-
Notifications
You must be signed in to change notification settings - Fork 1
Description
Clustering 15339 samples
num_samples_class=4601
num_samples_class=0
num_samples_class=0
num_samples_class=0
num_samples_class=0
num_samples_class=0
num_samples_class=0
Selected a total of 4601 samples
Using 16bit native Automatic Mixed Precision (AMP)
Trainer already configured with model summary callbacks: [<class 'pytorch_lightning.callbacks.rich_model_summary.RichModelSummary'>]. Skipping setting a default ModelSummary callback.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
before init in systems.clup
model: None
╭───────────────────────────── Traceback (most recent call last) ──────────────────────────────╮
│ │
│ /home1/ai20resch16001/anaconda3/lib/python3.9/runpy.py:197 in _run_module_as_main │
│ │
│ 194 │ main_globals = sys.modules["main"].dict │
│ 195 │ if alter_argv: │
│ 196 │ │ sys.argv[0] = mod_spec.origin │
│ ❱ 197 │ return _run_code(code, main_globals, None, │
│ 198 │ │ │ │ │ "main", mod_spec) │
│ 199 │
│ 200 def run_module(mod_name, init_globals=None, │
│ /home1/ai20resch16001/anaconda3/lib/python3.9/runpy.py:87 in _run_code │
│ │
│ 84 │ │ │ │ │ loader = loader, │
│ 85 │ │ │ │ │ package = pkg_name, │
│ 86 │ │ │ │ │ spec = mod_spec) │
│ ❱ 87 │ exec(code, run_globals) │
│ 88 │ return run_globals │
│ 89 │
│ 90 def _run_module_code(code, init_globals=None, │
│ │
│ /home1/ai20resch16001/clup/cli/main.py:54 in │
│ │
│ 51 │ │ │ command = COMMANDS.get(key) │
│ 52 │ │ │ if command and value: │
│ 53 │ │ │ │ cmd = command(options, console) │
│ ❱ 54 │ │ │ │ cmd.run() │
│ 55 │ │ │ │ print("after run") │
│ 56 │ │ │ │ executed = True │
│ 57 │ │ │ │ break │
│ │
│ /home1/ai20resch16001/clup/cli/commands/clup.py:143 in run │
│ │
│ 140 │ │ │ criterion_kw["reduction"] = criterion_kw.get("reduction", "batchmean") │
│ 141 │ │ │ criterion = torch.nn.KLDivLoss(**criterion_kw) │
│ 142 │ │ │
│ ❱ 143 │ │ system = CluPSystem( │
│ 144 │ │ │ model, │
│ 145 │ │ │ labels, │
│ 146 │ │ │ labeled_samples=subset_idxs, │
│ │
│ /home1/ai20resch16001/clup/src/systems/clup.py:30 in init │
│ │
│ 27 │ ) -> None: │
│ 28 │ │ print("before init in systems.clup") │
│ 29 │ │ print("model: ", model) │
│ ❱ 30 │ │ super().init(model, *args, pseudo_every=1, **kwargs) │
│ 31 │ │ self.labels = labels │
│ 32 │ │ self.labeled_samples: List[int] = labeled_samples or [] │
│ 33 │ │ self.train_criterion = self.criterion │
│ │
│ /home1/ai20resch16001/clup/src/systems/mixins/pseudo_labelling.py:20 in init │
│ │
│ 17 │ """Implementation of a mixin for pseudo labelling.""" │
│ 18 │ │
│ 19 │ def init(self, *args, **kwargs) -> None: │
│ ❱ 20 │ │ super().init(*args, **kwargs) │
│ 21 │ │ self.pseudo_labels: Tensor │
│ 22 │ │ self.pseudo_labels_confidence: Tensor │
│ 23 │ │ self.pseudo_every = kwargs.get("pseudo_every", 10) │
│ │
│ /home1/ai20resch16001/clup/src/systems/mixins/mixup.py:13 in init │
│ │
│ 10 │ """Implementation of a mixin for mixup.""" │
│ 11 │ │
│ 12 │ def init(self, *args, **kwargs) -> None: │
│ ❱ 13 │ │ super().init(*args, **kwargs) │
│ 14 │ │ self.mixup_alpha = kwargs.get("mixup_alpha", -1) │
│ 15 │ │ self.mixup_last_lambda = -1 │
│ 16 │
│ │
│ /home1/ai20resch16001/clup/src/systems/mixins/base.py:15 in init │
│ │
│ 12 │ """Implementation of an abstract mixin class.""" │
│ 13 │ │
│ 14 │ def init(self, *args, **kwargs) -> None: │
│ ❱ 15 │ │ super().init(*args, **kwargs) │
│ 16 │ │ │
│ 17 │ │ if not hasattr(self, "metrics"): │
│ 18 │ │ │ self.metrics: Dict[str, MetricCollection] │
│ │
│ /home1/ai20resch16001/clup/src/systems/classification.py:38 in init │
│ │
│ 35 │ │ :param lr: learning rate of the system │
│ 36 │ │ :param lr_scheduler: learning rate policy for training │
│ 37 │ │ """ │
│ ❱ 38 │ │ super().init(model, *args, **kwargs) │
│ 39 │ │ │
│ 40 │ │ self.criterion: Module = torch.nn.CrossEntropyLoss() │
│ 41 │ │ if criterion: │
│ │
│ /home1/ai20resch16001/clup/src/systems/base.py:32 in init │
│ │
│ 29 │ │ self.kwargs = kwargs │
│ 30 │ │ self.save_hyperparameters(kwargs) │
│ 31 │ │ │
│ ❱ 32 │ │ print("model.encoder in systems.base#######", model.encoder) │
│ 33 │ │ │
│ 34 │ │ self.encoder = model.encoder │
│ 35 │ │ self.classifier = model.classifier │
╰──────────────────────────────────────────────────────────────────────────────────────────────╯
AttributeError: 'NoneType' object has no attribute 'encoder'