diff --git a/Project_Outline.ipynb b/Project_Outline.ipynb index e47f144..269ee08 100644 --- a/Project_Outline.ipynb +++ b/Project_Outline.ipynb @@ -1 +1,103 @@ -{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"Project Outline.ipynb","provenance":[],"authorship_tag":"ABX9TyPZl4d0nA5Qmq8X1mDqSb1O"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# **Title of Project**"],"metadata":{"id":"dqZ-nhxiganh"}},{"cell_type":"markdown","source":["-------------"],"metadata":{"id":"gScHkw6jjrLo"}},{"cell_type":"markdown","source":["## **Objective**"],"metadata":{"id":"Xns_rCdhh-vZ"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"9sPvnFM1iI9l"}},{"cell_type":"markdown","source":["## **Data Source**"],"metadata":{"id":"-Vbnt9CciKJP"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"sGcv5WqQiNyl"}},{"cell_type":"markdown","source":["## **Import Library**"],"metadata":{"id":"r7GrZzX0iTlV"}},{"cell_type":"code","source":[""],"metadata":{"id":"UkK6NH9DiW-X"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Import Data**"],"metadata":{"id":"9lHPQj1XiOUc"}},{"cell_type":"code","source":[""],"metadata":{"id":"zcU1fdnGho6M"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Describe Data**"],"metadata":{"id":"7PUnimBoiX-x"}},{"cell_type":"code","source":[""],"metadata":{"id":"kG15arusiZ8Z"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Visualization**"],"metadata":{"id":"oBGX4Ekniriz"}},{"cell_type":"code","source":[""],"metadata":{"id":"lW-OIRK0iuzO"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Data Preprocessing**"],"metadata":{"id":"UqfyPOCYiiww"}},{"cell_type":"code","source":[""],"metadata":{"id":"3cyr3fbGin0A"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Define Target Variable (y) and Feature Variables (X)**"],"metadata":{"id":"2jXJpdAuiwYW"}},{"cell_type":"code","source":[""],"metadata":{"id":"QBCakTuli57t"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Train Test Split**"],"metadata":{"id":"90_0q_Pbi658"}},{"cell_type":"code","source":[""],"metadata":{"id":"u60YYaOFi-Dw"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Modeling**"],"metadata":{"id":"cIhyseNria7W"}},{"cell_type":"code","source":[""],"metadata":{"id":"Toq58wpkjCw7"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Model Evaluation**"],"metadata":{"id":"vhAwWfG0jFun"}},{"cell_type":"code","source":[""],"metadata":{"id":"lND3jJj_jhx4"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Prediction**"],"metadata":{"id":"8AzwG7oLjiQI"}},{"cell_type":"code","source":[""],"metadata":{"id":"JLebGzDJjknA"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## **Explaination**"],"metadata":{"id":"SBo38CJZjlEX"}},{"cell_type":"markdown","source":[""],"metadata":{"id":"Ybi8FR9Kjv00"}}]} \ No newline at end of file + mileage prediction project using regression analysis in Python + +Dataset: +For this example, we'll use a sample dataset containing information about various car models, including their features and mileage. You can replace this dataset with your own. + +Dataset Columns: + +- Model_Year +- Cylinders +- Displacement +- Horsepower +- Weight +- Acceleration +- Mileage (target variable) + +Code: + +# Import necessary libraries +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LinearRegression +from sklearn.ensemble import RandomForestRegressor +from sklearn.metrics import mean_squared_error, r2_score + +# Load dataset +data = { + 'Model_Year': [2015, 2018, 2020, 2012, 2019, 2016, 2017, 2014, 2021, 2013], + 'Cylinders': [4, 6, 4, 6, 4, 8, 4, 6, 4, 8], + 'Displacement': [2.5, 3.5, 2.0, 4.0, 2.5, 5.0, 2.5, 3.5, 2.0, 5.0], + 'Horsepower': [150, 250, 180, 300, 200, 350, 220, 280, 200, 320], + 'Weight': [3000, 4000, 2800, 4500, 3200, 5000, 3000, 4200, 2800, 4800], + 'Acceleration': [8.5, 6.5, 7.5, 5.5, 7.0, 4.5, 8.0, 6.0, 7.5, 5.0], + 'Mileage': [25, 20, 28, 18, 24, 15, 26, 22, 29, 19] +} + +df = pd.DataFrame(data) + +# Explore dataset +print(df.head()) +print(df.describe()) + +# Split dataset into features (X) and target (y) +X = df.drop('Mileage', axis=1) +y = df['Mileage'] + +# Split data into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Linear Regression Model +lr_model = LinearRegression() +lr_model.fit(X_train, y_train) +y_pred_lr = lr_model.predict(X_test) + +# Random Forest Regressor Model +rf_model = RandomForestRegressor(n_estimators=100, random_state=42) +rf_model.fit(X_train, y_train) +y_pred_rf = rf_model.predict(X_test) + +# Evaluate models +print("Linear Regression Metrics:") +print(f"MSE: {mean_squared_error(y_test, y_pred_lr)}") +print(f"R2 Score: {r2_score(y_test, y_pred_lr)}") + +print("Random Forest Regressor Metrics:") +print(f"MSE: {mean_squared_error(y_test, y_pred_rf)}") +print(f"R2 Score: {r2_score(y_test, y_pred_rf)}") + +# Plot predicted vs actual mileage +plt.scatter(y_test, y_pred_lr, label='Linear Regression') +plt.scatter(y_test, y_pred_rf, label='Random Forest Regressor') +plt.xlabel('Actual Mileage') +plt.ylabel('Predicted Mileage') +plt.legend() +plt.show() + +Explanation: + +1. Import necessary libraries. +2. Load the dataset. +3. Explore the dataset using head() and describe(). +4. Split the dataset into features (X) and target (y). +5. Split data into training and testing sets using train_test_split(). +6. Train a Linear Regression model and a Random Forest Regressor model on the training data. +7. Make predictions on the testing data. +8. Evaluate the models using Mean Squared Error (MSE) and R2 Score. +9. Plot the predicted vs actual mileage for both models. + +Advice: + +- Use a larger dataset for better results. +- Feature engineer additional variables (e.g., engine type, transmission type). +- Experiment with different regression algorithms (e.g., Ridge, Lasso, Elastic Net). +- Tune hyperparameters for optimal performance. +- Consider using cross-validation for more robust evaluation. + +Example Use Cases: + +- Predicting fuel efficiency for new car models. +- Identifying key factors affecting mileage. +- Comparing the performance of different regression algorithms. +- Developing a mileage prediction tool for car manufacturers or consumers