diff --git a/Cost_Reduction/CostReduction_exploration_mode.ipynb b/Cost_Reduction/CostReduction_exploration_mode.ipynb index f6800e6..d97e72e 100644 --- a/Cost_Reduction/CostReduction_exploration_mode.ipynb +++ b/Cost_Reduction/CostReduction_exploration_mode.ipynb @@ -21,7 +21,14 @@ "id": "40096a23-ff7b-4541-b710-9f0a9f9a595d", "metadata": {}, "source": [ - "#
Cost Reduction Framework for Nuclear Reactor Power Plants
\n" + "#
Cost Reduction Framework for Nuclear Reactor Power Plants
\n", + "This notebook demonstrates the impact of various levers on the cost of a nuclear power plant.\n", + "\n", + "It begins with a baseline cost sheet, followed by an estimation of how each lever affects the overall cost. Levers that may influence the cost include design completion, modularity, interest rates,.etc\n", + "\n", + "This notebook is useful for exploring how these levers contribute to cost overruns or savings, step by step. Users who are only interested in the final result can utilize the last section, which includes a Python function that calculates the impact of all the levers in a single step.\n", + "\n", + "For a detailed understanding of the details behind this framework, please check [this report](https://www.osti.gov/biblio/2361138)" ] }, { @@ -37,16 +44,33 @@ "execution_count": 1, "id": "12fb6329-dc95-493f-ba1d-86235e71b512", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'\\n\\n\\n# RB_safety_related is false all the way or True all the way\\n'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import pandas as pd\n", "import numpy as np\n", - "from src import prettify, update_high_level_costs, ITC_reduction_factor\n", + "from src import prettify, update_high_level_costs, ITC_reduction_factor, update_cons_duration, sum_lab_hrs, update_cons_duration_2\n", "\n", "import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)\n", "\n", - "pd.set_option('display.max_rows', None)" + "pd.set_option('display.max_rows', None)\n", + "\n", + "\"\"\"\n", + "\n", + "\n", + "# RB_safety_related is false all the way or True all the way\n", + "\"\"\"" ] }, { @@ -67,659 +91,659 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
FOAK Capital Cost Summary - Baseline hypothetical well-executeed project

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
FOAK Capital Cost Summary - Baseline hypothetical well-executeed project

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleFactory Equipment CostSite Material CostSite Labor CostSite Labor HoursTotal Cost (USD)
10Capitalized Pre-Construction Costs
11Land & Land Rights$ 11,000,000
12Site Permits$ 1,598,891
13Plant Licensing$ 24,382,988
14Plant Permits$ 12,679,167
15Plant Studies$ 12,679,167
16Plant Reports$ 3,972,186
18Other Pre-Construction Costs$ 12,679,167
10s - Subtotal$ 78,991,565
10s - $/kWe$ 254
20Capitalized Direct Costs
21Structures & Improvements$ 244,678,343$ 64,350,8012,899,407 hrs$ 145,691,462$ 34,636,081
212Reactor Containment Building$ 145,108,928$ 57,583,6051,605,670 hrs$ 81,082,169$ 6,443,153
213Turbine Room and Heater Bay$ 9,518,418$ 620,964102,399 hrs$ 5,280,509$ 3,616,945
211 plus 214 to 219Othe Structures & Improvements$ 90,050,998$ 6,146,2321,191,337 hrs$ 59,328,783$ 24,575,983
22Reactor System$ 661,334,797$ 559,862,8441,809,704 hrs$ 97,213,739$ 4,258,215
23Energy Conversion System$ 238,844,021$ 189,802,947874,096 hrs$ 46,348,086$ 2,692,988
232.1Electricity Generation Systems$ 197,558,121$ 167,738,159559,709 hrs$ 29,819,961$ 0
233Ultimate Heat Sink$ 41,285,901$ 22,064,788314,387 hrs$ 16,528,125$ 2,692,988
24Electrical Equipment$ 67,451,645$ 13,662,941767,077 hrs$ 41,345,409$ 12,443,295
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 25,655,316$ 8,372,438278,805 hrs$ 15,110,212$ 2,172,665
28Simulator$ 78,200
20s - Subtotal$ 1,517,766,756
20s - $/kWe$ 4,883
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 146,051,997
32Factory and construction supervision$ 506,256,125
33Start-Up Costs$ 21,298,226
34Shipping & Transportation Costs$ 1,793,334
35Engineering Services$ 136,778,270
30s - Subtotal$ 812,177,951
30s - $/kWe$ 2,613
50Capitalized Supplementary Costs
51Taxes$ 3,510,602
52Insurance$ 10,484,751
54Decommissioning $ 14,606,673
50s - Subtotal$ 28,602,027
50s - $/kWe$ 92
60Capitalized Financial Costs
62Interest $ 592,300,800
-60s - Subtotal$ 592,300,800
60s - $/kWe$ 1,906
Total Direct Capital Cost (Accounts 10 to 20)$ 1,596,758,321
(Accounts 10 to 20) US$/kWe$ 5,138
Base Construction Cost (Accounts 10 to 30)$ 2,408,936,272
(Accounts 10 to 30) US$/kWe$ 7,751
Total Overnight Cost (Accounts 10 to 50)$ 2,437,538,300
(Accounts 10 to 50) US$/kWe$ 7,843
Total Capital Investment Cost (All Accounts)$ 3,029,839,099
(Accounts 10 to 60) US$/kWe$ 9,749
Total Overnight Cost - ITC reduced$ 2,437,538,300
Total Overnight Cost -ITC reduced (US$/kWe)$ 7,843
Total Capital Investment Cost - ITC reduced$ 3,029,839,099
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 9,74910Capitalized Pre-Construction Costs
11Land & Land Rights$ 15,000,000
12Site Permits$ 0
13Plant Licensing$ 107,009,772
14Plant Permits$ 4,721,019
15Plant Studies$ 0
16Plant Reports$ 0
18Other Pre-Construction Costs$ 36,194,482
10s - Subtotal$ 162,925,273
10s - $/kWe$ 154
20Capitalized Direct Costs
21Structures & Improvements$ 90,263,521$ 233,056,140$ 591,583,08111,824,706 hrs$ 914,902,742
212Reactor Containment Building$ 65,728,880$ 83,309,639$ 264,358,2285,420,558 hrs$ 413,396,748
213Turbine Room and Heater Bay$ 1,136,505$ 5,661,559$ 8,458,991163,947 hrs$ 15,257,055
211 plus 214 to 219Othe Structures & Improvements$ 23,398,136$ 144,084,942$ 318,765,8626,240,200 hrs$ 486,248,939
22Reactor System$ 1,530,752,484$ 20,897,278$ 261,886,9154,903,888 hrs$ 1,813,536,678
23Energy Conversion System$ 534,245,006$ 5,827,355$ 125,502,3542,364,645 hrs$ 665,574,716
232.1Electricity Generation Systems$ 486,396,295$ 0$ 89,623,1141,682,189 hrs$ 576,019,409
233Ultimate Heat Sink$ 47,848,711$ 5,827,355$ 35,879,240682,456 hrs$ 89,555,306
24Electrical Equipment$ 28,461,247$ 25,920,606$ 86,126,5471,597,897 hrs$ 140,508,400
25Initial fuel inventory$ 0$ 00 hrs$ 451,686,471
26Miscellaneous Equipment$ 65,401,342$ 19,049,439$ 129,937,7102,408,453 hrs$ 214,388,491
28Simulator$ 0
20s - Subtotal$ 4,200,597,497
20s - $/kWe$ 3,978
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 691,371,059
32Factory and construction supervision$ 2,734,393,138
33Start-Up Costs$ 115,036,083
34Shipping & Transportation Costs$ 9,686,167
35Engineering Services$ 738,767,483
30s - Subtotal$ 4,289,253,931
30s - $/kWe$ 4,062
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 38,204,331
54Decommissioning $ 8,141,760
50s - Subtotal$ 46,533,591
50s - $/kWe$ 44
60Capitalized Financial Costs
62Interest $ 3,202,161,761
-60s - Subtotal$ 3,202,161,761
60s - $/kWe$ 3,032
Total Direct Capital Cost (Accounts 10 to 20)$ 4,363,522,770
(Accounts 10 to 20) US$/kWe$ 4,132
Base Construction Cost (Accounts 10 to 30)$ 8,652,776,701
(Accounts 10 to 30) US$/kWe$ 8,194
Total Overnight Cost (Accounts 10 to 50)$ 8,699,310,293
(Accounts 10 to 50) US$/kWe$ 8,238
Total Capital Investment Cost (All Accounts)$ 11,901,472,053
(Accounts 10 to 60) US$/kWe$ 11,270
Total Overnight Cost - ITC reduced$ 8,699,310,293
Total Overnight Cost -ITC reduced (US$/kWe)$ 8,238
Total Capital Investment Cost - ITC reduced$ 11,901,472,053
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 11,270
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 2, @@ -751,8 +775,10 @@ "\n", "\n", "# Example\n", - "reactor_type = \"Concept B\"\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", + "reactor_type = \"Concept A\"\n", + "reactor_data__ = (reactor_data_read(reactor_type ))[0]\n", + "reactor_data = reactor_data__ [['Account',\t'Title', 'Factory Equipment Cost' , 'Site Material Cost' , 'Site Labor Cost' , 'Site Labor Hours' , 'Total Cost (USD)']]\n", + "reactor_data\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "Reactor_data_pretty = prettify(reactor_data,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
FOAK Capital Cost Summary - Baseline hypothetical well-executeed project

\", \"no_subsidies\")\n", @@ -777,108 +803,108 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
User-Input Global levers
(highlighted in yellow if different from the baseline)
LeverUser-Input ValueLever baseline value (for a hopothetical well-executed project)RangeLeverUser-Input ValueLever baseline value (for a hopothetical well-executed project)Range
Design Maturity120 - 2Design Maturity120 - 2
Design Completion0.80000010 - 1Design Completion0.80000010 - 1
Procurement (supply chain) experience 0.50000020 - 2Procurement (supply chain) experience 0.50000020 - 2
Architecture & Engineering Experience0.50000020 - 2Architecture & Engineering Experience0.50000020 - 2
Construction service experience120 - 2Construction service experience120 - 2
Land Cost Per Acre (2023 USD)22000220001000 - 100000 Land Cost Per Acre (2023 USD)22000220001000 - 100000
ITC 000 - 0.4ITC 0.06000000 - 0.4
Interest Rate0.0600000.0600000 - 0.15 Interest Rate0.0600000.0600000 - 0.15
BOP grade non_nuclearnuclearnuclear or non-nuclearBOP grade non_nuclearnuclearnuclear or non-nuclear
Reactor Building gradenuclearnuclearnuclear or non-nuclearReactor Building gradenuclearnuclearnuclear or non-nuclear
modulariziationmodularizedmodularizedstick_built or modularizedmodulariziationmodularizedmodularizedstick_built or modularized
standardization0.8000000.7000000.7 : 1standardization0.8000000.7000000.7 : 1
Startup duration (months)16163 : 24Startup duration (months)16163 : 24
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -890,7 +916,7 @@ "## ## User-defined Independent Variables (Global Levers)\n", "\n", "# reactor type: Concept A or Concept B\n", - "reactor_type = \"Concept B\"\n", + "reactor_type = \"Concept A\"\n", "\n", "# Which reactor unit: first of a kind : nth of a kind \n", "n_th = 1\n", @@ -932,6 +958,8 @@ "# modularity : \"stick_built\" or \"modularized\"\n", "mod_0 = \"modularized\" \n", "\n", + " \n", + "\n", "# cross_site_standardization :\n", "standardization_0 = 0.8 # 0.7 corresponds to 70% standardization for PWRs\n", "\n", @@ -940,7 +968,7 @@ "RB_grade_0 = \"nuclear\"\n", "\n", "# #investment tax credits subsidies\n", - "ITC_0 = 0 \n", + "ITC_0 = 0.06\n", "\n", "#number of reactors claiming ITC\n", "n_ITC = 3 \n", @@ -1028,195 +1056,195 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Factories Cost Included
Displaying Direct Cost only

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Factories Cost Included
Displaying Direct Cost only

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 244,678,343$ 64,350,8012,899,407 hrs$ 145,691,462$ 34,636,081
212Reactor Containment Building$ 145,108,928$ 57,583,6051,605,670 hrs$ 81,082,169$ 6,443,153
213Turbine Room and Heater Bay$ 9,518,418$ 620,964102,399 hrs$ 5,280,509$ 3,616,945
211 plus 214 to 219Othe Structures & Improvements$ 90,050,998$ 6,146,2321,191,337 hrs$ 59,328,783$ 24,575,983
22Reactor System$ 680,565,566$ 579,093,6131,809,704 hrs$ 97,213,739$ 4,258,215
23Energy Conversion System$ 250,382,483$ 201,341,409874,096 hrs$ 46,348,086$ 2,692,988
232.1Electricity Generation Systems$ 209,096,582$ 179,276,621559,709 hrs$ 29,819,961$ 0
233Ultimate Heat Sink$ 41,285,901$ 22,064,788314,387 hrs$ 16,528,125$ 2,692,988
24Electrical Equipment$ 67,451,645$ 13,662,941767,077 hrs$ 41,345,409$ 12,443,295
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 25,655,316$ 8,372,438278,805 hrs$ 15,110,212$ 2,172,665
28Simulator$ 78,200
20s - Subtotal$ 1,548,535,987
20s - $/kWe$ 4,982
20Capitalized Direct Costs
21Structures & Improvements$ 914,902,742$ 90,263,52111,824,706 hrs$ 591,583,081$ 233,056,140
212Reactor Containment Building$ 413,396,748$ 65,728,8805,420,558 hrs$ 264,358,228$ 83,309,639
213Turbine Room and Heater Bay$ 15,257,055$ 1,136,505163,947 hrs$ 8,458,991$ 5,661,559
211 plus 214 to 219Othe Structures & Improvements$ 486,248,939$ 23,398,1366,240,200 hrs$ 318,765,862$ 144,084,942
22Reactor System$ 1,832,767,447$ 1,549,983,2534,903,888 hrs$ 261,886,915$ 20,897,278
23Energy Conversion System$ 677,113,177$ 545,783,4682,364,645 hrs$ 125,502,354$ 5,827,355
232.1Electricity Generation Systems$ 587,557,871$ 497,934,7571,682,189 hrs$ 89,623,114$ 0
233Ultimate Heat Sink$ 89,555,306$ 47,848,711682,456 hrs$ 35,879,240$ 5,827,355
24Electrical Equipment$ 140,508,400$ 28,461,2471,597,897 hrs$ 86,126,547$ 25,920,606
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 214,388,491$ 65,401,3422,408,453 hrs$ 129,937,710$ 19,049,439
28Simulator$ 0
20s - Subtotal$ 4,231,366,728
20s - $/kWe$ 4,007
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -1239,13 +1267,14 @@ "\n", "\n", " Reactor_data_fac = update_high_level_costs(db, power)\n", - "\n", + " ref_tot_lab_hrs = sum_lab_hrs (Reactor_data_fac)\n", "\n", " Reactor_data_fac_ = pd.DataFrame()\n", " Reactor_data_fac_ = Reactor_data_fac[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\\\n", " 'Site Material Cost']].copy()\n", " \n", - " return Reactor_data_fac_ \n", + " \n", + " return Reactor_data_fac_ , ref_tot_lab_hrs\n", "\n", "\n", "\n", @@ -1254,11 +1283,11 @@ "reactor_data = (reactor_data_read(reactor_type ))[0]\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "\n", - "Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "Reactor_data_factory = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[0]\n", "Reactor_data_factory_pretty = prettify(Reactor_data_factory,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
Capital Cost Summary - Factories Cost Included
Displaying Direct Cost only

\", \"no_subsidies\")\n", "\n", - "# list of rows to hide (not affected by this cost change)\n", + "# # list of rows to hide (not affected by this cost change)\n", "list1 = list(range(0, 11))\n", "list2 = list(range(29, 69))\n", "hidden_list1 = list1 + list2\n", @@ -1284,447 +1313,447 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Factories Cost, land cost and taxes Included

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Factories Cost, land cost and taxes Included

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
10Capitalized Pre-Construction Costs
11Land & Land Rights$ 11,000,000
12Site Permits$ 1,598,891
13Plant Licensing$ 24,382,988
14Plant Permits$ 12,679,167
15Plant Studies$ 12,679,167
16Plant Reports$ 3,972,186
18Other Pre-Construction Costs$ 12,679,167
10s - Subtotal$ 78,991,565
10s - $/kWe$ 254
20Capitalized Direct Costs
21Structures & Improvements$ 244,678,343$ 64,350,8012,899,407 hrs$ 145,691,462$ 34,636,081
212Reactor Containment Building$ 145,108,928$ 57,583,6051,605,670 hrs$ 81,082,169$ 6,443,153
213Turbine Room and Heater Bay$ 9,518,418$ 620,964102,399 hrs$ 5,280,509$ 3,616,945
211 plus 214 to 219Othe Structures & Improvements$ 90,050,998$ 6,146,2321,191,337 hrs$ 59,328,783$ 24,575,983
22Reactor System$ 680,565,566$ 579,093,6131,809,704 hrs$ 97,213,739$ 4,258,215
23Energy Conversion System$ 250,382,483$ 201,341,409874,096 hrs$ 46,348,086$ 2,692,988
232.1Electricity Generation Systems$ 209,096,582$ 179,276,621559,709 hrs$ 29,819,961$ 0
233Ultimate Heat Sink$ 41,285,901$ 22,064,788314,387 hrs$ 16,528,125$ 2,692,988
24Electrical Equipment$ 67,451,645$ 13,662,941767,077 hrs$ 41,345,409$ 12,443,295
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 25,655,316$ 8,372,438278,805 hrs$ 15,110,212$ 2,172,665
28Simulator$ 78,200
20s - Subtotal$ 1,548,535,987
20s - $/kWe$ 4,982
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 146,051,997
32Factory and construction supervision$ 506,256,125
33Start-Up Costs$ 21,298,226
34Shipping & Transportation Costs$ 1,793,334
35Engineering Services$ 136,778,270
30s - Subtotal$ 812,177,951
30s - $/kWe$ 2,613
50Capitalized Supplementary Costs
51Taxes$ 3,510,602
52Insurance$ 10,484,751
54Decommissioning $ 14,606,673
50s - Subtotal$ 28,602,027
50s - $/kWe$ 9210Capitalized Pre-Construction Costs
11Land & Land Rights$ 15,000,000
12Site Permits$ 0
13Plant Licensing$ 107,009,772
14Plant Permits$ 4,721,019
15Plant Studies$ 0
16Plant Reports$ 0
18Other Pre-Construction Costs$ 36,194,482
10s - Subtotal$ 162,925,273
10s - $/kWe$ 154
20Capitalized Direct Costs
21Structures & Improvements$ 914,902,742$ 90,263,52111,824,706 hrs$ 591,583,081$ 233,056,140
212Reactor Containment Building$ 413,396,748$ 65,728,8805,420,558 hrs$ 264,358,228$ 83,309,639
213Turbine Room and Heater Bay$ 15,257,055$ 1,136,505163,947 hrs$ 8,458,991$ 5,661,559
211 plus 214 to 219Othe Structures & Improvements$ 486,248,939$ 23,398,1366,240,200 hrs$ 318,765,862$ 144,084,942
22Reactor System$ 1,832,767,447$ 1,549,983,2534,903,888 hrs$ 261,886,915$ 20,897,278
23Energy Conversion System$ 677,113,177$ 545,783,4682,364,645 hrs$ 125,502,354$ 5,827,355
232.1Electricity Generation Systems$ 587,557,871$ 497,934,7571,682,189 hrs$ 89,623,114$ 0
233Ultimate Heat Sink$ 89,555,306$ 47,848,711682,456 hrs$ 35,879,240$ 5,827,355
24Electrical Equipment$ 140,508,400$ 28,461,2471,597,897 hrs$ 86,126,547$ 25,920,606
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 214,388,491$ 65,401,3422,408,453 hrs$ 129,937,710$ 19,049,439
28Simulator$ 0
20s - Subtotal$ 4,231,366,728
20s - $/kWe$ 4,007
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 691,371,059
32Factory and construction supervision$ 2,734,393,138
33Start-Up Costs$ 115,036,083
34Shipping & Transportation Costs$ 9,686,167
35Engineering Services$ 738,767,483
30s - Subtotal$ 4,289,253,931
30s - $/kWe$ 4,062
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 38,204,331
54Decommissioning $ 8,141,760
50s - Subtotal$ 46,533,591
50s - $/kWe$ 44
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -1771,7 +1800,7 @@ "reactor_data = (reactor_data_read(reactor_type ))[0]\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "\n", - "Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "Reactor_data_factory = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[0]\n", "\n", "Reactor_data_factory_land_taxes = add_land_cost(Reactor_data_factory , land_cost_per_acre_0, reactor_power)\n", "Reactor_data_factory_land_taxes_pretty = prettify(Reactor_data_factory_land_taxes,\\\n", @@ -1797,199 +1826,206 @@ "id": "51d27779-5c59-424c-9368-0d456dbcac09", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current construction duration (months) = 99\n" + ] + }, { "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Factories Cost, land cost, taxes and BOP/RP grades Included
Displaying Direct Cost only

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Factories Cost, land cost, taxes and BOP/RP grades Included
Displaying Direct Cost only

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 240,870,976$ 64,102,4152,858,447 hrs$ 143,579,258$ 33,189,303
212Reactor Containment Building$ 145,108,928$ 57,583,6051,605,670 hrs$ 81,082,169$ 6,443,153
213Turbine Room and Heater Bay$ 5,711,051$ 372,57861,440 hrs$ 3,168,305$ 2,170,167
211 plus 214 to 219Othe Structures & Improvements$ 90,050,998$ 6,146,2321,191,337 hrs$ 59,328,783$ 24,575,983
22Reactor System$ 680,565,566$ 579,093,6131,809,704 hrs$ 97,213,739$ 4,258,215
23Energy Conversion System$ 166,743,850$ 129,630,761650,212 hrs$ 34,420,102$ 2,692,988
232.1Electricity Generation Systems$ 125,457,949$ 107,565,972335,825 hrs$ 17,891,977$ 0
233Ultimate Heat Sink$ 41,285,901$ 22,064,788314,387 hrs$ 16,528,125$ 2,692,988
24Electrical Equipment$ 67,451,645$ 13,662,941767,077 hrs$ 41,345,409$ 12,443,295
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 25,655,316$ 8,372,438278,805 hrs$ 15,110,212$ 2,172,665
28Simulator$ 78,200
20s - Subtotal$ 1,461,089,987
20s - $/kWe$ 4,701
20Capitalized Direct Costs
21Structures & Improvements$ 908,799,920$ 89,808,91911,759,127 hrs$ 588,199,484$ 230,791,516
212Reactor Containment Building$ 413,396,748$ 65,728,8805,420,558 hrs$ 264,358,228$ 83,309,639
213Turbine Room and Heater Bay$ 9,154,233$ 681,90398,368 hrs$ 5,075,395$ 3,396,935
211 plus 214 to 219Othe Structures & Improvements$ 486,248,939$ 23,398,1366,240,200 hrs$ 318,765,862$ 144,084,942
22Reactor System$ 1,832,767,447$ 1,549,983,2534,903,888 hrs$ 261,886,915$ 20,897,278
23Energy Conversion System$ 442,090,029$ 346,609,5651,691,770 hrs$ 89,653,109$ 5,827,355
232.1Electricity Generation Systems$ 352,534,723$ 298,760,8541,009,314 hrs$ 53,773,868$ 0
233Ultimate Heat Sink$ 89,555,306$ 47,848,711682,456 hrs$ 35,879,240$ 5,827,355
24Electrical Equipment$ 140,508,400$ 28,461,2471,597,897 hrs$ 86,126,547$ 25,920,606
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 214,388,491$ 65,401,3422,408,453 hrs$ 129,937,710$ 19,049,439
28Simulator$ 0
20s - Subtotal$ 3,990,240,758
20s - $/kWe$ 3,779
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -2003,10 +2039,17 @@ "\n", "# If the reactor building is non nuclear, the cost reduction factor for acount 212 is 0.6\n", "\n", - "def add_BOP_RP_grades(Reactor_data_updated_1, RB_grade_0, BOP_grade_0, power):\n", + "def add_BOP_RP_grades(Reactor_data_updated_1, RB_grade_0, BOP_grade_0, power, reactor_type, n_th, mod_0):\n", + " \n", + " RB_grade = RB_grade_0 # Does not change when building more units. it is either always nuclear or always non nuclear\n", " \n", - " RB_grade = RB_grade_0 # Does not change when building more units\n", - " BOP_grade = BOP_grade_0 # Does not change when building more units\n", + " \n", + " # If n >=2: BoP commercial = True : non_nuclear\n", + " if n_th == 1:\n", + " BOP_grade = BOP_grade_0\n", + " elif n_th >=2:\n", + " BOP_grade = \"non_nuclear\"\n", + " \n", " \n", " db = pd.DataFrame()\n", "\n", @@ -2069,25 +2112,48 @@ " Reactor_data_updated_2_ = Reactor_data_updated_2[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\\\n", " 'Site Material Cost']].copy()\n", " \n", - " return Reactor_data_updated_2_ \n", + "\n", + " \n", + " if reactor_type == \"Concept A\":\n", + " duration = 125\n", + " elif reactor_type == \"Concept B\": \n", + " duration = 80\n", + " \n", + " new_dur = update_cons_duration(Reactor_data_updated_1, Reactor_data_updated_2, duration)\n", + " \n", + " #apply modularity factor affecting the construction duration \n", + " if n_th == 1:\n", + " mod = mod_0\n", + " elif n_th >= 2:\n", + " mod = \"modularized\"\n", + " \n", + " \n", + " if mod == \"modularized\" :\n", + " mod_factor = 0.8\n", + " else: \n", + " mod_factor = 1\n", + " \n", + " new_dur_1 = new_dur * mod_factor \n", + " return Reactor_data_updated_2_ , new_dur_1\n", "\n", "\n", "# # Example \n", "reactor_data = (reactor_data_read(reactor_type ))[0]\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "\n", - "Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "Reactor_data_factory = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[0]\n", "\n", "Reactor_data_factory_land_taxes = add_land_cost(Reactor_data_factory , land_cost_per_acre_0, reactor_power)\n", - "Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power)\n", - "\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades_result = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0)\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades = Reactor_data_factory_land_taxes_BOP_RP_grades_result[0]\n", + "current_cons_duration = Reactor_data_factory_land_taxes_BOP_RP_grades_result[1][0]\n", "\n", "\n", "Reactor_data_factory_land_taxes_BOP_RP_grades_pretty = prettify(Reactor_data_factory_land_taxes_BOP_RP_grades ,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
Capital Cost Summary - Factories Cost, land cost, taxes and BOP/RP grades Included
Displaying Direct Cost only

\", \"no_subsidies\")\n", "\n", "\n", - "\n", + "print(\"The current construction duration (months) = \", int(np.round(current_cons_duration,0)) )\n", "Reactor_data_factory_land_taxes_BOP_RP_grades_pretty.hide(subset=hidden_list1, axis=0) # show direct cost only \n" ] }, @@ -2110,195 +2176,195 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Factories Cost, land cost, taxes, BOP/RP grades , bulk ordering Included
Displaying Direct Cost only

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Factories Cost, land cost, taxes, BOP/RP grades , bulk ordering Included
Displaying Direct Cost only

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 240,870,976$ 64,102,4152,858,447 hrs$ 143,579,258$ 33,189,303
212Reactor Containment Building$ 145,108,928$ 57,583,6051,605,670 hrs$ 81,082,169$ 6,443,153
213Turbine Room and Heater Bay$ 5,711,051$ 372,57861,440 hrs$ 3,168,305$ 2,170,167
211 plus 214 to 219Othe Structures & Improvements$ 90,050,998$ 6,146,2321,191,337 hrs$ 59,328,783$ 24,575,983
22Reactor System$ 469,343,190$ 367,871,2371,809,704 hrs$ 97,213,739$ 4,258,215
23Energy Conversion System$ 118,425,483$ 81,312,394650,212 hrs$ 34,420,102$ 2,692,988
232.1Electricity Generation Systems$ 77,139,583$ 59,247,606335,825 hrs$ 17,891,977$ 0
233Ultimate Heat Sink$ 41,285,901$ 22,064,788314,387 hrs$ 16,528,125$ 2,692,988
24Electrical Equipment$ 67,451,645$ 13,662,941767,077 hrs$ 41,345,409$ 12,443,295
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 25,655,316$ 8,372,438278,805 hrs$ 15,110,212$ 2,172,665
28Simulator$ 78,200
20s - Subtotal$ 1,201,549,244
20s - $/kWe$ 3,866
20Capitalized Direct Costs
21Structures & Improvements$ 908,799,920$ 89,808,91911,759,127 hrs$ 588,199,484$ 230,791,516
212Reactor Containment Building$ 413,396,748$ 65,728,8805,420,558 hrs$ 264,358,228$ 83,309,639
213Turbine Room and Heater Bay$ 9,154,233$ 681,90398,368 hrs$ 5,075,395$ 3,396,935
211 plus 214 to 219Othe Structures & Improvements$ 486,248,939$ 23,398,1366,240,200 hrs$ 318,765,862$ 144,084,942
22Reactor System$ 1,255,252,471$ 972,468,2774,903,888 hrs$ 261,886,915$ 20,897,278
23Energy Conversion System$ 297,567,727$ 202,087,2641,691,770 hrs$ 89,653,109$ 5,827,355
232.1Electricity Generation Systems$ 208,012,421$ 154,238,5531,009,314 hrs$ 53,773,868$ 0
233Ultimate Heat Sink$ 89,555,306$ 47,848,711682,456 hrs$ 35,879,240$ 5,827,355
24Electrical Equipment$ 140,508,400$ 28,461,2471,597,897 hrs$ 86,126,547$ 25,920,606
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 214,388,491$ 65,401,3422,408,453 hrs$ 129,937,710$ 19,049,439
28Simulator$ 0
20s - Subtotal$ 3,268,203,480
20s - $/kWe$ 3,095
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -2355,10 +2421,10 @@ "reactor_data = (reactor_data_read(reactor_type ))[0]\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "\n", - "Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "Reactor_data_factory = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[0]\n", "\n", "Reactor_data_factory_land_taxes = add_land_cost(Reactor_data_factory , land_cost_per_acre_0, reactor_power)\n", - "Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power)\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0)[0]\n", "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder = add_bulk_ordering(Reactor_data_factory_land_taxes_BOP_RP_grades , num_orders, f_22, f_2321, reactor_power)\n", "\n", "\n", @@ -2381,199 +2447,206 @@ "id": "8b6f2170-d021-47fa-bc5d-568f7fd66f13", "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Current Construction Duration is 127 months\n" + ] + }, { "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor Capital Cost Summary
Factories Cost, land cost, taxes, BOP/RP grades , bulk ordering, reworking and productivity Included
Displaying Direct Cost only

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor Capital Cost Summary
Factories Cost, land cost, taxes, BOP/RP grades , bulk ordering, reworking and productivity Included
Displaying Direct Cost only

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -2582,7 +2655,7 @@ } ], "source": [ - "def add_reworking_productivity(Reactor_data_updated_4, reactor_type, n_th, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, power):\n", + "def add_reworking_productivity(Reactor_data_updated_4, reactor_type, n_th, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, power, prev_cons_duration, baseline_lab_hours):\n", " #Reworking = f(AE, CE, design completion)\n", " \n", " if n_th == 1:\n", @@ -2602,7 +2675,7 @@ " if reactor_type == \"Concept B\":\n", " reworking_factor = (-0.9*design_completion+ 1.9) * (-0.15*ae_exp+1.3) * (-0.15*ce_exp+1.3) \n", "\n", - " if reactor_type == \"Concept A\":\n", + " elif reactor_type == \"Concept A\":\n", " reworking_factor = (-0.69*design_completion+ 1.69) * (-0.125*ae_exp+1.25) * (-0.125*ce_exp+1.25) \n", "\n", " db = pd.DataFrame()\n", @@ -2627,15 +2700,22 @@ " ((( Reactor_data_updated_4.loc[ Reactor_data_updated_4.Account == x, 'Site Material Cost']).values)[0])*reworking_factor \n", "\n", "\n", - " # update the construction duration\n", + " \n", "\n", " Reactor_data_updated_5 = update_high_level_costs(db, power)\n", " Reactor_data_updated_5_ = pd.DataFrame()\n", " Reactor_data_updated_5_ = Reactor_data_updated_5[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\\\n", " 'Site Material Cost']].copy()\n", " \n", - " return Reactor_data_updated_5_ \n", - "\n", + " # update the construction duration\n", + " if reactor_type == \"Concept A\":\n", + " reactor_type_ref_duration = 125\n", + " elif reactor_type == \"Concept B\": \n", + " reactor_type_ref_duration = 80\n", + " \n", + " new_dur = update_cons_duration_2(Reactor_data_updated_4, Reactor_data_updated_5_, reactor_type_ref_duration, prev_cons_duration, baseline_lab_hours)\n", + " return Reactor_data_updated_5_ , new_dur\n", + " \n", "\n", "\n", "# # Example \n", @@ -2643,18 +2723,23 @@ "reactor_data = (reactor_data_read(reactor_type ))[0]\n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", "\n", - "Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "Reactor_data_factory = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[0]\n", + "baseline_lab_hours = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))[1]\n", "\n", "Reactor_data_factory_land_taxes = add_land_cost(Reactor_data_factory , land_cost_per_acre_0, reactor_power)\n", - "Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power)\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0)[0]\n", + "prev_cons_duration = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0)[1]\n", "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder = add_bulk_ordering(Reactor_data_factory_land_taxes_BOP_RP_grades , num_orders, f_22, f_2321, reactor_power)\n", - "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity =\\\n", - " add_reworking_productivity(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder , reactor_type, n_th , design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, reactor_power)\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_results =\\\n", + " add_reworking_productivity(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder , reactor_type, n_th , design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, reactor_power, prev_cons_duration, baseline_lab_hours)\n", "\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity = Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_results[0]\n", "\n", "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_pretty = prettify(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor Capital Cost Summary
Factories Cost, land cost, taxes, BOP/RP grades , bulk ordering, reworking and productivity Included
Displaying Direct Cost only

\", \"no_subsidies\")\n", - "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_pretty.hide(subset=hidden_list1, axis=0) # show direct cost only " + "\n", + "print(f\"The Current Construction Duration is {int(np.round(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_results[1][0],0))} months\")\n", + "Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity_pretty.hide(subset=hidden_list1, axis=0) # show direct cost only \n" ] }, { @@ -2675,195 +2760,195 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Direct Cost Updated

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Direct Cost Updated

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -2874,102 +2959,31 @@ "source": [ "# Combine the previous functions in one function\n", "\n", - "def update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons):\n", - " reactor_data = (reactor_data_read(reactor_type ))[0]\n", - " reactor_power = (reactor_data_read(reactor_type ))[1]\n", - " Reactor_data_factory = add_factory_cost(reactor_data , reactor_power, f_22, f_2321)\n", + "def update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0):\n", + " reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + " \n", + " Reactor_data_factory, baseline_lab_hours = (add_factory_cost(reactor_data , reactor_power, f_22, f_2321))\n", + " \n", " Reactor_data_factory_land_taxes = add_land_cost(Reactor_data_factory , land_cost_per_acre_0, reactor_power)\n", - " Reactor_data_factory_land_taxes_BOP_RP_grades = add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power)\n", + " Reactor_data_factory_land_taxes_BOP_RP_grades , prev_cons_duration = (add_BOP_RP_grades(Reactor_data_factory_land_taxes , RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0))\n", + "\n", " Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder = add_bulk_ordering(Reactor_data_factory_land_taxes_BOP_RP_grades , num_orders, f_22, f_2321, reactor_power)\n", " \n", - " Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity =\\\n", - " add_reworking_productivity(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder , reactor_type, n_th , design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, reactor_power)\n", + " Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity , new_dur_2=\\\n", + " (add_reworking_productivity(Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder , reactor_type, n_th , design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, reactor_power, prev_cons_duration, baseline_lab_hours))\n", " \n", - " return Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity\n", + "\n", + " return Reactor_data_factory_land_taxes_BOP_RP_grades_bulkOrder_rework_productivity, new_dur_2\n", "\n", "# example \n", "\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + "\n", + "direct_cost_updated, current_const_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0)\n", "\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", "direct_cost_updated_pretty = prettify(direct_cost_updated,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
Capital Cost Summary - Direct Cost Updated

\", \"no_subsidies\")\n", - "direct_cost_updated_pretty.hide(subset=hidden_list1, axis=0) # show direct cost only " - ] - }, - { - "cell_type": "markdown", - "id": "a96c43fe", - "metadata": {}, - "source": [ - "### Section 3-5 :Update construction duration from labor hours" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "c4ad50cf", - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "def update_cons_dur(Reactor_data_0, db, mod_0):\n", - "\n", - " #sum of labor hours for Account 20 in the initial estimation (well exectued scenario)\n", - " sum_old_lab_hrs = (Reactor_data_0.loc[Reactor_data_0.Account == 21, 'Site Labor Hours']).values +\\\n", - " (Reactor_data_0.loc[Reactor_data_0.Account == 22, 'Site Labor Hours']).values +\\\n", - " (Reactor_data_0.loc[Reactor_data_0.Account == 23, 'Site Labor Hours']).values+\\\n", - " (Reactor_data_0.loc[Reactor_data_0.Account == 24, 'Site Labor Hours']).values+\\\n", - " (Reactor_data_0.loc[Reactor_data_0.Account == 26, 'Site Labor Hours']).values\n", - "\n", - "\n", - "\n", - " # #sum of labor hours for Account 20 in the new estimation \n", - " sum_new_lab_hrs = (db.loc[db.Account == 21, 'Site Labor Hours']).values +\\\n", - " (db.loc[db.Account == 22, 'Site Labor Hours']).values +\\\n", - " (db.loc[db.Account == 23, 'Site Labor Hours']).values+\\\n", - " (db.loc[db.Account == 24, 'Site Labor Hours']).values+\\\n", - " (db.loc[db.Account == 26, 'Site Labor Hours']).values\n", - "\n", - "\n", - "\n", - " # # # change in labor hours for account 20\n", - " labor_hour_ratio = (sum_new_lab_hrs)/sum_old_lab_hrs # note that this number can be positive or negative\n", - " labor_hour_ratio \n", - "\n", - " # \tFrom the literature we know that if labor hours changed from 3.8M hours to 20.5M hours (5.4 times), the construction duration changes from 33.2 months to 74.3 months (2.2 times).\n", - " # \tWe also know that if the labor hours multiplier =1, the cons duration multiplier should be 1.\n", - " # \tUsing these two points: \n", - "\n", - " # construction duration multiplier = 0.3 * the labor hours multiplier+0.7\n", - "\n", - "\n", - "\n", - " # # modularity (applied on civil construction only) \"stick_built\" or \"modularized\"\n", - " mod = mod_0\n", - "\n", - " # Modularization effect on the construction duration\n", - " if mod == \"stick_built\":\n", - " mod_factor = 0.8\n", - " elif mod == \"modularized\":\n", - " mod_factor = 1\n", - " \n", - "\n", - " # # This is a hypothetical well-executed project taking 64 months (TIMCAT simulation)\n", - " if reactor_type == \"Concept B\": \n", - " baseline_construction_duration = 64/mod_factor # months\n", - " elif reactor_type == \"Concept A\": \n", - " baseline_construction_duration = 100/mod_factor # months\n", - "\n", - " actual_construction_duration = baseline_construction_duration*(0.3*labor_hour_ratio+0.7)\n", - " return actual_construction_duration \n", - "\n", - "# example\n", - "\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", - "act_con_duration = update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n", - "# print(f\"The construction duration of the {reactor_type} reactor, without accounting for supply chain dealys, is { np.round( act_con_duration[0]/12 , 1) } years\")" + "direct_cost_updated_pretty.hide(subset=hidden_list1, axis=0) # show direct cost only \n" ] }, { @@ -2977,12 +2991,12 @@ "id": "6a45171f", "metadata": {}, "source": [ - "### Section 3-6 Learning by doing effect on the cost" + "### Section 3-5 Learning by doing effect on the cost" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "d290af08", "metadata": {}, "outputs": [ @@ -2990,198 +3004,198 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Direct Cost Updated plus learning effect
Displaying Direct Cost only

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Direct Cost Updated plus learning effect
Displaying Direct Cost only

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -3245,9 +3259,14 @@ " return Reactor_data_updated_6_ \n", "\n", "\n", - "# # Example \n", + "# # # Example \n", "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", + "direct_cost_updated = (update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0))[0]\n", + "\n", + "\n", + "\n", + "\n", + "\n", "direct_cost_updated_plus_learning = learning_effect(direct_cost_updated , n_th, standardization_0, reactor_power)\n", "\n", "direct_cost_updated_plus_learning_pretty = prettify(direct_cost_updated_plus_learning,\\\n", @@ -3260,12 +3279,12 @@ "id": "7f1a11ae", "metadata": {}, "source": [ - "### Section 3-7 supply chain delays" + "### Section 3-6 supply chain delays" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "id": "6b94464b", "metadata": {}, "outputs": [], @@ -3330,14 +3349,12 @@ "\n", "\n", "# example\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", "\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", - "act_con_duration = update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n", + "direct_cost_updated , act_con_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, \\\n", + " design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0)\n", "\n", - "cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n", - "# print(f\"The construction duration of the {reactor_type} reactor, accounting for supply chain dealys, is { np.round( cons_duration_plus_delay[0]/12 , 1) } years\")" + "cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n" ] }, { @@ -3345,15 +3362,23 @@ "id": "0d98be43", "metadata": {}, "source": [ - "### Section 3-8 Learning by doing effect on the construction duration" + "### Section 3-7 Learning by doing effect on the construction duration" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "2f8af5f9", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The final construction duration of the Concept A reactor is 138.72 months\n" + ] + } + ], "source": [ "def duration_learning_effect(n_th, standardization_0, actual_construction_duration_plus_delay):\n", " \n", @@ -3361,22 +3386,20 @@ " standardization = 0.7\n", " elif n_th >1:\n", " standardization = standardization_0 \n", - " \n", " # now the effect of learning on the consturction duration\n", - " fitted_LR_duration = 0.15*standardization/0.7\n", + " fitted_LR_duration = 0.103719051*standardization/0.7\n", " duration_multiplier = (1 -fitted_LR_duration)**np.log2(n_th)\n", " final_construction_duration = duration_multiplier *actual_construction_duration_plus_delay\n", " return final_construction_duration \n", "\n", "# example\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", - "act_con_duration = update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n", - "\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + "direct_cost_updated , act_con_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0)\n", "cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n", + "\n", + "# cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n", "final_con_duration = duration_learning_effect(n_th, standardization_0, cons_duration_plus_delay)\n", - "# print(f\"The final construction duration of the {reactor_type} reactor is { np.round( final_con_duration[0]/12 , 1) } years\")" + "print(f\"The final construction duration of the {reactor_type} reactor is { np.round( final_con_duration[0] , 2) } months\")" ] }, { @@ -3384,12 +3407,12 @@ "id": "20719832-5c0c-47ce-8ce7-b712d8b852c3", "metadata": {}, "source": [ - "### Section 3-9 Calculate the Indirect Cost and the standardization impact" + "### Section 3-8 Calculate the Indirect Cost and the standardization impact" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "b0db81dd-fca3-45a3-bcd3-7b2094729da1", "metadata": {}, "outputs": [ @@ -3397,279 +3420,279 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs)

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs)

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 288,869,950
32Factory and construction supervision$ 1,086,805,413
33Start-Up Costs$ 45,645,827
34Shipping & Transportation Costs$ 3,803,819
35Engineering Services$ 293,437,462
30s - Subtotal$ 1,718,562,471
30s - $/kWe$ 5,529
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 1,351,122,731
32Factory and construction supervision$ 5,218,449,814
33Start-Up Costs$ 219,540,497
34Shipping & Transportation Costs$ 18,485,556
35Engineering Services$ 1,409,900,054
30s - Subtotal$ 8,217,498,651
30s - $/kWe$ 7,782
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -3687,8 +3710,7 @@ " # When the standardization is 70%, the engineering service accound (Acct 35) does not change\n", " # The account 35 multiplier is\n", "\n", - "\n", - " factor_35 = -3.33 * standardization + 3.331\n", + " factor_35 = 10/3* ( 1 - standardization)\n", "\n", "\n", " db = pd.DataFrame()\n", @@ -3717,11 +3739,11 @@ "\n", " db.loc[db.Account == 32, 'Total Cost (USD)'] = sum_new_lab_cost *0.36*3.661* final_construction_duration/72\n", "\n", - " db.loc[db.Account == 33, 'Total Cost (USD)'] = 0.042 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] )\n", + " db.loc[db.Account == 33, 'Total Cost (USD)'] = 0.04207006 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] )\n", "\n", - " db.loc[db.Account == 34, 'Total Cost (USD)'] = 0.0035 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] )\n", + " db.loc[db.Account == 34, 'Total Cost (USD)'] = 0.00354234616938 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] )\n", "\n", - " db.loc[db.Account == 35, 'Total Cost (USD)'] = ( 0.27 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] ))*factor_35 \n", + " db.loc[db.Account == 35, 'Total Cost (USD)'] = (0.27017603 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] ))*factor_35 \n", "\n", "\n", " Reactor_data_updated_7 = update_high_level_costs(db, power)\n", @@ -3735,15 +3757,19 @@ "\n", "\n", "# # Example \n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", + "_, reactor_power = (reactor_data_read(reactor_type ))\n", + "direct_cost_updated , act_con_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0)\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", - "act_con_duration = update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n", "cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n", "final_con_duration = duration_learning_effect(n_th, standardization_0, cons_duration_plus_delay)\n", "\n", "direct_cost_updated_plus_learning = learning_effect(direct_cost_updated , n_th, standardization_0, reactor_power)\n", + "\n", "direct_cost_updated_plus_learning_with_indirect_cost = update_indirect_cost(n_th, standardization_0, direct_cost_updated_plus_learning, final_con_duration, reactor_power )\n", "\n", "direct_cost_updated_plus_learning_with_indirect_cost_pretty = prettify(direct_cost_updated_plus_learning_with_indirect_cost,\\\n", @@ -3764,21 +3790,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "ad4b0aa8", "metadata": {}, "outputs": [], "source": [ - "def calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0):\n", - " reactor_data = (reactor_data_read(reactor_type ))[0]\n", + "def calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0):\n", " reactor_power = (reactor_data_read(reactor_type ))[1]\n", - " direct_cost_updated = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n", + " direct_cost_updated , act_con_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0)\n", "\n", - " act_con_duration = update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n", " cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration)\n", " final_con_duration = duration_learning_effect(n_th, standardization_0, cons_duration_plus_delay)\n", - "\n", " direct_cost_updated_plus_learning = learning_effect(direct_cost_updated , n_th, standardization_0, reactor_power)\n", + "\n", " direct_cost_updated_plus_learning_with_indirect_cost = update_indirect_cost(n_th, standardization_0, direct_cost_updated_plus_learning, final_con_duration, reactor_power )\n", " return direct_cost_updated_plus_learning_with_indirect_cost, final_con_duration " ] @@ -3788,12 +3812,12 @@ "id": "e1c48177-8116-4762-803f-3daa3b5d7707", "metadata": {}, "source": [ - "### Section 3-10 : Insurance" + "### Section 3-9 : Insurance" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "id": "a2561757-dbc9-4a67-ad25-6311bc9939cc", "metadata": {}, "outputs": [ @@ -3801,351 +3825,351 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 288,869,950
32Factory and construction supervision$ 1,086,805,413
33Start-Up Costs$ 45,645,827
34Shipping & Transportation Costs$ 3,803,819
35Engineering Services$ 293,437,462
30s - Subtotal$ 1,718,562,471
30s - $/kWe$ 5,529
50Capitalized Supplementary Costs
51Taxes$ 3,510,602
52Insurance$ 16,308,494
54Decommissioning $ 14,606,673
50s - Subtotal$ 34,425,770
50s - $/kWe$ 111
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 1,351,122,731
32Factory and construction supervision$ 5,218,449,814
33Start-Up Costs$ 219,540,497
34Shipping & Transportation Costs$ 18,485,556
35Engineering Services$ 1,409,900,054
30s - Subtotal$ 8,217,498,651
30s - $/kWe$ 7,782
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 59,621,066
54Decommissioning $ 8,141,760
50s - Subtotal$ 67,950,326
50s - $/kWe$ 64
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -4175,9 +4199,8 @@ " return Reactor_data_updated_8_ \n", "\n", "# Example\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "tot_base_cost = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0))[0]\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + "tot_base_cost = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0))[0]\n", "tot_base_cost_wz_insurance = insurance_cost_update(reactor_data, tot_base_cost , reactor_power)\n", "tot_base_cost_wz_insurance_pretty = prettify(tot_base_cost_wz_insurance,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance

\", \"no_subsidies\")\n", @@ -4193,12 +4216,12 @@ "id": "d17b48a1-153c-4273-b346-fe0b9577fc8a", "metadata": {}, "source": [ - "### Section 3-11 : Interest" + "### Section 3-10 : Interest" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "id": "9616088a-1f2c-4147-a288-eb0bb7f259c7", "metadata": {}, "outputs": [ @@ -4206,662 +4229,662 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance and interest

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance and interest

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
10Capitalized Pre-Construction Costs
11Land & Land Rights$ 11,000,000
12Site Permits$ 1,598,891
13Plant Licensing$ 24,382,988
14Plant Permits$ 12,679,167
15Plant Studies$ 12,679,167
16Plant Reports$ 3,972,186
18Other Pre-Construction Costs$ 12,679,167
10s - Subtotal$ 78,991,565
10s - $/kWe$ 254
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 288,869,950
32Factory and construction supervision$ 1,086,805,413
33Start-Up Costs$ 45,645,827
34Shipping & Transportation Costs$ 3,803,819
35Engineering Services$ 293,437,462
30s - Subtotal$ 1,718,562,471
30s - $/kWe$ 5,529
50Capitalized Supplementary Costs
51Taxes$ 3,510,602
52Insurance$ 16,308,494
54Decommissioning $ 14,606,673
50s - Subtotal$ 34,425,770
50s - $/kWe$ 111
60Capitalized Financial Costs
62Interest $ 1,276,775,002
-60s - Subtotal$ 1,276,775,002
60s - $/kWe$ 4,108
Total Direct Capital Cost (Accounts 10 to 20)$ 1,984,538,942
(Accounts 10 to 20) US$/kWe$ 6,385
Base Construction Cost (Accounts 10 to 30)$ 3,703,101,413
(Accounts 10 to 30) US$/kWe$ 11,915
Total Overnight Cost (Accounts 10 to 50)$ 3,737,527,183
(Accounts 10 to 50) US$/kWe$ 12,026
Total Capital Investment Cost (All Accounts)$ 5,014,302,185
(Accounts 10 to 60) US$/kWe$ 16,134
Total Overnight Cost - ITC reduced$ 2,437,538,300
Total Overnight Cost -ITC reduced (US$/kWe)$ 7,843
Total Capital Investment Cost - ITC reduced$ 3,029,839,099
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 9,74910Capitalized Pre-Construction Costs
11Land & Land Rights$ 15,000,000
12Site Permits$ 0
13Plant Licensing$ 107,009,772
14Plant Permits$ 4,721,019
15Plant Studies$ 0
16Plant Reports$ 0
18Other Pre-Construction Costs$ 36,194,482
10s - Subtotal$ 162,925,273
10s - $/kWe$ 154
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 1,351,122,731
32Factory and construction supervision$ 5,218,449,814
33Start-Up Costs$ 219,540,497
34Shipping & Transportation Costs$ 18,485,556
35Engineering Services$ 1,409,900,054
30s - Subtotal$ 8,217,498,651
30s - $/kWe$ 7,782
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 59,621,066
54Decommissioning $ 8,141,760
50s - Subtotal$ 67,950,326
50s - $/kWe$ 64
60Capitalized Financial Costs
62Interest $ 7,078,610,453
-60s - Subtotal$ 7,078,610,453
60s - $/kWe$ 6,703
Total Direct Capital Cost (Accounts 10 to 20)$ 5,194,552,469
(Accounts 10 to 20) US$/kWe$ 4,919
Base Construction Cost (Accounts 10 to 30)$ 13,412,051,120
(Accounts 10 to 30) US$/kWe$ 12,701
Total Overnight Cost (Accounts 10 to 50)$ 13,480,001,446
(Accounts 10 to 50) US$/kWe$ 12,765
Total Capital Investment Cost (All Accounts)$ 20,558,611,899
(Accounts 10 to 60) US$/kWe$ 19,468
Total Overnight Cost - ITC reduced$ 8,699,310,293
Total Overnight Cost -ITC reduced (US$/kWe)$ 8,238
Total Capital Investment Cost - ITC reduced$ 11,901,472,053
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 11,270
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -4872,34 +4895,34 @@ " sp = pd.read_excel('inputs.xlsx', sheet_name = \"Ref Spending Curve\", nrows= 104, usecols='A : D')\n", " Months = sp['Month'].tolist()\n", " CDFs = sp['CDF'].tolist()\n", - "\n", + " \n", " annual_periods = np.linspace(12, 12*int(final_construction_duration/12),int(final_construction_duration/12))\n", + " \n", " if max(annual_periods) < int(final_construction_duration)-1:\n", " annual_periods_1= np.append( annual_periods, (final_construction_duration)-1)\n", " else:\n", " annual_periods_1 = annual_periods\n", + " \n", " annual_cum_spend = []\n", " for period in annual_periods_1:\n", " new_period = 103*period/int(final_construction_duration)\n", - " annual_cum_spend.append(np.interp(new_period, Months, CDFs))\n", " \n", - " annual_cum_spend1 = np.append(annual_cum_spend[0], np.diff(annual_cum_spend ))\n", + " annual_cum_spend.append(np.interp(new_period, Months, CDFs))\n", + " annual_spend1 = np.append(annual_cum_spend[0], np.diff(annual_cum_spend ))\n", + " \n", " tot_overnight_cost = (Reactor_data_updated_8.loc[Reactor_data_updated_8.Title == 'Total Overnight Cost (Accounts 10 to 50)' , 'Total Cost (USD)']).values[0]\n", "\n", - "\n", - " annual_loan_add = annual_cum_spend1 *tot_overnight_cost\n", - "\n", + " annual_loan_add = annual_spend1 *tot_overnight_cost\n", + " \n", " interest_exp = ((1+interest_rate)**((final_construction_duration -annual_periods_1)/12)) * annual_loan_add - annual_loan_add\n", - "\n", - " tot_int_exp_construction = sum(interest_exp )\n", " \n", + " tot_int_exp_construction = sum(interest_exp )\n", " if n_th == 1:\n", " startup = startup_0\n", " elif n_th >1:\n", " startup = max( 7 , startup_0*(1-0.3)**np.log2(n_th) )\n", - "\n", - " int_exp_startup = (tot_int_exp_construction + tot_overnight_cost)*((1+interest_rate)**(startup/12))-(tot_int_exp_construction + tot_overnight_cost)\n", " \n", + " int_exp_startup = (tot_int_exp_construction + tot_overnight_cost)*((1+interest_rate)**(startup/12))-(tot_int_exp_construction + tot_overnight_cost)\n", " db = pd.DataFrame()\n", "\n", " db = Reactor_data_updated_8[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\\\n", @@ -4922,11 +4945,8 @@ "\n", "\n", "# Example\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "tot_base_cost_results = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0))\n", - "tot_base_cost = tot_base_cost_results[0]\n", - "final_construction_duration = tot_base_cost_results[1]\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + "tot_base_cost, final_construction_duration = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0))\n", "\n", "tot_base_cost_wz_insurance = insurance_cost_update(reactor_data, tot_base_cost , reactor_power)\n", "tot_base_cost_wz_insurance_interest = (update_interest_cost(tot_base_cost_wz_insurance , final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power))[0]\n", @@ -4936,7 +4956,7 @@ "tot_base_cost_wz_insurance_interest_pretty = prettify(tot_base_cost_wz_insurance_interest,\\\n", " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor
Capital Cost Summary - Base Cost updated (Direct and Indirect costs) plus insurance and interest

\", \"no_subsidies\")\n", "\n", - "tot_base_cost_wz_insurance_interest_pretty\n" + "tot_base_cost_wz_insurance_interest_pretty" ] }, { @@ -4944,12 +4964,12 @@ "id": "285ff958-5114-480f-93e1-d1874988ab69", "metadata": {}, "source": [ - "### Section 3 - 12 : ITC Subsidies" + "### Section 3 - 11 : ITC Subsidies" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "id": "f5b6baa7-0224-483b-bcd3-59301602ba3e", "metadata": {}, "outputs": [ @@ -4957,657 +4977,657 @@ "data": { "text/html": [ "\n", - "\n", - " \n", + "
The Concept B 310.8 MWe Reactor
Capital Cost Summary

\n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
The Concept A 1056.0 MWe Reactor
Capital Cost Summary

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material CostAccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
10Capitalized Pre-Construction Costs
11Land & Land Rights$ 11,000,000
12Site Permits$ 1,598,891
13Plant Licensing$ 24,382,988
14Plant Permits$ 12,679,167
15Plant Studies$ 12,679,167
16Plant Reports$ 3,972,186
18Other Pre-Construction Costs$ 12,679,167
10s - Subtotal$ 78,991,565
10s - $/kWe$ 254
20Capitalized Direct Costs
21Structures & Improvements$ 440,882,959$ 106,559,0475,557,506 hrs$ 279,152,503$ 55,171,408
212Reactor Containment Building$ 264,076,459$ 95,722,6673,121,808 hrs$ 157,643,178$ 10,710,615
213Turbine Room and Heater Bay$ 10,386,814$ 619,346119,453 hrs$ 6,159,946$ 3,607,522
211 plus 214 to 219Othe Structures & Improvements$ 166,419,685$ 10,217,0342,316,244 hrs$ 115,349,380$ 40,853,271
22Reactor System$ 807,606,906$ 611,521,5543,518,498 hrs$ 189,006,816$ 7,078,536
23Energy Conversion System$ 206,565,176$ 135,167,6251,264,169 hrs$ 66,920,930$ 4,476,621
232.1Electricity Generation Systems$ 133,275,069$ 98,488,776652,925 hrs$ 34,786,293$ 0
233Ultimate Heat Sink$ 73,290,107$ 36,678,849611,244 hrs$ 32,134,637$ 4,476,621
24Electrical Equipment$ 123,782,437$ 22,712,2481,491,382 hrs$ 80,385,388$ 20,684,801
25Initial fuel inventory$ 279,724,434
26Miscellaneous Equipment$ 46,907,265$ 13,917,713542,064 hrs$ 29,377,876$ 3,611,675
28Simulator$ 78,200
20s - Subtotal$ 1,905,547,377
20s - $/kWe$ 6,131
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 288,869,950
32Factory and construction supervision$ 1,086,805,413
33Start-Up Costs$ 45,645,827
34Shipping & Transportation Costs$ 3,803,819
35Engineering Services$ 293,437,462
30s - Subtotal$ 1,718,562,471
30s - $/kWe$ 5,529
50Capitalized Supplementary Costs
51Taxes$ 3,510,602
52Insurance$ 16,308,494
54Decommissioning $ 14,606,673
50s - Subtotal$ 34,425,770
50s - $/kWe$ 111
60Capitalized Financial Costs
62Interest $ 1,276,775,002
-60s - Subtotal$ 1,276,775,002
60s - $/kWe$ 4,108
Total Direct Capital Cost (Accounts 10 to 20)$ 1,984,538,942
(Accounts 10 to 20) US$/kWe$ 6,385
Base Construction Cost (Accounts 10 to 30)$ 3,703,101,413
(Accounts 10 to 30) US$/kWe$ 11,915
Total Overnight Cost (Accounts 10 to 50)$ 3,737,527,183
(Accounts 10 to 50) US$/kWe$ 12,026
Total Capital Investment Cost (All Accounts)$ 5,014,302,185
(Accounts 10 to 60) US$/kWe$ 16,134
Total Overnight Cost - ITC reduced$ 3,737,527,183
Total Overnight Cost -ITC reduced (US$/kWe)$ 12,026
Total Capital Investment Cost - ITC reduced$ 5,014,302,185
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 16,13410Capitalized Pre-Construction Costs
11Land & Land Rights$ 15,000,000
12Site Permits$ 0
13Plant Licensing$ 107,009,772
14Plant Permits$ 4,721,019
15Plant Studies$ 0
16Plant Reports$ 0
18Other Pre-Construction Costs$ 36,194,482
10s - Subtotal$ 162,925,273
10s - $/kWe$ 154
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 1,351,122,731
32Factory and construction supervision$ 5,218,449,814
33Start-Up Costs$ 219,540,497
34Shipping & Transportation Costs$ 18,485,556
35Engineering Services$ 1,409,900,054
30s - Subtotal$ 8,217,498,651
30s - $/kWe$ 7,782
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 59,621,066
54Decommissioning $ 8,141,760
50s - Subtotal$ 67,950,326
50s - $/kWe$ 64
60Capitalized Financial Costs
62Interest $ 7,078,610,453
-60s - Subtotal$ 7,078,610,453
60s - $/kWe$ 6,703
Total Direct Capital Cost (Accounts 10 to 20)$ 5,194,552,469
(Accounts 10 to 20) US$/kWe$ 4,919
Base Construction Cost (Accounts 10 to 30)$ 13,412,051,120
(Accounts 10 to 30) US$/kWe$ 12,701
Total Overnight Cost (Accounts 10 to 50)$ 13,480,001,446
(Accounts 10 to 50) US$/kWe$ 12,765
Total Capital Investment Cost (All Accounts)$ 20,558,611,899
(Accounts 10 to 60) US$/kWe$ 19,468
Total Overnight Cost - ITC reduced$ 12,806,001,374
Total Overnight Cost -ITC reduced (US$/kWe)$ 12,127
Total Capital Investment Cost - ITC reduced$ 19,884,611,827
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 18,830
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 18, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -5648,7 +5668,6 @@ " Reactor_data_updated_10_ = pd.DataFrame()\n", " Reactor_data_updated_10_ = Reactor_data_updated_10[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\\\n", " 'Site Material Cost']].copy()\n", - " \n", " return Reactor_data_updated_10_ , ITC_reduced_OCC/reactor_power, levelized_NCI \n", "\n", "\n", @@ -5656,18 +5675,11 @@ "\n", "\n", "# Example\n", - "reactor_data = (reactor_data_read(reactor_type ))[0]\n", - "reactor_power = (reactor_data_read(reactor_type ))[1]\n", - "tot_base_cost_results = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0))\n", - "tot_base_cost = tot_base_cost_results[0]\n", - "final_construction_duration = tot_base_cost_results[1]\n", + "reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + "tot_base_cost, final_construction_duration = (calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0))\n", "\n", "tot_base_cost_wz_insurance = insurance_cost_update(reactor_data, tot_base_cost , reactor_power)\n", - "tot_base_cost_wz_insurance_interest_results = (update_interest_cost(tot_base_cost_wz_insurance , final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power))\n", - "tot_base_cost_wz_insurance_interest= tot_base_cost_wz_insurance_interest_results[0]\n", - "tot_overnight_cost = tot_base_cost_wz_insurance_interest_results[1]\n", - "tot_cap_investment= tot_base_cost_wz_insurance_interest_results[2]\n", - "\n", + "tot_base_cost_wz_insurance_interest, tot_overnight_cost, tot_cap_investment = update_interest_cost(tot_base_cost_wz_insurance , final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power)\n", "\n", "\n", "Final_Result = update_itc(tot_base_cost_wz_insurance_interest, tot_overnight_cost, tot_cap_investment, n_th, ITC_0, n_ITC, reactor_power)\n", @@ -5679,6 +5691,14 @@ "Final_Result_pretty" ] }, + { + "cell_type": "markdown", + "id": "331d4f39", + "metadata": {}, + "source": [ + "## Section 4 : The Final Result" + ] + }, { "cell_type": "markdown", "id": "8c3ac763", @@ -5689,38 +5709,770 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "id": "eb42caa1", "metadata": {}, "outputs": [], "source": [ "def calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", - " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0): \n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0,\\\n", + " interest_rate_0, startup_0, ITC_0, n_ITC): \n", "\n", - " reactor_data = (reactor_data_read(reactor_type ))[0]\n", - " reactor_power = (reactor_data_read(reactor_type ))[1]\n", - " tot_base_cost_results = calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0)\n", - " tot_base_cost = tot_base_cost_results[0]\n", - " final_construction_duration = tot_base_cost_results[1]\n", + " reactor_data, reactor_power = (reactor_data_read(reactor_type ))\n", + " tot_base_cost , final_construction_duration= calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0,\\\n", + " N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0)\n", + " \n", "\n", " tot_base_cost_wz_insurance = insurance_cost_update(reactor_data, tot_base_cost , reactor_power)\n", - " tot_base_cost_wz_insurance_interest_results = (update_interest_cost(tot_base_cost_wz_insurance , final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power))\n", - " tot_base_cost_wz_insurance_interest= tot_base_cost_wz_insurance_interest_results[0]\n", - " tot_overnight_cost = tot_base_cost_wz_insurance_interest_results[1]\n", - " tot_cap_investment= tot_base_cost_wz_insurance_interest_results[2]\n", + " tot_base_cost_wz_insurance_interest, tot_overnight_cost, tot_cap_investment = update_interest_cost(tot_base_cost_wz_insurance , final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power)\n", + "\n", "\n", " Final_Result = update_itc(tot_base_cost_wz_insurance_interest, tot_overnight_cost, tot_cap_investment, n_th, ITC_0, n_ITC, reactor_power)\n", - " Final_Result_COA = Final_Result[0]\n", - " levelized_net_OCC = Final_Result[1]\n", - " levelized_NCI = Final_Result[2]\n", - " \n", - " return Final_Result_COA, levelized_net_OCC, levelized_NCI, final_construction_duration " + " Final_Result_COA, levelized_net_OCC, levelized_NCI = Final_Result\n", + "\n", + " return Final_Result_COA, levelized_net_OCC, levelized_NCI, final_construction_duration[0] \n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "4298e941", + "metadata": {}, + "source": [ + "#### Examples" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "a310b9e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
The Concept A 1056.0 MWe Reactor (1th of a kind)
Capital Cost Summary

AccountTitleTotal Cost (USD)Factory Equipment CostSite Labor HoursSite Labor CostSite Material Cost
10Capitalized Pre-Construction Costs
11Land & Land Rights$ 15,000,000
12Site Permits$ 0
13Plant Licensing$ 107,009,772
14Plant Permits$ 4,721,019
15Plant Studies$ 0
16Plant Reports$ 0
18Other Pre-Construction Costs$ 36,194,482
10s - Subtotal$ 162,925,273
10s - $/kWe$ 154
20Capitalized Direct Costs
21Structures & Improvements$ 1,533,300,048$ 136,536,21920,909,198 hrs$ 1,045,892,208$ 350,871,621
212Reactor Containment Building$ 696,644,770$ 99,927,4119,638,431 hrs$ 470,061,974$ 126,655,384
213Turbine Room and Heater Bay$ 15,225,731$ 1,036,695174,911 hrs$ 9,024,686$ 5,164,350
211 plus 214 to 219Othe Structures & Improvements$ 821,429,547$ 35,572,11311,095,856 hrs$ 566,805,548$ 219,051,887
22Reactor System$ 1,975,878,221$ 1,478,440,4828,719,725 hrs$ 465,667,671$ 31,770,067
23Energy Conversion System$ 475,506,379$ 307,232,6363,008,178 hrs$ 159,414,434$ 8,859,309
232.1Electricity Generation Systems$ 330,105,050$ 234,488,3901,794,686 hrs$ 95,616,660$ 0
233Ultimate Heat Sink$ 145,401,329$ 72,744,2461,213,492 hrs$ 63,797,774$ 8,859,309
24Electrical Equipment$ 235,820,328$ 43,269,5462,841,261 hrs$ 153,143,767$ 39,407,016
25Initial fuel inventory$ 451,686,4710 hrs$ 0$ 0
26Miscellaneous Equipment$ 359,435,749$ 99,429,4574,282,531 hrs$ 231,045,490$ 28,960,802
28Simulator$ 0
20s - Subtotal$ 5,031,627,196
20s - $/kWe$ 4,765
30Capitalized Indirect Services Costs
31Factory & Field Indirect Costs$ 1,351,122,731
32Factory and construction supervision$ 5,218,449,814
33Start-Up Costs$ 219,540,497
34Shipping & Transportation Costs$ 18,485,556
35Engineering Services$ 1,409,900,054
30s - Subtotal$ 8,217,498,651
30s - $/kWe$ 7,782
50Capitalized Supplementary Costs
51Taxes$ 187,500
52Insurance$ 59,621,066
54Decommissioning $ 8,141,760
50s - Subtotal$ 67,950,326
50s - $/kWe$ 64
60Capitalized Financial Costs
62Interest $ 7,078,610,453
-60s - Subtotal$ 7,078,610,453
60s - $/kWe$ 6,703
Total Direct Capital Cost (Accounts 10 to 20)$ 5,194,552,469
(Accounts 10 to 20) US$/kWe$ 4,919
Base Construction Cost (Accounts 10 to 30)$ 13,412,051,120
(Accounts 10 to 30) US$/kWe$ 12,701
Total Overnight Cost (Accounts 10 to 50)$ 13,480,001,446
(Accounts 10 to 50) US$/kWe$ 12,765
Total Capital Investment Cost (All Accounts)$ 20,558,611,899
(Accounts 10 to 60) US$/kWe$ 19,468
Total Overnight Cost - ITC reduced$ 12,806,001,374
Total Overnight Cost -ITC reduced (US$/kWe)$ 12,127
Total Capital Investment Cost - ITC reduced$ 19,884,611,827
Total Capital Investment Cost - ITC reduced (US$/kWe)$ 18,830
\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Example 1\n", + "result = calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0,\\\n", + " startup_0, ITC_0, n_ITC)\n", + "\n", + "FOAK_cost_pretty = prettify(result[0],\\\n", + " f\" The {reactor_type} {np.round(reactor_power/1000,1)} MWe Reactor ({n_th}th of a kind)
Capital Cost Summary

\", \"subsidies\")\n", + "FOAK_cost_pretty" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "faafd516", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "The Cost of reactor unit # 1 (1th of a kind)\n", + "ITC-reduced OCC = 12126 $/kWe\n", + "ITC-reduced TCI = 18830 $/kWe\n", + "Construction Duration = 138.7 months\n", + "\n", + "\n", + "The Cost of reactor unit # 2 (2th of a kind)\n", + "ITC-reduced OCC = 6677 $/kWe\n", + "ITC-reduced TCI = 9048 $/kWe\n", + "Construction Duration = 100.1 months\n", + "\n", + "\n", + "The Cost of reactor unit # 3 (3th of a kind)\n", + "ITC-reduced OCC = 5099 $/kWe\n", + "ITC-reduced TCI = 6560 $/kWe\n", + "Construction Duration = 85.1 months\n", + "\n", + "\n", + "The Cost of reactor unit # 10 (10th of a kind)\n", + "ITC-reduced OCC = 3737 $/kWe\n", + "ITC-reduced TCI = 4461 $/kWe\n", + "Construction Duration = 65.1 months\n" + ] + } + ], + "source": [ + "# Example 2\n", + "for n_th in [1,2,3,10]:\n", + " results = calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc,\\\n", + " standardization_0, interest_rate_0, startup_0, ITC_0, n_ITC)\n", + " print(\"\\n\")\n", + " print(f\"The Cost of reactor unit # {n_th} ({n_th}th of a kind)\")\n", + " print(f\"ITC-reduced OCC = {int(results[1])} $/kWe\")\n", + " print(f\"ITC-reduced TCI = {int(results[2])} $/kWe\")\n", + " print(f\"Construction Duration = {np.round(results[3],1)} months\")\n" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python 3", "language": "python", "name": "python3" }, diff --git a/Cost_Reduction/CostReduction_exploration_mode.py b/Cost_Reduction/CostReduction_exploration_mode.py new file mode 100644 index 0000000..e152504 --- /dev/null +++ b/Cost_Reduction/CostReduction_exploration_mode.py @@ -0,0 +1,802 @@ +#!/usr/bin/env python + +# This notebook demonstrates the impact of various levers on the cost of a nuclear power plant. +# +# It begins with a baseline cost sheet, followed by an estimation of how each lever affects the overall cost. Levers that may influence the cost include design completion, modularity, interest rates,.etc +# +# This notebook is useful for exploring how these levers contribute to cost overruns or savings, step by step. Users who are only interested in the final result can utilize the last section, which includes a Python function that calculates the impact of all the levers in a single step. +# +# For a detailed understanding of the details behind this framework, please check [this report](https://www.osti.gov/biblio/2361138) + +# ### Importing the libraries + +# In[1]: + + +import pandas as pd +import numpy as np +from src import prettify, update_high_level_costs, ITC_reduction_factor, update_cons_duration, sum_lab_hrs, update_cons_duration_2 + +import warnings +warnings.simplefilter(action='ignore', category=FutureWarning) + +pd.set_option('display.max_rows', None) + + +# ## Section 1 : Reading the Baseline reactor Cost Summary Table + + +# A function to read the inital reactor data from excel + +def reactor_data_read(reactor_type): + + if reactor_type == "Concept A": + # Reading excel or csv files + Reactor_data_0 = pd.read_excel('Inputs.xlsx', sheet_name = "Concept_A", nrows= 69) + reactor_power = 1056 * 1000 # kw + + + elif reactor_type == "Concept B": + # Reading excel or csv files + Reactor_data_0 = pd.read_excel('Inputs.xlsx', sheet_name = "Concept_B", nrows= 69) + reactor_power = 310.8 * 1000 # kw + + db = pd.DataFrame() + db = Reactor_data_0[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + Reactor_data = db + return Reactor_data, reactor_power + + + +# ### The Cost reduction framework: levers and variables impact the costs as shown in the figure (below) + + +# ## Section - 3 : Updating the Cost Summary based on user inputs + +# ### Section - 3-0 : Adding the factory cost to accounts 22 and 232.1 + + +def add_factory_cost(Reactor_data_0, power, f_22, f_2321, num_orders): + db = pd.DataFrame() + db = Reactor_data_0[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + db.loc[db.Account == 22, 'Factory Equipment Cost'] = None # clear old values + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = None # clear old values + + + db.loc[db.Account == 22, 'Factory Equipment Cost'] = ((Reactor_data_0.loc[Reactor_data_0.Account == 22, 'Factory Equipment Cost']) + f_22/num_orders ) + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = ((Reactor_data_0.loc[Reactor_data_0.Account == '232.1', 'Factory Equipment Cost']) + f_2321/num_orders) + + + Reactor_data_fac = update_high_level_costs(db, power) + ref_tot_lab_hrs = sum_lab_hrs (Reactor_data_fac) + + Reactor_data_fac_ = pd.DataFrame() + Reactor_data_fac_ = Reactor_data_fac[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + + return Reactor_data_fac_ , ref_tot_lab_hrs + +# ### Section 3-1 : The land cost & Taxes + +# In[5]: + + +# The cost of the land is 22000$ per acre (500 acres +# The cost is multiplied by the new $/acre divided by the old one +# Accounts 11 and 12 are changed + +def add_land_cost(Reactor_data_fac, land_cost_per_acre, power): + + db = pd.DataFrame() + db = Reactor_data_fac[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + + db.loc[db.Account == 11, 'Total Cost (USD)'] = None # clear old values + db.loc[db.Account == 12, 'Total Cost (USD)'] = None # clear old values + db.loc[db.Account == 51, 'Total Cost (USD)'] = None # clear old values + + + db.loc[db.Account == 11, 'Total Cost (USD)'] = (land_cost_per_acre /22000)*(Reactor_data_fac.loc[Reactor_data_fac.Account == 11, 'Total Cost (USD)'].values) + db.loc[db.Account == 12, 'Total Cost (USD)'] = (land_cost_per_acre /22000)*(Reactor_data_fac.loc[Reactor_data_fac.Account == 12, 'Total Cost (USD)'].values) + + + # The taxes scale with increasing the land cost + db.loc[db.Account == 51, 'Total Cost (USD)'] = (land_cost_per_acre /22000)*(Reactor_data_fac.loc[Reactor_data_fac.Account == 51, 'Total Cost (USD)'].values) + + db.loc[db.Account == 51, 'Total Cost (USD)'] + Reactor_data_updated_1 = update_high_level_costs(db, power) + + + Reactor_data_updated_1_ = pd.DataFrame() + Reactor_data_updated_1_ = Reactor_data_updated_1[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + return Reactor_data_updated_1_ + + +# ### Section 3-2 : Whether the Reactor Building and BOP are nuclear grade equipment + +# if the BOP is non-nuclear, the cost reduction factor for account 213 is 0.6 +# Also, the cost reduction factor for account 232.1 is 0.6 (for factory and labor but not material) + +# If the reactor building is non nuclear, the cost reduction factor for acount 212 is 0.6 + +def add_BOP_RP_grades(Reactor_data_updated_1, RB_grade_0, BOP_grade_0, power, reactor_type, n_th, mod_0): + + RB_grade = RB_grade_0 # Does not change when building more units. it is either always nuclear or always non nuclear + + + # If n >=2: BoP commercial = True : non_nuclear + if n_th == 1: + BOP_grade = BOP_grade_0 + elif n_th >=2: + BOP_grade = "non_nuclear" + + + db = pd.DataFrame() + + db = Reactor_data_updated_1[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + db.loc[db.Account == 212, 'Site Material Cost'] = None # clear old values + db.loc[db.Account == 212, 'Site Labor Cost'] = None # clear old values + db.loc[db.Account == 212, 'Site Labor Hours'] = None + db.loc[db.Account == 212, 'Factory Equipment Cost'] = None + + db.loc[db.Account == 213, 'Site Material Cost'] = None + db.loc[db.Account == 213, 'Site Labor Cost'] = None + db.loc[db.Account == 213, 'Site Labor Hours'] = None + db.loc[db.Account == 213, 'Factory Equipment Cost'] = None + + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = None + db.loc[db.Account == '232.1', 'Site Labor Cost'] = None + db.loc[db.Account == '232.1', 'Site Labor Hours'] = None + + + if RB_grade == "non_nuclear": + db.loc[db.Account == 212, 'Site Material Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Material Cost']).values) + db.loc[db.Account == 212, 'Site Labor Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Labor Cost']).values) + db.loc[db.Account == 212,'Site Labor Hours'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Labor Hours']).values) + db.loc[db.Account == 212,'Factory Equipment Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Factory Equipment Cost']).values) + + else: + db.loc[db.Account == 212, 'Site Material Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Material Cost']).values) + db.loc[db.Account == 212, 'Site Labor Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Labor Cost']).values) + db.loc[db.Account == 212,'Site Labor Hours'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Site Labor Hours']).values) + db.loc[db.Account == 212,'Factory Equipment Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 212, 'Factory Equipment Cost']).values) + + + if BOP_grade == "non_nuclear": + db.loc[db.Account == 213, 'Site Material Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Material Cost']).values) + db.loc[db.Account == 213, 'Site Labor Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Labor Cost']).values) + db.loc[db.Account == 213, 'Site Labor Hours'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Labor Hours']).values) + db.loc[db.Account == 213, 'Factory Equipment Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Factory Equipment Cost']).values) + + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Factory Equipment Cost']).values) + db.loc[db.Account == '232.1', 'Site Labor Hours'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Site Labor Hours']).values) + db.loc[db.Account == '232.1', 'Site Labor Cost'] = 0.6*((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Site Labor Cost']).values) + + + else: + db.loc[db.Account == 213, 'Site Material Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Material Cost']).values) + db.loc[db.Account == 213, 'Site Labor Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Labor Cost']).values) + db.loc[db.Account == 213, 'Site Labor Hours'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Site Labor Hours']).values) + db.loc[db.Account == 213, 'Factory Equipment Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == 213, 'Factory Equipment Cost']).values) + + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Factory Equipment Cost']).values) + db.loc[db.Account == '232.1', 'Site Labor Hours'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Site Labor Hours']).values) + db.loc[db.Account == '232.1', 'Site Labor Cost'] = ((Reactor_data_updated_1.loc[Reactor_data_updated_1.Account == '232.1', 'Site Labor Cost']).values) + + + Reactor_data_updated_2 = update_high_level_costs(db, power) + + Reactor_data_updated_2_ = pd.DataFrame() + Reactor_data_updated_2_ = Reactor_data_updated_2[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + + + if reactor_type == "Concept A": + duration = 125 + elif reactor_type == "Concept B": + duration = 80 + + new_dur = update_cons_duration(Reactor_data_updated_1, Reactor_data_updated_2, duration) + + #apply modularity factor affecting the construction duration + if n_th == 1: + mod = mod_0 + elif n_th >= 2: + mod = "modularized" + + + if mod == "modularized" : + mod_factor = 0.8 + else: + mod_factor = 1 + + new_dur_1 = new_dur * mod_factor + return Reactor_data_updated_2_ , new_dur_1 + + +# ### Section 3-3 : Bulk Ordering + + +#The factory equipment cost of accounts 22 and 232.1 has to be divided by the number of orders +# The factory equipment cost of account 22 is multiplied by a reuction factor +# The factory equipment cost of account 232.1 is multiplied by a reduction factor + + +def add_bulk_ordering(Reactor_data_updated_3, num_orders, f_22, f_2321, power): + db = pd.DataFrame() + + db = Reactor_data_updated_3[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + # esimtated learning rates + lr22 = 0.1802341659291420 + lr2321 = 0.2607462372040820 + + # These reduction factor are calculated as follows + reduction_factor_22 = 0 # initialization + reduction_factor_2321 = 0 + + for ith_unit in range(1,num_orders+1): + reduction_factor_22+=((1 - lr22)**np.log2(ith_unit))/num_orders # for account 22 + reduction_factor_2321+=((1 - lr2321)**np.log2(ith_unit))/num_orders # for account 232.1 + + + + for x in [ 22, '232.1']: + db.loc[db.Account == x, 'Factory Equipment Cost'] = None # clear old values + + + # note that the cost reduction factor impacts the cost of the component not the cost of the factory + db.loc[db.Account == 22, 'Factory Equipment Cost'] = reduction_factor_22 * ( ( Reactor_data_updated_3.loc[ Reactor_data_updated_3.Account == 22, 'Factory Equipment Cost'] ) - ( f_22/num_orders) ) + (f_22/num_orders) + db.loc[db.Account == '232.1', 'Factory Equipment Cost'] = reduction_factor_2321 * ( ( Reactor_data_updated_3.loc[ Reactor_data_updated_3.Account == '232.1', 'Factory Equipment Cost']) - ( f_2321/num_orders)) +(f_2321/num_orders) + + + + Reactor_data_updated_4 = update_high_level_costs(db, power) + Reactor_data_updated_4_ = pd.DataFrame() + Reactor_data_updated_4_ = Reactor_data_updated_4[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + return Reactor_data_updated_4_ + + + +# ### Section 3-4 : Reworking and labor productivity + + +def add_reworking_productivity(Reactor_data_updated_4, reactor_type, n_th, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, power, prev_cons_duration, baseline_lab_hours): + #Reworking = f(AE, CE, design completion) + + if n_th == 1: + design_completion = design_completion_0 + ae_exp = ae_exp_0 + ce_exp = ce_exp_0 + + elif n_th > 1: + design_completion = 1 + ae_exp = min( (ae_exp_0 + (2/N_AE)*(n_th-1) ), 2) + ce_exp = min( (ce_exp_0 + (2/N_cons)*(n_th-1) ), 2) + + # # labor productivity factor = f(construction experience level) + productivity = 0.145*ce_exp + 0.71 + + + if reactor_type == "Concept B": + reworking_factor = (-0.9*design_completion+ 1.9) * (-0.15*ae_exp+1.3) * (-0.15*ce_exp+1.3) + + elif reactor_type == "Concept A": + reworking_factor = (-0.69*design_completion+ 1.69) * (-0.125*ae_exp+1.25) * (-0.125*ce_exp+1.25) + + db = pd.DataFrame() + + db = Reactor_data_updated_4[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + for x in [212, 213, '211 plus 214 to 219',22, '232.1', 233, 24, 26]: + db.loc[db.Account == x, 'Factory Equipment Cost'] = None # clear old values + db.loc[db.Account == x, 'Site Labor Hours'] = None + db.loc[db.Account == x, 'Site Labor Cost'] = None + db.loc[db.Account == x, 'Site Material Cost'] = None + + for x in [212, 213, '211 plus 214 to 219',22, '232.1', 233, 24, 26]: + db.loc[db.Account == x, 'Factory Equipment Cost'] =\ + ((( Reactor_data_updated_4.loc[ Reactor_data_updated_4.Account == x, 'Factory Equipment Cost']).values)[0])*reworking_factor + db.loc[db.Account == x, 'Site Labor Hours'] =\ + ((( Reactor_data_updated_4.loc[ Reactor_data_updated_4.Account == x, 'Site Labor Hours']).values)[0])*reworking_factor/productivity + db.loc[db.Account == x, 'Site Labor Cost'] =\ + ((( Reactor_data_updated_4.loc[ Reactor_data_updated_4.Account == x, 'Site Labor Cost']).values)[0])*reworking_factor/productivity + db.loc[db.Account == x, 'Site Material Cost'] =\ + ((( Reactor_data_updated_4.loc[ Reactor_data_updated_4.Account == x, 'Site Material Cost']).values)[0])*reworking_factor + + + + + Reactor_data_updated_5 = update_high_level_costs(db, power) + Reactor_data_updated_5_ = pd.DataFrame() + Reactor_data_updated_5_ = Reactor_data_updated_5[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + # update the construction duration + if reactor_type == "Concept A": + reactor_type_ref_duration = 125 + elif reactor_type == "Concept B": + reactor_type_ref_duration = 80 + + new_dur = update_cons_duration_2(Reactor_data_updated_4, Reactor_data_updated_5_, reactor_type_ref_duration, prev_cons_duration, baseline_lab_hours) + return Reactor_data_updated_5_ , new_dur + + + + +# #### Combine the previous functions in one function + + +# Combine the previous functions in one function + +def update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, + num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0): + + reactor_data, reactor_power = reactor_data_read(reactor_type) + + reactor_data_factory, baseline_lab_hours = add_factory_cost( + reactor_data, reactor_power, f_22, f_2321, num_orders + ) + + reactor_data_factory = add_land_cost( + reactor_data_factory, land_cost_per_acre_0, reactor_power + ) + + reactor_data_factory, prev_cons_duration = add_BOP_RP_grades( + reactor_data_factory, RB_grade_0, BOP_grade_0, reactor_power, reactor_type, n_th, mod_0 + ) + + reactor_data_factory = add_bulk_ordering( + reactor_data_factory, num_orders, f_22, f_2321, reactor_power + ) + + reactor_data_factory, new_dur_2 = add_reworking_productivity( + reactor_data_factory, reactor_type, n_th, design_completion_0, ae_exp_0, N_AE, ce_exp_0, + N_cons, reactor_power, prev_cons_duration, baseline_lab_hours + ) + + return reactor_data_factory, new_dur_2 + + + +# ### Section 3-5 Learning by doing effect on the cost + + +def learning_effect(Reactor_data_updated_5, n_th, standardization_0, power): + + if n_th == 1: + standardization = min(0.7, standardization_0) + elif n_th >1: + standardization = standardization_0 + + # # Creating the table for the learning rates + # #These rates are from KS-TIMCAT results. + # # The learning rates are multiplied by the standardization divded by 0.7 (since the standatization of PWRs was 0.7) + fitted_LR = pd.DataFrame() + + fitted_LR.loc[:, 'Account'] = Reactor_data_updated_5.loc[:, 'Account'] + fitted_LR.loc[:, 'Title'] = Reactor_data_updated_5.loc[:, 'Title'] + fitted_LR = fitted_LR.loc[fitted_LR['Account'].isin([212, 213, '211 plus 214 to 219', 22, '232.1', 233, 24, 26])] + + fitted_LR['Mat LR'] = np.array([0.099588665391, 0.099588665391, 0.099588665391, 0.080817992281, 0.0000000, 0.099588665391,\ + 0.099588665391,0.099588665391])*standardization/0.7 + + fitted_LR['Lab LR'] = np.array([0.180678729399, 0.180678729399, 0.180678729399,0.146555539499, 0.137148574884,\ + 0.180678729399, 0.180678729399,0.180678729399])*standardization/0.7 + + + db = pd.DataFrame() + + db = Reactor_data_updated_5[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + for x in [212, 213, '211 plus 214 to 219', 22, '232.1', 233, 24, 26]: + db.loc[db.Account == x, 'Site Labor Hours'] = None + db.loc[db.Account == x, 'Site Labor Cost'] = None + db.loc[db.Account == x, 'Site Material Cost'] = None + + + # # # # Bulk order reduction + for x in [212, 213, '211 plus 214 to 219', 22, '232.1', 233, 24, 26]: + mat_cost_reduction_multiplier = (1 - (fitted_LR.loc[fitted_LR.Account == x, 'Mat LR'].values[0]))**np.log2(n_th) + lab_cost_reduction_multiplier = (1 - (fitted_LR.loc[fitted_LR.Account == x, 'Lab LR'].values[0]))**np.log2(n_th) + + db.loc[db.Account == x, 'Site Material Cost'] =\ + (( Reactor_data_updated_5.loc[ Reactor_data_updated_5.Account == x, 'Site Material Cost']))* mat_cost_reduction_multiplier + + db.loc[db.Account == x, 'Site Labor Hours'] =\ + (( Reactor_data_updated_5.loc[ Reactor_data_updated_5.Account == x, 'Site Labor Hours']))* lab_cost_reduction_multiplier + + db.loc[db.Account == x, 'Site Labor Cost'] =\ + (( Reactor_data_updated_5.loc[ Reactor_data_updated_5.Account == x, 'Site Labor Cost']))* lab_cost_reduction_multiplier + + + Reactor_data_updated_6 = update_high_level_costs(db, power) + Reactor_data_updated_6_ = pd.DataFrame() + Reactor_data_updated_6_ = Reactor_data_updated_6[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + return Reactor_data_updated_6_ + + + +def act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, cons_duration_no_delay): + + if n_th == 1: + Design_Maturity = Design_Maturity_0 + proc_exp = proc_exp_0 + + elif n_th>1: + Design_Maturity = 2 + proc_exp = min( (proc_exp_0 + (2/N_proc)*(n_th-1) ), 2) + + # For the accounts 21, 22, 23, 24, 25, 26, + # The delays are D_21,D_22,D_23,D_24,D_25,D_26 + # The tasks lengths (in months) are B_21,B_22,B_23,B_24,B_25,B_26 + + # task length ratio between SFR and HTGR is 100/65 + # We use this ratio to convert SFR to HTGT task lengths + + if reactor_type == "Concept B": + task_length_multiplier = 1 + ref_construction_duration = 64 + elif reactor_type == "Concept A": + task_length_multiplier = 100/64 + ref_construction_duration = 100 + + B_21 = 42.1 * task_length_multiplier # months + B_22 = 60.2 * task_length_multiplier + B_23 = 14.8 * task_length_multiplier + B_24 = 3.6* task_length_multiplier + B_25 = 10.1* task_length_multiplier + B_26 = 43.9* task_length_multiplier + + + # The delays are + D_21 = - 6 * Design_Maturity - 3*proc_exp + 18 + D_22 = - 6 * Design_Maturity - 3*proc_exp + 18 + D_23 = - 6 * Design_Maturity - 3*proc_exp + 18 + D_24 = - 6 * Design_Maturity - 3*proc_exp + 18 + D_25 = - 6 * Design_Maturity - 3*proc_exp + 18 + D_26 = - 6 * Design_Maturity - 3*proc_exp + 18 + + + # The tasks completion times (in months) are T_21,T_22,T_23,T_24,T_25,T_26 + T_21 = B_21 + D_21 + T_22 = 0.09*(B_21+D_21) +B_22+D_22 + T_23 = 0.24*(B_21+D_21) +B_23+D_23 + T_24 = 0.24*(B_21+D_21) + 0.34*(B_23+D_23) +B_24+D_24 + T_25 = 0.18*(B_21+D_21) +B_25+D_25 + T_26 = 0.21*(B_21+D_21) +B_26+D_26 + T_end = max(T_21, T_22, T_23, T_24, T_25, T_26) + + + supply_chain_delay = max( T_end - ref_construction_duration, 0) + actual_construction_duration_plus_delay = cons_duration_no_delay + supply_chain_delay + return actual_construction_duration_plus_delay + + +# ### Section 3-7 Learning by doing effect on the construction duration + + +def duration_learning_effect(n_th, standardization_0, actual_construction_duration_plus_delay): + + if n_th == 1: + standardization = min(0.7, standardization_0) + elif n_th >1: + standardization = standardization_0 + # now the effect of learning on the consturction duration + fitted_LR_duration = 0.103719051*standardization/0.7 + duration_multiplier = (1 -fitted_LR_duration)**np.log2(n_th) + final_construction_duration = duration_multiplier *actual_construction_duration_plus_delay + return final_construction_duration + +# ### Section 3-8 Calculate the Indirect Cost and the standardization impact + +def update_indirect_cost(n_th, standardization_0, Reactor_data_updated_6, final_construction_duration, power ): + + if n_th == 1: + standardization = min(0.7, standardization_0) + elif n_th >1: + standardization = standardization_0 + # I use here the indirect cost correlations prepared by Jia + + # When the standardization is 100%, the engineering service accound (Acct 35) is zero, + # When the standardization is 70%, the engineering service accound (Acct 35) does not change + # The account 35 multiplier is + + factor_35 = 10/3* ( 1 - standardization) + + + db = pd.DataFrame() + + db = Reactor_data_updated_6[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + for x in [31, 32, 33, 34, 35]: + db.loc[db.Account == x, 'Total Cost (USD)'] = None # clear old values + + + # # total direct mat cost, labor cost, labor hours + sum_new_mat_cost = 0 # initilization + sum_new_lab_cost = 0 # initilization + sum_new_lab_hrs = 0 # initilization + + for x in [21, 22, 23, 24, 26]: + sum_new_mat_cost += (db.loc[db.Account == x, 'Site Material Cost']).values + sum_new_lab_cost += (db.loc[db.Account == x, 'Site Labor Cost']).values + sum_new_lab_hrs += (db.loc[db.Account == x, 'Site Labor Hours']).values + + + # The new indirect costs + db.loc[db.Account == 31, 'Total Cost (USD)'] = (sum_new_mat_cost*0.785* sum_new_lab_hrs/final_construction_duration/160/1058)\ + + sum_new_lab_cost *0.36 + + db.loc[db.Account == 32, 'Total Cost (USD)'] = sum_new_lab_cost *0.36*3.661* final_construction_duration/72 + + db.loc[db.Account == 33, 'Total Cost (USD)'] = 0.04207006 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] ) + + db.loc[db.Account == 34, 'Total Cost (USD)'] = 0.00354234616938 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] ) + + db.loc[db.Account == 35, 'Total Cost (USD)'] = (0.27017603 * (db.loc[db.Account == 32, 'Total Cost (USD)'].values[0] ))*factor_35 + + + Reactor_data_updated_7 = update_high_level_costs(db, power) + Reactor_data_updated_7_ = pd.DataFrame() + Reactor_data_updated_7_ = Reactor_data_updated_7[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + return Reactor_data_updated_7_ + + + + + +# #### Combine the previous functions in one function + + + +def calculate_base_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, mod_0): + reactor_power = (reactor_data_read(reactor_type ))[1] + direct_cost_updated , act_con_duration = update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0) + + cons_duration_plus_delay = act_cons_duration_plus_delay(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, act_con_duration) + final_con_duration = duration_learning_effect(n_th, standardization_0, cons_duration_plus_delay) + direct_cost_updated_plus_learning = learning_effect(direct_cost_updated , n_th, standardization_0, reactor_power) + + direct_cost_updated_plus_learning_with_indirect_cost = update_indirect_cost(n_th, standardization_0, direct_cost_updated_plus_learning, final_con_duration, reactor_power ) + return direct_cost_updated_plus_learning_with_indirect_cost, final_con_duration + + +# ### Section 3-9 : Insurance + + + +def insurance_cost_update(Reactor_data_0, Reactor_data_updated_7, power): + # insurance increases linearly when increaing the sum of the 20s and 30s account + db = pd.DataFrame() + + db = Reactor_data_updated_7[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + db0 = Reactor_data_0 + db.loc[db.Account == 52, 'Total Cost (USD)'] = None # clear old values + + change_in_insuance_cost = (db.loc[db.Title =='20s - Subtotal', 'Total Cost (USD)'].values\ + + db.loc[db.Title =='30s - Subtotal', 'Total Cost (USD)'].values)/ (db0.loc[db0.Title =='20s - Subtotal', 'Total Cost (USD)'].values\ + + db0.loc[db0.Title =='30s - Subtotal', 'Total Cost (USD)'].values) + + db.loc[db.Account == 52, 'Total Cost (USD)'] = (change_in_insuance_cost[0])* (Reactor_data_updated_7.loc[db.Account == 52, 'Total Cost (USD)']) + + Reactor_data_updated_8 = update_high_level_costs(db, power) + + Reactor_data_updated_8_ = pd.DataFrame() + Reactor_data_updated_8_ = Reactor_data_updated_8[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + return Reactor_data_updated_8_ + +# ### Section 3-10 : Interest + + + +def update_interest_cost(Reactor_data_updated_8, final_construction_duration, interest_rate, startup_0, n_th, power): + # Read the ref spending curve + sp = pd.read_excel('Inputs.xlsx', sheet_name = "Ref Spending Curve", nrows= 104, usecols='A : D') + Months = sp['Month'].tolist() + CDFs = sp['CDF'].tolist() + + annual_periods = np.linspace(12, 12*int(final_construction_duration/12),int(final_construction_duration/12)) + + if max(annual_periods) < int(final_construction_duration)-1: + annual_periods_1= np.append( annual_periods, (final_construction_duration)-1) + else: + annual_periods_1 = annual_periods + + annual_cum_spend = [] + for period in annual_periods_1: + new_period = 103*period/int(final_construction_duration) + + annual_cum_spend.append(np.interp(new_period, Months, CDFs)) + annual_spend1 = np.append(annual_cum_spend[0], np.diff(annual_cum_spend )) + + tot_overnight_cost = (Reactor_data_updated_8.loc[Reactor_data_updated_8.Title == 'Total Overnight Cost (Accounts 10 to 50)' , 'Total Cost (USD)']).values[0] + + annual_loan_add = annual_spend1 *tot_overnight_cost + + interest_exp = ((1+interest_rate)**((final_construction_duration -annual_periods_1)/12)) * annual_loan_add - annual_loan_add + + tot_int_exp_construction = sum(interest_exp ) + if n_th == 1: + startup = startup_0 + elif n_th >1: + startup = max( 7 , startup_0*(1-0.3)**np.log2(n_th)) + + int_exp_startup = (tot_int_exp_construction + tot_overnight_cost)*((1+interest_rate)**(startup/12))-(tot_int_exp_construction + tot_overnight_cost) + db = pd.DataFrame() + + db = Reactor_data_updated_8[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + db.loc[db.Account == 62, 'Total Cost (USD)'] = None # clear old values + + (db.loc[db.Account == 62, 'Total Cost (USD)']) = int_exp_startup +tot_int_exp_construction + + + Reactor_data_updated_9 = update_high_level_costs(db, power) + + Reactor_data_updated_9_ = pd.DataFrame() + Reactor_data_updated_9_ = Reactor_data_updated_9[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', 'Site Labor Cost',\ + 'Site Material Cost']].copy() + + tot_cap_investment = Reactor_data_updated_9.loc[Reactor_data_updated_9.Title =='Total Capital Investment Cost (All Accounts)', 'Total Cost (USD)'].values + + return Reactor_data_updated_9_, tot_overnight_cost, tot_cap_investment + + +# ### Section 3 - 11 : ITC Subsidies + + +def update_itc(Reactor_data_updated_9, tot_overnight_cost, tot_cap_investment, n_th, ITC_0, n_ITC, reactor_power): + + ITC = ITC_0 if n_th <= n_ITC else 0 + + db1 = Reactor_data_updated_9[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', 'Site Labor Hours', + 'Site Labor Cost', 'Site Material Cost']].copy() + + ITC_cost_reduction_factor = ITC_reduction_factor(ITC) + ITC_reduced_OCC = tot_overnight_cost * ITC_cost_reduction_factor + OCC_cost_reduction_due_to_TCI = tot_overnight_cost - ITC_reduced_OCC + + db1.loc[db1.Title == 'Total Overnight Cost - ITC reduced', 'Total Cost (USD)'] = ITC_reduced_OCC + db1.loc[db1.Title == 'Total Overnight Cost -ITC reduced (US$/kWe)', 'Total Cost (USD)'] = ITC_reduced_OCC / reactor_power + db1.loc[db1.Title == 'Total Capital Investment Cost - ITC reduced', 'Total Cost (USD)'] = tot_cap_investment - OCC_cost_reduction_due_to_TCI + + levelized_NCI = db1.loc[db1.Title == 'Total Capital Investment Cost - ITC reduced', 'Total Cost (USD)'].values[0] / reactor_power + db1.loc[db1.Title == 'Total Capital Investment Cost - ITC reduced (US$/kWe)', 'Total Cost (USD)'] = levelized_NCI + + Reactor_data_updated_10 = update_high_level_costs(db1, reactor_power) + Reactor_data_updated_10_ = Reactor_data_updated_10[['Account', 'Title', 'Total Cost (USD)', 'Factory Equipment Cost', + 'Site Labor Hours', 'Site Labor Cost', 'Site Material Cost']].copy() + + return Reactor_data_updated_10_, ITC_reduced_OCC / reactor_power, levelized_NCI + +# ## Section 4 : The Final Result + +# #### A Python function to combine all the previous ones + + +def calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, + num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, + Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, + startup_0, ITC_0, n_ITC): + + reactor_data, reactor_power = reactor_data_read(reactor_type) + + tot_base_cost, final_construction_duration = calculate_base_cost( + reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, + design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Design_Maturity_0, proc_exp_0, N_proc, + standardization_0, mod_0 + ) + + tot_base_cost = insurance_cost_update(reactor_data, tot_base_cost, reactor_power) + tot_base_cost, tot_overnight_cost, tot_cap_investment = update_interest_cost( + tot_base_cost, final_construction_duration, interest_rate_0, startup_0, n_th, reactor_power + ) + + Final_Result_COA, levelized_net_OCC, levelized_NCI = update_itc( + tot_base_cost, tot_overnight_cost, tot_cap_investment, n_th, ITC_0, n_ITC, reactor_power + ) + + return Final_Result_COA, levelized_net_OCC, levelized_NCI, final_construction_duration[0] + + + + + + +# # factory building cost (associated with accounts 22 and 232.1) +# f_22 = 250000000 +# f_2321 = 150000000 +# land_cost_per_acre_0 = 22000 # dollars/acre +# startup_0 = 16 +# staggering_ratio = 0.75 + + + +# # reactor type: Concept A or Concept B +# reactor_type = "Concept A" + +# # Which reactor unit: first of a kind : nth of a kind +# n_th = 1 + +# # number of firm orders +# num_orders = 7 + +# # land cost +# # From the SA report: the cost $22,000 per acre. The land area is 500 acres including recommended buffer +# land_cost_per_acre_0 = 22000 # dollars/acre + +# # start up duration (months) +# startup_0 = 16 + +# # interest rate : +# interest_rate_0 = 0.074 + +# # Design completion +# design_completion_0 = 0.463# 1 means 100% + +# # Design maturity +# Design_Maturity_0 = 1 + +# # #procurement service experience (supply chain experience) +# proc_exp_0= 0.196 # 2 means procurement experts. This is ideal. + +# # # architecture and engineeringexperience +# ae_exp_0 = 0.69 + +# # # Construction service experience +# ce_exp_0 = 0.19 + + +# # numb er of projects for full efficiency of procurement, A/E, Construction +# N_proc = 3 +# N_AE = 4 +# N_cons =5 + +# # modularity : "stick_built" or "modularized" +# mod_0 = "modularized" + + + +# # cross_site_standardization : +# standardization_0 = 69.6979/100 # 0.7 corresponds to 70% standardization for PWRs + +# # # Determining if the BOP and reactor building (containtment) are non-nuclear or nuclear grade equipment (safety related) +# BOP_grade_0 = "non_nuclear" +# RB_grade_0 = "nuclear" + +# # #investment tax credits subsidies +# ITC_0 = 0.3298 + +# #number of reactors claiming ITC +# n_ITC = 2 + +# aa = (calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, +# num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, +# Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, +# startup_0, ITC_0, n_ITC)) + +# print(aa[3]) \ No newline at end of file diff --git a/Cost_Reduction/cost_sampler1.py b/Cost_Reduction/cost_sampler1.py new file mode 100644 index 0000000..4626218 --- /dev/null +++ b/Cost_Reduction/cost_sampler1.py @@ -0,0 +1,303 @@ +import numpy as np +import pickle + +import warnings +warnings.simplefilter(action='ignore', category=FutureWarning) +from src import sampler, sheet_info +import multiprocessing as mp +import time +from CostReduction_exploration_mode import calculate_final_result +import csv + +# cpu_count = os.cpu_count() + + +# meta data +n_samples = 1000000 +num_cpus = 100 +batch_size = 5000 # the number of samples that you store per time + +filename = f"{n_samples}_samples_resultss.csv" +pickle_filename= f"{n_samples}_samples_resultss.pkl" + + +# Declaring Excel File Path +path_data_file = 'levers_info.xlsx' + +# Declaring Subsheets within Excel File +subsheet_names_dict = {} +# subsheet_names_dict['n_Samples'] = 'n_Samples'; +subsheet_names_dict['Levers'] = 'Levers'; + +# Extracting Declared Sheets as a Dictionary +df_dict = sheet_info(path_data_file, subsheet_names_dict) + + +Lever_samples = sampler(n_samples, df_dict['Levers']) + +# hard coding for the ITC amount +possible_values = [6, 30, 40, 50] + +# Function to find the closest value +def find_closest(value, possible_values): + return min(possible_values, key=lambda x: abs(x - value)) + +# Update the second row +Lever_samples[1] = [find_closest(value, possible_values) for value in Lever_samples[1]] + + + + + + + + +# A function for the average results (averaged over all the reactors built) + +def calculate_final_result_avg_all(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\ + num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0,\ + N_proc, standardization_0, interest_rate_0,\ + startup_0, ITC_0, n_ITC, staggering_ratio): + + + OCC_list = [] + TCI_list = [] + durations_list = [] + + for n_th in range(1, num_orders+1): + + # the following results are: # The ITC_reduced OCC (levelized),The ITC_reduced TCI(levelized), cons duration + _, OCC_result, TCI_result, duration_result = calculate_final_result(reactor_type, n_th, f_22, f_2321,\ + land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\ + num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons,\ + mod_0, Design_Maturity_0, proc_exp_0, N_proc,\ + standardization_0, interest_rate_0, startup_0, ITC_0, n_ITC) + + + OCC_list.append(OCC_result) + TCI_list.append(TCI_result ) + durations_list.append( duration_result ) + + # Convert lists to numpy arrays for efficient computation + OCC_array = np.array(OCC_list) + TCI_array = np.array(TCI_list) + durations_array = np.array(durations_list) + occLastUnit = OCC_array[-1] + TCILastUnit = TCI_array[-1] + durationsLastUnit = durations_array[-1] + avg_OCC = np.mean(OCC_array ) + avg_TCI = np.mean(TCI_array) + avg_duration = np.mean(durations_array) + + # Calculate final startup duration + final_startup_duration = max(7, startup_0 * (1 - 0.3) ** np.log2(num_orders)) + + # Calculate cumulative construction duration with startup + cons_duration_cumulative_wz_startup = (1 - staggering_ratio) * np.sum(durations_array[:-1]) + durations_array[-1] + final_startup_duration + + + # note that all the OCC and TCI here are TCI-reduced + return OCC_array, TCI_array, durations_array,\ + cons_duration_cumulative_wz_startup, occLastUnit, TCILastUnit,\ + durationsLastUnit, avg_OCC, avg_TCI, avg_duration + + +# 6 parameters that are not sampled +reactor_type = "Concept A" +# factory building cost (associated with accounts 22 and 232.1) +f_22 = 250000000 +f_2321 = 150000000 +land_cost_per_acre_0 = 22000 # dollars/acre +startup_0 = 16 +staggering_ratio = 0.75 + + +def results_sampling(sample): + vars_sampled = Lever_samples[:, sample] + + # Unpack only the necessary variables + n_orders, itc_0, n_ITC, interest_r, design_comp, Design_Maturity_0, proc_exp_0, N_proc, ce_exp_0, N_cons, ae_exp_0, N_AE, standard, mod_0,\ + BOP_grade_0, RB_grade_0 = vars_sampled + # Directly access values from arrays without intermediate variables + num_orders = int(n_orders) + ITC_0 = itc_0/100 + interest_rate_0 = interest_r/100 + design_completion_0 = design_comp/100 + standardization_0 = standard/100 + + #modularity : "stick_built" or "modularized" + if mod_0 == 0: + Mod_0 = "stick_built" + elif mod_0 == 1: + Mod_0 = "modularized" + + if RB_grade_0 == 0: + RB_Grade_0 = "nuclear" + elif RB_grade_0 == 1: + RB_Grade_0 = "non_nuclear" + + if BOP_grade_0 == 0: + BOP_Grade_0 = "nuclear" + elif BOP_grade_0 == 1: + BOP_Grade_0 = "non_nuclear" + + + # Call the function with the necessary parameters + OCC_array, TCI_array, durations_array,\ + cons_duration_cumulative_wz_startup, occLastUnit, TCILastUnit,\ + durationsLastUnit, avg_OCC, avg_TCI, avg_duration = \ + calculate_final_result_avg_all(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_Grade_0, BOP_Grade_0, num_orders, + design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, Mod_0, Design_Maturity_0, + proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0, ITC_0, n_ITC, + staggering_ratio) + + keys = [ + 'Num_orders', 'ITC', 'n_ITC', 'interest rate', 'Design completion', 'Design_Maturity_0', + 'supply chain exp_0', 'N supply chain', 'Const Proficiency', 'N const prof', 'AE', + 'N AE prof', 'standardization', 'modularity', 'BOP commercial', 'RB Safety Related' + ] + + results_data = {key: vars_sampled[i] for i, key in enumerate(keys)} + + + # Update results_data with each element of the arrays + for i, occ in enumerate(OCC_array): + results_data[f'OCC_{i}'] = occ + + for i, tci in enumerate(TCI_array): + results_data[f'TCI_{i}'] = tci + + for i, duration in enumerate(durations_array): + results_data[f'duration_{i}'] = duration + + results_data['cons_duration_cumulative_wz_startup'] = cons_duration_cumulative_wz_startup + results_data['occLastUnit'] = occLastUnit + results_data['TCILastUnit'] = TCILastUnit + results_data['durationsLastUnit'] = durationsLastUnit + results_data['avg_OCC'] = avg_OCC + results_data['avg_TCI'] = avg_TCI + results_data['avg_duration'] = avg_duration + + return results_data + + + +# # File to store results + +# start_time = time.time() +# results = [] +# all_keys = set() + +# with mp.Pool(num_cpus) as pool: +# for start in range(0, n_samples, batch_size): +# end = min(start + batch_size, n_samples) +# batch_results = pool.map(results_sampling, range(start, end)) + +# # Accumulate results and collect all keys +# for result in batch_results: +# results.append(result) +# all_keys.update(result.keys()) + +# print(f"{end} samples", flush=True) +# print(f"{(time.time() - start_time)/end} sec/sample", flush=True) + +# # Static keys in the desired order +# static_keys = [ +# 'Num_orders', 'ITC', 'n_ITC', 'interest rate', 'Design completion', 'Design_Maturity_0', +# 'supply chain exp_0', 'N supply chain', 'Const Proficiency', 'N const prof', 'AE', +# 'N AE prof', 'standardization', 'modularity', 'BOP commercial', 'RB Safety Related' +# ] + +# # print(all_keys) +# # Extract and sort dynamic keys +# occ_keys = sorted([key for key in all_keys if key.startswith('OCC_')], key=lambda x: int(x.split('_')[1])) +# tci_keys = sorted([key for key in all_keys if key.startswith('TCI_')], key=lambda x: int(x.split('_')[1])) +# duration_keys = sorted([key for key in all_keys if key.startswith('duration_')], key=lambda x: int(x.split('_')[1])) + +# # Combine all keys in the desired order +# headers = static_keys + occ_keys + tci_keys + duration_keys +\ +# ['cons_duration_cumulative_wz_startup'] + ['occLastUnit']+\ +# ['TCILastUnit'] + ['durationsLastUnit'] +['avg_OCC'] + ['avg_TCI'] + ['avg_duration'] + + +# # Save results to a CSV file +# with open(filename, mode='w', newline='') as file: +# writer = csv.DictWriter(file, fieldnames=headers) +# writer.writeheader() + +# for result in results: +# # Ensure all dictionaries have the same keys by filling missing keys with None +# full_result = {key: result.get(key, None) for key in headers} +# writer.writerow(full_result) + +# print(f"Results saved to {filename}") + +# # Save results to a pickle file +# with open(pickle_filename, 'wb') as file: +# pickle.dump(results, file) + +# print(f"Results saved to {pickle_filename}") + + + + +# Static keys in the desired order +static_keys = [ + 'Num_orders', 'ITC', 'n_ITC', 'interest rate', 'Design completion', 'Design_Maturity_0', + 'supply chain exp_0', 'N supply chain', 'Const Proficiency', 'N const prof', 'AE', + 'N AE prof', 'standardization', 'modularity', 'BOP commercial', 'RB Safety Related' +] + +# File to store results +start_time = time.time() +results = [] +all_keys = set() + +with mp.Pool(num_cpus) as pool, open(filename, mode='w', newline='') as file: + writer = csv.DictWriter(file, fieldnames=static_keys) + # writer.writeheader() + + for start in range(0, n_samples, batch_size): + end = min(start + batch_size, n_samples) + batch_results = pool.map(results_sampling, range(start, end)) + + # Accumulate results and collect all keys + for result in batch_results: + results.append(result) + all_keys.update(result.keys()) + + # Extract and sort dynamic keys (only once, after the first batch) + if start == 0: + occ_keys = sorted([key for key in all_keys if key.startswith('OCC_')], key=lambda x: int(x.split('_')[1])) + tci_keys = sorted([key for key in all_keys if key.startswith('TCI_')], key=lambda x: int(x.split('_')[1])) + duration_keys = sorted([key for key in all_keys if key.startswith('duration_')], key=lambda x: int(x.split('_')[1])) + + # Combine all keys in the desired order + headers = static_keys + occ_keys + tci_keys + duration_keys +\ + ['cons_duration_cumulative_wz_startup'] + ['occLastUnit']+\ + ['TCILastUnit'] + ['durationsLastUnit'] +['avg_OCC'] + ['avg_TCI'] + ['avg_duration'] + + # Update the CSV header + writer.fieldnames = headers + writer.writeheader() + + for result in batch_results: + # Ensure all dictionaries have the same keys by filling missing keys with None + full_result = {key: result.get(key, None) for key in headers} + writer.writerow(full_result) + + print(f"{end} samples", flush=True) + print(f"{(time.time() - start_time)/end} sec/sample", flush=True) + +print(f"Results saved to {filename}") + +# Save results to a pickle file (optional) +with open(pickle_filename, 'wb') as file: + pickle.dump(results, file) + +print(f"Results saved to {pickle_filename}") + + + + + diff --git a/Cost_Reduction/orders.png b/Cost_Reduction/orders.png new file mode 100644 index 0000000..cc6850a Binary files /dev/null and b/Cost_Reduction/orders.png differ diff --git a/Cost_Reduction/scenarios.ipynb b/Cost_Reduction/scenarios.ipynb deleted file mode 100644 index 5bb5cfd..0000000 --- a/Cost_Reduction/scenarios.ipynb +++ /dev/null @@ -1,227 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "ee4fa393-2ded-480c-bbf0-547d0cc0ddac", - "metadata": {}, - "source": [ - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "40096a23-ff7b-4541-b710-9f0a9f9a595d", - "metadata": {}, - "source": [ - "#
Cost Reduction Framework for Nuclear Reactor Power Plants
\n" - ] - }, - { - "cell_type": "markdown", - "id": "f2256ae0-712f-4811-99d9-d37188782036", - "metadata": {}, - "source": [ - "### Importing the libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "12fb6329-dc95-493f-ba1d-86235e71b512", - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "\n", - "import warnings\n", - "warnings.simplefilter(action='ignore', category=FutureWarning)\n", - "\n", - "pd.set_option('display.max_rows', None)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "7b9a01a8", - "metadata": {}, - "outputs": [], - "source": [ - "# Just running the other jupyter notebook to bring all the functions from there\n", - "%run CostReduction_exploration_mode.ipynb" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "c31cae49", - "metadata": {}, - "outputs": [], - "source": [ - "def calculate_final_result_avg(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", - " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0):\n", - " \n", - "# A function for the average results (averaged over all the reactors built)\n", - "\n", - " OCC_list = []\n", - " TCI_list = [] \n", - " durations_list = []\n", - " \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", - " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0) \n", - " \n", - " OCC_result = results[1] # The ITC_reduced OCC (levelized)\n", - " TCI_result = results[2] # The ITC_reduced TCI(levelized)\n", - " duration_result = results[3] # cons duration\n", - " \n", - " OCC_list.append(OCC_result)\n", - " TCI_list.append( TCI_result )\n", - " durations_list.append( duration_result )\n", - " last_plant_OCC = OCC_list[-1]\n", - " first_plant_OCC = OCC_list[0]\n", - " avg_OCC = np.mean(OCC_list) \n", - " \n", - " last_plant_TCI = TCI_list[-1]\n", - " first_plant_TCI = TCI_list[0]\n", - " avg_TCI = np.mean(TCI_list)\n", - " \n", - " avg_dur = np.mean(durations_list)\n", - " \n", - " return last_plant_OCC , first_plant_OCC, avg_OCC, last_plant_TCI , first_plant_TCI, avg_TCI, avg_dur " - ] - }, - { - "cell_type": "markdown", - "id": "3c0d5583", - "metadata": {}, - "source": [ - "### Scenarios\n", - "These scenarios correspond to the scenarios in the cost reduction report: https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_109810.pdf" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "6a4a23ef", - "metadata": {}, - "outputs": [ - { - "ename": "UnboundLocalError", - "evalue": "cannot access local variable 'task_length_multiplier' where it is not associated with a value", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[4], line 57\u001b[0m\n\u001b[1;32m 54\u001b[0m ITC_0 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.4\u001b[39m\n\u001b[1;32m 55\u001b[0m n_ITC \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m4\u001b[39m \n\u001b[0;32m---> 57\u001b[0m avg_results \u001b[38;5;241m=\u001b[39m \u001b[43mcalculate_final_result_avg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreactor_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_22\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_2321\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mland_cost_per_acre_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRB_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mBOP_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m\\\u001b[49m\n\u001b[1;32m 58\u001b[0m \u001b[43m\u001b[49m\u001b[43mnum_orders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdesign_completion_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mae_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_AE\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mce_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_cons\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmod_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mDesign_Maturity_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproc_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_proc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstandardization_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minterest_rate_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstartup_0\u001b[49m\u001b[43m)\u001b[49m \n", - "Cell \u001b[0;32mIn[3], line 11\u001b[0m, in \u001b[0;36mcalculate_final_result_avg\u001b[0;34m(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0)\u001b[0m\n\u001b[1;32m 8\u001b[0m durations_list \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m n_th \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m, num_orders\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m1\u001b[39m):\n\u001b[0;32m---> 11\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcalculate_final_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreactor_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_th\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_22\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_2321\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mland_cost_per_acre_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRB_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mBOP_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m\\\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_orders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdesign_completion_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mae_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_AE\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mce_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_cons\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmod_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mDesign_Maturity_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproc_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_proc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstandardization_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minterest_rate_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstartup_0\u001b[49m\u001b[43m)\u001b[49m \n\u001b[1;32m 14\u001b[0m OCC_result \u001b[38;5;241m=\u001b[39m results[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;66;03m# The ITC_reduced OCC (levelized)\u001b[39;00m\n\u001b[1;32m 15\u001b[0m TCI_result \u001b[38;5;241m=\u001b[39m results[\u001b[38;5;241m2\u001b[39m] \u001b[38;5;66;03m# The ITC_reduced TCI(levelized)\u001b[39;00m\n", - "File \u001b[0;32m/var/folders/fn/9991pz_174vgdscjw2zf2tbxtn5546/T/ipykernel_63785/3212539402.py:6\u001b[0m, in \u001b[0;36mcalculate_final_result\u001b[0;34m(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0)\u001b[0m\n\u001b[1;32m 4\u001b[0m reactor_data \u001b[38;5;241m=\u001b[39m (reactor_data_read(reactor_type ))[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 5\u001b[0m reactor_power \u001b[38;5;241m=\u001b[39m (reactor_data_read(reactor_type ))[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m----> 6\u001b[0m tot_base_cost_results \u001b[38;5;241m=\u001b[39m \u001b[43mcalculate_base_cost\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreactor_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_th\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_22\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mf_2321\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mland_cost_per_acre_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mRB_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mBOP_grade_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_orders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdesign_completion_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mae_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_AE\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mce_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_cons\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmod_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mDesign_Maturity_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproc_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_proc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstandardization_0\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 7\u001b[0m tot_base_cost \u001b[38;5;241m=\u001b[39m tot_base_cost_results[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 8\u001b[0m final_construction_duration \u001b[38;5;241m=\u001b[39m tot_base_cost_results[\u001b[38;5;241m1\u001b[39m]\n", - "File \u001b[0;32m/var/folders/fn/9991pz_174vgdscjw2zf2tbxtn5546/T/ipykernel_63785/896935451.py:7\u001b[0m, in \u001b[0;36mcalculate_base_cost\u001b[0;34m(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0)\u001b[0m\n\u001b[1;32m 4\u001b[0m direct_cost_updated \u001b[38;5;241m=\u001b[39m update_direct_cost(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0, num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons)\n\u001b[1;32m 6\u001b[0m act_con_duration \u001b[38;5;241m=\u001b[39m update_cons_dur(reactor_data, direct_cost_updated , mod_0)\n\u001b[0;32m----> 7\u001b[0m cons_duration_plus_delay \u001b[38;5;241m=\u001b[39m \u001b[43mact_cons_duration_plus_delay\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreactor_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_th\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mDesign_Maturity_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproc_exp_0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mN_proc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mact_con_duration\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 8\u001b[0m final_con_duration \u001b[38;5;241m=\u001b[39m duration_learning_effect(n_th, standardization_0, cons_duration_plus_delay)\n\u001b[1;32m 10\u001b[0m direct_cost_updated_plus_learning \u001b[38;5;241m=\u001b[39m learning_effect(direct_cost_updated , n_th, standardization_0, reactor_power)\n", - "File \u001b[0;32m/var/folders/fn/9991pz_174vgdscjw2zf2tbxtn5546/T/ipykernel_63785/1160249579.py:25\u001b[0m, in \u001b[0;36mact_cons_duration_plus_delay\u001b[0;34m(reactor_type, n_th, Design_Maturity_0, proc_exp_0, N_proc, cons_duration_no_delay)\u001b[0m\n\u001b[1;32m 22\u001b[0m task_length_multiplier \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m64\u001b[39m\n\u001b[1;32m 23\u001b[0m ref_construction_duration \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m100\u001b[39m\n\u001b[0;32m---> 25\u001b[0m B_21 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m42.1\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[43mtask_length_multiplier\u001b[49m \u001b[38;5;66;03m# months \u001b[39;00m\n\u001b[1;32m 26\u001b[0m B_22 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m60.2\u001b[39m \u001b[38;5;241m*\u001b[39m task_length_multiplier\n\u001b[1;32m 27\u001b[0m B_23 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m14.8\u001b[39m \u001b[38;5;241m*\u001b[39m task_length_multiplier\n", - "\u001b[0;31mUnboundLocalError\u001b[0m: cannot access local variable 'task_length_multiplier' where it is not associated with a value" - ] - } - ], - "source": [ - "reactor_type = \"Concept A\"\n", - "\n", - "# scenario independent params\n", - "mod_0 = \"modularized\"\n", - "BOP_grade_0 = \"non_nuclear\"\n", - "RB_grade_0 = \"nuclear\"\n", - "\n", - "land_cost_per_acre_0 = 22000 # dollars/acre\n", - "startup_0 = 16 \n", - "interest_rate_0 = 0.06\n", - "\n", - "# numb er of projects for full efficiency of procurement, A/E, Construction\n", - "N_proc = 3\n", - "N_AE = 4\n", - "N_cons =5\n", - "\n", - "# factory building cost (associated with accounts 22 and 232.1)\n", - "f_22 = 250000000\n", - "f_2321 = 150000000\n", - "\n", - "\n", - "for scenario in [1, 2, 3 ]:\n", - " if scenario == 1:\n", - " num_orders = 13\n", - " design_completion_0 = 0.8 # 1 means 100%\n", - " Design_Maturity_0 = 1\n", - " proc_exp_0= 0.5 # 2 means procurement experts. This is ideal. \n", - " ae_exp_0 = 0.5\n", - " ce_exp_0 = 1\n", - " standardization_0 = 0.8 # 0.7 corresponds to 70% standardization for PWRs\n", - " ITC_0 = 0 \n", - " n_ITC = 0\n", - "\n", - " elif scenario == 2:\n", - " num_orders = 18\n", - " design_completion_0 = 0.6 # 1 means 100%\n", - " Design_Maturity_0 = 0\n", - " proc_exp_0= 0 # 2 means procurement experts. This is ideal. \n", - " ae_exp_0 = 0\n", - " ce_exp_0 = 1\n", - " standardization_0 = 0.7 # 0.7 corresponds to 70% standardization for PWRs\n", - "\n", - " ITC_0 = 0 \n", - " n_ITC = 0 \n", - " \n", - " elif scenario == 3:\n", - " num_orders = 13\n", - " design_completion_0 = 0.8 # 1 means 100%\n", - " Design_Maturity_0 = 1\n", - " proc_exp_0= 0.5 # 2 means procurement experts. This is ideal. \n", - " ae_exp_0 = 0.5\n", - " ce_exp_0 = 1\n", - " standardization_0 = 0.8 # 0.7 corresponds to 70% standardization for PWRs\n", - " ITC_0 = 0.4\n", - " n_ITC = 4 \n", - " \n", - " avg_results = calculate_final_result_avg(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", - " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8187e003", - "metadata": {}, - "outputs": [], - "source": [ - "# calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", - "# num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/Cost_Reduction/scenarios_and_sensitivity_analysis.ipynb b/Cost_Reduction/scenarios_and_sensitivity_analysis.ipynb new file mode 100644 index 0000000..bfdfc25 --- /dev/null +++ b/Cost_Reduction/scenarios_and_sensitivity_analysis.ipynb @@ -0,0 +1,398 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ee4fa393-2ded-480c-bbf0-547d0cc0ddac", + "metadata": {}, + "source": [ + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
\n", + "
" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "40096a23-ff7b-4541-b710-9f0a9f9a595d", + "metadata": {}, + "source": [ + "#
Cost Reduction Framework for Nuclear Reactor Power Plants
" + ] + }, + { + "cell_type": "markdown", + "id": "f2256ae0-712f-4811-99d9-d37188782036", + "metadata": {}, + "source": [ + "### Importing the libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "12fb6329-dc95-493f-ba1d-86235e71b512", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "import warnings\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", + "import matplotlib.pyplot as plt\n", + "\n", + "pd.set_option('display.max_rows', None)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "54b734af", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "\n", + "# Just running the other jupyter notebook to bring all the functions from there\n", + "%run CostReduction_exploration_mode.ipynb " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1c0185bf", + "metadata": {}, + "outputs": [], + "source": [ + "# A function for the average results (averaged over all the reactors built)\n", + "\n", + "def calculate_final_result_avg(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0,\\\n", + " startup_0, ITC_0, n_ITC):\n", + " \n", + " \n", + " OCC_list = []\n", + " TCI_list = [] \n", + " durations_list = []\n", + " \n", + " for n_th in range(1, num_orders+1):\n", + " results = calculate_final_result(reactor_type, n_th, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc,\\\n", + " standardization_0, interest_rate_0, startup_0, ITC_0, n_ITC) \n", + " \n", + " OCC_result = results[1] # The ITC_reduced OCC (levelized)\n", + " TCI_result = results[2] # The ITC_reduced TCI(levelized)\n", + " duration_result = results[3] # cons duration\n", + " \n", + " OCC_list.append(OCC_result)\n", + " TCI_list.append( TCI_result )\n", + " durations_list.append( duration_result )\n", + " last_plant_OCC = OCC_list[-1]\n", + " first_plant_OCC = OCC_list[0]\n", + " avg_OCC = np.mean(OCC_list) \n", + " \n", + " last_plant_TCI = TCI_list[-1]\n", + " first_plant_TCI = TCI_list[0]\n", + " avg_TCI = np.mean(TCI_list)\n", + " \n", + " avg_dur = np.mean(durations_list)\n", + " \n", + " # note that all the OCC and TCI here are TCI-reduced\n", + " return last_plant_OCC , first_plant_OCC, avg_OCC, last_plant_TCI , first_plant_TCI, avg_TCI, avg_dur " + ] + }, + { + "cell_type": "markdown", + "id": "517dc2d3", + "metadata": {}, + "source": [ + "# Scenarios\n", + "\n", + "These scenarios correspond to the scenarios in the cost reduction [report](https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_109810.pdf)\n", + "\n", + "See Table 10\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6d749168", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "Scenario # 1\n", + "Last plant ITC-reduced OCC is 3600 ($/kWe)\n", + "First plant ITC-reduced OCC is 12800 ($/kWe)\n", + "Average ITC-reduced OCC is 5000 ($/kWe)\n", + "\n", + "\n", + "Last plant ITC-reduced TCI is 4200 ($/kWe)\n", + "First plant ITC-reduced TCI is 19500 ($/kWe)\n", + "Average plant ITC-reduced TCI is 6400 ($/kWe)\n", + "\n", + "\n", + "Average Construction Duration is 77 months \n", + "\n", + "\n", + "Scenario # 2\n", + "Last plant ITC-reduced OCC is 3600 ($/kWe)\n", + "First plant ITC-reduced OCC is 15900 ($/kWe)\n", + "Average ITC-reduced OCC is 5000 ($/kWe)\n", + "\n", + "\n", + "Last plant ITC-reduced TCI is 4200 ($/kWe)\n", + "First plant ITC-reduced TCI is 25700 ($/kWe)\n", + "Average plant ITC-reduced TCI is 6500 ($/kWe)\n", + "\n", + "\n", + "Average Construction Duration is 77 months \n", + "\n", + "\n", + "Scenario # 3\n", + "Last plant ITC-reduced OCC is 3600 ($/kWe)\n", + "First plant ITC-reduced OCC is 8000 ($/kWe)\n", + "Average ITC-reduced OCC is 4100 ($/kWe)\n", + "\n", + "\n", + "Last plant ITC-reduced TCI is 4200 ($/kWe)\n", + "First plant ITC-reduced TCI is 14700 ($/kWe)\n", + "Average plant ITC-reduced TCI is 5500 ($/kWe)\n", + "\n", + "\n", + "Average Construction Duration is 77 months \n" + ] + } + ], + "source": [ + "reactor_type = \"Concept A\"\n", + "\n", + "# scenario independent params\n", + "mod_0 = \"modularized\"\n", + "BOP_grade_0 = \"non_nuclear\"\n", + "RB_grade_0 = \"nuclear\"\n", + "\n", + "land_cost_per_acre_0 = 22000 # dollars/acre\n", + "startup_0 = 16 \n", + "interest_rate_0 = 0.06\n", + "\n", + "# numb er of projects for full efficiency of procurement, A/E, Construction\n", + "N_proc = 3\n", + "N_AE = 4\n", + "N_cons = 5\n", + "\n", + "# factory building cost (associated with accounts 22 and 232.1)\n", + "f_22 = 250000000\n", + "f_2321 = 150000000\n", + "\n", + "\n", + "\n", + "for scenario in [1, 2, 3 ]:\n", + " if scenario == 1:\n", + " num_orders = 13\n", + " design_completion_0 = 0.8 # 1 means 100%\n", + " Design_Maturity_0 = 1\n", + " proc_exp_0 = 0.5 # \n", + " ae_exp_0 = 0.5\n", + " ce_exp_0 = 1\n", + " \n", + " standardization_0 = 0.8 # 0.7 corresponds to 70% standardization for PWRs\n", + " ITC_0 = 0 \n", + " n_ITC = 0\n", + "\n", + " elif scenario == 2:\n", + " num_orders = 18\n", + " design_completion_0 = 0.6 # 1 means 100%\n", + " Design_Maturity_0 = 0\n", + " \n", + " proc_exp_0= 0 # 2 means procurement experts. This is ideal. \n", + " ae_exp_0 = 0\n", + " ce_exp_0 = 1\n", + " standardization_0 = 0.7 # 0.7 corresponds to 70% standardization for PWRs\n", + "\n", + " ITC_0 = 0 \n", + " n_ITC = 0 \n", + " \n", + " elif scenario == 3:\n", + " num_orders = 13\n", + " design_completion_0 = 0.8 # 1 means 100%\n", + " Design_Maturity_0 = 1\n", + " \n", + " proc_exp_0= 0.5 # 2 means procurement experts. This is ideal. \n", + " ae_exp_0 = 0.5\n", + " ce_exp_0 = 1\n", + " standardization_0 = 0.8 # 0.7 corresponds to 70% standardization for PWRs\n", + " ITC_0 = 0.4\n", + " n_ITC = 4 \n", + " \n", + " \n", + " avg_results = calculate_final_result_avg(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + " num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0) \n", + " \n", + " \n", + " print(\"\\n\") \n", + " print(f\"Scenario # {scenario}\")\n", + " \n", + " # note the results are rounded to the nearest hundred\n", + " print(f\"Last plant ITC-reduced OCC is {int(100*np.round (avg_results[0]/100, 0))} ($/kWe)\")\n", + " print(f\"First plant ITC-reduced OCC is {int(100*np.round (avg_results[1]/100, 0))} ($/kWe)\")\n", + " print(f\"Average ITC-reduced OCC is {int(100*np.round (avg_results[2]/100, 0))} ($/kWe)\")\n", + " print(\"\\n\")\n", + " print(f\"Last plant ITC-reduced TCI is {int(100*np.round (avg_results[3]/100, 0))} ($/kWe)\")\n", + " print(f\"First plant ITC-reduced TCI is {int(100*np.round (avg_results[4]/100, 0))} ($/kWe)\")\n", + " print(f\"Average plant ITC-reduced TCI is {int(100*np.round (avg_results[5]/100, 0))} ($/kWe)\")\n", + " print(\"\\n\")\n", + " print(f\"Average Construction Duration is {int(np.round(avg_results[6],0))} months \")\n" + ] + }, + { + "cell_type": "markdown", + "id": "98846560", + "metadata": {}, + "source": [ + "# Sensitivity Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "93dacf75", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of orders = 4\n", + "number of orders = 5\n", + "number of orders = 6\n", + "number of orders = 7\n", + "number of orders = 8\n", + "number of orders = 9\n", + "number of orders = 10\n", + "number of orders = 11\n", + "number of orders = 12\n", + "number of orders = 13\n", + "number of orders = 14\n", + "number of orders = 15\n", + "number of orders = 16\n", + "number of orders = 17\n", + "number of orders = 18\n", + "number of orders = 19\n", + "number of orders = 20\n" + ] + } + ], + "source": [ + "startup_0 = 16\n", + "interest_rate_0 = 0.06\n", + "design_completion_0 = 0.8\n", + "Design_Maturity_0 = 1\n", + "proc_exp_0 = 0.5\n", + "ae_exp_0 = 0.5\n", + "ce_exp_0 = 1\n", + "\n", + "mod_0 = 'modularized'\n", + "standardization_0 = 0.8\n", + "BOP_grade_0 = 'non_nuclear'\n", + "ITC_0 = 0\n", + "n_ITC = 0\n", + "RB_grade_0 = 'nuclear'\n", + "\n", + "reactor_type = \"Concept A\"\n", + "\n", + "\n", + "\n", + "TCI_list_avg = []\n", + "OCC_list_avg = []\n", + "orders_list = []\n", + "for num_orders in range(4,21):\n", + " print(f\"number of orders = {num_orders}\")\n", + " OCC_list = []\n", + " TCI_list = [] \n", + " # for n_th in range(1, num_orders+1):\n", + " results = calculate_final_result_avg(reactor_type, f_22, f_2321, land_cost_per_acre_0, RB_grade_0, BOP_grade_0,\\\n", + "num_orders, design_completion_0, ae_exp_0, N_AE, ce_exp_0, N_cons, mod_0, Design_Maturity_0, proc_exp_0, N_proc, standardization_0, interest_rate_0, startup_0)\n", + " \n", + " \n", + " OCC_list_avg.append(results[2])\n", + " TCI_list_avg.append(results[5])\n", + " \n", + " orders_list.append(num_orders)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "7706a195", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAMQCAYAAABrEN+LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hT1//H3wkkhL1BxYGgiLOKq9YFuFGqolZtrdraYWu/ta3W1lqt49dWa4et1Q7rqgMH7r0AJxUE6yh1iwgOBNkjkOT8/qA5TcggYeRA73k9Tx5j7rnnfc553xzu/eQMESGEgMPhcDgcDofD4XA4HA6Hw6kiYtYF4HA4HA6Hw+FwOBwOh8Ph1G94gInD4XA4HA6Hw+FwOBwOh1MteICJw+FwOBwOh8PhcDgcDodTLXiAicPhcDgcDofD4XA4HA6HUy14gInD4XA4HA6Hw+FwOBwOh1MteICJw+FwOBwOh8PhcDgcDodTLXiAicPhcDgcDofD4XA4HA6HUy14gInD4XA4HA6Hw+FwOBwOh1MtrFkXgFO/UKlUePDgARwdHSESiVgXh8PhcDgcDofD4XA4HI4eCCHIz89Ho0aNIBbX/vgiHmDimMWDBw/QpEkT1sXgcDgcDofD4XA4HA6HYwL3799H48aNa12HB5g4ZuHo6AgAuH37Njw8PJiU4c8//0THjh0Fp81SXy6X49tvv8UHH3wAGxsbi+sD3Hfuu7C0Wepz37nv3Hfh6HPfue/cd+Fos/ZdqN831tqZmZnw9/enz/G1DQ8wccxCPS3O0dERTk5OTMrg6+srSG2W+nK5HDKZDE5OTsxuRLjv3HchabPU575z37nvwtHnvnPfue/C0Wbtu1C/b6y15XI5AFhseRu+yDen3nH27FlBatcFfZZw34UJ912YcN+FCfddmHDfhYlQfeeeC1Ofdd0tCQ8wcTgcDofD4XA4HA6Hw+FwqgUPMHHqHf379xekdl3QZwn3XZhw34UJ912YcN+FCfddmAjVd+65MPVZ192S8AATp95x48YNQWrXBX2WcN+FCfddmHDfhQn3XZhw34WJUH3nngtTn3XdLQkPMHHqHampqYLUrgv6LOG+CxPuuzDhvgsT7rsw4b4LE6H6zj0Xpj7rulsSvoscxyRWrFiBFStWQKlUAgB2794NBwcHRERE4MSJE8jNzYWXlxe6deuG/fv3AwCCgoKgUqnw559/AgCGDx+OM2fOICsrC25ubujTpw92794NAOjQoQMkEgkSExMBAEOHDsWFCxfw+PFjODk5YeDAgYiKigIAFBUV4c6dOzh//jwAYNCgQbh69SrS09Nhb2+PYcOGYevWrQCAVq1awcPDgy6s1r9/f9y4cQOpqamwsbFBREQEtm7dCpVKBX9/f/j4+ODUqVMAgODgYKSmpuLOnTuwtrbGmDFj8PjxY0RGRqJZs2bw9/dHdHQ0AKBXr17IyMig0enx48djz549KCoqQuPGjdGmTRscPXoUANCjRw/k5uYiOTkZADBmzBgcPnwY+fn5aNCgAYKCgnDw4EEAQNeuXVFSUoIrV64AAKytrXH48GFkZ2fDw8MDPXr0wL59+wAAnTp1AgBcvHgRABAeHo64uDhkZmbC1dUVwcHB2LVrFwCgffv2kMlkSEhIAACEhYUhKSkJjx49gqOjIwYPHozt27cDANq0aQNbW1sAQFRUFAYPHozk5GSkpaXBzs4Ow4cPR2RkJAAgICAAXl5eOHPmDAAgNDQUt2/fxr179yCVSjFq1Chs374dCoUCfn5+aNq0KWJjYwEAffr0QXp6Om7fvg2xWIyxY8di586dkMvlaNq0KQghVKdnz57IzMzE9evXAQBjx47F/v37UVhYCB8fH7Rr1w5HjhwBAHTv3h0FBQX466+/AACjR4/G0aNHkZeXB29vb3Tp0gUHDhwAAHTu3BllZWW4fPkyAGDEiBE4deoUHj58iKNHj6JXr17Ys2cPAKBjx44Qi8VISkoCAAwbNgzx8fHIyMiAs7Mz+vXrh507dwIA2rVrBzs7O8THxwMAhgwZgkuXLuHBgwdwcHBAWFgYtm3bBgAIDAyEm5sbzp07BwAYMGAA8vLyEBkZCVtbW4wYMQJbtmwBIQQtW7ZEgwYNcPr0aQBASEgIUlJScPfuXUgkEowePRpRUVEoKytD8+bN4evri5iYGABA79698ejRI9y8eRMikQjjxo3D7t27UVxcjCZNmiAwMJC2YWpqKgoKCnDt2jUAwAsvvICDBw+ioKAAjRo1wjPPPINDhw4BALp164aioiJcvXoVAKrdRzx8+BCRkZFm9RFt27aFg4NDtfuIjIwMADCrj9ixYwdKS0trpI9Q192cPmLkyJGIjY2tVh+hUqkAAHfu3KHeVNZHODs7Iy4uDgAwcODAavcRDx8+xPnz583qIwICAnD8+HEA1esjJBIJDhw4YFYf8fTpU7i7u9dIH/Hw4UPk5OSY1Udcu3YN9+/fr1Yf0aRJEwDl/bxYLDapjzh27BgA4LnnnsPTp0+r3UdkZ2cjPz+/1u8j9PURubm5iIyMrPX7CEN9hEKhQGJiYq3fR1TsIzp37kx9V7+vjfsIY32EjY2NRe4j9PUR6n62tu8jDPURcrmc1r027yMq9hE7duygXjdu3LjW7iOM9RGZmZmIjIys9fsIfX3Ew4cPkZeXV+v3Efr6CKVSST2v7fuIin1Ebm4uACA3NxcnTpwAUDv3EYD+PiInJweRkZEWuY/Q10colUrEx8fX+n2Evj5C3ddY4j4C0O4jLI2IEEIsrsqpt+Tl5cHZ2RkZGRnw9PRkXRyOhZDL5Vi8eDE+/vhjZtvZciwP912YcN+FCfddmHDfhQn3XZhw34XJkydP4OXlhdzcXDg5OdW6Hp8ix6l3qH8xEJp2XdBnCfddmHDfhQn3XZhw34UJ912YCNV37rkw9VnX3ZLwABOn3qGeviE07bqgzxLuuzDhvgsT7rsw4b4LE+67MBGq79xzYeqzrrsl4QEmTr3D399fkNp1QZ8l3Hdhwn0XJtx3YcJ9Fybcd2EiVN+558LUZ113S8IX+ebUO3x8fASpXRf0WcJ9Fybcd2FSF31XqVRQKBS1/iukt7c3SkpKalVDH6WlpbC3t4dcLger5TlZ1Z21Nkt97jv3nfsuHG3Wvgv1+1ZVbbFYDGtra4jF9WtMEA8wceodp06dwvjx4wWnXRf0WcJ9574LSbsu6LOkLvmem5uLvLw8FBUVWWSIe2FhIYqKimpdpyKEEPTs2RNpaWkQiUQW1wfY1Z21Nkt97jv3nfsuHG3Wvgv1+1YdbbFYDDs7Ozg5OcHZ2bkWSlbz8AATh8PhcDgcTgUIIXj8+DGys7NhZ2cHDw8PyGQyiMXiWr0xz87Ohqura63lbwiVSoXMzEx4eHgw+7WUVd1Za7PU575z37nvwtFm7btQv29V0SaEQKVSoaSkBAUFBXjw4AGKi4vh7e3NLChsKjzAxKl3BAcHC1K7LuizhPsuTLjvwqQu+J6dnY3s7Gw0aNDAojek7u7ukEqlFtNTo1KpYG1tTYNoLGBVd9baLPW579x37rtwtFn7LtTvW3W07e3t4e7ujuzsbDx69AhSqRRubm61UMKao35N6KtARkYG9u/fj3nz5mHIkCHw8PCASCSCSCTC5MmTTcpDpVIhOTkZ69atw9tvv42uXbvCxsaG5hMbG2tWmYqKirB06VJ069YNbm5ucHBwQOvWrTFz5kykpqaanM9ff/2FqVOnokWLFrC1tYWnpyf69OmDX375BQqFwuR8tmzZgkGDBqFhw4aQyWTw9fXFyy+/jD/++MOsetUlzGnH/5J2XdBnCfddmHDfhQlr3wkhyMnJgaOjo8V/7SwtLbWoXl2CZd1ZtztrfZZw34WJUH3nngtTv7rarq6ucHR0RE5ODrN100ylXgeYvL29ER4ejkWLFuHw4cPIysoyO48NGzagbdu2eOWVV/DTTz/hwoULVb4Abt++jaCgIMyaNQsJCQnIzs5GYWEhrl27hm+++QYdOnTAwYMHK81n9erV6Ny5M3755Rfcvn0bJSUlyMzMxOnTpzF16lT07t270rqWlJQgPDwc48ePx9GjR/Ho0SPI5XLcu3cPGzduRM+ePbFo0aIq1ZM1d+7cEaR2XdBnCfddmHDfhQlr3xUKBeRyOZP1DuRyucU16wos68663Vnrs4T7LkyE6jv3XJj6NaHt7OwMuVxu1mATFtTrAJMmTZo0wcCBA80+TzMCKJFI0KlTJ7Rv397sfAoKCjBs2DBcv34dAPD666/jxIkTOHfuHD7//HM4ODggNzcXY8aMweXLlw3mc+TIEbzxxhuQy+Xw9vbGDz/8gPPnz+PQoUOIiIgAAPzxxx+IiIgwutjolClTsH//fgBASEgIdu/ejfj4eKxevRr+/v5QqVSYN28efvvtN7Pryhpra3YzO1lq1wV9lnDfhQn3XZiw9l2pVDIrR11fW6E2YVl31u3OWp8l3HdhIlTfuefC1K8JbfU9ifoepc5C6jHz5s0j+/btI48ePSKEEHL37l0CgAAgkyZNMimP8+fPk++//57ExcWR4uJiQgghn332Gc0nJibGpHw0z/nqq690jp87d45YW1sTACQkJERvHmVlZaRFixYEAHFyciK3bt3SSfP2229TnfXr1+vNJzY2lqYJDw8nCoVC6/iTJ09I06ZNCQDi6upKsrOzTaojIYTk5uYSACQjI8Pkczj1n5KSEjJ//nxSUlLCuigcC8J9Fybcd0KKi4tJcnIyvS8QAkqlkqSnpxOlUsm6KBwLwn0XJtx3YcJ9r99U9d4kIyODACC5ubm1VDJt6vUIpgULFmDYsGHw9vauch7dunXDu+++i2effRYymaxKeZSVleH7778HALRu3RozZszQSdOjRw9MmTIFABATE4PExESdNLt27cKtW7cAALNnz4a/v79OmqVLl9L1IJYuXaq3PF999RUAwMrKCitXroSVlZXWcQ8PDyxZsgRA+SKmq1evNqmedYUdO3YIUrsu6LOE+y5MuO/CRMi+Z2dnM9VnCcu6s2531vos4b4LE6H6zj0Xpj7ruluSeh1gqivExsYiJycHADBp0iSDq/JrLjy+c+dOneO7d+/Wm1YTOzs7vPDCCwCAq1ev4ubNm1rHCwoKcOLECQDAgAED0LhxY735REREwMnJyWBZ6jL1eYG2+q7PEu67MOG+CxMh+25s+vt/HZZ1Z93urPVZwn0XJkL1nXsuTH3WdbckPMBUA5w+fZq+79u3r8F0Xbp0gb29PQDgzJkzBvNp1aoVGjRoYDAfTY2K+cTHx9NFxIyVRSqV4tlnn6XnlJWVGUxb12jWrJkgteuCPku478KE+y5MhOy7jY0NU32WsKw763Znrc8S7rswEarv3HNh6rOuuyXhAaYa4O+//6bvAwMDDaaztram0940zwHKRx6lpaVVmkfF4xXzMbUsmscVCoXOSKi6jL6pg0LQrgv6LOG+CxPuuzARsu9CugmtiJBv/lnrs4T7LkyE6jv3XJj6rOtuSXiAqQa4f/8+AMDe3h4uLi5G0zZp0gQA8OTJE63tCtPS0uiOdoamtVXMQ1Nb3/+rk09lWL/yCrBhA1BSYtZ5NUF0dLTFNeuCdl3QZwn3XZhw34WJkH3Py8tjqs8SlnVn3e6s9VnCfRcmQvWdey5MfdZ1tyTC3QO5BsnPzwcAODg4VJpWPUUOKB+1pI5mqvMwJZ+KeegrS3XzUSOXy7UCYeovh/jgQeDAAZB334Vi9Wqohg41qlWTKJVKrTJZEpbaLPXVmkKsO2ttlvrcd+47K1j7XlpaCkIIVCoVk3UTWGiqf+RS19uSxMbGol+/fnqPyWQyuLu7o127dggPD8fLL79s0v1WVWC9RsZ/1ff79+9j69atOHbsGG7duoUnT55AqVTCzc0Nbdu2RZcuXTBlyhQ0b968VvQrg/tes/rFxcVo1KgRfWaYP38+5s6dqzdtTWjfv38ffn5+NK+1a9di4sSJlZ4nxPV4WPbzaqqqq1QqsXPnTuzduxcJCQl4/PgxSktL4e3tjcDAQAwdOhQvvfRSpYM9KuqXlZVhx44dOHz4MBISEpCRkYG8vDw4OzujWbNm6Nq1KyIiIhAaGmpwnWVNEhMTsXPnTsTExOD+/fvIzMyEjY0N3N3dERQUhP79+2Ps2LGVltNQ2QkhKC0thUgkMvk8S99PiYj6SvsPkJKSQv84TZo0CevWratSPvPnz8eCBQsAlO/4FhwcbDS9v78/7ty5gyZNmiA1NdVo2okTJ2LDhg0AyjtE9Sij06dPo0+fPgCAuXPnYuHChQbzUKlUdGe4fv364fjx4/TYlClTsGbNGgDA7du34efnZzCfNWvW0J3tNmzYgAkTJuik0WwLTXIBOAFQXzxbxo3DjUqm5HE4HA6HUx+wt7dHz5494ePjA2tr/ltcbXPu3DmMGTPGpLSNGzfGmjVr0LZt21ouFTu6d++OtLQ0jBkzBsuWLWNdnCojl8uxePFirF+/vtIHHJFIhGHDhmHu3Lnw8fGxUAmFSW1fX7t27cI777xD/+/r64uzZ8/WuI6aH374ge6ODQC9evXC1q1ba02PY3ni4+Px0Ucf4caNG0bTubq6Yvbs2XjppZdMyvfIkSNYsGAB7t27V2laPz8/fPbZZ+jfv7/e4+np6Zg7dy6OHDlSaV4ymQyvv/46pk+fDltbW5PKCpQva5Oeno6zZ8+isLDQ5PNKSkqwePFi5Obm0k2+ahN+11QDyGQyAKbtPKP5B1bzglLnYUo+hvKoyXzUzJ49Gx988AH9f15entbUOhEAIhJh3OHDKP35Z0BDv7a4ePEiOnXqVOs6dU2bpb5cLsd3332H999/n9kcYu47911I2iz1ue8X0aZNG6SlpcHDw0Pr76olKCoqgp2dnUU1gfJftB8/fgxvb2+zfhmtCdzc3Oj7qVOn4q233qL/z8zMxPXr17Fs2TLcuHEDaWlpmDRpEv7++284OjrWWBlYtbs+ffWPiLa2tkY3fakJasv3rKwsjBkzBufOnQMAODo6Yty4cQgNDUXjxo0hkUjw6NEjnDt3Djt27MDt27exb98+hISEYPr06TVWjsqoS75bCvX1BaBWvu979+4FUD6ToqCgACkpKbhz5w6ee+45rXQ1Vfc9e/Zo6Z07dw4KhcLoUiEsfWepzbKfB6pW96ioKEycOJE+t4aEhGDcuHEIDAyEjY0N7t27h/379yMyMhLZ2dmYNWsWHj16hKVLlxrVX7x4MT799FM6qqtfv34YPnw4WrduDRcXFzx9+hQ3btzAvn37cPz4cdy5cwfffvut3gEZFy9exPDhw/Hw4UMA5ZuFjBs3Ds899xy8vb1RWlqKO3fu4PTp09i9ezeysrKwfPlyTJ482ayRmyUlJSgoKMAbb7xh1v3ZkydPsHjxYpPTVxceYKoB1Dc4hqaZaaIZbdQc4q15k1RZPobyqMl81NjY2FR6AYsIAXJyYLNvH6DnS1fT3L17l+6AZ2lYatcFfVOuh9qC+859F5J2XdAXsu8dO3aESCSCWCw2aUh8TSKXy2ttCpgx1NMG1PW2JJp63t7e6NChg9bx0NBQTJkyBUOGDEF0dDQePnyI3377DTNmzKixMrBqd2P6lvCiNnxXqVR48cUXaXApLCwMa9euhZeXl07a4cOHY+bMmTh06BA+/PBDi19/ddF3S1LT7f3w4UOcOHECADBv3jwsWbIEWVlZ2LhxI3r16qWVtibqHh8fj2vXrgEAvvnmG0ybNg0KhQKbN2/Gxx9/bPA8lu3OUptlPw+YX/eLFy/i5ZdfRmlpKaRSKdavX49x48ZppenevTteeOEFzJw5E8OGDcP9+/fx7bffokWLFlo/Vmjqb9iwAXPmzAEAeHp6YuvWrQgJCdHRHzhwIN555x1cuXIF7733HrKysnTaLSMjA+Hh4TS49Mknn2DevHk6909t2rTBpEmT8N133+Hrr7/GF198YfY9hlgshkgkglQqNev+zNL3cnyR7xpAHSEvLCxETk6O0bTqxbQ9PT21zNaMsqt3k6ssD0B7oe6azMdsxGJg167q5cHhcDgcDoejB6lUivnz59P/Hzt2jF1hOEZZvnw5Xb6hf//+2LNnj97gkhqxWIyJEyciMTFRJ7jIqV9s3LgRSqUSVlZWePnll/HCCy8AALZt21Yr68CsX78eQPnUqMmTJ2PAgAEAgN9//73GtTiWRaVS0eASAL3BJU06dOiA6OhoGsCaMWOG3qVrHjx4QANPdnZ2iI2N1Rtc0qR9+/Y4duwYZs6cqXPszTffpMGl+fPn4/PPPzca0HF0dMSCBQtw4sQJODs7G9Wtr/AAUw3Qpk0b+l4dRdeHQqHA7du3AQCtW7fWOubg4ECDPMbyqHi8Yj6mlkXzuLW1NVq0aGE0baWoVMDTp9XLw0TGjx9vEZ26pl0X9FnCfRcm3HdhImTf3d3d9R8oKSnfvXXUKCA4uPxfRru5siIoKIi+r2z32+vXr+Pdd99F27Zt4ezsDFtbW/j5+eGVV15BUlKSTnrNdn/48CFWrlyJ0aNHo2XLlrC3t4eNjQ18fHwwfPhwbN261eSFalNSUvDRRx+hc+fOcHd3h0wmQ/PmzRESEoJvvvmGPgC5u7sjODgYIpGIrgeyfv16iEQirZehdUHPnDmDl19+Gb6+vpDJZHBxcUGnTp3w6aef4smTJwbLFxsbCx8fH1hZWSE2NhYqlQpr1qxBSEgIvL29IRaLMXnyZJPqCpQvmKuemiKTybB27dpK1zFTt33jxo0RGhqqN01paSlWrlyJkJAQeHp6QiqVokGDBggLC8PGjRuN+jF58mSIRCL4+voCAHJycjBv3jy0bdsWTZs2hYuLC/r06YNNmzaZVMf8/Hx88803CA0NRYMGDWBjY4NGjRqhe/fu+Oijj/ReX2oIIYiKisKoUaPQpEkT+Pj4wNXVFd26dcOiRYuM/lBdsR7p6en44IMPEBAQADs7O3h6eiIsLAyHDh3Se37F62v79u2wsrIy6foyFfU6s/369UODBg3odKLs7Gzs27dPK63Bvs5ESktL6VpLY8aMgVQqpXp///03Lly4oHPOggULIBKJ4OHhgZs3b1aqERYWBpFIBG9vbygUCr1p4uPj8frrryMgIAAODg6wt7dHYGAgpk2bpldDXe9169bRdk9JSYFcLseyZcvw7LPPwsPDAyKRSCuoXlpain379uGdd95B165d4erqColEAnd3d3Tv3h3z589HZmZmpXUCytf+jYiIgLe3N2QyGfz8/DB16lTcunULwL/XSmXXQ1paGmbPno2goCC4urpCJpOhadOmGDt2LGJiYgzW3RT27duHv/76CwAwdOhQo8ElNS1atMBnn30GoHyx+e+//15H/7vvvqOzeBYsWKD17GwMsVisMz3ur7/+olM0n3nmGXz66acGz69Y9z59+jDb2KDWIf8h7t69S1C+7jSZNGlSlfP57LPPaD4xMTGVpj9y5AhNv3jxYoPp4uLiaLrZs2frHB8/fjw9/vDhQ4P5vPnmmzTd9evXtY7l5eURqVRKAJDBgwcbzEMulxMnJycCgPTo0aPSOqrJzc0lAEguQIjmSywmJCLC5Hyqw+7duy2iU9e0WeqXlJSQ+fPnk5KSEib6hHDfWcB9576zgrXvxcXFJDk5mRQXF1tcPzs7W/fDPXsIcXX99++t5r+uroTs3VttXaVSSdLT04lSqax2XuYSExND72s+++wzg+mKi4tpug4dOhhMt3DhQmJtbU3TVnyJRCIyb948rXPU7a5QKIhYLDZ4rvo1YMAAkp+fb7ReS5cuJRKJxGg+ffv2pfp9+/atVFedXo1SqSTTpk0zeo6zszM5evSo3jKeOHGCpjt06BDp37+/zvnm3FPv27ePnjdhwgSTztF7zWuQkpJCWrdubbSOvXr1IllZWXrPnzRpEgFAmjVrRv7++2/i6+trMJ9p06YZLcuxY8eIh4dHpT7pIyMjg/Ts2dPoed7e3uSPP/6otB4JCQnEy8vLYD7Tp0/XOb8q15c5JCUl0Xx+//13+rmfnx8BQMLDw7XSV+Z7ZezcuZPqnTp1ihBCSGFhIXFwcCAAyP/+9z+dc27dukXPmT9/vtH8nzx5QvsRfXmVlZWRt956y2h7SiQS8uuvv2qdp6732rVrabqEhATSsWNHnfM1+0O1/8Ze7u7u5MyZMwbrpFQqyaxZs4hIJNJ7vqOjIzly5Ai9VoxdD7/99huxtbU1Wp4pU6aQsrIynbqbwsiRI2k+hvovfeTk5NByubu7E5VKRY89ffqUeHp6EgDE3t6e5ObmmpyvPmbMmEHL+NtvvxlNW93rnRBS5XuTjIwMAqDa9TUVPoKpBggODqZD3NavX08XC6uI5q52I0eO1Dk+YsQIvWk1KSoqwrZt2wCUj1YKCAjQOu7o6Ei3+j1+/LjBaXI7d+6k24fqK4vZqFRATeRjAkVFRRbRqWvadUGfJdx3YcJ9FyZC9l2pVGp/sHcvMGIEoB7ZoB6pof43JwcYPrw83X+c5ORk+l49iqMi8+bNw7x586BQKPDcc8/ht99+Q1xcHC5cuIBNmzahR48eIIRg4cKFWL58OT1P3e7qe7jQ0FAsXboUhw8fRmJiImJjY7FmzRr06NEDQPkUvWnTphks66JFi/Dhhx+irKwMLi4u+OSTT3Ds2DEkJSUhOjoaX3/9NXr27EkX2lUqlVi7di2uXLmCRo0aAShfn+jKlStar7Vr12rpfPzxx1ixYgUAoHnz5vj5558RHx+PmJgYvP/++5BIJMjNzcWwYcNw6dIlo+370Ucf4fjx43j++eexc+dOJCYm4uDBgxgyZIjR8zQ5efIkfT9s2DCTztG55jUoKChAaGgo/v77bwDl98p79+7FhQsXsH37dvTt2xdA+QiuYcOGGc2rqKgIzz//PLKysvDpp58iNjYWx48fx6pVq+gSEytWrDC4C1RMTAyGDBmCzMxMWFlZYfLkydi1axcSExNx9uxZrFq1ChEREZBIJDrnFhYWom/fvjh79iykUinefPNN7NmzB9HR0Th9+jQ+//xzuLu74/HjxxgyZIjRXa2KioowZswY5Obm4uOPP8apU6dw/vx5/PDDD2jYsCEA4Pvvv8e3336rdV7F62vQoEG4dOmS0evLHNTT1ezs7LSeLdQ7eh0+fFhrNJ0xr8zR8/X1pes7aWpv2bIFZWVlWuf4+/uje/fuAFDpiLWtW7fSUUv6diWbMmUKfvrpJwDAkCFDsHHjRsTHxyMhIQGrVq1C27ZtUVZWhjfeeENr9Ja+ek+ZMgWXLl3CxIkTceDAASQmJmLXrl20rED5TBg/Pz/MmDEDW7duRVxcHBISEhAVFYWpU6dCKpUiKysLI0eOREZGht46RUZG4quvvgIhBK6urli8eDHOnTuHc+fOYcmSJbC2tsa4cePolC9DrFmzBq+99hqKi4vRrl07LF++HGfOnEFSUhJ27NiBsLAwAMDq1avx0UcfGa27IU6fPg2g3FNDIxv14ezsTHdmz8rK0vq7kZycTK/B3r17V3tHNXP6u+pe7/UKi4SxLASrEUyEEDJ37lx6zldffaVz/Ny5czQKbigaXFpaSvz9/QkA4uTkRG7duqWT5u2336Y6a9eu1ZuP5q9Rzz//PFEoFFrHnzx5Qpo2bUoAEBcXF/L06VOT6kiIgRFMIlH5L6gW+qVX/SsFC1hqs9SvCyMauO+Wh/vOfWcFa99ZjmDKy8v79z/FxeV/X0Ui7VHDFV818He4Poxg0hzprTlCQk18fDwdffTpp5/qzUOpVJIJEybQX+vVvyqr212lUpGbN28aLe+8efMIUD4S6saNGzrHExMTaTkCAgLI/fv3DealPqbpe7NmzUy6l718+TLVadeund5fyA8dOkTTdOvWTee45j0jADJ37lyjmpUxYMAAmpe+ttGH1jVfgZkzZ9L89HmqUqnISy+9RNOsXLlSJ43myA8XFxdy9epVHe2bN28SmUxG750rUlRURBo2bEgAEDs7O6PPB6mpqTqfvfPOOwQoH02WkJCgt+4pKSlUQ9/oL816SCQScvLkSZ006enppHHjxrScjx8/1kmjvr7GjBlTY9/3srIyOqLqxRdf1Dp2/fp1Wu7vv/+efm7M98rIzMykowM/+eQTrWOaM0v27Nmjc+4PP/ygNXLIEM899xwBQPz9/XWORUVF0TxWrVql9/zi4mISGhpKABBfX186kkddb80RTADI6tWrjdb51q1bWqNxKnL58mU6ekvfd6WkpIR65ObmpjMLhpByr9zc3GiZ9D2zpqamEjs7O9pHaY5Q0uSTTz4hAIhYLKZapnqelpZGy2DOTBs1s2fPpudv2rSJfv7bb7/RzyteN1VBfQ02atSo0rTVud7V1JcRTPU6wHT69Gmydu1a+lq6dCm9aHr27Kl1zFAwhhCik2748OE0n48++kjr2OnTp/XmkZeXRwICAuh5b7zxBomOjiZxcXHkiy++oF94W1tbcvHiRYNlOXDgAL0R8Pb2JsuXLyfnz58nhw8fJqNGjaL59+rVSydwpMm4ceNo2pCQELJnzx6SkJBA1qxZQ4NYAMjPP/9sanMTQowEmGpgeL6pZGZmWkyrLmmz1K8LD5zcd8vDfee+s4K17ybfxKlUhBQU1OirLCfn3/+vWmU8sFTx9dtvVdZV5uWRBzdvEmVenv40Rh5sqouxAFNmZiY5ffo0GTJkiNYDR2lpqU4+6vukzp07G30Qy87OJjY2NloPh4YekvShUCjoNKmvv/5a57j6HkwkEpGkpCST8tTUNzXApDk9Jy4uzmC61157jaaLj4/XOqYZYAoICDB6b2kKnTp1ovmZ+jBjqO1LSkqIi4sLAUDatGljsGy5ubnE3d2dpquIZmDmhx9+MKit9s3V1VUnj59//pnm8d1335lULzVPnjyhwSvNAEtFfUIIWblyJQ0gFRYWGqzHO++8Y1Bv69atNJ2+H71rI8CkOTXy4MGDOse7du1Kv5tqzPnOVWT58uVULzk5WeuYQqGggbpRo0bpnPv48WP6o/97772nN3/NQQsVp9MSQkjnzp0JADJy5Eij5UxOTqb5HDt2jBDyb701A0yhoaEm1bsy3nvvPRpwrkhkZCTVW7ZsmcE8vv/+e6MBJvW0sEaNGhn9G1lWVkZ8fHwIADJnzhz6mSn8+eeftAyVtbE+li1bpvc7/+233+oNdlYF9TMxANKpU6dK01fnelfDA0wWwJS5qJovQ5iTh7E/9jdv3iQtW7Y0eK6TkxPZt29fpfX69ddf6TpK+l7dunUjT548MZpHUVERCQsLM5iHWCw2+iuhIdRfphzNX1MHDjQ7n+qwefNmi+rVFW2W+nXhgZP7bnm479x3VrD23eSbuIIC8wJA9flVUFBrba4ZYDL2sra2JhMmTNB7k1xaWkp/Vf/yyy8r1ezSpQsBQF599VVCiOGgpnpk17Vr18iVK1foS71eyssvv6yTXh0UCQ4ONrkNNPVNDTCp7zn1BVU0OX/+PG3DL774QuuYZoCpuqOXCCGkRYsWND9Tg1WG2v7s2bM0L32BEk00g20PHjzQOqZ+XhCJRDpamv/X/KG64miw8PBwApSPCqoY+KmMjRs30nwrrrFasTxXr16laSuO5NR87klMTDSoV1paSq/BgXru0WsjwDRmzBgCgHh5eel9kNYMWqgDQtX5IUEdsAoKCtJ7/P333ycAiI2Njd6Rfeq1xho2bKi3DT7//HNa3mvXrmkd0xxdExkZWWlZ1cHohQsXEkL+rbdmgKmy0Uv6ePr0Kbl16xa5evUq7Zfmz59Pn/MqBuHVgWaxWGy07bOysugaTfoCTOrv+JtvvllpGUePHk00A2imen769GnaNqau5abJqlWr6Pn/93//Rz9Xj6oCKl8zqTI0r4NevXpVmr4mfjirLwEmvgZTDdKiRQtcvHgRS5YsQZcuXeDi4gI7Ozu0atUK77//Pi5fvmzSfPTXX38diYmJeP311+Hn5weZTAZ3d3f06tULP/30E86ePQsPDw+jedja2uLAgQPYtGkTBgwYAC8vL0ilUjRp0gQvvvgizpw5o7UzgbmowsKAuXPL/1NaClSY48zhcDgcDodTkwQEBGDWrFl6181ITk6m62fNnj1bZ/e1ii/1DlOPHj3SyYsQgo0bNyIkJAQODg7w8fFBYGAg2rdvT19//vknAOjs2nT37l26E5h6HZDaQC6X0x2qNNdp0UenTp3oukBXr141mK5Dhw7VLpejoyN9r96pqapolrWyOmoeN1RHDw8Po7tYubm50ff5+flaxy5evAgA6NKlC+zs7IyWpSKau5k1bNhQ6zpU7xamfrVr146m1XdtAoBUKjXqlUQiQadOnQAY97umyMnJwd5/1oAbN26c3l0DNT///fffq6V37do1JCQkAIDOrl5q1J/L5XK605wmo0aNAlC+Y2R0dLTOcfX6TF26dEGrVq20jmn6OX78+Er7GnUfYchPwPTv3pUrV/Dqq6+iYcOGcHNzQ4sWLdCuXTvaL6mf7VQqFbKzs7XOVV8LTZs2haurq0ENNzc3+Pn56T2Wm5tLd5r75ZdfKq17VFRUpXXXh2Y/UlBQYNa5Fc/R/Hvh4OBA31e3f6rJvu6/hvF9Q+s469atM7gYtjkQA4tyVwV7e3vMmjULs2bNqlY+7dq1w6+//lrt8rz44ot48cUXq51PRRRr1wKensCQIcCzzwL/LFJpCdQLbLKApXZd0GcJ912YcN+FSb3x3c4OqMLNrzHkcjlsbGzK//Pii8D+/f8u6G0MsRgYNgzYvLlKuiqVCo8fP6Zb0+tg5kN1VXnrrbfw9ttvAyhf1PbBgwfYu3cv1qxZg+TkZAQHB+PcuXM6D32GFrWtDHVQSv3gUVJSgoiICINbvVekuLhY6/+aASf1gsumoPngYwqaD4/e3t5G06q3Mn/06BGePn1qMJ2xh05T0fwB9PHjxyYtomuo7pplrayODRo00HueJvoCQ5ramtd9xQV51b6a46ma6l6bFXFzc9MbxNFE3V7G/K4ptm7dCrlcDsBwwMfLywsDBgzAoUOHsHHjRnz++edmX/Nq1It7W1lZYfz48XrTBAUFoU2bNkhOTsbvv/+ON998U+v4Cy+8gJkzZ6KwsBCbNm1C//796bE///yTLgytb3HvmuprNDHlu7d69WpMnTqVLjxeGRX7JnWfYSzIqsbT0xO3b9/W+bw26q4PzTKaG5wCyvsefXmpF7ivmKYqODk5QSKRoKyszKS8qnq910fqdYCJUwdg8BCQm5trcc26oF0X9FnCfRcm3Hdhwtp3zYdVo4hEgL19jeorRaJ/gzmjR5u+O5xKBYwZU/XyqFQgdnbl5+sLMFkILy8vrVEcHTt2RFhYGMLDw/H888/j6dOnePHFFxEfHw8rKyuaTjMgsHTpUgwePNgkPft/2kt9/ueff06DS3379sW0adMQFBSEBg0awNbWlgYh+vTpg9OnTxv9kVJkxo9v1dlhyBQdU35M1WzPqvLMM8/g2LFjAICkpCS0bNmy0nNMqXtldazqj8Xmtrs5nlbUkEqlSExM1DpWXFwMW1tbveepd7arShlq8sfzytAckdStW7dK06elpSEmJqZKPySoVCo6ukipVJoU8Dt37hxu3bqFFi1a0M9kMhmGDx+OzZs3Y+fOnfjpp58gk8kAAJv/CdKLxWKMHTtWJz/Na2bTpk0mjz5SB5H0XXOVffeuXbtGg0teXl748MMPERoaCl9fXzg6OtIRimvWrMGUKVMA1M41oFn29957j2pVhlQq1TnfGD4+PvDw8EBmZiYuX74MpVJpVv+UlJRE3z/zzDP0fdu2bfWmqSrPPPMMLly4gAcPHtAfaAwhpF3keICJUzPk5AA//gjMmgX804nUFsnJyVqdhSVhqV0X9FnCfee+C0m7LuizhLXvFUfHWJLi4uJ/R1qMGQNMn17+N9bYw4JIBLi4lAek/qMMHToUU6dOxcqVK5GUlIR169ZpPdxo/kpdVlamFaQyBfWD/m+//QYA6NWrF6Kjo/WP5gJ0pp+o0RzB8+DBA7P0zZl6pTniobJf+BUKBR3JojkNrDbo27cvvv76awDAgQMH9D6gV8RQ3TXL+ujRIwQEBBjMQ3MEgTl1NLXdPTw8kJaWZpanatTXZmlpKdzd3bWCIllZWSaNKNEkKyur0gdu9UiT2vb71q1bOHfunNnn/f777+jYsaPZ0w2jo6Nx//59s/U2bNiABQsW0P8XFxdjwoQJ2Lx5M/Ly8rB//36MHj0ahBBERkYCAPr166c3gKXpV8VpjaZg7ncdKJ+1o1AoYGVlhdjYWLRu3VpvOkP9EvBvn5GVlVWp3pMnT/R+rln3oqKiWqu7SCRCr169sHv3bhQVFeHEiRMYOHCgSRq5ubk4ffo0gPLrv02bNvSYr68vDVydPn0aeXl5Jo2yNETfvn3plMkDBw7g1VdfNZi2Kr7XV/gaTJzqQwjQp0/5mkw//si6NBwOh8Ph/DeQyYB/poMYnIqu/nz9+vL0/2E+++wzOuJowYIFKC0tpcfatm1LfyU/evRolfJ/+vQpDda88MILBoNLBQUFuH79ut5jzZs3pw9yp06dqlI5TBmhYmNjQ0cHnT9/3mjaixcvouyftTLNfSA0l4EDB9JpKNu3b0d6enqV89Isa2V1jI+P13teTREUFASgfP0dQ1PXDKFeDwmo+rWpSWlpKS5dumTwuEKhoGuE6WuLqozCMoTm6KWffvoJkZGRRl/qkYU7d+6s0ro1aj0bGxts2rSpUr3OnTsDKA8wVRzRM2DAAHh6egL4d9TSqVOnkJaWBkD/9Dig5v00hb/++gtA+YgZQ8ElQHt9qIqoR++kpqYanTr59OlT3LlzR+8xT09P+Pj4AACOHz9eqyPlJk2aRN//8MMPJp/366+/0umBkyZN0rreRSIRJk+eDKB83ST1DwpVRZ0XACxfvlxQo5SMYpGlxDn/GdS7yGVkZGgfWL26fJcZZ2dCKtnhrrrUxDaP9VGbpX5d2FWK+255uO/cd1aw9r2qO7XUBCqVSvfDPXsIcXUt/zsrFmv/6+pKyN691dZV75ZWU7tKmYPmLnKV7XD7wQcf0LS//vqr1rEhQ4bQY+fPnzerDCqVijx69Iiev3jxYoNpNbfA1rfL0ksvvUR3LUtKSjJZX01gYCABQMaNG2f0HM2d0+Li4gyme+ONN2i6+Ph4rWOau8jFxMSYVNbK0NwKfNCgQZXuJqeu+/3798mJEyfo5yUlJXQ3tLZt2xrMJy8vj+7UpW9HPfXua82aNTOoTYj2rl53797VSqe5K9V3331ntD4VSUtLIxKJhAAgzzzzjFb/pvf7bgDNXeTeffddg+m2bdtmdPc99fU1fPjwan3fVSoVad68OQFA2rVrZ9I5+/bto2Vbv369WXoFBQXE3t6eACDDhg0z6Zzly5fr3ZVP3e7vvPOO1m5zr7/+OgFAZDKZ0R232rRpQ9Pdu3fPrHqotY1dbxUZPHgwAUACAwMNpnn48CGxtbU1mOfmzZvpsWXLlhnMR3PHP339m2a/s23bNqPlrog517tSqaTXKkzcse/mzZvEwcGBepOSkqKjn5aWRncctbe3J3///bfJ5dmwYYPO588//zwt46JFiwyeX7Hup06dInfu3DFJWw3fRY4jLCZNAjp2BHJzgc8+q1Wpw4cP12r+dVW7LuizhPsuTLjvwkTIvutdf+r554EHD4ANG4ARI4Dg4PJ/N2wo/zw83MKlZMeHH35I10pZvHix1i/Gc+bMob9Wjxs3Tu8itWqUSiU2b95MRyvk5ubC09MTLi4uAIAtW7ZojZBSk5CQgE8//dRoGWfOnAmxWAxCCMaNG0c19KGpr0Y9LcdY+YHyBdHVo6zeeOMNvdfO0aNHsXr1agDl6+N07drVaJ41wfTp0xESEgIAOHLkCEaOHGlwyg1QvgvZpk2b0LlzZ1y+fJl+bmNjg9deew1A+QgOzSlOaggheOedd+gi3O+8845ZZTV1vbcJEybQkRtz5szByZMnDaat6LePjw9eeeUVAMClS5fw5ptv0oWa9elnZGRUOrLip59+wpkzZ3Q+f/ToEWbOnAmgfFFzzVEgatTX171794xqVMbp06dx9+5dAMBoE6fnDhw4kE5JWrt2rVl6O3bsoKOeTNWLiIigfYLmaCt1u6tHKcnlcmzevJnuevb8888bnTql7gPUmwIYu77lcjlWrlyJkpISLW1zUI9WvHHjBv744w+d40VFRXjxxRd1FvbWZOTIkfDy8gIALFy4kO5CqcnNmzf1fs80+fDDD+lGFFOnTjU6agoADh48SL/X5tRdLBZjw4YNdH2pSZMm6d0RUM3ly5fRr18/uoPc0qVL0axZM600ubm58PHxwY//zLgpLCxE3759jX6fgfKp84MGDaLTfzX55Zdf6NpLc+fOxbx58/T+7VDXvbCwEAsWLEC/fv3+u2ttWiSMxfnPYHAEEyGExMT8+6vqlSu1VobNmzfXWt51WZulfl0Y0cB9tzzcd+47K1j7znIEU2ZmpsU1Cak/I5gIIWTatGk0/e+//6517LPPPqPHHBwcyPTp08mBAwdIUlISiYuLI5GRkeTdd98ljRo1IgDIlX/uV9Ttrpl3t27dSGRkJElISCDHjx8nH3zwAZHJZMTDw4MEBAQY/IWfEEIWLVpE83FxcSFz5swhx48fJxcvXiQxMTHku+++I7179ybBwcFa+oQQMmfOHHrul19+Sf78809y8+ZNcvPmTZKWlqal8+GHH9K0fn5+5JdffiHx8fEkNjaWzJgxg46ckUql5OLFizrlrI0RTIQQ8uTJE9K9e3eat6OjI5k6dSrZtm0bOXfuHElISCD79u0jc+bMIS1btjQ4OigvL4/4+fnR4yNHjiT79u0jiYmJJCoqigQHB9NjPXr00DvKydgIJs12r2xESXR0NLG2tiYAiJWVFZk8eTLZs2cPSUxMJOfOnSNr164lY8aMIVKpVOfc/Px80q5dO5p/mzZtyLJly8j+/fvpNfHjjz+SESNGEKlUSjp37mywHp6enqRZs2ZEJpOR2bNnk9OnT5P4+Hjy448/0usaAPnmm2/0eqN5fX3xxRdGry9jvPrqqzSfK2bc97/44osEABGLxWbphYaGEgBEIpGQp0+fmnzec889RwAQZ2dn2qdr+t6iRQv6PVXXZ8+ePZXmqzmizMPDg8yZM4ccPXqUXLx4kZw5c4asX7+evPbaa8TNzY0AIPn5+Vra5oxgio+Pp2ldXV3Jl19+SU6ePEnOnz9PVq5cSb9DPXv2NJrnxo0btfJZsmQJiYuLI3FxcWTJkiXEzc2NuLi40PzU/VNFNMsulUrJlClTyK5du0hiYiI5f/482bFjB/noo4+Iv78/AUD27dun0+6msmXLFiKVSqleaGgo+e2338iZM2dIfHw8iYqKIhMnTqTfTQBk+vTpevPS1F+4cCFND4AMHDiQrFixgkRHR5OkpCRy/PhxsnLlSjJ06FBiZWVFRyDqIyEhgXh7e9O8fH19ySeffEIOHDhAEhISyNmzZ8nq1avJ1KlTiaenJ02nr082Rn0ZwcQDTByzMBpgIoSQkSPLg0wDBxJixjBIc4iOjq6VfOu6Nkv9uvDAyX23PNx37jsrWPvOMsBkqRvAitSnAFNqaip94AgMDNQp83fffUdsbGy0Hh70vaRSKbl58yYh5N92z8nJIR07djR4jpubGzl58iTp27ev0QATIYR88cUXWg89+l7q8zV9T0tLow+lhtKrUSqV5O233zaq4ezsTI4cOaK3jLUVYCKk/GFo+vTpWg+Hhl4ikYhMmDCBpKen6+Rz9+5draky+l49e/YkWVlZesthLMCk2e6mPPAfPnyYuLq6VloffWRlZdGpTpW9QkJCjNYjISGBTgvU9zI2hc6c68sQRUVFxMnJiQAgrVq1MukcNTt37qR6xqaianL//n0iFosJUD7t0hw0p2xu2bKFEKLt+7x583S+43K5vNJ8FQoFmTVrFg0+GHvZ29uToqIiLW1zAkyEELJgwQKjGjNmzKg0T6VSSWbNmkVEIpHePOzs7MiBAwdI7969CQAyePBgg+XZsmULvQaMvcRiMf2bXtW/bydPniStW7euVMvV1ZWsXLnSYD4V9Xfs2EF8fX1N+k62bdvWYD9KCCEpKSlk6NChJuVlb29fpfus+hJg4rvIcUxixYoVWLFiBR2Kvnv3bjg4OCAiIgInTpxAbm4uvLy80P2zz2C7dy+sjh5F2qpVyO/dmy40OHz4cJw5cwZZWVlwc3NDnz59sHv3bgBAhw4dIJFI6PatQ4cOxYULF/D48WM4OTlh4MCBdNhq8+bNcefOHbrg46BBg3D16lWkp6fD3t4ew4YNo0MoW7VqBQ8PD5w9exYA0L9/f9y4cQOpqamwsbFBREQEtm7dCpVKBX9/f/j4+NBFOYODg5Gamoo7d+7A2toaY8aMwePHjxEZGYlmzZrB398f0dHRAMp3m8nIyMCNGzcAAOPHj8eePXtQVFSExo0bo02bNnQhwB49eiA3NxfJyckAgDFjxuDw4cPIz89HgwYNEBQUhIMHDwIAunbtipKSEly5cgVA+Y4Whw8fRnZ2Njw8PNCjRw/s27cPwL+LDl68eBEAEB4ejri4OGRmZsLV1RXBwcHYtWsXAKB9+/aQyWRISEgAAISFhSEpKQmPHj2Co6MjBg8ejO3btwMA2rRpQ7fQjYqKwuDBg5GcnIy0tDTY2dlh+PDhdMeNgIAAeHl50WHboaGhuH37Nu7duwepVIpRo0Zh+/btUCgU8PPzQ9OmTREbGwugfMvn9PR03L59m24Nu3PnTsjlcjRt2hTNmjWjOj179kRmZiZdZHXs2LHYv38/CgsL4ePjg3bt2uHIkSMAgO7du6OgoIAukDh69GgcPXoUeXl58Pb2RpcuXXDgwAEAQOfOnVFWVkaH8o4YMQKnTp1CRkYGjh49il69emHPnj0AyrfOFovFdJvTYcOGIT4+HhkZGXB2dka/fv2wc+dOAOWLbNrZ2dFFSIcMGYJLly7hwYMHcHBwQFhYGLZt2wYACAwMhJubG92VZcCAAVAqlYiMjIStrS1GjBiBLVu2gBCCli1bokGDBnS3jJCQEKSkpODu3buQSCQYPXo0oqKiUFZWhubNm8PX1xcxMTEAgN69e+PRo0e4efMmRCIRxo0bh927d6O4uBhNmjRBYGAgbcPU1FQUFBTg2rVrAMoXvz148CAKCgrQqFEjPPPMM3Rb727duqGoqAhXr14FAJ0+olu3bti/fz+A8kVTVSqV0T4iLS0NkZGRZvURbdu2hYODQ7X7CPXUE3P6iB07dqC0tLRG+gh13c3pI0aOHInY2Nhq9REqlQoAcOfOHepNZX2Es7Mz4uLiAJRPgahuH1FSUoLz58+b1UcEBATg+PHjAKrXRwwYMACxsbHw8PBAQUEBJBIJcnJyAJRvaU8IoYv8urq6Ij8/HwqFAtbW1nBwcKBp7ezsIBKJ6JQOFxcXFBYWoqysDNbW1nB0dKQ7/tja2kIsFtO0CoUCxcXFKC0thZWVFZydnemirLa2trCysqLTAJycnFBSUoLS0lKIxWK4urri6dOnIIRAJpNBIpEgPz+fppXL5ZDL5RCJRHBzc6Np1Qtkq8vk6OiIsrIylJSU0LTZ2dlQqVSQSqWQyWTIy8sDADg4OECpVNLpGW5ubsjNzYVSqYRUKoWtrS2dCmBvbw+VSkXTurq60roA5duQq3c5qtjeLi4uKCgogJ2dHcaPH4/169fj2rVrWLduHcaPH0/b++WXX0ZERARWrFiB6Oho3L17F7m5ubCxsUGDBg3Qvn179OvXDwMHDoSrqysUCgUIIcjKyoKVlRXOnDmDzz//HHv27KHf70aNGmHAgAGYMWMGPD096aLZAAy294wZMzBkyBD8/PPPOHXqFNLT01FaWooGDRrA19cX4eHhGDx4MLKysmBnZ4fCwkKUlJRAJpMhPj4eCxYswJkzZ/Dw4UM6vaasrAxyuVyrvX/88UcMHToUa9euxfnz55GRkQGpVApfX18MGTIE06ZNg729PbKysrSuWYlEorVIr1wuR3FxsVZ7G7pmK17fzs7OKCoqQllZGb1mCwsLMXfuXLz11luIiorCsWPHcPv2bWRlZYEQAhcXF7Rp0wYhISEYNmwYmjRpAplMhtLSUq1r1sPDA9HR0di4cSMOHDiAK1euID8/H66urujYsSNGjBiB0aNHw8HBgbah5jUrl8tpHdXXloODAxQKBcrKyujfHM3FuxUKhVZadXt36dIFt27dwrJly3DkyBHcunUL+fn58PDwQKNGjdCvXz+MGTOGnluxj9i/fz/27t2LqKgoxMfH49GjRygpKYGjoyP8/f3RqVMn9OvXDwMGDIBKpdLqI9T34CqVCh07dsSpU6ewbNkyHDt2DA8fPoSdnR06deqEadOmISwsjJahYh/h4+ODI0eO4Ntvv0V8fDzS09Pp9UUIQUFBgd4+wsbGBjY2NsjLy8OOHTvo9z8sLAxPnz41uY/o2rUr7O3tUVhYiHXr1uHtt9+utI9YtWoV/ds0cuTISvsIdXs7OjoiNDSU+rpu3Tr0798fQPk02cLCQoSFhWHhwoU0zbBhw2ifoO6bnJ2ddfrknJwczJo1i/ZFJ06cwP3795Gfnw87Ozv4+Pigffv2GDZsGPr27YuioiLaNllZWVr9XnZ2NpycnLTaULO9AeDjjz9Gu3bt8OOPP+LixYsoKiqCh4cHgoKC8Nprr2Ho0KH4+eefaZ7FxcW0nTT75OnTp2Pw4MH4+uuvkZCQQO+He/fujWnTpqF79+746KOP6PdcqVRq/V0Dyqfk9e/fH7dv38aKFStw7Ngx3LhxAzk5OZBIJPDy8kKbNm3Qt29fDB48GD4+Pjr9rLG/axXbu0+fPoiNjcXevXtx9OhRJCUl4fHjx1AoFPD09ESrVq0QGhqKcePGoXnz5lrXrFQqpf2J+rpT9xERERHo2bMndu/ejdjYWCQlJSEjIwMFBQVwcnJC06ZNERQUhGHDhmH48OHIy8tDVlaWzt81BwcHeHp6Yv369UhKSsLx48dx4sQJpKWlITs7G1KpFB4eHujQoQMGDRqEUaNGwdramt5jmHofIZPJUFJSgv3798POzs7kZw2LY5EwFuc/Q6UjmAghZNYsQl55hZAHD2qlDKynTrCET5kRnjZLfe47950VrH3nU+TYwKrurLVZ6nPf64/vxkZimQv3XZjapvheWlpKFwv/9NNPa1S/Pn3f6qI2H8HEES6LFxveTpnD4XA4HA6Hw+FwOHUO9Wh2AHj22WcZl4ZTH+G7yHFqnorBJY0dXmoCS+yAUhe164I+S7jvwoT7LkyE7Lu9vT1TfZawrDvrdmetzxLuuzARqu+sPVfv/KePlJQUfPDBBwAAb29vDBo0qEa1WdddyL5bEj6CiVN73L4NzJgBNGsGfP99jWWrnifOApbadUGfJdx3YcJ9FyZC9p1orIkjNFjWnXW7s9ZnCfddmAjVd9ae9+3bF0OGDEF4eDjatm0Le3t7ZGRkICYmBj///DNd/+frr7+GtXXNhgpY113IvlsSPoKJU3vcuQPs2QOsXAn8szhwTaBezJYFLLXrgj5LuO/ChPsuTITsu+ZCw0KDZd1ZtztrfZZw34WJUH1n7blSqcT+/fvx5ptvolevXujUqRMGDRqExYsXIycnB2KxGF988QUmTJhQ49qs6y5k3y0JH8HEqT0GDADCw4F9+4CZM4F/do7icDgcDofD4XA4HI5lWbduHc6fP4+4uDg8fvwYWVlZsLGxgY+PD4KDgzFt2jS0a9eOdTE59RgREdJ4LU61ycvLg7OzMzIyMuDp6Vn5CTduAG3bAgoFcOQIMHBgtcug3sKXBSy1WerL5XIsXrwYH3/8MWxsbCyuD3Dfue/C0mapz30vnyJ39+5dNG/e3OLlUKlUEIstP8BcpVLh0aNHaNCgARN9dRmEqM1Sn/vOfRdi2wtZm6XvQv2+1ZR2SUlJle5Nnjx5Ai8vL+Tm5sLJyalaZTAFPkWOU7sEBADvvFP+/oMPygNN1SQ2NrbaedRH7bqgzxLuuzDhvgsTIfuen5/PVJ8lLOvOut1Z67OE+y5MhOo791yY+qzrbkl4gIlT+8ybB7i5AX/9Bfz2W7Wzy87OroFC1T/tuqDPEu67MOG+CxMh+66ogR9i6iss68663Vnrs4T7LkyE6jv3XJj6rOtuSXiAiVP7uLoCCxaUv1+9GqjmrEwPD48aKFT9064L+izhvgsT7rswEbLvEomEqT5LWNaddbuz1mcJ912YCNV37rkw9VnX3ZLwRb45luHNNwGRCHj11fJ/q0GPHj1qqFD1S7su6LOE+y5MuO/CRMi+29vbM9VnCcu6s2531vos4b4LE6H6zj0Xpj7rulsSPoKJYxkkEmDaNMDWttpZ7du3rwYKVP+064I+S7jvwoT7LkyE7HtOTg5TfZawrDvrdmetzxLuuzARqu/cc2Hqs667JeEBJo7lUSqBw4dZl4LD4XA4HA6Hw+FwOBxODcEDTBzLUlYGdOsGDBkCxMRUKYtOnTrVcKHqh3Zd0GcJ912YcN+FiZB9t7OzY6rPEpZ1Z93urPVZwn0XJkL1nXsuTH3WdbckPMDEsSwSCaBe3+L998tHM3E4HA6Hw+FwOBwOh8Op1/AAE8fyzJ8PuLgAly4Ba9eaffrFixdrvEj1Qbsu6LOE+y5MuO/CRMi+FxUVMdVnCcu6s2531vos4b4LE6H6zj0Xpj7rulsSHmDiWB4PD2DevPL3n34K5OWxLQ+Hw+FwOBwOh8PhcDicasEDTBw2TJsGtGwJPH4MfPmlWaeGh4fXUqHqtnZd0GcJ912YcN+FiZB9d3FxYarPEpZ1Z93urPVZwn0XJkL1nXsuTH3Wdbck1qwLwKkfrFixAitWrIDynzWTdu/eDQcHB0RERODEiRPIzc2Fl5cXunXrhv379wMAgoKCoFKp8OeffwIAhg8fjjNnziArKwtubm4I/vxz2LzwApTffIPbwcFA8+ZITEwEAAwdOhQXLlzA48eP4eTkhIEDByIqKgoAQAjBs88+i/PnzwMABg0ahKtXryI9PR329vYYNmwYtm7dCgBo1aoVPDw8cPbsWQBA//79cePGDaSmpsLGxgYRERHYunUrVCoV/P394ePjg1OnTgEAgoODkZqaijt37sDa2hpjxozB+vXr4ebmhmbNmsHf3x/R0dEAgF69eiEjIwM3btwAAIwfPx579uxBUVERGjdujDZt2uDo0aMAgB49eiA3NxfJyckAgDFjxuDw4cPIz89HgwYNEBQUhIMHDwIAunbtipKSEly5cgVAeeckEomQnZ0NDw8P9OjRg26prV6YVj29Izw8HHFxccjMzISrqyuCg4Oxa9cuAED79u0hk8mQkJAAAAgLC0NSUhIePXoER0dHDB48GNu3bwcAtGnTBra2tgCAqKgoDB48GMnJyUhLS4OdnR2GDx+OyMhIAEBAQAC8vLxw5swZAEBoaChu376Ne/fuQSqVYtSoUdi+fTsUCgX8/PzQtGlTxMbGAgD69OmD9PR03L59G2KxGGPHjsXOnTshl8vRtGlTZGZm0uGlPXv2RGZmJq5fvw4AGDt2LPbv34/CwkL4+PigXbt2OHLkCACge/fuKCgowF9//QUAGD16NI4ePYq8vDx4e3ujS5cuOHDgAACgc+fOKCsrw+XLlwEAI0aMwKlTp3D9+nUEBgaiV69e2LNnDwCgY8eOEIvFSEpKAgAMGzYM8fHxyMjIgLOzM/r164edO3cCANq1awc7OzvEx8cDAIYMGYJLly7hwYMHcHBwQFhYGLZt2wYACAwMhJubG86dOwcAGDBgAPbt2weZTAZbW1uMGDECW7ZsASEELVu2RIMGDXD69GkAQEhICFJSUnD37l1IJBKMHj0aUVFRKCsrQ/PmzeHr64uYfxbX7927Nx49eoSbN29CJBJh3Lhx2L17N4qLi9GkSRMEBgbSNkxNTUVBQQGuXbsGAHjhhRdw8OBBFBQUoFGjRnjmmWdw6NAhAEC3bt1QVFSEq1evAkC1+og+ffpgzZo18PT0RIcOHSCRSEzqI9q2bQsHB4dq9xFPnz7FtGnTzOojduzYgdLS0hrpI06ePAlPT0+z+oiRI0ciNja2Wn2ESqUCANy5c4d6U1kf4ezsjLi4OADAwIEDq91HPHz4EN27dzerjwgICMDx48er3Ue4uroCADw8PFBQUACJREK3F7a3twchhPZFrq6uyM/Ph0KhgLW1NRwcHGhaOzs7iEQiFBYWAijvvwsLC1FWVgZra2s4OjoiOzsbAGBrawuxWIzCwkIoFAq4u7ujuLgYpaWlsLKygrOzM54+fUrTWllZoaCgAADg5OSEkpISlJaWQiwWw9XVFU+fPgUhBDKZDBKJBPn5+TStXC6HXC6HSCSCm5sbTSuVSgGAlsnR0RFlZWUoKSmhabOzs6FSqSCVSiGTyZD3zwhkBwcHKJVKFBcXAwDc3NyQm5sLpVIJqVQKW1tb5Obm0jZUqVQ0rWYbqlQquLm5GWxvFxcXFBQU0PbWbENj7W1lZQUnJyet9tZsQ2dnZ+Tk5EAkEum0t0wmg7W1tVZ7q9uwsvZ2dHREaWmpVnur29DGxgY2Nja0DcViMaRSKUpKSgAA7u7uyMnJ0duGxtpbIpHAzs5Oq70NXbPqtGrf1e8129vQNVuxvZ2dnVFUVETb29g16+zsrHV9i8VilJWV0fY2dM1WbG8bGxtIpVKt9jZ0zVZsbwcHBygUChQUFMDa2troNVuxvV1dXZGXl0fb297evsp9RHFxMQghlba3Zh+hrw3N7SPU+RYVFWm1obE+omIbVrePyMrKgpWVlVl9RGXtbWofoVAo4OHhYVYfYai9ze0jSktL6d9Zc/oIzfYGqt5HAIBSqaR1rayP0Gzv6vYR2dnZEIvFZvcRLi4uyMrKou1d1T5Cs581tY9Qt3d1+4jMzExYW1tX6z5CJpOhpKQE+/fvh52dncnPGhaHcDhmkJubSwCQjIyM6memUhHSrx8hPXsSkpxs8mmbN2+uvnYVYanNUr+kpITMnz+flJSUMNEnhPvOAu47950VrH0vLi4mycnJpLi42OL6mZmZFtckhBClUknS09OJUqlkok8Iu7qz1mapz33nvrNCqL6z1Gbtu1C/bzWlXdV7k4yMDAKA5ObmVrsMpsBHMHHYIRIBUVGAs3P5exNR/7rMApbadUGfJdx3YcJ9FyZC9t3aWri3ZizrzrrdWeuzhPsuTITqO/dcmPqs625J+BpMHLa4uJgVXALKp6WwgqV2XdBnCfddmHDfhYmQfXd0dGSqz4LY2FiIRCI6DVzzZWtri8aNG2PIkCFYuXIlnUJR07Bud9b6tcn9+/exdOlSDBw4EM2bN4eDgwNsbW3h4+ODQYMG4YcffsDdu3eZlI11u7PWrw2Ki4vh7OxMv8MLFy7Um66m6n7//n1YWVlRvd9//73Sc1i2+3/Rc1Mxt+6afwuaNWuG0tJSo+nXrVtH06un1xvTLysrw5YtWzBp0iS0bt0a7u7ukEgk8PDwQOfOnfHWW2/h+PHjdEpjRXx9fSESieDr61tpXYTkOw8wceoGubnArFnApk2VJlWvI8QCltp1QZ8l3Hdhwn0XJkL2Xb1+BaeckpISpKen4/Dhw5g2bRratWuHS5cu1bgO63bX1Fc/tEyePJldgWoAuVyOGTNmoGXLlpg1axaOHTuGlJQUFBYWoqSkBA8ePMDRo0cxb948+Pv7Y+zYsbh//75Fy1iXfLcUvr6+sLKywnvvvVcr+e/atYuuYwMAGzZs0Juupuq+YcMGrQCAKQEmlr6zvuZYUp26p6amYtWqVTWmv2fPHgQGBmL8+PH4/fffce3aNTx9+hQKhQJZWVlISkrCzz//jAEDBqB169Z0vdaa0P6vwwNMnLrBmjXA0qXAhx8CtfTrJIfD4XA4nLrNW2+9hStXrtBXTEwMfv75ZwQEBAAA7t27hyFDhtBFWzl1k6ysLISGhuLbb7+FXC6Ho6Mj3njjDWzduhVnz55FfHw89u7di48++gh+fn4ghGDbtm3YsWMH66Jzqok6wOPg4AAAuHXrFt24pDZQB7DUejExMUhLS6s1PQ47vvjiC7rodnX48ssvMXLkSNy5cwdA+QYvy5cvx4kTJ5CYmIhjx47hxx9/xKBBgyAWi3Hjxg3MmTOn2rpCgQeYOHWDt98G/PyAhw+Br74ymrR9+/YWKlTd0q4L+izhvgsT7rswEbLv6l16hIqXlxfatWtHX8HBwXjzzTdx5coVhIaGAgAePnyIX3/9tUZ1Wbc7a/2aRKVSYdy4cTSoEBYWhlu3buGXX37BCy+8gOeeew5du3ZFeHg4Fi9ejMuXL2P9+vXw8vKyeFlZtztr/Zrm4cOHdDfPefPmwd3dHYD+UUU1Uff4+Hi6w+0333wDa2trqFQqbNy40eh5LNv9v+a5OVS17h4eHgCABw8e4KeffqqW/oYNG/DJJ5+AEAJPT09ER0fj2LFjeOeddxAaGoqgoCD0798f06ZNw+HDh/Hnn3/Svz3VQUi+8wATp25gY1M+ggko/zc11WBSmUxmoULVLe26oM8S7rsw4b4LEyH7LjJzXUKhIJVKMX/+fPr/Y8eO1Wj+rNudtX5Nsnz5chpk6N+/P/bs2WM0eGRlZYWJEyciMTERHTp0sFQxAbBvd9b6Nc3GjRuhVCphZWWFl19+GS+88AIAYNu2bZDL5Vppa6Lu69evB1C+OcPkyZMxYMAAAJVPk2PZ7v81z82hqnUPCwtDu3btAABLlixBUVFRlfJ5+PAh3nrrLQDlAZ/Y2FiEhIQYPad9+/Y4duwYZs6cWSVNNULynQeYOHWHkSOBvn2BkhJg9myDyRISEixYqLqjXRf0WcJ9Fybcd2EiZN8LCwv1HygpATZsAEaNAoKDy//dsKH8c4EQFBRE31e2Vs/169fx7rvvom3btnB2doatrS38/PzwyiuvICkpSSe9Zrs/fPgQK1euxOjRo9GyZUvY29vDxsYGPj4+GD58OLZu3Wpw0deKpKSk4KOPPkLnzp3h7u4OmUyG5s2bIyQkBN988w1S//lBrbCwEMHBwRCJRLh37x6A8ofnioueG1qE/syZM3j55Zfh6+sLmUwGFxcXdOrUCZ9++imePHlisHyxsbHw8fGBlZUVYmNjoVKpsGbNGoSEhMDb2xtisdistaDKysqw9J8fDGUyGdauXVvp7knqtm/cuLHBkQKlpaVYuXIlQkJC4OnpCalUigYNGiAsLAwbN2406sfkyZO1FuLNycnBvHnz0LZtW7i7u8PFxQV9+vTBJhPWAQWA/Px8fPPNNwgNDUWDBg1gY2ODRo0aoXv37vjoo4/0Xl9qCCGIiorCqFGj0KRJE7i4uMDV1RXdunXDokWLkJOTY3I90tPT8cEHHyAgIAB2dnbw9PREWFgYDh06pPf8itfX9u3btRbHNnZ9mYp6ulq/fv3QoEEDTJgwAUD5+jP79u3TSmuwrzOR0tJSbN26FQAwZswYSKVSqvf333/jwoULOucsWLCAbh5w8+bNSjXCwsIgEong7e0NhUKhN018fDxef/11BAQEwMHBAfb29ggMDMS0adP0aqjrrbkgdUpKCuRyOZYtW4Znn30WHh4eEIlEWkH10tJS7Nu3D++88w66du0KV1dXSCQSuLu7o3v37pg/fz4yMzMrrRMAnD59GhEREfD29oZMJoOfnx+mTp2KW7duAfj3WqnsekhLS8Ps2bMRFBQEV1dXyGQyNG3aFGPHjkVMTIzBupuLSCTCggULAACPHz/Gjz/+WKV8vv32W1qGBQsWoE2bNiadJxaL6bVVVap7vdcrCIdjBrm5uQQAycjIqB2BxERCRCJCAELi4vQm2bx5c+1omwBLbZb6JSUlZP78+aSkpISJPiHcdxZw37nvrGDte3FxMUlOTibFxcUW18/MzNT9cM8eQlxdy/82isXa/7q6ErJ3b7V1lUolSU9PJ0qlstp5mUtMTAwBQACQzz77zGC64uJimq5Dhw4G0y1cuJBYW1vTtBVfIpGIzJs3T+scdbsrFAoiFosNnqt+DRgwgOTn5xut19KlS4lEIjGaT9++fal+3759K9VVp1ejVCrJtGnTjJ7j7OxMjh49qreMJ06coOkOHTpE+vfvr3P+pEmTjNZTk3379tHzJkyYYNI5eq95DVJSUkjr1q2N1rFXr14kKytL7/mTJk0iAEizZs3I33//TXx9fQ3mM23aNKNlOXbsGPHw8KjUJ31kZGSQnj17Gj3P29ub/PHHH5XWIyEhgXh5eRnMZ/r06TrnV+X6MoekpCSaz++//04/9/PzIwBIeHi4VvrKfK+MnTt3Ur1Tp04RQggpLCwkDg4OBAD53//+p3POrVu36Dnz5883mv+TJ09oP6Ivr7KyMvLWW28ZbU+JREJ+/fVXrfPU9V67di1Nl5CQQDp27KhzvmZ/qPbf2Mvd3Z2cOXPGYJ2USiWZNWsWEYlEes93dHQkR44codeKsevht99+I7a2tkbLM2XKFFJWVqZTd1PR7INUKhVtI3d3d5KXl6eTXrNNY2JitI6pVCr63bW3tye5ublmlUUfzZo1o9/Jyqju9U4IqfK9SUZGBgFQI3U2BR5g4phFrQeYCCHk1VfLb5pDQ/UezsnJqT3tSmCpzVK/Ljxwct8tD/ed+84K1r6zDDBp3owTQsqDSyLRvz++VHypj+3ZUy3d+hBgSkxMpOmef/55vWnmzp1L0zz33HPkt99+I3FxceTChQtk06ZNpEePHvT4Dz/8QM9Tt3tZWRkRi8UkNDSULF26lBw+fJgkJiaS2NhYsmbNGq3zJ06caLCsCxcupOlcXFzIJ598Qo4dO0aSkpJIdHQ0+frrr0nPnj1JcHAw1b1z5w65cuUKadSoEQFAhg8fTq5cuaL1unPnjpbOhx9+SHWaN29Ofv75ZxIfH09iYmLI+++/TwNcUqmU/Pnnnzrl1AwwdejQgbbtzp07SWJiIjl48CDZsmWLwXpWZObMmTQ/U8/TueY1yM/PpwEKAGTEiBFk79695MKFC2T79u1aQZMePXoQhUKhk4f6wdzT05O0bNmSODo6kk8//ZTExsaSP/74g6xatYo0btyY5nP48GG9ZYmOjqYBBysrKzJ58mSya9cukpiYSM6ePUtWrVpFIiIiiEQi0Tm3oKCABsmkUil58803yZ49e0h8fDw5ffo0+fzzz4m7uzsBQFxdXUlKSorRevj6+hIbGxvy8ccfk1OnTpHz58+TH374gTRs2JDW45tvvtE6v+L1NWjQIHLp0iWj15c5TJ8+nQAgdnZ2WsFX9XdSIpFoPT8Y890Uhg8fTgAQX19folKp6Ocvv/wybafS0lKd87p3704AkJYtWxrN/8cff6RtqS/oN3HiRHp8yJAhZOPGjSQ+Pp4kJCSQVatWkbZt29LjezV+BFDXWzMY0qFDByISicjEiRPJgQMHSGJiItm1axc5ePAgPe+ll14ifn5+ZMaMGWTr1q0kLi6OJCQkkKioKDJ16lQilUppvR8/fqy3Ths3bqSarq6uZPHixeTcuXPk3LlzZMmSJcTV1ZW4urqSgIAAowGm1atX03zatWtHli9fTs6cOUOSkpLIjh07SFhYGD3+wQcf6NTdVDQDTIQQsnfvXvrZokWLdNIbCzBdvXqVHhs8eLBZ5TCEOQGm6l7vhPAAE+c/ikUCTA8eEPL664Skpek9HB0dXXvalcBSm6V+XXjg5L5bHu47950VrH1nGWDSugEsLi4foWQouKQZZHJ1LU9fRepDgGn8+PE0neYICTXx8fF09NGnn36qNw+lUkkmTJhAf63Pzs4mhPzb7iqVity8edNoeefNm0eA8pFQN27c0DmemJhIyxEQEEDu379vMC/1MU3f1Q8tlY0cunz5MtVp164drYsmhw4domm6deumc1wzwASAzJ0716hmZQwYMIDmpa9t9GHsoUczYKXPU5VKRV566SWaZuXKlTppNEd+uLi4kKtXr+po37x5k8hkMoPBy6KiIhq8sbOz03l41SQ1NVXns3feeYcA5aPJEhIS9NY9JSWFaugb/aVZD4lEQk6ePKmTJj09nQbL7Ozs9AYa1NfXmDFjauz7XlZWRkdUvfjii1rHrl+/Tsv9/fff08+r87CbmZlJg6effPKJ1rEjR45QvT16Au8//PADPa7pRUWee+45AoD4+/vrHIuKiqJ5rFq1Su/5xcXFJDQ0lAbB1AEGdb01gyEAyOrVq43W+datW1qBtIpcvnyZjt7S910pKSmhHrm5uZHr16/rpLl+/Tpxc3OjZdIXYEpNTSV2dna0jzIUOPnkk08IACIWi6mWuZ5XDDARQki3bt1ogKzij1HGAkybNm2ixypeM1XFnABTTQR36kuAia/BxKl7NGwI/Por4OOj9/CjR48sXKC6oV0X9FnCfRcm3HdhUu98Lyw0/Kq4RpKxtMXFKCsr+zftxo1AdnZ5GMkYhJSn27RJf74VF0QtKtKbTlRUpJu2uNj89qhBsrKycObMGYSFhSEyMhIA0KNHD4wbN04n7ZIlS6BSqdC5c2csXLhQb35isRjLly+HjY0N8vPzERUVBQC03UUiEVq0aGG0TPPmzYOHhwcIIdi7d6/O8aVLl0KlUkEkEmHLli1o3LixwbzUx7R8N5GffvqJrj20atUquLi46KQZPHgwXn31VQDla8UYW2MsICAAn332mdnl0ERzDRhvb2+TzjFUd7lcjt9++w0A0KZNG631aNSIRCKsXLmS7lZW2dosCxcuRNu2bXW0W7RogREjRgAoX5+mIr///jsePnwIAPj888+Nrk3TpEkTrf9nZmbSeixcuBBdunTR0QeAZs2aYe7cuQCArVu3Gl3I+M0330SfPn10Pm/UqBG++eYbAEBRURFdBLu2OXz4MDIyMgBAZ62agIAAdO3aFYD24ttVuebVREZG0vMr6vXr1w8NGzbU0VMzduxYui6YoXW3UlJS6C6IL730ks7xL7/8EgAwcuRIvPbaa3rzkMlk9HpMSUlBbGwsAP31Dg0Npd9TQ/j7+xtdKLp9+/a0LLt379Y5vmvXLurRvHnzEBAQoJPGlD7g+++/R1FRERo1aoSff/7Z4BprCxYsgI+PD1QqFfWhOp5r5guUr+v17bffmnxeVfqmmqQm6l5f4AEmTt0nLU3rv46OjowKwla7LuizhPsuTLjvwqTe+e7gYPg1apR2Wi8vw2mHDIGVldW/aadNM68cr72mP99/Hu4oXbvqpBE7OaFhy5YQ/bNTD0XPQ2xtol6EV/3y8PBA7969cejQIVhbW2PChAk4fPgwJBKJ1nllZWV0cePRo0cbfRBzcXFB+/btAQBxcXEAoN3uGqhUKjx48ADXr1/H1atXcfXqVfz99980MHTp0iWd9IcPHwYA9O3bF506dTKp3ob0jaHeqa1NmzZ49tlnDaZ7/fXXdc7Rx9ixY6tUDk3y8/Ppe3t7e5POMaSZmJhIF72ePHmywXROTk50t7Lk5GQaCKqISCTCiy++aFC7c+fOAMofXCsutn3gwAEA5TtPvfHGG8YrVIEjR46g5J9As7qc+vQB0KBRWVkZEhMTDeb5yiuvGDw2cuRIGmw05ndNog4geHl50Z3cNFEHgRITE/H3338DqNo1X1EvKCgIrVu31jpmZWVFA9D79+/X8dLLy4sGCA0t2L9582b6vuI1k56eTr2p6GdFWrduDQ8PDwDG+xp9QazKyM7Oxu3bt/HXX3/Rvknte3Jysk5A48SJEwAqX7B6woQJRvvPPXv2AADCw8ON7rpqbW2NHj16AKi8nzWHwYMHo2fPngCAZcuW4enTpyadV5W+qSapibrXF3iAiVN3yc8HIiKAVq2A9HT68eDBg5kViaV2XdBnCfddmHDfhYmQfXd2dv73PybuVCYUAgICMGvWLDg5OekcS05OpiM+Zs+erbP7WsWXeocp9Yg1zXYnhGDjxo0ICQmBg4MDfHx8EBgYiPbt29PXn3/+CQA6uzbdvXuXPtDqG2FiCC3fTUAul9Mdqrp37240badOnWhA7urVqwbTdejQwawy6EMzQGvqrkmG6q5Z1srqqHncUB09PDzoSCd92m5ubvS95sMoAFy8eBEA0KVLF9jZ2RktS0U0dzNr2LCh1nXo6uqq9f92GgFeQ6MppVKpUa8kEgkNbBrzu6bIycmhI/nGjRund0SL5ufq4JC517yaa9eu0ZF4hgIl6s/lcjndaU6TSZMmASjfMTI6OlrnuHpkU5cuXdCqVSutY5p+jh8/vtK+Rt1H6Otr1Jj63bty5QpeffVVNGzYEG5ubmjRogXatWtH+yX1KD+VSoXs7Gytc9XXQtOmTeHq6mpQw83NDX5+fnqP5ebm0p3mfvnll0rrrh4haqzuVUE9QjUvL4/uWlkZVembapKaqnt9gAeYOHUXBwfg8ePy4fpz5tCPt2/fzqxILLXrgj5LuO/ChPsuTOqd7wUFhl87dminzcgwnPbQIe1fY8PCALGJt2piMfD88/rzrTgtKiFBJ40qLw8Pb94EqfhAeuqU+e1RDd566y1cuXIFV65cwcWLF3HgwAG8+eabkEgkSE5ORnBwMK5fv65znnrqh7mog1Lqdi8pKcHQoUPx8ssvIzY2FsWVTBGseFwz4KSepmMKpv4Kr0bz4bGy6R7qrcwr0zH20Gkq6tEaQPl24qZgqEyan1dWxwYNGlSan77AkGZascZ3TalUaqVT+2qOp2qqe21WxM3NzeC0JDXq9jL3uqoKW7duhVwuB2A44KM5smnjxo1QqVRVLpt62p+VlRXGjx+vN01QUBDdgl7fNLk+ffrQUSwVp8n9+eefSE5OBqB/ZFFN9TWamPLdW716NYKCgrB27VqTpnJX7JvUfUbFIKs+PD099X5eG3WvCqGhoXQU2vLly/HkyZNKz6lK31STWOK7WFcw3jtxOCwRiYBly4Bu3YD164F33gE05q1zOBwOh1MnMGe4fWVpNR8qR48G9KzxoxeVChgzxrSy6BuBoVKB2NnpHrO1NU2/hvDy8tIaxdGxY0eEhYUhPDwczz//PJ4+fYoXX3wR8fHxWlMONAMCS5cuNXkkWsWpEp9//jmdate3b19MmzYNQUFBaNCgAWxtbWkQok+fPjh9+jSIkfWxjE0zqUlM0TFWTjU1MYXjmWeewbFjxwAASUlJaNmyZbXzBCqvoyn1s0Q59KG+NqVSqc60t5ycHL1rZwEwuHZXTfldU2gGcLp161Zp+rS0NMTExKBjx45ma6lUKhoQUiqVJgX8zp07h1u3bmmtrWZvb4/hw4dj8+bN2LlzJ3766Sc63Us9PU4sFmPs2LE6+Wn2NZs2bTJ59JGxIFJl371r165h6tSpUCgU8PLywocffojQ0FD4+vrC0dGRjlBcs2YNpkyZAqB2rgHNur/33ntUqzKkUmmNl2XRokXo3bs3CgsLsWTJEnz99ddG0z/zzDP0fVJSUo2Xh/MvPMDEqdt07Qq8/DKwYQPw3nvA6dP0FwkWsNSuC/os4b4LE+67MBGy77aaAZ0xY4Dp04GcHOMLfYtEgItLeUDqP8rQoUMxdepUrFy5EklJSVi3bp3Ww43mr/JlZWVaQSpTsLW1BSGELsbcq1cvREdHa41q0aTi9BM1mr+SP3jwwCx9c9B8WK1sNINCoaC/nmtOA6sN+vbtSx/0Dhw4oPcBvSKG6q5Z1kePHuldlFiN5ogEc+poart7eHggLS3NLE/VqK/N0tJSuLu7awVFioqKzJ5yl5WVBaVSaTQooR5pUtt+37p1iy6GbQ6///47XZ/HHKKjo3H//n2zz9uwYQNdHBoo933ChAnYvHkz8vLysH//fowePRqEELqZgOZi4Zpo9jUVpzWagrnfdQBYt24dFAoFrKysEBsbq7PulBpD/RLwb5+RlZVVqZ6hEUGadS8qKrJI3Q3Rq1cvDBgwAMeOHcPKlSsxc+ZMo+nbtGkDDw8PZGZm4vTp08jLy9M73bq2qMm613X4FDlO3eeLL8p/QT17FoiKYjqHlfX8Wdb6LOG+CxPuuzARsu9aD40yWfkIXqA8iKQP9efr15en/w/z2Wef0RFHCxYsQGlpKT3Wtm1b+iv50aNHzc7bysoKT58+pcGaF154wWBwqaCgQO80PQBo3rw5fZA7Zcb0Qk3fTRmhYmNjQ0cHnT9/3mjaixcv0gV/zX0gNJeBAweiUaNGAMqnm6ZrrKFpCEOBEs2yVlbH+Ph4vedVVbsiQUFBAMrX3zG2u5s+NBd6r3htVmXUWGlpqc7i8pooFAq6Rpi+tqjJkXWao5d++uknREZGGn2pRxbu3LmTLnxeFT0bGxts2rSpUj31wu0bNmzQGtFjZWWFAQMG0Klg6lFLp06dQto/mwsZWnjbmJ+mUBXP//rrLwDlo3AMBZcA7fWhKqLePTE1NdXodK2nT5/izp07eo95enrC559dvo8fP272KKmaXuh60aJFAMqnA6p39jOESCTCyy+/DKB8DSb1jwmWQkiLfPMRTByTWLFiBVasWEGHRu7evRsODg6IiIjAiRMnkJubCy8vL3Tr1g379+8HUP7HWKVS0T9yw4cPx5kzZ5CVlQU3Nzf06dOHbqPZoUMHSCQSOnR46NChuHDhAh4/fgwnJycMnjkTVosWoWDaNByfNw+hYWH0ZmPQoEG4evUq0tPTYW9vj2HDhtEF/Vq1agUPDw+cPXsWANC/f3/cuHEDqampsLGxQUREBN1Bwt/fHz4+PvSGMDg4GKmpqbhz5w6sra0xZswY7Ny5Ew0bNkSzZs3g7+9PFwbs1asXMjIycOPGDQDli/7t2bMHRUVFaNy4Mdq0aUP/CPXo0QO5ubl0fveYMWNw+PBh5Ofno0GDBggKCsLBgwcBAF27dkVJSQmuXLkCoHxo6rVr15CdnQ0PDw/06NED+/btA/DvHzz1QpTh4eGIi4tDZmYmXF1dERwcjF27dgEo38pUJpPRRRLDwsKQlJSER48ewdHREYMHD6brkLRp04ZG3aOiojB48GAkJycjLS0NdnZ2GD58OP21JyAgAF5eXjhz5gyA8jnSt2/fxr179yCVSjFq1Chs374dCoUCfn5+aNq0Kd22tU+fPkhPT8ft27fpsOSdO3dCLpejadOmuHnzJmxsbAAAPXv2RGZmJr3BHzt2LPbv34/CwkL4+PigXbt2OHLkCIDyhT8LCgroH+fRo0fj6NGjyMvLg7e3N7p06UJ3h+ncuTPKyspw+fJlAMCIESNw6tQpXLlyBR06dECvXr3o7hkdO3aEWCymw2yHDRuG+Ph4ZGRkwNnZGf369cPOnTsBlN/g2dnZ0RvgIUOG4NKlS3jw4AEcHBwQFhaGbdu2AQACAwPh5uZGfxEcMGAADhw4ADc3N9ja2mLEiBHYsmULCCFo2bIlGjRoQLdUDgkJQUpKCu7evQuJRILRo0cjKioKZWVlaN68OXx9fRETEwMA6N27Nx49eoSbN29CJBJh3Lhx2L17N4qLi9GkSRMEBgbSNkxNTUVBQQGuXbsGoPzB6+DBgygoKECjRo3wzDPP0Ckl3bp1Q1FREV1Msrp9RFRUFHx8fCrtIwYOHEgXk2zbti0cHByq3Uc8fPgQH3zwgVl9xI4dO1BaWlojfcSxY8fg4+NjVh8xcuRIxMbGVquPUO+oc+fOHepNZX2Es7Mz3SVm4MCB1e4j7t27h969e5vVRwQEBNAdk6rTR6hUKri7u8PDwwMFBQWQSCR00WZ7e3sQQugDpqurK/Lz86FQKGBtbQ0HBwea1s7ODiKRiC4m6uLigsLCQpSVlcHa2hqOjo7012b11Cv1cQ8PDxQXF6O0tBRWvXvDedcukEmTIM7NBRGLIVKp/v3X2RnFv/yC4ueegzg7G66urnj69CkIIZDJZJBIJHTBYicnJ8jlcsjlcohEIri5udG06uCMukyOjo4oKytDSUkJTZudnQ2VSgWpVAqZTIa8vDwAgIODA5RKJV3zw83NDbm5uVAqlZBKpbC1tUVubi5tQ5VKRdO6urqioKAAalQqFf2FvWJ7u7u7Y/LkyVixYgXu37+PtWvXYvQ/o7bs7OwQEhKCI0eOIDY2FnFxcWjbti3KyspgZWUFJycnrfa2srKius7OzsjNzdX6ZT8zMxNZWVmQyWSwtramaZ2cnLBy5UqtHZoqtne/fv0QFRWFkydP4uzZswgMDNRpQxsbG9jY2NA2JIRAoVCgpKSETnfJz89HVlaWThuq27tXr164efMmkpOTcezYMQQFBUEikcDOzk6rvX/++Wda1tDQUOTm5kKhUEAikWg9IMrlchQXF9P2NnbNVry+nZ2dUVRUhLKyMkybNg1z5sxBSUkJJk6ciN27d0MqlWq1N72+raygVCpRUFCABw8eIDU1FQMGDEB+fj58fX3h4uKCnJwcrFmzBq+88go8PDxoe9vY2EAqleLBgwe0Tw8MDIRUKsXTp09pe6vXBwL+Hb3h4OAAhUKB/Px8SCQSuLm5aQWOFAqFVtpBgwZh7969KCoqwi+//IJXXnkFSqUSEokE9vb2RvuInj17QiKRoKysDN999x0GDx4Ma2tr2NnZoaCggAYyK+sjNKcnrV27Fi1btqRt6OzsTIMGhw4douf16NGDfo9LS0shFovpVLDS0lIUFRVBKpWa1EdUvGYdHBywYcMGAOW7pU2dOrXSPkK9y2JBQQE2b96M8ePHm9RH5OfnIzc3l95X9e3bF4MGDdJpbxcXFxQUFNA++cmTJ0hMTMTdu3dx4sQJ9OrVi7axp6cnRo4ciV9//RUHDx7E06dPsXr1agCATCZDWFgYvQY0r1kPDw+0adMGycnJ2LJlCz766CM0b95cq49Qt6FYLNbpk4uLi1FQUKDV72VnZ8PJyclgH6Fui4KCAlomd3d35OTk0H42NzeX3qMC5UEXdVo3Nzc8++yzWL16NVQqFTZs2ICJEyfqvWY3btxI+wWlUgmlUqn1dy0sLAyrVq3CnTt3sG3bNgwZMsTkPiInJwfW1tY616y+PrniGlLqumj+XWvRogXCwsJw8OBB/PLLL5gxYwZNn5ubi4KCAq3r+5VXXsEvv/yCoqIizJs3D2FhYfD29tbbJ6v7iJKSEnrdhoeHa/1dU98vqdtP85rNy8vT6iOys7Pp+6reR8hkMpSUlGD//v2ws7Mz+VnD4hAOxwxyc3MJAJKRkWFZ4cJCQho3JqRJE7L/q68sq63B5s2bmWmz1C8pKSHz588nJSUlTPQJYdv23Hfuu5D0ue+bSXFxMUlOTibFxcUW18/MzNR/oLiYkA0bCImIICQ4uPzfDRvKP68BlEolSU9PJ0qlskbyM4eYmBgCgAAgn332mdG0Dx8+JDKZjAAgfn5+RKFQ0GNnzpwhIpGIACDNmzcnt27dMpiPQqEgmzZtIvfv3yeElLe7UqkkLi4uBADp2LEjkcvlOufFx8cTBwcHWt6+ffvqpLl48SIRi8UEAAkICKAa+tDUVxMSEkIAkK5duxpti8uXL1Od9u3bk5ycHJ00R44cIVZWVgQA6datm87xEydO0LrExMQY1TMVpVJJ6wCAhIeHG71vfPLkCdm4cSPx8vIi3333ndaxmTNn0nzmzp2rc65KpSITJ06kaVauXKmTZtKkSQQAadasmc4xzXZfu3Ytzefu3bta6YqLi4mPjw8BQOzs7EhsbKzB+ujz+4033qB5v/rqq6SsrExHX83jx4/JqlWrDNYDAJFIJOT06dM6aR4+fEiaNm1Ky/n48WOdNGpvOnbsWK3v+8mTJ2l55s+fb9I5crmcODk5GfzuGGP9+vVUb926dSadk56eTvuE1157jX6ubve4uDia54oVK4irqysBQF544QWj+W7evJme17lzZ6PXd0lJCVmxYgX9e6LWNna9VeR///sfAUDEYjGJi4vTOV5YWKj1nTN0DXt5eREAxM3Njdy4cUMnnxs3bhA3Nzej/dudO3eIjY0NzSchIcFo2Q8cOEAuXbqkVXdTUZdj0qRJBtMkJibSdB4eHkb7s8zMTLJmzRqaxsvLy+h3mRBC/vrrL9K/f3/yzDPP6Bxr1qyZwb5Fn3Z1qeq9SUZGBgFAcnNzq10GU+ABJo5ZMAswEULIpUuEFBXVyBe0qrDUZqlfFx44ue+Wh/vOfWcFa99ZBpjUD56Wpr4EmAghZNq0aTT977//rnXss88+o8ccHBzI9OnTyYEDB0hSUhKJi4sjkZGR5N133yWNGjUiAMiVK1cIIf+2u2be3bp1I5GRkSQhIYEcP36cfPDBB0QmkxEPDw8SEBBg9CF50aJFNB8XFxcyZ84ccvz4cXLx4kUSExNDvvvuO9K7d28SHByspU8IIXPmzKHnfvnll+TPP/8kN2/eJDdv3iRpaWlaOh9++CFN6+fnR3755RcSHx9PYmNjyYwZM4hEIiEAiFQqJRcvXtQpZ20EmAgpDxp1796d5u3o6EimTp1Ktm3bRs6dO0cSEhLIvn37yJw5c0hgYCBNVzHAlJeXR/z8/OjxkSNHkn379pHExEQSFRVFgoOD6bEePXpoBRzVGAswabZ7ZQ/80dHRxNramgAgVlZWZPLkyWTPnj0kMTGRnDt3jqxdu5aMGTOGSKVSnXPz8/NJu3btaP5t2rQhy5YtIzExMfSa+PHHH8mIESOIVColnTt3NlgPT09P0qxZMyKTycjs2bPJ6dOnSXx8PPnxxx/pdQ2AfPPNN3q90by+vvjiC6PXlzFeffVVmo/6e2QKL774Ig2WmKMXGhpKg2tPnz41+bznnnuOACDOzs60T9f0vUWLFvR7qq7Pnj17Ks1XM+Dn4eFB5syZQ44ePUouXrxIzpw5Q9avX09ee+01GrDJz8/X0jYnwBQfH0/Turq6ki+//JKcPHmSnD9/nqxcuZK0bNmSACA9e/Y0mufGjRu18lmyZAmJi4sjcXFxZMmSJcTNzY24uLjQ/NT9U0U0yy6VSsmUKVPIrl27SGJiIjl//jzZsWMH+eijj4i/vz8BQPbt26fT7qZgSoCJEEJGjBihFVwz1J+p9RcuXKiVduDAgWTFihUkOjqaJCUlkePHj5OVK1eSoUOH0gB9dQNMNfG3nQeYOP9JmAaY/uHUqVOC1GapXxceOLnvlof7zn1nBWvfWQaY8vLyLK5JSP0KMKWmphKpVEoAkMDAQJ0yf/fdd/QXdmMvqVRKbt68SQj5t91zcnJIx44dDZ7j5uZGTp48Sfr27VvpKIwvvviCBiQMvdTna/qelpamNYpAX3o1SqWSvP3220Y1nJ2dyZEjR/SWsbYCTISUPwxNnz6demXsJRKJyIQJE0h6erpOPnfv3tUKQul79ezZk2RlZekth7EAk2a7m/LAf/jwYTrKxdhLH1lZWWTw4MGVnguAhISEGK1HQkKC1miNiq93331XbxkIMe/6MkRRUREdidSqVSuTzlGzc+dOqrd48WKTzrl//z4drTdo0CCz9L799luqt2XLFkKItu/z5s3T+Y7rG71YEYVCQWbNmkUDEMZe9vb2pKioSEvbnAATIYQsWLDAqMaMGTMqzVOpVJJZs2bRUV0VX3Z2duTAgQOkd+/eBAAZPHiwwfJs2bKFXgPGXmKxmERHR+u0uymo86gswHTp0iWdOunrzzT1d+zYQXx9fU36PrZt21ZvH2pOgKkm/rbXlwATX+SbU+9IT00FfvsN+GdtEEuiXviPFaz1WcKy7qzbnbU+S7jvwkTIvmsuXM3RT5MmTTBp0iQA5dt379ixQ+v4e++9h9u3b2Pu3Ll49tln4eHhAWtra9jb2yMgIACjRo3Czz//jPT0dLp1ubrdnZ2dcfbsWSxatIiuV+jg4IDWrVtj5syZuHTpEvr06WNSOWfPno3k5GS89957aNeuHZycnCCTyeDn54d+/fph2bJl2LJli5Y+APj4+CA+Ph5TpkxBixYt6Jo5+hCLxVixYgVOnTqFl156CU2bNoWNjQ2cnJzQsWNHfPLJJ7h58yYGDhxoegPXEDKZDMuWLcPNmzexePFi9O/fH02bNoWtrS1kMhkaNWqEgQMHYs6cObh79y42bNhAFwjXxNfXF5cuXcKPP/6Ivn37wt3dHRKJBN7e3hg8eDA2bNiAU6dOVWnHNHO/b4MGDcKdO3fwxRdf4LnnnqNl8fHxQffu3fHJJ5/QNfEq4ubmhkOHDuHEiRN45ZVX0LJlS9jb28Pa2hpubm7o2rUrpk2bhoMHD+LYsWNGy9GlSxckJSXh3Xffhb+/P2QyGdzd3TF48GAcPHgQ33//vcFzfXx88Mcff2D8+PGVXl+G2L17N12rZtSoUWadO3jwYLpYv3oNp8rYsGEDXe/GXD3N9OpFwjV9r7iY9+jRo+madMawsrLCkiVLkJycjBkzZqBTp05wdXWFlZUVHB0d0bZtW7z00ktYv349Hj58SNczrWofP2/ePBw4cAADBw6Eq6srpFIpGjdujIiICBw9epTu3lgZ06dPR0xMDEaMGAEvLy/Y2NigWbNmePXVV3HhwgWEhYVRb41tejF27FikpKRg8eLFCA4OhpeXF10Dzs/PD+Hh4fj222+RkpKCkJCQatW9Mjp06IAxY8ZUmk5TPyIiAtevX8emTZswYcIEtGrVCq6urvT7GBQUhLfffhsnTpzAlStXqt2HCupvu0XCWJz/DHVhBNONiAhCAEL69iVEpbKo9u7duy2qV1f068KIBpZtz33nvgtJn/u+m+kIpuzsbItrEsJ2BJMaVnVnrc1Sn/vOTttcfWMjscyF+y5MbVN8Ly0tJba2tgQA+fTTT2tUvz593+qiNh/BxOHUEi2//bZ8K+aTJ4F/dqGzFMOHD7eoXl3TZwnLurNud9b6LOG+CxMh++7i4sJUnyUs68663Vnrs4T7LkyE6ntd91y9ozAAPPvsszWaN+u6c98tAw8wceodkefOAeptKD/8ENDYfrbWtf/ZapsVrPVZwrLurNudtT5LuO/CRMi+q7diFiIs68663Vnrs4T7LkyE6jtrz+/evWvwWEpKCj744AMAgLe3NwYNGlSj2qzrLmTfLYk16wJwOFXi44+B1auB27eB5cuBmTNZl4jD4XA4HA6Hw+Fw6ix9+/bFkCFDEB4ejrZt28Le3h4ZGRmIiYnBzz//jJycHADA119/DWtrHirgmA+/ajj1joCAAMDBAfjyS+CVV4BFi4BJkwBPT8toM4S1PktY1p11u7PWZwn3XZgI2feqLLj7X4Fl3Vm3O2t9lnDfhYlQfWftuVKpxP79+7F//369x8ViMf7v//4PEyZMqHFt1nUXsu+WhE+R49Q7vLy8yt9MnAgEBQF5ecC8eZbVZgRrfZawrDvrdmetzxLuuzARsu8SiYSpPktY1p11u7PWZwn3XZgI1XfWnq9btw5vvfUWOnbsiIYNG0IqlcLR0RGBgYGYOnUqLl26hNmzZ9eKNuu6C9l3S8IDTJx6x5kzZ8rfiMXAd98Bzz1XPpLJktqMYK3PEpZ1Z93urPVZwn0XJkL2PT8/n6k+S1jWnXW7s9ZnCffdNNatWwdCCFJSUmqvQBZEqL6zvuYGDBiAH3/8ERcvXsSDBw8gl8uRl5eHv//+Gz/99BPatWtXa9qs6y5k3y0JnyLHqd/06QOcOQOIRKxLwuFwOBwOh8PhcDgcjmDhI5g49Y7Q0FDtDzSDSwqFZbUtDGt9lrCsO+t2Z63PEu67MBGy705OTkz1WcKy7qzbnbU+S7jvwkSovnPPhanPuu6WhAeYOPWO27dv635YUFC+s1znzkBZmWW1LQhrfZawrDvrdmetzxLuuzARsu9yuZypPktY1p11u7PWZwn3XZgI1XfuuTD1WdfdkvAAE6fece/ePd0PVSpgzRrg8mVg5UrLalsQ1vosYVl31u3OWp8l3HdhImTfhXQTWhEh3/yz1mcJ912YCNV37rkw9VnX3ZLwABOn3iGVSnU/dHIC/u//yt8vWABkZVlO24Kw1mcJy7qzbnfW+izhvguTuuI7IcTi+mKxcG/NWNaddbuz1mcJ912YCNV37rkw9WtCm8U9SVUQ7hXOqbeMGjVK/4EpU4AOHYDs7PIgkyW1LQRrfZawrDvrdmetzxLuuzBh7bv6RlClUllc39XV1eKadQWWdWfd7qz1WcJ9FyZC9Z17Lkz9mtBWKpUA2AfqKqNul47D0cP27dv1H7CyAr79tvz9ypXA339bTttCsNZnCcu6s2531vos4b4LE9a+SyQSWFlZobCw0OL6T58+tbhmXYFl3Vm3O2t9lnDfhYlQfeeeC1O/JrSLiopgZWUFiURSAyWqPaxZF4BTP1ixYgVWrFhBI6e7d++Gg4MDIiIicOLECeTm5sLLywvdunXD/v37AQBBQUFQqVT4888/AQDDhw/HmTNnkJWVBTc3N/Tp0we7d+8GAHTo0AESiQSJiYkAgKFDh+LChQt4/PgxnJycMHDgQERFRQEA8vLycOfOHZw/fx4AMGjQIFy9ehXp6emwt7dHeHg4RPv2If3FF/F49Wp4eHjg7NmzAID+/fvjxo0bSE1NhY2NDSIiIrB161aoVCr4+/vDx8cHp06dAgAEBwcjNTUVd+7cgbW1NcaMGYP79+8jMjISzZo1g7+/P6KjowEAvXr1QkZGBm7cuAEAGD9+PPbs2YOioiI0btwYbdq0wdGjRwEAPXr0QG5uLpKTkwEAY8aMweHDh5Gfn48GDRogKCgIBw8eBAB07doVJSUluHLlCoDyyPXhw4eRnZ0NDw8P9OjRA/v27QMAdOrUCQBw8eJFAEB4eDji4uKQmZkJV1dXBAcHY9euXQCA9u3bQyaTISEhAQAQFhaGpKQkPHr0CI6Ojhg8eDB9wGvTpg1sbW0BAFFRURg8eDCSk5ORlpYGOzs7DB8+HJGRkQCAgIAAeHl54cyZMwDKd2O6ffs27t27B6lUilGjRmH79u1QKBTw8/ND06ZNERsbCwDo06cP0tPTcfv2bYjFYowdOxY7d+6EXC5H06ZNUVhYSHV69uyJzMxMXL9+HQAwduxY7N+/H4WFhfDx8UG7du1w5MgRAED37t1RUFCAv/76CwAwevRoHD16FHl5efD29kaXLl1w4MABAEDnzp1RVlaGy5cvAwBGjBiBU6dO4d69ezh69Ch69eqFPXv2AAA6duwIsViMpKQkAMCwYcMQHx+PjIwMODs7o1+/fti5cycAoF27drCzs0N8fDwAYMiQIbh06RIePHgABwcHhIWFYdu2bQCAwMBAuLm54dy5cwCAAQMGICMjA5GRkbC1tcWIESOwZcsWEELQsmVLNGjQAKdPnwYAhISEICUlBXfv3oVEIsHo0aMRFRWFsrIyNG/eHL6+voiJiQEA9O7dG48ePcLNmzchEokwbtw47N69G8XFxWjSpAkCAwNpG6ampqKgoADXrl0DALzwwgs4ePAgCgoK0KhRIzzzzDM4dOgQAKBbt24oKirC1atXAaDafcS9e/cQGRlpVh/Rtm1bODg4GOwjhg0bhq1btwIAWrVqZbCPePjwIQCY1Ufs2LEDpaWlNdJHqOtuTh8xcuRIxMbGVquPUI/auXPnDvWmsj7C2dkZcXFxAICBAwdWu4+4d+8ezp8/b1YfERAQgOPHjwOoXh+hUqlw8OBBWFtbo0mTJnBzc0Nubi4AwN7eHoQQFBUVASj/RTI/Px8KhQLW1tZwcHBATk4OAMDOzg4ikYgGqVxcXFBYWIiysjJYW1vD0dER2dnZAABbW1uIxWJ6XKFQoLi4GKWlpbCysoKzszO9ObW1tYWVlRUKCgoAlO9MU1JSgtLSUojFYri6uuLp06cghEAmk0EikSA/P5+mlcvlkMvlEIlEcHNzo2nVUwPVZXJ0dERZWRlKSkpo2uzsbKhUKkilUshkMuTl5QEAHBwcoFQqUVxcDAC0zZRKJaRSKWxtbbXaUKVS0bSabahQKKBUKmkbVmxvFxcXFBQU0PbWbENj7W1lZQUnJyet9tZsQ2dnZygUCmRlZem0t0wmg7W1tVZ7q9uwsvZ2dHREaWmpVnur29DGxgY2Nja0DQkhKCwsRElJCQDA3d0dOTk5etvQWHtLJBLY2dmZdM2q06p9V7/XbG9D12zF9nZ2dkZRURFtb2PXrLOzs9b1TQhB1j9LGxi7Ziu2t42NDaRSqVZ7G7pmK7a3g4MDFAoFSktL6d8cQ9dsxfZ2dXVFXl4ebW97e3uD12xlfYRSqaR1N7WP0NeG5vYR6nyLioq02tBYH1GxDavbR5SVlSErK8usPqKy9ja1jygrK4NSqTSrjzDU3ub2ESqVinpuTh+h2d5A1fsIoPx5Ql3XyvoIzfaubh+h9tzcPsLFxaVG+gjNftbUPkLd3tXtI9R9TVXvIwghyM3NRUZGBhITE8161rA0IlJfJvNx6gR5eXlwdnZGRkYGPD09mZTh/Pnz6N69u+EEN24AbdsCEgnw119A8+aW065lWOnL5XIsXrwYH3/8MWxsbCyuD7Bte+47911I+tz3cu2ioiLcu3cPTk5OaNSoEUQikUX0CwoK4ODgYBEtTVQqFR49eoQGDRowG37Pqu6stVnqc9+579x34Wiz9l2o37fqahNC8ODBA+Tl5aFZs2Y00GcqT548gZeXF3Jzc+Hk5FSlMpgDH8HEqXc0bdrUeIKAAOD334HevYHGjS2rXcuw1mcJy7qzbnfW+izhvguTuuC7nZ0dGjdujLS0NBQXF8PJyQl2dnawsrKq1WCTSqWiv5haEpVKRX+tZfXAyarurLVZ6nPfue/cd2Fps/RdqN+3qmgTQqBUKlFUVIS8vDyUlZWhcePGZgeXWMADTJx6R2xsLMaPH288UWXHa1O7FmGtzxKWdWfd7qz1WcJ9576z1HZ0dESzZs2Qm5uLnJwcOkS/NiksLIS9vX2t61REPfy+oKDAYqO1KsKq7qy1Wepz37nv3HfhaLP2Xajft+poW1lZwdHREc7OzvUiuATwABNHCJw6Vb67nIsL65JwOBwOp55hZ2cHOzs7NGjQAGVlZbW+s9z+/fsxbNiwWtXQR2lpKQ4ePIg33niDrsdkaVjVnbU2S33uO/ed+y4cbda+C/X7VlVtsVgMiUTCLAhcVXiAiVPv6NOnj+mJP/oI+OorYMYM4OuvLatdC7DWZwnLurNud9b6LOG+C5O66LtIJLLIDXmPHj0gk8lqXaci6oVE1QudsoBV3Vlrs9TnvnPfue/C0Wbtu1C/b6y1LQ2bSbccTjVIT083PXFoaPm/P/wA3LxpWe1agLU+S1jWnXW7s9ZnCfddmHDfhQn3XZhw34WJUH3nngtTn3XdLQkPMHHqHbdv3zY98aBBwJAhQFkZ8OGHltWuBVjrs4Rl3Vm3O2t9lnDfhQn3XZhw34UJ912YCNV37rkw9VnX3ZLwABOn3mH2rgfffANYWQF79gDR0ZbVrmFY67OEZd1ZtztrfZZw34UJ912YcN+FCfddmAjVd+65MPVZ192S1OuaZmRkYP/+/Zg3bx6GDBkCDw8PiEQiiEQiTJ482ez8Dh8+jIiICDRu3Bg2NjZo3LgxIiIicPjwYZPzKCoqwtKlS9GtWze4ubnBwcEBrVu3xsyZM5GammpyPn/99RemTp2KFi1awNbWFp6enujTpw9++eUXKBQKk/PZsmULBg0ahIYNG0Imk8HX1xcvv/wy/vjjD5PzqGuMHTvWvBNatwbeeqv8/fvvA0ql5bRrGNb6LGFZd9btzlqfJdx3YcJ9Fybcd2HCfRcmQvWdey5MfdZ1tyT1OsDk7e2N8PBwLFq0CIcPH67y9sGEELz55psYMmQIdu3ahfT0dJSWliI9PR27du3CkCFD8Oabb4IQYjSf27dvIygoCLNmzUJCQgKys7NRWFiIa9eu4ZtvvkGHDh1w8ODBSsuzevVqdO7cGb/88gtu376NkpISZGZm4vTp05g6dSp69+5daV1LSkoQHh6O8ePH4+jRo3j06BHkcjnu3buHjRs3omfPnli0aJFZ7VRX2Llzp/knzZ9fvovc5cvAmjWW1a5BWOuzhGXdWbc7a32WcN+FCfddmHDfhQn3XZgI1XfuuTD1WdfdktTrAJMmTZo0wcCBA6t07qeffopff/0VANCpUydERkYiPj4ekZGR6NSpEwDg119/xdy5cw3mUVBQgGHDhuH69esAgNdffx0nTpzAuXPn8Pnnn8PBwQG5ubkYM2YMLl++bDCfI0eO4I033oBcLoe3tzd++OEHnD9/HocOHUJERAQA4I8//kBERITRrZKnTJmC/fv3AwBCQkKwe/duxMfHY/Xq1fD394dKpcK8efPw22+/mddYdQC5XG7+Se7uwGefAY0bAx4eltWuQVjrs4Rl3Vm3O2t9lnDfhQn3XZhw34UJ912YCNV37rkw9VnX3ZJYsy5AdZg3bx66du2Krl27wtvbGykpKWjevLlZedy6dQtfffUVAKBLly44deoUbG1tAQBdu3bF888/j759++LChQtYsmQJXnnlFfj7++vk8/XXX+PatWsAgK+++gofaiwo3aNHD4SEhKBPnz4oKirCe++9h2g9awEpFAq88847UKlUcHJywtmzZ7W0Bg8ejGnTpmHlypU4deoUNm7ciIkTJ+rkc/LkSWzevBkAEB4ejl27dsHKykqrTp07d0ZqaipmzZqF0aNHw8XFxax2Y0nTpk2rduK0acAbbwB2dpbXriFY67OEZd1ZtztrfZZw34UJ912YcN+FCfddmAjVd+65MPVZ192S1OsRTAsWLMCwYcPg7e1d5Ty+++47uqbR8uXLaXBJjZ2dHZYvXw6gPAC0bNkynTzKysrw/fffAwBat26NGTNm6KTp0aMHpkyZAgCIiYlBYmKiTppdu3bh1q1bAIDZs2frDWQtXboUrq6u9L0+1AEzKysrrFy5kgaX1Hh4eGDJkiUAgOzsbKxevVpvPnWVgICAqp0okVQruFQt7RqCtT5LWNaddbuz1mcJ912YcN+FCfddmHDfhYlQfeeeC1Ofdd0tSb0OMFUXQgj27NkDAAgMDMSzzz6rN92zzz6LVq1aAQB2796tsxZTbGwscnJyAACTJk0yuEq85sLj+uZh7t69W29aTezs7PDCCy8AAK5evYqbN29qHS8oKMCJEycAAAMGDEDjxo315hMREQEnJyeDZanLHD9+vHoZKJXl6zBNm2Z57WrCWp8lLOvOut1Z67OE+y5MuO/ChPsuTLjvwkSovnPPhanPuu6WRNABprt37yI9PR0A0LdvX6Np1cfT0tKQkpKidez06dM66fTRpUsX2NvbAwDOnDmjc1ydT6tWrdCgQYNKy6Ivn/j4eDrH01hZpFIpDajFx8ejrKzMYNr/HDdvAq+/DqxcCZw6xbo0HA6Hw+FwOBwOh8Ph1HsEHWD6+++/6fvAwECjaTWPa55nTj7W1tZ02lvFPAoKCpCWlmaxsmgeVygUOiOh6jI9e/asXgaBgeVrMQHA++8DRhZLr3HtasJanyUs68663Vnrs4T7Lky478KE+y5MuO/CRKi+c8+Fqc+67pZE0AGm+/fv0/eGppKpadKkid7zNP9vb29f6WLZ6nyePHmitZp8WloanXpXE2Wpbj51mczMzOpnsnAh4OQEJCUBv/9uWe1qwFqfJSzrzrrdWeuzhPsuTLjvwoT7Lky478JEqL5zz4Wpz7rulqRe7yJXXfLz8+l7BwcHo2nVU9uA8tFG+vKpLA99+djY2NRKWaqbjxq5XK4VCMvLy9P7uSVJTk5G27Ztq5eJkxOsZs+G9ezZILNnozQ8HDDBvxrRrgas9NVes9xik2Xbc9+570LS575z31nBfee+C0mbpT73XZjarH0X6veNtbal/RaRiitW12NSUlLQvHlzAOWLba9bt85o+kWLFmHevHkAgBMnTiA0NNRg2ujoaPTr14+e9+mnn9Jj/v7+uHPnDpo0aYLU1FSjmhMnTsSGDRsAlI8aUo8yOn36NPr06QMAmDt3LhYuXGgwD5VKRXeG69evn9aiYVOmTMGaNWsAALdv34afn5/BfNasWUN3ttuwYQMmTJigk2b+/PlYsGCBzucff/wxZDKZ0brWdawUCry9YgXcsrNxqk8fxBjxn8PhcDgcDofD4XA4nPpESUkJFi9ejNzcXLrJV20i6BFMmgGS0tJSo2k1I3+2trZ686ksD2P51HRZqpuPmtmzZ+ODDz6g/8/Ly0OTJk0wbdo0eHp6Gs2/tlCpVAZ36jMXcfv2wNix6J2QgO5btgBubhbTrgqs9OVyOb777ju8//77dNSdpWHZ9tx37ruQ9Lnv3Hfuu3D0ue/cd+67cLRZ+y7U7xtr7SdPnmDx4sUW0xN0gMnR0ZG+NzRFTE1hYSF9X3HqmTqfyvIwlk9Nl6W6+aixsbHR2wEZ+twS7N27F88//3zNZDZmDHDuHETjxsGmYUPLalcB1vr/Gd/rkXZd0Oe+s4G1PvedDaz1ue9sYK3PfWcDa33uu7C01bDynXXdheq7pb0W9CLfmotgq3dwM4TmItiai2Nr5lNYWIicnByT8vH09NQyu6bLUt186jKagbFqIxIBy5YBzz5ree0qwFqfJSzrzrrdWeuzhPsuTLjvwoT7Lky478JEqL5zz4Wpz7rulkTQAaY2bdrQ99euXTOaVvN469atq5SPQqHA7du39ebh4OBAgzyWKIvmcWtra7Ro0cJo2rqEj49P7WWelgaoVGy0TYC1PktY1p11u7PWZwn3XZhw34UJ912YcN+FiVB9554LU5913S2JoANMzZs3R6NGjQAAJ0+eNJr21KlTAMovDl9fX61jvXr1ou+N5XPhwgUavezZs6fOcXU+169fx6NHjwzmo6lRMZ+uXbtCKpVWWpbS0lL88ccfOufUB9q1a1c7GX/xBdCiBRAZaXltE2GtzxKWdWfd7qz1WcJ9Fybcd2HCfRcm3HdhIlTfuefC1Gddd0si6ACTSCTC8OHDAZSP5lEHXCryxx9/0NE+w4cPh0gk0joeHBwMZ2dnAMD69ethaGM+zV3tRo4cqXN8xIgRetNqUlRUhG3btgEoH60UEBCgddzR0ZHudnf8+HGD0+R27tyJvLw8g2Wpyxw5cqR2MhaJALkc+PhjoKjIstomwlqfJSzrzrrdWeuzhPsuTLjvwoT7Lky478JEqL5zz4Wpz7rulkTQASYAeO+992BtXb7W+f/+9z8UFxdrHS8uLsb//vc/AOVTyd577z2dPKRSKd59910AwN9//42vv/5aJ01cXBxWr14NAOjbty+6du2qk2bkyJHw9/cHAHz55Zd0Op0mH374IbKzs+l7ffw/e2ceF9V1/+9nRhBZlIiIRsCNuASNuxgUCe6KGBDBJUmTNP1la5K2aZM07TeLaZtvTJNvkyaxTWz2DVFUiKhI3IqoEcFdggtoUFwQ0UFE9vv7Y2TiggvC3Dt4Ps/rxcth5s55nzNP5pPj8d5zn3vuOcB6Sd5TTz1FTU3NJa8XFRXxxz/+EYDbbruN//f//l+97SjHs89Cly7Wy+TqcSgIgiAIgiAIgiAIQv0067vIpaenc+DAAdvvRUVFtscHDhy44iyghx9++Io2evbsyXPPPcecOXPIzMxkxIgR/PGPfyQgIIDc3FzefPNNtm3bBlgXdHr06FFvX55//nni4+PZt28fL7zwAgcOHGDmzJm4urqydu1a/vd//5fq6mpcXV159913623D2dmZ9957jylTplBSUsKIESN46aWXCAoK4vTp0/znP/9h0aJFgPVyul/84hf1tjN69GhmzpzJ/Pnz+e677xg3bhy/+93v6NSpE7t27eL1118nPz8fgDlz5tC2bdt623FUhg0bZp+GW7WCv/8dZsyAN9+ERx6BizZNt2v2DWJ0vpEYOXajP3ej841EvKuJeFcT8a4m4l1NVPUuztXMN3rsetKsF5g+/vhjvvjii3pf27BhAxs2bLjkufoWmABef/11CgsL+fTTT9m2bRszZ8684phf/epX/O1vf7tqX1q3bs2yZcsIDw9n//79zJs3j3nz5l1yTJs2bfjmm28YMGDAVdsJDw/nww8/5Omnn+bEiRO2s6cuJigoiCVLltCiRYurtvPpp59SUlLC8uXLWbt2LWvXrr3kdbPZzMsvv8zjjz9+1TYcldLSUvs1HhsL770HGzbAn/8MX36pX/YNYHS+kRg5dqM/d6PzjUS8q4l4VxPxribiXU1U9S7O1cw3eux6ovwlcmBdbPnkk09YtmwZkZGRdOrUiZYtW9KpUyciIyNZvnw5H3/8MWbztT+uO+64g23btvHmm28yZMgQbrvtNtzc3OjVqxfPPvssO3fuJCIi4rr9efTRR8nKyuLRRx+le/futGrVinbt2hESEsK///1vNmzYgLe39zXbcHV1ZdmyZXzzzTeMGzcOHx8fWrZsib+/P/fddx/p6enMnj27IR+Tw7Bnzx77NW4ywTvvWB9/9RVs2aJf9g1gdL6RGDl2oz93o/ONRLyriXhXE/GuJuJdTVT1Ls7VzDd67HrSrM9g+vzzz6+6GfbNEB4eTnh4eKPacHd354UXXuCFF15oVDt9+/a94gyom+G+++7jvvvua3Q7SjF0KDz4ICxcCHv2WH8XBEEQBEEQBEEQBOGqyBlMQrMjJibG/iFvvgl798Jll1Xqkn0NjM43EiPHbvTnbnS+kYh3NRHvaiLe1US8q4mq3sW5mvlGj11PZIFJaHakpqbaP6RjR/D3Nyb7GhidbyRGjt3oz93ofCMR72oi3tVEvKuJeFcTVb2LczXzjR67njTrS+QENSkpKdE3cPVq6+VyJ08y5Mcf4dNPISrKuiF4q1a6dkX3sTsQRo7d6M/d6HwjEe9qIt7VRLyriXhXE1W9i3M1840eu57IApPQ7OjQoYN+YW+8Yb2bHIDZTIfaWuulc4sXw29/C198AVOm6NYdXcfuYBg5dqM/d6PzjUS8q4l4VxPxribiXU1U9S7O1cw3eux6IpfICc2OIUOG6BP03XfwP//z8++1tZf+eeYMREZaj9MJ3cbugBg5dqM/d6PzjUS8q4l4VxPxribiXU1U9S7O1cw3eux6IgtMQrNj2bJl9g8pL79ig+8r0DTrnw8/bD1eB3QZu4Ni5NiN/tyNzjcS8a4m4l1NxLuaiHc1UdW7OFcz3+ix64lcIifcEHPnzmXu3LnU1NQAkJiYiIeHB9HR0axevRqLxYKPjw9BQUEkJycDMGjQIGpra9m+fTsAkZGRpKenc+rUKby8vAgNDSUxMRGAfv364ezsTFZWFgCTJ08mMzOTEydO0KZNG8aPH09CQgJgvYY1Ly+PzZs3AzBhwgR2795NQUEB7u7uREREEB8fD0CvXr3w9vZmw4YNAIwdO5Z9+/aRn5+Pi4sL0dHRxMfHU1tbS0BAAL6+vqSlpdF1/XqCT5++/gejaXD6NKc++ohDISHs27cPgFmzZpGUlERZWRl+fn4EBgbaNncLDg7GYrGQnZ0NQGxsLCkpKZw9e5aOHTsyaNAgli9fDsDQoUMpLy9n165dANTU1JCSksLp06fx9vYmODiYpUuXAjBw4EAAtm3bBsCUKVPYtGkTRUVFtG3blrCwMJYsWQLAXXfdRatWrdiyZQsA4eHhbN26lePHj9O6dWsmTpzIwoULAQgMDMTV1RWAhIQEJk6cSHZ2NkeOHMHNzY3IyEji4uIA6NmzJz4+PqSnpwMwevRocnNz+emnn2jZsiXTpk1j4cKFVFdX0717dzp37sy6desACA0NpaCggNzcXMxmMzNmzGDx4sVUVFTQuXNnKioqbDkjRoygqKiIvXv3AjBjxgySk5M5d+4cvr6+9O3bl5UrVwIwbNgwSktL2bNnD2C9i0NqaiolJSV06NCBIUOG2Ir+4MGDqaqqYufOnQBERUWRlpZGQUEBqamphISEkJSUBMCAAQMwm81s3boVgIiICDIyMigsLMTT05MxY8awePFiAPr27YubmxsZGRkATJo0iR07dnD06FE8PDwIDw9nwYIFAPTu3RsvLy82btwIwLhx4yguLiYuLg5XV1eioqKYP38+mqbRo0cPOnbsyPr16wEYNWoUhw4d4uDBgzg7OxMTE0NCQgJVVVV069aNrl27snbtWgBGjhzJ8ePH2b9/PyaTiZkzZ5KYmMj58+fx9/end+/ets8wPz+f0tJScnJyAJg+fTrLly+ntLSUTp060b9/f1asWAFAUFAQZWVl7N69G6DRNaKgoIC4uLgG1Yg+ffrg4eHR6Bpx7NgxgHprBEBYWBj5+fnk5eXh5OREbGwsixYtorKyki5duhAQEMCaNWsACAkJobCwsEE1om7sDakRU6dOZd26dY2qEbUXztLMy8uzublejfD09GTTpk0AjB8/vtE1oqCggM2bNzeoRvTs2ZNVq1YBjasRtbW1LFu2rEE1ori4mHbt2jVJjSgoKODMmTMNqhE5OTkcPny4UTXC/8KNLRISEjCbzTdUI77//nsAhg8fTnFxcaNrRFFREWfPnrX7PKK+GnHq1Cni4uKabB7R0Bpx/vx5srKy7D6PuLxGDB482Oa97rE95hHXqhGALvOI+mpEXZ219zziajWitLTUNnZ7ziMurxGLFi2yufbz87PbPOJaNeLEiRPExcXZfR5RX40oKCigpKTE7vOI+mpEeXm5zbm95xGX1wiLxQKAxWJh9erVgH3mEVB/jSgqKiIuLk6XeUR9NaK8vJyMjAy7zyPqqxF1tUaPeQRcWiN0RxOEBmCxWDRAKywsNKwPe/futX9IdLSmmc2aZl1CuvaP2Ww9Xgd0GXs9lJeXa7Nnz9bKy8sNydc048ZudLaR+eJdvBuFeNcf8S7ejUK86494VzPbaO+qft+Mzi4sLNQAzWKx6JInl8gJzY6qqir7h5w69fNeS9ejthaKi+3bnwvoMnYHxcixG/25G51vJOJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWASmh11pxTalXbtwHyDXw+zGby87NufC+gydgfFyLEb/bkbnW8k4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBKE+oiKatgZTFOn2rU7giAIgiAIgiAIguDIyAKT0OyIioqyf0hsLLRtCybT9Y9t2xZiYuzfJ3Qau4Ni5NiN/tyNzjcS8a4m4l1NxLuaiHc1UdW7OFcz3+ix64ksMAnNjrq7s9iVVq3giy+sj6+3yHT//dbjdUCXsTsoRo7d6M/d6HwjEe9qIt7VRLyriXhXE1W9i3M1840eu57IApPQ7CjWaUNtpkyBxES47Tbr73V7MtX9WbeoNG8e/PCDLl3SbewOiJFjN/pzNzrfSMS7moh3NRHvaiLe1URV7+JczXyjx64nssAkNDvatWunX9i998LRo/DVVxAVRXG/ftb9mb76ynqnualTobISoqOtx9kZXcfuYBg5dqM/d6PzjUS8q4l4VxPxribiXU1U9S7O1cw3eux64mR0BwShoYSEhOgb2KoVPPAAPPAArcrKwM3t59e++AL27oXsbJg2DdatAxcXu3VF97E7EEaO3ejP3eh8IxHvaiLe1US8q4l4VxNVvYtzNfONHrueyBlMQrMjKSnJcbJbt4akJOtldD/8AE89BZqmX75COJR3xfKNRLyriXhXE/GuJuJdTVT1Ls7VzDd67HoiC0yC0FjuuAPmz7fuzfTDD1BSYnSPBEEQBEEQBEEQBEFXZIFJaHYMGDDA8bInTIDFi2HTJvD01D9fARzSuyL5RiLe1US8q4l4VxPxriaqehfnauYbPXY9kT2YhGaH2Wzcuug1syMjL/29uhqcmvYrZuTYjcZhvSuQbyTiXU3Eu5qIdzUR72qiqndxrma+0WPXE3VGKtwybN261bGzNQ3eegtCQuD8ef3zb1Ec3vstnG8k4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBKEpqawEN58EzZvhsces+um34IgCIIgCIIgCILgCMgCk9DsiIiIcOzsDh0gPh5atICvv4Z//lPf/FsUh/d+C+cbiXhXE/GuJuJdTcS7mqjqXZyrmW/02PVEFpiEZkdGRobjZ48ZA2+/bX383HOwerW++bcgzcL7LZpvJOJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWASmh2FhYXNI/u3v4UHH4SaGpgxAw4e1Df/FqPZeL8F841EvKuJeFcT8a4m4l1NVPUuztXMN3rseiJ3kRNuiLlz5zJ37lxqamoASExMxMPDg+joaFavXo3FYsHHx4egoCCSk5MBGDRoELW1tWzfvh2AyMhI0tPTOXXqFF5eXoSGhpKYmAhAv379cHZ2JisrC4DJkyeTmZnJiRMnaNOmDePHjychIQGAqqoq8vLy2Lx5MwATJkxg9+7dFBQU4O7uTkREBPHx8QD06tULb29vNmzYAMDYsWPZt28f+fn5uLi4EB0dTXx8PLW1tQQEBODr60taWhoAYWFh5Ofnk5eXh5OTE7GxsRQVFREXF0eXLl0ICAhgzZo1AISEhFBYWMi+ffsAmDVrFknffUfF6NFMysigdU4Op8PCSP3rXxkWGorFYiE7OxuA2NhYUlJSOHv2LB07dmTQoEEsX74cgKFDh1JeXs6uXbsAcHd3JyUlhdOnT+Pt7U1wcDBLly4FYODAgQBs27YNgClTprBp0yaKiopo27YtYWFhLFmyBIC77rqLVq1asWXLFgDCw8PZunUrx48fp3Xr1kycOJGFCxcCEBgYiKurKwAJCQlMnDiR7Oxsjhw5gpubG5GRkcTFxQHQs2dPfHx8SE9PB2D06NHk5uby008/0bJlS6ZNm8bChQuprq6me/fudO7cmXXr1gEQGhpKQUEBubm5mM1mZsyYweLFi6moqKBz5860bNnSljNixAiKiorYu3cvADNmzCA5OZlz587h6+tL3759WblyJQDDhg2jtLSUPXv2ABATE0NqaiolJSV06NCBIUOGsGzZMgAGDx5MVVUVO3fuBCAqKoq0tDQKCwtJTU0lJCSEpKQkwHq7UbPZbNu0LyIigoyMDAoLC/H09GTMmDEsXrwYgL59++Lm5mb714tJkyaxY8cOjh49ioeHB+Hh4SxYsACA3r174+XlxcaNGwEYN24cZWVlxMXF4erqSlRUFPPnz0fTNHr06EHHjh1Zv349AKNGjeLQoUMcPHgQZ2dnYmJiSEhIoKqqim7dutG1a1fWrl0LwMiRIzl+/Dj79+/HZDIxc+ZMEhMTOX/+PP7+/vTu3dv2Gebn51NaWkpOTg4A06dPZ/ny5ZSWltKpUyf69+/PihUrAAgKCqKsrIzdu3cDNLpGFBYWEhcX16Aa0adPHzw8PBpdI4qKigAaVCMWLVpEZWXljdWIpCTKysrw8/MjMDCQ1NRUAIKDg7FYLLaxN6RGTJ06lXXr1jWqRtTW1gKQl5dnc3O9GuHp6cmmTZsAGD9+fKNrRGFhIZs3b25QjejZsyerVq0CGlcjPDw8WLZsWYNqRHFxMe3atWuSGlFYWMiZM2caVCNycnI4fPhwo2qEv78/YK3zZrP5hmrE999/D8Dw4cMpLi5udI04e/YsZ8+etfs8or4ace7cOeLi4uw+j7hajTCbzWRlZTWoRtzMPOLyGjF48GCb97rH9phHXKtGeHp66jKPqK9G1NVZe88jrlYjNE2zjd2e84jLa8SiRYtsrv38/Ow2j7hWjTh9+jRxcXF2n0fUVyMKCwspKSmx+zyivhrRokULm3N7zyMurxEWiwUAi8XC6gtXV9hjHgH114jS0lLi4uJ0mUfUVyNatGhBRkaG3ecR9dWIulqjxzwCLq0RemPSNNmBWLhxSkpK8PT0pLCwkPbt2xvSh4qKClxcXJpP9uHDMHw4/OlP8OSTYDLpm98EVFRUMGfOHF588cXm9dnfAtlG5ot38a7iZy/exbtK+eJdvKv42aucbaR3Vb9vRmefPHkSHx8fLBYLbdq0sXueXCInNDvqVmqbTba/P+zdC7/+daMWl246/xah2Xm/hfKNRLyriXhXE/GuJuJdTVT1Ls7VzDd67HoiC0yCoAdubj8/Pn0afvjBuL4IgiAIgiAIgiAIQhMjC0xCs6Nv377NNzs/H4KCYOJE2L9f//xmTLP23szzjUS8q4l4VxPxribiXU1U9S7O1cw3eux6IgtMQrPD7eKzgZpbdocO4OMDFgtERsLZs/rmN2Oatfdmnm8k4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBKaHXW74zfLbBcXSEiATp3gxx/hwQfhwh2bdMlvxjRr780830jEu5qIdzUR72oi3tVEVe/iXM18o8euJ7LAJAh6c/vtsHgxtGwJiYnwt78Z3SNBEARBEARBEARBaBSywCQ0OyZNmtT8s4cNgw8/tD5+9VX47jt985sht4T3ZppvJOJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWASmh07duy4NbJ/+Ut4+mnr45degpoaffObGbeM92aYbyTiXU3Eu5qIdzUR72qiqndxrma+0WPXEyejOyAIDeXo0aO3TvY//gGurvD889Cihf75zYhbynszyzcS8a4m4l1NxLuaiHc1UdW7OFcz3+ix64ksMAnNDg8Pj1sn29kZ/v534/KbEbeU92aWbyTiXU3Eu5qIdzUR72qiqndxrma+0WPXE7lETmh2hIeH37rZn30Gr71mXL4Dc0t7d/B8IxHvaiLe1US8q4l4VxNVvYtzNfONHrueyAKT0OxYsGDBrZmdmQmPPAKzZ8PChfrnOzi3rPdmkG8k4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBIER2HIEHjuOevjhx+GnTsN7Y4gCIIgCIIgCIIg3CiywCQ0O3r37n3rZr/xBowbB2VlEBUFxcX65jswt7R3B883EvGuJuJdTcS7moh3NVHVuzhXM9/oseuJLDAJzQ4vL69bN9vJCebPh+7d4eBBmDkTqqv1y3dgbmnvDp5vJOJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWASmh0bN268tbO9vCAxEdzd4fvv4cUX9c13UG557w6cbyTiXU3Eu5qIdzUR72qiqndxrma+0WPXE1lgEgRH5K674IsvwGSC1q1B04zukSAIgiAIgiAIgiBcFSejOyA0D+bOncvcuXOpqakBIDExEQ8PD6Kjo1m9ejUWiwUfHx+CgoJITk4GYNCgQdTW1rJ9+3YAIiMjSU9P59SpU3h5eREaGkpiYiIA/fr1w9nZmaysLAAmT55MZmYmJ06coE2bNowfP56EhAQAOnfuTF5eHps3bwZgwoQJ7N69m4KCAtzd3YmIiCA+Ph6AXr164e3tzYYNGwAYO3Ys+/btIz8/HxcXF6Kjo4mPj6e2tpaAgAB8fX1JS0sDICwsjPz8fPLy8nByciI2NhZN04iLi6NLly4EBASwZs0aAEJCQigsLGTfvn0AzJo1i6SkJMrKyvDz8yMwMJDU1FQAgoODsVgsZGdnAxAbG0tKSgpnz56lY8eODBo0iOXLlwMwfMUKzvr6smv+fABCQ0NJSUnh9OnTeHt7ExwczNKlSwEYOHAgANu2bQNgypQpbNq0iaKiItq2bUtYWBhLliwB4K677qJVq1Zs2bIFsN46c+vWrRw/fpzWrVszceJEFl64k11gYCCurq4AJCQkMHHiRLKzszly5Ahubm5ERkYSFxcHQM+ePfHx8SE9PR2A0aNHk5uby08//UTLli2ZNm0aCxcupLq6mu7du9O5c2fWrVtnG1tBQQG5ubmYzWZmzJjB4sWLqaiooHPnzgwePNiWM2LECIqKiti7dy8AM2bMIDk5mXPnzuHr60vfvn1ZuXIlAMOGDaO0tJQ9e/YAEBMTQ2pqKiUlJXTo0IEhQ4awbNkyAAYPHkxVVRU7L2ywHhUVRVpaGpWVlaSmphISEkJSUhIAAwYMwGw2s3XrVgAiIiLIyMigsLAQT09PxowZw+LFiwHo27cvbm5uZGRkADBp0iR27NjB0aNH8fDwIDw83HZ3id69e+Pl5WX7l45x48bRrl074uLicHV1JSoqivnz56NpGj169KBjx46sX78egFGjRnHo0CEOHjyIs7MzMTExJCQkUFVVRbdu3ejatStr164FYOTIkRw/fpz9+/djMpmYOXMmiYmJnD9/Hn9/f3r37m37DPPz8yktLSUnJweA6dOns3z5ckpLS+nUqRP9+/dnxYoVAAQFBVFWVsbu3bsBGl0jKisriYuLa1CN6NOnDx4eHo2uEXU0pEYsWrSIysrKJqkRdWO/Vo0YOnQo5eXl7Nq1C4CpU6eybt26RtWI2tpaAPLy8mxurlcjPD092bRpEwDjx49vdI2orKxk8+bNDaoRPXv2ZNWqVUDjakRYWBjLli1rUI0oLi6mXbt2TVIjKisrOXPmTINqRE5ODocPH25UjfD39wesdd5sNt9Qjfj+++8BGD58OMXFxY2uER4eHpw9e9bu84j6akTbtm2Ji4uz+zziajWib9++ZGVlNfk84no1YvDgwTbvdY/tMY+4Vo0YN26cLvOI+mpEXZ219zziajXijjvusI3dnvOIy2vEokWLbK79/PzsNo+4Vo1wcnIiLi7O7vOI+mpEZWUlJSUldp9H1Fcj+vXrZ3Nu73nE5TXCYrEAYLFYWL16NWCfeQTUXyPatGlDXFycLvOI+mpEv379yMjIsPs8or4aUVdr9JhHwKU1Qnc0QWgAFotFA7TCwkLD+rB+/Xols7Vz57RNycmGRJeXl2uzZ8/WysvLDcnXNIW9G5gv3sW7UYh3/RHv4t0oxLv+iHc1s432rur3zejswsJCDdAsFosueXIGk9DsOHz4sHrZ+fkQFUX38+dh/HhwdjamHwaipHcHyTcS8a4m4l1NxLuaiHc1UdW7OFcz3+ix64nswSQ0O+ou11Iq+9w5OHAAn5wc+P3vjemDwSjp3UHyjUS8q4l4VxPxribiXU1U9S7O1cw3eux6IgtMQrMjKipKvew774Svv7Y+/uAD+PRTY/phIEp6d5B8IxHvaiLe1US8q4l4VxNVvYtzNfONHrueyAKT0OyYf2HDa9WyufdedsXEWB8/+SRc2HhQFZT17gD5RiLe1US8q4l4VxPxriaqehfnauYbPXY9kQUmodmhaZqS2QC7o6Jg6lSorIToaDh2zND+6InK3o3ONxLxribiXU3Eu5qIdzVR1bs4VzPf6LHriSwwCc2OHj16KJkN0KNXL/jiCwgMhKNH4YknDO2Pnijt3eB8IxHvaiLe1US8q4l4VxNVvYtzNfONHrueyAKT0Ozo2LGjktm2/NatISkJxoyB994ztD96orx3RRHvaiLe1US8q4l4VxNVvYtzNfONHrueyAKT0OxYv369ktmX5N9xB6xaBV26GNofPRHvaiLe1US8q4l4VxPxriaqehfnauYbPXY9kQUmQbgVSEqC9HSjeyEIgiAIgiAIgiAoipPRHRCEhjJq1Cgls6+av3gxTJsGPj6QmQn+/vp3TAfEu5qIdzUR72oi3tVEvKuJqt7FuZr5Ro9dT+QMJqHZcejQISWzr5o/YQL07w+FhdY7zJ0/r3u/9EC8q4l4VxPxribiXU3Eu5qo6l2cq5lv9Nj1RBaYhGbHwYMHlcy+ar67OyQmQrt2kJVlvbPcLXgrTPGuJuJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWASmh3Ozs5KZl8zv2tXiI+HFi3gyy9vybvLiXc1Ee9qIt7VRLyriXhXE1W9i3M1840eu56YNO0WPNVBsBslJSV4enpSWFhI+/btje6OcDnvvgvPPmtdaEpNhdGjm6TZiooK5syZw4svvoiLi0uTtCk4PuJdTcS7moh3NRHvaiLe1US8q8nJkyfx8fHBYrHQpk0bu+fJGUxCsyMhIUHJ7BvK/+1v4Re/gJoaWLtWn07phHhXE/GuJuJdTcS7moh3NVHVuzhXM9/oseuJ3EVOaHZUVVUpmX1D+SYTfPQRREVBdLQufdIL8a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xM5g0lodnTr1k3J7BvOd3W9dHGpuvqW2PRbvKuJeFcT8a4m4l1NxLuaqOpdnKuZb/TY9UTOYBJuiLlz5zJ37lxqamoASExMxMPDg+joaFavXo3FYsHHx4egoCCSk5MBGDRoELW1tWzfvh2AyMhI0tPTOXXqFF5eXoSGhpKYmAhAv379cHZ2JisrC4DJkyeTmZnJiRMnaNOmDePHj7edWujr60teXh6bN28GYMKECezevZuCggLc3d2JiIggPj4egF69euHt7c2GDRsAGDt2LPv27SM/Px8XFxeio6OJj4+ntraWgIAAfH19SUtLAyAsLIz8/Hzy8vJwcnIiNjaW3NxcDh48SJcuXQgICGDNmjUAhISEUFhYyL59+wCYNWsWSUlJlJWV4efnR2BgIKmpqQAEBwdjsVjIzs4GIDY2lpSUFM6ePUvHjh0ZNGgQy5cvB2Do0KGUl5eza9cuAIYPH05KSgqnT5/G29ub4OBgli5dCsDAgQMB2LZtGwBTpkwhc8UK7pw9mzN3302XuXNZsmQJAHfddRetWrViy5YtAISHh7N161aOHz9O69atmThxIgsXLgQgMDAQV1dXwHp658SJE8nOzubIkSO4ubkRGRlJXFwcAD179sTHx4f09HQARo8eTW5uLj/99BMtW7Zk2rRpLFy4kOrqarp3707nzp1Zt24dAKGhoRQUFJCbm4vZbGbGjBksXryYiooKOnfujJeXly1nxIgRFBUVsXfvXgBmzJhBcnIy586dw9fXl759+7Jy5UoAhg0bRmlpKXv27AEgJiaG1NRUSkpK6NChA0OGDGHZsmUADB48mKqqKnbu3AlAVFQUaWlpHDt2jJKSEkJCQkhKSgJgwIABmM1mtm7dCkBERAQZGRkUFhbi6enJmDFjWLx4MQB9+/bFzc2NjIwMACZNmsSOHTs4evQoHh4ehIeHs2DBAgB69+6Nl5cXGzduBGDcuHGcOXOGuLg4XF1diYqKYv78+WiaRo8ePejYsSPr168HYNSoURw6dIiDBw/i7OxMTEwMCQkJVFVV0a1bN7p27craC5dOjhw5kuPHj7N//35MJhMzZ84kMTGR8+fP4+/vT+/evW2fYX5+PqWlpeTk5AAwffp0li9fTmlpKZ06daJ///6sWLECgKCgIMrKyti9ezdAo2tETk4OBw8ebFCN6NOnDx4eHo2uEbW1tdx9990NqhGLFi2isrKySWpE3dgbUiOmTp3KunXrbrhGbNq0iaKiItq2bUtYWBhLliyhtrYWgLy8PJub69UIT09PNm3aBMD48eMbXSPOnTuHyWRqUI3o2bMnq1atanSNCAkJYdmyZQ2qEcXFxbRr165JakRFRQW9e/duUI3Iycnh8OHDjaoR/v7+gLXOm83mG6oR33//PWD9f1NxcXGja4Sbmxtnz561+zyivhpRXFxMXFyc3ecRV6sRd955J1lZWXafR1xeIwYPHmzzXvf4ejUCGj6PuFaNGDZsmC7ziPpqRF2dtfc84mo1ArCN3Z7ziMtrxKJFi2yu/fz87DaPuFaNyM/P5+DBg3afR9RXIyoqKggMDLT7PKK+GuHm5mZzbu95xOU1wmKxAGCxWFi9ejVgn3kE1F8jTp48SVxcnC7ziPpqRJ8+fcjIyLD7PKK+GlFXa/SYR8ClNUJ3NEFoABaLRQO0wsJCw/rw7bffKpl9U/mffaZpoGkmk6atWHHTueXl5drs2bO18vLym26jsYh3/RHv4t0oxLv+iHfxbhTiXX/Eu5rZRntX9ftmdHZhYaEGaBaLRZc8uUROEG5lHnoIHn3UeoncrFlw4IDRPRIEQRAEQRAEQRBuQWSBSWh2jBw5Usnsm8o3meD99yE4GM6csW7+ffasPbpmd8S7moh3NRHvaiLe1US8q4mq3sW5mvlGj11PZIFJaHYcP35cyeybzndxgUWL4PbbYc8e61lNF/ZYaU6IdzUR72oi3tVEvKuJeFcTVb2LczXzjR67nsgCk9Ds2L9/v5LZjcq//XZYvBhatoQlS+DNN5u2Yzog3tVEvKuJeFcT8a4m4l1NVPUuztXMN3rseiILTEKzw2QyKZnd6Py774Z//xvuuAPuvbfpOqUT4l1NxLuaiHc1Ee9qIt7VRFXv4lzNfKPHricmTdM0ozshNB9KSkrw9PSksLCQ9u3bG90d4WY4fx5cXRv0loqKCubMmcOLL76Ii4uLnTomOBriXU3Eu5qIdzUR72oi3tVEvKvJyZMn8fHxwWKx0KZNG7vnyRlMQrMjMTFRyewmy794cWnjRuvm380A8a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYLpAeXk5//rXvxgzZgzt27enZcuW+Pr6MnnyZOLj42+4nZSUFKKjo/Hz88PFxQU/Pz+io6NJSUm54TbKysp46623CAoKwsvLCw8PD+68806ee+458vPzb7idPXv28MQTT3DHHXfg6upK+/btCQ0N5aOPPqK6uvqG23E0zp8/r2R2k+d/9RXccw/cfz/U1DRdu3ZCvKuJeFcT8a4m4l1NxLuaqOpdnKuZb/TY9cTJ6A44Anv37iUyMpK9e/de8vzRo0c5evQoy5cv5/PPPychIQF3d/d629A0jSeeeIJ58+Zd8nxBQQFLlixhyZIlPPbYY3z44YfXvAYzNzeXyZMnX9GXnJwccnJy+Pjjj/n2228JDw+/5pg++eQTnnrqKSoqKmzPlZeXs379etavX8/nn39OcnIy7dq1u2Y7joi/v7+S2U2eHxgITk6wfDm88gq8/nrTtW0HxLuaiHc1Ee9qIt7VRLyriarexbma+UaPXU+UP4Pp5MmTjBs3zragExsbS3JyMlu3biU5OZnY2FjAembSrFmzrtrOSy+9ZFtcGjhwIHFxcWRkZBAXF8fAgQMBmDdvHi+//PJV2ygtLSUiIsLWl0cffZTVq1ezceNGXn/9dTw8PLBYLMTGxrJz586rtrNy5Uoee+wxKioq6NChA++99x6bN29mxYoVREdHA/DDDz8QHR1NbTO8XX3v3r2VzG7y/MGD4T//sT7+3/+FhQubrm07IN7VRLyriXhXE/GuJuJdTVT1Ls7VzDd67Hqi/ALTa6+9xuHDhwF49dVXWbBgAZMnT2bgwIFMnjyZBQsW8MorrwCwdOlSFi9efEUbBw4c4O9//zsAQ4YMYcOGDcycOZOhQ4cyc+ZM0tPTGTJkCABvvvkmubm59fbl7bffJicnB4C///3vzJs3j9GjRxMcHMyf//xnUlNTcXJyoqysjN/97nf1tlFdXc3TTz9NbW0tbdq0YcOGDTzzzDMEBQUxceJEFi1axK9//WsA0tLS+Prrr2/+wzOI77//Xslsu+Q/8AD8/vfWxw8/DNdYuDQa8a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xOlF5hqamr45ptvAOjSpctVzy565ZVX6Ny5MwBvvPHGFa+/8847tj2N3n//fVwvu0OXm5sb77//PmBdAHr33XevaKOqqop//vOfANx555384Q9/uOKY4OBgfvWrXwGwdu1asrKyrjhmyZIlHDhwAIA//elPBAQEXHHMW2+9Rdu2bW2PBcV5800YMwbKyiAqCoqLje6RIAiCIAiCIAiC0MxQeoFp//79nLlwB61x48bRokWLeo9r0aIF48aNAyAzM5NDhw7ZXtM0jaSkJMB66tvdd99dbxt33303vXr1Aqy7yGuadsnr69ats/XloYcewmyuX83DDz9se1zf2VQX71B/8bEX4+bmxvTp0wHYvXs3+/fvr/c4R2X48OFKZtst38kJ4uOhWzc4eBA+/rjpM5oA8a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xOlF5iKLzpTo0OHDtc89uLX09LSbI8PHjxIQUEBAPfcc88126h7/ciRI5csUgGsX7/+iuPqY8iQIbaNxtPT0694va6dXr160bFjx+v25WrtODLFBp5hY2S2XfPbtYPERHjrLXj+eftkNBLxribiXU3Eu5qIdzUR72qiqndxrma+0WPXE6UXmC6+I5zFYrnmsRe/np2dbXv8448/2h5fb/Oui1+/+H0NacfJycl22dvlbZSWlnLkyJFG98XRqdunSrVsu+f36wfPPQfXuMuhkYh3NRHvaiLe1US8q4l4VxNVvYtzNfONHrueKL3AdMcdd+Ds7AxcelZSfVz8en5+vu1x3QbhAH5+ftds4+LbE178vot/d3d357bbbruhdk6ePElFRYXt+SNHjtguvWtMXwSB0lLrBuCbNsFXX+E0cyYPfvYZTjNnwldfQXm50T0UBEEQBEEQBEEQHAgnoztgJO7u7owZM4aUlBR27txJXFwcs2bNuuK4uLg4du3aZfv97Nmz9T728PC4bl4dpaWll7xW18712qivHRcXlybty8VUVFRcsohVUlJS7/N6EhkZqWS2nvktXnwRp2++Qfv2W0yahtlsplttLdrhw5CYiPab31D9ySfUTp5s977UId71z6/LVHHsRmcbmS/exbtRiHfxrlK2kfniXc1so72r+n0zOlvvXKUXmABee+01Vq1aRXV1NQ899BC5ubk8+OCD3H777Rw7dowvv/ySv/zlL7Rs2ZLKykoAzp8/b3t/+UVncrRs2fKaWXULQZe3cXE712vjWu00VV8u5o033uC111674vm5c+fSqlWr6/ZVaJ70OXaMaYDpwhlxptraS/7kzBmcpk1j/syZ7LvO5ZhC8+edd94xuguCAYh3NRHvaiLe1US8q4l4V4tyna88UX6BKSgoiE8++YRHH32UyspKXn75ZV5++eVLjmnRogXvvvsuzzzzDACtW7e2vXbxIkvdAtTVuHj10NXV9ZLX6tq5XhvXaqep+nIxf/rTn/j9739v+72kpAR/f3+eeuop2rdvf92+2oOFCxcSGxurXLZu+eXltOza1boX02V3O6zDBGgmEzNTUqj88EPQYbFRvOufX1FRwTvvvMOzzz57yaK0noh38a5StpH54l28i3d18sW7mtlGe1f1+2Z09smTJ5kzZ45uecovMAE8+OCD9O/fn9dff52UlBTbpWZms5lRo0bx+uuvX3JJWdu2bW2PL15sutalZgDnzp2zPb78Era6dq7XxrXaaaq+XIyLi0u9Behqz+uBv7+/ktm65S9YAGfOXPcwk6bBmTO4LF1q3a/Jzoh34/Ll+24MRueLd2MwOl+8G4PR+eLdGIzOF+9qZddhlHejx66qd71zld7k+2L69+/PggULOH36NIcPH2b//v2cPXuWVatWMWzYMHbu3Gk7NjAw0Pb44s206+7gdjUu3kz74k22L27n3LlznLnOX+7r2mnfvv0l/8E0VV8cnf79+yuZrVt+YiKYb7A0mM2wZIldu1OHeFcT8a4m4l1NxLuaiHc1UdW7OFcz3+ix64ksMF1GixYt8PPz44477sDNzc32fHp6uu3xsGHDbI8vXmy63u0HL379zjvvvOS1G22nurqa3Nzcetvw8PCwLRY1pi+OzooVK5TM1i3/1Cmo22vpetTWQnGxfftzAfGuJuJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWC6ASorK0lISADA19eX4cOH217r1q0bnTp1AuC///3vNdtJS0uztdG1a9dLXgsJCbE9vlY7mZmZtsvbRowYccXrde3s3buX48ePX7WdizPqa0dQmHbtGnYGk5eXffsjCIIgCIIgCIIgODyywHQD/POf/+TkyZMAPPHEE7Ro0cL2mslkIjIyErCeFfTDDz/U28YPP/xgO2soMjISk8l0yethYWF4enoC8MUXX6BdZXPlzz//3PZ46tSpV7weFRVV77EXU1ZWxoIFCwDrmVM9e/as9zhHJSgoSMls3fKjohp2BlM9/x3aA/GuJuJdTcS7moh3NRHvaqKqd3GuZr7RY9cTWWAC8vPzr/ra0qVL+Z//+R8AevTowXPPPXfFMb/73e9wcrLul/7MM89w/vz5S14/f/687Q50Tk5O/O53v7uijZYtW/Kb3/wGgB9//JG33377imM2bdrEJ598AsA999zD0KFDrzhm6tSpBAQEAPDGG2/YLqe7mOeff57Tp0/bHjc3ysrKlMzWLT82Ftq2td5F7nq0agXTptm/T4h3VRHvaiLe1US8q4l4VxNVvYtzNfONHrueyAIT0LdvXyZMmMDHH3/Mpk2byMrKYtGiRcycOZN7772Xqqoq2rZtS3x8PK3quR17z549bQtPmZmZjBgxgvj4eDIzM4mPj2fEiBFkZmYC1gWdHj161NuP559/3nY20QsvvMDjjz/O2rVr+eGHH3jjjTcYP3481dXVuLq68u6779bbhrOzM++99x5ms5mSkhJGjBjBBx98QEZGBitXriQmJoZ//etfgPVyul/84heN/fh0Z/fu3Upm65bfqhV88YX18fUWmcrL4cUXb/yMp0Yg3tVEvKuJeFcT8a4m4l1NVPUuztXMN3rseuJkdAccgdraWlJTU0lNTa339cDAQL7++msGDhx41TZef/11CgsL+fTTT9m2bRszZ8684phf/epX/O1vf7tqG61bt2bZsmWEh4ezf/9+5s2bx7x58y45pk2bNnzzzTcMGDDgqu2Eh4fz4Ycf8vTTT3PixAnb2VMXExQUxJIlSy653E8QbEyZYr2b3MMPw+nTaGYzptpa25+0bWs902nePHjvPbBY4OOPwUlKiiAIgiAIgiAIgoqYtKtt9qMQ8+fPJzU1lYyMDI4dO0ZpaSnt27enX79+xMTE8Itf/AJnZ+cbamv58uXMmzePLVu2UFRUhLe3N0OHDuXxxx9n0qRJN9TGuXPnmDt3LgsXLuTAgQNUVlbi7+9PeHg4v/3tb+nSpcsNtbN7927ee+89Vq9ezdGjR3F3d+fOO+/k/vvv5//9v/9nu6yvIZSUlODp6UlhYSHt27dv8PubgoqKClxcXJTLNiS/vBwSEqhZtIj87dvpPGAALaZNg5gY65lOX39tXYSqqbHu3RQXZ33eDoh3/fMrKiqYM2cOL774opKfvXgX7yrli3fxruJnL97Fu2rZRnpX9ftmdPbJkyfx8fHBYrHQpk0bu+fJJXLAzJkz+fTTT9m9ezenTp2ioqKCI0eOsHz5ch555JEbXlwC69lDiYmJFBQUUFFRQUFBAYmJiTe8uATg7u7OCy+8wJYtWzh9+jTnzp0jJyeHf/zjHze8uATWS//mzZtHbm4u58+fp6ioiPXr1/PEE0/c1OKSo7B69Wolsw3Jb9UKHniA6vnz+fLhh6mePx8eeODnRaQHHoDFi8HFxXrG0wcf2K0r4l1NxLuaiHc1Ee9qIt7VRFXv4lzNfKPHrieywCQ0OywWi5LZjpBfL/feCykp8ItfQD0b2DcV4l1NxLuaiHc1Ee9qIt7VRFXv4lzNfKPHrifN9zQWQVl8fHyUzHaE/KsSFmb9qaOmBoqLoQkvoxTvaiLe1US8q4l4VxPxriaqehfnauYbPXY9kTOYhGZHUFCQktmOkH9DaBo8/jgMGwZ5eU3WrHhXE/GuJuJdTcS7moh3NVHVuzhXM9/oseuJLDAJzY7k5GQlsx0h/4Y4dQrWrYODByEkBJrotpziXU3Eu5qIdzUR72oi3tVEVe/iXM18o8euJ7LAJAhC0+LtDevXw113wbFjEBoKmzcb3StBEARBEARBEATBjsgCk9DsGDRokJLZjpB/w9x+u/UsprvvhtOnYcwYaOTdE8S7moh3NRHvaiLe1US8q4mq3sW5mvlGj11PZIFJaHbU1tYqme0I+Q3Cywu+/x7GjoVz5yA8HBITb7o58a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xO5i5xwQ8ydO5e5c+dSU1MDQGJiIh4eHkRHR7N69WosFgs+Pj4EBQXZrjEdNGgQtbW1bN++HYDIyEjS09M5deoUXl5ehIaGknhhwaFfv344OzuTlZUFwOTJk8nMzOTEiRO0adOG8ePHk5CQAEBJSQkuLi5svnDZ1YQJE9i9ezcFBQW4u7sTERFBfHw8AL169cLb25sNGzYAMHbsWPbt20d+fj4uLi5ER0cTHx9PbW0tAQEB+Pr6kpaWBkBYWBj5+fnk5eXh5OREbGwsK1asYPv27XTp0oWAgADWrFkDQEhICIWFhezbtw+AWbNmkZSURFlZGX5+fgQGBpKamgpAcHAwFouF7OxsAGJjY0lJSeHs2bN07NiRQYMGsXz5cgCGDh1KeXk5u3btAqCmpoaffvqJ06dP4+3tTXBwMEuXLgVg4MCBAGzbtg2AKVOmsGnTJoqKimjbti1hYWEsWbIEgLvuuotWrVqxZcsWAMLDw9m6dSvHjx+ndevWTJw4kYULFwIQGBiIq6srAAkJCUycOJHs7GyOHDmCm5sbkZGRxMXFAdCzZ098fHxIT08HYPTo0eT9z//gZ7Hgu3Ur5pYtWbhwIdXV1XTv3p3OnTuzbt06AEJDQykoKCA3Nxez2cyMGTNYvHgxFRUVdO7cmf3799v+WxoxYgRFRUXs3bsXgBkzZpCcnMy5c+fw9fWlb9++rFy5EoBhw4ZRWlrKnj17AIiJiSE1NZWSkhI6dOjAkCFDWLZsGQCDBw+mqqqKnTt3AhAVFUVaWhq7du3i8OHDhISEkJSUBMCAAQMwm81s3boVgIiICDIyMigsLMTT05MxY8awePFiAPr27YubmxsZGRkATJo0iR07dnD06FE8PDwIDw9nwYIFAPTu3RsvLy82btwIwLhx41izZg3bt2/H1dWVqKgo5s+fj6Zp9OjRg44dO7J+/XoARo0axaFDhzh48CDOzs7ExMSQkJBAVVUV3bp1o2vXrqxduxaAkSNHcvz4cfbv34/JZGLmzJkkJiZy/vx5/P396d27t+0zzM/Pp7S0lJycHACmT5/O8uXLKS0tpVOnTvTv358VK1YA1k0My8rK2H1h763G1ohly5axffv2BtWIPn364OHh0egacezYMe68884G1YhFixZRWVnZJDXi+++/Z/v27Q2qEVOnTmXdunWNqhF1k6C8vDybm+vVCE9PTzZt2gTA+PHjG1QjcnNz+emnn2jZsiXTpk1j4cKF/PTTT5SUlDSoRvTs2ZNVq1Y1ukbU1taSl5fXoBpRXFxMu3btmqRGFBQUcPvttzeoRuTk5HD48OFG1Qh/f3/AWufNZvMN1Yjvv/8egOHDh1NcXNzoGlFUVISfn5/d5xH11YjVq1ezfft2u88jrlYjzp8/T1lZmd3nEZfXiMGDB9u81z22xzziWjWirKzM5vhGa8TNzCPqqxF1/3+19zziajUiPT3dNnZ7ziMurxGLFi2yufbz87PbPOJaNWLlypVs377d7vOI+mpEQUEBvr6+dp9H1Fcj9uzZY+uvvecRl9cIi8UCgMViYfWFKwvsMY+A+mvEqlWr2L59uy7ziPpqRHl5OWfPnrX7POJqNWL79u26zCPg0hqhO5ogNACLxaIBWmFhoWF9+Pbbb5XMNjK/vLxcmz17tlZeXn5zDVRVadqmTY3qg3jXn0Z7bwLEu/6Id/FuFOJdf8S7eDcKVb0bmW20d1W/b0ZnFxYWaoBmsVh0yZNL5IRmR2RkpJLZjpB/0zg5WfdjquPAAXjrLdC0G25CvKuJeFcT8a4m4l1NxLuaqOpdnKuZb/TY9UQWmIRmR90pkaplO0J+k1BaCuPGwQsvwG9/Czd4TbJ4VxPxribiXU3Eu5qIdzVR1bs4VzPf6LHriSwwCc2OU6dOKZntCPlNgocH/OEP1sfvvw+//CVUV1/3beJdTcS7moh3NRHvaiLe1URV7+JczXyjx64nssAkNDu8vLyUzHaE/Cbj6afhq6+gRQv48kuIiYHy8mu+RbyriXhXE/GuJuJdTcS7mqjqXZyrmW/02PVEFpiEZkdoaKiS2Y6Q36Q88AAsXgwuLpCUBJMnw9mzVz1cvKuJeFcT8a4m4l1NxLuaqOpdnKuZb/TY9UQWmIRmR93tRlXLdoT8Jufee2HFCutlc2vWwHPPXfVQ8a4m4l1NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBIEwVhGjYK1a+Gee+B//9fo3giCIAiCIAiCIAg3gZPRHRCEhtKvXz8lsx0h324MGWJdZDKZfn7OYgFPT9uv4l1NxLuaiHc1Ee9qIt7VRFXv4lzNfKPHridyBpPQ7HB2dlYy2xHy7crFi0sffgh33gm7d9ueEu9qIt7VRLyriXhXE/GuJqp6F+dq5hs9dj2RBSah2ZGVlaVktiPk60JVFXz0ERw7BqGh8MMPgHhXFfGuJuJdTcS7moh3NVHVuzhXM9/oseuJLDAJguBYODtbN/wODobTp2HsWFi1yuheCYIgCIIgCIIgCNdAFpiEZsfkyZOVzHaEfN1o2xa+/x7GjYNz52DyZCJragzrjtGfu9H5RiLfdzUR72oi3tVEvKuJqt7FuZr5Ro9dT2SBSWh2ZGZmKpntCPm64u4OS5fCtGlQWYnrQw/B558b0hWjP3ej841Evu9qIt7VRLyriXhXE1W9i3M1840eu57IApPQ7Dhx4oSS2Y6QrzsuLjB/PjzyCKbaWjh61JBuGP25G51vJPJ9VxPxribiXU3Eu5qo6l2cq5lv9Nj1xMnoDghCQ2nTpo2S2Y6QbwhOTvDxx2zx82Pon/5kSBeM/tyNzjcS+b6riXhXE/GuJuJdTVT1Ls7VzDd67HoiZzAJzY7x48crme0I+YZhMjHgpZfAZLL+fvYs/OMfUFurS7zRn7vR+UYi33c1Ee9qIt7VRLyriarexbma+UaPXU9kgUlodiQkJCiZ7Qj5RmIbe20tREfDH/4ADz8MVVX6ZRuE0flGIt93NRHvaiLe1US8q4mq3sW5mvlGj11P5BI54YaYO3cuc+fOpebCnbwSExPx8PAgOjqa1atXY7FY8PHxISgoiOTkZAAGDRpEbW0t27dvByAyMpL09HROnTqFl5cXoaGhJCYmAtCvXz+cnZ3JysoCrDvtZ2ZmcuLECdq0acP48eNtX8ySkhLy8vLYvHkzABMmTGD37t0UFBTg7u5OREQE8fHxAPTq1Qtvb282bNgAwNixY9m3bx/5+fm4uLgQHR1NfHw8tbW1BAQE4OvrS1paGgBhYWHk5+eTl5eHk5MTsbGxHDt2jLi4OLp06UJAQABr1qwBICQkhMLCQvbt2wfArFmzSEpKoqysDD8/PwIDA0lNTQUgODgYi8VCdnY2ALGxsaSkpHD27Fk6duzIoEGDWL58OQBDhw6lvLycXbt2AVBTU0NKSgqnT5/G29ub4OBgli5dCsDAgQMB2LZtGwBTpkxh06ZNFBUV0bZtW8LCwliyZAkAd911F61atWLLli0AhIeHs3XrVo4fP07r1q2ZOHEiCxcuBCAwMBBXV1fAWhwnTpxIdnY2R44cwc3NjcjISOLi4gDo2bMnPj4+pKenAzB69Ghyc3P56aefaNmyJdOmTWPhwoVUV1fTvXt3OnfuzLp16wAIDQ2loKCA3NxczGYzM2bMYPHixVRUVNC5c2cqKipsOeMiImi3di2mr77iSHY2ndLSSF61inPnzuHr60vfvn1ZuXIlAMOGDaO0tJQ9e/YAEBMTQ2pqKiUlJXTo0IEhQ4awbNkyAAYPHkxVVRU7d+4EICoqirS0NAoKCkhNTSUkJISkpCQABgwYgNlsZuvWrQBERESQkZFBYWEhnp6ejBkzhsWLFwPQt29f3NzcyMjIAGDSpEns2LGDo0eP4uHhQXh4OAsWLACgd+/eeHl5sXHjRutYx42juLiYuLg4XF1diYqKYv78+WiaRo8ePejYsSPr168HYNSoURw6dIiDBw/i7OxMTEwMCQkJVFVV0a1bN7p27cratWsBGDlyJMePH2f//v2YTCZmzpxJYmIi58+fx9/fn969e9s+w/z8fEpLS8nJyQFg+vTpLF++nNLSUjp16kT//v1ZsWIFAEFBQZSVlbF7926ARteIgoIC4uLiGlQj+vTpg4eHR6NrxLFjxwAaVCMWLVpEZWVlk9SIurE3pEZMnTqVdevWNapG1F44MzAvL8/m5no1wtPTk02bNgHWf6VrbI0oKChg8+bNDaoRPXv2ZNWqVQCMGDGCoqIi9u7dC8CMGTNITk6+oRpRW1vLsmXLGlQjiouLadeuXZPUiIKCAs6cOdOgGpGTk8Phw4cbVSP8/f0Ba503m803VCO+//57AIYPH05xcXGja0RRURFnz561+zyivhpx6tQp4uLi7D6PuFqNOH/+PFlZWXafR1xeIwYPHmzzXvfYHvOIa9UIQJd5RH01oq7ONqRG3Mw84mo1orS01DZ2e84jLq8RixYtsrn28/Oz2zziWjXixIkTxMXF2X0eUV+NKCgooKSkxO7ziPpqRHl5uc25vecRl9cIi8UCgMViYfXq1YB95hFQf40oKioiLi5Ol3lEfTWivLycjIwMu88j6qsRdbVGj3kEXFojdEcThAZgsVg0QCssLDSsDzt27FAy28j88vJybfbs2Vp5ebkh+ZpWz9i/+07TXFw0DTRt1ChNKynRL1tnxLt62Ubmi3fxbhTiXX/Eu3g3ClW9G5lttHdVv29GZxcWFmqAZrFYdMmTS+SEZoeHh4eS2Y6QbyRXjH3KFEhJgdatYe1aGDMGTp3SJ1tnjM43Evm+q4l4VxPxribiXU1U9S7O1cw3eux6IgtMQrOj7nRV1bIdId9I6h17WBisWQPt2sGWLTBjhn7ZOmJ0vpHI911NxLuaiHc1Ee9qoqp3ca5mvtFj1xNZYBIEoXkzZAikpUHfvtY7ywmCIAiCIAiCIAi6I5t8C82OCRMmKJntCPlGcs2xBwbCjh1gvmjNvLwcWrWyf7YOGJ1vJPJ9VxPxribiXU3Eu5qo6l2cq5lv9Nj1RM5gEpoddXeVUC3bEfKN5Lpjv3hxaf16uOMO+OEHfbLtjNH5RiLfdzUR72oi3tVEvKuJqt7FuZr5Ro9dT2SBSWh2FBQUKJntCPlG0qCx/+//QkEBjB0LF243qlu2HTA630jk+64m4l1NxLuaiHc1UdW7OFcz3+ix64ksMAnNDnd3dyWzHSHfSBo09oQEGDcOzp2DyZNh8WL9su2A0flGIt93NRHvaiLe1US8q4mq3sW5mvlGj11PZIFJaHZEREQome0I+UbSoLG7u8PSpTBtGlRWQmwsfP65Ptl2wOh8I5Hvu5qIdzUR72oi3tVEVe/iXM18o8euJ7LAJDQ74uPjlcx2hHwjafDYXVxg/nx45BGorYVf/hLefVef7CbG6Hwjke+7moh3NRHvaiLe1URV7+JczXyjx64nssAkCMKti5MTfPwx/OEP1t/T062LTYIgCIIgCIIgCEKT4mR0BwShofTq1UvJbEfIN5KbHrvJBG+9BYMGWS+ZMzd8Xd3oz93ofCOR77uaiHc1Ee9qIt7VRFXv4lzNfKPHridyBpPQ7PD29lYy2xHyjaRRYzeZ4L77rJfNgfUspo8/hqoq+2c3AUbnG4l839VEvKuJeFcT8a4mqnoX52rmGz12PZEFJqHZsWHDBiWzHSHfSJp07C+8AI8+CjExUF6ub/ZNYHS+kcj3XU3Eu5qIdzUR72qiqndxrma+0WPXE1lgEgRBPcLCoFUr+O47mDQJzp41ukeCIAiCIAiCIAjNGllgEpodY8eOVTLbEfKNpEnHHhEBKSnQujWsWwejR0NRkT7ZN4HR+UYi33c1Ee9qIt7VRLyriarexbma+UaPXU9kgUloduzbt0/JbEfIN5ImH/s998CaNdCuHWRmQmgoFBTok91AjM43Evm+q4l4VxPxribiXU1U9S7O1cw3eux6IgtMQrMjPz9fyWxHyDcSu4x9yBBYvx58feHHH61nMlVW6pPdAIzONxL5vquJeFcT8a4m4l1NVPUuztXMN3rseuLU1A0eOHCAL7/8kk2bNnH8+HHOnz9PSkoKd9xxh+2Y3bt3k5+fj7u7O/fcc09Td0GwA3PnzmXu3LnU1NQAkJiYiIeHB9HR0axevRqLxYKPjw9BQUEkJycDMGjQIGpra9m+fTsAkZGRpKenc+rUKby8vAgNDSUxMRGAfv364ezsTFZWFgCTJ08mMzOTEydO0KZNG8aPH09CQgIAZWVl5OXlsXnzZgAmTJjA7t27KSgowN3dnYiICOLj4wHrLSG9vb1tG6uNHTuWffv2kZ+fj4uLC9HR0cTHx1NbW0tAQAC+vr6kpaUBEBYWRn5+Pnl5eTg5OREbG8uJEyeIi4ujS5cuBAQEsGbNGgBCQkIoLCy0rU7PmjWLpKQkysrK8PPzIzAwkNTUVACCg4OxWCxkZ2cDEBsbS0pKCmfPnqVjx44MGjSI5cuXAzB06FDKy8vZtWsXAE5OTqSkpHD69Gm8vb0JDg5m6dKlAAwcOBCAbdu2ATBlyhQ2bdpEUVERbdu2JSwsjCVLlgBw11130apVK7Zs2QJAeHg4W7du5fjx47Ru3ZqJEyeycOFCAAIDA3F1dQUgISGBiRMnkp2dzZEjR3BzcyMyMpK4uDgAevbsiY+PD+np6QCMHj2a3NxcfvrpJ1q2bMm0adNYuHAh1dXVdO/enc6dO7Nu3ToAQkNDKSgoIDc3F7PZzIwZM1i8eDEVFRV07twZTdNsOSNGjKCoqIi9e/cCMGPGDJKTkzl37hy+vr707duXlStXAjBs2DBKS0vZs2cPADExMaSmplJSUkKHDh0YMmQIa194gbA33+Tcr3/N6f372blzJ+bKSqZWV3P6s88IOX6cE3PnctvDD5Po7Exty5YMGDAAs9nM1q1bAYiIiCAjI4PCwkI8PT0ZM2YMixcvBqBv3764ubmRkZEBwKRJk9ixYwdHjx7Fw8OD8PBwFixYAEDv3r3x8vJi48aNAIwbN46SkhLi4uJwdXUlKiqK+fPno2kaPXr0oGPHjqxfvx6AUaNGcejQIQ4ePIizszMxMTEkJCRQVVVFt27d6Nq1K2vXrgVg5MiRHD9+nP3792MymZg5cyaJiYmcP38ef39/evfubfsM8/PzKS0tJScnB4Dp06ezfPlySktL6dSpE/3792fFihUABAUFUVZWxu7duwEaXSOOHTtGXFxcg2pEnz598PDwaHSNKCwsBGhQjVi0aBGVlZVNUiPqxt6QGjF16lTWrVvXqBpRW1sLQF5ens3N9WqEp6cnmzZtAmD8+PGNrhHHjh1j8+bNDaoRPXv2ZNWqVY2uEc7OzixbtuySGrFs2TIABg8eTFVVFTt37gQgKiqKtLQ0iouLadeuHSEhISQlJQHcdI04duwYZ86caVCNyMnJ4fDhw42qEf7+/oC1zpvN5huqEd9//z0Aw4cPp7i4uNE14vTp05w9e9bu84j6aoTFYiEuLs7u84ir1Yjq6mqysrLsPo+4vEYMHjzY5r3usT3mEdeqES4uLrrMI+qrEXV1trHziJutERUVFbax23MecXmNWLRokc21n5+f3eYR16oRRUVFxMXF2X0eUV+NOHbsGCUlJXafR9RXI2pqamzO7T2PuLxGWCwWACwWC6tXrwbsM4+A+mvEmTNniIuL02UeUV+NqKmpISMjw+7ziPpqRF2t0WMeAZfWCL0xaZqmNUVDtbW1/PGPf+Tdd9+ltraWumZNJhO7du0iMDDQduyKFSuYPHkyTk5OHDx4EF9f36bogqADJSUleHp6UlhYSPv27Y3ujqATFRUVzJkzhxdffBEXFxeju2MfKiuhZUvr4+++g4cegjNnwGyG2tqf/2zbFr74AqZMMbS7eqCEd+EKxLuaiHc1Ee9qIt7VRLyrycmTJ/Hx8cFisdCmTRu75zXZJXKPP/44//jHP6ipqaFTp07ExMRc9dhJkybRvXt3ampqbCvFgnCj1P2LgWrZjpBvJHYf+8WLS1FR1sUlsC4qXfznmTMQGWk9TifEu3rZjpBvJOJdTcS7moh3NVHVuzhXM9/osetJkywwrVu3jk8++QSAP//5zxw6dMh2mubViI2NRdM022mWgnCj1F2+oVq2I+QbiS5jLy+Hhx+Ga53YWffaww9bj9cB8a5etiPkG4l4VxPxribiXU1U9S7O1cw3eux60iQLTB9++CFgvbbyb3/7Gy1atLjue4KCggBs1yoKwo0SEBCgZLYj5BuJLmNfuBBOn77+cZpmPU6nMzDFu3rZjpBvJOJdTcS7moh3NVHVuzhXM9/osetJkywwbdq0CZPJxK9+9asbfo+fnx8Ax48fb4ouCAph5J5dRu8XZnS+kegy9sRE615LN4LZDBc2MrQ34l29bEfINxLxribiXU3Eu5qo6l2cq5lv9Nj1pEkWmOrutNOtW7cbfo+Tk/UGdlVVVU3RBUEh6u7Oolq2I+QbiS5jP3Xq572WrkdtLRQX27c/FxDv6mU7Qr6RiHc1Ee9qIt7VRFXv4lzNfKPHridNssBUdwvzsrKyG35Pfn4+AG3btm2KLgiCIDSedu0adgaTl5d9+yMIgiAIgiAIgtBMaJIFprozl7Zt23bD70lOTgYgMDCwKbogKERYWJiS2Y6QbyS6jD0qqmFnMIWH27U7dYh39bIdId9IxLuaiHc1Ee9qoqp3ca5mvtFj15MmWWAaP348mqYxb968G9ohPSsri6+++gqTycTEiROboguCQtSd/aZatiPkG4kuY4+NhbZtwWS69nEmE7RqBW++CTt22L1b4l29bEfINxLxribiXU3Eu5qo6l2cq5lv9Nj1pEkWmJ5++mlcXV3ZtWsXjz766DX3VVq0aBETJ06ksrKSNm3a8NhjjzVFFwSFyMvLUzLbEfKNRJext2oFX3xhfXy1Raa65z08YP9+GDYM5s613lnOToh39bIdId9IxLuaiHc1Ee9qoqp3ca5mvtFj15MmWWDy9fXlvffeQ9M0Pv/8c7p3786vf/1r2+uffPIJTz75JD169GD69OmcOnUKk8nEvHnz8PT0bIouCApRt0G8atmOkG8kuo19yhTr3eRuu836e92eTHV/3nYbJCXBjz9CRARUVMDTT0N0tN02/Rbv6mU7Qr6RiHc1Ee9qIt7VRFXv4lzNfKPHricmTWu6f3b/9NNP+c1vfkNZWRmmev71vy7KxcWFDz/8kIceeqipogWdKCkpwdPTk8LCQtq3b290dwSdqKioYM6cObz44ou4uLgY3R19KC+HhARYssS6cOTlBVOnQkyM9UwnsJ619P778PzzUFkJ/v7w7bcQEmJs35sIJb0L4l1RxLuaiHc1Ee9qIt7V5OTJk/j4+GCxWGjTpo3d85rkDKY6HnnkEXJycvj9739PQEAAmqZd8uPr68uTTz7Jjz/+KItLwk2zaNEiJbMdId9IdB97q1bwwAOwaBGLnn4aFi2y/l63uATWy+V+8xvYtAl69IDDh60bf58+3aRdEe/qZTtCvpGIdzUR72oi3tVEVe/iXM18o8euJ01+rpafnx9vv/02b7/9NiUlJRQWFlJTU0O7du3w9vZu6jhBQSorK5XMdoR8I3Fo74MGQVYWPPUUjBxp3Shcz/xbGIf2fovnG4l4VxPxribiXU1U9S7O1cw3eux60uAFpkGDBhEaGmr7udaiUZs2bXQ5DUtQiy5duiiZ7Qj5RuLw3lu3hi+/vHSz702brJfXTZ5s//xbFIf3fgvnG4l4VxPxribiXU1U9S7O1cw3eux60uAFpu3bt7Njxw7ef/99AHr16nXJgpOfn1+Td1IQLiYgIEDJbEfIN5Jm471u/7nTp2HmTMjPh2efhTfegJu83l28q5ftCPlGIt7VRLyriXhXE1W9i3M1840eu540eA8md3f3S/ZV2rt3L//5z3/4xS9+QZcuXejevTsPP/wwn332Gbm5ufbos6A4a9asUTLbEfKNpNl5d3OzbgoO8M47MHw47N+vX/4tQrPzfgvlG4l4VxPxribiXU1U9S7O1cw3eux60uAzmCwWC9u2bWP9+vWkpaWRnp5OUVGR7fVDhw7x008/8dVXXwHQsWPHS85w6tOnT9P1XhAEwVFxcYF334UxY+CXv4StW617Nf3739bNwgVBEARBEARBEG4hTJp28YYhN0dOTg5paWmsX7+e9evXk5+ff2lI3SUjgJeXFyEhIbYFp0GDBl3yuuCYzJ07l7lz51JTU8O+ffuYN28eHh4eREdHs3r1aiwWCz4+PgQFBZGcnAxY9+uqra1l+/btAERGRpKens6pU6fw8vIiNDSUxMREAPr164ezszNZWVkATJ48mczMTE6cOEGbNm0YP348CQkJgHXRskuXLmzevBmACRMmsHv3bgoKCnB3dyciIoL4+HjAegmnt7c3GzZsAGDs2LHs27eP/Px8XFxciI6OJj4+ntraWgICAvD19SUtLQ2AsLAw8vPzycvLw8nJidjYWL766iucnJzo0qULAQEBttXokJAQCgsL2bdvHwCzZs0iKSmJsrIy/Pz8CAwMJDU1FYDg4GAsFgvZ2dkAxMbGkpKSwtmzZ+nYsSODBg1i+fLlAAwdOpTy8nJ27doFQFBQEPv37+f06dN4e3sTHBzM0qVLARg4cCAA27ZtA2DKlCls2rSJoqIi2rZtS1hYGEuWLAHgrrvuolWrVmzZsgWA8PBwtm7dyvHjx2ndujUTJ05k4cKFAAQGBuLq6kpcXBx33HEHEydOJDs7myNHjuDm5kZkZCRxcXEA9OzZEx8fH9LT0wEYPXo0ubm5/PTTT7Rs2ZJp06axcOFCqqur6d69O507d2bdunUAhIaGUlBQQG5uLmazmRkzZrB48WIqKiro3LkzrVu3Zs+ePQCMGDGCoqIi9u7dC8CMGTNITk7m3Llz+Pr60rdvX1auXAnAsGHDKC0ttb03JiaG1NRUSkpK6NChA0OGDGHZsmUADB48mKqqKnbu3AlAVFQUaWlpFBQU4OfnR0hICElJSQAMGDAAs9nM1q1bAYiIiCAjI4PCwkI8PT0ZM2YMixcvth7r7U3X//kfXC983pUzZ/LDI49QUFSEh4cH4eHhLFiwAIDevXvj5eXFxo0bARg3bhybN2+mpKQEV1dXoqKimD9/Ppqm0aNHDzp27Mj69esBGDVqFIcOHeLgwYM4OzsTExNDQkICVVVVdOvWja5du7J27VoARo4cyfHjx9m/fz8mk4mZM2eSmJjI+fPn8ff3p3fv3qxcuZIDBw5w3333UVpaSk5ODgDTp09n+fLllJaW0qlTJ/r378+KFSts/42WlZWxe/dugEbXiLi4OFxdXRtUI/r06YOHh0eja0RNTQ0PPPBAg2rEokWLqKysbJIakZWVhaura4NqxNSpU1m3bl2jakRtbS0HDhxg+vTpNjfXqxGenp5s2rQJgPHjxze6Rpw9e5Y+ffo0qEb07NmTVatWNbpG3H333WRnZzeoRhQXF9OuXbubrhF9+/bFzc2NjIwMzp8/T3R0NDt27ODo0aM3VCNycnI4fPhwo2qEv78/q1ev5o477sBsNt9Qjfj+++8BGD58OMXFxY2uEa1atWLs2LF2n0fUVyM2bNhAaWmp3ecRV6sRPXr0wGQy2X0ecXmNGDx4MO+//z533HEHgwcPvqEaAQ2fR1yrRgwaNMhWE+w5j6ivRmzfvh1XV1e7zyOuViOKi4ttf2+60RoBMGnSpEbViG+//Zb9+/czYcIE/Pz87DaPuFaNWLhwIZqm2X0eUV+NOH/+PDExMXafR9RXI5ycnGz/b7L3POLyGmGxWDhw4ABPPvkkq1evvqEa0ZR/11i3bh1lZWW6zCPqqxG9evWiurra7vOI+mpEQkICrq6uuswjLq8RAPfddx8Wi0Wf/bE1O5Cfn699/fXX2uOPP64FBgZqZrNZM5lMth+z2Wz78fT0tEcXBDthsVg0QCssLDSsD5mZmUpmG5lfXl6uzZ49WysvLzckX9NuAe/V1Zo2e7ammc2aNnWqptXW6pt/E4h3+b4bhXjXH/Eu3o1CvOuPeFcz22jvqn7fjM4uLCzUAM1iseiS1+A9mG4Ef39/7r//fj788EP27NlDYWEhixcv5tlnn2Xw4MGYzWbbHk5nz561RxeEW5i6lXvVsh0h30iavfcWLeDVV2HdOvj44583Ay8vv/TOc/bKb6Y0e+/NON9IxLuaiHc1Ee9qoqp3ca5mvtFj15MG78F0M7Rr147Bgwdz7tw5SktLOXnyJIcPH0Zr/NV5giAIzYuRI39+rGnW/ZnKyuDTT6FdO+P6JQiCIAiCIAiC0AiaZA+m+ti7d69tX6a0tDQOHz5se60u0tPTk+HDh9uuWxYcn5KSEjw9PSksLKR9+/ZGd0fQiYqKCubMmcOLL76Ii4uL0d25dfjxRxgwACorwc8PvvkGQkON7pUN8a4m4l1NxLuaiHc1Ee9qIt7V5OTJk/j4+Oi2B1OTXCKnaRrbtm3jn//8JzExMXTo0IHAwECeeOIJvv76a/Lz89E0DT8/P2bMmMEHH3zA9u3bKS4ulsUlocHUbXymWrYj5BvJLen9zjth82bo2ROOHIFRo+C116CmRp/8ZsAt6b2Z5BuJeFcT8a4m4l1NVPUuztXMN3rsenJTl8hVVVWRkZFhO0Np48aNtr2U6s5OMplM9OnTh5CQENtP586dm67ngrKUlZUpme0I+UZyy3ofMACysuCZZ+Dzz2H2bFi7Fr7+2npWk73zHZxb1nszyDcS8a4m4l1NxLuaqOpdnKuZb/TY9aTBC0xhYWFkZGRQUVEB/Lyg5OLiwpAhQ2yLSSNGjOC2225r0s4KAoDfhb90q5btCPlGckt79/CAzz6DsWPhiSfgv/+F8HDYvh3MZvGuYLYj5BuJeFcT8a4m4l1NVPUuztXMN3rsetLgBaa0tDTrG52cGD9+PCNHjiQkJIShQ4fSsmXLJu+gIFxOYGCgktmOkG8kSni//34ICrL++eabYDbrm++AKOHdQfONRLyriXhXE/GuJqp6F+dq5hs9dj25qT2YTCYTNTU1bNy4kfXr17N+/XoyMzOprKxs6v7pRmVlJZ988gkTJ07k9ttvx8XFBQ8PD3r16sUjjzzCDz/8cEPtpKSkEB0djZ+fHy4uLvj5+REdHU1KSsoN96WsrIy33nqLoKAgvLy88PDw4M477+S5554jPz//htvZs2cPTzzxBHfccQeurq60b9+e0NBQPvroI6qrq2+4HUcjNTVVyWxHyDcSZbz36AE//GDdj+kCu998ExS6venFKOPdAfONRLyriXhXE/GuJqp6F+dq5hs9dj1p8BlMv/3tb0lPT2f79u2cOXOG5cuXs2LFCgBatmzJ0KFDbWc1jRgxQpedyhvL4cOHmTx5Mrt27brk+crKSvbt28e+ffv47LPPePbZZ/m///s/TCbTFW1omsYTTzzBvHnzLnm+oKCAJUuWsGTJEh577DE+/PDDet9fR25uLpMnT2bv3r2XPJ+Tk0NOTg4ff/wx3377LeHh4dcc0yeffMJTTz1lu5QRoLy83LYg+Pnnn5OcnEw7uS26IDge5ovW/vfvZ/j778O//gX//jf84hfG9UsQBEEQBEEQBOEqNPgMpnfeeYctW7Zw5swZVq5cyUsvvURoaCitWrWioqKC9PR05syZQ0REBF5eXgwYMIBnnnmG+Ph4jh49ao8xNIrq6upLFpf69evH559/zqZNm0hNTeWVV17B3d0dsI797bffrredl156yba4NHDgQOLi4sjIyCAuLo6BAwcCMG/ePF5++eWr9qW0tJSIiAjb4tKjjz7K6tWr2bhxI6+//joeHh5YLBZiY2PZuXPnVdtZuXIljz32GBUVFXTo0IH33nuPzZs3s2LFCqKjowH44YcfiI6Opra2toGfmPEEBwcrme0I+UairHd3d6oHDIBz5+DBB60/F26qoALKeneAfCMR72oi3tVEvKuJqt7FuZr5Ro9dT27qLnIA7u7ujBs3jnHjxgHWO8tlZmbazpDZsGEDZ86cYefOnezatYt//etfAHTp0sV2htPIkSPp3bt304zkJklKSrItLgUHB7N+/XpatGhhe33cuHHce++9BAcHU1VVxRtvvMGzzz6Lk9PPH92BAwf4+9//DsCQIUNIS0vD1dUVgKFDh3Lvvfdyzz33kJmZyZtvvskvf/lLAgICrujL22+/TU5ODgB///vfef75522vBQcHM2rUKEJDQykrK+N3v/sda9asuaKN6upqnn76aWpra2nTpg0bNmy4JGvixIk89dRT/Otf/yItLY2vv/6aBx98sDEfoe5YLBYlsx0h30iU9d6pE/vmzqX/8uXw6qvw1VfWS+jmz4dBg4zrl04o690B8o1EvKuJeFcT8a4mqnoX52rmGz12PbmpPZjqw9nZmeDgYF544QWWLl3KqVOn2LFjBx988AHTp0/n9ttvR9M0Dh06xNdff80TTzxBnz598PHxaaou3BQbNmywPf7Tn/50yeJSHYMHDyYiIgKA06dP2xaB6njnnXdsexq9//77tsWlOtzc3Hj//fcB6wLQu+++e0VGVVUV//znPwG48847+cMf/nDFMcHBwfzqV78CYO3atWRlZV1xzJIlSzhw4IBtPPUtZL311lu0bdvW9ri5kZ2drWS2I+QbidLe9+6Fl16y3l3O3x/274fgYHjvPUP7pQdKe5fvu3LZjpBvJOJdTcS7mqjqXZyrmW/02PWkyRaYLsdkMnHXXXfx61//mri4OI4cOcKBAwf44IMP6NatG5qmoWkap06dslcXboiLNybv3r37VY+7eKHm4n2NNE0jKSkJgN69e3P33XfX+/67776bXr16AZCYmIimaZe8vm7dOs6cOQPAQw89hNlcv5qHH37Y9njx4sVXvJ6YmFjvsRfj5ubG9OnTAdi9ezf79++v9zhBEByMkBDYvh2ioqCyEgoKjO6RIAiCIAiCIAgCYMcFpjrOnDlDcnIyf/zjH7n//vt59tlnOXjw4DU3utaTnj172h7n5eVd9bjc3FzAunDWo0cP2/MHDx6k4MJf8u65555rZtW9fuTIEQ4dOnTJa+vXr7/iuPoYMmSIbU+o9PT0K16va6dXr1507Njxun25WjuOTGxsrJLZjpBvJOL9Al5esHgxfPst/O1vPz/fjO8MeS3Eu5qIdzUR72oi3tVEVe/iXM18o8euJ02+wHT8+HEWLFjAM888Q//+/fH29iYyMpK3336bjIwMqqqqbGcvubq6XndRxt7MmjXLdqe7N998k5qamiuO2bZtG8uWLQNg5syZl9wZ78cff7Q9vt5+Uhe/fvH7GtKOk5OT7Wyqy9soLS3lyJEjje6Lo5OSkqJktiPkG4l4vwiTCWbNAmdn6+9VVXDPPdY9mm6xhSbxribiXU3Eu5qIdzVR1bs4VzPf6LHryU1v8l1HXl4eaWlprF+/nrS0tCvOArr4UrA2bdowfPhwQkNDCQ0NZejQoTjX/QXJINq3b8/nn3/O/fffz4YNGxg6dCi/+93v6NmzJ6WlpWzYsIH/+7//o7KykgEDBvCPf/zjkvcfPnzY9tjPz++aWf7+/vW+7+Lf3d3due22267bzs6dOzl58iQVFRW4uLgA1jOj6j7vxvTF0Tlr4B20jMx2hHwjEe/XIDERNm60/qxdC998Y92r6RZAvKuJeFcT8a4m4l1NVPUuztXMN3rsetLgBabdu3fbFpTWr1/PsWPHbK9dvq+Qt7c3ISEhtgWlAQMGXHVvISOZOnUqmZmZ/OMf/+DTTz/loYceuuT1Dh068Nprr/HYY4/ZLk+r4+L/WDw8PK6Zc/F7S0tL623nem3U107dAlNT9eViKioqLtlzqqSkpN7n9cTb21vJbCPz6zJVHLvR2TeUf++9mD//HKdnnsG0fj3agAFUz5tH7YWbE9ws4t3BvdsJ8S7ejUK8i3eVso3MF+9qZhvtXdXvm9HZeueatMtXha6D2Wy27Z90+Vv9/PwYOXKkbUHpzjvvbLqe2pGqqipee+01/vOf/1BYWFjvMUOHDuXVV19l8uTJlzz/17/+lVdeeQWA1atXM3r06KvmrFmzhjFjxtje99JLL9leCwgIIC8vD39/f/Lz86/Z3wcffJCvvvoKsJ59VHe20vr16wkNDQXg5Zdf5i9/+ctV26itrbXdMW/MmDGsWrWq3uNmz57Na6+9dsXzL774Iq1atbpmPwVB0Je2p04Rk5BApwsL/5uDgvh+3DhqDD5TVBAEQRAEQRAE/SkvL2fOnDlYLJZLtvqxFzd1iVzdwlJAQIBtMSk0NJRu3bo1aef04Ny5c4SHh5OWlkaLFi144YUX+OUvf0n37t0pLy9n8+bN/OUvfyE9PZ0pU6bwzjvv8Nvf/tb2/osXWS6+I119XLx66Orqeslrde1cr41rtdNUfbmYP/3pT/z+97+3/V5SUoK/vz9PPfUU7du3v25f7cHChQsN2yjNyGwj8ysqKnjnnXd49tlnbWfM6Y14v8H811+n+pVXcHr3XYZlZDCkRw+qP/nkpnLFezPy3oSId/Eu3tXJF+/iXbyrk220d1W/b0Znnzx5kjlz5uiW1+AFpieffJLQ0FDuueeea96lrLnw6quvkpaWBsAnn3xyyeVxLVu2ZNy4cYwaNYrx48ezdu1afv/73zNq1Cj69esHQOvWrW3HX+tSM7AuZtVx+SVsde1cr41rtdNUfbkYFxeXegvQ1Z7XgxYtWiiZ7Qj54t0YGpTv4gLvvAPjx8PTT9Pi1Vdp0ci+i3djMDpfvBuD0fni3RiMzhfvxmB0vnhXK7sOo7wbPXZVveud2+ANkebOncuMGTOabHHJyA2vNE3js88+A6Bnz55X7L1Uh5OTE3/9618B66Vlde+BSzfTrruD29W4eDNt/8s24K1r59y5c5w5c+aG2mnfvv0l/8E0VV8cnaFDhyqZ7Qj5RiLeG8ikSbB3L/To8fNzixdDM9tkULyriXhXE/GuJuJdTVT1Ls7VzDd67HrSJDtuv/HGGzf1PovFwrhx45qiCzfFiRMnKC4uBmDgwIHXPHbw4MG2xzk5ObbHgYGB9T5fHxe/fvn+VDfaTnV1Nbm5ufW24eHhYVssakxfHJ3y8nIlsx0h30jE+03gdNFJqmvXQkwMDBoEWVlN0zEdEO9qIt7VRLyriXhXE1W9i3M1840eu540yQLT//zP/zBv3rwGvcdisTB27Fi2bNnSFF24KZwu+stXdXX1NY+tqqqq933dunWjU6dOAPz3v/+9Zht1l+L5+vrStWvXS14LCQmxPb5WO5mZmbbL20aMGHHF63Xt7N27l+PHj1+1nYsz6mvnejj98pfw1VdgwJdl165dumc6QrYj5BuJeG8krVqBvz8cOADBwdbL6Bp2jwdDEO9qIt7VRLyriXhXE1W9i3M1840eu540yQITwFNPPcXChQtv6Nji4mLGjBlDVlaW7Y50RuDl5WXbSX3Tpk3XXGS6eEHm4s3MTSYTkZGRgPWsoB9++KHe9//www+2s4YiIyOvGHdYWBienp4AfPHFF1fcoa+Ozz//3PZ46tSpV7weFRVV77EXU1ZWxoIFCwDrmVM9e/as97hrYV6+HB58EDp1gqVLG/x+QRB0JjgYtm+HqVOhqgp+/3uIiICTJ43umSAIgiAIgiAItwJaEzB16lTNZDJpLi4u2sqVK695bFFRkTZgwADNZDJpLVq00ObNm9cUXbhpZs2apQEaoM2ePbveY4qLi7XAwEDbcZePce/evZqTk5MGaEOGDNHKysoueb2srEwbMmSIBmhOTk7avn376s15+eWXbRl///vfr3h948aNtpx77rmn3jYqKyu1gIAADdDatGmjHThw4Ipjfv3rX9tyPvvss3rbuRoWi0UDNIv13AdNM5msP0lJDWqnMZw/f163LEfKNjK/vLxcmz17tlZeXm5IvqaJ9yajtlbT/vUvTXNxsX6Hb79dA7gj6gABAABJREFU09asqfdQ8X4LeW8A4l28G4V41x/xLt6NQlXvRmYb7V3V75vR2YWFhda/v1ssuuQ1yRlM8+fPZ9SoUVRWVjJt2rSrnsVz8uRJRo8ezY4dOzCbzXz00Uc8+uijTdGFm+aVV17Bzc0NgNmzZ3PvvfeyaNEitm3bxqZNm3jnnXcYMGAA2dnZAIwZM4bx48df0kbPnj157rnnAOslbCNGjCA+Pp7MzEzi4+MZMWIEmZmZADz//PP0uHjT3Yt4/vnnbWcTvfDCCzz++OOsXbuWH374gTfeeIPx48dTXV2Nq6sr7777br1tODs7895772E2mykpKWHEiBF88MEHZGRksHLlSmJiYvjXv/4FWC+n+8UvftG4D7DuTKuHH9btcrl169bpkuNo2Y6QbyTivYkwmeDJJyEjA+68E44dg7y8S48pL4evvsJp5kwe/OwznGbONOySWPGuJuJdTcS7moh3NVHVuzhXM9/oseuJ0/UPuT4tW7bku+++Y9SoUWRmZjJ58mT++9//0rdvX9sxJ06cYOzYsezZs4cWLVowb948fvnLXzZFfKPo3bs3SUlJzJo1i6KiIpYuXcrSq1zyNXr06KteBvj6669TWFjIp59+yrZt25g5c+YVx/zqV7/ib3/721X70rp1a5YtW0Z4eDj79+9n3rx5V+xt1aZNG7755hsGDBhw1XbCw8P58MMPefrppzlx4gTPPPPMFccEBQWxZMkSWrRocdV2bhhNg9OnISEBHnig8e1dh9OnT9s9wxGzHSHfSMR7E9OvH2zZAt9+C4888vPziYnW30+fxmw20622Fu3wYevzv/0tfPEFTJnS9P25CuJdTcS7moh3NRHvaqKqd3GuZr7RY9eTJtuDyd3dnZSUFHr37s3p06eZMGECBw8eBOD48eOMGjXKtrj0ySefOMTiUh1jx44lJyeHN998k7CwMNq3b4+zszOurq5069aN6dOnk5iYyKpVq2jbtm29bZjNZj755BOWLVtGZGQknTp1omXLlnTq1InIyEiWL1/Oxx9/jNl87Y/8jjvuYNu2bbz55psMGTKE2267DTc3N3r16sWzzz7Lzp07iYiIuO6YHn30UbKysnj00Ufp3r07rVq1ol27doSEhPDvf/+bDRs24O3tfVOfV72YzbBkSdO1dw2atN/NKNsR8o1EvNsBd3d49FHrWU0A33xj3aPpzBkATLW1l/zJmTMQGQnffWef/tSDeFcT8a4m4l1NxLuaqOpdnKuZb/TY9cSkaU17G6EjR44wYsQIDh8+TPfu3Zk/fz4PPPAA+/bto0WLFnz22Wc8oMNZLoJ9KCkpwdPTEwvQ5vIXw8Kst0K3M6WlpXh4eNg9x9GyjcyvqKhgzpw5vPjii7i4uOieD+Ld7vnl5dC27fUvgzOZ4Lbb4OhR653p7Ix4l++7StlG5ot38S7e1ckX72pmG+1d1e+b0dknT57Ex8cHi8Viu8GZPWmyM5jq8PPz4/vvv6d9+/YcPHiQYcOG2RaXvvzyS1lculUxm8HLS5eoq13CeKtnO0K+kYh3O7Nw4Y3tsXTxJbE6IN7VRLyriXhXE/GuJqp6F+dq5hs9dj1p8gUmsG56vXLlSlq3bo2maTg7O/PNN98wa9Yse8QJjkBtrfXSGkEQmieJidaF4htBx0tiBUEQBEEQBEFoHjRok+8vv/yyQY3HxMTw6aefMnnyZMrLy6/6/gcffLBB7QoOiJsbxMToEjVw4EBdchwt2xHyjUS825lTp6wLxTdCbS0UF9u3PxcQ72oi3tVEvKuJeFcTVb2LczXzjR67njRogenhhx/GVLcZ7A1iMplISkoiKSnpqq/LAtMtwPnzkJoK995rdE8EQbgZ2rWznpl0I4tMOl4SKwiCIAiCIAhC86DBl8hpmtbkP0LzQ6tbaGzbFsaMse7LMmMGbNhg9+xt27bZPcMRsx0h30jEu52JimrYGUxwY3s2NRLxribiXU3Eu5qIdzVR1bs4VzPf6LHrSYPOYDp48KC9+iE0M2rDw2HmTOtlcU5O1v2XkpMhIgLS06FPH6O7KAhCQ4iNhd/+Fs6csS4YXw2Tyfr64sXW7/m778KUKXr1UhAEQRAEQRAEB6VBC0xdunSxVz8EB2fu3LnMnTuXmpoaABIiI/Fo0YJok4nVqamUTpvG+IMHuW3PHspCQ/l+9mx6jx9PbW0t27dvByAyMpL09HROnTqFl5cXoaGhJCYmAtCvXz+cnZ3JysoCYPLkyWRmZnLixAnatGnD+PHjSbhw16qAgADy8vLYvHkzABMmTGD37t0UFBTg7u5OREQE8fHxAPTq1Qtvb282XDizauzYsezbt4/8/HxcXFyIjo4mPj6e2tpaAgIC8PX1JS0tDYCwsDDy8/PJy8vDycmJ2NhYzGYzcXFxdOnShYCAANasWQNASEgIhYWF7Nu3D4BZs2aRlJREWVkZfn5+BAYGkpqaCkBwcDAWi4Xs7GwAYmNjSUlJ4ezZs3Ts2JFBgwaxfPlyAIYOHUp5eTm7du0CYPz48aSkpHD69Gm8vb0JDg623ZWg7treuhXyKVOmsGnTJoqKimjbti1hYWEsubAx81133UWrVq3YsmULAOHh4WzdupXjx4/TunVrJk6cyMKFCwEIDAzE1dXV6j0hgYkTJ5Kdnc2RI0dwc3MjMjKSuLg4wLrBv4+PD+np6QCMHj2a3NxcfvrpJ1q2bMm0adNYuHAh1dXVdO/enc6dO7Nu3ToAQkNDKSgoIDc3F7PZzIwZM1i8eDEVFRV07tyZ4cOH23JGjBhBUVERe/fuBWDGjBkkJydz7tw5fH196du3LytXrgRg2LBhlJaWsmfPHsC6N1xqaiolJSV06NCBIUOGsGzZMgAGDx5MVVUVO3fuBCAqKoq0tDSqq6tJTU0lJCTEdrnvgAEDMJvNbN26FYCIiAgyMjIoLCzE09OTMWPGsHjxYgD69u2Lm5sbGRkZAEyaNIkdO3Zw9OhRPDw8CA8PZ8GCBQD07t0bLy8vNm7cCMC4cePo0KEDcXFxuLq6EhUVxfz589E0jR49etCxY0fWr18PwKhRozh06BAHDx7E2dmZmJgYEhISqKqqolu3bnTt2pW1a9cCMHLkSI4fP87+/fsxmUzMnDmTH558kmFvvAEmE6Z6FpnqntH+8AcqPv8c17w8uPdeqsaPJ2XiREo7diQoKIiysjJ2794NQHR0NKtXr8ZiseDj40NQUBDJyckADBo06Lo1orq6mri4uAbViD59+uDh4dHoGtGiRQuABtWIRYsWUVlZ2SQ1om7sDakRU6dOZd26dY2qEbUXzlDLy8uzublejfD09GTTpk2AtU41RY3YvHlzg2pEz549WbVqFdC4GjFx4kSWLVvWoBpRXFxMu3btmqRGVFdXc+bMmQbViJycHA4fPtyoGuHv7w9Y67zZbK63RiQmJnL+/Hn8/f3p3bs333//PQDDhw+nuLiYnJwcAKZPn87y5cspLS2lU6dO9O/fnxUrVgBcs0bcdtttnD17tkE14mbmEfXViPbt2xMXF2f3ecTVasSgQYPIysqy+zzi8hoxePBgm/e6x/aYR1yrRkyZMkWXeUR9NaKuztp7HnG1GhEYGGgbuz3nEZfXiEWLFtlc+/n5Ndk8oiE1olWrVsTFxTWoRtzMPKK+GlFdXU1JSYnd5xH11YihQ4fanNt7HnF5jbBYLABYLBZWr14N2GceAfXXCC8vL+Li4nSbR1xeI4YOHUpGRobd5xH11Yi6WqPHPAIurRG6ozWQzMzMhr5FuIWwWCwaoBUWFl754qlTmhYYqGmgab16adrJk3bpQ2pqql3adfRsI/PLy8u12bNna+Xl5Ybka5p4142kJE1r21bTQKs1my/5U2vbVtO++8563NmzmvbHP2qas7P1tZYtNe2llzTt/Pkm7Y541x/5vot3oxDv+iPexbtRqOrdyGyjvav6fTM6u7CwUAM0i8WiS16D92AaOnQofn5+PP744yQnJ1Ouwx4cQjPBywtWrgR/f9i713q53LlzTR5TVFTU5G02h2xHyDcS8a4T994LR4/CV19Re++9HOzaldp774WvvrI+X3c5nIcHzJkDu3bB+PFQWQmLFsGFs36aCvGuJuJdTcS7moh3NVHVuzhXM9/osetJgxeYAI4ePcrHH39MZGQk7dq1Y8qUKcybN8+YU7AEx8LPz7rI5OUFmzdb93WpqmrSiLZt2zZpe80l2xHyjUS860irVvDAA1TPn8+XDz9M9fz58MAD1ucvp1cvSEmx7sn00Ufg7Gx9vrISLpzG3RjEu5qIdzUR72oi3tVEVe/iXM18o8euJw1eYDpy5Agffvgh4eHhtGrVivPnz7Ns2TKefPJJ/P39GTx4MLNnz7ZdAy8oyJ13wrJl4OoKK1bAI4/c+N2pboCwsLAma6s5ZTtCvpGIdwfGZLJu9D9y5M/Pvfsu9O0LL74IpaU33bR4VxPxribiXU3Eu5qo6l2cq5lv9Nj1pMELTJ06deKxxx5j6dKlFBUVkZSUxKOPPsrtt9+Opmls27aNv/71rwQFBeHr62s79vz58/bov+Co3H03JCRYL5f5+mv44x+brOm6zeOMwMhsR8g3EvHezNi2zXr24ptvQu/eEB9/7bvTXQXxribiXU3Eu5qIdzVR1bs4VzPf6LHryU1dIleHq6srU6ZM4aOPPuLIkSNs2bKFV155hYEDB6JpGseOHeOTTz4hKioKb29vuZRONcLD4dNPrY/fftv6IwiCGsTFwdKl0L07FBTAzJkwZgxcuMOGIAiCIAiCIAi3Fo1aYLqcusvjMjMz5VI6wcqDD8Jbb1kfP/88fPllo5u86667Gt1Gc8x2hHwjEe/NkIgI64LSX/5i3b9p7Vro3x8+/viGmxDvaiLe1US8q4l4VxNVvYtzNfONHrueNOkC08VcfCndqVOn+O677655Kd3jjz/Ojh077NUdwUieew7+8Afr40cegeXLG9Vcq/o2GtYJI7MdId9IxHszpVUrePll+PFHiIoCsxlCQhrwdvGuIuJdTcS7moh3NVHVuzhXM9/oseuJ3RaYLqZVq1ZERERccindq6++ysCBAwE4duwYH3/8MUlJSXp0RzCCv//deheqmhrrneV++OGmm9qyZUsTdqz5ZDtCvpGI92ZO166wZIn1jKbevX9+/r334Br/uCDe1US8q4l4VxPxriaqehfnauYbPXY90WWB6XIGDx7Mq6++SmZmJocPH+bDDz9k8uTJuLm5GdEdQQ/MZut+TJMmQVkZTJ5sPaNBEAS16NHj58dbt8LvfgeDBsEzz8CZM0b1ShAEQRAEQRCERmLIAtPF1F1K99133/Hcc88Z3R3Bnjg7w8KFEBQExcUwYQIcOdLgZsLDw+3QOcfPdoR8IxHvtyA+PtYzGmtr4YMPoGdP60J0ba3tEPGuJuJdTcS7moh3NVHVuzhXM9/oseuJ4QtMgmK4u8OyZdCrFxw+bF1kKi5uUBNbt261U+ccO9sR8o1EvN+C+PlBfDysWgV33gknT8KvfgXDh0NmJiDeVUW8q4l4VxPxriaqehfnauYbPXY90WWBKS8vjxdffJGIiAiioqJ4+eWXOXjwoB7RgiPi7Q0rV4KvL2Rnw5Qp1svmbpDjx4/bsXOOm+0I+UYi3m9hxoyx7sP09tvg4QGbN8PEiVBWJt4VRbyriXhXE/GuJqp6F+dq5hs9dj1xasybMzMz+e677zCZTLzwwgu4u7tfcUxycjLTp0+noqLC9tzSpUt5++23+eKLL5g+fXpjuiA0V7p0gZQUGDkSNm6EGTOsGwA7Xf8/ydatW+vQQcfLdoR8IxHvtzjOzta7Td53H7zwgvUsJjc369g1zfpj1vekW6M/d6PzjUS+72oi3tVEvKuJqt7FuZr5Ro9dTxo1W//3v//N66+/zvr16+tdXDp+/DgPPPAA5eXlaJpGQEAAvXv3xmQyUVFRwUMPPUROTk5juiA0Z/r2haVLrbcxT06Gxx6z/iXyOkycOFGHzjletiPkG4l4V4Tbb4evvoInngAujH3pUuvebY24++TNYPTnbnS+kcj3XU3Eu5qIdzVR1bs4VzPf6LHrSaMWmFatWgXAfffdV+/r//znPykpKaFFixYsWrSIffv2sWfPHlavXo27uzuVlZW89957jemC0NwJCbHuwdKiBXz2Gfz5z9d9y8KFC3XomONlO0K+kYh3xTCZAFi4YAHMng1ZWRAcDI88AoWFunTB6M/d6Hwjke+7moh3NRHvaqKqd3GuZr7RY9eTm15gqqqq4vDhwwCEhITUe8yCBQswmUzcf//9TJ061fb8Pffcw3PPPYemaaxZs+ZmuyDcKtx7L8ybZ308Zw68+66h3REEwYEwmWDFCnj4Yevvn31mvUnABx9AdbWhXRMEQRAEQRAE4WdueoHpxIkTtsddu3a94vVjx47ZNvKOjY294vWYmBgA2yKVoDiPPAL/+7/Wx88+C3FxVz00MDBQp045VrYj5BuJeFeTwMBA6NDBurC0cSMMGgRnzsAzz8DgwXa9bM7oz93ofCOR77uaiHc1Ee9qoqp3ca5mvtFj15MGbfLdrVs3TBcuW6iqqrI9X98HdvGm3k8++SROl23erF3Ya6e8vJzu3btf8lpeXl5DuiXowNy5c5k7dy41NTUAJCYm4uHhQXR0NKtXr8ZiseDj40NQUBDJyckADBo0iNraWrZv3w5AZGQk6enpnDp1Ci8vL0JDQ0lMTASgX79+OEdHo/33v/RauRLtoYfYcfgwP/r706ZNG8aPH09CQgIAPj4+5OXlsXnzZgAmTJjA7t27KSgowN3dnYiICOLj4wHo1asX3t7ebNiwAYCxY8eyb98+8vPzcXFxITo6mvj4eGprawkICMDX15e0tDQAwsLCyM/PJy8vDycnJ2JjY9mxYwfZ2dl06dKFgIAA2xl4ISEhFBYWsm/fPgBmzZpFUlISZWVl+Pn5ERgYSGpqKgDBwcFYLBays7MB6wJsSkoKZ8+epWPHjgwaNIjly5cDMHToUMrLy9m1axcAgwcPJiUlhdOnT+Pt7U1wcDBLly4FYODAgQBs27YNgClTprBp0yaKiopo27YtYWFhLFmyBIC77rqLVq1asWXLFgDCw8PZunUrx48fp3Xr1kycONF2KmdgYCCurq4AJCQkMHHiRLKzszly5Ahubm5ERkYSd2FBsGfPnvj4+JCeng7A6NGjyc3N5aeffqJly5ZMmzaNhQsXUl1dTffu3encuTPr1q0DIDQ0lIKCAnJzczGbzcyYMYPFixdTUVFB586dcXd3t+WMGDGCoqIi9u7dC8CMGTNITk7m3Llz+Pr60rdvX1auXAnAsGHDKC0tZc+ePYB1cTs1NZWSkhI6dOjAkCFDWLZsme3zraqqYufOnQBERUWRlpbGkSNHOHHiBCEhISQlJQEwYMAAzGaz7bajERERZGRkUFhYiKenJ2PGjGHx4sUA9O3bFzc3NzIyMgCYNGkSO3bs4OjRo3h4eBAeHs6CBQsA6N27N15eXmzcuBGAcePGkZ+fT3Z2Nq6urkRFRTF//nw0TaNHjx507NiR9evXAzBq1CgOHTrEwYMHcXZ2JiYmhoSEBKqqqujWrRtdu3Zl7dq1AIwcOZLjx4+zf/9+TCYTM2fOJDExkfPnz+Pv70/v3r1tn2F+fj6lpaW2PfOmT5/O8uXLKS0tpVOnTvTv358VK1YAEBQURFlZGbt37wZodI3IzMwkOzvbWiPatWPr739PwJo1DFm8GNPOnaxbsoRzp05dUiP69OmDh4dHo2tEdXU1/fv3b1CNWLRoEZWVlU1SI+rG3pAaMXXqVNatW9eoGlFbWwtY/19c5+Z6NcLT05NNmzYBMH78+EbXiJKSEsrLyxtUI3r27Gm7dL8xNWLo0KEsW7asQTWiuLiYdu3aNUmNKCsro0uXLg2qETk5ORw+fLhRNcLf3x+w1nmz2XxDNeL7778HYPjw4RQXFze6Rri4uNC9e/ebn0c4O5OVlQXA5MmTyczM5MSJE1fMI+qrEYcOHSI7O9vu84ir1YiAgACysrLsPo+4vEYMHjzY5r3usT3mEdeqEf3799dlHlFfjdi2bRvZ2dl2n0dcrUaUlJTYxm7PecTlNWLRokU2135+fnabR1yrRmRnZ5OdnW33eUR9NaKsrIxu3bo1qEY01d81zGazzbm95xGX1wiLxQKAxWJh9erVgH3mEVB/jTh48CDZ2dm6zCPqqxE9evQgIyPD7vOI+mpE3ZxOj3kEXFojdEdrAK+++qo2e/Zsbfbs2dozzzyjmUwmrUWLFtorr7xie77uZ/jw4ZrJZNL8/PyueK3ux2w2ay1atLjiecFxsVgsGqAVFhbaJ6CmRtNmzbLeM8rdXdMyMq445Ntvv7VP9g1gZLaR+eXl5drs2bO18vJyQ/I1TbwbgUN7P3lS0+bOvfS5rCxNq6y0f7ZOiHf1so3MF+/i3SjEu/6IdzWzjfau6vfN6OzCwkIN0CwWiy55DTqDafbs2bbHx44d44MPPkDTNKZPn06fPn0uOTY9PR2TycSYMWN49dVXr2jr/PnzvPbaa7Ru3bre1wVFMZvh88/h5ElYtQrCw2HDBujZ0+ieCYLgSHh7w69//fPvJ07AqFHg62vdn2n0aOP6JgiCIAiCIAgKctN7MN1+++20bdsWgPfff/+S13788UfbqWjjxo2r9/11p5vVnZItCDZatoTFi637qxQVwfjxcNHpfePHjzesa0ZmO0K+kYh3NbnhsefkWGvHjz/CmDEwYwYcOaJPtp0wOt9I5PuuJuJdTcS7mqjqXZyrmW/02PXkpheYwHpNrKZp/Oc//+HRRx9l6dKlfPLJJ0yaNImamhratm17yd3jLqbu+t0BAwY0pgvCrUrr1rB8OfToAT/9BBMnWjf2Bdv1xEZgZLYj5BuJeFeTGx77PffA3r3w1FPWMyEXLLDebW7OHLhoT0C7ZNsJo/ONRL7vaiLe1US8q4mq3sW5mvlGj11PGrXA9Je//AVvb280TePTTz8lKiqKxx57jPz8fEwmE6+//jpubm71vvfzzz/HZDJd9QwnQcDHB1auhI4dYdcuuPdeOH+eI408K6ExGJntCPlGIt7VpEFj9/KyXh6XlQXDh0NZGfzpT9Y7z93EIpPRn7vR+UYi33c1Ee9qIt7VRFXv4lzNfKPHrieNWmC6/fbb2bBhA2FhYWiaZvu57bbb+Oc//8njjz9e7/sSExPZtWsXrq6uVz3DSRAA6NYNUlKgTRtYvx7uuw83FxfDunO1BVNV8o3EyLEb/bkbnW8kNzX2AQMgPR2++AI6dIBx4+Am6obRn7vR+UYi33c1Ee9qIt7VRFXv4lzNfKPHricmTdO0pmjoxIkTHDx4EFdXV/r06YOT09X3D//xxx8pLCykTZs2ttsdCs2DkpISPD09KSwspH379voF//e/MGGC9SyERx+Fjz4Ck0m/fMWpqKhgzpw5vPjii7gYuMAn6Mst4d1isdaKNm2sv+/eDUuWwPPPQ6tWxvbNQbklvAsNRryriXhXE/GuJuJdTU6ePImPjw8Wi4U2dfNhO9KoM5gupkOHDtx9993079//motLAHfeeSf33HOPLC4JN84998C331r3VvnPf8CgOw/GxcUZkuso+UZi5NiN/tyNzjeSRo/d0/PnxSVNs+7R9Mor0KcPJCfbN7uRGJ1vJPJ9VxPxribiXU1U9S7O1cw3eux60mQLTIJgd6Kj4V//sj7+619h7lxj+yMIQvPjySehUyfIy4MpUyAiAnJzf369vBy++gqmTWP0X/8K06ZZfy8vN67PgiAIgiAIgtAMkAUmoXnx+OMcrdvb65lnrHeK0pGePXvqmudo+UZi5NiN/tyNzjeSJh27yQQzZ1rvNvfCC+DsDMuWWc9meuUVWLjQuvj04IOQmEiHH3+ExETr7506wdKlTdeXG0C8q5ftCPlGIt7VRLyriarexbma+UaPXU9kgUlodtT8+c/w619bL3d54AFYvVq3bB8fH92yHDHfSIwcu9Gfu9H5RmKXsXt4wJtvws6d1g3AKyqsZ0XOmAFnzliPqa299M8zZyAyEr77run7cxXEu3rZjpBvJOJdTcS7mqjqXZyrmW/02PWkUQtMhw4d4p///Ce/+c1v+N3vfseHH37IsWPHbvi9o0ePZsyYMY3pgqAg6Rs2wHvvQUwMVFXB1Kmwdas+2enpuuQ4ar6RGDl2oz93o/ONxK5j790bVq6EuDio2zvwave9qHv+4Yd1u1xOvKuX7Qj5RiLe1US8q4mq3sW5mvlGj11Prr0b9zV46aWXeOutt6iurr7k+WeffZann36av/3tb9fcnf7cuXOsW7cOk9wJTLgZWrSAr7+GU6dg7VqYNAk2bIA77jC6Z4IgNCdMJutC9WX/L6sXTYPTpyEhwXr2pCAIgiAIgiAINm7qDKYXX3yRN954g6qqKjRNu+SnoqKCf/zjHwwZMoS9e/c2dX8FgdGjR1sfuLhY90cZMAAKC2HCBDh+XJ9sgzA630iMHLvRn7vR+Uaiy9gTE613qLwRzGZYssSu3alDvKuX7Qj5RiLe1US8q4mq3sW5mvlGj11PGrzAtHPnTt566y0A2rdvz/vvv8/u3bvJysri//7v/+jcuTOaprFnzx5GjBjBli1bmrzTgtrkXnzHpzZtYMUK6N7deleoSZOgpESfbAMwOt9IjBy70Z+70flGosvYT536ea+l61FbC8XF9u3PBcS7etmOkG8k4l1NxLuaqOpdnKuZb/TY9aTBC0wfffQRmqbRtm1bNm3axFNPPUVgYCADBw7k2Wef5ccff+Spp54CoLi4mDFjxrB27dom77igLj/99NOlT3TsaN1HxccHtm+HqCjrpr16ZOuM0flGYuTYjf7cjc43El3G3q7djZ/BBODmZr++XIR4Vy/bEfKNRLyriXhXE1W9i3M1840eu540eIHpv//9LyaTiWeffZbu3btf8bqrqyvvv/8+X331FS4uLpSWljJ58mSSk5ObpMOC0LJlyyufvOMO65lMrVtb92R64AGoqdEnW0eMzjcSI8du9OdudL6R6DL2qKgbP4MJYNasnx/bccNv8a5etiPkG4l4VxPxriaqehfnauYbPXY9afAC0+HDhwEYNWrUNY+7//77WbFiBa1bt6a8vJxp06YRHx9/c70UhIuYNm1a/S8MGmTdS6VlS+smvL/5zdXvCNXU2TphdL6RGDl2oz93o/ONRJexx8ZC27bWDb+vhckEt91mvYMlwLFj4OcHzz9v3QeuiRHv6mU7Qr6RiHc1Ee9qoqp3ca5mvtFj15MG30Wu/MK/1rq6ul732LCwMFavXs2kSZM4deoUDzzwAOfOneORRx5peE8FQ5k7dy5z586l5sJZQYmJiXh4eBAdHc3q1auxWCz4+PgQFBRkO1tt0KBB1NbWsn37dgAiIyNJT0/n1KlTeHl5ERoaSmJiIgD9/j975x0W1bH+8c+uIIgIioiGYiMq9o5dMUZjQUEUNc2YntzExNRrfjfJNbkpmn4TTTHtJiZBBBQRew0WFHtHjQ3FKGJZRKS55/fH0FREVtg9izOf59mHLWfPd2a/7Mvwnpl32rXD0dGRrVu3AjBs2DC2bNnCmTNncHNzY9CgQURHRwOQmZnJgAED2LRpEwD33Xcfe/bsITU1lZo1axL8yy8YHngAw9dfc8psJv+NN1i/fj0A9957LwcPHiQlJQUnJyfCwsKIjIzEbDbj7++Pj48PCQkJgPj9TUlJ4ciRIzg4OBAeHs7nn39OgwYNaNSoEf7+/qxatQqA3r17k5aWxsGDBwG4//77mT9/PllZWfj6+tKqVSuWLVsGQI8ePTCZTOzbtw+A8PBwlixZwqVLl2jQoAGdOnVi0aJFAHTt2pXs7Gx2794NgMFgoHbt2ly4cAFPT0969OjBggULAOjYsSMA27dvB2D48OEkJiaSnp5OnTp1CAoKYl5BceK2bdvi7OxcVCNt6NChbNu2jdOnT1OrVi0GDx5MVFQUAK1atSr6vkdHRzN48GD27dvHyZMncXFxISQkhIiICACaN2+Ol5dX0Vac99xzD4cPH+b48eNUr16dUaNGERUVRX5+Pk2bNqVhw4asWbMGgL59+5Kamsrhw4cxGo2MHTuWuXPnkpOTQ8OGDTl69CjVqlUDoFevXqSnpxdtJDB27Fji4+O5fPkyPj4+tGnThqVLlwLQrVs3MjMz2bt3LwCjR49m2bJlZGRkUL9+fbp06cLChQsB6Ny5M3l5eezatQuA0NBQEhIS2LNnD23btqV3797Mnz8fgA4dOmA0Gtm2bRsAwcHBJCUlkZaWhru7OwMGDGDu3LkAtGnTBhcXF5KSkgAYMmQIO3fu5NSpU7i6ujJ06FDmzJkDQEBAAB4eHmzYsAGAgQMHEhUVRe3atalRowahoaHMnj0bTdNo1qwZDRo0YO3atYBI/B87doyjR4/i6OjI6NGjiY6OJi8vjyZNmtC4ceOiJct9+vTh9OnTHDp0CIPBwLhx44iNjeXKlSv4+fkREBBQ9BmmpKSQmZlJcnIyAGPGjGHRokVkZmbi7e1N+/btWbx4MQCBgYFkZWWxZ88egArHiK+//hpvb2+LYkTr1q1xdXW9eYwIDi664NGiRQs8PT05+thj9P3sMzAYMJSSmC585vznn7Os4Hs0bN8+3M6dg08+If/LL3F4/nniW7bkUs2alRIjVqxYgbe3t0UxYuTIkaxZs6ZCMcJcMJvryJEjRd7cKka4u7uTmJgIwKBBgyocI1JSUujdu7dFMaJ58+asWLECqFiMMBqNuLq6WhQjzp8/T926dSslRpw6dYrHH3/cohiRnJzMiRMnKhQj/Pz8ABHnjUZjuWLE8uXLAejZsyfnz5+vcIw4d+4cjzzyiNXHEaXFiNmzZ1OnTp2bxojKGkfExMSQm5t7Q4zIzc2lTZs2Vh9HXB8jOnfuXOR74X1rjCPKihG5ublFu1JbcxxRWoxYvXo13t7eVh9H3CxGJCYmFo2xrDmOuD5GxMTEFHnt6+trtXFEWTFi+vTpeHl5WX0cUVqMOHXqFE8++WSljiPKGyOSk5NxdHQELIsRlfG/hslkAsBkMrFy5UrAOuMIKD1G/Pbbb3h4eNhkHFFajMjLyyMgIMDq44jSYsT333+Pt7e3TcYRcG2MsDmahdx1112a0WjU4uPjy/2ePXv2aN7e3prBYNCMRqP25Zdfanv27Cl6rKg6mEwmDdDS0tJ0a8Mff/xx64OmT9c0MX9J07791rbaVkQv/ezsbG3KlCladna2Lvqapu9nr3yXxPf58zWtTh0RN4zGa3/WqaNpcXHXHm82a9rChZoWGFgcb5ydNW3SJE07darCzVG+y6etp77yXfmuF8p326N8l1Nbb99l/b7prZ2WlqYBmslksomexUvkWrVqBVCUpS0PrVu3JiEhoWiHuUmTJjFt2jRLpRUKgFJrf93Ac8/BW2+J+//4BxRkd22ibUX01tcTPfuu9+eut76e2LTvI0bAqVMwaxaEhmLq1EnUZ5o1Szw/fPi1xxsMMHQobNwoasB17y5qMn3xBbRpA1lZFWqO8l0+bXvQ1xPlu5wo3+VEVt+V53Lq6913W2JxgqlXr15omlY0tbK8+Pv7s27dOpo3b46mafz++++WSisUADRs2LB8B77zDjz5pCje+8AD8OefttO2Enrr64mefdf7c9dbX09s3ndnZ7FJQEwMWfHxEBMjHjs73/w9BgMMHgwbNogdLXv0gPHjr91t7tw5i5uifJdP2x709UT5LifKdzmR1XfluZz6evfdllicYBo0aBAAf/31V9EaxfJSuMa3ffv2aJVcfFkhD4XraG+JwQBffy1mIOTkiNkJO3faRttK6K2vJ3r2Xe/PXW99PalSvhsMMGgQrF8PU6cWP79xI/j4wMSJcPKk9fTvIKqU73eYvp4o3+VE+S4nsvquPJdTX+++25LbmsHk5+eH0WhkypQpFgvWq1ePNWvW0KNHD4vfq1BYjIMD/PEH9OkDGRlilsHRo3q3SqFQ3MkYDODkVPx43jyR5J4+Hfz9xbLdgh1ZFQqFQqFQKBSKOwWLE0wAx48fJy8vr6h6u6W4u7uzevVqjh49ypEjR27rHAp56du3r2VvqFED4uKgbVs4fVrMMLjNLcUt1q5k9NbXEz37rvfnrre+ntwRvk+dCqtWQb9+kJsL33wjEk3PPAPHj1tfvwpyR/heRfX1RPkuJ8p3OZHVd+W5nPp6992W3FaCqTKoXr06jRo1olGjRno1QVFFSU1NtfxNtWvDkiXQqBH89ZcozHvpkm20KxG99fVEz77r/bnrra8nd4TvBgP07w9r1sDq1RAUBHl58N13cO+9ok6cNfWrIHeE71VUX0+U73KifJcTWX1Xnsupr3ffbYluCSaF4nY5fPjw7b3R2xuWLQNPT9i6FcLCxGwCW2hXEnrr64mefdf7c9dbX0/uON+DgkSS6c8/4Z574JVXwFjwpzg/H44ds65+FeGO870K6euJ8l1OlO9yIqvvynM59fXuuy1RCSZFlcNorMCvbfPmsGgR1KwJK1bAI4/cdPZApWtXAnrr64mefdf7c9dbX0/uWN/79oWVK+Hpp4uf++03aNYMHn8cjhxRvkuobQ/6eqJ8lxPlu5zI6rvyXE59vftuS3Tr6dWrV0lJSSElJUWvJiiqKGPHjq3YCbp2hblzRQHw2bPhpZegnLsaVli7guitryd69l3vz11vfT254303GIrvb9woZjH99BM0b87YJUvEkl4JueN9t2N9PVG+y4nyXU5k9V15Lqe+3n23JbedYMrKyuL999+nY8eOuLm5Ubt2bbp3787nn39Odnb2Ld+fnJxM48aNadq06e02QSEpc+fOrfhJBg2CX34R97/88totxa2tXQH01tcTPfuu9+eut76eSOX7t9/Chg1it8urV+F//4OAADHT8tAh27ZFZ6Ty3c709UT5LifKdzmR1XfluZz6evfdltxWgunEiRN06tSJt99+m127dpGZmUlGRgabN2/m1VdfJSAggD///LNc59LKOXNEoSgkJyenck70wAPwxRfi/v/9H/z4o+20bxO99fVEz77r/bnrra8n0vneowcsXgwbN5LaoYNINP36q9hxTiKk892O9PVE+S4nync5kdV35bmc+nr33ZZYnGC6evUqo0aN4uDBg2iahqOjI126dKFt27ZUq1YNTdNISUlhwIABfPzxx9Zos0JyGjZsWHkne/FFmDxZ3H/qKYiLs532baC3vp7o2Xe9P3e99fVEWt+7dePY9OmwaRMMGwZvvVX82rlzkJysX9tsgLS+24G+nijf5UT5Liey+q48l1Nf777bEosTTFFRUWzZsgWDwcCYMWM4deoUSUlJ7Ny5k9TUVF555RUcHBwwm81MnjyZ119/3RrtVkhM8+bNK/eEH3wAjz4qin2PHQvr1tlO20L01tcTPfuu9+eut76eSO97YCDEx4vd5wr55BNo1UrMwty/X7f2WRPpfZcU5bucKN/lRFbfledy6uvdd1ticYJp9uzZAHTt2pWIiAg8PDyKXqtXrx4ff/wxa9euxdfXF03T+PTTT3lGsqn9CuuyYsWKyj2hwQAzZ0JwMGRnw/DhsGePbbQtRG99PdGz73p/7nrr64nyvRROnhQbE0REQOvWMG4c7N1r28ZZGeW7nCjf5UT5Liey+q48l1Nf777bEosTTFu3bsVgMPDCCy9gKLn7TQm6devG5s2b6dSpE5qm8f333/Pggw9y9erVCjdYobAKDg4QGQk9e8LFi3DffXD8uN6tUigUihuZNQu2b4eRI0WiKTIS2raFMWNumhxXKBQKhUKhUCisjcUJpvT0dABatmxZ5nH169dnzZo1BAUFoWkas2fPZtSoUeTl5d1eSxWKAnr16mWdE7u4wIIFYunJqVMiyVTw+2517XKit76e6Nl3vT93vfX1RPl+Ezp0gLlzYccOGDVKJJqiomD6dFs1z6oo3+VE+S4nync5kdV35bmc+nr33ZZYnGCqVq0aANnZ2bc81tXVlcWLFxMcHIymaSxYsIDg4GCuXLlieUsVigLSr0v6VCoeHrB0Kfj5wYEDorjuuXNixsCoUdQJCxP/zM2aJZbT2Rir9t3O0bPven/ueuvrifL9FrRvD9HRsHOnmMH0xhvFrx04IBJQVRDlu5wo3+VE+S4nsvquPJdTX+++2xIHS9/g6+vLoUOHOHToED169Ljl8U5OTsybN4+HHnqIyMhIVqxYwX333ce0adNuq8EKfZgxYwYzZswoWuYYGxuLq6srYWFhrFy5EpPJhJeXF4GBgcTHxwPQqVMnzGYzOwr+wQkJCWHdunWcO3cODw8P+vbtS2xsLADt2rXD0dGRrVu3AjBs2DC2bNnCmTNncHNzY9CgQURHRwOQkZFB7dq12bRpEwD33Xcfe/bsITU1lZo1axIcHExkZCQALVq0wNPTk/Xr1wNw7733cvDgQVJSUnByciIsLIzIyEjMZjP+/v74+PiQsHYtbi+8wJAPPsCYlIS5fn2MV6+C0Ugtsxnztm0Y587FPHEia594glOdO9O7d2/S0tI4ePAgAPfffz/z588nKysLX19fWrVqxbJlywDo0aMHJpOJffv2ARAeHs6SJUu4dOkSDRo0oFOnTixatAgQtc6ys7PZvXs3IHZxTEtL48KFC3h6etKjRw8WLFgAQMeOHQHYvn07AMOHDycxMZH09HTq1KlDUFAQ8+bNA6Bt27Y4OzuzefNmAIYOHcq2bds4ffo0tWrVYvDgwURFRQHQqlUratSoAUB0dDSDBw9m3759nDx5EhcXF0JCQoiIiABEATsvLy/WFRRKv+eeezh8+DDHjx+nevXqjBo1iqioKPLz82natCkNGzZkzZo1APTt25fU1FQOHz6M0Whk7NixzJ07l5ycHBo2bMihQ4c4cOAAIK4CpKenFz0eO3Ys8fHxXL58GR8fH9q0acPSpUsBsWQ3MzOTvQU1akaPHs2yZcvIyMigfv36dOnShYULFwLQuXNn8vLy2LVrFwChoaEkJCSwe/du0tPT6d27N/PnzwegQ4cOGI1Gtm3bBkBwcDBJSUmkpaXh7u7OgAEDmDt3LgBt2rTBxcWFpKQkAIYMGcLOnTs5deoUrq6uDB06lDlz5gAQEBCAh4cHGzZsAGDgwIEkJiZy4MABatSoQWhoKLNnz0bTNJo1a0aDBg1Yu3YtAP379+fYsWMcPXoUR0dHRo8eTXR0NHl5eTRp0oTGjRuzevVqAPr06cPp06c5dOgQBoOBcePGERsby5UrV/Dz8yMgIKDoM0xJSSEzM5Pkgp3LxowZw6JFi8jMzMTb25v27duzePFiAAIDA8nKymJPwVKtisaIVatWceDAAYtiROvWrXF1da1wjPj777/p1KnTjTEiIQGAoKAgUlJSOHLkCA4ODoSHhxMTE0Nubi6NGjXC39+fVatWAdxWjCjse7lixN69EBrKyPr1WbNkCRcuXGDA9Ol4bdjAyc6d2TNqFI1HjixXjDCbzQAcOXKkyJtbxQh3d3cSExMBGDRoUIVjxPHjx8nLy7MoRjRv3ryoxkFFYoTZbObvv/+2KEacP3+eunXrVkqMSE1NpWnTphbFiOTkZE6cOFGhGOHn5weIOG80GssVI5YvXw5Az549OX/+fIVjRHp6Os2aNbP6OKK0GLFhwwYOHDhQOeOI24gRV65cQdM0q48jRo4cyZo1a4rGEZ07dy7yvfC+NcYRZcWIrKysou+qNccRpcWIwjhr7XHEzWLE1q1bi/puzXHE9TEiJiamyGtfX1+rjSPKihEJCQkcOHDA6uOI0mJEamoqd999t9XHEaXFiL179xZ5bu1xxPUxwmQyAWAymVi5ciVw6xhRmf9rrF+/ngMHDthkHFFajMjOziY/P9/q44jSYkRhrLHFOAKujRE2R7OQsWPHagaDQXvkkUcsep/ZbNaeeOIJzWAwaEajUfPz8yu6r6g6mEwmDdDS0tJ0a8Mff/xhG6GPPtI0sfCk9JvBIG7z59umPZoN+34d2dnZ2pQpU7Ts7Gxd9DVNv77rra2nvvK9Cvuel6dpDzwgYlRhzBoxQtO2bLnlW5XvVdj3CqB8V77rhfLd9ijf5dTW23dZv296a6elpWmAZjKZbKJn0DRNsyQh9e233/KPf/wDV1dX/v77b2rWrGlRQuvll1/miy++wGAwoGkaBoNBFf+uQmRkZODu7k5aWhr16tXTpQ1msxmj0eLVnZaRnQ3e3qLgd1lfEYMBatcWNZucna3bJmzU91LIyclh6tSpTJ48GScnJ5vrg35911tbT33l+x3g+/798N57MHs2FMxMIjgY3nkHOnW69tjsbIiK4urcuaRs307Djh2pFhYG4eE2iW8lUb6r77tM2nrqK9+V78p3ebT19l3W75ve2mfPnsXLywuTyYSbm5vV9Szu5bBhwzAYDFy+fJlvvvnGYsHPPvuMt99+GwvzWgpFEYXTYq1KVBRcuFB2cgnE6xcuiBooNsAmfbdT9Oy73p+73vp6onyvIC1bwu+/w7598NBDYDRCfDwULOEpIi5OJNXHj8cYF0eT48cxxsXB+PHi+YLp8bZC+S4nync5Ub7Liay+K8/l1Ne777bE4hpMfn5+vPnmm5w6dYpz587dluiUKVOoW7du0ZpBhcISLl++bH2R2Fjxj1jhFf+yMBph3jzxz5uVsUnf7RQ9+6735663vp4o3yuJFi3E5gRvvQVffglPP1382gcfwJtvFj00FMS9wp9cvAghISIujhhReW0qA+W7nCjf5UT5Liey+q48l1Nf777bEosTTADvvPNOhYUnTpzIxIkTK3wehXz4+PhYX+TcufIll0Acd/68ddtTgE36bqfo2Xe9P3e99fVE+V7JNG8O06cXP87KEkmnsmZrappYDjxhgs2WAyvf5UT5LifKdzmR1XfluZz6evfdlui3CFKhuE3atGljfZG6dcXMpPJgNIKHh3XbU4BN+m6n6Nl3vT93vfX1RPluZX77rXzJdBsvB1a+y4nyXU6U73Iiq+/Kczn19e67LVEJJkWVo3BLSKsSGmrZDKaC7b+tjU36bqfo2Xe9P3e99fVE+W51EcuS6QXbD1sb5bucKN/lRPkuJ7L6rjyXU1/vvtuS21oiVxrHjx9n//79nDhxgszMTK5cuUKNGjVwdXXFz8+Pli1b0qhRo8qSUyisS3g4vPjirXeRK2TzZhg3Dhwq7SulUCgU1sdOlwMrFAqFQqFQKKoeFfpv+OjRo3zxxRfExsZy8uTJWx7v4+NDaGgoL774Iv7+/hWRrhSCgoL4888/LXrP6tWrCQoKKvW1JUuWMHPmTJKSkjh79iz16tUjMDCQp556isGDB5fr/FlZWcyYMYOoqCj++usvcnNz8fPzY9iwYbzwwgs0bNiwXOfZu3cvX331FStWrCA1NRVXV1datmzJgw8+yOOPP45DFU6EdOvWzfoizs7wyy+isK3BUHqSqeTzX34JO3dCZCTUr2+1Ztmk73aKnn3X+3PXW19PlO9WpnA5cHmSTAYDHDgAK1bAgAHisZVQvsuJ8l1OlO9yIqvvynM59fXuuy257SVyb7/9NgEBAUyfPp0TJ06gadotbydPnmTGjBm0atWKt956qzL7YROMRiPNmjW74XlN03j66acZMmQI8+bNIzU1ldzcXFJTU5k3bx5Dhgzh6aefRrvFTJjDhw/TqVMnXn/9dTZv3syFCxe4fPkyycnJfPrpp7Rr145Fixbdsp0//vgjnTt35rvvvuPw4cNkZ2eTnp7O2rVreeaZZ+jTp89t7wBoD2RmZtpGaPhwsWtS7driceEyksKftWuLrb1jYsDVFf78Ezp3ho0brdYkm/XdDtGz73p/7nrr64ny3cpYshxY0+Dvv2HgQGjZUhQLz8iwSrOU73KifJcT5bucyOq78lxOfb37bktuK8H07LPP8v7775OXl4emabRo0YKnnnqKzz77jKioKBYtWsTKlStZtGgRUVFRfPbZZzz11FMEBASgaRp5eXl88MEHPF1ym2Qd+Pnnn9m9e3eZt8jIyKLjBwwYUGoF+DfffJOZM2cC0LFjRyIiIkhKSiIiIoKOHTsCMHPmzDKTapmZmQQHB3PgwAEAnnzySVauXMmGDRt4//33cXV1xWQyER4ezq5du256nqVLl/LUU0+Rk5ND/fr1+fLLL9m0aROLFy8mLCwMgI0bNxIWFoa5vP9U2Bl79+61ndiIEWLXpFmzIDSUMy1bin/IZs0Szw8fDmFhkJQEAQGQmgp9+8K335ZvaZ2F2LTvdoaefdf7c9dbX0+U71YmPBzq1Ln1bCSDAdzc4JlnREL9wAGYOBF8fOC552D//kptlvJdTpTvcqJ8lxNZfVeey6mvd99ticXrpJYuXcp3332HwWCgS5cufPXVVxZN+dq4cSMvvPACW7Zs4YcffmDUqFEMGjTI0mZUCk2aNLnlMbNmzSq6P378+Bte/+uvv/joo48A6NKlCwkJCdSoUQOArl27MmLECPr168eWLVuYNm0ajz76aKnLAz/55BOSk5MB+Oijj3jttdeKXuvRowf9+/enb9++ZGVlMWnSJFatWnXDOfLz83n++ecxm824ubmxfv36a7QGDx7Mc889x9dff01CQgK//fZbqX1SXIezMzz0EDz0EKsiIrj//vtvPKZlS5FkevRRMaPp2Wdh0yb4+mso+H1QKBQKu6O8y4FB7Dg3fDhMmyaS7NOnQ3KyiHOOjvDFFzZtukKhUCgUCoXCztAsJCwsTDMYDFrnzp21rKwsS9+uaZqmXblyRevUqZNmNBq1kSNH3tY5bMHVq1c1Hx8fDdBcXV21y5cv33DMP/7xDw3QAC0xMbHU8yQmJhYd8/zzz9/wem5urla7dm0N0Fq2bKldvXq11PM8/fTTRefZsmXLDa/PmTOn6PUPP/yw1HNcvnxZq1OnjgZobdq0Kav7pWIymTRAS0tLs/i9lUVubq79apvNmjZtmqYZjZoGmtapk6YdPWo7fSuRnZ2tTZkyRcvOztZFX9Ps3Pc7VF/5LpHv8+drWp06mgaauSB+Ff7U6tTRtLi4G99jNmvaihWaFhqqaQcOFD+fmKhpH36oaRX4O6F8tz3q+6581wvlu+1Rvsuprbfvsn7f9NZOS0vTAM1kMtlEz+IlcklJSRgMBl5//fWimTqW4uzszD//+U80TWPz5s23dQ5bsHLlSlJTUwEYPXo0Li4u17yuaRrz588HICAggO7du5d6nu7du9OiRQsAYmNjb6jFtGbNGi5evAjAI488gvEmW0ZPmDCh6P7cuXNveD02NrbUY0vi4uLCmDFjANizZw+HDh0q9Th7ZtmyZfarbTDA66/DsmXg6Qnbtom6TJXUZj37rjd27fsdrq8nyncbUWI5sHnECI42box5xIhrlwNfj8Egin3PmwfNmxc//9ln8MYb4OcHEybAli0WN0f5LifKdzlRvsuJrL4rz+XU17vvtsTiBNPZs2cBKrwLXOH709PTK3Qea/Lrr78W3S9tKdnRo0eLElD9+vUr81yFr588eZJjx45d89ratWtvOK40unTpQs2aNQFYt27dDa8XnqdFixY0aNDglm252XnsnQwrFZWtVO0BA2DrVujSRWzrPXgwfPBB+YvpVlT/DqRK+H6H6uuJ8t2GFCwHzp89m18nTCB/9myxPNjZ2bLzhISI2JeTI5bfde0K3buLJXY5OeU6hfJdTpTvcqJ8lxNZfVeey6mvd99ticUJpnr16gFix7OKUPh+T0/PCp3HWmRmZjJv3jwAGjZsSFBQ0A3H7C9R1DQgIKDM85V8ff91xVDLex4HB4eixNz158jMzOTkyZMVbktVoH79+lVDu2FDWLsWnnhC1DX5179EQXCTyTb6dxhVxvc7UF9PlO9VkAcfhM2bRR26hx+G6tWL799zT7lOoXyXE+W7nCjf5URW35Xncurr3XdbYnGCKTAwEE3T+Pjjj8kp55XI68nOzmbatGkYDAa6du16W+ewNjExMVy+fBmAhx9+GEMpO+ycOHGi6L6vr2+Z5/Pz8yv1fSUf16xZk9q1a5frPGfPnr3m8z958mTR0ruKtKUq0KVLl6qj7ewM338vbtWrw/z5EBgI+/bZRv8Ookr5fofp64nyvQoTGAi//gonTsD774Ovr9i1rpDsbFi9utTC4sp3OVG+y4nyXU5k9V15Lqe+3n23JRbvIvfkk08yb948tm3bRr9+/fjqq68sShIlJSUxceJEtm/fjsFg4KmnnrK0CTbhVsvjAC5dulR039XVtczzFS5tAzHbqLTz3OocpZ3HycmpUttyPTk5Odcksgqn913/vC2Ji4sjvOQ/KVVB++GHMQQE4Hj//RgOHkQLDCR/5kzMo0bZRr+CFHqtl+dQRX2v4vrKd+V7peDuDq+8Ai++CPn5RcvkjL//juMTT2Bu2ZKrzz6L+YEHoODvl/L9DvD9NlC+K99l0tZTX/kup7bevsv6fdNb29Z+G7TrK06Xg6effprvv/++aFZPQEAA/fr1IyAgAF9fX1xdXalevTq5ublFS7eSk5P5888/SU5OBkSB7Mcff5zvv/++cntUCZw8eZJGjRphNpvp3r07iYmJpR73n//8h7fffhsQBcHvKWPq/6pVqxgwYEDR+958882i1/z9/Tly5Ah+fn6kpKSU2bbx48cza9YsQMw+KpyttHbtWvr27QvAW2+9xbvvvnvTc5jNZqpVqwbAgAEDWLFixU2PnTJlCu+8884Nz0+ePBlnS+tyKHC5fJlR0dE0PXoUgA09erDi3nvRCvxQKBQKWei+YQP9V6+mel4eANlOTuzs0IHNXbtyzk6XzysUCoVCoVBUJbKzs5k6dSomkwk3Nzer61k8gwngu+++w9PTk48//pj8/HySk5OLEke3QtM0HBwcePXVV3n//fdvR97q/Pbbb5gLijE/8sgjNz2uZIIlNze3zHOWzBxev/te4XludY6yzlNZbbmeN954g5dffrnocUZGBn5+fjz33HNF9bhszV9//cXdd99ddbX//W/y//1vHD79lJ6JiXR3dCTvt9/Ay8s2+rdBTk4On3/+OS+99FLRrDlbU+V9r4L6ynflu7V910wm8n/7DeM33+D8119027SJbps2kdmzJ46LF4MOv3fKd/V9l0lf+a58V77Lo62377J+3/TWPnv2LFOnTrWZ3m0lmADef/99HnvsMT777DPi4uKKdlMrC29vb0JCQpg0aRLNmjW7XWmrUzhDyMnJibFjx970uFq1ahXdv9VSs8J6TnDjErbC89zqHGWdp7Lacj1OTk6lBqCbPW8rqrS2kxN88gn06AETJmBMSMCpZ0+IjoZu3ayvXwGU7/qhd9/11pdRW299m/ju5QUvvwyTJsGKFTB9OsTHg9mMU8mrbFlZ4OJi3baUQPku53dO+S7nZ698l/Ozl1W7UF+vNthD32XTtrWuxUW+S+Lv78+MGTM4ceIEhw8fJj4+nm+++YaPPvqId999l48++ohvvvmGBQsWcPjwYU6ePMmMGTPsOrm0ZcsW9hUUYA4ODqZOnTo3PbZkMe3CHdxuRsli2iWLbJc8z+XLl7l48WK5zlOvXr1rflkqqy1VgV27dt0Z2qNGQVIStGgBJ09C377w3XelFry1in4V447xvQrq64nyXRKMRhg0COLi4PBhEkJDi1/7+2+46y547DHYts3qTdH7c9dbX0/U911OlO9yIqvvynM59fXuuy257RlM19OkSROaNGlSWafTjZLFvctaHgfQqlWrovu3WiJY8vWWLVvecJ6YmJii47p3717qOfLz8zl8+HCp53B1dcXPz48TJ05UqC0KG9OypUgyTZgA8+bBM8+IxzNmiB3oFAqFQjaaNMHUsGHx43nzICMDfv5Z3Hr0gOefh9Gjxe6cCoVCoVAoFAq7oEIzmO408vLymD17NiBmCA0ZMqTM45s0aYK3tzcAf/75Z5nHJiQkAODj40Pjxo2vea13795F98s6z5YtW4qWt/Xq1euG1wvPc+DAAU6fPn3T85TUKO089k5oySvbd4K2mxvExMDUqeIq/k8/Qe/ecPy4bfSrCHec71VIX0+U73JyTd+ffRbWr4f77wcHB0hMhAcfhIYN4e234cIF62nrgN76eqK+73KifJcTWX1Xnsupr3ffbYlKMJVg8eLFnD17FoAHHngAB4eyJ3gZDAZCQkIAMSto48aNpR63cePGollDISEhRbvvFRIUFIS7uzsAv/zyCzfb2O9///tf0f2RI0fe8HrJX9ySx5YkKyuLOXPmAGLmVPPmzUs9zp4pTNbdUdoGA/zzn7B0KdStC1u3QufOsHy5bfSrAHek71VEX0+U73JyTd8NBujZE/74A1JS4J13xJK5M2fg44/LXFZcYW0d0FtfT9T3XU6U73Iiq+/Kczn19e67LVEJphKUXB43fvz4cr1n0qRJRYmoiRMncuXKlWtev3LlChMnTgTAwcGBSZMm3XCO6tWr88ILLwCwf/9+PvnkkxuOSUxM5McffwSgX79+dO3a9YZjRo4cib+/PwAffvhh0XK6krz22mtcKLja+9prr5Wrj/bG+fPn71zte+8tTi6dOweDB4uZTQX/QOnZd725o323c309Ub7LyU37ftddYtbS8eMwZw689x54eBS//thjMHMmlNjMotK0bYTe+nqivu9yonyXE1l9V57Lqa93321JhRJM69ev56WXXmLEiBGEhoYyefJktpWzAOehQ4do2rRpUUJEby5cuEB8fDwAbdq0oVOnTuV6X/PmzXn11VcBsYStV69eREZGsmXLFiIjI+nVqxdbtmwBRELnZgXOX3vttaLZRK+//jpPP/00q1evZuPGjXz44YcMGjSI/Px8atSowRdffFHqORwdHfnyyy8xGo1kZGTQq1cvpk+fTlJSEkuXLmX06NF8/fXXgFhO9/DDD5f787En6tate2drN2oE69bB44+D2QxvvCEKgmdk6Np3vbnjfbdjfT1RvsvJLfvu6Ajh4fDKK8XPbd0qajQ9/TT4+Ijd6f76q/K1rYze+nqivu9yonyXE1l9V57Lqa93322Kdhvk5uZqDz74oGY0Gku9jR49WktLSyvzHHv27NEMBoNmNBpvpwmVzjfffKMBGqB99NFHFr336tWr2mOPPVb0/tJujz/+uHb16tUyz3Po0CGtWbNmNz2Hm5ubtmDBglu2Z+bMmVr16tVvep7AwEDt7NmzFvWxEJPJpAG39NeaXL58WR7tmTM1rXp1TQNNa9FCy9qyxbb6BWRnZ2tTpkzRsrOzddHXNMl8txN95bvyXS9uq+8XLmjaZ59pmr+/iJmgaQaDpg0dqmmLFmlaWX+Dr1zRtF9/1bSwMC2/Tx9NCwsTj69cue0+3C7Kd/m09dRXvivf9UJW3/XU1tt3Wb9vemunpaVpgGYymWyid1szmJ544gn++OMPNE0r9TZ37lzatWvHunXrbjvxZWtmzZoFQLVq1XjwwQcteq/RaOTHH39k4cKFhISE4O3tTfXq1fH29iYkJIRFixbxww8/YDSW/XHffffdbN++nWnTptGlSxdq166Ni4sLLVq04KWXXmLXrl0EBwffsj1PPvkkW7du5cknn6Rp06Y4OztTt25devfuzTfffMP69evx9PS0qI/2xPz58+XRfvJJWLsWfH3hwAEcevWCqCjbtsFOkMp3O9PXE+W7nNxW32vXhpdegoMHYdEiGDpUPF94v2CW8g3ExYG3N4wfD7GxVFu7FmJjxWNvb1iw4Ha7cVso3+XTtgd9PVG+y4msvivP5dTXu++2pOwq1qWwbt06Zs2ahcFgoFmzZnz66acEBQWRm5vLmjVrmDZtGklJSZw5c4ZBgwYxe/ZsRowYYY22Vyrr16+v8DmGDh3K0MIB7W1Ss2ZNXn/9dV5//fUKnadNmzbMnDmzQudQ2AmBgWLpx7hxOK5eDWPGwKuvwocfih2VFAqFQlGM0QhDhojbX3/BN9/AsmXFCScQSScfH1HLqeTOLmbztT8vXoSQEJFwqgJjGYVCoVAoFAo9sXgGU2GhaR8fHzZs2MCwYcOoWbMmderUYeTIkSQmJvLxxx/j4OBAdnY2o0eP5vfff6/0hivkpUOHDvJpe3nBsmWce+wx8fiTT2DQIEhL06c9OiCl73airyfKdzmptL7ffTd8+ins2lWckM/PF3WaOnQQ9e0KF9SVRuHzEyZAdnbltOkWKN/l07YHfT1RvsuJrL4rz+XU17vvtsTiBNOGDRswGAy88soreJTcuaWAwteWL19OnTp1yM/P55FHHuHbb7+tlAYrFLdaaninauPgQPrrr4udk2rWhNWrxW5zSUn6tcmGSOu7HejrifJdTiq97wZD8f2LF6FnT/Fcfv6t36tpcOECREdXbptugvJdPm170NcT5bucyOq78lxOfb37bkss7umpU6cA6NGjR5nH9evXj4SEBLy9vTGbzTz33HN88sknt9dKhaIE5d2p8E7TLtIPDxdJpebN4eRJ6NMHvv9e13bZAul9lxTlu5xYte+enhAZCYMHX5t4KgujEebNs16bSqB8l0/bHvT1RPkuJ7L6rjyXU1/vvtsSixNMeXl5gCiGfStat27N2rVradKkCZqm8c9//pN///vflrdSoVBcS6tWsHkzjBwJubnw1FPwxBM2W8KhUCgUVZ6srJsvjbsesxnOn7duexQKhUKhUCiqOBYnmLy8vABISUkp1/FNmjRh7dq1tGzZEk3TeO+993jllVcslVUoiijPTnp3ovYN+m5uEBMjin0bjfDjj2I20/Hj+jXQiijf5UT5Lic26XvduiJ2lpezZ8WsUSujfJdP2x709UT5Liey+q48l1Nf777bEosTTG3atAFg7dq15X6Pt7c3CQkJdOzYEU3T+OKLL5g0aZKl0goFAEk61hzSU7tUfYMBJk+GJUvEP0tbtoi6TCtW6NNAK6J8lxPlu5zYpO+hocW7xZWHvXuhYUMYMAD+9z+4dMkqzVK+y6dtD/p6onyXE1l9V57Lqa93322JxQmmPn36oGkaUVFRaOWdWg7UrVuX1atX07NnTzRNY9WqVZZKKxQApOm4c5qe2mXqDxwIW7eK5NK5c3DffTB1avmXf1QBlO9yonyXE5v0PTwc6tS5dR0mgwFcXKB3bxFTV62CRx8VhcKtgPJdPm170NcT5bucyOq78lxOfb37bkscLH3D4MGD+de//sWpU6eYO3cuo0aNKvd73dzcWL58OaGhoSxfvtxSaYWOzJgxgxkzZnD16lUAYmNjcXV1JSwsjJUrV2IymfDy8iIwMJD4+HgAOnXqhNlsZseOHQCEhISwbt06zp07h4eHB3379iU2NhaAdu3a4ejoyNatWwEYNmwYW7Zs4cyZM7i5uTFo0CCiC3bwycvL48iRI2zatAmA++67jz179pCamkrNmjUJDg4mMjISgBYtWuDp6cn69esBuPfeezl48CApKSk4OTkRFhZGZGQkZrMZf39/fHx8SEhIACAoKIiUlBSOHDmCg4MD4eHhpKenExERQaNGjfD39y9KlPbu3Zu0tDQOHjwIwP3338/8+fPJysrC19eXVq1asWzZMkAUyDeZTOzbtw+A8PBwlixZwqVLl2jQoAGdOnVi0aJFAHTt2pXs7Gx2794NQM2aNVmyZAkXLlzA09OTHj16sGDBAgA6duyI4ccfcZg0Cf81a+CNNzgTH0/Co49Sy8eHoKAg5hUUqW3bti3Ozs5s3rwZgKFDh7Jt2zZOnz5NrVq1GDx4MFFRUQC0atWKGjVqABAdHc3gwYPZt28fJ0+exMXFhZCQECIiIgBo3rw5Xl5erFu3DoB77rmHw4cPc/z4capXr86oUaOIiooiPz+fpk2b0rBhQ9asWQNA3759SU1N5fDhwxiNRsaOHcvcuXPJycmhYcOGVK9evUinV69epKenc+DAAQDGjh1LfHw8ly9fxsfHhzZt2rB06VIAunXrRmZmJnv37gVg9OjRLFu2jIyMDOrXr0+XLl1YuHAhAJ07dyYvL49du3YBEBoaSkJCAmlpaSxbtozevXszf/58QGw3ajQai4r2BQcHk5SURFpaGu7u7gwYMIC5c+cCYuani4tL0dWLIUOGsHPnTk6dOoWrqytDhw5lzpw5AAQEBODh4cGGDRsAGDhwIFlZWURERFCjRg1CQ0OZPXs2mqbRrFkzGjRoUDSjtH///hw7doyjR4/i6OjI6NGjiY6OJi8vjyZNmtC4cWNWr14NiIsFp0+f5tChQxgMBsaNG0dsbCxXrlzBz8+PgICAos8wJSWFzMxMkpOTARgzZgyLFi0iMzMTb29v2rdvz+LFiwEIDAwkKyuLPXv2AFQ4RqSlpREREWFRjGjdujWurq4VjhHp6ekAFsWImJgYcnNzKyVGFPbdkhgxcuRI1qxZc9MYAbB9+3YAhg8fTmJiIunp6dSpU6coRpgLZvUcOXKkyJtbxQh3d3cSExMBGDRoUIVjRFpaGps2bbIoRjRv3pwVBbM3yxsjvB97jL6ffQYGA4ZSEvJaQfIp4dlnOdW5M93eeYeasbHUiI7mePPm3H3lCgkJCVxMSyMwPp4GkyYRe/QoGAy3HSPS0tK4ePGiRTEiOTmZEydOVChG+Pn5ASLOG43GcsWIwrFcz549OX/+fIVjxKVLl7h06ZLVxxGlxYjLly8TERFh9XHEzWKE0Whk69atVh9HXB8jOnfuXOR74f1bxQiwfBxRVoxwd3e3yTiitBhRGGetPY44f/48devWvWEcoWlaUd+tOY64PkbExMQUee3r62u1cURZMeLChQtERERYfRxRWoxIS0sjIyPD6uOI0mJEtWrVijy39jji+hhhMpkAMJlMrFy5ErDOOAJKjxGZmZlERETYZBxRWoyoVq0aSUlJlTqOgPLFiMJYY2mMqIz/NWyNQbNkGlIB/fr149SpU7Rs2ZK4uDiLRfPy8hg3bhzz5s3DYDAUJS0U9k9GRgbu7u6kpaVRr149XdqQk5ODk5OTdNrl1tc0savc889DXh60aCF2P2rZskK6U6dOZfLkyVJ+9lXCdyvpKt+V73pg077HxcGECXDhgqjJZDYX/6xTB375BYYPv/Y9miY2WChsY2ys2HQBoE0bePhhePBB8PGxuDnKd/m09dRXvivfZfzsZdbW03dZv296a589exYvLy9MJhNubm5W17N4iRzAn3/+yaFDh24ruQTg6OhITEwMZrNZJZcUFlOYqZVNu9z6BoPYVW7tWvHPzYEDEBgoCoJXYZTvcqJ8lxOb9n3ECDh1CmbNgtBQzrRsKeozzZolnr8+uQQizpYcKHp7w+jR4rk9e+Cf/wQ/P7F8+ddf4fLlcjdH+S6ftj3o64nyXU5k9V15Lqe+3n23JbeVYFIoFFWAbt1g2zYICoLMTPHPz+uvQ36+3i1TKBQK+8LZGR56CGJiWPXWWyIh/9BD4vnyEBgIUVFw+jTMnCl29NQ0seHCI4/csbt7KhQKhUKhUJREJZgUVY7CnQxl074tfS8vWL4cXn1VPP74Y1EA/OzZym+clVG+y4nyXU6qrO+1a8OTT0JCAhw5Au++K4qJt2pVfMwLL8Arr8COHaVuxKB8l0/bHvT1RPkuJ7L6rjyXU1/vvtsSlWBSVDlcXFyk1L5tfQcHkViKjISaNcUOSJ07Q0HRvaqC8l1OlO9yckf43qQJvPUWFBTeBcBkEjXyPvsMOnaEdu3go48gNbXy9asgd4TvVVRfT5TvciKr78pzOfX17rstUQkmRZWjsDq+bNoV1h8zBjZtgubN4cQJseX2999XXuOsjPJdTpTvcnLH+u7iArNnw6hRUL36tfWa7r0X4uOV7xJq24O+nijf5URW35Xncurr3XdbohJMCoVMtG4NSUkQEiJ2QHrqKbGcIztb75YpFArFnY+jo4i/0dGiXtN334lkv6bBypWwf3/xsXl5oDZCUSgUCoVCUYVQCSZFlWPIkCFSaleavrs7zJ0L778vdkL64QdRkDYlpeLntiLKdzlRvsuJFL7XqVO842dhvaYHHijWnz1bzGx69VXYudM2bdIZKXy3U309Ub7Liay+K8/l1Ne777ZEJZgUVY6dOg609dSuVH2jEf7v/2DJEvDwgC1bRF2mlSsr5/xWQPkuJ8p3OZHO98J6TT4+xfqxsfD33/Dpp9Chg6jX9PHHcOqU7dtnI6Tz3Y709UT5Liey+q48l1Nf777bEpVgUlQ5Tuk4uNZT2yr6gwbB1q3QqROkp4vHH31UvLNRdjbMmoXDuHGM//lnHMaNg1mzdFlSp3yXE+W7nCjfgYgIkWQqrNe0eze8/rqY1TR4sFjmfIehfJcT5bucyOq78lxOfb37bktUgklR5XB1dZVS22r6jRvDunUwYQKYzaLgbHi42HXO2xvGj8cYF0eT48cxxsXB+PHi+QULKr8tZaB8lxPlu5wo3xFJpZL1mr79Fnr1EnE6O1u8Xsj27XdEvSblu5wo3+VEVt+V53Lq6913W2LQtMKpCgrFrcnIyMDd3Z20tDTq1aunSxuuXr1KtWrVpNO2ur6miYKzL7wgisuCqNFUWogwGMTP2FgYMcI67bkO5bvt9XNycpg6dSqTJ0/GycnJ5vqgfFe+y6VdLv0jR+DiRTHzFCAtTST969eHBx6Ahx8Wy+ksRPlu575bCeW78l35Lo+23r7L+n3TW/vs2bN4eXlhMplwc3Ozup6awaSocsyZM0dKbavrGwzwzDOwfHlxAulm+efC5ydMsNlyOeW7nCjf5UT5XgZNmxYnlwD27hWbN5w6BZ98Au3bi5pNn34qajjdCjtaCq18lxPlu5zI6rvyXE59vftuS1SCSaFQXEtKys0TSyXRNLhwQSzfUCgUCoU+9O8vEknz5kFYmFg6t3On2H3O1xfi4m7+3rg4u1oKrVAoFAqFomqjEkyKKkdAQICU2jbTj40Vu8yVB6NR/FNjA5TvcqJ8lxPlu4VUrw6hoRATI5JN33wDPXuCg4Oo21TIqlVilurVqyK5FBoqltsBBrP5mp9cvChqQJWVoKpklO9yonyXE1l9V57Lqa93322Jg94NUCgsxcPDQ0ptm+mfOyeKyJYHsxnOn7duewpQvsuJ8l1OlO8VOoFY7vzMM6I+U926xa+9+SYkJsJddxXH7rKWQhsMYin0qVPg7FyxdpWr6cp3GVG+y4msvivP5dTXu++2RM1gUlQ5NmzYIKW2zfTr1rVsBpONAqbyXU6U73KifK8kvLyK7+fni9pMdeqIWU45ObdeDm3jpdDKdzlRvsuJrL4rz+XU17vvtkQlmBQKxbWEhlo2g6l3b6s2R6FQKBSVgIMDfP21SC51717+99lwKbRCoVAoFIqqjVoipygXM2bMYMaMGVy9ehWA2NhYXF1dCQsLY+XKlZhMJry8vAgMDCQ+Ph6ATp06YTab2bFjBwAhISGsW7eOc+fO4eHhQd++fYmNjQWgXbt2ODo6snXrVgCGDRvGli1bOHPmDG5ubgwaNIjogiuoDRs25MiRI2zatAmA++67jz179pCamkrNmjUJDg4mMjISgBYtWuDp6cn69esBuPfeezl48CApKSk4OTkRFhZGZGQkZrMZf39/fHx8SEhIACAoKIiUlBSOHDmCg4MD4eHhaJpGREQEjRo1wt/fn1WrVgHQu3dv0tLSOHjwIAD3338/8+fPJysrC19fX1q1asWyZcsA6NGjByaTiX379gEQHh7OkiVLuHTpEg0aNKBTp04sWrQIgK5du5Kdnc3u3bsB6Nu3L0uWLOHChQt4enrSo0cPFhQUYe3YsSMA27dvB2D48OEkJiaSnp5OnTp1CAoKYl7BPwlt27bF2dmZzZs3AzB06FC2bdvG6dOnca9ZkyG1a8PFixjK+J3QQLz+xhvs2rCB/cHB3N2mDV5eXqxbtw6Ae+65h8OHD3P8+HGqV6/OqFGjiIqKIj8/n6ZNm9KwYUPWrFlT1LfU1FQOHz6M0Whk7NixzJ07l5ycHBo2bEjnzp2JiIgAoFevXqSnp3PgwAEAxo4dS3x8PJcvX8bHx4c2bdqwdOlSALp160ZmZiZ79+4FYPTo0SxbtoyMjAzq169Ply5dWLhwIQCdO3cmLy+PXbt2ARAaGkpCQgK5ubksW7aM3r17M3/+fAA6dOiA0Whk27ZtAAQHB5OUlERaWhru7u4MGDCAuXPnAtCmTRtcXFxISkoCYMiQIezcuZNTp07h6urK0KFDi3aXCAgIwMPDo+hKx8CBA6lbty4RERHUqFGD0NBQZs+ejaZpNGvWjAYNGrB27VoA+vfvz7Fjxzh69CiOjo6MHj2a6Oho8vLyaNKkCY0bN2b16tUA9OnTh9OnT3Po0CEMBgPjxo0jNjaWK1eu4OfnR0BAQNFnmJKSQmZmJsnJyQCMGTOGRYsWkZmZibe3N+3bt2fx4sUABAYGkpWVxZ49ewAqHCNyc3OJiIiwKEa0bt0aV1fXCseIQiyJETExMeTm5lZKjCjsuyUxYuTIkaxZs6ZCMcJckGA+cuRIkTclY0StWrUYPHgwUVFRALRq1Qp3d3cSExMBGDRoEPv27ePkyZO4uLgQEhJS9N1t3rx5uWJEbm4umzZtsihGNG/enBUrVgAVixFBQUEsXLjQohhx/vx56tatWykxIjc3l4sXL1oUI5KTkzlx4kS5Y0QTk4n6lBOzmTPJydSHG2LE8uXLAejZsyfnz5+vcIxwdXXl0qVLVh9HlBYj6tSpQ0REhNXHETeLEW3atGHr1q1WH0dcHyM6d+4MQHR0dNH9io4jLI0RAwcOtDhG3M44orQYURhnrT2OuFmMuPvuu4v6bs1xxPUxIiYmpshrX19fq40jyooRDg4OREREWH0cUVqMyM3NJSMjw+rjiNJiRLt27Yo8t/Y44voYYTKZADCZTKxcuRKwzjgCSo8Rbm5uRERE2GQcUVqMaNeuHUlJSVYfR5QWIwpjjS3GEXBtjLA5mkJhASaTSQO0tLQ03dqwdu1aKbVtqh8Xp2kGg7iJRRLX3gpfa9Om+Dl/f02Lj7dak5Tvtic7O1ubMmWKlp2drYu+pinf9UD5LoHvYWGaZjSWHt9Lu7m7a9qUKZq2a5emmc1Wa5by3fao77vyXS9k9V1Pbb19l/X7prd2WlqaBmgmk8kmemqJnKLKceLECSm1bao/fLjYTa52bQC0gppMhT+pXRvmz4dduyAiQmxnffgwBAeL9x45UulNUr7LifJdTpTvVsaSpdAAJhNMmQLt2kGzZlBwVbyyUb7LifJdTmT1XXkup77efbclKsGkqHLUqFFDSm2b648YIXYOmjUL84gRHG3cGPOIETBrlnh++HCxw9C4cXDgALz+uqjxER8PrVrBv/8NV65UWnOU73KifJcT5buVCQ8Xxb4NZS2ERrzu7g4zZ4q/Cc7OIv43blx8THw8LF8OeXkVbpbyXU6U73Iiq+/Kczn19e67LTFo2q22EFEoisnIyMDd3Z20tDTq1aund3MUNiInJ4epU6cyefJknJycbn5gcjJMnAgF65dp3Bg+/xxCQm79j4zC7ii374o7CuW7JCxYIGIzlL6bXGHMnj9fXFAAyMwUM1d79iw+rk0b2LtXJKyCgyEsDAYNAhcX67ZfUSmo77ucKN/lRPkuJ2fPnsXLywuTyYSbm5vV9dQMJkWVY/bs2VJq24P+LQkIgGXLxJbWfn5w7BiMHAlDh8KhQxU6tfJdTpTvcqJ8twHlXQpdmFwCcHW9NrmUmysee3nBhQtihuvIkeDpKRJNBcVHy4vyXU6U73Iiq+/Kczn19e67LVEJJkWVQ89Jd3pP+NNbv1wYDDBqFOzfD//3f1C9OixZIq5y/+tfcPnybZ1W+S4nync5Ub7biPIshS6L6tXF8rlTpyAhAV56CRo1Esuj582DuLjiYzUNTp8u83TKdzlRvsuJrL4rz+XU17vvtkQlmBRVjmbNmkmpbQ/6FlGzJrz/PuzZA4MHiyvdH3wALVuKGU4WBlrlu5wo3+VE+W5DnJ3hoYfInz2bXydMIH/2bHjoIfF8ealWDfr0gc8+g6NHYds2eOstmDCh+Jjt28WGEL16waeflroZhPJdTpTvciKr78pzOfX17rstUQkmRZWjQYMGUmrbg/5t0awZLFoklmI0bgwnTogCs4MGiVlO5UT5LifKdzlRvldhDAbo2BHefReCgoqf37hRXFjYsAFefRX8/aF9e3jnHVHXSdOU75KifJcTWX1Xnsupr3ffbYlKMCmqHGvXrpVS2x70bxuDQRST3bcP3n4bnJxEIfB27cTuc5cu3fIUync5Ub7LifL9DuQf/xAXGKZPh3vuEbOedu2CKVNEomntWuW7pCjf5URW35Xncurr3XdbohJMCoXCdtSoIa5W790ranvk58PHH4vi4BERFi+bUygUCkUVwtcXnnsOVq6EM2fg559FHSgfn2uLh7/3nkhILV8OeXn6tVehUCgUCoVFqASTosrRv39/KbXtQb/S8PcXxV/j46FpU1Eg9oEHxFXtPXtKfYvyXU6U73KifJeAunVFjab588WOow4Oou+aBt9/D998I5ZSe3nB+PGiaHhWltWao/fnrre+nqjvu5zI6rvyXE59vftuS1SCSVHlOHbsmJTa9qBf6QwbJmYzvfuuKCi7Zg106AAvvwwm0zWHKt/lRPkuJ8p3yXBwAAr6rmnw3Xfw5JMiuXTxotjVLiwMPD3FDCgroPfnrre+nqjvu5zI6rvyXE59vftuS1SCSVHlOHr0qJTa9qBvFZydxW5D+/fDyJFw9Sp8/jm0aCH+qShYNqd8lxPlu5wo3+Xk6NGjYDSKnUdnzhSzWxMS4KWXxCYRV66I1wvJzxfH/f135WjriN76eqK+73Iiq+/Kczn19e67LVEJJkWVw9HRUUpte9C3Ko0bw9y5sGSJ2HnuzBmxLKJvX9i5U/kuKcp3OVG+y8kNfa9WDfr0gc8+gyNHYNs2ePHF4tfXrYOnny6u4fTJJ3D4cPkFs7PFhYxRoxjw3nswapR4nJ1dOR2yAOW7fNr2oK8nsvquPJdTX+++2xKDpqmquoryk5GRgbu7O2lpadSrV0/v5ihsRE5ODlOnTmXy5Mk4OTnZQlDMYvrPf0TNDaNRLIt4912oXdv6+gpAB98VdoHyXU6qpO8rV8K//gWbNl37fLt2YkbsE0+IwuKlERcnakBduCD+xpjNxT/r1IFffhGbUdzhVEnfFRVG+S4nync5OXv2LF5eXphMJtzc3Kyup2YwKaoc0dHRUmrbg77NcHKCyZMhORnGjBED/q++gubNxa5DZrNNm6P35663vp6o77ucKN/lxOK+DxgAGzfCyZMwfbp4XK0a7NoldiwtuXTOZCr+2xEXB6Ghor4TFD9f+PPiRQgJEcfZCOW7fNr2oK8nsvquPJdTX+++2xKVYFJUOfJ03LJYT2170Lc5fn4QGQkrVmDy8YGzZ+Gxx6BXL7FUwkbo/bnrra8n6vsuJ8p3Obntvvv4iFmuK1aI5dX/+5+YndSlS/ExL70kjnviCXjwQfHczSbxFz4/YYLNlssp3+XTtgd9PZHVd+W5nPp6992WqASTosrRpEkTKbXtQV83BgwgOSICPv4YXF3FFesuXeDZZ+H8eavL6/25662vJ+r7LifKdzmplL7XrQuPPCJmuxoM4jlNE8XCT5+GH3+EzMybJ5cK0TSxfM5GV52V7/Jp24O+nsjqu/JcTn29+25LHPRugKJqMGPGDGbMmMHVq1cBiI2NxdXVlbCwMFauXInJZMLLy4vAwEDi4+MB6NSpE2azmR07dgAQEhLCunXrOHfuHB4eHvTt25fY2FgA2rVrh6OjI1u3bgVg2LBhbNmyhTNnzuDm5sagQYOKphb6+Phw5MgRNhXUXLjvvvvYs2cPqamp1KxZk+DgYCIjIwFo0aIFnp6erF+/HoB7772XgwcPkpKSgpOTE2FhYURGRmI2m/H398fHx4eEhAQAgoKCSElJ4ciRIzg4OBAeHs7hw4c5evQojRo1wt/fn1WrVgHQu3dv0tLSOHjwIAD3338/8+fPJysrC19fX1q1asWyZcsA6NGjByaTiX379gEQHh7OkiVLuHTpEg0aNKBTp04sWrQIgK5du5Kdnc3u3bsB6NmzJ0uWLOHChQt4enrSo0cPFixYAEDHjh0B2L59OwDDhw8nMTGR9PR06tSpQ1BQEPPmzQOgbdu2ODs7s3nzZgCGDh3Ktm3bOH36NLVq1WLw4MFERUUB0KpVK2rUqAGI6Z2DBw9m3759nDx5EhcXF0JCQoiIiACgefPmeHl5sW7dOgDuueceDh8+zPHjx6levTqjRo0iKiqK/Px8mjZtSsOGDVmzZg0Affv2JTU1lcOHD2M0Ghk7dixz584lJyeHhg0b4uHpSYSPDzWmTWPgsmXUnD8fvv2WnN9+w/GTT4ivX5/LV67g4+NDmzZtWLp0KQDdunUjMzOTvXv3AjB69GiWLVtGRkYG9evXp0uXLixcuBCAzp07k5eXx65duwAIDQ0lISGBv//+m4yMDHr37s38+fMB6NChA0ajkW0FM6mCg4NJSkoiLS0Nd3d3BgwYwNy5cwFo06YNLi4uJCUlATBkyBB27tzJqVOncHV1ZejQocyZMweAgIAAPDw82LBhAwADBw7k4sWLREREUKNGDUJDQ5k9ezaaptGsWTMaNGjA2rVrAejfvz/Hjh3j6NGjODo6Mnr0aKKjo8nLy6NJkyY0btyY1atXA9CnTx9Onz7NoUOHMBgMjBs3jtjYWK5cuYKfnx8BAQFFn2FKSgqZmZkkJycDMGbMGBYtWkRmZibe3t60b9+exYsXAxAYGEhWVhZ79uwBqHCMSE5O5ujRoxbFiNatW+Pq6lrhGGE2m+nevbtFMSImJobc3NxKiRGFfbckRowcOZI1a9ZUKEaYC5YJHTlypMibW8UId3d3EhMTARg0aFCFY8Tly5cxGAwWxYjmzZuzYsUKAHr16kV6ejoHDhwAYOzYscTHx3P58uVbxojevXuzcOFCi2LE+fPnqVu3bqXEiJycHAICAiyKEcnJyZw4caJCMcLPzw8Qcd5oNJYrRixfvhwQf5vOnz9f4Rjh4uLCpUuXrDOO2LmTdf/5D11/+omaZ89SkHoqE7PBgOnnn7nUt2+ljSNuFiNatmzJ1q1brT6OuD5GdO7cucj3wvvWGEeUFSO6detmk3FEaTGiMM5aEiNuZxxxsxgBFPXdmuOI62NETExMkde+vr5WG0eUFSNSUlI4evSo1ccRpcWInJwcWrVqZfVxRGkxwsXFpchza48jro8RJpMJAJPJxMqVKwHrjCOg9Bhx9uxZIiIibDKOKC1GtG7dmqSkJKuPI0qLEYWxxhbjCLg2RtgcTaGwAJPJpAFaWlqabm34448/pNTWUz87O1ubMmWKlp2drYu+ppXS9zVrNK1NG00T15k1rWtXTdu0yTbaNkb5Lp+2nvrKd+W7Xtik7/36Ff/dKM+tTx/rt0lTvsuorae+8l1Obb19l/X7prd2WlqaBmgmk8kmemqJnEKhqJr06yfqMH3xBbi5webN0L07PPkkpKfr3TqFQqFQ2CN164rd4srL+vUwZAj8979w4MCtl9YpFAqFQiExKsGkqHL06dNHSm170NeTUvvu6AgvvigG/ePHi4H/Dz+I3ea++QYKlnRaRduG6K2vJ+r7LifKdzmxSd9DQy3bidRshiVLYNIkCAiA776zSrOU7/Jp24O+nsjqu/JcTn29+25LVIJJUeU4ffq0lNr2oK8nZfa9QQP45RdYtw7atxeFWf/xD+jaFQrWc1tN2wbora8n6vsuJ8p3ObFJ38PDoU6d4gLgN8NgEMdt2waffgoDB0L16mL2bCGzZkH//jBtGuzcWaHZTcp3+bTtQV9PZPVdeS6nvt59tyUqwaSochw6dEhKbXvQ15Ny9b1XL9iyBaZPh9q1Yft26NlTbDV95ox1ta2I3vp6or7vcqJ8lxOb9N3ZWVyQgJsnmQqf/+UX6NgRXn4Zli0Tu5YGBBQfFx8Pa9bA5MnQoQN4e4u/N7Nnw7lzFjVL+S6ftj3o64msvivP5dTXu++2RCWYFFUOw62uOt6h2vagryfl7ruDAzz3nFg299hj4rlffoEWLeDLLyE/33raVkJvfT1R33c5Ub7Lic36Pnw4xMaKCxFQXJOp8Gft2jB/vjiuJDVrXpuU+vBDmDFDHFezJpw+Lf7e3H+/mFlbsGNTeVC+y6dtD/p6IqvvynM59fXuuy0xaJqqVqgoPxkZGbi7u5OWlka9evX0bo7CRuTk5DB16lQmT56Mk5OT3s2xjI0bRcKpYItP2rYVM5z69tW3XVWAKu274rZRvsuJlL5nZ0N0NMybJ2YneXjAyJEwerSY6WQJOTmiIPiSJeJWowYUbHEOQFiYWGI3eDDcdx/cdVfl9uU2kdJ3hfJdUpTvcnL27Fm8vLwwmUy4ublZXU/NYFJUOWJjY6XUtgd9PbntvnfvDklJ8O234p+H3btFDY2HHoK//7audiWht76eqO+7nCjf5cTmfXd2Fn8LYmKIffFFiIkRjy1NLgE4OcE998BHH8GuXWLpXCEmEyxYAJGR8OijYildhw5iad2aNZCbq3yXUNse9PVEVt+V53Lq6913W6ISTIoqx5UrV6TUtgd9PalQ36tVg6efhoMH4amnxBKH338Xy+Y++wzy8qynXQnora8n6vsuJ8p3ObmjfK9Ro/i+qyv8+Se89ZbYfMJgEEXBp00TRcIffFD5LqG2Pejriay+K8/l1Ne777ZEJZgUVQ4/Pz8pte1BX08qpe9164otppOSIDAQLl2CV14RV5JXr7722OxssUPQqFEM+egjGDVKPM7Orng7LET5Lp+2PejrifJdTu5Y36tVExtOvPuu+Ptz5oy4yPHww+DlBffcU6x/9KgoJD5pklhqJ8E/JXes71VAX09k9V15Lqe+3n23JQ56N0ChsJSAkju4SKRtD/p6Uql979IFEhPh55/FEoV9+8TShrFj4ZNPRL2mCRPgwgUwGqltNoslD3PnwosviiKu1xd/tSLKd/m07UFfT5TvciKN7/XqwQMPiJvZDPn5BGRkiNeWLhWbVBw4AP/9r1iu16+fqN00eLCYeXuHFYuVxnc71NcTWX1Xnsupr3ffbYmawaSocixfvlxKbXvQ15NK77vRCI8/Lgbxzz0nHkdGwt13Q2goXLwojjObr/158SKEhEBcXOW2pwyU7/Jp24O+nijf5URK341GqF69WP/++8XFjKeeAj8/MWt26VJ46SVo2RLi4/VppxWR0nc70dcTWX1Xnsupr3ffbYlKMCkUCrnx8BC7ym3ZIgqC5+SApolbaRQ+P2GCLsvlFAqFQnEH4+4udrL77js4flzMsP3sMxg0SNRyKrkD6nvviccffCBm3hZeCCkPBcvAHcaNY/zPP+Mwbpxuy8AVCoVCceegEkyKKkfPnj2l1LYHfT2xet87doRnny3fsZomls9FR1u3TQUo3+XTtgd9PVG+y4ny/ToMBjFr6aWXxCymc+dEAqqQ+HhYuxb+9S/o3BnuugvGj4c//oCzZ28uFhcndrIbPx5jXBxNjh/HGBcn3uvtLXa8syHKdzmR1XfluZz6evfdlqgEk6LKcf78eSm17UFfT2zS9/nzxXKF8mA0wrx51m1PAcp3+bTtQV9PlO9yony/BdWrX/v4jz/g669hxAioWRPS0sQspAcfFIXCS85oKpx9Gxd3zTJwQ8ExBh2XgSvf5URW35Xncurr3XdbohJMiipHcnKylNr2oK8nNun7uXPlX2JgNoON/lgo3+XTtgd9PVG+y4ny3UKaNhUzb+fPF3+PVq2C11+Hdu1gwIDiCyaaBp06id1Q77+/+LnS0GEZuPJdTmT1XXkup77efbclahc5hUKhKKRuXTEgL2+S6Q7byUehUCgUVZTq1aF/f3GbNg3y8opfO3AAduwQt/JQchn4Qw9Zo7UKhUKhuENRM5gUVY4xY8ZIqW0P+npik76HhlpWJHX1ahg4UFw1vtnV4EpA+S6ftj3o64nyXU6U75WIo2Px/bvvhg0bxLK58mLDZeDKdzmR1XfluZz6evfdlqgZTIpyMWPGDGbMmMHVq1cBiI2NxdXVlbCwMFauXInJZMLLy4vAwEDiC7bQ7dSpE2azmR0FV8xCQkJYt24d586dw8PDg759+xIbGwtAu3btcHR0ZOvWrQAMGzaMLVu2cObMGdzc3Bg0aBDRBQWVc3Jy6Nu3L5s2bQLgvvvuY8+ePaSmplKzZk2Cg4OJjIwEoEWLFnh6erJ+/XoA7r33Xg4ePEhKSgpOTk6EhYURGRmJ2WzG398fHx8fEhISAAgKCiIlJYUjR47g4OBAeHg4M2bMoF69ejRq1Ah/f39WrVoFQO/evUlLS+PgwYMA3H///cyfP5+srCx8fX1p1aoVy5YtA6BHjx6YTCb27dsHQHh4OEuWLOHSpUs0aNCATp06sWjRIgC6du1KdnY2u3fvBqBGjRo4Oztz4cIFPD096dGjBwsKinF27NgRgO3btwMwfPhwEhMTSU9Pp06dOgQFBTGvYLDYtm1bnJ2d2bx5MwBDhw5l27ZtnD59mlq1ajF48GCioqIAaNWqFTVq1AAgOjqawYMHs2/fPk6ePImLiwshISFEREQA0Lx5c7y8vFi3bh0A99xzD4cPH+b48eNUr16dUaNGERUVRX5+Pk2bNqVhw4asWbMGgL59+5Kamsrhw4cxGo2MHTuWuXPnkpOTQ8OGDUlNTS36/evVqxfp6ekcOHAAgLFjxxIfH8/ly5fx8fGhTZs2LF26FIBu3bqRmZnJ3r17ARg9ejTLli0jIyOD+vXr06VLFxYuXAhAlw4daOrmhjEjg7LmJmmA5uiI4epVDCtWwIoVXO3cmT0jRrDP3x/3OnUYMGAAc+fOBaBNmza4uLiQlJQEwJAhQ9i5cyenTp3C1dWVoUOHMmfOHAACAgLw8PBgw4YNAAwcOJB58+bh6upKjRo1CA0NZfbs2WiaRrNmzWjQoAFr164FoH///hw7doyjR4/i6OjI6NGjiY6OJi8vjyZNmtC4cWNWr14NQJ8+fTh9+jSHDh3CYDAwbtw4YmNjuXLlCn5+fgQEBBR9hikpKWRmZhZN7x0zZgyLFi0iMzMTb29v2rdvz+LFiwEIDAwkKyuLPXv2AFQ4Rnz33XfUr1/fohjRunVrXF1dKxwjzp49ywsvvGBRjIiJiSE3N7dSYsTq1aupX7++RTFi5MiRrFmzpkIxwlyQZD1y5EiRN7eKEe7u7iQmJgIwaNCgCseI1NRUevToYVGMaN68OStWrAAqFiNcXFxwcHAoNUZ07tyZvLw8du3aBUBoaCgJCQmcP3+eunXr0rt3b+bPnw9Ahw4dMBqNbNu2DYDg4GCSkpJIS0vD3d39pjHizJkzTJgwwaIYkZyczIkTJyoUI/z8/AAR541GY7liROG2yz179uT8+fMVjhEmk4kHH3zQ6uOI0mJEdHQ0tWrVsvo44mYxovD7YbVxxLFj3GMwUJ9yYjZj3rqVLV98wdG6dXGvV69C44iyYoTRaCQzM7PoM7DWOKK0GJGQkED9+vUrbRxhaYzYsmULDg7i37HyxgiwfBxxfYyIiYkBxN8DX19fq40jyooR3377LR4eHlYfR5QWI86cOcNjjz1m9XFEaTHiyJEjaAUXJa09jrg+RphMJgBMJhMrV64ErDOOgNJjxOzZs3Fzc7PJOKK0GGEwGGjatKnVxxGlxYiffvqJ+vXr22QcAdfGCJujKRQWYDKZNEBLS0vTrQ1//PGHlNp66mdnZ2tTpkzRsrOzddHXNBv2PS5O0wwGcRPzkq69Fb4WF6dpR49q2nPPaZqzc/HrrVpp2q+/alpubqU1Sfkun7ae+sp35bteKN+tTFiYphmNpf9tK+vm4qJpgwZp2gcfaNrJk5XeLOW77VHfdzm19fZd1u+b3tppaWkaoJlMJpvoqSVyiiqHt7e3lNr2oK8nNuv78OEQGwu1a4vHhUVSC3/Wri0Kqg4fDo0bw/TpcOwYvPEGuLnBvn1iq+dmzWDGDLhypcJNUr7Lp20P+nqifJcT5buVsXQZeNeuojZhVhYsWwb/93+Qnl78+q5dsHHjtfWebgPlu5zI6rvyXE59vftuS1SCSVHlaN++vZTa9qCvJzbt+4gRcOqU2O45NJS83r3FwHzWLPH88OHXHl+/PnzwAaSkwIcfgpcXHD8Ozz8vklAffggF05JvB+W7fNr2oK8nync5Ub5bmfBwqFPn1htUGAziuIQESEsTiaQvv4QHH4S2bYuP+/RT6NFDHDt4MEydelsJJ+W7nMjqu/JcTn29+25LVIJJUeUoXKMtm7Y96OuJzfvu7Cx2z4mJIfof/4CYGPHY2fnm73F3h8mTxYymGTNEciktTVz1bdhQzHI6c8bipijf5dO2B309Ub7LifLdyjg7wy+/iPs3SzIVPv/LL+J4o1EklSZOhN9+K57NC1CrFnh4wOXLsHSp+BvXo4d4buhQyM8vV7OU73Iiq+/Kczn19e67LVEJJoVCoahsatSAf/wDDh4Us55at4aMDHF1t3FjeO45kYRSKBQKhcKWXLcMXCtIGGmlLQO/FdOnw9mzsHMn/Pe/MHKkSC5lZkJqKjiU2Eto8mSYNg02bSp34kmhUCgUVQ+1i5yiyhEYGCiltj3o60mV9N3RUcx6euABiI8Xy+g2bYKvv4bvvhPP//OfIgFlDf07gCrp+x2iryfKdzlRvtuIwmXg0dGYY2JI2bGDhh06UG3UKBg9uuyZutdjNEK7duL2wguixtOePXDhQvEx2dnwxReQkyMeu7pCnz4QFARBQQR26lSZvbMIqXy3M2T9vivP5dTXu++2RM1gUlQ5srKypNS2B309qdK+G41iQJ+YCKtWwcCBcPWqmN3Upo2o71SwFa5V9KswVdr3Kq6vJ8p3OVG+25CCZeD5s2fz64QJ5M+efetl4OWhMOHUr1/xc/n5YgZvSIiYIZWZCYsXiwss3brh+fzz157j6tWKtcECpPPdjpD1+648l1Nf777bEpVgUlQ59uzZI6W2PejryR3hu8EA/fuL3Xi2bIFRo8Rz8+dD9+5wzz2wfLnYGNoa+lWQO8L3KqqvJ8p3OVG+36G4usKkSWJpXno6bN8On30mLrzUrs2R+vWLjz1+XCyzCw6GTz4RfyutmHDS+3PXW19PZP2+K8/l1Ne777ZEJZhKkJ6ezkcffUSvXr1o0KABTk5OeHt7061bN1577TUSExNveY4lS5YQFhaGr68vTk5O+Pr6EhYWxpIlS8rdjqysLD7++GMCAwPx8PDA1dWVli1b8uqrr5KSklLu8+zdu5dnnnmGu+++mxo1alCvXj369u3Ld999R75a/65Q6EvnzhAdDfv2waOPiloVq1fDoEFia+iYGMu2k1YoFAqFwt6pVg06dICXXhIXV9LTOTRwYPHrCQmiZuHChfDaa+LvoYeHqAn16adw9KhuTVcoFApFOdAUmqZp2pw5c7S6detqwE1vISEhN32/2WzWnnrqqTLf/9RTT2lms7nMdvz1119aixYtbnoOd3d3beHChbfszw8//KA5OTnd9Dzdu3fX0tPTLf2YNJPJpAFaWlqaxe+tLLKzs6XU1lM/OztbmzJlirSfvU20U1I07cUXNa1GDU0Tc5g0rUULTfvpJy07I8P6+qWgfFffd72QVVtPfeW78l0vrtHOz9e0bds07dNPNW34cE1zdy/+mwiaNmdO8bEpKZq2ZYt4jyVcuaJpv/6qaWFh2tW+fTUtLEw8vnKlUvpjCcp3pW1rbT19lzXO6q2dlpamAZrJZLKJnprBBPz666+MGzeOc+fO4eXlxb///W+WL1/O1q1bWbhwIV9++SUDBw7E0dHxpud48803mTlzJgAdO3YkIiKCpKQkIiIi6NixIwAzZ87krbfeuuk5MjMzCQ4O5sCBAwA8+eSTrFy5kg0bNvD+++/j6uqKyWQiPDycXbt23fQ8S5cu5amnniInJ4f69evz5ZdfsmnTJhYvXkxYWBgAGzduJCwsDHMVnCGxcuVKKbXtQV9P7njf/fxEEdSUFHjrLVGn4sABeOwxzP7+Yoeey5et3w4744733Y719UT5LifKdzm5pu/VqkHHjvDyyxAXB+fOwdatYvZScPC1tZ1++QW6dIG6dcVyu88+g23byl5SFxcH3t4wfjzExmJMSBBL98aPF88vWGC1fpaG8l1py4TefVe+2wbpd5Hbv38/Tz31FGazmT59+rBgwQLc3d1vOG7ixInk5uaWeo6//vqLjz76CIAuXbqQkJBAjRo1AOjatSsjRoygX79+bNmyhWnTpvHoo4/i7+9/w3k++eQTkpOTAfjoo4947bXXil7r0aMH/fv3p2/fvmRlZTFp0iRWrVp1wzny8/N5/vnnMZvNuLm5sX79+mu0Bg8ezHPPPcfXX39NQkICv/32G+PHj7fgE9Mfk8kkpbY96OuJNL57esK774qlAd99B599Ro2//xb1K957D158EZ57DurUsV2bdEQa3+1QX0+U73KifJeTMvterRp06iRuL7987Ws5OeDmBiaTSAwVJodq14a+feH778HLq/j4uDixqUYhhRdZC39evCgKkcfGioSVDVC+K22Z0LvvynfbIP0MpokTJ5KTk4Onpydz584tNblUSPXq1Ut9/vPPPy+qafTVV18VJZcKcXFx4auvvgJEAuiLL7644Rx5eXn897//BaBly5a88sorNxzTo0cPHn/8cQBWr17N1q1bbzhm3rx5/PXXXwC88cYbpSayPv74Y+oU/HP68ccfl9one8ar5GBBIm170NcT6XyvVQtefRWOHCF50iRo2lQUR33rLWjYEF5/Hf7+2/btsjHS+W5H+nqifJcT5buc3Hbf//MfOH9eFAL/5BMYNkwknC5eFDu2engUH/vf/8K4ceL+dRtpFFH4/IQJkJ19e22yEOW70pYJvfuufLcNUieYkpOTi6arPf/883h6elp8Dk3TmD9/PgABAQF079691OO6d+9OixYtAIiNjUW77o/bmjVruHjxIgCPPPIIRmPp1kyYMKHo/ty5c294PTY2ttRjS+Li4sKYMWMAUdH+0KFDpR5nrwQGBkqpbQ/6eiKt787O+Lz7rlgu98cfYvvnzEz4+GNo3BieeQYOH9avfVZGWt/tQF9PlO9yonyXkwr1vVo1sWnGK69AfLxYUrd5M/z0k9g8o5APPoArV26eXCpE0+DCBbEJhw1QvittmdC778p32yB1gikqKqrofnh4eNH9CxcucOjQIc6dO3fLcxw9epTU1FQA+pVcF14Kha+fPHmSY8eOXfPa2rVrbziuNLp06ULNmjUBWLdu3Q2vF56nRYsWNGjQ4JZtudl57Jn4+Hgpte1BX0+k993BAe6/H3bsEIPoXr0gN1cso2veHB54AMqozVZVkd53SVG+y4nyXU4qte8ODqIuU4lxPWbztUvlboXRCPPmVV6bykD5rrRlQu++K99tg9QJpo0bNwLg7u5Oy5Yt+f3332nfvj0eHh40b94cT09PmjZtyjvvvENmZmap59i/f3/R/YCAgDL1Sr5e8n2WnMfBwaFo2dv158jMzOTkyZMVbotCobBjDAaxDGDdOrGd85AhYvAcEQHt24siqOvX691KhUKhUCjsA6NRFAIvL2YzLF4Mjz0GP/wA+/YV12lSKBQKRZlInWDat28fAI0bN2bixIk89NBDN+zOdvToUaZMmUKPHj04derUDec4ceJE0X1fX98y9fz8/Ep9X8nHNWvWpHbt2uU6z9mzZ8nJySl6/uTJk0VL7yrSFnunU6dOUmrbg76eKN9LoU8fWLQItm+HsWPFIHrhQujdWxQ4Xbz41ssB7Bzlu5wo3+VE+S4nNul73brib2R5uXIFfv4ZnnwSWrcW7x8yBObMqdRmKd+Vtkzo3Xflu22Qehe58+fPA6IW086dO6lduzZTp04lLCwMNzc3du/ezdtvv83ixYvZs2cP4eHhrF279pr6SJcuXSq67+rqWqZe4dI24IYZUYXnudU5SjuPk5NTpbalJDk5OdcksTIyMkp93pbIqq2nfqGmjH3XW7tc+i1bwi+/YHjrLap99hnG337DsHYtrF2LuX17rr76KuawMFGrwkLdkj/1QPmuvu8yaeupr3xXvuuFLfpuHDYMx1Jql96M/BdfhOrVMW7ahGHLFgwXL8KSJeT36sXVwraePInDtGmYu3fH3L272IzDYLCoXcp3+b7vemuX/KmHvvqd00fblkidYLp8+TIgPvRq1aqxePHia4p0d+nShfj4eIKDg1m8eDEbNmxg7ty5jB49uuiY7BK7TNxsl7lCChNBAFeuXLnmtcLz3OocZZ2nstpSkg8//JB33nnnhudnzJiBs7PzLduquLP4/PPP9W6C4lY0bEit55+ne2IiXbZsofrOnRgffphzL77I+l692NW+PVcdLAv9ync5Ub7LifJdTu5036vl5fGKszPO2dmUlQLSgGxnZz51deWqoyPccw+Gfv2of+YMfidOcOzvvzk7dSoArXfvZnRMDNW+/x6Ayy4unPDz46SfHyf8/Djl7U2+o6P1O1cB7nTfFaWjfJeLbBvtilmI1AkmZ2fnoiRTeHh4qTvAGY1GPv74YxYvXgxARETENQmmkkmW3NzcMvVKZg9r1KhxQ1vKc46yzlNZbSnJG2+8wcsvv1z0OCMjAz8/P5577jnq1at3y7Zag6ioqGuKssuirad+Tk4On3/+OS+99NI1yUlbony3XF87d478b76h2tdfU/f8eUYsWMDwrVu5+uKLXH38cbjFTEfle9X0vaIo35Xvynd59GXy3dipE4wejQYYSlk+rhXMPnL4/XdeGzbslucz7NxJvp8fxo0bMWzbRs2sLAIOHCDgwAEA8n77DXPh/wxpaZCTAyVKVIDyXcbvu57aevsua5zVW/vs2bNMLUiM2wKpE0y1atUqSjANGTLkpse1bt0aHx8fUlNT2bx58w3nKKSspWZQPGMKblzCVnieW52jrPNUVltK4uTkVGoAutnztiAsLExKbXvQV77rw23re3vDf/4D//wnfP89fPophtRUHP75TxymTYOJE8Xt+uKn2dkQFYXD3LmM376dmjt2UC0sTOzKY+OZi8p39X2XSdse9JXv+qC3vhS+h4VBbCxMmAAXLoiaTGZz0U9D7drwyy84Dh9evvMFBoobiOTRtm2wYQMkJsL69Tj26weF/frtN/i//wNfX+jZE3r0gJ49CQsOVr4rbZujl+96911W322tK3WR75KFrstbFDstLe2a50u+r3AHt5tRspi233VXMArPc/nyZS5evFiu89SrV++aX5jKaou9s27dOim17UFfT5TvFcDVFV56CQ4fFjviNGsG58/DO+9Ao0bw8suQmiqOjYsTianx4zHGxdHk+HGMcXEwfrx4fsGCinfIApTvcqJ8lxPlu5zYtO8jRsCpUzBrFoSGcr5dOwgNFY9PnYLyJpeux8lJJI1eeQWio8W5Sv5vceaMqIN48qQoFP7SS9CtG07164sNO0rZSOhOR9bvu/quy6mvd99tidQJptatWxfdv3r1apnHFr7ucF3tklatWhXdT05OLvMcJV9v2bLlbZ0nPz+fw4cPl3oOV1fXomRRRdpi75w7d05KbXvQ1xPleyXg5ASPPw7794sBbseOcPkyfP45NGkCAweKgXZBkttQsC1z4U8uXoSQEJGEshHKdzlRvsuJ8l1ObN53Z2d46CGIiWHp5MkQEyMeV+YM3euLfX/xBZhMsHo1fPABBAeDhwfVcnNh61YoWXbi3/+Ghx+Gb76BHTsgP7/y2mVHyPp9V991OfX17rstkTrB1Ldv36L7hUmbm3HkyBEAfHx8rnm+SZMmeHt7A/Dnn3+WeY6EhISiczRu3Pia13r37l10v6zzbNmypWh5W69evW54vfA8Bw4c4PTp0zc9T0mN0s5jz3h4eEipbQ/6eqJ8r0SqVRPL3bZuhSVLoF8/yMuDFStA08StNAqfnzBBLKOzAcp3OVG+y4nyXU6k8b1mTQgKgjfeELOB09NZ+8MPEBUFJYuBx8SIJXX/+Ie4EFSnDgwYAG+9BQU1YW+b7GyYNQuHceMY//PPOIwbJ2Zv2bgIMEjkux1p643efVe+2wapE0wjRozAsSCgzy1j69I///yzKOvYp0+fa14zGAyEhIQAYlbQxo0bSz3Hxo0bi2YNhYSEYLjuykZQUBDu7u4A/PLLL2g3+Qfvf//7X9H9kSNH3vB6aGhoqceWJCsrizlz5gBi5lTz5s1LPc5eKZkYlEnbHvT1RPluBQwGuO8+WLNGDFzLg6aJ2hXR0dZp03Uo3+VE+S4nync5kdZ3g4EuDzwA1xcU//xzMYtp4ECoVQsyM2HVKnjvPZg06dpjFy0Ss5ILZxqXhZ0tgZfVd/Vdl1Nf777bEqkTTHXr1uWJJ54AYPny5cyePfuGYy5dusSkEsH86aefvuGYSZMmFS2dmzhxIleuXLnm9StXrjBx4kRALLGbdP0fB6B69eq88MILAOzfv59PPvnkhmMSExP58ccfAejXrx9du3a94ZiRI0fi7+8PwIcffljqzKzXXnuNCxcuFN2vasTGxkqpbQ/6eqJ8tzJ794pCp+XBaIR586zbngKU73KifJcT5bucKN+vY+BAmDIFli0TF3R27YJvvxWJoBI7WZOfD2PGQKtW4OkpElXvvSeSUddv9hMXZ3dL4GX1Xe/fOT3Ru+/Kd9sgdYIJ4J133qFhw4YAPPzww0ycOJHVq1ezdetW/ve//xEYGMiOHTsAePbZZ0tN6jRv3pxXX30VEEvYevXqRWRkJFu2bCEyMpJevXqxZcsWQCR0mjVrVmpbXnvttaLZRK+//jpPP/00q1evZuPGjXz44YcMGjSI/Px8atSowRdffFHqORwdHfnyyy8xGo1kZGTQq1cvpk+fTlJSEkuXLmX06NF8/fXXgFhO9/DDD9/2Z6dQKO4gzp0r3xVQEMdJtJZcoVAoFApdqFYN2raFp5+GX36B998vfu3cOejSBWrUEImoRYvEbOQBA8DdHZ57ThyXnS2WtoNdLYFXKBR3Jg63PuTOpl69eixZsoQRI0bw119/MX36dKZPn37DcY899hj//e9/b3qe999/n7S0NH766Se2b9/OuHHjbjjm8ccf57333rvpOWrVqsXChQsZOnQohw4dYubMmcycOfOaY9zc3Pj999/p0KHDTc8zdOhQvv32W55//nnOnDlTNHuqJIGBgcybN49q1ard9Dz2Srt27aTUtgd9PVG+W5m6dYu3bC4PmzbBv/4Fjz0GBbMmrYHyXU6U73KifJcT5fttUr++WOKelwc7d8KGDZCYKH6mpECDBuK4qCiRgLoVJZfAP/TQ7bernMjqu96/c3qid9+V77ZB+hlMIHZR27FjBx9//DHdunXDw8OD6tWr4+vry9ixY1m1ahU//vhjUb2m0jAajfz4448sXLiQkJAQvL29qV69Ot7e3oSEhLBo0SJ++OEHjLdYgnL33Xezfft2pk2bRpcuXahduzYuLi60aNGCl156iV27dhEcHHzLPj355JNs3bqVJ598kqZNm+Ls7EzdunXp3bs333zzDevXr8fT09Piz8oeKMuHO1nbHvT1RPluZUJDy59cAnGF84MP4O67oX9/UZD0uuXBlYHyXU6U73KifJcT5XuFTyJmMr3wAkREwPHjcOIEPPWUeD029sZd7W6GDZfAy+q73r9zeqJ335XvtkElmAqoWbMmr776Khs3buTcuXPk5ORw4sQJZs+eTf/+/ct9nqFDhxIbG0tqaio5OTmkpqYSGxvLkCFDLGrL66+/zubNm7lw4QKXL18mOTmZzz77jEaNGpX7PG3atGHmzJkcPnyYK1eukJ6eztq1a3nmmWeKakZVRbZu3Sqltj3o64ny3cqEh4udam41CDUYoHZt+P13GDxYPF6zRmypfNddYtebbdsqrVnKdzlRvsuJ8l1OlO9WwNdXzHACsZTuZkvjrsdsFgmq556Dn3+G3btFrScrIKvvev/O6YnefVe+2waVYFIoFAoFODuL+g5w8yRT4fO//goPPCC2Sz5+HN59Fxo3BpMJvvkGOncWWyt/9RWcP2+T5isUCoVCoSiFwiXw5cFohNxc+PprsQS+XTtRz6l3b7GD3e+/qxqMCoWiTFSCSVHlGHb9dq6SaNuDvp4o323A8OFiKn3t2gBoBQPSwp/Urg3z54vjCvHzE0VFDx+G5cth3DhwcoIdO8R0fW9vuP9+WLHCsiV4BSjf5UT5LifKdzlRvlsZS5bAm80wciS88gr06weurpCVBevXw3//K2oz/fVX8fGbN8OcOXD0aPlnSRUgq+96/87pid59V77bBpVgUlQ5Cnfkk03bHvT1RPluI0aMgFOnYNYszCNGcLRxY8wjRsCsWeL5ksmlkhiNcO+9ov7DqVPw5ZfQvj3k5MDs2WLbZX9/+M9/RG2IcqJ8lxPlu5wo3+VE+W5lLFkCX6cOvPEGfPKJWP5+8SLs2ydmLr/wAvTqJWY1FfLTTzB2LDRtCp6ecN998Oab4mLVyZNlJp1k9V3v3zk90bvvynfboBJMiirHmTNnpNS2B309Ub7bEGdneOgh8mfP5tcJE8ifPVtctXR2Lt/7PTxg4kTYvh22bIFnnxVT7I8dg7ffhkaNYMgQsVNNbm6Zp1K+y4nyXU6U73KifLcyliyB/+WXa//WV6sGLVuKOov//S+sWwc1ahS/3qSJWBbv6CiWxC9bBu+/L2ZB+fldu5zu4EFISyt6KKvvev/O6YnefVe+2waVYFJUOdzc3KTUtgd9PVG+V0EMBjHw/PrrollRBAWJK5pLloirqj4+8PLLsHdvqadQvsuJ8l1OlO9yony3AbezBL48vP66uJB06ZJYLvfNN8W1m+6+W8xqKuT550Xh8YYNYdQoOi5ZIpbW61CrUebfOT3Ru+/Kd9tg0DQLF8wqpCYjIwN3d3fS0tKoV6+eLm3Iy8vTbatHPbX11M/JyWHq1KlMnjwZJycnm+uD8v2O8v2vv8TuNP/7n0g8FdKtGzz+uKjjVKsWoHy/o3y3AOW78l0mbT31le+S+Z6dDdHRXI2JIWXHDhp26EC1UaNg9Ojyz1IuL/n5UHLX6l69IDGx9GVznTuLRFUhublQvXrltqcEsv7O6f19l+77ZifaZ8+excvLC5PJZJNEV9Xdq15hU2bMmMGMGTO4evUqALGxsbi6uhIWFsbKlSsxmUx4eXkRGBhIfHw8AJ06dcJsNrNjxw4AQkJCWLduHefOncPDw4O+ffsSGxsLQLt27XB0dCzawnHYsGFs2bKFM2fO4ObmxqBBg4iOjgZEkmvgwIFs2rQJgPvuu489e/aQmppKzZo1CQ4OJjIyEoAWLVrg6enJ+vXrAbj33ns5ePAgKSkpODk5ERYWRmRkJGazGX9/f3x8fEhISAAgKCiIlJQUjhw5goODA+Hh4Xz11VfcddddNGrUCH9/f1atWgVA7969SUtL4+DBgwDcf//9zJ8/n6ysLHx9fWnVqhXLli0DoEePHphMJvbt2wdAeHg4S5Ys4dKlSzRo0IBOnTqxaNEiALp27Up2dja7d+8G4OrVq3h6enLhwgU8PT3p0aMHCxYsAKBjx44AbN++HYDhw4eTmJhIeno6derUISgoiHnz5gHQtm1bnJ2d2bx5MwBDhw5l27ZtnD59mlq1ajF48GCioqIAaNWqFTUKpkNHR0czePBg9u3bx8mTJ3FxcSEkJISIiAgAmjdvjpeXF+vWrQPgnnvu4fDhwxw/fpzq1aszatQooqKiyM/Pp2nTpjRs2JA1a9YA0LdvX1JTUzl8+DBGo5GxY8cyd+5ccnJyaNiwIYcOHSr6Y9irVy/S09M5cOAAAGPHjiU+Pp7Lly/j4+NDmzZtWLp0KQDdunUjMzOTvQUzZEaPHs2yZcvIyMigfv36dOnShYULFwLQuXNn8vLy2LVrFwChoaEkJCSwe/du2rVrR+/evZk/fz4AHTp0wGg0sm3bNgCCg4NJSkoiLS0Nd3d3BgwYwNy5cwFo06YNLi4uJCUlATBkyBB27tzJqVOncHV1ZejQocyZMweAgIAAPDw82LBhAwADBw4kMjISDw8PatSoQWhoKLNnz0bTNJo1a0aDBg1Yu3YtAP379+fYsWMcPXoUR0dHRo8eTXR0NHl5eTRp0oTGjRuzevVqAPr06cPp06c5dOgQBoOBcePGERsby5UrV/Dz8yMgIKDoM0xJSSEzM5Pk5GQAxowZw6JFi8jMzMTb25v27duzePFiAAIDA8nKymLPnj0ApceIzZuhTRs6LVuGy9q18NNP+GzbhnHTJti0ifyJEznTty+e//wnX23bho+vr0UxonXr1ri6ulY4Rvz999+8/PLLFsWImJgYcnNzKyVGLF++HB8fH4tixMiRI1mzZk2FYoS5oBjskSNHiuL3rWKEu7s7iYmJAAwaNKjCMeL48eP06dPHohjRvHlzVqxYUeEYYTabqV27tkUx4vz589StW7dSYkRqaipPPPGERTEiOTmZEydOVChG+Pn5ASLOG43GcsWI5cuXA9CzZ0/Onz9f4RiRnp7OhAkTrD6OKC1G/PHHH9StW9fq44ibxYgrV67Qvn17q48jro8RnTt3LvK98L41xhFlxYisrCwKseY4orQYsWrVKnx8fKw+jrhZjFi3bh2urq6AdccR18SIhx4i0mjkUIcO3Hffffj6+rK2wNfKHkdcEyOmT+evbduoc/w497i6cmj2bLxPnaLWmTPkuboSXfB3IjAwEN/+/cm+epXzTZviN3IkSWYzJz09qevnd9v/a7Rv0YI6K1aQHx2Ndu4cd7VuzaHWrdkdEICrp6dVxhGlxYi9e/fiXJDMs/Y44voYYTKZADCZTKxcubJcMaIy/9f49ddf8fT0tMk4orQYkZ2dTevWra0+jigtRsycORMfHx+bjCOujxE2R1MoLMBkMmmAlpaWplsb/vjjDym19dTPzs7WpkyZomVnZ+uir2nKdz2wqe+nT2vaRx9pWosWmiaub2oaaKa77tK0adM07e+/rd+G61C+q++7TPrKd+W7XijfbY9d+X7unKYdOlT8wrlz14wDim7Vqmlau3aa9t57lovNn69pdeqI8xiN1/6sU0fT4uIqp1PlQM/fOb19l/X7prd2WlqaBmgmk8kmeqoGk6LK0bp1aym17UFfT5Tvdzj168Nrr8H+/aKI6KOPQs2auP39N/zzn+DrK7Zajo8X0+5tgN6fu976eqK+73KifJcT5bucFPXdw0PUayrEwwNOnxZ/76dMgeBgMUa4ehV27bp2J9rsbOjeXWwm8uOP4vXrxwhxcWL8cPGieFwwS7fo58WLEBIijrMBynM59fXuuy1RS+QUVY7CqcSyaduDvp4o3yXBYBB1Gnr1gv/+l7PTp1MvLg42bhQFSOfPh7vuggkTRCHRkoPSSkbvz11vfT1R33c5Ub7LifJdTsrse/36MGyYuIGYw5SaKuo0+foWH7drFxQsry+iRg3o0AG6dBFFyydMKD5HaWiaGHtMmCDqQlZ2LarrUJ7Lqa93322JmsGkqHJsKvlHRCJte9DXE+W7hNSqxYrGjUVR0D17xG5znp7w99/w4YfQrJnYlW7WLChRw6Oy0Ptz11tfT9T3XU6U73KifJcTi/puMBTPZO7Spfj5Zs0gMlLMgO7fX2wQcuWKGDd89ZWY1XThws2TS4VomjiuoAaTNVGey6mvd99tiUowKRQKhcL+ad0aPv1UXMGMjoYhQ8BohD//hPHjxaymZ58VVzfV5qgKhUKhUNz51KkDY8bARx/BqlViuVtyMvz2G0yaBGfPirFCeTAaoaBAtUKhuH1UgklR5bjvvvuk1LYHfT1RvsvJDX2vXh1GjYJFi+D4cfjPf6BJE8jIgG+/ha5dxdT4L7+Ec+cqV9vG6K2vJ+r7LifKdzlRvsuJVfpuNEKLFvDgg/D556JuU2GtpVthNsP58+L+1q0wdSosWSLqQVUiynM59fXuuy1RCSZFlaNwa2PZtO1BX0+U73JSZt99feHNN+Gvv2DFCrj/fnByEjUZXnwRvL1h3DhYvrz8A8zyatsAvfX1RH3f5UT5LifKdzmxSd/r1rVsBpOHh7i/aBG88YaYLX3XXaIm1H33iU1H/vhDLKe7TZTncurr3XdbohJMiipHamqqlNr2oK8nync5KVffjUYYMEAM+v7+W9Rd6NABcnNFbYZBg6BpU3jnHUhJKftc2dmiptOoUbR45hkxW2rWLPG8jVG+y6dtD/p6onyXE+W7nNik76Ghls1gGjlS3G/bVlygCggQY4y0NFi2TCzFe/BBUQy8kOXLYfp0sQNuRsYtZZTncurr3XdbohJMiipHzZo1pdS2B309Ub7LicV9r1MHnn8etm8XU9z/8Q9wdxfL6aZMgcaNxVXIOXMgJ+fa98bFiVlP48dDbCz19++H2Fjx2NsbFiyopF6VD+W7fNr2oK8nync5Ub7LiU36Hh4uxgUGQ9nHGQziuNGjxePQUIiIgP374dIlsUvdd9+JMUXfvmIZXiG//QYTJ0KfPmK84e8vLk69+64YV1x3gUp5Lqe+3n23JQ56N0ChsJTg4GApte1BX0+U73JSob536iRun3wCc+eK3WRWrxZXIZctE1PnH34YHn8cjhwRA8pCCq94Fv68eBFCQkTCacSI22+TBSjf5dO2B309Ub7LifJdTmzSd2dn+OUX8ffbYCh9E5DC5NMvv4jjr8fFBQIDxa00uncXtZt27ICTJ8V44sgRMe4wGkWCqpDoaIIzMsSxrVqJupISoffvu8yxxpaoGUyKKkdkZKSU2vagryfKdzmplL7XqCGmtK9aJeo1/etf4OMjioB/8YWYCh8WJgaeN9uBrvD5CRNstlxO+S6ftj3o64nyXU6U73Jis74PHy4uDtWuLR4X1mQq/Fm7NsyfL467HZ59VsxwPnEC0tNh5Ur47DMx+3n4cJGgKuTzzzE+/jh07Ag1a0L79vDII+L4Vavu+F1w9f59lznW2BI1g0mhUCgU8uDvD++9J+oxLV0qZjXFxoqdZm6FponCntHR8NBDVm+qQqFQKBSKSmDECFE3KToa5s3jzP791G/ZUtRcGj269JlLt0PdunDPPeJWGv37c+biRer//bcYT+zaJW4gNi45caL42P/9D1xdRU3Jpk3LX6y8NLKzISoKh7lzGb99Ow47dogLa+Hhldd3haIAlWBSVDlalFz3LJG2PejrifJdTqzW92rVYOhQcQsOFjvGlOfKodEI8+bZJMGkfJdP2x709UT5LifKdzmxed+dncXf7oceInXbNup36mRbfYD33iM1LIz6HTuKZNKOHbBzp/hZr17xcZoGr78OZ8+Kx66u0K6dSDa1bw9du4pZUOUhLk7Mvr5wAaPRSBOzGe3ECXFx7cUXxdLA2529ZSF6/77LHGtsiUowKaocnp6eUmrbg76eKN/lxCZ9z8ws/7R0s1ksrbMBynf5tO1BX0+U73KifJcTWX339PQUdZ8aNhS30uo65uaKulE7dsCePWKcsmGDuAEEBYmakoXMmCFmaHfoAA0aFD8fF3dNfUlDQV1Jg071JfX+fdfdd0lQNZgUVY7169dLqW0P+nqifJcTm/S9bl3Lpp5v2iR2jFmzBvLzrdYs5bt82vagryfKdzlRvsuJrL6XS9vJCb7/HjZvFkXC9+6F338Xs5oGDRIJpkJMJrF77pAhcNddUL++2C335ZfhgQfEMXZSX1Lv33e79/0OQc1gUigUCoXchIaK3V7KS3Y2TJ8ubvXqifePGgX9+0u3I4xCoVAoFAor4uAgdpxr1ao4YVSSzEwYN07Mdjp4ENLSinfLLQ+qvqSiklEzmBRVjnvvvVdKbXvQ1xPlu5zYpO/h4VCnTvFWxTfDYBC7zcydC48+Ch4eoj7C99/D4MHiquEjj4gp6ZVwJVD5Lp+2PejrifJdTpTvciKr75Wu7eMDERGwf7+Y7bRpE8ycKQqDlxeDAT79FJKTK7dt16H37/sd5bsdoxJMiirHwYMHpdS2B309Ub7LiU367uwsilzCzZNMhc//+qvYdeann+D0aVi+HJ55RiSXLl4Ur4eEiJlN48ZBVJS4ungbKN/l07YHfT1RvsuJ8l1OZPXdqtouLhAYCE8+CX5+5X+fpokZUHFxxc8dOyaW2f34o0haXbpU4ebp/ft+x/puZ6glcopyMWPGDGbMmMHVgq28Y2NjcXV1JSwsjJUrV2IymfDy8iIwMJD4+HgAOnXqhNlsZseOHQCEhISwbt06zp07h4eHB3379iU2NhaAdu3a4ejoyNatWwEYNmwYW7Zs4cyZM7i5uTFo0CCio6MByMjI4K677mLTpk0A3HfffezZs4fU1FRq1qxJcHAwkZGRgKjY7+npWbTu9d577+XgwYOkpKTg5OREWFgYkZGRmM1m/P398fHxISEhAYCgoCBSUlI4cuQIDg4OhIeHs2nTJlJSUmjUqBH+/v6sWrUKgN69e5OWllYUPO6//37mz59PVlYWvr6+tGrVimUFU1V79OiByWRi3759AISHh7NkyRIuXbpEgwYN6NSpE4sWLQKga9euZGdns3v3bgCuXr3KpUuXuHDhAp6envTo0YMFCxYA0LFgN4nt27cDMHz4cBITE0lPT6dOnToEBQUxb948ANq2bYuzszObN28GYOjQoWzbto3Tp09Tq1YtBg8eTFRUFACtWrWiRo0aAERHRzN48GD27dvHyZMncXFxISQkhIiICACaN2+Ol5cX69atA+Cee+7h8OHDHD9+nOrVqzNq1CiioqLIz8+nadOmNGzYkDVr1gDQt29fUlNTOXz4MEajkbFjxzJ37lxycnJo2LAhhw4dIiUlBYBevXqRnp7OgQMHABg7dizx8fFcvnwZHx8f2rRpw9KlSwHo1q0bmZmZ7N27F4DRo0ezbNkyMjIyqF+/Pl26dGHhwoUAdO7cmby8PHYVbBkbGhpKQkICu3fv5vLly/Tu3Zv58+cD0KFDB4xGI9u2bQMgODiYpKQk0tLScHd3Z8CAAcwtWHbVpk0bXFxcSEpKAmDIkCHs3LmTU6dO4erqytChQ5kzZw4AAQEBeHh4sKGgkOPAgQPZsWMHKSkp1KhRg9DQUGbPno2maTRr1owGDRqwdu1aAPr378+xY8c4evQojo6OjB49mujoaPLy8mjSpAmNGzdmdUFRyD59+nD69GkOHTqEwWBg3LhxxMbGcuXKFfz8/AgICCj6DFNSUsjMzCS54MrWmDFjWLRoEZmZmXh7e9O+fXsWL14MQGBgIFlZWezZswegwjEiMTGRlJQUi2JE69atcXV1tSxGZGbi8/LL9P7hB4wmE2aDAaOmidpMZjM5Li4cf+cdanbqRELB73tQUBAptWpxpG9fHIKCCPf25tC0aXgnJlLz/HmIjITISPIdHcm95x7O9OrFVm9v8lxcyhUjCvtuSYwYOXIka9asqVCMMBcU/zxy5EiRN7eKEe7u7iQmJgIwaNCgCseI48eP4+DgYFGMaN68OStWrKhwjDCbzVy8eNGiGHH+/Hnq1q1bKTEiNTWV1q1bWxQjkpOTOXHiRIVihF/BPyPR0dEYjcZyxYjly5cD0LNnT86fP1/hGJGenk67du2sPo4oLUZs376dlJQUq48jYmJiyM3NvWEcceXKFZydna0+jrg+RnTu3LnI98L71hhHlBUjsrKyiv6+W3McUVqMKIyz1h5H3CxG7Nu3r6jv1hxHXB8jYmJiirz29fW12jiirBixefNmUlJSrD6OKC1GpKam0rZt28odR5QzRhS+BpbFCEv/16jt4IBb4VjmFmhAtrs7Gy5dold2NmvWrMF18WJ6f/nlNcfleXuT06wZKW5uHO/Viz7PPWdxjEhJSbHJOKK0GJGdnY2jo6PVxxGlxYjCWGOLcQRcGyNsjqZQWIDJZNIALS0tTbc2xMTESKmtp352drY2ZcoULTs7Wxd9TVO+64GUvl+5ommzZmlaWJiW1rq1poWFicdXrpT/HGazpm3apGmvvaZpTZtqmrg2KG6Ojpo2ZIim/fCDpp09W+ZplO/yaeupr3xXvuuF8t32KN8l0P7112vHH7e6zZp17fu3btW0SZM07d57Na1BgxuPL9mPVas0LTRU0958U9MiIjRt925Ny8m5oUmyft/01k5LS9MAzWQy2UTPoGnl3ZtZoRCzh9zd3UlLS6NevXp6N0dhI3Jycpg6dSqTJ0/GyclJ7+YobITyvRLQNNi5E2JixG3//uLXqlWDfv1EgfCRI8XuL3aA8l1OlO9yonyXE+W7BGRng7e3WL5f1r/7hfUlT50SJQNuxrlzYje7vXthzx6xo12jRuK1Dz+E//u/a493cIDmzaFNG3j7bWjduqI9UtwmZ8+excvLC5PJhJubm9X1VA0mRZWjcEqqbNr2oK8nync5qfK+GwzQoQP85z+wb5+4/ec/4rmrV2HVKnjuOVGks3dv+PxzOH688vSrKFXe9yqsryfKdzlRvsuJrL7bTNuS+pK//FJ2cgmgbl3o2xeefRZmzChOLgEEB8MXX4jaTz16gJsb5OeLMc+cOWK8Q0Hfv/4aOnYUO9ZNnQrx8XD0KBQsz690srNh1iwYNYq01q3FRb1ZsyplMxZLkOm7rmowKaocZmsFIDvXtgd9PVG+y8kd53vLlvDmm+J25EjxzKZNm2D9enF7+WXo0oUWd98NnTpBs2aV3w47547zvQrp64nyXU6U73Iiq+821R4+HGJjYcIEuHABzWjEYDYX/aR2bZFcGj68Yjpt24pbIZoGJ08Wz3Zq0QIo6Pu2baKgeEHdrCJq1oRWrUT9yiZNxHPZ2eDkdOtdfm9GXFxR3zEa8TKbxU55c+fCiy9WTt/LiUzfdZVgUlQ5/P39pdS2B309Ub7LyR3te9Om8Npr4nbiBMybJ5JNa9fCli102LIFZs8Wg7ZRo8StdevbH2hVIe5o3+1cX0+U73KifJcTWX23ufaIEWL5W3Q05pgYUnbsoGGHDlQbNQpGj771zKXbwWAQu9j5+cHgwUVP+/v7i9naI0aIxNOePSIJlZwMly/D5s1iF95CXnkFfv9dLLNr3Vr8LLzdqlRLXByEhhY/LkzwFP68eFHs+hsbK9pjZWT6rqsEk6LK4ePjI6W2PejrifJdTqTx3c8PXnhB3M6cgdhYsv/4A+f162H3bnGbMkXUMyhMNnXqdMcmm6Tx3Q719UT5LifKdzmR1XddtJ2d4aGHyA8P59eC2lvVdKi95ePjI0oC+Pldm9TJz4e//hI3V9fi5/fvB5OpeIZ3SerVEzPBC48/dgzc3aFOHTHzacIE8fzN6k9pmhhDTZhw6/pTlYBM33VVg0lR5Sjc/lc2bXvQ1xPlu5xI6Xv9+vD008x75hlIS4Offxb1DapXh4MHRTHNLl3EDKhXXoENG6xXu0AnpPTdTvT1RPkuJ8p3OZHVd+V5KTg4QECAGOuUZPFisVHKH3+IIuIhIeDvLxJDDg7XJqOeeQY8PEQCq2tXsSzuVnuZaZo4Ljq6Yh0rBzL5rmYwKRQKhUJhr3h4iKtrEyZARgYsXCiW0S1eLK7WffaZuHl7i53oRo2CPn3EwEuhUCgUCoWiquLkBO3aiVtJsrIgNfXa5y5cED9PnRK38mI0ihIFDz1UsbYqilAzmBRVjqCgICm17UFfT5TvcqJ8L4GbG9x/v7jSdvasSDQ98ADUqiUGUzNmwD33iGTTU0/B0qWQm6tL2yuK8l1OlO9yonyXE1l9V55XAi4uN26AsmmTqKu0YYMoJ1BezGZYsULsgPfpp+K+FZDJd5VgUlQ5UlJSpNS2B309Ub7LifL9Jri4QFiYKH559qzY5vfRR8WMp7Nn4fvvRWHN+vXhkUdEsctbbclbsJWvw7hxjP/5ZxzGjdNlK19QvsuK8l1OlO9yIqvvynMr4u4OPXqIIuBGC9IcGRnwww/w6qvwr39d+9qLL8Lbb4tletu2iWLkt4FMvqsEk6LKceTIESm17UFfT5TvcqJ8LwdOTjBsGPz0E5w+DcuXi1oE9euLq3m//irqFtSrB+PGQVQUZGZee464ODHzafx4jHFxNDl+HGNcHIwfL55fsKDS+1cWync5Ub7LifJdTmT1XXluA0JDLatN+Y9/iCTSmDFw333Fz+flwddfw3/+Aw8+CJ07i7pPjRqJ4z79tNwSMvmuijQoqhwOOtYW0VPbHvT1RPkuJ8p3C3F0hHvvFbfp08VU8ZgYcTt5EiIjxc3ZWcxwGjUKqlUTA6cCDAWDMoNOW/mC8l1WlO9yonyXE1l9V57bgPBwMfPo4sWyC30bDFC7tkgUlbaLXF4eTJsGycnitn8/pKdDSoq41a1bfOzVq+DrC40bi4LlJW9Nm0rlu0HTblVeXaEoJiMjA3d3d9LS0qhXr57ezVHYiJycHKYWbGvqpMO2pgp9UL7fQWgabN4s6jfFxIitfS2hcBBmg618Ffqgvu9yonyXE+W7nEjl+4IF4uIYlJ5kMhjEz/nzYfjw8p83PR0OHBAJp4YNYeBA8fzhw3D33aW/x9FRzJL64gvx2GyGrVuhRQtRX9NaZGdDVBQXIiPxWLgQk8mEmzX1ClBL5BRVjpiYGCm17UFfT5TvcqJ8ryQMBggMhI8+gr/+v737Dovi2v84/l4EqYIiokGxYY+9BjXWxK7YsCQm+ku/6bk39d4U0027JjfXm0RNMUUsqNiNlVhjxYpYEEWxIEgRkbrz+2PcFWRBENiBnO/reeZh3Z2d7wwf9jgczpw5CRER8Oab+uVvxWHHW/mC5K4qyV1NkruaVM1dMreT4cP1kdfVq+v/tszJZPlavXrJO5cAfHygRw949NGbnUugdzYdPAgLFsB77+k3YenQQZ8zMzubo3nvenfunH5O5uWlj3q67z549ll95Pn69RAff4cHnUfeqQ9WrSr99kpAnbFa4i8jy8C7IhlZuyLUN5LkribJvRyYTNC+vb5ERuonYMWZq8COt/KV3NUkuatJcleTqrlL5nY0YoQ+8jo0FJYs4dLRo9Ru2RJGjYKxY8t2RLaTE7Rpoy95mc1w7hxRK1fS0vLcpUtQp44+b2ZcnL5s2HDzPa+9BtOm6Y8TE+Hbb29ebtekiT73ZlGWLdPnobrBZOcL1qSDSVQ6DRo0ULJ2RahvJMldTZJ7OUtMLP5EmGazfgL08cf65Jbt25fsLi0lILmrSXJXk+SuJlVzl8ztzMVF/8PYpElEb99O7e7d7VvfwQHq16d2u3Y3n+vSBS5c0OeIOnZMn9vJMs9TVJR+FzyLgwf1EecWVapA48Y3O5zGjtVHQ1lkZMCUKfpjg2ZCkg4mUekEBAQoWbsi1DeS5K4myb2c1aypn/wUt5MpJQX++U99qVULBgzQO5vuv1//a1wZkdzVJLmrSXJXk6q5S+Zq1rdZu3p16NZNXwrj5aXf0dcyyfjVq3DihL4sXw7Nmt3sYNq9W183KalcjqG4ZA4mUels3LhRydoVob6RJHc1Se7lrKS38p08WR9y7uEBly/Db7/pJzN33aWPaHrtNdi4ETIzS7VbkruaJHc1Se5qUjV3yVzN+ndcu2NHmDMHdu7U/8hnuZxuxgx47rn8nVMHDugdUQaTEUyiWGbMmMGMGTPIzc0FICwsDA8PD0aPHs2GDRtISUnB19eXrl27smLFCgA6duyI2Wxm//79AAQFBbF161YSExPx9vamV69ehIWFAdC2bVucnJzYu3cvAEOHDmXPnj1cunQJT09PBgwYQOiNyWVTU1M5deoUO3fuBGDgwIEcPnyYuLg43N3dGTZsGPPnzwegefPm+Pj4sG3bNgDuu+8+jh8/TmxsLM7OzowePZr58+djNpsJCAigbt26bN68GYA+ffoQGxvLqVOncHR0JDg4mAsXLhASEkKDBg0ICAiwNhY9e/YkPj6e48ePAzBx4kSWLl1Keno69erVo1WrVqxduxaAwMBAUlJSiIyMBCA4OJg1a9Zw9epV6tSpQ8eOHVl1YzK2Ll26kJGRwaFDhwDIzc1lzZo1JCUl4ePjQ2BgIMuXLwegQ4cOAERERAAwfPhwduzYQUJCAjVq1KBPnz4sWbIEgDZt2uDi4sLu3bsBGDJkCPv27ePixYtUq1aNQYMGsXDhQgBatWqFq6srAKGhoQwaNIjIyEjOnTuHm5sbQUFBhISEANCsWTN8fX3ZunUrAP369SM6OpozZ85QtWpVxowZw8KFC8nJyaFx48bUr1+f8PBwAHr16kVcXBzR0dE4ODgwfvx4Fi9eTGZmJvXr1yczM9Nap0ePHiQkJHDs2DEAxo8fz4oVK7h27Rp169aldevW/P777wB069aNtLQ0jhw5AsDYsWNZu3Ytqamp1K5dm86dO7Ny5UoAOnXqRHZ2NgcPHgRg5MiRbN68mbi4ONauXUvPnj1ZunQpAO3bt8fBwYF9+/YBMGzYMHbt2kV8fDxeXl7079+fxYsXA9C6dWvc3NzYtWsXAIMHD+bAgQOcP38eDw8PhgwZwoIFCwBo0aIF3t7ebN++HYD777+fK1euEBISgqurKyNHjmTevHlomkbTpk2pU6cOW7ZsAaBv376cPn2amJgYnJycGDt2LKGhoWRnZ9OoUSMaNmzIpk2bALj33nu5ePEiJ06cwGQyMWHCBMLCwrh+/Tr+/v60aNHC+j2MjY0lLS2NqBv/aY0bN45Vq1aRlpaGn58f7dq1Y/Xq1QB07dqV9PR0Dh8+DFDqNiIuLo6QkJAStRF33303Hh4epW4jLly4AFCiNmLRokVkZWWVSRthOfaStBGjRo0iPDy82G3ETm9v7nV3xyk9vchr9DWTiRx3dxb37Yt7zZoMCgkhfNo07jpwgEYnTuB29Kh+YnPgAHz6Kbmurlxs0YLETp1o+8orhOzZAyZTsduIuLg4du7cWaI2olmzZqxfvx4oXRthNptZuXJlidqIK1euULNmzTJpI+Li4khOTi5RGxEVFcXZs2dL1Ub4+/sDejvv4OBQrDZi3bp1AHTv3p0rV66Uuo1ISEjg6tWr5X4eYauNSExMJCQkpNzPIwprI65fv87evXvL/Tzi1jaiU6dO1twtj8vjPMLLy4sdO3YAMGDAgHznEYBdziNstRGWdra8zyMKayPS0tKsx16e5xG3thGWyZYjIiKoV69euZ1HFNVGXLp0iZCQkHI/j7DVRsTFxZGamlru5xG22oiMjAxr5uV9HnFrG5GSkgJASkoKG27M+VPa84iStBEJCQmEhISUuI0oq981MjIy2LVrV7mfR9hqIyxtTanPI44e1duIhg3p/+ijehtx+DCtW7fGs1kzqvv54XX+PIbShCiBlJQUDdDi4+MN24fY2FglaxtZPyMjQ5s6daqWkZFhSH1Nk9yNILkrkvuyZZpmMumLfsV+/sXy2rJlhW/j0iVN+/VXTXvoIU2rXbvgNho21LQnn9S0xYs1LTn5trskuduffN4ld6NI7vYnuatZ2+jcVf282bX26NGa5uCQ7xwsBTRAS0lJscsuyCVyotKJL4tbN1bC2hWhvpEkdzVJ7nZwy618tRsTd2sluZWvry88+CD8/LN+x5aICP0OKH376ndWOX0avvsORo/W532691744AN9vgAbl+hJ7mqS3NUkuatJ1dwlczXr2612Sac+KAfSwSQqHcvQUNVqV4T6RpLc1SS524nlVr6//IJ5xAhiGjbEPGIE/PKL/nxRnUu3cnDIPx/TlSv6RJTPPqtPRpmbC1u3wltv6RNT+vrCxInw0096LSR3VUnuapLc1aRq7pK5mvXtVjs4GGrUAJPJPvVskDmYhBBCCGG9lW9OcDA/T5vG66+/ThVn59Jv18MDhg3TF4CYGFi7Fn7/XZ+oMjER5s3TF4A2bWhfvz74+OgjnVxcSr8PQgghhBB/dS4u+qTgQUF6J1MR82uWF5OmGVBVVFqpqal4eXkRHx9PrVq1jN4dYSeZmZlMu/ELp3NZ/MIpKgXJXU12zT07W78zyu+/68uePflPhlxdoXdvGDhQX1q0MPSvcn9l8nlXk+SuJsldTZK7QpYtgylTICmJFJOJ6ppGSkoKnp6e5V5aLpETlY5lZn3ValeE+kaS3NUkuf/FOTlBz57w/vuwaxfEx0NICLH9+sFdd8H167BmDbz0ErRqBQ0bwuOPQ2goJCWVyy4Z/X03ur6R5POuJsldTarmLpmrWd/utfNOfTBkiF1LyyVyotJJT09XsnZFqG8kyV1NkrtifHxgwgS2aRr1J0yAw4dvjm7asgViY2H2bH1xcIBu3W6OburSBapUKfUuGP19N7q+keTzribJXU2q5i6Zq1nfkNqWqQ8GDtTnu7QT6WASlU69evWUrF0R6htJcleT5K6mevXq6ZfCtWmjLy+/DOnp8McfN+dvOnoUduzQl6lT9Ukt77vvZodTSb5/GRmwcCGEhTH41Cl9hNTIkfpkmXaeA0r53BWsXRHqG0lyV5OquUvmatY3+tjtSTqYRKXTqlUrJWtXhPpGktzVJLmryeaxu7nB4MH6AvpoJktn0/r1+iVzCxfqi76Rm51NvXrp8znZkmeeAhwcqG42w8GDsHgxvPCCPllmSe6iV0qSu3q1K0J9I0nualI1d8lczfpGH7s9yRxMotJZu3atkrUrQn0jSe5qktzVVKxjr18fHntM71C6fBm2b4d33oF77tEvn4uMhOnTYdAg8PbWO5q++EK/7M4ykfiyZfpIpeRk/d9mc/6vycn6nViWLSvjIyyc5K5e7YpQ30iSu5pUzV0yV7O+0cduT9LBJIQQQojKzdERAgP1S+V27NA7nBYsgEcf1S+Vy8jQRzu9/LJ+yZ2/Pzz8MDzwgP7+wm6oa3l+yhR9G0IIIYQQolDSwSQqncDAQCVrV4T6RpLc1SS5q6nUx+7trc+fNHu2findkSPw73/ro5hcXCAuDn75Ba5dK7xzyULT9MvnQkNLt0/FJLmrV7si1DeS5K4mVXOXzNWsb/Sx25N0MIlKJyUlRcnaFaG+kSR3NUnuairTYzeZ9PmYXnoJ1qyBK1f0eZuaNi3+NhwcYMmSstunIkju6tWuCPWNJLmrSdXcJXM16xt97PYkHUyi0omMjFSydkWobyTJXU2Su5rK9dhdXWHAAPDzK/57zGbYuxfWrYO0tPLbNyR3FWtXhPpGktzVpGrukrma9Y0+dnuSu8gJIYQQQj01a+ojkywTet/OmTN6x1SVKtCxI9x7r353up499W0JIYQQQihORjCJSic4OFjJ2hWhvpEkdzVJ7mqyy7GPHFn8ziWAHj2gYUPIzYXdu/U5nUaOBB8faN0ann4aQkLg3LlS7Zbkrl7tilDfSJK7mlTNXTJXs77Rx25P0sEkKp01a9YoWbsi1DeS5K4myV1Ndjn24GCoUUOfo6koJpO+3vr1EBOjTxr+22/w5JPQsqW+zpEj8M03+l3p/P2hcWP9znPffw8nTtx+IvE8JHf1aleE+kaS3NWkau6SuZr1jT52e5JL5ESlc/XqVSVrV4T6RpLc1SS5q8kux+7iAnPmQFCQ3olkqxPI0vk0Z46+PugdSA88oC8Aly/D1q2wZQts3gwREXpHVEyM/j6A2rX1y+l69dIvrWvTRr88zwbJXb3aFaG+kSR3Namau2SuZn2jj92epINJFMuMGTOYMWMGubm5AISFheHh4cHo0aPZsGEDKSkp+Pr60rVrV1asWAFAx44dMZvN7N+/H4CgoCC2bt1KYmIi3t7e9OrVi7CwMADatm2Lk5MTe/fuBWDo0KHs2bOHS5cu4enpyYABAwi9cYtok8nEqVOn2LlzJwADBw7k8OHDxMXF4e7uzrBhw5g/fz4AzZs3x8fHh23btgFw3333cfz4cWJjY3F2dmb06NHMnz8fs9lMQEAAdevWZfPmzQD06dOH2NhYTp06haOjI8HBwSQlJRESEkKDBg0ICAhg48aNAPTs2ZP4+HiOHz8OwMSJE1m6dCnp6enUq1ePVq1asXbtWkC/TWVKSop1srfg4GDWrFnD1atXqVOnDh07dmTVqlUAdOnShYyMDA4dOgSAj48Pa9asISkpCR8fHwIDA1m+fDkAHTp0ACAiIgKA4cOHs2PHDhISEqhRowZ9+vRhyY27ILVp0wYXFxd2794NwJAhQ9i3bx8XL16kWrVqDBo0iIULFwLQqlUrXF1dAQgNDWXQoEFERkZy7tw53NzcCAoKIiQkBIBmzZrh6+vL1q1bAejXrx/R0dGcOXOGqlWrMmbMGBYuXEhOTg6NGzemfv36hIeHA9CrVy/i4uKIjo7GwcGB8ePHs3jxYjIzM6lfvz7VqlWz1unRowcJCQkcO3YMgPHjx7NixQquXbtG3bp1ad26Nb///jsA3bp1Iy0tjSNHjgAwduxY1q5dS2pqKrVr16Zz586sXLkSgE6dOpGdnc3BgwcBGDlyJJs3byYhIYG1a9fSs2dPli5dCkD79u1xcHBg3759AAwbNoxdu3YRHx+Pl5cX/fv3Z/HixQC0bt0aNzc3du3aBcDgwYM5cOAA58+fx8PDgyFDhrBgwQIAWrRogbe3N9u3bwfg/vvvJzs7m5CQEFxdXRk5ciTz5s1D0zSaNm1KnTp12LJlCwB9+/bl9OnTxMTE4OTkxNixYwkNDSU7O5tGjRrRsGFDNm3aBMC9997LxYsXOXHiBCaTiQkTJhAWFsb169fx9/enRYsW1u9hbGwsaWlpREVFATBu3DhWrVpFWloafn5+tGvXjtWrVwPQtWtX0tPTOXz4MECp24iEhARCQkJK1EbcfffdeHh4lLqNSE5OBihRG7Fo0SKysrLKpI2wHHtJ2ohRo0YRHh5eqjbCfOOysVOnTlmzuV0b4eXlxY4dOwAYMGBAqduIhIQEdu7cWaI2olmzZqxfvx4oWRvR99tv8XnlFRxTUzGbTDhoGprJhEnTyHZ3J3v2bJampUFIiO02Yt8+rmRkUHPQIHp+8AErQ0LwOXGCNsnJuO3di/OBA1S5dAkWLtQXINvdHYdevThUvTrxzZvjN3w4rl5e7Nq1i4SEBJKTk0vURkRFRXH27NlStRH+/v6A3s47ODgUq41Yt24dAN27d+fKlSulbiOuX7/O1atXy/08wlYbkZmZSUhISLmfRxTWRri6urJ3795yP4+4tY3o1KmTNXfL4/I4jyiqjahTp45dziNstRGWdra8zyOuXLlCzZo1C5xHODk5WY+9PM8jbm0jFi1aZM26Xr165XYeUVQbkZqaSkhISLmfR9hqIxISEkhNTS338whbbYS7u7s18/I+j7i1jbDcySwlJYUNGzYA5XMeAbbbiIyMDEJCQuxyHmGrjXB3d2fXrl1lfh5RnDbC0taUtI0oi9817M2kaSUYty2Ul5qaipeXF/Hx8dSqVcuQfUhJScHLy0u52kbWz8zMZNq0abz++us4OzvbvT5I7pK7WrWNrK9k7hkZEBoKS5aQEx+Po68vjBoFY8feHLlUmm3v3q2PbtqyBbZtK3gnOldXuOce6NWLtI4d8ejfH9zdS1e3hJTMvYLUNrK+5C65S+7q1DY6d1U/b0bXvnz5Mr6+vqSkpODp6Vnu9WQOJlHpWP4qp1rtilDfSJK7miR3Ndn92F1cYNIkWLSIhU8/DYsW6f8ubeeSZdv33gv/+hesWQNJSbBnjz5J+KhR+h3orl+HTZvg3XfxCAqC6tUhMBBefRVWrNDfowD5vKtJcleTqrlL5mrWN/rY7UkukRNCCCGEsBdHR+jUSV9eekmf++noUescTtfWrMH9yhX48099+ewzfS6oNm30jirLPE533WX0kQghhBBC5CMdTKLS6dKli5K1K0J9I0nuapLc1aRU7iYTtGqlL08+yYUTJ2ji5HRz0vAtW+DYMTh4UF9mzNDf16TJzc6mXr2gUaPb3xHPlowMWLgQx8WLeTgiAsf9+2H0aP0ue2UxgqsElMq9gtU3kuSuJlVzl8zVrG/0sduTdDCJSicjI0PJ2hWhvpEkdzVJ7mpSOvfMTGjaFBo2hIce0p+8dEnvaLJ0Oh04ACdP6ssPP+jr+Pnl73Bq1arQO9VZLVsGU6ZAUhIODg40MpvRzp6FsDB44QX9LnjDh5fj0eandO7yeVeudkWobyRVc5fM1axv9LHbk8zBJCody10OVKtdEeobSXJXk+SuJsn9FrVr6xOOf/UVRETAlSuwciW8/jp07w5OTnD+PMybB888o19OV6sWBAXBF1/Arl2QnZ1/m8uWwciRcONuiaYbdw+0fCU5WX//smXldqy3ktzVJLmrSdXcJXM16xt97PYkI5iEEEIIISqT6tVhyBB9AX2S8J07b15St3273gm1bNnNDiJ3d33i8F69oFs3mDxZf76wmwlrmn7J3ZQpeueVnS+XE0IIIUTlY9K0ws4shCgoNTUVLy8v4uPjqVWrliH7kJGRgYtBJ7pG1jayvtG3NQXJXXJXq7aR9SX3v0Du2dn6SCdLh9OWLaW7E90vv+h31Stnkrt83lWqbWR9yV3N2kbnrurnzejaly9fxtfXl5SUFDw9Pcu9nvKXyJlMpmItffr0ue221qxZw+jRo6lXrx7Ozs7Uq1eP0aNHs2bNmmLvT3p6Op999hldu3bF29sbDw8PWrZsycsvv0xsbGyxt3PkyBGeeuopmjRpgqurK7Vq1aJXr15899135OTkFHs7FVF4eLiStStCfSNJ7mqS3NUkuZeSkxN07QovvwxLl0JCAhw6pE8QPn58yUYjOTjAkiWl36dikNzVJLmrSdXcJXM16xt97PYkl8iVAU3TeOqpp5g5c2a+5+Pi4liyZAlLlizhiSee4Ntvv8VUxB1eoqOjGTp0KMeOHcv3fFRUFFFRUcyePZu5c+cyxDIkvhDff/89zzzzDJmZmdbnMjIy2LJlC1u2bOGnn35ixYoV1KxZ8w6O1nhJpfkrbCWuXRHqG0lyV5PkribJvYw5OEDr1vry9NPQpw/88Ufx3ms2w+7dEBqqd1r5+9/Z3eqKQXJXk+SuJlVzl8zVrG/0sduTdDDd8Le//Y2nn3660Nfd3d0Lfe3NN9+0di516NCBV199lYCAAKKjo/n000+JiIhg5syZ1KpViw8++MDmNtLS0hg2bJi1c+nxxx9nwoQJuLq6smnTJj7++GNSUlIIDg5mx44dtG3b1uZ2fv/9d5544gnMZjO1a9fmX//6F926dePKlSvMmjWLxYsX8+effzJ69Gg2bdqEw+3uMFMB+fj4KFm7ItQ3kuSuJsldTZJ7OatZU+90skzofTtnz0JwsP64dm29o8mydOkCNWqUyW5J7mqS3NWkau6SuZr1jT52u9IUB2iA9s4779zR+0+cOKE5OjpqgNa5c2ctPT093+vXrl3TOnfurAGao6OjdvLkSZvbeeedd6z78umnnxZ4ffv27dY6ffv2tbmN7OxsrUmTJhqgeXp62qz19NNPW+vMmTOnxMebkpKiAVp8fHyJ31tWrl69qmRtI+tnZGRoU6dO1TIyMgypr2mSuxEkd8ndKJJ7Ofv5Z03Tp/Eu3tK/v6Z17Khpjo62X2/aVNMefFDTvvpK0/78U9OuX7+j3ZLc7U8+75K7UVTN3cjaRueu6ufN6Nrx8fEaoKWkpNilXuUbvlLBTJ8+3Tqn0ddff42rq2u+193c3Pj6668ByMnJ4csvvyywjezsbL766isAWrZsyT/+8Y8C6wQGBvLoo48CsGnTJvbu3VtgnSVLlnDy5EkA3njjDQICAgqs89lnn1Hjxl8aP/vss+IeZoWyfPlyJWtXhPpGktzVJLmrSXIvZ8HB+qij213qZjLp661YAXv3Qmqqfoe6L7+EBx6AJk309U6cgN9+gxdegHvuAU9PfWTTM8/AnDlw9GixRktJ7mqS3NWkau6SuZr1jT52e5IOplLQNI2lS5cC0KJFC+655x6b691zzz00b94cgLCwMLRbbtwXHh5OcnIyAJMnTy70srUpU6ZYHy9evLjA62FhYTbXzcvNzY1x48YBcPjwYU6cOGFzPSGEEEL8Rbm46B0/UHgnk+X5OXNuTgru6gqBgXpH0m+/6R1LCQmwZg289x4MGwa1aul3sduzB/73P5gyBVq10juq+veHN97QJw2Piyv3wxRCCCGEfckcTKUQExND3I0TpN69exe5bu/evTl27Bjnzp3j9OnTNGrUyPrali1b8q1XmM6dO+Pu7s61a9fYunVrgdct22nevDl16tQpcl++++47ALZu3UrTpk2L3PeKpkOHDkrWrgj1jSS5q0lyV5PkbgfDh0NYmN4BlJSE5uCAyWy2fqV6db1zafjwordTsyYMHKgvoF80d+YM7Np1c7GMftq4UV8s6tbNN59TJwPPR5TJvQKSz7uaVM1dMlezvtHHbk/SwXTDwoULCQkJITY2FkdHR+rUqUP37t2ZMmUKffv2tfmeo0ePWh+3aNGiyO3nff3o0aP5OpiKux1HR0cCAgI4ePBgvveAPkn4uXPn7mhfhBBCCKGgESPg/HkIDcW8aBGx+/dTv317qowZA2PH3hy5VBImEzRsqC83RkyTkwORkfk7nQ4d0kcxLVmiL0BTkwlatMg/iXjbtlC1apkdshBCCCHKj1wid0NkZCTHjx8nIyODtLQ0Tp48yc8//0y/fv0YNWoUKSkpBd5z9uxZ6+N69eoVuX1/f3+b78v7b3d3d6pXr16s7Vy+fJnMzEzr8+fOnbNeeleafakMIiIilKxdEeobSXJXk+SuJsndjlxcYNIkcubN4+cpU8iZNw8mTbqzzqXCODrqHUWPPQYzZ8L+/fqIps2b4fPP9Y6ohg0xaZo+X9OcOfr8TV266PM53XpZ3i1TDdyxjAz45RcYM4Yao0fDmDH6vzMyymb7JWD0z52R5POuJlVzl8zVrG/0sduT8iOY3NzcGDFiBP3796dFixZ4eHhw+fJl/vjjD7799lsSExMJCwsjKCiIdevW4eTkZH3v1atXrY89PDyKrOPu7m59nJaWlu81y3Zutw1b23F2di7TfblVZmZmvo6s1NRUm8/bU25urpK1jaxvqanisRtd28j6krvkbhTJXYHcHR1vjlK6Ydns2YysWxfT7t047NmDac8eTFeuwJ9/6ssNWo0aaJ06Ye7cGa1LF8ydO0Pt2iUq77BiBY6PPYYpORnNwYHaZjPasWOYFi9Ge/55cr7/HvPQoWV2uLejTO42yOddcpfa9mF07qp+3oyube+6Ju3WGacVk5ycXOiooUuXLjF48GBrj+NXX33F888/b339/fff5+233wZgw4YN9OvXr9A6GzdupH///tb3vfnmm9bXAgICOHXqFP7+/sTGxha5vw8//DC//PILoI8+soxW2rJlC7169QLgrbfe4r333it0G2azmSpVqgDQv39/1q9fX+i6U6dO5d133y3w/Ouvv45LWf51UwghhBAiL02jRlISdc+do25cHHXj4rjrwgUcc3MLrJrs5UVc3brW5cJdd5F9449wt2oWFcWEefMAsDXFueXEeN6ECRy/zbQDQgghREWWkZHBtGnTSElJwdPTs9zrKT+CqahL0mrXrk1oaCgtW7YkKyuLr7/+Ol8HU94OlqysrCLr5O05dHV1zfeaZTu320ZR2ymrfbnVG2+8wd///nfrv1NTU/H39+eZZ56hVq1at93f8rBx48YiO/P+qrWNrJ+Zmcn06dN56aWXrKPm7E1yl9xVqm1kfcldcq/IuedmZ2M+fBjTnj047N6tj3I6epTqKSlUT0nh7shIADQHB7RWrdA6d7aOdNLuvhtycqjasCGYTPoleTaYAM1kYsKaNWR9+23ZXi5YCMldPu/2JLmrWdvo3FX9vBld+/Lly0ybNs1u9ZTvYLqdxo0bc//997Ny5UpOnjzJ+fPn8fPzA6BatWrW9W53qdm1a9esj2+9hM2yndtto6jtlNW+3MrZ2dlmA1TY8/aQnJysZO2KUF9yN4bR9SV3YxhdX3I3htH1K3zuzs5wzz36YpGaqt+pLs8k4qZz5zAdPgyHD1Plp5/09Vxdwd8fkpNvuy8mTYPkZJyXL9fnpCpnkrt6tStCfcldrdoWRuVu9LGrmru968ok38XQqlUr6+O4uDjr47yTaVvu4FaYvJNp551kO+92rl27RvJtTnos26lVq1a+H5ay2pfKoEaNGkrWrgj1jSS5q0lyV5PkrqY7PnZPT+jbF157DRYtgrNn9TvUhYXBP/8J992nr3P9Ohw/XvztOjhY73BX3iR39WpXhPpGUjV3yVzN+kYfuz1JB1MxFDZNVd6Op6ioqCK3kff1li1b3tF2cnJyiI6OtrkNDw8Pa2dRafalMujTp4+StStCfSNJ7mqS3NUkuaupTI/dzw+CguDDD2HdOkhKgqgoKMmcSmYzHDmi3/WuGNMYlIbkrl7tilDfSKrmLpmrWd/oY7cn6WAqhsgb1/MD1svjABo1amT99x9//FHkNjZv3gxA3bp1adiwYb7XevbsaX1c1Hb27NljvbytR48eBV63bOfYsWNcvHix0O3krWFrOxXdEjv9NbGi1a4I9Y0kuatJcleT5K6mcj12Bwdo3hxatdIfF9exY9ChA3h4QPv2MGUKfPklhIfrnVZlRHJXr3ZFqG8kVXOXzNWsb/Sx25N0MN3GqVOnWLduHaDPx1S3bl3rayaTiaCgIEAfFfRnnlvo5vXnn39aRw0FBQVhMuW/Z0mfPn3w8vICYM6cOYWOmPrJMocAMGrUqAKvjxw50ua6eaWnp7NgwQJAHznVrFkzm+sJIYQQQvzljBypj0wqrhYtoHp1yM6GAwdgzhx46SX9kjxvb2jUCEaNgnffhaVL4cwZUPsGzUIIIRSmdAfT8uXLycnJKfT1S5cuMXbsWLKzswF45plnCqzz4osv4uioz5X+3HPPcf369XyvX79+neeeew4AR0dHXnzxxQLbqFq1qvXudEePHuXzzz8vsM6OHTv4/vvvAejduzddunQpsM6oUaMICAgA4OOPP7ZeTpfXK6+8QtKNv7i98sortg+8gmvTpo2StStCfSNJ7mqS3NUkuavJLsceHAw1asAtf+wrwGTS14uIgCtX4PRpfU6nqVP1TirLaHRbz3t76x1QL72kd0gdOHDbS+wkd/VqV4T6RlI1d8lczfpGH7s9KX0Xueeee47s7GzGjBlDYGAgDRs2xNXVlYSEBMLDw/n2229JTEwE9MvPbHUwNWvWjJdffplp06axZ88eevTowWuvvUZAQADR0dF88sknREREAHqHTtOmTW3uyyuvvML8+fM5fvw4r776KidPnmTChAm4urqyadMmPvroI3JycnB1deXLL7+0uQ0nJyf+85//MHz4cFJTU+nRowdvvvkmXbt2JSkpiVmzZrFo0SLr8Tz00ENl8F20Pxc73C64ItauCPWNJLmrSXJXk+SuJrscu4uL3ukTFKR3ItkabWTpfJozR18foEEDfbkxch3QL5E7eFCfo8myHDmi36UuPFxfLJyc4O679cvsLEu7dvroKCR3FWtXhPpGUjV3yVzN+kYfuz0p3cEEcP78eb7++mu+/vrrQtcZM2YMs2fPLvQWfx9++CHx8fH88MMPREREMGHChALrPProo3zwwQeF1qhWrRorV65kyJAhnDhxgpkzZzJz5sx863h6evLbb7/Rvn37QrczZMgQvv32W5599lkuXbpkHT2VV9euXVmyZAlVqlQpdDsV2e7du2nSpIlytStCfSNJ7pK7SrUrQn0jSe6Se7kaPlwfdTRlit5J5OCgXzZn+Vq9ut65NHx40dupUQN699YXi6wsiIzM3+m0fz+kpNx8nFfDhtC+PderVIGHHtI7nurXv/0Iq78Q+bzL511qq8HoY5fc7UPpDqY5c+bwxx9/sGPHDk6dOkVCQgKpqanWO7J1796dyZMnExgYWOR2HBwc+P777xkzZgwzZ85k9+7dJCQk4OPjQ5cuXXjyyScZPHjwbfenSZMmREREMGPGDBYuXMjJkyfJysrC39+fIUOG8MILL9CgQYPbbufxxx8nMDCQ//znP2zYsIHz58/j7u5Oy5YtefDBB3nsscesl/UJIYQQQihnxAg4fx5CQ2HJEi4dPUrtli31+ZTGjr05cqmkqla9OULJQtP0uZlu7XQ6c0a/xO70adoA3BhlTvXq+Uc6tW8PLVvq2y4rGRmwcCGOixfzcEQEjvv3w+jR+iWECv2lXQghRNkyaYXNKC2EDampqXh5eREfH0+tWrUM2YeUlBTrpOgq1TayfmZmJtOmTeP1118vdCRfeZPcJXeVahtZX3KX3CV3O0lK0udn2r+frF27qBoZqV9iZ2t+0KpVbV9idyf7vGyZdfSW5uCAyWy2fqVGjeKN3ipDyuVeAerL513N2kbnrurnzejaly9fxtfXl5SUFDw9Pcu9ntKTfIvKad++fUrWrgj1jSS5q0lyV5Pkriblcq9RA/r0gRdfZNvjj+ujmtLSYN8++OEHeP556NULPD31S+8iIuDHH+GFF/TL8qpXh8aN9ZFH772ndxzFxhZ9F7tly/TJyJOTAfROpTxfSU7W55latqz8jvsWyuVegeobSdXcJXM16xt97PYk10mJSufixYtK1q4I9Y0kuatJcleT5K4myR1wdoYOHfTFQtP0S+luvcQuNhZiYvRlyZKb69eoYfsSu9xcfeSSZZu2aJo+/9OUKfolhHa4XE5yV5OquUvmatY3+tjtSTqYRKVTrVo1JWtXhPpGktzVJLmrSXJXk+ReCJMJGjXSl1Gjbj5/5Yr1EjvrEhmpX3q3aZO+WFStCnfdpb92O5qmrxcaCpMm3eERFZ/kriZVc5fM1axv9LHbk3QwiUpn0KBBStauCPWNJLmrSXJXk+SuJsm9hLy9oW9ffbHIzLx5F7uIiJsdT1ev6pOKF5eDgz4qyg4dTJK7mlTNXTJXs77Rx25PMgeTqHQWLlyoZO2KUN9IkruaJHc1Se5qktzLgOUSu//7P/jPf2DzZn1epehofZLw4jKb9fe+/TbMnw+HD+vzQJUDyV1NquYumatZ3+hjtycZwSSEEEIIIcRflYODPhl48+Zw9KjeeVQcCQnw/vs3/+3oCM2a6R1VeZcmTcDJqXz2XQghRKUiHUyi0mnVqpWStStCfSNJ7mqS3NUkuatJci9nI0fC4sXFX/+BB/RJvo8c0Ze0NP3yu8hIyPvXeCcnvfPq1o6ngAC9U+o2JHc1qZq7ZK5mfaOP3Z6kg0kUy4wZM5gxYwa5ubkAhIWF4eHhwejRo9mwYQMpKSn4+vrStWtXVqxYAUDHjh0xm83s378fgKCgILZu3UpiYiLe3t706tWLsLAwANq2bYuTkxN79+4FYOjQoezZs4dLly7h6enJgAEDCA0NBcDX15dTp06xc+dOAAYOHMjhw4eJi4vD3d2dYcOGMX/+fACaN2+Oj48P27ZtA+C+++7j+PHjxMbG4uzszOjRo5k/fz5ms5mAgADq1q3L5s2bAejTpw+xsbGcOnUKR0dHgoODOXDgAJGRkTRo0ICAgAA2btwIQM+ePYmPj+f48eMATJw4kaVLl5Kenk69evVo1aoVa9euBSAwMJCUlBQiIyMBCA4OZs2aNVy9epU6derQsWNHVq1aBUCXLl3IyMjg0KFDAHTq1Ik1a9aQlJSEj48PgYGBLF++HIAON+44ExERAcDw4cPZsWMHCQkJ1KhRgz59+rDkxl1m2rRpg4uLC7t37wZgyJAh7Nu3j4sXL1KtWjUGDRpkHcrZqlUrXF1dAQgNDWXQoEFERkZy7tw53NzcCAoKIiQkBIBmzZrh6+vL1q1bAejXrx/R0dGcOXOGqlWrMmbMGBYuXEhOTg6NGzemfv36hIeHA9CrVy/i4uKIjo7GwcGB8ePHs3jxYjIzM6lfvz7u7u7WOj169CAhIYFjx44BMH78eFasWMG1a9eoW7curVu35vfffwegW7dupKWlceTIEQDGjh3L2rVrSU1NpXbt2nTu3JmVK1dav7/Z2dkcPHgQgJEjR7J582bOnTvHpUuX6NmzJ0uXLgWgffv2ODg4WG87OmzYMHbt2kV8fDxeXl7079+fxTdO5Fu3bo2bmxu7du0CYPDgwRw4cIDz58/j4eHBkCFDWLBgAQAtWrTA29ub7du3A3D//fcTGxtLZGQkrq6ujBw5knnz5qFpGk2bNqVOnTps2bIFgL59+3L69GliYmJwcnJi7NixhIaGkp2dTaNGjWjYsCGbbkz6eu+993Lx4kVOnDiByWRiwoQJhIWFcf36dfz9/WnRooX1exgbG0taWhpRUVEAjBs3jlWrVpGWloafnx/t2rVj9erVAHTt2pX09HQOHz4MUOo2Ys+ePURGRpaojbj77rvx8PAodRuRk5NDu3btStRGLFq0iKysrDJpIyzHXpI2YtSoUYSHh5eqjTDfGN1w6tQpaza3ayO8vLzYsWMHAAMGDCh1G5GamkpGRkaJ2ohmzZqxfv36UrcRXbp0YeXKlSVqI65cuULNmjXLpI1IT0+nQYMGJWojoqKiOHv2bKnaCH9/f0Bv5x0cHIrVRqxbtw6A7t27c+XKlVK3Ec7OzjRu3LjczyNstRGnT58mMjKy3M8jCmsjAgIC2Lt3b7meRziYzYyrXh1SUjAVdhc5QAOy3N3J/uordkRE6G1E9er0CQjgz++/x+vcORpeu4ZrTAxVjh3DKTNTv4TuRqYWuU5OpN51l7XD6ZDZTEq9enR/8EEijx2zthHt2rWzy3mErTYiIiKCyMjIcj+PKKyNSE1NtR57eZ5H3NpGLFq0CND/P6hXr165nUcU1UZERkYSGRlZ7ucRttqI9PR0GjVqVO7nEbbaCAcHB2vm5X0ecWsbkZKSAkBKSgobNmwAyuc8Amz/rhETE0NkZKRdziNstRFNmzZl165d5X4eYauNsJzT2eM8AvK3EXanCVECKSkpGqDFx8cbtg9z585VsraR9TMyMrSpU6dqGRkZhtTXNMndCJK75G4Uyd3+JHdFcl+2TNNMJn3R7xeXf7G8tmxZ8baXm6tpMTGatmKFpk2bpmkPPaRpHTtqmqur7e2Dprm4aFqHDpo2aZKmffyxFv6Pf2hadLS+LTtTJvdbyOddzdpG567q583o2vHx8RqgpaSk2KWejGASQgghhBBCBcOHQ1gYTJkCSUloDg6YzGbrV6pXhzlz9PWKw8EBGjbUl6FDbz6fmwunT9+8vM6yHD0KGRn6He5ujILoDfDFF+DmBi1bFrzUrn59vU5ZycjQL/ELC6Pf0aMQGqpfPhgcrF8SKIQQ4o5JB5OodAYMGKBk7YpQ30iSu5okdzVJ7mqS3O1kxAg4fx5CQzEvWkTs/v3Ub9+eKmPGwNixZdPJUqWKPgdTQIBezyI3F06dytfplHPwII4nTkB6Ouzdqy95eXhAq1YFO57q1QOTqWT7tWyZtXMNBwdqm81w7Jg+N9ULL5Ssc60MGP1zZyRVP++SuZr1jT52eyrDPwcIYR+W64lVq10R6htJcleT5K4myV1NkrsdubjApEnkzJvHz1OmkDNvHkyaVP4jeKpUgaZN9RFD//oXzJ3Ljm++gWvXICpKH0307rswbpzeieTkpE8uvmsX/PgjvPwyDB6sj2qqXh0CA+Gxx2D6dFi7FuLi9AvxbFm2TK+bnKz/23I3PcvX5GQICtLXsxOjf+6MpOrnXTJXs77Rx25PMoJJVDrnzp1TsnZFqG8kyV1NkruaJHc1Se5qOnfunH63uebN9WXMmJsvZmfDiRMFL7U7fhxSU+HPP/Ulr+rVb454at365h3tpkzRXy+sA0rT9BFRU6boI7zscLmc8rlLbaUYfeySu31IB5OodNzc3JSsXRHqG0lyV5PkribJXU2Su5qKPHYnJ72zqFUrfY4ki6wsvZPp1o6nEyf0kUjbt+tLSWmafvlcaKg+oqucSe5SWyVGH7vkbh/SwSQqnaCgICVrV4T6RpLc1SS5q0lyV5PkrqY7OvaqVfXRSa1b538+I0OfU+nWjqeTJ4u/bZMJfvpJH0nl6lryfSsByV1qq8ToY5fc7UPmYBKVTkhIiJK1K0J9I0nuapLc1SS5q0lyV1OZHruLC7RrBw88AB9+qN8x78QJuPfe4m9D02DDBnB31++ON3AgPP88zJgB69fD2bM3520qJcldaqvE6GOX3O1DRjAJIYQQQggh/rpq1QIHh+J3DDk56fM/nTmjL2vX5n/dzQ2aNbs5b1Tz5jf/Xa1a2e+/EEJUEtLBJCqdZs2aKVm7ItQ3kuSuJsldTZK7miR3Ndnl2EeOhMWLi7/+99/rI5eOHbu5HD+uf42OhvR02L9fX2511135O54sS8OG+l308pDcpbZKjD52yd0+pINJVDq+vr5K1q4I9Y0kuatJcleT5K4myV1Ndjn24GB44QV9AvDC7iIH+vxL1avr67u4gK9vwcvrsrMhJiZ/55NliY+HCxf0JTw8//uqVoUmTfKNeKpXvbre8VSzZpkebqEyMmDhQhwXL+bhiAgc9++H0aNvHq8dqfp5l8+6mvWNPnZ7kjmYRKWzdetWJWtXhPpGktzVJLmrSXJXk+SuJrscu4sLzJmjPzaZbK9jeX7OnKI7W5yc9Mvhhg+Hl1+GWbNg82a4dEm/A93OnfDzz/Cvf8HYsdCmjb69rCyIjIQlS2DaNHjkEWqPHg0+PvrSowc88gh88ok+d9TRo/p7ysqyZeDnBw8/jMOyZTQ6cwaHZcvg4Yf155cvL7taxaDq510+62rWN/rY7UlGMAkhhBBCCCH+2oYP1ztupkzRO4IsczJZvlavrncuDR9+5zWqV4euXfUlL7MZYmMLXHJ3LSIC98RESEyE7dv1Ja8qVaBRo/xzPFmWOnUK7yy71bJl+mWCN5huzEVl+UpyMgQF6d+fESPu5MiFEAKQDiZRCfXr10/J2hWhvpEkdzVJ7mqS3NUkuavJrsc+YgScPw+hobBkCZkXL+Jcpw6MGqWPNiqvy8QcHPRL4Sx3pbsh7dIl3D089Dvd2brkLi0NTp7Ul5Ur82/T07Ngp1Pz5tC0qT4JuUVGht6pBoVfHqhpemfVlCn698cOl8up+nmXz7qa9Y0+dnuSDiZR6URHR1O7dm3laleE+kaS3CV3lWpXhPpGktwld5VqV4T6RrL7sbu4wKRJMGkSe7dvp3v37varfYvo6Ghqd+8O7dvrS16aBhcv2u54iomB1FTYs0dfblW//s3Op5QUfcTW7Wiavl5oqP79KWeqft7ls65mO2v0sduTzMEkKp0zZ84oWbsi1DeS5K4myV1NkruaJHc1Se6FMJn0O9L16QNPPgn//rc+iunkSf0udkeO6HfG+/hjfeRR9+43JwuPjYX162HGDPj11+LvkIODPkeUHaiau9E/c0Yy+tgld/uQEUyi0qlataqStStCfSNJ7mqS3NUkuatJcleT5H4HnJ2hVSt9uVViYv7RTrNn688Vh9kMf/wB//iHfse7gAB9adAAHMv210ZVczf6Z85IRh+75G4fJk0r6l6dQuSXmpqKl5cX8fHx1KpVy+jdEXaSmZnJtGnTeP3113F2djZ6d4SdSO5qktzVJLmrSXJXwJgx+uTdlgm974Sjo97JlLfTyfK4cWNwdS2z3RXlRz7varp8+TK+vr6kpKTg6elZ7vVkBJMolhkzZjBjxgxyc3MBCAsLw8PDg9GjR7NhwwZSUlLw9fWla9eurFixAoCOHTtiNpvZv38/AEFBQWzdupXExES8vb3p1asXYWFhALRt2xYnJyf27t0LwNChQ9mzZw+XLl3C09OTAQMGEBoaCkBaWhr9+/dn586dAAwcOJDDhw8TFxeHu7s7w4YNY/78+QA0b94cHx8ftm3bBsB9993H8ePHiY2NxdnZmdGjRzN//nzMZjMBAQHUrVuXzZs3A9CnTx9iY2M5deoUjo6OBAcHM336dOrUqUODBg0ICAhg48aNAPTs2ZP4+HiOHz8OwMSJE1m6dCnp6enUq1ePVq1asXbtWgACAwNJSUkhMjISgODgYNasWcPVq1epU6cOHTt2ZNWqVQB06dKFjIwMDh06BIDJZKJ69eokJSXh4+NDYGAgy2/cVrZDhw4AREREADB8+HB27NhBQkICNWrUoE+fPiy5Mey5TZs2uLi4sHv3bgCGDBnCvn37uHjxItWqVWPQoEEsXLgQgFatWuF648QhNDSUQYMGERkZyblz53BzcyMoKIiQkBAAmjVrhq+vr/VWnP369SM6OpozZ85QtWpVxowZw8KFC8nJyaFx48bUr1+f8PBwAHr16kVcXBzR0dE4ODgwfvx4Fi9eTGZmJvXr1ycmJoYqVaoA0KNHDxISEjh27BgA48ePZ8WKFVy7do26devSunVrfv/9dwC6detGWloaR44cAWDs2LGsXbuW1NRUateuTefOnVl5Y+LMTp06kZ2dzcGDBwEYOXIkmzdv5vDhw7Rp04aePXuydOlSANq3b4+DgwP79u0DYNiwYezatYv4+Hi8vLzo378/ixcvBqB169a4ubmxa9cuAAYPHsyBAwc4f/48Hh4eDBkyhAULFgDQokULvL292X7jTjL3338/CxcupHr16ri6ujJy5EjmzZuHpmk0bdqUOnXqsGXLFgD69u3L6dOniYmJwcnJibFjxxIaGkp2djaNGjWiYcOGbNq0CYB7772XixcvcuLECUwmExMmTCAsLIzr16/j7+9PixYtrN/D2NhY0tLSiIqKAmDcuHGsWrWKtLQ0/Pz8aNeuHatXrwaga9eupKenc/jwYYBStxH/+9//8PPzK1Ebcffdd+Ph4VHqNuLSpUu8+OKLJWojFi1aRFZWVpm0EevXr8fPz69EbcSoUaMIDw8vVRthvvFLyKlTp6zZ3K6N8PLyYseOHQAMGDCg1G1EbGwsPXv2LFEb0axZM9avX1/qNsLBwQEPD48StRFXrlyhZs2aZdJGnD9/nkcffbREbURUVBRnz54tVRvh7+8P6O28g4NDsdqIdevWAdC9e3euXLlS6jYiMTGRyZMnl/t5hK02Yt68edSoUaPczyMKayOysrJo3bp1uZ9H3NpGdOrUyZq75XF5nEcU1UZkZWWRk5MDlO95hK02YtOmTfj5+ZX7eURhbcSOHTus51jldR4xrH9/qt3YTnHEDxnCFU3D8/Jl/K5fJ/f4capkZ0N0tL7YkO7tjVvr1pxxciK5Zk2cW7Wids+ebIiJIdvd3WYb8d///hdfX99yP4+w1UacP3+exx9/vNzPI2y1EVFRUTg5OQHlfx5xaxuRkpICQEpKChs2bADK5zwCbLcRv/76K97e3nY5j7DVRmRnZ9OiRYtyP4+w1UbMmjULPz8/u5xHQP42wu40IUogJSVFA7T4+HjD9mHu3LlK1jayfkZGhjZ16lQtIyPDkPqaJrkbQXKX3I0iuduf5C65G0VyL2fXr2tajRqaZjJpmj6Vt+3FZNLXu349//tzczXt3DlNCw/XtO+/17R//lPTxo3TtE6dNM3Lq+htgqZ5e2ta166aNnGipr31lqb99JOmbdmiLf7f/zTNbC7/48/7ffj5Z00bPVq72LKlpo0erf/71uMtZ0b+zBn9eVfi81YBa8fHx2uAlpKSYpd6MoJJVDqNGzdWsnZFqG8kyV1NkruaJHc1Se5qktzLmYsLzJkDQUH6xOG2ZkcxmfSvc+bo6+fl4AB16+pL7975X9M0uHJFH9l08uTNUU6Wxxcv6q/v2qUveYwCeOUV/RI7y+V2eS/B8/cvu3mfli3TJ0JPSgIHB2qbzfr8VIsXwwsv6Mc9fHjZ1LoNo3/mjGT0savc1tiTdDCJSqd+/fpK1q4I9Y0kuatJcleT5K4myV1NkrsdDB+uz8N0o5NFc3DAZDZbv1K9+p11sphM+p3rataErl0Lvp6WBqdO5e90uvFVi43FdO0aHDqkL7dycoKGDQt2PDVpAo0aFewIK8yyZTBy5M1/W+aisnxNTtY738LCYMSI4h/7HTL6Z85IRh+7ym2NPTkYvQNClJTlOlrValeE+kaS3NUkuatJcleT5K4myd1ORoyA8+fhl18wjxhBTMOGmEeMgF9+0Z8vjxE8Hh7Qti2MGqWPVvr2W1i/HmJiWPDTT/ooolWr4D//0UcSDRsGLVpA1aqQnQ0nTsCaNfDf/8JLL+nH0KoVuLlB/frQty889hhMmwYLF0JEBKSm3qyfkaF3qoHtkVt5n58yRV+/nBn9M2cko49d5bbGnmQEkxBCCCGEEEL81bm4wKRJ5AQH8/ONu4lVMehuYmZHR2jWTF9ulZsLcXEFL7mzPL56Fc6e1Rdbv7j7+OgjnUwm/bK429E0fb3QUJg0qdTHJoTKpINJVDq9evVSsnZFqG8kyV1NkruaJHc1Se5qktzVVOSxV6mij1CyjFLKS9MgIcH2nE8nT8Lly/rrCQkl2yEHB1iwoNw7mCRzNesbfez2JJfIiUonLi5OydoVob6RJHc1Se5qktzVJLmrSXJX0x0fu8kEtWpBYKDeGfTOO/plftu3Q3w8pKTol8otXKjP1VRcZjMsXw7e3tCxI4wZA//4B3z9NaxYAYcP63NKlZJkrmZ9o4/dnqSDSVQ60dHRStauCPWNJLmrSXJXk+SuJsldTZK7msrt2D09oX17GDsWOnTQRyaVRFKS3kG1eDH8+9/w/PP6/FRt2kC1anrnVpcuMG4cvPoq/O9/sHo1HD0K6em33bxkrmZ9o4/dnuQSOVHpOJT0P4q/SO2KUN9IkruaJHc1Se5qktzVJLmryS7HPnKk3lFUXDNn6iOjTp+GmBj9a97HSUk3L7/bs8f2NmrX1u9+16iR/jXv4/r1jck8IwMWLsRx8WIejojAcf9+GD0agoOLfze+MmD0z7vKbY09mTStsCn1hSgoNTUVLy8v4uPjqVWrltG7I+wkMzOTaTcmg3Q2aDJIYX+Su5okdzVJ7mqS3NWkTO4ZGeDnB8nJhd9FDvTL7qpX1++mV1SHS0pKwU4ny+OYGH3y8dvx8yu8A8rfX7+DXllatky/Q15SEpqDAyaz2fqVGjVgzpzyuYOgqDAuX76Mr68vKSkpeHp6lns9dbrSxF/G4pL8JeIvVLsi1DeS5K4myV1NkruaJHc1Se5qssuxu7joHSigdyLZYnl+zpzbj+bx8oJ27SAoCF58Eb78EsLC4MABvfPpyhXYuxcWLYIvvoBnn4Vhw+Duu8HdXd/G+fP6fFG//QYffgiPPw733aff9c7VVZ/YvFcvmDxZn1/qxx/1O+WdPg05OSU7/mXL9FFcycn6oZrN+b6SnKwfy7JlJdvuHTL6513ltsae5BI5UelkZmYqWbsi1DeS5K4myV1NkruaJHc1Se5qstuxDx+udwLdGMWDg4M+obfla/XqZTOKx2TSRwTVqKFPEn4rTYPERH7/9lsGNm9ecBTU6dNw/TqcPasvW7YU3EaVKvoop1tHPlm++vnp64A+emvKlJu1bdE0fb+nTLn96K0yYPTPu8ptjT1JB5OodOrXr69k7YpQ30iSu5okdzVJ7mqS3NUkuavJrsc+YoTegRIaCkuWkBITg1ejRjBqlD4ZuD3mITKZwMcHj759oUePgq9rmn4XvLwdT7d2QGVl3Xxsi5OTPgKqYUPIztY71G5H0/T1QkP1u/KVI6N/3lVua+xJOphEpdOsWTMla1eE+kaS3NUkuatJcleT5K4myV1Ndj92Fxe9A2XSJLIuX9bvBmeAQo/bZNInCK9dG7p1K/i62QwXLxY+AfmZM3qnUnS0vpSEyQQ//6x3uFku5SsHRv+8q9zW2JPMwSQqnfXr1ytZuyLUN5LkribJXU2Su5okdzVJ7mpSNfc7ru3goF8C1707PPgg/OtfMGsWrF8PJ0/ql8TFxsLmzfolfw0bFn/bmgbr1oGHB/j4QIcO+txMzz0Hn30G8+fr80adOwe5uXe2/xj/814pc6+EZASTEEIIIYQQQghRWVnmZ/L3h3vvhaVL9Q4ny4Tet+PoqE8inpioL/v3F16nXj29Tv36N5e8//byKnxSdXvLyICFCyEsjH5Hj+qXAo4cCcHB9rk0UkHSwSQqnR62rltWoHZFqG8kyV1NkruaJHc1Se5qktzVpGrudqs9ciSU5M5lP/6oT3QeG6tPMh4be3Ox/PvcOb0T6swZfSlMtWoFO53q16df1apw6pTeQVW1aqkP8baWLcs3uXttsxmOHdO/Ly+8UDaTuxeTSp916WASlU5CQoJhE6UZWbsi1DeS5C65q1S7ItQ3kuQuuatUuyLUN5LkLrlL7XIQHKx3oiQnF34XOdBHGlWvfnOy8zZt9MWW3Fx9HqhbO6DydkIlJMDVq3DkiL7kUTtvzTp1ih4FVatW6UZBLVumd7JZWEZyWb4mJ+uXAYaF6ZPAlzOVPuvSwSSKZcaMGcyYMYPcG9fdhoWF4eHhwejRo9mwYQMpKSn4+vrStWtXVqxYAUDHjh0xm83svzHEMigoiK1bt5KYmIi3tze9evUiLCwMgLZt2+Lk5MTevXsBGDp0KHv27OHSpUt4enoyYMAAQkNDAUhNTaV69ers3LkTgIEDB3L48GHi4uJwd3dn2LBhzJ8/H4DmzZvj4+PDtm3bALjvvvs4fvw4sbGxODs7M3r0aObPn4/ZbCYgIIC6deuyefNmAPr06UNsbCynTp3C0dGR4OBgwsPDOXbsGA0aNCAgIICNGzcC0LNnT+Lj4zl+/DgAEydOZOnSpaSnp1OvXj1atWrF2rVrAQgMDCQlJYXIyEgAgoODWbNmDVevXqVOnTp07NiRVatWAdClSxcyMjI4dOgQALm5ucTHx5OUlISPjw+BgYEsX74cgA4dOgAQEREBwPDhw9mxYwcJCQnUqFGDPn36sGTJEgDatGmDi4sLu3fvBmDIkCHs27ePixcvUq1aNQYNGsTChQsBaNWqFa6urgCEhoYyaNAgIiMjOXfuHG5ubgQFBRESEgLoE9j5+vqydetWAPr160d0dDRnzpyhatWqjBkzhoULF5KTk0Pjxo2pX78+4eHhAPTq1Yu4uDiio6NxcHBg/PjxLF68mMzMTOrXr8+JEyc4duwYoP8VICEhwfrv8ePHs2LFCq5du0bdunVp3bo1v//+OwDdunUjLS2NIzf+kxs7dixr164lNTWV2rVr07lzZ1auXAlAp06dyM7O5uDBgwCMHDmSzZs3c+jQIRISEujZsydLly4FoH379jg4OLBv3z4Ahg0bxq5du4iPj8fLy4v+/fuz+MZfjlq3bo2bmxu7du0CYPDgwRw4cIDz58/j4eHBkCFDWLBgAQAtWrTA29ub7du3A3D//fezY8cOjh07hqurKyNHjmTevHlomkbTpk2pU6cOW27cyrZv376cPn2amJgYnJycGDt2LKGhoWRnZ9OoUSMaNmzIpk2bALj33nu5ePEiJ06cwGQyMWHCBMLCwrh+/Tr+/v60aNHC+j2MjY0lLS2NqKgoAMaNG8eqVatIS0vDz8+Pdu3asXr1agC6du1Keno6hw8fBih1G7Fx40aOHTtWojbi7rvvxsPDo9RtxIULF+jYsWOJ2ohFixaRlZVVJm2E5dhL0kaMGjWK8PDwUrUR5hsnX6dOnbJmc7s2wsvLix07dgAwYMCAUrcRZ86cITs7u0RtRLNmzaxzHJSmjTCbzVy4cKFEbcSVK1eoWbNmmbQRcXFxNG7cuERtRFRUFGfPni1VG+Hv7w/o7byDg0Ox2oh169YB0L17d65cuVLqNiIhIYGmTZuW+3mErTZi+/btHDt2rNzPIwprI65fv46maeV+HnFrG9GpUydr7pbH5XEeUVQbkZ6ebv2slud5hK02wtLOlvd5RGFtxN69e63HXp7nEbe2EYsWLbJmXa9evXI7jyiqjdi8eTPHjh0r9/MIW21EXFwcTZo0KffzCFttxJEjR6yZl/d5RPIjj9Dr3/8GkwmTjU4myzOx773H9huf7WKdR8TEADD8qacKtBHL5s3DLTGRuz09cUtIIH7PHtwTE/E3mUiLjKRaUhKO2dlw4YK+3PiZvpW5alXSvL3JrFWLWp06cSg1lfSaNanRrh3VWrViy+nT5Lq42GwjFv32G8OffBInsHnc+sFrYDKR9cADLJkxg3pNmpTZeYStNsLS1tjjPALytxF2pwlRAikpKRqgxcfHG7YPc+fOVbK2kfUzMjK0qVOnahkZGYbU1zTJ3QiSu+RuFMnd/iR3yd0okrv9Se4K1V66VNNq1NA00MwODvm+ajVqaNqyZXbblblz52qa2axp8fGatmePpi1ZomlffaVp//iHpgUHa9o992ian5+mmUz6/t1uqVlT09q317QRIzTt2Wc17dNPNS0kRNPeeqt477csv/xin2M3SHx8vAZoKSkpdqln0rSixswJkV9qaipeXl7Ex8dTy6Dbe5rNZhwcjLkBopG1jayfmZnJtGnTeP3113F2drZ7fZDcJXe1ahtZX3KX3CV3depL7pK75K5A7YwMCA0ld9EiYvfvp3779lQZM+bmZXF2Uuxjz8qCuLjC54M6c0a/DK8sODjol9LdGNVXXoz8mbt8+TK+vr6kpKTg6elZ7vWMa1GFuEOWYbGq1a4I9Y0kuatJcleT5K4myV1NkruaVM3dkNouLjBpEjnz5vHzlCnkzJsHkybZ/S5qxT72qlWhUSPo3Vvfz3/+E779FlatgkOHIDVVn0Pp4EFYsQK++QbeeAMefFC/g15JOk3NZli5Eu65R+9we+EF+OwzmDsXNm+G6Gi9g66UVPqsyxxMotK5du2akrUrQn0jSe5qktzVJLmrSXJXk+SuJlVzl8zLiJdX4ROSjxmjT95tmdD7djIzYedOfSlMzZr63e/q1i38q5dXoROTG5J7RgYsXIjjjfnC7EU6mESlU7duXSVrV4T6RpLc1SS5q0lyV5PkribJXU2q5i6Z28HIkXBj8utimToV2raFc+f0S/Nu/Xr9OiQm6suBA4Vvx9290A6o5lev6nfg8/XVL8srb8uWwZQpkJSEQ2nuxncHpINJVDqtW7dWsnZFqG8kyV1NkruaJHc1Se5qktzVpGrukrkdBAfrl7olJ+vTeBfGZILq1eG11wq/XFDTICnJdsdT3q9JSXDtGhw/ri+36Ajw5JPg6Ah+fkWPhPLzK9llfrdatkzvZLMcpp2n3JY5mESlY7klpGq1K0J9I0nuapLc1SS5q0lyV5PkriZVc5fM7cDFBebM0R8XNnrH8vycOUXPRWUygbe3fine4MHw2GP6iKdZs2D1an0eqCtXbnYubdoEv/wC06bBs8/CqFHQpQvpNWro28rJ0Scr37EDFi6EL7+El1+GiRP1+aMaN9b3x9cXOnaE4cPhb3+DDz6An36Cdevg6FF9HipbMjL0kUtQdOdaOZIRTEIIIYQQQgghhPhrGD5cn4fpxmViODjoczJZvlavrncuDR9eNvXc3KBpU32xYWlICBODg/XL5IoaCRUXp88JdfmyvkREFF6zWrWCI6Aso6kMJB1MotLp1q2bkrUrQn0jSe5qktzVJLmrSXJXk+SuJlVzl8ztaMQIOH8eQkNhyRKux8XhWreuPqpo7Fi73kWvW7du+uVx9erpS2E0TZ/r6XaX5KWkwNWrEBWlLxWIdDCJSictLU3J2hWhvpEkdzVJ7mqS3NUkuTODoCcAAD2tSURBVKtJcleTqrlL5nbm4gKTJsGkSZw4eJC2bdvafx8owbGbTODjoy/t2hW1Qb2zydLhZOl8mj9f76AykMzBJCqdI0eOKFm7ItQ3kuSuJsldTZK7miR3NUnualI1d8lczfplXtvDA5o3h3794OGH4Z//hBkzoHdv+9ylrgjSwSSEEEIIIYQQQghRmY0cqc8xZSDpYBKVztixY5WsXRHqG0lyV5PkribJXU2Su5okdzWpmrtkrmZ9u9UODgbLHesMIh1MotJZu3atkrUrQn0jSe5qktzVJLmrSXJXk+SuJlVzl8zVrG+32i4u+t3xwLBOJulgEpVOamqqkrUrQn0jSe5qktzVJLmrSXJXk+SuJlVzl8zVrG/X2sOHQ1gYVK8OgGbnjibpYBKVTu3atZWsXRHqG0lyV5PkribJXU2Su5okdzWpmrtkrmZ9u9ceMQLOn4dffsE8ZIhdSzvatZoQZaBz585K1q4I9Y0kuatJcleT5K4myV1NkruaVM1dMlezviG1XVxg0iRyBg4EX1+7lZURTKLSWblypZK1K0J9I0nuapLc1SS5q0lyV5PkriZVc5fM1axv9LHbk4xgEsUyY8YMZsyYQW5uLgBhYWF4eHgwevRoNmzYQEpKCr6+vnTt2pUVK1YA0LFjR8xmM/v37wcgKCiIrVu3kpiYiLe3N7169SIsLAyAtm3b4uTkxN69ewEYOnQoe/bs4dKlS3h6ejJgwABCQ0MB/RrWU6dOsXPnTgAGDhzI4cOHiYuLw93dnWHDhjF//nwAmjdvjo+PD9u2bQPgvvvu4/jx48TGxuLs7Mzo0aOZP38+ZrOZgIAA6taty+bNmwHo06cPsbGxnDp1CkdHR4KDg7lw4QIhISE0aNCAgIAANm7cCEDPnj2Jj4/n+PHjAEycOJGlS5eSnp5OvXr1aNWqlXVyt8DAQFJSUoiMjAQgODiYNWvWcPXqVerUqUPHjh1ZtWoVAF26dCEjI4NDhw4BkJuby5o1a0hKSsLHx4fAwECWL18OQIcOHQCIiIgAYPjw4ezYsYOEhARq1KhBnz59WLJkCQBt2rTBxcWF3bt3AzBkyBD27dvHxYsXqVatGoMGDWLhwoUAtGrVCldXVwBCQ0MZNGgQkZGRnDt3Djc3N4KCgggJCQGgWbNm+Pr6snXrVgD69etHdHQ0Z86coWrVqowZM4aFCxeSk5ND48aNqV+/PuHh4QD06tWLuLg4oqOjcXBwYPz48SxevJjMzEzq169PZmamtU6PHj1ISEjg2LFjAIwfP54VK1Zw7do16tatS+vWrfn9998B6NatG2lpaRw5cgTQ7+Kwdu1aUlNTqV27Np07d7Y2+p06dSI7O5uDBw8CMHLkSDZv3kxcXBxr166lZ8+eLF26FID27dvj4ODAvn37ABg2bBi7du0iPj4eLy8v+vfvz+LFiwFo3bo1bm5u7Nq1C4DBgwdz4MABzp8/j4eHB0OGDGHBggUAtGjRAm9vb7Zv3w7A/fffz5UrVwgJCcHV1ZWRI0cyb948NE2jadOm1KlThy1btgDQt29fTp8+TUxMDE5OTowdO5bQ0FCys7Np1KgRDRs2ZNOmTQDce++9XLx4kRMnTmAymZgwYQJhYWFcv34df39/WrRoYf0exsbGkpaWRlRUFADjxo1j1apVpKWl4efnR7t27Vi9ejUAXbt2JT09ncOHDwOUuo2Ii4sjJCSkRG3E3XffjYeHR6nbiAsXLgCUqI1YtGgRWVlZZdJGWI69JG3EqFGjCA8PL1UbYb5xe9tTp05Zs7ldG+Hl5cWOHTsAGDBgQKnbiLi4OHbu3FmiNqJZs2asX78eKF0bYTabWblyZYnaiCtXrlCzZs0yaSPi4uJITk4uURsRFRXF2bNnS9VG+Pv7A3o77+DgUKw2Yt26dQB0796dK1eulLqNSEhI4OrVq+V+HmGrjUhMTCQkJKTczyMKayOuX7/O3r17y/084tY2olOnTtbcLY/L4zyiqDYCsMt5hK02wtLOlvd5RGFtRFpamvXYy/M84tY2YtGiRdas69WrV27nEUW1EZcuXSIkJKTczyNstRFxcXGkpqaW+3mErTYiIyPDmnl5n0fc2kakpKQAkJKSwoYNG4DyOY8A221EQkICISEhdjmPsNVGZGRksGvXrnI/j7DVRljaGnucR0D+NsLuNCFKICUlRQO0+Ph4w/bh2LFjStY2sn5GRoY2depULSMjw5D6mia5G0Fyl9yNIrnbn+QuuRtFcrc/yV3N2kbnrurnzeja8fHxGqClpKTYpZ5cIicqnezsbCVrV4T6RpLc1SS5q0lyV5PkribJXU2q5i6Zq1nf6GO3J+lgEpWOZUiharUrQn0jSe5qktzVJLmrSXJXk+SuJlVzl8zVrG/0sduTdDAJIYQQQgghhBBCiFKRDiZR6YwcOVLJ2hWhvpEkdzVJ7mqS3NUkuatJcleTqrlL5mrWN/rY7Uk6mESlY7k7i2q1K0J9I0nuapLc1SS5q0lyV5PkriZVc5fM1axv9LHbk3QwiUrnypUrStauCPWNJLmrSXJXk+SuJsldTZK7mlTNXTJXs77Rx25P0sEkKp2aNWsqWbsi1DeS5K4myV1NkruaJHc1Se5qUjV3yVzN+kYfuz1JB1MRXn31VUwmk3UJDw+/7XvWrFnD6NGjqVevHs7OztSrV4/Ro0ezZs2aYtdNT0/ns88+o2vXrnh7e+Ph4UHLli15+eWXiY2NLfZ2jhw5wlNPPUWTJk1wdXWlVq1a9OrVi++++46cnJxib6ei6dmzp5K1K0J9I0nuapLc1SS5q0lyV5PkriZVc5fM1axv9LHbk3QwFeLAgQNMnz692OtrmsaTTz7J4MGDWbJkCXFxcWRlZREXF8eSJUsYPHgwTz75JJqmFbmd6OhoOnbsyKuvvsru3btJSkri2rVrREVF8cUXX9C2bVtWrVp12/35/vvv6dSpE9999x3R0dFkZGSQkJDAli1beOqpp7j33ntJTEws9vFVJEuXLlWydkWobyTJXU2Su5okdzVJ7mqS3NWkau6SuZr1jT52e5IOJhvMZjOPP/44OTk5+Pr6Fus9b775JjNnzgSgQ4cOhISEsGvXLkJCQujQoQMAM2fO5K233ip0G2lpaQwbNoxjx44B8Pjjj7Nhwwa2b9/Ohx9+iIeHBykpKQQHB3Pw4MFCt/P777/zxBNPkJmZSe3atfnPf/7Dzp07Wb16NaNHjwbgzz//ZPTo0ZjN5mIdnxBCCCGEEEIIIURhpIPJhv/85z/s3r2bFi1a8Oijj952/ZMnT/Lpp58C0LlzZ7Zt28aECRPo0qULEyZMYOvWrXTu3BmATz75hOjoaJvb+fzzz4mKigLg008/ZebMmfTr14/AwED++c9/snbtWhwdHUlPT+fFF1+0uY2cnByeffZZzGYznp6ebNu2jeeee46uXbsyaNAgFi1axNNPPw3os9n/+uuvJf32GK59+/ZK1q4I9Y0kuatJcleT5K4myV1NkruaVM1dMlezvtHHbk/SwXSLs2fPWkcZffPNN1StWvW275k+fbp1TqOvv/4aV1fXfK+7ubnx9ddfA3oH0JdffllgG9nZ2Xz11VcAtGzZkn/84x8F1gkMDLR2eG3atIm9e/cWWGfJkiWcPHkSgDfeeIOAgIAC63z22WfUqFHD+riycXAw7sfWyNoVob6RJHc1Se5qktzVJLmrSXJXk6q5S+Zq1jf62O1JnSMtpqeffpq0tDQmT55Mnz59bru+pmnWaypbtGjBPffcY3O9e+65h+bNmwMQFhZWYC6m8PBwkpOTAZg8eXKhP4RTpkyxPl68eHGB18PCwmyum5ebmxvjxo0D4PDhw5w4ccLmehXVvn37lKxdEeobSXJXk+SuJsldTZK7miR3Namau2SuZn2jj92epIMpjwULFrBixQq8vb2LPbInJiaGuLg4AHr37l3kupbXz507x+nTp/O9tmXLlgLr2dK5c2fc3d0B2Lp1a4HXLdtp3rw5derUue2+FLYdIYQQQgghhBBCiOKSDqYbkpOTeeGFFwB9nqRatWoV631Hjx61Pm7RokWR6+Z9Pe/7SrIdR0dH62Vvt24jLS2Nc+fOlXpfKrphw4YpWbsi1DeS5K4myV1NkruaJHc1Se5qUjV3yVzN+kYfuz1JB9MNr776KhcvXqR79+7Fmtjb4uzZs9bH9erVK3Jdf39/m+/L+293d3eqV69erO1cvnyZzMxM6/Pnzp2zXnpXmn2p6Hbt2qVk7YpQ30iSu5okdzVJ7mqS3NUkuatJ1dwlczXrG33s9uRo9A5UBFu3bmX27Nk4Ojry7bffYjKZiv3eq1evWh97eHgUua7l0jbQRxvZ2s7ttmFrO87OzmW6L3llZmbm68RKTU21+bw9XbhwQcnaRta31FTx2I2ubWR9yV1yN4rkLrmrVNvI+pK75G4UVXM3srbRuav6eTO6tr3rmrRbZ5tWTFZWFu3bt+fo0aO88sorfPrpp/lenzp1Ku+++y6g37nt1om/33//fd5++20ANmzYQL9+/QqttXHjRvr3729935tvvml9LSAggFOnTuHv709sbGyR+/zwww/zyy+/AProI8topS1bttCrVy8A3nrrLd57771Ct2E2m6lSpQoA/fv3Z/369TbXy3v8eb3++uu4uLgUuZ9CCCGEEEIIIYQwRkZGBtOmTSMlJQVPT89yr6f8CKaPPvqIo0ePUr9+fd55550Svz9vJ0tWVlaR6+btPXR1dbW5ndtto6jtlNW+5PXGG2/w97//3frv1NRU/P39eeaZZ4o9T1VZy8zMtI7aUqm2kfUzMzOZPn06L730kpLfe8ldclepvuQuuav4vZfcJXeV6kvu6tY2MndVP29G1758+TLTpk2zWz2lO5iioqL4+OOPAfj666/zXTZWXNWqVbM+LupSM4Br165ZH996CZtlO7fbRlHbKat9ycvZ2dnmh6Gw5+1h8eLFTJw4UbnaFaG+5G4Mo+tL7sYwur7kbgyj60vuxjC6vuRuDKPrS+5q1bYwKnejj13V3O2dtdIdTNOnTycrK4vGjRuTnp7OvHnzCqxz+PBh6+ONGzdy8eJFAIYPH467u3u+ybQtd3ArTN7JtPNOsg36pNw7d+7k2rVrJCcnFznRt2U7tWrVyvcDU1b7UhTLFZVXr1417D+k9PR061xQKtU2sn5mZiYZGRmkpqZK7grVl9wld8ldnfqSu+QuuatTX3JXs7bRuav6eTO6tmWeZrvNjKQpbPLkyRpwR0tMTIymaZoWHR1tfe7JJ58sst4TTzxhXffUqVP5Xnvrrbesr+3YsaPQbWRnZ2vu7u4aoPXq1avA6/7+/hqgNW/evMh9mTt3rrXeDz/8UOS6eeU9XllkkUUWWWSRRRZZZJFFFllkkaViL9HR0cX+nb80lB7BVBYaNWqEn58f58+f548//ihy3c2bNwNQt25dGjZsmO+1nj17Wh//8ccf3HPPPTa3sWfPHuvlbT169Cjwes+ePQkJCeHYsWNcvHiROnXq2NxO3n21tZ3CeHt7AxAbG4uXl1ex31eWunTpwu7du5WrbWR9y9xbZ8+etcvkcLZI7pK7SrWNrC+5S+6Suzr1JXfJXXJXp7bRuav6eTO6dkpKCvXr17f+Hl/elO5g+umnn/jpp5+KXOd2d5EzmUwEBQXxzTffEBUVxZ9//mmzc+jPP/8kKioKgKCgIEwmU77X+/Tpg5eXFykpKcyZM4dXX321wDqWfbYYNWpUgddHjhxJSEiIdd3XX3+9wDrp6eksWLAAgFatWtGsWbMivgP5OTg4AODl5WXYf0hVqlRRsnZFqO/p6ank997o77vR9SV3YxhdX3I3htH1JXdjGF1fcjeG0fUld7VqWxiVu9HHrnrult/jy72OXar8xb344os4Oup9dc899xzXr1/P9/r169d57rnnAHB0dOTFF18ssI2qVavy/PPPA3D06FE+//zzAuvs2LGD77//HoDevXvTpUuXAuuMGjWKgIAAAD7++GOio6MLrPPKK6+QlJRkfVzZPPPMM0rWrgj1jSS5q0lyV5PkribJXU2Su5pUzV0yV7O+0cduTyZNs9dsT5XT7UYwWbzxxhvW2/916NCB1157jYCAAKKjo/nkk0+IiIiwrvfRRx/Z3MbVq1fp3Lkzx48fB+CJJ55gwoQJuLq6smnTJj766CPS0tJwdXVl+/bttG/f3uZ2Vq1axfDhwzGbzdSuXZs333yTrl27kpSUxKxZs1i0aBGgX04XHh5OlSpViv39SE1NtY60MroXVtiP5K4myV1NkruaJHc1Se5qktzVJLmryd65K32JXFn68MMPiY+P54cffiAiIoIJEyYUWOfRRx/lgw8+KHQb1apVY+XKlQwZMoQTJ04wc+ZMZs6cmW8dT09Pfvvtt0I7lwCGDBnCt99+y7PPPsulS5eso6fy6tq1K0uWLClR5xLotzl85513DLvjhDCG5K4myV1NkruaJHc1Se5qktzVJLmryd65ywim2yjuCCaLVatWMXPmTHbv3k1CQgI+Pj506dKFJ598ksGDBxer5rVr15gxYwYLFy7k5MmTZGVl4e/vz5AhQ3jhhRdo0KBBsbZz+PBh/vOf/7BhwwbOnz+Pu7s7LVu25MEHH+Sxxx6zXtYnhBBCCCGEEEIIURrSwSSEEEIIIYQQQgghSkUm+RZCCCGEEEIIIYQQpSIdTEIIIYQQQgghhBCiVKSDSQghhBBCCCGEEEKUinQwiTvy6quvYjKZrEt4eLjRuyTKSUJCAp9++ik9evSgTp06ODs74+fnR7du3XjllVfYsWOH0bsoylBWVhbff/89gwYN4q677sLZ2RkPDw+aN2/OI488wp9//mn0LooSiI+PZ8WKFbz99tsMHjwYHx8fa7s9ZcqUEm9vzZo1jB49mnr16uHs7Ey9evUYPXo0a9asKfudF3esLHLPyMhg6dKlPPfcc3Tr1g1vb2+cnJzw9vYmMDCQqVOncuHChfI9EFFsZf1Zzys9PZ3GjRtbt9ewYcMy2WdReuWR+65du3j66adp2bIlnp6eeHh4EBAQwNChQ/n3v//N5cuXy/YgRImVZe5nzpzh9ddfp1OnTlSvXt3aznfv3p33339f8q5A9u3bx0cffcTgwYPx9/e3nqM3a9aMKVOmsGXLlhJtr9zO6TQhSmj//v2ao6OjBliXTZs2Gb1bohwsWLBAq1mzZr6sb12CgoKM3k1RRmJjY7U2bdoUmTegvfTSS5rZbDZ6d0UxFJXj5MmTi70ds9msPfHEE0Vu74knnpCfiwqitLkfOHBAq1at2m3bgmrVqmnz588v/wMSt1VWn3Vb/vGPf+TbXoMGDcpkn0XplWXuGRkZ2mOPPaaZTKYit7tkyZJyORZRfGWV+2+//aa5ubkVub2aNWtqGzZsKL+DEcXSq1ev2/6fDGgPPfSQlpmZWeS2yvucTu5TL0rEbDbz+OOPk5OTg6+vL/Hx8UbvkignP//8M//3f/+H2WzG19eXv/3tb/Ts2RNvb28uXrxIdHQ0y5cvx8nJyehdFWUgJyeHoUOHcujQIQDatm3L3//+d5o3b87Vq1fZunUrX3zxBdeuXWP69OncddddvPLKKwbvtSgJf39/WrZsydq1a0v83jfffJOZM2cC0KFDB1599VUCAgKIjo7m008/JSIigpkzZ1KrVi0++OCDst51UQp3kntqaipXr14FoEePHgwbNozOnTtTs2ZNLl++zOLFi5k9ezZXr17lgQceoFq1agwePLi8DkGUUGk+67eKiIjgyy+/xMXFBScnJ+vPhah4SpN7VlYWo0aNYvXq1QDce++9PPzww7Rs2RJHR0fOnDnDgQMHWLhwYVnvtiilO819x44dPPzww+Tm5uLg4MDkyZMJCgrCz8+P2NhY5syZw/Lly0lMTGTEiBEcPnxYRi8aKC4uDgA/Pz+Cg4O59957qV+/Prm5uezYsYMvvviCuLg4fvnlF3Jycpg7d26h2yr3c7o76pYSypo+fboGaC1atNDeeOMNGcH0FxUZGak5OztrgHbvvfdqycnJha57u15yUTmEhoZaP8+BgYFaTk5OgXX27NmjOTk5aYBWo0YNLTs724A9FSXx9ttva8uXL9cuXryoaZqmxcTElPivnCdOnLCOWu3cubOWnp6e7/Vr165pnTt31gDN0dFRO3nyZFkfhiih0ua+bds2bdy4cdqRI0cKXScsLMw60iEgIEBGrxmsLD7rt8rJydE6deqkAdp7772nNWjQQEYwVTBllftbb71lfd/nn39e5LpZWVml2WVRBsoi92HDhlnfM2PGDJvr/P3vf7eu89xzz5XV7os7MHToUG3+/Pk2z881TdMuX76sNWvWzJrX5s2bba5nj3M66WASxRYbG6t5eHhYO5Teeecd6WD6i+rfv78GaD4+Ptrly5eN3h1hBy+99JL187xs2bJC1xs1apR1vUOHDtlxD0VZuJOT0Kefftr6nh07dthcZ8eOHdZ1nn322TLcY1EWyqKzwZYxY8ZYt7tv374y264ovbLI/IsvvtAArXnz5lpmZqZ0MFUCd5J7dHS09Y9HU6ZMKd8dFOXiTnKvUaOG9RK4wiQnJ1u326lTpzLaW1Feli9fbs3r+eeft7mOPc7pZJJvUWxPP/00aWlpTJ48mT59+hi9O6KcREVFsWHDBgCeffZZfHx8DN4jYQ9ZWVnWx40bNy50vYCAAOvjzMzMct0nYTxN01i6dCkALVq04J577rG53j333EPz5s0BCAsLQ9M0u+2jME7fvn2tj6Ojow3cE1HWzpw5w9tvvw3AN998Q9WqVQ3eI1FeZs6cSXZ2NiaTyZq5+OuznPc1atSo0HW8vLysvwfIOV/Fl/f3c1v/J9vrnE46mESxLFiwgBUrVuDt7c1nn31m9O6IcpT3+vrg4GDr46SkJE6cOEFiYqIRuyXKWbNmzayPT506Veh6lv+wTCYTTZs2Lff9EsaKiYmxXvffu3fvIte1vH7u3DlOnz5d3rsmKoC8v3A4OMgp5V/J008/zbVr13jooYfydSSKvx7LeV/nzp2tnQ1ms5lz584RExPD9evXjdw9UU4s530xMTGFrpOamkpCQkK+9UXFlfePxbb+T7bXOZ2cDYjbSk5O5oUXXgDgk08+oVatWgbvkShPltvQe3l50bJlS3777TfatWuHt7c3zZo1w8fHh8aNG/Puu++SlpZm8N6KsjJx4kQ8PT0B/XOem5tbYJ2IiAhWrlwJwIQJE6zri7+uo0ePWh+3aNGiyHXzvp73feKv648//rA+vt3Ph6g85s2bx6pVq6hRowaff/650bsjytHly5etf1QKDAwkNTWVF198ER8fH/z9/WncuDGenp707t3b+v+/+Gt48sknAUhMTOTbb7+1uc77779fYH1Rcd3u/2R7ndPJXeTEbb366qtcvHiR7t278+ijjxq9O6KcRUZGAtCwYUOee+45ZsyYUWCdmJgYpk6dSmhoKL///jt+fn723k1RxmrVqsVPP/3Egw8+yLZt2+jSpQsvvvgizZo1Iy0tjW3btvHFF1+QlZVF+/bt+fe//230Lgs7OHv2rPVxvXr1ilzX39/f5vvEX9OBAwesv3DefffdtGrVyuA9EmUhKSmJF198EYBp06bh6+tr7A6JcmU55wNwdXWlY8eOBS6tycnJYfPmzWzevJmXXnpJ/v//i3jsscfYsmULv/32G8888wx79+5lxIgR3HXXXcTGxvLrr7+yZMkSAF577TUGDBhg8B6LopjNZqZNm2b997hx4wqsY69zOhnBJIq0detWZs+ejaOjI99++y0mk8noXRLl7MqVK4A+F9OMGTOoXr063377LfHx8WRkZLB7927r7agPHz5McHAwZrPZyF0WZWTUqFHs2bOHRx99lP379zN58mQCAwO5//77mTp1Km5ubvz73/9m69at1KlTx+jdFXaQ95bkHh4eRa7r7u5ufSyjG//aMjMzeeyxx6wjHT/66COD90iUlVdeeYVLly4RGBjI448/bvTuiHJmOecD+PLLL4mOjqZ79+788ccfpKenc+XKFX777TfuuusuAKZPn17oaBdRuVSpUoVff/2V+fPn065dO2bPns2IESPo0qULY8aMYcmSJfTt25fff/89X8eFqJimT5/Orl27AP18vnPnzgXWsdc5nXQwiUJlZWXxxBNPoGkaL730Em3atDF6l4QdXLt2DdB/gahSpQqrV6/mySefpFatWjg7O9O5c2dWrFhh7WTavn07ixcvNnKXRRnJzs5m7ty5LF++3OaEfpcuXSIkJITw8HD775wwREZGhvXx7Sb5dXZ2tj6WOTv+2p599ln27NkDwOTJkxkxYoTBeyTKwubNm/nhhx/kj4oKsZzzgX7e16lTJzZs2ECvXr1wdXWlRo0aPPDAA/zxxx/WXzjffvttaeP/IqKiopg7dy6HDh2y+fqOHTv4+eefuXDhgp33TJTEH3/8weuvvw6Ar68v33zzjc317HVOJx1MolAfffQRR48epX79+rzzzjtG746wExcXF+vj4OBgm3cYcHBwyDfZe0hIiF32TZSfa9eucd999/Hhhx+SmJjIq6++ytGjR8nMzCQlJYW1a9fSs2dPdu/ezfDhw/nqq6+M3mVhB3nbg7yTR9qSd8JnV1fXctsnYayPP/6Y2bNnA9CpUyebl1GLyiczM9P6R8UXXniBtm3bGr1Lwg7ytvEAH374YYHnAJo2bcrf/vY3QJ+3af369XbZP1F+tmzZQmBgIEuXLqVu3br88ssvXLx4kaysLM6ePcuMGTNwdXXlt99+o2vXrjK3YgV15MgRRo0aRU5ODs7OzixYsIDatWvbXNde53TSwSRsioqK4uOPPwbg66+/zjdMTvy1VatWzfrYMkrJlrvvvpu6desCsHv37nLfL1G+3nnnHTZv3gzA999/zyeffEKLFi2oWrUqnp6e3H///WzatIm+ffuiaRp///vfOXjwoMF7Lcpb3vbgdkOk8/4l/HZDr0Xl9N133/HPf/4TgObNm7N69Wo5P/iL+PDDDzl27Bj+/v5MnTrV6N0RdpK3ja9atWqRdwwcOHCg9bGc91VumZmZTJw4keTkZOrUqcOff/7JpEmTqF27Nk5OTtSrV4+nn36aLVu24OLiwrlz53j44YeN3m1xi5iYGAYMGEBSUhJVqlQhJCSkyLvD2eucTib5FjZNnz6drKwsGjduTHp6OvPmzSuwzuHDh62PN27cyMWLFwEYPny4nHBWYv7+/tYsizMBXFxcHPHx8fbYNVFONE3jxx9/BPTb0E6ePNnmeo6Ojrz//vv07NkTs9nMjz/+yPTp0+25q8LO8rYB586dK3LdvJNA5p0cUvw1hISE8PTTTwPQoEED1q9fL3eV/Qv55JNPALjvvvtYsWKFzXUsv3Bcu3bNel7o6+tLv3797LOToszlbatr165d5GUzedeV877Kbc2aNdbb1T/33HOFzqt59913M2nSJGbPns2ePXs4cOAA7dq1s+euikKcP3+e++67j/Pnz2Mymfjhhx8YNWpUke+x1zmddDAJmyzD4k6dOsXEiRNvu37e21jGxMRIB1Mldvfdd1v/MmXrVvV5WV53dJSmpDK7dOmSdaLPDh06FLlup06drI+joqLKdb+E8fLeGex2eed9vWXLluW2T8L+li1bxsMPP4zZbOauu+5iw4YNt/0DhKhcLJdL/Pjjj9Y/OBQmISHBem7Yu3dv6WCqxJo2bYqTkxPZ2dnFPucDOe+r7PJe7taxY8ci1+3UqZP1suioqCjpYKoAEhISuP/++zl16hSgX21UnBFm9jqnk0vkhBD59OrVy/r41lvV3srSsFkulROVU94TxZycnCLXzc7Otvk+8dfUqFEj/Pz8AH0SyaJYLrGsW7cuDRs2LO9dE3ayYcMGxo0bR05ODjVr1mTdunUEBAQYvVtCiDLg5OREYGAgoP+xKe9lMbfKe04o532Vm5z3VV4pKSkMHDiQyMhIAKZNm8YzzzxTrPfa65xOOpiETT/99BOaphW55J34e9OmTdbn5ReLym3EiBE4OTkBFHl3uD/++IPExEQA7r33Xrvsmygf3t7eeHp6AvodQ4o62cj7H1KjRo3Kfd+EsUwmE0FBQYD+16w///zT5np//vmn9a9dQUFBcvepv4jt27cTFBREZmYmnp6e/P7779x9991G75YoB7c759M0jQYNGgD6JZKW5+SuopXfmDFjAH2E0tKlSwtdL+85oZz3VW55z9+2bNlS5Lpy3ldxpKenM3ToUPbt2wfAv/71L1577bViv99e53TSwSSEyKdmzZo89thjAKxbt87m/FtXr17lxRdftP77ySeftNfuiXLg4ODA0KFDAf2a7g8//NDmeklJSfn+Ixs2bJhd9k8Y68UXX7T+1fK5554rcLva69ev89xzzwH6Xzfztg2i8tq/fz9Dhw7l2rVruLu7s2rVqnyXyAoh/hoeeeQRfH19AfjnP//JpUuXCqwTHh7OL7/8AkDr1q3p0aOHXfdRlK3+/fvj5uYGwDfffMOhQ4dsrrd69WqWLFkC6CNZ2rdvb69dFLfIyspi1KhRbNu2DYAXXniBDz74oMTbscc5nYxzE0IU8O6777Jy5UpiY2N56KGH2LZtG6NHj8bT05NDhw7xySefWHu2//a3v9GlSxeD91iU1ttvv83SpUtJT09n6tSp7N27l8mTJ9O4cWMyMjL4888/+fLLL4mNjQX0k5MBAwYYvNfidrZu3crJkyet/05ISLA+PnnyJD/99FO+9adMmVJgG82aNePll19m2rRp7Nmzhx49evDaa68REBBAdHQ0n3zyCREREQC88sorNG3atFyORRRfaXOPjo5m4MCBJCcnA/DBBx/g5eWV7+Yet/L19bX+kirsryw+66LyKYvcPTw8+M9//sPEiRM5c+YMXbp04fXXX6dr165kZGSwevVqpk+fTm5uLo6Ojnz77bcyStVgpc29evXqvP7667z99ttcvXqV7t2789xzz3H//fdTo0YNLl26xNKlS5k1axZmsxnQL8VycJCxKUaZOHEia9euBaBfv348+uijRf6fXLVqVZo1a1bgebuc02lC3KF33nlHAzRA27Rpk9G7I8pYZGSk1qRJE2vGtpZHHnlEy8rKMnpXRRlZt26d5uPjU2TmgNavXz/typUrRu+uKIbJkyffNs+8S2Fyc3O1Rx55pMj3Pvroo1pubq4dj04UprS5//jjjyV6P6C988479j9QYVVWn/WiNGjQQAO0Bg0alO3OiztWlrn/97//1apWrVroez08PLSwsDA7HZkoSlnkbjabtRdffFEzmUxFvtfJyUn77LPP7HyE4lYl/T+5qHa6vM/ppBtSCGFTy5Yt2b9/P5999hndunXD29ubqlWrUq9ePcaPH8/GjRv5/vvvrfM1icrvvvvuIyoqik8++YQ+ffpQq1YtnJyccHV1pVGjRowbN46wsDDWr19PjRo1jN5dYUcODg58//33rFy5kqCgIPz8/KhatSp+fn4EBQWxatUqZs+eLX/dFEKISuqZZ55h3759/O1vf6NJkya4urri4eFB27ZtefXVVzl+/Lh1/hZR+ZlMJqZPn87u3bt56qmnaN26NdWqVaNKlSp4eXnRqVMn/v73v3P48GFefvllo3dXlKHyPqcz3egRE0IIIYQQQgghhBDijsifGoUQQgghhBBCCCFEqUgHkxBCCCGEEEIIIYQoFelgEkIIIYQQQgghhBClIh1MQgghhBBCCCGEEKJUpINJCCGEEEIIIYQQQpSKdDAJIYQQQgghhBBCiFKRDiYhhBBCCCGEEEIIUSrSwSSEEEIIIYQQQgghSkU6mIQQQgghhBBCCCFEqUgHkxBCCCGEEEIIIYQoFelgEkIIIYTSpkyZgslkomHDhkbvitL69OmDyWSiT58+Ru9KkU6fPo3JZMJkMvHTTz8ZvTtCCCFEhSEdTEIIIYQodykpKcyYMYMhQ4bQsGFD3Nzc8PLyolmzZjz44IPMnz+f3Nxco3ez0vjpp5+snRy3Lg4ODnh6etK6dWueeuop9u3bZ/TuVjgnTpzg1VdfpWvXrnh7e+Pk5ISPjw+tWrViwIABTJ06lfDwcDIyMozeVSGEEKLScDR6B4QQQgjx1zZ79mxef/11EhMT8z1//fp1UlNTOXHiBHPnzqVVq1Z899139OzZ06A9/WvQNI2rV69y5MgRjhw5wqxZs/jXv/7Fe++9Z/SuVQgffvghU6dOJScnJ9/ziYmJJCYmcvToUdatW8e7777La6+9xrRp0wzaUyGEEKJykQ4mIYQQQpSbV155hc8//xwAR0dHJkyYwIgRI2jQoAFZWVkcO3aMkJAQNmzYQGRkJPfddx+//vorY8eONXjPK48PPviAoKAg67/NZjOXL18mPDycL7/8krS0NN5//30aNWrE//3f/xm4p8b77LPPePPNNwHw8vLiySefpHfv3tx1111kZWVx7tw5du7cyfLly4mKirK5jYYNG6Jpmj13WwghhKgUpINJCCGEEOVixowZ1s4lf39/li9fTrt27fKt07NnTx599FHmz5/Pww8/TGZmJg8++CBNmjShffv2Bux15VO3bl1at25d4Pn+/fvTp08f7r//fjRN49NPP1W6gykxMZF33nkHgHr16rF9+3b8/f3zrdOtWzfGjBnDp59+yq5duwqMuhNCCCFE4WQOJiGEEEKUuTNnzvDyyy8D4OHhwcaNGwt0LuU1fvx45syZA0BWVhYPPfSQjBIpA/3796dTp04AREVFkZqaavAeGWft2rVcv34dgNdff71A59KtunbtyuDBg+2xa0IIIcRfgnQwCSGEEKLMffnll9YJkt955x2aNGly2/dMmDCBoUOHAnD48GFWrFhRYJ1b7zR24sQJnn32WZo2bYqbmxsmk4nTp0/ne09kZCSTJ0/G398fFxcX/P39eeCBB9i9e3eJjikpKYkPPviAwMBAfHx8cHZ2xs/Pj6CgIBYvXlzkey0TcE+dOhWAjRs3EhwcjL+/P05OTuV6B7u82y5q0uqsrCz+97//0bdvX2rVqkXVqlWpU6cOQ4YM4ddff8VsNt+2VlpaGtOmTSMwMBBvb2+cnZ2pV68eY8eOtZlnSc2dOxcnJydMJhOBgYEkJSUV+71nzpyxPi7Oz2NhirqLXFGTr9taLD8Pt9I0jdDQUMaMGWP9ua1RowZdu3bl/fffJzk5+Y73XwghhCgvcomcEEIIIcqUpmn8/PPPALi6uvL4448X+73PP/88K1euBODHH39k+PDhha67dOlSHnzwQa5du1boOvPmzWPy5MlkZWVZnzt37hwhISEsXLiQ7777rlj7tWrVKh588MECv9hfuHCBZcuWsWzZMoYOHcq8efPw8PAoclv/+te/+Oijj4pVtyxYOtxcXFyoVauWzXXOnDnD4MGDOXr0aL7nL126xOrVq1m9ejXfffcdS5cuxdvb2+Y2IiIiGDZsGOfPn8/3fFxcHIsWLWLRokWMHj2a3377DRcXlxIfx3//+1+ef/55NE3j/vvvZ8mSJbi7uxf7/VWrVrU+Pnr0KAMHDizxPtjD5cuXGTVqFNu2bcv3fGZmJrt372b37t3MmDGDpUuX0q1bN4P2UgghhChIOpiEEEIIUaaOHDnClStXAOjVqxdeXl7Ffm///v1xc3MjPT2drVu3FrpebGwskyZNws3Njbfeeot7772XKlWqsHv3bmsHz86dO3nooYfIycnB2dmZl156iSFDhuDs7MzOnTv56KOPeOqpp2jVqlWR+7Ru3TpGjBhBbm4uDRs25G9/+xvdunXD09OTuLg45s+fz6+//srKlSuZPHkyixYtKnRbS5Ys4eDBg7Rp04aXXnqJ1q1bc/36dfbv31/s71FJbNq0iX379gEwfPhwTCZTgXXS0tLo168fp06dAmDkyJE88sgj+Pn5ERMTw3//+1/++OMPtm7dyrBhw9iyZQtVqlTJt424uDj69+9PUlISJpOJKVOmMGHCBGrWrElkZCRffPEFBw4cYPHixUyePJn58+eX6Djee+896/xJY8aMYe7cufk6jIqjQ4cO1scffvghffv2LfKyzTsxcuRIOnfuXOQ6r7zyCmvWrAGgQYMG+V67du0avXv35ujRo1StWpX/+7//Y8iQIfj7+3Pt2jU2b97Mv//9by5dusTgwYOJiIgosA0hhBDCMJoQQgghRBn69ddfNUADtDfeeKPE7w8MDLS+Py4uLt9rvXv3tr7m5+ennTlzptDtdOrUSQM0Jycn7Y8//ijw+rlz57R69epZt9egQYMC66SlpWm1a9fWAG3AgAHatWvXbNaaOXOmdTvr168v8LrlNUDr37+/lpGRcZvvQtF+/PFH6/Y++OAD7dChQ9blwIED2oYNG7S3335b8/T01ADtrrvu0o4dO2ZzWy+//LJ1W2+++WaB181ms/bggw9a1/nf//5XYJ2xY8daX589e3aB1zMyMrS+ffta11m1alWBdSzZ9u7dO1/t559/3vq+xx57TMvNzS3Bd+qm3NxcrW3bttZtmUwmrXfv3tr777+v/f7771pSUlKxthMTE2Pdxo8//liiffjvf/9rfe+DDz5Y4PVnn31WAzQvLy9t9+7dNrdx+vRp7a677tIAbdKkSSWqL4QQQpQn6WASQgghRJn68ssvrb9Ef/XVVyV+/8iRI63vP3jwYL7X8nYw/fzzz4VuY+fOndb1nn322ULXmz9/fpEdTF9//bUGaC4uLtqlS5eK3O+uXbsW2nFgqeHg4KDFxMQUuZ3iyNvBVNTi7Oysvfrqq9rZs2dtbicjI0OrXr26BmitWrXScnJybK6XkpKi1axZ07peXufPn9eqVKmiAdrAgQML3eeYmBjN0dFRA7QhQ4YUeP3WDqbs7GztoYcesh7LK6+8UszvTuFOnDihNWnSxOb3ymQyaW3atNFeffXVQjvjLMdxJx1M69evtx5/165dtevXr+d7/fLly5qLi0uxPjf/+9//rJ2nhXV6CiGEEPYmk3wLIYQQokxdvXrV+rgkc+TYek9hdz2rWrUqwcHBhW5j/fr11sf/93//V+h6o0aNonr16oW+vnTpUgB69+6Nr69voeuBfjkgwI4dOwpdp0ePHuU6ofetMjMz+eWXX/jll19s3pVv79691nmlpkyZUuDSNwtPT0/GjRsH6JOmX7hwwfrapk2byM3NBeDRRx8tdF8aNmzI/fffD0B4eLj1PbZkZGQwevRofvnlFwA+/vhjPv300yKOtHiaNGnC/v37mTZtGgEBAfle0zSNQ4cO8emnn9KqVSv+8Y9/kJOTU+qaoE9GHxwcTE5ODnXr1iUsLKzAPFS///67dRJ2y/e6MJaftezsbPbu3Vsm+yiEEEKUlnQwCSGEEKJMVatWzfo4LS2txO/P+x5PT0+b6zRt2rTIiaIPHToE6B1Rbdu2LXQ9JyenfHPz3GrPnj2A/sv/7e4I9vnnnwNw8eLFQrdX1L7cqR9//BFNH5VuXa5evcquXbt47LHHuHDhAv/85z+ZOHFigU6mw4cPWx/fbsLovK/nfd+dbCM9Pd0659Otrl69ysCBA1m+fDkODg589913vP7660VutyTc3d157bXXOHnyJFFRUfzwww88//zzdO3aFQcH/dQ4NzeXf//73zz22GOlrpecnMzw4cNJSkrC1dWVpUuXctdddxVYz/KzBnDXXXcV+bPWunVr67pF/bwJIYQQ9iSTfAshhBCiTNWsWdP6+E5++b106ZLNbeVVo0aNIrdhuX29t7c3jo5Fn+7Url3b5vPZ2dl3dDv49PT0Ql+73X6XFQ8PD7p06UKXLl3w9fXlo48+Yv78+QwYMIBHHnnEup5lMnYo/PtgUadOHZvvK4tt5GWZlBzgqaee4oknnihym6XRvHlzmjdvbv13XFwcU6dOZfbs2QDMmTOHxx57jJ49e97R9nNzcxk/fjzHjh0D4KeffqJTp042142Pj7+jGkX9vAkhhBD2JB1MQgghhChTee/MFRERUaL35ubmcvDgQQBq1aqFn5+fzfUKu5TLwjJSx9Zd0wpb19a+WIwbN4633nrrttu6ndvtd3n4xz/+wbRp0zCbzXz//ff5Opjyut33qrDvU0kUZxt33303OTk5HDt2jO+++45evXoxfvz4Utcujrp16zJr1izS0tKYN28eAAsXLrzjDqaXXnqJtWvXAvD2228Xeemb5eetatWqJbrsrV69ene0b0IIIURZkw4mIYQQQpSp1q1b4+3tzZUrV9i8eTMpKSl4eXkV673r16+3jsi401/qQR+5BJCYmEhubm6RHTuFjRxxcXHBzc2N9PR0kpOT812WVJl4e3tTq1YtLl26ZL10MO9rFhcvXqRZs2aFbifvyLK878v7+NKlS9SvX7/E28jLx8eHuXPn0qdPH06cOMGkSZOoUqUKY8eOLXS7Ze3xxx+3djCdPHnyjrYxc+ZMvv76awDGjBnD1KlTi1zfMlovKyuLmjVr2ryMTgghhKjIZA4mIYQQQpQpk8nEQw89BMD169eZNWtWsd9r+YUc9Emn71SbNm0A/Zf1AwcOFLpeTk4O+/fvL/R1y/xM27Ztq9SXIlkmq87Ozs73fN5Os507dxa5jV27dtl8351sw83NjUaNGhW6np+fH5s2baJJkybk5OQwceJEwsLCitx2Wco7cs4yL1NJhIeH8+yzzwL6z9DPP/982xFieecCs4x6EkIIISoT6WASQgghRJl74YUXcHZ2BuDdd98t1iiQefPmsXLlSgBatWrFsGHD7rj+fffdZ308Z86cQtdbsmSJdb4mW0aMGAHAtWvXmDFjxh3vj5FiYmJITEwEwN/fP99rnTp1st5Fb86cOYXe2e3q1assWLAA0LPJO7qmT58+1hFi33//faH7ERsby7p166zvud3cWHXr1mXjxo00btyYnJwcxo0bx7Jly4p8T1FKcolf3gm3i+oIsyU6OpqxY8eSnZ1N7dq1Wbp0KW5ubrd93+DBg3FycgJg+vTpZXYHOyGEEMJepINJCCGEEGWuUaNG1tvKp6Wl0b9//yJHEi1YsIDJkycD+hw0v/zyyx2NHLHo2rUrHTt2BOCbb75h69atBda5cOECL7/8cpHbeeqpp/Dx8QHgrbfeYvXq1UWuv23bNjZv3nyHe132zGZzvjuwDRkyJN/rzs7O1julHTlyhHfffbfANjRN49lnnyUhIQHAOjLHws/Pj1GjRgH63fZ++OGHAtvIysrikUcesY6gunUbhfH392fTpk00bNiQ7OxsgoODrZ2QJTVr1iyeeOKJ23Z2njlzhn/961/WfwcFBRW7RmpqKsOHDycxMRFnZ2fCwsIKdOoVpm7duvzf//0fAAcOHODJJ58sspMpPj7eOhm5EEIIURHIHExCCCGEKBfPP/88p06d4quvviI2NpbOnTszceJERowYQYMGDcjOziYqKoq5c+eyYcMGQO9c+vnnn62dQ6Xxv//9j549e5Kdnc3999/PSy+9xJAhQ3B2dmbnzp189NFHJCQk0K5du0I7vzw9PQkJCWHw4MFkZmYybNgwxowZw5gxYwgICAD0jqq9e/eyZMkSDh48yNdff02vXr1Kvf/FFRcXx+HDh/M9d+3aNSIjI5k1axY7duwA9Dl+8nY2Wbz99tssXryYU6dO8f7773P48GEeeeQR/Pz8iImJ4b///S/h4eEABAYG2ryr2/Tp09mwYQNJSUk89thjbNu2jQkTJuDt7U1UVBSff/659VLEcePGMXjw4GIfX/369QkPD6d3796cOXOGMWPGEBYWxqBBg4q9DdA7uWbNmsWsWbPo3r07AwcOpFOnTtSuXRsHBwfi4uLYtGkTs2fP5urVq4A+gq1///7FrvHss89y9OhRAF588UU8PDwKZJOXr68vvr6+1n9/8cUXbN++ncOHD/PDDz/w559/8sQTT9CpUyc8PDxITk7myJEjrF+/nlWrVtGmTRtrB6EQQghhOE0IIYQQohx98803mre3twYUubRo0UILDw8vclu9e/fWAK13797Fqj137lytatWqNus5Ojpqs2bN0iZPnqwBWoMGDQrdzoYNG7Q6derc9hgAbc6cOQXeb3ntnXfeKdZ+386PP/5YrH2xLI0aNdL27t1b6PZiYmK0Fi1aFLmNHj16aImJiYVuY9++fZqfn1+R2xg9erR2/fp1m++/XbanTp3S/P39NUBzcXHR1q5dW6Lv2fz58wv9WbC1PPDAA1p6errN75VlnR9//NHmMRR3sfXzkJiYqA0aNKhY7+/bt2+JvgdCCCFEeZIRTEIIIYQoV0899RQTJkzg119/ZeXKlRw5coTLly/j6OhI7dq16dKlC0FBQYwdO/a28/KU1MSJE2nXrh3Tpk1jw4YNJCQkUKtWLXr06MHf//53unXrZvPyuVv169eP6OhofvzxR1asWMGBAwdITEzEwcGBWrVq0bJlS3r37s2YMWNo3rx5mR7DnXBxccHHx4d27doxYsQIJk2aVOQ8QA0bNuTAgQPMmjWLhQsXcvjwYVJTU/H29qZDhw48+OCDPPDAA0VettihQweOHTvGf//7X8LCwjh27Bjp6en4+Phwzz33MGXKFIYPH37Hx9SoUSM2bdpEnz59OHfuHEFBQaxYsYJ+/foV6/3jxo1j4MCBrF27lj/++IN9+/Zx6tQp6xxcnp6eNGnShMDAQB588EE6dep0x/taGt7e3qxevZqNGzfy66+/snXrVi5cuEBGRgaenp4EBATQtWtXhg4dyoABAwzZRyGEEMIWk6aVYMZDIYQQQgghhBBCCCFuIZN8CyGEEEIIIYQQQohSkQ4mIYQQQgghhBBCCFEq0sEkhBBCCCGEEEIIIUpFOpiEEEIIIYQQQgghRKlIB5MQQgghhBBCCCGEKBXpYBJCCCGEEEIIIYQQpSIdTEIIIYQQQgghhBCiVKSDSQghhBBCCCGEEEKUinQwCSGEEEIIIYQQQohSkQ4mIYQQQgghhBBCCFEq0sEkhBBCCCGEEEIIIUpFOpiEEEIIIYQQQgghRKlIB5MQQgghhBBCCCGEKBXpYBJCCCGEEEIIIYQQpSIdTEIIIYQQQgghhBCiVP4fcbD6ahtyqNEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(13, 9))\n", + "plt.plot(orders_list, OCC_list_avg, linestyle='-', marker='o', markersize=8, label= \"Reactor Concept A Average OCC\", color='red') \n", + "plt.plot(orders_list, TCI_list_avg, linestyle='dashed', marker='o', markersize=8, label= \"Reactor Concept A Average NCI\", color='red')\n", + "\n", + "\n", + "\n", + "plt.legend() # g.set_xticks(range(1,22,2))\n", + "\n", + "\n", + "plt.xlabel('Order Book Size', fontsize='20') # x-axis name\n", + "plt.ylabel('2022$/kWe', fontsize='20') # x-axis name\n", + "\n", + "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", + "plt.legend(loc='upper right', fontsize='20') # Add a legend\n", + "plt.tick_params(labelsize=20)\n", + "plt.xlim(4, 20)\n", + "\n", + "plt.grid(which='major', color='grey', linewidth=0.8)\n", + "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", + "plt.minorticks_on()\n", + "\n", + "plt.savefig('orders.png')\n", + "plt.show() # Display the graph\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Cost_Reduction/sensitivity_analysis.ipynb b/Cost_Reduction/sensitivity_analysis.ipynb deleted file mode 100644 index 7c9c070..0000000 --- a/Cost_Reduction/sensitivity_analysis.ipynb +++ /dev/null @@ -1,951 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "ee4fa393-2ded-480c-bbf0-547d0cc0ddac", - "metadata": {}, - "source": [ - "
\n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
\n", - "
" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "40096a23-ff7b-4541-b710-9f0a9f9a595d", - "metadata": {}, - "source": [ - "#
Cost Reduction Framework for Nuclear Reactor Power Plants
\n" - ] - }, - { - "cell_type": "markdown", - "id": "dfc0a6a4-10b0-4229-81ad-ba16943cc3a1", - "metadata": {}, - "source": [ - "## Section 0 : Essentials to Run the code" - ] - }, - { - "cell_type": "markdown", - "id": "f2256ae0-712f-4811-99d9-d37188782036", - "metadata": {}, - "source": [ - "### Section 0 - 1 : Importing the libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "12fb6329-dc95-493f-ba1d-86235e71b512", - "metadata": {}, - "outputs": [], - "source": [ - "# Importing libararies\n", - "import numpy as np\n", - "\n", - "import warnings\n", - "warnings.simplefilter(action='ignore', category=FutureWarning)\n", - "\n", - "import matplotlib.pyplot as plt\n", - "from src import *\n", - "\n", - "\n", - "reactor_type_list = ['SFR', 'HTGR']\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "7a34753d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SFR\n", - "HTGR\n" - ] - } - ], - "source": [ - "\n", - "startup_0 = 16\n", - "interest_rate_0 = 0.06\n", - "design_completion_0 = 0.8\n", - "Design_Maturity_0 = 1\n", - "proc_exp_0 = 0.5\n", - "ae_exp_0 = 0.5\n", - "ce_exp_0 = 1\n", - "\n", - "mod_0 = 'modularized'\n", - "standardization_0 = 0.8\n", - "BOP_grade_0 = 'non_nuclear'\n", - "ITC_0 = 0\n", - "n_ITC = 0\n", - "RB_grade_0 = 'nuclear'\n", - "\n", - "for reactor_type in reactor_type_list:\n", - " print(reactor_type)\n", - " TCI_list_avg = []\n", - " OCC_list_avg = []\n", - " orders_list = []\n", - " for num_orders in range(4,21):\n", - " OCC_list = []\n", - " TCI_list = [] \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate(num_orders ,n_th, startup_0, interest_rate_0, design_completion_0, Design_Maturity_0, proc_exp_0 , ae_exp_0, ce_exp_0, mod_0 , standardization_0, BOP_grade_0, RB_grade_0, ITC_0, n_ITC, reactor_type ) \n", - " OCC_result = results[0]\n", - " TCI_result = results[1]\n", - " \n", - " OCC_list.append(OCC_result)\n", - " TCI_list.append( TCI_result )\n", - " \n", - " avg_TCI = np.mean(TCI_list)\n", - " avg_OCC = np.mean(OCC_list)\n", - " \n", - " TCI_list_avg.append(avg_TCI)\n", - " OCC_list_avg.append(avg_OCC)\n", - " orders_list.append(num_orders)\n", - " \n", - " \n", - " if reactor_type == \"SFR\":\n", - " OCC_list_avg_SFR = OCC_list_avg\n", - " TCI_list_avg_SFR = TCI_list_avg\n", - " elif reactor_type == \"HTGR\":\n", - " OCC_list_avg_HTGR = OCC_list_avg\n", - " TCI_list_avg_HTGR = TCI_list_avg\n", - " \n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "8a456bc9", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJgAAAMQCAYAAABrEN+LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hURd+G703vnRAIJYAgQuhNeugk9F5EQfEFFdtrFxERPxUFKwoKoiIgIF16TaRKIAiCSC+BUEJCSEjbJLvz/RH3vJtkd1PJCZ65r2svwp4588zMc3b2nN9O0QkhBBKJRCKRSCQSiUQikUgkEkkJsVO7ABKJRCKRSCQSiUQikUgkkvsbGWCSSCQSiUQikUgkEolEIpGUChlgkkgkEolEIpFIJBKJRCKRlAoZYJJIJBKJRCKRSCQSiUQikZQKGWCSSCQSiUQikUgkEolEIpGUChlgkkgkEolEIpFIJBKJRCKRlAoZYJJIJBKJRCKRSCQSiUQikZQKGWCSSCQSiUQikUgkEolEIpGUCge1CyC5vzAajVy7dg1PT090Op3axZFIJBKJRCKRSCQSiURiASEEd+/epWrVqtjZ3fvxRTLAJCkW165do3r16moXQyKRSCQSiUQikUgkEkkRuHLlCtWqVbvnOjLAJCkWnp6eAJw/f56AgABVynD06FGaNm2qOW019fV6PZ9++ikvvfQSzs7O5a4P0nfpu7a01dSXvkvfpe/a0Ze+S9+l79rRVtt3rX7e1NZOSEigTp06ynP8vUYGmCTFwjQtztPTEy8vL1XKEBISokltNfX1ej0uLi54eXmpdiMifZe+a0lbTX3pu/Rd+q4dfem79F36rh1ttX3X6udNbW29Xg9QbsvbyACTpEh8/fXXfP311xgMBgDWrl2Lh4cHgwcPZufOnSQnJxMYGEjr1q3ZsGEDAM2bN8doNHL06FEABgwYwN69e0lMTMTPz49OnTqxdu1aABo3boyjoyMxMTEA9OnTh8OHD3Pz5k28vLzo2bMnK1euBCAlJYUePXpw8OBBAHr16sWJEyeIi4vD3d2dvn37snz5cgAefPBBAgIC2LdvHwDdu3fnzJkzxMbG4uzszODBg1m+fDlGo5E6deoQHBzM7t27AQgLCyM2NpYLFy7g4ODAsGHDWLlyJVWqVKFmzZrUqVOHXbt2AdChQwfi4+M5c+YMAKNGjWLdunWkp6dTrVo1GjRowLZt2wBo27YtycnJnDx5EoBhw4axZcsW7t69S1BQEM2bN2fTpk0AtGrViszMTI4fPw6AwWAgICCApKQkAgICaNu2LevXrwegWbNmAPzxxx8A9OvXjwMHDpCQkICvry9hYWGsWbMGgEaNGuHi4sKhQ4cAiIiI4MiRI9y4cQNPT0969+7NihUrAGjQoAGurq4ArFy5kt69e3Py5EmuXr2Km5sbAwYMYOnSpQDUq1ePwMBA9u7dC0DXrl05f/48ly9fxsnJiSFDhrBixQpycnKoXbs2NWrUICoqCoBOnToRFxfH+fPnsbOzY8SIEaxevRq9Xk+NGjU4e/as8mXYvn17EhISOH36NAAjRoxgw4YNpKWlERwcTGhoKFu3bgWgTZs2pKam8tdffwEwdOhQtm3bRkpKCpUrV6Zly5Zs3LgRgBYtWpCdnc2ff/4JwMCBA9m9ezfHjx+ncePGdOjQgXXr1gHQtGlT7OzsOHLkCAB9+/YlOjqa+Ph4vL296datG6tXrwYgNDQUNzc3oqOjAQgPD+fYsWNcu3YNDw8PIiIi+OWXXwCoX78+fn5+7N+/H4AePXqwfv16/Pz8cHV1ZeDAgSxbtgwhBHXr1iUoKIg9e/YA0KVLFy5dusTFixdxdHRk6NChrFy5kuzsbGrVqkVISAiRkZEAdOzYkRs3bnD27Fl0Oh0jR45k7dq1ZGRkUL16derXr6+0YWxsLKmpqZw6dQqA4cOHs2nTJlJTU6latSpNmjRh8+bNALRu3Zr09HROnDgBUOo+4pdffiE4OLhYfUTDhg3x8PAodR9x/fp1XnrppWL1EatWrSIrK6tM+ojt27cTHBxcrD5i0KBBREVFlaqPMBqNAFy4cEHxprA+wtvbmwMHDgDQs2fPUvcRly9fpmPHjsXqI+rVq8eOHTtK3UcYjUZ8fHyK1Ufcvn0bf3//Mukj4uLiePLJJ4vVR5w6dYorV66Uqo8wTX9fuXIldnZ2Reojtm/fDkC7du24fft2qfuIhIQExo0bd8/vIyz1Eb/++iv+/v73/D7CWh+RkZFBkyZN7vl9RP4+okWLForvpr/vxX2ErT4iPT1dad97eR9hqY/YtWsXwcHB9/w+wlofsXfvXjw8PIrVR0Dx7yPy9xGrVq1SvK5Wrdo9u4+w1UesXr2aypUr3/P7CEt9RFxcHBMmTLjn9xGW+oi//voLFxcX4N7fR+TvI5KTkwFITk5m586dwL25jwDLfcS6desICAgol/sIS31EZmYmDRs2vOf3EZb6CNP9bHncR0DePqLcERJJMUhOThaAiI+PV60MP//8sya11dTPzMwU06ZNE5mZmaroCyF9VwPpu/RdLaTv5Y/0XfquFtL38kf6rk1ttX3X6udNbe34+HgBiOTk5HLRu/fLiEskZUz37t01qV0R9NVE+q5NpO/aRPquTaTv2kT6rk206rv0XJv6ate9PJEBJsl9h2loqNa0K4K+mkjftYn0XZtI37WJ9F2bSN+1iVZ9l55rU1/tupcnMsAkue+IjY3VpHZF0FcT6bs2kb5rE+m7NpG+axPpuzbRqu/Sc23qq1338kQGmCT3HWrtdqG2dkXQVxPpuzaRvmsT6bs2kb5rE+m7NtGq79JzbeqrXffyRCeEEGoXQnL/kJKSgre3N/Hx8VSqVEnt4kjKCb1ez4wZM3jjjTc01UFqHem7NpG+axPpuzaRvmsT6bs2kb5rk1u3bhEYGEhycjJeXl73XE+OYJLcd5i2BdWadkXQVxPpuzaRvmsT6bs2kb5rE+m7NtGq79JzbeqrXffyRAaYJPcdRqNRk9oVQV9NpO/aRPquTaTv2kT6rk2k79pEq75Lz7Wpr3bdyxMZYJLcd9SpU0eT2hVBX02k79pE+q5NpO/aRPquTaTv2kSrvkvPtamvdt3LEwe1CyCRFJfg4GBNalcEfTWRvmsT6bs2qYi+G41GcnJy7vmvkJUrVyYzM/OealgiKysLd3d39Ho9ai3PqVbd1dZWU1/6Ln2XvmtHW23ftfp5K6m2nZ0dDg4O2NndX2OCZIBJct+xe/duRo0apTntiqCvJtJ36buWtCuCvppUJN+Tk5NJSUkhPT29XIa4p6WlkZ6efs918iOEoH379ly9ehWdTlfu+qBe3dXWVlNf+i59l75rR1tt37X6eSuNtp2dHW5ubnh5eeHt7X0PSlb2yACTRCKRSCQSST6EENy8eZOkpCTc3NwICAjAxcUFOzu7e3pjnpSUhK+v7z3L3xpGo5GEhAQCAgJU+7VUrbqrra2mvvRd+i5914622r5r9fNWEm0hBEajkczMTFJTU7l27RoZGRlUrlxZtaBwUZEBJsl9R1hYmCa1K4K+mkjftYn0XZtUBN+TkpJISkoiKCioXG9I/f39cXJyKjc9E0ajEQcHByWIpgZq1V1tbTX1pe/Sd+m7drTV9l2rn7fSaLu7u+Pv709SUhI3btzAyckJPz+/e1DCsuP+mtAnkQCxsbGa1K4I+moifdcm0ndtorbvQgju3LmDp6dnuf/amZWVVa56FQk16652u6utrybSd22iVd+l59rUL622r68vnp6e3LlzR7V104qKDDBJ7jsuXLigSe2KoK8m0ndtIn3XJmr7npOTg16vV2W9A71eX+6aFQU16652u6utrybSd22iVd+l59rULwttb29v9Ho9OTk5ZVCie4cMMEnuOxwc1JvZqaZ2RdBXE+m7NpG+axO1fTcYDKqVo6KvrXAvUbPuare72vpqIn3XJlr1XXquTf2y0Dbdk5juUSoqMsAkue8YNmyYJrUrgr6aSN+1ifRdm1QU39W4Ga3oayvcS9Ssu9rtrra+mkjftYlWfZeea1O/LLTVDtAVFRlgktx3rFq1SpPaFUFfTaTv2kT6rk207HtSUpKq+mqiZt3Vbne19dVE+q5NtOq79Fyb+mrXvTyRASbJfcf9vEDb/a6vJtJ3bSJ91yZa9t1oNKqqryZq1l3tdldbX02k79pEq75Lz7Wpr3bdyxMZYJLcd9SsWVOT2hVBX02k79pE+q5NtOy7s7Ozqvpqombd1W53tfXVRPquTbTqu/Rcm/pq17080e4KopJi8fXXX/P1118ri4qtXbsWDw8PBg8ezM6dO0lOTiYwMJDWrVuzYcMGAJo3b47RaOTo0aMADBgwgL1795KYmIifnx+dOnVi7dq1ADRu3BhHR0diYmIA6NOnD4cPH+bmzZt4eXnRs2dPVq5cCUC1atW4cOECBw8eBKBXr16cOHGCuLg43N3d6du3L8uXLwfgwQcfJCAggH379gHQvXt3zpw5Q2xsLM7OzgwePJjly5djNBqpU6cOwcHB7N69G4CwsDBiY2O5cOECDg4ODBs2jIsXL3L58mVq1qxJnTp12LVrFwAdOnQgPj6eM2fOADBq1CjWrVtHeno61apVo0GDBmzbtg2Atm3bkpyczMmTJ4Hc9T62bNnC3bt3CQoKonnz5mzatAmAVq1akZmZyfHjxwFo3749W7ZsISkpiYCAANq2bcv69esBaNasGQB//PEHAP369ePAgQMkJCTg6+tLWFgYa9asAaBRo0a4uLhw6NAhACIiIjhy5Ag3btzA09OT3r17s2LFCgAaNGiAq6srACtXrqR3796cPHmSq1ev4ubmxoABA1i6dCkA9erVIzAwkL179wLQtWtXzp8/z+XLl3FycmLIkCGsWLGCnJwcateuTY0aNYiKigKgU6dOxMXFcf78eezs7BgxYgSrV69Gr9dTo0YN/Pz8FJ327duTkJDA6dOnARgxYgQbNmwgLS2N4OBgQkND2bp1KwBt2rQhNTWVv/76C4ChQ4eybds2UlJSqFy5Mi1btmTjxo0AtGjRguzsbP78808ABg4cyO7du7l+/Tqpqal06NCBdevWAdC0aVPs7Ow4cuQIAH379iU6Opr4+Hi8vb3p1q0bq1evBiA0NBQ3Nzeio6MBCA8P59ixY1y7dg0PDw8iIiL45ZdfAKhfvz5+fn7s378fgB49epCSksLSpUtxdXVl4MCBLFu2DCEEdevWJSgoiD179gDQpUsXLl26xMWLF3F0dGTo0KGsXLmS7OxsatWqRUhICJGRkQB07NiRGzducPbsWXQ6HSNHjmTt2rVkZGRQvXp16tevr7RhbGwsqampnDp1CoDhw4ezadMmUlNTqVq1Kk2aNGHz5s0AtG7dmvT0dE6cOAFQ6j7izJkzXL58uVh9RMOGDfHw8Ch1HyGEoF27dsXqI1atWkVWVlaZ9BGmuhenjxg0aBBRUVGl6iNMv7JduHBB8aawPsLb25sDBw4A0LNnz1L3EWlpadjb2xerj6hXrx47duwodR/RsWNHoqKiCAgIIDU1FUdHR+7cuQOAu7s7QgjS09OB3G2D7969S05ODg4ODnh4eChp3dzc0Ol0pKWlAeDj40NaWhrZ2dk4ODjg6empDJl3dXXFzs6OtLQ0hBC4uLiQkZFBVlYW9vb2eHt7c/v2bSWtvb09qampAHh5eZGZmUlWVhZ2dnb4+vpy+/ZtJR9HR0fu3r2rpNXr9ej1enQ6HX5+fkpaJycn4H/D+D09PcnOziYzM1NJm5SUhNFoxMnJCRcXF1JSUgDw8PDAYDCQkZEB5K41kZycjMFgwMnJCVdXV5KTk5U2NBqNSlrzNrS3t8dgMFhtbx8fH1JTU5X2Nm9DW+1tb2+Pl5dXnvY2b0Nvb28MBgOJiYkF2tvFxQUHB4c87W1qw8La29PTk6ysrDztbWpDZ2dnnJ2dlTZ0dXUlLS2NzMxMAPz9/blz547FNrTV3o6Ojri5ueVpb2vXrCmtyXfT3+btbe2azd/e3t7epKenK+1t65r19vbOc327u7uTmJiotLe1azZ/ezs7O+Pk5JSnva1ds/nb28PDg5ycHDIzM9Hr9Tav2fzt7evrS0pKitLe7u7uJe4jAKXuRe0jLLVhcfsIU77p6el52tBWH5G/DUvbR2RlZZGYmFisPqKw9i5qHyGEUD5zRe0jrLV3cfsIOzs7xfPi9BHm7Q0l7yMgd5FoU10L6yPM27u0fUROTo7Ffraw9vbx8SmTPsK8ny1OH5G/DUvSR5j6mtLcR7i4uJCZmcmGDRtwc3Mr8rNGuSMkkmKQnJwsAHG7Tx8hfvpJiIyMci/Dzz//XO6aFUFbTf3MzEwxbdo0kZmZqYq+ENJ3NZC+S9/VQm3fMzIyxMmTJ0WGCt9xCQkJ5a4phBAGg0HExcUJg8Ggir4Q6tVdbW019aXv0ne10Krvamqr7btWP29lpV3Se5P4+HgBiOTk5FKXoSjIKXKSEmG3aRM89hhUrQr//DoukUgkEolEUlyioqLQ6XQEBASg0+nyvFxdXalWrRrh4eHMmTNH+YVbcv9w5coVZs6cSc+ePalVqxYeHh64uroSHBxMr169+OSTT7h48aLaxZSUERkZGXh7eyuf4enTp99TvStXrmBvb6/o/fTTT/dUT6IOBoOBFStWMGbMGOrVq4e3tzeurq6EhIQQHh7OV199pYz8KQ7Z2dksW7aMsWPH8tBDD+Hv74+joyMBAQG0aNGCp59+mh07dhR5DaWYmBgmT57Mww8/THBwMM7Oznh5edGyZUuGDh3Kt99+W6Jy3leUSxhL8q/BNIIpGYQAIXS63Ne6deVWhtjY2HLTqkjaaupXhBEN0vfyR/oufVcLtX1XcwSTXq8vd00h1P1lOzIyUgBFetWsWVMcPXq0zMugVrtb0q9Zs6YAxNixY++57r30PTMzU7z00kvC2dm5UF91Op0YPnx4uX/2K5Lv5YXp+ho2bNg98X3JkiV5vH3ggQcspiurur///vt59Lp161boOWr6rqa22iOYSlr3PXv2iAYNGhTaj/j7+4t58+YVWX/t2rWidu3aRfruqVevntiwYYPVvGNjY8WAAQOKlJerq6uYPHmySE9PL1Y7yBFMEm0gRO6/48bBP3NU7zXx8fHlolPRtCuCvppI37WJ9F2baNn37OxsVfXV5umnn+b48ePKKzIykm+++YZ69eoBcPnyZcLDw5U1NcoKtdtdbf2yJjExka5du/Lpp5+i1+vx9PRkwoQJLF++nH379hEdHc2vv/7K66+/zgMPPIAQgl9++YVVq1aVaznVbne19e8FphFEHh4eAJw7d05ZV9Kcsqr7okWL8uhFRkZy9epVm+eo2e7/Rs+LSknqvnLlSrp3766sXdulSxfmz5/Pnj17iI6OZsWKFTz22GM4ODiQmJjIhAkTeOWVVwrV//DDDxk0aBAXLlwActfgnD17Njt37iQmJobt27fz1Vdf0atXL+zs7Dhz5gxvvfWWxXz/+OMP2rRpo6zTWrNmTd544w3Wr19PdHQ0e/fu5ccff+TJJ5/E39+fjIwMPvjgA2WdyH8bMsAkKT1CQFIS/LPA7r3GtEiuGqipXRH01UT6rk2k79pEy75nltOPNRWVwMBAQkNDlVdYWBgTJ07k+PHjdO3aFYDr168zb968MtVVu93V1i9LjEYjI0eOVIIKERERnDt3jm+//Zbhw4fTrl07WrVqRb9+/ZgxYwb79+9n4cKFBAYGlntZ1W53tfXLmuvXryubLUydOhV/f38Ai9PWyqLu0dHRygYkn3zyCQ4ODhiNRhYvXmzzPDXb/d/meXEobt3/+OMPHnnkEfR6PU5OTixdupRdu3bx5JNP0qFDB1q1asXQoUNZuHAhMTExVK9eHci9FubOnWtVf9GiRUyePBkhBJUqVWLXrl1s376dZ599lq5du9K8eXO6d+/OpEmT2LJlC0ePHlW+f/ITHx9Pnz59uH79OgCTJ0/m9OnTfPjhh/Tt25dWrVrRvn17+vbty/z587l48SJTp07FweHfu9eaDDBJygY7O/hnhzKJRCKRSCSSssTJyYlp06Yp/9++fbt6hZHYZPbs2UqQoXv37qxbt85m8MjOzo7HHnuMmJgYGjduXF7FlNwDFi9ejMFgwN7enkcffZThw4cD8Msvv6DX68tcb+HChUDuTlzjxo2jR48egOWAluT+wmg08uijj5KVlQXkej1y5Eir6Rs3bsyuXbuUkWwvv/wysbGxBdJdu3aNp59+GsjdpS0qKoouXbrYLEujRo3Yvn27xZFREydOVIJL06ZN4/3338fZ2dlqXp6enrz77rvs3LkTb29vm7r3LeUyEU/yr6HAGkzmr7AwtYsnuUdUhDVZJOWP9F2bSN9Lvs7BPSUjI3f31sGDhejcOfffMtzNtaKswfTOO+9YTZeamqqka9Cggc08T506JZ577jnRoEED4eXlJVxcXEStWrXEuHHjRExMjM1zr127Jr7++msxZMgQ8cADDwg3Nzfh5OQkqlatKvr37y+WLVtW5Ha6ePGieO2110Tz5s2Fn5+fcHZ2FiEhISIsLEzMmjVLXL58WUnbuXPnQtfu6Ny5s0WdPXv2iDFjxoiaNWsKZ2dn4e3tLZo2bSreeustER8fb7V8O3fuVPKOjIwUBoNBLFiwQISFhYnAwECh0+mKtRZUVlaWCA4OFoBwcXERV65cKfK5ttDr9eLrr78WYWFhIiAgQDg6OorKlSuL8PBwsWjRIpt+jB07Vlm/SwghkpKSxNtvvy0aNGgg3NzchLe3t+jYsaNYvHhxkcqSkpIiZs2aJbp06SIqV64snJycRJUqVUTr1q3Fa6+9ZvP6MhqNYsWKFWLw4MGiWrVqwtnZWfj4+IhWrVqJ6dOni6SkpCLX4+rVq+K///2vqFu3rnB1dRUBAQEiPDxcbNq0yeL5pbm+ikqjRo0EIHr27CmEEGLfvn1K3itWrChV3vnR6/XC399fAGLChAlCiLzrPx06dKjAOdOmTVOOnzlzplCN8PBwAYjAwECRnZ1tMc3BgwfFk08+KerWrSvc3d2Fm5ubePDBB8UzzzxjU+OHH35QynLx4kWRmZkpPvvsM9GmTRulXub9oV6vF7/++quYNGmSaNmypfDx8REODg7Cz89PtG7dWrzzzjvi1q1bNutj6uejoqLEoEGDRGBgoHB2dha1atUSEydOFGfPnhVC/O9aKex6uHLlinjjjTdEs2bNhI+Pj3B2dhbVq1cXw4cPF7t27bJ5bmGsXbtWaZ8+ffoU+byZM2cq57300ksFjr/yyivK8ZkzZ5aqjCdOnBA6nU4AokmTJiInJ6dU+RXG/bIGkwwwSYqF1QCTnV3uzW45sHbt2nLRqWjaaupXhAdO6Xv5I32XvquF2r6rGWCy+IC5bp0Qvr7/+741/9fXV4hffy217v0QYMrIyFDSNW7c2Gq66dOnCwcHB5sLSk+dOjXPOaZ2z8nJEXZ2doU+iPfo0UPcvXvXZr1mzpwpHB0di/RAn5SUVKIAgMFgEJMmTbJ5jre3t9i2bZvFMpoHmDZv3iy6d+9e4PziBJjWr1+vnDdmzJginWMrqCKEEJcuXRIPPfSQzTp26NBBJCYmWjzfPDDz999/i5CQEKv5TJo0yWZZtm/fLgICAgr1yRLx8fGiffv2Ns+rXLmy+P333wutx6FDh0RgYKDVfF544YUC59/rANORI0eUfH766SflfdMiyv369cuTvjDfC2P16tWK3u7du4UQQqSlpQkPDw8BiOeee67AOefOnVPOmTZtms38b926pfQjlvLKzs4WTz/9tM32dHR0LLDotKne5gGmQ4cOiaZNmxY437w/NPlv6+Xv7y/27t1rtU4Gg0G89tprSlAk/8vT01Ns3bq1SAGm7777Tri6utosz/jx4/ME5orj+aBBg5R8rPVflrhz545SLn9/f2E0GpVjt2/fFpUqVRKAcHd3L3XA5eWXX1bK+N1339lMW9rrXYj7J8Akp8hJygajEQYNKhep9PT0ctGpaNoVQV9NpO/aRPquTbTsu8FgyPvGr7/CwIFg2tbYtFWy6d87d2DAgNx0/3JMi7wChISEWEwzdepUpk6dSk5ODu3ateO7777jwIEDHD58mCVLltC2bVuEEEyfPp3Zs2cr55naXfyzeUnXrl2ZOXMmW7ZsISYmhqioKL7//nvatm0L5E7RmzRpktWyvvfee7z66qtkZ2fj4+PD5MmT2b59O0eOHGHXrl3MmjWL9u3bo9PpFP0ffviB48ePU7VqVQAGDBiQZ8Hz48eP88MPP+TReeONN/j6668BqFWrFt988w3R0dFERkby3//+F0dHR5KTk+nbty/Hjh2z2b6vv/46O3bsoH///qxevZqYmBg2bdpEeHi4zfPM+e2335S/+/btW6RzClzzZqSmptK1a1f+/vtvAAYOHMivv/7K4cOHWbFiBZ07dwZg79699O3b12Ze6enp9O/fn8TERKZMmUJUVBQ7duxg/vz5VKtWDYCvv/6arVu3Wjw/MjKS8PBwEhISsLe3Z9y4caxZs4aYmBj27dvH/PnzGTx4MI6OjgXOTUtLo3Pnzuzbtw8nJycmTpzIunXr2LVrF3v27OH999/H39+fmzdvEh4ezuXLl23WY9iwYSQnJ/PGG2+we/duDh48yJdffkmVKlUA+OKLL/j000/znJf/+urVqxfHjh2zeX0VB9N0NTc3NwaZPRM88sgjAGzZsoVbt24p79vyqjh6ISEhdOjQoYD2smXLCiwqXadOHdq0aQPAkiVLbOa/fPlycnJy8tTBnPHjxyvr/ISHh7N48WKio6M5dOgQ8+fPp2HDhmRnZzNhwgTWr1+vnGep3uPHj+fYsWM89thjbNy4kZiYGNasWaOUFSAnJ4fatWvz8ssvs3z5cg4cOMChQ4dYuXIlTz31FE5OTiQmJjJo0CCrm1UsXbqUjz/+GCEEvr6+yhpo+/fv56OPPsLBwYGRI0cqU76s8f333/Pkk0+SkZFBaGgos2fPZu/evRw5coRVq1YREREBwIIFC3j99ddt1t0ae/bsAXI9tbb+kSW8vb3p1KkTkLvZgPn3xsmTJ5VrsGPHjnh5eRU5X0sUp78r7fV+X1EuYSzJvwaLI5h0utxfUMvpl17TrxRqoKa2mvoVYUSD9L38kb5L39VCbd/VHMGUkpLyv/9kZOR+v+p0Baell/H38P0wgmnUqFEWR0iYiI6OVkYfTZkyxWIeBoNBjBkzRvm13vSrsqndjUajMk3EGlOnThWQOxLK0hSYmJgYpRz16tWzOU3MdMzcd9M28oWNHPrzzz8VndDQUIu/kG/evFlJ07p16wLHzUcwAeLtt9+2qVkYPXr0UPIqyhQkIfJd8/kwn85iyVOj0SgeeeQRJc2cOXMKpDEf+eHj4yNOnDhRQPvs2bPCxcVFAKJ///4F8khPTxdVqlQRgHBzcxORkZFWyxwbG1vgvWeffVZA7mgy86lb5nW/dOmSomFp9Jd5PRwdHcVvv/1WIE1cXJyoVq2aUs6bN28WSGO6voYNG1Zmn/fs7GxlRNXo0aPzHDt9+rRS7i+++EJ535bvhZGQkKCMDpw8eXKeY1u3blX01q1bV+DcL7/8Ms/IIWu0a9dOAKJOnToFjq1cuVLJY/78+RbPz8jIEF27dhWACAkJUUbymOptPoIJEAsWLLBZ53PnzuUZjZOfP//8Uxm9ZemzkpmZqXjk5+cnTp8+XSDN6dOnhZ+fn80RbbGxscLNzU3po6xNHZw8ebIAhJ2dnaJVVM+vXr2qlKFt27ZFOsecN998Uzl/yZIlyvvfffed8n7+66YkmK7BqlWrFpq2NNe7iftlBNN9HWC6efOmWL9+vXj77bdF7969lfmqRflStsTmzZvFoEGDRHBwsHBychLBwcFi0KBBYvPmzUXOIy0tTXz88ceiVatWwtfXV7i7u4v69euLl19+Oc88+8I4ceKEmDhxoqhTp45wcXERAQEBomPHjuKbb76x+kG2xNKlS0XPnj1FUFCQcHZ2FjVr1hRjxowRBw4cKHIe5lgNMJXB8PyikpCQUG5aFUlbTf2K8MApfS9/pO/Sd7VQ2/ci38QZjUKkppbpK/vOnf/9f/5824Gl/K/vviuxriElRVw7e1YYUlIsp7HxYFNabAWYEhISxJ49e5S1UEwPHFlZWQXyGTJkiABEixYtbD6IJSUlCWdn5zwPh8W5t8rJyVGmSc2aNavA8ZEjRyoBqCNHjhQpT3P9ogaYzKfn2Lqve/LJJ5V00dHReY6ZB5jq1atX6jVEmjVrpuRX1IcZa22fmZkpfHx8BOSuuWWtbMnJycozgKW1ucwDM19++aVVbZNvvr6+BfL45ptvlDw+++yzItXLxK1bt5TglXmAJb++EELMmTNHCSClpaVZrcezzz5rVW/58uVKuo8//rjA8XsRYDKfGmlpDahWrVopn00TxfnM5Wf27NmK3smTJ/Mcy8nJUQJ1Q4YMKXDuzZs3lalvL774osX8L168qOSffzqtEEK0aNFCAGLQoEE2y3ny5Ekln+3btwsh/ldv8wBT165di1TvwnjxxReVgHN+li5dquh9/vnnVvP44osvbAaYTNPCqlatavM7Mjs7W1mP7a233lLeKwpHjx5VylBYG1vi888/t/iZ//TTTy0GO0uC6ZkYEM2aNSs0fWmudxP3S4Dpvp4iV7lyZfr168d7773Hli1bSExMLFE+QggmTpxIeHg4a9asIS4ujqysLOLi4lizZg3h4eFMnDhRGTZtjfPnz9O8eXNee+01Dh06RFJSEmlpaZw6dYpPPvmExo0bs2nTpkLLs2DBAlq0aMG3337L+fPnyczMJCEhgT179vDUU0/RsWPHQuuamZlJv379GDVqFNu2bePGjRvo9XouX77M4sWLad++Pe+9916x2skc8c+QbgD69IF+/UqcV3HZtm1buWlVJO2KoK8m0ndtIn3XJveN7+np4OFRpi8HH5///f8//yle4Z98ssS6dl5eVKlbFzsvL8tpymnq4LvvvotOp1NeAQEBdOzYkc2bN+Pg4MCYMWPYsmVLgWlI2dnZbN68GYChQ4cqU88s4ePjQ6NGjQA4cOAAAMnJyRbTGo1Grl27xunTpzlx4gQnTpzg77//VqZU5Z92ZjQa2bJlCwCdO3emWbNmRaq3NX1bmHZqa9CgAQ8//LDVdP8xu45M51hixIgR2NvbF7sc5ty9e1f5293dvUjnWKt7TEwMd/6ZGjpu3DirZfPy8lJ2Kzt58qTV6T06nY7Ro0db1W7RogUASUlJiq6JjRs3ArnTdSZMmGC7QvnYunWrsj26qZyW9AFlak92djYxMTFW83z88cetHhs0aBA+Pj6Abb/LEtOubYGBgcpObuaMGTMGyPXUNN2xJNd8fr3mzZvz0EMP5Tlmb2+v7Da2YcOGAl4GBgYSFhYG5E6DM5qmG5vx888/K3/nv2bi4uIUb/L7mZ+HHnqIgIAAwHZfY2kKXmEkJSVx/vx5/vrrL6VvMvl+8uTJAtMDd+7cCeTu2mjywxJjxoyx2X+uW7cOgH79+uHi4mI1nYODgzKluLB+Nj8l6UfMMT8nJSVF+TshIaFU+ZpT3DKW5nq/37ivA0zmVK9enZ49e5bo3ClTpjBv3jwAmjVrxtKlS4mOjmbp0qXKjcG8efN4++23reaRmppK3759OX36NJD7Zb5z507279/P+++/j4eHB8nJyQwbNow///zTaj5bt25lwoQJ6PV6KleuzJdffsnBgwfZvHkzgwcPBuD3339n8ODBFjtEE+PHj2fDhg0AdOnShbVr1xIdHc2CBQuoU6cORqORqVOn8t133xWvsf7BGBEBpjm16emgpXmlEolEIpFIyp169erx2muvWVw34+TJk8r6WW+++WaeIJWl1+HDhwG4ceNGgbyEECxevJguXbrg4eFBcHAw9evXp1GjRsrr6NGjQN4HFoCLFy8qD7SmYMG9QK/Xc/bsWYA867RYolmzZkpA7sSJE1bTNW7cuNTl8vT0VP5OS0srVV7mZS2sjubHrdUxICAAf39/q3n4+fkpf5s/PAL88ccfALRs2RI3NzebZcmP6VoDqFKlSoEAqvn/Q0NDlbSWrk0AJycnm145Ojoqzy+2/C4r7ty5w6//rAE3cuRIHBwcCqQxf98UHCopp06d4tChQwBWAyWm9/V6PcuXLy9wfMiQIQBcv36dXbt2FThuWp+pZcuWPPjgg3mOmfs5atSoQvsaUx9hzU8o+mfv+PHjPPHEE1SpUgU/Pz8eeOABQkNDlX5p2rRpQG6gOykpKc+5pmuhRo0a+Pr6WtXw8/Ojdu3aFo8lJydz7tw5AL799ttC675y5cpC624J834kNTW1WOfmP8f8+8LDw0P5u7T9U1n2df827usA09SpU1m/fj03btwgNjaWb7/9tth5nDt3jo8//hjI7UT27dvHyJEjadWqFSNHjmTv3r20bNkSgI8++ojz589bzGfWrFmcOnUKgI8//ph58+bRtWtX2rZty+TJk9m2bRsODg6kp6fz4osvWswjJyeHZ599FqPRiJeXF/v27eO5556jdevW9O7dm1WrVvHMM88AsHv3bhYvXmwxn99++02JvPfr14/t27czYMAAWrVqxRNPPMHvv/9OjRo1AHjttdcKRPaLQs4PP8CMGbB7N+zYAaX8xas4mKLhaqCmdkXQVxPpuzaRvmuT+8Z3NzdITS3Tlz4x8X//798f7Ip4q2Znl5u+hLrGlBSunz2LMSXFcppiPlSXlKefflpZcPiPP/5g48aNTJw4EUdHR06ePElYWJjyY5451ha1LQxTUMr04JGZmUmfPn149NFHiYqKIiMjw+b5+Y+bB5xMCy4XBfMHn6Jg/vBYuXJlm2kdHR2VwMrt27etprP10FlUTKM1AG7evFmkc6zV3byshdUxKCjI4nnmWAoMmWvbmX3W8i/Ia/K1OJ6aKO21mR8/Pz+LQRxzTO1ly++yYvny5ej1esB6wMd8ZNPixYsxGo3FvuZNmBb3tre3Z9SoURbTNG/enAYNGgCWA1rDhw9XRp3kX+z76NGjysLQlkYWlVVfY05RPnsLFiygefPm/PDDD0UK2OTvm0x9hq0gq4lKlSpZfP9e1N0S5mUsbnAK8vY95nmZFrjPn6YkeHl5KYH7ouRV0uv9fsR271TBeffdd0udx2effabsEDB79mxcXV3zHHdzc2P27Nm0bduWnJwcPv/88zy7jkDuMNYvvvgCyB0K+fLLLxfQadu2LePHj+fbb78lMjKSmJgYZSiuiTVr1ihR4TfffJM6deoUyGfmzJksXbqUpKQkZs6cyWOPPVYgjSlgZm9vz5w5cwoMKQ4ICOCjjz5i1KhRJCUlsWDBAotlLhIdO5bsvFKg5hBDtYc3qq2vJtJ3bSJ91yZq+27+sGoTnQ5KOcw+Pwad7n/BnKFDi747nNEIw4aVvDxGI8LNLff8oga17gGBgYF5RnE0bdqUiIgI+vXrR//+/bl9+zajR48mOjo6z/2NeUBg5syZ9O7du0h6podM0/nvv/++MtWuc+fOTJo0iebNmxMUFISrq6sShOjUqRN79uyxuXyCrWkm+SnNDkNF0SlsmQeg1NPjAJo0acL27dsBOHLkCHXr1i30nKLUvbA6FqV+JdUuTjlsaTg5ORWY9paRkVHg2cOEaRpmScpQ0vYoCeYBnNatWxea/urVq0RGRpbohwSj0agEhAwGQ5ECfvv37+fcuXM88MADynsuLi4MGDCAn3/+mdWrVzN37lxlupfpR3o7OztGjBhRID/za2bJkiVFHn1kCiJZuuYK++ydOnWKp556ipycHAIDA3n11Vfp2rUrISEheHp6KoGO77//nvHjxwP35howL/uLL76oaBWGk5NTgfNtERwcTEBAAAkJCfz5558YDIZi9U9HjhxR/m7SpInyd8OGDS2mKSlNmjTh8OHDXLt2jZs3b9oMhGtpF7n7egRTaRFCKPNI69evb3X++sMPP6wMj1y7dm2BD2xUVJQyCmjs2LF5fgExZ9y4ccrfq1evLnB87dq1FtOa4+bmpsz3PXHihDI82kRqaqoyx7ZHjx5Wv5wGDx6sDBm0VJZic+cOfPJJuUyVM99usrxRU7si6KuJ9F2bSN+1iZZ9z/Or87Bh4OubG8iyhU6Xm27o0HtbOBXp06cPTz31FJD7YPDjjz/mOW7+K3V2djahoaFFetWqVQvIbXchhLJ0QIcOHdi1axfDhg2jTp06uLu757m/yz/9xIT5CJ5r164VuX6FjZTKj/mIh8J+4c/JyVFGsphPA7sXdO7cWfnbtG5RYViru3lZC6uj+QiC4tSxqO1u8rU4npowXZtZWVn4+/vnuf5q165t9do0raeTn8TExEIfVk0jTe613+fOnWP//v3FPu+nn34q9jUPsGvXLq5cuVLs8xYtWpTn/xkZGcpoq5SUFGVZESEES5cuBaBbt24WA1jmfY1pWmNRXsHBwYp2cfnxxx/JycnB3t6eqKgoXnnlFZo3b46fn1+e9eis9Uvwvz6jKGsW37p1y+L75nVPT08vct3r1asHFL3uOp2ODh06KDqmZ9uikJyczJ49e4Dc6980kg0gJCRE+Szv2bMnz/pMJaE4/V1JfL9f0XSA6eLFi8TFxQF5LxBLmI5fvXqVS5cu5TlmuogLy6dly5bKL2V79+4tcNyUz4MPPmjz11Nzjfz5REdHK8NUbZXFyclJCahFR0cXWAiuWBgM0KoVvPIK5OvAJRKJRCKRlBAXF/hnOojVIJPp/YULc9P/i3nnnXeU+6h3332XrKws5VjDhg2VX8lLukj87du3lUDG8OHDrf5gmJqaanGaHkCtWrWUB7ndu3eXqBxFGaHi7OysjA46ePCgzbR//PGHcp9nPjrsXtCzZ09lGsqKFSuU++ySYF7WwuoYHR1t8byyonnz5kDu+jvWpq5Zw3yh97LYwCArK6vA4vLm5OTkKGuEWWqLkozCsob56KW5c+eydOlSmy/TyMLVq1eXaN0ak56zszNLliwpVM80W2TRokUFBgj06NFDmQpmGrW0e/durl69ClhfeLus/SwKf/31F5A7Yib/oubmmK8PlR/T6J3Y2FibUydv377NhQsXLB6rVKmSEijbsWPHPR0pN3bsWOXvL7/8ssjnzZs3TwnmjB07Ns/1rtPplEEcaWlpJV6L2IT5gJDZs2drapSSTcplr7pywnxLycK2dhVCiA0bNhR5y1HzbQ03btyY59jQoUOVY0lJSTbzady4sQBEpUqV8rx/9+5dodPpBCAGDBhgM48jR44oeq+++mqeY1999ZVybM2aNTbzef7555W0f/31l820JkxbMsbHx+c9MHNm7hbJVarkbmd8DymLbR7vR2019SvCtuXS9/JH+i59Vwu1fS/pVsBlgdFoLPjmunVC+Prmfs/a2eX919dXiF9/LbWuwWAQcXFxZbZteXGIjIxU7kfeeecdm2lfeuklJe28efPyHAsPD1eOHTx4sFhlMBqN4saNG8r5M2bMsJrWfAtsS9t4P/LIIwIQOp1OHDlypMj6JurXry8AMXLkSJvnPP3000o5Dhw4YDXdhAkTlHTR0dF5ju3cuVM5FhkZWaSyFob5PXOvXr1ETk6OzfSmul+5ckXs3LlTeT8zM1P4+PgIQDRs2NBqPikpKSIgIEAAokGDBgWOjx07VgCiZs2aVrWFyLtt/MWLF/Okmz9/fpGfGfJz9epV4ejoKADRpEmTPP2bxc+7FUz1AMTzzz9vNd0vv/yipPv4448LHDddXwMGDCjV591oNIpatWoJQISGhhbpnPXr1ytlW7hwYbH0UlNThbu7uwBE3759i3TO7NmzFb3du3fnKbsQQjz77LMCEM7OziIpKUn85z//EYBwcXGxuaV7gwYNlHSXL18uVj1M2raut/z07t1bAKJ+/fpW01y/fl24urpazfPnn39Wjn3++edW8/niiy9s9m/m/c4vv/xis9z5Kc71bjAYlGsVEEuXLi30nLNnzwoPDw/Fm0uXLhXQv3r1qnBzcxOAcHd3F3///XeRy7No0aIC7/fv318p43vvvWf1/Px13717t7hw4UKRtE2U9N4kPj5eADav6bJE0yOYzIdYWptKZqJ69eoWzzP/v7u7u9XhrPnzuXXrljLSCHJHRol/osBlUZbS5lNsnnsOatWC69dh5szS5VUIpu1/1UBN7YqgrybSd20ifdcmWvbd4vpT/fvDtWu5o4QHDoSwsNx/Fy3Kfb9fv3IupXq8+uqrylopM2bMyPOL8VtvvaX8Wj1y5EirG7NA7noYP//8szJaITk5mUqVKin3ccuWLcszQsrEoUOHmDJlis0yvvLKK9jZ2SGEYOTIkYqGJcz1TZim5dgqP+QuiG4aZTVhwgSL1862bdtYsGABkLs+TqtWrWzmWRa88MILdOnSBcjdHXnQoEFWp9xA7i5kS5YsoUWLFnl2WnZ2dubJJ58EckdwWFp7VQjBs88+qyzC/eyzzxarrEVd723MmDHKyI233nqL3377zWra/H4HBwfz+OOPA3Ds2DEmTpyorP9qST8+Pr7QkRVz5861OBvixo0bvPLKK0Dushrmo0BMmK6vy5cv29QojD179nDx4kUAhhZxem7Pnj2VJTp++OGHYumtWrVKGfVUVL3BgwcrfYL5aCtTu5tGKen1en7++Wdl17P+/ftb3K3ShKkPyMzMZPDgwTavb71ez5w5c8jMzMyjXRxMoxXPnDnD77//XuB4eno6o0ePtjkNa9CgQQQGBgIwffr0AsusAJw9e7bQNY5fffVVnJ2dAXjqqadsjpoC2LRpk/K5Lk7d7ezsWLRokTIFcOzYsRZ3BDTx559/0q1bN2UHuZkzZ1KzZs08aZKTkwkODuarr74Cckcxde7c2ebnGXKnzvfq1YtZs2YVOPbtt98qay+9/fbbTJ061eJ3h6nuaWlpvPvuu3Tr1u1fu9bmfb3Id2kx34K0sJXd3c0Wzcy/XaIpn6KsDp8/H9MHtKzLUtp8TOj1+jyBMNNc1fzvA9j93//h+MgjiI8/Juuxx+CfL+Ky5s6dOwW0yws1tdXUN2lqse5qa6upL32XvquF2r5nZWUhhMBoNGI0GstV32AwWNZ0coLRo3Nf+SmDMpp+5DLVuzwx1ytMPzAwkCeeeII5c+Zw4cIFFi9ezKOPPgrkbqjy9ttvM336dC5evEjTpk154okn6NGjB1WqVEGv13Pp0iV+//13Vq1axbVr1zh27BhVq1ZVAlWjR49mzpw5HD16lI4dO/LCCy/wwAMPkJyczObNm5k7dy4eHh5UrVqVM2fOFCg/5G45Pm3aNKZOncqZM2do1KgRzzzzDGFhYfj7+3Pnzh2OHTvGmjVrsLe3Z+fOnXl8b9u2LZGRkRw6dIgPP/yQ3r17K/dsrq6uSqCjYcOGvPTSS8yaNYvjx4/TvHlzXn31VZo1a0Z6ejobNmxQpm04OTkxd+7cAmUVZlNcyvJ6X7ZsGf379+fgwYOsX7+eOnXqMHr0aLp06UK1atVwdHTkxo0bHDx4kBUrVigPu/n9nzJlCqtXr+bChQu89957HD9+nMcff5yqVaty8eJF5syZQ1RUlNJuTz75ZKF1NMe83c2P5W8LJycnFi5cSO/evUlPT6dbt26MGTOGgQMHUq1aNfR6PadPn2bz5s38+uuvBR70Z86cyf79+zlx4gTff/89v//+O//5z3+oW7cuVapU4c6dO5w8eZIdO3awefNmGjVqxBNPPGGxHpUqVcLNzY0ePXrw4osvEh4ejrOzs3K9mNaJmj59OgEBAQXqbLq+jh49yowZMwgPD7d4fRWG+TpogwYNKtK14+DgQJ8+fVi6dCm7d+/mypUrRdYz7R7n6OhI3759i6QXFBRE27Zt2b9/PytWrOCLL77AxcVF8b1169Y88MADnDt3jrfeektZU3fUqFE28x8xYgRbtmzhp59+IiYmhgYNGjBhwgQ6depEpUqVSEtL4/z58+zdu5c1a9Zw+/ZtxowZg5OTk6Jt63rLzyOPPMLs2bMxGo1ERETw6quv0rZtW1xcXIiJieGLL77g7NmztG/fnn379lnM08nJiU8//ZQxY8Zw+/Zt2rRpw+uvv07HfzZs2rNnDx9//DFGo5G6dety9uxZdDpdgXLVrFmTOXPmMH78eG7fvk379u0ZM2YMffr0oUaNGuTk5HD16lUOHTrEqlWrOH/+POvWrSM0NNT695sVmjdvzsKFCxk3bhxZWVmMHDmSefPmMXLkSOrXr4+TkxOxsbGsX7+epUuXKoHb559/nmeeecbq533s2LFcuXKFd955h/j4eMLCwujRowcDBgygfv36+Pj4cPv2bc6cOcOmTZvYunUrBoOBJk2aFMgzMDCQX3/9lf79+3Pz5k3ee+89Fi1axKhRo2jXrh2BgYFkZWVx5swZoqOjWb16tRKQLG6fazQaEUKQlZVVrKmu5X0/pROiHLcZuMdcunRJWaxx7NixBRaAzM97773H1KlTAdi5cyddu3a1mnbXrl1069ZNOc/816s6depw4cIFqlevTmxsrE3Nxx57TFlo7sqVK8oooz179tCpUycA5ebIGkajUVlJv1u3buzYsUM5Nn78eL7//nsg95ev2rVrW83HfKeBRYsWWdxadNq0aRYj2W+88YbyC6KCEDz+/ffUuHKFo02asG7QIKvaEolEIpFUVNzd3Wnfvj3BwcGFbgcuKT379+9n2LBhALz00kuF7mwbFxdHhw4dyMrK4oEHHiAyMjLPeknz58/nww8/LPSm2snJiV27din3jpD7Q9rQoUOVNU/y4+Pjw4IFC5g1axYHDhygbdu2yqiH/MyePZtZs2YpDz2WsHT+9evX6d69u/Kwayu90WhkypQpysO3Jby8vPjmm28srs1p3vYrVqygXbt2VvMpLpmZmXzwwQcsWrTI4i/65uh0OgYNGsRbb71VYB3SK1euMGbMGGWnZUu0atWKH374weJ27y+++CIrVqygWrVqNtdyWr58OS+99BIAv//+e56R/iaioqKYNGmSRW/MsbT2VFJSEs899xyRkZE2zwVo164dK1assFqPefPmKYECS4wfP97qs0Rxri9rZGRk0KxZM+7evUudOnWKtd7Y5s2blZFpkydPZtKkSYWec+3aNdq0aYPRaCQsLEzZSa4ozJs3T3mWmTNnDgMGDMhzfNasWXz22WfK/318fPjjjz+UNd2sYTAYmDFjBt9++22ha++4ubnx559/5tkxsCjXmzmfffaZxRE0JiZOnMiDDz5YaJ5ffPEFM2fOtLh+kqurK99++y1ff/01Bw8epEuXLixevNii3rp163j99dfzDG6whJ2dHcuWLaN9+/Y209ni999/54033rA46socHx8fXnvtNYsj9yyxadMmpk+fXqSZPA8++CDvvPOO1TWOr169yuTJk4u0ILmbmxtPP/00kyZNUgabFIWcnBzi4uLYt29fsdYwy8zMZMaMGSQnJ9scmVdWaPquyTxAUtgXn/lNSv7tRE35FJaHrXzKuiylzcfEm2++qXRUkHvjVb16dSZNmqQsjGeOrls36NSJpseO0WDuXMQ/iyKWJcnJyXh7e5d5vhVdW019vV7PZ599xn//+99idYRlifRd+q4lbTX1pe/JuLi4cPXqVQICAgr+mHKPKe52zGWFEELZZrksFwEuCuY7XXl4eNjc6ARyRyU89thjfPfdd5w7d459+/YpQRLI/aHuiSeeYN68eezYsYNz585x584dnJ2dCQ4OJjQ0lO7duzNkyBBlRyFTuwcFBfH777/z2WefKSNrHBwcqF69OhERETz//PNUq1ZNWXTWycnJannff/99xo0bx9y5c9m5cyexsbFkZWVRtWpVatWqRd++fRk+fDhBQUF5fA8KCiI6OpoZM2Yoiw6bptdY0vv+++95/PHHmTdvHnv37uXmzZs4OztTu3ZtwsPDeeGFFyzes0He3ej8/PwKbfviMm/ePKZMmcKyZcvYsWMHZ8+e5datWwgh8PPzo2HDhnTs2JExY8YUmM5iIigoiOPHj/Pdd9+xcuVKTpw4QUpKCn5+fjRt2pTRo0czevRoq4uym+5xTf6aY97u5n1OpUqVLLbFyJEj6d27N9988w0bN27k9OnTpKSkEBgYSLVq1ejatSsjR460eG5QUBA7duxg165dLFmyhH379nH9+nUyMzPx8vKiTp06tGrVioiICHr27FmgHzCvR69evThy5AiffPIJmzZtIi4uDnd3d1q2bMlzzz1HeHi4NUsICgri4MGDTJs2jUOHDhV6fVli6dKlSmDBdA0XlZEjR/LCCy+QlpbGunXreO+99wo958cff1RGelhrX2uMGzdOCTCtX7+eiRMn5vF9woQJeQJMw4YNo0aNGkXKe/bs2Tz33HPMnz+fyMhILl26REpKCm5ubtSoUYMmTZrQo0cPBg0ahKenJ/C/a64o15s5H330EZ07d+bLL7/k8OHDpKWlERgYSKtWrZg4cSI9evTIM7jCUp5CCF544QXCw8P5/PPPOXDgAMnJyQQFBdG1a1defvllHnroIT755JNCyzVx4kSGDx/O/Pnz2bp1KydPniQpKQlHR0eCgoJo0KABXbp0YciQIUqgq6TfbwMHDqRfv36sXLmSX3/9lcOHD3Pz5k2ys7OpVKkSDz30EBEREYwZM8ZikNlEfv0nnniCMWPGsHLlSrZs2cLhw4eJj4/n7t27eHl5ERISQps2bRg8eDBdunSx+d0YFBTEtm3bOHToEKtXryYqKoorV66QmJiIk5MTgYGBNGvWjB49ejBixIgSBXoyMzNJTU1lwoQJxbo/u3XrFjNmzCi2Xokpl5WeyoniLvI9d+5cJf2KFStspl2xYoWS9ptvvslzrE2bNspCYYXRp08fJR/zBVT//vtv5f1JkybZzOPWrVtK2vwLQL7++uvKsUOHDtnMZ+bMmUraLVu2FFp2IWws8m3OmDFCPP64ENeuFSnP4vLzzz/fk3wruraa+hVh0V/pe/kjfZe+q4Xavqu5yHdCQkK5awqh7iLfJtSqu9raaupL3+8f320tVl5cpO/a1C6K71lZWcpi4VOmTClT/fvp81YRteUi3/cB5otg21qAEfIugp1/uKEpn7S0tEKHzJryqVSpUp7IY1mXpbT5lIqFC+H77+GfRQQlEolEIpFIJBKJRFKxWbt2rbKG2MMPP6xyaST3I5oOMDVo0ED5+9SpUzbTmh9/6KGHSpRPTk6OsiNI/jw8PDyUIE95lMX8uIODAw888IDNtMUi/xDlMl7mqzx2QKmI2hVBX02k79pE+q5NtOy7+QYcWkPNuqvd7mrrq4n0XZto1Xe1PTft/GeJS5cuKUujVK5cmV69epWpttp117Lv5YmmA0y1atWiatWqAIVuT2havC44OJiQkJA8xzp06KD8bSsf03xZwOJCZ6Z8Tp8+zY0bN6zmY66RP59WrVopi9LZKktWVpayzaX5OWXK2bMwaBD8s05BWWGaJ64GampXBH01kb5rE+m7NtGy7+Lfs/dKsVGz7mq3u9r6aiJ91yZa9V1tzzt37syAAQOYN28e+/bt4+jRo2zbto0333yTZs2aKTNgZs2aVeabXKhddy37Xp5oOsCk0+mUnQROnTqlBFzy8/vvvyujfQYMGFBgga+wsDBlobaFCxdavYDyb+eZn4EDB1pMa056ejq//PILkDtaqV69enmOe3p6Krvd7dixw+o0udWrV5OSkmK1LGVCVBSsXQvvvgtWdrkoCcePHy+zvO4n7YqgrybSd20ifdcmWvY9PT1dVX01UbPuare72vpqIn3XJlr1XW3PDQYDGzZsYOLEiXTo0IFmzZrRq1cvZsyYwZ07d7Czs+ODDz6wuLt4aVG77lr2vTzRdIAJcrf8NEVnn3vuOWXOqYmMjAyee+45IHcq2YsvvlggDycnJ55//nkA/v77b4tbSB44cIAFCxYAuZFjS0PwBw0aRJ06dQD48MMPlel05rz66qskJSUpf1vilVdeAXKn5E2aNKnA1pkJCQm8/vrrQO52jqatQsucJ56ARo0gKQmKsEOERCKRSCQSiUQikUjuDT/++CNPP/00TZs2pUqVKjg5OeHp6Un9+vV56qmnOHbsGG+++abaxZTcx+jEfTxea+/evZw7d075f0JCghJ0ad++fYHAybhx4yzm8+abbypb9zVr1ozXX3+dOnXqcP78eT766CP++OMPJd0HH3xgMY+7d+/SsmVLzpw5A+RueTly5EhcXV2JjIzkgw8+IDU1FVdXV/bv30/Tpk0t5rNp0yb69euH0WikcuXKTJkyhdatW5OUlMT8+fNZtWoVkDudLioqyupWj6NGjWLZsmUAdOnShRdffJGqVaty/Phx3n//fSV49c033zBx4kSLeVgiJSUFb29v4uPjrW55m4ft26FnT3BwgL/+gnwjrkpCZmZmuW8bXRG01dTX6/XMmDGDN954Q7Vty6Xv0nctaaupL33PnSJ38eJFatWqVe7lMBqNVrdbv9e6N27cICgoSBV9Uxm0qK2mvvRd+q7Ftteytpq+a/XzVlbamZmZJbo3uXXrFoGBgSQnJ+Pl5VWqMhSJctmr7h5h2q6zqC9rGAwG8cQTT9g8d/z48YVu5Xn27FlRt25dq3l4eXmJ9evXF1qvefPmCScnJ6v5tG7dWty6dctmHunp6SIiIsJqHnZ2duKdd94ptCz5SU5OFoCIj48v+knh4UKAEAMHFlvPEps3by6TfO43bTX1K8K25dL38kf6Ln1XC7V9L+lWwGXBnTt3yl1TiIqxbbladVdbW0196bv0XS206rua2mr7rtXPW1lpl/TeJD4+XgAiOTm51GUoCpqfIgdgZ2fHggUL2LhxIwMGDKBq1ao4OTlRtWpVBgwYwKZNm/juu+8KjTo+8MAD/PHHH3z00Ue0bNkSHx8f3NzcePDBB/nvf//Ln3/+Sd++fQstz3/+8x9iYmL4z3/+Q+3atXFxccHf358OHTowd+5c9u3bR0BAgM08XF1d2bhxI0uWLKFHjx4EBgbi5ORE9erVGT16NHv37mXatGnFaaaSM2sW2NvnrscUFVXq7ExTBNVATe2KoK8m0ndtIn3XJlr2PScnR1V9NVGz7mq3u9r6aiJ91yZa9V16rk19tetenpTt0vDlzI8//mh1MeySEBERQURERKnycHd357XXXuO1114rVT6hoaHMmzevVHkAjB49mtGjR5c6n1LRoAFMmABz58Jnn0FYWKmyKyy4di9RU7si6KuJ9F2bSN+1iZZ9d3R0VFVfTdSsu9rtrra+mkjftYlWfZeea1Nf7bqXJ/d1gElyH/Huu1CzJvyzGHppaNu2bRkU6P7Trgj6aiJ91ybSd22iZd/d3d1V1VcTNeuudrurra8m0ndtolXfpefa1Fe77uWJnCInKR8qVYLXXwdX11JntX79+jIo0P2nXRH01UT6rk2k79pEy77fuXNHVX01UbPuare72vpqIn3XJlr1XXquTX21616eyACTpPwxGOCfnfkkEolEIpFIJBKJRCKR3P/IAJOkfImPh2bNoEMHuHatRFk0a9asjAt1f2hXBH01kb5rE+m7NtGy725ubqrqq4madVe73dXWVxPpuzbRqu/Sc23qq1338kQGmCTlS6VK4OEB6ekwZYrapZFIJBKJRCKRSCQSiURSBsgAk6R80eng009z//7xxxJNlftDxel1ampXBH01kb5rE+m7NtGy7+np6arqq4madVe73dXWVxPpuzbRqu/Sc23qq1338kQGmCTlz8MPw8iRIAS8/HLuvxKJRCKRSCQSiUQikUjuW2SASaIOH34Izs4QGQnF3LGnX79+96hQFVu7IuirifRdm0jftYmWfffx8VFVX03UrLva7a62vppI37WJVn2XnmtTX+26lycywCRRh5AQ+O9/c/9+5RXIyiryqQcOHLg3Zarg2hVBX02k79pE+q5NtOx7Wlqaqvpqombd1W53tfXVRPquTbTqu/Rcm/pq1708cVC7AJL7g6+//pqvv/4ag8EAwNq1a/Hw8GDw4MHs3LmT5ORkAgMDad26NRs2bACgefPmGI1Gjh49CsCAAQPYu3cviYmJ+Pn50enFF9HNmcNdnY7b+/ahCw4mJiYGgD59+nD48GFu3ryJl5cXPXv2ZOXKlQCkpKRw4cIFDh48CECvXr04ceIEcXFxuLu707dvX5YvXw7Agw8+SEBAAPv27QOge/funDlzhtjYWJydnRk8eDDLly/HaDRSp04dgoOD2b17NwBhYWHExsZy4cIFHBwcGDZsGMePHychIYGaNWtSp04ddu3aBUCHDh2Ij4/nzJkzAIwaNYp169aRnp5OtWrVaNCgAdu2bQOgbdu2JCcnc/LkSQCGDRvGli1buHv3LkFBQTRv3pxNmzYB0KpVKzIzMzl+/DgABoOBLVu2kJSUREBAAG3btmX9PyPATDsfmdYP6devHwcOHCAhIQFfX1/CwsJYs2YNAI0aNcLFxYVDhw4BEBERwZEjR7hx4waenp707t2bFStWANCgQQNcXV0BWLlyJb179+bkyZNcvXoVNzc3BgwYwNKlSwGoV68egYGB7N27F4CuXbty/vx5Ll++jJOTE0OGDGHFihXk5ORQu3ZtatSoQVRUFACdOnUiLi6O8+fPY2dnx4gRI1i9ejV6vZ4aNWoQFxen6LRv356EhAROnz4NwIgRI9iwYQNpaWkEBwcTGhrK1q1bAWjTpg2pqan89ddfAAwdOpRt27aRkpJC5cqVadmyJRs3bgSgRYsWZGdn8+effwIwcOBAdu/ezfHjxxFC0KFDB9atWwdA06ZNsbOz48iRIwD07duX6Oho4uPj8fb2plu3bqxevRqA0NBQ3NzciI6OBiA8PJxjx45x7do1PDw8iIiI4JdffgGgfv36+Pn5sX//fgB69OjBmTNnSEhIwNXVlYEDB7Js2TKEENStW5egoCD27NkDQJcuXbh06RIXL17E0dGRoUOHsnLlSrKzs6lVqxYhISFERkYC0LFjR27cuMHZs2fR6XSMHDmStWvXkpGRQfXq1alfv77ShrGxsaSmpnLq1CkAhg8fzqZNm0hNTaVq1ao0adKEzZs3A9C6dWvS09M5ceIEQOn6iE6dOHbsGAkJCTRu3BhHR8ci9RENGzbEw8Oj1H3E9evX6dGjR7H6iFWrVpGVlVUmfYSp7sXpIwYNGkRUVFSp+gij0QjAhQsXFG8K6yO8vb2VwEzPnj1L3UdcvnwZLy+vYvUR9erVY8eOHaXuI4xGI1FRUQQEBJCamoqjoyN37twBwN3dHSGEspaCr68vd+/eJScnBwcHBzw8PJS0bm5u6HQ65abSx8eHtLQ0srOzcXBwwNPTk6SkJABcXV2xs7NTjru5uZGRkUFWVhb29vZ4e3tz+/ZtJa29vT2pqakAeHl5kZmZSVZWFnZ2dvj6+nL79m2EELi4uODo6Mjdu3eVtHq9Hr1ej06nw8/PT0nr5OQEoJTJ09OT7OxsMjMzlbRJSUkYjUacnJxwcXEhJSUFAA8PDwwGAxkZGQD4+fmRnJyMwWDAyckJV1dXkpOTlTY0Go1KWvM2zMnJwd3d3Wp7+/j4kJqaqrS3eRvaam97e3u8vLzytLd5G3p7e5OZmamkNW9vFxcXHBwc8rS3qQ0La29PT0+ysrLytLepDZ2dnXF2dlbaUAhBWloamZmZAPj7+3Pnzh2LbWirvR0dHXFzc8vT3tauWVNak++mv83b29o1m7+9vb29SU9Pt9iGltrb/Po2GAwkJiYq7W3tms3f3s7Ozjg5OeVpb2vXbP729vDwICcnRymzrWs2f3v7+vqSkpKitLeta7awPkKv1yt1L2ofYakNi9tHmPJNT0/P04a2+oj8bVjaPiIjI4Ps7Oxi9RGFtXdR+4js7Gzc3d2L1UdYa+/i9hFZWVmK58XpI8zbG0reR0Du84SproX1EebtXdo+wuR5cfsIHx+fMukjzPvZovYRpvYubR9h6mtKcx/h4uJCZmYmGzZswM3NrcjPGuWNTgi5AI6k6KSkpODt7U18fDyVKlUqfYaXLkHNmrmLfxeRLVu20Lt379JrlwA1tdXU1+v1zJgxgzfeeANnZ+dy1wfpu/RdW9pq6kvftxAWFsbFixepVasWLi4u5aqfnJyMt7d3uWpCbmDtxo0bBAUFYWenzgB3tequtraa+tJ36bv0XTvaavuu1c9bWWlnZmaW6N7k1q1bBAYGkpycjJeXV6nKUBTkFDmJuoSEFCu4BLmjBtRCTe2KoK8m0ndtIn3XJlr23dPTU1V9NYiKikKn0+Hj44NOp8vzcnV1pVq1aoSHhzNnzhzlF+6yRu12V1v/XnLlyhVmzpxJz549qVWrFh4eHri6uhIcHEyvXr348ssvuXjxoiplU7vd1da/F2RkZODt7a18hqdPn24xXVnV/cqVK9jb2yt6P/30U6HnqNnu/0bPi0px627+XVCzZk2yCllS5ccff1TSm0Y/29LPzs5m2bJljB07loceegh/f38cHR0JCAigRYsWPP300+zYsUMZ2Z2fkJAQdDodISEhhdZFS77LAJOkYpCcDK+/DufOFZrUNM1LDdTUrgj6aiJ91ybSd22iZd9N0wskuWRmZhIXF8eWLVuYNGkSoaGhHDt2rMx11G53c33TQ8u4cePUK1AZoNfrefnll6lbty6vvfYa27dv59KlS8oUlWvXrrFt2zamTp1KnTp1GDFiBFeuXCnXMlYk38uLkJAQ7O3tefHFF+9J/mvWrFGmGQEsWrTIYrqyqvuiRYvyBACKEmBS03e1rzk1KU3dY2NjmT9/fpnpr1u3jvr16zNq1Ch++uknTp06xe3bt8nJySExMZEjR47wzTff0KNHDx566CFlOY2y0P63IwNMkorBU0/Bxx/nBpkkEolEIpFokqeffprjx48rr8jISL755hvq1asHwOXLlwkPD1fW1JBUTBITE+natSuffvoper0eT09PJkyYwPLly9m3bx/R0dH8+uuvvP7669SuXRshBL/88gurVq1Su+iSUmIK8Hh4eABw7tw5ZV3Je4EpgGXSi4yM5OrVq/dMT6IeH3zwgbImUmn48MMPGTRoEBcuXABy19+cPXs2O3fuJCYmhu3bt/PVV1/Rq1cv7OzsOHPmDG+99VapdbWCDDBJKgZTpoCdHaxeDf8soGuNRo0alVOhKpZ2RdBXE+m7NpG+axMt+25aRFWrBAYGEhoaqrzCwsKYOHEix48fp2vXrgBcv36defPmlamu2u2utn5ZYjQaGTlypBJUiIiI4Ny5c3z77bcMHz6cdu3a0apVK/r168eMGTP4888/WbhwIYGBgeVeVrXbXW39sub69evKZgtTp07F398fsDyqqCzqHh0drWxA8sknn+Dg4IDRaGTx4sU2z1Oz3f9tnheHktY9ICAAgGvXrjF37txS6S9atIjJkycjhKBSpUrs2rWL7du38+yzz9K1a1eaN29O9+7dmTRpElu2bOHo0aPKd09p0JLvMsAkqRg0bAgTJuT+/dJLYGWuK1DuC65WFO2KoK8m0ndtIn3XJlr2XVfMdQm1gpOTE9OmTVP+v3379jLNX+12V1u/LJk9e7YSZOjevTvr1q2zGTyyt7fnscceIyYmhsaNG5dXMQH1211t/bJm8eLFGAwG7O3tefTRRxk+fDgAv/zyC3q9Pk/asqj7woULgdyduMaNG0ePHj2AwqfJqdnu/zbPi0NJ6x4REUFoaCgAH330kbIDW3G5fv06Tz/9NJAb8ImKiqJLly42z2nUqBHbt2/nlVdeKZGmCS35LgNMkorDu++CpyfExMCSJVaTHTp0qBwLVXG0K4K+mkjftYn0XZto2XfTdsQFyMyERYtgyBAIC8v9d9Gi3Pc1QvPmzZW/C1ur5/Tp0zz//PM0bNgQb29vXF1dqV27No8//jhHjhwpkN683a9fv86cOXMYOnQodevWxd3dHWdnZ4KDgxkwYADLly+3uuhrfi5dusTrr79OixYt8Pf3x8XFhVq1atGlSxc++eQTYmNjFf2wsDB0Oh2XL18Gch+e8y96bm0R+r179/Loo48SEhKCi4sLPj4+NGvWjClTpnDr1i2r5YuKiiI4OBh7e3uioqIwGo18//33dOnShcqVK2NnZ1estaCys7OZOXMmkBus/eGHH3BwcLB5jqntq1WrZnWkQFZWFnPmzKFLly5UqlQJJycngoKCiIiIYPHixTb9GDduXJ6FeO/cucPUqVNp2LAh/v7++Pj40KlTJ5bYuPc05+7du3zyySd07dqVoKAgnJ2dqVq1Km3atOH111+3eH2ZEEKwcuVKhgwZQvXq1fHx8cHX15fWrVvz3nvvKduTF6UecXFxvPTSS9SrVw83NzcqVapEREQEmzdvtnh+/utrxYoVeRbHtnV9FRXTdLVu3boRFBTEmDFjgNz1Z9avX58nrdW+rohkZWWxfPlyAIYNG4aTk5Oi9/fff3P48OEC57z77rvK5gFnz54tVCMiIgKdTkflypXJycmxmCY6Opr//Oc/1KtXDw8PD9zd3alfvz6TJk2yqGGqt/mC1JcuXUKv1/P555/z8MMPExAQgE6nyxNUz8rKYv369Tz77LO0atUKX19fHB0d8ff3p02bNkybNo2EhIRC6wSwZ88eBg8eTOXKlXFxcaF27do89dRTnPtnLVzTtVLY9XD16lXefPNNmjdvjq+vLy4uLtSoUYMRI0YQGRlpte7FRafT8e677wJw8+ZNvvrqqxLl8+mnnyplePfdd2nQoEGRzrOzs1OurZJS2uv9vkJIJMUgOTlZACI+Pv7eCMyYIQQIERwsRFqaxSQ///zzvdEuAmpqq6mfmZkppk2bJjIzM1XRF0L6rgbSd+m7Wqjte0ZGhjh58qTIyMgod/2EhISCb65bJ4Svb+73o51d3n99fYX49ddS6xoMBhEXFycMBkOp8youkZGRAhCAeOedd6ymy8jIUNI1btzYarrp06cLBwcHJW3+l06nE1OnTs1zjqndc3JyhJ2dndVzTa8ePXqIu3fv2qzXzJkzhaOjo818OnfurOh37ty5UF1TehMGg0FMmjTJ5jne3t5i27ZtFsu4c+dOJd3mzZtF9+7dC5w/duxYm/U0Z/369cp5Y8aMKdI5Fq95My5duiQeeughm3Xs0KGDSExMtHj+2LFjBSBq1qwp/v77bxESEmI1n0mTJtksy/bt20VAQEChPlkiPj5etG/f3uZ5lStXFr///nuh9Th06JAIDAy0ms8LL7xQ4PySXF/F4ciRI0o+P/30k/J+7dq1BSD69euXJ31hvhfG6tWrFb3du3cLIYRIS0sTHh4eAhDPPfdcgXPOnTunnDNt2jSb+d+6dUvpRyzllZ2dLZ5++mmb7eno6CjmzZuX5zxTvX/44Qcl3aFDh0TTpk0LnG/eH5r8t/Xy9/cXe/futVong8EgXnvtNaHT6Sye7+npKbZu3apcK7auh++++064urraLM/48eNFdnZ2gboXFfM+yGg0Km3k7+8vUlJSCqQ3b9PIyMg8x4xGo/LZdXd3F8nJycUqiyVq1qypfCYLo7TXuxCixPcm8fHxAiiTOhcFGWCSFIt7HmDKyBCiZs3cm+b33rOY5M6dO/dGuwioqa2mfkV44JS+lz/Sd+m7Wqjtu5oBJvObcSFEbnBJp8t9QcGX6di6daXSvR8CTDExMUq6/v37W0zz9ttvK2natWsnvvvuO3HgwAFx+PBhsWTJEtG2bVvl+JdffqmcZ2r37OxsYWdnJ7p27SpmzpwptmzZImJiYkRUVJT4/vvv85z/2GOPWS3r9OnTlXQ+Pj5i8uTJYvv27eLIkSNi165dYtasWaJ9+/YiLCxM0b1w4YI4fvy4qFq1qgDEgAEDxPHjx/O8Lly4kEfn1VdfVXRq1aolvvnmGxEdHS0iIyPFf//7XyXA5eTkJI4ePVqgnOYBpsaNGyttu3r1ahETEyM2bdokli1bZrWe+XnllVeU/Ip6XoFr3oy7d+8qAQpADBw4UPz666/i8OHDYsWKFXmCJm3bthU5OTkF8jA9mFeqVEnUrVtXeHp6iilTpoioqCjx+++/i/nz54tq1aop+WzZssViWXbt2qUEHOzt7cW4cePEmjVrRExMjNi3b5+YP3++GDx4sHB0dCxwbmpqqhIkc3JyEhMnThTr1q0T0dHRYs+ePeL9998X/v7+AhC+vr7i0qVLNusREhIinJ2dxRtvvCF2794tDh48KL788ktRpUoVpR6ffPJJnvPzX1+9evUSx44ds3l9FYcXXnhBAMLNzS1P8NX0mXR0dMzz/GDL96IwYMAAAYiQkBBhNBqV9x999FGlnbKysgqc16ZNGwGIunXr2sz/q6++UtrSUtDvscceU46Hh4eLxYsXi+joaHHo0CExf/580bBhQ+X4r2Y/ApjqbR4Mady4sdDpdOKxxx4TGzduFDExMWLNmjVi06ZNynmPPPKIqF27tnj55ZfF8uXLxYEDB8ShQ4fEypUrxVNPPSWcnJyUet+8edNinRYvXqxo+vr6ihkzZoj9+/eL/fv3i48++kj4+voKX19fUa9ePZsBpgULFij5hIaGitmzZ4u9e/eKI0eOiFWrVomIiAjl+EsvvVSg7kXFPMAkhBC//vqr8t57Fp4TbQWYTpw4oRzr3bt3scphjeIEmEp7vQshA0ySfyn3PMAkhBDLlwsxdqwQV69aPLxr1657p10IamqrqV8RHjil7+WP9F36rhZq+65mgCnPDWBGRu4IJWvBJfMgk69vbvoScj8EmEaNGqWkMx8hYSI6OloZfTRlyhSLeRgMBjFmzBjl1/qkpCQhxP/a3Wg0irNnz9os79SpUwXkjoQ6c+ZMgeMxMTFKOerVqyeuXLliNS/TMXPfTQ8thY0c+vPPPxWd0NBQpS7mbN68WUnTunXrAsfNA0yAePvtt21qFkaPHj2UvCy1jSVsPfSYB6wseWo0GsUjjzyipJkzZ06BNOYjP3x8fMSJEycKaJ89e1a4uLhYDV6mp6crwRs3N7cCD6/mxMbGFnjv2WefFZA7muzQoUMW637p0iVFw9LoL/N6ODo6it9++61Amri4OCVY5ubmZjHQYLq+hg0bVmaf9+zsbGVE1ejRo/McO336tFLuL774Qnm/NA+7CQkJSvB08uTJeY5t3bpV0VtnIfD+5ZdfKsfNvchPu3btBCDq1KlT4NjKlSuVPObPn2/x/IyMDNG1a1clCGYKMJjqbR4MAcSCBQts1vncuXN5Amn5+fPPP5XRW5Y+K5mZmYpHfn5+4vTp0wXSnD59Wvj5+SllshRgio2NFW5ubkofZS1wMnnyZAEIOzs7Rau4nucPMAkhROvWrZUAWf4fo2wFmJYsWaIcy3/NlJTiBJjKIrhzvwSY5BpMkorH8OHw448QHGzx8I0bN8q3PBVEuyLoq4n0XZtI37XJfed7Wpr1V/41kmylzcggOzv7f2kXL4akpNwwki2EyE23ZInlfPMviJqebjGdLj29YNqMjOK3RxmSmJjI3r17iYiIYOnSpQC0bduWkSNHFkj70UcfYTQaadGiBdOnT7eYn52dHbNnz8bZ2Zm7d++ycuVKAKXddTodDzzwgM0yTZ06lYCAAIQQ/PrrrwWOz5w5E6PRiE6nY9myZVSrVs1qXqZjeXwvInPnzlXWHpo/fz4+Pj4F0vTu3ZsnnngCyF0rxtYaY/Xq1eOdd94pdjnMMV8DpnLlykU6x1rd9Xo93333HQANGjTIsx6NCZ1Ox5w5c5Tdygpbm2X69Ok0bNiwgPYDDzzAwIEDgdz1afLz008/cf36dQDef/99m2vTVK9ePc//ExISlHpMnz6dli1bFtAHqFmzJm+//TYAy5cvt7mQ8cSJE+nUqVOB96tWrconn3wCQHp6urII9r1my5YtxMfHAxRYq6ZevXq0atUKyLv4dkmueRNLly5Vzs+v161bN6pUqVJAz8SIESOUdcGsrbt16dIlZRfERx55pMDxDz/8EIBBgwbx5JNPWszDxcVFuR4vXbpEVFQUYLneXbt2VT6n1qhTp47NhaIbNWqklGXt2rUFjq9Zs0bxaOrUqdSrV69AmqL0AV988QXp6elUrVqVb775xuoaa++++y7BwcEYjUbFh9J4bp4v5K7r9emnnxb5vJL0TWVJWdT9fkEGmCQVn3w3t56enioVRF3tiqCvJtJ3bSJ91yb3ne8eHtZfQ4bkTRsYaD1teDj29vb/SztpUvHK8eSTlvP95+FOoVWrAmnsvLyoUrcuun926lGw8BB7LzEtwmt6BQQE0LFjRzZv3oyDgwNjxoxhy5YtODo65jkvOztbWdx46NChNh/EfHx8aNSoEQAHDhwAyNvuZhiNRq5du8bp06c5ceIEJ06c4O+//1YCQ8eOHSuQfsuWLQB07tyZZs2aFane1vRtYdqprUGDBjz88MNW0/3nP/8pcI4lRowYUaJymHP37l3lb3d39yKdY00zJiZGWfR63LhxVtN5eXkpu5WdPHlSCQTlR6fTMXr0aKvaLVq0AHIfXPMvtr1x40Ygd+epCaZdj4vI1q1byfwn0GwqpyV9QAkaZWdnExMTYzXPxx9/3OqxQYMGKcFGW36XJaYAQmBgoLKTmzmmIFBMTAx///03ULJrPr9e8+bNeeihh/Ics7e3VwLQGzZsKOBlYGCgEiC0tmD/zz//rPyd/5qJi4tTvMnvZ34eeughAgICANt9jaUgVmEkJSVx/vx5/vrrL6VvMvl+8uTJAgGNnTt3AoUvWD1mzBib/ee6desA6Nevn81dVx0cHGjbti1QeD9bHHr37k379u0B+Pzzz7l9+3aRzitJ31SWlEXd7xdkgElScYmNhcGDoW/fPL/e9u7dW7UiqaldEfTVRPquTaTv2kTLvnt7e//vP0XcqUwr1KtXj9deew0vL68Cx06ePKmM+HjzzTcL7L6W/2XaYco0Ys283YUQLF68mC5duuDh4UFwcDD169enUaNGyuvo0aMABXZtunjxovJAa2mEiTXy+F4E9Hq9skNVmzZtbKZt1qyZEpA7ceKE1XSNGzcuVhksYR6gLequSdbqbl7WwupoftxaHQMCApSRTpa0/fz8lL/NH0YB/vjjDwBatmyJm5ubzbLkx3w3sypVquS5Dn19ffP8P9QswGttNKWTk5NNrxwdHZXApi2/y4o7d+4oI/lGjhxpcUSL+fum4FBxr3kTp06dUkbiWQuUmN7X6/XKTnPmjB07FsjdMXLXrl0FjptGNrVs2ZIHH3wwzzFzP0eNGlVoX2PqIyz1NSaK+tk7fvw4TzzxBFWqVMHPz48HHniA0NBQpV8yjfIzGo0kJSXlOdd0LdSoUQNfX1+rGn5+ftSuXdviseTkZGWnuW+//bbQuptGiNqqe0kwjVBNSUlRdq0sjJL0TWVJWdX9fkAGmCQVF6MRNm2CXbtgwwbl7RUrVqhWJDW1K4K+mkjftYn0XZvcd76nplp/rVqVN218vPW0mzfn/TU2IgLsinirZmcH/ftbzjf/tKhDhwqkMaakcP3sWUT+B9Ldu4vfHqXg6aef5vjx4xw/fpw//viDjRs3MnHiRBwdHTl58iRhYWGcPn26wHmmqR/FxRSUMrV7ZmYmffr04dFHHyUqKoqMQqYI5j9uHnAyTdMpCkX9Fd6E+cNjYdM9TFuZF6Zj66GzqJhGa0DuduJFwVqZzN8vrI5BQUGF5mcpMGSe1s7ss2YwGPKkM/laHE9NlPbazI+fn5/VaUkmTO1V3OuqJCxfvhy9Xg9YD/iYj2xavHgxRqOxxGUzTfuzt7dn1KhRFtM0b95c2YLe0jS5Tp06KaNY8k+TO3r0KCdPngQsjywqq77GnKJ89hYsWEDz5s354YcfijSVO3/fZOoz8gdZLVGpUiWL79+LupeErl27KqPQZs+eza1btwo9pyR9U1lSHp/FioLt3kkiUZOQEPjvf2HGDHjlFejdG/INiZdIJBKJRHWKM9y+sLTmD5VDh4KFNX4sYjTCsGFFK4ulERhGI8LNreAxV9ei6ZcRgYGBeUZxNG3alIiICPr160f//v25ffs2o0ePJjo6Os+UA/OAwMyZM4s8Ei3/VIn3339fmWrXuXNnJk2aRPPmzQkKCsLV1VUJQnTq1Ik9e/YgbKyPZWuaSVlSFB1b5TRRFlM4mjRpwvbt2wE4cuQIdevWLXWeUHgdi1K/8iiHJUzXppOTU4Fpb3fu3LG4dhZgde2usvK7rDAP4LRu3brQ9FevXiUyMpKmTZsWW8toNCoBIYPBUKSA3/79+zl37lyetdXc3d0ZMGAAP//8M6tXr2bu3LnKdC/T9Dg7OztGjBhRID/zvmbJkiVFHn1kK4hU2Gfv1KlTPPXUU+Tk5BAYGMirr75K165dCQkJwdPTUxmh+P333zN+/Hjg3lwD5nV/8cUXFa3CcHJyKvOyvPfee3Ts2JG0tDQ++ugjZs2aZTN9kyZNlL+PHDlS5uWR/A8ZYJJUbN58ExYsgDNn4Jtv4LnnlF8k1EBN7YqgrybSd20ifdcmWvbd1TygM2wYvPAC3Llje6FvnQ58fHIDUv9S+vTpw1NPPcWcOXM4cuQIP/74Y56HG/Nf5bOzs/MEqYqCq6srQghlMeYOHTqwa9euPKNazMk//cSE+a/k165dK5Z+cTB/WC1sNENOTo7y67n5NLB7QefOnZUHvY0bN1p8QM+Ptbqbl/XGjRsWFyU2YT4ioTh1LGq7BwQEcPXq1WJ5asJ0bWZlZeHv758nKJKenl7sKXeJiYkYDAabQQnTSJN77fe5c+eUxbCLw08//aSsz1Mcdu3axZUrV4p93qJFi5TFoSHX9zFjxvDzzz+TkpLChg0bGDp0KEIIZTMB88XCzTHva/JPaywKxf2sA/z444/k5ORgb29PVFRUgXWnTFjrl+B/fUZiYmKhetZGBJnXPT09vVzqbo0OHTrQo0cPtm/fzpw5c3jllVdspm/QoAEBAQEkJCSwZ88eUlJSLE63vleUZd0rOnKKnKRi4+UFpp1gpk2DpCRV57CqPX9WbX01kb5rE+m7NtGy73keGl1cwLQLlLVRC6b3Fy7MTf8v5p133lFGHL377rtkZWUpxxo2bKj8Sr5t27Zi521vb8/t27eVYM3w4cOtBpdSU1MtTtMDqFWrlvIgt7sY0wvNfS/KCBVnZ2dldNDBgwdtpv3jjz+UBX+L+0BYXHr27EnVqlWB3OmmcXFxhZ5jLVBiXtbC6hgdHW3xvJJq56d58+ZA7vo7tnZ3s4T5Qu/5r82SjBrLysoqsLi8OTk5OcoaYZbaoixH1pmPXpo7dy5Lly61+TKNLFy9erWy8HlJ9JydnVmyZEmheqaF2xctWpRnRI+9vT09evRQpoKZRi3t3r2bq1evAtYX3rblZ1Eoied//fUXkDsKx1pwCfKuD5Uf0+6JsbGxNqdr3b59mwsXLlg8VqlSJYL/2eV7x44dxR4lVdYLXb/33ntA7nRA085+1tDpdDz66KNA7hpMph8Tygu5yLdEUpF48klo0ABu34b/+z9lJwI1UFO7IuirifRdm0jftYmWfU9NTc37Rr9+sHZt7ggl+N+aTKZ/fXxg3brcdP9yAgMDmThxIgBXrlzJswW7m5sb3bp1AyAqKipPwKEopKamkpOTo/zfVhBhwYIFVrectrOzIyIiAoDffvtNWRy6KPomTFN1TOvaWKN79+5A7gLnv//+u9V05g9SpnPuFU5OTspIgszMTMaPH19gPaP8mOp+9erVPAsut2jRQpk+tnDhQqv53L17l19++QXIHaVQnHWSCnzerNDvn89Xeno68+bNK3L+AOHh4coUps8++yzPdVZU/fyYX/v5WbNmjTKSxZLfpuvLPEBbEkyL4UNuIOupp55i5MiRNl+T/tkZMzU11eLi27ZIS0tj9erVAPTo0YPRo0cXqjdu3Dggd/H9vXv3Knmlpqbi4OCgjLDbtGkTd+7cUabfubi4MGjQIIvleOCBB5SRrsuWLSM2NrZY9SiJ56Zrxla/dOPGDWWHN0uY+kfzaYaWWLx4sc3AUf/+/QG4cOGCsoh3USnp9W6NNm3a0KdPHyB30XFTcNAaTzzxhDJicOrUqZw6dapIOkajUbnWS0pZ170iIwNMkoqPgwN88knu3+vWYWflpk4ikUgkkn8l/fvDtWuwaBEMHAhhYbn/LlqU+74GgksmXn31VeUBecaMGXmCDm+99ZYyOmPkyJGcP3/eaj4Gg4Gff/45zwNJpUqVlIDGsmXLLD6AHzp0iClTptgs4yuvvIKdnR1CCEaOHGnzocfSMVOAxFb5IXdBdNMoqwkTJpCcnFwgzbZt21iwYAGQuz5Oq1atbOZZFrzwwgt06dIFgK1btzJo0CCbi/AKIViyZAktWrTgzz//VN53dnbmySefBHJHcJhPcTI/99lnn1UW4X722WfLsioKY8aMUUZuvPXWW/z2229W0+b3NDg4mMcffxyAY8eOMXHixDxBpvzEx8cXOrpi7ty5eQImJm7cuKEE+Nzc3JTd0swxXV+XL1+2qVEYe/bs4eLFiwAMLeL03J49eyrTkoobYFq1apWy+1dR9QYPHqz0CZYW+zaNUtLr9fz8889KwKR///42p0+Z+oDMzEwGDx5s8/rW6/XMmTOnRCO2TJhGK545c8ZiMDk9PZ3Ro0fb3JRg0KBBBAYGArm7sJl2oTTn7NmzFj9n5rz66qs4OzsD8NRTT9kcNQW5wTvzz3VZY9pRTq/X88UXX9hMW6VKFb766isgN2DZuXNnm59lyA3g9+rVq9A1niT/Q67BJCkSX3/9NV9//bVyI7d27Vo8PDwYPHgwO3fuJDk5mcDAQFq3bs2Gf3Z8a968OUajURmmO2DAAPbu3UtiYiJ+fn506tSJtWvXArnbczo6OiqLH/bp04fDhw9z8+ZNvLy86NmzJ4eeeYarrVtT/YEHuHDhgjJculevXpw4cYK4uDjc3d3p27ev8qX14IMPEhAQwL59+4DcX3LOnDlDbGwszs7ODB48mOXLl2M0GqlTpw7BwcHKkPawsDBiY2O5cOECDg4ODBs2TJmbXbNmTerUqaP80tahQwfi4+M5c+YMkLtt6bp160hPT6datWo0aNBAGUbbtm1bkpOTlR0qhg0bxpYtW7h79y5BQUE0b96cTZs2AdCqVSsyMzM5fvw4kLu2wZYtW0hKSiIgIIC2bduyfv164H9Ddk2/lvbr148DBw6QkJCAr68vYWFhrFmzBoBGjRrh4uKibPMaERHBkSNHuHHjBp6envTu3VvZSalBgwbKvOGVK1fSu3dvTp48ydWrV3Fzc2PAgAHKfPV69eoRGBio3PR07dqV8+fPc/nyZZycnBgyZAgrVqwgJyeH2rVrU6NGDaKiooDcBVPj4uI4f/68srDi6tWr0ev11KhRg5YtWyo67du3JyEhQZmiMGLECDZs2EBaWhrBwcGEhoaydetWIPfXjdTUVGV48dChQ9m2bRspKSlUrlyZli1bsnHjRiD319Ls7Gzli3DgwIHs3r2brKwstm3bRocOHZRfh5o2bYqdnZ2yUGDfvn2Jjo4mPj4eb29vunXrpvzSFhoaipubm/KLenh4OMeOHePatWt4eHgQERGh/Ppav359/Pz8lDUNevTogb+/P0uXLsXV1ZWBAweybNkyhBDUrVuXoKAg9uzZA0CXLl24dOkSFy9exNHRkaFDh7Jy5Uqys7OpVasWISEhREZGAtCxY0du3LjB2bNn0el0jBw5krVr15KRkUH16tWpX7++0oaxsbGkpqYqv/QMHz6cTZs2kZqaStWqVWnSpImyKG7r1q1JT09XtsMtbR+RlZXF0qVLi9RHmG4MGzZsiIeHR6n7CBPF6SNWrVpFVlZWmfQRproXp48YNGgQUVFRpeojjEYjkPvrpMmbwvoIb29vZeRPz549S91HZGVlcfDgwWL1EfXq1WPHjh1A6fqILl26EBUVRUBAAKmpqTg6Oirbzru7uyOEUH5F9vX15e7du+Tk5ODg4ICHh4eS1s3NDZ1OpzwQ+fj4kJaWRnZ2Ng4ODnh6eiqjDEyLR6elpSGEICcnh4yMDLKysrC3t8fb25vbaWkQHo7r4MHY29srv4Z62duTefcuWVlZ2NnZ4evry+3btxFC4OLigqOjo7LlupeXF3q9Hr1ej06nw8/PT0lrml5mKpOnpyfZ2dlkZmYqaZOSkjAajTg5OeHi4kJKSgoAHh4eGAwG5eHGz8+P5ORkDAYDTk5OuLq6KsEPd3d3jEajktbX1zfPL7tGo1FZIyR/e/v4+ODq6sojjzzCggULuHDhAvPmzWP48OG4ubnRokULXnnlFWbOnMnFixdp2rQpjzzyCF27dqVOnTokJCQQGxvLH3/8wbp167h27Rp79uwhKCgIBwcHkpKSGDp0KN999x1Hjx6lbdu2PPfcc9SrV4+bN2+yfft2fvjhB9zd3alcubISAMrf3tWrV+f111/nww8/5MyZM4SGhjJ+/HgiIiJwdHQkKSmJU6dOsWHDBoQQrFu3Djc3N9LS0sjMzKRZs2ZERkZy6NAhpk6dSu/evfHz8+Pu3bu4urpSt25dDAYDVatW5ZlnnuGrr77i+PHjNG3alBdffJHWrVtz69Yttm7dyvz58xUfPvroI4xGo3LNOjo65hmpoNfrycjIyNPe1q7Z/Ne3t7c36enpZGdnY29vz/LlywkPDycmJob169dTp04dhgwZQseOHalbty5Go5G4uDiOHDnCxo0ble+XrKwssrKylGv2zTffZNWqVVy8eJH33nuPEydOMGzYMCpXrsz169eZP3++8oD48MMP88gjj5CYmJjnmjUfCWa6tjw8PMjJyUEIoXznmI8OycnJyZPWaDTy1VdfMWzYMNLT0+nWrRvDhw+nf//+1KlTh8TERM6dO0dkZCQbNmxQ1moy9RGTJ09m7969nDx5ku+//559+/bx5JNP0qRJExwdHUlOTiY2NpZt27axbds2GjRowBNPPJGnjzDdgwcEBODu7k6PHj146qmn6NmzJ/7+/kRFRfHZZ58p0zzfeOMN7O3tlc+xqY9o164dkZGRHD16lPfee48+ffoo10GlSpUICAiw2Ec4Ozvj7OysfO5/+OEHpb1MI6WK0kf06NGDVatWsWfPHk6cOEHNmjUL7SPu3r2rBN0cHR3p0KEDiYmJFvsI02hEBwcHgoKCaNWqFdHR0axYsYKZM2diMBgQQmAwGGjQoAG1atXi4sWLvPXWW0r/PXToUPR6vdI3eXt75+mTR44cya+//sqyZcuIiYmhQYMGPPbYY7Rr144aNWpw584dzp49y++//87GjRu5ffs2ffr0ISAgADc3NxITE/P0e0lJSXh5eeXpZ83bu1+/fsyePRuj0Uh4eDjPPfcc3bt3Jzs7myNHjvDtt99y/vx52rRpo9z7ZGRkKNewn58fmZmZvPfee0ycOJHbt2/TunVrnn/+ebp27Qrkrm81e/ZshBDUqVOH8+fPYzQaMRgMeb7XgoKCmDVrFs899xy3b9+mffv2DBs2jPDwcB588EGSkpK4du0ax48fZ82aNVy4cIElS5bQoEEDHBwcSExM/N/32j9T9VxdXfN8r5na2xxTXfJ/rzVq1Ii+ffuyYcOGPLt4Jicnk5qaipOTk5LWzc2N4cOHc+bMGWbMmEF8fDxhYWF06dKFfv36ERoaioODA3fu3OHq1ats2rSJ7du3YzAYaNKkCXfu3MnzvWa6XzJdg+bXbEpKCgaDAUdHR+U6tXTNFuc+wsXFhczMTDZs2KCM2i3Ks0a5IySSYpCcnCwAER8fr1oZdu/erUltNfUzMzPFtGnTRGZmpir6Qkjf1UD6Ln1XC7V9z8jIECdPnhQZGRnlrp+SklLumkIIYTAYRFxcnDAYDOWuHRkZKQABiHfeeafQ9LGxscLJyUkAon79+gXK/NlnnwlnZ2clT2svJycncfbsWSHE/9r9zp07omnTplbP8fPzE7/99pvo3LmzAETnzp2tlvODDz4QDg4ONstgOt/c96tXrwo/Pz+b6U0YDAbxzDPP2NTw9vYWW7dutVjGnTt3KukiIyMLbfvikJGRIV544QXFK1svnU4nxowZI+Li4grkc/HiRVG/fn2b57dv314kJiZaLMfYsWMFIGrWrFngmHm7//DDD0p+Fy9etJjXli1bhK+vb6H1sURiYqLo3bt3oecCokuXLjbrcejQIREQEGD1/Oeff95iGYQo3vVljfT0dOHl5SUA8eCDDxbpHBOrV69W9GbMmFGkc65cuSLs7OwEIHr16lUsvU8//VTRW7ZsmRAir+9Tp04t8BnX6/WF5puTkyNee+01YW9vX6if7u7uIj09PY92Ua43c959912bGi+//HKheRoMBvHaa68JnU5nMQ83NzexceNG0bFjRwGI3r17Wy3PsmXLlGvA1svOzk7s2rWrQLsXBVMeY8eOtZnu2LFjBepkqT8z11+1apUICQkp0uexYcOGFvvQmjVrWu1bbGmXlJLem8THxwtAJCcnl7oMRUFOkZPcd8TFxsLKlblbMpczhc3t/bfrq4madVe73dXWVxPpuzbRsu+lXRdFC1SvXl2Z+nPq1ClWrVqV5/iLL77I+fPnefvtt3n44YcJCAjAwcEBd3d36tWrx5AhQ/jmm2+Ii4tTti43tbu3tzf79u3jvffeU0b7enh48NBDD/HKK69w7NgxOnXqVKRyvvnmm5w8eZIXX3yR0NBQvLy8cHFxoXbt2nTr1o3PP/+cZcuW5dGH3ClV0dHRjB8/ngceeECZEmgJOzs7vv76a3bv3s0jjzxCjRo1cHZ2xsvLi6ZNmzJ58mTOnj1Lz549i97AZYSLiwuff/45Z8+eZcaMGXTv3p0aNWrg6uqKi4sLVatWpWfPnrz11ltcvHiRRYsWKQuEmxMSEsKxY8f46quv6Ny5M/7+/jg6OlK5cmV69+7NokWL2L17d4l2TCvu561Xr15cuHCBDz74gHbt2illCQ4Opk2bNkyePFkZUZofPz8/Nm/ezM6dO3n88cepW7cu7u7uODg44OfnR6tWrZg0aZIyasIWLVu25MiRIzz//PPUqVMHFxcX/P396d27N5s2bbI5VSg4OJjff/+dUaNGFXp9WWPt2rXK6KQhQ4YU69zevXsri/UvWrSoSOcsWrRIGS1SXD3z9KZpcua+51/Me+jQocqITlvY29vz0UcfcfLkSV5++WWaNWuGr68v9vb2eHp60rBhQx555BEWLlzI9evXldkAJe3jp06dysaNG+nZsye+vr44OTlRrVo1Bg8ezLZt24o8heuFF14gMjKSgQMHEhgYiLOzMzVr1uSJJ57g8OHDREREKN7a2vRixIgRXLp0iRkzZhAWFkZgYCCOjo64ublRu3Zt+vXrx6effsqlS5eUKbP36vutcePGDBs2rNB05vqDBw/m9OnTLFmyhDFjxvDggw/i6+urfB6bN2/OM888w86dOzl+/Hip+1BNfbeXSxhL8q9B9RFMRqO41aCBECDEokXlLr927dpy16wI+hVhRIOabS99l75rSV/6vlbVEUxJSUnlrimEuiOYTKhVd7W11dSXvqunXVx9WyOxiov0XZvaRfE9KytLuLq6CkBMmTKlTPXvp89bRdSWI5gkknuBTkfAP1tM8uabUMytYkvLgAEDylWvoumriZp1V7vd1dZXE+m7NtGy76ZFprWImnVXu93V1lcT6bs20arvFd1z03qckLuuWVmidt2l7+WDDDBJ7juWV6kCNWvC1avw6aflqm1aqFYt1NZXEzXrrna7q62vJtJ3baJl300LmWoRNeuudrurra8m0ndtolXf1fbctPOfJS5dusRLL70EQOXKlenVq1eZaqtddy37Xp7IXeQk9x1GJyf48EMYPRpmzIDx4+GfLVclEolEIpFIJBKJRFKQzp07Ex4eTr9+/WjYsCHu7u7Ex8cTGRnJN998o+xgNmvWLBwcZKhAUnzkVSO576hXrx40bw5ffAEHD8Lbb8M/W5eWi7aKqK2vJmrWXe12V1tfTaTv2kTLvpdkwd1/C2rWXe12V1tfTaTv2kSrvqvtucFgYMOGDWzYsMHicTs7O/7v//6PMWPGlLm22nXXsu/liZwiJ7nvCAwMBJ3uf9Pjvv8ejh0rP20VUVtfTdSsu9rtrra+mkjftYmWfXd0dFRVX03UrLva7a62vppI37WJVn1X2/Mff/yRp59+mqZNm1KlShWcnJzw9PSkfv36PPXUUxw7dow333zznmirXXct+16eyACT5L5j7969uX+0awfDh0PbtrkBp/LUVgm19dVEzbqr3e5q66uJ9F2baNn3u3fvqqqvJmrWXe12V1tfTaTvRePHH39ECMGlS5fuXYHKEa36rvY116NHD7766iv++OMPrl27hl6vJyUlhb///pu5c+cSGhp6z7TVrruWfS9P5BQ5yf3NggXg7l5uASaJRCKRSCQSiUQikUgkBZEBJsl9R9euXf/3Hw8P9bRVQG19NVGz7mq3u9r6aiJ91yZa9t3Ly0tVfTVRs+5qt7va+moifdcmWvVdeq5NfbXrXp7IKXKS+47z588XfDM5Gd54A+bNK3/tckRtfTVRs+5qt7va+moifdcmWvZdr9erqq8matZd7XZXW19NpO/aRKu+S8+1qa923csTGWCS3Hdcvny54JvLl8NHH8HkyfDP9prlpl2OqK2vJmrWXe12V1tfTaTv2kTLvmvpJjQ/Wr75V1tfTaTv2kSrvkvPtamvdt3LExlgkpSIxx93YNEiyMwsf20nJ6eCbz7xBDz0ECQmwvvvl692OaK2vpqoWXe1211tfTWRvmsTLftuZ6fdWzM16652u6utrybSd22iVd+l59rUV7vu5Yl2aiopUzZtsuOxx6BqVVi/vny1hwwZUvBNBwf45JPcv7/8Eu7RFAeL2uWI2vpqombd1W53tfXVRPquTbTsu6+vr6r6aqJm3dVud7X11UT6rk206rv0XJv6ate9PJEBJkmJECJ317Y7d2DAAPj11/LTXrFiheUDvXtDz56QlZW7HlN5apcTauuriZp1V7vd1dZXE+m7NtGy77dv31ZVX03UrLva7a62vppI37WJVn2XnmtTX+26lycywCQpFULk/jtuXPlNl8vJybF8QKeDWbPAzg5WroS9e8tPu5xQW19N1Ky72u2utr6aSN+1iZZ9F6YvVg2iZt3Vbne19dVE+q5NtOq79Fyb+mrXvTyRASZJqRECkpJyYzrlQe3ata0fbNQIxo/P/XvKlPLVLgfU1lcTNeuudrurra8m0ndtomXfnZ2dVdVXEzXrrna7q62vJtJ3baJV36Xn2tRXu+7liQwwScoEOztYs6Z8tGrUqGE7wfTp8OSTsHhx+WvfY9TWVxM16652u6utrybSd22iZd/VXmRcTbS8uLva+moifdcmWvVdeq5NfbXrXp7IAJOkTDAaobymlkZFRdlOEBQE8+dDtWrlr32PUVtfTdSsu9rtrra+mkjftYmWfb97966q+mqiZt3Vbne19dVE+q5NtOq79Fyb+mrXvTxxULsAkvuDr7/+mq+//hqDwWDxuE5nJCcngbt3XdmwYQMAzZs3x2g0cvToUQAGDBjA3r17SUxMxM/Pj06dOrF27VoAGjdujKOjIzExMQD06dOHw4cPc/PmTby8vOjZsycr/5mDl5KSwoULFzh48CAAvXr14sSJE8TFxeHu7k7fvn1Zvnw5AA8++CCVDQZ2nzsHQPfu3Tlz5gyxsbE4OzszePBgli9fjtFopE6dOgQHB7N7924AwsLCiI2N5cKFCzg4ODBs2DCuX7/O0qVLqVmzJnXq1GHXrl0AdOjQgfj4eM6cOQPAqFGjWLduHenp6VSrVo0GDRqwbds2ANq2bUtycjInT54EYNiwYWzZsoW7d+8SFBRE8+bN2bRpEwCtWrUiMzOT48ePA2AwGNiyZQtJSUkEBATQtm1b1v+zjV+zZs0A+OOPPwDo168fBw4cICEhAV9fX8LCwljzzzCzRo0a4eLiwqFDhwCIiIjgyJEj3LhxA09PT3r37q0sdNugQQNcXV0BWLlyJb179+bkyZNcvXoVNzc3BgwYwNKlSwGoV68egYGB7P1n/auuXbty/vx5Ll++jJOTE0OGDGHFihXk5ORQu3ZtatSooTzMderUibi4OM6fP4+dnR0jRoxg9erV6PV6atSogV6vV3Tat29PQkICp0+fBmDEiBFs2LCBtLQ0goODCQ0NZevWrQC0adOG1NRU/vrrLwCGDh3Ktm3bSElJoXLlyrRs2ZKNGzcC0KJFC7Kzs/nzzz8BGDhwILt37yYuLo5t27bRoUMH1q1bB0DTpk2xs7PjyJEjAPTt25fo6Gji4+Px9vamW7durF69GoDQ0FDc3NyIjo4GIDw8nGPHjnHt2jU8PDyIiIjgl19+AaB+/fr4+fmxf/9+AHr06MHt27dZunQprq6uDBw4kGXLliGEoG7dugQFBbFnzx4AunTpwqVLl7h48SKOjo4MHTqUlStXkp2dTa1atQgJCSEyMhKAjh07cuPGDc6ePYtOp2PkyJGsXbuWjIwMqlevTv369ZU2jI2NJTU1lVOnTgEwfPhwNm3aRGpqKlWrVqVJkyZs3rwZgNatW5Oens6JEycAGDx4MDt37iQ5OZnAwEBat25drD4iLi6OpUuXFquPaNiwIR4eHkXuIwICAti3b1+BPuL69esAxeojVq1aRVZWVpn0Eaa6F6ePGDRoEFFRUaXqI4xGIwAXLlxQvCmsj/D29ubAgQMA9OzZs9R9RFxcHAcPHixWH1GvXj127NgBlK6PMBqNREVFERAQQGpqKo6Ojty5cwcAd3d3hBCkp6cDubvC3L17l5ycHBwcHPDw8FDSurm5odPpSEtLA8DHx4e0tDSys7NxcHDA09OTpKQkAFxdXbGzs1OO5+TkkJGRQVZWFvb29nh7eysLhLq6umJvb09qaioAXl5eZGZmkpWVhZ2dHb6+vty+fRshBC4uLjg6Oio3tl5eXuj1evR6PTqdDj8/PyWt6ddVU5k8PT3Jzs4mMzNTSZuUlITRaMTJyQkXFxdSUlIA8PDwwGAwkJGRAYCfnx/JyckYDAacnJxwdXUlOTlZaUOj0aikNW/DnJwcDAaD1fb28fEhNTVVaW/zNrTV3vb29nh5eeVpb/M29Pb2xmAwkJiYWKC9XVxccHBwyNPepjYsrL09PT3JysrK096mNnR2dsbZ2VlpQyEEaWlpZP6zoKW/vz937tyx2Ia22tvR0RE3N7c87W3tmjWlNflu+tu8va1ds/nb29vbm/T0dKW9bV2z3t7eea5vgMTERKW9rV2z+dvb2dkZJyenPO1t7ZrN394eHh7k5OSQnZ2tfOdYu2bzt7evry8pKSlKe7u7u5e4jzAajUrdi9pHWGrD4vYRpnzT09PztKGtPiJ/G5a2j8jJySExMbFYfURh7V3UPiI7OxuDwVCsPsJaexe3jxBCKJ4Xp48wb28oeR8Buc8TproW1keYt3dp+wiT58XtI3x8fMqkjzDvZ4vaR5jau7R9hKmvKc19hIuLC5mZmWzYsAE3N7ciP2uUNzqhpRWnJKUmJSUFb29vIBnwynNs0SIYM+belyEuLo7g4ODCE6akwOOPw7ZtcPZs7sim8tK+R6ilr9frmTFjBm+88YZqc4jVbHvpu/RdS/rS9zj8/f25ePEitWrVwsXFpVz1s7KyVBlKbzQauXHjBkFBQdjZqTPAXa26q62tpr70XfoufdeOttq+a/XzVlbamZmZJbo3uXXrFoGBgSQnJ+Pl5VX4CaVETpGTlBqdDnx9YejQ8tGLi4srWkIPD7h6FVJTYerU8tW+R6itryZq1l3tdldbX02k79pEy75nZ2erqq8matZd7XZXW19NpO/aRKu+S8+1qa923csTGWCSlAkLF0J5/ch7/vz5oiW0s4NPP839e8EC+GfaU7lo3yPU1lcTNeuudrurra8m0ndtomXfTcPxtURUVBQ6nQ4PDw90Ol2el6urK9WqVSM8PJw5c+YoUyjKGrXbXW39e8mVK1eYOXMmPXv2pFatWnh4eODq6kpwcDC9evXi/fff5+LFi6qUTe12V1u/LMj/mc3/+a1evTr9+vVj0aJFeZbaKKu6Z2Rk4O3trWhOnz690HPUbPd/g+clpbR137x5MxMmTKBBgwb4+fnh4uJC9erV6dKlCx9//HGh08Es6QshWL9+PU899RSNGjUiMDAQR0dH/Pz8aNSoEU888QRr164tcoDo1KlTTJ8+nc6dO1OjRg1cXV3x8PCgfv369OvXj08//ZQbN26UqP73CzLAJCkROt3/Zla6uECLFuWnXawhne3bw7BhuauQv/wylHJGqFrDiCuKvpqoWXe1211tfTWRvmsTLfuu0+lU1a9oZGZmEhcXx5YtW5g0aRKhoaEcO3aszHXUbndz/ZCQEHQ6HePGjVOvQGWAXq/n5Zdfpm7durz22mts376dS5cuKWugXLt2jW3btvHhhx9Sp04dRowYwZUrV8q1jBXJ9/IiJCQEe3t7XnzxxXuulZmZydWrV9mwYQOPPfYYDz/8MLdu3QLKru5r1qxR1s0BWLRoUaHnqOm72tecmpS07n/99Rft2rUjIiKC+fPn8/fff5OUlIRer+fq1atERUXx+uuvU69ePd5//32srQCUX3/v3r00a9aM/v378+2333LixAlu3bpFTk4OSUlJnDhxgh9++IFBgwYREhLCjz/+aLWMd+7c4fHHHyc0NJR33nmH3bt3c+XKFTIzM0lLS1M+By+//DLVq1fn6aefVtag+rchF/mWlIiICCPDh8Ps2bmbtZVnXzlixIjinTBjBqxbBzt2wObNEBFRftpljNr6aqJm3dVud7X11UT6rk3U9l3NX5j9/PxU064IPP300zzzzDPK/02LtX/66aecOXOGy5cvEx4ezunTp/H09CwzXbXbXW39siYxMZH+/fsrG1Z4enoyatQounXrRrVq1XB0dOTGjRvs27eP1atXc/bsWX755Rfatm1bLoEPE2q3u9r6ZUnLli354Ycf8ryXmprKiRMn+Oqrrzh27BiHDx9m6NCh/Pbbb2VW959++gnIXWg5NTWVc+fOsX//ftq1a2f1HDXb/d/keXEpSd337NlD//79lYWvW7RowdixY2ncuDEeHh7KDxALFy4kLS2NKVOmcOLECX766SccHR2t6i9atIjx48crI5PatGnDkCFDaNq0Kf7+/iQnJ3P+/Hk2bdrExo0buXbtGi+++KLFwP+lS5cIDw9XNsOpVKkSo0ePpnPnzlSpUgWdTse1a9eIiopi1apVxMXF8c0339CrVy8GDhxY7Dap8AiJpBgkJycLQMTHx//z//Ivw6pVq4p/0iuvCAFC1K8vRFZW+WqXIWrpZ2ZmimnTponMzExV9IVQt+2l79J3LelL31eJjIwMcfLkSZGRkVHu+rdv3y53TSGEMBgMIi4uThgMhnLXjoyMFIAAxDvvvGMxjV6vF127dlXSzZo1q0zLoFa7W9KvWbOmAMTYsWPvue698N1gMIju3bsrXkVERIibN29aTZ+QkCAWLlwoAgMDxWeffVZm5SgKFcn38sJ0fQ0bNqxMfDf53LlzZ6tp0tLSRP369ZW0v//+e5nU/dq1a8Le3l4A4uOPPxb+/v4CEBMnTrR5npq+q6mtZj8vRPHrfuXKFeHn5ycAodPpxCeffCKMRqPFtBcvXhRNmjRRrrHXXnvNqn5kZKRy3bi5uYnly5fbLMfFixfF8OHDhbe3d4Fj6enpIjQ0VNF9/PHHRUpKilVtvV4vPv/8c+Hu7i7WrFlTSAvkpaT3JvHx8QIQyeX04K7d8feSMiH/QvRmU6vvGXq9vvgnvfUW+PvnLvhdinn+JdIuQ9TWVxM16652u6utrybSd22iZd+NRqOq+hUVJycnpk2bpvx/+/btZZq/2u2utn5ZMnv2bHbs2AFA9+7dWbduHYGBgTbPeeyxx4iJiaFx48blUUQFtdtdbf3yws3NjWeffVb5/8GDB8uk7osXL8ZgMGBvb8+jjz7K8OHDAfjll19s9uVqtrtWPLdEces+YcIEZRrZBx98wEsvvWR1ml1ISAg7duygWrVqAMycOZODBw8W0M/IyOCRRx7BYDBgZ2fH+vXrlevGGiEhISxfvpwvvviiwLHJkydz4sQJAMaNG8f3339vcXStqe5OTk688MILHDx4kOrVqxfSAvcnMsAkKRNu3YJHHoHnnrv3WjVq1Cj+ST4+udPjTp+GevXKV7sMUVtfTdSsu9rtrra+mkjftYmWfXd2drb4fmYmLFoEQ4ZAWFjuv4sW5b6vFZo3b678XdhaPadPn+b555+nYcOGeHt74+rqSu3atXn88cc5cuRIgfTm7X79+nXmzJnD0KFDqVu3Lu7u7jg7OxMcHMyAAQNYvnx5kR+ULl26xOuvv06LFi3w9/fHxcWFWrVq0aVLFz755BNiY2MV/bCwMHQ6HZcvXwZg4cKFBRZNDgsLs6izd+9eHn30UUJCQnBxccHHx4dmzZoxZcoUZc0bS0T9P3vnHR9F0f/xd8pdKmkEAoSOICV0CFU6GHpvgoINFewP9q4PNnx+qA/4qIiiqJFO6D2hSQ1IMQKhQyiBENL7ze+P89ZLcne5tNuEnffrdS+W29n5zMxnd7L7vZnZqCiCg4NxcXEhKioKg8HA999/T+/evQkKCsLZ2blYa0Hl5OQwe/ZsANzd3fnhhx9wdbW9Ioep7WvXrk2fPn0spsnOzuarr76id+/eVKtWDb1eT40aNRg0aBA///yzTT+mTp2Kk5MT9evXB4xrpbz99tu0aNGCunXr4ufnR48ePfjll1/sqmNKSgr/+c9/6NOnDzVq1MDNzY1atWrRqVMnXnnlFYvnlwkhBMuWLWP06NHUqVOH4OBg/P39CQ0N5YMPPlCmAdlTj7i4OF588UWaNGmCp6cn1apVY9CgQWzYsMHi8QXPr6VLl+Li4mLX+VUWmMoNxrWZrPV1xcG03lLfvn2pUaMGkydPBiAxMZE1a9YUSm+6pgIDA5UgqC2mT5+Ok5MTer2ehIQEi2lK2teYXm7g5ORk17VnMBjYvn07M2fOpFu3bgQGBqLT6fDz86NNmzbMnDlT6U+K4tixYzz44IMEBwfj7u5O3bp1mTx5slLegueaNRITE/n3v/9Nly5dCAwMVK6F4cOHs2LFCqt1t4ejR48q53KrVq146aWXijwmMDCQOXPmAMZr7dNPPy2k//333yuLgT/11FNW+xxLTJkyJd//b926xbfffgtAjRo1+PLLL60eW7DuLVq0oL0jFzF2JA4ZJyW5ayg4Rc5EZKRxBhoIsXt3+ZahoLYjUVNbTf2KMGVG+u54pO/Sd7VQ23c1p8hlW5jGHREhhL+/8W+ss3P+f/39hVi9uvS6FX2KnBDG6QGmdK1atbKa7v333xeurq5K2oIfJycn8fbbb+c7xtTuubm5wtnZ2eqxpk///v1FSkqKzXrNnj1b6HQ6m/mYphVlZ2eLnj17FqlbcBpSXl6emDFjhs1jfH19xebNmy2Wcdu2bUq6DRs25JvaZvoUZ6remjVrlOMmT55s1zGWznlzLly4IJo1a2azjt27dxcJCQkWj58yZYoARL169cRff/0l6tevbzWfGTNm2CzLli1bRGBgYJE+WSI+Pl5069bN5nFBQUFi3759Rdbj4MGDonr16lbzee655wodX5Lzyx7sPXbu3LlK2vDw8CJ9L4rDhw8r+f3000/K9w0bNhSAGDp0aKFjkpOThYeHhwDE1KlTbeafk5OjeG0pLyFK19eY93v2XHvvvPNOkf55enqKFStWWK1TXl6emDNnjtV+SafTiYULF+Y716yxbt064efnZ7M8gwcPztdPFsfzF154Qcnn22+/tfu4vLw8Ubt2bQEIZ2fnfNPysrOzRfv27RVvYmNj7c7XEv/973+VMr755ps205b2fBei8kyRkwEmSbGwFmASQohHHjHe7DZrJkR5Ppf8+uuvpcsgN1eIBQuEOHfO8dqlRC39ivDAqWbbS9+l71rSl77/qmqA6datW/n+HxEhhJOT8QOFP6Z9ERGl060MAabo6Ggl3bBhwyymeeutt5Q0Xbt2Fd99953Yu3evOHTokPjll19Ely5dlP1ffvmlcpyp3XNycoSzs7Po06ePmD17tti4caOIjo4WUVFR4vvvv893/EMPPWS1rO+//76Szs/PT7z++utiy5Yt4vDhw2L79u3is88+E926dRO9evVS9M+dOyeOHz8uatWqJQAxfPhwcfz48XyfcwXuXV566SVFp0GDBuLrr78WBw4cEJGRkeKFF15QHiT1er34448/CpXTPMDUqlUrpW1XrFghoqOjxfr168Vvv/1mtZ4FmTlzppKfvccVPOfNSUlJUQIGgBgxYoRYvXq1OHTokFi6dGm+oEmXLl1Ebm5uoTxMD8vVqlUTjRs3FlWqVBFvvvmmiIqKElu3bhXz589XHkgBsXHjRotl2b59uxJMcHFxEVOnThUrV64U0dHRYs+ePWL+/Pli1KhRQqfTFTo2NTVVCZLp9XrxxBNPiIiICLF9+3axa9cuMWvWLGX9IH9/f3HhwgWb9ahfv75wc3MTr776qti5c6fYv3+/+PLLL0XNmjWVevznP//Jd3zB8+v+++8XR48etXl+2YM9Aab09HTRvHlzJQgSHx9v03d7eO6555T8zIMYpj5Ap9NZfF4ZP368AISPj4/NPn7t2rU2z+XS9jXm/Z49194bb7whatasKaZPny4WLVok9uzZI6Kjo8WqVavEyy+/LLy9vQUg3N3dRUxMjMU67dixQwmge3h4iNdff105f+bNmydq164t9Hq9aNu2rc0A0+bNm5U1jOrXry8++eQTERUVJQ4fPizWrFkjJk+erNRt1KhRhepuD6ZAECCuXbtm93FCCPHEE08ox65du1b5/vz580q5mzZtWqw8LTFmzBhFx1pg2ERpz3chZIBJcpdiK8CUkCBE9erGG9533y2/MpT6wWPGDGMhx41zvHYpkQ+c2tNWU1/6Ln1XC7V9rygBpowM4wgla8El8yCTv78xfUmpDAGmiRMnWhyxYOLAgQPKw5O1X5Pz8vKUh58qVaqIxMREIcQ/7W4wGIr8Vfvtt99WfgE/ffp0of3R0dFKOZo0aSIuX75sNS/TPnPf7V3k+9ixY4pOSEiIUhdzNmzYoKQJDQ0ttN88wASIt956y6ZmUfTv31/Jy1LbWMLWg5d5wMqSpwaDQUyaNElJ89VXXxVKYwrMmIJ9J06cKKQdGxsr3N3drQYv09PTleCNp6eniIyMtFrmS5cuFfru6aefFmAcTXbw4EGLdb9w4YKiYWn0l3k9dDqd2LFjR6E0cXFxSrDM09PT4uLq5bXId4cOHQoFRPfv3y8WLFigBCycnJyUYEtpHrhzcnKUEVwPPPBAvn2nTp1SyvTFF18UOnb16tXK/qVLl1rVeOCBBwQgvL29RXp6er59ZdHXmPd79lx758+ftzkK5vLlyyI4ONjq+SOEUBbB1uv1Ys+ePYX237hxI19A11KAKTU1VQQFBQlADBgwQKSlpVnU+vbbb5V8tm7dmq/u9mAKjtesWdPuY0x88803ivasWbOU79evX698X/C8KQmNGzcWppFSRd0zyQCTRGIFWwEmIYT47Tfjza5eL4SV4HmpuXjxYukyOHbsn7kFFjrXctUuJWrpV4QHTjXbXvoufdeSvvT9ot03cQaDEKmpZftJSMhUtufPtx1YKvj57ruS6yYn54nY2KsiOTnP4n4rL+4pE2wFmG7duiV27dolBg4cmG+kiqUHrdGjRwtAtG/f3uqbhoQQIjExUbi5uQlAzJ8/XwghinW+5+bmKlNnLL3NbsKECcrD9OHDh+3K01zf3gDTU089pbTJ3r17raZ77LHHlHQHDhzIt888wNSkSROLI4CKgymQUJyHGWttn5mZqUzBad68udWyJSUlKaN/mjdvXmi/eWDGfCRJQW2Tb/7+/oXy+Prrr5U8ivumu5s3byrBq4IBj4J1/+qrr5QAUsEHd/N6PP3001b1Fi9erKT79NNPC+0vrwBTUZ/+/fuLLVu2KMeV5m+M+VTM9evXF9rfsWNHpS8oSHZ2tnK+jBgxwmL+qampwsvLS4DlkYpl0deY93tlce0JIcTnn38uwDg6q2C59u7dq+g9//zzVvOIiIiwGWAyTQtzd3e3+XZIIYQIDQ0VgJg0aZIQwn7P79y5o5Shbdu2dh1jzqpVq5TjX3zxReX7ZcuWKd+/8MILxc63IP7+/lb7jIKUxT1VZQkwyUW+JWXKuHEweDBkZ8Pjj0N5vCjh1q1bpcugZUt49FHj9gsvFKuQpdYuJWrrq4madVe73dXWVxPpuzapLL6np4O3d9l+qlZ1U7Yff7x4ZX/ssZLr+vg407hxTXx8nC3uT08vZkOWkPfeey/fosOBgYHcd999bNiwAVdXVyZPnszGjRvR6XT5jsvJyVEWhB0zZozVNw0B+Pn50bJlSwD27t0LQG5ursW0BoOBq1evcurUKU6cOMGJEyf466+/lDcVHT16tFD6jRs3AtCzZ0/atm1rV72t6dvCtEhx8+bN6dy5s9V0j5udSLYWNh4/fjwuLi7FLoc5KSkpyraXl5ddx1ire3R0tLLo9dSpU62WzcfHR3kLVExMDNeuXbOYzsnJiQceeMCqtmnB3cTExEKLba9btw4wvg1t2rRptitUgE2bNpH592r8Bd9WVbDuPXr0AIznc3R0tNU8H374Yav7Ro4ciZ+fH2Dbb0cTFRXF119/TVxcHFCyc97ETz/9BED16tXp379/of2mxb6jo6P566+/8u3T6XSMHDkSgPXr11tcWD0iIoK0tDQAJk2alG9fefQ1Jbn2kpOTOX/+PH/++afSN3l6eubbZ862bduU7YceeshqvoMHD6Zq1apW90dERADG/q2ot0Oazuei+tmClKQfMcf8mOTkZGU7KSmpVPkWxFROe/Iqzfle2ZABJkmZ4uQEX31lvBk9dw4uXCh7jVOnTpU+k/ffNxbywAFYvNix2qVAbX01UbPuare72vpqIn3XJlr2XWKdJk2a8PLLL+Pj41NoX0xMDOl/R8Fee+21Qm9fK/g5dOgQANevXwdQAgAAQgh+/vlnevfujbe3N8HBwTRt2pSWLVsqnz/++AMoHJA8f/688sBqeriyh8xivg4wKyuL2NhYADp16mQzbdu2bZWAnOl12pZo1apVscpgCfPXc5se0IvCWt3Ny1pUHc33W6tjYGBgoQdnc+2AgABl2/wBF+DIkSMAdOjQQXmItxfTuQZQs2bNfOeht7d3vv+HhIQoaU3nZkH0er1Nr3Q6nRLYtOV3WdOzZ0+EcXaM8snOzub8+fPMmzcPX19fli9fTufOnTl9+nSxz3kTd+7cYfXq1QBMmDDB4lsKzb83BaPMMQWYsrOzWbZsWaH9pjcKBgUF0bdv33z7yrKvMWHvtXfx4kWeeeYZ6tevj6+vLw0bNiQkJETpl8yDnwX7JtO54Obmlu88K4iLiwtt2rSxut9Un02bNhVZ988++6zIulvCvB9JTU216xhzzI8x/3uh1+uVbXv7J1uYymlPXiU93ysjMsAkKXPq1oXVq+Gvv6BhQ7VLY4UaNeC114zbr74KGRnqlkcikUgklQ5PT0hNLdvPxYsJyvawYeBs552as7MxfUl1k5MNxMZeIznZYHF/MZ+pS8xTTz3F8ePHOX78OEeOHGHdunU88cQT6HQ6YmJi6NWrl8UgYHx8fIn00gsMzcrMzGTw4ME8+OCDREVFkVHE/UHB/eYPdTVr1ixRmewhMTFR2Q4KCrKZVqfTKYGV27dvW03n7+9f6nIFBgYq2zdu3ChVXuZlLaqONWrUsHicOUUFhpzNLra8vLx8+0y+lsTTsjo3TQQEBFgMqphjai9bfjsCnU5H/fr1mT59OlFRUeh0Oq5cucJjjz1W4jwXL15MVlYW8M9IpYKYj2z6+eefMRSYrRAaGkr9+vWBf4JJJm7dusXmzZsBY6Cq4MiisvYT7Lv2NmzYQPPmzZk7dy4XL14sMn3BvsnUZ/j5+RU5WqpatWoWv8/JybE44qsobNXdEr6+vso5bi3Qagvzvsc8qGy+Xdr+Cf7p75KSkpRzUgK2eyeJpIT07l1+eY8fP75sMnrhBfj6a7h0CT7//J+AkyO0S4ja+mqiZt3Vbne19dVE+q5N1PY9OzvbrrROTlAGo+zz4ekZgGnGxZgxxh9s7MFggLFjS14egwE8PQVeXvYHtcqD6tWr5/t1vU2bNgwaNIihQ4cybNgwbt++zQMPPMCBAwfyPSSZBwRmz55NWFiYXXqmqQ2m0SuzZs1Spr/07NmTGTNm0K5dO2rUqIGHh4cShOjRowe7du1CCGE1b1tTZwpiPnqmuNijY6ucJko7PQ6gdevWbNmyBYDDhw/TuHHjIo+xp+5F1dGe+pVUuzjlsITp3NTr9YWmvQkhrOZpmoZZkjKUtD3KkxYtWjBo0CAiIiLYtWsXCQkJNqdiWcN8RFJoaGiR6a9cuUJkZGS+kUhVq1blgQce4MMPP2Tnzp3ExcURHBwMwJIlS5TpTAWnx0HZ9TXmFHXtJSQk8MADD5Ceno63tzczZ87k/vvvp1GjRvj6+iojc7Zv367UszzOAfO6jxs3jrfeeqtYxxfnemvVqhWHDx/m+vXrXL9+PV8QuSgOHz6sbLdu3VrZ7tq1Ky4uLuTl5eVLU1Jat25NbGwsBoOBP/74w+ZIy9L08ZUNOYJJUq4IAQsXwtq1ZZfn2rLKzMMDPvoIOne2OyJWZtolRG19NVGz7mq3u9r6aiJ91yZa9t18jYixY8HfH4p6nnRyMqYbM6acC6cigwcP5sknnwSMDw8LFy7Mt9/8QTUnJ4eQkBC7Pg0aNACM7S6E4LvvvgOge/fubN++nbFjx9KoUSO8vLzyjXAxH0FkjvkInqtXr9pdP3Pf7cF8xENRv/Dn5uYqI1nK+yGnZ8+eyrZp3aKisFZ387IWVUfz0QjFqaO97W7ytTiemjCdm9nZ2VStWjXf+VenTh2r56ZpHaWCJCQkFBphVRDTKJuK9lDbtGlTZXv//v3FPv7MmTP8/vvvxT6u4DS5pKQkZfSTwWAgPDxc2Wca0dS4cWM6duxYKK+y6GuKy9KlS5WRQytWrOCdd96hc+fOVKtWLd+0L2v9EvzTZ9y5c6fI8+fmzZsWv3d3d1dGAt65c8fuupt+NChO3c2nGK+295cWjH6uX78eMI5K7Nq1q7JPCKFM/zt16hRnzpyxO19LFKe/K4nvlRUZYJKUKwsWwMMPw7RpUFbXVVnMmVV44AH4/XdjkMnR2iVAbX01UbPuare72vpqIn3XJlr23fzG390dfvzRuG0tyGT6/scfjenvZt555x1lFMB7772Xb6RZixYtlAct0/SW4pCXl8ft27eVQMa4cePyBZTMSU1NtbpWV4MGDZQHuZ07dxZL34Q9I1Tc3NyU0UFFPagfOXKEnJwcAJtrr5QFAwYMoFatWoDxodi0oLMtrD3smpe1qDoeOHDA4nEl1S5Iu3btAOP6M8Wd7mO+0HvBc9NefXOys7MLLS5vTm5urrJGmKW2KMkorLLCfKHjkkwpMg8U/e9//yM8PNzmxzS6aMWKFfn69ry8PJo1a6Z48+uvvwJw4cIFZUFqS6OXoGz6muLy559/AsaAoaVFzU2Yr/dVkBYtWgDGdj9+/LjN8pnOH0uY2mzPnj3FvhaKU/cpU6Yo2/PmzbP72OXLl3PlyhUAhg8fni8Yn5eXpyyQL4Tgyy+/tLs8lpgwYQIeHh4AfPfddzbvH0rie2VFBpgk5crkydC4MVy7ZlzqqCwwDWEtE5yc8t+1FzGctEy1S4Da+mqiZt3Vbne19dVE+q5NtOy7+a/RAEOHwqpVYBrMYIp5mP7184OICGO6u53q1avzxBNPAHD58mV+NEXfMK6vY5oaEhUVlS/gYA96vT7fw6+tB6cFCxYoAZuCODs7M2jQIAB27NihLA5tj74J978jhUU9gPfr1w8wLjq8b98+q+lMo7LMjykv9Ho9M2fOBIzrWT366KNFPliZ6n7lyhW2b9+ufN++fXtlFM+PP/5oNZ+UlBSWLFkCGN+oV5x1kgpeb9YY+vcFlp6ezrfffmt3/gADBw5UFlmfM2dOvvPMXv2CmJ/7BVm5cqUyksWS36bzy96pwGXJwYMHlW3TGkj2Ylp8H4yBsyeffJIJEybY/MyYMQMwBoVXrFih5GVqd1MQ6ciRI/z111/8+uuvytSygm8cNFEWfU1xMZ0zWVlZhdaTMpGenm5xQXMT5lMEFy1aZDXdunXrSEhIsLp/2LBhgPHHmHnz5tksd0GKU/c2bdowYMAAAI4dO8bs2bOLPObWrVu8+OKLgDGQ+vLLLxfSf/jhh5XpdvPmzWPHjh12l6lg+wYGBipv6bx27RrPP/+81WML1v3PP/+0+abISo2QSIpBUlKSAER8fLzdx0RGCmGM3Aixa1fpy5CQkFD6TAqSlCTEa68JMWyYEAaDY7WLgVr6mZmZ4t133xWZmZmq6AuhbttL36XvWtKXvieIjIwMERMTIzIyMhyun5OTY/H7jAwhFi0SYtQoIXr1Mv67aJHx+7IgLy9PxMXFiby8vLLJsBhERkYKQADinXfesZn22rVrwt3dXQCiYcOGIjc3V9m3e/du4eTkJADRoEEDcebMGav55Obmil9++UVcvnxZCGFs97y8POHn5ycA0aZNG5GVlVXouAMHDghvb2+lvD179iyU5siRI8LZ2VkAokmTJoqGJcz1TfTu3VsAomPHjjbb4tixY4pOy5YtxZ07dwql2bRpk3BxcRGACA0NLbR/27ZtSl0iIyNt6tlLXl6eUgdADB061OZ9Y3Z2tvj5559F9erVxZw5c/LtmzlzppLPW2+9VehYg8EgHnroISXNV199VSjNlClTBCDq1atXaJ95u//www9KPufPn8+XLiMjQwQHBwtAeHp6iqioKKv1seT3tGnTlLwfeeQRRdfS9X7jxg0xf/58q/UAhE6nE7ss3FRfu3ZN1K1bVynnjRs3CqUxedOmTZsyud5tXQvmrF27VkkbGBhY7P51x44dyvHvvvuuXcdkZWUJHx8fAYh+/fop35vaPS4uTrmG3njjDdGiRQur14o5pe1rhMjf7xV17f3nP/9R0i5evNiixsSJE5U01vJs1aqVAIRerxd79uwptD8+Pl40bNhQycPSNZOUlCQCAwMFINzc3MT69ettln337t1ix44d+epuLxcvXlT6ZCcnJzFnzhxhsPKcduHCBdG6dWul7P/6178KpTHpb926VfHdy8tLLFu2rMhyjB8/Xvj6+hbal5aWJpo3b67oPvbYYyIlJcWqdnZ2tvjyyy+Ft7e3WLlyZREtkJ+S3pvEx8cLQCQlJRXruJIiF/mW2MW8efPyDU9ctWoV3t7ejBo1im3btpGUlET16tUJDQ1V1q9o164dBoOBa9f+oFevUKKiGvHAA6n8+9/rCAryo0ePHqxatQowLuSm0+mUSO7gwYM5dOgQN27cwMfHhwEDBiivEU1OTqZ///7KcOn777+fEydOEBcXh5eXF0OGDGHx4sUA3HvvvQQGBrJnzx7A+EvO6dOnuXTpEm5ubowaNYrFixfjee0agz/7DOecHKJefZVrbdrQq1cvLl26xLlz53B1dWXs2LEsXLiQmjVrUq9ePRo1aqT80ta9e3fi4+M5ffo0ABMnTiQiIoL09HRq165N8+bNlWG0Xbp0ISkpiZiYGADGjh3Lxo0bSUlJoUaNGrRr106ZO9yxY0cyMzOVoax5eXkEBgaSmJhIYGAgXbp0Yc2aNcA/Q1ZNv5YOHTqUvXv3cuvWLfz9/enVqxcrV64EoGXLlri7uyu/JA0aNEhZSK9KlSqEhYWxdOlSwPhroGn457JlywgLCyMmJoYrV67g6enJ8OHDlbnrTZo0oXr16uzevRuAPn36cPbsWS5evIher2f06NEsXbqU3NxcGjZsSN26dYmKigKMc63j4uI4e/Yszs7OjB8/nhUrVpCVlUXdunWJjY3Fzc0NgG7dunHr1i1lisL48eNZu3YtaWlpBAcHExISwqZNmwDjq4tTU1OV4cVjxoxh8+bNJCcnExQURIcOHZR50+3btycnJ4djx44BMGLECHbu3Mnx48dp1aoV3bt3JyIiAjD+suLs7KwsEjhkyBAOHDhAfHw8vr6+9O3bV/m1LCQkBE9PT+VXroEDB3L06FGuXr2Kt7c3gwYNUn59bdq0KQEBAcoaA/3792fx4sUEBATg4eHBiBEj+O233xBC0LhxY2rUqMGuXbsA6N27NxcuXOD8+fPodDrGjBnDsmXLyMnJoUGDBtSvX5/IyEgA7rvvPq5fv05sbCxOTk5MmDCBVatWkZGRQZ06dWjatKnShpcuXSI1NZWTJ08Cxqkj69evJzU1lVq1atG6dWtlUdzQ0FDS09OV1+Ha00eYhmIPHz6c3bt3k5CQQEBAAD169OD7778nODi4WH1EixYt8Pb2LnUfce3aNV588UUWL16MwWCgUaNGBAcHK9NeLPURy5cvJzs7u0z6iC1bthAcHFysPmLkyJFERUWVqo8w/Tp67tw5xZui+ghfX19lWsGAAQNK3UdcvHiR++67r1h9RJMmTdi6dWup+wiDwUDVqlUJDAwkNTUVnU6nrH3h5eWFEEIZ3eLv709KSgq5ubm4urri7e2tpPX09MTJyUkZMu/n50daWho5OTm4urpSpUoVZZSBafFo0/7AwEAyMjLIzs7GxcUFX19f0tJuM3AgjBrlgYuLi/IaZhcXH1JSMsnOzsbZ2Rl/f39u376NEAJ3d3d0Op3yynUfHx+ysrLIysrCycmJgIAAJa3p11VTmapUqUJOTg6ZmZlK2sTERAwGA3q9Hnd3d5KTkwHw9vYmLy9PeWtRQEAASUlJ5OXlodfr8fDwUNaf8PLywmAwKGn9/f3zvVLaYDAov54XbG8/Pz88PDyYNGkSCxYs4Ny5c3z77beMGzcOT09P2rdvz8yZM5k9ezbnz5+nTZs2TJo0iT59+tCoUSNu3brFpUuXOHLkCBEREVy9epVdu3ZRo0YNbt++jYuLC2PGjOG7777jjz/+oEuXLjzzzDM0adKEGzdusGXLFn744Qe8vLwICgri7NmzAIXau06dOrzyyit89NFHnD59mpCQEB599FEGDRqETqcjMTGRkydPsnbtWoQQREREIITAw8ODzMxM2rZtS2RkJAcPHuTtt98mLCyMgIAAUlJS8PDwoHHjxuTl5VGrVi2mT5/O3LlzOX78OG3atOH5558nNDSUmzdvsmnTJubPn6/48Mknn2AwGJRzVqfT5VsIOCsri4yMjHztbe2cLXh++/r6kp6eTk5ODi4uLixevJiBAwcSHR3NmjVraNSoEaNHj+a+++6jcePGGAwG4uLiOHz4MKtXryY2NhYwjqrJzs5WztnXXnuN5cuXc/78eT744ANOnDjB2LFjCQoK4tq1a8yfP18ZgdC5c2cmTZpEQkJCvnPWfCSY6dzy9vYmNzeXlJQUdDodAQEB+Uat5ebm5ktrMBiYO3cuY8eOJT09nb59+zJu3DiGDRtGo0aNSEhI4MyZM0RGRrJ27VplrSZTH/H666+ze/duYmJi+P7779mzZw+PPfYY9957L1WqVCEpKYlLly6xefNmNm/eTPPmzXnkkUfy9RGme/DAwEC8vLzo378/Tz75JAMGDKBq1apERUUxZ84cZZrnq6++iouLi3Idm/qIrl27EhkZyR9//MEHH3zA4MGDlfOgWrVqBAYGWuwj3NzccHNzU657Ux9hIi0tjT179iCEQKfTodfruXPnDteuXSMqKooffvhBSTtr1iySkpJIS0uzq49ISUnJN3Ksb9++JCQkWOwjUlNTlT65SpUq9O/fn+XLl7N9+3bOnj2Ln58fOTk5VKtWDW9vb7p3787OnTuZN2+e0n+PHTuWrKwspW/y9fXN1yd37drVYl/Tq1cvGjZsSGpqKmfPnuXQoUPK+bBr1y78/f3JyMjAyckp35o8SUlJ3L59O18/a97e/fv3x83NjaysLKZOncrevXsZOnQoTk5OxMTEsGDBAo4cOUKnTp2Ue5/MzEzlHDb1yR9++CHDhg0jOzubfv368dRTTzFo0CD0ej379u3jiy++ID4+npYtW3L8+HGEEOTl5eX7u6bT6fjmm28YP348WVlZDBkyhKFDhzJ8+HBatGhBcnIyN27cICYmhjVr1nD8+HE+/vhjunbtSkJCAq6ursrfNdPacB4e+f+umdrby8uLn3/+mQceeIDk5GReeOEFFi1axIMPPkijRo3w9PQkOTmZDRs28Ouvvyr90bBhw/jXv/5Famoqer1e6U9M/WybNm34/PPP+de//kVaWhpjxoyhY8eOjBkzhsaNGyvnyNmzZ9m0aRMbN24kKysLHx8fEhISCp2zy5YtY/jw4cTGxvLdd9+xevVqxowZQ+fOnalduzZubm6cOnWKAwcOsG7dOi5fvgwYR1+a98lF3Ue4u7uTmZnJ2rVrlZF09jxrOByHhLEkdw0lGcEkhBC3bwsRFGQcxVTEj5NF8uuvv5YuA2vMnGksYLNmQliJsJebtp2opV8RRjSo2fbSd+m7lvSl77+qOoLp1q1bDtcUovKMYBJCiEuXLgm9Xi8A0bRp00JlnjNnjnBzc8v3a76lj16vF7GxsUKIf9r9zp07ok2bNlaPCQgIEDt27BA9e/YsctTGhx9+KFxdXW2WwXS8ue9XrlwRAQEBNtObyMvLE9OnT7ep4evrKzZt2mSxjOUxgslERkaGeO655xSvbH2cnJzE5MmTRVxcXKF8zp8/L5o2bWrz+G7dulkd+WhrBJN5u9sawWRi48aNwt/fv8j6WCIhIUGEhYUVeSwgevfubbMeBw8eVEaRWPo8++yzFssgRPHOL3uwpz6mj06nE5988okQonh9XXp6ujIS6d577y1W+VasWKHof/zxx4W0v//++3xldHFxEdevX7cr79L0NcUZwWQqp2nUjaXP+PHjxdatW23mmZeXJ+bMmSN0Op3FPFxdXcX8+fPFgw8+qPSv1ti2bZuoUaOGXb7/+OOPhdq9OBw7dkx06tSpSB1PT0/x7rvvWv07VlA/KipKhISE2FWHunXr2rw3SUhIEA8++KBNj8yvg2effdbiqFNbVJYRTDLAJCkWJQ0wCSHE4sXG+I2bmxB29tsWOXv2bMkPtkViohBVqxoLaWGIdblq24la+hXhgVPNtpe+S9+1pC99P6tqgEmtdq9MASYhhHj88ceVY5YsWVJo/5UrV8Rbb70lOnfuLAIDA4Wrq6vw8vISTZo0EaNHjxZff/21uHnzppLevN3T0tLEBx98IFq2bCnc3d2Ft7e3aNasmZg5c6YyzcWeAJMQQpw+fVo8//zzIiQkRPj4+Ah3d3fRsGFD0bdvX/H555+La9euFdIXQogzZ86IRx99VNxzzz3KlEBbejt37hSTJk0SdevWFW5ubsLHx0e0adNGvP766zbv2cozwGTi4sWL4uOPPxb9+vUTdevWFR4eHsLd3V3UqlVLDBgwQLz33nviwoULNvPIysoSc+fOFT179hRVq1YVOp1OBAUFibCwMLFo0SKb562tAJN5u9sTYBJCiMTERPHhhx+Krl27KmUJDg4WnTp1Eq+//ro4fvy4zbps27ZNPPzww6Jx48bC29tbuLq6ioCAANGxY0cxY8YMsX79+nxTP63V49KlS+LZZ58VjRo1Eu7u7qJq1aoiLCysyClLQhjPy4kTJ9p9ftnC1oO0i4uLCAgIEKGhoeKVV15RgixCFK+v+/XXX5U8X3/99WKVLz09XXh5eQlAtGjRopB2UlJSvjYYMGBAsfIvaV9T3ACTEELs2bNHjBgxQlSrVk3odDpRs2ZNERYWpkybKypPUz9/5MgRMWnSJFGrVi2h1+tFcHCwGDdunNi3b58QQojhw4cLQHTq1MlmedLS0sTcuXNFWFiYqFmzptDr9cLd3V3UqVNHDBgwQMyaNUucPHmyUN1Lytq1a8Wjjz4qmjZtKnx9fYVerxe1atUSPXr0EB999JG4cuWKzeMt6efl5YmIiAjx+OOPixYtWige+vn5iZCQEPHII4+IiIgIu6f3xcTEiHfeeUd0795dBAcHCzc3N+Hp6Snq1Kkjhg4dKubMmWNx6qo9yACT5K6kNAEmg0GI558XYvfu0pXh6NGjpcvAFnPnGgNMgYFCWIgql6u2HailXxEeONVse+m79F1L+tL3o6oGmNLS0hyuKYS6ASYTatVdbW019aXvlcd3W4Gy4iJ916a2vb43atRIAGLy5Mllql+ZrreKqF1ZAkzyLXISh+HkBHPmQLdupcvHtE5GuTBtGjRtCrduwYcfOlbbDtTWVxM16652u6utrybSd22iZd9N645oETXrrna7q62vJtJ3baJV3yu65wcPHlTWl+vcuXOZ5q123aXvjkEGmCSqceYMqLHumE10OjC9BvPbb8Fs4VGJRCKRSCQSiUQiqaycP3/e6r6EhAQef/xxANzc3Bg/fryjiiW5i5BvkZOoQng4PPIIhIXB3y82s5sxY8aUT6FMDB4MH30EkyaBt7djtYtAbX01UbPuare72vpqIn3XJmr7bnpbkxr4+/urpq02atZd7XZXW19NpO/aRKu+q+35xIkTueeeexg5ciStWrXC19eXxMRE9uzZw1dffcW1a9cAePPNNwkMDCxTbbXrrmXfHYkcwSRRhZAQyM2FVavg77cr2o3pVd7lhpMTvPoq1KnjeO0iUFtfTdSsu9rtrra+mkjftYmWfTe9AlyLqFl3tdtdbX01kb5rE636rrbnQggiIyN59tln6dWrF23btqVPnz689dZbSnBp+vTpvP7662WurXbdtey7I5EBJokqtGwJr7xi3H76abhzx/5jHX6BRkeDEOpoF0BtfTXR8h8FtfXVRPquTbTsu5qjp9RGzbqr3e5q66uJ9F2baNV3tT3//PPPefHFF+nQoQPBwcG4ubnh5eVFo0aNmDJlCnv27GHevHk4O5d9mEDtumvZd0cip8hJVOPNN2HpUjh92jhg6Ouv7TsuKCiofAtmzsMPw8KFMH06XL9O2NmzsGwZjBgBY8eCu7vjyoKD617BULPuare72vpqIn3XJlr2XafTqaqvJmrWXe12V1tfTaTv9rFw4UIWLlxYfoVxMFr1Xe1zrkuXLowcObJcAkhFoXbdtey7I5EjmCSq4e5uXEcb4JtvYNcu+47r0KFD+RWqINnZxn+/+gpWrcL/6FHjvL6HHoJatWDNGseVBQfXvYKhZt3Vbne19dVE+q5NtOy7l5eXqvpqombd1W53tfXVRPquTbTqu/Rcm/pq192RyADT32RmZvLVV1/Rt29fqlWrhl6vJzg4mMGDB7N48WK789m4cSOjRo2idu3auLm5Ubt2bUaNGsXGjRvtziM9PZ3Zs2cTGhpKQEAA3t7eNGvWjJkzZ3Lp0iW78/nzzz958sknueeee/Dw8KBatWr06NGDb775htzcXLvzKU969oTHHjNuT5sGWVlFH7Nu3bryLZSJ1auNq5GbMBjy/3vnDgwfbkznIBxW9wqImnVXu93V1lcT6bs20bLvd4ozZ/wuQ826q93uauurifRdm2jVd+m5NvXVrrsjkVPkgFOnTjF8+HBOnTqV7/urV69y9epV1q9fz8KFC1m2bJnV6KMQgieffJJvTUNy/iYuLo6VK1eycuVKpk2bxtdff42Tk5PVspw9e5bBgwcXKsvJkyc5efIk3333Hb/++iuDBg2yWacFCxYwY8YMsswiNpmZmezatYtdu3axcOFC1q5dS9WqVW3m4wg+/RQ2b4aJE43ra1cIMjNh6lTbaYQwFnjqVLh61eHT5SQSiUQikUgkEolEIqkoaH4E082bN+nfv78S0Bk7dixr167l8OHDrF27lrFjxwLGkUkTJ060ms+bb76pBJfatm1LeHg4Bw4cIDw8nLZt2wLw7bff8tZbb1nNIzU1lSFDhihlefzxx9m2bRu///47s2bNwtvbm6SkJMaOHcuxY8es5rNp0yamTZtGVlYWQUFBfPnll+zfv58NGzYwatQoAPbt28eoUaMwmEbjqIi/P5w6BW+/DXp90enbt29f/oVauhQSE5XFva0ihDHdsmXlXyYcVPcKipp1V7vd1dZXE+m7NtGy71oaRl8QLU9fUFtfTaTv2kSrvkvPtamvdt0dieYDTO+99x6XL18G4J133mHJkiUMHjyYtm3bMnjwYJYsWcLbb78NwJo1a1ixYkWhPM6cOcOnn34KGNdu2LNnDxMmTKBjx45MmDCB3bt3K2s6fPLJJ5w9e9ZiWT777DNOnjwJwKeffsq3335Lnz596NKlC6+//jqbN2/G1dWV9PR0nn/+eYt55Obm8vTTT2MwGPDx8WHPnj0888wzhIaGEhYWxvLly5k+fToAO3fu5Oeffy5545Uh5oN/cnL+mYVmiZycnPIv0KpVYO/id87OsHJluRbHhEPqXkFRs+5qt7va+moifdcmWvZdFPXDxl2MmnVXu93V1lcT6bs20arv0nNt6qtdd0ei6QBTXl4ev/zyCwD16tWzOrro7bffpm7dugB89NFHhfbPmTNHWdPov//9Lx4eHvn2e3p68t///hcwBoA+//zzQnnk5OTwxRdfANCsWTP+9a9/FUrTpUsXHn30UQAiIyOJjo4ulGblypWcOXMGgNdee41GjRoVSjN79mz8/f2V7YrEoUPQsaPtN8rZGr1VZiQk2I5ymWMwwO3b5Vuev3FI3SsoatZd7XZXW19NpO/aRMu+p6enq6qvJmrWXe12V1tfTaTv2kSrvkvPtamvdt0diaYDTLGxscqCW/3798fFxcViOhcXF/r37w/AoUOHuHDhgrJPCEFERAQATZs2pXPnzhbz6Ny5M/feey8Aq1atKhTFjIqKUsoyZcoUq6+OnGq2LpCl0VSrVq2ymNYcT09Pxo0bB8CJEyeIjY21mE4N9u2Do0fh1VfhyhUVC1K1avFGMAUElG95JBKJRCKRSCQSiUQiqcBoOsB022zUSVBQkM205vt37typbJ8/f564uDgAevbsaTMP0/4rV67kC1IB7Nq1q1A6S3To0EGZw7l79+5C+0353HvvvdSoUaPIsljLRy2eego6d4aUFHj6actLII0YMaL8CzJiRPFGMI0cWa7FMeGQuldQ1Ky72u2utr6aSN+1iZZ9N40w1iJq1l3tdldbX02k79pEq75Lz7Wpr3bdHYmmA0zmi20lJSXZTGu+PyYmRtn+66+/lO2mTZvazMN8v/lxxcnH1dVVmfZWMI/U1FSu/D3spzRlURMXF5g/H3Q6iIgAC4O08gX4yo2xY42rjxf1WjsnJ2O6MWPKv0w4qO4VFDXrrna7q62vJtJ3baJl31NSUlTVVxM16652u6utrybSd22iVd+l59rUV7vujkTTAaZ77rkHnU4HFH1Dab7/0qVLyrZpgXCA2rVr28yjTp06Fo8z/7+Xlxd+fn525XPz5k2ysrKU769cuaJMvStNWdQmJAReecW4/fTT8PfMQYXbjljvyN0dfvzRuG0ryCQEzJqVf5XycsQhda+gqFl3tdtdbX01kb5rEy37blrTUYuoWXe1211tfTWRvmsTrfouPdemvtp1dySuahdATby8vOjbty8bN27k2LFjhIeHM3HixELpwsPDOX78uPJ/8wik+ba3t3eReiZSU1Pz7TPlU1QelvJxc3Mr07KYk5WVlS+IlZycbPH7smbmTFiyRMfp087MnJnHvHn/XJS+vr7lqq0wYADOS5fi+thjON25g3B2xslg+OdfFxec8vIwfPEFOWPGgI9PuRfJYXUvgElTDW0TatVdbW019aXv0ne1UNv37OxshBAYDAYM9k6XLiNcXV0drgn/vOHGVG81UKvuamurqS99l75rse21qq2271q93spK22AwIIQgOzsbp6Jm2Zjh6PspTQeYAN577z22bt1Kbm4uU6ZM4ezZszz00EPUrFmTa9eu8dNPP/H++++j1+vJzs4GICMjQzk+MzNT2dbr9Ta1TIGggnmY51NUHrbyKauymPPRRx/x3nvvFfp+3rx5uJfzqJ2uXety+vTDbN16mX//exGurv9clAcPHixXbXNcZsygeUwMTU+exCMjgwwPD042bcrFevV4dMECfE6d4lyPHiwZN87+hcFLgSPrXpA5c+aopg3q1l1NbbX1pe/qIX1Xh5iYGLp168atW7dwdXX8rVJaWprDNU3cuHFDNW1Qt+5qaqutL31XD+m71HY0avqudt0rs++5ubkkJSWxfv36YuVlHiNwBJoPMIWGhrJgwQIef/xxsrOzeeutt3jrrbfypXFxceHzzz/nmWeeAaBKlSrKPvMgiykAZQ3z6KGHh0e+faZ8isrDVj5lVRZzXnvtNV588UXl/8nJydSpU4cZM2ZQrVq1IstaWiZNyqZbt5o4O7+sfLd06VLGjh1b7tqWMGk3+vv/TqNGIfr1o9nJk7zh4kKeaW5fOes7mqysLObMmcMLL7yQLzjpSCqC72ohfZe+OxLp+1KGDRvGlStXCAwMLPcfUwqSmJioymKgQghu3LhBUFBQsX4ZLUvUqrva2mrqS9+l79J37Wir7btWr7ey0s7MzCQ1NZVp06YV6/7s5s2bfPzxx6XSLg6aDzABPPTQQ7Ru3ZpZs2axceNGZaqZs7MzvXv3ZtasWfmmlJmfHObBJltTzSB/1LLgFDZTPkXlYSufsiqLOW5ubhZPYGvflzX9+hX+zsXFRbWHnkLa990H8+bB44/j+u67uA4YYHwNnqP0HYyjfLdEhfJdY/rSd3VQW1/Lvuv1epycnHB2dsbZASNTC6KGpmnovqneaqFVbbX0pe/Sd622vRa1K4LvWrzeykrb2dkZJycn9Hp9se6RHH0/pelFvs1p3bo1S5YsITExkcuXLxMbG0tKSgpbt26lU6dOHDt2TEnbvHlzZdt8MW3TG9ysYb6Ytvki2+b5pKWlcafgqtZW8qlWrVq+E6asylIRSU2FF1+EEyegTZs2qpXDovZjj8ETT8Crr0LHjo7X1wgVzncN6auJ9F2baNl3T09PVfXVICoqCicnJwIDA3Fycsr38fDwoHbt2gwcOJCvvvrKrh/iSoLa7a62fnly+fJlZs+ezYABA2jQoAHe3t54eHgQHBzM/fffz5dffsn58+dVKZva7a62fllQ8JoteP3WqVOHoUOHsmjRIvLy8pTjyqruGRkZ+Pr6Kprvv/9+kceo2e53g+clpbh1r1+/vuJrlSpVuHnzps30pr8lTk5OLFy4sEh9IQRr1qzhySefpGXLllSvXh2dTkdAQAAtW7bkkUceYdWqVeTk5FjU69Wrl6JXFFryXQaYCuDi4kLt2rW555578p0Iu3fvVrY7deqkbJsHm06ePGkzb/P9zZo1y7fP3nxyc3M5e/asxTy8vb2VYFFpylIRefFFmDMHpk0DNU9bq5Hn//0PPvwQXFzU0dcAlfkXh8qurybSd22iZd/Vmq5SUcnMzCQuLo6NGzcyY8YMQkJCOHr0aJnrqN3u5vqmh6qpU6eqV6AyICsri3/96180btyYl19+mS1btnDhwgXS0tLIzMzk6tWrbN68mffff59GjRoxfvx4h7/ZuCL57ijq16+Pi4sLzz//fLlrZWZmcuXKFdauXctDDz1E586dlSBBWdV95cqVykuIABYtWlTkMWr6rvY5pyalqXtqaiqffvppmenv3r2btm3bMmzYML755htOnDjBzZs3yc3NJTExkRMnTvDDDz8wcuRI6tevbzFgVVLtux3t3r0Wg+zsbJYtWwZAcHAwXbt2VfY1aNCAWrVqAbBjxw6b+ezcuVPJo379+vn2de/eXdm2lc+hQ4eU6W3dunUrtN+Uz6lTp7h+/brVfMw1LOVT0Xj7bahSBfbuhU8/TSn6gHLi8OHDlneYdxpZWfDdd/D3mxocoq8B1Ky72u2utr6aSN+1iZZ9V3sBVLV56qmnOH78uPKJjIzk66+/pkmTJgBcvHiRgQMH5ntzblmgdrurrV/WJCQk0KdPH/7v//6PrKwsqlSpwrRp01i8eDF79uzhwIEDrF69mldeeYWGDRsihGDJkiUsX77coeVUu93V1i9LOnTokO/aPX78OHv37mX+/Pm0bt0aMD7HjBkzBii7uv/000/AP0t+nDlzht9//93mMZV5oefKTGnrPm/ePJvPt/bqL1q0iD59+ig/VnTq1IlPP/2UzZs3Ex0dzfbt25k/fz4jR45Er9dz9erVUgdkteS7DDDZwRdffKFE25988klczEapODk5MXz4cMA4Kmjfvn0W89i3b58yamj48OGFopi9evXC19cXgB9//FF5jWRBzKOnI0eOLLR/xIgRFtOak56ezpIlSwDjyCnTTVtFpnZt+Ogj4/bixa0pYgagehgM0L8/PP44/N//qV0aiUQikUgqFdWrVyckJET59OrViyeeeILjx4/Tp08fAK5du8a3336rckkl1jAYDEyYMEF5yB80aBBnzpzhm2++Ydy4cXTt2pWOHTsydOhQPv74Y/bt28ePP/5I9erVVS65pDR4eXnlu3ZDQkLo3Lkzjz32GL///jtNmzYFjD+479+/v0w0r127xtatWwF4++23qVq1KvBP0ElydxAYGAgYp0N+ZHogLCFRUVE8/PDD5OTk4OnpyeLFi9m3bx8vvfQS/fv3p127dvTu3ZvHHnuMFStWcOrUKcaNG1cW1dAMMsAEXLp0yeq+NWvW8MYbbwDQuHFjZs6cWSjN888/r7zG+JlnniEjIyPf/oyMDOUNdK6urhYjoHq9nmeffRaAv/76i88++6xQmr1797JgwQIAevbsSUcL6/2MHDmSRo2M7zj76KOPlOl05rz00kskJiYq25WFp56CLl0gI0PHjBnlMkCoSIYMGWI7gbMzjB9v3H75Zdi2zbH6dzFq1l3tdldbX02k79pEy777+fmpql9R0ev1vPvuu8r/t2zZUqb5q93uauuXJf/973+Vh/5+/foRERFhM3gUEBDAQw89RHR0NK1atXJUMQH1211tfUfh6enJ008/rfx///79ZVL3n3/+mby8PFxcXHjwwQeVQMCSJUvyvTG7IGq2u1Y8t0RJ696iRQsGDRoEwDfffENcXFyJ8nFzc2PSpEnk5eXh7OzMmjVrigwe1a9fn8WLF/PFF1+USNOElnyXASYgJCSE+++/n++++469e/cSHR3N8uXLmTBhAsOGDSMnJwd/f38WL15s8XXFTZo0UQJPhw4dolu3bixevJhDhw6xePFiunXrxqFDhwBjQKdx48YWy/HSSy8po4lefvllnnjiCSIjI9m3bx8fffQRAwYMIDc3Fw8PDz7//HOLeeh0Or788kucnZ1JTk6mW7duzJ07lwMHDrBp0ybGjBnDV199BRin0z344IOlbT6H4ewM8+eDq6uB1avBwaOoAThw4EDRiaZPhylTjKOZxo+Hixcdq3+Xombd1W53tfXVRPquTbTsu7Vh9JmZsGgRjB4NvXoZ/120yPi9VmjXrp2yXdRaPadOneLZZ5+lRYsW+Pr64uHhQcOGDXn44YctToM0b/dr167x1VdfMWbMGBo3boyXlxdubm4EBwczfPhwFi9erLyNqSguXLjAK6+8Qvv27alatSru7u40aNCA3r1785///Ef5kTMtLU1ZMPbi3/cNP/74Y6FFk3v16mVRZ/fu3Tz44IPUr18fd3d3/Pz8aNu2LW+++abNhXGjoqIIDg7GxcWFqKgoDAYD33//Pb179yYoKAhnZ+dirQWVk5PD7NmzAXB3d+eHH35QfoS1hqnta9eurYxSK0h2djZfffUVvXv3plq1auj1emrUqMGgQYP4+eefbfoxdepUnJyclOUp7ty5w9tvv02LFi3w8fHBz8+PHj168Msvv9hVx5SUFP7zn//Qp08fatSogZubG7Vq1aJTp0688sorNqfZCiFYtmwZo0ePpk6dOnh5eeHv709oaCgffPCBzRf9FKxHXFwcL774Ik2aNMHT05Nq1aoxaNAgNmzYYPH4gufX0qVLcXFxsev8KgvMlwfJzMwskylDpvWW+vbtS40aNZg8eTJgfCX8mjVrCqU3XVOurq5KENQW06dPV97alZCQYDFNSfsa8wWp7bn2DAYD27dvZ+bMmXTr1o3AwEB0Oh1+fn60adOGmTNn2hw0Yc6xY8d48MEHCQ4Oxt3dnbp16zJ58mSlvAXPNWskJiby73//my5duhAYGKhcC8OHD2fFihVW614STIu3Z2VlMWvWrBLl8c0333D16lXAOB3bWn9jiSlTppRI04SWpsghJMLLy0sAVj/NmzcXhw8ftplHXl6eeOSRR2zm8+ijj4q8vDyb+cTGxorGjRtbzcPHx0esWbOmyDp9++23Qq/XW80nNDRU3Lx5s1jtJIQQSUlJAhDx8fHFPrasGDnyuAAhmjYVoojmLHN+/fVX+xKmpwvRvr0QIES7dsb/O1K/jMnMzBTvvvuuyMzMVEVfCPXqrra2mvrSd+m7Wqjte0ZGhoiJiREZGRkO179161ah7yIihPD3N/5JcXbO/6+/vxCrV5deNy8vT8TFxRV5n1IeREZGKvcn77zzjtV0GRkZSrpWrVpZTff+++8LV1dXq/dATk5O4u233853jKndc3NzhbOzs837OUD0799fpKSk2KzX7NmzhU6ns5lPz549Ff2ePXsWqWtKbyIvL0/MmDHD5jG+vr5i8+bNFsu4bds2Jd2GDRtEv379Ch0/ZcoUm/U0Z82aNcpxkydPtusYS+e8ORcuXBDNmjWzWcfu3buLhIQEi8dPmTJFAKJevXrir7/+EvXr17eaz4wZM2yWZcuWLSIwMLBInywRHx8vunXrZvO4oKAgsW/fviLrcfDgQVG9enWr+Tz33HOFji/J+WUP9h47d+5cJW14eHiRvhfF4cOHlfx++ukn5fuGDRsKQAwdOrTQMcnJycLDw0MAYurUqTbzz8nJUby2lJcQpetrzPs9e669d955p0j/PD09xYoVK6zWKS8vT8yZM8dqv6TT6cTChQvznWvWWLdunfDz87NZnsGDB+frJ4vreb169fKdW8OHDxeA0Ov14sKFC4XSm7fpDz/8UGh/69atFV9iY2OLVRZLmF9TRVHa810IUeJ7k/j4eAGIpKSkUpfBHmSASQgRHh4uHn74YdGiRQsREBAg9Hq9CA4OFgMHDhQLFiwQ2dnZdue1bt06MXz4cFGrVi2h1+tFrVq1xPDhw8X69evtziM1NVV88sknokOHDsLPz094enqKe++9V7zwwgsWLyZrHD9+XDz++OOiYcOGwt3dXVStWlV0795d/O9//xM5OTl252NORQgwrVy5QTz3nBBXrzpee926dfYnvnhRiMBA4xPAQw8JYTA4Vr8MqQgPnGrVXW1tNfWl79J3tVDbdzUDTHfu3Mn3/4gIIZycjB8o/DHti4gonW5lCDBFR0cr6YYNG2YxzVtvvaWk6dq1q/juu+/E3r17xaFDh8Qvv/wiunTpouz/8ssvleNM7Z6TkyOcnZ1Fnz59xOzZs8XGjRtFdHS0iIqKEt9//32+4x966CGrZX3//feVdH5+fuL1118XW7ZsEYcPHxbbt28Xn332mejWrZvo1auXon/u3Dlx/PhxUatWLQGI4cOHi+PHj+f7nDt3Lp/OSy+9pOg0aNBAfP311+LAgQMiMjJSvPDCC8qDpF6vF3/88UehcpoHmFq1aqW07YoVK0R0dLRYv369+O2336zWsyAzZ85U8rP3uILnvDkpKSlKwAAQI0aMEKtXrxaHDh0SS5cuzfeA16VLF5Gbm1soD9PDcrVq1UTjxo1FlSpVxJtvvimioqJEVFSUmD9/vqhdu7aSz8aNGy2WZfv27UowwcXFRUydOlWsXLlSREdHiz179oj58+eLUaNGCZ1OV+jY1NRUJUim1+vFE088ISIiIsSOHTvErl27xKxZs0TVqlUFIPz9/S3e75vXo379+sLNzU28+uqrYufOnWL//v3iyy+/FDVr1lTq8Z///Cff8QXPr/vvv18cPXrU5vllD/YEmNLT00Xz5s2VIEh8fLxN3+3hueeeU/IzD2KY+gCdTmfxeWX8+PECjD/a2+rj165da/NcLm1fY97v2XPtvfHGG6JmzZpi+vTpYtGiRWLPnj0iOjparFq1Srz88svC29tbAMLd3V3ExMRYrNOOHTuUALqHh4d4/fXXlfNn3rx5onbt2kKv14u2bdvaDDBt3rxZuLi4CEDUr19ffPLJJyIqKkocPnxYrFmzRkyePFmp26hRowrV3V4KBpiOHj0qnJycBBgHbhTEVoApKSlJKXPTpk2LVQ5rFCfAVNrzXQgZYJLcpVSEAJOaDz3F1t62zfgzs5+fEMUIDpaZfhlRER44taqtpr70XfquFmprqxlgMg/wZGQYRyhZCy6ZB5n8/Y3pS6Nb0QNMEydOtDhiwcSBAweUh6c333zTYh55eXnKw0+VKlVEYmKi8r0QQhgMhiJ/2X777beVX8FPnz5daH90dLRSjiZNmojLly9bzcu0z7zdTQ9VRY0cOnbsmKITEhKi1MWcDRs2KGlCQ0ML7TcPMAHirbfesqlZFP3791fystQ2lrB1zpkHrCx5ajAYxKRJk5Q0X331VaE0psCMKdh34sSJQtqxsbHC3d3davAyPT1dCd54enqKyMhIq2W+dOlSoe+efvppAcbRZAcPHrRY9wsXLigalkZ/mddDp9OJHTt2FEoTFxenBMs8PT3FjRs3CqUxnV9jx44tk+vdVKYOHToUCoju379fLFiwQAlYODk5KcGW0mjn5OQoI7geeOCBfPtOnTqllOmLL74odOzq1auV/UuXLrWq8cADDwhAeHt7i/QCMxHKoq8x7/fsufbOnz9vc9DD5cuXRXBwsNXzR4h/RvDo9XqxZ8+eQvtv3LiRL6BrKcCUmpoqgoKCBCAGDBgg0tLSLGp9++23Sj5bt27NV3d7KRhgEkKIsWPHCkC4urqKM2fO5EtvK8C0Z88eZV/Bc6akFCfAVBbXmgwwSe5KKkKAqeDUic2bS3dTXRptu/jpJyEKdIAO1S8DKsIDp9pTZtRE+q49bTX1pe/FnyKXmmr9UzALW2nT0/MPo58/33ZgqeDnu+8s51vw/j8trXCa5OQ8ERt7VaSk5L8JLqMZ3jaxFWC6deuW2LVrlxg4cGC+kSqWHrRGjx4tANG+fXthsDFqODExUbi5uQlAzJ8/X9Gxl9zcXGXqzGeffVZo/4QJE5SH6aKWWDBhrm9vgOmpp55S2mTv3r1W0z322GNKugMHDuTbZx5gatKkicURQMXBFEgozsOMtbbPzMxUpuA0b97catmSkpKU0T/NmzcvtN88MGM+kqSgtsk3f3//Qnl8/fXXSh5z5syxq14mbt68qQSvCgY8Ctb9q6++UgJIBR/czevx9NNPW9VbvHixku7TTz8ttL+8AkxFffr37y+2bNmiHFeaKUPmUzEtzRLp2LGj0hcUJDs7WwQEBAgwjoizRGpqqrKEiqWRimXR15j3e2Vx7QkhxOeffy7AODqrYLn27t2r6D3//PNW84iIiLAZYPrvf/8rwDhSylIA05zQ0FABiEmTJgkhSj9FTggh/vzzTyW4V9AbWwEm83q98MILxSqHNeQUOcvIRb4llZrnnoMBA6CEa705hgcfhL/f7CeRSCSSuw9vb+uf0aPzp61e3XragQPzp50xo3jleOwxy/kWfOlsx46F0/j4ONO4cU1CQpzype3Ro3hlKC3vvfdevkWHAwMDue+++9iwYQOurq5MnjyZjRs3otPp8h2Xk5OjLG48ZswYnJycLGUPGN/m07JlS8D4hl5bGAwGrl69yqlTpzhx4gQnTpzgr7/+onbt2gAcPXq0UPqNGzcCxjf+tm3btngNUAxMixQ3b96czp07W033+OOPFzrGEuPHj8fFxaVUZUpJSVG2vby8SpVXdHS0suj11KlTrZbNx8dHeRNUTEwM165ds5jOycmJBx54wKpe+/btAePCxQUX2163bh1gfBvatGnTilMNNm3aRObfq/EX9caqHn9fcDk5OURHR1tN9/DDD1vdN3LkSOWNVfYsZO0ooqKi+Prrr0v8BjBzfvrpJwCqV69O//79C+03LfYdHR3NX3/9lW+fTqdj+PDhAKxfv97iwuoRERHKosyTJk3Kt688+pqSXHvJycmcP3+eP//8U+mbPD098+0zZ5vZm60feughq/kOHjyYqlWrWt0fEREBGPs3W2+HhH/O56L62eLQvHlzJkyYAMAvv/zCqVOn7DquLPsmiW1kgElS6QgJCVG2TTe+H38MJ044VrtEbNoEgwaBjVenlqt+JUbNuqvd7mrrq4n0XZto2XcPDw9l284XlWmGJk2a8PLLL+Pj41NoX0xMDOnp6QC89tprhd6+VvBjervv9evXgfztLoTg559/pnfv3nh7exMcHEzTpk1p2bKl8vnjjz8AuHXrVr5ynD9/Xnlg7VGM6Jy5vj1kZWURGxsLQKdOnWymbdu2rRKQO2HjZqlVq1bFKoMlqlSpomzb+9Yka3U3L2tRdTTfb62OgYGBhR6czbUDAgKUbfOHUYAjR44A0KFDB+Uh3l5M5xpAzZo1CwVQzf9v3v+Yzs2C6PV6m17pdDolsGnL77KmZ8+eCOPsGOWTnZ3N+fPnmTdvHr6+vixfvpzOnTtz+vTpYp/zJu7cucPq1asBmDBhgsW3FJp/bwpGmWMKGmVnZ7Ns2bJC+01vFAwKCqJv37759pVlX2PC3mvv4sWLPPPMM9SvXx9fX18aNmxISEiI0i+ZBz8L9k2mc8HNzc3m3zkXFxfatGljdb+pPps2bSqy7p999lmRdS8J77zzDi4uLuTl5fHuu+/adUxJ+qaypKzqXhmQASZJpcP8D/uoUTB8OOTmwuOPQ16e47SLTUoKTJ4MGzbAM884Xr+So2bd1W53tfXVRPquTSqb76mp1j/Ll+dPGx9vPe2GDeDs/M+t2aBB4GznnZqzMwwbZjnfgwfzpz14sHCa5GQDsbHXOHFC5Eu7c2exm6NUPPXUUxw/fpzjx49z5MgR1q1bxxNPPIFOpyMmJoZevXpZ/MU6Pj6+RHqmB0VTu2dmZjJ48GAefPBBoqKiyMjIsHl8wf3mD3U1a9a0uxzO9hr9N4mJicp2UFCQzbQ6nU4JrNy+fdtqOn9//2KVwRKBgYHK9o0bN+w6xlrdzctaVB1r1Khh8ThzLF3b5trm23kFbihNvhbHUxOlPTcLEhAQYDGoYo6pvWz57Qh0Oh3169dn+vTpREVFodPpuHLlCo899lixz3kTixcvJuvvH2pNI5UKYj6y6eeff8ZQIFrftWtX6tevD/wTTDJx69YtNm/eDBgDVQVHFpVVX2OOPdfehg0baN68OXPnzuXixYtFpi/YN5n6DD8/vyJHS1WrVs3i9zk5ORZHfBWFrbqXhCZNmvDggw8CsGTJEv78888ijylJ31SWlFXdKwO2eyeJpAJy4MABGv095czJCebNg+3bYd8++N//4OmnHaNdbKpUgUWLjE8M8+dDhw5QzGHWpdKv5KhZd7XbXW19NZG+S9/V0B45cmSxjinOaPui0iYkpOHu7g7AmDHw9w/1RWIwwNix9pXFUgzNYABPT1Fon6N/dK1evXq+X9fbtGnDoEGDGDp0KMOGDeP27ds88MADHDhwIN9DknlAYPbs2YSFhdmlZ5oqkZZmbPdZs2Yp01969uzJjBkzaNeuHTVq1MDDw0N5SOjRowe7du1CCGE1b1tTZwpi0i8J9ujYKqeJ0k6PA2jdujVbtmwB4PDhwzRu3LjIY+ype1F1tKd+JdUuTjksYTo39Xp9oWlvd+7cUaazFcQ0DbMkZShpe5QnLVq0YNCgQURERLBr1y6OHTtGaGhosfMxH5Fkz/FXrlwhMjIy30ik9PR0HnjgAT788EN27txJXFwcwcHBgDFgkZubCxSeHgdl19eYU9S1l5CQwAMPPEB6ejre3t7MnDmT+++/n0aNGuHr64terwdg+/btSj3L4xwwr/u4ceN46623inV8afq5grz99tv88ssv5OTk8M4771gciWZOSEiIMurp8OHDZVKG4lCWda/oyACTpNITHGycIjdjBrz2mnFEU506apfKCmFhxgWjXn/dGAlr1QpsrJsgkUgkEu0ydqxxrcE7d4zLeFvDyQn8/IwBqbuVwYMH8+STT/LVV19x+PBhFi5cyKOPPqrsN5/6lJOTU6KpjkIIvvvuOwC6d+/O9u3brf7qbD6CyBzzX8mvXr1a7DLYi/mIB2tTqUzk5uYqI1nMp4GVBz179lSmxaxbt47x48eXOC/zsl6/fp0mTZpYTWs+IqE86hgYGMiVK1dK5Knp3MzOzqZq1ar5RkElJCTYXO/GEgkJCeTl5dkMSphG2ZS338WladOmyho+f/31V7EDTGfOnOH3338vtu5PP/1UaKrb5MmT+fDDDzEYDISHhzNz5kzgnxFNjRs3pmPBBewom76muCxdulQZObRixQqL606B9X4J/ukz7ty5Q15ens0RNTdv3rT4vbu7O56enqSnp3Pnzh1Vp5Q3aNCAqVOnMn/+fFasWKFMW7aGj48PISEhHD16lFOnTnHmzBnuuecexxRWY2hnrJbkrmFgwVVQgSefhK5djcP8Z8ywfSNe1trF5tVXjXP7cnKMq78WcWNY5vqVFDXrrna7q62vJtJ3baJl3319fZVtd3f48UfjtrVBC6bvf/zRmP5u5p133lFGAbz33ntkZ2cr+1q0aKH8im+a3lIcfH19uX37thKsGTdunNUHsNTUVKsLyzZo0EB5kNtZjPmF5r7bM0LFzc1NGR20f/9+m2mPHDlCTk4OUP5rjA0YMIBatWoBxodiexZ0Nq+7OeZlLaqOBw4csHhcSbUL0q5dO8C4/oy1qWvWMF/oveC5aa++OdnZ2YUWlzcnNzdXedi21BYlGYVVVphGBgGFFuq3B/PRS//73/8IDw+3+TGNLlqxYkW+dXd8fX1p1qyZ4s2vv/4KwIULF5QFqS2NXoKy6WuKi2kKWEBAgNXgEuRf76sgLVq0AIzrtx0/ftxqury8PJvBGlOb7dmzp9jXQknqbos333wTvV6PEIJ33nmnyPSPPPIIYPwx4csvvyzTshRFWde9IiMDTJJKh6U/qs7OxllnDRsa36JTXn87bf1BtxsnJ1i4EJo1g6tXjT9Rm90kl7t+JUXNuqvd7mrrq4n0XZto2feC62YMHQqrVhlHKME/azKZ/vXzg4gIY7q7nerVq/PEE08AcPnyZX40Rd8wrq9jGqEQFRWVL+BgDxkZGfkefm09OC1YsEAJ2BTE2dmZQYMGAbBjxw5lcWh79E2YplFkFfFCkH79+gHGRYf37dtnNZ1pVJb5MeWFXq9XRoJkZmby6KOPFlrPqCCmul+5coXt27cr37dv316ZPvbjjz9azSclJYUlS5YAxjdMFWedpKLW2DIx9O8LLD09nW+//dbu/MEYtDYFU+bMmZPvPLNXvyDm535BVq5cqYxkseS36fzKtvPesyw5aLYgXFFvICuIafF9MAbOnnzySSZMmGDzM+PvV3GmpqayYsUKJS9Tu5uCSEeOHOGvv/7i119/VaaWWXvjYFn0NcXFdM5kZWUVWk/KRHp6usUFzU2Yj+BatGiR1XTr1q0jISHB6v5hw4YBxilf8+bNs1nugpT0fLdG3bp1lbdkrl69Ot/5ZYnx48cr67XNmzePHTt22K1lq23toazrXpGRASZJpcPa8OTmzeH0aeMip47WLjZVqhifGHx84N577R5yVZ7D7Ss6atZd7XZXW19NpO/aRMu+W3roGzbM+HvEokUwYgT06mX8d9Ei4/daCC6ZeOmll5QH5I8//jhf0OGNN95QRmdMmDCBs2fPWs0nLy+PX3/9lStXrgDGdq9WrZoS0Pjtt98senHw4EHefPNNm2WcOXMmzs7OCCGYMGGComEJc30TpgCJrfKDcUF00yiradOmkZSUVCjN5s2bWbBgAWBcr8bSlJ+y5rnnnqN3796A8U1TI0eOtDrlBowPzb/88gvt27fn2LFjyvdubm489thjgHEEx3vvvVfoWCEETz/9tLII99PFXIjT3iDL5MmTlTV63njjDZsPpgX9Dg4O5uGHHwaMAewnnnhCCRhY0o+Pj88XFLTE//73P3bv3l3o++vXrysBPk9PT6ZMmVIojen8smeh6LJk3bp1yqi+wMBAWrZsWazjd+3axfnz5wEYY+d84AEDBihvnTQPEJjafeLEico19MsvvygjmUJDQ22uH1bavqa4mMqSlpZmca2hvLw8HnvsMZt/v7p06aK8re6rr76yONXw5s2bvPDCCzbL8uSTTypTgd966y1lzTpr7NmzR/G9PIKar7/+uvI34dNPP7WZ1tXVlZ9//hlnZ2cMBgODBw9mecE3cRTg0qVLTJgwgWeffbZU5VQjoKsWcg0miV3MmzePefPmKTdyq1atwtvbm1GjRrFt2zaSkpKoXr06oaGhrF27FjAOJzYYDMowy+HDh7N7924SEhIICAigR48erFq1CjC+nlOn0ymLHw4ePJhDhw5x48YNfHx8GDBggNKhZmVlce7cOWW49P3338+JEyeIi4vDy8uLIUOGsHjxYjIyXGnTphGBgYHs2bMHMP6Sc/r0aS5duoSbmxujRo1i8eLFGAwGGjVqRHBwsNIJ9urVi0uXLnHu3DlcXV0ZO3YsN2/eJDw8nHr16tGoUSPll7bu3bsTHx/P6dOnAeMfrIiICNLT06lduzbNmzdXhtF26dKFpKQkYmJi8PzgAwY/9RQbN20iJSWFGjVq0K5dO9avXw9Ax44dyczMVIayenh4sHHjRhITEwkMDKRLly6sWbMG+GfIqunX0qFDh7J3715u3bqFv78/vXr1YuXKlQC0bNkSd3d3JdI/aNAgDh8+zPXr16lSpQphYWEsXboUMP4aaHq15rJlywgLCyMmJoYrV67g6enJ8OHDCQ8PB4xvdahevbpy09OnTx/Onj3LxYsX0ev1jB49mqVLl5Kbm0vDhg2pW7cuUVFRgHHB1Li4OM6ePYuzszPjx49nxYoVZGVlUbduXVxcXBSdbt26cevWLWWKwvjx41m7di1paWkEBwcTEhLCpk2bAOOri1NTU5XhxWPGjGHz5s0kJycTFBREhw4dWLduHWD8tTQnJ0e5wR0xYgQ7d+7kxo0bbN68me7duytrB7Rp0wZnZ2dlocAhQ4Zw4MAB4uPj8fX1pW/fvsqvZSEhIXh6eiq/cg0cOJCjR49y9epVvL29GTRokPLra9OmTQkICFD+8Pfv35/U1FTCw8Px8PBgxIgR/PbbbwghaNy4MTVq1GDXrl0A9O7dmwsXLnD+/Hl0Oh1jxoxh2bJl5OTk0KBBA+rXr09kZCQA9913H9evXyc2NhYnJycmTJjAqlWryMjIoE6dOjRt2lRpw0uXLpGamsrJkycB49SR9evXk5qaSq1atWjdurVygxEaGkp6erryOtzS9hE3btwgPDy8WH1EixYt8Pb2LrKPALj33nut9hGmB6Li9BHLly8nOzu7TPoIU93Hjh3Lxo0b7eojRo4cSVRUVKn6CNOvo+fOnVO8KaqP8PX1VaYVDBgwoNR9xI0bN9i/f3+x+ogmTZqwdetWoHR9hKenJ1FRUQQGBpKamopOp1PWvvDy8kIIoYxu8ff3JyUlhdzcXFxdXfH29lbSenp64uTkpEzL8PPzIy0tjZycHFxdXalSpYoyysC0eHRaWhq5ubnk5uaSkZFBdnY2Li4u+Pr6kpZ2m4EDYdQoD1xcXEhNTQXAxcWHlJRMsrOzcXZ2xt/fn9u3byOEwN3dHZ1Op7xy3cfHh6ysLLKysnByciIgIEBJa5ryYSpTlSpVyMnJITMzU0mbmJiIwWBAr9fj7u5OcnIyAN7e3uTl5Sm/0AYEBJCUlEReXh56vR4PDw8l+OHl5YXBYFDS+vv7K3UBMBgMyq/nBdvbz88PDw8PJk2axIIFCzh37hzffvst48aNw9PTk/bt2zNz5kxmz57N+fPnadOmDZMmTaJPnz40atSIW7ducenSJY4cOUJERARXr15l165d1KhRA4PBQGJiImPGjOG7777jjz/+oEuXLjzzzDM0adKEGzdusGXLFn744Qe8vLwICgpSHioLtnedOnV45ZVX+Oijjzh9+jQhISE8+uijDBo0CJ1OR2JiIidPnmTt2rUIIZS/K2lpaWRmZtK2bVsiIyM5ePAgb7/9NmFhYQQEBJCSkoKHhweNGzcmLy+PWrVqMX36dObOncvx48dp06YNzz//PKGhody8eZNNmzYxf/58xYdPPvkEg8GgnLM6nS7fQsBZWVlkZGTka29r52zB89vX15f09HRycnJwcXFh8eLFDBw4kOjoaNasWUOjRo0YPXo09913H40bN8ZgMBAXF8fhw4dZs2aN0jdmZ2eTnZ2tnLOvvfYay5cv5/z583zwwQecOHGCsWPHEhQUxLVr15g/f74S7OncuTOTJk0iISEh3zlrPhLMdG55e3sr15rpb475qDXT96a0BoOBuXPnMnbsWNLT0+nbty/jxo1j2LBhNGrUiISEBM6cOUNkZCRr165VHvRNfcTrr7/O7t27iYmJ4fvvv2fPnj089thjNGvWDC8vL5KSkrh06RKbN29m8+bNNG/enEceeSRfH2G6Bw8MDMTLy4v+/fvz5JNPMmDAAKpWrUpUVBRz5sxRpnm++uqruLi4KNexqY/o2rUrkZGR/PHHH3zwwQcMHjxYOQ+qVatGYGCgxT7Czc0NNzc35bo39REm0tLS2LNnD0IIdDoder2eO3fucO3aNaKiovjhhx+UtLNmzcLJyYmEhAS7+oiUlJR8I8f69u1LQkKCxT4iNTVV6ZOrVKlC//79Wb58Odu3b+fs2bP4+fmRm5tLXl4e3t7edO/enZ07dzJv3jyl/x47dixZWVlK3+Tr65uvT+7atavFvqZXr140bNiQ1NRUzp49y6FDh5TzYdeuXfj7+yv1Ng8IJyUlcfv27Xz9rHl79+/fHzc3N7Kyspg6dSp79+5l6NChODk5ERMTw4IFCzhy5AidOnVS7n0yMzOVc9jUJ3/44YcMGzaM7Oxs+vXrx1NPPcWgQYPQ6/Xs27ePL774gvj4eFq2bMnx48cRQpCXl5fv75pOp+Obb75h/PjxZGVlMWTIEIYOHcrw4cNp0aIFycnJ3Lhxg5iYGNasWcPx48f5+OOP6dq1q9K/m/6umdaG8/DI/3fN1N7mo7VMdSn4d61atWo8+uijzJs3L99bPFNTU0lNTUWv1ytpnZyc6Ny5M59//jn/+te/SEtLY8yYMXTo0IGRI0fSvn179Ho9ycnJXL9+nU2bNrF+/XqysrLw9fVV1q8ynbPm5396enq+czY5OZm8vDx0Oh1eXl5Kn1Ka+wh3d3cyMzNZu3atMpLOnmcNhyMkkmKQlJQkABEfH69aGXJzc4tM8/33Qvj7CxEV5XjtUmQuxMWL6unbIDMzU7z77rsiMzNTFX0h1Ku72tpq6kvfpe9qobbvGRkZIiYmRmRkZDhc32AwOFxTCCHy8vJEXFycyMvLc7h2ZGSkAAQg3nnnnSLTX7p0Sej1egGIpk2bFirznDlzhJubm5KntY9erxexsbFCiH/a/c6dO6JNmzZWjwkICBA7duwQPXv2FIDo2bOn1XJ++OGHwtXV1WYZTMeb+37lyhUREBBgM72JvLw8MX36dJsavr6+YtOmTRbLuG3bNiVdZGRkkW1fHDIyMsRzzz2neGXr4+TkJCZPnizi4uIK5XP+/HnRtGlTm8d369ZNJCQkWCzHlClTBCDq1atXaJ95u//www9KfufPn7eY18aNG4W/v3+R9bFEQkKCCAsLK/JYQPTu3dtmPQ4ePCgCAwOtHv/ss89aLIMQxTu/7MGe+pg+Op1OfPLJJ0KI4vV16enpwsfHRwDi3nvvLVb5VqxYoeh//PHHhbS///77fGV0cXER169ftyvv0vQ15v2ePdfe999/L5ydna1qjB8/XmzdutVmnnl5eWLOnDlCp9NZzMPV1VXMnz9fPPjgg0r/ao1t27aJGjVq2OX7jz/+WKjd7aFevXp2nZfXr18Xnp6e+TR/+OGHQunM9aOiokRISIhd5a9bt6749ddfC+Vn+jtg7Zq3pl1SSnpvEh8fLwCRlJRU6jLYg5wiJ6l0mEZ62GL/fkhMhGnTIDPTsdolIjERBg+G++4DG8PIy02/EqBm3dVud7X11UT6rk207LvpF12JderUqaNM/Tl58mShKQ7PP/88Z8+e5a233qJz584EBgbi6uqKl5cXTZo0YfTo0Xz99dfExcUpbxEytbuvry979uzhgw8+UEb7ent706xZM2bOnMnRo0fp0aOHXeV87bXXiImJ4fnnnyckJAQfHx/c3d1p2LAhffv25fPPP+e3337Lpw/GKVUHDhzg0Ucf5Z577rH5amtnZ2fmzZvHzp07mTRpEnXr1sXNzQ0fHx/atGnD66+/TmxsLAMGDLC/gcsId3d3Pv/8c2JjY/n444/p168fdevWxcPDA3d3d2rVqsWAAQN44403OH/+PIsWLVIWCDenfv36HD16lLlz59KzZ0+qVq2KTqcjKCiIsLAwFi1axM6dO0v0xrTiXm/3338/586d48MPP6Rr165KWYKDg+nUqROvv/661QWUAwIC2LBhA9u2bePhhx+mcePGeHl54erqSkBAAB07dmTGjBmsX7+eLVu22CxHhw4dOHz4MM8++yyNGjXC3d2dqlWrEhYWxvr16/niiy+sHhscHMy+ffuYOHFikedXaXFxcSEgIIDQ0FBeeeUVYmJiePnll4Hitf2qVauUkVOjR48uVhnCwsKUlwOY1h4y1x49enS+Nujbty9BQUF25V2avqa4PPzww+zatYsRI0ZQrVo1dDodNWvWJCwsjMWLF/Pbb7/ZfLOgiXHjxnHgwAEmTZpErVq10Ov1BAcHM27cOHbv3s1jjz2mtLWthalNI5Dnzp1LWFgYNWvWVEa31qlThwEDBjBr1ixOnjzJQw89VKq6F0VQUJBd02PN9Xv27MnRo0eJiIjg8ccfp0WLFop/fn5+hISE8MgjjxAREcHZs2eZOHFiqcqoqb/tDgljSe4aKsIIJksR5ILcuSNEzZpCgBBvvOFY7RKRmChE48bGAvfpI0ROjmP1i6AijGhQq+5qa6upL32XvquF2r6rOYLp1q1bDtcUQt0RTCbUqrva2mrqS98rj++2RmIVF+m7NrXt9b1Ro0YCEJMnTy5T/cp0vVVEbTmCSSIpJ5o2bVpkGl9fmDvXuP3JJ2DjbZxlrl0i/Pxg5Urw8oLt2+HVVx2rXwlQs+5qt7va+moifdcmWvbdtOadFlGz7mq3u9r6aiJ91yZa9b2ie37w4EFlfbnOnTuXad5q11367hhkgElS6bB3CPSoUca37OTmwuOPQxFvyS1T7RLRogUsXGjc/s9/4O9h8w7Tr+CoWXe1211tfTWRvmsTLftuzxSHuxU16652u6utrybSd22iVd/V9tz0Jj5LJCQk8PjjjwPGtziOHz++TLXVrruWfXckMsAkqXRYeq2mNebOBR8f45pMX33lWO0SMWbMP6OXHn0UzF7X6xD9CoyadVe73dXWVxPpuzbRsu/mb1TTGmrWXe12V1tfTaTv2kSrvqvt+cSJE+nXrx///e9/2bFjB3/88QeRkZH8+9//pmXLlhw9ehSAN998k8DAwDLVVrvuWvbdkbiqXQCJpDwJDoaPP4YZM0CNtzSWiH//Gw4fhs2bYdIkOHoUnGUsWCKRSCQSiUQikZQcIQSRkZFERkZaTTN9+nRef/11B5ZKcjchA0ySSkf//v2Llf6JJ6BrV2jd2vHaJcLFBcLDYexY41Q5s+CSQ/QrKGrWXe12V1tfTaTv2kTLvvv4+KiqryZq1l3tdldbX02k79pEq76r7fnnn3/O77//zs6dO7l27Rq3bt3C1dWVGjVq0L17d6ZNm0bXrl3LRVvtumvZd0cih0VIKh0nT54sVnpn57IJLpVEu8QEBMC2bdCmjTr6FRA16652u6utrybSd22iZd8zMzNV1VcTNeuudrurra8m0nf7WLhwIUIILly4UH4FciBa9V3tc65Lly7Mnj2bgwcPcuXKFTIzM0lNTeXMmTMsXLiw3IJLoH7dtey7I5EBJkml4/LlyyU+9vRp48CgxETHa5eK/fth3Tr19CsAatZd7XZXW19NpO/aRMu+Z2dnq6qvJmrWXe12V1tfTaTv2kSrvkvPtamvdt0diZwiJ6l0lPQ1j0LAhAlw5Aj4+sJ33zlOu1Ts3Qu9eoFeT7UPP3S8fgVBy68WVVtfTaTv2kTLvjtreM09Neuudrurra8m0ndtolXfpefa1Fe77o5EOzWV3DWMGDGiRMc5OcGXXxq3FyyAqCjHaZeKjh2Ni0ilptJv3jxISnJ8GSoAqrR9BdCuCPpqIn3XJlr23d/fX1V9NVGz7mq3u9r6aiJ91yZa9V16rk19tevuSGSASVLp+O2330p8bPfu8OSTxu1p0yAjw3HaJcbVFRYvhjp14NQpeOghMBgcXw6VUaXtK4B2RdBXE+m7NtGy77dv31ZVX03UrLva7a62vppI37WJVn2XnmtTX+26OxIZYJJUOoQQpTr+44+hZk2IjYV//9ux2iWmenVYsYI8nQ5Wr4ZZs9Qph4qo1vYqa1cEfTWRvmuTiuK7GuWQvmtPuyLoq4n0XZto1XfpuTb1y0Jb7fazFxlgklQ6GjduXKrjfX1h7lzj9qefwrFjjtMuFR06cOnVV43b77wD69apVxYVULPtVfW9AuirifRdm6jtu2mtBIMKo0Xd3d0drllRULPuare72vpqIn3XJlr1XXquTf2y0M7LywMq/npOFbt0EokFatSoUeo8Ro2CESMgNxf+7/8cq10adNOmwfTpxhXLlyxRtSyORs22V9t3tfXVRPquTdT2XafT4eLiQlpamsP1dTqdwzUrCmrWXe12V1tfTaTv2kSrvkvPtalfFtrp6em4uLio3o5FIQNMkkrHrl27yiSfuXON0+Xmz3e8dknZtWsXzJljXKX8hx9ULYujUbPtK4TvGkX6rk3U9t3JyYkqVaqQnJzs8CHpKSkpDtWrSKhZd7XbXW19NZG+axOt+i4916Z+abWFECQnJ1OlShWcnJzKqFTlgwwwSTRLcDC88gpU8CBwYfR6eOQRMA2PFML4kUgkEkmZ4evrS05ODlevXq006x5IJBKJRCK5uxBCcPXqVXJycvD19VW7OEXiqnYBJJLi0rt37zLPMzsbli2DiRPBVlC4PLSLQyH99HR4/HFo1coYLbuLUbPtK5zvGkL6rk0qgu+enp7Url2bK1eukJGRgY+PD56enri4uJTrr4d6vZ7MzMxyy98aBoOB3NxcMjMzVVvfQa26q62tpr70XfoufdeOttq+a/V6K4m2EIK8vDzS09NJTk4mJyeH2rVr4+npWY6lLBtkgElS6bhw4UKZrs+RmwtdusDhw+DiAuPHO067uBTSj4iAX3+F336Ddu2gf3/VylbeqNn2Fc53DSF9l76rqV2lShXq1atHUlISd+7cISEhodz1dLq92wABAABJREFUs7KycHNzK3edggghSEpKIjU1VbXh92rVXW1tNfWl79J36bt2tNX2XavXW2m0XVxcqFKlCr6+vpUiuAQywCSxk3nz5jFv3jxl9fpVq1bh7e3NqFGj2LZtG0lJSVSvXp3Q0FDWrl0LQLt27TAYDPzxxx8ADB8+nN27d5OQkEBAQAA9evRg1apVALRq1QqdTkd0dDQAgwcP5tChQ9y4cQMfHx8GDBjAsmXLAEhOTqZ69ers378fgPvvv58TJ04QFxeHl5cXQ4YMYfHixQDce++9BAYGsmfPHgD69evH6dOnuXTpEm5ubowaNYrlyxdTv35zDh9uydNP55GcvApv72x69erFpUuXOHfuHK6urowdO5bff/+d8+fPU69ePRo1asT27dsB6N69O/Hx8Zw+fRqAiRMnEhERQXp6OrVr16Z58+Zs3rwZgC5dupCUlERMTAwAY8eOZePGjaSkpFCjRg3atWvH+vXrAejYsSOZmZkcP34cML494M6dOyQmJhIYGEiXIUO40asXjaKiyBs7lgvLlnHg5k0Ahg4dyt69e7l16xb+/v706tWLlStXAtCyZUvc3d05ePAgAIMGDeLw4cNcv36dKlWqEBYWxtKlSwFo3rw5Hh4eACxbtoywsDBiYmK4cuUKnp6eDB8+nPDwcACaNGlC9erV2b17NwB9+vTh7NmzXLx4Eb1ez+jRo1m6dCm5ubk0bNiQunXrEhUVBUCPHj2Ii4vj7NmzODs7M378eFasWEFWVhZ169YlNjaW8+fPA9CtWzdu3brFqVOnABg/fjxr164lLS2N4OBgQkJC2LRpEwCdOnUiNTWVP//8E4AxY8awefNmkpOTCQoKokOHDqz7+4187du3Jycnh2N/v1pwxIgR7Ny5k+PHj5OcnEz37t2JiIgAoE2bNjg7O3P48GEAhgwZwoEDB4iPj8fX15e+ffuyYsUKAEJCQvD09OTAgQMADBw4kKNHj3L16lW8vb0ZNGgQS/5etL1p06YEBATw+++/A9C/f3+io6M5f/48Hh4ejBgxgt9++w0hBI0bN6ZGjRrKejW9e/fmwoULnD9/Hp1Ox5gxY1i2bBk5OTk0aNCA+vXrExkZCcB9993H9evXiY2NxcnJiQkTJrBq1SoyMjKoU6cOTZs2Vdrw0qVLpKamcvLkSQDGjRvH+vXrSU1NpVatWrRu3ZoNGzYAEBoaSnp6OidOnAAodR+xe/duzp8/X6w+okWLFnh7e5e6j7h27RqdO3dm8eLFGAwGGjVqRHBwMDt37gSw2EcsX76c7OzsMukjTHUvTh8xcuRIoqKi/ukjunRhzZo1ALRt2xaAI0eO2OwjTG9OO3funOJNUX2Er68ve/fuBWDAgAGl7iMuXryIk5NTsfqIJk2asHXr1lL3EQaDgYSEhHx9hKkMbdu2JScnR8m3X79+HDp0iDt37uDn50f79u3Ztm0bAM2aNcPZ2VnJt3fv3hw7doyEhASqVKlCly5dFM+bNGmCu7s7x44dIz4+njFjxnDy5Eni4+Px8vKiR48eyjXWsGFDfH19FR+7devGuXPnuHbtGu7u7vTr149169YhhKB+/foEBgZy6NAhpa5xcXFcuXIFnU7H/fffz6ZNm8jJyaFmzZrs3buXevXq4eTkRIcOHbh16xYXLlzAycmJwYMHs3XrVjIzM6lZsyYNGzZUrpu2bduSlJTEuXPnAGMft3PnTtLS0qhevTpNmzZVrptWrVqRmZmpXAsDBgxg7969pKSkcOfOHUaOHKn0Uy1atMBgMPDXX38B0LdvX6Kjo5X27tChg+L5vffei6urq9LevXr14sSJE9y6dQtvb2+6deumeN64cWM8PT05evSocn2uXbsWPz8/PD096dWrl3KNNWjQAH9/f6Wv79q1KxcuXODq1avo9XoGDBjA+vXrMRgM1K1bl6CgIOVva2hoKNeuXePy5cu4uroSFhbG5s2byc7OJjg4mDp16rBv3z7A+PDRtGlT5e/ckCFD2LZtGxkZGdSoUYNGjRrla++UlBTOnDkDQFhYGLt27SItLY1q1arRvHlzduzYARj/3mdlZSnt3b9/fw4cOEBSUhL+/v60aNGC9evXU69ePVq0aAGg3J/07t2bP/74g8TERHx9fQkNDWXLli3KOevm5qb0PT179iQmJoabN2/i5eXFfffdx8aNGwG45557qFKlSr5z9uzZs1y/fh0PDw8yMjIw0aBBAwICApS+vnPnzly+fJm4uDilvTdu3Ehubi516tShZs2ayt/Wjh07cuPGDS5duoSzszODBg1S2rtWrVrUr19f+dvarl07EhMT2b9/P9WrV2fQoEFERUWRnp5OUFAQjRs3Vvqp1q1bk56eTmxsLGD8m7Jnzx5SU1MJDAwkJCRE6SNatGhBbm6u3X3EsWPHlIdGe/sIMPaHpekj1q5dy4ULF+jevTs1atSwq4+oXbs2wcHByt/W0vYRP//8M1WrVi1WH1G1alVatWpV6j4iPj6ecePGFauPiI2N5caNG6XuI86cOYNery92H9G+fXtu375dqj4iNTWVixcvMnHiROVvdlF9RJs2bZT2bt68ean6iIiICPz8/IrdR/Tt21e5dyxNH5Gdnc0999xTrD7C1N6l7SOWLFlC9erVi91HODk5Kf1LSZ81HI6QSIpBUlKSAER8fLxqZVi6dGmZ55mZKUSzZsbFjB55xLHaxcGifkaGEB07GgvfurUQaWllrpuZmSneffddkZmZWeZ524uabV8hfXcA0nfpu1pI3x2P9F36rhbSd8cjfdemttq+a/V6U1s7Pj5eACIpKckhek5CyJUrJfaTnJyMr68v8fHxVKtWTe3ilCm7d8N99xm3t2+HSrX8yeXL0L493LwJkybBokW2F5MqJllZWXz88ce8+uqrqg5tlTgW6bs2kb5rE+m7NpG+axPpuzaRvmuTmzdvUr16dZKSkvDx8Sl3PfkWOUmlwzQNpqzp3h2efNK4PW0amI3YLndte7GqX6cOLF1qXETql1/gyy8dWzAHoGbbV1jfNYD0XZtI37WJ9F2bSN+1iVZ9l55rU1/tujsSGWCSVDpycnLKLe+PP4ZateDMGZg1y7Ha9mBTv2dP+M9/oFo1aN3acYVyEGq2fYX2/S5H+q5NpO/aRPquTaTv2kSrvkvPtamvdt0diQwwSSodDRo0KLe8fX1h7lzj9LgpUxyrbQ9F6j/7LPz5J/Tq5ZDyOBI1277C+34XI33XJtJ3bSJ91ybSd22iVd+l59rUV7vujkQGmCSVjvr165dr/iNHwrZt0Lix47WLokh9JyfjCCYTsbGQmVmuZXIUarZ9hff9Lkb6rk2k79pE+q5NpO/aRKu+S8+1qa923R2JDDBJKh2mV2WWJ+brY9+65VhtWxRLf+1a48LfM2bAXbCWv5ptX6l8v8uQvmsT6bs2kb5rE+m7NtGq79JzbeqrXXdHIgNMEokVMjPh6aehYUP4/HMYPRo++KAPo0cbX9JW4QcGubtDWhp8/z18843apZFIJBKJRCKRSCQSyV2MDDBJKh333XefQ3T0eoiMhJQUeOEFWLUK/voriFWr4KGHjIuBr1njkKIoFKvu/frBRx8Zt599Fn7/vXwK5SAc5XtF064I+moifdcm0ndtIn3XJtJ3baJV36Xn2tRXu+6ORAaYJJWO69evO0Rn7Vr4669//m8w5P/3zh0YPhxWr3ZIcYAS1P2ll2DsWMjJMQ7Bunq1fArmABzle0XTrgj6aiJ91ybSd20ifdcm0ndtolXfpefa1Fe77o5EBpgklY7Y2Nhy18jMhKlTbacxLWs0darjpssVu+5OTsYpci1awPXrxmBTdnb5FK6ccYTvFVG7IuirifRdm0jftYn0XZtI37WJVn2XnmtTX+26OxIZYJJUOpzMV+AuJ5YuhcTEotfGFsKYbtmyci8SUMK6e3sb5/f5+hqnyc2dW+blcgSO8L0ialcEfTWRvmsT6bs2kb5rE+m7NtGq79JzbeqrXXdH4iTEXfB6KYnDSE5OxtfXl/j4eKpVq6Z2ccqN0aONMRnTdDhbODvDiBGwfHl5l6qUrFsHmzfDZ5+BTlesQ7Oysvj444959dVXcXNzK6cCSioa0ndtIn3XJtJ3bSJ91ybSd20ifdcmN2/epHr16iQlJeHj41PuenIEk6TSsWrVqnLXSEiwL7gExnS3b5dveUyUqu6DB8MXXxQ7uFRRcITvFVG7IuirifRdm0jftYn0XZtI37WJVn2XnmtTX+26OxIZYJJUOjIyMspdo2pV48gke3B2hoCA8i2PiTKre04OvPMOxMeXTX4OwBG+V0TtiqCvJtJ3bSJ91ybSd20ifdcmWvVdeq5NfbXr7khkgElS6ahTp065a4wYUbwRTCNHlmtxFMqs7k89Be+/D+PGGYNNlQBH+F4RtSuCvppI37WJ9F2bSN+1ifRdm2jVd+m5NvXVrrsjkQEmSaWjadOm5a4xdiz4+xtfwlYUvr4wZky5Fwkow7r/61/Gxb937ICXXy6bPMsZR/heEbUrgr6aSN+1ifRdm0jftYn0XZto1XfpuTb11a67I5EBJkmlY8uWLeWu4e4OP/5o3C4qyFStmuMGAZVZ3Zs1g59+Mm5//jn8/HPZ5FuOOML3iqhdEfTVRPquTaTv2kT6rk2k79pEq75Lz7Wpr3bdHYkMMEkkVhg61PgmOT8/4/9NazKZ/vXxgSpV4MwZGDUKsrPVKGUpGDkS3njDuD1tGvzxh6rFkUgkEolEIpFIJBJJ5cVV7QJIKgfz5s1j3rx55OXlAcaV8L29vRk1ahTbtm0jKSmJ6tWrExoaytq1awFo164dBoOBP/4OXAwfPpzdu3eTkJBAQEAAPXr0UFbUb9WqFTqdjujoaAAGDx7MoUOHuHHjBj4+PgwYMIBly5YBEBQUxLlz59i/fz8A999/PydOnCAuLg4vLy+GDBnC4sWLAbj33nsJDAxkz549APTr14/Tp09z6dIl3NzcGDVqFIsXL8ZgMNCoUSOCg4PZuXMnAL169SIo6BJz5lzg0KH6XL3aiZiY61SpksPAgRk88ogvP/30B7Nm9WHrVh1DhtxmypRNODvDxIkTiYiIID09ndq1a9O8eXM2b94MQJcuXUhKSiImJgaAsWPHsnHjRlJSUqhRowbt2rVj/fr1AHTs2JHMzEyOHz8OQIcOHdi4cSOJiYkEBgbSpUsX1qxZA0Dbtm0BOHLkCABDhw5l79693Lp1C39/f3r16sXKlSsBaNmyJe7u7hxq1owerVtT6+hRMgYOZP177+FWqxZhYWEsXboUgObNm+Ph4QHAsmXLCAsLIyYmhitXruDp6cnw4cMJDw8HoEmTJlSvXp3du3cD0KdPH86ePcvFixfR6/WMHj2apUuXkpubS8OGDalbty5RUVEA9OjRg7i4OM6ePYuzszPjx49nxYoVZGVlUbduXZo3b67odOvWjVu3bnHq1CkAxo8fz9q1a0lLSyM4OJiQkBA2bdoEQKdOnUhNTeXPP/8EYMyYMWzevJnk5GSCgoLo0KED69atA6B9+/bk5ORw7NgxAEaMGMHOnTvJyMhg8+bNdO/enYiICADatGmDs7Mzhw8fBmDIkCEcOHCA+Ph4fH196du3LytWrAAgJCQET09PDhw4AMDAgQM5evQoV69exdvbm0GDBrFkyRLAOIQ2ICCA33//HYD+/ftTpUoVwsPD8fDwYMSIEfz2228IIWjcuDE1atRg165dAPTu3ZsLFy5w/vx5dDodY8aMYdmyZeTk5NCgQQPq169PZGQkAPfddx/Xr18nNjYWJycnJkyYwKpVq8jIyKBOnTo0bdpUacNLly6RmprKyZMnARg3bhzr168nNTWVWrVq0bp1azZs2ABAaGgo6enpnDhxAqDUfURGRgbh4eHF6iNatGiBt7d3qfuI3NxcAJt9xKVLlzh37hyurq6MHTuW5cuXk52dTb169WjUqBHbt28HoHv37sTHx3P69GnAvj7CVPfi9BEjR44kKiqqVH2E4e8F6M6dO6d4M2jQIA4fPsz169epUqVKoT7C19eXvXv3AjBgwIBS9xEZGRns37+/WH1EkyZN2Lp1K1C6PiI0NJR169YVq4+4ffs2VatWLZM+IiMjgzt37hSrjzh58iSXL18uVR9hWh9i2bJlODs729VHmH6R7dq1K7dv3y51H+Hm5kZKSkq530dY6iO8vLwIDw8v8/sIe/uIe+65h+jo6GL1ESW5jyjYR7Rv317x3bRdnPuIgwcPAqXrI7p27eqQ+whLfYSpny3v+whrfUSdOnWUupfnfUTBPmL58uWK17Vr1y63+whbfQRAeHh4ud9HWOojMjIySE5OLvf7CEt9RJMmTRTPy/s+omAfkZSUBEBSUhLbtm0Dyuc+Aiz3ER4eHoSHhzvkPsJSH9GkSRMOHDhQ7vcRlvoIU1/jiPsIyN9HOBwhkRSDpKQkAYj4+HjVynD48OEKpb1pkxA6nRAgxNNPC2EwOFa/1Ny+LUTDhkJ4ewuxY4fFJJmZmeLdd98VmZmZZa9vJxXNdy3oS9+l72ohfXc80nfpu1pI3x2P9F2b2mr7rtXrTW3t+Ph4AYikpCSH6MkpcpJKh+nXj4qiPWDAP+s1nTgBWVmO1S81/v4QEQEHDkCPHmWffxlR0XzXkr6aSN+1ifRdm0jftYn0XZto1XfpuTb11a67I5FT5CSSMmDiROOaTH37GhcIr3SEhOT/f24uuMruQSKRSCQSiUQikUgk9iFHMEkqHaZ52xVNe/Dg/MGl2FjH6pcZO3bAvfcah2NVICqq71rQVxPpuzaRvmsT6bs2kb5rE636Lj3Xpr7adXckMsAkqXSYFq6sqNpCwMsvGwcF/b0OokP1S4UQ8NFHcO6c8S1z16/DokW4TpjAQz/8gOuECbBoEWRmlm85LFDRfb+b9dVE+q5NpO/aRPquTaTv2kSrvkvPtamvdt0diQwwSSodqampFVrbYICzZyE7G4YPh79ftOAw/VLh5AQ//wz16sGZM1CnDjz0EM6rV9Pg4kWcV6+Ghx6CWrXg7zdKOIqK7vvdrK8m0ndtIn3XJtJ3bSJ91yZa9V16rk19tevuSGSASVLpqFWrVoXWdnGBX36BXr0gJQXCwoyxGkfpl5rAQHjuOeP2369pd/r7teWmf7lzxxg9W726/MvzNxXd97tZX02k79pE+q5NpO/aRPquTbTqu/Rcm/pq192RyACTpNLRunXrCq/t7g6rVkGbNhAfD/ffD9euOU6/VGRmwgcf2E4jhPHfqVMdNl2uMvh+t+qrifRdm0jftYn0XZtI37WJVn2XnmtTX+26OxIZYJJUOjZs2FAptH19YcMGaNjQuKTRwIHGgT+O0i8xS5dCYmLR6YQwplu2rPzLROXx/W7UVxPpuzaRvmsT6bs2kb5rE636Lj3Xpr7adXckMsAkkZQjNWrA5s0QFATHjsG2bWqXyA5WrQJnO7sGZ2dYubJciyORSCQSiUQikUgkkoqPq9oFkEiKS2hoaKXSbtQINm6EU6dg9GjH6xebhATjSuX2YDDA7dvlW56/qWy+3036aiJ91ybSd20ifdcm0ndtolXfpefa1Fe77o5EBpgklY709PRKp92mjfFjIjUVvLyML21zhH6xqFrVODLJniCTszMEBJR/maicvt8t+moifdcm0ndtIn3XJtJ3baJV36Xn2tRXu+6ORE6Rk1Q6Tpw4Uam14+Kgc2d480119ItkxIjijWAaObJci2OisvtemfXVRPquTaTv2kT6rk2k79pEq75Lz7Wpr3bdHYkMMEkkDiYyEv78Ez78EL74Qu3SWGDsWPD3t294lY8PjBlT/mWSSCQSiUQikUgkEkmFRgaYJJWOUaNGVWrtyZNh1izj9vPPw6+/Ola/SNzd4ccfjdtFBZmcnSE2tvzLROX3vTLrq4n0XZtI37WJ9F2bSN+1iVZ9l55rU1/tujsSGWCSVDq2qfgqtrLSfu01ePZZ4/aUKcZFwB2pXyRDhxrfJufnB4D4+61ypn/x9YX69eHOHejZEw4eLPci3Q2+V1Z9NZG+axPpuzaRvmsT6bs20arv0nNt6qtdd0ciA0ySSkdSUlKl13ZygjlzYOJEyM01vl1u/37H6dvFsGFw9SosWoRh2DDO16+PYdgwWLQIrl+Hw4ehUydITITBg40rl5cjd4PvlVVfTaTv2kT6rk2k79pE+q5NtOq79Fyb+mrX3ZHIAJOk0lG9evW7QtvZGRYuhPvvh/R0mD4dhHCcvl24u8PkyeT+9hs/TZ1K7m+/Gef4ubsb12nasgX694cFC8Dbu1yLcrf4Xhn11UT6rk2k79pE+q5NpO/aRKu+S8+1qa923R2Jq9oFkEiKS2ho6F2jrdfDsmXw9NPGdZmKWvJIzbpbpEoV2LQpf8EzMsDDo8yl7ibfK5u+mkjftYn0XZtI37WJ9F2baNV36bk29dWuuyORI5gklY61a9feVdre3saRTMHB/3xnbSSTmnW3inlw6dw5aNoUfv65zGXuNt8rk76aSN+1ifRdm0jftYn0XZto1XfpuTb11a67I5EjmCR2MW/ePObNm0deXh4Aq1atwtvbm1GjRrFt2zaSkpKoXr06oaGhygXUrl07DAYDf/zxBwDDhw9n9+7dJCQkEBAQQI8ePVi1ahUArVq1QqfTER0dDcDgwYM5dOgQN27cwMfHhwEDBrBs2TIAkpOTOXfuHPv/XrTo/vvv58SJE8TFxeHl5cWQIUNYvHgxAPfeey+BgYHs2bMHgH79+nH69GkuXbqEm5sbo0aNYvHixRgMBho1akRwcDA7d+4EoFevXly6dIlz587h6urK2LFjuXbtGuHh4dSrV49GjRqxfft2ALp37058fDynT58GYOLEiURERJCenk7t2rVp3rw5mzdvBqBLly4kJSURExMDwNixY9m4cSMpKSnUqFGDCxc68emnqbz8chT33deOzMxMjh8/DkBeXh4bN24kMTGRwMBAunTpwpo1awBo27YtAEeOHAFg6NCh7N27l1u3buHv70+vXr1YuXIlAC1btsTd3Z2Dfy/OPWjQIA4fPsz169epUqUKYWFhLF26FIDmzZvj8feIpGXLlhEWFkZMTAxXrlzB09OT4cOHEx4ebmyzLVuoeekS4qGHOBgVRb1Zszh79iwXL15Er9czevRoli5dSm5uLg0bNqRu3bpERUUB0KNHD+Li4jh79izOzs6MHz+eFStWkJWVRd26dcnKylJ0unXrxq1btzh16hQA48ePZ+3ataSlpREcHExISAibNm0CoFOnTqSmpvLnn38CMGbMGDZv3kxycjJBQUF06NCBdevWAdC+fXtycnI4duwYACNGjGDnzp3ExcWxefNmunfvTkREBABt2rTB2dmZw4cPAzBkyBAOHDhAfHw8vr6+9O3blxUrVgAQEhKCp6cnBw4cAGDgwIEcPXqUq1ev4u3tzaBBg1iyZAkATZs2JSAggN9//x2A/v37c/v2bcLDw/Hw8GDEiBH89ttvCCFo3LgxNWrUYNeuXQD07t2bCxcucP78eXQ6HWPGjGHZsmXk5OTQoEED6tevT2RkJAD33Xcf169fJzY2FicnJyZMmMCqVavIyMigTp06NG3aVGnDS5cukZqaysmTJwEYN24c69evJzU1lVq1atG6dWs2bNgAGH+hSU9P58SJEwCl7iPi4uIIDw8vVh/RokULvL29S91HXLt2DaBYfcTy5cvJzs4ukz7CVPeCfUS7du1Yv349AB07dszXR4wcOZKoqKhS9REGgwGAc+fOKd4U1Uf4+vqyd+9eAAYMGGC1j2jSpAnVq1dn9+7dAPTp08diHxEXF8f+/fuL1Uc0adKErVu3AqXrIwwGA+vWrStWH3H79m2qVq1aJn1EXFwcd+7cKVYfcfLkSS5fvlyqPqJOnTqAsZ93dna2q4/YsmULAF27duX27dul7iNu3bpFSkpKud9HWOojEhISCA8PL/f7CGt9REZGBtHR0WVyH1GcPqJ9+/aK76bt8riPsNVHAMXuI0pyH2GpjzD1s+V9H2Gtj0hNTVXqXp73EQX7iOXLlyte165du9zuI2z1ETdu3CA8PLzc7yMs9RFxcXEkJyeX+32EpT4iMzPzn/vmcr6PKNhHmNYBSkpKUhadLo/7CLDcR9y6dYvw8HCH3EdY6iMyMzM5cOBAud9HWOojTH2NI+4jIH8f4XCERFIMkpKSBCDi4+NVK8PJkyfvWu07d4QIDBQChBg4UIjsbMfqWyMzM1O8++67IjMz03bCvDwhnnnGWAEQYvbsMivD3ex7RdW32/dyRPrueKTv0ne1kL47Hum79F0ttOq7mtpq+67V601t7fj4eAGIpKQkh+jJKXKSSofp1/W7UdvXF1avNi5htGEDPPIImEuqWXe7cHaGL76A114z/v+ll+Ddd4tevdwO7mbfK7q+mkjftYn0XZtI37WJ9F2baNV36bk29dWuuyORASZJpcM0DPZu1e7Sxbjwt4uLcSmjmTP/ic+oWXe7cXKCDz80fgDeey9/JUrI3e57RdZXE+m7NpG+axPpuzaRvmsTrfouPdemvtp1dyQywCSRVEAGDYIffjBuz5kDn36qbnlKxGuvwZdfGrejoiA9XdXiSCQSiUQikUgkEomk/JCLfEsqHcOHD9eE9oMPwq1b8OKL8Oqr0KmTunUvEc88AzVrQq9e4OVVqqy04ntF1FcT6bs2kb5rE+m7NpG+axOt+i4916a+2nV3JHIEk6TSYXprgBa0X3gBXnnFuJRRz57q1r3EjBkDgYH//D8iAjIzi52NlnyvaPpqIn3XJtJ3bSJ91ybSd22iVd+l59rUV7vujkSOYJJUOhISEjSl/dFHxmWN1NIvU777Dh5/HPr3h5UrizWqSWu+VyR9NZG+axPpuzaRvmsT6bs20arv0nNt6qtdd0ciRzBJKh0BAQGa0jYFlwC8vavyyCNw9KjDi1E2NGxoDCpt2QL33w9JSXYfqjXfK5K+mkjftYn0XZtI37WJ9F2baNV36bk29dWuuyORASZJpaNHjx6a1AaIjOzNDz9AWBicO6dqUUpGnz7G4JKvL+zZA337GheasgMt+662vppI37WJ9F2bSN+1ifRdm2jVd+m5NvXVrrsjkQEmSaVj1apVmtQGaN48gpYt4fp14wCgGzdULU7J6NLF+Fa5atUgOtq4uNS1a0UepmXf1dZXE+m7NpG+axPpuzaRvmsTrfouPdemvtp1dyQywPQ32dnZLFiwgLCwMGrWrImbmxve3t7ce++9PPLII+zbt8+ufDZu3MioUaOoXbs2bm5u1K5dm1GjRrFx40a7y5Kens7s2bMJDQ0lICAAb29vmjVrxsyZM7l06ZLd+fz55588+eST3HPPPXh4eFCtWjV69OjBN998Q25urt35SCoOXl45bNoE9evDmTMwcCAkJ6tdqhLQpg3s3Am1akFMDNx3H6SkqF0qiUQikUgkEolEIpGUELnIN3D58mUGDx7M8ePH832fnZ3N6dOnOX36ND/88AMvvPAC//nPf3AyXxTnb4QQPPnkk3z77bf5vo+Li2PlypWsXLmSadOm8fXXX1s83sTZs2cZPHgwp06dyvf9yZMnOXnyJN999x2//vorgwYNslmnBQsWMGPGDLKyspTvMjMz2bVrF7t27WLhwoWsXbuWqlWr2synItKqVStNapv0a9aEzZuhWzc4cgRGjoT168HNTdWiFZ+mTWHXLujXD6ZMgSpVbCbXuu9aRfquTaTv2kT6rk2k79pEq75Lz7Wpr3bdHYnmRzDl5ubmCy61atWKhQsXsnfvXjZv3szbb7+N199vupozZw6fffaZxXzefPNNJbjUtm1bwsPDOXDgAOHh4bRt2xaAb7/9lrfeestqWVJTUxkyZIgSXHr88cfZtm0bv//+O7NmzcLb25ukpCTGjh3LsWPHrOazadMmpk2bRlZWFkFBQXz55Zfs37+fDRs2MGrUKAD27dvHqFGjMBgMxWwx9dHpdJrUNtdv3Bg2bABvb9i+3fhitkpJw4bGKNmbbxaZVPquTaTv2kT6rk2k79pE+q5NtOq79Fyb+mrX3ZFoPsAUERGhBJe6dOnC4cOHmTJlCp07d6Z///6899577NixQzkpPvroo0LTy86cOcOnn34KQIcOHdizZw8TJkygY8eOTJgwgd27d9OhQwcAPvnkE86ePWuxLJ999hknT54E4NNPP+Xbb7+lT58+dOnShddff53Nmzfj6upKeno6zz//vMU8cnNzefrppzEYDPj4+LBnzx6eeeYZQkNDCQsLY/ny5UyfPh2AnTt38vPPP5euAVUgOjpak9oF9du3h1WrICgInnhCvTKVGl/ff16Vl5oKQ4fCgQOFkknftYn0XZtI37WJ9F2bSN+1iVZ9l55rU1/tujsSzQeY9uzZo2y/9tpruLi4FErTvn17hgwZAkBiYqISBDIxZ84cJej03//+Fw8Pj3z7PT09+e9//wsYA0Cff/55IY2cnBy++OILAJo1a8a//vWvQmm6dOnCo48+CkBkZKTFE3XlypWcOXNGqU+jRo0KpZk9ezb+/v7KtqTy0rev8W1y3bqpXZIy4p13YO1aY8V27lS7NBKJRCKRSCQSiUQisRPNB5iys7OV7YYNG1pNZx6oMV/XSAhBREQEAE2bNqVz584Wj+/cuTP33nsvYFxFXgiRb39UVBR37twBYMqUKTg7W7Zm6tSpyvaKFSsK7Tdfod48rTmenp6MGzcOgBMnThAbG2sxXUVl8ODBmtS2pu/p+c/20aPw/fcOLFBZ89570Lu3cSRTWBiYLY4vfdcm0ndtIn3XJtJ3bSJ91yZa9V16rk19tevuSDQfYGrSpImyfe7cOavpTNPanJycaNy4sfL9+fPniYuLA6Bnz542tUz7r1y5woULF/Lt27VrV6F0lujQoYOyJtTu3bsL7Tflc++991KjRo0iy2Itn4rMoUOHNKldlP6FC9CjBzz2GCxZ4rgylSne3rBuHQweDBkZMGwY/B1Ilb5rE+m7NpG+axPpuzaRvmsTrfouPdemvtp1dySaDzBNnDgRHx8fwLg+Ul5eXqE0R44cYd26dQBMmDBBSQ/w119/KdtNmza1qWW+3/y44uTj6uqqjKYqmEdqaipXrlwpdVkqOjdu3NCkdlH69erBgw+CEDB5Mmzd6sCClSUeHsag0tixkJMD48bBokXSd40ifdcm0ndtIn3XJtJ3baJV36Xn2tRXu+6ORPMBpmrVqrFw4UI8PDzYs2cPHTt25KeffmLfvn1s3bqV9957j549e5KdnU2bNm34v//7v3zHX758WdmuXbu2Ta06depYPM78/15eXvj5+dmVz82bN/NN17ty5Yoy9a40ZanomAf4tKRdlL6TE3zxhTEek5MDI0ZApQ2W6/UQHg4PPwx5efDSSwS4uqpWnIrs+92OvN61ifRdm0jftYn0XZto1XfpuTb11a67I1Hvia0CMXLkSA4dOsT//d//8f333zNlypR8+4OCgnjvvfeYNm2aMj3NREpKirLt7e1tU8f82NTUVIv5FJWHpXzc3NzKtCzmZGVl5QtiJScnW/zekfTs2VOT2vbqz58PN2/qiIx0ZuBAQWRkDo0bC5vHFIVJ0+F1nzcPl6pVMYwdS7fmzaXvDkY1382Q17v0XUvaaupL36XvaiF9l75Lbcegtu9avd7U1na0rgwwYXyD26+//sqaNWsKLb4NxiFt4eHhNGnSpNACXZmZmcq2Xq+3qWMKBAFkZGRYzKeoPGzlU1ZlMeejjz7ivffeK/T9vHnzcHd3L7KsEnXo3FnPyZNTuHatFt27p/Poowvw8bEeSLSXOXPmlEHpiom3N2zYYPwA/rdvk+jvbxyyJXEIqvguUR3puzaRvmsT6bs2kb5rE+m7tjCPETgCzQeY0tLSGDRoEDt37sTFxYWXX36Zhx9+mIYNG5KZ+f/snXlcVFX/x98zgoCiuOCSgBuFiPuGqaioaYooqLi1mC1a1mOL7U+b9eRTv6yszCezbLNCRRQ3XHIhUUnccg01NxQXQnQQWQS5vz8O4IbKwMy9wDnv14sXw8y993O+85lzvPP1nO/JYsuWLbz33nts3LiRQYMGMW3aNJ577rnC869Nsly7I11RXJs9dHFxue61guvc6Rq3u46t2nItr7/+OpMmTSr8Oy0tDS8vL5555hnq1Klzx7bag4iICIYPHy6dtrX6Tz8NvXrl0bBhdV5//V9Uq1Zy3ezsbKZNm8YLL7xwXXJSTyIiIhjh4YFjcDBXnniCK//3f7olmcqT77akrPiu+ru+KN+V78p3efSV78p35bs82kb7Lmt/M1r7n3/+4cMPP9RNT/oE0zvvvMOGDRsAmD179nXL4ypXrkzfvn3p1asX/fr1Y/369UyaNIlevXrRunVrAKpd8639dkvNQCSzCrhxCVvBde50jdtdx1ZtuRYnJ6ciB6BbPa8HrVu3llLbWn1PT/j9d6hdG5u12WjfK2/eDBkZOHzxBQ4ZGTBzJlSqpIt2efHdHhjtu4zaZUFf+W4MRusr343BaH3luzEYra98l0u7AKN8Nzp2WX3XW1fqIt+apvH9998D4OPjc1PtpQIcHBz4z3/+A0BeXl7hOXB9Me2CHdxuxbXFtK8tsn3tdS5dusSFCxeKdZ06depc94GxVVvKOsWpU1URtUui36ABFHxENA3mzxcFwMsjrq6u8NRTMHs2mM3w7bdi2zwdAipvvlckVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1ROoE09mzZ0lNTQWgXbt2tz22Q4cOhY8TEhIKH/v5+RX5fFFc+3rz5s2ve62418nNzeXw4cNFXsPV1bUwWVSatpR1tmzZIqV2afVffx1GjoRx40SyqbxRGPtjj4kd5hwcxO/hw8HOa4vLs+/lHdXf5UT5LifKdzlRvsuJrL4rz+XUNzp2PZE6weRwzbbnubm5tz0255pZEtee16RJExo0aADA77//fttrFCzF8/DwoHHjxte9FhAQUPj4dtfZtm1b4fK2bt263fR6wXUOHDjAmTNnbnmdazWKuo6i4tGtm1hN9uOP8OqrRremlIwYAYsWielZixfDoEGQkWF0qxQKhUKhUCgUCoVCWqROMNWqVYvq1asDEBcXd9sk07UJmSZNmhQ+NplMhISEAGJW0B9//FHk+X/88UfhrKGQkBBMNxQnDgwMxM3NDYAff/yxyN3sAH744YfCx0OGDLnp9dDQ0CKPvZaMjAzmz58PiJlTPj4+RR5XVrn//vul1C6t/qBBYlUZwNSp8PHHNmqUTtwUe3AwREdD1arix9FRP22dMVrfSFR/lxPlu5wo3+VE+S4nsvquPJdT3+jY9UTqBJPZbGbgwIEAnDp1iilTphR53Pnz53n1mikfwcHB173+/PPPF85qmjhxIpmZmde9npmZycSJEwEx++n555+/SaNy5co8++yzAPz11198XMS3/7i4OGbPng1Az5496dSp003HDBkyBG9vbwA++OCDwuV01/Lyyy9z/vz5wsfljb1790qpbQv9sWPho4/E45dfhp9+Kn2b9KLI2Hv3hs2bYd48uyaYyrvv5RnV3+VE+S4nync5Ub7Liay+K8/l1Dc6dj2ROsEE8Pbbb1OlShUAJk+ezODBg4mMjGTnzp3ExcUxbdo02rZty/79+wHo06cP/fr1u+4aPj4+vPTSS4BYwtatWzfmzZvHtm3bmDdvHt26dWPbtm2ASOjcc889Rbbl5ZdfLpxN9Morr/Dkk0+yfv16/vjjDz744AP69etHbm4uLi4ufPbZZ0Vew9HRkS+++AKz2UxaWhrdunXjyy+/JD4+nlWrVhEWFsb//vc/QCyne/jhh0v3BhpAUlKSlNq20n/5ZXjxRfH4scdg+fJSX1IXbhl769bXVzJ//304fVofbZ0wWt9IVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1xOHOh1RsfH19Wbx4MaNHjyYlJYWlS5eydOnSIo/t3bs3ERERRb42ZcoUkpOT+e6779i5cyejRo266ZjHH3+c999//5ZtqVatGsuXLycoKIhDhw4xa9YsZs2add0x1atX55dffqFt27a3vE5QUBAzZ87kX//6F2fPni2cPXUt/v7+LFq0iEo6bPFua6pWrSqlti31P/oI/vkH5syBU6dsckm7U6zY338f3n4bfvgB1q6FRo3007YjRusbiervcqJ8lxPlu5wo3+VEVt+V53LqGx27npi0WxX7kYxz584xe/ZsVqxYwb59+7hw4QIODg7Ur1+fTp068cADDzB48OCbaifdSHR0NLNmzWLr1q2kpKTg7u5Op06dePLJJxkwYECx2nLp0iVmzJhBREQEf//9N5cvX8bLy4ugoCCee+45GhXzS/PevXv54osvWLt2LadOnaJq1ao0b96cBx98kCeeeOK6YuXFJS0tDTc3N5KTk6lTp47V59uCvLw8zGZjJt8ZqW1r/ZwciIuDHj3ufGx2djYffvghr732Gk4Fs4V0plixHz0KffqI315esGYN2KDGWEXy3RrKje8VUNtIfeW78l35Lo++8l35rnyXR9to32Xtb0Zr//PPP9StWxeLxVJYf9qeSL9EroDatWvzyiuvsH79epKTk7l8+TIZGRkcOXKEefPmFVmYuyiCgoKIiooiKSmJ7OxskpKSiIqKKnZyCUSG85VXXmHr1q2cP3+eS5cukZCQwKefflrs5BJAy5YtmTVrFocPHyYzM5OUlBRiY2N56qmnSpRcKivMmzdPSm1b6zs6Xp9cOncOEhNtdnmbU6zYmzSB2Fjw9YUTJ0SAu3fro21HjNY3EtXf5UT5LifKdzlRvsuJrL4rz+XUNzp2PVEJJoVCwYkTEBAAffuKpXPlGg8P2LAB2raFs2chMBDi441ulUKhUCgUCoVCoVBUaFSCSVHuaNasmZTa9tQ3mSAjAw4ehKAguHjRLjKlwqrY69SB9euhSxc4fx4GDACLRR9tO2C0vpGo/i4nync5Ub7LifJdTmT1XXkup77RseuJSjApyh3u7u5SattT39MTVq2C2rVh2zYYOhQuX7aLVImxOvYaNWD1ajEta8YMcHPTT9vGGK1vJKq/y4nyXU6U73KifJcTWX1Xnsupb3TseqISTIpyx6ZNm6TUtre+ry9ER0PVqqI29pgxYlbTnDkwapQD338/hlGjHJgzB7Ky7NaMW1Ki2F1dRebs2l0ds7P10bYhRusbiervcqJ8lxPlu5wo3+VEVt+V53LqGx27nqgEk0KhKMTfHxYtEgXA582DWrVEomnJEjPHjzdhyRIzY8ZAgwawdKnRrS0m1xbnP3kSWraEn34yrj0KhUKhUCgUCoVCUQFRCSZFueO+++6TUlsv/b594dlnxeOCyT55eabrfl+4ACEhsGSJ3ZtTiE1i/+Yb+PtveOQR+OorfbVLgdH6RqL6u5wo3+VE+S4nync5kdV35bmc+kbHricqwaQodxw8eFBKbb30s7Lgu+9uf4ymid9jx+q3XM4msb/zDkycKB4//TRMnaqfdikwWt9IVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1RCWYFOWOxMREKbX10o+IEBuv3QlNE8ctWGD3JgE2it1shs8/h3//W/z9yivw9ttXM2b21C4FRusbiervcqJ8lxPlu5wo3+VEVt+V53LqGx27ntg8wfT333/z9ttv07dvX1q1asXdd9/N33//fd0xe/fuJTo6mt9//93W8goJcHJyklJbL/2oKJGHKQ5ms6jZpAc2i91kgilT4L//FX//5z8wadJtk0wy+F5WUf1dTpTvcqJ8lxPlu5zI6rvyXE59o2PXEwdbXSgvL49XX32Vzz77jLy8PLT8L2smk4nLN+x3fuLECYKDg3FwcODo0aN4eHjYqhkKOzFjxgxmzJjBlStXAIiKisLV1ZWhQ4eydu1aLBYLdevWxd/fn2XLlgHQvn178vLy+PPPPwEICQlh48aNnDt3jlq1atGjRw+ioqIAaN26NY6Ojmzfvh2AgQMHsm3bNs6ePUv16tXp168fC/KnyrRo0YIjR46wZcsWAO6//3727t1LUlISVatWJTg4mHnz5gHQrFkz3N3dCyv333fffRw8eJDExEScnJwYOnQo8+bNIy8vD29vbzw8PNiwYQMAgYGBJCYmcuTIERwcHBg+fDiaphEeHk6jRo3w9vZm3bp1AAQEBJCcnFw4/XH06NEsXryYjIwMPD098fPzY/Xq1QB06dIFi8XC/v37ARg+fDgrV67k4sWL1K9fn/bt2xMdHQ1Ap06dyMrKYs+ePQAMGTKElStXcv78edzd3enSpQtL86ttt2vXDoCdO3cCMGjQIOLi4khJSaFmzZoEBgayKD8b1KpVK5ydndm6dSsAQUFB7NixgzNnznDwYF/y8oq3lWZeHqSmQnh4OAA+Pj7UrVuXjRs3AtC7d28OHz7M8ePHqVy5MsOGDSMiIoLc3FyaNm1Kw4YNiYmJAaBHjx4kJSVx+PBhzGYzI0eOZOHChWRnZ9OwYUO6d+9eqNOtWzdSUlI4cOAAACNHjmTZsmVcunQJDw8PWrZsyapVqwDo3Lkz6enp7Nu3D4CwsDBWr15NWuPGtJ84kWbTp2OJiOC3li1p3b07OTk57N69G4DQ0FA2bNhAdnY2q1evJiAggMWLFwPQtm1bzGYzO3bsACA4OJj4+HiSk5Nxc3OjT58+LFy4EICWLVtSpUoV4uPjARgwYAC7du3i1KlTuLq6EhQUxPz58wHw9fWlVq1abN68GYC+fftSt25dwsPDcXFxITQ0lLlz56JpGvfccw/169cnNjYWgF69enHs2DGOHj2Ko6MjYWFhLFiwgJycHJo0aULjxo1Zv349AN27d+fMmTMcOnQIk8nEqFGjiIqKIjMzEy8vL3x9fQvfw8TERNLT00lISABgxIgRREdHk56eToMGDWjTpg0rVqwAwN/fn4yMDPbu3QtQ6jEiOzub8PBwq8cIV1dXm4wRgFVjRGRkJJcvX7bJGFEQu7VjRExMTKnGiLy8PACOHDlS6M21Y0S1atXo378/ERERAPj5+eHm5kZcXBwA/fr1Y//+/Zw8eZIqVaoQEhJSojFiy5YtVo0RPj4+rFmzxiZjxPLly0lLS6NevXp07NiR5cuXA9ChQ4cix4jU1FRq165tszHiwoULVo0RCQkJnDhxolRjhJeXFwALFizAbDYXa4z47bffAOjatSupqak2GSMuXryoy33EjWOEu7s74eHhdr+PuN0YsX37dl3uI64dIzp06FDoe8Hj0t5HWDtGDB06VJf7iKLGiIJxtkT3ETYYI1q0aFEYuz3vI24cIyIjIwu99vT0tNt9xO3GCEdHR8LDw+1+H3GrMSItLU2X+4gbx4jOnTsXem7v+4gbxwiLxQKAxWJh7dq1gH3uI6DoMaJmzZqEh4frdh9R1BgRHx+vy33EjWNEwVij133EtWOE7mg24oknntDMZrNmMpk0T09Pbfjw4ZrJZNLMZrO2b9++m4739vbWzGaz9tlnn9mqCQodsFgsGqAlJycb1oa5c+dKqa2X/tChmmY2a5qY0nP7H7NZHK8Hdot97lxNS0oyRruYGKWflZWlTZ48WcvKyjJEX9NUfzcC5bvy3SiU7/qjfFe+G4WsvhupbbTvsvY3o7WTk5M1QLNYLLro2WSJXExMDLNnzwbg3//+N8eOHSvMot+KgtkgBVlwhaK4FPzvumzaeumHhoqZScUhLw+GDLFrc67RslPsI0dCgwZX/165UlQuz8qCOXNg2DAC330Xhg0Tf+tV1fwajP7cGYnq73KifJcT5bucKN/lRFbfledy6hsdu57YJME0c+ZMQEx9e//996lUqdIdz/H39wconEqmUBQXb29vKbX10h8+HGrWFKWK7oTJBD172r1JgE7v/a+/QlAQ3Hsv3HUXjBkDUVHU++svUZxqzBiRjMqfKqwXRn/ujET1dzlRvsuJ8l1OlO9yIqvvynM59Y2OXU9skmCKi4vDZDLx+OOPF/scT09PAM6cOWOLJigkwsiaXUbXC9ND39kZfvxRPL5Vkqng+dBQyC/bYXd0ee/vugsqV4Zdu+DCBfFcwf84FPy+cAFCQmDJEvu3Jx+jP3dGovq7nCjf5UT5LifKdzmR1XfluZz6RseuJzZJMCUnJwPQpEmTYp/j4CDqi+fk5NiiCQqJKCieKZu2nvqDBokJOzVqiL/NZu263zVqQESE+CkgNRXs2Z11ib1LF5Fguh0Fu82NHavbcjmjP3dGovq7nCjf5UT5LifKdzmR1XfluZz6RseuJzZJMLm4uACQkZFR7HMSExMBqFmzpi2aoFAobMzgwXDqlCg7NHhwHo0bH2Xw4DzmzBHPh4VBwWrY7GyRlOrXD1JSjG13qYiIgIsX73ycpsH585C/24hCoVAoFAqFQqFQyI5NEkwFM5cKtiwsDgXbS/r5+dmiCQqJCAwMlFLbCH1nZ3joIZg7N5exY39i7txcHnpIPH8t+/bB7t0QEwOdOkH+Tqc2RZfYo6LAXMxh0WyG/K1Y7Y3RnzsjUf1dTpTvcqJ8lxPlu5zI6rvyXE59o2PXE5skmPr164emacyaNatYFdK3b9/OnDlzMJlM9O/f3xZNUEhEwew32bTLgv6taN8e/vgDmjaFY8fESrOoKNtq6BL7uXPWbaGXmmrf9uRTVn3XA9Xf5UT5LifKdzlRvsuJrL4rz+XUNzp2PbFJgulf//oXLi4u7Nmzh3Hjxt22rlJkZCT9+/fn8uXLVK9enfHjx9uiCQqJOHLkiJTaZUH/drRoAfHx0Ls3XLoEQ4bA++9fLVlUWnSJvXZt62Yw1apl3/bkU5Z9tzeqv8uJ8l1OlO9yonyXE1l9V57LqW907HpikwSTh4cHX3zxBZqm8cMPP9C0aVOefvrpwtdnz57NhAkTuOeeexgxYgTnzp3DZDIxa9Ys3NzcbNEEhUQUFIiXTbss6N+J2rVh5UqYOFH8/dZb8Oqrtrm2LrGHhlo3g2nIELs2p4Cy7rs9Uf1dTpTvcqJ8lxPlu5zI6rvyXE59o2PXE5Om2Wp+AXz33Xc8++yzZGRkYCpif/MCKScnJ2bOnMkjjzxiK2mFTqSlpeHm5kZycjJ16tQxujkKncjOzubDDz/ktddew8nJqVjnfPMNvPkmxMaCj4+dG2grsrKgQQO4cKF4U69mzYJx4+zeLKMoie+K8o/yXU6U73KifJcT5bucKN/l5J9//qFu3bpYLBaqV69udz2bzGAq4LHHHiMhIYFJkybh7e2NpmnX/Xh4eDBhwgT++usvlVwq5zz6qANz5ui2S/t1REZG6i9aBrTLgr41jBsHhw9fn1xKTi759XSJ3dkZfvxRPC4iSX7T8+PHw6OPijWBdqQ8+W5rVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1xKYJJgBPT08+/vhjDh48yIULFzh48CB//fUXycnJnDhxghkzZtC4cWNbyyp0JjrazJgxYrLH0qX6al++fFlfwTKiXRb0rcXV9erj336Dxo1h9uySXUu32AcNEhXKa9QQfxfUZCr4XaOG2D3uvffEcz/8AP7+Yis9O1HefLclqr/LifJdTpTvcqJ8lxNZfVeey6lvdOx6YvViwPbt29OjR4/CH3d391seW716dV2mYSn0R9PELI4LFyAkRHwfHzxYH+1GjRrpI1TGtMuCfmmIiIDMTHjiCdi9Gz75BKxZjqxr7IMHw6lTsGABLFqE5ehR3Jo0ETWXwsLETKfQUOjeHUaPhv37xWymjRtvPfOpFJRn30uL6u9yonyXE+W7nCjf5URW35XncuobHbueWJ1g+vPPP9m1axfTp08HoFmzZtclnDw9PW3eSEXZRdPE9+mxY8X3cWdn+2t6e3vbX6QMapcF/dLw9dfQsKEo/P3FFyInM29e8Tdi0z12Z2d46CF46CGyzp7FrV69m48JDIRdu2DCBPjgA7skl6B8+15aVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1xOolclWrVr2urtKBAwf45ptvePjhh2nUqBFNmzZl7NixfP/99xw+fNgebVaUMTQNzp8Xkz30YN26dfoIlTHtsqBfGkwmUfR74UKoWhXWrBEry/bvL975Zdb3unUhMvL6YlNffw179+qjX8Eps75LoG8kync5Ub7LifJdTmT1XXkup77RseuJ1Qkmi8XC1q1b+fTTTwkNDaV27drXJZyOHTvGnDlzeOKJJ/Dx8cHDw4PRo0fz1Vdfsc+ONUoUxmI2i7I0CsWdGDIE4uJEPabDh+Hee+HIEaNbZUNiYsSMJn9/+O674u1Gp1AoFAqFQqFQKBTlHKuXyJnNZjp06ECHDh14/vnnAUhISGDDhg3ExsYSGxtLYmJi4fGnT59m/vz5zJ8/H4BatWoREBBQuKSuffv2mOy0rEShH3l5kJqqj1ZAQIA+QmVMuyzo24pWrWDrVlHOqGlTaNLkzueUG9/9/KBvX1i9Gh5/XCSc/ve/6yue21O/glFufK+A+kaifJcT5bucKN/lRFbfledy6hsdu57YZBc5X19fxo8fz5w5czh27BjHjx9nzpw5jB8/nubNmwMUznA6d+4cS5Ys4aWXXsLf35+aNWvaogkKgzGbi19Lp7Qkl2av+3KsXRb0bYm7u9hZ7quvrpYuSksThcCLotz4XrcurFgBU6aIjjFnDnTqBHv26KNfwSg3vldAfSNRvsuJ8l1OlO9yIqvvynM59Y2OXU9skmC6ES8vLx588EFmzpzJvn37SE5OZuHChbzwwgt06NABs9lcmHC6ePGiPZqg0Jm8PLH0SQ8OHjyoj1AZ0y4L+rbG0RGcnMTjK1fggQfExmwnT958bLny3WyGf/8b1q+HBg0gIUEsmfvhB330KxDlyvcKpm8kync5Ub7LifJdTmT1XXkup77RseuJ1UvkSkLt2rXp0KEDly5dIj09nX/++YcTJ06gqdok5YYZM2YwY8YMrly5UsSrGlWrXqZ27c1cvNiRZcuWAdC+fXvy8vL4888/AQgJCWHjxo2cO3eOWrVq0aNHD6KiogBo3bo1jo6ObN++HYCBAweybds2zp49S/Xq1enXrx8L8quIp6WlceTIEbZs2QLA/fffz969e0lKSqJq1aoEBwczb948QOxy6O7uzqZNmwC47777OHjwIImJiTg5OTF06FDmzZtHXl4e3t7eeHh4sGHDBgACAwNJTEzkyJEjODg4MHz4cE6fPk14eDiNGjXC29u7sGBbQEAAycnJhYPH6NGjWbx4MRkZGXh6euLn58fq1asB6NKlCxaLhf351a2HDx/OypUruXjxIvXr16d9+/ZER0cD0KlTJ7KystiTP/vlypUrrFy5kvPnz+Pu7k6XLl1YunQpAO3atQNg586dAAwaNIi4uDhSUlKoWbMmgYGBLMovlNWqVSucnZ3ZunUrAEFBQezYsYMzZ85QrVo1+vfvT0REBAB+fn64uLgAsGDBAvr378/+/fs5efIkVapUISQkhPDwcAB8fHyoW7cuGzduBKB3794cPnyY48ePU7lyZYYNG0ZERAS5ubk0bdqUhg0bEhMTA4CXVy82bqyNxeJIy5aZrFjhwunTC8nOzqZhw4ZkZ2cX6nTr1o2UlBQOHDgAwMiRI1m2bBmXLl3Cw8ODli1bsmrVKgA6d+5Menp6YQ24sLAwVq9eTVpaGvXq1aNjx44sX74cgA4dOpCTk8Pu3bsBCA0NZcOGDSQlJbF69WoCAgJYvHgxAG3btsVsNrNjxw4AgoODiY+PJzk5GTc3N/r06cPCpCSc3n6bvj/9RLXNm4nftInDTk4MGDCAXbt2cerUKVxdXQkKCipcRuzr60utWrXYvHkzAH379iU1NZXw8HBcXFwIDQ1l7ty5aJrGPffcQ/369YmNjQWgV69eHDt2jKNHj+Lo6EhYWBgLFiwgJyeHJk2a0LhxY9avXw9A9+7dOXPmDIcOHcJkMjFq1CiioqLIzMzEy8sLX1/fwvcwMTGR9PR0EhISABgxYgTR0dGkp6fToEED2rRpw4oVKwDw9/cnIyODvflFzocOHcratWuxWCzUrVsXf39/q8aIpKQkwsPDrRojWrRogaura6nHiNOnTwNYNUZERkZy+fJlm4wRBbFbM0YMGTKEmJiYUo0ReXl5ABw5cqTQmzuNEW5ubsTFxQHQr1+/Uo8RSUlJbNmy5boxouDzcPjwYcxmMyNHjmThwqtjhI+PD2vWrCn1GJGXl8fy5cutGiNSU1OpXbu29WPEwoUAtGzZkipVqhAfH09SUhIXLlywaoxISEjgxIkTpRojvLy8ADHOm83mYo0Rv/32GwBdu3YlNTW11GNESkoKFy9etPt9RFFjxLlz5wgPD7f7fcStxojMzEy2b99u9/uIG8eIDh06FPpe8Nge9xG3GyMAm9xHlGSMKBhn7X0fcasxIj09vTD24o4RgNX3ETeOEZGRkYVee3p62u0+4nZjxNmzZwkPD7f7fURRY0RSUhJpaWl2v48oaozIysoq9Nze9xE3jhEWiwUQNZXXrl0L2Oc+AooeI1JSUggPD9flPqKoMSIrK4v4+Hi730cUNUYUjDV63EfA9WOE3pg0O2V5Dhw4UFiXacOGDZw4caLwtQJJNzc3unbtWjgoK8o+aWlpuLm5ARageuHzzz0Hn31mVKsU9iY7O5sPP/yQ1157DaeCKUd24OhRCAkRq8kqVxabsY0dazc5/cjLg6VLYfDgq+sBc3PBQZccf4nRy3dF2UL5LifKdzlRvsuJ8l1OlO9y8s8//1C3bl0sFgvVq1e/8wmlxCZL5DRNY+fOnXz++eeEhYVRr149/Pz8eOqpp/j5559JTExE0zQ8PT0ZOXIkX375JX/++SepqakquVROMZlEktDZWfz95ZewcqU+2gVZXSMwUrss6NubJk1g82ax3PLyZXj0UZg0SeRiyrXvZrPInBUkl1JTRaXzb74p1i5zFd3321GufS/n+kaifJcT5bucKN/lRFbfledy6hsdu56U6L/Pc3JyiI+PL5yhtHnz5sJaSgWzk0wmEy1atCAgIKDwp2HDhrZrucJQgoLyGDUKhg2D8ePh55/FjmC//w75M6ztRkZGhn0Fyqh2WdDXA1dXWLAA3nsP3n0Xpk2D8+ehX78K5PvMmaIu0/jxYpe5mTOhWjX99MsRqr/LifJdTpTvcqJ8lxNZfVeey6lvdOx6YnWCKTAwkPj4eLKzs4GrCSUnJyc6duxYmEzq1q0bNWrUsGljFWWH77/PpU4d8Xj2bDhzBtasgYEDIS6ueNvOlxRPT0/7XbwMa5cFfb0wm2HyZGjZEiZMgH/9CzIyKpDvr70GlSrBG2/Ar7/Ctm0QEQGtW+ujX45Q/V1OlO9yonyXE+W7nMjqu/JcTn2jY9cTqxNMBYULHRwc6NevH927dycgIIBOnTpRuXJlmzdQUfapXBkiI6FHD9i1C/r3h02bxDb09sDPz88+Fy7j2mVBX2/CwsTnydUVzp0TsZ89C/Xq6dsOm7/vZjO8+ioEBMCoUXDwIHTuDJ9/DuPGXV1KZy/9coTq73KifJcT5bucKN/lRFbfledy6hsdu56UqAaTyWTiypUrbN68mdjYWGJjY9m2bRuXL1+2dfsU5YTq1SE6Gho2FN+VBw0Ce80ELNghwQiM1C4L+kbg6ip+r169mq1boWlTmDq1WKWLbIbd3vdu3WDnTggKgqwsePJJkWTSS78coPq7nCjf5UT5LifKdzmR1XfluZz6RseuJ1YnmJ577jnat2+P2WzmwoULREdH88Ybb9C9e3fc3Nzo0aMHb7zxBitWrCAtLc0ebVaUURo0EIW+a9aEP/6ABx6AK1eMbpWiIhEVJRKXr7wCY8ZAZqbRLbIB7u5ih7mPPgJvbxGYQqFQKBQKhUKhUJQzrE4wTZs2ja1bt3LhwgVWrVrFm2++SY8ePXB2diY7O5uNGzfy4YcfEhwcTK1atWjbti0TJ05k3rx5nDp1yh4xKAzA4dFHYc4cMeviGpo3hyVLwMkJFi+GiRNtP9OkS5cutr1gOdEuC/pG0qVLF95/X+xYWKmSKCzfsyckJemjbVfMZnj5Zdi7F2rVEs9pmihspmnS+y6jdlnQNxLlu5wo3+VE+S4nsvquPJdT3+jY9aRES+QAqlatSt++fXnvvfdYv349Fy5cYNOmTXz44YcEBQXh5uZGXl4eu3fv5n//+x8PPPAAXl5eNG3alEceeYRvvvmGhIQEW8ai0BFzdLSYadGggZh9cQ0BAaJusckEX30FH3xgW22LxWLbC5YT7bKgbyQWiwWTCZ55BlavFnmYrVuhUyeIj7e/ti44O199PHs29O0Lo0dzUY8sWhlF9Xc5Ub7LifJdTpTvciKr78pzOfWNjl1PSpxguhFHR0e6dOnCK6+8wtKlSzl37hy7du3iyy+/ZMSIEdx1111omsaxY8f4+eefeeqpp2jRogV169a1VRMUOmIqmJZ04QKEhIhpS9cwdOjVUjJvvAE//WQ77f3799vuYuVIuyzoG8m1sffuLZJLLVrA6dOiwPzOnfpo60ZGBjg4wLx5NB42zL4BlmFUf5cT5bucKN/lRPkuJ7L6rjyXU9/o2PXEZgmmGzGZTLRq1Yqnn36a8PBwTp48yd9//82XX35JkyZN0DQNTdM4d+6cvZqg0IOCRNPYsTctl5s4UdTKAXj8cTHrRKGwFU2bQlwcDB4sdppr08boFtmYZ5+FDRvAy4tqZ89Cly5iSqCe1c0VCoVCoVAoFAqFopiYNM2+31YuXLjAxo0biY2NZcOGDezYsYPc3FwANE0r3JFOUT5IS0vDzc0NC1D9xhfnzIGHHrruqbw8sZLul1/EbmAbNkC7dqVrQ25uLg4ODqW7SDnUNlI/OzubDz/8kNdeew0nJyfd9eHWseflQXY2uLiIv7OyxN9ubvbX1oXUVPIeeQTzsmXi7xEj4JtvxNaNdqYs+17RtY3UV74r35Xv8ugr35Xvynd5tI32Xdb+ZrT2P//8Q926dbFYLFTX4fuDzWcwnTlzhvnz5zNx4kTatGmDu7s7ISEhfPzxx8THx5OTk1M4e8nFxYWePXvaugkKIzCbYdGiIp/+7juxpCk9XezGfuxY6aRWrlxZuguUU+2yoG8kt4rdbL6aXNI0GD8eOneGgwftr60LtWoRPX48fPKJWDIXESHVcjnV3+VE+S4nync5Ub7Liay+K8/l1Dc6dj0pdRrtyJEjbNiwoXCG0pEjR657/doJUtWrV6dr16706NGDHj160KlTJxwdHUvbBEVZIC8PUlOLfKlyZVi4UNTJ2b1bLGfatAlq1y6Z1MWLF0vR0NJhpHZZ0DeS4sR+9iysXw8nT4ok07x50K+fPtr25GJ6OkyaBF27iuJTEiXmVX+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1xOoE0969ewsTSrGxsZw+fbrwtRtX27m7uxMQEFCYUGrbti1ms93KPimMxGy+ur16Ebi5QXS0KCNz4ICom7NmzdWZJ9ZQv379UjS0dBipXRb0jaQ4sdevD9u2iSLzmzfDgAHw8cfw/PNiV0N7atuTQv177xU/BRw6BP/9L3z2mW3XBJYhVH+XE+W7nCjf5UT5Liey+q48l1Pf6Nj1xOoEU+vWrTHlf1O7MaHk6elJ9+7dCxNKzZs3t00rFWWfvDwYMuS2h3h4wMqV0K2b+PL/wAOwYAFUqmSdVPv27UvR0NJhpHZZ0DeS4sZerx6sWwdPPy2WZ06aJGbOzZwJJV1ubvT7XqS+pomaZ/HxEBsL8+dDBfx8qP4uJ8p3OVG+y4nyXU5k9V15Lqe+0bHrSYmmExXUUPL29ubRRx/l+++/5/DhwyQmJvLLL7/w5JNPquSSbNSoAWFhdzzMzw8WLxbL5qKi4LnnrN8UKzo6ukRNtAVGapcFfSOxJnYnJ/j2W/j8czG57ocfivXxtIm2PShS32SCL76ARo3g8GExPXDGjAq3y5zq73KifJcT5bucKN/lRFbfledy6hsdu55YPYNpwoQJ9OjRg549e0o11UtxB7y9RQHiYtCjB/z8M4wcKb4Pe3nBq6/auX0K6TCZ4NlnoXlzePBBMZOpwtG5syj4/eijInP7r39BTIzIrlXQJXMKhUKhUCgUCoWibGL1DKYZM2YwcuRImyWXZCp4VZHQCgraVKsmpiNt3w4TJhR79sTw4TBtmnj82mswZ07xtTt16mRla22HkdplQd9IShp7375w9Cj06nX1uTNn9NG2FbfVr1lT7OD42Wfg6CjWnbZvL4KuAKj+LifKdzlRvsuJ8l1OZPVdeS6nvtGx64lNKm5/8MEHJTrPYrHQt29fWzRBoTN5QUEiK5ScLLZNN5vFrIn33y/2NZ57Dl58UTx+7DFR9Ls4ZGVllaDFtsFI7bKgbySlib1q1auP//oLmjWD11+HK1fsr20L7qhvMokOtXEjNG4MdeqIomcVANXf5UT5LifKdzlRvsuJrL4rz+XUNzp2PbF6iVxRvPHGG9SuXZvx48cX+xyLxcJ9993Hjh07bNEEhZ2ZMWMGM2bM4Er+N/IFISG4VqrEUJOJtQ4O1Bk7lk7ffQdvv80fSUkc7dmT9u3bk5eXx59//glASEgIGzdu5Ny5c9SqVYsePXrQrl0UXbp0JS6uEaGhV3jjjdU0bnyBgQMHsm3bNs6ePUv16tXp168fCxYsACAtLY0qVaqwZcsWAO6//3727t1LUlISVatWJTg4mHnz5gHQrFkz3N3d2bRpEwD33XcfBw8eJDExEScnJ4YOHcq8efPIy8vD29sbDw8PNmzYAEBgYCCJiYkcOXIEBwcHhg8fzurVq9mzZw+NGjXC29ubdevWARAQEEBycjIHDx4EYPTo0SxevJiMjAw8PT3x8/Nj9erVAHTp0gWLxcL+/fsBGD58OCtXruTixYvUr1+f9u3bF67T7dSpE1lZWezZsweAK1eucPLkSc6fP4+7uztdunRh6dKlALRr1w6AnTt3AjBo0CDi4uJISUmhZs2aBAYGsmjRIgBatWqFs7MzW7duBSAoKIgdO3Zw5swZqlWrRv/+/YmIiADAz88Pl/zt/hYsWED//v3Zv38/J0+epEqVKoSEhBAeHg6Aj48PdevWZePGjQD07t2bw4cPc/z4cSpXrsywYcOIiIggNzeXpk2b0rBhQ2JiYgDo0aMHSUlJHD58GLPZzMiRI1m4cCHZ2dk0bNiQQ4cOFb4P3bp1IyUlhQMHDgAwcuRIli1bxqVLl/Dw8KBly5asWrUKgM6dO5Oens6+ffsASEoaQVpaJT78EGJiUoiIqExs7HIAOnToQE5ODrt37wYgNDSUDRs2sGfPHk6dOkVAQACLFy8GKNwVs2AMCw4OJj4+nuTkZNzc3OjTpw8LFy4EoGXLllSpUoX4+HgABgwYwK5duzh16hSurq4EBQUxf/58AHx9falVqxabN28GoG/fvvz+++/s2bMHFxcXQkNDmTt3Lpqmcc8991C/fn1iY2MB6NWrFye+/pqkQ4fIXbKEsLAwIufORbt0Cc8WLWjcuDHr168HoHv37pw5c4ZDhw5hMpkYNWoUUVFRZGZm4uXlha+vb+F7mJiYSHp6OgkJCQCMGDGC6Oho0tPTadCgAW3atGHFihUA+Pv7k5GRwd69ewEYOnQoa9euxWKxULduXfz9/Vm2bBlAscaIlStXsmfPHlq3bo2joyPbt28HuO0Y0aJFC1xdXUs9Rpw+fZqWLVtaNUZERkZy+fJlm4wRv/32G3v27LFqjBgyZAgxMTGlGiPy8vIAOHLkSKE3dxoj3NzciIuLA6Bfv36lHiOOHz/OpUuXrBojfHx8WJP/PxWlGSPy8vI4fvw4aWlp1KtXj44dO7J8+e3HiNTUVGrXrm2TMSIpKQlPT0+rxoiEhAROnDhRrDHi2LFjHD16FEdHR8LCwliwYAE5OTl4eXkBYpw3m83FGiN+++03ALp27Upqamqpx4iUlBQaNWpk1RgRFRUFUOoxIiYmhj179tj9PuJWY0RmZibZ2dl2v4+4cYzo0KFDoe8Fj+1xH3G7MSIjI6Owffa8jyhqjFi3bh179uyxaowICwtj9erVNhkj4uLiCmO3533EjWNEZGRkodeenp7FGiOaNGli9X3E7caINWvWsGfPHrvfRxQ1RiQlJdGwYUO730cUNUbs27ev0HN730fcOEZYLBZAfA9fu3YtYJ/7CCh6jFi/fj179uzR5T6iqDEiKyuLjIwMu99HFDVGFNzP6nEfAdePEbqj2QCTyaQ5ODho8+fPL9bx586d0zp06KCZTCatUqVKtmiCQicsFosGaMnJyTe/+Prrmgaa5uCgaStXFvuaWVma1quXOLV+fU07duz2x//6669Wttp2GKltpH5WVpY2efJkLSsryxB9TbNt7D//rGnOzuIz17y5ph06pJ92SSiV/iuvaFqTJpq2davVp1Y038uTtpH6ynflu1Eo3/VH+a58NwpZfTdS22jfZe1vRmsnJydrgGaxWHTRs8kSudDQUK5cucLDDz9cmDm9FefOnaNPnz7s2LEDs9nMV199ZYsmKMoCU6aIbdNzc8WWXcWcnebkBAsXQsuWojZO//6Qmnrr44cMGWKjBluPkdplQd9IbBn7gw/Chg3QoIFYMufvf/slmka/7yXWT08XNZmOHoWuXcWuc+VslznV3+VE+S4nync5Ub7Liay+K8/l1Dc6dj2xSYJp7ty59OrVi8uXLzNs2DD++OOPIo/7559/6N27N7t27cJsNvP1118zbtw4WzRBURYwmWD2bOjTR3yxHTgQjh0r1qk1asCKFeDpCQkJMHgwZGYWfWzBNEcjMFK7LOgbia1j79QJtm0TG7GdPy8Sm/mzhe2ubS0l1nd1FQX4hw6FnBxRp2nYMLhwwZbNsyuqv8uJ8l1OlO9yonyXE1l9V57LqW907HpikwRT5cqVWbJkCR07duTSpUsMHDiwcN1sAWfPnqV3797s2bOHSpUq8c033/D444/bQl5RlqhcGSIjoXVrMR1pwIDbT0e6Bk9PWLlS7K6+aZOYDFVUEebz58/buNHFx0jtsqBvJPaI/a67ICYGxowRE3y6d7/6WlaWqGM/bBhMmtSOYcPE30bU6CtV7DVqiFlMX3whdplbtAjatYP8NdplHdXf5UT5LifKdzlRvsuJrL4rz+XUNzp2PbFJggmgatWqrFy5El9fX86fP8/999/P0fxtss+cOUOvXr3Yt28flSpVYvbs2Tz66KO2klaUNdzcIDr66nSkkJBifytv0QIWLxZ5qoUL4YUXbl7R4+7ubodGFw8jtcuCvpHYK3ZnZ/jhBzGDrnJl8dyiRVC/vkg8RUXBX3/VIypK/N2gAeTXOtSNUsduMsHEibB5MzRpImYWDhgAFy/apH32RPV3OVG+y4nyXU6U73Iiq+/Kczn1jY5dT2yWYAKoVasWq1evxsvLi9OnT9O3b1+2bdtGYGAgCQkJVKpUie+//54xY8bYUlZRFvHwuDodaeNGMR0pf2eiO9GzJ/z0k3g8fTp8/PH1r3fp0sXGjS0+RmqXBX0jsWfsJhNUrSoeL1kiVpTlb7RR+LEt+H3hgsiZLllit+bchM1i79hR1EYbNkzMaKpWzTbXtSOqv8uJ8l1OlO9yonyXE1l9V57LqW907Hpi0wQTgKenJ7/99ht16tTh6NGjdO7cmYMHD1KpUiV++uknHnroIVtLKsoqLVqI6R8Fy+ZefLHYp44cCZ9+Kh6/8gr8+uvV15bqPX3kGozULgv6RqJH7FlZ8Mgjtz+mYEbd2LH6LZezaew1akBEhKh0XsCmTdcvmctfH+gwahRjvv8eh1GjDFsfqPq7nCjf5UT5LifKdzmR1XfluZz6RseuJzZPMAH4+PiwatUqqlWrhqZpODo68ssvvzB69Gh7yCnKMoGB8OOP4vFnn8G0acU+9YUXxA+IL/O3KsCsUNiKiIji1b/WNFEYfMECuzfJPphMVx8nJ8Pw4RAQIPrn4sViHeCYMZiXLKHJ8eOYlywxbn2gQqFQKBQKhUKhKBc4WHPwTwXrlopJWFgY3333HQMHDiQrK+uW56slcxWcUaPg5El4+WWYNEksnxsxolinfvwxJCXB/Pli2VJsLLRr187ODb41RmqXBX0j0SP2qCgwm4u3mtNsFrWa9JiUadfYnZygWzeRLZs0STyXn4Ay5b8RphvXB0ZFia0edUD1dzlRvsuJ8l1OlO9yIqvvynM59Y2OXU+sSjCNHTsW07X/810MTCYTixcvZvHixbd8XSWYJODFFyExURRVevhhUUG5R487nmY2iwlQZ8/C77+LusRz5jjg66tDmxXSce5csUuFkZdX7A0SyzZubiKD+/nnV6cM3lhZvwBNE8mnsWPh1ClRIV2hUCgUCoVCoVAoKMESOU3TbP6jkACTSSy/GToULl8WsyD27y/Wqc7OYsJEixbiO+2YMXUwaqfHnTt3GiNcRvSNRI/Ya9cWSc3iYDZDrVr2bU8Bdo/dZBLBFwed1wca+Zk3ur8ZrW8kync5Ub7LifJdTmT1XXkup77RseuJVTOYjh49aq92KGSgUiX4+We47z6xXfqAARAXJ+q63IEaNcQ28l26QFKSGyEhsHq1mkChsC2hobBwYfGOzcuDlBQxi0mvRJNdKavrAxUKhUKhUCgUCkW5wKoEU6NGjezVDoUsuLiI/d27doWDByEoCDZsgOrV73iql5dIMgUEaMTGmnj4YZg3r/gzTmzBoEGD9BMrg/pGokfsw4fDc8+JUkO3m1xZsFJ4wwZo3hy++EKUFbNyBXGx0cX3Mro+0MjPvNH9zWh9I1G+y4nyXU6U73Iiq+/Kczn1jY5dT6z+ar59+3Z7tEMhE7Vrw8qVULcu7NoFw4aJZXPFoFUrePPN7VSufLUmsZ6rLOPi4vQTK4P6RqJH7M7OVzc9vFWyqOD5Dz4QyaXkZFHHftAgUWbMHujiexldH2jkZ97o/ma0vpEo3+VE+S4nync5kdV35bmc+kbHridWJ5g6deqEp6cnTz75JMuWLSMrK8se7VJUdJo0gehoqFoV1qyBceOKnSny9DxUmAT4/HP49FM7tvMGUlJS9BMrg/pGolfsgwaJ1WI1aoi/C3IuBb9r1IDFi+HVV2HnTpg8GRwdYflyUSfsiy/gyhXbtkmX2ENDrZvBdN99dm1OAUZ+5o3ub0brG4nyXU6U73KifJcTWX1Xnsupb3TselKixUWnTp3i22+/JSQkhNq1azNo0CBmzZrFqVOnbN0+RUWmQweIiBC1mX76Cd5+u1in1axZk1GjYOpU8fdLL8HcuXZs5w3aRmK0vpHoGfvgwaKg/Jw5Iu/SqtU5QkPF36dOiSQUgJMTvPOOmIjXrRukp4sldn/8Ydv26BL78OFQs2bx1/m9+SbMnl38pFQJMfIzb3R/M1rfSJTvcqJ8lxPlu5zI6rvyXE59o2PXE6sTTCdPnmTmzJkEBQXh7OxMZmYmy5cvZ8KECXh5edGhQwcmT56sltIpiseAAfD11+Lx++9ffXwbAgMDAXjxRfFlHmDMGFi/3k5tLELbKIzWNxK9Y3d2FjWsIyMhPr4qkZHi76IKyzdvLuoxffUV/OtfItlUgC2WcOoSe3HXB5pM0LChqMH0xBMQEABJSXZrlpGfeaP7m9H6RqJ8lxPlu5wo3+VEVt+V53LqGx27nlidYGrQoAHjx49n6dKlpKSksHjxYsaNG8ddd92Fpmns3LmT//znP/j7++Ph4VF4bGZmpj3ar6gIPP64mAYC8PTTsGzZbQ9ftGgRIL7nfvophIVBTo6YabJnj32bWqBtFEbrG4mRsRdH22yGp56C6dOvPnfiBHTqBL//bn99m3DD+kAtf12gduP6wL//hk8+AVdXsZVe7dp2a1JZ970i6xuJ8l1OlO9yonyXE1l9V57LqW907HpSqv23XFxcGDRoEF9//TUnT55k69atvP3227Rr1w5N0zh9+jSzZ88mNDQUd3d3tZROcWveeQcee0wstxk5EuLji3Wa2SyWLXXvDmlpYkLUiRN2bqtCUUzefhu2b4fAQFFm7Px5o1tUDK5ZH5g3eDBHGzcmb/Dg69cHOjqKCvt//QXh4VendeXmwtKl+lbeVygUCoVCoVAoFGUCk6bZ55vAqVOnWLZsGUuXLmXdunWFM5hM+Usv2rZty6BBgxg0aBAdOnSwRxMUNmTGjBnMmDGDK1eucPDgQWbNmoWrqytDhw5l7dq1WCwW6tati7+/P8vyZyC1b9+evLw8/vzzTwBCQkLYuHEj586do1atWvTo0YOoqCgAWrdujSPg+uCDNNi1izx3d7ZMm8axSpWoXr06/fr1Y8GCBQC4ubnh6+vLli1bALj//vuJi0vgySdbkJTkRosWGs8/H0nVqjk0a9YMd3d3Nm3aBMB9993HwYMHSUxMxMnJiaFDhzJv3jzy8vLw9vbGw8ODDRs2AGIqY2JiIkeOHMHBwYHhw4fz3Xff4eLiQqNGjfD29mbdunUABAQEkJyczMGDBwEYPXo0ixcvJiMjA09PT/z8/Fi9ejUAXbp0wWKxsH//fgCGDx/OypUruXjxIvXr16d9+/ZER0cDoqh+VlYWe/KnZvn6+nL27FnOnz+Pu7s7Xbp0YenSpQC0a9cOgJ07dwJiO8y4uDhSUlKoWbMmgYGBhdnzVq1a4ezszNatWwEICgpix44dnDlzhmrVqtG/f38iIiIA8PPzw8XFhfDwcO6++2769+/P/v37OXnyJFWqVCEkJITw8HAAfHx8qFu3Lhs3bgSgd+/eHD58mOPHj1O5cmWGDRtGREQEubm5NG3alIYNGxITEwNAjx49SEpK4vDhw5jNZkaOHMnChQvJzs6mYcOGmEwmjh8/DkC3bt1ISUnhwIEDAIwcOZJly5Zx6dIlPDw8aNmyJatWrQKgc+fOpKens2/fPgDCwsJYvXo1aWlp1KtXj44dO7J8+XIAOnToQE5ODrt37wYgNDSUDRs2cPz4cRo3bkxAQACLFy8GxBhmNpvZsWMHAMHBwcTHx5OcnIybmxt9+vRhzpylzJ3bhrVr78n/7GbyyCPbmTy5Jbt37+LUqVO4uroSFBTE/PnzCz2uVasWmzdvBqBv3778/vvvXL58GRcXF0JDQ5k7dy6apnHPPfdQv359YmNjAejVqxfHjh3j6NGjODo6EhYWxoIFC8jJyaFJkyY0btyY9flrSbt3786ZM2c4dOgQJpOJUaNGERUVRWZmJl5eXvj6+rJq1Sr+/vtvHnjgAdLT00lISABgxIgRREdHk56eToMGDWjTpg0rVqyg2YoVtJ8zh4v33svvYWFcbNCg1GPEnDlzqFatmhgjHB0Ll18PHDiQbdu2cfbs2ZvGiBYtWuDq6nrdGLF3716SkpKoWrUqwcHBzJs3D+C2Y0RmZiaPPfaYVWNEZGQkly9ftskYsWXLFqpVq2bVGDFkyBBiYmJKNUbk5eXx999/M2LEiEJv7jRGuLm5Fe6Q0q9fv1KPEefPn6dNmzZWjRE+Pj6sWbOm1GNE8+bNSUpKsmqMSE1NpXbt2laPEQsXLgSgZcuWVKlShfj4eC5evMiIESPYtav4Y0RCQgInTpwo1Rjh5eXF2rVrufvuuzGbzcUaI3777TcAunbtSmpq6h3HCAB/f38yMjLYu3cvwHVjhMlkYuDAgSW/jyjFGLF27Vpyc3OtGiNKch9xqzGiQYMGuLq62v0+4sYxokOHDkyfPp2777678H7cHvcRtxsjvL29C9tnz/uIosaIbdu2Ua1aNbvfR9xqjDhx4gTnzp2zaowAGDBgQKnGiF9//ZVDhw5x//334+npabf7iNuNEb/88guOjo5WjRGl/q6RP0ZcvHiRUaNG2f0+oqgxIisri6T80gL2vo+4cYywWCz8/fffTJgwgbVr1xZrjLDld41Vq1Zx5coVXe4jihojPDw8cHZ2tvt9RFFjxNy5c6lWrZou9xE3jhEADzzwABaLherVq2N3NB3IzMzUli5dqo0fP17z8PDQTCaTZjKZNLPZrJnNZq1Bgwba+PHjtT///FOP5ihKgcVi0QAtOTnZPgIXL2pa+/aaBpp2992aVoTOoUOHijz1+HFNa9BAnNqzp6ZlZdm+ebfS1guj9LOysrTJkydrWfZ4U4uJke99abU3bNA0X1/x2QRNGzRI0xIT9dMvKVb7/sknmubsLIJ0dNS0N97QtEuXStWG8ux7edVX/V35bhTKd/1RvivfjUJW343UNtp3Wfub0drJyckaoFksFl30SrVErrg4OzsTHBx83VK6d955pzALevr0ab799tvCbJ1CYlxdxX7vjRuLOi+DBkFGxnWHFGTCb6RhQ4iOhmrVRM2bMWNsv8HVrbT1wmh9IzEy9tJqd+8Of/4plsw5OopVZDNn6qevG5Mmwb59EBQkCqNNmQItWtyxrtrtKM++l3d9I1G+y4nyXU6U73Iiq+/Kczn1jY5dT3RJMN1Ihw4deOedd9i2bRsnTpxg5syZDBw4kCpVqhjRHEVZo359WLECatWCLVtg9Gi4cqVYp7ZpA4sWiS/x8+fDyy/bua0KRTFxcoJ334WdO8VH+o03rr5WzI93+aBpU5FQWrQIvLzg2DGRKH77baNbplAoFAqFQqFQKOyIIQmmaynYlW7JkiW89NJLRjdHUVbw9YUlS8S38iVLYOLEwsLBQUFBtz21Tx/44Qfx+NNPYdo02zXrTtr2xmh9IzEydltqt2gBv/4KBfn0K1egVy+Rf8nOtr++LphMYlvHv/6CV18FFxcYPrxEl6oovpdHfSNRvsuJ8l1OlO9yIqvvynM59Y2OXU8MTzApFLekWzf45RfxZfWrr+D//g+gsNDZ7XjggcLDmTRJzGayBcXRtidG6xuJkbHbU3v5coiNhf/8R8zAy6+zqZu+XalaFT78EBIToVWrq89Pmwb5RSvvREX1vTzoG4nyXU6U73KifJcTWX1Xnsupb3TseqJLgunIkSO89tprBAcHExoayltvvcXRo0f1kFaUd4YNg88+E49ffx1+/pkzZ84U69SXX4Z//Us8fvhhUZeptBRX214YrW8kRsZuT+1Bg2DBArEy9MAB6NEDnnwSLlzQR18X3N2vPt69W3TOPn3gwQfh9OnbnlpRfS8P+kaifJcT5bucKN/lRFbfledy6hsdu56UKsG0bds23n77bd555x0uXbpU5DHLli2jZcuWTJ06lRUrVrB06VL++9//4ufnV7idpkJxW559Fl58UTx+7DEaHzlSrNNMJpGbGjoULl+GkBDI3/G0xFSrVq10FyglRusbiZGx21PbZBJ51P37Ydw48dysWeDnB/k7j1Ys3xs2hAkTwGwWawV9fWH6dMjNLfLwiup7edA3EuW7nCjf5UT5Liey+q48l1Pf6Nj1pFQJpq+++oopU6YQGxtL1apVb3r9zJkzPPTQQ2RlZaFpGt7e3vj6+mIymcjOzuaRRx4hISGhNE1QyMJHH8HIkZCTw70ffSRmQRSDSpXg55/FajuLBQYMgJMnS96M/v37l/xkG2C0vpEYGbse2jVrisRSTAz4+IiJPR98IGo0VSjfa9QQCaX4ePD3h7Q0kUT294c//rjp8Irue1nWNxLlu5wo3+VE+S4nsvquPJdT3+jY9aRUCaY1a9YA8MADDxT5+ueff05aWhqVKlUiMjKSgwcPsm/fPtauXUvVqlW5fPkyX3zxRWmaoJAFsxl+/BF69sSUlia2QT9xolinuriIOuG+viK5NGDA9cuPrCEiIqJkJ9oIo/WNxMjY9dTu2RN27RK7zH3zjUiSRkREcPky5OXp1gz706EDxMXBzJkiu7Zzp+icFy9ed5gsvpdFfSNRvsuJ8l1OlO9yIqvvynM59Y2OXU9KnGDKycnhRP4X/ICAgCKPmT9/PiaTiQcffJAhQ4YUPt+zZ09eeuklNE1jXTELvSoUODnBokVYPDwgKcmqTFGtWrByJdx1l1gmN2TIrXfsUiiMxtkZ3n8f2ra9+tzkyaI+0/79RrXKDpjNouDUgQPw6KPw3ntw7RTi/J0jFQqFQqFQKBQKRdmnxAmms2fPFj5u3LjxTa+fPn26sJD38CK2pw4LCwMoTFIpFMWiZk2Svv1WZIr27bMqU9SoEURHi++vMTEwdqz1M0L8/PysbrItMVrfSIyM3ej3vWHDlsycCZs2iaTT5MkVLEFapw589x1MnHj1uZUroVs32leqZFizjPbdaH0jkbm/G61vJMp3OVG+y4msvivP5dQ3OnY9sSrB1KRJE5o2bUrTpk3p0qVL4fN+fn6Fzxf8dOzYsfD1CRMm3PR6cHAwAFlZWTe9pheBgYGYTCarfmJiYm55vZUrVzJ06FA8PT1xcnLC09OToUOHsnLlymK3KSMjg6lTp+Lv70+tWrVwdXWlefPmvPTSSyQmJhb7Ovv27eOpp57i7rvvxsXFhTp16tCjRw++/vprcm9RTLe8UMXXF1asKFGmqG1biIwEBweYOxdefdU6bTc3N2uba1OM1jcSI2M3+n338KjGrl0QHAw5OfDuu9CunUg4VUg0TewaGReHz+jR8PzzolaTzhjtu9H6RiJzfzda30iU73KifJcTWX1Xnsupb3TsemJVgumRRx4p/ClY8mYymXj44Yeve+2RRx4pnNXUoEEDHn/88ZteHzt2bGHS5sbXyipms5l77rnnpuc1TePJJ59kwIABLFq0iKSkJC5fvkxSUhKLFi1iwIABPPnkk2h3WO5x+PBh2rdvzyuvvMLWrVs5f/48ly5dIiEhgU8++YTWrVsTHR19x3bOnj2bDh068PXXX3P48GGysrJISUkhNjaWp556iu7du3Pu3LkSvw9GExcXB23aiC22CjJFr71W7PP79hWTJQA+/hg+/9xKbQMxWt9IjIzd6Pc9Li4OLy9RS2zePKhbF/76CwICxIZsFouhzbM9JhMsXQrDh2PKyxOd1NdX9HUdl82VBd9lRfb+LivKdzlRvsuJrL4rz+XUNzp2PXGw5uDJkycXPj59+jRffvklmqYxYsQIWrRocd2xGzduxGQy0adPH955552brpWZmcm7775LtWrVinxdD77//nsuXbp022P279/PyJEjAejTpw8eHh43HfPmm28ya9YsANq1a8crr7yCt7c3hw8f5qOPPmLnzp3MmjWLOnXq8P777xepk56eTnBwMAcOHABg3LhxjBo1ChcXF9avX88HH3yAxWJh+PDhxMXF0bp16yKvs2rVKsaPH09eXh716tXjjTfeoHPnzqSmpvLNN9+wcOFC/vjjD4YOHcr69esxm0tV591Y7rtPZIrGjIGpU8HL6/olNrfh4YdFGafXX4cXXgAPD8hftalQlFlMJhgxQnz0X35ZfPznzBH51Qr3HyOenjB/Putff51eCxbA33/D6NHw7bcwYwY0a2Z0CxUKhUKhUCgUCsW1aKWgVq1amtls1p588snrnt+/f7/m4OCgmc1m7eeffy7y3J07d2omk0lr2bJlaZpgd1555RUN0ABtzpw5N71+6NAhzcHBQQO0jh07ahkZGde9funSJa1jx44aoDk4OGh///13kTrvvPNOoc5HH3100+ubN28u1OnVq1eR18jJydHuvvtuDdCqV69epNbTTz9dqPPjjz8W5y24DovFogFacnKy1efaipSUlOufmDJF00DTTCZNW7iw2NfJy9O0p58Wpzo5adqGDSXQ1hmj9LOysrTJkydrWVlZhuhrmrHvfVn1fd06Tfvpp+ufu3DBdrplxvfMTE177z3RUUHTFi3ST9tAVH+XT9tIfeW78t0olO/6o3yXU9to32Xtb0ZrJycna4BmsVh00SvV9JWhQ4eiaRrffPMN48aNY+nSpcyePZsBAwZw5coVatased3ucdeyfv16ANpeu01SGSMvL49ffvkFAFdXV4YOHXrTMdOmTSusaTR9+nRcXFyue71KlSpMnz4dgNzcXD777LObrpGTk8Pn+eu0mjdvzosvvnjTMV26dOHxxx8HxHu3ffv2m45ZtGgRf//9NwCvv/463t7eNx0zdepUatasWfi4PLL/xm20Xn9d7ESlafDAA7B5c7GuYzLBF19AaKgomDx48J136LpJW2eM1jcSI2M3+n2/lX6vXmI2XgHr1oli9l9/bX0B+7LK/v37xbZ6b70lCvu/9x6EhFw9ICnJvtoGYrS+kaj+LifKdzlRvsuJrL4rz+XUNzp2PSlVgum9997D3d0dTdP47rvvCA0NZfz48SQmJmIymZgyZQpVqlQp8twffvgBk8lE3759S9MEu7J27VqS8r+8hIWF3RSLpmksXrwYAF9fX+69994ir3PvvffSLH85R1RU1E21mGJiYrhw4QIg6lzdatna2LFjCx8vXLjwptejoqKKPPZaqlSpwogRIwDYu3cvhw4dKvK4sszJkyevf8Jkgi+/hEGDICtL/M5fangnKlWCX3+Frl3hwgXo3//231dv0tYZo/WNxMjYjX7fi6v/zTeiHtNTT0FgICQk2LddenBd7N7eItFkMom/U1KgdWuRcDp2zL7aBmC0vpGo/i4nync5Ub7Liay+K8/l1Dc6dj0pVYLprrvuYtOmTQQGBqJpWuFPjRo1+Pzzz3nyySeLPC8qKoo9e/bg4uJyyxlOZYGffvqp8PGYMWNuev3o0aOFCaiePXve9loFr588eZJjN3wRio2Nvem4oujYsSNVq1YFRI2rGym4TrNmzahfv/4d23Kr65R1ikxaOjhAeDj4+0NqqsgUnTlTrOu5uIjiyc2awYkTEBR066LJt0qY6oXR+kZiZOxGv+/F1f/5Z/jsM6haFWJjRS38//wHLl+2b/vsyW1j//13sbvckiXg5wcffGDTYMuL7xUR1d/lRPkuJ8p3OZHVd+W5nPpGx64npa7wfM8997Bu3TpOnz7N5s2b2blzJ8nJyfzrX/+65TnNmjVj/fr1xMbGUq1atdI2wS6kp6ezaNEiABo2bEhgYOBNx/z111+Fj319fW97vWtfv/Y8a67j4OBQuOztxmukp6cXZkZL05byQMi1y2OupWpVsfOUt7eYzRAcDOnpxbpm7dqwYgXUqwe7d8PQoUV/T72ltk4YrW8kRsZu9PteXP1KleC558RKsqAg8Rl++21o3x62bLFzI+3EbWMfNgx27YKePSEzE/79b5FVW7fO/to6YLS+kaj+LifKdzlRvsuJrL4rz+XUNzp2PbFqF7nbUa9ePerVq1esY5s3b07z5s1tJW0XIiMjC3eYe/jhhzEVLMm4hhMnThQ+9vT0vO31vLy8ijzv2r+rVq1KjRo17nid3bt3888//5CdnY2TkxMgZkYVLL0rTVtuJDs7m+zs7MK/09LSinxeTyIiIhg+fHjRL7q5wZIlVO7ZE9P27VwJCyM3MlLMcLoDDRpAVJSJvn0dWbfOxJgxV/j++1yuXbF4W20dMEq/wGujPAdj3/vy5nv9+hAZCRERZl56yYF9+0wcPJhD27bWFWYqF757e8PKlZjDw3F47TVMCQnQpw9XRo8md/ZsKMVOmeXNd1tRLnyvoNpG6ivfle9GoXxXvittfTDad1n7m9Haevtt0m4sCKQAoE+fPqzL/1/wAwcO4OPjc9MxU6dO5ZVXXgFgxYoV9O/f/5bXW7FiBUFBQQB8/PHH1xXybtGiBfv376devXqcucOyrpEjRzJ//nwAUlJSqF27NgBbt27F398fgFdffZUPP/zwltfIzMwsnKYXHBzM0qVLb3ns5MmTeffdd296/rXXXsPZ2fm2bTUSj5MneeSHH3DMzWVHu3YsHTz4at2WO/D330359dcHyMurRLdumwgMXM/+/S1ISGhGRoYLVapk4ut7AD+/fTg6XrFzJApF6cjIcGb37jZ07rylsAtcvFiVatUuGdswO+CUmUnvdevotHUr2zp2JDo42OgmKRQKhUKhUCgUhpGVlcWHH36IxWKhevXqdtez2QymisTJkyeJiYkBRIHuopJLIMwqoHLlyre9ZsFMIxAJnqKuc6dr3O46tmrLjbz++utMmjSp8O+0tDS8vLx45plnqFOnzh3baw927txJu3bt7nxg//5oI0bQfudOWgcHc+WNN4qt0bNnHuPGVWLTpm7s2NGVzEwTZrNGXp74/ddffqxfH8rs2bkMHKjfdl3Fjt3GZGdnM23aNF544YXrPj96YlTsRmvbTr8XAOfOQdu2lQkIyOPTT3O5665bn1EufX/3XXJ27KB1kya0zt8x0/T333DuHFrnzvbVtjGqv6v+rifKd+W78l0efeW7nNpG+y5rfzNa+59//rnt5BNboxJMRfDzzz+Tl7/H9yOPPHLL466dwXP5DoVlr52a5uLiUuR17nSN213HVm25EScnpyIHoFs9rwceHh7F0x42DGbMgAkTcPjPf3Bo0gQefbRYGk88IeoH//wzZGaKaR95edf/tlhMhIU5EhUFgweXKBSrKXbsdqJc+F7BtG2tHxcn6uAvWlSJdesqMXUqPP747VeSlTvfu3S5+ljT4PnnYc0aGDdOFALPn/lpF20bYrR+ufO9AmiXBX3luzEYra98Nwaj9ZXvcmkXYJTvRscuq+9665aqyPexY8f4/PPPefbZZ3n++eeZOXMmp0+fLva5vXv3pk+fPqVpgl2YM2cOIMwYOXLkLY+7tkB5+h2KSRfUcwJwdXUt8jp3usbtrmOrtpQHrNr57qmn4PXXxeNx42DVqmKdlpUFy5ff/piCxaVjx4rj9aA87vpnK4yM3ej33Zb6w4bBtm3QsaPYLXH8eOjVCw4cuHpMVhbMmQOjRjnw/fdjGDXKgTlz9PucX0upY8/OhoK6c998I7aL/O47yLvzzMOK5Ht5Q/V3OVG+y4nyXU5k9V15Lqe+0bHrSYkTTG+++SbNmjVj0qRJzJgxg+nTp/PMM8/QtGlTXn755TsWk7p06RIxMTGFS9HKCtu2bWP//v2AqE9UM3+JRVFcW0y7YAe3W3FtMe1ri2xfe51Lly5x4cKFYl2nTp0612UjbdWWCsmUKfDww3Dlivh2vWPHHU+JiIDz5+98aU0Txy1YYIN2KhQ60batmMn06adQpQps2CA2X5syBRYvFgXvx4yBJUvMHD/ehCVLzIwZI56/Tcm2somzs0goxcZCy5ZijeDjj0P37mIHOoVCoVAoFAqFQmETSpRgeu211/jggw/IyclB07TrfrKzs/n000/p2LEjB679L/Fywk8//VT4+HbL4wD8/PwKHyckJNz22Gtfv3EHveJeJzc3l8OHDxd5DVdX18JkUWnaUh7o3bu3dSeYTPDtt9CnD1y6JPZvP3bstqdERRV/8ymzGRYtsq5JJcXq2CsQRsZu9PtuD30HB3jhBdi3D/r3FxN9YmJgyBAoyHPfuCz0wgUICYElS2zenFtis9gDAkRy+ZNPwNUVNm+GDh3E0rlrKZi+NWwYQ6dPF0lpg6ZvGf25MxLV3+VE+S4nync5kdV35bmc+kbHridWJ5h2797N1KlTATGLZvr06ezdu5ft27fzySef0LBhQzRNY9++fXTr1o2tW7favNH2Iicnh7lz5wIitgEDBtz2+CZNmtCgQQMAfv/999seu2HDBkCsv2zcuPF1rwUEBBQ+vt11tm3bVri8rVu3bje9XnCdAwcO3HY3ums1irpOWacgyWYVlSuLfdtbt4azZ8U36tTUWx5+7lyxVtAA4rjbXMqmlCj2CoKRsRv9vttTv3FjiI6GH3+EguH6VnuLGrEs1KaxOzrCpEmQkAAjRoCPD/TocfX1JUuuTt+KisIpLk5kmw2avmX0585IVH+XE+W7nCjf5URW35XncuobHbueWJ1g+vrrr9E0jZo1axIXF8czzzyDn58f7dq144UXXuCvv/7imWeeASA1NZU+ffqwfv16mzfcHqxYsYJ//vkHgAceeAAHh9vXQDeZTISEhABiVtAff/xR5HF//PFH4ayhkJAQTAV7hecTGBiIm5sbAD/++CPaLb7d/fDDD4WPhwwZctProaGhRR57LRkZGcyfPx8QM6dutUNeWeb48eMlO9HNTXyT9vQUBWcGD77lt+Tata2bwVSrVsmaZC0ljr0CYGTsRr/v9tY3mcSPxXLr5FIBei8LtUvsHh4wb55YJ1iw6+bChWJ61tXpW9f/NmD6ltGfOyNR/V1OlO9yonyXE1l9V57LqW907HpidYLp999/x2Qy8cILL9C0adObXndxcWH69OnMmTMHJycn0tPTGThwIMuWLbNJg+3JtcvjxowZU6xznn/++cJE1MSJE8nMzLzu9czMTCZOnAiAg4MDzz///E3XqFy5Ms8++ywAf/31Fx9//PFNx8TFxTF79mwAevbsSadOnW46ZsiQIXh7ewPwwQcfFJkpffnllzmfX1zo5ZdfLlaMZY3KBV8IS4KHB6xcKZJNmzbBQw+J2kw3EBpq3QymIvJ9dqFUsZdzjIzd6PddD/2yuizUrrHnJ/bJyhJjAZSp6VtGf+6MRPV3OVG+y4nyXU5k9V15Lqe+0bHrimYl1atX18xms7Zp06Y7Hrt+/XqtevXqmslk0ipXrqzNnTu38LW9e/dqJpNJM5vN1jbBLqSmpmpOTk4aoLVs2dKqc1977TUN0ACtXbt22ty5c7WtW7dqc+fO1dq1a1f42uuvv37La6SlpWk+Pj6Fx44fP15bt26dFhcXp/33v//VXF1dNUBzcXHRdu7cecvrLF++XDObzRqg1atXT5s+fbq2ZcsWbeXKldqwYcMKrx8QEKDl5uZaFaemaZrFYtEALTk52epzyxTr12ta5cqaBpr27LOalpd33cuZmZpWs6ammUzikNv9mM2atmuXMWHoRVZWljZ58mQtKyvL6KYo7ETPnnf+rF/7ExhodIttyE8/WRf8nDlGt9iuqP4uJ8p3OVG+y4nyXU6U73KSnJysAZrFYtFFz+oZTFn5/3Pr4uJyx2MDAwNZu3YttWvXJicnh4ceeojvvvvOWkldmDdvXuHOd8WdvVTAlClTeOyxxwDYuXMno0aNolOnTowaNYqdO3cC8Pjjj/P+++/f8hrVqlVj+fLl3HPPPQDMmjWL3r1706VLF/7973+Tnp5O9erVmT9/Pm3btr3ldYKCgpg5cyaVK1fm7NmzTJw4kc6dO9O/f38iIyMB8Pf3Z9GiRVSqVMmqOMsKERERpb9IYKAoOgPwxRcwbdp1Lzs7X335hhWNhRQ8n5cnNqRavLj0zboTNom9nGJk7Ea/73roW7Ms1GTSb1moLu99GZ2+ZfTnzkhUf5cT5bucKN/lRFbfledy6hsdu55YnWCqXbs2AKdOnSrW8R07diQmJoa77rqLK1euMG7cOKZPn26trN2ZM2cOAJUqVeLBBx+06lyz2czs2bNZvnw5ISEhNGjQgMqVK9OgQQNCQkKIjo7m22+/xXyHLzB33303O3fu5P/+7//o2LEjNWrUoEqVKjRr1owXXniB3bt3ExwcfMf2jBs3ju3btzNu3DiaNm2Ks7MztWvXJiAggK+++opNmzbh7u5uVYxlidzcXNtcaNQoyC9Yz4svipos1zBokPjeWaOG+LvAvoLfNWqIJFT37pCWJpbVvfVWkSvubIbNYi+HGBm70e+7HvrWLAvVtKvLQm9YFWxzdHnvy2hVf6M/d0ai+rucKN/lRPkuJ7L6rjyXU9/o2PXk9lWsi8DPz4+zZ8+yadMmBg4cWKxzWrRowYYNG+jTpw+JiYk8//zzVidx7M2mTZtKfY2goCCCgoJKdY2qVavyyiuv8Morr5TqOi1btmTWrFmlukZZpajaXyXmxRchMRGmTxc7RdWvDz17Fr48eDCcOiUKGi9aBMeOWWjc2I0hQyAsTMx0Gj0aXnpJTIR6/33Yvh1++QVq1rRdMwuwaezlDCNjN/p910N/+HB47jlRy/p2hb5NJpFcDQuDnBxo0wa6dIF33gF7NFOX975g+lZxkkzFnelkA4z+3BmJ6u9yonyXE+W7nMjqu/JcTn2jY9cTq++Uu3XrhqZphcutiou3tzcbN27Ex8cHTdP45ZdfrJVWKABo2LCh7S5mMonlcUOHwuXLYhrHvn3XHeLsLOr/RkbCsmUZREaKv52dxeuOjvD55zBnDri4wIoV0LEj7N5tu2YWYNPYyxlGxm70+66HvjXLQn/8URy/di0cOgQ//QTNmsGTT8KJE7Ztly7vvbVV/WNiICgItm61Z6sM/9wZiervcqJ8lxPlu5zI6rvyXE59o2PXE6sTTP369QPg77//Zs2aNVad6+npSWxsLG3atEG7017YCsUtiImJse0FK1WCn3+Grl3F9I0BA8S0JSu1H3oINm+Gxo3hyBG4914ID7dtU20eeznCyNiNft/10r95Wah23e8aNUStsUGDxOv9+0N8vPidmwuzZsHdd8Ozz8Lp07Zpky6xDx8uphzeKrNWgMkETk5iFtOKFeDvL6Y55tfaszVGf+6MRPV3OVG+y4nyXU5k9V15Lqe+0bHrSYlmMHl5eWE2m5k8ebLVgnXq1CEmJoYuXbpYfa5CYTdcXGDJEvDxEVMwgoJEYSUradtWLJHr10/UpnngAZg0SSwlUijKAwXLQufMgcGD82jc+CiDB+cxZ454viC5VECnTiLXEhsrVpdevixWnHp7w7FjhoRgPdZM34qIgIMH4ZFHRKJp6VJo317MgrTHtEWFQqFQKBQKhaKcUKJiEsePHycnJ4eNGzeWSNTNzY3169dz9OhRjhw5UqJrKOSlR48e9rlw7dqwciXUqwe7dsGwYeLbspXatWpBdDT8+9/i72nToG9fOHu29E20W+zlACNjN/p911u/YFno3Lm5jB37E3Pn5l63LLQoAgJg/XpYs0bUZOrWTczmK6CktQ11i704Vf0Lpm95e8MPP8Bff8GDD4rk06JFYiakDTH6c2ckqr/LifJdTpTvciKr78pzOfWNjl1P9KtWegOVK1emUaNGNGrUyKgmKMopSUlJ9rt4kyawfDlUrSq+KT/xhJiKNGcODBtGtcGDReJpzhzIyrrlZSpVgilTYOFCqFYNfv8dOnQQy4lKg11jL+MYGbvR77vR+sXFZII+fWDTJlEYv4DkZNG1pkyBixetu6ausV87fSs0lLT27UV9pltN3/LxEUmlvXvh4Yfh5ZevvrZvHxw4UKrmlBff7YHq73KifJcT5bucyOq78lxOfaNj1xPDEkwKRUk5fPiwfQU6dBDLYCpVEl8sa9USO8xFRVF9xw4xy2HMGGjQQCyPuQ1DhoikUrNmkJQE3bvDt9+WvGl2j70MY2TsRr/vRutbi8kEbm5X/549G06ehDffFDvNffwxZGQU71q6x35NVf/lL73ETVX9i8LPT1Q6r1Pn6nMTJ4rnH3kEShhDefPdlqj+LifKdzlRvsuJrL4rz+XUNzp2PVEJJkW5w6zHNuEDBsCECeJxwUylgl2mCn5fuAAhIaJ2023w9RVJptBQseJu3DgYPx6ys61vli6xl1GMjN3o991o/dLyyivwyy+iAHhKipjo4+0tajXdqR+US98zMsTUxby8q1vsPfGE1UWpyrvvpaFc+l5B9I1E+S4nync5kdV35bmc+kbHricmzaDt3K5cuVI4VUymbfvKO2lpabi5uZGcnEyda/+3vqKRlSVmKJ0/f/vjTCZRm+XUqdvPcEB81/zwQzGLQ9PEBlSRkeDpabtm24vs7Gw+/PBDXnvtNZycnIxujkInbO17bq6YFPjuu3D8uHju7rvFarLKlUt9+bLH1q3wzjuiCjqAgwM8/ji88QZ4eRnbttug+rucKN/lRPkuJ8p3OVG+y8k///xD3bp1sVgsVK9e3e56DiU9MSMjg2nTprFgwQIOHz6M2WzG19eXkSNHMmHCBJzv8GU7ISGBVq1aYTabyS1p9VeFbsyYMYMZM2Zw5coVAKKionB1dWXo0KGsXbsWi8VC3bp18ff3Z9myZQC0b9+evLw8/vzzTwBCQkLYuHEj586do1atWvTo0YOoqCgAWrdujaOjI9u3bwdg4MCBbNu2jbNnz1K9enX69evHgvyiLhkZGfTq1YstW7YAcP/997N3716SkpKoWrUqwcHBzJs3D4BmzZrh7u7Opk2bALjvvvs4ePAgiYmJODk5MXToUObNm0deXh7e3t54eHiwYcMGGsfG0uVOySUQmaLz5zn39dccCwjg4MGDAIwePZrFixeTkZGBp6cnfn5+rF69miZN4Pvve/Hss+7ExzvQokUWixY5kJGxkosXL1K/fn3at29PdHQ0AJ06dSIrK4s9e/YA4ODgQLVq1Th//jzu7u506dKFpfnL9Nq1awfAzvwt0wcNGkRcXBwpKSnUrFmTwMBAFi1aBECrVq1wdnZm69atAAQFBbFjxw7OnDlDtWrV6N+/PxEREQD4+fnh4uICwIIFC+jfvz/79+/n5MmTVKlShZCQEMLDwwHw8fGhbt26hRsA9O7dm8OHD3P8+HEqV67MsGHDiIiIIDc3l6ZNm9KwYcPCbTt79OhBUlJS4XgycuRIFi5cSHZ2Ng0bNuT48eOY8nfy6tatGykpKRzIr3EzcuRIli1bxqVLl/Dw8KBly5asWrUKgM6dO5Oens6+ffsACAsLY/Xq1aSlpVGvXj06duzI8uXLAejQoQM5OTnszt8NLDQ0lA0bNrBv3z5atmxJQEAAixcvBqBt27aYzWZ27NgBQHBwMPHx8SQnJ+Pm5kafPn1YuHAhAC1btqRKlSrE5xfhGjBgALt27eLUqVO4uroSFBTE/PnzAfD19aVWrVps3rwZgL59+xIZGUn16tVxcXEhNDSUuXPnomka99xzD/Xr1yc2NhaAXr16cezYMY4ePYqjoyNhYWEsWLCAnJwcmjRpQuPGjVm/fj0A3bt358yZMxw6dAiTycSoUaOIiooiMzMTLy8vfH19C9/DxMRE0tPTSUhIAGDEiBFER0eTnp5OgwYNaNOmDSvykyj+/v5kZGSwd+9egJvGiLAwfxwcolm/vinLl7fF3/8ikZFCJyQkhNjYjaSmXh0jvvrqK+666y6rxogWLVrg6upa6jEiOTmZ5557rsgxAiAwMJDExESOHDmCg4MDw4cPJzIyksuXL9OoUSO8vb1Z9/DD1O7cmR5r1+IcGwtff80WTaPz118XOUYAdOnSBYvFwtq1a7nrrrsYPnw4K1cWb4wYMmQIMTExpRoj8vJnaR45cqRw/L7TGOHm5kZcXBwA/fr1K/UYceLECbp162bVGOHj48OaNWtKPUY4Ojri4uJi1RiRmppK7dq1bTJGnD59mscee8yqMSIhIYETJ06Uaozwyk96LliwALPZXKwx4rfffgOga9eupKamlnqMOH/+PA8//LDd7yOKGiPmz5+Pm5ubze4jij1GrFsHQG5uLn5+fne8j7h2jNi/fz9AqcaIDh06FPpe8Nge9xG3GyOuXLlCdv50VnveRxQ1RsTExHDXXXfZ/T7iVmPEli1bCr/o2/M+4sYxIjIystBrT09Pu91H3G6M+N///oe7u7vV9xG2+K5x+vRpnnjiCbvfRxQ1Rhw8eJBKlSoB1o0RAQEBJCcnl2qMsFgsAIX3GGCf+wgoeoz49ddfqVGjhi73EUWNEVeuXMHHx8fu9xFFjRHffvstd911ly73EXD9GKE7WglITEzUmjVrppnNZs1sNmsmk0kzmUyFfzdq1EiLiYm57TX27t1beI6i/GCxWDRAS05ONqwNv/76q/1Fhg7VNLNZ00QK6fY/ZrM43goOH9a0Nm3E6ZUqadq0aZqWl3fn83SJvQiysrK0yZMna1lZWYboa5pxsRutbaS+vX3PyNC08+ev/r19u6Y1b65p8+Zp2pUr4rkK5fvvv2vaQw9p2uXLV5/bvFnTTp/WR7+YqP6u+rtRKN/1R/mufDcKWX03Utto32Xtb0ZrJycna4BmsVh00bN6MeCVK1cYNmwYBw8eRNM0HB0d6dixI61ataJSpUpomkZiYiJ9+vRh6tSpts+IKaRHlyWV585drbV0J/LyIDXVqss3bQqbN4sdzq9cgRdeEHWE71T4WOblpEbGbvT7brS+vXBxEStMC5g6Ff76C0aOhHbtRHkzL68K5HuPHmKNoKOj+PvyZRg9WgwIL78M//xjX/1yhOrvcqJ8lxPlu5zI6rvyXE59o2PXE6sTTBEREWzbtg2TycSIESM4deoU8fHx7Nq1i6SkJF588UUcHBzIy8vjtdde45VXXrFHuxUS4+PjY3+R2rWhuMXYzGax05yVVKkivmt+/rnYsO7XX6FLFzhy5Nbn6BJ7GcXI2I1+343W14uvvxb1mapXh927RQ39Z5/1Z/VqMV1Qb+z+vp89C3fdBZmZYmu9Jk3g9ddFglsP/TKM6u9yonyXE+W7nMjqu/JcTn2jY9cTqxNMc+fOBcR6zfDwcGpd88W6Tp06TJ06ldjYWDw9PdE0jU8++YSnnnrKdi1WSE/B2li7Ehpq3QymIUNKJGMywbPPwrp1ULeu+FLdoQOsXFn08brEXkYxMnaj33ej9fWienV4+204elTkWapUgZ07Hbn/fhg1Sv/22P199/ISUxmjo6FjR7h0SewE0LgxvPUWv+fXjZAR1d/lRPkuJ8p3OZHVd+W5nPpGx64nVieYtm/fjslk4tlnny0suHsjnTt3ZuvWrbRv3x5N0/jmm2948MEHCwtEKxRlnuHDoWZNkQG6E2azWM9TCnr0gB07oHNnuHABgoJgypTi57gUiopErVrw3/+KRNOAAQk4OYk+UoAxe5/aCZMJBgyA+HhYvBjatIH0dHj/fdzyd1pVKBQKhUKhUCjKA1YnmFJSUgBo3rz5bY+rV68eMTExBAYGomkac+fOZdiwYeTk5JSspQpFPt26dbO/iLMz/PijeHyrJFPB83l5EBAA+TsJlBQPD/j9d3jySfEF+s03YehQSEu7eowusZdRjIzd6PfdaH2jqFsXZs6swuHD8MQTV5+fOxeCg0VS1p7o+r6bTDB4sAgqMhImTqTZY49dfX3tWrh4Ub/2GIzq73KifJcT5bucyOq78lxOfaNj1xOrE0wF2ypmZWXd8VhXV1dWrFhBcHAwmqaxdOlSgoODyczMtL6lCkU+BUlOuzNoEERFXa1CXFCTqeB3jRrw/fdw771Xpx19/HGpplc4OcHMmfDtt1C5spjQ4O8vCh+DjrGXQYyM3ej33Wh9I0lJScHDQ/QNEN3r/fdh+XKxnHTYMMjfydgu2rpjNovM8hdfXNU/c0aMR02bikroly7p3y6dUf1dTpTvcqJ8lxNZfVeey6lvdOx6YnWCydPTE4BDhw4V63gnJycWLVrEyJEj0TSNNWvWcP/995N27bQMhcIKDhw4oJ/Y4MFw6pSoxh0aytnmzUV9pjlzxPNjx0JMDDz2mJjJ9PLL8PDDomhvKXj8cdi4ETw94cABkWRauFDn2MsYRsZu9PtutL6R3Bi7yQSLFsEDD4jHCxdC69ZiR8aDB+2rrTeF+idOiMEgJQVeeUUkmqZNK/U4U5ZR/V1OlO9yonyXE1l9V57LqW907HpidYKpbdu2aJrGunXrin1OpUqV+PXXX3n88cfRNI1NmzYxcuRIa6UVCmNwdoaHHoLISNa99ZZYvvLQQ+J5EFMrvv0Wpk8X28H98gt07y6+FJaCTp1g+3YIDBQlWYYNg7lz26BKmSlkx8dHdLM9e0S/0DSxC6OfH/zf/xndOjvQqRPs3y9mTDZpAsnJMGkSeHvDl19CMWYUKxQKhUKhUCgUdkezkq+++kozmUxatWrVtPT0dGtP11544QXNZDJpZrO58Lei/GCxWDRAS05ONqwNV65cKbva69ZpWu3amgaaVreupsXGllozJ0fTJk0SlwRN69tX01JSSn1Zq8jKytImT56sZWVl6St8DWXa9wqqX158375d0wYOFP3jt9/01bYnRepfvqxp33yjaQ0bioCdnDTt5Emb6pYX3yuitpH6ynflu1Eo3/VH+S6nttG+y9rfjNZOTk7WAM1iseiiZ/UMpoEDB2Iymbh06RJfffWV1QmtTz/9lLfffhutQm0DpNCTZcuWlV3tXr1g2zaxZic5GXr3hlmzSqXp4ACffALh4eDklMtvv4kdzXfuLNVlyx1l2vcKrm8kxYm9fXtYtgx274Y+fa4+/8EHYqJPcrL9tO1JkfqOjqLi+aFD8NVX8PbbYoeAAlasgAqwmYbq73KifJcT5bucyOq78lxOfaNj1xOrE0xeXl68+eabPPbYY5w7d65EopMnT+bzzz+nZ8+e9Lh272mFohhcMrDAbbG0GzeGzZth+HDxRe/JJ2HCBLh8uVTao0bBu+/+hrc3HDsGXbuKUlCyUOZ9r8D6RmJN7K1aXd3c8cIFkWCaNk2sKvv3vyE11X7a9uC2+pUrw1NPicAKiI8Xmw00awY//AC5uXZvo71Q/V1OlO9yonyXE1l9V57LqW907HpidYIJ4N133+Wbb77hgw8+KLHwxIkTWb9+PevXry/xNRRy4nHt/9aXVe2qVWHePJgyRXzjnTkT7ruv5FMp8unSpSpbt4rvkFlZMGYMPPtshZiwcEfKhe8VVN9IShq7mxssWCDKF2VkiGRTkybw7rtgsdhX21ZYrX/qFNStC0ePwqOPiqJUv/xCeSzcpvq7nCjf5UT5Liey+q48l1Pf6Nj1pEQJJoXCSFq2bFk+tE0mMbtgyRKoVg1iY8Xath07SqVfsyYsXSpWxoCoLd67t9jJvCJTbnyvgPpGUtLYTSbo1w+2bBFdsE0bSEuDyZNFomn58qLPy8oSMwOHDYN//7sLw4aJv42oo2117KGhcOQIfPQR1K4tltE99BC0bCkS3nl5dmmnPVD9XU6U73KifJcTWX1Xnsupb3TseqISTIpyx6pVq8qXdnCwWLri4yN2luvWTRRUKoW+2SxmYixZAtWrw8aNog5NXFyJLlsuKHe+VyB9Iylt7CYTDBok8rrz54OvL1y8CM2b33zskiXQoIGYGRgVBZs2ORIVJf5u0EAkdvWkRLFXrQovvyxmMf33v1CzJiQkwIsvlnqZrp6o/i4nync5Ub7Liay+K8/l1Dc6dj1xsNWFjh8/zl9//cWJEydIT08nMzMTFxcXXF1d8fLyonnz5jRq1MhWcgpF+cLXV0yleOABUYT3gQfgzz/FF8BKlUp82UGDYOtWGDJE7GLesyd88YUo+1RQi0ahUIik7PDhMHSo6DNNm1597YUXxAylr7+++lzBZJ+C3xcuQEiISDwNHqxXq0tBtWrw+uvwzDPw+efQsCE4O4vXrlyBNWvEFK9rB4qsLIiIwGHhQsbs3InDn3+KN2z48KvnKhQKhUKhUCgUt6BUCaajR4/y2WefERUVxcmTJ+94vIeHB6GhoTz33HN4e3uXRlohMZ07dy6f2jVqiCkQb74JH34olrHs3g2//ipmGZRQ38cH/vgDHntM1JyZMEFMmPrf/yrWd8Jy63sF0DcSW8deqRLce+/Vv/fsgc8+u/N5miZyMWPHilJHevQtm8RevTq89db1z4WHw8MPiyW7770H/fuLsWnsWDh/HrPZTJO8PLQTJ0RG7bnn4McfRUZbJ1R/lxPlu5wo3+VEVt+V53LqGx27npR4idzbb7+Nr68vX375JSdOnEDTtDv+nDx5khkzZuDn58dbN97wKhTFJD09vfxqV6okqg2Hh4OLC6xcCZ07w19/lUq/WjWx/Oejj8RMje+/h+7dITGxdM0tS5Rr38u5vpHYO3YfH5FrKQ6aBufPi0SuHtgt9vPnxVK6bdvEjgG+vqJ+04ULAJjyp22Zbpy+tWSJfdpTBKq/y4nyXU6U73Iiq+/Kczn1jY5dT0qUYJowYQJTpkwhJycHTdNo1qwZ48eP59NPPyUiIoLo6GjWrl1LdHQ0ERERfPrpp4wfPx5fX180TSMnJ4f//ve/PPnkk7aORyEB+/btK//ao0bBpk1i2cqhQyLJVIwCL7fTN5lE6ZVVq0R9323boEMHWLfONk02mgrheznVNxJ7x+7kBJcuicRscTCbYdEiuzapELvFPnGiqNH08stiKtbBgyJ7pmlFH1/w/NixulU7V/1dTpTvcqJ8lxNZfVeey6lvdOx6YvUSuVWrVvH1119jMpno2LEj06dPt2rK1x9//MGzzz7Ltm3b+Pbbbxk2bBj9+vWzthkKRfmnXTtRDGb4cNiwQcwQeO89eOONUhVQuu8+kVwaNkwUNu7bF/7v/0SNX1WXSaG4mXPnir/BWl4epKbatz26UKeOmPLo5QXPPnvn46+dvvXQQ/Zvn0KhUCgUCoWi3GF1gmnWrFkAtGvXjt9//x0XFxerzr/33nvZsGED3bp1488//2TmzJkqwVQOmDFjBjNmzODKlSsAREVF4erqytChQ1m7di0Wi4W6devi7+/PsmXLAGjfvj15eXn8+eefAISEhLBx40bOnTtHrVq16NGjB1FRUQC0bt0aR0dHtm/fDsDAgQPZtm0bZ8+epXr16vTr148F+etSfH19OXLkCFu2bAHg/vvvZ+/evSQlJVG1alWCg4OZN28eAM2aNcPd3Z1NmzYBcN9993Hw4EESExNxcnJi6NChzJs3j7y8PLy9vfHw8GDDhg0ABAYGkpiYyJEjR3BwcGD48OE4ODgQHh5Oo0aN8Pb2Zl3+9KCAgACSk5M5ePAgAKNHj2bx4sVkZGTg6emJn58fq1evBqBLly5YLBb2798PwPCVKzkZFkbj6Gh46y1ytm4lKjSUXGdnOnXqRFZWFnv27AEgODiYlStXcv78edzd3enSpQtL82c+tWvXDoCdO3cCsHLlIB58MI3ffmvAyy/DH39cYeDAhTg759KqVSucnZ3ZunUrAEFBQezYsYMzZ85QrVo1+vfvT0REBAB+fn6F/XzBggX079+f/fv3c/LkSapUqUJISAjh+bvi+fj4ULduXTZu3AhA7969OXz4MMePH6dy5coMGzaMiIgIcnNzadq0KQ0bNiQmJgaAHj16kJSUxOHDhzGbzYwcOZKFCxeSnZ1Nw4YN6dmzZ6FOt27dSElJ4cCBAwCMHDmSZcuWcenSJTw8PGjZsmXhbg2dO3cmPT298H8OwsLCWL16NWlpadSrV4+OHTuyPH/P+g4dOpCTk8Pu3bsBCA0NZcOGDWiaxurVqwkICGDx4sUAtG3bFrPZzI4dOwq9iY+PJzk5GTc3N/r06cPChQsBsTVplSpViI+PB2DAgAHs2rWLU6dO4erqSlBQEPPnzy/8fNeqVYvNmzcD0LdvXzw8PAgPD8fFxYXQ0FDmzp2Lpmncc8891K9fn9jYWAB69erFsWPHOHr0KI6OjoSFhbFgwQJycnJo0qQJjRs3Zv369QB0796dM2fOcOjQIUwmE6NGjSIqKorMzEy8vLzw9fUtfA8TExNJT08nISEBgBEjRhAdHU16ejoNGjSgTZs2rFixAgB/f38yMjLYu3cvQKnHCE3TCA8Pt2qMaNGiBa6ursUeI1xcfDGZnNG04kxj0jh9+h9+/XUtvXrdPEZERkZy+fJlm4wRBbEPHz6clStXcvHiRerXr0/79u2Jjo4GuGmMGDJkCDExMcUaIwYNGsSl+fOpYzJhvtXspWsjN5k4+cUX7KpR46Yxws3Njbj8bSz79etX6jFC0zS2bNli1Rjh4+PDmjVrgNKNESEhISxfvtyqMSI1NZXatWvbZIzQNI0LFy5YNUYkJCRw4sSJUo0RXl5egBjnzWZzscaI3377DYCuXbuSmppa6jHC3d2dixcv2v0+oqgxon79+oSHh9v9PuJWY8S9997L9u3bS3YfUYoxokOHDoW+Fzy+doyIi4sjJSWFmjVrEhgYyKL8KZzW3kfcbowICwvT5T6iqDGiYJy1933ErcaINm3aFMZuz/uIG8eIyMjIQq89PT3tdh9xuzGiSpUqhIeH2/0+oqgxQtM00tLSbHYfYc0Y0bVr10LPrRkjSvVdI3+MsFgsAFgsFtauXQuU/j7CmjGibt26hIeHWz1G2Oq7RteuXYmPj7f7fURRY0TBWKPHfQRcP0bojmYlnp6emtls1ubNm2ftqdcxb948zWQyaZ6enqW6jkJfLBaLBmjJycmGtWHZsmUVU3vWLE1zdBQLVVq10rQjR0qtn5enaTNmaJqDg7hsy5aadvCg9U3LysrSJk+erGVlZVl/so2osL6XYX1ZfP/pp4L1YcX/8fPTtK++0rT0dPu1Sxffe/a0LvDAQPu3SVP93Qhk6e9lUdtIfeW78t0oZPXdSG2jfZe1vxmtnZycrAGaxWLRRc/qGkz//PMPQKl3gSs4PyUlpVTXUchHWlpaxdQeNw7Wr4d69cTWVh073lRAyVp9kwmefhpiYqB+fdi7Fzp1gvz/+ClXVFjfy4G+kegR+/DhYiPHOy0hNZlEzaYqVWD/frFjo4cHTJpkn4L6uvheu3bxC1ABHD4slvbaGdXf5UT5LifKdzmR1XfluZz6RseuJ1YnmOrUqQPA4cOHSyVccL67u3uprqOQj3r16lVc7W7dRAGljh1FoZd+/eCLLwqL7JZUv1s3UY+pa1ewWMRu4+++W/y6M2WBCu17Gdc3Ej1id3aGH38Uj2+VZCp4PiICTp2Czz6Du+8W/WnaNJF3sTW6+B4aat1AcOIE+PuLYm/FWFZXUlR/lxPlu5wo3+VEVt+V53LqGx27nlidYPL390fTNKZOnUp2dnaJRLOysvi///s/TCYTnTp1KtE1FPLSsWPHiq3t6SmKfj/8MFy5As89B489BllZpdK/6y4xQeqZZ8TfkyeLuuL5O5OXeSq872VY30j0in3QIIiKgho1xN8Fk3oKfteoAYsXi+Pc3ES3PHAAoqPFTKbAwKvX+vRT+PJLuHixdG3SJXZrpm9VqwajR4Ojo8iuXXvO+fM2bZbq73KifJcT5bucyOq78lxOfaNj1xOrE0zjxo0DYMeOHfTs2bOwcFdxiY+Pp2fPnoXFwcaPH29tExSSU1BIsUJru7iIKRWffiq+4f7wAwQGsu7nn0t12cqVxRffH34QszaWLROTEfLrKJZppPC9jOobiZ6xDx4sZifNmSMm9jRvfpbQUPH3qVMiuXQtZjMMGAD/+9/VXEt6utgMcuJEsXzu2Wchvx6n1egSuzXTt375BX79VawHfPvtq69v2SIy2I89BvmFVkuL6u9yonyXE+W7nMjqu/JcTn2jY9cTq3eR69+/P+PGjeObb75h69at3Hvvvfj6+tKzZ098fX3x9PTE1dWVypUrc/nyZdLT0zl58iQJCQn8/vvvhbsHADz22GP079/fpgEpFBUGkwleeAFatoSRI2HLFvodOADt28O995bq0o88Aq1awZAhcOiQuNx338GIETZqu0JRTnF2hoceEj/h4esYPXq0VedXqgRTpsD06WKG0/Tp4qd/f5F06t/fupJHulAwfWvsWDh/Hs1sxpSXV/ibGjVEEqogw1a//vXnL10K2dnw/ffip0cPkVkLCQEHq28zFAqFQqFQKBTllBLd+X399de4u7szdepUcnNzSUhIuC5xdDs0TcPBwYGXXnqJKVOmlEReITkF2+hKo923ryiqGxJClX37oGdPmDkTHn20VJdt3x62b4dRo2DtWpHD2roVPvigbH4nlM73MqRvJOXNdxcXsQx1wgRYs0Ykl5Yvh5Urxc9778Fbb9lPv8QUTN9asIC8yEgS//yThm3bUmnYMAgLE5m3W/Gf/8DAgfD557BggVjiu2EDNGwo3oxnn739+UVQ3nyvSPpGonyXE+W7nMjqu/JcTn2jY9eTEv8/6pQpU/jrr7+YMGECDRo0QNO0O/7cddddTJgwgX379vHf//4X051qPigURZCTkyOftrc3xMWR1rs3XL4slqI8+yyUsj3u7uJL76uvir8//hjuvx/yN4skK0ssDxo1yoHvvx/DqFEOzJkjntcbKX0vI/pGUl59N5tFjf6lS8UswUmToFYtePDBq8fs3y9+7KFfIvKnb+XOnctPY8eSO3eumMp1p+SQyQRdusDcuXDsGLzxhhhcEhNhxowSZazLq+8VQd9IlO9yonyXE1l9V57LqW907HpSqon63t7ezJgxgxMnTnD48GGWLVvGV199xUcffcR7773HRx99xFdffcXSpUs5fPgwJ0+eZMaMGdxzzz22ar9CQnbv3i2lNtWqsfyxx0R1bhBTI+6/H1JSSnVZBwf48EOxO1bVqrBundjE7pNPoEEDGDMGliwxc/x4E5YsMTNmjHh+6dLSh2QN0vpeBvSNpCL47u0t+tPp09C06dXn33gDWrQQkxSXLBE1/e2hryuenvD++yK59N13Yr1gQYIpJ0dMmVy69OZgb6Ai+F5e9Y1E+S4nync5kdV35bmc+kbHric2WwjTpEkTmjRpYqvLKRSKojCb4Z13oE0bscvc+vXQqZPY3qp161JdOiwMmje/WpfppZeuvpaXZ7ru94ULorxKVJRYWaNQKO5M5cpXH1+5Iuo1mc1iKd2aNdCkCTz9NDz+uNjYrVzj4nLzMt7ISJg3T/w0bSqKUj36qNiWT6FQKBQKhUJR7ilrpUYVijsSGhoqpfZ1+qGh8McfYmrEsWNieUpERKmv36IFxMaKXchvh6aJ32PH6rdcTvkuJxXV90qVRLmiw4fh5ZdFQunoUfHYw0NMAqpwvnftKgKsUQOOHBGbGHh6ikTTDVvtVVTfy4O+kSjf5UT5Liey+q48l1Pf6Nj1RCWYFOWODRs2SKl9k36LFhAfL9bXZGSILeDefBPy8kqlsXp18Uo7aRqcPy++JOuB8l1OKrrvjRvDRx/ByZPwzTdiImJmpsjBFOjn5EBurt2bYn8aNrwa7MyZ4OcH6enw5ZfQrBn8/XfhoRXd97KsbyTKdzlRvsuJrL4rz+XUNzp2PVEJJkW5IzU1VUrtIvVr1YLoaFFBGES9k5AQsFhKrBEVVfxt1M1mWLSoxFJWoXyXE1l8r1IFnngC/vwTfv8dHnnkqv5PP4nJiv/3f3DunG5Nsh9Vq8KTT8LevfDbbzBoEPToAXffXXiIY2wsXLxoSPOM7m9G6xuJLP29LOobifJdTmT1XXkup77RsetJqRJMmzZt4oUXXmDw4MGEhoby2muvsWPHjmKde+jQIZo2bYq3t3dpmqCQkNq1a0upfUt9BwdRQfinn8DJCZYtg3vvvWnJSXE5d674k6Dy8kCv8VL5Liey+W4yiVxLtWpX9X/9VdTMfu01saLs8cdFIqrcYzLBffeJCue//Xb1+ZQUek6dKoKdNEksp9MRo/ub0fpGIlt/L0v6RqJ8lxNZfVeey6lvdOx6UqIEU05ODg899BA9evTgiy++YPny5SxdupSpU6fSqVMnhg8fzj8F+5zfgsuXL3Ps2DGOHTtWkiYoJCYgIEBK7TvqP/ywKKDk4QEJCeDvDytWWK1Ru7Z1M5hq1bJaokQo3+VE+Q7Ll8P330O7dqLm2Xfficfdu+u3RNXuXFsB/dgxTA0bQloaTJsmZjaFhMDatVcLwNmRsuK7jKj+LifKdzmR1XfluZz6RseuJyVKMD3xxBP8+uuvaJpW5M/ChQtp3bo1GzdutHV7FQoWL14spXax9Dt1gm3bRDFdiwUGDhQ1T6z4UhYaat0Mprp1dfnOp3yXFOU7ODuLgvrbt8PGjTBypJi4uHEjfPutoU20Dx07Mm/yZLH89/77xQCzZImY7dSqlXgj7EhZ8V1GVH+XE+W7nMjqu/JcTn2jY9cTqxNMGzduZM6cOZhMJnx8fFi6dCkXL17k3LlzREZG4u/vj6ZpnD17ln79+rFkyRJ7tFuhUNyK+vVh3ToYN058MXv1VXjwQVEIvBgMHy52tDKZiic3c6ZY0rNrVynarFAo7ojJBN26wdy5YvPIt94Sm7IVkJQkElHbthnVQhtiNsOAAbByJfz1Fzz9tKjddOiQWDpXQIWofq5QKBQKhUJRMbA6wTR79mwAPDw82Lx5MwMHDqRq1arUrFmTIUOGEBcXx9SpU3FwcCArK4uwsDB++eUXmzdcIS9t27aVUtsqfScn+Ppr+N//xFSH8HAICBCFXO6AszP8+KN4fKskk8kkfh56CFxcxEyK9u3FbuPnzxevidaifJcT5XvReHjAe+9Bnz5Xn5s5U/TdTp3EJMbwcLh82f7ttAfXxe7rCzNmiN3noqKgXr2rrw0YAGFhYnmwjaZSlmXfKzqqv8uJ8l1OZPVdeS6nvtGx64nVCabNmzdjMpl48cUXqVVE8ZWC13777Tdq1qxJbm4ujzzyCDNnzrRJgxUKc3ELBFUwbav1TSaYMEHULXF3h507oWNHKMY2mYMGie9xNWoU6GrX/a5RAxYvhjlzRLmn4cPFcrkvvwQfH5g9u/jL7IqL8l1OlO/FJyRETFZ0dIS4OHjgAWjUCN59F86csVMj7USRsdeoIRJKBRw5AmvWQGSkmEbZoQP88IMoVGVrbR0xWt9IVH+XE+W7nMjqu/JcTn2jY9cTqyM9deoUAF26dLntcT179mTDhg00aNCAvLw8nnnmGT7++OOStVKhuIbi7lRY0bRLrN+jh1gz07Yt/POPmPLw1Vd3/N/+wYPh1CmRRBo8OI/GjY8yeHAec+aI5wcNEsc1bAjz54vvec2bQ0qK2G793nth61brm3srlO9yonwvPh07ws8/i4mKkyeL1bJnzojHfn53zrtkZYn+PmqUA99/P4ZRoxyYM6fU+ZoSUazYmzaFPXvEcmBnZ5FEf/RRMSi99ZYYqOylbUeM1jcS1d/lRPkuJ7L6rjyXU9/o2PXEwdoTcnJyAKhUqdIdj23RogWxsbHcd999HD16lFdffZWLFy/y7rvvWt9ShaHMmDGDGTNmcOXKFQCioqJwdXVl6NChrF27FovFQt26dfH392fZsmUAtG/fnry8PP7M3087JCSEjRs3cu7cOWrVqkWPHj2IiooCoHXr1jg6OrI9v3jrwIED2bZtG2fPnqV69er069ePBfnbJaWlpXHkyBG2bNkCwP3338/evXtJSkqiatWqBAcHM2/ePACaNWuGu7s7mzZtAuC+++7j4MGDJCYm4uTkxNChQ5k3bx55eXl4e3vj4eHBhvwZPoGBgSQmJnLkyBEcHBwYPnw4p0+fJjw8nEaNGuHt7c26desAsTNAcnIyBw8eBGD06NEsXryYjIwMPD098fPzY/Xq1YBIzlosFvbv3w/A8OHDWblyJRcvXqR+/fq0b9+e6OhoADp16kRWVhZ79uwB4MqVK6xcuZLz58/j7u5Oly5dWLp0KQDt2rUDYOfOnQAMGjSIuLg4UlJSqFmzJoFr13J24EAa/fEHPP00lt9/Z+XAgeQ5OBAUFMSOHTs4c+YM1apVo3///kRERADQqpUf/v4uhIeHc/fdd9O/f3+2bt3PyZMnqVKlCiEhIYSHhwPw/fc+LF/elI8/dmXrVkc6d9YIDk5m4MBNuLtrDBs2jIiICHJzc2natCkNGzYkJiYGgB49epCUlMThw4cxm82MHDmShQsXkp2dTcOGDcnOzi7U6datGykpKRw4cACAkSNHsmzZMi5duoSHhwctW7Zk1apVAHTu3Jn09HT27dsHQFhYGKtXryYtLY169erRsWNHli9fDkCHDh3Iyclh9+7dAISGhrJhwwaSkpJYvXo1AQEBhUX62rZti9lsLvwHIzg4mPj4eJKTk3Fzc6NPnz4sXLgQgJYtW1KlShXi4+MBGDBgALt27eLUqVO4uroSFBTE/PnzAfD19aVWrVps3rwZgL59+5Kamkp4eDguLi6EhoYyd+5cNE3jnnvuoX79+sTGxgLQq1cvjh07xtGjR3F0dCQsLIwFCxaQk5NDkyZNaNy4MevXrwege/funDlzhkOHDmEymRg1ahRRUVFkZmbi5eWFr69v4XuYmJhIeno6CQkJAIwYMYLo6GjS09Np0KABbdq0YUX+joX+/v5kZGSwd+9egFKPEUlJSYSHh1s1RrRo0QJXV9dSjxGnT58GsGqMiIyM5PLlyzYZIwpit2aMGDJkCH/+GYOPz3lmz67D2bMBfPDBRRo2vMCxY1cKx4jt2z14/fX27NgRl9+XfPj88/ZcuGDCZDKhaU04cUIjKgomTLjMt9/mUK9efJFjhJ+fH25ubsTFxQHQr18/9u8veozw8fGhbt26hZuA9O7dm8OHD3P8+HEqV65cOEYkJSWxZcuWO48RBw+S3asXTUNDaREXh+mrr6j6zz/w/vscc3Iiztvb6jEiLy+P5cuXWzVGpKamUrt2bZuMEUlJSVy4cMGqMSIhIYETJ06Uaozw8vICYMGCBZjN5mKNEb/99hsAXbt2JTU1tdRjREpKChcvXrT7fURRY8S5c+cIDw+3+33ErcaIzMxMtm/fbvf7iCFDhhATE1N4H9GhQ4dC3wse3/I+IjCQRYsWAdCqVSucnZ3Zmv8/Sbe7j7jTGAFYPUaU5D7Cx8eHNWvWAFfvIwrGWXvfR9xqjEhPTy+M3Z73ETeOEZGRkYVee3p62u0+4nZjxNmzZwkPD7f7fURRY0RSUhJpaWl2v48oaozIysoq9Nze9xE3jhEWiwUAi8XC2rVrgTuPEVZ917jDGJGSkkJ4eLgu9xFFjRFZWVnEx8dbNUbY6rtGwVijx30EXD9G6I5mJV5eXprZbNYWLlxY7HOSkpI0Pz8/zWQyaWazWZs0aZK2d+/ewr8V5QeLxaIBWnJysmFtSEtLk1LbJvp5eZr24YeaZjJpGmhat26adubMHU/LysrSJk+erGVlZRVL5tQpTXv4YSEBmlajhqZ9+aWm5eSUvOnKd/2x1nd7oHy3DdnZVx//8Yfol3Xratpbb2na99+LIaFgWLjxp+C1xYtt1pw7UuLYc3I0LSJC00JCNO3az+3cuZr288/XvxHXkpmpaT/9pGlDh2o5AQGaNnSo+Dszs2TtKAWqv8unbaS+8l35bhSy+m6kttG+y9rfjNZOTk7WAM1iseiiZ/USuZYtWwIUZrqLQ4MGDdiwYQPt2rVD0zQ+++wznn/+eWulFQqAwsysbNo20TeZxK5yy5aBmxts2iTW1dh426m77oKffhJ1d9u0gQsX4F//ElL5/+FgNcp3OVG+24bKla8+PntWFAlPTob//EesKitIJxVFwfNjx+q3XK7EsTs4iKLfUVFiswOAK1fg9dfFrgSNGonq6GfPXj1nyRJo0ADGjIGoKBw2bhTnjxkjns//n1u9MPpzZySqv8uJ8l1OZPVdeS6nvtGx64nVCabu3bujaRoRERFoVuzYUrt2bdavX0/Xrl3RNK1wup9CYS3JyclSattUPygI4uPF7kwnT0L37qJ4i40JCIDt28UGUDVrwq5dQurhhyF/9VGxUb7LifLd9gweDEePitppPj7FO0fTxA6R+asH7I5NY798GR57TGS+z5yBd94RdZoeeQSmTYPQUJEFh6u7ExT8vnBBVE9fssR27bkDRn/ujET1dzlRvsuJrL4rz+XUNzp2PbE6wdS/f39AFPsuWPNXXKpXr85vv/1G3759rUpOKRTX4ubmJqW2zfV9fOCPPyA4WExLePhheOklyM21nQZQqRI8/TQcPAjjx4tJVD//LOQ/+QTyy7rdEeW7nCjf7YOjo9j9sWVLKO7GJmYz5JdWsDs2jd3FBd58E44dg19/hc6dRdLpp59g0qQyN33L6M+dkaj+LifKdzmR1XfluZz6RseuJ1YnmNq1a0f37t1p2rQpP/74o9WCLi4uLFu2jCFDhlh9rkIB0KdPHym17aLv5gaLF8Mbb4i/P/lEzG5KTRV/528r5TBqFGO+/x6HUaMo6bZS7u7w9ddi4lTnzvw/e+cdFtXRNfDfLiCIKIiIvTfsXWONJfYCokRNjDHV9F7Ml+SNyZu8Mb2aYppKEiyoiF1jb7F3ROwFC6ICIoLg3u+Pw7KgVGH3gnd+z3Ofhd3Ze2b27Mzee+YUEhPFntWypVSgywuld2Oi9G5fLl2yOevkhcViWxrsjV3GXqoUjB4thvV//4U8quFm4GD3Lb2/d3qi5rsxUXo3JkbVu9K5MeXrPXZHUmADE8DatWs5fPgw4XfoMu7i4sKcOXOwWCwZVckUivxSUM+5u0W23eSbzfDhhxIv4+4OK1ZAhw7w/fcZeUnM4eHUOXkSc3h4ofOStGsHmzbBb79BxYpw8CD06SPeFKdO5fw+pXdjovRuXypUyL8HE8DevRLyGhtrvz6BA8besaOEzBVD9y29v3d6oua7MVF6NyZG1bvSuTHl6z12R3JHBiaFQnEXEhQklp9ateDoUXj++Yy8JKZ0FwdTEeUlMZslJcqhQyLGbBbnAD8/+OgjxyUSViiMTkBA/j2YQDyYnntObDO//263bjmG4uq+pVAoFAqFQlFCUQYmRYnDWsnQaLIdIr9lSynz5uws/9s5L0n58vDtt7BrF3TvDtevS6qUZs1g0aKsbZXejYnSu30JCpJ5aDLl3s5kkojaTz+Ftm0lVVu7drbX9+6F1asLZqzKDYd89gV13zp0yH59yYTe3zs9UfPdmCi9GxOj6l3p3Jjy9R67I1EGJkWJw93d3ZCyHSZ/9er8JfouwrwkLVrAmjWSf7dqVXGgGjwYhgyRv0Hp3agovdsXNzewplPMychkfT44GF5/HbZvl6T9LVrY2nz6KfTqJQ6QEybA/v2F65dDPvuCum+1bWv7Oy0NFi7Mf5WCAqD3905P1Hw3JkrvxsSoelc6N6Z8vcfuSJSBSVHi2Lp1qyFlO0x+WJgueUlMJsm/GxkJb7whTlQLF0KTJvDuu7B+/Y4ikXMnGELvxRQ13+3PkCEy7b285H+zWcvy6OUltQCGDLG9p0GDrOfw9ZV2Z87AJ59A8+bQqhV8/jmcPVvwPjlk7AV13/rhB9tzy5fLB1KtGrz8MuzZU2Td0vt7pydqvhsTpXdjYlS9K50bU77eY3ckysCkUCiyonNekrJl5QZ13z5J/n3jhuQgf/31QcyZk3PUnkKhuHOGDhVDUHAwDB1qoXbt4wwdaiE4WJ7PbFzKji+/hHPnYM4ccQxycRGby+uvQ9++DhlCwSmo+1aNGrbnL18Wq9rFi/D112JNa91a/o6JsWOnFQqFQqFQKIovysCkKHEMGDDAkLIdJr8geUnMZvD2tks3/Pxg2TKYOxdq1oTY2DKMGCE3qwcP2kVkjhhC78UUNd8dh5sbjBkDM2akMW7cdGbMSGPMGHk+v+8PDBSnxvPn4aefoEsXePBBW5ukJHj4YVi8OPfoMoeN/Xb3rayP2blvgXxQZ85INc0RI6BUKdi9W7yZqlWDY8fuuEt6f+/0RM13Y6L0bkyMqnelc2PK13vsjkQZmBQljj1FGIpQkmQ7TH5B8pJYLNC1q926YjLBsGFiUHr44RO4usI//0jul9dfh4QEu4nOgiH0XkxR871k4u0N48dLzYAJE2zPh4fD9OkwaJDYYV54AbZtu90z0aFjz+y+FRBAXKtWsg7m5b7l4iLJ4mbPFvetyZOhfXto3Bjq1LG1+/NP2LEj3+6XJVnvhUXNd2Oi9G5MjKp3pXNjytd77I5EGZgUJY6zd5LQ4y6Q7TD5+c1LYuX//g8mTZJYNjvh7g79+m0mIkLuBdPSJLeLnx/89Zf9w+YMofdiiprvJZ/MS0nLlmJUqlhRosu++w46dBCbzIcf2qLLHD52q/vWnDkseeMNifUriPuWtzc88wxs3SpWNeugExPhqaek5F7z5rJwnTuX66nuFr3fCWq+GxOld2NiVL0rnRtTvt5jdyTKwKQocXh4eBhStsPk5zcvickEzZpBcjK89Ra0aQPr19utWx4eHtStK9EqixZB/fpynzZmDHTvXqQ5drOVrSd6y9cTNd/vLho3hm++gehoCZMbPRpKl4ZDhySZ/9Wr0s7Dw0O3fGuF/tzLlbP9HR8vHlCurnDggLheVq8uLlyzZ8v6WdTySzBqvhsTpXdjYlS9K50bU77eY3ckysCkKHEMHDjQkLIdKv+WvCRaej4S7da8JHv3SrxLxYpy89S9Ozz2GMTGFnmXMo994EApg/6//4l304YNYt96/nm4cqXIRRtH78UQNd/vTlxcYMAA+PtvuHBBbNovvQT16snrAwcOZORICZGdOxdSUhzXtyL93KtVg5AQW1KqTp0ktHjxYrj/fsmObk/5JQw1342J0rsxMarelc6NKV/vsTsSZWBSlDhmzZplSNkOl58pL4ll6FCO166NZejQrHlJTCZ46CGIjIQnn5T3/f67xK798Uf+cznlg1vH7uoqjlORkXKfZrHA999Dw4bw229FKtpYei9mqPl+91O2LIwdC199ZXvujz/mERYmdu7hw6FyZVli1q8v2rmdHXb53L28JCnVpk2yaP3f/0n1gswZ0FesgEmTWPDTT0Uvv4Sg5rsxUXo3JkbVu9K5MeXrPXZHogxMCoUiZ9LzkqTNmMH0ceNImzEj+7wk3t7w889y89S8OVy6BI8+Cj16iGeTHalRA2bOhJUroUkTcZ56/HG45x5Jh6JQKEoeZcqksmMHvPmmRJTFxcEvv4iTZN268neJpVEj+OgjOHECatWyPf/NN/DWW/g//zz06yfuXUlJunVToVAoFAqFoqAoA5OixOHn52dI2cVBfp506iTVkj7/HMqUEXeDVq3E1aiQN0p5jb1XL6kS/uWX4hGxbRt07CjGposXCyVa989db/l6oua7MfHz86N5c6kfcPIkrFolNuty5eT/zKmLEhMlAq0oZTuEW3PcBQVBt26YNA2WLxfvpipV4IknYONGx/RJZ9R8NyZK78bEqHpXOjemfL3H7kiUgUlR4vD29jak7OIgP1+4uMCrr0JEhJT6TkuTu8SmTSU79x2Sn7G7uMDLL0NUlITcgITLNWwoFcTT0uwn257oLV9P1Hw3JpnHbjZDz54yl8+fh1mzYNQoW9sZMyTV0YABUlXy2rWik+1QHn4Y1q0jeu1a+M9/xLspIQF+/RVee02fPjkYNd+NidK7MTGq3pXOjSlf77E7Eme9O6AoGUyePJnJkydz8+ZNAMLCwvDw8CAwMJCVK1cSHx+Pr68vHTp0YOHChQC0adMGi8XC7t27AfD392fDhg1cunQJb29vunfvTlhYGAAtWrTAxcWFHTt2ADBo0CC2b9/OhQsXKFeuHH379iU0NBSAhIQE+vTpw5YtWwDo168f+/fvJzo6mjJlyjB48GBmzpwJQKNGjfDx8WFj+u7vfffdR1RUFKdOncLV1ZXAwEBmzpyJxWKhXr16VKtWjXXr1gHQo0cPTp06xbFjx3B2diYoKIg5c+ZQpUoVatWqRb169Vi1ahUAXbt2JSYmhqioKABGjx7N/PnzSUpKonr16jRp0oTly5cD0KlTJ+Lj44mIiAAgKCiIpUuXcvXqVSpXrkybNm1YvHgxAO3btyc5OZl9+/YBcPPmTQ4ePMiVK1fw8fGhU6dOLFiwAIDWrVsDsGvXLgCGDBnC5s2biY2NpXz58vTo0YN58+YB0Lx5c9zc3Ni2bRsgied27tzJ+fPnKVu2LP3792f27NkANGnShNKlSwMQGhpK//79iYiI4MyZM7i7u+Pv709ISAgADRs2xNfXlw0bNgDQ66efuHzPPdT8/HPKnDgBgwdzpkMHtj/0EFXat6dmzZqsWbMGgO7duxMdHc3Ro0cxm82MHDmSuXPnkpKSQs2aNTl8+DCurq4AdOnShdjYWA4dOgTAyJEjWbhwIdeuXaNatWo0a9aM/v2XUaeOD7NndyciwpXnnoPPPrvC1KlluXZtGQkJCVSqVIl27dqxKN3w1bZtW1JTU9m7dy8AAQEBrFu3jn379tGiRQu6du3K/PnzAWjVqhVms5mdO3cCMHjwYLZu3UpMTAyenp707t2buXPnAtCsWTPc3d3Zmh6zN2DAAPbs2cPZs2fx8PBg4MCBGbHZfn5+eHt7s2nTJgD69OnDwoUL8fb2pnTp0gQEBDBjxgw0TaNBgwZUrlyZ9enV+3r27MmJEyc4fvw4Li4ujBgxgtDQUFJTU6lTpw61a9dm9erVAHTr1o3z589z+PBhTCYTo0aNIiwsjOvXr1OjRg38/PxYtmwZAKdOnSIxMZHIyEgA7r//fhYvXkxiYiJVq1alZcuWLFmyBIAOHTqQlJTE/v37AQq9RsyePZtq1aoVaI1o2rQpHh4ehV4jzp07xyuvvFLgNeLGjRtFskasWLGCatWqFWiNGDZsGGvWrCnUGmFJT3J07NixDN3ktUZ4enqyefNmAPr27Zv/NaJXL44ePcrJkycpVaoUw4cPZ/bs2Zw8eZJu3bplu0akpR1l1SrbGjFrVjMsloYsXQpLl4KrayoDB96gd++zeHruwMlJy3aNsH6/O3bsSGJiIgfSw3ktFgv79+8v0Bpx+fJlKlSoUCRrRHR0NI+//DJ7evQgbdUqGm7aRLUxY5iZ/hk2rVKFBu+9x+6mTTndvj29hgwhMjKS06dPF2qNqFGjBiDrvNlsztcasWLFCgA6d+7M5cuXC71GxMbGMm7cOLtfR2S3RixYsIAKFSo45DoiuzXi+vXrtGzZ0u7XEbeuEW3bts3Qu/Vve1xH5LZGJCUlZfzm5XeNSEtLo27dugW6jmjYsCH//PMPYLuOWLVqFdWqVSvQGjFixAiWL19eJGvEhg0bMqpL2fM64tY1Ys6cORm6rl69ut2uI3JbI+bNm0elSpXsfh2R3RoRHR3Nk08+affriOzWiAMHDuCWnmrC3tcRt64R8fHxAMTHx7Ny5UrAPtcRkP0aER4ejo+Pj0OuI7JbI5KTk2natGmB1ojc7jUKskZYr2cdcR0BWdcIh6MpFAUgPj5eA7SYmBjd+vD3338bUrae8pOTk7WJEydqycnJd3aCxERNe+MNTXN21jTQNA8PTfvyS01LTc33Ke507GlpmvbDD5pWvryIBk0bM0bTzp7N/zmU3u9Q70WAmu+OpyTqPSpK0957T9Pq1bPNc9C0atU0LSkp7/dfv65p06drWmCgpjVufF4LDJT/r1+/s/4XhjzH/sMPtgF6eGjaI49o2tq1mnbzZqHklkS93y2y9ZSv9K70rhdG1buesvXWu1Hnm96yY2JiNECLj493iDwVIqcocfTp08eQsouD/DumTBn45BPYuRO6dJGkKa+8Au3aQfruUF7c6didnODppyVs7sknJe3Jn39K2NwXX0Bqqv1kFxV6y9cTNd+NSUHH3qABTJwIhw/D5s3wzDNQoYJE5qY7YAISQnfqVNb3hodD1aoSVhsWBgcPViIsTP6vWhXSN24dRp5jHzQIPvhAsp0nJkrFznvvhfr15UOIjXVIP+2Bmu/GROndmBhV70rnxpSv99gdiTIwKUocVvdao8kuDvILTfPmsG6d5BTx9oY9eyQx+NNPw5Urub61sGP38ZFCd1u3SvLvxERJa9KyJaR7w9pNdmHRW76eqPluTO507CaTVJCcPBnOnoXff7e9Fh0NDz0kqY169JBl6O+/JVVcXJy0SY8OzHiMiwN/fzFCOYo8x16zJrz7Lhw5IoUUHntMKhscPw4ffgjpoeyA+DnlRXIyBAfjPGoUY//4A+dRoyA4OGsmdQeh5rsxUXo3JkbVu9K5MeXrPXZHogxMihLH6dOnDSm7OMgvEsxmuSGKjIRx4+QG6KefwM9P3AtyuCEqqrG3awebNsmNZ8WKcPAg9OkDI0Zk9WxIv+di+HB48skGDB+u2z3X3aH3O0TNd2NSFGMvVUqSf1u5fFkcfQDWrpXibA8+aAuoyw7r8+PGOW7u53vsJhN07SqWsvPnxTXz7behUiVbm6FDxRVr1Sqb1Swzmdy3zOHh1Dl5EnN4uG7uW2q+GxOld2NiVL0rnRtTvt5jdyTKwKQocZTOHO9gINnFQX6RUrGihHasWQONG0NMDIwZA/fdB+kJ9TJTlGM3m+GRRyRs7oUX5P85c8TG9dFHEBpavEJm7iq9FxA1342JPcbevDmsXg0nT0phy8zGp9zQNHGwTM/9anfuaOzu7mIte/9923OnTsHChWIZ790b6tSxeT6BGJcyuW+Z0g1QJh3dt9R8NyZK78bEqHpXOjemfL3H7khMmpYf/2mFQkhISMDT05OYmBgqVqyod3cUDiIlJYVJkyYxYcKEjEpuRcqNG5IQ6YMPxE2gVCmYMAHeegvSK23Yk7174fnnJXrPismUvVeDySSPYWHiHHA3Y3e9K4olRtH78OEyj7Nz7LkVs1lsMemFl0oGmiY57qZOhRkzIL16ECChyfv2wbVruYfRmUzg5SXxhg5YixWOxyjzXZEVpXdjovRuTC5evIivry/x8fGUK1fO7vKUB5OixDFjxgxDyi4O8u1GqVJiTDpwAAYMEIPTBx+Iy0F6yVV7jr1FC3GkmjrVZkAqTiEzd63e84Ga78bEEWO/dCl/xiWQdgcP5pkqrkgosrFbE1L99JOE0M2YIeur2SyZ0BMT887R5GD3LTXfjYnSuzExqt6Vzo0pX++xOxJlYFKUOPR0utPb4U9v+Xanbl1YtMgWo3bkCPTrB6NH43r5sl1Fm0xy35Wfj9jRITN3vd5zQc13Y+KIsVeoIHM+vxw8CL6+4slkz+7ZZexubjByJCxeDKdPQ7Nm+R+82Qzz5hV9n7JBzXdjovRuTIyqd6VzY8rXe+yORBmYFCWOBg0aGFJ2cZDvEEwmiV2JjISXXpKbmxkzGPLGG1IaKnOFpCImLKxY3nMZQ+85oOa7MXHE2AMC8u/BBJKzKS0NXFxsno4A330n0WZFde1o97FXrSrWtYK4b9nZwG9FzXdjovRuTIyqd6VzY8rXe+yORBmYFCWOypUrG1J2cZDvUMqWha++gu3boX17nK9dg+eek5CPnTvtIrKgITMOuucylt5vQc13Y+KIsQcFQfnyWY1F2WEySbsjR+Dw4ax5tCMjpVBAixZQrx688orkcktLu/N+OUTvBXXfKl/efn3JhJrvxkTp3ZgYVe9K58aUr/fYHYkyMGUiNjaWTz/9lC5dulC5cmVcXV2pWrUqHTt25PXXX2fz5s15nmPp0qUEBgZSvXp1XF1dqV69OoGBgSxdujTf/UhKSuKzzz6jQ4cOeHt74+HhQePGjXnttdc4lbmOeh4cOHCAp556ivr161O6dGkqVqxI9+7d+fnnn0krzNWvzqxfv96QsouDfF1o3Ro2b2bbI4+Ap2eGwYkXX4SEhCIVVdB7rqgo2Lq1SLuQLYbUezpqvhsTR4zdzQ2mTZO/czIyWZ+fNk3a168PTZrYXr9xA4YMAVdXOH5cbOL33guVK0ulyjuxhTtE7wV13woMtP09cSKsWlU4K1oOqPluTJTejYlR9a50bkz5eo/dkSgDUzqzZ8/Gz8+PN998k02bNnHhwgVu3LjBuXPn2Lp1K59//jmffPJJju/XNI3x48czYMAA5s2bR3R0NDdu3CA6Opp58+YxYMAAxo8fn2f85dGjR2nTpg1vvPEG27Zt48qVK1y7do3IyEi++OILWrRoweLFi/Mcz2+//Ubbtm35+eefOXr0KMnJycTGxrJ+/XqeeuopunXrxqVLlwr8OSkUuuDkxJE+fcRd4IEH5Mbo22/Bzw9mzy6y2JSC3nOdPQsdO0LPnrBsmX3zsigUiqJnyBAJjfXykv+tBmbro5cXzJ8v7bKjRQsID4fYWKkw99BD4uxz6ZIUDTh71tY2JkbaFQsK4r7l6QkjRsj/ERHiwtW7N1SpAk88AUuXiqVNoVAoFAqF4VEGJmD69OmMGjWKS5cu4evry3vvvceKFSvYsWMHixYt4ttvv6VPnz64uLjkeI533nmHKVOmANC6dWtCQkLYunUrISEhtG7dGoApU6bw7rvv5niOxMREBg8ezKFDhwB44oknWLlyJZs2beKjjz7Cw8OD+Ph4goKC2Lt3b47nWbZsGU8++SQpKSlUqlSJb7/9li1btrBkyRIC03ch//33XwIDA7EU5G66mNCzZ09Dyi4O8vWkZ8+e4hbw11+wYgU0aADnzsH998PAgXD0aKFlFOSeq1w5GDMGnJ2lAl3//tCmjRRqKuqNfcPr3YCyi4N8PXHk2IcOFUNQcLAYmTt1SiEgQP4/ezZn41JmPDzEyWf6dLhwQRx8XnpJ7DBWvv4aKlWCHj3k7+PHsz+XQ8ZeEPet4GBpD5KA6vHHxd0zNhZ+/VUq01WqBA8/XOjwZTXfjYnSuzExqt6Vzo0pX++xOxTN4ERERGiurq4aoHXr1k2Li4vLsW1KSkq2zx8+fFhzdnbWAK1du3ZaUlJSltevXbumtWvXTgM0Z2dn7ciRI9me57333tMADdA+/fTT217ftGlThpyePXtme47U1FStfv36GqCVK1cuW1nPPPNMhpxp06blON7siI+P1wAtJiamQO8rSjZv3mxI2XrKT05O1iZOnKglJyfrIl/Tshn79euaNnGippUqpWmgaW5umvbhh5pWyD6Gh2uaySSH+CRlPayvhYdL+5MnNe2llzStTBlbmzp1NG3yZE27ZSm4Y5TejSdbT/lK7/aRHRR0+3rSooWm/ec/mrZzp6ZZLPaVny3z52ta+fKaBprFbM7yqJUvb1vobiU1VdNWrtS0p5/WtEqVbANasMDW5vJlTbt2rUDduRv1Xtzlq/mu9K4XRtW7nrL11rtR55vesmNiYjRAi4+Pd4g8w3swPf/886SkpODj48PcuXPx9PTMsW2pUqWyff6rr77KyGn03XffUbp06Syvu7u789133wGQlpbG119/fds5UlNT+eabbwBo3Lgxr7766m1tOnXqxGOPPQbA6tWr2bFjx21t5s2bx5EjRwB46623qFev3m1tPvvsM8qnJ+z87LPPsh1TceZ4Ttu+d7ns4iBfT24bu5sbvPeelG+67z5IToZ33oFWrcSl6A4paMhMzZqSd+XkSYkcqVBBPBOefRZq1YKPPoIrV+64O4DSuxFlFwf5enI36n3WLFkbvv5awmqdnGDvXvjgA+jb1xaee/z4cceF22Zy37IMHcrx2rWxDB2at/uWszP06gU//ADR0ZLZ/OWXoU8fW5vPPoOKFcU1dOZMuHo1z+7cjXovKfL1ROndmBhV70rnxpSv99gdiaENTJGRkaxcuRKA5557Dh8fnwKfQ9M05s+fD4Cfnx/33HNPtu3uueceGjVqBEBYWNhtuZjWrFlDXFwcAA8//DDmHDINjxs3LuPvuXPn3vZ6WFhYtm0z4+7uzv333w/A/v37OXz4cLbtiiu5hSrezbKLg3w9yXHsDRvC8uXw998SphEZKXdvDz8sSU/ugFtDZpo0ickzZKZCBfjPf8TQ9O23Yly6eFFsXjVrwmuvyX3YnaD0bjzZxUG+ntyteq9dW+oTrFoloXTTpklo3ahRYnACcHZ2oWVLGDtW8jolJtqtO4KbG4wZQ9qMGUwfN460GTMk/tcaFpcXTk7QrRt8+aVkO7eybRskJUFoqAywYkVZUP/8E+Ljsz3V3ar3kiBfT5TejYlR9a50bkz5eo/doTjET6qY8sEHH2SEih04cCDj+cuXL2tRUVFabGxsnuc4evRoxjnGjx+fa9snn3wyo+2xY8eyvPbuu+9mvJabC11qaqpWpkwZDdC6d+9+2+s1atTQAK1Ro0a59uXvv//OkPf777/n2jYzxSFETuF49HapzTdXrmjaM8/Y4tvKl9e0KVM07eZNh3flxg1NCw7WtGbNbNEjLi6a9uijmnbwoMO7c0eUGL0rihSld33Zti1rGJ2rq6YNGqRpv/yiaefP209ukevdYtG07ds1bcIETatfP+ugqlbVZV1W3I6a78ZE6d2YKL0bExUi50D+/fdfADw9PWncuDF//fUXLVu2xNvbm4YNG+Lj40PdunV5//33ScxhC/HgwYMZf/v5+eUqL/Prmd9XkPM4OztnhL3deo7ExETOnDlT6L4Ud0JDQw0puzjI15N8jd3LCyZPhn//lVC5K1fgySeha1eJRbGn7FtwcREngL17YdEi2eBPTYXff5cy54GBsGWL/eTfLaj5bkyMrPejR0NZvx5efRXq1YOUFFlDnnhCCrdlE2VfPDGZoG1b+PhjiIqCPXvg3XdlARw40BZ3bLFIddApU1jw22+6dVdvvestX0+MPN/1lq8nRtW70rkx5es9dkfirHcH9CQiIgKA2rVr8/zzzzN58uTb2hw/fpyJEycSGhrKsmXLqFq1apbXT58+nfF39erVc5VXo0aNbN+X+f8yZcrgZU3+kst59u7dy8WLF0lJScE13SX9zJkzGaF3helLZlJSUkhJScn4PyEhIdvnHUlycrIhZesp3yqzxIy9ZUvYsAGnn37CaeJETJs3o7Vpw80XXuDm229LySd7yc6G3r3l2LzZxBdfOLFwoRPz5sG8edC9u4XXXkujTx8tx2JOSu9qvjsSpXd99Z6amkz79im0bw8ffggRESYWLDCzYIGZHTvMNGlyg5QU+a3fssXEwoVmhg610LatRg7R9fnC7npv1AjefluO5GSxnAGmrVspFRICISEMMpmwTJ/OzcBAyQV1yzWXPdFb72q+G3O+K70bT+96ytZb70adb3rLdrRck6Y5LJVkscPT05OEhARcXV1JSUnBy8uLSZMmERgYSLly5di3bx//+c9/WLJkCQCdO3dm/fr1WfIjffbZZ7zxxhsALFmyhP79++cob8mSJQwcOBCAzz//PEsi76ZNmxIREUGlSpU4f/58rv0eOXIks2bNAiA2NpYKFSoAsG3bNjp06ADAm2++yaRJk3I8x/Xr13F3dwdg8ODBLFiwINt2EydO5P3337/t+QkTJuCW3/wMCoWOlE1IoN/SpTRNNyjHlyvHkoEDOZSHl589iYnxYdOmzuzd2wKLRRKvVKp0nq5dN9KkyQGcnAy7LCsUilyIjy+Hh8fVjDVi8eIBbN0qv/tlyybQqNEh/PwOUbv2cZydLfk6Z2qqExERTYmMbERSUmnc3a/j53eIJk0O4OJy025jseJx9Sot9+yhcUQE1c6ezXheA07XqMHqXr04UaeO3fuhUCgUCsXdSHJyMpMmTSI+Pp5y5crZXZ6hPZiuXbsGiFXPycmJJUuWZEnS3a5dOxYuXMjgwYNZsmQJmzZtYu7cuYwYMSKjTXJycsbfOVWZs+KaKfnl9evXs7xmPU9e58jtPEXVl8y89dZbvPLKKxn/JyQkUKNGDZ599lkqVqyYZ1/twYULF6hUqZLhZOspPyUlha+++oqXX345y3fHkRRq7P/7H6lLl+L84ot4njzJqBkzuDl4MGlffCHZuO0pOxdOn07ju+80fvvNiQsXKjNnznB27Ajk5ZfTGDvWgrUgpdK7mu+OROm95Oi9RQszf/99k6VLzVy9Wo7t29uzfXt7ypXT6NfPwg8/pFG2bM7vX7jQzOOPOxMXZ8Js1rBY5PHgwSasXh3Ab7+lMWhQ/gxVRUH09u1U2rABc1gY5n//pebp04weMwatWzdpcOKEhNTVrVvkskuS3osSNd+V3pXejSNbb70bdb7pLfvixYu5Op4UOQ7J9FRMsSbLBrRRo0bl2G7//v0Z7QIDA7O89umnn2a8tmTJklzlLV68OKPt559/nuW1Jk2aaIBWqVKlPPt9//33Z5wncyLyrVu3Zjz/5ptv5nqOpKSkjLaDBw/OU6aV4pDk+++//zakbD3lF4ekgEUy9mvXNO3//k+ybYOmubtr2qefSkZue8vOhUuXNO2DDzTNx8eWA7diRU378ENNu3xZ6d2IsvWUr/Re8vSenKxpixdr2vjxmla5sqwhtWpJnm0rK1dqWnS07f/586UegrUmwq2H9bX58ws/pvySZeynT2vaDz9oWlqa7blnn5XOtW6taR99pGmRkfaRrQNqvhtPtp7yld6NKVtvvRt1vuktWyX5diBlM23rDRgwIMd2TZs2pVq1aoCEoeV0jpwSgVuxekwBeNySA8Z6nrzOkdt5iqovCsVdi7s7fPQR7N4N3btLCe033oA2bWDjxqxtk5MhOBiGD6fXf/8Lw4fL/5k8BYsKb2/JfXvyJHz3nThVXbwI77wDNWvCn3+2Jj1/v0KhUNyGqysMGAA//QTR0bB5s6wl1rxuaWkwYgRUqwYdO8IHH8BDD8lrOSVKsD4/bpxdlr28qV4dnn4anJxsz8XFyf+7dkkuJz8/aN4c3n8fDhzIeTAKhUKhUCgcgqENTJkTXec3KXZMTEyW5zO/70wed4CZk2lnlp35PNeuXSMuLi5f56lYsWIW98ai6ktxp5vVVd5gsouDfD0p0rE3aQJr1sDUqeDjA/v3S6W5J56AS5cgPFySy44dC2FhVDp4EMLC5P+qVSGHnGWFxd0dnnsODh+GP/+U+6bERFi82I+6deHRRyEy0i6iiy1qvhsTpfc7x2yGe+6BIUNsz50/Lzm2AbZuhffeg4SEvO0xmibFOB1V/CbPsf/5pwzm11+hf39wdpb1e+JEqUxXUDJtJAz79lu7biTkhd7fOz1R892YGFXvSufGlK/32B2JoQ1MTZs2zfj75s3cE1laX3d2zpq2qkmTJhl/R+Zx55f59caNG9/RedLS0jh69Gi25/Dw8MgwFhWmL8WdvJKg362yi4N8PSnysZtM8PDDYrF5/HF57tdfoU4dCAiQnXKQfB+ZH+PiwN9fjFB2wsUFHnxQqnovWgStW18lNRX++ENsY8OGwb//2k18sULNd2Oi9F60VK8uXk1nz8LPP0NB0kCYzVLx0hHka+w+PvDYY7BkCcTEwLRpYk178EGby1ZqKnToIB6qW7dmb0m7ZSPB7d9/HbKRkBN6f+/0RM13Y2JUvSudG1O+3mN3JIY2MHXv3j3jb6vRJieOHTsGkBEqZ6VOnTpUTS+ju3bt2lzPsW7duoxz1K5dO8trXbt2zfg7t/Ns3749I7ytS5cut71uPc+hQ4dy/SJnlpHdeYozhw8fNqTs4iBfT+w29goV4JdfYMMGsd5cvWpLQ5IdDowbMZlkU/711xeyaZPYtTRN7oE6dYIePeQe626OClHz3ZgovduHKlXgySclsiy/WCwQG2u3LmWhwGMvX14MQuHh8L//2Z5fswa2bYPPPpOYwNq14eWXJRTaYpH2Om8k3Ire3zs9UfPdmBhV70rnxpSv99gdiaENTEOHDsXFxQWAuXPn5thu7dq1XLp0Cbjdvc1kMuHv7w+IV9C/ObgV/PvvvxleQ/7+/pisu2zp9OjRA09PTwCmTZuGlsMd49SpUzP+HjZs2G2vBwQEZNs2M0lJScyaNQsQz6mGDRtm2664cutnZxTZxUG+nth97F26wGuv5a+tg+NGTCYTnTqJYenAAbFtOTvD2rVigGrdGv7+W/Ks3G2o+W5MlN7tS4UK4pmUXzZulLXm66/ta2wqsrF37gyzZ8PIkVCmDJw6JZ3v2lUSUT3wgLQrBhsJVvT+3umJmu/GxKh6Vzo3pny9x+5QHJJKvBjz9NNPZ1RTCwkJue31hIQErVWrVhlttm7delubQ4cOac7OzhqgtWvXTktKSsryelJSktauXTsN0JydnbWoqKhs+/Luu+9myPn0009ve33Tpk0Zcu69995sz3Hjxg2tXr16GqCVK1dOO3LkyG1tnnnmmQw5f/zxR7bnyYniUEVO4Xj0rjrhMAIDNc1szr6k0q2H2SztdeLUKU17+WVNK1PG1qXatTXt+++lWF5RYBi9K7Kg9H73M316/pa57I7jx23nOXRI086f120Y+SMpSdPCwjRtzBhNK1eu4AMODtZ7BHZFzXdjovRuTJTejYmqIudg3n//fWrWrAnAQw89xPPPP8/q1avZsWMHU6dOpUOHDuzevRuAp59+mvbt2992joYNG/JauufD9u3b6dKlCzNnzmT79u3MnDmTLl26sH37dgBef/11GjRokG1fXn/99QxvojfeeIPx48ezevVq/v33Xz7++GP69u1LWloapUuX5uuvv872HC4uLnz77beYzWYSEhLo0qUL33//PVu3bmXZsmWMGDGCH374AZBwuoesZWRKEGFhYYaUXRzk64lDxn7pki1EIi8sFrh82b79SSe7sdeoAV9+KRvz//2vpCU5cUKShNeuDR9+KE5WJR01342J0rt9CQqS6LK8NlRNJmm3datEm40bJ+uLlVdfhcqVoVUreP11WL4crl+/837ZZeylS0u4W3Cw5Gzq2jX/7lsOTECl9/dOT9R8NyZG1bvSuTHl6z12R+Kcd5O7m4oVK7J06VKGDh3KkSNH+P777/n+++9va/foo4/yzTff5Hiejz76iJiYGH7//Xd27drFqFGjbmvz2GOP8eGHH+Z4jrJly7Jo0SIGDhzI4cOHmTJlClOmTMnSply5cvz111+0atUqx/MMHDiQn376ieeee44LFy7w/PPP39amQ4cOzJs3D6fM5X9LCNcLc/VagmUXB/l64pCxW+NG8mNkMpnAy8vuXYLcx+7tDe+8A6+8IknAP/9cDE3vvguTJsH48ZJ6JI9CmcUWNd+NidK7fXFzk9zY/v6ylGUXKWY1Pk2bBu3by5EZTZNKdCAFCfbskfXH1RW6dYPBg+HFFwvWL7uP3dUVnJwKtpGQniLB3uj9vdMTNd+NiVH1rnRuTPl6j92RGN6DCaSK2u7du/nss8/o2LEj3t7elCpViurVqzNy5EhWrVrFb7/9lpGvKTvMZjO//fYbixYtwt/fn6pVq1KqVCmqVq2Kv78/ixcv5tdff8Wcx65Z/fr12bVrF5988gnt2rXDy8sLd3d3GjVqxMsvv8zevXsZPHhwnmN64okn2LFjB0888QR169bFzc2NChUq0LVrV3788Uc2btyIj49PgT+r4oC1Up7RZBcH+XrikLEHBOT/xkPTJAnSt98Wbss+H+Rn7O7u8OyzcPgw/PUXNG8O166Jl1PduvDoo3DwoF27aRfUfDcmSu/2Z8gQyetmtZObzVqWRy8vmD9f2mWHySRL4IULkgNu3DhJb5SSAv/8I+fOzPz5UsUuNxwy9oImoKpQwfb36tV281zV+3unJ2q+GxOj6l3p3Jjy9R67IzG8B5OVMmXK8Nprr2WEut0pAwcOZODAgYXuyxtvvMEbb7xRqPM0a9bsNg+ouwG/gpS/uYtkFwf5euKQsQcFyZZ7XFzepdlMJolBe/FFqV70+uvw1FOSULaIKcjYnZ0lf+3o0bB0KXzyidwE/vGHHP7+MGEC3HNPkXfTLqj5bkyU3h3D0KFi9AkNhTlzLOzefYpWrWoyfLgTI0aIp1Ne+PrKejN6tCybkZESKpdeYBeAixdh2DB5vUkT6NsX+vSBe+/NumQ6ZOwBAZBLYZfbsBZUuXYNBgyA1FQp4zlwoBwtW+Yda5gP9P7e6Yma78bEqHpXOjemfL3H7kiUB5OixLFixQpDyi4O8vXEIWO3xo1AzjcMJpMcoaHw009Qq5Zs4b/2miQn+eQTuHq1SLt1J2M3meReaM0a2LxZ7qlAvAg6dZIbuyVLsrejJSdLupJRo5z544+xjBrlTHCww4opZUHNd2Oi9O443NxgzBiYMSONceOmM2NGGmPG5M+4dCsmEzRuLHb3oCDb8+fPQ7t28npEhBR0GzRI8jv17Anh4dLOIWMvaAKqESPk/9OnoUED8XLduBHefltKeFavDo8/Dhs2FKpben/v9ETNd2NiVL0rnRtTvt5jdyTKwKRQKBSZuT1uJOujNW4kMFASHB0+DL/9BvXqSf3uCRNsWbbj4x3f/2y45x7JUxsRAY88Ai4usG6dbL63aiXhLWlp0jY8XDwPxo6F8HAzJ0/WITzczNix8vyCBboORaFQlECaN5dE4RcvwqxZ8MQTYptPTRUjeOaos+PH4ddf4eRJO3UmvxsJIO2sljY/P9i3Tzr200/i/uXuLi5gv/0G27bZ3h8XJwtuXp6wCoVCoVDcZSgDk6LE0blzZ0PKLg7y9cShY7fGjQQHQ0AAyffcIy5AwcHyfOakJC4ukuAoMhKmT4dGjeRu6d135Q7qvfcKnbOjqMbeuDH8/jscOyZJwcuUgb174cEHZWN+/HgZZlyctLdYTFke4+IkxM7qbeAI1Hw3JkrvdycVKogD0ZQpYkiKioLJk6F/f3m9c+fOzJsnBqjatWU5fe45WXOsCcWLhPxuJGSXgKpmTVks58+XBODLl8NLL2VtO28eNG0KderAM8/AwoUSYpcLd7Pe80LNd2NiVL0rnRtTvt5jdyTKwKQocVx2UGn44ia7OMjXE4eP3Ro3MmcOB3/4AebMIde4EWdneOghOHAAQkIk0Uh8PHzwgdwp/d//iYfTHVDUY69eHb74Ak6dgv/+FypWlMpzU6bIhntOm+7W58eNc1y4nJrvxkTp/e7HZBLD9jPPQOXK8tzly5epXBk6d5Zib1YDlL+/GKe6dRPDVJFwy0bC1bZtc95IyAk3N0km9dVXUL++7fmzZ6Vi3cmT8OOPcq4KFcSS9u23Nit+Joyi9+xQ892YGFXvSufGlK/32B2JMjApShyRkZGGlF0c5OtJidG7kxOMGiWhFKGhkgD26lX4+GPxaHr9dcnZZC/5BcDbG955R4xLY8fm7z2aJrnNQ0Pt0qXbKDF6vwvl64nSuzGJjIzkgQckxdGlS+II9MwzYohKS5MoNKsxCsRp9Mcf4ejRO5OXjBvB2hiGM4eOSYsYzhyCtTEkcwcJqDLz9tviubpwoQygVi0pr7dsmXg7WWOSQYxQKSmG17sRZRcH+XpiVL0rnRtTvt5jdyTKwKRQKBT2wGyG4cNh1y4JpWjbFpKS4PPPxaPppZfyrtntINzdITEx/5W7zWa58VMoFAp74ekpDkWTJ4sn0/HjYtguXdrW5vPPxX5Tvz7UrSuFPOfMESN4XmTONxcWBgcPViIsjKLLN+fuLpnMJ0+WzkdESIeffRZ8fGztxo4Fb2+6ffEF/PyzuJYqFAqFQlFCMWmaykCoyD8JCQl4enoSExNDxYoVdenDzZs3cXJyMpxsPeWnpKQwadIkJkyYgKurq8Plw12gd02DpUvh/fdhyxZ5ztUVHnsM3nxT8nrYU34e9OgBa9cWrP3q1fbqjY0Sr/cSKF/Nd6X3kqB3TRPH0GXLYNOmrE5BZrNEwOVkCA8Pt1XWzO4q2JrjOyxMzmM3btwQ96xbjUrNmkkVhqFDoUsXO3ag5On9bpKtp3yld2PK1lvvRp1vesu+ePEivr6+xMfHU65cObvLUx5MihLH4sWLDSm7OMjXkxKvd5MJBgyAzZslKWzXrhIy8cMPsv3+5JM5JhdxxNgrVMi/BxPA7t2yMW/vkPISr/cSLF9PlN6NSUHGbjJJaru1a2UdWrAAXnhBihlYLJD5GtpikWIG330He/ZIHjkoBvnmSpWSGOXduzn40EPyu2A2w/798OmncmQmJsaOndEPNd+NiVH1rnRuTPl6j92ROOvdAUXJYPLkyUyePJmbN28CEBYWhoeHB4GBgaxcuZL4+Hh8fX3p0KEDCxcuBKBNmzZYLBZ2794NgL+/Pxs2bODSpUt4e3vTvXt3wsLCAGjRogUuLi7s2LEDgEGDBrF9+3YuXLhAuXLl6Nu3L6HpSV8SEhI4duwYW9K9QPr168f+/fuJjo6mTJkyDB48mJkzZwLQqFEjfHx82LhxIwD33XcfUVFRnDp1CldXVwIDA5k5cyYWi4V69epRrVo11q1bB0CPHj04deoUx44dw9nZmaCgIA4fPkxISAi1atWiXr16rFq1CoCuXbsSExNDVFQUAKNHj2b+/PkkJSVRvXp1mjRpwvLlywHo1KkT8fHxREREABAUFMTSpUu5evUqlStXpk2bNhmLUPv27UlOTmbfvn2AWL+XLl3KlStX8PHxoVOnTixI9+Nv3bo1ALt27QJgyJAhbN68mdjYWMqXL0+PHj2Yl76d27x5c9zc3NiWXlZ54MCB7Ny5k/Pnz1O2bFn69+/P7NmzAWjSpAml02MSQkND6d+/PxEREZw5cwZ3d3f8/f0JCQkBoGHDhvj6+rJhwwYAevXqxdGjRzl58iSlSpVi+PDhzJ49m7S0NOrWrUvNmjVZs2YNAN27dyc6OpqjR49iNpsZOXIkc+fOJSUlhZo1a3Lp0qUMOV26dCE2NpZDhw4BMHLkSBYuXMi1a9eoVq0azZo1Y9myZQB07NiRxMREDhw4AMCIESNYvnw5CQkJVKpUiXbt2rFo0SIA2rZtS2pqKnv37gUgICCAdevWcejQIVxdXenatSvz588HoFWrVpjNZnbu3AnA4MGD2bp1KzExMXh6etK7d2/mzp0LQLNmzXB3d2fr1q0ADBgwgD3//S9pK1fScv58fPbtg19+wfLbb1wZPJjkV15hXXr4XJ8+fTh16hQhISGULl2agIAAZsyYgaZpNGjQgMqVK7N+/XoAevbsyYkTJzh+/DguLi6MGDGC0NBQUlNTqVOnDrVr12Z1uttRt27dOH/+PIcPH8ZkMhEQMIr07uaLuDip7vTyyxYGD06jYcNNNG9+nnvuaU9SUhL79+8HKPQacejQIRITEwu0RjRt2hQPD49CrxHnzp0DKNAaMWfOHG7cuFEka4R17AVZI4YNG8aaNWsKtUZYLBYAjh07lqGbvNYIT09PNm/eDEDfvn0LvUacPHkSX1/fAq0RDRs25J9//gEKt0ZYLBYWLVpUoDXi8uXLVKhQoUjWiOjoaLp168aePXs4e/YsHh4eDBw4kFmzZgHg5+eHt7c3mzZtAmSNiIyM5PTp04VaI2rUqAHIOm82m29bI0aNGkVYWBjXr1+nRo0a+Pn5sWLFCkCq41y+fDkjx8T999/P4sWLSUxMpGrVqrRs2ZIlS5YA0KFDhxzXiNjYWK5evXrH1xHPPuvCPffs4NKl0nTt2ptVq7Zx4cIFLl6szt9/d+Pvv8k31nxzn39+grFjzUV2HZHTGnG9Rw+SXnyREzt3UnnfPrrEx7OjQgWiQkKoXr06zcqUoXzbtlyuXRvz4MFcbN+eHU5OaGZzodaItm3bZujd+rc9riNyWyOSkpIcch2R0xqRmJho9+uInNaI8+fPZ4y9wNcRhVgj5syZk6Hr6tWrF8l1REHXiKNHjxISElKgNaKo7jWio6O599577X4dkd0aERsbm6Fze19H3HqvER8fD0B8fDwrV64E7HMdAdmvESdOnCAkJMQh1xHZrRHJycls3brV7tcR2a0R1rXGEdcRkHWNcDiaQlEA4uPjNUCLiYnRrQ9r1qwxpGw95ScnJ2sTJ07UkpOTdZGvaXe53tev17S+fa0F3DTNbNa0MWM07eBBx8jXNO36dU0rX17TTCZbN7I7TCZN8/TUtM8+07QWLbK+Vq2apr31lqYdOlR0/bqr9V5M5av5rvSuF/Yae3S0pn3yiab17i3La25rXObDbNa0wEC7dOk28hz7jBm3L9De3po2erSmBQdr2qVLBRN4/bqmTZ+upQUEaMdq1dLSAgI0bfp0ed7BqPnueO7m+a5k54zeejfqfNNbdkxMjAZo8fHxDpGnQuQUJY6WLVsaUnZxkK8nd7Xeu3aVRCL//itJYS0W+PNPaNIERo2itYuLfeUj1banTZO/rflHbsX6fHAwvPaahMnt2CGeTN7eEB0tOVEaNZIh/fabFNArDHe13ou5fD1Rejcm9hp71arwxhvwzz8FS2lksUC6I6PdyXPsI0fC+fNSOm/UKPDyktjAkBB46CFI36EH4Pp16XxOZMpwbg4Pp87Jk5jDw4sww3nBUPPdmBhV70rnxpSv99gdiTIwKUocVhdao8kuDvL1xBB679hRylpv3y4ZaDUNZs6kXJcuUpEu3QXcXgwZIkltvbzkf7NZy/Lo5SUF8YYMkddNJmjTRvKanD0Ls2ZJmimzWcqMP/64lBR/+GG598ntficnDKH3YipfT5TejYkjxl6xYsHyzW3eLGnyHnkEfv89fxXq7oR8jd3XV4xJISFw8SJs2CCJqNq2hfvus7X75BMxFD3yCMyeLTHNVqwZztOfM6UvzNZH4uLA31/aOQg1342JUfWudG5M+XqP3ZEoA5NCoVAUN9q2lfJHe/ZAUBCayQRz50Lr1lJVKD2e3R4MHSrGouBgGDrUQu3axxk61EJwsDxvNS7diqsrBAXB4sVSEOnjj6FhQ0hKkg33nj3lJu2DD+DkSbt1X6FQKHIlIKBgxm6TCY4ehalTpejnpUu213bvhl27ID09pWNxdhZ3rI8+kk2JzFnN16yBCxek0/ffDz4+cO+98OGHYqCCYpDhXKFQKBR3I8rApChxdOjQwZCyi4N8PTGk3lu0gFmzOL14MTzwgGy7L1gAHTrYKtLZATc3GDMGZsxIY9y46cyYkcaYMfJ8fqhWDSZMgMhImydT2bJSJO+996BOHdls//tvieTIDUPqvZjI1xOld2PiiLEHBUH58jmHAlsxmaTduXOwZIk4Cvn7Q716tjb//a94cXp7w8CBYljfsEEKhBaUIh378uWwahW8+qqU1bt5E9atg3ffhYSEnI1LVqwZztMTHtsbNd+NiVH1rnRuTPl6j92RKAOTosSRlJRkSNnFQb6eGFnv8dWqwV9/wcGDEm/m5ARLl0LnzmKpSa9YVNwwmaSLv/wiN2lWTyZNg5UrpWx4lSrw1FOwZUv29zxG1rve8vVE6d2YOGLsBck3N20aVKoE/fuLo1BYWNb3uLuL8TwhwWaE6tYNPD1laS6Ip1SRjr1UKVlsP/8cIiLg2DGYPFlilvOL2SyetA5AzXdjYlS9K50bU77eY3ckysCkKHFYy5YaTXZxkK8nSu9IzNnUqRAVJW5Bzs5iqbn3XujRQ/7Oa2daJ8qUkciMVavkXue996BWLYiPh59/hnvugaZN4bPPJI+tFaV3Y6L0bkwcNfbb881lfbw131xOBAdLnu0dO+DrryVVnq+veDAlJWXN9TRmDLz0EsyZAzExt5/LrmOvUweeeUYqMOQXiwVOn7ZfnzKh5rsxMarelc6NKV/vsTsSZWBSKBSKkkbduuIWdOQIPP207FavXStb5l27indTMTU0gdzrTJwohqaVK+XGq3RpcdB64w2oXl1u7ObOhbQ09TOlUCiKnsz55gICoHHjCwQEkGe+uVtxdpYwuRdflIiy8+fh0CH45htbm4QEycv9zTcwYoR4RTVqJPsE06c7MC9dhQoFy3CeOaN5Soos0sX4t0WhUCgU+mPSNPVLocg/CQkJeHp6EhMTQ8WKFXXpQ0pKCq6uroaTraf8lJQUJk2axIQJEwz52Rd7vZ85I64/U6bYkrK2by/5NgYPzjvZSC5yHaX3+HipQvfHH1lTS/n4aDz4oIlHHgFHV3gt9nq3o1w135Xe9eBu1XtSkhRlW79ejv37s9ppRo+GP/4Q+RaLRLU1aVIwW1C+CA6GsWPz3/711+HTT+XvVaugd28Js+vVy3bUqVPobt2tei/O8tV8N65sPfVu1Pmmt+yLFy/i6+tLfHw85TIXhLATamtYUeJYuXKlIWUXB/l6ovSeC9Wry9b48eOS1NXdXSrNDR0qFenmzi1YMhAd8PSEJ56ATZtkk/zNN+U+JjbWxDffQKtW4iXw3XdZqzjZk2Kv97sYNd+Nyd2qd3d3GDVK0iDt3Str2IIF4rHZqZPYbazyDx6E5s2l8NuQIWLf2bwZbtwogo4UNMP5Bx/Ynjt+XBJYnT8vFRoef1y8aWvXhkcfFavYHXK36r0kyNcTo+pd6dyY8vUeuyNRBiZFiSM+Pt6QsouDfD1Res8HlStLUtfjx8VC4+EhNbSHDxf3n5kzdaqnXTD8/GDSJEn/8frraxk+HFxcZCgvvABVq8p90uLFkJZmv36UGL3fhaj5bkyMovfy5cW59JNPxKj+2GM2+UePikHqyhVYuFCW8s6dJS9Ur17wzz+FEJwpw3kybgQzhuGE0oNVDCeUYMaQTHq50GnTspYOfewxiIuDNWvgP/+RcGxnZ4nv++OPrBawzZth9my4eDFf3TKK3oujfD0xqt6Vzo0pX++xOxJlYFKUOHx9fQ0puzjI1xOl9wK9QSw0J07AO+9AuXISkzFqFDRrJhXp7GmZKSKcnaFfvzRCQyUnitWT6cYNyXUyaJAkCp8wQXKeFDUlTu93EWq+GxOld3E8jYuTypqffw7+/pI66fp1WL0aUlNt79m0SZxWw8IgNjafgoYMIfytzVQ1nWUswYQRwFp6EkYAYwmmquksC97+N/skVK6uUlTi/fcl1u/KFcn59/bb0KKFrd1PP8H998tvUcuW8PLL4rKVww2W0rsxMarelc6NKV/vsTsSZWBSlDg6dOhgSNnFQb6eKL3fARUqwH//KzvM778vW+CRkZJVu3FjqUiX+W7FSnIyBAfjPGoUY//4A+dRoyR3hzW/kwOxjt3HR7yXdu2yeTJVqCCGp08+Ea+nLl3g118loW5RytYLveXriZrvxkTpXXBxgQ4dbMajmBg4cEDsNl262N4THg5ffgnDhkHFilKJ86mnZA8hpwJw4eEQ8HFH4vACwIJTlsc4vPD/qAPh4fnotIcH9OsHH36YNWFUw4YS5wcSE/j112I58/aWkqEpKTmO3dEUJ70bDaPqXencmPL1HrsjUQYmRYlj4cKFhpRdHOTridJ7IfDykpCGkyfhf/8Ty8yRI/DII1LK6JdfbOEN4eESgzZ2LObwcOqcPIk5PFwSw1atKrvQDiS7sbdqJd5M0dE2TyazWXbzn3hCIgXHjpXd/sKknirxei/BqPluTJTes8dslqTf48eLQ6qVXr3gySdlvwAkDdLPP8seQs2aEBVla5uQIF5Q48bJ/5qWfR4m6/PjxhViT+Htt8WwdOGChGaPHw8NGsiCfP26eEJZefllTowbB+vW3WZ4cgTFWe93O0ad70rnxpSv99gdiTIwKRQKhVEoVw7eektC5z77TMIXjh+XO5T69WXrOyBA4jMAU7p1xvpIXJzEa+Rra9v+uLpKeqmFC6WQntWT6fp1cbjq1Qvq1RPnrRMn9O6tQqFQFC19+4pBKSJC0h3NmyfRaO3aQZUqYtOx8uSTsuRfuZK1gl12aJq0Cw0tZAd9fSVU7qefxNp16pS4mVq5fh1+/JHmc+dK6F358jKoSZNg69YSEcqtUCgUiqwoA5OixNGmTRtDyi4O8vVE6b0I8fCA114T49JXX8mdyOnTcqeiaTnffVifL9TWdsHI79irVJGKTBERkl/2ySfFnnbiBEycKJW0e/eGP/+UkuE5kR4dyPDh8PXX/gwfrlt0oO7fOz1R892YKL3fOT4+sj/w5ZdSRPTEiazF4rZvh8TE/J/PbBaDVZFSowa0b2/732KBb78lYeBAifG7fh1WrJCNkI4dJW9gZvKyjN0BJV3vJRmjznelc2PK13vsjkQZmBQlDouO5db1lF0c5OuJ0rsdcHeHl16CY8ckpiw/FNnWdv4o6NhNJknx8fPPcO6cGJR695bXVq2Chx4SY9STT4ohKvP9SqboQMLCYOtWd8LCdIsO1P17pydqvhsTpfeio1SprP9HREDr1gXpjxip7Bq1VqYMPPkk0Z9/LuF0+/bBt9+KpczLS8rnWTl9WjyigoLgxx+lssOdGpwy7SRUf+gh9NxJ0Pt7pydGne9K58aUr/fYHYkyMClKHLt37zak7OIgX0+U3u2Im5tsbZvz+ZNgl63t7CnM2N3d4cEHpaz3iRMSKlenjuQi+eUXuXdp0kRC66ZOzRIdmJG7Sc/oQL2/d3qi5rsxUXq3H6VKyfqX32UeYOdO8QTt2FEKK/z5pzi+FjW7d++W3YFmzeD55+X3JTYWnn7a1mj1ankuNBSeeSSv5t0AANbdSURBVEbioatXl12DP/6A8+fzJ+yWnYQy27ah506C3t87PTHqfFc6N6Z8vcfuSJSBSaFQKBRw6VL+M2JbLHD5sn37U8TUqiV5zo8ckfuUhx6C0qWlqN6ECZLvvJhFByoUCkWREhBQsMIHHh5S/2HrVvjuO1k333rL9rrFAosXi92nyHFykkXayqhRsGEDfPAB9OghFrOzZ8Xq9eijkiTcysWL2RucwsOL306CQqFQ3GUoA5OixOHv729I2cVBvp4ovduZChUKtrV99iwcPWq//qRT1GM3m+XeZPp0uf/45RfJb54fHBwdqPv3Tk/UfDcmSu/2JShI8mibsi8gl4HJJO1iYmSZ//tviabu1Am6d7e1O3xYqnhWrCgFFUaPhq+/lvDjghji8zX2UqWgSxd4913ZJYiLg5UrpWJdp06ysFv5+WeJhW7a1OYRdfZs5hJ62cvQYSdB7++dnhh1viudG1O+3mN3JM56d0BRMpg8eTKTJ0/m5s2bAISFheHh4UFgYCArV64kPj4eX19fOnTokFGGsU2bNlgslgyXQH9/fzZs2MClS5fw9vame/fuhIWFAdCiRQtcXFzYsWMHAIMGDWL79u1cuHCBcuXK0bdvX0LT7+osFgudOnViy5YtAPTr14/9+/cTHR1NmTJlGDx4MDNnzgSgUaNG+Pj4sHHjRgDuu+8+oqKiOHXqFK6urgQGBjJz5kwsFgv16tWjWrVqrEvfBevRowenTp3i2LFjODs7ExQUxO+//06FChWoVasW9erVY9WqVQB07dqVmJgYotJrAo8ePZr58+eTlJRE9erVadKkCcuXLwegU6dOxMfHExERAUBQUBBLly7l6tWrVK5cmTZt2rB48WIA2rdvT3JyMvv27QPA09MTs9nMlStX8PHxoVOnTixId+dunZ5cYdeuXQAMGTKEzZs3ExsbS/ny5enRowfz0sOamjdvjpubG9u2bQNg4MCB7Ny5k/Pnz1O2bFn69+/P7NmzAWjSpAml03cRQ0ND6d+/PxEREZw5cwZ3d3f8/f0JCQkBoGHDhvj6+rJhwwYAevXqxdGjRzl58iSlSpVi+PDhzJ49m7S0NOrWrUvNmjVZs2YNAN27dyc6OpqjR49iNpsZOXIkc+fOJSUlhZo1a3Lx4kWuX78OQJcuXYiNjeXQoUMAjBw5koULF3Lt2jWqVatGs2bNWLZsGQAdO3YkMTGRAwcOADBixAiWL19OQkIClSpVol27dixatAiAtm3bkpqayt69ewEICAhg3bp1HDp0CD8/P7p27cr8+fMBaNWqFWazmZ07dwIwePBgtm7dSkxMDJ6envTu3Zu5c+cC0KxZM9zd3dm6dSsAAwYMYM+ePZw9exYPDw8GDhzIrFmzAPDz88Pb25tNmzYB0KdPHxYsWICbmxulS5cmICCAGTNmoGkaDRo0oHLlyqxfvx6Anj17cuLECY4fP46LiwsjRowgNDSU1NRU6tSpQ+3atVm9ejUA3bp14/z58xw+fBiTycSogABI72++iIqC+vW53K4drs8/zwKTCc3ZmQ4dOpCUlMT+/fsBCr1G/Prrr1SsWLFAa0TTpk3x8PDI1xrRpk0j6tf34+jR0jmW7c6M2azx7bdncHLakO0aMWfOHG7cuFEka8TatWupWLFigdaIYcOGsWbNmkKtEdY8AceOHcvQTV5rhKenJ5s3bwagb9++hV4jzp07R8eOHQu0RjRs2JB//vkHKNwa4eXlhcViKdAacfnyZSpUqFAka8TFixcZO3ZsgdaIyMhITp8+Xag1okaNGoCs82az+fY1YtQowsLCuH79OjVq1MDPz48VK1YA0LlzZy5fvkxkZCQA999/P4sXLyYxMZGqVavSsmVLlixZApDrGnHt2rUMXYH9riOyWyPCwsIoXbq03a8jclojSpUqRe3ate1+HfHLL8MJCnJBuH3NM5nEyPLoo+u4ebMtR49uBmLp1688H38sa0RIiFxHHDjgRdWqZTl71pNjxySd34wZch5nZ40HH9xBv36HadKkCR4envz772bM5tvXiNKlS3Pp0iXgDq4jnn2WNU2bwsqVGWuE9+rV1DOZMEVESPKp779Hy3a02ZC+k5A4dSoLPD2BormOyGmN2LNnD1q6Ycue1xG3rhFz5swB5PegevXqRXMdUcA1Ytq0aXh5eRVojSiqe42LFy8ybty4IrmOKOgacebMGVLSk5vZ+zri1jUiPj4egPj4eFauXAnY5zoCsr/XCA0Nxd3d3SHXEdnda7i6ulK9enW7X0dkt0ZMnTqVihUrOuQ6ArKuEQ5HUygKQHx8vAZoMTExuvXh77//NqRsPeUnJydrEydO1JKTk3WRr2lK73bn+nVNK19e00wma6RY9ofJpGllymhanz5Z21aurGn/93+advx4kXbLEWO/997ch3zr0by5pjliKqj5bjzZespXejeO3ufPl+UeNM1stmR5LF9e08LDC3a+uDhNW7FC0z78UNOGDtW0SpXk3PPn29osWqRpnp6adt99mvb22/La+fPyml3GHhuraXPmaNqzz2pa48YFW+TNZk0LDCz6PmWDmu9KtiPRW+9GWmeLk+yYmBgN0OLj4x0iT3kwKUoc3t7ehpRdHOTridK7nXFzg2nTJP+EyZR9CIE1riIkBIYMkWyvv/4Kv/0m8Wb/+x98/DH06ydl2oYMAefC/cw4YuzW6MD85ibZt09CQgYOhGHD5LFs2aLvl97fOz1R892YKL07hqFDJWIsNBTmzLGwe/cpWrWqyfDhTowYIT8HBcHTE+67Tw6Qn49Tp8DHx9Zm2zaIj5eiC+kOAoDkx6tZsyfNm0uO7yKjQgUIDJQDpKpDundEnlgsEB0tA8krnrCQ6P290xOjznelc2PK13vsjkTlYFKUOLpnTgBgINnFQb6eKL07gCFDpJqOlxcAWnpOJusjXl4wf760AylJ9NFHUj46NBT69JEL8qVL5aK+Zk3Jl3Hy5B13yRFjL2jiW09PuHoVZs6UvLM+PpKH5NdfJWdJUaH3905P1Hw3JkrvjsPNDcaMgRkz0hg3bjozZqQxZkzBjUvZYTKJ4ahMGdtzb78Nu3bBTz9JTu6mTaXdyZOwfn3lLHacWbNg/Hj4/XfYvx/SszMUjipVCpZncMsW6NUr63N2KDOu9/dOT4w635XOjSlf77E7EmVgUpQ4rLHURpNdHOTridK7g7BubQcHYxk6lOO1a2MZOhSCg+V5q3EpMy4uMHw4LF8uZdrefBN8feHcOfjwQzFEDRoklXnS0grUHUeMvaCJb8+elY3wN9+Ehg2lytLixfDEE3IP0707fPVV4ct56/290xM1342J0vvdi7MztGolhqPffhPDUXw8rFoFo0fvxs/P1nbBApgyBR57DJo3l72Nnj2l4ufcuXeYfzvTTkIyrgQzhuGE0oNVDCeUYMaQjKutvZOTLPBWbtyQ37WePWXjZOlSGUAhudv1nhtGne9K58aUr/fYHYkyMCkUCoUiK+lb22kzZjB93DjSZswg31vb9erBpEni1TRzpuwAa5pYYPz9oXZtmDgRzpyx9yjyjTU6EHI2MlmfnzYN3N3hnntkmJGRcOCA2NHatpX7l/Xr4ZVXoG5duaF6/33YuzfnwkUKhUJhRMqWFXvNkCEHcXKyPf/ww/DGG3DvveIFlZgIa9bAJ5/IhkDmfYqVK+W1xMQ8hKXvJIQzlKqcZSzBhBHAWnoSRgBjCaYqZ1nAENlJuHhRFnYru3fDpUsi7MMPYcAAadeiBTzzDKxdW2Sfi0KhUJRklIFJUeJo0aKFIWUXB/l6ovRewihVCu6/X67+o6Lgtdckliw6WiwutWqJt9SiRbnGPzhq7LdEB2ZEUuQUHWjFZIImTST8Y/t2Cff45hupmG02w549Yk9r2RLq15ePYePG/IV8lEi9FxFqvhsTpXdjcuvY77tPjElr1oiT0N698Msv4iU6fDh4eNjavvOOGKk8PcXb6fHHpe2ePbc4zLq5Ef7MUgKYRxxeAFhwyvIYhxf+hBH+zFIxHlWsaHt/u3bidvXzzzB2rGymaJok5fvxx6z5nS5cgG+/hZ078/TaVXpXso2E3mNXencMKsm3osTh4uKSd6O7UHZxkK8nSu8lmAYN4LPPZNd37ly5QF+7VuIgFiyAGjXkruCxx6BatSxvdeTYMye+nTcPzpxJonp1d4YNI9+Jb2vWhBdekCM2FhYulHMtXy4lvL/4Qo5KlUTesGHi5OXqevu5SrzeC4Ga78ZE6d2Y5DZ2JycxHFmNR7dSv77sW5w+Lfaf/fslBA/kpye9ojvJyTD2+w5g0tC07F1VNcyYTBrjfujA2XduWfPNZkkc1bSpFLEAKW6xcaMc/frZ2q5eDS++KH97eEDHjtC1K3TpIu6vmapCKL0r2UZC77ErvTsG5cGkKHHs2LHDkLKLg3w9UXq/C3B1hdGjZVv64EGJI/P2ljuD994Tr6aAAFiyJMPFx9Fjtya+nTMHXnppPnPm5D868FZ8fGDcOPF8unhRDFcPPig77RcuyC77wIGS1mP0aElse/Wq7f13jd7vADXfjYnSuzEpzNiDg6Vi3dmz4oX61ltitC9bNmtVulmzxBsqJ+OSFU0zceWKrNd5UrmyuFR9+SW0bm17vnx5CaHz9JTYvZUrxXO3b19xh12yJKPpzq1bCzTeuwmjznc1140pX++xOxJlYFIoFAqF4/HzE1ee6Gj480/o1k2MSvPni9WlXj346CPcrlzRu6dFgoeH3If8+adUmlu2DJ56SpKCJyTAjBkwcqREZAweLDvwCQnZuDUpFAqF4jaqVJE0f//7n9hz4uJsnkwgKQHzi9ksnqd3TL9+knfw8mWJ7/vxR9mpqFNHEvU1b57RtPHCheL6Ono0fP+95HoqkrJ5CoVCoQ8qRE5R4hg0aJAhZRcH+Xqi9H6X4uYmbj0PPggREVI6aNo0SWb0zjsEODvL3cL48ZKYoyBlpguJvT73UqVkI7tvX5g8Waphh4XJDc3hw5KWatEiMJuH8fff4tQ1bJjkRzcKar4bE6V3Y2KPsZvN4khk5dq1/L/XYpHw5gEDxDHJetStW8CfILPZFt/31FPy3LlzYg1Lp0l8vHjxzpghB4j71T33SEjdK69kCam7mzDqfFdz3Zjy9R67I1EeTIoSx/bt2w0puzjI1xOldwPQpAl8/bXEOkybBp07Y0pLk7xN/fpJQo1JkyS+zAE44nM3m6FTJ0loe+iQ5A/573+hTRuwWEysWyf3F3XqyA3OBx9ITtm7vSKdmu/GROndmDhi7BUq5N84ZDLBjRuwdCl8/LHUq2jQQKLbuneXcLs7JpNxCWDTc8/BP//YQujKlpVY6RUr5Ichc3z2jBkiPDr6zuUnJ0NwMM6jRjH2jz9wHjVK4gyTk+/8nHeIUee7muvGlK/32B2J8mBSlDguOOjmsrjJLg7y9UTp3UCULi1VesaOZfGnnzLw9Gm5AD52TBJs/Oc/4tYzfryUD7KTV5OjP3eTyZZD9p134Ntv56Np/sybB+vXS+TE7t2SrqpePfFqGjZMNrod6NjlENR8NyZK78bEEWMPCJC9ivygabLOVqoEu3bJsW+f2H3Wr4cHHrC13bVLko+3bi0bA61bQ4sWUKZM/mSdTUiAQYOgd2954uZNEbZxo4TYZU4M/MEHkr8QxKW1Sxfb0bSpZETPjfBwSQx45Qpms5k6Fgva6dPiQvvii7Kxc2upVDti1Pmu5rox5es9dkeiDEyKEke5cuUMKbs4yNcTpXdjojVtCm+8ITu5M2dKBbotW2D2bDnq15eKPuPGZS0pXQTo/bnXq+fMoEFy3X/xohTcmzdPNraPHoXPP5ejcmXJPTJsmNjbSpXStdtFgprvxkTp3Zg4YuxBQbKWxsXl7gFqMomn0oQJWZ2HUlMhMlIMSt262Z7fvh127pTDmvPJZIJGjcTY9NJL0KFDzvJuG7uTE7RqJUdmLBYJE3dzgz174MQJOf76S15v21Y6Y+XGjaw/BuHhYmWzjtNiyfJIXJz8kISFSYlTB2DU+a7mujHl6z12R2LStLvd0V5RlCQkJODp6UlMTAwVi/hmLr+kpqbqVupRT9l6yk9JSWHSpElMmDAB1+zqqTsApXel9wz27JFcTcHBtrJrLi4QGCheTT16yBW+PWQ7kJzkJyZK6Ma8eZInJCHB9lq5crIZPmyY5A/x8Ci43GKrdwPI1lO+0rvS+92u9wULxIYC2RuZrD8b8+fn35HnwgXYsMHm6bRrl6RZsrJihdiFQNbrKVOy5nWqUiWVUqUKOParV2WjZcMG8XT691+xoP3+u7yeliYbLg0aiHdT+/bwzDPyY5Ef69rZs3dWOrWAGHW+6ylb7/lu1HVWb9kXL17E19eX+Ph4hxi67jKneoURCM1X7di7T3ZxkK8nSu/GJNuxt2wp2bHPnYNff5WL59RU8XDq1ctWoS42tuhlO5Cc5Ht4wIgRsnF98aIYm8aPF0+mhAQICZGcIT4+cpP0++/5+yjSU3MwapQzf/wxllGjnPVKzaHmu0FRejcmjhr7kCHioOPlJf9bQ4utj15eBTMugYTRDR8OH34oxRnOnoXz52HJEvjoI3EssrJ+vRi5PvjAVrihQgULvXvDa69Jru98UbasWK0mThQL1pUr8ptnZf9+8Ujatk3yGj74IMTH5528T9PkXA7Sh1Hnu5rrxpSv99gdiTIwKRQKhaJkUqYMPPYYbN0KO3aIlcXDA6Ki5Gq9WjW5sF637q7Nil2qlOQ//+knyfu6caMMvV49SEmRHfPHHpOboB494JtvpEDfrYSHQ9WqkvoqPNzMyZN1CA83M3asPL9ggcOHplAoFEXO0KFiBAoOloixxo0vEBAg/589WzQpiCpVgv794f/+L2sluwcflDV43DjZJ3F2hsREV1atEvvQzZu2ttOni9PRL79I5Fuuhn5n56yCWra0hc89/bS4tqaTjCvBjGE4ofRgFcMJJZgxJJPuzWI2i3usQqFQ3CEqB5OixNG0aVNDyi4O8vVE6d2Y5HvsbdqIleWzz8SF5+efJSnG33/L0bix5GoaOxa8vXM+T3Ky5HYKC2PIqVOykxsQIOEHDggZyExB9W42Q+fOcnz6KRw4IPcJ8+ZJ2MbatXK89JKEZliThB89Ko9WLBZTlkcdUnOo+W5QlN6NiaPH7uYGY8bIsXfvBVq0qOQQuS1ayGElJQXCwg6TmNiAAwegVi3ba/PnZ01K7uQkhVatoXVPPgnu7jkIMpnkZLVqSUbyiAhYu5ZwhjCOqVzBGzM3seCEmZvMZTgv8g3TeJghloWyKfO//0nyqA4dshioihKjznc1140pX++xOxLlwaQocXjcSVKRu0B2cZCvJ0rvxqTAYy9bVq68d+yQ8IDHHxdPp4MH4eWXbW46Gzfe7tWU2Y0nLAyP7dvFqqKTG09h9G4yQbNm8O67Ymc7fhy++kpKbJvNYnD6z3+geXNJXaVpOTt5WZ8fN85x4XJqvhsTpXdjYlS9u7pC+/ZOPPYYfPll1tSBjz4Kr78ukXAVKtiKy02fLgnIM6dymTw5a4jebWt5hQqEm/wJIIw4vACw4JTlMQ4v/JlPOEMkpvrtt6FPHzmpldOnJfdTEf0QGFXvaq4bU77eY3ckysCkKHFs2bLFkLKLg3w9UXo3JoUae7t2El9w9iz88IOEDaSkSCxE165iXfnuO8k5Ya2wExcn77VW1rm1wk54eCFGUzCKUu+1a4vn0tq1kh/k119h8GCJrLAOMTccnJpDzXeDovRuTJTeb2fQIPFEXbFCcu2dOiVeTRMnwnPPZTUwTZkimwmDB0tkeOXKEqL31lswZw4kDwxknCYJwLUcbv2sz49jKskjH4ZRo6BuXclxaCUkBO65Rzya2rWT8Ls//pCcT5nj+wo5dkdgVNl6o/fYld4dgwqRUygUCsXdTblyciH81FOSr+nnn2HGDIkhe+EFeOMNm5UlNzcek0nceBxUYcdeVKwoeZkee0xsZgsW5C9FlTU1x5gx9u+jQqFQKASTCWrUkCO7MGVrKsJduyAyEmJiYNkyORo1gqQ3grhCqTzlaJi5gjeh/aYw5pFs2t+8KT8gFy+Kl/COHRKaDuIpvG2bhKMDXL8uv5NFUNFVoVCULEyadpdmPlUUKZMnT2by5MncvHmTqKgopkyZgoeHB4GBgaxcuZL4+Hh8fX3p0KEDCxcuBKBNmzZYLBZ2794NgL+/Pxs2bODSpUt4e3vTvXt3wsLCAGjRogUuLi7s2LEDgEGDBrF9+3YuXLhAuXLl6Nu3b0b2/Vq1alG5cuUMS3C/fv3Yv38/0dHRlClThsGDBzNz5kwAGjVqhI+PDxs3bgTgvvvuIyoqilOnTuHq6kpgYCAzZ87EYrFQr149qlWrxrp16wDo0aMHp06d4tixYzg7OxMUFERISEhGH+rVq8eqVasA6Nq1KzExMURFRQEwevRo5s+fT1JSEtWrV6dJkyYsX74cgE6dOhEfH09ERAQAQUFBLF26lKtXr1K5cmXatGnD4sWLAWjfvj3Jycns27cvo0979uzhypUr+Pj40KlTJxakh+20bt0agF27dgEwZMgQNm/eTGxsLOXLl6dHjx7MS0/c2Lx5c9zc3Ni2bRsAAwcOZOfOnZw/f56yZcvSv39/Zs+eDUCTJk0oXbo0ISEh1K9fn/79+xMREcGZM2dwd3fH398/43Np2LAhvr6+bNiwAYBevXpx9OhRTp48SalSpRg+fDizZ88mLS2NunXrUrNmTdasWQNA9+7diY6O5ujRo5jNZkaOHMncuXNJSUmhZs2aVKpUKaO/Xbp0ITY2lkOHDgEwcuRIFi5cyLVr16hWrRrNmjVj2bJlAHTs2JHExEQOHDgAwIgRI1i+fDkJCQlUqlSJdu3asSjdBbxt27akpqayd+9eAAICAli3bh0XLlygcuXKdO3alfnz5wPQqlUrzGYzO3fuBGDw4MFs3bqVmJgYPD096d27N3PTEyg0a9YMd3d3tm7dCsCAAQPYs2cPZ8+excPDg4EDBzJr1iwA/Pz88Pb2ZtOmTQD06dOHXbt2ERsbS+nSpQkICGDGjBlomkaDBg2oXLky69evB6Bnz56cOHGC48eP4+LiwogRIwgNDSU1NZU6depQu3ZtVq9eDUC3bt04f/48hw8fxmQyMWrUKMLCwrh+/To1atTAz8+PZcuWceTIER544AESExOJjIwE4P7772fx4sUkJiZStWpVWrZsyZIlSwDo0KEDSUlJ7N+/H6DQa8Ts2bNxcXEp0BrRtGlTPDw8cl0j5v7+O7U3bKDphg2UPnqUgrD5mWc40bVrtmvEnDlzuHHjRpGsEXv27MHFxaVAa8SwYcNYs2ZNvteILl1usHdvLjmpbqFs2WQefjiKF19swrZttjXC09OTzZs3A9C3b99CrxHXr1+nUaNGBVojGjZsyD///AMUbo3o1asX27dvL9AacfnyZSpUqFAka0RqaipDhw4t0BoRGRnJ6dOnC7VG1KhRg5UrV1K/fn3MZnO+1ogVK1YA0LlzZy5fvlzoNaJs2bLce++9dr+OyG6N2LZtG5cvX7b7dUROa0SLFi1ITk62+3XErWtE27Zt+e6776hfvz5t00ue2eM6Irc1olu3bhnz0Z7XEdmtEfv378fFxcXu1xE5rRFJSUkZOi+K64iUFCfM5pacPu3DqlVX8PRM5saNBixZ7IJFyztwxWyy0P3eKzz55PLsryNq1WLr7Nl4Hz1Ky5QU2LYNtwMHMKel4XTtGmFLlnD9+nV6zJhBpU2bOFejBpfq1aPSoEFcqFmTAxcuALJGzJs3j9TUVLtfR2S3RqSmphIQEFCo64g7XSPKli2b0V97X0fcukbEx8dz5MgRnn76aVauXAkU/jqiIGvExo0bM9b6gqwRRXWv0apVK65evWr364js1oiwsDBcXFwcch0BWdcIgAceeID4+HjK2SmnWhY0haIAxMfHa4AWExOjWx/Wrl1rSNl6yk9OTtYmTpyoJScn6yJf05Te9cAQerdYNO3ee60piPI+zGZNCwy0b5/ScYTeAwNlSPkdfuajfn1Ne/ppTZszR9OuXCnafqn57ngMMd+LqWw95Su93/16L8hPHGhajx7y0/j885r29deatnKlpl24kIuAtDRNO3Ik63Pt2mV/8rp1NW3UKE1LTTWs3vWUrfd8N8J8K46yY2JiNECLj493iDwVIqcocURHRxtSdnGQrydK78bE7mMvqPu+xQKXL9unL7fgCL0HBGStVJQXw4ZJ+MW//8KRI3L8+KOEz7VvLzlh+/SRNB2l8o7IyBE1342J0rsxUXq3LxUqyBqdn3x7ZrMUWj1/XlIUZsbXV4pHNG8uOZ76909/wckJ6tXL2nj9eti9W8Lmtm6VIyoKjh2T152dbWN/6ikJv2vfXqrWNW2aNcmUHTDyd05P9B670rtjUAYmRYmjTJkyhpRdHOTridK7MXHI2Aty9Q2SbXXdOkkUbrZfrQxHjD0oCF58UXKY5xYwbzKBlxf8/bek1UhIgDVrJAHtihVw6JAUF9qyRaoZlSkD995rMzg1aVIwW56a78ZE6d2YKL3bl4JsJFgsspFgNkvi8H37JIf30aOyubBqlRxms83AdOUKPPywzfjUrBk0auRGqXvukd0GK3FxsH07XL0KpI/dYpHk4QkJUn0CoHRpaN1ajE333isDKAqSk2H2bAgLo09UlFStCAiQH0IH5lXU+zunJ3qP3chrjSNROZgUBSIhIQFPT09iYmKoWLGiLn2wWCyY7XhTV1xl6yk/JSWFSZMmMWHCBFxdXR0uH5Teld7tSHAwjB1b8PdVqSIXpiNHykV0EffTUXpfsECSfUP2RiarYWj+fBgyJPtznD4N//wjxqZ//pEcsJmpUkXKbffpI49VquTeJzXf1Xw3kmw95Su93/16T06GqlXzv5GQXR2La9fg4EGbwalvX+jXT15bvx66d8/a3tlZEow3aya1MTK8nTJhsVgwWyywcKHNy2n7doiPtzXq21eylVv59FNJJN6+vZTLyy/h4dKRK1dsG0rWx/LlYdq0nH/gihg9v3N6z3cjzLfiKPvixYv4+vo6LAeTfhpWKO4Qa1I9o8kuDvL1ROndmDhk7EFBcoGZl4uNyQQeHlJGzdMTzp2Db7+FLl2gVi145RVx4SmifRtH6X3IEAgLkxsLALNZy/Lo5ZW7cQmkutEjj4iH0/nzUs3os8/k3sDNTT4qqx2valXZ5X7lFVi8WG5cbkXNd2Oi9G5MlN7ti5ub2E8g55856/PTpmXvzFOmDLRrJ+v8F1/YjEsAdevC99/D+PHyc1iuHKSlSaHWmTNtUXEgUXMdOkjlu4cf3s0/a5w5f08A2kf/k92Jy5elFN706fD88zBihO3NMTHw5ptSSq9KFahZU17/9FNYvVq8oLIjPFw8leLi5H+rt7L1MS5OdlnCw3P+EIsQvb9zeqL32I281jgSFSKnUCgUCmNjvfr295er7NzceP7+WywtKSnirjNzplhfzpyBr76So1YtuP9+Odq2LRFlmocOlV3r0FCYM8fC7t2naNWqJsOHOzFiRMGiB8xmaNVKjtdek93zjRtt3k07d8oO+P798nG5uEDnzjbvpnbt7DVKhUKhMCbWjQSbE4+GxWLKePTyunMnnmrV4Nlnbf9rmvwkWr2deva0vWZNyySFxdrw55/yvI+PeDu9+66ZXr0aQaNGaGMeyvrzmZwsA9i2DSIixHX29GmYM0def/pp+OEH+TslRTrQsKG8B0jWSjGbIMII4BLeVOAyAYQRpM3GzXRD2mXnvqVQKAqEMjApShyNGjUypOziIF9PlN6NicPGfvvVd1YX+luvvl1dYfBgOZKTYelSmDVLdkBPnhT3nc8+k61dq7GpVasCGZscrXc3N3HOCgpKY9Kk6eku9E5Fct7eveUAiI2VHB7W/E0nT8LatXK884581G3a9Cc+XoxOt+aOtTd6zze95euJWueNidK7YyjKjYTcMJnEq7VGDRg4MOtr/frJT+X+/bB+fRxnznhx5Ij8LqxZA2+9ZWs7a5Y4LNlyO9Wk+ct/0KgRuN64Cjt2ZE0i3r697c27dkGnTpKA/OZNwhnCOKZyBW/M3MSCE2ZuMpfhvMg3TNMeZsiVhfLhjBlTNB9EDuj9ndMTvcdu5LXGkSgDk6LE4ePjY0jZxUG+nii9GxOHjj3z1fe8eSSfPYtb1aqS8TS3q283N3G/DwiApCRYskQ8mxYulNiASZPkaNBADE0jR8oVcx7GprtV7z4+NpubpknyWKuxadUqiVZYtao8q1ZJ+zp1bPmbevWSnOz27Z+a73qh1nljovTuOOy1kZBfrKkLg4Lg1KkEatb0IinJlt8pswfrvn2yAXHyJCxaZHve2RkaNizLtGk9aPd6DwCuXwfXUpot98v581IO7/JlwhlCAGEZ77fglOUxDi/8mU+YKZCh8+bZ3cCk93dOT/Qeu5HXGkeicjApShwbN240pOziIF9PlN6NicPHbr36njOHeS+8IK73Y8bkf2vX3R2GD5et14sXxdAUGCjvP3wYPvoIWrSQsmoTJ4qbfw4YQe8mE9SvL5ENc+fKLvbmzRAUtJfu3eVG4vhx+OUXMUhVrCib1G+9JcaolJSi75Pen7ve8vVErfPGROndmFjH7u4u0eTjxolNyMqrr4pn6+TJ8NRTUrjV01PyO0VEZG37xRdQtpyJDh3g0Ufhq+MBrAiJ5UTLoYxjKgBaDre91ufHab+TvGkn/PyzeERdv26PYSudG1S+3mN3JMqDSaFQKBQKe1CmjM1V5+pVKdc2a5Z4OEVGwvvvy9Gsma2dgVyos8PZWQryDRt2gNGjW5CYKDcY1vxNBw5IkaHt28UprHRpqV5kzd/UokWJSHmlUCgUijwoX17W98wV6jQNoqPFu6l2bdvzBw+KA7EtvxOACZifL1kaZq7gTej5Lox56il50skJ/Pzgzz8lxB1sofMKhSJHlIFJUeK47777DCm7OMjXE6V3Y3LX6L1sWXjgATni4yVX06xZUn7ZmvH6P/+Bli0zjE1K71K0b9AgOUAiGP/5x2ZwOn9ePkJrFWtfX1s43X33QfXq+ZOXnAyzZ0sarvPnhxMaKhGPQUGOz/eq9G482cVBvp4ovRuTOxm7ySTr+q1r+/Tp8hO6f78tufi+fRAVZS3akffOg4mb/F3xJR5sdRHT7l3ihXzggPywWHn/fRHWujW0aSOPrVtL7F8+dzeUzo0pX++xOxJlglWUOKKiogwpuzjI1xOld2NyV+rd0xMeekg8mi5cgD/+gP79xX1nzx54+21o0IDSXbtK+eXjx+3Tj2JMTp991aowdiwEB4uxad8++PJLGDBAwixiYqTQ3yOPSILZxo3hhRfko756NXtZ4eG284aFwaZNpQgLk/+rVpX3OhI1340nuzjI1xOld2NSlGN3chIH4OHDJfo8NBQOHYJuXSzkx7gEoOHEkottSQlfJr/NZ86waOI25m6uQkQE3LiBlEE9cQLmzYN335VCH9WqQeXK8jt+6VKecpTOjSlf77E7EmVgUpQ4Tp06ZUjZxUG+nii9G5O7Xu/ly0viiSVLxB3nl1/E/cbJCY+oKCmhU7cudOwoSSYM8l3Iz2dvMkl04csvw+LFcPkyrF4t9rkOHSSKITISvvtO8rd7e0sOj/ffh02bJI9HeLh4KsXFyTktlqyPcXHg7y/tHIWa78aTXRzk64nSuzFxxNgrVnLCbNLybgiAhoeHSbxWTSaoVo3/LW/H8BEmmjaVTYxGkWH4d45hQs8tTOv0E1qTpvJjExMDGzZIGVQrTz0F3brJLscff8Du3XDjhtK5QeXrPXZHokLkFCUOV1dXQ8ouDvL1ROndmBhK7xUqwOOPy3HxIrvefZfWUVGShMhahvm116T08v33S/xWtWqO7aODuJPP3tUVevSQ48MP4coVSQRuDac7ehQ2bpRj4kSJWkxOlpweOaFpcp8xbpx4TDkiXE7Nd+PJLg7y9UTp3Zg4YuwBATB3bn4T85mYPDnrM23bQmqqbFZcvQpRR5yIOlKRcCpSo0YHHj41XpI/7d/Pqx+WJ/kFJ/z8JHVT45WHqHZkA6YNG2wnLFWK/tWrw7p18MMPhksaqPf33chrjSMxaVpul1YKRVYSEhLw9PQkJiaGihUr6t0dhYNISUlh0qRJ6eVsjbNAGh2l92LC+fNSYm3mTFi/PqtFpGtXGDlS4gKqVCkScXer3o8fF2PTihWwcqUYoApCcLDdq1fryt2qd0XuKL0bE6PoPTlZQp3j4nLfTDCZxPkop40ETZPXIiPlOHhQcgROmmRrU6WK/FxnxsMtlUblztPVZQtfJz4uORgBS9PmmPfvtTUcOVI6Yc3p1Lq1lE0tKtITDd6cO5dTu3ZRs3VrnAID9Uk0qHA4Fy9exNfXl/j4eMqVK2d3eSpETlHimDlzpiFlFwf5eqL0bkyU3pHcDs88I55MZ87At99Cly7y2oYN8Pzz4snUowf8+KO46pdw7PHZ16kDTz4pybwvXoSePfO/eWw2i43PEej9vdMTNd+NidK7MXHE2N3cYNo0+Tun9d76/LRpOdta0iPm6N0bnn0Wvv8+q3FJ0+CTT+Ctt8Rrys9P0iomJruwI6YGexqMkF2NY8fY8MorNIjdhJ+ftJ3whoWpc8uxZeZx4if8D/r1k8Ti1avDkCHym18YwsNJrlKH4LHLuT/sIR45+Qf3hz1E8NjlJFep49BEg3p/34281jgSFSKnKHFYrMkxDCa7OMjXE6V3Y6L0fgtVq4pB6fnnxdg0e7ZUo/v3XzFArV0Lzz0n1pP774fAQPDxcXznC4m9P3snJ8mzlF8fbotF8jD16ydOY126SFqsMmWKvm96f+/0RM13Y6L0bkwcNfYhQ6SAw7hxYuMxm2VNtz56eYlxaciQO5dhMklhiMykpkpo9sGDULp0eqM6dTjc7B6OXfCAC5KIfD5m4Bdbf91XEp50H0RHQ3Q06+NbUCdQDFwmNLFKNWhg83Rq1Eh+1LIjPJxw/98YxwGu4I2Zm1hwwsxN5hLIi3GXmTZ0HEPma5Ks0M7o/X038lrjSJSBSVHiqFevniFlFwf5eqL0bkyU3nOhenXJcP3yy3DypBibZs6E7dslBmzlSvF86t1b3O8DAiTTdU6ku9A7z53L2F27cN69WwxUOrjQO+Kzr1DBdoORH27ehOXL5QC5nm/d2mZw6tKlaKIU9f7e6Yma78ZE6d2YOHLsQ4dKiFtoqBSAO3Eigdq1yzFsGIwYYZ+fOBcXMvIxZaZJk1qcOWMLtcv8ePYsVHqgN3wRD3v2kLx1L/e+/gxaDQnJ86t7A7+9I2jMQfyYQyvepW7p89CihfwgDRkCAweKoORkwh+YQQDzMmRbcMryGIcX/oQR9sAYhsb2tftvvd7fdyOvNY5EGZgUJY5qOia11VN2cZCvJ0rvxkTpPZ/UqiUJwF97DY4dE6+mWbNg1y6bVWT8eOjbVzyb/P2zVrsJD8/Y3jWbzdSxWNBOn5Zt3xdfLPz2bgFxxGcvyV/z3/6//5WPbONGiUw8c0Zsedu3w9dfS5u6dW0Gp65d5cbCXMBkBHp/7/REzXdjovRuTBw9djc3yaM3ZgxER1+lWjX756LJjurVq1Gtmi3kLjMJCXD9OlCuHHTrRkytbjT8BY4cgcRE2L7Xle08lNH+Yec/mXr9IdiyhdQtO3h35/34xUDjxlB7zQzGXfseAC2HrDgaZkxYGHfte87+PRe3Rx+w17AB/b/vRl5rHInKwaQocaxbt86QsouDfD1RejcmSu93QN26MGEC7NwJUVFSUq1FC0hLg8WLxZBUqZJs6f75J8yYIdaWuDgATOkuPdZH4uLEIBUeXtgh5RtHfPZBQVC+fN55mEwmaffaaxJ9GBICp0+L09hff4mTWIsW0u7YMZg+XWx5TZtKdOKQIZKrY8MGcRLLC72/d3qi5rsxUXo3JkbVe26yy5WTn2crNWuKZ1NSkng5zZ0L//sfPPQQtG8PrT99QBqEhHD0sY/5ZGtPHnkE7rkHKk8YxxW8czQuWdEwcwVvQn+8WFRDzBG9v+/FVe93G8qDSZEvJk+ezOTJk7l58yYAYWFheHh4EBgYyMqVK4mPj8fX15cOHTqwcOFCANq0aYPFYmH37t0A+Pv7s2HDBi5duoS3tzfdu3cnLCwMgBYtWuDi4sKOHTsAGDRoENu3b+fChQuUK1eOvn37EhoaCkglu2PHjrFlyxYA+vXrx/79+4mOjqZMmTIMHjw4I5Fao0aN8PHxYePGjQDcd999REVFcerUKVxdXQkMDGTmzJlYLBbq1atHtWrVMhaAHj16cOrUKY4dO4azszNBQUGcO3eOkJAQatWqRb169Vi1ahUAXbt2JSYmhqioKABGjx7N/PnzSUpKonr16jRp0oTl6XEVnTp1Ij4+noiICACCgoJYunQpV69epXLlyrRp04bFixcD0L59e5KTk9m3bx8AN2/eZOnSpVy5cgUfHx86derEgvTkfK1btwZg165dAAwZMoTNmzcTGxtL+fLl6dGjB/PmiZts8+bNcXNzY9u2bQAMHDiQnTt3cv78ecqWLUv//v2ZPXs2AE2aNKF06dIAhIaG0r9/fyIiIjhz5gzu7u74+/sTEhICQMOGDfH19WVDeknWXr16cfToUU6ePEmpUqUYPnw4s2fPJi0tjbp161KzZk3WrFkDQPfu3YmOjubo0aOYzWZGjhzJ3LlzSUlJoWbNmqSkpGTI6dKlC7GxsRw6dAiAkSNHsnDhQq5du0a1atVo1qwZy5YtA6Bjx44kJiZy4MABAEaMGMHy5ctJSEigUqVKtGvXjkWLFgHQtm1bUlNT2btXKnsEBASwbt06oqOjWb58OV27dmX+/PkAtGrVCrPZzM6dOwEYPHgwW7duJSYmBk9PT3r37s3cdPeIZs2a4e7uztatWwEYMGAAe/bs4ezZs3h4eDBw4EBmzZoFgJ+fH97e3mzatAmAPn36cPnyZUJCQihdujQBAQHMmDEDTdNo0KABlStXZv369QD07NmTEydOcPz4cVxcXBgxYgShoaGkpqZSp04dateuzerVqwHo1q0b58+f5/Dhw5hMJkaNGkVYWBjXr1+nRo0a+Pn5ZXyGp06dIjExkcjISADuv/9+Fi9eTGJiIlWrVqVly5YsWbIEgA4dOpCUlMT+/fsBCr1GREdHExISUqA1omnTpnh4eBR6jTh37hxAgdaIOXPmcOPGjSJZI6xjL8gaMWzYMNasWZN1jUg3OHX09KTskiWUmjcPz+hoSey5YAHWNEQ52lk0Dc1kIu3BB5n7/feUqVDhtjXC09OTzZs3A9C3b99CrxHR0dFs2bKlQGtEw4YN+eeff4D8rxGPPlqVL7/sjskEmnb7J2Ayyafz6KPrmDfv7G1rxLBhAVSosI6uXS/j5lYJk6kz06YdISqqIseOVeTKFTMLF0L6Vx4XFwu1a1+iRYsERo2qyaVL4ZQrdyPLGhEdHU1cXFyB1ojIyEhOnz5dqDWiRo0agKzzZrM5X2vEihUrAOjcuTOXL18u9BoRGxvL1atX7X4dkd0acenSJUJCQux+HZHTGnH9+nV27Nhh9+uIW9eItm3bZujd+rc9riNyWyMAh1xHZLdGWNdZe19HXL58mQoVKtx2HZGYmJgxdnteR9y6RsyZMydD19WrV7fbdURua8SFCxcICQmx+3VEdmtEdHQ0CQkJdr+OyG6NSE5OztB5Qa8jataMITk5itq1Yfr00cyfv4CQnbJGuD/djz6nojh7thyxsT5cuJD/23wTFn7a1Q7fwOe495H+bLqawHnAp2LFIr3XiI2NJSQkpMBrRFHdayQnJ7N169YivY6A/K0R1rWmoGtEUdxrOBqTpuU3xaVCIcYdT09PYmJiqFiU5TMLwLlz56hSROW4S5JsPeUXh3K2Su9K70aSbXf5Bw5ICN2UKbfXVc6N4GCJL7AzjvzsM0UH3pb8tXz5O48OTE2VCMWNG21hdRcu3N6uUaOsYXVlypyjalU1340kW0/5Su9K70rvd6fsbj4H2XCpcYHfV4ZEPuN1nq4wG5o1I75he/Z3e5qG/evi45P/6qvZYdT5prfsixcv4uvrS3x8POXK2T80VIXIKUocp06dMqTs4iBfT5TejYnSu51o2hTefx86d85/kiCzWbKjOgBHfvbW5K/BwRIp2KZNPAEB8v/Zs3eeesrFBTp0kBzsoaFw7pzk0Zg6FZ54QnJkgFQR+u03ePRRaNgQmjXzITAQvvgCtmyBGzeKaKAlADXfjYnSuzExqt4dJdu3jjtmbuaztYa7UzJmbnIND8qZEuHSJVi7ln9/2UvXsXXx9ZVNl/YNrvBA9bW8120Vfz67mVP/RMmOSj7Q+/tuBL0XB5SBSVHiOHbsmCFlFwf5eqL0bkyU3u3MpUv5L6NmscDmzTB/vmQbtSOO/uytyV/nzIHXXlvMnDnyf1EW1DGZoF49ePhhcRyLiIDYWPGgevNN8WAqVQquXHFh3jzJ+XTPPeDpCT16wNtvw5IlGamy7krUfDcmSu/GxKh6d5TsgKerZFSLyxsTP/9i5nqKE5GRMPDMFNixA6ZOJWnoaGpWv4nJBPHxsP1IeUKi7+WDDb146IdOrOnzoZS4a9mSbQP+w0PDrvLBB5KvcPt2eY8Vvb/vRtB7cUDlYFKUOJyd9fva6im7OMjXE6V3Y6L0bmcqVLDFg+WHc+fEzadUKejeXcohDxworjeF8Zu/BaPovUIF8ZCyekklJ8Nnn63C1bVXRmhd+iYya9dKG5NJHNAyh9XVqnXnH39yMsyeDXPnOrNr11h273YmMFCSoNu5YvVtGEXvxVG+nii9GxOj6t1RsoMeKMWLL9wg7ppzrom+TVjwKpPGiNGlKFVKwrahNFRtA23aMOxhGIb8Vhw9CodXnODwmmiiDlk4fLYMzdKOQ9IN2LuXbXu78CdlISyrDN/SCTSoksj9916H/legfHmuXZPXypSx0weQjvU3LiwMIiN7ExoqlzGO/o0z0lxXOZgUBaI45GBSOJ7iEKuvcDxK7wYgOBjGjs1/+z595Arz1p24unVtxqYePSC9MICicGiahNBt2GDL43TkyO3tqlbNanBq0QLycy2bNf+UhsViyngsTP4pRclBrfPGROndGCxYAP7+mhTryMbIZMICJhPz55vufK3XNCmrum8fe1bGsth3HIePmDh8GA5vu8KFlPIZTdfTla5shGrVmOL1BuMPvEDVqtCgATSor9GgoUn+Tj8K+9UMD4dxD2tciTNh5iYWnDIey3tpTJteiHGXIFQOJoUiD6yVL4wmuzjI1xOld2Oi9G5ngoIkqUJe7i8mk7QLDxcLx6FD8NVXYnAqVUoMTt9/LwYmb28YNAgmT77dEJVPlN4Fkwn8/ODxx+GPP+DwYcnJPmcOvPKK5HhydpZcUbNmwYsvQtu2oqo+fWDiRPjnH7h69XY54eGyi2sNubNYTFke4+LA31/aOQqld2Oi9G5MjKp3R8oeMgTCwkx4ecm6bs3JZH308iqkcQnkh6p2bRgyhJZfP8Jb/2fi999h/Xo4v/sC8VNmsv3h7whp9Qn1vNMrmkVHcyoyCZDfr7Vr4dffTLz5JgQGQvPm8O/nG+QawmJh40b48ksxmEVG5i83ofzGacTFiS+NNVzQ+hgXp+HvrznsN85Ic904vlqKu4YbOmY81VN2cZCvJ0rvxkTp3c64uYmbir+/XCRm59RsNT5Nm2bzJ2/YUI6XXpJ8TKtWweLFcpw+bfsbxEIyYIAYn7p1y9eWpNJ7zlSqJBfggYHyf1ISbNtm83LatElyXvzzjxwgUZCtWtk8nNq2Fc8lyF7l1udNJml39qxjQgmU3o2J0rsxMareHS176FA4e85EaKhsTuzefZxWrWoyfDiMGGGy79ru50c5Pz/aPgFtgZCQmoweOBD27+fDs2d5pbdsnBw+DIdf/YnDMeU4TAMO04AG79wP75yDMmVY4PUTn0TbKtiazRq1atm8nSZMgOrVbWKTk2HcAzdAyzk8UMOMSbMw7oFUzsaWsvtvnJHmujIwKUoctWrVMqTs4iBfT5TejYnSuwOQLc6MWCnNbMZksWQ84uWVe6yUh4dcwQ4dKlaJAwdsBqYNG2S7MTJSPJ7KlIH77hNj04ABUKNGtqdUes8/7u5w771ygKTTOnAga1jdyZOwc6cc332X/3NrmoTPhYZK0nN7o/RuTJTejYlR9a6HbGshi6CgNCZNmp4eGpnfBOBFR61ataRyRZcuAHgDHTvKQc8hsG8f7FuDtvc72FcJDl6Ca9do6bmb++8fQ1SUGKOuXTNx/DgcPw7Ll8ObdWbBvXWhSRPe/8ydH3+wcOVaqTz7o2HmyrVShIbcYMwjebcv9NgNgjIwKUoc9erVM6Ts4iBfT5TejYnSu4MYOlTcVEJDscyZw6ndu6nZqhVOssWZf/cVkwmaNZPjjTfElWbFCjE2LVki8V3z58sB4gdvzd3UqRO4uABK74XBbJaPtXlzePppee7MGTKShm/YALt2Fex88+Y5xsCk9G5MlN6NiVH1rnSeA9WqydG/PxlB+2lpcPgwo+PiGN1JntIsGufLNeTwtSocpgFHqE+1194GxO32QMVVXIjpke8+mbjJ1C8u4T+iCmXL3uHA8oGR9K5yMClKHKtWrTKk7OIgX0+U3o2J0rsDSd/iTJsxg+njxpE2Y4ZYFQrjN+7pKQaq33+H6Ggpe/zhh9C5s1gu9u2DTz4R95uKFeH++2HqVDbNnVt04yogd6Peq1eHkSPh22/Fi6lr1/y/12KR9yxeDBcuFHnXsqDmuzFRejcmRtW70nkBcHaGxo1lAyodk9lElQu76b7lcx77tTMfv3gBc6+ecg2haXzT8g9aljuebxEaTqw8UIVy5cDXF+65Bx54AN55R0LQiwoj6d3wHkymfNb1vffee1mzZk2ubZYuXcqUKVPYunUrFy9epGLFinTo0IEnn3yS/v3750tOUlISkydPZvbs2Rw5coQbN25Qo0YNBg0axAsvvEDNmjXzdZ4DBw7w3Xff8c8//xAdHY2HhweNGzfmwQcf5LHHHjNUqUSFQqFQFAPMZmgjZY95+224dEl82xcvhqVLITZWagnPns0wgF9/tXk3degATo53579b8fUVdVgs+Wt/4oTkbQeJamzXzna0bQsVKtitqwqFQqFQZKVMGbku6NAh6/MxMVRJTKRex1Pso2ZGQu/c0ShlSuOG5sLFi3DxImzZIratiRNtrR59VLyA69WTwrl169r+rlNHsgUoBGVlKAI0TeOpp55iypQpWZ6Pjo5m3rx5zJs3jyeffJKffvopV4PW0aNHGTRoEIcOHcryfGRkJJGRkfz666/8/fffDBw4MNf+/Pbbbzz77LOkpKRkPJecnMz69etZv349U6dOZeHChVQooVeEXQuy9XoXyS4O8vVE6d2YKL3fxVSoAKNHy3HzJmzfbsvdtH27LWnQhx9K2379xNjUrx/4+NitW3p/7o6QHxAABXES69IFLl+WVFqnT8sxb57t9Tp1bjc6eXoWvF9qvhsTpXdjYlS9K53bEV9f8PUloPZC5sbem883mfit7Q8MmT2W43V6coy6HDXVJ75sbZwDl4oHVZMmROy4n6io0kRF3X4GZ2e4fl0eQfIWJibajFBVquij9+Rk2bebOdOxJh8VIpfO008/zb59+3I8/vjjjxzf+84772QYl1q3bk1ISAhbt24lJCSE1q1bAzBlyhTefffdHM+RmJjI4MGDM4xLTzzxBCtXrmTTpk189NFHeHh4EB8fT1BQEHv37s3xPMuWLePJJ58kJSWFSpUq8e2337JlyxaWLFlCYHrJmX///ZfAwEAs+d26LGbExMQYUnZxkK8nSu/GROndIDg5SZbP99+HbdvYs2wZTJ0qIXOenuLt9PffErLn6yvu8v/9r4TcFfFvmd6fuyPkBwVB+fK2AoE5YTJJu3/+gYgISam1di188YXYBRs0kHbHj8tF7JtvQu/ekhe+USN48EHJ7b5+vVxs54Wa78ZE6d2YGFXvSuf2J+ipCpTnMiZyvz4wYaE8lxnxdEU8b16mVSd3Ar1W87r2GR9eeRYWLIBPP4Vx45jV8iNWroRffoG3Xr3ByIY7aVcrBu9yqdSsdpPMwUFffgmPPCLR/9WrSzGO7t19GDQIXn45a/XWtDT7fAbh4VC1KowdC4sXO9bkowxM6fj6+tKsWbMcjzp16mT7viNHjvDpp58C0K5dOzZu3MioUaNo3749o0aNYsOGDbRr1w6ATz75hKNHj2Z7ns8//5zIyEgAPv30U6ZMmUKvXr3o1KkT//d//8fy5ctxdnYmKSmJl156KdtzpKWl8dxzz2GxWChXrhwbN27k+eefp0OHDvTv3585c+bwzDPPALBu3Tr+/PPPwnxkuhGVnenYALKLg3w9UXo3JkrvxiTi0iV4+GGYOVNC59atkzrELVrIldm//8J//iPuMlWrypXc7NkQF1do2Xp/7o6Q7+YmhQEhZyOT9flp02xpuMqWhe7d4ZVXxN4XFSVV5lauhEmTJN1W7drSNipK2rzyirynXDlo2lTU+t13sHmz7PhmRs13Y6L0bkyMqnelc/vj9uBwppV5FiBHI5P1+WllnsXtgUBxNdq0Sdx1z52TH7bvv4dnn4Vevah5X0N69YLHH4f/jdzDjKi2bDtZiUsJpdh3sqzkgOreHcaP595aJ+jTR07p7AwpKXDiRGkWL5aivZl/d++9FypXFk/hhx6C996T390NG6T2yp0QHi6eytZLIk3LX0qgokKFyBWSr776irR00+N3331H6dKls7zu7u7Od999R6dOnUhLS+Prr7/mu1tqBKempvLNN98A0LhxY1599dXb5HTq1InHHnuMn3/+mdWrV7Njxw7atm2bpc28efM4cuQIAG+99Va22eo/++wzQkJCuHLlCp999hljx46988ErFAqFQmFvnJ2hWzc5Pv5YSqItXSqhdCtWSObpqVPlcHKSqzRr7qZmzfJ20wGbH3lYGL0OHhT/9oAAcfUpTJLzYsyQIXKhO26cGInMZg2LxZTx6OUlF7lDhuR+Hi8v6NVLDiuxseJctn277ThzRrygIiJg+nRp5+QkRqf27cVWeOmSNykp4OpqnzErFAqFwgC4uTEk5AHChg5jHH9wBW/M3MSCU8ajF3FMYxxDQp7I+jtvMonFp3LlrD9smfHygldfhYMHISIC9xMnIPa6uOuuX8/HX/qJqxKQtucAp8e+zUZLba437I9WuQocdpf4OScnjh2Ty5gLF8S+lZlatSQHopWvv5buWUPv6tSBW0wPJCfL7zpk9ZRyKJrBATRAe++99wr8XovFolWrVk0DND8/v1zbNmrUSAO06tWraxaLJctry5cvz+jHpEmTcjzH5s2bM9r93//9322vP/DAAxmvnzt3LsfzjB8/PqNdVFRUHqPMSnx8vAZoMTExBXqfomSTnJysTZw4UUtOTta7KwoHovRuTEqU3lNSNG3lSk179VVNa9xY0+R6ynZUr65pTzyhafPmaVpCQvbnmD9f08qXl/Zmc9bH8uU1LTzcoUNyNNeva1pwsKYFBKRptWsf0wIC0rTgYHm+KDl3TtMWLtS0iRM1bfBgTatU6XZ1gaa5uGha27aaNn68pv3yi6bt2qVpN24UbV8UNkrUfFcUGUrvxsRwep8/X7vuVVkL5kEtkDlaD1ZpgczRgnlQu+5Vueh+3xMTNW3HDk37809Ne/tt+dtKSEj2P3aurprWvLl2+c9F2vbtmjZrlqZ9/N9U7YlH07TevTWtdm1N69Mnq5iqVW8/TZUqmta1q1wGaZqmTZ+enTi5f4+Pjy+a8eaBCpErBMePHyc6OhqQKnO5YX39zJkznMhsigTWr19/W7vsaNeuHWXKlAFgw4YNt71uPU+jRo2oXLlynn3J6TzFnfnz5xtSdnGQrydK78ZE6d2Y5HvspUrJDuPnn4trzLFjMHmylDwrXVrcZn75BYYNk0Th990nyREiI+Wa61Y/cms+J+tjXBz4+0s7B+Fovbu5SWqrGTPSGDduOjNmpDFmTNE7blWuLGp57z1Ja3HunC1Z+NtvS+72smVTSE0V76eff4YnnoDWrSU075574LnnxFHtwAHJC19YkpMhOBiGD4fmzWMZPlz+T04u/LkLiprvxpNdHOTriVH1rnTuQIYOxe3cccYE92dO4F/MavYCcwL/Ykxwf9zOHc/bRTe/lCkjFXIffFAKk7RpY3utRw8IDeXgAw9I8sJWreQHNiUF9u2jfNk02rYVh+kJjeczZZor/5xqyPEW/ixr85a4/G7bhpZwlYcekt+r1q0l7Bzkt3TDBvEUBvFMNpv0cl0SVIhcOrNnzyYkJIRTp07h7OxM5cqV6dy5M+PGjaNnz57ZvufgwYMZf/v5+eV6/syvHzx4MEtOp/yex9nZmXr16rF3794s7wFJEn7mzJk76ktJIykpyZCyi4N8PVF6NyZK78bkjsdepw4884wc169LRurFi2HRIjE+rVwpx6uviu/5+fPyvpz8yDVN/NHHjZNkCA4IlzOK3k0mSX5avbrY+AD+/nsunTuPzhJat327JBffskUOK+7ucg2fuXpdgwZgzufWaXh45vBAsFh8iIiQ6novvpi/8MCixCh6zw61zhsTo+pd6dzBWHdRxozhn5AQRo8e7Vj5lSvD8OHsvnGDxlbZFgucPCkbY/fcY2t7+LDsnhw+DIcPY8q0uWUCJoWHwyT5YdJOnOTKgbMcc23MsctepPugcOniTSyak4MGlz3KwJRORERElv+PHDnCkSNHmD59OgEBAUydOhXPW2runj59OuPv6tWr53r+GjVqZPu+zP+XKVMGLy+vPM+zd+9eLl68SEpKCq7piQrOnDmDln6BXJi+lATyGt/dKrs4yNcTpXdjovRuTIpk7KVLQ//+cnzzjVywLV4MS5bAmjVycZcfNE2sEKGhcpFqZ4ys9xo1qlO7tiQKHzFCnrNY4OjRrAannTulKt2GDXJYKVsW2rbNanSqW/f2NFxWxzUrOTmuhYXB0KF2GeptGFnvap03JkbVu9K5MeVnkW02y4bYrUXE3nxTKmFERGTkd+LgQTkuXJDES+mYZs3E+8038Qba+fhAkyawoDEVTjyKmbZY0M/IZHgDk7u7O0OHDqV37974+fnh4eHBxYsXWbt2LT/99BOXLl0iLCwMf39/VqxYgYuLS8Z7r169mvG3h4dHrnKsoW0g3kaZsZ4nr3Nkdx6rgamo+nIrKSkppKSkZPyfkJCQ7fOOpH79+oaUrad8q0wjjl1v2XrKV3pXetcLu4y9Vi14+mk5EhNxGTQI05Yt5Ke2imY2Y5kzh7SgoKLtUzYovd8uv2ZNOQID5X/Z4DWxY4eJnTtN7NhhZs8eE1evmlizRuyHVsqX12jdWqNNGwvt2mk0bWrh4YdLATlX1hHHNY2HH4YTJ244JM+70rta5x2J0rsxZeutd6POtwLJ9vaGrl3lyMzly+DpKaF1gBPgVLMmplOnbNV2160jgGvMJbjoB1AADG9gio6OztZrqE+fPjz//PMMGDCAXbt2sXbtWn788UdeeOGFjDbJmYL0S5Uqlasc10wlUa7fUpfXep68zpHbeYqqL7fy8ccf8/7779/2/OTJk3G7SyvrKHLmq6++0rsLCh1Qejcmd7vex54/T528mwFgslhIWrGCVSNHcqJ2beLKl7dr3/SkpOm9YkVxUuvTx0RsbEXOnq1KdHRVzp6tyoULlbhyxZlVq0ysWlWwtKOaZiIuDh55ZBEtW+6zT+eLESVN74qiQendmCi93yU8+iguKSn4XLqEz8WLVIyNZeC2hZRPvkwcXmjok27b8Aam3ELSKlWqRGhoKI0bN+bGjRt89913WQxMmQ0sN27cyFVOZotl6VvqCVrPk9c5cjtPUfXlVt566y1eeeWVjP8TEhKoUaMGzz77LBUrVsyzv/Zg9uzZBDlgF7m4ydZTfkpKCl999RUvv/xyFgOlI1F6V3o3kmw95RtF7867d6OdPo3JGheVB2WvXcM/PUGpVrMmlu7dMw5q1y6yfim9F93Yb9y4yYEDlnRPJzM7d5rYs8eUo+fSrZjNGprmz4QJg4qsTzmh9K7WeUei9G5M2Xrr3ajzzZGynUeNYur8RwjQ5mHCoouRyfAGpryoW7cuffr0YdGiRRw5coSzZ89StWpVAMqWLZvRLq9Qs2vXrmX8fWsIm/U8eZ0jt/MUVV9uxdXVNdsFKKfnHUHXrl0NKbs4yFd61we95Su964Pe8u96vQcGSpKd/DJ0qLihb92K6dQpnP78E6c//5TXateWSjHWo1atO+6W0nvRyXZ1lfypmXOodu8OmYr35orFYmLFCicee8yJFi3IOKpUuT2vU2FRejee7OIgX+ndWLKt6KV3vcduCL0HBjI0bCxhBDCOqVzBGxM3cWRdOX38pkoYTZo0yfg7Ojo64+/MybqsFdxyInMy7cxJtjOf59q1a8RZSyXncZ6KFStm+ZIWVV9KAvHx8YaUXRzk64nSuzFRejcmDhl7UBCUL5+3pcBkknYzZ8LGjZIBetkyeOst6NQJnJ3hxAmYOlXKktWuLZmlH31UygufOlWgbim925eKFfNfaQ7g2jX46y/JvTpgAFSrJufo1Qtefhn++AN27JCihYVB6d14souDfD0xqt6Vzo0p32Gy069thpoWcpaqBDOGwSx0jOx0lIEpH2g5lC/ObHiKjIzM9RyZX2/cuPEdnSctLY2jR49mew4PD48MY1Fh+lISuLXin1FkFwf5eqL0bkyU3o2JQ8bu5ia16CFnI5P1+WnTyMj0XKYM9O0L//sfbNokFeaWLYMJE8RVxskJjh8Xy8PDD4s3U9268NhjEBwMeVRvVXq3LwEBtmpx+eGVV+Cjj2DkSGjcWIxTly7B6tXw9ddiR2zXDjw85PWRI6X9ggVSqDCHS8jbUHo3nuziIF9PjKp3pXNjyneY7EzXNm6mG4zhL/5krGNkp6NC5PJB5i+ENTwOoE6dOlStWpWzZ8+ydu3aXM+xbt06AKpVq0btW3I1dM2UJX7t2rXck9mXOxPbt2/PCG/r0qXLba937dqVkJAQDh06xPnz56lcuXK258nc1+zOo1AoFAqFIRgyRMLkxo0TQ5HZLNYH66OXl1yoDRmS8zk8PMTg1Lev/H/1qhieVq+Wcmbbt4vB6fhx+P13aVO3LvTsaQupM3DZakcTFAQvviiOaLkZf0wmUf9HH5Glitz161Ixeu9e2LPH9njpEkRGyjFrlq29pydZwutatIBmzeRro1AoFApFkXPLtY1mMuV/t6Mo0BS5cvToUc3FxUUDtLp16972+tNPP60BGqBt3rw523Ns3rw5o80zzzxz2+spKSmap6enBmiNGzfWLBZLtucZP358xnm2bt162+szZ87MeP3jjz/O9hzXrl3TypcvrwFakyZNcht6tsTHx2uAFhMTU+D3FhWpqamGlK2n/OTkZG3ixIlacnKyLvI1TeldD5Teld71wuFjv35d04KDNS0wULt5772aFhgo/1+/XvhzJyRo2pIlmvbGG5rWoYOmOTlpmlzq2Y569TTt8cc17c8/tdQTJwov8w4wkt7DwzXNZJLjVlWA7bXw8Pydz2LRtLNnNW3pUk379FNNGzNG01q00DQXl+zPb1X5sGGa9t57mjZ3rqZFRqZqN2/addjZYiS9FzfZespXejembL31btT5ppvs9Guby4MGaYAWHx/vELGGDpFbsGABaWlpOb5+4cIFRowYQWpqKgDPPvvsbW1eeuklnJ3FEez555/n/9u777AorvWB499FugiKiApiQ7HHrjEaa+wFG5bERG96b7+0e29uYrrpuUlMco2JSUyCXewltlhi7F2xYEFRBBRBurDz++O4K8jShN0B5/08zzwsu7Pzzuy7e5h9OedM+k2D8NPT03nmmWcAcHZ25vnnn8+3DVdXV+vV6Y4cOcInn3ySb52tW7fyww8/ANCjRw86duyYb50RI0YQHBwMwAcffGAdTpfbyy+/TGJiovV2RbRy5UpDxi4P8fUkeTcmybsxOfzY3d1hwgSYP5/lL70E8+er33N3XblVVarAgAHw4YewbRtcvgzLl8PLL0PHjqq3VFQUTJ8OEybgXL8+NG4Mjz4Kv/8O58+Xfh8qCEfl3fLPXcuFhC1zMll+Vq0KixYV3nEtN5NJTfzdv79K68yZqldTSor6OXOmur9/f7UeqJQvXAhvvaXmm2/a1BlvbzWt12OPwdSpajLyIqbmvGUZGWq/xo1zZsaMBxg3zpmZM9X9jibtvDEZNe+Sc2PG1yX29XOb7BkzHBrW0EPknnnmGa5du8aoUaPo0qUL9evXx8PDg4SEBDZs2MB3333HpUuXADX8zFaBKSQkhJdeeokpU6awc+dOunbtyquvvkpwcDBRUVF8+OGH7NmzB1AFncaNG9vcl5dffpnZs2dz7NgxXnnlFU6cOMG4cePw8PBg/fr1vP/++2RnZ+Ph4cEXX3xhcxsuLi58+eWXDB06lOTkZLp27crrr79Op06dSExM5Pvvv2f+/PnW47n//vvL4FV0vKtXrxoydnmIryfJuzFJ3o3pts67t7eaLXrgQPV7cjJs3mwdUmfetQunEyfgxAn4/nu1TuPGN4bU9egBuYbr304cmfdhw1Ttbt48Veg5cuQizZrVZMQIGD26bGqLrq43hsXlFh8PBw7cGGK3fz8cOJBDamol/v4b/v477/r16uUfZteokZpf/lYsXpx7VKgTZnMDzp7ViIhQwweLGhVa1m7rz3s5j68no+Zdcm7M+HofuyMZusAEcP78eb766iu++uqrAtcZNWoU06dPL/DSgu+99x5xcXH8+OOP7Nmzh3HjxuVb56GHHuLdd98tMEaVKlVYtmwZgwYN4vjx40ybNo1p06blWcfb25vffvuNNm3aFLidQYMG8d133/H0009z8eJFa++p3Dp16sTChQupVKlSgdspzwqaW+p2j10e4utJ8m5MkndjMlTevb1h0CC1AJuXLKG7k5Oav2n9etizB44fV4vlvCAkJG/BydItpoJz9Gtv6bg2YQKsX3+YXr1qOiSu5Sp0vXvfuG/Nmk0EBva0FpwsS3S0miz8zBk1cXjufW/R4kbBqXVraNUK/PwKj714sZro3MJsNuX5eeUKhIaqHl7DhpXJ4RbJUJ/3chZfT0bNu+TcmPH1PnZHMnSB6eeff+bPP/9k69atnDx5koSEBJKTk61XZLvrrruYOHEiXbp0KXQ7Tk5O/PDDD4waNYpp06axY8cOEhIS8PPzo2PHjjz22GMMtPynshCNGjViz549TJ06lblz53LixAmysrIICgpi0KBBPPfcc9SrV6/I7TzyyCN06dKFL7/8krVr13L+/HkqV65Ms2bNuO+++3j44Yetw/oqonbt2hkydnmIryfJuzFJ3o3JyHlv3b27mhl68GB1x5UrqodT7oLTsWNq+d//1DpNmqhiU69equBUkhPZjAyYOxfnBQt4YM8enPfuVWO2wsLKphtPCRg57x07tsXH58aV6CwSE1Vvp9xFpwMHIC0Ndu1SS24BAfl7OzVponpTZWSonktQ8HyvmqaG/E2apHp4OeItYOS86x1fT0bNu+TcmPH1PnaHcshMT+K2UR4m+f79998NGVvP+HpPCqhpknc9SN4l73qRvBciMVHNPv3ii5rWtq3tmaqbNtW0xx/XtNmzNS02tuBtLVqkadWqaRpoZienPD+1atWKP8t1GZG8F09OjqYdP65p8+dr2htvaNrw4ZrWsGHBE4q7uGha69aa1rVrwevYWmbOtN/x5iZ5dzxp540ZW++8G/XzpnfsuLg4h07yXXG7sQghhBBCGE3VqmqCHMskOYmJajZoSw+nffsgMlIt332n1mnWLG8PJ3//fGOlTGZznp+6jJUSxeLkpOZgatRIdTazuHoVDh4k3zC75GT1tihpjIUL1fBBIYQQorikwCQqHFtX0DNC7PIQX0+Sd2OSvBuT5L0EqlVTBSBLEejy5RsFpw0bVGXhyBG1fPutWqdpUzh1quBxUqDLWCnJe+lUqaKuQpd7ZgdNU/M37d+vJvA+fbp42zKbYetW+PJLVZ9s1gwCA9VboqxJ3o3JqHmXnBszvt7H7khSYBIVToYe19AtB7HLQ3w9Sd6NSfJuTJL3UvD1VT2PQkPV75cvw8aNeQtOkZHF25amqR5S8+Y5pCuL5L3smUxQv75afv5ZTRpu6aRWlAsXVFHKokqVG8Umy9K8OTRoAKW5bozk3ZiMmnfJuTHj633sjuSk9w4IUVIHDhwwZOzyEF9Pkndjkrwbk+S9DPn6qqFwX3wBe/dCQgLceWfxu6I4OakCkwNI3u1r+PDiF5dAjcIcPlxNEl6pkhqCt327KlS99pqqYTZuDJUrq8nEx46Ft96COXPUROSZmcWLI3k3JqPmXXJuzPh6H7sjSQ8mIYQQQgijqF4d3NwKHx6Xm9ms5mvq3FmNvbrzTvWzbl37jJcSdhMWpnokXblSePpNJjXV15w5N0ZGZmXB8eM3RlseOQKHD8PRo+rqdAcOqCU3JycIDs7b26lZMzVCs0oVex2lEEIIPZk0rbhnGEJAcnIyPj4+xMXFUaNGDV32ISMjA3cHXzq5PMTWM35mZiZTpkzhtddew83NzeHxQfIueTdWbD3jS94NkPdRo9Tk3SXpznKzWrVuFJzuvBM6dABPz1LtluTd/vGXLLkxetLWNwBLzXDRohvzyBcmJ0fN8WQpOOUuQCUlFfy8OnVuFJwaNbrGHXe40Lw5+PmV/JhKwyh5v5m088aMrXfejfp50zt2fHw8/v7+JCUl4e3tbfd4MkROVDgbNmwwZOzyEF9Pkndjkrwbk+Tdzko6Vuqzz+C33+CZZ1QhydkZYmPVZcZefVVdmc7bG9q3h6efhl9/haio4veSuk7ybn9Dh6raYtWq6ncnJy3Pz6pVi19cAjV0rmFDGDwYXn4ZfvxRTQ6emKjmhl+zBr76Cp58Ul3EsGZN9bxz52D1avjvf+GZZ1zo0QNq1FBL9+7w2GPqsdWr4ezZEr+VCpWRATNnqjprp06pjBqlftdjihS933d6MurnXXJuzPh6H7sjyRA5UeEkJiYaMnZ5iK8nybsxSd6NSfJuZyUdK/XEE2qs1L33qvvT02HXLvj7b1VN2LpVzQi9e7dapk5V69WocaOHU5cu0LEjeHkVGE7y7hjDhqniz7x5MH++mb17o2nTpi6jRlVi9OiyuWCgyQS1a6ulT5+8jyUm5h1mt3bteZKSAjh9Wk0RtmmTWnLz8ip4gnHnEnybWbxYXRgxMVEN4TObq3PoECxYoD4SP/9c/OJaWdD7facno37eJefGjK/3sTuSFJhEsUydOpWpU6eSk5MDQEREBF5eXowcOZK1a9eSlJSEv78/nTp1YunSpQC0a9cOs9nM3r17AQgNDWXz5s1cunQJX19funfvTkREBAB33HEHLi4u7Nq1C4DBgwezc+dOLl68iLe3N/369WPe9UlGNU3j5MmTbNu2DYD+/ftz8OBBYmJiqFy5MkOGDGH27NkANGnSBD8/P7Zs2QLAPffcw7Fjx4iOjsbNzY2RI0cye/ZszGYzwcHBBAYGsnHjRgB69uxJdHQ0J0+exNnZmbCwMC5fvkx4eDj16tUjODiYdevWAdCtWzfi4uI4duwYAOPHj2fRokWkpaVRp04dmjdvzurVqwHo0qULSUlJHD58GICwsDBWrlzJ1atXqVWrFu3atWP58uWAuqRlRkaGdWK4qlWrsnLlShITE/Hz86NLly4sWbIEgLZt2wKwZ88eAIYOHcrWrVtJSEigWrVq9OzZk4ULFwLQqlUr3N3d2bFjBwCDBg1i9+7dxMbGUqVKFQYMGMDcuXMBaN68OR4eHgDMmzePAQMGcPjwYc6dO4enpyehoaGEh4cDEBISgr+/P5s3bwagd+/eREVFcebMGVxdXRk1ahRz584lOzubhg0bUrduXWtFv3v37sTExBAVFYWTkxNjx45lwYIFZGZmUrduXTw9Pa1xunbtSkJCAkePHgVg7NixLF26lNTUVAIDA2nZsiWrVq0CoHPnzqSkpHDo0CEARo8ezerVq0lOTqZmzZp06NCBZcuWAdC+fXuuXbvG/v37ARg+fDgbN24kPj6e1atX061bNxYtWgRAmzZtcHJyYvfu3QAMGTKE7du3ExcXh4+PD3369GHBggUAtGzZEk9PT7Zv3w7AwIED2bdvH+fPn8fLy4tBgwYxZ84cAJo2bYqvry9//fUXAH379iUjI4Pw8HA8PDwYPnw4s2bNQtM0GjduTK1atdh0/Uy8V69enD59mlOnTuHi4sLo0aOZN28e165do0GDBtSvX5/169cDcPfddxMbG8vx48cxmUyMGzeOiIgI0tPTCQoKomnTptbXMDo6mpSUFCKvX3lqzJgxLF++nJSUFAICAmjdujUrVqwAoFOnTqSlpXHw4EGAUrcR8fHxhIeHl6iNaNGiBV5eXqVuIy5fvgxQojZi/vz5ZGVllUkbYTn2krQRI0aMYMOGDaVqI8zXe7acPHnSmpui2ggfHx+2bt0KQL9+/UrdRsTHx7Nt27YStREhISGsWbMGKF0bUa1aNZYtW1aiNuLy5ctUr169TNqI+Ph4rly5UqI2IjIykrNnz5aojaj76KN0/egjNMDWTEra9bFSGx98kAsRETbbiD/OnoXRo7nr00+5evgwV1atwu/4cZpcvox51y4qxcerMVnX34Nmk4lrTZuS0rIlx6tXJ6FRI/o+9RRr160jKSmJ1NRUrl69avfzCFttRHp6OuHh4XY/jyiojXB1dWXXrl12P4/I3UbUrOnHDz+056uvfqFRo0a0b9+e06ftcx5xcxuRk3MYT89zdO/uyYABniQk/ElGRiVcXVty6VJN1q+/QEyMD1eu1ObkSSdSUpzYsQOuh7NyddWoWTOJgIBk7rqrKtWrx+HsfJyAgBTuvz8sTxtx8mRLJk70vl5TNVk78Vl+XrmiERoK7713iMceCyjT84jC2ghL+2jP84ib24j58+cDKtd16tSx23nEH3/8AcBdd93F5cuX85xHJCUlER4ebvfzCFttRHx8PMnJyXY/j7DVRri5uVlzbu/ziJvbiKTr41aTkpJYu3YtYJ/zCLDdRqSlpREeHu6Q8whb3zXc3NzYvn273c8jbLURlnM6R5xHQN42wtFkDiZRIuVhDqaUlBS8CvkP6O0aW8/4eo/ZBsm75N1YsfWML3k3UN5zdefQnJwwmc3Wn1SrVrruHJmZsGeP6t1k6el09mz+9Xx9rROIp7dujUePHuDjU6rDuhWGynsuFeHzfu0anDiRf56nyEjVmc4WJyc1dM/S26lRI/i//4OUlOJ12jt/vmx6chVF8m68dl7P2Hrn3ajtrN6xZQ4mIYpgqaIbLXZ5iK8nybsxSd6NSfLuIJaxUjNnYh42jFP162MeNkxNSHP+fOnGCrm5qaFxL7wAs2dDdLSaeGfePHjpJejaVX2Dv3wZVqyAN97AIzRUFbZatoRHHoEfflAVhdJMRl5Mhsp7OVPUsbu4qCLRyJHw+utqOrDdu1Wx6ORJWLYMPvkEHnpIjcSsWlW9ZU6cUJ3nPvoIHn0Url4tei4nTVPD5653ZLE7ybvENhK9j13y7hgyRE4IIYQQwqjc3WHCBLLDwvjl+n+2K9nrP9uBgWpm5VGj1O9ZWbBvn7WHU8qaNXjFx8OhQ2qZPl2t5+OjejlZ5nLq3FkVooShOTmpOZgaNIBBg27cr2lw8WLeHk9z5kB8fPG3/fbbqndU48ZqCQi4cYU9IYQQBZMCk6hwLON/jRa7PMTXk+TdmCTvxiR5NwhXVzXxd8eO8MwznIuMpGnVqrBt242hdTt2qOvdr16tFoumTW8UnO68E1q0UJc0K4mMDJg7FyIiGHb2rOq2Mny4mgTdwZeTNlTeb1LWx24yQa1aaunVS9138CD8+Wfxt3H8uOr1ZOHpeaPYdPPi73/rxSfJu8Q2Er2PXfLuGFJgEkIIIYQQ5UOtWhAaqhaA7Gw4cCDvXE4nTqgJeCIj4aef1HpeXtCp042C0513gp9fwXFuupxYZbNZXRlPr8uJCbuqXt1y1bii1zWZ1PxNISGq0HTqFKSlqc52+/blX9/b23bhKSRETTEmhBBGInMwiQrHcuUCo8UuD/H1JHk3Jsm7MUnejcnmsTs7Q9u28OST8Msv6hu/5ep0//oX9O6tikspKbBuHbz3nioM1aihvuU/8AB8842acDw7W21z8WLVU+nKFfV7/suJqQLX4sV2PuIbJO/2NXx48afy0jSYPBmWL1dvt/R0OHoUli6Fzz9Xb8V77oF69VQxKjlZ1SZnzYJ33lFvuS5dVFGrenVV67z/fjXsbtYstW5ysooleZfYRqL3sUveHUN6MAkhhBBCiIrDzw+GDFELQE6OmrMpdy+no0dVT6cTJ9Sk5aDGObVvD9cv41zgjM+apioHkyY57nJiwq7CwlTHtCtXincVudGjb9zn4qJ6I4WE5F8/I0NNNH78uFqOHbtxOyZGzWG/bZtabubvD1Wr3sPq1Td6PDVurK54V7lyaY/YNsuo0AULnNmz5wH27nVm5EhdRoUKIW5TUmASFc5QHbus6xm7PMTXk+TdmCTvxiR5N6ZbPvZKleCOO9Ty2GPqPss3e0vBads21W1k06bibTP35cQmTLi1/SoBybt9uburUY+hoaqIZKvIZJlH6eefi19scXeH5s3VcrPUVIiKyl94On5cTUIeFwdxcTU4diz/cwMC8g61s9wODr71QlDeUaFOmM0NOHtWIyJCn1GhRm3n5bNuzPh6H7sjyRA5UeFs3brVkLHLQ3w9Sd6NSfJuTJJ3YyrTY/f1hYED4a231OTgiYlqpud27Yq/DZMJpk27MZTOjiTv9jd0KEREqB5KoOZkyv2zalVYtKjsiiyVK6ua56hR8M9/wo8/qvpmbKyat37XLvjnP/fz9ttqCN2dd6ohdaA6zv35p7qQ4iuvwIgR0LKl6oRXr54aovfkk2rI3tKlqsNeVlbB+5J/VKgpz08dRoUatp2Xz7ox4+t97I4kPZhEhZOQkGDI2OUhvp4k78YkeTcmybsx2fXYnZzUleaqVCn+czRNVQSqVVNdR9q1y7sUNol4CUneHWPYMFW8mTcPFi6EI0cu0qxZTUaMUMPiHDVMzNtbvYWOHj3E+PF35Hns8uW8vZ1yL0lJEB2tlrVr826zUiWoXz//ZON168LEiWqd8jQq1KjtvHzWjRlf72N3JCkwiQqnWrVqhoxdHuLrSfJuTJJ3Y5K8G5NDjr0klxMD1WUkLU2NdYqKUhPYWNStm7fg1L69ugreLZC8O467uxr1OGECrFy5hwEDBjg0fm62jt3XFzp3Vktumqbmty+o+GQZkhcVBStXlnxfHDwq1LDtvHzWjRlf72N3JCkwiQqnZ8+ehoxdHuLrSfJuTJJ3Y5K8G5NDjn34cFiwoPjr/+9/aqjdnj2we7ca17R7t5o83NKVJCLixvq1a+ctOLVrB3Xq3JjgpwCSd+PFLml8k0lNDO7vD1275n1M0+DChfxFp2PH4MiR4tdTAaZMURdvbNAAGjZUHfWKePveEqPmXe/3nJ70PnbJu2PIHEyiwlm4cKEhY5eH+HqSvBuT5N2YJO/G5JBjDwtTQ96K+sZsMqn1Ro9WvZ7uuUdNhjN7tvrmfuUKbNgAn30G990HzZqp51y4AMuWqevVDx+uejn5+0P//vCvf6nuISdP5hurJHk3XuyyjG8yqYnBe/SAhx+GDz9UddSDB+Huu0u2rUOHYPx4NSeUv78azte6tXo7v/gifP01LF+uClfp6be+z0bNu97vOT3pfeySd8eQHkxCCCGEEMIYyupyYj4+6tt8jx437ktJgf378/Z0OnQIEhLUROOrV99Yt2pVaNvW2supyvnzqpuJk/zvV5StkowKNZkgKEhNJH7qFMTE3Hhb799v+zkBAaqnk6XHk2Vp0EB16JO3tBDGIgUmUeG0atXKkLHLQ3w9Sd6NSfJuTJJ3Y3LYsVsuJ3bjmu03ijtmsyr+3Mo127284K671GKRkQEHDtwoOO3erX6/cgXWr1cLMARg8mRVdMo9r1PTpmq80m1MPu/2VZJRoZoG7713Yw6mjAw4c0Z1ujt1Sv3MvVy9qiYFP38eNm/Ovz03N1VoslV8atiwdZkdY3FkZKgp1CIiIDp6KPPmqdcmLMxxk7uD/u85Pel97EZuaxzp9v6LJW5L7o78K1COYpeH+HqSvBuT5N2YJO/G5NBjv+lyYmkxMXgGBlLmlxNzd4eOHdVikZUFhw/nKTqZ9+7FKSVFXbVu06Yb63p4qPFJued1at4cXF1Lt1/Xv207L1jAA3v24Lx3L4wc6fhv28jn3d7CwuC551RNs6CryIHqvVS1qnr7W7i7Q5MmarmZpqkr3tkqPp06pQpTmZkQGamW/Jrj51dw76egoLKrrS5efHM92Yvdu1Xh7bnnbq2efKv0fs/pSe9jN3Jb40hSYBIVzo4dO2jUqJHhYpeH+HqSvEvejRS7PMTXk+Rd8u4QuS4ntig8nPHjxzsmrqsrtGmjloceAmDOr78yrm3bvD2d9uxR45P+/lstuZ/fqlXeicRbtSp+YSjXt20nJycamM1oZ8+qrh2O/raNfN7tHb+sRoXaek716mrJXT+1yM6Gs2cLLkAlJNxYtm/P//xKldRQvYIKUL6+xZt8fPFi1VPJwjJU0PLzyhX12kREqLqzven9ntOT3sdu5LbGkaTAJIQQQgghhI60SpWgRQu1PPCAutNsVlery1102r1bfSPetUst33+v1rU8P3fRqXVrqFw5b6Cbvm2brn/LNun1bVs4RP5RoRpms8n681ZHhRbGciW6Bg1sP/7DD3Pp0CHMZgHq9GnV+8nyuy3e3jcPubtxu359NTwvI0MdMxTce0vTVKFq0iTVqdFAHU2EsAuTphXWWVKIvJKTk/Hx8SEuLo4aNWrosg9JSUn4+PgYLrae8TMzM5kyZQqvvfYabm5uDo8PknfJu7Fi6xlf8i55l7yX4/iapr6N5y447dqluoHczMlJjW2yFJxatICxYyEpqXhjpRz0bVvy7rj4GRlqVOj8+Tns3RtNmzZ1GTWqUpmOCi2uwo7dbFYXZCyo99P584Vv22SCwEBVXz16tPj7NHPmjfmn7EXP95ze7bzRPm/lJXZ8fDz+/v4kJSXh7e1t93gyr7+ocHbv3m3I2OUhvp4k78YkeTcmybsxSd6LwWRS3TRGj4b334eVKyEuDqKjVReVN96AIUPU5bvMZnUt+V9/VdeX79+/6Il4QD2emKgqEQ4geXccy6jQWbOymTTpF2bNymbCBH167RR27E5OqkB0992qQ9/kyfDLL2oi8ZgYSEtT05gtXQpffQUvvKA63rVqpYpKmgbnzpWsuGQyqQ6Bp0/DtWulPrwC6f2e05Pex27ktsaRZIicKJapU6cydepUcnJyAIiIiMDLy4uRI0eydu1akpKS8Pf3p1OnTixduhSAdu3aYTab2bt3LwChoaFs3ryZS5cu4evrS/fu3YmIiADgjjvuwMXFhV27dgEwePBgdu7cycWLF/H29qZfv37Mu36ik5ycTL169di2bRsA/fv35+DBg8TExFC5cmWGDBnC7NmzAWjSpAl+fn5s2bIFgHvuuYdjx44RHR2Nm5sbI0eOZPbs2ZjNZoKDgwkMDGTjxo0A9OzZk+joaE6ePImzszNhYWHs2bOH2NhY6tWrR3BwMOvWrQOgW7duxMXFcezYMQDGjx/PokWLSEtLo06dOjRv3pzV1y9P3KVLF5KSkjh8+DAAYWFhrFy5kqtXr1KrVi3atWvH8uXLAejYsSMZGRkcOHAAgJycHFauXEliYiJ+fn506dKFJUuWANC2bVsA9uzZA8DQoUPZunUrCQkJVKtWjZ49e7Jw4UJAXcnA3d2dHTt2ADBo0CB2795NbGwsVapUYcCAAcydOxeA5s2b4+HhAcC8efMYMGAAhw8f5ty5c3h6ehIaGkp4eDgAISEh+Pv7s/n6pUR69+5NVFQUZ86cwdXVlVGjRjF37lyys7Np2LAhdevWZcOGDQB0796dmJgYoqKicHJyYuzYsSxYsIDMzEzq1q3LmTNnrHG6du1KQkICR6+fOYwdO5alS5eSmppKYGAgLVu2ZNWqVQB07tyZlJQUDh06BMDo0aNZvXo1ycnJ1KxZkw4dOrBs2TIA2rdvz7Vr19h//Vq8w4cPZ+PGjRw4cIBr167RrVs3Fi1aBECbNm1wcnKy/sEYMmQI27dvJy4uDh8fH/r06cOC65dtadmyJZ6enmy/PsnAwIED2bdvH+fPn8fLy4tBgwYxZ84cAJo2bYqvry9//fUXAH379uXw4cPExsbi4eHB8OHDmTVrFpqm0bhxY2rVqsWm6xPC9urVi9OnT3Pq1ClcXFwYPXo08+bN49q1azRo0ID69euz/voVi+6++25iY2M5fvw4JpOJcePGERERQXp6OkFBQTRt2tT6GkZHR5OSkkLk9Vk6x4wZw/Lly0lJSSEgIIDWrVuzYsUKADp16kRaWhoHDx4EKHUbsWvXLmJjY0vURrRo0QIvL69StxEXLlygV69eJWoj5s+fT1ZWVpm0EZZjL0kbMWLECDZs2FCqNsJ8fajMyZMnrbkpqo3w8fFh69atAPTr16/UbcSZM2fw9PQsURsREhLCmjVrSt1GmM1mli1bVqI24vLly1SvXr1M2oiYmBjatm1bojYiMjKSs2fPlqqNCAoKAlQ77+TkVKw24o8//gDgrrvu4vLly6VuIxISEujQoYPdzyNstRGHDh0iNjbW7ucRBbUR6enpeHt73/p5xL59XE1Lo1bPnrR78UWWL1+Oe2IinV1dqbRvH1nbtlF73z6cs7IoDs1kImfWLNbXrFkm5xGFtRFpaWkOOY+w1UZY2ll7n0cU1EacOHGC2NhYwL7nETe3EfPnzwfU34M6derY7TyisDZi3759xMbGlvo8omFDM9Wr76VjR9VGbNq0mdOnU8jICODbbztx9Gjx+lNoGmzcqIbYOTlp+Pvn4O2diJ9fKp061cTJ6RzOzjEEBZmZOLEnS5feWhtx+vRp6/vd3ucRN3/XSEpKAlRvmrVr1wL2OY8A223EwYMHHXYeYauNyMjIYPv27XY/j7DVRljaGkecR0DeNsLhNCFKICkpSQO0uLg43fZhyZIlhoytZ/yMjAxt8uTJWkZGhi7xNU3yrgfJu+RdL5J3x5O8GyDvPXpomvoeXfylSRNNGz1a0956S9MWLNC0Eyc0LSenTHdL8u54Rvm8jxypaU5OxX+7V66saW5uxVu3enVNa9dO04YP17TnntO0zz7TtPnzNW3nTk2Lj9c0s1m/4y6I3nk36udN79hxcXEaoCUlJTkknszBJEqkPMzBlJ2djXNZXbe0AsXWM77eY7ZB8i55N1ZsPeNL3iXvkvfbNP6oUWoYnWVC71tVubKaz6lVq7zLLZ4XSt7l824vM2femDO/uOvfe68adXrmjFqio2/ctizXOwIVytMT6tZVV8LLvQQGZtOwoTMBAWoidEfIyIC5c2HBghz27Immbdu6jBxZibAwxw6PNOrnTe/YMgeTEEWwdKc0WuzyEF9Pkndjkrwbk+TdmCTvdjZ8eMmKS199peZ4+vhj9S29bVt1aa7UVHVd+R9+gOefhz59wN8fatWCvn3VfE8zZsDOnWqynCJI3o3JEcceFgbVqqn5lQpjMqn1Ro9W8z/VqgWdO8OYMfDSS+qjsHgx7NunpjG7cgX274clS+Drr+Hll9W6d96ppj8D9daPjIRVq2DaNPj3v9X8V716OVOvnirs1K8PPXqoj9frr6s5oFavVnNHpaeXzWuweDEEBKgYixc7ceZMAxYvduKBB9T910e/OYTe73cjtzWOJHMwCSGEEEIIcbsLC4Pnnit6om/LVeQeflh9C+7f/8Zj2dlw4gQcOJB3OXkSLl5Uy/U5TKzbatQof2+n4GCoVMleRyoEoN6+P/+sJgA3mWy/7S3Fp59/Ln5vHh+fG29lWzIz4exZ272gDh26SmJiFa5du3FfQfz9bfeCqldP3V9U8WzxYlVXtjCbTXl+XrmiXpuICBg2rHjHLkRRpMAkKpzmzZsbMnZ5iK8nybsxSd6NSfJuTJJ3OyuLb9vOztC0qVrCwm7cn5oKhw7lLzzFx8Px42q5PhktAB4e1mF23X191fC6Vq2gZs2yPeYiGCLv5ZSjjn3oUFVAmTRJXRzRyUl15LP8rFpVvd2HDi27mG5uqq7aqFH+x/btO0mrVq25cMH28DvLfVevqqF6cXGqM6AtXl75i06W2zVrwsSJar2C6smapj7ykybB+fP2Hy6n9/vdyH9jHEkKTKLC8fHxMWTs8hBfT5J3Y5K8G5Pk3Zgk7w5w07dtzckJk9ls/XnL37YrV4ZOndSS28WLqtC0f/+NotOhQ2r8z86dsHMngQCffqrWtxSaci8tWqjtlxXLhDQREYTExEBgoOrm4egJadD/facnRx77sGGqgDJvHixcCOfPpxMQ4MGIEWpYnCPT7uPjg5OTetsFBkKXLvnX0TTVu6iweaDi4iAlRX2crl+87JZomiq8zZunhvDZk97vdyP/jXEkKTCJCmfr1q3Ur1/fcLHLQ3w9Sd71i68nybt+8fUkedcvvp4k7w6Kn+vbtnn+fKL37qVumzZUGjWq7L9t16yplnvuuXFfTg5ERVkLTmeXLyfoyhU19C4+HtatU4uFyQQNG+YvPDVqVPJZkhcvztOVxcPSlWXBAjV8sKy7shRB7/ednhx97O7uqoAyYQKEh0cwfvx4h8XOrTjHbZkTqlo1aNPG9jrp6XmH4dkqRpXkUl7/93+wfj3UqQNBQeqn5ba3d9HzWBWH3u93I/+NcSQpMAkhhBBCCGEk179tZ4eF8cv1q4lVctTVxCpVgpAQtYwaxeYmTdSX/bQ0OHw4/zC7ixdVQSoqSvW+snBzg+bNbxSc7rhD/axVy/a34fwT0uT9KRPSiArEw+PGx8iWnj3hzz+Lv724OPjxR9uPeXnlLTjZul21atkUoUTFJwUmUeH069fPkLHLQ3w9Sd6NSfJuTJJ3Y5K8G5P12D09oUMHteQWH297mF1aGuzZo5bcqle33dtp0iT1eHmZkAbJu8S2n+rVb8wzVRSTCdq1gxEjVK+oc+fUcvYsXL6shuJFRqqlIJUr3yg2FVSI6tvX8a97rhGxxMaOZt48fUbEGumz7qT3DghRUocPHzZk7PIQX0+Sd2OSvBuT5N2YJO/GVOSx16gBvXvD88/DDz/A9u1qBmTLxOFvvaWG9jVpor5RX7oEGzaoa8s/+qia5KZGDTUsrqgxQ7knpHEAybvEtpfhw4tXXAL1tn/+efj3v+G772DpUti7V32UUlPh2DFYu1aNIH3vPXjiCRgyRA3f8/NT20hNhaNHb6z37rvw+ONqvdatVcGrTp2qhIRAnz5qAvJ//xu+/fZGvISEkg3rK8rixRAQAA88oApMf/3lQkSE+j0gAJYsKbtYRTHSZ116MIkK59y5c4aMXR7i60nybkySd2OSvBuT5N2YbunYnZxuXKZrxIgb96enw5Ej+YfZXbhQsm3PnWv/GY+RvEts+wkLU9OKXblSeNHGZFLD20aPtv24pyc0bqyWgqSnQ0zMjV5PuXtAWW7Hx0NmZiXrRSUL4u5uuxdU7t/9/IoejlfeRsQa6bMuBSZR4Xh6ehoydnmIryfJuzFJ3o1J8m5MkndjKtNj9/BQY33atct7f9eu8NdfxduG2ay+ndarB82aqaVp0xu3a9Qos92VvEtse3F3Vz2JQkNVMcZWkclSpPn559INF/PwuFHvLUhGBvz00x80a9a3wEJUXJxa78QJtRTEzS1v4enmYlSNGqqHFJSfEbFG+qybNK0sO6KJ211ycjI+Pj7ExcVRowz/wIryLTMzkynXJwF1c9QkoEJ3kndjkrwbk+TdmAyT91GjVFeF4o4ZKkz16nkLTpbb9eqp3k8VgGHyLm66cKKG2Wyy/qxWzeEXTixUZuaNnlAFFaEuXiz7uDNnOqTDom7i4+Px9/cnKSkJb29vu8erGK2gELmEh4cbMnZ5iK8nybsxSd6NSfJuTJJ3Y3LIsZdkQhqAb76BTZtg2jR48UUYOBDq11ddHi5dgi1bYPp0dW33wYOhYUM1y3GbNjB+PLz9thpmd+CA+tZcAMm7xLa3YcNUD52ZM2HYMDP1659i2DAzM2eq+x1ZXCrq2N3c1Eepe3e491549VU1ldrChbBzJ8TGqo/TqVOwcSP8/jt89BE884waKduxo7qIZEk99ZT6iD/0EPznP2oeqsWLVczz5yE7+xYPOBcjfdZliJwQQgghhBDi9lXSCWn+8Q81ZqZbt7yPp6WpGY+PHFFLZKT6eeyYGtuzb59acnNyUt+ac/d6svR8EsIB3N1VD52wsGymTPnles+1Snrv1i1xdVW13vr1C16nRw9VgCqu5GRYubLgx52coGZNNTG4ZQkMzPt7QMCNK/eVF5Yr6M2e7diSjxSYRIUTEhJiyNjlIb6eJO/GJHk3Jsm7MUnejckhx15WE9J4eqpeSm3a5L0/OxtOn75ReMpdfEpKujGpzNKleZ42unp1+P77/MWngICiZzG+Fde/cTovWMADe/bgvHcvjBzp+Gu2Y9zPu3zW7c/PTxV6itNp0clJXWjywQdVb6Wbl9hYyMlR1wm4cAF27Sp4Wy4uULu27SJUSkp7Dh9Wt3187PPxzi330EiTybFVLykwiQrH39/fkLHLQ3w9Sd6NSfJuTJJ3Y5K8G5PDjn3oUDUP040JadQ3UMvPqlVvfUIaZ+cbsxznfr6mqW+olmJT7sJTTAwuly7B+vVqya1KlRtFp9zFp+BgFetW5PrG6eTkRAOzGe3sWfWaPPecwyfjMernXT7r9jd8OCxYULx1zWZ4/PGC52DKyVGTj9sqPlmWmBh1lbxr1yA6Wi353SiueXgU3hPKslSuXNIjV26+gp6m2bmadZNy1IlLiOLZvHmzIWOXh/h6krwbk+TdmCTvxiR5NyaHHnvuCWmGD+dis2bqm5i9JqQxmVSXhl694Mkn1YQyf/yhZitOSmLV22+rws5rr6neVU2aQKVKcPUq7NgBv/wC//qXmmCmaVPVg6p5czVp+euvw6+/qi4VqamF74flG+eVK2q3rnftMN18zfbFi8v2+Ath1M+7fNbtLywMqlUrupeQyaTWGz264HUqVVIf4fbtVfPw2GPw1luq4+GyZbBnjypAZWbCmTOwdSvMn68+6v/8p7qaXd++UKfOFapWVdtMT4eoKDXN26xZ8Nln8NJLat6pnj0hJAS8vFRPp2bN4J574IEHVDPx5Zcwb566KObp0/mneMvIUHVkKHw0sD1JDyYhhBBCCCGEMVgmpJkwgXXh4YwfP16f/fD25nKjRmpS8NyystRwuty9nSy309Ju/H6zoKD8czw1a6Z6QxX1jdPR12wXwo7KakRsSbi6Qt26arElPHwF48ePJy1NDbUrqkdUaqqaGyo5WX30C+Pnd6PXU1qa6qCpJykwiQqnd+/ehoxdHuLrSfJuTJJ3Y5K8G5Pk3Zgk7zdxdVW9lJo3z3u/2ax6Pt1ceDpyRI3POXtWLatX531e5cpF93AC9S08MVF1j3DANduNmne933N6cuSx23NE7K2wHLunpxrpGhxc8LqapjoxFlaEsiyZmZCQoJb9+x1zLEWRApMolqlTpzJ16lRycnIAiIiIwMvLi5EjR7J27VqSkpLw9/enU6dOLL0+gWG7du0wm83s3bsXgNDQUDZv3sylS5fw9fWle/fuREREAHDHHXfg4uLCruszpw0ePJidO3dy8eJFvL296devH/PmzQPA1dWVtm3bsm3bNgD69+/PwYMHiYmJoXLlygwZMoTZs2cD0KRJE/z8/NiyZQsA99xzD8eOHSM6Oho3NzdGjhzJ7NmzMZvNBAcHExgYyMbrlx3o2bMn0dHRnDx5EmdnZ8LCwoiIiMDb25t69eoRHBzMunXrAOjWrRtxcXEcO3YMgPHjx7No0SLS0tKoU6cOzZs3Z/X1P/hdunQhKSmJw4cPAxAWFsbKlSu5evUqtWrVol27dixfvhyAjh07kpGRwYEDBwAICAhgz549JCYm4ufnR5cuXViyZAkAbdu2BWDPnj0ADB06lK1bt5KQkEC1atXo2bMnCxcuBKBVq1a4u7uzY8cOAAYNGsTu3buJjY2lSpUqDBgwgLlz5wLQvHlzPDw8AJg3bx4DBgzg8OHDnDt3Dk9PT0JDQ62X3gwJCcHf39/aBbZ3795ERUVx5swZXF1dGTVqFHPnziU7O5uGDRtSt25dNmzYAED37t2JiYkhKioKJycnxo4dy4IFC8jMzKRu3bqkpqZy6dIlALp27UpCQgJHjx4FYOzYsSxdupTU1FQCAwNp2bIlq1atAqBz586kpKRw6NAhAEaPHs3q1atJTk6mZs2adOjQgWXLlgHQvn17rl27xv7rLfTw4cPZuHEjJ06coHHjxnTr1o1FixYB0KZNG5ycnNi9ezcAQ4YMYfv27cTFxeHj40OfPn1YcH0AeMuWLfH09GT79u0ADBw4kH379nH+/Hm8vLwYNGgQc+bMAaBp06b4+vry119/AdC3b1/WrFmDk5MTHh4eDB8+nFmzZqFpGo0bN6ZWrVps2rQJgF69enH69GlOnTqFi4sLo0ePZt68eVy7do0GDRpQv3591l+f5+Huu+8mNjaW48ePYzKZGDduHBEREaSnpxMUFETTpk2tr2F0dDQpKSlEXv8XypgxY1i+fDkpKSkEBATQunVrVqxYAUCnTp1IS0vj4MGDAKVuI+bNm4evr2+J2ogWLVrg5eVV6jYiOTmZxx57rERtxPz588nKyiqTNmLz5s34+vqWqI0YMWIEGzZsKFUbYb4+ZOLkyZPW3BTVRvj4+LB161YA+vXrV+o2Ii4ujg4dOpSojQgJCWHNmjWlbiPq1KnDzp07S9RGXL58merVq5dJG3H58mXuu+++ErURkZGRnD17tlRtRFBQEKDaeScnp2K1EX/88QcAd911F5cvXy51G5GVlcXIkSPtfh5hq434448/qFSpkt3PIwpqI3x8fKhZs6bdzyNubiPat29vzbvltj3OIwprI2rUqGF9Hex5HmGrjdi6dSu+vr52P48oqI04duwYaWlpJWojAAZOnJi3jejcmXXffIP3+fPUz8igyrlzmA8epHJCAqbiFJeu00wmrnzzDStNJlzc3Ep9HlFYG7FkyRIqV65s9/MIW23E5cuXuf/+++1+HmGrjbh06RJXrg9VtPd5xM1tRFJSEgBJSUmsXbsWsM95BNhuI1avXo2zs7NDziMsbcSuXXX55JPT7NhRh4wMT6pXN9G8+VHuvPMcQ4eG2eU8wlYbYTmfLWkbERjoxMWLuwkKgieeyNtG9O7dh19+WUpiogc+Ps1ISqrMp596EB9fxfYH3FE0IUogKSlJA7S4uDjd9uH33383ZGw942dkZGiTJ0/WMjIydImvaZJ3PUjeJe96kbw7nuRd8q4XybsdpaVpWvv2mqY6RRR/8fDQtFatNG3kSE179VVNmz5d0/78U9POn9c0s7lMds2oedcztt6f99v+81YOYo8cqWlOTjd/pNX396SkJIfsg/RgEhWOq6urIWOXh/h6krwbk+TdmCTvxiR5NybJux15eEC9emom4uJcs90iPR0OHFDLzby81NXyGjdWS0jIjdt+fsW+/rpR8673e05Peh+7EfJekivo2YtJ0/SaX1xURMnJyfj4+BAXF0eNGjX03h3hIJmZmUyZMoXXXnsNNzc3vXdHOIjk3Zgk78YkeTcmybsBzJypLkFVXDNmQNeucPx4/uXMmcILVT4+N4pNNy++vqU/FlEq8nm//WVkqMm+r1zJPbl5MuBDUlIS3t7edt8HJ7tHEKKMWcbrGi12eYivJ8m7MUnejUnybkySd2OSvNtZSa/ZPm6cKggNGgTPPQdffw2rVsHJkzeuYrd4MXz6KTz+OPTpoy6dZTJBUhLs3Anh4fD223D//XDnnVC9ulruvFPd9/bb/P3cc2rd6/MC2V1Ghiq2jRpFXIsWMGqU+j0jwzHxr9P7PacnvY/dCG2N5Qp6UOzOhGVOhsiJCic7O9uQsctDfD1J3o1J8m5Mkndjkrwbk+Tdzsrymu1ubtC0qVpulp6uilC2ej7FxMDly7Btm1qAOwG+/FI9t0aNgns+eXmV6vABVRDLdTkxf7NZXYlvwQJVRHPg5cT0fs/pSe9jN0pbc/MV9EwmzebH3l6kwCQqnIYNGxoydnmIryfJuzFJ3o1J8m5Mkndjkrw7wE3fODUnJ0xms/VnmVyz3cMDWrRQy81SUyEqShWbjh2D48dJ3r0b79hYuHgR4uPVcv3qmHnUrm278BQcrK75XpTFi9XENBaWIX6Wn1euqOJbRAQMG1bCgy45vd9zetL72I3U1gwbBufPw7x5MGuWmesXunQIKTCJCqdu3bqGjF0e4utJ8m5Mkndjkrwbk+TdmCTvDpLrG6d5/nyi9+6lbps2VBo1CkaPLrznUmlVrgx33KGW61IvXMC7dm1IToYTJ2z3fEpIgAsX1LJxY/7t1qlTcPHJzU0Nf5s0Sa1bUBcOTVM9uCZNUq+PPV8H9H/P6UnvYzdaW+PuDhMmQP/+2fj7Oy6uzMEkKpwNGzYYMnZ5iK8nybsxSd6NSfJuTJJ3Y5K8O9D1b5zZs2bxy6RJZM+apb6B2rmoYov12L29oV07GDsWXn9d9aT66y/VoykxEbZvh99+g8mT4b77oFMnNVcUwLlzsH49TJsGL7+seiq1aKF6U9WvDx06qG0UNT5I09R68+bZ74Cv0/s9pye9j93IbY0jSQ8mIYQQQgghhBDlS9Wq0LGjWm526ZLtXk/HjsHVq+qKdyXh5ASzZ6sill6zIwtxG5ACk6hwunfvbsjY5SG+niTvxiR5NybJuzFJ3o1J8m5MpT723Femy03TIC5OFZsefhiOHi3e9sxmWLpU9Y5q2DDv0qCB+lmvHri6lmq3JefGjK/3sTuSDJETFU5MTIwhY5eH+HqSvBuT5N2YJO/GJHk3Jsm7Mdnt2E0mqFkTunVTw+WcSvh1NykJ9uyB+fPh44/hiSdgwAAICVFD7+rVg1694KGH4L33IDxcXRkvPr7ooXhIzo0aX+9jdyQpMIkKJyoqypCxy0N8PUnejUnybkySd2OSvBuT5N2YHHLsw4ffuFpccUyfDocOwZIl8N//wnPPqcnRW7ZUV6wzmyE6GjZsgB9/VHNG3Xuv6kXl7w9VqqiJzIcPhxdfhK+/huXLITJSTTiOTjnPyICZM3EeN44HZszAedw4mDnTuk+Oovf73chtjSPJEDlR4TiV9D8Rt0ns8hBfT5J3Y5K8G5Pk3Zgk78YkeTcmhxx7WJgqEl25UnjvIpNJzfd0331qwvPmzfOvYxl6d/Kk7SUmBlJT4cABtdgSGMg9Xl6wcmX+YXi1atln7qfFi9UV8hITcXJyooHZjHb2LEREqNfm559h6NCyj2uD3u93I7c1jmTStGL05RPiuuTkZHx8fIiLi6NGjRp6745wkMzMTKZMmcJrr72Gm5ub3rsjHETybkySd2OSvBuT5N2YDJX3JUsgNFTdtvW111LUWbSodIWWzEw1sXhBBairVwt/vofHjbmecs/7ZLlduXLJ92nxYtWbCgo/9ogI1VNL3Jbi4+Px9/cnKSkJb29vu8czTilN3DYWLFhgyNjlIb6eJO/GJHk3Jsm7MUnejUnybkwOO/ahQ1UBpWpV9bulJ4nlZ9WqpS8uAbi5qXmaBgyAJ5+ETz6BBQtg7141r1N8PGzfzrYXX4T331cTkPfuDfXrq31JT4fDh9VE419+CS+8oApjrVqBl5fq4XTXXTBhArzxBvz0E/z5J5w9a3sYYEaG6rkEBffestw/aZJDhsvp/X43clvjSDJETlQ4mZmZhoxdHuLrSfJuTJJ3Y5K8G5Pk3Zgk78bk0GMfNgzOn4d582DhQi4eOULNZs1gxAgYPVoNi7Mnkwn8/MDPj5MnTtB5/Pi8j1+7puZ2svR2OnUqb++nxES4eFEtW7fm376rqypU5R5yFx2tnlcUTVPrzZunild2pPf73chtjSNJgUlUOHXr1jVk7PIQX0+Sd2OSvBuT5N2YJO/GJHk3Jocfu7u7KqBMmMCJLVuo2bWrY+NfZ/O4XVwgOFgttiQm5i86WZYzZyArC44dU8utcHKChQvtXmDS+/1u5LbGkaTAJCqckJAQQ8YuD/H1JHk3Jsm7MUnejUnybkySd2Myat5vKXa1ampp1y7/Y9nZaoLxmwtPy5YVPe+ThdkMq1fDqFFQr55a6te/cbtq1TKZgFzv93uFy3sFJXMwiQpnzZo1hoxdHuLrSfJuTJJ3Y5K8G5Pk3Zgk78Zk1LyXeWxnZ1UE6tULHnoI3nsPwsOhb98b80wVR0qKmjPq88/h+efV5OBt24KvL/j4qLmghg6Fp5+Gjz+GOXNg2zY1bK+Y1wzT+/1+W+W9HJMeTEIIIYQQQgghxO1i+HBVMCquF15QV6s7c0Ytp0+rn/HxqifUwYNqscXdHerWtd37qV49CAyESpXK4KBuQUYGzJ0LERH0PnJEzTU1fDiEhdl/7i2DkgKTKJapU6cydepUcnJyAIiIiMDLy4uRI0eydu1akpKS8Pf3p1OnTixduhSAdu3aYTab2bt3LwChoaFs3ryZS5cu4evrS/fu3YmIiADgjjvuwMXFhV27dgEwePBgdu7cycWLF/H29qZfv37MmzcPgFq1anHy5Em2bdsGQP/+/Tl48CAxMTFUrlyZIUOGMHv2bACaNGmCn58fW7ZsAeCee+7h2LFjREdH4+bmxsiRI5k9ezZms5ng4GACAwPZuHEjAD179iQ6OpqTJ0/i7OxMWFgY2dnZhIeHU69ePYKDg1m3bh0A3bp1Iy4ujmPXxz6PHz+eRYsWkZaWRp06dWjevDmrV68GoEuXLiQlJXH48GEAwsLCWLlyJVevXqVWrVq0a9eO5cuXA9CxY0cyMjI4cOCA9feVK1eSmJiIn58fXbp0YcmSJQC0bdsWgD179gAwdOhQtm7dSkJCAtWqVaNnz54sXLgQgFatWuHu7s6OHTsAGDRoELt37yY2NpYqVaowYMAA5s6dC0Dz5s3x8PAAYN68eQwYMIDDhw9z7tw5PD09CQ0NJTw8HFDdP/39/dm8eTMAvXv3JioqijNnzuDq6sqoUaOYO3cu2dnZNGzYkLp167JhwwYAunfvTkxMDFFRUTg5OTF27FgWLFhAZmYmdevWpUWLFtY4Xbt2JSEhgaNHjwIwduxYli5dSmpqKoGBgbRs2ZJVq1YB0LlzZ1JSUjh06BAAo0ePZvXq1SQnJ1OzZk06dOjAsmXLAGjfvj3Xrl1j//79AAwfPpyNGzeSnp7O6tWr6datG4sWLQKgTZs2ODk5sXv3bgCGDBnC9u3biYuLw8fHhz59+livGNGyZUs8PT3Zvn07AAMHDmTfvn2cP38eLy8vBg0axJw5cwBo2rQpvr6+/PXXXwD07duXKlWqEB4ejoeHB8OHD2fWrFlomkbjxo2pVasWmzZtAqBXr16cPn2aU6dO4eLiwujRo5k3bx7Xrl2jQYMG1K9fn/Xr1wNw9913Exsby/HjxzGZTIwbN46IiAjS09MJCgqiadOm1tcwOjqalJQUIiMjARgzZgzLly8nJSWFgIAAWrduzYoVKwDo1KkTaWlpHLx+ElLaNiI9PZ3w8PAStREtWrTAy8ur1G1EdnY2QInaiPnz55OVlVUmbYTl2EvSRowYMYINGzaUqo0wX78azcmTJ625KaqN8PHxYev1iUf79etX6jYiPT2dbdu2laiNCAkJsf6HsDRtROfOnVm2bFmJ2ojLly9TvXr1Mmkj0tPTuXLlSonaiMjISM6ePVuqNiIoKAhQ7byTk1Ox2og//vgDgLvuuovLly+Xuo1wd3fn6tWrdj+PsNVGVK5cmfDwcLufRxTURjRq1Ihdu3bZ/Tzi5jaiffv21rxbbtvjPKKwNqJr164OOY+w1UZY2ll7n0cU1EYEBQVZj92e5xE3txHz58+35rpOnTp2O48orI0ACA8Pt/t5hK02Ij09neTkZLufR9hqI0JCQqw5t+d5RHKTJjStXBmX1FQKG9ymmUzkVKnC/NatMbu6MuKRR/KeR7RuzYZffqFyQgLNPDxwPn+elIMHqZyQQPXUVEznz2PKyCh0DiizkxPUqUPfKlU49e23XAsIILh3b/48c4ZUPz/qdeuGd40aZXoekZ2dTbtz52j83ns4JSVhNpmoqWloR49iWrCArCeewDU8nAXXrpX5eYStNsLS1jjiPALythEOpwlRAklJSRqgxcXF6bYPu3btMmRsPeNnZGRokydP1jIyMnSJr2mSdz1I3iXvepG8O57kXfKuF8m740neDRJ78WJNM5nUogay5V0sjy1efOsxMjM1LSpK09at07QZMzRt8mRN+8c/NK1XL01r2FDTXFxsx755P2rX1rQ779S0ceM07dVXNe2bbzRt2TJNO3hQ065eLfl+LVpUvGNftOjWj70E9HzPxcXFaYCWlJTkkHgyB5OocCyVZKPFLg/x9SR5NybJuzFJ3o1J8m5MkndjMmreHRp76FCIiFCTdAPa9TmZLD+pWhUWLVLr3SpXV2jYUM0BNWkSvPkm/PgjrFsHUVGQng7nzsGWLfz11FPw/vvw2GMwYAA0awaenqrkc+EC/P03zJoFH34ITz4JgwdDy5ZQpQr4+UH79jBypBrO98UX6tj27IHLl/POA5WRofYFCp4fynL/pElqfTsz0mddhsgJIYQQQgghhBC3m2HD4Px5mDcP8/z5RO/dS902bag0ahSMHm3/eYgqVVJzMAUGcubMGe4aPz7v45oGCQk35n66eQ6oM2fgyhW4dEkt14eL5ePldWP+p4wMSEwset80Ta03bx5MmFDKAxUWJk0r5rTvQgDJycn4+PgQFxdHjRo1dNkHs9mMU0muinCbxNYzfmZmJlOmTOG1117Dzc3N4fFB8i55N1ZsPeNL3iXvknfjxJe8S94l78aJrXfeb/nYk5NtF54sy8WLt75TJhP07q0mAq9aVf1uB3rmPT4+Hn9/f5KSkvD29rZ7PBkiJyocy8R+RotdHuLrSfJuTJJ3Y5K8G5Pk3Zgk78Zk1LxLzm+Btze0agVDhsDTT8PHH8OcObBtG8TGQloaREbCqlUwbZq6ol1xaRqsXQu+vmooXtOm0LcvPPigGu43fTqsXAmHDqlC1y0yUt5liJyocFJTUw0ZuzzE15Pk3Zgk78YkeTcmybsxSd6Nyah5l5zbgYcHNGmiFlAFoXPn4PpVcYvk6gpZWZCaCkePqqUg3t4QFAR16qifNy916kDlyvmepkveMzJg7lycr1/x0FGkwCQqnMDAQEPGLg/x9SR5NybJuzFJ3o1J8m5MkndjMmreJecOMHw4LFhQ/PV/+AFGjVJFqXPn4OzZ/Mu5c2q+puRk1Zvp0KGCt1etWr7CU9uUFKhV60YRyt5zXy1erCYwT0zEyU7D/goiBSZR4bRs2dKQsctDfD1J3o1J8m5Mkndjkrwbk+TdmIyad8m5A4SFwXPPqcnBC5tu2mRS8y5ZJjtv3FgtBUlJyV+Auvn3q1dVISoxEfbvtz61KcAHH9zYVo0ahfeCCgxUPatuxeLFqshmOUwHT7ktczCJCmfVqlWGjF0e4utJ8m5Mkndjkrwbk+TdmCTvxmTUvEvOHcDdHX7+Wd0uqPeO5f6ffy5+byIvr/xzNH3/fd45mq5cgQMHYMUKNR/Uf/4DkyYR26KFGsLn6am2FR8Pe/aoYtDUqfDaa3DffdC9OzRsqPapdm3o1En1rnruOfjkE5g9G/76SxWzsrPz72NGhuq5BIUX1+xIejAJIYQQQgghhBDi9jB0KEREWIeJ4eSk5mSy/KxaVRWXhg4t27g+Pmq5qbfW+vBwxo8fr4o+iYmF94I6dw4yM9UE5rGxsGOH7VhOTqoIlbv3U2ys2r6OpMBUiFdeeYWPP/7Y+vv69evp2bNnoc9ZuXIl06ZNY/v27cTHx1OjRg06derEo48+yoABA4oVNy0tjalTpzJ37lxOnDhBVlYWQUFBDB48mGeffZa6xZwZ/9ChQ3z11VesWbOGmJgYvLy8aNasGffddx8PPfQQzs4VM/2dO3c2ZOzyEF9Pkndjkrwbk+TdmCTvxiR5Nyaj5l1y7kDDhsH58zBvHixcSHpMDB6BgTBixI1hcQ5iPXaTSV2xztcXWre2vbKmqR5OtopPliUmRvVgiolRy99/O+xYilIxKwwOsG/fPj7//PNir69pGo8//jjTpk3Lc39MTAwLFy5k4cKFPProo3z33XeYCploKyoqisGDB3P0ptnrIyMjiYyMZPr06fz+++8MGjSo0P354YcfeOqpp8jMzLTel5GRwaZNm9i0aRM//fQTS5cupXr16sU+xvIiJSXFkLHLQ3w9Sd6NSfJuTJJ3Y5K8G5Pk3ZiMmnfJuYO5u8OECTBhAsf37+eOO+5w/D5QwmM3mcDfXy3t29tex2yGixfzF55mzlTFKR3JHEw2mM1mHnnkEbKzs/H39y/Wc15//XVrcalt27aEh4ezfft2wsPDadu2LQDTpk3jP//5T4HbSElJYciQIdbi0iOPPMLatWv566+/eO+99/Dy8iIpKYmwsDD255o07GarVq3i0UcfJTMzk5o1a/Lll1+ybds2VqxYwciRIwH4+++/GTlyJObiXr6xHDlU2Kz9t3Hs8hBfT5J3Y5K8G5Pk3Zgk78YkeTcmo+Zdcm7M+GUe2zI8zjJH0/PPw6efwt13q8d0JAUmG7788kt27NhB06ZNeeihh4pc/8SJE3z00UcAdOjQgS1btjBu3Dg6duzIuHHj2Lx5Mx06dADgww8/JCoqyuZ2PvnkEyIjIwH46KOPmDZtGr1796ZLly7861//YvXq1Tg7O5OWlsbzzz9vcxvZ2dk8/fTTmM1mvL292bJlC8888wydOnViwIABzJ8/nyeffBKAjRs38uuvv5b05RFCCCGEEEIIIUR5Mny46t2kJ03kER0drXl5eWmAtn79eu3NN9/UAOvvtjz55JPWdbZu3Wpzna1bt1rXefrpp/M9npWVpVWtWlUDtGbNmmk5OTk2t/PYY49Zt7Nz5858j8+ZM8f6+AcffGBzG6mpqVq1atU0QGvZsmUBr4RtSUlJGqDFxcWV6HllKSsry5Cx9YyfkZGhTZ48WcvIyNAlvqZJ3vUgeZe860Xy7niSd8m7XiTvjid5N2ZsvfNu1M+bQ2Onp2tatWqaZjJpmprNSUu6XhtISkpyyC5ID6abPPnkk6SkpDBx4sQiJ/QGNffSokWLAGjatCl33nmnzfXuvPNOmjRpAkBERATaTZcN3LBhA1euXAFg4sSJOBXQtW2S5bKDwIIFC/I9HhERYXPd3Dw9PRkzZgwABw8e5Pjx4zbXK69Wr15tyNjlIb6eJO/GJHk3Jsm7MUnejUnybkxGzbvk3JjxHRbb3V1dHQ/UXE46kAJTLnPmzGHp0qX4+vrmuXpcYU6dOkVMTAwAPXr0KHRdy+Pnzp3j9OnTeR7btGlTvvVs6dChA5UrVwZg8+bN+R63bKdJkybUqlWryH0paDvlWXJysiFjl4f4epK8G5Pk3Zgk78YkeTcmybsxGTXvknNjxndo7KFDISICqlYFQHNwoUkKTNdduXKF5557DlDzJNWoUaNYzzty5Ij1dtOmTQtdN/fjuZ9Xku04OzsTHBxscxspKSmcO3eu1PtS3tWsWdOQsctDfD1J3o1J8m5Mkndjkrwbk+TdmIyad8m5MeM7PPawYXD+PMycibmIq8+XNSkwXffKK68QGxvLXXfdVayJvS3Onj1rvV2nTp1C1w0KCrL5vNy/V65cmarXq41FbSc+Pp7MzEzr/efOnbMOvSvNvpR3lgnTjRa7PMTXk+TdmCTvxiR5NybJuzFJ3o3JqHmXnBszvi6x3d1hwgSyZ8xwaFhnh0YrpzZv3sz06dNxdnbmu+++w1SCbmRXr1613vby8ip0XcvQNlC9jWxtp6ht2NqOm5tbme5LbpmZmXmKWJbufTff70iLFy8mLCzMcLH1jG/JtV45B8m75N1YsfWML3mXvOtF8i55N1JsPeNL3o0ZW++8G/XzpndsR+fbpN0827TBZGVl0aZNG44cOcLLL7/MRx99lOfxyZMn89ZbbwGwfv36fBN/v/POO7zxxhsArF27lt69excYa926dfTp08f6vNdff936WHBwMCdPniQoKIjo6OhC9/mBBx5g5syZgOp9ZOmttGnTJrp37w7Af/7zH95+++0Ct2E2m6lUqRIAffr0Yc2aNTbXy338ub322mu4u7sXup9CCCGEEEIIIYTQR0ZGBlOmTCEpKQlvb2+7xzN8D6b333+fI0eOULduXd58880SPz93kSUrK6vQdXNXDz08PGxup6htFLadstqX3P75z3/y4osvWn9PTk4mKCiIp556qtjzVJW1EydO0KhRI8PF1jN+ZmYmn3/+OS+88IK1x5yjSd4l70aKrWd8ybvkXfJunPiSd8m75N04sfXOu1E/b3rHjo+PZ8qUKQ6LZ+gCU2RkJB988AEAX331VZ5hY8VVpUoV6+3ChpoBpKamWm/fPITNsp2itlHYdspqX3Jzc3Oz2QAVdL+jGDW23vEl7/rR+9j1jm/E2HrHl7zrR+9j1zu+EWPrHV/yrh+9j13v+BJbn/h67UN5OHajxXZ0XENP8v3555+TlZVFw4YNSUtLY9asWfmWgwcPWtdft26d9X5LgSb3ZNqWK7gVJPdk2rkn2c69ndTUVK5cuVKs7dSoUSPPG6as9qW8279/vyFjl4f4epK8G5Pk3Zgk78YkeTcmybsxGTXvknNjxtf72B3J0D2YLMPETp48yfjx44tc/5133rHePnXqFJUrV6Z58+bW+yIjIwt9fu7HmzVrluex5s2bM3/+fOt6d955p81tZGdnExUVZXMbXl5eBAUFcfbs2VLtixBCCCGEEEIIIURJGLoHU1lo0KABAQEBAPz555+Frrtx40YAAgMDqV+/fp7HunXrZr1d2HZ27txp7T3VtWvXfI9btnP06FFiY2ML3E7uGLa2U54NHz7ckLHLQ3w9Sd6NSfJuTJJ3Y5K8G5Pk3ZiMmnfJuTHj633sjmToAtNPP/2EpmmFLrkn/l6/fr31fkuByGQyERoaCqheQX///bfNWH///be111BoaCgmkynP4z179sTHxweAn3/+mYIu7vfTTz9Zb48YMSLf47nfvLnXzS0tLY05c+YAqudUSEiIzfXKK0uhzmixy0N8PUnejUnybkySd2OSvBuT5N2YjJp3ybkx4+t97I5k6AJTWXn++edxdlajDZ955hnS09PzPJ6ens4zzzwDgLOzM88//3y+bbi6uvLss88CcOTIET755JN862zdupUffvgBgB49etCxY8d864wYMYLg4GAAPvjgA+twutxefvllEhMTrbcrmsuXLxsydnmIryfJuzFJ3o1J8m5Mkndjkrwbk1HzLjk3Zny9j92RpMBUBkJCQnjppZcANYSta9euzJ49m507dzJ79my6du3Kzp07AVXQady4sc3tvPzyy9beRK+88gqPPfYY69ev5++//+aDDz6gX79+ZGdn4+HhwRdffGFzGy4uLnz55Zc4OTmRnJxM165d+frrr9m+fTurVq1i9OjRfPPNN4AaTnf//feX8athf9WrVzdk7PIQX0+Sd2OSvBuT5N2YJO/GJHk3JqPmXXJuzPh6H7sjGXqS77L03nvvERcXx48//siePXsYN25cvnUeeugh3n333QK3UaVKFZYtW8agQYM4fvw406ZNY9q0aXnW8fb25rfffqNNmzYFbmfQoEF89913PP3001y8eNHaeyq3Tp06sXDhQipVqlT8gywncs9XZaTY5SG+niTvxiR5NybJuzFJ3o1J8m5MRs275NyY8fU+dkeSHkxlxMnJiR9++IFly5YRGhpKQEAArq6uBAQEEBoayvLly5k+fTpOToW/5I0aNWLPnj18+OGHdOjQgapVq+Lp6UmTJk144YUX2L9/P0OGDClyfx555BF27drFI488QsOGDXF3d6d69ep069aNb7/9li1btuDn51dWh+9QixYtMmTs8hBfT5J3Y5K8G5Pk3Zgk78YkeTcmo+Zdcm7M+HofuyNJD6YiTJ48mcmTJxd7/UGDBjFo0KBSxaxcuTKvvPIKr7zySqm207Jly3w9oIQQQgghhBBCCCHKmvRgEhVOYcMDb+fY5SG+niTvxiR5NybJuzFJ3o1J8m5MRs275NyY8fU+dkeSApOocIoaZni7xi4P8fUkeTcmybsxSd6NSfJuTJJ3YzJq3iXnxoyv97E7knGOVNw2du/ebcjY5SG+niTvxiR5NybJuzFJ3o1J8m5MRs275NyY8fU+dkeSApMQQgghhBBCCCGEKBUpMIkKpzhX0bsdY5eH+HqSvBuT5N2YJO/GJHk3Jsm7MRk175JzY8bX+9gdSQpMosLZvn27IWOXh/h6krwbk+TdmCTvxiR5NybJuzEZNe+Sc2PG1/vYHUkKTKLCiYuLM2Ts8hBfT5J3Y5K8G5Pk3Zgk78YkeTcmo+Zdcm7M+HofuyNJgUlUOD4+PoaMXR7i60nybkySd2OSvBuT5N2YJO/GZNS8S86NGV/vY3ckKTCJCqdPnz6GjF0e4utJ8m5Mkndjkrwbk+TdmCTvxmTUvEvOjRlf72N3JGe9d0BUDFOnTmXq1Knk5OQAEBERgZeXFyNHjmTt2rUkJSXh7+9Pp06dWLp0KQDt2rXDbDazd+9eAEJDQ9m8eTOXLl3C19eX7t27ExERAcAdd9yBi4sLu3btAmDw4MHs3LmTixcv4u3tTb9+/Zg3bx4AycnJ9O3bl23btgHQv39/Dh48SExMDJUrV2bIkCHMnj0bgCZNmuDn58eWLVsAuOeeezh27BjR0dG4ubkxcuRIZs+ejdlsJjg4mMDAQDZu3AhAz549iY6O5uTJkzg7OxMWFsbUqVOpXbs29erVIzg4mHXr1gHQrVs34uLiOHbsGADjx49n0aJFpKWlUadOHZo3b87q1asB6NKlC0lJSRw+fBiAsLAwVq5cydWrV6lVqxbt2rVj+fLlAHTs2JGMjAwOHDgAQE5ODn5+fiQmJuLn50eXLl1YsmQJAG3btgVgz549AAwdOpStW7eSkJBAtWrV6NmzJwsXLgSgVatWuLu7s2PHDgAGDRrE7t27iY2NpUqVKgwYMIC5c+cC0Lx5czw8PACYN28eAwYM4PDhw5w7dw5PT09CQ0MJDw8HICQkBH9/fzZv3gxA7969iYqK4syZM7i6ujJq1Cjmzp1LdnY2DRs2pG7dumzYsAGA7t27ExMTQ1RUFE5OTowdO5YFCxaQmZlJ3bp1OX78OG5ubgB07dqVhIQEjh49CsDYsWNZunQpqampBAYG0rJlS1atWgVA586dSUlJ4dChQwCMHj2a1atXk5ycTM2aNenQoQPLli0DoH379ly7do39+/cDMHz4cDZu3MiBAwe444476NatG4sWLQKgTZs2ODk5WS87OmTIELZv305cXBw+Pj706dOHBQsWANCyZUs8PT2t468HDhzIvn37OH/+PF5eXgwaNIg5c+YA0LRpU3x9ffnrr78A6Nu3L7Nnz8bX1xcPDw+GDx/OrFmz0DSNxo0bU6tWLTZt2gRAr169OH36NKdOncLFxYXRo0czb948rl27RoMGDahfvz7r168H4O677yY2Npbjx49jMpkYN24cERERpKenExQURNOmTa2vYXR0NCkpKURGRgIwZswYli9fTkpKCgEBAbRu3ZoVK1YA0KlTJ9LS0jh48CBAqduIqVOnEhgYWKI2okWLFnh5eZW6jbhw4QIvvvhiidqI+fPnk5WVVSZtxB9//EFgYGCJ2ogRI0awYcOGUrURZrMZgJMnT1pzU1Qb4ePjw9atWwHo169fqduIM2fOcPfdd5eojQgJCWHNmjWlbiPMZjNVq1YtURtx+fJlqlevXiZtRExMDA8//HCJ2ojIyEjOnj1bqjYiKCgIUO28k5NTsdqIP/74A4C77rqLy5cvl7qNSEhIYNKkSXY/j7DVRvz+++9Ur17d7ucRBbUR6enptG7d2u7nETe3Ee3bt7fm3XLbHucRhbURaWlpWNjzPMJWG7Fu3ToCAwPtfh5RUBuxefNmvLy8APueR9zcRsyfP9+a6zp16tjtPKKwNuLbb7+lZs2adj+PsNVGxMTE8Oijj9r9PMJWG3Ho0CHc3d0B+59H3NxGJCUlAZCUlMTatWsB+5xHgO024pdffsHPz88h5xG22oiMjAxatGhh9/MIW23EtGnTCAwMdMh5BORtIxzNpGma5vCoosJKSkqiatWqREVF4efnp8s+zJ07l7CwMMPF1jN+ZmYmn332GS+++KK1yONoknfJu5Fi6xlf8i55l7wbJ77kXfIueTdObL3zbtTPm96xExISCA4O5sqVKw4ZqicFJlEiJ0+eJDg4WO/dEEIIIYQQQgghRDFERUXRsGFDu8eRIXKiRHx9fQE1ZEavyco6duxo7W5ppNh6xk9OTiYoKIizZ8/i7e3t8PggeZe8Gyu2nvEl75J3ybtx4kveJe+Sd+PE1jvvRv286R07KSmJunXrWr/H25sUmESJODmpeeF9fHx0+4NUqVIlQ8YuD/G9vb0N+drr/brrHV/yrg+940ve9aF3fMm7PvSOL3nXh97xJe/Gim2hV971Pnaj593yPd7ucRwSRYgy9NRTTxkydnmIryfJuzFJ3o1J8m5Mkndjkrwbk1HzLjk3Zny9j92RZA4mUSLJycn4+PiQlJSkexVWOI7k3Zgk78YkeTcmybsxSd6NSfJuTJJ3Y3J03qUHkygRNzc33nzzTd2uOCH0IXk3Jsm7MUnejUnybkySd2OSvBuT5N2YHJ136cEkhBBCCCGEEEIIIUpFejAJIYQQQgghhBBCiFKRApMQQgghhBBCCCGEKBUpMAkhhBBCCCGEEEKIUpECkxBCCCGEEEIIIYQoFSkwiVvyyiuvYDKZrMuGDRv03iVhJwkJCXz00Ud07dqVWrVq4ebmRkBAAJ07d+bll19m69ateu+iKENZWVn88MMPDBgwgNq1a+Pm5oaXlxdNmjThwQcf5O+//9Z7F0UJxMXFsXTpUt544w0GDhyIn5+ftd2eNGlSibe3cuVKRo4cSZ06dXBzc6NOnTqMHDmSlStXlv3Oi1tWFnnPyMhg0aJFPPPMM3Tu3BlfX19cXFzw9fWlS5cuTJ48mQsXLtj3QESxlfVnPbe0tDQaNmxo3V79+vXLZJ9F6dkj79u3b+fJJ5+kWbNmeHt74+XlRXBwMIMHD+azzz4jPj6+bA9ClFhZ5v3MmTO89tprtG/fnqpVq1rb+bvuuot33nlH8l2O7N69m/fff5+BAwcSFBRkPUcPCQlh0qRJbNq0qUTbs9s5nSZECe3du1dzdnbWAOuyfv16vXdL2MGcOXO06tWr58n1zUtoaKjeuynKSHR0tNaqVatC8w1oL7zwgmY2m/XeXVEMheVx4sSJxd6O2WzWHn300UK39+ijj8r7opwobd737dunValSpci2oEqVKtrs2bPtf0CiSGX1Wbfl//7v//Jsr169emWyz6L0yjLvGRkZ2sMPP6yZTKZCt7tw4UK7HIsovrLK+2+//aZ5enoWur3q1atra9eutd/BiGLp3r17kX+TAe3+++/XMjMzC92Wvc/pnAutPglxE7PZzCOPPEJ2djb+/v7ExcXpvUvCTn755Rf+8Y9/YDab8ff354knnqBbt274+voSGxtLVFQUS5YswcXFRe9dFWUgOzubwYMHc+DAAQDuuOMOXnzxRZo0acLVq1fZvHkzn376KampqXz++efUrl2bl19+Wee9FiURFBREs2bNWL16dYmf+/rrrzNt2jQA2rZtyyuvvEJwcDBRUVF89NFH7Nmzh2nTplGjRg3efffdst51UQq3kvfk5GSuXr0KQNeuXRkyZAgdOnSgevXqxMfHs2DBAqZPn87Vq1e59957qVKlCgMHDrTXIYgSKs1n/WZ79uzhiy++wN3dHRcXF+v7QpQ/pcl7VlYWI0aMYMWKFQDcfffdPPDAAzRr1gxnZ2fOnDnDvn37mDt3blnvtiilW8371q1beeCBB8jJycHJyYmJEycSGhpKQEAA0dHR/PzzzyxZsoRLly4xbNgwDh48KL0XdRQTEwNAQEAAYWFh3H333dStW5ecnBy2bt3Kp59+SkxMDDNnziQ7O5vff/+9wG3Z/ZzulspSwrA+//xzDdCaNm2q/fOf/5QeTLepw4cPa25ubhqg3X333dqVK1cKXLeoKrmoGObNm2f9PHfp0kXLzs7Ot87OnTs1FxcXDdCqVaumXbt2TYc9FSXxxhtvaEuWLNFiY2M1TdO0U6dOlfi/nMePH7f2Wu3QoYOWlpaW5/HU1FStQ4cOGqA5OztrJ06cKOvDECVU2rxv2bJFGzNmjHbo0KEC14mIiLD2dAgODpbeazori8/6zbKzs7X27dtrgPb2229r9erVkx5M5UxZ5f0///mP9XmffPJJoetmZWWVZpdFGSiLvA8ZMsT6nKlTp9pc58UXX7Su88wzz5TV7otbMHjwYG327Nk2z881TdPi4+O1kJAQa742btxocz1HnNNJgUkUW3R0tObl5WUtKL355ptSYLpN9enTRwM0Pz8/LT4+Xu/dEQ7wwgsvWD/PixcvLnC9ESNGWNc7cOCAA/dQlIVbOQl98sknrc/ZunWrzXW2bt1qXefpp58uwz0WZaEsig22jBo1yrrd3bt3l9l2RemVRc4//fRTDdCaNGmiZWZmSoGpAriVvEdFRVn/eTRp0iT77qCwi1vJe7Vq1axD4Apy5coV63bbt29fRnsr7GXJkiXWfD377LM213HEOZ1M8i2K7cknnyQlJYWJEyfSs2dPvXdH2ElkZCRr164F4Omnn8bPz0/nPRKOkJWVZb3dsGHDAtcLDg623s7MzLTrPgn9aZrGokWLAGjatCl33nmnzfXuvPNOmjRpAkBERASapjlsH4V+evXqZb0dFRWl456IsnbmzBneeOMNAL799ltcXV113iNhL9OmTePatWuYTCZrzsXtz3Le16BBgwLX8fHxsX4PkHO+8i/393Nbf5MddU4nBSZRLHPmzGHp0qX4+vry8ccf6707wo5yj68PCwuz3k5MTOT48eNcunRJj90SdhYSEmK9ffLkyQLXs/zBMplMNG7c2O77JfR16tQp67j/Hj16FLqu5fFz585x+vRpe++aKAdyf+FwcpJTytvJk08+SWpqKvfff3+eQqK4/VjO+zp06GAtNpjNZs6dO8epU6dIT0/Xc/eEnVjO+06dOlXgOsnJySQkJORZX5Rfuf9ZbOtvsqPO6eRsQBTpypUrPPfccwB8+OGH1KhRQ+c9EvZkuQy9j48PzZo147fffqN169b4+voSEhKCn58fDRs25K233iIlJUXnvRVlZfz48Xh7ewPqc56Tk5NvnT179rBs2TIAxo0bZ11f3L6OHDlivd20adNC1839eO7nidvXn3/+ab1d1PtDVByzZs1i+fLlVKtWjU8++UTv3RF2FB8fb/2nUpcuXUhOTub555/Hz8+PoKAgGjZsiLe3Nz169LD+/Re3h8ceewyAS5cu8d1339lc55133sm3vii/ivqb7KhzOrmKnCjSK6+8QmxsLHfddRcPPfSQ3rsj7Ozw4cMA1K9fn2eeeYapU6fmW+fUqVNMnjyZefPmsWrVKgICAhy9m6KM1ahRg59++on77ruPLVu20LFjR55//nlCQkJISUlhy5YtfPrpp2RlZdGmTRs+++wzvXdZOMDZs2ett+vUqVPoukFBQTafJ25P+/bts37hbNGiBc2bN9d5j0RZSExM5PnnnwdgypQp+Pv767tDwq4s53wAHh4etGvXLt/QmuzsbDZu3MjGjRt54YUX5O//beLhhx9m06ZN/Pbbbzz11FPs2rWLYcOGUbt2baKjo/n1119ZuHAhAK+++ir9+vXTeY9FYcxmM1OmTLH+PmbMmHzrOOqcTnowiUJt3ryZ6dOn4+zszHfffYfJZNJ7l4SdXb58GVBzMU2dOpWqVavy3XffERcXR0ZGBjt27LBejvrgwYOEhYVhNpv13GVRRkaMGMHOnTt56KGH2Lt3LxMnTqRLly707duXyZMn4+npyWeffcbmzZupVauW3rsrHCD3Jcm9vLwKXbdy5crW29K78faWmZnJww8/bO3p+P777+u8R6KsvPzyy1y8eJEuXbrwyCOP6L07ws4s53wAX3zxBVFRUdx11138+eefpKWlcfnyZX777Tdq164NwOeff15gbxdRsVSqVIlff/2V2bNn07p1a6ZPn86wYcPo2LEjo0aNYuHChfTq1YtVq1blKVyI8unzzz9n+/btgDqf79ChQ751HHVOJwUmUaCsrCweffRRNE3jhRdeoFWrVnrvknCA1NRUQH2BqFSpEitWrOCxxx6jRo0auLm50aFDB5YuXWotMv31118sWLBAz10WZeTatWv8/vvvLFmyxOaEfhcvXiQ8PJwNGzY4fueELjIyMqy3i5rk183NzXpb5uy4vT399NPs3LkTgIkTJzJs2DCd90iUhY0bN/Ljjz/KPxUNxHLOB+q8r3379qxdu5bu3bvj4eFBtWrVuPfee/nzzz+tXzjfeOMNaeNvE5GRkfz+++8cOHDA5uNbt27ll19+4cKFCw7eM1ESf/75J6+99hoA/v7+fPvttzbXc9Q5nRSYRIHef/99jhw5Qt26dXnzzTf13h3hIO7u7tbbYWFhNq8w4OTklGey9/DwcIfsm7Cf1NRU7rnnHt577z0uXbrEK6+8wpEjR8jMzCQpKYnVq1fTrVs3duzYwdChQ/nvf/+r9y4LB8jdHuSePNKW3BM+e3h42G2fhL4++OADpk+fDkD79u1tDqMWFU9mZqb1n4rPPfccd9xxh967JBwgdxsP8N577+W7D6Bx48Y88cQTgJq3ac2aNQ7ZP2E/mzZtokuXLixatIjAwEBmzpxJbGwsWVlZnD17lqlTp+Lh4cFvv/1Gp06dZG7FcurQoUOMGDGC7Oxs3NzcmDNnDjVr1rS5rqPO6aTAJGyKjIzkgw8+AOCrr77K001O3N6qVKlivW3ppWRLixYtCAwMBGDHjh123y9hX2+++SYbN24E4IcffuDDDz+kadOmuLq64u3tTd++fVm/fj29evVC0zRefPFF9u/fr/NeC3vL3R4U1UU693/Ci+p6LSqm//3vf/zrX/8CoEmTJqxYsULOD24T7733HkePHiUoKIjJkyfrvTvCQXK38a6uroVeMbB///7W23LeV7FlZmYyfvx4rly5Qq1atfj777+ZMGECNWvWxMXFhTp16vDkk0+yadMm3N3dOXfuHA888IDeuy1ucurUKfr160diYiKVKlUiPDy80KvDOeqcTib5FjZ9/vnnZGVl0bBhQ9LS0pg1a1a+dQ4ePGi9vW7dOmJjYwEYOnSonHBWYEFBQdZcFmcCuJiYGOLi4hyxa8JONE1jxowZgLoM7cSJE22u5+zszDvvvEO3bt0wm83MmDGDzz//3JG7Khwsdxtw7ty5QtfNPQlk7skhxe0hPDycJ598EoB69eqxZs0auarsbeTDDz8E4J577mHp0qU217F84UhNTbWeF/r7+9O7d2/H7KQoc7nb6po1axY6bCb3unLeV7GtXLnSern6Z555psB5NVu0aMGECROYPn06O3fuZN++fbRu3dqRuyoKcP78ee655x7Onz+PyWTixx9/ZMSIEYU+x1HndFJgEjZZusWdPHmS8ePHF7l+7stYnjp1SgpMFViLFi2s/5mydan63CyPOztLU1KRXbx40TrRZ9u2bQtdt3379tbbkZGRdt0vob/cVwYrKt+5H2/WrJnd9kk43uLFi3nggQcwm83Url2btWvXFvkPCFGxWIZLzJgxw/oPh4IkJCRYzw179OghBaYKrHHjxri4uHDt2rVin/OBnPdVdLmHu7Vr167Qddu3b28dFh0ZGSkFpnIgISGBvn37cvLkSUCNNipODzNHndPJEDkhRB7du3e33r75UrU3szRslqFyomLKfaKYnZ1d6LrXrl2z+Txxe2rQoAEBAQGAmkSyMJYhloGBgdSvX9/euyYcZO3atYwZM4bs7GyqV6/OH3/8QXBwsN67JYQoAy4uLnTp0gVQ/2zKPSzmZrnPCeW8r2KT876KKykpif79+3P48GEApkyZwlNPPVWs5zrqnE4KTMKmn376CU3TCl1yT/y9fv166/3yxaJiGzZsGC4uLgCFXh3uzz//5NKlSwDcfffdDtk3YR++vr54e3sD6oohhZ1s5P6D1KBBA7vvm9CXyWQiNDQUUP/N+vvvv22u9/fff1v/2xUaGipXn7pN/PXXX4SGhpKZmYm3tzerVq2iRYsWeu+WsIOizvk0TaNevXqAGiJpuU+uKlrxjRo1ClA9lBYtWlTgernPCeW8r2LLff62adOmQteV877yIy0tjcGDB7N7924A/v3vf/Pqq68W+/mOOqeTApMQIo/q1avz8MMPA/DHH3/YnH/r6tWrPP/889bfH3vsMUftnrADJycnBg8eDKgx3e+9957N9RITE/P8IRsyZIhD9k/o6/nnn7f+1/KZZ57Jd7na9PR0nnnmGUD9dzN32yAqrr179zJ48GBSU1OpXLkyy5cvzzNEVghxe3jwwQfx9/cH4F//+hcXL17Mt86GDRuYOXMmAC1btqRr164O3UdRtvr06YOnpycA3377LQcOHLC53ooVK1i4cCGgerK0adPGUbsobpKVlcWIESPYsmULAM899xzvvvtuibfjiHM66ecmhMjnrbfeYtmyZURHR3P//fezZcsWRo4cibe3NwcOHODDDz+0VrafeOIJOnbsqPMei9J64403WLRoEWlpaUyePJldu3YxceJEGjZsSEZGBn///TdffPEF0dHRgDo56devn857LYqyefNmTpw4Yf09ISHBevvEiRP89NNPedafNGlSvm2EhITw0ksvMWXKFHbu3EnXrl159dVXCQ4OJioqig8//JA9e/YA8PLLL9O4cWO7HIsovtLmPSoqiv79+3PlyhUA3n33XXx8fPJc3ONm/v7+1i+pwvHK4rMuKp6yyLuXlxdffvkl48eP58yZM3Ts2JHXXnuNTp06kZGRwYoVK/j888/JycnB2dmZ7777Tnqp6qy0ea9atSqvvfYab7zxBlevXuWuu+7imWeeoW/fvlSrVo2LFy+yaNEivv/+e8xmM6CGYjk5Sd8UvYwfP57Vq1cD0Lt3bx566KFC/ya7uroSEhKS736HnNNpQtyiN998UwM0QFu/fr3euyPK2OHDh7VGjRpZc2xrefDBB7WsrCy9d1WUkT/++EPz8/MrNOeA1rt3b+3y5ct6764ohokTJxaZz9xLQXJycrQHH3yw0Oc+9NBDWk5OjgOPThSktHmfMWNGiZ4PaG+++abjD1RYldVnvTD16tXTAK1evXplu/PilpVl3r/++mvN1dW1wOd6eXlpERERDjoyUZiyyLvZbNaef/55zWQyFfpcFxcX7eOPP3bwEYqblfRvcmHttL3P6aQMKYSwqVmzZuzdu5ePP/6Yzp074+vri6urK3Xq1GHs2LGsW7eOH374wTpfk6j47rnnHiIjI/nwww/p2bMnNWrUwMXFBQ8PDxo0aMCYMWOIiIhgzZo1VKtWTe/dFQ7k5OTEDz/8wLJlywgNDSUgIABXV1cCAgIIDQ1l+fLlTJ8+Xf67KYQQFdRTTz3F7t27eeKJJ2jUqBEeHh54eXlxxx138Morr3Ds2DHr/C2i4jOZTHz++efs2LGDxx9/nJYtW1KlShUqVaqEj48P7du358UXX+TgwYO89NJLeu+uKEP2PqczXa+ICSGEEEIIIYQQQghxS+RfjUIIIYQQQgghhBCiVKTAJIQQQgghhBBCCCFKRQpMQgghhBBCCCGEEKJUpMAkhBBCCCGEEEIIIUpFCkxCCCGEEEIIIYQQolSkwCSEEEIIIYQQQgghSkUKTEIIIYQQQgghhBCiVKTAJIQQQgghhBBCCCFKRQpMQgghhBBCCCGEEKJUpMAkhBBCCCGEEEIIIUpFCkxCCCGEMLRJkyZhMpmoX7++3rtiaD179sRkMtGzZ0+9d6VQp0+fxmQyYTKZ+Omnn/TeHSGEEKLckAKTEEIIIewuKSmJqVOnMmjQIOrXr4+npyc+Pj6EhIRw3333MXv2bHJycvTezQrjp59+shY5bl6cnJzw9vamZcuWPP744+zevVvv3S13jh8/ziuvvEKnTp3w9fXFxcUFPz8/mjdvTr9+/Zg8eTIbNmwgIyND710VQgghKgxnvXdACCGEELe36dOn89prr3Hp0qU896enp5OcnMzx48f5/fffad68Of/73//o1q2bTnt6e9A0jatXr3Lo0CEOHTrE999/z7///W/efvttvXetXHjvvfeYPHky2dnZee6/dOkSly5d4siRI/zxxx+89dZbvPrqq0yZMkWnPRVCCCEqFikwCSGEEMJuXn75ZT755BMAnJ2dGTduHMOGDaNevXpkZWVx9OhRwsPDWbt2LYcPH+aee+7h119/ZfTo0TrvecXx7rvvEhoaav3dbDYTHx/Phg0b+OKLL0hJSeGdd96hQYMG/OMf/9BxT/X38ccf8/rrrwPg4+PDY489Ro8ePahduzZZWVmcO3eObdu2sWTJEiIjI21uo379+mia5sjdFkIIISoEKTAJIYQQwi6mTp1qLS4FBQWxZMkSWrdunWedbt268dBDDzF79mweeOABMjMzue+++2jUqBFt2rTRYa8rnsDAQFq2bJnv/j59+tCzZ0/69u2Lpml89NFHhi4wXbp0iTfffBOAOnXq8NdffxEUFJRnnc6dOzNq1Cg++ugjtm/fnq/XnRBCCCEKJnMwCSGEEKLMnTlzhpdeegkALy8v1q1bl6+4lNvYsWP5+eefAcjKyuL++++XXiJloE+fPrRv3x6AyMhIkpOTdd4j/axevZr09HQAXnvttXzFpZt16tSJgQMHOmLXhBBCiNuCFJiEEEIIUea++OIL6wTJb775Jo0aNSryOePGjWPw4MEAHDx4kKVLl+Zb5+YrjR0/fpynn36axo0b4+npiclk4vTp03mec/jwYSZOnEhQUBDu7u4EBQVx7733smPHjhIdU2JiIu+++y5dunTBz88PNzc3AgICCA0NZcGCBYU+1zIB9+TJkwFYt24dYWFhBAUF4eLiYtcr2OXedmGTVmdlZfHNN9/Qq1cvatSogaurK7Vq1WLQoEH8+uuvmM3mImOlpKQwZcoUunTpgq+vL25ubtSpU4fRo0fbzGdJ/f7777i4uGAymejSpQuJiYnFfu6ZM2est4vzfixIYVeRK2zydVuL5f1wM03TmDdvHqNGjbK+b6tVq0anTp145513uHLlyi3vvxBCCGEvMkROCCGEEGVK0zR++eUXADw8PHjkkUeK/dxnn32WZcuWATBjxgyGDh1a4LqLFi3ivvvuIzU1tcB1Zs2axcSJE8nKyrLed+7cOcLDw5k7dy7/+9//irVfy5cv57777sv3xf7ChQssXryYxYsXM3jwYGbNmoWXl1eh2/r3v//N+++/X6y4ZcFScHN3d6dGjRo21zlz5gwDBw7kyJEjee6/ePEiK1asYMWKFfzvf/9j0aJF+Pr62tzGnj17GDJkCOfPn89zf0xMDPPnz2f+/PmMHDmS3377DXd39xIfx9dff82zzz6Lpmn07duXhQsXUrly5WI/39XV1Xr7yJEj9O/fv8T74Ajx8fGMGDGCLVu25Lk/MzOTHTt2sGPHDqZOncqiRYvo3LmzTnsphBBC5CcFJiGEEEKUqUOHDnH58mUAunfvjo+PT7Gf26dPHzw9PUlLS2Pz5s0FrhcdHc2ECRPw9PTkP//5D3fffTeVKlVix44d1gLPtm3buP/++8nOzsbNzY0XXniBQYMG4ebmxrZt23j//fd5/PHHad68eaH79McffzBs2DBycnKoX78+TzzxBJ07d8bb25uYmBhmz57Nr7/+yrJly5g4cSLz588vcFsLFy5k//79tGrVihdeeIGWLVuSnp7O3r17i/0alcT69evZvXs3AEOHDsVkMuVbJyUlhd69e3Py5EkAhg8fzoMPPkhAQACnTp3i66+/5s8//2Tz5s0MGTKETZs2UalSpTzbiImJoU+fPiQmJmIymZg0aRLjxo2jevXqHD58mE8//ZR9+/axYMECJk6cyOzZs0t0HG+//bZ1/qRRo0bx+++/5ykYFUfbtm2tt9977z169epV6LDNWzF8+HA6dOhQ6Dovv/wyK1euBKBevXp5HktNTaVHjx4cOXIEV1dX/vGPfzBo0CCCgoJITU1l48aNfPbZZ1y8eJGBAweyZ8+efNsQQgghdKMJIYQQQpShX3/9VQM0QPvnP/9Z4ud36dLF+vyYmJg8j/Xo0cP6WEBAgHbmzJkCt9O+fXsN0FxcXLQ///wz3+Pnzp3T6tSpY91evXr18q2TkpKi1axZUwO0fv36aampqTZjTZs2zbqdNWvW5Hvc8hig9enTR8vIyCjiVSjcjBkzrNt79913tQMHDliXffv2aWvXrtXeeOMNzdvbWwO02rVra0ePHrW5rZdeesm6rddffz3f42azWbvvvvus63zzzTf51hk9erT18enTp+d7PCMjQ+vVq5d1neXLl+dbx5LbHj165In97LPPWp/38MMPazk5OSV4pW7IycnR7rjjDuu2TCaT1qNHD+2dd97RVq1apSUmJhZrO6dOnbJuY8aMGSXah6+//tr63Pvuuy/f408//bQGaD4+PtqOHTtsbuP06dNa7dq1NUCbMGFCieILIYQQ9iQFJiGEEEKUqS+++ML6Jfq///1viZ8/fPhw6/P379+f57HcBaZffvmlwG1s27bNut7TTz9d4HqzZ88utMD01VdfaYDm7u6uXbx4sdD97tSpU4GFA0sMJycn7dSpU4VupzhyF5gKW9zc3LRXXnlFO3v2rM3tZGRkaFWrVtUArXnz5lp2drbN9ZKSkrTq1atb18vt/PnzWqVKlTRA69+/f4H7fOrUKc3Z2VkDtEGDBuV7/OYC07Vr17T777/feiwvv/xyMV+dgh0/flxr1KiRzdfKZDJprVq10l555ZUCi3GW47iVAtOaNWusx9+pUyctPT09z+Px8fGau7t7sT4333zzjbV4WlDRUwghhHA0meRbCCGEEGXq6tWr1tslmSPH1nMKuuqZq6srYWFhBW5jzZo11tv/+Mc/ClxvxIgRVK1atcDHFy1aBECPHj3w9/cvcD1QwwEBtm7dWuA6Xbt2teuE3jfLzMxk5syZzJw50+ZV+Xbt2mWdV2rSpEn5hr5ZeHt7M2bMGEBNmn7hwgXrY+vXrycnJweAhx56qMB9qV+/Pn379gVgw4YN1ufYkpGRwciRI5k5cyYAH3zwAR999FEhR1o8jRo1Yu/evUyZMoXg4OA8j2maxoEDB/joo49o3rw5//d//0d2dnapY4KajD4sLIzs7GwCAwOJiIjINw/VqlWrrJOwW17rgljea9euXWPXrl1lso9CCCFEaUmBSQghhBBlqkqVKtbbKSkpJX5+7ud4e3vbXKdx48aFThR94MABQBWi7rjjjgLXc3FxyTM3z8127twJqC//RV0R7JNPPgEgNja2wO0Vti+3asaMGWiqV7p1uXr1Ktu3b+fhhx/mwoUL/Otf/2L8+PH5ikwHDx603i5qwujcj+d+3q1sIy0tzTrn082uXr1K//79WbJkCU5OTvzvf//jtddeK3S7JVG5cmVeffVVTpw4QWRkJD/++CPPPvssnTp1wslJnRrn5OTw2Wef8fDDD5c63pUrVxg6dCiJiYl4eHiwaNEiateunW89y3sNoHbt2oW+11q2bGldt7D3mxBCCOFIMsm3EEIIIcpU9erVrbdv5cvvxYsXbW4rt2rVqhW6Dcvl6319fXF2Lvx0p2bNmjbvv3bt2i1dDj4tLa3Ax4ra77Li5eVFx44d6dixI/7+/rz//vvMnj2bfv368eCDD1rXs0zGDgW/Dha1atWy+byy2EZulknJAR5//HEeffTRQrdZGk2aNKFJkybW32NiYpg8eTLTp08H4Oeff+bhhx+mW7dut7T9nJwcxo4dy9GjRwH46aefaN++vc114+LibilGYe83IYQQwpGkwCSEEEKIMpX7ylx79uwp0XNzcnLYv38/ADVq1CAgIMDmegUN5bKw9NSxddW0gta1tS8WY8aM4T//+U+R2ypKUfttD//3f//HlClTMJvN/PDDD3kKTLkV9VoV9DqVRHG20aJFC7Kzszl69Cj/+9//6N69O2PHji117OIIDAzk+++/JyUlhVmzZgEwd+7cWy4wvfDCC6xevRqAN954o9Chb5b3m6ura4mGvdWpU+eW9k0IIYQoa1JgEkIIIUSZatmyJb6+vly+fJmNGzeSlJSEj49PsZ67Zs0aa4+MW/1SD6rnEsClS5fIyckptLBTUM8Rd3d3PD09SUtL48qVK3mGJVUkvr6+1KhRg4sXL1qHDuZ+zCI2NpaQkJACt5O7Z1nu5+W+ffHiRerWrVvibeTm5+fH77//Ts+ePTl+/DgTJkygUqVKjB49usDtlrVHHnnEWmA6ceLELW1j2rRpfPXVVwCMGjWKyZMnF7q+pbdeVlYW1atXtzmMTgghhCjPZA4mIYQQQpQpk8nE/fffD0B6ejrff/99sZ9r+UIOatLpW9WqVStAfVnft29fgetlZ2ezd+/eAh+3zM+0ZcuWCj0UyTJZ9bVr1/Lcn7totm3btkK3sX37dpvPu5VteHp60qBBgwLXCwgIYP369TRq1Ijs7GzGjx9PREREodsuS7l7zlnmZSqJDRs28PTTTwPqPfTLL78U2UMs91xgll5PQgghREUiBSYhhBBClLnnnnsONzc3AN56661i9QKZNWsWy5YtA6B58+YMGTLkluPfc8891ts///xzgestXLjQOl+TLcOGDQMgNTWVqVOn3vL+6OnUqVNcunQJgKCgoDyPtW/f3noVvZ9//rnAK7tdvXqVOXPmACo3uXvX9OzZ09pD7IcffihwP6Kjo/njjz+szylqbqzAwEDWrVtHw4YNyc7OZsyYMSxevLjQ5xSmJEP8ck+4XVghzJaoqChGjx7NtWvXqFmzJosWLcLT07PI5w0cOBAXFxcAPv/88zK7gp0QQgjhKFJgEkIIIUSZa9CggfWy8ikpKfTp06fQnkRz5sxh4sSJgJqDZubMmbfUc8SiU6dOtGvXDoBvv/2WzZs351vnwoULvPTSS4Vu5/HHH8fPzw+A//znP6xYsaLQ9bds2cLGjRtvca/LntlsznMFtkGDBuV53M3NzXqltEOHDvHWW2/l24amaTz99NMkJCQAWHvmWAQEBDBixAhAXW3vxx9/zLeNrKwsHnzwQWsPqpu3UZCgoCDWr19P/fr1uXbtGmFhYdYiZEl9//33PProo0UWO8+cOcO///1v6++hoaHFjpGcnMzQoUO5dOkSbm5uRERE5CvqFSQwMJB//OMfAOzbt4/HHnus0CJTXFycdTJyIYQQojyQOZiEEEIIYRfPPvssJ0+e5L///S/R0dF06NCB8ePHM2zYMOrVq8e1a9eIjIzk999/Z+3atYAqLv3yyy/W4lBpfPPNN3Tr1o1r167Rt29fXnjhBQYNGoSbmxvbtm3j/fffJyEhgdatWxdY/PL29iY8PJyBAweSmZnJkCFDGDVqFKNGjSI4OBhQhapdu3axcOFC9u/fz1dffUX37t1Lvf/FFRMTw8GDB/Pcl5qayuHDh/n+++/ZunUroOb4yV1ssnjjjTdYsGABJ0+e5J133uHgwYM8+OCDBAQEcOrUKb7++ms2bNgAQJcuXWxe1e3zzz9n7dq1JCYm8vDDD7NlyxbGjRuHr68vkZGRfPLJJ9ahiGPGjGHgwIHFPr66deuyYcMGevTowZkzZxg1ahQREREMGDCg2NsAVeT6/vvv+f7777nrrrvo378/7du3p2bNmjg5ORETE8P69euZPn06V69eBVQPtj59+hQ7xtNPP82RI0cAeP755/Hy8sqXm9z8/f3x9/e3/v7pp5/y119/cfDgQX788Uf+/vtvHn30Udq3b4+XlxdXrlzh0KFDrFmzhuXLl9OqVStrgVAIIYTQnSaEEEIIYUfffvut5uvrqwGFLk2bNtU2bNhQ6LZ69OihAVqPHj2KFfv333/XXF1dbcZzdnbWvv/+e23ixIkaoNWrV6/A7axdu1arVatWkccAaD///HO+51see/PNN4u130WZMWNGsfbFsjRo0EDbtWtXgds7deqU1rRp00K30bVrV+3SpUsFbmP37t1aQEBAodsYOXKklp6ebvP5ReX25MmTWlBQkAZo7u7u2urVq0v0ms2ePbvA94Kt5d5779XS0tJsvlaWdWbMmGHzGIq72Ho/XLp0SRswYECxnt+rV68SvQZCCCGEPUkPJiGEEELY1eOPP864ceP49ddfWbZsGYcOHSI+Ph5nZ2dq1qxJx44dCQ0NZfTo0UXOy1NS48ePp3Xr1kyZMoW1a9eSkJBAjRo16Nq1Ky+++CKdO3e2OXzuZr179yYqKooZM2awdOlS9u3bx6VLl3BycqJGjRo0a9aMHj16MGrUKJo0aVKmx3Ar3N3d8fPzo3Xr1gwbNowJEyYUOg9Q/fr12bdvH99//z1z587l4MGDJCcn4+vrS9u2bbnvvvu49957Cx222LZtW44ePcrXX39NREQER48eJS0tDT8/P+68804mTZrE0KFDb/mYGjRowPr16+nZsyfnzp0jNDSUpUuX0rt372I9f8yYMfTv35/Vq1fz559/snv3bk6ePGmdg8vb25tGjRrRpUsX7rvvPtq3b3/L+1oavr6+rFixgnXr1vHrr7+yefNmLly4QEZGBt7e3gQHB9OpUycGDx5Mv379dNlHIYQQwhaTppVgxkMhhBBCCCGEEEIIIW4ik3wLIYQQQgghhBBCiFKRApMQQgghhBBCCCGEKBUpMAkhhBBCCCGEEEKIUpECkxBCCCGEEEIIIYQoFSkwCSGEEEIIIYQQQohSkQKTEEIIIYQQQgghhCgVKTAJIYQQQgghhBBCiFKRApMQQgghhBBCCCGEKBUpMAkhhBBCCCGEEEKIUpECkxBCCCGEEEIIIYQoFSkwCSGEEEIIIYQQQohSkQKTEEIIIYQQQgghhCgVKTAJIYQQQgghhBBCiFKRApMQQgghhBBCCCGEKBUpMAkhhBBCCCGEEEKIUvl/sS1ea9OnqwgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(13, 9))\n", - "plt.plot(orders_list, OCC_list_avg_HTGR, linestyle='-', marker='o', markersize=8, label= \"Reactor Concept A Average OCC\", color='red') \n", - "plt.plot(orders_list, TCI_list_avg_HTGR, linestyle='dashed', marker='o', markersize=8, label= \"Reactor Concept A Average NCI\", color='red')\n", - "\n", - "plt.plot(orders_list, OCC_list_avg_SFR, linestyle='-', marker='o', markersize=8, label='Reactor Concept B Average OCC', color='blue') \n", - "plt.plot(orders_list, TCI_list_avg_SFR, linestyle='dashed', marker='o', markersize=8, label='Reactor Concept B Average NCI', color= 'blue') \n", - "\n", - "# # g.set_xticks(range(1,22,2))\n", - "\n", - " \n", - "\n", - "\n", - "\n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "\n", - "plt.xlabel('Order Book Size', fontsize='20') # x-axis name\n", - "plt.ylabel('2022$/kWe', fontsize='20') # x-axis name\n", - "\n", - "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", - "plt.legend(loc='upper right', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(4, 20)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('orders.png')\n", - "plt.show() # Display the graph\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "8166d518", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[10129.426593668872,\n", - " 9054.364356093398,\n", - " 8293.675152027796,\n", - " 7719.580972658651,\n", - " 7267.1199076171115,\n", - " 6899.225446983411,\n", - " 6591.9060804843875,\n", - " 6331.086579065694,\n", - " 6105.572949904573,\n", - " 5908.11333540093,\n", - " 5733.391929705431,\n", - " 5577.767270570705,\n", - " 5437.851550664015,\n", - " 5311.1761056860005,\n", - " 5195.36334164328,\n", - " 5089.343188912801,\n", - " 4991.797561198853]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "TCI_list_avg_HTGR" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "f15a1174", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[9410.208845406803,\n", - " 8460.973294090489,\n", - " 7798.467989648133,\n", - " 7303.202162132135,\n", - " 6918.1355596638405,\n", - " 6607.075484293743,\n", - " 6349.302890667079,\n", - " 6131.373466375377,\n", - " 5943.1499192554,\n", - " 5779.3016910071765,\n", - " 5634.981155045442,\n", - " 5506.007888292734,\n", - " 5390.295118126247,\n", - " 5285.307360763239,\n", - " 5189.854956275479,\n", - " 5102.235827688789,\n", - " 5021.422116119418]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "TCI_list_avg_SFR" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b46eadd8", - "metadata": {}, - "outputs": [], - "source": [ - "startup_0 = 16\n", - "num_orders = 12\n", - "design_completion_0 = 0.8\n", - "Design_Maturity_0 = 1\n", - "proc_exp_0 = 0.5\n", - "ae_exp_0 = 0.5\n", - "ce_exp_0 = 1\n", - "\n", - "mod_0 = 'stick_built'\n", - "standardization_0 = 0.8\n", - "BOP_grade_0 = 'non_nuclear'\n", - "ITC_0 = 0\n", - "n_ITC = 0\n", - "RB_grade_0 = 'nuclear'\n", - "\n", - "for reactor_type in reactor_type_list:\n", - " TCI_list_avg = []\n", - " OCC_list_avg = []\n", - " interest_list = []\n", - " print(reactor_type)\n", - " for interest_rate_0 in [x / 100.0 for x in range(3, 13)]:\n", - " \n", - " OCC_list = []\n", - " TCI_list = [] \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate(num_orders ,n_th, startup_0, interest_rate_0, design_completion_0, Design_Maturity_0, proc_exp_0 , ae_exp_0, ce_exp_0, mod_0 , standardization_0, BOP_grade_0, RB_grade_0, ITC_0, n_ITC, reactor_type ) \n", - " OCC_result = results[0]\n", - " TCI_result = results[1]\n", - " \n", - " OCC_list.append(OCC_result)\n", - " TCI_list.append( TCI_result )\n", - " \n", - " avg_TCI = np.mean(TCI_list)\n", - " avg_OCC = np.mean(OCC_list)\n", - " \n", - " TCI_list_avg.append(avg_TCI)\n", - " OCC_list_avg.append(avg_OCC)\n", - " interest_list.append(interest_rate_0)\n", - " \n", - " \n", - " if reactor_type == \"SFR\":\n", - " OCC_list_avg_SFR = OCC_list_avg\n", - " TCI_list_avg_SFR = TCI_list_avg\n", - " elif reactor_type == \"HTGR\":\n", - " OCC_list_avg_HTGR = OCC_list_avg\n", - " TCI_list_avg_HTGR = TCI_list_avg" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "49ac27d0", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize=(13, 9))\n", - "plt.plot(interest_list, TCI_list_avg_HTGR, linestyle='dashed', marker='o', markersize=8, label= \"Reactor Concept A\", color='red')\n", - "\n", - "plt.plot(interest_list, TCI_list_avg_SFR, linestyle='dashed', marker='o', markersize=8, label='Reactor Concept B', color= 'blue') \n", - "\n", - "# # # g.set_xticks(range(1,22,2))\n", - "\n", - " \n", - "\n", - "\n", - "\n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "\n", - "plt.xlabel('Interest Rate (%)', fontsize='20') # x-axis name\n", - "plt.ylabel('Average NCI (2022$/kWe)', fontsize='20') # x-axis name\n", - "\n", - "plt.legend(loc='upper left', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(0.03, 0.12)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('orders.png')\n", - "plt.show() # Display the graph" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "979af689", - "metadata": {}, - "outputs": [], - "source": [ - "startup_0 = 16\n", - "num_orders = 12\n", - "design_completion_0 = 0.8\n", - "Design_Maturity_0 = 1\n", - "\n", - "interest_rate_0 = 0.06\n", - "\n", - "mod_0 = 'stick_built'\n", - "standardization_0 = 0.8\n", - "BOP_grade_0 = 'non_nuclear'\n", - "ITC_0 = 0\n", - "n_ITC = 0\n", - "RB_grade_0 = 'nuclear'\n", - "\n", - "\n", - "EPC_list = ['very low', 'low', 'medium', 'high', 'very high']\n", - "\n", - "for reactor_type in reactor_type_list:\n", - " print('\\n' ,reactor_type)\n", - " TCI_list_avg = []\n", - " OCC_list_avg = []\n", - " \n", - " \n", - " for epc_exp in EPC_list:\n", - " print( epc_exp )\n", - " OCC_list = []\n", - " TCI_list = [] \n", - " \n", - " if epc_exp == \"very low\":\n", - " proc_exp_0 = 0\n", - " ae_exp_0 = 0\n", - " ce_exp_0 = 0\n", - "\n", - " elif epc_exp == \"low\":\n", - " proc_exp_0 = 0\n", - " ae_exp_0 = 0\n", - " ce_exp_0 = 1 \n", - "\n", - " elif epc_exp == \"medium\":\n", - " proc_exp_0 = 1\n", - " ae_exp_0 = 1\n", - " ce_exp_0 = 1 \n", - "\n", - " elif epc_exp == \"high\":\n", - " proc_exp_0 = 1\n", - " ae_exp_0 = 1\n", - " ce_exp_0 = 2 \n", - "\n", - " elif epc_exp == \"very high\":\n", - " proc_exp_0 = 2\n", - " ae_exp_0 = 2\n", - " ce_exp_0 = 2 \n", - " \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate(num_orders ,n_th, startup_0, interest_rate_0, design_completion_0, Design_Maturity_0, proc_exp_0 , ae_exp_0, ce_exp_0, mod_0 , standardization_0, BOP_grade_0, RB_grade_0, ITC_0, n_ITC, reactor_type ) \n", - " OCC_result = results[0]\n", - " TCI_result = results[1]\n", - " \n", - " OCC_list.append(OCC_result)\n", - " TCI_list.append( TCI_result )\n", - " \n", - " avg_TCI = np.mean(TCI_list)\n", - " avg_OCC = np.mean(OCC_list)\n", - " \n", - " TCI_list_avg.append(avg_TCI)\n", - " OCC_list_avg.append(avg_OCC)\n", - " \n", - " \n", - " if reactor_type == \"SFR\":\n", - " OCC_list_avg_SFR = OCC_list_avg\n", - " TCI_list_avg_SFR = TCI_list_avg\n", - " elif reactor_type == \"HTGR\":\n", - " OCC_list_avg_HTGR = OCC_list_avg\n", - " TCI_list_avg_HTGR = TCI_list_avg" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2dd233d5", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize=(13, 9))\n", - "\n", - "xx = np.arange(5) \n", - "plt.bar(xx + 0.3 , TCI_list_avg_HTGR,0.3, color = 'red')\n", - "plt.bar( xx , TCI_list_avg_SFR ,0.3, color = 'blue')\n", - "\n", - "plt.xlabel('\\n EPC Proficiency', fontsize='25') # x-axis name\n", - "plt.ylabel('Average NCI (2022$/kWe) \\n', fontsize='25') # x-axis name\n", - "\n", - "plt.xticks(xx, ['Very Low', 'Low', 'Medium', 'High', 'Very High'])\n", - "\n", - "plt.grid(which='major', linewidth=0.8, axis='y')\n", - "plt.grid(which='minor', linestyle='dashed',axis='y', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "plt.ylim(0, 8000)\n", - "plt.tick_params(labelsize=25)\n", - "plt.legend([\"Reactor Concept A\" , \"Reactor Concept B\"], loc='upper right', fontsize='25')\n", - "\n", - "\n", - "\n", - "\n", - "plt.figure(figsize=(13, 9))\n", - "\n", - "xx = np.arange(5) \n", - "plt.bar(xx + 0.3 , OCC_list_avg_HTGR,0.3, color = 'red')\n", - "plt.bar( xx , OCC_list_avg_SFR ,0.3, color = 'blue')\n", - "\n", - "plt.xlabel('\\n EPC Proficiency', fontsize='25') # x-axis name\n", - "plt.ylabel('Average OCC (2022$/kWe) \\n', fontsize='25') # x-axis name\n", - "\n", - "plt.xticks(xx, ['Very Low', 'Low', 'Medium', 'High', 'Very High'])\n", - "\n", - "plt.grid(which='major', linewidth=0.8, axis='y')\n", - "plt.grid(which='minor', linestyle='dashed',axis='y', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "plt.ylim(0, 6200)\n", - "plt.tick_params(labelsize=25)\n", - "plt.legend([\"Reactor Concept A\" , \"Reactor Concept B\"], loc='upper right', fontsize='25')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "21e5ad85", - "metadata": {}, - "outputs": [], - "source": [ - "startup_0 = 16\n", - "ITC_0 = 0\n", - "n_ITC = 0\n", - "interest_rate_0 = 0.06\n", - "\n", - "for reactor_type in reactor_type_list:\n", - " \n", - " print( \"reactor type : \",reactor_type)\n", - " \n", - " avg_duration_list = []\n", - " TCI_list_avg = []\n", - " OCC_list_avg = []\n", - " \n", - " for num_orders in [5, 10]: \n", - " print('number of orders = ',num_orders)\n", - " for design_completion_0 in [0.5, 1]: \n", - " for Design_Maturity_0 in [0, 2 ]: \n", - " for proc_exp_0 in [0, 2 ]:\n", - " for ae_exp_0 in [0, 2 ]: \n", - " for ce_exp_0 in [0, 2]: \n", - " for mod_0 in [\"stick_built\", \"modularized\"]:\n", - " for standardization_0 in [0.7, 0.95]: \n", - " for BOP_grade_0 in [ \"nuclear\", 'non_nuclear' ]: \n", - " for RB_grade_0 in [ \"nuc lear\" , 'non_nuclear']: # \n", - " \n", - " dur_list = []\n", - " TCI_list = []\n", - " OCC_list = []\n", - " \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate(num_orders ,n_th, startup_0, interest_rate_0, design_completion_0, Design_Maturity_0, proc_exp_0 , ae_exp_0, ce_exp_0, mod_0 , standardization_0, BOP_grade_0, RB_grade_0, ITC_0, n_ITC, reactor_type )\n", - " OCC_result = results[0]\n", - " TCI_result = results[1]\n", - " cons_dur = results[2]\n", - " \n", - " OCC_list.append(OCC_result)\n", - " TCI_list.append( TCI_result )\n", - " dur_list.append(cons_dur )\n", - " \n", - " avg_duration = np.mean(dur_list)\n", - " avg_TCI = np.mean(TCI_list)\n", - " avg_OCC = np.mean(OCC_list) \n", - " \n", - " avg_duration_list.append(avg_duration) \n", - " TCI_list_avg.append(avg_TCI)\n", - " OCC_list_avg.append(avg_OCC)\n", - " \n", - " if reactor_type == \"SFR\":\n", - " avg_duration_list_SFR = avg_duration_list\n", - " OCC_list_avg_SFR = OCC_list_avg\n", - " TCI_list_avg_SFR = TCI_list_avg\n", - " \n", - " elif reactor_type == \"HTGR\":\n", - " avg_duration_list_HTGR = avg_duration_list \n", - " OCC_list_avg_HTGR = OCC_list_avg\n", - " TCI_list_avg_HTGR = TCI_list_avg " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "54d00ef3", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize=(13, 9))\n", - "\n", - "plt.scatter(avg_duration_list_HTGR, OCC_list_avg_HTGR, label= \"Reactor Concept A\", color='red')\n", - " \n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "plt.xlabel('Average Construction Duration (months)', fontsize='20') # x-axis name\n", - "plt.ylabel('Average OCC (2022$/kWe)', fontsize='20') # x-axis name\n", - "\n", - "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", - "plt.legend(loc='upper left', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(60, 110)\n", - "plt.ylim(3000, 12000)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('OCC_construction_HTGR.png')\n", - "plt.show() # Display the graph\n", - "\n", - "\n", - "plt.figure(figsize=(13, 9))\n", - "\n", - "plt.scatter(avg_duration_list_HTGR, TCI_list_avg_HTGR, label= \"Reactor Concept A\", color='red')\n", - " \n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "plt.xlabel('Average Construction Duration (months)', fontsize='20') # x-axis name\n", - "plt.ylabel('Average NCI (2022$/kWe)', fontsize='20') # x-axis name\n", - "\n", - "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", - "plt.legend(loc='upper left', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(60, 110)\n", - "plt.ylim(4000, 17000)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('TCI_construction_HTGR.png')\n", - "plt.show() # Display the graph" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f8bbaa32", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure(figsize=(13, 9))\n", - "\n", - "plt.scatter(avg_duration_list_SFR, OCC_list_avg_SFR, label= \"Reactor Concept B\", color='blue')\n", - " \n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "plt.xlabel('Average Construction Duration (months)', fontsize='20') # x-axis name\n", - "plt.ylabel('Average OCC (2022$/kWe)', fontsize='20') # x-axis name\n", - "\n", - "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", - "plt.legend(loc='upper left', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(38, 75)\n", - "plt.ylim(4000, 11500)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('OCC_construction_SFR.png')\n", - "plt.show() # Display the graph\n", - "\n", - "\n", - "plt.figure(figsize=(13, 9))\n", - "\n", - "plt.scatter(avg_duration_list_SFR, TCI_list_avg_SFR, label= \"Reactor Concept B\", color='blue')\n", - " \n", - "plt.legend() # g.set_xticks(range(1,22,2))\n", - "\n", - "plt.xlabel('Average Construction Duration (months)', fontsize='20') # x-axis name\n", - "plt.ylabel('Average NCI (2022$/kWe)', fontsize='20') # x-axis name\n", - "\n", - "# # plt.ylabel('Order BookAveraged TCI (2022$/kWe)', fontsize='25') # x-axis name\n", - "plt.legend(loc='upper left', fontsize='20') # Add a legend\n", - "plt.tick_params(labelsize=20)\n", - "plt.xlim(38, 75)\n", - "plt.ylim(4500, 15000)\n", - "\n", - "plt.grid(which='major', color='grey', linewidth=0.8)\n", - "plt.grid(which='minor', color='grey', linestyle='dashed', linewidth=0.5)\n", - "plt.minorticks_on()\n", - "\n", - "plt.savefig('TCI_construction_HTGR.png')\n", - "plt.show() # Display the graph" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "2edc4386", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SFR\n", - "best\n", - "# Orders\n", - "Design Completion\n", - "A/E Proficiency\n", - "Construction Proficiency\n", - "Supply Chain Proficiency\n", - "Design Maturity\n", - "Standardization\n", - "Modularization\n", - "Commercial BOP\n", - "Safety-Related RB\n", - "ITC\n", - "Interest Rate\n", - "HTGR\n", - "best\n", - "# Orders\n", - "Design Completion\n", - "A/E Proficiency\n", - "Construction Proficiency\n", - "Supply Chain Proficiency\n", - "Design Maturity\n", - "Standardization\n", - "Modularization\n", - "Commercial BOP\n", - "Safety-Related RB\n", - "ITC\n", - "Interest Rate\n" - ] - } - ], - "source": [ - "\n", - "scenarios_list = [\"best\", \"# Orders\", \"Design Completion\", \"A/E Proficiency\", \"Construction Proficiency\",\\\n", - " \"Supply Chain Proficiency\", \"Design Maturity\", \"Standardization\", \"Modularization\",\\\n", - " \"Commercial BOP\", \"Safety-Related RB\", \"ITC\", \"Interest Rate\"]\n", - "\n", - "for reactor_type in reactor_type_list:\n", - " print(reactor_type)\n", - " \n", - " TCI_list_avg = []\n", - " \n", - " for scenario in scenarios_list:\n", - " print(scenario)\n", - " \n", - " if scenario == '# Orders':\n", - " num_orders = 2\n", - " else: \n", - " num_orders = 20 \n", - " \n", - " if scenario == \"Startup Duration\":\n", - " startup_0 = 36 # start up duration (months)\n", - " else:\n", - " startup_0 = 12\n", - " # land cost\n", - " # From the SA report: the cost $22,000 per acre. The land area is 500 acres including recommended buffer\n", - " if scenario == \"Land Cost\":\n", - " land_cost_per_acre_0 = 100000 # d\n", - " else: \n", - " land_cost_per_acre_0 = 1000 # dollars/acre \n", - " \n", - "\n", - " # # interest rate :\n", - " if scenario == \"Interest Rate\":\n", - " interest_rate_0 = 0.12\n", - " else: \n", - " interest_rate_0 = 0.04\n", - "\n", - " if scenario == \"Design Completion\":\n", - " design_completion_0 = 0.5 # 1 means 100%\n", - " else: \n", - " design_completion_0 = 1# 1 means 100%\n", - " \n", - " if scenario == \"Design Maturity\":\n", - " Design_Maturity_0 = 0\n", - " else: \n", - " Design_Maturity_0 = 2\n", - " \n", - " \n", - " \n", - " \n", - " # #procurement service experience (supply chain experience)\n", - " \n", - " \n", - " if scenario == \"Supply Chain Proficiency\":\n", - " proc_exp_0= 0 # 2 means procurement experts. This is ideal. \n", - " else:\n", - " proc_exp_0= 2\n", - " \n", - " # # architecture and engineeringexperience\n", - " if scenario == \"A/E Proficiency\":\n", - " ae_exp_0 = 0\n", - " else: \n", - " ae_exp_0 = 2\n", - " \n", - " \n", - " if scenario == \"Construction Proficiency\":\n", - " # # Construction service experience\n", - " ce_exp_0 = 0\n", - " else: \n", - " ce_exp_0 = 2\n", - "\n", - " if scenario == \"Modularization\":\n", - " # modularity (applied on civil construction only) \"stick_built\" or \"modularized\"\n", - " mod_0 = \"stick_built\" \n", - " else: \n", - " mod_0 = \"modularized\"\n", - "\n", - " \n", - " if scenario == \"Standardization\":\n", - " # cross_site_standardization :\n", - " standardization_0 = 0.7 # 0.7 corresponds to 70% standardization for PWRs\n", - " else:\n", - " standardization_0 = 0.95\n", - " \n", - " \n", - " if scenario == \"Commercial BOP\":\n", - " # # Determining if the BOP and reactor building (containtment) are non-nuclear or nuclear grade equipment (safety related)\n", - " BOP_grade_0 = \"nuclear\"\n", - " else: \n", - " BOP_grade_0 = \"non_nuclear\"\n", - " \n", - " \n", - " if scenario == \"Safety-Related RB\":\n", - " RB_grade_0 = \"nuclear\"\n", - " else: \n", - " RB_grade_0 = \"non_nuclear\"\n", - "\n", - "\n", - " if scenario == \"ITC\":\n", - " # #investment tax credits subsidies\n", - " ITC_0 = 0 #\n", - " \n", - " #number of reactors claiming ITC\n", - " n_ITC = 3 \n", - " else: \n", - " ITC_0 = 0.4 #\n", - " n_ITC = 3\n", - " \n", - " TCI_list = [] \n", - " for n_th in range(1, num_orders+1):\n", - " results = calculate(num_orders ,n_th, startup_0, interest_rate_0, design_completion_0, Design_Maturity_0, proc_exp_0 , ae_exp_0, ce_exp_0, mod_0 , standardization_0, BOP_grade_0, RB_grade_0, ITC_0, n_ITC, reactor_type )\n", - " \n", - " TCI_result = results[1]\n", - " TCI_list.append( TCI_result )\n", - " avg_TCI = np.mean(TCI_list)\n", - " \n", - " TCI_list_avg.append(avg_TCI)\n", - "\n", - " if reactor_type == \"SFR\":\n", - " TCI_list_avg_SFR = TCI_list_avg\n", - " \n", - " elif reactor_type == \"HTGR\":\n", - " TCI_list_avg_HTGR = TCI_list_avg " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "44f9773d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([['# Orders', 'Design Completion', 'A/E Proficiency',\n", - " 'Construction Proficiency', 'Supply Chain Proficiency',\n", - " 'Design Maturity', 'Standardization', 'Modularization',\n", - " 'Commercial BOP', 'Safety-Related RB', 'ITC', 'Interest Rate'],\n", - " ['1348.7450431344796', '74.02039526858653', '130.9965193438593',\n", - " '358.5831930659415', '13.531457947480703', '17.675555463713863',\n", - " '638.6067166148432', '33.91727388325489', '150.33046271782314',\n", - " '156.5078298991284', '258.9981143750297', '781.6795212483339'],\n", - " ['903.0470363771133', '72.32958748945157', '120.40665744737998',\n", - " '284.29905480954994', '12.963416976577719', '16.69519640982253',\n", - " '433.8167368872532', '19.961834590577837', '159.03979159395112',\n", - " '13.864902749768135', '269.07468026091146', '543.0183896110916']],\n", - " dtype='