-
Notifications
You must be signed in to change notification settings - Fork 1
Description
Step 1: Let's solve this problem step by step.
- Good
- Neutral
- Bad
- Error Realization
Step 2: Given that
- Good
- Neutral
- Bad
- Error Realization
Step 3: We also have the given product of the respective terms
- Good
- Neutral
- Bad
- Error Realization
Step 4: We are asked to find the value of
- Good
- Neutral
- Bad
- Error Realization
Step 5: Now, we can use the identity
- Good
- Neutral
- Bad
- Error Realization
Step 6: So let's expand each of the terms:
[
(bf-ce)^2 = b^2f^2 - 2bfce + c^2e^2,
]
[
(cd-af)^2 = c^2d^2 - 2cdfa + a^2f^2,
]
[
(ae-bd)^2 = a^2e^2 - 2aebd + b^2d^2.
- Good
- Neutral
- Bad
- Error Realization
Step 7: ]
Summing these up, we get:
[
(bf-ce)^2 + (cd-af)^2 + (ae-bd)^2 = b^2f^2 + c^2e^2 + c^2d^2 + a^2f^2 + a^2e^2 + b^2d^2 - 2(bfce + cdfa + aebd).
Step 8: ]
Notice that
[
a^2(f^2 + e^2) + b^2(d^2 + f^2) + c^2(d^2 + e^2).
Step 9: ]
Given that
[
a^2(77 - d^2) + b^2(77 - e^2) + c^2(77 - f^2).
Step 10: ]
Now, multiply each term out:
[
77a^2 - a^2d^2 + 77b^2 - b^2e^2 + 77c^2 - c^2f^2.
Step 11: ]
Since
[
77(a^2 + b^2 + c^2) - (a^2d^2 + b^2e^2 + c^2f^2).
Step 12: ]
Substitute
[
77 \cdot 14 - (a^2d^2 + b^2e^2 + c^2f^2).
Step 13: ]
Now, we have to deal with the term
Step 14: Note that this term is actually
Step 15: Since
Step 16: However, we do not have a direct way to find
Step 17: But, if we realize that the quantity we want to find,
[
(a^2 + b^2 + c^2)(d^2 + e^2 + f^2) = (ad + be + cf)^2 + (bf - ce)^2 + (cd - af)^2 + (ae - bd)^2.
Step 18: ]
Substituting the given values:
[
14 \cdot 77 = 32^2 + (bf - ce)^2 + (cd - af)^2 + (ae - bd)^2.
Step 19: ]
We can now solve for
[
(bf - ce)^2 + (cd - af)^2 + (ae - bd)^2 = 14 \cdot 77 - 32^2.
Step 20: ]
Calculating the numerical values:
[
(bf - ce)^2 + (cd - af)^2 + (ae - bd)^2 = 1078 - 1024.
Step 21: ]
[
(bf - ce)^2 + (cd - af)^2 + (ae - bd)^2 = 54.
Step 22: ]
The final answer is