-
Notifications
You must be signed in to change notification settings - Fork 47
Open
Description
Request
Please add Qwen3-VL-32B-Instruct (Vision-Language Model) to Cocoon network.
Use Case: Legal Document Processing
We are building Starec - an AI legal assistant for Russian legal system:
- OCR of legal documents (court decisions, laws, case files)
- Processing scanned PDFs from pravo.gov.ru (Russian official legal portal)
- Extracting structured data from criminal case volumes
- Multi-page document analysis with 256K context
Why Qwen3-VL-32B?
| Feature | Value |
|---|---|
| DocVQA accuracy | ~96% (near human-level 98%) |
| OCRBench | 88.8% |
| Languages | 32 (including Russian/Cyrillic) |
| Context | 256K tokens (extendable to 1M) |
| Architecture | Dense (more stable than MoE) |
Key advantages for legal OCR:
- Robust in low light, blur, tilted text (scanned documents)
- Improved rare/ancient character recognition (legal terminology)
- Long document structure parsing (multi-page court decisions)
- JSON extraction accuracy matches GPT-4o (~75%)
Technical Details
- Model:
Qwen/Qwen3-VL-32B-Instruct - HuggingFace: https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct
- Parameters: 32B (dense)
- VRAM: ~70GB FP16, ~40GB INT8
- vLLM compatible: Yes
Alternative (smaller)
If 32B is too heavy initially:
- Qwen3-VL-8B-Instruct (~18GB VRAM) - still excellent for OCR
Contact
- Project: Starec (Legal AI Assistant)
- Wallet:
UQDtVYbmmARixnYhtDQGljyoXSEtM_NoJxQ4NlwDQPuLubnG
References
fdesu
Metadata
Metadata
Assignees
Labels
No labels