXSvHlzadGihbRs2dLc7H3/c02aNDHbUxRFUYoLFRaKoih5DAJg9erVB922bt0q27ZtM+KAv1YoWLHA7cCBA2YbDRo0MAZ/s2bNpGnTpjVuGPl+cYDBz81/n23yd+HChUawcENw+O/b2549e4yg8d927dqVcn+sCLGio1WrVuY+f1u3bi1du3Y96MbrFEVRlPzEizErKIqiKFmDYRdhgEBYtWpVlVjg/sqVK6ueW7t2rTHIGzZsKO3btze3du3aSdu2bY1IQBRYccCtcePGVfetcOB1vB+hkLwP9hYlVowkeyQQHfv27TMiwwoORAi3ioqKqvv2eV63efNm2bRpk2zcuNHceD9ipHPnzkZkdOvWTbp3727+WuFh7yNM1CuiKIqSXVRYKIqiZIAtW7bI/Pnzq25z586VTz75pEowYEwjBDp06GAEA2KBG8KhTZs2xjDmL4/9RrL1FABigdV/boQh8RcRwf1GjRqZvzy2/091439+MWA/x//Xfp7/vv+v/4ZXgtCqVDf+hzjg/t69e81f+5j/2Rvf0X6eFURWjCE0OLbc5y+PESDcEB8bNmyoOrZWgPTq1UsGDx4sgwYNkoEDB8qAAQPMsVUURVGiRYWFoihKSFhZX7RoUZV4mDdvnhEQCxYsMAYuQqFHjx5mVb1Lly5GQGDQWhFBWI814G2YEIY0ogDD2Hoc+Ov3RnBDFBTrijwiArFhvRjWq2HDqvjLY8SJFSEIJPtewsKs2EB8IDjWrFljvEErVqwwzyPoEBh+wcGtX79+5vgqiqIo7qiwUBRFqQMMfjwNyeKB+xipGKE9e/Y04sGG47BSTkgOnga7DUSADVfy5zqkEgxKcGoTIFaE2DArBIcVH3g7CDfDc2TD0BAdy5cvN69FDCIykkUHng+7DUVRFCVDwsK6t5XU2FAERVHyG4zKmTNnykcffSQffvihfPDBBzJnzhyzKo5wwOC0MfxWPLDyjWiwIUqIA5uAbBOTuWklpNzB78Jva5PbbcI7f3nehlzxOjxNftHBfQQkwoPXDBkyRI444ggZM2aMHH744XLooYeqh0NRFCUqYcHAzKCrOeC1w6SFQYJxoShKfsCK9owZM2qICDwReBNsSMwhhxxiVqkREngSrHhgsYAkYsSDLaXKjfcmJ0kr+Q2/KZ4NKzgIo0J0kDTPgpkVHXhGEBp4r5YsWVIVAsd7ERsIDSs2DjvsMOONUhRFKTXSEhZ4KoglZjLt2LFj0cb7pgOHd/369WbyIZ5XPReKkhsRMX369INEBGIAEdG3b18jIrghIqzBiXFILoTf+4Cg0HCl0gAxgcDweznIz+B8sgISsYHQ4LZ48WIjNngtYVR+z8aIESNUbCiKUvSkJSxwITOY9unTRwfMOmASWrp0qTFaNClQUTILq8xTpkwx4oEbQoK8CMQB4h5PBGMW1yMJ1VZEsEBik6ptVSYVEEptgsNWpbJJ4iweWbFBorgVG3g2WIDDE0K+BkIDwcFt9OjRxvulKIpSLEQiLNRg1uOkKLkUEngiXn/9dXnllVfk3XffNcYaK8Z+EUFORLKIsKVdER0qIpR0xQYeDX8JXL/YIGeD+ZJFJsQGHjPO3aOOOkpOPPFEOf74441nQ4WGoiiFjAqLLKACTFEyLyQINRk2bJgRFL179zYGnRURtqmcigglX8QG5+ayZcuMwJg9e7YJ1VOhoShKoVO0woJVynXr1pkBnOTKiy66SO666y7p37+//P3vf5ejjz7avO6OO+6Q+++/X1577TWzkvTFL35RFi5cWLWNul57wgknGKOF3BJee9ttt8k555xTUMdJUQpVSJAga4UE159NskVEdOrUqaqxnOY1KfkEuYm20R9zFH9tUQDmFSs0KCzgFxoTJ07U0ClFUfKeoi6Y/uKLLxpRQHzrscceawwQP36hgGHCoF4bqV5LwicihEnhvvvuk4svvtiUJMSgURQlvRwJv5AgTMkKibPOOiulkKDsq79DtVI7tsO17Yjt7+ad3FEbyA8AFmmgtg7d/B7+jt4q6g6GY8I5y42FLttRnDK3FEEhfO/000+vITSee+45uf32281v5g+d0hwNRVHyjaIWFhYSNo855hizClSbUKiL+l7LZHrFFVfIV7/6VVMVRIWForiBR+/pp5+WZ555xggJjC8b2nTmmWfWEBKENJEvUYpCAmOTbtO2ERwizIoD/80vGlLd/I5qRADHNZVQsDcqIwEVsazgSCVEEChs38J7rdBIdeN3TvU8HinbOJAu5MX8G/PdCNHjliw0OMet0LDXCULj2WeflZ/97GdVQgOxffbZZxuvuKIoSi4pCWFBRZi33npLbr31VmO4/PKXv5SpU6cGEhVBXsvg/uCDD5pJl4lBUZS6wQCdPHmyPPXUU/LEE08YryIeCSrmICSsgYTRhVAvdiGBMWk7RPs7SPsf2+dsHw0Mb/6mMtRtB+/6jHnuR3082T+/sKlP5HDje/kfI5iscGL/kruT2w7myY+L4dyoS2i0b9/eeMr9QuPjjz+Wv/71r3LjjTea0smE43Kj6pT2VFEUpbCFxf1jRHaskYzToovIlz+s92UMvtbtjEfhyiuvNHkQL730ksm5qE9UQF2vZVBn8OczWFV6/PHHzWNFUQ6GVe+XX37ZiAm8ExjK48aNMyutI0eOrGogWYxCAi8DvQ04BtxSCQZgdT7ZaCb8KPm5bIYYIQzIcQGqFtX32X4vRRSfnUpocQw3btxY9RzHF1IJEBZ8uHF+cXyLUWjgseD8mjZtmhHs9957r/nuXFuIjJNOOsnkAyqKohSWsEBUbF8p+cLzzz9flXjt5w9/+IPcfPPNcssttxihURd1vZZVVZvorSjKwaxatcp4CZ988kmTL0EMOWLi+uuvl6FDhxojlVV3mtJ169bNGEqFGpePEexvpmaFBH8xfDF6bYM9jD5EU7IhnI8rzITe2LGPsFB+t2zBuWCFQX0esFTeHnoIYYDzG/AcwsL+BrbhoX1cKOddstDgvENkca3x3IQJE8xzeDLwtl977bXmGJCXgchAhHCtKYqi5L+wwJOQDdL8nJ49e5qVU0QHk/tNN90UyWsVpdRhNZVqNggJQpy4jyE6duxYU5WtV69exghkFb579+6mQR09JArFK8G+Uy7ULyDsfYxYjFO/wUpSuTViC7U/ASvg/vvZFBZBQZCxIl/XqjxhVf7fjDKwGOM8xhCny3qy6OA+28xHwWfhnOM840ZeEt+LbuDMV8OHD5fPf/7zpqwt3gw8GQgNXmdDpghBLJTrT1GUUhMWAcKT8gVWeqgaRWUNBuAvfelLkbxWUUoNDDZykBAT3CifSXw318s3vvENE9qEQY43AjFBmBNGXCF8L/oP2A7L/PUnMVvjk+9kHxdLnL8fupf77xNWWogg7Gxn9VT5LX7RwQo/FZn8vzdjv+3Izt98FIqce+wfN6ogInZpzMc1iKg/99xzzfWJyGDBDA8U/7Mig5K2+fi9FEUpHEoiebs2WKmhjN+pp55qVlAJx4jitYpS7GCMvffee6bPyyOPPGKMkSOPPNL0gTn00ENNyAmrvHgkCLsgBCqfO1sTqmQFhF9EIICsIdmjRw9z7fNcPq9gRwkr+itWrJAGDSrN4+XLl5vV8GIa/zDGbSgaeT1+EMQY55Tb5Zwg5IjKfzyH2PALDf7mWw4H5yr5gdxIil+/fr35TRH5iAjO+5kzZ5qQqcsvv9yIacqmc5/rudhEsqIomadoG+TlE3qclGKqsIaYeOihh8zKJ/1hiOmmLCxDCWEjNsSJleF8NEwwpvyeCG6EN2GE+Q1FbnggShk8UH/+85/lsGFbhZli5set5aqrrkrZCLSUwMPhF6H8RWxw/ttzx55H+SY2gGuVLuBr1qwxvZc4/7lWKcn+zjvvyJtvvmnEx2WXXWZugwYNyvUuK4pSIOTvEqKiKHkBxgdeib/97W/G8GAl89JLLzUVgvBCYEz17t3beCbqS7LNNqzSYkBxswYgRhT7bA0/9t0mUiupw6COGLVZWIFCWHz44YclLyw4Vwjp4+YXG/Yc43wjlMqea1Zo2FCsXHvvbBlnbuTM4J3Dk8G+skhABUUqgSEw/t//+3/mOXI18Gb4v7OiKEoy6rHIAuqxUAoNYs3/+9//Gs8E+ROEN+GdIAmbcCAMI2K2KW5A8nU+CQk8KcTIE7aCgYc3FWPO74nIx1XkfANjk9VqEpvv++VUQVl85cZRJlkYr1W+ich8xHrHrGeD85H5gPMRjwChVxj3uRYafkj+JuTtk08+MdcTYWAk7b/xxhsya9YsE0L1uc99zuRr2BLRiqIoFhUWWUCFhVIIEF9N3xbEBCEweCBIwB4/fnzVKiVhTggKjKF8CHOqTUhgsNmb1u+XgzpjJ994PrmbNp6JBx54QHp02yW//cUM8/xXbxohK1Y1NSvaNDNM7tJN7kmqpnz+zt6lDl4Mzld7y1ehwTnANYXIIFyKxySCT5o0SV5//XXj4SAkDpFx8skn58U+K4qSe3QkUJQSBmOB1UjEBOFOrEazInn77bebpo8YnJSxJFyIv7mu9V+XkGAfCc8qViHBb8X39/drYEUcQRikwzX/t+KB+7UZ/vYvyfkwdvSWqn0gJAphwf/wXNn9qk242M7e3Pwdv+vqCE4hANso0N54vliECecn4pybFRokVXM+U63JCg3OacRGroQGx9uKc4qXrFu3zpStZRzAW7Fo0SJ59913TZUwzqdLLrnEeLjwahbLb6UoijvqscgC6rFQ8g2MBFaj//jHP5r7xxxzjOnVQt17DEQMG5s3kcvyk3UJCbvCi6FWyIYMxxtxkKobd/JjDDgMcNtYj791GeupjHdWoG+44YbA+3f7D2bL0EHbzf3Zc1vKd28dFvi9v/rVr0w1rfpET/LNfvdU39l/S36Oc7XQzwXr0eB893s0ci00LJyreCvIISHEi+NNZSmSvt966y0jPK6++mrj1eK+oiilhXosFKVEwGghTvp3v/udaV5H3sRFF11kQlowyGwSNoZgLvtMkN9Bwjg3RIUVEqzwjh49uiCFBJ6FVA31rPHMSj/Gc7LhjEGZbDynu3pPiFNQxh+xUQb1j4sKGDxgu3nuvQ/aB07+xvMVpZfGHjNyFvzPIUDwvNjjlarhXb7n1vC72k7jXIt+ocGNvAe+O+KCymvcsp3nwFjBvnHjHEaock0ynlAxjPPr0UcflR/84Ady3nnnyTXXXCPHHXdcwV2ziqKEQz0WWUA9FkouwTj/61//agQFIRfEQ59wwglGQGDM2rCMXCVhY1Tb0pfcMKQQEhhNrHgWipDAAE7VkZsbq7wYvP6Ozhi+yYIhG7A/99xzT1Wo0+jDtsjXrl4kzZsdOOi1jRtXSvKhJ/KpouLgPh47dzWQe//YT6bMaGMeH3XUUfK1r30ta4ZvsgDB6PX/BhjkCAsrNJI7bBdCjoAVGngZuVYQG1wfVmQgRHPVYwWhZ5O+EXn0P3n11VdN3hZ9bOj4TWUpRJGiKMWLCossoMJCyVUDO8TEY489ZurQn3LKKaZUrO1AzEoyxkguDBEMbUQOzdYwkoAEcfYHIyRfu/9yXK2x6jdauXGdY5z6jVX//Xz6TnyPZ599Vh544M+yf/8B6dxxj9z09QUyoG+807QrCxY1l1/cM0DWrkcgNZArr7xKzjzzzLwShJxztQk/RAnizv5e/t+Pv/n0PVJdR4gMEqvz4TpioYD9IQeDBQP2kYTvF1980fTBueCCC4zIoChEvh5XRVHCo8IiC6iwULIFq7QPP/yw/PrXvzbNK0866SQ58cQTTeddJnHCF7ifizKRrLRarwTx4/6V1nypMpVsfFNq098Ejb88b8NVkg1RvBL59j3qYsGCBaZPAUZpeYNK+cKly+TMU9Ye5KWoDbwXz/yvi/zln71k/4EyY9R+61vfkgEDBkihwO+JNyNZKPKYG7+nv7s2f0lcz7ffme+BdzLZ82eFRi6KGnAcycUg6Zv9Y0zCi/Hyyy9L37595frrrzdJ37kMvVQUJVqKVlhgPLESymoskwCx5HfddZf079/f1GAnURXuuOMOuf/++02tfgZAQkRs6AXbuO2229JuBpXPx0kpDjh38U6QjI03gtViznEmbIwhvBNdu3bNalUnhhaMcWvoYKSTfIqRg7GTTzXwWWXFCPL3HOAGhIjZ/hfc2O9chZtkIzSKHIqvXb1YWjQ/UPf7djaQe/7QTyZ9GA9tYQX6uuuuy6vfNerzght9HoDryt8bJd/OC5urhGhEyDMPWiHP/mZTGBEahXcSLwbXFQsgJHo/99xzxqtBsvdXv/pVs/ChKEphk/9BpWmA6xXjilU5mnsNHjy4xv/9ogIRgXHGKsrChQvNhHLfffeZTqPU8Na4UCXfwHB/5ZVX5O6775YXXnjBhDl985vfNKUhgeZ1nM/ZzJ1gn4j75prBqMGgQESwgk2+RD4kzwYxFjFw8tFYzAR8x+985ztVoVEkZldUNJAffntune+7894BMnVGm7wNfYoCfnuuH262PGzy+cNq/IwZM/JOhPLZLKRxo3gAAoMbJWJZYEBg0JcGr0amfzc+j5wublxrixcvNgt4p556qkyfPt3M1VQQO/30040XgwW+YjuXFKVUKGphYcGooZzm7NmzaxUVyTAZUJ+bVRQGQRUWSr6AB4xkbDxwxFczOeOtwIDHcMeQwAjKZnw1q5Aka3LD8MJgoacEHopcG+YYVbZ0J6ujfhGB8Ycnkfv5GN6SLfjeZ511ljl/7r33XlnySf1hM0sTr/nKV64x+TulQiqxYcPmbMhcstjwl4vNhbjmM1lo4Mb1ybWA8KeCE9/HGv1cB5mG4zFy5EgZNmyYSfRm30aMGGFEDyFS5GCwCEFJZJK91cuvKIVFSQgLEsZwu956663yzDPPyC9/+UuZOnVqraICWGl98MEHTdw0hpqi5BoM4t///vfm/OW8pEnVhAkTjIDAYEFAk7CZLeOYGG48E1SC4T6hVhgM7EMuxYRfSPAXY4/VWww7RIRdSS5VEVEX8+fPN3/Hjt5c72tplvfia52NR7iUhEUqOJes2MB4t2LDejbIffj444/NY4x324MlF0KDaxPDnRt9a1ic4BpmjsSLwP5no+Q04xYhmnhV2QfOI/bpwgsvND0xfv7zn5uStTfeeKMpWWsbMiqKUkLCovLDu0T2xlcDM0qjVlI25sZ6X4ZbFRcs3ga8DzTsIWeC8nfkXKQSFeRCYHjwPga9xx9/3DxWlFzBpEsyNivJTPpf/vKXjTeAc5SQHSZmhEa2jHaaY+GZwFhCRCBoEBW5KtdZl5Bg3zDedNWzflhMsXkWR43bWKPi0x/+Gh8rv3TF0qrKUROO3GiEBe/5yle+kvOu7PkoNjCGuVmxgbfRnqt+oWFFRraFBiIDTyc3qjfhxeDanjNnjpk32e9MN8nkOFmhQ7I8EQIUQaD3xUcffSR/+9vf5Kc//anJ3yFMijFHUZT8JVpLAFGxN57wmA88//zzVUnafv7whz/IzTffLLfccosRGn5Y0STHQlFyDWECd955p/zpT38yK4vf/va3zV8MeAxmhHE2wp0wOAlTwODgL6uyrGjSWC8XBrsVEtZAUyHhBivp/Kb+btjcnzVrlgnnadVynxw6ZNtBFZ/gOz8aVlU5itfwWjxprDBzbiIu/F2+ualnqBquF8IEueWb0GAsseFS7BfeSPIOCelCeHDN8zeTApIFEhrtkQ/JZ7NPjDOcmzT1xFv7xS9+0eSS2TA0RVGKWVg0ylKSaJqfw8BJLCeig0H8pptuimzXFCVd5s6dK7fffrs88sgjptIOq3WE4zHJ0o+CCTXTq8MYnxg8iAk8FNboGDp0aNar/mD04rWx3YdLXUgQI095VH8XaisQrEjwP051s2D0WxHw+uuvm+fGH7FJdu+pWfGpf9eGMtPbIk1XNZc//u0QmTWnlakcdeSYTcZrwSIOlX7sZ9tig2zfLzZS3ZL/7+80zv1c5+jki9Dgxmp9NjxD7Bcee26ITcYBchSnTZtmPBiIDK67TIlGxhuubbyxNg8DwUG41JNPPmn+R2EVFgiTi7IoilJEwiJIeFK+gKFGJYrjjz/eDNxf+tKXcr1LSolDIiUighKM9J4g/MnGOjN5MqFn2sjCiGAiZ7USIxGDh2pTJJ9mc+UZAwvvCKEZiAoMTEIlillIcLz9gsF/8z+PxwasAY7RhSFmDXTuc84EMeatkcpnE3ICnTpWyP9971BZ52t2d8bgxnLaOzdJx2XlsnlKY1M5avHS5nLKxHhzQ2L06Zni315QkcONHB1eSzgO389+Z+D7+YWGv1u5//liCMWqS2jMnDnTHBPEhS3ZnI3rgFCuIUOGmDGI4geIjA8++MAcb/aThY5M5T/wGUQREPLJAgfnNWMA59vTTz9tkr7POOMM+d73vmc8G4qi5J6SSN6uDcpyYsRRVYeBkThxRckmrOxSRABBQRlIJkkqPGE8EHLEZI4BkUmjnhVwaswTekDeBNcB1waGfLZWi21VHdvzgoRXcpswoDBqiqFiE8fZNl2zTdgwqK1gwKjmOyav2JNQS7y737COeiWfcBeOP/zj3z2lMubVbHa3baUMEU/e671K7uo7Rv72v62my/Y/Ho3nDhAOheFL8j7YMKioPDPJgot99Ysuzh8ElT1uHDN/40Juhej58AsN/zVC1SnKtNprhFumrxG2zXnIjbA3+kQhMvB08RyhmYwdmTjOtnIVx4EFB35XHlNBijmcqo8UskBgsFhY6GOFohQyRdsgL5/Q46SkMppYcSPHh0o8Z599tpx22mlGTDBJIygyGWoAGLiICVb/WL1mVZDVR4zWbGDLXlrPRC5WY6OG4ZTrPbmDsxUR/J7W2LV//SIiV527KQyAB9dCCN61115r9o/vtH/fPnnoH0fIHxqVyXktust1zQfIvS+ul0kLd1W9hwUaynPnqnO2X3zYY27/8horNpI7pnPsC9EQTeXVsyIjm2WeOe54ORE7eJ8YQxhLMllQwoZqEjbKYgjCll4+jKkDBw40+ZOMqYUoJhWl0FFhkQVUWCh+Y5rcCUofY1RTMpawJ4wejGlyKDJZhYzPxxBBUDAx85msNGarTK1t1MU+sOKJoLHGEDHkhRLOggGFMZMsHvhLSI9dJfevmvOXUI6ojrMx+PfvN+NLfaFG9YUk/etf/zK5Kxhi48aNM16i5P1suuxm+W7rBtJIyuSFnsdIc6+BPDt1mzzw5iaprIyZkNLPfOYzTvkUqW4Y+vyN8jiR/+H/nex9buyTX+jZ3wyRn6tKZ2HzkOy1xW9qqz3Z/jaZhuPMPjC2sA+MKQgMru1MGvh4Nykpz3dHvNM0lERvxpPvf//7JhdDBYaiZA8VFllAhYXCpEuCK5WdmHwpd4zLHsMF9z6CIpNJ0ZyDrCgy6WOwMeFzy4ZXAOONUCuMDVYXMdismMAYzffVYkKUMLpt8zNuGKasEPtXvv3GaTqGDOcKAixVvkXycwhFPoswoLDGPP9HJP3zn/803bNt3x5+F/vbmDCcJz8np+6KNxn9ZtuBclGreBjUvIpD5OnpFfLZz37W/Lb1iZi6/s+xtt8pOYciVV4FBnM6548NT0sWHdw41vyetou27cqezcaTYeC34hy1IoPfFi8o1xuhStkoTW3HG27sD4sXmR5vCBPD+0t+GOcSIVr//ve/jcChJwbl5/N9rFGUYkCFRRZQYVHaUOefWHVi0FnRJWQEg47Jlvj1TDaiwpAnXJHER8IjqLKS6ZwNwChjgicGGyPHhjhxy3TjrShEhBUQ3DA4MYj8BiZ/wxpJGNZ+I5bVdL9o4C8Gb3KFpNqM7ChX9+vkzZ/JOUv+JSulUlp7DeXFPieJV7lXxCsTb9z3xWvSNlIvTG1iyl8JCwHizzvhL+eXX+yF9YLxOfYcsOcEz1mxYc+DfBcbrOL7Q6bYZ5uvkOmwR35PPpveFHhIKUBB6DRCJ1NwPVE9ikUUrmdC/PDIUVXqF7/4hSlGoShK5lBhkQVUWJQmlIv8zne+Y0obn3feeSbml5AnYpDJocjU6h2GK0Y9ggLDlTKxTOaZ7lyLoWcbbBHmRCUpa8Bku7twEDA6/EZjKhFhDUfX3wphYMNvksOleB5j1xq/GMKpREPeheHM+a/84J3vyXMN44b60wMvkM4ViQ7d3Y6WsoEXZHV3/ALELz78x51rwQqN5NwKnnf1LFmx4T9neI5tJwvPfBQbeMKs4KfCEwUauEYR/Jk+3/AoMCaR08XxZ0xibMhU+CO/CzkY5H8grsi/+O9//ysnn3yy3HHHHSbcT1GU6FFhkQVUWJQWTJw/+MEP5OGHHzbeifPPP98Y2Uzew4YNy1goAucZK4OEH2DIM3EjKjJp4Ni4atvvAmONz8RYQUTlExictjs3fzH02V9rCLqKCJs0nCwc7H1IlWfBLVdJ2mmxcYE8/tDRcnvbTubhTZ2PkAubdRAxXosG4o27JRKvRVRk6/fhuvMLDe5zrrE92+iOv/nmqeMYcN1yY39tf4pM51sh6BkjERkIHUKk8KRmaqGF35tFHhY9EFOICxK9Cd378Y9/XNUVXVGUaFBhkQVUWJQGGKw/+9nPTLnYo446yuRRENNsyzNmKikbA4Fu8azMYRQwSWfSOMBgw3iyRglgkHDLp5yJVEKC38Aae4i9oKEgfGdWPZPDpDCSolwRz2sqD8jCX7SXi7vEDbHjmnaUX4y6TmTlG/H/d5sgZQMvlEKgPo8SwjxZcCKUg57bCBqMWHvuca5YoWHPv3wRGrm6nu2iBIsh/MWTS35PphZe+A3o4E14KDlf5F9Q4ptKZjTa4zdRFCV9VFhkARUWxQ0GCc3sSBDEvX7JJZeYjrUYlwgKjPxMgDFALDGTJKuN5GuQPFtsK5xBYZ+sIZdKSHAL4r2xIsIvIDjWhN5wfP0GJ+FleReylEEq7z9cTmyyT7ZLTNqWNZT/nXS/yMLHRA5UJLwW3xOvSebi57MBvzNhO/7fngRofmd/qBO3oGIDAcq5me9CI5UH0oqMTCZ9c3wZy/jMTI9lfD8EBiJy0aJFpmgBVaUorPGNb3wj7zytilJoqLDIAiosihOMhT//+c/ywx/+0HglLr/8cpMgyCo4ggJvRSYMbowTJuFsrPKliskmdIAE8Fwb1FEICQwp3pccymJFhH/FmseFUg43Y/z3Crl+42R5J5Fn8eio66R3i+4in7wU/3/X8VI26DNSbJCrgfHrz6+wYiPZs8G1WN91XwhCIxc5U8neV3pSZCLRm+ueBRkEBt4lGkT+/e9/N2Pcj370I7nqqqvyMkdGUQoBFRY+3nrrLfna175mOppGiQqL4oIwiscee0y++93vGgPhsssuM7X/mYjwWGDsRx0Cw0TI5I6gwLChohRekUzEJfNZTLBUVUFUYCwhJlhJzFbzvNqMOwwxDAJEVRghwTb4bjZECoOO3zOVJ6LkRUQq3r1LHvjgTvldmw7m4fe7jZdPHf8riU26VeTAnniFqLHfE69p8YeVcC75PRvceMy1zzlkcyswyOs7l6zQsCKZaxyhgZC3De9yeT5ifONNIDeCfUNcMAbx3TKxeMKciTeBMYjrEg8GxyLqz+LaR8SQg4GQev/9943AYBwhrJXO3kUVzqgoWaBohQWDHoYYgwJGAvHud911l1ndZeA4+uijzeuoDnH//ffLa6+9Zt6TvI3aXsuAd8IJJ1S5wnktXZTPOeecgjpOihtvvvmmcZezikfyn+1Fwcoahn7Ukz+XJxM6goIVevInuGViNQ3jhu/FuU0oEGKC8zqT4VVBDBp/Qz1WSm3TLxchYY024qt5j10ZxgDk+6nxEJCFL8pHj50nX+7a1zz8VItu8v2zH5fYyrdElv0v/pouR0rZ4IulFMFQtZ4NKxK4rlh19+f2BBUa9tznsb/hXS4FPt+PMQKRwfzHGIEnIxNjEh5T5k7yMPDgIDBY4IhaYCAq+Az6YHCfOZ7iG3wvwlyPPfbYSD9PUYqZog4Opn41ogCjjIGBEp9+6hIVySS/loEVAw+3LZPJfffdZzp8ssKbyRrdSm5glfzGG2+UJ5980vzOJPsxuSMmmOyiDg3AIMbI59zl/EIQ4wnJRPgRRhDnM5+HCOe8ZkUyF6FOCClinzGmbBUXVixZtaWJICKgLqOiLiHBdxoxYkSgUBWlFjoNl2EVuwWz+ICIzNizRWTLQvF6HCexFW/EvRZrJkus90niNY17NUoJ663gxjxhQ+2syMBIDiI0OGdt35fDDjvMGPNcDxi/06ZNq6oyxy3TZaST4Rpkn4YOHWrmO8aO2bNnGyOc7xxlkQrGVa57xlk8C3zOnDlzzJjLwkdUCwJ2cYj9Z8xlu8ccc4w899xzprEeC4YsTBLeqihKCQsLC4MQgwSDUl2igk6dX/ziF41YcBEgDEJXXHGFqS7BwK/ConjACLjnnntMHsURRxxh7mMQMIkS9hR1HDSrZUzUhAHYyY7PinpF3d/rgvANPgMRnqnKVXWBcEIAWDGBZ4b4agyHMWPG1HmM+R7+1eFkIYEBRBK9ComIaNlVmjRpK4P3H5DZ5Q1k6f5dsnn9DGnXaaRIz+MltvQFflGJLXtRvMGflVKH885WCbNCA+FshW+y0LBeNL/QYBu26zdGNteH9WTQp4Hrw4oMtpMt7xvjE6ViudnFibffftsInah7VPBZLHhwDO2CC9+dBRc+P6pFEIQMJcH5LATMueeeKxMmTDCRCxx78i+uu+46zb9QlFIXFlR8IH/i1ltvlWeeeUZ++ctfytSpUwN5KoK8FuPmwQcfNCuhDHRKcfDGG2/INddcY8KCaHSHkcqkOXLkyMgNcIwLRCmCgvOIJPBMJH9jlGDMZLPXRW3fl9AmjCOMJIwhQjyY1BEVtRkKfo8G71chkWU4HzsdKiN2LJDZreKe2Zlr3pfjhn1OpMdxIngt9u8WWfOhxHqdLF6zzFREK1S4nhlDuPmFhs358QsNm1+RLIwREryXGwsR5BtxPXz44YdGpHMd8T7en63rmvGQcZHrlxApDH8W8jD6GWOiWoBhnMBzy5iFF5nPYX7Ho8EtKoHB/o4ePdoIDDxEN9xwg8m9vPvuu03Bjt///vcaHqUo2RAWlz/zGdm4e4NkmvZNO8hDZ/2r3tfhwmTFhEEaj8KVV15p8iBeeuklk3NRn6iAul7LJGBXlxjUHn/88Zys+CrRQk4DYU9PPfWUyaM444wzjBFOpScmtSiNfQwBVvqYHBEUrNBHXb4V4wWjBeGCEY/Bcfjhh2e9TCwGE8YAK44YUhhMGEBHHnlknUmgtXk0iLVWj0QO6DRcRq6fKv9MCIvp25bJsRVbxWvcWqTnRIkteS7utVj6gnhDL8/FHhak0MAA9wsNrtX6PBIY0ixAcLNFF7hGGE8++uijKu8q/8+GyOAzMMb5Lgge5siXX37ZiB2eJ/QrijGHbXD98734HI4Tn2XDmaLy2jCfH3fccSYMi22y0KjhUYqSRWGBqFi3a53kC88//3xV4rWfP/zhDyZG/pZbbjFCoy7qei2DZ3LYlFK4YPiyIoW7e+zYsVVhT4gJ4omjzKPACMDAZkJEmLLah+EQpaGPJ43VQwQFBQRYPTzxxBOzWqcdUYBngf3A4MGAwtCxuQ51/RYYVvYW1KOhZIHOh8qIj+Kdq2F6RTzPQjofLtL9WJHleC12iqybIrFeJ4rXopv+LCGFhotHgvciPLgxXpHbgZDn+me1HSOca4/3ZTpcin3hc7ixHyyeTJ482Ygk6yWNIkzKfg5jAseI8CW8vuRT8l2jEjGMnRw/qkd96lOfMg1QCY9CyNC9W8OjFKWa8qg9Cdkg3c9hUGMVBdFB3OpNN90UyWuVwoX8mmuvvdashvvDnkaNGmV+96jLxjJBYTwzAXKORSko2C6hTohexBDetGwmY9uVU8QEeRx8LpM8K391VZjCALFeCTwsHH+MqPo8GkqW6XSotK88ID0oMNCggcyp2C4VG+dIk86Hi1feRKT3SRJb9CRngvFeeId+UX+ikNTmkaB6ER4JPADWm5Es1G1oLjeSv1nIoF8DCw6s9jPuZOO6Yj9YECBHgfEAw9+fHxGFJ4XvwDHiOOBdQGAw/iGwoipTy1jKAhAeEcKj/u///s8cTxaj/vSnP5nwKMY4RSl1IrU0goQn5QsMalSNolwohuOXvvSlSF6rFGbY09NPP206Zmcy7IlwHgQFkzwrXazcRVmeltKsrE4SEkCYEV6BqL0gdUESuO3MjbhBzNDfgxXUVPvgN5S4EQKChwgDAUGnHXDzlE7DzJ8Ru7fLihZtZK9Uytw178uIIZfGf+duE0SWvy6yd6vIxlkS27ZUvFb1h50qdZPKI2FzlMhnsKGF3JIFA4Ke91BwgnEI0T9p0iRj1NvO2pmuLmWTvRlX2W/yIxBIjIOESUVRQtd6F/g+jIOIL/vdoyqqkhwe9atf/cqERzF34M2gehTCTVFKlZKOJ2BVmgHh1FNPNYNqXaXkXF6r5D8Yvr/5zW+MG9uGPbH6x6TEJBRlPDIGN4KCkAa8B7aZXlTgZWF1Di8FkyfVqzDQsyEoCLFiFRJDhe+JUYMoY5UwlWiy+R6ID4wLG9rBamY2k02VNGjSWqR1LxmxZ7s82yKeUzZ9+woZQX5ds47iNWgk0udUic3/t/lfbPGz4o38qh7yDHgCbNKyvxgCggGDl2sRA9uf18Bf20ySAhE2TBGPLfMaXgwWBDLZb8nvXSCXBIFBLiNjL4t4USR6M/ZYjwhj47vvvmvGF4RVFALKChgEBKLu7LPPlvHjx9eoHvX1r39dxzOlJCnaBnn5hB6n/IJJlGpP/C6UF85U2BMGPy5/jGhW6ZhworxOMOSZNNk+xjlllVmpzHYSNkYKBgyTbG3CwIZicLOhGBgw2SyPqUTIP86SRUtfls/0GGAeHtu0g9w14Tbxuk8wj2OVByQ2+XaRPfFiHt6Ia8VrO1B/gixgix0g+P2hiNxqC0XkmsZ7y/WJ8GdhApGB8Z8NsY/nEoGB94X9RBRE6UFhrCehHS8D2ycENcpS4XQjp3okYzLhUX/84x+Nx/V3v/udiXRQlFJChUUWUGGRHzDZsor0xBNP1Ah7YuUuyjwHusUySSK6mZiZxAhTiApqxhNCkKlJOBWsP9ha9RgrrJZaY6W2CRphZb0ZhDllM3lUyTAvfUcq3/m5nNx7qGwtK5NWZeXy4sjrpPzQK6teElv7kcTmPBR/0LKXeKP/T/NkskxtxRMQ9XVdt3YRgHArXmsb32XaC+pfLGHsZLEkykqLjEMs9nAsWBCNsrkpYyTCZdasWWYOIMLhn//8p5x//vkmDyMbiz6Kkg+osMgCKixyDzkUV199tZkgyZFhRS7qsCcquJDjgKhgEmHbUU2KNoQIQYFAijJsoC5YybTddTEybHfd2jw7qVY+s1nuUskSM/4h8p/L5JudesnrzeOr4A/3OE76n3C3eF5cNMZilRL78BciO1ebx96wK8XreJj+RDkijKeRlXiufYSJbfLHezJdCILeQSR52/BOctKiKlULLJIQnoqnBHFBjkdU34njzLbZd44zlSU5hiR4n3XWWZF8hqLkMyossoAKi9zBxEEpQHpSEPaEW5oJkj4OUYU9YfRjfBNrS6gTgoLyh1Ft2yY6stoWZaJjXbgYFKyK4j2xeRNBVkWVAmfNDJH7Rsg/WrWXX7WP55vd1G6gXHTcr8Rr1avqZbENsyQ260/xB826iHfEt6qEh5I7rDeRa9bmRnHNElKZypvousCQqYIUiIAoC1KQ94YIYI4mNwyRFdW2GUNJHmfcpsEuwoJO3uq9UIodFRZZQIVFbqDLOmLC76Ugz4HJKapQHHIHZs6caSZnSipGVTsdQYGxTtlEJtcoSzPWBrkPeBuYxPleNgQilQuf/cNzgmESNI5bKSL2V4j8rIXMKS+Xy7v3N0+d1KyT3D72O+L1PrnGeRKb+huRbUvNY2/wZeJ1GZOz3Vbqzn/C68p1z3Wcqppbckgk1zqLHRjkUVa4SyVs+Ey8GCyqkISNCIpqrOW7szDEogihsVGNYSy62O7geC/uv/9+Ey6FyDjzzDMj+QxFKUphgfGhK5N1rw4xKGqSe/a8FDaXAmExceJEs9pFV+uoJgwmOsKSWE3jd0WwRGX0E0LEKhorXbaTbCYnbXt+4rrnO9gGVqm+DyKHiZHXEkdclxGiFDm/O0z2r5spJ/YeKjvLyqR9g0by3LAvSINRX6vxstjmBRKb/tv4gybtxRt7s3hlJV2QMC9JXiwg94Cxh7EglYeUMRCPJjYA91n4yLQtwOIHYxVjL2M63mFCpKKA70D+BdvHK8zYG9WYjnijwaHfe3HeeecZ70WUOSSKUvDCgguRRCtWKzLtEi1kcImyEsyqs8aZZ5Znn33WiAmqMOGlICSJCYJbFF4Kf9gTCcxUlIpKrDD54KHAPc+5QhnJTJ0vNmcDo4DwJRKqERQcr1SrlLyWCZcYbUQEBgQhCZkUPEqe85/LRWb8Xb7eube82yxePOCx7hOk98S74yVnfVRO/73I5nnmvjfg0+J1PyYnu6wEN+AZF7jmERvM8VzztXkxGLMYS0gUZ1zAMM/kYgO2B94L7A/GLDwYUY7DVHYi5AsvNIsnUXwPvBcIIm4cL7wXCLM///nPppCIohQLaQkLWwWBi5yBRyu9pB5MEBUYiFE3XFOqwT1//fXXy+OPP26ExQknnGAMf3o6RDnhZCLsiURFVsoQLEzeiKBM5VBgMLAiiacFT4VdZUzu2gt4JJj4MC7wVHD+8vpMV6BSCoR37hR56SZ5sHUH+W27Luap77UbIudO+LF47YbUeGls2ycSm/LL+IOGLcQbd0u8S7eS9zDe4aFkrmdcsl6MVNWUMMat9xPPBQKDcTJTCxCMS4QZ8XkIACrwRdFYM5PhUSw04r3gWL366qvGe/HpT3/a9FVS74UipS4srPHBSgUGtJIaBBerwVGVtVNqQlm/q666ykx2eClYfY/SS4FwZvKyPVuiCntiUmT1iokYYc6kmMrAjwK+A5MvK3ych3hDmIhTJWMj0viuCB08kRgSmY6hVgqQRS+JPHSKTGvcTL7Yra956ozmXeRHo74mZf3OOejllbP/IrJ+WvxB71Ol7JDTs73HSpqLEowJjCMYx4wfCIdU0QrkavBavArYCJnOEcNIZ3EGjyrjFXl0USzO+Mf+KMOj/N4LvDxUjkLI4L04/XS9LpQSFxb2ImHwUFKDIafenMx6KRAWJ554ojHMyaWIIjQvU2FPTLrWjU98MG78TIUSBq2qYj1rvA6jAZGWjaovSgGzY53InZ1lr3gy8ZBhUiEiXRs0kScHXShlR3zroJfHdq2X2Ae30z1PpKyReOO+J15jPb8KEcYIxgqMYcYIjG5KSifPc8lV7Xgdt0wtsrFf5KcRvmXDSaMoI5up8KhU3osLL7xQfvWrX6n3QiltYaEo2eb55583YgI3eya8FP6wJ8oQRjGRYLzbxEPc9SQeUqkqExDmhHCxdeARFHxW8negAAP7xI0J2CZuq3dNCcSdXUV2rJEvdxsgHyVWiJ/qPkG6HvsL8RodHDJXueBxkZVvxR90PUrKBl2kB7qAYUGREClEBh4Nxg88E5Td9oOZQVUkBEY2+vDwWQgMwkxtAYx054VMhUcley/IvWBB64EHHpDTTjst7e0rSrZRYaEUFBj83/jGN+Tf//53RrwUmQh7sp4PErOZ3BAUUdZi98OqIJM3EyDlGBEUqcrF4u1BeBA6gOBgFRFxpjlAihMPnSay6H9yf5tO8se2ncxTP2k/TE4/4ibxOh9+0Mtje7dL7P3bRA7g3ygTb+y3xWvWWQ96gWPLYzNuYtQTOom3IFXOAFX7GKN4PQtDjFF4UzOxT3hLEBgY73iGo1ggylRorN978corr5iwqIsuukh+/etfawlvpaBQYaEUDFOmTJELLrjAGMrXXHONMYSZlBjYo/BSEAqEu5tJLqqwJ6p/sMLFyh77makEfoQCkzUTKZM1q4HJSdbJ3bvZFwRFJiZ1pUR46dsi7/w/+aBJc7mm6yHmqfNadJObh10hZYMvSfmW2NIXJbb0ufiDDodJ2fArs7nHSoZhcYPwSzwZhHoyRqfqmo03mDGLRRcWWnhdJpKXERUUoSAHg7wLQpmiaGBqw6P4vswXiKko9hXRwnHBe/G73/3OCI5HH31URo8enfb2FSUbqLBQ8h4MYup933zzzfKZz3zGdC+1FZ+i8FKQh8AEgQjAvR1FtSdCkWbNmmUmB1zxGPBRJz8nCwXCC1glTK6KYlcTeV02u3crJcCMf4r851LZ43lyXJ/hckBi0qe8mfy77+niHfnDlNdR7ECFxN7/qcjebeaxN+p68VrHRYlSPNj8Lm4scjAOpmpqR7gSOWeEbdYlRNKFUC32hXGQ/UBgpBuKZcOjCJtFrCAwohhXERMffPCBGa/px4SH/o477pDrrrtOvcpK3qPCQslrMJi/8IUvyKRJk+SGG24w7mwMaPIeojDU8VJMnz7dTGRMCsmxwWFWnJgkWXUimZHJK91tJhNUKLAvrAay+oXHBNFBrLH2UlEiY91skd8NN3ev7HeEzKjcbe6/0OMYaT/+h7WGOcVWvSux+f+OP2h1iHijvq4GU5Hi75pN7hYCI1V5+qBCJF3IK8OLTBgoXmTGxXQ93myTeYT5asSIEZF4LxBCLE4huAjn+uUvfynjx4+Xv/zlLynDWxUlX1BhoeQt7733nokxxYPw1a9+1bjJcQdHMWgzibHKhEcBQRFF7C0eDzwfbIdtZiIxm/1lkmEiq00oMCERhkAOBRAWRdiTlotVIufAfpGftTA5E/d0GyJ/bRwX+3d0OFROHPFl8Xocl/JtscoDEvvw5yK71pnH3rArxet4mP5ARUzQcckvRFiUISeNsNeoIReE8ZqFGsbrdMOjbC4d22R/8X5H4b1g8YswYMJd7733XvMYD8aRRx6Z9rYVJROosFDyDlbaf/GLX8iPfvQj+dznPidnnnmmWcEaN25cJM2PbC4Fqz6sLqXrUfCHPdGLAg9C1OWFSXhEUOAiJ1QgVWiVf0JmQuN12rhSyTj3Hy6yeoq83ayVfKNzL/PUZ1r2kBv7nydlh32p1rfF1s+Q2OwH4g+adRJvzLfFK9NeKcWOLW2Nx7UuT6oNXcLjyqIS3uqoV+rZF5Kwyb9ADOAJTzc8ynovGLOjyr0gXOz99983eSnPPPOMPPTQQ2Z+vOmmm7SUvZJ3qLBQ8gqM88suu8wY6oQ+2fwEVq3SNdaZxBAUUXkpshH2RKgT1aQIfeI4sMqXXArW36sCAYagyEQIgaKk5IkrRaY9KDu8MpnYZ5jEJCYDGraQf/Q4WrwJPxOvQcNaV3hjU+8W2bbEPPYGXihetwl6kEuEoCGdjNuIC8Y3xjUERtQFJ6IOj/LnXiBYmG/SLeHNfMM+chw4ZoRG4RX5+9//HkkyuqJEhQoLJW94/fXX5eKLLzYD+5e//GWTmE0ZWSaTfPNSIE6YNJh8GNyjDnvCC4JgoZoJfSU4JskrabyGCbe+6iuKklEm/UbkhW+Yu5cOmSjz9qwXzsCXehwrrcmdaDeo1rfGti6R2NTfxB80bCHeuFvEK49WnCv5jS1CwVjG39p6XPjHREKoWHSKug9G1OFRfu8F8w4LUOmCGKMsLd5rel4gMh555BE57rjUYYeKkm1UWCg5B5f3rbfeKj//+c9Nb4pTTjnFuL6p+pTuxMFqFwKAwTiKik+ZDnsinIkJFg8EgorPSC4bm7yCl6kyjYoSiCWvi/x1orl715BT5eE9K839X3Q8TI4beJGU9T+nzrdXzn5QZP30+INeJ0lZ37P0wJcotmw24zVjK2Nb8ko/4UCELlkvLq+JsiBF1OFRfu8F4zXzULreC+ahyZMnG3Hx4osvmp4X3/nOd+SWW27RXDol56iwUHIKnoTPfvazxpC+8cYbqyYTDOp0V95xa7NaFIWXItNhT/54Yjw1hH4lxxPv37+/6jV00yYkQAWFknN2bxb5eTtz941e4+TGBjvN/Ytb9pQbehwrZWO/U+fbY7s3SGzy7dShFfHKxRv3XfGaxLenlK7AIKeMlX6bU1ZeXu6cd5ZP4VFRey/8PS+YFwiN4hg8/PDDkXhGFCUsKiyUnPG///1PLr30Uhk1apRcffXVJm4WL0W67ueovRS22hOTCu5xwo0y1bwJQcH39+8vr6HkIJMIK2f2NYqSN/yyl8i25bK9SWs5sVtvqYxVSv+GLeSf3caJd+SPxGtSt0etctGTIstfiz/oNFrKhn4uO/ut5DWMvYgHVuhZbCIEym/c4w2wryHXjNcQOhqlF5nwKOYTxuF0w6PYX8Z7vN5ReS/4/vS8wJPzpz/9SaZOnSr/+Mc/5NRTT01ru4oSFhUWStYh3AeXLaXzvvSlL8nEiRPNCjyiIt3yfHSenjZtmlnJZ1UoHRc2+8mExUSAdyDKsCcmGFbCSMzmPtuneohfUPA8Hh1ew/O8hpUozaFQ8o5/ni0y/xlz9/KR58qcrfGSoi/2OEbaDv2ceF3rLo0Z27dLYpN/KrIv7u3wRn1DvNZ9srDjSr5jx0rGYqhtrKTUKws0mRgrbXgUYzHChcWddMKvEEp4L/DMjBw50nQeTwdEFeKCPhqvvfaayb34+te/bkKMtW+Rkm1UWChZhdWfT3/608ZYJ/SJQZpVJlzZ6VZoYuJhZZ9VILabrpeClR86fDPw8zcqcN3jAdm5c6dxsZOsmCxYbL+KTK3CKUqkvHKLyFs/NXd/M/7L8tCad8z92zsMlxP7nCJlw75Q7yZiK9+W2ILH4g9a9Yl35NZCBIpvjKdQBZ5b298i2Xvg9+4yZuNhILQ0KhizmRcQBswLUXgv8IYwB6Rb+ZDtkcjNd+c43XXXXcbD8/jjj2ekp5Ki1IYKCyVrMICeddZZZhCl4V2rVq1Mbwq8FekO9lTJYGClilQ6pQjJYyCulgGfgR4vRVTGDR4QVtToNUEsLKIiOW7YxhbzNxNxw4qSEWY/KvLoRebu22O/JN9Y/665f0GL7vKtzqPEO+q2entUxJvm/T+RXWvNY2/o58XrNEp/MOWgMRrvge1vwTidnGvGazCwyT2gRwaLM1Gt3DPP8PmM0yz4kG+XPI67QKld5i/mGeavdBexqKxFYve2bdtMVABzGb0vSEJXlGygwkLJCk888YRcfvnlcu6558oFF1xgEpMRFemGPhEqxAqSHeDTMcLxUhBGRfgUeR9ReSnsyhQTEWIKj0pypSd/v4raqqEoSt6ycYHIPQPN3Z0Dz5YT9n8iB2IH5JCGzeRf3cbHvQ+tD6l3M7GNH0ts5h/iD5q0E++Im2vtg6GUNkH6W5B3gHeYvwiQdD3ZtXkvmC/S8QpQvMMuaLGtdJvq4emmoR6J4o8++qg8+eSTpt/FOefUXaFNUaJAhYWSUTCqb7vtNrnjjjvk+uuvl/Hjx5vBHRd1Om5fBmIS4IirxSWdzkCcSS+FDXuicyqCIjnul0oh1nVdW78KRcl7KitF7mgjsne7SKue8oXBx8jM9TPMv57rcbR06Hu2lB1yRr2bMU3zZtwnsnmeeez1PVu8XidmfPeVwiW5vwVjqL9in81VY75o1qxZpOFRfu8Fn838kY73gv1kcYvmrXgY0lkoIyyMuYfj8u6778rdd98tN998s3zve9/TEEMlo6iwUDIGxvTnP/95eeutt8yAhsGOcc3fdGD1Cdcxgy6uYyaLdHI+WHWK2ktB2BMeCAQD4Uw0c/JPOP5a6cTpstqW7MVQlILigWNFPnnL3P3taT+TB+f909y/tcMwObXLWCk7/IZAm4ntWCWxD3/BPZEGTcQb9z3xGum1odQ/LzDm4nlO1WPIhkcx7hKOG2V4VJTeCxvayxzB/JbuvMD3JQyZsDAW+Gik9+CDD6Y1bypKXaiwUDICqyRnn322GRy/+c1vmhKthD6lm0TGdqmmwaSBMR7W68EkwyoThj/bwfiPwksRJOyJGFhWkjg2/J8mTIpS8Dz/DZH34120J511j3xt9v3m/rktusl32w8V76hbxWsULP+pct6/RFa/F3/Q7SgpGxjP31CU+qDwBYZ0beXBESD8nxyEKMOjGPsx3hE36XovmBvYDqKA6obsYzqwgEZoFHPPnXfeaRblnnrqqbS3qyipUGGhRA5uV2I5x44dazppY2AfddRRaa2QIAQwxslBGD16tImpjcJLQRhVOsnermFPUTZcUpS8YtpfRZ64wtzdc8JP5fhlj8r+yv3Ss7ypPN79KPGGfE68zqMDbSq2d7vE3r9N5EAF05R4Y74pXovuGf4CSrFQX0NTW8IWgRF1eBT5cswvjPfpei8on862KEfLnJJOmBWekPfee88IKvpd4BUh95G5WVGiRIWFEikPPPCAfO1rX5MrrrhCTjvtNLMajzs3nQGRgZAa3SR6H3744aFzEDLlpXAJe+J4EDureRRK0bF2psjvD4vfH/YZubpFY5m6bop5+HT3CdK5+zFSNuTSwJuLffKyxBbHe2NI637ijfyaxoYrThCaRG4FXozawqMo0YqnAS8D80IU4VFRei/4Dh999JFJyKbXEwt16cxVCArCxV544QX5y1/+Ir/97W/lC1+ovxy0ogRFhYUSCQzQhDwRu3nTTTeZFSAqGzGYhzXeGZypSc7E0L9/f2Owh13hp3EQgzOrVqwiReGlsGFPeCFY7UoV9uTv2qphT0pRc2CfyM9axr0M7QfK/cd8Xf44/T7zrx+2Hypnthsk3vgfBx4PYpX7JfbBHSK7N5jH3tArxOs0MqNfQSn+8CjG4WQvQqbCo6z3AlGApz1saXXmD7wveGFYmCJHJJ15FcGzcOFC853/3//7f3LllVfKL37xi7QWABXFosJCSRtK2l144YVm0PvOd75jKjQxiFLZIp2VFXIpMMzxUoRtRMQgygDKoIzIIfwoigmDcCeqdzAhadiToiT4w1iRVR+Yux9e+Zp85bXrzP2zmneVH3QYKt7h3xSvZY/g1++GWRKb9af4g8ZtxRtL+Vktw6xkNjyKBSLCZKNIcGa7fC4ea0JgWSQLOwfhaWCBDGFE7kU63pUVK1YY0UMlKpK62a9///vfphS8oqSDCgslLVj5oOkdOQ9f//rXzco9JWWTGxa55ioQ+sSgjkDxD/4usEo0ZcoUs2pEOFYUA6b1ouClQECxeuQf3DXsSSlpnv6KyEfxpO2Kz70iJ7z7Lak4UCFdGzSRJ3tMEO+QM8XrfXLgzcXLz94vsnmueez1Oc3cFCVT4VEsavF/DG7ERzregeQFOMKQ8JYzr4Xt4UTuBvMai1uERqWTG0IjVvIumHN/85vfGOFCMz2Oi6KERYWFEprnnntOLrnkEjnjjDPk4osvNgPckUceGVoIAIM5gyZhVIQ+hR3Q8XQwiFMRhJWnKOJm/V4KtpmcQM5nkryNMUQoWFgvi6IULB/eL/LMV+L3T/uNXLN1hnyw5n3z8L/djpLu7YdK2ejrnTYZ27lWYh/+nNgokbKG4o39rnhNdFVViSY8ijmG8To5PIpCIYz3UXovEC1sk9BcPPFhE7uZY8gNwRufbkM9hMqkSZOMyHjkkUfk+eefN39PP/300NtUShsVFkoo7rvvPrnhhhtMovYxxxxjBjYG37ANffwDJas5uKrDbgdXN9tJNxY1qJcCzwgrXFrtSSl5Vn4g8sex8cMw4vPyp77j5b5p95qH32s3RM5p2V28CbeJ19CtX0zlwv+KrHgj/qDjSCkbFq8+pShRhkcR1tqoUaOU3gvGfRKxo5hPli5dauYTwo8Ijwq7TfaLcCabgxh2OzScRfCwPfpO3XvvvfKrX/1KvvzlL4fanlLaaKaO4jwo/uQnP5G77rpLfvCDH5hEN27pVFgi8ZvBkRUTRErYqhe4uPF2sALDdqIoH8g2GXBJ6iOcKtlLwUCMl4IwqxNPPFGrPSmlTadDRbwGIrEDImumypgJ14tMi//ro4rNck7LbiKb5op0Ptxps17vUyW29iORfTtE1k+T2JaF4rXpn5nvoJQMhEDhHe/Ro4cZx1999VXjvbAeABaQrEfAGt4soKVT1Y95kvArErkJ+aW3BItpYbbJfhFaRY8K5ij2NUwCNguC7AMhzMzx7BtFWCh3yzwfRSiYUjqox0JxWtXAQ/HYY4+ZwaZPnz4mxpMa2+mEFzEoMoCzrbBxp7i1SWqjnCtJbelWt2BwpXwsq1WpvBR79+41ExGfyyoXE5MOvooiIr87TGTdTCMw9n17s0x8/ETZs3+3dGzQWJ7pPkG8zmOkbOjl7tfkqvckNv9f8QfNu8V7W3jaB0aJBsZ8EpoJj2IBKRveCxbVKFLCPEJoVNhmqXjNESlsj/5R6YRtISbYFiXSb731VlOY5Z577gkdjaCUHioslEDgBfjsZz9rjPdbbrnFuI1prBO2fB6wUjN58mRjuDOIhykl6+9QykoTg32UXopUuRSEPDEZ4KVAxKSTU6IoRcd/Py8y/W/x+1d/INd9/Cd5b9U75uGj3cZL76YdxZtwq7MoiMUqJfbRL0V2rDCPvQEXitd9QvT7r0ipz3WM7yRbM74nh+Xa3As86+l6L/xly1mowvNP4nTYuRBRhPBBXCR3HHedm0nqZq677bbbjLf+H//4h851SiBUWCj1QsWIT33qU6ZixHe/+10zYE2YMCGtRj3kLDAIUnUDt3BYbwcJ2nhSGPiSe0ik46Ww8bbJXgr2mYlFvRSKUguTfiPywjfi98+6X/7SuIHcO+XX5uG32w2ST7fsId6o68Vr7X7dx7YultjUu+MPypuLN+574jVMP6lWUVy8F8wFNq8uKu8FRUHwFDDn4L0I63VgkY38DfaZHMOwsLD2zjvvGJHx05/+1HhTnnrqqcg6lCvFiwoLpU4YOE899VSzKnPjjTeaVfqjjz469CoNqyoMyCtXrjRiIGzlJPaLvAx6ZTCwp+um9XspWKVKDu9SL4WiBGTpmyJ/OS5+f8xXZNa4a+WK5z5rHp7YrJPc3vFQkV4nS1nfM0Md0sqPHxJZ91H8Ad28B3xafxolIzAv4L0g/y+V94KwIeYNjO0ovBcsklmvA/kSYYuYsAjIohshuizehW0sy+Id4gLvzZ133mlCrv73v/+lFf6sFD8qLJRaWbBggZx88skmue3aa681ooLwJ//KjQus8rAiw+A0btw4ad7crTKMHXg//vhj41lgIE+nCZ+FlSkmDwZxREryypR6KRTFgT3bRO5IrGp2HysHrnpXTnzkGNmxb7u0KiuXF3scK2Ute0jZmJtCHdbYni0Sm/wzkcq9pN/Gcy1ahC+3qShBQpVYEKvPe4H4wJiPak7CE0JxlDALZzt37jT5i4TqsoiXzryNuEBc/fa3vzUVF19++WVTiUpRUqHCQkkJqx2nnXaaTJw4US677DLjWSBuM2xSNJ4A8ikIV6L6RJi+EsS+sg28HiR6hxEmfkh0QzQwIaRaHbKrUVTKYMJIdzVKUUqGuweIbFooUt5E5ObtctOb35TXPnnF/OtvXY6QwY1biTf+R+I1DtdIM7bsJYkteTb+oHVf8UZep8UTlKx5L1jUSuXVxotuw2jTLSBCY1fmYbwNzL1hcvlIOKdSImFWbCNs+DJzJXMvnpCHHnpIXn/9deO5IGRLUZLRkhrKQbz00ktGUJx33nnyuc99zngFaHwXdqDEQKc2NtthcAsjKnDFvvHGG0ZMUEo2XVGB0HnzzTfN4M139YsKVmhIUmdAZrUI74qKCkVxoOvo+N/9e0Q2zJWxXY+s+tf7ezbF72ycE/6Q9pwo0jQRRrl1scjaD/TnUTIKcwBzAXMCcwM35goLcwhzCXMKcwtzTDpQRtbOdcx9zIGuMNcy5zL3MgczF4eBuR8bgO18/vOfl3PPPVeOP/5447lQlGRUWCg1oOPmOeecYxrjkLBNYjWrEmFiNHEhE07FqgsrPEOGDAm1qohbGFdsv379jLcjnXwK2+yOgZ+JgCR0v2hg4KWWOSs9TBJRJOUpSskKC1g9RcZ1G1/18IM9cQMptunj0Jv3ysrF8+VWxBY9JbF9u0JvT1ECnXeeZ+YE5gZExWuvvVbDWGcuYU7Bm8Ecw1zDnBMW21+CuY85kLkwzD4z9zIHMxczJ4fZJ2wAbAFsAr+NgM2gKH60QZ5Sxa9//Wv53ve+J9/+9rdNaBCDUdg4SsKVbH1ukr0JJ3KFwc+WkiX0KbnsqyuIBUr64c5lFcdfM5zcDSppEEuLG7tnz54qKBQlLF1GVd9fM1V6jrhcujTvKmt2rpZpFVtkT+UBabJpnsQq9xuREAav3WCJdRwhsn66aZwXW/KceAMv0N9MyZr3gvkC77Y/FwIDnPsdOnQwXo0NGzaYUuhhPPVWGDAPE0aMMMATEmaRDm8D3g/yLvCqEN7rumDIZ5KHSFgW8zNelauuuspUSrz++usdv5lSrGiOhWIGiJtvvlnuu+8+IywGDRpkhAXGddh4TAZbksfGjx8fKowIEcA2GAAZwNMtJUtcLIMy+8Kqiz9e1cayMmiS5JZumJWilDw714v8IiHcex8r8oU35Cfv/ECeWvhf89S9nUbJ2KbtxDvsGvHaDQp9uGomcnviHX6DeC3DjVuKEgbmOYqSAPMHxrY/L5B5jPwMFsfSLdVKrgTCIJ1cRfaFHhXMc8yFYUOcEVXklMyfP9/0urjmmmvkZz/7mS7IKRoKVeogAlhx+Mtf/mIGBZrzEEsZVlTgHmbQ4m/YsrQ2RhXBc+yxx6YlKtjG4sWL5e233zbfiapWflGBa5n4VVaXosjdUBSFztgdRVolquOsmYYLs0Y41OREnkU64VDgNWkjXp/TEo9iEpv/qGmkpyjZwub90d+JucQfrsRcw5zD3EOOA3NROqFRzIXMiXjY2R6ixhXmZOZm/1wdBr4TtgILkdgODz74oLEl2DeltNEcixIXFVR8Iqfg9ttvN810GHD8IUKuKyEY8JS1C1uWljAlRAVhT3gqwpbIs14PVpKIKbUDoHUf892p+ERoFCs/uHfD1vpWFKWOPIuKbSKbF8kRXcYeJCxkY3rCwtDjOJFmiQo92z8RWT1Jfw4lqxACRQgtcwlzCnOLNbCZc5h7mIOYi5iTmJvCwpzItpinETLMmWG2Yedo5mzm7jCwD9gM2A7YENgS2BTMr0rpopZUicLAdvHFF5sScj/5yU9MIvNxxx1nelWEddGygtKuXTvj8nVNsLaeBdy8GPnpGvqbNm0yJfHI9aB6BR6J5IpQ7DP/C9uESFGU4Anc7Zq2l4Ft42FP8/Zuly0H9onsXi+xXe6GkR+vrEHNRO7Fz0hs7w79aZSsw1zCnMLcgtHvrwzFHMT/EBzMTcxRYWFuZI6k+R1zZhhPCHM0czVzPnM3+xwG3o/twHfHlmB/sC3SEU9KYaPCogTB9XnhhReaVRUGAlYdcK/6Y0NdYIBkYMI1GiYhzCZ6E6vJKgqJcGFhcKWBz7vvvmuqV+D1aNy48UEVoajaQfWOZs2ahf4sRVHqoNuY6vurPjR/bNlZTKAPq7wWs9M+jF7bASKdEjX19+8y4kJRcgFzir8yFM1crdHPXIS3gbmJOYq5Kp3QKDwFzJnMncyhzKUuMFdTLcqGaoUVO9gO2BDYEj/+8Y+NbXHRRReFDrNSChsVFiUGXa8//elPm+7VP/rRj0zjOwaEsAY2pfYYIMnNCFOpgv2xXT1Z9cDjERYGMbt6w2BLJQ27P7ZREFWmqAhF1Q4NfVKUDNL18IOERc2ys4k8iyjCoRAX/c4RaZDIn1ozSWJbl0SyXUVxxVaGYq6h2iBzjw0PslWemKOslz4dA5w5k7mTOZS5lDk1TDla5nDmcio8hQEbwooLbAu+9wUXXOC8P0rho8KihKBCBY1tiPPkwreeirCigpUYqilRQapv377O79+6datxF9tksnSa0OHGZXWIQRJ3s1+g2M/h+/O/sDkkiqI40LJLdQL3qo9MAvfITqOkYVm8ks3kiq2JC3RhJD0oPLp5H3J61ePYgsckVqmJpEruYK6h5wVzD+FPzEUW5ijmI7ChuWHxz6HMdf7PCQpzOHM5OSDM7emICxYssTHwpNBol++vlA4qLEoEkrNoakMo0A9+8IOqKkhhjHnb+G7mzJkm1Ij62GG7cffp0yetknd2WwzMtrO3TfhmP+mBYcO0kitCKYqSpXCovdtFNi2Qpg2byWGdRpqnVu7bKSv37RahitOmuRF93tEizbvF7+9YKbLq3Wi2qyghSa4MxZxkw5+Yq5hDu3XrZuawsN4CYA5lLmVODdtlmzmU/WFuD9tID5sCcYGNga3B98X2UHFROqiwKBFRcfbZZ8vKlSvNhW7Dn8KKClycixYtMnGkbMsVxA2eDipoDBw4MHTda39nb3I7/KFYtiIUKybJFaEURcldnsW4rinKzm6cFcnHmUTugRdWPY4teVZiiBpFySH+ylDMScxZNrmZ/xE2xRxmqxiGzbtgW8ypzK18BnOtK8zpzO3M8cz16YgLtoXNQQlebBAVF6WBCosSCX9i9eL73/++WUXggg+zck9iGLGibAtvh2s3bQYoBtVZs2aZAZZVmrBQWYN9IUYVF3CPHj1qhEXhDuY1yRWhFEXJjwTuGuFQGz+OLGzJa32IiC1te2CPxBY9Gcl2FSVdbGUo8i2Yo/zhT8xhGPTMacxt6fSDYG7F88Bcy5zrKg6Y25njV69ebfbFNSkcsDHYBuIC24Nt4bnQnIviR4VFEcMFfP7555sOmbfccotp4MOFbqskucBAOGnSJDMQYsi7NpJjYGOQs0IgHWPf9sugORBJa36BgysZlzIDK+IlzHdVFCVzCdxD2g+Vlo3iTS8/2LNZDmD0HNgjsnVRZIfd6/spkfJE7tjaDyW2eUFk21aUdLCVoVKFP9nSrcxt6fSXAAx65lrmXOZeV3FhG//Zbt9helNYcYHtgQ2CLULOhYqL4kaFRZFClQkqMjCosFqQjqhgW1SbYGBiRcXV28Fqx0cffWQGUPahdevWEpbNmzeblR46kPr3xZaZxZWMSxnXsoY+KUqOad5BpE2f+P3VU0QqD0iDsgYypss489S2A3tkfiJUKbYhmnAo8Bq1EK/vmVWPY/P/LTH6ZihKHpAc/uQvO8ucxtzGHMdcx5wXFuZa5lzmXuZgV8+D3Rfehw0QpnoVNodfXGCTUO5e+1wULyosihAu2M985jMyb948E9+YrqigBB0DDKssDRs2dN4XPB07duww++Dq6fDDageD24ABA0z1CtuED5fx1KlTq/I+/GFRiqLkSTgUlZ82xJO0x9UIh0oYThvDxXPXCrkcrQ6J36cR3ycvRbdtRYkAG/7E3MUcZsOfmNuY4yhLy5zH3BcW63lgDmYudjXomfOZ+7EBsAXCiAvruSBSgYXOuXPnGhtFxUVxosKiyMBdeckll5iqDv7qT2FyKmyPCUrIhemmbd8PDJ5hw5JswjjfiapP/fr1q/JGkEPCZzBoptM5XFGUDNHtiIPzLLr5hAWVoWDPRpGd7pVsasPzysQbeBEZ3fEnPnlFYhFuX1GiwIY/MYcxl9kEZ9vvgjmPuS9sIjUw9zIHQ5heF7ZLN7YA4iJMKJM/5wLbZMaMGfLZz342VIiVkt+osCgiuEAvu+wyk2xlm9+FLSnLwMEAQkfNMWPGODeTI0aUkne8P4ynw8KKBvGdJIzb5jvJYVF8RpgQLUVRcpPA3bNlL+maKAs7beda2W0TtyOqDmXxWnQV6Xli/EHsgMTm/UtilLdVlDzChhzhXUgOf7L9ppgDmQvDrvJbzwPzJXMzc7QL2ADYAuxjWHGBLWLFxQ9/+ENTueryyy9PK1FdyT9UWBQJrGR86UtfMq5OREU6fSqsF4AYT+piu4oKmvMwcHXu3DnU+y2s4JDcxndjYGVAtFC+jn3Ee+EPi1IUJc/oOvogYcFq7JHdjzL398X2y5REOFSUeRYWr/fJIk0TxSK2LRFZPSnyz1CUdGEOo0wscxpzG3OchbmPOZC5kDmRuTEMzMXMyczNzNGujfTs+7EN/N6VsOLixz/+sbz33nty9dVXRxsGqeQUFRZFwne/+1157rnnzCpAOh21ragg6YtBzlUUrF+/3lSzoIvn8OHDQydQsx0G0C5dutTweNiwqOnTpxvXLK5iTdJWlDymaRuRdgPi99dME0kkUY/vFg/NgEn7EwbK9mUSq9gW6cd7DRrFQ6ISxBY9FflnKEoU2PAn5jbmuI8//rjK4LYeB+ZE5sYNGzaE/gzmZuZo5mrX7WATYBtgI4QVF7ZDN7YKNgu2y/e+9z3n7Sj5iQqLIuDXv/61/P73vzdxi1yolJgLIypsGVdiPsOIilWrVhlXLYNWOo3v7HaGDRtmbv6mdzxPPWwGJVZdFEUpoHAoBMS62ebu2K7jpIEX9zRO2h1vlGfYGP9/lHhtB4p0PqK6t8XC/0b+GYoSFcxtzHF2LvQ307PzItEJ/D+dRnrM1WG2Y8UFtkLYsrjYKNgq2CzYLr/97W/lN7/5jfN2lPxDhUWB88gjjxilz61nz55y1FFH1QgZcvVUUEGK0CJXUbBkyRKT20EMZu/evZ0/v77tJIdF4YpVFKVw8yxaNGopwzseZu4v271eVu/fHWkX7mS8fueIlCeq0q2fKrGNH2fkcxQlCpjjmOso9Zoc/sTcyBzJXMmcGZZ0toONgK2AzRDWc4Gtgs2C7UK1KCIvsGmUwkaFRQHz0ksvyZVXXinf+ta3ZNCgQabTZpiqSFZUtGvXTkaOHOksKihrO2fOHDNA4KYNA4KBbaTajg2LYhWH79ioUaNQn6EoSv4ICxjfLZ5nAZMoRwub50vsgHtJy0C9LfqfU/U4Nv9RiR1wT0BVlGzBXEf4E3MfcyBzoYU5krmSOZPyrWFzFNjO+PHjzXbo0u0CtgI2A7ZDWHGBzcK8jgflpptuMjbNyy+/7LwdJX9QYVGgUE2BrtrXXnutWTXg5q+Y5Fr9ie7Vrp4KBjIGNBreUNGCwSUMrMgQT/rJJ58Y16h/OytXrqwKi8JtGzYRXFGUHNJ1FGbIwcKi+9EH51lU7jPiIiMQDtUmke9RsVliS1/IzOcoSkQw5zH3MQcyFzInWpgrmTOXLVtm5tCw4gKvg+2nwZwexnOBDRG2WhS2C9sgvOqaa64x3blp6KcUJmqlFSALFiyQ0047TS6++GJT/5oOnrgSXbF9Jlq1amUu6DCiYunSpWZACttNmzJzdB7dtGmTcfuyLxYEC02DSGRLJ7xKUZQc07ilSIfB8ftrZ4jsjxsfg9sNkdaN25j7k7ctk/2JUrCZqA4FjHHx3hbl8SeWvyGx7dXVdxQlX2EOZC5kTmRutDBnMndu3LjRzKVhS7cyhzOXM6fjvXARKVZcsC9hxQU2DLbM8ccfb5rnnXrqqcbWUQoPFRYFBonLJ598skycOFE+9alPySGHHGKqSITtqE0cZxhRwcDDKgkDkV8MuEBCGqXm2BdWXWxpXLZPNQxCrHD1apK2ohRROBQeibUzzd0GZQ1kHB2y6X2zf7fMsuFQG2dlrN+E16yjeL1PSTyqlNh87W2hFAbMhcyJLOr5jX9bwpVQJObUsL0umMuZ05nbXcWFTegmbyJsh25sGWyac845xwgMbB36dyiFhQqLAoKa06j4AQMGmEZ4Xbt2Ne7RsKKCRjeufSas0b98+XIzAIVNorYVqMrLy018p82bICxq2rRppoZ3cliUoihFmGeR6GcBk6whs2+HyLZPMrcvvU4QaZbI49q+XGTlW5n7LEWJEOZERARzMHMlcyYwhyI6mFPDVmoC5nTmdkKT/eVuXfpc2CZ6YcQFNg22DY3zEBqnnHKKc78NJbeosCgQWInAQ8HKBHkVNJdx9TTY7tysaLAd147aDDCzZs0yRn86omL79u2mOQ8xmWPHjjUDod03XLl0HWXg1MpPilL8wuJIfwL3rnVV9zNVHQq8svKavS0WPyux3Rsz9nmKEiXMjcyRzJX+8CfmUuZUwpqYY8M20mP7LOwx19M3ylVcYFtgY2BrMK+7gE2DbUOT369+9aumKzm2T5jEcCU3qLAoABg0PvvZz8q6devkxhtvrDLIXROZWdmYPHmyGXzCigpCsRhwwpS0BQZCVlN69OhhqknYfWBlI1VYlKIoRUKXkXSri99f9UHV0x2bdZL+beMJ1XO2LZMtiQZ6kqE8C4vXpq+IFTWVexMhUdr9VykMmCOZK20EgvUOMKeS78Aci7hgzg0Dczzbp8cFc38YcYGtgc1hvSou76dSFLYONg+2z6WXXho6f0TJLios8hwuZlQ7FRLoVUFpNrwFdpXfZTskfTH4IEoaNGgQSlTw2bg5w8DgwABIWTmStKy3xYZFWVeulpNVlCKkUTORTsPj99fNEqmoXk21XbhjEpPJXmJa2rVGYruqy2tmAq/vp0QSyeOmEtWa9zP6eYoSJcyVNpTYH/7E3Mocy1zLnMvcGwbmeuZ85n5XzwU2BrYGNge2h6tox8ax1SaxfaiEed1116n4LwBUWOQ5P/nJT+Txxx+XW265xZSEYwXB1fC2woCVC2piN2zY0Om9xFmyapGOqCAelJWLESNGSL9+/Q4Ki0IwUfHCRfAoilJg9BgX/0ti9uqPUodD2QRu2BBP8s4UXnmTmiFRC5+QWIXGcyuFAwY4cydzKHMpc6qFuZY5l7mXOTgdcUGZW9ecC2wNbA5sD1dhAtg6fDa2Dw30Hn30Ubn11ltDfAslm6iwyGPuu+8+ueuuu0y7e5KZuMDChAgtXLjQDAqsbBCv6CoqbE5FWFFB+boZM2aY1QvcsxZKzLLKQpk5f1iUoihFSvex1fdXTq66O7LzaGncID42TdqyqMoAiW2YnvFd8toPFemcyP84sCfeOE9DopQCgrmTOZT5lTmVudXCc8y9zMHMxemIC8SJa7UobA5sD+wIbBFXmjVrZj6bRn6IizvvvFPuv/9+5+0o2UMtuTzlueeekxtuuMG0uO/Tp48JEQpT1pXKDnTTZNXARRjYPhUMJHx22JwK6m2zUsHn+xv4rV271rho6Rg+ZMgQ5yR0RVEKkO4JjwWsqA47atygsYzpcoS5v2HPRllYnlhA2bZMYhVbMr5bXv/zRBomxjiSxtdPzfhnKkqU2PAn5lTmVuZYC3MvczBz8ZIlS0JtHxvAVotybaKH7cHnY4vwflewfRAnlKLFJvq///s/ef755523o2QHFRZ5CCsCNL/72te+ZgYK3Jxhyq5S/9l6CkiCcoEeErZPRdjqTHTx5LswIODKtDCwUMmCBLO+ffuG2raiKAVIxyEijRIG/Mqa+Qzju8fzLGqUnc1CEjd4DZuLN+CCqsexBf+R2N5wFXUUJZcwpzK3Msf6w5+Yg5mLiUJgbg4DtgALjdgG2Agu2KIz2CR+0RMU9h9bCJsI2wgbyVXgKNlBhUWeQSziWWedJWeccYYpJ0dNZ1yAruAKJdmJAYbStC4wYLCqwQASVlTg8rQN7vyiCA/GzJkzTcWH7t27h9q2oigFSlmD6rKz21aIbFuVOs9iR/XzsfUzsrJrXqeRIh0Oiz/Yt0NiC/+blc9VlKhhbrVGvN9DwVyMuMAgDxOWZL0HzOvM5XggXMAWsaLHH64VFGwhbCJso9NPP93YSmGrXimZQ4VFHkG95wsvvNB017zkkkukW7duoVb0Sd6aNGmSUfauxjuDEKsZYUOvYMGCBWbAYRsklKXyYLiKHUVRijAcypdn0btVH+navJu5P23jbNndqHX8H1sWSmzfzqzsmvFalDeLP1j3kcQ2zM7K5ypK1BD+lMpDgbhgbmaOZq5OR1wgTlxDq7BJsE2wUfyJ5kHBJsI2wmOBHYHN5NorQ8ksKizyiG9+85tmAPj6179uGtyQjOWae0C5OfpBEIvoKkqo/GTzIfj8MOClYLBi0PGHX9XmwVAUpUQrQyWFQzHW2XCofZX75ENr4EulyMbsGPhe41bi9T+36nFs/r8ltj9cB2NFyTVWRDD3+sUFC348bxcBw4CNQOQBNgO2gwvYJtgo2CquHcIZJ7CNsC+uv/56Y1vcdNNNjnuvZBIVFnnCAw88IA8++KB85zvfMRcsxr1r6VXbZI6VisGDBzu9d/369TJlyhTT1Cas4c/ghXuUvAy/qKjNg6EoSglSSwI3TOh+TNX9d3dvyHo4lKHzESLtEuPn3q0SW/RU9j5bUSLGigi76GdhjmauRnCEFRfkPWAzYDts2FB9vQYBGwWPg22M6wK2kV0Avfnmm6vsJyU/UGGRB7zzzjsmGelb3/qWcfExCLiUhQVcge+//76pvnDYYYc5eTq2bt1q6lwfeuihofI5gAELUcG++70dDGasKCSLDUVRSpRW3URadq/uwF1Z3U33iK7jpGFZvM/OO+unS6xhIsdr8zyJ7a/Iyu4xdnoDPyPSoHH8idXvSYzmeYpSoDD32tAlv4hgrrbPhw2LwmbAdsD+wJZwuc7osYHNwntdu2rbMrbYTNhONBKmGpaSe1RY5BgqJJ177rlyxRVXmItz9OjRzmFIlZWVpjM3sHrg0g9i586dZsVgwIAB0rt3bwmDHZS4yP37ToKY9WCEDa1SFKWIw6GovLShurJLs4bNZHSip8SanatlcfPO8X9U7hPZNCdru+c1aSte37OrHsfmPiyx/Xuy9vmKkilxgYfCX9HJigvm8LDVorAdsCGwJbApgoKtgs0CFJvBlnH9TthM2E6f//znjS0VthGgEh0qLHLIrl275FOf+pSp3nDaaaeZC9M12Zp+E9OnTzcXM/GOLuFTFRUVZiDgM/nsMFg3anJOBQMXzXgQFWGTwBVFKb1wqKN7HFt1/7291V24Yxnuwn0QVKlq0z9+v2KzxBY9md3PV5SIQUQwJ5Nw7RcXzN0sDNpw5jBY+wWbAtsiKNgs2C7YMNgyrs0p+cz+/fubKlGIFGwqbCsld6iwyBFcPHgpUOhXXXVVqLwI6y1Yt26dGRQaNWoU+H379u0zAwADyvDhw0M1qGMAwivBZyeLChsWpaJCUZSgCdwwoUd1nsXbmz4Wsc3yNs6WWGX2qr94Xpl4gy6pGRK1MXteE0XJBLWViyUXg7mcyo1hmuhhQ2BLYAtQ8QkbIyjYLnw2tkyYMrg02SVf44tf/KIJqfrCF77gLFCU6FBhkSN++tOfyptvvmkqQXGho7RdjXsa4GHEo/abNk1MvgFAzFBHmosZN2IYUYE3wpaO9Sdk+3MtVFQoipKSroeLeGUpPRa9WvWWni17mfvT102THa0TXoMDe0SynOvgNW0vXr9zqh7H5j0isX26GqoUh7gg4sCfW2HFBSVqmeNdwZagT0XDhg2NjeES2oQNgy2DTYNt4/q5NM/je2FTvfHGG/Kzn/3Mef+VaFBhkQOefPJJuf322001A6oqcIGXl5c7bWPbtm0mr4KL2CUpGhVPBQeqMHAhuuRjWIhhtGVp/RWkbK5FcgK3oihKDRq3EOk4LH5/3UyRvTtTei0OxA7I5Fhl7sKhoOt4kba+KlEL/5P9fVCUiGGORkQk51YwpzO3M8evWLHCebuENmFbYGNga7h4DrBlsGmwbVx7XGBD8X2wqaiuibDA1lKyjwqLLEPX6csuu8zUX6aOMwq9WTNbrz0YXLBUcaIWtEtOBhf4rFmzZMuWLeYCZFXBFVyVxEEycHABp8q1UFGhKErgcCiEw+opNf51dPfqPIt3ti0VSVSKkg0zJeYTGlmrEjXoYpEGiUp9az/MjcBRlAwldCfnVjC3M8dPmzbNzPmuYFtgY2BrYHO4iAtsGmwbKkW5lqGlwhQ2Fe/HxsLW4vOV7KLCIotQ5/nss882lQu46Khk0KFDB6dt2DCmli1bOudksDKxcuVK89mNGyfihh3YvHmz+Wya05ATUl+uhaIoSpgE7lFdDpcmidyKd1e9K5XWY7Bvh8hW9/jvdPGatBFvwPlVj2Pz/iUxKlopSoFjE7eTcyuY45nrmfOZ+13BxmC72ByueRPYNtg4YSpFYVNhW/HZ55xzjpx11lmyceNGx71X0kGFRZYgkenTn/609OrVSy644ALp2bOn8Vi4gnuSiguuuRHLli2rKgmLqncFtyQJWVzwPXr0qFEuN1WuhaIoSp10H1trAnfjBo3liC5x4bFx9waZ36g6tDK2IYvN8pIb57UfHr+/b4fEFjyWm/1QlIjx51b4y7Uy1zPnM/fv2OEupLE12C7RDNggQcG2wcbZs2ePsXlcwbZi3y+88EJja51//vlOyeRKeqiwyBLf//73jRFOExcuYprYucKFScwjrj6XMCYSoQjB4n1hwpR2795tKkhRq7pfv35Vz69du1ZmzJhhyuWG7datKEqJ0mmYSMPmKT0WydWh3tm5ujrZe/2MnFR8iTfOu0ikPBG6un6axNbVDOFSlEKFOZzwJ0KdmdstzPnM/TSfwxZwBZsDGwEbxCUpGxsHmwWh4yJKLDTfw9ai+TC21w9+8APnbSjhUGGRBf73v//J3XffLTfeeKOpWsDF4po0jSuPC5ML38XjQCdM3Imof9ewK0Dls1pBKTdKulk2bdpkXKQkWvE/RVEUJ8oaiHSLN8eSbctFtq+u8e+ju1cLi3fXTBJpMzD+oGKzyA73pNIo8Bq3Em/gBVWPY/Mfk1jFtpzsi6JEDeFPzOnM7czxyeVcXcvIWngvNgi2iEt3bmwdbB5sH9dwJmwsbC1sLmyv3/zmN8YWUzKPCosMs2rVKrn00kvly1/+sgmD4kR3zW+g2QvJ2sOGDXMSB4RMkQA1cOBA0/beFepB837KwKH+beiVDYsaOnSoc0M/RVGU1P0sJtc4MF1adJV+iQZ1s9bPlK2tq0NHY+tzFA6FuOg0WqTjyPiD/bskNv/fWjNfKRqY05nbmfttZSbmfmwAbAGexzZwBRuEJnq836WBHqIE2wex49r4DlsLbwm2FzYYttjq1TUXMJToUWGRQbj4LrnkErMCMHHiRBOr6BoytH//fiMquChdcjJIeOJ9fF6YrtqEGrC6wF96bFgPiw2LYl+ovKAoihJJnkUd4VAxicl7xjOQyCtb796hN0q8AReINGwRf7BxlsjaD3K2L4oSNczthD8x19vwJ2wAbAFsC8rBhrn+WOTEJnHtcdGnTx/p2rWrsWmwiVygwtWgQYOMDYYthk0WRhgpwVFhkUFuvfVWU2Xh6quvDmXgc+FOnTrVxBpS5cDlfeQ+cPFQ1cG1AR7vJ85y586dxsNie2xQ+o2BhhWEMF3CFUVRaq0MlZTADRN84VDvYLy3Tixm7F4nQt5FjvAatRBv0GeqHscW/Edie7bkbH8UJWps+BNzvi37ii1Ajws8GdgIruICWwSbBHGAjRL0/bwPG4jPxyZy/VwraK666ipTxfK2225zer/ihgqLDPH666/Lz3/+cxPb16JFCxMn6GrgU0mBOtB+j0EQEDMkSflFgQvUtKZ2NdUc6M7tD4si5tEfFqUoihKa1j1EWibCNFd+gKu1xr9HdBopLRq2NPffW/mOVHasLnoRWz8tpwfe63CoSOdEjsiBPRKb97CGRClFgw1/Ys73hz9hE9D7ggRvbAVXsEmwTbBR/OVt6wMbCDsKmwjbyPW7YEeRb3HDDTfIHXfcYbpzK5lBhUUGWL9+vVx88cVGHRMyxMXgmldBbga1n11zMvhsSsYRV0g8pCtc6Ch6RIV9Py5LwqLAVeQoiqIE8lrs3S6yYW6Nf5WXNZQju40397ft3SazPBZKEosa66bl3JD3+p8vYkvhbp4nsuqdnO6PokQJc/3hhx9u7vt7SmAbYCNgK7iIAwvvx0bBVsFmcc2ZoHQ+NpILTZo0MbYYYV5XXnmlsdFcPlsJjlqIEcOFR7dHYvpOOeUUE/7kWjWJqglTpkwxVRRQ2EEhdInYRUrZhin/yoVKzWhcnTSnSRUW1aBBA+ftKoqihOlnkVx29t21H+VNOBR4DZvFu3IniC16UmK7qkt1KkqhYz0M2AD+8CVsE2wFbAZXIx+wUQhvwmZh2y7la7GNsJFcKkwBthg22amnnmr+Xn755c4N+JT6UWERMb/4xS9MaTQqENDR0jUXgVJuXGic9CQrubwPdyXVD7i5gnLnQsUj4RcldNTmf/6wKEVRlIxUhkqRwD2++9FV999e+ZZ4nUbmTTgUeO2HiHRL7GPlPol9/HeJVWpyqFI8MPdjAxAijU1gwVbAZsB22LBhg/N2SRDHXsF2cSljaytMYSu5lr9l0Rdx8pWvfMUIpTvvvNN5v5W6UWERISQ5/ehHPzJ5FZy4rnkV1jvQrFkzk2zk8j6qNOBepEycK3TU5AJl9aBLly5Vz+PmXLp0aY2wKEVRlEgxvSy8Wj0WHZp2kKHth5n78zfNlTVNu+RVOBR4/T4l0rRT/MGO5RJb+kKud0lRIsWGP9lwaQs2A7YDFZvCdOfGZiFMCXHici1jI2EruSaRE95FOBU2GvkWP/zhD035fCU6VFhExObNm+Wiiy6Sz33uc0ZJo+JdjXG6S6L6cfO5CJI5c+aYCzpM/oP1dLBywM2ycuVKE/+IC9SGRSmKokRO45YinYbH76+dKbL34Fr1x/Q8rur+O3S7zqNwKPAaNBJv6OXV3cE/eVliW6qNL0UpBrAFCH/CNsBGSNfz4C9jS6UpbJmgYCNhK2Ez0VnbBWwzPhNxQjgUths2nBINKiwiALV8xRVXSI8ePeTMM880yUGdO3d22sa2bdtk1qxZJlEK9R6UFStWmBUEBABlaV33G08Hqt/v6SD0iZJueFzC5GooiqKECoeKHRBZ/dFB/z6mx/FV999c8XrehUOB17KneH1OTzyKSWzu3yW2f0+O90pRogWbANsAG8Gf/EwTO2yJMD0uCLXChsGWwaYJCrYSNhPh59hQLmCjUVznrLPOMqFVX/jCF/LC+1kMqLCIgHvuuce40r761a8aRe8ajkRNZ0KR+vXr55TojcKeNm2aUd5hvAqsOpA0xfuth8QfFuUqjhRFUdLuZ5Eiz2JQu8HSuVl8PPpg9fuyq/WAvAuHMvQ6sdqbsmeTxBb+J9d7pCiRg22QnHhtS7piQ2BbuIINw/uxaSgpGxRsJmwn9sW1eR5iiM/92te+Ju+++67ce++9zvutHIwKizRBnX/nO98xsXoka6O6XcORUNuUUSOpKCh79uwxMY0kh4cRAMuXLzehV35Phz8B3B8WpSiKkr0E7oPjnTFaju4RD4faV7lPJm+cnXfhUOB5ZeINvlSkQaJE+JrJEluXHx4VRYmSVOFP2BLYFNgW2BiuYMtg07BNbJygYDthQ2FLuYCtxv5iu2HDffvb3za5Hkp6qLBIA1xvF154oXzmM58xXSqJ98MV6AIXH41icOcFFSQ0qkFUWKXuCp4OEp5YHaB5X11hUYqiKBmn41CRRi1qTeCGY3vmfzgUeE3bizfg01WPY/P/LbEK7cqtFB828dof/mQ9D9gYYfIWsGk6dOhgbBzblC9ovw1sKVdBg82D7cZ3IdcCm841rEqpiQqLNPjGN74hbdu2lXPPPdeod+L0XCBZiYuPk9ol0Rs3I7WXw3TA3r17t1kNQAh16tQpkgRwRVGUtChrkKgOxYrNCpFtB9fFH9N1rDQtj4+Tb694Uw60G56f4VDQ+QiRjiPi9/fvkthcunJrvXyluLCJ19gO/sRrbAs8D4gDbA4XsGlGjhxpbByXkCpsqFGjRpkSsq7VqbDd8L5gy1Et6v/+7/+c3q/URC3IkDz//PPy73//W6655hrT8n748ERVk4CgxOlkSfKQSyjT6tWrTQUEkqdcm9VZTwcXPQnmUSSAK4qiRJ5nkcJr0bhBYxnXNd6Fe/OeTfLx9mV5GQ5ljSNv4EU1u3KvfCvXu6UokVNb4rXNGXXxPFiwbRAs2DrYPEGh9C2LvORbuH4mOSNEcFx77bXyr3/9S154QUtGh0WFRQhILLrqqqvMDSM9jJFPBSjeg+cgKLt27TKVGFDziBkXWM0jKYoJz+/pSDcBXFEUJRuN8uAYXzjUWyveyNtwKPAaNhdv8GerHscWPSWxHdUlOhWlWPAnXtvwJ7+twfOuHkWMfN6PzYPtExRCmvCkYGO5gD2GLYdNZ+07187eShwVFiFDoCgte+KJJ5qeFbjOXKD+MzeXsCPcgsQx4rLr3r278z4vXLjQ1HumMYwVQekmgCuKomTLYwFH9zhGvET40xvLXxfpMCJ/w6HYs3aDRBJJ55TSjX38V4kdqMj1bilK5NjEa2wKm3iNrYHNge2xaNEi521iZ2HzYPtgA7mEZ+E9WbXq4JDKusCWw6bDtuNzNSQqHCosHHnuuefkscceky996UvGa+BSyQkozYZ6x+vgkug9d+5cU3kBd50ra9eulXnz5hl3pe2RkW4CuKIoSqS06ibSqkf8/qoPRSoPDmVo37SDDO8YHwMXb1koq/Zuy9twKIvX92yRFonFoF3rJLbwiVzvkqJkhFSJ19gciAtsGGwRVwgzx/bh/UHBNiPfAm+HLYcbFGw63v/lL3/ZhLsT9q64ocIijRAo10RnFDd5FT179nRK9F63bp0sXrw4VMgVCeJ8JkKGkmr+sCgIkwCuKIqSEXocGf+7d4fI+tSJm/5mefkeDgVeWbl4Qz8nUtYo/sTq97QErVKU2MRrbAwK01gPIkVueB5bBJvEhfLycmNrYQNhCwUFGwtbi88M6u3wezz8IVEufTUUFRZOXH/99eZExU1GK3jXECgqHHCh0ZQlKFRUwA142GGHOedA7N2711SAIkEcl6IFl2RyWJSiKEq+N8o7qOxsAYRDgdess3gDzq96HJv/L4nt2ZTTfVKUTGDDn+jK7Q9/wgbBFsEmwTZxoVWrVsYGwhZy6W+BrcV44Nqwzx8SxX4T/q4ERz0WAXn22WflP//5j3GP4SZDWLhAfWWaxqCEgxrzXBA0ayF2kVJoLtj3Ikb8CeK4InEpcuHbsChFUZS8S+CuJc+iX5v+0i0RWvTRmg9lJx7X1odUh0PtWiN5SZdxIh1Hxe/v3y2xjx+SWIpwL0UpdCj9mir8CVuEpGxsE9cFABZ18SL4e2YErS6F7YUNFiYkirB3wt8Jg1eCocIiAFQ5+OIXv2hcYuQkuIZAoc4JPbLlzIJCXgTqHKXuCisFuBzpkWFDnfxhUbgmFUVR8oquh4t4Der0WDCeHZNIiD4Q2y/vrXpHPNszAtZPl3wkXoL2QpHGibF32xKJLXsx17ulKBkhVfgT1wA2CQ3oXJO5bZUpojjmz58f+H3YXNhe2GAunhINiQqPCouAIVB4DE444YRQIVC0mSe/AcUdFNyIVHJCxBBj6MKmTZvMSgGdKG1fCpKfUoVFKYqi5A2Nmol0ThSoWD9bpCJ1o6tjeh7nC4d6o7oZncmzyE9hAV7DZvF8Czv1LntRYlvcq+UoSiHgD3/CBrF9L7BrsFFcO3NjC5FrumDBAhPOHRRsL2wwbDEXsPWw+QiJYhvYgkr9qLAIEAL13//+t6oKlGsIFM1dcAW6JElXVFQYdx/xga4iBkXOCgFl39q1a1cjWZv9d+mboSiKkrM8CzpVUx0qBYd3PkKaN4z38nmHLtwNW4i0SoRD7VwtsZ3u1Weyhdf6EPH6nJZ4FJPYnIckts+tco2iFArYHNge/l4W2CaEGmGrWMERFGwibCPei63k4u3AFnNpuAfYfLZKFOHw2IRK3bgthZcYqGnCnwiDIgQKpewaAkVlBNxwxBy65Ea0b99e+vTp47S/VkCQ6OQvIbt06VLjxTj++OO1ApSilBBUQ2HyJaSSv0zilIHcv39/yhv/4zWMJdYI4O+OHTuqwgrsAokJ7fE84xUllpnVxFQ3/sdrGjdubPK6+FvnOEqexUf3V+dZHFKdrG1p2KChHNntKHll2Uuybe82+XjDLDm04wiJbVsSfwFei+anSN7S+6R4N+6ti0Qqtkhs3r9Ehn1Bx2el6LDhT6+//rqxRfBgQP/+/Y3XgZKw2FYu1SmxjXgvttKRRx4Z6L3YYJSuxSbDvsJzEgTGKvaPsrXYgtxIBtdw8tpRYVEH1113nTmBJ06caFQrBrsLuN04+VxCjwh/YhIPIwKWLFlixJD/vXSOnD17trn4mNAVRSkOEAJMdtwQDlY82PvcbEwx1z63VIY/z7MiZ0UAf5lMrXAAWwue14EVHggXK0j8AoU46GTRwr7ZFUYmdUSGvVnRwa1l66FSVf+uljwLOKr7MUZYAHkWh9LletETVWVnvT75Kyw8r0xkyOUS+/D/iezfJbJhhsiqt0W6H5PrXVOUyOH6JjR70qRJxluB16E2weFS1pb3YjNRwSkIhDPRNA/bjP0JCrafjVZ577335Otf/7o89NBDgd9faqiwqIWnn35annrqKfn1r39tVunChkCRlxFUIOBVIGF7woQJVbkRQaHOMiraLyBYefzggw/MRUfTGkVRCgsM9127dpnFBm4Y+PY+wgERgLFvjXJW5VjM8Bvq9XoIsojfg5IshEjo5O/OHdvllLJm0rByl+xd/KbMIYyzRQszDnOjsSjfZ3y3o6q2++7Kd+TLI78qsZa9RLZ/IrJzlcR2rRevWUfJV7wmbUQGXyKxWX82j03jvFZ9xGsZPBdPUQoFbBBsEWwSFj/tokay4AgKNhK5Gu+8847xQNjQ7yAhUa+99pqx0bp27Rr487ABV65cacLiybXARjz77LMDv7+UUGFRi4FvXV5cDK5VoJgsbQhU0JKurOiRV0FuhKuLDQFBvKFfQLCaOGPGDGNouIoiRVGyD+MGCwTc8DRiaCMqmAwRD9awxgNq77PyX0gNLhlHGZPqCg013pANR4osfVUa7d0oTfdvkk2b9sonn3xihBX/R1ywitizWS9ZvusTEwq1Zc9mad1xpMQQFjYcipCjPMbrcKjEqHC14g2R2AGJzf6LyOE3miRvRSk2sEUIYcI+shUr/YLjuOOOc1pUxVbCZiIkyoqV+mDswTZLNyTq6quvljlz5mhIVApUWKQANxduOU5UEoyyEQKFtwER4s+NCEJtAoJJmMpSmlehKPkHK/OIByskuPEcAoLqJay+EYaJeODaLiTxkC4mBKvLCCMsYGDHRiK9x1aNd4RZ4bFBeA1eN8wIi5jE5E8v/EFO6jxGbHHuA+umSnmeCwvw+p4tsa1L4p6WPRsT+RZXlNRvrpQGnNN4KPAYLF++vKo/lxUc2DL+EvlBwGbC+4CRj2AIArYZIVF8HgvHQdGQqGDkh388jyBm74knnjDuLib1oLF7Fk5W2s67VIHigkIIjBo1ynkysQKCi9W+lwkXccMFqk3wFCW3YAxzTS5evFgmT54s//vf/8xt1qxZxkBm1Yzr94wzzpCTTjrJTHQkNtIMipX5kjQwm/tCmHatr7rLseCYcGw4RicdenLV/5p0aSItOvaWXWXxkIiynSvl9f89aY45x57fIC+7cpeVizf08yLlCS/OhukiK9/K9W4pSkbAJmG8w6j397fgOWwnbBoXeC+2E03wgpagtSFRfB42mwuIIGxDbEQqhr7xxhtO7y8F1GORFFJ0zTXXyCWXXGLcc5zoriFQXCyuIVBURbAdKV2wAsLfRZvtERbVt29fM/kqipJdMF6ZMJnkuG3cuNEkNyMguHFtEkvsmkdVUjTz5YTtqt1Y6NC0WoDs9nYZsVGJz2LF6+a5kYN7yLqKlibfDa8wyen8Bozv3Fq2bJkXws1r2l5k8KUSm/Un8zi26Ml4vkWr+IquohQT2CaMgzb8ievSCg4WAoj4cIkUwXbChsKWothOkJAoPg9bDZuNMSFocRtsQvaTRaGLL77Y2IyEVel4Xo0KCx933323CUdg5bB3796hGuGFCYEi1IGLzIXaBASroJzgxB0qipJ5bDlWPId+IUE4E8Yrxi7hTfmSQF0Q+JOu6xQW1QJkw+64Z8Nr3FqsX6J1E5E2vQdWJY4TcsZvtGbNmoOEBiXF/eV0s43XYbjEehwfF0XkW3z8V823UIoWbBTGSuwmKjz5BQe2zbHHHuvUHJj34X3guj7sMBsQGSwkin1wCYnCNiSM68wzz5RXXnlF7rnnHrnhhhsCv7/YUWGRgJPrRz/6kdx8880mmWfo0KGhQqBcqkDZEKgweRBcCMkCYsWKFWY/UOxqxChK5sBIpcgDBio34v6tgapCImKPxc7qUKhkOvgEyHobMtXYtyBUsbXqLmMiYo8b4QzJQoOy3CzydOnSxdx4XbbHUa/vWYl8i2WJfItHtL+FUpTYlX/Czxk37YKsFRwsklrB4RISxfa6desWqBKmDYl69dVXje3E+4JCkz6qRJHI/cMf/tBEurhUmSpmVFgkuPHGG01IEa4xmqi4uLVsFShUcjZCoBAQJCv5BQQrpuwDF2rQZnyKoriFSrJ4gBFKaA3XXufOnc0Ew2q3y+qaEk0oVOMGjaVVo1amSd7GhMdCGrWp+n+sYovUtmSTLDQYk/E68fuyYorw4PdFZLCSmo1QB/ItZNjnJfbhndX9LVa+KULlKEUpMsiXQgxQ1QmvLrYQ1yXeAxK8/YIj30KiGA+wFRknqBaFDfnPf/4z8L4WM+qbTyRsU5P4sssuMzG3tlJBUOwJ2b1798DvsatjriFQrIwiILgYrYAg7IKJkPAtJkFFUaKB623RokWmVvrzzz9v+sxw3dEv5tRTTzXXIatUKioymbxdd0KmzbPYsHtDPDm7Fo9FffAb8lvym/Lb8hvzW/Ob89tzDnAucE5kEq9JO/Fo9pcgtugpiW1zS2hVlEKBaw6bCxsGWwa47rgOsXVcrzdsKt5PSFRQEC+EsRMJ4gL7jc2I7fjkk09qIneCkhcWrEJee+21xo2FOHCtzIT7DFc63oqg72NVjFJrrp/FpDlt2jRzIfpdblxAbMc1fEtRlNRjAhVG3n77bXnppZfMCjaC/cQTTzShjlxnrHLnQ9Jv0ULzOLpTBxEWCe9GxYEK2bFve01hsXdLqI/nt+U35rfmN+e35xzgXOCcQGRwjnCuZCrfQnpMjD8w+RZ/kdi+XRn5LEXJNXh9ueb8YgAbh2sOm8elmpvtym0rZmaySpQNv8Kzgg2JLbkvQ2NCIVHywoKEbRQxCduoT5eEbU4gvBW4w1xCoLhQmLCoWe8CFwqVoPg8CxMdz7s28VMUpRpWyphQqEjywgsvyNKlS83Edsopp8iECRNMrXTX61VJg7IGIk3bHVRuNhUdmlYXr9iwa0M8nKhhC2ePRV3w23MOcC5wTmDwcI5wrnDOcO7Y1dYo8y2kVe/4gz2bJDbv4bwsl6so6WLDn7BlsGkshCjR78e1BK0NicLWwuYKgg2JwmvhIg78idw0z7vnnnuk1ClpS9QmbJN8Q8I2qtkFXOS2E65rCBQN+FxA/JDMhKq2nSL37t1rLhwuBjV6FMUNjDS8jVxD9JXg2sStTTEFSiBiSGofmBxiE7MDeixg/e518TvWa7GX3hWVke6WbWTKOcK5wjnDucM5xLnEORWFAPDKGog39AqR8kQX7g0zq8roKkqxgQ3DoinXELYNYOvgfcD2CRsSxbUZFGw59mP+/PlOn8VCMftqE7lXr14tpUxJCwuSbUi6IYzJNWEbz8GSJUuyHgLlz6FAWZPw1LNnz8DbUpRShwlq7ty5JqSFOuqslhFPT3M6VrkwFJU8wAqGvTtE9u0J1Mtig/VuNEoIC0QF788QnCucM5w7nEOcS5xTnFucY+nmY3hN2oo35NKqx7FFT0tsy6II9lxR8g9W/rFpEBIWbB5snzAhUdha2FwuIVHYdLahZlAQFdiQLPyOGTPG2JalTMkKC7olhk3Y5uTGqMfrELSJC641KhWkEwLlb1dvK9O4dPhWlFKFa5br5f333zdGH2VGmUBI0uWv5kwUR5M8ErgNNfIsogmHCpKTYc8pxmrOMc41zjnOvbBeDK/9MJFetsN4pelvEasIbvQoSqFgcx1Y8U8OicIGcg2JwtbC5nIJicKmw7bDxnO5Zm0i9+WXX24Sud98800pVcpKucM2XRNJunH1IFC7mM66gwYNCvwekpI4ycOGQOEOtB4VGwKFQtbSsopSO1wrCxYskJdfftkIeyYNu7rMSpjmJRV+ZajamuRVEVGeRVA4p1hhtV4wzjnOPc5BzkUb5uGCd8jpIm0GVId3IS4qo83pUJR8AJsGIeEPicL2CRsShc3lGhKFbYeNh63nmjTeIZHIjY1ZqoncJSksSK7ZtWuXSbYJk7DNye0SOmVDoDjpwoRA0bSFeuoWDYFSlLphtRhjjrh3Kn2QP0XSLWEr1E5Xisdj0bFZpxRN8qp7WUhFuMpQUcC5xjnHucc5yLnIOcm5yTkaFM8rE2/o56pDvLYuktiS5zK344qSQwjvJiTKX/4VGyhbIVHYdlyviBEXccA+9+rVyxQDorfYvffeK6VIyQkLXGwk16SbsB20ZwXNU6gcxeQSRRUo9l9DoBTlYJhscJ+/9dZbplQsK8ck2FLJB3Gu3olCFhbrA3ksqpvkVS8WxbLssUgF5x7nIOci5ySPOUe5cc4GMZS8Ri3FG/b56jK8y1+R2IbqWHRFKbaQKGydqEKisMGwxbDJMp3I3bhxY7n66qtLNpG75IQFSTUk13DSZiNhm4ZKTCKuIVB4VFKFQNEwRkOgFKUaJgq60dPoktUsVrZYIeYaD5oDpeRxVah6PBZNGzaT5g2bJ3ksWueFxyIVnJOcm5yjdPTmnOXc5Ryuz+jxWvcVr++nqh7H5vxdYjavRFGKCMKXkqtE+UOisJFcwAbDbsMmy1Yi9+GHHy7f/OY3pdQoKWFBMg1JNSTXZCNhm1hAPBycnC6rpRoCpSj1Q98Aegm88sorMmfOHOnTp4+cfPLJMnDgwKqSzErxh0L5w6HW7VqX6L6dH6FQdcE5yrnKOcu5yznMucw5XWdPjB7HiXQcGb9/YI/EZj8osQPueRuKUqghUXj/XEOisMGwxbDJguZpYOtxbYZJ5G7RooUpDvTEE0+UXCJ3yQgLVoK+8Y1vyGc+8xmTXOOa7xAmYRtVTUwgHb1doKMrn6UhUIpyMMS8kgRLxR1WkwYPHmw6IyP6GzRooIesBIVF52bxMtwVB/bI1oqt4jVsJtIg0bR0z2bJZzhnOXc5hzmXOac5txcuXJgyvpt5yxt0sYithrVjpcQW/Cf7O64oWQyJ8ocUYRthI2EruYDth03mL2dbH1yTfFaYjtwdO3Y0Nie2Zyk1tywZYfHYY48ZVzNJNcTOoYKDwuBOEg/5GEFDp0jSs0mjLuDe47M4KZNDoIgv1CpQSqnCdcCqLkYXkwwTzsSJE82qluZPFHlVqJ2Jxne10Ll5dX+ftbsSMdlN2sb/VmyOvEleJuAc5lzmnObcxpDhXOecT64k5ZU3EW/YlSJlCc/cmkkSWz0pNzuuKFkIicIGSg6JwlZyDYmyRRRcE7kRI66J3D169DA2J4nj2KClQkkIC06Gm2++2ZQAw/1MEo8LJO+QxBO0wzbeEVxnKF2Xzr3+EChiby0kHLVt29apw7eiFAuEhdiSsZs2bZKxY8fKMcccY1aetIdLEdO8uhKe7FgbXFjsTAiLxglhETsgsne7FAqc05zbnOM0cOWct6Vq/SFSXouu4g28qOpxbMHjEtu+Ikd7rSiFERKFTYZtlo1E7iFDhhib87Of/ayxQUul/GxJCIs///nPZkBmJahfv35Oq/4k7eCazkbCNqo2OQSKVSvUtTbCU0oNBn1c3RhVhCJSdIGqOrizVVCUAA2biDRO5LPtqK4ME1hYNGlX/YI8D4dKBec4oRRHHXWUOfe5BrgWuCasQeR1GSPSbUL8DZX74vkW+9xWcBWl0EOisJ0ynchNxAi2IJ8XlKZNm0rfvn2N7YmoeOCBB6QUKHphsXPnTlPy69JLL5Xy8nIZMCDRZMghYZvkHdeEbU5Cl/AMG27F+2wIVEVFhVHVPOfi+VCUQobrDkH92muvmVVaJg9KdPq9eEqJ0CIhGHbW7bHoksix8AsLz4ZCQcUmKVQwajj3uQa4FrgmuDa4RrhWvP7nibRMFCLZs1Fic/9ZUvHcSmk1zksOieKaoAGxizcgTCI3/c6wBbHJXK6vgQMHGtsTGxRb1DV0qxApemHx61//2iRPjxs3zrlaDAM36hS3mWvCNquqLhBHy4nLe/3b0hAopZQg7pUKGgzerPSccMIJpmeMeihKPByqYpvIvt3hciwK1GORDNcA1wLXBNcG1wg9WzZu2iLesCtEyhONHzfOEln+aq53V1Eih5AkbCJ/SBThUCz8zp07N1Qit0tH7jCJ3I0S1d+OPPJIadeunbFJi52iFhYbN26Un//856bkF8qWMKig7N+/3xj22UjY3rp1q3Fvo8atAbVhwwbj8nMJwVKUQoWQw/fee08mT55sBvuTTjrJuKs1KbvEaREszyJ1jkV1KFSsCISFxYbZco0QZ/7+++/LpKnzZHfv85Ef5jWxxc9KbOviXO+qokSK7S2BbYSNZJ/DdqJMM7aUC9hqhFeFSeTGRgxK3759q7wW2KTkTRUzRS0sfvazn5nkGU46/rqUoiSWjvCjbCRss/KE6KG3ht0Wz1HaVqtAKcUM7msG6TfeeMPU/bZ9KBiEFaUqFKqecKhmDZtJy0bx8XOtfV2NUKjiERYWrhHmCK4Zrp1Xp62W9U0T/S2kUmIf/01i+3bmeC8VJVqwiTjv/cnX2E7Wi5eNRG7eh43ocq0OHTrUiCL2Hdu0mClaYUEyz+9+9ztTCYr26i7N8IjfI46VE8ElYZvXhknYJuYOY8pCd28uDhcPi6IUEpzflH+mIdiWLVtM/DgLANrYTglbGapTs/hr1+1aK5WUl0VoeInFpD3Fu0LINcO1wzW0YG9f2VSZ8NRUbNF8C6UowTZiDsFWsmCwY0tlI5Eb2xAbMbkMdF306tXL2KJUiPrtb39r5r9ipWiFxQ9+8ANTTYMTkOQel5AKThji+KjIkckO26zWknTEpGBXaPfs2WNiBV23pSiFFPb0zjvvGE8F1yaVnoIWR1BKORQqWGWofZX7ZPOeTeJ5ZdUlZ4soFKo2uIYmHH207O17oeyNJcJ3N84WWfFGrndNUSIF2wi7CVsJmwmwobKVyI1tiI2IrejyOcOHDzc26fjx400id7FSlJYrJ9bDDz8sF110kXER+xOi64MTCxWMIs1GwjaTgX//SCSiAkhQUaMohRj2RE1yOg3jVtYcIiXdUKiD8yySwqEO7CmJMqxcS936DJEGwz5X9dy+xS+UTP18pXTATuLmT74mkZuwqGwkcmMjYisGFSPAZ9APg27c//jHP4wNWIwUpbCgEclpp51mfkQUoovhwgnZpUuXwJ25SfoJm7D9ySefpEzY9vexUJRiCnvivLdlM4MWRVBKmOYOHosUJWeLPc+iNhp2OlSkVTwstzy2R1595SVzDWoZWqWYYB7BZqJQjz+5m2I4roncCAWXRG5sRGxFFxHjJRLNsU1POeUUY6sWI0UnLKgs89JLL8l5551nSnu5rPwTosHgG7S8LIM0Cpf8iDAJ28T2acK2UsywmkPVGhv2RHiihj0pUVeFgi4pSs56Bd4kLy3KG1fdHT5koLkGuRZdVlgVpRATubGtXBO52Ra2HDZd0PdhK2IzujTN69ixo7FNzz//fHnxxRdl0qRJUmwUlbDgZPjWt75lRAXxb64r/yhPEmwInwoCnVBpYkc1gjAJ21wQFk3YVortWsQjRyMvPBPU3tewJyUtj4VTKJQtOevvZVG8CdwpaVAtLLp1bm+uQa5FrkmuTfVeKMUAOQuIilSJ3K4J0thy2HTYdkHAVsRmdA1pGj58uBEX2KrYrMV2LRaVsHj++edNydezzz7bKZwJqCtMSJPf2K8LTmROJhSrSxlbm7DNiZWcsO3arVtR8tlLwXk+evRoOfzww7XakxKOhk1EGrd2St6GNVZYNK3Oe4vtiYdLlAxlvmawB/aaa5BrcdSoUebaVO+FUuyJ3HgfXPKLsOWw6dhW0PKz2IzYji69KdokwqjOOuss41l54YUXpJgoGiuWk+Db3/62SYpp1qyZU84DapGBFuUbNKSJZiyc0D179nTaT05YQkFIMkpO2OamKIUK1xHeOL+XgsFTUSIJhwpYbhbW7lwdv9OkffULdscbapWix0IOVFTdJb7b773gmi22FVOltLD2E3Zcuonc2HTkQpCnEQRsRjwdLDS7XEdDhw41idwUGcJ2DSpkCoGiERaPPPKISbohIQbXFD9YUFCbxMj1798/0OvpuDh//nxzYrh4GEgmQpD4E7ZJOtKEbaXQYaWIrtmIZFZE1UuhRF4Zau92kb21V3ZqUt5E2ieExOodCWHRuJWIl2i2uLvEPBYNfB6Lypr19v3eC65Zrl272qsohQgeilWrVh2UyO3akRubjobKlJ8N2l17wIAB5jOwJYNCGBUi5tRTTzXvw4YtFopCWKD0br31VqP8WIUJmnzt91ZwYgStUkMjFbwiLquxNmEbZasJ20oxQRzrq6++atzPrIS6lHdWFKeSs/WEQ3Vr2d38Xb97nVQcqIj3smiaSODes7GkVua9WjwWfqz3gmuXa7iYm3YpxY1Nvo6iIzfXBTZe0KZ52I58NrZkzOFzEDC8F9sVG7ZYvBZFISyefvppU6r1+OOPlz59+jhVaGIgJQYvaMdsEnsWLlzo1JUb8Ers3LnzoIRtTiTtsK0UIqzmTJ061QzaI0eOVC+FkhlaVoeNyvZVdb60a/O4sIDVOxKvbZLIs6jcJ7J3m5Skx+JA7R2CrfeCa5hredq0aYFXahUlnyDqBJsKL4UFmwvbCxssKLa7NrYeNl8QsCGxJVcGTPwGbFVsVmxXbNhnnnlGioGCFxaow9tuu03OPfdcs+qC5yEonIDE37kkYNNpsX379k7N8GyiNye4JmwrxQClmd98800zYE+cOLFGzpCi5EpYdE94LGoIi6b+PIuNJSos6jeOuIa5lgkL5trmGleUQkzkxt7yJ3Jje/Gci0cAG4/KTUG7a2NDhvmcAQMGmH0855xzjNeiGLyqBS8sSD4j34Euvt27dzfusKCgajkZgiZgU74MLwPuKxdsclzv3r2rniN+j3rGmrCtFBKcxyS1YXjgLqYvhcs1pygZ9Vi0qH7tyh3xlUPPn8C9p4QSuGuEQtXusfDDtTxhwgRzbXONc60Xg6GjlA7YVNhW2FgWbC9bXMQFvBbYidh+QcCWLCsrq+ExCXLNYbuedNJJxpZ9/fXXpdApeGHx05/+1JSXJR4uaKlYwGXFiYdICBrShHeDVZ3WrRPlDwNw4MAB8z4+xyZ679ixw9QRdxUoipJLuGamTJliVmTGjh1b45xWlOwIi7rDDLq18HssVh5ccrakPBb151jUlbzKNc61zjXvUrJTUXIN5y82FraWPadtGVlssqBg6yGyg1aW4nOGDh1qBIJLOCH5GdiwlJ/Fpi10Ctoq+PDDD02n7dNOO006d+4cuLEdLF682Lw+aAI2bmFi51wSw+3nNG7cuEaoCIM1ytYmcStKvrNlyxZ54403jHuZeFD1tClZwxfeVJ/Hwi8sVlUJC7/HopSERXWuYWy/e7dtrnGuda55rn3GAEUpBLCtsLH8ggCvALaYv5FeELD5sP2ChgZ26dLFKfHb7i/X2+mnny7vvPOOfPTRR1LIFLSwQNkhKugL4eKtQEnyo/OeoN4KxADuNJcytqzyEJ/nT/RmcF67dq3T/ipKrsB9jDh+++23zUBN6JNLcQRFSZuWXQMLiy7Nu4on8bF2VVXydon2sij3hSiGEBbAtc41z7XPGIBRpqFRSiGAjbVmzZoqQWwTsvEmuHjgsPmw/YJ21/Y8z4gRbEwXrwXvwZZFXBS616JghQVK9LnnnpMzzzzTJNi4dNkm/o2ThTi8IFAXmR4ZrmIAUYErzf85lCOjeoDGpSv5Di5jKsQwEI8fP95JiCtKZDRuKdKoZSBh0ahBI+nUrFMNj4VHEnOjVvEXlFIoVMNmaQsL4Jrn2j/yyCNN+DBjgks4iaLkAmwsbC1/0zxsMWyyoAnZ/lAlbEDbI6M+OnbsaLwWQZvsATYstuwZZ5whzz77rHNjv3yiYIXF7bffbupv8wO6hCcxIKIkycQPYiTZPheUMcONFpTdu3eblV6/t4ImKKhnl8pVipILCH/AJYv797jjjjOV0BQl53kW21YyKNf50q6JcKjNezbJ7n27auZZ7Nsusf3B8w0KmnK/sAiWfFpflRzGAsaEd999VxvqKXkPthY2F6LA77XANsNGc/HcYQMG7VPheZ4RI5SrdRHh2LKERFGd7Y477pBCpSCFBUk5dCn81Kc+ZVxHLkYPfSso7RW0iRdhSyQAufaaYJWXvI+2bdse1IiPuuGKku/5FHj1jj76aPWuKbmnVSJ3Yt9OkYrtDnkWKcKhSiXPwiRvJxbP9oX3WCSvAjMmsBqreRdKvoOthc3lFwTYZBjv2GguYANiC2ITBqFr167G1nRpOoktS74Ftu3DDz/sXMUqXyhIYXHnnXea0IwePXoYhRc0PIMTCxeYi7eCuDqUZ9Cu3LVVfaLVPI1WgjbiU5RcQJIasdR0Kx09enTg/i6Kki8lZ7v5Ss5WhUM1Lb08CzPH2TyLCDwWFsYExgbGCMYKl4ZgipJtsLnwwPsb5CVXjXLpro1NGNRrMWDAAGNzBs1L4j3sGzlNhB5i6xYiBScscGn96U9/Mg3xWD3BKxAUjHsalyBIgkDiD2KAzogu2KpPtkpVqgZ5ipJPWBFN/PSYMWMCi29FyT9hkaoylC+fbnc8LKKkwqHSyLGoy2hirGDMCGpsKUq2sQ3y8FrYxnW2alTQhGwLtiA2YVCvRY8ePcxnYnsGBZsW2xYb949//KPpyF1oFJyw+M1vfiPDhw83bqkw3gri5ILU3rev53NcVm03b958UNUnlDH72atXr8DbUZRsQYWMyZMnm5XHY489NnAJZkXJ914WVcIikdANsV0lJCwaWo/FbonFgncDDgpjxTHHHGPGDsYQ7Xeh5CPW9sIWs2CjYau5lFHGFsQmJIwqiJAuKyszr3f1WrBv2KrDhg0zNm+hUVDCgqSxe+65xyg5Yuf8vSHqg8RpknWCGvdk/+Mmc/VWJFd9otxYcoM8RckXuCYIZyDBDFGhvVWUgu9l4Xvtyu0rUngs1knplZyNOTXJc4E8R8YO5jrGEpekWEXJBrZxHbaYLQGbqmpUELAJsQ2DVojq3bu3uSZsAnkQ6LlB6BW27t133x24h0a+UFCW7u9//3vjvsJjQaybi6GOYiQmNGgoEoqUk84ltwLxsnXr1hpVn6g+wAkcNFlcUbLF9u3b5a233jLJbMRzalEBpRhCoTo36yLlZfFxfsWOePKjV96kuuTsrlISFtGUnK0Pxg7yHimZyZjC2KIo+QQ2GLYYNlly1Shst6BgE2IbBi1ZW15ebmxPl2RxbFts3MMOO8yEU913331SSBSMsCD55pe//KWcf/755odyCSvatGmTMfj5cYPAicZ7gr6+tqpPe/fuPahBnqLkA5zfGAAI9REjRqg3TSkaYdGgrIF0bxHPo1u+bXl1CIL1WuzbITFbhraUhAUVtTIIxtDIkSOrmukxxihKvmBLzWKTYZvVVjUqCNiGeCyChlEdcsghVXZlUPB0EHqFzXvXXXcVVHnnghEWf/3rX035y8MPP9ycCC55DyhF3FdBvQ+cePyoLn0riNXjh/eLEbZDw5OgjfgUJRtwrlKHnhwlQvRU9CoF1X2bXhb10LNVfOGp4sAe2WCTtX15FqVSGUoaxQuIGPYGr4ATFlvVhhhxxpigSa6Kkg2wxfDQ+70N2GzYbi7nKrYhNmJQr0WjRo2cvByAjUueBQUSsH2xgQuFghAWKEm8FcSbcbBd8h6ITSO2LWgfCly4VIPiB3XZP8SLP9GbmLolS5bUKDmrKLmG5LUPPvhARo0a5eSRU5ScUt5YpFmHQB4L6Nmy2qO9fFs8YdMrwTwLr2GiYznsy154EmMLYwxjjT9hVlFyDV4LbDObC2QTsl0SrIH3YCsGLVnbr18/E3Llki+BGGH/zjnnHPnVr35VMJXXCkJYvPrqq+YHmTBhglGJLnkPnCyETdE5MQh0SiSmzSZfh0305nMpG0bMqaLkA5yTM2fOlHHjxpnkMEUpyHAohEWibGRt9GjZs+r+8u3LU1SGKg1hkW2PhR/GmLFjx5oxh3lVUfIBbDJsM/85ie3GonLQhGygSSTneFAvRJMmTYwt6uK1wNbF5qUpJSLmtddek0KgIIQF5bZOPfVUc5BdVll37txp6gcH9T6gYOmS6OKtAE4Uf6I3dY5ZpfEncStKrmCVY9asWbJo0SIjzjU0TylIWiX6D1XuE9m5LlAoFKzYnlgxb+bzWJRKydmG1cIiti+7wgLocMyYgxHHGFQoK65KcYNttmzZMmOrhUnI9m8HmzFoJbT+/fsbmxTbNCjYvOzfaaedVjClZ/NeWCxdulReeOEFOemkk0y7c2LNgsJgRknaoO/h9ShZl5KbJOSgcv2Ch6oD7Kt6K5Rcw0Q+depU03WUevN6TioFS6tqL4RsS3ghHEKhpEn76imvVJrk+T0WORAWwJjDiitjEGORigsl13BOkv/qrxDlmpAN2IrJ3o+6wBbFJnXx4PEe7Els4Oeff94Ionwn74XF7373O1MKkx/PxQNAMo6L1wDlyg9GiS8XkhO9aRDEyareCiXX0PFzypQppmkjosJFlCtK3tHaVwlwa93ComuLrtLAa1AjFMqjBG3TdvEX7FpXGgauP8ciy6FQflq0aGHGIMYixiTbAVlRcgW2HrkWtqkjNpxrqFIq70eQ12ObulR5wtOBDUwYMzZxvpPXwgL3Ei3NCYPiR3cJ4cC45/U07wn6ehSsy4quTfT2J4bjYeEzUZiKkmtRQZllQhGC5hgpSt7SOrjHorysoXRt0a0qFKq65Gwiz6Jyr8jerVL0NKTcrJf15O1UMAYxFjEmqbhQcg02GoIXm81vwLskZANVprAdESlBaNWqlbFNg77ehhRSWQpbGJs435tQ5rWwePjhh80PRpMQjPegZTHpIoyCDJqPgWLlR3b1MuDOInmHJB77ucSxsx0t4ankUlR89NFHRviqqFCKMhSqHo+FPxxq576dsnnPppLMs/C8MpGGzXPusUgWF4xNjFHquVByBTYaXgtsNmy3MAnZFmw+Fqet96M+sE0RNPZzg+wrooeeUyx+P/LII5LP5K2wYIXp17/+tZxxxhnmsUtDvJUrVxp1F9TDgQhBuXbokChn6JDo7RcjuLfwrOCyUpRcigpWXI466iinXiyKUjAei631lzBNVRnKsx6LEio5W5XATWPAPAj/YkxibGKMUnGh5BJsNWzF5cuXh07IBmxHQo2D5j907NjRfC6J3EGxNjA2MbZxPlzLBScs3nvvPeNFIOmLTp4uJWZ5Hxn+QbwGKEY8D65ehuREbwy6MNtRlKjDn1RUKEVdFSpAKFRyZajlVZWh/CVni99jYWjUsrqa1oF4x+F8EhcaFqXkCmw1bDY8FNZ7ZhOy8WS4ej+wAQ8E8ELwemxUf/J4fWAD0wqBXCXeN2nSJMlX8lZYkKBCFjz9JFxKzNIyncEKMRIElCrKsUuXLoE/I1WiN14SIONfUXJV/YnmO+qpUIq2SV7zTs6hULDCVoaqEQpVYh6LPMizSCUuGLO0WpSSK2xPJ7/3ALFBqNLevcGFODYktuSKFSsCvR4blZBAChoEhZQAbGJs43xO4s5LYUHJr8cee0xOPPFEad26deAEbOutCOrhwBhD+bnkb9jP8Cd6sx0ULzFwZWV5eUiVEhAVlMlTUaGURGWoHatFDuyv86U9fTkZVR6LRq1FGjQuLWHR2Dd/VgTv+ptNccHYpeJCyQXYbNhu/s7bNiHbxaOADYktuXjx4kBhStiohDe5fAa2MDbxCSecII8++qhZSM9H8tIK/tvf/iaDBg0y3RD9FZfqg/JdqE5cTEEFDO9x6UKcqpzs2rVrjbJ1yQNRlKiYPXu2OZc1UVspeqxYiFXGO3DXQbcWPaSM5GXTyyKRY8ECUrNEDtyejRLLk9CgTOIhpix7g9foz3ZCN2PYxx9/nOvdUUoQbDciUbDlwiZkA7bk7t27A3fwxlbFZg1aqhaI4OF9RMxgK+cjeScsUHq4eE455RQzCXTt2jXwewlPooRY0AZ3nDT0oCgvL3f6DH+iN/s7f/58I4AaNIjXTVeUbEFMJ67X8ePHa0lZpfhxKDnbqEEj6dK8a83u22CFhcRKw2vRuHXeeiz84oIxjAIoLs3DFCUKsN2w4fxeC9eEbMCW7N27d+BSstiq2Kz+krf1Qbg9tjE28m9/+9u8TOLOO2HxxhtvyPr1680gww8U1Fgn8YYfJ2g+BqoSdRrUu1FbojfKlJwOvCuKkk2YhOfNm2caSCJ2FaW0Ss4Grwy1be822bInHsvsNffl0+1aI0VPo+pQqFhF/vbuYAxj3mdM81fpUZRsgA1HzoP1NqQqRxt0O2vWrAlcVQobFNs1aOllbGI8LFwr2Mpvvvmm5Bt5JyzwVpx88slG+bkY6/yQnAhBS72iKGk6YntQBIGV4eREbxQuJ4ZL1SpFSRdE8YwZM2Ts2LFOTR0VpXhKztZvfPZuVT2HLN2WWBVsVj1+x3ZWhz4ULY3b5HUolB/GMsa06dOn1whLUZRMgw2HLefvYYGtx/NBE7KhefPmxrYM6oXgM7BdXc53a3NiK+djEndeCYt169bJE088YRJTSJ5xWYXFXYWHI2iJWV7v4q1IlehNwhnq1qVqlaKkCwlbH3zwgYwaNcqpG72iFJXHIkDJ2d6tfcJiayI8oXnn0vJY5HHydioY0xjbGOPyNTlVKU6w5bDpsO0AW4/ngiZkJ3shDgQsPYvt6hIOhW2MjTxx4kRjM2M75xN5JSweeOABOfTQQ02tXpek7Z07d8qGDRvMj5OJBnrAAIdry5/ojYsMl5Q2IVOyBa5a6lcPHTrUqeiAohRVVaiAHos+rasXj5ZZYdGknUhZwsO8s/iFhUcVrAZN4g/yOBTKD2MbY9z7779vxjxFyQbYcth0/h4W2KPYfi4it6NjAzxsV2xYbNmgIHiogDps2DB58MEHJZ/IG2GBGvzDH/5gElKIIXPpK4HSIwSKBLCoG+jVluhtK1Cpt0LJFgxuNI7k3NXzTilJWnbFUg7ssejTqlpYLN0aXxH0qBRlE7h3b5BYZd1la4sqHGrv1rxM9kwFYxzh0Ix5Ll2QFSXd8w7bDhsPsPlcy8J6jg3wsF2xYV0SxSlshK2MzYztnE/Xdd4Ii8mTJ5tElDFjxpgfMWg/CBJeSGINmo9BMxJWQII20AMGNXI4/J/BCUDVAE2aVbIBJe/wVBC7OXjwYD3oSmlS1kCkZbfAydudmneWJuVNzf1l23yVWqoSuEulMlSr6u7b+3dJocBYx+ovY59L2U9FCYut+uk38hEJLgnZ/gZ4NqyqPrAvsWWDJnFjI2MrH3HEESYUitDBfCFvhMXf//5306rcNg0JyurVq817goY1cbLg2nJJtsYjgkFHUg7ww+P10FVjJRuwEjFlyhTjpj3ssMOcPG2KUrQJ3Ls2iOyre6Knj4VN4F65fYXsOxA3Tr2qkrOlEQ5VI4G7Ir8TuP0w1o0YMcKMfYyB+bQqqxQvyZWasP2wMV3yIBo2bGhszaDvYft4ILBpg2KbQWM7Y0PnC3khLFiJePjhh02THKo0uXTa5kcLmrTN55Dd71JtKlWiNz887jHEhqJkmrlz55qVD7x52tldKXna+MbvAF4LKywOxA7Iiu2J8ClfydlYCSRwe+SVWBJldwsFxjzGPsZAxkJFyTSEJXHe+Y18FpKxBV1Lz65YsSKQtw0blte7iBe6cDdt2tR0r//nP/+ZN169vBAWL730klFqJG67eCsYaEioCfoefmAakriU5yTWLtkjQtyca46GooSBQgOcb+PGjTPJYIpS8viFxeYlbgncNhzKV3JWSqLkbNvq+3uCdQXOJxj7KEPLWMiYqCiZJFWOBDYgC8pBE7IBWxObM2i5WmxZbFp6owWFhXVsZ2zol19+WfKBvBAWDz30kCmbhZvTJfeBeDQSWIJUZWLbKEHXRnbJid7Ey23dutVpPxUlDJxrU6dOlcMPPzxwN3lFKSlhsWVpuJKzrOB75aVTctbnsYgVmMfCQiQDYyFjYtC4dUUJC0Y+th43f+nZoF21LdYLESSMD1uWwkXYtkGxtujxxx9vbOl8IOfCAq8DdXjpIkhdXtw6QeBHYuWCGLagSdu7du1yKtHJCbVt27YaIoKTis/U1WMlk1CRglKLgwYNcqqQpihFj6Ow8HssrLDwSAJvlghl3b2++CtDFXAolB/GQsZEir3Yqj2Kkgmw8bD1/F4LbEFsQis2gtC9e3dje2KDBoHPwMMRNJ8ImxnPCOFQ2NIu3o6iFRYcCA48fSuC9qEAmpgQ6xY0zwHFyA9my8UGfQ/7ZhO99+7da8SMS2M9RXGF85oKD1Sm6N+/vx5ARUlDWPRqWR0qu8x23/bnWcQqTdnZ4k/eToTu7inspnOMie3btzdjpEu8u6K4gq2HzWdzF7AFsQld8iDKy8uN7Rn0Pdi0nNfYuC5eEWzobt26GZtaSl1Y4LrBhUP2PQclKCg6fuAgyaxWELiEQXEiLV++vMZ7eEyyDDdFyQSsUsyYMcNcDyNHjtQ8HkWpq0leAGHRtGEz6dK8a5XHwq4EejXyLIo7HMp4aBon5q2KwhYWhKQwNjJGMlZqpSglU2DrEYKH7ZeckL1/f3AvZ58+fYwNii1aH9i02MJB8zKA13M9HHfccXkRDpVTYUFd4Ndee02OPPJIo9KCloBFzbmEQfFae4IEhfdQz9gmeofN0VAUFzjH1q5daxIVScZSFCWJ8sbVvSwCCAt/Zajte7fLZrti37y65GxsZ/ASjwUfDrVvp8QOVEghw9jIGMlY6bJ6rCiuJOdIYBNSftbF8G/VqpWxQYMWHsDDQZJ4UI+cLTBESsGrr75qrouSFRb/+te/ZPjw4aa0l0sYFAeN+DdyMoLACeCSbO0XETZpG7dURUWFk1dFUVwgIXH27Nmm4U3QXCNFKUnaHFJd0ameXha15VlIc99YXgrCokZlqMLNs7AwRlKGljHTJeZdUVwgMoZ8Hqo1hS0LCyyEBxUj2LaIBReBgA2NLT1s2DBjW5essPjrX/9qXDf8UC49Ifhx+JGClHvduXOnSZpxEQQYeLzP7xGhfjFVAnQVWckEhN59+OGHMmDAABM/rChKhhK4bcnZpu1FyhIlnHcGLyFZHAnchR0OZSEPjTGTfIt8qeGvFBfYfMk5EogNkqSDJmTb9/B6bMv6wLZ1ESKAqOB92NTY1iUpLObNm2dWGnBncsCDGuzEqKHigoZB8cMgWoKUpLVwArF9m+iNpwK3lItXRVFc8ypoDjlw4EA9cIqShZKznldWncC9e6PE9hd2eFAxN8mrC8ZMvBeab6FkCjwU2IDYgoA3wSUhG7BBsUWDigVsUGzdoIIZG5oFdHpezZo1S+bPny8lJyxoP05uBfX5XZri0QmReLUgdf0x2FzDoPgRkxO9Sdxp166d9hJQMgI1q9evXy+jR4/WZG1FyYCwOKR136r7S7ZUl4+sDoeKiexaXUK9LAqvSV5tsEpLfwvGUJf6/4oSFOxNwpOSk7j9FaOC0CPhhQhScIDPxNZ1aciHLc37EBfY2CUlLDiofOmjjz7aeAUw2oPCDxvUW0Hc5e7du42LyEW4kJhjKz9p0raSSaiJPXPmTCMqmjRpogdbUTIgLDo07SitGsWLdyzasqDqea9FvFqUYUeRCwtCvyy7i0dYAGMnYyhjKWOqomQ6iRsbEVuRIkQufVh2794dOCfINRyKMGps6mOOOcZUh8pVxbScCItJkyaZZGhWGVBYQXIlgCYjJNAEbXLHD4JryKV3hc3fsPB5hF9pkzIlaihXR14F9addcowUpeRxFBbMMf3axHvCrNu1Trbv3XZQAnes2PMsSN4m/At2r5digzGUzsiMqS6lQBUlCF27djW2oE3iDmP4l5eXO5WSxdbFVkaMBIFxDpsa25r30WS3ZIQFSurYY4+tahwSFNxOlNQKsrJrw6CCejeAzP8NGzbUeI/tl6FJ20rUsLpGrCadZBVFcaA184bnVHK2X9sBVfcXbVkUv5Pob1EKlaFML4smCa/F7g1F2f9h8ODBZkwlxlxRogQbEFvQLwqwFQnBc+kC38MhHApblwIFLuLFNoK2XouSEBbEoz3yyCMyYcIEk6zq0lvCJQyKHxsQIi7CBVeSLfVJwxGXfhmKEhQGClyolEsM0uRRUZSkXhatujsJi75t+lXdX7Q5Hg7lNWohkgiRkh2ritLYrkHTxHxYuVfEem2KCMZSxlTi0oP2DFCUoGALcl5hGwK2Ijajy7nWoUOHGjZqEKHg2jMD2xobG1s7F9XSsm7R0BCPFQVq7bpUWSImjVAo3FFRl6StTbiQkc++uuSAKEp9sLpBBZMRI0ZovwpFSTccauc6kb276n25DYWCRVsWVv/DhkPt31WUxnYNmsaNGsPuDVKMYOzRmXv69OlOK8mKUh/YgngD1q1bFzocqqyszOk9hOFTotalVwu2NT3i8LJgcxe9sHjyySdNNShWhlx6S/AjICqC5EsQX8mKhYunYfv27ebm3ycbBuUiThSlLjjvmfAoKKDNFhUle3kWtQqLGgncxZ1n4ZWAsADGVsZYxtqi90IpWcP2l/BXh+Jco2AA9mNQevToYWzUILlALG4jLlzEC/vEeY+t/dRTT0lRCwu+KMJi1KhRxlVDRn3Q97nkSxBiwqqFrewUBLbPj8ePCLiP2I6GQSlRwnlGk5xDDz1UD6yiZFFYtGnSVtonDOvFNscCY6GUOnD7hEWsiIUFMMYy1roYZIpSH9iE2IY2xAibERHrcp61bt3a2KhBO2u75GUAtjU2NpXSsLmzLa6zKiwI/+BCP+ywwwJXdgISqolpC5ov4RoGlUq4oCZtHWFFiQIqO5CwTQhUo0aJjr+KomRFWEC/RJ7F5j2bZJMtuepL4C76ylA2x6JIK0P5YYxlrGXM1ZAoJSpsHzVaE4Q1/L0Uno/6Kp5hA1PpKSjY2IRD8R6ugaIVFignEqsIZ3Ip30piDAcpSJIrnRGJf3PxNCB2UJ/+kp+uFaUUJWgIVNA8IUVRggqLeDft+ujXZsDB4VCm+3ZZSYRCxZvk2ZKzxe2xAMZaDYlSoiZZFHCOYUNiS7psA1vVdvOuC2xfwptcksSxsen2jc2N7V20wuKJJ54w9XVJKKGLYVCDDLdTUCHCgWfbQcOsgBOEH82WlGVlGZXn4lVRlPrOsS1btmgIlKJERZtDqu9vDiosDs6z8MrKRZonmqjuWiOxA9mvopLdkrOJYiS715dE/oGGRClRk9xfAtsRGzKoBwKwUbFVg3bWRiRjCwe9Ztm2rZKG7V2UwoKDRygU1Ro4QEHDlDDGDhw4UFWiqz5cPQ24l9g3fz8NxAmfZ8vOKko6MPhQV51zX0OgFCUiWvcSQRTAJl8ydh30a1tbAndizohVFn+eRbPEXHqgovirYCWFRAVtNKYodZGqzKxNyK5MlKINgkt1KGxSkr2DVofCxmZB3lZI84duFY2weOaZZ2To0KGmXJdLKAgKDTdTkDAoW5LLxdOAKwq16S8pq2FQSiZCoLR7u6JESINykdaJkuWbF3Gx1fuWQ1r7e1lUCwuvpW8xakeRJ/s2S3hnYFew5NFCR0OilKhJFgUIDWzJdb5StPWBrUr4FLZrfWADE66PTRwUvCjYtkOGDDE2eNEJC2K8xo4d65SE7RcWQUCRoepcVoVt7wrrQbFlwzQOXokCVjQ0BEpRMkS7hAdi7w6RnfUnI7do1EK6JJK18VhUhRVYjwWLAUUuLLxmvrDinaUhLGxIFGOxNs5TogCjHVsRm9GfkL3CoToUtir2cFCxwOKki7Bg29jc2N7ZzLPIirBAjb3yyiumzCyqLkgvCqAhHj9cUGHhkotRW0nZ5LKzihIWzi9CoKjMoCFQipIB2lV7IIzXwiHPYue+HbLWrti38Hm5txe3sKjKJ0FElYjHAhiDGYtnz56dk27ESnGRqr9EcinaIGDfBhULvBYhEzSkD1sbmxvb++WXXzY2ddEIC74QyqlXr15OYUocbA5KEKNs7969smnTJidhgYfDX1LWlp3151soSljmzZtnzi8tAqAoGaKtT1iEybPYvMD89cqbVJdi3bFKYpUHpDRCoYKvfhYDjMUkzc6fPz/Xu6IUAcllZrElmzdv7pTPgM1KIjg2bH1gCxPa5OK14JynEzfRPNjiRSMs6Pw3btw445IJ6n1wDYOi0Qg/qkvCdXIuBT8uyTH+srOKEgZWFZYsWWLc79q5XVGy4LHYtMi55Ky/UV51Avf+os498Bo2F2nYouRCoYCxmD5aixcvrgphUZSwYJ9iM7KobenZs6dTOBSN7FiADJqb4RoOxT5ie2ezC3fGhQVf6OmnnzauGA5eUMMfVxKGflAPBMLCNQyKxnv+XApOhqD9MhSlNli9oALJIYccog0WFSUbORZOoVC+BO4tcY9FySZw79susX3ZCY/IF1iAZGxmjC6FcrtK5sBWxGb0C4muXbsa29IlHMpFLPBal+1jc7do0cJUh0JYuFStCkvGLegPPvjANAChIhTJLkFZv369UXIckPrgQLkKC9Qh27b9Lmy/DA1bUdKF5EBygwYNGqQHU1EySdu+zqFQfVr3FU+82kvOMh+UUJ5FMXtnaoOxmTFaE7mVdMFmJPTJitTmzZsb29KlOhS2KzZsEKOfbWMbYyO77OOwYcNMB/oPP/xQCl5Y2GpQlOFyqbTEDxVUKKDeSFJp3bp14O0nJ3pT8osf1V92VlHSSdjWAgCKkmEaNhVp2c0pFKpJeRPp2aqXub94y2KppHdFcgJ3kXssvBIsOeuHsRlDSxO5lXTBZsR29Hfd7uIYrtSmTRtjIxOlEwTX7WN7s/1sVYfKuLCg49/o0aPNhWyTpOuDHwm15xoGFTSWPZWHw6VfhqLUlbDNioJ6vhQly+FQu9aLVGx3qgxVcWCPrNoeb3LlNWoh0rht/AU7VkrMCo5ixFdyNlZieRYW8is1kVtJF2zG5MpOXRw8EP5mdi7hUGw/aCgftjc2OLZ4NrpwZ9SKJnl1wYIFzt22rfIL4j2wIUwuSeEk2nAy0PI8bKlaRaktYZvkQE3YVpRcVIYK5rXo68uzWOjLsxCbZ0FX6t0bpGgp4cpQFk3kVqIiWVi0bdvWnF/+pO76sMIiiFiwtnHQ7bMv2ODY4lREW7p0qRSssCBpGyOLFVyX/AorFIIYZ8RJksMRpume3T59Nnbs2KHVoJS0wK3ep08fTdhWlJxVhlroXBnKn2fhlUo4VOPWIg0ax+/vLE1hYVdyGbMZuxUlLNiT2JC2g7aX8EDgVQgKNiy2LDZtfbB9l/4XgA1OASVscmzzghUWtBAfM2aMuU8/iqC4eA94LT8I8WNBsB6O5DAoavxqTLwSFhKpWD3QhG1FyaHHwrFJHixM9LIwtOhZEgncZlEt0YFcKjZLbH+whlvFCGM2Yze5mooSBmxHbNzkcKjVDv0ssGEz2YXb2uDY5M8++6wUpLAgifXdd9811aBw2wQ1/FFrdAcM2kvCNYQJVUnXQr+HwzWUSlGSxerHH38sAwYM0A7bipLLkrMBQ6F6t+4tDcsamvsLNs+r/kcplZxt7osi2BncACo2aDrWv39/M4Zr+VklLMkeio4dOxpbM4gHIoxYYPvYyti0QcAGxxYfMmSIvP3226b/RsEJiylTppgvQr1oF6OdHwbvAVWe6oPSWVu2bHFuuscPYrfv2i9DUZJhVYIBpG9fX+lLRVHyNhSqvKxhldfik23LZI9dsW/USqRhy/j97dUddYsRr4VPWOxYJaVMv379jJHmssKsKHX1lygvLze2pks4FLYsNi22bRAvCbaya7M87BRsc2z0ghMWr7/+uowYMcLc58sHxcUDwQ9Gma4mTZqE3j7Vp4g7s/0sFMUFqj7MmTPHuNODiGFFUSKmaVuRJm2dQqFgYLvB5i/lZhduXlgdItQykWexf5dIxZaS8FjESthjAYzdjOGM5dloIKYUH6n6V3R2zIPAlsWmDSpGwoZDHXroocZGLzhh8corr5g60QzUQftL2NbomQqDIjGGilN+D4eGQSnpsHz5crOq2bt3bz2QipJrr8XW5SL7KwK9ZWC76gaW8zfPTZlnIduXS9HSwtdXqsQ9FsAYzljOmK4oYUg29Lt06WJs2r1794beRl1gK7P9oGFN2OLY5PTZwkYvKGFh8ysGDx5sYrqClt7kAKHY6CpYHwcOHDAJsy7CAhXIgaXFediO3YriPwfnzp1rYha1/4mi5EOeRUxkS7BSigPb+oTFpuo8C8+XZxEr4jwLr7xpdd+OnauKOuwrCIzh2CyM6YztiuJKcv+Kpk2bmspjLuFQbAPbNsg5iK3cuHHjGs356jvHsck5z995552M5VlkRFh89NFHxrVIGTeX/AdyHQibCiJEOPAcUMKYgpLs4UjVz0JRgrJ48WJzDrqUUlYUJdO9LBa6eyw2+T0WvgTuIq4MZbB5FvTt2BO85n6xQmNTxnTGdkVxBVuyrKysRn8J13AlbFrOQWzc+sBWxmZ2qWjmz7PAVi8YYUHslm0S5pJfwcEJWpaW1+IGCuoNQf0ld/N26ZehKH5wbdL8kapnev4oSo5pX92XQjbOD/SWFo1aSvdE34oFm+ebXAtDk3YirOZDEXssDFoZqgaM5YzpjO02CVdRgpKqv0SXLl2M7RnUC8Y2sG2DigVXYWFtbHKgM5VnUZbJ/AqUm0t+Be6coEKEA+kiWvCGUFYOt1Rt/SwUJSiLFi0y53bQfCBFUTJI+4HOwsKfwL17/25ZkcinMAsF1muxd5vEKrZJseJpnsVBUMmHsX3hwmCeL0Wpq4N269atTQQPNqiL8e8iLLCdXfMssNEzlWdRlsn8CtvWPOr8ClaLt27d6tx0z++dSNXPQlGCnuNLliyRgQN9xoyiKLmj/aBQwmJA2wDhUMXstahRGWplTnclX8BGYGxnjFevheJKx0T/CttfwnbhdgmHQixg4wY5/7CZsZ394VdB8yyw1TNxjkcuLIjZor6ua36F9UAEESIoP8p6uZSZxRWVXA3K389CUYKydOlSc/65eMwURckgzdqJNE0sNG3wNbxzyLOYV0sCt2z/RIqWph1FEo0CtTJUNYztlA9dtmxZrn4ZpUApT/Sv8AsJbM8gORMWbFtsjCBeDmxmFtldPCLsDz3mMtXPoixf8is4KEE9EDbJOyiox507d9bYfrLQUJQgECdJGBRdtjW3QlHyMBxq+0qRimDdaAclQqEO8li0qi4fHdsWrMpUIeKVNRBpnig7u3u9xPbX35irlLwWhENphSjFlc6dO9foZ4HtaaNkguKSO+GaZ2Ht50zlWZSVSn4F+4InBRgocBvpirPiCjXOydXR3BxFyTM6DHKuDNWleVdp2SheWXDBZp+no0l7kYYt4ve3fVLcpVj93pkdGg5lYYxnrNe+FoorHRJ5D1aUYntig5ZKnkVZofWvCJNfkSxEaJnOD42rSVGCQm1qqoWot0JR8j2Be17wlemE12LdrnWyOVFy1cxd1mtBB+7dwcMYCg2vVBoCOsI5wFiP10K7cSsutGjRwoREYWum41XIVJ4F53Ym8yzKMpVf4VItJ9P5FcnCwuXzFMWyatWqqlrniqIUSWWo2hrltepT/aIiDoeSEmkIGAbGekSFHfsVJQheIu/BLyRchYVrngXbd82zwFZHAEWdZxGpsCBWi5itMPkVmQqDSpVf4boNRSEUAm9F//79tcu2ohRRZaiaCdy15VkUcRIvORZeg9JoCOgIId2M+Yz9RR0Op0ROhyQhgQ2KLZqpPAuX0Cm7bWx1cqKjzrMoK7T8CtfEbV7fpk2bg/IrXEKpFGXt2rVSUVEhvXr10oOhKPlIO7pve6F7WcC8TXOq/9GyV/X2ilhYeGXl1Qncu9ZKjC7cShW9e/c2Y78/GVdR6qNDhw7G1izFPIuyUsuv4MBrfoXiCnG2ffv2NeXZFEXJQxo2FWndq7rkbMAV5n5t+kmjskbm/pyN1cLCK28i0jzRQHXHKokd2CtFS1XfjpiWnU2CMZ+xH6+FogS+pFq0MLZmFHkW2L6FlGcRmbAgRouDiLoPk18RhLD5FX4hYj0eml+hBIWBgRt1nxVFKYDKUBVbRXYGS7guL2so/dvG8zM+2bZUduz1laptacOhKos6TKhm347i/Z5hIRadOQAjT1GC4CVSAkoxzyIyYfHBBx8Y5WO7+gVF8yuUfIcOrD179qwKp1MUpbgSuId2GJYyHMrz5VmUTAJ3MTcEDAllZ3v06CGLFy/O9a4oBUT7pFCmsHkWQcWCa54Ftjo2+6BBg+TDDz+UvBQW/fr1MxUU8iW/ggOs+RVKOuCCXLFihXorFKVIS87C4PZDq+7P2fhx9T98laGKO4G7uy+Bu4i/ZxoQDrVy5cpAYSmKElWehWujPJc8i1atWhmbHds9L4UFO4VLhTivoHHoHIBM5lckCxHNr1BcWbZsmVH1XICKohSnx2JIDWExu/ofzTuLNGhc9Aa316ChSItu8Qe71klsf/AV1VKBOYCFSuYERclWnkX79u2d8yywdYNACBTvIcwb50BeCQvcOvPmzTM75xIGxZdv27ZtoNdqfoWSbSgvuHTpUvVWKEqRl5ytNYHbK0tUhyJvY4vE9lQbCEVHVT5JvNu4ktprwZygpWeVfM2zaNOmTQ0hUx/Y4Njuc+fOdQrRyriwmD59ulHzJIIEFQqACgsaNqX9K5RsQ3lBXJhduiQqwyiKkt+07lntYaAyVEBI4B6Q6GcRT+DeXv1Pf6O8YvZatPKV0tY8i5QwFzAnaOlZJV/7WbRxFBY4A7DdW7ZsKTNmzJC8ERZ03B4wYEDVlwoKXz7o6/FuuHhDasuv0MZ4SlBYmaLKGclNiqIUAGUNRNr1j9/ftFCkMh7b7BoONdfXKM+fwF3UeRal8j3TgLmAOYG5QVGC0L59+7TzLLB9g4Y3uQoLa4Njw2PLR0FZVPkVNnE7aCw68WK7du0KJCzY7rZt25xES235Fc2bNw+8DaV0YTWBpnhMIoqiFGDJ2cp9IluWhkrgnlsjgbtEKkM17ShS3jR+f9syDfepBeYE5oaowkaU0siz2OwTBq7hUAgRbGBs4frATsa2DlpkIBMJ3JEIC5I+bOI2ySBBQFHxesq41ceOHTuqfqCw/StsKJX2r1CCQIIe/ViCFBZQFCVPE7gdwqGGth+WMoHba9RSpEliLtm+XGIOXpBCokY+yb7tJqdEORjmBOYGTeJWgl1X3kElY12FBWFKflu4LrCpmzZtGrjnik3gxoaPKoE7bWGBaifpg+SPTOVXIEJs+/Eg0EGQGDb//riWqlVKFxLzPvnkE3OhKYpSYHQYUn1/Q3Uidn30bdPXl8Dt81iAzT/AC7JztRQtNbwzGg5Vl9eCOUKTuJUw/SXatm1rbNSg3a6xfbGBg4Y4pZPAvWfPHsm5sCDZA08CSU0uORAu+RUur7WvR7E1bhxP4uPid92GUrogQomHdOkgryjFAOc9Ex7XwOrVq03dfvq4MM5z4z7P8T9ew2tt7HDe0NEnLNbPCZnAvaxGArfnT+Au4nAoz1cZSvMsaodkV857lzh5pXRp27atWUy3QhTblGpPLp3cXcRCGGHRtWtX47mIIoE7WNxSHZDsMXBg3PXsavwHjV/ntaipsN4QJj+X/A+ltMF46t69uyZtK0VJRUWFGVO54VpnhcreaKzE6hgTHzeSVXlM8iHYyZHxlO1w4zHudCZKe2OxifmAm13gyRodBofyWNgE7tkbZlYlcI/pckTKxGav+9FSlNSoDKUei9rguujWrZuZKzQSQgkSyrR//36T+2DzfK3xH/T8waYNGn7HtvGoBcXa7tjy2PRjx46VnAoLkj2o7RwmcTtIKJRN3A4aNgXJ3gkmQ35Yre6j1AerUKtWrZIjjzxSD5ZS8OBqZ1WVMdCKCQQEkxtjJOMiE5tfFBCjGzTsFFHBeO4XJ9y2b98uy5cvN4s6bNOKDMZxwgJstb6M0LilSMvuIttXxj0WrBIG/D5DfHkWJHBXCYsWPeKdqWMHijpEiHySWJN2Ins2VeWTeFTaUg6iZ8+eMmnSJDn00EMDNwVWSpMGDRoY+5jxN1lYBIXX401gzK1vfGactaFWQcZaXh9lAnfawoJkj7POOsspcZtJzh+qVBc2WcUmrwSBH4uL3v9Yw6CUIFDtgwvRJV9IUfIJJpQ1a9aYG6KCsZnxD4OeiYNJJCrD3u/dSLX4w8TmFzWIDRaV2BfCZ7llpFIf4VAIiz2bRXauF2nRybnk7McbfAncZeUSQ1ywir97ncT27RKvYZEWdmh1SFxYkE+yY3nNPh5KFcwRXEf0tCCMRFHqok1CSBANYR8zHgbFFi9i0aa+RXzGY2xsPq9jx471bhvbndcTGfTss8/mVliwMkWyx3XXXedkiLnmV4RJ3PZv3/9jKkpd4Nru0aOHVg9TCgZWsChlaMUEizF4ITB2Ro0aldPKZhhe7Ivf3Y+wsPs6e/bsqhw9bswjkVTuI4F78cvV4VABhYVN4N5buVfmbkpO4O5dHR7E33a+XI4iwmvdV2LrEvXstyxWYVHbcfI8M1dgHKqwUOqjTZs2Jj8trFeBiBvr9QgSHWSTvYMICyBHGmExZ84cY9vjac6JsJg5c6aZtLioXIWFa0WooLA6xgHxJ27z3LBh1S5uRUkFFzgeiyFDitNgUIoLKvIRR0vcLfG7JJQOHjzYTCQZDTVKE+YMwme5cc2tX7/eJIMTVsLKGbl3vXr1MitokSVw9zkucAL3wHaDZdaGGSaBe1vFVmnVuHVVAnds5ZvxF24rXmEhbfpW3Y1tXSSenJDT3clnEBavv/56YONQKV1at24tH3/8cVUokw09xT4NmmeBOAma8O3y2uQE7lmzZsmYMWMkJ8IibOI2X5aJI+hrXZqUJXtDWB1j0nUJpVJKE3IrWAnQc0XJV5iUMMSXLFliRDCVy4jxRlQUYg4ZxhhJsNyI8eU7IZTmzZtnvhMraAglZy9GyJKzMLzjoUZY2HCoI7sflSKBe6lE4FfJT5p1FilvLrJ/p8jWJRKLVcZ7XCgHwVzBnMHcoc1Ulbpo1apV2gncvN4lgdsl1Cq5A3c6wqIsqo7bQb0KqUKVasN6G1yrTSWHQfGDanKVEjQMSlHysajA0qVL5bXXXjODPgbNSSedZIoMsMpUiKIiGb4D34XvxHfjO/Jd+c58d6eytiFLzsLwDodW3Z+5YXr1P0hqbpho0rqteHsYGBHROlGFcf8ukZ1rc71LeQ1zBnOHogRN4A7rVbCvDzL28FqXXhk2gbt///5pJ3CXpZu4zYoSLmuXjttBE7dJUnHtuJ0sRDRxWwkaVkKiq+biKPkEEwirTq+++qosXrzYLOSccsopMnTo0KLuCs934zvyXfnOfHeOAccikEHfvJNI00RfpfXVSdhBGN7hsKr7s9bHS8+C8ZrYRGYM7l3rpFjx2vSrfrB1US53Je9hzmDuYA5RlLpIFhIuTe+SE7jrw7VXhj+BO90O3KGFBatHJHkQ0pTJjtsovKCrcSgzEhf923f5PKV0wZVNpZp0EpYUJSowngkLIn6bcXbQoEEyceJEE25RSt5Xvivfme/OMeBYcEw4NnUKDERAp4TnYfsqkZ3VXW/ro3vLHtKmcXxOm7VhZo3P8exKfrEb3K39eRaLc7or+Q5zBnMHeUKKUhfJQgKhgc0a1KtgE7hd8ixcS9pSUZVckHQan4YWFiQN4jbBde3SeM7Fg+AaBmUTt61xqB23laBQoYaqNIqSa2hG984778iUKVPMws2JJ55o/kZSLalA4bv7jwXHhmNkG/elpMuI6vvrZjp91rAOw839rRVbZOV2X5iLbyU/tqWIhQWldcsaxe9vXVy0YV9RwdzBHKIoQQx9ez1Ze5VebfnQgRvhg01vPeVZFxbz5883LkDcJ66hSi4eC1dhkSpxWztuK0GaiKmwUHIJXayJbX333XfNCih5BoQBlZKHoj44FhwTjg3HiGPFMaNJ30F0rg5pkrXxZGyXBG6LTeQ2tOhZbXBvWVi0BrdpimfDviq2xPtaKLXC3LFhw4bAK89KaSdw7/aFzYUx/oO+nte65HBgy9uCGtj4OREWJC3htQgqLHgtySRBqu6ETdxODoPSxG2lPmhwxDmckUZdihIwFI8kZdzPGM2UPNbylbXDseEYcaw4ZuRfcAwjExb+PIsNM2sa3DYcau9WkT0bpVjxfGVn8VootcPcwRzCXKIodS2MYP/6hYFrnoVLAjfnJDY3tnfQ85jX4jTIibCgHCCqhi8X1CDDgwBB6pNzMNi2izckVUUoza9Q6kPDoJRcwUo7K+7Tpk2T4cOHy9ixYzXPxwHCCDhm9CniGFJFqsp70ZHeRV4oYWFDoZITuA9KbN6yUIoWzbNwQsOhlCC0SfJQuHosECbYxtjI9WELfAQtLIC9zbax7bHxsy4s6LhNLBYrR0ErQnEgECFBkrFJaAn6Wn/itlaEUlywtfM1DErJNiR7stLOivsJJ5ygHd9DQk4ECYccQ8IMOKYmkbZRM5H2A+IvWjdLpDJ4MiJN8XolQoHmbZojew/4Qq1a9y+NPAu+v+1fUczfMyKYQ5hLgq4OK6VJmyQhweI3titjVxCwiREMQYQFr8WOZvtBwJbHpse2x8bPSSgUDYxcwkf4ckE9EFaEBIXyW7a8FmjithIEkj+5+FwqmylKOiAkWF2fOnWqWWlXL0X03guOLcc4ZitD7d8jsmlhqH4W+yr3yfxNvkm2VS+RsoZFXxnKa9BIpGXP+IPd6yS2t/4Sl6UMcwhzSZ0FBZSSp3Ui78GGMtn2Cy4J3NjRQcWCy2sBuxvbPuuhUHv27DENYXCXuCRGuwgLl9emej2JkHgxtIuyUl8YFBdRKVfcUbIHYycJx0wslFBlpV3Pvei9FxxbjvGyCl+O3hpfs7sAHNqxtjyL8urE5j2bJLZnsxQtrf39LDTPor5zj7lEq0MpdYHNTLgmNmpY49/l9QiFIN4N//5h21MVyr+PGRcWixYtMqtDtCF3Mdz5ctkSFjx2adynlB6sGGh+hZItcH+/8cYbxo199NFHB8o1U8LBseUY728/JJrKUOtn1Jp/UMx5Fp7mWYTKsyjWamFK+pQnGtH5hYFNss4HjwU2PbY9XhRs/awJC1wkdqXN1fgPGt7kKiySRYvr+5XSg3OEpKaOHTvmeleUImflypXy9ttvS9++fWX06NFaQjZbpWnHn1f1ePeyyU7vH9B2oDRu0PggjwV4bUokz8LfEHCLeizqg7mEOcXFkFNKj+ZJXgSXPIhU76+LMN4QQvqw8cOGQ4UWFpSjcik1S1wxF1yQ15PEQsiAa/6G//WuORpK6bF+/XpTC1+9WkqmYOWSbtHE+48ZM0YGDBigoU9ZxGvTR6RR3KseWzPN/BZBV5PLyxrKoHZxj8eK7ctliz/kqVVvkhDi97cWsceiYXOR5l3jD3askBi5KkqtMJcwpzC3KEpQYz+M8Y89HSTh2742aCftKErOhhIWlKGy3flsOav6wNDnosO9EuVrwZbeUo+F4gINjXD5KUomYFxCUJCPdswxx2jlsVxAVcGuo8zdZnvXy/pFU2T69OmBxUXNRnkzayY2Iy5g9waJVQRvQlW4eRaxok5WjwrmFOYWRXERFrbFQhCwjbGRg3gteC3e26AeDoRFuiVny9IpNUueRdBysNajECRR0YYxBU1qxLuBGvN7KDQUSqkLLhy6bauwUDIBKz5Tpkwx5xix/i5FLpSI6TOx6u6RnXcbo4/fJkhZ0MM6jqi6P33dtNoTm4s4HMprO7DqfmzjnJzuSyHAnMJ1r3kWSlBhwQI9Niy2bBCwjYOGQ9mUhaAeEWx6bPt0Ss6GEhYLFiww1Q/SSa6O6rWpel7YDt+aY6HUVZ6YC9mls7uiBIHxh0ZtVCXSJO084JATqu42WvG2+U34bfiN6hMXIzrFvR0wfd2UWhvlxYo4HEoQFrafxabgoWSlCnMKcwtzjKKkwooCey3hUUBcZKoyVNiSs9j6WREWVDZhxSeTpWZd8yOS8ytsl0GtuqLUBudwu3btAnvcFCUITBT0UMComDBhgnbRzgd6jBMpT1TgWvKqNGnc2Pw2/Eb8VnUZyh2bdZLuLbqb+7M3zJJ9B/ZV/7MVic3F30DOK29SXQVrz0aR3Zo/UBfMKcwtGg6l1IZNIdi1a1dWSs66Vp2i1wYeC3KFWIRxxdmqQsHQCIYPTqdqU6ZLzbp07VZKD82vUDKVU7F582Y56qijAueIKRmmvLFIr6Pj97ctF9m0yPw2/Eb8VvXlXByW8FpUHKiQuZs+rnreY7u2gdyutUXdQM5LJLEbNmk4VH1onoXi2hE7TMlZl7wJV9GC541bGK+Fs+VNMkePHj2qPjwTpWZdw5g0cVtxQfMrlExAPCqCVT0V+R0OhdcCiCPmt2JVrq5Y4pE1wqGS8ix84VDF7LUQn7CIqbCoF82zUFw9DmFKzmYqFMra39j6YRK4y8KWmiWGMKjxT5dBbkFeb1+bTiiUJm4rdaH5FUom+lQsXrxYxo0bpyGY+cghEw8SFjZclt+M347fsP48i6m197Mo5opJlJxtlAh93rpEYpXBSleWKppnodRHcvJ1GOPf2stRvta+Hhs/bMlZZ2HByg7dJW3meBA4WLieGzZsGOlrgeQ74tT8okV7WCh1waoytcY1VE6JAvLOiNU//PDDtfpTvtL18Kp+FkZY+EKfyBXkt+M35LdMpm+bftIy8d5p65JyMkwDOa/4O3BTodFWwTpQIbIjtQhT4miehRKm5Cy2bJBqdYCNjK0cRIzY1wYNncK255oPWxnKWVh88sknxihjJ4OWg81kfgXbZj/8idrqsVCCCAtFSRfKA77//vsyaNAg7VORzzQoF+lzXPz+rvUi62bX+DeLZQMHDpTJkycfVPKxzCuTwzqONPc379kky7d/UvU/j6TwRHK37FwtsX3BY6QLDX8VLO1nUT+aZ6G4CAtsWGxZf0J3rvIs2A/EBXYSNn/GhcXq1auNm88lMdHFgxA2v8KKHJcO30ppQsImVTsUJR0Yaz744ANjQPTvXx0SoxRAnsXS1w76N13RGRf4TZO71I7sPLrq/rS1U2rPs9i6WIoWX9+OWDHnk0QE5xJzjaKkApvY3xHb9qbIVJ5F0L4XFmx8bH1s/owKC1zAa9euNVWhgnbcBlaAXMKm0smv4MBRE1grsii1nYvcqGqmKOkwc+ZM47YeOXJkYO+tkl8J3H74DUeNGmUmen5bPyMSHguYvn5a7XkWRRwOJc07i5Qn5v2tiyUWCxayUaowxzDXVFRU5HpXlDykSZMmB3XEzmTJWTwiQRvw2dcjLLD5XXvXOAkL6tlykSAsXHpEuAgLFJzLtlOVmnXp2q2UFpzDnB9Bc3gUJRWs4qxatUrGjh1rJgelAOh0qEjTRAjk0tdFUiQg81uSzM1v61+pG9phuJSXlaf2WNgeD1DEK/keTfKsd2b/Ls2zqAfmGBY9U+XtKIqXoiO2a8lZbGXbt60+WGx3ERY4D7D1ec+2bdsyJywYaNm5li1bOguLoB4EFxECxKNpRSglKAzy2m1bSQcqa9D74NBDD9UKUIUEfY1sdag9W0TWJJWOTcDcxm/Lb2yrqDQpbyJD2g8195dtW2pyLSxew+bxqkmwY6XE9geb6AsRr+3g6gcbtZ9FfTDXqLBQXErOuggLbOWgHjFe6yIseD2FLbDdXcOhnIQFqzjEE6O0XEKNgooF3C0cJBdhkbxtV4+HUlowyGsYlJIOM2bMMCs5tp+PUjzhUBZ+W35jf0jUyE6j6+hnYcOhYsWdZ9GuWljEfM0CldSosFBcwpNcvQpWLAQJVQojLLD1sfmx/TPqsbDVdIIa/y5iYd++fSZmOR1h4erxUEoL9Vgo6cAAu27dOhkxYoSGWxa6sFj8Sq0vY0LlNya+2K7Wjeg0slZh4ZVIYrNHKFmzLvEH25ZJbG/wePBShEUswm8VJYix72r8I0SwmbGdg3o3guZLWDuaIgQZ9ViwcVZxSG4LarxbN02Q13NAiXEtL4/HstYH+8EB9XtPXD0eSunAuaGJ20o65w/eCsJkdIwpUNoPFGnZLX7/k7dE9tfeMIrf2B8SVbNRXh2VoYpYWBjaD0vciYmo16JejwVRFJrAraQi2UPBmINNm1yVrq48HmzmIGLE2skuoVPsR8aFBat1CAv7oUHgCzdq1ChQMzJXbwMHKDksyyWfQyk9bwUxjJq4rYSBsBgNgSpwKOpxyInx+/t2iayYVOfL/SFRbZu0k16t+pjnP944W/bsr57MPRroNesUf7B9eXHnWXSwwkIktrFmPxClJprArdRFsofC1fhPtY3aQIBwPgb1iNh9YfzLaCjUypUrjXpBJAT1KriIBVdhYUWErQCFi0dDoZTa0DAoJSybNm2SNWvWaAhUMdA3ISxgSe3hUP6QKFbsOAdGJrwW+yv3y5xko7rtoMSdSpHN86VoQVzZsrOb5kqscn+u9yiv0TwLJWh4kl0od82FyEQCNyIEWx9hge2fUY8FFwkeiKC4eBDSTdzGXc0PpGEKSiqIddWKUIorjCkff/yx9OvXT8eWYsB6LOrJs7Awn/Dbcw7U6GexbmqN13nthlTdjxVxxSRTdjZRIUsOVBR3snoEaJ6F4pIjESbJOujrXUQIYOtjM2U8eZuLxCXUyEUshPFY+F/PZ+FJCepNUUoLajFTPk1RXCBZe/v27dpdu1ho3SOeawEr3xepqD8Bmc7qnAM9y3tXPTctSViYylBlif44m+Y4N5UqJDwrLDQcql6wmVz7ACilQcMUORJhErhdhIXrtjl/M5pjQYUM1EummuO55kckv17zK5TaYFWAnif+ZoqKEtRbMXDgQM3NKUavBWE8y94IZABwDmxZulXaNonnGc5YN00qfd2nvQaNqsvO7t0qstNtla+gMP0sEubDhtlFLaLShTmHuYc5SFGirgzl6rEI2307I8KC1Road5BjQUe+oGQ6x0JLzSr/n73zAHOjOvf3py1e9+517wXbgBs2NjZgeg8lIQES8s8N6Q1yk9ybhNzc9B4S0nu7dELv3YDBBWxj4957723ddlf/5z3S0c7K2t1zRtKuVvre51l7tCuNRqOZc37f+ZoLDOzEL2qPE8WHTZs2GTf1gAGxpF0lTxh0Uc32mpecXsI1UFlZKcPaxno5HDh+QNbuW1NnOFQ+N5CLlLYW6RjvOH50l8iRHU19SDkLcw5zD3OQorgYFr7J267PD9N9G81PE79gI7+MGRa4Qoi3wi2STY+Fb1UoNSwUF7gpqAhlE/0VpSEotbds2TIZPny4cVcredbPglwBWP2C00u4BrgWOh/vmvjdgp1J4VDBPIs9+WtYQCRRdhYjSpvl1XmeIhEz9/gIM6VwaJnDHguej+bHY+sTDuVlWGC5hOm67fL8THTd1opQSl0wqGsYlOLDxo0bjZjs27evnrh8o1VHkd4TY9s7l4js3+T0Mq6FgWU1PSvmb09K4G7dTaRVt9iD/WslSknbfEXzLJxh7iHiQ1Ea8jj4ehXs8127b/t6Q6gMRWPsrBkW2ey6jYvZp/FeKqNFm+MpdcGgroaF4gpj15o1a0w1IPVy5SmDL6nZXvOi00u4Fs4dMVVKIrEk7TnbZp88oSe8FnledrZVuUiruPdm35r8NqLSRD0Wik+TPF+vAtoZDe3yXFcjxD4ffJvkeXssSEByFf8+5V99u25zHOw/2WOhzfGU+kKhFMWFnTt3moUKGqQpBWBYrHre+WUD+w2UgaWx/IIdFTtkeVLIU6RLIBxq73LJV4zBnQiHwoha1sRHlLuwqKWhUIprKBTa1jXZ3/abcDFG2DeanP27wPM5jqx6LGiU4dMngg9qy2n5NrtrCOvOSa4KpT0slFRoKJTiw9q1a6V///6aW5HP9D5TpKxDjceiusrpZcxnU3qek3j8+sakqlIdBlMiKra9d3leV0wK5llENc+iTtSwUHxCocA1ZAnN7NN9m8V7n5wMxi8qQ2XFsKC5mK0G5epV4MS4ehDCdt3GUgPtuq3UBS5CrhcNhVJcOHLkiCmvp5Wg8pzikpou3Ef2iGyd5/zSq067OrH9+sZptf5mys52sBWT9ogc2SV5C5+zOD7H714iUUfjrNBg7mEOcglXUQqLlknhSWjabHffdn2u1fpof2yAjBsWNHixiRyuXgXKNOKxcAHXjG9SeNAQ4Yb1CdNSCiu/guvQp2O8Urhs2LBBysvLvcpqK82UwZfWbDtWh4IBXQdKn7JYUv+yPUtlLwZEgEinU2oe5HM4VFGJSOdY+V2prBA5sK6pDyknYe5BpGkCt+KSIxEmgdvVWEALBTt91wdaH81PJVifJo9FPqEk7Nyn7CInytW7wQf16ZjNSQwKRb4EToB23VaSYTBHJGoSrtIQrBqtX7/ehEEpBcDgi0MZFjChx8Q6q0NJp2E119T+2r0u8jscalGTHkuul5xVw0JJBs2anCPhYyjYfbh6w9DwPp4zno/xQy+7rHkssmVY+DzXPj/oDbGPVTwqyWjujeLK3r17zVjSvXt3PWmFQKeBIp2HxrY3zhA56r4qd/bAmjyLedvn1P5j294iRfH56cB6yWs6j0Q6x7Z3LcrrnJJ08K32oxQGkUjEaNeg2EcL48XIhmHh89ysGxbslJ37in/X53MSffcdNHJ8DROlcFDDQnFl27ZtxqiwuVtKATAkHg5VXSmy7lXnl43tcYZE4oJ63va5tf4WKSoWaRuvKHZ0t0SP529ztEiLtjU5JUd2ilRsb+pDykl8ewgohUNJktj3Ff/N1rAgFAr3jK/HwvX5YTwWweerYaHUhfY3UXwMi549e+oJK9Sys6vdy862L+sgA9oONNsr9iyTQ8eTJt72gXC6g/nttYh0Pb3mwS4Nh0qFeiyUXDEsfL0haH+fcslehgU3hmsydrZDoZI9HGpYKHWhHgvFBeKfGee6dYt3TlYKgwHn1YQtefSzgDN6TTD/RyUqC3bMr/W3SPsBie3onjzv8dD1tMRmdPfCJj2UXMU3IVcpHEpy2GOB5kf7Z8WwYNL1DYXyCW9Sj4WSLbRxouLqrejatavX4omSB5S1E+k3Jba9d7XI7lXOLz2j5/jE9vwdSeVqqZZk+1nsXCDRqFvDq+ZIhA7cbeKevgMbJHrMPVelUFCPheKaUB0mXClbhgXPp3BTxg0LkrFsVSifkp3ZTt5Wj4XignosFFfDokePHnqyCpEhl4UKhxpbfkZi+53ttQ2LSEnLmlKsxw+I7F8reU0X67WIiuxe3MQHk3tojoXiGp4UxquQTY8F2h/ngmthhiJXYUaPCHaereRtNSyUbMB1S48U7W+iNFTuevfu3WpYFCrBfharnnN+WdfW3aRP21g/i0W73pUDx2o3kYp0G5PYju6sHSqVz3kW0V0aDlWXYcGcpCjNLRQKw8e1+ICTYWGzwekFkCs5Fqk8Fj6J5UphYG8En+aLSuGBUcH4pk3xCpQeo0XaxEsMUxmqyq2BFEztd775v7K6Ul7d8MrJuQeJcKh38zocStr1EWnRIba9d4VEK7UCUhA7B2llKCXThkW2Q6HsvOhaGcrZsODAMSpyqY9F8Pm+5WqVwsqv0PKhSn3s379fOnbsqCepUIlERAZdFNumNOymWc4vvXhAjbfjxXW1w6giJa1EbBfu4/tFDm+VfCUSKapJ4o5WiuzN84R1T5iDCCXXBG4lGx4L10pPYfbNdYv2z6hhQX4FXSN9O1u7GgvEbWkolJINWB1Sb4XSEPv27VPDotCp1YX7ReeXndr1dOlaFqsk9tbWWbLv6N5af4/YPAvI8+pQkWB1KA2HOgnNs1CyGQrlkgPh23nbdgbHa+GawO3ssbCukGwYFjbmMB1viJabVeqKnVdPltIQalgoMihoWLzg1Tl3aq9YOFRVtEpmbH6j9hMChkV0z/L8PtEdh4oUx8NOdy+RaLV7vfxCwFcwKoV5XRQXF3v3msCocMnfCdPHArABMu6xIHE7+CYuuOY92BPquu9UHg41LJRUaIic4uLVIjyhQ4d4fLhSmLTvJdLt1Nj2lrdFjtT2PNTHBTaMSkRmbplR+4+tuomUdYpt718t0ar8zT2IFJWIdB4Re1BZIbJ/TVMfUk6hhoXi47FwrcJktbCL0RrGGwI+JWedPRa+hgWCjpPi8nw+JKs+rnHw1toKGi1qWCh1XVvqsVAa8lYQ6qn9K5REF26SrNe87HxCxvUcLy0isZX62VtmSHUgSZu5LeG1iFblvdiuVR1qt3bhDqKGheLax8LVAwFoZ8YZV8OC/bruO2hYZDx5m526GgpB8e9qWPA8MwCH3LcKSKW+a0tR6kLDoJSTDAvPcKjS4lIZ3ja2Ur/n6B5ZkZRLEek0LLEd3bsyv084HgsSuWHXQudV10JADQvF1WMBrp4FtLPrteW7b4we7uGMGxY2FMrHsLAH7RoK5RtixYlUj4WS6WtLKTwY39q1a9fUh6HkAv3PrckRwLDwEMVju5xRdzgUuQeWvSskn4mUthbpOCT24OgekUObmvqQcgY1LBSX68LHA1HXPurC6maf8rTWsMhoKBQd96hmwM5dE6x9vBDpVoSyv9M+Fkq615ZSeGhndiVBi9Yi/c6Obe9fL7JnlfPJmVA+MbE9K8mwiLRoK9KmV+zBoc0SPXE4r096pNvYxHZ0xztNeiy5hG9FHqUwKElKqPbxQPgmfPvuO2uGBQdg8x9cw5WI33LNmfB5LnDygkYEH1qTdJVUqGGhNIQaFkrdZWfdw6EGdh4knYu7mO0FO96RihMVtZ9g+1lIVCTfw6FMnkV8Tt85X8OhQlbkUQqDkhRC37cylM/z0duuORZW8/O/8/59hb+rYYHYz8Zz7fNTGSI++1AKAzUslIZQw0Kpu+ysez8LvPqDS4cmunDP2fZWrb9HOtWEQ0X35Xk4FB4a+3kJhzq4sakPKSfQUCglFVa7BvOR+J1PfpLv8332aw0X52TybBkWPoQxLFI9VsNCaci7pSjJ1wfGJ6JQUQw9xoi07hrbXvuKSJVbyACNOAcWD048nr7x1dpP6DC4Jql5T34bFhApD4RD7dRwKFDDQklFKu2aLUPBd99Bj0XGDYvgzrNhLPgaFnV9EYoSRBvkKQ15Kxg3WrRooSdKicEimu1LcfygyObanof6DIvBpUOkLJ78/drGaVIVaBAXKSkTaT8wfuHtkmjF9vwPh7KG1A4NhwI1LJT6SPZY+OBriPgaLT7hU96GRTZI1yrTcnZKfdeGT/6OUniGBYJQFyWUOsOh1riFQ3ENtW3ZTs7oOiFRdnbRroW1n9Ml3oAPdi3O65MeKW0jYsvsHtsrcmC9FDo+4kwp7FAoyFYoVJhF/6x4LHItxyL4fA2FUjJ1bSmFxfHjx41hoSh1J3C751lwLZ3ZdVLi8asbXqn9hK41hkV0d34bFidVh9JwKJ2LlKyFQvkaCzkVCuVKNkOh6nq+CkglE9eWUjj4VqRTCoQOfUW6xKs4bZolcvSA81gzvutEKYqHAL264eXa4Q2tu4u06hZ7sH+tRJMrR+VlOFRxIBxKV+s1wkJpjtE7WQ2FylbydjrP1xtVydS1pRQW6tFSGuzCHa2KJXE7Tr5tS9rK2O6xZnkbD26QtfvX1H5SIhyqWmTP0vxvlkcnbji+X2Sfe1+QfCSbCblK8yXSyFWhcsZjkcuhUBZdmVbSvbaUwkKvD6VBwwJWP+81YZ/X94I6w6GCeRbR3Yvy/guIdB+f2I5unyOFjhoWSraM0GwYFsHXZLSPhaIoiqIUFAPOEykqjW2vep5Z2/mlU/udX3eeRYdBIsXx8sa7l0o0UDkqL+kysubz7lwg0arjTX1EiqJkkSLf2KpsuVoy4fLRlQAl3WtLKSz0+lDqpKytSP9zYtv71orsXunsAevVtrcM6zzc/G7J7kWy/fC2mmuuqFikSzw8qOqoSHKoVJ4RKW4h0m107EHVMZEC8NLUh3rQlWx507MVJWRf49oTzNmwsOIsm539wj5fb1QlU9eWUlioYaHUy5DLarZXPecVNhwMh3o9qVlepMtpBRwONVcKFQ29VFKRqrJpplIEMvFc+79roRNvwyJXmnWox0LJ1rWlFA5aV15xNyye9Zqwz+tXd55FLKE5Pv3uXpz/Y1THwSJlHWPbe5ZK9PghKVR0sUvJ1rWRzWvLp4JiXoRC1dVcRFF0RVqpDzpuHzt2TE+Skpry00Ta9Y5tr3tV5MSRes8U15Lt4j600zDp3Tb22jnb3pYDx/bXrpbUId6F+8gukYodef0NRCi/Wz4u9oCSswXa00I1iuKzUO7rsfB5brP0WOSLlaY0b3xKpCmFR8uWLY0Y1AlfSQlzi/VaVB4VWf96nSeKa4hriWsq9tKITI17LaqilfL6ptdq77prTTgUXot8R6tDad8cJTV1NXnOZiiUz36zblhkywuhydtKNigtLZXKyko9uUpKEIGMPXTgVpSUDL28Zntl3eFQ1kC1hgVc0L+mg/fL65I6eNcqO1sAhkXbXiJtesUeHFgv0YqdUmgwF5WUlDT1YSg5SiQpxyKXmlLnRCiUD+m2LtdQKKUuqGLgWntZKczrg4n+6NGjTX0oSq4y8MKa7tH1JHBjWLCQEaycMqrbaOka77Q9e8sMORTILYi0Lk/qwn1YCslrITsKL4lbDQslW6FQPuRMKFSu5VikCm/RcAYlGUSjeiyU+mCFWQ0LpU5adRTpe1Zse/dykb1rUz6NayjorYCiSJGc3+9Cs328+ri8sSkplCpRHSr/u3AbTJ5FPCdy+5yCm7PVsFByoSpUmGNjgTajhgXizNew8Km24luZJXkVmpPJ71RAKsmoYaE0hBoWSoMMCYRD1eG1wLAoKys76fcXDqjp4P3Khpdq/S3SNRAOtasAwqFadhTpOKQmaf3gBikk0CiuvQCUwjY4q6qqvK4Vn+f7hDUFPRYZ7WPRpk0bM2j6tPS2gs7FEPEVf6mez+805EVJ99pSCg81LBSvsrN15Fmk8ljA2PJx0qllZ7P95qbpcuRERc0f2w8UKWldU4Y137twJydxb3tbCgk0iuZYKA0ZnOhmX++Wq2Hhu2+ei/Y/cuSItG3bNnOGBTtjp+zcVaTZg3YR+2EMC05OcN8qIJVMXFtK4cH4dvDgwaY+DCWX6TFGpE332Pbal0VOnJyTwzWUauItLiqW8/qeb7aPVR2VGVverN2Fu3OwC/dqyXu6jRIpKo1t75gn0aoTUihoKJTicl3gUUDj+hgWrteW1c1Nbli0a9fO27CwlpPL8328G3XtWwWkUt+1pSh10bFjR9m3b5+eIKVuCBsYdmVsG48DPS2S4BriWkrFhf0vqbM6VCRYHWpXAXThLmkl0m107EFlhcjuhVIoqGGhuFwXVrO4in8fL4TvvjFErGGBLZBxwyJ4UC7i39UQsR4I1zwLa1iox0JxubbUsFDqAzF4+PBhOXGicFZOlRAMjRsWsOKpWn/i2uEaqsuwGN9zgrRv0d5sv7HpNTlWFWjK2Hk4rovY9q6FBZHQHOkxMbEd3TpbCgU1LBSXEDnrJXDNg/DxcLBv9uu6b6ufMm5Y2FCo4Ju44Jr3YE+G67454cmCUQWkkgpN6lcagoRbYuP376/pjKwoJzH44poQHgyLgAGAt6JVq1Ypk7fN/FRUKlPj4VAVlRUya/OM2l24Ow6NPTi2V+TQpvw/+R0Hi7TsEtveu0KiR/dKIaCGheLqseCxa5UnHy+E7zUYNCwyHgpVURFLOEs3yTrlQcQtJ5/kazUsFBe0QZ7igoZDKQ1S1k5kwHmx7f3rRXbUVHHCKO3QoUO9Lw82y3tp/Qu1/hYh7yBOdFf+hwZFIkUS6XFm/FFUZNtbUgioYaG4XBe+FaF8PBy+lcmshscGyLjHAjcv7pZsGBapPBC++1aPhZIKVhBpXKUo9aGGheLEsKtShkPVl19hmdjrLGlbGpuYX984rXY4VJfTE/0dZOe7hfFlGMMi3tNi21sSjbqXnG+u1FWSWClsKuvwWPi+3sXD4VuZjH2j/TEsMu6x4GCII03Hq5Cp56Z6voa8KKkgxAXDwqdPilJ4sNqsCdxKg9gE7hCGRYviFnJev1g41OETh2Xm5kB1qLL2Iu0HxB5UbJNoxY68/zIiLTuJdBoWe3B0t8i+/K6IxRx0/PjxlCWJlcKmMgOGhasXIsy+uW7R/hlP3gYsFp8Ex8Y0LLSPhZIKuzqkXgulPrp06WLGNxvyqSgp6TxYpGu8POymmSKHdyWum86dY70q6uOiAZcmtl+uJxxKdhWG1yLSM5DEvS2/k7jtHKQeCyXThoWPFyKMYWHnxYwaFljYxG6RvJGNUCjf56Z6voZCKangum3RooVxQStKfbk4GBfbtm3Tk6S4hUMRurPqOXPNcO1wDTXExJ5nSbsWscn5tQ3T5GhlYFzqSjhUfNeFEg5FCJhtELhzgUQrY0Vi8jkMyrUaj1I4VGYoFCrTzwWcCVy7eERcjWKnK5y4LVsZCpeIK2pYKLmAdlZWXOjRo4caFop3ngWGBdeOC6XFpXJevwtrqkMFm+W16irSplfswcENEj2W/71VIsWlIt3PiD2oPmEa5uUrml+huIYyhRH/2TQs0P5t2rRxrlLlbDqzU24MH6+CT96DeiyUbOdZKEp9IA537dql/SyU+uk7WaRlLJ8iuuo52b3T3bCAiwLN8l5c93w94VD5Xx3qpJ4WW2bmbR8P9JPmVyiufSxyKRTKp9Ssl2HBTrkxciXHItlo0VAopS7UY6G4Lp4wzu3cuVNPmFLP5FMiMuQysxk5tl96V60z144rZ/aclGiW9/rGV5PCoUYVXDhUpF0fkXb9Yg/o4XFwveQjLG6pYaE011CorBkW3Bi+VaFcn68eCyVbEBeoORaKC6w8b926VU+W4hwO1f+on2chGA51pPKIvLl5es0f2/QUadk1tr1vtUSPHyqIbyLSa0piO7qlpnlgPqEeCyVXDAvfPhZo/6wYFmSD+4ZC+RgLvuVik40W9VgodaEeC8XHsNi+fbuWJ1bqZ8hlEo3Eps+OO9/wPlsXB6pDvbD22cS2iWFOhENVF0w4lJSPFSlpFdve8Y5ETxyWfENzLJTm6LFAZ3PtulaE8jIs2rdvb3aeS30sgmFZ9nG+xmcq4VHDQnGlU6dOZizBuFCUOmndRY53H282i/euEtm51OtkTeg5UTq1jJWnfWPT63Io4JmIdBuT2I7unF8QX0KkuIVI9wk1Sdzb3pZ8Qz0WSirQrMnJ12G8Cs3SsLBVobJlWFCqz8ewILwlWKEK8ejbGVwpDIh/pg6zGp1KQ7Bi3L9/f1m/Pj/jvJXMsbXDpJoH7/zd67UlRSVyUf+LzTYduOnEnaBdX5G40SF7VxZoONSbeTVe81kOHz7slYujFAaV8c7WwfwbQo98+p34GAu+nbcbxWPBCXC94TEWXJO96TXgU7kneRWaE0V9aI2lV5JhMOc69CmVrBQu/fr1kx07dmizPKVOWKhY1mK8RIvivSvm/0uk0m98uXTgFYnt508KhxpTcOFQkTbdRToOjT04slNk30rJF5h7EH9qWCjJ2B4RQbHvm+jvY4ighVx67gBaH82PUwEbIOOGRYcOHRITratXgA/qaiz4hqvYEqJ8aDsYa8iLkgpuWK6NQ4cKY+VPSY9WrVpJ9+7dZd26dXoqlZRwbXTqM0wiw6+N/aJip+lp4cOo8jHSvXV3sz1ry0zZd3RfQYdDQaTX5Fpei3yBuYc5yGelWCkMjsbLENseEWhaX8PCJ3/H57lW66P9sQEyblj07NlT9u7daz68qwHAicE6cgmfsoaCqzfEnpig4aKGhVJfKJ8aFoorAwcONOFQPqGfSmHANcG1MWjQIJFxH6/5w7y/eu2nKFIklwy8PLbPaKW8vP6FusOh8jCZOSV0Hy+Nh1zsWijRY/slH2Du8amqoxQOR5OEvtW0ruIfzeyav8PYhbHgarSwXzT/vn37jA2QFcNiz549XuFGhDe5GiJ8UPuhXeA42H9w39oITakLBnViXBXFhW7dupmBfdOmTXrClFpwTXBtdO3aVWTQRSId+sf+sOo5kf0bvc7WpXHDInU41OjCC4cqKhHpGc9diVaLbJ0t+YAaFkpdJBsFPEbbonFdYPE+OUejvvdibGH/LvB8jmP37t3ZMyzYuX0zF/gArj0EcBESZxYmHMqi/QqUuiC2VT0WiiuMXaxIr169Oq+SSJX04FpYtWqVuTaM+GfyH3uL/avIO//w2t8pnUdIv/YDzPY72+fKjsPbU4dD7SikcKiz+NdsR7fOkCgGRjOHRS31WCipSA578q0elipHwzXsyuX5gFMhq4YFA6tvkrXL832MkOC+kz0WmrytpEJDoRRf+vbta7yoGzf6rUIr+QvXAquDJPgnGPvRhBCWd/4mUu0ePse8Z70WUYnKC+ueq/kj3ajLOsW2960omHCoCCFgXUbGHhzbJ7J7iTR3WNTSxG3FNRTKN3Hb1Vjw7aViCzZl1WOBy2X//v0mQ9wVH7HvaxgkGyJqWCgNhULp6rPiCqtAw4cPl2XLlmmuhWKuAa4FrolaYQod+pqGeYb9G0TWvBw6HOrkZnlxr0W0cMKhUpWezYdSs+qxUFxDoXw9Fj45E777RvOj/bNiWFDDFosbl4itDtXUhoV6LBRXWrdubQZ4H6NYUfr06WNK82mFKIVrgGuBa+Ik0kjiHtBhoAmJgiW7F8uGAzU9VCKJPIvCqg4lnYfXeGv2LJPokVgYdnOEOYe5hzlIUVwMC1+vguvzfb0haH00P0axj2HsbFgAJRjJDs+mxyKdMCtN3lbqghVGBnbNs1B8YNV45MiRsmLFCueePEr+wXfPNcC1kDLkYNhVIm3KY9vLHhM5vCsjXgtp31+krGNse28BhUNFigKlZ6Mm16K5wpzD3OOajKsUFkdz2GOB1kfzo/198LrScYXgFvER/z55E+l6LHgvqkpp920lFTR4OXDggJ4cxYvy8nLjsSVpVylM+O65BrgWUlLSQmT0R2Lb1SdE3r3La/+XDLisVnUoG7JZqzqUCYdaJAUD1aEixbHtrbMkWtU8G5yimXyaiymFw4l4O4Z0DAsfL0SYfXP9+oRBeRsWvXr1MtaLTwdjHy9CusnbPuVtlcKDBi9cv4oSxmtBhSgdWwoPvnO++zq9FZZxH6sdDuVRTaxH254ypnyc2V67f42s3Lsi8beCbZbXol2NUYWnZsc8aY4gzHyaiymFw7Fjx4wnK9gJO9seC58wK7Q+mgntnzXDonfv3ibeiixxV69AtnMsgk31tPu2Uh8dO3ZUw0IJRefOnaVHjx6yYMECLQBQQDC38J2zYsc1UC9dTxHpd3Zse+cSkU2zQodDPbf26TrCoZYXTDgURPpMTWxHN73eLO89hBlzj6LUJfTtgoWtuprNrtuu+7b9MWiMjfbPqseCN7EH6AIfAquHA8xGVajk8reaZ6HUBYM71Tk0Vl4Jw+mnn27GP22aVzjwXfOd8907kUYS90UDLpHiSKwW/XNrnpaqeNla8g2k29iacKid70qhEMGo4gcObxHZ17zCEZlrmHPUsFBchL5v1+1U+6gLQq64Hl0NC44Fg4fxL6seC1ZteBOfRnb2BGWj+zbHgQtJm+Qprtci1xiuaUUJc/2MGjVKFi5cqCFRBQBzFt/16NGjnTvVysjrRcri8fSL7hc56p7T1allZ5nSJ+bx2FGxQ+Zseyvxt0j52ECzvOYZEhSWSO+g1+I1aW7eilatWnkJRaWwm+OVlpYabRs2R6O+9wIf7wZhWr7N8UIZFtnsvs0J5YNoyVklW2g4lJIOrNyQwKshUYURAkU1FK9JtUUbkdM/GNs+UREzLjy4YtB7EttPr36y5g/t+oq07Brb3rdKoscKaHGEPIsW8RyF3YslesSv4lZTovkVSjYrQqXK0XANu3J5PmTdsGBS3bVrV6ju2y7GQia6b7M6oL0KlPoMC/VYKOmA10JDovIb7xCoIOM+UbM9909eLz2n71RpR9KyiLyy4SWpwDix1aESXouoyM4FUihEiool0vvsmtKzm6dLc0HzK5T6QKsmh0KFSdx27brtu2+0Ppo/66FQfPCDBw9697JwNUR88yyoD00Mo4UmHtqrQKkL9Vgo6UJYDOExhMnoIkb+wXfqHQIVpNc4kZ5nxLa3zhPZMtf5pWXFZXJxvPTs0cojxriwROJVoyC64x0pKHqeJVIUX5XdOluilc2j8qMaFkp9oFWDjefQsjSiburEbft8yvOj3bPqsaBkGh+ClZxsNcnz9TgkGxL2cXOsHqFkH65hrg9N4FbSgYGWVZy33nrLxLgq+QHf5ezZs8136zuZ1mL8p2q25/h5La4cfHVi+5nVTyS2I217irTuEXtwYK1Ej+6RQiHSoq1IedxYqzoqEsg/yVU0cVupDzRqsmHBYx/DAq2MZs5W1220Pq/x7cPiZVjgbiHmlDfjTbNhWHCSgx4I3+fzpTA5+IRqKYUD16ImcCuZgDAZ4lvnz5+vCxl5MtG/8847JnEyVAhUkNNuEomHNMnCe72SuEd1Gy19yKkQkbe3viXbD29L6bWQHYXT0wIifc6tlcQdpUJWDkPILXONJm4rqUATo1WDhkSyodEQPs9PDrvy6brtmpdh8e4xzyoOb+Yj3DlxrsYCz/UJZbLPtx4KJgUsOA2HUuqiU6dOJiFJUdKBsWbChAkmBlW7cjd/Vq5cacYFvlPXqix1UtZWZNSHYtv0ncC4cIRJ/MrBsSTuqETl2TWBnhaFXB2qbS+RTqfEHhzdLbJroeQyXEvMNYqSCjQxWtWONWhYfudjWPg83zfMCo2P1g/jufU2LPr162cqQwUb02XSWPDNkWDfHEcwfErzLJT66Nq1a6K6maKkAytAEydOlOXLl8u2bTUry0rzgu9uxYoVcuaZZ3qt6tXLGZ+qncTtEZ57+aCrEtvPrH6ypgls626xClFwaJNEK7ZLIRHpe35iO7rhlZz2FLLgwFyjKC7eBjQs1zN5w674hE75GCEcBx4VdBKaP+uGxfDhw80gTMM7n/AmDBGXuHaf5wKhCHwRQWPEx0OiFK5h4dK0UVFcCgKMHbeZfwMAAMveSURBVDtW5s6da5LdlOYF3xnfHd9hRhuZ9Rwj0mtCbHvbfJEtc5xfSijU2HjY05r9q2XZniWpk7i3uyeG5wV4LNrEK9QcXG9yTXIR5hY8FmpYKHWRKr8CLYumdQGNjFZ2MRbsc12NEFsRauvWrUbzZ92wGDZsmGzevNm4b1w9C1TW4Mfl+fa56eRZqMdCqY927dqZ6xc3n6Jkgt69e8ugQYNM4q9Wimo+8F3xnfHd8R1mnAwlcdfqaWEMi3jM8/a5Ob1qn2kIE0v2WuQizC3MMcw1iuISmhQmv8Lq5Uw+1z6f6xetj+bPumFxyimnmBrf9s1d8UnKDptnEXwvzbFQ6pucunTpYlzVipIpWNnp1q2bvPnmm9qZuxnAqhzfFd9ZmFU5J067MdCJ+z6Ro+6N7S4ccLG0KIoJgefWPCOV1TEvfqSsg0inYTW5BgfWSUFBnkmwYV4OhoMxtzDH+Ca9KoVdarZtlvIrwhgtgNZH82fdsBg6dKipCkXFg3TEf334GgapSs5y0jXURakLXNRqWCiZBBFB7wMSNmfMmKGV6XIYwgL4jviu+M6yJgDpxD3q5tg2ze48krjbtWgvU/vFVuf3HdsrMza/mfhbpPsZBRsOFSkqkUifqfFHUYlufE1yDc2vUOoDbZpsGPiWms1WfoXdN143ftD8WTcsiEFFlG3ZssUrntjHWPDNkUj2hti6vhqSoNQF1zAxsGp8KpkEgUqsPiEQ6rnIbU8F3xHfVdZXlc9ICofyCF2q3dMiEA7VdVRNw7gd70i0ulIKil5niRTHG4Ntf1uixw9KrqD5FUpD2HYNwUTtbJaa9TVacByQX4E3l95fWTcsAAtm+/btaXkVMvXcVB4Kkl98w6mUwkLzLJRswfhzxhlnmAH5jTfe0AWOHILFJr4Tvhu+I9dEybToMUqkz6TY9vYFIptmO790Uq+zpHPLzmb79Y2vyoFjsVCqSElLka6nxZ5UeVhkzzIpJCIlrUR6To49qD4h0c1vSK6g+RWKa36FXdSgnwXGRjYNC98wKzR+GG8FhBpViUfFmmHlx3XF14p/l0Qz3+7ZlAck0UQTuBVXNM9CySYI1nHjxhnPGEJWq0U1PXwHfBd8J3w3jWJUpPRa/MH5ZSVFpXLpwCvM9vHq4/LS+hcSf4t0H1+w4VCJhnmR+He4+Q2JVuZGU1zNr1B8hT5GBRrWtdS17Xnh4oVI1eG7PmzF17AVoSDUyEoyB2+KOHPtwM0JqKysdIo79nkucByawK34onkWSmPkXPTp00emT5+ufS6aEEqk8x3wXWQ1p6IuTrtBpGW8WdqiB0QO70q/OlSn4SKlcWGxe5FEK93Kv+cLEc6nLb2L12brDMkFNL9CCVNqNujBaAi0MRrZxbDguckdvusDg4XjIN0hTOJ2aMPClpxlxcc13MinI3ZJSYmx3NLJs9BeFkpDED9IPwtuUEXJBgzQI0aMkDFjxsicOXNMd+dCKg/a1HCuaXzHuec74Ltokko9pa1Ext4S2646JjL/H84vPaXzcBnccYjZXrDjHdl0YKPZjhQVi3SLd+KmYtTOBVJoRPpdlNiObpwm0Sq3/lfZgrmEOYW5RVF8DAvfMCj0NFrZ9bm2w3dDoKPR9mFLzaZlWGzcuDHhYslGydkwHbi15KziA9cYN9zOnTv1xClZhR4JZ599tqxdu1bmzZtnVpCU7MI5pvHdunXrzLnPSp+K0D0t/kjMgdPLMIRqeS3W1HgtCj4cqk2PWCI7HD8gsu0taUqYS5hTfESiUngcTgpjClNq1tUDEcZoIRwKjd+ohsXgwYNNDBYuv4MHD+ZsyVkS9XQ1Wqlvwu7Ro4eGqCiNAhX1zj33XBM+qknd2YWxn9An/uecZ7Sjdli6DBUZfElse+8akdU1+RINcdnAKyQSb4pHdaiE16t9f5GWXWPb+1ZKNJ7cXUhE+l+c2I5ufFmi1VVNGnLHnKL9K5S6QJMyLqVbajZbidtoerQ9IVRo/UYzLAhTIlY1myVn0zUsysrKTJdBH8NHKTyYBKh+oOEpSmPA2Dl58mRTlWjatGkJz6+SGTiXnFPOLcYE59o1IbJRmPDZmu23f+/8svI23eXMnrHKUpsPbZIFO+ebbSNgEz0toiI75kmhEWnXN5ZvAkf3NNk54NqzhoWi1AWaGW2KRm2MUrM+3g17fGj7vn371jpGH0KXxcBFgiDzzYPIVi+L9u3bGwsLT4odcJm8Kf2mKHXRuXNn4/aj6aOiNAbEuhLvTw+FxYsXy1tvvaWdujMAYz/nknPKueUcu8YVNxpDrxRp3ze2veIpkb3uXbOvHPyexPbTq5+oIxxqjhQitbwWG16SaNQtzCyTMIdgXDCnKEp9PSLQptarhfcC7YqGzaVSs2HDoNIyLGzJ2RMnTjiHG1ljwaVErW/3bJJYeE3QkGDFSg0LpT5IUurevbuGQymNTs+ePeWCCy4wY9crr7yi3os0vRScQ84l55Rzm5MUlwRyLaIic//s/NLz+10orejfICIvrn1ejpEEjqhu3U2kXb/Ykw5tlujhrVJoRDoOFukwKPagYrvIroWNfgx4K5hLGrWMsdLs2LdvX63QTAwNtKtLIjagiQmndfFCpOrwXR9oeTR9OqVmIfQdQBkq3CVYXa6eBdtl0KUjti295RMOlWxI8JgvTVHqQ/MslKYClziN2tR7kRkvBeeSc5rTjP1YTdfseX8Vcey/0Kq0tVwYX5k/dOKgTN/4auJvhZ7EDZF+Aa/F+hcbPcRQw6CUMIbFvqTHDUF4v22x0BC2HQQFBVxAb6dbajbtUKhNmzZ5lZy1HbFd8h7ChDIlGxK8nngxrcCi1Ed5ebm5hn1C7xQlW96Ll156SZYuXWpWjpTUcG44R5yrnPdSJNOuh8iI98a2K3aKLH0k/Z4W5WNrpvPtc5skFKjJ6TxcpG2f2PahTY3ajZy5gzmEuURR6gItiv5N9lj4GBZo4mAoVX3YpHBXL1omSs2mbVjw5rhOfLwKnBBXL4JvKFOyIYKHhElHu94q9VFaWipdunTRcCglJ7wXJBxTCx/RvHr1al0YSZqYV61aZc4N54hz1Sy8FBlK4j6jxwTpTolVEZmx+Q3Zc2S32Y60aBcT1nBsr8j+tVJoILRq51q82KjeChquMpcoSl2gRdGkQQ+Cr8fCxxCx+RyuoOVZtMFj0SSGRb9+/YxlQyyWj3D3MRZ8PRY8H9d4MIFb8ywUFzQcSskVSP6cMmWKjBs3TjZs2CAvv/yy+b+Qq0fx2e25IJ+Cc8M5araJsv3PEel2amx7wxsi2951ellRpEiuGHSV2a6KVskza55K/C2SqA5VuEnc0vV0kdbdY9v710h03+pGeVsNg1Jc2Bc3Iqy3wepVH/HvY4iEMVrQ9BwfVaEa3bCg2gZdTBnsfSrq+HosMFpcE7hZLSBJJTkcSvMslIbo1auXWQG1RqmiNCUM7CSCnnfeeWacXb58uSmhun79+oLyYPBZ+cwkZnMOOBecE85Ns+4VwLEHvRZz/uD80qsGX5PYfmLlozUGZ9fTRIrinpsd7zR5F+qmIBIpqt2Ne/3zWX9P5gzmjmYTiqc0GfuTvA0If9/EbTSxqyHia1jwfBZuRo4cmVZFvbTKF0yYMMF0kvVpRMeHtOW1GqJdu3bmf99QK60MpfiCa5JwKML7FCVXsCtH5BAMGjTIhEa98MILsmTJkkRiXj7CZ+Mz8ln5zDRquvDCC825aNYGRZBRN4u0iFdrWXCXyFE3z3//DgNkbPk4s71m/2pZtCvm7YgUl4l0Gx17UtVRkd2NXxkpJ+DctOwS2967IuteC+YM5g7XBFmlcNkXz48Im19htbDVxvVh2y+4GiG2cR+aHm2fDmkZFuPHjzeDPiFRrl4BvAokk7iEOIVN4E42LDSBW3GBpo8UJFCUXIPVowEDBsj5559vxl0SAMkzmDlzpomHdfXq5jJ8Bj4Ln4nPxmfks/KZ+ex5V8azZfuYcQEnDou8e5fzS68ZGk/+FpHHVz6a2I70ODOxHd32lhQikaJiifS/pOY8rHs2q+/HnMHcoSgNeV8PHDhwksfCNwzKNXGb56K1XfN+0PCMseSwMe6mQ1ojNUlzK1asMNvpJFln6rmpDAubwK0duBWXcChufL1WlFyFCaVbt24yceJEufjii02OAaVWn3vuOZk7d65ZPW1O1aQ4Vo6ZY+cz8Fn4THw2PiOfNW88FKkY/5naSdyOeTSUnW1TGis3+cLaZ6XiRNx7RT+HlvG8kz3LJXqsQBvEUn63VdfY9r5VEt27Mitvw1zBnMHcoSguidut420XwoYqZSu/wurmlStXGm3fZIbF6aefblzWJHv45Fn49Jfw7UVhE7htqJV24FZcwbIndlu9FkpzgNALao1fdNFFMmnSJPOYPIRnn31WZsyYIWvWrMnJcCmOiWPjGDlWjplj5zPwWfhMBRNW0mOUSL+zY9s7l4isn+7c0+KSAZeZ7YrKCnlx3fOJHAPpbsMYoiIFmsQd81rEzg9E1z6TleIHzBXMGVoNSvHtuH00ZOK2T36Fz77R8Gh5xufTTjtN0sEtY6QOWrZsabrzEZM1cOBA59dhLPAa1+e+++67ZlBwWbkKhlpxw9t9aAduxQVc2qyacl3n9UqpkjdwnbLKzw9Jd9Qip0oNk8SiRYvMChljID9MNPzfWEIIjwRjL5Mq//PDxEVMOpXYRo8e7dToKa8hiZvKUNZrMeBc53CoR1c+bLYfX/mIXDP0OrMd6TEhkbRswqH6XliYY1n3cSKUnKUT94G1InuXiXQekbHdo0kwLNIVYUrhdtxu4xGqZBO3fUrNkpfnyp49e4wup0AG2r7JDItgAjeTBckfLtntTG42gbusrKze59pW5Lgc27dv73RM1pAIGha4dxSlIbhm5s+fb6z3ZlvKUilomKxIduYHYc+EwXhI5Rpy4lgl4zmMiyQBMonYH8ZjflyFKOKKcdwmCtofxmveEyMH74M1aEi+5r7SFd4ANMtrUy5yeIfI0odFDm4VaddwhaFTu54ugzoOkTX7Vsm7O+fL2n1rZGDHQRJp1VWiHQaL7F8tUrFD5OB6kfYDpNAw3psBl0l0yb/M4+jaZ0U6ZW7BiDmC+0ub4iku7Nu3T4YOHVrrcTYTt9HYrvvPZOJ2RgwLkjz++c9/mqQPrCkXMUYzI1bRsKgauinZLwYFz/UxLJhELUxqTHRYfHmXAKhkPEmWeFlWotSwUPIlvM8usthJx3oPmKx27dqVMAwQSgivoIHBmGnFGIYE42jQoGCb97GGCf8z+WFEMBY3tHhU8JSUiYz7uMj0H4pUV4rM+ZPI+d9u8LTwnVwz5Dr55ZyfmcdPrHpUbhv/5djfepwpUQwL47V4WyIFaFgYqJLVpqfI4a0iBzeI7F4i0jXePyRNKMvJXJFOWU6lsBO3u3SJVy/LcOK2rzfEJm6z8HTLLbdIkxsWJHncfvvtiQ/uKsasV8HF2rfPdW3YwcknhtdiW5r7uJGUwg6Hevvtt42LWw1RJd9A6CcbG8EJ0Hodjh8/XsuQgKChwQKR9XSouEqT8Z8WeeMnItEqkTl/FDnndpGShruJXzn4PfKbeb+UyupKeXr1E/K5cbdKSVFpTFATJlV9XGTHPIkOvlYixaUF6rW4XKKL/15TIarLyLS9FraCWSZWd5X85+DBgykTt/Equ+LTRTtMtSmgGFO6iduQ9vL9qFGjzKoXMb243F3xyXvwzZFI7pWhHbgVH1hFQCjt2LFDT5xSUHDdsxDDPUDDL1ZkMbRZ1OGHbX7H33gOz1WjIgN06BsLiYLD20WW/NvpZR1bdpKpfc8323uO7pHpG18325GSljU9LSqPiOxeJAUL3bjbxsvBHtoksiv9/h7bt283173PirNSuOzdu7eWt8G3x0S2K0IFE7fR9E1uWBA/axO4s9mBm+e6VnWwCdzB42EAwOWvKA3Bzd+vXz9Zt26dnixFURqHibfWbM/+dbieFqseSWyTxF3oPS3seB4ZeHniMV6LaDS9vi90g2eOKMikeMWb3bt3S9euXWsJeZ9QJbSvTzO9MIYFGh4tn27iNmQk4QB3ICLMJnC7wIfm+bjbG8ImcPt04OZLDOZZ8BjDIhsl55T8o3///sZjkYvlOhVFyUP6TRHpMTa2vfktkU2znV42sedZ0r1ND7M9Y/MbsgOPB3QcIlLWKba9Z5lEj7mXbc87Oo8Uadc/tk2+xc4FoXfFnMDcwByhKA0RjUaN9gx6t3gcNDQawvbWslq4PtDUROz4dNzmmkbDZyq0LyOGRbADN3kMLtgEbpcQJ5vA7RMOleyh6NSpk0lMpEqJorh44ohBZ2VKURQl67D6HcJrUVxULO8ZfI3Zro5Wy1Orn4jvrkgk4bWIimx7WwqVk70Wz4X2WjAnMDcUTK8VJS0OHTpktCcaNKxhYYsXueR8opPR1mhsF9DsNnE73Y7bGTUsSPaw5VzT6ZJdH3wpPjkcfGns23ahJR6SxHINh1JcGTBggJlESNRTFEXJOqfdKNI6LjgWPyhyYIvTy94z5NrENtWhMDBsdShLdNvswvbYdzpFpEO8rj+9LUI0D2QuYE5gblAUF3bv3m20p81FQ5NiKPjk56B9g4ZJrnbczqhhQZMjrB4SmnzEv0+ehQ1lcoXVBGLYUoVDKYoLVCxjMKAwgaIoStYpbSlyxqdi25Senfsnp5f1btdHzuw50WxvOrhR5m2fa7bpaSEd47Xzj+wU2V9TLbEwvRZXJB7T1yJaFVt4dIW5gDlBe1coruxK8k6gSdGmPh4vHw+Hr2GBZke7E26VicTtjBkWnKBTTjnFO4EbC8z1+Vh3uJTIpA+bZ2HDowp61UbxmohYmXLtEq8oipI2Ez4jEon3RqD0bGWsumFDXD2kJon70RU1VaUiPScltqNbZxb0FxQh78R23z62V2TzdK/XU8aeOUGTthWf/IquAaPANwwKzYv2dfFw8H7pJG5nKrwvY93iiM2yCdzUQnc1LDhpLgmyxIvh4QgaCmHzLHySwJXChgQ9LHrX3CFFUZS0aN9bZOT1sW26cRMS5cAF/S+SjvFk7ZfXvyh7j+6pKbdaEhcMOxdIlPKzBUxk0Hv412xHN7wk0RNuBTqIrkC0adK24ptf0TEg9H0NCzQv2tclZwItjaZ2DZuyiduZ6ridccOCg7IJ3K7hTTQM4QS4hif5loytK8/CxzhRChtuZmr3q9dCUZRGY+IXarZn/YqlyAZf0qK4hbxnSCyJm4Z5T6563GxHiluIlMdjp6tPiGyfJ4VMpG0vke7xJNXKCmNcuMAc0Lt3b+ekWEXZtWtX2vkVPoYIz0VTo62bKnE744bFsmXLTHKTT56Fj7GgeRZKUzBw4EDZuHGjU2lkRVGUtOk7WaTnuNj21rkim2Y5vey6YdcHwqEeqkniDoZDbXPbVz5jci0icfG16XWJHq0/JJuxf9OmTTJoUDz5W1FC9K/YHTK/wtUQSX6/hkCro9mXL1+em4bFuHHjjDVGxQSfjsU+xoLmWShNAW5MfrRhnqIouVx6tl/7/okk7o0HN8iceGO8SLs+Nd2nD26U6KHNUshEWnYS6XNu7EG0UqJrn6n3+Yz9zAE+nZKVwibaBPkVPkYIkLTNtU1IFBo+5wwLOghOnjzZeC2wglwTpHETZTPPItlw0TwLJQxDhgwxiXuu+UOKoihpceoNIq27xbaXPCRywM0YeO+w9ye2H17+YB1J3Oq1iPS7qCb3ZPsciR5KXdqXMZ+xf+jQeHUtRWmk/Ipdu3Z551egqV1Ao6PV0exod9cu4I1qWMCFF14oixcvNq6VXMmz4PmaZ6GkCw2RysrKZMOGDXoyFUVpnNKz4wOlZ6kQ5cDUvhdI55YxcfHqhmmy60h8viwfJ1IUFw/b53qXWs03IqWtJdLv4vijqETXPJXyeURhMPZriVmlsfMrdnuENvnmV3AsGBdodrR7JsmoYXHeeefJggULEi4ZVzTPQsl1KC/IitWqVau0YZ6iKI3D+E+LFMWFwpw/iZxouNx6aXGpXD3kOrNdFSWJ+7GEkJZuo2NPqqwQ2bUwiwfeTOh9jkhZfEV5zxKJ7o01+rWwSMqYz9ivJWaVXO5fsdszv8K2XkCzo91z1rCgax9WGTFbYfIsXMKnwuZZBA0dn/dTFEuvXr3M/5s3F3Z8sqIoTVB6tmKnyOIHnF527bD3SSReUrVWEnePWP4FaDgUFbNKazfNW/NkLV3AWE/VHDv2K4oL0Wj0JKGfq/kVhPplMr8i44ZFc8mzIOZN+1kovjDBsHK1cuVKNUoVRWkcgkncjqVn+7TrK5N6TTbbWw5tlllbZsT+QIM4unHDvhUSPaKl103p2TY9Y+fk4AaRnfPNJvqFsZ78OsZ+RXHl0KFDJiE6E/kVLrkPuZRfARm/Wxojz8K37CxWHMeS3M/CZx+KAn379jWlB7dt26YnRFGU7NNnkkiveCnIbe+IbIwbCR5J3I8sj3XiJpxHvRa1iUSK4k3zYlAhKlpdZcZ4xnrGfEXxYVc83yE5v8K3MV5zzK/IimFBrNa7774bKs/C1Qvhm8BNTBuxbcH9k4iFK0hRfGCgGDx4sHotFEVpotKzv3F62Tl9z5VurcrN9vRNr8nOinh4co8za6b+bbONiC54Oo8Q6TA4dhqO7JTotrdkxYoVxlthxaGiuLJ9+/Zayf5oz7Zt20rLli2z1hjP1xsC2civyIphEcyz8BHu2c6zSDYkevToITt37jTuKkXxYcCAAeb6U4+XoiiNwqkfEGlTXlN6dv+mBl9SUlQq1wy1SdxV8vjKR8x2pKyDSNfTYk86fkBk9yIpdIwnZ9BVicdVa56RI4cPSP/+/Zv0uJTmR2VlpdGWaEwL2rNbt3jp6CzkV2C4+OZX0Ek+G/kVWTEsgnkWe/fuzZk8C75kTqY9HqxHPBlcAIrie43TjZsVLUVRlKxTUharEAXRKufSs9cOfZ8URWLT/KMrH5aquHciEs+/MLuz+RcFTqTDQJEup5rt4sqDMqb8cMZjz5X8Z+fOnUZbojEBzUlYXdDQaMr8CtIUsplfAVnJSMrVPAviJQ8cOJBYoeCL1lh5JQyEQ3Ft+1Q/UxRFyUjp2blupWd7tO0pUyipyirl4W0yY/MbsT90GibSMr7CuXe5RG2viwInMvDKxHa3Ig2VVvzZFjcibHlidAJejELoX5FVwyJsngUn0tULwXMRda4eEeIkCYcKGhLJXgxFcQWvGRWilixZotePoijZp13PWEgUVOwSWXiPfxL3CpvEXSSRXmclfh/dMjPTR9ssidqeFqYUbcPdjhWl1vUTjRpNGfROoDnRnq65OuwDbZut/AqrsbOVX5E1w4I8Cyw03zwLm5TtIvSJVzt27JgcPHjQef/JHgpcR3hVCNlSFF8GDRpkrsEtW7boyVMUJftMvK1me+YvnUrPTu59tnRvExM6b26eLtsObY39gZ4WkeJAErfmG+7YGAhvbdE+w1+eku+gJaurq2uFJfmGQaFp0RUuORl28d7HsECTr1mzxuRXoNWbjWHRGP0ssP448T6hTN27dzduoCNHjpjH1KbmdxoOpYSBa3D48OGydOlS7catKEr26XOmSN8pse2di0VWv9jgS4qLiuXaoe812zTKe2zlw2Y70qKdSNdRsSedOCSy610pZBCEm9curfkFSe6K4gFasnv37om+J2hNwu/5nc8+0LYuHg60MkYIoVC++RVTpkxxDp/yJWtdX2yeBUaFT54FxoVr3LpvjkRZWZn5ApKrQ2nZWSUs1DgnlnL9+vV6EhVFyT5nfalme+YdTi+5Zsh7pTjunXhs5SNSWX0iRRJ3YYdDMYaXRY4lHkdaqGGh+JHsndi2bZvRtIROh91HfaCV2b9vfsWiRYuyll+RVcOC2C1iuMAnz8LHWMAK3Ldvn1fZ2eT9E/uG6+nw4cPO+1AUCysTI0aMkOXLl2vpYkVRss/wa0Q6DYptr35BZHvD5WLL23SXc/ueb7Z3Hdkp0za8HOjEHQ+52LdSohWFmbBM6DZjeN/yQPhTmYZCKe6gISkRWx7oX5Gcb9EQaFk0rauHwzfMyuZXLFy4MGv5FVk1LKiNSwwXtXJ9PAKcJAwR2yW7Pmg2Qst03/0H+1cQtkVuh4ZDKWHp2bOntG7d2sQtKoqiZJWiYpFJX6x5POuXTi/7wPAbE9sPLr2vpn+Dei1k9erVZgxvVxYI21aPheIBGpJch9J4+Vbbz8InDAoti6Z1aaSHRkYr+xgWwfyKbPSvyLphYfMsqJpDTBcfxAVq/3KDu/aX8A2HStW/QsOhlHRgch45cqTpxk1JY0VRlKwy5qM1OQDv3i1yqOHFtfE9zpSBHWKejnd2zJOVe5bXdOKOxEMptr0l0aqGF/XyCcbsVatWmTFcjsXK0Rs0x0IJkV+R3M+iXbt24oqPB4L9o5Vtv4yGQIOjxckJPfvss7OWX5FVwwKuuuoqmTNnjtn2bWbnaixYD4Sr4ZKqf4WPl0RRUsFKBbGOuNMVRVGySllbkfGfim1XHRd5+/dOc9/7g16L5ffHfl/aRqR8TOyXlRUiO2MhzIUCYzZjt6msczyQD0pyu6I4gHZE4ybnV/Ts2dP5/KFhkzt2ZyMMCk1+5ZU1/VqanWHxnve8x/SzIO7MpySnT38JrEGSsn06aCfvv02bNsbq02ZnSjqceuqppsSybcKoKIqSNc78Qk3DPAyLE7Fqh/Vx5eCrpQ2GhIg8u+ZpOXg83jC2ZyCJe2vhdOJmrGbMZuw2HIsbFqVtJWLPraI0AHoSDYmWDHbb9gmDQsOiZV08HKn6ZTQEGpx8YjQ52rzZGhYDBw40TcTmz58vW7dudS47a0tn4bZx9UD45Fmk6l+hXbiVdGnfvr255m1zSEVRlKzRoU/thnmERDUARsUVg2Ki4mjlEXly1ePxfQ0UaR0XKfvXSPRwvNdFHsMYzVhNPyLGbjNmxw0t7WGh+JAs8vfu3Wuup2A/C9+O3fVhtbHr/jkWNDhafNiwYTJgwABptoYFXHvttTJv3jzjKnJdyaXSTnKX7PqwvShcxVyq/hXWOMHgUJSwnHLKKaY6xObNm/UkKorSiKVnf0mh+gZf8oHhNyW2H1r+gOltcXISd/57LTZt2mTGaoSW4cRhkWg8pFrzKxRH0Iypum13D/SzaAjr4fAJg2L/LkYIoL3R4GhxNHm2ybphcc0118js2bNN/BgWkyvEprkaFsRGkoHv2i8jlYcCLwkXgYuXRFHqK1qAW5060ZqzoyhKVul1hkj/qbHtXUtFVj/f4EsGdhwkE+i6LSIbDqyX2bZ/RffxIkWxijay7W2JVtX0dMg3GJvps8VYbav41M6v0B4WihtoRrRjsEndNs/8B0rMopGpUOqC7/7R3uz/rbfeMpq82RsWEyZMMKWzqA7lk2dB50G6CpKf0RBhOmjjEWHftn+FDanSlWYlXXr37m3iJDWRW1GURvVazHBrmBf0Wjy4zCZxtxYpHxv7ZdVRke3zJF9hbGaMZqxOYPMrQHtYKI6gGVkIt96Dwyn6WTSEj4eDfaON0cg+x4ghTZWq8ePHS7M3LDhRJIq88847JnGEFucu+PaX8DUs2D+ejqAXpU+fPuYL0HAoJR0YYE4//XTTw0UTuRVFySrDrhLpPCS2vfZlkW0NV3U6p+9U6d4mtuL5xqbXZPPBTWY70vucxHOim6fnZa4YYzJjM2N0rVASm1+hXbcVR9CKaEa0o2Xr1q21+lm44BsG5bN/NDfGCPkVaHHX8Kx0yP47iMjVV19twqH4QL7N7Fyfj2HBgOFquAAXA3GWFgwZavtqdSglU4ncdLjMx8lZUZQcAaEw6T9r51o0QElRibx32PvNdlSi8vCKB812pF1fkfbxxM7DW0widz4nbNeilsdCQ6GUhkGfohmDSdQbN26sZWg0BN4HFt1dPRy+YVAcI9p71qxZRos3Bo1iWFx00UWmlNaGDRu8Qo04edTedWk61qJFC/Pl+ngtcF/xhdpVZVYvuCC4MBQlE4ncXF8aXqcoSlYZ8xGRlvEY74X3ihxsOJ/xuqHvk9J4TsXjKx+Ro5VHU3ot8gnG4loJ2wGitXIskowORUkBC9NoRuv5QksePnzYq38FmpVFbTRsQ6CFyenwMSy45tevX296taHF88awoLbvhRdeaMKhMBRItHaBroLEQbp6LXxLxuJK4jVBrwUXCfvQxFslXbi+TjvtNJPIrR25FUXJGi3aiIz/dGy7+oTIW79r8CWdW3WRiwZcYrb3H9svL657LvaHbqNNHwfDrnclemyf5AOMwYzFtRK2g2jXbcUDNCJaMeidQEv26NHDKwzKpx8Fz8XTRq6EC2htNDfaG6MCTZ03hgWQiU5GOi6ZMM3sXMBKxCrzEXF9+/Y1F4MNV+FLw5jxqWClKHVBcmDHjh1NSJSiKErWOPPzNVWd5vxB5HiFVxL3/UvvNfOgaQxnS89GqyVqq0Y1cxiDGYtrJWwHSXgsIjWGlaLUAcWI0Io2pI57x3owXDl27FhWu22zbzR3Y1WDanTD4qqrrjKVoXDj+Ih2n/4SeEY6dOjgFXpCXBtluIJlZpNzLxQlLLhIR48eba5hH2+aoiiKF+17iZweNxSO7BFZ8K8GX3Ja11EyostIs718z1KZv2NeoBN3XB5smSHRarcog1wFzcEYzFhcZ+1/67Fo0U4iRcWNenxK8yPZiMAzgJYs96gGhXFCmVrbsbs+0MDk//p220bbLl261GjwvDMsevXqJaNGjfLuws0KQ3FxsfFEuOBrFGDNcWzBvApWNHg/n0RwRakL3JaERHHta0iUoihZo1YS9y9EquMN3+oAkX3TiJsTj+9bek/s9y07inQ7PfbLEwdFdjZcaSpXYcxdsGCBqQJVVwhJNFod6LqtidtK/aANMSSC3i90J1qyyKPqko+HA01KojiL5z5N99AdGNQ+eR/NxrAAOv7NnTvXWF60PHfB9pdwXe3li2bftj+FazgUlh3WJjD4kEyjSbdKpuAa05AoRVGySs8xIgMvjG3vWSWy7PEGX3LxgMukS6uuZvvVDS/LlkObUyRxvyHNOQSKVeF6Bdzxg6Y+lkF7WCgNgDZEI1pDFe2IhmSedwWNilbFGHGBBXm0sGu3bfaN1p4zZ06jdNtuMsOCGK+3337brCD4hIVgLLj2lygrKzOuKB+vBYMOyTbBMrMaDqVkKyRK83cURckaU/67ZvvNn7B0We/TS4tL5f2n3GC2q6PV8u94wzzpMFikTXyV88BaicZ7XeRdCFRSDwv1WCgNgb4MGhFcY2jIYPdtl32gVdGsDYH2xXCpMz8oBWhscjgwLBozv6LRDQtCoSgJywqCjzeAZiA+Sd/WKHANt7JlZoPGCFZksBStoqQLqxu443HLa0iUoihZYfDFIt1Hx7Y3vyWyvuGSsfS0sKVnH13xsFScqDDzYqT32c3WaxEMgWrZsmX9Tw70sIiox0KpBzQh2jAYWpRcdrYhbKK3q4eDRW80MF4SV9DYVEHjNdwDeWtYcNKxnCh9RVMQ13ClVMK/PnAXEQO3f3+gLnUDJJeZTVWKVlHSheuMVQ2tEqUoSlZA3Ez5r5rHb/7UqfTsZYOuNNuHThyUp1c/EftD+XiR4rgo3zFXoifcQ4ybRQiUpVYPC82xUOomuaQsmhGPhU81qP379xuNSmNnF3wNF7Q1GnvevHlGc7u+rlkaFsCHpAMgHxTXjiucVNyaLj0wSHDB4+BjFFA2jJ/gMfGeWH3aOVnJRkiUz/WvKIrizKkfEOnQL7a98mmRHYsbfElyEjdhUZGSMpGeE2v6Y2yd3Sy+BMZWpxCoOFHtYaGE9DRwrdk2Ba5siid6o1Vd+2X45G9wTFz3jdltu0kNi/PPP9+cqMWLF5tugK6QCU9zD9f4dN9wqGBPCwvWJMcaLEWrKOmCW95WSNPKY4qiZJziUpGzvlTzeMbPG3zJsM6nyBk9JpjtDQfWyczNb5rtSK9AONSWN2MVlHIYxlRbCafBEKhUHosy9VgoqUELsrgdLCnr27uiurra6zUYFZSjtf0yXEBbEwZFUjmaO+8NC9xHN954o7z55pvGVeOTw5As/OujW7du5n+fZnwkxlBCzIo9Ytr4nYZDKZmGQYUYTRKrXIoSKIqieDH2YyIt48mk794jsr/hufOmER9KbN+39G7zf6R1N5FOw2O/PLpbZHfD3o+mwlbBYTXYJ9G1VtdtDYVS6gAtyHVlS8qmKjvbELZ1gtWoDUErBB/DBU2NtkZjo7V9uoA3W8MCPvzhD8vrr79uLL9g/4iG4MvDUDh69GjG8zKA1Q0SxYOvseFQthStomQKEqrwiC1fvlxPqqIomaWsrciEz9aEMc3+VYMvOafPedK7bUwkzdoyQ9buW2O2I33OTTwnuum1nP2mli1bZsZU+gZ5YT0WkWKR0tZZOTaleYMGRAsGRT5aEQPB2TMmfvkSaF0MER/DAk2Ntp4+fbrR2k1BkxgWkyZNMpnq9LTYsGGDc7gSoVBUlXKtKMWXQayZS15G8DVBw4L3a9GihXZNVjIO8ZXjx4+X1atX1yp1rCiKkhEmfkGkOF7Ocs6fRI7WX9CkuKhYPjD8g4nH98cb5knn4SKt4uEf+1blZOlZxtA1a9aYMdUldj1lVagW7SUSaRJZpOQ4hOGjBdGEYcOgKisrjSZ1fU1yv4yGQEujqdHWvG7ixHh+VCPTJHcQltrNN98sb7zxhjnRPjkMPuFQ5GXwhZDE5QrhKWTU24pSHOuAAQNk3bp1zvtQFFeIm8RzQfUGF0+coiiKM227i4z5j5omcBgXDXDN0OukdUls1f6p1U/I/mP7jdjOZa8FYydjKGOpTyw6ROlOfuJQ7IGWmlXqAA2IFrSeBjQiWpEKUa5s27bNaFLX7tm+hgthWUFvRWNXg7I0mWmOYUHGOvWAsbBcIXbS1hF2DYfyCbciHo2Qq6AhgTGD8ePynoriS79+/Yw7lVUGrUCmKEpGmfxlZsPY9qw7RSqP1fv0ti3ayXuGxDr1Hqs6Ko+tfDj2BxK74waH7JhXu5JSE8KYydjJGMpY6o02x1MaAO1HJ+tgZSY0IlrRJ4dhk0cYlO2j5tqZG9DSvG727NlGYzcVTWZYnHLKKXLqqafKW2+95ZXDwJdItSZXrwVfIi5SOhC6glXK/m0IFZ0R+XJ9qlgpiisMMlSJIhFsxYoVeuIURckcXYaKjLgutn1oq8jCext8yQ0jPiiRuDHy4LL7pLK6UiKEVPU8K/aEaJWpEJULMGYydjKGhlqh1YpQSgNgRKABbZds8nhYsEYrunLs2DGjRV09EGhQtK6r4YKGJswKo4Ico2HDhklT0aTBhB/5yEfktddeMysOPjHmPqVkKdNFkxyfngEdO3Y0rwsaL/379zfWoCZxK9mAwYPY4JUrVxp3pqIoSsaY8t8122/+jPJJ9T69X/v+cnY89Gn74W3yyvqXzHasE3dcNlB6tirWULapILGVMXPChAnhq98EPC+RFn5hVEr+g+ZLNiJYDG/btq3Rlq5s3rzZPB9t6dovwycMipB/XoemRls3JU1qWNxwww2m1i4nxMcbYPtL4JpywTccKphXYY0XEmGwVrWpmZItMGjx4r399tva30JRlMzRZ6JIv3Ni27uWxprmNcBNI2tCKe5e/C8zF0YoX9ttdOyX5CXsmNdk3xJeCkrLMma6xqw3HArl3uRMKQwwCKj6ZJO2uQ9svoUPmzwMBbQtGte1MzegodHS9IhDWxesYUHSC807yLXAY8GJdKG4uNirszZxcCTa+PTM4DUk5uzbt8881iRupTFgsGIwIURQvWOKomTFa/HGTxp8+oQeE2UY1aBEZMnuRfLO9rlmO9Jnaq0k7qbIC2NsZIxkrPQVeCdhE7ehtG3ax6bkd9I2mhBt6Ntb4sCBA879LlgIR+OidV1AO9OKYebMmXLBBRd4GSTZoMnrqpG5/uqrr5qGIz7eANtfwqW5GCXCkhOyGwK3Ku+RnMSNgWIrRilKtvItuB/oHqvJ3IqiZIShV4h0OzW2vfFNkfXTGxyLPnxqTUjFXYv/Fft9hwEi7frHfnl4iyk/25gwJjI2MkaGzqsI7u/E4ZoHalgoAeyCdHLSNtrQp6TxuniOBlq0IdC0PiVpgedzPxAG1VS9K3LKsLjuuuvMSaGWv084FKFJWHOuuRlYnLZxiCu8BuPFelKsgbJ27VrnfSiKL1zXxAwTP7xqVeNO2oqi5Cl0Cz77qzWPp/+owZdcPOBS6d46tvo5fdOrsm5/vGFe39pei8aEMZE8NMZI1xVdZ49FC/VYKDWg9YKVn9CCaEIfL1llvBG062vQtFzXaFwfwwUNjZa+9tpYRbeCNixIgLnmmmuMC4e4MuImXWCVgi/cNRyKpBka7Lk21wPiNqmJHczPGDhwoHnP48ePO+9HUXwhppPmNnTlpva1oihK2px2o0iHuLdh1bMiW9+p9+klRaVy08iaFdB7Fv9fbKPraJGyjrHt3YslWrGzUb4cxkLGxDPPPNOr23G9HFePhZLisjh+3Gi9QYMGJX6HFkQT+uT0bN682WhP10Rv3sO1JC1UVFSY8KwZM2YYowJNLYVuWACum2nTppkT6ZNkTc1quiG6lJINmyOBIYHVakNSSLDlovI5TkUJA9fa2LFjTY127aGiKEraFJeKTPmvmsdv/LjBl1w79H3SJh4i9PTqJ2X3kV0SKSqOV4iCqEQ3v571L4eQFMZCxkTGxoxhPRaR4pou5UrBQxVQtJ41ItCAdHZHE6aTo1EfaFmMZ59+LHZxHQ2dC2FQOWNYXHzxxSYZa+HChV7N8tq1a2cy9V1fgxWIQLMJ2S4QF2cTYyxYsEFjQ1GyBV45rjdqU6uXTFGUtBl7i0ib8tj2kodEdq+s9+ltW7SV9w673mwfrz4u/152f+wP9LQoiseMb51dO1chwzD2kazNWOiaAOttWJS2bbJOxUpugbZD4wW9FWhAwpp8rr99+/YZzemaL4GWRdP6eB1IIUA7k5uBls4FcsKwIH7tpptukjfffNO4dXyqN2EJcmJdRH6qhOyGINaNHhbBvIqePXuaC8yn94aihGX48OHGiKa0okuxAkVRlDopbSUy6T9j29FqkTd/2uDJumHEh6Q4EktW/ffy++Vo5RGJlLYR6XFm7AnVx0W2zMjKSWfMowQ3YyBjYSYxusEaRJpfocShbCvXHVrPgrcCLUiStCvr4oneLj1WwpSxJbmc9AHCoD74wQ96JZTnvWEBtB+fPn268Q74eC344pM9Ci5dtV1L29rXYERQYgy4sHCHcaEpSrZhFW3cuHHGTfruu++qp0xRlPSY8BmRsngzuPn/Etlff65ijzY95JKBl5nt/cf2y5OrHo+NTX3P41+zHd30ukSr3YujuIDYWrBggfFYMAZm3KNQecR0ETdoRSglDgvJ6D5rRKD90Jg+ov/EiRNGa7q+hv0TuRM0ZhqCkHze5/XXXzcaOlfIGcOCZKzy8nKzKoth4boyyxdPPJqrF4LYTFY+fHIkWrVqZXpuBN8Dy5WqPYcOBSpKKEqWYMVj0qRJxsBdtmyZnmdFUcLTsoPIhM/FtqtPiMz8RYMvuTlQevaeJf8nVdVVEmnVVaTbqNgvTxwU2T4no98KYx2Ci7EvdGft+qisqNkubZ35/SvNDjQd2g6NFzQ00IBoQVc2btxotKZrPhD6Ei3r6hFBI6OV8ebRt4IqablCzhgWrER84hOfkBdeeMFYbT6VcLAIcV0dPXo0VEK2C8TaEXJly9VSkYL8C/VaKI0Fg9pZZ51lBiC97hRFSYtJXxQpiVdWmvtnkYrd9T79lM7D5cyek8z2poMb5bWN08x2pO/5iedEN06TKOFVGYAxjrGOMc9H0HlxImBYlLTJznsozQquO7SdrTqG5kPAB/MtwuRo1AfhTGjYoDHTEBQuQiujmT/5yU/mVH5QzhgWcMstt8iiRYuM+4iavK60adNGunbt6twHg+QbXKuu4VNAQg2DW7Bc7eDBg80F51KVSlEyASsglKFdsmSJV+lkRVGUWrQtFxn38dg2eQazf9PgCfrwqf+R2L578T/N/5H2A0Q6xAVUxXaR3UvTPtGMbYxxjHWMeVlDPRZKALQcmg5tZ0GPov3QgK7s3LnTaEwMFBd4TzQsWtbHAMIrsnjxYqOdc4mcMiwIhaKnxSuvvGJ6WviEGWHpuSZxp0rIbgisQaxPDJ5g6VmamOjqsdKYMMDh9nznnXe8jGNFUZRaTP6KSFE84XP2r0WOHaz3BE3qNVkGdxxitt/duUAW7JhvtiN9L0g8J7rxlbROMuGejG2McT5iLl3DIlKSJa+I0mxAy6HpbPiSLTGL9vPxCKyN52i4NHDkPdCuPvkbaGM0MiVm6V3RrVs3ySVyyrCAz372s/Liiy+ahBSf6k3Ev/EF4U5yDYdiAKMKlStk92OFBsO0hg4dai4in2RwRUkXYipHjRplSjD6lE9WFEVJ0LG/yOkfjG0f3RsLiaoHxFUqr4V0GSnSKl7Cdv9qiR5wL8AShLGMmPHRo0ebMS7r1AqF0hyLQgYNhxGBprOg9fi9a7lYm+i9Y8cOZ0OB90C7+lzvVnMSBoVmzjVyzrCYOnWqsb5mzZplrDhiyFwg4YUv0tV7gGuLL9LHa4H1OWTIEFm5cmXCa4F1S81h38Z7ipIuJHqdcsop5l7RIgKKooTi7K8lKjuZJO7K+kN7Lx14hXSLGxGvbnhFNhxYL5FIUVKuhb/XgjFs5syZZkzr27evNApUhbJo8nZBg4ajqzaaDtB4K1asMGFRLp6H4H56eCR6J1egagg0MaFT3Cto2HPPPdf52ArWsGBFBAsMS4wvlgQVVwhv2r17t3OX4uSEbNf3sFUD7PEOGzbMhEi5GkGKkikwdFlNYZBxLV6gKIqSoNsIkeHXxrYPbhFZ8H/1npzS4lK5YUTMyxGVqNy75K7YH7qPrynZunOBRI/E5kgXGLsYw1gsYUxrLKLBHAv1WBQsaDc0HN4KG/KExsP74BOihJZcv369c3dutCqa1ec9tmzZYrSx9VbkUtJ2zhoW8JGPfESWL19uLDmfJG5bqcnVC4Flymt8kmApeYdBgtfCgtXYokULr/4bipIpTj31VHMt02BSjQtFUbw55+s122/8RKSq/sW2953yfmkdF+JPrnpM9h7dI5HiUon0tqunUYlues3prRmzGLsYw0aOHNm4X56GQinx5OmysrJa4UhoPLSeT9M5tGSrVq0SXo+GQKuiWXlvV4jK4XV4U/7f//t/Ofn95aRhQcLW9ddfb5K46Szo04kbS9E2DQmTkO0Cr9mzZ08itp39YOmuWrVKOyMrjQ7X39ixY03CGR04tUqZoihe9J4gMvDC2Pbe1SJLHqr36e1atJdrhr7XbB+rOiYPLX8gvp8pIkUtYttbZ0vUdrWuA8YqxizGLsawRl99rRUKpcnbhQj9INBuQW8FidFoPN8Ss2jJQY6J3rYZtM97oIXRxGjj97///dkvbpBPhgXg4nnppZdMfV+fqkucaHIeXBvgEcuZnJDdEHgnCInCYgyWsLVuKkVpKuOCGFE1LhRF8eac22u2p/8AxVXv028aebMUR2Kx5w8uu1+OVh6VSGkbkZ4TY0+oPi6yZUa9RgWeCsasrHTVdiFo+GgoVEFiI1aCpWHxVhCehNZzBQ2JluzjmOhtG+h16tTJ+T0wXNDEFDjKxaTtnDcsaIqDJffGG284eyDCNMBLlZDtAq+hApXN5yDxJsx+FCVTcA0yQWNYq3GhKIoXA88X6RNrgCc7Foksf7zep/dq21su7H+J2SYU6pk1T5rtSJ+piWTw6ObpEq2urNNTgbBqMqMi6LGIlIgUZaGzt5LToNXQbHgrbPI0mg5tF+xl4bIfFprRgMWOJWZ9GugBGpieGtOnTzfvQzf6XCVnDQsGmttuu02efvpp89gnf8G3AV5yQrYLxNFhmQZzLUg8Y8B0LXmrKJmGwfGMM85Q40JRFD8Q9+d+s+bxa99DAdX7kptP/Uhi++7F/yfV0WqJtOoq0vX02C+PHxDZMS+lUcECCGOVazWcrGCTt0tb52QSrJJd0GpoxWAVMjQd2s6n27tN9HbtnL3Ts4FeUAM/88wzRhvn8vWas4YF3HTTTSbW7d133/XKg7AN8FxDqEjIxssRNBJcwGrEjWZ7YfC+WLnqtVBywbhgNVATuhVFcWbo5SI9z4htb3tHZOUz9T59ZNdT5YweE8z2hgPrZPrGWMJ27dKz0xJzt03UZmxqcqMimLytzfEKjlTlZNFyaLpgLwsXbKI3WtIFtKlrAz17rOSBLFiwwOT23njjjZLL5LRhgcX4iU98Qp5//nmzyuHTZZgvmee7Jn4nJ2S7wOBIveJg5SouFltCTFGaOiyqQ4cOalwoiuLhtfgfL69FyoZ57QeItIuv3h7eKrJ3RcKoYExibGpqoyJaXRXLAwHNryg40GhEqgRLvSLe0XR401zxTfQ+cOCA0aauJWmBhnt4ONDCaGIfb0pTkNOGBZCgQgMwXFY+HgXKyBKa5Poayn0lJ2S7gGVL3WJbiSes90NRsmVckBxGXKY20VMUpUFOuVqkPB7KtHm2yJqX6n365N5ny8AOMVH1zo55smjnuyZMI+i1qFz3khmDGItywagwVAX6/pS0bMojUZoAtB5azXoZ0HCEG4XxVqAdXRO9V65cabQpGtUVDB40MFo4l5O2LTlwd9cP1uRll11mKkRhYRLH5hOqRJUm19ckJ2S7QJk8ahYHw66wXDlWH++HomSzWlTPnj1NIQS9JhVFqRdEfy2vxXfr9VoURYrk5oDX4i7rtSDPomWsHGbxgZUyoLxl05SUrYvKgGFR7N5HQGn+MA8mexnQcGg5NJ0rNtHbtanj4cOHjSb1aQLJa9CTaOArrrjCOY+jKcl5wwJIVMEFRFa8T+nZNm3amOQYrD2fhGzX51uwcMnwt5Wr8H74eEsUJZswkZ922mlmMCMUwSekUFGUAmTk+0S6johtb3hDZF39ze4uH3SldGkZawo2bcPLsunARokUFcuhDuMSzxncZk/uGBVQFYsyMBSrx6KQsF4G25jOassw3gqfRO9Vq1YZTYo2dYXj4viee+45o4WbA83CsLjgggukvLzciCLCjnxKz3Kh4N5y7UiM+KKkF7WCXcHKJSZv3bp1td4XS1ZXiJVcgWv79NNPl9mzZ3t1m1cUpcAoKhY59xs1j1//Xr1Pb1HcQm4Y8SGzTWWoe5feZcaYmavjOQxwYK3kFEHDokQ9FoUCmizZy4B2o5+Ka8fsMIneR48e9Q61QuuieYk2IPfj/PNrwgtzmWZhWLDK8aUvfUkee+wxqaqqqiXgG4KLpVu3brUSrF0Ssn28FhzfsGHDzHtwfIAFS/ze0qVLnfejKNkGT9qECRPknXfe8fL+KYpSYJx6g0jnuPha+4rIhrqb3cH7TvmAtIxXV3p8xSPy5tw3ZMyEKSKUn4WDm1L2tMgNj4UaFoXCkiVLjDazXobKykqj3YKdt13gNT6J3qtXrzYL5GhSV4iEQVM+/vjj8p//+Z+55fFr7oYFfOQjHzGxZnPnzjXuJyvgXUD0Y4y4ejqSE7Jd6N69u0nGCYo19kMcn4aeKLkE1+rkyZNl+fLlxvDVho6KopxEcUntbtwNeC06lHWQa4ZcZ7aPVR+THeXbzFiTqA4VrRQ5tCUnDYuIGhYFAVoMj0XQa4B4R7uZa9URtCEa0dX7cPz4cfM+Pt4KNC4L3HPmzDHaFw3cXGg2hgVfPF6LRx55xFiYPg3zOnfubErcua7QkrzDa3xWdLEkR44caYweLiKgSgAXEhayijcll+D6Pvvss01X+/nz50t1dXVTH5KiKLnGqJtFOsbLca56TmTz23U+lTFkdHScROJdt1/Y/Kz5P9I+kGx6cL3kDJq8XVCgwdBihEDZCk5oNTQb2s3HG+Cb6L127dqErnQFwwXjAs375S9/2auKVFPTbAwL+MxnPmOE0KJFi8xqq48YQuBzMWCUuHo5ggnZLuDmwoAJJm1TdYB8ja1btzrvR1EaA8L+zjnnHLOCQxk7axAriqIYiktFzv5a7b4WKWDsmDlzppQeaSFjy2MN9rYc2mx+JGBYRA/kkGFRFRjvNHk770GDkecQrASFVkPwo91c8U30rqysNM9HU7qCtqUc7sKFC03OL9q3OdGsDAti077whS+YXAu+XMp2ucKFQ0ydq6cjVUK2C1i+GCQ2+bukpESGDx9uQk50VVjJNbgn8FzQAfT11193biipKEqBMOY/RNr3iW2veFJk6/xaf2bMYOxgrmMsObPXxMTf5m57W6Rtb5FISfzJuWRYBMvNuvUgUJonaC+8Faeccoq5TgGNhlZDs/mAJmRRzjXRe/369WaeJdfXFZLC0biPPvqo3Hrrreb9mhPNyrAAym3hsSD2bNmyZc4hRri5sDB5nYvAt88PJmS7QAMgYvXwqAQTZjlOn/AtRWksaBB05plnSu/evU0Tq23btunJVxSlpmLSlK/WnI3Xv5/YZKxgzGDsYAxhLDmjx4RahkWkqESkXe/YL47slOgJ915U2SRaqypU8wkzUfyx2gstZkGjodV8+lagBdGEeB9cQqeqq6u9E8PRihwb3pTFixc3mxKzzdqwwOr7+Mc/brLksTgpG+YK9YPp+IlryQUy/qlz7Ou1GDFihAnZso32eE9+x8XiGoqlKI0Jgx7X6JgxY0yyGIOa5gUpimIY9zGRtj1i20sfluj2RWaMYKxgzGDssMLp1K6nS1k8GXrutjmx19gEbjiQIwtsWhWqIEBzsQiNZ8J2fEebodG4bn1AC6IJXRO9N23aZN4T7ekKmhZti8b9xCc+IV27xquqNSOanWEBX/nKV0w8J19aGK+Fq2iyYotYN59cC0KosIw5NgsXFhckrjdFyVVYeSScgZjQefPmeXnrFEXJU0pbiUz+r8TD3U/dbuYyxgrGjOSeFqO6jTHbWw9vMXkWkfYDAnkWfgt1WUMNi4KA65RQpJ49eyZ+R2g6Gs21VCygAdGCQSO6PqLRqNGavt4Kjg2jh7xHtG5zpFkaFlwQN954ozzxxBMmvpN2567QJREL1jWZGsuUi8+1D4YFVxmW5969e+usGqUouQiu4alTp5oGQDTm8WkWqShKnnLGJyVa1sFsdt78vJx7xvA6w0jO6DG+dp5FLlaGqtQ+FvlOqqpPaLIdO3Z4JVMDGhAt6Oqt2Lp1q9Gaffv2dX4PtCzeFLTtTTfd5PXaXKJZGhbw9a9/XV555RVTlzjoGWgIklQHDx7s5bXgoiQ3w6evBRYy1QeCpWZJIGcgDlaNUpRchNJ29LqgYMJrr70mu3btaupDUhSlCdl18Kis63yh2S6qPi4tVz1e53OT8yykZWeR0vjq8IENuRFmqR6LvMdWfbKJ07bkLNrMNshzgWpSaMBTTz3V2VuxYsUKU9rWhl+5gJbF6Jk2bZrRuM2VZmtYUGnpiiuukKeffto0oaNkpisDBgwwDUdcG9eR/c+FGUzIdgEX2P79+2u9T3LVKEXJVTDCiZ+mkgZuWa7/nBAEiqI0GjaZlDGgdMInav6w5OE6X5OcZ2HEmPVaVFaYJO4mRw2LvCZV1Se0GJrMp1EdYCSgAV37UOzcudN4/Pv3D3jqGgANi5Z95pln5MorrzTzbnOl2RoW8I1vfEOeffZZEw7lI/opN4bXwic/g7g6yoZhkLhChYzkBnlYz8lVoxQlV0EQDBw4MNFMb8aMGWb1RlGU/Id7nXuee5+eN33GXirSJS541r8ucih18ZTUeRbBBO71uVNutqhUIkXFTX00SoZBY1GAx4brWW8FIVBoM1fQfGg/10TvaDRqtCUa05a2dYHXoGXRtGjb5kyzNizGjx9vwjWee+45k89w6NAh59fypXPBuJbWJCSEJDWfsCvA5UYIVbDnRnLVKEVpLnkXhEi9+uqrxl2rKEr+wj3Ovc49z71P81fB8zDyffFnREWWPVbn60/Ks2iXY43yrMci7llR8gdb9YnIlmBvCLQYC2U+oPnQfmhAF7Zt22a8FWhMn+PlfsOomDJlipxxRqzJZHOlWRsWgGX35JNPmi/S12uBq4kMfFevBRcpBgKuNJ9wkuQGebZqFL9TlOYCqzzjxo0zhvFbb72lTR8VJY+biXGPc69zz9da4R15fc32kofc8yza00MgkjsJ3LbzthoWeUdy1SeuaQwEtBiazBW0HknYQQPF5d4ZNmyYl7eCUCs0LFq2uXsr8sKwOP/8882X+PLLLxuL1Cd3gVwLymli2brQunVrY+36GgRk9hNSgjvNglFDHJ6u/CrNCa5j4kbPPfdcM+C++eabmi+kKHkC8yf3NKuu3OPc6yclq/YYI9JpUGx77TSRit1ueRYlrURal8f+eGizRK2wbyqq4yXki9zDYpTcB02FtgrmKKC9uI59qyxhJKAT0X4uoCWrq6vNa3zuObTrSy+9ZAyY8847T5o7zd6w4GL5n//5H3nsscdMaS+fiktk6/NFYsm61usnZ4KSYD5VclI1yMO9zHsvXLjQqRO4ouQSuIURHu3atTMVLIKhfoqiND+4h7mXuae5t+sM/cDQGBEPh4pWiSx73DnPIpHAHa02xkWTUh1vVktncCUvQMe9++67Rm+hsQDNhfbidz4VmtB4JFO7Jnrz3mHeZ+XKleYYaYiHlnXteZHLNHvDAt7znveY7oTEg9IZ0Se5lL4WuHldG9fR5I4SYsGEbBdoztKmTZta4Vp4P7gAfXtkKEougKuXqlGjRo2S+fPny9y5c7VHi6I0w1r/dNDmHh49erS5pxsM43AOh6qdZ5ErCdxRDBuMIlCPRd6AliLUKegxQHOhvYIN8hrCJnqj9dB8LqAhW7RocVLDyPpAq6JZ0a5o2KuuukrygbwwLBDn3/zmN+XBBx803RF9Eqxtnwqf7tok5RAP55r4bd8HAUZHY5u0zXHzOy58LT+rNFcwzi+44AKz6kJvGdfmk4qiNC3cq9yzrLZyDzuLot4TRNrHw0rWvCRyZJ9bnkWuJHBbbwWoxyIvQEOh49BU1mOA1kJz8TsfTwD3hU8Ctm9Xbgth9bwW7YqG9fF05DL58SlETCdu6gy/8MILsmHDBq+ysDSuw+1LAxQXWM0hrwOL1ieMiaoaWNKEP1lvBz0ysKQXLVrkvB9FyTVwO5955pmmgdA777yj3gtFyXEvBR5G7lXuWe5dGzriRLA6FLkKK550yrOQNj1FilrE/nhgnTR5fgWoxyIvQEP16tXLaCpAYxEWheYyFc0cQdMh+MnRcE3AJpyJ90BLukIVU3Iynn/+efM6NGy+kDeGBZbeT37yE3nggQeMpbl48WJvrwVuNNcwKi5WLkDXxG8LeRXUKg7GpDOwk3CkidxKc8Ymx6n3QlFy30uBh5F71RYX8aZWONTDTnkWWyu2ibSLezqO7ZXo8SYqua4ei7zC6qdgMzw0Fh4L14pOFjQdRolrczs0I14RX2/FkiVLzAI43gq0a754KyB/PomIXH755XL66aebkl2EKfl046ajIlaja8lam5Dtk/gN5HNw8WNdayK3ks/eC65z9V4oSp54KZLpc5ZI23jc+qrnRI4ddOtnkQt5FuqxyBtY4CUKBAMimLCNxuI692mGh5azZWldhT6aEe3o2pUb0KZo1KeeesqEaV122WWST+SVYYG1+LOf/UweffRR2bt3r3d4EYYCYVSujfaIRyWxB2vVB1aIKF+midxKvsK9SB1xykETQ8oK6aZNm7wKHiiKkj7cc9x73IPci9yTob0UQRBeI95b02xu5TNOeRbBBO7oAbeiKRlHPRZ5A5EmGAHBxndoKzQW+X8+oOXQdK65RmhFNKNrV24L2pSKU2jVn/70p3lRCSpvDQuYNGmSXHzxxeYL44ujnrErlNnjQnRN/uZiwCImacenEpVN5KaKQDCRG2+LJnIr+USrVq1k4sSJctppp5nBlBr5hAIqipJ9uNe457j3uAe5F7knM0aiC3fd1aFOyrNoH+h8vL+pDAvNsciXhG00UyYStm3yN5rO9XVoRTQj2tGVnTt3Gm36yCOPyCWXXGI0a76Rd4YF/PjHP5bnnnvOxJIyoPqskuIC8wmjImEcN5hPTgeQ6MOKbjCRm3Jjmsit5BsM0gy+F154oXTs2FFee+01c1+6VmFTFMUP7i3uMe61Tp06mXuPezDjK6P9zhFp3S22jcfieEXDeRYnDoq0jCXYysGNEg16DxoL9VjkBVzjaKZ0E7ZtzkP37t2NpvMJZ/LJ4YhGo0bzoU0pNPSjH/1I8pG8NCxwS33wgx80STG4qnzKX7Kag0uNi8wVVoJ4D5+mefY4WVEKHp9N5PbxtChKc4BYV+6VqVOnyv79++Xll19OJMopipI+3EvcU9xb3GPca75x5l4Ul4gMvza2faIilmvhkmfRYWCN5+DgJml01GORNwnbXN/pJmyj3dBhwX01BBoRrejjAdy6datJ2KbI0Ic+9CHvEKrmQl4aFvCd73xHZsyYYeLvsGp9ysLSaZEcDVdxz4VFaTIsZZ/3sYncWLDJidy++1KU5gKlnSdPnmyMDDx9Gh6lKJkLe0LwcG9xj9XZPTuTODTLOznPIhAO1RR5FgGPRUT7WORVwjaayseQZl/oLTScq5GANsRj4dqV274Px0dbg5kzZxqNmq/krWFBctpnP/tZue++++TYsWMmwcYVuidywfh016aRCs917eAdPE6SjIjts2AF47LWjtxKIYRHEapByAYTBZVrFEVxh3uGe8eGPVFCNithT3Ux8HyRlp1i2yueEjlxtOE8C+uxwMvSFHkW6rHI24RtNJUPaDa0m2szvGBXbrSiKxs2bDBaFE36uc99zjuxvDmRt4YF3H777Sa5hkGXhic+ZWEHDRpkErKppuGC7aLN+4VJ5OZG0Y7cSqHByhLuZ0I2CFt88cUXzQRhPXiKoqSGe4R7hXuGeyfrYU91UVwqMvya2DZ9Kda82GCexZZolUhxvNTt/jWNHw6pORbNPmGbYjfpJmyj1dBsweTvhkAT8jo0os+9umTJEuMZ4djRpvlMXhsWJPT893//t9x1110mmc3HA0DHRRuq4Zpkmk4iN81YUiVycyFqDLqS7xCycdZZZ5mqNSTEvfTSS2YlScMBFaU23BPcG9wj27dvN/cM906jhD2lFQ5Vk2cxx3gtBsQenDgkcsQvPzFt1GPRLLHJ2WgjNJL9HdopTMI2Ws0nYRstyGvQhq5duQGjB+Pinnvuka9+9atePS+aI3ltWMAXv/hFU9pr9uzZJtzIJ9SC9vCUEXMtP5vpRG72Ra6Hq9dEUZo7TBbnnnuuWUFiMNb+F4pycj8Kuzp7zjnnJARWkzLoIpGyuGGz/AmRypPn2fE9Jya23946SyLtBzVdnkUtj0Vx4763EhqufzQR3opgwjbaqTESttGCaEK0oSvHjx832nPWrFlGi6JJ8528NyzatGljkmTuvvtuYzGuXLnS+bW41LiA161b51x7PxOJ3NZDQqMWJg9+5xNepSjNGe47Bm4aeZHrxAoR8eNUAFHvnVJocM1z7XMPcC9wT3BvcI/kTGOtkjKRYe+JbR/dJ7L2lZOeclrX06R1SWuz/fbW2RJtP6Dp8iwIxbJE1LBoLiFQaKHRo0cnchtsWeXGSNimyhpa0DfcasWKFQlvBVqUPJB8J+8NC/jYxz5mLrpp06aZcCguUFdwLxNL5xOSlE4iN9ZwsGM4kwfhVQsWLFBRpRQUxLwSInjRRReZTqhz5swxld6oyKEGhpLvcI1zrXPNc+1zD3AvcE+4xoM3KsFmeUsfPunPJUWlMi4eDrX76G5ZHWUBLf45Gt2wCCz6RXLwXCon3QtoIMKWCIOyoJXQTI2RsI0GRAv6NMM7cuSI8S6iPdGgt9xyixQCBXFH8YX+8Ic/TFSIIpHbh2HDhpnawz6J3Hg6wiRyjxkzxrj2iJ21YCFrSJRSqBQXF5tVWkQVsalvv/22TJ8+3bix1cBQ8g2uaa7t119/3Vzr5ApefPHF5h7gXshZhlwmUtomtr30UZGqkwswTOgRCIfaPk+kXe/Yg4ptEj1xuNEOVQ2L5gW9WSjvGgyBQiOhldBMjZGwXVFRYbSgD0uXLjWhUPfee69phtfohRWaiIIwLOD666835b2effZZc5G4dtYOVq7xSeTGyxAmkRs3Ge81f/78xHvh9sP9hxvQx9uiKPkE9wG5SIgsPHmsYLESxKSjSd5Kc4drmGuZa5prGw8F1zqx481CkJS2Ehl2ZWz7yG6R9a+f9JSJvSYltgmHklr9LNZJ03gscthYU4zmwTORHAKFRkIr+YYWocnQZmEStn3uw3379hmt+cwzzxiPChq0UCgYwwLL9M477zQdD3Evc1H6rHYyyOMCo1RYthO5cXUnh0Th/sMNqCFRSqHD4E4NcUQXrmnuSToN4972KSmtKLkA1yzhElR54lrmmuba5hpvFgZFkBHvq7c61OCOQ6Vzy1hFnHnb50hVu35Nk2ehoVB5EQKFVgqTsI02y2bCdjQalXfeecdoTTTnr371q9zJh2oECsawAKrNXHPNNSaRm7rHPk3zbCI34sU3kRtPg8+Kal0hUbw/VjCrWopS6BAWQolBGoLhySCxjpr+vtXfFKUpsNViuGbXr19vElC5lrmmczrkqT6GXiFSEu9PsfQRkeqqk+a28fFwqMMnDsviqkCocCMaFtFahkXhCL58CoEaO3asl1gPk7CN1mNe4f193mvDhg2mtwxa89prrzXV2wqJgjIs4I477pC5c+caKxir10eAkMhNp0ffRG5bd9wH3HtY1alCojhuDYlSlBpvJGGO5513nplsqKDzwgsvmHvHdRFAURoLrkmuTa5RrlWuWa5druGcTMr2oaxtLNcCDm8X2TjjpKecGQiHmrNrkUjcgyEHN0g0WAY2m2goVLMJgWKRNTkECm3kahxkImHbp0fM8ePHzXGjMdGaaM5Co5mPYv7gTvv2t78tf/3rX00iN90QfcDaJZF78+bNXh25SeLhdT7069fPXNAaEqUoDcOKEi7zs88+2/wwMVCi84033jArXJqHoTQVXHtcg1yLJGVzbdrrlGs2r8IkGmiWd2agn8VbwTwLmtYd2tQE5WYLTgY1qxCoHj16JH5P9AeaCG3kA9oLDeabsM3rfBO2lyxZYrTlX/7yF1NeNnj8hUJB3lFf+MIXjEeApBpcVtQn9k3kRuz7dOQmeYeYO5+8Dg2JUpRwdOzY0awEX3rppWZyIvmOFWImF6p7KEpjwLXGNce1Z7v8XnLJJeba5BrNS4ZdJVJUGgiHqh0G3Kttb+nTLlYe9N2d8+Vo216NHw5Vax4uSBnU7EKgtm3bZvIjfKtA2XwHNJhvwjZazzdhe8OGDUZbtm3b1mjNQqQg7ygulD/84Q+m/CzJPL6CP0wiN/GzTDK+IVG4+1KFRHFzaUiUotQP94otVYuYIwyFJFm6oDJJqRdDyTRcU1xbXGNca1xzXHtcg1yLNqwjb2nZQWTwJbHtA5tENs8+6SkT4l6LyupKmX/8cOMncKvHIucb4QVDoAgvwoMRNgSKffp02EbbofHQeq6gIdFpO3fuNNoSjVlSUiKFSEEaFjB16lS5+uqrGy2RG2OGyQU3WdiQKG42C+41rRKlKO73LPfLxIkTTcUdVou5n55//nkzYe3Zs0d7YiihQVRwDXEtcU1xbXGNca1xzeVduJNPONTif9cbDvX2vpUixfGE7/2xOPiso1WhchIrzglZD4YQsYgaNgQKzYWR4iry0XRouzAJ22jJu+++2xQJolhQoVKwhgWQVEMDIhJ0fEKbwiZypxsSxSoY7kCLVolSFH9Y8aI3AKJvwoQJ5l60q8uErTA5KIoLXCtcM9YLxrXENWX7T/iuruYNw6+pCYda/OBJ4VDBRnmxPIsBsQcnDooc3Z3941PDIidBnCPsg+VgGzMEShO2M0NBGxbUJbaJ3LjafJvZkchNSTHXjtyAOw63XDohUbaSlQ2JYnXM1wuiKIUOk1TXrl3NPUQuBvcmQvHVV181Sd+rV682XVoVJQjXBNcG1wk/XDOMzVxDXEtcUwXlnUhFq04iQy6NbR/cfFJ1qI4tO8mwzsPN9oo9y2R/6/KaP+5f0wgHGCw3W9AyKGdAwyQ3wkPrhK0CRW8Y3xCodBO20ZLf/va3a/XcKEQK/o669dZbzQUbNpGbKgPcDK4CBHcck0/YkKgOHTrUqhKFu5Dfz5kzR+PFFSUk9A1goeHMM8+Uyy67zPQSYKWMpNs333zTCEk13gsXvnuuAa4FrgmuDTzWXCtcMwiJZtt7IlucekPN9uIHTvrzxJ6xsrNRicqc4zVewui+RjAs1GORc00iiR5ByyRXgSKk0DcEigVfPImEn7uGQKHheD8iQXwSttGMNmG7TZs2BZuwHaTgDYtgIvfu3bu9w5QQI6xQNXZIFD/BxHD241s6V1GU1GMCHV2nTJliQloQjTRlorv3K6+8Yu4zzckojJwJvmu+c757rgGuBa4Jrg2ukWbXGbsxOeVqkeKymrKzSc3ybAI3vE3SdiRumO1flf1jU8Mip7DaBS1jsaHfeDB8Q6DwcmCMoM1cX0N+VHl5eagO2xQBsgnbpTomqGFhE7nf8573hErkBrwWGCWuvS2CIVG463zAu8KNxsVsm+SxUjZ+/HjTvTVocCiKkh7cbzRImjx5slx++eUm/JH7jnh6knS5D7nnKisbqbGXkjX4Dvku+U75bvmO+a75zvnuuQa4Fgo2b8KXlu1Fhl4e2z60TWT967X+PLZ8nJQUxVaT3972tkj7/rE/HNkl0WPukQPpU+Bha00M9xyai9wk6/Wjgib3IVonbAhU0EhxCYHau3dvrfK2LmjCdmoKsxZWHYncTCB4HmiggtXqanmWlZWZGwArGQu5Zct4hYt6wD2Hm47Ji4oh1Dx2hQ6tlDQj/ImVM46X11uDg3Ap+nQoipI5GA8oP8gPJUVZ0WZFjdwsJrIuXbqY+58f3PfNvotynsN3SN15Vhv5YXEIEUMoBgs1nTt31u8wE+FQyx6rSeIeeH7iT61KW8uobqNl3va5svHgBtlc1kkSxT33rxYpH5f22yu5TdCAIIzI3pd0rEaDoXXChEBNmjTJOwSKaBC0nCsU+yEsHc1IGNeKFSu8jjWf0ZmvjkRu37AiXo8bDXeaa3gTAgR3HQaJb4k9LGsu7GXLliV+x03IcXBTan1+RckeGA3cvyQVXnjhhXLeeecZQYpQnT17tom3nTFjhplsMED0fmx6rDHId8J3w3fEd8V3xnfHd8h3yXfKd6uGYYaa5ZXEV5yXPCxSVduzd2bPsxLbbx3b17h5FjXv1ojvpVjqMiDQNGibYGUon7CkxgiBAhaU0Iq2w3ahJ2wHUcOijkRuwop8Ermt2Med5lMlCnddmJAorHFW1Xjdjh07Er/nZkw2OBRFyR7E/9JMiTAZm/xNDfO6DA1Wx31KWyvh4BxzrusyJPiObPI13x3fYcFXc8o0ZW1Fhl0Z267YKbJuWq0/n9V7SmJ79t5VNZJkXyPkWShNijUgguFHaBk0DdrGt7kcr6MyU2OEQNmE7aefftpEh2jCdm00FCop1OH3v/+9XHXVVXLWWWcZa5pVLNeVK9xo5FvggSBBO9shUfTS4IaYN2+eOU7ezxocr7/+urHascQVRWk8EKfcm/wgWFkVI3fLhtxQahr3O65/QqbsDyGMmvgXDgQKBgMTPv/zQyUnxsROnToZQ4JFFzUemigciuRtWPSAyOCLE38a3nmEdCjrIPuP7Ze3t78tlUPfKyWHNolUbJPo8UMSaeE+HyrNB2tAkN9q8yoYE9FcaBrGzlwNgbKeFpuwzYKFjtu1iUQbpc1l8+Lmm2+WVatWye23327yLvjxgdwHyqexEua6AkacHpPi2Wef7V0BAcOCm4TkQvtaPC7caNbgUBQld+B+DYpgtvFcWmMDI4MfFhrwoupKes14x3lCSHDO7DnEiOA8cc6ChpqOfTnA8QqRn5WLnDgs0rKTyFe2iZTE+hTA11/7iry47nmz/dfTPymjDqw225FTb5FIt1FZOaTqpfeIbH879j5nfl0irbtn5X2U1GPftGnTTAEbW0aW+xqvIvfruHHjvDXQG2+8Ye55V88Dr3nrrbcShW98PS14QX/4wx/K0KFD5a677vJ6fSGgHosU/PrXv5YRI0aY5kdA7JyPBY3XghKFuNkoK+sC7jvej1rpQ4YMcX4vbkDej4ZeXOzWCOKGxaLGsg4aHIqiND1MoPzgpbTgxreGBu55FgdIbuTexeDAyLD/2x8aSeXbvc2kT+wyxoP9wXCw//N3wg8YkzEeGGMRFT6rjkoj0qJ1rPTsovtEju4VWftyTbUo+ln0mpwwLN46ulusKRHdvzprhoXSNHDvokmIpAhqI7QLCwY+i7EWNBNjJ5rNNwTqggsu8HovuoJzrBhG69atk2effdbr9YWCGhYpoBoISdwf+tCHjPscD4RPSBSTva3Q5BMShaWO1U51Gdz3ruCGw+rGareVaeoyOBRFyU0QxhgaQWMDtzvGRVBcMynyPyt/jBsYG9ZQ4Yf9JD/OlURkPg8igGO3P8mP+ZyUfuXYrQHFuMZiCdsYFbnyeRRHTv1AzLCw4VABw2JSIIF71t6V8vE2hO9GRfbFPBdK/mANiIkTJyYMCBZAV65cKeecc453SBHGAR4EFk9dQ6B4f0KgCEG3Hb5dxy6qP3G86EPCoHx0WiGhhkUd0Nfi6quvlj//+c8mJIobYvjw4c4nFi/Hli1bTMUBVyscgwYDwBoyPjcZK3Z4PWxeCGKC11Mbevr06QmDQ1GU5oMtJZ0q9wrxjQjnxwp0Jk0mW/uYH2ACtTlYyT+EAyT/jve1Y1by2GWjZ/mfyZbjCP4QBpr8O344JjwRwPiUbADhgeB/DCV+fJM3lRxmyGUiZe1Fjh2IlZ+tPCZSEvMw9WjbUwZ0GCjr9q+VxbsXy8EuI6Td0V0ihzZLtPKIRGxVqWyhweCNQtCAsPc24xOahbAovI++eVVoJTQT2smnChSLN75VnNCAjLV/+tOf5NprrzW5uEpqdOSuh9/85jfGvYbbCyhH5hMSRbyfb0gUYVDcgCSA44XwcQsOHDjQvJacC5KYeC03Kzdt0OBQFKX5w+RsczFcPAT8n0rwI/YxSIK/s+VxmYjtDzCm2B/AAEllpJDvkGysWEMilzwoSiNR2lLklGtE3r1LhOZ3q54XGX514s9n9ZpiDIuqaJXMEZFYt4uoCB25u7hX+VFyE8YejICgAWHzQ1n1HzBggNf+bHdtFlx8Qsc3btxoQk19Q6DI5bIhUFSDeu6557xeX2ioYVEPXPB/+9vf5MYbbzQhUbjBzj///FAhUXgLXDpIMmETEmVj+DAWXOG1uPeSczW4aZMNDkVR8h/GKsYd7RatNDmn3RAzLGDxA7UMi4m9zpL7lt5ttmdX7JTziyI1eRbZMCx0Dmw0rAFB1ETQgKBADiGdLHj6ahK0ET1pfF7L4gkN7cKEQGEU0ZSYEKgHHnhAQ6AaQJeNGuDKK6+U6667zri/cIP5dlfE3YbbzadxHit6eCtowOLbS4PwpzPOOMPEHXLjATceJdU4fipFKYqiKEqjMuhikZYdY9vLnxA5cSTxpzO6j5eSotg656w9S2vmykbJs9BYqGyC5kB7oEGsEYA2Wb58udE5vnkVaCK0ETrHNQIjUyFQ733ve+WKK67wen0hooaFY5UoXGiENXGRhWmch/uNfbiChwOPA14SQhN8IN6QfBCsbBvTzM1LwhQ19H0a+CmKoihK2lBidvh1se3jh0RW1lTUaVXaWsaUjzPbWw5vlU0lrWN/OLhBolWxOUxpfqB58C6gPawBgSZBm6BRfJOf0UJoIsq8+uSM2hCoMI3w0Hw2pP1Xv/qV1+sLFTUsHBOjCYnCDUZjF24KG4PsAm43rHUqEeD6c4WkJEIY6HHhy+DBg00+CC5Iu/pDcyhWCIhNJMFTURRFURo1HMpCOFSASb1qqkPNro4vpkWrRQ6sa7TDUzIHGgMvAZoD7REMi0KboFF8sF4HNNGwYcOcX4fmClsFCq2H5kP7oQHRgkrDqGHhCO6v973vfaZKVJiQKDq/9u/fP9E8zwWbb7F9+3aTMOSDfa3tSGnBFchKAc1hSOhUFEVRlEZh4AUirbrEtlc8JXL8cOJPk3pNSWzPrtie2I5q2dlmB/kMaAy0Bj0rLGgRNIlvEzzrdUDkEwLl+lq0Fh4OtFewjLcLhGqh9dB8119/vVx+eU2JZKV+1LDwADcY7rCwIVGUg+WGID7QFaxzbiS8FgcPHvR6P6zzVOFPrBTQX4Mb39XIURRFUZS0KC4VGfHe2PaJCpHlTyb+NKzzKdKpZaxs6Jw9y6USbwXsW5Vd6eOY+6i4gaZAW6Axgl4JNAhaBE3i4zmwjenQQGghl75gFrQWBSzQXj6g7SiN+/LLL5vjvvPOO71eX+ioYdGIIVFc4LgFsbzpceEKFv+gQYOM5e1rCATDn4gxBIwbqlUBv3dNKlcURVGUtDj9pppt2zSP+TFSJBN7TjLbhysrZKGdlg6sl2jVicye9GBlx6gurmUKWwbWagzrWSAsypbQt2FRPnkVaC00UND70RBoLLQW7+lT3joYAoXe0xAof9Sw8AR3GG4xGxKFu8wHGj8R68dNxutdwaVI8hOxgr7gAiRfY/bs2YnwJ+rN07iPMrSUplUURVGUrNP/XJG28co8JHAfqcn3m9RrcmJ7tk3ajlZmPs8iUlyzrYZFxkBLoCnQFmgMQHPYsCjfcCSgRCzax6dBMdqKMv9oLTRXmBCoP/7xj/KBD3xAQ6BCoIZFCHCL4R7DTYa7zDckikZ7vXv39vJ4YHHjBsQK37x5s/cxU2GKKgrB8CdcigwAlKYlj0NRFEVRskpRcU0Sd/UJkaWP1OpnYZl9eGtiO7pvZRYNC/eoA6Vu0BBoCTSFDVeyYVFoD99kbUBnoXnQPq5eB+tx6NOnj9FaYUOgtm7dKr/85S+9j1lRwyKtkCh+cJeFCVGi4R43gE9fidatW4fydgR7WdjKCjb8iXJv/J4b0TeHQ1EURVG8OS0QDrXw3sRmt9blMrhjrLHrkv1rZZ/1WuzNtGGhoVCZBO2AhkBL2BKyQa0R7GHhCknevB7Ng/ZxZcmSJUZbobF8sIneNgTq73//e6JLuOKHeizSCInCTfaHP/zBiHzcdT7gJiT2j2QmH28BzV369esXypix4U/cOGvWrEn8HsueDt+EStm+F4qiKIqSFXpPEOkUX8FeO03kYI13YnLvs83/UYnKLJtbYfpZHMuOx6JacyzSAc2AdkBDoCWCYVF0qw6GRbmCtsFQQev4NLTbtm2brF+/XiZMmOD9nrYdwO9//3u54YYb5NJLL/V6vVKDGhZphkSRlPTYY4+Zi9knIRtIYiLBibrOlGdzhQoHuAXDJF5TZYqqDHhKMDAsI0aMkLZt28rcuXO9EtIVRVEUxQtWrxNJ3FGRxQ+eZFjAzBOHavIg9q/N2EmOEI5l0RyL0NiwI7QMGiJVWBSaI0wCuG81JzQUeRWjRo0yWsYHtBsl/dFyhENpCFR6qGGRBjR5eeihh+SBBx4w7jcMhIqKCq999O3b1/S48BH06SZe46rEoGFAsA37cFMSx8jx81kURVEUpbHDoejA3TreeXvWgfVSHV88y2ieheZYZAS0AsnZwb4UNiwKjeHbWbuuBPCGQDuhodBSaCof0DxoNz7Lgw8+KP/+97+NtlPCo4ZFmnBD/fjHP5Zf/OIXppwrLkHfFX/azB87dsyrwlS6idfcfDSN4XhPnIi5m6m8gDcDyx0PjKIoiqJkhfKRIt1jZc9l81sie2KLZKXFpTKh50Szvff4QVl2PJ77tzeD/Sy0KlTaoBHQCmgGtAOgJdAUAwYM8Bb4QU8H+/TpV4F2QkOhpXxAq3G8aDc03E9+8hOj6ZT0UMMiA3zhC1+Qs846S373u98Za913xb+kpMTEBNqYRFfSTbzGzUgpNl5vQ6pwIXIsxBtqpShFURSlcXpa3J/YnNLnnMT2jMpYiXQ5uFGidjtdNHk7LchlQCOgFWw5VzQEWgIN4duQLjkBnAI5rqCZ0E4cC1rKBxro8b6//e1vZfLkyfL5z3/e+7iVk1HDIgPgAvznP/9pysA+/fTTJjHaV5TjeqOKAe4822vChXQSr+sKf6JjJpUYSBDfs2eP1z4VRVEUxYnTbqwdDhVf4JrcO2BYHLV9LqpF9tcUHclc8rbmFPqAJsAAQCOgFYIiHS2BpvCtAFVXAnhDoJXQTHgqfMOX0GgUz3nqqadMjsU//vEP7+NWUqOGRYbAe0Cuxf/93//JihUrzI3nk5ANhCZR75l4P5+kbJKmSJ4Kk3htw59wawbDn+izwarDrFmztAytoiiKknk69hfpG2+Kt3OJyPZYA9gebXrIoHjZ2cWHNsu+eHWojOVZaOftULC6jyZAG6AR6guLSjcBvCHQSGglNBPVo3xAm/GeaLW77rrL5FaEyQdRUqOGRQYhHOrb3/62idWjsgAr/j4GAtYyCU9Y/VzwPq8jLpCbJUziNa5L8jVwbeLitAwaNMisIMycOdPbSFIURVGUBjn9gzXbi+5LbE4JlJ2dfXR3ZvMsNHnbGzQAWgBNgDZIDotCQ/hWY6orAdwFNBJaCc3k8zoMGZr2odHQat/5zndk0qRJ3set1I0aFhnmv/7rv4xb7k9/+pNJCCIRyQesfWIF6f7oU742mHjNjy9Y/dzYWPHB8Kfhw4cbdycDiva4UBRFUTLKyPfXCP2F9wXCoWrKzs44Ea+2eGiTRO12OmiOhRfM/WiA8vJyowmSw6LQDmgIX8J6OtBGaCS0kq+HhERvjIo//vGPpjTtV77yFe/jVupHDYsMQ+3lu+++21jTL7zwgrn4fRKygW6P3KjUZD5w4IDz60ii4kZ79913Q+VG9OrVS0499VTj6rTva70o7JsYSN+mfIqiKIpSJ23LRQZdGNvev15k48yTy84e3hEvOxvNTJ6FVoVyprKy0sz9aACEuPUOoBHQCmgGtIMvaJTkBHAXMAoIgUIj+XbGRouhyZ5//nnzP2FQaDYls+gZzQKs8N9///2mLTyJ3IREUQrNB27UIUOGmBva57W8N/GPuPrChC9ZN2cw/Ikbjy7hwOqENtBTFEVRstLTIh4OVavsbOXhRNnZjORZaCiUV38IQANYEW7Domy4tC+EMKFR0CrBBPCGQAuhiYYOHeptzBBuhRZDk/397383Gs3nvRV31LDIElOnTpWvfvWrJoaPJnS++RYwbNgwU3aN1/qIeW50GsVwA7La4Mspp5wi3bt3rxX+RKMa3JWHDx+WBQsWeH8WRVEURUnJiOtEisti23Thrqo8uezsEZtnkQHDIth5u1q98KlgjmeuZ85n7rfN6tAEM2bMMBoDreALmgSjgtf7GCVoILQQSdZoIx9sKVy8LGiyr33ta0ajKdlBDYss8s1vftPcOH/5y1+M2w/Xmw+4HCnpxo2Iy9DndbgsGQjmz5/vbQTY8CcSsYLGSYsWLUyCOu5E39wRRVEURUlJyw4iw66MbR/eIbJu2sllZ22jvMNbJHr8UAY9Fv6Lb4XA0qVLzVzPnM/cD2gBwp+o4BQMi3IFLUKIN/0mfF7P69BAvD+ayPd9CU1Hg/31r381Xpb/+Z//8Xq94ocaFlkEYX/fffeZG2natGlGjPvmPnADUm2BZCVqLruCy5LXhTFogj0u+D8Y/tSqVSsz0Kxbt864FBVFURQlo+FQ9LRILjt7ZFei7KzsS7M6VFFNI7VotRoWydBwjsRq5nrm/GBZWLRFmF4VVuDv3bvX5FX45DagN7Zu3Wo0jW8TvN27d5uEbTQYC61oMut9UbKDGhZZhjjAe+65x1SJovqBb84EtG7d2txQNKDxSQQvKyszLkxuZp8KUxYb/kQ8ZTD8idUKfk+ZOJoCKoqiKEpa4LFo0S62vfQRkRNH6yw7G927PL33KgpUEqqOGyuKYdOmTcZbwRzPXG/OdzRqRDlaIBgW5YOt5MTr0SauoHnQPhgjaCEf0FqEXaG90GD33nuv9OzZ0/vYFT/UsGgELr30Urn11lvljjvuMDF+GBe+CdBdunQxZWxZMSDm0RWqJpB0RRWFXbt2eR87pdyo8czNzWBj6dy5s7nR8cbs2LHDe7+KoiiKUjPZtIrlWsCxAyIrnzm57OyRuMd/r3ufpwYNC+sFUcxcjgHB3M4cb2HuZ+UfLeBb3hXQD2gQtIhPJSe0DnkVaB80kA9oLLQWmgvtddttt8kll1zifeyKP2pYNBLf+973THfI3/3ud8YVSElYX+jMTbt7bpYTJ9wHQ5KkuDF5HaXafMEVOnnyZOMaxUVqIcGbXAxu/DDlbRVFURQldTjUPSeXnT22N1Z29uhuiR7xXyhLUKwei2SYw5nLmdOZ2+sLi/KBfl54DcipQIu4gsZBs/Tt29doH1+IskBr/fa3vzWv/+53v+u9DyUcalg0Elj5Dz/8sHHJPfTQQ7Jx40avnAkLNaNbtmxprH+fpGxuLEq0UenJx+NhIZGb1QryRHCVWrjpKRnHfrmJFUVRFCUUgy4SaVMe217xlMiRfUllZ48mys6m5bUoiiUjGzQUyhgVzOHM5czpFuZ65nzm/jBdtdEaJHtTxYmFVVfQNmgctA6axxfyPzn2f//730Zrob3CeFqUcKhh0YjQmfKpp56Sxx57zNzEVDnwDU+yPSUOHjzoXZkJw6J3797mvX3zPIAyb7hIcZUGw5+ofEU3TvbL6oSiKIqieFNcUuO1qDousuShFGVnY3NmNC3DQj0WFhYEEf8jRoyoVf41GBbF3O8LfSPQBGgOenL5gLZB4wR7Z7iCplq0aJEpifv4448bzeUbRqWkhxoWjcxpp51mOnP/6le/Mh4LXH2+HgRKv5HMjVXukzxNFQfen94Y3PA+4VSW8vLyRPgTMZeWwYMHm1UJbuYw4VaKoiiKIqNurjkJ7959ctnZo3HP+N4VEo365Som0BwLAwuBaAH6UVCG1cLczhw/ZswYM+f7grbAWEFroDl8KkihadA2JHnbMreuoKXQVLz+17/+tSmcw/srjYsaFk3ANddcI1//+tflRz/6kbmBubF9G9m1b9/elHwjedrHS8ANPm7cOHPD+jbes+AqxT3JwBHMrWBVAq+IGheKoihKKHqdIdIl3nht/Wsi+zbULjt7bF+s7GxlhcihkFUJNcfCLAAyVzNnszBoYU5nbmeOJ6fTl6qqKpNTgcZAa/gYFWgZNA3axlak8jFm0FJoqh//+Mdy++23y9VXX+19/Er6qGHRRHzjG98wnR9//vOfm6oFVHvybWRnO19ioVMGzhVci7g36aDpm6thGTBgQMrcCjtIMWDxuRRFURTFGYRo0GsR72lRU3ZWZFaiC3e4cKhIpKimSV4B5lgwNzNH28XAVLkWzPG+2AZ4LJT69qpAw6Bl0DQ+Sd7JnbV/9rOfGW2FYaE0DWpYNBFY8f/4xz/MjUc3SOIZw3SzZmDAVclggKHgColMVHlghYB4xDDGRV25FYRE4VZV40JRFEXx5vQP1my/exfKUc7uc27iV9OP7MxcnkW1+7yZT0YFczRzdUO5Fq7Y7thoAd+ytGgXdARaxjcfI9gl/C9/+YtpoIe2CtPAT8kMalg0ITR7efLJJ01I0nPPPWeax/g2nOPmIeehTZs2xtrHDekKTWowLnjPMN25k3MrgsYFqw4MTm+++abmXCiKoijudB4k0ndKbHvnEpFtC2R0+VhpF2+gN/PoXqkkv2L/GomG7UNhDYsC6mNB+BNzMnMzc3RDuRY+oCFogoem8GmAh2ZBu6Bh0DK+BgHVn1atWiXPPvuszJ07V5544gnvRnpKZlHDookhX4HKBf/85z+NtU9okm9lJbwexCQC7kCfvAluZgYCBgVqVYehrtwKO0hpzoWiKIqSThJ3SVFJolneoeoTsuDY/lgY0wH/su218iwKJBQKXcFczGJg0KioK9fCB7QDGgItgaZwBa2CZoEwFaBsTgZ9wf71r38ZLRUsl6s0DWpY5AA0n6OJy09/+lNj8bNyQKk2H3D/UUWBqgjcZD6hTXTCpMoUhs22bdtCfIJYbgUGRirjgt+zSqKlaBVFURQnTn2/SFFJTZ5FdZWc0+e8xJ+nV9iys8vTDIXKf8OCMCebUxEMf7JGRXKuhQ9bt2412gH94dNVG41CEzs0C68tLo7nvHiWs0UzkVdB82EMG6XpUcMiR7jlllvkox/9qKlmwM1OrKNPWBNQhYEbK0y+Rrdu3UwFB1YPwnbRtrkVyUYEA5YNl9ImeoqiKEqDtO4iMvSK2PahrSJrp8lZvadIcTzp+g3beTtsnoVtkld1PFSOYXOBOdeGOQWNB+Zo5mobzhwGKjARfoR2oE+XD2gU8iLQLL5lZdFGaCS0EtU1rX5ScgM1LHIIKkRxk9Pjgpue5jS+A16rVq3MjUqPDGo5+9CrV69EGdmwvSjs4JVsRLAiwt/4fVjDRVEURSkgalWHukc6lHWQ0eVjzMMNlRWy/kSFyMFNEj3h1wvKUGLzAKJ567VgrmXOpchKMMzJejDsol8Y0AjkRqAZ0A4+oE3WrVtntAqaxQc0EdoIjXTnnXeaz4DHQskd1LDIIQhnogU9Hof777/fuPh8jQOg/jNVGZYsWeKdDE5Slw1pClsu1g5WyaVoGdhsidpg525FURRFOYlhV4mUtY9tL3lY5HhFrXComNciKrJvlf/JKw4kGFcdy7uTzxxrS8cGE7KtsZHswQhbrta3ghSaBG1C+JNvrwpAE6GN0Eh02X7wwQeNdlJyBzUscoxOnTqZFvTPPPOMTJ8+XRYvXhwq76Fz584mGYrEJtyNPmAUMFgwcBw8eFDCUJeHgv2OGjXKNNDxNXoURVGUAqK0lcjI62Pbxw+KrHhSzulbU3b2jYqd4fMsilvWbFf65TTmOlRKYo5lrg0Kf9ungpKyYRO1MSoIoUouV+sCWgRNQo8LNIovaCE0EdqIKlBoJTSTkluoYZGDcNNjjZPQjWVPOdow4UM0mbEi3jdxGqOgf//+ZgAJa1wEPRTEYlqo2sDAwgATxiOjKIqiFGZ1qP7tB0rfdv3Mw/nH9stBwpjC5Fnkqcdi9erVJlSIOTZYIYk5OJUHwwe0AIuFNM8LVpZyAQ1ijZ3u3bt7vzfHjxZCE6GN0EiEeCm5hxoWOcoVV1whv/jFL+SHP/yhyZcIG5rUr18/s6pA3gTVF1yhljQ3La/HuDh06JCEgdUSm7cRDH9iYKEa1vLly81Akc/Jc4qiKEpI+k8Vad8ntr3qOYlU7Eo0y6uSqMykC/eRXRK13bi9cyzyw7BgDmUuXbFihZlbg+KduZc5mLk4TPM7QAOgBdAEvoIe7cH7o0V4vS9oH4witBCa6Je//KVcfvnl3vtRGgc1LHKYT3/60/LlL39Zvve975mSbtzUtL0PE5bUp08f7zK2GBd4T1j14L19DJMgrG5YzwkuWguu0LPPPtv8jhUWn/4biqIoSgFAbwPbibu6UmTxg3Ju32CeRdyg8AyHitTyWDTvUCjmTuZQ5lLm1GCYkQ2Lovkcc3EYmPvRAGgBNIFPEzs0BwujaJAwXbUrKirMe6OB0EJf+cpX5FOf+pT3fpTGQw2LHOd///d/5frrr5fvf//7xhX4xhtvyPHjx732wSDASgWxiKwanDhxwuu1uE579+6dlnHBgESvDOpW46q1kLx1zjnnmCRv3JyVlZWh9q8oiqIURjjUmPJx0qa0rXk448gu04U7umdZGjkWzddjwZzJ3MkcylwaTIhmrmXOZe5F2KdjVKAB0AI+RgVaA82BoYMG8e2qjdbhvdE+GBXvf//75Zvf/GaIT6E0JmpY5DjciMQT0ln7Bz/4gRk8uNF8BTj7GTt2rKkXzeqFT48Ma5j07NkzLeOivLzcuGhx1QbDnyg3xyoLgwheFV/DSVEURcljup8uUn56bHvTLCndt17O6jXZPDxQXSkL6cK9d4VEq6sKKsciOGcyh9rSrclhUcy96RgVzP2+hgEaA61RVlZmtIevUYHG4b3JL0X7kDPym9/8xns/SuOjhkUzgI6U9957rxkc6HVhk6B8Q4eKiorMygU3LI3wfF7PzXzaaaeZAQavSdicC7wmrKokhz9h8DAA8j/7DxPypSiKohRGT4tzAuFQ0yk7SzjTgfUhcyyaXygUcyRzZXDuBOZUCqNQdZG5NmzVJOZ49k+PCuZ+H0HPMaAx0BoYBGgPH3g9PTLQOnfccYfJF0ED+XbnVpoGNSyaCS1btpQnnnjCxCvSup6ybfPmzfNOeqbeM01pGJTCGhe4VNOpFtW2bVsz4FkDyXpfGDQYhBgIKScXdv+KoihKnnH6TcxCse1375YpvaZIUSQmYd6Md+GO7l0WLhSqmXksmBuZIwkxYs60gpu5lDmV5nV4MJhrw+4fo4K53tdTYY0KNAZaw7fHBJoGbUOPCrTOsWPH5PHHHzeeD6V5oIZFM6JDhw7y/PPPy6pVq+Tuu+82yUzUdPbFrnDg5pw7d663cUGcpU3oDiv+bfgTAyGJXTb8iZWNMWPGmP0zcGqXbkVRFEU69BUZEPdS7FklHXevktO7jTYP156okE104fbJswiEQkWbUY4FcyJzI3MkCdnWG8AcylzKnBoMiwrbp4LqTb45FWgJNAUJ10Evig9oGrTNXXfdZbQOmgftozQf1LBoZhCK9OKLL8q0adOMFU/5NW6+sMYF7k5WB3yNCypD2D4XYTt0l5aWmhUNvDEMlDb8ye6fknYMlNu3bw+1f0VRFCVfk7jvknPiZWcTXbgPbpTocccw3WZYFYoGccyJzI3B6kzMncyhzKXMqcyt6XTUZm73rf6EhkBLoCk4hjBGBVoGTYO2efXVV+Wll14y/biU5oUaFs2QoUOHGiv+gQcekNdee80kaW3cuNF7P7gWMS4YTIjJ9AmrsuKf8nUYF7hew2DDn7p06SKvv/56LSOFJj4kfVHxYv16j9hZRVEUJf8Y+T6RkngI08L75JyeU2rnWUjUvVme3U8zCYViDiTEiDkx2OCOOZO5s2vXrrXConxhDmcup8+Fr1GBdkBDcCxoijBhS2gYtAwGBdoGjROmPK3S9Khh0UyhStQjjzwiv//9780qATd1sAGdr3FBvoOvcQGsnDDI2eoNYWAAw6XLKglxncH9UOJu4sSJxj26aNEi7XWhKIpSqLTsIHLKNbHtI7tl0I5l0qttb/Nw3tF9cqi60j3Pola52dz1WOAJYO5jDmQuZE60MFcyZzJ30isqbMUkyrkyhw8ePNi7o7Y1KtAQYY0KtAv7QMv84Q9/kEcffdRoHKV5ooZFM+biiy+Wv//97/Kzn/3MdLCmigLlaH3BfTplyhQzSFGpyde4YCBihQMXKq7aMNhO36n2061bNzn33HNNSBQ1sbUcraIoSoEy5iOJzci7/1erC/csmuXtWeY2h5UEchAqKyQXYa5jzkN4T5061cyFyWFRNmw4rFHBfihZy37ojO0D5xnNgHZAQ6AlfEGzoF3QMGiZf/zjH3LRRRd570fJHdSwaObceOONpsU9dZ5xJTLQhCkFa40LVi7CeC5wn44bN864atMJW6prP1S3wLggUQ23r1aMUhRFKUAGXSzSNh53v+JpObfr2NrhUMcPiBze2uBuIkXFNXkWOWhYMMcx1zHnUUWxTZs2J4VFMVcyZ4Ylnf1YTwWaIaxRgVZBs2zYsME0Af7Rj34kN9xwg/d+lNxCDYs84LbbbpPPfOYz8t3vftesbOAapSpD2EpNrCD4JnQD9a4nTZpk3LY05vE1ToL7seFP/Nj9kJDG7/k7A64mdSuKohQYxSU1SdzVJ2TcjhXSprRNouwsXbidq0OVtI79fyK3+iYxtzHH2bnQJmMzF9qwKOZa/h4G9sMczb7C7McmaqMVwlagQqOgVfisaJfPfe5zcuutt3rvR8k91LDIE/BaXHHFFfKd73zHGBcMSmGMC+u5IJErjHFBAhkDzZo1a8ygFda4sOFPuGlxBZ84caJWuVtyMkjqpopE2PdQFEVRmiGj/19is8XCu2Vy77MTXbjnH9snUWfDIi6IKytyYh7hGJjTmNuY44LlXpkDmQsR4syNzLVh34O5mTmaudp3P9aoQCOE9VSgTdAoaBWMiiuvvNJEXSj5gRoWeQKDz1/+8hdT5u3b3/62aS4TLOEaxrjAFevb5wKoOY3rlgEwzOuTw5/4bAxCwRAvGvdwjKtXrzbu2KqqqlDvoSiKojQzup8u0iMeArVljkztUJNw/FrFTpH9qyXqUumpNO6xiFaJVMd6KTUVzGEIduY05jbmOAtzMRUgmQuZE8M2vuM9mJOZm5mjfftD2D4VHE9Yo8KWxqXJ77e+9S2jWdAuYXNElNxDDYs8gjJzNJUhXhLjghs3rHFhq0Uh5n07dAPxoAxcvD7ocfDFhj9Ry9qucFjo0E1CG+9BRQu6kiuKoiiFlcR99valUlIU6/D8esUuiVZXiuxb7R4K1cThUMzRhAXRtJY5jbnNghHAPE4Pq2BYlC/MwSRJ8x7JORs+HbV5fdjqT3xO5nG0CdEV48ePN5olbIlcJTdRwyLPKCkpkfvuu09OP/1042K0noswopuBg1UJ3Ja4Zn29Avb1gPA/dixcrXBWMk499VTzmd56661a4U/Wu8IKDis6YapiKYqiKM2M0z8oEjcm2i56QMZ3n2C2t1YdlZUnDrmFQ+VAZSjmLMR2u3btankBgmFRzH3MgWFX9Zl7mYMhjFHA3M9x2I7aYYwKNAhaBE2CUUF53HvvvddoFiW/UMMiD2FFgwYzlIENGhdhhL3t0M2gEMbzwLGQHIbw5xhY7QhL3759zcDLYBsMf2K1g6ZB1OBm8Ny0aVPo91AURVGaAW26iQy9IrZ9cItMbdUz8adXCYfas9TPY1HZ+B4LKjna/hHMYXblnrmNOc6GRTH3hYU5l7mXOZi52NfjYXM70ABogTAdtYNGBZqE0rZolLDeFyW3UcMiT+Hmf+ihh0zzOsq4URIuHeOCwY3VkjAhR5TLo9lN9+7dzTGE7dIdDH8ixjN4LBwbXTrpPLpgwQLTwTMXkvEURVGU7Cdxn7ttSWL7dQyLIzslarpx102ktGk8FsxNVHZ69913zZzF3GW9EcxpzG3MceRTBMOifGGuZc5l7mUOZi72wR4Lr0MDhDEq0BzWqPje975nPivaRI2K/EUNizwGdyXduVntSNe4wF3JagfuWhsL6gOD5mmnnWYMHV7PIBMWWxaXGNHk8CcGUAbjLVu2mFWWsOFXiqIoSo4z7CqRljHh3X350zKy8wizveLEIdmCB2L3Uo8ci8YxLJiTmJu2bt1q5irmLAtzGXMac1vYMq4W8hiYa/GGMPf6hlFZTwdzPrkdYUKWMEwI86KBHhqEDuFokjAGitJ8UMMizyFe8/HHHzeJX6wWIOi50cPkXLBqQWI4idQMOPv27fN6PQMbnT0Z5BhYEf9hwWXMsWCoJIc/MRDi1WAgfPXVV9MyYhRFUZQcpaRM5PSbYtuVR2RqaadaXovoniU5FQrFXMScxNzEHMVcZWEOs2FRzG3pJDQzt5KoTW7G0KFDvY0K5nabMM6x+Ho6UoU/0SvjscceC5WfoTQv1LAoEOPiiSeekN69e5sbnJUMjIsw1aJsIrXNZ2BfvrBqQTUISuul00iPY2HQTBX+hJuV98CQwYhZvny5hkYpiqLkG6NrqkOdt2VRYvu1il0i+1ZJtKqeMrKBUKhoFkOhmJeWLVtm5iLmJOamYNM75i7msOSwqDDvw1zH3Mp79OvXz3sfzOnM7RxHGE9HcvUnNAelc5988slQ5WmV5ocaFgUCLlU8FwMGDKiV0B3WuEDQsxrCqsjmzZu994HXg5J369atM3WxKysrJSzB8CeqRh0/fjxxnAMHDjTvQ5LcjBkztCStoihKPtF7gkjX4WZz0IYZ0rdNLImbRnn7CW/at7JJQ6GYY5l7mCeZi5iTrFhnrmIOZe5KDovyhTmUuXT9+vXmfZhjfeEYracDwyIMySVl+bwsbKpRUTioYVFAcGM/+uijZsWEPhfpdOgGVkNYFaF6BV08faE5D+5gW8M7jJFjwaXMwMyKDa5mYjqD73PeeeeZzz9t2rRavTAURVGUZgwiPZ7EjVyfWhxrHlclUXnzyC6J1pdnURro5VAZvmJhXTDXMB8x9zDXBRvSMUfxN2DuCoZF+WLnUMKPkt/HFeZw5nK8JmE8HcGO2hgVaAwqU2r4U+GhhkWBQXwjFRkIZ8qEccGqCCXocPMuXbrUO9zI9rro2LGjSVoLGgS+kBBGkhl5F6wQBftdENNKrCifG68GruewHcEVRVGUHGLUh+Nmhch5mxcmfv3akZ0iuxfXPS+VBjpYHz+UscNhbmGOYa5hzqEik01+5lhWrlxp5ijmKuasdJKZmTOZO5lDw/SYsKFYzOG8PqzXhGRv28QWbYHX4+GHH9ZE7QIkEtWanAUJtalvuukmE4vJIFBeXm6qUFDrOgyUxps5c6Z069ZNRo8e7Z3sxWW4du1aM8DROCfsiklwsMUtzCoQ9cGDg+2BAwdMB1FiXBnwW7cOuMMVRVGU5sf/XSyy5iWhu9FlwybJ3hOHpGWkSF7oc660mvgNibTpkXLeiU7/b5HqEyJtekrRhK+mfRgs0jH3MMey+h/0RFARijn30KFDxtufTilZIOxp4cKFMnLkyFohVj4GELkdeBjOOuus0F4TPg+h1eznW9/6lvlsNL/TkrKFiXosChRu+Pvvv1/OPPNM+d///V9T+i6dztUMSMR18vowXboZEO3qzaJFi8xPOh6Fzp07m/AnDJzkylDt27dPVOTgb3x2RVEUpfkncVNL6dxILCn7aLRa3j66V2R36upQRojbcKgMeCyYS5hTgnNMckUoqj0xN6VjVDA3MkfSC8N66X2NCnIymKuZs5m7wxoVtkTutm3bjJagLP19992nRkUBo4ZFAYNr9p577pELLrhAvv71r5vVD+I0w+Yg2P4SJKTh5rVJ1D7g8WBA5hiooBFmH0HjiRWjVJWhGNzHjBljvCOsILHqo6FRiqIozZQR14m0iHncp25dXCscqt6ys6VxQX3ikESj4RazWEhjDmEuwWPPjy0Xays12YpQzEnprOQzJ7Iv5kjmSubMMPsgwoD/0+mXwTGgGdAOaAi0xN133x2q54WSP6hhUeAw+P3tb3+Tj370o3L77bcnBkCqKIWBWFFcqvwfNiGb5kCsoOBtIGaTMKuw2MpQDJ6pKkNRBo/B2TYP9G38pyiKouQALdqIjLzebJ55cKe0LIqJ9+kVO6Vq32qJ1tWnIm6MiERDVYayjeSYQ5hLKOtuYa5hzmHuSa4IFQbmQuZE5m32x1wZNtGbOZqcirD5HXwmu2CHdrjllluMlkin/4aSH6hhoZiB7kc/+pEpDUd8JKsuVIcg+TkMrFawKoOrl0HQt5EesKKDi5emOuxj+/btaX1TJLYx6FOdA3d00CtDXgmDNOFT/I3VF009UhRFaZ7hUC2jUTmrOiZw91afkAVH94jsXdFwAvcJ93Ao5gjmCuaMLl26mDkkmKPIHEMVwlQVocLAHMhcyJxICHMYrwdzMftgbmaODmsEoA3QCGgFNAMl7H/4wx+mZTQp+YP6q5QEt912m6kIwcrDZz/7WTNIsOJCVQvfAQNvA6FGDECsjpBAHVzJcYH3JCmNeFViQYcPH24a84UdvBiIqQy1YcMGU62DuFT2ybEywFLFArfy/PnzTaws7uywLmJFURSlkel/rkjHgSL71sqFO1bJtPI+5tevVOyQcbsXS6Tb6Ho8Fu6GBav+JD3v37/fFAAJ9owgpJYKS5RvZU6hEEk6ghsDhnkUzwBzKl72MNDZm7mNErBhm/BxLOR1UGiFvIo//OEP8o9//ENuuOGGUMek5CdqWCi1uPHGG6Vr165y3XXXmdWNa665xhgXCHLfSk+2kR5JYVTJoBoTQt53QGMgxeWLMcBAzuAadqWF96bzNys2VIbCfU0FC2tAMEEQJ0piHKtNdB7t27evrsQoiqLkOsxRYz8qMu1/5eyKA1IqRXJCquXVip3ypd1LJRKtlkik9jwWKW1HEJRTAjfCmhAg8il69uwp559/fq1QIgwO5hUqQtGbgkWxdCB3A2OAxG/CefG8+8IxUwoeY4C5LkzjPGsw4aFg0Y1muw888IBpfHfRRReF2p+Sv2i5WSUlGAKXXnqpqV7x4Q9/2Kzk434Nm5SFUYFhgJGBkRLGjYuBwz4Y4Bggw5bGDVbFwICg6ykeFSaKIFS5YFBnMFfvhaIoSjNg3waROweYnIkv9h4ub7SIzVl/7TFeRk/+rkTa9a319Oi2tyS67F6zHRn6Pon0PqdeLwULbixuJQt0BDfhQYQqsSCVbgIzJVwxUljQY+4N07kaAwdjgNwMQovDVn5irqQjNwbOXXfdZbwVzz33nPHWKEoyalgodUITn4svvti4TT/3uc8ZgU0zu7DJXlSgIKSJWt4McmESz1jBodcF4UyI/bBu4WQXMRMGhgUTQvDzccysThHfqt4LRVGUZsBdl4qsfkGebNtRvtMtNkd8qH0/+eLYWyUy4NJaT43uXiLRhX+OPeh/qRQNvDyll4JFKEKFCW9KNUewEJXpOYkwKsKBw3joSSrHGMAgYSEunXn7zTffNAbV7373O1m9erW8+OKLRhcoSirUsFDqhcHykksuMYPTV77yFRNClE55OrwNxGgyUJM8FqZUXvLqEAN9upUoWI3CO4Fnhckh1WoUA716LxRFUXKcRQ+IPHSj7C8qlkv6jzBN83oWt5THht8oxeO/XOup0QMbJDrvF7EHvaZI0bD3O3sprFebxGz+nm5OXkNedFdoVMciHmG85Ej6hjEHm/1hVNBw9o477jCLgs8//3zocCqlMFDDQmkQ8hquvvpqU+XiG9/4hqmAgecinfhR2zGUQY8SfJnucBoGVqbwhDCwM6BjsARDtoLeC/7GypRWwVAURckxThwVuaOXyNG98rmeg2R2y9bm1//qMUFGnvdLiZTVVGiKHt0r0VnfiT3oOlqKTvuok5eCv7HghCc73QRtYFGL0CfmHEKMWreOHbMPHPe6devM4h3HTD5hOseDUUEe4g9+8ANzHsipSDdvRMl/tNys0iCsxrBKgUsWwwI3LSXrWMUICwMe/S6onsGKUJjmdAy8GDisnhDziVGQTplYm9hN8jYrM6+88kqtMrdMLAz4rCQxcJPvEeyJoSiKouQApS1FRn3IbF5waG/i19MqdojsXpz03EBI7vEDxktBCBEht4z1jPlBowIvBYU9mCOYK5gz0q36xEIbcypzGXNaGKOCOfTdd9811aOYW9MxKjAmOJ7NmzebHhXM/WgANSoUF9RjoXjlN3z+85+Xhx56SL75zW8aTwOegnTcongdEOi290VZWVmo/eBNwXtRXl5uQpnSTZxT74WiKEozZus7In8aJ7uLiuXy/iOEpat+Ja3l36fdIsWjP1XrqdVvfEOk8rBUlrSTlw6cldJLgWccj3UmvRTsE2OA+QsDhvkrDBg5hD4RSkWidxjDJGg4sS+qSH3ve9+T97///fKb3/xGG98pzqhhoXgLbgabn//854mVDMKZ6AkRdpBlMCRfgjhWBsWwjYRYaaICBv9jpKTbkCg594IYWiacVLkX5J6MGjVK+14oiqLkCn8cJ7LtHflkj4Eyr1XMM3Ffr8ky5PxfS6SkZhGr8q2fSFHFVqmORmTnKV+Rnr1q91zCc808wIp9JnIpbIgxAp59YVSEqfpk98PiHPl/eFjCLqoxt9N7A2883hoa3pFXySKihvwqPqhhoYTiT3/6k/znf/6n8WDQcZQk6nT6SzCorVixwjQCohxt2KQ1ux8qWmHwDBgwIO1BMei9sKUEU+VeYGTQfIgmfmGT5RRFUZQMMfu3Is9+Qe5v31l+3qWX+dXHOwyUT035vkS6jTLhQ1Q5arv+Aelessv8PTLp2xJp2THhUbDJ1JnyUgTzIOjzNGzYsND75LhYlKNCUzr7sf0y2N/06dPlt7/9rdx5553yyU9+MtT+lMJGDQslNM8++6xpqHf55ZfLTTfdZDwEkyZNCr3yAgxseB3SHXCpt00iHInmGDxh+makCtti8KUmeCrvBe+JW5uJAzd6WLe2oiiKkgEq9ojc0VN2SLVc0W+4+dXg0jZy39gvyK4uF5sFIRaBJnbZLC33zDF/j4y9TSIdBia8FBQFwROQCS8FhgqGwN69e42Xgma06S7EcWwseIWFPMFZs2aZiIH777/fzOv8z7yuKGFQw0JJC5Kvr7rqKiOib731VmNckDgWpkNosouYOFG8F2ENFeJOMVJoNEQdb8KV0sUm2rHalMp7wQoYsamcF84Jf8/EhKQoiqKE4N83iix+QD7ac5AsjFeHuq/XubLi+OUyfPgIkysY2TRNomuejI3hwz4kC7eXZNRLARgTLHbR2JV5LWw+IYYA8xoLXemG/GJMzJw508y5v/rVr0yZ2qeeekqGD48ZYYoSBjUslIwMmCR44VL+2te+ZgQ3A2fv3rXjVH1XdshdwAvAyk7YfhcYAqzqUCmDwZIwpUxMEkHvBd4JQreC+2Xwx/jQ8ChFUZQmZNULIndfKne37yJ3domF2H6m42C5+awfSVn5CPM4un2eRJf+n9leWTlMdrceY7zS6SRBB+cg5kYWmwiVJWwp7BxEkjdGBZ4OipSk44mnuiPeEwyoH/3oRyZK4MEHH8zIApxS2KhhoWQEErD/67/+S/7+97/Lf//3fxuxzQA6YsSI0IOozW3AXY1BwKAcNneB0rgMyKwS4Tpm1ShdbK1zEt1I6uMzJ/fSoGwf4VF4MjQ8SlEUpZGprpKqX/SXbUd3yDV9TzG/Gt6infzfmV+VosHXmMeHty2TVsv+aLYPtTtN2o37WEYWoPCWI97xnrPY1rlz53AfobraLI5hoDCPpONFYd5aunSpWXBjbv3pT38qH/vYx8z/6VZTVBRQw0LJKP/4xz/kc5/7nPzHf/yHXHbZZcbTgLs2nQGLikyERmEU4L0IG1qE8YMRgLGCwZNOJatk7woDNfvFrY4BFPy8Gh6lKIrS+FDVj+Trju/8QoZuuV9u7j1ElrWIhdY+MuhK6TXpe7J8xQrZuHaFXNL2tdiLOg6RojGfT+t9bYUl5gX6STDfhJ0D+QyUUqdICCG96fSSYK4iHIuQJ3Ip/vWvf8nvfvc7+ehHPxp6n4qSjBoWSsaZMWOGXHvttcagYCWEgZC8izZtAo2IQhgFrK5QYxuPQzq9MwivYhWJ3I1MeS+AOFW8E4RJEZtLSJiGRymKojQuLOawIk+CM+Pwqb1aSdkfR8o/O3SV33aOzR2f7jhIhrf6sERbdTelwtst+qnIicMiLTpI0eR4J+40vBSEwzK/hE3QBuY79sV8h6cinQW6w4cPm3wKFur++te/GgPjsccek8mTJ4fep6KkQg0LJSsQInT11VebMnbUwqY608SJE9MaZO1+Ee+UkWUVKGxoVLa8FxoepSiK0nSQh8AcQelzDAbmHsM/L5Ctm96Q98TDoQaWtpY/j/ySdBz9ATP2V8/7pciB9eZvkXN+KpHimuZ4vl4KQpXo8RTWEMAwYn6iUAifoW/fvpIOLKbRTZzQXHpQcW6eeOKJtPerKKlQw0LJGqzcExL1+uuvm6RuxDurLoQLpQMJ06y2MDjiGk4nwc56LwivYnUpHa9KssuZZD0mhobCowgXw7hJzs9QFEVR3OcFRD1hPoynLD4FF56qFtwjxY/eLB/vNUTml8XCoe4edIUMP+cnsTF56d0i2+MlZ8d/VSJte3p5KSjmQdhSul4KPAvMb8wReP3T9agzz+Dtx+j58Y9/LFOnTjUhy5lITFeUVKhhoWQVVnF+8IMfmKoTt912mwmJYpWEVZh0msjhCSF2dvPmzaZ6Rzp1vIPeC1aZTPnBDHgvXMOjSMrjvTkvGCBanlZRFMUNxDxjKN5sPAWMocES5cxBVD5a/O48OW/e/5MnWhbJj7vG5oub2/eT2y79u0Rad5fouufMD0ROvcU00GtML0Ww4V2fPn3MfBG24SxgmFBZkepPhCf/+te/lttvv938aCdtJZuoYaE0Co8//rjcfPPNcs0115jStJS0IzQqbC3v5IEYUU6n7XQGYla6WHXKtPeCyYfBnfKzeCVMPG+Sd4IVL7wXxNRi2FD6r0ULP1e8oihKoUAy88qVK82KPDkIlBNPXt3Hi8HCDv8zP/RZ9lvZP/MOubTfCKmKiJQXl8mTU74vxQMvk+j2uRJdepd5XWTQ1RLpd0GDngXmnkx4KexCGfNEug3vgCpUhD5RCv7f//63mX/vvvtuM/8qSrZRw0JpNHDHvuc97zFGwOc//3mT1I1xEbYEX7LrGAFPaFQ6rmO8FxgArH5l2nthw6PWrVtnwsKSw6NswyK8J/yPccH7awlARVGUmjEaLwHJ2TRiZZxObsjKc/Bi8DxCojA6TM+HPWtEfj1YvthzkLwRb5b3x/6XyPjz7pDogfUSJc8Cep4lRafckPKUM89gzDBOZ8JLwaISVQ/x4DN/pbugRR7FW2+9ZZK0f/vb35q5jKZ3eEAUpTFQw0JpVMhpeN/73mdCf7785S8nXNfDhg1LS8AHk93I48B4SWd/2fJeBMOjMIj47JQjTA4L4/35PIRK8RzOUzqhY4qiKM0ZxnjmDQwGQp0Q9MmNU3kOcwDPYczGO3xSZ+q7LpPnts2S/ymPJS5f17aX3H75XSKlbSX65u2x53QYLEVjv1Cvl4IQ3LCNW4OFPlhwYw7g86QzxrM/qmDZ0No77rjD7Pfhhx+uSWBXlEZADQul0WHl/pvf/KaJ+fzUpz4l559/vvFakKiWbmgUoUQYBKxg0Zk0nXwFjhNxz+BPMiDeg0yJeyYBunITm8s2K2p0Kg8aQzY2mOcAE09yh29FUZR8xo6VjMV1jYM8h3w7PML8nvG6zrFy6WNS8eD75JL+I+VoRKR9UYk8d/YPpMXAK6R6xv+KHD8gUtJaIlN+kHi9LbbBWGzDbtPxUmCYkP+AZxoDJZ3y6cACFF57GsFOmzZN/vSnP5mcxu9+97tpdedWlDCoYaE0Gc8//7x86EMfMh6Bj3/84ybvAOMinVUgG3vLKtD27duN+zcT3gs8DBgVeEPSLZkbhAkLw4UJEaPKrsIFj9eu1PEcDKVUK3WKoij5hvXcIsRZfEn23GJQ2OeQV8BzGO/rXQCqqhS5s798o3WZPN865om+o+95MvWC30j1gj+I7F1ufhc56zsSKetgvOyM/7wXHpBMeCnIp+jevbuZT9LNpePzE0pl+1OwsHbPPffIpZdemtZ+FSUsalgoTQor8h/84AdNLOyXvvQlk3tAbgETRLor86xysSqUCe8F4n716tXGzcxKGCtWwcoj6ULyHitiuLJx3WM8kOCeKraYhEX+liq2WFEUpbljc81IPmY+YF5I9hDwN55DaCmhtHiUnYt3TPu2vPHWHfLFHgPMw4tbl8sPr7xfolveFNn0qvndieG3yKLNJ8w8Qjjq4MGD0/JYB70UzEfMI+nAnMRiE7kmzAuEPg0ZMkTuvffetPetKOmghoXS5CCqv//975sa23TqvuSSS4xgxnuRbunVoPeC1SHK+KVjsDA5sNpEEyaMn0yGR9nwKwwHJory8vKU/S2C1VBY9WLiVQNDUZTmDqKbsY3xuq7qeLZfBWOwXYjyDvfZv0kq7+wvl/YfKfsjImWRInl+yvelTetyiS6/zzxl6bFhUtF5gvF6pzMP2aqAzEOZ8lIwD5GgjVGF5//vf/+7fP3rX5dvfOMbaVVGVJRMoIaFkjO8+uqrcuONN5rVp09/+tNm5Z4qGQzG6WK9F6z0s1qUrreBSY2JAiMF93gmw6PsxIH3or7+FjyH1SqSFclR4byRpKc5GIqiNBcQ3lQyYrwjR4CEY1beU4139fWr8Oa+a+VHe+fLw21iCzff7jVFpgz/rHRY/Xfz+GjHUdJ6zC1p5z4w7+BdyYSXAjC6yKfAqPjjH/9oDLH777/fNL5TlFxADQslpyBelH4XiHZCo6yLm9CjdD0DrPQTK4tRkAnvRbbDo2wpQlbn6lvBI7YYDwceDErtcs4wxtTAUBQllw0Kim0gjBnnGN/wQCQX8Ej20OLFTbcbtWHlczL/offJx3sNMg8ntuwsN7T7pExp/baYWaFdXyk648s546VgvqEUOueBOeeXv/ylWdS66667NOdOySnUsFByDgbQn//85/Ktb31LPvzhD8tVV11lwoHoedG6daz2eLp5HRgYmfJesJLGgI/4z0Z4FLDihYFh+1swASe7vAmjokcGxg6TGM+j0pSWqVUUJZfGdyo4YSxgNJC7QK+J5HAmcsoQ0Tyvrn4VaR6IVP96sFzXsa1sjogxJh4e92XpU7FJ5MgukaJSiZzzE4lEiprcS1FRUWEa3pGgTU8Kmt195zvfka985Ss6vis5hxoWSs4yc+ZM+cAHPmA8C5/73OfMpDJu3Li0u5LaVX5Wk/BesOqTXOo1nepR2QqPAo7X9reoa0ImZ4UQKsKkgLACQgc09lZRlKYieVxi4YMwz/oWSLJZBY9qT/uf+rq8cuAZ+VOHWJPWT3c5VW4ZcLHIroXmcWTC1yTSpoe3l4L8OOaAdL0UdiFs3rx5ZlGJhnc8fvDBB2XSpElp71tRsoEaFkpOw6rPf/zHf8isWbPkP//zP80kg0jGtZwJocwgzeoSOQqZ8F40RngUExjeEVbySGSsK4SAY+Hz8TwMqboMEUVRlGwRNBQYozAoWBxK9qTakE5+2rdvb56XjZBOPMwszpB3N3JAN2n5xIVyde+B5m99S1rJw+O/JLJ1lnkcGX6zRHqM9/JSYFBkYvELQwwjBWOM4/3FL34hkydPln/84x8nVQxUlFxCDQsl50FI/+Y3v5Gvfe1rxoNx7bXXmhhbqkad1FU1Te9FJnIvksOjyHlIFbqUqaRHDAf+x+DCO5EcLuZqiCiKomQKV0OBMB+8GAhoik/wvGwUoUCocywkiXMcLPqYBPHHPiqf3vOWzCmOGTr3n3KDDDq6K/aiPlOlaMh1zl4K5o9MjKskZtObgtyTRx99VP7973/LT37yE/n85z+vuXNKzqOGhdJswB38/ve/3xgTn/3sZ81AziREdZBM5BHY3AuMFladmAzThfAoDAzn5k1plmkkGZKwLs5LcpnaVIYIBkZGEiEVRVHiBScQ8A0ZCixyMBaRb0Hn6WyVzU5uQopBUSu0ass8efq+S+RbXWO5EDe2HyBf6jQ49rcOg6Ro7K0p90u+A/PF4cOHjUGRCS8Fx4q3m/PCQtfvf/97Y2Q89NBDppGsojQH1LBQmhUM5oREPfDAA3LLLbfIRRddJG3atDFlaTPhvcBtz4oWEyMr+xgt6YYOIeiZPEm+xqigqglhUtmo2sSkzqTEKprtcZHKbY4hQmgCxhS5IHxWrSSlKEoYrFeUZGtyFxDZhF6mMhQIF7K9KvAOM0ZlY3GDYyLciXGXbRZ26sqlO/K3KXJpyUGpkKi0iRTLK4OvlMiJwyJFLSRyzo9rJXAzR2CkEN7Fwgwe6UyEl2JAUEYWQ+Xll1+Wv/3tb3LDDTeY6k+ZWORSlMZCDQulWfLss8+aZnpMTJ/85Ccz7r3AgMG9zaoaK1yZCI9iNYqeE6xIEa5Evkg2ErxtKBaGA5Mf+SOcG94r+TMQG8wxIQgI1cLAwJORiaRDRVHyG6o64Zlg/GB8I4eLPhTJeWUIewwODAp6VfA8DI90G6DWBe9FXgJhVswJHFO988KiB+S7M78lT7SIGQhP9L9Yekh1rQRuG/aEBxpvMF6KTAj+ZC/Fn/70J7Pgg2Fx2WWXpb1/RWls1LBQmi2suuO9IP4UI+PCCy/MqPfCehqYSNhvpsKjKKOI6CeuGNGPgZGJ400FIVhM+nhg+AysrhF2kGxgMLmxusfzWDnDkMLIyNZxKYrSfGGMYFxBaDNGsHKPFzZZvNteFXiBWYnnefxka+GC48KgwHgh3wzjpaSkpOEXVp2Qd347RD7RMTa+/0/nEXJ1u16JBO6DrYclwp7oxI1HJhMe51ReCvII8VLo2Ks0V9SwUJo9zzzzjDEsyF+w3gsEND+Z8F4Ew6NYacOlngnXN6LfNn5iomK/iP9swGfAM4Exw6TO5I7xkGrSxWDjmDCqMKT4zIQQaLlaRSlcSH5mTMALikeXMYFxJJUAZvEEo4Mxk7HHVqRzEvkhQJgTnsTiCO+Dh9Y3iTr62vflunX/lk1SLZNadpZfd4/lNOxuearM2tkjo2FPLOQwp/CDl+LPf/6zOV8YFpdffnna+1eUpkQNCyUvQAzfdttt8vDDD9fyXlA5KlPxqdkIjwLc9UyKTNq47HHdZ6tiE+LATviESxH2hGcilUGDICDpESFByBSGG5N2clK4oij5C+MdYwBjASFOjAGMBakENgKfRQnCowhzsgsY2VqUYFxCnLNogqHD4kzoJqqHdshf754if2zVUjoUlciLfaeaXx+IdDUJ3JmaR1J5Ka6//nq58847s5K8riiNjRoWSl4R9F586lOfMtU/Mum9wLVP/OuiRYsyGh5lDRcSDakkZd342eo5wecgXAADg1AFzhMigP+TjSX7XMQFn51kcMQFoQ/qxVCU/IMFCFb/uedJtsajyj1P6Gaq8YExi7GE/wm1ZCxJ9dxMwaKHDSdlzKIgRibG4a0Pf1CuPrRQoiLyVO8pUl7SMmUCd7peCs4TuRQYaxgWV1xxRdrHrii5ghoWSt7BRIj3gvrfH//4x+X888/PuPciW+FRQClY4oSp8IRBxP6zKeDxXCAgWPUjVAFRUNeKJOFb1otB4iarhKxIZlNEKIqSfewCAvc3CwiETFrvRCoPqvVoMgYS+oS3lednKyHbGjyMPYy9VJIiP41Sthlr5DfzEfnVmh/KrEi1/Ljr6XJBm3Lzt8iEr0qkTawcbdhFI/pS4KV45ZVXjDHx3ve+V371q1+pl0LJO9SwUPKWp59+2ngvmOzIvaAqUia9F9kMj7LlG/FgNFbXbCZtBAWhDDaGmvfEPV+XF4OwKkK4MEj47PxoaURFaT5wr3Mf88MYgHcCYwLPZKr7nrBTxL3NwSKUktdkc/EjuXs3HopMlcdOrvZ0ePmX5fbiw3Jz+35ya6eh5jmRYTdIpNdZaXspyKUgTOyvf/2rXHnllWkfu6LkImpYKHnvvbj11lvlscceS3gvWOk644wzMlZ1IxgeRQwyq2i1GjBlwMBgYsKD0Vhds4kDZiJnwsXbYxO4Uxk2TJ4kILJ6SVgVkzMGBs/P5uqloijhvZQYBtzfLIoQvoQxQeGLVIsuCHubuM2qO/c3Y0K2KxfZ7t0sdjBusyiUyX47iH28w+Rq2GpPlQvvk8vn/1T6tmgrf+sxPvbE7hOkaMSHvMfQuXPnmnF72rRpxpi47rrrjJciVW8hRckX1LBQCoInn3xSPvGJT9TyXuC6xwjIlBeAcAAmQSo9MXGw70wl4yV3zebY8WKETlR0xFZ3QVAwQdoE7roEBQKE2GyMDI6TMAVECBN2Nr0tiqLUD/cmCyDcz9ybjIHcm+RK1XVv4p0gRJL7GWHPvV9XNblMQkEL8ica6t4dFj4XBgULT+ybxZrEZ6o6Ib+8a6I8GKmUV/pNlbJIsUjLrlI06X+czzPeD46dfhp4KRg/MSyuuuqqjBy/ouQyalgoBee9IPfixhtvNK5o4ohZqaI6UqYmLXIPbBlZVgLJv8hkZ1kmRfaPdwCvABNjY1Rq4vzZEAi8GDb0qS6vRKpVUZ7PimOmQtEURakbvIl4PLkHXb2J3Lc2NArvhA2JbIxVdsYJxjbGDcYLxrZMVkpicYTwUs4J3l/2n6qnxtoX/0vev+U5+XP3M2RMy9j7R876rkTK2te7+IMxgeeaOYBQ3Pvuu8/kUvz6179WL4VSMKhhoRQcr776qnz2s581EyjhUVR2YsIdO3ZsRl377J8yskzQGC6UkU3uSJvuJMyqHvtHrDNJNsbkz4ocIoX3JZTAxSsRjOPGC4JY4YekbzUyFCWzxgQeCbwTrvlPyd4MQjmtNyPb3gm7aIFBgeDnfamKl8nFEkKd6G6N8Mfrylhcb5jmoR3ysUcul7M79JWPdBhgfhU59aMS6Ta6zsWe+fPnmzF5wYIFxjuBN/kPf/iDTJ0aK1urKIWCGhZKQcJEyirSt7/9bVMt6uabbzahARgAJGFnMmyHyYZVMvIQCF9i0szk/jFgMDAIWUCoY2DwWRqjShMTtvVKYDxg4FivRKpkzmDSNyFTiCCey+ok8d0aLqUo4cYzRLn9wVjHKKivYhuJ2tabwf8YHdabkckFkLpgLCBUCIOCMYHwTsbGTOZlcV7YPyGqjC8kfbsaLE8+dLW8XH1QflEeNyb6TJWiIdfVeg6eCUKqbNjTXXfdZXpUfOc735EvfOELOp4pBYkaFkpBwyrdl7/8ZZODkc3wKGDyxMAgqY8kRFzxmaykQqIj4VdMooQq8R4I9sYqA4sBZb0STOh4MBAqdcVGIyxYqcT7wQ9hCjyXY+YnW13IFSUfIEzJ3jt4GRDM1khPVdEpmKvFPcrYhyFvvRmN1fiSY+CYKUjBZyC/gbEwkwUpMJoYC3kPvNAYFBhYPhzZOFM+8NoX5PE+Z8f22bqHlJ75tXrDnq655hq54447jFGnKIWKGhaKIiKvvfaafOYznzkpPGrMmDEZjfFlQsJzwSoX4huXfKYNGPaL9wIvBkYSXhJWIRsjpCFoMNh6+BhPLqVok4USeSnWyKhLKClKoZDKEMczaY2J+gxxn5Ky2YIQSLyblIxFjOOdwEuRSS8lHlDGHUJQGfsooIGnIuxn/NG958r7u54ig1q0kepoVIrP/ZnsP1hxUtgT5/73v/+9hj0pihoWilJbkP/mN7+Rb33rWyeFRzFBpUryS0ckMMniwUB4s6KWae8CAsI2sCJkyTawakxPgC1Fa0OfbPIoK3r1HQffBa9DQNnQDiugiP9uLCNJUZoSxDh5TPY+8AkdxFC3FdrYtsUT6iopmy14b9uAkzAnPBQcRya9tdYLwoIN54jxlMWUdMfTpbN/KUt3zJBr2/U2j1e1vkSWbausFfb03e9+Vz7/+c9r2JOixFGPhaIkwWRMeNTjjz8uN910U1bDo5gEbSdZkv2oIIVwzuR72PAHQgOYfBEWhB5k+n0awpaixchgYnb1SHCOCCOzK7V4lTh2BBaGH/tRb4aSD3Cv4ong/sCQwKhAjNv7pL5iB3V5NBoqKZutz8GxM+awQMCxM+ZksmRs8H3wUFCilvBPFk8yZjhVV8kfH7taPtk51ihvwT6R3z11yIQ9XXvttfLzn/9cw54UJQk1LBSlnvAoqkex4kZ41OjRo42IpXpUJsOj7MokIQL8sJJPAjZiINOCGVGOIcMPxhKTPSERjZ00HdYjYYUXr+P1GBwcOwIK0aKGhtJcDQl+WADg3sCAYAGA+6E+wzno0eCH/TVlMQSOHQ8JBgXhToh8fjLdKJPPySIFCzIYFIR78pNpTybVnl558dNybbce8vLcDfLJO1+R1u17m2pP5557bkbfS1HyBTUsFKWBifK3v/2t/O///q+MHz9ePvzhDydWAXG3Z3rCRCjY/AgmSQwM3ivToQuESZH/QJgUscK2k26mDSYX6vJIII4QSfWdYz4Hk78VZmpoKM3FkMCI4H9rSDCu8MM9WF+YEPeHNcitR4NFCO6VpirfzD3IYgXeSMIdCXcijyOT4U7BHArGR8ZKm6eRaYOCc0yYqimpvW2VPHrv72TVtiK56MJL5Be//GVGw2IVJd9Qw0JRHGB17Ctf+Yo89thjcsMNN8gVV1xhJhcmUNzvmZ5oEMxMapRKZDJlNS4bE2gqUYCB0ZjJ3slg6CCaEE8YCiR821AQKrzU58Wpz9CwXg0NnVKakyHBPqgkZw1vErF5vTW8G6uaU13J2Iwd2V6csAsueHQxnFhwwdOaaSMKLwteEBZc2H7mmWfkgQcekKuvvEQOH60yzznvvPPkc5/7XEarWClKPqGGhaJ48Prrr8sXv/hFI8LJvzj//PONAMe4wMjItBhHVOBZwMBgFc2WZszGihmCh8+FUCC8gIkboVBfJadsw+RujQz+x0iwggojoaFQj4Y8GuR28Pm0SZ+SCVgEQPiT6xDWkABew+vttY+wtqFRXPtNuWLO52OMwHNAXhhjBEZFNsKuuP9tCW08MxgUeEIyHSLK+eU9MCrYnjZtmtx7771mDLzzzjtN2BMJ2pSYBb5HvNc0v9OxQ1Fqo4aFooQQDw8//LB8/etfNwLgQx/6kEyaNMkYFVSPIsE705ONTVJk4mP1kskcL0Y2GlnZJFDEAyuSeAls46ymXKXDSEBsIbQ4F6wEc2xBb4SLoREUfZxLfseqL4KPH/aJsZHpMA4lv+C6QWRzDWG88sNjxgF7XVrj1dWQsAYw+8SzZkMC2U9TXo/0yAk2wkTcMwZlq1wtVezwTmBUcE+ycJONYhOM5XhCCHvCoJg1a5bcc889Zhz50Y9+JNdff33iPf/2t7+Zgh5BGIM/+tGPmvLkiqLEUMNCUUKCGPj73/9uytOyIomBwQSD+KaCVDaSr4FVdzwYJC9jxBBnnK0SsqwYWkGBIGfVFCMDsdPUJV/x4ATFGEn2voYGRhTeGSsM+UHUITIwLqyhwf9qbBQu1ogIXiNBI8Iapfywit/QfZ/KkOAettcuP43R/bo+uAcw4rn3GWswIuwCQ7Y8JtzD5E/gGWCswUPh29jOJ/mbBncYTfSjwKBgjKNr9i233HLS2PHnP/9ZnnrqKZlUdFxaSVRmSEs5Vh01fzvzzDPlIx/5iPFwKEqho4aFoqQJwhR3+U9+8hPT8O6DH/ygWclCKJx++ulmpS0bIGwwMAiVYgWRSTibYUtM+rbJFqLedtZu7LK12TQ0UhkbdkUaoZXKs9HUBpaSWfiekz0R5BDwPQcNCL5/FyPCxZDg2sx0IYiwK/gcn+3MzTEhlrnP+azZgvPBWIbYz/ZYhrdz4cKFZnzAK4JBgSf4a1/7mtx22211fk4qQT377LNybtExObf4hByOikyvbiHzqltItYjxUl966aUmRLYpimAoSq6ghoWiZAiEA+7z3/3ud3LWWWeZJG+8Fqy44cHI1mQTXOVD5JOHkU2xb5NJrZEBtrN2Q8nVTW1o8B0EQ1RcQ7v4zOwv2bOBRwfxhUgkdMX+8BiBovHXuQkCGuORa4KQOvvDY75nVuSTPRF8z67XNqvgrH7nuiERvJ/JmcA72Vj3sw3vJLeB/7PtfeWexUOBxxcDhqTsmTNnmtwJwlob8oxQHfCFF16Q84qOydnFJxK/3x2NyMtV/7+9M421qjrD8OJipWlt2sTYqCBRiaAgMlycABUVUbgXAYkzSmgEhx8O0WIbhx8ajdFIHOIQ/WEcElATBxQjk4IMAqIIKkIFtSpiYmzStEmhEW7zLPjIcnWfy73n3D2d8z7Jcu+z75Gzx3O+d31TD/e3tj0TDFzXyZMnuwkTJijBWzQkEhZCdDH8QBMeRfLfmDFj3AUXXLCvigs5GBieaUBcMjHJWfaoMOMgnOE0oyTLDt/VCg3CTeJZ6I6GoHDsGJBmkMYGKpjgCIUH63xGUQRYvcL14ZkIr42tx9cnvDYsEZwdvT58RujdYLCtqEIibw9kUq8LvqvSCv3ietOR26rMvfLKK14gELpK2BPH3BEefvhht3jxYndW0043PBAWxt93N7lFu3u47W17cmGU4C0aFQkLIVKChEDc6wsXLnSTJk1y48eP97PYzMzRYTutH9KwRwU/qogLfrjTLktJCAlVbDAasorJrtXAiQ3CWGzYrHVnrxUz4hhrsUHLYDuJuGbMYnDy72PMsrShEKv9328Y8DYQeSzD886zwPmNhYOd9856lPj34xA5ExGxQM26OV21OVN8P1BpKu37jXAyxASe1TR7XRhcF76D+T7i+SM/4tVXX/WTPXiW6UPUGWbNmuWWLFniRjftdKckCAtoa3Pus7YD3Lu7e7h/tu0RZxwnORtK8BaNgoSFEClDpZGZM2e6DRs2+PAoftgwOpipI5Y4zZlMjAcEBkKDWVMEBp6TtGfLMfL4TDNgmAW1jsBpxmp3pdiwJQaqiY0wPKZaYYixGwsNM4rNQEaYYHCFQiNJfJgAqRfvB16GWDCEoiEcnEeEQdI5CYVEtYYr1yUWnuwH/254LxRVRBiEfIUN9UzwY9SnXeWN68lnIyjwFvKZGNrsQ1pw3cjXwHPL8zx//nz30ksvecP+/vvv9xX8quGBBx5wy5Ytc2OadrqTKggL4+c259bs/pVbsftAt9PteTapHsUEkxD1joSFEBnAD+zbb7/tbr31Vj+bf9FFF/lGSxiFzOiT9J1WiBRgiFFWkR9bjFCa7TGyqDyDEW3NvTAuSMo0kYFhVnSjGOMkrAhkYgOjLGkmHOFUyyws9wqfuT/jmtdmXGPYci/Z4PPD1/FI+jvXwa5FvB7vny3jdURBONi/eFt7f+e4Q1EVioYkAcFx13L/8PkY3kmepVBE2ODeLbKIAK4D96g9c3gKmFSwJpNZhCja9w2D/WEShZGmkOE4ScLGI8N9tHTpUi8o8MpQWOO8886r6V6577773MqVK915TTvcsO4/t/teHouNbQe4RbsOdP9ye7xiJHUzhKh3JCyEyBCMpjlz5ri7777bx/mT4Dd69GhvjPIDSIhUmhVF+HxmLhEYfD4GPj/4WVV2IhQDYWUzqBiQZvCwD2XpHWGVg2JjlHWMVa5npfCbrjrP4ex+R4z2/Rn3XUFHRM3+xE9Xe2Es8T5JPCAq2I84B4ZlmSp+cQ3xRpiY4LWJd75XsghFtHwrvlvYB55nvlvYjzSLGCCiNm3a5L9XuJ6LFi3y/SbIcbjzzju9l7grPv+ee+5xq1evduO673BDmyo/L9vbmtyCXT3ct3tzLf5wQJObdtVVbtTYlsJPogjRFUhYCJEDGPjE/CIwmGVrbW11Y8eO9cYMid4IDGYZ0/whwsBiRpGYZwwoPBjkf2TVBI9zYA3vGMwQW0MwjJG86/jXkjBcyYjlesZGbDwrn5fx0Z4nIqSjno2ssCT60JMTiz3eU0nslTWRnmO1ztwY9Nw7JtL57siqIhnnm+8QBAWChu8QvkvS9IxwPfnuQFCQkI3IpxQs36l4f2+//Xb/ndqV5+Cuu+5ya9euda3dd7jBCcLi323d3JJdB7qPfXWobo7/jjtxqJty80z36wKHfwrR1UhYCJEj/ECSEMhs2IoVK9y4ceP8wMAmwZEEQ4zsNA0fDHzKL2IY8CONYUJCJzOdWRknnAdCGUxkMAuJ58YMJc5FGY2/pBKnocHLMIOY8A2OkdnlOOQnKSyo3kvZcr5iwRCHhzHwgnH/EKJk5wejNg5PK/v5KtIzwrXBQ0BiNPvCZAjeCcprp3meLWcDQcG5YB/eeustLypGjhzpbrvtNnfGGWekch6o9Ldu3Tp3fvcd7oRAWOzam09BT4v/7s2nGNbrUDdj5l/doUce1eX7IUTRkbAQoiAwG3bvvfe6efPmubPOOstXkcLAJ3yGWThyMdI2jjB48WIQp8zsI8mW7APJllka9kmzsQgdZmKL0JU4DTjfScZzvA1DGjgnNjoSepQUfsT91NXXFeMPw7OasCwGx2sDkoRWnG/B67KE0XUGrjchi8zOY0Tn6dXjulKIATFBYQbON0ngeCjSzA8D7ie+kzZv3uzD2tiHuXPnunfffde1tLR4QdHc3JzqPuAFoQDHpO473ICmn30exZa27m7hrh7uH3vzKHr+poebcfU1bsiZZ6e6L0IUGQkLIQoGs3EkCs6ePdtXMJk4caJvHMWMLAKDH/K0jSgLNbD+FHy29adIu2xtpfjxsNkYhoz1B6hXodGZmfzO5lNYeBOiwgSHhTXFoU3htjhMKtzGaO/f76jwaTTPTCUhwRKhH3aPzyMPCc+A9bvAq2b9LtIO1QTuJyY6CBfls6n29Nprr/lcBxKhKedN2GgW0ETvs88+c5O7/8cd0m23z6P4cm9TvIOaurmLW8a61j9Nr0uBK0RnkLAQoqAQt/zggw+6p59+2g0YMMALjIEDB3oDDKFB6dgsKtTw4473AMOCJXkg1p8iD4MeAyNsdNfoQqOrPAqVcivC9fbyKxhZeEQaSUhwP+dRhYr9wkOAZwBhgXeEZ55lFoYzzzglards2eLvTTwFCAoM++nTp7tbbrnFe1KzhJLhTPr06rbLbWtrcm2um+vu2tzogQPc1Jl/cQf9Pr2iG0KUCQkLIQoOs/V0fX300Uf9jzudvIcNG+Z/4EmSpC58Vl2u+cG3/hQYQxg//MATmpFXGU5Cg9gXM85CoWHGmYSGKAIY7KEojoUEuQp5NZPk2SbXimebfeO5sX4XWT3b5BzRdwcvBYKC8FA6ZbNP119/vbvhhhv8ecqDm2++2XtMjIF/PNhd/eeZrne/zjXaE6LekbAQoiRQ+eTJJ5/0XgyEBKVqSVjkRx8jAC8GeQhZzRAT62whEhgEiAsMkSyTvjsrNDDcMOTqIRlclCPZmvuPogixkOCZZeTZld6SsHmGyWfie8VCHtNs3BmfJ/YB7wTPLAJn+fLlvmQsxQ4w6K+55prMQzBj7rjjDrd+/Xp32O9+66Zdfrk7ZVxrrvsjRFGRsBCihLOezz77rJs1a5YPTaLxE70wCFPASEFgkIeRpQcB48lEBsYKs5xUiMGAyjtG3oQGhh3Jpwg0CDsns5TYENXCPY9oCDu2swRCByl+YGIiTyFh+8qzgHcC7yPPp4kJnoWsQEAQ7omg4Bnlu4weFDQSZZLipptuclOnTi2MtxHPMd4U8xYLIZKRsBCipDDT984777hHHnnEl1wk0fvcc891gwYN8n/HUOjTp483bLLcJ4x44rOZASV+Hw+GVbHJ26iKjUAzAM0IxLAyocHA05G3MBLFIr5/GKFYLeL9Y4Y7zyTeAfJfeCbJk8oiCTuEc7V161Y/CQF4AebPn+9WrVrlS20T7nTmmWfKoyhESZGwEKIOoAfFE0884Z566ik/O8oP9GmnnebDGTB0yMPAi5DlTBsiA6PLDBoMCkKRrO5+2iUqqwlbqTTjHHs2imAsimxERHxflMXjhfixnheEYnEf27PHPme5r+RL4B1BUHD+CKNctmyZL63NOZ0xY4a77rrrfM6YEKLcSFgIUUfwgz1nzhz30EMPebc9IVL0xKCCFIYEP9w0ssrDqCde2kQGoRg0LTNDB8FRJKMsjpEPvRtxF+ewk3OenbNFbZ27407pYbf0UEAUNUeH40BAmJhg3wm/Mm8h92zWcA6p7kTIE/vHOl5WQp6Y7LjxxhvdJZdcklk+hxAifSQshKhD+BF///33vRfj5Zdfdn379nVjxoxxp556qs+9wKtBmBRGRx6z78RXE7OMAYTYAIwf9oda/XlVmOrIebWO2aEBymtEHSEmYcfnUHQU9ZgaBe65JPHAa0L2MG6Trh2jaCKiyM8RXh7yN/BOIMbZR76LFixY4PtRXHjhhd47QehmUc+rEKJ6JCyEqHOYxXzuuefcY4895o2Qc845x8cwUyaW0CgSvVnPMnGzozOt5Gcw01oGAwTjtJLoIMYdb0YoNDBkw0ZwEh61gQEbNg5E6IVCgr+R4xNeg1A8IAqLDs8Kzwd5EkXz/OHNo+8F3glCn1inM/bChQv9c4yYuPLKK/0+CiHqFwkLIRoEjJL33nvPPf74477ZFE338GKceOKJ3qjF0CVUCpGRZ2hCHBuO4W2N7xhlERohCIt4thzD1wxhZnkReSY0TGwkveZale34a7lnEQzWYdxEQ9JrjFm8b3auuIdjr1ERigdUIySs7wWD4y5KrhL3MAKCvhOsc60++OAD752gmd2kSZPctdde604//fSGuWeFaHQkLIRoQJjxfOaZZ3yyN+skeo8YMcIdf/zx/u/EkpOLkWVzrEpeAMRFWC62HoRGJeN5fwZ0aDybAR12uraBSOG62Xr89yw6Yid1+LYu3yw5ZluPR3jMseiqJLjqQXTFQoL7nnNg5WoZrOfpXbEmmRSMINQJPvnkE7dy5UqfkI13gmTsadOm+XUhRGMhYSFEA4Mhwwzj888/72bPnu0NuFGjRrnhw4f7HAyMOowDwqWI3c67fnsloWE9AupBaLR3rTj+UHAwkgzzSsY8/wZwfkIRwrBzxtKGvY73w5Y27DWfE4qF+POSRE7SQCyEgoFt9XpN2xMS3NN4J/IO0+KaksOBZ4JwSoQpORQrVqxwS5cu9X+/7LLL3JQpU7wHtB6vlRCiY0hYCCH2zURSrQWRQagU3gpEBkmWiAqMBbYhMrKufV+L0CAMRrTvQWDEgiFcDwVCLDrCdRMpeXhIyiYk7J4topCwfWUfyZnAQ8FrxAWJ2IgJtk2cONHnTVB9rgj7LITIHwkLIcT/QQ4A4gKRQXlIQqSIkz755JN9qU2MCEv6zrIBX7VCwxqW2ShbrL0oJ+TWhI30GEUVEgZ9JiwJm+eJksurV6/2YoK8CcpXIyYmTJhQqF40QohiIGEhhGgXkqhffPFFX1nq008/9eKCnIzm5mZvEBF6RNI33oyieQcwjBAXoWHHjDGJvaHQoCIWoTdCVAthaWHPEwYJzTwf4b2Wd45EEhQVwANBqBPPB8/N2rVr3fLly72oYGJh6tSp7uKLL/beSyGEqISEhRCiw1CH/oUXXvCeDLwCCIyRI0f6ClPWOK5nz56+Wg0GVBHDX5hFjpveYViZ2LBGaAyJDVFJRIQCgnsIEYGwDu8f1ovoHeNZRXAzabBt27Z9jQCZOCBvgiRsvClXXHGFz5ugD44QQnQECQshRFWGyapVq7zIIOmbGVhyMYYOHeoGDhzojSni6hEYeDJo1lW0Wdo4vyQ0ElkiNsIwKuu4jADJo6mgyB5yUjC6CQ0MxSjhTIiI8N5gWeReJHghSLzGM4Gg4NgQ2VR0+uijj/zzzHsuvfRSLyjwTBZxYkAIUWwkLIQQNRvlNMKaO3eue/31170nY9iwYT5UasiQIT6GHCOGGVC8GYRS5NknozPHleTZgLjBmq3j4ZAxVj6RjFAIe4zYeni9Y09EkUWEgReFhGu8EjyXCGJykD7++GNfDe7DDz/0zyX5Eueff75vnFmG4xJCFBcJCyFElxppzIAiMEj+Xr9+vevfv78vQYnIIBcDkcHMP56Mww47zCd/l8UYZ9+to3NshLKdikgmMmLRIYMtf6GYdN0YVMVKaqhnHdLL4qHi+SP5evv27V5McGzsO7kT69atc2vWrHGff/65Gzx4sBcTDDyMZXn+hBDFR8JCCJEaGDhvvvmmFxqUsqUSDiFTGDbkZVgjNwQGQoPZ07x7ZVQLxmnSrDeDkBO8GRisDIzVpEZvZT32Ipz7pMaCiD2uA4PXhOgliQfWy3ruOXa8EYQ48bxZ40EqOCEmSL6mQholYRESra2t/nkTQog0kLAQQmQCseqIC0KmGBh/J510ks/LQGjgxQBCpwiXQmQQclKW2eL2QFiE4TWhAWxGMCCyQrGR1GmaUVYjuLNgIMfnKqk7OcY0JJ0rExAsi5hIXY3XjLA8xARhToQ2AWVhCXEivIkwJ46d8CbExNlnn+0LKwghRNpIWAghcjGOMH4QGIRMUW3qhBNO8LkZxx13nDv66KP3fEF167ZPaODtQGjUY9gGISyhsRwbzuE23ksiPIYjQqSj3ayT3hd23O7KYwm7b8fdvzvSJRyhwLHymv2rJLDCbfWa38L5JMcnFBLWsPDLL7/0oU2Uht2wYYPr16/fvhAnnqV6EOVCiHIhYSGEyJ2vv/7avfHGG27evHm+dj4GL7Hf1M9HaBx11FENJTQqgUGJ98OEBgZ4Z4x3+zvCzrDO2FCpo7atJ3XltnWwzt4G/24lUdOe6EEwmWjAy9Bo1xiPBOFLSUJi06ZNviwsuUxcT8o9t7S0uPHjx7sjjzwy790XQjQ4EhZCiEKBYUr5yyVLlrjFixf7uvoYnoMGDfJ5Gccee6yERo2YALBhQiNJLITbYsERbzMhYUMz5rUJia+++soLCfIlKISAkBgxYoQPbRo1apQPIyxyGWchROMhYSGEKDTMysdCA2OK0Ck8GggNZmoxbjFkacyHRwPPBh6NRslHEOUAIUflJgRER4TE8OHDvZCgFKyEhBCi6EhYCCFKLzQInUFomEcDoYHIYCaepFXEBkKDHgSUt9Usr8hSRJAjgYCg2zVFDOzeJATQhAQ5EtzbsUdCZYqFEGVCwkIIUZdCg0TWPn36+LApBl4MCMUGwxqeSWyIWkWENVREQIQiAvBO4JFgbN261W3evFlCQghRd0hYCCHqUmhQKYfKUyyZFaac7THHHOPFBh4NxIbV80ds0FsCr4bEhuisiMAbQc8MExH0kzARQcL1F1984cvB4k2jWhMNI1nKIyGEqDckLIQQdQ9GH6Em1Pg3wYHYoLeBiQ3zbMRiwzwaYVM1eTcaR0CEzQ5NTFQSEXgiEBG8HxFhAqK5udmH6nE/CSFEPSNhIYRoSCjZGosNegIQJmVig34aRxxxhBcbhFchNki0ZR2RQb4GnhATHQxVQioXXFPrzo14wLNAXgSv8X5ZUQDWERHffvutFxFbtmzxIoJwp/79+3sBEYoISuUKIUSjIWEhhBCB2KA/QBhKtXHjRi8mDj/8cNezZ0+/RGiQs8E6/TQsGZf3Wbdn83LYYHsj9WMoElwXri3CwQbeB+uCbuKBa0jZ1++//97nRCAkWN+2bZtf8j5EROiJoN8KPTeEEEJIWAghRLtQ8pNZarqDM0i6JYyKdbZjVOLVSBIdiAv7N8IO0oTE4BlJ6iStKkCdA09CUqdyPAmELIUdy630MOFMiIZYPHA9eT/Xs2/fvj6ciSIArDPYrvLFQghRGXkshBCiSjBYSc6NRQchMj/++KPPz+jVq5cXHQiOgw8+2G9jkCROKJV5MRAfwMw53abbEyAM8jzq1QOCCCC/IRYLsWCgC7k19zODn/+XUCaSqhEQjJ9++skLCMTDd99957cdcsghPuQtFg+EvymMSQghqkPCQgghUgDjFYFhogPB8c033+ybKcdIRjwQSkU1KqtIFValYmmN/ix3w0KugG0Y1DYQG3g8bGnrScPebwIl7qodd9g2kjpy27oJAgZCKezuHQ68DAxbt/fbMLFgIUp23IQvUYGJcxuXdmU7g1AmRAfiAM8Rgq53796/EBAICvMmCSGE6DokLIQQImNsVt3CcFjG8fwmQMgHQCDg7UBkmNcDTwYejTiUiiXb7W+8Dw9InFQeioGuJBYpBsIADwMeB0QVXocwVCkcbOd95m1AMLBEhJCvYoIhznuxbSxDb5AQQohskLAQQogCg7Aw4WHi44cffvAz9ogTqhjZCJOTSUy28Cq8EwgMEyPxwADnPeYhMGEQroMJEfOahOt8FksTDOFAJDDC/bHSvTaormUDUYBHwcRCOHivEEKIYiJhIYQQdV4JyURHuAyFiIUfVRqhIEBsVBr8PRYKth5uw7Mib4IQQtQfEhZCCCGEEEKImvll0K0QQgghhBBCVIGEhRBCCCGEEKJmJCyEEEIIIYQQNSNhIYQQQgghhKgZCQshhBBCCCFEzUhYCCGEEEIIIWpGwkIIIYQQQghRMxIWQgghhBBCCFcr/wMyd72FllrQJwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10,10), subplot_kw={'projection':'polar'})\n", + "\n", + "arrivals = taup.get_ray_paths(source_depth_in_km=500,\n", + " distance_in_degree=150,\n", + " phase_list=[\"P\", \"S\", \"PKP\", \n", + " \"PKIKP\", \"PKiKP\",\n", + " \"S\", \"SKS\"])\n", + "\n", + "ax = arrivals.plot_rays(fig=fig, ax=ax, legend=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAINCAYAAADSoIXVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoWNJREFUeJzs3QV0lMfeBvAn6xt3IwGCu0tx90tpaWkpVKje9rbU3fXWbuW29KNeqPdWaCnF3b24hwAhQNyT9f3OzCZLQgKEkGTt+fXseWU3m5fZbbJPZuY/fna73Q4iIiIiIiK6LIrL+3IiIiIiIiJiuCIiIiIiIqoj7LkiIiIiIiKqAwxXREREREREdYDhioiIiIiIqA4wXBEREREREdUBhisiIiIiIqI6wHBFRERERERUB1TwcjabDadOnUJQUBD8/PxcfTlEREREROQidrsdhYWFiI+Ph0JR9/1MXh+uRLBKTEx09WUQEREREZGbSE1NRUJCQp0/r9eHK9FjJaSkpCA8PNzVl+M1zGYzFi9ejJEjR0KtVrv6crwG25Xt6kn4fmW7ehq+Z9munoTv1/qRk5ODpKQkZ0aoa14frsqHAooGDA4OdvXleNX/8P7+/rJNGa7Yru6O71e2qyfh+5Vt62n4nmW7etr7Vaiv6UIsaEFERERERFQHGK6IiIiIiIjqAMMVERERERFRHfD6OVc1LclosVhgtVpdfSkeNV5VpVLBYDCct92USqV8DEvgExEREZEv8PlwZTKZcPr0aZSUlLj6tfC4QBobGyvLWF4oPImiF3FxcdBoNA16fUREREREDc2nw5VYYFiUaBc9LGIhMREA2MtS87YrKipCYGBgtQuwifAlgmtmZqZs45YtW9bLQm1ERERERO7Cp8OV+PAvQoJYZFj0sFDNiXYT7afT6c4bmvR6vSzTfvz4cedjiYiIiIi8FbsSRCOwR6X+3mBsWyIiIiLyEQxXREREREREdYDhioiIiIiIqA4wXBEREREREdUBhisPNW3aNFnZUNxElcMWLVrg5Zdflut1ERERERFRw/PpaoGebvTo0fjqq69gNBoxf/583HvvvbI631NPPeXqSyMiIiIi8jkMV+eszVRqtrrkhdCrlZe8xpZWq5UL+Qr33HMP5syZg7lz5zJcERERERG5AMNVBSJYtXthkSteB+x7aRT8NZf3coh1pbKzs+vsmoiIiIiIqOY458pLetyWLl2KRYsWYejQoa6+HCIiIiIin8Seq3OG5okeJFd970s1b948BAYGwmw2w2azYcqUKXjxxRfr5fqIiIiIiOjCGK4qEHOeLndoXkMaMmQIZs6cKasFxsfHQ6XynGsnIiIiEqNvTFYbioxWFJksKDJaEOGvQWywjo1DHomfxj1YQECALMFORERE5K5sZQXDCo2O8CRvJmvZ1gKz1V7p8a2iAhmuyGMxXBERERHRZRHxqNhkRWmpI0SVBymxLTZZYKucn6rQqxUI1KgQoFUhMkDDV4M8FsMVEREREdVoCJ/BYkOBwewMUIUGCwqMZpQmdsWCQ1nn/VqFHxCgUSFIq0KguGmUZVsRqJRQKVhjjbwDw5WHmjVrlqsvgYiIiLyQxWYrC01nw1P5seV8XVB+ChmgRGASAao8RAVpHFt/jRKKS1zPk8gTMVwRERER+SCD2YoCgwX5RrPclvdIieF95yPiUYBGiSCdWgaoYK0KehWwZd0ajBs5TBbZIvJlDFdEREREXjyUr9RsQ75BBChHiBL7+QaLrNJ3PhqlAsE6Rw+U2AZrHWFK9EIpRRdVBWJJGIXVJKsuE/k6hisiIiIiL5kPlV9qdoYnx9ZcpRpfRaIXKqSsF0psZZDSqaBVXfr6m0TEcEVERETkUUwWG/JEcCo1O7ciRJnOE6JEf5LocQrRlQeosyGKhSSI6hZ7roiIiIjckNVml3Og8kSIKjU5tgaLXDOqJiEqRK929kqdO5SPiOoHwxURERGRGxSXyJUhquxWNkfqfMX5/NVKhJaFpxC9CqFlPVIMUUSuxXBFRERE1EBsdrtcXFcEKWeYKjGh1FJ9cQm1wk+GKBmkxLasR0oUnCAi98NwRURERFRPw/rEXKjcEhGkTMgpcfRIifPVEcP3yoOUvOnUsuAEq/AReQ6GKyIiIqI6WHhX9EKJAJVTYpK9UqLQRHUxSunn6I0KKwtRYf6O4X1q9kYReTz2KXuoadOmyb9kiZtYsK9FixZ4+eWXYbFYsHLlSnk+Ly/P+fhTp06hY8eOGDhwIPLz86s85lK+RtyUSiVatWqFa6+9FkePHnVJGxAREbkqSGUWGXEwoxAbjudg/v4z+GXnKSw5lIltJ/OQklMig5YIVmL4XkyQFm2iA9GnSTjGtY3BtZ3jMbJ1NHo2DkPLqEBEBmgZrIi8BHuuPNjo0aPx1VdfwWg0Yv78+bj33nuhVqvRp0+fSo9LTk7GiBEj0K5dO/z888/Q6/UXfe4Lfc3BgwcREBCAHTt24JFHHsH48eOxa9cuGbiIiIi8iRjC5+iREsP6TMgucRSaqK5HSqdSINxfI3uiwvWOrSg8wWF9RL6D4cqDabVaxMbGyv177rkHc+bMwdy5cyuFKxF6Ro0ahaFDh2L27NlQqS7+kl/sa6KjoxEcHCwD1rPPPoubbroJR44cQevWrevhX0lERNRwC/EWGC3ILi4PUo7y59VNkSoPUuEiSIlApddAr1YwSBH5OIarKqubl7rkhdCp9Jf9A1n0LmVnZzuP169fj6lTp8rbhx9+WKPnv9SvKe/RMplMl3XtREREDa3EbJVBSoSonLJAZa4mSYmhfRFlIar85q/haA0iqorhqgIRrAZ83xuusGbKJujV/rUOhcuWLcOiRYswffp05/mrr74a119/PWbMmFHj57qUrzlz5gzeffddNGrUiL1WRETk1iw2O7KKTTAHRWPjiTzklFpkuDqXWCcqXK9GRIAGEWVBihX7iKimGK482Lx58xAYGAiz2QybzYYpU6bgxRdfxJYtW+T9EyZMkEMF16xZgwEDBtToOWvyNQkJCTLQlZSUoHPnzvj1119lUQ0iIiJ3IH5HFZusMkyJXqmsYqMshy77pMIScbLAKB8nxmaIhXcjy4NUgKNqn+IyR5IQke9iuDpnaJ7oQXLV975UQ4YMwcyZM2WwiY+PrzI36pNPPsHjjz+OMWPGyIIXourfxdTka0TwEqFOp9PJXiuFgkUniYjItUUnxDpSmUUiSDnClKGaRXm1KgUsBTlom5SA6CCd7JVi+XMiqksMVxWI+UW1HZrnCqKghCjBfqF/z6effirDz9ixY/HXX39h0KBBF3zOmnxNUlKSLGhRUFBQZ/8WIiKimjJaHL1SjjBllL1T506VEn1PolqfKHNe3jOl8bNhwYItaNOrtayuS0RU1xiuvJwISx9//LEsk14elgYPHlznX0NERFSfQ/wyioxlgcooK/pV1yslQlR5mBK9UipF5eF9Yhg9EVF9YrjyASIsffTRR7I3aty4cXKu1sWqANbma4iIiC6XzW5HfqkZmWVBStxKqxniF6xVITJQg6iyMBWkVfH3FBG5HMOVh5o1a9Z57xO9TOIvfRWJYCQqAFasAljxMZf6NaKABhERUV2EKVECXQzxE71TmcVGmK2Vfx+JDijREyVCVFSgFlEBGmhVLIVORO6H4YqIiIgatPiECFMiSJUP9RNl0it9OFH4OYNUdIBWVvFTsXgSEXkAhisiIiJqkDCVLsJUkQnWc0ZKaJR+ZT1SWkQHaRGmZzl0IvJMDFdEREQuZrPakJ6aj7imYfCGYX5iTan0QoMMU2LulAhY5xafiBa9UiJQBWoQqlNzvhQReQWXhqvXX38dv/32Gw4cOAC9Xo++ffvizTffROvWrSvNBVq1alWlr/vnP/8pq9kRERF5MjGPddfa45j72RYU5pbipR8mQ6X187h/Q55BhCkjMsStyAjzBcJUTKAWwToWnyAi7+TScCVC07333ouePXvCYrHg6aefxsiRI7Fv3z65hlO5O++8Ey+//LLz2N/fc9aiIiIiqs6RnafxxydbcHRPujwOCNbiVEoOGreJcPsGKzJacEb0TBU6hvoZz6nmp1b6yRAVE6STgSqEYYqIfIRLw9XChQurVMCLjo7Gtm3bMHDgwEphKjY21gVXSEREVLfSknMw99PN2LMhVR6rtUoMva4jhk/uBP8grVuuxSTCkxjmd0aEqUIDikzWKgUoRAU/EaZigrQI5ZwpIvJRbjXnKj8/X27Dw8Mrnf/uu+/w7bffyoA1fvx4PPfcc+y9IiIij5J9uhDzvtyKLYuPQNRzUCj90Hdca4yZ1g2hkWdHa7gDMUcqq9gow5ToocopqRz4xMDFiAANYoN0iA3SyjLpynMW7CUi8kVuE67EukkPPvgg+vXrhw4dOjjPT5kyBU2aNEF8fDx27dqFJ554AgcPHpRztapjNBrlrVxBQYHcir8EnvvXQHEsxoqL7811my5N+XpX5e13oddVPEa0tVLJNUkupvw96o5/ufZkbFe2qysV5Rmw+LudWPfnQVjNjp+XXQY3xdhpXRGdGFLpPeqqnwPi57TojTpTZCorQmGuUoQiWKssmzOlQaS/GmqlwnmfzWqBrXJnllvizwK2qyfh+7V+1PfPVj/7uSvHusg999yDBQsWYO3atUhISDjv45YvX45hw4bhyJEjaN68eZX7X3zxRbz00ktVzn///fdVertUKpXsDUtMTIRGo6mjfwlVZDKZkJqaijNnzsh5dUREvsJisuH4tlIc21oCq8nxqza8sRotBwQiJFbt6suD3U8Bqy4YNl0wrPpg2FXayg+wmqE0FMibwlAIhZV/9CEiz1dSUiI7b8SIueDgYO8MV/fddx/++OMPrF69GklJSRd8bHFxMQIDA+V8rVGjRtWo50qEp9OnTyMiovIkYYPBID/4N23aFDqdrg7/Rd5PvG0KCwsRFBR0wfK5oo2PHTsmXwO2cc3+mrJkyRKMGDECarXrP3x5C7Yr27UhWcxWbPjrEBZ9s1P2WgkJLSMw/o7uaN0j3mXvV/FzO99gkb1TYrhfdokZFT8AiFF9kf4a2TMlbt5YhII/C9iunoTv1/qRnZ2NuLi4egtXLh0WKH7QT58+HXPmzMHKlSsvGqyEHTt2yK1olOpotVp5O5f4BXXuLymr1Sp/cSgUCnnzJNOmTcPs2bPlvvh3NW7cGDfffLOsuCh6/4YMGYLc3FyEhobKx5w6dUqG0bCwMPz555/4+++/5WPKiUIi/fv3x9tvv41mzZpd9PuXDwUsb7/zEfeJx1TX/nR+bK/6wXZlu9b377S/V6Vg7idbkJnmGJIe1SgY4+/oga5DmkFxiXOS6uL9arLacKbAgFMFBrktPaeqX5BWhbhgx7wpUd1PVWGonzfjzwK2qyfh+7Vu1ffnUZeGK1GGXQzXE71WogdEDB0TQkJC5LpXycnJ8v6xY8fKXicx5+qhhx6SlQQ7deoEXzd69Gh89dVXsqdu/vz5sj3FG6ZPnz6VHifaUfwFtF27dvj5559l25YT89dE2x8+fBh33XWXLBgi2pnzo4iIai559xnM+b9NSNmbIY+DwvQYe2s39PtHGyhVigYNeAUGiwxT4pZZZKzUOyWKTogQFR+sk6EqUOs2U6+JiLyCS3+qzpw507lQcEUiMIieGTEPaunSpXj//fflcEAxtOyaa67Bs88+66Irdi+ih668RL2YsyZ6AOfOnVspXImgJHqshg4dKnu6xDyzikSPlejdEj2Bzz//PKZOnSrns1VcyJmIiKqXnpqHPz7egp1rjsljjU6FYZM7YfjkjtD5N8xcXlF4Qizcm5ZfKgNV8Tll0kXvVHmYEgUpWNWPiKj+uHxY4IWIMCUWGm7I67GXlsIV/PT6yx7bLnqkxDjScuvXr5dhSdw+/PDDiz5/eY+WKEJBRETnV5hbivlfbcfaP/fDZrXDT+Eoqy56qxqirHqp2eroncovlfOnLBUq+4nRhyJENQrRy0AlwhURETUM/sStQASrUy1d02MTf/gg/M6pZngpoXDZsmVYtGiRnMNW7uqrr8b111+PGTNmXPQ5RMGP//znP2jUqBF7rYiIzsNksGD5/3Zjyfc7YShb+6lD38aY8M+eiE+qvEZjXSovRiF6p9LyDcguqfxHML1agfhgPeJDdIj1oblTRETuhuHKg82bN09WThTVZESBCVFWUpSi37Jli7x/woQJcqjgmjVrMGDAgGqfQ5S9F7+0RVnKzp0749dff2VZeiKic9isNmxceBjzvtiK/KwSea5x60hcfU9vtOp28QqAtWGz25FeaMDJfIMMVecO9wv3V6NRWaAK06u9rrIfEZEnYrg6Z2ie6EFy1fe+VKLan5i3JuamiUWWz51P9cknn+Dxxx/HmDFjZMELUQjkXCJ4iTKUYu6VKGxBRERniT8+7dt0Er/P3IRTKbnyXHhsIK68sye6D2t+yRUAL8ZstckwZYxoij8PZMJsPTvcT+kHxATp0ChEh/gQPfzVXJidiMjdMFxVIP7qV9uhea4QEBCAFi1aXPDf8+mnn8py6KLi4l9//YVBgwZVeowof19erp2IiM46cTALv3+8CQe3nZLH+kANRt/cFYOubgd1Hc5jMlqscqjfybxSnC40QE6fCoiA1WqHViWG++mQEKKX5dI53I+IyL0xXHk5EbA+/vhjWVq9PGCdW52RiIjOyssqxtxPt2DTwsPyWKVWYNDE9hh1UxcEBNfNgvMlJovsoUrNK61SLj1ArYQxOw39OrdFbIg/FBzuR0TkMRiufCRgffTRR7IHa9y4cXKuFsfmExFVLVax7KddWPzdTrkv9BjeXC4CHBkffNnNVWS0yDAlbucWpAjVq5EYokdCqB7+SjsWLNiMqIDODFZERB6G4cpDzZo167z3iZ6pc8vcizAlqgZWrBx4sVL4RES+QPws3LYsGb9/vBm5GcXyXFL7aFwzvQ+S2kVf1nMXGMwyTJ3IK0VeqaO6YLnIAA0SQ/VyyF/FxXxFkSIiIvJMDFdEROSzUvam49cZG5GyN0Meh0UH4Kp7eqP70Ga17uEXgepErghUJbJ8ejnxbGL9KRmoQvXQsyAFEZHXYbgiIiKfk5tehD8+3YItS47IY41ehZFTOmPY5E7Q1KJYhQxUoocqtxT5BnOlQCUKUSSG+SMhRAetihX+iIi8GcMVERH5DGOpGUt+2IWlP+yE2ehYN+qKMa0w/s4eCI0MuOQ5VCdyS3D8nCF/IlDFBeucQ/40Ki7oS0TkKxiuiIjIJ+ZViV4qMa+qfBHg5p1icM19fdCkTVSNn6fEZJXD/USoyi6p2kPVWPZQMVAREfkqhisiIvJqqYey8L//rsfR3enyOCI2EFf9qze6Dkqq0bwqsQ6VKEpxLLcEmUWmynOogrRoEuqPhFAO+SMiIoYrIiLyUsUFBvz5+VasnXsAdpsdGp1KrlU17LqOF10E2GK1yXWojueW4HSBodI6VFEBGjQRPVQsSkFEROdgzxUREXkVm9WGdfMO4s/Pt6A43yjPiep/V9/TG2Exgef/OrsdZwoMOJZbirT8UlhsZyNVmF4tA1XjMD0CNPzVSURE1eNvCCIi8hpH96Tjf++vl0MBhfikMEx6sC9adY0/71ysnBKzHPIneqmMFpvzvkCNEk3C/WWoCtGpG+zfQEREnovhioiIPF5+dgn++GQzNi08LI/1gRqMu607Bl7VDspqqvUVmyw4llOClJwSFBrPrkWlVSnQOFSPpuH+iPDX1HqtKyIi8k0MVz5q1qxZePDBB5GXl+fqSyEiqjWrxYZVv+3FX19ug6Gsel+fsa0w4Z+9EBSmr/RYs9UmC1OIQJVR5BguKCj9gEYhjkAlSqgrGKiIiKiWuPiGh5o2bZr8i6q4aTQatGjRAi+//DIsFgtWrlwpz1cMTqdOnULHjh0xcOBA5Ofn4/rrr8ehQ4cqha3Q0NBK32P//v1ITEzEpEmTYDKZ5GPKv6dKpUL79u1x2223ISMjo0H/7UREQvLuM3jj9t/w64yNMliJkuqPfjwBNz45yBmsxLC/M4UGbDiWgzl7TmPTiVxnsIoO1KJ34zBc3TEe/ZIiZMBisCIiosvBnisPNnr0aHz11VcwGo2YP38+7r33XqjVavTp06fS45KTkzFixAi0a9cOP//8M/R6x4eO8m11tmzZgjFjxuDqq6/GJ598AoXCkcODg4Nx8OBBGeI2bNiA6dOn4/Tp01i0aFE9/2uJiByK8g1yCOD6eQflcUCIVvZU9RnbGgqFYxifGOqXklOMlOwSlJgdiwULQVoVksL9ZS9VAAtTEBFRHWO48mBarRaxsbFy/5577sGcOXMwd+7cSuFq165dGDVqFIYOHYrZs2fLHqeLDQtcvnw5JkyYgH/961948803K90neq3E97TZbDKwiXD1/PPPo7S09IJhjYjocoleqI0LD+P3/9skA5bQd1xrTLi7FwJDdLJ8+rFsMY+qGBkV1qNSK/3kWlRJEZxHRURE9YvhqiK7HTCXwCXU/iK5XNZTiHCTnZ3tPF6/fj2mTp0qbx9++GGNJmaLgDZlyhS8+OKLeOKJJ2r0PUXQEj1ZRET15fSxXPz4zloc2XnGWQVw8qP90axDDLJLTNh3IldW+6tYPj02SItmEQFyuJ+qrEeLiIioPjFcVSSC1b/PvwZKvXq6CNAE1PqvucuWLZND80RPUjkxpE/MrZoxY0aNnqeoqEjOr3r66adrFKzEcEMxZLBHjx4ICgqq1bUTEV2IyWDBgtnbsfTHXbBZHQsBj721G/pd3Q4nCgxYcCAd+QZLpfLpSREBcuhfAIf9ERFRA2O48mDz5s1DYGAgzGaz7D0q73ES86UEMbRP9EStWbMGAwYMqFEvVP/+/fHZZ5/hhhtuQNu2bas8RhTDEN9TfD+DwSAf//nnn9fLv4+IfNueDSfwv/fWIftMkTzu1L8Jht7dExlWG/48kI7yTipR7S8x1B/NIvxlkQqWTyciIldhuDp3aJ7oQXLV975EQ4YMwcyZM2W1wPj4eOd8qnKiV+nxxx+XhSlEwQtRKfBClEolfv/9d0ycOFE+94oVK6oELNFDtX37drkfEBCAmJgYZ7ELIqK6kJtehJ8/2ICda47J48hmYRh4Ty+UBKqxNbvY+bgwvRrNIwLkIr+aatayIiIiamgMVxWJOUm1HJrnCiLciBLs5yP+evvpp5/K8DN27Fj89ddfGDRo0EWLZPz222+49tprZcASxS1ElcFy4rnE9xQ9VwUFBXX67yEi3ybWrFr56x7M+3KbHA4Y1iYSHa/rAHuEHnLBB5MVaoUfmoT7y1AV7q9x9SUTERFVwnDl5UTA+vjjj2WvVHnAGjx48EUD1q+//irnX5UHLLGmFRFRfTm+PxPfvb0a6acLEXNFIhKHNIUqRAdb2f0R/ho0jwxAk1A9VEr2UhERkXtiuPKRgPXRRx/JXqdx48bJuVoXI4Ya/vLLL7juuuucAYuIqK4ZS83484ut2LY1DbF9E9GraxwUZUP8RC+VWI9KhKowPXupiIjI/TFceSixTtX5iJ4pUUHw3IAlqgZWrBw4bdq0SvsVjwWxILEoiFGuQ4cOVR5DRFRbuzenYsnSIwjqGINO/RKd58P1arSIDESTMPZSERGRZ2G4IiKiBnU6owhL1x4DYgMQN6alPOdnt6NpRABaRgYiIoC9VERE5JkYroiIqN7Z7Hak5Zdi28FMlGqUUCWFOu4oNaNj4zC0jA2GlhX/iIjIwzFcERFRvTFarEjOLsHBMwUwiIWpNErYbXaUpOShR5sodO7SiOtSERGR12C4IiKiOpdXasahzCIcyymGtWwKqLnIhIzNaWjbKBjXX9sRSvZUERGRl2G4IiKiOhv6dyrfgIOZRcgoMjrPF50swOnVxxFsseGmh/shJrFsSCAREZGXYbgiIqLLYrbakJxbKHuqik1Wx0m7Hdm70pG28hhM6UW4+p7e6PuPNlAo/NjaRETktRiuiIioVopMFphCE/DXwSxYxHyqsl8q2dtO49CfB2DMNaD9FYm44a3RCIsOZCsTEZHXY7giIqIaE2voZRabcDCjECfzDUBwjBgPiCCtCubDOVj50UZYDFb4B2lx8zOD0WtkCxasICIin8FwRURENZpPdSK3FAczC5FTYnaeV5Tmo2VQGBa+vQ5pyTnyXOcBTXD9Q/0REunPliUiIp/CcEVEROdlEvOpsorlfKoSs2M+lZg2lRQegCaBanzz71VYu7UUNpsdgSE6XPdgX3Qb2oy9VURE5JMUrr4Aqp3MzEzcc889aNy4MbRaLWJjYzFq1CisW7eOTUpEl63YZMHfaXn4Y89p7DiVL4OVWOS3Y2wwJrSPQ1SRGZ/cPx8pm0tksOo+tBme/eZadB/WnMGKiIh8FnuuPNQ111wDk8mE2bNno1mzZkhPT8eyZcuQnZ3t6ksjIg+WW2LC/owinMgtQdnyVAjWqdAmOghNw/xhs9gw/6vtWPL9TrkYsMZfgRufGITuQ1q4+MqJiIhcj+HKA+Xl5WHNmjVYuXIlBg0aJM81adIEvXr1cvWlEZGHFqk4U2jE/oxCpBeeXZ8qOlCLttGBiAvWyd6o1ENZ+Prfq3DqqGNuVfdhzRDcugCd+jdx4dUTERG5D4arcz5gmAwWl7wQGp2qxkNpAgMD5e3333/HFVdcIYcFEhHVtkiFCFV5pY4iFeKnUOMwveypCvfXyHNWiw2Lvv0bC2Zvh81qR2CoDjc82h/t+yRg/vz5bHgiIqIyDFcViGD18KhZcIV3F02DVq+u0WNVKhVmzZqFO++8Ex9//DG6desme7AmT56MTp061fu1EpHnL/p7NLsYBzLOFqlQKfzQLCIAraMCEag9+6vhVEqOLFpx4mCWPO4yKAmTH+mHoFA9zOazVQOJiIiI4cqj51yNGzdODg/cuHEjFixYgLfeeguff/45pk2b5urLIyI3ZDBbcSirCIczi2CyOmZUiSIVIlC1iAyU++VsVhuW/bQb877YCovZJtetuv6hvixYQURELme3WGD6ewcMK1dC06E99GPGwF2w5+qcoXmiB8lV3/tS6XQ6jBgxQt6ee+453HHHHXjhhRcYroiokiKjBQcyCnE0uwRWuyNUid4pMZ9KlFRXitrqFaSn5sneqpS9GfK4Q9/GmPLoAK5bRURELmM9fRqGVatgWLEKhjVrYM/Pl+d1o0YyXLkrMeeppkPz3FG7du3kPCwiorOV/wrlvKryyn/h/mq0iwlCoxA9FOfM8xTzTlf9tg+/f7wJZqMVugA1rp3eB1eMacXy6kRE1KDsRiOMm7fI3injqlUw7z9Q6X6/0BDoBg6EfvQot3pl2HPlgUS59UmTJuG2226Tc6yCgoKwdetWOSxwwoQJrr48InIhEZAyi0zYl16A0xUq/8UGadE2Jggxgdpqg1JeZjG+fWMV9m9Jk8dtejTC1CcGIjwmsEGvn4iIfJfl2DEZpkTvlHHdOthLS8/e6ecHTZcu0A4ZDN3gwdB06Qw/pRLuhuHKA4lKgb1798Z7772H5ORkOak8MTFRFrh4+umnXX15ROSiUJVWYMC+M4XILjHJcyJCJYbqZagqr/xXnW3Lk/HjO+tQUmiEWqPE1f/qjYFXt2NvFRER1StbSQmM6zc4eqdWrJThqiJFVBR0gwdBN2QwtAMGQhke5vavCMOVBxKl119//XV5IyLfJsqpH88twf70QuSXLSUhplCJyn+inHpQhcp/5xJh6n/vr8eWJUfkceM2kbjlmSGIbRLaYNdPRES+9YdAy6FDMKxYCcPKVTBu2gSYHH8QlFQqaHr2kD1T4qZu1xZ+irPFljwBwxURkQey2Oxl5dQLUWxylFNXK/zQIipQVv/Tqy88VOLAtjRZtEIMB1Qo/TDqpq4Yc3NXKCtUDCQiIrpctoICGNashVEO91spC1NUpExIcISpIYOg7dcPiqAgj250hisiIg9isthwOKsIBzOLYLTY5DlRQr2NKKceFQiN8sLhyGy0YO5nW7D8f3vkcVSjYNzy7GAktY9pkOsnIiLvZrfZYN69W/ZMieF+pm3bAavjj4CSTgttnz7QDRokh/ypWrTwqmHoDFdERB6g1GyVgepIZhHMNkftvwCNEm2jg5AUESAXAb6Y1ENZmPXqCpw5lieP+09oi4n/6u3RVVKJiMj1rFlZMKxa7eidWrUatuzsSvermjeX86bk3KneveGn18NbMVwREbmxYpNFzqcSQwDL1v1FiE4li1Q0CfOvUk69OmJB4KU/7MK8L7fBarEhKFyPG58YiA59Gtf/P4CIiLyO3WyGaft259wp0VNVkV9gILT9+5XNnRoEVWIifAXDFRGRGyowmLEvvRDHckqca1RF+GvK1qjS1XgIRW5GEWa/thKH/3aMce88oCmmPDYAgaG6erx6IiLyNpaTJ51D/Yxr18FeWFjpfnWHDs7Kfpru3eGn9s1REQxXRERuJKdErFFViNS8s2t7xARp0T4mCNHnWaPqfP5emYLv314jqwJq9CpMur8v+ozlgsBERHRxYo0pUc1P9k6tWg3L4cOV7leEhUE7aKBz7pQyOprNynBFROQmC/8Wm7D3TAHOVFj4NyFEh3YxwYgIOP8aVdUxlprxy4cbsH7eQWeJ9VufG4roxJA6v3YiIvKiMunJyWVD/VbCuHEjYDj7OwkKBTTdujl7p9QdO7rlIr6uxp4rIiIX/iI7XWDA3vRCZBWfXfhXzKUSw/9CalFo4sTBTHz18gpkpOaLxewxYkpnjLutO1QXKc1ORES+WSZdDPErH+5nTUurdL8yNhZaUYhC9E4N6A9FKNdBvBiGKyIiFyz8ezKvVA7/yy01V1r4V1T/C7zAwr/nfU6bHct+3IU/P98qi1aERgXglmcGo1W3+Hr4FxARkVeWSddoZDW/8t4pVSsOJb9UDFdERA0YqkSBChGqCo0Wxw9hsfBvZADaRAdddOHf8xELAX/975U4uO2UPO4yKAlTHuuPgGAWrSAi8nXWjAw5Z8qwahWMq9dULZPerJmjRPqgQdD2uQIKf3+XXas3YLjyUJmZmXj++efx119/IT09HWFhYejcubM8169fPzRt2hQPPvigvJUPP3rsscfw6aefYu7cuRg8eDB27tyJ5557Dhs3bkRBQQFiY2PRu3dvfPjhh4jmpESiOmOx2ZGSXYz9GYUoNjn+QqhR+qFVVKC8aVW1H7K3c80xfPfmahQXGKHRiaIVfdBnXGuvWpCRiIhqzm4ywbhlK4yrRO/UKpj37q2+THr5Ir6NuSxHXWK48lDXXHMNTCYTZs+ejWbNmsmAtWzZMmSf89cIwWq14s4778S8efOwYsUKdO/eXYazYcOG4R//+AcWLVqE0NBQHDt2TAav4uJil/ybiLyN2WrDkaxiHMgohMFik+d0KoXspRK9VWqlotbPLYpW/DpjI9b9eUAeJ7aKxK3PD0FMY46HJyLyuUIUKcecYcq4fj3sJSWVHiOKT+hEZT8fL5PeEBiuPFBeXh7WrFmDlStXYtCgQfJckyZN0KtXryqPNRqNuOGGG7B161b5Na1bt5bn161bh/z8fHz++edQqRxvg6SkJAwZMqSB/zVE3sdoseFQZiEOZRbBVLbyr79aKRf+FfOqxFDAy5F6OBtfvbQc6SfyZNGK4ZM74R939GDRCiIiH2ErLIRxXVkhilWrYT1xotL9ishIZ8+UduAAKCMjXXatvobh6pzkb7WVL9fZsJQKvxoP4wkMDJS333//HVdccQW0Wm21jysqKsK4ceNw8uRJGaYSK6yOLYYAWiwWzJkzB9deey2HEBHVgVKzVfZSid4qMRRQCNKqZOW/puH+UFzmUD3xM2rVb/sw5/82wmK2ISTSXxataN29EV8/IiJfKUSxapWjEIXFMXdXUquh7dEDWlGIYvAgqNu1g5+i9qMjqPYYrioQwernXY4J4Q1tUqd4qJQ1++AleppmzZolh/p9/PHH6Natm+zBmjx5Mjp16uR83CuvvIKgoCDs378fUVFRlZ5DhLKnn34aU6ZMwd133y17vYYOHYqbb74ZMTExdf7vI/JmxSYL9qcXIjm7GOV/nwnVq+XCvwmh+ssOVYJYCPjbN1bLOVZCx35NcOOTAxEYwqIVRETeyJqejogNG5G/cBFMa9fBlpNT6X5V06aOMCUKUfTrC0VAgMuulc5iuPLgOVeiV0oM9RMFKRYsWIC33npLDvObNm2afMzIkSOxdOlS/Pvf/8Z7771X5Tlee+01PPzww1i+fDk2bdokg5p47OrVq9GxY0cX/KuIPEuBwSwr/4kKgOV93pEBGtlTFR+sq7Me4aN70vHlS8uRm14ElVqBq//VG4MmtmePMxGRF7EbDDBu3iyH+Yn5U+b9B9AUgKFiIYp+fc8WomjSxMVXTNVhuDpnaJ7oQXLV975UOp0OI0aMkDdR9e+OO+7ACy+84AxXomDF9OnTMWHCBNhsNvz3v/+t8hwRERGYNGmSvIlg1bVrV/znP/+RhTKIqHq5pSbsO1OIE3mlznMxgVq0jw1CdKC2zkKPWLtq6fc78ecXW2Gz2hHVKBi3vTgMjVtz7DwRkVcUojh0yFEmffVqmDZslAHLyc8PxYmJiL5yPPxZiMJjMFxVID4Q1XRonjtq166dnIdVkei9+vPPP3HllVfK/4k/+OCD8369RqNB8+bNWS2Q6Dyyio0yVKUVnP3l1yhYh3axQYgMqH7uY20V5JTg69dWYv+WNHncY3hzTH6kP/QBGr4+REQeypqTA+OaNWW9U6thPXOm0v2KmGhnz5TyiiuwbeNGNBs7FmpW9/MYDFceSJRbFz1Nt912m5xjJeZViWqAYlig6KU61/Dhw2UZ9vHjx8serBkzZsjjH3/8Uc7TatWqlQxeIoTNnz8fX331lUv+XUTuSPy/kVFkxN4zhUgvMjrPNw7Vy1AVpq/7sHNgWxpmv7ICBTmlUGuVuO6Bvly7iojIQ9ecMm3b5uydMu/aLX6xnH2ATgtt797QDRwoS6Wr2rRxjn4wm82uu3CqNYYrDyQqBYrFfsU8quTkZPk/n6gEKApciCIV1RHFKsSCw2JdK/FhUcy18vf3xyOPPILU1FRZcbBly5ZyztZNN93U4P8mIncj/j85VWCQc6qyik3ynPh1J6r+iTlVwbq6XyPEarFh/qztWPTN3/J3b1xSGG57cSjik8Lr/HsREVE9DfVLTnb0TK1eU/2aU23bQivWnBo0ENqePeGn1/Ol8CIMVx5IBKHXX39d3s5HLAh8rsGDB8vy7OU+/fTTertGIk+WXmjA9rR85JU6/moopkQ2jwiQ61QFaOrnx2ZuRhG+enkFknc5hoj0G98G107vA42OP6aJiNyZNTvbMdRPhKnVa2A9fbrqmlMDBzoC1YD+ULIqs1fjb20ionOINapEsBKL/baIDECb6CDo1cp6a6fd647jm9dXobjACJ2/Gjc8NgA9hjXn60JE5LZV/bbAsMYRpsx79lR+gFYLba9ejp6pgQOhbtuGa075EJeGK9Hz8ttvv+HAgQPQ6/Xo27cv3nzzTbRu3dr5GIPBIIeuiflBRqMRo0aNwv/93/9xLSYiqjeijHr3hFA0CfOHVlV/izBazFb88clmLP+f4xezqAJ46wtDEZ0QUm/fk4iIarGA7779Zb1Tq2W5dBjOzsGtNNRv4AAZrDjU78JsdhtMVhPMNlPZ1gKL1QyL3Qyz1ew4tplhtVthsVlgtVlhsYtzFnlOHNvE1m6TW5vdDrvYF/+V79ttsIv/yua4if1Scym2HdsKrw1Xq1atwr333ouePXvCYrHI+UKiut2+ffsQULYQ2kMPPSTnCv38888ICQnBfffdh4kTJ2LdunWuvHQi8mJiMnGrqMB6/R7ZZwrxxQvLcHx/pjweMqkDJvyzF9Sa+ushIyKimrGkpTnC1Jq1MK5ZC1t2dtWqfgPK5k2JoX5RUV7RtCK8GCylKDGXoMRSglJLidwvtZTKfYPFULZfKh8njp1bq9g3wmg1wGg1wmQ1wiiPxb4JJlvZ1ipCk8Vl/0ZrqdV7w9XChQsrHc+aNQvR0dHYtm0bBg4ciPz8fHzxxRf4/vvvZUEGQVSya9u2rVw494orrnDRlRMR1d6eDScw+9WVKCk0wj9Ii5ueGoRO/bkYJBGRq9jy8mDcsMExb2rNWlhSUird7+fvD22fPtAOHCB7p1QtWzqr+tnyMmDeOBe2Y3/Dfno/VEPvgqqz43NrQxG9MyIMFZoKUWQqKNsWochcvi1CUdm5YrO4FTtvJXIrzpXIYOQKaoUaKoVKbuW+Ug2Vn0qeUyocW5WfEkqFUp5XKJRQ+img8FNCIbdlNyjgJ/f95LEoRSX/K1tpyWQxYVfqLgD7fWPOlQhTQni4ozKWCFmiEp4oJV6uTZs2aNy4MTZs2FBtuBJDB8WtXEFBgdyK5zm3pKU4Fm9GUZ5c3KjmnF2sZe13PuI+8RjR1kol/yJ/MeXvUZZf9c52tVptmP/V31j2w27nMMBbnh+EiNggl1+bJ7ert2G7sm09jSe+Z+0GI0zbtsK0br28WXbvFh9azj5AqYS6c2do+veDpk9vqGL1sB/dBvuJbbD88gNshanws2RCqSqEUmtBxQHkpRvCYG83oFbXJYbC5Rvz5S2nJBsHTPtgOlSKYmsxCk0FKDCK4OS4FZgKUWDKdwYnMVyurij9lNCr9PBXB0Antiq93OqVjq1OpZP3i61OqZPntEqt3BdbrUoLjUILjVIDjThWlu9roFZooBEhShwrNDI4lQfVhlrSKA5x9fb8fvbyT8kuJj6Ei4Vu8/LysHbtWnlO9FjdeuutlcKS0KtXLwwZMkTOzzrXiy++iJdeeqnKefFcovR4RSqVCrGxsUhISJAV+Kjuidfu5MmTOH36NKzW+u2GJXJnxiIrdv1VgNyTjg8fiV30aD0oEAqV5y5cTkTkMaxW+KemIvjAQQQdPIjA5KNQWMqHptmh0NpgSwgAYjRQhgOqAAt0frnQKguh1hkgO0Eu9PRGBcwGPQy2YByLHo3jHSbIeT8GuwHF9mKUiJutRG7Fcam9BCU2sS113GcvQamtBEZU/sx7qRRQQuenkzetc6t17mugdZ7TyPNiq5H3a8S9ZcdKNGzgaUglJSWYMmWK7NQJDg723p4rMfdqz549zmBVW0899ZRcw6liz5VYA0qEsYiIiCqBLiUlRT4mKipKrn7trW+kuiYyeXFxsZwbV12blfdWibYVjxkxYgQUivorDOAtRJstWbJEthdXY/eedj3892l8/doqFOaaodWrcP0j/dBtSBI8navb1VuxXdm2nsYd37OiCIXl0CGY12+ASdy2boASeVAFWaAMskLV3QJVcNl+kAUKzYX7GkSnkLVUC4stBGZNJEr9Y5AfFouMqFgci45Emj+Qa8hFriEHucYc5BreQ74xr1a9SWIYW5AmGMGaYNhLgcSoRIToQhCsCUGQJqhsG+zY14YgSB1UdhwIrVLHz7I16LmqT24RrkSRinnz5mH16tWyF6mc6FUymUyyNys0NNR5Pj09Xd5XHdEDVV0vlPifvbr/4Zs1ayZ7VcSNak6Ep9LSUlnl8UKBVPQWxsXFQaPRsHkvwfner+RZ7Wqz2bH42x2Y9+U22G12xDcLxx2vDENM4tmfZ96A71e2q6fhe9b72tVutcCybxPMGxbAtn8d7Kf2Q6EqhC7IgsBoC5STLj79w1qsgLlEC6M9EEXqEGT6hyA1KAj7Q3X4O8yOU/Z8OTfJQRQjygSMu4HUCz9voDoIYboweQuV23CEaEMQpnVsxblQbShCym4iNIm5RSK0zp8/H2OHjuVngjpU3+9Rlas/oE+fPh1z5szBypUrkZRU+S+53bt3lw2wbNkyXHPNNfLcwYMHceLECfTp06dOrkF86BdzuES1Qg5bqznxP7wIw6LwyPnepGKOlRh6yd5A8kVF+QZZtGLfJsdv3SvGtsL1D/bjosBERLVVmgvkHgVyU2DPTYY9dTdsqbvhl38MCkUBxHKE8hOJWM2imhUtbCY/WApVsBQqUWzRI1upwzGNGvv8FdgTpkFKkgqF/n6iZGzZV4ghemXD9Exnn0cUXAjXRyBCFyGDktgPF1t5HCaPxfkwrSNIqZX8Y6kvUbl6KKCYC/XHH38gKCgIZ86ckedFyXXRIyK2t99+uxzmJ4pciHGRIoyJYFWXlQLFh3/+FevSiOAkAqlOp+NfU4jOkbI3XZZZz80olqXVr3uoH/qOO7t+HxERVcNsAPKPOwOU3OY5tvbcFPgZ889+diu7yQkHZdnFbgOsRUpYCkSAUsFaqESGXY0TOi0OBmpwOEqNk/FKpEUpYVJXHnUjKsuJINRaH4UIfQQi5TZS7oubCE7lx6Inin84JrcMVzNnzpTbwYMHVzovyq1PmzZN7r/33ntyro7ouaq4iDARkbsRvfErf9mL3/5vI2xWO6ITgnH7y8OR0KLyfE8iIp8kqvEVnnIGpsoBKgUoTDvvl5ZHIWuJwhmcKoYosd0VpcGhBDWOxyhxvLlChiirRo1IEZb8oxGlj0J3/yiM0kfK8BTpH+Xcil4mMRSPyOOHBV6M6Bn56KOP5I2IyF2VFpvw3Zur8fdKx9ooXYckYerjA6EP4HxDIvLNoXuVQlReCux5x+BnNV34y0W9u2ylMzCVb8v37RZHcazsYD+s6heKrP4xMLVojKDYRBmgEvyj0VUEqbIwJeYzOdY7ImoYblHQgojIk50+lovPnl2C9BP5UKoUmHhvbwya2J7DRojIO4fu5R2r1OOkzEnGoBM7odx7M2ByrC96vt4nUfz8jEqNNJUGaWoNTqnETS33xbl7vi9F7/1VK+ylD+mE0mtHIbB7b0SHJaCtPgqdlfzjFbkfhisiosuwfcVRfPPGKphKLQiNCsAdrwxHUrtotikReSarBSg4eXaonuhxyk2BJecQkHsM6hJRJa8y0S9UsQZqllLlCEwyOGlwSq3GybL9PE0AwgNiEBMQixix9Y9Fl4AYjPQX52IQ0c8M1affQtOhA/yvmwRFQIB8zrO1pIncG8MVEVEtWC02/PHJZiz7abc8btU1Dre9OAxBYXq2JxG5LzEloyi9UniyZB+GOecQ/PKOQVOUDoWoDHFOj1PFendFfoqyXid1Wc+T6IVSI12jhzU4ASGBjcrCUyyi/WMwICAWsWXHodqwC/fqiymq73Spv38/UT1juCIiukQFOSX48sXlOLzDsT7eiBs6YfydPeWQQCIilyvNc4YnW24yDFn7ZYBS5B+HrigdqnPmPanO+UBogh9Olw3VKx+2d0qtRUlANKyhTRAYnIjYwHgZlkRo6qCNwp4Ne3DtuEnQaqquNUrkSxiuiIguscz6588vQ15mMbR6NW56ahC6Dq68Rh8RUb0ylTjmPeWlwJR1ECVZe2HJOQJl/gnoi9KhM5c6Hyr+5ON/zpeLfqkMpQhPZ3uecnTBMAbHwRbSFP7hLRATGC+DUzP/WPQNjEOUPvq86zWJtS+PKY6zcAQRwxURUc2rm675fT9++XCDHBIY0zgUd702ArFNKs40ICKqAxYTkH9C9joVZ+6FIXMfrLkiPKXCvygDAaYi50NFSYfqyjrkKJQ4VdbzdFqtRVFAJExBjYCwZtBFtEJUUALiAuLQLiAOQwJiEagJ5EtHVAfYc0VEdBEmgwU/vrMWmxYdlsddBiXhpqcGQufPSlVEVAs2qywaYc45jIL0nTI82XKPQlUgwlMmgoyFUMAue52Cym7nqjjvKUsbiOKAaJiDE6AQ4SmqLSJDmiI2IA6dA2IxTB/FNZyIGgjDFRHRBWSdKsCnzy5B2pEc+Cn8cNU/e2HY5I4ss05EF14st+g0SjL3oCB9FwxZB2QvlLogDf7FmQgxFkBlt8siEedbYtzg5+ccsperD0FJYAyswY2gCGsBfVQ7RIS3lOGpp+x1qi5+EZErMFwREZ3H3o2pmPXKCpQUGhEYqsPtLw5Dq27xbC8iX2e3w1Z4SvY6FWTsgjH7IOy5R2V4CijJQpihEGq7Tc51One+UzlzWdGIM2od8v1DUSrDU2MowpvDP6o9wiPaIC6oEa7wj4ZKUf1cJyJyPwxXRETnsNnsWDB7OxbM2i6rFjdpG4U7XxmOsGjOSSDyCXY7zAVpyE3fjsL03TBlH4BdlCkvPIXAkmwZnrR2m1zb6XyzLssXy83U+KNAHwZDUCysIY2hCm+JgMh2CIvqgLjgBCRerDQ5EXkUhisiogpKi02Y/coK7F5/Qh73n9AW107vA7VGyXYi8hZ2G0pykpFzZjuKMvfAnH0YfvkiPJ1GUEkOwo1FMjyJ5cDPtyS4VVTcE/OdNAEo8I+AMSgWdhGeIlohUPQ8RXdGTFACEtTn67siIm/EcEVEVCb9RB4+eXqJ3Ko0Skx+pD/6jGnF9iHyMHabFQXZB5GX/jeKMvbKwhF++SegLTyD7sVZsO8ohb/dft4he85y5So1srVBKPIPhzEoDghpCrUIT9EdEBHTBdFBjRDHIXtEVAHDFRERgD0bTuCrl5fDUGxGaFQA7np1hBwOSETux2Y1IydjF/LSd6Akcz8suUegyE+VazwFl+YhwlyCELsdIRd4DtHzlFW2vlORfwTMQfFAaFNoI1sjMKoTImM7IyYgDrEcskdEl4Dhiojg6+tXLfpmB+Z9sVXOr2reKQZ3vDwcweEcykPkKmZTMbLSt6MgfTdKs/fDmpMMZUEa9MUZCC3NR4S5FJGAvOECc56y1Frk6YJR7B8FS3Aj2EOa4FiWH3r0vwaxjXoiRh+OmAb8dxGR92O4IiKfZSgx49s3VuHvlSnO+VWT7u8DlZrzq4jqlakYyDuO5OPLkZ++E/a8FKgKT8G/WFTay0e4xYQ4QN5wgWp7WWod8vQhKA2ILitT3hy6yDYIiemMqNiuiFUHILbi15jNSJ8/H02aDIVazQp8RFT3GK6IyCdlphXg06cX41RKLpQqBa57sC/6X9nW1ZdF5PlEF3BJFpB/QgYo5B8/uy0/V5otH9r8Ak9j9PNDpigWoQ+FITAatuBEqMJbwD+yLUJjuiI8qj3iVNoLBjAioobGcEVEPmf/lpP48sXlcv2q4HA97nxlBJp15OAgohqxmoHCU2WB6USF8FS2L7bmkos/jzYEObognFKqyirtNYEmvAUCojogPKYLQsNbIUGh4ItCRB6F4YqIfGp+1dIfd+H3jzfDbrPLghWicIUoYEFEZQz5ZUGp7OYMTmXhSQQru6ildxGBsUBIYyCkCRDapOpWF4JwQN6IiLwFwxUR+QSr2Y5vX1+DbcuOyuMrxrTC5If7Qa3lj0HyIVYLUHT6PMGp7GbMv/jzKDVlwaksPDn3GzuCU3AioNY1xL+IiMit8FMFEXm93PQibP4xF4UZmVAo/XDNfX0waGI7+LHEMnnbXKfSHCA/1RGSCsq28la2X5hWs14nfXjV4CR7ncrOBUQDHLJHRFQFwxURebXDO07j8+eXoijPgoAQrSyz3qprvKsvi+jSmUqAgpMVglOF8FQepGoy10ksehucUCEsVbiJHiex1QbyFSIiqgWGKyLyWmv+2I//vb8ONqsdQdEqPPT+eMQkhLn6soiqLxJRkCZDkl9OClqkL4Ni4SKgKO1sz1NZhb2LEr1K5SEppHxb4RYQw14nIqJ6wnBFRF7HarHh1xkbsOq3ffK465AkhHcsQngM/xpPLpznJHudUs/2Oonj8v2iM2Jcn/MXc3uxc6qa59IEVg1OFY9Fj5Ra39D/QiIiKsNwRUReRZRX/+KFZTiwNU0ej7+zB4Ze3x4LFixw9aWRtwcnZ3gqC03lx+L+msxzUmplOLIFJyCtwA/xbXtDGda0cojShQCcK0hE5LYYrojIa5w5nodPnlqEjJMF0OhVuOWZwegyMAlms9nVl0aeyGJylB0vD05VbmU9TjUJTgoVENTobO+S7G1KrLwNiJLByWo2Y/v8+YgdMhZKtboh/qVERFRHGK6IyCvs25wqFwYuLTIhLCYQd78+EgktIlx9WeSujIWOOU6iep4MSuXbk2fPFWfU7LmqBKey8CS25ec4z4mIyCcwXBGRxy8MvPKXvfj1o41yYeBmHWPkwsBBYZx34pNsNkcoEj1OMiSVBaVz940FNXs+OVSvUdXQVPHGsuRERFSG4YqIPJbFbMVP763D+nkH5fEVY8XCwP2h1ihdfWlUH4xFjmAkh+qV9zqlVT4n5jfZLDV7Pm2wo8dJhqfEyiFKnk8A/CM4x4mIiGqM4YqIPFJhXik+e3YpknedgZ/CD1ff0wtDr+vIhYE9kcXomLskg9Kp89wuobcJfkBgLBAUXxaWGp0NS879RoA2qJ7/YURE5GsYrojI46Ql58jCFdlniqALUOPW54eiQ5/Grr4sqm7tJhGaZDg67diKnqVzg1NJVs3bThN0NiDJ8FQhLIljsS+ClZK/3oiIqOHxtw8ReZRda49j1isrYCw1I7JRsCxcEdeUCwM3KLNBhia/vFTE5W2AYutxoCS9aoC6lNAk5jbJcHSeW3l4Ym8TERG5MYYrIvKYwhVLvt+JuZ9ugd0OtOoah9tfHo7AEJ2rL807iEYVw+5EQBLhSPY4le2fuzXkOX+B9BI7KRd4XoUaCIoDAuPKglL5tqyXqXxfH8a5TURE5PEYrojI7ZlNVvzw9hpsWnRYHvef0BbXPdAXSpXC1ZfmIfOZ0h1hqeKtuKynqeI5S2nNn1epgT0wDrlmHUIT20LhHJZXFp7Kw5Q+HFDwdSIiIt/AcEVEbq0oz4BPn10iC1colH64dnofDJrYHvD1uUzFmWdDUnl4kvtnKocpQ+6lPbeooCeDkehtiq2wf85WFwqLxYI18+dj7NixUHCxWyIiIoYrInJfZ47nYeaTi5CVViALV9zx0nC07ZUAr+5hEms0lQemiltxvnz/UuYylQ/Nk0Hp3FuMIyxVPKfxr69/IRERkddjzxURuaWD29Lw2XNLUVpkQkRsIO55a7RnFa4Qc5hKc8vC0rm38hCVcTY0GfMv7fn9lEBAlCMQBcRUCEsVj8tunM9ERETUIBiuiMjtrJt3AD++sxY2qx1J7aPxz3+PRFCY3vVhSRRyEMPxSjIrb0VAkvsZlY9ruphtxR6mgGhHSJIBqWx77jkZmCI4l4mIiMjNMFwRkduw2ez445PNWPrDLnncY3hz3PjEQKi19fCjymYFSrIdQ+zkrUI4Ojc8ia14zKWGJUEX6ghHlW5lganiTYQm8Vg/v7r/txIREVGDYLgiIrcg1q2a/epK7FxzTB6PvbUbxk7rBr+ahA2bzVG4oVJYygJKHcfKogz0OrYPytlvAaXl94lCD/ZLv1BNIOAf5RiSV76VYSmqclgqv0+lrUVrEBERkU+GK6PRCK2WHx6IqPbysorx8ZOLkXooCyq1Ajc+0Ak9e2uA46sdgUmGpIrbnErhSR7bbed9flEIPE7sVDetSRcG+EdWDksX2qq5rhYRERHVUbhasGABfvzxR6xZswapqamw2WwICAhA165dMXLkSNx6662Ij4+/1KclIm8i5ieZSx2hR/QoiV4i537O2YBUmoPUVBs+XtwPeaWBCFQX4a6OH6H59mRgey2+rygjLoJS+U3MS/KPhFUXht3Jp9Gh50CoguPK7o9yrMGkZAc+ERER1Y0af6qYM2cOnnjiCRQWFso1TcS+CFF6vR45OTnYs2cPli5dildeeQXTpk2T26ioqDq6TCJyCbPBUcShYkgqD0gX27eaLvr0u7M64cu9d8Bk1SHW/xTu6TwDkfoswE/hCD4yHEVUvxX3i96ksgAlj1Waar+PzWzG8fz5aN92LMD1mIiIiMjV4eqtt97Ce++9hzFjxkChEINsKrvuuuvkNi0tDR9++CG+/fZbPPTQQ3V7tUR06WsniXAkb/ln90XZb+f5CjcZjMR+2dZiuLwWV6gcw+5EKXC5DS8LR+FYsSMRv+4Oht3uhzbttLj9oZHwj7rR8RhtCCvhERERkfeGqw0bNtTocY0aNcIbb7xxOddERGJYnbHIEYKMBY5gJANR2XG1++c8VuxfbjiS/BxV7GRPUoWQVO1+2XH5vij+cE5BCpvVhl9nbMTKBXvlcf8r2+C6B/tBqar6RxsiIiIiT1Inkw2sVit2796NJk2aICzMgxb5JKrrQGQqBkyFgFHcCqrZL7jgfSpjIcYU50C1o/SCBRoumegJ0olbaOWbPF+2LwOS2A+rfKwJqrNeJJPBglmvLMfONcfl8VX39MLwyZ1qVhGQiIiIyBvD1YMPPoiOHTvi9ttvl8Fq0KBBWL9+Pfz9/TFv3jwMHjy47q+UqC5DkBguZxZBqPg826KyW8X9c2+Fjq0ISHK/uHalvSsQEaPSrCEx96g8GImtKNhQvi+3wTW4PxhQKOFqhbmlmPnkIhzfnwmVRombnx6E7kObu/qyiIiIiFwbrn755RfceOONcv/PP/9ESkoKDhw4gG+++QbPPPMM1q1bV3dXSL5FLOwqqsxZSqvZllS4nXtccvYx5w1MZVvxmLrsFarCD9AGOUKN6PWptC/CTlDl/QqPsyj9sWrjdgwc8Q+oAyMBtb9XLCqbfiIPHz22ENmnCxEQosU//z0SzTvGuvqyiIiIiFwfrrKyshAb6/hgNH/+fEyaNAmtWrXCbbfdhv/+9791e4XUcKHGanZUeLMaHT07F9j6GYuRkLMZfjsyRNWEah5nqHyTAUnsl55zfM45m7lhX3Gl1hFgNAGAOsCxFfOE5H5gNTdxPqjyufKwVL5/GYHIbjajSJcBBMV7TVW7IztP45Onl6Ck0IjIRsG4963RiE4McfVlEREREblHuIqJicG+ffsQFxeHhQsXYubMmfJ8SUkJlErXDz+qVuFJQCV6LMSwLfs5W1Rzruy82Be9HDW5ya+tcCwCi91atrVV2K9ua3Hsi63zuOwmQo8IHc59y0WOzWeDkq08MJXfKhxXvO8Se3LEG6e72HFMnakfSg2g0gNqcfO/8E0+zr9CUPI/G5ac23POiWOucVSvti49gm9eXwWL2Yak9tH45+sjERSqr99vSkRERORJ4UosFCxKr4twJSaiDx8+XJ7ftGkT2rRpA3ek/qQLoHX1VXgQUUJb9OqotNVubUoNsnMLERHTCAq1rvL9Kl3lm+wd0pcdl20rHp/vPjeYJ0S1Y7fbsfi7nZj76RZ53GVQEm55djA0Wi7YS0RERN6rVp90XnzxRXTo0AGpqalySKBW60gtotfqySefhDuyKzSAsmyolhyy5Vdh6Fb5/nnu91M6Cguc9+Z3gfuUjpBwwa3KsS+21R0r1YBCXbYV95Vty8+fuy+PNRVu6rP78nkudL5se5FgYzWbsX7+fLmgtMJLhq9R3bBabPjpvXVY9+cBeTz0uo64+l+9oVB4/twxIiIiogup9Z+Rr732Wrk1GM6uo3PLLbfAXVkePgVERLj6Moi8mqHEhC9eWIZ9m07CT+GHa6f3weBr2rv6soiIiIgaRK0WrxHl11955RW5YHBgYCCOHj0qzz/33HP44osv6voaicgD5GUW473p82SwUmuVuOvVEQxWRERE5FNqFa5ee+01zJo1C2+99RY0mrOr8oihgp9//nldXh8ReYC05By8ffcfOHk4G0Fhejz0wXh06t/E1ZdFRERE5P7h6uuvv8ann36KqVOnVqoO2LlzZ7neFRH5jv1bTuLde+fKnquYxqF4dOaVaNI2ytWXRUREROQZc67S0tLQokWLKudtNhvM5gZep4iIXGbD/IP4/u01sFntaNE5Vi4O7B/EspxERETkm2oVrtq1a4c1a9agSZPKw35++eUXdO3ata6ujYjcuNT6wq//xrwvtsnjHsOb48YnB0GtYfl8IiIi8l21ClfPP/+8rAwoerBEb9Vvv/2GgwcPyuGC8+bNq/urJCK3KrX+v/fXYe1cxxDgkVM7Y/ydPVlqnYiIiHxereZcTZgwAX/++SeWLl2KgIAAGbb2798vz40YMcLnG5XIW5kMFnz23FIZrMTybpMe6IsJ/+zFYEVERER0OetcDRgwAEuWLGEjEvmIonwDPn5yEVL2ZkClUeLW54agy6AkV18WERERkWf3XDVr1gzZ2dlVzufl5cn7iMi7ZJ8ulBUBRbDSB2ow/d2xDFZEREREddFzdezYMbmQ8LmMRqOch0VE3iP1cDb+77EFKMgpRVh0AO79zxjENQ1z9WUREREReXa4mjt3rnN/0aJFCAkJcR6LsLVs2TI0bdq0bq+QiFzmwLY0fPbMEhhKzIhvFo573x6N0KgAviJERERElxuurrrqKrn18/OT1QIrUqvVMli98847l/KUROSmtiw5gm9eXyWrA7bsGod/vjZSDgkkIiIiojoIV6LsupCUlIQtW7YgMjLyUr6ciDxkDatlP+7GnJmb5HG3Ic1w8zODuYYVERERUX3MuUpJSanNlxGRm7PZ7Pjto41Y8fMeeTxkUgdMvPcKllonIiIiqq9w9fLLL1/wfrHuFRF5FrPJiq9fW4ntK47K46v/1RvDJ3dy9WUREREReXe4mjNnTqVjs9kse7NUKhWaN2/OcEXkYUqLTfj06cU49PdpKFUK3Pz0IPQY3sLVl0VERETk/eHq77//rnKuoKAA06ZNw9VXX10X10VEDaQgpwT/99hCWXJdq1fjrn+PQJvujdj+RERERA2xiHB1goOD8dJLL+G5556rq6ckonqWdaoA79z7pwxWgaE6PPjBOAYrIiIioobsuTqf/Px8eSMi93fySDY+etSxOHBEbCDue2csohPPrl1HRERERA0Qrj744IMqpZtPnz6Nb775BmPGjKnx86xevRpvv/02tm3bJr9ezOUqX0tLEMMMZ8+eXelrRo0ahYULF9bmsomozOEdp/HxU4tgKDajUXOxOPAYhET6s32IiIiIGjpcvffee5WOFQoFoqKi5MLCTz31VI2fp7i4GJ07d8Ztt92GiRMnVvuY0aNH46uvvnIea7Xa2lwyEZXZueYYvnxpOSwmK5p3isXdr4+EfxD/vyIiIiLy6HWuRC/XxXq6RJiKjY2tk+9H5OvWzTuAH/6zFnabHZ36N8GtLwyFRluno4OJiIiIfJbbf6pauXIloqOjERYWhqFDh+LVV19FRETEeR9vNBrlrWIVw/Jy8eJGdaO8LdmmntGuYuju0u93468vt8vj3qNb4rqH+8BPYfeJ15DvV7arJ+H7lW3rafieZbt6EnM9f+7xs4tPXZdIDOd74403sGzZMmRkZMBms1W6/+jRo5d+IX5+VeZc/fjjj/D390dSUhKSk5Px9NNPIzAwEBs2bIBSqaz2eV588UVZtfBc33//vXwuIl8j/hc/uKIIJ/4ulcdJvfzRon+A/H+OiIiIyJeUlJRgypQpsgifqHbuFuHqhhtuwKpVq3DTTTchLi6uyoe0Bx54oE7C1blEaBOLFC9duhTDhg2rcc9VYmKiLJhxoR4vuvTUv2TJEowYMQJqtZrN56btajFb8f1ba7F9uWMo79X/6oVB17SDr+H7le3qSfh+Zdt6Gr5n2a6eJDs7W+aX+gpXtRoWuGDBAvz111/o168fGlKzZs0QGRmJI0eOnDdciTla1RW9EB9UGQLqHtvVfdvVUGLGF8+vwP7NJ6FQ+uGmpwaj18gW8GV8v7JdPQnfr2xbT8P3LNvVE9R3HqhVuBLzn8LDw9HQTp486UybRHR+RfkG/N/jC3F8fyY0OhXueGU42vdOZJMRERER1SNFbb7olVdewfPPPy/HLF6OoqIi7NixQ97KqxCK/RMnTsj7HnvsMWzcuBHHjh2T87smTJiAFi1ayLWuiKh6eZnFeG/6nzJYBQRrcf/74xisiIiIiBpArXqu3nnnHVlgIiYmBk2bNq3SvbZ9u6Mi2cVs3boVQ4YMcR4//PDDcivWy5o5cyZ27dolFxHOy8tDfHw8Ro4cKYMd17oiql7GyXzMeHg+ss8UITQqAPe9MwZxTcPYXERERETuGq4uVHTiUgwePFhWMjufRYsW1cn3IfIFacnZ+PCRBSjMKUVUo2BMf28sImKDXH1ZRERERD6jVuHqhRdeqPsrIaJaO7o7Hf/3xEKUFpnQqEU47vvPGASHc+kBIiIioobk9osIE9GFiWqAnz67BCaDBc06xOCeN0fBP6hqxUwiIiIicpNwJaoDHjp0SJZCF9UCL7QAaU5OTl1dHxFdwPaVRzHr5RWwWmxo1zsBd7w8HFo91x0jIiIicutw9d577yEoyDF/4/3336/PayKiGlg/7wC+/89a2G12dB2ShGnPDoFKrWTbEREREbl7uBIV/KrbJ6KGt/SHXZgzc5Pc7ze+DSY/3A8KZa1WViAiIiIid5hzlZGRIW82m63S+U6dOl3udRFRNUR1zbmfbcXibx1rw424oRMm3N3rgsN0iYiIiMiNw9W2bdtk79X+/furlFIXH/KsVmtdXR8RlbHZ7Pjf++uw5vf98njCXT0x8sYubB8iIiIiTw5Xt912G1q1aoUvvvhCLiTMv5oT1S9RsOLrf6/E1qXJEJ1U1z/cHwMmtGWzExEREXl6uDp69Ch+/fVXtGjRou6viIgqESXWP39+KfZuTIVC6ScLV3Qf1pytRERERORmajUDftiwYdi5c2fdXw0RVSIWBZ7x6AIZrNRaJe5+fRSDFREREZE39Vx9/vnncs7Vnj170KFDB6jVldfVufLKK+vq+oh8VlGeQQar1ENZ0AWocc+bo9GiU6yrL4uIiIiI6jJcbdiwAevWrcOCBQuq3MeCFkSXLz+rBDOfWIwzx/IQGKrDff8Zg8RWkWxaIiIiIm8bFjh9+nTceOONOH36tCzDXvHGSoFEl6e0wIoPH1ogg1VoVAAe+nA8gxURERGRt/ZcZWdn46GHHpKVAomo7mSk5mPzD7kwFtkQEReE+98bi8j4YDYxERERkbf2XE2cOBErVqyo+6sh8mFpyTmyx0oEq+jGIXh4xngGKyIvJNaHPJJRhC/WpuDAmQJXXw4REbm650qscfXUU09h7dq16NixY5WCFvfff39dXR+RTzh+IBMfPboAxQVGBEWpMP3d0XJIIBF5h2KjBeuTs7HiYAZWHcpEWl6pPH/fkBZoE8veaSIib1HraoGBgYFYtWqVvJ1b0ILhiqjmjuw8jZlPLIKhxIwmbSPRbCgQFKZnExJ5eO/U0axiGaZWHszE5pQcmKw25/0apQK9k8LRKibIpddJRERuEK5SUlLq+DKIfNP+zSfxyTOLYTZa0bJrHG5/eSiWr1zi6ssiolooNVmx8Wg2Vh7KwIqDmTiRU1Lp/sQwPYa2icagVlG4olkE/DW1+hVMRERujD/ZiVxk55pj+PLFZbCYbWjXOxF3vjocfgo7Xw8iDyIC1IoDIkxlYMPRbBgtVXunBrWOwpDW0WgWGSBHdxARkfeqcbh644038MADD0Cvv/hwpU2bNiErKwvjxo273Osj8kpblx7B7NdWwma1o8ugJNz6/BCo1EqYzWZXXxoRXYDRYpVD/ETPlOihOppZXOn++BAdBreOlmGqb/MIBGj5N0wiIl9S45/6+/btQ+PGjTFp0iSMHz8ePXr0QFRUlLzPYrHI+0WBi2+//RanTp3C119/XZ/XTeSx1s07gB/eXgO7Heg1qgVufGIQlKpaFe4kogYgik+sPOgY6rc+OQslJqvzPpXCDz2ahmFwK0egahUTyN4pIiIfVuNwJcLSzp07MWPGDEyZMgUFBQVQKpXQarUoKXGMK+/atSvuuOMOTJs2DTqdrj6vm8gjLf/fbvw6Y6Pc7z+hLa5/qB8UCg4TInInZqsNW4/nlgWqDBxKL6p0f3SQFoPLhvr1axGJYF3lirlEROS7Lmm8QufOnfHZZ5/hk08+wa5du3D8+HGUlpYiMjISXbp0kVsiqr5y2KJvduDPz7fK42GTO+Hqe3rxL9xEbiK9wCDD1MpDmVh7OAuFRovzPvH3j26Nw2SYEqGqXVww/98lIqJq1WowuEKhkGFK3Ijo4sHqj0+2YMn3O+XxuNu6Y8wtXfnhjMiFbDY7dp7Mkz1Tyw5kYO+pyov5RgRoZFU/MX9qYMtIhPprXHatRETkOTjTlqieP8D98sF6rPptnzy++l+9MXxyJ7Y5kQsUGsxYeyRLhinRS5VVZHLeJ4r4dWoUiiFlw/06NgrhkF0iIrpkDFdE9cRmteG7t9dg4/xD8oPb9Q/3w4AJ7djeRA3oeHaxDFPLD2RgU0o2zNazyx0EaVUY2CrKufZUZKCWrw0REV0WhiuiemC12PD1v1di69Jk+Cn8cNNTg9B7VEu2NVEDFKPYdjxXhqllB9KRfE6p9KYR/hjWJgbD2kajR5NwaFipk4iI6hDDFVE9BKuvXl6Ov1emQKH0w60vDEW3wc3YzkT1JLfYJNecEj1Uqw5lotBgqVQqvWfTcAxrEy17qJpFBfJ1ICIi9wxXR44cQXJyMgYOHCgXFxYT97n6PPkys8mKL15Yht3rjkOlVuD2l4ajU/8mrr4sIq9zLKsYi/edweJ96dh+Ihe2s6P9EOavlvOmRJga0DIKIXqWSiciIjcOV9nZ2bj++uuxfPlyGaYOHz6MZs2a4fbbb0dYWBjeeeedur9SIjdnMlrw2bNLsG/TSag0Stz12gi0753o6ssi8grij3d7ThVg8V5HoDqYXljp/jaxQTJMiR6qLolhUHL9OCIi8pRw9dBDD0GlUuHEiRNo27at87wIXA8//DDDFfkcY6kZnzy9GAe3nYJaq8Tdb4xCm+6NXH1ZRB4/f2pzSo6zh+p0vsF5nwhPVySFY2S7WDl/KiHM36XXSkREVOtwtXjxYixatAgJCQmVzrds2VIuLEzkSwwlJsx8YhGO7DwDrV6Ne94chZZd4lx9WUQeqcRkkfOmFu9NlwUpCirMn9KrlXIR35HtYuSwP649RUREXhGuiouL4e9f9a+EOTk50GpZypZ8R2mRCR89tgApezOgC1Dj3rfHoFmHGFdfFpFHySsxyZ4p0UO15nAWjBZbpcV8h7eNkYGqX4tI6NRKl14rERFRnYerAQMG4Ouvv8Yrr7wij8W8K5vNhrfeegtDhgypzVMSeZziAgNmPLoAJw5kwT9Ii/veGYMmbaJcfVlEHiGn2IRFe89g/p7T2JCcDUuFihSNw/1lmBJD/ro34fwpIiLy8nAlQtSwYcOwdetWmEwmPP7449i7d6/suVq3bl3dXyWRmynMK8WMRxbg5OFsBIbocN+7Y5HYMsLVl0Xk1jILjVi07wwW7D6NjSk5sFYIVG3jgjG6fSxGtY9B65ggVp4lIiLfCVcdOnTAoUOHMGPGDAQFBaGoqAgTJ07Evffei7g4zjUh75afXYIPH56P0ym5CArX4/53xyK+WbirL4vILWUUGLCwrIdKFKeoWDK9Q3wwxnSMw5j2sVx/ioiIfHudq5CQEDzzzDN1ezVEbi4vsxgfPPQX0k/kIyTSHw+8Pw4xjUNdfVlEbuV0fikW7jmDBXvOYMvxHNgrBKrOCSEY0yEOYzrEoklEgCsvk4iIyH3ClcFgwK5du5CRkSHnW1V05ZVX1sW1EbmVnPQi/PfBv5CVVoCwmEAZrKIaBbv6sojcpofqr92nMW/3aWw7nlvpvq6JoRjXMQ6jOsQikSXTiYjIi9UqXC1cuBA333wzsrKyqtwniltYrda6uDYit5F1qkAGq5wzRYiIC8ID/x2HiNggV18WkUvllZixPt0PP361FZuOVR7y16NJGMZ2jJPzqOJD9a68TCIiIvcOV9OnT8ekSZPw/PPPIyaGZafJu6Wn5uGDB+fLIYHRCcG4//1xCIsOdPVlEblEsdGCJfvSMXfnKaw+nAmLTZRGz5H3dWscivGd4uWwv9gQHV8hIiLyObUKV+np6Xj44YcZrMjrnT6Wiw8e/AsFOaWIbRqK+98dJ+daEfkSg9mKlYcy8efOU3JhX4P57FDwRv523NCvFSZ0TeCQPyIi8nm1ClfXXnstVq5ciebNm/t8A5L3SkvOkcUrivIMshrg/e+NRVAYhzeRbzBbbVifnC17qBbvPYNCo8V5X1JEAMZ3jseY9lE4tGU1xg5Iglqtdun1EhEReWy4EiXYxbDANWvWoGPHjlV+qd5///11dX1ELnHySLYMVsX5RiS2ipQLBIv1rIi8md1ux9bjufhjRxrm7zkjF/otFxeik0P+RKgSJdTF/Fqz2YxDLr1iIiIiLwhXP/zwAxYvXgydTid7sMQv2XJin+GKPFnq4Wx8KIJVgRFN2kTJYOUfpHX1ZRHVm5SsYsz5+yTm/J2G1NxS5/mIAI0sSiFClShQoVCc/VlPREREdRSuxPpWL730Ep588kkoFIraPAWRWzpxMEsuEFxSaETTdtG49+3RDFbklUSv1Lxdp/Db32nYkZrnPB+gUWJU+1hM6NII/ZpHQKXkz3giIqJ6DVcmkwnXX389gxV5lRMHM/HBQ/NRWmRCUnsRrMZAH6hx9WUR1WlhiuUHMmSgWnkwA5ay2umiQ2pAyyhM7NoII9vFQq8RFQCJiIioQcLVLbfcgp9++glPP/10bb6cyO0c35+JDx9xBKtmHWLwr7dHQx/AYEXeMY9qy7FcOexPLPJbYDhbmKJ9fDCu7toIV3aOR3QQ5xQSERG5JFyJRYLfeustLFq0CJ06dapS0OLdd9+97Asjaigp+zIw45H5MBSb0bxTDP711mjo/BmsyDvnUYnCFGLIn+ilahXDhbCJiIhcHq52796Nrl27yv09e/ZUuq9icQsid3d0Tzo+enQBDCUiWMWWBSuWlCbPlF9qlqXTf91+sso8qjEd42SguiIpgoUpiIiI3ClcrVixou6vhKiBHd2djo8ecwSrll3icPcboxisyOPYbHasS87Cz9tOYuHeMzBZHAv8KhV+GNAiUg774zwqIiIiNw5XRJ7uyK4z+L/HFsJYakarro5gpdWzx4o8R2pOiQxUopcqLe/ssL82sUG4tnsCJnRuhCguIUBEROSe4WrixImYNWsWgoOD5f6F/Pbbb3VxbUT14vCO0/i/JxbCVGpB6+7xuPv1UdDo+HcGcn+lJisW7DktQ9WGo9nO88E6lZxHNal7Ajo2CuHwbCIiIhep8SfKkJCzv7DFPpEnOvT3Kcx8YhFMBgva9GiEf74+EhotgxW5d7W/v1PzZKCat/MUCo2Oan/ix3H/5pGyl0qsS6VTs3w6ERGRq9X4U+VXX32Fl19+GY8++qjcJ/I0B7elYeaTi2A2WtG2ZyPc9W8GK3JfGYUGWelPhKojGUXO84lhekzqnohruiegUajepddIRERElV3Sn+xfeukl3H333fD397+ULyNyuQPb0vBxWbBq1zsRd706HGr2WJGbMVttcpHfn7elYsXBTFjLFvnVqRUY2yEOk3okonfTcFb7IyIi8oZwJYanEHma/ZtP4pOnF8NssqJDn0Tc8coIqDUcQkXu40ROCX7cckL2UmUWGp3nuyaG4roeiRjXKQ7BOhZcISIicneXPNmE61iRJ9m3ORWfPL0EFpMVHfs2xu0vD2ewIrcgSqYv3Z+OHzafwJojWc7zkYEaXNMtQRanaBHNRX6JiIi8Oly1atXqogErJyfncq6JqE7s3ZiKT591BKtO/Zvg9peGQcVJ/+Rix7KK8cOWE7KEelaRyXl+QMtITOnVGMPaxECjUrj0GomIiKiBwpWYd8VqgeTudq8/js+fWwqL2YbOA5ritheHMliRyxgtVize5+ilWp98toS6WIfquu4JmNyzMRLDOZeViIjI58LV5MmTER0dXT9XQ1QHdq87js+eWwqrxYYug5Jw2wtDoWRPALnA0cwi/LglFb9sP4mcYkcvlej4H9QyCjf0aoyhbaKhVrKXioiIyCfDFedbkbvbueYYvnhhmQxWXYck4dbnGKyo4edSLdx7Bt9tOo5NKWeHSMcEa3F9j0RZoCIhjL1URERE3ojVAslr7FidIoOVzWpH96HNcMuzQ9hjRQ0mLa9UDvsTVf/K51Ip/IAhraPlsL8hraOgYi8VERGRV7ukcGWz2ervSoguw98rU/DlS45g1WN4c9z89GAGK6p3Npsda49k4ZtNx7FsfzrKlqVCdJBWBqrJPRMRz4V+iYiIfMYlz7kicjfblidj1isrZLDqOaIFbnpqEIMV1av8UrNc6Pe7jSeQkl3sPN+nWQRuuqIJRrSL4VwqIiIiH8RwRR5t27JkzHrVEax6jWqBm54cBAWHXlE92Z2Wj282HsPcnadgMDt68oO0Krku1dTejdEyhutSERER+TKGK/Iov8/chDMn8jHlsf44/PdpfPXKCthtdlwxphWmPj6AwYrqnMFsxbxdp/HNxuPYeTLPeb5NbBBu7tMUEzrHI0DLH6VERETEcEUe5Id31mLtH/vl/p+hOmxYcMgRrMaKYDUQClE9gKiOHM8uxvebT+CnLanIKzXLcxqlAmM7xsqhf90ah7GCKhEREVXCP7eSR1g9Z58zWAkMVlRfBSpWHsrA1xuOY9XhTNjLClQ0CtVjSu/GspR6ZKCWjU9ERETVYrgit7d/y0n89N66SufODgVkjxVdvkKDGb9sO4nZG47hWHaJ8/ygVlGyl0qUU1eyZ5SIiIguguGK3NqZ43mY8ciCKud7j27pmGPFD7x0GY5lFWPWhmMyWBUZLfJckE4le6hu7N0ETSMD2L5ERERUYwxX5LaKCwx45aafqw1WNz4xkMUrqFbsdsfaVLPWH8PygxnOoX/NowIwrW8SJnZtxAIVREREVCsKuNDq1asxfvx4xMfHy4nhv//+e5UPQc8//zzi4uKg1+sxfPhwHD582GXXSw3HarHh8X98U+V871EMVlQ7Rivw/ZZUjHh/NW76cjOWHXAEqyGto/D1rb2w5MFBcgggK/8RERGRR/ZcFRcXo3PnzrjtttswceLEKve/9dZb+OCDDzB79mwkJSXhueeew6hRo7Bv3z7odDqXXDPVvdRDWQgM0SEsJtAZqu8f+kX1wepJ9ljRpTmZW4JZ61Lw3XYlSq2OoigBGiUmdU/EzX2aoFmU431HRERE5NHhasyYMfJWHfEB+/3338ezzz6LCRMmyHNff/01YmJiZA/X5MmTG/hqqT789tFGLPtpN+KbheOZWdfIc6/c9EuVx4kFghmsqKbEz49NKTly6N/ifWdgk0P//NA4XC+H/l3bPQHBOjUblIiIiHxjzlVKSgrOnDkjhwKWCwkJQe/evbFhw4bzhiuj0Shv5QoKCuTWbDbLG9WN8ra8nDbNyyyWwUo4dTRHPteP/1mH9BNnF2oVeoxojsmP9IXVZpU3b1YX7erLTBYb5u85gy/XH8f+M4XO832SwtBBk4X7r+0NnVYjz7GNLx/fr/WD7Vp/2LZsV0/C92v9qO/f/3528SdeNyDmXM2ZMwdXXXWVPF6/fj369euHU6dOyTlX5a677jr52J9++qna53nxxRfx0ksvVTn//fffw9/fvx7/BXSpFr+T4dwfdE8k0g8acGB5UaXHxLXTocOoIPixKiBdQIkFWJfuhzVnFMg3OxaTVivs6Blpx8BYG+L4vz4REREBKCkpwZQpU5Cfn4/g4GDf6bmqraeeegoPP/xwpZ6rxMREDBkyBBERES69Nm9L/UuWLMGIESOgVl/68Ko/P98GwBGuRt/SBUlNo7Fq5uJKj+kxvBmmPN7fp6oCXm67+poTOSWYteEEft2VhhKTo1czOkiLm3onYnKPRIT6O9qQ7Vo/2K5sV0/D9yzb1ZPw/Vo/srOzUZ/cNlzFxsbKbXp6eqWeK3HcpUuX836dVquVt3OJD6r8sFr3atOu+VklWPaDYzig0HNYC7xyc+V5Vj1HtsDNTw3yqWBVEd+vF7bteA4+W5NSYT4V0CY2CHf0b4bxneOgVSnZrg2I71e2q6fhe5bt6kn4fq1b9Z0H3DZcieqAImAtW7bMGaZEL9SmTZtwzz33uPry6DI8PfG7s/tfTawarEb4drCi6lmsNizel47P1hzF36ln5+UNbBmFOwckoX+LSDlkmIiIiMhVXBquioqKcOTIkUpFLHbs2IHw8HA0btwYDz74IF599VW0bNnSWYpdrIlVPi+LPM+8L8VwQIch13bAv2/9rWqweprBis4qMlrwv62p+GpdClJzS+U5jVKBq7rG4/Z+zdA6NojNRURERG7BpeFq69atci5UufK5UrfccgtmzZqFxx9/XK6FdddddyEvLw/9+/fHwoULucaVhyrIKcGCWdudxyt+2VPp/h7DmzNYkdPp/FJZSv37zSdQaLDIc6F6tVzo96Y+TRAdxLXuiIiIyL24NFwNHjxYrkdzPmKIz8svvyxv5PmeuurscMDgcD0Kchy9EEL3oc1w89ODORSQcPBMIT5ZnYy5O0/BUjahKikiALf1T8K13RKg11Q/n4qIiIjI1dx2zhV5lwWzz/ZYCRWDVYc+ibjl2SFQqjjHyleJP7JsOZaLj1clY/nBsyX6eyWF487+zTCsTTQULMdPREREbo7hiupdYV4p5n1xdq5VRU3bReOOV0YwWPkom82OZQcyMHPVEWwvWzxa1KQY3T4W/xzYHF0SQ119iUREREQ1xnBF9e7JK7+t9nxIhD8e+O84qDnMy+eYLDY57E8M/zucUeQsUnFNt0a4c0AzNIsKdPUlEhEREV0yhiuqV4u/23He+174/jpotHwL+pJiowU/bDmBL9am4HS+QZ4L0qow9YomuK1vU0QHs0gFEREReS5+sqV6U5RvwB+fbKn2vv8suAVaff0u4kbuI7vIiNkbjmH2huPILzXLc1FBWtzWLwlTezdGsI7vBSIiIvJ8DFdUb54Y/02159+adxP0ARq2vA9IzSmRi/7+b1sqDGabs/LfXQOb4equjaBTs/IfEREReQ+GK6oXy/+3u9rzr/5yAwI49Mvr7T9dICv/zdt9GtaycuqdGoXgnsHNMbJdLJSs/EdEREReiOGK6lxJoRG/zthY5fxTX05EWDQLFXiz7Sdy8dGKI7ICYLkBLSNxz6Dm6NMsQq5dR0REROStGK6ozj027usq5+56bQQSWkSwtb10jaqNKTmYsfww1iVny3OiY2psxzjcPag5OsSHuPoSiYiIiBoEwxXVqTV/7Kty7h+3d0fnAU3Z0l4YqlYeypQ9VVuP58pzKoUfrumWIHuqmkYGuPoSiYiIiBoUwxXVGUOJCT++s67SuQ59EjHmlm5sZS9b+Hfx/nTZU7XnVIE8p1EpMLlHoixUkRDm7+pLJCIiInIJhiuqM4+Mnl3pOChcj7teG8kW9hIWqw1/7T6Nj1YewaF0x8K/erUSN17RGHf2b8Y1qoiIiMjnMVxRnfjgob+qnHtm1jVQqhRsYQ9nstjw+440/N/KIziWXeJc+PeWvk3lOlXhLKtPREREJDFc0WXbv/kkDm47Venck59fjaBQPVvXgxnMVvy8NRUfrz6KtLxSeS7MX43b+yfhpiuaIoSLQBMRERFVwnBFl+V0Si5mPLqg0rlpzw1BYqtItqyHKjZa8P3mE/h0zVFkFhrluchALf45sBmm9GqMAC1/bBARERFVh5+SqNZKC6x4844/Kp0bel1H9BzRgq3qgYqMFny94Rg+W3MUuSVmeS4+RCfLqV/XIxE6tdLVl0hERETk1hiuqFaK8g1Y85ljTaNy8UlhuOruXmxRLwhVTcL98a/BzXF11wRZCZCIiIiILo7hii6ZocSMZyf+WOX8Ax/8gwUsPDxUJUUEYPrQFriyczxUSoYqIiIiokvBcEWXxGK24pHRs6qcf+rLiQgM0bE1PWRO1dcbj+PT1ckMVURERER1iOGKLmnx2AeGfVnl/NQnBiKhRQRb0s0xVBERERHVL4YrqhG73Y4nJ3xT5bxao0Tfca3Zim4eqr4RPVVrjiKn2CTPNY3wx/1DW3L4HxEREVEdYriiGnnrn7+jON9RlruiN/6cyhb0sFA1fWhLTOCcKiIiIqI6x3BFF/XZc0tx4kBWlfMD7oxgAQs3VGJyhKpPVjNUERERETUkhiu6oF9nbMCOVSlVzvca3QL64AK2nhsxmK34btMJzFx1BFlF7KkiIiIiamgMV3ReS3/YheX/21PtfVMe64/58+ez9dyAyWLDz9tS8eHyIzhTYJDnGoc75lRd1YUl1YmIiIgaCsMVVWvz4sOYM3NTtfe9t+RWUeKCLediFqsNv+84hf8uO4TU3FJ5Lj5Eh/uHtcQ13RKg5jpVRERERA2K4Yqq2Lc5FbNfXVlty1z/UD9otCqYzY5FZ8k1JfH/2nMa7y09hKOZxfJcVJAW9w1ugcm9EqFVKfmyEBEREbkAwxVVcnx/Jj56dGG1rZLQMgIDr27HFnNhOfyl+zPwzpKDOHCmUJ4L1atxz+DmuPmKptBrGKqIiIiIXInhipzST+TJkuvn89CH49laLgpVaw5nyVC182S+PBekVeGOAc1wW7+mCNKp+boQERERuQGGK5JyM4rw8o0/O1sjIERbaV2r6e+Nhc6fH+Ib2qaUbLyz+BA2H8uRx3q1Erf2a4q7BjRDqL+G714iIiIiN8JwRSjKN+DZa39wtkTPkS2wZfER5/EVY1qhTfdGbKkGJHqo/rsiWfZYCRqVAjf1biKHAEYGavlaEBEREbkhhivCVy8td7bCP27vjnlfbHMeK5R+uHZ6H7ZSA0nOLMYXhxTYtdFRqVGl8MPknom4b0hLxIbo+DoQERERuTGGK0LHfo1xYGsarryrJ+Z+uqVSi9z12gjoAzn8rL6dzi/F+0sPy/WqbHYFFH7A1V0T8OCwlkgM9+e7lIiIiMgDMFwRBl/TQd7ef2BepdboOaIFOvZtwhaqR3klJsxclYxZ64/BaLHJcx3DbHhzan+0axTGticiIiLyIAxX5Fw0+PDfp52tERiqw7X3czhgfSkxWfDV+mP4eFUyCg0Wea5X03A8MrwFzuxZj5bRgXxnEhEREXkYhiuSlQLPXTRYLBYcyDk+dc5steGnran477LDyCx0VGNsExuEJ0a1weDWUbBYLJi/h29KIiIiIk/EcOXjbFZbpUqBQpeBTdF1cJLLrskb2Wx2/LXnNN5ZfBDHskvkucQwPR4Z0RpXdo6HQkyyIiIiIiKPxnDl416/fU6lY/8gLa57qB/8/Phhvy4XAH5r0QHsOVUgz0UGajB9SEvc0KuxLLFORERERN6B4cqHrfljH04ddSxOW+7a6VcgJILV6erCztQ8vLnoANYnZ8vjQK0Kdw5ohtv7J8l9IiIiIvIu/ITnozJO5uPHd9ZVOteudyJ6jWrpsmvyFsmZRfjP4oNYsOeMPNYoFbjxiia4d3BzRHABYCIiIiKvxXDlg6wWG16a8r9K53T+akx5tD+HA16GM/kGvL/sEH7edhJWmx1iZOXErgl4aHhLJISxN5CIiIjI2zFc+aAnrvymyrmr7umNsBiW/66N/FIz/m/lkUprVQ1vG4PHRrZG69igy369iIiIiMgzMFz5mL++3IbSIlOlcy27xqHf+DYuuyZPZbLY8M3G4/hw+WHklZrluZ5Nw2RZ9R5Nw119eURERETUwBiufMiJg1mYP2t7pXNqrRJTHx/IUuCXWAFw3u7TeHvRQZzIcZRVF4v+Pjm6DYa2iebQSiIiIiIfxXDlI8xGC968s3LZdeHKO3siqlGwS67JE21OycFr8/dj58k8eRwdpMXDI1rh2m4JUClZVp2IiIjIlzFc+YgHR3xV5VxS+2gMvqa9S67HEysAvrHwAJbsS5fH/hol/jmwOe4ckAR/Df83IiIiIiKGK5/w3Vurq5xTqRW48YmBULC35YIyC43477JD+GFLqqwAqFT44foeiXhweEtEB+nq70UjIiIiIo/DP7l7uYPb0rB+3kHncUCIFsX5Roy5pRtim4a59NrcWYnJgi/WpuDjVckoNlmdFQCfHN0aLaJZAZCIiIiIqmK48mKiKuAHD813Hnfs2xi7159Ao+bhGDGls0uvzV2J3qlftqXi3aWHkF5glOc6J4TgqTFtcUWzCFdfHhERERG5MYYrL/bo2NnO/ZE3dsHib3fAT+GHqU8MhFLF4gvnVgBceSgTbyw4gIPphfJcQpgej49qg390jGM1RSIiIiK6KIYrL/XRYwuc+33HtcbmRYfl/rDrO6JJmygXXpn72ZOWj9cX7Me65Gx5HKJXY/qQFripTxNoVUpXXx4REREReQiGKy9UmFeKfZtOOo8VKgXyMosR2SgY427t7tJrcyen8krlWlVzdqTJY41SgWl9m+LeIS1kwCIiIiIiuhQMV17IZrHLxYHNRiumvzcWH5bNu5r62ABodHzJi4wWWajiszVHYbTYZNtM6ByPR0e1RmKYv4tfPSIiIiLyVPyk7YVCIv3xzoJpsFpteP3WX+W5fuPboFW3ePiy8mIV/1lySJZYF3olhePZsW3RKSHU1ZdHRERERB6O4cpLiYIVf36+FRknC2TYuvqe3vBl645k4ZW/9uHAGUexiqYR/rIC4Mh2MfDz83P15RERERGRF2C48lInDmZh2U+75P7kh/tDH6iBLzqSUSSLVSw7kCGPg3Uq3D+sJW6+oik0rJhIRERERHWI4coLWS02fPfWatisdnQb0gyd+jeBr8ktNuG/yw7j203HYbHZoVL44cYrmuCBoS0RFuCbQZOIiIiI6hfDlRda9uMunDycjYBgLSY90Ae+xGSx4esNx/DB8sMoMFjkueFto+UQwOZRga6+PCIiIiLyYgxXXib9RB7+mrVd7l8zvQ+Cw727+t3J3BLM3nAMV3dNwImcErw+fz+O55TI+9rGBctiFf1aRLr6MomIiIjIBzBceRGbzY7v3loDi8mKtr0S0GtkC3gru92Ou7/bhkV70+XxZ2tSnPdFBWnx2MjWuKZbApQKFqsgIiIioobBcOVF1s7dj+RdZ6DRq3DDo/29tgqeqPw39YtNVc5rVQrcNaAZ/jmoOQK1fGsTERERUcPiJ1AvkZtehN9nbpb7E+7qiYjYIHibEpMFvV9fhsKyuVQVXd2lER4b1RrxoXqXXBsREREREcOVlwyR+/HdtTCWmtGsQwwGXtUO3ubT1cn494IDVc73aBKGZ8e1Q5dELgJMRERERK7FcOUFti5Nxp4NqVCpFZj6+AAolAp4C1GkYuDbK6qcTwjT4+kxbTGmQ6zXDn8kIiIiIs/CcOXhCvNK8csHG+T+6Ju7IrZpGLylOMf0H//GX7tPV7nv6TFtcEvfptCqlC65NiIiIiKi6jBceTgRrIryDWjUPBwjpnSGN9h4NBuTP9tY5fzU3o3x8PBWiAjUuuS6iIiIiIguhOHKg+3ZcEIOCfRT+GHqEwOhUnt2T06hwYxxH66VQwErah8fjP9c21muW0VERERE5K4YrjxUabEJP/xnrdwfel1HNGkTBU8uyPHtxuN4bu7eKvfNnNoNo9tzXhURERERuT+GKw8195MtyMssRmSjYPzjtu7wVClZxRjyzsoq5+8d3BzTh7aEzsN744iIiIjIdzBceaAjO09j9e/75P7UxwZAo/O8l9FgtuK5P/bg520nK51vFKrHL3f3QVwI16siIiIiIs/ieZ/KfZzZaMF3b62R+33/0RqtusXD06w8mIFps7ZUOf/DnVegT7MIl1wTEREREdHlcusFkV588UW5hlHFW5s2beDL5s/+Gxmp+QiJ8MfV9/SGJzmTb0DHlxZVCVa39UvC0dfGMlgRERERkUdz+56r9u3bY+nSpc5jlcrtL7nepB7KwtIfdsr96x/uB/8gzyhJbrHa8MHyI/hg+eEq9+14bgRC/TUuuS4iIiIiorrk9klFhKnY2Fj4OqvFhu/eXA2b1Y6uQ5LQeUBTeIItx3Iw6RPHIscVfXFzDwxrG+OSayIiIiIi8slwdfjwYcTHx0On06FPnz54/fXX0bhx4/M+3mg0ylu5goICuTWbzfLmqZb+sBuph7PhH6TBxH/1cvm/pfz7n+86cktMmPz5ZhzNqrxm1YAWEfj8xm5QKPxc/m9wRxdrV2K7uhO+X9munobvWbarJ+H7tX7U92csP7tYZMhNLViwAEVFRWjdujVOnz6Nl156CWlpadizZw+CgoLOO09LPO5c33//Pfz9/eGJinMs2PBNDmwWoP3oIDRq776V9Gx2YNFJBRamVZ3O90QnC+I98yUgIiIiIi9QUlKCKVOmID8/H8HBwb4Vrs6Vl5eHJk2a4N1338Xtt99e456rxMREGc4iIjyvEp3NZsdHjyxE8q50tO4Rj7vfGCELe7hD6l+yZAlGjBgBtVotz207novJX1StAnh73yZ4dERLqJRuXT/FLVTXrsR2dVd8v7JdPQ3fs2xXT8L3a/3Izs5GXFxcvYUrtx8WWFFoaChatWqFI0eOnPcxWq1W3s4lPqh64ofVNX/sl8FKo1dh6mMDodG4V/EH0aZGmx86vLio2vsXPjAAbWLr/o3r7Tz1/eru2K5sV0/C9yvb1tPwPct29QT1/fnKo7oSxBDB5ORkmTZ9QW5GEX6fuUnuX3lnT0TEVT8U0lVEn+e7Sw9XG6zuH9oSh18dw2BFRERERD7DrXuuHn30UYwfP14OBTx16hReeOEFKJVK3HDDDfB2YrTmj++ug6HEjKT20Rh0dTu4k+0n8vDgJvH2Saly35/39UfHRiEuuS4iIiIiIldx63B18uRJGaTE2MioqCj0798fGzdulPvebtvyo9iz/gRUagWmPjEQCjeZr5RfasYVry9Dqdla5b4beibihfHtoVMrXXJtRERERESu5Nbh6scff4QvKsoz4Of318v90Td3RVzTMLfoSXv69z34YfOJau//5Z990KNpeINfFxERERGRu3DrcOWrfpmxAUX5BsQnhWHElM6uvhwsP5CO22Zvrfa+pAh//Dl9AAK1fCsRERERkW/jJ2I3s3djKrYsPgI/hZ8cDqhy4RC7jEIDev172Xnvv6WFFc/e3B9qNd9GRERERET8VOxGDCUm/PCfNXJ/6KQOaNou2mVra93x9VYsP5hx3sdsfHwQNq0+f/AiIiIiIvI1DFcNwGK2ymF+oZEBF3zc3E+3IDejGJHxQfjH7T3gCr9tP4mHf9553vun9m6MVyd0gMViadDrIiIiIiJydwxXDeCBYV/K7dNfXYOohGBYzTboAysvBnx0dzpWz9kn9294bAA0uoZ/aTILjRcMVlwQmIiIiIjo/Biu6tn6vw46942lZjw04itZXv2NuTdBH+AIWGaTFd+9tVouynvF2FZo070RXCFAq5SFKYqMVXuljrw6Bio3KQdPREREROSOGK7q2Xdvrnbu/6+svLrFbKtUqGLxdztw5ngegsL0mPiv3nCV/y47XCVYvTi+Hab1TXLZNREREREReQqGq3q0c80x5/6kB/ri5/86wlV0QjDUGke4On0sF4u+2VH2mD4ICNbBFWtYJT09v8r59U8MRXyovsGvh4iIiIjIEzFc1aNPn1ni3P/zsy3O/Sc+n+isyvf9W2tgtdjQsW9jdBvSDO5Sbj35tbFQKvwa/HqIiIiIiDwVJ9HUk8M7Tjv3h1zbAYYSs9xv1zsROn+13F/7x34c3ZMOrV6N6x/qBz+/hg0z3246XiVYiWGAx14fx2BFRERERHSJ2HNVT96/f55zf8Uve5z7d78+Um5z04vwxyeb5f6Ef/ZEWEwgGorZakP7FxfBZLFVOr/0oYFoER3UYNdBRERERORN2HNVD1IPZTn32/Q4W/lv8DXtoVQp5Bynn95bJ3uzktpHY8BV7dBQ/j6Ri5bPLqgSrHa9MJLBioiIiIjoMrDnqh68cccc5/6BrWnO/Wvv7yO3f69Mwe71J2TQmvrEQCgaaG7TQz/twJwdZ6+n3NHXxjbYNRAREREReSuGqzqWcTLfuR8YqkNRnkHuXzu9j5xTVVxgcJZkH3VTF8Q1DUNDLA7c899Lq5wf1T4Gn9zYo96/PxERERGRL2C4qmMvTfmfc788WAlDJnWQ2zn/twmFuaWIbRKKkVO7oL7NXn8ML/y5t8r5t67phOt6JNb79yciIiIi8hUMV3UoL6u42vN3vTZCbg9uS8OG+YcgigJOfXygc62r+mC0WNHxpcVV5lYJSx4ciJYxLFxBRERERFSXGK7q0Ou3/Vbt+c4DmsJktOD7/6yVx6KARbOOMagv65OzMOXzTVXO3zkgCU+Nbsv5VURERERE9YDhqo6UFBorDQMs9+jHE+R2/lfbkZVWgNCoAFx5V0/U59pVz/5+tvS7IGpVvHRlB9x0RZN6+75ERERERL6O4aqOvHvfn9WeT2oXLUuzL/tplzye/HA/6AM0qC+rDmVWOg7QKDFjSjcMaR1db9+TiIiIiIi4zlWdMBksOJ2SW+X8iz9cD6vFhu/eWgOb1Y5uQ5qhY7/67T26pluCcz82WIef7+7LYEVERERE1ADYc1UH/u+JhVXOBQRrEdUoGEt/3CV7rvyDtJj0gGOdq/qycM9pPPDTDrnfPj4YX9zcE7Ehunr9nkRERERE5MBwdZlEz9Thv09XOf/8d9ch61QB5n2xVR5PvLc3gsP9UR/sdju+WJuC1xbsh90ODG0djQ9v6IoALV9eIiIiIqKGwk/fl2nWKyuqnGvaLlr2XH310nKYjVa06haPK8a0Qn2w2ux4ed5ezN5wXB6LohUv/KMdVEpFvXw/IiIiIiKqHsPVZbDZ7Ni+4miV8w/+dxw2LTyMA1vT5FpWNzzaH35icas6VmKy4P4f/8bS/Rny+JmxbXFH/6R6+V5ERERERHRhDFeX4ef/rq9yrsfw5jCUmPHbRxvl8bjbuiM6IQR1LaPQgNtnb8XutHxoVAq8f10XjO0YV+ffh4iIiIiIaobh6jLmOa2es6/K+VueHYLZr65AcYERiS0jMPS6jqhrh9ILceusLUjLK0V4gAaf3dQd3ZuE1/n3ISIiIiKimmO4qqX5s7ZXOTd2Wjfs25SKrUuT4afww5THB0Cpqtu5T+uTs/DPb7eh0GBBUkQAvprWE00jA+r0exARERER0aVjuKql+V9VDVfDJnfEqzf/IvdFj1Xj1lGoS79uP4knf9sFs9WOHk3C8OlNPWTPFRERERERuR7DVS1UNxzwpqcGYe5nW5GbUYzI+CD847buqMshiB8sP4L3lh6Sx+M6xuGdSZ2hUyvr7HsQEREREdHlYb3uWvjpvXVVzsU0DsHq3/bK/RseHQCNrm5yq8liw2O/7nIGq38ObIYPJ3dlsCIiIiIicjPsubpE25YlVzl3z5uj8N1ba+QCvr1Ht0SbHo3q5MXJLzXjX99tw7rkbCj8gJcndMCNvZvUyXMTEREREVHdYri6RF++tLzKudRDWTidkovAUB0m3ntFnbwwohLgrbM241B6Efw1Snx0QzcMaRNdJ89NRERERER1j+HqEuzffLLKudtfGiZLrwuTHuiLwBDdZb8oe9LycevsLcgsNCI6SIsvp/VEh/i6XyuLiIiIiIjqDudcXYIZjy6ocm7lr3tgMdvQoU8iug9tVu3XvTJvH+74eqsc5ldeoOJ8lh9Ix3WfbpDBqnVMEH7/Vz8GKyIiIiIiD8BwVUMp+zKqnBt9c1ck70qHVq/G9Q/3h5+fX5XHPPP7bnyxLgVL96djQ3IWmj71F8bPWAuz1Vblsd9sPC5DWInJiv4tIvHz3X0QH6qvzetKREREREQNjMMCa+g/d/9R6VitUWLlL3vk/pV39UB4TGCVr5m36xS+23TCeXz3d461sfacKqj0OJvNjjcWHsCna47K40ndE/DvqztCrWT2JSIiIiLyFAxXNXD6WG6Vc0kdYnBo+ykktY/GwKvaVbn/aGYR7vvh72qf782JZ4OTwWzFw//bgfl7zsjjR0a0wn1DWlTbC0ZERERERO6L4aoGXr35lyrnRLBSqhSY8vgAKM7pYSo1WTH03VXVPpcIT9f3bCz3c4pNuPObrdh2PBdqpR/euqYTru6aULtXkoiIiIiIXIrh6iJy0ouqnAsI0aI434iRUzsjPim80n2iWEXbFxZW+1xTejXG9KEt5X5KVrEstX4suwTBOhU+uakH+jSLqP0rSURERERELsVwdRGv3VK110oEq5jGoRh1U9cq9w1/r/oeq8GtouQ8KmHrsRzZY5VbYkZCmB6zpvVEi+ig2r2CRERERETkFhiuLqAwrxSGEkf59HOJ4YCiqEVFby48gOTM4iqPbRYVgFm39pL7f+0+jYf+twMmiw2dGoXg81t6IDro8tfGIiIiIiIi12K4uoQKgeUGXNUWLTrFVjq34mAGZq5KrvJYpcIPyx8eLIcLimqAry84IM+PaBeD/17fBf4avgRERERERN6An+zPw1BiQtapwirnQ6MCMOEuRy9UuZO5Jbh11pZqn+fIq2Ngsdrwwp97nWXZp/VtiufGtZPBi4iIiIiIvAPD1Xl8+PCCas9f92Bf6AM1zmOjxYr+b62o9rHJr42VCwLf98N2rDiYCVFd/dmx7XB7/6S6eO2IiIiIiMiNMFxVw2y04Ni+jCrnuw5OQucBTSuda/1c9ZUBD7w8GllFRtw2ewv2niqAVqXAfyd3xej2lYcTEhERERGRd2C4qsYXLyyrck70Vk16oG+lc9d+vL7aRt35/EgczxZDBTfjVL4BEQEafH5zD3RtHFZXrxsREREREbkZhqtzWC027F7vmBtV0cR/9UZIhL/z+KOVR7D1eG6Vx218chh2p+Xjnm+3odBocVQKnNYLjcPPfi0REREREXkfhqtz/L3yaJVGatk1Dn3GtXYebziajbcXHazyuKUPDcSaI5l46rfdsNjs6JUUjk9v7I5Q/7NztIiIiIiIyDsxXFVgs9nx+yeVq/6pNEpMeXQA/EQ1CgAZhQbc8NnGKg356919MHfnaXyw/LA8vrJzPN6+thO0qsprYRERERERkXdiuKpg97rjyE0vqtRA46Z1Q3RiiNwXJdV7/bvqfKyZU7vJMuu//Z0mj+8d3ByPjGgNBUutExERERH5DIarMmKR35/eXVepcRq1CMewyZ2cxy2erVqe/ZmxbTF7wzFsPJoj16167aoOmNyzcX2/bkRERERE5GYYrsoc2JqG/OySSo0z9fGBUKoUcv/22VUXCb6+RyJ+2pqKIxlFCNSq8NGUbhjUKqohXjciIiIiInIzDFdlvnxxeaWGGXpdRzRp4whKX284hmUHKq971bFRiDwn1rKKDdbhy2k90S4uuKFeNyIiIiIicjMMVwCSd59BSaHR2Shh0QH4x+3d5f7O1Dw8P3dvlYYTvVWlZivaxAbhq2k9EReib8jXjYiIiIiI3AzDFYD/PvBXleGAWr0aeSUmTPi/yvOwBFGnQgSrgS2j8NGUrgjSqRvuFSMiIiIiIrfk8+Eq9VCWXDi4XK9RLdC2V4Isy97llSXVNprNDtzQMxEvT+gAtdIxJ4uIiIiIiHybz4erN+6YU6lBrrm3j9y2e3HheRvt8VGtcc+g5s61r4iIiIiIiHw6XJ05llvpeNpzQxAYqsPD/9sBg/lsb1Y5jVIhFwae0KVRA14lERERERF5Ap8OV6/c/ItzX6H0Q4/hzfH3iVznYsAVhejV+OymHuiVFN7AV0lERERERJ7AZ8NV+om8Sscv/nA9zhQYcPXM9VUe2zjcX1YEbB4V2IBXSEREREREnsRnw9XLN/7s3O87rjX04Xp0f2FRlcd1SQzF5zf3QGSgtoGvkIiIiIiIPIlPhqu05JxKx9c/3A9jZqyt8rhR7WPw/nVdodcoG/DqiIiIiIjIE/lkuPr3rb8696e/OxbPzN2LwxlFlR5ze78kPD22LZRiUSsiIiIiIqKL8LlwtWvt8UrH26wW/LQ1tdK5F8e3w7S+SQ18ZURERERE5Ml8Llx98vRi5/7kGf/ATT9sr3S/qAg4ol2MC66MiIiIiIg8mU+Fq69fW1np+NxgNffefuiUENrAV0VERERERN7Ap8LVpkWHnfsL+sRVum/N40OQGObvgqsiIiIiIiJv4DPhKiM137mfE6SGrUKhip3Pj5SLBBMREREREdWWAj7i3X/Nc+5v6Bjp3D/4ymgGKyIiIiIiumw+E67a9G4kt0caBQJ+jl6rlH+PhVbFNayIiIiIiOjy+cywwK2JQdhtVaIowDH87+hrY+FXFrKIiIiIiIh8oufqo48+QtOmTaHT6dC7d29s3rz5kp/jSIHBGazEUEAFFwcmIiIiIiJfClc//fQTHn74YbzwwgvYvn07OnfujFGjRiEjI+OSnue5sW0wrW9TWbyCQwGJiIiIiMjnwtW7776LO++8E7feeivatWuHjz/+GP7+/vjyyy8v6Xn6NY/Ai+Pbs3gFERERERH53pwrk8mEbdu24amnnnKeUygUGD58ODZs2FDt1xiNRnkrl5/vKMGek5PTAFfsO8xmM0pKSpCdnQ21mmXs2a7uje9Xtqsn4fuVbetp+J5lu3qSnLJMYLfbfS9cZWVlwWq1IiYmptJ5cXzgwIFqv+b111/HSy+9VOV8q1at6u06iYiIiIjIc4gOgpCQEN8KV7UhernEHK1yeXl5aNKkCU6cOFEvDeirCgoKkJiYiNTUVAQHB7v6crwG25Xt6kn4fmW7ehq+Z9munoTv1/ohRrU1btwY4eHh9fL8bh2uIiMjoVQqkZ6eXum8OI6Nja32a7RarbydSwQrhoC6J9qU7cp29RR8v7JdPQnfr2xbT8P3LNvVk4ipRvXyvHBjGo0G3bt3x7Jly5znbDabPO7Tp49Lr42IiIiIiMhjeq4EMcTvlltuQY8ePdCrVy+8//77KC4ultUDiYiIiIiI3IXbh6vrr78emZmZeP7553HmzBl06dIFCxcurFLk4nzEEEGxRlZ1QwWp9tiu9YPtynb1JHy/sl09Dd+zbFdPwverZ7arn72+6hASERERERH5ELeec0VEREREROQpGK6IiIiIiIjqAMMVERERERFRHWC4IiIiIiIiqgNeHa4++ugjNG3aFDqdDr1798bmzZtdfUke5fXXX0fPnj0RFBSE6OhoXHXVVTh48GClxxgMBtx7772IiIhAYGAgrrnmmiqLPtOFvfHGG/Dz88ODDz7Idr1MaWlpuPHGG+X7Ua/Xo2PHjti6davzflG/R1QejYuLk/cPHz4chw8f5lv0IqxWK5577jkkJSXJdmvevDleeeUV2Z5s25pbvXo1xo8fj/j4ePn//O+//17p/pq8P3NycjB16lS5WGtoaChuv/12FBUV+fR7+ELtajab8cQTT8ifBQEBAfIxN998M06dOlXpOdiul9au57r77rvlY8RyOWzX2r9fy+3fvx9XXnklQkJC5PtWfBY7ceKE835+9rr0dhU/J++77z4kJCTIn6/t2rXDxx9/XOkxddWuXhuufvrpJ7lGlii1uH37dnTu3BmjRo1CRkaGqy/NY6xatUq+yTZu3IglS5bIX1IjR46U64yVe+ihh/Dnn3/i559/lo8Xv7AmTpzo0uv2JFu2bMEnn3yCTp06VTrPdr10ubm56NevH9RqNRYsWIB9+/bhnXfeQVhYmPMxb731Fj744AP5A3XTpk3yl5b4uSB+oNL5vfnmm5g5cyZmzJghf+mLY9GWH374Idv2EoifneJ3kfjDX3Vq8v4UwWrv3r3yZ/K8efPkB4q77rrLp9++F2rXkpIS+RlA/HFAbH/77Tf5R0LxwbUituultWtFc+bMkZ8TxIfac7FdL71dk5OT0b9/f7Rp0wYrV67Erl275PtXdBSU42eES29XkQnEUk7ffvut/D0m/qAtwtbcuXPrvl3tXqpXr172e++913lstVrt8fHx9tdff92l1+XJMjIyxJ+p7atWrZLHeXl5drVabf/555+dj9m/f798zIYNG1x4pZ6hsLDQ3rJlS/uSJUvsgwYNsj/wwAPyPNu1dp544gl7//79z3u/zWazx8bG2t9++23nOdHWWq3W/sMPP9Tyu/qGcePG2W+77bZK5yZOnGifOnWq3GfbXjrxc3LOnDnO45q04b59++TXbdmyxfmYBQsW2P38/OxpaWm1uArvb9fqbN68WT7u+PHj8pjtWvt2PXnypL1Ro0b2PXv22Js0aWJ/7733nPexXWvXrtdff739xhtvPO/X8DNC7dq1ffv29pdffrnSuW7dutmfeeaZOm9Xr+y5MplM2LZtmxxSUU6hUMjjDRs2uPTaPFl+fr7choeHy61oY9GbVbGdxV9aGjduzHauAdErOG7cuErtx3atPfHXpx49emDSpElyGGvXrl3x2WefOe9PSUmRC5FXbG8x5EIMGebPhQvr27cvli1bhkOHDsnjnTt3Yu3atRgzZgzbto7U5P0ptmIooHiflxOPF7/fRE8X1fx3mRg2JNqS7Vp7NpsNN910Ex577DG0b9++yv18v9auTf/66y+0atVK9lqL32XiZ0DFIW787FX732Pic4KYPiDy14oVK+TvNDEiq67b1SvDVVZWlpwjEBMTU+m8OBa/vKh2/8OLLlQx7KpDhw7ynGhLjUbj/AXFdq65H3/8UQ5REfPazsV2rZ2jR4/KoWstW7bEokWLcM899+D+++/H7Nmzne0q8OfCpXvyyScxefJk+YtGDLsUwVX8PBBDfti2daMm70+xFR+2KlKpVPIPXvzdVjNiiKWYg3XDDTfIeWts19oTw4PF+0/8nK0O36+XTkxdEXODxFzs0aNHY/Hixbj66qvl0DQxTK28XfnZ69KJYexinpWYcyXaT7SvGEI4cODAOm9X1f+3dyewUZRRHMAfFBArpzQcilQQxYpYDq9iFKGKeJZ60ODVclgBhSIIpCgEQihIoEYgreABEYsIiiB414IWKwjacnhUFCxIAANaK1BA5DP/l8xktnu0204pdP+/ZOkes7PffjvszJv3fW8r0T4K0SzLjh079Gw1Vc3evXslJSVF50w4x1BT1U8A4Ix+Wlqa3kYAgG0W81cSExPZvVWwfPlyycrKkqVLl+oZ6oKCAg2uMMeCfUvnCpyVHjBggJ61xokYqjyc5X/ppZf0JCGygOTefgzi4uJ0/g907dpV8vLydF/Wq1cvdnUVgivMDUT2KjIyUuer4tgW+7GyI4iqqlZmriIiIiQsLMyrwgdut27dusbada7ChD9MnEYKFRG/BX2JIZjFxcUey7Ofy98p4exU9+7d9awfLjgjhYnsuI6zJOzX4KHCGs5KOUVFRdkVlqz/+/xeCB6G/VjZK1Rdw1Ag7PitzCv7tuoq0of4W7Yo06lTp7TSHfdtFQusioqK9MSWlbViv1ZObm6ubosYMmXtx9C3Y8eO1SrN7NfKH7+iL8vbl/EYITilpaUyceJESU9P14qCKCKGY9uEhASZPXu26/1aK4MrpPV69OihcwScZwNwOyYmpkbbdi7B2T1sfKgElJOTo2WYndDHGCLk7GdUYcIXAPvZv9jYWNm+fbue/bcuyLhgiJV1nf0aPAxZLftTARhPjTNUgO0XX5DO7bWkpETnqnB7DQwV1zCvxwknsKyzrOzbqqtIH+Ivdvw4QWPBdzM+B8zLoMCBFcraZ2dna5llJ/Zr8HCCBVXsnPsxZABwIgbDstmvlT9+Rdn1QPsyHntV7jsAl0D7MVf71dRSy5Yt0ypLixcv1oo1ycnJplmzZubAgQM13bRzxvDhw03Tpk3N+vXrzf79++3LsWPH7GWGDRtm2rVrZ3JycsyWLVtMTEyMXig4zmqB7NfKQQWwevXqmenTp5udO3earKwsEx4ebt588017mZkzZ+r3wOrVq822bdtMXFycad++vSktLeUmG0BiYqJWBFu7dq3ZvXu3WblypYmIiDDjx49n3wZZITQ/P18v2P2mp6frdatqXUW2z379+plu3bqZTZs2mQ0bNmjF0YEDB4b09huoX0+ePGnuu+8+07ZtW1NQUOCxLztx4oS9DvZrcP3qS9lqgezX4LdXwPcrqtYtXLhQ92Xz5s0zYWFhJjc3114Hj72C71ccZ6Fi4Lp168yuXbvMokWLTMOGDU1GRobr/VprgyvABolOatCggZZm37hxY0036ZyCjdPXBRukBTv9ESNGmObNm+uBbHx8vO60qGrBFfu1ctasWWOuvvpqPbFy5ZVX6s7JCeWuJ02aZFq1aqXLxMbGmsLCQm6u5SgpKdHtE9+n2Bl16NBBy9c6D07Zt+XDTt3XdyqC14r24eHDhzWYatSokWnSpIkZNGiQHlSEskD9ipMB/vZleJ6F/Rpcv1Y0uGK/Vq5fX3vtNdOxY0f9vo2OjjarVq3yWAePEYLvVxybJiUl6c8yoV87depk5syZo9+7bvdrHfxTiQwbERERERER1fY5V0RERERERGcagysiIiIiIiIXMLgiIiIiIiJyAYMrIiIiIiIiFzC4IiIiIiIicgGDKyIiIiIiIhcwuCIiIiIiInIBgysiIvJQp04dWbVqVa3slZMnT0rHjh0lLy/P7zK//fab9kFBQYGc63744Qdp27atHD16tKabQkQUEhhcERGFgKSkJA0YcKlfv760atVKbr/9dnn99dfl9OnTHsvu379f7rzzzloZiL388svSvn176dmzp4SCq666Sm688UZJT0+v6aYQEYUEBldERCGiX79+GjghM/PRRx9J7969JSUlRe655x45deqUvVzr1q3lvPPOk9rGGCPz58+XIUOGyNmSRTsTBg0aJJmZmR6fMRERVQ8GV0REIQIBEwKniy++WLp37y4TJ06U1atXa6C1ePFin9koBABPP/20tGnTRho2bCiRkZEyY8YMfezSSy/Vv/Hx8foc6/avv/4qcXFxmh1r1KiRXHfddZKdne3RFiyblpYmgwcPlsaNG0u7du1k4cKFHsv8/vvvMnDgQLnwwgvlggsukGuvvVY2bdpkP462432gXR06dJCpU6cGDCC+/fZbbdvdd9/tcf8333wj3bp10/XgNfLz872eu2PHDs3m4f3gfT322GNy6NAh+/F//vlHHnnkEW0n+urFF1+UW2+9VUaPHu3xnqdNmyaPP/64NGnSRJKTk/X+DRs2yM033yznn3++XHLJJTJq1CiPYXwnTpyQZ599Vj83rP+GG26Q9evX248XFRXJvffeK82bN9fHO3fuLB9++KH9ODKUf/75p3zxxRd++4aIiNzB4IqIKIT16dNHoqOjZeXKlT4fnzt3rrz//vuyfPlyKSwslKysLDuI2rx5s/5dtGiRZsSs20eOHJG77rpLPv/8cw1UkDHDwf+ePXs81j1nzhw7mBkxYoQMHz5cX8NaR69evWTfvn36+lu3bpXx48fbQxhzc3M1SEHmDfOKFixYoAHi9OnT/b5XPOeKK67QYM6C10HmDsPnEHxNmTJFAxmn4uJi7ScEYFu2bJGPP/5YDh48KAMGDLCXGTNmjHz11Vfa1s8++0xf67vvvvNqw+zZs7W/8Z4nTZqkwR7654EHHpBt27bJ22+/rcEWAloLrn/99deybNkyXeahhx7S5+zcuVMff+qppzQA+/LLL2X79u3ywgsvaBBoadCggXTt2lXbRERE1cwQEVGtl5iYaOLi4nw+lpCQYKKiouzb2DW89957en3kyJGmT58+5vTp0z6f61w2kM6dO5t58+bZtyMjI82jjz5q38b6W7ZsaTIzM/X2ggULTOPGjc3hw4d9ri82NtakpaV53LdkyRLTpk0bv21ISUnR9+KE12nRooUpLS2170Mb8L7y8/P19rRp00zfvn09nrd3715dprCw0JSUlJj69eubFStW2I8XFxeb8PBwfU3ne+7fv7/HeoYMGWKSk5M97svNzTV169bVNhUVFZmwsDCzb98+r/efmpqq17t06WKmTJliAomPjzdJSUkBlyEioqqrV93BGxERnd0QI2FYn79CGBhW1qlTJ82WIMvTt2/fgOtDNggZoA8++EAzWhiqV1pa6pW5uuaaa+zreH0MWfzjjz/0Nir1IVOEIYG+IJOFTJEzU/Xff//J8ePH5dixYxIeHu71HLQBQ/+cfvzxR22H8/6YmBiv11q3bp1HNsiCzBPW+++//8r1119v39+0aVPts7KQqSu7bmSjkBF0fh7I0O3evVt27dql7wsZNydkqlq0aKHXMYwQWb9PP/1UbrvtNs2COfsWMOQQ/UJERNWLwRURUYhDgIEKer5gThMO8jEvC/OmMBQOB/DvvPOO3/VhWB2GxmEIHMqe48D+wQcf9CrggKqFTgiwrGF/eE55ARzmWN1///1ej5UNoCwRERE6bC5YeC0Ma8Rwu7Iwv+qXX36p8LowJ6rsup988kkNkMrCPDQEXmFhYTpkEX+drGBv6NChcscdd2gwiwALc+Iw5HLkyJH2sphzddlll1W4nUREVDkMroiIQlhOTo4GHM8884zfZVB8ISEhQS8IkpDBwsE6skoIkJBZcUJGCRkvFLqwAghUKAwGMi+vvvqq/Tq+gj7Mz0LwVlHIhKFqnjNTFxUVJUuWLNGMlxWUbdy40eu13n33XZ1rVq+e924TxTTQD5hzhoAI/v77b/n555/llltuCdgmrBtzxvy9D7QZ/YuMHope+INCGMOGDdNLamqqvPLKKx7BFQpy4LMjIqLqxYIWREQhAkPJDhw4oEUiUGwB1fpQ1Q9D/VAcwhf8PtJbb70lP/30kwYLK1as0OF7zZo108cRcKBwBdb7119/6X2XX365FsjA0D4Me3v44Ye9fkurPKgSiNfp37+/BmsYHocAB4UdYPLkyfLGG29o9ur777/X7BsKPjz//PN+14nS8wj0sLwFbUOg9cQTT2iQgyp7yLg5oWAEgjy0CQEUhgJ+8sknWuIcgQ8KZCQmJsq4ceN0+CDWj3LvdevW9Tvc0jJhwgT9QWMUrUB/oUgFqiBaBS0wHBBVCPH5oE+RRUR1Q2SnkKkCVCREe/AYPle0AUGjBYEtPnNkHImIqHoxuCIiChGocodhbAiIkH3CQTiqAeJgvuyQMwsCh1mzZulcIZRUx4E6AhAEDoDhZxgCiMwJsixWQIay4PihXgynw5A1ZGiCgQp3GOLWsmVLrTzYpUsXmTlzpt1OrHPt2rW6DNqFH8pF+XOUivcHc5SQTXPOb8LQujVr1mj2Du1/7rnnvIb/XXTRRRrgIZDCfDO0BQENAkyrH/CeMVcLgSqCmJtuukkDHH9DFJ0ZOpRIR+CKzBTagMARr2lBNUYEV2PHjtV5XAg4nVkytAsBIF4PnysCsoyMDPv5CI7R7kB9Q0RE7qiDqhYurYuIiOishjlMKNCB7JOvAhVuwe9U4XepEHzW5I8WY54bMolLly7VgI+IiKoXM1dERBQykClCZgpD6NyE361ChghBG4bmYSgfYNhlTUKFRvxYNAMrIqIzg5krIiIiF4IrVO1DkQ0MaezRo4cOFcQQQiIiCh0MroiIiIiIiFzAYYFEREREREQuYHBFRERERETkAgZXRERERERELmBwRURERERE5AIGV0RERERERC5gcEVEREREROQCBldEREREREQuYHBFRERERETkAgZXREREREREUnX/A//GcINBpmbzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax = obspy.taup.plot_travel_times(source_depth=10, phase_list=[\"P\", \"S\", \"PKP\", \n", + " \"PKIKP\", \"PKiKP\",\n", + " \"S\", \"SKS\"],\n", + " ax=ax, fig=fig, verbose=True, show=False)\n", + "\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# NB - extracted from table VId\n", + "p_dists = np.array([23.0, 31.0, 41.0, 51.0, 61.0, 71.0, 81.0, 91.0])\n", + "p_times = np.array([263.57, 332.83, 415.35, 490.78, 559.81, 621.73, 676.86, 724.39])\n", + "p_error = np.array([0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There were 8 epicentral distances without an arrival\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAIjCAYAAAAAxIqtAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATOtJREFUeJzt3Ql4U2X69/E7LVAo0gItS9mL0AEpCCg6iqIIigyjUBRBUSug4DKA4CgWB0dkKMuI+rohIKPjjAuiVIEZQEVQEcQiiyDKWnYUW6AVCqjtea/7YZJ/0o222ZPv57rqaU7S9ElyqPnlfs792CzLsgQAAAAAUGkRlf9RAAAAAADBCgAAAAA8gIoVAAAAALiJYAUAAAAAbiJYAQAAAICbCFYAAAAA4CaCFQAAAAC4iWAFAAAAAG4iWAEAAACAmwhWAOCmq6++2nx5yxNPPCE2m00CyZ49e8yYXnvtNQkld911l7Ro0aLSP79y5UrzvOgWnn9+9Wf1PgAgEBGsAAQlfUOvb2DtX9WrV5ekpCT505/+JD/++KO/hxcwXnrpJb+Gn61bt5pgqEEslPj7eUXFHDp0yByHGzdu5KkD4DVVvHfXAOB9Tz75pCQmJsrp06dl1apVMnPmTPnvf/8rW7Zskejo6LB/CTQAxMfH++1Tfg1WEydONBU9dyoVwfK8duvWTU6dOiXVqlXz29hQcrDS41CPwY4dO/IUAfAKghWAoNa7d2+5+OKLzfd33323xMXFydNPPy0ffPCB3Hrrrf4eHirAsiwTkGvUqBG0z1tERISpngIAwg9TAQGElGuuucZss7KyyrxdYWGh/L//9/+kffv25o1wvXr15Prrr5d169Y5bvPqq6+a+6tfv75ERUXJBRdcYCpi5aEBQace6fREvf+EhATp37+/7Nq1q8xzccp77lJ5xqafzn/77bfy6aefOqZMOp8Ldvz4cXnwwQeladOm5j5atWol06ZNM8+NM72dVmZiY2Oldu3akpqaavadiz6GAQMGmO+7d+/uGIP9Mev4/vjHP8qyZctMONZANWvWrHI/Pv3Zli1blvi7L7vsMkfgtvv3v/8tF110kfk9devWlUGDBsn+/fulosp6Xkt6XfW65ORk+eabb+Sqq64ylVR9rt99911zvd7PpZdeasb1u9/9Tj7++ONiv/PgwYMydOhQadCggXk+2rVrJ//4xz+K3e7555831+nvqFOnjnkO3nzzzTIfzy+//CKPP/64eW70Na5Zs6ZceeWVsmLFihKPzaeeekpmz54t559/vhlLly5dJDMzs9j9vv/+++Zx6/Gv24yMjAqF7L/97W/SpEkT81j0+NHnvKijR4/Kn//8Z/Pv+LzzzpOYmBjzYcumTZsct9HXQseohgwZ4njN7P/GPv/8c3OcNmvWzDwe/fcwZswYU3kEgIqgYgUgpNiDi1auyjJs2DDzxkrfhGml67fffjNvsL788kvHG3J9I69vUm+88UapUqWKLFq0SO6//34TPB544IFS77ugoMC86V++fLl58z569Gj5+eef5aOPPjJTFPUNqbvKM7Znn31WRo4cad5wPvbYY2afvjFX+fn55k2+vmEfMWKEeVO5evVqSUtLk8OHD5uftb/B7du3r5lmee+990rbtm3NG2QNV+ei0+JGjRolzz33nIwfP978rLJv1bZt20xlUcdwzz33mGBR3sc3cOBAufPOO82bevsbZ7V3717zOv7973937Js8ebJMmDBBbrnlFvN6//TTTyaE6Bg3bNhgAmN5lfW8lubYsWPmmNDjQd/E6+PT79944w0TbvW5ve2228yYb775ZhP4atWqZX5Wzxn8/e9/b8KAnkOoHwIsWbLEHMN5eXnm59WcOXPM860/r8echnsNc2vXrjX3XRq9j1deecW8Dvoa6LE6d+5c6dWrl3z11VfFps5pUNPb6GumY5o+fbr50GD37t1StWpVc5sPP/xQbrrpJhOIp0yZIjk5OSbUaFAqDw16Gqz+8Ic/mK/169fLddddZ0KgM/2dGuD0OdUpwfpcaTjXY1unoTZq1MgcbzplWO9z+PDhJjSqyy+/3Gznz59v/j3cd9995u+GPmY9Ng4cOGCuA4ByswAgCL366quW/gn7+OOPrZ9++snav3+/9fbbb1txcXFWjRo1rAMHDpT6s5988on52VGjRhW7rrCw0PF9fn5+set79epltWzZ0mXfVVddZb7s/vGPf5j7f/rpp0u9/xUrVpjb6NZZVlaW2a+Pz+6vf/2r2eesvGNr166dy9jsJk2aZNWsWdPavn27y/5HH33UioyMtPbt22cuv//+++Z3T58+3XGb3377zbryyiuLjbMk8+fPL/FxqubNm5vrli5dWuy68jy+3NxcKyoqynrooYdcbqdjtdls1t69e83lPXv2mMc0efJkl9tt3rzZqlKlisv+1NRUM65zKe15Lel11dvpvjfffNOx7/vvvzf7IiIirC+//NKxf9myZcWe12HDhlkJCQlWdna2y+8aNGiQFRsb63iu+vbta8ZVUfp6njlzxmXfsWPHrAYNGlhDhw4tdmzqv7GjR4869n/wwQdm/6JFixz7OnbsaMZ8/Phxx74PP/zQ3O5cz++RI0esatWqWX369HH59zh+/Hjz8/oa2Z0+fdoqKChw+Xkdpx4XTz75pGNfZmZmqcdrScfalClTXI4hACgPpgICCGo9e/Y0n+Dr9B2tAGgVQSsqjRs3LvVn3nvvPfNJ+1//+tdi1zm3NXc+1yc3N1eys7PNJ+H6KbleLuv+tbGBVjXKun93VHZsdvpJvH5yr9PF9GftX/p8asXts88+M7fTRiBaMdJP8+0iIyNLfGyVoVUGrYxU5vHZp3298847prJmN2/ePFPh0SqcWrBggal0abXK+bE2bNhQWrduXWzKmzfocanHp51W5rRKptUUnQZoZ/9eH6fSx6XH0w033GC+dx6/Pm/6XGg1R+n9aZWlpGl5ZdHX095sQ58nnV6nFVyt3Nrv25lWCvW4sbNXgOxj1oqndt/TqqZOLbS79tprTQXrXHQqpFam9Bhz/vdir8w506l7el6b0uNWK2P6XOvzW9LYS+J8rJ08edI8t1rN0udbq5kAUF5MBQQQ1F588UVzHpO++dfpWPqGyv5Gq6zpgjpFSM+zKcsXX3xhwteaNWvMVCFn+obW+U1j0fvXceiYvKWyY7PbsWOHmSamobQkR44ccUyr0/PD9M2qM/uUPU8EK3cen77J16lgejt9M6zP/ddff+2Yymh/rPomWUNUSezT17xJp8AVDdX6GPQDgaL77FMHlU5Z1PPZ9Jwm/SrrtRo3bpwJJZdccok5h0unzukUwK5du55zfP/85z9lxowZ8v3338uvv/5a5utjD6x29pBlH7MeM6qk57s8gae0n9dj1TnQOZ8rqV0a9bxKDVd255oObLdv3z4zTXDhwoWOx2BXng8pAMCOYAUgqOmbyKJNCjxB36D36NFD2rRpY7oM6htg/VRfKzjPPPNMsQYPFVVa5cr5jaE3x6a30QrCI488UuL1GlZ9oaQOgBV5fFrJ0eYGWrXSYKVbDdb2phlKb6/Pt56XpNWZooqGRm8o6feWtd9egbM/1ttvv73U89o6dOhgtlr90nPWFi9eLEuXLjWVLg0cGhq01XhptKmHNifp16+fPPzww6ZhiI5Lz42yn7NYkTH7Unp6ujl3Tht7TJo0yXxYoq+/VrfK8+9A/73pvwOt0mkw1WNOm3fouYf6nLj77xxAeCFYAQg72jxCO9Hpm6nSqlbaLOHMmTPmU2znT+jLM21M718bBugn/6VVQ+yfvBftrmf/tL4sFRlbaQFOx3jixAkz9a8szZs3N0049LbOAUTfwJdHZaY+VuTx6ZtgbQqhUxs1hOk0QJ2aphVJ58eqb/q1+uKpwOipKZ3nolUabWKhAeBcr5X9+dAqnn7pdDptKqGNO7QpSWlt4LU7oXZX1CmTzo+rpKmy5aHHjL1SWFR5jhvnn3fu+qjVu6IVJR27dgzUZhvO9N+VTsc91+u1efNm2b59u6nYaSMUO200AwAVxTlWAMKOdivTN9olfYpv/9Td/qm886fwOi1I24CX5/71PI0XXnih1PvXN4/6O+znMtlpheFcKjI2faNdUmt0Pd9Ip89pwCxKb6/n2CjtyKbfO7c61zf52jWtPPT32++zvCr63GuI0AVgtbOdttnWy840XOh96utdtKqil/W8nIoq7Xn1NB23Hk9afdKOkkVp2LAr+ji0yqfnNOljdJ7eV9LvUM7PjX4woMdHZejUUe0kqGHFeSqdhhXt1HcuGiD1Awk9xpzH5Dy903nsRV9TDdlacSrPcVjSY9fvdXohAFQUFSsAYUc/4b7jjjtMG3D9VFzXr9IpP9puXa/TltZ6foq+MdWpZtpWWis22s5ap0npyfll0U++X3/9dRk7dqxp3awVFD0pXs9/0Zbh2r5cz6XR6Wr65lE/Tdeqik7hsp8vU5aKjE3XJtJQpK2r9bwbvY2uD6VTvrQipNUenfKkt9Mx6if4WgXQNYv0E3/9HXqOzqOPPmr26Rt1rWyU99wTfYOtb151fSz9GW02YF+fyhOPzx7+tKqj6xnZg4gzfW718WvVRh+DTnnT2+s5OdroRFtw689WRGnPqzdMnTrVVOu0sYW2Q9fXQKuteq6SHlP6vf1504Yc+nrp+YbfffedCfd9+vRxtG4viR4D+pqmpKSY2+rz8vLLL5vfo899Zeg0Qr2vK664wkzT0zHa19g6131qlU5fD70PHZu+vtpEQqdyOleh7GPXVurayl2ngurxqy3si65vpseANvfQx6XPhQYtfT516p9ep79Pw5g2RNEQW7QyBgDlUq7egQAQoO3WtY1yZWiL6b///e9WmzZtTGvnevXqWb1797a+/vprx20WLlxodejQwapevbrVokULa9q0aY5W6trSubR26/YWzo899piVmJhoVa1a1WrYsKF18803W7t27XLcRtvE33TTTVZ0dLRVp04da8SIEdaWLVvK1W69vGP74YcfTNvqWrVqmeucx/nzzz9baWlpVqtWrcxzEB8fb11++eXWU089Zf3yyy+O2+Xk5Fh33HGHFRMTY9p76/cbNmwoV7t1NWfOHNMmXVueO7ci17bbOraSlPfx2Q0ePNhc17Nnz1LH8d5771lXXHGFaTOvX/raP/DAA9a2bdsq3G69tOe1tHbrJbVBL+3x68/ruJz9+OOPZl/Tpk0dx1OPHj2s2bNnO24za9Ysq1u3bqYdurYbP//8862HH37YtKUvi7Y0T09PN+PRn+vUqZO1ePHiYs+Fvd26/rspacx6nBZ9vtu2bWvu84ILLrAWLFhQ7udXW6hPnDjRtGzX5ROuvvpq829Df7Zou3Vtt2+/XdeuXa01a9aU+G9S28LrOLTFvvOxu3XrVnPcnHfeeebfwD333GNt2rSp3Mc3ANjZ9D/li2AAAAAAgJJwjhUAAAAAuIlgBQAAAABuIlgBAAAAgJsIVgAAAADgJoIVAAAAALiJYAUAAAAAbgr5BYJ10c9Dhw6ZBQF1EU4AAAAA4cmyLPn555+lUaNGEhHh2RpTyAcrDVVNmzb19zAAAAAABIj9+/dLkyZNPHqfIR+stFJlf/JiYmL8PRwAAAAAfpKXl2eKLvaM4EkhH6zs0/80VBGsAAAAANi8cIoQzSsAAAAAwE0EKwAAAABwE8EKAAAAANxEsAIAAAAANxGsAAAAAMBNBCsAAAAAcBPBCgAAAADcRLACAAAAADcRrAAAAADATQQrAAAAAHATwQoAAAAA3ESwAgAAAAA3EawAAAAAwE0EKwAAAABwE8EKAAAAANxEsAIAAADgNYdzT8nqXdlmG8qq+HsAAAAAAELTvMx9kpaxWQotkQibyJSU9jKwSzMJRVSsAAAAAHjc4dxTjlCldDs+Y0vIVq4IVgAAAAA8Liv7pCNU2RVYluzJyQ/JZ5tgBQAAAMDjEuNrmul/ziJtNmkRFx2SzzbBCgAAAIDHJcTWMOdUaZhSuk1PSTb7QxHNKwAAAAAUo+dC6XQ+rTxVNgwN7NJMuiXVM9P/tFIVqqFKEawAAAAAeK2bX0JsjZAOVHZMBQQAAAAQtt38PIVgBQAAACBsu/l5CsEKAAAAQNh28/MUghUAAACAsO3m5yk0rwAAAAAQtt38PIVgBQAAAIQYT7RKD5dufp5CsAIAAABCiCdbpaP8OMcKAAAACBG0SvcfghUAAAAQImiV7j8EKwAAACAYHTggsmLF2e3/0CrdfwhWAAAAQLCZO1ekeXORa645u9XLtEoP32D12WefyQ033CCNGjUSm80m77//vuO6X3/9VcaNGyft27eXmjVrmtvceeedcujQIX8OGQAAAPAvrVANHy5SWHj2sm5HjHBUrrRRxapx3eWte35vtjSuCINgdfLkSbnwwgvlxRdfLHZdfn6+rF+/XiZMmGC2CxYskG3btsmNN97ol7ECAAAAvmpAsXpXttmWaMeO/wtVdgUFIjt3Oi5qm/TLWsbRLj1c2q337t3bfJUkNjZWPvroI5d9L7zwglxyySWyb98+adaMlpEAAAAIw1bprVuLRES4hqvISJFWrXw+XgTpOVa5ublmymDt2rVLvc2ZM2ckLy/P5QsAAAAImVbpTZqIzJ59Nkwp3c6adXY//CZogtXp06fNOVe33nqrxMTElHq7KVOmmGqX/atp06Y+HScAAADg9Vbpw4aJ7NlztiugbvUy/CoogpU2srjlllvEsiyZOXNmmbdNS0szlS371/79+302TgAAAKCyKtwqXStUV19NpSpARARLqNq7d68556qsapWKiooyt3H+AgAAAAKdNpzQc6o0TCndpqck04AiSPi1eUV5Q9WOHTtkxYoVEhcX5+8hAQAAAF6jjSq6JdUz0/+0UqVhC8HBr8HqxIkTstOpLWRWVpZs3LhR6tatKwkJCXLzzTebVuuLFy+WgoIC+eGHH8zt9Ppq1ar5ceQAAABAcdpoQs+V0ml9lQ1F+nMEquBjs/TEJT9ZuXKldO/evdj+1NRUeeKJJyQxMbHEn9Pq1dU6n7QctCugNrHQ862YFggAAAC/tkqHX3kzG/i1YqXhqKxc58fMBwAAALjdKl2n9VF9Cg8B37wCAAAACKlW6QhJBCsAAADA163SEXIIVgAAAICbaJWOgG63DgAAAARLRz9apYc3ghUAAADCnqc6+tEqPXwxFRAAAABhrbSOfrofKC+CFQAAAMIaHf3gCQQrAAAAhDU6+sETCFYAAAAIa3T0gyfQvAIAAABhj45+cBfBCgAAAKCjH9zEVEAAAAAEPe3gt3pXNp384DdUrAAAABDUPLUGFeAOKlYAAAAIWqxBhUBBsAIAAEDQYg0qBAqCFQAAAIIWa1AhUBCsAAAAELRYgwqBguYVAAAACGqsQYVAQLACAACAX5tP6HlSOqVPq0+VpT/rzs8D7iJYAQAAwC9ok45QwjlWAAAA8DnapCPUULECAACAbxw4ILJjh0jr1pJ1prpZ0NdZgWXJnpx8pvQhKFGxAgAAgPfNnSvSvLnINdeY7QX/nS8RNtebRNps0iIumlcDQYlgBQAAAO9XqoYPFyksPHu5sFBqjxkpz14eb8KU0m16SjLVKgQtpgICAADAu3T6nz1U2RUUyI3nnZIu47qb6X9aqaKrH4IZwQoAAADe1bq1SESEa7iKjBRp1Yo26QgZTAUEAABApTv7rd6VbbZlatJEZPbss2FK6XbWrLP7gRBBxQoAAADeX4Nq2DCRXr1Edu40lSpCFUINwQoAAAAeWYOqW1K9ss+T0goVVSqEKKYCAgAAoEKysk+WugYVEK4IVgAAAKiQxPiarEEFFEGwAgAAQIXodD89p4o1qID/wzlWAAAAqDBtVKHnVLEGFXAWwQoAACBMG1DouVI6ra+yC/Pqz7GoL3AWwQoAACDMVLhVOoBz4hwrAACAMFJaq/RzLvILoEwEKwAAgDBCq3TAOwhWAAAAYYRW6YB3EKwAAADCCK3SAe+geQUAAECYoVU64HkEKwAAgDBEq3TAs5gKCAAAEGS0g9/qXdl08gMCCBUrAACAIMIaVEBgomIFAAAQJFiDCghcBCsAAIAgwRpUQOAiWAEAAAQJ1qACAhfBCgAAIEiwBhUQuGheAQAAEERYgwoITAQrAACAIMMaVEDgYSogAAAAALiJYAUAAOBDLO4LhCamAgIAAPgIi/sCoYuKFQAAgA+wuC8Q2ghWAAAAPsDivkBoI1gBAAD4AIv7AqGNYAUAAOADLO4LhDaaVwAAAPgIi/sCoYtgBQAA4EMs7guEJqYCAgAAlAPrTwEoCxUrAACAc2D9KQDnQsUKAACgDKw/BaA8CFYAAAClOXBAchYtk/q52S67CyxL9uTk87wBcCBYAQAAlGTuXJHmzSX5jhT5YuYQuWXTh46rIm02aREXzfMGwIFgBQAAUNSBAyLDh4sUFpqLkZYl6UtfkIZ52SZUpackm+5+AGBH8woAAICiduxwhCrHmyarUOZ2rS11+3QnVAEohmAFAABQVOvWIhERruEqMlLadbtIhEoVgBIwFRAAAKCoJk1EZs82YcrQ7axZZ/cDQAmoWAEAgLBomZ6VfVIS42uWfxrfsGEivXqJ7Nwp0qoVoQpAmQhWAAAgpLm1uK9WqKhSASgHpgICAICQxeK+AHyFYAUAAEKWTv/TSpUzFvcF4A0EKwAAELL0nCqd/ueMxX0BeAPBCgAAhCxtVKHnVGmYUizuC8BbaF4BAABCmjaq6JZUT/bk5EuLuGgW9wXgFQQrAAAQFpWrcrdZB4Bgmwr42WefyQ033CCNGjUSm80m77//vsv1lmXJ448/LgkJCVKjRg3p2bOn7Nixw2/jBQAAAICAC1YnT56UCy+8UF588cUSr58+fbo899xz8vLLL8vatWulZs2a0qtXLzl9+rTPxwoAAPzXMn31rmyzBYBA5depgL179zZfJdFq1bPPPit/+ctfpG/fvmbf66+/Lg0aNDCVrUGDBvl4tAAAIKgW9wUAHwrYroBZWVnyww8/mOl/drGxsXLppZfKmjVrSv25M2fOSF5enssXAAAIPizuCyCYBGyw0lCltELlTC/bryvJlClTTACzfzVt2tTrYwUAAJ7H4r4AgknABqvKSktLk9zcXMfX/v37/T0kAABQCSzuCyCYBGywatiwodn++OOPLvv1sv26kkRFRUlMTIzLFwAACD4s7gsgmATsOlaJiYkmQC1fvlw6duxo9un5Utod8L777vP38AAAgA+wuC+AYOHXYHXixAnZuXOnS8OKjRs3St26daVZs2by4IMPyt/+9jdp3bq1CVoTJkwwa17169fPn8MGAAA+xOK+AIKBX4PVunXrpHv37o7LY8eONdvU1FR57bXX5JFHHjFrXQ0fPlyOHz8uV1xxhSxdulSqV6/ux1EDAAAAgCubpQtGhTCdPqjdAbWRBedbAQDg+5bp2t1PG1Fo5QkAQjUbBOw5VgAAILixuC+AcBKwXQEBAEDwYnFfAOGGYAUAADyOxX0BhBuCFQAA8DgW9wUQbghWAADA41jcF0C4oXkFAADwChb3BRBOCFYAAMBrWNwXQLhgKiAAAAAAuIlgBQAASm2ZvnpXttkCAMrGVEAAAFAMi/sCQMVQsQIAAC5Y3BcAKo5gBQAAXLC4LwBUHMEKAAC4YHFfAKg4ghUAAHDB4r4AUHE0rwAAAMWwuC8AVAzBCgAAlIjFfQGg/JgKCAAAAABuIlgBAAAAgJsIVgAAhOhaVKt3ZZstAMD7OMcKAIBQcuCArFi0Sh779owcqhUvETaRKSntTTMKAID3ULECACBUzJ0rVvPm0v3+W+Xzl4bILZs+lEJLZHzGFipXAOBlBCsAAELBgQMiw4eLrbDQXIy0LElf+oI0zMuWAsuSPTn5/h4hAIQ0ghUAAKFgxw6R/4UquypWobQ4dkgibTZpERftt6EBQDggWAEAEApatxaJcP3f+m+2CNlft7GkpySbNakAAN5DsAIAIBQ0aSIye7ZIZKS5aEVGyt70p+XdyQNoXAEAPkBXQAAAQsWwYSK9eons3Cm2Vq3kfA1bAACfIFgBABBKNEwRqADA55gKCAAAAABuIlgBABBADueektW7sll3CgCCDFMBAQAIEPMy90laxmazqG+ETWRKSnsaTwBAkKBiBQBAgFSq7KFK6XZ8xhYqVwAQJAhWAAAEgKzsk45QZVdgWbInJ99fQwIAVADBCgCAAJAYX9NM/3MWabNJi7hofw0JAFABBCsAAAJAQmwNc06Vhiml2/SUZLMfABD4aF4BAECAGNilmXRLqmem/2mlilAFAMGDYAUAQADRMEWgAoDgw1RAAAAAAHATwQoAAA9hcV8ACF9MBQQAwANY3BcAwhsVKwAA3MTivgAAghUAAG5icV8AAMEKAAA3sbgvAIBgBQCAm1jcFwBA8woAADyAxX0BILwRrAAA8BAW9wWA8MVUQAAAAADwd7A6c+aMu3cBAAAAAOEVrJYsWSKpqanSsmVLqVq1qkRHR0tMTIxcddVVMnnyZDl06JB3RgoAAAAAwR6sMjIyJCkpSYYOHSpVqlSRcePGyYIFC2TZsmXyyiuvmGD18ccfm8B17733yk8//eTdkQMA4OFFflfvyjZbAAAqymZZllWeG1522WXyl7/8RXr37i0REaXnsYMHD8rzzz8vDRo0kDFjxoi/5eXlSWxsrOTm5prKGgAARc3L3CdpGZul0BKJsIlMSWlvuvwBAEJLnhezQbmDVbAiWAEAyqIVqq7TPjGhyi7SZpNV47qbLn8AgNCR58Vg5ZGugAUFBbJx40Y5duyYJ+4OAACfyco+6RKqVIFlyZ6cfF4FAIB3g9WDDz4oc+fOdYQqPb+qc+fO0rRpU1m5cmVl7hIAAL9IjK9ppv8504pVi7hoXhEAgHeD1bvvvisXXnih+X7RokWSlZUl33//vTmn6rHHHqvMXQIA4Bc63U/PqdIwpXSbnpLMNEAAgPfPsapevbrs3LlTmjRpIsOHDzct15999lkTsDRw6dzFQME5VgCA8p5rpdP/tFLFuVUAEJryAu0cK+34t3XrVjMNcOnSpXLttdea/fn5+RIZGenRAQIA4Asapi5rGUeoAgBUSpXK/NCQIUPklltukYSEBLHZbNKzZ0+zf+3atdKmTZvKjQQAAAAAwilYPfHEE5KcnCz79++XAQMGSFRUlNmv1apHH33U02MEAAAAgIDm9jpWp0+fNudcBSrOsQKA8Dg/Stuma4c/zo8CAATNOVZ6btWkSZOkcePGct5558nu3bvN/gkTJjjasAMA4AvzMveZBX5ve2Wt2eplAAB8rVLBavLkyfLaa6/J9OnTpVq1ao79Oj3wlVde8eT4AAAos1KVlrHZscCvbsdnbDH7AQAI+GD1+uuvy+zZs2Xw4MEuXQC11bquZwUAgC/o9D97qLIrsCzTNh0AgIAPVgcPHpRWrVoV219YWCi//vqrJ8YFAMA56TlVEWfX9XXQBX51LSoAAAI+WF1wwQXy+eefF9v/7rvvSqdOnTwxLgAAzkkbVUxJaW/ClNJtekoyDSwAAMHRbv3xxx+X1NRUU7nSKtWCBQtk27ZtZorg4sWLPT9KAABKMbBLM+mWVM9M/9NKFV0BAQBB1W5dK1ZPPvmkbNq0SU6cOCGdO3c2geu6666TQEK7dQAAAADezgZur2MV6AhWAAAAAAJyHauWLVtKTk5Osf3Hjx831wEAAABAOKlUsNqzZ49ZJLioM2fOmPOuAAAoL11zavWubNaeAgCET/OKhQsXOr5ftmyZKaPZadBavny5tGjRwrMjBACErIWL18rbb30iu2s3kiOx8abDnzajAAAgpINVv379zNZms5mugM6qVq1qQtWMGTM8O0IAQEg6/vxM6TP6AbnRsqTAZpO060fKeLGZDn909gMAhHSw0tbqKjExUTIzMyU+Pt5b4wIAhLIDByT2wT9pByVzMdKyJH3pC/JZYmfTNp1gBQAIi3WssrKyPD8SAED42LFDbP/7sM6uilUoLY8fNmtRAQAQFsFK168qi65nBQBAqVq3FomI0KkQjl2/2SJk0K3dqVYBAIJSpdax6tSpk8vlX3/91VSxqlSpIueff76sX79eAgXrWAFAgJo7V2TECO1+JFZEpOQ++7zUHnmfv0cFAAhheV5cx6pSFasNGzaUOMi77rpLUlJSPDEuAECoGzZMpFcvkZ07xdaqldRu0sTfIwIAwLfrWJVEE9/EiRNlwoQJnrpL08Jd70+bZdSoUcNUwyZNmiSVKLIBAAKRhqmrrz67BQAgiFWqYlUaLanpl6dMmzZNZs6cKf/85z+lXbt2sm7dOhkyZIgp340aNcpjvwcAAAAAfB6snnvuOZfLWkE6fPiw/Otf/5LevXuLp6xevVr69u0rffr0MZd1nay33npLvvrqK4/9DgAAAADwS7B65plnXC5HRERIvXr1zKLBaWlp4imXX365zJ49W7Zv3y5JSUmyadMmWbVqlTz99NOl/syZM2fMl/O5XwAAzzuce0qysk9KYnxNOvkBAMJeQK9j9eijj5pg1KZNG4mMjDTnXE2ePFkGDx5c6s9MmTLFnOsFAPCeeZn7JC1jsxRaIhE2kSkp7WVgl2Y85QCAsOWx5hXe8M4778gbb7whb775pmnhrudaPfXUU2ZbGq2Y2c/10q/9+/f7dMwAEA6VKnuoUrodn7HF7AcAIFxVqmJ18uRJmTp1qixfvlyOHDkihU4LPKrdu3d7ZHAPP/ywqVoNGjTIXG7fvr3s3bvXVKV02mFJoqKizBcAwDt0+p89VNkVWJbsyclnSiAAIGxVKljdfffd8umnn8odd9whCQkJYrPZPD8yEcnPzzfnbznTKYFFgxwAwHf0nCqd/uccriJtNmkRF83LAAAIW5UKVkuWLJH//Oc/0rVrV/GmG264wZxT1axZM9NuXRcm1sYVQ4cO9ervBQCULiG2hjmnSqf/aaVKQ1V6SjLVKgBAWKtUsKpTp47UrVtXvO355583CwTff//9Zspho0aNZMSIEfL44497/XcDAEqnjSq6JdUz0/+0UqVhCwCAcGazdBGqCvr3v/8tH3zwgWkiER0d2FM/tKugLiisjSxiYmL8PRwAAAAAIZgNKlWxmjFjhuzatUsaNGhgFu2tWrWqy/XawQ8AAAAAwkWlglW/fv08PxIAAAAACKepgMGEqYAAAAAAvJ0NAnqBYACAd+hivqt3ZbOoLwAAvp4KqF0At2/fLvHx8aYrYFlrVx09etRT4wMAeNi8zH2SlrHZrEOl61Fp63Tt8gcAAHwQrJ555hmpVauW+f7ZZ59141cCAPxZqbKHKqVbXY9KW6fTMh0AAB8Eq9TU1BK/BwAEj6zsk45QZaeL/Op6VAQrAAB83BXQThft1a/CwkKX/R06dHDnbgEAXpIYX9NM/3MOV5E2m1nkFwAA+DhYff3116Zq9d1330nRpoJ67lVBQYEbQwIAeItWpfScKp3+p5UqDVXpKclUqwAA8EewGjp0qCQlJcncuXPNIsFlNbIAAAQWbVSh51Tp9D+tVDEFEAAAPwWr3bt3y3vvvSetWrXywBAAAL6mYYpABQCAn9ex6tGjh2zatMmDwwAAAACAMKtYvfLKK+Ycqy1btkhycrJUrVrV5fobb7zRU+MDAAAAgNAMVmvWrJEvvvhClixZUuw6mlcAAAAACDeVmgo4cuRIuf322+Xw4cOm1brzFx0BAcD7i/yu3pVttgAAIIgrVjk5OTJmzBjTERAA4DvzMvdJWsZmsw6VrkelrdO1yx8AAAjCilX//v1lxYoVnh8NAKBUWqGyhyqlW12PisoVAABBWrHSNazS0tJk1apV0r59+2LNK0aNGuWp8QEA/icr+6QjVNnpIr+6HhWt0wEA8C+bZVlF/jd9bomJiaXfoc1m1rkKFHl5eRIbGyu5ubkSExPj7+EAQKVpZarrtE9cwlWkzSarxnUnWAEA4OdsUKmKVVZWlkcHAQA4N61K6TlVOv1PK1UaqtJTkglVAAAEgEoFKwCAf2ijim5J9cz0vxZx0YQqAACCrXnF1KlT5dSp8rX2Xbt2rfznP/9xZ1wAgDIqV5e1jCNUAQAQjMFq69at0qxZM7n//vvNwsA//fST47rffvtNvvnmG3nppZfk8ssvl4EDB0qtWrW8NWYAAAAACM6pgK+//rps2rRJXnjhBbntttvMiV+RkZESFRUl+fn55jadOnWSu+++W+666y6pXr26N8cNAAAAAMHdFbCwsNBUqPbu3WumB8bHx0vHjh3NNtDQFRAAAABAQHYFjIiIMEFKvwAAAAAg3JX7HCsAgGfWolq9K9tsAQBA6KDdOgD4yLzMfZKWsdks8BthE7MmlbZPBwAAwY+KFQD4gFao7KFK6VYX+qVyBQBAaCBYAYAPZGWfdIQquwLLMgv9AgCAMA9WO3fulGXLljkWDq5Eg0EACAuJ8TXN9D9nkTabtIiL9teQAACAv4NVTk6O9OzZU5KSkuQPf/iDHD582OwfNmyYPPTQQ54cHwCEhITYGuacKg1TSrfpKclmPwAACNPmFWPGjJEqVarIvn37pG3bto79AwcOlLFjx8qMGTM8OUYACAnaqKJbUj0z/U8rVYQqAADCPFh9+OGHZgpgkyZNXPa3bt3aLBoMACiZhikCFQAAoadSUwFPnjwp0dHFzws4evSoREVFeWJcAAAAABDawerKK6+U119/3XHZZrNJYWGhTJ8+Xbp37+7J8QEAAABAaE4F1ADVo0cPWbdunfzyyy/yyCOPyLfffmsqVl988YXnRwkAgeLAAZEdO3Tus0iR6dAAACB8VapilZycLNu3b5crrrhC+vbta6YG9u/fXzZs2CDnn3++50cJAAHg+PMzxWreXOSaa0R0O3euv4cEAAAChM0K8cWn8vLyJDY2VnJzcyUmJsbfwwEQpBYuXit9brxMIp3/ZEZGiuzZQ+UKAIAg4c1sUKmpgOr06dPyzTffyJEjR8z5Vc5uvPFGT4wNAALC4dxT8vZbn8iNRT+HKijQldIJVgAAoHLBaunSpXLnnXdKdnZ2seu0kUWBvtkAgBCRlX1SdtduJAU2m0vFyoqIFFurVn4dGwAACOJzrEaOHCkDBgyQw4cPm2qV8xehCkCoSYyvKUdi4yXt+pHym+3sn03d5j77PNUqAABQ+YrVjz/+KGPHjpUGDRpU5scBIKjogr5TUtrLeLHJZ4mdpeXxwzLo1u5y4x8v9ffQAABAMAerm2++WVauXEkHQABhY2CXZtItqZ7sycmXFnHRJmwBAAC41RUwPz/fTAWsV6+etG/fXqpWrepy/ahRoyRQ0BUQAAAAQEB2BXzrrbfkww8/lOrVq5vKlTassNPvAylYAQAAAIC3VSpYPfbYYzJx4kR59NFHJSKiUv0vAAAAACBkVCoV/fLLLzJw4EBCFQAAAABUNlilpqbKvHnzeAIBAAAAoLJTAXWtqunTp8uyZcukQ4cOxZpXPP300zy5AALK4dxTZqFfXZOKjn4AACAggtXmzZulU6dO5vstW7a4XOfcyAIAAsG8zH2SlrFZCi2RCJuYNam0fToAAIBfg9WKFSs8NgAA8Halyh6qlG7HZ2wxa1JRuQIAAJ5CSz8AIU2n/9lDlV2BZZmFfgEAAHxeserfv7+89tprZiEt/b4sCxYs8MTYAMBtek6VTv9zDleRNpu0iIvm2QUAAL4PVrpCsf38Kf0eAIKBTvfTc6p0+p9WqjRUpackMw0QAAB4lM2yrCKTZEr35JNPyp///GeJjg6eT3rz8vJMEMzNzTXVNgDhe66VTv/TShXnVgEAEJ7yvJgNKhSsIiMj5fDhw1K/fn0JFgQrAAAAAN7OBhVqXlGBDAYAAAAAYaPCXQFZpwoAAAAA3FzHKikp6Zzh6ujRoxW9WwAAAAAIn2A1ceJEugICAAAAgDvBatCgQUHVvAJA8Hfz00V+dT0quvkBAICQCFacXwXAl+Zl7pO0jM1mcV9d5FfXoxrYpRkvAgAACDh0BQQQsJUqe6hSutVFfnU/AABAUFesCgsLvTcSAHCi0//socquwLLMIr9MCQQAAEHfbh0AfEHPqdLpf84ibTZpERfNCwAAAAIOwQpAQNKqlJ5TpWFK6TY9JZlqFQAACI2ugADgK9qooltSPTP9TytVTAEEAACBimAFIKBpmCJQAQCAQMdUQAAAAABwE8EKAAAAANxEsAIAAAAANxGsAAAAAIBgBSBQHc49Jat3ZZstAABAKKMrIACvmJe5T9IyNkuhJWahX12TStunAwAAhKKAnwp48OBBuf322yUuLk5q1Kgh7du3l3Xr1vl7WADKoBUqe6hSuh2fsYXKFQAACFkBXbE6duyYdO3aVbp37y5LliyRevXqyY4dO6ROnTr+HhqAMmRln3SEKrsCyzIL/bImFQAACEUBHaymTZsmTZs2lVdffdWxLzEx0a9jAnBuifE1zfQ/53AVabNJi7honj4AABCSAnoq4MKFC+Xiiy+WAQMGSP369aVTp04yZ86cMn/mzJkzkpeX5/IFwLe0KqXnVGmYUrpNT0mmWgUAAEKWzbKsIhN2Akf16tXNduzYsSZcZWZmyujRo+Xll1+W1NTUEn/miSeekIkTJxbbn5ubKzExMV4fMwDXc610+p9WqpgCCAAA/E2LLrGxsV7JBgEdrKpVq2YqVqtXr3bsGzVqlAlYa9asKbVipV/OT55OJyRYAQAAAOEtz4vBKqCnAiYkJMgFF1zgsq9t27ayb9++Un8mKirKPEnOXwAAAADgTQEdrLQj4LZt21z2bd++XZo3b+63MQEAAABAUAWrMWPGyJdffinp6emyc+dOefPNN2X27NnywAMP+HtoAAAAABAcwapLly6SkZEhb731liQnJ8ukSZPk2WeflcGDB/t7aAAAAAAQHM0rAv0ENQAAAADBI2ybVwDwb6v01buyzRYAAABlq3KO6wGEoXmZ+yQtY7MUWiIRNjGL/Q7s0szfwwIAAAhYVKwAuNAKlT1UKd2Oz9hC5QoAAKAMBCsALrKyTzpClV2BZcmenHyeKQAAgFIQrAC4SIyvaab/OYu02aRFXDTPFAAAQCkIVgBcJMTWMOdUaZhSuk1PSTb7AQAAUDKaVwAoRhtVdEuqZ6b/aaWKUAUAAFA2ghWAEmmYIlABAACUD1MBAQAAAMBNBCsAAAAAcBPBCgh1Bw6IrFhxdgsAAACvIFgBoWzuXJHmzUWuuebsVi8DAADA4whWQAg6nHtK1q36Rqzhw0UKC8/u1O2IEVSuAAAAvICugECImZe5T9IyNsule76Rt+yhyq6gQGTnTpEmTfw1PAAAgJBExQoIsUqVhqpCSySrTiMp+N8ivw6RkSKtWvlreAAAACGLYAWEkKzskyZUqR9i4iXt+pHymy3i/0LVrFlUqwAAALyAqYBACEmMrykRNnGEq3cuvE6+aHmRLLy+gcR1bEeoAgAA8BIqVkAISYitIVNS2kvk/6YA6nZU6tUS98dehCoAAAAvomIFhJiBXZpJt6R6sicnX1rERZuwBQAAAO8iWAEhSMMUgQoAAMB3mAoIAAAAAG4iWAEAAACAmwhWAAAAAOAmghUAAAAAuIlgBQAAAABuIlgBAeZw7ilZvSvbbAEAABAcaLcOBJB5mfskLWOzFFoiETYxi/3qulQAAAAIbFSsgAChFSp7qFK6HZ+xhcoVAABAECBYAQEiK/ukI1TZFViW7MnJ99eQAAAAUE4EKyBAJMbXNNP/nEXabNIiLtpfQwIAAEA5EayAAJEQW8OcU6VhSuk2PSXZ7AcAAEBgo3kFEEC0UUW3pHpm+p9WqghVAAAAwYFgBQQYDVMEKgAAgODCVEAAAAAAcBPBCgAAAAAIVgAAAADgX1SsAAAAAMBNBCsAAAAAcBPBCvCQw7mnZPWubLMFAABAeKHdOuAB8zL3SVrGZim0RCJsYhb61TWpAAAAEB6oWAFu0gqVPVQp3Y7P2ELlCgAAIIwQrAA3ZWWfdIQquwLLkj05+Ty3AAAAYYJgBbgpMb6mmf7nLNJmkxZx0Ty3AAAAYYJgBbgpIbaGOadKw5TSbXpKstkPAACA8EDzCsADtFFFt6R6ZvqfVqoIVQAAAOGFYAV4iIYpAhUAAEB4YiogAAAAALiJYAUAAAAAbiJYAQAAAICbCFYAAAAA4CaCFQAAAAC4iWAFiMjh3FOyele22QIAAAAVRbt1hL15mfskLWOzFFoiETYxi/3qulQAAABAeVGxQljTCpU9VCndjs/YQuUKAAAAFUKwQljLyj7pCFV2BZYle3Ly/TUkAAAABCGCFcJaYnxNM/3PWaTNJi3iov01JAAAAAQhghXCWkJsDXNOlYYppdv0lGSzHwAAACgvmlcg7Gmjim5J9cz0P61UEaoAAABQUQQr4H+VKwIVAAAAKoupgAAAAADgJoIVQtOBAyIrVpzdAgAAAF5GsELomTtXpHlzkWuuObvVywAAAIAXEawQWrRCNXy4SGHh2cu6HTGCyhUAAAC8imCF0LJjx/+FKruCApGdO/01IgAAAIQBugIi6B3OPSVZ2SfNYr8JrVuLRES4hqvISJFWrfw5RAAAAIQ4ghWC2rzMfZKWsVkKLZEIm5jFfgfOnn12+p9WqjRUzZol0qSJv4cKAACAEGazLMuSEJaXlyexsbGSm5srMTEx/h4OPFyp6jrtExOq7CJtNlk1rrsk/JxzdvqfVqoIVQAAABDvZgMqVghaOv3POVSpAsuSPTn5ktCyCYEKAAAAPkPzCgQtPadKp/8504pVi7hofw0JAAAAYYpghaCVEFvDnFOlYUrpNj0l2ewHAAAAfImpgAhqA7s0k25J9cz0P61UEaoAAADgDwQrBD0NUwQqAAAA+BNTAQEAAADATQQrAAAAAHATwQp+tWn/MZnz+S6zBQAAAIIV51jBbx6av1HeW3/Qcfmmzo1lxoCOvCIAAAAIOkFVsZo6darYbDZ58MEH/T0UuEkrVM6hSullKlcAAAAIRkETrDIzM2XWrFnSoUMHfw8FHvDVnqMl7l+3lymBAAAACD5BEaxOnDghgwcPljlz5kidOnX8PRx4wCUt6pa4/+LmvL4AAAAIPkERrB544AHp06eP9OzZ85y3PXPmjOTl5bl8IfDUj6leof0AAABAIAv4YPX222/L+vXrZcqUKeW6vd4uNjbW8dW0aVOvjxEVl5V9ssT9e3LyeToBAAAQdAI6WO3fv19Gjx4tb7zxhlSvXr5KRlpamuTm5jq+9D4QeBLja0qEzXVfpM0mLeKi/TUkAAAAIDSD1ddffy1HjhyRzp07S5UqVczXp59+Ks8995z5vqCgoNjPREVFSUxMjMsXAk9CbA2ZktLehCml2/SUZLMfAAAACDYBvY5Vjx49ZPPmzS77hgwZIm3atJFx48ZJZGSk38YG9w3s0ky6JdUz0/+0UkWoAgAAQLAK6GBVq1YtSU5OdtlXs2ZNiYuLK7YfwUnDFIEKAAAAwS6gpwICAAAAQDAI6IpVSVauXOnvIQAAAACACypWAAAAAOAmghUqbdP+YzLn811mCwAAAISzoJsKiMDw0PyN8t76g47LN3VuLDMGdPTrmAAAAAB/oWKFCtMKlXOoUnqZyhUAAADCFcEKFfbVnqMl7l+3lymBAAAACE8EK1RYy/iaJe7XRX4BAACAcESwQoXVqFbyqXnRUVV5NgEAABCWCFaosMT4mhJhc90XabNRsQIAAEDYIlihwhJia8iUlPYmTCndpqckm/0AAABAOKLdOiplYJdm0i2pnuzJyTeVKkIVAAAAwhnBCpWmYYpABQAAADAVEAAAAADcxjlWAAAAAOAmghUAAAAAuIlgBQAAAABuIlgBAAAAgJsIVmFo0/5jMufzXWYLAAAAwH20Ww8zD83fKO+tP+i4fFPnxjJjQEe/jgkAAAAIdlSswohWqJxDldLLVK4AAAAA9xCswsjy74+UuP+TUvYDAAAAKB+CVRiJr1WtlP1RPh8LAAAAEEoIVmHk2rYNS9zfs20Dn48FAAAACCUEqzCSEFtDpvVvL7b/XdatXtb9AAAAACqProBhZmCXZtItqZ7sycmXFnHRhCoAAADAAwhWYUgrVFSpAAAAAM9hKiAAAAAAuIlgBQAAAABuIlgBAAAAgJsIVgAAAADgJoIVAAAAALiJYBVkNu0/JnM+32W2AAAAAAID7daDyEPzN8p76w86Lt/UubHMGNDRr2MCAAAAQMUqaGiFyjlUKb1M5QoAAADwP6YCBonl3x8pcf8npewHAAAA4DsEqyARX6taKfujfD4WAAAAAK4IVkHi2rYNS9zfs20Dn48FAAAAgCuCVZBIiK0h0/q3F9v/LutWL+t+AAAAAP5FV8AgMrBLM+mWVE/25ORLi7hoQhUAAAAQIAhWQUYrVFSpAAAAgMDCVEAAAAAAcBPBCgAAAADcRLACAAAAADcRrAAAAADATQQrAAAAAHATwcqHNu0/JnM+32W2AAAAAEIH7dZ95KH5G+W99Qcdl2/q3FhmDOjoq18PAAAAwIuoWPmAVqicQ5XSy1SuAAAAgNBAsPKBr/YcLXH/ur1MCQQAAABCAcHKBy5pUbfE/Rc3r+OLXw8AAADAywhWPnBh0zrmnCpneln3AwAAAAh+NK/wEW1Ucefvm5vpf1qpIlQBAAAAoYNg5UMapghUAAAAQOhhKiAAAAAAuIlgBQAAAABuIlgBAAAAgJsIVgAAAADgJoIVAAAAALiJYAUAAAAAbiJYAQAAAICbCFYAAAAA4CaCFQAAAAC4iWAFAAAAAG4iWAEAAACAmwhWAAAAAOAmghUAAAAAuIlgBQAAAABuIlgBAAAAgJuqSIizLMts8/Ly/D0UAAAAAH5kzwT2jOBJIR+sfv75Z7Nt2rSpv4cCAAAAIEAyQmxsrEfv02Z5I64FkMLCQjl06JDUqlVLbDabv4cT9vRTAg25+/fvl5iYmLB/PhB4OEYRyDg+Eeg4RhEMx+fWrVvld7/7nUREePasqJCvWOkT1qRJE38PA0VoqCJYIZBxjCKQcXwi0HGMIpA1btzY46FK0bwCAAAAANxEsAIAAAAANxGs4FNRUVHy17/+1WyBQMQxikDG8YlAxzGKcD4+Q755BQAAAAB4GxUrAAAAAHATwQoAAAAA3ESwAgAAAAA3EawAAAAAwE0EK3jFlClTpEuXLlKrVi2pX7++9OvXT7Zt2+Zym9OnT8sDDzwgcXFxct5558lNN90kP/74I68IfG7q1Klis9nkwQcf5PhEQDh48KDcfvvt5u9jjRo1pH379rJu3TrH9dp36vHHH5eEhARzfc+ePWXHjh1+HTPCR0FBgUyYMEESExPN8Xf++efLpEmTzHFpxzEKX/nss8/khhtukEaNGpn/l7///vsu15fnWDx69KgMHjzYLGxdu3ZtGTZsmJw4caLCYyFYwSs+/fRTE5q+/PJL+eijj+TXX3+V6667Tk6ePOm4zZgxY2TRokUyf/58c/tDhw5J//79eUXgU5mZmTJr1izp0KGDy36OT/jLsWPHpGvXrlK1alVZsmSJbN26VWbMmCF16tRx3Gb69Ony3HPPycsvvyxr166VmjVrSq9evcwHVoC3TZs2TWbOnCkvvPCCfPfdd+ayHpPPP/88xyh8Tt9bXnjhhfLiiy+WeH15/l5qqPr222/Ne9bFixebsDZ8+PCKD0bbrQPeduTIEf0Yy/r000/N5ePHj1tVq1a15s+f77jNd999Z26zZs0aXhD4xM8//2y1bt3a+uijj6yrrrrKGj16NMcn/G7cuHHWFVdcUer1hYWFVsOGDa2///3vjn36NzUqKsp66623fDRKhLM+ffpYQ4cOddnXv39/a/DgweZ7jlH4i76PzMjIcFwuz7G4detW83OZmZmO2yxZssSy2WzWwYMHK/T7qVjBJ3Jzc822bt26Zvv111+bKpaWY+3atGkjzZo1kzVr1vCqwCe0qtqnTx+X45DjE/62cOFCufjii2XAgAFmKnWnTp1kzpw5juuzsrLkhx9+cDluY2Nj5dJLL+XvJ3zi8ssvl+XLl8v27dvN5U2bNsmqVaukd+/eHKMIKOX5e6lbnf6nf3ft9PYRERGmwlURVTw4dqBEhYWF5twVndqSnJxs9ulBXq1aNXMgO2vQoIG5DvC2t99+W9avX2+mAhbF8Ql/2r17t5lmNXbsWBk/frw5RkeNGmX+Zqampjr+RurfS2f8/YSvPProo5KXl2c+EI2MjDTnXE2ePNlMp1IcowgU5TkWdasfYjmrUqWKKQZU9D0pwQo+qQps2bLFfJoFBIL9+/fL6NGjzVzq6tWr+3s4QLEPo/ST0/T0dHNZK1b6N1TPD9BgBfjbO++8I2+88Ya8+eab0q5dO9m4caP5AFWbB3CMIpwxFRBe9ac//cmcBLhixQpp0qSJY3/Dhg3ll19+kePHj7vcXrsC6nWAN+lU1CNHjkjnzp3Np1L6pQ1U9ORW/V4/yeL4hL9o56oLLrjAZV/btm1l37595nv738iiXVT5+wlfefjhh03VatCgQaZj5R133GEa/mhHYI5RBJLy/L3Urb4ncPbbb7+ZToEVfU9KsIJX6PmDGqoyMjLkk08+MS1ZnV100UWm45XO0bbTduz6xuGyyy7jVYFX9ejRQzZv3mw+ZbV/aYVAp7HYv+f4hL/otOmiy1PouSzNmzc33+vfU/2fvfPfT52WpecC8PcTvpCfn2/OP3GmUwK12soxikBSnr+XutUP+vVDVzt976rHs56LVSEeacEBFHHfffdZsbGx1sqVK63Dhw87vvLz8x23uffee61mzZpZn3zyibVu3TrrsssuM1+APzh3BeT4hD999dVXVpUqVazJkydbO3bssN544w0rOjra+ve//+24zdSpU63atWtbH3zwgfXNN99Yffv2tRITE61Tp075dewID6mpqVbjxo2txYsXW1lZWdaCBQus+Ph465FHHnHchmMUvuzwu2HDBvOl0ebpp5823+/du7fcx+L1119vderUyVq7dq21atUq0zH41ltvrfBYCFbwCj2wS/p69dVXHbfRA/r++++36tSpY940pKSkmPAFBEKw4viEPy1atMhKTk42LYHbtGljzZ492+V6bSE8YcIEq0GDBuY2PXr0sLZt2+a38SK85OXlmb+X+uFo9erVrZYtW1qPPfaYdebMGcdtOEbhKytWrCjxPad+AFDeYzEnJ8cEqfPOO8+KiYmxhgwZYgJbRdn0P54ruAEAAABA+OEcKwAAAABwE8EKAAAAANxEsAIAAAAANxGsAAAAAMBNBCsAAAAAcBPBCgAAAADcRLACAAAAADcRrAAAAADATQQrAIALm80m77//fkg+K7/88ou0atVKVq9eXept9uzZY56DjRs3SrDbunWrNGnSRE6ePOnvoQBAyCNYAUAYuOuuu0xY0K+qVatKgwYN5Nprr5V//OMfUlhY6HLbw4cPS+/evUMyhL388suSmJgol19+uYSDCy64QH7/+9/L008/7e+hAEDII1gBQJi4/vrrTWjSisySJUuke/fuMnr0aPnjH/8ov/32m+N2DRs2lKioKAk1lmXJCy+8IMOGDZNAqZ75wpAhQ2TmzJkurzEAwPMIVgAQJjQsaWhq3LixdO7cWcaPHy8ffPCBCVmvvfZaiVUoffP/pz/9SRISEqR69erSvHlzmTJlirmuRYsWZpuSkmJ+xn55165d0rdvX1MVO++886RLly7y8ccfu4xFb5ueni5Dhw6VWrVqSbNmzWT27Nkutzlw4IDceuutUrduXalZs6ZcfPHFsnbtWsf1OnZ9HDquli1bysSJE8sMD19//bUZW58+fVz2f/XVV9KpUydzP/o7NmzYUOxnt2zZYqp4+nj0cd1xxx2SnZ3tuP7nn3+WwYMHm3Hqc/XMM8/I1VdfLQ8++KDLY540aZLceeedEhMTI8OHDzf7V61aJVdeeaXUqFFDmjZtKqNGjXKZunfmzBn585//bF43vf9LL71UVq5c6bh+7969csMNN0idOnXM9e3atZP//ve/juu1Mnn06FH59NNPS31uAADuI1gBQBi75ppr5MILL5QFCxaUeP1zzz0nCxculHfeeUe2bdsmb7zxhiNAZWZmmu2rr75qKmH2yydOnJA//OEPsnz5chNStFKmb/z37dvnct8zZsxwBJn7779f7rvvPvM77Pdx1VVXycGDB83v37RpkzzyyCOOaYuff/65CShacdPziGbNmmXC4eTJk0t9rPozSUlJJsjZ6e/Rip1OmdPg9cQTT5gQ4+z48ePmedLwtW7dOlm6dKn8+OOPcssttzhuM3bsWPniiy/MWD/66CPzu9avX19sDE899ZR5vvUxT5gwwQQ9fX5uuukm+eabb2TevHkmaGmYtdPv16xZI2+//ba5zYABA8zP7Nixw1z/wAMPmPD12WefyebNm2XatGkmANpVq1ZNOnbsaMYEAPAiCwAQ8lJTU62+ffuWeN3AgQOttm3bOi7r/xoyMjLM9yNHjrSuueYaq7CwsMSfdb5tWdq1a2c9//zzjsvNmze3br/9dsdlvf/69etbM2fONJdnzZpl1apVy8rJySnx/nr06GGlp6e77PvXv/5lJSQklDqG0aNHm8fiTH9PXFycderUKcc+HYM+rg0bNpjLkyZNsq677jqXn9u/f7+5zbZt26y8vDyratWq1vz58x3XHz9+3IqOjja/0/kx9+vXz+V+hg0bZg0fPtxl3+eff25FRESYMe3du9eKjIy0Dh48WOzxp6Wlme/bt29vPfHEE1ZZUlJSrLvuuqvM2wAA3FPFm6ENABD4NB/pVL7Sml7oVLLf/e53pkqi1Z3rrruuzPvTKpBWfv7zn/+YSpZOzzt16lSxilWHDh0c3+vv12mKR44cMZe1I59WiHQaYEm0gqUVIucKVUFBgZw+fVry8/MlOjq62M/oGHS6n7PvvvvOjMN5/2WXXVbsd61YscKlCmSnFSe9319//VUuueQSx/7Y2FjznBWlFbqi961VKK0EOr8eWpnLysqS3bt3m8ellTZnWqGKi4sz3+vUQa32ffjhh9KzZ09T/XJ+bpVOM9TnBQDgPQQrAAhzGi60U15J9BwmfYOv52HpeVI6/U3fvL/77rul3p9OpdPpcDrtTVub65v6m2++uVizBu1O6EzDlX2qn/7MucKbnlPVv3//YtcVDU928fHxZqpcRenv0qmMOsWuKD2faufOneW+Lz0Hquh9jxgxwoSjovS8Mw1dkZGRZpqibp3Zg97dd98tvXr1MkFWw5WeA6fTLEeOHOm4rZ5jdf7555d7nACAiiNYAUAY++STT0zYGDNmTKm30UYLAwcONF8akLRypW/UtZqk4UgrKs60kqSVLm1qYQ8P2omwIrTi8sorrzh+T0mBT8/H0uBWXloB0+54zhW6tm3byr/+9S9T6bIHsi+//LLY73rvvffMuWVVqhT/36Y2ztDnQc8x0zCkcnNzZfv27dKtW7cyx6T3reeIlfY4dMz6/GolTxtclEabXtx7773mKy0tTebMmeMSrLT5hr52AADvoXkFAIQJnT72ww8/mIYQ2lhBu/Jp9z6d3qeNIEqi6x+99dZb8v3335ugMH/+fDNlr3bt2uZ6DRvapELv99ixY2Zf69atTTMMnc6nU91uu+22YmtlnYt2A9Tf069fPxPUdEqchhtt4qAef/xxef31103V6ttvvzVVN23u8Je//KXU+9T28hry9PZ2OjYNWffcc48JONpNTyttzrQ5hAY8HZOGJ53+t2zZMtPGXEOPNsNITU2Vhx9+2EwZ1PvXlu4RERGlTrG0GzdunFmsWBtU6POlDSm026G9eYVOAdRug/r66HOq1UPtYqhVKa1QKe08qOPR6/R11TFoYLTTUKuvuVYaAQDeQ7ACgDCh3ex06pqGIa066Rtw7fqnb+SLTjOz09Awffp0c26Qtk3XN+kaPjQ0KJ1yptP+tGKi1RV7GNPW37oIr06h02lqWpmpCO1kp9Pa6tevbzoMtm/fXqZOneoYp97n4sWLzW10XLoIrrY413bwpdFzkrSK5nw+k06nW7Rokana6fgfe+yxYlP+GjVqZMKdhig9v0zHomFGw6X9edDHrOdmaUjVANO1a1cTbkqbluhcmdM26BpatSKlY9DQqL/TTrsuarB66KGHzHlbGjadq2M6Lg1/+vv0ddUw9tJLLzl+XoOxjrus5wYA4D6bdrDwwP0AABDw9JwlbcahVaeSmlF4iq5DpetOafD054LEel6bVhDffPNNE/YAAN5DxQoAEDa0QqQVKZ0250m6LpVWhjSw6XQ8nb6ndKqlP2knRl0ImlAFAN5HxQoAAA8EK+3Opw01dBrjRRddZKYH6rRBAEB4IFgBAAAAgJuYCggAAAAAbiJYAQAAAICbCFYAAAAA4CaCFQAAAAC4iWAFAAAAAG4iWAEAAACAmwhWAAAAAOAmghUAAAAAiHv+P0wBima/V7F2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax = obspy.taup.plot_travel_times(source_depth=550, phase_list=[\"P\"],\n", + " ax=ax, fig=fig, verbose=True, show=False, legend=False,\n", + " max_degrees=100, npoints=50)\n", + "\n", + "ax.errorbar(p_dists, p_times/60, yerr=p_error/60, fmt='r.')\n", + "ax.set_title(\"P calculated travel times and data\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# NB - I've added 100 degrees to all PKP distances\n", + "# I've a feeling this is a typo in table VIf...\n", + "pkp_dists = np.array([146.00, 148.00, 150.00, 152.00])\n", + "pkp_times = np.array([1180.50, 1186.11, 1191.25, 1195.87])\n", + "pkp_error = np.array([0.3, 0.3, 0.3, 0.3])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There were 472 epicentral distances without an arrival\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVhFJREFUeJzt3Ql4VOX5/vFnEvYtSggSZEcRFEREiohFqYjiBsEFlwoobhVR0VYNrmiFQluxtS4oVlr9qRRL3HdBEVGKCpqUymYwgLgEJUhYTc7/ul//M05WknCS2b6f60onmeXMmTMHO/c87/u8Ac/zPAMAAAAA7JOkfXs4AAAAAIBwBQAAAAA+oXIFAAAAAD4gXAEAAACADwhXAAAAAOADwhUAAAAA+IBwBQAAAAA+IFwBAAAAgA8IVwAAAADgA8IVAJRj9uzZFggE7MMPP4yJ47Nu3Tq3v9rv2tKpUycbO3asRZM77rjDve54o9ek11ZTep/0fsH/4/v222+7x+sSAEojXAGI+oAT/GnUqJF169bNrrrqKvv666/LfNh55plnSjx+9+7ddtppp1lSUpL9/e9/r9Y24Z8vv/zSfZBdvnx5xA7rk08+affee6/Fk2g4rqiel19+eZ9CM4DoVy/SOwAAe3PnnXda586dbefOnbZo0SJ78MEH3YeUnJwca9KkSbmP2bNnj5111lnufo888ohdfPHF+7xN1DwETJ482VVSjjjiiIiFK7231157rSXCcdU5X1xcHLF9Q/n035j777+fgAXEMcIVgKg3bNgwO+qoo9zvl1xyiaWmpto999xjzz33nJ133nnlBqtzzjnHXnzxRZs5c6aNGzdun7eJxKHA3aBBA1fxjFX169eP9C4AQEKK3f/nAJCwfvWrX7nL3NzcMrf9+OOPdu6557qQpGrUpZdeuk/b3L59u11++eUufLVo0cJGjx5t33//fZnHv/LKK3bcccdZ8+bN3f369evnqiV7s3HjRhf+2rZtaw0bNnTVtN/85jduSKN899139tvf/tZ69eplzZo1c9tWMPzkk0+q9Lo+++wzFzTT0tKscePGdsghh9jNN9+817k5VZnLVJV905BNHQu56KKLQsMxw+eGLVmyxE4++WRLSUlxVUMdx/fee6/M86nCqG1pKGfXrl1dcK6K448/3l566SX74osvQs8ffM3BIaVPP/203XLLLXbggQe6fdi6dWuVXp+GktarV89VkEpbuXKl2/bf/va30HVbtmxx1bP27du79/uggw6yadOmVbvKtLfjWvp9Dc7J+9Of/uQqJ126dHGvc+jQobZ+/XrzPM/uuusua9eunTtPhg8f7l5/eef5L3/5S2vatKk710899VT773//W+I+X331ldsnbUuvMT093W1P+1CZTz/91O239k3vcZs2bVzFefPmzeWem2vWrHH332+//dy5o+fUv9dwu3btsokTJ7rzX/t7xhln2IYNG6p8nHXfESNGuNfbunVrty1ts7R3333Xzj77bOvQoYN7zXp/dd8dO3aE7qN91bGX8KHJQXpvjjnmGPffGr0Hffv2LTPUGUD0o3IFIOasXbvWXepDSOlgpapTVlaW+xCjULSv29RcLH140wc6fVhWYNOH9OCHctEHWn0IPOywwywzM9Pdf9myZfbqq6/a+eefX+mwrl/84hfuA/dll11m3bt3d2FLH6j0IVHVk88//9yeffZZ98FNwUsf5hUqFEBWrFjhQlllH1b1QVhVDG1fH7b1Ol944QW7++67bV9VZd969OjhhmDedtttbh+0P6IPkTJ//nwXWPRB8vbbb3fVoscee8yFXX1g1fGR7OxsFwT0IVnvhd5r3f+AAw7Y634qTBYUFLgPyjNmzHDXKSyFU7DQ8VaY0odn/a7XsLfXp+fX3//617/c/oSbM2eOJScnu8eL3lPdV++xzk19EF+8eLE7ZzZt2lStOWF7O64V+b//+z8X3CdMmODC0/Tp01341vHWOX3jjTe60HLfffe5YxGcqyiPP/64jRkzxk466SQXCPV69O/h2GOPded7MMydeeaZLnDpOXTdN998Y2+88Ybl5eVV2mRD99E5pZCkYKVtPPzww+7ygw8+KBP2td96X6ZOnWoff/yxzZo1ywUg7VuQqtJPPPGE+3eoY6PzTYGwKhSMTjjhBLffV199tXu/dQy0jdLmzp3rjoe+GNF/Q/7zn/+4Y6hzTreJ3nP9m9fr1HZK+8tf/uLC3wUXXODeIwV+nTuqwFd1nwFEAQ8AotRjjz3m6T9Tb775pvftt99669ev955++mkvNTXVa9y4sbdhwwZ3vwULFrj7dezY0V3ef//9+7zN4P369u3r7d69O/T46dOnu+ufe+459/eWLVu85s2be/379/d27NhR4rmKi4srfX2jR4/2kpKSvKVLl5a5LfjYnTt3ekVFRSVuy83N9Ro2bOjdeeedJa7Tfmm/gwYNGuT27Ysvvqhwv8aMGeOOW2m3336721443U/3D6rqvun1ld634H4cfPDB3kknnVRin7Zv3+517tzZO/HEE0PXjRgxwmvUqFGJ17JixQovOTm5zH6W59RTTy33dQbPnS5durjnDVfV1zdz5ky3jezs7BL3PfTQQ71f/epXob/vuusur2nTpt6qVatK3O+mm25yryMvLy90nban96AyFR3X8t7X4PmRlpbmztmgzMxMd33v3r29PXv2hK4/77zzvAYNGrhjID/88IO33377eZdeemmJ5/nqq6+8lJSU0PXff/+9294f//hHr7pKH3956qmn3PYWLlxY5ty8+OKLS9w3IyPD/TsOWr58ubvflVdeWeJ+559/fpWO77333uvu969//St0XWFhoXfQQQe563XuVLbvU6dO9QKBQIlzdvz48RWer6W3of/u9OzZs8Q5BCD6MSwQQNQbMmSIq1hoqI2G/KnqoOqUhnCFCw7R0rfZfm1TVYHw+Sv6ZlrPoYnpom+hf/jhB7vpppvcUKZwlQ2r0zAwVUVOP/300Nyv8h6rIUbBuT9FRUVuiJT2VcP79G19Rb799ltbuHChq6ipQlLV/aqOmu5bkLrcrV692lUV9Nj8/Hz3U1hY6CoG2n8dJ237tddec8Ozwl+LqjeqovhBFRkNxarJ6xs5cqQ7J1SpClLzDFW3Ro0aFbpOFQxVmPbff//Qa9WPzkVtX6+3tqkSoiF0Qf3793eXv/71r91rCL9e1RNV2YLnuSqsqgyH77sqc7rvggUL3P10DFX1UxWsvOGzlQk//pr3pu0fffTR7u/yzqcrrriixN86tnqPNKRTgv9GVXUKV9WmJnq8hjSqMU6QhlLqvwmV7bvOX+27KmXKyarqVUX4NnTsVG3Va6rKvyUA0YNhgQCinob4qV26PvxpGJY+3JbXbEBDnDS0Sh+GXn/9dRs4cOA+b/Pggw8u8bc+XOsDV3D+SHA4Yc+ePav1mhR+9CFwb49TuNBwoQceeMDNB9OH8KDSQxjDaXhVTfarOmq6b0EKVsFgUxF9wNQwPQ3RKv1eiN634IfofVFeIK/q62vVqpULgxoaqOGFoqClc0vBK/z1aqimQn15NHyutpUO2sGgpS8Zyrs+GJCC71VwbmJpmo8WDKQalnf99de7f1cKR1oOQXMVNdSvMhqmqLlrGg5X+ljoPNjba1FoDe6z9kfDd/VvWvPzSp8zVaHHa05c6S8jynu8hg5qiObzzz9fJlSWt+/l0fC/3//+9+5Lh/B5XfG4jhsQzwhXAKKe5t2UV90pTaFH37BrDojmKLzzzjvWu3fvfdpmpE2ZMsVuvfVWV4HSB/eWLVu6D4z69t2PVtsVfXALDxK1tW/B+/zxj3+ssEW7wmx5DQT8VrpqVd3Xp+qn5grpg7Fei4KWApeCV5Aec+KJJ9oNN9xQ7j4o7Nc2VZqqc/1PIxR/fq80V6i8kBRe9dLxUUVWlVlVHHUMNS9Kc5X69OlT4b5pDpXmoP3ud79zx1DvvZ5XzU7KO5/2ts91Rf9W9L4qHGrOmuZOqgGGqn5qYlGVfwuaX6j5VoMGDXJhXv8tU8Vc8w+r0hgHQPQgXAGIK+o0pg90ahygIWP60FJexaOq9I394MGDQ39v27bNNR845ZRT3N/Bb8U1DEzfcleVqhf6dl2Pq4yaW+j5H3300RLXa4hW+Af38o5DcL8qo2/7ta3yvrXfm6ruW0UBLnjsdBw0NK4iwU6HwepJODUZqYqafPtfnWOvIYtqWBAcGrhq1SrXqKL069X5U9lrrY66rGgE3ys1jKjK/uv+ql7pR++bwtKf//xn11yiPKr2vPXWW65ypQpQUHnveVV17NjRBRtVl8OrTVU9Z/R4/ftRWAs/1qUfr2Yrer//8Y9/uApdkL7oqep79u9//9sNK9Z/u1T9C1K4AhBbmHMFIO6odbZab+uDrL5RDs4bqQl1K9O6WUHqjqZOdepwJ+pgpxbP+mZe80Sq+g26KiD6QK7OfR9++GGZ24OP1bfzpbejuTt7e00KJPoWXN3eNGSpov3Sh2ANW9JwtSCFR80/25uq7pu+xZfSIU4dAvX8akGt96q8oZPB51FQViUk/LX873//cx9Gq0L7UNXhWUHVOfbqEKl9VMVKw9o070jvb+nKzPvvv1/uPuvY6LyqjoqOa23Qa1MIVjUv/N9D6fdKHfNK/zvQe6x/I5VVIINVqNLHuzodFEsL/hv961//WqNt6gsUdfcLb4eu16f/Juxt3/W7hpRW9T3TNhS8wivGGnqscx5AbKFyBSAuDRgwwObNm+eGJylgqYJVlXlApWlSv4Z36YOxvrHWkB0NO9QQHtEHTrX3VstnrTuk5gyqBmktJH0Q07fZFdEHVc0NU5VNk+TVoEHBRh/gtaaTPrBrvopabmvImSbI61tytdMOVqYqow+V2tcjjzzSbV/zivSBTcFTw9eCw9k0lCkjI8NN/A+219YQtb1NpK/qvunDtV7LQw895D5k6wOmmiBof9Q+Wx+C1cZe21FDEYUXNUjQsVX4FFU01NpeE/yvvPJKF0TU6lqPCw+GFVGQU1Xpuuuuc++Thpzp3PDj9QWpeYUaQ+gcURjRaw6n4W6ak6PtariY9knND7RdfYDXe1NZNbK0yo6r3/Re6Ly48MIL3fmk80YBXmFX55PmN2o9L1Vwgv9eDj30UDdcUEFdzWb0mMq2ry8DNG9S4U3ngf5tlLeWXVWpWqYGHHo/FKz1Hqo6plbzVaE18vSaVI366KOP3FA9DYtUU4twGgao90Kt63Xu6rWoElVeQw+956J/azpHFKp0XDSMWYuYawik/huiOWeaF6pqeFXObwBRJNLtCgGgIsF26OW1Ki+vnfbcuXPL3DZnzhzX7rxfv37e1q1bq7zN4P3eeecd77LLLvP2339/r1mzZt4FF1zgbd68ucz9n3/+ee+YY45x7dxbtGjh/eIXv3BtpPdGbZrVkl0tstXiWy3B1a55165d7na1wr7++uu99PR0t+2BAwd677//vnfccce5n8pasUtOTo5rUa022mplfsghh3i33nprifu8/vrrruWzWm/r9ieeeKLKrdirsm+i1vVqTV6vXr0y+7ls2TJv5MiRro22joGe55xzzvHeeuutEtvQe6HW+NpPHaeHHnqo3P0sz7Zt21wLbh2HYNv+vZ071Xl9ovNL99P2dAzLo5bman+udt56Ha1atXLnzZ/+9KcSLf+r0iq8suNaUSv20i3SK3r9Ff070f3VOl/t13U+de3a1Rs7dqz34Ycfutvz8/Pd+du9e3fXdl730zIF4e3MK6JlEILnqh539tlne19++WWZYxF8z7WUQnn7rNcapOURrr76anduaX9OP/10t/xCVY+v/n2eccYZXpMmTdx7dc0113ivvvpqmVbsWhZgyJAh7r8Rup9a03/yySdlzvUff/zRmzBhgvv3rjbt4efuo48+6pYm0L8BHT89rqrnN4DoEdD/RDrgAQAAAECsY84VAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAAD4gHAFAAAAAD5gEeFyFBcXu1XZtSijVkwHAAAAkJg8z7MffvjB2rZta0lJldemCFflULBq3759bb0/AAAAAGLM+vXrrV27dpXeh3BVDlWsggewRYsWtfPuAAAAAIh6W7dudYWXYEaoDOGqHMGhgApWhCsAAAAAgSpMF6KhBQAAAAD4gHAFAAAAAD4gXAEAAACADwhXAAAAAOADwhUAAAAA+IBwBQAAAAA+IFwBAAAAgA8IVwAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAAD4gHAFAAAAAD4gXAEAAACADwhXAAAAAKLKpoIdtnhtvruMJfUivQMAAAAAEDRnaZ5lZmVbsWeWFDCbmtHLRvXrYLGAyhUAAACAqLCpYEcoWIkuJ2XlxEwFi3AFAAAAICrk5heGglVQkefZus3bLRYQrgAAAABEhc6tmrqhgOGSAwHrlNrEYgHhCgAAAEBUSE9p7OZYKVCJLqdk9HTXxwIaWgAAAACIGqP6dbBB3dLcUEBVrGIlWAnhCgAAAEBUSU9pHFOhKohhgQAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAAD4gHAFAAAAAD4gXAEAAACADwhXAAAAAKpkU8EOW7w2312irHocFAAAAAB7M2dpnmVmZVuxZ5YUMJua0ctG9evAgQtD5QoAAABApVSpCgYr0eWkrBwqWKUQrgAAAABUKje/MBSsgoo8z9Zt3s6RC0O4AgAAAFCpzq2auqGA4ZIDAeuU2oQjF4ZwBQAAAKBS6SmN3RwrBSrR5ZSMnu56/IyGFgAAAAD2Ss0rBnVLc0MBVbEiWJVFuAIAAABQJQpUhKqKMSwQAAAAAHxAuAIAAAAAHxCuAAAAAMAHhCsAAAAA8AHhCgAAAAB8QLgCAAAAAB8QrgAAAADAB4QrAAAAAPAB4QoAAACIcZsKdtjitfnuEpFTL4LPDQAAAGAfzVmaZ5lZ2VbsmSUFzKZm9LJR/TpwXCOAyhUAAAAQo1SpCgYr0eWkrBwqWBFCuAIAAABiVG5+YShYBRV5nq3bvD1Su5TQCFcAAABAjOrcqqkbChguORCwTqlNIrVLCY1wBQAAAMSo9JTGbo6VApXockpGT3c96h4NLQAAAIAYpuYVg7qluaGAqlgRrCKHcAUAAADEOAUqQlXkMSwQAAAAAHxAuAIAAAAAHxCuAAAAAMAHhCsAAAAA8AHhCgAAAAB8QLgCAAAAAB8QrgAAAADAB4QrAAAAAPAB4QoAAACoJZsKdtjitfnuEvGvXqR3AAAAAIhHc5bmWWZWthV7ZkkBs6kZvWxUvw6R3i3UIipXAAAAgM9UqQoGK9HlpKwcKlhxLqLhaurUqdavXz9r3ry5tW7d2kaMGGErV64scZ+dO3fa+PHjLTU11Zo1a2Znnnmmff3115Vud968eTZ06FD3mEAgYMuXL6/lVwIAAAD8LDe/MBSsgoo8z9Zt3s5himMRDVfvvPOOC04ffPCBvfHGG7Znzx4XigoLC0P3mThxor3wwgs2d+5cd/8vv/zSRo4cWel29fhjjz3Wpk2bVgevAgAAACipc6umbihguORAwDqlNuFQxbGA53mlMnXkfPvtt66CpRA1aNAgKygosLS0NHvyySftrLPOcvf57LPPrEePHvb+++/b0UcfXen21q1bZ507d7Zly5bZEUccUeH9du3a5X6Ctm7dau3bt3fP36JFCx9fIQAAABJpzpWGAqpipWA1JaMnc65ikLJBSkpKlbJBVDW00A5Ly5Yt3eVHH33kqllDhgwJ3ad79+7WoUOHKoWr6gxPnDx5si/bAgAAAETNKwZ1S3NDAVWxSk9pzIGJc1HT0KK4uNiuvfZaGzhwoPXs2dNd99VXX1mDBg1sv/32K3HfAw44wN3ml8zMTBfsgj/r16/3bdsAAABIXApUA7qkEqwSRNRUrjT3KicnxxYtWlTnz92wYUP3AwAAAAAxXbm66qqr7MUXX7QFCxZYu3btQte3adPGdu/ebVu2bClxf3UL1G0AAAAAEC0iGq7US0PBKisry+bPn++aT4Tr27ev1a9f3956663QdWrVnpeXZwMGDIjAHgMAAABAFA4L1FBAdQJ87rnn3FpXwXlU6sbRuHFjdzlu3Di77rrrXJMLdeeYMGGCC1bhzSzU5EJNKTIyMtzf3333nQtgatsuwbWzVO2i4gUAAAAg7ipXDz74oGsgcfzxx1t6enroZ86cOaH7zJgxw0477TS3eLDasyscaZHgcApPwU6D8vzzz1ufPn3s1FNPdX+fe+657u+HHnqoDl8dAAAAgEQSVetcxWIvewAAAADxqzrZICoaWgAAAABArCNcAQAAAIAPCFcAAAAA4APCFQAAABLOpoIdtnhtvrsE4qIVOwAAAFDX5izNs8ysbCv2zJICZlMzetmofh14I7DPqFwBAAAgYahSFQxWostJWTlUsOALwhUAAAASRm5+YShYBRV5nq3bvD1Su4Q4QrgCAABAwujcqqkbChguORCwTqlNIrVLiCOEKwAAACSM9JTGbo6VApXockpGT3c9sK9oaAEAAICEouYVg7qluaGAqlgRrOAXwhUAAAASjgIVoQp+Y1ggAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAAD4gHAFAAAAAD4gXAEAAACADwhXAAAAAOADwhUAAACixqaCHbZ4bb67BGJNvUjvAAAAACBzluZZZla2FXtmSQGzqRm9bFS/DhwcxAwqVwAAAIg4VaqCwUp0OSkrhwoWYgrhCgAAABGXm18YClZBRZ5n6zZvj9QuAdVGuAIAAEDEdW7V1A0FDJccCFin1CaR2iWg2ghXAAAAiLj0lMZujpUClehySkZPdz0QK2hoAQAAgKig5hWDuqW5oYCqWBGsEGsIVwAAAIgaClSEKsQqhgUCAAAAgA8IVwAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAAD4gHAFAAAAAD4gXAEAAKBSmwp22OK1+e4SQMXqVXIbAAAAEtycpXmWmZVtxZ5ZUsBsakYvG9WvQ6R3C4hKVK4AAABQLlWqgsFKdDkpK4cKFlABwhUAAADKlZtfGApWQUWeZ+s2b+eIAeUgXAEAAKBcnVs1dUMBwyUHAtYptQlHDCgH4QoAAADlSk9p7OZYKVCJLqdk9HTXAyiLhhYAAACokJpXDOqW5oYCqmJFsAIqRrgCAABApRSoCFXA3jEsEAAAAAB8QLgCAAAAAB8QrgAAAADAB4QrAAAAAPAB4QoAAAAAfEC4AgAAAAAfEK4AAAAAwAeEKwAAAADwAeEKAAAgRm0q2GGL1+a7SwCRVy/SOwAAAIDqm7M0zzKzsq3YM0sKmE3N6GWj+nXgUAIRROUKAAAgxqhSFQxWostJWTlUsIAII1wBAADEmNz8wlCwCiryPFu3eXukdgkA4QoAACD2dG7V1A0FDJccCFin1CaR2iUAhCsAAIDYk57S2M2xUqASXU7J6OmuBxA5NLQAAACIQWpeMahbmhsKqIoVwQqIPMIVAABAjFKgIlQB0YOGFgAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAAEOvhaurUqdavXz9r3ry5tW7d2kaMGGErV64scZ+dO3fa+PHjLTU11Zo1a2Znnnmmff3115Vu1/M8u+222yw9Pd0aN25sQ4YMsdWrV9fyqwEAAACQyCIart555x0XnD744AN74403bM+ePTZ06FArLCwM3WfixIn2wgsv2Ny5c939v/zySxs5cmSl250+fbr99a9/tYceesiWLFliTZs2tZNOOskFNQAAAACoDQFPZZ4o8e2337oKlkLUoEGDrKCgwNLS0uzJJ5+0s846y93ns88+sx49etj7779vRx99dJlt6OW0bdvWrr/+evvtb3/rrtN2DjjgAJs9e7ade+65e92PrVu3WkpKintcixYtauGVAgAAAIgF1ckGUTXnSjssLVu2dJcfffSRq2ZpWF9Q9+7drUOHDi5clSc3N9e++uqrEo/Rwejfv3+Fj9m1a5c7aOE/AAAANbWpYIctXpvvLgEkjnoWJYqLi+3aa6+1gQMHWs+ePd11CkkNGjSw/fbbr8R9VYXSbeUJXq/7VPUxmvs1efJkn14JAABIZHOW5llmVrYVe2ZJAbOpGb1sVL8Okd4tAHUgaipXmnuVk5NjTz/9dJ0/d2ZmpquaBX/Wr19f5/sAAABinypVwWAlupyUlUMFC0gQURGurrrqKnvxxRdtwYIF1q5du9D1bdq0sd27d9uWLVtK3F/dAnVbeYLXl+4oWNljGjZs6MZPhv8AAABUV25+YShYBRV5nq3bvJ2DCSSAiIYrNZ9QsMrKyrL58+db586dS9zet29fq1+/vr311luh69SqPS8vzwYMGFDuNrUNhajwx2gOlboGVvQYAAAAP3Ru1dQNBQyXHAhYp9QmHGAgASRFeijgE0884boBaq0rzYnSz44dO0KNKMaNG2fXXXedq2qpwcVFF13kQlJ4p0A1uVBAk0Ag4OZu/f73v7fnn3/esrOzbfTo0a6DoNbRAgAAqC3pKY3dHCsFKtHllIye7noA8S+iDS0efPBBd3n88ceXuP6xxx6zsWPHut9nzJhhSUlJbvFgdfXTelUPPPBAifurmhXsNCg33HCDWyvrsssuc0MKjz32WHv11VetUaNGdfK6AABA4lLzikHd0txQQFWsCFZA4oiqda6iBetcAQAAAIjpda4AAAAAYFOMrhUXNetcAQAAAMCcGF4rjsoVAAAAgKiwKcbXiiNcAQAAAIgKuTG+VhzhCgAAAEBU6Bzja8URrgAAAABEhfQYXyuOhhYAAAAAosaoGF4rjnAFAAAAIKqkpzSOqVAVxLBAAACQMGJ17RwAsYHKFQAASAixvHYOEC30xYQ6+qnxRCxWlmob4QoAACTs2jma18EHRKBq+IJi7xgWCAAA4l6sr50DRFqsL+5bVwhXAAAg7sX62jlApPEFRdUQrgAAQNyL9bVzgEjjC4qqYc4VAABICLG8dg4QLV9QaCightTyBUX5CFcAACBhxOraOUA04AuKvSNcAQAAAKgSvqCoHHOuAAAAgBjHAtnRgcoVAAAAEMNYfyp6ULkCAAAAYhTrT0UXwhUAAAAQo1h/KroQrgAAAIAYxfpT0YVwBQAAAMQoFsiOLjS0AAAAAGIY609FD8IVAACIikn5mjuiIU4s8gtUH+tPxUm42rVrlzVs2NCfvQEAAAmHNtIAEnbO1SuvvGJjxoyxLl26WP369a1JkybWokULO+644+zuu++2L7/8snb2FAAAxB3aSANIyHCVlZVl3bp1s4svvtjq1atnN954o82bN89ee+01mzVrlgtXb775pgtdV1xxhX377be1u+cAACDm0UYaifAFwuK1+e4S8a/KwwKnT59uM2bMsGHDhllSUtlMds4557jLjRs32n333WdPPPGETZw40d+9BQAAcdlGutj7+brkQMA6pTaJ5G4BvmDIa+IJeJ4X9p8zyNatWy0lJcUKCgrckEcAAFC7H0AnZeVYkee5YDUlo6frfgbEMlWqBk6bX+aLg0U3DqZpSxxnA1+6BRYVFVl2drZ17NjR9t9/fz82CQAAEgRtpJFoQ17piBm/arSI8LXXXmuPPvpoKFhpvtWRRx5p7du3t7ffftvvfQQAAHFOHzYHdEnlQyfibshrOIa8xr8ahatnnnnGevfu7X5/4YUXLDc31z777DM3x+rmm2/2ex8BAACAmPvCYGpGLxeoJDjklapVfKvRnKtGjRrZmjVrrF27dnbZZZe5duz33nuvC1kKXRqXGMuYcwUAAAC/5l5pKKCatBCs4j8b1KhydcABB9iKFSvckMBXX33VTjzxRHf99u3bLTk5uWZ7DQAAAMQZhrwmlho1tLjoootc6/X09HQLBAI2ZMgQd/2SJUuse/fufu8jAAAAAMRnuLrjjjusZ8+etn79ejv77LOtYcOG7npVrW666Sa/9xEAAADwfbieOvqp8QTD9RA161zt3LnTzcGKJ8y5AgAAiF8s7ouomnOluVZ33XWXHXjggdasWTP7/PPP3fW33nprqEU7AAAAEI0Vq8ys7NAaVLrUIta6HthXNQpXd999t82ePdumT59uDRo0CF2voYKzZs3a550CAADRQR84F6/N54MnEmJxXyAi4eqf//ynPfzww3bBBReU6A6oNuxa7woAAMTH0KmB0+bb+bOWuEv9DcQ6FvdF1IWrjRs32kEHHVTm+uLiYtuzZ48f+wUAACKIoVOIV74v7ltYaKZt6Ue/I6HVqFvgoYceau+++6517NixxPXPPPOM9enTx699AwAAUTh0is5qiHWj+nWwQd3S/F/cd+NGs27d/NkWEidc3XbbbTZmzBhXwVK1at68ebZy5Uo3XPDFF1/0fy8BAEBEhk6FByx9w68PokA8UKDyJVT94x8//96jh9nDD5uNG7fv20XiDAscPny4vfDCC/bmm29a06ZNXdj63//+56478cQT/d9LAAAQ20OngHi0YYPZhAk//11cbHb55T9dj4RUo8qV/PKXv7Q33njD370BAADxP3QKiJfFfVev/ilQhSsqMluzxqxdu0jtFWItXHXp0sWWLl1qqampJa7fsmWLHXnkkaF1rwAAQGzzbegUEI+L+x58sFlSUsmApU7a5TR+Q2Ko0bDAdevWuYWES9u1a5ebhwUAAADEfYdKVafuu69ksJo5k6pVAqtW5er5558P/f7aa69ZSkpK6G+Frbfeess6derk7x4CAAAg7sVsh8orrzQ744yfhgKqYsVwwIRWrXA1YsQIdxkIBFy3wHD169d3werPf/6zv3sIAACAuBfTHSoVqAhVqO6wQLVd10+HDh3sm2++Cf2tHw0JVDv20047jQMLAACAaqFDJRK2oUVubq7/ewIAAICERodKJGS4uvPOOyu9XeteAQAAANVFh0okXLjKysoq8feePXtcNatevXrWtWtXwhUAAACAhFOjcLVs2bIy123dutXGjh1rGRkZfuwXAAAAokRMLewLRFDA87xSTS9rLjs7204//XS3DlYsU1BUm/mCggJr0aJFpHcHAIAy+LCLuhJzC/sCEcwGNapcVURPqB8AAFB7+LCLSC/sO6hbGhUswK9w9de//rXE3yp+bdq0yR5//HEbNmxYTTYJAACqgA+7qEsxu7AvEEvhasaMGSX+TkpKsrS0NLewcGZmpl/7BgAASuHDLupSTC/sC0QA61wBABBD+LCLSCzsq6GAqlgpWE3J6EnVCqiLOVcAAKB28WEXdY2FfYFaDleFhYX2hz/8wd566y375ptvrLi4uMTtn3/+eU02CwAAqoAPu6hrLOwL1GK4uuSSS+ydd96xCy+80NLT0y0QCHC8AQCoQ3zYBYA4CVevvPKKvfTSSzZw4ED/9wgAAAAAYlBSTR60//77W8uWLff5yRcuXOgWHW7btq2rfj377LMlbv/6669t7Nix7vYmTZrYySefbKtXr650m3v27LE777zTunbtao0aNbLevXvbq6++us/7CgAAEI2t+RevzXeXAGI0XN11111222232fbt2/fpyTV3S+Hn/vvvL3Ob1s4aMWKEm7/13HPP2bJly6xjx442ZMgQ97iK3HLLLTZz5ky77777bMWKFXbFFVdYRkaGezwAAEA8LSY9cNp8O3/WEnepvwFEVsBTiqmmPn362Nq1a10A6tSpk9WvX7/E7R9//HH1dyQQsKysLBeoZNWqVXbIIYdYTk6OHXbYYe46Nc5o06aNTZkyxc37Ko+qXDfffLONHz8+dN2ZZ55pjRs3tieeeKJK+7J161ZLSUmxgoICa9GiRbVfCwAAQG1SpUqBqvT6U4tuHEybdMBn1ckGNZpzFQxAtWnXrl3uUkP7whcrbtiwoS1atKjCcKXHhT9GFKz0mMqeK/h8wQMIAAAQrVhMGohONQpXt99+u9W27t27W4cOHSwzM9MN82vatKnNmDHDNmzYYJs2barwcSeddJLdc889NmjQIDfvSu3i582bZ0VFRRU+ZurUqTZ58uRaeiUAAAD+YjFpII7mXNUFDTVUKNLwQDXPUEOLBQsW2LBhw1wFqyJ/+ctf7OCDD3bhrEGDBnbVVVfZRRddVOljFOBU5gv+rF+/vpZeFQAAgH+LSWsooOhySkZPhgQCsVK5UsBR0GnVqpXrFljZ2lbfffedLzvXt29fW758uQs8u3fvtrS0NOvfv78dddRRFT5G91HXwZ07d9rmzZvdHKybbrrJunTpUuFjNNRQPwAAALGCxaSBGA5XGpLXvHlz9/u9995rdUkTyERt2D/88EPXrXBvNO/qwAMPdK3Z//3vf9s555xTB3sKAEh0ajSg+TAatqXqAlCbWEwaiNFwNWbMmHJ/3xfbtm2zNWvWhP7Ozc11lSpVyTTfau7cua4Spd+zs7Ptmmuucc00hg4dGnrM6NGjXYjSvClZsmSJbdy40Y444gh3eccdd7gugzfccIMv+wwAQEXUCjszK9t1cEsKmBu2peoCACAx1KihRdA333zjfhRewh1++OFVeryqUIMHDw79fd1114XC2+zZs13jCl2nxYTT09NdkLr11ltLbCMvL6/EfCoNB9RaV1ofq1mzZnbKKafY448/bvvtt9++vFQAAPZasQoGK9HlpKwcG9QtjQpWAqKCCSSmGq1z9dFHH7kA9L///c+tdVVig4FApZ35YgHrXAEAqmvx2ny3mGtpT116tA3oksoBTSBUMIH4UuvrXF188cXWrVs3e/TRR+2AAw6otLkFAACJgNbYECqYQGKrUbjSkDs1iTjooIP83yMAAGK4NbaGAhZ5Hq2xExSL+wKJrUbh6oQTTrBPPvmEcAUAQBhaY4MKJpDYahSuZs2a5eZc5eTkWM+ePd2Cv+HOOOMMv/YPAICYQmvsxEYFE0hsNQpX77//vr333nv2yiuvlLktHhpaAAAA1BQVTCBx/dzDvBomTJhgv/71r12rdLVhD/8hWAEAgESnCpa6RLKQNJBYahSuNm/ebBMnTnSdAgEAAAAANQxXI0eOtAULFnD8AAAAAGBf5lxpjavMzExbtGiR9erVq0xDi6uvvrommwUAAKj1dajULl1d/RiyB8BvAc/zvOo+qHPnzhVvMBBw62AlyirMAAAgNsxZmmeZWdlW7JklBcytS6bmEwDgVzaoUeUqNze3Jg8DAACIWMUqGKxEl1rweVC3NCpYACI75woAACCWaChgMFgFFXmerdu8PVK7BCCRw9Uf/vAH27FjR5Xuu2TJEnvppZf2Zb8AAPC9crF4bb67ROLRHCsNBQyXHAhYp9QmkdolAIkcrlasWGEdOnSwK6+80i0e/O2334Zu+/HHH+3TTz+1Bx54wI455hgbNWqUNW/evLb2GQCAas+1GThtvp0/a4m71N9ILGpeoTlWClSiyykZPRkSCCByDS0++eQT+9vf/mbPPPOMm9iVnJxsDRs2tO3bfyqp9+nTxy655BIbO3asNWrUyGIVDS0AIH6oUqVAFT4kTB+sF904mA/WCXo+aCigKlZ0CwQQ0YYWvXv3tkceecRmzpzpKlVffPGFGyrYqlUrO+KII9wlAACxMteGD9eJR+857zuA2lKjboFJSUkuTOkHAIBYmGtTunLFXBsAgN/oFggAiGvMtQEARHXlCgCAWKKFYrWeEXNtonsulIZwqtLIsD0AsYpwBQBICMy1iV7q3hhc4FdDONXVT4EYAGINwwIBAEBEK1bBYCW6nJSVw3pkABIvXK1Zs8Zee+210OLC1ejqDgAAUGk3RwBIiHC1efNmGzJkiHXr1s1OOeUU27Rpk7t+3Lhxdv311/u9jwAAIM67OYajmyOAhApXEydOtHr16lleXp41adIkdP2oUaPs1Vdf9XP/AABAHKObIwBL9IYWr7/+uhsO2K5duxLXH3zwwW5hYQAAgH3u5lhYaNas2U+/b9tm1rQpBxVA/IWrwsLCEhWroO+++84aNmzox34BAIAEstdujhs3mnXrVpe7BAB1Myzwl7/8pf3zn/8M/R0IBKy4uNimT59ugwcPrskmAQAASvrHP37+vUcPs0cf5QgBiGoBrwYt/nJycuyEE06wI4880ubPn29nnHGG/fe//3WVq/fee8+6du1qsWzr1q2WkpJiBQUF1qJFi0jvDgDENRaPRbk2bDDr2NGsuPjn65KTzdatMys1LQEAoiUb1GhYYM+ePW3VqlX2t7/9zZo3b27btm2zkSNH2vjx4y09Pb2m+w0ASDAsHhv9IhZ+V68uGaykqEjrwBCuAMRX5SreUbkCgLr50D5w2vwSaxypBfeiGwfX7Yd4RGf4pXIFIFEqV7Jz50779NNP7ZtvvnHzrcJpmCAAADVdPJZwFR3hNxisRJeTsnJcV786eX809O+++8zGj/95SODMmVStAES1GoUrrWU1evRoy8/PL3ObmlsUqWwPAEAVFo8tXblSK25EXlSE3yuv1De2Pw0FPOggghWA+OwWOGHCBDv77LNt06ZNrmoV/kOwAgBUBYvHxkb4DReR8KsK1vHHE6wAxO+cK401XLZsWcx3BawIc64AoG6Hn5VZPBZRM+dKQwFVsVKwmpLRs+7mXAFAosy5Ouuss+ztt9+O23AFAIiixWMRMQpSmmNF+AWAWqxcbd++3Q0LTEtLs169eln9+vVL3H711VdbLKNyBQAAAKBOKldPPfWUvf7669aoUSNXwVITiyD9HuvhCgAAAACqq0bh6uabb7bJkyfbTTfdZElJNeqJAQAAAABxpUbJaPfu3TZq1CiCFQAAEWwEsnhtvrsEAMRwuBozZozNmTPH/70BAABV6uI3cNp8O3/WEnepvwEAMTosUGtZTZ8+3V577TU7/PDDyzS0uOeee/zaPwAAEEaVqsys7NACv7pUu3R19aPrIgDEYLjKzs62Pn36uN9zcnJK3Bbe3AIAAPgrN78wFKyCtA6V2qUTrgAgBsPVggUL/N8TAACwV51bNbWkwE8VqyAt8KtFmAEAkUWrPwBAuWiYEJ1UnZqa0csFKtHllIyeVK0AIJYqVyNHjrTZs2e7hbP0e2XmzZvnx74BACJEDRKC83pUJdGH+VH9OvB+RAm9F5pjpaGAqlgxHBAAYixcaVXi4Hwq/Q4AiE80TIgNClSEKgCI0XD12GOP2Z133mm//e1v3e8AgPhEwwQAAOpgztXkyZNt27ZtNXwqAEAsNUwIR8MEAAB8DleeV6r3KwAg7tAwYd/QCAQAEle1W7GzjhUAxD8aJtQMjUAAILFVO1x169ZtrwHru+++25d9AgBEARomVA+NQAAA1Q5XmndFt0AAAEqiEQgAoNrh6txzz7XWrVtz5AAAKKcRiNYGC6IRCAAklmo1tGC+FQAA5aMRCACgWpUrugUCAFAxGoEAQGKrVrgqLi6uvT0BACAO0AgEABJXtYYFAgAAAADKR7gCAAAAAB8QrgAgxtZSWrw2310CAIAYb8UOAIiMOUvzLDMr27X6VsvvqRm9XAMFVI0CqdaiUst0zYsCAMBvhCsAiJFgEAxWostJWTk2qFsaQaEKCKYAgLrAsEAAiAGquIQvTitFnmfrNm+P1C7FfDBlaCUAwG+EKwCIARrKpqGA4ZIDAeuU2iRSuxQzCKYAgLpCuAKAGKA5QppjpUAlupyS0ZMhgVVAMAUAJES4WrhwoZ1++unWtm1bCwQC9uyzz5a4/euvv7axY8e625s0aWInn3yyrV69eq/bvffee+2QQw6xxo0bW/v27W3ixIm2c+fOWnwlAFD71Lxi0Y2D7alLj3aXNLOoGoIpACAhGloUFhZa79697eKLL7aRI0eWuM3zPBsxYoTVr1/fnnvuOWvRooXdc889NmTIEFuxYoU1bdq03G0++eSTdtNNN9nf//53O+aYY2zVqlUuoCm86fEAEOtBgU531acgquYfmqOmoZQcQwBA3IWrYcOGuZ/yqEL1wQcfWE5Ojh122GHuugcffNDatGljTz31lF1yySXlPm7x4sU2cOBAO//8893fnTp1svPOO8+WLFlSi68EABDtCKYAgISdc7Vr1y532ahRo9B1SUlJ1rBhQ1u0aFGFj1O16qOPPrL//Oc/7u/PP//cXn75ZTvllFMqfa6tW7eW+AEAAACAuAhX3bt3tw4dOlhmZqZ9//33tnv3bps2bZpt2LDBNm3aVOHjVLG688477dhjj3VDCrt27WrHH3+8TZo0qcLHTJ061VJSUkI/mqcFAAAAAHERrhSM5s2b5+ZMtWzZ0jW0WLBggRtGqApWRd5++22bMmWKPfDAA/bxxx+7bbz00kt21113VfgYBbiCgoLQz/r162vpVQEAStN6U4vX5rPuFAAg5kV0ztXe9O3b15YvX+4CjypXaWlp1r9/fzvqqKMqfMytt95qF154YWhOVq9evVzjjMsuu8xuvvnmcoOZhhrqBwBQt+YszQst8Kt1vNRuni6IAIBYFbWVq3AaqqdgpSYXH374oQ0fPrzC+27fvr1MgEpOTg51IAQARE/FKhisRJeTsnKoYAEAYlZEK1fbtm2zNWvWhP7Ozc11lSoNA9R8q7lz57pQpd+zs7Ptmmuuce3Zhw4dGnrM6NGj7cADD3TzpkTrZqnlep8+fVyVS9tXNUvXB0MWACDycvMLQ8EqqMjzXLt0WqUDAGJRRMOVqlCDBw8O/X3ddde5yzFjxtjs2bNd4wpdp8WE09PTXZBSUAqXl5dXolJ1yy23uDWtdLlx40YXzhSs7r777jp8ZQCAvencqqkbChgesJIDAbcOFQAAsSjgMVauDLVi11BEzfXS4sUAUJUhbqrEKDBQdanenCsNBVTFSsFqSkZP5lwBAGI2G0R1QwsAiAU0Zag5Na8Y1C3NDQVUxYpgCgCIZTHR0AIAohVNGfadAtWALqkEKwBAzCNcAUAtNWUAAACJhXAFAD40ZQhHUwYAABIT4QoA9nFImxa+VaCSYFMG5g4BAJB4aGgBAPsoXpsy0AERAIDqIVwBgA8UqOIlVAkdEAEAqD6GBQIASqADIgAANUO4AgCUQAdEAABqhnAFACiBDogAANQM4QoAUAIdEAEAqBkaWgAAEqYDIgAAtYlwBQBIiA6IAADUNoYFAkAiKiw008LH+tHvAABgnxGuAMR9W/HFa/PdJSqwcSOHBgAAHzAsEEDcYiHcSvzjHz//3qOH2cMPm40bVwfvCgAA8YvKFYC4FK8L4fpSiduwwWzChJ//Li42u/zyn64HAAA1RuUKQFyqbCHcWG3S4FslbvXqnwJVuKIiszVrzNq1821/AQBINFSuAMSleFsI19dK3MEHmyWV+s9/crLZQQf5s7MAACQowhWAuBRvC+FWVomrNlWn7ruvZLCaOZOqFQAA+4hhgQDiVjwthBusxIUHrH2qxI0ZYzZ+/E+/r1hh1q2bPzsKAEACo3IFIK4pUA3okhrTwapWKnFNm5p53k8/BCsAAHxB5QoAYkQ8VeIAAIhHhCsAiCEKVIQqAACiE8MCAQAAAMAHhCsAAAAA8AHhCgB8oPWmFq/Nr9m6UwAAIC4w5woA9tGcpXmhBX7VLl1d/dR8AgAAJBYqVwCwD1SpCgYr0eWkrBwqWAAAJCDCFYCIiJdhdLn5hSUW9pUiz3Pt0gEAQGJhWCCAOhdPw+g6t2rqXkN4wNICv1qHCgAAJBYqVwDqVLwNo9OaUwqHClSiyykZPVmLCgCABETlCkDUDKOL1cVxVXUb1C3NvQZVrGL1dQAAgH1DuAJQp+J1GJ0CFaEKAIDExrBAAHWKYXQAACBeUbkCUOcYRgcAAOIR4QpARDCMDgAAxBuGBQKIa/GynhYAAIh+VK4AxK14Wk8LAABEPypXAOJSvK2nBQAAoh/hCkDCracFAABQGwhXAOJ6Pa1w8bCeFgAAiF6EKwBxifW0AABAXaOhBYC4xXpaAACgLhGuAJSghg+ar6Rhdar+xDrW0wIAAHWFcAUghNblAAAANcecKwAOrcsBAAD2DeEKgEPrcgAAgH1DuALg0LocAABg3xCuAESkdbmGIS5em+8uAQAA4gENLQDUeetyGmcAAIB4ROUKQAkKVAO6pNZqxSozK9uKvZ/+1uWkrBwqWAAAIOYRrgDUKRpnAACAeEW4AlCnaJwBAADiFeEKQFw3zgAAAKgrNLQAELeNMwAAAOoS4QpARChQEaoAAEA8YVggAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFdAjNDiu4vX5tf6Yrt19TwAAADxhoYWQAyYszTPMrOyrdgzSwqYa2Wujnux+jwAAADxiMoVEOVUQQoGHtHlpKwc3ytLdfU8AAAA8YpwBUS53PzCUOAJKvI8t0ZULD4PAABAvCJcAVGuc6umboheuORAwC2+G4vPAwAAEK8iGq4WLlxop59+urVt29YCgYA9++yzJW7/+uuvbezYse72Jk2a2Mknn2yrV6+udJvHH3+821bpn1NPPbWWXw1QO7TQruY+KeiILqdk9PR9Ad66eh4AAIB4FdGGFoWFhda7d2+7+OKLbeTIkSVu8zzPRowYYfXr17fnnnvOWrRoYffcc48NGTLEVqxYYU2bNi13m/PmzbPdu3eH/t68ebN7jrPPPrvWXw9QW9RUYlC3NDdET5Wk2go8dfU8AAAA8Sii4WrYsGHupzyqUH3wwQeWk5Njhx12mLvuwQcftDZt2thTTz1ll1xySbmPa9myZYm/n376aVf1Ilwh1ino1EXYqavnAQAAiDdRO+dq165d7rJRo0ah65KSkqxhw4a2aNGiKm/n0UcftXPPPbfCSlfwubZu3VriBwAAAADiIlx1797dOnToYJmZmfb999+7oX7Tpk2zDRs22KZNm6q0jf/85z+u8lVRlSto6tSplpKSEvpp3769T68CAAAAQKKI2nCluVaaP7Vq1So31E9D+xYsWOCGEaqCVdWqVa9evewXv/hFpfdTgCsoKAj9rF+/3qdXAQAAACBRRHTO1d707dvXli9f7gKPKldpaWnWv39/O+qoo6rULEPzre6888693ldDDfUDAAAAAHFXuQqnoXoKVmpy8eGHH9rw4cP3+pi5c+e6uVS//vWv62Qfgdq2qWCHLV6b7y4BAAAQfSJaudq2bZutWbMm9Hdubq6rVGkYoOZbKSApVOn37Oxsu+aaa1x79qFDh4YeM3r0aDvwwAPdvKnSQwJ139TU1Dp9TUBtmLM0zzKzsq3YM7fQr9ajUtt0AAAARI+IhitVoQYPHhz6+7rrrnOXY8aMsdmzZ7vGFbpOiwmnp6e7IHXrrbeW2EZeXl6ZOVgrV650HQVff/31OnolSGSqJOXmF1rnVk1rpYW5th8MVqLLSVk5bj0qWqYDAABEj4Cn1XpRglqxayii5npp8WIgkhUlDQU8f9aSMtc/denRNqALlVkAAIBoyQYxMecKiEYVVZT8nhOlipiCW7jkQMA6pTbx9XkAAACwbwhXQA1pKGAwWAUVeZ6t27zd12OqoX+qiClQiS6nZPRkSCAAAECUiepW7EA0C1aUwgNWbVWUNNRQc6wU3LR95loBAABEHypXQIxUlLRdzbEiWAEAAEQnKlfAPqCiBAAAgCDCFbCPVEmimgQAAACGBQIAAACADwhXwD5S63WtReV3C3YAAADEFoYFAj4uIjz95K521nE9frpx2zazpk05vgAAAAmCyhXg4yLCdzy/4uc7bNzIsQUAAEgghCvAx0WER3z65s9/9Ohh9uijHF8AAIAEQbgC9nER4aA2W/Nt8psP/XxFcbHZ5ZebbdjAMQYAAEgAhCvAp0WEu2750pK9UqWsoiKzNWs4xgAAAAmAhhaI6zlRGrqnClNtrUMVvohwl53dzJ6+5aeKVVBystlBB9XKcwMAACC6EK6QEF38VGFSEKrdRYRTze67z2z8+J+D1cyZZu3a1crzAgAAILoEPK/0OCZs3brVUlJSrKCgwFq0aMEBicGK1cBp80s0m9DQvUU3Dq61ClYJmmOloYCqWBGsAAAAEiYbULlCQnTxK/I8N3SvTsKVAhWhCgAAIOHQ0AJx38UvWLnqlNokUrsEAACABEC4Qtx38dPllIyedVO1AgAAQMJiWCDikppXdG/T3Jau+976ddrferffP9K7BAAAgDhHuEJcqstugQAAAIAwLBBx2S0wGKxEl5Oyctz1AAAAQG0hXCGhugUCAAAAtYVwhbhDt0AAAABEAuEKcYdugQAAAIgEGlogLql5xaBuaW4ooNa3og07AAAAahvhCnFLgYpQBQAAgLrCsEAAAAAA8AHhCnVOLdEXr82nNToAAADiCsMCUadY3BcAAADxisoV6gyL+wIAACCeEa5QZ1jcFwAAAPGMcIU6Xdw3UOq6QMBcq3QAAAAg1hGuEFkebwAAAADiA+EKdTossHSW0t9a6BcAAACIdYQr1OmwwKRS4wKTAwGGBQIAACAuEK5QZ9JTGtvUjF4uUIkup2T0dNcDAAAAsY51rlCnRvXrYIO6pbmhgGpkQbACAABAvCBcoc4pUBGqAAAAEG8YFggAAAAAPiBcAQAAAIAPCFcAAAAA4APCFUI2FeywxWvz3SUAAACA6qGhBZw5S/MsMyvbij1za1GpZbo6+wEAAACoGipXcJWqYLASXU7KyqGCBQAAAFQD4QqWm18YClZBRZ7n1qICAAAAUDWEK1jTBsnlHoUm9Tk9AAAAgKri0zOscHdRuUdh+55ijg4AAABQRYQrWOdWTV0Ti3DJgYB1Sm3C0QEAAACqiHAFS09p7LoDKlCJLqdk9HTXAwAAAKgaWrHDUdv1Qd3SXBMLVawIVgAAAED1EK4QokBFqAIAAABqhmGBAAAAAOADwhUAAAAA+IBwBQAAAAA+IFwBAAAAgA8IVzFgU8EOW7w2310CAAAAiE50C4xyc5bmWWZWthV75hb61XpUapsOAAAAILpQuYpiqlTdNO+nYCW6vCkrmwoWAAAAEIUIV1Hsoy++t/+fq0I8z+zjL76P0B4BAAAAqAjhKop5ZaJV8HoAAAAA0YZwFcWO6tjSAqWu0999O+4foT0CAAAAUBHCVRRLT2lsfxjZK/Qm6VJ/63oAAAAA0YVugVFOnQEHdUuzdZu3W6fUJgQrAAAAIEpFtHK1cOFCO/30061t27YWCATs2WefLXH7119/bWPHjnW3N2nSxE4++WRbvXr1Xre7ZcsWGz9+vKWnp1vDhg2tW7du9vLLL1usUqVqQJdUghUAAAAQxSIargoLC6137952//33l7nN8zwbMWKEff755/bcc8/ZsmXLrGPHjjZkyBD3uIrs3r3bTjzxRFu3bp0988wztnLlSnvkkUfswAMPrOVXAwAAACCRRXRY4LBhw9xPeVSh+uCDDywnJ8cOO+wwd92DDz5obdq0saeeesouueSSch/397//3b777jtbvHix1a9f313XqVOnWnwVAAAAABDFDS127drlLhs1ahS6LikpyQ3zW7RoUYWPe/75523AgAFuWOABBxxgPXv2tClTplhRUVGlz7V169YSPwAAAAAQF+Gqe/fu1qFDB8vMzLTvv//eDfebNm2abdiwwTZt2lTh4zSMUMMBFaY0z+rWW2+1P//5z/b73/++wsdMnTrVUlJSQj/t27evpVcFAAAAIF5FbbjSkL558+bZqlWrrGXLlq6hxYIFC9wwQlWwKlJcXGytW7e2hx9+2Pr27WujRo2ym2++2R566KEKH6MAV1BQEPpZv359Lb0qAAAAAPEqqluxKxwtX77cBR5VrtLS0qx///521FFHVfgYdQhUMEtOTg5d16NHD/vqq6/cNho0aFDmMRpqqB8AAAAAiLvKVTgN1VOwUpOLDz/80IYPH17hfQcOHGhr1qxxFawgVb8UusoLVgAAAAAQ8+Fq27ZtrjKlH8nNzXW/5+Xlub/nzp1rb7/9dqgdu1qsqz370KFDQ9sYPXq0G9YX9Jvf/MZ1C7zmmmtcqHrppZdcQws1uAAAAACAuBwWqCrU4MGDQ39fd9117nLMmDE2e/Zs17hC12kxYVWeFKTUoCKcglj4HCw1o3jttdds4sSJdvjhh7v1rRS0brzxxjp8ZQAAAAASTcDTar0oQa3YNRRRc71atGjB0QEAAAAS1NZqZIOYmHMFAAAAANGOcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQAAAADEeiv2aBVsoKjOIAAAAAAS19b/nwmq0mSdcFWOH374IbRmFgAAAAD88MMPriV7ZVjnqhzFxcX25ZdfWvPmzS0QCHAmodrfbiiYr1+/nnXSENU4VxELOE8RCzhP45vneS5YtW3b1pKSKp9VReWqHDpo7dq1q633BwlCi8yxCDViAecqYgHnKWIB52n82lvFKoiGFgAAAADgA8IVAAAAAPiAcAX4rGHDhnb77be7SyCaca4iFnCeIhZwniKIhhYAAAAA4AMqVwAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFdAFS1cuNBOP/10tzp3IBCwZ599tsL7XnHFFe4+9957b5nbXnrpJevfv781btzY9t9/fxsxYgTvAaLqPF21apUNHz7cWrVq5RbEPPbYY23BggW8S6iz83Ts2LHu+vCfk08+ucR9vvvuO7vgggvcObrffvvZuHHjbNu2bbxLiJrzdN26de687Ny5s/v//K5du7puwrt37+ZdimOEK6CKCgsLrXfv3nb//fdXer+srCz74IMP3H+MS/v3v/9tF154oV100UX2ySef2HvvvWfnn38+7wGi6jw97bTT7Mcff7T58+fbRx995Lan67766iveKdTZeaoPqZs2bQr9PPXUUyVuV7D673//a2+88Ya9+OKL7oPwZZddxjuEqDlPP/vsMysuLraZM2e6c3XGjBn20EMP2aRJk3iX4pkHoNr0TycrK6vM9Rs2bPAOPPBALycnx+vYsaM3Y8aM0G179uxxt82aNYsjjqg9T7/99lv3uIULF4au27p1q7vujTfe4J1DnZynY8aM8YYPH17hY1asWOEet3Tp0tB1r7zyihcIBLyNGzfyLiEqztPyTJ8+3evcubPPe4doQuUK8Im+nVJV6ne/+50ddthhZW7/+OOPbePGjZaUlGR9+vSx9PR0GzZsmOXk5PAeIGrO09TUVDvkkEPsn//8p/vWVhUsfevaunVr69u3L+8U6szbb7/tzjudj7/5zW9s8+bNodvef/99NxTwqKOOCl03ZMgQ99/XJUuW8C4hKs7T8hQUFFjLli3rbP9Q9whXgE+mTZtm9erVs6uvvrrc2z///HN3eccdd9gtt9zihrFoztXxxx/v5g4A0XCeas7Am2++acuWLbPmzZtbo0aN7J577rFXX33Vna9AXdBQKwX8t956y52z77zzjvsyqqioyN2uIar6QBtO57U+tDJ8FdFynpa2Zs0au+++++zyyy/nTYpj9SK9A0A80LyUv/zlL646pQ+nFVUM5Oabb7YzzzzT/f7YY49Zu3btbO7cufzHFlFxnmr0y/jx490H13fffddNwp41a5ab1L106VJXcQVq27nnnhv6vVevXnb44Ye7ZgCqEpxwwgm8AYi581QjVxTGzj77bLv00ksjsLeoK1SuAB/oQ+g333xjHTp0cN+e6ueLL76w66+/3jp16uTuE/xQeuihh4Ye17BhQ+vSpYvl5eXxPiAqzlM1sVBV9emnn7aBAwfakUceaQ888IALWf/4xz94lxAR+u+kulfqm39p06aNO5fDaQirRgHoNiAaztOgL7/80gYPHmzHHHOMPfzww7w5cY7KFeADzWHReP9wJ510UqgzoGi+isLUypUrXWtr2bNnj2vV2rFjR94HRMV5un37dnepuSvh9Hew+grUtQ0bNri5LMEvqQYMGGBbtmxx1djgXEB9MaBzVEtdANFwngYrVgpWOk81WqX0f1sRfwhXQBVp/ZTwb6Nyc3Nt+fLlboy/KgFqBBCufv367htUTXIVrcWidYW0xkX79u1doPrjH//obtMwASAazlN9aNXcqjFjxthtt93mKlaPPPKI286pp57Km4RaP0/1M3nyZDd8Wufm2rVr7YYbbrCDDjrIfRkgPXr0cEOsNLxKra31RdVVV13lhmmVt7wAEInzVMFK86r1//d/+tOf7Ntvvw1tiwprHIt0u0IgVixYsMC1Yi39o1as5Snd4lp2797tXX/99V7r1q295s2be0OGDHHtsIFoOk/V3nro0KFey5Yt3Xl69NFHey+//DJvEurkPN2+fbs7/9LS0rz69eu7c/TSSy/1vvrqqxLb2Lx5s3feeed5zZo181q0aOFddNFF3g8//MC7hKg5Tx977LFyH8/H7/gW0P9EOuABAAAAQKxj4CcAAAAA+IBwBQAAAAA+IFwBAAAAgA8IVwAAAADgA8IVAAAAAPiAcAUAAAAAPiBcAQAAAIAPCFcAAAAA4APCFQDAF4FAwJ599tm4PJq7d++2gw46yBYvXlzhfdatW+eOwfLlyy3WrVixwtq1a2eFhYWR3hUAiCmEKwBAhcaOHesCg37q169vBxxwgJ144on297//3YqLi0vcd9OmTTZs2LC4DGIPPfSQde7c2Y455hhLBIceeqgdffTRds8990R6VwAgphCuAACVOvnkk11wUmXmlVdescGDB9s111xjp512mv3444+h+7Vp08YaNmwYd0fT8zz729/+ZuPGjbNoqaLVhYsuusgefPDBEu8xAKByhCsAQKUUmBScDjzwQDvyyCNt0qRJ9txzz7mgNXv27HKrUQoAV111laWnp1ujRo2sY8eONnXqVHdbp06d3GVGRoZ7TPDvtWvX2vDhw111rFmzZtavXz978803S+yL7jtlyhS7+OKLrXnz5tahQwd7+OGHS9xnw4YNdt5551nLli2tadOmdtRRR9mSJUtCt2vf9Tq0X126dLHJkydXGiA++ugjt2+nnnpqiev/85//WJ8+fdx29BzLli0r89icnBxXzdPr0eu68MILLT8/P3T7Dz/8YBdccIHbTx2rGTNm2PHHH2/XXnttidd811132ejRo61FixZ22WWXuesXLVpkv/zlL61x48bWvn17u/rqq0sM49u1a5f99re/de+btt+/f397++23Q7d/8cUXdvrpp9v+++/vbj/ssMPs5ZdfDt2uCuV3331n77zzToXHBgBQEuEKAFBtv/rVr6x37942b968cm//61//as8//7z961//spUrV9r//d//hULU0qVL3eVjjz3mKmLBv7dt22annHKKvfXWWy6oqGKmD/95eXkltv3nP/85FGauvPJK+81vfuOeI7iN4447zjZu3Oie/5NPPrEbbrghNITx3XffdSFFlTfNK5o5c6YLiHfffXeFr1WP6datmwtzQXoeVe40fE7h64477nBBJtyWLVvccVIA+/DDD+3VV1+1r7/+2s4555zQfa677jp777333L6+8cYb7rk+/vjjMvvwpz/9yR1vveZbb73VhT0dnzPPPNM+/fRTmzNnjgtbCrRB+v3999+3p59+2t3n7LPPdo9ZvXq1u338+PEugC1cuNCys7Nt2rRpLgQGNWjQwI444gi3TwCAKvIAAKjAmDFjvOHDh5d726hRo7wePXqE/tb/pWRlZbnfJ0yY4P3qV7/yiouLy31s+H0rc9hhh3n33Xdf6O+OHTt6v/71r0N/a/utW7f2HnzwQff3zJkzvebNm3ubN28ud3snnHCCN2XKlBLXPf744156enqF+3DNNde41xJOz5Oamurt2LEjdJ32Qa9r2bJl7u+77rrLGzp0aInHrV+/3t1n5cqV3tatW7369et7c+fODd2+ZcsWr0mTJu45w1/ziBEjSmxn3Lhx3mWXXVbiunfffddLSkpy+/TFF194ycnJ3saNG8u8/szMTPd7r169vDvuuMOrTEZGhjd27NhK7wMA+Fm9qoYwAABKfTnnhvVV1AhDw8oOOeQQVy1RlWfo0KGVHkBVg1QBeumll1xFS0P1duzYUaZydfjhh4d+1/NryOI333zj/lanPlWKNCSwPKpkqVIUXqkqKiqynTt32vbt261JkyZlHqN90NC/cP/73//cfoRfP2DAgDLPtWDBghLVoCBVnrTdPXv22C9+8YvQ9SkpKe6YlaZKXeltqxqlimD4+6EKXW5urn3++efudaniFk6VqtTUVPe7hhGq6vf666/bkCFDXBUs/NiKhhzquAAAqoZwBQCoEQUMddArj+Y06UO+5mVp3pSGwukD/DPPPFPh9jSsTkPjNARObc/1wf6ss84q08BBXQvDKWAFh/3pMXsLcJpjNXLkyDK3lQ5QQa1atXLD5qpLz6VhjRpuV5rmV61Zs6bK29KcqNLbvvzyy11AKk3z0BS8kpOT3ZBFXYYLhr1LLrnETjrpJBdmFbA0J05DLidMmBC6r+Zcde3atcr7CQCJjnAFAKi2+fPnu8AxceLECu+j5gujRo1yPwpJqmDpw7qqSgpIqqyEU0VJFS81uggGCHUorA5VXmbNmhV6nvJCn+ZnKbxVlSph6poXXqnr0aOHPf74467iFQxlH3zwQZnn+ve//+3mmtWrV/b/btVMQ8dBc84UiKSgoMBWrVplgwYNqnSftG3NGavodWifdXxV0VPTi4qoEcYVV1zhfjIzM+2RRx4pEa7UkEPvHQCgamhoAQColIaSffXVV65JhJotqFufuvppqJ+aQ5RH6yM99dRT9tlnn7mwMHfuXDd8b7/99nO3K3CocYW2+/3337vrDj74YNcgQ0P7NOzt/PPPL7OW1t6oS6CeZ8SIES6saXicAo4aO8htt91m//znP1316r///a+rvqnhwy233FLhNtV6XkFP9w/SviloXXrppS7kqMueKm7h1DBCIU/7pACloYCvvfaaa3Gu4KMGGWPGjLHf/e53bvigtq9270lJSRUOtwy68cYb3YLGalqh46UmFeqCGGxooeGA6kKo90fHVFVEdTdUdUqVKlFHQu2PbtP7qn1QaAxSsNV7roojAKBqCFcAgEqpy52GsSkQqfqkD+HqBqgP86WHnAUpOEyfPt3NFVJLdX1QVwBRcBANP9MQQFVOVGUJBjK1BddCvRpOpyFrqtBUhzrcaYhb69atXefBXr162R/+8IfQfmqbL774oruP9ksL5ar9uVrFV0RzlFRNC5/fpKF1L7zwgqveaf9vvvnmMsP/2rZt6wKegpTmm2lfFGgUMIPHQa9Zc7UUVBViBg4c6AJORUMUwyt0apGu4KrKlPZBwVHPGaRujApX119/vZvHpcAZXiXTfikA6vn0viqQPfDAA6HHKxxrvys7NgCAkgLqalHqOgAAEEZzmNSgQ9Wn8hpU+EXrVGldKoXPSC5arHluqiQ++eSTLvABAKqGyhUAAHuhSpEqUxpC5yetW6UKkUKbhuZpKJ9o2GUkqUOjFosmWAFA9VC5AgAgQhSu1LVPTTY0pLFv375uqKCGEAIAYg/hCgAAAAB8wLBAAAAAAPAB4QoAAAAAfEC4AgAAAAAfEK4AAAAAwAeEKwAAAADwAeEKAAAAAHxAuAIAAAAAHxCuAAAAAMD23f8DnkWzTEM8esoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "ax = obspy.taup.plot_travel_times(source_depth=0, phase_list=[\"PKP\"],\n", + " ax=ax, fig=fig, verbose=True, show=False, legend=False,\n", + " max_degrees=153, npoints=500)\n", + "\n", + "ax.errorbar(pkp_dists, pkp_times/60, yerr=pkp_error/60, fmt='r.')\n", + "ax.set_title(\"PKPbc calculated travel times and data\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "prem4derg", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.11" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/PREM_velocity_example.ipynb b/notebooks/PREM_velocity_example.ipynb new file mode 100644 index 0000000..e75faa3 --- /dev/null +++ b/notebooks/PREM_velocity_example.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from prem4derg import OneDModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## PREM and sesimic wave velocities\n", + "\n", + "P- and S-wave velocities are parameterised in PREM in a similar way to density. For example\n", + "$V_P$ can be written:\n", + "\n", + "$$\n", + "V_P(r) = \\left\\{\n", + "\\begin{array}{ll}\n", + " p_{0,0} + p_{0,1}r + p_{0,2}r^2 + p_{0,3}r^3 & r\\leq 1221.5 \\; \\mathrm{km} \\\\\n", + " p_{1,0} + p_{1,1}r + p_{1,2}r^2 + p_{1,3}r^3 & 1221.5\\leq r\\leq 3480.0 \\; \\mathrm{km}\\\\\n", + " \\vdots & \\vdots \\\\\n", + " p_{12,0} + p_{12,1}r + p_{12,2}r^2 + p_{12,3}r^3 & 6368.0\\leq r\\leq 6371.0 \\; \\mathrm{km} \\\\\n", + "\\end{array} \n", + "\\right.\n", + "$$\n", + "\n", + "with $V_S$ written in the same way. However, PREM is both anisotropic (in the upper mantle, for\n", + "$6151.0\\leq r\\leq 6346.6 \\; \\mathrm{km}$) and anelastic (at all depths). We will ignore the anisotropy\n", + "(although adding that may be an interesting thing to do) but we do need to consider anelasticity.\n", + "\n", + "A single value is applied to the bulk, $Q_{\\kappa}$ and shear, $Q_{\\mu}$, quality factor for each layer. This\n", + "is the inverse of the dissipation (e.g. $q_{\\kappa} = Q^{-1}_{\\kappa}$) and can be used to calculate the\n", + "seismic velocities at periods other than 1 s (which is the reference period used in PREM). For a period $T$, \n", + "velocities are given by:\n", + "\n", + "$$V_S(r,T) = V_S(r,1)\\left(1-\\frac{\\ln T}{\\pi} q_{\\mu}(r)\\right)$$\n", + "\n", + "and \n", + "\n", + "$$V_P(r,T) = V_P(r,1)\\left(1-\\frac{\\ln T}{\\pi}\\left[\n", + " \\left(1 - E\\right)q_{\\kappa}(r) \n", + " + Eq_{\\mu}(r)\\right]\\right)$$\n", + " \n", + "where $E = \\frac{4}{3}\\left(\\frac{V_S(r,1)}{V_P(r,1)}\\right)^2$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# This implements the PREM density model using \n", + "\n", + "r_earth = 6371 # km\n", + "\n", + "# Note use of isotropic approxmation from footnote in paper\n", + "vp_params = np.array([[11.2622, 0.0000, -6.3640, 0.0000],\n", + " [11.0487, -4.0362, 4.8023, -13.5732],\n", + " [15.3891, -5.3181, 5.5242, -2.5514],\n", + " [24.9520, -40.4673, 51.4832, -26.6419],\n", + " [29.2766, -23.6027, 5.5242, -2.5514],\n", + " [19.0957, -9.8672, 0.0000, 0.0000],\n", + " [39.7027, -32.6166, 0.0000, 0.0000],\n", + " [20.3926, -12.2569, 0.0000, 0.0000],\n", + " [ 4.1875, 3.9382, 0.0000, 0.0000],\n", + " [ 4.1875, 3.9382, 0.0000, 0.0000],\n", + " [ 6.8000, 0.0000, 0.0000, 0.0000],\n", + " [ 5.8000, 0.0000, 0.0000, 0.0000]])\n", + "\n", + "\n", + "vs_params = np.array([[ 3.6678, 0.0000, -4.4475, 0.0000],\n", + " [ 0.0000, 0.0000, 0.0000, 0.0000],\n", + " [ 6.9254, 1.4672, -2.0834, 0.9783],\n", + " [11.1671, -13.7818, 17.4575, -9.2777],\n", + " [22.3459, -17.2473, -2.0834, 0.9783],\n", + " [ 9.9839, -4.9324, 0.0000, 0.0000],\n", + " [22.3512, -18.5856, 0.0000, 0.0000],\n", + " [ 8.9496, -4.4597, 0.0000, 0.0000],\n", + " [ 2.1519, 2.3481, 0.0000, 0.0000],\n", + " [ 2.1519, 2.3481, 0.0000, 0.0000],\n", + " [ 3.9000, 0.0000, 0.0000, 0.0000],\n", + " [ 3.2000, 0.0000, 0.0000, 0.0000]])\n", + "\n", + "density_params = np.array(\n", + " [\n", + " [13.0885, 0.0000, -8.8381, 0.0000],\n", + " [12.5815, -1.2638, -3.6426, -5.5281],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [7.9565, -6.4761, 5.5283, -3.0807],\n", + " [5.3197, -1.4836, 0.0000, 0.0000],\n", + " [11.2494, -8.0298, 0.0000, 0.0000],\n", + " [7.1089, -3.8045, 0.00002, 0.0000],\n", + " [2.6910, 0.6924, 0.0000, 0.0000],\n", + " [2.6910, 0.6924, 0.0000, 0.0000],\n", + " [2.9000, 0.0000, 0.0000, 0.0000],\n", + " [2.6000, 0.0000, 0.0000, 0.0000],\n", + " ]\n", + ")\n", + "density_params[:, 0] = density_params[:, 0] * 1000.0\n", + "density_params[:, 1] = (density_params[:, 1] * 1000.0) / r_earth\n", + "density_params[:, 2] = (density_params[:, 2] * 1000.0) / (r_earth**2)\n", + "density_params[:, 3] = (density_params[:, 3] * 1000.0) / (r_earth**3)\n", + "\n", + "q_kappa_params = np.array([1327.7, 57823.0, 57823.0, 57823.0, 57823.0,\n", + " 57823.0, 57823.0, 57823.0, 57823.0, 57823.0,\n", + " 57823.0, 57823.0])\n", + "\n", + "q_mu_params = np.array([84.6, np.inf, 312.0, 312.0, 312.0, 143.0, 143.0,\n", + " 143.0, 80.0, 600.0, 600.0, 600.0])\n", + " \n", + "# All 14 discontiuities in PREM in km.\n", + "breakpoints = np.array([0.0, 1221.5, 3480.0, 3630.0, 5600.0, 5701.0, 5771.0,\n", + " 5971.0, 6151.0, 6291.0, 6346.6, 6356.0, 6371.0])\n", + "\n", + "# Turn range of polynomials from 0 - 1 to 0 - r_earth\n", + "vp_params[:,1] = vp_params[:,1] / r_earth \n", + "vp_params[:,2] = vp_params[:,2] / (r_earth**2)\n", + "vp_params[:,3] = vp_params[:,3] / (r_earth**3)\n", + "# Turn range of polynomials from 0 - 1 to 0 - r_earth\n", + "vs_params[:,1] = vs_params[:,1] / r_earth \n", + "vs_params[:,2] = vs_params[:,2] / (r_earth**2)\n", + "vs_params[:,3] = vs_params[:,3] / (r_earth**3)\n", + " \n", + "prem = OneDModel(breakpoints=breakpoints, r_earth=r_earth, vp_params=vp_params,\n", + " vs_params=vs_params, q_mu_params=q_mu_params,\n", + " q_kappa_params=q_kappa_params, density_params=density_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAI1CAYAAAAD7rFOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkspJREFUeJzt3QeYE9X6x/Hf7rKUBaT3jqIoShMrFrwiiBW7iAroX6+9c0Xs3mvvhWu9igXFitgVC6CIgCIgoPReReoWli35P+8MyWZhwS1JZpJ8P89zzKRsMmQ8J/POOec9KYFAICAAAAAAgCPVvQEAAAAAECQBAAAAwA7oSQIAAACAMARJAAAAABCGIAkAAAAAwhAkAQAAAEAYgiQAAAAACEOQBAAAAABhCJIAAAAAIAxBEgAg4SxevFgpKSmaNm1amf/2m2++0b777quCggLn/l133aXOnTtHfB8PPfRQvf/++xF/XwBAxREkAQAiauDAgU6AYiU9PV2NGjXScccdp5dfflmFhYVR+by+fftG7P3+9a9/6bbbblNaWpqiyT5jyJAhUflOAAAVQ5AEAIi4448/XqtWrXJ6dD7//HMdc8wxuvbaa3XSSScpPz/ft9/4Dz/8oAULFuiMM86I+mf16dNHW7Zscb4fAIC/ECQBACKuSpUqaty4sZo1a6auXbtq6NChGj16tBMQDB8+PPS6jRs36v/+7//UoEED7bHHHvrHP/6h6dOnh54PDnV7/vnn1aJFC2VkZOjss8/Wpk2bQs+/+uqrznsHe6/Gjh0b+vuFCxc6AZr9XadOnTRx4sTd7vfIkSOdXq+qVavu8jUWRLVt21ZXXXWVAoGA8++pXbu2PvnkE+2zzz7OZ5155pnKzs529q1169aqU6eOrrnmmtAQPmM9VSeccILzmQAAfyFIAgDEhAVAFqh88MEHocfOOussrV271gmefvnlFyegOvbYY7V+/frQa+bPn6933nlHH3/8sb744gv9+uuvuuKKK5znbrrpJidoCvZcWTn88MNDf3vrrbc6r7G5SXvvvbf69eu3256s77//Xt26ddvl8zNmzNARRxyh8847T88884wTlBkLiJ566ikn4LF9tEDttNNO02effeaU119/3Qn03nvvvWLvd/DBBzufCQDwl0pe7wAAIHm0b9/eCTSCQ9smT57sBEnW82QeeeQRffjhh04wcemllzqPbd26Va+99prTK2WefvppnXjiiXr00Ued3qpq1aopNzfX2d6RBUj2WnP33XerQ4cOTtBl+1GSJUuWqGnTpiU+9+OPPzrDBS3wuvHGG4s9l5eXp2effVZ77rmnc996kiwwWrNmjWrUqKH99tvP6dH67rvvdM4554T+zj5r2bJlzryk1FSuWwKAX9AiAwBixoanBXtfbFhdZmam6tWr5wQSwbJo0SJnSFtQy5YtQwGSOeyww5ygYs6cOX/7eR07dgxtN2nSxLm1oGxXcnJyShxqt3TpUmcY3h133LFTgGRsiF0wQDKWrMKG2dm/J/yxHT/bAjz7t1iQBwDwD3qSAAAx8/vvv6tNmzbOtgVIFriEzyEKsjk+kWDZ9YKCwdnussnVr19fGzZs2OlxmzNlvT5vvfWWLrroImf+1K4+J/hZJT2242fbsMLq1as7wRIAwD/oSQIAxMS3336r3377LZQ5zuYfrV69WpUqVdJee+1VrFiwEt6Ls3LlytD9n376yRmaZkkSTOXKlYslRKiILl26aPbs2Ts9bkGMJWawXqbevXs7WekiYebMmc5nAgD8hSAJABBxNnzMAqAVK1Zo6tSpuu+++3Tqqac6c3ouvPBC5zU9e/Z0hs7ZGkdfffWVky7c5v3YnJ+ff/459F4WmAwYMMAZnmdJDixLnCVrCM5BsmFtNs/Jht+tW7fOmR9UXhYA2VypkliPz6effuoEdZa+23rCKsr+Pb169arw+wAAIosgCQAQcZbhzYbSWQBjmecsYYFlf7NU3cFFWm34mWV+O+qoozRo0CAn+9y5557rJE+w+TtB1rN0+umnO+myLaCweUb//e9/Q89fcsklTq+SZaWzYXETJkwo9373799fs2bN2uV8J5tjZJn4bG6VJYTIysoq92dZAGlBof3bAQD+khKwlh4AAB+ydZAs252l8I6VwYMHa/PmzU7K7mi6+eabnflPL7zwQlQ/BwBQdvQkAQAQxob7tWrVarcJHiKhYcOG+ve//813DwA+RHY7AAB2yKw3dOjQqH8nJaUSBwD4A8PtAAAAACAMw+0AAAAAIAxBEgAAAACEIUgCAAAAgDAESQnK1t84//zzVa9ePWel+AMOOKDY4oyW+f2OO+5w1jGx521Rx3nz5hV7j/Xr1ztrhuyxxx7OROaLL754p8UTbQHHI4880lnssUWLFnrooYdi9m9MxFTHtm5MeGnfvn3o+a1bt+rKK690jqmt1XLGGWdozZo1xd5j6dKlztotGRkZTuYsS2Wcn59f7DVjx45V165dVaVKFWf9meHDh8fs35gsHnjgAef4XXfddaHHOH7+9OyzzzrrLlk7Z8UWt7V1kII4bv50//3366CDDlLNmjWdts4WJN5xbSuOnT+NHz9eJ598spo2beq0k5biPxznJ4ln2LBhzpp5dq54yCGHaPLkyYoLtk4SEsv69esDrVq1CgwcODAwadKkwMKFCwNffvllYP78+aHXPPDAA4FatWoFPvzww8D06dMDp5xySqBNmzaBnJyc0GuOP/74QKdOnQI//fRT4Pvvvw/stddegX79+oWe37RpU6BRo0aB/v37B2bOnBl46623AtWqVQs8//zzMf83J4I777wz0KFDh8CqVatC5c8//ww9f9lllwVatGgR+OabbwI///xz4NBDDw0cfvjhoefz8/MD+++/f6Bnz56BX3/9NfDZZ58F6tevH7jllltCr7H/FzIyMgI33HBDYPbs2YGnn346kJaWFvjiiy9i/u9NVJMnTw60bt060LFjx8C1114bepzj508fffRR4NNPPw3MnTs3MGfOnMDQoUMD6enpTptmOG7+1Lt378Arr7ziHKdp06YFTjjhhEDLli0DmZmZoddw7PzJfptuvfXWwAcffGDrdAZGjRpV7HnOTxLLyJEjA5UrVw68/PLLgVmzZgUuueSSQO3atQNr1qwJ+B1BUgK6+eabA0ccccQuny8sLAw0btw48PDDD4ce27hxY6BKlSpOoGPsBNoarylTpoRe8/nnnwdSUlICK1ascO7/97//DdSpUyeQm5tb7LP32WefKP3LEj9IsqC0JHZ87MTt3XffDT32+++/O8do4sSJoR+e1NTUwOrVq0OvefbZZwN77LFH6Bj961//cgKxcOecc45zwoGK27JlS6Bdu3aBMWPGBI4++uhQkMTxiy/Wrr300ksctziydu1apz0cN26cc586Fx92DJI4P0k8Bx98cODKK68M3S8oKAg0bdo0cP/99wf8juF2Ceijjz5St27ddNZZZznDELp06aIXX3wx9PyiRYu0evVqZ4hdUK1atZwu0IkTJzr37daG2Nn7BNnrU1NTNWnSpNBrjjrqKFWuXDn0mt69eztDHmwVeZSdDXm0IQht27Z1hjra8Dnzyy+/KC8vr9gxs6F4LVu2LHbMbFhlo0aNih2PzZs3a9asWaHXhL9H8DXB90DF2HBIG+6443fM8YsPBQUFGjlypLKyspxhdxy3+LFp0ybntm7dus4txy4+cX6SWLZt2+bUxfDfRDuPtPvxcN5BkJSAFi5c6Iyzb9eunb788ktdfvnluuaaa/Tqq686z1uAZMJPpoP3g8/ZrQVY4SpVquT8AIW/pqT3CP8MlJ4FqTY/6IsvvnCOn/1Y2HyvLVu2ON+nBaMWuO7umP3d8djVayyQysnJ4XBVgJ1cT5061ZkrsSOOn7/99ttvzjw/m6d32WWXadSoUdpvv/04bnGisLDQmf/XvXt37b///s5j1Ln4xPlJYlm3bp1z8Wl355t+VsnrHUB0fjCsB+i+++5z7ltP0syZM/Xcc89pwIABfOU+1adPn9C2TSS3oKlVq1Z65513nOQa8K9ly5bp2muv1ZgxY5yJqYgv++yzj6ZNm+b0Rrz33ntOOzlu3Divdwtl6MG137gffviB7wxAxNCTlIAsY51dBQ237777hoZuNW7c2LndMTOa3Q8+Z7dr164t9rxlSbOMd+GvKek9wj8D5We9Rnvvvbfmz5/vfJ/Wbb1x48bdHrO/Ox67eo1l9SIQKz8bTmD1xbIGWo+rFTvJfuqpp5xtu2rG8fMv66W1TI8HHnig0xPYqVMnPfnkk9S7OHDVVVfpk08+0XfffafmzZuHHqfNjE+cnySW+vXrKy0tbbfnm35GkJSAbMjBjqlQ586d6/RKmDZt2jj/c37zzTeh5224lc01snH4xm7thNxO/oK+/fZbp5fKejiCr7FUnjZXJsiupNtV2Tp16kT935noLN36ggULnKDXTt7S09OLHTM7xhb4hh8zGzYUHtza8bAAKBg022vC3yP4muB7oHyOPfZY57u33ohgsd5cm1cW3Ob4xQ9r53Jzc6l3PmZz/i1AsqGR9ttkv2vhaDPjE+cniXcB6sADDyx23mHtq92Pi/MOrzNHIDopiCtVqhS49957A/PmzQuMGDHCSfv8xhtvFEuxaSkYR48eHZgxY0bg1FNPLTEFeJcuXZw04j/88IOTtSs8BbhlD7IU4BdccIGThtXSPNrnkAK8fG688cbA2LFjA4sWLQpMmDDBSeVtKbwta1Mwna2luP3222+dFOCHHXaYU3ZMAd6rVy8nJa6l9W7QoEGJKcAHDx7sZMcbNmwYKcCjJDy7HcfPv4YMGeJkRLN6Z22h3bcsnl999ZXzPPXOny6//HJnGQtrM8OXTcjOzg69hmPn3yygtkyFFTsNfeyxx5ztJUuWOM9zfpJYRo4c6WRPHj58uJM5+dJLL3XOP8Mz8foVQVKC+vjjj50TZvsfs3379oEXXnih2POWZvP22293ghx7zbHHHuusERLur7/+coKiGjVqOGmkBw0a5DRu4WyNJUs3bu/RrFkzp3FD+Vgq7iZNmjjrCdh3affD17ayAPaKK65w0hNboHPaaac5JwXhFi9eHOjTp4+zXpUFWBZ45eXlFXvNd999F+jcubPzOW3btnXWGkH0gySOnz9ddNFFzrpyVh/sooK1hcEAyXDc/MlOrksq4e0Zx86f7DeopGM3YMAA53nOTxLP008/7VzktXbWUoLb+pvxIMX+43VvFgAAAAD4BXOSAAAAACAMQRIAAAAAhCFIAgAAAIAwBEkAAAAAEIYgCQAAAADCECQBAAAAQBiCJBRjq8zfddddzi3iC8cuPnHc4hfHLn5x7OITxy1+5cbh+SXrJKGYzZs3q1atWtq0aZP22GMPvp04wrGLTxy3+MWxi18cu/jEcYtfm+Pw/JKeJAAAAAAIQ5AEAAAAAGEqKcEVFBRo7ty5qlGjhlJSUrzeHd/bsmWLc7tixQqnaxTxg2MXnzhu8YtjF784dvGJ4xa/tvjo/DIQCCgzM1N777230tLSkndO0u+//6799tvP690AAAAA4BOzZ8/Wvvvum7w9SU2aNAl9ETVr1vR6d4Cd5Ofn6+uvv3a2e/bsqUqVEr5aAklZz0eMGOFs9+/fv1z1nLYC8Bcv6iTtQGR6tawDJRgjJG1PUjxm00ByycrKcoaDGuv+rV69ute7BMCH9Zy2AvAXL+ok7UDsYgMuWQMeS01N1eGHHx7aBgDaCsD/vPj95pwhduhJAgAgyrj6CwDx1ZPEZWsAAAAACMNwOwAAACBBlr7Jy8tTMktLS3OSaFR06R+CJMBjOTk5Ouqoo5zt8ePHq1q1al7vEgAfoq0A/MWLOrm7z7TkEcuXL3fWAUp2GRkZTva6ypUrx2eQZAf34Ycf1i+//KJVq1Zp1KhR6tu3b4mvveyyy/T888/r8ccf13XXXRfzfQWipbCwUD///HNoGwBoKwD/8+L3e1efaT1IFiBZcNCgQYMK96LEKwsQt23bpj///FOLFi1Su3btyp1Uo5LXE1k7deqkiy66SKeffvouX2fB008//aSmTZvGdP+AWKhSpYo++eST0DaAxBOJek5bAfiLF3VyV59pQ+wsQLAAKdlHpFSrVk3p6elasmSJEzBVrVo1/oKkPn36OGV3VqxYoauvvlpffvmlTjzxxJjtGxArNm6W/7eBxBaJek5bAfiLF3Xy7z4zWXuQdhSJlOy+npNk3YgXXHCBBg8erA4dOpTqb3Jzc50SnuYPAAAAAErL1ynAH3zwQSdivuaaa0r9N/fff7+T+zxYWrRoEdV9BCrKxhGPGTPGKbYNIPHYUJjhw4c7pbyZp2grAH/xok7SDsSOb3uSLJnDk08+qalTp5ap6/CWW27RDTfcUKwniUAJfrZ161b16tUrlJmmevXqXu8SgAizcfGDBg1yts866yxnvHxZ0VYA/uJFnaQdiB3fBknff/+91q5dq5YtWxaLnm+88UY98cQTWrx4cYl/Z5PYmPyOeBs3awlMgtsAQFsB+J8Xv9+JdM5w8sknOz3rX3zxRYlxgKU6nz59ujp27OjJ/vk2SLK5SD179iz2WO/evZ3Hg1fjgETJwjJt2jSvdwOAz9FWAP7iRZ1MpHbg4osv1hlnnOGkLm/evHmx51555RV169bNswDJ8yDJuibnz58fum/5zO3A161b1+lBqlevXrHX2/CExo0ba5999vFgbwEAAAD/s/Vks7O9+eyMDMuy9/evO+mkk5yU5TZX87bbbisWH7z77rvOWqpjx47VMccc46Q9tyk1c+fOVefOnfXSSy9p//33j+q/w9N+OlsMq0uXLk4xNpfItu+44w4vdwsAAACIWxYg1ajhTckuZXBmydkuvPBCJ0iyNZ6CLECyKTb9+vULPWaZrh999FFNmTLFCayCQ/USNkjq0aOH86XsWOzLKonNQ7ruuutivp9ANOXk5Dh1wYptAwBtBeB/Xvx+J9o5w0UXXaQFCxZo3LhxxYba2TA8y1IddOedd+q4447TAQccoFdffVVr1qzRqFGjknNOEpAsbD2wYONg2wAS25Qpkg2/txHldg5Q2rnXtBWAv3hRJ0v7mTbkLTMzJrtU4meXVvv27XX44Yfr5ZdfdgI/m4ZjSRvuueeeYq877LDDQts2Lcem3vz++++KJoIkwGOWjfGdd94JbQNIPGlpVVSz5jvaskU65piiem4BUt26bsAUvN1VqVWrip577h0nsKKtAJLz97u0n2lzguJlRZGLL75YV199tYYNG+b0Iu255546+uijvd4tgiTAazYm19ZNAZC4CgoqacsWt57Xr29rnbhXee1C8Lp1binddc2znCDps8+kM8+UbImWqlWjvfcA/PL7nYjnDGeffbauvfZavfnmm3rttdd0+eWX77RG6k8//RRaFmjDhg1OAod99903qvtFTxIAADG0ZIk7HCU3V1q/Xvrrr5JLSc/ZY5s2Sa+/7paaNW2tEVug1pbJsPTAHEoA8aVGjRo655xznOx1mzdv1sCBA3d6jQ2/s6zXjRo10q233qr69eurb9++Ud0vgiTAY5bBxa6QmEMPPVRpaWle7xKACMvPz5fkTjLOzz/N+fm1kTJNmriltG3Fjz/+pJkzpT/+OFQffJCm5culN990i2WVOukkt4epT5+yzQsAEB+/34l6znDxxRfrf//7n0444QQ1bdp0p+cfeOABp7dp3rx5Tgrwjz/+WJUrV47qPqUEwnPuJSCLSC07xqZNm7THHnt4vTvATrKyspyrKMG1AarHyyBiAKW2dm2WGjVy6/natZlq0KB6hduKatWqa/JkS5crvfeetHRp0WstQDrxRLeH6YQT4mduAhBPvPj93tVnbt261VlvtE2bNqqaQGNwx25fJ8mG2NWuXbvUf7e776O0sQE9SYDHbNztXnvtFdoGgNK0FZb04dBD3fLII27WvGDAtHixu23FhuBZoGQ9TNbTtP38CkAc/n5zzhA7BEmAxzIyMpzuYwAob1th52cHH+yWhx6SfvnFDZYsSFq4UHr/fbfYBdXjj3d7mCxgYoAFEF+/35wzxI6ni8kCAIDIsoCpWzcbwy/Nny9NnSrdcotkF7wtq96HH0r9+0sNG0qnnCK9+qqbEAIA/KZHjx6ymUFlGWoXKQRJAAAkcMDUpYt0333S3LnStGnSbbdJ++zjZtf7+GPJEklZwHTccdKzz0qrVnm91wDgPYIkwGM2ufDEE090im0DQDTaCguYOnWS/v1vyRaqnzFDuusuqWNHy5glff21dMUVUrNmUvfu0mOPSYsWcSwAP/1+c84QO2S3AzxGdjsg8UUju10kM2nZsLxRo6QPPrBFG4s/Zz1Rp5/uFlu7kfwyQPTr5K4kW3a78iK7HZAALM//K6+8EtoGkHjcul2xeh7NtsLmKw0e7JYVK9x5S5boYdw46ddf3XL77e4wvWDAdOCBBExIbl78fnPOEDv0JAEAEGWZmVLNmu52Vlb8LPS6bp300UduD9OYMdK2bUXPtWwpnXaaGzDZ8LwEWdMSiEv0JEW+J4k5SQAAoET160sXXSR98on055/SW2+56cNthI8tXvvkk9LRR0tNm0r//Kf05ZfFAykAiFcESYDHCgoKNG3aNKfYNoDEk5+fL+lTpxQU2Hb8tRV2wfXcc6V33nEDptGjpQEDpDp1bJ6V9MIL7hpMlinvggvcOU7Z2THfTSBmvKiTXrcDyYThdoDHSNwAJL41a7LUuLE72frPPzNVv76/EjdURF6eNHasOyTPAqM1a4qeq1ZN6tPHHZJ34omSB0udAFFD4oaKOfnkk5WXl6cvvvhip+e+//57HXXUUZo+fbo6WgrOMmK4HZAAUlJS1LRpU6fYNgDEU1uRnl60xpIlffjhB+mGG6TWraWcHDd4Ov98t4fJAqYXX3R7noB450Wd9Gs7UB4XX3yxxowZo+XLl+/0nCXE6NatW7kCpEihJwkAgCiLRE9SvAkE3MVrLUiyTHm2NlNQaqp0xBFuD5Mlf7AkEADKb6eeE6uAXo13zcgoVepLG4bcvHlzXXXVVbrNVrneznrKmzRpoocffljnnHOO8/xXX33lPG6vHzp0qAYNGrTb9yYFOAAA8CU7R7I1lqzYArZ//FG0FtPPP0vjx7vluuukbt2KUotbmnEAFWQB0vbhuZ6k86z+9xeCKlWqpAsvvFDDhw/XrbfeGuoZe/fdd535Vv369XMenz17tj7//HPVr19f8+fPV451UccAiRsAAEDUtW8v3XKLNGWKtHix9MQT0lFHucGUBU1Dh7qv6dDBXZPJ1mayi+EAEtdFF12kBQsWaJwtyhY21O6MM85w0nQvXbpUXbp0cYbetW7dWj179nTmMsUCw+0Aj1mX8AWWCkrS66+/zkrZQAKKxHC7RG0rLNFDcC2mb75xE0EE2bymYA/TYYe5w/QAv/CiTu7qM+NxuF1Q9+7dteeee+q1115zeoratWun7777Tj169HB6kCxg2nvvvdWrVy/17dtXhx9+uP5OJIbbESQBHvNrxioAkZPI2e0iaeNG6dNP3YDp88/dxA9BjRtLffu6AVOPHm7CCMBLZLeLjJdffllXX321Vq9erQceeEBvv/225s2bFxp+9+eff+qzzz5zkjy8//77uvLKK/XII4/s9j2ZkwQkgMqVK+uZZ54JbQNIPG7drlg9T4a2wlKE9+/vFrsIbovTWsD08cfS6tXSc8+5xdZmshE3FjD16uWmGgdizYs6mYjtwNlnn61rr71Wb775ptObdPnllxfL3NegQQMNGDDAKUceeaQGDx78t0FSJNCTBABAlG3Z4i7Gauzkn5P6stm2TfruOzdg+vDD4inEbWTPCScUrcW0m9EzQMLaXc9JPPi///s/ffDBB85QOJuHZCnOzR133KEDDzxQHTp0UG5uroYMGaK1a9dq0qRJu30/1kkCAAAJzy6Y9+4tPf+8tHJlUVY8Sx1uQed770nnnWdXnN1A6X//syE6Xu81gLKsmbRhwwb17t07FCAFe8tuueUWZ70kW1w2LS1NI0eOVCzQkwR4rLCw0MnsYmziYiozk4GEs3FjgerU+d7Z3rLlSNWokVbm96Ct2JnNTZ86tWgtpjlzip6zptSy5wXXYmrevCJHEPBHndzVZ8Z7T1KkkbihFEqbwQLwSjJMxgaS3erVWWrSxK3n69Zlql49EjdEgy1YawGTFQuewh18cFGmvHbtovLxSDIkbvAvhtsBCcICeSsAQFtRfvvuK916q/TLL9KiRdJjj0lHHOFmI548WRoyRNp7b+mAA6Q775SmT2ctJsTf7zfnDLHBcDsAAOKgJwkV+f6l0aPdHqZvv5Xy84uea9u2qIfpkENYiwnxieF2xdGTBAAA8DdsjaV//tNNKW6Z8V57zV1zyaZuLFwoWTZhW5/S5i1deeXOi9oCSD6sXQ0AAJKGrbF0wQXSqFHWq1eUGc+mLa9aJf33v1LPnm5gdckl0ldfETAhfgQsmwkUie+BIAnwmOX9HzhwoFNsGwBoK2LD8uSccYY0YoTbw/TZZ7Zei1S/vrR+vfTSS27q8SZNCJjgj9/vXX2mpcY222xRMSjb1gaQlJ6eXu5vgzlJgMfIbgckPrLbxRebszRunPTuu+48pvA1l+rVc1OKn322dMwxUqVKXu4pvOSn7HbWc2KLsObl5TnrDCXrciKBQMAJkGzB2dq1a6uJXeEoZ+ZrqjbgMbvK8dBDD4W2ASQet25XrJ7TVsSOBT7HHuuWZ57ZOWCyHiYrBEzJzYs6uavPTElJcQICWytpyZIlSna1a9dWYxszWwH0JAEAEGVbtrhzXkxOjpswAPHdw2SL19qcpiALmCxD3lln0cME79his8k+5C49PT00/LAkpe1JIkgCACDKNm+2tU3cbYKkxA+YbE6TDckjYAL8hyCpjF8E4OVVn1WWUkk2ObhJ0o4jBhLZhg0Fqlt3qrOdmdlV1avv+irnrtBW+D9geucdd0heSQHTuedKRx9tE+y93FNEkhd1knag4giSyvhFAF4hcQOQ+FatylLTphVbTJa2In4CprFji+YwhQdMNofcEj706ycdfLDNI/FyT5FIiRsQ+diAS9aAD1SqVMkpABJfRU6MaSv8z5pyW2fp+efddZfGjHHTitv6THb/ySelQw+V9tpLuvVWaeZMr/cYFeFFnaQdiA3mJAEAEMOepL/+ylTdulz9TTY2l/7LL6W33pJGj7Z1XIqe239/t3fJSps2Xu4lkPg205MEAADgD5UrSyefLL35prtwrQVLp5ximbjc3iTrVWrb1u1lst6m7VNdAHiE4XYAAAAxZNNILJGD9SitWeOuuWRrMtm8/0mTpOuuk5o3dx+z5zZs4PAAsUaQBHgsNzdXV155pVNsGwBoK5KHzVW6+GLp66+lFSuK5iwVFkrffitdconUqJHUt6+bapyfieT+/eacIXaYkwR4jEw1QOKLxJwk2orksmiRNHKkOyzvt9+KHq9d282Qd+GF0uGHkyHPS2S3S+w5SaTTAnywMvSdd94Z2gaQeNy6XbF6TluRXCyBwy23uMXmLL3+ujRihNvb9MILbrE5TOef75Z27bze4+TjRZ2kHYgdepIAAIiyzZulWrXc7a1bpSpV+MpRdgUF7hpMFjDZ0LvMzKLnbIjeBRdI55wj1avHtwvsCtntAADwiUDA6z1AIkhLc5M5DB8urV7t9iwdf7yb8OGnn6Qrr3QXrGX+ElBxJG4APBYIBLRx40an2DaAxFNos/A1yynudtnRVmDHDHnnnSd9/rk7BO+xx6TOnaW8PDdr3plnSo0bS//8pxtA8fMSeV7USdqB2GG4HeAxJmMDiW/lyiw1a0biBkTfjvOXgvbdVxo0yB2SZ8ETKo7EDfEpLobbjR8/XieffLKaNm2qlJQUffjhh6Hn8vLydPPNN+uAAw5Q9erVnddceOGFWrlypZe7DAAA4Fv77y89+KC0ZImbVtyComrVpN9/l/71L3f9JVvE1k65rNcJgA+DJIvAO3XqpGHDhu30XHZ2tqZOnarbb7/duf3ggw80Z84cnWI1G0ggGRkZ2rZtm1NsGwBoKxCp+UuvvebOX7JseIcd5iZ/+Phj6bTTpGbNpBtvdHufEB+/35wzJOFwO+tJGjVqlPrabMNdmDJlig4++GAtWbJELVu2jGiXGgAAsRhut359purUKfs6SUAkWI+SJX4IBk9BBx3kDsfr189diwlIVHEx3K6s7B9jwVTt3dReW4nY/vHhBQAAAO7cJBuOt2xZUY9SpUp2IVq64gp3vpIlhPjmG0s4wjeG5BU3QdLWrVudOUr9+vXbbdR3//33O9FhsLRo0SKm+wmUlXXTDx482Cm2DQC0FYg2C4xOOkn64APr6XSz4x1wgF1slt56S+rZU9pnH+mhh6S1azkefqmTnDPETlwMt7MkDmeccYaWL1+usWPH7jZIsp4kK0HWk2SBEsPt4FdktwMSXySG29FWINrsjPCXX6SXX3az4wUH46Snu2svXXqp9I9/uOsygex2iT7crpJ8zgKks88+25mH9O233/7tvKIqVao4BYgX6enpuummm0LbABKPW7crVs9pKxBtKSlSt25uefhh6e233YQPkyZJ777rlj33lC65RBo4UGrUKLmPiRd1knYgdnzdkxQMkObNm6fvvvtODRo0KPP7krgBAOC1TZuKJsPbYIfKlb3eI6D0pk93g6U33ijqXbLhesHeJcuiR+8S4kVcJG7IzMzUtGnTnGIWLVrkbC9dutQJkM4880z9/PPPGjFihAoKCrR69WqnMG8DABBP/HE5EiifTp0kW63F5i7ZULxDD5Xy86X33pN69ZLatZMeeIC5S0gsnvYk2fyiY445ZqfHBwwYoLvuuktt2rQp8e+sV6lHjx6l+gx6kuB3VgXz7dfGuTJXyelVBZBY1q8vVL16S53tnJyWqlq17NcoaSvgt96lF1+UXn+9qHfJekjPOku68ko3kEr0nzMv6iTtQMWVNjbwzXC7aCFIgt8xGRtIfCtWZKl5cxI3IPFkZblzlZ59Vpo8uejxrl3dYMnWXapWTQnJi99vzhmSZLgdAAAA4pfFBZbEwZI7WJA0YIAl0ZKmTpUuvlhq3lwaPFhauNDrPQXKhiAJ8FhGRoY2bNjgFNsGANoKxKODDpKGD5eWL3cXrG3VyoaaSo88Iu21l7su0+efJ84itV78fnPOEDsMtwMAIA6G2wHxpqBA+uwzN+nDl18WPW5pxC+/3O1pCmZ9BGKF4XYAAPhQok9mB4LS0qSTT5a++EKaM0e67jqpVi1pwQLJlheyoXhXXSXNm8d3Bv9huB3gMUtpb9kcrZDeHgBtBRLR3ntLjz9uvarumkv77+8mfbBepn32kU45xbIXx1e6fC9+vzlniB2G2wEeI1MNkFzD7TZsyFTt2mUfbkdbgURiwdC337qB06efFl+TyXqcLCueJYDwM7LbJfZwu0ox3SsAO7G1Fa644orQNoDE49btitVz2gok2rDTY491y9y50pNPukkfbP2lQYOkm2+W7KfR5i41bChf8qJO0g7EDj1JAABE2caNUp067raNyklP5ysHdmSZ8F56SXr6aTdDXnCB2v79peuvlw44gO8MFUfiBgAAAMSNunWlf/3LXVNp5EjpkEPciwqvvCJ17Cj16SONHRtf85YQv0jcAABAlBUW2lndn04JcIYH7Jb1tJ5zjvTTT9LEidJZZ0mpqW6WvGOOcYOn995zU4wD0UKQBPhg4md6erpTbBtA4snOzpZkEysabt8uO9oKJKNDD5XeecdNE27Tf6pWlaZMcQMny4r33HNSTo43++ZFnaQdiB2CJMAH8vPznQIAtBXAztq2ddOFL10q3XGHOzTP1luyxA6tWkn/+Y87pykZfr85Z4gNgiTAY9WqVdPy5cudYtsAQFsBlKxBA+nuu91g6amn3ADpzz+l22+XWrZ0EzzYc4n6+805Q+yQ3Q4AgChbvjxLLVpUbJ0kADuzThwbjvfQQ276cGPZuC+8UBoyRGrXjm8N5ctuR5AUQ3/8YZN33bUBbAKilV1t7+65tDR3UqMVuw8A8DeCJCC6LB/KmDHSgw+6i9QaO0c691xp6FCpQweOAFwESWX8ImLBFkOzLuFIsgYgGDD9XbG1BoLbtoq19QzbBMgdb0t6rKTX1KhRVOy+BXIou23btulJW0VP0rXXXqvKdqAAJGyQtHFjpmrVKntPEm0FUDqWFe/ee6VPPil67PTTpVtvlbp2jdy36EWdpB2oOIKkMn4RsbDffm6QZL1JdsXDbne3HbwfDyxYq169eOAULCU9bo/VrCnZIaldW6pVq6jYfQu6koVlqqlhX4qkzMxMVbcvB0BCiUSQRFsBlM2vv7rB0vvvFz12wgnSbbdJhx1W8W/TizpJOxC72KBSBD4LpTR7dvm+qmDgZLe2JoCVvLzSFVuEraTHc3PdlJlbt+58W9JjJd1atstgJlvbvy1b3BIJdjFmx8Ap/H7wMSuW4aZePbfYthUbjxwvKlWqpAEDBoS2ASQet25XrJ7TVgBl06WLu57SrFnS/fdLb70lffaZW/7xDzdY6tGj/CNhvKiTtAOxw5wkVIgFbBYoZWa6xQKn4PaOZcfnLKDatKl42bw5Mr1ndmEgPHAKv93xMcuUY0Mh7QIQQwYBRMOGDW57Y+xCFddDgNibP1964AHp1VfdhA/miCPc9OFHH80RSRabSdxQti8C/hDskQoPnDZu3DmYCj5u5a+/3LUR7Nbul5fNt7JgaXclGFDZLVOHAJQWQRLgH5Yi3LLhvfSSO7LG9Owp/fvf7uK1SGwESWX8IpA4PVt2MhIMmsIDqB1vw0t5Fsq2oX7B4KlxY6lJE7c0bVp8264e00MFJLe//gqofn13fPK2bRlKTyfTDeC1FSuk++6TXnzR7eE1J53kBkudO3u9d4gWgqQyfhFIbhYkWVKNtWtLVywYKy3rcQoGTSUFUbVrZ6l372ZOILVixQoSNwAJaNmyLLVsWfHEDc2aNXO2aSuAyFm8WLrnHncYno1oMVddJT3++O6HxnpRJ2kHKo7EDUAZWLtmpXXrv3+tNaDWWxUMmNasccuqVdLKlcVvrZfKkmcsWeKWXdvk/NeGGpLcDsAuWwobawwgouy3/+WX3cVn77rLTfDwzDPSggXS22+72Xj9VCdpB2KDVFpAOdKdBxNA7Lvv7l9rY51Xr3YDpvDgqXhAVU1//jnXef3ixdWcoXsAsKNq1app7ty5oW0AkbX33tKbb0pnnSX17y99/rmb2OHTT6Xmzf1RJ2kHYofsdoAPtGhh66hIEycyaRRIRJEYbgcgdqZMkU4+2R0pYkPjbWFaSymO5BlulxrTvQJQoipV3NvgWGgAAOCdgw6SfvpJ2m8/d+THkUe6PUpIHgRJgMfy8vK0ZcswScO0bdv29DoAUEJbMWzYMKfYNoDoz1WaMMFND24Jnk45RRo2zNs6STsQOwy3AzxmmWpq1HCH4XzxRaZ692YYDpBoIpXdLthWZGZmkgkTiBGLfy67zE3uYK6/Xnr4YWnr1tjXSdqBiiO7HRAn0tLSVLPmmU5mu5SUNK93B0CU6rl0prNdqVJaud/jzDPPDHs/ALGQnu4uPLvXXtLQoW5q8EWL7LHY10nagdihJwnwgQMOkGbOlL75RvrHP7zeGwCRZotYW0ZMk59vJzp8x0A8GjlSGjjQzV7brZv08cfugvKIHyRuAOIsrbghcQMAAP517rnuBU276PHzz9Ihh7jrKSHxkLgB8AGCJAAA4kP37m7mu3btpKVLpSef9HqPEA0ESYDHsrOzNWtWM0nNnG0AiSczM8tGuDvFJl6Xh7UPzZo1cwptBeAtm580YID9ZjfTSy/Frk7SDsROpRh+FoASBAIB5eWtdLYLCwN8RwB22VastAVbtm8D8FZKitXDlcrJiV2dpB2IHYIkwGNVq1ZVhw6/atYsm8xd1evdAeDjtuLXX38NbQPwllsPf1Xv3rGrk7QDsUOQBPgiBXhnZzvFRuMAwC7ais6d3bYCgPfS0y1NZWftsUfsMlbSDsQOc5IAHyVuKCjwek8AAEBpBAMjMtMmJnqSAI/l5eXpzz9HONvbtvW3a1Ne7xIAn7YVI0a4bUX//v2VbitcAvBQnqQRWrjQ6mds6iTtQOwQJAEe27Ztm+bNG7R9+yyCJAC7bCsGDXLbirPOOosgCfBYILBN0iDZVEH7/Y5FkEQ7EDsESYDHbHxx3bonaP16557XuwMgSvVcOiFsu3zvccIJFXsPAJFTqZJbrxs0iF2dpB2IHYIkwGOWqaZz50/17bfW4Hq9NwCiwc189amzXa1a+d/j00/d9wDgn3rdtattx+4zaQdig8QNgI8SNzD5EwCA+BDsPCLpUmIiSAJ8FCQtXixt3uz13gAAgL9DkJTYCJIAj2VnZ2vChHaS2um227JVq5bUsqV0/PHSDTdI//ufNHGitGmT13sKoLwyM7MkVXdKVpZtl6+taNeunVNsG4C38vOtHrbTTz/Frk7SDsQOMyAAjwUCAWVlzXe2GzUKaM0aadkyt3z5ZfHXNmsm7befWzp0KNquU8ebfQdQFtkVbivmz58f2gbgrdRUq4fzlZMTuzpJOxA7BEmAx2wS5g8//OBsH3poVafH6Pffpdmz3TJrlnu7YkVRGTOm+Hs0blw8aApu16vnzb8JQHTbCnfCOAAvVali9fAHtW1r92JTJ2kHYiclkOCXozZv3qxatWpp06ZN2mOPPbzeHaDcLHgKBk7hwZP1OO1Kw4ZFAdMBB7hl//0lqgIQW0uWZKl16xrO9ubNmapZ04beAYhn330n/eMfRb+3l1/ulkaNvN4zRCI2IEgC4pwleiip52nJkl3/TevWRUGTlY4dpb33JgU5EC0ESUDisYy0Tz8tPfpo0QXLypWl88+XrrvO/X2F/xAklfGLALySn5+vUaNGOdunnXaaKkVosaTMTOmPP9ygaeZM6bff3LJyZcmvt4Z9332LgqZgANW0qZSSEpFdApJWJIKkaLUVAMonWCfz822u0Gl66qlKmjSp6PmePd0ETJaIKVK/o7QDFUeQVMYvAvCKZbqqUcM9ecrMzFT16tEdhvPXX27QNGNGUeBk9y2oKoklhdgxcLIhezVrRnU3gYQSiSAp1m0FgLLXSctG+9hj0gcfFK19eNdd0p13RubbpB2IXWzAZSjAY6mpqTr66KND29FmyRzs47Z/pMMachueFx44WZkzR9qwQRo/3i1BdkVsr72kzp2lLl3cWytNmkR994G45NbtitXzWLcVAMpeJw87THr3XXfdQwuWbDjePfdIxx4rHXFExb9R2oHY8XRO0vjx4/Xwww/rl19+0apVq5wuy759+4aet12788479eKLL2rjxo3q3r27nn32WWeNiNKiJwkov61b3flO4YGTBVKrVpX8epusGh442a0FU5zPIdmtWyc1aOBuFxRQJ4BkMXCg9Oqr7lzg6dNJnOQHcdGTZF2GnTp10kUXXaTTTz99p+cfeughPfXUU3r11VfVpk0b3X777erdu7dmz55N+lMgBizLsAU6VsKtXes29r/+Kk2b5t5ar5Ot8WRrO4Wv72QjgmyoXnjgZMP1yGCMZMUcPyB5PPWUOxJj0SLp6qvdgAnxwTfZ7VJSUor1JNluNW3aVDfeeKNuuukm5zGL+Bo1aqThw4fr3HPPLdX70pMExEZWltvTZEFTMHCyXifrjdpRWprUvr104IFSt25u6dRJysjgaCHxe5JseCuBEpA8JkyQjjrKrftvvy2dfbbXe5TcNsdDT9LuLFq0SKtXr1ZPSw2ynf2DDjnkEE2cOHGXQVJubq5Twr8IwM9ycnJ0mA1ilpz/t6tVq6Z4ZD1Ghx7qliDL+DN3blHQFLy15BGWdc/Ka68VBU62plMwaLJiPVBVqnj2TwIiJjMzy5LvO9tZWYtVo0b1pG0rgERR2jrZvbs0dKj0n/9Il10mHX641Lx5dD8TFefbIMkCJGM9R+HsfvC5ktx///26++67o75/QKQUFhZquo1d276dSCxDsS1ka+W889zHrO96xQo3WPrlF+nnn6UpU9whfNbzZOXll93Xpqe72fQsYAr2OtlQPUtXDsSfdRX660RuK4B4VJY6eccd0ldfSZMnSwMGSGPGlG9uIu1A7Pg2SCqvW265RTdYUvqwnqQWLVp4uk/A7lStWlVfWcu5fTvR2TAju4Jm5eSTiwdOFjBZseDJAifrcZo61S1BFiDZ0Lxgb5P1XNnQPZJDINElW1sBJFKdtIt+b7zhzs399lvp8celG2+M7mciQYOkxo0bO7dr1qxRk7C8wna/s/0ftgtVqlRxChAv0tLSdNxxxymZhQdOwQSXFjgtXVoUOAXLxo1uAGUlyIYUH3KIWyxostv69T375wBRQVsBxHedtOTMTzwhXXqpO/zOZpTYRb9ofiYSMEiybHYWKH3zzTehoMh6hSZNmqTLL7/c690DEIPAqVUrt5xxRlHgtHBh0RA9K7ZtUw9t6IKVoD33LJojZUGT/RAxTA8A4KX/+z/p00+l0aPdYej2G8a0In/yNEiy1Ynnz59fLFnDtGnTVLduXbVs2VLXXXed/vOf/zjrIgVTgFvGu/C1lIB4l5+fry+358y2FPeVbCIPdhk4WfBj5Zxzgt+fNHOm9NNP0qRJ7u0ff0gLFrhlxAj3ddbBbPOagr1NVmwkLlnGEC9oK4D4r5P2m/Pii+7v1ezZ0pAh0pNPRvczEYcpwMeOHatjjjlmp8cHDBjgpPkOLib7wgsvOIvJHnHEEfrvf/+rvffeu9SfQQpw+J2tF1ajRo3QhYPqliYOFbJhg9vLZAFTMHhav37n1zVr5q6AbpmH7NaSRPB7g2hYvDhLbdq49XzLlsxyZbejrQD8pSJ18osvpD59irZ7947+Z6JssYFv1kmKFoIk+J2l8zzKFlCQLTg3nnSeUWCtnHVah/c2WUIi64UKZ787llk1GDRZr9P23yKgQpYuzVGrVm49z8oar4yMsqftpa0A/KWidfKaa6Snn7Z5+G5m1+BaatH8TIggKYggCUBJsrPdVKy2yN8PP0g//ujObQpnazfZlMhgb5OVpk35PlF2f/4pNWzobrOYLACTk+NmabVhdzaT5IMPGAIeC/QklfGLAJDcCgrcxW0tYLJiwZNl19tRmzZu0NSjh1vsPvOa8HcIkgCUxBZZP/hgKS/PnatkiR0QXQRJZfwiAGBHy5YV9TRZseEQOw5QtrTlwYDJStu2BE3YGUESgF15+GHpX/+SMjLcoMlShSN6CJLK+EUAXrHxxT1tsQRJX3/9NeOLfWzTJnc+0/jx0rhx7nA9u/q3YzKI8KDJMvHR04QlS7LVuvV+zheRlTVbGXY2VEa0FYC/RKpO2hBce5vvvnN7leyinC0+G83PTGabSdxQti8C8AqZauJXVpY0caIbMI0d6yaF2DFosjlM4UHTXnsRNCWjRYuy1LZtxTJS0VYA/hLJOmkjFzp2dBdMv/126Z57ov+ZyWpzKWMDkqsDHqtSpYpGjRoV2kb8sN8mu6C3/aKekwzCgiYLmCxwsl6nlSulN990i2nZsuhvjj22aDI/8HdoK4DErZO2bt9zz0nnnivde690/PHS4YdH9zOxe6QAB4AosaDJAqVg0GQB1I49TZ06FQVNRx7pBl5IPJHoSQKQ+C68UHr9dTcpkM1PYhBU5DHcroxfBADEYniejTX/+mu32A9gOBuDblcOLWA67jjpwANZ3DZRECQBKO3cV7t4tmSJNGCANHw431ukESSV8YsAvFJQUKDvv//e2T7yyCOVZovzICmsXSt9+60bMI0Zs3PK8Vq1pGOOkXr1code2JVFJG+QRFsB+Eu06qRdTDv6aDehwzvvSGedFf3PTCabSdxQti8C8AqTMGEstfiCBUW9TBY8bdhQ/LvZZx+pTx83YLIf0KpV+e7iBYkbgMQTzd/v225z5ybVqeMuP2HLTUT7M5PFZhI3APEhJSVF++23X2gbyckOvWW+s3LZZe7itr/+Kn31lfTFF9KPP0pz5rjliScky/pq2fKCQRPravibW7crVs9pKwB/iWadvPNO6csvpZ9/lgYOdH8LUlNpB3yduCE3N1eTJk3SkiVLlJ2drQYNGqhLly5q49NxIPQkAUiUcerWw2QB0+efSytWFH/e1mMKBkw2RK8cy/AgykMrGzVyt8v2qwsgWc2dK3Xp4iYBevRR6YYbvN6jxBDx4XYTJkzQk08+qY8//lh5eXnOm9sCVuvXr3cCp7Zt2+rSSy/VZZddppo1a8ovCJIAJBprtWfOLAqYbPx6eNY8ywprvUynnCKdfLKbWhbeIkgCUB7PP++OLqhc2V3A3JI6wEdB0imnnKKpU6fqvPPO08knn6xu3boVW+F34cKFziSyt956S9OnT9drr72m4yw1kw8QJAFIdFu2uHOYgkGTZUUKZz+qFixZ0GQZ82zIBmKLIAlAedhZet++0kcfSR06uMPvmI/qoyDp+eef10UXXaR0y0/7N2bPnq1Vq1bpWFsl0QcIkuB3OTk5zoUI89FHHxW7AAGUlbXov/8uffKJ+6NqazNZhqSgxo2lk05ygyZLNc6wvNhYvDhbbdoc5GxnZU1RRjm+eNoKwF9iVSf//FM64ABpzRrpyitzNGcO5wwVQXa7Mn4RgFfIVINoWrdO+uwzN2CyScCZmUXP2dVIC5QsYLLAqWlTjkW0LFyYpT33rFhGKtoKwF9iWSetHT/xROdTJZHdzpfZ7ZYtW+Zk8Gi+PRfh5MmT9eabbzrZPWxOEoCyqVKlit54443QNhBJ9eu7K7hbyc2Vxo2TPv7YDZpsXSbrcbJiDj1UOv10t1giCPgLbQWQvHXyhBOsF0kaNqyKatV6Qw88wDmD77Lb2cJVFgxdcMEFWr16tfbZZx916NBB8+bN09VXX6077rhDfkJPEgDszFr+335zAyYrkyYVf75jx6KAaf/93RTl8LYnCUBysyx3Nq/0jz+k006T3n+ftjmasUGZp+/OnDlTBx98sLP9zjvvaP/999ePP/6oESNGaPjw4eXaWQBAbFnQY4HQrbdKP/3kphQfNkyy6aS2gLstXnjXXe5rbBHbIUPczErh85sAALFjUxlHjJAsRcCoUdLo0Xz70VTmIMnSfwe7FL/++uvQhLX27ds7CRsAlE1BQYGmTJniFNsGvGDzka64wl2LySYHv/KKO1fJmvt586QHH5QOOURq1Uq65hpp7Fh3wVvEDm0F4C9e1MlOnQp03HFTJE3RtGk0wr4abnfIIYfomGOO0YknnqhevXrpp59+UqdOnZzbM888U8uXL5efMNwOfsdkbPg9vbilFf/gA+nTT4snfmjYUDrzTOncc6Xu3UktvjskbgASjxe/3+GfOXhwph56iKG7vhlu9+CDDzopwXv06KF+/fo5AVIw9WFwGB6A0rNEKK1atXKKbQN+YmuDn322NHKkm4bW5i8NGiTVqeOu/fPf/0pHHSW1bCldf707dK9sl96Sg1u3WzmlvPWctgLwFy/qpH3OHnu4bUl+PucMvuhJys7ODq3rYF2KFoXVsV/J7RYvXuw839AuLfoIPUkAEHl5ee7QvLffdsfGb95c9JwNybPA6pxzpK5dmVhsbAijrVFlCCIBVMTQodL990vXXSc9/jjfpec9SfXr19dJJ52kF154QevWrSsWIJnWrVv7LkACAESHTRzu00eyfD0WAHz4odSvn2SjTZYskR5+WOrWTWrXzk0OYYkgCA4AoOIqV3Zvt23j24ymUgdJf/zxh3r37u1ktLNuRZubdO+99+o3yyELAEhatijtqadKb77pDsF79113rpItPr9ggXTffTbZ2F0x3tb2sPWZAADlQ5Dk08QNxrqnPvvsM40ePVpffPGF6tat62S5s3L00UcrzfLH+gTD7eB3W7du1bk2810272OkqtoZJ5AALMmDzWGyIXmW/CH8qmePHtL550tnnCHVrq2Et3hxjtq0OcrZzs4er2oWQZYRbQXgL17USfvMbt3O1axZtmbSSI0eXVXNmkX9YxNKaWODcgVJO6YE/+677/Txxx87yRu2bNmip59+Wv3795cfECTB78huh2SwcaP03nuSLU4/blzR45Zi3FKNW8Bkw/eCV0gTDdntgMTjdXY7KVNVq1bXtddKN9/sJtSBj4KkHf3666/Kz8/XQQcdJD8gSILf2YWG4ELMAwcOVLpN9gASmA23s6F5r78uzZ5d9Hjdum6yBwuYDjsssRI+RCJIoq0A/MWLOhn8TFu/7ocfBmriRPczrUfeAiVbx257njV4ESRZV9+MGTO0du1aFYYtv25pCU+2S4I+QpAEAP5kvz7Tp7u9SxY0ha9H3ratNGCAWyxbXryLRJAEADu2obZ+3S23SDNnuo81aSLdead00UVugh3EMEiyOUgXXnihk+FupzdLSYnZisOlRZAEAP5nPx3ffusGTLZwbXDRWutNOvZY9we/b183GUQ8IkgCEM328623pNtvt/mP7mOWWfQ//3GT6KSWeVXUxBa1xWSvvvpqnXXWWVq1apXTixRe/BYgAfHA6s6sWbOcEt4zCyQTy/dz3HHSq69Kq1e7Q/H+8Q/3Sqmtx3Teee4V0ssvl6ZMSc504rQVgL94USdL+kxrP22Y8h9/SE89JTVoIGc4ng1fttkvX32VnG1mRZW5J8kiLpt3tOeeeyoe0JMEvyNxA7Brixa5gdMrrxRPHd6hgzRokHti0KiR/79BEjcAicfrxA27+swtW9xFZh95xN02xxzjLsFw8MFR38Xk7Uk688wzNXbs2IruH4AdFmu2AqC4Nm2ku+5yg6Vgj5Jl2bX0tzfdJDVv7g7Ds1Tj/h/MYHW8YvWctgLwFy/q5N99Zs2a0h13uOvUXX+9mzX0u++kQw5xl134/feY7m7y9CRlZ2c7w+0aNGigAw44YKdMHtdYWg0foScJABIvnfjIkW7v0uTJRY9bwPR//yddfLG77Sc2hNCGC9ocK0bVAoilJUvci02vvea2PzZHaeBA97EWLZLvWGyOVuKG//3vf7rsssucBbPq1avnJGsIvVlKihYuXCg/IUgCgMRlPUovv+wOyfvrL/cxOwE48UTpn/+Ujj/eHa/vNYIkAH5oL2+9VRo9umiduquucrPj1aunpLE5WkFS48aNnd6iIUOGKDUO0mUQJAFA4tu61c2K9/zz0vjxRY+3bOn2Lll2PC9XpSdIAuAXEydKQ4YUtZUWJ9gaS1b8cFEpbuckbdu2Teecc05cBEhAPLB1x/r37+8U2wZQdjZPyeYrjRvnLlB73XXu6vOW7MHG5ttaSzZ36fPPvZm7lJOTI6mHAoEe27fLjrYC8Bcv6mQkPtMW67b0Ap99JnXqZEGD28NkF5pQgZ6k66+/3pmPNHToUMUDepLgd2S3A6LDzh/ee8/tXfrhh6LHW7d2U4nb3KVYDTEhux2QePya3a4sbI6SrUVnQdOLL7o974lucyl7kiqV9Y1tLaSHHnpIX375pTp27LhT4obHHnusfHsMJKnKlSvrccvVuX0bQOR6lyxFuBUbi//CC+7EZVts0YaV2Kr01vtkY/K7dInutx6JNUpoKwB/8aJORvozbWCYZcNDBHqSjrFE67vxneUY9BF6kgAAQdnZbma8p5+Wpk0r+l4OP9wWS5dOP91NlxtpCxZkaa+9YnvFGQBK49RTpY8+ci8kXXJJ4n9nm6PVk+S3IAgAgNLKyHCTONhCtD/+KD3zjDskz7atWJpuy4p36aXuNgAkumCi6kj0eCeS1EgGScOGDavo/gBJp7CwUIsXL3aKbQOIzUlB9+7SW2+5a4jY0LvGjaVVq9y1QywrXr9+buDklxMH2grAX7yok9H4TIKkCAVJp59+un755ZedHn/yySd1iyVaB1AmlumqTZs2Tilv1isA5de0qRsYWbD05pvu0Lv8fHdYngVSlgnqnXfcx7xEWwH4ixd1Mpqf6ZcLQnEbJD388MPq06eP/vjjj9Bjjz76qO644w59+umnkd4/IClkZGQ4BYB3bC6S9R5NmCDZtUAbkmeLLU6aJJ1zjrTnnpacSNq0qbyfYHW8YvWctgLwFy/qZKQ/M9iThAoGSf/3f/+nm266ST179nS6+h588EHdc889+uyzz3TkkUeW9e2ApGcTuC2lpxUmcwP+0LWr9PLLRUPxGjRw11y68UapRQvphhvcLHmllZFhiRqylJpa/npOWwH4ixd1MhqfyXC7kpVrRdh//etfziJW3bp10wMPPOCkA+9uYxIAAEggjRoVDcWzNUT23VfaskWyDLzWs3T22dJPP3m9lwBQfgRJFchu99RTT+30WLNmzZyuvqOOOkqTJ092irnmmmtK85YAAMSNatXcRRZtAdovv3SH3Y0ZI737rlts3pL1Lp12mpSW5vXeAkDpESRVYJ0kmxxWGikpKVq4cKH8hHWS4He5ubm6ylazlKUjfkZVbBIEAN/77Te3R2nECGnbNvexdu2km26SLrzQXcw2aNGirWrb9gxnOyfnfVUNf7KUaCsAf/GiTkbjM61H3C722Ppx2986oZU2NijzYrLxhiAJfmfjimvUYJFJIF6tXi3997+2DIa0fr37mKUTv+466bLLpFq1IrOYLG0F4C9e1MlofCZBUoQWkwUQWenp6frPf/4T2gYQXywguucem68rvfSSOxRv2TJpyBDpvvvcQOmUUyr+ObQVgL94USej8ZmRHG63bp00c6ZbZs2SunRxF+eOR6XqSbLkDDbXqDTpBidNmqR169bpxBNPrPDOFRQU6K677tIbb7yh1atXq2nTpho4cKBuu+02Z2hfadCTBACIpbw8d5Hahx5yTxKMZbUrLKTHGID/nHuu9Pbbtuap5RYo3d9s3uy2b+EBkd2uWVP8damp7rIJ2zu/fCGiPUmzZ89Wq1atdNZZZ+nkk092sto1sHyossX18p3nf/jhByeYWblypV577bWI/CMsvfizzz6rV199VR06dNDPP/+sQYMGOf8wEkQAAPzILu7anKTzz5ds+cAHH3TXXgIAP9pdT1JOjvT770XBUDAgsiURdsVSGey3n9v+FRa6F47iUamCJAt6pk+f7kwQO++885wILC0tzZkslp2d7bymS5cuzhpK1tNTngmpJfnxxx916qmnhnqlWrdurbfeeiuUSQ9IBNaZa72vpn79+qXuJQXgb3YF9eST3WKZ8Hr1qtj70VYA/uJFnYzGZwbfwgIg61EKD4gWLNj1MLymTaX99y9ebJkE6zXKz3cvGLn7rLhU6jlJnTp10osvvqjnn39eM2bM0JIlS5STk+McoM6dOzu3kXb44YfrhRde0Ny5c7X33ns7gZr1WD1mA753k/XDSpAFdICf2YWGhg0bxnTiJ4DYOvzwir8HbQXgL17UyWh8ZjBIsjmVVnZUr97OwVCHDlKdOn//nkkRJAWlpqY6QZGVaBsyZIgT5LRv397pubI5Svfee6+zkO2u3H///br77rujvm8AAABAvDv0UOnNN90eoAMOcAOg/cMCIovJytphlQhBkq9TgI8cOVKDBw/Www8/7MxJmjZtmq677jqnJ2nAgAGl7klq0aLF307OAgAAAJLRli1ukBSpEYOBgDvk2KxdK21PZZB4iRu8YgGS9Sada2k3ZNHtAc4wP+st2lWQZPOkWIwTAAAAKJ2aNSP7TaWEBVuWvCEebY/x/MnGXdrwvnA27K4wXr9tAAAAIIkEfDtmLY6DJEs3bnOQPv30Uy1evFijRo1yhtqddtppXu8aEDE2PNSGkVoJHyoKIHFs3brVWUbDim2XB20F4C9e1Ml4agdSIrhIbVzMSXrllVd0zjnnlGph2YrasmWLbr/9dic4Wrt2rbOYbL9+/XTHHXeocuXKpXoPFpOF32VlZanG9lXWyG4HJKZI1HPaCsBfvKiT8dQOpKW5Q+1WrHDThSf8nCSbI3Tttdc6V8MuvvhiJ013tNSsWVNPPPGEU4BElZ6erqFDh4a2AYC2AvA/L36/4+mcISXZepLy8/P18ccfa/jw4fr888/Vtm1bDRo0yEmk0LhxY/kNPUkAAK/F09VfAIgEi+FsUdlly6TmzRV3sUGZ5yRVqlTJmRM0evRoLVu2TJdccolGjBihli1b6pRTTnEeJ7ECAAAAkLxSU5M4cUOjRo10xBFH6LDDDnOy0P32229Oj9Kee+6psWPHRm4vgQRmnbl2ldmKj5ctA+Ax2grAX7yok/HUDqSkJGGQtGbNGj3yyCPOAq89evRwuq0++eQTLVq0SCtWrNDZZ5+9y3WMAOyc6t6G4VixbQAoCW0F4C9e1Ml4agdSki1IsrTcLVq0cOYk2VA7C4reeust9ezZ03nexlnfeOONzlA8AAAAAMknJc6DpDJnt2vYsKHGjRvnDLHblQYNGji9SgD+nqXTt4ncwW0AiScS9Zy2AvAXL+pkPLUDKcnWk3T00Uera9euOz2+bds2vfbaa852SkqKWrVqFZk9BBKc1RfrgbVi2wASTyTqOW0F4C9e1Ml4agdSki1IsnTfljKvpIVf7TkAAAAAyS0l2YIky6RRUuS6fPlyJ+c4gLKxXthbb73VKbYNIPHk5uZq4MCBTrHt8qCtAPzFizoZT+1ASrIsJtulSxcnOJo+fbqT1c7WSwoqKChw5iAdf/zxeuedd+QnLCYLv2ORSSDxRaKe01YA/uJFnYyndqBWLTsPl+bMkfbeW3EXG5Q6cUPfvn2d22nTpql3796hA2QqV66s1q1b64wzzqjofgNJxy44XHvttaFtAKCtAPzPi9/veDpnSEmWnqSgV199Veecc46qVq2qeEBPEgDAa/F09RcAIqFOHWnjRun336X27ZW4PUlBLBILAAAAIJF7kkoVJNWtW1dz585V/fr1VadOnd2mHFy/fn0k9w8AAABAnElJhiDp8ccfV82aNUPbfs/LDsQThuEASea442wygXsGEV7Mjo+Flaz8fNX4+mvnZZmXXabqe+0ltW5dVOrWLXofAFFH4obdS4ogKXyInaUvBQAA5TRxYsW/uuee2/kxm/NkwZIt5h4ePAVLvXoEUQBiJiUZgqRwn332mdLS0pwMd+G++uorJxV4nz59Irl/QMLLyMjQ2rVrQ9sAErSe2wThzZuV8cQTUrNm7plDaYoJBJRRWKi1lk9361Zl2ND2JUukxYvd29WrLSOENHOmW0reiZ0Dp/CAqkEDgijA57/f8XTOkJJsQdKQIUP0wAMP7PR4YWGh8xxBElA2Nny1gZ2cAEjsep66ff12u5hYjkVD7Hxjly1FTo60dKkbNAUDp+C2lVWrpOxsafZst5SkWrWSg6dgadiQIArw+Pc7ns4ZUpItSJo3b57222+/nR5v37695s+fH6n9AgAApWUBzj77uKUkW7dKy5YVD5zCg6mVK91Ay3L1WimJLf2xq6F89nijRlIwEASQ9FKSLUiyvOILFy50Fo8NZwES6z4AZbdt2zY9/PDDzvbgwYOdxZkBJJbc3FzdYD05kh7btk1VyvEeFWorLMBp184tJe9gURC1Yy+UlRUr3EBrzhy3lKRKlV0HUVYIopBgvPj9jqdzhpRkW0z2n//8pyZOnKhRo0Zpzz33DAVIZ5xxhg466CC99NJL8hMWk4Xfkd0OSLJ6/uuvqt65c3wtSLttm7R8+a57ouy5wsLdvwdBFBIM2e12z6ZeWif11KlSly5K/MVkH3roIR1//PHO8LrmzZs7jy1fvlxHHnmkHnnkkYrtNZCEKlWqpP/7v/8LbQOA79oKu1rdtq1bSpKXVxREBQOnRYuKtq2Xynqr5s51S1mH8wV7okhxjiSvk/F0zpCSbD1Jxv5kzJgxmj59uqpVq6aOHTvqqKOOkh/RkwQA8NUV52nTVL1TJyUVC6JsyF6wB8oCqPAeqdL0RO0YRLVpQ2IJwMdatHCr9s8/SwceqMTvSQpm1ujVq5dTAAAAdis9vSig+bueqB2LBVSlmRNlQdSueqEsoCLFOeBJT1Lh31z/8KtyBUnjxo1zhtb9vj0DjmW7s8ljNuQOAACgzEGUBTJWyjInKrwnyoKoP/5wy9+lOC+pEEQBEZUS58PtyhwkvfHGGxo0aJBOP/10XXPNNc5jEyZM0LHHHqvhw4frvPPOi8Z+Agk9DKehrT8iOQvEkSUSAG1FGedEWRBVUorz8Ox8f5fifMcgKjicz27tc+vUYU4UPP/9jqdzhpRkC5LuvfdeJ3nD9ddfH3rMgqXHHntM//73vwmSgHLI3p4aGABoK8oZRFnG3e1Zd/82iNpxTlRp1omqVct9/2CwFiz2mE2+sN4wJB0vfr/j5ZwhJdmCJFsj6eSTT97p8VNOOUVDhw6N1H4BScOSnyyyH+zt2wAStJ5b4obMzHLXc9qKKAZR4etE7TgfysqqVdKmTW4uYys7SkuTWrYsCpp2DKJq167I3sOnvKiT8dQOpCRbkNSiRQt988032muvvYo9/vXXXzvPASib1NTUnRZnBpCA9Tw1NXin/O9BWxEdtoaTndfscG4TYlfu7cR04cKismCBe2uP23yoYED1zTc7/70N1QsPmsKDKDt38nkqZ/inTsZTO5CyPUj66CPpsMMUd8pcK2+88UZneN20adN0+OGHh+Yk2XykJ598Mhr7CAAA4J2MDKlDB7fsyFJ3rV5dPHAKD6TWrJE2bJB++cUtO7IAyVKbB4Omdu3cYM1u7b5l7QPiUPXt06UeeEC64w532l/Cr5M0atQoPfroo6Hsdvvuu6+T3e7UU0+V37BOEvwuLy9Pw4YNc7avvPJKpTOuHUg427Zt0601azpzY+6dNUuV99uvzO9BWxGnsrKK90KFB1L2uA31292leOtpsoApPHgKBlDWAwbPeFEn46kdmDBBOuIId9uuE/hl1GlpY4NyBUnxhCAJcbXIZGamrzPVAIhAPZ8+XdU7dqzYe9BWJAbrhbL5TsHAyW7nzZPmz3dvN2/efQBl86B2DJ5smwAqJryok/HUDuTnF+Uz+esvqW5dJf5isgAiJy0tLZQV0rYBgLYiSdj8tGbN3HLUUcWfs2vYf/5ZFDCFB09WtmyRlixxy9df7/y+FkCFB09W9tnHTWnOHKi4/f2Op3OGlO1zkkw8dsmUqiepTp06Sgn/l+7G+vXr5Sf0JAEAvFbs6u+MGap+wAFe7xLiWTCAKil4spKZueu/tUv7FjxZwNS+vXsb3LYEE0AE/zdN3Z6nxv53rV8/AXuSnnjiiUjuGwAAAMrLLlzbgqJWunff+cx07dqdg6e5c92yu/WgGjQoCpzCAyh6n1AO4f0rNrI03pQqSBowYED09wQAAAAVPzNt1MgtwVnz4Weqy5dLf/whzZlTdGvFHrfL/Va+/77k3qcde56s+GU2PnwtEIfD7co1J2nBggV65ZVXnFtL+92wYUN9/vnnatmypTqUlB4TwG6H4QTXPFi8eLGvJ2EC8A5tBSosOFfJSq9exZ+zIXrW01RSAGXrQO2q96lpU8myNdr5X/htEgzd86JOxls7kJrqxuYJ25MUbty4cerTp4+6d++u8ePH695773WCpOnTp+t///uf3nvvvejsKZDA1q1b5/UuAIgDtBWIGpsz17WrW8LZ2e2yZcUDJ7u1snJlUdkxeUSTJm6wtGMA5ZcUZ3FcJ+OpHUhJSaKepCFDhug///mPbrjhBtW0NR+2+8c//qFnnnkm0vsHJLxq1app5syZoW0ACVrPrX7n5JS7ntNWwLOuAFvs1sqOvU+bNrm9S7NmSbNnF91aUGWpza18803xv7FhgMGgKTyA8susfp/XyXhrB1JTpYKC+AySyrxOkmXn+e2339SmTRsnSLIepLZt2zpdfu3bt9dW65L1EbLbAQB8wS4s2pAmWwvH1rEBEpWt72TBU3jgZLdLl+76byx4svXDgsUyQO67r1S1aiz3HBFWpYqzhrZz6G1d5IReJ6l27dpatWqVEySF+/XXX9XM8vwDAAAgedmJ5yGHuCWcre20Y/BkZfFiac0aacwYtwTZOkCWJMICpvDgyeZUlXJpGngrJZmG25177rm6+eab9e677zprJxUWFmrChAm66aabdOGFF0ZnL4EElpeXp+HDhzvbAwcOVHpweWoACWPbtm26LzfX2R66bZsql+M9aCuQEL2pBx/slnDWw2pB04wZ0m+/ubdWNmwoCqTefrvo9bVqucFSePC0//5ucBZDXtTJeGsHUlPjN0gq83A7a+ivvPJK5wAVFBSoUqVKzq2t/muP+W31X4bbIa4WmczM9H2mGgAVrOe//abqdkJXkfegrUCis9NTSwgRDJiCwZMljMjLK/lvLOtb585Sly5FxUY5RanXyYs6GW/tQPXqUna2tHChu9xWQg+3q1y5sl588UXdfvvtzsQxO0BdunRRu3btKrrPQFKyCwunnnpqaBtAgivnCRttBZKunliAY6VPn6LHbYKLZdjbsddpxQp32J6VDz8svkBueNBkxdZ8CnZxVIAXdTLe2oGUlCTqSfrhhx90xI6Lk/kYPUkAAK8Vu/o7c6aqs6YgEFnr17vB0q+/FhWb/2Sp1XZkdbFTp+KBk9XJyuUZCIvdsY4am4o2b54bmyZ0T5Kl+rYEDf369dP555+v/SxtIwAAAOAVW3+pRw+3BOXkSJYue+rUosDJAimbAzVhgluCbG6PBUrduknHHitZb00cpNj2u5Q47kkqc5C0cuVKjRw5Um+99ZYeeOABdezYUf3793eCpubNm0dnLwEAAICysCDnoIPcEpSf7w7XC+9xsrJxozRtmlteeslNCjF6tH8m0sSplDgOkso8ILN+/fq66qqrnIx2CxYs0FlnnaVXX31VrVu3dnqZAJRNdna2U3+s2DYA0FYAUVKpkttjdP750qOPSt9+6w7Vs8wC778v3XCD1LChO9/JepV2XAzX49/veDtnSN0eaRQWKvHnJO3IMtt9/vnnTiKHGTNmOPf9hDlJ8Lt4y1QDoIL1fNYsVS/HUHXaCiBGli+XTjtN+vlnd60mC6auuWanpCtkt/t79eq5Mahlcbe1gRN6TlKQ9SSNGDFC7733nrZu3epk2rj//vvL+3ZA0qpataomT54c2gaQoPXclp7PzVVVuy3ve9BWANFn00fGj5f++U/p9del665zh+Q995xVRE/rZLy1A6nJ1JN0yy23OHOSbG7Scccd58xHsgApIyMjKju4YsUKZ/Fa662ybsW99tpLr7zyirpZF2gp0JMEAPDVgiGLFrnruQDwNztFfvJJ6cYb3bN8WwR31CipaVOv9yxuNGwo/fmnO3qxHMvDxVdP0vjx4zV48GCdffbZzvykaNqwYYO6d++uY445xgmSGjRooHnz5qlOnTpR/VwAAAAkORteZ71IdnZ/9tmS9eAceKD0wQfSYYd5vXdxISWOEzdUKs8wu1h58MEH1aJFC6fnKKgNWUaQYPLz8/X222872+ecc44q2aRSAAll27ZtetIWwZR07bZtKs9qLLQVgEd69pSmTJH69nVTilua8f/+V/kDBsT89zve2oHUZBpuF0u2BlPv3r21fPlyjRs3zlmf6YorrtAll1yyy7/Jzc11SniXmgVaf9elBniFydhA4iNxA5AAbH2lAQPcniSr1//8p2o8/3xMEy/F2zlD06bSqlXulK7OnZUciRtiYeHChXr22Wd1ww03aOjQoZoyZYquueYaVa5cWQPsf9ISWPKIu+++O+b7CpRXamqqetpVqu3bABLcDhmySou2AvCYBSfvvivde690xx1Kff559bQpIB07xuz3O97agZQ4Hm7n654kC4YsQcOPP/4YesyCJAuWJk6cWOLf0JMEAPCbYld/Z89Wdb/kwgVQPh995K61tGWLZTWT7ruPb7IELVq4GdUtm7pN54qnniRfh6BNmjRxhtyF23fffbV06dJd/k2VKlWcf3B4AQAAACLmlFOkW291t1es4ItNwJ6kMgdJ1oszadKknR63x362MDGCLLPdnDlzij02d+5ctWrVKqKfAwAAAJRJ5e0pWPLz+eISMHFDmYOkK6+8UsuWLStxPSN7LpKuv/56/fTTT7rvvvs0f/58vfnmm3rhhRci/jmAl2z9rw4dOjjFtgGAtgLwv+zCQnWQ1OGTT2L2+x1v5wwpcdyTVObEDbNnz1bXrl13erxLly7Oc5F00EEHadSoUc4Ctvfcc4+T/vuJJ55wFrAFEoVNCwzWHR9PEQTgceIG2grAXwJpaXJ+vTdvjtnvd7y1Aynbm7vjj5d69ZK2Zy9PzCDJ5vysWbNGbdu2Lfb4qlWropKr/aSTTnIKkKiqVq2q7777LrQNIEHreXq6lJenqlWqlP89aCsA36harZqcX+/u3WP2+x1v7UDHjtKiRdLGjdKmTYorZY5qevXq5fTsjB492skMYTZu3Oik6D7uuOOisY9AQktLS1MPW5gOQGLX87Q0J0iS3Zb3PWgrAN9IS0+X8+tdu3a563WitwPvvy9ZegHr9Nqe4DNxg6RHHnlERx11lJM8wYbYmWnTpqlRo0Z6/fXXo7GPAADEvzgYGgOgDIIjqAoK+Np2wWLHHRJVJ26Q1KxZM82YMUMjRozQ9OnTVa1aNQ0aNEj9+vVTug0lAFAm+fn5+uSTT5xtG1oajWGrALyVl5enF7afSF2al6fy/FrSVgD+kp+SIufXe+VKnZSfH5Pfb9qB2PH1YrKxXDAK8MUik5mZql69OgcDSOR6/scfqr7PPhV7D9oKwHNZr76qGgMHxrRO0g7ELjYoVcj70UcfqU+fPk5PkW3vzim2uBaAUktNTdXhhx8e2gYA2grA/1LT0+X8eu+xR8x+vzln8FlPkh2Q1atXq2HDhrv9nyAlJUUFPhuXSU8SACARepIA+Mzo0VLfvlKDBtI110h2wfPgg+MvQ0GS2RzJnqTCsGVyw7cBAACApNSmjbsQ0J9/SrffXpSpoFMnN2CycsQRUosWXu8pyoGxPQAAAEB5FgGaNUt66inp3HPdYMhGVE2dKj3zjHTeeVLLltKll0q5uXy/caZcaTimTJniLGS1du3anXqWHnvssUjtG5AUcnJynLT6Zvz48U7GSACgrQDi4Pf7wguL/34vWyZNnCj9+KNbfv5ZevFFaeZMd9GgJk0q/pmcM/gzSLrvvvt02223aZ999nHWRrJ5SEHh2wBKxy40/GyNKMNZgeRQzt9K2grAX0qsk9abZOXss937X3wh9evnBk7dukkffCAdckhkPxP+CJKefPJJvfzyyxq4PeUhgIqpUqVKaJ0k2waQoPXc1lDJz1eVypXL/x60FYBvlKpOHn+8NHmym+Bh9mzJeoGef14q53k07YCP10lq0qSJ06XYrl07xQOy2wEAfMFOorZtc4fjNG/u9d4AiKUtW6QLLnAz4hnLhvfII1J6eZaWRixigzInbrj++us1bNiwCu0cAABJJ7HXbgewOzVrukPt7rrLvW/JHnr3ltat43tLlJ4kG/944oknau7cudpvv/2cBWbDfWD/A/gIPUnwO1tb7Ntvv3W2//GPfyjN0ocCSCh5eXkaYZO6CwrUf+FCpVvq4DKirQD8pdx18sMP3V6lzEypVSv3fufO0f1MlDk2KHOQdNVVV+mll17SMcccs1PiBvPKK6/ITwiSEFeLTGZmqnr16l7vEoBo1vO5c1W9HEPWaSsAf6lQnbTU4TZPaf58yS6g2PnzOedE9zMR+cVkw7366qt6//33nd4kABWXmpqqTrbw3PZtAKCtABL897tDBzehg2W++/JLd52lX3+V7r3XXZA2Gp+JMilzT1KrVq305Zdfqn379ooH9CQBABKhJwlAArLFZ4cOlR56yL3fp4/05ptS7dpe71nCilrihrvuukt33nmnsrOzK7qPAAAAQPKyXqMHH3QDIxt29/nn0sEHu+nC4akyD7d76qmntGDBAmc+UuvWrXdK3DB16tRI7h8AAACQ2GzYnY3SsnlK8+ZJhx4qvf66dOqpXu9Z0ipzkNTXDh6AiMnJyVEf616XXUD6XNXsShKAxLVDwqPSoq0A/CXidbJLF+nnn6Uzz5TGj3cDprvvlm67zSYgReczEbk5SfGGOUnwOzLVAElWz+fNU/W99qrYe5DVCvBc1OpkXp4tTCoF1yU97TTLnOastUQ74OPsdsuWLXPSfjffvlr45MmT9eabbzprJl166aUV22sgCVWpUkXvvPNOaBtAgtZzuxJcWKgqlSuX/z1oKwDfiFqdtKkszzzj9ixdcYU0apQ0d66znlKV1q1pB/zak3TkkUc6wdAFF1yg1atXa++999b++++vefPm6eqrr9Ydd9whP6EnCQDgC5UquZmsVqyQmjb1em8AxIOJE6UzzpBWrXIz3r39ttSrl9d7Fdeilt1u5syZOtiybkhOJHvAAQfoxx9/1IgRIzR8+PCK7TUAAAAA12GHufOUDjlE2rjRTRH+yCNSYs+W8YUyB0l5eXmhLsWvv/5ap5xyirNt6yatsigXQJkUFBRowoQJTrFtAIknPz9f7wYCete2y1nPaSsAf4lZnbSe57FjpUGDVFBYqAmDB2tC794qYDmeqCrznKQOHTroueee04knnqgxY8bo3//+t/P4ypUrVa9evWjsI5DQtm7dqiOOOMLZZjI2kJhyc3N1dmGhs525bVvZf3xpK4Dk/v2uWlX63/+0tUMHHXHTTdKYMcp85RVVv/LK6H1mkitzT9KDDz6o559/Xj169FC/fv3UqVMn5/GPPvooNAwPQOlZIpS99trLKbYNALQVgP/F/Pc7JUUpl1+uvfbYQ5YfM2X58uh/ZhIr88UsC47WrVvnTHqqU6dO6HFL5pCRkRHp/QMSntUbS3wCALQVQPzw4vfb+cxLLpEefdRNBIOoKU+Pv9LS0ooFSKZ169aR2icAAAAAuxp6Z3Jy+H68DpK6du2qb775xgmMunTpstsuxalTp0Zy/wAAAAAEVavm3q5daxMebZEmvhuvgqRTTz01lNGub9++0dgPIKknfp5hayBIev/991U1eIUIQGIq59wF2grAX7yok85nvvmm+5nvvKOqH3xgWdXchWe7dnWL5QuoUSPq+5LoyryYbLxhMVn4XVZWlmpsb8zIbgckQT1fsEDV27at2HtEO5MWAF/WyWKfWaeOqm/YUPKFmL33dgOmYPBkt3XrRn3/Eik2KNecpI0bN+q9997TggULNHjwYNWtW9cZZteoUSM1a9asIvsNJJ3KlSvrlVdeCW0DSNB6bicugYAqp6eX/z1oKwDf8KJOFvvM886TbI3SX3+1+S5FtytXSnPmuOWtt4r+uFWr4oGTlSZNYrLfSdGTNGPGDPXs2dOJwBYvXqw5c+aobdu2uu2227R06VK99tpr8hN6kgAAvpCa6gRJzklN48Ze7w2ARLVmzc6B08KFJb+2USM3WLL1nq6/vmi+UwIrbWxQ5iDJAiRL5PDQQw+pZs2amj59uhMk/fjjjzrvvPOcwMlPCJIAAL5AkATAKxs3StOmFQVNVv74Q9q+yLVj5EjpnHMS/hhtjtZwuylTpjiLye7IhtmtXr267HsKJLmCggL99ttvzvYBBxzgpNgHkFjy8/P15fZrkr0LCso11p22AvAXL+pkuT+zdm1b7NQtQdnZNkRMuuoq6ZdfLHqI0l7HpzK305blziKwHc2dO1cNGjSI1H4BScMy1VhqfcNkbCAx5ebm6qTt25m5ueUKkmgrAH/xok5G9DMzMqRDD5VatHCDpPBeJZS9nT7llFN0zz336J133nHu25pJNhfp5ptvDqVBBFB6VoeaNm0a2gYA2grA/7z4/Y7KZ9pQYEOQVLEg6dFHH9WZZ56phg0bKicnR0cffbQzzO6www7TvffeW9a3A5JeRkaGVqxYkfTfA4Ddo60A/MWLOhmVzyxvkBQISOvXu9n0wovtX3D78MOlJ55QUgRJNtFpzJgxmjBhgpO0wbr6LJGDJXQAAAAAEEdKCpI2b945+CkpCNq2bffvPWWKdPfdFkAo3pRrnSTTvXt3pwAAgDJgWC0APwZJ11wjPfOMG/xkZpb+7+vVk2wIYLDYmqm2zIElhDD5+YpHpQ6SJk6cqL/++ksnnRSceipnTaQ777zTWf23b9++evrpp53EDgDKNgnzggsucLZff/11Va1ala8PAG0F4HNe/H5H5TPDE6/NnVu0vccexYOfYAAUft+CoZL2wYbiBYOkOJ3rVOp1kvr06aMePXo4CRqMpR+0YXYDBw7Uvvvuq4cfflj//Oc/ddddd8lPWCcJfmcXGWrUqOFsk90OSIJ6vnChqrdpU7H3iFEmLQD+qpNR+cw//5RGjZJq1iwKfpo0kbZ/ToV7zX22gHbE10maNm2a/v3vf4fujxw5UocccohefPFF536LFi2cXiW/BUmA31WuXFnPWPf29m0ACVrPw7bL/R60FYBveFEno/KZ1pN06aWKuLQ0W9gp8XuSrDtv3rx5TjBkjjjiCKd36dZbb3XuL1682FnUasuWLfITepIAAL4QvKq6Zo3UsKHXewMA0VW5spSXJy1bJjVvHnexwfaZWn+vUaNGWrRokbO9bds2TZ06VYfaAlTbWXCUnp5e0f0GACCxkbgBQDIlhCgoUDwq9XC7E044QUOGDNGDDz6oDz/80MnTfuSRR4aenzFjhvbcc89o7SeQsAoLC7VgwQJn2+pQarBRAZAwCgoK9P327SMLCpRWjvegrQD8xYs6GVftQNr2li5Oh9uVOkiy+Uinn366s3isTRh79dVXi42FfPnll9WrV69o7SeQsGxR5r333tvZZjI2kJgsI9Ux27czt25VeaZa01YA/uJFnYyrdiC1nIvUxluQVL9+fY0fP94Zv2dBUlowOtzu3XffDWXbAFA2NjYWAGgrgPjixe933JwzpKUlx3C7vzswdevWjcT+AEnHrgJt3LjR690AEE2ly5G0W7QVgL94USfjqh1Ije+eJB8PZNzZAw88oJSUFF133XVe7woAAACABE3cEDdB0pQpU/T888+rY8eOXu8KAADlR3Y7AMkgLb4TN8RFkGQT0/r37+8sXFunTh2vdweIqNzcXA0cONAptg0AtBWA/3nx+x1X5wyp8T3crtSLyXppwIABzpynxx9/XD169FDnzp31xBNPlPha+x8m/H8aWzDKFsD9uwWjAK9kZWWFkp74PlMNgHLJysxUjZo1ne3MxYtVvVWrsr8HbQXgK17UybhqB5o1k1aulH75ReraVfG2mGyZEzfE2siRI52Fa224XWncf//9uvvuu6O+X0Ck2CLMDz30UGgbQOJJr1RJbi0vfz2nrQD8xYs6GVftQFp8D7fzdU/SsmXL1K1bN40ZMyY0F4meJABA3LGThOAJw59/2roaXu8RAERX69bSkiXSpEnSwQf75ttOiJ6kX375RWvXrlXXsC46W7Xc1mt65plnnGF1O67XVKVKFacAAOBLJG4AkAxSt89Juuce6ZNPFG98HSQde+yx+u2334o9NmjQILVv314333zzTgESEI8KCwu1atUqZ7tJkyZKDTYqABKGXeCbun27a0GByvPrRVsB+IsXdTKu2oHGjaVFi6RPP7UJVNL2uVTxwtdBUs2aNbX//vsXe8wmqNWrV2+nx4F4lZOTo+bNm8fHJEwA5bJ161YFB5tkbt2q8tRy2grAX7yok3HVDrz7rrR9X5WXp3jj6yAJSBaVKlEVgYQWoem/tBWAv3hRJ+OmHWjSpGg7DpM3xMm3XGTs2LFe7wIQUXYVKC8Or7AAiC3aCsBfvKiTcdUOpKTEdZDk44GMAAAkIBI3AEiWti5le6BEkAQAAAAAKspwF4dBUtwNt4trV19tydnd/2GC0XVwe8fb0j5mt7aYmI1PDS87PlaW11gK9ZKKPccV0IizVPY33HCDs/3YY4+Rwh4AbQUQB7z4/Y67c4bUVEvvGZdBkq8Xk43lglEx0bChu4hgvLIAqWrVXQdRO5bgazMyikq1asXvl1R2fE2Cp3rPyspSje1pMX2fqQZAuWRt2qQatWs725lLl6p6ixZlfw/aCsBXvKiTcdcOVK1qkZ20dKlUjnYvGhJiMdmEc+edUna2m+XIImq7Dd/e8bY0j1l0biU/302vaLfBsrv7u3rObu1/5mAJj/ztM3Ny3BJLlSsXD5qsQahZs6hYY1HS9u6e81FmmPT0dN1p/29s3waQeJx6HrZd7vegrQB8w4s6GXftQGr8DrejJwm7Z4FTeNAULFu3lvx4Sa+zoMqCw+Dt7kr4a6J9ZSMYNNWq5Ra7yrvjbUmPBV9vwRsAlLYtDZ7Q/PWXVLcu3xuAxFe9untOt3Ch1KaN/ICeJERGcL5SrLtzrdfKAqwdg6isLLds2VJUbBXnkrZLuh9Mm2nvbWXduvLvow0LLCmIqlPHPQHaXfH7GGIA0cPcTgDJIjV+e5L8M+YI2PEkwoIQK/XqRe672bZt5wBq0yZp48a/vw1u29+Z4NDDVavKvh82bHB7wBSoU0ebrEerY0fV+ve/lRJsUAAkjMLCQv2+fXvfwsJyrb9hU4htDL2x8fQpBFuAp7yok3HXDqRub+3iMAUCQRKSiw2Rs6CrIoGXDZuxLIW7CqQ2bHDL+vU7F3vcrqYEe8aWL5cNLKxj7/vJJ8o85RRVP+SQCP6DAfhBTk6O9t++nZmTo/L0zWdnZ6uO9VTHy4RtIMF5USfjrh1IpScJSB42/DA4bK6sLECyACs8aFq5Uho40H3e5nEBSDxxeBUVACqMIAlAqRuLYEKItm2dhzICAW274w4nPWYl5ioB2IWMjAxtsyHDzrUaBoIAyVgn464dSKUnCUA52Xji9OCYYr+PLQZQceWs505bEQ8pf4Ek4UWdjLt2IDV+gyRmiAN+QHAEAAASTSpBEoBysm7zwevXa/D2bQDYZVsxeLBTaCuA5KyTcdcOpMZvkMRisoDHsrKyVMMWtrVMNd99p+o9eni9SwAiLGvDBtXYnuwlc/lyVW/WrGJtRTxktQISnBd1Mu7agRYtnEy++uUXqWtX+QGLyQJxwsYW32QL0W7apPR4mIQJoHz1PGy73O9xk/sucTUnAUhQXtTJuGsHUulJ8q3SRouApyzT3aJF0sSJ0qGHcjCARGPDYoLZK209NbswAgCJrk0bafFi6eGHpe7dpcMOi5vYgMQNgB+QuAEAACSa9O29XYMHS3ffrXjC2B7AY4FAQPnbF5qsVFgokoADiaewsFBLt2+3LCws1xVKp63Izw+tj2KpgAF4x4s6GXftwNCh0vPPuwtqt2+veEKQBHgsOztbNWyonU3C3LpVPp+CCaAccrKz1Wb7dmZOjqrXqVO+tiKeJmwDCc6LOhl37cDAgW6JQwy3AwAAAIAw9CQBHsvIyNCG1q2diY0ZwYndABJXOYfHOG3Fhg2hbQDe8qJO0g7EDkES4DEbT1w7LS14x+vdAeDntqJ2ba93A4CHdZJ2IHYYbgf4QTA42p7AAQAAAN6hJwnw2LZt23TfX38520Pz8lTZ6x0C4N+24r77nO2hQ4eqcmVaCyDZ6iTtQOykBCyXYAJjMVn4XVZWVlGmmjFjVL1nT693CUCEZf31l2rUr+9sZ65cqepNmlSsrYiHrFZAgvOiTtIOxC42oCcJ8Jitc3BFrVrSpk2qlMoIWCBh63nYdrnf44orKvQeACLHizpJOxA79CQBfrD33tK8edL330tHHOH13gCItK1bpWrV3O3Nm6WaNfmOAcDHPUlctgb8gMQNAAAAvkF/PQAAUWbTf9dt364fCIhk/wDgb/QkAR6zSZjpc+cq3bZzcrzeHQBRkJ2VpYaSU7Kzs8vfVqSnO8W2AXjLizpJOxA79CQBPpAf3EjsZJMAKig/P9RaAEjSOkk7EBsESYDHqlWrpuVt20oLF6palSpe7w6AWM1BLE9bsXx5aBuAt7yok7QDsUOQBHgsNTVVzYIL0JXz5AlAkrQVzZp5vRsAPKyTtAMx/K5j+FkAAAAA4Hv0JAEe27Ztm55cv97ZvjYvT9v7lAAkkgjMN3TaiiefdLavvfZaVQ72QAPwhBd1knYgdlhMFvCYZaqpUaOGs5352Weq3qeP17sEIMKy/vxTNRpabjspc/VqVW/UqGJtRWamqlevznECPORFnaQdiN1isvQkAR6rVKmSBtSqJW3apEppaV7vDoBo1fPgdnp6+d9jwIDQNgBveVEnaQdih54kwA86dJBmz5a+/VY65hiv9wZApNnaSMGrzJmZRdsAAF/2JJG4AQAAAADC0F8P+AGpv4GEFigsVPb27YxAQCT7BwB/oycJ8JhNwqz9+++qbds2JAdAwsnOzpZN766xfbvcbUXt2k6xbQDe8qJO0g7EDj1JgA9sKiz0ehcAxEHPsY2hB+AfXtRJ2oHYIEgCPFatWjXNbddOmjdP1Vj3BMDu2oq5c0PbAJKvTtIOxA5BEuCx1NRUtatSJXjH690B4Oe2wi6oAEjaOkk7EDuckQF+QOIGAAAA36AnCfBYXl6eXvjrL2f70rw8lW+ZSQC+FghEpq144QVn+9JLL1V6ORelBRAZXtRJ2oHYYTFZwGOWqaZGDct5JWV+9JGqn3yy17sEIMKy1qxRjcaNne3MtWtVvUGDirUVmZmqzoK0gKe8qJO0A7FbTJaeJMBjaWlpOrNWLUtXozTmJAGJW8+D25Uqlf89zjwztA3AW17USdqB2KEnCfCDTp2kGTOkr76SjjvO670BEGmZmVLNmu62rZNEdjoA8HVPEokbAD8gcQMAAIBv+DpIuv/++3XQQQepZs2aatiwofr27as5c+Z4vVuAryd3A/Ah6jYAxBVfB0njxo3TlVdeqZ9++kljxoxxMnr06tXLmbQGJIrs7Gw1mzVLzWx761avdwdAFNjvVop1Gm/fLndb0ayZU2wbgLe8qJO0A7Hj68QNX3zxRbH7w4cPd3qUfvnlFx111FEl/k1ubq5TwscdAn4WCAS0Mj8/tA0gwZVzeK3TVqxcGdoG4C0v6iTtQOz4OkjakU2wMnXr1t3tEL277747hnsFVEzVqlX16957S3PnqirrngDYXVvx66+hbQDJVydpB2InbrLbFRYW6pRTTtHGjRv1ww8/7PJ1JfUktWjR4m8zWACe6tpVsobWek979+ZgAAkma/Vq1WjSxNnOXLdO1evV83qXACApbU60dZJsbtLMmTN3GyCZKlWqOAWIS/FxzQJAWVG3ASCuxEWQdNVVV+mTTz7R+PHj1bx5c693B4goS0gy4q+/nO3++flK5/sFsKu2YsQIt63o31/pDM8Fkq5O0g7Ejq+H29muXX311Ro1apTGjh2rdu3aRa1LDfCKZbqqUaOGs505apSq9+3LwQASTNaqVarRtKmznfnXX6q+m7m1pWorMjNVvXr1iO8nAH/XSdqBikuI4XY2xO7NN9/U6NGjnbWSVq9e7Txu/7BqrFaOBJGWlqYTrJJu3qw0FpUFEreeh22X+z1OOKFC7wEgcryok7QDsePrnqSUXZwwvvLKKxo4cGCp3oOeJMSFAw+Upk6VPvtM6tPH670BEGm2HEWtWu62rYfG3FkA8ERC9CT5OH4DIit4QYD/54HERN0GgLiS6vUOAAAAAICfECQBHsvOzla7mTNlaUmybRgOgIRjk61tSnf17dvlbivatXOKbQPwlhd1knYgdnw93A5IBjasdP72BZAZYgokrtApVDkTtDhtxfz5oW0A3vKiTtIOxA5BEuCxqlWr6od99pHmzFFV1j0BsLu2YvuC6rYNIPnqJO1A7BAkAR6zdJ7dg9lVUhkBC2A3bUX37nw9QBLXSdqB2OGMDACAaGN4HADEFXqSAI/l5+dr1IYNzvZpBQVUSgC7bitGjXLbitNOU6VK/IQDyVYnaQdihxYW8Fhubq7O3j7xM3PbNiolkOjKmbjBaSvOPtvZzszMJEgCPOZFnaQdiB2CJMBjqampOrpmTWnLFqWW8+QJQBzU87Dtcr/H0UdX6D0ARI4XdZJ2IHZSAgmeR3Tz5s2qVauWNm3apD2Ck+MBvzn0UGnSJGn0aOmUU7zeGwCRtnGjVKeOu71tm0QmSwDwdWzApSgAAKItsa9HAkDCIUgC/IBhdgAAAL5BkAR4LCcnR51nzFBn29661evdARAFWVlZaiA5JSs7u/xtRefOTrFtAN7yok7SDsQOiRsAjxUWFmr69pOmQobkAAlrXSTaiunTQ9sAvOVFnaQdiB2CJMBjVatW1Vf77iv9/ruqsu4JgN21FV99FdoGkHx1knYgdgiSAI+lpaXpuNq1g3e83h0A0RCBXmKnrTjuuIjsDgDFZZ2kHYgd5iQBfkDiBgAAAN+gJwnwWH5+vr5cv97Z7p2fT6UEEl05L4o4bcWXXzrbvXv3ViWG5wKe8qJO0g7EDkES4LHc3Fyd9McfznZmXh6VEsCu24qTTnLbisxMgiQgCesk7UDsECQBHktNTVW3GjWshWX8K5DI9Txsu9zv0a1bhd4DQOR4USdpB2KHIAnwWLVq1TSlUydpwgSpShWvdwdAtOp50Z3yv8eU0LsA8JgXdZJ2IHa4FAX4AYkbgMTGGmgAEFcIkgA/4UQKAADAcwRJgMdycnLUffp0dbft3FyvdwdAFGRnZ6u15JTsnJzytxXduzvFtgF4y4s6STsQO8xJAjxWWFioH7dsCW0DSDyBQEBLwrbL3Vb8+GNoG4C3vKiTtAOxQ5AEeKxKlSoate++0u+/q0p6ute7A8DPbcWoUaFtAMlXJ2kHYocgCfCYravQt0EDJ0hSWprXuwPAp/MNnbaib9+I7A4AxWWdpB2IHeYkAX5C4gYAAADP0ZMEeKygoEDfb9zobB9ZWCj6koAEV86U/05b8f33zvaRRx6pNHqeAU95USdpB2KHIAnw2NatW3XMjBnOdmZurqp7vUMA/NtWHHOMs52Zmanq1WktgGSrk7QDsUOQBHgsJSVF+2VkWI5gZxtAgtbzsO1yv8d+7rvQVgDe86JO0g7EDkES4LGMjAzNOvhgaexYS1vj9e4AiIKMatU0K3Qno/xtxazQuwDwmBd1knYgdkjcAPgJiRsAAAA8R5AEAEAsMawWAHyPIAnwWE5Ojo6bPl3H2XZurte7AyAKsrOz1UFyim2Xu6047jin2DYAb3lRJ2kHYoc5SYDHCgsL9fWGDaFtAIknEAhodth2uduKr78ObQPwlhd1knYgdgiSAI9VqVJFb1h2nNmzVSU93evdAeDT+YZOW/HGG6FtAN7yok7SDsQOQRLgsUqVKql/48ZOkKRURsAC2E1b0b8/Xw+QxHWSdiB2OCMDAAAAgDD0JAEeKygo0NQtW5ztroWFSvN6hwD4t62YOtXZ7tq1q9LSaC2AZKuTtAOxQ5AEeGzr1q06eMoUZzszN1fVvd4hAP5tK2zhaWsrMjNVvTqtBZBsdZJ2IHYIkgCPpaSkqFXVqtbyOdsAErSeh22X+z1aue9CWwF4z4s6STsQOwRJgMcyMjK0+IgjJEsjWrmy17sDIAoyqlXT4tCdjPK3FYtD7wLAY17USdqB2CFxAwAAAACEIUgC/IBhdkByoK4DQFwgSAI8ZpMw+06bpr62nZvr9e4AiIKcnBwdJOmgQMDZLndb0bevU2wbgLe8qJO0A7HDnCTAY5bOc/Sff7rbhYVe7w6AKCgsLNTPYdvlbitGjw5tA/CWF3WSdiB2CJIAj1WuXFkv7LefNHu2KrPuCYDdtRUvvBDaBpB8dZJ2IHYIkgCPpaen65LmzZ0gSZWokgB201ZccglfD5DEdZJ2IHaYkwT4AZO5AQAAfCMugqRhw4apdevWqlq1qg455BBNnjzZ610CIsbmJ8zKzNQs22aeAYDdtRWzZjmlvPOaAMR3naQdiB3fj+15++23dcMNN+i5555zAqQnnnhCvXv31pw5c9SwYUOvdw+oMMt0tf+ECc52Zl6eqvOdAthVW7H//m5bkZmp6tVpLYBkq5O0A7Hj+yDpsccec8Z7Dho0yLlvwdKnn36ql19+WUOGDPF694CIqJ+eLuXlSb/8ItWrx7cKJJrVq1U/Am9Tv34k3gVApHhRJ2kHYiMlEAgE5FPbtm1TRkaG3nvvPScHfdCAAQO0cePGUNrFcLm5uU4J2rx5s1q0aKFNmzZpjz32iNm+A2Vy8snSJ5/wpQGJzjJgsR4aAHjGYoNatWr9bWzg656kdevWOfngGzVqVOxxu//HH3+U+Df333+/7r777hjtIRAh115rffVubxKAxHXqqV7vAQCgFHwdJJXHLbfc4sxh2rEnCfC1nj3dAgAAAM/5OrudjblMS0vTmjVrij1u9xs3blzi31SpUsXpOgsvgJ9t3bpV/fv3d4ptA0g8Ntm6R48eTrHt8qCtAPzFizpJOxA7vp6TZCyj3cEHH6ynn346lPqwZcuWuuqqq0qVuKG04w4Br2RlZalGjRrONhmrgMQUiXpOWwH4ixd1knag4hJiTpKxoXOWqKFbt25OsGQpwO1/kGC2OyDeVa5cWY8//nhoGwBoKwD/8+L3m3OG2PF9T5J55pln9PDDD2v16tXq3LmznnrqKaeHqTToSQIAeI2rvwDgD6WNDeIiSKoIgiQAgNcIkgDAHxJmuB2Q6Gye3dKlS51tm2+XmurrfCoAPEJbAfiLF3WSdiB2CJIAj1mmqzZt2jjbJG4AQFsBxAcvfr85Z4gdgiTABzIyMrzeBQBxUM9pKwB/8aJO0g7EBkES4DG78mTzFQAkrkjUc9oKwF+8qJO0A7HD5AcAAAAACEOQBAAAAABhCJIAj+Xm5uqSSy5xim0DSDxbt27ViSee6BTbLg/aCsBfvKiTtAOxwzpJgMdYPwVIfJGo57QVgL94USdpByqOdZKAOJGenq7//Oc/oW0AoK0A/M+L32/OGWKHniQAAKKMq78AEF89ScxJAgAAAIAwrJMEeCwQCGjdunXOdv369ZWSkuL1LgHwIdoKwF+8qJO0A7FDkAR4LDs7Ww0bNozpxE8A8Ye2AvAXL+ok7UDsJHyQZBF3cPwh4Efhq3Xb/6cFBQWe7g8Af9Zz2grAX7yok7QDFReMCYIxQtImbli+fLlatGjh9W4AAAAA8Illy5apefPmyRskFRYWauXKlapZs6bncz0scrWAzQ7K7rJpwH84dvGJ4xa/OHbxi2MXnzhu8YtjVzYW+mzZskVNmzZVampq8g63s3/87qJEL1iARJAUnzh28YnjFr84dvGLYxefOG7xi2NXepYC/O+QAhwAAAAAwhAkAQAAAEAYgqQYqlKliu68807nFvGFYxefOG7xi2MXvzh28YnjFr84dtGR8IkbAAAAAKAs6EkCAAAAgDAESQAAAAAQhiAJAAAAAMIQJAEAAABAGIKkGBo2bJhat26tqlWr6pBDDtHkyZNj+fFJb/z48Tr55JOdFZZTUlL04YcfFvtOLIfJHXfcoSZNmqhatWrq2bOn5s2bV+w169evV//+/Z0F22rXrq2LL75YmZmZxV4zY8YMHXnkkc5xbtGihR566KGk/+4r4v7779dBBx2kmjVrqmHDhurbt6/mzJlT7DVbt27VlVdeqXr16qlGjRo644wztGbNmmKvWbp0qU488URlZGQ47zN48GDl5+cXe83YsWPVtWtXJ1PQXnvtpeHDh3PsyunZZ59Vx44dQ4sbHnbYYfr88885ZnHogQcecNrM6667LvQYdc6f7rrrLudYhZf27duHnue4+deKFSt0/vnnO79jdg5ywAEH6Oeffw49zzmKByy7HaJv5MiRgcqVKwdefvnlwKxZswKXXHJJoHbt2oE1a9bw9cfIZ599Frj11lsDH3zwgWV0DIwaNarY8w888ECgVq1agQ8//DAwffr0wCmnnBJo06ZNICcnJ/Sa448/PtCpU6fATz/9FPj+++8De+21V6Bfv36h5zdt2hRo1KhRoH///oGZM2cG3nrrrUC1atUCzz//PMe5nHr37h145ZVXnO9z2rRpgRNOOCHQsmXLQGZmZug1l112WaBFixaBb775JvDzzz8HDj300MDhhx8eej4/Pz+w//77B3r27Bn49ddfnf8X6tevH7jllltCr1m4cGEgIyMjcMMNNwRmz54dePrppwNpaWmBL774gmNXDh999FHg008/DcydOzcwZ86cwNChQwPp6enOceSYxY/JkycHWrduHejYsWPg2muvDT1OnfOnO++8M9ChQ4fAqlWrQuXPP/8MPc9x86f169cHWrVqFRg4cGBg0qRJzu/Rl19+GZg/f37oNZyjxB5BUowcfPDBgSuvvDJ0v6CgINC0adPA/fffH6tdQJgdg6TCwsJA48aNAw8//HDosY0bNwaqVKniBDrGTpzt76ZMmRJ6zeeffx5ISUkJrFixwrn/3//+N1CnTp1Abm5u6DU333xzYJ999uH7j5C1a9c6x2HcuHGh42Qn3++++27oNb///rvzmokTJzr3LShKTU0NrF69OvSaZ599NrDHHnuEjtW//vUv5+Qi3DnnnOMEaYgMqxsvvfQSxyxObNmyJdCuXbvAmDFjAkcffXQoSKLO+TtIsgt5JeG4+ZedJxxxxBG7fJ5zFG8w3C4Gtm3bpl9++cUZvhWUmprq3J84cWIsdgF/Y9GiRVq9enWxY1SrVi1nWGTwGNmtDbHr1q1b6DX2ejuWkyZNCr3mqKOOUuXKlUOv6d27tzM8bMOGDRyHCNi0aZNzW7duXefW6lZeXl6xY2fDS1q2bFns2NnQhUaNGhU7Lps3b9asWbNCrwl/j+BrqKMVV1BQoJEjRyorK8sZdscxiw82hNWGqO5YLzh+/mbDxG1Yedu2bZ3h4TbU2HDc/Oujjz5yzi3OOussZzh4ly5d9OKLL4ae5xzFGwRJMbBu3TrnJCH8BM3YfTsxh/eCx2F3x8hurfEKV6lSJedkPfw1Jb1H+Geg/AoLC515Ed27d9f+++8f+l4tKLUAdnfH7u+Oy65eY4FUTk4Oh60cfvvtN2eOmM3xuuyyyzRq1Cjtt99+HLM4YEHt1KlTnTmBO6LO+Zdd2LO5lF988YUzL9BOrm2O7JYtWzhuPrZw4ULneLVr105ffvmlLr/8cl1zzTV69dVXnec5R/FGJY8+FwDKdWV75syZ+uGHH/j24sA+++yjadOmOb1/7733ngYMGKBx48Z5vVv4G8uWLdO1116rMWPGOAloED/69OkT2rbEKRY0tWrVSu+8846TDAD+vQBoPUn33Xefc996kuy37rnnnnPaTXiDnqQYqF+/vtLS0nbKtmX3GzduHItdwN8IHofdHSO7Xbt2bbHnLTuaZbwLf01J7xH+GSifq666Sp988om+++47NW/evNixsyGtGzdu3O2x+7vjsqvXWGY2Ti7Kx3r4LEvggQce6PRIdOrUSU8++STHzOdsWJa1dZbp0XrLrVhw+9RTTznb1sNKnYsP1sO+9957a/78+dQ7H7OsutbLHm7fffcNDZXkHMUbBEkxOlGwk4Rvvvmm2FUDu2/j8+G9Nm3aOI1Q+DGyYVY21yh4jOzWTsTtBCLo22+/dY6lXa0LvsZSjdscmSC7GmtX1OvUqRPTf1OisDwbFiDZUC37vu1YhbO6lZ6eXuzY2Rww+3EJP3Y29Cs8yLXjYgFQ8IfJXhP+HsHXUEcjx+pKbm4ux8znjj32WKe+WC9gsNhVbpvfEtymzsUHW6JiwYIFzkk4baV/2RDyHZe2mDt3rtMLaDhH8YhHCSOSMgW4ZUobPny4kyXt0ksvdVKAh2fbQvQzNVn6Zyv2v/5jjz3mbC9ZsiSUXtOOyejRowMzZswInHrqqSWmAO/SpYuTovOHH35wMj+FpwC37EGWAvyCCy5wUh3bcbe00qQAL7/LL7/cSc0+duzYYmlts7Ozi6W1tbTg3377rZMC/LDDDnPKjinAe/Xq5aQRt7TeDRo0KDEF+ODBg53seMOGDSMFeAUMGTLEyUC4aNEipz7ZfcsE+dVXX3HM4lB4djtDnfOnG2+80Wkrrd5NmDDBWfbAljuwrKCG4+bfVPuVKlUK3HvvvYF58+YFRowY4fwevfHGG6HXcI4SewRJMWTrrtiJnK2XZCnBba0dxM53333nBEc7lgEDBoRSbN5+++1OkGMB7bHHHuus7xLur7/+coKiGjVqOOmjBw0a5ARf4WyNJUvlae/RrFkzp2FD+ZV0zKzY2klBFsheccUVTopp+2E57bTTnEAq3OLFiwN9+vRx1q2ykwY7mcjLy9vp/5HOnTs7dbRt27bFPgNlc9FFFznrfth3aQGp1adggMQxi/8giTrnT7ZsQZMmTZx6Z78/dj98rR2Om399/PHHzsU8O3do37594IUXXij2POcosZdi//GqFwsAAAAA/IY5SQAAAAAQhiAJAAAAAMIQJAEAAABAGIIkAAAAAAhDkAQAAAAAYQiSAAAAACAMQRIAAAAAhCFIAgAAAIAwBEkAAN/r0aOHrrvuutD91q1b64knnojqZ/71119q2LChFi9e7NwfO3asUlJStHHjxoh+zpAhQ3T11VdH9D0BABVDkAQAiIiBAwc6QYSV9PR0tWnTRv/617+0devWiH/DU6ZM0aWXXqpouvfee3Xqqac6AVk03XTTTXr11Ve1cOHCqH4OAKD0CJIAABFz/PHHa9WqVc4J/+OPP67nn39ed955Z8S/4QYNGigjI0PRkp2drf/973+6+OKLFW3169dX79699eyzz0b9swAApUOQBACImCpVqqhx48Zq0aKF+vbtq549e2rMmDHFhrD169dPzZo1c4KcAw44QG+99Vax98jKytKFF16oGjVqqEmTJnr00Ud3+pzw4XY2HM56r6ZNmxZ63obE2WM2RM5s2LBB/fv3d4KratWqqV27dnrllVd2+e/47LPPnH/LoYceuttAqk+fPurevbvzecH9eOedd3TkkUc6n3PQQQdp7ty5Ts9Xt27dnH+T/c2ff/5Z7L1OPvlkjRw5slTfMQAg+giSAABRMXPmTP3444+qXLly6DEbenfggQfq008/dZ63IXMXXHCBJk+eHHrN4MGDNW7cOI0ePVpfffWVE+hMnTq1Qvty++23a/bs2fr888/1+++/O7021oOzK99//72zn7tiQdFxxx2nwsJCJwisXbt26DnrObvtttucfa5UqZLOO+88Z9jhk08+6bzv/PnzdccddxR7v4MPPljLly8PzX8CAHirksefDwBIIJ988onTW5Kfn6/c3FylpqbqmWeeCT1vPUg2ByfIEhZ8+eWXTu+LBQqZmZnOMLc33nhDxx57rPMam6/TvHnzCu3X0qVL1aVLF6c3x/zdPKMlS5aoadOmJT63evVqnXPOOU5v1JtvvlksCDT277Phc+baa691es6++eYbp8fJ2BC+4cOHF/ub4GfZ50Z7DhQA4O8RJAEAIuaYY45xemlsyJzNSbKelDPOOCP0fEFBge677z4nKFqxYoW2bdvmBFPB+UULFixwHjvkkENCf1O3bl3ts88+Fdqvyy+/3NkP693p1auXMxTw8MMP3+Xrc3JyVLVq1RKfsx4kC+jefvttpaWl7fR8x44dQ9uNGjVybm1YYfhja9euLfY3NjQvOIQPAOA9htsBACKmevXq2muvvdSpUye9/PLLmjRpktMzFPTwww87w85uvvlmfffdd848Iut1scCovKy3ygQCgdBjeXl5xV5j84Csl+b666/XypUrnV6q8B6tHdlQPJvHVJITTzxR48ePd4bvlcQy+wXZHKWSHrNheuHWr1/v3NqcKQCA9wiSAADR+YFJTdXQoUOd+TnWM2MmTJjgpNU+//zznUCqbdu2TmKDoD333NMJKCy4CrJgJfw1OwoGFpZVLyg8iUP46wYMGOAM5bOkDy+88MIu39OG5u0qCHrggQec97FAa1evKSubn2X/7g4dOkTk/QAAFUOQBACImrPOOssZkjZs2DDnvs3jsUQHltDBEij885//1Jo1a0Kvt/lMNmfHkjd8++23TvBg6y8Fe4tKYkPVLAudBS/2npb0wQKzcJYowRJBWNKEWbNmOXOn9t13312+p/Vu2et21Zv0yCOPONny/vGPf+iPP/5QRVlCh2BGPACA9wiSAABRY3OSrrrqKj300EPOPCULXrp27eoEIT169HDShdv8oHA2JM8CBkuLbSnEjzjiiN1mmjM2tM+SRdjrrrvuOv3nP/8p9rwlV7jllluc+UJHHXWUE7jtLuW2zSGy/bS5U7tic67OPvtsJ1DaXU9Xadi+XHLJJRV6DwBA5KQEwgdxAwAAh6Uptx4t683aXU9WRVla8htvvFEzZsxwgkoAgPdojQEA2EWChnnz5jlZ+Gxx3GixHjZb2JYACQD8g54kAAAAAAjDnCQAAAAACEOQBAAAAABhCJIAAAAAIAxBEgAAAACEIUgCAAAAgDAESQAAAAAQhiAJAAAAAMIQJAEAAABAGIIkAAAAAFCR/weXHSE8PkYztQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(0, 6371, 0.5)\n", + "ax.plot(rs, prem.vp(rs), 'b', label='Vp')\n", + "ax.plot(rs, prem.vs(rs), 'r', label='Vs')\n", + "\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Seismic velocity (km/s)')\n", + "ax.legend()\n", + "\n", + "ax.axvline(1221.5, ls=':', c='k')\n", + "ax.axvline(3480, ls='--', c='k')\n", + "ax.axvline(3630, ls=':', c='k')\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.558227707897195\n", + "3.5274008549889566\n", + "3.4657471491724787\n", + "3.4060505248782986\n" + ] + } + ], + "source": [ + "print(prem.vs(1000.0))\n", + "print(prem.vs(1000.0, t=10.0))\n", + "print(prem.vs(1000.0, t=1000.0))\n", + "print(prem.vs(1000.0, t=60*60*24))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "11.10541122721928\n", + "11.113289239204116\n", + "11.12904526317379\n", + "11.14430114164584\n" + ] + } + ], + "source": [ + "print(prem.vp(1000.0))\n", + "print(prem.vp(1000.0, t=10.0))\n", + "print(prem.vp(1000.0, t=1000.0))\n", + "print(prem.vp(1000.0, t=60*60*24))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAI1CAYAAAA6iQAVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxp5JREFUeJzs3Qd4U3UXBvCXvWXvJXtPUWQpyhaZAoIogiCi+IkLUWQKIuIWZDkAJ4gCKgoCCiIyZQ9FliBb2aVlNt/z3n9vc5OmpS1Jm7Tv73kuvUlvkzT0tjk5539OGpfL5YKIiIiIiIhcl7TX9+UiIiIiIiKi4EpERERERMRPlLkSERERERHxAwVXIiIiIiIifqDgSkRERERExA8UXImIiIiIiPiBgisRERERERE/UHAlIiIiIiLiBwquRERERERE/EDBlYiICIC///4badKkwaZNmxL8fPz000+oVKkSrl69al0eMWIEatas6ffn9dZbb8XXX3+t/y8RkSCl4EpERJJdz549rcCGW4YMGVCwYEE0a9YMH330ESIjIwNyf+3bt/fb7T333HMYMmQI0qVLh0DifTz//PMBeU5EROT6KbgSEZGg0LJlSxw5csTKIC1YsAB33HEHBgwYgLvvvhtXrlxBsFqxYgX27NmDe+65J+D31apVK5w7d856fkREJPgouBIRkaCQKVMmFCpUCEWLFkXt2rUxePBgfPPNN1YgMX369OjjTp8+jT59+iB//vy44YYbcOedd2Lz5s3Rn7dL8qZMmYLixYsja9as6NKlC86cORP9+RkzZli3bWfLli1bFv31e/futQI7fl2NGjWwatWqOB/3zJkzrSxb5syZYz2GwVfp0qXx+OOPw+VyWd9Prly5MH/+fFSoUMG6r06dOiE8PNx6bDfeeCNy586NJ554IrrUkJgZu+uuu6z7FBGR4KPgSkREghYDJwY4c+bMib6uc+fOOH78uBV0rV+/3grEmjRpgpMnT0Yfs3v3bnz55Zf47rvvsHDhQmzcuBGPPfaY9blnn33WCrbsTBm3+vXrR3/tiy++aB3DtVfly5dHt27d4syc/frrr6hTp06sn9+yZQsaNmyI++67DxMmTLCCOWIg9e6771qBEh8jA7wOHTrghx9+sLZPPvnEChC/+uorj9u75ZZbrPsUEZHgkz65H4CIiEhcKlasaAUodgne2rVrreCKmS56/fXXMW/ePCsI6du3r3XdhQsX8PHHH1tZMBo/fjxat26NN954w8qOZcmSBRcvXrT2vTGw4rE0cuRIVKlSxQrW+Dh82b9/P4oUKeLzcytXrrTKGhmwPfPMMx6fu3z5MiZNmoQyZcpYl5m5YkB17NgxZM+eHZUrV7YyaEuXLsW9994b/XW8r3/++cdad5U2rd4jFREJJvqtLCIiQY1ldHa2h+V/YWFhyJs3rxWA2Nu+ffus0jtbiRIlogMrqlevnhWM7Ny585r3V7169ej9woULWx8ZzMUmIiLCZ0nggQMHrHLBYcOGxQisiKWAdmBFbOLBckB+P87rvO+bgSG/FwaHIiISXJS5EhGRoPbHH3+gVKlS1j4DKwY8zjVSNq5h8gd2K7TZQV1c3fny5cuHU6dOxbiea8KYZfriiy/w0EMPWevDYrsf+758Xed93yx/zJYtmxVkiYhIcFHmSkREgtbPP/+MrVu3Rnfi4/qqo0ePIn369ChbtqzHxiDHmTU6fPhw9OXVq1dbJXRsHkEZM2b0aBRxPWrVqoUdO3bEuJ7BDxtWMKvVokULq8ufP2zbts26TxERCT4KrkREJCiwzI2B06FDh7BhwwaMGTMG7dq1s9Ys9ejRwzqmadOmVokfZ1QtWrTIatvOdU1c0/T7779H3xYDmgcffNAqI2TzB3bdYxMLe40Vy++4jotlgv/995+1/imxGDhxLZgvzDB9//33VjDINurMvF0vfj/Nmze/7tsRERH/U3AlIiJBgR3zWPLHwIed/NjIgd302DLdHs7LMjl20rvtttvQq1cvq5tf165draYSXJ9kYyarY8eOVttyBiJcRzVx4sTozz/88MNWFotd/li+99tvvyX6cXfv3h3bt2+PdT0X11CxsyHXjrFRxvnz5xN9Xww8GUzyexcRkeCTxsXf9iIiIikE51ixeyBbqSeVgQMH4uzZs1br9EAaNGiQtb5r6tSpAb0fERFJHGWuRERErhPLEkuWLBln4wt/KFCgAEaNGhXQ+xARkcRTt0AREZHrxE6FgwcPDvjz6Kulu4iIBA+VBYqIiIiIiPiBygJFRERERET8QMGViIiIiIiIHyi4EhERERER8QMFV17OnTuHJ5980ur6lCVLFtSvXx/r1q2L/jw71w8bNsyaxcLPc6Dlrl27PG7j5MmT1tyTG264wVrk3Lt3b78MjkwJrl69iqFDh6JUqVLW81emTBmr85VzIoCe48TjfCDOAfLe+vfvb33+woUL1n7evHmt2Tv33HMPjh075nEbBw4csGbxZM2a1epMxhbTV65cuY5HlbJwztD9999vPYf8Ga5WrZrH8Fr9/F5fC3Xvn92KFStGf14/v/41duxY6znm3zw9x9dv0qRJ1jw1/u3nxmHXnG+m59Y/XnnlFdx8883IkSOH9beJg8S9Z8vpd8T1Wb58Odq0aYMiRYpYvxs40sJJf9/iiXOuxK1Lly6uypUru3755RfXrl27XMOHD3fdcMMNroMHD1qfHzt2rCtnzpyuefPmuTZv3uxq27atq1SpUq6IiIjo22jZsqWrRo0artWrV7t+/fVXV9myZV3dunXT0+xyuV5++WVX3rx5XfPnz3ft27fPNXv2bFf27Nld77zzTvTzo+c48Y4fP+46cuRI9LZ48WJGra6lS5dan+/Xr5+rePHirp9++sn1+++/u2699VZX/fr1o7/+ypUrrqpVq7qaNm3q2rhxo+uHH35w5cuXz/XCCy/o59flcp08edJVsmRJV8+ePV1r1qxx7d271/Xjjz+6du/erZ9fP+Dv2ypVqnj8DP/777/Rn9fPr/+sXbvWdeONN7qqV6/uGjBggJ5jP/j2229d33//veuvv/5y7dy50zV48GBXhgwZXNu2bbM+r5/f69OiRQvXtGnTrOdz06ZNrrvuustVokQJV1hYmH5+/YR/81988UXXnDlzrNcOc+fO9fi8Xp/Fj4Irh/DwcFe6dOmsF/5OtWvXtn7YIiMjXYUKFXK99tpr0Z87ffq0K1OmTK4vvvjCurxjxw7rB3LdunXRxyxYsMCVJk0a16FDh1ypXevWrV0PPfSQx3UdO3Z0de/e3drXc+xffNFUpkwZ63nlzyr/0DOgtf3xxx/Wz+uqVauif7GmTZvWdfTo0ehjJk2aZL3BcPHiRVdqN2jQIFfDhg1j/bx+fq8/uOIbU77o59d/zp075ypXrpz15svtt98eHVzpOfa/3Llzuz744AM9twF6M5F/v/hmOOnn17+8gyv9fYs/lQU6sPSJZWuZM2f2yO6x9GfFihXYt28fjh49apUC2nLmzIm6deti1apV1mV+ZClgnTp1oo/h8WnTpsWaNWuQ2rHM8qeffsJff/1lXd68ebP13LZq1cq6rOfYfy5duoRPP/0UDz30kJXeX79+PS5fvuzx88uSqxIlSnj8/LLMrWDBgtHHtGjRAmfPnsX27duR2n377bfWud25c2erLKVWrVp4//33oz+vn9/rxzJrlqSULl3aKq9mmSrp59d/WBrM0l/n7wI9x/7F1xIzZ87E+fPnrfJA/fz635kzZ6yPefLksT7qOQ4s/X2LPw0RdmAdL38Jcg1QpUqVrBeYX3zxhfWCs2zZslZgRc4XnvZl+3P8yBddHk9y+vTWyW8fk5o9//zz1gt1vqhPly6d9Qfo5Zdftl5EkZ5j/2Gt9OnTp9GzZ8/o5zZjxoxW8B/Xz6+vn2/n/01qtnfvXmtdxdNPP20NjOV6zCeeeMJ6Xh988EH9/F4nvlE1ffp0VKhQAUeOHMHIkSPRqFEjbNu2TT+/fsIX/Bs2bPBYS2zT74jrt3XrVut1BNf+cF3r3LlzUblyZWzatEm/f/0oMjLSWivYoEEDVK1a1bpOP7+Bpddn8afgyssnn3xivdNftGhR68V/7dq10a1bN+sdEbl+X375JT777DN8/vnnqFKlivUHh78g+U41X5yK/3z44YdWRpDPrfjvDzozV2PGjLEuM3PFF/6TJ0/Wz68f2BlsYmMABltsLsTfG6wgkOvzzz//YMCAAVi8eHGMCg3xD74xwL9rzKp89dVX1u+FX375RU9vALKv/N3LyheRYKOyQC/sXsdfhOzuxz9Ea9eutUqpWKJSqFAh6xjv7mq8bH+OH48fPx6j3JAdBO1jUjN2nmP2qmvXrlb52QMPPICnnnrK6gJEeo79Y//+/ViyZAn69OkTfR2fW5YKMpsV18+vr59v5/9NasYuoXwX2olZbrt0TT+//sUsa/ny5bF79279/PoB3yTk3ye+aciKCm78e/fuu+9a+8xS63fE9WEWm5UuN910k/V3rUaNGnjnnXf08+tHjz/+OObPn4+lS5eiWLFi0dfrb1xg6e9b/Cm4ikW2bNmsF1KnTp3Cjz/+iHbt2lntw/nDxTVDNpa4cS0VywCIH/ni1Znp+vnnn613vPkubGoXHh5urT9zYoaQzw/pOfaPadOmWeWpXFdh4x/7DBkyePz8so0tAwPnzy/LWpxvEPBdbrYV9g4qUiOWoHi3/uX6QWZXSD+//sU3ufbs2WP9LtbP7/Vr0qSJdX4zs2JvzMSyLNve1+8I/+LftosXL+rn1w/YY4GBFUst+bqKv2+d9DsisPT3LQES0PwiVVi4cKHV3Y8tlhctWmR1rqpbt67r0qVL0W0oc+XK5frmm29cW7ZscbVr185nK/ZatWpZrZpXrFhhdWVSK3bjwQcfdBUtWjS6FTvbfbLV93PPPRf9/Ok5vj5Xr1612tOys503tgLm537++WerFXu9evWszbsVe/Pmza1Wtzwf8ufPr1bsjvbV6dOnt0YKcFTDZ5995sqaNavr008/1c+vHzzzzDOuZcuWWb8bfvvtN2skAH8/sCuYfn4Dw9ktUM/x9Xn++eetznX8+eXrA15mp2C+ltBze/0effRRaxQOf0c4xzWw07NNf+Ouv5Mox7BwY4jw5ptvWvv79++3Pq/XZ/Gj4MrLrFmzXKVLl3ZlzJjRarvev39/q72nsxXl0KFDXQULFrRasDdp0sSaZ+F04sQJK5ji/Ca2sO7Vq5f1Aysu19mzZ60/5HyBnzlzZuu5Zpt7Z5tvPcfXh3OX+EvR++eS+CbAY489ZrUHZlDQoUMH64+T099//+1q1aqVK0uWLNYLW77gvXz5sn58o3z33XdWAMrzv2LFiq6pU6d6PDf6+U28e++911W4cGHr9y/fhOFl5wwx/fwGPrjSc5x4HDPCOXj8+eWbUnx9YAdWem6vH/+u+do4+0rPsX9wJqav55hvjJP+vsVPGv6TkEyXiIiIiIiIxKQ1VyIiIiIiIn6g4EpERERERMQPFFyJiIiIiIj4gYIrERERERERP1BwJSIiIiIi4gcKrkRERERERPxAwdV14NT1ESNGWB/F//T8BpaeXz2/oUw/v3p+Q5l+fvUchzr9DMdOc66uw9mzZ5EzZ06cOXMGN9xww/XclOj5TXL6+dXzG8r086vnN5Tp51fPcajTz3DslLkSERERERHxAwVXIiIiIiIifpDeHzeS0ly9ehV//fUXsmfPjjRp0sR63Llz56yPhw4dstKj4l96fgNLz6+e31Cmn189v6FMP796jkNdavsZdrlcCAsLQ/ny5ZEuXbo4j9WaKx/++OMPVK5cOVD/PyIiIiIiEmJ27NiBSpUqxXmMMlc+FC5cOPoJzJEjR2D+d0RSgStXrmDJkiXWftOmTZE+vX7liAQ7nbciIjEzdUy82DFCXJS58kEdUET84/z581Z5LTGdni1bNj21IkFO562ISOJjA72NLCIBkzZtWtSvXz96X0SCn85bEZHEU+bKB2WuREREREQkobGB3koWERERERHxA5UFioiIiIjEMp7n8uXLem5SuHTp0llNt+IawRRfCq5EJGAiIiJw2223WfvLly9HlixZ9GyLBDmdtyKIbsR08OBBa8aRpHxZs2a1ugFmzJjxum5HwZWIBExkZCR+//336H0RCX46b0VMxoqBFV9w58+f3y8ZDQlODJ4vXbqEf//9F/v27UO5cuWuqwmXgisRCZhMmTJh/vz50fsiEvx03orAKgXki24GVqq6SPmyZMmCDBkyYP/+/VaglTlz5kTfloIrEQkY1i+3bt1az7BICNF5K+KmjFXqkdZPI2PULVBERERERMQPlLkSkYDWrP/888/W/p133ml14xGR4KbzVkQk8RRciUjAXLhwAc2bN4/uupQtWzY92yJBTuetiEjiqSxQRAJav1yjRg1r81cts4gEls5bkdBdHxbXNmLEiIA0/hg0aBCqVatmvYFapEgR9OjRA4cPH0ZqpcyViAS0+86mTZv0DIuEEJ23IqHpyJEj0fuzZs3CsGHDsHPnzujrsmfP7vf7DA8Px4YNGzB06FDrjdRTp05hwIABaNu2bfQoltRGwZWIiIiISFw4SDg8PHmeo6xZmZa65mGFChWK3s+ZM6eVrXJeFwi8n8WLF3tcN2HCBNxyyy04cOAASpQo4fPrvvrqK4wcORK7d++2ZonVqlUL33zzTYpYPqDgSkREREQkLgysApD5iZewMCCAQUe/fv3w6aefXuMhhMX79s6cOWMFdrly5Yo1w9atWzeMGzcOHTp0wLlz5/Drr79ac8VSAgVXIhIwERERaNWqlbW/YMECDWIUCQE6b0VSl5deegnPPvus3xriDBo0yAqebrjhhliDqytXrqBjx44oWbKkdR3XbKUUCq6C3Y8/AleuAJUrA/wBVFMACSGRkZH45ZdfovdFJPjpvBWJpTQvAdkbv993ABUoUMDa/NHcokuXLlYGatKkSbEex7VZTZo0sQKqFi1aWF2FO3XqhNy5cyMlUHAV7EaNAn77zexnyQJUqmQCLedWujSg+UEShDJlyoQvv/wyel9Egp/OWxEfuOYpBawHClRZoB1Y7d+/35pvGVvWijjzkuu0Vq5ciUWLFmH8+PF48cUXsWbNGpQqVQqhLo0rpRQ4+tHZs2etBXqsGY3rhyNJ9OsHrFoF/PkncOmS72P4orVChZhBV9myQIYMSf2IRUREREIay9v27dtnvdjPnDkzQs306dPx5JNP4vTp09c89vjx49Zr37iU5WvKawRWu3btwtKlS5E/f/4EDy5neeDTTz9tbcH4f56Q2ECZq2A3ebL5yNLAffuAHTs8tz/+YIE8sGWL2ZzSpwfKl48ZdPE6ZRFEREREUr3rKQtkYMWSPrZjnz9/vhUoHT161Ppcnjx5kDFjxhhfwwzVTz/9ZJUD8n55+d9//0UlVmelAAquQgEDKEbQZcoA5coB7dq5P8d1LPv3xwy6uDGFa+87cd0W34HwDrqY/QpwXa+kLvwlu3r1amv/1ltvtUoBRCS46bwVkfg6dOgQvv32W2u/Zs2aHp9jFqtx48YxvoaZn+XLl+Ptt9+2MkLMWr3xxhvRDbBCncoCg70skO66i63WzJqrihV9r7lilsqJ1Z4HD8YMuLZvZ4/M2OuJWevqffu8zxw5kuRblZTl/Pnz0UMLWa+dEuZXiKR0Om9FQr8sUBJOZYGpDdOqLP/buNFs3p9j1snZ7KJuXYCD24oXB1q08Ay6mK71FXSdOAHs3Wu2+fM974O35R108f5imWEgQpxzYddpc19Egp/OWxGRxFPmKhQyV//8Y7JWp06511k511z5mhg+Zgzwwgvur58yBahVC7jnntjv5/hx3+WFx47F/jVFisQMuPgxXz4/fOMiIiIiSU+Zq9TnghpapCKPPWYySYULu4OY+vWBPn1MxooZLWewxY/Outf164GXXwZuuskzuHr8cdNW1Fn+x9pY7/pYZrScAZ29HToEHD5stiVLPL+GnWLs261Sxb3PBZPKYIiIiIhICqSGFqHg5Enz8cgRs/30k/tzXM/C9pk33mjWZv3wA3DffSaQYQkgA5miRYG+fU1pn43dB6dOZZsX3+V/zhJD7jdsaDYnrt3yFXSxwca//wIcHhs1QDZanjzugMveeLlgQQVdIiIiIhLS0gdDl5FBgwZhwYIFCA8Pt9ZnTJs2DXXq1PF5/Jw5c6ypz5s2bcLFixdRpUoVjBgxwprwbOPlkSNHenxdhQoV8CdnRYWi774zgdKuXTGDGe+g5NlnzTGUM6dnyV716u7jGFS99Zbn7bH878ABsy1c6PkY7KzZK68AN9/sDuxuvdVsTuxSyOfaO+jiWi4GiitWmM076HIGXHbQpUxXyKfY74nKln799ddaFCwSAnTeioiEaHB16tQpNGjQAHfccYcVXHHoGAeQ5c6dO9avYevGZs2aYcyYMciVK5cViLVp08bqkV+La4qiMOha4ihVS+/dTS+UPPSQ6Rb44YdAr17muvPnzdwr5yRrBmBVq7KPLrB7t8kscQAxN6pRA9i0yexzDRfL+YoVA5o3N4EM15f99VfMOVrsOmhnzZyttN97Dxg1ymTFWHZoP4Zz50wJoneAzPJFBl1snmE30eBmB12//mo2p7x5YwZd3BI4oE6Sr6XzD8ymRu2LSPDTeSsiknjJGnG8+uqrKF68uBUg2djyMi7sie/EIOubb77Bd9995xFcMZgqVKgQUgQGH5cumeyRbc0aoEkTMxB4505zHTNY//ufWUfFmVjMQDkzU2zZbuML3TfeAC5edF/HwcJcw8VA6447+GSb6xmk2Zkorsuy8bb/+8/zsTIAYxkiuwh6dxfkxrVgjv8nCxty+Aq6GDxyvdfy5WZzYsMMX5kuBV1BhcMD7fPb1yBBEQk+Om9FREI0uOLQMZbzde7cGb/88guKFi2Kxx57DA8//HC8byMyMhLnzp2zpkA7MQNWpEgRqwypXr16eOWVV1DCuebIgeWF3JzdAoMKs01cx8QSQBuDGmaaGAw5PfqoCUyYLeAwtmrVTHDGtU/OoIbB2rBhnhmqCxeALVvMxjVZzEgR76d/f6BkSXNbdqDErBX/r5yZRn6eQ4pPnwZWrjSbE0sJnU0u7MCIj6127ZhBlx0c2gGXHXTx+/e1povBla+gS90Lk0WGDBnQs2fP5LlzEUkUnbciIiHait0eyvb0009bAda6deswYMAATJ48GQ8++GC8bmPcuHEYO3astZ6qANfngBV0C6yBpVxndeTIEWv9Fdd2bdu2DTl8DMP1tUaLgqYVe2z4X8fywKghrdZllvhxDtbvv5smF/T++yZQ4ro051qqcePMuiyuiWGAxADODrQ4m6hDB3crd1+BKYMoZhr54nnIEPdjYIkfSw6911yx5JBBW2xt4O2sE7NU/L5YVugrE8XP2Zkue+PtM+iKDX82fAVdLDsUERERcVAr9tTngp9asSdrcMXSAzauWOnIbjzxxBNWkLXKXicUh88//9zKcrEssGnTprEed/r0aZQsWRJvvvkmevfuHa/MFcsVgz64iovdKZDmzAEmTQJuuw0YOtRcFxlpgjKug2JZIcsL6ccfgXnzTCDWvr07g8S1UM4SQwY0zE7RoEHA2LFmn00xWI7JLJd310EGbOwi6MxEcZ/zu9jW3da6tcm8TZxoMnHENWR8XHZgxOHI3i3dGXTxMTpvmx///jv254nZQGbNGFzfcotfnnrxXLuxdetWa79atWpI51yzJyJBSeetiIKr1OhCSphzVbhwYVTmi26HSpUqWV3FrmXmzJno06cPZs+eHWdgRWx8Ub58eezmC3QfMmXKZG0pijPw6NjRbE4sAWSpHzNAzrVYP/8MTJ5sGlfYwRWbX7z2mgmY+JElmAzeGEgxgOEgYZu9/otZMG5sxOH04ovA6NFAp04maNuwwXMdFzEIYwDl7G7IbNbAgdcuL/TVSIPdC+2gyxnY8fHxe2A2b/Fi89iYgcuQIWHPtcT5i8peC8lscjauBxSRoKbzViQ0pbnGHNHhw4db1Vr+dPnyZQwZMsRqXrV3714rAOHrclaVcXmO7eTJk/jf//5n9UhImzat1Un4nXfeQXa7+ioFSdbgip0Cd9ovxqP89ddfVpYpLl988QUeeughK8BqzSzHNfBF3Z49e/DAAw9c92NOMbJmNYGSt5YtTWDVqJH7Onu2Fq9nNol4ArNRAQNhDjm2AyRmxxiw2F0Hndkudh10/t+yfNG+H7vVux0sde5s1ovZ2NWQ1/F2+DPDgGntWrM5OYMuruHioGRex/bxdgt5G7sa8vGxcccXXwAvvWSGNX/yibkN8csvevuX67V+6YtIcNB5KxKauBTGNmvWLAwbNszjdXYgAhmOUdqwYQOGDh2KGjVqWJ3AucSnbdu2+J1LVKJ0797denyLFy+2ArJevXqhb9++VhVaiuNKRmvXrnWlT5/e9fLLL7t27drl+uyzz1xZs2Z1ffrpp9HHPP/8864HHngg+jKP4de89957riNHjkRvp0+fjj7mmWeecS1btsy1b98+12+//eZq2rSpK1++fK7jx4/H63GdOXOGpZLWR3G5XGfPulwzZ7pcb7/t+XTccw/zVy7Xm2+6r+NznDGjy1W9ust16ZL7+v/+c7n+/dflOnfOfd0PP7hcxYub2/C1jR/vPvbvv12uyZNdrl9/dbmOHnW5tm93uWbPdrlGjHC5Ond2uSpXdrnSp/f8+po1PR/v/fe7XL16uVx798b8b+X3lzu3+bpMmcz3dPWq/vtFRERSoYiICNeOHTusjx7CwhK+Xb7s/nru87rw8PjdbiJNmzbNlTNnTldyvb4H4Nq/f791mc8jL69bty76mAULFrjSpEnjOnTokM/biIyMdA0fPtxVvHhxV8aMGV2FCxd2/e9//0ue//MExgZpkzOwu/nmmzF37lwrE1W1alWMGjXKarXO6NbGKPcAW4pHmTp1Kq5cuYL+/ftbZYX2xijZdvDgQXTr1s1qaNGlSxfkzZsXq1evtuZoSSKwCci99wKO5zi6IQbXc7Vp476OmSB2ImTHRWd5HVvEcy3WZ5+5r2O7d2aK2Mxi9Wrgo4+AZ54x2TM20ODMLhu7AvbrZzJdvB22oec6MrZq5z5L+1hmyHK/L79klxIzH8zGRhq83tH23/L66ybbxtvcts10WOT6u6efNrfL0kERERERYvYnodvcue7njvu8jq83nNiEzNfXJoF+/fpZWa24toQ4c+aMlQHnshxiHwXus8+CjaWDLA/knFpfuETorbfewpQpU6wO4PPmzbPWboeCZJ+se/fdd1tbbKZPn+5xedmyZde8TZYLShLgWi3nei1q2NC0Y2fjCicGKZyt5VyftXkzcOutpjkFA+i6dc31DLS4zsvZZp5d/fiLiMETjz161GxcI0Zc28XbYTkfgzW2amezCjbi4HUMED/91AR/ztLEdevMMQz0nnrKlDl+/LEJrvizxhP53XcBdq9UWZuIiIikMC+99BKeffZZv63ZHDRokJXksBs/HD16NLqjt3MeLcco8XO+MLHCebUMwjgeguOUbgmRxmPJHlxJCmO3Z/ceBr1ihWnPHvUuhoVBEFvBe8/qeuIJE/TMnm0aXxCHD99/v2lyweDIe/6VM8vFgGvCBM/bZKBlr+dicGa3qeesLgZeH34IvPmmCdK45oqBHwMqdrLs1ct0Kpw61bR0lwT9krXXOn7yyScxuu+ISPDReSsSB675Tihn0zSOueFt8PWSU1ydjQOMgY938JMYXEvVpUsXLjnCJFYXXQeOaGI1W+nSpdGyZUvcddddaNOmjRWUBbtkLQuUVIRZn6JFAWe3OJYTsg27M11uZ6kYhDEYsjGLxHJRNs9gMMR3Lzhfi50F77vPZLpszELxHZi77nJnqdhkww66Ll92H7tokWm08cYbpjSQQRuzaVxgySYebDHP8sZvvjEBHIMsSVBL56+++srauC8iwU/nrUgc+DomoZszIOA+r3O+bonrdkOkLNAOrPbv3281rXC2K2cG6jjfUHfgEh92EOTnfOFIJDbjmDhxIrJkyYLHHnsMt912m3U/wS74wz9J+UGX90nL7JH3+DX+gmHJYb167ut4zODBZmgxOw/aA4EzZjSdDbnOi+u3nK3Y+dFZysjMFGd7sRX7k0+a8kWWBg4fDnz3ncli8TaYfeG8Jr7jxIzWO++YrJtcc5bdhKgsIvdFJPjpvBVJXa63LNAOrLg2aunSpVavA6d69epZM2fXr1+Pmzgyxyoy+hmRkZGoay8J8YFBFbNV3NhroWLFitbszNrsBh3EFFxJcPJe38SZW/bcLRsbZ7DRBssDnaWFS5YAr75qyg4ZGNmt2MePN2u+OPzYPvFfeMF8ZCt2lgWy/JBfy4wVW4hyRhP3ueCSg4bZxGPGDGDpUi4INFkyiRXrpPkLUURCh85bkdTlesoCGVh16tTJasc+f/58K/Ntr6Pimiq+WcMZtizte/jhhzF58mTrax5//HF07drVYxaWd88F3haDr6xZs+LTTz+1gq1rjWsKBioLlNDFGmbO3WLJoDO9zrK+Rx81gZWN5YfMQjFwcnYxZPMMDlTmzC8GXJs2AUOHms6EzZubzzGjxXlqvE0OM2bmi+u27rzTNMGIiEja71tEREQkCBw6dAjffvut1am7Zs2aHp28V7I6KMpnn31mZZ6aNGlirZ9q2LCh1QE8Nuwu+P7771szcatXr44lS5ZYA4i9s2LBKA37sSf3gwg2Z8+etSZMs5Wks2ZUQtiZM6YNPNdXjRnjvp7lfuwi2KePaW7Rt68pB6Tvvwf++cd0DmSbd64Z27PHrNli+nzKFHMcBygzcHO0GBWDKX8O8KYyZcpYbVdFJLjpvBUxjV327duHUqVKqRlTKnEhjv/zhMQGKguU1IHro9gMwxtnd2XNajJXPFnYuILlfny3hQ0xqGlTs86KXQOZLeM2eTLQti3Quzfw558mW8aMF9eAOTNjqVxERATKly9v7YeFhSFbEi3OFZHE03krIpJ4ehtZUjdmm5iBst+F4FovNq7gfKvISHMdP8ehxiwTtHHNFcsBOXi4c2czw4uDixs0MMGWROM7PdxEJHTovBURSRwFVyJObFzx1lsmo7V+vbmOa67Y8IIztlhayPVbPXqYGVzz5wOzZpnW7Wwfz/lcbILBwcN2cJaKMVPFDkHclLUSCQ06b0VEEk/BlYgT52exScbzz5sOg8RyP+6zyyAHGbMU8J57TIdCBljMdnXrZrJYdhMMBmfNmpnGFyIiIiKSKii4EnFioMSugK+84r6uYEEz0Pi558zwPw49ZiZr9Gj3gD9mqTgfa84c4L33TPdCDi1meSGbXahvjIiIiEiKp+BK5FrYLZBNLlasMK3bGWhxhhbXWvF64gwtZqs42I7b5s2mycXZs+4Swn//TXXP9cWLF9GzZ09r476IBD+dtyIiiafgSiQ+wRUbX7zxBsDJ4hwuPHAgUKoU0LGjOaZyZdOq/a+/TFMLDhr+6Sfg5ZdNtosZrapVgW+/TVXP95UrVzBjxgxr476IBD+dtyIiiadW7CLXwtK+tWtNySBx9kHjxiYzZXcZZLt2BmE8jg0uGFRxTtbHHwOtWpl5Wtu3A+3aAQ89ZJpmpIIZahkyZMC4ceOi90Uk+Om8FRFJPA0R9kFDhCVOLAlkFoplfsxIdegAcMr4I4+YJhecicUs14kTQMaMZm0WZ2yxVTuv5/qrG2802a3bbtOTLSIiEmQ0RDj1ueCnIcIqCxRJqBw5gO7dgZo13YOGS5YEChcGdu403QWZqeLnLl0yjTBatgT69QOWLTOB1d9/m+zXs8+a7oIiIiIiEvIUXIkkFDsBsqxv1SogUyZzHVuwv/CCe6Dw228DR44AI0cC2bObZhg1apgBw2x20aePyWAxk8X1XBs3psj/h8jISBw6dMjauC8iwU/nrUhoSpMmTZzbCFbQ+Nnly5cxaNAgVKtWzZqRV6RIEfTo0QOHDx/2OO7kyZPo3r27lfXJlSsXevfujbCwMI9jtmzZgkaNGllZo+LFi0cvKwg1Cq5EEsuZMma79SeeMA0tOGg4Tx4TMHHtFTNZLP87f96UDnbtaq5nc4sCBcxaLM7X4nUprOlDREQEihUrZm3cF5Hgp/NWJDQdOXIkenv77betQMZ53bOslvGz8PBwbNiwAUOHDrU+zpkzBzt37kTbtm09jmNgtX37dixevBjz58/H8uXL0bdvX4+yu+bNm6NkyZJYv349XnvtNSsYnMplFyFGwZWIPzBIKlQI6NIFuO8+M1C4dWsTLDGwWrrUZKmY6WIwxY9t2pjj2HGQxw0ZAjRsaAK0FCR9+vTWJiKhQ+etSCz4Rmlsm3eZf1zHer/hGNtxCVCoUKHojeuDmK1yXpedlTR+xvthwNSlSxdUqFABt956KyZMmGAFSAcOHLCO+eOPP7Bw4UJ88MEHqFu3Lho2bIjx48dj5syZ0Rmuzz77DJcuXcJHH32EKlWqoGvXrnjiiSfw5ptvxnrfp06dsoK2/PnzI0uWLChXrhymTZuG5KZXPCL+wDVVDJrsRY5cfzVpEvDbb6arILGbYOnSJhDLmdNcly8f8OGHpinG448Da9aYtVyvvWaaYNgdCkMUSwRYMiAioUPnrUgc4gpQuNaanYJt/HsfHu772NtvN+uwbVyP/d9/MY/jEoIA69evHz799NM4j/Eu4YvLmTNnrMCO5X+0atUqa78Ol0FEadq0KdKmTYs1a9agQ4cO1jG33XYbMrIRWJQWLVrg1VdftYKo3Llzx7gfZst27NiBBQsWIF++fNi9e3dQVMkouBLxF5YCOn8Z9u4N/PKL2e/WjW/dmJLAO+4APvjAzMXix2HDgI8+ArZuBXr1MvOxGGh98425vlgx/R+JiIhIQLz00kt+Kxm8cOGCtQarW7du0V31jh49igIMNL2y43ny5LE+Zx/DLn1OBQsWjP6cr+CKmbFatWpFB203MkANAgquRAKBqXy++5I2LVCrlrluyxbzceFC08p9/HjTwp2/WBh4cR7WokXAe++ZDoOLF5sZW7zM4CzEs1giIiIhL64MTrp0MUe3xIavD5zYRTiZMPDxDn4Sg5UqXbp0gcvlwiRW7wTYo48+invuucda68X1Wu3bt0f9+vWR3LTmSiRQZQPffQesXw9UrGiuu/deYPZs4KabgNOnTbv24sVNI4snn4w6I9OaToJshnHzzeY4tn3n13JuVoi5ePEi+vfvb23cF5Hgp/NWJA7ZssW+ec1GivNYdh6Oz7FJgGWBXI8V1xbfwGr//v3WGiznLCiu9zruFWheuXLF6iDIz9nHHDt2zOMY+7J9jLdWrVpZ9/fUU09Za7eaNGkSkKYdCaUhwj5oiLAExJ49QPXqQIMGJsB6/XXTyIJpb5YH3n23qc3m57g/fDjAhZyjRpnj+MuFx7FRRog4f/589C9l1mtzLYeIBDedtyKhP0R4+vTpePLJJ3Gab9JeAwMfvvaNS9myZa8ZWO3atQtLly61Gkw4saFF5cqV8fvvv+MmvsYBC3UWoWXLljh48KDVvp2ZrhdffNEKqDJkyGAdM3jwYKv74J8cYxMPU6ZMwcCBA6/5vQR6iLDKAkWSyqZNHCDD30ImW9WpE9CjB7Bjh5l9xYBq3jwzC4vbggWmxTsXyPI4lg7yGLYuZefBAHT98Tf+ghzOIDFqX0SCn85bkdTlesoCGVh16tTJKs1ji/WrV69Gr6Pimio2qKhUqZIVSD388MOYPHmy9TWPP/641RGQgRXdd999GDlypDX/imu2tm3bhnfeeQdvca5oLIYNG2YFa+wuyIw775/3lexcEsOZM2fYmsX6KOJXf/zhcv39t/tyWJjL9fLLLtfly+7rZs92uQoUYBsMlyt9epdr1CiX6+xZl+upp8x13EqXdrl+/VX/OSIiIgEQERHh2rFjh/UxFE2bNs2VM2fOgN/Pvn37rNfMvralS5dGH3fixAlXt27dXNmzZ3fdcMMNrl69ernOnTvncVubN292NWzY0JUpUyZX0aJFXWPHjo3zvkeNGuWqVKmSK0uWLK48efK42rVr59q7d29A/s8TEhuoLNAHlQVKkmFpINuusx07s1Jcl8SBwvXqmUYX7BhIdesCM2YAnAfRsydb5JgGFwMHss2PmZslIiIifhHqZYGSfGWBamghklyuXgVmzTLdhKJS6NZ8DHYVnDIF2LkTGDnSzMTi/Ct2HeTQYZYXMsBiDmvcONP4gmWFQYgdg1jvzY37IhL8dN6KiCSegiuR5MKWrStWmKwVZ2JRx47A3LlmCDHXXTErxUDqzjvNNPcnngA6dzbX8zguGuV8LAZYY8eagC2IhIeHW7MpuHFfRIKfzlsRkcRTcCWSnFjO99BD7hlWdrMLNrFgwwsGS++8Y1qyv/iiad3KIcOck8VuOAys2rUzX/fCC8BttwG7d+v/VERERCQZKLgSCSYcIvz77yYr9e67pmwwTx5gwwZzPUsCb73VBFYPPggsW2aOnT4dyJEDWLkSqFEDmDzZlA0ms6xZs+LSpUvWxn0RCX46b0VEEk/BlUgw4QwrBljTppnSwC5dzDorlgIyYCpfHvj1V5PdatgQuOcek/VioMUs1h13mFlZjz5qsl9sgJGM0qRJY7V15sZ9EQl+Om9FRBJPwZVIsGnWDGjb1n350CEzgNgeBJg+vclcde9u1m0RuwxywPDXXwOcCcFyw4ULTfkgs18iIiIiEnAKrkSCHdutsyyQLdtp9Wrg1VdNdoqZLmanhg0DRo8GWrQABgwwx3MK+qlTQNeuQLduwMmTSf7QWQ7IaencuC8iwU/nrYhI4im4Egl2zDyxmyDXYBHnYL3xhslOLVhgslNsdFG6tGl6wfK7ypWBVauA4cNNdmvmTHMcs1lJiFPYX3/9dWvjvogEP523IiKJl/46vlZEkkKBAqbkz5Y2rclIPf008OOPJkvFeVjsLtiggfu4xYtNZovbAw+YuVmtWgH9+pnhxdmyBfyhc63Vs88+G70vIsFP562ISOKlcWmyZwwJmcIskuTYMbB2bdMN8OefgeXLTUnglSsmY8XGFhxKXK0acOaMyWYxEGPpoJ39KlMG+PhjoH59/QeKiIh4uXDhAvbt24dSpUohc+bMen5S+f/52QTEBioLFAk1bLU+cSLw+OOmOyBL/7gOi4HV0KEms8VfClx/xTlZHDjMIcSPPAIsWQIUK2YaZDRqBAwezAUWyf0diYiIiB86fca1jRgxIiBlxIMGDUK1atWQLVs2FClSBD169MBhr27FJ0+eRPfu3a3AJFeuXOjduzfCwsI8jtmyZQsaNWpkBTbFixfHuHHjYtzf7NmzUbFiResY3ucPP/yAYKPgSiTUcE0VS/vGj3dfV6GCyULdfru5zNlYPXuabJU9J4vZrs2bzdajBxAZCbzyilnDxWxXADAxzl+83JQkFwkNOm9FQtORI0eit7ffftsKZJzX2WX6/hQeHo4NGzZg6NCh1sc5c+Zg586daOvsegw2OO6O7du3Y/HixZg/fz6WL1+Ovn37emSGmjdvjpIlS2L9+vV47bXXrGBw6tSp0cesXLkS3bp1swKzjRs3on379ta2jSNrggnLAsXTmTNnOH3V+igSEh57jEWCLletWi5XZKTLdfy4y1WggMuVJo3L9fDDLlfz5ubz3G6/3eXat8/l+vprlytfPnNdxowu17hxLteVK359WGFhYda5xI37IhL8dN6KuFwRERGuHTt2WB+9ThCz8W+t7eJFc92FC76PvXrVfd2lS+a62G7X+9hEmjZtmitnzpzJ8l+5du1a6+/+/v37rct8Hnl53bp10ccsWLDAlSZNGtehQ4esyxMnTnTlzp3bdZHPZZRBgwa5KlSoEH25S5curtatW3vcV926dV2PPPJIrI9l06ZNrsaNG7uyZ8/uypEjh6t27doejyNe/+cJjA2UuRJJCdiWnZkpNqpgZotlge3amXDq/feBf/4xJYBsYvHLL2Y9FptibNkCtGljSgOfew5o3BjYuze5vxsREZHglD272f77z30dR6XwOpbrezek4vUHDrive+89cx27ADvdeKO5/o8/3NdNn46k0K9fP2TPnj3OLSHOnDljlSGy/I9WrVpl7depUyf6mKZNmyJt2rRYs2ZN9DG33XYbMmbMGH1MixYtrCzYKb5eiTqGX+fEY3h9bJgxK1asGNatW2dlxJ5//vmAN9hK9uDq0KFDuP/++5E3b15kyZLFqp/8/fff4/yaZcuWoXbt2siUKRPKli2L6T5++N577z3ceOONVk1m3bp1sXbt2gB+FyLJjG3W160za6soRw4z34r11YUKmV/WnI3FX+YsH2Sdc58+AFPyU6YAH35ofqmvWGHWdLE7IQOz65Q1a1brlyI37otI8NN5K5K6vPTSS9i0aVOcW0KaQgwaNMgq37MbPxw9ehQFGGg6pE+fHnny5LE+Zx9TsGBBj2Psy9c6xv68LwcOHLACMq7TKleuHDp37owafJ2TUoMrvuBq0KCBFUEuWLAAO3bswBtvvIHcuXPH+jXs4tG6dWvccccd1n/2k08+iT59+uBHtqSOMmvWLDz99NMYPny4Vf/JJ5GR7fHjx5PoOxNJBmxkYeO7PFxXxeCKbdrvvdc0t2C3wIsXgZdfBvju0Pz5JouVN6/JYt12mwm8Hn7YZLTi+IUVH/Y7V9y4LyLBT+etSBz4N5Jbvnzu6wYONNdNmOB5LF938voSJdzX9e9vruObmk5//22ur1TJfR3XTicBBj5MVsS1xQfXV3fp0sVatzlp0iQEA8YDjBMYYI0dOxZ72NArwJI1uHr11VetbiDTpk3DLbfcYrU+5GK2MmwTHYvJkydbxzEIq1SpEh5//HF06tQJb731VvQxb775Jh5++GH06tULlStXtr6G78R99NFHSfSdiSQzlgV26WIaXdx/vxki/MUXAN+4qF7dlAiuXw/UrAmcOAFERAClSgFLl5rSQgZe339vMmJffZXc342IiEhwYHk9N+cbhvybyesyZfJ9rPPNT5ak8Trv9u6xHRsiZYF2YLV//36raYWzXXmhQoViJDiuXLlidRDk5+xjjh075nGMfflax9if94VNMdhIg4mZn3/+2YoL5s6dixQbXH377bdW/SVTdIyaa9Wqhfe5PiQO16q3vHTpklVT6TyGNZ28HFtN5sWLF60uJc5NJKRlycJ3GUyXQLscj2WCo0aZDoHEwGnePOCdd8zniL/Ue/UygVetWibw6tzZBGhRNc8JwfORv9i4cV9Egp/OW5HU5XrLAu3AateuXViyZIm11MepXr16OH36tPX63MZAJzIy0lq6Yx/DDoK8LRuDtAoVKkRXtPGYn376yeO2eQyvj0v58uXx1FNPYdGiRejYsaOV1AkoVzLKlCmTtb3wwguuDRs2uKZMmeLKnDmza/r06bF+Tbly5VxjxozxuO7777+3OniEh4dbXUe4v3LlSo9jBg4c6Lrlllt83ubw4cOjO5o5N3ULlBSF3QF5ylepYjoasdNRy5YuV/bsLtfUqe4ugwULulyPPupynTrlcg0Z4nKlTWu+rmhRl2vRogTdpbqOiYQenbcicXeOCwVJ1S3w0qVLrrZt27qKFStmdeY7cuRI9Obs/NeyZUtXrVq1XGvWrHGtWLHCej3frVu36M+fPn3aVbBgQdcDDzzg2rZtm2vmzJmurFmzWrGB7bfffnOlT5/e9frrr7v++OMP6/V7hgwZXFu3bvX52BgX9O/f37V06VLX33//bd1vmTJlXM8991xAuwWmRzJixMrM1ZgxY6zLzFyxVz3L+B588MEkexwvvPCCVZNpY+aK5YoiKQrT+oULA5w9wdKFM2eA8+dNjTcbWzBN3qwZc+zA8uWmZIGZrtatzfqtXbuA5s1NNyQ2x4hHgwouWH3sscei90Uk+Om8FZGENKZjJRrV5FIDh6VLl6IxuxAD+Oyzz6ylPE2aNLEqyu655x68y3XgUXLmzGlllvr374+bbroJ+fLlw7BhwzxmYdWvXx+ff/45hgwZgsGDB1sNKubNm4eqrMTxIV26dDhx4oQ11Jjlg7xNZq5Gci16AKVhhIVkwkFhzZo1wwfsTBaFC+BGjx5t/Wf5wjaN7BTI4Wg2pvfY2IKtH1nOwPVVX331lTVYzMZgjSnJb7755pqPi8EV/5N5e86aUZGQxzI/Bll2XfiRI8Abb5hFuGx0wdQ7g6FOncx6LLpyhSeFGUjMFrJUvjzw8cdAVDpfREQkJWHXOzZR4zp/dp6W1P1/fjYBsUGyrrlip0D2r3f666+/rKArNteqt2R/fEa8zmOYIePla9VkiqR4rIO2Ayu+r8KuRePHm8CJc7K4roqdBLku6/Rpc9y4ccAdd5jsFrtyFi3KE9W0dB861MzIEhEREZHkDa64uGz16tVWWeDu3butVN/UqVOtlKCzZI/pPGdHk7179+K5557Dn3/+iYkTJ+LLL7+0bsvGEj82xpgxYwb++OMPPProozh//rzVPVBEoly4wFWoJshi6d/q1SbISpcO2LjRdD9iF8GJE02bdg7/4/Vc2Nq9O9+1AEaP5jsewPbtelpFREQk1UvW4Ormm2+22iF+8cUXVr3kqFGjrHI/TlO2HTlyxBoAZmOq7vvvv7eyVZxfxZbsLCtkx0Dbvffei9dff92q1WT9J7ucLFy4MMbgMRGk9o6CrJPm0G4O1GPLV9Yhz5rF4mizporHcDgxgy8GYs8/D7RrZ+ZnffklkCeP6Uh4002mOyEDLge+qcE5dty4LyLBT+etiEiIrrkKVlpzJanWwYOmRTvXUnE2FtdgcYYcF51yEDGzWOfOmcCL87AYaHHg8A8/mK+//XZg+nTgxhujX6TZ8zHCwsKQjTM8RCSo6bwV0Zqr1OhCSlhzJSJBhjMo2NiCnQRz5DDZqqlTzeR4rr1igHXbbUB4uGl88dBDwJQp5hgGTr/8YoYUc2C3y4UsWbLg4MGD1sZ9EQl+Om9F3JSDSD1cfso3KbgSETdmorim6pNP2I/ZlApyLRaHCPOXDjt7/vcf8MwzplU7G1xUq2YCq82bgYYNTWard2+gfXuk/fdfFC1a1NrYelVEgh/PVZ23ktqxjTexC7WkDuF84xh86ZPhum5Hg2dExFOFCp6XP//cBFFDhgDvvw/s2GG6BfbrB6xcadZccZ1k587AV1+ZFu08luu5+HlmtTp00LMsIiIhNe+No33+/fdf68W23iBM2Rmr8PBwHD9+HLly5YoOrBNLa6580JorkShsUMFs1KpVAGfLMYhiOeDs2SartXatCaI4bJjzsBo1MgOIt24FHngAlzZvxju8nQYNMODnn61RCSIS3PhO/TvvWGcuBgwYoPNWUvW5wDU4HOkjKV+uXLlQqFAhpEmT5rpiAwVXPii4EnHgGiw2qWDjCpb2sTzw00+Bkyf5ysu9VoujDrj+yp4nd/Eizj/3HLJHTWBXQwuR0KCGFiJuDKxUGpjyZciQIc6MVUJiA5UFikjcOHT4kUfcl/kOHkv92LiC7dW53opBV4ECQOHC7uNmzkT6Bg3wYFRwxRILEQl+PFcffPDB6H2R1IzlgN6d40TiosyVD8pcicRhyRKgWTOALdZZ/leyJFC/vml8wetYPsjLtWqxpsJkukhTH0RERCQEqSwwCZ9AkVQbYJ04YVqz0549AN/p/u03c5lDvfPmBY4eBX7+2Z3x8lHHLCIiIhLMNOdKRAKraVN3YEUXLpi1WU8+CbBpBbsLLlxoOgjalLkSERGRFE6DZ0Tk+g0cCPz+O7Bvn2luwZLAkydx/tFHkYsdeLhIPixMz7RIiDS0YNcsbtwXEZH4U3AlItdvxgygZ09g4kSgalWz/mroUKBuXZwBrM0qCxSRkMCyeG4iIpIwagMkItcvf35g2jT3ZZYGZs2KLI0b4681a6yrsrDroIgEvSxZsuAvDgqP2hcRkfhTcCUi/vfnn8CQIUh79SrK2ddpzZVIyLSeLlcu+swVEZEEUFmgiPhfhQrAhAlAmzbu61QWKCIiIimcMlci4n9sud6vHy7Xro2p331nXdU3PBwZOAdLRILa5cuXMZWDwnne9u2LDBkyJPdDEhEJGQquRCRgLgF4PGq/Z0QE9BJNJPhdunQJjz9uztyePXsquBIRSQAFVyISMOnOnEEne19rrkRCQrp06dCpU6fofRERiT8FVyISMJlvuAGz7Qt6kSYSEjJnzozZs6PPXBERSQA1tBCRwMmb171/5YqeaREREUnRFFyJSOBw3pVNwZWIiIikcAquRCRgwiMjURSwtvDz5/VMi4SA8PBwFC1a1Nq4LyIi8ac1VyISMK706XHY3md7dhEJei6XC4cPH47eFxGR+FNwJSIBkzldOmy09xVciYRMQ4uNGzdG74uISPwpuBKRgEl3ww2oaV/Ilk3PtEgIYPv1mjWjz1wREUkArbkSkcBJ73j/JjJSz7SIiIikaMpciUjAXL58GZ9F7Xe/cAEZ9FyLhMZ5+5k5c7t3744MGXTmiojEl4IrEQmYS5cvo1fUfudz5xRciYSAS5cuoVcvc+Z27txZwZWISAIouBKRgEl39SrusvePHdMzLRIia67uuuuu6H0REYk/BVciEjCZs2TB9/YFlRaJhAR2CPz+++gzV0REEkANLUQkcJxtnAsU0DMtIiIiKZqCKxEJ4G8Y/YoRERGR1EOvfEQkYMIjIlAOsLbwy5f1TIuEgPDwcJQrV87auC8iIvGnNVciEjCuyEjstvdPn9YzLRICXC4Xdu/eHb0vIiLxp+BKRAK6MH6FvR8RoWdaJFTO2xUrovdFRCT+FFyJSMCkS58eDewL6hYoEhLYfr1Bg+gzV0REEkBrrkQkaShzJSIiIimcMlciEjBXrlzB3Kj9DhER+oUjEirn7Vxz5nbo0AHp0+ulgohIfOk3pogEzMWLF9Elaj/s0iX9whEJlfO2izlzw8LCFFyJiCSAgisRCZi0adPidnv/1Ck90yKhct7efnv0voiIxJ+CKxEJmCxZsmCZnl+R0Dtvl+nMFRFJDL0lJSJJI1s2PdMiIiKSoiVrcDVixAikSZPGY6tYsWKsxzdu3DjG8dxat24dfUzPnj1jfL5ly5ZJ9B2JSKzSpNGTIyIiIilaspcFVqlSBUuWLIm+HFdXojlz5uDSpUvRl0+cOIEaNWqgc+fOHscxmJo2bVr05UyZMvn9cYvItUVERKBe1P6qy5eRRU+aSGict/XMmbtq1SqrTFBEREIkuGIwVahQoXgdmydPHo/LM2fORNasWWMEVwym4nubIhI4kZGR2GzvZ86sp1okVM7bzZuj90VEJISCq127dqFIkSLInDmz9U7ZK6+8ghIlSsTraz/88EN07doV2bzWcnAhboECBZA7d27ceeedGD16NPLmzRtn21lutrNnz17HdyQiNp7Xi+z98+f1xIiEynm7aFH0voiIxF8al8vlQjJZsGCBNUOjQoUKOHLkCEaOHIlDhw5h27ZtyJEjR5xfu3btWtStWxdr1qzBLbfcEiObVapUKezZsweDBw9G9uzZrdKGdOnSxbr2i/ft7cyZM7jhhhv88J2KpGIZMwKXLwOffALcf39yPxoRERGRBGHiJWfOnPGKDZI1uPJ2+vRplCxZEm+++SZ69+4d57GPPPKIFTBt2bIlzuP27t2LMmXKWOu6mjRpEu/MVfHixRVcifgD3/nm+TVrFhA1mFREREQkJQZXQdWKPVeuXChfvjx2794d53Hnz5+3MlTXCsCodOnSyJcvX5y3yTVafKKcm4hcvytXruD7S5fwPffDw/WUioTKefv999bGfRERCaE1V04sEWQp3wMPPBDncbNnz7YyTffHo8To4MGDVlfBwoUL+/GRikh88Dy9Oyo5HnbuXHD9whGR2M/bu++O/rscVxdfEREJoszVs88+i19++QV///03Vq5ciQ4dOljrorp162Z9vkePHnjhhRd8NrJo3759jCYV/CMwcOBArF692rrNn376Ce3atUPZsmXRokWLJPu+RMRImzYt6gDWlnbbNj0tIqFy3tapY23cFxGR+EvWt6OYVWIgxcxS/vz50bBhQysw4j4dOHAgxi/2nTt3YsWKFdGdjJwYmHEN1owZM6z1W+xC2Lx5c4waNUqzrkSSAefjrLMv6EWaSOict+uiz1wREUmAoGpoEYqL1kTkGlhSdPUqMH488PjjerpEREQkpIRsQwsRSYHSpDEfM2RI7kciIiIiElAKrkQkYCIiItAgMhINuK+uYyKhc942aGBt3BcRkfhTCyARCZjIyEisjIw0+2fP6pkWCZXzduXK6H0REYk/BVciEjCcITfX3j92TM+0SKict3PnRu+LiEj8KbgSkYDhfJz27BLId7/1Ik0kdM7b9u2T+2GIiIQkrbkSkaRx8aKeaREREUnRlLkSkYC5evUqfo1as9EoPBzp9FyLhMZ5++uv1n6jRo2sGZIiIhI/Cq5EJGAuXLiAO6L2wy5fRjY91yKhcd7eYc7csLAwZMumM1dEJL4UXIlIwKRJkwaV7f3//tMzLRIq523lytH7IiISfwquRCRgsmbNiu32BZdLz7RIqJy326PPXBERSQA1tBCRpJEjh55pERERSdEUXIlIYNllRVoULyIiIimcgisRCZiIiAg0c7nQjPtRXQNFJATO22bNrI37IiISf1pzJSIBExkZiSX2fu7ceqZFQuW8XbIkel9EROJPwZWIBEymTJnwKcsCXS5kOnFCz7RIqJy3n34avS8iIvGn4EpEAiZ9+vTozhk5YWFAoUJ6pkVC5bzt3j25H4aISEjSmisRSZougXnz6pkWERGRFE2ZKxEJmKtXr2LDmTPWfu0zZ5BOz7VIaJy3GzZY+7Vr10Y6dfoUEYk3BVciEjAXLlzALeHh1n5YeDiy6bkWCY3z9pZbrP2wsDBkY2mviIjEi4IrEQmYNGnSoKS9v3GjnmmRUDlvS5aM3hcRkfhTcCUiAZM1a1b8bV9QS2eR0Dlv/44+c0VEJAHU0EJEAssuKapeXc+0iIiIpGgKrkQksDJkMB8zZ9YzLSIiIimagisRCejC+Pbh4WjP/atX9UyLhMp52769tXFfRETiT2uuRCSgLZ2/uXTJ7F+5omdaJFTO22++id4XEZH4U3AlIgGTMWNGTE2b1mpmkXHPHj3TIqFy3k6dGr0vIiLxp+BKRAImQ4YMeJhrri5edK+9EpHgP28ffji5H4aISEjSmisRCax06fQMi4iISKqgzJWIBExkZCT+iFpzVSksTO/miITKefvHH9Z+pUqVkJalvSIiEi8KrkQkYCIiIlA1qpFF2N69yPbRR2beVZUqQJYseuZFgvW8rVrV2g8LC0M2e1adiIhck4IrEQmofPbOkSNA795mn++EV6gA1Khhgi1+5FakCJAmjf5HRJJZvnzRZ66IiCRAGpfL5UrIF6QGZ8+eRc6cOXHmzBnccMMNyf1wREIbG1kwe1WsGFC+PLB5M3DihO9j8+b1DLa4X7myBhCLiIhISMQGylyJSGCxpOjMGaBePeDLLwG+n8MsFoOsLVvMR247d5qga+lSszkbYlSsGDPLVaiQslwiIiISVBRciUhgZcpkPtrrNlj2x/I/bq1auY+7cAHYscMdbNmB18mTwPbtZvv8c/fxLFuyAy078KpUyX1/IiIiIklMwZWIBMyFCxfQ++xZa//Dy5eROa6DM2cGatc2m41ZrkOHPDNc3P76C/jvP+Cnn8xmS5/eBFjODBe3ggUD902KpMTzNmp95IcffojMPDdFRCRetObKB625EvGP8+fPI3v27NZ+2OjRyPbii/654YgIk8nyLi08fdr38QUKeGa4+JGlhhkz+ufxiKTU81bdAkVEoDVXIhIUMmbMiLf4Ii0sDBm5pspf2Ma9Th2zObNc//zjGWxxn1mu48eBxYvN5my0wSyXd2khAzGR1H7evvVW9L6IiMSfMlc+KHMl4ke33AJwIOmzzwLDhwM//2wyTGxwUbhw4J/q8HBg27aYQRebbPjCRhnezTPYNp7BmIiIiKQ6Z9UtUESCxj33AGvWAPXrm8vvvAN8+635+MQT5rr9+4HvvzcBDTd/jkDImtUEeNycWa4DB2I2z9i9Gzh61Gw//ug+nu/esyW8d2mhZgGJiIiIgxpaiEjAREZG4gAbTixejBLNmiFts2YmSDl40LNxxS+/AP37uy/feKM7gLE/liljhg/7AzsWlixptrZt3deHhfnOcp07B2zaZDYndjz0znJxlhcba4iE8nnLNx8AlChRAmn9dd6JiKQCKgv0QWWBIgFYGP/228g2YIDvA3/4AZg40QQzDLxiy0BVq+bObjE4s7NhgcQs199/x2yesWeP7+PZCr5KFRNoNWkCdOvmv6BQJAmooYWISOJjg2QNrkaMGIGRI0d6XFehQgX8+eefPo+fPn06evXq5XFdpkyZrLaxNn47w4cPx/vvv4/Tp0+jQYMGmDRpEsqVKxfvx6XgSsR/L9IK5MhhBSjH+/VDtkmTrv1FnGvFIMYOZPiR2STHeW5hoMXP2Ric5c8PNG8O5MwZ+P9CZrP4uJwZLm7MfjkxwJo2DShePPCPScRf521UY5fjx48jmz2jTkQklTobSmuuqlSpgiVLlkRfTn+Nchp+QzsdXcfSsLzHYdy4cXj33XcxY8YMlCpVCkOHDkWLFi2wY8cOzeoQSWJ8UXaeM6a4hilq3tU15ckDNG5sNtvVq8CuXZ4Bl/MNE37+mWdMAMbfD3ZwtWCB+Tq7dC93bv99cwwa2ZSDmy0yEti3zzzGtWuBd981c7gYCI4fD9x/vylJFAn28/b8+eR+GCIiISnZgysGU4XYnSueGEzFdjyzVm+//TaGDBmCdu3aWdd9/PHHKFiwIObNm4euXbv67XGLSDwxCGJwNW8e8MorwAsvuAMidvJjkHIt6dKZuVTcunSJ+Xm+EGTgwqw312bZPv4YmDnTfZnZI+daLm58fP5aI8XyP94/t44dgYceAnr0MA09+HHuXGDKFJNhExERkRQn2RcC7Nq1C0WKFEHp0qXRvXv36EW0seFAw5IlS6J48eJWALWdg0Sj7Nu3D0ePHkXTpk2jr2MKr27duli1alWst3nx4kUr3efcRMRPHnnErENiIOUsL9q61XQFZCDSoYNp0/711ybTxAxQQvB23n8f+PVXE4jZGjY0DSvYIIM4B4tdCceMAfhmC5trMLjjvKzevU0HQ++mFdeDzS1WrABGjzYBHIOrqlWBb77x332IiIhI0EjWNVcLFiywgiWuszpy5Ii1/urQoUPYtm0bcvh4N5sBEoOx6tWrWzWPr7/+OpYvX24FWMWKFcPKlSutNVaHDx9GYcf8nC5dulgZr1mzZsV77RfFp65SRBDnGxePP/64FSxN6N8fmdhdz848M6PEZg+xNa947z2gZ09zmYHZpUtArlyJf7o514oBnbMxBS/ztp0GDmR9sdk/dcrs16wJ3Hvv9f1Xb9xosldcp0X83t5+O2nWh4kk5rwFMGHCBGtts4hIanY2VBpaeGMDCmal3nzzTfTmu8jXcPnyZVSqVAndunXDqFGjEh1c8Q8JN+cTyMyYgisRP3Yd278f2UqU8Dzgv/9MgGM3g3A2r2AHwVatzHHMaHXqxL7Q7nI+f5T1MUO2d69nwMVSPrs9+9KlwJ13AqVLe3YHHDvWZOMSOu+K39ewYcDrr5suhPx+pk8H7rgjcY9fJADULVBEJIQbWjjlypUL5cuXx24O8oyHDBkyoFatWtHH22uxjh075hFc8XJNvvMcC74rp3fmRPyP5+holt7t2IEMXHNlDw22MShhYOEMLq5cMcN8ixVzX8cAiFg2zG3+fPfnMmc2Q4k5Q4tOnDCBS3wCHq6RKlvWbBx27C1vXqBfP89GGLxtZrOY1bLx941z3hU/VqjAJ8Dz9vhY+bVt2gAPPmiaXzB4e/JJU6qYJcu1H7NIUpy3LGWN2hcRkRBac+XEEsE9e/Z4BEZxuXr1KrZu3Rp9PLsDMsD6id25HJHmmjVrUM/Z0UtEkkTGjBnx4q234sUCBZAxPo0riFkoNq6IynhFl+oxmFm+nHVKQN++QN26pnyQ2SAOA7Z98IFpGMESxJYtgeeeAz791GTIWFqYEAyS2D6egY/t8mWA87q4TsxunnHkCLBwoQmcunc33QH5+BnwObqbRmvUyGTJ+H0QywM5t2vduoQ9PpFAnbcvvmht3BcRkfhL1rLAZ599Fm3atLFKAVnKx/lUmzZtstqm58+fHz169EDRokXxCjuMAXjppZdw6623omzZslYJ4WuvvWZ1AVy/fj0q891xAK+++irGjh3r0Yp9y5YtCWrFrjlXIgHC8tsHHjDBx6BBfBV3fbdnl/WVKuVuZMEsEBtT+MJ34RnUVKrkbnDB69guPrEt0u15V8428dx4PfH3DssI//c/38OEWf7Yp48J0Pg9DBkCvPhizKyXiIiIJIuQWXPF1uhsSHHixAkrmGrYsCFefvlllIl6N7hx48a48cYbreHB9NRTT2HOnDlWR8DcuXPjpptuskoXWBroPUR46tSpVgDG25w4caJVbhhfCq5E/IPn439cV2VVAOZDGgYdLNFlYwoOC7YDGmZu2EadDR/q17/+O2Zgw06i3gEPm1dwyK+9QJ9BzYcfmkyXd4t2BmDxfEPGZ9DHjBUzXIsXm++X3x+DOF9Yyti/P2CvC73pJtNGPupNI5FkPW81m01EUrmzoRJcBSsFVyIBWhjPjn1ffGFK+Zidsd1+uyn5Y0DBzBZxPRKDk1tuMdmc68VfdcwOsVzQ1rkzMGeO79bvzBydPm1KD2nHDtO2nWvB4vtik/c5ebJZu+Wcz8Xrfd0GOyg+9pgpgWQAyKw9nwNfGS+RAFFDCxERTwqurpOCK5EkfpHGZhdr15pOfWwu4ewQyBlUzrVIDDY4i+6pp0yG6Xoxm8XAyZnh4j6bWDg7BDZuDPzyi7ne2a2Q2a4qVdxB2LV89x0wdarZfK0vPXzYzNziGi77fqdNc8/qEgkwBVciIp4UXF0nBVciQYCZKw78ZbaInfVsRYuaAGTlSsBuVLNsmVnX1KKFCbquFzNLzFo5uwQyu8b7ZDdDb8yGHTrkvrx6tZnnxUYbzgwVm2Gwdfz+/SZzF9WRzef9M/h65hm+0jXPAdeRcTaWSrRERESCNjZQrYmIBCc2qeAgU2dgxaBj/HhO/gaqVnVfv2YN8OOPJvvl1Lo1cN99JphJCAYwzsCKmLXiei0OA54xwwQ+7AbIdVTMXDkx48bHzyyco3upVWrIgJHDk+MqdeT9P/KIyaA1aGDWkDGr164dZ0sk7HsRERGRJKM1Vz4ocyUSYv76y2SvWDrXvLm5joEQ311iQHb8uGlaQSyxY3B0//2moYU/RES4Z1Rxnxk1lhoyU0UMEplZ81UWefWqWfvF4Onuu31//o03gKFDTSt5zu/iOi5fc7lEREQkdDNXF9lWWUQkjt8RTz75pLUF9PcFu4FyZpQdWNlZIq5vevNNd2BFLO1jFsqZzWLQws58DFjsFuoJ4Rz+y/1Nm0w3xEcfNddxNhe7JPK+vb3/PjB3rhkszLVWXE/mxPbsnNX1++9mfRe7uDEzxsYfLF0UCdXzVkQktWeuFixYgJkzZ+LXX3/FP//8g8jISGuBOluhN2/eHL169UIRZyeuEKXMlUgKXhjPlugsH2QzCgY8xAHDvMx3oxiw2OuaBg82GbGnnzYBTWIsWmSCpoMHTdc/tmi3m3bYmS5mpRgE8tdxiRImu3bnnTFvi0HgyJEmC8YOh+xc+NFHpjxRJCWftyIiIRIbpI/PDc6dOxeDBg3CuXPncNddd1n7DKKyZMmCkydPYtu2bViyZAlGjRqFnj17Wh85t0pEUrcMGTJgMAOUqP2gULGi2ZxKlzbzqP7917NhxKpVZmNTCRs7CDLwYYv42bOvfX/MpjF4Y6MNzs1yBlZ2puv114G2bU3DCjbyaNLEDB1mEOXsQsihyy+/bMoHuRZt1y5z+5yR9eqrvssORVLCeSsikpIyV/Xq1cOQIUPQqlUrpI1j3sqhQ4cwfvx4FCxY0Br4G6qUuRIRC7NMbGDRsKHJEhFL+Dp2BGrXBtavdz9RLCn8+2/gtdd8Z53s9VMs86MDBwAOSH/+eRM02evEBg40a6rsckeuD7v11pi3xYBv0CDgvffMZXYh5JwwX8eKiIhIoqkV+3VScCUisbI7BrJEjxkmW/HipvRvxQrT4Y9OnAC+/TZmC3W+p9W0KfDzz6Y0kUFRtWruz7PzIRtcsOU839BiADZsmBks7I0Zt169TCt4HvvCC+ZYO2ATERGR0GnFfvXqVWzatAmnTp263psSkRSGiXGu3+CWgOWdwY1rURo18gysiGuz5sxxr+MilvYxSOJHX63W8+Y1zS9uusmUANoztDiva9s209GQa6vGjDFliGzN7o3rrVh2aB/LssG6dc11IomQIs9bEZEkkuDgit2DPvzww+jA6vbbb0ft2rVRvHhxLOOLCxGRKOHh4dbCeG7cT9HKlAE6dHCve+KL0jp1TDDmnNVl69LFBFBca8WW7cw4sfyQpYjEOVuffAJ8/bVpv75lC3DzzSar5c0+lmvA7ICN980SRZYiiiRAqjpvRUSSO7j66quvUIPtgMEux99h3759+PPPP601Vi+++KK/H5+ISGhidopdBrm2ikGRbfly4OhRs1+oEDBvnll7xTIDDkNm5uvXX93Hc30XgzAOEGYnQQZgsWFHQx7LhhcsW2QL98aNTRMOERERCb4hwpkzZ8bu3btRrFgx9O3bF1mzZsXbb79tBVkMuliTGOq05krEP/jrxX7nm78r0jjXHaVGx44BVaqYrNbSpab9u+2ff9wt2zdsMJ0Fnfg1nHFld2JlCeBXX5mAyrvREI9lO/cBA8waMWbT2Or94Yc9136J+KDzVkQkCddcsRPgjh07rJLAhQsXolnUfBW+gEpnd8ESEbGSN2msGTncUn1gRRxQzOwTN+928GyIwZI/Bl12YMWSPgZQDJYYFDlHXIwfD9x7r8loeb9HxmO51oulhLfdZjoLco1X69amSYZIHHTeiogkXoKDKw4K7tKlC6pWrWr9Am7KjldgNcsaVPR+sSAiIm6cccXSv/nz3d38GBjZZYAMigoWdB/P+VedOwOtWpmMlhOzUZyBddddsWejSpUywdobb5hOgwsWAFWrArNm6X9FREQkGIKrESNG4IMPPrBKAn/77TdkimoNzKzV82wXLCIS5dKlS9ZaTG7cF2sqK1C0qPup4HorZpfYTt07A8UAilksZrQYFLFlu31Mnz7An38C/fq5j2eL+CNHvH7LpzVrv1hqyNlc7OzatSvQrRtw8qT+SyQGnbciIkmw5qpHjx5o164dWrRoYXUQSsm05krEP9jK2f59ERYWZpUHipdXXgGGDDHt1jkU2BsDKHYbXLvWXGYZ4JQpnhkuu+SQs7L4ceJEUzLojV0JR4827dpZcli4MMDur8yMiei8FRFJujVXZcuWxZgxY5A/f360atUKkyZNwiEOrRQRiUX69OkxYMAAa+O++MAW7MwqPfOM+zpmn86cMfsst/7tNxN8Mev1zTemKcaiRZ63w4HFefKYbBQzU9x4nRO/fuRIYNUqoEIFcz8sK2T2i40vRHTeiogkbbfAgwcP4ttvv8U333yDX375BVWqVLEyWm3btkVN5/DMEKbMlYgkG3YBZKOgv/4ya6Pq13d/jg0qevQA/vjDBGQMspxYesmslJ2ZYqv3Dz4wjSy8RUSYwO6dd8zl0qWBGTPibvUuIiKSCp1NQOYqwcGV07lz57BgwQIr0OLHHDlyoE2bNnj00UetoCtUKbgSkWTDbn633w6wMoDBFJtgeAdQLBF0BkEMxMqXd1/+/Xd3EEbsHPjWW2aWlreffzbrvTiPi40xBg4EXnrJNMAQERERBLQVuxODKXYO/Oyzz/Dvv//io48+shpbrGLJiYiIJFyRIsCmTaaznzOwsgcPs8ugM7BioFW5sgmg7FLCOnWA9etNqSEDpo8+Muux2DnQ2513miCuZ0/TLGPcODP0mI9BREREEuS6gisnBlVNmjTBO++8gz7sYiUiqR4bWnBkAzfuSzyx8QezV87MVJkywP/+ZzJXTitXmlJCDg1mALVkibk+SxbTyn3ZMtOSnZkpBlIcLBw12Dlazpzm6+fNM7O0tm4FbrnFNNu4ckX/bamMzlsRkSQMrk6cOIH+/fujcuXKyJcvH/LkyeOxiYiIn/3wgwmIWObn3RjkySeB5ctN8PXPP2a9Vv/+7gYVbPPOzJTdsv3dd4FatYDVq2PeDzsRbtsGdOhgOgsOHgw0agTs2qX/UhERkXhI8Jqru+66C7t370bv3r1RsGBB6x1ppwfZMjjEac2ViH/w18t///1n7fPNGO/fF5IA7A7IDn8lS5rLzCgxAGKGipgZZCv3996LvUEF52X17m3Wc3GwMOdf+f6PAz75xGTKzp41w4pfew149NHYBxZLiqHzVkQkCRtacJ3VihUrUKNGDaRUCq5EJOiNHWsGEDOAqlvXfT3LArn+ilkszrtiQOTEIcKTJgEc+s4Bw8QgjW3avbGUkLf100/mMrNiXL9VrFggvzMREZHU09CiYsWKiGALXxERSR4XL5pBwjt3ujsC2po2NWumuN7KLgWkCxfMx9y5TbmfHVix3LB2bTNHy3t9VYkSJmPGUkJmyBYvBqpWBT77zGS3RERE5PqCq4kTJ+LFF1+0Zlxx/RUjOecmImK7dOkSXn75ZWvjvvgJ26SzG+Cbb7IW2329HRyxQYXdKZD4u5lB0dChMRtifP65WWfFLJevQcIMwlgeuHGjaXLBjoT33w907gxElXxKyqLzVkQk8RJcFrhr1y7cd9992MABlg68Ga6nuMrBlSFOZYEi/us6lj17dms/LCwM2dgFTwKDQVODBmZg8Isvepb5cZDwww+bfZZ0f/wxUL265/qqwoVN2Z99HTc7u+UM3liOOHKk2S9YEHj/faBNG/2vpiA6b0VEEh8beLWdurbu3bsjQ4YM+Pzzz302tBARif4Fkz599GgG7ksAzZljhgfv2wc89hhQoID7c/w/YDaL6682bzZzsIYPNw0w+P/CgcNOXMfFAIzt2e0GGuY/ERgyhJ2NzNds3w60bWuaZDCLdo0/OBIadN6KiCRh5ipr1qzYuHEjKrBrVQqlzJWIhKRZs0zJYPv27uv4K95+E+zYMeCRR4BvvjGXOSyYQVTFip7ruTgX68gRdjAC3nrLNLXwfiONa7hYZsiug7wPBmEMypzzuURERFKAgDa0qFOnDv5hFyoREQku997rGVitXWtKBe2mFyzjmzvXBFTMZK1bB4wY4XkbDM44N4tfd+6cyXoxO8VgyylzZtOe3R5SvH8/cMcdZq2X3TxDREQklUlw5mr27NkYMWIEBg4ciGrVqlklgk7V7Tr+EKbMlYiEPP5qZ4C0apVpesG27U4HDwLPPQe8/bZnCaGN62dZ6scyQK7n4pB4Nr1gAOeNQRiDKq6/okqVzDqum24K0DcnIiKSQuZcpfVe4MwbSZNGDS1ExOfC+AJRL9yPHz+uhhZJjcOCX3jBBFAMjq6lb1/Tlp2lg3YZINdVcX2V3cSIwRUHFefNG/Prv//erL9i+SHXZ7FskPfva4aWBC2dtyIiSRhc7WfpRxxKOhc/hyhlrkT8Q13HghBnXBUqBDz+uGc3QA4ftrsF8uOHHwLFi7uHDL/8MjB6tMlo8evZgZCdCb2xPTsbZ3z1lbnM5hnMYjnXdUlQ03krIpKEwRVvPLYb3b17N8qWLYtQp+BKxD8iIyNx4MABa79EiRI+M9+ShJh9skv1fvsNqF/f/bnISGD8eOD5582aKf6ef+cdU1JoZ7HYjZBZLHsNFxtdsOGF998E/ln54gugf3/g9GmzPost3DkvSz8DQU/nrYhIEgZXjRo1wuLFi5GZfywddu7ciSZNmuAg6/hDnIIrEUmRGEBNngz89ZcpFfRl506gZ09g9WpzmTOspk412Spi4MV1WFyPxT8fHCzMY32N5WBZIgOwRYvMZTa88G7vLiIikpq7BXIgaMeOHXGFAySj/PHHH2jcuDHuueeexD1iEREJPGaNOAPLGVixGUWvXoDdBZZjNn79FXjlFbNW6rvvgBYtTCBFfGPt9deBX34BSpc2a6pim3dYtCiwcKFphJE1K7B0KVCtmmmukbD39UREREJCgjNXERERaNq0KYoVK4aZM2di+/btVsaKw4Xf5DuZKYAyVyL+cfnyZbzH5gdghVj/GN1FJQiwdI/BT82apmzQGSht3WrKAhloMcDyxplYbN3ubGjBRhe33hrz2N27TUkhuxdSu3YmI+arU6EkK523IiJJWBZIp0+ftjJV5cqVw/Lly9GjRw+8xnknKYSCKxH/0ML4EMAyQJbujRnjewAwSwmd66Q4qDhLFjP7yolzsKpWNWusWAbYpEnM22IzDP6tGDbMNMnIl88EWB06BOAbk8TSeSsikvjYIH18b9CJi9JnzZqFZs2aWaWAQ4cOjT7mWncoIqlHunTpcN9990XvSxBiGeCKFZ4Zqx9/NF3/+H/nDKxYOsh27fx9z4wWywtz5TKfY8B1113Ajh3Abbf5vi/+DLBhRqtWJou1ZQvQsaPZf/ddM9hYkp3OWxGRxItX5orBFGdZebO/VHOuRERSiFOngCpVTCbqo4/Meiwbm1kMH26yT/z9X6yYadnevLn7mLAwLs41+xw+zAYWnH3FuVfeJYUjRgDjxpnsGNu+81hfGS8REZGU1NBi6dKl+Pnnn2NsvN7+nP0xIUaMGGEFZs6tYhyzUN5//32rW2Hu3LmtjWu/1q5d63FMz549Y9xmy5YtE/S4RERSLQZGbHrBxhNdu3p+js0sXn3VNLzg2A12h+VaLM61YlBlf71t1CigXz+gQQNTfujEtVpcy8XbKlPGZMWaNgUGDADCw5PgGxUREfG/RK258hcGV1999RWWcHhllPTp0yMf6/B9YNOMBg0aoH79+lYr+FdffRVz5861mmoUZVeqqODq2LFjmMZ3QKNkypTJCsbiS2uuRCTV45ooZwOSCRNMsGX/fj5/3nQK5GwsYrC1ebPpCmj79FMzrPjMmbhnXTEwe+45YNIkc7l8eTN4mG3eRUREUlrmyh4CGl+HONsknhhMFSpUKHqLLbCizz77DI899hhq1qxpZbg++OADa9jhTz/95HEcgynnbSYksBIR/y6Mz58/v7VxX0KIM7CaPdsERewoaP8/Zstm1knx92+JEqb7nzOwovvvNx0HmzUzJYVPPmnK/v7+2/M4ZrvYsZBt24sUMXO4OOCYjS9YWihJSuetiEjixSu4uvnmm/HII49g3bp1sR7DSI5le1WrVsXXX38d7wewa9cuFClSBKVLl7YyUwkJ5MLDw62WsXny5PG4ftmyZShQoAAqVKiARx99FCdOnIjzdi5evGhFpM5NRPzjv//+szYJYaVKAZUqmfVXDKqc7rzTBFAsAbTt2gWsWWP2uZaKDTLsWVfLlgHVq5u1Wt6FEywx3LbNNNJgZ0HeJtu6b9+eBN+kOOm8FREJYFkgg5OXX34ZH330kVWOd9NNN1kBEfdPnTqFHTt2WKV5tWvXtjoH3sWOUfGwYMEChIWFWUHQkSNHMHLkSCvrtW3bNuTIkeOaX88s1o8//mjdNx8LcfZW1qxZUapUKezZsweDBw+2Bh+vWrUq1m5lLE/kfXuLT+pPRGLHzDKHjFOlSpWs5jgSoph54v9fxozm8tGjwKZNgPeaVgZFjRqZ4IqdAZl9smdhcdZVz57Ab7+Zy61bczEtULhwzPtjtozrtU6eNF//8ssm86WukwGn81ZEJInmXHGA8Pfff48VK1Zg//791mWW8dWqVQstWrSwslbXg/OzSpYsaQ0j7s3uUnEYO3Ysxo0bZ2WpqvNd0Fjs3bsXZcqUsdZ1cdhxbJkrbs4nsHjx4gquRER84Z8NlgF+951ZRzVokPtzLBt85BHWcZvL/P08Y4YpKbSDLw6cHzLElPyxbJtZLe/mGcSOhQ8/bIYTE4M23hYzaSIiIilliHAgsQSRXQBfYRepWLz++usYPXq0FTDVqVPnmrfJ9R48nqWN8aGGFiIicbhyBRg4EJg8GWDHVnYW9MbycGaeWBLKNuxs4c5Mlt2SnaV+nG+1YYO53KWLGSjsPeuKf6JYQvjUU+4272+9Zdq7+xgRIiIiEvQNLZIKSwRZylfYV4lIFGarRo0ahYULF8YrsDp48KBV1hjXbYpIYHBNJNdicuO+pBAMkBjg7NnjGVitXOluyX7PPSaA6tDBBGNDhwL16plsFHGW1urVJuhiqR+PtcsHnRhA9eljBg4zc8XbZzarTRv3bYlf6bwVEUm8ZM1cPfvss2jTpo1VCnj48GEMHz4cmzZtstZwMdvUo0cPq8W6ncVi6/Vhw4bh888/t1qy27imihuDM66duueee6wugQzUnnvuOZw7dw5bt261ugjGhzJXIv7rOsZzk3h+ZvNuhiApB5sRMdBix1fOPCxZ0lzPPzGff25aspcubQIqZydC+v13c12NGuYygzHOuvJ+d5AlhW+/DQwebEoK2cyI2bPOnZPom0wddN6KiIRo5opZpW7dulkNLbp06YK8efNi9erVVmBF7BzIRhe2SZMm4dKlS+jUqZOVibI3lgkSG1Zs2bIFbdu2Rfny5a11W2y+8euvv8Y7sBIR/+E52a5dO2uLraGMpBDHjgG5cgEFCgDFinlmnrp3N10AZ850B1YMjvbuNfusQrADKxo3zgRq7CzoxJ+hZ54xpYS1aplmFywn5O2fOpUU32WqoPNWRCTxgm7NVTBQ5kpEJFG/PNmZyMy9oshIE1T5ajrEMkE2tmAg9eij7sHCDLoYaP35p2lewXVZvvC40aOBMWNMRovzsT76yLRzFxERSY2ZKxERSUH4B8cOrIhdAJlh8h51wWCIrdpZ+sdywebNTVkhsdU7ZypOmgQ88ID7a7yHUPO4l14y67zKlwcOHzZt4R97LOaxIiIiSSTBwdWMGTOsduw2rmnKlSsX6tevb7VnFxERsbBJBbNXXIflXd63cCHwzjtAlizATz8BHOXBzBOLKbhOj50G7W6ALP+rWNGstXKMzbDccguwcSPwxBPmMoMyZr4YdImIiAR7cDVmzBhk4R9DwBrM+95771kd/Djv6im2yhURiRIeHo4bb7zR2rgvqQwDHa6bYtmfjcOHWdLHMkAGRBxEzC6C586Z9uq+ugB++SUX6QJsbsRgavNmz89nzWoCtSVLzHovdjFkZ8EXXogZjMk16bwVEUnC4Oqff/5B2bJlrf158+ZZnfn69u1rdfRj4wgRERuXdDKjzU3LO1Op2293r6diOWDHjiZA4poqYkkf/3a8+qop9Vu61JQLOjGL9dVXJgPGluw332zWWrGroBMHxW/datZpMWPGAce8L36NxJvOWxGRJAyu2FaZc6No0aJFaNasmbWfOXNmREREXMdDEZGUhr8X1q5da23cl1Ru1y6z7dtnsk3OMsHnngPWrwc+/hgoU8b9OfvvCudmsTlGu3YcxAS8+CLQsCGwc6fnfbBjIRthzJnjDsbYjZCBFoM7uSadtyIiSdgtsHv37vjzzz9Rq1YtfPHFF1a7dLZQ//bbbzF48GBs4x+/EKdugSIiAWzZzuxS06bu69hhkEGRN5YUdutmygvbtzfX8U/WJ58A//uf6U7IMnUGTmyMYWfInPf1yCPAN9+Yy/Xrm8ArqvpCREQk2bsFco1VvXr18O+//+Lrr7+2Aitav369NbNKREQkVgULegZWzCyxwyBbsrOUz4mt2rlGq0MHU+rHIIxNLrjPN/J4O8xsDRhg9r2bKvG+5s4Fpk0DcuQwTS7Y7ILBmqaQiIhIcmaumJGqym5OqYAyVyL+ceXKFcyaNcvav/fee5E+fXo9teLp2WeBN94A2rblQl53h0BiM4oRI9yBV9GiwIcfumdZ8c8XA6WBA806LQZQb70FPPSQ5+0QA69evcyaLuJt8LZ4m6LzVkTET7FBvIOrtGnT4uabb0afPn3QtWtX5OAfsRRKwZWIf5w/f95ap0lhYWHIli2bnlrxxD9BXGfFYKdQIXMd11RxHZZd5rd6NfDgg8Bff5nLffsCr79uginavdt83m6//t13wN13x3ymGaCNHw88/zxw4YIpReQsrq5dYwZjqZjOWxGRJCgL/OWXX1ClShU888wzKFy4MB588EF1BxSRuH/BpE2Lpk2bWhv3RWJgUMPAyA6siMOB77gD2LvXXL71VjPLiuV/NHUq8MMP7uO5hmr5cpPh4tqs1q1j+4E0t8HbYpMLlhned58JrqIaNYnOWxGRJG1owXe0vvzyS0yfPt0KrtiWvXfv3lawVcj5xzGEKXMlIpJMGPDceCNw5gwwezbQqVPMJhdffw28+67vbBP/pNnXs+EFuwqytDBqfXA0Zsc4N2vUKNPSnX+/Pvgg9sBMRERSrbOBKAv0Zffu3Zg2bRo++eQTHD16FC1btrS6BoY6BVciIsmIrdpnzjRDgH0FTU4nT5o27QyUmOFyevhhEzCxS+CKFb6/nu3fH3gA+OMP99dwDVgKLn0XEZEg6hboxKwV268PGTLEWoP1/fffX8/NiYiIAKVKeQZW7AhYt64JlLzfDxw+3GSzGjQwX8MmGDa2Ya9SxbRqj21N1U03mQDr6afNMe+/bzoKssxQREQkgRIdXC1fvhw9e/a0SgEHDhyIjh074rfffkvszYlIChQeHm6t1eTGfZFE4RqrdeuAYcNMqZ8T12cx88RmFQyiuJZqwwbzOe5v3gw0auQ+/tNPgZ9/9rwNzspitoqdBEuWNJmzxo1NF0I2vkhldN6KiCRegsoCDx8+bK214saSwPr161vrrbp06ZKiuoCpLFDEP9R1TPzi6lXTYp1ZqFatfB/DeVbMVP37L8CW/0OHmkxWhgzuY3btMlkpZsI4hJjBWNasnrfD4I1ZLLZpJ94nuxnWrp1q/jN13oqIJMGaq1atWmHJkiXIly8fevTogYceeggVKlRASqTgSsQ/rl69Gt1VtFGjRkjH9toi/sBSQDa14JwrDgsmBlaPPmoaXhADLGa2bOfOmWzUlCnmcvnywIwZMddq2e3cuf7q2DETrLH8kC3cU8GsNp23IiJJEFy1bdvWylLdfffdKf4FkoIrEZEgz2Qxo7RzJ/DkkyarZeOfNDbDYIOLX34BcueO+fULFwK9e7Mcw7RnZ9DEksNMmTyP++8/oF8/d7B2yy0mi5VC31gUEZFk7haYUim4EhEJclu2mIDok098d/bjGix7thr/zDGLxXla5cqZ606dMqWBn31mLlevbgInlg068Ws//xzo39+0h+f6rFdfNZc1u01EJFU4m1TdAkVE4nLlyhXMmzfP2rgv4jcMhubN8wysmIHi2ityBj4Mml5+2QROEyaYwIsZLTa34CytfPlMsHbzzcCYMWbulY0dBLt3B7ZtA5o1M+u1nngCaN4c+OefFPkfqvNWRCTxlLnyQZkrEf/QwnhJMuwA2KSJCYa2bwcqVXJ/bv9+4KGH3F0C77gD+OgjM6yYuK6KzTC++cZcZtt3rsXyLv9jFotrvJ591gRZfPdy/HjTrTC2Vu8hSOetiIgnZa5EJCikTZvW6irKjfsiAWPPuXrmGc/AitheffFik7Vid0C2XK9WzT03iw0xmPFiQMWAac0aoFYtc9mJAdRjj5n27myCwc6CLDXkEGM200ghdN6KiCSeMlc+KHMlIhKiGCzZWaSTJ4FRo4ARI4CcOd3t2Hv2BFauNJfZsILZKBtL/ZjlWrIEWLTIlAL6wtLB114zXQQvXwby5zcDiNu1C/R3KCIiSUyZKxERSZ2c5XlcG/X220CXLu7r2NBi+XITGLE5Rbdunl9fvDjw44+m1bszsGJQ5uz/xJbszJStXQtUrWoyV+3bA716mcYXIiKSKqlOR0REUiauo+K6KWavnDhOhOumuBbrttvc1y9YABw/bpph3H67+/q//wZuuokzSWIGTjVrAr//DgwaZAK76dNNsw2WHoqISKqj4EpEAiYiIgI333yztXFfJEk1amSaW3A+le37701WiljK58xMce0Us1Bz5njezrp1wMWLpn179uwx74fzscaONRmx0qWBAweAO+80M7hC8Ode562ISOJpzZUPWnMl4h/qOiZBhV0BOXz4xAkTZN11l/tzDMJYIrh1q7nM9uvsBGgPIWYrdpYRliljLjNoCg8H8ub1vI+wMJMVmzLFXK5Y0bSCZ5v3EKHzVkTEk9ZciUhQyJQpE+bPn29t3BdJVuwU2LGjKeVr2tTzcwy6mKHiOiqWBXK4MLNYLBUk7tuBFb34ormOQZoTM1uTJwM//AAULgz8+SdQr5678UUI0HkrIpJ4ylz5oMyViEgKxowTAy1ik4pp04D77gMyZzbXrV5tWqz/9Ze7o+DEie5mGcxaMRPFbBexu+Bbb5k27k7sVti/PzBzprlcuzbwySdA5cpJ832KiIhfKHMlIiISGzuwIs6y6t0bqF/ftFcnzrDauNGsmSLOwXJ2IWR5ILNcnKnF6zmQmHOzvJtY5MkDfPGF2VheuGGDCbAYiEVG6v9HRCQFUkMLEQmYq1evYvHixdbGfZGgU6AAUKgQcO+9pr26MwBjELRqlSkBtLHDIDNfDLBef900xyhVyt3EYsAA83mnrl3Nmq1WrUxjjKefNseyC2EQ0nkrIpJ4Kgv0QWWBIv6hhfESEli+x5I+O7hioMSmF7VqeR536RJQty5/sE3LdWa77CYWAweatVZUvrzJiDED5sQSRA4aZnDF28iRw8zh4mwsZ2Ysmem8FRHxpLJAEQkKadOmRY0aNayN+yJBieV7dmDFcj2uoWL7dnb5c2Km6b//TNt2tnnnbKsLF0wTi0mTgIULgSJFzFqtBg1MxosBmY0BVN++wObNQMOGwLlzpiSxXTvg6FEEC523IiKJp1c7IhIwWbJkwaZNm6yN+yJBj80qcuUCMmQwXf6cmJFiq3Y2u2AQNm4cUKcOsH69+XyLFqb8j23c+fkxY0zjCwZTTuw6yHJCfn3GjMB335nOg19/jWCg81ZEJPEUXImIiNiyZQNmzzYBUbly7ueFARQbXjDwYkngvHlmvRY7BrL8b8QI83k2rvj0U+Crr4B8+YAtW4DHHjMlgU7p0plSwt9/N63hWYbYqRPwwAPA6dP6/xARCVEKrkRERJxYvucMrOwyQJbyMQgilvIxsOrc2QRVS5Z4rpu65x7zeTbK4Dqr2NZUscvgmjWmhJClswzMmMVavFj/JyIiIUjBlYgETEREBBo3bmxt3BcJSbt3m/I9rq1iZsrGzNSXX5o5VsxmMRtF7AjI7pjMbPFzzrlWo0YB777r2Yqdtz16NPDbbyaoO3QIaN4cePxx0/giiem8FRFJPHUL9EHdAkX8Q13HJMU4eNB8LFbMfGS2itfdeGPMY9kNkIOIGXBxnZaN67Fq1DCB1U8/mXbs3hhMPf88MGGCuVy2rGms4b3+K4B03oqIeFK3QBEJCpkyZcKXX35pbdwXCVkMquzAit54A6hSBfjwQ8/jWDY4bZqZj8W1VM4sFY9n0MSOgb4CK3vN1/jxwKJFQNGiJmvGckTvzoMBpPNWRCTxlLnyQZkrERGJFZtTtG4NLFhgAqmePT0/zzlZbLHOdVjUuLE5zleWiy3Y2diCnQMLF/b8HBtbPPEE8Mkn5jKzXtznOi0REUkyylyJiIgECptTzJ9vOgayLbsza8XAq0QJk3maOBHImtW0XWdAxMYW3l0D//c/dxMLrt9yYmdClgSy82DevKaDIVu/MxDjmi4REQk6ylz5oMyViH9cvXoVq7n2BOxWfSvS2Qv+RVIaluzVrQsULGiyVHYWas8ek9lasQLImRPYudMcY2NHwR49gA0bzGV2F3zvPRNMOR07Bjz8sJmJRRxSPGOGmZnlZzpvRURCNHM1YsQIpEmTxmOrWLFinF8ze/Zs65jMmTOjWrVq+OGHHzw+73K5MGzYMBQuXNgahNi0aVPsYhtdEUlyFy5cQMOGDa2N+yIpFudV/fGH+ciW6t4Dg7lGi0GTM7Cy12HxDYjhw023wVmzTBbr++89j+PXffMN8NFHQI4cprMgywSnTImZDbtOOm9FREK4FXuVKlVw5MiR6G0F392LxcqVK9GtWzf07t0bGzduRPv27a1tGzswRRk3bhzeffddTJ48GWvWrEG2bNnQokULvbATSQZ8w6Rs2bLWxn2RFKt+fWDTJuCLLzwDKI4gYNDEDoLdu7uv53qtjh2B48eBDBnMEGIGWZUqmXVYd99t1m2dPev+Gp5DvXqZwcS33246C/brB9x1F3D4sN++FZ23IiIhWhbIzNW8efOwiX+Q4uHee++1WsTOZ617FJYa1axZ0wqm+K0UKVIEzzzzDJ599lnr80zfFSxYENOnT0fXrl3jdT8qCxQRkeu2dq0Jkt55B+jWzX395cumRfvff5tZWZMmAZ06uYOxIUOAt95yr99imaF3d0F2IGQnQrZt51wtzt/iGq94/p0TEZEUWBZILNljQFS6dGl0794dB9hlKRarVq2yyvycmJXi9bRv3z4cPXrU4xg+EXXr1o0+xpeLFy9aT5pzExERuS5vvw38+69pfuHETNXcuUD16sB//wGdOwP33QecPAlkyWJKCFlKWKqU6TzYpInpGhge7r4Nlh4++aRZq3XTTcCpUyaAY3DFxhoiIpIskjW4YtDDjNLChQsxadIkKzhq1KgRzp075/N4Bk7MQjnxMq+3P29fF9sxvrzyyitWEGZvxYsX98N3JyIiqRobTowdazJMNrvLH2dgrVtn5lcxUGI5Iddf2WutbrvNlP898oi5zNlX/BoGY06VK5uZWiwrtNdssTMhyw5FRCR1BVetWrVC586dUb16dSsDxeYUp0+ftgaOJqUXXnjBSvPZ2z///JOk9y+SUnFhfOvWra1NDS0k1WGGatAgz85/LFlnlorZpYwZgdGjuaAYqFDBvdZq/XpzbPbswOTJJlAqUsQETd5dBO37YUMMrtliU6gjR8w6LAZmYWEJftg6b0VEEi89gkiuXLlQvnx57OZEeh8KFSqEY2xH68DLvN7+vH0duwU6j+G6rLim0XMTEf+3dLY7enJfJFVjiR87BnLNFedjtWhhrmcL940bTRaLmSmW+Tm1bAmwcRPXWdmNYRicHTxoOgbaOAOLZYKDB5uSxKlTzSBjZtAaNoz3w9R5KyKSeMm+5sopLCwMe/bs8QiMnOrVq4effvrJ47rFixdb11OpUqWsAMt5DNdPsWugfYyIJJ2MGTNi2rRp1sZ9kVSNzSnYEXfUKHdgZeNaqzffBKZPd1/HNxMHDjRdAdmwwpm16t8fuPlm05rd+3bYDOPnn8397d1rSgyZQWPji3jQeSsiEqLdAtnRr02bNihZsiQOHz6M4cOHW50Dd+zYgfz586NHjx4oWrSotSbKbsV+++23Y+zYsVaZ0cyZMzFmzBhs2LABVTkXBMCrr75qfX7GjBlWsDV06FBs2bLFuk3OxooPdQsUEZEkwTXGrVubrJV3wNWhAzBvnpmVxewTBwcTgyQOG2ajDJYCMmPly5kzwFNPmW6DxL+Tn3xi1m6JiEjK6xZ48OBBa25VhQoV0KVLF+TNmxerV6+2Aiti50DOvrLVr18fn3/+OaZOnYoaNWrgq6++slq524EVPffcc/jf//6Hvn374uabb7ayYWyYEd/ASkREJMm8+irw66/Ao48Cly55fu6xx4BixYA9e4BGjUwWi8O4WcbOboMsAXQGVlyrxdJBW86cJrPFAK1AAVNaeMstwJgxwJUrSfc9ioikIsmauQpWylyJ+AfXbmzdutXar1atGtKxm5mIuLHk74UXzEDhxo2vnX3ikOGPP46ZreJ5xuuY3eKxJUt6fp4t4dnggkEZ3XqruZ1y5XTeioiklMyViKRs7DpWq1Yta1O3QBEfsmUzrdqdgRWbwDz+uAm87OzTt99yrgjwxx8mMPruO8/b2bkTSJ8eWLrUdBX88EMzhNjGipCvvzYBFV8YsJyQzTDYYMOZ7dJ5KyJyXRRciUjApEmTxhoSzo37InINERHAww+boIcNLmxt2gDbt5shwWxUcccdnl/XqROwebPJXHEdV58+QNu2pi27+4QEHnjAlAdyMDHvi0EcuxGy86DOWxGR66ayQB9UFigiIslm8WJg3DiTrWL3P29sw253DmTW6fPPTdDFzBVHHjAoGzLErOHKkweYONE0wHDi1/H6554zQRYzZBMmAN27u9u9i4iIRWWBIiIioapZMxNgOQMrzq5as8bsO1uyT5pkslGcY8XSQK5rZOMLNreoVQs4edIEXgyuGJTZ0qY1WatNm8ycLa7t4u107mzWZ4mISKKoLFBERCSYsQkFR5LcfrtnmR8xM8WsEwMvtljn8GBmpdhFl9cNG2YCri+/NNexfbtT+fJm9tbo0SbzxXVZPI5ZMxERSTAFVyISMGxi0blzZ2tTQwuRRGJQxXK9Z58FChf2/Fy3bmYNVfPmpk07OwveeSewbx+QIQMwciSwahVQsSJw9KhZu9W7N2tc3LfBoIpzttauBapUwYXjx9G5XTt0rlhR562ISAJpzZUPWnMl4h/nz59H9uzZrX3OnMvGzmgikjjMSLGcjxgosSMgSwAzZjSdAadOBZ55xnQZ5Lk2fbppdEFcV8V1WG+9ZS4zW1W/fsz7uHAB5596CtknT9Z5KyKSiNggfZyfFRG5DhkzZsQELpKP2heR62AHVgyk+vUDvvkG+OsvYMYM04SCc6y4XqtXL+C334Abb3R/LddvvfEG0K4dsG6dZ2DF27ObWGTOjIz9+2MCg6ssWXTeiogkkDJXPihzJSIiQW3WLFMC+OOPZq6Vd4aL663q1XNfxzbulSvH7ATI4IzNLtgYg/OzaPduM1w4Rw7P8kERkVTqrIYIi4iIpGAMiLiuyhlYsVkFhwwzw+UMrLZuBWrXBjp0AI4d87yd5583HQO5NsvGBhh05UqgvwsRkRRHDS1EJGAiIyOxa9cua+O+iPhRpkzu/X/+MU0v2H6djSmcNm40pX8sI6xSBZg92/05rtvi0GKu17LP27RpsQvAritXdN6KiCSQgisRCZiIiAiUL1/e2rgvIgHCbFODBia4uukmz8/16AH8/rtp1c5ZV126mC6D3M+d2wRWxYu7z9shQ1CeXdovX9Z5KyKSQAquRCSg2F2Hm4gEUJEiwPffAwsWuMv6mC1mloofq1c367CGDjWfnznT99wrBmGffgqesdZZy4yXiIjEm4IrEQkYtl4/ffq0takNu0iAsVlFrlzuy2xSwSxV27YmSGLHzpdeMnOvKlUy7dx37PC8jZtuQrZXXsFpwNqyscugiIjEm1qxi4iIpESZM5t5Vy1benYJvPlmYMMGUw7Yv7/7ens+VpMm7uuuXnVnwkRE5JrUit0HtWIXEZEUgY0uihZ1z8hih0EGSyVKeB7HNZFcq3XHHcD997vnYDHgypo16R+3iEgQUSt2EQkKFy9eRM+ePa2N+yKSxNiowg6smIViR0G2b1+40PM4rtViG/eJE3GxSxf0BKztYni4/stERBJAa65EJGCuXLmCGTNmWBv3RSQZnTzpblDBgcJOHTsCixdbwdiVgwcxA7C2K3pTREQkQbTmSkQCJkOGDBg3blz0vogko/z5gRUrgO3bPcsC2dSCDS6aNrUGDmfo1Qvj5s61PpXBuVZLRESuSWuufNCaKxERSRW2bjVrre6+G/jsM4DdAX/7DWjY0Hz+yBGgUKHkfpQiIslKa65ERETk2tavNx9ZtsvugsSW7bbLl/UsiogkgMoCRSRgIiMjcYTvfAMoXLgw0toL60UkOPTsCdSqBRQoEN2uPTJPHpizFigcHq7F2SIiCaDgSkQCJiIiAsWKFbP2w8LCNEhYJBjVqOFxMWLCBJizFgg7dw7ZkuVBiYiEJgVXIhLYXzLp9WtGJGRcugR89537xYHKAkVEEkSvekQkYLJly4bLenEmEjoyZkS2detwmU0sGGhlU95KRCQhtABCRERE3CIjTWAlIiIJpuBKRERE3NKlc+8r8ywikiAKrkQkYC5evIj+/ftbG/dFJPhdPHYM/QFru/jvv8n9cEREQoqCKxEJmCtXrmDixInWxn0RCX5XLl7ERMDarhw7ltwPR0QkpKihhYgETIYMGTB8+PDofREJfhkKFoQ5a3XeiogklIIrEQmYjBkzYsSIEXqGRUJIxvz5EX3W5syZvA9GRCTEqCxQREREHK8MHC8N1DVQRCRBFFyJSMC4XC6cPn3a2rgvIsHPdfUqTufLh9PcVzmviEiCKLgSkYAJDw9H7ty5rY37IhL8wk+eRO7//kNu7u/YkdwPR0QkpCi4EhEREbf0juXYKgsUEUkQNbQQkYDJmjUrLkW9OEvvfMEmIkEra65cuMRBwlevIr1z/ZWIiFyTXu2ISMCkSZNGLdhFQvG8vXrVXDhxIrkfjohISNFbUiIiIuKbygJFRBJEwZWIBAxLAgcOHGhtdnmgiITAeQtY26XT7BkoIiLxlcal/sgxnD17Fjlz5sSZM2dwww03xPvJFBFP58+fR/bs2a39sLAwZMuWTU+RSCidtyVLIttjjwGVK5vtxhs952CJiKQCZxMQGwTNb8ixY8dadd5PPvlkrMc0btzYOsZ7a926dfQxPXv2jPH5li1bJtF3ISJOGTJkwLPPPmtt3BeREDlvAWvLsH8/MGgQ0KYNUKYMwKDrppuABx4AXnkF+OYbYNcuq/mFiIgESUOLdevWYcqUKahevXqcx82ZM8ejtOjEiROoUaMGOnfu7HEcg6lp06ZFX86UKVMAHrWIXEvGjBnx2muv6YkSCbXzNmNGs96Kb07mzg1w3tWffwIREcCGDWZz4t/ZihXdGS57K1vWs7W7iEgKl+y/8Vgq1L17d7z//vsYPXp0nMfmyZPH4/LMmTOtVs/ewRWDqUKFCgXk8YqIiKR4adKYj40bm8wVMTu1bx+wfbsJtuztjz9M0LV5s9mcmLGuUCFm0FWuHKO4pP++RERSenDVv39/q6yvadOm1wyuvH344Yfo2rVrjHUcy5YtQ4ECBZA7d27ceeed1u3mzZs31tu5ePGitTnrKkXk+nFJ55UrV6LnXLFMV0RC4LzlG5T79yN9rlyIPms5+4qZKG7t2rm/IDIS+Ptvz4DL3s6fB7ZtM5sTs1kMsLyDrvLlgcyZk/LbFRFJOcEVM08bNmywygITau3atdi2bZsVYHmXBHbs2BGlSpXCnj17MHjwYLRq1QqrVq1COv5h8OGVV17ByJEjE/19iIhv4eHhamghEornLddasbrkv/9wzTY0bHBRurTZ7r7bM+j65x/fQRffxGTGi9vXX3veFoM376CLJYdZsgTmGxYRSQndAv/55x/UqVMHixcvjl5rxYYVNWvWxNtvv33Nr3/kkUesgGnLli1xHrd3716UKVMGS5YsQZMmTeKduSpevLi6BYpcJ3ULFAnx83bkSGQbNsy/d8CXHYcOxQy4WG4YW+t3Zr0ZvPkKuqIeq4hIMHQLTLbgat68eejQoYNHNunq1atW2VDatGmtYCe2TBN/8RcpUgQvvfQSBgwYcM37yp8/v1UayIAsPtSKXcQ/+OuFv4iIv5RUFigSIuftuHHA4cPI+cADSFOnDsAAi+uqHn7YlO4F5o6Bo0d9B10nTsT+dWwP7x10VaoEaJSKiPhJQmKDZCsLZBZp69atHtf16tULFStWxKBBg2INrGj27NlW8HX//fdf834OHjxodRUsXLiwXx63iMQfg6lcuXLpKRMJtfN2zhzW3wPNmpkrp083JX4dOriDq1mzuPg5ZmDj1XwqAXcM8G81N+9Kk3//jdlIg9uxY2a9F7cffvD8muLFYz42bvqdJCIBlGzBVY4cOVC1alWP69iYgo0n7Ot79OiBokWLWmuinLjOqn379jGaVLDzINdO3XPPPVa3QK65eu6551C2bFm0aNEiCb4rERGRFMB+g5MNaZhRevFFE9wwOLGtXg0sXmw2p4IFPTNI9n6BAu4uhAmVP7/pXMjNiRktX2u6Dh82wSC3H3/0/JoiRXwHXXE0vhIRCZlugXE5cOCAVSLotHPnTqxYsQKLFi2KcTyzXVyDNWPGDJw+fdoqHWzevDlGjRqlWVciyYBz6caMGWPts7kM5+eISAictwxQeN7u2YOMDIh8ldX36QNUqeJux86PBw6YbBK3pUs9j2dG6557gKlT3dfxuOsJuhgQNWpkNqdTp9yPybkx2GLgxW3JEs+v4ePg9+MddPF6EZF4SrY1V8FMa65E/EMNLURC/Lx95hlke/31+H/xuXNm2LB3UMP5WHy58eCDpsSQLl8GsmY1219/mYwX7dpl5mOVKGG6B/qT3aXQ+/GxrDA2+fL5znSxXb3GS4ikCmdDoaFFMFNwJeIfXBv59NNPW/tvvvmmMsgioXLeMnA4fRpvZsyITDffDPz6qzuQYNMJBhycVRVfbIaxc6cZHGyXFu7e7W6xzqDHvv1OnUx7dgZdzrJCe59dA+NYl50oYWG+g8K9e01Q6Evu3L6DrqJFFXSJpDAKrpLwCRQREUlxpkwB2I2XY0pq1QI2bHB/juNTGIiwsYV34MPrMmWK//3w9g8eBMqUcV/HphlsTnHpku+v4e1XqOAZ0DAAZKbL38LDTVDo3b1wzx4zx8sXvm7wFXSxwYa/M3EikiQUXCXhEygiIpIisZkFMzfMKrEdOzGgYNaKa5p8qVYNcM6fnD/fdP9jhipbtoTft3cmiSV9Fy7EPH7IEGDUKPc6rvfeM0Egs2CBwMfAUkbvx8eSRj52X/j9+wq62EpeQZdIUFNwlYRPoIiISIrDMjlmlbj2yjsTxQCLjSucjSzs/ebNgS+/dB+XI4fJ/lDJkp5Zrtq1TVYsIa5eBfbvjxnUPP880LGjOYbdAVu2NAEdH5Nt4ECzlssOapj9SkjAFx/MtjHA8n58zH5xjZkvLIvkY/VuphGI8kcRSRQFV9dJwZWI/xbG23Ou2MGT4xZEJATOWwZFLhdOT5+ObGxCER9cm8S1VVwrRadPA+3amQCHc6q8tW0LfPON+2ufe86UB9oBGNuvJwZLGCdPNl3+Ro923z7fLGXQmBwDiBlYsZTQO+hieSWDWF8Y1DLo8n58fI4YJIpIklFwlYRPoIjETt0CRUL8vP3uO2S7+24TKH3xhcmu3HZbwm+UwRWDLDvTxY9Nm5qAio4cMfOnfHXpY7Bz110mGLue4IbryJyBja+Az1asmLnfkSOBevXcmTh/l++xhJCdFL3XdMVW/kgMrLzXnHErV840DBERv1NwlYRPoIjELjIyEkf4oglcdlE4xtw6EQnS83b4cCuQKtylizlvf/nFDPAtVcqshbK9/z6jMRP4sIwtsfh74s033cEXAw4ndh194w334GAGfN6dBFl2mJDfMf/957stO2dg2dglsWFDs//hh2aYco8ewLhx7mMYpDEQ9Gdbdl/lj3bQxefbF5YQMsDyLi9kk5HMmf332ERSobMJiA2CeoiwiIQ2vigryrbEIhJa5y2bQ7CUzg4YmBFp3TpmdmnCBNPAomxZd3DFy5yNVb8+0K9f/O6UTS9eey32Ln133OH+HAOM1avN5sRyRJbRPfGEmadlByn8Pny1jWdA5GsAMbN0dtDFphg2BjdsluFcO8XGHiw/5IBkX80q+HwlJuhioMTnkxsDSRuzZxyE7B108aM9Y4wbW9nbGHCylNA76GL2yy7hFBG/0ZwrH5S5EhERiYeXXwY2bjRZJWaO7AxPnz5As2bAokXuY7t3N2VwLLVjEJRYzDgtXerZUIOBmN26nZ0CH3vM7K9da4InZm+8M10JbRtvz8Liu9b8Wvr9d+CWW2KfhcVjnfdrb/4ekMz7P3TId9DFYNEXBn3MRHoHXfy/iSoLFRFDZYHXScGViH9cunQJ77zzjrU/YMAAZNR6AJGUf94yc/XttybYeuAB94t/NslgSRtf8DPgIK7jGjEC6NLF3Uqd2OQhIYGPc+1SjRqmUQXNmAH07On7axjcsKzxoYfc5YZ//53wtvH2gGTvEkN2DWTmzBfejx2Mrlhh7ptBGjN4/sTnnUOfvYMubidPxv51fGzeQVcgGn2IhAgFV0n4BIpI7NTQQiT0BOS8ZZCxcKF5cf/kk+5ud4MHA6+8YsoHJ01yBwQs2eNjWLbMZFeIAQizLSzBiy/vMjpnAHTmjGnbzvbx9PnnJrtGDM7sjJP9kSWCCXkufLVl5/0zw8R1WnbmioHl7Nkm+8e1ZXbw9fHH7sCGZZf+fHOKzzEfg69M1/HjcTf68A66uEV1hRVJqbTmSkSCQvr06fFg1NoH7otIKj1vuYaIa7a4OT31FNCkiQmmbHxxz6wKy9mcmZzx401JIddURWXWLGy2wTK9QoVirm9iAMMsDLdWrWJmdJxBAdd5cf0U75/BDbcFC9yfZzauTRuzv2kTsGqVO7jw1TaewRADEW5O3l0HGThx3pdzfdeaNQCbitj4/8BmFd5BTWKbVfB54vfKjY1K4mr0YQddbDpy8KDZGJQ68f+Jj8c78MqbN+GPTSTEac2VD8pciYiIJCNmqTgXiqVytkcfNfOr2CzjmWfMdQzC7BfwZ8+a0kM7OOHnOKi4YMGE3bcdXHgPSGYWjY0hiCWMw4a5v4aPwVk+17Vrwu/XiaWCXLtm37/3fC7vZhV2Zu2llxAwbN7hK+hisBUbBm++gi4Go/7srigSYCoLTMInUERERJIIO+Ix85Mzp7nMF/scVMwOfs727fffD3z2mWm4wdJDYoDy7rvmxT2/5npe3LOEkBvvn/fr3dDCua7s00+Bn3/2bGyRkLbxvG0GMN7lhQxunM0q2P2PDTdsnTqZbNzYse6smLMDpL8wqPUVdLGVfGzsYNQ76PKVfRQJAgqukvAJFBERkWTGhhbOEkYGVN99Z9Zz2a3M160zmTBmlFgSaONaL17u3BmoWjXh9223jXcOSJ45072ujCWWXD/llCWLaZzBgOKtt3yXFV4LAyW2hreDGt7fI4+4P8eSRwY+27a5SxPZ7p4llc4sW6BK+Ozuit5Bl69g1MbHXLOm6fjIxyQSJBRcJeETKCJxL4y351wdOnTIPwvjRSSgUux5u3WrGf7LRhl28wyqV8/MzJo1yzSXIAYFzz0H1K1rBgdfD2atWOZnB168bbttPLNXDEIYbNHjj5vyQ+/AJ6Ft45nd++03c5+9ermbYXB/+vS4S/i8Ay8Go/7MJjlnmNkBFzeWgfJx0/PPm8BYJEgouErCJ1BEYqdugSKhJ9Wdt1OmmHlVgwaZ5hLEzFO3bkCDBiYwsnEtFddyjRkD1KmTuFI7u208Ay2W+9kzuahhQxMUeWMQxsfGANEOlNgFMXfuhM2kcg5IdpYYxlXCxxLKefPclzljjM01GID7M+i6cIG9/4GpU03XRHZPFAkS6hYoIkEhS5Ys+Ouvv6L3RST4pbrzlqV0djmd7eabgQkTTPDinYViC3OuY7LNmWOabXTsaBpu2BiE8eu9AxC78x83b1zH5czm2IEQ28ZznpazHTvLDRnocP2Wd6aL+77ao/M6Zuq4xVXCZ29797rncdnB2Z13uvfttW8//WSCo4SuJ3Ni10O7zb6dwRIJQeqNLCIBkzZtWpTz9QJCRIKWzluYDnz9+3s+McxQMYPDoIPrpWwMgBhwMfhxqlbNBC3MfHGfuEaKg5QZgLA9vbcSJczm3TaebdD5tU68T2LWiZuzbbz3urL5802GK7ZOffwcM3F2Ns7G78n5fbFNPb93XmcHVsQSPgZYlDWrez2Zc+O8smu19refEwVXEsIUXImIiIhcCwOS+vXN5j2ri8GQc94UgyoGQxyeXLy4+/oZM0z5IYcVs4ug7YcfzOBidvzzDrp4v0WKmM2JJYLOmVTOcj+u0XJioHjggNln4wpnlosNJG6/3ff3zMylM3vJ2+X98PtyYjDFwItrqbimasMGszkx68bvz75fPmfMEDrZGS/v2xcJIQquRCRgLl++jKmsnwfQt29fZLC7Z4lI0NJ5m0Bck3bTTTEzQcxQsUmDszyPreTZmMIZ/DAYYUdDZqgYoNidA1euNIOM2VTDnq/ljcOXGzUym+d/onufgQpbsTNo4+1xhhizafZaMgaLznVebOTBx2CXFzLo8y7z8w4AWULpXE/mXV7IgIzZLgaE3OwMlx1csQz1hRdM+SMpcyUhTEOEfVBDCxH/SHUL40VSAJ23AcZg5+JFE1zYjSnuuceU+TlndXEdGN+cGjLEDC0mdhlk90IGPT16XLvMLq5OfXamiyWLI0eaz3PdFH9PO4MbZ9v4Zs3MWq+E4u2xdNGZXevTx50F/PJL4N57gWLFTJOPvn1NoxGRIKGGFiISFNKlS4dOHGQZtS8iwU/nbcCfYHdgRSwbXLs25uwnZreYkXJmxXbtAl5/HciRw7RVt3EuFIMmdjj0blbhxPutVctsvjB4Gz7cHQDxNplx2rjRbHzsdnDF7BgzT3yc12obz8wX11xxu+uumPfLx8N5X7/+aoIrZa4khClz5YMyVyIiIhJ02L3v7bdNIDZ+vPv6Jk1MJ8Np04CePc11LEnkPoMzfk1iOMv8mHXikGV7KDO7CzKo8sZAimWMzLw984y5jsESg7RrVS+wCyPLAxk4fvRR4h6zSAAocyUiIiKS0pQuDbz7bszr+/UzQdStt7qv27bNrKticw0nDkrm2isOVG7c2B1EsXGGd4WBs2085105sYSPHQq928azRTszbFxzZmOAxjlddtt4Z+t4Z9v4TZvcgZtIiFJDCxEREZFQ1rmz2ZxuuQX47LOY67JYgsj1T85AaskSoH17oHVr4Ouv3ddzPViBAjHL/IjraVu2NJuNGTW2gGeg5eySyGArtrbx9PLLwODBpvuhPSNMJEQpuBKRgAkPD4+ec7Vr1y5kda4zEJGgpPM2hShcGLjvvpjX29kmtmC3MRhikw3vroAsN2Qp4vLl7uYTnLl1+LBpcuFd5sfsF++XmxMDMGfbeGemi2us7EHFzKDZa79EQpSCKxEJGJfLhcP8Ixy1LyLBT+dtCscyPO+1Uk88Ycr+7OCGuM+27exuyEYUNma2/vc/oE0b4Ntv3dfPnm1mcbE80Tnzy8b5Wg0bms3p7Fl3Fs2exXXqlB++UZHkoeBKRAImc+bM2MgOU1H7IhL8dN6mQgxuuJ7LieWEzDbxDbJChdzXs0sg52BVqeIZiHEwMj/H9Vx2JoprvjZvBho08MyUOd1wg3vfzpzpzTgJYQquRCSgLZ1rxvYHVUSCks5b8SjzK1rU8wl56imzObNcbGJxxx1mPZVzrdVXXwHvvGOOt/8WsHPgY4+ZJhn8yDlazvsjBVcSwhRciYiIiEgCX0E6XkLmywf8+GPMY6pXN+WD9notYgDGAcEZMwIDBnjO6jp2zOwruJIQpuBKRALm8uXL+IzdqsCKke7IkCGDnm2RIKfzVvzmoYfM5sQS8WHDgHPnPAO0hQvNdaTgSkKYhgj7oCHCIv5x/vx5ZGe7XnDUShiyXWuApIgkO523kizYDp7rto4fN10IvedziSQjDREWkaBZu3HXXXdF74tI8NN5K8miaVMzU4vBlTJXEsJUFigiAe069v333+sZFgkhOm8l2eTObT56Dz4WCSFe0+JERERERJIBuw4SW7qLhCgFVyIiIiKS/OxW7CGmZ8+eaN++ffTlN954A7lz58aFCxdiHBseHo4bbrgB7777LkaMGIE0adLEuo0cOTKJvxPxBwVXIhIw/CNSrlw5a+O+iAQ/nbeSbJo3Nx8LFgzp/4QHHnjAagwzZ86cGJ/76quvcOnSJdx///149tlnceTIkRgbg7VcuXLhvvvuS5bHL9dHRa0iEjAulwu7d++O3heR4KfzVpINm1lQiL8ZV6BAAbRp0wYfffRRjACJ1zHLlSdPHuuy3VHXxvEln3zyibVemW9MSuhRcCUiAV0Yv2LFiuh9EQl+Om8l2aSNKqhKAW/G9e7dG3fffTf279+PkiVLWtft3bsXy5cvx4++Bi4DWL9+PR5++GGMHTsWLVq0SOJHLP6iskARCWhL5wYNGlibWrGLhAadt5JsjhxJEZkrYnBUpEgRTJs2Lfq66dOno3jx4mjSpEmM448fP44OHTrgnnvuscoFJXQFTXDFKJ2L95588slYj+EPpfdiP+93w1nOMGzYMBQuXBhZsmRB06ZNsWvXriT4DkREREQk0f76K8UEV3yT4sEHH7Reu/K1aWRkJGbMmIFevXohrZ2hi3L58mV06tQJBQsWxPvvv59sj1lSUHC1bt06TJkyBdWrV7/mseyw4lz0x3Sr07hx46wOLJMnT8aaNWuQLVs2690DXx1bRCSwrly5gtmzZ1sb90Uk+Om8lWSTM2dIdw309tBDD+HAgQP4+eef8dNPP+Gff/6xgitvTzzxhJUImDt3rkroU4BkX3MVFhaG7t27W5H66NGjr3k8s1WFChXy+Tm+M/D2229jyJAhaNeunXXdxx9/bL0TMG/ePHTt2tXvj19EYnfx4kV06dIl+lxPr8GQIkFP560km1tvBTZtAnLkSBH/CWXKlMHtt99uNbHga1RWU9nrr2xTp061Pr906VIUK1Ys2R6rpKDgqn///mjdurX1Axef4Iov0PiDyfRq7dq1MWbMGFSpUsX63L59+3D06FHrtmw5c+ZE3bp1sWrVqliDK/4h4WY7e/asX743kdSOpQ/8w2Lvi0jw03krySZjxpB98s+cOYNNDAwd8ubNazW2YJMKYomg02+//Yb//e9/1nKW0qVLW69hnbi8ha9jJbQka3A1c+ZMbNiwwSoLjI8KFSpY0T3LB/lD/Prrr6N+/frYvn27Fe3bP5TMVDnxsvcPrNMrr7yiQW0iAcA/DMuWLdNzKxJCdN5KsilRwv4hDLn/BP6tq1Wrlsd1DKzGjx+Pxx9/3FqD5Rw0TB988IE184oVV9y82Wu2JLSkcSXT8BnWndapUweLFy+OXmvVuHFj1KxZ0yrtiw8uAKxUqRK6deuGUaNGYeXKlVZXssOHD1sNLWwsS2I54axZs+KduWI3FwZwXOMlIiIiIgHWuTOn7AKZMgFaKy9BhLEBs4jxiQ2SLXPFXv5sO8nSPtvVq1et/v8TJkywgp1rtW7OkCGD9S6BPaTUXot17Ngxj+CKlxm0xSZTpkzWJiIiIiLJ5Px581ENkCSEJdsiCPb437p1q1Wfam/MZLG5BffjMxOHwRhvww6kSpUqZQVY7MjijDTZNbBevXoB/X5EJKaIiAjrjQ1u3BeR4KfzVpJNnTrmYzxeA4oEq2TLXOXIkQNVq1b1uI5t07n4z76+R48eKFq0qLUmil566SXceuutKFu2LE6fPo3XXnvNasXep08f6/P2nCw2xihXrpwVbA0dOtQa4uZd5yoigcfGM5s3b47eF5Hgp/NWkn3O1eXL+k9IjS5fBv77jxOVWXZmPrLJSVTX4VCR7N0C48LZAM4OY6dOnbI6rrA5Re7cuXHTTTdZ66wqV64cfcxzzz2H8+fPo2/fvlYA1rBhQyxcuFBzA0SSAYd8L1q0KHpfRIKfzltJNuoqm7K4XCwhM0GSM2Bybs7rTp6MeRt8jR9iwVWyNbRIKYvWRERERMQPWrcGfvjB7OvlaXC6dAn499/YA6TjXtfx+IRitoqloXwN3qEDMGkSkltINLQQEREREYl2+rSejKTGIPbMmWtnlezt1KmE30eOHECBAu6NI5P4cfFiYM2amMfbARlb8gdBYJVQCq5EJGCuXLmCH3/80dpv0aIF0qfXrxyRYKfzVpJN3rx68v2B44Xs7FJ8gqaErnFjVskZLHkHTQW8ttjmln30kflYowZQpIg5bvVq4PBhc3327AhFeqUjIgHDkQp33323tR8WFqbgSiQE6LyVZMMX2OI7u8SMUXxL8ZiJSiiWusUWJHlfzp3bP+vjzkQ9zo4dgbFj2aoUGD6c7cDN/YSHIxQpuBKRgGFDGo5YsPdFJPjpvJVkk5qqGzgk2Ts4ii1o4pbQ2V98LuOTWeJ1+fOzkw2S3JUr7jVWVaqYjNu99wKVKpnrDx1CKEpFP8UiktSyZMmCdevW6YkXCSE6byXZ5MsXuk8+x40wuxRbcOR9PbvoJVTOnLEHSN7XMbuUJg2C2pWo4IqP09drhaJFEYoUXImIiIhI8uM6oWDCMrX4thHnY2c5W0JkyBB3kOS8zOxSpkxIUVyu4Px/v04KrkREREQk5ZcFMvjhLKX4rl0KC0v4fTBjFN9yPGaigj27FEjZsgHnzgGlSiElUXAlIgETERGBpk2bWvtLliyxyo1EJLjpvJVkc8cdwLvvJqxZApsexLeNODMkLN9LCK4HiitAcl5mdonHS/zkymWCq1tuQUqi4EpEAiYyMhIrV66M3heR4KfzVpINX2jb5WLbtsUvaDp/PuH3kydP/Mvx2EUvNWeXAulS1DyrFBaQKrgSkYDJlCkT5s6dG70vIsFP560kG85PsoOratXi/3X8+xLfRg/MLnGtkyRdAPXffyYQppo1zcd9+0ygXLYsULVqivrfUHAlIoH7BZM+Pdq3b69nWCSE6LyVZM9k2AOF41uOlyOHsktJjW3S9+zx3RnxuGNjB0Vbw4bAr7+aff6/MSg+eBDYuROoXBkphYIrEREREUl+GzaYjyzDY7ZDAo9ZQpZWOtelcX101Hppy913AwcOAD/8ABQrZq7j2rhx4+J3H2nTmowhm304m1lkzWqCL3ZlTEEUXIlIwFy9ehW/Rr1L1ahRI6SzSz5EJGjpvJVkw2yV+BfXrm3caIKm2LJL3sFN/fqewdXmzSbDdPSoO7gqWRIoXz5mVrGAj41BlXeTEnZurFHD7DMTmYIouBKRgLlw4QLuYPcnsKNtGLLxnSoRCWo6byXZNGpkPt54o/4TfA0o9u58yKClWzf3cbVqAX//bYIp+zn89FPg1Vev/XwyW2UHQ1WqeH5u8mSzTq1cOfd1jz1mtuspAV22zOyzJX0KouBKRAImTZo0qBxVR819EQl+Om8l2WTObD4mpBV7KJfiMaCxKzpY5cHNV4YptgHFt97qGVxxhtfp0+Zr7OCKzSKYhfKVUWKpnr3PNz9j+zvdurX/n4OLF937KazhlYIrEQmYrFmzYvv27XqGRUKIzltJ1rLAdu2AwoVD7z+BmRg7MPIOkPj9DBjgPpbBDNeU7d4NlCljrluwAHjllYQNKPbOMM2ZY9YxOYfy3n+/2YLNRUdwlcJGtSi4EhEREZHk98cfJsjIlw+YNCm5H427hTjL4ez27d9+ax6jd3aJGaPY1K3rGVxlz25um0GYHVwxC/XQQ57ZJOfG5+Ra86Buugkh2RnyxAmgaFGkFAquRERERCQ4hgjzRTcbJwS6K56vrXRpYPRo99ewtI5fs2uXmcdEa9eaNUi+sMTPV3BUoYLncb/9ZtYZOdcht21rttTi7FnzkaWIKgsUEYmfiIgItI36Y/Htt98iC+vLRSSo6byVZGNnXq6VofHGBg4Mjm6/3b1ua8YM4MsvPdctXavl9803ewZX7GLHRhJ2IEBcv5Q+fcw1S7F1xfOlSBGkSHye9jhmX3mXRw4a5G5aMm+e+Zgnj8nKpSDKXIlIwERGRmLJkiXR+yIS/HTeSrLhLCW6cAH45ZfYM0yVKgFTp7q/jkEVs14cRsv24MQX+ZzL5I1v8vkaTMyNmSunv/5yN5ywNW5sttSCAdLWrbEHTKNGAXfeaY79/nvgvvtiv60OHdzB1S23mIzVgw8ipVFwJSIBkylTJnzKNrBR+yIS/HTeSrJxBjJxBTDeGSh2xAsP91zHw6oJzmLyDqASMhIkpc5mPHQIWLMm9oDpjTeAli3NsXyDNK6Aae9ed3BVqJDZfHUj5GYHVtSkifl/TIGdhBVciUjgfsGkT4/u3bvrGRYJITpvJdk4gxmuU4ptKG3x4p5ft3JlzNuqU8dsKRXXkHGzyxD37QN+/jlmC3d7f8oUoE0bcyxbvjtbuHv75x/3PocGM1MYW8DkfI451/LIkfg9/rAwoGNH0yhk/vwUFcgquBIRERGR5HfsmPnIgOHPP5HqsByS37u95ozPAQOP2AKmzz83pXZ2o40+fWK/bWeTEDbqqF8/9oDJ2eKd2aYdOwLzvf70U4qca6bgSkQC5urVq9iwYYO1X7t2baRLQe9MiaRUOm8l2bC5Adltz0Pd5cum5foNN7jLETdv9my04QyYuG7s669NRoe2bAEGDoz99vk1NnYz5LDf2AIm53oytn1nx8LklCMH8NlnwJUrKa40UMGViATMhQsXcAsXrVoVAGHIlpBadxFJFjpvJdnYAYDd8S/YsDHTyZMmqGHHv1y5zPXr1gHTpsUMmHgsffUVcM897iYZY8bEfh/8OmdpJAcAxxYwcX2Ts9Mis1yhIkuWuNdyhTAFVyISMGnSpEFJLiiO2heR4KfzVpKNXR6WVN1luWbpzBl35oidBhnA0IoVwIQJnmV4zELZj80ZMO3fH/vQY35PvA8bS+7+9z/PIMkZNDHLZatRA/jkk4B9+xIYCq5EJGCyZs2Kv//+W8+wSAjReSvJ+MMHNGtmPiaWPSjYDoqY0Slc2HyOa3zGjfMMmFi6Z2O5XufO7vVfs2b5vg/Os+KaIWcQNGyY74CJpY7ONUWVKwPvvotU4/Jl4OBBMwOLz5Nt/HjgxAlTAlm9OlISBVciIiIikvxYRsc1SXb2iC5edAdD9kfOtSpRwnx+wQJg+HD359iS3ckZMJ0+DSxaFPN+s2c3gZCzwqJ2beCtt2IGSxx4670mrFw5YORIpBpsob59u+n452yZ//bbwOLFwCOPmFb4tGuXydYxyGQwZeMcM64vYwD7xx9ISRRciYiIiEjyY8kdAyTOq2LAwoDJWVJnmznTHVzxhT7XPDlxrqIdFDnXb3EN8PTpnmV43Of6H2+lSgFPPolUg4ESm1zw+Wzf3n39Sy+Z4cDPPusOUtn2/eabTQbPXldGmzaZwc3sMGgHV3x++f/BBhZXr7pbrvfqZf4/7PbwKYiCKxEJ6ML4rl27WvszZ85E5mBdpCwi0XTeSrJhQMUOecuWAU884b6eL8id2SO7kQSxpfg333gGTMxE+Vrny/lYDz6IVIOZOgY7zP4xmLGxA+HcuSbj98AD7tlWHBzM59YZXLG0n23ed+92X8fnmPOv+JEBsV32yOf2ttuAunXdxzLT52tYMDsbckuB0rhcXM0nTmfPnkXOnDlx5swZ3OBcWCgiCXL+/Hlk5x85dQsUCRk6byXZsXEES8WcwVQKm4UUb2xVzgDGnn3F5+aLL8xapqefdh/Xr58pseOasocfds/J4gDgnDlNoGV76CHT3fDll4HBg811zEDdead5vhcudD/fDKw4GJjropjNS6XOJiA2UOZKRAImY8aMmDp1avS+iAQ/nbeS7JjtYGlZSsTSOAYyrORgqZw94HfyZPO5UaPcx3bvbgYFT5kC9O1rruO6JWb1+ALfGVwx2GIA5Zx9VbCgO2ByZpj4dQywmCm0cU0Uy/q8RY1TkfhT5soHZa5EREREkhjXV7HFefr0oVW+x6CGARKDQm7EDnljx5pyOHbGs3XoAMybZ4IpNn6wZ19xphWDLXbVs/XpA3z4oQm4hgxxP0fMTDFgYtdBO2DiOih2MGS5nh20id8ocyUiIiIioYUNLBhQMDhI7uDqwAGzDunGG4GiRd3rj154wawB+/RT97E9e5p1X5x1xfI84jqj994z34szuLKDL2ejDraK59cxYOJqHXt9EocNc8ub130sS/zYAdFbKi7ZCzYqCxSRgImMjMQfUS1WK1WqhLSptWZeJITovJVkwzW67B7nq3ufP7B9+J49QLVq7mCEjRoefdSsaWJXPNuAASbDNHGi+by9/omdCqPWEkdjUMSgxzkziwHTiy/GDJjYrpy36WznzgDM1xBifq2EHAVXIhIwERERqFq1qrUfFhaGbNmy6dkWCXI6byXZFCoEfPttwr5m5UrTuIFdAytWNNfx8n33mXVN/Lxt6FDTJY8ZpcceM9cx6FmyBPD++8SMVZkynkFQkSLAm2/GDJi4JipqfXE0BmCjR8d8vPo7mOIpuBKRgMpnl0CISMjQeSvJit3qtm4FmjcHatQw123bZlp3Z83qOXT2jTeAOXOACRPcwRUDoo0bzbFOHGZ76JBnK3cGTDNmxAyYOECYmxNv76mnYj5eX23fJdVScCUiAcNM1b+soReRkKHzVpLdBx8AX39tygPt4IqBDddB8TpnEMRudlzfxCDJxqYOLPFjK3fnsWwM4ezGR7y9Hj2S6juTVEDBlYiIiIgEj8aNTdBTtqxnwLR6tQmYnAYNMptTpkzAXXclzWMV8aJW7D6oFbuIiIiIiCQ0NlDrLhEJmAsXLqB79+7Wxn0RCX46b0VEEi9ogquxY8ciTZo0ePLJJ2M95v3330ejRo2QO3dua2vatCnWrl3rcUzPnj2t23FuLVu2TILvQES8Xb16FZ9//rm1cV9Egp/OWxGREF9ztW7dOkyZMgXVq1eP87hly5ahW7duqF+/PjJnzoxXX30VzZs3x/bt21HUHvAGWMHUtGnToi9nYu2tiCS5jBkz4q2obkvcF5Hgp/NWRCSE11xx9k3t2rUxceJEjB49GjVr1sTbHLAWz3fXmMGaMGECekR1emHm6vTp05jHwW+JpDVXIiIiIiIScmuu+vfvj9atW1slfgkVHh6Oy5cvI0+ePDEyXAUKFECFChXw6KOP4sSJE3HezsWLF60nzbmJiIiIiIiETFngzJkzsWHDBqssMDEGDRqEIkWKeARmLAns2LEjSpUqhT179mDw4MFo1aoVVq1ahXTp0vm8nVdeeQUjR45M9PchIr5FRkbiAOeSAChRogTSpk3293NE5Bp03oqIhGBZ4D///IM6depg8eLF0WutGjduHO+yQDbAGDdunJWlimut1t69e1GmTBksWbIETZo0iTVzxc3GzFXx4sXjlfoTkdidP38e2bNnjy4B5nBSEQluOm9FRBJfFphsmav169fj+PHj1nor5xqq5cuXW2uoGOzElml6/fXXreCKAdO1mmCULl0a+fLlw+7du2MNrtjwQk0vRAIja9asempFQozOWxGRxEm24IqBztatWz2u69WrFypWrGiV+8UWWDFb9fLL/2/vPoCjqro4gN+EhACBjx6S0CE0aULovQeGEUQEhg5maIqC0sQBYqENZbCAERiadLCA0iJVQpEiYqR3EEjoIIFAILnf/M/Me/MW0thsyC77/82sZvc9djcnd+97Z++9501QERERMvKVmsuXL8uaq4CAAIe9dyJKG4xU4VtwInId/NwSEblgcpUrVy5VqVKl5zr0/Pnzm4+jAiBKrGNNFKD0+rhx4+SaOSVKlFAxMTHyOKYd4YZpR1g71bFjR+Xv7y9rrkaOHKmCgoJUSEhIJvyWRERERETkLpx6dTkWwkdHR5v3w8PDVXx8vHr77bdlJMq4YZogYLQrKipKtWvXTpUtW1aFhoaq4OBgFRkZyWl/RERERET0al/nyhnxOldEjoG1k4MHD5afsZaSaxuJnB8/t0RE9ucGTK6SwOSKyDFYdYzI9fBzS0TkgtUCiejV5+3trcaPH2/+TETOj59bIiL7ceQqCRy5IiIiIiKiF80NnLqgBRERERERkavgtEAiyjCol3Pz5k35GRfz9vDwYLSJnBw/t0RE9mNyRUQZ5uHDh8rPz09+xnXocC07InJu/NwSEdmPyVUSjOr0mF9JROmrOmbA5ykhIYHhJHJy/NwSEdkycoK0XMGKBS2ScPnyZVW0aNFUg0dERERERO7h33//VUWKFElxHyZXSUhMTFRXr15VuXLlyvQ1IsiUkejhj5ladRJifJ0R2zDj68rYfhlfV8b2y/i6sv+c6BwYI1b3799XgYGBytMz5XqAnBaYBAQttaz0ZUOjyuyG9SpjfBljV8c2zPi6MrZfxteVsf26R3xz586dpv1Yip2IiIiIiMgBmFwRERERERE5AJMrJ+fj46PCwsLk/8T4uiK2YcbXlbH9Mr6ujO2X8XVlPi56DsyCFkRERERERA7AkSsiIiIiIiIHYHJFRERERETkAEyuiIiIiIiIHIDJFRERERERkQMwuXoJPv30U+Xh4WFzK1++vLm9SZMmz20fOHCgzXNcunRJtW3bVuXIkUP5+fmpESNGqKdPn9rss2PHDlW9enWpqhIUFKQWLlyo3EFq8YW9e/eqZs2aKV9fX7kQXaNGjVRcXJy5/fbt26p79+6yLU+ePCo0NFTFxsbaPEdUVJRq2LChypYtm1wxfMqUKcrd43vhwoXnthm31atXm8/B9mtffCEmJkb17NlT+fv7S/vFZ/zHH3+0eQ62X/vje/bsWdWhQwdVsGBB+fx37txZXbt2jfF9AVeuXFE9evRQ+fPnV9mzZ1eVK1dWBw8eNLdrrdW4ceNUQECAbG/RooU6ffo0Y+yg+P7000+qVatWsh3t+/Dhw889x6NHj9R7770n++TMmVN17NjxuXaeln7aHWP85MkTNWrUKHkMfXBgYKDq1auXunr1qs1zsB+2L75GP41+GfHNmzev9BH79u1TLhtfTRkuLCxMV6xYUUdHR5u3GzdumNsbN26s+/XrZ7P93r175vanT5/qSpUq6RYtWui//vpLb9iwQRcoUECPHj3a3OfcuXM6R44c+qOPPtLHjh3T33zzjc6SJYvetGmTdvf47tmzR//vf//TkyZN0keOHNEnTpzQK1eu1I8ePTL3ad26ta5atar+448/dGRkpA4KCtJdu3Y1t+PvUahQId29e3d5juXLl+vs2bPr2bNna3eOL9qm9XHcPvvsM50zZ059//59cx+2X/viCy1bttQ1a9bU+/bt02fPntVffPGF9vT01IcOHTL3Yfu1L76xsbG6VKlSukOHDjoqKkpu7du3l3gnJCQwvmlw+/ZtXbx4cd2nTx9pozgWRURE6DNnzpj7TJ48WefOnVuvWbNG//3337pdu3a6ZMmSOi4ujjF2QHy///576Xfnzp2rcVqH84RnDRw4UBctWlRv3bpVHzx4UNepU0fXq1fP3J6WftpdY3z37l2JC84bcP6wd+9eXatWLR0cHGzzPOyH7YsvLF26VG/evFmOcTjHCg0NlfO269eva1eML5Orl3RwR4NIDpKrIUOGJLsdnRxOpmJiYszHwsPDpeE9fvxY7o8cOVJOIKy6dOmiQ0JCtLvHt3bt2nrMmDHJbkcyigPSgQMHzMc2btyoPTw89JUrV+T+t99+q/PmzWvGG0aNGqXLlSun3T2+z3r99df1O++8Y95n+01ffH19feXkySpfvnxyIgVsv/bHFwd49K3WL7NwIoXPPg70jG/q0A82aNAg2e2JiYna399fT5061SbGPj4+cvLDGKcvvlbnz59PMrlCvL29vfXq1avNx44fPy77IlFIaz/9qnqRGBv2798v8bt48aLcZz/s2Pjeu3dP4rtlyxaXjC+nBb4kmAKBoeRSpUrJsCaG362WLl2qChQooCpVqqRGjx6tHj58aDOlDUOohQoVMh8LCQlR//33nzp69Ki5D4ZRrbAPHnfn+F6/fl2GljHFoV69ehLDxo0bq127dpn/FjHCEHONGjXMxxBLT09Pc1ga+2AqYdasWW3ie/LkSXXnzh3l7u3X8Oeff8qUFAzXG9h+0xdftNuVK1fKlIjExES1YsUKmeKD6cRGfNl+7Yvv48ePZRqV9QKVmE6Cz77RRzC+Kfvll1+k7+zUqZP0s9WqVVNz5841t58/f16mtlqPT7lz51a1a9c2j0+Msf3xTQv0y5jaZv0bYApWsWLFbP4GqZ1nvKrsifG9e/ek70DfC2zDjotvfHy8mjNnjvQTVatWdcn4Mrl6CXAQwfqnTZs2qfDwcDnYYE7o/fv3ZXu3bt3UkiVL1Pbt2yWxWrx4scxNNeDAZO3wwLiPbSntg47RurbI3eJ77tw5cz5vv379ZB+sWWnevLk55x+xwwfeysvLS+XLly/V+Brb3Ln9Ws2bN09VqFBBEgID22/64rtq1So5McJcdSQBAwYMUD///LOsqzTiy/ZrX3zr1Kkjc/yxngJfaD148EANHz5cJSQkqOjoaMY3DdDHIq5lypRRERERatCgQeqDDz5QixYtMuMHSfWf1v6Vbdi++KYF4osTTiMRSO5v4K7HuBeNMb7cQp/RtWtXWf8DbMPpj++6detkPSC+4JoxY4bavHmzDDq4Yny9Xuqruak2bdqYP1epUkUO9sWLF5eTJnzD379/f3M7vjnCol+c/GOhdenSpTPpXb8a8cWJPuCEtG/fvvIzvjXZunWrmj9/vpo0aVKmve9Xpf0akMQvW7ZMjR07NpPe6asZX8Tz7t27asuWLXKgWbNmjRRdiIyMlP6C0hdfFF7Bwf7rr7+Wb0FxwoQvYPAzpQ6jqfg2eeLEiWb/euTIEfXdd9+p3r17M4TpxPg6V4zxRRf6XyyrQcJAjotv06ZNZebLzZs3ZWQLcTZmHrkaHj0yAb49Klu2rDpz5kyS23HwB2M7qoQ9W9XHuI9tKe2Db1VQmcVd44tEFV577TWbfZB0GVODEDtMH7RChSRMw0otvsY2d5Jc+/3hhx/k239UUbJi+7U/vviCZebMmfJFAL5wwRSJsLAwOVDNmjXLjC/br/3tF1XWEGfEEAd1zBxAZStMIWR8U4c+NrX+FZLqP639K9uwffFNC8QXU63wJU1KfwN3PcalNcZGYnXx4kUZVTFGrYBtOP3x9fX1lRkZmFGAWTAYmcL/XTG+TK4yAUpH4mBunPg/yyijamyvW7eu+ueff2walvHBNhos9sFojBX2wePuHN8SJUrIWgvMubU6deqUfHsNiBEOOpiXbti2bZt822Ikuthn586d0rla41uuXDkpG+pOkmu/6ATbtWsnJa2t2H7tj6+x9vLZUZQsWbJI+zTiy/ab/vaLUUEkXvjso69FW2Z8U1e/fv0U+9eSJUvKiY31+ITp6vhG2jg+sQ3bH9+0CA4OVt7e3jZ/AzwnTm6tf4PUzjPcOcZGYoXlBJhFgGnaVmzD6YtvUnCMw7pYl4zvSy+h4YaGDRumd+zYIZV8du/eLSU9UeIUJSZRivLzzz+X0qjYvnbtWikN3KhRo+dKpLZq1UofPnxYyqsXLFgwyVLsI0aMkCpAs2bNcptS7CnFF2bMmCEVj1Ap6fTp01I5MFu2bDZlQFHis1q1alImdNeuXbpMmTI2JT5RbQklPnv27CklPlesWCHxdodS7KnFFxBXVO1B9Z5nsf3aH9/4+HgpN9uwYUNpm2iz06ZNk1ivX7/efA62X/vb7/z586ViGmK7ePFiqcSIS1pYMb4pV03z8vLSEyZMkH4AJZXRNy5ZssSmFHuePHnk+GaUu0+qFDv7YPvie+vWLakQiD4Bp3U4PuE+LjtgLcVerFgxvW3bNjnfqFu3rtxepJ921xijH8blA4oUKSKxsV7WwVqZjm3YvvjGxsZKO0M/fOHCBWmfffv2lYqiON9yxfgyuXoJUBI9ICBAZ82aVRcuXFjuGyf2ly5dkkQKB3Q0JJxIIUGylgYGNLg2bdpIzX6cGOCE4cmTJzb7bN++Xcpg43WQoC1YsEC7e3wNuMYVOkZ80HBAwTUSrHBwwocU12dCIoYPtnGdJgOuz4Jyovg74XVwwuAO0hJfdIy4hor12kBWbL/2x/fUqVP6rbfe0n5+ftJ+q1Sp8lxpdrZf++OLUr04IKNUNQ7W06dPl/LhjG/a/frrr3Jijr6xfPnyes6cOTbbEc+xY8dKnLFP8+bN9cmTJxljB8UXx3okVc/ecBkCAxLZd999V0pVox/Btd2syVda+2l3jLFR4j6pG867DOyH7YtvXFyctMfAwEDpp9FfI5lFUmblSvH1wH9e7lgZERERERHRq4drroiIiIiIiByAyRUREREREZEDMLkiIiIiIiJyACZXREREREREDsDkioiIiIiIyAGYXBERERERETkAkysiIiIiIiIHYHJFRERERETkAEyuiIjoldSkSRM1dOhQ836JEiXUl19+maGveevWLeXn56cuXLgg93fs2KE8PDzU3bt3Hfo6H3/8sXr//fcd+pxERJR+TK6IiCjT9OnTR5IP3Ly9vVXJkiXVyJEj1aNHjxz+WgcOHFD9+/dXGWnChAmqffv2kshlpOHDh6tFixapc+fOZejrEBHRi2FyRUREmap169YqOjpaEoUZM2ao2bNnq7CwMIe/TsGCBVWOHDlURnn48KGaN2+eCg0NVRmtQIECKiQkRIWHh2f4axERUdoxuSIiokzl4+Oj/P39VdGiRdWbb76pWrRooTZv3mwz1a5r166qcOHCkhxVrlxZLV++3OY5Hjx4oHr16qVy5sypAgIC1PTp0597Heu0QEzbw2jZ4cOHze2YuofHMJUP7ty5o7p37y5JWfbs2VWZMmXUggULkv09NmzYIL9LnTp1UkzA2rRpo+rXry+vZ7yPVatWqYYNG8rr1KxZU506dUpG2mrUqCG/E/7NjRs3bJ7rjTfeUCtWrEhTjImI6OVgckVERE7jyJEjas+ePSpr1qzmY5giGBwcrNavXy/bMbWvZ8+eav/+/eY+I0aMUL///rtau3at+u233yRBOnToULrey9ixY9WxY8fUxo0b1fHjx2WUCCNGyYmMjJT3mRwkUy1btlSJiYmSPObJk8fchpG6MWPGyHv28vJS3bp1k+mRX331lTzvmTNn1Lhx42yer1atWury5cvm+i4iIsp8Xpn9BoiIyL2tW7dORmeePn2qHj9+rDw9PdXMmTPN7RixwhojAwo5REREyGgPEozY2FiZjrdkyRLVvHlz2QfrkYoUKZKu93Xp0iVVrVo1GT2C1NZRXbx4UQUGBia5LSYmRnXp0kVGv5YtW2aTPAJ+P0zzgyFDhshI3datW2WECzDVcOHChTb/xngtvG5Gr/EiIqK0YXJFRESZqmnTpjIqhKl9WHOFkZuOHTua2xMSEtTEiRMlmbpy5YqKj4+XJMxYP3X27Fl5rHbt2ua/yZcvnypXrly63tegQYPkfWA0qVWrVjJlsV69esnuHxcXp7Jly5bkNoxYIRFcuXKlypIly3Pbq1SpYv5cqFAh+T+mP1ofu379us2/wRRCY6ohERE5B04LJCKiTOXr66uCgoJU1apV1fz589W+fftkJMowdepUmR43atQotX37dlknhVEeJFT2wugYaK3Nx548eWKzD9Y5YVToww8/VFevXpVRMesI2rMwZRDrtJLStm1btXPnTplmmBRUSjRgDVZSj2E6odXt27fl/1gTRkREzoHJFREROQ0kPZ988omsP8JIEOzevVvKm/fo0UMSsFKlSknBB0Pp0qUlEUFSZkCSY93nWUZCgiqFBmtxC+t+vXv3limHKIYxZ86cZJ8TUwiTS54mT54sz4MELbl9XhTWn+H3rlixokOej4iI0o/JFREROZVOnTrJ1LlZs2bJfaxTQgEIFLpAYYkBAwaoa9eumftjvRbWJKGoxbZt2yTpwPWzjNGppGBKHar6IenBc6IYBhI6KxSQQIEMFJM4evSorA2rUKFCss+J0TTsl9zo1bRp06T6YLNmzdSJEydUeqHQhVFhkIiInAOTKyIicipYczV48GA1ZcoUWYeFpKd69eqSvDRp0kTKtmP9kxWmDiLRQHlylHJv0KBBipX7AFMQUUQD+w0dOlSNHz/eZjuKTowePVrWQzVq1EgSvpRKn2ONFN4n1oYlB2vKOnfuLAlWSiNraYH30q9fv3Q9BxEROZaHtk44JyIiIruhXDxG0DB6ltLIWXqhPPywYcNUVFSUJKNEROQc2CMTERE5CApXnD59Wqoa4qLIGQUjerigMRMrIiLnwpErIiIiIiIiB+CaKyIiIiIiIgdgckVEREREROQATK6IiIiIiIgcgMkVERERERGRAzC5IiIiIiIicgAmV0RERERERA7A5IqIiIiIiMgBmFwRERERERE5AJMrIiIiIiIilX7/B2C0B3AU3MDJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(5500, 6300, 0.5)\n", + "ax.plot(rs, prem.vs(rs), 'r', label='T = 2 s')\n", + "ax.plot(rs, prem.vs(rs, t=20.0), 'r-.', label='T = 20 s')\n", + "ax.plot(rs, prem.vs(rs, t=200.0), 'r--', label='T = 200 s')\n", + "ax.plot(rs, prem.vs(rs, t=2000.0), 'r:', label='T = 2000 s')\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Vs (km/s)')\n", + "ax.legend()\n", + "\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "ax.annotate('LVZ', (6200, 4.5))\n", + "\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bulk and shear modulus\n", + "\n", + "(I think I may have a slight error in the parameters, bulk modulus for r=0\n", + "a bit off compared to paper).\n", + "\n", + "$$ Vp = \\sqrt{\\frac{\\kappa + \\frac{4}{3} \\mu}{\\rho}} $$\n", + "\n", + "and\n", + "\n", + "$$ Vs = \\sqrt{\\frac{\\mu}{\\rho}} $$" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "mu = 176.07640790034003 GPa\n", + "kappa = 1484.0316146920004 GPa\n" + ] + } + ], + "source": [ + "print('mu = ', prem.shear_modulus(0), 'GPa')\n", + "print('kappa = ', prem.bulk_modulus(0), 'GPa')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "<>:5: SyntaxWarning: invalid escape sequence '\\k'\n", + "<>:6: SyntaxWarning: invalid escape sequence '\\m'\n", + "<>:5: SyntaxWarning: invalid escape sequence '\\k'\n", + "<>:6: SyntaxWarning: invalid escape sequence '\\m'\n", + "/var/folders/09/3w8zj_452w14j_351ybq0g240000gp/T/ipykernel_2786/2675339334.py:5: SyntaxWarning: invalid escape sequence '\\k'\n", + " ax.plot(rs, prem.bulk_modulus(rs), 'c', label='$\\kappa$')\n", + "/var/folders/09/3w8zj_452w14j_351ybq0g240000gp/T/ipykernel_2786/2675339334.py:6: SyntaxWarning: invalid escape sequence '\\m'\n", + " ax.plot(rs, prem.shear_modulus(rs), 'm', label='$\\mu$')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAI1CAYAAAAgteCbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo6BJREFUeJzs3Qd4VMXaB/B/djebbAoppEMSWiD03qwoKIINxc5VEMtVwS6CXa8FxftZsIB6r+K99gZ2EEFRlA6hhA4hhRQS0pNN2fI9M2T3JhAwdU/Z/+95hj27e5I92cPMnndn5h0fp9PpBBEREREREbUpQ9v+OiIiIiIiImKwRURERERE1E7Ys0VERERERNQOGGwRERERERG1AwZbRERERERE7YDBFhERERERUTtgsEVERERERNQOGGwRERERERG1AwZbRERERERE7YDBFhERUSMOHToEHx8fpKSkNPv9WbFiBXr37g273S7vP/nkkxg0aFCbv8+jRo3Cl19+2ea/l4iI2gaDLSIiUp1p06bJQEcUX19fREdH47zzzsO7774Lh8PRLq83adKkNvt9Dz74IB599FEYjUa0J/Eac+bMaZf3hIiIWo/BFhERqdIFF1yAnJwc2cP0448/4pxzzsHdd9+Niy66CDabDWq1evVqHDhwAJMnT27315owYQLKysrk+0NEROrDYIuIiFTJz88PMTEx6NSpE4YMGYKHH34YX3/9tQwsFi1a5N6vuLgYN998MyIjI9GhQwece+652Lp1q/t51xC+t956C/Hx8QgICMBVV12FkpIS9/Pvv/++/N2u3rRff/3V/fMHDx6UgZ74uYEDB2LNmjWnPO5PPvlE9sL5+/ufdB8RjHXr1g0zZ86E0+mUf09oaCi+++479OrVS77WFVdcgcrKSnlsXbp0QVhYGO666y730ERB9JxNnDhRviYREakPgy0iItIMEUiJgOerr75yP3bllVfiyJEjMgjbtGmTDMzGjh2LwsJC9z779+/HZ599hm+//RZLly7Fli1bcMcdd8jnHnjgARl8uXrSRDnttNPcP/vII4/IfcTcrZ49e+Laa689Zc/a77//jmHDhp30+W3btuGMM87Addddh9dff10Gd4IIrObPny8DJ3GMIuC77LLL8MMPP8jy3//+VwaMX3zxRYPfN2LECPmaRESkPialD4CIiKg5kpOTZcDiGrK3fv16GWyJnjDhn//8J5YsWSKDkltvvVU+VlVVhf/85z+yl0x47bXXcOGFF+L//u//ZO+ZxWJBdXW13D6eCLTEvsJTTz2Fvn37yuBNHEdj0tPTERcX1+hzf/75pxwGKQK4+++/v8FztbW1WLBgAbp37y7vi54tEWDl5eUhKCgIffr0kT1sv/zyC66++mr3z4nXyszMlPO2DAZ+h0pEpCZslYmISFPEsDtXb5AYLlheXo6OHTvKgMRV0tLS5FA9l4SEBHegJYwePVoGJ3v27PnL1xswYIB7OzY2Vt6K4O5krFZro0MIMzIy5PDCxx9//IRASxBDB12BliCSgojhg+Lvqf/Y8a8tAkXxt4hgkYiI1IU9W0REpCm7du1C165d5bYItEQAVH+OlYuYA9UWRDZEF1eQd6rsfxERESgqKjrhcTGnTPRCffzxx5g+fbqcX3ay13G9VmOPHf/aYrhkYGCgDLqIiEhd2LNFRESasXLlSmzfvt2d6U/Mz8rNzYXJZEKPHj0aFBH01O9Vys7Odt9fu3atHHInklEIZrO5QeKJ1hg8eDB27tx5wuMiGBIJMESv1/jx42UWwbawY8cO+ZpERKQ+DLaIiEiVxLA4EUgdPnwYmzdvxnPPPYdLL71Uznm64YYb5D7jxo2TQwLFGlk//fSTTBMv5kWJOVEbN250/y4R4EydOlUOOxTJJERWP5EUwzVHSwzXE/PAxLDCgoICOX+qpUQgJeaSNUb0QH3//fcyOBRp20XPXGuJv+f8889v9e8hIqK2x2CLiIhUSWTkE0MERSAkMgWKxBAiW59I0e5aLFgMqxOZ+s466yzceOONMlvgNddcI5NUiPlNLqKn6/LLL5dp0kVgIuZhvfnmm+7nb7nlFtnLJbIIiuF+f/zxR4uPe8qUKUhNTT3pfDAxB0tkThRzz0TijYqKiha/lghERXAp/nYiIlIfH6do7YmIiHRKrKMlshOK1O2eMmvWLJSWlspU7e1p9uzZcn7Y22+/3a6vQ0RELcOeLSIiojYmhjEmJiaeMpFGW4iKisLTTz/drq9BREQtx2yEREREbUxkQnz44Yfb/X1tLIU8ERGpB4cREhERERERtQMOIyQiIiIiImoHDLaIiIiIiIjaAYMtIiIiIiKidsBgi065fsvf/vY3dOzYERaLBf3792+wSKhYNeDxxx+X6+CI58Xiovv27WvwOwoLC+WaMx06dJATxm+66aYTFvEUC4meeeaZctHR+Ph4zJs3j2ellWmuxdpD9UtycrL7+aqqKsyYMUOeV7Hez+TJk5GXl9fgd2RkZMj1fwICAmS2M5HG2mazNdjn119/xZAhQ+Dn5yfXMFq0aBHPWxt6/vnn5bm75557eO5UbsGCBXLdLtHOiSIWWRbraLmwzqnX3LlzMXz4cAQHB8u2TiyOffz6aDx/6vTbb7/h4osvRlxcnGwrxfIO9fEaRX/eeOMNue6iuF4cOXIk1q9fD00Q62wRHa+wsNCZmJjonDZtmnPdunXOgwcPOpctW+bcv3+/e5/nn3/eGRIS4lyyZIlz69atzksuucTZtWtXp9Vqde9zwQUXOAcOHOhcu3at8/fff3f26NHDee2117qfLykpcUZHRzunTJni3LFjh/Pjjz92WiwW51tvvcWT0kJPPPGEs2/fvs6cnBx3yc/Pdz9/2223OePj450rVqxwbty40Tlq1Cjnaaed5n7eZrM5+/Xr5xw3bpxzy5Ytzh9++MEZERHhfOihh9z7iP8PAQEBzvvuu8+5c+dO52uvveY0Go3OpUuX8ry1gfXr1zu7dOniHDBggPPuu+/muVO5b775xvn999879+7d69yzZ4/z4Ycfdvr6+so2TWCdU6/x48c733vvPXmuUlJSnBMnTnQmJCQ4y8vL3fvw/KmT+Gx65JFHnF999ZVYL9a5ePHiBs/zGkVfPvnkE6fZbHa+++67ztTUVOctt9ziDA0Ndebl5TnVjsEWNWr27NnOM84446TvjsPhcMbExDhffPFF92PFxcVOPz8/GTAJ4iJcNIAbNmxw7/Pjjz86fXx8nIcPH5b333zzTWdYWJizurq6wWv36tWLZ6YVwZYIcBsjzpG4CPz888/dj+3atUuepzVr1rg/wAwGgzM3N9e9z4IFC5wdOnRwn6cHH3xQBnT1XX311fLChVqnrKzMmZSU5Fy+fLnz7LPPdgdbPHfaItq1f/3rXzxvGnPkyBHZHq5atUreZ73ThuODLV6j6M+IESOcM2bMcN+32+3OuLg459y5c51qx2GE1KhvvvkGw4YNw5VXXimHVgwePBjvvPOO+/m0tDTk5ubKoYMuISEhslt3zZo18r64FUMHxe9xEfsbDAasW7fOvc9ZZ50Fs9ns3mf8+PFyGEdRURHPTguJ4ZxiaEW3bt3kME4xLFDYtGkTamtrG5w3McQwISGhwXkTQ0ajo6MbnJPS0lKkpqa696n/O1z7uH4HtZwY4imGcB7//vLcaYPdbscnn3yCiooKOZyQ501bSkpK5G14eLi85fnTJl6j6EtNTY2si/U/F8W1pLivhesOBlvUqIMHD8p5CElJSVi2bBluv/123HXXXXj//ffl8yLQEupfkLvuu54TtyJQq89kMskPsfr7NPY76r8GNY8IeMX8qaVLl8pzKD50xJy4srIy+Z6KwFYEwac6b391Tk62jwjIrFYrT1kLiYv0zZs3y3kkx+O5U7ft27fLOZBiDuNtt92GxYsXo0+fPjxvGuJwOOQcydNPPx39+vWTj7HeaROvUfSloKBAfpF1qmtONTMpfQCk3g8d0SP13HPPyfuiZ2vHjh1YuHAhpk6dqvTh0SlMmDDBvS0m7YvgKzExEZ999plMZELqlJmZibvvvhvLly+Xk39JW3r16oWUlBTZM/LFF1/IdnLVqlVKHxY1s1dZfM6tXr2a7xsRtRn2bFGjRIZB8a1sfb1793YPR4uJiZG3x2exE/ddz4nbI0eONHheZLQTGQrr79PY76j/GtQ6oherZ8+e2L9/v3xPRXd8cXHxKc/bX52Tk+0jMrExoGsZMURC1BeR4VH0AIsiLtbnz58vt8U3eDx36iV6jEVWzqFDh8qeyYEDB+LVV19lndOImTNn4rvvvsMvv/yCzp07ux9nm6lNvEbRl4iICBiNxlNec6oZgy1qlBhGcXz6271798oeEqFr167yP/iKFSvcz4shZGIulpinIIhbcVEvLiJdVq5cKXvNRG+Lax+RvlXMI3IR3+yLb4nDwsJ4dtqASLV/4MABGUCLC0FfX98G502cZxFE1z9vYkhU/UBZnBMRSLkCcLFP/d/h2sf1O6j5xo4dK9930TviKqJ3Wcy5c23z3GmHaOeqq6tZ51RO5FYQgZYY9ik+n8RnW31sM7WJ1yj6+zJr6NChDa47RBsr7mviukPpDB2k3tTTJpPJ+eyzzzr37dvn/PDDD2Wq7w8++KBBWlWRdvPrr792btu2zXnppZc2mvp98ODBMn386tWrZZa1+qnfRaYnkfr9+uuvl6l3RWpP8TpM/d5y999/v/PXX391pqWlOf/44w+Zwl2kbhdZtlxpjEVq45UrV8rU76NHj5bl+NTv559/vkyFLNK5R0ZGNpr6fdasWTKb4RtvvMHU7+2gfjZCnjv1mjNnjsxeJ+qcaAvFfZF19aeffpLPs86p1+233y6XMBFtZv3lMiorK9378PypN3OrWJ5EFHE5+9JLL8nt9PR0+TyvUfTlk08+kRmvFy1aJLNd33rrrfIatH7mZLVisEUn9e2338qLbvGfOzk52fn22283eF6kVn3sscdksCT2GTt2rFxjpr6jR4/K4CooKEimDr/xxhtlA1mfWKNLpJkXv6NTp06ygaSWEynYY2Nj5XoU4v0U9+uvjyaC4TvuuEOmphYB02WXXSYvLuo7dOiQc8KECXLNMxGoiQCutra2wT6//PKLc9CgQfJ1unXrJteqofYNtnju1Gn69OlyXUJRF8QXE6ItdAVaAs+beomL9MZK/faM50+dxGdQY+du6tSp8nleo+jPa6+9Jr8sFm2tSAUv1nDVAh/xj9K9a0RERERERHrDOVtERERERETtgMEWERERERFRO2CwRURERERE1A4YbBEREREREbUDBltERERERETtgMEWERERERFRO2CwRe2iuroaTz75pLwl7eB50y6eO23iedMunjvt4rnTpmqNXltynS1qF6WlpQgJCUFJSQk6dOjAd1kjeN60i+dOm3jetIvnTrt47rSpVKPXluzZIiIiIiIiagcMtoiIiIiIiNqBqT1+qd7Y7Xbs3bsXQUFB8PHxUfpwNKGsrEzeHj58WHb7kjbwvGkXz5028bxpF8+ddvHcaVOZiq4tnU4nysvL0bNnTxiNxlPuyzlbTbBr1y706dOnrc4PERERERFp3M6dO9G7d+9T7sOerSaIjY11v6HBwcFtc3aI2pjNZsPPP/8st8eNGweTidWbSI/1/MMPP5TbU6ZMaXY9ZztBpC5K1Um2Ba3vZRMdMa4Y4VTYs6Xj7CfkXSoqKuRQV0F0bQcGBip9SESksnrOdoJIXZSqk2wLPBcb8KtvIp0wGAw47bTT3NtERGwniNRNqc9uXjN4Dnu2moA9W0REpAb8NpqISFuxAb/+JiIiIiIiagccRkhERERERE1Oey4SbIilkfTM19f3L9O6NwWDLSKdsFqtOOuss+T2b7/9BovFovQhEZHKsJ0gUhel6mRLX7empgY5OTmorKyE3vn4+KBz587uBCYtxWCLSCccDgc2btzo3iYiYjtBpG5KfXa35HXFfmlpabK3Jy4uDmazWQYkeu29y8/PR1ZWFpKSklrVw8Vgi0gn/Pz88N1337m3iUh/WlvP2U4QqYtSdbIlryt6tUTAFR8fj4CAAOhdZGQkDh06hNra2lYFW8xG2ATMRkhERERE3qyqqkr2bHXt2hX+/v7w5r+3lNkIiYiIiIiIlMVhhEQ6IbICrVy5Um6fe+65bZJBh4jURQxn+fDDD+X2lClTZLas5mA7QaQuStVJtgWew2GETcBhhKQFXOyUSP9aW8/ZThCpi1J1siWvy2GELYsN2LNFpBMGgwEDBw50bxMRsZ0gUjelPrt5zeA5DLaIdEKskZGSkqL0YRCRirGdIFIXpeok2wLP4dffRERERETUovWoKux2jxen09ms4ywuLpZrgv3xxx/y/v79+5GcnIxHH3202b+rudizRUREREREzVbpcCDo9989/s6Vn3kmApuRTGTbtm0y2BJDNlevXo2rr74ac+fOxQ033ID2xp4tIp2wWq0YM2aMLGKbiIjtBJG6KfXZ7W3XDFu3bkX37t3x9ddfy0Dr448/9kigJbBnS2MOWq3YUl4OEcsbfXxg8vGRt7LUe0wUf4MBAUYjLOLWYIDFaITZx0dG9qQ/YlX3VatWubeJiNhOEKmbUp/dbfW64vpS9DJ5WkAzk4mIYCs3NxfTpk3DgAEDcNZZZ8FTGGxpzNLCQszYt6/FPy/+a8rgy2iU/1FDTSaEmEzytrESZjIh0mxGtK8vosxmBBuNDNZUys/PD5999pl7m4j0p7X1nO0EkbooVSfb6nXFF/jNGc6nFBFsDRs2DM888wzOPPNMLFmyBJMmTfLIa3OdLY2ts/VVfj5ezsqC3emUxVZ3axcL1NV7TJQqh0OOpa2029FW35X4+fjIoCvabEZUXQAmArHOfn6I9/dHvJ+f3I709WVQRkRERKQTWl1ny263yzXFPv30U1xyySW46qqrsHfvXmzZsuWU16qn+nu5zpaOXR4ZKUtziCwrtU6nDLqsdQGY1W5Hud2OUrsdxTbbSUthbS3ya2txpLZW7l/tdCKzulqWvwrKXAGYuE3w80M3iwXd/f3R3WJBJz8/GDickYiIiIjakQisROA0aNAgef+xxx6TiTK+/PJLXHHFFWhvHEboBUTULuZqmcWwwVb8HhGsHampkYGXuM2ru82pqUFWdbUsIgjLq6mRQdmBqipZThaMda0XfInSw2JB74AAJPr7MxBr4Tc3a9euldujRo2CUQPd+kTUPDabDYsXL5bbl112GUym5n2Ms50gUhel6qQ3tQVbt25FaGgoEhIS5P3+/fvj8ssvx5NPPilv23sxaQ4j1NgwQi2ocTiQXRd4ZdYFYeki8LJaZfB1qKpKDnM8GTGnLDkgQAZefQIDj90GBMiAzNeDq6trTUVFhewmF8rLyxEYGKj0IRGRyuo52wkidVGqTrbkdbU6jLClOIyQVEv0oHWxWGRpjM3hkEGYK/iSt1Yr9opSWSmHOoqMi6LUJzIs9rRYMDAoSJZBdUXMH6NjPZg9evSQbwUzThJRY9hOEKmLUnWSbYHnsGerCdiz5TkiEEurqsLOykrsqqjArspK93bFSVKTigQdrsDLFYT1DAiQafCJiPSEPVNEpBT2bP0PE2SQZpkMBiQFBMhyaUREgyQfYjjijooKbC0vR0p5ObZWVGBPZaWcO7asqEgWF5GiflhwMEaI0qGDvBVJOdjjQ0RERESewgQZpAkiSJKp5f39MaFjR/fjFXa7DMBk8OUKwsrLUWa345fiYllcYs1mGXSNFMFXXQAW3MzJ5URERERETcUrTdI0sZCeCJ5EqT8UUQw/XF9WhvWlpfJ2e3m5zJr49dGjsggi1YYYcnhGSIi7xGp4MWDRvT958mS5LdKZesPkVSJqHrYTROqiVJ1kW+A5nLPVBJyzpX0ibb1IuOEKvtaWlsqsiMcTqehF0HVmaKi8FQk5tDL0kHM5iPSP2QiJ9IXZCNWL2QiJmiHAaMTpISGyuByursYfJSX4vaQEq0tK5PBD19pg7+fluZNvnBsWhrFhYTg3NFSuDaZWZrMZ7733nnubiPSntfWc7QSRuihVJ9kWeA57tpqAPVveocRmw5q6wEuUdWVlqDouA2JXf3934CWCMKadJyIiIm/AbIT/w2yERC0QYjLhgo4dZRGqHQ453HBlURFWFBXJ4Eukpf9XTo4sQr/AQIwNDcUF4eE4OzQUFh2vwE5EREREzcMEGUQn4WcwyABKlKe6dkWZzSaHHMrgq7hYZj4UmRBFefXwYVgMBowJDcWE8HBZegQEePS9tdvt2L59u9zu378/jAz8iHTHZrNh2bJlcnv8+PEwNTOjKtsJInVRqk6yLfAcDiNsAg4jpMYU1NTI1PLLi4rwY2GhXAesvh4WizvwGuOBXi8myCDSPybIINIXJshQLybIIFJYhNmMK6OiZBGLLqdWVMigSxQx52u/1YrXDh+Wxd9gkMMNJ0VE4OKIiHaZ6yWyJsbFxbm3iYjYThCpm1Kf3bxm8Bz2bDUBe7aoucSQQzHPyxV8Zdbr9RJN6agOHXBpRIQMvnp5eLghEWkXe7CJSE09PeLLZkdlw2RinmAIMDQrOF29ejXOOecclJWVuY/90KFD8m8Rt4mJiSf8DHu2iFQs2GTCpMhIWURDJOZ1fSMWVC4owIayMqwpLZVlzsGD6GWxyMBLFBGEGdgrRURERBogAq3fg373+OueWX4mjIFNn56RkpKC3r17N1g0esuWLQgLC2s00GpLTJBB1M7ENy/9g4JkeSQxUa7v9U1BgQy8VhYXY4/VinmZmbLEmM2YHBEhhyaKRZWNDLyIiIiIWmXr1q0YPHjwCQHYwIED0d4YbBF5WCc/P9zeqZMsYm2vpYWFMvD6/uhR5NbU4I3sbFmaG3iJ7u7rr79ebv/3v/9t8O0NERHbCSL1Ueqzu61eVwznE71MnmYIMDRrfxFYXXfddQ0eEz1bgwYNQntr3pG2sd9++w0XX3yxnBgovv1fsmTJSfe97bbb5D6vvPJKg8cLCwsxZcoUdOjQAaGhobjppptQXl7eYJ9t27bhzDPPlP+R4uPjMW/evHb7m4iau7bX1VFR+KhPH+Sffjp+6N8f02JiEGoyuQOvMSkp6LxmDWbu3YvfiothdzpPmsb1iy++kEVsExGxnSBSN6U+u9vqdcW1uRjO5+ni04yRP+Lv27Fjxwk9W5s3b/ZIsGVSeqKv6L6bPn06Lr/88pPut3jxYqxdu9adraU+EWjl5ORg+fLlqK2txY033ohbb70VH330kTu5xfnnn49x48Zh4cKFci0D8XoiMBP7EamF2WDAhI4dZXnL4cDPRUX4PD8fSwoKTujxuioyElOiozE8ONjd4JjNZrz++uvubSLSn9bWc7YTROqiVJ30prZgz549sievfhyxZs0aHD582CPBlmqyEYoLRhFUTZo0qcHj4o0YOXKkXMTxwgsvxD333COLsGvXLvTp0wcbNmzAsGHD5GNLly7FxIkTkZWVJd/UBQsW4JFHHkFubq77P9OcOXNkL9ru3bubdGzMRkhKqjku8Cq22Rqs5XVdVJQMvHoyqyERERG1k1Nl51Ozjz76SHbOzJw5E3fddRf279/vvl2/fj2GDx/e6M+1VTZCRYcR/hWHwyHHk86aNQt9+/Y94XkRlYoeKlegJYgeLIPBgHXr1rn3OeussxpE7ePHj5dRblFRUaOvW11dLd/E+oVIyR6viR074r3kZOSddhq+699fBlgBBoNcy+sf6enoJRqLTZvwcmYmyusFY0RERETeLCUlRV77Hzx4EP3795edME899ZQMkubPn+/dCTJeeOEFmEwmGX02RvRWRUVFNXhM7B8eHi6fc+0jItL6oqOj3c+JlI/Hmzt3rjwJRGojAq8LO3aURQRVXx89ig/z8vBTYSE2lpRg465dWB0Rgc/PP19+6UBE+iLmHvz++7E0y2IustHY9NTHri8xDxw4ILe7d+/OdoJIYUrVSW9qC7Zu3Sp7r5555pkGjx+fMMPrgq1Nmzbh1VdflZPXPLmitvDQQw/hvvvuc98XPVsisQaRmgSZTHL4oCj5NTWYk5qKd8eOxVcArOXlCAwMVPoQiaiNiWEtYmFOobwF9dxqtaJnz54t/nkialtK1Ulvagu2bt0q8zUoRbVhrPjm7siRI0hISJC9VaKkp6fj/vvvR5cuXeQ+MTExcp/6bDabzFAonnPtk5eX12Af133XPsfz8/OTXYv1C5GaRZrNGBUSAgQGwhQUpPThEJGKiXkGohCRd9dJb2gLcnNz5XW/GD6oFNX2bIm5WmL+VX1ivKV4XGQcFEaPHo3i4mLZCzZ06FD52MqVK2XXqEiq4dpHjM0UmQp9fX3lYyJzYa9evRodQkikVRaRIOO773BuWJiuv6EiopYTbYP43CQi766T3tIWxMTEQOlcgIoGW6LbUmQCcREZP8QkNjHnSvRodezYscH+IlgSb5oIlITevXvjggsuwC233CLTuouASmQaueaaa9zpHcV4TDH/Sqy/NXv2bJlnXwxPfPnllz381xK1L9dwWwffaCIiIiJVUDTY2rhxo3vsueCaJzV16lQsWrSoSb/jww8/lAHW2LFj5eS+yZMnN8gsIrpHf/rpJ8yYMUP2fkVERODxxx/nGlukO64xwQ51rOZARERE5PUUDbbGjBnTrK69Q4cOnfCY6AVzLWB8MgMGDHBnbyLSK3tNDfD889hpNqP688/l3EMiouOXNvn73/8ut9966y22E0ReWifZFniOahY1VjMuakxa8J+0NEzt1s0rMgsReauKigoE1SXBaUk9b+3PE1HbUqpOtuR1XYv8ikR1FosFeme1WmVHT2sXNVZtggwiah6ZAObvf0dXf393Mhgi0hdRt+fNm+fe9vTPE1HbUqpOtuR1XftVVlZ6RbBVI0YMAc1ez/B47NlqAvZskRZ8mZ+PK1JTcUZICH4fPFjpwyEiIiKdycnJkVkMo6KiEBAQ4PG1cD1FZDbPzs6WAaZI2nf838meLSIvxAQZRERE1J5ca9Qev86tHhkMhkYDrebiMEIivRDTL/Pz5Zhq8Y2MaCSISF/sdjs2b94st4cMGdLs4S2ibRDfTAuxsbFsJ4gUplSdbOnrisBD7C96tsSSS3pmNpvb5Hww2CLSiVqrFbjqKojLMCsnvhPpkvgyZcSIES2eTC8mfHfu3LnFP09EbUupOtna1xVf9LR2LpO3YLBFpBPyuxejEfocPU1EbcVk4kc/kZooVSfZFngGW1winQgQKVx//hlDgoL4bTURNUp8e633oT9EWqJUnWRb4Dmc1EGkE64eLS6cR0RERKQODLaIdMJQly3HofSBEBEREZHEYItIJ2zV1cArryDzhRdQLbaJiI4j2oYZM2bIwnaCyHvrJNsCz+Gixk3ARY1JC77NzMQlCQlym1nGiPSpoqICQWJ+ZgvreWt/nojallJ1km1B63BRYyIvJNaDwNSpiPT1lSueE5H+iLr9xBNPuLc9/fNE1LaUqpNsCzyHPVtNwJ4t0oJfiopw7tat6B0QgJ116/AQERERkXKxAedsEeksQQazERIRERGpA9fZItIJH6dTDPhGrc0Gp9MJn7rgi4j0w+FwYNeuXXK7d+/eMBia952paBvEN7GC+FaW7QSRspSqk2wLPIfBFpFOVFdWAhdfjAMAKjnxnUiXrFYr+vXr1+LJ9JWVlQgLC2vxzxNR21KqTrIt8BwOIyTS2TBCIiIiIlIH9mwR6URAQACwfDni/fxgsViUPhwiUmk7UVNTI7dNJl4CEHlrnWRb4Dns2SLSiQDRSJtMyLTbcdqWLVhZVKT0IRGRyoj5ICLlsyicr0XkvXWSbYHnMNgi0on+gYF4IjERAQYD1pWVYezWrRiXkoJ1paVKHxoRERGRV2KwRaQTttpaVLz5JqYuWYI7IiPh6+ODFcXFGLV5MyZt347t5eVKHyIRKUwMV5o1a5YsrqFLROR9dZJtgedwUeMm4KLGpAUVFRUICgpyZzTKNxjwVHo6/pObC4eo7ACui4rCU127ojvndBHpop43N3NZa3+eiNqWUnWSbYHnYgPOjiXSCTHe+4EHHnBvdzGb8V5yMh6Mj8fjhw7hi/x8fHjkCD7Nz8dNMTF4rEsXdPLzU/qwiagV9dzTP09EbUupOsm2wHPYs9UE7NkiPdhUVoZH09KwtLBQ3vc3GDAjLg5zEhIQYTYrfXhEREREuosNOGeLyEsMDQ7GjwMGYNWgQTgjJARVDgf+LysL3datw5NpaSi12ZQ+RCIiIiJdYbBFpBNOpxO1tbWyiO2TOSs0FL8NGoQf+vfH4KAglNntcm5X93Xr8FpWFmocYoYXEamRw+HAoUOHZBHb7dVOEJFnKFUn2RZ4DoMtIp2orKyE2WyWRWz/1foaEzp2xMahQ/FZnz7oabGgoLYWd+3fj97r1+OTvDw4eCFGpDpWqxVdu3aVRWy3ZztBRO1PqTrJtsBzGGwReTGDjw+ujIrCjuHDsSApCdG+vjhYVYVrd+3CiE2buDAyERERUSswQUYTMEEGaYEYEiAmagpi0mZLVqIvt9nwclYW5mVmotxul49dEB6OF7p1w4C61LREpJzWpmtui3aCiNqOUnWSbYHnYgMGW238hhLpwZGaGjydno6F2dmwOZ1yja7ro6PxdNeuSPD3V/rwiLwW18YhIlIesxESUatEmc14LSkJu4YPx1WRkRBTdv+Tl4ee69Zh1oEDKKqt5TtMRERE9Bc4Z4tIJ2pqavDkk0/KIrbbQo+AAHzaty/WDxmCMaGhqHY68c/MTJku/sWMDFTVDTUkIu9tJ4hIe3WSbYHncBhhE3AYIWlBew8vEuO7fywsxOyDB7GjokI+lujnh+e7dcPVUVGc+0GkgXrOYYhE6qJUnWRb4LnYwNTK1yIilTCZTLjjjjvc221NTNqd2LEjxoeH47+5uXjs0CGkV1fLzIWvHj6Ml7p3x+iQkDZ/XSJqu3re3u0EEWmjTrIt8Bz2bDUBe7aITlRpt+OlzEw8n5GBirrFVa+OjJQ9XV0sFr5lREREpEtMkEFE7S7AaMSjXbpg38iRuCkmRmYs/DQ/H8nr1+OhgwdRarPxLBAREZFXY4IMImqVWD8//Cs5GVuGDcO5dUk0RG9Xj3Xr8JZIHV/X60VEbTN3Mj8/XxaxTURE6sZgi0gnxGRXX19fWcS2pw0MCsLPAwfi23790MtiQX5tLW7buxeDNm7EssJCjx8PkR5VVlYiKipKFrGttXaCiNRRJ9kWeA6DLSIdsdlssihFJNG4KCIC24cPx/wePRBuMiG1shIXbNuGCdu2IZUXd0Tw9naCiNRRJ9kWeAZTERHphMViQVZWlntbSb4GA+7s3Bl/i47GM+npeO3wYSwtLMTywkLc0akTnurSBWG+vooeI5E3UlM7QUTK1Um2BZ7DbIRNwGyERK2zv7ISDx48iMUFBfJ+R5MJz3brhptjY2H0Eak1iKgpuDYOEZHymI2QiFSlR0AAvurXDysGDkTfgAActdnkfK5hmzbh9+JipQ+PiIiIqF1wzhaRTtTU1ODFF1+URWyr0blhYUgZNkzO5wo1mZBSXo6zUlJw7c6dyKyqUvrwiHRPC+0EkTdRqk6yLfAcDiNsAg4jJC3Q2vCi/JoaPJaWhrdzciASWAcYDHgoIQEPxMfD32hU+vCIdFnPtdZOEOmdUnWSbYGXDCP87bffcPHFFyMuLk5mMVuyZIn7udraWsyePRv9+/eX//HEPjfccAOys7Mb/I7CwkJMmTJF/qGhoaG46aab5H/W+rZt24YzzzwT/v7+iI+Px7x58zz2NxJ5islkwtSpU2UR22oXaTZjYa9e2DR0KM4ICUGlw4HHDh1Cnw0bsJhrCBG1Sz3XWjtBpHdK1Um2BV7Ss/Xjjz/ijz/+wNChQ3H55Zdj8eLFmDRpknxORIpXXHEFbrnlFgwcOBBFRUW4++67YbfbsXHjRvfvmDBhAnJycvDWW2/JAO3GG2/E8OHD8dFHH7kjz549e2LcuHF46KGHsH37dkyfPh2vvPIKbr311iYdJ3u2iNqXaIY+OXIEsw4cwOG6YRRjQ0PxalIS+vKbdyIiIlKR5sQGqhlGKHq26gdbjdmwYQNGjBiB9PR0JCQkYNeuXejTp498fNiwYXKfpUuXYuLEiTKNpugNW7BgAR555BHk5ubCbDbLfebMmSN70Xbv3t2kY2OwReQZFXY75qan45+Zmah2OiEGE97TuTOe6NIFwfwWnoiIiFRAM8MIm0v8QSIoE8MFhTVr1shtV6AliB4sg8GAdevWufc566yz3IGWMH78eOzZs0f2ljWmurpavon1CxG1v0CjEc9064adI0bg0o4dYQfwf1lZSF6/Hp8dOSJ7wIi8magDYq6FKKwPRETqp5lgq6qqSs7huvbaa90RpOitioqKOmEManh4uHzOtU90dHSDfVz3Xfscb+7cuTJadRUxz4tI7cTFl/jyQRSxrWXdLBYs6d8f3/fvj27+/siuqcHVO3di/LZt2FtZqfThESmmsrJSTqYXRWx7cztBpAdK1Um2BZ6jiWBLzMW66qqr5Ld4YlhgexNzu0QvmqtkZma2+2sStQXX/1m9mNixI3YMH44nEhPh5+OD5UVF6L9hAx49eBCVdtHvRUTe3k4QaZ1SdZJtgWeYtBJoiXlaK1eubDAuMiYmBkeOHGmwv81mkxkKxXOuffLy8hrs47rv2ud4fn5+shBpicViwd69e93bemExGvFk1674W3Q07ty/H0sLC/FsRgY+PHJErtd1cUSE0odIpBl6bSeItEqpOsm2wHMMWgi09u3bh59//hkdO3Zs8Pzo0aNRXFyMTZs2uR8TAZnD4cDIkSPd+4gU8+J3uSxfvhy9evVCWFiYB/8aovYl5iomJSXJIrb1pkdAAH7o3x9f9u2LeD8/HKqqwiU7duCS7duRZrUqfXhEmqD3doJIa5Sqk2wLPEfRllash5WSkiKLkJaWJrczMjJkcCRSv4s07x9++KFM+S7mWIniWmG7d+/euOCCC2R6+PXr18s08jNnzsQ111wjMxEK1113nUyOIdbfSk1NxaeffopXX30V9913n5J/OhG1gEiQc3lkJHaNGIHZ8fEw+fjg26NH5dpcz6ano9rh4PtKREREqqFo6vdff/0V55xzzgmPi4XdnnzySXTt2rXRn/vll18wZswYuS2GDIoA69tvv5VR+uTJkzF//nz3atyuRY1nzJghU8RHRETgzjvvlMk2moqp30kLxBcUb7/9ttwWa8j5+vpC73ZVVGDGvn34pbhY3u9pseCtnj0xhr3WpFNiUrvr8018YRnYzHXovLGdIFIzpeok2wIvXGdLzRhskTdchGl9QeT7DhxAbl2v940xMXixe3d05IUk6Uxr67m3thNEaqVUnWRb4LnYQPUJMoioaYxGoxx669r2pqGF10ZHY0J4OB5KS8PC7Gy8l5uL744exUvdu2NKdLTch0gPWlvPvbWdIFIrpeok2wLPYc9WE7Bni0g7/iwpwa179iC1bg2i88LCsKBnT3Rn5jUiIiLycGzAVEREpCunhYRg87BheLZrV/faXP02bMDz6emoZQINIiIi8iAGW0SkO2aDAQ8nJsoFkceGhqLK4ZBDDIds2oQ1XMyViIiIPITBFpFOVFZWolOnTrKIbTq2NtfygQPxn+RkRPj6YkdFBU7fsgV37N2LEpuNbxFpjpjULuYgiiK2m4vtBJG6KFUn2RZ4DhNkEOkoK192drZ7m44RF6XXx8TIBBqzDh7EotxcLMjOxpKCAryZlIRJkZF8q8hrsJ0gUhel6iTbAs9hsEWkE/7+/tiyZYt7mxqKMJvxXnIyboiOxt/37sU+qxWXpabiqshIvJaUhCizmW8Z6R7bCSJ1UapOsi3wHGYjbAJmIyTSlyq7HU+lp+PFjAzYAXQ0mTA/KQnXRkUxTTypGtfGISJSHrMREhGdgr/RiLndumHd0KEYGBiIozYbpuzahUt27EBWVRXfOyIiImoTTJBBpBO1tbVYtGiRLGKb/trQ4GBsGDoUT3fpArOPj1wIue+GDXgnO5vz3kiX2E4QqYtSdZJtgedwGGETcBghaQGHF7XOzooKTN+9G+vKyuT9c0ND8U6vXujGxZBJR/Wc7QSRuihVJ9kWeC42YIIMIp0wGo2YOHGie5uap09gIP4YMgSvZmXh0bQ0rCwuRv8NG+TiyHd27gyjjw/fUtJ8PWc7QaQuStVJtgWew56tJmDPFpF32V9ZiVv27sWvxcXy/qgOHfBer15I9tA3jkRERKReTJBBRNTKxZBXDByIt3r2RLDRiLWlpRi8aRNeysyEnWuYERERURMxQQYRUWONo48Pbo2LQ+rw4RgfFoYqhwP3HziAMSkpsueLiIiI6K8w2CLSicrKSiQlJckitqltxPv748cBA/B2z54IMhqxuqQEAzduxBuHD8PBXi7yMDGpXUygF0VsNxfbCSJ1UapOsi3wHCbIINIJp9OJ/fv3u7ep7fj4+OCWuDicFxaGG/fskXO5Zu7bh6/y8/FucjIS/f35dpPHtOaCjO0EkbooVSfZFngOgy0infD398fq1avd29T2ulgsci6X6NWaffCgO2PhS92746bYWBmUEakZ2wkidVGqTrIt8BxmI2wCZiMkouPtq6zEtN278Wdpqbw/ITxcrsvVyc+Pbxa1G66NQ0SkPGYjJCJqZ0kBAfht8GC82K0b/Hx88GNhIfpt2ID/5uZyGCcRERFJTJBBpBM2mw2ff/65LGKb2p9Y6PiBhARsHjYMw4KDUWyz4YbduzE5NRUFNTU8BaQ6bCeI1EWpOsm2wHM4jLAJOIyQtIDDi5RlczjwQmYmnjx0CDanEzFms1wI+YKOHRU+MtKT1tZzthNE6qJUnWRb4LnYgAkyiHTCYDDg7LPPdm+TZ5kMBjySmCjnbv1t1y7sqqzEhO3bMbNTJ7zQrRsCjEaeElK8nrOdIFIXpeok2wLPYc9WE7Bni4iaw2q3y2yFrx0+LO8nBwTgw969MSQ4mG8kERGRxjFBBhGRgixGI+YnJWHpgAGINZuxu7ISIzdvxtz0dNi5BhoREZHX4FgjIqJ2Mj48HNuHD8fkiAg5j+vhtDSMSUlBmtXK95yIiMgLMNgi0gmr1YpBgwbJIrZJHTr6+uLzvn2xKDkZwUYjVpeUYODGjXifKeKphZPaIyMjZRHbzcV2gkhdlKqTbAs8hwkyiHTC4XBg69at7m1SDx8fH0yNicFZISG4ftcu/FFaKhdE/ragAG/16iUDMqKmKigoaPGbxXaCSF2UqpNsCzyHwRaRTvj7++Onn35yb5P6dLVYsGrwYMzLyMDjhw7hy4ICrC0txQe9e2NMWJjSh0degO0EkbooVSfZFngOsxE2AbMRElFb21xWhut27sQeqxU+gEwb/0RiokwhT3QyXBuHiEh5zEZIRKRyIg38pmHDcFNMDJwAnklPx1kpKTjE+XZERES6wa9QiXTCZrPh+++/l0Vsk/oFGo34V3IyPu3TByFGI9aUlmLQxo349MgRpQ+NdIrtBJG6KFUn2RZ4DocRNgGHEZIWcHiRtokeret27ZIBlzA9Jkau1SUCMqK2qudsJ4jURak6ybbAc7EBE2QQ6YTBYMCwYcPc26QtXSwW/DZoEP6Rni6HFL6bm4s/SkrwcZ8+GBwcrPThkU7qOdsJInVRqk6yLfAc9mw1AXu2iMiTfi0qwt927cLhmhqYfXzwQrduuLtzZ5lCnoiIiJTFBBlERBom0sBvHT4ckyIiUON04t4DB3DR9u04UlOj9KERERFRM3CsERGRComFjr/q2xdvJiXB32DAD4WFMnnGquJipQ+NiIiImojBFpFOWK1WnH766bKIbdI+MWzw9k6dsGHIEPQJCEBOTQ3OTUnBM4cOweEUCePJ21RWVqJLly6yiO3mYjtBpC5K1Um2BZ7DOVtNwDlbpAXMLKRvFXY7Zu7bh0W5ufL+eWFh+KB3b0SZzUofGnkQsxES6QuzEWoTsxESeSE/Pz8sXrzYvU36IlLAv5ecjLNDQnDHvn1YXlQkhxV+1Lu3nONF1BRsJ4jURak6ybbAc9iz1QTs2SIiNUmtqMBVqanYWVkpx4I/1aULHk5MhIHZCnWPPdhERMpjNkIiIh3rGxiI9UOHYlpMDBwAHjt0CBds28ZshURERCrDBBlEOmG32/Hrr7/KIrbJO4YVvterFywGg3tYoViji+hk2E4QqYtSdZJtgedwGGETcBghaQGHF3mvxoYVPpSYCCOHFeoOE2QQ6QsTZGgTE2QQeWma8D59+ri3yfuGFbqyFYphhb+VlMjkGRHMVqgrra3nbCeI1EWpOsm2wHPYs9UE7NkiIq1YlJMjsxVaHQ7E+/nhi759MaJDB6UPi4iISDc0kyDjt99+w8UXX4y4uDgZYS9ZsqTB806nE48//jhiY2NhsVgwbtw47Nu3r8E+hYWFmDJlivxDQ0NDcdNNN6G8vLzBPtu2bcOZZ54Jf39/xMfHY968eR75+4iIPG1abCzWDRmCJIsFmdXVOGPLFiw4fFi2p0RERORZBqXHqQ4cOBBvvPFGo8+LoGj+/PlYuHAh1q1bh8DAQIwfPx5VVVXufUSglZqaiuXLl+O7776TAdytt97aIPI8//zzkZiYiE2bNuHFF1/Ek08+ibffftsjfyMRkaf1DwrChqFDcVlEBGqdTtnTNXX3blQycQoREZF3DiMUPVtiUbdJkybJ++KwRI/X/fffjwceeEA+JrrqoqOjsWjRIlxzzTXYtWuXHOe6YcMGDBs2TO6zdOlSTJw4EVlZWfLnFyxYgEceeQS5ubkw181dmDNnjuxF2717d5OOjcMISQusVisuueQSuf3NN9/I3mDybqId/b/MTMw5eBAix1X/wEB82bcvkgIClD40aqHKykoMHz5cbovPvoBmnku2E0TqolSdZFvQOrpIkJGWliYDJDF00EX8USNHjsSaNWtksCVuxdBBV6AliP0NBoPsCbvsssvkPmeddZY70BJE79gLL7yAoqIihIWFnfDa1dXVstR/Q4nUzuFw4Oeff3ZvE4kvsR5ISMDwDh1wdWoqtldUYNimTXg/ORmTIiP5Bmk0gN65c6d7u7nYThCpi1J1km2B56g22BKBliB6suoT913PiduoqKgGz5tMJoSHhzfYp2vXrif8DtdzjQVbc+fOxVNPPdXGfxFR+/Lz88MHH3zg3iZyOTs0FJuHDcPVO3didUkJLktNxYPx8Xi2a1eYDFxu0ZuwnSBSF6XqJNsCz1FtsKWkhx56CPfdd1+Dni2RWINIzcQXDWIOI1Fj4vz8sHLgQMw+eBAvZ2VhXmYm1peV4ZM+fRDN9PBeg+0EkbooVSfZFniOar/SjImJkbd5eXkNHhf3Xc+J2yNHjjR43mazyQyF9fdp7HfUf43Gon0x/rJ+ISLSOl+DAS/16IHP+vRBkNGIX4uLMXjjRvxRUqL0oREREemSaoMtMfRPBEMrVqxo0MMk5mKNHj1a3he3xcXFMsugy8qVK+U4VDG3y7WPyFBYW1vr3kdkLuzVq1ejQwiJtMput8sJ86KIbaKTuTIqCuuHDEHvgADk1NRgTEoK3mR6eK/AdoJIXZSqk2wLvCQboVgPa//+/XJ78ODBeOmll3DOOefIOVcJCQkyicXzzz+P999/XwZfjz32mFwzS0wOFmtmCRMmTJA9VSI9vAiobrzxRpkw46OPPpLPiywhIrAS6d9nz56NHTt2YPr06Xj55ZcbpIg/FWYjJC0QSykEBQW565ZYKoHoVMptNty8Zw8+zc+X96fHxOCNpCT4G41843Raz9lOEKmLUnWSbYGXZCPcuHGjDK5cXPOkpk6dKtO7P/jgg/I/gwiKRA/WGWecIVO7uwIt4cMPP8TMmTMxduxYmYVw8uTJcm0uF/FG/PTTT5gxYwaGDh2KiIgIuVByUwMtIi1lnhPrybm2if5KkMmEj/v0wdC69PDv5uZiR0UFvurXD52YZEWX9ZztBJG6KFUn2RZ44TpbasaeLSLSu+WFhTJbYZHNhmhfX3zRty/OCA1V+rCIiIg0HRuods4WERF5znnh4dg4dCgGBAYir7YW52zdynlcRERErcRgi4iIpG4WC/4cMgRXR0bC5nRixr59ck5XFROuEBERtQiDLSKdqKqqwqRJk2QR20QtEWg0ynlc87p1kx8QYh7X2SkpOFxdzTdUBaxWK4YPHy6L2G4uthNE6qJUnWRb4Dmcs9UEnLNFWsDMQtTWOI9LfZiNkEhfmI1QmzSTjZCI2o7ZbMbbb7/t3iZqq3lcl+3YgW0VFXIe16s9euD2uDhmvNQothNE6qJUnWRb4Dns2WoC9mwRkTersNtx0+7d7vW4bomNxetJSTAbOBLd4+eC6+kRESmO2QiJiKhd5nGJVWDeycnBeVu3Ir+mhu8yERHRKfBrSSKdcDgcSE1NlUVsE7X1ApizEhLwXf/+6GA04reSEozYvBnbysv5RmsI2wkidVGqTrIt8BwOI2wCDiMkLeDwIvKUXRUVuHj7dhyoqkKgwYAP+/TBpRERPAEewAQZRPrCBBnaxGGERF4qIiJCFqL21DswEOuHDsXY0FBUOByYtGMHnk1Ph9Pp5BuvgXrOdoJIXZSqk2wLPIM9W03Ani0iohPVOhy478ABvH74sLx/TVQU3u3VCxajkW8XERHpFnu2iIio3fkaDHgtKQkLe/aEyccHnxw5gjO3bOECyERERHWYIIOIiFrl73FxWD5gADqaTNhUXo5hmzZhXWkp31UiIvJ6DLaIdKKqqgpTpkyRRWwTedKYsDA5j6tfYCBya2pw9pYt+CA3lyehjVmtVowZM0YWsd1cbCeI1EWpOsm2wHM4Z6sJOGeLtIDZCEkNymw2TNm1C98ePSrvz46Px3PdusHgI1bootZiNkIifWE2Qv3HBiaPHRURtSuz2YyXX37ZvU2khGCTCUv69cOjaWmYm5GBFzIzsc9qxX9790YAE2coju0EkbooVSfZFngOe7aagD1bRETNJ4YR3rRnD2qcTgwNCsI3/fsjzs+Pb2UrsAebiMiLshFWV1e35seJiEjH/hYTgxUDB7oTZ4zcvBlby8uVPiwiIiKPaVaw9eOPP2Lq1Kno1q0bfH19ERAQIKO5s88+G88++yyys7Pb70iJ6JQcDgcOHToki9gmUoMzQkOxbuhQJAcEIKu6Gqdv3oxvCwqUPiyvxXaCSF2UqpNsC1Q2jHDx4sWYPXs2ysrKMHHiRIwYMQJxcXGwWCwoLCzEjh078Pvvv2PNmjWYNm0ann76aURGRkIvOIyQtIDDi0jNimprcWVqKlYUF0Okynipe3fc3bkzfJg4o1mYIINIX5ggQ5vaPEHGvHnz5OS9CRMmwGA4sTPsqquukreHDx/Ga6+9hg8++AD33ntvS4+fiFpI9DYTqVGYry9+HDAAM/btwzs5Obj3wAHssVoxv0cPuTgyea6es50gUhel6iTbAs9ggowmYM8WEVHbEIMpXsrKwqwDByCGVZwfFobP+vZFiInJcYmISBs8liCDiIioOcSwwfvj47G4Xz8EGAz4qagIp23ejLQWLNBLRESkdi36KjErKwvffPMNMjIyUFNT0+C5l156qa2OjYiIdOrSiAj8PngwLt6+HTsrK2Wmwq/79cPokBClD42IiEi5YGvFihW45JJLZEbC3bt3o1+/fjKDihgaMmTIkLY7MiJq9lIMM2fOlNuvv/46/LieEanckOBgrB86VAZcW8rLcU5KChYlJ+Oa6GilD021qqqqMHnyZLn95Zdfwt/fv1k/z3aCSF2UqpNsC1Q8Z0tkIhSJMp566ikEBwdj69atiIqKwpQpU3DBBRfg9ttvh95wzhZpAbMRklZV2O2YsnMnvj56VN5/vls3PBgfz0yFjb1XFRUICgqS2+Xl5QgMDPTozxNR22I2Qm1q82yE9e3atQsff/zxsR82mWC1WmXD/Y9//AOXXnqpLoMtIi0Qa98988wz7m0irQg0GvFlv34yacbLWVmYc/CgnMP1elISTMxU2KbYThCpi1J1km2Binu2YmJi8Msvv6B3797o06cPnn/+eTmsUPRwnX766fKbMr1hzxYRkWfMz8rCPfv3y0yFE8PD8WmfPghipkI39kwREek8G+GoUaOwevVquS0WOL7//vvx7LPPYvr06fI5IiKilrqrc2d81bcvLAYDfigsxNkpKcipruYbSkREmtTsYYQi26Cr90rM2xLbn376KZKSkpiJkEhBopO6oKBAbkdERHC+C2nWpMhI/OLnJxNnbC4vx6jNm+WCyH04v6jV2E4QqYtSdZJtgUqHEYous3Xr1sl07yJRRmRkJLwBhxGSFnB4EenNAasVE7Ztwz6rFSFGI5b064cxYWHwZkyQQaQvTJChTe0yjDAlJQXJycky4+DFF1+MHj16YNmyZW1xvERERCfobrFgzZAhOL1DB5TY7Th/2zZ8mJfHd4qIiPTXszV+/Hg5ZPCf//ynXNfj6aefxvbt27Fv3z7oHXu2iIiUU2W344bdu/F5fr68/0zXrng4IYFDZYmISPWxQZODLTGO9KeffnIvXFxcXIzw8HB5+1cvonUMtoiIlOVwOmVK+BczM+X9m2Nj8WZSEnyZGp6IiPQwjLCwsBCdO3d23w8NDZWLIR6tW4SSiIiovRh8fDCve3e8kZQkP7j+lZMjE2iU2Wx804mISB/ZCHfu3Inc3Fz3fdEpJhY5Lisrcz82YMCAtj1CImqS6upqzJ49W26/8MIL8PPz4ztHunNHp06I9/PDNTt3YllREc5KScEP/fsj1kv+v1dVVeH666+X2//973/lsP7mYDtBpC5K1Um2BZ7T5GGEBoNBjo9vbHfX4+LWbrdDbziMkLSA2QjJm2wsLcWF27fjSG0tuvj7Y+mAAegVEAC9YzZCIn1hNkL9xwZN7tlKS0tri2Mjonbi6+uLhx9+2L1NpGfDOnSQmQrHb9uG/VYrTt+8Gd8PGICROp9D3FpsJ4jURak6ybZApetseSv2bBERqVN+TY3s4dpQVgaLwYDP+vTBRRER0Cv2YBMR6bRny/WLXb/whx9+gK3exGSj0YgLL7ywpcdMRETUbJFmM1YOHIirdu7Ej4WFmLRjB97u1QvTY2P5bhIRkeKaHGx99913eOyxx7BlyxZ5/+qrr5bfsLmI+VqffvoprrjiivY5UiI6JdFJXVlZKbcDAgK4BhF5jSCTCV/364db9+7Fotxc3LRnD7Krq/FIYiLrwXHYThCpi1J1km2B5zQ59fvbb7+NO++8s8Fj+/fvh8PhkGXu3Ll499132+MYiagJRGMdFBQki6vhJvIWYr2td3v1wiMJCfL+Y4cO4Y59+2DnSPkG2E4QqYtSdZJtgQqDre3bt+P0008/6fMTJkzAxo0b2+q4iIiImkV8I/xMt254PSkJ4rvhhdnZuCI1FVYdZsklIiKdBVs5OTkNcv//8ssviI+Pd98XEbmYJEZEyhDDD8rLy2UR20TeakanTvi8b1/4+fhgSUEBztu6FYW1tdCD1tZzthNE6qJUnWRboMJgKzw8XA4bdBk2bFiDFJX79u2T+xCRct/qBwYGyuKpMd9EajU5MhI/DRyIEKMRf5SW4swtW5BZVQVvr+dsJ4jURak6ybZAhcHWWWedhfnz55/0efGc2KctiQWSRVKOrl27wmKxoHv37nj66acbLKwsth9//HHExsbKfcaNGycDv/oKCwsxZcoUmUkxNDQUN910k/wGgYiI9Ous0FCsHjwYncxm7KysxOjNm7GDbT8REakx2Jo9ezZ++uknXHnlldiwYYMcMijK+vXrMXnyZPz8889yn7b0wgsvYMGCBXj99dexa9cueX/evHl47bXX3PuI+yLQW7hwIdatWye/GRg/fjyq6n2DKQKt1NRULF++XGZV/O2333Drrbe26bESKa2mpgaPPPKILGKbiIB+QUFy8eM+AQE4XFODM7ZswW/FxZp9a6qrqzFt2jRZxHZzsZ0gUhel6iTbApUuavz111/j5ptvlj1F9YWFheFf//oXJk2a1KYHd9FFFyE6Ohr//ve/3Y+JwE70YH3wwQeyVysuLg73338/HnjgAfm8CADFzyxatAjXXHONDNL69OkjA0Qx9FFYunQpJk6ciKysLPnzf4WLGpMWcLFTopMTc7Yu3bEDq0tK5FyuT/v2xaUaXPy4tfWc7QSRuihVJ9kWqHRR40svvRTnnXceli1b5h6ql5SUhPPPP79d/nOcdtppMuX83r170bNnT2zduhWrV6/GSy+9JJ9PS0tDbm6uHDroIv7wkSNHYs2aNTLYErdi6KAr0BLE/gaDQfaEXXbZZSe8rvi2sP43huINJVI7k8mEu+++271NRP8T7uuLnwYMwLU7d+Lro0dx+Y4d+FevXrjRyxY/ZjtBpC5K1Um2BZ5jakn2ksYClPYwZ84cGegkJyfDaDTKOVzPPvusHBYoiEBLED1Z9Yn7rufEbVRU1An/wUQyD9c+xxNrhj311FPt9FcRtQ+RLfSVV17h20t0EhajEV/07SsXP34vNxfT9+xBQW0tZtWtzeUN2E4QqYtSdZJtgcrmbH3yySdN/oWZmZn4448/0BY+++wzfPjhh/joo4+wefNmvP/++/jnP/8pb9vTQw895J6TJor4m4iISPtMBgP+3asXZtUtXfLgwYN48MCBBomXiIiIPBpsiSQVvXv3lskoxByo44mA5IcffsB1112HIUOG4OjRo21ycLNmzZK9W2I4YP/+/XH99dfj3nvvlT1PQkxMjLzNy8tr8HPivus5cXvkyJEGz9tsNjnvzLVPY9G+GH9ZvxARkT6IlMfzunfHvG7d5P0XMzNx0549sDkcSh8aERF5Y7C1atUqmQlQZPPr16+fDD7EXC0RAHXu3BkdO3bE9OnTkZCQgB07duCSSy5pk4OrrKyUc6vqE8MJHXUfiCIlvAiYVqxY4X5eDDsUc7FGjx4t74vb4uJibNq0yb3PypUr5e8Qc7uI9EJMdhUXkaKIbSI6NTF88N1eveQHoRhWeEVqKqx2u67fNrYTROqiVJ1kW6DCOVsigBKloKBAJqlIT0+H1WpFREQEBg8eLMvxgVFrXXzxxXKOlgji+vbtiy1btsjkGCKwE8R/zHvuuQfPPPOMDP5E8CXW5RIZBl2ZEUWP3AUXXIBbbrlFpoevra3FzJkzZW9ZUzIREhGRfokEGSJ5xtWpqTJxxoRt2/B1//4IYZIZIiLydOp3TysrK5PB0+LFi+VQQBEcXXvttXIRY7PZLPcRh//EE0/IrIWiB+uMM87Am2++KbMXuoghgyLA+vbbb2VAKNLHi7W5XKk2/wpTv5MWiLogvgwRxJcgnlyJnkjrVhUX45Lt21Fqt2NQUBCWDhiA6LrPGT3Vc7YTROqiVJ1kW9A6zYkNVB1sqQWDLSIi/dtSVoYLtm3Dkdpa9LBYZKr4rhaL0odFREQajg3adtwfERGRRg0ODsbqwYPRxd8f+61WnL5lC7aXlyt9WEREpGEMtoh0oqamRs5xFEVsE1HzJQUE4I/Bg9EvMBA5NTU4KyUFf5SUqOatrK6uxowZM2QR283FdoJIXZSqk2wLPIfDCJuAwwhJC0RmIdc8xPLycgQGBip9SESaVVRbi4u2b8efpaWwGAz4vG9fXNixo+brOdsJInVRqk6yLfBcbNDkbIQnY7fbsX37diQmJiIsLKy1v46IWshkMuHmm292bxNRy4X5+mL5wIG4MjUVPxQW4tLt2/F+796YEh2t6beV7QSRuihVJ9kWqLhnS6RaF+tr3XTTTTLQOvvss/Hnn38iICAA3333HcaMGQO9Yc8WEZF3qnU4MH3PHnyQlweRI+yNpCTc3qmTYsfDb6OJiHSeIOOLL77AwIED5bZIpZ6Wlobdu3fj3nvvxSOPPNLyoyYiIlIZX4MB7ycnY2anThDfTN6xbx+eT09X7HiO1JvTcbS2VrHjICKipml2sCXWAoiJiZHbP/zwA6688kq5ppVYaFgMJyQiItITg48P5vfogUcSEuT9h9LSMOfAAblOjaf9OyfHvZ24Zg1GbtqEx9PSZBIPm8Ph8eMhIqI2Draio6Oxc+dOOYRw6dKlOO+88+TjlZWVMBqNzf11RNSGw4vExFpRxDYRtR2x0Ogz3bphXrdu8v4LmZmyl8vh4YCrzG5vcH99WRmeTk/HGVu2IOKPP3DFjh14JzsbGVVVjf482wkidVGqTrIt8Jxmz8S78cYbcdVVVyE2NlZ++IwbN04+vm7dOiQnJ7fHMRJRE4kvPYio/cxKSECIyYTb9u7FwuxslNpsWJScLIcbekS94G7vyJFYXV2NZYWFWF5UhEKbDV8WFMgiJAcE4ILwcIwPC8PZoaGw1H0hynaCSF2UqpNsC1QabD355JPo168fMjMz5RBCPz8/+bjo1ZozZ057HCMRNYHFYpFzKF3bRNQ+bo2LQwejEdfv3o2PjhxBud2OT/v0gb8HRneY/P2Bjz/G32Nj0T00FEkGA26MjYXd6cSmsjIsLSyUwdfa0lLsrqyU5ZWsLPj5+MiA67zQUCxLTUWSxcJ2gsiLP7t5zeA5XGerCZiNkIiIjvf90aO4IjUVVQ4Hzg0NxZJ+/RDczqmb79+/Hy9lZeHB+Hi80L37KdcJW1FUhGWiFBYi87gFkDv7+WFqdLS7p46IiFSyztY//vGPUz7/+OOPN/dXEhERaY5Y5PjH/v1x8Y4dWFlcjPO2bsUPAwYg3Ne33V9bpKH/q3XCroiKkkUk8thVWSmDLlFWlZQgq7oaz2ZkYEF2Nh5OTMSMuDiP9MwREXmbZvdsDR48uMH92tpa2f0pFkfr3r07Nm/eDL1hzxZpgaiLb7zxhtyeMWMGfD1wwUdEwIbSUlywbZucM9U/MBA/DRiAmLoh9m3t7p07Mf8f/8CI4GD8/sYbMJvNzW4nXnntNeysqMDasWOxuy6VvOjpeqpLF9wQHQ2Tp+afEZFin928ZvBcbNAmwwjFC06bNg2XXXYZrr/+eugNgy3SAi52SqSc1IoK2bOVU1OD7v7++HngQHRph/kXd27bhtfr1rosLy+XGcxa2k6UlJXhy7IyPHHokHuYYe+AADzbtSsmRUTIJFhEpM/Pbl4zqHgYYWPEizz11FO4+OKLdRlsEWmBSFJz3XXXubeJyHP6BgZi9eDBGLd1Kw5UVeHMlBQsHzAAyW184eRsw3bCbDLJ5BrXRkXhzexsPJueLocbXp6aipHBwXi+WzeMCQtrk+MmInV9dvOaQYMJMlavXi2DraKiIugNe7aIiKgpDldX4/ytW7GzshIRvr5YNmAAhgQHt9mbN3PbNrzRip6tUymx2fBiRgZezspCZd0CySJt/Nxu3TC4Df8GIiKta9eerfnz5ze4L2K1nJwc/Pe//8WECROaf7REREQ60cnPD6sGDcKE7duxsawM56Sk4Pv+/XFGaGib/P42+n60USIroVi4eWanTnKh5Ldzco5lM9y0CddEReHpLl3QIyCg3V6fiEiPmt2z1bVr1wb3DQYDIiMjce655+Khhx5CsA6//WLPFhERNetzw2bDxdu347eSElgMBpkW/vzw8Fa/iTO2bsWbgwZ5ZH7HAasVj6Wl4eMjR+R9McBJDDt8NDERiWK9LyIiL1Xq6QQZesdgi7RATHbt0qWL3D506JDHJtkSUeOsdrtch+uHwkKYfXzwWd++uDQiolVv1x1bt2JBK4KtlrQTKWVleDgtDT8WFsr7vj4+uDU2VqaMj2unrItE3kKpz25eM3guNmB+VyIdKSgokIWIlGcxGrG4Xz9cERmJGqcTk3fswKd1vURaaicGBQfL9cP+GDxYLt5c63TijexsdF+3Ti6yfKQufTwReaZOthVeM3hGk+ZsXX755U3+hV999VVrjoeIWshisWDHjh3ubSJSntlgwMe9e8uhhP/Ny8N1O3ei0m6Xw/FawiiG7737ruxZakk9b007cVpICFYMGoRfiork8MI/SkvxUlYW3srOxl2dO+OB+HiPLOhMpCdKfXbzmkFlwZboJiMidRPzJ/v27av0YRDRccQiwYuSkxFgMOCtnBxM37NHZvub0alTs98rH7HgcNeuiExIkHVeiXbinLAw/B4aimWFhXjs0CGZCGRuRgbeOHwY98fH457OndHB1CYryxDpnlKf3bxm8JwmtYbvvfde+x8JERGRThl8fLCgZ08EGI0ytfrMfftkD9eshIRm/R7XJGulFxwWr39Bx44YHx6Ob44exeNpadhWUSEXSH41KwsPJiTIrIaBXPOPiLwc52wR6URtbS3eeecdWcQ2EamLCFD+r3t3mc1PePDgQTx16FCz0rnbxfyoRYuw6pVXUNOCuVJt3U6Iv0kk/dgybBg+7dMHyQEBKLTZMOfgQXRbuxYvZ2bKoJKIPFMnm4rXDCpP/X6qb9QOHjwIvWE2QtICkVkoKCjIIymhiah15qanywx/wqz4eLzQrVuTeqv+npKCtwcPblU2wvZsJ+xOJz7Ky8OThw7hYFWVfCza11f24N0WF8eeLiIP18mT4TWDihc1vueee06IjLds2YKlS5di1qxZzT9aImoTRqMRl156qXubiNTrocREOaTwnv378WJmJirsdryWlCSHG2q5nTD6+OD6mBi5CPL7ubl4NiMDh6qq8MCBA5iXkSGTaNzB4YVEHquTJ62rvGbwmDZbZ+uNN97Axo0bdTm/iz1bRETUHt7Jzsbf9+6Vc7GmxcTgX716yYDlZG5NScE7rejZ8rRah0NmYXw2Pd3d0xXh6yuDrhlxcQhiIg0i0iBF1tmaMGECvvzyy7b6dURERLp3S1wc/tu7N8T32YtyczFl504ZoOiFr8GA6bGx2D1iBN7r1Qvd/f1RUFsr53R1WbtWDqcss9mUPkwionbTZsHWF198gfDw8Lb6dURERF5hSnQ0PuvbF74+Pvg0Px9XpKai6iRJJdpkKIpCQde0uqDr/eRk9LBYcNRmk/PWRNAler5KGXQRkQ41e87W4MGDG0ziFaMQc3NzkZ+fjzfffLOtj4+ImqiyshJ9+vSR2zt37kRAQADfOyKNuDwyEkv69cPk1FSZSv2SHTvkfTGvS0/thFhz7IaYGFwXFYWPjxzBM+np2Gu14tG0NPxfZibu7dxZLpAcwuGF5CWUqpNKtwXepNnB1qRJk05YFC0yMhJjxoxBcnJyWx4bETWD+OIjPT3dvU1E2jKxY0d8378/Ltm+HcuLijBh2zZ8178/gusFHk6dtBMi6BKJNK6LjsYnR47g6UOHsMdqxeOHDuGlrCy5MPJdnTohzNdXsWMk8gSl6qRa2gJv0GYJMvSMCTJIC+x2OzZv3iy3hwwZwoyERBr1Z0mJDLRK7XaMCA7G0gED3EHH33ftwturVuGW2FgsuOiiZtdztbYTImX8ZyLoSk/HrspK+Viw0YgZnTrJ3q4os1npQyRqF0rVSbW2BXqMDZoUbIlf2FR/9YJaxGCLiIg8aVNZGc7fulUuEDwwMBA/DRwoA47b9uzBWzk5eLJLFzzRpYvuTooIur7Iz5dzuLZXVMjHLAaDDC7FemSd/f2VPkQiIrR5NsLQ0FCEhYU1qRAREVHrDA0OxqpBg+SCwFsrKnB2Sgqyq6vdz7fvalzKEWnvr46KQsqwYfi6Xz8MDw6G1eHA/MOH0W3dOtyyZw8OWK1KHyYRUZM1qWdr1apV7u1Dhw5hzpw5mDZtGkaPHi0fW7NmDd5//33MnTsXU6dOhd6wZ4u0wGaz4dNPP5XbV199NUycYE6keXsrKzF261ZkVVfLtOlJvr5Y+s47OC8sDN899RTMzRxep7V2Qlyi/FxUJHu6VpWUuL8lFosmP5yYiL4qX2eMSK11Umttge6HEdY3duxY3Hzzzbj22msbPP7RRx/h7bffxq+//gq9YbBFWlBRUYGgoCDNLHZKRE1zyGrFuVu3Ik0sCix6dSZObHE913I78UdJiQy6fiwsdD82KSICjyQkYJgOpzCQd1CqTmq5LdBabNDsMFb0Yi1cuPCEx4cNGyaDMCJShsgMOm7cOPc2EelDF4sFvw0aJHu4RJp0b20nTg8JwQ8DBmBzWRmeS0/HVwUFWFJXxoeF4ZHERJwZGqr0YRJpok5quS3Qmmb3bPXq1QuXXnop5s2b1+DxBx98EF9//TX27NkDvWHPFhERKS23uhrnrF2L3WPGyPve/m30zooKPJ+RgY/y8uBaAvrMkBAZdJ0fFtZgTVAiIs0MI/zhhx8wefJk9OjRAyNHjpSPrV+/Hvv27cOXX36JiXXDG/SEwRYREalBdkkJOtX13nh7sOVy0GrFvIwMvJebi5q6S5qhQUFyTpcYZmhg0EVEWgq2hKysLLz55pvYvXu3vN+7d2/cdtttiI+Phx4x2CIiIjXgPIuTO1xdjX9mZuKt7GyZwVDoZbHgwYQETImOhh+HShGRVoItb8Ngi7SgsrISw4cPl9sbNmxAQECA0odERCoLtryhncivqcGrWVl4IzsbxTabfCzObMZ98fG4NTYWwcy6RiqiVJ30hrZA08FWcXEx/v3vf2PXrl3yft++fTF9+nT5onrEYIu0gN94E+lfa+u5N7UTZTYb3s7JwUuZmciuqZGPhZpMmBEXh7s6d5aLRBMpjdkItaldg62NGzdi/PjxsFgsGDFihDsitlqt+OmnnzBkyBDoDYMt0gK73Y7ff/9dbp955pkwGo1KHxIRqayee2M7Ue1w4MO8PLyQkeHO5uhvMOCmmBjcHx+PrhaL0odIXkypOumNbYFmgi1xQkRyjHfeece9AJpYGE2kfT948CB+++036A2DLSIiIm2zO534uqBAZjDcUFYmHzPWLZAs5nUNqOvxIyJSNNgSPVpbtmxBcnJyg8d37twp19oSY0D1hsEWERGRPojLnl+Ki2VP109FRe7HJ4aHY05CAs4ICWHaeCJqs9ig2auYiV+YkZFxwuOZmZkIDg5u7q8jojYiepiXLFkii9gmIv2pra3FG2+8IYvYbi62E5CB1LlhYVg2cCA2DR2KqyIj5cXQD4WFOCslBadv2YJvCgrgYP4w8gCl6iTbAs9pds/WXXfdhcWLF+Of//wnTjvtNPnYH3/8gVmzZsn1t1555ZU2PcDDhw9j9uzZ+PHHH2WvmRjC+N5778leNEEc/hNPPCGHNYrEHaeffjoWLFiApKQk9+8oLCzEnXfeiW+//Vauki2O89VXX3VPEv4r7NkiLfCmie9E3ooJMtrH/spKmTa+/lpdfQICMDshAddGRcGXaeOpnTBBhjY1JzY4NumqGUSQJb4VuuGGG9wRuK+vL26//XY8//zzaEtFRUUyeDrnnHNksBUZGSkXTw4LC3PvM2/ePMyfPx/vv/8+unbtiscee0wm8BDDGv39/eU+U6ZMQU5ODpYvXy6/Cbzxxhtx66234qOPPmrT4yVSkvgiwfUFiNgmImI70TQ9AgKwsFcvPNGli0wbvyA7GzsrKzF19248mpYmE2ncHBuLQCYRIJ18dvOawXNavM6W6GU6cOCA3O7evXu75OefM2eO7DVzZUs5njj0uLg43H///XjggQfkYyLCjI6OxqJFi3DNNdfI9PR9+vSRGRNdvWFLly7FxIkT5eLM4uf/Cnu2iIhIDdiD7RklNhsWZmfj5cxM5NUN1wwTaeM7dcLMTp0QzbTxRF6ttD3nbLmI4Kp///6ytNdCaN98840MkK688kpERUVh8ODBcrigS1paGnJzczFu3Dj3Y+IPHzlyJNasWSPvi9vQ0FB3oCWI/UVEv27dukZft7q6Wr6J9QsRERF5hxCTSQ4hPDRqFBb27Inu/v4ostnwTHo6Eteswd/37MFeHSYEI6K21+RhhGLR4qZ499130VZEKnkx/+q+++7Dww8/LHunxJwxs9mMqVOnykBLED1Z9Yn7rufErQjU6hMp68PDw937HG/u3Ll46qmn2uzvICIiIu3xNxrx97g4OYRwSUEBXszIwLqyMrlY8js5OZgUEYFZ8fEYHRKi9KESkUo1uWdLDMv75ZdfZBIKMZfqZKUtORwOuUjyc889J3u1xDyrW265BQsXLkR7euihh2S3oKuITItEaicWFh8+fLgsYpuIiO1E2zD6+GByZCTWDBmC3wYNwkUdO0LMwVhcUIDTtmzBGZs3M4Mhaeqzm9cMKuzZEgkwPv74Yzl0TySY+Nvf/iZ7h9pTbGysnG9VX+/evfHll1/K7ZiYGHmbl5cn93UR9wcNGuTe58iRIw1+h0jsITIUun7+eH5+frIQaYn4cmLjxo3ubSIithNtSyQIOzM0VJadFRX4v8xM/DcvD3+UluLSHTuQHBCAB+Lj8bfoaPgxURGp+LOb1wwq7NkSa3qIjH4PPvigTKEeHx+Pq666CsuWLZOJKtqDyES4Z8+eBo/t3bsXiYmJcltkHxQB04oVK9zPi/lVYi7W6NGj5X1xK3rjNm3a5N5n5cqV8j+ZmNtFpBfiC4LvvvtOFn5ZQKRPra3nbCfaTp/AQPw7OVnO65odH48QoxG7Kytx85496LJ2Leamp6OoBWuhkXdRqk6yLdBANsL09HQ5tPA///mP7ClKTU1t8rpVTSXmaIl0mGL+lAjs1q9fL4cRvv322zKdu/DCCy/IlPP1U79v27atQer3CRMmyN4uMfzQlfpdJMxoaup3ZiMkIiKiU14r2Gz4V04OXs7KQlZ1tXwsyGjELbGxuKdzZyTUXZMQkfZ5JBuhyOYnutNFrGa329EexPhVsYCyGL7Yr18/PP3003LRZFegJYieNrFgsZjPJfYXi7mK1O6uQEv48MMPkZycjLFjx8qU72eccYYM2IiIiIjaQgeTCffFx+PAyJH4T3Iy+gcGotxul8FXt7Vr8bedO7G1vJxvNpGXaVbPlkiJ/tVXX8mMg6tXr8ZFF10ke4kuuOACXS+iyp4t0gLxpYcYIiuce+65MHLxTSLdEaMzxBeIgvji0dfXt1k/z3bCc8Tl1bLCQryYmYmVxcXux88PC5MZDMeGhckvrcm7KVUn2RZ4LjZocrB1xx134JNPPpFztUQaeNHIR0REwBsw2CIt4GKnRPrX2nrOdkIZm8rKZNr4z/Pz4UqBMDgoSAZdV0ZGwqTjL6xJnXWSbYHnYoMmZyMU850SEhLQrVs3rFq1SpbGiJ4vIvI80bs8cOBA9zYREdsJdRgaHIxP+vbFXKtVDiv8d04OtpSX47pdu/DQwYNy+OH0mBgEmZp8WUY6odRnN68ZPKfJPVvTpk1rUnf3e++9B71hzxYREakBv43Wh6O1tXjz8GG8dvgw8usyFoaZTLgjLg53du6MaLNZ6UMkIk8PI/RmDLaIiEgNGGzpi9Vux3/y8vDPzEzsr1vQ1s/HBzfExMj1unoGBCh9iESkVDZCIiIiImo5i9GIv8fFYfeIEfiyb1+MDA5GtdOJd3JykLx+PS7bsQN/lpTwLSbSMAZbRDphtVoxZswYWcQ2ERHbCW0w+vjg8shIrBkyBL8NGoSLO3aEGHa0pKAAp2/ZgjM2b8bXBQVwcDCS7ij12c1rBs/hMMIm4DBC0gIOLyLSP2Yj9B67Kirk8MIP8vJQUxdk9bJY5PDCv0VHw5/Le+gCsxFqU7tkIyQidfPz88Nnn33m3iYi/WltPWc7oR29AwPx7+RkPNO1K+YfPowFhw9jj9WKW/buxaNpabirc2fcHheHsGautUbqolSdZFvgOezZagL2bBEREZGSymw2OZdLpI7Pqq6WjwUaDLglLg73dO6MRH9/niAiD2E2QgXfUCIiIqL2Uutw4NMjRzAvMxPbKyrkY0YAV0dFyUWSBwUH880namcMthR8Q4mUYrfbsXbtWrk9atQoGDmen0h3bDYbFi9eLLcvu+wymJq5CC7bCf0QK/f8VFSEFzMysKK42P34eWFhMugaFxbWpPVRSVlK1Um2Ba3DYKuNMdgiLWCCDCL9Y4IMaszmsjK8mJmJz48cgb3usUFBQTKZxlWRkfA1MPm0WjFBhjYxQQaRFxLfYPbo0cO9TUTEdsI7DAkOxsd9+mBu165yTte/cnKQUl6Ov+3ahYcPHsS9nTvj5thYBDWzJ5T0+9nNawbPYYKMJmDPFhERqQF7sKkpjtbWyuyFrx0+jCO1tfKxMJNJZi+8s1MnxDBjLZHHYgP2KxMRERHpSEdfXzzapQvSR43CWz17IsliQZHNhucyMpC4di1u2bMHeyorlT5MIq/AYIuIiIhIh8TCx7fGxWHXiBH4qm9fjO7QQS6QLIYZJq9fj0nbt+OPkhKlD5NI1xhsEelEVVUVLrzwQlnENhER2wkSjD4+uCwyEn8OGYLVgwfjko4d5eNfHz2KM7ZswWmbN2Nxfj4cTiffMC/57OY1g+dwzlYTcM4WaQHnchDpH7MRUlvZXVGB/8vKwn9yc2Vvl9DTYsH98fG4ITpa9opR+2M2Qm1iNkIiL2Q2m/Hee++5t4lIf1pbz9lOkEtyYCDe6dUL/+jSRSbSWJCdjb1WK/6+dy8eS0vDXZ07y4Qa4b6+fNPakVJ1km2B57BnqwnYs0VERER6Vmaz4d85OTJ1fEZ1tXws0GDATbGxMnV8F4tF6UMkUg0uaqzgG0pERESkVbUOBz7Lz8eLGRnYWlEhHxMDCq+KisKs+HgMDg5W+hCJFMdgS8E3lEgpdrsd27dvl9v9+/eHkePtiXTHZrNh2bJlcnv8+PEwNXORWrYT1FROpxM/FxVhXmamvHUZGxqKBxMScF5YmEcX4dUrpeok24LWYbDVxhhskRYwQQaR/jFBBilhS1kZ/pmZiU+PHIG97rGBgYF4ID4eV0dFwdfA5NYtxQQZ2sRFjYm8kPiGMS4uThZ+20hEbCeorYihgx/26YMDo0bh7k6d5FwuMcTw+t270X3dOryUmSnnfJF2Prt5zeA5TJDRBOzZIiIiNWAPNqlBYW0tFmZnY35WFvJqa+VjIUYjbu/UCXd16oRYPz+lD5GoXbFni4iIiIjahUgH/3BiIg6NGoW3e/aU63OV2O14PiMDXdauxc27d8t1vIgI4CBbIiIiImo2sfDxLXFx2DViBJb064fTO3SQCyT/OzcXvTdswCXbt+P34mKZbIPIWzHYItKJqqoqXHnllbKIbSIithPkCQYfH1waEYHVQ4bgj8GDMSkiAmL20bdHj+KslBScsWULvi0ogINBl2rqJK8ZPIdztpqAc7ZICziXg0j/mI2QtGJPZSX+LzMT7+fmyt4uoW9AAGYnJOAaZjB0YzZC/ccGzVugg4hUy2w24/XXX3dvE5H+tLaes50gT+kVEIC3e/XCU1264NWsLLyZnY3UykrcsHs3Hk1Lk2njb4qNRYCXrwmpVJ1kW+A57NlqAvZsEREREbVccV0Gw5ezsnCkLoNhhK+vzF44o1MnmXSDSCu4qLGCbygRERERNc5qt2NRbi5ezMxEWt0cJbFu19/j4nBv587o7O/Pt45Uj8GWgm8okVIcDgcOHDggt7t37w6DgflviPTGbrfj999/l9tnnnkmjM0cgsV2gtTC5nDg8/x8mS5+W12aeF8fH1wfHY0HExLkMERvoFSdZFvQOgy22hiDLdICJsgg0j8myCC9EWnhlxYWyqDrt5IS+ZjIZHhZRATmJCRguM6/5GaCDG1iggwiLyV6YImI2E6QVvj4+GBCx46y/FlSghcyMvDN0aP4qqBAlnNDQ/FQQgLGhoXJffVIqc9uXjN4BhNkNAF7toiISA3Yg03eILWiAvMyMvDRkSOw1aWNHxoUJHu6LouMhFGnQRfpMzbgpA4iIiIiUo2+gYF4v3dv7B85UmYrtBgM2FRejit37kTv9evxr+xsVDscSh8mUZMw2CIiIiIi1Un098erSUnIGDUKjycmIsxkwj6rFbfs3Yuua9finxkZKLXZlD5MolNisEWkE9XV1Zg2bZosYpuIiO0E6UGE2YynunaVQddL3bujk9mMnJoazDp4EIlr1+KRgwdxpKYGWqTUZzevGTyHc7aagHO2SAs4l4NI/5iNkAiocTjwYV6eTKaxx2qVb4kYanhLbCxmxcdraq0uZiPUJmYjJPJCvr6+mDdvnnubiPSntfWc7QTpgdlgwI2xsZgaE4OvCwrwXEYGNpaVYf7hw1iQnS0fnx0fjx4aWKtLqTrJtsBz2LPVBOzZIiIiIlLvWl0/FxXh2fR0rKpbq0vMk7k6KgoPJySgX1CQ0odIOsNshERERETkFcT6W+eFh+PXwYOxevBgTAgPh8hV+PGRI+i/cSMmbd+ODaWlSh8meSn2bDUBe7ZICxwOB3JycuR2bGwsDAbmvyHSG7vdjs2bN8vtIUOGwGg0Nuvn2U6Qt9hSViaHF36Zn49jK3UB54WFyZ6us0NDVbNAslJ1km2B52IDBltt/IYSKYUJMoj0jwkyiJpnV0WFTKTxQV4e7HWPndahAx5JTJQ9YEoHXUyQoU0cRkjkpUwmkyxERGwniIDegYFYVLdA8u1xcfDz8cGfpaW4cPt2DNm0CZ8fOQK709X35V2f3bxm8AxNjTN6/vnn5TcQ99xzj/uxqqoqzJgxAx07dkRQUBAmT56MvLy8Bj+XkZGBCy+8EAEBAYiKisKsWbNg4yJ4pDOBgYGora2VRWwTEbGdIDqmi8WCN3v2RNqoUXggPh6BBgNSystx1c6d6Lt+Pd7PzUWtw+E1n928ZvAczQRbGzZswFtvvYUBAwY0ePzee+/Ft99+i88//xyrVq1CdnY2Lr/88gbj20WgVVNTgz///BPvv/8+Fi1ahMcff1yBv4KIiIiIlBLr54cXu3dH+ujReDwxEaEmk1yra9ru3Uhatw5vHj6MKrtrwCFR62lizlZ5ebmcCPzmm2/imWeewaBBg/DKK6/IOVSRkZH46KOPcMUVV8h9d+/ejd69e2PNmjUYNWoUfvzxR1x00UUyCIuOjpb7LFy4ELNnz0Z+fj7MZvNfvj7nbBERkRpwbiZR2yq12bAwOxv/l5mJI7W18rEYsxn3d+6Mv8fFIZhD88kb5myJYYKid2rcuHENHt+0aZPsdq3/eHJyMhISEmSwJYjb/v37uwMtYfz48fJNSk1NbfT1qqur5fP1C5Haif+3oq6IIraJiNhOEJ1aB5MJDyYk4NCoUXitRw/E+/kht6YGsw4eROLatXjq0CEU1gVhevrs5jWD56g+2Prkk09kmtu5c+ee8Fxubq7smQoNDW3wuAisxHOufeoHWq7nXc81RryWiFZdJT4+vg3/IqL2IeYhit5fUTgnkYjYThA1ncVoxMzOnWUijXd79UKSxYIimw1PHjqELmvX4uGDB1FQU6Obz25eM3iOqtOWZWZm4u6778by5cvh7+/vsdd96KGHcN9997nvi54tBlykdr6+vnjiiSfc20SkP62t52wniE7NbDDgxthY3BATI9foejY9HdsqKjA3IwOvZmXhjk6dZIKN6CZMQ1FznWRb4DmqnrO1ZMkSXHbZZQ0WbRQJL0RGQrHo27Jly+QQwqKioga9W4mJiTJjoUieIRJhfPPNN0hJSXE/n5aWhm7duskes8GDB//lcXDOFhEREZH3cTid+PboUfzj0CFsLi+Xj/kbDPh7bKwcfhjn56f0IZICdDNna+zYsdi+fbsMlFxl2LBhmDJlintbROYrVqxw/8yePXtkqvfRo0fL++JW/I4jR4649xE9ZeKN6dOnjyJ/FxERERGpn8HHB5dGRGDj0KH4vn9/jAwORpXDgVcPH0a3tWsxY+9eZFRVKX2YpGKq7tlqzJgxY9zZCIXbb78dP/zwg0znLgKoO++8Uz4u0ry7esLE/nFxcZg3b56cp3X99dfj5ptvxnPPPdek12TPFmmBqMriGxZBfNsieoCJSF8cDgd27dolt0XmXTHKoznYThC1jqhDPxcV4R/p6Vhd95nr6+ODaTExeCghAV0tFk3USbYFrdOc2EDVc7aa4uWXX5YfNmIxY5FZRWQaFJMMXcQQxO+++04GZaKXSyziNnXqVPzjH/9Q9LiJ2lplZSXCwsLcyyVwYWMi/bFarejXr1+L6znbCaLWEcHQeeHhGBcWhlXFxTLo+qW4GO/k5ODdnBxcHxODhxMSkBQQoOo6ybbAczTXs6UE9myRFnD9HSL9a209ZztB1PZWFxfj6fR0/FRUJO+L/uZro6LwSGIiev9FHVWqTrIt8FxswGCrjd9QIqWI701caWNNJhOHERLpUGsvkNhOELWfdaWlePrQIXxfWCjviwGBV0VG4tHERPSrq7dqqZNsC1pHNwkyiKjpRAMtEsaIwvlaRMR2gsizRnbogO8GDJDJNCZFREAMHfs0Px/9N27E5B07sKWsTDWf3bxm8BwGW0REREREbWRocDAW9+uHrcOG4crISNnD9VVBAYZs2oRLtm/HhtJSvtdehMEWkU7U1NRg1qxZsohtIiK2E0TKGRAUhM/69sWO4cNxXVSUvOgWa3aN2LwZE7Ztw5qSEsU+u3nN4Dmcs9UEnLNFWsDJrkT6xwQZRNq1p7ISz6Wn48O8PNjrHjvH3x+/1K0NywQZ2uFVqd+J6Bgx3vuBBx5wbxOR/rS2nrOdIFJOr4AAvN+7Nx7v0kUGXf/Jy8MvYh7X1Vejm78/jCbPXZazLfAc9mw1AXu2iIiIiKgtHbJa8UJmJhZmZ8v76aNGIcHfn2+yBjAbIRERERGRinWxWLCgZ08EGo6lULBx6Vtd4jBCIp3gmhlE+udwOJCRkSG3ExISYKi7SGsqthNE6iLqpMFuB+x22B0Oj74u1+b0DAZbRDpRWVmpyCr0ROQ5VqsVXbt2bXE9ZztBpC6iTpade67cLj9yBPDQZzfbAs9h6nciIiIiIoXZOYxQl9izRaQTAQEBKCoqcm8TEbGdIFI38Xkd8eOPKLDZYLZYPPq6vGbwDAZbRDrh4+OD0NBQpQ+DiFSM7QSR+uqkSazTVFMDp4+PR1+X1wyewWGEREREREQKMdbdchihPrFni0gnampq8Nxzz8nthx9+GGazWelDIiKVYTtBpL46Wfbvf8tshFX9+gHBwR57XV4zeAYXNW4CLmpMWlBRUcFshEQ619p6znaCSF3q18mVhw/jnLg4j78uMxi3b2zAni0inTCZTLjjjjvc20SkP62t52wniNRF1MkOl1+OUrHWlgc/u9kWeA57tpqAPVtERERE1B56rVuHvVYrfhs0CGcy0ZXuYgMmyCAiIiIiUoihLgshE2ToE8caERERaYTT6URBQYHcjoiIkOmbiUgn2QgVPg5qH+zZItIJMdnV19dXFrFNRPpTWVmJqKgoWcR2c7GdIFIXUSdTTzsNGDdOJqrw5OvymsEz2LNFpCM2m03pQyCidmQr/V8dz/86HzVxNfAN94VvR1+Ywk0wWox//TvYThCpi0iOAeDanTsxrrgYF3bsiInh4Yj392/Xl2Vb4BkMtoh0wmKxICsry71NRPqT/U62e3vXlF2woGFdN1gMMuiqH4C5b8N9YQwzYus7W2EKNcGZ4YSjhwMGXw5yIVKK+Lyev2ULnktPR66vL749elQWYUBgoAy8RBnVoQOMbThsmNcMnsNshE3AbIRERKQG2+/ejgHzB8jt1SNXw7fEF7WFtag9WtuiCR8+Jh/4d/dHQHLACcU31Lft/wAiOul8zG0VFfj+6FFZ1paWwlHv+SSLBT/0748eAQF8BzUWGzDYauM3lIiIyBPBVv2FSMWFmr3MLoMuW6HNHYC5tm1H627F/aO1crs6qxqOivqXcw35Rvs2GoT5J/jDx8DEHETtqaCmBsuKimTg9WNhIYptNsSYzfhpwAD0r1uMmJTDRY2JvFBNTQ1effVVuX333XfDbDYrfUhE5CEiK6Gpg0kWdG1aO3HXXXfBme9E5e7KE0rN4RrU5tWiJK8EJatKThiqaOlpOTEQ6xkAY8Bfzxkjor/+7I4wmzElOlqWvJoanL91q+z5OjslBUsHDMCIVn75z2sGz2HPVhOwZ4u0QGQWCqr7tqv+N95EpP+erbZuJ2xlNlTuOTEIs+61wlnrPOnv90v0a7Q3zBxtZpp6olbUyaLaWkzcvl0OLwwyGvFNv344Jyysxe8prxlahz1bRF7IZDJh6tSp7m0i0h+jwYjxGI/AvoEtqudNbSdMwSZ0GNZBlvocNgeqDlUdC7521QvEdlXCVmRDdXq1LEXLihoed4hR9nzJHrGeAQjodWzbkmSBKYjtFXmvptbJMF9fLB8wAJN27MCK4mJM2LYNn/fti4sjItr1dan12LPVBOzZIiIiNdj/wH5k/V8W4mfFo/u87lALMWestqC20SGJVWlVwMk7w2COM7uDr/qBmH8Xf2ZKJDpOld2Oa3buxNdHj8rFkP/Tuzeui47m++Rh7NkiIiLSMx/1zRkzR5plCT0ztMFz9io7rPutcghi5d5KWPfU3e61ygCtJrtGluJfik/MlNjNv9FAzBzDYYnknfyNRtmjNX3PHnyQl4e/7dqFIpsNMzp1UvrQ6CTYb0hERKQRogfJCisqayrltghy1M7ob0RQvyBZjieyIroCrwaB2D4rHFaHfFyUE35nsNEdgDUIxMSwRJEkhEjHfA0GvJ+cjA5GI97MzsbMffuQXV2NZ7p21USb4G04jLAJOIyQtEBMdu1U983W4cOHmSCDSIe23b0NA+cPbFWCDC20E06HE9WHq2WSjuMDMTFnrMECRMcRvV6WXicGYv5d/WEwcwFnUpfW1Enxhcsz6el4/NAheX9qdDTe6dVLBmPt+boEDiMk8lZiLTgiIq23E2IdL/94f1kwruFzjmoHrAetDQMxcbunErVHalGTWyPL8SnrxQQXS1fLCT1i4tavkx/XDiPN1UnRi/VYly6I8/PD3/fswft5ecitqcEXffsiqAlJL7TQFugB+9qJdMJisWDv3r3ubSIiPbYTBj8DAnsHynK82uJaOQTxhEBsb6VcwFnOHdtvReEPhSeuHZZ0YhAmbn07+nrwryNv0xZ18qbYWLng8VWpqXIh5DEpKfh+wABEn2K9TT20BVrBYYRNwGGERESkBtvu2oaBr7V8GKG3EsOtRBIOGYTtaxiEVR2sgtN28nSJpnBTo0GYpYcFxkAu4kzqsb60FBdu346C2lp09/eXix/3CAhQ+rB0idkIiYiIiOoNtxJDBUUJO7fhQrCO2mNrhx3fEyZuq7OqYSu0oXRtqSzH8+vsJ3vEjg/E5PwwX84PI88a0aED/hg8GBds24YDVVUYvWULlvTrh9NDQngqFMRhhEQ6UVtbi7fffltu33rrrfD15dAXImI78VdEUBSQFCBLxws7NnjOXnksbf3xQZi4tR21yWBMlOPT1sv5Yd1OMj8sjvPDqP0+u3sGBGDNkCG4cNs2bCovx7kpKXg3ORlTjluLi9cMnsNhhE3AYYSkBSKzUFDQsdTKHF5EpE+tHUbIdqLt1B6tReW+E4MwcSvS1p+MIeAU88PC+SWZt2mvOllht+P6XbuwuKBA3n88MRFPduniTg3PtqB1OIyQyAsZjUZcccUV7m0i0h+jjxFn42yZ2rwl9ZztRNsRiTNCOoYgZFTIiWnrs6v/F3ztszaYH+aodKBia4Usx+P8MO/TXnUy0GiUWQkfPngQL2Rm4h/p6dhrteLdXr1gMRrZFngQe7aagD1bRESkBvvv34+sl7IQPzse3Z/vrvThUDP91fywU5HzwxoZlujfhfPD6NTezcnB3/fuhc3pxKgOHeQ8rlNlKqS/xp4tIiIiPTp50jzS+vywilPMDyusNz9sZcP5YT4mH/h3828YhNUl7ZDrh9UNGyPvNT02Fl39/TE5NRVrS0sxctMmfNu/P/rXDV+k9sUEGURERBrDC2j9EWnkgwYGydLc+WHiVpTjcX4YuZwTFoa1InHG9u3Yb7Vi9ObN+G/v3rgsMpJvUjvjMMIm4DBC0oLKykokJSXJ7X379iGAa2sQ6c62O7dh4OstT5DBdkJfTpgfVu/WetAK2E/+s6aOp1g/LIDzfj3F03XyaG2tXPx4ZW4ucP31CDEakX3wIK8ZmonDCIm8dNHO7Oxs9zYREdsJffMx+MC/s78sja4fllZ1QpIO9/phR20oXVMqy/H84uvmhyVxfpjePrs7+vpi2YABmOnjg7cKClDCa4Z2x2GERDrh7++PLVu2uLeJiNhOePn8sJ4BshzvpPPD9lTCVmRDdWa1LMUrmjA/rO7WHGfm8FaNfHabDAb8o1cvvPXOO8fuM1mG9wZbc+fOxVdffYXdu3fDYrHgtNNOwwsvvIBevXq596mqqsL999+PTz75BNXV1Rg/fjzefPNNRNdbvC0jIwO33347fvnlF7mWwdSpU+XvNplU/ecTNYtIGTto0CC+a0TEdoJaNz+skSQdonfslPPDAo8l/zhhWGKSheuHqfCzO0BcA/foIbdtBgP8PH4E3kPV0caqVaswY8YMDB8+HDabDQ8//DDOP/987Ny50z1O/d5778X333+Pzz//HCEhIZg5cyYuv/xy/PHHH/J5u92OCy+8EDExMfjzzz+Rk5ODG264Qa7Q/dxzzyn8FxIRETUDRwiTJ9YPGx0iS3PmhzkqHChPKZflhN8Z4evOkMj5YergbzC4t6sdDrkuF7UPTSXIyM/PR1RUlAzCzjrrLJSUlCAyMhIfffSRe0E40QvWu3dvrFmzBqNGjcKPP/6Iiy66SI6HdfV2LVy4ELNnz5a/z9yErlMmyCAtqK2txYcffii3p0yZIr9QICJ92TZzGwa+0fIEGWwnqD00mB92XDBWc7jmlD/rnh/W2Pphpv8FBHqlVJ0Ur+v32GPy+5tDjz6KRKaBb5bmxAaaCrb2798vM7Zs374d/fr1w8qVKzF27FgUFRUhNDTUvV9iYiLuuece2ev1+OOP45tvvkFKSor7+bS0NHTr1g2bN2/G4MGDT3gdMRxRlPpvaHx8fJPeUCKlVFRUyGGyLb0IIyL9B1tsJ8jTbOU2OT9M9oDtO3F+2Mn4+PrI3rCA5IBjpXfdba8AmIJVPTBLE3Wy/utO2bQJN3btirNDQuR8LvLSbIQOh0MGUKeffroMtITc3FzZM1U/0BJED5Z4zrVP/flbruddzzVGzOd66qmn2ukvIWq/cd8TJ050bxOR/hh9jBiJkbB0t7SonrOdIE8zBZkQPChYlubOD6vcWSnL8cydzAjsHfi/QKwuGDPHai9Jh1J1UrxWxzPOkKngPywowIelpehoMsl1t66IjMS5oaHwZeDVJjQTbIm5Wzt27MDq1avb/bUeeugh3HfffSf0bBGpmchiJOYvEpF++Zn88DyeR8JVCS3KXMZ2gjQzPyyzGpW7K92lYleFvK3Nq5VDE0Up+rmowc8Zg40Ne8Hqilg7TGRnVCOl6qR43ZxVq/BLcTG+yM/H4oICFNTW4l85ObKEmUy4NCJCBl7jwsLgx8BL38GWSHrx3Xff4bfffkPnzp3dj4ukFzU1NSguLm7Qu5WXlyefc+2zfv36Br9PPO96rjF+fn6yEBERqYmGRv4TtW79sER/WcLHhzd4rraoVg5BrNz1v0BMFOsBK+xldpRtKJPlhJT13f3dwVf9XjFTiCYuhduF6Lk6PzxcljeTkvBbSYkMvL7Kz0debS0W5ebK0sFoxCUREZgcEYHx4eGwcPRMs5jU/qFy5513YvHixfj111/RtWvXBs8PHTpUTiRcsWIFJk+eLB/bs2ePTPU+evRoeV/cPvvsszhy5IhMriEsX75cjq/s06ePAn8VEREREbWEb5gvQkaFyFKfo9ohAy53AFYvGLOX22HdY5Xl6NdHG/ycOcZ8Qk+YuO/X2U9zQxJbQ8zVOjcsTJbXkpLwZ13g9WV+Pg7X1OCDvDxZAg0GXNSxIy6PjMSE8HAEcxmlv6TqBBl33HGHzDT49ddfN1hbS0xIE+tuCWL9rB9++AGLFi2SAZQIzgSR5t2V+l2sXxAXF4d58+bJeVrXX389br755ianfmc2QtKCyspKDBx4bOL81q1bERBw4kKWRKRtW2dsxag3R8nkAflF+c2eTM92gryNuMytya5xD0OsH4yJx09GrhvWq64nrE8gAvoGILBvICzdLPAxtl0QplSdbOrrOpxOrCstlYGXKBn1EsiZfXzkEMPLIiJkz1eUFy2OXKqXbIQn+0bhvffew7Rp0xosavzxxx83WNS4/hDB9PR0GZSJ3jHxwSQWNX7++eebvKixmoIt0X1ee6QWEG+Noe49EsOQfY51u9e/berzontdfHDLx0mzmGWMyDuCrUFvHlsAldkIiVrHVmo7NiTxuJ4wkaDDaWv88tjgbzjW+9XnWPAligjELF1bFoSpIRthU19XhAwby8rcc7z2Wf+3uLX4y08PCcFDCQmY2LEj9K5UL8GWWqgp2Dr85mHsm7GvfX65iMF86wVfJh85obT+/b96XjRCBj+DvPXxa3j/+Nu/et4QYIAxwCi/XRKPeVN3fkuIXty1a9fKbbHGHDMSEulPa4MtthNETVw37GDV/xJz7KxERWqFDMhElsTGGCzHgjBX8CVug4cEw6+TnyrrZGtfV4QPuyorZdC1OD8fm8qPLWbdw2LBvpEjoXelDLaUe0PbW86/c3Bg1gGZqUeuROeomzAt6r54qO7x+s/rggHHAq96AZi4NQbWPea6beyxwGOPGTsY5docIltR/W2DWZ0ZioiI2jrYIqKWc9qdqDpUJQMvV6lMPdYb5qhq5ILLB4i4NALxD8afkHFRb1YUFWHc1q3oZDYj67TToHelelxni46JvSlWluaQwZiz8WBMNBywH/sWR3SZO2udjd7K50/1nLhf44SjxiEbHGe1U96KCauN3Z7qefGc3WqX3x6J3yk5ICe4ilKL2jb97+Bj9oGpQ10QFmxs2nao6YRitHBtKyJqZxyLQqQYMUxQrHEnSsQlEe7HxbWU9aDVHXy5g7FtFShYUiBLyJkhMujqOLGjLqdtRPj6ylu9fMfflhhseQE5/K6uXrflpE5PcNgccFQ6YK+0w1FRdyvuV9hP/ljdtvsxVym1y7SwtjKb3HYNBRABXW1BrSytIYZFNhaEiSKyJ53sOVPYsdvW9rDZbDaZuVO47LLLmjwnkYi8B9sJorYnrq0CkgJkwaT/PS6GIGb+MxN5/81Dye8lsoghhgmzEhB1bZT83FeqTrb16/rUS6hBDXHOlsaGEVLbBnKyt+y4IKzR7bJj+7ket5XYYCv+X2mLr3KMQUaYOprkIo+uYgr/3335XHi9bXEbYnJ/Q8YEGUT6t/WOrRi0gAkyiLSkOrsaWa9mIXthtryGEERq+c73dkaH6zogNDZUEwkyTmVHeTn6b9yISF9fHDn9dOhdKYcREv01g8kAQ6gBvqHHur5bSgzTlEFZveDLXYoaeazYJrNKurbtJccaXtcwyer06mb8EZA9YyLwsofaMazjMPgl+MHAld6JdMngY8BADIR/gn+L6rn4mbPPPtu9TUTtzy/OD91f6I7EhxOR/VY2sl7JQnVWNQ7cfwC2p2wYGT8S5s5mj9bJtm4LDHVJzNivdSL2bDUBe7aoPYmx3qKnrPZorSy2wnrbR+u2C+tt1xUxhLIxEZMi0G9xP540Ih3ad/c+HJ5/GAmPJKDbM92UPhwiagExPz3vgzxkvJghF1oWxEiW0ZmjZaIvLdpdUYHeGzYg3GTC0TPOOOmX02V2Owpra1Fos8nbInFbt32yWxHAvZ+cjPPCw6EW7Nki0thYbzk8MNwXSGpeYy2CMFdQlv9VvrwIE48TERGROonlbESys5gbY1DwTQF2XrlTftFak1cj1+vSItfyPCJAunvfvmNBVCOBk72Fv/+7o0dVFWw1B2fQE2m4sfaL9ZNFEOloJfbhE+kX6zeRbog515GTIuVyNmJKgcjyrFUB9YYizj98+JT7+hsMsgcs3Nf3L28/ysvDu7m5ms5yyGCLSCestVbcjJth/MOIFGsKLBZtfjtGRCdXWVuJSZgE48tGZDyU0exJ7VarFaNHj5bba9asYTtBpDBRJ6eXT4cTTqwtW4sABHjsdduyLYj398fL3bvLhY47niJ4CjOZYGnGAsq/FRdrPsshgy0inRAN9QEcAMoAh0PL3wER0amUoASobNl7JNqGrVu3ureJSFmiHu6375fb9lq7R1+3rduCe+Lj0daMdcMT7Qy2iEhpfmY/vIgXETQkCP7+/kofDhGpkGgbfvrpJ/c2ESlL1MNXIl9BbX4tzD5mj76uFtoCQ92tlr8aYs8WkU6YjCYMwzCEhYfB2IwueiLyHqJtOO+885Q+DCKqVydHBo9EVX4VDA7PpX7XSltg0EHPFhfZINILn/+lViUiIiJt8PGtW6NKwwky2ouxLthizxYRKc7msGEN1iAoPwj9bP1gMrHjmkh3WnktZrPZsGzZMrk9fvx4thNEChN18s+qP1GFKnTd2hWW7haYY80yU2F7v64W2gJD3S0TZBCR4qpt1XgYDwPbgOnV01XbcBKRcqqrq3HRRRfJ7fLycrYTRCqok/el3ye3B901CGl3pcmeLr/OfvBP9IdfwrHbgN4BiLg0os0WPdZKW2DQwTBCdb6zRNSi8de90AvGYCMM9da7ICL9MPgYZD0X33y3pJ6Lnxk2bJh7m4iUJerhoB6DUJNbA0uoBcg5NpywKq1KlvpMoSbETItB7N9jEZgc2OrX1UJbYKy75TBCIlKcxc+ChViIkCEhXDuHSKf8Tf6ynifenNiiei5+ZsOGDe1ybESEFtXJLfu2uO87bA7UZNegKqMK1RnVqEqvkqXopyIZfGW9kiVL6DmhiLs9DhGTImDwNei2LTC45myxZ4uIFOca3q3dnnYiIiKvZjAZ4J/gL0t9TocThcsKkb0gG0e/P4riX4plMceYEXtzLGJvjYV/vHpTuLeUK4z03ApkbU+9/YZE1DwMtoiIiHRJJMzoOKEj+n/TH6PSRiHhkQT4RvvK4Yfpz6RjbZe12HbRNuR/lQ9HjZYH3Z0kG6GGe7YYbBHphLXaipmYiRtTboTValX6cIioHVTWVOIaXIMz55+JysrKZv+8aBtOP/10WdhOECmvJXVS9Hp1e6YbRmeMRp9P+yB0TKic1FT4fSFSJ6diTac12H/ffpRvL2/T11V0GCG0iwkyiHTCCSdSkQqUAQ6HlpslIjpVPc9DHlDSsjX1RNvw559/ureJSFmtqZMGswFRV0XJUrmnErmLcpH7fi5qcmqQ9XKWLMHDghEzPQZR10bBN9S3TV5XiQQZdg33bDHYItIJP7MfnsbTsPSywM/PT+nDISIVEm3D4sWL3dtEpI86GdArAN3mdkOXp7ugaFkRct7NwdFvj6JsY5ksB+47gIjLIhB9fTTCzgvTTFtg0MEwQgZbRDoh1sg4A2egQ3gH1a6XQUTKEm3DpEmTeBqIdFonRYKNjhd2lKUmvwZ5H+Yh99+5qNhRgSMfH5HFN8oXUddE4dzrz0Xw0GD41AU0amSou2WCDCJSHhNkEBERUR1zpBnx98Rj2LZhGLJhCDrd2Qm+kb6oPVKLw/MPY/Pwzdhx6Q5NJMhYWliIlLIyaBETZBDphBhznYIUbCjZALtdy98BEVF7EW3Dr7/+KgvbCSLvqJOi56rDsA5Imp+E0YdHo//3/RF+Rbi8Zljx7QrYamxQq0T//6Wz/09eHrSIY42IdKLKVoV7cS+wC/hb1d8QGNi61eWJSIVaOW2hqqoK55xzjtwuLy9nO0GkME/XSbEAcseJHWEeZca9X9wrH5uWNw2h8aFQozNDQnBheDi+LyxEtYoTeZwKgy0iHa3BkYhEGC1GVY+/JqKW88Gxei6GB7Wknouf6dOnj3ubiJSlVJ00+hvRxaeLzGq6NmEtgqOC5QLJ5mjzsdv6pd5jpnCTR4/Tx8cHozp0kMFWjUaTZDDYItKJAP8ALMIiBPcLRkBAgNKHQ0TtwOJrkfU88Y7EFtVz8TOpqak8N0QqoVSdFK+79KalMmuhWMRKzOMSpQIVp/w5H18fmWDjZMFY2Ngw+Ib/L8V8W/A1HJv1VMueLSJSkvubJm1+8UNEREQe1OudXui5sCdqC2pRk1tzrOTV3TZy31Zog7PWiZrDNbI0JnhkMIauHdqmx2muu76pZc8WESnKFWtptDEiIiIiz/Ix+hzrmYo2AwNPva+jxoGaIw2Dsdq8Y4Fa5d5KFP1UhOr0avf+TrsTjioH7FY7HFaH3Ja3dduNPS4fO26/+OoKRI4HaiO1eX3DYYREOmGtseIBPADjXiN+tf4Ki8Wi9CERURuz1loxDdNgftOMlAdTmj2U0Gq14pJLLpHb33zzDdsJIoUpVSdb8roGswH+nf1lOV7Frgps6LNBBl6/h/wuAyXRC9YWIgBMsgL5fRhsEZGCHHBgEzYBZcfSwBOR/oie63SkA/kt68UWbcPPP//s3iYiZSlVJ9v6df06+8EYYoS9xA57qb3RuV4Gi+FY8TfIZF7174tb+Vjdtuvx0nWlKFlVgsAKYEV5OR48cAAzOnVqkBJe7dizRaQT/mZ/PIyH4Z/gDz8/P6UPh4hUSLQNH3zwgXubiLyzTrb165qCTRiVNgrVmdWNBlA+xpZlMEyfmy6DLd9a4GBVFV7MzMTlEREMtojI80wmE87DeQgMC5TbRESNtRNTpkzhG0Pk5XWyPV7XN8xXlrZkMB/LRDjSPwj3dz62Flisxr4o4hUZkV64vjTS5pBmIiIiogZ8zMcubpJ9LZjcowe0iMEWkU7YHXbsxm5YKiwYYh8Co9Go9CERkcrY7XZs3rxZbg8ZwnaCyFvrpFbaAkNdz5azRrvfJDPYItKJ6tpq3I7bgQPAFVVXIDAwUOlDIqK21srrjaqqKowYMUJul5eXs50gUphSdVIrbYGP37GerYIlBSjbXIbgIcHQGgZbRDpa1Dga0TD4Gv63wDER6YoPjtVzU4ipRfVc/ExiYqJ7m4iUpVSd1EpbYOn+v5T0ef/NY7BFRMoJsATgE3yCgKSAZq+9Q0TaYPG1yHre5b4uLarn4mcOHTrULsdGRNBMndRKWxB6ZigiJkeg4MsC2CtOTCmvBccGQhKR9jFBBhEREelMh1Ed5K1YKFmLGGwR6QWDLSIiItIZo+VY8g5HFYMtIlJQdU01HsWjmJU1S058JSL9qbJV4TbchkvfuhRWq7X5P19VhUmTJsnCdoJIeUrVSS21BQb/Y31DR384inVJ61CWUgYtYYIMIp2wO+34A38A5cdSuhKRPpd42IM9QDbgcDT/W17RNnz99dfubSJSllJ1UkttQUDvY/NTHZUOWPdbNdfDxWCLSCfMZjPux/3wjfKV20REjbUTb7/9tnubiLyzTmqpLQg5LQQj9o1AbV6tvB/YV51p6k+GwRaRTvj6+uIiXARLB4vcJiJqrJ245ZZb+MYQeXmd1FpbENAjAOgBTWKCDCKdcK2T4XRqd5V1IiIiIj3xqmDrjTfeQJcuXeDv74+RI0di/fr1Sh8SUZtxOB1IQxoOVh9s0VwOItI/0TakpqbKwnaCyHvrJNsCz/GaYYSffvop7rvvPixcuFAGWq+88grGjx+PPXv2ICoqSunDI2o1a40V0zEdyAIutV6KwEBtjWkmovYnMhj269dPbpeXl7OdIPLSOsm2wHO8Jth66aWX5NjUG2+8Ud4XQdf333+Pd999F3PmzFH68IhazwcIQYgcTpj/dT4q/Sv5rhLpTPWhalnPjQHH1p1piYiIiDY9JiJqHaXqJNsCz/CKYKumpgabNm3CQw895H7MYDBg3LhxWLNmzQn7V1dXy+JSWlrqsWMlaqngDsFYgiWAEzg05RDfSCKdEvW866NdW/QNuPiZ/Pz8djkuIoJm6iTbAs/ximCroKBAriEQHR3d4HFxf/fu3SfsP3fuXDz11FMePEKi1gsaFISY6TGo3MMeLSI9M4WaEHUVh78TEWmBVwRbzSV6wMT8rvo9W/Hx8YoeE9Ff8TH6IPnfyXyjiIiIiFTCK7IRijGpRqMReXl5DR4X92NiYk7Y38/PDx06dGhQiNSuqqoKU6ZMkUVsE5H+iEntY8aMkUVsNxfbCSJ1UapOsi3wHB+nlyzKIzIQjhgxAq+99po75WVCQgJmzpz5lwkyRM9WSEgISkpKGHiRalVUVCAoKEhuM8sYkT61tp6znSBSF6XqJNuC1mlObOA1wwjFsMCpU6di2LBhMugSqd/FfzRXdkIirTObzXj55Zfd20REbCeI1E2pz25eM3iO1/RsCa+//jpefPFF5ObmYtCgQZg/f77s8for7NkiIiI14LfRRETKa05s4FXBVksx2CIiIjVgsEVEpDwOIyTyQmIeYkZGhtwW8xHFWnJERGwniNRLqc9uXjN4jtfM2SLSO5GZrGvXrnKbCTKIiO0Ekfop9dnNawbPYbBFpCMBAQFKHwIRqbyes50gUhel6iTbAs9gsEWkE+LbMDGfg4j0q7X1nO0EkbooVSfZFngOJ3UQERERERG1AwZbRERERERE7YDBFpFOVFdX45ZbbpFFbBOR/lRVVeHCCy+URWw3F9sJInVRqk6yLfAcrrPVBFxni7SA6+8Q6V9r6znbCSJ1UapOsi1oHa6zReSFfH198cwzz7i3iYjYThCpm1Kf3bxm8Bz2bDUBe7aIiEgN+G00EZG2YgPO2SIiIiIiImoHXGeLSCecTicKCgrkdkREBHx8fJQ+JCJSGbYTROqiVJ1kW+A5DLaIdKKyshJRUVEen2RLRNrBdoJIXZSqk2wLPIfBVhOjf9f4TCK1qr8Cvfi/arfbFT0eIlJfPWc7QaQuStVJtgWt44oJXDHCqTBBRhNkZWUhPj6+laeFiIiIiIj0IjMzE507dz7lPgy2msDhcCA7OxvBwcGqmAcjomkR/IkT/FcZUEg9eN60i+dOm3jetIvnTrt47rSJ5615RI9WWVkZ4uLiYDCcOt8ghxE2gXgT/ypqVYIItBhsaQ/Pm3bx3GkTz5t28dxpF8+dNvG8NZ1I/d4UTP1ORERERETUDhhsERERERERtQMGWxrk5+eHJ554Qt6SdvC8aRfPnTbxvGkXz5128dxpE89b+2GCDCIiIiIionbAni0iIiIiIqJ2wGCLiIiIiIioHTDYIiIiIiIiagcMtoiIiIiIiNoBgy2NeeONN9ClSxf4+/tj5MiRWL9+vdKH5FV+++03XHzxxXLFcB8fHyxZsuSEFcUff/xxxMbGwmKxYNy4cdi3b1+DfQoLCzFlyhS5cGBoaChuuukmlJeXN9hn27ZtOPPMM+V5jo+Px7x58zzy9+nV3LlzMXz4cAQHByMqKgqTJk3Cnj17GuxTVVWFGTNmoGPHjggKCsLkyZORl5fXYJ+MjAxceOGFCAgIkL9n1qxZsNlsDfb59ddfMWTIEJnZqUePHli0aJFH/ka9WrBgAQYMGOBeaHP06NH48ccf3c/zvGnD888/L9vMe+65x/0Yz506Pfnkk/Jc1S/Jycnu53ne1O3w4cP429/+Jj/LxHVI//79sXHjRvfzvE5RgJM045NPPnGazWbnu+++60xNTXXecsstztDQUGdeXp7Sh+Y1fvjhB+cjjzzi/Oqrr5yi+ixevLjB888//7wzJCTEuWTJEufWrVudl1xyibNr165Oq9Xq3ueCCy5wDhw40Ll27Vrn77//7uzRo4fz2muvdT9fUlLijI6Odk6ZMsW5Y8cO58cff+y0WCzOt956y6N/q56MHz/e+d5778n3MyUlxTlx4kRnQkKCs7y83L3Pbbfd5oyPj3euWLHCuXHjRueoUaOcp512mvt5m83m7Nevn3PcuHHOLVu2yP8LERERzoceesi9z8GDB50BAQHO++67z7lz507na6+95jQajc6lS5d6/G/Wi2+++cb5/fffO/fu3evcs2eP8+GHH3b6+vrKcynwvKnf+vXrnV26dHEOGDDAeffdd7sf57lTpyeeeMLZt29fZ05Ojrvk5+e7n+d5U6/CwkJnYmKic9q0ac5169bJz6Rly5Y59+/f796H1ymex2BLQ0aMGOGcMWOG+77dbnfGxcU5586dq+hxeavjgy2Hw+GMiYlxvvjii+7HiouLnX5+fjJgEsQFuPi5DRs2uPf58ccfnT4+Ps7Dhw/L+2+++aYzLCzMWV1d7d5n9uzZzl69ennoL9O/I0eOyPOwatUq93kSF/Cff/65e59du3bJfdasWSPvi+DKYDA4c3Nz3fssWLDA2aFDB/e5evDBB+VFSn1XX321DPao7Yj68a9//YvnTQPKysqcSUlJzuXLlzvPPvtsd7DFOqfuYEt8IdgYnjd1E9cKZ5xxxkmf53WKMjiMUCNqamqwadMmOSzNxWAwyPtr1qxR9NjomLS0NOTm5jY4RyEhIXK4p+sciVsxdHDYsGHufcT+4lyuW7fOvc9ZZ50Fs9ns3mf8+PFy2FtRURHf7jZQUlIib8PDw+WtqFu1tbUNzp0YNpOQkNDg3InhGNHR0Q3OS2lpKVJTU9371P8drn1YR9uG3W7HJ598goqKCjmckOdN/cTQXDH09vh6wXOnbmL4uxgu361bNznsXQyhFnje1O2bb76R1xdXXnmlHOo+ePBgvPPOO+7neZ2iDAZbGlFQUCAvNOpf6AnivrjAJ+W5zsOpzpG4FQ1gfSaTSV7019+nsd9R/zWo5RwOh5w3cvrpp6Nfv37u91UEtyIQPtW5+6vzcrJ9REBmtVp52lpo+/btch6dmAd32223YfHixejTpw/Pm8qJwHjz5s1yzuTxWOfUS3xBKOaaLl26VM6ZFBfoYg5xWVkZz5vKHTx4UJ6zpKQkLFu2DLfffjvuuusuvP/++/J5Xqcow6TQ6xIRKfZN+44dO7B69WqeAY3o1asXUlJSZI/kF198galTp2LVqlVKHxadQmZmJu6++24sX75cJvoh7ZgwYYJ7WySnEcFXYmIiPvvsM5lwgdT9ZaLo2XruuefkfdGzJT7vFi5cKNtNUgZ7tjQiIiICRqPxhOxo4n5MTIxix0X/4zoPpzpH4vbIkSMNnhfZ7ESGwvr7NPY76r8GtczMmTPx3Xff4ZdffkHnzp0bnDsxVLe4uPiU5+6vzsvJ9hFZ9HiR0nKi11Fkdhw6dKjsJRk4cCBeffVVnjcVE8PNRFsnMnOK3ntRRIA8f/58uS16fFnntEH0+Pfs2RP79+9nnVM5kQlZ9PrX17t3b/cwUF6nKIPBloYuNsSFxooVKxp8gyHui7kLpLyuXbvKhqz+ORLDx8RcLNc5Erfigl5ciLisXLlSnkvx7aFrH5FiXswhchHfDotv98PCwjz6N+mFyGciAi0x/Ey83+Jc1Sfqlq+vb4NzJ+bIiQ+o+udODGerHyyL8yICKdeHm9in/u9w7cM62rZEfamuruZ5U7GxY8fK+iJ6JF1FfOMu5v+4tlnntEEsTXLgwAF5Ic+2Ut3E8PjjlzXZu3ev7JkUeJ2iEIUSc1ALU7+LzHaLFi2SWe1uvfVWmfq9fnY0av/MWiLttyii+rz00ktyOz093Z1SVZyTr7/+2rlt2zbnpZde2mjq98GDB8u0rKtXr5aZuuqnfhfZnkTq9+uvv16mtxbnXaQTZ+r3lrv99ttlSv5ff/21QTrjysrKBumMRTr4lStXytTvo0ePluX41O/nn3++TB8v0rlHRkY2mvp91qxZMpvhG2+8wdTvrTRnzhyZNTItLU3WKXFfZO/86aefeN40pn42QoF1Tp3uv/9+2VaKOvfHH3/I5S7EMhcii6vA86buZRZMJpPz2Wefde7bt8/54Ycfys+kDz74wL0Pr1M8j8GWxoh1e8QFoVhvS6SCF2s1kef88ssvMsg6vkydOtWdVvWxxx6TwZIIjMeOHSvXBqrv6NGjMrgKCgqSacNvvPFGGcTVJ9boEulbxe/o1KmTbByp5Ro7Z6KItbdcREB8xx13yLTi4sPpsssukwFZfYcOHXJOmDBBrnsmLj7ERUltbe0J/0cGDRok62i3bt0avAY13/Tp0+W6MeL9FMGtqFOuQIvnTdvBFuucOonlKmJjY2WdE58/4n79dZp43tTt22+/lV8MiuuH5ORk59tvv93geV6neJ6P+EepXjUiIiIiIiK94pwtIiIiIiKidsBgi4iIiIiIqB0w2CIiIiIiImoHDLaIiIiIiIjaAYMtIiIiIiKidsBgi4iIiIiIqB0w2CIiIiIiImoHDLaIiIiIiIjaAYMtIiLyCmPGjME999zjvt+lSxe88sor7fqaR48eRVRUFA4dOiTv//rrr/Dx8UFxcXGbvs6cOXNw5513tunvJCKi1mOwRUREqjFt2jQZjIji6+v7/+3dW2jODxzH8e+f5XwhWY67cEqSac7NyNkkTcm0YS6ElEJOkcMNSw5JkSin0rC7lW0hNKJYScKWU5Gz4sb5NH2+9Xt6HvbsP/9nv7/fxft1M3t+v+f3+z27UJ++h8d69Ohhq1evtk+fPjX5vaqrq23hwoUWpi1btlheXp4HuzCtXLnSjh49ag8fPgz1PgCAP0PYAgBESm5urj1//tyDw65du2z//v22adOmJr9Penq6tWnTxsLy4cMHO3jwoM2fP9/C1rFjR5s8ebLt27cv9HsBABqPsAUAiJSWLVta586dLSMjw6ZPn24TJkyws2fPJrTmFRQUWLdu3TwsDRgwwI4fP55wjffv31tRUZG1a9fOunTpYjt37vztPvFthGrzUzXtxo0bseNq9dNrav2Tt2/f2uzZsz2ktW7d2vr06WOHDx9O+jkqKir8s4wYMaLBQDZlyhQbOXKk3y94jtLSUhs1apTfZ+jQoXb37l2vxA0ZMsQ/k97z+vXrhGtNmzbNTpw40ai/MQDg/0HYAgBE1q1bt+zKlSvWokWL2GtqKRw8eLCVl5f7cbUCzp07165duxY7Z9WqVVZVVWVlZWV25swZD0zXr19P6Vk2bNhgd+7cscrKSqupqfEqkipKyVy6dMmfMxmFq4kTJ9qPHz88TLZv3z52TJW89evX+zOnpaVZYWGht1Pu3r3br3v//n3buHFjwvWGDRtmT548ic2HAQD+vrS//QAAAMQ7deqUV2++fftmnz9/tmbNmtmePXtix1XR0oxSQIshTp8+7dUgBY537955+96xY8ds/Pjxfo7mmbp3757SH/rx48eWlZXl1SX5tzmsR48eWdeuXes99uLFC5s1a5ZXx0pKShLCpOjzqS1Qli5d6pW8c+fOeQVM1Jp45MiRhPcE99J9w54RAwA0DmELABApY8eO9aqRWgE1s6XKzowZM2LHv3//bsXFxR6unj59al++fPFQFsxfPXjwwF8bPnx47D0dOnSwvn37pvRcixcv9udQtWnSpEne4pidnZ30/I8fP1qrVq3qPaaKloLhyZMnrXnz5r8dz8zMjP27U6dO/lPtkvGvvXr1KuE9ajkMWhMBANFAGyEAIFLatm1rvXv3toEDB9qhQ4fs6tWrXqkKbN++3dvp1qxZYxcuXPA5K1WBFLD+K1XPpK6uLvba169fE87RnJSqRsuXL7dnz5551Sy+wvYrtRhqzqs+U6dOtYsXL3pbYn20iTGgGa76XlP7Ybw3b974T82UAQCigbAFAIgshaB169b5/JIqRXL58mVfpz5nzhwPZD179vQFEoFevXp5MFFICyj0xJ/zqyCgaAtiIH5ZRvx58+bN8xZFLdc4cOBA0muq5TBZmNq6datfR4Et2Tl/SvNr+tz9+/dvkusBAFJH2AIARNrMmTO91W7v3r3+u+actFBCizO0qGLRokX28uXL2Pma99JMk5ZknD9/3kOIvr8rqF7VRy142hqoEKRrarmGAl48LaTQwg0tp7h9+7bPlvXr1y/pNVVt03nJqls7duzw7Ybjxo2z2tpaS5UWZwQbDAEA0UDYAgBEmma2lixZYtu2bfM5LoWgQYMGeZgZM2aMr4nX/FQ8tRoqeGgdulbH5+TkNLgZUNSyqKUcOm/ZsmW2efPmhONaYrF27Vqfpxo9erQHwIZWrWvGSs+p2bJkNJOWn5/vgauhyltj6FkWLFiQ0jUAAE3rn7r4BnUAANBktJ5eFTZV1xqqrKVK6+hXrFhhN2/e9HAKAIgG/kcGACAkWoRx794935qoL2kOiyp++oJlghYARAuVLQAAAAAIATNbAAAAABACwhYAAAAAhICwBQAAAAAhIGwBAAAAQAgIWwAAAAAQAsIWAAAAAISAsAUAAAAAISBsAQAAAEAICFsAAAAAYE3vJ0CmN5WOqMY3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# What does it look like?\n", + "fig, ax = plt.subplots(figsize=(10,6))\n", + "\n", + "rs = np.arange(0, 6371, 0.5)\n", + "ax.plot(rs, prem.bulk_modulus(rs), 'c', label='$\\kappa$')\n", + "ax.plot(rs, prem.shear_modulus(rs), 'm', label='$\\mu$')\n", + "\n", + "ax.set_xlabel('Radius (km)')\n", + "ax.set_ylabel('Modulus (GPa)')\n", + "ax.legend()\n", + "\n", + "ax.axvline(1221.5, ls=':', c='k')\n", + "ax.axvline(3480, ls='--', c='k')\n", + "ax.axvline(3630, ls=':', c='k')\n", + "ax.axvline(5701, ls=':', c='k')\n", + "ax.axvline(5971, ls=':', c='k')\n", + "\n", + "secax = ax.secondary_xaxis('top', functions=(lambda x: 6371 - x, lambda x: 6371 - x))\n", + "secax.set_xlabel('Depth (km)')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "prem4derg", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.11" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..aab7616 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,25 @@ +[project] +name = "prem4derg" +version = "0.1.0" +description = "Add your description here" +readme = "README.md" +requires-python = ">=3.12" +dependencies = [ + "numpy>=2.3.5", + "scipy>=1.16.3", +] + +[dependency-groups] +dev = [ + "pytest>=9.0.1", + "pytest-cov>=7.0.0", +] +notebooks = [ + "jupyter>=1.1.1", + "matplotlib>=3.10.7", + "obspy>=1.4.2", +] + +[build-system] +requires = ["setuptools>=42", "wheel"] +build-backend = "setuptools.build_meta" diff --git a/requirements.txt b/requirements.txt deleted file mode 100644 index a388020..0000000 --- a/requirements.txt +++ /dev/null @@ -1,6 +0,0 @@ -numpy -pylint -pytest -pytest-cov -mypy -scipy diff --git a/src/prem4derg/PREM.py b/src/prem4derg/PREM.py new file mode 100644 index 0000000..1b3e6b2 --- /dev/null +++ b/src/prem4derg/PREM.py @@ -0,0 +1,113 @@ +import numpy as np + +from .earth_model import OneDModel +from .const import R_EARTH + +# Default parameters for isotropic PREM +r_earth = R_EARTH +bps = np.array( + [ + 0.0, + 1221.5, + 3480.0, + 3630.0, + 5600.0, + 5701.0, + 5771.0, + 5971.0, + 6151.0, + 6291.0, + 6346.6, + 6356.0, + 6371.0, + ] +) +density_params = np.array( + [ + [13.0885, 0.0000, -8.8381, 0.0000], + [12.5815, -1.2638, -3.6426, -5.5281], + [7.9565, -6.4761, 5.5283, -3.0807], + [7.9565, -6.4761, 5.5283, -3.0807], + [7.9565, -6.4761, 5.5283, -3.0807], + [5.3197, -1.4836, 0.0000, 0.0000], + [11.2494, -8.0298, 0.0000, 0.0000], + [7.1089, -3.8045, 0.00002, 0.0000], + [2.6910, 0.6924, 0.0000, 0.0000], + [2.6910, 0.6924, 0.0000, 0.0000], + [2.9000, 0.0000, 0.0000, 0.0000], + [2.6000, 0.0000, 0.0000, 0.0000], + ] +) +density_params[:, 0] = density_params[:, 0] * 1000.0 +density_params[:, 1] = (density_params[:, 1] * 1000.0) / r_earth +density_params[:, 2] = (density_params[:, 2] * 1000.0) / (r_earth**2) +density_params[:, 3] = (density_params[:, 3] * 1000.0) / (r_earth**3) +vp_params = np.array( + [ + [11.2622, 0.0000, -6.3640, 0.0000], + [11.0487, -4.0362, 4.8023, -13.5732], + [15.3891, -5.3181, 5.5242, -2.5514], + [24.9520, -40.4673, 51.4832, -26.6419], + [29.2766, -23.6027, 5.5242, -2.5514], + [19.0957, -9.8672, 0.0000, 0.0000], + [39.7027, -32.6166, 0.0000, 0.0000], + [20.3926, -12.2569, 0.0000, 0.0000], + [4.1875, 3.9382, 0.0000, 0.0000], + [4.1875, 3.9382, 0.0000, 0.0000], + [6.8000, 0.0000, 0.0000, 0.0000], + [5.8000, 0.0000, 0.0000, 0.0000], + ] +) +vs_params = np.array( + [ + [3.6678, 0.0000, -4.4475, 0.0000], + [0.0000, 0.0000, 0.0000, 0.0000], + [6.9254, 1.4672, -2.0834, 0.9783], + [11.1671, -13.7818, 17.4575, -9.2777], + [22.3459, -17.2473, -2.0834, 0.9783], + [9.9839, -4.9324, 0.0000, 0.0000], + [22.3512, -18.5856, 0.0000, 0.0000], + [8.9496, -4.4597, 0.0000, 0.0000], + [2.1519, 2.3481, 0.0000, 0.0000], + [2.1519, 2.3481, 0.0000, 0.0000], + [3.9000, 0.0000, 0.0000, 0.0000], + [3.2000, 0.0000, 0.0000, 0.0000], + ] +) +# Turn range of polynomials from 0 - 1 to 0 - r_earth +vp_params[:, 1] = vp_params[:, 1] / r_earth +vp_params[:, 2] = vp_params[:, 2] / (r_earth**2) +vp_params[:, 3] = vp_params[:, 3] / (r_earth**3) +# Turn range of polynomials from 0 - 1 to 0 - r_earth +vs_params[:, 1] = vs_params[:, 1] / r_earth +vs_params[:, 2] = vs_params[:, 2] / (r_earth**2) +vs_params[:, 3] = vs_params[:, 3] / (r_earth**3) +q_kappa_params = np.array( + [ + 1327.7, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + 57823.0, + ] +) +q_mu_params = np.array( + [84.6, np.inf, 312.0, 312.0, 312.0, 143.0, 143.0, 143.0, 80.0, 600.0, 600.0, 600.0] +) + +PREM = OneDModel( + breakpoints=bps, + density_params=density_params, + vp_params=vp_params, + vs_params=vs_params, + q_mu_params=q_mu_params, + q_kappa_params=q_kappa_params, + r_earth=r_earth, +) \ No newline at end of file diff --git a/src/prem4derg/__init__.py b/src/prem4derg/__init__.py new file mode 100644 index 0000000..c759d59 --- /dev/null +++ b/src/prem4derg/__init__.py @@ -0,0 +1,7 @@ +"""PREM-like Earth models""" + +from .earth_model import OneDModel, tabulate_model +from .const import R_EARTH +from .PREM import PREM + +__all__ = ["OneDModel", "R_EARTH", "PREM", "tabulate_model"] \ No newline at end of file diff --git a/src/prem4derg/const.py b/src/prem4derg/const.py new file mode 100644 index 0000000..7ce9084 --- /dev/null +++ b/src/prem4derg/const.py @@ -0,0 +1,2 @@ +R_EARTH = 6371.0 # Earth's radius in kilometres +G = 6.6743e-11 # Gravitational constant in m^3 kg^-1 s^-2 \ No newline at end of file diff --git a/src/prem4derg/earth_model.py b/src/prem4derg/earth_model.py new file mode 100644 index 0000000..bd88c3c --- /dev/null +++ b/src/prem4derg/earth_model.py @@ -0,0 +1,269 @@ +#!/usr/bin/env python +# coding=utf8 +""" +Support for PREM-like 1D Earth models + +""" + +from dataclasses import dataclass, field +import numpy as np + +from .const import R_EARTH +from .peice_poly import PeicewisePolynomial as PP +from .physics import ( + calculate_bulk_modulus, + calculate_density, + calculate_grav_potential, + calculate_gravity, + calculate_mass, + calculate_moi, + calculate_pressure, + calculate_qkappa, + calculate_qshear, + calculate_shear_modulus, + calculate_vp, + calculate_vs, +) + + +@dataclass +class OneDModel: + breakpoints: np.ndarray = field(default_factory=lambda: np.array([], dtype=float)) + density_params: np.ndarray = field( + default_factory=lambda: np.zeros((), dtype=float) + ) + vp_params: np.ndarray = field(default_factory=lambda: np.zeros((), dtype=float)) + vs_params: np.ndarray = field(default_factory=lambda: np.zeros((), dtype=float)) + q_mu_params: np.ndarray = field(default_factory=lambda: np.zeros((), dtype=float)) + q_kappa_params: np.ndarray = field( + default_factory=lambda: np.zeros((), dtype=float) + ) + r_earth: float = R_EARTH + + def __post_init__(self): + """Initialise piecewise polynomials when params are not 0D.""" + + def has_coeffs(arr: np.ndarray) -> bool: + return arr.ndim != 0 + + if has_coeffs(self.density_params): + self.density_poly = PP(self.density_params, self.breakpoints) + if has_coeffs(self.vp_params): + self.vp_poly = PP(self.vp_params, self.breakpoints) + if has_coeffs(self.vs_params): + self.vs_poly = PP(self.vs_params, self.breakpoints) + if has_coeffs(self.q_kappa_params): + self.qk_poly = PP(self.q_kappa_params, self.breakpoints) + if has_coeffs(self.q_mu_params): + self.qm_poly = PP(self.q_mu_params, self.breakpoints) + + def density(self, r, break_down=False): + """ + Evaluate density in kg/m**3 at radii r (in km) + """ + dp = self._require_polynomial("density_poly") + return calculate_density(dp, r, break_down=break_down) + + def vs(self, r, t=1, break_down=False) -> float | np.ndarray: + """ + Evaluate s-wave velocity (in km/s) at radius r (in km). + + Optionally corrected for period (t), default is 1 s. + """ + vsp = self._require_polynomial("vs_poly") + qmp = self._require_polynomial("qm_poly") + return calculate_vs(vsp, r, t=t, qm_poly=qmp, break_down=break_down) + + def vp(self, r, t=1, break_down=False): + """ + Evaluate p-wave velocity (in km/s) at radius r (in km). + + Optionally corrected for period (t), default is 1 s. + """ + vp_poly = self._require_polynomial("vp_poly") + qk_poly = self._require_polynomial("qk_poly") + qm_poly = self._require_polynomial("qm_poly") + vs_poly = self._require_polynomial("vs_poly") + return calculate_vp( + vp_poly, + r, + t=t, + qk_poly=qk_poly, + qm_poly=qm_poly, + vs_poly=vs_poly, + break_down=break_down, + ) + + def qkappa(self, r, break_down=False): + qk_poly = self._require_polynomial("qk_poly") + return calculate_qkappa(qk_poly, r, break_down=break_down) + + def qshear(self, r, break_down=False): + qm_poly = self._require_polynomial("qm_poly") + return calculate_qshear(qm_poly, r, break_down=break_down) + + def bulk_modulus(self, r): + """ + Evaluate bulk modulus (in GPa) at radius r (in km) + """ + vp_poly = self._require_polynomial("vp_poly") + vs_poly = self._require_polynomial("vs_poly") + density_poly = self._require_polynomial("density_poly") + return calculate_bulk_modulus(vp_poly, vs_poly, density_poly, r) + + def shear_modulus(self, r): + """ + Evaluate shear modulus (in GPa) at radius r (in km) + """ + vs_poly = self._require_polynomial("vs_poly") + density_poly = self._require_polynomial("density_poly") + return calculate_shear_modulus(vs_poly, density_poly, r) + + def mass(self, r, r_inner=0.0): + """ + Evaluate mass inside radius r (in km) + """ + density_poly = self._require_polynomial("density_poly") + return calculate_mass(density_poly, r, r_inner=r_inner) + + def moment_of_inertia(self, r, r_inner=0.0): + """ + Evaluate moment of inertia inside radius r (in km) + + Return a tuple of moment of inertia (in kg m^2) and + the moment of inertia factor (I/MR**2, dimensionless) + which is 0.4 for a uniform density body, and decreases + as the core becomes more dense than the crust/mantle. + + """ + density_poly = self._require_polynomial("density_poly") + return calculate_moi(density_poly, r, r_inner=r_inner) + + def gravity(self, r): + density_poly = self._require_polynomial("density_poly") + return calculate_gravity(density_poly, r) + + def grav_potential(self, r): + """ + Evaluate the gravitational potential at radius r in J/kg + """ + density_poly = self._require_polynomial("density_poly") + return calculate_grav_potential(density_poly, r) + + def pressure(self, r): + """ + Evaluate pressure (in GPa) at radius r (in km) + """ + density_poly = self._require_polynomial("density_poly") + return calculate_pressure(density_poly, r) + + def _require_polynomial(self, attr: str) -> PP: + poly = getattr(self, attr) + if poly is None: + raise ValueError(f"{attr} polynomial is not defined.") + return poly + + +def tabulate_model( + model: OneDModel, min_step: float, outwards: bool = True +) -> np.recarray: + """ + Return a record array representing the model handling discontiuities + + This method creates a numpy record array with the model evaulated + at all depths with a minimum spacing of min_step km. All breakpoints + are also included in the output. If the densioty is discontinuoius, + the depth is represented twice, first with the value above the + discontiuity, then with the value below it. This representation can + be used to construct travel time curves (for examople). + + The record array contains fields: + + depth (in km) + radius (in km) + density (in kg/m^3) + qkappa (dimensionless quality factor) + qshear (dimensionless quality factor) + + If outwards=True, element 0 is at the centre of the planet and element -1 + is at the surface. If outwards=False, element 0 is at the surface and + element -1 is at the centre of the planet. + """ + # Keep the data as we get it + radii = np.array([]) + depths = np.array([]) + densities = np.array([]) + vps = np.array([]) + vss = np.array([]) + qks = np.array([]) + qms = np.array([]) + + nbps = len(model.density_poly.breakpoints) - 1 + for i in range(nbps): + j = i if outwards else nbps - i + k = j + 1 if outwards else j - 1 + rs = np.arange( + model.density_poly.breakpoints[j], + model.density_poly.breakpoints[k], + min_step if outwards else -min_step, + ) + ds = model.r_earth - rs + dens = model.density(rs, break_down=not outwards) + vp = model.vp(rs, break_down=not outwards) + vs = model.vs(rs, break_down=not outwards) + qk = model.qkappa(rs, break_down=not outwards) + qm = model.qshear(rs, break_down=not outwards) + radii = np.append(radii, rs) + depths = np.append(depths, ds) + densities = np.append(densities, dens) + vps = np.append(vps, vp) + vss = np.append(vss, vs) + qks = np.append(qks, qk) + qms = np.append(qms, qm) + + # Look at the breakpoint. If it is discontinous in + # value put add it here (i.e. so we have above followed + # by below for the next step). Othersie we can skip it + # (and it gets adder in the next iteration). But we need + # to hadle k = 0 carefully (always stick in the origin) + cond = (k == nbps + 1) if outwards else (k == 0) + if cond: + # Add the value boundary + rs = model.density_poly.breakpoints[k] + ds = model.r_earth - rs + dens = model.density(rs) + vp = model.vp(rs) + vs = model.vs(rs) + qk = model.qkappa(rs) + qm = model.qshear(rs) + radii = np.append(radii, rs) + depths = np.append(depths, ds) + densities = np.append(densities, dens) + vps = np.append(vps, vp) + vss = np.append(vss, vs) + qks = np.append(qks, qk) + qms = np.append(qms, qm) + elif model.density(model.density_poly.breakpoints[k]) != model.density( + model.density_poly.breakpoints[k], break_down=True + ): + # Add the value above the inner boundary of this layer + rs = model.density_poly.breakpoints[k] + ds = model.r_earth - rs + dens = model.density(rs, break_down=outwards) + vp = model.vp(rs, break_down=outwards) + vs = model.vs(rs, break_down=outwards) + qk = model.qkappa(rs, break_down=outwards) + qm = model.qshear(rs, break_down=outwards) + radii = np.append(radii, rs) + depths = np.append(depths, ds) + densities = np.append(densities, dens) + vps = np.append(vps, vp) + vss = np.append(vss, vs) + qks = np.append(qks, qk) + qms = np.append(qms, qm) + + result = np.rec.fromarrays( + [depths, radii, densities, vps, vss, qks, qms], + names="depth, radius, density, vp, vs, qkappa, qshear", + ) + return result diff --git a/src/prem4derg/peice_poly.py b/src/prem4derg/peice_poly.py new file mode 100644 index 0000000..678bec6 --- /dev/null +++ b/src/prem4derg/peice_poly.py @@ -0,0 +1,344 @@ +#!/usr/bin/env python +# coding=utf8 +""" +Peicewise polynomials like PREM + +""" + +import numpy as np + + +class PeicewisePolynomial: + """ + Piecewise Polynomials a different way + + The SciPy PPoly class defines a function from + polynomials with coefficents c and breakpoints x + evaluated at a point xp thus: + + S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) + + This is not helpful for PREM, so we create a new class defining + the function: + + S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) + + Note some important differences between this and PPoly! + + The module also supports negative powers set by passing the c_neg + parameter. The c_neg[:, 0] coefficients are for ln terms used for + integrals. + """ + + def __init__(self, coeffs: np.ndarray, breakpoints: np.ndarray, neg_coeffs: np.ndarray | None = None) -> None: + if breakpoints.ndim != 1: + raise ValueError("Breakpoints must be 1D") + self.breakpoints = breakpoints + + self.coeffs = _standardize_coeffs_shapes(coeffs) + + if neg_coeffs is not None: + self.negative_coeffs = _standardize_coeffs_shapes(neg_coeffs) + else: + self.negative_coeffs = None + + def __call__(self, xp: float | np.ndarray, break_down: bool = False) -> float | np.ndarray: + """ + Vectorised evaluation. + + break_down=False: intervals [b_i, b_{i+1}) + break_down=True: intervals (b_i, b_{i+1}] + Special case: x == last breakpoint -> last segment. + """ + xarr = np.asarray(xp, dtype=float) + scalar_input = xarr.ndim == 0 + xflat = xarr.ravel() + + # Segment indices (-1 means out of domain) + seg_idx = self._segment_indices(xflat, break_down) + + if np.any(seg_idx < 0): + raise ValueError("Some evaluation points lie outside breakpoint domain") + + # Prepare output + out = np.zeros_like(xflat, dtype=float) + + n_segments = self.breakpoints.size - 1 + pos_degree = self.coeffs.shape[1] + powers = np.arange(pos_degree) + + for seg in range(n_segments): + mask = seg_idx == seg + if not np.any(mask): + continue + xs = xflat[mask] + # Positive-power part + pos_coef = self.coeffs[seg] # shape (pos_degree,) + # xs[:, None] ** powers -> shape (n_pts_seg, pos_degree) + out[mask] += (pos_coef * (xs[:, None] ** powers)).sum(axis=1) + + # Negative / ln terms + if self.negative_coeffs is not None: + neg_coef = self.negative_coeffs[seg] + if np.any(neg_coef != 0.0): + # ln term (index 0) + if neg_coef[0] != 0.0: + if np.any(xs == 0.0): + raise ValueError("ln(|x|) undefined at x = 0") + out[mask] += neg_coef[0] * np.log(np.abs(xs)) + # reciprocal terms (indices >=1) + if neg_coef.size > 1: + rec_indices = np.arange(1, neg_coef.size) + nz = neg_coef[1:] != 0.0 + if np.any(nz): + if np.any((xs == 0.0)): + # Division by zero for any non-zero reciprocal coefficient + if np.any(neg_coef[1:] != 0.0): + raise ZeroDivisionError("Division by zero in 1/x^i term") + # Compute only for non-zero coefficients + active_i = rec_indices[nz] + active_c = neg_coef[1:][nz] + # Sum_{i} c_i / x^i + # xs[:, None] ** (-active_i) -> shape (n_pts, n_active_powers) + # active_c -> shape (n_active_powers,) + out[mask] += (active_c * (xs[:, None] ** (-active_i))).sum(axis=1) + + if scalar_input: + return float(out[0]) + return out.reshape(xarr.shape) + + def _segment_indices(self, x: np.ndarray, break_down: bool) -> np.ndarray: + """ + Return segment indices for each x. + -1 indicates out-of-domain. + """ + b = self.breakpoints + n_segments = b.size - 1 + seg_idx = np.empty_like(x, dtype=int) + + if break_down: + # (b_i, b_{i+1}] -> use left-open search + idx = np.searchsorted(b, x, side="left") - 1 + else: + # [b_i, b_{i+1}) -> use right-side search + idx = np.searchsorted(b, x, side="right") - 1 + + # Special case: x == last breakpoint -> last segment + last_bp = b[-1] + at_last = x == last_bp + if np.any(at_last): + idx[at_last] = n_segments - 1 # last segment + + # Out of domain: x < b[0] or x > b[-1] always invalid + invalid = (x < b[0]) | (x > b[-1]) + # For break_down True also exclude x == b[0] + if break_down: + invalid |= (x == b[0]) + + # Clamp valid indices; mark invalid as -1 + seg_idx[:] = idx + seg_idx[invalid] = -1 + return seg_idx + + def derivative(self): + deriv_breakpoints = self.breakpoints + deriv_coeffs = np.zeros((self.coeffs.shape[0], self.coeffs.shape[1] - 1)) + for seg in range(self.coeffs.shape[0]): + for i in range(self.coeffs.shape[1]): + if i == 0: + continue # Throw away term for x**0 + deriv_coeffs[seg, i - 1] = self.coeffs[seg, i] * i + + deriv_neg_coeffs = None + if self.negative_coeffs is not None: + deriv_neg_coeffs = np.zeros( + (self.negative_coeffs.shape[0], self.negative_coeffs.shape[1] + 1) + ) + for seg in range(self.negative_coeffs.shape[0]): + for i in range(self.negative_coeffs.shape[1]): + if i == 0: + # c ln(|x|) term -> c/x + deriv_neg_coeffs[seg, 1] = self.negative_coeffs[seg, i] + else: + deriv_neg_coeffs[seg, i + 1] = ( + -1 * self.negative_coeffs[seg, i] * i + ) + deriv = PeicewisePolynomial(deriv_coeffs, deriv_breakpoints, deriv_neg_coeffs) + return deriv + + def antiderivative(self): + antideriv_breakpoints = self.breakpoints + antideriv_coeffs = np.zeros((self.coeffs.shape[0], self.coeffs.shape[1] + 1)) + for seg in range(self.coeffs.shape[0]): + for i in range(self.coeffs.shape[1]): + antideriv_coeffs[seg, i + 1] = self.coeffs[seg, i] / (i + 1) + + antideriv_neg_coeffs = None + if self.negative_coeffs is not None: + antideriv_neg_coeffs = np.zeros( + (self.negative_coeffs.shape[0], self.negative_coeffs.shape[1] - 1) + ) + for seg in range(self.negative_coeffs.shape[0]): + for i in range(self.negative_coeffs.shape[1]): + if i == 0: + assert self.negative_coeffs[seg, i] == 0.0, ( + "Cannot take antiderivative of ln(|x|) terms" + ) + if i == 1: + # c/x term -> c ln(|x|) which we put in i=0. No change + # in sign or division + antideriv_neg_coeffs[seg, 0] = self.negative_coeffs[seg, i] + else: + antideriv_neg_coeffs[seg, i - 1] = ( + -1 * self.negative_coeffs[seg, i] / (i - 1) + ) + antideriv = PeicewisePolynomial( + antideriv_coeffs, antideriv_breakpoints, antideriv_neg_coeffs + ) + return antideriv + + def integrate(self, a, b): + # antiderivative = self.antiderivative() + integral = 0 + lower_bound = a + for bpi, bp in enumerate(self.breakpoints): + if bp > lower_bound: + if self.breakpoints[bpi] >= b: + # Just the one segment left - add it and end + integral = integral + (self(b, break_down=True) - self(lower_bound)) + # print(integral, lower_bound, b, 'done') + break + else: + # segment from lower bound to bp + # add it, increment lower_bound and contiue + integral = integral + ( + self(bp, break_down=True) - self(lower_bound) + ) + # print(integral, lower_bound, bp) + lower_bound = bp + + return integral + + def integrating_poly(self): + """ + Returns a piecewise polynomial that represents the definite + integral self between 0 and the evaluation point. + """ + antiderivative = self.antiderivative() + ip_coeffs = np.zeros_like(antiderivative.coeffs) + # Inside each segment, the integral between 0 and x + # is the integral between the lower bound of that + # segment and the upper bound, plus the integral + # for all other segments. These are all constants + # so can be added to the constent term in this + # segment's antiderivative (we dont need the last breakpoint) + for bpi, bp in enumerate(antiderivative.breakpoints[0:-1]): + ip_coeffs[bpi, :] = antiderivative.coeffs[bpi, :] + # Subtract antiderivate on inner boundary + ip_coeffs[bpi, 0] = ip_coeffs[bpi, 0] - antiderivative(bp) + # add all the other segments + if bpi > 0: + ip_coeffs[bpi, 0] = ip_coeffs[bpi, 0] + antiderivative.integrate(0, bp) + return PeicewisePolynomial(ip_coeffs, antiderivative.breakpoints) + + def mult(self, other: "PeicewisePolynomial") -> "PeicewisePolynomial": + # FIXME - for this approach brakepoints need to be same place too + assert self.coeffs.shape[0] == other.coeffs.shape[0], ( + "different number of breakpoints" + ) + mult_breakpoints = self.breakpoints + mult_coefs = np.zeros( + (self.coeffs.shape[0], self.coeffs.shape[1] + other.coeffs.shape[1] - 1) + ) + mult_negative_coefs = None + if (self.negative_coeffs is not None) and (other.negative_coeffs is not None): + assert np.all(self.negative_coeffs[:, 0] == 0.0), ( + "Cannot multiply ln(x) terms in self" + ) + assert np.all(other.negative_coeffs[:, 0] == 0.0), ( + "Cannot multiply ln(x) terms in other" + ) + mult_negative_coefs = np.zeros( + ( + self.negative_coeffs.shape[0], + ( + self.negative_coeffs.shape[1] + + other.negative_coeffs.shape[1] + - 1 + ), + ) + ) + elif self.negative_coeffs is not None: + assert np.all(self.negative_coeffs[:, 0] == 0.0), ( + "Cannot multiply ln(x) terms in self" + ) + mult_negative_coefs = np.zeros( + (self.negative_coeffs.shape[0], self.negative_coeffs.shape[1]) + ) + elif other.negative_coeffs is not None: + assert np.all(other.negative_coeffs[:, 0] == 0.0), ( + "Cannot multiply ln(x) terms in other" + ) + mult_negative_coefs = np.zeros( + (other.negative_coeffs.shape[0], other.negative_coeffs.shape[1]) + ) + + for seg in range(self.coeffs.shape[0]): + for i in range(self.coeffs.shape[1]): + for j in range(other.coeffs.shape[1]): + mult_coefs[seg, i + j] = ( + mult_coefs[seg, i + j] + + self.coeffs[seg, i] * other.coeffs[seg, j] + ) + if other.negative_coeffs is not None: + for j in range(1, other.negative_coeffs.shape[1]): + index = i - j + if index >= 0: + # Still a positive index, includes 0 (cost terms) + mult_coefs[seg, index] += ( + self.coeffs[seg, i] * other.negative_coeffs[seg, j] + ) + else: + # negative index - put in -1*index of neg results + mult_negative_coefs[seg, -1 * index] += ( + self.coeffs[seg, i] * other.negative_coeffs[seg, j] + ) + + if self.negative_coeffs is not None: + for i in range(1, self.negative_coeffs.shape[1]): + for j in range(other.coeffs.shape[1]): + index = j - i + if index >= 0: + mult_coefs[seg, index] += ( + self.negative_coeffs[seg, i] * other.coeffs[seg, j] + ) + else: + mult_negative_coefs[seg, -1 * index] += ( + self.negative_coeffs[seg, i] * other.coeffs[seg, j] + ) + if other.negative_coeffs is not None: + for j in range(1, other.negative_coeffs.shape[1]): + neg_index = i + j + mult_negative_coefs[seg, neg_index] += ( + self.negative_coeffs[seg, i] + * other.negative_coeffs[seg, j] + ) + + # TODO: handle non-overlapping breakpoints (first chop the + # segments). Also implement do poly * const etc. + + mult_poly = PeicewisePolynomial( + mult_coefs, mult_breakpoints, mult_negative_coefs + ) + return mult_poly + + +def _standardize_coeffs_shapes(coeffs: np.ndarray) -> np.ndarray: + if coeffs.ndim == 1: + coeffs = np.expand_dims(coeffs, axis=1) + coeffs = np.append(coeffs, np.zeros_like(coeffs), axis=1) + elif coeffs.ndim == 2: + pass + else: + raise ValueError("Coefficients must be 1D or 2D") + return coeffs \ No newline at end of file diff --git a/src/prem4derg/physics.py b/src/prem4derg/physics.py new file mode 100644 index 0000000..accb818 --- /dev/null +++ b/src/prem4derg/physics.py @@ -0,0 +1,245 @@ +import numpy as np + +from .const import G, R_EARTH +from .peice_poly import PeicewisePolynomial as PP + + +def calculate_vs( + vs_poly: PP, + r: float, + t: float = 1, + qm_poly: PP | None = None, + break_down: bool = False, +) -> float | np.ndarray: + """ + Evaluate s-wave velocity (in km/s) at radius r (in km). + + Optionally corrected for period (t), default is 1 s. + """ + vs = vs_poly(r, break_down=break_down) + if t != 1: + if qm_poly is None: + raise ValueError("qm_poly must be provided for attenuation correction") + qm = qm_poly(r, break_down=break_down) + vs = vs * (1.0 - ((np.log(t) / np.pi) * np.reciprocal(qm))) + + return vs + + +def calculate_vp( + vp_poly: PP, + r: float, + t: float = 1, + qk_poly: PP | None = None, + qm_poly: PP | None = None, + vs_poly: PP | None = None, + break_down: bool = False, +) -> float | np.ndarray: + """ + Evaluate p-wave velocity (in km/s) at radius r (in km). + + Optionally corrected for period (t), default is 1 s. + """ + vp = vp_poly(r, break_down=break_down) + if t != 1: + if qk_poly is None or qm_poly is None or vs_poly is None: + raise ValueError( + "qk_poly, qm_poly and vs_poly must be provided for attenuation correction" + ) + qm = qm_poly(r, break_down=break_down) + qk = qk_poly(r, break_down=break_down) + vs = vs_poly(r, break_down=break_down) + e = (4 / 3) * ((vs / vp) ** 2) + vp = vp * ( + 1.0 + - ( + (np.log(t) / np.pi) + * (((1.0 - e) * np.reciprocal(qk)) - e * np.reciprocal(qm)) + ) + ) + return vp + + +def calculate_bulk_modulus( + vp_poly: PP, vs_poly: PP, density_poly: PP, r: float +) -> float: + """ + Evaluate bulk modulus (in GPa) at radius r (in km) + """ + vp = vp_poly(r) * 1000.0 # m/s + mu = calculate_shear_modulus(vs_poly, density_poly, r) + density = density_poly(r) + return ((vp**2 * density) / 1e9) - mu + + +def calculate_shear_modulus(vs_poly: PP, density_poly: PP, r: float) -> float: + """ + Evaluate shear modulus (in GPa) at radius r (in km) + """ + vs = vs_poly(r) * 1000.0 # m/s + density = density_poly(r) + return (vs**2 * density) / 1.0e9 + + +def calculate_mass(density_poly: PP, r: np.ndarray, r_inner=0.0): + """ + Evaluate mass inside radius r (in km) + """ + mass_poly = _setup_mass_poly(density_poly) + if np.ndim(r) == 0: + m = mass_poly.integrate(r_inner, r) + else: + m = np.zeros_like(r) + for i in range(r.size): + if r[i] == 0: + m[i] = 0 + else: + m[i] = mass_poly.integrate(r_inner, r[i]) + return m + +def calculate_qkappa(qk_poly: PP, r: np.ndarray, break_down=False): + return qk_poly(r, break_down=break_down) + + +def calculate_qshear(qm_poly: PP, r: np.ndarray, break_down=False): + return qm_poly(r, break_down=break_down) + +def calculate_density(density_poly: PP, r: np.ndarray, break_down=False): + """ + Evaluate density in kg/m**3 at radii r (in km) + """ + return density_poly(r, break_down=break_down) + + +def calculate_moi(density_poly: PP, r: np.ndarray, r_inner=0.0): + """ + Evaluate moment of inertia inside radius r (in km) + + Return a tuple of moment of inertia (in kg m^2) and + the moment of inertia factor (I/MR**2, dimensionless) + which is 0.4 for a uniform density body, and decreases + as the core becomes more dense than the crust/mantle. + + """ + moi_poly = _setup_moi_poly(density_poly) + + if np.ndim(r) == 0: + moi = moi_poly.integrate(r_inner, r) + else: + moi = np.zeros_like(r) + for i in range(r.size): + if r[i] == 0: + moi[i] = 0 + else: + moi[i] = moi_poly.integrate(r_inner, r[i]) + + r_in_m = r * 1000 + m = calculate_mass(density_poly, r, r_inner=r_inner) + moif = moi / (m * (r_in_m**2)) + return moi, moif + + +def calculate_gravity(density_poly: PP, r: np.ndarray): + gravity_poly = _setup_gravity_poly(density_poly) + if np.ndim(r) == 0: + if r == 0.0: + return 0.0 + g = gravity_poly(r) + else: + g = np.zeros_like(r) + for i in range(r.size): + if r[i] == 0: + g[i] = 0 + else: + g[i] = gravity_poly(r[i]) + return g + + +def calculate_grav_potential(density_poly: PP, r: np.ndarray): + """ + Evaluate the gravitational potential at radius r in J/kg + """ + mass_poly = _setup_mass_poly(density_poly) + if np.ndim(r) == 0: + phi = -1 * mass_poly.integrate(0.0, r) / (r * 1000) * G + else: + phi = np.zeros_like(r) + for i in range(r.size): + if r[i] == 0: + phi[i] = 0 + else: + phi[i] = -1 * mass_poly.integrate(0.0, r[i]) / (r[i] * 1000) * G + return phi + + +def calculate_pressure(density_poly: PP, r): + """ + Evaluate pressure (in GPa) at radius r (in km) + """ + pressure_poly = _setup_pressure_poly(density_poly) + if np.ndim(r) == 0: + p = pressure_poly.integrate(r, R_EARTH) + else: + p = np.zeros_like(r) + for i in range(r.size): + p[i] = pressure_poly.integrate(r[i], R_EARTH) + return p + + +def _setup_mass_poly(density_poly: PP) -> PP: + # setup polynomials for mass. This is 4*pi*\int rho(r)*r^2 dr + bp = density_poly.breakpoints + r2_params = np.tile(np.array([0.0, 0.0, 1000.0**3]), (bp.size - 1, 1)) + r2_poly = PP(r2_params, bp) + mass_poly = density_poly.mult(r2_poly) + mass_poly = mass_poly.antiderivative() + #  integrating this gives mass: + mass_poly.coeffs = mass_poly.coeffs * 4.0 * np.pi + return mass_poly + + +def _setup_moi_poly(density_poly: PP) -> PP: + # setup polynomials for MOI. This is 2/3*4*pi*\int rho(r)*r^4 dr + bp = density_poly.breakpoints + r4_params = np.tile( + np.array([0.0, 0.0, 0.0, 0.0, 1000.0**5]), (bp.size - 1, 1) + ) + r4_poly = PP(r4_params, bp) + moi_poly = density_poly.mult(r4_poly) + moi_poly = moi_poly.antiderivative() + #   integrating this gives MOI: + moi_poly.coeffs = moi_poly.coeffs * 4.0 * (2 / 3) * np.pi + return moi_poly + + +def _setup_gravity_poly(density_poly: PP) -> PP: + bp = density_poly.breakpoints + r2_params = np.tile(np.array([0.0, 0.0, 1000.0**3]), (bp.size - 1, 1)) + r2_poly = PP(r2_params, bp) + # Setup polynomial for gravity + gravity_poly = density_poly.mult(r2_poly) + # evaluate this to get int(rho.r^2 dr) + gravity_poly = gravity_poly.integrating_poly() + # constants outside integral + gravity_poly.coeffs = gravity_poly.coeffs * 4.0 * np.pi * G + over_r_sq_poly = PP( + np.zeros((bp.size - 1, 1)), + bp, + np.zeros((bp.size - 1, 3)), + ) + over_r_sq_poly.negative_coeffs[:, 2] = 1.0 / 1000.0**2 + gravity_poly = gravity_poly.mult(over_r_sq_poly) # Mult by 1/r^2 + gravity_poly = gravity_poly # Evaluate to get gravity at r + return gravity_poly + + +def _setup_pressure_poly(density_poly: PP) -> PP: # breakpoints not needed? + # Setup polynomial for pressure: + # integrate from r to r_earth to get pressure + gravity_poly = _setup_gravity_poly(density_poly) + pressure_poly = gravity_poly.mult(density_poly) + pressure_poly = pressure_poly.antiderivative() + # Pressure units (/1E9) and density units (*1000.0) + pressure_poly.coeffs *= 1000.0 / 1.0e9 + pressure_poly.negative_coeffs *= 1000.0 / 1.0e9 + return pressure_poly diff --git a/tests/test_peice_poly.py b/tests/test_peice_poly.py index d83d27e..77bfb86 100644 --- a/tests/test_peice_poly.py +++ b/tests/test_peice_poly.py @@ -5,7 +5,7 @@ import numpy as np import numpy.testing as npt -import earth_model.peice_poly as pp +import prem4derg.peice_poly as pp def test_constant(): @@ -62,7 +62,7 @@ def test_one_over_x(): """ poly = pp.PeicewisePolynomial(np.array([[0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]), np.array([0.0, 0.5, 1.0]), - c_neg=np.array([[0.0, 0.0], [0.0, 1.0]])) + neg_coeffs=np.array([[0.0, 0.0], [0.0, 1.0]])) assert poly(0.0) == 0.0 assert poly(0.25) == 0.25**2 assert poly(0.5) == 1.0/0.5 @@ -150,7 +150,7 @@ def test_recip_deriv(): poly = pp.PeicewisePolynomial(np.array([[3.0, 4.0], [30.0, 40.0]]), np.array([0.0, 2.0, 4.0]), - c_neg=np.array([[0.0, 2.0, 3.0], + neg_coeffs=np.array([[0.0, 2.0, 3.0], [0.0, 20.0, 30.0]])) expected_deriv_coefs = np.array([[4.0], [40.0]]) expected_neg_deriv_coeffs = np.array([[0.0, 0.0, -2.0, -6.0], @@ -194,7 +194,7 @@ def test_recip_antideriv(): poly = pp.PeicewisePolynomial(np.array([[4.0], [40.0]]), np.array([0.0, 2.0, 4.0]), - c_neg=np.array([[0.0, 0.0, -2.0, -6.0], + neg_coeffs=np.array([[0.0, 0.0, -2.0, -6.0], [0.0, 0.0, -20.0, -60.0]])) expected_int_coefs = np.array([[0.0, 4.0], [0.0, 40.0]]) expected_neg_int_coeffs = np.array([[0.0, 2.0, 3.0], @@ -219,7 +219,7 @@ def test_log_deriv_int(): poly = pp.PeicewisePolynomial(np.array([[3.0, 4.0], [30.0, 40.0]]), np.array([0.0, 2.0, 4.0]), - c_neg=np.array([[5.0, 2.0, 3.0], + neg_coeffs=np.array([[5.0, 2.0, 3.0], [50.0, 20.0, 30.0]])) expected_deriv_coefs = np.array([[4.0], [40.0]]) expected_neg_deriv_coeffs = np.array([[0.0, 5.0, -2.0, -6.0], diff --git a/tests/test_prem.py b/tests/test_prem.py index 826669c..4af6729 100644 --- a/tests/test_prem.py +++ b/tests/test_prem.py @@ -9,7 +9,7 @@ import numpy.testing as npt import pytest -from earth_model.earth_model import Prem +from prem4derg import PREM # PREM data (from Table A.1. in intro to # physics of Earth's interior) @@ -37,8 +37,7 @@ def test_earth_mass(): Check the mass of the Earth matches that given in the PREM paper """ - prem = Prem() - calculated_mass = prem.mass(prem.r_earth) + calculated_mass = PREM.mass(PREM.r_earth) expected_mass = 5.972e+24 npt.assert_allclose(calculated_mass, expected_mass, atol=1.0E22) @@ -49,8 +48,7 @@ def test_prem_gravity(radius, expected_gravity): A selection of cases from Table A.1 in Poirier's book 'introduction to the physics of Earth's interior' """ - prem = Prem() - g_calc = prem.gravity(radius) + g_calc = PREM.gravity(radius) npt.assert_allclose(g_calc, expected_gravity, atol=0.05) @@ -60,8 +58,7 @@ def test_prem_pressure(radius, expected_pressure): A selection of cases from Table A.1 in Poirier's book 'introduction to the physics of Earth's interior' """ - prem = Prem() - p_calc = prem.pressure(radius) + p_calc = PREM.pressure(radius) # For the numerical integration we need a step size of ~1 km to get # reasonable performance, which leads to errors of ~1 GPa... npt.assert_allclose(p_calc, expected_pressure, atol=0.4) \ No newline at end of file diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..0b64558 --- /dev/null +++ b/uv.lock @@ -0,0 +1,2305 @@ +version = 1 +revision = 2 +requires-python = ">=3.12" +resolution-markers = [ + "python_full_version >= '3.14'", + "python_full_version < '3.14'", +] + +[[package]] +name = "anyio" +version = "4.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c6/78/7d432127c41b50bccba979505f272c16cbcadcc33645d5fa3a738110ae75/anyio-4.11.0.tar.gz", hash = "sha256:82a8d0b81e318cc5ce71a5f1f8b5c4e63619620b63141ef8c995fa0db95a57c4", size = 219094, upload-time = "2025-09-23T09:19:12.58Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/15/b3/9b1a8074496371342ec1e796a96f99c82c945a339cd81a8e73de28b4cf9e/anyio-4.11.0-py3-none-any.whl", hash = "sha256:0287e96f4d26d4149305414d4e3bc32f0dcd0862365a4bddea19d7a1ec38c4fc", size = 109097, upload-time = "2025-09-23T09:19:10.601Z" }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170, upload-time = "2024-02-06T09:43:11.258Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321, upload-time = "2024-02-06T09:43:09.663Z" }, +] + +[[package]] +name = "argon2-cffi" +version = "25.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi-bindings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0e/89/ce5af8a7d472a67cc819d5d998aa8c82c5d860608c4db9f46f1162d7dab9/argon2_cffi-25.1.0.tar.gz", hash = "sha256:694ae5cc8a42f4c4e2bf2ca0e64e51e23a040c6a517a85074683d3959e1346c1", size = 45706, upload-time = "2025-06-03T06:55:32.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl", hash = "sha256:fdc8b074db390fccb6eb4a3604ae7231f219aa669a2652e0f20e16ba513d5741", size = 14657, upload-time = "2025-06-03T06:55:30.804Z" }, +] + +[[package]] +name = "argon2-cffi-bindings" +version = "25.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5c/2d/db8af0df73c1cf454f71b2bbe5e356b8c1f8041c979f505b3d3186e520a9/argon2_cffi_bindings-25.1.0.tar.gz", hash = "sha256:b957f3e6ea4d55d820e40ff76f450952807013d361a65d7f28acc0acbf29229d", size = 1783441, upload-time = "2025-07-30T10:02:05.147Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/3c0a35f46e52108d4707c44b95cfe2afcafc50800b5450c197454569b776/argon2_cffi_bindings-25.1.0-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:3d3f05610594151994ca9ccb3c771115bdb4daef161976a266f0dd8aa9996b8f", size = 54393, upload-time = "2025-07-30T10:01:40.97Z" }, + { url = "https://files.pythonhosted.org/packages/9d/f4/98bbd6ee89febd4f212696f13c03ca302b8552e7dbf9c8efa11ea4a388c3/argon2_cffi_bindings-25.1.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:8b8efee945193e667a396cbc7b4fb7d357297d6234d30a489905d96caabde56b", size = 29328, upload-time = "2025-07-30T10:01:41.916Z" }, + { url = "https://files.pythonhosted.org/packages/43/24/90a01c0ef12ac91a6be05969f29944643bc1e5e461155ae6559befa8f00b/argon2_cffi_bindings-25.1.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:3c6702abc36bf3ccba3f802b799505def420a1b7039862014a65db3205967f5a", size = 31269, upload-time = "2025-07-30T10:01:42.716Z" }, + { url = "https://files.pythonhosted.org/packages/d4/d3/942aa10782b2697eee7af5e12eeff5ebb325ccfb86dd8abda54174e377e4/argon2_cffi_bindings-25.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a1c70058c6ab1e352304ac7e3b52554daadacd8d453c1752e547c76e9c99ac44", size = 86558, upload-time = "2025-07-30T10:01:43.943Z" }, + { url = "https://files.pythonhosted.org/packages/0d/82/b484f702fec5536e71836fc2dbc8c5267b3f6e78d2d539b4eaa6f0db8bf8/argon2_cffi_bindings-25.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e2fd3bfbff3c5d74fef31a722f729bf93500910db650c925c2d6ef879a7e51cb", size = 92364, upload-time = "2025-07-30T10:01:44.887Z" }, + { url = "https://files.pythonhosted.org/packages/c9/c1/a606ff83b3f1735f3759ad0f2cd9e038a0ad11a3de3b6c673aa41c24bb7b/argon2_cffi_bindings-25.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:c4f9665de60b1b0e99bcd6be4f17d90339698ce954cfd8d9cf4f91c995165a92", size = 85637, upload-time = "2025-07-30T10:01:46.225Z" }, + { url = "https://files.pythonhosted.org/packages/44/b4/678503f12aceb0262f84fa201f6027ed77d71c5019ae03b399b97caa2f19/argon2_cffi_bindings-25.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ba92837e4a9aa6a508c8d2d7883ed5a8f6c308c89a4790e1e447a220deb79a85", size = 91934, upload-time = "2025-07-30T10:01:47.203Z" }, + { url = "https://files.pythonhosted.org/packages/f0/c7/f36bd08ef9bd9f0a9cff9428406651f5937ce27b6c5b07b92d41f91ae541/argon2_cffi_bindings-25.1.0-cp314-cp314t-win32.whl", hash = "sha256:84a461d4d84ae1295871329b346a97f68eade8c53b6ed9a7ca2d7467f3c8ff6f", size = 28158, upload-time = "2025-07-30T10:01:48.341Z" }, + { url = "https://files.pythonhosted.org/packages/b3/80/0106a7448abb24a2c467bf7d527fe5413b7fdfa4ad6d6a96a43a62ef3988/argon2_cffi_bindings-25.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:b55aec3565b65f56455eebc9b9f34130440404f27fe21c3b375bf1ea4d8fbae6", size = 32597, upload-time = "2025-07-30T10:01:49.112Z" }, + { url = "https://files.pythonhosted.org/packages/05/b8/d663c9caea07e9180b2cb662772865230715cbd573ba3b5e81793d580316/argon2_cffi_bindings-25.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:87c33a52407e4c41f3b70a9c2d3f6056d88b10dad7695be708c5021673f55623", size = 28231, upload-time = "2025-07-30T10:01:49.92Z" }, + { url = "https://files.pythonhosted.org/packages/1d/57/96b8b9f93166147826da5f90376e784a10582dd39a393c99bb62cfcf52f0/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:aecba1723ae35330a008418a91ea6cfcedf6d31e5fbaa056a166462ff066d500", size = 54121, upload-time = "2025-07-30T10:01:50.815Z" }, + { url = "https://files.pythonhosted.org/packages/0a/08/a9bebdb2e0e602dde230bdde8021b29f71f7841bd54801bcfd514acb5dcf/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:2630b6240b495dfab90aebe159ff784d08ea999aa4b0d17efa734055a07d2f44", size = 29177, upload-time = "2025-07-30T10:01:51.681Z" }, + { url = "https://files.pythonhosted.org/packages/b6/02/d297943bcacf05e4f2a94ab6f462831dc20158614e5d067c35d4e63b9acb/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:7aef0c91e2c0fbca6fc68e7555aa60ef7008a739cbe045541e438373bc54d2b0", size = 31090, upload-time = "2025-07-30T10:01:53.184Z" }, + { url = "https://files.pythonhosted.org/packages/c1/93/44365f3d75053e53893ec6d733e4a5e3147502663554b4d864587c7828a7/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1e021e87faa76ae0d413b619fe2b65ab9a037f24c60a1e6cc43457ae20de6dc6", size = 81246, upload-time = "2025-07-30T10:01:54.145Z" }, + { url = "https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d3e924cfc503018a714f94a49a149fdc0b644eaead5d1f089330399134fa028a", size = 87126, upload-time = "2025-07-30T10:01:55.074Z" }, + { url = "https://files.pythonhosted.org/packages/72/70/7a2993a12b0ffa2a9271259b79cc616e2389ed1a4d93842fac5a1f923ffd/argon2_cffi_bindings-25.1.0-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:c87b72589133f0346a1cb8d5ecca4b933e3c9b64656c9d175270a000e73b288d", size = 80343, upload-time = "2025-07-30T10:01:56.007Z" }, + { url = "https://files.pythonhosted.org/packages/78/9a/4e5157d893ffc712b74dbd868c7f62365618266982b64accab26bab01edc/argon2_cffi_bindings-25.1.0-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:1db89609c06afa1a214a69a462ea741cf735b29a57530478c06eb81dd403de99", size = 86777, upload-time = "2025-07-30T10:01:56.943Z" }, + { url = "https://files.pythonhosted.org/packages/74/cd/15777dfde1c29d96de7f18edf4cc94c385646852e7c7b0320aa91ccca583/argon2_cffi_bindings-25.1.0-cp39-abi3-win32.whl", hash = "sha256:473bcb5f82924b1becbb637b63303ec8d10e84c8d241119419897a26116515d2", size = 27180, upload-time = "2025-07-30T10:01:57.759Z" }, + { url = "https://files.pythonhosted.org/packages/e2/c6/a759ece8f1829d1f162261226fbfd2c6832b3ff7657384045286d2afa384/argon2_cffi_bindings-25.1.0-cp39-abi3-win_amd64.whl", hash = "sha256:a98cd7d17e9f7ce244c0803cad3c23a7d379c301ba618a5fa76a67d116618b98", size = 31715, upload-time = "2025-07-30T10:01:58.56Z" }, + { url = "https://files.pythonhosted.org/packages/42/b9/f8d6fa329ab25128b7e98fd83a3cb34d9db5b059a9847eddb840a0af45dd/argon2_cffi_bindings-25.1.0-cp39-abi3-win_arm64.whl", hash = "sha256:b0fdbcf513833809c882823f98dc2f931cf659d9a1429616ac3adebb49f5db94", size = 27149, upload-time = "2025-07-30T10:01:59.329Z" }, +] + +[[package]] +name = "arrow" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/33/032cdc44182491aa708d06a68b62434140d8c50820a087fac7af37703357/arrow-1.4.0.tar.gz", hash = "sha256:ed0cc050e98001b8779e84d461b0098c4ac597e88704a655582b21d116e526d7", size = 152931, upload-time = "2025-10-18T17:46:46.761Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl", hash = "sha256:749f0769958ebdc79c173ff0b0670d59051a535fa26e8eba02953dc19eb43205", size = 68797, upload-time = "2025-10-18T17:46:45.663Z" }, +] + +[[package]] +name = "asttokens" +version = "3.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/be/a5/8e3f9b6771b0b408517c82d97aed8f2036509bc247d46114925e32fe33f0/asttokens-3.0.1.tar.gz", hash = "sha256:71a4ee5de0bde6a31d64f6b13f2293ac190344478f081c3d1bccfcf5eacb0cb7", size = 62308, upload-time = "2025-11-15T16:43:48.578Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl", hash = "sha256:15a3ebc0f43c2d0a50eeafea25e19046c68398e487b9f1f5b517f7c0f40f976a", size = 27047, upload-time = "2025-11-15T16:43:16.109Z" }, +] + +[[package]] +name = "async-lru" +version = "2.0.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/4d/71ec4d3939dc755264f680f6c2b4906423a304c3d18e96853f0a595dfe97/async_lru-2.0.5.tar.gz", hash = "sha256:481d52ccdd27275f42c43a928b4a50c3bfb2d67af4e78b170e3e0bb39c66e5bb", size = 10380, upload-time = "2025-03-16T17:25:36.919Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/03/49/d10027df9fce941cb8184e78a02857af36360d33e1721df81c5ed2179a1a/async_lru-2.0.5-py3-none-any.whl", hash = "sha256:ab95404d8d2605310d345932697371a5f40def0487c03d6d0ad9138de52c9943", size = 6069, upload-time = "2025-03-16T17:25:35.422Z" }, +] + +[[package]] +name = "attrs" +version = "25.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6b/5c/685e6633917e101e5dcb62b9dd76946cbb57c26e133bae9e0cd36033c0a9/attrs-25.4.0.tar.gz", hash = "sha256:16d5969b87f0859ef33a48b35d55ac1be6e42ae49d5e853b597db70c35c57e11", size = 934251, upload-time = "2025-10-06T13:54:44.725Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl", hash = "sha256:adcf7e2a1fb3b36ac48d97835bb6d8ade15b8dcce26aba8bf1d14847b57a3373", size = 67615, upload-time = "2025-10-06T13:54:43.17Z" }, +] + +[[package]] +name = "babel" +version = "2.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7d/6b/d52e42361e1aa00709585ecc30b3f9684b3ab62530771402248b1b1d6240/babel-2.17.0.tar.gz", hash = "sha256:0c54cffb19f690cdcc52a3b50bcbf71e07a808d1c80d549f2459b9d2cf0afb9d", size = 9951852, upload-time = "2025-02-01T15:17:41.026Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl", hash = "sha256:4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2", size = 10182537, upload-time = "2025-02-01T15:17:37.39Z" }, +] + +[[package]] +name = "beautifulsoup4" +version = "4.14.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "soupsieve" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/77/e9/df2358efd7659577435e2177bfa69cba6c33216681af51a707193dec162a/beautifulsoup4-4.14.2.tar.gz", hash = "sha256:2a98ab9f944a11acee9cc848508ec28d9228abfd522ef0fad6a02a72e0ded69e", size = 625822, upload-time = "2025-09-29T10:05:42.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/fe/3aed5d0be4d404d12d36ab97e2f1791424d9ca39c2f754a6285d59a3b01d/beautifulsoup4-4.14.2-py3-none-any.whl", hash = "sha256:5ef6fa3a8cbece8488d66985560f97ed091e22bbc4e9c2338508a9d5de6d4515", size = 106392, upload-time = "2025-09-29T10:05:43.771Z" }, +] + +[[package]] +name = "bleach" +version = "6.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/07/18/3c8523962314be6bf4c8989c79ad9531c825210dd13a8669f6b84336e8bd/bleach-6.3.0.tar.gz", hash = "sha256:6f3b91b1c0a02bb9a78b5a454c92506aa0fdf197e1d5e114d2e00c6f64306d22", size = 203533, upload-time = "2025-10-27T17:57:39.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl", hash = "sha256:fe10ec77c93ddf3d13a73b035abaac7a9f5e436513864ccdad516693213c65d6", size = 164437, upload-time = "2025-10-27T17:57:37.538Z" }, +] + +[package.optional-dependencies] +css = [ + { name = "tinycss2" }, +] + +[[package]] +name = "certifi" +version = "2025.11.12" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/8c/58f469717fa48465e4a50c014a0400602d3c437d7c0c468e17ada824da3a/certifi-2025.11.12.tar.gz", hash = "sha256:d8ab5478f2ecd78af242878415affce761ca6bc54a22a27e026d7c25357c3316", size = 160538, upload-time = "2025-11-12T02:54:51.517Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/70/7d/9bc192684cea499815ff478dfcdc13835ddf401365057044fb721ec6bddb/certifi-2025.11.12-py3-none-any.whl", hash = "sha256:97de8790030bbd5c2d96b7ec782fc2f7820ef8dba6db909ccf95449f2d062d4b", size = 159438, upload-time = "2025-11-12T02:54:49.735Z" }, +] + +[[package]] +name = "cffi" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser", marker = "implementation_name != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/56/b1ba7935a17738ae8453301356628e8147c79dbb825bcbc73dc7401f9846/cffi-2.0.0.tar.gz", hash = "sha256:44d1b5909021139fe36001ae048dbdde8214afa20200eda0f64c068cac5d5529", size = 523588, upload-time = "2025-09-08T23:24:04.541Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/47/4f61023ea636104d4f16ab488e268b93008c3d0bb76893b1b31db1f96802/cffi-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d02d6655b0e54f54c4ef0b94eb6be0607b70853c45ce98bd278dc7de718be5d", size = 185271, upload-time = "2025-09-08T23:22:44.795Z" }, + { url = "https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c", size = 181048, upload-time = "2025-09-08T23:22:45.938Z" }, + { url = "https://files.pythonhosted.org/packages/ff/df/a4f0fbd47331ceeba3d37c2e51e9dfc9722498becbeec2bd8bc856c9538a/cffi-2.0.0-cp312-cp312-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:21d1152871b019407d8ac3985f6775c079416c282e431a4da6afe7aefd2bccbe", size = 212529, upload-time = "2025-09-08T23:22:47.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/72/12b5f8d3865bf0f87cf1404d8c374e7487dcf097a1c91c436e72e6badd83/cffi-2.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:b21e08af67b8a103c71a250401c78d5e0893beff75e28c53c98f4de42f774062", size = 220097, upload-time = "2025-09-08T23:22:48.677Z" }, + { url = "https://files.pythonhosted.org/packages/c2/95/7a135d52a50dfa7c882ab0ac17e8dc11cec9d55d2c18dda414c051c5e69e/cffi-2.0.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1e3a615586f05fc4065a8b22b8152f0c1b00cdbc60596d187c2a74f9e3036e4e", size = 207983, upload-time = "2025-09-08T23:22:50.06Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c8/15cb9ada8895957ea171c62dc78ff3e99159ee7adb13c0123c001a2546c1/cffi-2.0.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:81afed14892743bbe14dacb9e36d9e0e504cd204e0b165062c488942b9718037", size = 206519, upload-time = "2025-09-08T23:22:51.364Z" }, + { url = "https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba", size = 219572, upload-time = "2025-09-08T23:22:52.902Z" }, + { url = "https://files.pythonhosted.org/packages/07/e0/267e57e387b4ca276b90f0434ff88b2c2241ad72b16d31836adddfd6031b/cffi-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3925dd22fa2b7699ed2617149842d2e6adde22b262fcbfada50e3d195e4b3a94", size = 222963, upload-time = "2025-09-08T23:22:54.518Z" }, + { url = "https://files.pythonhosted.org/packages/b6/75/1f2747525e06f53efbd878f4d03bac5b859cbc11c633d0fb81432d98a795/cffi-2.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2c8f814d84194c9ea681642fd164267891702542f028a15fc97d4674b6206187", size = 221361, upload-time = "2025-09-08T23:22:55.867Z" }, + { url = "https://files.pythonhosted.org/packages/7b/2b/2b6435f76bfeb6bbf055596976da087377ede68df465419d192acf00c437/cffi-2.0.0-cp312-cp312-win32.whl", hash = "sha256:da902562c3e9c550df360bfa53c035b2f241fed6d9aef119048073680ace4a18", size = 172932, upload-time = "2025-09-08T23:22:57.188Z" }, + { url = "https://files.pythonhosted.org/packages/f8/ed/13bd4418627013bec4ed6e54283b1959cf6db888048c7cf4b4c3b5b36002/cffi-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:da68248800ad6320861f129cd9c1bf96ca849a2771a59e0344e88681905916f5", size = 183557, upload-time = "2025-09-08T23:22:58.351Z" }, + { url = "https://files.pythonhosted.org/packages/95/31/9f7f93ad2f8eff1dbc1c3656d7ca5bfd8fb52c9d786b4dcf19b2d02217fa/cffi-2.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:4671d9dd5ec934cb9a73e7ee9676f9362aba54f7f34910956b84d727b0d73fb6", size = 177762, upload-time = "2025-09-08T23:22:59.668Z" }, + { url = "https://files.pythonhosted.org/packages/4b/8d/a0a47a0c9e413a658623d014e91e74a50cdd2c423f7ccfd44086ef767f90/cffi-2.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:00bdf7acc5f795150faa6957054fbbca2439db2f775ce831222b66f192f03beb", size = 185230, upload-time = "2025-09-08T23:23:00.879Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d2/a6c0296814556c68ee32009d9c2ad4f85f2707cdecfd7727951ec228005d/cffi-2.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:45d5e886156860dc35862657e1494b9bae8dfa63bf56796f2fb56e1679fc0bca", size = 181043, upload-time = "2025-09-08T23:23:02.231Z" }, + { url = "https://files.pythonhosted.org/packages/b0/1e/d22cc63332bd59b06481ceaac49d6c507598642e2230f201649058a7e704/cffi-2.0.0-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:07b271772c100085dd28b74fa0cd81c8fb1a3ba18b21e03d7c27f3436a10606b", size = 212446, upload-time = "2025-09-08T23:23:03.472Z" }, + { url = "https://files.pythonhosted.org/packages/a9/f5/a2c23eb03b61a0b8747f211eb716446c826ad66818ddc7810cc2cc19b3f2/cffi-2.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d48a880098c96020b02d5a1f7d9251308510ce8858940e6fa99ece33f610838b", size = 220101, upload-time = "2025-09-08T23:23:04.792Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7f/e6647792fc5850d634695bc0e6ab4111ae88e89981d35ac269956605feba/cffi-2.0.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f93fd8e5c8c0a4aa1f424d6173f14a892044054871c771f8566e4008eaa359d2", size = 207948, upload-time = "2025-09-08T23:23:06.127Z" }, + { url = "https://files.pythonhosted.org/packages/cb/1e/a5a1bd6f1fb30f22573f76533de12a00bf274abcdc55c8edab639078abb6/cffi-2.0.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:dd4f05f54a52fb558f1ba9f528228066954fee3ebe629fc1660d874d040ae5a3", size = 206422, upload-time = "2025-09-08T23:23:07.753Z" }, + { url = "https://files.pythonhosted.org/packages/98/df/0a1755e750013a2081e863e7cd37e0cdd02664372c754e5560099eb7aa44/cffi-2.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c8d3b5532fc71b7a77c09192b4a5a200ea992702734a2e9279a37f2478236f26", size = 219499, upload-time = "2025-09-08T23:23:09.648Z" }, + { url = "https://files.pythonhosted.org/packages/50/e1/a969e687fcf9ea58e6e2a928ad5e2dd88cc12f6f0ab477e9971f2309b57c/cffi-2.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d9b29c1f0ae438d5ee9acb31cadee00a58c46cc9c0b2f9038c6b0b3470877a8c", size = 222928, upload-time = "2025-09-08T23:23:10.928Z" }, + { url = "https://files.pythonhosted.org/packages/36/54/0362578dd2c9e557a28ac77698ed67323ed5b9775ca9d3fe73fe191bb5d8/cffi-2.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6d50360be4546678fc1b79ffe7a66265e28667840010348dd69a314145807a1b", size = 221302, upload-time = "2025-09-08T23:23:12.42Z" }, + { url = "https://files.pythonhosted.org/packages/eb/6d/bf9bda840d5f1dfdbf0feca87fbdb64a918a69bca42cfa0ba7b137c48cb8/cffi-2.0.0-cp313-cp313-win32.whl", hash = "sha256:74a03b9698e198d47562765773b4a8309919089150a0bb17d829ad7b44b60d27", size = 172909, upload-time = "2025-09-08T23:23:14.32Z" }, + { url = "https://files.pythonhosted.org/packages/37/18/6519e1ee6f5a1e579e04b9ddb6f1676c17368a7aba48299c3759bbc3c8b3/cffi-2.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:19f705ada2530c1167abacb171925dd886168931e0a7b78f5bffcae5c6b5be75", size = 183402, upload-time = "2025-09-08T23:23:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/cb/0e/02ceeec9a7d6ee63bb596121c2c8e9b3a9e150936f4fbef6ca1943e6137c/cffi-2.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:256f80b80ca3853f90c21b23ee78cd008713787b1b1e93eae9f3d6a7134abd91", size = 177780, upload-time = "2025-09-08T23:23:16.761Z" }, + { url = "https://files.pythonhosted.org/packages/92/c4/3ce07396253a83250ee98564f8d7e9789fab8e58858f35d07a9a2c78de9f/cffi-2.0.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fc33c5141b55ed366cfaad382df24fe7dcbc686de5be719b207bb248e3053dc5", size = 185320, upload-time = "2025-09-08T23:23:18.087Z" }, + { url = "https://files.pythonhosted.org/packages/59/dd/27e9fa567a23931c838c6b02d0764611c62290062a6d4e8ff7863daf9730/cffi-2.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c654de545946e0db659b3400168c9ad31b5d29593291482c43e3564effbcee13", size = 181487, upload-time = "2025-09-08T23:23:19.622Z" }, + { url = "https://files.pythonhosted.org/packages/d6/43/0e822876f87ea8a4ef95442c3d766a06a51fc5298823f884ef87aaad168c/cffi-2.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:24b6f81f1983e6df8db3adc38562c83f7d4a0c36162885ec7f7b77c7dcbec97b", size = 220049, upload-time = "2025-09-08T23:23:20.853Z" }, + { url = "https://files.pythonhosted.org/packages/b4/89/76799151d9c2d2d1ead63c2429da9ea9d7aac304603de0c6e8764e6e8e70/cffi-2.0.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:12873ca6cb9b0f0d3a0da705d6086fe911591737a59f28b7936bdfed27c0d47c", size = 207793, upload-time = "2025-09-08T23:23:22.08Z" }, + { url = "https://files.pythonhosted.org/packages/bb/dd/3465b14bb9e24ee24cb88c9e3730f6de63111fffe513492bf8c808a3547e/cffi-2.0.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:d9b97165e8aed9272a6bb17c01e3cc5871a594a446ebedc996e2397a1c1ea8ef", size = 206300, upload-time = "2025-09-08T23:23:23.314Z" }, + { url = "https://files.pythonhosted.org/packages/47/d9/d83e293854571c877a92da46fdec39158f8d7e68da75bf73581225d28e90/cffi-2.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:afb8db5439b81cf9c9d0c80404b60c3cc9c3add93e114dcae767f1477cb53775", size = 219244, upload-time = "2025-09-08T23:23:24.541Z" }, + { url = "https://files.pythonhosted.org/packages/2b/0f/1f177e3683aead2bb00f7679a16451d302c436b5cbf2505f0ea8146ef59e/cffi-2.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:737fe7d37e1a1bffe70bd5754ea763a62a066dc5913ca57e957824b72a85e205", size = 222828, upload-time = "2025-09-08T23:23:26.143Z" }, + { url = "https://files.pythonhosted.org/packages/c6/0f/cafacebd4b040e3119dcb32fed8bdef8dfe94da653155f9d0b9dc660166e/cffi-2.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:38100abb9d1b1435bc4cc340bb4489635dc2f0da7456590877030c9b3d40b0c1", size = 220926, upload-time = "2025-09-08T23:23:27.873Z" }, + { url = "https://files.pythonhosted.org/packages/3e/aa/df335faa45b395396fcbc03de2dfcab242cd61a9900e914fe682a59170b1/cffi-2.0.0-cp314-cp314-win32.whl", hash = "sha256:087067fa8953339c723661eda6b54bc98c5625757ea62e95eb4898ad5e776e9f", size = 175328, upload-time = "2025-09-08T23:23:44.61Z" }, + { url = "https://files.pythonhosted.org/packages/bb/92/882c2d30831744296ce713f0feb4c1cd30f346ef747b530b5318715cc367/cffi-2.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:203a48d1fb583fc7d78a4c6655692963b860a417c0528492a6bc21f1aaefab25", size = 185650, upload-time = "2025-09-08T23:23:45.848Z" }, + { url = "https://files.pythonhosted.org/packages/9f/2c/98ece204b9d35a7366b5b2c6539c350313ca13932143e79dc133ba757104/cffi-2.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:dbd5c7a25a7cb98f5ca55d258b103a2054f859a46ae11aaf23134f9cc0d356ad", size = 180687, upload-time = "2025-09-08T23:23:47.105Z" }, + { url = "https://files.pythonhosted.org/packages/3e/61/c768e4d548bfa607abcda77423448df8c471f25dbe64fb2ef6d555eae006/cffi-2.0.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9a67fc9e8eb39039280526379fb3a70023d77caec1852002b4da7e8b270c4dd9", size = 188773, upload-time = "2025-09-08T23:23:29.347Z" }, + { url = "https://files.pythonhosted.org/packages/2c/ea/5f76bce7cf6fcd0ab1a1058b5af899bfbef198bea4d5686da88471ea0336/cffi-2.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:7a66c7204d8869299919db4d5069a82f1561581af12b11b3c9f48c584eb8743d", size = 185013, upload-time = "2025-09-08T23:23:30.63Z" }, + { url = "https://files.pythonhosted.org/packages/be/b4/c56878d0d1755cf9caa54ba71e5d049479c52f9e4afc230f06822162ab2f/cffi-2.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7cc09976e8b56f8cebd752f7113ad07752461f48a58cbba644139015ac24954c", size = 221593, upload-time = "2025-09-08T23:23:31.91Z" }, + { url = "https://files.pythonhosted.org/packages/e0/0d/eb704606dfe8033e7128df5e90fee946bbcb64a04fcdaa97321309004000/cffi-2.0.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:92b68146a71df78564e4ef48af17551a5ddd142e5190cdf2c5624d0c3ff5b2e8", size = 209354, upload-time = "2025-09-08T23:23:33.214Z" }, + { url = "https://files.pythonhosted.org/packages/d8/19/3c435d727b368ca475fb8742ab97c9cb13a0de600ce86f62eab7fa3eea60/cffi-2.0.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b1e74d11748e7e98e2f426ab176d4ed720a64412b6a15054378afdb71e0f37dc", size = 208480, upload-time = "2025-09-08T23:23:34.495Z" }, + { url = "https://files.pythonhosted.org/packages/d0/44/681604464ed9541673e486521497406fadcc15b5217c3e326b061696899a/cffi-2.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:28a3a209b96630bca57cce802da70c266eb08c6e97e5afd61a75611ee6c64592", size = 221584, upload-time = "2025-09-08T23:23:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/25/8e/342a504ff018a2825d395d44d63a767dd8ebc927ebda557fecdaca3ac33a/cffi-2.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:7553fb2090d71822f02c629afe6042c299edf91ba1bf94951165613553984512", size = 224443, upload-time = "2025-09-08T23:23:37.328Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5e/b666bacbbc60fbf415ba9988324a132c9a7a0448a9a8f125074671c0f2c3/cffi-2.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:6c6c373cfc5c83a975506110d17457138c8c63016b563cc9ed6e056a82f13ce4", size = 223437, upload-time = "2025-09-08T23:23:38.945Z" }, + { url = "https://files.pythonhosted.org/packages/a0/1d/ec1a60bd1a10daa292d3cd6bb0b359a81607154fb8165f3ec95fe003b85c/cffi-2.0.0-cp314-cp314t-win32.whl", hash = "sha256:1fc9ea04857caf665289b7a75923f2c6ed559b8298a1b8c49e59f7dd95c8481e", size = 180487, upload-time = "2025-09-08T23:23:40.423Z" }, + { url = "https://files.pythonhosted.org/packages/bf/41/4c1168c74fac325c0c8156f04b6749c8b6a8f405bbf91413ba088359f60d/cffi-2.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:d68b6cef7827e8641e8ef16f4494edda8b36104d79773a334beaa1e3521430f6", size = 191726, upload-time = "2025-09-08T23:23:41.742Z" }, + { url = "https://files.pythonhosted.org/packages/ae/3a/dbeec9d1ee0844c679f6bb5d6ad4e9f198b1224f4e7a32825f47f6192b0c/cffi-2.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:0a1527a803f0a659de1af2e1fd700213caba79377e27e4693648c2923da066f9", size = 184195, upload-time = "2025-09-08T23:23:43.004Z" }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/69/33ddede1939fdd074bce5434295f38fae7136463422fe4fd3e0e89b98062/charset_normalizer-3.4.4.tar.gz", hash = "sha256:94537985111c35f28720e43603b8e7b43a6ecfb2ce1d3058bbe955b73404e21a", size = 129418, upload-time = "2025-10-14T04:42:32.879Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394", size = 208425, upload-time = "2025-10-14T04:40:53.353Z" }, + { url = "https://files.pythonhosted.org/packages/9d/6a/04130023fef2a0d9c62d0bae2649b69f7b7d8d24ea5536feef50551029df/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b5b290ccc2a263e8d185130284f8501e3e36c5e02750fc6b6bdeb2e9e96f1e25", size = 148162, upload-time = "2025-10-14T04:40:54.558Z" }, + { url = "https://files.pythonhosted.org/packages/78/29/62328d79aa60da22c9e0b9a66539feae06ca0f5a4171ac4f7dc285b83688/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74bb723680f9f7a6234dcf67aea57e708ec1fbdf5699fb91dfd6f511b0a320ef", size = 144558, upload-time = "2025-10-14T04:40:55.677Z" }, + { url = "https://files.pythonhosted.org/packages/86/bb/b32194a4bf15b88403537c2e120b817c61cd4ecffa9b6876e941c3ee38fe/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f1e34719c6ed0b92f418c7c780480b26b5d9c50349e9a9af7d76bf757530350d", size = 161497, upload-time = "2025-10-14T04:40:57.217Z" }, + { url = "https://files.pythonhosted.org/packages/19/89/a54c82b253d5b9b111dc74aca196ba5ccfcca8242d0fb64146d4d3183ff1/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2437418e20515acec67d86e12bf70056a33abdacb5cb1655042f6538d6b085a8", size = 159240, upload-time = "2025-10-14T04:40:58.358Z" }, + { url = "https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86", size = 153471, upload-time = "2025-10-14T04:40:59.468Z" }, + { url = "https://files.pythonhosted.org/packages/61/fa/fbf177b55bdd727010f9c0a3c49eefa1d10f960e5f09d1d887bf93c2e698/charset_normalizer-3.4.4-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ac1c4a689edcc530fc9d9aa11f5774b9e2f33f9a0c6a57864e90908f5208d30a", size = 150864, upload-time = "2025-10-14T04:41:00.623Z" }, + { url = "https://files.pythonhosted.org/packages/05/12/9fbc6a4d39c0198adeebbde20b619790e9236557ca59fc40e0e3cebe6f40/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:21d142cc6c0ec30d2efee5068ca36c128a30b0f2c53c1c07bd78cb6bc1d3be5f", size = 150647, upload-time = "2025-10-14T04:41:01.754Z" }, + { url = "https://files.pythonhosted.org/packages/ad/1f/6a9a593d52e3e8c5d2b167daf8c6b968808efb57ef4c210acb907c365bc4/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:5dbe56a36425d26d6cfb40ce79c314a2e4dd6211d51d6d2191c00bed34f354cc", size = 145110, upload-time = "2025-10-14T04:41:03.231Z" }, + { url = "https://files.pythonhosted.org/packages/30/42/9a52c609e72471b0fc54386dc63c3781a387bb4fe61c20231a4ebcd58bdd/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5bfbb1b9acf3334612667b61bd3002196fe2a1eb4dd74d247e0f2a4d50ec9bbf", size = 162839, upload-time = "2025-10-14T04:41:04.715Z" }, + { url = "https://files.pythonhosted.org/packages/c4/5b/c0682bbf9f11597073052628ddd38344a3d673fda35a36773f7d19344b23/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:d055ec1e26e441f6187acf818b73564e6e6282709e9bcb5b63f5b23068356a15", size = 150667, upload-time = "2025-10-14T04:41:05.827Z" }, + { url = "https://files.pythonhosted.org/packages/e4/24/a41afeab6f990cf2daf6cb8c67419b63b48cf518e4f56022230840c9bfb2/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:af2d8c67d8e573d6de5bc30cdb27e9b95e49115cd9baad5ddbd1a6207aaa82a9", size = 160535, upload-time = "2025-10-14T04:41:06.938Z" }, + { url = "https://files.pythonhosted.org/packages/2a/e5/6a4ce77ed243c4a50a1fecca6aaaab419628c818a49434be428fe24c9957/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:780236ac706e66881f3b7f2f32dfe90507a09e67d1d454c762cf642e6e1586e0", size = 154816, upload-time = "2025-10-14T04:41:08.101Z" }, + { url = "https://files.pythonhosted.org/packages/a8/ef/89297262b8092b312d29cdb2517cb1237e51db8ecef2e9af5edbe7b683b1/charset_normalizer-3.4.4-cp312-cp312-win32.whl", hash = "sha256:5833d2c39d8896e4e19b689ffc198f08ea58116bee26dea51e362ecc7cd3ed26", size = 99694, upload-time = "2025-10-14T04:41:09.23Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2d/1e5ed9dd3b3803994c155cd9aacb60c82c331bad84daf75bcb9c91b3295e/charset_normalizer-3.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:a79cfe37875f822425b89a82333404539ae63dbdddf97f84dcbc3d339aae9525", size = 107131, upload-time = "2025-10-14T04:41:10.467Z" }, + { url = "https://files.pythonhosted.org/packages/d0/d9/0ed4c7098a861482a7b6a95603edce4c0d9db2311af23da1fb2b75ec26fc/charset_normalizer-3.4.4-cp312-cp312-win_arm64.whl", hash = "sha256:376bec83a63b8021bb5c8ea75e21c4ccb86e7e45ca4eb81146091b56599b80c3", size = 100390, upload-time = "2025-10-14T04:41:11.915Z" }, + { url = "https://files.pythonhosted.org/packages/97/45/4b3a1239bbacd321068ea6e7ac28875b03ab8bc0aa0966452db17cd36714/charset_normalizer-3.4.4-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:e1f185f86a6f3403aa2420e815904c67b2f9ebc443f045edd0de921108345794", size = 208091, upload-time = "2025-10-14T04:41:13.346Z" }, + { url = "https://files.pythonhosted.org/packages/7d/62/73a6d7450829655a35bb88a88fca7d736f9882a27eacdca2c6d505b57e2e/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6b39f987ae8ccdf0d2642338faf2abb1862340facc796048b604ef14919e55ed", size = 147936, upload-time = "2025-10-14T04:41:14.461Z" }, + { url = "https://files.pythonhosted.org/packages/89/c5/adb8c8b3d6625bef6d88b251bbb0d95f8205831b987631ab0c8bb5d937c2/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:3162d5d8ce1bb98dd51af660f2121c55d0fa541b46dff7bb9b9f86ea1d87de72", size = 144180, upload-time = "2025-10-14T04:41:15.588Z" }, + { url = "https://files.pythonhosted.org/packages/91/ed/9706e4070682d1cc219050b6048bfd293ccf67b3d4f5a4f39207453d4b99/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:81d5eb2a312700f4ecaa977a8235b634ce853200e828fbadf3a9c50bab278328", size = 161346, upload-time = "2025-10-14T04:41:16.738Z" }, + { url = "https://files.pythonhosted.org/packages/d5/0d/031f0d95e4972901a2f6f09ef055751805ff541511dc1252ba3ca1f80cf5/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5bd2293095d766545ec1a8f612559f6b40abc0eb18bb2f5d1171872d34036ede", size = 158874, upload-time = "2025-10-14T04:41:17.923Z" }, + { url = "https://files.pythonhosted.org/packages/f5/83/6ab5883f57c9c801ce5e5677242328aa45592be8a00644310a008d04f922/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a8a8b89589086a25749f471e6a900d3f662d1d3b6e2e59dcecf787b1cc3a1894", size = 153076, upload-time = "2025-10-14T04:41:19.106Z" }, + { url = "https://files.pythonhosted.org/packages/75/1e/5ff781ddf5260e387d6419959ee89ef13878229732732ee73cdae01800f2/charset_normalizer-3.4.4-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:bc7637e2f80d8530ee4a78e878bce464f70087ce73cf7c1caf142416923b98f1", size = 150601, upload-time = "2025-10-14T04:41:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/d7/57/71be810965493d3510a6ca79b90c19e48696fb1ff964da319334b12677f0/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f8bf04158c6b607d747e93949aa60618b61312fe647a6369f88ce2ff16043490", size = 150376, upload-time = "2025-10-14T04:41:21.398Z" }, + { url = "https://files.pythonhosted.org/packages/e5/d5/c3d057a78c181d007014feb7e9f2e65905a6c4ef182c0ddf0de2924edd65/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:554af85e960429cf30784dd47447d5125aaa3b99a6f0683589dbd27e2f45da44", size = 144825, upload-time = "2025-10-14T04:41:22.583Z" }, + { url = "https://files.pythonhosted.org/packages/e6/8c/d0406294828d4976f275ffbe66f00266c4b3136b7506941d87c00cab5272/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:74018750915ee7ad843a774364e13a3db91682f26142baddf775342c3f5b1133", size = 162583, upload-time = "2025-10-14T04:41:23.754Z" }, + { url = "https://files.pythonhosted.org/packages/d7/24/e2aa1f18c8f15c4c0e932d9287b8609dd30ad56dbe41d926bd846e22fb8d/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:c0463276121fdee9c49b98908b3a89c39be45d86d1dbaa22957e38f6321d4ce3", size = 150366, upload-time = "2025-10-14T04:41:25.27Z" }, + { url = "https://files.pythonhosted.org/packages/e4/5b/1e6160c7739aad1e2df054300cc618b06bf784a7a164b0f238360721ab86/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:362d61fd13843997c1c446760ef36f240cf81d3ebf74ac62652aebaf7838561e", size = 160300, upload-time = "2025-10-14T04:41:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/7a/10/f882167cd207fbdd743e55534d5d9620e095089d176d55cb22d5322f2afd/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9a26f18905b8dd5d685d6d07b0cdf98a79f3c7a918906af7cc143ea2e164c8bc", size = 154465, upload-time = "2025-10-14T04:41:28.322Z" }, + { url = "https://files.pythonhosted.org/packages/89/66/c7a9e1b7429be72123441bfdbaf2bc13faab3f90b933f664db506dea5915/charset_normalizer-3.4.4-cp313-cp313-win32.whl", hash = "sha256:9b35f4c90079ff2e2edc5b26c0c77925e5d2d255c42c74fdb70fb49b172726ac", size = 99404, upload-time = "2025-10-14T04:41:29.95Z" }, + { url = "https://files.pythonhosted.org/packages/c4/26/b9924fa27db384bdcd97ab83b4f0a8058d96ad9626ead570674d5e737d90/charset_normalizer-3.4.4-cp313-cp313-win_amd64.whl", hash = "sha256:b435cba5f4f750aa6c0a0d92c541fb79f69a387c91e61f1795227e4ed9cece14", size = 107092, upload-time = "2025-10-14T04:41:31.188Z" }, + { url = "https://files.pythonhosted.org/packages/af/8f/3ed4bfa0c0c72a7ca17f0380cd9e4dd842b09f664e780c13cff1dcf2ef1b/charset_normalizer-3.4.4-cp313-cp313-win_arm64.whl", hash = "sha256:542d2cee80be6f80247095cc36c418f7bddd14f4a6de45af91dfad36d817bba2", size = 100408, upload-time = "2025-10-14T04:41:32.624Z" }, + { url = "https://files.pythonhosted.org/packages/2a/35/7051599bd493e62411d6ede36fd5af83a38f37c4767b92884df7301db25d/charset_normalizer-3.4.4-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:da3326d9e65ef63a817ecbcc0df6e94463713b754fe293eaa03da99befb9a5bd", size = 207746, upload-time = "2025-10-14T04:41:33.773Z" }, + { url = "https://files.pythonhosted.org/packages/10/9a/97c8d48ef10d6cd4fcead2415523221624bf58bcf68a802721a6bc807c8f/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8af65f14dc14a79b924524b1e7fffe304517b2bff5a58bf64f30b98bbc5079eb", size = 147889, upload-time = "2025-10-14T04:41:34.897Z" }, + { url = "https://files.pythonhosted.org/packages/10/bf/979224a919a1b606c82bd2c5fa49b5c6d5727aa47b4312bb27b1734f53cd/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74664978bb272435107de04e36db5a9735e78232b85b77d45cfb38f758efd33e", size = 143641, upload-time = "2025-10-14T04:41:36.116Z" }, + { url = "https://files.pythonhosted.org/packages/ba/33/0ad65587441fc730dc7bd90e9716b30b4702dc7b617e6ba4997dc8651495/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:752944c7ffbfdd10c074dc58ec2d5a8a4cd9493b314d367c14d24c17684ddd14", size = 160779, upload-time = "2025-10-14T04:41:37.229Z" }, + { url = "https://files.pythonhosted.org/packages/67/ed/331d6b249259ee71ddea93f6f2f0a56cfebd46938bde6fcc6f7b9a3d0e09/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d1f13550535ad8cff21b8d757a3257963e951d96e20ec82ab44bc64aeb62a191", size = 159035, upload-time = "2025-10-14T04:41:38.368Z" }, + { url = "https://files.pythonhosted.org/packages/67/ff/f6b948ca32e4f2a4576aa129d8bed61f2e0543bf9f5f2b7fc3758ed005c9/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ecaae4149d99b1c9e7b88bb03e3221956f68fd6d50be2ef061b2381b61d20838", size = 152542, upload-time = "2025-10-14T04:41:39.862Z" }, + { url = "https://files.pythonhosted.org/packages/16/85/276033dcbcc369eb176594de22728541a925b2632f9716428c851b149e83/charset_normalizer-3.4.4-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:cb6254dc36b47a990e59e1068afacdcd02958bdcce30bb50cc1700a8b9d624a6", size = 149524, upload-time = "2025-10-14T04:41:41.319Z" }, + { url = "https://files.pythonhosted.org/packages/9e/f2/6a2a1f722b6aba37050e626530a46a68f74e63683947a8acff92569f979a/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c8ae8a0f02f57a6e61203a31428fa1d677cbe50c93622b4149d5c0f319c1d19e", size = 150395, upload-time = "2025-10-14T04:41:42.539Z" }, + { url = "https://files.pythonhosted.org/packages/60/bb/2186cb2f2bbaea6338cad15ce23a67f9b0672929744381e28b0592676824/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:47cc91b2f4dd2833fddaedd2893006b0106129d4b94fdb6af1f4ce5a9965577c", size = 143680, upload-time = "2025-10-14T04:41:43.661Z" }, + { url = "https://files.pythonhosted.org/packages/7d/a5/bf6f13b772fbb2a90360eb620d52ed8f796f3c5caee8398c3b2eb7b1c60d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:82004af6c302b5d3ab2cfc4cc5f29db16123b1a8417f2e25f9066f91d4411090", size = 162045, upload-time = "2025-10-14T04:41:44.821Z" }, + { url = "https://files.pythonhosted.org/packages/df/c5/d1be898bf0dc3ef9030c3825e5d3b83f2c528d207d246cbabe245966808d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:2b7d8f6c26245217bd2ad053761201e9f9680f8ce52f0fcd8d0755aeae5b2152", size = 149687, upload-time = "2025-10-14T04:41:46.442Z" }, + { url = "https://files.pythonhosted.org/packages/a5/42/90c1f7b9341eef50c8a1cb3f098ac43b0508413f33affd762855f67a410e/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:799a7a5e4fb2d5898c60b640fd4981d6a25f1c11790935a44ce38c54e985f828", size = 160014, upload-time = "2025-10-14T04:41:47.631Z" }, + { url = "https://files.pythonhosted.org/packages/76/be/4d3ee471e8145d12795ab655ece37baed0929462a86e72372fd25859047c/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:99ae2cffebb06e6c22bdc25801d7b30f503cc87dbd283479e7b606f70aff57ec", size = 154044, upload-time = "2025-10-14T04:41:48.81Z" }, + { url = "https://files.pythonhosted.org/packages/b0/6f/8f7af07237c34a1defe7defc565a9bc1807762f672c0fde711a4b22bf9c0/charset_normalizer-3.4.4-cp314-cp314-win32.whl", hash = "sha256:f9d332f8c2a2fcbffe1378594431458ddbef721c1769d78e2cbc06280d8155f9", size = 99940, upload-time = "2025-10-14T04:41:49.946Z" }, + { url = "https://files.pythonhosted.org/packages/4b/51/8ade005e5ca5b0d80fb4aff72a3775b325bdc3d27408c8113811a7cbe640/charset_normalizer-3.4.4-cp314-cp314-win_amd64.whl", hash = "sha256:8a6562c3700cce886c5be75ade4a5db4214fda19fede41d9792d100288d8f94c", size = 107104, upload-time = "2025-10-14T04:41:51.051Z" }, + { url = "https://files.pythonhosted.org/packages/da/5f/6b8f83a55bb8278772c5ae54a577f3099025f9ade59d0136ac24a0df4bde/charset_normalizer-3.4.4-cp314-cp314-win_arm64.whl", hash = "sha256:de00632ca48df9daf77a2c65a484531649261ec9f25489917f09e455cb09ddb2", size = 100743, upload-time = "2025-10-14T04:41:52.122Z" }, + { url = "https://files.pythonhosted.org/packages/0a/4c/925909008ed5a988ccbb72dcc897407e5d6d3bd72410d69e051fc0c14647/charset_normalizer-3.4.4-py3-none-any.whl", hash = "sha256:7a32c560861a02ff789ad905a2fe94e3f840803362c84fecf1851cb4cf3dc37f", size = 53402, upload-time = "2025-10-14T04:42:31.76Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "comm" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/13/7d740c5849255756bc17888787313b61fd38a0a8304fc4f073dfc46122aa/comm-0.2.3.tar.gz", hash = "sha256:2dc8048c10962d55d7ad693be1e7045d891b7ce8d999c97963a5e3e99c055971", size = 6319, upload-time = "2025-07-25T14:02:04.452Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl", hash = "sha256:c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417", size = 7294, upload-time = "2025-07-25T14:02:02.896Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419, upload-time = "2025-07-26T12:01:21.16Z" }, + { url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979, upload-time = "2025-07-26T12:01:22.448Z" }, + { url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653, upload-time = "2025-07-26T12:01:24.155Z" }, + { url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536, upload-time = "2025-07-26T12:01:25.91Z" }, + { url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397, upload-time = "2025-07-26T12:01:27.152Z" }, + { url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601, upload-time = "2025-07-26T12:01:28.808Z" }, + { url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288, upload-time = "2025-07-26T12:01:31.198Z" }, + { url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386, upload-time = "2025-07-26T12:01:33.947Z" }, + { url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018, upload-time = "2025-07-26T12:01:35.64Z" }, + { url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567, upload-time = "2025-07-26T12:01:36.804Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655, upload-time = "2025-07-26T12:01:37.999Z" }, + { url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" }, + { url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" }, + { url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" }, + { url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" }, + { url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" }, + { url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" }, + { url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" }, + { url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" }, + { url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" }, + { url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" }, + { url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" }, + { url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" }, + { url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" }, + { url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" }, + { url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" }, + { url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" }, + { url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" }, + { url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" }, + { url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" }, + { url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" }, + { url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" }, + { url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" }, + { url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" }, + { url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" }, + { url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" }, + { url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" }, + { url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" }, + { url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" }, + { url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" }, + { url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" }, + { url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" }, + { url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" }, + { url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" }, + { url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" }, +] + +[[package]] +name = "coverage" +version = "7.12.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/89/26/4a96807b193b011588099c3b5c89fbb05294e5b90e71018e065465f34eb6/coverage-7.12.0.tar.gz", hash = "sha256:fc11e0a4e372cb5f282f16ef90d4a585034050ccda536451901abfb19a57f40c", size = 819341, upload-time = "2025-11-18T13:34:20.766Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/02/bf/638c0427c0f0d47638242e2438127f3c8ee3cfc06c7fdeb16778ed47f836/coverage-7.12.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:29644c928772c78512b48e14156b81255000dcfd4817574ff69def189bcb3647", size = 217704, upload-time = "2025-11-18T13:32:28.906Z" }, + { url = "https://files.pythonhosted.org/packages/08/e1/706fae6692a66c2d6b871a608bbde0da6281903fa0e9f53a39ed441da36a/coverage-7.12.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8638cbb002eaa5d7c8d04da667813ce1067080b9a91099801a0053086e52b736", size = 218064, upload-time = "2025-11-18T13:32:30.161Z" }, + { url = "https://files.pythonhosted.org/packages/a9/8b/eb0231d0540f8af3ffda39720ff43cb91926489d01524e68f60e961366e4/coverage-7.12.0-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:083631eeff5eb9992c923e14b810a179798bb598e6a0dd60586819fc23be6e60", size = 249560, upload-time = "2025-11-18T13:32:31.835Z" }, + { url = "https://files.pythonhosted.org/packages/e9/a1/67fb52af642e974d159b5b379e4d4c59d0ebe1288677fbd04bbffe665a82/coverage-7.12.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:99d5415c73ca12d558e07776bd957c4222c687b9f1d26fa0e1b57e3598bdcde8", size = 252318, upload-time = "2025-11-18T13:32:33.178Z" }, + { url = "https://files.pythonhosted.org/packages/41/e5/38228f31b2c7665ebf9bdfdddd7a184d56450755c7e43ac721c11a4b8dab/coverage-7.12.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e949ebf60c717c3df63adb4a1a366c096c8d7fd8472608cd09359e1bd48ef59f", size = 253403, upload-time = "2025-11-18T13:32:34.45Z" }, + { url = "https://files.pythonhosted.org/packages/ec/4b/df78e4c8188f9960684267c5a4897836f3f0f20a20c51606ee778a1d9749/coverage-7.12.0-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:6d907ddccbca819afa2cd014bc69983b146cca2735a0b1e6259b2a6c10be1e70", size = 249984, upload-time = "2025-11-18T13:32:35.747Z" }, + { url = "https://files.pythonhosted.org/packages/ba/51/bb163933d195a345c6f63eab9e55743413d064c291b6220df754075c2769/coverage-7.12.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b1518ecbad4e6173f4c6e6c4a46e49555ea5679bf3feda5edb1b935c7c44e8a0", size = 251339, upload-time = "2025-11-18T13:32:37.352Z" }, + { url = "https://files.pythonhosted.org/packages/15/40/c9b29cdb8412c837cdcbc2cfa054547dd83affe6cbbd4ce4fdb92b6ba7d1/coverage-7.12.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:51777647a749abdf6f6fd8c7cffab12de68ab93aab15efc72fbbb83036c2a068", size = 249489, upload-time = "2025-11-18T13:32:39.212Z" }, + { url = "https://files.pythonhosted.org/packages/c8/da/b3131e20ba07a0de4437a50ef3b47840dfabf9293675b0cd5c2c7f66dd61/coverage-7.12.0-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:42435d46d6461a3b305cdfcad7cdd3248787771f53fe18305548cba474e6523b", size = 249070, upload-time = "2025-11-18T13:32:40.598Z" }, + { url = "https://files.pythonhosted.org/packages/70/81/b653329b5f6302c08d683ceff6785bc60a34be9ae92a5c7b63ee7ee7acec/coverage-7.12.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5bcead88c8423e1855e64b8057d0544e33e4080b95b240c2a355334bb7ced937", size = 250929, upload-time = "2025-11-18T13:32:42.915Z" }, + { url = "https://files.pythonhosted.org/packages/a3/00/250ac3bca9f252a5fb1338b5ad01331ebb7b40223f72bef5b1b2cb03aa64/coverage-7.12.0-cp312-cp312-win32.whl", hash = "sha256:dcbb630ab034e86d2a0f79aefd2be07e583202f41e037602d438c80044957baa", size = 220241, upload-time = "2025-11-18T13:32:44.665Z" }, + { url = "https://files.pythonhosted.org/packages/64/1c/77e79e76d37ce83302f6c21980b45e09f8aa4551965213a10e62d71ce0ab/coverage-7.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:2fd8354ed5d69775ac42986a691fbf68b4084278710cee9d7c3eaa0c28fa982a", size = 221051, upload-time = "2025-11-18T13:32:46.008Z" }, + { url = "https://files.pythonhosted.org/packages/31/f5/641b8a25baae564f9e52cac0e2667b123de961985709a004e287ee7663cc/coverage-7.12.0-cp312-cp312-win_arm64.whl", hash = "sha256:737c3814903be30695b2de20d22bcc5428fdae305c61ba44cdc8b3252984c49c", size = 219692, upload-time = "2025-11-18T13:32:47.372Z" }, + { url = "https://files.pythonhosted.org/packages/b8/14/771700b4048774e48d2c54ed0c674273702713c9ee7acdfede40c2666747/coverage-7.12.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:47324fffca8d8eae7e185b5bb20c14645f23350f870c1649003618ea91a78941", size = 217725, upload-time = "2025-11-18T13:32:49.22Z" }, + { url = "https://files.pythonhosted.org/packages/17/a7/3aa4144d3bcb719bf67b22d2d51c2d577bf801498c13cb08f64173e80497/coverage-7.12.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ccf3b2ede91decd2fb53ec73c1f949c3e034129d1e0b07798ff1d02ea0c8fa4a", size = 218098, upload-time = "2025-11-18T13:32:50.78Z" }, + { url = "https://files.pythonhosted.org/packages/fc/9c/b846bbc774ff81091a12a10203e70562c91ae71badda00c5ae5b613527b1/coverage-7.12.0-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:b365adc70a6936c6b0582dc38746b33b2454148c02349345412c6e743efb646d", size = 249093, upload-time = "2025-11-18T13:32:52.554Z" }, + { url = "https://files.pythonhosted.org/packages/76/b6/67d7c0e1f400b32c883e9342de4a8c2ae7c1a0b57c5de87622b7262e2309/coverage-7.12.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:bc13baf85cd8a4cfcf4a35c7bc9d795837ad809775f782f697bf630b7e200211", size = 251686, upload-time = "2025-11-18T13:32:54.862Z" }, + { url = "https://files.pythonhosted.org/packages/cc/75/b095bd4b39d49c3be4bffbb3135fea18a99a431c52dd7513637c0762fecb/coverage-7.12.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:099d11698385d572ceafb3288a5b80fe1fc58bf665b3f9d362389de488361d3d", size = 252930, upload-time = "2025-11-18T13:32:56.417Z" }, + { url = "https://files.pythonhosted.org/packages/6e/f3/466f63015c7c80550bead3093aacabf5380c1220a2a93c35d374cae8f762/coverage-7.12.0-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:473dc45d69694069adb7680c405fb1e81f60b2aff42c81e2f2c3feaf544d878c", size = 249296, upload-time = "2025-11-18T13:32:58.074Z" }, + { url = "https://files.pythonhosted.org/packages/27/86/eba2209bf2b7e28c68698fc13437519a295b2d228ba9e0ec91673e09fa92/coverage-7.12.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:583f9adbefd278e9de33c33d6846aa8f5d164fa49b47144180a0e037f0688bb9", size = 251068, upload-time = "2025-11-18T13:32:59.646Z" }, + { url = "https://files.pythonhosted.org/packages/ec/55/ca8ae7dbba962a3351f18940b359b94c6bafdd7757945fdc79ec9e452dc7/coverage-7.12.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2089cc445f2dc0af6f801f0d1355c025b76c24481935303cf1af28f636688f0", size = 249034, upload-time = "2025-11-18T13:33:01.481Z" }, + { url = "https://files.pythonhosted.org/packages/7a/d7/39136149325cad92d420b023b5fd900dabdd1c3a0d1d5f148ef4a8cedef5/coverage-7.12.0-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:950411f1eb5d579999c5f66c62a40961f126fc71e5e14419f004471957b51508", size = 248853, upload-time = "2025-11-18T13:33:02.935Z" }, + { url = "https://files.pythonhosted.org/packages/fe/b6/76e1add8b87ef60e00643b0b7f8f7bb73d4bf5249a3be19ebefc5793dd25/coverage-7.12.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b1aab7302a87bafebfe76b12af681b56ff446dc6f32ed178ff9c092ca776e6bc", size = 250619, upload-time = "2025-11-18T13:33:04.336Z" }, + { url = "https://files.pythonhosted.org/packages/95/87/924c6dc64f9203f7a3c1832a6a0eee5a8335dbe5f1bdadcc278d6f1b4d74/coverage-7.12.0-cp313-cp313-win32.whl", hash = "sha256:d7e0d0303c13b54db495eb636bc2465b2fb8475d4c8bcec8fe4b5ca454dfbae8", size = 220261, upload-time = "2025-11-18T13:33:06.493Z" }, + { url = "https://files.pythonhosted.org/packages/91/77/dd4aff9af16ff776bf355a24d87eeb48fc6acde54c907cc1ea89b14a8804/coverage-7.12.0-cp313-cp313-win_amd64.whl", hash = "sha256:ce61969812d6a98a981d147d9ac583a36ac7db7766f2e64a9d4d059c2fe29d07", size = 221072, upload-time = "2025-11-18T13:33:07.926Z" }, + { url = "https://files.pythonhosted.org/packages/70/49/5c9dc46205fef31b1b226a6e16513193715290584317fd4df91cdaf28b22/coverage-7.12.0-cp313-cp313-win_arm64.whl", hash = "sha256:bcec6f47e4cb8a4c2dc91ce507f6eefc6a1b10f58df32cdc61dff65455031dfc", size = 219702, upload-time = "2025-11-18T13:33:09.631Z" }, + { url = "https://files.pythonhosted.org/packages/9b/62/f87922641c7198667994dd472a91e1d9b829c95d6c29529ceb52132436ad/coverage-7.12.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:459443346509476170d553035e4a3eed7b860f4fe5242f02de1010501956ce87", size = 218420, upload-time = "2025-11-18T13:33:11.153Z" }, + { url = "https://files.pythonhosted.org/packages/85/dd/1cc13b2395ef15dbb27d7370a2509b4aee77890a464fb35d72d428f84871/coverage-7.12.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:04a79245ab2b7a61688958f7a855275997134bc84f4a03bc240cf64ff132abf6", size = 218773, upload-time = "2025-11-18T13:33:12.569Z" }, + { url = "https://files.pythonhosted.org/packages/74/40/35773cc4bb1e9d4658d4fb669eb4195b3151bef3bbd6f866aba5cd5dac82/coverage-7.12.0-cp313-cp313t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:09a86acaaa8455f13d6a99221d9654df249b33937b4e212b4e5a822065f12aa7", size = 260078, upload-time = "2025-11-18T13:33:14.037Z" }, + { url = "https://files.pythonhosted.org/packages/ec/ee/231bb1a6ffc2905e396557585ebc6bdc559e7c66708376d245a1f1d330fc/coverage-7.12.0-cp313-cp313t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:907e0df1b71ba77463687a74149c6122c3f6aac56c2510a5d906b2f368208560", size = 262144, upload-time = "2025-11-18T13:33:15.601Z" }, + { url = "https://files.pythonhosted.org/packages/28/be/32f4aa9f3bf0b56f3971001b56508352c7753915345d45fab4296a986f01/coverage-7.12.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9b57e2d0ddd5f0582bae5437c04ee71c46cd908e7bc5d4d0391f9a41e812dd12", size = 264574, upload-time = "2025-11-18T13:33:17.354Z" }, + { url = "https://files.pythonhosted.org/packages/68/7c/00489fcbc2245d13ab12189b977e0cf06ff3351cb98bc6beba8bd68c5902/coverage-7.12.0-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:58c1c6aa677f3a1411fe6fb28ec3a942e4f665df036a3608816e0847fad23296", size = 259298, upload-time = "2025-11-18T13:33:18.958Z" }, + { url = "https://files.pythonhosted.org/packages/96/b4/f0760d65d56c3bea95b449e02570d4abd2549dc784bf39a2d4721a2d8ceb/coverage-7.12.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4c589361263ab2953e3c4cd2a94db94c4ad4a8e572776ecfbad2389c626e4507", size = 262150, upload-time = "2025-11-18T13:33:20.644Z" }, + { url = "https://files.pythonhosted.org/packages/c5/71/9a9314df00f9326d78c1e5a910f520d599205907432d90d1c1b7a97aa4b1/coverage-7.12.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:91b810a163ccad2e43b1faa11d70d3cf4b6f3d83f9fd5f2df82a32d47b648e0d", size = 259763, upload-time = "2025-11-18T13:33:22.189Z" }, + { url = "https://files.pythonhosted.org/packages/10/34/01a0aceed13fbdf925876b9a15d50862eb8845454301fe3cdd1df08b2182/coverage-7.12.0-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:40c867af715f22592e0d0fb533a33a71ec9e0f73a6945f722a0c85c8c1cbe3a2", size = 258653, upload-time = "2025-11-18T13:33:24.239Z" }, + { url = "https://files.pythonhosted.org/packages/8d/04/81d8fd64928acf1574bbb0181f66901c6c1c6279c8ccf5f84259d2c68ae9/coverage-7.12.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:68b0d0a2d84f333de875666259dadf28cc67858bc8fd8b3f1eae84d3c2bec455", size = 260856, upload-time = "2025-11-18T13:33:26.365Z" }, + { url = "https://files.pythonhosted.org/packages/f2/76/fa2a37bfaeaf1f766a2d2360a25a5297d4fb567098112f6517475eee120b/coverage-7.12.0-cp313-cp313t-win32.whl", hash = "sha256:73f9e7fbd51a221818fd11b7090eaa835a353ddd59c236c57b2199486b116c6d", size = 220936, upload-time = "2025-11-18T13:33:28.165Z" }, + { url = "https://files.pythonhosted.org/packages/f9/52/60f64d932d555102611c366afb0eb434b34266b1d9266fc2fe18ab641c47/coverage-7.12.0-cp313-cp313t-win_amd64.whl", hash = "sha256:24cff9d1f5743f67db7ba46ff284018a6e9aeb649b67aa1e70c396aa1b7cb23c", size = 222001, upload-time = "2025-11-18T13:33:29.656Z" }, + { url = "https://files.pythonhosted.org/packages/77/df/c303164154a5a3aea7472bf323b7c857fed93b26618ed9fc5c2955566bb0/coverage-7.12.0-cp313-cp313t-win_arm64.whl", hash = "sha256:c87395744f5c77c866d0f5a43d97cc39e17c7f1cb0115e54a2fe67ca75c5d14d", size = 220273, upload-time = "2025-11-18T13:33:31.415Z" }, + { url = "https://files.pythonhosted.org/packages/bf/2e/fc12db0883478d6e12bbd62d481210f0c8daf036102aa11434a0c5755825/coverage-7.12.0-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:a1c59b7dc169809a88b21a936eccf71c3895a78f5592051b1af8f4d59c2b4f92", size = 217777, upload-time = "2025-11-18T13:33:32.86Z" }, + { url = "https://files.pythonhosted.org/packages/1f/c1/ce3e525d223350c6ec16b9be8a057623f54226ef7f4c2fee361ebb6a02b8/coverage-7.12.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8787b0f982e020adb732b9f051f3e49dd5054cebbc3f3432061278512a2b1360", size = 218100, upload-time = "2025-11-18T13:33:34.532Z" }, + { url = "https://files.pythonhosted.org/packages/15/87/113757441504aee3808cb422990ed7c8bcc2d53a6779c66c5adef0942939/coverage-7.12.0-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:5ea5a9f7dc8877455b13dd1effd3202e0bca72f6f3ab09f9036b1bcf728f69ac", size = 249151, upload-time = "2025-11-18T13:33:36.135Z" }, + { url = "https://files.pythonhosted.org/packages/d9/1d/9529d9bd44049b6b05bb319c03a3a7e4b0a8a802d28fa348ad407e10706d/coverage-7.12.0-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:fdba9f15849534594f60b47c9a30bc70409b54947319a7c4fd0e8e3d8d2f355d", size = 251667, upload-time = "2025-11-18T13:33:37.996Z" }, + { url = "https://files.pythonhosted.org/packages/11/bb/567e751c41e9c03dc29d3ce74b8c89a1e3396313e34f255a2a2e8b9ebb56/coverage-7.12.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a00594770eb715854fb1c57e0dea08cce6720cfbc531accdb9850d7c7770396c", size = 253003, upload-time = "2025-11-18T13:33:39.553Z" }, + { url = "https://files.pythonhosted.org/packages/e4/b3/c2cce2d8526a02fb9e9ca14a263ca6fc074449b33a6afa4892838c903528/coverage-7.12.0-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:5560c7e0d82b42eb1951e4f68f071f8017c824ebfd5a6ebe42c60ac16c6c2434", size = 249185, upload-time = "2025-11-18T13:33:42.086Z" }, + { url = "https://files.pythonhosted.org/packages/0e/a7/967f93bb66e82c9113c66a8d0b65ecf72fc865adfba5a145f50c7af7e58d/coverage-7.12.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:d6c2e26b481c9159c2773a37947a9718cfdc58893029cdfb177531793e375cfc", size = 251025, upload-time = "2025-11-18T13:33:43.634Z" }, + { url = "https://files.pythonhosted.org/packages/b9/b2/f2f6f56337bc1af465d5b2dc1ee7ee2141b8b9272f3bf6213fcbc309a836/coverage-7.12.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:6e1a8c066dabcde56d5d9fed6a66bc19a2883a3fe051f0c397a41fc42aedd4cc", size = 248979, upload-time = "2025-11-18T13:33:46.04Z" }, + { url = "https://files.pythonhosted.org/packages/f4/7a/bf4209f45a4aec09d10a01a57313a46c0e0e8f4c55ff2965467d41a92036/coverage-7.12.0-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:f7ba9da4726e446d8dd8aae5a6cd872511184a5d861de80a86ef970b5dacce3e", size = 248800, upload-time = "2025-11-18T13:33:47.546Z" }, + { url = "https://files.pythonhosted.org/packages/b8/b7/1e01b8696fb0521810f60c5bbebf699100d6754183e6cc0679bf2ed76531/coverage-7.12.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:e0f483ab4f749039894abaf80c2f9e7ed77bbf3c737517fb88c8e8e305896a17", size = 250460, upload-time = "2025-11-18T13:33:49.537Z" }, + { url = "https://files.pythonhosted.org/packages/71/ae/84324fb9cb46c024760e706353d9b771a81b398d117d8c1fe010391c186f/coverage-7.12.0-cp314-cp314-win32.whl", hash = "sha256:76336c19a9ef4a94b2f8dc79f8ac2da3f193f625bb5d6f51a328cd19bfc19933", size = 220533, upload-time = "2025-11-18T13:33:51.16Z" }, + { url = "https://files.pythonhosted.org/packages/e2/71/1033629deb8460a8f97f83e6ac4ca3b93952e2b6f826056684df8275e015/coverage-7.12.0-cp314-cp314-win_amd64.whl", hash = "sha256:7c1059b600aec6ef090721f8f633f60ed70afaffe8ecab85b59df748f24b31fe", size = 221348, upload-time = "2025-11-18T13:33:52.776Z" }, + { url = "https://files.pythonhosted.org/packages/0a/5f/ac8107a902f623b0c251abdb749be282dc2ab61854a8a4fcf49e276fce2f/coverage-7.12.0-cp314-cp314-win_arm64.whl", hash = "sha256:172cf3a34bfef42611963e2b661302a8931f44df31629e5b1050567d6b90287d", size = 219922, upload-time = "2025-11-18T13:33:54.316Z" }, + { url = "https://files.pythonhosted.org/packages/79/6e/f27af2d4da367f16077d21ef6fe796c874408219fa6dd3f3efe7751bd910/coverage-7.12.0-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:aa7d48520a32cb21c7a9b31f81799e8eaec7239db36c3b670be0fa2403828d1d", size = 218511, upload-time = "2025-11-18T13:33:56.343Z" }, + { url = "https://files.pythonhosted.org/packages/67/dd/65fd874aa460c30da78f9d259400d8e6a4ef457d61ab052fd248f0050558/coverage-7.12.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:90d58ac63bc85e0fb919f14d09d6caa63f35a5512a2205284b7816cafd21bb03", size = 218771, upload-time = "2025-11-18T13:33:57.966Z" }, + { url = "https://files.pythonhosted.org/packages/55/e0/7c6b71d327d8068cb79c05f8f45bf1b6145f7a0de23bbebe63578fe5240a/coverage-7.12.0-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:ca8ecfa283764fdda3eae1bdb6afe58bf78c2c3ec2b2edcb05a671f0bba7b3f9", size = 260151, upload-time = "2025-11-18T13:33:59.597Z" }, + { url = "https://files.pythonhosted.org/packages/49/ce/4697457d58285b7200de6b46d606ea71066c6e674571a946a6ea908fb588/coverage-7.12.0-cp314-cp314t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:874fe69a0785d96bd066059cd4368022cebbec1a8958f224f0016979183916e6", size = 262257, upload-time = "2025-11-18T13:34:01.166Z" }, + { url = "https://files.pythonhosted.org/packages/2f/33/acbc6e447aee4ceba88c15528dbe04a35fb4d67b59d393d2e0d6f1e242c1/coverage-7.12.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5b3c889c0b8b283a24d721a9eabc8ccafcfc3aebf167e4cd0d0e23bf8ec4e339", size = 264671, upload-time = "2025-11-18T13:34:02.795Z" }, + { url = "https://files.pythonhosted.org/packages/87/ec/e2822a795c1ed44d569980097be839c5e734d4c0c1119ef8e0a073496a30/coverage-7.12.0-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:8bb5b894b3ec09dcd6d3743229dc7f2c42ef7787dc40596ae04c0edda487371e", size = 259231, upload-time = "2025-11-18T13:34:04.397Z" }, + { url = "https://files.pythonhosted.org/packages/72/c5/a7ec5395bb4a49c9b7ad97e63f0c92f6bf4a9e006b1393555a02dae75f16/coverage-7.12.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:79a44421cd5fba96aa57b5e3b5a4d3274c449d4c622e8f76882d76635501fd13", size = 262137, upload-time = "2025-11-18T13:34:06.068Z" }, + { url = "https://files.pythonhosted.org/packages/67/0c/02c08858b764129f4ecb8e316684272972e60777ae986f3865b10940bdd6/coverage-7.12.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:33baadc0efd5c7294f436a632566ccc1f72c867f82833eb59820ee37dc811c6f", size = 259745, upload-time = "2025-11-18T13:34:08.04Z" }, + { url = "https://files.pythonhosted.org/packages/5a/04/4fd32b7084505f3829a8fe45c1a74a7a728cb251aaadbe3bec04abcef06d/coverage-7.12.0-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:c406a71f544800ef7e9e0000af706b88465f3573ae8b8de37e5f96c59f689ad1", size = 258570, upload-time = "2025-11-18T13:34:09.676Z" }, + { url = "https://files.pythonhosted.org/packages/48/35/2365e37c90df4f5342c4fa202223744119fe31264ee2924f09f074ea9b6d/coverage-7.12.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:e71bba6a40883b00c6d571599b4627f50c360b3d0d02bfc658168936be74027b", size = 260899, upload-time = "2025-11-18T13:34:11.259Z" }, + { url = "https://files.pythonhosted.org/packages/05/56/26ab0464ca733fa325e8e71455c58c1c374ce30f7c04cebb88eabb037b18/coverage-7.12.0-cp314-cp314t-win32.whl", hash = "sha256:9157a5e233c40ce6613dead4c131a006adfda70e557b6856b97aceed01b0e27a", size = 221313, upload-time = "2025-11-18T13:34:12.863Z" }, + { url = "https://files.pythonhosted.org/packages/da/1c/017a3e1113ed34d998b27d2c6dba08a9e7cb97d362f0ec988fcd873dcf81/coverage-7.12.0-cp314-cp314t-win_amd64.whl", hash = "sha256:e84da3a0fd233aeec797b981c51af1cabac74f9bd67be42458365b30d11b5291", size = 222423, upload-time = "2025-11-18T13:34:15.14Z" }, + { url = "https://files.pythonhosted.org/packages/4c/36/bcc504fdd5169301b52568802bb1b9cdde2e27a01d39fbb3b4b508ab7c2c/coverage-7.12.0-cp314-cp314t-win_arm64.whl", hash = "sha256:01d24af36fedda51c2b1aca56e4330a3710f83b02a5ff3743a6b015ffa7c9384", size = 220459, upload-time = "2025-11-18T13:34:17.222Z" }, + { url = "https://files.pythonhosted.org/packages/ce/a3/43b749004e3c09452e39bb56347a008f0a0668aad37324a99b5c8ca91d9e/coverage-7.12.0-py3-none-any.whl", hash = "sha256:159d50c0b12e060b15ed3d39f87ed43d4f7f7ad40b8a534f4dd331adbb51104a", size = 209503, upload-time = "2025-11-18T13:34:18.892Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "debugpy" +version = "1.8.17" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/ad/71e708ff4ca377c4230530d6a7aa7992592648c122a2cd2b321cf8b35a76/debugpy-1.8.17.tar.gz", hash = "sha256:fd723b47a8c08892b1a16b2c6239a8b96637c62a59b94bb5dab4bac592a58a8e", size = 1644129, upload-time = "2025-09-17T16:33:20.633Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/2b/9d8e65beb2751876c82e1aceb32f328c43ec872711fa80257c7674f45650/debugpy-1.8.17-cp312-cp312-macosx_15_0_universal2.whl", hash = "sha256:f14467edef672195c6f6b8e27ce5005313cb5d03c9239059bc7182b60c176e2d", size = 2549522, upload-time = "2025-09-17T16:33:38.466Z" }, + { url = "https://files.pythonhosted.org/packages/b4/78/eb0d77f02971c05fca0eb7465b18058ba84bd957062f5eec82f941ac792a/debugpy-1.8.17-cp312-cp312-manylinux_2_34_x86_64.whl", hash = "sha256:24693179ef9dfa20dca8605905a42b392be56d410c333af82f1c5dff807a64cc", size = 4309417, upload-time = "2025-09-17T16:33:41.299Z" }, + { url = "https://files.pythonhosted.org/packages/37/42/c40f1d8cc1fed1e75ea54298a382395b8b937d923fcf41ab0797a554f555/debugpy-1.8.17-cp312-cp312-win32.whl", hash = "sha256:6a4e9dacf2cbb60d2514ff7b04b4534b0139facbf2abdffe0639ddb6088e59cf", size = 5277130, upload-time = "2025-09-17T16:33:43.554Z" }, + { url = "https://files.pythonhosted.org/packages/72/22/84263b205baad32b81b36eac076de0cdbe09fe2d0637f5b32243dc7c925b/debugpy-1.8.17-cp312-cp312-win_amd64.whl", hash = "sha256:e8f8f61c518952fb15f74a302e068b48d9c4691768ade433e4adeea961993464", size = 5319053, upload-time = "2025-09-17T16:33:53.033Z" }, + { url = "https://files.pythonhosted.org/packages/50/76/597e5cb97d026274ba297af8d89138dfd9e695767ba0e0895edb20963f40/debugpy-1.8.17-cp313-cp313-macosx_15_0_universal2.whl", hash = "sha256:857c1dd5d70042502aef1c6d1c2801211f3ea7e56f75e9c335f434afb403e464", size = 2538386, upload-time = "2025-09-17T16:33:54.594Z" }, + { url = "https://files.pythonhosted.org/packages/5f/60/ce5c34fcdfec493701f9d1532dba95b21b2f6394147234dce21160bd923f/debugpy-1.8.17-cp313-cp313-manylinux_2_34_x86_64.whl", hash = "sha256:3bea3b0b12f3946e098cce9b43c3c46e317b567f79570c3f43f0b96d00788088", size = 4292100, upload-time = "2025-09-17T16:33:56.353Z" }, + { url = "https://files.pythonhosted.org/packages/e8/95/7873cf2146577ef71d2a20bf553f12df865922a6f87b9e8ee1df04f01785/debugpy-1.8.17-cp313-cp313-win32.whl", hash = "sha256:e34ee844c2f17b18556b5bbe59e1e2ff4e86a00282d2a46edab73fd7f18f4a83", size = 5277002, upload-time = "2025-09-17T16:33:58.231Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/18c79a1cee5ff539a94ec4aa290c1c069a5580fd5cfd2fb2e282f8e905da/debugpy-1.8.17-cp313-cp313-win_amd64.whl", hash = "sha256:6c5cd6f009ad4fca8e33e5238210dc1e5f42db07d4b6ab21ac7ffa904a196420", size = 5319047, upload-time = "2025-09-17T16:34:00.586Z" }, + { url = "https://files.pythonhosted.org/packages/de/45/115d55b2a9da6de812696064ceb505c31e952c5d89c4ed1d9bb983deec34/debugpy-1.8.17-cp314-cp314-macosx_15_0_universal2.whl", hash = "sha256:045290c010bcd2d82bc97aa2daf6837443cd52f6328592698809b4549babcee1", size = 2536899, upload-time = "2025-09-17T16:34:02.657Z" }, + { url = "https://files.pythonhosted.org/packages/5a/73/2aa00c7f1f06e997ef57dc9b23d61a92120bec1437a012afb6d176585197/debugpy-1.8.17-cp314-cp314-manylinux_2_34_x86_64.whl", hash = "sha256:b69b6bd9dba6a03632534cdf67c760625760a215ae289f7489a452af1031fe1f", size = 4268254, upload-time = "2025-09-17T16:34:04.486Z" }, + { url = "https://files.pythonhosted.org/packages/86/b5/ed3e65c63c68a6634e3ba04bd10255c8e46ec16ebed7d1c79e4816d8a760/debugpy-1.8.17-cp314-cp314-win32.whl", hash = "sha256:5c59b74aa5630f3a5194467100c3b3d1c77898f9ab27e3f7dc5d40fc2f122670", size = 5277203, upload-time = "2025-09-17T16:34:06.65Z" }, + { url = "https://files.pythonhosted.org/packages/b0/26/394276b71c7538445f29e792f589ab7379ae70fd26ff5577dfde71158e96/debugpy-1.8.17-cp314-cp314-win_amd64.whl", hash = "sha256:893cba7bb0f55161de4365584b025f7064e1f88913551bcd23be3260b231429c", size = 5318493, upload-time = "2025-09-17T16:34:08.483Z" }, + { url = "https://files.pythonhosted.org/packages/b0/d0/89247ec250369fc76db477720a26b2fce7ba079ff1380e4ab4529d2fe233/debugpy-1.8.17-py2.py3-none-any.whl", hash = "sha256:60c7dca6571efe660ccb7a9508d73ca14b8796c4ed484c2002abba714226cfef", size = 5283210, upload-time = "2025-09-17T16:34:25.835Z" }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711, upload-time = "2025-02-24T04:41:34.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190, upload-time = "2025-02-24T04:41:32.565Z" }, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/d5/c66da9b79e5bdb124974bfe172b4daf3c984ebd9c2a06e2b8a4dc7331c72/defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69", size = 75520, upload-time = "2021-03-08T10:59:26.269Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604, upload-time = "2021-03-08T10:59:24.45Z" }, +] + +[[package]] +name = "executing" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cc/28/c14e053b6762b1044f34a13aab6859bbf40456d37d23aa286ac24cfd9a5d/executing-2.2.1.tar.gz", hash = "sha256:3632cc370565f6648cc328b32435bd120a1e4ebb20c77e3fdde9a13cd1e533c4", size = 1129488, upload-time = "2025-09-01T09:48:10.866Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl", hash = "sha256:760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017", size = 28317, upload-time = "2025-09-01T09:48:08.5Z" }, +] + +[[package]] +name = "fastjsonschema" +version = "2.21.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/b5/23b216d9d985a956623b6bd12d4086b60f0059b27799f23016af04a74ea1/fastjsonschema-2.21.2.tar.gz", hash = "sha256:b1eb43748041c880796cd077f1a07c3d94e93ae84bba5ed36800a33554ae05de", size = 374130, upload-time = "2025-08-14T18:49:36.666Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl", hash = "sha256:1c797122d0a86c5cace2e54bf4e819c36223b552017172f32c5c024a6b77e463", size = 24024, upload-time = "2025-08-14T18:49:34.776Z" }, +] + +[[package]] +name = "fonttools" +version = "4.60.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823, upload-time = "2025-09-29T21:13:27.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e3/f7/a10b101b7a6f8836a5adb47f2791f2075d044a6ca123f35985c42edc82d8/fonttools-4.60.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:7b0c6d57ab00dae9529f3faf187f2254ea0aa1e04215cf2f1a8ec277c96661bc", size = 2832953, upload-time = "2025-09-29T21:11:39.616Z" }, + { url = "https://files.pythonhosted.org/packages/ed/fe/7bd094b59c926acf2304d2151354ddbeb74b94812f3dc943c231db09cb41/fonttools-4.60.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:839565cbf14645952d933853e8ade66a463684ed6ed6c9345d0faf1f0e868877", size = 2352706, upload-time = "2025-09-29T21:11:41.826Z" }, + { url = "https://files.pythonhosted.org/packages/c0/ca/4bb48a26ed95a1e7eba175535fe5805887682140ee0a0d10a88e1de84208/fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8177ec9676ea6e1793c8a084a90b65a9f778771998eb919d05db6d4b1c0b114c", size = 4923716, upload-time = "2025-09-29T21:11:43.893Z" }, + { url = "https://files.pythonhosted.org/packages/b8/9f/2cb82999f686c1d1ddf06f6ae1a9117a880adbec113611cc9d22b2fdd465/fonttools-4.60.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:996a4d1834524adbb423385d5a629b868ef9d774670856c63c9a0408a3063401", size = 4968175, upload-time = "2025-09-29T21:11:46.439Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/be569699e37d166b78e6218f2cde8c550204f2505038cdd83b42edc469b9/fonttools-4.60.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a46b2f450bc79e06ef3b6394f0c68660529ed51692606ad7f953fc2e448bc903", size = 4911031, upload-time = "2025-09-29T21:11:48.977Z" }, + { url = "https://files.pythonhosted.org/packages/cc/9f/89411cc116effaec5260ad519162f64f9c150e5522a27cbb05eb62d0c05b/fonttools-4.60.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ec722ee589e89a89f5b7574f5c45604030aa6ae24cb2c751e2707193b466fed", size = 5062966, upload-time = "2025-09-29T21:11:54.344Z" }, + { url = "https://files.pythonhosted.org/packages/62/a1/f888221934b5731d46cb9991c7a71f30cb1f97c0ef5fcf37f8da8fce6c8e/fonttools-4.60.1-cp312-cp312-win32.whl", hash = "sha256:b2cf105cee600d2de04ca3cfa1f74f1127f8455b71dbad02b9da6ec266e116d6", size = 2218750, upload-time = "2025-09-29T21:11:56.601Z" }, + { url = "https://files.pythonhosted.org/packages/88/8f/a55b5550cd33cd1028601df41acd057d4be20efa5c958f417b0c0613924d/fonttools-4.60.1-cp312-cp312-win_amd64.whl", hash = "sha256:992775c9fbe2cf794786fa0ffca7f09f564ba3499b8fe9f2f80bd7197db60383", size = 2267026, upload-time = "2025-09-29T21:11:58.852Z" }, + { url = "https://files.pythonhosted.org/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777, upload-time = "2025-09-29T21:12:01.22Z" }, + { url = "https://files.pythonhosted.org/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080, upload-time = "2025-09-29T21:12:03.785Z" }, + { url = "https://files.pythonhosted.org/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082, upload-time = "2025-09-29T21:12:06.382Z" }, + { url = "https://files.pythonhosted.org/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125, upload-time = "2025-09-29T21:12:09.314Z" }, + { url = "https://files.pythonhosted.org/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454, upload-time = "2025-09-29T21:12:11.931Z" }, + { url = "https://files.pythonhosted.org/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495, upload-time = "2025-09-29T21:12:15.241Z" }, + { url = "https://files.pythonhosted.org/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028, upload-time = "2025-09-29T21:12:17.96Z" }, + { url = "https://files.pythonhosted.org/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200, upload-time = "2025-09-29T21:12:20.14Z" }, + { url = "https://files.pythonhosted.org/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830, upload-time = "2025-09-29T21:12:24.406Z" }, + { url = "https://files.pythonhosted.org/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524, upload-time = "2025-09-29T21:12:26.819Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490, upload-time = "2025-09-29T21:12:29.123Z" }, + { url = "https://files.pythonhosted.org/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184, upload-time = "2025-09-29T21:12:31.414Z" }, + { url = "https://files.pythonhosted.org/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218, upload-time = "2025-09-29T21:12:33.936Z" }, + { url = "https://files.pythonhosted.org/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324, upload-time = "2025-09-29T21:12:36.637Z" }, + { url = "https://files.pythonhosted.org/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861, upload-time = "2025-09-29T21:12:39.108Z" }, + { url = "https://files.pythonhosted.org/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934, upload-time = "2025-09-29T21:12:41.339Z" }, + { url = "https://files.pythonhosted.org/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340, upload-time = "2025-09-29T21:12:43.774Z" }, + { url = "https://files.pythonhosted.org/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073, upload-time = "2025-09-29T21:12:46.437Z" }, + { url = "https://files.pythonhosted.org/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758, upload-time = "2025-09-29T21:12:48.694Z" }, + { url = "https://files.pythonhosted.org/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598, upload-time = "2025-09-29T21:12:51.081Z" }, + { url = "https://files.pythonhosted.org/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603, upload-time = "2025-09-29T21:12:53.423Z" }, + { url = "https://files.pythonhosted.org/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184, upload-time = "2025-09-29T21:12:55.962Z" }, + { url = "https://files.pythonhosted.org/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241, upload-time = "2025-09-29T21:12:58.179Z" }, + { url = "https://files.pythonhosted.org/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760, upload-time = "2025-09-29T21:13:00.375Z" }, + { url = "https://files.pythonhosted.org/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175, upload-time = "2025-09-29T21:13:24.134Z" }, +] + +[[package]] +name = "fqdn" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/30/3e/a80a8c077fd798951169626cde3e239adeba7dab75deb3555716415bd9b0/fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f", size = 6015, upload-time = "2021-03-11T07:16:29.08Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014", size = 9121, upload-time = "2021-03-11T07:16:28.351Z" }, +] + +[[package]] +name = "greenlet" +version = "3.2.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/03/b8/704d753a5a45507a7aab61f18db9509302ed3d0a27ac7e0359ec2905b1a6/greenlet-3.2.4.tar.gz", hash = "sha256:0dca0d95ff849f9a364385f36ab49f50065d76964944638be9691e1832e9f86d", size = 188260, upload-time = "2025-08-07T13:24:33.51Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/69/9b804adb5fd0671f367781560eb5eb586c4d495277c93bde4307b9e28068/greenlet-3.2.4-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3b67ca49f54cede0186854a008109d6ee71f66bd57bb36abd6d0a0267b540cdd", size = 274079, upload-time = "2025-08-07T13:15:45.033Z" }, + { url = "https://files.pythonhosted.org/packages/46/e9/d2a80c99f19a153eff70bc451ab78615583b8dac0754cfb942223d2c1a0d/greenlet-3.2.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ddf9164e7a5b08e9d22511526865780a576f19ddd00d62f8a665949327fde8bb", size = 640997, upload-time = "2025-08-07T13:42:56.234Z" }, + { url = "https://files.pythonhosted.org/packages/3b/16/035dcfcc48715ccd345f3a93183267167cdd162ad123cd93067d86f27ce4/greenlet-3.2.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f28588772bb5fb869a8eb331374ec06f24a83a9c25bfa1f38b6993afe9c1e968", size = 655185, upload-time = "2025-08-07T13:45:27.624Z" }, + { url = "https://files.pythonhosted.org/packages/31/da/0386695eef69ffae1ad726881571dfe28b41970173947e7c558d9998de0f/greenlet-3.2.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:5c9320971821a7cb77cfab8d956fa8e39cd07ca44b6070db358ceb7f8797c8c9", size = 649926, upload-time = "2025-08-07T13:53:15.251Z" }, + { url = "https://files.pythonhosted.org/packages/68/88/69bf19fd4dc19981928ceacbc5fd4bb6bc2215d53199e367832e98d1d8fe/greenlet-3.2.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c60a6d84229b271d44b70fb6e5fa23781abb5d742af7b808ae3f6efd7c9c60f6", size = 651839, upload-time = "2025-08-07T13:18:30.281Z" }, + { url = "https://files.pythonhosted.org/packages/19/0d/6660d55f7373b2ff8152401a83e02084956da23ae58cddbfb0b330978fe9/greenlet-3.2.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3b3812d8d0c9579967815af437d96623f45c0f2ae5f04e366de62a12d83a8fb0", size = 607586, upload-time = "2025-08-07T13:18:28.544Z" }, + { url = "https://files.pythonhosted.org/packages/8e/1a/c953fdedd22d81ee4629afbb38d2f9d71e37d23caace44775a3a969147d4/greenlet-3.2.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:abbf57b5a870d30c4675928c37278493044d7c14378350b3aa5d484fa65575f0", size = 1123281, upload-time = "2025-08-07T13:42:39.858Z" }, + { url = "https://files.pythonhosted.org/packages/3f/c7/12381b18e21aef2c6bd3a636da1088b888b97b7a0362fac2e4de92405f97/greenlet-3.2.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:20fb936b4652b6e307b8f347665e2c615540d4b42b3b4c8a321d8286da7e520f", size = 1151142, upload-time = "2025-08-07T13:18:22.981Z" }, + { url = "https://files.pythonhosted.org/packages/27/45/80935968b53cfd3f33cf99ea5f08227f2646e044568c9b1555b58ffd61c2/greenlet-3.2.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ee7a6ec486883397d70eec05059353b8e83eca9168b9f3f9a361971e77e0bcd0", size = 1564846, upload-time = "2025-11-04T12:42:15.191Z" }, + { url = "https://files.pythonhosted.org/packages/69/02/b7c30e5e04752cb4db6202a3858b149c0710e5453b71a3b2aec5d78a1aab/greenlet-3.2.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:326d234cbf337c9c3def0676412eb7040a35a768efc92504b947b3e9cfc7543d", size = 1633814, upload-time = "2025-11-04T12:42:17.175Z" }, + { url = "https://files.pythonhosted.org/packages/e9/08/b0814846b79399e585f974bbeebf5580fbe59e258ea7be64d9dfb253c84f/greenlet-3.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:a7d4e128405eea3814a12cc2605e0e6aedb4035bf32697f72deca74de4105e02", size = 299899, upload-time = "2025-08-07T13:38:53.448Z" }, + { url = "https://files.pythonhosted.org/packages/49/e8/58c7f85958bda41dafea50497cbd59738c5c43dbbea5ee83d651234398f4/greenlet-3.2.4-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:1a921e542453fe531144e91e1feedf12e07351b1cf6c9e8a3325ea600a715a31", size = 272814, upload-time = "2025-08-07T13:15:50.011Z" }, + { url = "https://files.pythonhosted.org/packages/62/dd/b9f59862e9e257a16e4e610480cfffd29e3fae018a68c2332090b53aac3d/greenlet-3.2.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd3c8e693bff0fff6ba55f140bf390fa92c994083f838fece0f63be121334945", size = 641073, upload-time = "2025-08-07T13:42:57.23Z" }, + { url = "https://files.pythonhosted.org/packages/f7/0b/bc13f787394920b23073ca3b6c4a7a21396301ed75a655bcb47196b50e6e/greenlet-3.2.4-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:710638eb93b1fa52823aa91bf75326f9ecdfd5e0466f00789246a5280f4ba0fc", size = 655191, upload-time = "2025-08-07T13:45:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/f2/d6/6adde57d1345a8d0f14d31e4ab9c23cfe8e2cd39c3baf7674b4b0338d266/greenlet-3.2.4-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:c5111ccdc9c88f423426df3fd1811bfc40ed66264d35aa373420a34377efc98a", size = 649516, upload-time = "2025-08-07T13:53:16.314Z" }, + { url = "https://files.pythonhosted.org/packages/7f/3b/3a3328a788d4a473889a2d403199932be55b1b0060f4ddd96ee7cdfcad10/greenlet-3.2.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d76383238584e9711e20ebe14db6c88ddcedc1829a9ad31a584389463b5aa504", size = 652169, upload-time = "2025-08-07T13:18:32.861Z" }, + { url = "https://files.pythonhosted.org/packages/ee/43/3cecdc0349359e1a527cbf2e3e28e5f8f06d3343aaf82ca13437a9aa290f/greenlet-3.2.4-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:23768528f2911bcd7e475210822ffb5254ed10d71f4028387e5a99b4c6699671", size = 610497, upload-time = "2025-08-07T13:18:31.636Z" }, + { url = "https://files.pythonhosted.org/packages/b8/19/06b6cf5d604e2c382a6f31cafafd6f33d5dea706f4db7bdab184bad2b21d/greenlet-3.2.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:00fadb3fedccc447f517ee0d3fd8fe49eae949e1cd0f6a611818f4f6fb7dc83b", size = 1121662, upload-time = "2025-08-07T13:42:41.117Z" }, + { url = "https://files.pythonhosted.org/packages/a2/15/0d5e4e1a66fab130d98168fe984c509249c833c1a3c16806b90f253ce7b9/greenlet-3.2.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:d25c5091190f2dc0eaa3f950252122edbbadbb682aa7b1ef2f8af0f8c0afefae", size = 1149210, upload-time = "2025-08-07T13:18:24.072Z" }, + { url = "https://files.pythonhosted.org/packages/1c/53/f9c440463b3057485b8594d7a638bed53ba531165ef0ca0e6c364b5cc807/greenlet-3.2.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e343822feb58ac4d0a1211bd9399de2b3a04963ddeec21530fc426cc121f19b", size = 1564759, upload-time = "2025-11-04T12:42:19.395Z" }, + { url = "https://files.pythonhosted.org/packages/47/e4/3bb4240abdd0a8d23f4f88adec746a3099f0d86bfedb623f063b2e3b4df0/greenlet-3.2.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca7f6f1f2649b89ce02f6f229d7c19f680a6238af656f61e0115b24857917929", size = 1634288, upload-time = "2025-11-04T12:42:21.174Z" }, + { url = "https://files.pythonhosted.org/packages/0b/55/2321e43595e6801e105fcfdee02b34c0f996eb71e6ddffca6b10b7e1d771/greenlet-3.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:554b03b6e73aaabec3745364d6239e9e012d64c68ccd0b8430c64ccc14939a8b", size = 299685, upload-time = "2025-08-07T13:24:38.824Z" }, + { url = "https://files.pythonhosted.org/packages/22/5c/85273fd7cc388285632b0498dbbab97596e04b154933dfe0f3e68156c68c/greenlet-3.2.4-cp314-cp314-macosx_11_0_universal2.whl", hash = "sha256:49a30d5fda2507ae77be16479bdb62a660fa51b1eb4928b524975b3bde77b3c0", size = 273586, upload-time = "2025-08-07T13:16:08.004Z" }, + { url = "https://files.pythonhosted.org/packages/d1/75/10aeeaa3da9332c2e761e4c50d4c3556c21113ee3f0afa2cf5769946f7a3/greenlet-3.2.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:299fd615cd8fc86267b47597123e3f43ad79c9d8a22bebdce535e53550763e2f", size = 686346, upload-time = "2025-08-07T13:42:59.944Z" }, + { url = "https://files.pythonhosted.org/packages/c0/aa/687d6b12ffb505a4447567d1f3abea23bd20e73a5bed63871178e0831b7a/greenlet-3.2.4-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:c17b6b34111ea72fc5a4e4beec9711d2226285f0386ea83477cbb97c30a3f3a5", size = 699218, upload-time = "2025-08-07T13:45:30.969Z" }, + { url = "https://files.pythonhosted.org/packages/dc/8b/29aae55436521f1d6f8ff4e12fb676f3400de7fcf27fccd1d4d17fd8fecd/greenlet-3.2.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b4a1870c51720687af7fa3e7cda6d08d801dae660f75a76f3845b642b4da6ee1", size = 694659, upload-time = "2025-08-07T13:53:17.759Z" }, + { url = "https://files.pythonhosted.org/packages/92/2e/ea25914b1ebfde93b6fc4ff46d6864564fba59024e928bdc7de475affc25/greenlet-3.2.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:061dc4cf2c34852b052a8620d40f36324554bc192be474b9e9770e8c042fd735", size = 695355, upload-time = "2025-08-07T13:18:34.517Z" }, + { url = "https://files.pythonhosted.org/packages/72/60/fc56c62046ec17f6b0d3060564562c64c862948c9d4bc8aa807cf5bd74f4/greenlet-3.2.4-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:44358b9bf66c8576a9f57a590d5f5d6e72fa4228b763d0e43fee6d3b06d3a337", size = 657512, upload-time = "2025-08-07T13:18:33.969Z" }, + { url = "https://files.pythonhosted.org/packages/23/6e/74407aed965a4ab6ddd93a7ded3180b730d281c77b765788419484cdfeef/greenlet-3.2.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:2917bdf657f5859fbf3386b12d68ede4cf1f04c90c3a6bc1f013dd68a22e2269", size = 1612508, upload-time = "2025-11-04T12:42:23.427Z" }, + { url = "https://files.pythonhosted.org/packages/0d/da/343cd760ab2f92bac1845ca07ee3faea9fe52bee65f7bcb19f16ad7de08b/greenlet-3.2.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:015d48959d4add5d6c9f6c5210ee3803a830dce46356e3bc326d6776bde54681", size = 1680760, upload-time = "2025-11-04T12:42:25.341Z" }, + { url = "https://files.pythonhosted.org/packages/e3/a5/6ddab2b4c112be95601c13428db1d8b6608a8b6039816f2ba09c346c08fc/greenlet-3.2.4-cp314-cp314-win_amd64.whl", hash = "sha256:e37ab26028f12dbb0ff65f29a8d3d44a765c61e729647bf2ddfbbed621726f01", size = 303425, upload-time = "2025-08-07T13:32:27.59Z" }, +] + +[[package]] +name = "h11" +version = "0.16.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/01/ee/02a2c011bdab74c6fb3c75474d40b3052059d95df7e73351460c8588d963/h11-0.16.0.tar.gz", hash = "sha256:4e35b956cf45792e4caa5885e69fba00bdbc6ffafbfa020300e549b208ee5ff1", size = 101250, upload-time = "2025-04-24T03:35:25.427Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl", hash = "sha256:63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86", size = 37515, upload-time = "2025-04-24T03:35:24.344Z" }, +] + +[[package]] +name = "httpcore" +version = "1.0.9" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "h11" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/06/94/82699a10bca87a5556c9c59b5963f2d039dbd239f25bc2a63907a05a14cb/httpcore-1.0.9.tar.gz", hash = "sha256:6e34463af53fd2ab5d807f399a9b45ea31c3dfa2276f15a2c3f00afff6e176e8", size = 85484, upload-time = "2025-04-24T22:06:22.219Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl", hash = "sha256:2d400746a40668fc9dec9810239072b40b4484b640a8c38fd654a024c7a1bf55", size = 78784, upload-time = "2025-04-24T22:06:20.566Z" }, +] + +[[package]] +name = "httpx" +version = "0.28.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "certifi" }, + { name = "httpcore" }, + { name = "idna" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/df/48c586a5fe32a0f01324ee087459e112ebb7224f646c0b5023f5e79e9956/httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc", size = 141406, upload-time = "2024-12-06T15:37:23.222Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad", size = 73517, upload-time = "2024-12-06T15:37:21.509Z" }, +] + +[[package]] +name = "idna" +version = "3.11" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6f/6d/0703ccc57f3a7233505399edb88de3cbd678da106337b9fcde432b65ed60/idna-3.11.tar.gz", hash = "sha256:795dafcc9c04ed0c1fb032c2aa73654d8e8c5023a7df64a53f39190ada629902", size = 194582, upload-time = "2025-10-12T14:55:20.501Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008, upload-time = "2025-10-12T14:55:18.883Z" }, +] + +[[package]] +name = "iniconfig" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/34/14ca021ce8e5dfedc35312d08ba8bf51fdd999c576889fc2c24cb97f4f10/iniconfig-2.3.0.tar.gz", hash = "sha256:c76315c77db068650d49c5b56314774a7804df16fee4402c1f19d6d15d8c4730", size = 20503, upload-time = "2025-10-18T21:55:43.219Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl", hash = "sha256:f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12", size = 7484, upload-time = "2025-10-18T21:55:41.639Z" }, +] + +[[package]] +name = "ipykernel" +version = "7.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/a4/4948be6eb88628505b83a1f2f40d90254cab66abf2043b3c40fa07dfce0f/ipykernel-7.1.0.tar.gz", hash = "sha256:58a3fc88533d5930c3546dc7eac66c6d288acde4f801e2001e65edc5dc9cf0db", size = 174579, upload-time = "2025-10-27T09:46:39.471Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl", hash = "sha256:763b5ec6c5b7776f6a8d7ce09b267693b4e5ce75cb50ae696aaefb3c85e1ea4c", size = 117968, upload-time = "2025-10-27T09:46:37.805Z" }, +] + +[[package]] +name = "ipython" +version = "9.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "ipython-pygments-lexers" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/29/e6/48c74d54039241a456add616464ea28c6ebf782e4110d419411b83dae06f/ipython-9.7.0.tar.gz", hash = "sha256:5f6de88c905a566c6a9d6c400a8fed54a638e1f7543d17aae2551133216b1e4e", size = 4422115, upload-time = "2025-11-05T12:18:54.646Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/aa/62893d6a591d337aa59dcc4c6f6c842f1fe20cd72c8c5c1f980255243252/ipython-9.7.0-py3-none-any.whl", hash = "sha256:bce8ac85eb9521adc94e1845b4c03d88365fd6ac2f4908ec4ed1eb1b0a065f9f", size = 618911, upload-time = "2025-11-05T12:18:52.484Z" }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393, upload-time = "2025-01-17T11:24:34.505Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074, upload-time = "2025-01-17T11:24:33.271Z" }, +] + +[[package]] +name = "ipywidgets" +version = "8.1.8" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "comm" }, + { name = "ipython" }, + { name = "jupyterlab-widgets" }, + { name = "traitlets" }, + { name = "widgetsnbextension" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/4c/ae/c5ce1edc1afe042eadb445e95b0671b03cee61895264357956e61c0d2ac0/ipywidgets-8.1.8.tar.gz", hash = "sha256:61f969306b95f85fba6b6986b7fe45d73124d1d9e3023a8068710d47a22ea668", size = 116739, upload-time = "2025-11-01T21:18:12.393Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl", hash = "sha256:ecaca67aed704a338f88f67b1181b58f821ab5dc89c1f0f5ef99db43c1c2921e", size = 139808, upload-time = "2025-11-01T21:18:10.956Z" }, +] + +[[package]] +name = "isoduration" +version = "20.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "arrow" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/1a/3c8edc664e06e6bd06cce40c6b22da5f1429aa4224d0c590f3be21c91ead/isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9", size = 11649, upload-time = "2020-11-01T11:00:00.312Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042", size = 11321, upload-time = "2020-11-01T10:59:58.02Z" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287, upload-time = "2024-11-11T01:41:42.873Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278, upload-time = "2024-11-11T01:41:40.175Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + +[[package]] +name = "json5" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/12/ae/929aee9619e9eba9015207a9d2c1c54db18311da7eb4dcf6d41ad6f0eb67/json5-0.12.1.tar.gz", hash = "sha256:b2743e77b3242f8d03c143dd975a6ec7c52e2f2afe76ed934e53503dd4ad4990", size = 52191, upload-time = "2025-08-12T19:47:42.583Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/85/e2/05328bd2621be49a6fed9e3030b1e51a2d04537d3f816d211b9cc53c5262/json5-0.12.1-py3-none-any.whl", hash = "sha256:d9c9b3bc34a5f54d43c35e11ef7cb87d8bdd098c6ace87117a7b7e83e705c1d5", size = 36119, upload-time = "2025-08-12T19:47:41.131Z" }, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/0a/eebeb1fa92507ea94016a2a790b93c2ae41a7e18778f85471dc54475ed25/jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef", size = 9114, upload-time = "2024-06-10T19:24:42.462Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942", size = 7595, upload-time = "2024-06-10T19:24:40.698Z" }, +] + +[[package]] +name = "jsonschema" +version = "4.25.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/74/69/f7185de793a29082a9f3c7728268ffb31cb5095131a9c139a74078e27336/jsonschema-4.25.1.tar.gz", hash = "sha256:e4a9655ce0da0c0b67a085847e00a3a51449e1157f4f75e9fb5aa545e122eb85", size = 357342, upload-time = "2025-08-18T17:03:50.038Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bf/9c/8c95d856233c1f82500c2450b8c68576b4cf1c871db3afac5c34ff84e6fd/jsonschema-4.25.1-py3-none-any.whl", hash = "sha256:3fba0169e345c7175110351d456342c364814cfcf3b964ba4587f22915230a63", size = 90040, upload-time = "2025-08-18T17:03:48.373Z" }, +] + +[package.optional-dependencies] +format-nongpl = [ + { name = "fqdn" }, + { name = "idna" }, + { name = "isoduration" }, + { name = "jsonpointer" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "rfc3987-syntax" }, + { name = "uri-template" }, + { name = "webcolors" }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2025.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/74/a633ee74eb36c44aa6d1095e7cc5569bebf04342ee146178e2d36600708b/jsonschema_specifications-2025.9.1.tar.gz", hash = "sha256:b540987f239e745613c7a9176f3edb72b832a4ac465cf02712288397832b5e8d", size = 32855, upload-time = "2025-09-08T01:34:59.186Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl", hash = "sha256:98802fee3a11ee76ecaca44429fda8a41bff98b00a0f2838151b113f210cc6fe", size = 18437, upload-time = "2025-09-08T01:34:57.871Z" }, +] + +[[package]] +name = "jupyter" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipywidgets" }, + { name = "jupyter-console" }, + { name = "jupyterlab" }, + { name = "nbconvert" }, + { name = "notebook" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/f3/af28ea964ab8bc1e472dba2e82627d36d470c51f5cd38c37502eeffaa25e/jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a", size = 5714959, upload-time = "2024-08-30T07:15:48.299Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/64/285f20a31679bf547b75602702f7800e74dbabae36ef324f716c02804753/jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83", size = 2657, upload-time = "2024-08-30T07:15:47.045Z" }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019, upload-time = "2024-09-17T10:44:17.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105, upload-time = "2024-09-17T10:44:15.218Z" }, +] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "pyzmq" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bd/2d/e2fd31e2fc41c14e2bcb6c976ab732597e907523f6b2420305f9fc7fdbdb/jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539", size = 34363, upload-time = "2023-03-06T14:13:31.02Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ca/77/71d78d58f15c22db16328a476426f7ac4a60d3a5a7ba3b9627ee2f7903d4/jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485", size = 24510, upload-time = "2023-03-06T14:13:28.229Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/02/49/9d1284d0dc65e2c757b74c6687b6d319b02f822ad039e5c512df9194d9dd/jupyter_core-5.9.1.tar.gz", hash = "sha256:4d09aaff303b9566c3ce657f580bd089ff5c91f5f89cf7d8846c3cdf465b5508", size = 89814, upload-time = "2025-10-16T19:19:18.444Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl", hash = "sha256:ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407", size = 29032, upload-time = "2025-10-16T19:19:16.783Z" }, +] + +[[package]] +name = "jupyter-events" +version = "0.12.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "packaging" }, + { name = "python-json-logger" }, + { name = "pyyaml" }, + { name = "referencing" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9d/c3/306d090461e4cf3cd91eceaff84bede12a8e52cd821c2d20c9a4fd728385/jupyter_events-0.12.0.tar.gz", hash = "sha256:fc3fce98865f6784c9cd0a56a20644fc6098f21c8c33834a8d9fe383c17e554b", size = 62196, upload-time = "2025-02-03T17:23:41.485Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl", hash = "sha256:6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb", size = 19430, upload-time = "2025-02-03T17:23:38.643Z" }, +] + +[[package]] +name = "jupyter-lsp" +version = "2.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/5a/9066c9f8e94ee517133cd98dba393459a16cd48bba71a82f16a65415206c/jupyter_lsp-2.3.0.tar.gz", hash = "sha256:458aa59339dc868fb784d73364f17dbce8836e906cd75fd471a325cba02e0245", size = 54823, upload-time = "2025-08-27T17:47:34.671Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl", hash = "sha256:e914a3cb2addf48b1c7710914771aaf1819d46b2e5a79b0f917b5478ec93f34f", size = 76687, upload-time = "2025-08-27T17:47:33.15Z" }, +] + +[[package]] +name = "jupyter-server" +version = "2.17.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "argon2-cffi" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "jupyter-events" }, + { name = "jupyter-server-terminals" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "prometheus-client" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, + { name = "websocket-client" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5b/ac/e040ec363d7b6b1f11304cc9f209dac4517ece5d5e01821366b924a64a50/jupyter_server-2.17.0.tar.gz", hash = "sha256:c38ea898566964c888b4772ae1ed58eca84592e88251d2cfc4d171f81f7e99d5", size = 731949, upload-time = "2025-08-21T14:42:54.042Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl", hash = "sha256:e8cb9c7db4251f51ed307e329b81b72ccf2056ff82d50524debde1ee1870e13f", size = 388221, upload-time = "2025-08-21T14:42:52.034Z" }, +] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "terminado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/d5/562469734f476159e99a55426d697cbf8e7eb5efe89fb0e0b4f83a3d3459/jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269", size = 31430, upload-time = "2024-03-12T14:37:03.049Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa", size = 13656, upload-time = "2024-03-12T14:37:00.708Z" }, +] + +[[package]] +name = "jupyterlab" +version = "4.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "async-lru" }, + { name = "httpx" }, + { name = "ipykernel" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyter-lsp" }, + { name = "jupyter-server" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "packaging" }, + { name = "setuptools" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/e5/4fa382a796a6d8e2cd867816b64f1ff27f906e43a7a83ad9eb389e448cd8/jupyterlab-4.5.0.tar.gz", hash = "sha256:aec33d6d8f1225b495ee2cf20f0514f45e6df8e360bdd7ac9bace0b7ac5177ea", size = 23989880, upload-time = "2025-11-18T13:19:00.365Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6c/1e/5a4d5498eba382fee667ed797cf64ae5d1b13b04356df62f067f48bb0f61/jupyterlab-4.5.0-py3-none-any.whl", hash = "sha256:88e157c75c1afff64c7dc4b801ec471450b922a4eae4305211ddd40da8201c8a", size = 12380641, upload-time = "2025-11-18T13:18:56.252Z" }, +] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900, upload-time = "2023-11-23T09:26:37.44Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884, upload-time = "2023-11-23T09:26:34.325Z" }, +] + +[[package]] +name = "jupyterlab-server" +version = "2.28.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "jinja2" }, + { name = "json5" }, + { name = "jsonschema" }, + { name = "jupyter-server" }, + { name = "packaging" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d6/2c/90153f189e421e93c4bb4f9e3f59802a1f01abd2ac5cf40b152d7f735232/jupyterlab_server-2.28.0.tar.gz", hash = "sha256:35baa81898b15f93573e2deca50d11ac0ae407ebb688299d3a5213265033712c", size = 76996, upload-time = "2025-10-22T13:59:18.37Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl", hash = "sha256:e4355b148fdcf34d312bbbc80f22467d6d20460e8b8736bf235577dd18506968", size = 59830, upload-time = "2025-10-22T13:59:16.767Z" }, +] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.16" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/26/2d/ef58fed122b268c69c0aa099da20bc67657cdfb2e222688d5731bd5b971d/jupyterlab_widgets-3.0.16.tar.gz", hash = "sha256:423da05071d55cf27a9e602216d35a3a65a3e41cdf9c5d3b643b814ce38c19e0", size = 897423, upload-time = "2025-11-01T21:11:29.724Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl", hash = "sha256:45fa36d9c6422cf2559198e4db481aa243c7a32d9926b500781c830c80f7ecf8", size = 914926, upload-time = "2025-11-01T21:11:28.008Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686, upload-time = "2025-08-10T21:26:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460, upload-time = "2025-08-10T21:26:11.083Z" }, + { url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952, upload-time = "2025-08-10T21:26:12.058Z" }, + { url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756, upload-time = "2025-08-10T21:26:13.096Z" }, + { url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404, upload-time = "2025-08-10T21:26:14.457Z" }, + { url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410, upload-time = "2025-08-10T21:26:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631, upload-time = "2025-08-10T21:26:17.045Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963, upload-time = "2025-08-10T21:26:18.737Z" }, + { url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295, upload-time = "2025-08-10T21:26:20.11Z" }, + { url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987, upload-time = "2025-08-10T21:26:21.49Z" }, + { url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817, upload-time = "2025-08-10T21:26:22.812Z" }, + { url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895, upload-time = "2025-08-10T21:26:24.37Z" }, + { url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992, upload-time = "2025-08-10T21:26:25.732Z" }, + { url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" }, + { url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" }, + { url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" }, + { url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" }, + { url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" }, + { url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" }, + { url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" }, + { url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" }, + { url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" }, + { url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" }, + { url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" }, + { url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" }, + { url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" }, + { url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" }, + { url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" }, + { url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" }, + { url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" }, + { url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" }, + { url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" }, + { url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" }, + { url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" }, + { url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" }, + { url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" }, + { url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" }, + { url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" }, + { url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" }, + { url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" }, + { url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" }, + { url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" }, + { url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" }, + { url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" }, + { url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" }, + { url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" }, + { url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" }, + { url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" }, + { url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" }, + { url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" }, + { url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" }, + { url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" }, + { url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" }, +] + +[[package]] +name = "lark" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/34/28fff3ab31ccff1fd4f6c7c7b0ceb2b6968d8ea4950663eadcb5720591a0/lark-1.3.1.tar.gz", hash = "sha256:b426a7a6d6d53189d318f2b6236ab5d6429eaf09259f1ca33eb716eed10d2905", size = 382732, upload-time = "2025-10-27T18:25:56.653Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl", hash = "sha256:c629b661023a014c37da873b4ff58a817398d12635d3bbb2c5a03be7fe5d1e12", size = 113151, upload-time = "2025-10-27T18:25:54.882Z" }, +] + +[[package]] +name = "lxml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/aa/88/262177de60548e5a2bfc46ad28232c9e9cbde697bd94132aeb80364675cb/lxml-6.0.2.tar.gz", hash = "sha256:cd79f3367bd74b317dda655dc8fcfa304d9eb6e4fb06b7168c5cf27f96e0cd62", size = 4073426, upload-time = "2025-09-22T04:04:59.287Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f3/c8/8ff2bc6b920c84355146cd1ab7d181bc543b89241cfb1ebee824a7c81457/lxml-6.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a59f5448ba2ceccd06995c95ea59a7674a10de0810f2ce90c9006f3cbc044456", size = 8661887, upload-time = "2025-09-22T04:01:17.265Z" }, + { url = "https://files.pythonhosted.org/packages/37/6f/9aae1008083bb501ef63284220ce81638332f9ccbfa53765b2b7502203cf/lxml-6.0.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e8113639f3296706fbac34a30813929e29247718e88173ad849f57ca59754924", size = 4667818, upload-time = "2025-09-22T04:01:19.688Z" }, + { url = "https://files.pythonhosted.org/packages/f1/ca/31fb37f99f37f1536c133476674c10b577e409c0a624384147653e38baf2/lxml-6.0.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:a8bef9b9825fa8bc816a6e641bb67219489229ebc648be422af695f6e7a4fa7f", size = 4950807, upload-time = "2025-09-22T04:01:21.487Z" }, + { url = "https://files.pythonhosted.org/packages/da/87/f6cb9442e4bada8aab5ae7e1046264f62fdbeaa6e3f6211b93f4c0dd97f1/lxml-6.0.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:65ea18d710fd14e0186c2f973dc60bb52039a275f82d3c44a0e42b43440ea534", size = 5109179, upload-time = "2025-09-22T04:01:23.32Z" }, + { url = "https://files.pythonhosted.org/packages/c8/20/a7760713e65888db79bbae4f6146a6ae5c04e4a204a3c48896c408cd6ed2/lxml-6.0.2-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c371aa98126a0d4c739ca93ceffa0fd7a5d732e3ac66a46e74339acd4d334564", size = 5023044, upload-time = "2025-09-22T04:01:25.118Z" }, + { url = "https://files.pythonhosted.org/packages/a2/b0/7e64e0460fcb36471899f75831509098f3fd7cd02a3833ac517433cb4f8f/lxml-6.0.2-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:700efd30c0fa1a3581d80a748157397559396090a51d306ea59a70020223d16f", size = 5359685, upload-time = "2025-09-22T04:01:27.398Z" }, + { url = "https://files.pythonhosted.org/packages/b9/e1/e5df362e9ca4e2f48ed6411bd4b3a0ae737cc842e96877f5bf9428055ab4/lxml-6.0.2-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c33e66d44fe60e72397b487ee92e01da0d09ba2d66df8eae42d77b6d06e5eba0", size = 5654127, upload-time = "2025-09-22T04:01:29.629Z" }, + { url = "https://files.pythonhosted.org/packages/c6/d1/232b3309a02d60f11e71857778bfcd4acbdb86c07db8260caf7d008b08f8/lxml-6.0.2-cp312-cp312-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:90a345bbeaf9d0587a3aaffb7006aa39ccb6ff0e96a57286c0cb2fd1520ea192", size = 5253958, upload-time = "2025-09-22T04:01:31.535Z" }, + { url = "https://files.pythonhosted.org/packages/35/35/d955a070994725c4f7d80583a96cab9c107c57a125b20bb5f708fe941011/lxml-6.0.2-cp312-cp312-manylinux_2_31_armv7l.whl", hash = "sha256:064fdadaf7a21af3ed1dcaa106b854077fbeada827c18f72aec9346847cd65d0", size = 4711541, upload-time = "2025-09-22T04:01:33.801Z" }, + { url = "https://files.pythonhosted.org/packages/1e/be/667d17363b38a78c4bd63cfd4b4632029fd68d2c2dc81f25ce9eb5224dd5/lxml-6.0.2-cp312-cp312-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:fbc74f42c3525ac4ffa4b89cbdd00057b6196bcefe8bce794abd42d33a018092", size = 5267426, upload-time = "2025-09-22T04:01:35.639Z" }, + { url = "https://files.pythonhosted.org/packages/ea/47/62c70aa4a1c26569bc958c9ca86af2bb4e1f614e8c04fb2989833874f7ae/lxml-6.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6ddff43f702905a4e32bc24f3f2e2edfe0f8fde3277d481bffb709a4cced7a1f", size = 5064917, upload-time = "2025-09-22T04:01:37.448Z" }, + { url = "https://files.pythonhosted.org/packages/bd/55/6ceddaca353ebd0f1908ef712c597f8570cc9c58130dbb89903198e441fd/lxml-6.0.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:6da5185951d72e6f5352166e3da7b0dc27aa70bd1090b0eb3f7f7212b53f1bb8", size = 4788795, upload-time = "2025-09-22T04:01:39.165Z" }, + { url = "https://files.pythonhosted.org/packages/cf/e8/fd63e15da5e3fd4c2146f8bbb3c14e94ab850589beab88e547b2dbce22e1/lxml-6.0.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:57a86e1ebb4020a38d295c04fc79603c7899e0df71588043eb218722dabc087f", size = 5676759, upload-time = "2025-09-22T04:01:41.506Z" }, + { url = "https://files.pythonhosted.org/packages/76/47/b3ec58dc5c374697f5ba37412cd2728f427d056315d124dd4b61da381877/lxml-6.0.2-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:2047d8234fe735ab77802ce5f2297e410ff40f5238aec569ad7c8e163d7b19a6", size = 5255666, upload-time = "2025-09-22T04:01:43.363Z" }, + { url = "https://files.pythonhosted.org/packages/19/93/03ba725df4c3d72afd9596eef4a37a837ce8e4806010569bedfcd2cb68fd/lxml-6.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6f91fd2b2ea15a6800c8e24418c0775a1694eefc011392da73bc6cef2623b322", size = 5277989, upload-time = "2025-09-22T04:01:45.215Z" }, + { url = "https://files.pythonhosted.org/packages/c6/80/c06de80bfce881d0ad738576f243911fccf992687ae09fd80b734712b39c/lxml-6.0.2-cp312-cp312-win32.whl", hash = "sha256:3ae2ce7d6fedfb3414a2b6c5e20b249c4c607f72cb8d2bb7cc9c6ec7c6f4e849", size = 3611456, upload-time = "2025-09-22T04:01:48.243Z" }, + { url = "https://files.pythonhosted.org/packages/f7/d7/0cdfb6c3e30893463fb3d1e52bc5f5f99684a03c29a0b6b605cfae879cd5/lxml-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:72c87e5ee4e58a8354fb9c7c84cbf95a1c8236c127a5d1b7683f04bed8361e1f", size = 4011793, upload-time = "2025-09-22T04:01:50.042Z" }, + { url = "https://files.pythonhosted.org/packages/ea/7b/93c73c67db235931527301ed3785f849c78991e2e34f3fd9a6663ffda4c5/lxml-6.0.2-cp312-cp312-win_arm64.whl", hash = "sha256:61cb10eeb95570153e0c0e554f58df92ecf5109f75eacad4a95baa709e26c3d6", size = 3672836, upload-time = "2025-09-22T04:01:52.145Z" }, + { url = "https://files.pythonhosted.org/packages/53/fd/4e8f0540608977aea078bf6d79f128e0e2c2bba8af1acf775c30baa70460/lxml-6.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:9b33d21594afab46f37ae58dfadd06636f154923c4e8a4d754b0127554eb2e77", size = 8648494, upload-time = "2025-09-22T04:01:54.242Z" }, + { url = "https://files.pythonhosted.org/packages/5d/f4/2a94a3d3dfd6c6b433501b8d470a1960a20ecce93245cf2db1706adf6c19/lxml-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:6c8963287d7a4c5c9a432ff487c52e9c5618667179c18a204bdedb27310f022f", size = 4661146, upload-time = "2025-09-22T04:01:56.282Z" }, + { url = "https://files.pythonhosted.org/packages/25/2e/4efa677fa6b322013035d38016f6ae859d06cac67437ca7dc708a6af7028/lxml-6.0.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1941354d92699fb5ffe6ed7b32f9649e43c2feb4b97205f75866f7d21aa91452", size = 4946932, upload-time = "2025-09-22T04:01:58.989Z" }, + { url = "https://files.pythonhosted.org/packages/ce/0f/526e78a6d38d109fdbaa5049c62e1d32fdd70c75fb61c4eadf3045d3d124/lxml-6.0.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bb2f6ca0ae2d983ded09357b84af659c954722bbf04dea98030064996d156048", size = 5100060, upload-time = "2025-09-22T04:02:00.812Z" }, + { url = "https://files.pythonhosted.org/packages/81/76/99de58d81fa702cc0ea7edae4f4640416c2062813a00ff24bd70ac1d9c9b/lxml-6.0.2-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:eb2a12d704f180a902d7fa778c6d71f36ceb7b0d317f34cdc76a5d05aa1dd1df", size = 5019000, upload-time = "2025-09-22T04:02:02.671Z" }, + { url = "https://files.pythonhosted.org/packages/b5/35/9e57d25482bc9a9882cb0037fdb9cc18f4b79d85df94fa9d2a89562f1d25/lxml-6.0.2-cp313-cp313-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:6ec0e3f745021bfed19c456647f0298d60a24c9ff86d9d051f52b509663feeb1", size = 5348496, upload-time = "2025-09-22T04:02:04.904Z" }, + { url = "https://files.pythonhosted.org/packages/a6/8e/cb99bd0b83ccc3e8f0f528e9aa1f7a9965dfec08c617070c5db8d63a87ce/lxml-6.0.2-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:846ae9a12d54e368933b9759052d6206a9e8b250291109c48e350c1f1f49d916", size = 5643779, upload-time = "2025-09-22T04:02:06.689Z" }, + { url = "https://files.pythonhosted.org/packages/d0/34/9e591954939276bb679b73773836c6684c22e56d05980e31d52a9a8deb18/lxml-6.0.2-cp313-cp313-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ef9266d2aa545d7374938fb5c484531ef5a2ec7f2d573e62f8ce722c735685fd", size = 5244072, upload-time = "2025-09-22T04:02:08.587Z" }, + { url = "https://files.pythonhosted.org/packages/8d/27/b29ff065f9aaca443ee377aff699714fcbffb371b4fce5ac4ca759e436d5/lxml-6.0.2-cp313-cp313-manylinux_2_31_armv7l.whl", hash = "sha256:4077b7c79f31755df33b795dc12119cb557a0106bfdab0d2c2d97bd3cf3dffa6", size = 4718675, upload-time = "2025-09-22T04:02:10.783Z" }, + { url = "https://files.pythonhosted.org/packages/2b/9f/f756f9c2cd27caa1a6ef8c32ae47aadea697f5c2c6d07b0dae133c244fbe/lxml-6.0.2-cp313-cp313-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:a7c5d5e5f1081955358533be077166ee97ed2571d6a66bdba6ec2f609a715d1a", size = 5255171, upload-time = "2025-09-22T04:02:12.631Z" }, + { url = "https://files.pythonhosted.org/packages/61/46/bb85ea42d2cb1bd8395484fd72f38e3389611aa496ac7772da9205bbda0e/lxml-6.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:8f8d0cbd0674ee89863a523e6994ac25fd5be9c8486acfc3e5ccea679bad2679", size = 5057175, upload-time = "2025-09-22T04:02:14.718Z" }, + { url = "https://files.pythonhosted.org/packages/95/0c/443fc476dcc8e41577f0af70458c50fe299a97bb6b7505bb1ae09aa7f9ac/lxml-6.0.2-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:2cbcbf6d6e924c28f04a43f3b6f6e272312a090f269eff68a2982e13e5d57659", size = 4785688, upload-time = "2025-09-22T04:02:16.957Z" }, + { url = "https://files.pythonhosted.org/packages/48/78/6ef0b359d45bb9697bc5a626e1992fa5d27aa3f8004b137b2314793b50a0/lxml-6.0.2-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dfb874cfa53340009af6bdd7e54ebc0d21012a60a4e65d927c2e477112e63484", size = 5660655, upload-time = "2025-09-22T04:02:18.815Z" }, + { url = "https://files.pythonhosted.org/packages/ff/ea/e1d33808f386bc1339d08c0dcada6e4712d4ed8e93fcad5f057070b7988a/lxml-6.0.2-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:fb8dae0b6b8b7f9e96c26fdd8121522ce5de9bb5538010870bd538683d30e9a2", size = 5247695, upload-time = "2025-09-22T04:02:20.593Z" }, + { url = "https://files.pythonhosted.org/packages/4f/47/eba75dfd8183673725255247a603b4ad606f4ae657b60c6c145b381697da/lxml-6.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:358d9adae670b63e95bc59747c72f4dc97c9ec58881d4627fe0120da0f90d314", size = 5269841, upload-time = "2025-09-22T04:02:22.489Z" }, + { url = "https://files.pythonhosted.org/packages/76/04/5c5e2b8577bc936e219becb2e98cdb1aca14a4921a12995b9d0c523502ae/lxml-6.0.2-cp313-cp313-win32.whl", hash = "sha256:e8cd2415f372e7e5a789d743d133ae474290a90b9023197fd78f32e2dc6873e2", size = 3610700, upload-time = "2025-09-22T04:02:24.465Z" }, + { url = "https://files.pythonhosted.org/packages/fe/0a/4643ccc6bb8b143e9f9640aa54e38255f9d3b45feb2cbe7ae2ca47e8782e/lxml-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:b30d46379644fbfc3ab81f8f82ae4de55179414651f110a1514f0b1f8f6cb2d7", size = 4010347, upload-time = "2025-09-22T04:02:26.286Z" }, + { url = "https://files.pythonhosted.org/packages/31/ef/dcf1d29c3f530577f61e5fe2f1bd72929acf779953668a8a47a479ae6f26/lxml-6.0.2-cp313-cp313-win_arm64.whl", hash = "sha256:13dcecc9946dca97b11b7c40d29fba63b55ab4170d3c0cf8c0c164343b9bfdcf", size = 3671248, upload-time = "2025-09-22T04:02:27.918Z" }, + { url = "https://files.pythonhosted.org/packages/03/15/d4a377b385ab693ce97b472fe0c77c2b16ec79590e688b3ccc71fba19884/lxml-6.0.2-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:b0c732aa23de8f8aec23f4b580d1e52905ef468afb4abeafd3fec77042abb6fe", size = 8659801, upload-time = "2025-09-22T04:02:30.113Z" }, + { url = "https://files.pythonhosted.org/packages/c8/e8/c128e37589463668794d503afaeb003987373c5f94d667124ffd8078bbd9/lxml-6.0.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:4468e3b83e10e0317a89a33d28f7aeba1caa4d1a6fd457d115dd4ffe90c5931d", size = 4659403, upload-time = "2025-09-22T04:02:32.119Z" }, + { url = "https://files.pythonhosted.org/packages/00/ce/74903904339decdf7da7847bb5741fc98a5451b42fc419a86c0c13d26fe2/lxml-6.0.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:abd44571493973bad4598a3be7e1d807ed45aa2adaf7ab92ab7c62609569b17d", size = 4966974, upload-time = "2025-09-22T04:02:34.155Z" }, + { url = "https://files.pythonhosted.org/packages/1f/d3/131dec79ce61c5567fecf82515bd9bc36395df42501b50f7f7f3bd065df0/lxml-6.0.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:370cd78d5855cfbffd57c422851f7d3864e6ae72d0da615fca4dad8c45d375a5", size = 5102953, upload-time = "2025-09-22T04:02:36.054Z" }, + { url = "https://files.pythonhosted.org/packages/3a/ea/a43ba9bb750d4ffdd885f2cd333572f5bb900cd2408b67fdda07e85978a0/lxml-6.0.2-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:901e3b4219fa04ef766885fb40fa516a71662a4c61b80c94d25336b4934b71c0", size = 5055054, upload-time = "2025-09-22T04:02:38.154Z" }, + { url = "https://files.pythonhosted.org/packages/60/23/6885b451636ae286c34628f70a7ed1fcc759f8d9ad382d132e1c8d3d9bfd/lxml-6.0.2-cp314-cp314-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:a4bf42d2e4cf52c28cc1812d62426b9503cdb0c87a6de81442626aa7d69707ba", size = 5352421, upload-time = "2025-09-22T04:02:40.413Z" }, + { url = "https://files.pythonhosted.org/packages/48/5b/fc2ddfc94ddbe3eebb8e9af6e3fd65e2feba4967f6a4e9683875c394c2d8/lxml-6.0.2-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2c7fdaa4d7c3d886a42534adec7cfac73860b89b4e5298752f60aa5984641a0", size = 5673684, upload-time = "2025-09-22T04:02:42.288Z" }, + { url = "https://files.pythonhosted.org/packages/29/9c/47293c58cc91769130fbf85531280e8cc7868f7fbb6d92f4670071b9cb3e/lxml-6.0.2-cp314-cp314-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:98a5e1660dc7de2200b00d53fa00bcd3c35a3608c305d45a7bbcaf29fa16e83d", size = 5252463, upload-time = "2025-09-22T04:02:44.165Z" }, + { url = "https://files.pythonhosted.org/packages/9b/da/ba6eceb830c762b48e711ded880d7e3e89fc6c7323e587c36540b6b23c6b/lxml-6.0.2-cp314-cp314-manylinux_2_31_armv7l.whl", hash = "sha256:dc051506c30b609238d79eda75ee9cab3e520570ec8219844a72a46020901e37", size = 4698437, upload-time = "2025-09-22T04:02:46.524Z" }, + { url = "https://files.pythonhosted.org/packages/a5/24/7be3f82cb7990b89118d944b619e53c656c97dc89c28cfb143fdb7cd6f4d/lxml-6.0.2-cp314-cp314-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:8799481bbdd212470d17513a54d568f44416db01250f49449647b5ab5b5dccb9", size = 5269890, upload-time = "2025-09-22T04:02:48.812Z" }, + { url = "https://files.pythonhosted.org/packages/1b/bd/dcfb9ea1e16c665efd7538fc5d5c34071276ce9220e234217682e7d2c4a5/lxml-6.0.2-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:9261bb77c2dab42f3ecd9103951aeca2c40277701eb7e912c545c1b16e0e4917", size = 5097185, upload-time = "2025-09-22T04:02:50.746Z" }, + { url = "https://files.pythonhosted.org/packages/21/04/a60b0ff9314736316f28316b694bccbbabe100f8483ad83852d77fc7468e/lxml-6.0.2-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:65ac4a01aba353cfa6d5725b95d7aed6356ddc0a3cd734de00124d285b04b64f", size = 4745895, upload-time = "2025-09-22T04:02:52.968Z" }, + { url = "https://files.pythonhosted.org/packages/d6/bd/7d54bd1846e5a310d9c715921c5faa71cf5c0853372adf78aee70c8d7aa2/lxml-6.0.2-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:b22a07cbb82fea98f8a2fd814f3d1811ff9ed76d0fc6abc84eb21527596e7cc8", size = 5695246, upload-time = "2025-09-22T04:02:54.798Z" }, + { url = "https://files.pythonhosted.org/packages/fd/32/5643d6ab947bc371da21323acb2a6e603cedbe71cb4c99c8254289ab6f4e/lxml-6.0.2-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:d759cdd7f3e055d6bc8d9bec3ad905227b2e4c785dc16c372eb5b5e83123f48a", size = 5260797, upload-time = "2025-09-22T04:02:57.058Z" }, + { url = "https://files.pythonhosted.org/packages/33/da/34c1ec4cff1eea7d0b4cd44af8411806ed943141804ac9c5d565302afb78/lxml-6.0.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:945da35a48d193d27c188037a05fec5492937f66fb1958c24fc761fb9d40d43c", size = 5277404, upload-time = "2025-09-22T04:02:58.966Z" }, + { url = "https://files.pythonhosted.org/packages/82/57/4eca3e31e54dc89e2c3507e1cd411074a17565fa5ffc437c4ae0a00d439e/lxml-6.0.2-cp314-cp314-win32.whl", hash = "sha256:be3aaa60da67e6153eb15715cc2e19091af5dc75faef8b8a585aea372507384b", size = 3670072, upload-time = "2025-09-22T04:03:38.05Z" }, + { url = "https://files.pythonhosted.org/packages/e3/e0/c96cf13eccd20c9421ba910304dae0f619724dcf1702864fd59dd386404d/lxml-6.0.2-cp314-cp314-win_amd64.whl", hash = "sha256:fa25afbadead523f7001caf0c2382afd272c315a033a7b06336da2637d92d6ed", size = 4080617, upload-time = "2025-09-22T04:03:39.835Z" }, + { url = "https://files.pythonhosted.org/packages/d5/5d/b3f03e22b3d38d6f188ef044900a9b29b2fe0aebb94625ce9fe244011d34/lxml-6.0.2-cp314-cp314-win_arm64.whl", hash = "sha256:063eccf89df5b24e361b123e257e437f9e9878f425ee9aae3144c77faf6da6d8", size = 3754930, upload-time = "2025-09-22T04:03:41.565Z" }, + { url = "https://files.pythonhosted.org/packages/5e/5c/42c2c4c03554580708fc738d13414801f340c04c3eff90d8d2d227145275/lxml-6.0.2-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:6162a86d86893d63084faaf4ff937b3daea233e3682fb4474db07395794fa80d", size = 8910380, upload-time = "2025-09-22T04:03:01.645Z" }, + { url = "https://files.pythonhosted.org/packages/bf/4f/12df843e3e10d18d468a7557058f8d3733e8b6e12401f30b1ef29360740f/lxml-6.0.2-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:414aaa94e974e23a3e92e7ca5b97d10c0cf37b6481f50911032c69eeb3991bba", size = 4775632, upload-time = "2025-09-22T04:03:03.814Z" }, + { url = "https://files.pythonhosted.org/packages/e4/0c/9dc31e6c2d0d418483cbcb469d1f5a582a1cd00a1f4081953d44051f3c50/lxml-6.0.2-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:48461bd21625458dd01e14e2c38dd0aea69addc3c4f960c30d9f59d7f93be601", size = 4975171, upload-time = "2025-09-22T04:03:05.651Z" }, + { url = "https://files.pythonhosted.org/packages/e7/2b/9b870c6ca24c841bdd887504808f0417aa9d8d564114689266f19ddf29c8/lxml-6.0.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:25fcc59afc57d527cfc78a58f40ab4c9b8fd096a9a3f964d2781ffb6eb33f4ed", size = 5110109, upload-time = "2025-09-22T04:03:07.452Z" }, + { url = "https://files.pythonhosted.org/packages/bf/0c/4f5f2a4dd319a178912751564471355d9019e220c20d7db3fb8307ed8582/lxml-6.0.2-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5179c60288204e6ddde3f774a93350177e08876eaf3ab78aa3a3649d43eb7d37", size = 5041061, upload-time = "2025-09-22T04:03:09.297Z" }, + { url = "https://files.pythonhosted.org/packages/12/64/554eed290365267671fe001a20d72d14f468ae4e6acef1e179b039436967/lxml-6.0.2-cp314-cp314t-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:967aab75434de148ec80597b75062d8123cadf2943fb4281f385141e18b21338", size = 5306233, upload-time = "2025-09-22T04:03:11.651Z" }, + { url = "https://files.pythonhosted.org/packages/7a/31/1d748aa275e71802ad9722df32a7a35034246b42c0ecdd8235412c3396ef/lxml-6.0.2-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:d100fcc8930d697c6561156c6810ab4a508fb264c8b6779e6e61e2ed5e7558f9", size = 5604739, upload-time = "2025-09-22T04:03:13.592Z" }, + { url = "https://files.pythonhosted.org/packages/8f/41/2c11916bcac09ed561adccacceaedd2bf0e0b25b297ea92aab99fd03d0fa/lxml-6.0.2-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ca59e7e13e5981175b8b3e4ab84d7da57993eeff53c07764dcebda0d0e64ecd", size = 5225119, upload-time = "2025-09-22T04:03:15.408Z" }, + { url = "https://files.pythonhosted.org/packages/99/05/4e5c2873d8f17aa018e6afde417c80cc5d0c33be4854cce3ef5670c49367/lxml-6.0.2-cp314-cp314t-manylinux_2_31_armv7l.whl", hash = "sha256:957448ac63a42e2e49531b9d6c0fa449a1970dbc32467aaad46f11545be9af1d", size = 4633665, upload-time = "2025-09-22T04:03:17.262Z" }, + { url = "https://files.pythonhosted.org/packages/0f/c9/dcc2da1bebd6275cdc723b515f93edf548b82f36a5458cca3578bc899332/lxml-6.0.2-cp314-cp314t-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b7fc49c37f1786284b12af63152fe1d0990722497e2d5817acfe7a877522f9a9", size = 5234997, upload-time = "2025-09-22T04:03:19.14Z" }, + { url = "https://files.pythonhosted.org/packages/9c/e2/5172e4e7468afca64a37b81dba152fc5d90e30f9c83c7c3213d6a02a5ce4/lxml-6.0.2-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e19e0643cc936a22e837f79d01a550678da8377d7d801a14487c10c34ee49c7e", size = 5090957, upload-time = "2025-09-22T04:03:21.436Z" }, + { url = "https://files.pythonhosted.org/packages/a5/b3/15461fd3e5cd4ddcb7938b87fc20b14ab113b92312fc97afe65cd7c85de1/lxml-6.0.2-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:1db01e5cf14345628e0cbe71067204db658e2fb8e51e7f33631f5f4735fefd8d", size = 4764372, upload-time = "2025-09-22T04:03:23.27Z" }, + { url = "https://files.pythonhosted.org/packages/05/33/f310b987c8bf9e61c4dd8e8035c416bd3230098f5e3cfa69fc4232de7059/lxml-6.0.2-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:875c6b5ab39ad5291588aed6925fac99d0097af0dd62f33c7b43736043d4a2ec", size = 5634653, upload-time = "2025-09-22T04:03:25.767Z" }, + { url = "https://files.pythonhosted.org/packages/70/ff/51c80e75e0bc9382158133bdcf4e339b5886c6ee2418b5199b3f1a61ed6d/lxml-6.0.2-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:cdcbed9ad19da81c480dfd6dd161886db6096083c9938ead313d94b30aadf272", size = 5233795, upload-time = "2025-09-22T04:03:27.62Z" }, + { url = "https://files.pythonhosted.org/packages/56/4d/4856e897df0d588789dd844dbed9d91782c4ef0b327f96ce53c807e13128/lxml-6.0.2-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:80dadc234ebc532e09be1975ff538d154a7fa61ea5031c03d25178855544728f", size = 5257023, upload-time = "2025-09-22T04:03:30.056Z" }, + { url = "https://files.pythonhosted.org/packages/0f/85/86766dfebfa87bea0ab78e9ff7a4b4b45225df4b4d3b8cc3c03c5cd68464/lxml-6.0.2-cp314-cp314t-win32.whl", hash = "sha256:da08e7bb297b04e893d91087df19638dc7a6bb858a954b0cc2b9f5053c922312", size = 3911420, upload-time = "2025-09-22T04:03:32.198Z" }, + { url = "https://files.pythonhosted.org/packages/fe/1a/b248b355834c8e32614650b8008c69ffeb0ceb149c793961dd8c0b991bb3/lxml-6.0.2-cp314-cp314t-win_amd64.whl", hash = "sha256:252a22982dca42f6155125ac76d3432e548a7625d56f5a273ee78a5057216eca", size = 4406837, upload-time = "2025-09-22T04:03:34.027Z" }, + { url = "https://files.pythonhosted.org/packages/92/aa/df863bcc39c5e0946263454aba394de8a9084dbaff8ad143846b0d844739/lxml-6.0.2-cp314-cp314t-win_arm64.whl", hash = "sha256:bb4c1847b303835d89d785a18801a883436cdfd5dc3d62947f9c49e24f0f5a2c", size = 3822205, upload-time = "2025-09-22T04:03:36.249Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/72/147da192e38635ada20e0a2e1a51cf8823d2119ce8883f7053879c2199b5/markupsafe-3.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d53197da72cc091b024dd97249dfc7794d6a56530370992a5e1a08983ad9230e", size = 11615, upload-time = "2025-09-27T18:36:30.854Z" }, + { url = "https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce", size = 12020, upload-time = "2025-09-27T18:36:31.971Z" }, + { url = "https://files.pythonhosted.org/packages/1e/2c/799f4742efc39633a1b54a92eec4082e4f815314869865d876824c257c1e/markupsafe-3.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3a7e8ae81ae39e62a41ec302f972ba6ae23a5c5396c8e60113e9066ef893da0d", size = 24332, upload-time = "2025-09-27T18:36:32.813Z" }, + { url = "https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d", size = 22947, upload-time = "2025-09-27T18:36:33.86Z" }, + { url = "https://files.pythonhosted.org/packages/2c/54/887f3092a85238093a0b2154bd629c89444f395618842e8b0c41783898ea/markupsafe-3.0.3-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:94c6f0bb423f739146aec64595853541634bde58b2135f27f61c1ffd1cd4d16a", size = 21962, upload-time = "2025-09-27T18:36:35.099Z" }, + { url = "https://files.pythonhosted.org/packages/c9/2f/336b8c7b6f4a4d95e91119dc8521402461b74a485558d8f238a68312f11c/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:be8813b57049a7dc738189df53d69395eba14fb99345e0a5994914a3864c8a4b", size = 23760, upload-time = "2025-09-27T18:36:36.001Z" }, + { url = "https://files.pythonhosted.org/packages/32/43/67935f2b7e4982ffb50a4d169b724d74b62a3964bc1a9a527f5ac4f1ee2b/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:83891d0e9fb81a825d9a6d61e3f07550ca70a076484292a70fde82c4b807286f", size = 21529, upload-time = "2025-09-27T18:36:36.906Z" }, + { url = "https://files.pythonhosted.org/packages/89/e0/4486f11e51bbba8b0c041098859e869e304d1c261e59244baa3d295d47b7/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:77f0643abe7495da77fb436f50f8dab76dbc6e5fd25d39589a0f1fe6548bfa2b", size = 23015, upload-time = "2025-09-27T18:36:37.868Z" }, + { url = "https://files.pythonhosted.org/packages/2f/e1/78ee7a023dac597a5825441ebd17170785a9dab23de95d2c7508ade94e0e/markupsafe-3.0.3-cp312-cp312-win32.whl", hash = "sha256:d88b440e37a16e651bda4c7c2b930eb586fd15ca7406cb39e211fcff3bf3017d", size = 14540, upload-time = "2025-09-27T18:36:38.761Z" }, + { url = "https://files.pythonhosted.org/packages/aa/5b/bec5aa9bbbb2c946ca2733ef9c4ca91c91b6a24580193e891b5f7dbe8e1e/markupsafe-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:26a5784ded40c9e318cfc2bdb30fe164bdb8665ded9cd64d500a34fb42067b1c", size = 15105, upload-time = "2025-09-27T18:36:39.701Z" }, + { url = "https://files.pythonhosted.org/packages/e5/f1/216fc1bbfd74011693a4fd837e7026152e89c4bcf3e77b6692fba9923123/markupsafe-3.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:35add3b638a5d900e807944a078b51922212fb3dedb01633a8defc4b01a3c85f", size = 13906, upload-time = "2025-09-27T18:36:40.689Z" }, + { url = "https://files.pythonhosted.org/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" }, + { url = "https://files.pythonhosted.org/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" }, + { url = "https://files.pythonhosted.org/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" }, + { url = "https://files.pythonhosted.org/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" }, + { url = "https://files.pythonhosted.org/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" }, + { url = "https://files.pythonhosted.org/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" }, + { url = "https://files.pythonhosted.org/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" }, + { url = "https://files.pythonhosted.org/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" }, + { url = "https://files.pythonhosted.org/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" }, + { url = "https://files.pythonhosted.org/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" }, + { url = "https://files.pythonhosted.org/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" }, + { url = "https://files.pythonhosted.org/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" }, + { url = "https://files.pythonhosted.org/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" }, + { url = "https://files.pythonhosted.org/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" }, + { url = "https://files.pythonhosted.org/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" }, + { url = "https://files.pythonhosted.org/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" }, + { url = "https://files.pythonhosted.org/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" }, + { url = "https://files.pythonhosted.org/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" }, + { url = "https://files.pythonhosted.org/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" }, + { url = "https://files.pythonhosted.org/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" }, + { url = "https://files.pythonhosted.org/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" }, + { url = "https://files.pythonhosted.org/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" }, + { url = "https://files.pythonhosted.org/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" }, + { url = "https://files.pythonhosted.org/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" }, + { url = "https://files.pythonhosted.org/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" }, + { url = "https://files.pythonhosted.org/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" }, + { url = "https://files.pythonhosted.org/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" }, + { url = "https://files.pythonhosted.org/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" }, + { url = "https://files.pythonhosted.org/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" }, + { url = "https://files.pythonhosted.org/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" }, + { url = "https://files.pythonhosted.org/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" }, + { url = "https://files.pythonhosted.org/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" }, + { url = "https://files.pythonhosted.org/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" }, + { url = "https://files.pythonhosted.org/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" }, + { url = "https://files.pythonhosted.org/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" }, + { url = "https://files.pythonhosted.org/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" }, + { url = "https://files.pythonhosted.org/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" }, + { url = "https://files.pythonhosted.org/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" }, + { url = "https://files.pythonhosted.org/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" }, + { url = "https://files.pythonhosted.org/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" }, + { url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.10.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865, upload-time = "2025-10-09T00:28:00.669Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/b3/09eb0f7796932826ec20c25b517d568627754f6c6462fca19e12c02f2e12/matplotlib-3.10.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a0edb7209e21840e8361e91ea84ea676658aa93edd5f8762793dec77a4a6748", size = 8272389, upload-time = "2025-10-09T00:26:42.474Z" }, + { url = "https://files.pythonhosted.org/packages/11/0b/1ae80ddafb8652fd8046cb5c8460ecc8d4afccb89e2c6d6bec61e04e1eaf/matplotlib-3.10.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c380371d3c23e0eadf8ebff114445b9f970aff2010198d498d4ab4c3b41eea4f", size = 8128247, upload-time = "2025-10-09T00:26:44.77Z" }, + { url = "https://files.pythonhosted.org/packages/7d/18/95ae2e242d4a5c98bd6e90e36e128d71cf1c7e39b0874feaed3ef782e789/matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d5f256d49fea31f40f166a5e3131235a5d2f4b7f44520b1cf0baf1ce568ccff0", size = 8696996, upload-time = "2025-10-09T00:26:46.792Z" }, + { url = "https://files.pythonhosted.org/packages/7e/3d/5b559efc800bd05cb2033aa85f7e13af51958136a48327f7c261801ff90a/matplotlib-3.10.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:11ae579ac83cdf3fb72573bb89f70e0534de05266728740d478f0f818983c695", size = 9530153, upload-time = "2025-10-09T00:26:49.07Z" }, + { url = "https://files.pythonhosted.org/packages/88/57/eab4a719fd110312d3c220595d63a3c85ec2a39723f0f4e7fa7e6e3f74ba/matplotlib-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4c14b6acd16cddc3569a2d515cfdd81c7a68ac5639b76548cfc1a9e48b20eb65", size = 9593093, upload-time = "2025-10-09T00:26:51.067Z" }, + { url = "https://files.pythonhosted.org/packages/31/3c/80816f027b3a4a28cd2a0a6ef7f89a2db22310e945cd886ec25bfb399221/matplotlib-3.10.7-cp312-cp312-win_amd64.whl", hash = "sha256:0d8c32b7ea6fb80b1aeff5a2ceb3fb9778e2759e899d9beff75584714afcc5ee", size = 8122771, upload-time = "2025-10-09T00:26:53.296Z" }, + { url = "https://files.pythonhosted.org/packages/de/77/ef1fc78bfe99999b2675435cc52120887191c566b25017d78beaabef7f2d/matplotlib-3.10.7-cp312-cp312-win_arm64.whl", hash = "sha256:5f3f6d315dcc176ba7ca6e74c7768fb7e4cf566c49cb143f6bc257b62e634ed8", size = 7992812, upload-time = "2025-10-09T00:26:54.882Z" }, + { url = "https://files.pythonhosted.org/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212, upload-time = "2025-10-09T00:26:56.752Z" }, + { url = "https://files.pythonhosted.org/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713, upload-time = "2025-10-09T00:26:59.001Z" }, + { url = "https://files.pythonhosted.org/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527, upload-time = "2025-10-09T00:27:00.69Z" }, + { url = "https://files.pythonhosted.org/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690, upload-time = "2025-10-09T00:27:02.664Z" }, + { url = "https://files.pythonhosted.org/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732, upload-time = "2025-10-09T00:27:04.653Z" }, + { url = "https://files.pythonhosted.org/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727, upload-time = "2025-10-09T00:27:06.814Z" }, + { url = "https://files.pythonhosted.org/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958, upload-time = "2025-10-09T00:27:08.567Z" }, + { url = "https://files.pythonhosted.org/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849, upload-time = "2025-10-09T00:27:10.254Z" }, + { url = "https://files.pythonhosted.org/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225, upload-time = "2025-10-09T00:27:12.241Z" }, + { url = "https://files.pythonhosted.org/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708, upload-time = "2025-10-09T00:27:13.879Z" }, + { url = "https://files.pythonhosted.org/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409, upload-time = "2025-10-09T00:27:15.684Z" }, + { url = "https://files.pythonhosted.org/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054, upload-time = "2025-10-09T00:27:17.547Z" }, + { url = "https://files.pythonhosted.org/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100, upload-time = "2025-10-09T00:27:20.039Z" }, + { url = "https://files.pythonhosted.org/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131, upload-time = "2025-10-09T00:27:21.608Z" }, + { url = "https://files.pythonhosted.org/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787, upload-time = "2025-10-09T00:27:23.27Z" }, + { url = "https://files.pythonhosted.org/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348, upload-time = "2025-10-09T00:27:24.926Z" }, + { url = "https://files.pythonhosted.org/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949, upload-time = "2025-10-09T00:27:26.704Z" }, + { url = "https://files.pythonhosted.org/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247, upload-time = "2025-10-09T00:27:28.514Z" }, + { url = "https://files.pythonhosted.org/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497, upload-time = "2025-10-09T00:27:30.418Z" }, + { url = "https://files.pythonhosted.org/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732, upload-time = "2025-10-09T00:27:32.332Z" }, + { url = "https://files.pythonhosted.org/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240, upload-time = "2025-10-09T00:27:33.94Z" }, + { url = "https://files.pythonhosted.org/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938, upload-time = "2025-10-09T00:27:35.534Z" }, + { url = "https://files.pythonhosted.org/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245, upload-time = "2025-10-09T00:27:37.334Z" }, + { url = "https://files.pythonhosted.org/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411, upload-time = "2025-10-09T00:27:39.387Z" }, + { url = "https://files.pythonhosted.org/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664, upload-time = "2025-10-09T00:27:41.492Z" }, + { url = "https://files.pythonhosted.org/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066, upload-time = "2025-10-09T00:27:43.694Z" }, + { url = "https://files.pythonhosted.org/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832, upload-time = "2025-10-09T00:27:45.543Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585, upload-time = "2025-10-09T00:27:47.185Z" }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/74/97e72a36efd4ae2bccb3463284300f8953f199b5ffbc04cbbb0ec78f74b1/matplotlib_inline-0.2.1.tar.gz", hash = "sha256:e1ee949c340d771fc39e241ea75683deb94762c8fa5f2927ec57c83c4dffa9fe", size = 8110, upload-time = "2025-10-23T09:00:22.126Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl", hash = "sha256:d56ce5156ba6085e00a9d54fead6ed29a9c47e215cd1bba2e976ef39f5710a76", size = 9516, upload-time = "2025-10-23T09:00:20.675Z" }, +] + +[[package]] +name = "mistune" +version = "3.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/02/a7fb8b21d4d55ac93cdcde9d3638da5dd0ebdd3a4fed76c7725e10b81cbe/mistune-3.1.4.tar.gz", hash = "sha256:b5a7f801d389f724ec702840c11d8fc48f2b33519102fc7ee739e8177b672164", size = 94588, upload-time = "2025-08-29T07:20:43.594Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7a/f0/8282d9641415e9e33df173516226b404d367a0fc55e1a60424a152913abc/mistune-3.1.4-py3-none-any.whl", hash = "sha256:93691da911e5d9d2e23bc54472892aff676df27a75274962ff9edc210364266d", size = 53481, upload-time = "2025-08-29T07:20:42.218Z" }, +] + +[[package]] +name = "nbclient" +version = "0.10.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/87/66/7ffd18d58eae90d5721f9f39212327695b749e23ad44b3881744eaf4d9e8/nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193", size = 62424, upload-time = "2024-12-19T10:32:27.164Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/6d/e7fa07f03a4a7b221d94b4d586edb754a9b0dc3c9e2c93353e9fa4e0d117/nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d", size = 25434, upload-time = "2024-12-19T10:32:24.139Z" }, +] + +[[package]] +name = "nbconvert" +version = "7.16.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach", extra = ["css"] }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/59/f28e15fc47ffb73af68a8d9b47367a8630d76e97ae85ad18271b9db96fdf/nbconvert-7.16.6.tar.gz", hash = "sha256:576a7e37c6480da7b8465eefa66c17844243816ce1ccc372633c6b71c3c0f582", size = 857715, upload-time = "2025-01-28T09:29:14.724Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl", hash = "sha256:1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b", size = 258525, upload-time = "2025-01-28T09:29:12.551Z" }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749, upload-time = "2024-04-04T11:20:37.371Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454, upload-time = "2024-04-04T11:20:34.895Z" }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + +[[package]] +name = "notebook" +version = "7.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, + { name = "jupyterlab" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/89/ac/a97041621250a4fc5af379fb377942841eea2ca146aab166b8fcdfba96c2/notebook-7.5.0.tar.gz", hash = "sha256:3b27eaf9913033c28dde92d02139414c608992e1df4b969c843219acf2ff95e4", size = 14052074, upload-time = "2025-11-19T08:36:20.093Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/96/00df2a4760f10f5af0f45c4955573cae6189931f9a30265a35865f8c1031/notebook-7.5.0-py3-none-any.whl", hash = "sha256:3300262d52905ca271bd50b22617681d95f08a8360d099e097726e6d2efb5811", size = 14460968, upload-time = "2025-11-19T08:36:15.869Z" }, +] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/d2/92fa3243712b9a3e8bafaf60aac366da1cada3639ca767ff4b5b3654ec28/notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb", size = 13167, upload-time = "2024-02-14T23:35:18.353Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef", size = 13307, upload-time = "2024-02-14T23:35:16.286Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/76/65/21b3bc86aac7b8f2862db1e808f1ea22b028e30a225a34a5ede9bf8678f2/numpy-2.3.5.tar.gz", hash = "sha256:784db1dcdab56bf0517743e746dfb0f885fc68d948aba86eeec2cba234bdf1c0", size = 20584950, upload-time = "2025-11-16T22:52:42.067Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/37/e669fe6cbb2b96c62f6bbedc6a81c0f3b7362f6a59230b23caa673a85721/numpy-2.3.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:74ae7b798248fe62021dbf3c914245ad45d1a6b0cb4a29ecb4b31d0bfbc4cc3e", size = 16733873, upload-time = "2025-11-16T22:49:49.84Z" }, + { url = "https://files.pythonhosted.org/packages/c5/65/df0db6c097892c9380851ab9e44b52d4f7ba576b833996e0080181c0c439/numpy-2.3.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ee3888d9ff7c14604052b2ca5535a30216aa0a58e948cdd3eeb8d3415f638769", size = 12259838, upload-time = "2025-11-16T22:49:52.863Z" }, + { url = "https://files.pythonhosted.org/packages/5b/e1/1ee06e70eb2136797abe847d386e7c0e830b67ad1d43f364dd04fa50d338/numpy-2.3.5-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:612a95a17655e213502f60cfb9bf9408efdc9eb1d5f50535cc6eb365d11b42b5", size = 5088378, upload-time = "2025-11-16T22:49:55.055Z" }, + { url = "https://files.pythonhosted.org/packages/6d/9c/1ca85fb86708724275103b81ec4cf1ac1d08f465368acfc8da7ab545bdae/numpy-2.3.5-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3101e5177d114a593d79dd79658650fe28b5a0d8abeb8ce6f437c0e6df5be1a4", size = 6628559, upload-time = "2025-11-16T22:49:57.371Z" }, + { url = "https://files.pythonhosted.org/packages/74/78/fcd41e5a0ce4f3f7b003da85825acddae6d7ecb60cf25194741b036ca7d6/numpy-2.3.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b973c57ff8e184109db042c842423ff4f60446239bd585a5131cc47f06f789d", size = 14250702, upload-time = "2025-11-16T22:49:59.632Z" }, + { url = "https://files.pythonhosted.org/packages/b6/23/2a1b231b8ff672b4c450dac27164a8b2ca7d9b7144f9c02d2396518352eb/numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0d8163f43acde9a73c2a33605353a4f1bc4798745a8b1d73183b28e5b435ae28", size = 16606086, upload-time = "2025-11-16T22:50:02.127Z" }, + { url = "https://files.pythonhosted.org/packages/a0/c5/5ad26fbfbe2012e190cc7d5003e4d874b88bb18861d0829edc140a713021/numpy-2.3.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:51c1e14eb1e154ebd80e860722f9e6ed6ec89714ad2db2d3aa33c31d7c12179b", size = 16025985, upload-time = "2025-11-16T22:50:04.536Z" }, + { url = "https://files.pythonhosted.org/packages/d2/fa/dd48e225c46c819288148d9d060b047fd2a6fb1eb37eae25112ee4cb4453/numpy-2.3.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b46b4ec24f7293f23adcd2d146960559aaf8020213de8ad1909dba6c013bf89c", size = 18542976, upload-time = "2025-11-16T22:50:07.557Z" }, + { url = "https://files.pythonhosted.org/packages/05/79/ccbd23a75862d95af03d28b5c6901a1b7da4803181513d52f3b86ed9446e/numpy-2.3.5-cp312-cp312-win32.whl", hash = "sha256:3997b5b3c9a771e157f9aae01dd579ee35ad7109be18db0e85dbdbe1de06e952", size = 6285274, upload-time = "2025-11-16T22:50:10.746Z" }, + { url = "https://files.pythonhosted.org/packages/2d/57/8aeaf160312f7f489dea47ab61e430b5cb051f59a98ae68b7133ce8fa06a/numpy-2.3.5-cp312-cp312-win_amd64.whl", hash = "sha256:86945f2ee6d10cdfd67bcb4069c1662dd711f7e2a4343db5cecec06b87cf31aa", size = 12782922, upload-time = "2025-11-16T22:50:12.811Z" }, + { url = "https://files.pythonhosted.org/packages/78/a6/aae5cc2ca78c45e64b9ef22f089141d661516856cf7c8a54ba434576900d/numpy-2.3.5-cp312-cp312-win_arm64.whl", hash = "sha256:f28620fe26bee16243be2b7b874da327312240a7cdc38b769a697578d2100013", size = 10194667, upload-time = "2025-11-16T22:50:16.16Z" }, + { url = "https://files.pythonhosted.org/packages/db/69/9cde09f36da4b5a505341180a3f2e6fadc352fd4d2b7096ce9778db83f1a/numpy-2.3.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d0f23b44f57077c1ede8c5f26b30f706498b4862d3ff0a7298b8411dd2f043ff", size = 16728251, upload-time = "2025-11-16T22:50:19.013Z" }, + { url = "https://files.pythonhosted.org/packages/79/fb/f505c95ceddd7027347b067689db71ca80bd5ecc926f913f1a23e65cf09b/numpy-2.3.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aa5bc7c5d59d831d9773d1170acac7893ce3a5e130540605770ade83280e7188", size = 12254652, upload-time = "2025-11-16T22:50:21.487Z" }, + { url = "https://files.pythonhosted.org/packages/78/da/8c7738060ca9c31b30e9301ee0cf6c5ffdbf889d9593285a1cead337f9a5/numpy-2.3.5-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:ccc933afd4d20aad3c00bcef049cb40049f7f196e0397f1109dba6fed63267b0", size = 5083172, upload-time = "2025-11-16T22:50:24.562Z" }, + { url = "https://files.pythonhosted.org/packages/a4/b4/ee5bb2537fb9430fd2ef30a616c3672b991a4129bb1c7dcc42aa0abbe5d7/numpy-2.3.5-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:afaffc4393205524af9dfa400fa250143a6c3bc646c08c9f5e25a9f4b4d6a903", size = 6622990, upload-time = "2025-11-16T22:50:26.47Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/dc0723a013c7d7c19de5ef29e932c3081df1c14ba582b8b86b5de9db7f0f/numpy-2.3.5-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9c75442b2209b8470d6d5d8b1c25714270686f14c749028d2199c54e29f20b4d", size = 14248902, upload-time = "2025-11-16T22:50:28.861Z" }, + { url = "https://files.pythonhosted.org/packages/f5/10/ca162f45a102738958dcec8023062dad0cbc17d1ab99d68c4e4a6c45fb2b/numpy-2.3.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11e06aa0af8c0f05104d56450d6093ee639e15f24ecf62d417329d06e522e017", size = 16597430, upload-time = "2025-11-16T22:50:31.56Z" }, + { url = "https://files.pythonhosted.org/packages/2a/51/c1e29be863588db58175175f057286900b4b3327a1351e706d5e0f8dd679/numpy-2.3.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed89927b86296067b4f81f108a2271d8926467a8868e554eaf370fc27fa3ccaf", size = 16024551, upload-time = "2025-11-16T22:50:34.242Z" }, + { url = "https://files.pythonhosted.org/packages/83/68/8236589d4dbb87253d28259d04d9b814ec0ecce7cb1c7fed29729f4c3a78/numpy-2.3.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:51c55fe3451421f3a6ef9a9c1439e82101c57a2c9eab9feb196a62b1a10b58ce", size = 18533275, upload-time = "2025-11-16T22:50:37.651Z" }, + { url = "https://files.pythonhosted.org/packages/40/56/2932d75b6f13465239e3b7b7e511be27f1b8161ca2510854f0b6e521c395/numpy-2.3.5-cp313-cp313-win32.whl", hash = "sha256:1978155dd49972084bd6ef388d66ab70f0c323ddee6f693d539376498720fb7e", size = 6277637, upload-time = "2025-11-16T22:50:40.11Z" }, + { url = "https://files.pythonhosted.org/packages/0c/88/e2eaa6cffb115b85ed7c7c87775cb8bcf0816816bc98ca8dbfa2ee33fe6e/numpy-2.3.5-cp313-cp313-win_amd64.whl", hash = "sha256:00dc4e846108a382c5869e77c6ed514394bdeb3403461d25a829711041217d5b", size = 12779090, upload-time = "2025-11-16T22:50:42.503Z" }, + { url = "https://files.pythonhosted.org/packages/8f/88/3f41e13a44ebd4034ee17baa384acac29ba6a4fcc2aca95f6f08ca0447d1/numpy-2.3.5-cp313-cp313-win_arm64.whl", hash = "sha256:0472f11f6ec23a74a906a00b48a4dcf3849209696dff7c189714511268d103ae", size = 10194710, upload-time = "2025-11-16T22:50:44.971Z" }, + { url = "https://files.pythonhosted.org/packages/13/cb/71744144e13389d577f867f745b7df2d8489463654a918eea2eeb166dfc9/numpy-2.3.5-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:414802f3b97f3c1eef41e530aaba3b3c1620649871d8cb38c6eaff034c2e16bd", size = 16827292, upload-time = "2025-11-16T22:50:47.715Z" }, + { url = "https://files.pythonhosted.org/packages/71/80/ba9dc6f2a4398e7f42b708a7fdc841bb638d353be255655498edbf9a15a8/numpy-2.3.5-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5ee6609ac3604fa7780e30a03e5e241a7956f8e2fcfe547d51e3afa5247ac47f", size = 12378897, upload-time = "2025-11-16T22:50:51.327Z" }, + { url = "https://files.pythonhosted.org/packages/2e/6d/db2151b9f64264bcceccd51741aa39b50150de9b602d98ecfe7e0c4bff39/numpy-2.3.5-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:86d835afea1eaa143012a2d7a3f45a3adce2d7adc8b4961f0b362214d800846a", size = 5207391, upload-time = "2025-11-16T22:50:54.542Z" }, + { url = "https://files.pythonhosted.org/packages/80/ae/429bacace5ccad48a14c4ae5332f6aa8ab9f69524193511d60ccdfdc65fa/numpy-2.3.5-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:30bc11310e8153ca664b14c5f1b73e94bd0503681fcf136a163de856f3a50139", size = 6721275, upload-time = "2025-11-16T22:50:56.794Z" }, + { url = "https://files.pythonhosted.org/packages/74/5b/1919abf32d8722646a38cd527bc3771eb229a32724ee6ba340ead9b92249/numpy-2.3.5-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1062fde1dcf469571705945b0f221b73928f34a20c904ffb45db101907c3454e", size = 14306855, upload-time = "2025-11-16T22:50:59.208Z" }, + { url = "https://files.pythonhosted.org/packages/a5/87/6831980559434973bebc30cd9c1f21e541a0f2b0c280d43d3afd909b66d0/numpy-2.3.5-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce581db493ea1a96c0556360ede6607496e8bf9b3a8efa66e06477267bc831e9", size = 16657359, upload-time = "2025-11-16T22:51:01.991Z" }, + { url = "https://files.pythonhosted.org/packages/dd/91/c797f544491ee99fd00495f12ebb7802c440c1915811d72ac5b4479a3356/numpy-2.3.5-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:cc8920d2ec5fa99875b670bb86ddeb21e295cb07aa331810d9e486e0b969d946", size = 16093374, upload-time = "2025-11-16T22:51:05.291Z" }, + { url = "https://files.pythonhosted.org/packages/74/a6/54da03253afcbe7a72785ec4da9c69fb7a17710141ff9ac5fcb2e32dbe64/numpy-2.3.5-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:9ee2197ef8c4f0dfe405d835f3b6a14f5fee7782b5de51ba06fb65fc9b36e9f1", size = 18594587, upload-time = "2025-11-16T22:51:08.585Z" }, + { url = "https://files.pythonhosted.org/packages/80/e9/aff53abbdd41b0ecca94285f325aff42357c6b5abc482a3fcb4994290b18/numpy-2.3.5-cp313-cp313t-win32.whl", hash = "sha256:70b37199913c1bd300ff6e2693316c6f869c7ee16378faf10e4f5e3275b299c3", size = 6405940, upload-time = "2025-11-16T22:51:11.541Z" }, + { url = "https://files.pythonhosted.org/packages/d5/81/50613fec9d4de5480de18d4f8ef59ad7e344d497edbef3cfd80f24f98461/numpy-2.3.5-cp313-cp313t-win_amd64.whl", hash = "sha256:b501b5fa195cc9e24fe102f21ec0a44dffc231d2af79950b451e0d99cea02234", size = 12920341, upload-time = "2025-11-16T22:51:14.312Z" }, + { url = "https://files.pythonhosted.org/packages/bb/ab/08fd63b9a74303947f34f0bd7c5903b9c5532c2d287bead5bdf4c556c486/numpy-2.3.5-cp313-cp313t-win_arm64.whl", hash = "sha256:a80afd79f45f3c4a7d341f13acbe058d1ca8ac017c165d3fa0d3de6bc1a079d7", size = 10262507, upload-time = "2025-11-16T22:51:16.846Z" }, + { url = "https://files.pythonhosted.org/packages/ba/97/1a914559c19e32d6b2e233cf9a6a114e67c856d35b1d6babca571a3e880f/numpy-2.3.5-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:bf06bc2af43fa8d32d30fae16ad965663e966b1a3202ed407b84c989c3221e82", size = 16735706, upload-time = "2025-11-16T22:51:19.558Z" }, + { url = "https://files.pythonhosted.org/packages/57/d4/51233b1c1b13ecd796311216ae417796b88b0616cfd8a33ae4536330748a/numpy-2.3.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:052e8c42e0c49d2575621c158934920524f6c5da05a1d3b9bab5d8e259e045f0", size = 12264507, upload-time = "2025-11-16T22:51:22.492Z" }, + { url = "https://files.pythonhosted.org/packages/45/98/2fe46c5c2675b8306d0b4a3ec3494273e93e1226a490f766e84298576956/numpy-2.3.5-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:1ed1ec893cff7040a02c8aa1c8611b94d395590d553f6b53629a4461dc7f7b63", size = 5093049, upload-time = "2025-11-16T22:51:25.171Z" }, + { url = "https://files.pythonhosted.org/packages/ce/0e/0698378989bb0ac5f1660c81c78ab1fe5476c1a521ca9ee9d0710ce54099/numpy-2.3.5-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:2dcd0808a421a482a080f89859a18beb0b3d1e905b81e617a188bd80422d62e9", size = 6626603, upload-time = "2025-11-16T22:51:27Z" }, + { url = "https://files.pythonhosted.org/packages/5e/a6/9ca0eecc489640615642a6cbc0ca9e10df70df38c4d43f5a928ff18d8827/numpy-2.3.5-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:727fd05b57df37dc0bcf1a27767a3d9a78cbbc92822445f32cc3436ba797337b", size = 14262696, upload-time = "2025-11-16T22:51:29.402Z" }, + { url = "https://files.pythonhosted.org/packages/c8/f6/07ec185b90ec9d7217a00eeeed7383b73d7e709dae2a9a021b051542a708/numpy-2.3.5-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fffe29a1ef00883599d1dc2c51aa2e5d80afe49523c261a74933df395c15c520", size = 16597350, upload-time = "2025-11-16T22:51:32.167Z" }, + { url = "https://files.pythonhosted.org/packages/75/37/164071d1dde6a1a84c9b8e5b414fa127981bad47adf3a6b7e23917e52190/numpy-2.3.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:8f7f0e05112916223d3f438f293abf0727e1181b5983f413dfa2fefc4098245c", size = 16040190, upload-time = "2025-11-16T22:51:35.403Z" }, + { url = "https://files.pythonhosted.org/packages/08/3c/f18b82a406b04859eb026d204e4e1773eb41c5be58410f41ffa511d114ae/numpy-2.3.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2e2eb32ddb9ccb817d620ac1d8dae7c3f641c1e5f55f531a33e8ab97960a75b8", size = 18536749, upload-time = "2025-11-16T22:51:39.698Z" }, + { url = "https://files.pythonhosted.org/packages/40/79/f82f572bf44cf0023a2fe8588768e23e1592585020d638999f15158609e1/numpy-2.3.5-cp314-cp314-win32.whl", hash = "sha256:66f85ce62c70b843bab1fb14a05d5737741e74e28c7b8b5a064de10142fad248", size = 6335432, upload-time = "2025-11-16T22:51:42.476Z" }, + { url = "https://files.pythonhosted.org/packages/a3/2e/235b4d96619931192c91660805e5e49242389742a7a82c27665021db690c/numpy-2.3.5-cp314-cp314-win_amd64.whl", hash = "sha256:e6a0bc88393d65807d751a614207b7129a310ca4fe76a74e5c7da5fa5671417e", size = 12919388, upload-time = "2025-11-16T22:51:45.275Z" }, + { url = "https://files.pythonhosted.org/packages/07/2b/29fd75ce45d22a39c61aad74f3d718e7ab67ccf839ca8b60866054eb15f8/numpy-2.3.5-cp314-cp314-win_arm64.whl", hash = "sha256:aeffcab3d4b43712bb7a60b65f6044d444e75e563ff6180af8f98dd4b905dfd2", size = 10476651, upload-time = "2025-11-16T22:51:47.749Z" }, + { url = "https://files.pythonhosted.org/packages/17/e1/f6a721234ebd4d87084cfa68d081bcba2f5cfe1974f7de4e0e8b9b2a2ba1/numpy-2.3.5-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:17531366a2e3a9e30762c000f2c43a9aaa05728712e25c11ce1dbe700c53ad41", size = 16834503, upload-time = "2025-11-16T22:51:50.443Z" }, + { url = "https://files.pythonhosted.org/packages/5c/1c/baf7ffdc3af9c356e1c135e57ab7cf8d247931b9554f55c467efe2c69eff/numpy-2.3.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d21644de1b609825ede2f48be98dfde4656aefc713654eeee280e37cadc4e0ad", size = 12381612, upload-time = "2025-11-16T22:51:53.609Z" }, + { url = "https://files.pythonhosted.org/packages/74/91/f7f0295151407ddc9ba34e699013c32c3c91944f9b35fcf9281163dc1468/numpy-2.3.5-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:c804e3a5aba5460c73955c955bdbd5c08c354954e9270a2c1565f62e866bdc39", size = 5210042, upload-time = "2025-11-16T22:51:56.213Z" }, + { url = "https://files.pythonhosted.org/packages/2e/3b/78aebf345104ec50dd50a4d06ddeb46a9ff5261c33bcc58b1c4f12f85ec2/numpy-2.3.5-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:cc0a57f895b96ec78969c34f682c602bf8da1a0270b09bc65673df2e7638ec20", size = 6724502, upload-time = "2025-11-16T22:51:58.584Z" }, + { url = "https://files.pythonhosted.org/packages/02/c6/7c34b528740512e57ef1b7c8337ab0b4f0bddf34c723b8996c675bc2bc91/numpy-2.3.5-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:900218e456384ea676e24ea6a0417f030a3b07306d29d7ad843957b40a9d8d52", size = 14308962, upload-time = "2025-11-16T22:52:01.698Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/09d433c5262bc32d725bafc619e095b6a6651caf94027a03da624146f655/numpy-2.3.5-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:09a1bea522b25109bf8e6f3027bd810f7c1085c64a0c7ce050c1676ad0ba010b", size = 16655054, upload-time = "2025-11-16T22:52:04.267Z" }, + { url = "https://files.pythonhosted.org/packages/7a/ab/6a7b259703c09a88804fa2430b43d6457b692378f6b74b356155283566ac/numpy-2.3.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04822c00b5fd0323c8166d66c701dc31b7fbd252c100acd708c48f763968d6a3", size = 16091613, upload-time = "2025-11-16T22:52:08.651Z" }, + { url = "https://files.pythonhosted.org/packages/c2/88/330da2071e8771e60d1038166ff9d73f29da37b01ec3eb43cb1427464e10/numpy-2.3.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:d6889ec4ec662a1a37eb4b4fb26b6100841804dac55bd9df579e326cdc146227", size = 18591147, upload-time = "2025-11-16T22:52:11.453Z" }, + { url = "https://files.pythonhosted.org/packages/51/41/851c4b4082402d9ea860c3626db5d5df47164a712cb23b54be028b184c1c/numpy-2.3.5-cp314-cp314t-win32.whl", hash = "sha256:93eebbcf1aafdf7e2ddd44c2923e2672e1010bddc014138b229e49725b4d6be5", size = 6479806, upload-time = "2025-11-16T22:52:14.641Z" }, + { url = "https://files.pythonhosted.org/packages/90/30/d48bde1dfd93332fa557cff1972fbc039e055a52021fbef4c2c4b1eefd17/numpy-2.3.5-cp314-cp314t-win_amd64.whl", hash = "sha256:c8a9958e88b65c3b27e22ca2a076311636850b612d6bbfb76e8d156aacde2aaf", size = 13105760, upload-time = "2025-11-16T22:52:17.975Z" }, + { url = "https://files.pythonhosted.org/packages/2d/fd/4b5eb0b3e888d86aee4d198c23acec7d214baaf17ea93c1adec94c9518b9/numpy-2.3.5-cp314-cp314t-win_arm64.whl", hash = "sha256:6203fdf9f3dc5bdaed7319ad8698e685c7a3be10819f41d32a0723e611733b42", size = 10545459, upload-time = "2025-11-16T22:52:20.55Z" }, +] + +[[package]] +name = "obspy" +version = "1.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "decorator" }, + { name = "lxml" }, + { name = "matplotlib" }, + { name = "numpy" }, + { name = "requests" }, + { name = "scipy" }, + { name = "setuptools" }, + { name = "sqlalchemy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/13/98/108c3349aa18e2a2efb15d8cf7ab5b568f2f1a96d2411ce758546958d4ad/obspy-1.4.2.tar.gz", hash = "sha256:dd93a17cda32be057937b551f096df07def6aa61ccf26558ce9cd1866a70397c", size = 17036293, upload-time = "2025-04-30T12:45:15.835Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e8/d0/64372c148fb552ea4b54fd9f44afed030430097a6b33540dcef7a195cae6/obspy-1.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c24018ccdebf8cbc170af2dd9a86679f4baf074a7d645bdf017d50e3198baa8f", size = 14143750, upload-time = "2025-04-30T12:44:55.076Z" }, + { url = "https://files.pythonhosted.org/packages/ba/53/c1546cf83b763566b86dd2556276a92ab1e9900f77e4825898f1b810ec81/obspy-1.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87bdde2cce9a12a85b77bd874bfe0d88457e8367aa21c653b78ab6c2e9f68622", size = 14523015, upload-time = "2025-04-30T12:44:57.576Z" }, + { url = "https://files.pythonhosted.org/packages/14/5f/e04dc347ae865c0c8e92aa9af8122d015fd1b85d5dd2bf29e522b6b94296/obspy-1.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:a6fdd8693e55fada63e9bf36e5cbdfe1ebd231f4723fe1398ed6a7a4ee5de2ad", size = 14113148, upload-time = "2025-04-30T12:45:00.101Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454, upload-time = "2024-01-18T20:08:13.726Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663, upload-time = "2024-01-18T20:08:11.28Z" }, +] + +[[package]] +name = "parso" +version = "0.8.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d4/de/53e0bcf53d13e005bd8c92e7855142494f41171b34c2536b86187474184d/parso-0.8.5.tar.gz", hash = "sha256:034d7354a9a018bdce352f48b2a8a450f05e9d6ee85db84764e9b6bd96dafe5a", size = 401205, upload-time = "2025-08-23T15:15:28.028Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl", hash = "sha256:646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887", size = 106668, upload-time = "2025-08-23T15:15:25.663Z" }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450, upload-time = "2023-11-25T09:07:26.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772, upload-time = "2023-11-25T06:56:14.81Z" }, +] + +[[package]] +name = "pillow" +version = "12.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/cace85a1b0c9775a9f8f5d5423c8261c858760e2466c79b2dd184638b056/pillow-12.0.0.tar.gz", hash = "sha256:87d4f8125c9988bfbed67af47dd7a953e2fc7b0cc1e7800ec6d2080d490bb353", size = 47008828, upload-time = "2025-10-15T18:24:14.008Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/90/4fcce2c22caf044e660a198d740e7fbc14395619e3cb1abad12192c0826c/pillow-12.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53561a4ddc36facb432fae7a9d8afbfaf94795414f5cdc5fc52f28c1dca90371", size = 5249377, upload-time = "2025-10-15T18:22:05.993Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e0/ed960067543d080691d47d6938ebccbf3976a931c9567ab2fbfab983a5dd/pillow-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:71db6b4c1653045dacc1585c1b0d184004f0d7e694c7b34ac165ca70c0838082", size = 4650343, upload-time = "2025-10-15T18:22:07.718Z" }, + { url = "https://files.pythonhosted.org/packages/e7/a1/f81fdeddcb99c044bf7d6faa47e12850f13cee0849537a7d27eeab5534d4/pillow-12.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2fa5f0b6716fc88f11380b88b31fe591a06c6315e955c096c35715788b339e3f", size = 6232981, upload-time = "2025-10-15T18:22:09.287Z" }, + { url = "https://files.pythonhosted.org/packages/88/e1/9098d3ce341a8750b55b0e00c03f1630d6178f38ac191c81c97a3b047b44/pillow-12.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82240051c6ca513c616f7f9da06e871f61bfd7805f566275841af15015b8f98d", size = 8041399, upload-time = "2025-10-15T18:22:10.872Z" }, + { url = "https://files.pythonhosted.org/packages/a7/62/a22e8d3b602ae8cc01446d0c57a54e982737f44b6f2e1e019a925143771d/pillow-12.0.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:55f818bd74fe2f11d4d7cbc65880a843c4075e0ac7226bc1a23261dbea531953", size = 6347740, upload-time = "2025-10-15T18:22:12.769Z" }, + { url = "https://files.pythonhosted.org/packages/4f/87/424511bdcd02c8d7acf9f65caa09f291a519b16bd83c3fb3374b3d4ae951/pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b87843e225e74576437fd5b6a4c2205d422754f84a06942cfaf1dc32243e45a8", size = 7040201, upload-time = "2025-10-15T18:22:14.813Z" }, + { url = "https://files.pythonhosted.org/packages/dc/4d/435c8ac688c54d11755aedfdd9f29c9eeddf68d150fe42d1d3dbd2365149/pillow-12.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c607c90ba67533e1b2355b821fef6764d1dd2cbe26b8c1005ae84f7aea25ff79", size = 6462334, upload-time = "2025-10-15T18:22:16.375Z" }, + { url = "https://files.pythonhosted.org/packages/2b/f2/ad34167a8059a59b8ad10bc5c72d4d9b35acc6b7c0877af8ac885b5f2044/pillow-12.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:21f241bdd5080a15bc86d3466a9f6074a9c2c2b314100dd896ac81ee6db2f1ba", size = 7134162, upload-time = "2025-10-15T18:22:17.996Z" }, + { url = "https://files.pythonhosted.org/packages/0c/b1/a7391df6adacf0a5c2cf6ac1cf1fcc1369e7d439d28f637a847f8803beb3/pillow-12.0.0-cp312-cp312-win32.whl", hash = "sha256:dd333073e0cacdc3089525c7df7d39b211bcdf31fc2824e49d01c6b6187b07d0", size = 6298769, upload-time = "2025-10-15T18:22:19.923Z" }, + { url = "https://files.pythonhosted.org/packages/a2/0b/d87733741526541c909bbf159e338dcace4f982daac6e5a8d6be225ca32d/pillow-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9fe611163f6303d1619bbcb653540a4d60f9e55e622d60a3108be0d5b441017a", size = 7001107, upload-time = "2025-10-15T18:22:21.644Z" }, + { url = "https://files.pythonhosted.org/packages/bc/96/aaa61ce33cc98421fb6088af2a03be4157b1e7e0e87087c888e2370a7f45/pillow-12.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:7dfb439562f234f7d57b1ac6bc8fe7f838a4bd49c79230e0f6a1da93e82f1fad", size = 2436012, upload-time = "2025-10-15T18:22:23.621Z" }, + { url = "https://files.pythonhosted.org/packages/62/f2/de993bb2d21b33a98d031ecf6a978e4b61da207bef02f7b43093774c480d/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:0869154a2d0546545cde61d1789a6524319fc1897d9ee31218eae7a60ccc5643", size = 4045493, upload-time = "2025-10-15T18:22:25.758Z" }, + { url = "https://files.pythonhosted.org/packages/0e/b6/bc8d0c4c9f6f111a783d045310945deb769b806d7574764234ffd50bc5ea/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:a7921c5a6d31b3d756ec980f2f47c0cfdbce0fc48c22a39347a895f41f4a6ea4", size = 4120461, upload-time = "2025-10-15T18:22:27.286Z" }, + { url = "https://files.pythonhosted.org/packages/5d/57/d60d343709366a353dc56adb4ee1e7d8a2cc34e3fbc22905f4167cfec119/pillow-12.0.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:1ee80a59f6ce048ae13cda1abf7fbd2a34ab9ee7d401c46be3ca685d1999a399", size = 3576912, upload-time = "2025-10-15T18:22:28.751Z" }, + { url = "https://files.pythonhosted.org/packages/a4/a4/a0a31467e3f83b94d37568294b01d22b43ae3c5d85f2811769b9c66389dd/pillow-12.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c50f36a62a22d350c96e49ad02d0da41dbd17ddc2e29750dbdba4323f85eb4a5", size = 5249132, upload-time = "2025-10-15T18:22:30.641Z" }, + { url = "https://files.pythonhosted.org/packages/83/06/48eab21dd561de2914242711434c0c0eb992ed08ff3f6107a5f44527f5e9/pillow-12.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5193fde9a5f23c331ea26d0cf171fbf67e3f247585f50c08b3e205c7aeb4589b", size = 4650099, upload-time = "2025-10-15T18:22:32.73Z" }, + { url = "https://files.pythonhosted.org/packages/fc/bd/69ed99fd46a8dba7c1887156d3572fe4484e3f031405fcc5a92e31c04035/pillow-12.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bde737cff1a975b70652b62d626f7785e0480918dece11e8fef3c0cf057351c3", size = 6230808, upload-time = "2025-10-15T18:22:34.337Z" }, + { url = "https://files.pythonhosted.org/packages/ea/94/8fad659bcdbf86ed70099cb60ae40be6acca434bbc8c4c0d4ef356d7e0de/pillow-12.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:a6597ff2b61d121172f5844b53f21467f7082f5fb385a9a29c01414463f93b07", size = 8037804, upload-time = "2025-10-15T18:22:36.402Z" }, + { url = "https://files.pythonhosted.org/packages/20/39/c685d05c06deecfd4e2d1950e9a908aa2ca8bc4e6c3b12d93b9cafbd7837/pillow-12.0.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0b817e7035ea7f6b942c13aa03bb554fc44fea70838ea21f8eb31c638326584e", size = 6345553, upload-time = "2025-10-15T18:22:38.066Z" }, + { url = "https://files.pythonhosted.org/packages/38/57/755dbd06530a27a5ed74f8cb0a7a44a21722ebf318edbe67ddbd7fb28f88/pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f4f1231b7dec408e8670264ce63e9c71409d9583dd21d32c163e25213ee2a344", size = 7037729, upload-time = "2025-10-15T18:22:39.769Z" }, + { url = "https://files.pythonhosted.org/packages/ca/b6/7e94f4c41d238615674d06ed677c14883103dce1c52e4af16f000338cfd7/pillow-12.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e51b71417049ad6ab14c49608b4a24d8fb3fe605e5dfabfe523b58064dc3d27", size = 6459789, upload-time = "2025-10-15T18:22:41.437Z" }, + { url = "https://files.pythonhosted.org/packages/9c/14/4448bb0b5e0f22dd865290536d20ec8a23b64e2d04280b89139f09a36bb6/pillow-12.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d120c38a42c234dc9a8c5de7ceaaf899cf33561956acb4941653f8bdc657aa79", size = 7130917, upload-time = "2025-10-15T18:22:43.152Z" }, + { url = "https://files.pythonhosted.org/packages/dd/ca/16c6926cc1c015845745d5c16c9358e24282f1e588237a4c36d2b30f182f/pillow-12.0.0-cp313-cp313-win32.whl", hash = "sha256:4cc6b3b2efff105c6a1656cfe59da4fdde2cda9af1c5e0b58529b24525d0a098", size = 6302391, upload-time = "2025-10-15T18:22:44.753Z" }, + { url = "https://files.pythonhosted.org/packages/6d/2a/dd43dcfd6dae9b6a49ee28a8eedb98c7d5ff2de94a5d834565164667b97b/pillow-12.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:4cf7fed4b4580601c4345ceb5d4cbf5a980d030fd5ad07c4d2ec589f95f09905", size = 7007477, upload-time = "2025-10-15T18:22:46.838Z" }, + { url = "https://files.pythonhosted.org/packages/77/f0/72ea067f4b5ae5ead653053212af05ce3705807906ba3f3e8f58ddf617e6/pillow-12.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:9f0b04c6b8584c2c193babcccc908b38ed29524b29dd464bc8801bf10d746a3a", size = 2435918, upload-time = "2025-10-15T18:22:48.399Z" }, + { url = "https://files.pythonhosted.org/packages/f5/5e/9046b423735c21f0487ea6cb5b10f89ea8f8dfbe32576fe052b5ba9d4e5b/pillow-12.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7fa22993bac7b77b78cae22bad1e2a987ddf0d9015c63358032f84a53f23cdc3", size = 5251406, upload-time = "2025-10-15T18:22:49.905Z" }, + { url = "https://files.pythonhosted.org/packages/12/66/982ceebcdb13c97270ef7a56c3969635b4ee7cd45227fa707c94719229c5/pillow-12.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f135c702ac42262573fe9714dfe99c944b4ba307af5eb507abef1667e2cbbced", size = 4653218, upload-time = "2025-10-15T18:22:51.587Z" }, + { url = "https://files.pythonhosted.org/packages/16/b3/81e625524688c31859450119bf12674619429cab3119eec0e30a7a1029cb/pillow-12.0.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c85de1136429c524e55cfa4e033b4a7940ac5c8ee4d9401cc2d1bf48154bbc7b", size = 6266564, upload-time = "2025-10-15T18:22:53.215Z" }, + { url = "https://files.pythonhosted.org/packages/98/59/dfb38f2a41240d2408096e1a76c671d0a105a4a8471b1871c6902719450c/pillow-12.0.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38df9b4bfd3db902c9c2bd369bcacaf9d935b2fff73709429d95cc41554f7b3d", size = 8069260, upload-time = "2025-10-15T18:22:54.933Z" }, + { url = "https://files.pythonhosted.org/packages/dc/3d/378dbea5cd1874b94c312425ca77b0f47776c78e0df2df751b820c8c1d6c/pillow-12.0.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7d87ef5795da03d742bf49439f9ca4d027cde49c82c5371ba52464aee266699a", size = 6379248, upload-time = "2025-10-15T18:22:56.605Z" }, + { url = "https://files.pythonhosted.org/packages/84/b0/d525ef47d71590f1621510327acec75ae58c721dc071b17d8d652ca494d8/pillow-12.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aff9e4d82d082ff9513bdd6acd4f5bd359f5b2c870907d2b0a9c5e10d40c88fe", size = 7066043, upload-time = "2025-10-15T18:22:58.53Z" }, + { url = "https://files.pythonhosted.org/packages/61/2c/aced60e9cf9d0cde341d54bf7932c9ffc33ddb4a1595798b3a5150c7ec4e/pillow-12.0.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:8d8ca2b210ada074d57fcee40c30446c9562e542fc46aedc19baf758a93532ee", size = 6490915, upload-time = "2025-10-15T18:23:00.582Z" }, + { url = "https://files.pythonhosted.org/packages/ef/26/69dcb9b91f4e59f8f34b2332a4a0a951b44f547c4ed39d3e4dcfcff48f89/pillow-12.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:99a7f72fb6249302aa62245680754862a44179b545ded638cf1fef59befb57ef", size = 7157998, upload-time = "2025-10-15T18:23:02.627Z" }, + { url = "https://files.pythonhosted.org/packages/61/2b/726235842220ca95fa441ddf55dd2382b52ab5b8d9c0596fe6b3f23dafe8/pillow-12.0.0-cp313-cp313t-win32.whl", hash = "sha256:4078242472387600b2ce8d93ade8899c12bf33fa89e55ec89fe126e9d6d5d9e9", size = 6306201, upload-time = "2025-10-15T18:23:04.709Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3d/2afaf4e840b2df71344ababf2f8edd75a705ce500e5dc1e7227808312ae1/pillow-12.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:2c54c1a783d6d60595d3514f0efe9b37c8808746a66920315bfd34a938d7994b", size = 7013165, upload-time = "2025-10-15T18:23:06.46Z" }, + { url = "https://files.pythonhosted.org/packages/6f/75/3fa09aa5cf6ed04bee3fa575798ddf1ce0bace8edb47249c798077a81f7f/pillow-12.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:26d9f7d2b604cd23aba3e9faf795787456ac25634d82cd060556998e39c6fa47", size = 2437834, upload-time = "2025-10-15T18:23:08.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/2a/9a8c6ba2c2c07b71bec92cf63e03370ca5e5f5c5b119b742bcc0cde3f9c5/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphoneos.whl", hash = "sha256:beeae3f27f62308f1ddbcfb0690bf44b10732f2ef43758f169d5e9303165d3f9", size = 4045531, upload-time = "2025-10-15T18:23:10.121Z" }, + { url = "https://files.pythonhosted.org/packages/84/54/836fdbf1bfb3d66a59f0189ff0b9f5f666cee09c6188309300df04ad71fa/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:d4827615da15cd59784ce39d3388275ec093ae3ee8d7f0c089b76fa87af756c2", size = 4120554, upload-time = "2025-10-15T18:23:12.14Z" }, + { url = "https://files.pythonhosted.org/packages/0d/cd/16aec9f0da4793e98e6b54778a5fbce4f375c6646fe662e80600b8797379/pillow-12.0.0-cp314-cp314-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:3e42edad50b6909089750e65c91aa09aaf1e0a71310d383f11321b27c224ed8a", size = 3576812, upload-time = "2025-10-15T18:23:13.962Z" }, + { url = "https://files.pythonhosted.org/packages/f6/b7/13957fda356dc46339298b351cae0d327704986337c3c69bb54628c88155/pillow-12.0.0-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:e5d8efac84c9afcb40914ab49ba063d94f5dbdf5066db4482c66a992f47a3a3b", size = 5252689, upload-time = "2025-10-15T18:23:15.562Z" }, + { url = "https://files.pythonhosted.org/packages/fc/f5/eae31a306341d8f331f43edb2e9122c7661b975433de5e447939ae61c5da/pillow-12.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:266cd5f2b63ff316d5a1bba46268e603c9caf5606d44f38c2873c380950576ad", size = 4650186, upload-time = "2025-10-15T18:23:17.379Z" }, + { url = "https://files.pythonhosted.org/packages/86/62/2a88339aa40c4c77e79108facbd307d6091e2c0eb5b8d3cf4977cfca2fe6/pillow-12.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:58eea5ebe51504057dd95c5b77d21700b77615ab0243d8152793dc00eb4faf01", size = 6230308, upload-time = "2025-10-15T18:23:18.971Z" }, + { url = "https://files.pythonhosted.org/packages/c7/33/5425a8992bcb32d1cb9fa3dd39a89e613d09a22f2c8083b7bf43c455f760/pillow-12.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f13711b1a5ba512d647a0e4ba79280d3a9a045aaf7e0cc6fbe96b91d4cdf6b0c", size = 8039222, upload-time = "2025-10-15T18:23:20.909Z" }, + { url = "https://files.pythonhosted.org/packages/d8/61/3f5d3b35c5728f37953d3eec5b5f3e77111949523bd2dd7f31a851e50690/pillow-12.0.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6846bd2d116ff42cba6b646edf5bf61d37e5cbd256425fa089fee4ff5c07a99e", size = 6346657, upload-time = "2025-10-15T18:23:23.077Z" }, + { url = "https://files.pythonhosted.org/packages/3a/be/ee90a3d79271227e0f0a33c453531efd6ed14b2e708596ba5dd9be948da3/pillow-12.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c98fa880d695de164b4135a52fd2e9cd7b7c90a9d8ac5e9e443a24a95ef9248e", size = 7038482, upload-time = "2025-10-15T18:23:25.005Z" }, + { url = "https://files.pythonhosted.org/packages/44/34/a16b6a4d1ad727de390e9bd9f19f5f669e079e5826ec0f329010ddea492f/pillow-12.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:fa3ed2a29a9e9d2d488b4da81dcb54720ac3104a20bf0bd273f1e4648aff5af9", size = 6461416, upload-time = "2025-10-15T18:23:27.009Z" }, + { url = "https://files.pythonhosted.org/packages/b6/39/1aa5850d2ade7d7ba9f54e4e4c17077244ff7a2d9e25998c38a29749eb3f/pillow-12.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d034140032870024e6b9892c692fe2968493790dd57208b2c37e3fb35f6df3ab", size = 7131584, upload-time = "2025-10-15T18:23:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/bf/db/4fae862f8fad0167073a7733973bfa955f47e2cac3dc3e3e6257d10fab4a/pillow-12.0.0-cp314-cp314-win32.whl", hash = "sha256:1b1b133e6e16105f524a8dec491e0586d072948ce15c9b914e41cdadd209052b", size = 6400621, upload-time = "2025-10-15T18:23:32.06Z" }, + { url = "https://files.pythonhosted.org/packages/2b/24/b350c31543fb0107ab2599464d7e28e6f856027aadda995022e695313d94/pillow-12.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:8dc232e39d409036af549c86f24aed8273a40ffa459981146829a324e0848b4b", size = 7142916, upload-time = "2025-10-15T18:23:34.71Z" }, + { url = "https://files.pythonhosted.org/packages/0f/9b/0ba5a6fd9351793996ef7487c4fdbde8d3f5f75dbedc093bb598648fddf0/pillow-12.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:d52610d51e265a51518692045e372a4c363056130d922a7351429ac9f27e70b0", size = 2523836, upload-time = "2025-10-15T18:23:36.967Z" }, + { url = "https://files.pythonhosted.org/packages/f5/7a/ceee0840aebc579af529b523d530840338ecf63992395842e54edc805987/pillow-12.0.0-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:1979f4566bb96c1e50a62d9831e2ea2d1211761e5662afc545fa766f996632f6", size = 5255092, upload-time = "2025-10-15T18:23:38.573Z" }, + { url = "https://files.pythonhosted.org/packages/44/76/20776057b4bfd1aef4eeca992ebde0f53a4dce874f3ae693d0ec90a4f79b/pillow-12.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:b2e4b27a6e15b04832fe9bf292b94b5ca156016bbc1ea9c2c20098a0320d6cf6", size = 4653158, upload-time = "2025-10-15T18:23:40.238Z" }, + { url = "https://files.pythonhosted.org/packages/82/3f/d9ff92ace07be8836b4e7e87e6a4c7a8318d47c2f1463ffcf121fc57d9cb/pillow-12.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:fb3096c30df99fd01c7bf8e544f392103d0795b9f98ba71a8054bcbf56b255f1", size = 6267882, upload-time = "2025-10-15T18:23:42.434Z" }, + { url = "https://files.pythonhosted.org/packages/9f/7a/4f7ff87f00d3ad33ba21af78bfcd2f032107710baf8280e3722ceec28cda/pillow-12.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7438839e9e053ef79f7112c881cef684013855016f928b168b81ed5835f3e75e", size = 8071001, upload-time = "2025-10-15T18:23:44.29Z" }, + { url = "https://files.pythonhosted.org/packages/75/87/fcea108944a52dad8cca0715ae6247e271eb80459364a98518f1e4f480c1/pillow-12.0.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d5c411a8eaa2299322b647cd932586b1427367fd3184ffbb8f7a219ea2041ca", size = 6380146, upload-time = "2025-10-15T18:23:46.065Z" }, + { url = "https://files.pythonhosted.org/packages/91/52/0d31b5e571ef5fd111d2978b84603fce26aba1b6092f28e941cb46570745/pillow-12.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7e091d464ac59d2c7ad8e7e08105eaf9dafbc3883fd7265ffccc2baad6ac925", size = 7067344, upload-time = "2025-10-15T18:23:47.898Z" }, + { url = "https://files.pythonhosted.org/packages/7b/f4/2dd3d721f875f928d48e83bb30a434dee75a2531bca839bb996bb0aa5a91/pillow-12.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:792a2c0be4dcc18af9d4a2dfd8a11a17d5e25274a1062b0ec1c2d79c76f3e7f8", size = 6491864, upload-time = "2025-10-15T18:23:49.607Z" }, + { url = "https://files.pythonhosted.org/packages/30/4b/667dfcf3d61fc309ba5a15b141845cece5915e39b99c1ceab0f34bf1d124/pillow-12.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:afbefa430092f71a9593a99ab6a4e7538bc9eabbf7bf94f91510d3503943edc4", size = 7158911, upload-time = "2025-10-15T18:23:51.351Z" }, + { url = "https://files.pythonhosted.org/packages/a2/2f/16cabcc6426c32218ace36bf0d55955e813f2958afddbf1d391849fee9d1/pillow-12.0.0-cp314-cp314t-win32.whl", hash = "sha256:3830c769decf88f1289680a59d4f4c46c72573446352e2befec9a8512104fa52", size = 6408045, upload-time = "2025-10-15T18:23:53.177Z" }, + { url = "https://files.pythonhosted.org/packages/35/73/e29aa0c9c666cf787628d3f0dcf379f4791fba79f4936d02f8b37165bdf8/pillow-12.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:905b0365b210c73afb0ebe9101a32572152dfd1c144c7e28968a331b9217b94a", size = 7148282, upload-time = "2025-10-15T18:23:55.316Z" }, + { url = "https://files.pythonhosted.org/packages/c1/70/6b41bdcddf541b437bbb9f47f94d2db5d9ddef6c37ccab8c9107743748a4/pillow-12.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:99353a06902c2e43b43e8ff74ee65a7d90307d82370604746738a1e0661ccca7", size = 2525630, upload-time = "2025-10-15T18:23:57.149Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/61/33/9611380c2bdb1225fdef633e2a9610622310fed35ab11dac9620972ee088/platformdirs-4.5.0.tar.gz", hash = "sha256:70ddccdd7c99fc5942e9fc25636a8b34d04c24b335100223152c2803e4063312", size = 21632, upload-time = "2025-10-08T17:44:48.791Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/cb/ac7874b3e5d58441674fb70742e6c374b28b0c7cb988d37d991cde47166c/platformdirs-4.5.0-py3-none-any.whl", hash = "sha256:e578a81bb873cbb89a41fcc904c7ef523cc18284b7e3b3ccf06aca1403b7ebd3", size = 18651, upload-time = "2025-10-08T17:44:47.223Z" }, +] + +[[package]] +name = "pluggy" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" }, +] + +[[package]] +name = "prem4derg" +version = "0.1.0" +source = { editable = "." } +dependencies = [ + { name = "numpy" }, + { name = "scipy" }, +] + +[package.dev-dependencies] +dev = [ + { name = "pytest" }, + { name = "pytest-cov" }, +] +notebooks = [ + { name = "jupyter" }, + { name = "matplotlib" }, + { name = "obspy" }, +] + +[package.metadata] +requires-dist = [ + { name = "numpy", specifier = ">=2.3.5" }, + { name = "scipy", specifier = ">=1.16.3" }, +] + +[package.metadata.requires-dev] +dev = [ + { name = "pytest", specifier = ">=9.0.1" }, + { name = "pytest-cov", specifier = ">=7.0.0" }, +] +notebooks = [ + { name = "jupyter", specifier = ">=1.1.1" }, + { name = "matplotlib", specifier = ">=3.10.7" }, + { name = "obspy", specifier = ">=1.4.2" }, +] + +[[package]] +name = "prometheus-client" +version = "0.23.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/23/53/3edb5d68ecf6b38fcbcc1ad28391117d2a322d9a1a3eff04bfdb184d8c3b/prometheus_client-0.23.1.tar.gz", hash = "sha256:6ae8f9081eaaaf153a2e959d2e6c4f4fb57b12ef76c8c7980202f1e57b48b2ce", size = 80481, upload-time = "2025-09-18T20:47:25.043Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b8/db/14bafcb4af2139e046d03fd00dea7873e48eafe18b7d2797e73d6681f210/prometheus_client-0.23.1-py3-none-any.whl", hash = "sha256:dd1913e6e76b59cfe44e7a4b83e01afc9873c1bdfd2ed8739f1e76aeca115f99", size = 61145, upload-time = "2025-09-18T20:47:23.875Z" }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.52" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/96/06e01a7b38dce6fe1db213e061a4602dd6032a8a97ef6c1a862537732421/prompt_toolkit-3.0.52.tar.gz", hash = "sha256:28cde192929c8e7321de85de1ddbe736f1375148b02f2e17edd840042b1be855", size = 434198, upload-time = "2025-08-27T15:24:02.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl", hash = "sha256:9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955", size = 391431, upload-time = "2025-08-27T15:23:59.498Z" }, +] + +[[package]] +name = "psutil" +version = "7.1.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/88/bdd0a41e5857d5d703287598cbf08dad90aed56774ea52ae071bae9071b6/psutil-7.1.3.tar.gz", hash = "sha256:6c86281738d77335af7aec228328e944b30930899ea760ecf33a4dba66be5e74", size = 489059, upload-time = "2025-11-02T12:25:54.619Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/93/0c49e776b8734fef56ec9c5c57f923922f2cf0497d62e0f419465f28f3d0/psutil-7.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0005da714eee687b4b8decd3d6cc7c6db36215c9e74e5ad2264b90c3df7d92dc", size = 239751, upload-time = "2025-11-02T12:25:58.161Z" }, + { url = "https://files.pythonhosted.org/packages/6f/8d/b31e39c769e70780f007969815195a55c81a63efebdd4dbe9e7a113adb2f/psutil-7.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19644c85dcb987e35eeeaefdc3915d059dac7bd1167cdcdbf27e0ce2df0c08c0", size = 240368, upload-time = "2025-11-02T12:26:00.491Z" }, + { url = "https://files.pythonhosted.org/packages/62/61/23fd4acc3c9eebbf6b6c78bcd89e5d020cfde4acf0a9233e9d4e3fa698b4/psutil-7.1.3-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:95ef04cf2e5ba0ab9eaafc4a11eaae91b44f4ef5541acd2ee91d9108d00d59a7", size = 287134, upload-time = "2025-11-02T12:26:02.613Z" }, + { url = "https://files.pythonhosted.org/packages/30/1c/f921a009ea9ceb51aa355cb0cc118f68d354db36eae18174bab63affb3e6/psutil-7.1.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1068c303be3a72f8e18e412c5b2a8f6d31750fb152f9cb106b54090296c9d251", size = 289904, upload-time = "2025-11-02T12:26:05.207Z" }, + { url = "https://files.pythonhosted.org/packages/a6/82/62d68066e13e46a5116df187d319d1724b3f437ddd0f958756fc052677f4/psutil-7.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:18349c5c24b06ac5612c0428ec2a0331c26443d259e2a0144a9b24b4395b58fa", size = 249642, upload-time = "2025-11-02T12:26:07.447Z" }, + { url = "https://files.pythonhosted.org/packages/df/ad/c1cd5fe965c14a0392112f68362cfceb5230819dbb5b1888950d18a11d9f/psutil-7.1.3-cp313-cp313t-win_arm64.whl", hash = "sha256:c525ffa774fe4496282fb0b1187725793de3e7c6b29e41562733cae9ada151ee", size = 245518, upload-time = "2025-11-02T12:26:09.719Z" }, + { url = "https://files.pythonhosted.org/packages/2e/bb/6670bded3e3236eb4287c7bcdc167e9fae6e1e9286e437f7111caed2f909/psutil-7.1.3-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:b403da1df4d6d43973dc004d19cee3b848e998ae3154cc8097d139b77156c353", size = 239843, upload-time = "2025-11-02T12:26:11.968Z" }, + { url = "https://files.pythonhosted.org/packages/b8/66/853d50e75a38c9a7370ddbeefabdd3d3116b9c31ef94dc92c6729bc36bec/psutil-7.1.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ad81425efc5e75da3f39b3e636293360ad8d0b49bed7df824c79764fb4ba9b8b", size = 240369, upload-time = "2025-11-02T12:26:14.358Z" }, + { url = "https://files.pythonhosted.org/packages/41/bd/313aba97cb5bfb26916dc29cf0646cbe4dd6a89ca69e8c6edce654876d39/psutil-7.1.3-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8f33a3702e167783a9213db10ad29650ebf383946e91bc77f28a5eb083496bc9", size = 288210, upload-time = "2025-11-02T12:26:16.699Z" }, + { url = "https://files.pythonhosted.org/packages/c2/fa/76e3c06e760927a0cfb5705eb38164254de34e9bd86db656d4dbaa228b04/psutil-7.1.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fac9cd332c67f4422504297889da5ab7e05fd11e3c4392140f7370f4208ded1f", size = 291182, upload-time = "2025-11-02T12:26:18.848Z" }, + { url = "https://files.pythonhosted.org/packages/0f/1d/5774a91607035ee5078b8fd747686ebec28a962f178712de100d00b78a32/psutil-7.1.3-cp314-cp314t-win_amd64.whl", hash = "sha256:3792983e23b69843aea49c8f5b8f115572c5ab64c153bada5270086a2123c7e7", size = 250466, upload-time = "2025-11-02T12:26:21.183Z" }, + { url = "https://files.pythonhosted.org/packages/00/ca/e426584bacb43a5cb1ac91fae1937f478cd8fbe5e4ff96574e698a2c77cd/psutil-7.1.3-cp314-cp314t-win_arm64.whl", hash = "sha256:31d77fcedb7529f27bb3a0472bea9334349f9a04160e8e6e5020f22c59893264", size = 245756, upload-time = "2025-11-02T12:26:23.148Z" }, + { url = "https://files.pythonhosted.org/packages/ef/94/46b9154a800253e7ecff5aaacdf8ebf43db99de4a2dfa18575b02548654e/psutil-7.1.3-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:2bdbcd0e58ca14996a42adf3621a6244f1bb2e2e528886959c72cf1e326677ab", size = 238359, upload-time = "2025-11-02T12:26:25.284Z" }, + { url = "https://files.pythonhosted.org/packages/68/3a/9f93cff5c025029a36d9a92fef47220ab4692ee7f2be0fba9f92813d0cb8/psutil-7.1.3-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:bc31fa00f1fbc3c3802141eede66f3a2d51d89716a194bf2cd6fc68310a19880", size = 239171, upload-time = "2025-11-02T12:26:27.23Z" }, + { url = "https://files.pythonhosted.org/packages/ce/b1/5f49af514f76431ba4eea935b8ad3725cdeb397e9245ab919dbc1d1dc20f/psutil-7.1.3-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3bb428f9f05c1225a558f53e30ccbad9930b11c3fc206836242de1091d3e7dd3", size = 263261, upload-time = "2025-11-02T12:26:29.48Z" }, + { url = "https://files.pythonhosted.org/packages/e0/95/992c8816a74016eb095e73585d747e0a8ea21a061ed3689474fabb29a395/psutil-7.1.3-cp36-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:56d974e02ca2c8eb4812c3f76c30e28836fffc311d55d979f1465c1feeb2b68b", size = 264635, upload-time = "2025-11-02T12:26:31.74Z" }, + { url = "https://files.pythonhosted.org/packages/55/4c/c3ed1a622b6ae2fd3c945a366e64eb35247a31e4db16cf5095e269e8eb3c/psutil-7.1.3-cp37-abi3-win_amd64.whl", hash = "sha256:f39c2c19fe824b47484b96f9692932248a54c43799a84282cfe58d05a6449efd", size = 247633, upload-time = "2025-11-02T12:26:33.887Z" }, + { url = "https://files.pythonhosted.org/packages/c9/ad/33b2ccec09bf96c2b2ef3f9a6f66baac8253d7565d8839e024a6b905d45d/psutil-7.1.3-cp37-abi3-win_arm64.whl", hash = "sha256:bd0d69cee829226a761e92f28140bec9a5ee9d5b4fb4b0cc589068dbfff559b1", size = 244608, upload-time = "2025-11-02T12:26:36.136Z" }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762, upload-time = "2020-12-28T15:15:30.155Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993, upload-time = "2020-12-28T15:15:28.35Z" }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752, upload-time = "2024-07-21T12:58:21.801Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842, upload-time = "2024-07-21T12:58:20.04Z" }, +] + +[[package]] +name = "pycparser" +version = "2.23" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/cf/d2d3b9f5699fb1e4615c8e32ff220203e43b248e1dfcc6736ad9057731ca/pycparser-2.23.tar.gz", hash = "sha256:78816d4f24add8f10a06d6f05b4d424ad9e96cfebf68a4ddc99c65c0720d00c2", size = 173734, upload-time = "2025-09-09T13:23:47.91Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/e3/59cd50310fc9b59512193629e1984c1f95e5c8ae6e5d8c69532ccc65a7fe/pycparser-2.23-py3-none-any.whl", hash = "sha256:e5c6e8d3fbad53479cab09ac03729e0a9faf2bee3db8208a550daf5af81a5934", size = 118140, upload-time = "2025-09-09T13:23:46.651Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pyparsing" +version = "3.2.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274, upload-time = "2025-09-21T04:11:06.277Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890, upload-time = "2025-09-21T04:11:04.117Z" }, +] + +[[package]] +name = "pytest" +version = "9.0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "iniconfig" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/07/56/f013048ac4bc4c1d9be45afd4ab209ea62822fb1598f40687e6bf45dcea4/pytest-9.0.1.tar.gz", hash = "sha256:3e9c069ea73583e255c3b21cf46b8d3c56f6e3a1a8f6da94ccb0fcf57b9d73c8", size = 1564125, upload-time = "2025-11-12T13:05:09.333Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0b/8b/6300fb80f858cda1c51ffa17075df5d846757081d11ab4aa35cef9e6258b/pytest-9.0.1-py3-none-any.whl", hash = "sha256:67be0030d194df2dfa7b556f2e56fb3c3315bd5c8822c6951162b92b32ce7dad", size = 373668, upload-time = "2025-11-12T13:05:07.379Z" }, +] + +[[package]] +name = "pytest-cov" +version = "7.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "coverage" }, + { name = "pluggy" }, + { name = "pytest" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5e/f7/c933acc76f5208b3b00089573cf6a2bc26dc80a8aece8f52bb7d6b1855ca/pytest_cov-7.0.0.tar.gz", hash = "sha256:33c97eda2e049a0c5298e91f519302a1334c26ac65c1a483d6206fd458361af1", size = 54328, upload-time = "2025-09-09T10:57:02.113Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ee/49/1377b49de7d0c1ce41292161ea0f721913fa8722c19fb9c1e3aa0367eecb/pytest_cov-7.0.0-py3-none-any.whl", hash = "sha256:3b8e9558b16cc1479da72058bdecf8073661c7f57f7d3c5f22a1c23507f2d861", size = 22424, upload-time = "2025-09-09T10:57:00.695Z" }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + +[[package]] +name = "python-json-logger" +version = "4.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/29/bf/eca6a3d43db1dae7070f70e160ab20b807627ba953663ba07928cdd3dc58/python_json_logger-4.0.0.tar.gz", hash = "sha256:f58e68eb46e1faed27e0f574a55a0455eecd7b8a5b88b85a784519ba3cff047f", size = 17683, upload-time = "2025-10-06T04:15:18.984Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl", hash = "sha256:af09c9daf6a813aa4cc7180395f50f2a9e5fa056034c9953aec92e381c5ba1e2", size = 15548, upload-time = "2025-10-06T04:15:17.553Z" }, +] + +[[package]] +name = "pywinpty" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f3/bb/a7cc2967c5c4eceb6cc49cfe39447d4bfc56e6c865e7c2249b6eb978935f/pywinpty-3.0.2.tar.gz", hash = "sha256:1505cc4cb248af42cb6285a65c9c2086ee9e7e574078ee60933d5d7fa86fb004", size = 30669, upload-time = "2025-10-03T21:16:29.205Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/02/4e/1098484e042c9485f56f16eb2b69b43b874bd526044ee401512234cf9e04/pywinpty-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:99fdd9b455f0ad6419aba6731a7a0d2f88ced83c3c94a80ff9533d95fa8d8a9e", size = 2050391, upload-time = "2025-10-03T21:19:01.642Z" }, + { url = "https://files.pythonhosted.org/packages/fc/19/b757fe28008236a4a713e813283721b8a40aa60cd7d3f83549f2e25a3155/pywinpty-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:18f78b81e4cfee6aabe7ea8688441d30247b73e52cd9657138015c5f4ee13a51", size = 2050057, upload-time = "2025-10-03T21:19:26.732Z" }, + { url = "https://files.pythonhosted.org/packages/cb/44/cbae12ecf6f4fa4129c36871fd09c6bef4f98d5f625ecefb5e2449765508/pywinpty-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:663383ecfab7fc382cc97ea5c4f7f0bb32c2f889259855df6ea34e5df42d305b", size = 2049874, upload-time = "2025-10-03T21:18:53.923Z" }, + { url = "https://files.pythonhosted.org/packages/ca/15/f12c6055e2d7a617d4d5820e8ac4ceaff849da4cb124640ef5116a230771/pywinpty-3.0.2-cp314-cp314-win_amd64.whl", hash = "sha256:28297cecc37bee9f24d8889e47231972d6e9e84f7b668909de54f36ca785029a", size = 2050386, upload-time = "2025-10-03T21:18:50.477Z" }, + { url = "https://files.pythonhosted.org/packages/de/24/c6907c5bb06043df98ad6a0a0ff5db2e0affcecbc3b15c42404393a3f72a/pywinpty-3.0.2-cp314-cp314t-win_amd64.whl", hash = "sha256:34b55ae9a1b671fe3eae071d86618110538e8eaad18fcb1531c0830b91a82767", size = 2049834, upload-time = "2025-10-03T21:19:25.688Z" }, +] + +[[package]] +name = "pyyaml" +version = "6.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/05/8e/961c0007c59b8dd7729d542c61a4d537767a59645b82a0b521206e1e25c2/pyyaml-6.0.3.tar.gz", hash = "sha256:d76623373421df22fb4cf8817020cbb7ef15c725b9d5e45f17e189bfc384190f", size = 130960, upload-time = "2025-09-25T21:33:16.546Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/33/422b98d2195232ca1826284a76852ad5a86fe23e31b009c9886b2d0fb8b2/pyyaml-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7f047e29dcae44602496db43be01ad42fc6f1cc0d8cd6c83d342306c32270196", size = 182063, upload-time = "2025-09-25T21:32:11.445Z" }, + { url = "https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fc09d0aa354569bc501d4e787133afc08552722d3ab34836a80547331bb5d4a0", size = 173973, upload-time = "2025-09-25T21:32:12.492Z" }, + { url = "https://files.pythonhosted.org/packages/ed/23/7a778b6bd0b9a8039df8b1b1d80e2e2ad78aa04171592c8a5c43a56a6af4/pyyaml-6.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9149cad251584d5fb4981be1ecde53a1ca46c891a79788c0df828d2f166bda28", size = 775116, upload-time = "2025-09-25T21:32:13.652Z" }, + { url = "https://files.pythonhosted.org/packages/65/30/d7353c338e12baef4ecc1b09e877c1970bd3382789c159b4f89d6a70dc09/pyyaml-6.0.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5fdec68f91a0c6739b380c83b951e2c72ac0197ace422360e6d5a959d8d97b2c", size = 844011, upload-time = "2025-09-25T21:32:15.21Z" }, + { url = "https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ba1cc08a7ccde2d2ec775841541641e4548226580ab850948cbfda66a1befcdc", size = 807870, upload-time = "2025-09-25T21:32:16.431Z" }, + { url = "https://files.pythonhosted.org/packages/05/c0/b3be26a015601b822b97d9149ff8cb5ead58c66f981e04fedf4e762f4bd4/pyyaml-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8dc52c23056b9ddd46818a57b78404882310fb473d63f17b07d5c40421e47f8e", size = 761089, upload-time = "2025-09-25T21:32:17.56Z" }, + { url = "https://files.pythonhosted.org/packages/be/8e/98435a21d1d4b46590d5459a22d88128103f8da4c2d4cb8f14f2a96504e1/pyyaml-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:41715c910c881bc081f1e8872880d3c650acf13dfa8214bad49ed4cede7c34ea", size = 790181, upload-time = "2025-09-25T21:32:18.834Z" }, + { url = "https://files.pythonhosted.org/packages/74/93/7baea19427dcfbe1e5a372d81473250b379f04b1bd3c4c5ff825e2327202/pyyaml-6.0.3-cp312-cp312-win32.whl", hash = "sha256:96b533f0e99f6579b3d4d4995707cf36df9100d67e0c8303a0c55b27b5f99bc5", size = 137658, upload-time = "2025-09-25T21:32:20.209Z" }, + { url = "https://files.pythonhosted.org/packages/86/bf/899e81e4cce32febab4fb42bb97dcdf66bc135272882d1987881a4b519e9/pyyaml-6.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:5fcd34e47f6e0b794d17de1b4ff496c00986e1c83f7ab2fb8fcfe9616ff7477b", size = 154003, upload-time = "2025-09-25T21:32:21.167Z" }, + { url = "https://files.pythonhosted.org/packages/1a/08/67bd04656199bbb51dbed1439b7f27601dfb576fb864099c7ef0c3e55531/pyyaml-6.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:64386e5e707d03a7e172c0701abfb7e10f0fb753ee1d773128192742712a98fd", size = 140344, upload-time = "2025-09-25T21:32:22.617Z" }, + { url = "https://files.pythonhosted.org/packages/d1/11/0fd08f8192109f7169db964b5707a2f1e8b745d4e239b784a5a1dd80d1db/pyyaml-6.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8da9669d359f02c0b91ccc01cac4a67f16afec0dac22c2ad09f46bee0697eba8", size = 181669, upload-time = "2025-09-25T21:32:23.673Z" }, + { url = "https://files.pythonhosted.org/packages/b1/16/95309993f1d3748cd644e02e38b75d50cbc0d9561d21f390a76242ce073f/pyyaml-6.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2283a07e2c21a2aa78d9c4442724ec1eb15f5e42a723b99cb3d822d48f5f7ad1", size = 173252, upload-time = "2025-09-25T21:32:25.149Z" }, + { url = "https://files.pythonhosted.org/packages/50/31/b20f376d3f810b9b2371e72ef5adb33879b25edb7a6d072cb7ca0c486398/pyyaml-6.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee2922902c45ae8ccada2c5b501ab86c36525b883eff4255313a253a3160861c", size = 767081, upload-time = "2025-09-25T21:32:26.575Z" }, + { url = "https://files.pythonhosted.org/packages/49/1e/a55ca81e949270d5d4432fbbd19dfea5321eda7c41a849d443dc92fd1ff7/pyyaml-6.0.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a33284e20b78bd4a18c8c2282d549d10bc8408a2a7ff57653c0cf0b9be0afce5", size = 841159, upload-time = "2025-09-25T21:32:27.727Z" }, + { url = "https://files.pythonhosted.org/packages/74/27/e5b8f34d02d9995b80abcef563ea1f8b56d20134d8f4e5e81733b1feceb2/pyyaml-6.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0f29edc409a6392443abf94b9cf89ce99889a1dd5376d94316ae5145dfedd5d6", size = 801626, upload-time = "2025-09-25T21:32:28.878Z" }, + { url = "https://files.pythonhosted.org/packages/f9/11/ba845c23988798f40e52ba45f34849aa8a1f2d4af4b798588010792ebad6/pyyaml-6.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f7057c9a337546edc7973c0d3ba84ddcdf0daa14533c2065749c9075001090e6", size = 753613, upload-time = "2025-09-25T21:32:30.178Z" }, + { url = "https://files.pythonhosted.org/packages/3d/e0/7966e1a7bfc0a45bf0a7fb6b98ea03fc9b8d84fa7f2229e9659680b69ee3/pyyaml-6.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eda16858a3cab07b80edaf74336ece1f986ba330fdb8ee0d6c0d68fe82bc96be", size = 794115, upload-time = "2025-09-25T21:32:31.353Z" }, + { url = "https://files.pythonhosted.org/packages/de/94/980b50a6531b3019e45ddeada0626d45fa85cbe22300844a7983285bed3b/pyyaml-6.0.3-cp313-cp313-win32.whl", hash = "sha256:d0eae10f8159e8fdad514efdc92d74fd8d682c933a6dd088030f3834bc8e6b26", size = 137427, upload-time = "2025-09-25T21:32:32.58Z" }, + { url = "https://files.pythonhosted.org/packages/97/c9/39d5b874e8b28845e4ec2202b5da735d0199dbe5b8fb85f91398814a9a46/pyyaml-6.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:79005a0d97d5ddabfeeea4cf676af11e647e41d81c9a7722a193022accdb6b7c", size = 154090, upload-time = "2025-09-25T21:32:33.659Z" }, + { url = "https://files.pythonhosted.org/packages/73/e8/2bdf3ca2090f68bb3d75b44da7bbc71843b19c9f2b9cb9b0f4ab7a5a4329/pyyaml-6.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:5498cd1645aa724a7c71c8f378eb29ebe23da2fc0d7a08071d89469bf1d2defb", size = 140246, upload-time = "2025-09-25T21:32:34.663Z" }, + { url = "https://files.pythonhosted.org/packages/9d/8c/f4bd7f6465179953d3ac9bc44ac1a8a3e6122cf8ada906b4f96c60172d43/pyyaml-6.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8d1fab6bb153a416f9aeb4b8763bc0f22a5586065f86f7664fc23339fc1c1fac", size = 181814, upload-time = "2025-09-25T21:32:35.712Z" }, + { url = "https://files.pythonhosted.org/packages/bd/9c/4d95bb87eb2063d20db7b60faa3840c1b18025517ae857371c4dd55a6b3a/pyyaml-6.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:34d5fcd24b8445fadc33f9cf348c1047101756fd760b4dacb5c3e99755703310", size = 173809, upload-time = "2025-09-25T21:32:36.789Z" }, + { url = "https://files.pythonhosted.org/packages/92/b5/47e807c2623074914e29dabd16cbbdd4bf5e9b2db9f8090fa64411fc5382/pyyaml-6.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:501a031947e3a9025ed4405a168e6ef5ae3126c59f90ce0cd6f2bfc477be31b7", size = 766454, upload-time = "2025-09-25T21:32:37.966Z" }, + { url = "https://files.pythonhosted.org/packages/02/9e/e5e9b168be58564121efb3de6859c452fccde0ab093d8438905899a3a483/pyyaml-6.0.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:b3bc83488de33889877a0f2543ade9f70c67d66d9ebb4ac959502e12de895788", size = 836355, upload-time = "2025-09-25T21:32:39.178Z" }, + { url = "https://files.pythonhosted.org/packages/88/f9/16491d7ed2a919954993e48aa941b200f38040928474c9e85ea9e64222c3/pyyaml-6.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c458b6d084f9b935061bc36216e8a69a7e293a2f1e68bf956dcd9e6cbcd143f5", size = 794175, upload-time = "2025-09-25T21:32:40.865Z" }, + { url = "https://files.pythonhosted.org/packages/dd/3f/5989debef34dc6397317802b527dbbafb2b4760878a53d4166579111411e/pyyaml-6.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7c6610def4f163542a622a73fb39f534f8c101d690126992300bf3207eab9764", size = 755228, upload-time = "2025-09-25T21:32:42.084Z" }, + { url = "https://files.pythonhosted.org/packages/d7/ce/af88a49043cd2e265be63d083fc75b27b6ed062f5f9fd6cdc223ad62f03e/pyyaml-6.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:5190d403f121660ce8d1d2c1bb2ef1bd05b5f68533fc5c2ea899bd15f4399b35", size = 789194, upload-time = "2025-09-25T21:32:43.362Z" }, + { url = "https://files.pythonhosted.org/packages/23/20/bb6982b26a40bb43951265ba29d4c246ef0ff59c9fdcdf0ed04e0687de4d/pyyaml-6.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:4a2e8cebe2ff6ab7d1050ecd59c25d4c8bd7e6f400f5f82b96557ac0abafd0ac", size = 156429, upload-time = "2025-09-25T21:32:57.844Z" }, + { url = "https://files.pythonhosted.org/packages/f4/f4/a4541072bb9422c8a883ab55255f918fa378ecf083f5b85e87fc2b4eda1b/pyyaml-6.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:93dda82c9c22deb0a405ea4dc5f2d0cda384168e466364dec6255b293923b2f3", size = 143912, upload-time = "2025-09-25T21:32:59.247Z" }, + { url = "https://files.pythonhosted.org/packages/7c/f9/07dd09ae774e4616edf6cda684ee78f97777bdd15847253637a6f052a62f/pyyaml-6.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:02893d100e99e03eda1c8fd5c441d8c60103fd175728e23e431db1b589cf5ab3", size = 189108, upload-time = "2025-09-25T21:32:44.377Z" }, + { url = "https://files.pythonhosted.org/packages/4e/78/8d08c9fb7ce09ad8c38ad533c1191cf27f7ae1effe5bb9400a46d9437fcf/pyyaml-6.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:c1ff362665ae507275af2853520967820d9124984e0f7466736aea23d8611fba", size = 183641, upload-time = "2025-09-25T21:32:45.407Z" }, + { url = "https://files.pythonhosted.org/packages/7b/5b/3babb19104a46945cf816d047db2788bcaf8c94527a805610b0289a01c6b/pyyaml-6.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6adc77889b628398debc7b65c073bcb99c4a0237b248cacaf3fe8a557563ef6c", size = 831901, upload-time = "2025-09-25T21:32:48.83Z" }, + { url = "https://files.pythonhosted.org/packages/8b/cc/dff0684d8dc44da4d22a13f35f073d558c268780ce3c6ba1b87055bb0b87/pyyaml-6.0.3-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:a80cb027f6b349846a3bf6d73b5e95e782175e52f22108cfa17876aaeff93702", size = 861132, upload-time = "2025-09-25T21:32:50.149Z" }, + { url = "https://files.pythonhosted.org/packages/b1/5e/f77dc6b9036943e285ba76b49e118d9ea929885becb0a29ba8a7c75e29fe/pyyaml-6.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:00c4bdeba853cc34e7dd471f16b4114f4162dc03e6b7afcc2128711f0eca823c", size = 839261, upload-time = "2025-09-25T21:32:51.808Z" }, + { url = "https://files.pythonhosted.org/packages/ce/88/a9db1376aa2a228197c58b37302f284b5617f56a5d959fd1763fb1675ce6/pyyaml-6.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:66e1674c3ef6f541c35191caae2d429b967b99e02040f5ba928632d9a7f0f065", size = 805272, upload-time = "2025-09-25T21:32:52.941Z" }, + { url = "https://files.pythonhosted.org/packages/da/92/1446574745d74df0c92e6aa4a7b0b3130706a4142b2d1a5869f2eaa423c6/pyyaml-6.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:16249ee61e95f858e83976573de0f5b2893b3677ba71c9dd36b9cf8be9ac6d65", size = 829923, upload-time = "2025-09-25T21:32:54.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/7a/1c7270340330e575b92f397352af856a8c06f230aa3e76f86b39d01b416a/pyyaml-6.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4ad1906908f2f5ae4e5a8ddfce73c320c2a1429ec52eafd27138b7f1cbe341c9", size = 174062, upload-time = "2025-09-25T21:32:55.767Z" }, + { url = "https://files.pythonhosted.org/packages/f1/12/de94a39c2ef588c7e6455cfbe7343d3b2dc9d6b6b2f40c4c6565744c873d/pyyaml-6.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:ebc55a14a21cb14062aa4162f906cd962b28e2e9ea38f9b4391244cd8de4ae0b", size = 149341, upload-time = "2025-09-25T21:32:56.828Z" }, +] + +[[package]] +name = "pyzmq" +version = "27.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/0b/3c9baedbdf613ecaa7aa07027780b8867f57b6293b6ee50de316c9f3222b/pyzmq-27.1.0.tar.gz", hash = "sha256:ac0765e3d44455adb6ddbf4417dcce460fc40a05978c08efdf2948072f6db540", size = 281750, upload-time = "2025-09-08T23:10:18.157Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc", size = 1306279, upload-time = "2025-09-08T23:08:03.807Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5e/c3c49fdd0f535ef45eefcc16934648e9e59dace4a37ee88fc53f6cd8e641/pyzmq-27.1.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1c179799b118e554b66da67d88ed66cd37a169f1f23b5d9f0a231b4e8d44a113", size = 895645, upload-time = "2025-09-08T23:08:05.301Z" }, + { url = "https://files.pythonhosted.org/packages/f8/e5/b0b2504cb4e903a74dcf1ebae157f9e20ebb6ea76095f6cfffea28c42ecd/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3837439b7f99e60312f0c926a6ad437b067356dc2bc2ec96eb395fd0fe804233", size = 652574, upload-time = "2025-09-08T23:08:06.828Z" }, + { url = "https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31", size = 840995, upload-time = "2025-09-08T23:08:08.396Z" }, + { url = "https://files.pythonhosted.org/packages/c2/bb/b79798ca177b9eb0825b4c9998c6af8cd2a7f15a6a1a4272c1d1a21d382f/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0de3028d69d4cdc475bfe47a6128eb38d8bc0e8f4d69646adfbcd840facbac28", size = 1642070, upload-time = "2025-09-08T23:08:09.989Z" }, + { url = "https://files.pythonhosted.org/packages/9c/80/2df2e7977c4ede24c79ae39dcef3899bfc5f34d1ca7a5b24f182c9b7a9ca/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:cf44a7763aea9298c0aa7dbf859f87ed7012de8bda0f3977b6fb1d96745df856", size = 2021121, upload-time = "2025-09-08T23:08:11.907Z" }, + { url = "https://files.pythonhosted.org/packages/46/bd/2d45ad24f5f5ae7e8d01525eb76786fa7557136555cac7d929880519e33a/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f30f395a9e6fbca195400ce833c731e7b64c3919aa481af4d88c3759e0cb7496", size = 1878550, upload-time = "2025-09-08T23:08:13.513Z" }, + { url = "https://files.pythonhosted.org/packages/e6/2f/104c0a3c778d7c2ab8190e9db4f62f0b6957b53c9d87db77c284b69f33ea/pyzmq-27.1.0-cp312-abi3-win32.whl", hash = "sha256:250e5436a4ba13885494412b3da5d518cd0d3a278a1ae640e113c073a5f88edd", size = 559184, upload-time = "2025-09-08T23:08:15.163Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/a21b20d577e4100c6a41795842028235998a643b1ad406a6d4163ea8f53e/pyzmq-27.1.0-cp312-abi3-win_amd64.whl", hash = "sha256:9ce490cf1d2ca2ad84733aa1d69ce6855372cb5ce9223802450c9b2a7cba0ccf", size = 619480, upload-time = "2025-09-08T23:08:17.192Z" }, + { url = "https://files.pythonhosted.org/packages/78/c2/c012beae5f76b72f007a9e91ee9401cb88c51d0f83c6257a03e785c81cc2/pyzmq-27.1.0-cp312-abi3-win_arm64.whl", hash = "sha256:75a2f36223f0d535a0c919e23615fc85a1e23b71f40c7eb43d7b1dedb4d8f15f", size = 552993, upload-time = "2025-09-08T23:08:18.926Z" }, + { url = "https://files.pythonhosted.org/packages/60/cb/84a13459c51da6cec1b7b1dc1a47e6db6da50b77ad7fd9c145842750a011/pyzmq-27.1.0-cp313-cp313-android_24_arm64_v8a.whl", hash = "sha256:93ad4b0855a664229559e45c8d23797ceac03183c7b6f5b4428152a6b06684a5", size = 1122436, upload-time = "2025-09-08T23:08:20.801Z" }, + { url = "https://files.pythonhosted.org/packages/dc/b6/94414759a69a26c3dd674570a81813c46a078767d931a6c70ad29fc585cb/pyzmq-27.1.0-cp313-cp313-android_24_x86_64.whl", hash = "sha256:fbb4f2400bfda24f12f009cba62ad5734148569ff4949b1b6ec3b519444342e6", size = 1156301, upload-time = "2025-09-08T23:08:22.47Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ad/15906493fd40c316377fd8a8f6b1f93104f97a752667763c9b9c1b71d42d/pyzmq-27.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:e343d067f7b151cfe4eb3bb796a7752c9d369eed007b91231e817071d2c2fec7", size = 1341197, upload-time = "2025-09-08T23:08:24.286Z" }, + { url = "https://files.pythonhosted.org/packages/14/1d/d343f3ce13db53a54cb8946594e567410b2125394dafcc0268d8dda027e0/pyzmq-27.1.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:08363b2011dec81c354d694bdecaef4770e0ae96b9afea70b3f47b973655cc05", size = 897275, upload-time = "2025-09-08T23:08:26.063Z" }, + { url = "https://files.pythonhosted.org/packages/69/2d/d83dd6d7ca929a2fc67d2c3005415cdf322af7751d773524809f9e585129/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d54530c8c8b5b8ddb3318f481297441af102517602b569146185fa10b63f4fa9", size = 660469, upload-time = "2025-09-08T23:08:27.623Z" }, + { url = "https://files.pythonhosted.org/packages/3e/cd/9822a7af117f4bc0f1952dbe9ef8358eb50a24928efd5edf54210b850259/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f3afa12c392f0a44a2414056d730eebc33ec0926aae92b5ad5cf26ebb6cc128", size = 847961, upload-time = "2025-09-08T23:08:29.672Z" }, + { url = "https://files.pythonhosted.org/packages/9a/12/f003e824a19ed73be15542f172fd0ec4ad0b60cf37436652c93b9df7c585/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c65047adafe573ff023b3187bb93faa583151627bc9c51fc4fb2c561ed689d39", size = 1650282, upload-time = "2025-09-08T23:08:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/4a/e82d788ed58e9a23995cee70dbc20c9aded3d13a92d30d57ec2291f1e8a3/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:90e6e9441c946a8b0a667356f7078d96411391a3b8f80980315455574177ec97", size = 2024468, upload-time = "2025-09-08T23:08:33.543Z" }, + { url = "https://files.pythonhosted.org/packages/d9/94/2da0a60841f757481e402b34bf4c8bf57fa54a5466b965de791b1e6f747d/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:add071b2d25f84e8189aaf0882d39a285b42fa3853016ebab234a5e78c7a43db", size = 1885394, upload-time = "2025-09-08T23:08:35.51Z" }, + { url = "https://files.pythonhosted.org/packages/4f/6f/55c10e2e49ad52d080dc24e37adb215e5b0d64990b57598abc2e3f01725b/pyzmq-27.1.0-cp313-cp313t-win32.whl", hash = "sha256:7ccc0700cfdf7bd487bea8d850ec38f204478681ea02a582a8da8171b7f90a1c", size = 574964, upload-time = "2025-09-08T23:08:37.178Z" }, + { url = "https://files.pythonhosted.org/packages/87/4d/2534970ba63dd7c522d8ca80fb92777f362c0f321900667c615e2067cb29/pyzmq-27.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:8085a9fba668216b9b4323be338ee5437a235fe275b9d1610e422ccc279733e2", size = 641029, upload-time = "2025-09-08T23:08:40.595Z" }, + { url = "https://files.pythonhosted.org/packages/f6/fa/f8aea7a28b0641f31d40dea42d7ef003fded31e184ef47db696bc74cd610/pyzmq-27.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:6bb54ca21bcfe361e445256c15eedf083f153811c37be87e0514934d6913061e", size = 561541, upload-time = "2025-09-08T23:08:42.668Z" }, + { url = "https://files.pythonhosted.org/packages/87/45/19efbb3000956e82d0331bafca5d9ac19ea2857722fa2caacefb6042f39d/pyzmq-27.1.0-cp314-cp314t-macosx_10_15_universal2.whl", hash = "sha256:ce980af330231615756acd5154f29813d553ea555485ae712c491cd483df6b7a", size = 1341197, upload-time = "2025-09-08T23:08:44.973Z" }, + { url = "https://files.pythonhosted.org/packages/48/43/d72ccdbf0d73d1343936296665826350cb1e825f92f2db9db3e61c2162a2/pyzmq-27.1.0-cp314-cp314t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1779be8c549e54a1c38f805e56d2a2e5c009d26de10921d7d51cfd1c8d4632ea", size = 897175, upload-time = "2025-09-08T23:08:46.601Z" }, + { url = "https://files.pythonhosted.org/packages/2f/2e/a483f73a10b65a9ef0161e817321d39a770b2acf8bcf3004a28d90d14a94/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7200bb0f03345515df50d99d3db206a0a6bee1955fbb8c453c76f5bf0e08fb96", size = 660427, upload-time = "2025-09-08T23:08:48.187Z" }, + { url = "https://files.pythonhosted.org/packages/f5/d2/5f36552c2d3e5685abe60dfa56f91169f7a2d99bbaf67c5271022ab40863/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01c0e07d558b06a60773744ea6251f769cd79a41a97d11b8bf4ab8f034b0424d", size = 847929, upload-time = "2025-09-08T23:08:49.76Z" }, + { url = "https://files.pythonhosted.org/packages/c4/2a/404b331f2b7bf3198e9945f75c4c521f0c6a3a23b51f7a4a401b94a13833/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:80d834abee71f65253c91540445d37c4c561e293ba6e741b992f20a105d69146", size = 1650193, upload-time = "2025-09-08T23:08:51.7Z" }, + { url = "https://files.pythonhosted.org/packages/1c/0b/f4107e33f62a5acf60e3ded67ed33d79b4ce18de432625ce2fc5093d6388/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:544b4e3b7198dde4a62b8ff6685e9802a9a1ebf47e77478a5eb88eca2a82f2fd", size = 2024388, upload-time = "2025-09-08T23:08:53.393Z" }, + { url = "https://files.pythonhosted.org/packages/0d/01/add31fe76512642fd6e40e3a3bd21f4b47e242c8ba33efb6809e37076d9b/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:cedc4c68178e59a4046f97eca31b148ddcf51e88677de1ef4e78cf06c5376c9a", size = 1885316, upload-time = "2025-09-08T23:08:55.702Z" }, + { url = "https://files.pythonhosted.org/packages/c4/59/a5f38970f9bf07cee96128de79590bb354917914a9be11272cfc7ff26af0/pyzmq-27.1.0-cp314-cp314t-win32.whl", hash = "sha256:1f0b2a577fd770aa6f053211a55d1c47901f4d537389a034c690291485e5fe92", size = 587472, upload-time = "2025-09-08T23:08:58.18Z" }, + { url = "https://files.pythonhosted.org/packages/70/d8/78b1bad170f93fcf5e3536e70e8fadac55030002275c9a29e8f5719185de/pyzmq-27.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:19c9468ae0437f8074af379e986c5d3d7d7bfe033506af442e8c879732bedbe0", size = 661401, upload-time = "2025-09-08T23:08:59.802Z" }, + { url = "https://files.pythonhosted.org/packages/81/d6/4bfbb40c9a0b42fc53c7cf442f6385db70b40f74a783130c5d0a5aa62228/pyzmq-27.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:dc5dbf68a7857b59473f7df42650c621d7e8923fb03fa74a526890f4d33cc4d7", size = 575170, upload-time = "2025-09-08T23:09:01.418Z" }, +] + +[[package]] +name = "referencing" +version = "0.37.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/22/f5/df4e9027acead3ecc63e50fe1e36aca1523e1719559c499951bb4b53188f/referencing-0.37.0.tar.gz", hash = "sha256:44aefc3142c5b842538163acb373e24cce6632bd54bdb01b21ad5863489f50d8", size = 78036, upload-time = "2025-10-13T15:30:48.871Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl", hash = "sha256:381329a9f99628c9069361716891d34ad94af76e461dcb0335825aecc7692231", size = 26766, upload-time = "2025-10-13T15:30:47.625Z" }, +] + +[[package]] +name = "requests" +version = "2.32.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" }, +] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513, upload-time = "2021-05-12T16:37:54.178Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490, upload-time = "2021-05-12T16:37:52.536Z" }, +] + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/88/f270de456dd7d11dcc808abfa291ecdd3f45ff44e3b549ffa01b126464d0/rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055", size = 6760, upload-time = "2019-10-28T16:00:19.144Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9", size = 4242, upload-time = "2019-10-28T16:00:13.976Z" }, +] + +[[package]] +name = "rfc3987-syntax" +version = "1.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "lark" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2c/06/37c1a5557acf449e8e406a830a05bf885ac47d33270aec454ef78675008d/rfc3987_syntax-1.1.0.tar.gz", hash = "sha256:717a62cbf33cffdd16dfa3a497d81ce48a660ea691b1ddd7be710c22f00b4a0d", size = 14239, upload-time = "2025-07-18T01:05:05.015Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl", hash = "sha256:6c3d97604e4c5ce9f714898e05401a0445a641cfa276432b0a648c80856f6a3f", size = 8046, upload-time = "2025-07-18T01:05:03.843Z" }, +] + +[[package]] +name = "rpds-py" +version = "0.29.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/98/33/23b3b3419b6a3e0f559c7c0d2ca8fc1b9448382b25245033788785921332/rpds_py-0.29.0.tar.gz", hash = "sha256:fe55fe686908f50154d1dc599232016e50c243b438c3b7432f24e2895b0e5359", size = 69359, upload-time = "2025-11-16T14:50:39.532Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/50/bc0e6e736d94e420df79be4deb5c9476b63165c87bb8f19ef75d100d21b3/rpds_py-0.29.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a0891cfd8db43e085c0ab93ab7e9b0c8fee84780d436d3b266b113e51e79f954", size = 376000, upload-time = "2025-11-16T14:48:19.141Z" }, + { url = "https://files.pythonhosted.org/packages/3e/3a/46676277160f014ae95f24de53bed0e3b7ea66c235e7de0b9df7bd5d68ba/rpds_py-0.29.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3897924d3f9a0361472d884051f9a2460358f9a45b1d85a39a158d2f8f1ad71c", size = 360575, upload-time = "2025-11-16T14:48:20.443Z" }, + { url = "https://files.pythonhosted.org/packages/75/ba/411d414ed99ea1afdd185bbabeeaac00624bd1e4b22840b5e9967ade6337/rpds_py-0.29.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a21deb8e0d1571508c6491ce5ea5e25669b1dd4adf1c9d64b6314842f708b5d", size = 392159, upload-time = "2025-11-16T14:48:22.12Z" }, + { url = "https://files.pythonhosted.org/packages/8f/b1/e18aa3a331f705467a48d0296778dc1fea9d7f6cf675bd261f9a846c7e90/rpds_py-0.29.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9efe71687d6427737a0a2de9ca1c0a216510e6cd08925c44162be23ed7bed2d5", size = 410602, upload-time = "2025-11-16T14:48:23.563Z" }, + { url = "https://files.pythonhosted.org/packages/2f/6c/04f27f0c9f2299274c76612ac9d2c36c5048bb2c6c2e52c38c60bf3868d9/rpds_py-0.29.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:40f65470919dc189c833e86b2c4bd21bd355f98436a2cef9e0a9a92aebc8e57e", size = 515808, upload-time = "2025-11-16T14:48:24.949Z" }, + { url = "https://files.pythonhosted.org/packages/83/56/a8412aa464fb151f8bc0d91fb0bb888adc9039bd41c1c6ba8d94990d8cf8/rpds_py-0.29.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:def48ff59f181130f1a2cb7c517d16328efac3ec03951cca40c1dc2049747e83", size = 416015, upload-time = "2025-11-16T14:48:26.782Z" }, + { url = "https://files.pythonhosted.org/packages/04/4c/f9b8a05faca3d9e0a6397c90d13acb9307c9792b2bff621430c58b1d6e76/rpds_py-0.29.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad7bd570be92695d89285a4b373006930715b78d96449f686af422debb4d3949", size = 395325, upload-time = "2025-11-16T14:48:28.055Z" }, + { url = "https://files.pythonhosted.org/packages/34/60/869f3bfbf8ed7b54f1ad9a5543e0fdffdd40b5a8f587fe300ee7b4f19340/rpds_py-0.29.0-cp312-cp312-manylinux_2_31_riscv64.whl", hash = "sha256:5a572911cd053137bbff8e3a52d31c5d2dba51d3a67ad902629c70185f3f2181", size = 410160, upload-time = "2025-11-16T14:48:29.338Z" }, + { url = "https://files.pythonhosted.org/packages/91/aa/e5b496334e3aba4fe4c8a80187b89f3c1294c5c36f2a926da74338fa5a73/rpds_py-0.29.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d583d4403bcbf10cffc3ab5cee23d7643fcc960dff85973fd3c2d6c86e8dbb0c", size = 425309, upload-time = "2025-11-16T14:48:30.691Z" }, + { url = "https://files.pythonhosted.org/packages/85/68/4e24a34189751ceb6d66b28f18159922828dd84155876551f7ca5b25f14f/rpds_py-0.29.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:070befbb868f257d24c3bb350dbd6e2f645e83731f31264b19d7231dd5c396c7", size = 574644, upload-time = "2025-11-16T14:48:31.964Z" }, + { url = "https://files.pythonhosted.org/packages/8c/cf/474a005ea4ea9c3b4f17b6108b6b13cebfc98ebaff11d6e1b193204b3a93/rpds_py-0.29.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:fc935f6b20b0c9f919a8ff024739174522abd331978f750a74bb68abd117bd19", size = 601605, upload-time = "2025-11-16T14:48:33.252Z" }, + { url = "https://files.pythonhosted.org/packages/f4/b1/c56f6a9ab8c5f6bb5c65c4b5f8229167a3a525245b0773f2c0896686b64e/rpds_py-0.29.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8c5a8ecaa44ce2d8d9d20a68a2483a74c07f05d72e94a4dff88906c8807e77b0", size = 564593, upload-time = "2025-11-16T14:48:34.643Z" }, + { url = "https://files.pythonhosted.org/packages/b3/13/0494cecce4848f68501e0a229432620b4b57022388b071eeff95f3e1e75b/rpds_py-0.29.0-cp312-cp312-win32.whl", hash = "sha256:ba5e1aeaf8dd6d8f6caba1f5539cddda87d511331714b7b5fc908b6cfc3636b7", size = 223853, upload-time = "2025-11-16T14:48:36.419Z" }, + { url = "https://files.pythonhosted.org/packages/1f/6a/51e9aeb444a00cdc520b032a28b07e5f8dc7bc328b57760c53e7f96997b4/rpds_py-0.29.0-cp312-cp312-win_amd64.whl", hash = "sha256:b5f6134faf54b3cb83375db0f113506f8b7770785be1f95a631e7e2892101977", size = 239895, upload-time = "2025-11-16T14:48:37.956Z" }, + { url = "https://files.pythonhosted.org/packages/d1/d4/8bce56cdad1ab873e3f27cb31c6a51d8f384d66b022b820525b879f8bed1/rpds_py-0.29.0-cp312-cp312-win_arm64.whl", hash = "sha256:b016eddf00dca7944721bf0cd85b6af7f6c4efaf83ee0b37c4133bd39757a8c7", size = 230321, upload-time = "2025-11-16T14:48:39.71Z" }, + { url = "https://files.pythonhosted.org/packages/fd/d9/c5de60d9d371bbb186c3e9bf75f4fc5665e11117a25a06a6b2e0afb7380e/rpds_py-0.29.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1585648d0760b88292eecab5181f5651111a69d90eff35d6b78aa32998886a61", size = 375710, upload-time = "2025-11-16T14:48:41.063Z" }, + { url = "https://files.pythonhosted.org/packages/b3/b3/0860cdd012291dc21272895ce107f1e98e335509ba986dd83d72658b82b9/rpds_py-0.29.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:521807963971a23996ddaf764c682b3e46459b3c58ccd79fefbe16718db43154", size = 360582, upload-time = "2025-11-16T14:48:42.423Z" }, + { url = "https://files.pythonhosted.org/packages/92/8a/a18c2f4a61b3407e56175f6aab6deacdf9d360191a3d6f38566e1eaf7266/rpds_py-0.29.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a8896986efaa243ab713c69e6491a4138410f0fe36f2f4c71e18bd5501e8014", size = 391172, upload-time = "2025-11-16T14:48:43.75Z" }, + { url = "https://files.pythonhosted.org/packages/fd/49/e93354258508c50abc15cdcd5fcf7ac4117f67bb6233ad7859f75e7372a0/rpds_py-0.29.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1d24564a700ef41480a984c5ebed62b74e6ce5860429b98b1fede76049e953e6", size = 409586, upload-time = "2025-11-16T14:48:45.498Z" }, + { url = "https://files.pythonhosted.org/packages/5a/8d/a27860dae1c19a6bdc901f90c81f0d581df1943355802961a57cdb5b6cd1/rpds_py-0.29.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e6596b93c010d386ae46c9fba9bfc9fc5965fa8228edeac51576299182c2e31c", size = 516339, upload-time = "2025-11-16T14:48:47.308Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ad/a75e603161e79b7110c647163d130872b271c6b28712c803c65d492100f7/rpds_py-0.29.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5cc58aac218826d054c7da7f95821eba94125d88be673ff44267bb89d12a5866", size = 416201, upload-time = "2025-11-16T14:48:48.615Z" }, + { url = "https://files.pythonhosted.org/packages/b9/42/555b4ee17508beafac135c8b450816ace5a96194ce97fefc49d58e5652ea/rpds_py-0.29.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de73e40ebc04dd5d9556f50180395322193a78ec247e637e741c1b954810f295", size = 395095, upload-time = "2025-11-16T14:48:50.027Z" }, + { url = "https://files.pythonhosted.org/packages/cd/f0/c90b671b9031e800ec45112be42ea9f027f94f9ac25faaac8770596a16a1/rpds_py-0.29.0-cp313-cp313-manylinux_2_31_riscv64.whl", hash = "sha256:295ce5ac7f0cf69a651ea75c8f76d02a31f98e5698e82a50a5f4d4982fbbae3b", size = 410077, upload-time = "2025-11-16T14:48:51.515Z" }, + { url = "https://files.pythonhosted.org/packages/3d/80/9af8b640b81fe21e6f718e9dec36c0b5f670332747243130a5490f292245/rpds_py-0.29.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1ea59b23ea931d494459c8338056fe7d93458c0bf3ecc061cd03916505369d55", size = 424548, upload-time = "2025-11-16T14:48:53.237Z" }, + { url = "https://files.pythonhosted.org/packages/e4/0b/b5647446e991736e6a495ef510e6710df91e880575a586e763baeb0aa770/rpds_py-0.29.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f49d41559cebd608042fdcf54ba597a4a7555b49ad5c1c0c03e0af82692661cd", size = 573661, upload-time = "2025-11-16T14:48:54.769Z" }, + { url = "https://files.pythonhosted.org/packages/f7/b3/1b1c9576839ff583d1428efbf59f9ee70498d8ce6c0b328ac02f1e470879/rpds_py-0.29.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:05a2bd42768ea988294ca328206efbcc66e220d2d9b7836ee5712c07ad6340ea", size = 600937, upload-time = "2025-11-16T14:48:56.247Z" }, + { url = "https://files.pythonhosted.org/packages/6c/7b/b6cfca2f9fee4c4494ce54f7fb1b9f578867495a9aa9fc0d44f5f735c8e0/rpds_py-0.29.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:33ca7bdfedd83339ca55da3a5e1527ee5870d4b8369456b5777b197756f3ca22", size = 564496, upload-time = "2025-11-16T14:48:57.691Z" }, + { url = "https://files.pythonhosted.org/packages/b9/fb/ba29ec7f0f06eb801bac5a23057a9ff7670623b5e8013bd59bec4aa09de8/rpds_py-0.29.0-cp313-cp313-win32.whl", hash = "sha256:20c51ae86a0bb9accc9ad4e6cdeec58d5ebb7f1b09dd4466331fc65e1766aae7", size = 223126, upload-time = "2025-11-16T14:48:59.058Z" }, + { url = "https://files.pythonhosted.org/packages/3c/6b/0229d3bed4ddaa409e6d90b0ae967ed4380e4bdd0dad6e59b92c17d42457/rpds_py-0.29.0-cp313-cp313-win_amd64.whl", hash = "sha256:6410e66f02803600edb0b1889541f4b5cc298a5ccda0ad789cc50ef23b54813e", size = 239771, upload-time = "2025-11-16T14:49:00.872Z" }, + { url = "https://files.pythonhosted.org/packages/e4/38/d2868f058b164f8efd89754d85d7b1c08b454f5c07ac2e6cc2e9bd4bd05b/rpds_py-0.29.0-cp313-cp313-win_arm64.whl", hash = "sha256:56838e1cd9174dc23c5691ee29f1d1be9eab357f27efef6bded1328b23e1ced2", size = 229994, upload-time = "2025-11-16T14:49:02.673Z" }, + { url = "https://files.pythonhosted.org/packages/52/91/5de91c5ec7d41759beec9b251630824dbb8e32d20c3756da1a9a9d309709/rpds_py-0.29.0-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:37d94eadf764d16b9a04307f2ab1d7af6dc28774bbe0535c9323101e14877b4c", size = 365886, upload-time = "2025-11-16T14:49:04.133Z" }, + { url = "https://files.pythonhosted.org/packages/85/7c/415d8c1b016d5f47ecec5145d9d6d21002d39dce8761b30f6c88810b455a/rpds_py-0.29.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d472cf73efe5726a067dce63eebe8215b14beabea7c12606fd9994267b3cfe2b", size = 355262, upload-time = "2025-11-16T14:49:05.543Z" }, + { url = "https://files.pythonhosted.org/packages/3d/14/bf83e2daa4f980e4dc848aed9299792a8b84af95e12541d9e7562f84a6ef/rpds_py-0.29.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:72fdfd5ff8992e4636621826371e3ac5f3e3b8323e9d0e48378e9c13c3dac9d0", size = 384826, upload-time = "2025-11-16T14:49:07.301Z" }, + { url = "https://files.pythonhosted.org/packages/33/b8/53330c50a810ae22b4fbba5e6cf961b68b9d72d9bd6780a7c0a79b070857/rpds_py-0.29.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2549d833abdf8275c901313b9e8ff8fba57e50f6a495035a2a4e30621a2f7cc4", size = 394234, upload-time = "2025-11-16T14:49:08.782Z" }, + { url = "https://files.pythonhosted.org/packages/cc/32/01e2e9645cef0e584f518cfde4567563e57db2257244632b603f61b40e50/rpds_py-0.29.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4448dad428f28a6a767c3e3b80cde3446a22a0efbddaa2360f4bb4dc836d0688", size = 520008, upload-time = "2025-11-16T14:49:10.253Z" }, + { url = "https://files.pythonhosted.org/packages/98/c3/0d1b95a81affae2b10f950782e33a1fd2edd6ce2a479966cac98c9a66f57/rpds_py-0.29.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:115f48170fd4296a33938d8c11f697f5f26e0472e43d28f35624764173a60e4d", size = 409569, upload-time = "2025-11-16T14:49:12.478Z" }, + { url = "https://files.pythonhosted.org/packages/fa/60/aa3b8678f3f009f675b99174fa2754302a7fbfe749162e8043d111de2d88/rpds_py-0.29.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e5bb73ffc029820f4348e9b66b3027493ae00bca6629129cd433fd7a76308ee", size = 385188, upload-time = "2025-11-16T14:49:13.88Z" }, + { url = "https://files.pythonhosted.org/packages/92/02/5546c1c8aa89c18d40c1fcffdcc957ba730dee53fb7c3ca3a46f114761d2/rpds_py-0.29.0-cp313-cp313t-manylinux_2_31_riscv64.whl", hash = "sha256:b1581fcde18fcdf42ea2403a16a6b646f8eb1e58d7f90a0ce693da441f76942e", size = 398587, upload-time = "2025-11-16T14:49:15.339Z" }, + { url = "https://files.pythonhosted.org/packages/6c/e0/ad6eeaf47e236eba052fa34c4073078b9e092bd44da6bbb35aaae9580669/rpds_py-0.29.0-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:16e9da2bda9eb17ea318b4c335ec9ac1818e88922cbe03a5743ea0da9ecf74fb", size = 416641, upload-time = "2025-11-16T14:49:16.832Z" }, + { url = "https://files.pythonhosted.org/packages/1a/93/0acedfd50ad9cdd3879c615a6dc8c5f1ce78d2fdf8b87727468bb5bb4077/rpds_py-0.29.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:28fd300326dd21198f311534bdb6d7e989dd09b3418b3a91d54a0f384c700967", size = 566683, upload-time = "2025-11-16T14:49:18.342Z" }, + { url = "https://files.pythonhosted.org/packages/62/53/8c64e0f340a9e801459fc6456821abc15b3582cb5dc3932d48705a9d9ac7/rpds_py-0.29.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:2aba991e041d031c7939e1358f583ae405a7bf04804ca806b97a5c0e0af1ea5e", size = 592730, upload-time = "2025-11-16T14:49:19.767Z" }, + { url = "https://files.pythonhosted.org/packages/85/ef/3109b6584f8c4b0d2490747c916df833c127ecfa82be04d9a40a376f2090/rpds_py-0.29.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:7f437026dbbc3f08c99cc41a5b2570c6e1a1ddbe48ab19a9b814254128d4ea7a", size = 557361, upload-time = "2025-11-16T14:49:21.574Z" }, + { url = "https://files.pythonhosted.org/packages/ff/3b/61586475e82d57f01da2c16edb9115a618afe00ce86fe1b58936880b15af/rpds_py-0.29.0-cp313-cp313t-win32.whl", hash = "sha256:6e97846e9800a5d0fe7be4d008f0c93d0feeb2700da7b1f7528dabafb31dfadb", size = 211227, upload-time = "2025-11-16T14:49:23.03Z" }, + { url = "https://files.pythonhosted.org/packages/3b/3a/12dc43f13594a54ea0c9d7e9d43002116557330e3ad45bc56097ddf266e2/rpds_py-0.29.0-cp313-cp313t-win_amd64.whl", hash = "sha256:f49196aec7c4b406495f60e6f947ad71f317a765f956d74bbd83996b9edc0352", size = 225248, upload-time = "2025-11-16T14:49:24.841Z" }, + { url = "https://files.pythonhosted.org/packages/89/b1/0b1474e7899371d9540d3bbb2a499a3427ae1fc39c998563fe9035a1073b/rpds_py-0.29.0-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:394d27e4453d3b4d82bb85665dc1fcf4b0badc30fc84282defed71643b50e1a1", size = 363731, upload-time = "2025-11-16T14:49:26.683Z" }, + { url = "https://files.pythonhosted.org/packages/28/12/3b7cf2068d0a334ed1d7b385a9c3c8509f4c2bcba3d4648ea71369de0881/rpds_py-0.29.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:55d827b2ae95425d3be9bc9a5838b6c29d664924f98146557f7715e331d06df8", size = 354343, upload-time = "2025-11-16T14:49:28.24Z" }, + { url = "https://files.pythonhosted.org/packages/eb/73/5afcf8924bc02a749416eda64e17ac9c9b28f825f4737385295a0e99b0c1/rpds_py-0.29.0-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc31a07ed352e5462d3ee1b22e89285f4ce97d5266f6d1169da1142e78045626", size = 385406, upload-time = "2025-11-16T14:49:29.943Z" }, + { url = "https://files.pythonhosted.org/packages/c8/37/5db736730662508535221737a21563591b6f43c77f2e388951c42f143242/rpds_py-0.29.0-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c4695dd224212f6105db7ea62197144230b808d6b2bba52238906a2762f1d1e7", size = 396162, upload-time = "2025-11-16T14:49:31.833Z" }, + { url = "https://files.pythonhosted.org/packages/70/0d/491c1017d14f62ce7bac07c32768d209a50ec567d76d9f383b4cfad19b80/rpds_py-0.29.0-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcae1770b401167f8b9e1e3f566562e6966ffa9ce63639916248a9e25fa8a244", size = 517719, upload-time = "2025-11-16T14:49:33.804Z" }, + { url = "https://files.pythonhosted.org/packages/d7/25/b11132afcb17cd5d82db173f0c8dab270ffdfaba43e5ce7a591837ae9649/rpds_py-0.29.0-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:90f30d15f45048448b8da21c41703b31c61119c06c216a1bf8c245812a0f0c17", size = 409498, upload-time = "2025-11-16T14:49:35.222Z" }, + { url = "https://files.pythonhosted.org/packages/0f/7d/e6543cedfb2e6403a1845710a5ab0e0ccf8fc288e0b5af9a70bfe2c12053/rpds_py-0.29.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44a91e0ab77bdc0004b43261a4b8cd6d6b451e8d443754cfda830002b5745b32", size = 382743, upload-time = "2025-11-16T14:49:36.704Z" }, + { url = "https://files.pythonhosted.org/packages/75/11/a4ebc9f654293ae9fefb83b2b6be7f3253e85ea42a5db2f77d50ad19aaeb/rpds_py-0.29.0-cp314-cp314-manylinux_2_31_riscv64.whl", hash = "sha256:4aa195e5804d32c682e453b34474f411ca108e4291c6a0f824ebdc30a91c973c", size = 400317, upload-time = "2025-11-16T14:49:39.132Z" }, + { url = "https://files.pythonhosted.org/packages/52/18/97677a60a81c7f0e5f64e51fb3f8271c5c8fcabf3a2df18e97af53d7c2bf/rpds_py-0.29.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7971bdb7bf4ee0f7e6f67fa4c7fbc6019d9850cc977d126904392d363f6f8318", size = 416979, upload-time = "2025-11-16T14:49:40.575Z" }, + { url = "https://files.pythonhosted.org/packages/f0/69/28ab391a9968f6c746b2a2db181eaa4d16afaa859fedc9c2f682d19f7e18/rpds_py-0.29.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:8ae33ad9ce580c7a47452c3b3f7d8a9095ef6208e0a0c7e4e2384f9fc5bf8212", size = 567288, upload-time = "2025-11-16T14:49:42.24Z" }, + { url = "https://files.pythonhosted.org/packages/3b/d3/0c7afdcdb830eee94f5611b64e71354ffe6ac8df82d00c2faf2bfffd1d4e/rpds_py-0.29.0-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:c661132ab2fb4eeede2ef69670fd60da5235209874d001a98f1542f31f2a8a94", size = 593157, upload-time = "2025-11-16T14:49:43.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/ac/a0fcbc2feed4241cf26d32268c195eb88ddd4bd862adfc9d4b25edfba535/rpds_py-0.29.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:bb78b3a0d31ac1bde132c67015a809948db751cb4e92cdb3f0b242e430b6ed0d", size = 554741, upload-time = "2025-11-16T14:49:45.557Z" }, + { url = "https://files.pythonhosted.org/packages/0f/f1/fcc24137c470df8588674a677f33719d5800ec053aaacd1de8a5d5d84d9e/rpds_py-0.29.0-cp314-cp314-win32.whl", hash = "sha256:f475f103488312e9bd4000bc890a95955a07b2d0b6e8884aef4be56132adbbf1", size = 215508, upload-time = "2025-11-16T14:49:47.562Z" }, + { url = "https://files.pythonhosted.org/packages/7b/c7/1d169b2045512eac019918fc1021ea07c30e84a4343f9f344e3e0aa8c788/rpds_py-0.29.0-cp314-cp314-win_amd64.whl", hash = "sha256:b9cf2359a4fca87cfb6801fae83a76aedf66ee1254a7a151f1341632acf67f1b", size = 228125, upload-time = "2025-11-16T14:49:49.064Z" }, + { url = "https://files.pythonhosted.org/packages/be/36/0cec88aaba70ec4a6e381c444b0d916738497d27f0c30406e3d9fcbd3bc2/rpds_py-0.29.0-cp314-cp314-win_arm64.whl", hash = "sha256:9ba8028597e824854f0f1733d8b964e914ae3003b22a10c2c664cb6927e0feb9", size = 221992, upload-time = "2025-11-16T14:49:50.777Z" }, + { url = "https://files.pythonhosted.org/packages/b1/fa/a2e524631717c9c0eb5d90d30f648cfba6b731047821c994acacb618406c/rpds_py-0.29.0-cp314-cp314t-macosx_10_12_x86_64.whl", hash = "sha256:e71136fd0612556b35c575dc2726ae04a1669e6a6c378f2240312cf5d1a2ab10", size = 366425, upload-time = "2025-11-16T14:49:52.691Z" }, + { url = "https://files.pythonhosted.org/packages/a2/a4/6d43ebe0746ff694a30233f63f454aed1677bd50ab7a59ff6b2bb5ac61f2/rpds_py-0.29.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:76fe96632d53f3bf0ea31ede2f53bbe3540cc2736d4aec3b3801b0458499ef3a", size = 355282, upload-time = "2025-11-16T14:49:54.292Z" }, + { url = "https://files.pythonhosted.org/packages/fa/a7/52fd8270e0320b09eaf295766ae81dd175f65394687906709b3e75c71d06/rpds_py-0.29.0-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9459a33f077130dbb2c7c3cea72ee9932271fb3126404ba2a2661e4fe9eb7b79", size = 384968, upload-time = "2025-11-16T14:49:55.857Z" }, + { url = "https://files.pythonhosted.org/packages/f4/7d/e6bc526b7a14e1ef80579a52c1d4ad39260a058a51d66c6039035d14db9d/rpds_py-0.29.0-cp314-cp314t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5c9546cfdd5d45e562cc0444b6dddc191e625c62e866bf567a2c69487c7ad28a", size = 394714, upload-time = "2025-11-16T14:49:57.343Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3f/f0ade3954e7db95c791e7eaf978aa7e08a756d2046e8bdd04d08146ed188/rpds_py-0.29.0-cp314-cp314t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12597d11d97b8f7e376c88929a6e17acb980e234547c92992f9f7c058f1a7310", size = 520136, upload-time = "2025-11-16T14:49:59.162Z" }, + { url = "https://files.pythonhosted.org/packages/87/b3/07122ead1b97009715ab9d4082be6d9bd9546099b2b03fae37c3116f72be/rpds_py-0.29.0-cp314-cp314t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28de03cf48b8a9e6ec10318f2197b83946ed91e2891f651a109611be4106ac4b", size = 409250, upload-time = "2025-11-16T14:50:00.698Z" }, + { url = "https://files.pythonhosted.org/packages/c9/c6/dcbee61fd1dc892aedcb1b489ba661313101aa82ec84b1a015d4c63ebfda/rpds_py-0.29.0-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd7951c964069039acc9d67a8ff1f0a7f34845ae180ca542b17dc1456b1f1808", size = 384940, upload-time = "2025-11-16T14:50:02.312Z" }, + { url = "https://files.pythonhosted.org/packages/47/11/914ecb6f3574cf9bf8b38aced4063e0f787d6e1eb30b181a7efbc6c1da9a/rpds_py-0.29.0-cp314-cp314t-manylinux_2_31_riscv64.whl", hash = "sha256:c07d107b7316088f1ac0177a7661ca0c6670d443f6fe72e836069025e6266761", size = 399392, upload-time = "2025-11-16T14:50:03.829Z" }, + { url = "https://files.pythonhosted.org/packages/f5/fd/2f4bd9433f58f816434bb934313584caa47dbc6f03ce5484df8ac8980561/rpds_py-0.29.0-cp314-cp314t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1de2345af363d25696969befc0c1688a6cb5e8b1d32b515ef84fc245c6cddba3", size = 416796, upload-time = "2025-11-16T14:50:05.558Z" }, + { url = "https://files.pythonhosted.org/packages/79/a5/449f0281af33efa29d5c71014399d74842342ae908d8cd38260320167692/rpds_py-0.29.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:00e56b12d2199ca96068057e1ae7f9998ab6e99cda82431afafd32f3ec98cca9", size = 566843, upload-time = "2025-11-16T14:50:07.243Z" }, + { url = "https://files.pythonhosted.org/packages/ab/32/0a6a1ccee2e37fcb1b7ba9afde762b77182dbb57937352a729c6cd3cf2bb/rpds_py-0.29.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:3919a3bbecee589300ed25000b6944174e07cd20db70552159207b3f4bbb45b8", size = 593956, upload-time = "2025-11-16T14:50:09.029Z" }, + { url = "https://files.pythonhosted.org/packages/4a/3d/eb820f95dce4306f07a495ede02fb61bef36ea201d9137d4fcd5ab94ec1e/rpds_py-0.29.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:e7fa2ccc312bbd91e43aa5e0869e46bc03278a3dddb8d58833150a18b0f0283a", size = 557288, upload-time = "2025-11-16T14:50:10.73Z" }, + { url = "https://files.pythonhosted.org/packages/e9/f8/b8ff786f40470462a252918e0836e0db903c28e88e3eec66bc4a7856ee5d/rpds_py-0.29.0-cp314-cp314t-win32.whl", hash = "sha256:97c817863ffc397f1e6a6e9d2d89fe5408c0a9922dac0329672fb0f35c867ea5", size = 211382, upload-time = "2025-11-16T14:50:12.827Z" }, + { url = "https://files.pythonhosted.org/packages/c9/7f/1a65ae870bc9d0576aebb0c501ea5dccf1ae2178fe2821042150ebd2e707/rpds_py-0.29.0-cp314-cp314t-win_amd64.whl", hash = "sha256:2023473f444752f0f82a58dfcbee040d0a1b3d1b3c2ec40e884bd25db6d117d2", size = 225919, upload-time = "2025-11-16T14:50:14.734Z" }, +] + +[[package]] +name = "scipy" +version = "1.16.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/ca/d8ace4f98322d01abcd52d381134344bf7b431eba7ed8b42bdea5a3c2ac9/scipy-1.16.3.tar.gz", hash = "sha256:01e87659402762f43bd2fee13370553a17ada367d42e7487800bf2916535aecb", size = 30597883, upload-time = "2025-10-28T17:38:54.068Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/41/5bf55c3f386b1643812f3a5674edf74b26184378ef0f3e7c7a09a7e2ca7f/scipy-1.16.3-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:81fc5827606858cf71446a5e98715ba0e11f0dbc83d71c7409d05486592a45d6", size = 36659043, upload-time = "2025-10-28T17:32:40.285Z" }, + { url = "https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:c97176013d404c7346bf57874eaac5187d969293bf40497140b0a2b2b7482e07", size = 28898986, upload-time = "2025-10-28T17:32:45.325Z" }, + { url = "https://files.pythonhosted.org/packages/96/5e/36bf3f0ac298187d1ceadde9051177d6a4fe4d507e8f59067dc9dd39e650/scipy-1.16.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2b71d93c8a9936046866acebc915e2af2e292b883ed6e2cbe5c34beb094b82d9", size = 20889814, upload-time = "2025-10-28T17:32:49.277Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/178d9d0c35394d5d5211bbff7ac4f2986c5488b59506fef9e1de13ea28d3/scipy-1.16.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3d4a07a8e785d80289dfe66b7c27d8634a773020742ec7187b85ccc4b0e7b686", size = 23565795, upload-time = "2025-10-28T17:32:53.337Z" }, + { url = "https://files.pythonhosted.org/packages/fa/46/d1146ff536d034d02f83c8afc3c4bab2eddb634624d6529a8512f3afc9da/scipy-1.16.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0553371015692a898e1aa858fed67a3576c34edefa6b7ebdb4e9dde49ce5c203", size = 33349476, upload-time = "2025-10-28T17:32:58.353Z" }, + { url = "https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:72d1717fd3b5e6ec747327ce9bda32d5463f472c9dce9f54499e81fbd50245a1", size = 35676692, upload-time = "2025-10-28T17:33:03.88Z" }, + { url = "https://files.pythonhosted.org/packages/27/82/df26e44da78bf8d2aeaf7566082260cfa15955a5a6e96e6a29935b64132f/scipy-1.16.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fb2472e72e24d1530debe6ae078db70fb1605350c88a3d14bc401d6306dbffe", size = 36019345, upload-time = "2025-10-28T17:33:09.773Z" }, + { url = "https://files.pythonhosted.org/packages/82/31/006cbb4b648ba379a95c87262c2855cd0d09453e500937f78b30f02fa1cd/scipy-1.16.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c5192722cffe15f9329a3948c4b1db789fbb1f05c97899187dcf009b283aea70", size = 38678975, upload-time = "2025-10-28T17:33:15.809Z" }, + { url = "https://files.pythonhosted.org/packages/c2/7f/acbd28c97e990b421af7d6d6cd416358c9c293fc958b8529e0bd5d2a2a19/scipy-1.16.3-cp312-cp312-win_amd64.whl", hash = "sha256:56edc65510d1331dae01ef9b658d428e33ed48b4f77b1d51caf479a0253f96dc", size = 38555926, upload-time = "2025-10-28T17:33:21.388Z" }, + { url = "https://files.pythonhosted.org/packages/ce/69/c5c7807fd007dad4f48e0a5f2153038dc96e8725d3345b9ee31b2b7bed46/scipy-1.16.3-cp312-cp312-win_arm64.whl", hash = "sha256:a8a26c78ef223d3e30920ef759e25625a0ecdd0d60e5a8818b7513c3e5384cf2", size = 25463014, upload-time = "2025-10-28T17:33:25.975Z" }, + { url = "https://files.pythonhosted.org/packages/72/f1/57e8327ab1508272029e27eeef34f2302ffc156b69e7e233e906c2a5c379/scipy-1.16.3-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:d2ec56337675e61b312179a1ad124f5f570c00f920cc75e1000025451b88241c", size = 36617856, upload-time = "2025-10-28T17:33:31.375Z" }, + { url = "https://files.pythonhosted.org/packages/44/13/7e63cfba8a7452eb756306aa2fd9b37a29a323b672b964b4fdeded9a3f21/scipy-1.16.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:16b8bc35a4cc24db80a0ec836a9286d0e31b2503cb2fd7ff7fb0e0374a97081d", size = 28874306, upload-time = "2025-10-28T17:33:36.516Z" }, + { url = "https://files.pythonhosted.org/packages/15/65/3a9400efd0228a176e6ec3454b1fa998fbbb5a8defa1672c3f65706987db/scipy-1.16.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:5803c5fadd29de0cf27fa08ccbfe7a9e5d741bf63e4ab1085437266f12460ff9", size = 20865371, upload-time = "2025-10-28T17:33:42.094Z" }, + { url = "https://files.pythonhosted.org/packages/33/d7/eda09adf009a9fb81827194d4dd02d2e4bc752cef16737cc4ef065234031/scipy-1.16.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:b81c27fc41954319a943d43b20e07c40bdcd3ff7cf013f4fb86286faefe546c4", size = 23524877, upload-time = "2025-10-28T17:33:48.483Z" }, + { url = "https://files.pythonhosted.org/packages/7d/6b/3f911e1ebc364cb81320223a3422aab7d26c9c7973109a9cd0f27c64c6c0/scipy-1.16.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0c3b4dd3d9b08dbce0f3440032c52e9e2ab9f96ade2d3943313dfe51a7056959", size = 33342103, upload-time = "2025-10-28T17:33:56.495Z" }, + { url = "https://files.pythonhosted.org/packages/21/f6/4bfb5695d8941e5c570a04d9fcd0d36bce7511b7d78e6e75c8f9791f82d0/scipy-1.16.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7dc1360c06535ea6116a2220f760ae572db9f661aba2d88074fe30ec2aa1ff88", size = 35697297, upload-time = "2025-10-28T17:34:04.722Z" }, + { url = "https://files.pythonhosted.org/packages/04/e1/6496dadbc80d8d896ff72511ecfe2316b50313bfc3ebf07a3f580f08bd8c/scipy-1.16.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:663b8d66a8748051c3ee9c96465fb417509315b99c71550fda2591d7dd634234", size = 36021756, upload-time = "2025-10-28T17:34:13.482Z" }, + { url = "https://files.pythonhosted.org/packages/fe/bd/a8c7799e0136b987bda3e1b23d155bcb31aec68a4a472554df5f0937eef7/scipy-1.16.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eab43fae33a0c39006a88096cd7b4f4ef545ea0447d250d5ac18202d40b6611d", size = 38696566, upload-time = "2025-10-28T17:34:22.384Z" }, + { url = "https://files.pythonhosted.org/packages/cd/01/1204382461fcbfeb05b6161b594f4007e78b6eba9b375382f79153172b4d/scipy-1.16.3-cp313-cp313-win_amd64.whl", hash = "sha256:062246acacbe9f8210de8e751b16fc37458213f124bef161a5a02c7a39284304", size = 38529877, upload-time = "2025-10-28T17:35:51.076Z" }, + { url = "https://files.pythonhosted.org/packages/7f/14/9d9fbcaa1260a94f4bb5b64ba9213ceb5d03cd88841fe9fd1ffd47a45b73/scipy-1.16.3-cp313-cp313-win_arm64.whl", hash = "sha256:50a3dbf286dbc7d84f176f9a1574c705f277cb6565069f88f60db9eafdbe3ee2", size = 25455366, upload-time = "2025-10-28T17:35:59.014Z" }, + { url = "https://files.pythonhosted.org/packages/e2/a3/9ec205bd49f42d45d77f1730dbad9ccf146244c1647605cf834b3a8c4f36/scipy-1.16.3-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:fb4b29f4cf8cc5a8d628bc8d8e26d12d7278cd1f219f22698a378c3d67db5e4b", size = 37027931, upload-time = "2025-10-28T17:34:31.451Z" }, + { url = "https://files.pythonhosted.org/packages/25/06/ca9fd1f3a4589cbd825b1447e5db3a8ebb969c1eaf22c8579bd286f51b6d/scipy-1.16.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:8d09d72dc92742988b0e7750bddb8060b0c7079606c0d24a8cc8e9c9c11f9079", size = 29400081, upload-time = "2025-10-28T17:34:39.087Z" }, + { url = "https://files.pythonhosted.org/packages/6a/56/933e68210d92657d93fb0e381683bc0e53a965048d7358ff5fbf9e6a1b17/scipy-1.16.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:03192a35e661470197556de24e7cb1330d84b35b94ead65c46ad6f16f6b28f2a", size = 21391244, upload-time = "2025-10-28T17:34:45.234Z" }, + { url = "https://files.pythonhosted.org/packages/a8/7e/779845db03dc1418e215726329674b40576879b91814568757ff0014ad65/scipy-1.16.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:57d01cb6f85e34f0946b33caa66e892aae072b64b034183f3d87c4025802a119", size = 23929753, upload-time = "2025-10-28T17:34:51.793Z" }, + { url = "https://files.pythonhosted.org/packages/4c/4b/f756cf8161d5365dcdef9e5f460ab226c068211030a175d2fc7f3f41ca64/scipy-1.16.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:96491a6a54e995f00a28a3c3badfff58fd093bf26cd5fb34a2188c8c756a3a2c", size = 33496912, upload-time = "2025-10-28T17:34:59.8Z" }, + { url = "https://files.pythonhosted.org/packages/09/b5/222b1e49a58668f23839ca1542a6322bb095ab8d6590d4f71723869a6c2c/scipy-1.16.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd13e354df9938598af2be05822c323e97132d5e6306b83a3b4ee6724c6e522e", size = 35802371, upload-time = "2025-10-28T17:35:08.173Z" }, + { url = "https://files.pythonhosted.org/packages/c1/8d/5964ef68bb31829bde27611f8c9deeac13764589fe74a75390242b64ca44/scipy-1.16.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63d3cdacb8a824a295191a723ee5e4ea7768ca5ca5f2838532d9f2e2b3ce2135", size = 36190477, upload-time = "2025-10-28T17:35:16.7Z" }, + { url = "https://files.pythonhosted.org/packages/ab/f2/b31d75cb9b5fa4dd39a0a931ee9b33e7f6f36f23be5ef560bf72e0f92f32/scipy-1.16.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e7efa2681ea410b10dde31a52b18b0154d66f2485328830e45fdf183af5aefc6", size = 38796678, upload-time = "2025-10-28T17:35:26.354Z" }, + { url = "https://files.pythonhosted.org/packages/b4/1e/b3723d8ff64ab548c38d87055483714fefe6ee20e0189b62352b5e015bb1/scipy-1.16.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2d1ae2cf0c350e7705168ff2429962a89ad90c2d49d1dd300686d8b2a5af22fc", size = 38640178, upload-time = "2025-10-28T17:35:35.304Z" }, + { url = "https://files.pythonhosted.org/packages/8e/f3/d854ff38789aca9b0cc23008d607ced9de4f7ab14fa1ca4329f86b3758ca/scipy-1.16.3-cp313-cp313t-win_arm64.whl", hash = "sha256:0c623a54f7b79dd88ef56da19bc2873afec9673a48f3b85b18e4d402bdd29a5a", size = 25803246, upload-time = "2025-10-28T17:35:42.155Z" }, + { url = "https://files.pythonhosted.org/packages/99/f6/99b10fd70f2d864c1e29a28bbcaa0c6340f9d8518396542d9ea3b4aaae15/scipy-1.16.3-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:875555ce62743e1d54f06cdf22c1e0bc47b91130ac40fe5d783b6dfa114beeb6", size = 36606469, upload-time = "2025-10-28T17:36:08.741Z" }, + { url = "https://files.pythonhosted.org/packages/4d/74/043b54f2319f48ea940dd025779fa28ee360e6b95acb7cd188fad4391c6b/scipy-1.16.3-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:bb61878c18a470021fb515a843dc7a76961a8daceaaaa8bad1332f1bf4b54657", size = 28872043, upload-time = "2025-10-28T17:36:16.599Z" }, + { url = "https://files.pythonhosted.org/packages/4d/e1/24b7e50cc1c4ee6ffbcb1f27fe9f4c8b40e7911675f6d2d20955f41c6348/scipy-1.16.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:f2622206f5559784fa5c4b53a950c3c7c1cf3e84ca1b9c4b6c03f062f289ca26", size = 20862952, upload-time = "2025-10-28T17:36:22.966Z" }, + { url = "https://files.pythonhosted.org/packages/dd/3a/3e8c01a4d742b730df368e063787c6808597ccb38636ed821d10b39ca51b/scipy-1.16.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:7f68154688c515cdb541a31ef8eb66d8cd1050605be9dcd74199cbd22ac739bc", size = 23508512, upload-time = "2025-10-28T17:36:29.731Z" }, + { url = "https://files.pythonhosted.org/packages/1f/60/c45a12b98ad591536bfe5330cb3cfe1850d7570259303563b1721564d458/scipy-1.16.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8b3c820ddb80029fe9f43d61b81d8b488d3ef8ca010d15122b152db77dc94c22", size = 33413639, upload-time = "2025-10-28T17:36:37.982Z" }, + { url = "https://files.pythonhosted.org/packages/71/bc/35957d88645476307e4839712642896689df442f3e53b0fa016ecf8a3357/scipy-1.16.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d3837938ae715fc0fe3c39c0202de3a8853aff22ca66781ddc2ade7554b7e2cc", size = 35704729, upload-time = "2025-10-28T17:36:46.547Z" }, + { url = "https://files.pythonhosted.org/packages/3b/15/89105e659041b1ca11c386e9995aefacd513a78493656e57789f9d9eab61/scipy-1.16.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:aadd23f98f9cb069b3bd64ddc900c4d277778242e961751f77a8cb5c4b946fb0", size = 36086251, upload-time = "2025-10-28T17:36:55.161Z" }, + { url = "https://files.pythonhosted.org/packages/1a/87/c0ea673ac9c6cc50b3da2196d860273bc7389aa69b64efa8493bdd25b093/scipy-1.16.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:b7c5f1bda1354d6a19bc6af73a649f8285ca63ac6b52e64e658a5a11d4d69800", size = 38716681, upload-time = "2025-10-28T17:37:04.1Z" }, + { url = "https://files.pythonhosted.org/packages/91/06/837893227b043fb9b0d13e4bd7586982d8136cb249ffb3492930dab905b8/scipy-1.16.3-cp314-cp314-win_amd64.whl", hash = "sha256:e5d42a9472e7579e473879a1990327830493a7047506d58d73fc429b84c1d49d", size = 39358423, upload-time = "2025-10-28T17:38:20.005Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/28bce0355e4d34a7c034727505a02d19548549e190bedd13a721e35380b7/scipy-1.16.3-cp314-cp314-win_arm64.whl", hash = "sha256:6020470b9d00245926f2d5bb93b119ca0340f0d564eb6fbaad843eaebf9d690f", size = 26135027, upload-time = "2025-10-28T17:38:24.966Z" }, + { url = "https://files.pythonhosted.org/packages/b2/6f/69f1e2b682efe9de8fe9f91040f0cd32f13cfccba690512ba4c582b0bc29/scipy-1.16.3-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:e1d27cbcb4602680a49d787d90664fa4974063ac9d4134813332a8c53dbe667c", size = 37028379, upload-time = "2025-10-28T17:37:14.061Z" }, + { url = "https://files.pythonhosted.org/packages/7c/2d/e826f31624a5ebbab1cd93d30fd74349914753076ed0593e1d56a98c4fb4/scipy-1.16.3-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:9b9c9c07b6d56a35777a1b4cc8966118fb16cfd8daf6743867d17d36cfad2d40", size = 29400052, upload-time = "2025-10-28T17:37:21.709Z" }, + { url = "https://files.pythonhosted.org/packages/69/27/d24feb80155f41fd1f156bf144e7e049b4e2b9dd06261a242905e3bc7a03/scipy-1.16.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:3a4c460301fb2cffb7f88528f30b3127742cff583603aa7dc964a52c463b385d", size = 21391183, upload-time = "2025-10-28T17:37:29.559Z" }, + { url = "https://files.pythonhosted.org/packages/f8/d3/1b229e433074c5738a24277eca520a2319aac7465eea7310ea6ae0e98ae2/scipy-1.16.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:f667a4542cc8917af1db06366d3f78a5c8e83badd56409f94d1eac8d8d9133fa", size = 23930174, upload-time = "2025-10-28T17:37:36.306Z" }, + { url = "https://files.pythonhosted.org/packages/16/9d/d9e148b0ec680c0f042581a2be79a28a7ab66c0c4946697f9e7553ead337/scipy-1.16.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:f379b54b77a597aa7ee5e697df0d66903e41b9c85a6dd7946159e356319158e8", size = 33497852, upload-time = "2025-10-28T17:37:42.228Z" }, + { url = "https://files.pythonhosted.org/packages/2f/22/4e5f7561e4f98b7bea63cf3fd7934bff1e3182e9f1626b089a679914d5c8/scipy-1.16.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4aff59800a3b7f786b70bfd6ab551001cb553244988d7d6b8299cb1ea653b353", size = 35798595, upload-time = "2025-10-28T17:37:48.102Z" }, + { url = "https://files.pythonhosted.org/packages/83/42/6644d714c179429fc7196857866f219fef25238319b650bb32dde7bf7a48/scipy-1.16.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:da7763f55885045036fabcebd80144b757d3db06ab0861415d1c3b7c69042146", size = 36186269, upload-time = "2025-10-28T17:37:53.72Z" }, + { url = "https://files.pythonhosted.org/packages/ac/70/64b4d7ca92f9cf2e6fc6aaa2eecf80bb9b6b985043a9583f32f8177ea122/scipy-1.16.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ffa6eea95283b2b8079b821dc11f50a17d0571c92b43e2b5b12764dc5f9b285d", size = 38802779, upload-time = "2025-10-28T17:37:59.393Z" }, + { url = "https://files.pythonhosted.org/packages/61/82/8d0e39f62764cce5ffd5284131e109f07cf8955aef9ab8ed4e3aa5e30539/scipy-1.16.3-cp314-cp314t-win_amd64.whl", hash = "sha256:d9f48cafc7ce94cf9b15c6bffdc443a81a27bf7075cf2dcd5c8b40f85d10c4e7", size = 39471128, upload-time = "2025-10-28T17:38:05.259Z" }, + { url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127, upload-time = "2025-10-28T17:38:11.34Z" }, +] + +[[package]] +name = "send2trash" +version = "1.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fd/3a/aec9b02217bb79b87bbc1a21bc6abc51e3d5dcf65c30487ac96c0908c722/Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf", size = 17394, upload-time = "2024-04-07T00:01:09.267Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9", size = 18072, upload-time = "2024-04-07T00:01:07.438Z" }, +] + +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372, upload-time = "2024-02-25T23:20:04.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235, upload-time = "2024-02-25T23:20:01.196Z" }, +] + +[[package]] +name = "soupsieve" +version = "2.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6d/e6/21ccce3262dd4889aa3332e5a119a3491a95e8f60939870a3a035aabac0d/soupsieve-2.8.tar.gz", hash = "sha256:e2dd4a40a628cb5f28f6d4b0db8800b8f581b65bb380b97de22ba5ca8d72572f", size = 103472, upload-time = "2025-08-27T15:39:51.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/14/a0/bb38d3b76b8cae341dad93a2dd83ab7462e6dbcdd84d43f54ee60a8dc167/soupsieve-2.8-py3-none-any.whl", hash = "sha256:0cc76456a30e20f5d7f2e14a98a4ae2ee4e5abdc7c5ea0aafe795f344bc7984c", size = 36679, upload-time = "2025-08-27T15:39:50.179Z" }, +] + +[[package]] +name = "sqlalchemy" +version = "1.4.54" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "greenlet", marker = "platform_machine == 'AMD64' or platform_machine == 'WIN32' or platform_machine == 'aarch64' or platform_machine == 'amd64' or platform_machine == 'ppc64le' or platform_machine == 'win32' or platform_machine == 'x86_64'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ce/af/20290b55d469e873cba9d41c0206ab5461ff49d759989b3fe65010f9d265/sqlalchemy-1.4.54.tar.gz", hash = "sha256:4470fbed088c35dc20b78a39aaf4ae54fe81790c783b3264872a0224f437c31a", size = 8470350, upload-time = "2024-09-05T15:54:10.398Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a5/1b/aa9b99be95d1615f058b5827447c18505b7b3f1dfcbd6ce1b331c2107152/SQLAlchemy-1.4.54-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3f01c2629a7d6b30d8afe0326b8c649b74825a0e1ebdcb01e8ffd1c920deb07d", size = 1589983, upload-time = "2024-09-05T17:39:02.132Z" }, + { url = "https://files.pythonhosted.org/packages/59/47/cb0fc64e5344f0a3d02216796c342525ab283f8f052d1c31a1d487d08aa0/SQLAlchemy-1.4.54-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c24dd161c06992ed16c5e528a75878edbaeced5660c3db88c820f1f0d3fe1f4", size = 1630158, upload-time = "2024-09-05T17:50:13.255Z" }, + { url = "https://files.pythonhosted.org/packages/c0/8b/f45dd378f6c97e8ff9332ff3d03ecb0b8c491be5bb7a698783b5a2f358ec/SQLAlchemy-1.4.54-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b5e0d47d619c739bdc636bbe007da4519fc953393304a5943e0b5aec96c9877c", size = 1629232, upload-time = "2024-09-05T17:48:15.514Z" }, + { url = "https://files.pythonhosted.org/packages/0d/3c/884fe389f5bec86a310b81e79abaa1e26e5d78dc10a84d544a6822833e47/SQLAlchemy-1.4.54-cp312-cp312-win32.whl", hash = "sha256:12bc0141b245918b80d9d17eca94663dbd3f5266ac77a0be60750f36102bbb0f", size = 1592027, upload-time = "2024-09-05T17:54:02.253Z" }, + { url = "https://files.pythonhosted.org/packages/01/c3/c690d037be57efd3a69cde16a2ef1bd2a905dafe869434d33836de0983d0/SQLAlchemy-1.4.54-cp312-cp312-win_amd64.whl", hash = "sha256:f941aaf15f47f316123e1933f9ea91a6efda73a161a6ab6046d1cde37be62c88", size = 1593827, upload-time = "2024-09-05T17:52:07.454Z" }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707, upload-time = "2023-09-30T13:58:05.479Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521, upload-time = "2023-09-30T13:58:03.53Z" }, +] + +[[package]] +name = "terminado" +version = "0.18.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess", marker = "os_name != 'nt'" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8a/11/965c6fd8e5cc254f1fe142d547387da17a8ebfd75a3455f637c663fb38a0/terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e", size = 32701, upload-time = "2024-03-12T14:34:39.026Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0", size = 14154, upload-time = "2024-03-12T14:34:36.569Z" }, +] + +[[package]] +name = "tinycss2" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7a/fd/7a5ee21fd08ff70d3d33a5781c255cbe779659bd03278feb98b19ee550f4/tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7", size = 87085, upload-time = "2024-10-24T14:58:29.895Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289", size = 26610, upload-time = "2024-10-24T14:58:28.029Z" }, +] + +[[package]] +name = "tornado" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/ce/1eb500eae19f4648281bb2186927bb062d2438c2e5093d1360391afd2f90/tornado-6.5.2.tar.gz", hash = "sha256:ab53c8f9a0fa351e2c0741284e06c7a45da86afb544133201c5cc8578eb076a0", size = 510821, upload-time = "2025-08-08T18:27:00.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/48/6a7529df2c9cc12efd2e8f5dd219516184d703b34c06786809670df5b3bd/tornado-6.5.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:2436822940d37cde62771cff8774f4f00b3c8024fe482e16ca8387b8a2724db6", size = 442563, upload-time = "2025-08-08T18:26:42.945Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b5/9b575a0ed3e50b00c40b08cbce82eb618229091d09f6d14bce80fc01cb0b/tornado-6.5.2-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:583a52c7aa94ee046854ba81d9ebb6c81ec0fd30386d96f7640c96dad45a03ef", size = 440729, upload-time = "2025-08-08T18:26:44.473Z" }, + { url = "https://files.pythonhosted.org/packages/1b/4e/619174f52b120efcf23633c817fd3fed867c30bff785e2cd5a53a70e483c/tornado-6.5.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0fe179f28d597deab2842b86ed4060deec7388f1fd9c1b4a41adf8af058907e", size = 444295, upload-time = "2025-08-08T18:26:46.021Z" }, + { url = "https://files.pythonhosted.org/packages/95/fa/87b41709552bbd393c85dd18e4e3499dcd8983f66e7972926db8d96aa065/tornado-6.5.2-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b186e85d1e3536d69583d2298423744740986018e393d0321df7340e71898882", size = 443644, upload-time = "2025-08-08T18:26:47.625Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/fb15f06e33d7430ca89420283a8762a4e6b8025b800ea51796ab5e6d9559/tornado-6.5.2-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e792706668c87709709c18b353da1f7662317b563ff69f00bab83595940c7108", size = 443878, upload-time = "2025-08-08T18:26:50.599Z" }, + { url = "https://files.pythonhosted.org/packages/11/92/fe6d57da897776ad2e01e279170ea8ae726755b045fe5ac73b75357a5a3f/tornado-6.5.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:06ceb1300fd70cb20e43b1ad8aaee0266e69e7ced38fa910ad2e03285009ce7c", size = 444549, upload-time = "2025-08-08T18:26:51.864Z" }, + { url = "https://files.pythonhosted.org/packages/9b/02/c8f4f6c9204526daf3d760f4aa555a7a33ad0e60843eac025ccfd6ff4a93/tornado-6.5.2-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:74db443e0f5251be86cbf37929f84d8c20c27a355dd452a5cfa2aada0d001ec4", size = 443973, upload-time = "2025-08-08T18:26:53.625Z" }, + { url = "https://files.pythonhosted.org/packages/ae/2d/f5f5707b655ce2317190183868cd0f6822a1121b4baeae509ceb9590d0bd/tornado-6.5.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b5e735ab2889d7ed33b32a459cac490eda71a1ba6857b0118de476ab6c366c04", size = 443954, upload-time = "2025-08-08T18:26:55.072Z" }, + { url = "https://files.pythonhosted.org/packages/e8/59/593bd0f40f7355806bf6573b47b8c22f8e1374c9b6fd03114bd6b7a3dcfd/tornado-6.5.2-cp39-abi3-win32.whl", hash = "sha256:c6f29e94d9b37a95013bb669616352ddb82e3bfe8326fccee50583caebc8a5f0", size = 445023, upload-time = "2025-08-08T18:26:56.677Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2a/f609b420c2f564a748a2d80ebfb2ee02a73ca80223af712fca591386cafb/tornado-6.5.2-cp39-abi3-win_amd64.whl", hash = "sha256:e56a5af51cc30dd2cae649429af65ca2f6571da29504a07995175df14c18f35f", size = 445427, upload-time = "2025-08-08T18:26:57.91Z" }, + { url = "https://files.pythonhosted.org/packages/5e/4f/e1f65e8f8c76d73658b33d33b81eed4322fb5085350e4328d5c956f0c8f9/tornado-6.5.2-cp39-abi3-win_arm64.whl", hash = "sha256:d6c33dc3672e3a1f3618eb63b7ef4683a7688e7b9e6e8f0d9aa5726360a004af", size = 444456, upload-time = "2025-08-08T18:26:59.207Z" }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621, upload-time = "2024-04-19T11:11:49.746Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, +] + +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + +[[package]] +name = "tzdata" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380, upload-time = "2025-03-23T13:54:43.652Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" }, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/c7/0336f2bd0bcbada6ccef7aaa25e443c118a704f828a0620c6fa0207c1b64/uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7", size = 21678, upload-time = "2023-06-21T01:49:05.374Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363", size = 11140, upload-time = "2023-06-21T01:49:03.467Z" }, +] + +[[package]] +name = "urllib3" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" }, +] + +[[package]] +name = "wcwidth" +version = "0.2.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/30/6b0809f4510673dc723187aeaf24c7f5459922d01e2f794277a3dfb90345/wcwidth-0.2.14.tar.gz", hash = "sha256:4d478375d31bc5395a3c55c40ccdf3354688364cd61c4f6adacaa9215d0b3605", size = 102293, upload-time = "2025-09-22T16:29:53.023Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/b5/123f13c975e9f27ab9c0770f514345bd406d0e8d3b7a0723af9d43f710af/wcwidth-0.2.14-py2.py3-none-any.whl", hash = "sha256:a7bb560c8aee30f9957e5f9895805edd20602f2d7f720186dfd906e82b4982e1", size = 37286, upload-time = "2025-09-22T16:29:51.641Z" }, +] + +[[package]] +name = "webcolors" +version = "25.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/7a/eb316761ec35664ea5174709a68bbd3389de60d4a1ebab8808bfc264ed67/webcolors-25.10.0.tar.gz", hash = "sha256:62abae86504f66d0f6364c2a8520de4a0c47b80c03fc3a5f1815fedbef7c19bf", size = 53491, upload-time = "2025-10-31T07:51:03.977Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl", hash = "sha256:032c727334856fc0b968f63daa252a1ac93d33db2f5267756623c210e57a4f1d", size = 14905, upload-time = "2025-10-31T07:51:01.778Z" }, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721, upload-time = "2017-04-05T20:21:34.189Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774, upload-time = "2017-04-05T20:21:32.581Z" }, +] + +[[package]] +name = "websocket-client" +version = "1.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2c/41/aa4bf9664e4cda14c3b39865b12251e8e7d239f4cd0e3cc1b6c2ccde25c1/websocket_client-1.9.0.tar.gz", hash = "sha256:9e813624b6eb619999a97dc7958469217c3176312b3a16a4bd1bc7e08a46ec98", size = 70576, upload-time = "2025-10-07T21:16:36.495Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl", hash = "sha256:af248a825037ef591efbf6ed20cc5faa03d3b47b9e5a2230a529eeee1c1fc3ef", size = 82616, upload-time = "2025-10-07T21:16:34.951Z" }, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.15" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bd/f4/c67440c7fb409a71b7404b7aefcd7569a9c0d6bd071299bf4198ae7a5d95/widgetsnbextension-4.0.15.tar.gz", hash = "sha256:de8610639996f1567952d763a5a41af8af37f2575a41f9852a38f947eb82a3b9", size = 1097402, upload-time = "2025-11-01T21:15:55.178Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl", hash = "sha256:8156704e4346a571d9ce73b84bee86a29906c9abfd7223b7228a28899ccf3366", size = 2196503, upload-time = "2025-11-01T21:15:53.565Z" }, +]