diff --git a/Final_Project/201033_Swastika_FinalProject_2.ipynb b/Final_Project/201033_Swastika_FinalProject_2.ipynb
new file mode 100644
index 0000000..42a54d7
--- /dev/null
+++ b/Final_Project/201033_Swastika_FinalProject_2.ipynb
@@ -0,0 +1,1426 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "a6fccfcb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "f6c6964e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data = pd.read_csv('train.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "2cac26a0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "dd2231b2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "test_data = pd.read_csv('test.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "3f6cd796",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 892 | \n",
+ " 3 | \n",
+ " Kelly, Mr. James | \n",
+ " male | \n",
+ " 34.5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 330911 | \n",
+ " 7.8292 | \n",
+ " NaN | \n",
+ " Q | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 893 | \n",
+ " 3 | \n",
+ " Wilkes, Mrs. James (Ellen Needs) | \n",
+ " female | \n",
+ " 47.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 363272 | \n",
+ " 7.0000 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 894 | \n",
+ " 2 | \n",
+ " Myles, Mr. Thomas Francis | \n",
+ " male | \n",
+ " 62.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 240276 | \n",
+ " 9.6875 | \n",
+ " NaN | \n",
+ " Q | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 895 | \n",
+ " 3 | \n",
+ " Wirz, Mr. Albert | \n",
+ " male | \n",
+ " 27.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 315154 | \n",
+ " 8.6625 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 896 | \n",
+ " 3 | \n",
+ " Hirvonen, Mrs. Alexander (Helga E Lindqvist) | \n",
+ " female | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 3101298 | \n",
+ " 12.2875 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Pclass Name Sex \\\n",
+ "0 892 3 Kelly, Mr. James male \n",
+ "1 893 3 Wilkes, Mrs. James (Ellen Needs) female \n",
+ "2 894 2 Myles, Mr. Thomas Francis male \n",
+ "3 895 3 Wirz, Mr. Albert male \n",
+ "4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female \n",
+ "\n",
+ " Age SibSp Parch Ticket Fare Cabin Embarked \n",
+ "0 34.5 0 0 330911 7.8292 NaN Q \n",
+ "1 47.0 1 0 363272 7.0000 NaN S \n",
+ "2 62.0 0 0 240276 9.6875 NaN Q \n",
+ "3 27.0 0 0 315154 8.6625 NaN S \n",
+ "4 22.0 1 1 3101298 12.2875 NaN S "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "test_data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "3712ca63",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAJOCAYAAACjhZOMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ8ElEQVR4nO3de3xT9f0/8FeaJmnSNmlJ6E1bjKRIgSJFLkJbBBQ2xLtfNyt+R6n7zg2rMr/fKYjOsimIc4wJ4uZmge9Pgc0v4py7gUOR1huXOu7YSqU4CrWlTdqmSdr0/P4oCUlzcm2atOX1fDx4zJzrJ6cd5805r/M+EkEQBBARERGRm5hoD4CIiIhoIGKRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiYqM9gMGss7MTx44dc5s2ZswYyGSyKI2IiIiIwoVFUh8cO3YMP3r5z0hMzQIAtJ6vwysPAddee22UR0ZERER9xSKpjxJTs5CcmR3tYRAREVGYMZNEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiWCQRERERiWCRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiWCQRERERiWCRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiWCQRERERiWCRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiYqM9gKGk296FkydPuk0bM2YMZDJZlEZEREREoWKRFEbtjWfx/LtWDD9sAQC0nq/DKw8B1157bZRHRkRERMFikRRmCSlXIjkzO9rDICIioj5iJomIiIhIBK8kRUlnZyeOHTvm/MzsEhER0cDCIilKjh07hh+9/GckpmYxu0RERDQAsUiKosTULOaXiIiIBihmkoiIiIhEsEgiIiIiEsHbbf2od3NJhrOJiIgGDxZJ/ci1uSTD2URERIMLi6R+xuaSREREgxMzSUREREQiWCQRERERiWCRRERERCSCmaQBoPdTcACfhCMiIoo2FkkR0rsQ6vlvAYD7U3AA+CQcERHRAMAiKUJ6F0Lnjn0KjX48ki/O51NwREREAwuLpAhyLYRaz9dFeTRERETkC4PbRERERCJ4JWmI6ezsxLFjx5yfQw2A995OX7ZFREQ0GLFIGgR8FT695508eRJrd51EYtqIPgXAjx07hh+9/GckpmYBYJiciIguPyySguRalLg+oRZOYk/CeSt8ehczzkB4ACFwf1edElOzGCYnIqLLFoukILkWJb2fUAsXr0/CeSlYXIuZYALhrt/F35Ui18Kts7MTANwKKt6KIyKioYZFUggcRUl/PqHm7Uk4X/2Weuu9bO/i5uTJk0hMzURyZrbf7boWbueOfQpp/DAMH9EzPmN9LR6bexLXXHONc3lvRVPvq1e9x+TrVqKvQqy/lh1ogsmKRSpXNpiPJxGRL0O+SBIEAa2trWHbXltbG5rPfIEuawdM505DajJBdvEZQV+fQ53X+/P5E/vx5D4zklKuBABcOH0ciVeORpfVEtCyMcpE0XUD2q4qGV3WDtg7bYDNii5rR88xafgaT/7uC+e65ubzePw7M5Gd7Xnlq7q6Gi/88QOoklM9xtR7PddlfW2zP5cdaHofv2COdX9918F8PInCJTc3N+zbTExMhEQiCft2KXASQRDCH6oZQEwmEzQaTbSHQUREFBSj0Qi1Wh3tYVzWhnyRFO4rSSaTCZmZmThz5gx/eQPA4xUcHq/g8HgFj8csONE8XrySFH1D/nabRCLpl19stVrNv2CCwOMVHB6v4PB4BY/HLDg8XpcndtwmIiIiEsEiiYiIiEgEi6QgKRQKPPPMM1AoFNEeyqDA4xUcHq/g8HgFj8csODxel7chH9wmIiIiCgWvJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkYghXyQJggCTyQS2gyIioqGO57zwGvJFUmtrKzQaDVpbW6M9FCIion7Fc154DfkiiYiIiCgULJKIiIiIRLBIIiIiIhLBIomIiIhIBIskIiIiIhEskoiIiIhEsEgiIiIiEsEiiYiIiEgEiyQiIiIiESySiIiIiESwSCIiIiISwSKJiIiISASLJCIiIiIRLJKIiIiIRLBIIiIiIhIR1SKpq6sLTz31FPR6PZRKJa6++mr87Gc/Q3d3t3MZQRBQVlaGjIwMKJVKzJw5E0ePHo3iqMPPaLbhy4Y2VNU148tv2mA026I9JCIiostebDR3vnr1avzmN7/B5s2bMXbsWOzfvx+LFi2CRqPBo48+CgB44YUXsGbNGmzatAmjRo3Cs88+izlz5uDkyZNITEyM5vDD4mxLB57Yfgh7qxud02Zk6/D83eORkaSM4siIiIgub1G9kvTxxx/j9ttvx/z583HVVVfhP/7jPzB37lzs378fQM9VpLVr12L58uW46667MG7cOGzevBlmsxlbtmyJ5tDDwmi2eRRIAPBhdSOWbj/EK0pERERRFNUiqaCgAP/85z/xxRdfAAD+9a9/oaKiAjfffDMAoLa2FufOncPcuXOd6ygUCtxwww346KOPRLdptVphMpnc/gxUjW02jwLJ4cPqRjS2sUgiIiLvBtM5bzCKapH0xBNPoKioCKNHj4ZMJkNeXh6WLFmCoqIiAMC5c+cAAKmpqW7rpaamOuf1tmrVKmg0GuefzMzM/v0SfWCydPqc3+pnPhERXd68nfO8nSMpOFEtkv7whz/g9ddfx5YtW3Dw4EFs3rwZL774IjZv3uy2nEQicfssCILHNIdly5bBaDQ6/5w5c6bfxt9X6jiZz/mJfuYTEdHlzds5j0VSeEQ1uP2Tn/wES5cuxb333gsAyM3NxenTp7Fq1SosXLgQaWlpAHp+2Onp6c71GhoaPK4uOSgUCigUiv4ffBjoEuSYka3DhyK33GZk66BLkEdhVERENFgMpnPeYBTVK0lmsxkxMe5DkEqlzhYAer0eaWlp2LVrl3O+zWbDnj17MH369IiOtT9oVHI8f/d4zMjWuU2fka3D6rvHQ6NikURERBQtUb2SdOutt+K5555DVlYWxo4di6qqKqxZswYlJSUAem6zLVmyBCtXrkR2djays7OxcuVKqFQq3HfffdEcethkJCmxrigPjW02tFo6kRgngy5BzgKJiIgoyqJaJK1btw5PP/00Fi9ejIaGBmRkZODBBx/ET3/6U+cyjz/+ODo6OrB48WI0Nzdj6tSp2Llz55DokeSgUbEoIiIiGmgkgiAI0R5EfzKZTNBoNDAajVCr1dEeDhERUb9xnPP27NmDGTNmRHs4gx7f3UZEREQkgkUSERERkQgWSUREREQiWCQRERERiWCRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERHREBMTw9N7OPAoEhERDTHd3d3RHsKQwCKJiIiISASLJCIiIiIRLJKIiIiIRLBIIiIiIhIRG+0BDHZGsw2NbTaYLJ1QK2XQxcuhUcmjPSwiIiLqIxZJfXC2pQNPbD+EvdWNzmkzsnV4/u7xyEhSRnFkRERE1Fe83RYio9nmUSABwIfVjVi6/RCMZluURkZEREThwCIpRI1tNo8CyeHD6kY0trFIIiIiGsxYJIXIZOn0Ob/Vz3wiIiIa2FgkhUgdJ/M5P9HPfCIiIhrYWCSFSJcgx4xsnei8Gdk66BL4hBsREdFgxiIpRBqVHM/fPd6jUJqRrcPqu8ezDQAREdEgxxYAfZCRpMS6ojw0ttnQaulEYpwMugT2SSIiIhoKWCT1kUbFooiIiGgo4u02IiIiIhEskoiIiIhEsEgiIiIiEsFMEhER0RBz8uRJJCQkQKfTISsrK9rDGbQkgiAI0R5EfzKZTNBoNDAajVCr1dEeDhERUb9xnPMclEoVTpw4zkIpRLySNAAZzTY0ttlgsnRCrZRBF+/9CbpgliUiosvDdfcvRaxcgU/LV6CxsZFFUohYJA0wZ1s68MT2Q24vz52RrcPzd49HRpIy5GWJiOjyoU7LQqyC54G+YnC7j4xmG75saENVXTO+/KYNRrOtT9vqXfQAwIfVjVi6/ZDbtoNZloiIiILHK0l9EO4rOY1tNo+ix+HD6kY0ttmct9KCWZaIiIiCF9UrSVdddRUkEonHn4ceeggAIAgCysrKkJGRAaVSiZkzZ+Lo0aPRHLJTf1zJMVk6fc5vdZkfzLJEREQUvKheSdq3bx/sdrvz85EjRzBnzhzcc889AIAXXngBa9aswaZNmzBq1Cg8++yzmDNnDk6ePInExMRoDRuA55UclVyKkgI98jKTYO3qRr3JAgBBXc1Rx8l8zk90mR/Msv4w/E1EROQpqkXS8OHD3T4///zzGDlyJG644QYIgoC1a9di+fLluOuuuwAAmzdvRmpqKrZs2YIHH3wwGkN2cr2So5JL8VJRHjZW1mL97hrn9GBvvekS5JiRrcOHIrfRZmTroEuQh7SsLwx/ExERiRswwW2bzYbXX38dJSUlkEgkqK2txblz5zB37lznMgqFAjfccAM++uijKI60h+uVnJICPTZW1qKypsltmWBvvWlUcjx/93jMyNa5TZ+RrcPqu8e7Xd0JZllvGP4mIiLybsAEt99++220tLSguLgYAHDu3DkAQGpqqttyqampOH36tNftWK1WWK1W52eTyRT+wcL9Sk5eZpLbFSRXwYaoM5KUWFeUh8Y2G1otnUiMk0GXIH77K5hlxTD8TUQ0uEXqnHe5GjBF0muvvYZ58+YhIyPDbbpEInH7LAiCxzRXq1atwooVK/pljK4cV3KWbj8Ea1e3z2WDDVFrVIEXOsEs2xvD30REg1ukznmXqwFxu+306dN477338P3vf985LS0tDcClK0oODQ0NHleXXC1btgxGo9H558yZM/0zaFy6knO1Lt7ncsGEqCMpnOFvIiKKvEie8y5HA6JI2rhxI1JSUjB//nznNL1ej7S0NOzatcs5zWazYc+ePZg+fbrXbSkUCqjVarc//UmjkiNdE+eRDXIIJkQdaY5bhmIG8riJiKhHpM95l5uoF0nd3d3YuHEjFi5ciNjYS3f/JBIJlixZgpUrV2LHjh04cuQIiouLoVKpcN9990VxxJ7CEaKOhsE6biIiokiIeibpvffeQ11dHUpKSjzmPf744+jo6MDixYvR3NyMqVOnYufOnVHvkSSmryHqaBms4yYiIupvUS+S5s6dC0EQROdJJBKUlZWhrKwssoMKUV9C1NE0WMdNRETUn6J+u42IiIhoIGKRRERERCSCRRIRERGRiKhnkoiIiCi8Gk9/AXmcKtrDGPRYJBEREQ0xh99cCwCIi1NCpxPvh0f+8XYbERHREDNi6rcBAP/3f28iKysryqMZvFgkERERDTHDrsoBAKSnp0d5JIMbiyQiIiIiESySiIiIiESwSCIiIiISwafbwshotqGxzQaTpRNqpQy6eL7ug4iIaLBikRQmZ1s68MT2Q9hb3eicNiNbh+fvHo+MJGUUR0ZERESh4O22MDCabR4FEgB8WN2IpdsPwWi2RWlkREREFCoWSWHQ2GbzKJAcPqxuRGMbiyQiIqLBhkVSGJgsnT7nt/qZT0RERAMPM0l9ZDTboJRJsWHBRMTJpDhY14zyilqYbXbnMolxMq/rRirozVA5ERFRcFgk9YFYWDvfoMVLRXl4ZGsVzDY7ZmTroEvwLEYiGfRmqJyIiCh4vN0WIm9h7cqaJmysrEVJgR4zsnVYffd4jys2kQx6M1ROREQUGhZJIfIV1q6sacItuelYV5SHdJErNZEMejNUTkREFBoWSSHyF9a2dNq9Zn4iGfRmqJyIiCg0zCSFSO0ljO3gLawNABqlDKWzDcjLTIK1q9sj8O1r3UiOkygYfDiAiIYaFkkh0iXIMSNbhw9FbmV5C2s7yKUxqKprxvrdNc5pjsD3Hz6r87luJMdJFCg+HEBEQxFvt4VIo5Lj+bvHY0a2zm26t7C2g9Fsw7Idh1FZ0+Q2vbKmCZsqa1F229iw/us71HESBYoPBxANPMbzXwMAjh8/joMHDzr/1NXVRXlkg4tEEAQh2oPoTyaTCRqNBkajEWq1Ouzbd9xiaLV0IjFOBl2C71sMXza04cY1e7zO/+djN2BkSkLUx0kUqGj9ThORJ8c5r4cEgPspXqlU4cSJ48jKyor42AYj3m7rI40quGIjWkHqYMdJFCg+HEA08OTMK4Z25DgoNVrnNFP9V/i0fAUaGxtZJAWIRVKYBBpaHSxBaoZwKVCD5Xea6HKSNnYKUrInRHsYgx6LpDAIJrQ6GILUDOFSMAbD7zQRUSgY3O6jYEOrAz1IzRAuBWug/04TEYWKV5L6KJCO1r1PEhlJSqwryhuQQepQvg/RQP6dJiIKFYukPgo1tDpQg9QM4VKoBurvNBFRqFgk9ZEjtKqSS1FSoPfooq1Weg+tnjdZ0Nxug8nSBbUyFskqOVLVcZEauijXEK7Yd0rmSZCIiC4TLJL6SJcgx5ycFHx3ShY2Vta6ddEuMGhx76RM0fXqmto9mkoWGLRYeWcusrTx/T5ubxwh3P2nm/FSUZ7Hd2KAm4iILhcMbveRRiVH2W1jsbGy1qOLdkVNE57ccdgj7HzeZBHtuu1Y/rzJ0u/j9sYRwn36ljGi34kBbiIiulywSAoDS2e3RzHh4Ag7u2put3ldvqKmCc3t0S1AMpKUmDQiOajvRERENNSwSAqDYMPOJkuXn+35nh8JbVbfY2CAm4iIhjpmkvrA0ZVaEeu71uzdcVgd53nYXUPSEgDHzhoRr4hFklIWlSeG2EWZiIgudyySQuTalbp0tgH5Bq3o7SmxjsPJ8XIUGLSouLi8Si4VDUnnG7R4eHY2RgxTIT3CQWl2USYiossdb7eFoHdX6vKKWizK1yPfoHVbzlvH4VR1HFbemYuCi8uXFOhFQ9KVNU1Yt7saH3zxTcSD0uyiTERElzteSQpB767UZpsdj2ytQkmBHiX5emiUMiSr5D47Dmdp4/HL70xAc7sNdkFwu4LkqrKmCSX5+qh0umYXZSIiupxF/UrSv//9b9x///3QarVQqVSYMGECDhw44JwvCALKysqQkZEBpVKJmTNn4ujRo1EcsXhQ22yzY/3uGjyweT9iYyQYmZLgt5hIVcdhdLoatq5un8tZu7qjFpTWqOQYmZKACVnJAX0nIiKioSKqRVJzczPy8/Mhk8nwt7/9DceOHcMvf/lLJCUlOZd54YUXsGbNGqxfvx779u1DWloa5syZg9bW1qiNO1yhZqPZhi8b2tDVLaC8eDJKZxugkkud81VyKUpnG5A5TInObgFfftPW77fdHGP615lmnG5qR/X5VlTVNUdk30RERANJVG+3rV69GpmZmdi4caNz2lVXXeX8b0EQsHbtWixfvhx33XUXAGDz5s1ITU3Fli1b8OCDD0Z6yADCE2p2DX475Bu0eKkoD49srQKAiHe8dozpwMVu2y/846RbTordtomI6HIS1StJ77zzDiZNmoR77rkHKSkpyMvLw+9+9zvn/NraWpw7dw5z5851TlMoFLjhhhvw0UcfRWPIAPoeau4d/HaorGnCxsranmyTlzB3f3W8dh1TpPdNRETh1Xj6C/z7eJXbn29qTwAAjh8/jrq6uiiPcHCI6pWkU6dO4ZVXXsFjjz2GJ598Ep999hkeeeQRKBQKfO9738O5c+cAAKmpqW7rpaam4vTp06LbtFqtsFqtzs8mk6lfxt6XUHPv4LerypomPHlzDmIkEq9hbkfH63Dmg1zHlJeZFNF9ExFRaLyd8w6/udbLGhLcf//9UCpVOHHiOLKysvp/kINYVIuk7u5uTJo0CStXrgQA5OXl4ejRo3jllVfwve99z7mcRCJxW08QBI9pDqtWrcKKFSv6b9AuNKrQnvTy16G7s6sbgp9thDvI7Tomq58gObttExENDN7OeTnziqFOH+ExXaZKRKe5FZ+Wr0BjYyOLJD+iWiSlp6djzJgxbtNycnKwfft2AEBaWhoA4Ny5c0hPT3cu09DQ4HF1yWHZsmV47LHHnJ9NJhMyMzPDPXQnR9dtk6UTaqUMuvieoqn3NNdiKhzB73B3vHYdU7AdxImIKDq8nfPSxk5BSvYE0XUu1J2M0OgGv6gWSfn5+Th50v2H9cUXX2DEiJ7qV6/XIy0tDbt27UJeXh4AwGazYc+ePVi9erXoNhUKBRQKRf8O/KLe4WuVXIry4sl4eXcN9tZcup3WO/AcaPA7kh2vXcdUdaYlqA7iREQUHZE8512Oohrc/vGPf4xPPvkEK1euRE1NDbZs2YJXX30VDz30EICe22xLlizBypUrsWPHDhw5cgTFxcVQqVS47777ojl00fB1SYEe63ZXuxVIgGfgOZDgd6Q7XrvuL9gO4kRERENRVK8kTZ48GTt27MCyZcvws5/9DHq9HmvXrsWCBQucyzz++OPo6OjA4sWL0dzcjKlTp2Lnzp1ITEyM4sjFw9fBBJ4DCX5HuuO16/7arZ1YeUcubPZutFu72G2biIguO1F/Lcktt9yCW265xet8iUSCsrIylJWVRW5QARALXwcbeA4k+B1qODxUkd4fERHRQBX1ImmwEgtfBxt4NpptaGq3oatbQLcgwGztgkYl9wh6D3Vi4fdwf39v+4jEvomIaHBikRQisfB1MIHnsy0d+OmfjuDeKVkejRsvp87WYp3Hw/39xfYxJycFT98yBsvfPtKv+yYiosEr6i+4HazEgtXlFbV4eHY2Cv2ErR2h79Hp6su6s7W3zuPh/P7e9nFNuhrLdhzu130TEdHgxitJfeAtWL3eT9jaEfounn7VZd3Z2lfn8XB9f2/7YFdxIiLyh0VSH3kLOvs6wTpC35d7Z2t/ncfD8f297eNyP/ZEROQfi6QwMpptaGi1oqWjE/FyKeIVsUhSyjwKJkfo+3LvbB2OzuOh7uNyP/ZEROQfi6QwOdvSgSf+75BbI8l8gxYPz87GiGEqpLsEgR2h78u9s3Wgncf7Yx9VZ1pQYNCi4jI99kRE5B+D22FgNNs8CiQAqKxpwrrd1fjgi2/cgsCO0PfJetNl3dk6El3Fve3jZL0JK+/MjVhHcyIiGnx4JSkMGttsHgWSQ2VNE0ry9R5B4IwkJV6851o0tdtQdutY2LsFmG12aJSXV2frSHQV97WPSHY0JyKiwYVFUhj4CyBbu7pFg8Dsbt0jEsfBV8CePwMiIhLDIikM/AWQFbExokFg127PCYpYyKUxaOmwITFOhnhFLNosXQOmEzQ7UxMR0eWGRVIY+Aog5xu0aGi1YtKIZLfpYl2g8w1afL/gajS12/BaxcDpwh2JrthEREQDDYPbYfKz28d5dNp2PN02a9Rwt6su3rpAV9Y0od7YgfKKgdOFOxJdsYmIKLwaT3+Bfx+vEv3zTe0JAMDx48dRV1cX5ZEObLyS1EeOqywHTjfjBzOuxqM3ZsPeLSAhLhYJ8lgkqTz7JPnqNJ2qjhN9LB2ITifoSHTFJiKi8Dr85lo/S0hw//33Q6lU4cSJ48jKyorEsAYdFkl90Psqy9r3qrH2vWoAPbej1hXliRYQvoLeA60TdCS6YhMRUXjlzCuGOn2E1/kyVSI6za34tHwFGhsbWSR5wSKpD/xdZWlotYqGnXsHvVVyKUoK9MjLTMLwRIXPfUa6E3QkumITEVF4pY2dgpTsCT6XuVB3MjKDGcSYSeoDf1dZ6i6YceOaPbhzw0e48Zd78PDWKpxt6XAGvYGeAumlojxU1TXjgc37sfPYeY/mkg7R6ATtOtaBMB4iIqJIYZHUB/6usvTmCDsDcHaBLinQY2PlpaB2eUXtgOrCHYmu2ERERAMRb7f1gb9H/6vOtHhMd4SdR6YkYF1RHuqNFqzfXeOcb7bZ8cjWKpQU6FGSr4dGKUOySh7VTtCR6IpNREQ00PBKUh94u8pSmK3Donw9yitqRddzhJ01Kjk6Ou0e8802O9bvrsEDm/cjNkaCkSkJUS9INCo5RqYkYEJW8oAYDxERUX/jlaQ+6n2VRa2UQRYjQfU37XjxnmsRJ5PiYF2zs2AqKdAjTi7FgdMXEC+PhVImxeZFU7Dv9AWUV9TCbHMvmgINRnvriB1Kp2yj2YYWcyfabV1ot9mRpJQhJVHBwoiIiC4rLJLCwPX9X2dbOvDE/x1ye+FtvkGLl++bCAECyitq3W6v5Ru0WJSvx7GzRrxUlIdHtlY5C6VAg9FiHbHn5KTg6VvGYPnbR4LqlF3f0oHTF8xYt7varaFl4cUMEjtsExHR5YK328LI2TepRryT9saKWo9GkZU1TdhYWYsxGRpsrKxFSYEeQODBaG8dsa9JV2PZjsNBdco2mm344ItvPAokANjLDttERHSZYZEURv46ae/10km7sqYJeZlJqKxpwrxxafjnYzdgXVEe0gO4auNtn47tiXGEx8W2lZKoCHo9IiKioYi328KoL520HfPbrXaMzdD0eZ+hdO42WToHXMdvIiKiaGGRFEa++iYpYn1ftHPMV8cF9yNRx8ncOnZbu7oRJ5NClyCHSi71CII7iAXC1XEyXGj3faWIHbaJiOhywdttYeSrO3VDq9XrPEdPpQKDFsnxwT1BpkuQo7x4srNj9+I3DqJk0z784u8n8NrCSVDJpR7reAuE6xLkaGi1DqiO30RERNHCIimMfHWnnjVquOg8x9Ntx88asfLOXKSq44Le78u7azyD1jVN2PDBl3j6ljEeY/EWCNeo5Jg5ajgenp3tUSgVssM2ERFdZni7Lcz8dad2zGvpsEElj4UEgEQCrLxrfEgFUmObzeNpOoe91Y346S1j8M/Hbgi4U3Z6khIquRQr78hFu60LZpsdGvZJIiKiyxCLpH7g2jcpmHmh8PeS3XZrFyZkJQe1zXCPkYiIaDBikRRmRrMNDa1WtHR0Il4uRbwiFklKWUD9joLtjA34f8luqEHrYL9HqOMnIiIaqFgkhZG3btsPz87GiGEqr32PxDpm++uM7eDrJbuhBq2D/R59GT8REdFAxSIpTIxmm0dhAcAZqL5lfAZuHpfmcXXFW8dsR2fsdUV5Pq/IOMLiS7cfciuUAu3Y3dfv0dfxExFR+DWe/gKdXYLPZdoa6gAAx48f97mcTqdDVlZW2MY2mLBIChNfAerKmiaU5OvR2GbzKBh8del2dLj2V2T4C4v35/cIx/iJiCi8Dr+5NsAlJbj//vt9LqFUqnDixPHLslBikRQm/gLU1q5ur12ufQm0w3W4wtbBfo9wjZ+IiMInZ14x1Okj/C4nUyVCqRHvjQcApvqv8Gn5CjQ2NrJIouCdN1nQ3G6DPICO2r1D1EazDUqZFBsWTEScTIqDdc0or6h165Idjg7XwYSqvXXwdoyt9/for+A4ERGFLm3sFKRkT4j2MAY9Fkl9UNfUjmU7DqOypgmlsw0oNGhFX2Kbb9CiodWKSSMuPYovFnbON2jxUlEeHtlaBbPNHpYO18GGqh0dvNftrsb63TVuY3tt4SR83dzh9j36IzhOREQ0ELDjdojOmyzOAgkAyitqsahAj0KDZ0ft0lnZmGHQ+Q07V9Y0YWNlLUoK9CEHr135C1UbzeLvaRPr4F1Z04QN73+J/JFatzH56jLODt1ERDSY8UpSiJrbbW6FhNlmR+mWKvxgxtV49KZsCAKgkkthFwS8f7IBqeoM57K+ws6VNU14ev4Y/FeBvs8FRiihap8dvGsa0dHZ7TE9nMFxIiKigSKqV5LKysogkUjc/qSlpTnnC4KAsrIyZGRkQKlUYubMmTh69GgUR3yJydLlMc1ss2Pte9X4j998jK5uAacvmHHb+kr8alc1TB2Bh50tnfaIhLDDGSTXqOQYmZKACVnJGJmSwAKJiIgGvahfSRo7dizee+8952ep9NJb61944QWsWbMGmzZtwqhRo/Dss89izpw5OHnyJBITE6MxXCd1nOehcw08x8ZIcPXwePzkW6Pw8vtfRjTs7Ahqd3ULKC+eLBoI97afSI0tXJ252em7//DYEtHlLupFUmxsrNvVIwdBELB27VosX74cd911FwBg8+bNSE1NxZYtW/Dggw9GeqhukuPlKDBoUXHxlptKLsVLRXnYWFnrFnguzNZh06IpbgHmOFmM27quCgxaxMlCv8AXSCAc8B6q7s8gdrg7c7PTd//hsSUiGgDB7erqamRkZECv1+Pee+/FqVOnAAC1tbU4d+4c5s6d61xWoVDghhtuwEcffRSt4TqlquPw3J25KDD09JcoKdBjY2WtR+B5b3Uj1u2udn42mm145p2jKM7XI9/g3puiwKDFT741GmXvHPUaqvYlkEA44DtU3V9B7FBD5JHaHl3CY0tE1COqV5KmTp2K//3f/8WoUaNw/vx5PPvss5g+fTqOHj2Kc+fOAQBSU1Pd1klNTcXp06e9btNqtcJqtTo/m0ym/hk8AHu3gAlZyXhi3mgIAtyuILna6xKSbmyz4b3jDfjoyyaUFOhRkq+HtasbitgYVJ1pQXO7DbuON4TUqdpfIHz5zTm4c8IVfkPV/RHEDndnbnb67j88tkSDRyTPeZejqBZJ8+bNc/53bm4upk2bhpEjR2Lz5s24/vrrAQASicRtHUEQPKa5WrVqFVasWNE/A+7F2NGJ9btrMCZd7XdZR+DZEYw22+yiRdWGBRPdlg+Gv9C1rasbYzI0AW0rXB28HcLdmZudvvsPjy3R4BHJc97lKOqZJFfx8fHIzc1FdXU17rjjDgDAuXPnkJ6e7lymoaHB4+qSq2XLluGxxx5zfjaZTMjMzAzL+HoHWYep5FDJpVD46bYNXAo8B9LR2nX5YDhC1962r1YGts1AArvBhnp7B8I9xiiXwmgO/AoFO333Hx5bosGjP895NMCKJKvViuPHj6OwsBB6vR5paWnYtWsX8vLyAAA2mw179uzB6tWrvW5DoVBAoVCEfWzegqzlxZPxaW0ThicokG/QemSSgJ7wtiPw7K+j9WdfXQg5IK1LkGNOTgq+OyXLI0BeYNDi3kn+/48TSGA3lFCvayDcW8g9mGAwO333Hx5bosGjv8551COqwe3/+Z//wZ49e1BbW4tPP/0U//Ef/wGTyYSFCxdCIpFgyZIlWLlyJXbs2IEjR46guLgYKpUK9913X0TH6SvI+vL7NcjQKJGuUaJ0lsEjjF2YrcMLvQLPvjpaZ2iUIQekNSo5ym4bKxogr6hpwpM7DvsM3QYS2A011OsaCPcWcg8mGMxO3/2Hx5aIqEdUryR9/fXXKCoqQmNjI4YPH47rr78en3zyCUaM6Hlz8eOPP46Ojg4sXrwYzc3NmDp1Knbu3BnxHkm+gqx7qxvx01vGQBojgb1bwM9vH4eOTjvMNjs0cTKkqhVuJxV/Ha1/eusYpPfhEWtLZ7fo1SzAf+g2kMAugJBDvY5AeL3R4jXkHkwwmJ2++w+PLRFRlIukbdu2+ZwvkUhQVlaGsrKyyAzIC39B1nZrFyZkJftcJpht9UVfQreBrCv42b+/UK9GJcepxvY+baP39nji7h88tkR0uRtQmaSByleQVSWXIlklx5cNbTBZOpGgiIVcGoOWDhsS4jwDzf6C24lxMo9QdIIiFu3WLhg7/AepfXXZ7j3W3tsKZGz+BLIMg8FERDQYsEgKgLcgq0ouRXnxZDz19hG3W2j5Bi0W5etR9LtPMWlEslsY2V9wWyGVoHRrldstrQKDFsX5emfH7ECC1L27bHsbq+u2fI2tvHiyM7Db11Avg8FERDQYSARB8HcHZVAzmUzQaDQwGo1Qq/33M/LmbEsHlm4/5HZiX3VXLv56qF40Y5Rv0CIvKxnrd9dgRrYO64ryoFHJYTTbULqlSnSdwmwdbh2fjse3H/a5PQDObQLwKKrE1vE1Vrdt+Rjb+ovfQexYOEK9geapwrENIiJy5zjn5d6zBJorsvu8vbaGOny+ZTVef/115OTkOKfrdDpkZWX1efsDHa8kBUgsyNotCFj2lmdBA/Q8rVaS3/MaENcwss/gdnUjiqdf5Xd7rtt0rOdtHUeXbV9jdduWj7E5vkM4Qr0MBhMR9Z/Db64N49YkuP/++92mKJUqnDhxfMgXSiySgtA7yFpV1+xzeWtXt/O/e3fcDmQdf/MCCVI7umz7G2uwoexwhHoZDCYi6h8584qhTh8Rlm3JVIlQai61tzHVf4VPy1egsbGRRRJ55y/onDlMiQ0LJiJOJkWS6lLHbV98de/uPc814Oyvy3Y4wtIMVBMRDQ5pY6cgJXtCtIcx6LFI6gOlLAavLZyE9e/XiIawd59owK92VQMACg1aPHdnLnQJchRm60RvkRVm69BgsojuK9+gRdWZFudn14DzTTkpuNdPl+1Aw9IMVBMREfWIasftwcxotqHyyyZseN9L9+wPvoRrJH7vxY7XZpsdD4l05s43aFE6y4CxV2g85hVcfFquvKLW+XnlnbnOW1X/Pfcav122A+mizE7LREREl/BKUoga22wYFi/HXi/drcVC2BU1TWjp6ETJpn0oKdCjJF8Pa1c3FLExqDrTgkWb9mHDfRORl5XsnBcnk0IQBKRpFHjxnmudy9rs3c5x1BstAXXZDiQszUA1ERFRDxZJITJZOn2GrAHxELapoxNmm93raznMneLzNiyYiMVvHHR+vml0inMclk67x/Kugg1cM1BNRETEIilk6jgZLrT7fhGrWAjbEaQOZh2x6Y4QdSDjiFfEeu2y7Uvvzt+BrkdERDQUsEgKkS5Bjs++uoB8g1b0Vldhr6A10JMl0ihlXoPbBSLrAL5D237Hka3D/tPNbj2SenfsFiPWxTuQ9YiIiIYKBrdDpFHJMXPUcDw8O9sjaF2YrUPp7Gxn0Bq4FLaOl0u9BrfLbhuHE/Umt+m9Q9u9Q9R+xzHLgJ+/e8xt+ofVjVi6/RCMZvErUEazzaNACmQ9IiKioYRXkvrozAUznvj2aACA2WZHnEyKlAQ5YqUxeOtH02GydEEdF4vkeDlS1XH4sqHNa3D73lc/xv+WTMFPvnUNOmx2JMbJkBDX83LbLd+f6jVEnZ6khEouxco7ctFu64LZZodGKYM8Ngbzfr3X7SW3Dq6B7t4a22xeu3j7Wo+IiGgoYZEUIqPZhsdFrrYAl96FNjrd811xJovv4PZXTWZs+6zO+a63QImFravqmkULJIdWL92//XUF97YeERHRUMIiKUSNbTYcON2MH8/Jxqxrep40M9vsUMTGwNjRiXqTBV80tCFeLkW8IhZJShk0Krmz87UuQY7Vd49HilqBNosdiXGxOG+yQB4Tg/2nm9Fi7uxzaDrULtv+1ouTS529l4Y6hteJiC5fLJJC1GbtxMv3TUScLAar/34ClTVNUMmlWH9fHjZW1Lr1T8o3aPHw7GyMGKaCLkGOW3LT8PCNo/Czd4+6ha0LDFr87PZx+M2C6/DU24fdthFKaDrQLtvBrJdv0OLdQ/U4dKZlyIe4GV4nIrq8MbgdIo1ShnpjB9a7dNwuKegJWPduMFlZ04R1u6vxwRffAACWzsvxKJCAnmaTP/3TEchlEo9thBKaDrWDtrf18l1C5EM9xM3wOhER8UpSiCxd3UhVx7kVOnmZSV6zRpU1TSjJ16OxzQabvdtrh+yKmiY8MW+06LxQQtOhdtB2rFdvtOBUY7szXP7I1ipnzmkoh7gZXiciIhZJITJ1dHl01A6kA3drAJ262yzBh619CbWDtkYlx6nGdrdO3+EYz2DA8DoREbFICpE6Lhatlk5kJivx8oKJiJXGQOgWfK6jiI1BYpwMcd3dKJ1tQF5mkvP9bAfrmlFeUQuzzY6EOKnXbXgLW4sJR+jYW4hbJZeipECPOJkUVXXNQy7UHGronYiIhg4WSSFKjpfj5DkT/t8DU7D87SOorGlC6WyD187X+QYtGkwW5KQlIrZbgqq6Zrdbc/kGLV4qysPWT0+j3Sp+JclX2Lq3cIWOxULcKrkULxXlYWNlrdt3GEqh5lBD70RENHSwSApRqjoOE7OSsXTHYWdRVF5Ri5eK8gDArVDKN2hROisblk47vm7pwEv/rPYopCprmiAB8Nydufim1eJxgvYXtnblL3QcTA8mR4h76fZDzvGUFOixsbLW4zuEsv2BSux7A8H9HIiIoqXx9Bfo7PJ9dyNUbQ11/bLdgYhFUh+02exuhYLZZscjW6uc3bTVcTIoZD0PEL5/sgG/3XMKf3jwelT4CG23WrrwvfJ9+NsjhejqFoIKWzuEO3TcO/wdJ5N6DagPpVBzqKF3IqJoO/zm2v7dgUQCq9Xav/sYAFgk9YGpwzO869pN+w8/uB63ra90m+8rlA0ArZae14o0m22YkJUc2rj6IXTsGv6uqmsO+/YHqlBD70RE0ZQzrxjq9BH9su32xnoceedVKBSKftn+QMIiqQ+GJyrw2sJJouFrAEhUeoZ7fYWyASAxLvbi//oOBvsKZfd36Jih5uhhB3AiCkTa2ClIyZ7QL9u+UHcSR955tV+2PdCwSArR2ZYOPPOno9hbc+m2liN8/cjWKlyXlYxuu+f94HarHQUGregttwKDForYGMzJSfEZDPYXyu7v0DFDzdHBDuBERJHFjtshcAaja9yLhMqaJmysrMVT83Pw0GwDvmxsdZs/I1sH/TAVnrszFwUGrdu8fIMWxfl6PP+34yi7bazXqwOBdIIOtdN2oPp7++SJHcCJiCKPV5JC4CsYXVnThB/fNArfK/8Mf3ooH/987AaP0O+pb9owISsZi/L1sHZ1e3SzfvJm780mAw1l93fomKHmyGIHcCKiyGORFAJ/weiGVivMNjvarV2i4WtjR6fXp8MA38HnYELZ/R06Zqg5ctgBnIgo8lgkhcARXHZ0nXZ0zo6Xx6Kru+edbhsWTIRCJsXZlg6PvIhGKcOP52Rj1jUpAHqeiJNJY7C3+hu8+uEpn8Fnf6FphUyKfV9dQJJShpREBYuYISLUsDyD3kREoQu5SLLZbKitrcXIkSMRG3t51Vq6BDnm5KTgu1OynF2nXbtQu/ZOKjBo8dyduRihjXdOU0hjMOWqYVj99xNuyxYadNhYPNln8NlXaLrAoMVfDtc7r1IVXswIMdQ7+IUSlmfQm4iob4IObpvNZjzwwANQqVQYO3Ys6up6Om8+8sgjeP7558M+wIFIo5LjmVvHuhVE3rpQV9Q0YfmOwzjb0gGg51/2H1Y3Yv37NR7L7q3pmW7x8QJcb6HpgovB7/KK2kvbY6h3yAg2LM+gNxFR3wV9CWjZsmX417/+hQ8++ADf/va3ndNvuukmPPPMM1i6dGlYBzhQtdm63IqcvMwkrzmjipomGDs6kZGkRGObDSlqhej73YCewqa53YZUdZzXfbuGppvNNihkMfjH0fPO4LcrhnqHjmDC8gx6ExH1XdBF0ttvv40//OEPuP766yGRSJzTx4wZgy+//DKsgxvITB1dbp+tPq7+AJeCtSZLp99lTZYun/OBS6HpqrpmnLnQEXIQnAaXQMPyDHoTEfVd0EXSN998g5SUFI/p7e3tbkXTUKeOcz90iljfdy4T42TY99UFJChi/S7be9v+umtfaPd962Sod8BmONkTu6ITEfVd0JmkyZMn4y9/+Yvzs6Mw+t3vfodp06aFb2QDXHK8HIWGS/mQqjMtyO/VINKhwKBFbIwEC8s/w18O16PBZPG6bKFBi+T4Syf4sy0dKN1ahRvX7MGdGz7Cjb/cg4e3VjkzTroEORparV63N9Q7YPs7PpcrR9BbzFD/nSAiCpegi6RVq1Zh+fLl+NGPfoSuri78+te/xpw5c7Bp0yY899xz/THGASkuNgYPzTI4i5Pyilr85FujvXbSXvW34ygp6AlWp2mUKHVZ16HQoMNzd+Y680iBdteeOWo4Hp6d7bm9Id4Bm+Fk79gVnYio74K+3TZ9+nRUVlbixRdfxMiRI7Fz505MnDgRH3/8MXJzc/tjjANSY5sNJZv3oaRAj5KLnbNlUvjspL1g6giYbXY8tOUgHrzhaqy4bSysXd0wW+1IVMYiWSV3C2wHGr5NT1JCJZdi5R25aLd1wWyzQ3MZ9EliONk3dkUnIuqbkBoc5ebmYvPmzWEdyKpVq/Dkk0/i0Ucfxdq1awEAgiBgxYoVePXVV9Hc3IypU6fi5ZdfxtixY8O671AYO2ww2+xugekNCyb6DFA7Attmmx2/2lWN7JREZGjiMFk/THT5gdRdeyBiONm/y/H3gogoXIIukkwmk+h0iUQChUIBuTz4v5D37duHV199FePHj3eb/sILL2DNmjXYtGkTRo0ahWeffRZz5szByZMnkZiYGPR++so1IKyUex46f4Hs3vNVMimSVDKcOGdCq6ULiYpYxEiAWGkMtPFyaJQylM42ODt6x8mkOFjXjPKKWpht9ss+fBuOcDJD30RE5E3QRVJSUpLPp9iuvPJKFBcX45lnnkFMjP/IU1tbGxYsWIDf/e53ePbZZ53TBUHA2rVrsXz5ctx1110AgM2bNyM1NRVbtmzBgw8+GOzQ+6R39+I/PZSPQoMOe2su3e5xhLfFeiDlG7SoOtPi/Dx79HCkqBV4+u0j2OuyfL5Bi0X5eqzZeRI/+fZoVNU1u12dyjdo8VJRHv7wWd1lH77VJchRmK0TveVWGEA4mR2piYjIl6CLpE2bNmH58uUoLi7GlClTIAgC9u3bh82bN+Opp57CN998gxdffBEKhQJPPvmk3+099NBDmD9/Pm666Sa3Iqm2thbnzp3D3LlzndMUCgVuuOEGfPTRRxEtksQCwtIYYPGskeiG4CyKyitq8drCSYiBxK14KjBo8ZNvjUbR7z4B0FPo/ORbo7HyL8fcCiQAlzp45+uxfMdhj4KrsqYJEoDh24semmVAtyC4Had8gxYPzTL4XM9f6HtdUR6PLxENWo2nv0Bnl9Av225r6HnTxvHjx0Xn63Q6ZGVl9cu+Iy3oImnz5s345S9/ie985zvOabfddhtyc3Px29/+Fv/85z+RlZWF5557zm+RtG3bNhw4cAD79+/3mHfu3DkAQGpqqtv01NRUnD592us2rVYrrFar87O324PBEAsIWzq78cDm/W7BbUVsDD776gKuuyoZj8+7Bu1WO9qtXag60wJ5rATlxZORqIiFSi6Fzd7tUSA5VNY0Yem80ajwMr+ipgmWTt8NKS8HjW02lGza5/EzqDrTgpJN+/Dn0gKvhQ5D30Q0FHg75x1+c20/71mC+++/X3SOUqnCiRPHh0ShFHSR9PHHH+M3v/mNx/S8vDx8/PHHAICCggLnO928OXPmDB599FHs3LkTcXHeX8HR+9aeIAg+b/etWrUKK1as8LnvYIkFhL9ps3oEt12NSu3JTC1+4yAAYEy6GovfOIgNCyYiQxMHm913hd9msfucz1Byz8/F18/A1zFi6JuIhgJv57ycecVQp4/ot/3KVIlQajz785nqv8Kn5SvQ2Nh4eRZJV155JV577TWPl9m+9tpryMzMBAA0NTUhOTnZ53YOHDiAhoYGXHfddc5pdrsdH374IdavX4+TJ08C6LmilJ6e7lymoaHB4+qSq2XLluGxxx5zfjaZTM5xhUodJ4NKLkVJgd4Zos5MVqF0tsEZogZ6MjKr7x6PFLUCZqsdaqUMry2chCe2H3KGtlUyKZLj5ejotGPbf12PxDgpFLJYWDrtaLN2IV4uBSBBrNR393JfoeRwhZEd22mzdiJJJYetqxtt1q6wBZz7Os6+BLfZkZqIhgJv57y0sVOQkj0hegMbIoIukl588UXcc889+Nvf/obJkydDIpFg3759OH78OLZv3w6g52m17373uz63c+ONN+Lw4cNu0xYtWoTRo0fjiSeewNVXX420tDTs2rULeXl5AACbzYY9e/Zg9erVXrerUCigUCiC/Vo+6RLkKC+ejHW7q92uWhRcDFE/srUKKrkUb3z/evzs3aNu+ZgCgxbbfnA9dh475wxrP7XjCPbWNEIll+KlojxsrDzhkalZfnMObhqdgvdONHiMx1fH5HCFkR3bOXC6GS8V5eGFf5x0G2NfA87hGKejq/SHIrfN/HWV7su6REQDRX+c8+gSiSAIQSe7Tp8+jVdeeQVffPEFBEHA6NGj8eCDD6KlpQUTJkwIeTAzZ87EhAkTnH2SVq9ejVWrVmHjxo3Izs7GypUr8cEHHwTVAsBkMkGj0cBoNEKtVoc0LqPZhtItVW5hbIcCgxYTspKRl5mE8spa0SfbCgxaPHJjNhLjZFj5l+PO7ZTONqCqrtnr03BP3TwGK/923KOQWH33eKSLFBJGsw2lW6tEszYzsnUBh5Fdt+NrjMFssz/GCfQUW0u3H3Irdnwdo3CtS0Q0EDnOebP+Z0NUriRdqDuJXc8twoEDBzBx4sSI7z/cQmomOWLECOfttpaWFrzxxhu4++678fnnn8Nu952lCcbjjz+Ojo4OLF682NlMcufOnRHvkdTYZhMtkICeEPWym3MQI5GIFhKOZZbPH4PYGPen3vIyk7zmaSprmlBvsuBnt41Ft4CAOiaHK4zsuh1fYww14BzO0HRfukqzIzUREfkSUpEEALt370Z5eTneeustjBgxAnfffTd+//vf92kwH3zwgdtniUSCsrIylJWV9Wm7feUv5Hu6yYxkPyfWVksXZL1yRo4O3N5YOu34ps2GKV46cgc7zkDDyK7b8TfGUALO4Q5N96WrNDtSExGRN0EVSV9//TU2bdqE8vJytLe34zvf+Q46Ozuxfft2jBkzpr/GGHViwW3X7teK2BgkxEn9bCMWMql7c81AOnSr4wL/EYUaRu4doE5QXNqnvzHGyaSoqmsOKng9kELTQ73j9lD/fkRE/SngM/DNN9+MiooK3HLLLVi3bh2+/e1vQyqVirYDGGq8BbfzDVq8tnASPvvqAsZBgwKDVrS3UYFBi+R4OeJiY9zCwv46dDeYrBh3hSaocQYbRhYLUK+6K9fZydrXGAsMWrx7uN55TAINXg+U0PRQ77g91L8fEVF/8//ekIt27tyJ73//+1ixYgXmz58PqdT3lZOh5uXdNaLdrzd88CXS1XF4YvshPH3LWBQY3PtGFBi0KLttHOJiY6BRyfH83eNRmK0D0NOhe1G+3mOdfIMWpbOyMTIlHnF+ruS4cmx/xsXtOzjCyL2vIHjrOv3zd49h2bzRKDBonWPMF/lexfl6lFfUOqc5ulUbzbawjrM/+Ou47e87DHRD/fsREUVCwFeS9u7di/LyckyaNAmjR4/Gf/7nf/p9zH+o8BXc3lvdiEdvzMbqu8fjTLMZz9w2Fraubpg6uqBRyVDf0oF7X/0Yf/jBNGhUcmQkKbG+KA8NrVYYOzoRr5Ci7LZxsHT2dOdWynuKz/dPNuC3e0757BotJpgwsrcAtdlmR4PJiglZyViUr0dXt4Anvj0atq5ufNNmxZXJSvzj6Hk8srXK2SPKIdDgdbRD00O94/ZQ/35ERJEQcJE0bdo0TJs2Db/+9a+xbds2lJeX47HHHkN3dzd27dqFzMzMiD91Fin+gsYNrVZnZ21XGxZMdE53DSO7hoWr6pox79cVXrcdSjA60DCyr+9l7vTeyXrDgole5wGBjzmaoemh3nF7qH8/IqJICPrpNpVKhZKSEpSUlODkyZPO7ttLly7FnDlz8M477/THOKPKX9A4TiZF6WyDR6hbJbt0S7J3GNkRqO3qFrD9R9Mhk0pQb7RAJo1xBsLNNntQIebzJgua220wWbqgVsYiWSVHqtr7K198fS9fgW1/Ye7B0K16IIXH+8NQ/35ERJEQcgsAALjmmmvwwgsvYNWqVfjzn/+M8vLycI1rQPEVNC4waKFLkKOqrtmjG/dNOalQyaWYNCLZLYwsFqjNN2ixKF+P0i0HkZeVhJeK8vCHz+oCDjHXNbVj2Y7DHt2+V96ZiyxtfNDfq6HVGtK8wdKteqCEx/vLUP9+RESREHgq2AepVIo77rhjSF5FArwHjQuzdfj57eOw9r0vPELdFTVN+MU/TuDpW8a4hZG9BWora5qwsbIWJQV6VNY0YVNlLcpuGxvQ7ajzJotHgeQYw5M7DuO8yRLU95qRrcOsUcNDmhep4HVfDYTweH8a6t+PiCgS+nQl6XIiFjSOlUrQ3G7D7hPfiK5TWdOEslvHur3iwlegtrKmCSX5egA9BY6l03cjR4fmdpvPbt/N7Tavt938BahDnTcYRDs83t+G+vcjIupvLJJCIACABLDZuwGJBK8tnOSWRdr2WR3unZKFiVnJaDF34sQ5E2IkEsTGSGCy2ETzS44MkiI2Biq5FGab3Rmu9dcQ0GTp8jlef/N7fy8Hf/vtz+B1sPmqUJsmDvWO20P9+xFFGxu2Dm0skgLUO0ekkkuxsXgy1u+uxl6Xqzj5Bi3e+P71WP334x6NJx8o0GPEMJVHfinfoMVLRXl4ZGsVdAkK/GbBdfjhGwegVsoCagjoryu3r/li25+Tk4KnbxmD5W8fiUojwmDzVWyaSETRwL97hj6JIAhCtAfRnxxvRDYajVCr1SFtQ+yt9aWzDfi8rtlrh+0JWckej8kXGrS4OTcdy3Yc8Vgn36DF/Nx0SADoh8ejttGM2aNT8D9v/kv09tyMbB3WFeVBo5LjvMmC//7j517H8svvTBC9CiP2vRzfraquWfQWnut++8N5kwWP/fFzrx2+e38Xb98hEmMlosvXQP27x3HOy71nCTRXZEd8/20Ndfh8y2q8/vrryMnJCcs2dTodsrKywrKtYPFKUgDEckR5mUleewVV1DRh0cVskau9NU0oFpkO9OSRls4bje/+9hP84cHrMTErCW2WroAaAqaq47Dyzlw8ueOwW6HkuPri7TaVt3yUr+/W340Ig81XsWkiEUXDQP+75/Cba6O2b0CC+++/P2xbUypVOHHieFQKJRZJARBrzGft8h2q9jbf13pfN3fAbLOjzWKHUiZAgN3rsoB7Q8AsbTx++Z0Jl3I8cbFIjved4/HWcNDfd+vPRoTB5qvYNJGIomGg/92TM68Y6vQRUdm3TJUIpUbrf8EAmOq/wqflK9DY2MgiaaASa8znaKiokktRUqDHxKxkxMZIMCxejk57NxSxMSidbXAGsnuvp0uQY/Xd45GiVqDNYkdiXCwUshjoEuRIiJNCJfP/o3FtCGg022Dq6ESrtQsJCimUcqnf9755azjor1lknFzqfPdXuAOLwear2DSRiKJBHSdz/v0v9iBOtP/uSRs7BSnZE6I6hqGARVIAxBrznThnwk05Kbh3ShY2VtZ6BLEX5etx7KzRGcg22+woNGhx3mSBLkGON75/PX727lGPcPK2H1yPFrMNWckqAAioIeDZlg488X+H3N4vl2/Q4uHZ2RgxTOXWgsDf9wKAqjMtKDBoRTNO+QYt/n7kHK6/WouXd9e47TMcgcXkeLnXfRcYtEiOdy/CdAlyFGbrRC97F7JpIhH1E12CHOXFk7Fud7XH3//lxZP5d88QEZZmkkOdWGO+sekaPDkvBxsraz0yNI7GkGMyNM4GkfkGLRYV6DFyeDzW3zfRo0ACejI3Ze8cRbpG6Xx0219DQKPZ5lEgOcawbnc1PvjiG69vfPe2/ZP1Jqy8M9djuqP4k0iAdburPfYZjjfMO/JVBQb3S7W+8lUPzTIgv9fy+QYtHpplCHkcRES+WLq68fLuatG//1/eXQOLn9gCDQ68khSg3o354uRSWLu6vYaMHY0h1++uwVPzx+DG0SkwmjvxSe0FzMlJ9RlObnXJ3fhrCNjYZvMoVnqPwVeA0Nf21xXlod5owanGdihiY1B1pgWPbK3CuqI8/GpXtej2whFYDCZf1dhmQ8mmfSgp0KMkXw9rV7dzrCWb9uHPpQUMbhNR2DW329zav7jaW9Pos4kvDR4skoLg2pivpqENp5vbfS7vCEDXNrZj8RsHndOnXOU70NY7nOyrIaC/8KC1q9tvgNDb9jUqOU71Grtjm76EI7CYqo4L6C8Yk6UTZpvd69N40Q5PEtHQFK4mvjSwsUgKgdFsw4p3jnh9nN/BEYDOGqbCT741CmPTNdAmyhEb4/suZ2JcLL78pi2gILS/4LIiNqZPAUJfoXVvIhlYZHCbiKKhL018afBgJikEPbe4mlB1psUjC+OQb9A6A9DxcimOnTVBIYvBd3/7Cc62dHhkbhwKDFrUGztw4y/34OGtVTjb0uFzLI7wtbcxNLRa+xQgFNu+r+8d6TfM+/r+fNs9EfUXx0MmYsQeMqHBiUVSCBy3uMorarEoX+9RMBS6PN1WnK/Hs385hrsmXon179egpECPJ7YfwtO3jBUNJ5fdNg4nzpkABBaEdoSvC0VC1g/PzsasUcP7lMkRC3eXV9Ti4dnZHvuMxhvm+bZ7IoqGUB4yocGH1wND4LjFY7bZ8cjWKo/QcJZWhX9f6MCYDI3z8f8lc0a5hbkX/P4TrL57PJ6YNxpmqx0qhRQNJivuffVjrL57vHNfgQShM5KUWF+Uh4ZWK4wdnVDJpYiXxyJJJQtLkeAt3L1+gLxhnm+7J6JoCKWJLw0uLJJC4Nqbp3doON+gRZ7Ie9vaLD0NJR2h58Y2Gx7YvB8AsGHBRHz31Uvh6N7B6EDCx/39tndf4e6BgG+7J6JoCPQhExqcWCSFQKOS47k7xuHr5g60WruQoVHC2mWHsaMTqeo4vHf8PFRyqVun7YQ4KQDgymQlNhZPRrcgQCqRwNxph14Xjx2Lp8PU0YV9py9AJZO67S/Q8LHRbAt7B2xf+zF22KBSxCJGIkFsjATaftofERFRNLBICsHZlg4s33EEB+qa8VJRHp7/+3G3vkf5Bq1bp+0CgxYNJivyDVrsPHYe63fXoMCgRXG+Hv/z5r9gttmdjRqPnzXippxUZ5EVaPj4bEsHnth+yK3zdDg6YAeyH8fYV/31OFbcPi6s+yMiIooWBreDZDTbeoqEmkaUFOh9dtwuKdCj0KDFT28di/87cAaL8vUor6gF0NM00rGM6zo5GRr84h8nUFKgDzh87BxTdfg7YAeyH8fYr0lXh3V/RERE0cQiKUiNbTZnkZCXmeSz4/a3xqZixe3jcN5owciUROeVJddl8jKTPD5X1jThltx0rCvK8/reNW9j6s0R/A4HX/txjD2c+yMiIoom3m4LkmuHa3+dp89c6ECySo7/LP/M6zK9t+H43G7rCjjf46/rdri6TgfS3Tuc+yMiIoomFklBcu3wrJJJUTrbgLzMJFi7uhEnk+JgXTPKK2phttmhiI2BOi4W5cWT3aa7ujJZic2LpqCruxsSiQQqmRTlxZOhlElhNAf2DrTeXadVcilKCvRu4zpvsvh9AsNfIDuQ7t4Au1wTEdHQwCIpSI4Oz/tPNyMpXo6qumaPFgAvFeVh26d1aGqzoupMC9bvrvEIczuWff9kA8ZmaDyyTYUGLX5+R25ARZJjTB9WN0Ill+KlojxsrKx1G5ejwVmWNl50G4EEsl3305ujwzi7XBMR0VAhEQRBiPYg+pPJZIJGo4HRaIRarQ7LNs+2dGDPF9/g3UNnRTNJBQYtlt88BnahG9/57SduRZGjh5KjADnybyP2fXVBdDuF2TqsL8oLqFA629KBpdsPYXxmEqrqmr2O65ffmeBxRclotqF0a5Vo3sgx5kNnWrCuKA/tNjuWbj/kVig5vssfPqvDz24fF1COioiIws9xzsu9Zwk0V2RHezh91tZQh8+3rMbrr7+OnJwc0WV0Oh2ysrL6Zf8skkJUfb4Vc371odf55cWTAQAlm/a5Tf/LwwU4Z7Kg6kwLyitqsa4oz9lUUsw/H7sBI1MSAhqT0WzDWaMF83691+syf3+0EKPT3Y/Dlw1tuHHNHq/rvLZwEh7YvN85lku35Xq6e0tjJJCyTxIRUdQ5znlDiwSA91JFqVThxInj/VIo8XZbiNqsXT7nWzrtotNNli63oshf+DuYELRGJcfJ820+lzFZPMcdbCCb3a2JiAa2nHnFUKePiPYwwkKmSoRSI/4yYVP9V/i0fAUaGxtZJA0k/kLMcTIphicqUDrb4BbY1ih71tMlyLH67vFIT1Ji639dj8S4WJw3WfDE9kNobLM5w9dxMimq6pp9dtA2mm1oaLWipaMTiXGxHvt0H7fnjzzagexIdQoPxUAeGxGRN2ljpyAle0K0hzHosUgKkev723orNOiQoYnDP0+cR9XFrtyPbK1CXlYS6o0dmDcuFUtuugY/e/eoW3aowKDFG9+/Ht/fvA/P3DbWI3wt1kH7bEsHnvi/nuaWrtvpHRJ3jCs53vMEH81AdqQ6hYdiII+NiIj6H5tJhsja1Y2HZo5EvsH9EmC+QYvFsww4/G8jxqSrnd2on5qfg0X5ejyx/RAem+tZIAE9Xbh//u5RvLxgomgn794dtI1mm0eB5NjOJpdu3o5xPTTbgLhYzx+5RiXH83ePx4xsncd3WZSvx8l6U0Cdv4MVqU7hoRjIYyMiosjglaQQXWi3oWTzfvxgxtX48U2j0NUtQCWXQgIJdp88j2uvSII2saeoqKxpwo9vGoXvlX8Gs80OS2e3107dFTVNWC6N8Trf0dFao5L3dMCuEe+AXVHThCfmjcaYdDUUsTGoOtOCkk378OfSAtFiJyNJiXVFeaKB7BfvubZfbjEF0ik8Wre2BvLYiIgoMlgkhcgRgB53hQa/eu8LjxfcfntsGlrMlwLRDa1W562vNpHwtNu2OwLroO0vcH3mQgcWv3FQdF0xkQ5kR6pTeCgG8tiIiCgyonq77ZVXXsH48eOhVquhVqsxbdo0/O1vf3POFwQBZWVlyMjIgFKpxMyZM3H06NEojvgStTLW5wtun333uDO4rZJLnd25NxVPRpLKs0N26WwDXls4CRsWTIRaKXOuJ8YRoA40cC22bl8YzTZ82dCGqrpmfPlNG4xmm+g0f+sqL35vf98zGvwdW3YVJyIa+qJ6JenKK6/E888/D4PBAADYvHkzbr/9dlRVVWHs2LF44YUXsGbNGmzatAmjRo3Cs88+izlz5uDkyZNITEyM5tARFxuD6Vdr3YLVrvbWNOJCuw1Vdc3YWDwZKrkUx84aMeFis8d8gxaVNU0+O2SLha9dA9SBBK5dFYYhfN07zKyS97xG5eXdNW63/ryGzHvlfAL5ntHg69hGe2xERBQZUb2SdOutt+Lmm2/GqFGjMGrUKDz33HNISEjAJ598AkEQsHbtWixfvhx33XUXxo0bh82bN8NsNmPLli3RHDYAwGbvhjRG4nOZb9qsqKxpwvr3a3Dk30aMufj6kWf/chyL8vXIN2i9Xo0SC1/PyNa5BagdgevCXoHrQoMOpbOyUV5R65yWb9DioVmGPn1nsTBzSYEe63ZXe2SjREPmIkHoQL5nNHgLsw+EsRERUWQMmEyS3W7Hm2++ifb2dkybNg21tbU4d+4c5s6d61xGoVDghhtuwEcffYQHH3xQdDtWqxVWq9X52WQy9c94u4F2kT5EruTSnhp0b3UjiqdfhRR1nPNq0SNbq1BSoMe3xqZ6vRpVUdOEp+aPwU2jU5AYJ4MuwTMzlJGkxPqiPDS0WmHs6IRSLoXQDTS2WbH+vomwdNoDCm4HQizMnJeZ5HX8HiFzL0HoQL5nNLiG2VstnQNqbEREQOTOeZerqBdJhw8fxrRp02CxWJCQkIAdO3ZgzJgx+OijjwAAqampbsunpqbi9OnTXre3atUqrFixol/HDPSErw+63DbrrdCgc7vd1buzttlmx/rdNRiT7vtVKZZOOyZkJftcxjVwXVXXjDs3fOR12b4EjsXCzIF2DPcXhA7ke0YDu4sT0UAWqXPe5SrqfZKuueYafP755/jkk0/wox/9CAsXLsSxY8ec8yUS91tagiB4THO1bNkyGI1G558zZ870y7gT4mJRXlHrvG3mKt+gxdO3jnG73aWIjRENUotNcxVsQNhf4FitlAUcsg5k24GOn0Ho8Aj1Z0dEQ1OkznmXq6hfSZLL5c7g9qRJk7Bv3z78+te/xhNPPAEAOHfuHNLT053LNzQ0eFxdcqVQKKBQKPp30ACSlDJcNyLZedusJF8Pa1c3FLExOG+y4G9H6p1B5EKDFg2tVvy7pcPjylPVmRavV6NCCQj7ChzPyUmBXBqD0q1VIXWRFtt2oONnELrv2AGciHqL1DnvchX1K0m9CYIAq9UKvV6PtLQ07Nq1yznPZrNhz549mD59ehRHeMnDsw24bkQy1u+uwQOb92PxGwexsbIWKeo4/HbPKQA9BdKzd+biap0Kx84aPa48lVfUonSWAYUG94BwgUGLlXfmBn2rx1fguOy2sVi243DIXaTFtl1eUYuHZ2d7hMe9hcwZhA4NO4ATEUVeVK8kPfnkk5g3bx4yMzPR2tqKbdu24YMPPsDf//53SCQSLFmyBCtXrkR2djays7OxcuVKqFQq3HfffdEcNgCgpaMTxRv34Y8PTkPxdAusXd2Ik0khCAKkEgl++Z1rMTxBgWHxcpw3WWC2dWPB1BGQx8Tgf+Zeg6XzJOiw2dFq6cJnX13AdVclozj/KufVqKozLbDZfed9vPEWOA5HF2lv214fQMCZQejQsQM4EVHkRbVIOn/+PP7zP/8T9fX10Gg0GD9+PP7+979jzpw5AIDHH38cHR0dWLx4MZqbmzF16lTs3Lkz6j2SgJ6u2GabHXUXzB5drR29j8Q6cS/K1+PB338Ks82ODQsmeqzr6qbRKSGPTyxwfKqx3ec6gYa6vYWZAzlJMwgdGnYAJyKKvKgWSa+99prP+RKJBGVlZSgrK4vMgIKgVvYEjR2dtCdlJUOjkiFWGoN2SxcEAHlZyaiqa3FmkyprmqCIjcG6ojwAQLw8FuXFk3GwrtkZ8i4p0CMvM8l5ZeqL862IjZFAG+9eXBjNNjS22WCydEKtlEEXwPxQw9P+9kX9j8F3IqLIi3pwe7BKkEtx4+jhSIqXOztpv7jzpMeVI9du0iq5FPdNHYFNlbXY22u59fflQQIJfl9xyq3vkOPq06q/HseK28chI0npN8Drbf6qu3KDDk8zLDwwMPhORBR5EkEQhGgPoj+ZTCZoNBoYjUao1b57EgXj6L+boY6TY9mOw5iQlYyqumbRJ7zyDVrkZfWEu0tnG7wuV2jQYl5uOp7cccTrNg6dacEv7rkW//Pmv0TzKTOydT7nz8lJwTO3jsWTOw67nWwd4en0XkWP0WzzeBLOdZ11RXm8ohRBZ1s6sHT7oYB+dkR0eXKc83LvWQLNFdnRHk6/a2uow+dbVuPdd9/F/Pnzw759XkkKUZxMhjabHRU1TViUr/fadbqypgkl+T2v3PDVnXpvTROK8/Wi8xzbWL+7Bs3tvgO8vubvOt6AZTfnBByeZlh4YGHwnYgCdfjNtdEeQgRJcPfd/4EvvjiJrKyssG6ZRVKIdAlynDjXCsB/12nH/ECX8zXPZOnyuQ2/8zs6cfXwhIBOrAwLDzwMvhNRIHLmFUOdPiLaw4gIa5sRn/9xLRobG1kkDRQ9JysZfjwnG1dp4wH0PNXWO3h9sK4Z6RoFVHIpkpS+w7W+ulc75qnjxH9kjn0nxsViw4KJzn2XV9Q6g+NAYAFfR1C7q1twC5abe72rjmHhyGOInogCkTZ2ClKyJ0R7GBFxoe5kv22bRVIfqGRSTLlqGD4/04zZo4fjvqkjsLGy1u2WWoFBi5vHpeEvDxdAGiPx8a43Lc6bLKL7yTdoUXWmBTOydUiO9wzwOloO9N537+B4IAFfsaB27+0ADAtHA0P0RESRNeA6bg8WRrMNlTVNWP9+DZ79y3Esm5eDjZW1HgVQRU0TnvvrcXxyqgmf1l7AitvGoaDXu94KDFosKtAjXaP0eA9c4cWn207Wm7D67vFIVcd5dK4uKdCL7ruypgkbK2tRUqAPqLO1t67OrtsB2CU7Gthxm4go8nglKUSNbTakqBXOwsTa1S16hQhwD2932nvedr/o4rveMocp8Y+j51G6pQoAPN4Dp9fGAxLgxXuudRYlvQO8cTKpz+D40/PH4L8K9H6LGl9B7cqaJiy/OQd3TriCYeEoYIieiCjyWCSFyGTpdAtat/oJTDuWbTF3uRU0GxZMdPvcu9h5e/F0TMhK9tiea4C3qq7Z574tnfawBLVtXd0Yk6Hxux0KP4boiYgij0VSiNRxMlxotzkD0xpVYKHspF7LOTp29w57O4LSgYSj/XVjjpNLYTT7v9LgbzvxCv66RAs7bhMRRR4zSSHSJchh7OhE+cLJqKprxl8P13vkiRzyDVo0mCxoMFkQGyNxvpNNJZciKV6OqrpmPLB5Pxa/cRAlm/ahqq4ZLxXlYU5OSkDhaEc3Zm/7fvdQPR7eWoWzLR192s7+081+t0H9w9fPhiF6IqL+wSKpDyaPSMbL71ejsqYJ5RW1WJSv9yiU8g1aPDwrG4aUBKRplFj9t+P477mjkG/QoqRAj1/844Ro4HpTZS3Kbhsb8Etje4e5HftelK9HeUVtQAFff9v5+bvHGBKOEm8/G4boiYj6D++fhKixzQabvdv5DjazzY5Htla5Ba/1ungopDGARMCfD9Xjt3tOwWyz477rr0JeVjK+NTbVa+C6oqYJlk7fzSddOcLc9UYLTjW2QxEbg6ozLW6P7QcS8M1IUuLnt49DzTdtzvC463YYEo4edtwmIoosFkkhMlk6YevVIdtss7sVPX/8wfWY9+on2LBgIn61q9o53dLZs9yYdN/vkgs2jKtRyXGqsR2L3zjYp21eMNvwwOb9YRsXhQ87bhMRRQ6LpCC4djtWyqVQyv2ErpUylM42QCWTum0nURGL1xZO8vtSUtcwbqCdlsMR8A1mG4O1A/RgHTcREUUOi6QA9e52POWqJPzingmoqmsW7XK99dPTsHcL+LyuGTflpEIll8Jss+PmcanIHKbC8rcPIy8r2XsHbpcwbjCdluNkMSgwaFEhss1AA76OkPCHIn15ZoQ4roFksI6biIgii8HtAIh1O37xngl4asdhr6Hrp28Zi+Z2GypqmvCLf5xASUFPqPvHc6/B8rcP+w17PzTL4HXfgHinZaPZhmfeOYpikW0WGLRYeWdun4LgriHhwdoBerCOm4iIIo9XkgIg1u243WZ3hrZ7q6hpwldN7dBevOJSWdOEpfNGAwAsnZc6c4uFva/SxeOvh+tRsmkf/lxaAAABd1pubLPhveMN+OjLJo/O3VVnWmCzBx8E9xYSHqwdoAfruImIKPJYJAVArNuxqcN3eNlss0NhsTs/n7nQgfW7a5A/UuexnOvtuq3/db3zc6ulE4KfsbmGqB3j7L1NB0d/pkD5CgkP1g7Qg3XcREQUeSySAiAWZFYrfYebr0xWQi6NwbulBbAL3ZDHSvHHB6chMc73IU9wme8vZK2SS5GskuPLhjZnmLx0tsEZHBcbsyOw3GbthEYpg6WrG6aOLmhUsUhUyNBhszvDzAmKWLRbu9Bq6USSSg5bVzfarF3Oeb4M1A7Q7FwduGDD7QzDE9FQwyIpAGJB5ni5FIUGregtt3yDFjuPncf63TUoNOiweNZIFP3uU5htdpTONngNVhcYtIiTxUAll2LSiGRnQFosRK2SS1FePBlPvX0Ee2sa3bbxUlGeW38kAJiTkwK5NAalW6tw4HRPR+8X/nESlTVNUMmleKkoDxsrj7llrAouNryUQOJc1mHVXbkozNaJ3roayB2gAw2lX+6CDbczDE9EQ5FEEAR/d3QGNZPJBI1GA6PRCLXad18iX862dGDp9kPOk+vKO8Yg35DiUaQ4ulO7Fin5Bi3yspKxfneNsyDZVFnrVigVGLT46a1j8atdJzFjVApmjhrubBHQe99AT5Hy10P1bvt23daEi/sDek5Wq+7KxdK3DmNvdSNKZxtQVdfsLHp6f3ZVaNBiXm46ntxxxG26o0jb8H6N27gc4W5/7Q2iSex4DoZxR4rRbEPp1iqvBfC6ojy3K0TBLk9E/cdxzsu9Zwk0V2RHezgR0dZQh8+3rMbrr7+OnJwcr8vpdDpkZWUFtW0WSUFw3E5otXRCIZPC1G5FRrIK7TY7Wi1dMFk6UXWmRfR212sLJzkbNDpeintzbjqM5k4kxEnRYLLiie2H0Nhmw64fz0B2aqLXfSfGydAtCJjzqw+9jvXvjxbC0ml3Bq4b22y4cc0ej7GIfe7N23yVXIq/PVKIrm5h0HWA7n08B8u4I+HLhjbn74qYfz52A0amJIS8PBH1H8c57/IjAfykeJVKFU6cOB5UocTbbUFwDTJ/VtuEvacuIC+zGw9s3o8NCyb67HRtdenO7QhWj0lXi67Tbu3yuW8AqKpr9jlWS6cdE7KSnZ9PNbaLjkXss6+xuzLb7Gg229z2M1iwc7V3wYbbGYYnGnhy5hVDnT4i2sOIGJkqEUqN+EvmAcBU/xU+LV+BxsZGFkmRoFbKsO2zOtwyPj2g7tmKWM+WVGLTgPB3xe69fO/9ehtHIPPDEXRm4Hdg6cvvViDLE1H/Sxs7BSnZE6I9jEGPzSRDFCeNwav35yEuVoryylr89XC9RwNHh3yDFlVnWtymFYhMA4Lvii1GbBuOTtwAUHWmxW2svT+7KjRocd5kCXg/wTrb0oHSrVW4cc0e3LnhI9z4yz14eGsVzrZ09Gm7FLpgf7d0CXIUelm+kGF4IhrEWCSFqLNbgFIh89s9u9CgQ+msbJRX1DqnOULax84a3Zd16WjtTyBdsR16d+LuPVbH5wKRLt2LCvRI1yg9vpfYfoLF7tcDUzC/Ww4PzTL47BxPRDQYMbgdohP1JnQDuPnXe53THIFsxwtv9bp42O2Cs09Su7ULCYpYqJUydHR2ocsuoFvoySBplDKkJCqCLjoCCSA7grWu47MLAkYMU8HeDWfPpMS4nj5Jjm0lxPX0SWqzdEKjlMNm70a7tStsQWcGfge2QMPtXza04db1FW6/+44u7+UVtfhzaQF/jkQR4jjnzfqfDbzd5uJC3Unsem4RDhw4gIkTJwa8HjNJITLbutBpF3pNc+90/YcfXI/vvvqJ87+b2m2IjZFgdHr4irVAAsj+OnG/vXg6rkkL35gCxcDvwBZouN1k6fT6uwXw50hEgxeLpBBplHJYXd6F1vsqUpxMiuGJCqjkUphtdiQqZWi7eBWmt0CCy96W6T3d0SXb2OGynEt3cLFxJkcpJB3OwC+7Q0cPg9tENFSxSAqRLkGOs0YLCgxaHKxrudixutbtX9OF2Tq8VJSHrZ+ehgQCGlqtmDTC/XH5QDoVe1vm2TvG4WfvHsN7xxuc0wsMWhS7NLOcka3DyjtzMScnBZVfNomOM1qdkcPV/ZrdoaOLXcyJaKhicDtEbdYuxMQIePaOcXh6fg42VtZ6dKzeW92ITZW1eObWseiwdWHWqOEegWp/wWVfyzy547DHrbuKmiZsrKxFSYHebbmy28bi6VvGiI4zWkHpUALCvQUb/mZYPPzC8XMkIhqIeCUpRCZLF84brfjiGxNmZKdgWa/XdjhU1DSho9OOkcMTPU4WjW020Vc5AD0n7ca2nhO2t2UqapqwKF/vMb2ypgklLtM/rG6EpbMbk0YkY9lbh33uL9IntIwkJdYV5YXc/TqQY+i6rWCXp8D09edIRDQQsUgKkamjE+ZOO1b+5SSuXBDvc9kOm130ZBFIcNnfo4feumH3nh7ItqIVsO1L92t2hx442MWciIYaFkkhUl8MYmcmK3GV1neRJI+NwZfftHmEg8UCr67B6s5uAYlxvn9E3rph954eSHhWJY/FiXMmtFu7MEwlh7WrG63WLiSF2J4gEtgdeuBgGJ6IhhoWSSFKjItFm6UT/++BKfis9gIKDTrsrfG8jVNo0GHnsfNY+161Rzi4d+BVJZd6BKtLZxtQYNCioleOCPDetbt3h2/X8Ky3gG1htg4HTl/Az/9yHC8V5WHNri/cskuORpcDLdgcbGiYIeP+wTA8EQ1FDG6HKAbAxKxkLH/7COpNFiyeNVK04/DiWQZIJD2fe4eDewdeSwr0HsHq8opaFIt0w3Y8tXay3uQ2vcCgxaJ8vbPDt2t41lvAtjBbh8UzDfj5X46LjgHoyUUNxGBzsKFhhozDj2F4IhqqeCUpREZLF4BLIekHNu9HSYEeJfl6t47DD2zeh3VFec71eoeDXQOv1i7Phnxmmx2PbK1CSYEeT80fA0un3S0U++I917qFZR1dsrd8f6poeFYsYBsjAeavq4DZZkdeZpLXpoADNdgcbGiYIePwYhieiIYqFkkhMnVcCvhau7p9dhwWC1G7clzlqaprFl3fse2bRqdgQlay6LrB6L3OZ7UXYLbZRcfa20ANNgd7HBgyDh+G4YloqIrq7bZVq1Zh8uTJSExMREpKCu644w6cPHnSbRlBEFBWVoaMjAwolUrMnDkTR48ejdKIL1ErZVArZVDJpUhTK1A624DXFk7ChgUTUV48GaWzDVDJpQACD1FHK1SsdgmHewuC9/cYaPBiGJ6IhqqoFkl79uzBQw89hE8++QS7du1CV1cX5s6di/b2ducyL7zwAtasWYP169dj3759SEtLw5w5c9Da2hq1cZ9t6UBcbAziZVJsLJ6EOJkUVXXNeGDzfix+4yBKNu1DVV0zXirKw+zRw91C1IU+wsGOULGY/gwVJ8fLnZmnqjMtHtmqSIyBBq9o/d4SEfU3iSAI/trnRMw333yDlJQU7NmzBzNmzIAgCMjIyMCSJUvwxBNPAACsVitSU1OxevVqPPjgg3636XgjstFohFrd95e4Gs02lG6twsxRw6GOi0VXt4B3D9d7BJ2BnhD1M7eOxe0vV8JssyPfoMXDs7ORk+bZWNLhbEsHlm4/5Pb0lSNUnN6PTwnVNbXjyR2H3V6x0vvpthf6eQw0eEXr95aI3DnOebn3LIHmiuxoD6dfxMbGQqYI7h9fpvqv8Gn5Chw4cAATJ04MeL0BVSTV1NQgOzsbhw8fxrhx43Dq1CmMHDkSBw8eRF7epfDz7bffjqSkJGzevNljG1arFVar1fnZZDIhMzMzbEXSlw1tuHHNHry2cJJz2gOb93td/m+PFqK2sd0Z5C6vqMWfSwswMiXB6zqOfjORDhWfN1nQbLah3dqFZJUctq5utFm7oBnAfZJo4IjW7y3R5czbOY88KZUqnDhxHFlZWQGvM2CC24Ig4LHHHkNBQQHGjRsHADh37hwAIDU11W3Z1NRUnD59WnQ7q1atwooVK/ptnI6Qqr+As0OLuROL3zjoNs1fkDVaoeJUdRxS1XER3y8NDQzDE0Wet3NezrxiqNNHRGFE/au9sR5H3nkVr7/+OnJycoJaV6fTBVUgAQOoSCotLcWhQ4dQUVHhMU/iaDR0kSAIHtMcli1bhscee8z5OZxVtdFsg1LmHsaWSiQonW1AXmYSrF3diJNJcbCuGeUVtTDb7EiIk3psJzFO1nPVpt2GNmsnhsUr0GnvRru1CxqV3NmpONgOxtHoeMwuy+TA3wWiyPN2zksbOwUp2ROiN7B+cqHuJI688ypycnKCum0WqgFRJD388MN455138OGHH+LKK690Tk9LSwPQc0UpPT3dOb2hocHj6pKDQqGAQqEI+xgdHYWvzUxCvkGLE+dMSEmMw9gMNarqmt0e/883aPFSUR62fVaHxlar23ZmZOsgl0rw2B8/R9XF/M+v3qt2y//MyNbh2TvG4WfvHsN7xxvcpnvrYByNjsfsskwO/F0gio7+OudRj6g+3SYIAkpLS/HWW29h9+7d0Ovd32iv1+uRlpaGXbt2OafZbDbs2bMH06dPj9g4XTsKl1fUYlG+HpOvSkbuFRqs+utxj9B2ZU0TNlXW4n/mXoNjLh2xCwxaPHvHODzz56M9TSi9dLf+sLoRT+44jNHpao/pYh2Mo9HxmF2WyYG/C0Q0VEX1StJDDz2ELVu24E9/+hMSExOdGSSNRgOlUgmJRIIlS5Zg5cqVyM7ORnZ2NlauXAmVSoX77rsvYuN07Sjs6ID95g+n4azRgr0iT7UBQEVNE84aLZgxajj0ugRncNvcacfuE98AgM/u1hU1TViUr/eYLtbBOBodj9llmRz4u0BEQ1VUi6RXXnkFADBz5ky36Rs3bkRxcTEA4PHHH0dHRwcWL16M5uZmTJ06FTt37kRiYmLExtm7o7DZZoepowuWTrvP9Syddpy50OEW3HbtJ+Mv/O1tfu/gdzQ6HrPLMjnwd4GIhqqoFkmBdB+QSCQoKytDWVlZ/w/IC7GOwglxUtjsnqFsV3pdPFo7OlFePBkH65qx7bM66BIUeG3hJFi7upE5TOVzfW/dr3t3MA5Xx2PX4K1GKUO8IhZtli7RIG5f98mQb2RE4jir43o6z5cU6EUfYGDHbSIarAZEcHugc3QUdm2UZ7Z04mptPAoNOuyt8bzVUGDQQgKg3WZH6ZaDyMtKwrYfXI+VfzmG9y7ebiudbUCBQYsKL40oXTt1O4h1MBYbn6/lxbgGb1VyqWhDSdcgbl/2yZBvZETqOOsS5Cgvnox1u6s9HmAoL57MjttENGhFNbg9WGhUcjx/93i3W2UZSSp8fKoJy24e7Xylh0O+QYvifD1e/McJ1Bs7UFKgR2VNE8reOYrRGRrncuUVtSjO13usPyNbh5V35uKkS+jbMX313eM9rgSIjc/X8r31Dt76CpQ7grih7pMh38iI9HF+eXeN6AMML78vnrkjIhoMeCUpQBlJSqwrynN2FG6z2aFNUKDBZMWErGQsytfD2tXtDGg/srUKZpsdRVNHOBs09g5jO0LgJQV6LJ8/Bh02OzTKS52KX7zn2oA7GPceXzAdj3sHb30Fyl2DuKHskyHfyIjkcW5ss4leTQWAvfyZEtEgxiIpCK4dhT891eQMVnsrKADP8HXvz2abHet31+Cm0SmYOCLZ6/6CHV8wegdv/QXKXYO4we6TId/IiORx5s+UiIYqFkkhUitlaLN2ee387dA7fB1oGLuvggns9g5hexujQ1/G6tiXt6CvWsmQbziEK8w/0PZFRBRJLJJClBgXiwttVoy7QuM1fF1o0OK8yYKzRguA4MLYfRFsYLd3CLvqTAvyDVqPjEk4xqpLkOOmnBTcOyULGytr3a7CFRi0uHcSX8wYDuEI8w/EfRERRRKD2yGSSyS4/motfrnzJIrz9cjvFb4uMGix7OYcpGuUKK+oRYFBi5/eOhbHzhrdlgs0XB2oUAK7vUPYjq7iYoHycIz1v+deIxoMr6hpwpM7DjO8HQZ9DfMP1H0REUUSrySFqKmjEw2tFrx34ht8dOoCSgr0KOkV3pZKJZDFSrBhwURckazEuWYLHv/2aDz+rdEw9wpph0uogd3eIWy1UoZffmcC2ixdQQfB/Y2v3mgRvUrlb4wUnL6E+QfyvoiIIoVFUohMHZ1ot/Z03HaEr3vLH6nD/b//DACwYcFELH7jIN5ePB0TspI9lg3buPoQohULYaeqvSwcIpOl02+ncgZ9wyfUMP9A3xcRUSSwSAqRWilDu833yV6j7OlEDADZqQn488MFsHbaceqbNp/drF1D10lKGRQyKUwdnTBZuqBWxiJZJUdcbIxoMDsSIdq+dHFWx8lwod337TQGfYmIaCBgkRSiJKUMEASvoe18gxb/OtOM9fflIV4uxYp3jqKipslvN2sJgMcvZop0CXK88f3r8dSf/uW2bIFBi7LbxuHeVz9GY5vNbX1fIdoCgxZxsr7F0PraxVmXIMdnX13ot2A4ERFRuLBI6gNHaFsCYK/LCT/foMWifD0e2VqF67KScHNuurOQ8tfNel5uurMAWX33ePzs3aOiAeeyd45g9d3j8cDm/W7rryvKw8o7c7H0rUNuxZujC3jZO0fx4j3XhnRbxF8ofF1Rnt/talRyzBw1HHpdPAC4fbdCBn2JiMKi8fQX6Ozy/37UYMTGxkKmiO7fz6b6ryK6PxZJIWrp6HSGtrf94HoUt1pFO27vrWlCsUuXbX/drBdOv8r5OUWt8BpwrqhpwhPzRnus39hmg0QCn13AQw1Gh6uLc3qSEiq5FCvvyEW7rcsZYk9JVLBAIiIKg8Nvro32EPqNUqmCTqfzv2AYsEgKkamjJ1xsttnxdXMHFr9x0Ouyrh2s/XWzdp3fZvGdeRKb32rphADfXcBDDUaHs7MyQ75ERP0nZ14x1Okjwra99sZ6HHnnVbz++uvIyckJ23ZDodPpkJWVFZF9sUgKkfpiKLukQI/MYUpsWDDR2TW6vKIWZpdQd+YwFUpnG1BeUeu3m7Xr/IQ4qc9lxeYHEnoONRjNzsrR15fQPBFdPtLGTkFK9oSwbe9C3UkceedV5OTkYOLEiWHb7kDHIilESUoZyosnY93uarerNvkGLV4qynPe2so3aPGPo+dQVdeMl4rycOSs0WdouaHV6vzcYLJ6DYYXGLRoMFndprmGnvujAzI7K0dXX0PzREQUHHbcDlFMjAQv7672KHYqa5qwsbIWJQV6Z4C7vKLWOV0Q4LOb9cxRw52di5/YfghP3zLWY1nH021PbD/ksb7jNlZ/dEBmZ+XoCaWTOhER9Q2vJIWoud3m9kSbq8qaJiy9GKp2XFFyTF9+cw7iZFKf3axdOxfLpRK88B/XXuqTFBeL5PiePkl/+ME0r92N+6sDMjsrR0e4QvNERBQ4FkkhMlm6fM4/c6FDNDxt6+rGmAwNAO/drMVCzWK3UwJ53L4/TpwMXUdeOEPzREQUGBZJIVLH+T503gLa8QrP9fyFccXmAxjSAV4GlN0xNE9EFHkskkKUHC/3GaquOtPiMT3foIVc6l48+Qvjis0vzNbhoVkGlGza57yVN5QCvAwoe2Jonogo8hjcDlGqOg7P3ZkrGqr++R25OHbW6DbdEeI2dlwK2PoL4543WUTn761uxLrd1Sgp0HusM9gDvAwoi2Nonogo8nglqQ+6uwWUFOixfP4YtJg7kRAnRZxMiu+99iluz7sCC6aO8Oh4/efSAuf6/sK4ze3e51fWNKHEpZO3Y53BHuBlQNk7huaJiCKLRVIftHR0omTTfmxYMNHZcbt0tgFZWpVoaLv3bRF/YVx/4XCx7t2DPcDLgLJvDM0TEUUOi6Q+0ChlKJ1tcOu4fejrFny/4GoAPVd7HF25p1+thSI2Bo3tPbeLNCq53zBuKOHwwR7gZUCZiIgGChZJfSCXxqCqrtmj4/b4KzWYoh+G/yq4GhlJSvz83aNuyzhCyP7CuMnx3ufni4TDh0KAlwFlIiIaKBjcDpHRbMOyHYdFO26/VlGLTruAepMFP3/3mEfTSUcIGYDPMG6qOk50fmG2Dg/PzkZ5Ra3HOoP9VgwDykRENFDwSlKIfAWMK2ua8PT8MZDGSLDsrcOiyzhCyCNTEnyGcb2FdQHgz6UFQzLAy4AyERENBCySQuQvYGzptEPwsw1HCNlfGNfb/KFcNDCgTERE0cYiKUT+AsZxcimkEonPZRhCJiIiGrhYJIXIV8A436DFu4fqcUWSEoXZOtHbcgwhExFRf2k8/QU6u3zfz4iNjYVMEdh5yFT/VRhGNfiwSAqRI2C8dPsht0LJ0Vn7ka1VAIDy4smQAG7LMIRMRET96fCba8O+TaVSBZ1O53/BIUQiCIK/6MygZjKZoNFoYDQaoVarw759o9mGeqMFpxrbnZ21yytqne9UU8ml+NsjhejqFhhCJiKifuU45+XMK4Y6fYTX5dob63HknVfx+uuvIycnJ6Bt63Q6ZGVlhWuogwKvJPWRRiXHqcZ2Z8ft3sw2O5rNNkzISo7wyIiI6HKVNnYKUrIneJ1/oe4kjrzzKnJycjBx4sTIDWyQYZEUBr5C3Cq5FMkqOb5saIPJ0gm1UgZdvOeVJKPZhsY2m89l+rL8YDPUvx8REQ18LJLCwFuIWyWXorx4Mp56+wj21rhnkp6/ezwykpQAgLMtHR5vvu+9jKtglx9shvr3IyKiwYEdt8PAW5fop28Zg5d317gVSMCljttGsw1Gs82jIOi9jKtglx9shvr3IyKiwYNXksJErEt0tyD47bgNwGvnbscyrreZfHX6Flt+sBnq34+IiAYPFklh1LtLdFVds8/lWy2dAXfldvDX6bv38oPNUP9+REQ0eET1dtuHH36IW2+9FRkZGZBIJHj77bfd5guCgLKyMmRkZECpVGLmzJk4evRodAYbAn9duRWyGCQpZXht4SRsWDAR5cWTUTrbAJVc6lymd1duf9sc7F28h/r3IyKiwSOqRVJ7ezuuvfZarF+/XnT+Cy+8gDVr1mD9+vXYt28f0tLSMGfOHLS2tkZ4pKFxBLrFzB49HNYuAU//6Qge2Lwfi984iJJN+1BV14yXivKgkktFu3L72uZQ6OI91L8fERENHlEtkubNm4dnn30Wd911l8c8QRCwdu1aLF++HHfddRfGjRuHzZs3w2w2Y8uWLVEYbfC8BbrzDVosuWkUfvGPE6ioaXKbV1nThI2VtXj6ljGiXbm9bXOodPEe6t+PiIgGjwGbSaqtrcW5c+cwd+5c5zSFQoEbbrgBH330ER588EHR9axWK6xWq/OzyWTq97H64hrobjbbYOzoRNWZFjS22VDZq0ByqKxpQtmtY5Hu5XF3sZD4UOriPdS/HxFRuAy0c95QM2CLpHPnzgEAUlNT3aanpqbi9OnTXtdbtWoVVqxY0a9jC5Yj0F1V14wHNu8HAGxY4LvDabu1K6BtDlVD/fsREYXDQDznDSUDvk+SRCJx+ywIgsc0V8uWLYPRaHT+OXPmTH8PUZTRbEP1+Vbs++oCjp014qvGNiQrZc5QtiLW96FXyqU4/HUzvvymTbQ3kNFsw5cNbaiq874MERENbQPlnDdUDdgrSWlpaQB6riilp6c7pzc0NHhcXXKlUCigUCj6fXy+nG3pwBP/d8itiWS+QYuHZxmwsXgSFm3aj8P/NqLQoPNoNAkAhQYd/nWmBddmJuO7v/0YY9LVferQTUREQ9NAOOcNZQP2SpJer0daWhp27drlnGaz2bBnzx5Mnz49iiPzzWi2eRRIQE/OaN37NTj1jRlPzc+BRAIsnjUS+Qat23L5Bi0WzzKg3mTBz989itV3j+9Th24iIiIKTVSvJLW1taGmpsb5uba2Fp9//jmGDRuGrKwsLFmyBCtXrkR2djays7OxcuVKqFQq3HfffVEctW+NbTbRq0NAT6FUkq+HRilD7pUafPe3n6CkQI+SfD2sXd1QxMag6kwLHti8D+uK8vCrXdV4Yt5oAKF36CYiIqLQRLVI2r9/P2bNmuX8/NhjjwEAFi5ciE2bNuHxxx9HR0cHFi9ejObmZkydOhU7d+5EYmJitIbsl7+O0daubjS09jyJYLbZsX53jdflAKDNYndOC6VDNxEREYUmqkXSzJkzIQjeT/sSiQRlZWUoKyuL3KD6yG+X7YuBbUf4XCWXoqRAj7zMJFi7uhEnk+JgXTPi5bEonW2ARiXDhgUTESeTIlklh93H8QLYkZqIiChcBmxwe7BydIz+UOSWWL5Bi/MmCxparZg9OgU3jh6OoqkjsLGy1u2KUoFBi7vyrsDmj41u02dk67DyzlzMyUnBruMNHttnR2oiIgKAxtNfoLPL+z+q2xrqIjiawUsi+LqUMwSYTCZoNBoYjUao1eqI7FPs6bN8gxals7Jh6bTj0L9b8K8zLVhy0yis/vsJ0aaSBQYtJmQle9yOm5Gtw6q7crHsrcNuhZijI7W3BpRERDT0Oc55AZFI8FFlJaZNm9a/gxrEeCWpH2QkKbG+KA8NrVYYOzqhlEsRGyNBp70bJksnZo9Owa92VeP+66/y2nW7oqYJi/L1HtM/rG6EpbObHamJiMirnHnFUKeP8Dq/vbEeR955le0D/GCR1E9cO0ZX1TVj/oaPnPMc3bYtnXbRdR0c4e3eWi2dGJmSwKKIiIhEpY2dgpTsCV7nX6g7iSPvvBq5AQ1SA7ZP0lDSO8ytiI2BSi5FSqLvCt5bV+54BWtbIiKi/sYiKQIcYW6HI2eNeG3hJHxxvtWjmaRDgUGLqjMtHtPzDVrsP92Msy0d/TVcIiIiAoukiNCo5Hj+7vHOQkkQgA3v1+DZvxzHony9R6FUaNCi7LZxOFHv/jbnfIMWi/L1+Pm7x9hdm4iIqJ/xvk2EZCQpnWFra5cda9+rBgA8srXKo+v28EQF7n31Y7z54DQUTcly68b9yNYqmG12dtcmIiLqZyySIsgR5q6qa3ZOE+u6vWHBRDS22fBNmw0PbN7vdXvsrk1ERNR/WCSFmdFsQ2ObDSZLJ9RKGXTxno/m9w5yO7puT8xKRmyMBMMTFdixeDpUcilKZxtQXlELs83zSTh21yYiIuo/LJLCSKyJ5IxsHZ6/ezwyXJo8unblVsmleKkoz6PrtiN/dPysES8V5Tlvs7lul921iYiI+g+D22FiNNs8CiSgp/lj75C1a5C7pECPjZW1Hk0lK2uasLGyFjkZGmyqrEVJwaXGko7u2swjERER9R9eSQqTxjabR4HkIBaydgS5640Wj0ySQ2VNE0ry9Vi/uwZPzR+Dm0ansLs2ERFRhLBIChOTnxC1WMhao5LjVGO7z/UcXbctnXZMyEoOfYBEREQUFBZJYaKOkzkD2HmZSbB2dSNOJsXBumaUV9QiTiZFVV2zR5g7wU/3bEfXbYa0iYiIIotFUpjoEuQoL56MdburPQLYry2chH8cO4df7erpjeQIc0sAfH6mBYUGHfbWeN6qy7/YdZshbSIioshjcDuMXt5dIxrA3vD+lxCES9McYe4PvvgGZ40dWDxrpEfXbcfTbSfrTQxpExERRQGvJIVJY5tN9GoQAOytaURx/lVu0z6sbsTC6VchJVGBBzbvR0mBHg8UXI1YqQTJKhm67AKM5k48NX8M0l3aBxAREVFksEgKE3/BbUcAW2yaWNdth7cXT8cIxPd9gERERBQUFklholHKUDrbIBraNtvsiJNJPYLdV2lViI2JgS5BjnunZHmsu+2zOiSr5Piyoc1nB+/+FkgXcSIioqGGRVKYyKUxqKpr9ghtv1SUh62fnsbwBAXW35eH1yrcO2vflJOCbT+4Hs+8c9Rj3W0/mIafv3sM751ocE4X6+DdnwLtIk5ERANH4+kv0NkleJ3f1lAHADh+/Hif96XT6ZCVldXn7QxEEkEQvB/FIcBkMkGj0cBoNEKtVvfLPoxmG0q3Vok2kywwaPH4t0fjRL0J7/zrLCp6BbtLZxtQVdfsEfh2rDshK9njVtyMbB3WFeX1+9UcX98rUmMgIqLAOc55gZEA6HsJoFSqcOLE8SFZKPFKUhj46rZdUdOEkjYbtAkKjwIJAPIyk7zmkSpqmrAoX+8xXayDd38Itos4ERENDDnziqFOH+FzGZkqEUqN1ucy/pjqv8Kn5SvQ2NjIIonE+QttWzrtXueJBboDmS/WwTvcQukiTkRE0Zc2dgpSsidEexiDHoukMFD76Ybt6Jod7Dxf8+P9dOoOB3/fi13AiYhoKGMzyTDQJcgxI1snOs/RNfu8yYJCg+dlzaozLSgQmQ70ZJKqzrSIbnP/6Wacbeno07j98fW92AWciIiGOhZJYaBRyfH83eM9CgpH1+xjZ41I1yixqEDv0Vn7+Fkjfn77ONGO22W3jcOJepPoNn/+7jEs3X4IRrOtf74UvH+vGdk6dgEnIqIhj7fbwiQjSYl1RXlobLOh2WyDQhaD2JgYnDdaMCZDg4e2HAQAlBToUZKvh7WrG5nDlPjH0fP4+kIH8rKSndMVsTGoOtOCe1/9GG8+OA1FU7Lcpj+ytQpmmz0i4WnX79Vq6URinAy6BPZJIiKioY9FUhhpVD3FQ1VdM25dV4kNCyZi8RsH3ZZxfZJtw4KJWL+7BmMu/q+Yb9pseGDzfq/7jER42vG9iIiILicsksLIaLahxdyJOJkUGxZMRNYwFUpnG5xdtx0cnbdHaJXYsXg64mRSbPuv62HtsmPf6Wa35TXKWJ+dvBmeDg27iBMRkT8sksKkvqUDpy+YsW53tVtjyIKLXbcdt8hUcileKsrDlk9PY0JmEjZW1rotn++y/PSRWijlsV47ef/hszqGp0PALuJERBQIFklhYDTb8MEX3+DdQ2c9Omc7GkiWFOixfncNSgr02FhZi7ysZI8CCYDz81Pzc5CXlYzlbx0WXUYCMDwdAqPZ5lEgAT3NMZduP8Qu4kRE5MSn28Kgsc2GlESF6KtFgJ5CaX5uOrb94HrMz01HZU0T8jKTvC5fWdOEUamJqDdasLfGeydvS6fvRpTkKZAu4kRERACLpLAwWTr9ds6ubWzHva9+ghZzT9Da3/INrVafnboBdrwOBbuIExFRoHi7LQzUcTJcaPd+BUIll2JUaiL+74fT0C0A5cWToUuQQyWXugW63daRSaFNUOC1hZNEA9sAECeToqqumcHjIKjjZM7gvFgYnkF4IiJyYJEUBroEOT776gLyDVqPW2iZyUpsXjQF50wWtHR0Ok/IJ84a8drCSXhg836PQmn26OFIjpfjhb8fx14voe6JWUl493C9M9DN4HFgdAlylBdPxrrd1R5heEfxSkREBLBICpuRw+NROssAAKiqa0FJgR6TRwxD1jAlnvrTEY8n2Bbl6/Ha3lo8NT8HT+444jZvyU2j8Iu/n3ArkIBLoe6n5+dguDoOj2ytcs5j8DhwL++uEQ3Dx0gkWF+UF6VRERHRQMMiKQxazJ1os9ohk0rw1PwxiJdL8bM/HwUA/H5vs9cn2PKykpGXlYy/PlqINksXVHIpOu3diJFIPAok13V/fNMofK/8M48rUJHowD3YNbbZvIbh9/L4ERGRi0FRJG3YsAG/+MUvUF9fj7Fjx2Lt2rUoLCyM9rAA9PTceertw25FTYFBi+J8fc+VCS+dtCtrmlCSr0dtY7tHV+4NCyb63GdDq9VrlonBY98Y3CYiokAN+Kfb/vCHP2DJkiVYvnw5qqqqUFhYiHnz5qGuri7aQ7vUc0ekN9LGylrExkh8ru94H1tvYtMCnc/gsW9qP8eHx4+IiBwG/JWkNWvW4IEHHsD3v/99AMDatWvxj3/8A6+88gpWrVoV1bH56rlTWdOEpfNG+1w/SSnDR6c8b6tVnWlBoUEresut0KBFg8kiur0Z2ToGj/3QJcgxI1uHD0V+bjx+RDRUmM7VIVbR/w/ymOq/6vd9RNOALpJsNhsOHDiApUuXuk2fO3cuPvrooyiN6hJ/t2667ILoE29Azy25zGQlTtabPOaVV9RiY/FkQCJxK8LyDVqUzs6GLlGBwmydx2s12IHbP41KjufvHo+l2w+5FUo8fkQ0lBx4/fmI7UupVEGn00Vsf5E0oIukxsZG2O12pKamuk1PTU3FuXPnRNexWq2wWq3OzyaTZxESLv5u3RjNnViUrwcAt0Kp0KDDs3eOQ6Y2HituHwdrl/sJe9KIZIwYpsL6ojw0tFrR0tEJlVwKZawUsTESaFQyrC/KQ2ObDa2WTiTGyaBLYJ+kQGUkKbGOx4+IhgBv57w9e/YgISEhImPQ6XTIysqKyL4ibUAXSQ4SiXu2RxAEj2kOq1atwooVKyIxLJ+3bgoMWuy/2KCwpECPh2YaIIuNQYIiFhqlzNnPyN8J29eJmyf10GlULIqIaPDzds6bMGEC1Gp1FEY0tEgEQRCiPQhvbDYbVCoV3nzzTdx5553O6Y8++ig+//xz7Nmzx2Mdsao6MzMTRqOxX35hzrZ0iN66WXlnLmz2bpg6eKWCiIj6R6TPeZebAX0lSS6X47rrrsOuXbvciqRdu3bh9ttvF11HoVBAoVBEaoi8dUNERFET6XPe5WZAF0kA8Nhjj+E///M/MWnSJEybNg2vvvoq6urq8MMf/jDaQ3PirRsiIqKhZ8AXSd/97nfR1NSEn/3sZ6ivr8e4cePw17/+FSNGjIj20IiIiGgIG9CZpHAwmUzQaDS8P0tEREMez3nhNeA7bhMRERFFA4skIiIiIhEskoiIiIhEsEgiIiIiEsEiiYiIiEgEiyQiIiIiESySiIiIiESwSCIiIiISwSKJiIiISASLJCIiIiIRLJKIiIiIRAz4F9z2lePVdCaTKcojISIiClxiYiIkEkm0h3FZG/JFUmtrKwAgMzMzyiMhIiIKHF9SG30SwXGpZYjq7u7G2bNnw1aRm0wmZGZm4syZM/zlDQCPV3B4vILD4xU8HrPgRPN4hXLeEgQBra2tvAoVJkP+SlJMTAyuvPLKsG9XrVbzL5gg8HgFh8crODxeweMxC85gOV4SiWRQjHOwYHCbiIiISASLJCIiIiIRLJKCpFAo8Mwzz0ChUER7KIMCj1dweLyCw+MVPB6z4PB4Xd6GfHCbiIiIKBS8kkREREQkgkUSERERkQgWSUREREQiWCQFYcOGDdDr9YiLi8N1112HvXv3RntIUfHhhx/i1ltvRUZGBiQSCd5++223+YIgoKysDBkZGVAqlZg5cyaOHj3qtozVasXDDz8MnU6H+Ph43Hbbbfj6668j+C0iZ9WqVZg8eTISExORkpKCO+64AydPnnRbhsfskldeeQXjx4939qWZNm0a/va3vznn81j5tmrVKkgkEixZssQ5jcfMXVlZGSQSiduftLQ053weL3ISKCDbtm0TZDKZ8Lvf/U44duyY8Oijjwrx8fHC6dOnoz20iPvrX/8qLF++XNi+fbsAQNixY4fb/Oeff15ITEwUtm/fLhw+fFj47ne/K6Snpwsmk8m5zA9/+EPhiiuuEHbt2iUcPHhQmDVrlnDttdcKXV1dEf42/e9b3/qWsHHjRuHIkSPC559/LsyfP1/IysoS2tranMvwmF3yzjvvCH/5y1+EkydPCidPnhSefPJJQSaTCUeOHBEEgcfKl88++0y46qqrhPHjxwuPPvqoczqPmbtnnnlGGDt2rFBfX+/809DQ4JzP40UOLJICNGXKFOGHP/yh27TRo0cLS5cujdKIBobeRVJ3d7eQlpYmPP/8885pFotF0Gg0wm9+8xtBEAShpaVFkMlkwrZt25zL/Pvf/xZiYmKEv//97xEbe7Q0NDQIAIQ9e/YIgsBjFojk5GTh97//PY+VD62trUJ2drawa9cu4YYbbnAWSTxmnp555hnh2muvFZ3H40WueLstADabDQcOHMDcuXPdps+dOxcfffRRlEY1MNXW1uLcuXNux0qhUOCGG25wHqsDBw6gs7PTbZmMjAyMGzfusjieRqMRADBs2DAAPGa+2O12bNu2De3t7Zg2bRqPlQ8PPfQQ5s+fj5tuusltOo+ZuOrqamRkZECv1+Pee+/FqVOnAPB4kbsh/+62cGhsbITdbkdqaqrb9NTUVJw7dy5KoxqYHMdD7FidPn3auYxcLkdycrLHMkP9eAqCgMceewwFBQUYN24cAB4zMYcPH8a0adNgsViQkJCAHTt2YMyYMc4TEI+Vu23btuHAgQPYv3+/xzz+fnmaOnUq/vd//xejRo3C+fPn8eyzz2L69Ok4evQojxe5YZEUhN5vVBYEgW9Z9iKUY3U5HM/S0lIcOnQIFRUVHvN4zC655ppr8Pnnn6OlpQXbt2/HwoULsWfPHud8HqtLzpw5g0cffRQ7d+5EXFyc1+V4zC6ZN2+e879zc3Mxbdo0jBw5Eps3b8b1118PgMeLevB2WwB0Oh2kUqnHvxAaGho8/rVxuXM8IeLrWKWlpcFms6G5udnrMkPRww8/jHfeeQfvv/8+rrzySud0HjNPcrkcBoMBkyZNwqpVq3Dttdfi17/+NY+ViAMHDqChoQHXXXcdYmNjERsbiz179uCll15CbGys8zvzmHkXHx+P3NxcVFdX83eM3LBICoBcLsd1112HXbt2uU3ftWsXpk+fHqVRDUx6vR5paWlux8pms2HPnj3OY3XddddBJpO5LVNfX48jR44MyeMpCAJKS0vx1ltvYffu3dDr9W7zecz8EwQBVquVx0rEjTfeiMOHD+Pzzz93/pk0aRIWLFiAzz//HFdffTWPmR9WqxXHjx9Heno6f8fIXTTS4oORowXAa6+9Jhw7dkxYsmSJEB8fL3z11VfRHlrEtba2ClVVVUJVVZUAQFizZo1QVVXlbIfw/PPPCxqNRnjrrbeEw4cPC0VFRaKPz1555ZXCe++9Jxw8eFCYPXv2kH189kc/+pGg0WiEDz74wO2RY7PZ7FyGx+ySZcuWCR9++KFQW1srHDp0SHjyySeFmJgYYefOnYIg8FgFwvXpNkHgMevtv//7v4UPPvhAOHXqlPDJJ58It9xyi5CYmOj8+5zHixxYJAXh5ZdfFkaMGCHI5XJh4sSJzke4Lzfvv/++AMDjz8KFCwVB6HmE9plnnhHS0tIEhUIhzJgxQzh8+LDbNjo6OoTS0lJh2LBhglKpFG655Rahrq4uCt+m/4kdKwDCxo0bncvwmF1SUlLi/P/Z8OHDhRtvvNFZIAkCj1UgehdJPGbuHH2PZDKZkJGRIdx1113C0aNHnfN5vMhBIgiCEJ1rWEREREQDFzNJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkQgWSUREREQiWCQREQCguLgYEonE409NTU20h0ZEFBWx0R4AEQ0c3/72t7Fx40a3acOHDw9qG3a7HRKJBDEx/DcYEQ1u/FuMiJwUCgXS0tLc/vz6179Gbm4u4uPjkZmZicWLF6Otrc25zqZNm5CUlIR3330XY8aMgUKhwOnTp2Gz2fD444/jiiuuQHx8PKZOnYoPPvggel+OiChILJKIyKeYmBi89NJLOHLkCDZv3ozdu3fj8ccfd1vGbDZj1apV+P3vf4+jR48iJSUFixYtQmVlJbZt24ZDhw7hnnvuwbe//W1UV1dH6ZsQEQVHIgiCEO1BEFH0FRcX4/XXX0dcXJxz2rx58/Dmm2+6Lffmm2/iRz/6ERobGwH0XElatGgRPv/8c1x77bUAgC+//BLZ2dn4+uuvkZGR4Vz3pptuwpQpU7By5coIfCMior5hJomInGbNmoVXXnnF+Tk+Ph7vv/8+Vq5ciWPHjsFkMqGrqwsWiwXt7e2Ij48HAMjlcowfP9653sGDByEIAkaNGuW2favVCq1WG5kvQ0TURyySiMgpPj4eBoPB+fn06dO4+eab8cMf/hA///nPMWzYMFRUVOCBBx5AZ2enczmlUgmJROL83N3dDalUigMHDkAqlbrtIyEhof+/CBFRGLBIIiKv9u/fj66uLvzyl790Pq32xz/+0e96eXl5sNvtaGhoQGFhYX8Pk4ioXzC4TURejRw5El1dXVi3bh1OnTqF//f//h9+85vf+F1v1KhRWLBgAb73ve/hrbfeQm1tLfbt24fVq1fjr3/9awRGTkTUdyySiMirCRMmYM2aNVi9ejXGjRuHN954A6tWrQpo3Y0bN+J73/se/vu//xvXXHMNbrvtNnz66afIzMzs51ETEYUHn24jIiIiEsErSUREREQiWCQRERERiWCRRERERCSCRRIRERGRCBZJRERERCJYJBERERGJYJFEREREJIJFEhEREZEIFklEREREIlgkEREREYlgkUREREQkgkUSERERkYj/D5Ls8qsvILCJAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.jointplot(data=train_data, y='Age', x='Fare', kind='scatter')\n",
+ "\n",
+ "plt.ylabel('Age')\n",
+ "plt.xlabel('Fare')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8a9b010a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjZUlEQVR4nO3dfXBU5f2/8fdCyBLysJIEdlldEDW2aKLWYDHpV3kOpTwpKiip4ogOGqWkgLGRqsgwieIItGXEYtGgSOO0GtTRItFKAJEpzUgFfEKNBUrWqITdAHETw/n90fH8ugYUkk12uXO9ZnbGPefes5/jDOSasyeLw7IsSwAAAIbqFu0BAAAAOhKxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjxUV7gFhw7NgxHThwQMnJyXI4HNEeBwAAnATLstTQ0CCv16tu3U58/YbYkXTgwAH5fL5ojwEAANpg3759Ouuss064n9iRlJycLOm//7NSUlKiPA0AADgZwWBQPp/P/jl+IsSOZH90lZKSQuwAAHCa+aFbULhBGQAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0eKiPUBXkn3309EeAYg51Y/cFO0RABiOKzsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIwW1dhZsGCBHA5H2MPj8dj7LcvSggUL5PV6lZCQoGHDhmn37t1hxwiFQpo1a5bS09OVmJioiRMnav/+/Z19KgAAIEZF/crOhRdeqNraWvuxc+dOe9/ixYu1ZMkSLV++XNu3b5fH49Ho0aPV0NBgryksLFRFRYXKy8u1ZcsWHT58WOPHj1dLS0s0TgcAAMSYuKgPEBcXdjXnW5ZladmyZZo/f74mT54sSVq9erXcbrfWrl2rmTNnKhAIaNWqVXrmmWc0atQoSdKaNWvk8/n0+uuva8yYMcd9z1AopFAoZD8PBoMdcGYAACAWRP3Kzp49e+T1ejVw4EBdf/31+vTTTyVJNTU18vv9ysvLs9c6nU4NHTpUW7dulSRVV1erubk5bI3X61VmZqa95nhKS0vlcrnsh8/n66CzAwAA0RbV2BkyZIiefvppvfbaa3riiSfk9/uVm5urr776Sn6/X5LkdrvDXuN2u+19fr9f8fHx6t279wnXHE9xcbECgYD92LdvX4TPDAAAxIqofow1duxY+7+zsrKUk5Ojc889V6tXr9bll18uSXI4HGGvsSyr1bbv+qE1TqdTTqezHZMDAIDTRdQ/xvpfiYmJysrK0p49e+z7eL57haaurs6+2uPxeNTU1KT6+voTrgEAAF1bTMVOKBTS+++/r379+mngwIHyeDyqrKy09zc1Namqqkq5ubmSpOzsbPXo0SNsTW1trXbt2mWvAQAAXVtUP8aaN2+eJkyYoP79+6uurk6LFi1SMBjU9OnT5XA4VFhYqJKSEmVkZCgjI0MlJSXq1auXpk2bJklyuVyaMWOG5s6dq7S0NKWmpmrevHnKysqyfzsLAAB0bVGNnf379+uGG27Ql19+qT59+ujyyy/Xtm3bNGDAAElSUVGRGhsbVVBQoPr6eg0ZMkQbNmxQcnKyfYylS5cqLi5OU6ZMUWNjo0aOHKmysjJ17949WqcFAABiiMOyLCvaQ0RbMBiUy+VSIBBQSkpKh71P9t1Pd9ixgdNV9SM3RXsEAKepk/35HVP37AAAAEQasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMFrMxE5paakcDocKCwvtbZZlacGCBfJ6vUpISNCwYcO0e/fusNeFQiHNmjVL6enpSkxM1MSJE7V///5Onh4AAMSqmIid7du3a+XKlbrooovCti9evFhLlizR8uXLtX37dnk8Ho0ePVoNDQ32msLCQlVUVKi8vFxbtmzR4cOHNX78eLW0tHT2aQAAgBgU9dg5fPiw8vPz9cQTT6h37972dsuytGzZMs2fP1+TJ09WZmamVq9eraNHj2rt2rWSpEAgoFWrVunRRx/VqFGj9JOf/ERr1qzRzp079frrr5/wPUOhkILBYNgDAACYKeqxc+edd2rcuHEaNWpU2Paamhr5/X7l5eXZ25xOp4YOHaqtW7dKkqqrq9Xc3By2xuv1KjMz015zPKWlpXK5XPbD5/NF+KwAAECsiGrslJeXq7q6WqWlpa32+f1+SZLb7Q7b7na77X1+v1/x8fFhV4S+u+Z4iouLFQgE7Me+ffvaeyoAACBGxUXrjfft26fZs2drw4YN6tmz5wnXORyOsOeWZbXa9l0/tMbpdMrpdJ7awAAA4LQUtSs71dXVqqurU3Z2tuLi4hQXF6eqqir9/ve/V1xcnH1F57tXaOrq6ux9Ho9HTU1Nqq+vP+EaAADQtUUtdkaOHKmdO3dqx44d9mPw4MHKz8/Xjh07dM4558jj8aiystJ+TVNTk6qqqpSbmytJys7OVo8ePcLW1NbWateuXfYaAADQtUXtY6zk5GRlZmaGbUtMTFRaWpq9vbCwUCUlJcrIyFBGRoZKSkrUq1cvTZs2TZLkcrk0Y8YMzZ07V2lpaUpNTdW8efOUlZXV6oZnAADQNUUtdk5GUVGRGhsbVVBQoPr6eg0ZMkQbNmxQcnKyvWbp0qWKi4vTlClT1NjYqJEjR6qsrEzdu3eP4uQAACBWOCzLsqI9RLQFg0G5XC4FAgGlpKR02Ptk3/10hx0bOF1VP3JTtEcAcJo62Z/fUf+eHQAAgI5E7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjBYX7QEAwAR7F2ZFewQg5vS/f2e0R5DElR0AAGA4YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYLQ2xc6IESN06NChVtuDwaBGjBjR3pkAAAAipk2xs3HjRjU1NbXa/vXXX2vz5s3tHgoAACBS4k5l8bvvvmv/93vvvSe/328/b2lp0fr163XmmWdGbjoAAIB2OqXYueSSS+RwOORwOI77cVVCQoL+8Ic/RGw4AACA9jql2KmpqZFlWTrnnHP0j3/8Q3369LH3xcfHq2/fvurevXvEhwQAAGirU4qdAQMGSJKOHTvWIcMAAABEWpt/9fyjjz7SypUrtWjRIi1cuDDscbJWrFihiy66SCkpKUpJSVFOTo7+9re/2fsty9KCBQvk9XqVkJCgYcOGaffu3WHHCIVCmjVrltLT05WYmKiJEydq//79bT0tAABgmFO6svOtJ554QnfccYfS09Pl8XjkcDjsfQ6HQ/fff/9JHeess87SQw89pPPOO0+StHr1ak2aNEnvvPOOLrzwQi1evFhLlixRWVmZzj//fC1atEijR4/Whx9+qOTkZElSYWGhXn75ZZWXlystLU1z587V+PHjVV1dzUdqAABADsuyrFN90YABA1RQUKB77rkn4gOlpqbqkUce0S233CKv16vCwkL7fUKhkNxutx5++GHNnDlTgUBAffr00TPPPKOpU6dKkg4cOCCfz6dXX31VY8aMOe57hEIhhUIh+3kwGJTP51MgEFBKSkrEz+lb2Xc/3WHHBk5X1Y/cFO0RImLvwqxojwDEnP737+zQ4weDQblcrh/8+d2mj7Hq6+t13XXXtXm442lpaVF5ebmOHDminJwc1dTUyO/3Ky8vz17jdDo1dOhQbd26VZJUXV2t5ubmsDVer1eZmZn2muMpLS2Vy+WyHz6fL6LnAgAAYkebYue6667Thg0bIjLAzp07lZSUJKfTqdtvv10VFRW64IIL7O/wcbvdYevdbre9z+/3Kz4+Xr179z7hmuMpLi5WIBCwH/v27YvIuQAAgNjTpnt2zjvvPN13333atm2bsrKy1KNHj7D9v/rVr076WD/60Y+0Y8cOHTp0SM8//7ymT5+uqqoqe///3g8k/fem5e9u+64fWuN0OuV0Ok96RgAAcPpqU+ysXLlSSUlJqqqqCgsT6b9xciqxEx8fb9+gPHjwYG3fvl2/+93v7Pt0/H6/+vXrZ6+vq6uzr/Z4PB41NTWpvr4+7OpOXV2dcnNz23JqAADAMG36GKumpuaEj08//bRdA1mWpVAopIEDB8rj8aiystLe19TUpKqqKjtksrOz1aNHj7A1tbW12rVrF7EDAAAktfHKTqTce++9Gjt2rHw+nxoaGlReXq6NGzdq/fr1cjgcKiwsVElJiTIyMpSRkaGSkhL16tVL06ZNkyS5XC7NmDFDc+fOVVpamlJTUzVv3jxlZWVp1KhR0Tw1AAAQI9oUO7fccsv37n/yySdP6jiff/65brzxRtXW1srlcumiiy7S+vXrNXr0aElSUVGRGhsbVVBQoPr6eg0ZMkQbNmywv2NHkpYuXaq4uDhNmTJFjY2NGjlypMrKyviOHQAAIKmN37Nz9dVXhz1vbm7Wrl27dOjQIY0YMUIvvPBCxAbsDCf7e/rtxffsAK3xPTuAuWLle3badGWnoqKi1bZjx46poKBA55xzTlsOCQAA0CHa/G9jtTpQt2769a9/raVLl0bqkAAAAO0WsdiRpE8++UTffPNNJA8JAADQLm36GGvOnDlhzy3LUm1trV555RVNnz49IoMBAABEQpti55133gl73q1bN/Xp00ePPvroD/6mFgAAQGdqU+y8+eabkZ4DAACgQ7TrSwW/+OILffjhh3I4HDr//PPVp0+fSM0FAAAQEW26QfnIkSO65ZZb1K9fP1155ZW64oor5PV6NWPGDB09ejTSMwIAALRZm2Jnzpw5qqqq0ssvv6xDhw7p0KFDevHFF1VVVaW5c+dGekYAAIA2a9PHWM8//7z++te/atiwYfa2X/ziF0pISNCUKVO0YsWKSM0HAADQLm26snP06FG53e5W2/v27cvHWAAAIKa0KXZycnL0wAMP6Ouvv7a3NTY26sEHH1ROTk7EhgMAAGivNn2MtWzZMo0dO1ZnnXWWLr74YjkcDu3YsUNOp1MbNmyI9IwAAABt1qbYycrK0p49e7RmzRp98MEHsixL119/vfLz85WQkBDpGQEAANqsTbFTWloqt9ut2267LWz7k08+qS+++EL33HNPRIYDAABorzbds/PHP/5RP/7xj1ttv/DCC/X444+3eygAAIBIaVPs+P1+9evXr9X2Pn36qLa2tt1DAQAAREqbYsfn8+mtt95qtf2tt96S1+tt91AAAACR0qZ7dm699VYVFhaqublZI0aMkCS98cYbKioq4huUAQBATGlT7BQVFengwYMqKChQU1OTJKlnz5665557VFxcHNEBAQAA2qNNseNwOPTwww/rvvvu0/vvv6+EhARlZGTI6XRGej4AAIB2aVPsfCspKUmXXXZZpGYBAACIuDbdoAwAAHC6IHYAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYLSoxk5paakuu+wyJScnq2/fvrrqqqv04Ycfhq2xLEsLFiyQ1+tVQkKChg0bpt27d4etCYVCmjVrltLT05WYmKiJEydq//79nXkqAAAgRkU1dqqqqnTnnXdq27Ztqqys1DfffKO8vDwdOXLEXrN48WItWbJEy5cv1/bt2+XxeDR69Gg1NDTYawoLC1VRUaHy8nJt2bJFhw8f1vjx49XS0hKN0wIAADEkLppvvn79+rDnTz31lPr27avq6mpdeeWVsixLy5Yt0/z58zV58mRJ0urVq+V2u7V27VrNnDlTgUBAq1at0jPPPKNRo0ZJktasWSOfz6fXX39dY8aMafW+oVBIoVDIfh4MBjvwLAEAQDTF1D07gUBAkpSamipJqqmpkd/vV15enr3G6XRq6NCh2rp1qySpurpazc3NYWu8Xq8yMzPtNd9VWloql8tlP3w+X0edEgAAiLKYiR3LsjRnzhz93//9nzIzMyVJfr9fkuR2u8PWut1ue5/f71d8fLx69+59wjXfVVxcrEAgYD/27dsX6dMBAAAxIqofY/2vu+66S++++662bNnSap/D4Qh7bllWq23f9X1rnE6nnE5n24cFAACnjZi4sjNr1iy99NJLevPNN3XWWWfZ2z0ejyS1ukJTV1dnX+3xeDxqampSfX39CdcAAICuK6qxY1mW7rrrLr3wwgv6+9//roEDB4btHzhwoDwejyorK+1tTU1NqqqqUm5uriQpOztbPXr0CFtTW1urXbt22WsAAEDXFdWPse68806tXbtWL774opKTk+0rOC6XSwkJCXI4HCosLFRJSYkyMjKUkZGhkpIS9erVS9OmTbPXzpgxQ3PnzlVaWppSU1M1b948ZWVl2b+dBQAAuq6oxs6KFSskScOGDQvb/tRTT+nmm2+WJBUVFamxsVEFBQWqr6/XkCFDtGHDBiUnJ9vrly5dqri4OE2ZMkWNjY0aOXKkysrK1L179846FQAAEKMclmVZ0R4i2oLBoFwulwKBgFJSUjrsfbLvfrrDjg2crqofuSnaI0TE3oVZ0R4BiDn979/Zocc/2Z/fMXGDMgAAQEchdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARotq7GzatEkTJkyQ1+uVw+HQunXrwvZblqUFCxbI6/UqISFBw4YN0+7du8PWhEIhzZo1S+np6UpMTNTEiRO1f//+TjwLAAAQy6IaO0eOHNHFF1+s5cuXH3f/4sWLtWTJEi1fvlzbt2+Xx+PR6NGj1dDQYK8pLCxURUWFysvLtWXLFh0+fFjjx49XS0tLZ50GAACIYXHRfPOxY8dq7Nixx91nWZaWLVum+fPna/LkyZKk1atXy+12a+3atZo5c6YCgYBWrVqlZ555RqNGjZIkrVmzRj6fT6+//rrGjBnTaecCAABiU8zes1NTUyO/36+8vDx7m9Pp1NChQ7V161ZJUnV1tZqbm8PWeL1eZWZm2muOJxQKKRgMhj0AAICZYjZ2/H6/JMntdodtd7vd9j6/36/4+Hj17t37hGuOp7S0VC6Xy374fL4ITw8AAGJFzMbOtxwOR9hzy7JabfuuH1pTXFysQCBgP/bt2xeRWQEAQOyJ2djxeDyS1OoKTV1dnX21x+PxqKmpSfX19SdcczxOp1MpKSlhDwAAYKaYjZ2BAwfK4/GosrLS3tbU1KSqqirl5uZKkrKzs9WjR4+wNbW1tdq1a5e9BgAAdG1R/W2sw4cP6+OPP7af19TUaMeOHUpNTVX//v1VWFiokpISZWRkKCMjQyUlJerVq5emTZsmSXK5XJoxY4bmzp2rtLQ0paamat68ecrKyrJ/OwsAAHRtUY2df/7znxo+fLj9fM6cOZKk6dOnq6ysTEVFRWpsbFRBQYHq6+s1ZMgQbdiwQcnJyfZrli5dqri4OE2ZMkWNjY0aOXKkysrK1L17904/HwAAEHsclmVZ0R4i2oLBoFwulwKBQIfev5N999MddmzgdFX9yE3RHiEi9i7MivYIQMzpf//ODj3+yf78jtl7dgAAACKB2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGM2Y2Hnsscc0cOBA9ezZU9nZ2dq8eXO0RwIAADHAiNh57rnnVFhYqPnz5+udd97RFVdcobFjx2rv3r3RHg0AAESZEbGzZMkSzZgxQ7feeqsGDRqkZcuWyefzacWKFdEeDQAARFlctAdor6amJlVXV+s3v/lN2Pa8vDxt3br1uK8JhUIKhUL280AgIEkKBoMdN6ikllBjhx4fOB119J+7ztLwdUu0RwBiTkf/+f72+JZlfe+60z52vvzyS7W0tMjtdodtd7vd8vv9x31NaWmpHnzwwVbbfT5fh8wI4MRcf7g92iMA6Cilrk55m4aGBrlcJ36v0z52vuVwOMKeW5bVatu3iouLNWfOHPv5sWPHdPDgQaWlpZ3wNTBHMBiUz+fTvn37lJKSEu1xAEQQf767Fsuy1NDQIK/X+73rTvvYSU9PV/fu3Vtdxamrq2t1tedbTqdTTqczbNsZZ5zRUSMiRqWkpPCXIWAo/nx3Hd93Redbp/0NyvHx8crOzlZlZWXY9srKSuXm5kZpKgAAECtO+ys7kjRnzhzdeOONGjx4sHJycrRy5Urt3btXt9/OvQAAAHR1RsTO1KlT9dVXX2nhwoWqra1VZmamXn31VQ0YMCDaoyEGOZ1OPfDAA60+ygRw+uPPN47HYf3Q72sBAACcxk77e3YAAAC+D7EDAACMRuwAAACjETsAAMBoxA66lMcee0wDBw5Uz549lZ2drc2bN0d7JAARsGnTJk2YMEFer1cOh0Pr1q2L9kiIIcQOuoznnntOhYWFmj9/vt555x1dccUVGjt2rPbu3Rvt0QC005EjR3TxxRdr+fLl0R4FMYhfPUeXMWTIEF166aVasWKFvW3QoEG66qqrVFpaGsXJAESSw+FQRUWFrrrqqmiPghjBlR10CU1NTaqurlZeXl7Y9ry8PG3dujVKUwEAOgOxgy7hyy+/VEtLS6t/HNbtdrf6R2QBAGYhdtClOByOsOeWZbXaBgAwC7GDLiE9PV3du3dvdRWnrq6u1dUeAIBZiB10CfHx8crOzlZlZWXY9srKSuXm5kZpKgBAZzDiXz0HTsacOXN04403avDgwcrJydHKlSu1d+9e3X777dEeDUA7HT58WB9//LH9vKamRjt27FBqaqr69+8fxckQC/jVc3Qpjz32mBYvXqza2lplZmZq6dKluvLKK6M9FoB22rhxo4YPH95q+/Tp01VWVtb5AyGmEDsAAMBo3LMDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxA6BL2LhxoxwOhw4dOtSh73PzzTfrqquu6tD3AHBqiB0Anaqurk4zZ85U//795XQ65fF4NGbMGL399tsd+r65ubmqra2Vy+Xq0PcBEHv4h0ABdKprrrlGzc3NWr16tc455xx9/vnneuONN3Tw4ME2Hc+yLLW0tCgu7vv/OouPj5fH42nTewA4vXFlB0CnOXTokLZs2aKHH35Yw4cP14ABA/TTn/5UxcXFGjdunD777DM5HA7t2LEj7DUOh0MbN26U9P8/jnrttdc0ePBgOZ1OrVq1Sg6HQx988EHY+y1ZskRnn322LMsK+xgrEAgoISFB69evD1v/wgsvKDExUYcPH5Yk/ec//9HUqVPVu3dvpaWladKkSfrss8/s9S0tLZozZ47OOOMMpaWlqaioSPxzg0DsIXYAdJqkpCQlJSVp3bp1CoVC7TpWUVGRSktL9f777+vaa69Vdna2nn322bA1a9eu1bRp0+RwOMK2u1wujRs37rjrJ02apKSkJB09elTDhw9XUlKSNm3apC1btigpKUk///nP1dTUJEl69NFH9eSTT2rVqlXasmWLDh48qIqKinadF4DII3YAdJq4uDiVlZVp9erVOuOMM/Szn/1M9957r959991TPtbChQs1evRonXvuuUpLS1N+fr7Wrl1r7//oo49UXV2tX/7yl8d9fX5+vtatW6ejR49KkoLBoF555RV7fXl5ubp166Y//elPysrK0qBBg/TUU09p79699lWmZcuWqbi4WNdcc40GDRqkxx9/nHuCgBhE7ADoVNdcc40OHDigl156SWPGjNHGjRt16aWXqqys7JSOM3jw4LDn119/vf79739r27ZtkqRnn31Wl1xyiS644ILjvn7cuHGKi4vTSy+9JEl6/vnnlZycrLy8PElSdXW1Pv74YyUnJ9tXpFJTU/X111/rk08+USAQUG1trXJycuxjxsXFtZoLQPQROwA6Xc+ePTV69Gjdf//92rp1q26++WY98MAD6tbtv38l/e99L83Nzcc9RmJiYtjzfv36afjw4fbVnT//+c8nvKoj/feG5WuvvdZev3btWk2dOtW+0fnYsWPKzs7Wjh07wh4fffSRpk2b1vaTB9DpiB0AUXfBBRfoyJEj6tOnjySptrbW3ve/Nyv/kPz8fD333HN6++239cknn+j666//wfXr16/X7t279eabbyo/P9/ed+mll2rPnj3q27evzjvvvLCHy+WSy+VSv3797CtJkvTNN9+ourr6pOcF0DmIHQCd5quvvtKIESO0Zs0avfvuu6qpqdFf/vIXLV68WJMmTVJCQoIuv/xyPfTQQ3rvvfe0adMm/fa3vz3p40+ePFnBYFB33HGHhg8frjPPPPN71w8dOlRut1v5+fk6++yzdfnll9v78vPzlZ6erkmTJmnz5s2qqalRVVWVZs+erf3790uSZs+erYceekgVFRX64IMPVFBQ0OFfWgjg1BE7ADpNUlKShgwZoqVLl+rKK69UZmam7rvvPt12221avny5JOnJJ59Uc3OzBg8erNmzZ2vRokUnffyUlBRNmDBB//rXv8Ku0pyIw+HQDTfccNz1vXr10qZNm9S/f39NnjxZgwYN0i233KLGxkalpKRIkubOnaubbrpJN998s3JycpScnKyrr776FP6PAOgMDosvhQAAAAbjyg4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACj/T8baXUAfgAWWwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(data=train_data, x='Survived')\n",
+ "\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a21f0009",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "PassengerId 0\n",
+ "Survived 0\n",
+ "Pclass 0\n",
+ "Name 0\n",
+ "Sex 0\n",
+ "Age 177\n",
+ "SibSp 0\n",
+ "Parch 0\n",
+ "Ticket 0\n",
+ "Fare 0\n",
+ "Cabin 687\n",
+ "Embarked 2\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "83a3f9cc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "PassengerId 0\n",
+ "Pclass 0\n",
+ "Name 0\n",
+ "Sex 0\n",
+ "Age 86\n",
+ "SibSp 0\n",
+ "Parch 0\n",
+ "Ticket 0\n",
+ "Fare 1\n",
+ "Cabin 327\n",
+ "Embarked 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "test_data.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "c16cb400",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[Text(0, 0.5, '')]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwUAAAEmCAYAAAAzwjzIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6I0lEQVR4nO3deXhOd/7/8dedRDbZJMhCEGOfoCWtiWntsRSlFC1tudAt9qXtqCLtqJS2mDIUYytVY7RUW1JrlKJD2qAoQ2PpSMTXkkhEEsn5/dGfe3o3sSSS+76T+/m4rnNxf87nnPM+5+R9J+/7c859TIZhGAIAAADgsJxsHQAAAAAA26IoAAAAABwcRQEAAADg4CgKAAAAAAdHUQAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAutg7AHuTn5+v8+fPy9vaWyWSydTiA3TMMQ9euXVNISIicnOzzswXyGiga8hoof4qS1xQFks6fP6/Q0FBbhwGUOefOnVP16tVtHUahyGugeMhroPy5l7ymKJDk7e0t6dcD5uPjY+NoAPuXnp6u0NBQc+7YI/IaKBryGih/ipLXFAWSeQjSx8eHNxmgCOx5+J68BoqHvAbKn3vJa/u8aBAAAACA1VAUAAAAAA6OogAAAABwcNxTAKswDEM3b95UXl6erUPBPXB2dpaLi4tdX1sM2yOvy54KFSrI2dnZ1mHAjpHXZU9J5TVFAUpdTk6OkpOTdf36dVuHgiLw9PRUcHCwXF1dbR0K7BB5XTaZTCZVr15dXl5etg4Fdoi8LptKKq8pClCq8vPzlZSUJGdnZ4WEhMjV1ZVPn+2cYRjKycnRxYsXlZSUpLp169rtg4xgG+R12WQYhi5evKhffvlFdevWZcQAFsjrsqkk85qiAKUqJydH+fn5Cg0Nlaenp63DwT3y8PBQhQoVdObMGeXk5Mjd3d3WIcGOkNdlV5UqVXT69Gnl5uZSFMACeV12lVRe8/EfrIJPmssezhnuhp+RsodPfnE35HXZU1J5zUgBAIfX/JWPbB3CXSW8+5ytQwAAlGOUgwAAAICDoygA7FStWrU0e/ZsW4cBoASR10D5U17ymsuHYDPWvGSjOJdeDBo0SMuXL5ckubi4yN/fX02aNNHTTz+tQYMGcd0lUAhrX4pV1Nwmr4GiI68dA0cJuIPOnTsrOTlZp0+f1qZNm9S2bVuNGjVK3bp1082bN20dHoBiIK+B8oe8vn8UBcAduLm5KSgoSNWqVVOzZs30+uuv6/PPP9emTZu0bNkySVJaWppeeOEFVa1aVT4+PmrXrp0OHjxoXsepU6fUo0cPBQYGysvLSw899JC2bt1qsZ3U1FR1795dHh4eCgsL08cff2zN3QQcCnkNlD/k9f2jKACKqF27dmratKk+++wzGYahrl27KiUlRRs3blRCQoKaNWum9u3b6/Lly5KkjIwMPfbYY9q6dat++OEHderUSd27d9fZs2fN6xw0aJBOnz6t7du3a+3atZo3b55SU1NttYuAwyGvgfKHvC4a7ikAiqFBgwY6dOiQduzYocOHDys1NVVubm6SpPfee0/r16/X2rVr9cILL6hp06Zq2rSpedmpU6dq3bp12rBhg4YPH64TJ05o06ZN2rdvn1q0aCFJWrx4sRo2bGiTfQMcFXkNlD/k9b2jKACKwTAMmUwmJSQkKCMjQwEBARbzs7KydOrUKUlSZmam3nzzTX355Zc6f/68bt68qaysLPMnD8eOHZOLi4siIiLMyzdo0EB+fn5W2x8A5DVQHpHX946iACiGY8eOKSwsTPn5+QoODlZ8fHyBPrfeJF555RV9/fXXeu+991SnTh15eHjoySefVE5OjqRf37AknjQK2Bp5DZQ/5PW9oygAimj79u06fPiwxowZo+rVqyslJUUuLi6qVatWof137dqlQYMG6YknnpD06zWLp0+fNs9v2LChbt68qQMHDujhhx+WJB0/flxXr14t5T0BcAt5DZQ/5HXRUBQAd5Cdna2UlBTl5eXpwoULiouLU2xsrLp166bnnntOTk5OioyMVM+ePTV9+nTVr19f58+f18aNG9WzZ09FRESoTp06+uyzz9S9e3eZTCZNmjRJ+fn55m3Ur19fnTt31vPPP6+FCxfKxcVFo0ePloeHhw33HCi/yGug/CGv7x9FAWymOA8Us7a4uDgFBwfLxcVFlSpVUtOmTfXBBx9o4MCB5oehbNy4URMnTtTgwYN18eJFBQUFqVWrVgoMDJQkzZo1S4MHD1bLli1VuXJlvfbaa0pPT7fYztKlSzV06FC1bt1agYGBmjp1qiZNmmT1/QXuF3n9P+Q1ygvy+n/Kc16bjFsXSDmw9PR0+fr6Ki0tTT4+PrYOp1y5ceOGkpKSFBYWJnd3d1uHgyK407krCzlTlBit/bTO4rCnX8rkddnlSHmNoiGvy66SymueUwAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAUBQAAAICD4ytJAQBAuWDNbxKzp28EA0oCIwUAAACAg6MoAAAAABwcRQFgZ+Lj42UymXT16tVS3c6gQYPUs2fPUt0GgP8ht4HypzzlNfcUwGbOvtXYatuqMflwkZdJTU3VpEmTtGnTJl24cMH82PSYmBhFRkaWQpS/atmypZKTk+Xr61tq2wBKizXzWiK3AWsgr2+vPOU1RQFwG71791Zubq6WL1+u2rVr68KFC9q2bZsuX75crPUZhqG8vDy5uNw57VxdXRUUFFSsbQC4O3IbKH/I6/vH5UNAIa5evardu3dr+vTpatu2rWrWrKmHH35YEyZMUNeuXXX69GmZTCYlJiZaLGMymRQfHy/pf0OKX3/9tSIiIuTm5qbFixfLZDLpp59+stjezJkzVatWLRmGYTEUmZaWJg8PD8XFxVn0/+yzz1SxYkVlZGRIkv773/+qX79+qlSpkgICAtSjRw+dPn3a3D8vL09jx46Vn5+fAgIC9Oqrr8owjFI5doA9I7eB8oe8LhkUBUAhvLy85OXlpfXr1ys7O/u+1vXqq68qNjZWx44d05NPPqnmzZvr448/tuizatUq9e/fXyaTyaLd19dXXbt2LbR/jx495OXlpevXr6tt27by8vLSN998o927d8vLy0udO3dWTk6OJOn999/XkiVLtHjxYu3evVuXL1/WunXr7mu/gLKI3AbKH/K6ZNhNURAbGyuTyaTRo0eb2wzDUExMjEJCQuTh4aE2bdroyJEjFstlZ2drxIgRqly5sipWrKjHH39cv/zyi5WjR3nj4uKiZcuWafny5fLz89Of//xnvf766zp06FCR1/XWW28pKipKf/jDHxQQEKABAwZo1apV5vknTpxQQkKCnnnmmUKXHzBggNavX6/r169LktLT0/XVV1+Z+69evVpOTk76xz/+ocaNG6thw4ZaunSpzp49a/4EZPbs2ZowYYJ69+6thg0b6sMPPywX1z8CRUVuA+UPeV0y7KIo2L9/vxYuXKgmTZpYtM+YMUMzZ87U3LlztX//fgUFBSkqKkrXrl0z9xk9erTWrVun1atXa/fu3crIyFC3bt2Ul5dn7d1AOdO7d2+dP39eGzZsUKdOnRQfH69mzZpp2bJlRVpPRESExeunnnpKZ86c0b59+yRJH3/8sR544AE1atSo0OW7du0qFxcXbdiwQZL06aefytvbWx07dpQkJSQk6OTJk/L29jZ/WuLv768bN27o1KlTSktLU3JyssWNVi4uLgXiAhwFuQ2UP+T1/bN5UZCRkaEBAwZo0aJFqlSpkrndMAzNnj1bEydOVK9evRQeHq7ly5fr+vXr5ootLS1Nixcv1vvvv68OHTrowQcf1MqVK3X48GFt3brVVruEcsTd3V1RUVGaPHmy9uzZo0GDBmnKlClycvo1dX57jV9ubm6h66hYsaLF6+DgYLVt29b8c/zJJ5/c9hMH6debmJ588klz/1WrVqlfv37mm5/y8/PVvHlzJSYmWkwnTpxQ//79i7/zQDlGbgPlD3l9f2xeFAwbNkxdu3ZVhw4dLNqTkpKUkpJirqwkyc3NTa1bt9aePXsk/Vpt5ebmWvQJCQlReHi4uQ9Qkho1aqTMzExVqVJFkpScnGye99sbmO5mwIAB+uc//6m9e/fq1KlTeuqpp+7aPy4uTkeOHNGOHTs0YMAA87xmzZrpP//5j6pWrao6depYTL6+vvL19VVwcLD5Uw5JunnzphISEu45XqC8I7eB8oe8LhqbFgWrV69WQkKCYmNjC8xLSUmRJAUGBlq0BwYGmuelpKTI1dXVYoTh930Kk52drfT0dIsJ+K1Lly6pXbt2WrlypQ4dOqSkpCT961//0owZM9SjRw95eHjoT3/6k9555x0dPXpU33zzjd544417Xn+vXr2Unp6ul19+WW3btlW1atXu2L9169YKDAzUgAEDVKtWLf3pT38yzxswYIAqV66sHj16aNeuXUpKStLOnTs1atQo8/01o0aN0jvvvKN169bpp59+UnR0dKk/aMXayGvcC3K7bCGvcS/I65Jhs6Lg3LlzGjVqlD7++GO5u7vftt/v7+w2DKNA2+/drU9sbKy5GvP19VVoaGjRgke55+XlpRYtWmjWrFlq1aqVwsPDNWnSJD3//POaO3euJGnJkiXKzc1VRESERo0apalTp97z+n18fNS9e3cdPHjQ4hOE2zGZTHr66acL7e/p6alvvvlGNWrUUK9evdSwYUMNHjxYWVlZ8vHxkSSNGzdOzz33nAYNGqTIyEh5e3vriSeeKMIRsX/kNe4FuV22kNe4F+R1yTAZNvpC4/Xr1+uJJ56Qs7OzuS0vL08mk0lOTk46fvy46tSpo++//14PPviguU+PHj3k5+en5cuXa/v27Wrfvr0uX75sMVrQtGlT9ezZU2+++Wah287Ozrb4yqr09HSFhoYqLS3NfEJQMm7cuKGkpCSFhYXdsfiD/bnTuUtPT5evr69d5cz95HXzVz4q7fDuW8K7z9k6BDPyuuwq73ltzVy2p5wsCeR12VVSeW2zkYL27dvr8OHDFjdZREREaMCAAUpMTFTt2rUVFBSkLVu2mJfJycnRzp071bJlS0lS8+bNVaFCBYs+ycnJ+vHHH819CuPm5iYfHx+LCUDZRl4D5Q95DVjPnZ/dXIq8vb0VHh5u0VaxYkUFBASY20ePHq1p06apbt26qlu3rqZNmyZPT0/z3dm+vr4aMmSIxo0bp4CAAPn7+2v8+PFq3LhxgRuXAQAAABTOZkXBvXj11VeVlZWl6OhoXblyRS1atNDmzZvl7e1t7jNr1iy5uLiob9++ysrKUvv27bVs2TKLy5IAAAAA3J5dFQW3nuR2i8lkUkxMjGJiYm67jLu7u+bMmaM5c+aUbnAAAABAOWXz5xQAAAAAsC2KAliFjb7kCveBc4a74Wek7OGc4W74GSl7SuqcURSgVFWoUEGSdP36dRtHgqK6dc5unUPgFvK67MrJyZEk7rtDAeR12VVSeW1X9xSg/HF2dpafn59SU1Ml/frQjrs9fA62ZRiGrl+/rtTUVPn5+fHHAwogr8um/Px8Xbx4UZ6ennJx4dc/LJHXZVNJ5jXvCih1QUFBkmR+o0HZ4OfnZz53wO+R12WTk5OTatSowR97KBR5XTaVVF5TFKDUmUwmBQcHq2rVqsrNzbV1OLgHFSpUYIQAd0Rel02urq5ycuLKYRSOvC6bSiqvKQpgNc7OzvyhCZQz5DVQ/pDXjomiACgBzV/5yGrbSnj3OattCwAAOAbGEAEAAAAHR1EAAAAAODiKAgAAAMDBURQAAAAADo6iAAAAAHBwFAUAAACAg6MoAAAAABwcRQEAAADg4CgKAAAAAAdHUQAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAUBQAAAICDoygAAAAAHBxFAQAAAODgKAoAAAAAB0dRAAAAADg4igIAAADAwVEUAAAAAA6OogAAAABwcBQFAAAAgIOjKAAAAAAcHEUBAAAA4OAoCgAAAAAHR1EAAAAAODiKAgAAAMDBURQAAAAADs6mRcH8+fPVpEkT+fj4yMfHR5GRkdq0aZN5vmEYiomJUUhIiDw8PNSmTRsdOXLEYh3Z2dkaMWKEKleurIoVK+rxxx/XL7/8Yu1dAQAAAMosmxYF1atX1zvvvKMDBw7owIEDateunXr06GH+w3/GjBmaOXOm5s6dq/379ysoKEhRUVG6du2aeR2jR4/WunXrtHr1au3evVsZGRnq1q2b8vLybLVbAAAAQJli06Kge/fueuyxx1SvXj3Vq1dPb7/9try8vLRv3z4ZhqHZs2dr4sSJ6tWrl8LDw7V8+XJdv35dq1atkiSlpaVp8eLFev/999WhQwc9+OCDWrlypQ4fPqytW7factcAAACAMsNu7inIy8vT6tWrlZmZqcjISCUlJSklJUUdO3Y093Fzc1Pr1q21Z88eSVJCQoJyc3Mt+oSEhCg8PNzcBwAAAMCdudg6gMOHDysyMlI3btyQl5eX1q1bp0aNGpn/qA8MDLToHxgYqDNnzkiSUlJS5OrqqkqVKhXok5KSctttZmdnKzs72/w6PT29pHYHgI2Q10D5Q14D1mPzkYL69esrMTFR+/bt08svv6yBAwfq6NGj5vkmk8miv2EYBdp+7259YmNj5evra55CQ0PvbycA2Bx5DZQ/5DVgPTYvClxdXVWnTh1FREQoNjZWTZs21d/+9jcFBQVJUoFP/FNTU82jB0FBQcrJydGVK1du26cwEyZMUFpamnk6d+5cCe8VAGsjr4Hyh7wGrMfmRcHvGYah7OxshYWFKSgoSFu2bDHPy8nJ0c6dO9WyZUtJUvPmzVWhQgWLPsnJyfrxxx/NfQrj5uZm/hrUWxOAso28Bsof8hqwHpveU/D666+rS5cuCg0N1bVr17R69WrFx8crLi5OJpNJo0eP1rRp01S3bl3VrVtX06ZNk6enp/r37y9J8vX11ZAhQzRu3DgFBATI399f48ePV+PGjdWhQwdb7hoAAABQZti0KLhw4YKeffZZJScny9fXV02aNFFcXJyioqIkSa+++qqysrIUHR2tK1euqEWLFtq8ebO8vb3N65g1a5ZcXFzUt29fZWVlqX379lq2bJmcnZ1ttVsAAABAmWLTomDx4sV3nG8ymRQTE6OYmJjb9nF3d9ecOXM0Z86cEo4OAAAAcAx2d08BAAAAAOuiKAAAAAAcXLGKgnbt2unq1asF2tPT09WuXbv7jQkAAACAFRWrKIiPj1dOTk6B9hs3bmjXrl33HRQAAAAA6ynSjcaHDh0y///o0aMWDxbLy8tTXFycqlWrVnLRAQAAACh1RSoKHnjgAZlMJplMpkIvE/Lw8OBbgAAAAIAypkhFQVJSkgzDUO3atfXvf/9bVapUMc9zdXVV1apVeT4AAAAAUMYUqSioWbOmJCk/P79UggEAAABgfcV+eNmJEycUHx+v1NTUAkXC5MmT7zswAAAAANZRrKJg0aJFevnll1W5cmUFBQXJZDKZ55lMJooCAAAAoAwpVlEwdepUvf3223rttddKOh4AAAAAVlas5xRcuXJFffr0KelYAAAAANhAsYqCPn36aPPmzSUdCwAAAAAbKNblQ3Xq1NGkSZO0b98+NW7cWBUqVLCYP3LkyBIJDgAAAEDpK1ZRsHDhQnl5eWnnzp3auXOnxTyTyURRAAAAAJQhxSoKkpKSSjoOAAAAADZSrHsKAAAAAJQfxRopGDx48B3nL1mypFjBAAAAALC+YhUFV65csXidm5urH3/8UVevXlW7du1KJDAAAAAA1lGsomDdunUF2vLz8xUdHa3atWvfd1AAAAAArKfE7ilwcnLSmDFjNGvWrJJaJQAAAAArKNEbjU+dOqWbN2+W5CoBAAAAlLJiXT40duxYi9eGYSg5OVlfffWVBg4cWCKBAQAAALCOYhUFP/zwg8VrJycnValSRe+///5dv5kIAAAAgH0pVlGwY8eOko4DAAAAgI0Uqyi45eLFizp+/LhMJpPq1aunKlWqlFRcAACUCWffamzrEO6qxuTDtg4BgJ0r1o3GmZmZGjx4sIKDg9WqVSs9+uijCgkJ0ZAhQ3T9+vWSjhEAAABAKSpWUTB27Fjt3LlTX3zxha5evaqrV6/q888/186dOzVu3LiSjhEAAABAKSrW5UOffvqp1q5dqzZt2pjbHnvsMXl4eKhv376aP39+ScUHAAAAoJQVa6Tg+vXrCgwMLNBetWpVLh8CAAAAyphiFQWRkZGaMmWKbty4YW7LysrSm2++qcjIyBILDgAAAEDpK9blQ7Nnz1aXLl1UvXp1NW3aVCaTSYmJiXJzc9PmzZtLOkYAAAAApahYRUHjxo31n//8RytXrtRPP/0kwzD01FNPacCAAfLw8CjpGAEAAACUomIVBbGxsQoMDNTzzz9v0b5kyRJdvHhRr732WokEBwAAYI+s/XwKnjWB0lasewoWLFigBg0aFGj/4x//qA8//PC+gwIAAABgPcUqClJSUhQcHFygvUqVKkpOTr7voAAAAABYT7GKgtDQUH377bcF2r/99luFhITc83piY2P10EMPydvbW1WrVlXPnj11/Phxiz6GYSgmJkYhISHy8PBQmzZtdOTIEYs+2dnZGjFihCpXrqyKFSvq8ccf1y+//FKcXQMAAAAcTrGKgqFDh2r06NFaunSpzpw5ozNnzmjJkiUaM2ZMgfsM7mTnzp0aNmyY9u3bpy1btujmzZvq2LGjMjMzzX1mzJihmTNnau7cudq/f7+CgoIUFRWla9eumfuMHj1a69at0+rVq7V7925lZGSoW7duysvLK87uAQAAAA6lWDcav/rqq7p8+bKio6OVk5MjSXJ3d9drr72mCRMm3PN64uLiLF4vXbpUVatWVUJCglq1aiXDMDR79mxNnDhRvXr1kiQtX75cgYGBWrVqlV588UWlpaVp8eLFWrFihTp06CBJWrlypUJDQ7V161Z16tSpOLsIAAAAOIxijRSYTCZNnz5dFy9e1L59+3Tw4EFdvnxZkydPvq9g0tLSJEn+/v6SpKSkJKWkpKhjx47mPm5ubmrdurX27NkjSUpISFBubq5Fn5CQEIWHh5v7AAAAALi9Yo0U3OLl5aWHHnqoRAIxDENjx47VI488ovDwcEm/3tAsSYGBgRZ9AwMDdebMGXMfV1dXVapUqUCfW8v/XnZ2trKzs82v09PTS2QfANgOeQ2UP+Q1YD3FGikoDcOHD9ehQ4f0ySefFJhnMpksXhuGUaDt9+7UJzY2Vr6+vuYpNDS0+IEDsAvkNVD+kNeA9dhFUTBixAht2LBBO3bsUPXq1c3tQUFBklTgE//U1FTz6EFQUJBycnJ05cqV2/b5vQkTJigtLc08nTt3riR3B4ANkNdA+UNeA9Zj06LAMAwNHz5cn332mbZv366wsDCL+WFhYQoKCtKWLVvMbTk5Odq5c6datmwpSWrevLkqVKhg0Sc5OVk//vijuc/vubm5ycfHx2ICULaR10D5Q14D1nNf9xTcr2HDhmnVqlX6/PPP5e3tbR4R8PX1lYeHh0wmk0aPHq1p06apbt26qlu3rqZNmyZPT0/179/f3HfIkCEaN26cAgIC5O/vr/Hjx6tx48bmbyMCAAAAcHs2LQrmz58vSWrTpo1F+9KlSzVo0CBJv379aVZWlqKjo3XlyhW1aNFCmzdvlre3t7n/rFmz5OLior59+yorK0vt27fXsmXL5OzsbK1dAQAAAMosmxYFhmHctY/JZFJMTIxiYmJu28fd3V1z5szRnDlzSjA6AAAAwDHYxY3GAAAAAGyHogAAAABwcBQFAAAAgIOjKAAAAAAcHEUBAAAA4OAoCgAAAAAHR1EAAAAAODiKAgAAAMDBURQAAAAADo6iAAAAAHBwFAUAAACAg6MoAAAAABwcRQEAAADg4CgKAAAAAAdHUQAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAUBQAAAICDoygAAAAAHBxFAQAAAODgKAoAAAAAB0dRAAAAADg4igIAAADAwbnYOgBYOvtWY6ttq8bkw1bbFgAAAOwXIwUAAACAg6MoAAAAABwcRQEAAADg4CgKAAAAAAdHUQAAAAA4OIoCAAAAwMFRFAAAAAAOjucUAGUMz7IAAAAljZECAAAAwMFRFAAAAAAOjqIAAAAAcHA2vafgm2++0bvvvquEhAQlJydr3bp16tmzp3m+YRh68803tXDhQl25ckUtWrTQ3//+d/3xj38098nOztb48eP1ySefKCsrS+3bt9e8efNUvXp1G+wRAJQOa95LUlzcgwIAZZdNRwoyMzPVtGlTzZ07t9D5M2bM0MyZMzV37lzt379fQUFBioqK0rVr18x9Ro8erXXr1mn16tXavXu3MjIy1K1bN+Xl5VlrNwAAAIAyzaYjBV26dFGXLl0KnWcYhmbPnq2JEyeqV69ekqTly5crMDBQq1at0osvvqi0tDQtXrxYK1asUIcOHSRJK1euVGhoqLZu3apOnTpZbV8AAACAsspu7ylISkpSSkqKOnbsaG5zc3NT69attWfPHklSQkKCcnNzLfqEhIQoPDzc3AcAAADAndntcwpSUlIkSYGBgRbtgYGBOnPmjLmPq6urKlWqVKDPreULk52drezsbPPr9PT0kgobgI2Q10D5Q14D1mO3IwW3mEwmi9eGYRRo+7279YmNjZWvr695Cg0NLZFYAdgOeQ2UP+Q1YD12O1IQFBQk6dfRgODgYHN7amqqefQgKChIOTk5unLlisVoQWpqqlq2bHnbdU+YMEFjx441v05PT+eNpgiav/KR1baV8O5zVtsWyjbyGih/yGvAeux2pCAsLExBQUHasmWLuS0nJ0c7d+40/8HfvHlzVahQwaJPcnKyfvzxxzsWBW5ubvLx8bGYAJRt5DVQ/pDXgPXYdKQgIyNDJ0+eNL9OSkpSYmKi/P39VaNGDY0ePVrTpk1T3bp1VbduXU2bNk2enp7q37+/JMnX11dDhgzRuHHjFBAQIH9/f40fP16NGzc2fxsRAAAASp81n6fCc1FKnk2LggMHDqht27bm17eGCAcOHKhly5bp1VdfVVZWlqKjo80PL9u8ebO8vb3Ny8yaNUsuLi7q27ev+eFly5Ytk7Ozs9X3BwAAACiLbFoUtGnTRoZh3Ha+yWRSTEyMYmJibtvH3d1dc+bM0Zw5c0ohQgAAAKD8s9sbjQHJukOREsORAADAMdntjcYAAAAArIOiAAAAAHBwXD50D6z5vfzrvO/eBwAchTXff4uL920A5QEjBQAAAICDY6QAAACgHLL2SBujZmUbIwUAAACAg6MoAAAAABwcRQEAAADg4CgKAAAAAAdHUQAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAUBQAAAICDoygAAAAAHBxFAQAAAODgKAoAAAAAB0dRAAAAADg4F1sHAAAAAFhD81c+stq2Et59zmrbKgmMFAAAAAAOjqIAAAAAcHAUBQAAAICDoygAAAAAHBxFAQAAAODgKAoAAAAAB0dRAAAAADg4nlMAAAAAlLCzbzW26vZqTD58X8szUgAAAAA4OIoCAAAAwMFRFAAAAAAOjqIAAAAAcHAUBQAAAICDoygAAAAAHBxFAQAAAODgKAoAAAAAB0dRAAAAADi4clMUzJs3T2FhYXJ3d1fz5s21a9cuW4cEAAAAlAnloij45z//qdGjR2vixIn64Ycf9Oijj6pLly46e/asrUMDAAAA7F65KApmzpypIUOGaOjQoWrYsKFmz56t0NBQzZ8/39ahAQAAAHbPxdYB3K+cnBwlJCToL3/5i0V7x44dtWfPnkKXyc7OVnZ2tvl1WlqaJCk9Pb3Q/nnZWSUU7d1dq5BntW3dbn/vprweD4lj8nu3Ox632g3DsFosd1PUvP4ta56/4rJ2LhRHcfPnTjg3JeNezk15yOvy+l4sFS+/rJ0/9vD76W4c7WekSHltlHH//e9/DUnGt99+a9H+9ttvG/Xq1St0mSlTphiSmJiY7nM6d+6cNdL8npDXTEwlM5HXTEzlb7qXvDYZhh19JFAM58+fV7Vq1bRnzx5FRkaa299++22tWLFCP/30U4Flfv/JQ35+vi5fvqyAgACZTCarxF2Y9PR0hYaG6ty5c/Lx8bFZHPaC41GQvRwTwzB07do1hYSEyMnJPq5CtNe8Lgn2ct5RUHk6N+T1vStP572kcEws2cvxKEpel/nLhypXrixnZ2elpKRYtKempiowMLDQZdzc3OTm5mbR5ufnV1ohFpmPjw8J9Rscj4Ls4Zj4+vradPu/Z+95XRLs4byjcOXl3JDXRVNezntJ4phYsofjca95bR8fBdwHV1dXNW/eXFu2bLFo37Jli1q2bGmjqAAAAICyo8yPFEjS2LFj9eyzzyoiIkKRkZFauHChzp49q5deesnWoQEAAAB2r1wUBf369dOlS5f01ltvKTk5WeHh4dq4caNq1qxp69CKxM3NTVOmTCkwVOqoOB4FcUwcE+fdfnFuHBPnvSCOiaWyeDzK/I3GAAAAAO5Pmb+nAAAAAMD9oSgAAAAAHBxFAQAAAODgKAoAoIwaNGiQevbsaeswygTDMPTCCy/I399fJpNJiYmJNonj9OnTNt0+ANwORYEd+Oabb9S9e3eFhITIZDJp/fr1tg7JpmJjY/XQQw/J29tbVatWVc+ePXX8+HFbh2Uz8+fPV5MmTcwPQImMjNSmTZtsHRZQpsTFxWnZsmX68ssvzd9SBxRHamqqXnzxRdWoUUNubm4KCgpSp06dtHfvXluHZjMpKSkaMWKEateuLTc3N4WGhqp79+7atm2brUOziXPnzmnIkCEKCQmRq6uratasqVGjRunSpUu2Du2OKArsQGZmppo2baq5c+faOhS7sHPnTg0bNkz79u3Tli1bdPPmTXXs2FGZmZm2Ds0mqlevrnfeeUcHDhzQgQMH1K5dO/Xo0UNHjhyxdWhAmXHq1CkFBwerZcuWCgoKkotLufhGbthA7969dfDgQS1fvlwnTpzQhg0b1KZNG12+fNnWodnE6dOn1bx5c23fvl0zZszQ4cOHFRcXp7Zt22rYsGG2Ds/qfv75Z0VEROjEiRP65JNPdPLkSX344Yfatm2bIiMj7fvnxIBdkWSsW7fO1mHYldTUVEOSsXPnTluHYjcqVapk/OMf/7B1GCiC1q1bG8OHDzdGjRpl+Pn5GVWrVjUWLFhgZGRkGIMGDTK8vLyM2rVrGxs3bjQMwzBu3rxpDB482KhVq5bh7u5u1KtXz5g9e7bFOgcOHGj06NHD/Do/P9+YPn26ERYWZri7uxtNmjQx/vWvf1lzN+3SwIEDDUnmqWbNmnc9Vjt27DAkGXFxccYDDzxguLu7G23btjUuXLhgbNy40WjQoIHh7e1tPPXUU0ZmZqZ5uU2bNhl//vOfDV9fX8Pf39/o2rWrcfLkSfP8pKQkQ5Lxww8/mNuOHDlidOnSxahYsaJRtWpV45lnnjEuXrxolWODorly5YohyYiPj7d1KHajS5cuRrVq1YyMjIwC865cuWL9gGysc+fORvXq1Y3r169btCcnJxuenp7GSy+9ZKPI7o6RAti9tLQ0SZK/v7+NI7G9vLw8rV69WpmZmYqMjLR1OCii5cuXq3Llyvr3v/+tESNG6OWXX1afPn3UsmVLff/99+rUqZOeffZZXb9+Xfn5+apevbrWrFmjo0ePavLkyXr99de1Zs2a267/jTfe0NKlSzV//nwdOXJEY8aM0TPPPKOdO3dacS/tz9/+9je99dZbql69upKTk7V///57PlYxMTGaO3eu9uzZo3Pnzqlv376aPXu2Vq1apa+++kpbtmzRnDlzzP0zMzM1duxY7d+/X9u2bZOTk5OeeOIJ5efnFxpbcnKyWrdurQceeEAHDhxQXFycLly4oL59+5bqMUHxeHl5ycvLS+vXr1d2dratw7G5y5cvKy4uTsOGDVPFihULzPfz87N+UDZ0+fJlff3114qOjpaHh4fFvKCgIA0YMED//Oc/ZdjrI8JsXZXAkhgpsJCfn290797deOSRR2wdik0dOnTIqFixouHs7Gz4+voaX331la1DQhG1bt3a4uf45s2bRsWKFY1nn33W3JacnGxIMvbu3VvoOqKjo43evXubX/92pCAjI8Nwd3c39uzZY7HMkCFDjKeffroE96RsmjVrllGzZk3DMO7tWN0aKdi6dat5fmxsrCHJOHXqlLntxRdfNDp16nTb7d4a6Tx8+LBhGAVHCiZNmmR07NjRYplz584Zkozjx48Xe39RetauXWtUqlTJcHd3N1q2bGlMmDDBOHjwoK3DsonvvvvOkGR89tlntg7FLuzbt++Of8fNnDnTkGRcuHDBuoHdI0YKYNeGDx+uQ4cO6ZNPPrF1KDZVv359JSYmat++fXr55Zc1cOBAHT161NZhoYiaNGli/r+zs7MCAgLUuHFjc1tgYKCkX29klKQPP/xQERERqlKliry8vLRo0SKdPXu20HUfPXpUN27cUFRUlPnTTC8vL3300Uc6depUKe5V2VOUY/XbcxYYGChPT0/Vrl3bou3W+ZJ+vXehf//+ql27tnx8fBQWFiZJtz1vCQkJ2rFjh0UcDRo0MK8L9qd37946f/68NmzYoE6dOik+Pl7NmjXTsmXLbB2a1Rn//xNvk8lk40jKhlvHy9XV1caRFI47rWC3RowYoQ0bNuibb75R9erVbR2OTbm6uqpOnTqSpIiICO3fv19/+9vftGDBAhtHhqKoUKGCxWuTyWTRdusXa35+vtasWaMxY8bo/fffV2RkpLy9vfXuu+/qu+++K3Tdty5P+eqrr1StWjWLeW5ubiW5G2VeUY7V789PYefwt5cGde/eXaGhoVq0aJFCQkKUn5+v8PBw5eTk3DaW7t27a/r06QXmBQcHF23HYDXu7u6KiopSVFSUJk+erKFDh2rKlCkaNGiQrUOzqrp168pkMunYsWN8PbKkOnXqyGQy6ejRo4Uej59++klVqlSx28uqKApgdwzD0IgRI7Ru3TrFx8ebP2nD/xiGwfWs5dyuXbvUsmVLRUdHm9vu9Mlxo0aN5ObmprNnz6p169bWCLHMKq1jdenSJR07dkwLFizQo48+KknavXv3HZdp1qyZPv30U9WqVYtvRCrDGjVq5JBfJ+7v769OnTrp73//u0aOHFngvoKrV6/a7R/ApSEgIEBRUVGaN2+exowZY3FfQUpKij7++GO7/kYm3oHsQEZGhk6ePGl+nZSUpMTERPn7+6tGjRo2jMw2hg0bplWrVunzzz+Xt7e3UlJSJEm+vr4FbtxxBK+//rq6dOmi0NBQXbt2TatXr1Z8fLzi4uJsHRpKUZ06dfTRRx/p66+/VlhYmFasWKH9+/fftkj29vbW+PHjNWbMGOXn5+uRRx5Renq69uzZIy8vLw0cONDKe2C/SutYVapUSQEBAVq4cKGCg4N19uxZ/eUvf7njMsOGDdOiRYv09NNP65VXXlHlypV18uRJrV69WosWLZKzs3OxYkHpuHTpkvr06aPBgwerSZMm8vb21oEDBzRjxgz16NHD1uHZxLx589SyZUs9/PDDeuutt9SkSRPdvHlTW7Zs0fz583Xs2DFbh2hVc+fOVcuWLdWpUydNnTpVYWFhOnLkiF555RXVq1dPkydPtnWIt0VRYAcOHDigtm3bml+PHTtWkjRw4ECHvEZx/vz5kqQ2bdpYtC9dutThhmYl6cKFC3r22WeVnJwsX19fNWnSRHFxcYqKirJ1aChFL730khITE9WvXz+ZTCY9/fTTio6OvuOD6/7617+qatWqio2N1c8//yw/Pz81a9ZMr7/+uhUjLxtK41g5OTlp9erVGjlypMLDw1W/fn198MEHBd7LfiskJETffvutXnvtNXXq1EnZ2dmqWbOmOnfuLCcnbvuzN15eXmrRooVmzZqlU6dOKTc3V6GhoXr++ecdNs/CwsL0/fff6+2339a4ceOUnJysKlWqqHnz5ubf546kbt262r9/v2JiYtS3b1+lpqbKMAz16tVLK1askKenp61DvC2TYdjr9yIBAAAAZduUKVM0c+ZMbd682a6/TpyiAAAAAChFS5cuVVpamkaOHGm3o4AUBQAAAICDs89SBQAAAIDVUBQAAAAADo6iAAAAAHBwFAUAAACAg6MoAAAAABwcRQHsxqBBg9SzZ09bhwEAgMOLiYnRAw88UCrrjo+Pl8lk0tWrV0tsnadPn5bJZFJiYmKJrdPRUBSgRA0aNEgmk0kmk0kVKlRQ7dq1NX78eGVmZto6NAClLDU1VS+++KJq1KghNzc3BQUFqVOnTtq7d6+tQwPKtd/+7v3t1LlzZ1uHhjLExdYBoPzp3Lmzli5dqtzcXO3atUtDhw5VZmamQz7uHHAkvXv3Vm5urpYvX67atWvrwoUL2rZtmy5fvmzr0IBy79bv3t9yc3OzUTS3l5uba+sQcBuMFKDE3fqEMDQ0VP3799eAAQO0fv16SdKRI0fUtWtX+fj4yNvbW48++qhOnTpV6Hri4uL0yCOPyM/PTwEBAerWrZtF35ycHA0fPlzBwcFyd3dXrVq1FBsba54fExNj/sQyJCREI0eOLNX9BhzZ1atXtXv3bk2fPl1t27ZVzZo19fDDD2vChAnq2rWrJCktLU0vvPCCqlatKh8fH7Vr104HDx6UJF28eFFBQUGaNm2aeZ3fffedXF1dtXnzZpvsE1CW3Prd+9upUqVKkiSTyaQFCxaoW7du8vT0VMOGDbV3716dPHlSbdq0UcWKFRUZGVno7+MFCxYoNDRUnp6e6tOnj8UlP/v371dUVJQqV64sX19ftW7dWt9//73F8iaTSR9++KF69OihihUraurUqQW2kZWVpa5du+pPf/qT+UOEpUuXqmHDhnJ3d1eDBg00b948i2X+/e9/68EHH5S7u7siIiL0ww8/3O8hdHgUBSh1Hh4eys3N1X//+1+1atVK7u7u2r59uxISEjR48GDdvHmz0OUyMzM1duxY7d+/X9u2bZOTk5OeeOIJ5efnS5I++OADbdiwQWvWrNHx48e1cuVK1apVS5K0du1azZo1SwsWLNB//vMfrV+/Xo0bN7bWLgMOx8vLS15eXlq/fr2ys7MLzDcMQ127dlVKSoo2btyohIQENWvWTO3bt9fly5dVpUoVLVmyRDExMTpw4IAyMjL0zDPPKDo6Wh07drTBHgHly1//+lc999xzSkxMVIMGDdS/f3+9+OKLmjBhgg4cOCBJGj58uMUyJ0+e1Jo1a/TFF18oLi5OiYmJGjZsmHn+tWvXNHDgQO3atUv79u1T3bp19dhjj+natWsW65kyZYp69Oihw4cPa/DgwRbz0tLS1LFjR+Xk5Gjbtm3y9/fXokWLNHHiRL399ts6duyYpk2bpkmTJmn58uWSfv37oFu3bqpfv74SEhIUExOj8ePHl8ZhcywGUIIGDhxo9OjRw/z6u+++MwICAoy+ffsaEyZMMMLCwoycnJx7Wvb3UlNTDUnG4cOHDcMwjBEjRhjt2rUz8vPzC/R9//33jXr16t12WwBK3tq1a41KlSoZ7u7uRsuWLY0JEyYYBw8eNAzDMLZt22b4+PgYN27csFjmD3/4g7FgwQLz6+joaKNevXrGgAEDjPDwcCMrK8uq+wCURQMHDjScnZ2NihUrWkxvvfWWYRiGIcl44403zP337t1rSDIWL15sbvvkk08Md3d38+spU6YYzs7Oxrlz58xtmzZtMpycnIzk5ORC47h586bh7e1tfPHFF+Y2Scbo0aMt+u3YscOQZPz0009G06ZNjV69ehnZ2dnm+aGhocaqVasslvnrX/9qREZGGoZhGAsWLDD8/f2NzMxM8/z58+cbkowffvjhrscLhWOkACXuyy+/lJeXl9zd3RUZGalWrVppzpw5SkxM1KOPPqoKFSrc03pOnTql/v37q3bt2vLx8VFYWJgk6ezZs5J+vbEqMTFR9evX18iRIy0uMejTp4+ysrJUu3ZtPf/881q3bt1tRyQAlIzevXvr/Pnz2rBhgzp16qT4+Hg1a9ZMy5YtU0JCgjIyMhQQEGAeVfDy8lJSUpLFJQvvvfeebt68qTVr1ujjjz+Wu7u7DfcIKDvatm2rxMREi+m3n+o3adLE/P/AwEBJshhBDwwM1I0bN5Senm5uq1GjhqpXr25+HRkZqfz8fB0/flzSr18u8NJLL6levXry9fWVr6+vMjIyzL+nb4mIiCg05g4dOqh27dpas2aNXF1dJf16KeG5c+c0ZMgQi/eKqVOnmt8rjh07pqZNm8rT09MiNtwfbjRGiWvbtq3mz5+vChUqKCQkxFwEeHh4FGk93bt3V2hoqBYtWqSQkBDl5+crPDxcOTk5kqRmzZopKSlJmzZt0tatW9W3b1916NBBa9euVWhoqI4fP64tW7Zo69atio6O1rvvvqudO3fec1ECoOjc3d0VFRWlqKgoTZ48WUOHDtWUKVMUHR2t4OBgxcfHF1jGz8/P/P+ff/5Z58+fV35+vs6cOWPxhwyA26tYsaLq1Klz2/m//d1nMplu23brEt3C3Opz699Bgwbp4sWLmj17tmrWrCk3NzdFRkaaf0//NrbCdO3aVZ9++qmOHj1qLlBubX/RokVq0aKFRX9nZ2dJv16OiJJHUYASd7s3piZNmmj58uXKzc296x/mly5d0rFjx7RgwQI9+uijkqTdu3cX6Ofj46N+/fqpX79+evLJJ9W5c2ddvnxZ/v7+8vDw0OOPP67HH39cw4YNU4MGDXT48GE1a9asZHYUwF01atRI69evV7NmzZSSkiIXFxfzvT+/l5OTowEDBqhfv35q0KCBhgwZosOHD5s/1QRgXWfPntX58+cVEhIiSdq7d6+cnJxUr149SdKuXbs0b948PfbYY5Kkc+fO6f/+7//uef3vvPOOvLy81L59e8XHx6tRo0YKDAxUtWrV9PPPP2vAgAGFLteoUSOtWLFCWVlZ5g8c9+3bdz+7ClEUwIqGDx+uOXPm6KmnntKECRPk6+urffv26eGHH1b9+vUt+laqVEkBAQFauHChgoODdfbsWf3lL3+x6DNr1iwFBwfrgQcekJOTk/71r38pKChIfn5+WrZsmfLy8tSiRQt5enpqxYoV8vDwUM2aNa25y4DDuHTpkvr06aPBgwerSZMm8vb21oEDBzRjxgz16NFDHTp0UGRkpHr27Knp06erfv36On/+vDZu3KiePXsqIiJCEydOVFpamj744AN5eXlp06ZNGjJkiL788ktb7x5g97Kzs5WSkmLR5uLiosqVKxd7ne7u7ho4cKDee+89paena+TIkerbt6+CgoIkSXXq1NGKFSsUERGh9PR0vfLKK0W+KuC9995TXl6e2rVrp/j4eDVo0EAxMTEaOXKkfHx81KVLF2VnZ+vAgQO6cuWKxo4dq/79+2vixIkaMmSI3njjDZ0+fVrvvfdesfcTv+KeAlhNQECAtm/froyMDLVu3VrNmzfXokWLCh01cHJy0urVq5WQkKDw8HCNGTNG7777rkUfLy8vTZ8+XREREXrooYd0+vRpbdy4UU5OTvLz89OiRYv05z//WU2aNNG2bdv0xRdfKCAgwFq7CzgULy8vtWjRQrNmzVKrVq0UHh6uSZMm6fnnn9fcuXNlMpm0ceNGtWrVSoMHD1a9evX01FNP6fTp0woMDFR8fLxmz56tFStWyMfHR05OTlqxYoV2797NM06AexAXF6fg4GCL6ZFHHrmvddapU0e9evXSY489po4dOyo8PNziq0GXLFmiK1eu6MEHH9Szzz6rkSNHqmrVqkXezqxZs9S3b1+1a9dOJ06c0NChQ/WPf/xDy5YtU+PGjdW6dWstW7bMfG+hl5eXvvjiCx09elQPPvigJk6cqOnTp9/XvkIyGVyYBQAAADg0RgoAAAAAB0dRAAAAADg4igIAAADAwVEUAAAAAA6OogAAAABwcBQFAAAAgIOjKAAAAAAcHEUBAAAA4OAoCgAAAAAHR1EAAAAAODiKAgAAAMDBURQAAAAADu7/AeLjKp32ijR+AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3, sharey=True)\n",
+ "fig.set_size_inches([9,3])\n",
+ "sns.countplot(x=\"Pclass\", hue='Survived',data=train_data, ax=ax0).legend([\"Dead\",\"Survived\"])\n",
+ "sns.countplot(x=\"Sex\", hue='Survived',data=train_data, ax=ax1).legend([\"Dead\",\"Survived\"]); ax1.set(ylabel='')\n",
+ "sns.countplot(x=\"Embarked\", hue='Survived',data=train_data, ax=ax2).legend([\"Dead\",\"Survived\"]); ax2.set(ylabel='')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "bf2411a3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA55ElEQVR4nO3de3QU9f3/8ddCMCTkwiWQCxAIEiCgoBAF4gUoELXokeIdovD18kURBfErCJEaPZgotkhbFIty8yhFqcCXVkSicpHmi0AkBXEFhGhSSAhbciU3Seb3B83+WANKwmx2Z/N8nDOn3ZnJe98fY+HVmc/Mx2YYhiEAAACLauHpBgAAAC4FYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFian6cbcLfa2lodP35cwcHBstlsnm4HAABcBMMwVFpaqqioKLVo8fPXXnw+zBw/flxdu3b1dBsAAKARcnNz1aVLl589x+fDTHBwsKSz/zBCQkI83A0AALgYJSUl6tq1q/Pv8Z/j82Gm7tZSSEgIYQYAAIu5mCkiTAAGAACWRpgBAACWRpgBAACW5vNzZgAAzUdNTY1+/PFHT7eBi9CqVSu1bNnSlFqEGQCA5RmGofz8fBUVFXm6FTRA27ZtFRERccnvgSPMAAAsry7IdOrUSYGBgbwk1csZhqHy8nIVFBRIkiIjIy+pHmEGAGBpNTU1ziDToUMHT7eDixQQECBJKigoUKdOnS7plhMTgAEAllY3RyYwMNDDnaCh6n5nlzrPiTADAPAJ3FqyHrN+Z4QZAABgacyZAQD4rJycHDkcjib5rrCwMEVHRzfJd8EVYQYA4JNycnIUF9dH5eUVTfJ9gYEBstu/tVSg6d69u6ZPn67p06d7upVLQpgBAPgkh8Oh8vIKvTvnbsVFd3Trd9lzTiop9QM5HI4GhZlJkyZp5cqVkiQ/Pz+1b99e/fv313333adJkyapRQtmg1wMwgwAwKfFRXfUwF6dPd3GBd18881avny5ampqdOLECW3atEnTpk3TX//6V23YsEF+fvxV/Uv4J4RmzZ3307l/DuBi+Pv7KyIiQpLUuXNnDRw4UEOGDNHIkSO1YsUKPfzwwyouLtYzzzyj9evXq7KyUvHx8Xrttdc0YMAASdKRI0c0Y8YM7dy5U6dPn1ZcXJzS0tI0atQo5/cUFBTooYce0qeffqqIiAjNmzfPI+N1B8IMmi1330+34v1zAN7hV7/6lQYMGKC1a9fqoYce0pgxY9S+fXtt3LhRoaGh+vOf/6yRI0fq0KFDat++vcrKyvTrX/9a8+bNU+vWrbVy5UrddtttOnjwoPPPoEmTJik3N1eff/65LrvsMj355JPON/BaHWEGzZY776c39v45ANTp06eP9u3bpy1btmj//v0qKCiQv7+/JOl3v/ud1q9fr7/+9a/67//+bw0YMMB5lUaS5s2bp3Xr1mnDhg2aOnWqDh06pI8//lg7d+7U4MGDJUlLly5VXFycR8ZmNsIMmj1vv58OoHkyDEM2m02ZmZkqKyurt1RDRUWFjhw5Ikk6ffq0XnjhBf3973/X8ePHdebMGVVUVCgnJ0eSZLfb5efnp/j4eOfP9+nTR23btm2y8bgTYQYAAC9kt9sVExOj2tpaRUZGauvWrfXOqQsjzzzzjD755BP97ne/U8+ePRUQEKA777xT1dXVks4GI8l335JMmAEAwMt8/vnn2r9/v5566il16dJF+fn58vPzU/fu3c97/hdffKFJkybpN7/5jSSprKxM33//vfN4XFyczpw5oz179ujaa6+VJB08eFBFRUVuHknTIMwAAHyaPeekV39HVVWV8vPzXR7NTktL06233qoHHnhALVq00NChQzV27Fi98sor6t27t44fP66NGzdq7Nixio+PV8+ePbV27Vrddtttstlsmjt3rmpra53f0bt3b91888165JFHtGTJEvn5+Wn69OnOlautjjADAPBJYWFhCgwMUFLqB03yfYGBAQoLC2vwz23atEmRkZHy8/NTu3btNGDAAP3xj3/UxIkTnS/N27hxo5KTk/Xggw/q5MmTioiI0I033qjw8HBJ0muvvaYHH3xQCQkJCgsL06xZs1RSUuLyPcuXL9fDDz+sYcOGKTw8XPPmzdPcuXMvfeBewGbU3UjzkGPHjmnWrFn6+OOPVVFRoV69emnp0qUaNGiQpLP3+V544QUtWbJEhYWFGjx4sF5//XX169fvouqXlJQoNDRUxcXFCgkJcedQYDFfffWVBg0apMw3Hzd9AvBXh45p0KOvKzMzUwMHDjS1NgBXlZWVys7OVkxMjFq3bu1yjLWZvNvP/e4a8ve3R6/MFBYW6rrrrtOIESP08ccfq1OnTjpy5IjL7Or58+drwYIFWrFihXr16qV58+Zp9OjROnjwoIKDgz3XPADA60VHRxMwmgGPhplXXnlFXbt21fLly537zp3cZBiGFi5cqOTkZI0bN06StHLlSoWHh2vVqlWaPHlyU7cMAAC8jEdXsNqwYYPi4+N11113qVOnTrr66qv11ltvOY9nZ2crPz9fiYmJzn3+/v4aNmyYMjIyzluzqqpKJSUlLhsAAPBdHg0zR48e1eLFixUbG6tPPvlEjz76qJ588km98847kqT8/HxJck5wqhMeHu489lNpaWkKDQ11bl27dnXvIAAAgEd5NMzU1tZq4MCBSk1N1dVXX63JkyfrkUce0eLFi13O++lLfureing+s2fPVnFxsXPLzc11W/8AAMDzPBpmIiMj1bdvX5d9cXFxztcv160i+tOrMAUFBfWu1tTx9/dXSEiIywYAAHyXR8PMddddp4MHD7rsO3TokLp16yZJiomJUUREhNLT053Hq6urtW3bNiUkJDRprwAAwDt59Gmmp556SgkJCUpNTdXdd9+tXbt2acmSJVqyZImks7eXpk+frtTUVMXGxio2NlapqakKDAzU+PHjPdk6AADwEh4NM9dcc43WrVun2bNn68UXX1RMTIwWLlyoCRMmOM+ZOXOmKioqNGXKFOdL8zZv3sw7ZgAAv4iX5p3f1q1bNWLECBUWFrp15exJkyapqKhI69evd9t3SF6wnMGtt96qW2+99YLHbTabUlJSlJKS0nRNAQAsLycnR33i4lRRXt4k3xcQGKhv7fYGBZqCggLNnTtXH3/8sU6cOOFcziAlJUVDhw51W68JCQnKy8tTaGio276jKXk8zAAA4A4Oh0MV5eWaMOtVhUdf7tbvOpFzRO+98owcDkeDwswdd9yhH3/8UStXrlSPHj104sQJffbZZzp16lSj+jAMQzU1NfLz+/m/3i+77DLnQza+gDADAPBp4dGXq0vsxa3n15SKioq0Y8cObd26VcOGDZMkdevWTddee60k6fvvv1dMTIz27t2rq666yvkz7dq105YtWzR8+HDn7aJNmzYpOTlZ+/bt05/+9Cc9+uijstvt6tOnj/P7FixYoD/+8Y/Kzs7Wtm3bnLeZbDabIiIitG7dOt18883O89euXav7779fJ06cUFBQkI4dO6YZM2Zo8+bNatGiha6//nr94Q9/cL65v6amRs8884yWLVumli1b6qGHHlJTLf/o0aeZAABoroKCghQUFKT169erqqrqkmrNnDlTaWlpstvtuvPOOzVo0CC99957LuesWrVK48ePr/eettDQUI0ZM+a8599+++0KCgpSeXm5RowYoaCgIG3fvl07duxQUFCQbr75ZlVXV0uSfv/732vZsmVaunSpduzYoVOnTmndunWXNK6LRZgBAMAD/Pz8tGLFCq1cuVJt27bVddddpzlz5mjfvn0NrvXiiy9q9OjRuvzyy9WhQwdNmDBBq1atch4/dOiQMjMzlZSUdN6fnzBhgtavX6/y/8wvKikp0UcffeQ8f/Xq1WrRooXefvttXXnllYqLi9Py5cuVk5OjrVu3SpIWLlyo2bNn64477lBcXJzefPPNJpuTQ5gBAMBD7rjjDh0/flwbNmzQTTfdpK1bt2rgwIFasWJFg+rEx8e7fL733nv1ww8/aOfOnZKk9957T1dddVW9F9XWGTNmjPz8/LRhwwZJ0ocffqjg4GDn2oiZmZn67rvvFBwc7Lyi1L59e1VWVurIkSMqLi5WXl6ey6RlPz+/en25C2EGAAAPat26tUaPHq3f/va3ysjI0KRJk/T888+rRYuzf0WfO+/kxx9/PG+NNm3auHyOjIzUiBEjnFdn/vKXv1zwqox0dkLwnXfe6Tx/1apVuueee5wTiWtrazVo0CBlZWW5bIcOHfKK974RZgAA8CJ9+/bV6dOn1bFjR0lSXl6e81hWVtZF15kwYYLef/99/d///Z+OHDmie++99xfP37Rpkw4cOKAtW7a4vPNt4MCBOnz4sDp16qSePXu6bHULO0dGRjqvBEnSmTNnlJmZedH9XgrCDAAAHvDvf/9bv/rVr/Tuu+9q3759ys7O1po1azR//nzdfvvtCggI0JAhQ/Tyyy/rm2++0fbt2/Xcc89ddP1x48appKREjz32mEaMGKHOnTv/7PnDhg1TeHi4JkyYoO7du2vIkCHOYxMmTFBYWJhuv/12ffHFF84noqZNm6Z//etfkqRp06bp5Zdf1rp16/Ttt99qypQpKioqatQ/m4bi0WwAgE87kXPEK78jKChIgwcP1muvvaYjR47oxx9/VNeuXfXII49ozpw5kqRly5bpwQcfVHx8vHr37q358+c757H8kpCQEN12221as2aNli1b9ovn22w23XfffXr11Vf129/+1uVYYGCgtm/frlmzZmncuHEqLS1V586dNXLkSOeCzk8//bTy8vI0adIktWjRQg8++KB+85vfqLi4uIH/ZBrOZjTVQ+AeUlJSotDQUBUXF7OCNlx89dVXGjRokDLffFwDe/38/2NpcO1DxzTo0deVmZmpgQMHmlobgKvKykplZ2crJiZGrVu3du63whuAm7sL/e6khv39zZUZAIBPio6O1rd2O2szNQOEGQCAz4qOjiZgNANMAAYAAJZGmAEAAJZGmAEA+AQff57FJ5n1OyPMAAAsrVWrVpLkXFcI1lH3O6v7HTYWE4ABAJbWsmVLtW3bVgUFBZLOvhPlpytDw7sYhqHy8nIVFBSobdu2atmy5SXVI8wAACwvIiJCkpyBBtbQtm1b5+/uUhBmAACWZ7PZFBkZqU6dOl1wMUZ4l1atWl3yFZk6hBkAgM9o2bKlaX9BwjoIM4Ab2e1202vyllEAcEWYAdwg71SpbJKSkpJMrx0YGCC7/VsCDQD8B2EGcIOiskoZkhZNSdTQ/rGm1bXnnFRS6gdyOByEGQD4D8IM4EY9o9qZviI3AMAVL80DAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWxqrZsIScnBw5HA5Ta9rtdlPrAQA8gzADr5eTk6O4uD4qL69wS/3SsjK31AUANA3CDLyew+FQeXmF3p1zt+KiO5pWd+OuQ5q7LF2VlZWm1QQAND3CDCwjLrqjBvbqbFo9e85J02oBADyHCcAAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSPBpmUlJSZLPZXLaIiAjnccMwlJKSoqioKAUEBGj48OE6cOCABzsGAADexuNXZvr166e8vDzntn//fuex+fPna8GCBVq0aJF2796tiIgIjR49WqWlpR7sGAAAeBOPhxk/Pz9FREQ4t44dz74UzTAMLVy4UMnJyRo3bpyuuOIKrVy5UuXl5Vq1apWHuwYAAN7C42Hm8OHDioqKUkxMjO69914dPXpUkpSdna38/HwlJiY6z/X399ewYcOUkZFxwXpVVVUqKSlx2QAAgO/yaJgZPHiw3nnnHX3yySd66623lJ+fr4SEBP373/9Wfn6+JCk8PNzlZ8LDw53HzictLU2hoaHOrWvXrm4dAwAA8CyPhplbbrlFd9xxh6688kqNGjVKH330kSRp5cqVznNsNpvLzxiGUW/fuWbPnq3i4mLnlpub657mAQCAV/D4baZztWnTRldeeaUOHz7sfKrpp1dhCgoK6l2tOZe/v79CQkJcNgAA4Lu8KsxUVVXJbrcrMjJSMTExioiIUHp6uvN4dXW1tm3bpoSEBA92CQAAvIlHV83+n//5H912222Kjo5WQUGB5s2bp5KSEk2cOFE2m03Tp09XamqqYmNjFRsbq9TUVAUGBmr8+PGebBsAAHgRj4aZf/3rX7rvvvvkcDjUsWNHDRkyRDt37lS3bt0kSTNnzlRFRYWmTJmiwsJCDR48WJs3b1ZwcLAn2wY8zm63u6VuWFiYoqOj3VIbANzFo2Fm9erVP3vcZrMpJSVFKSkpTdMQ4OXyTpXKJikpKckt9QMDA2S3f0ugAWApHg0zABqmqKxShqRFUxI1tH+sqbXtOSeVlPqBHA4HYQaApRBmAAvqGdVOA3t19nQbAOAVvOppJgAAgIYizAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEsjzAAAAEvzmjCTlpYmm82m6dOnO/cZhqGUlBRFRUUpICBAw4cP14EDBzzXJAAA8DpeEWZ2796tJUuWqH///i7758+frwULFmjRokXavXu3IiIiNHr0aJWWlnqoUwAA4G08HmbKyso0YcIEvfXWW2rXrp1zv2EYWrhwoZKTkzVu3DhdccUVWrlypcrLy7Vq1SoPdgwAALyJx8PM448/rjFjxmjUqFEu+7Ozs5Wfn6/ExETnPn9/fw0bNkwZGRkXrFdVVaWSkhKXDQAA+C4/T3756tWrlZmZqT179tQ7lp+fL0kKDw932R8eHq4ffvjhgjXT0tL0wgsvmNsoAADwWh67MpObm6tp06bpvffeU+vWrS94ns1mc/lsGEa9feeaPXu2iouLnVtubq5pPQMAAO/jsSszmZmZKigo0KBBg5z7ampqtH37di1atEgHDx6UdPYKTWRkpPOcgoKCeldrzuXv7y9/f3/3NQ4AALyKx67MjBw5Uvv371dWVpZzi4+P14QJE5SVlaUePXooIiJC6enpzp+prq7Wtm3blJCQ4Km2AQCAl/HYlZng4GBdccUVLvvatGmjDh06OPdPnz5dqampio2NVWxsrFJTUxUYGKjx48d7omUAAOCFPDoB+JfMnDlTFRUVmjJligoLCzV48GBt3rxZwcHBnm4NAAB4Ca8KM1u3bnX5bLPZlJKSopSUFI/0AwAAvJ/H3zMDAABwKQgzAADA0ggzAADA0rxqzgwAz7Pb7abXDAsLU3R0tOl1AUAizAD4j7xTpbJJSkpKMr12YGCA7PZvCTQA3IIwA0CSVFRWKUPSoimJGto/1rS69pyTSkr9QA6HgzADwC0IMwBc9Ixqp4G9Onu6DQC4aEwABgAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlsZ7ZtDsHT5+Sh0PHTO1ZnZ+oan1AAAXRphBs+UoPi1JeuKNdEnpbvmOgqLTbqkLAPj/CDNotkorqiVJo8bepf794kytvWefXdv/tkbF5VWm1gUA1NeoMNOjRw/t3r1bHTp0cNlfVFSkgQMH6ujRo6Y0BzSF9mEd1aVbN1NrHj7mMLUeAODCGjUB+Pvvv1dNTU29/VVVVTp2zNy5BwAAAD+nQVdmNmzY4Pzvn3zyiUJDQ52fa2pq9Nlnn6l79+6mNQcAAPBLGhRmxo4dK0my2WyaOHGiy7FWrVqpe/fu+v3vf29acwDOz51PYJld255z0rRaAHA+DQoztbW1kqSYmBjt3r1bYWFhbmkKwPk1xRNY7qqdl5dnek0AkBo5ATg7O9vsPgBcBHc+gbVle4b2fvGphtx8uxIGDTCt7sHDR/XRB++qqKjItJoAcK5GP5r92Wef6bPPPlNBQYHzik2dZcuWXXJjAC7MHU9gBbW1S5JC2oeZWttRXGZaLQA4n0aFmRdeeEEvvvii4uPjFRkZKZvNZnZfAAAAF6VRYebNN9/UihUrdP/995vdDwAAQIM06j0z1dXVSkhIMLsXAACABmtUmHn44Ye1atUqs3sBAABosEbdZqqsrNSSJUv06aefqn///mrVqpXL8QULFpjSHAAAwC9pVJjZt2+frrrqKknS119/7XKMycAAAKApNSrMbNmyxew+AAAAGqVRc2YAAAC8RaOuzIwYMeJnbyd9/vnnjW4IAACgIRoVZurmy9T58ccflZWVpa+//rreApQAAADu1Kgw89prr513f0pKisrKeHU5AABoOqbOmUlKSmJdJgAA0KRMDTP/93//p9atW5tZEgAA4Gc16jbTuHHjXD4bhqG8vDzt2bNHc+fONaUxAACAi9GoMBMaGuryuUWLFurdu7defPFFJSYmmtIYAADAxWhUmFm+fLnZfQAAADRKo8JMnczMTNntdtlsNvXt21dXX321WX0BAABclEaFmYKCAt17773aunWr2rZtK8MwVFxcrBEjRmj16tXq2LGj2X0CAACcV6OeZnriiSdUUlKiAwcO6NSpUyosLNTXX3+tkpISPfnkk2b3CAAAcEGNujKzadMmffrpp4qLi3Pu69u3r15//XUmAAMAgCbVqCsztbW1atWqVb39rVq1Um1t7SU3BQAAcLEaFWZ+9atfadq0aTp+/Lhz37Fjx/TUU09p5MiRpjUHAADwSxoVZhYtWqTS0lJ1795dl19+uXr27KmYmBiVlpbqT3/600XXWbx4sfr376+QkBCFhIRo6NCh+vjjj53HDcNQSkqKoqKiFBAQoOHDh+vAgQONaRkAAPioRs2Z6dq1q7766iulp6fr22+/lWEY6tu3r0aNGtWgOl26dNHLL7+snj17SpJWrlyp22+/XXv37lW/fv00f/58LViwQCtWrFCvXr00b948jR49WgcPHlRwcHBjWgcAAD6mQWHm888/19SpU7Vz506FhIRo9OjRGj16tCSpuLhY/fr105tvvqkbbrjhourddtttLp9feuklLV68WDt37lTfvn21cOFCJScnO5dPWLlypcLDw7Vq1SpNnjz5vDWrqqpUVVXl/FxSUtKQIQKmyj1Zoq8OHTOt3nEH/z4DwE81KMwsXLhQjzzyiEJCQuodCw0N1eTJk7VgwYKLDjPnqqmp0Zo1a3T69GkNHTpU2dnZys/Pd3k6yt/fX8OGDVNGRsYFw0xaWppeeOGFBn8/YKbyslJJ0vw1X2r+mi9Nr19Rfcb0mgBgVQ0KM//85z/1yiuvXPB4YmKifve73zWogf3792vo0KGqrKxUUFCQ1q1bp759+yojI0OSFB4e7nJ+eHi4fvjhhwvWmz17tmbMmOH8XFJSoq5duzaoJ+BSVVdVSpKG3Hy7EgYNMK3ulu0Z2vvFp6o6U2NaTQCwugaFmRMnTpz3kWxnMT8/nTx5skEN9O7dW1lZWSoqKtKHH36oiRMnatu2bc7jNpvN5XzDMOrtO5e/v7/8/f0b1APgLiHtw9SlWzfT6gW1tZtWCwB8RYOeZurcubP2799/weP79u1TZGRkgxq47LLL1LNnT8XHxystLU0DBgzQH/7wB0VEREiS8vPzXc4vKCiod7UGAAA0Xw0KM7/+9a/129/+VpWVlfWOVVRU6Pnnn9ett956SQ0ZhqGqqirFxMQoIiJC6enpzmPV1dXatm2bEhISLuk7AACA72jQbabnnntOa9euVa9evTR16lT17t1bNptNdrtdr7/+umpqapScnHzR9ebMmaNbbrlFXbt2VWlpqVavXq2tW7dq06ZNstlsmj59ulJTUxUbG6vY2FilpqYqMDBQ48ePb/BAAQCAb2pQmAkPD1dGRoYee+wxzZ49W4ZhSDo7r+Wmm27SG2+80aBbQCdOnND999+vvLw8hYaGqn///tq0aZPzce+ZM2eqoqJCU6ZMUWFhoQYPHqzNmzfzjhkAAODU4JfmdevWTRs3blRhYaG+++47GYah2NhYtWvXrsFfvnTp0p89brPZlJKSopSUlAbXBgAAzUOj3gAsSe3atdM111xjZi8AAAAN1qi1mQAAALwFYQYAAFhao28zAUBDZGdn66uvvjK9blhYmKKjo02vC8A6CDMA3Kq86uw6UnPnztXcuXNNrx8YGCC7/VsCDdCMEWYAuFXVj2fDzKy7hujukYNMrW3POamk1A/kcDgIM0AzRpgB0CS6dAzWwF6dPd0GAB/EBGAAAGBpXJm5RDk5OXI4HKbXZVJjffachq3I/kuOO0pMrQcA8AzCzCXIyclRn7g4VZSXm147IDBQ39rtBBpJeXl5kqSk1A/cUr+i+oxb6gIAmgZh5hI4HA5VlJdrwqxXFR59uWl1T+Qc0XuvPMOkxv8oKiqSJI25O0m9Y3uYVnfL9gzt/eJTVZ2pMa0mAKDpEWZMEB59ubrE9vN0Gz6vQ6dO6tKtm2n1gtraTasFAPAcJgADAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABL8/N0AwBwqex2u1vqVlVVyd/f3/S6YWFhio6ONr0u0FwRZgBYVt6pUtkkJSUluaW+zSYZhvl1AwMDZLd/S6ABTEKYAWBZRWWVMiQtmpKoof1jTa29cdchzV2Wbnpte85JJaV+IIfDQZgBTEKYAWB5PaPaaWCvzqbWtOecdFttAOZiAjAAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0j4aZtLQ0XXPNNQoODlanTp00duxYHTx40OUcwzCUkpKiqKgoBQQEaPjw4Tpw4ICHOgYAAN7Go2Fm27Ztevzxx7Vz506lp6frzJkzSkxM1OnTp53nzJ8/XwsWLNCiRYu0e/duRUREaPTo0SotLfVg5wAAwFt4dNXsTZs2uXxevny5OnXqpMzMTN14440yDEMLFy5UcnKyxo0bJ0lauXKlwsPDtWrVKk2ePLlezaqqKlVVVTk/l5SUuHcQAADAo7xqzkxxcbEkqX379pKk7Oxs5efnKzEx0XmOv7+/hg0bpoyMjPPWSEtLU2hoqHPr2rWr+xsHAAAe4zVhxjAMzZgxQ9dff72uuOIKSVJ+fr4kKTw83OXc8PBw57Gfmj17toqLi51bbm6uexsHAAAe5dHbTOeaOnWq9u3bpx07dtQ7ZrPZXD4bhlFvXx1/f3/5+/u7pUcAAOB9vOLKzBNPPKENGzZoy5Yt6tKli3N/RESEJNW7ClNQUFDvag0AAGiePBpmDMPQ1KlTtXbtWn3++eeKiYlxOR4TE6OIiAilp6c791VXV2vbtm1KSEho6nYBAIAX8uhtpscff1yrVq3S//7v/yo4ONh5BSY0NFQBAQGy2WyaPn26UlNTFRsbq9jYWKWmpiowMFDjx4/3ZOsAAMBLeDTMLF68WJI0fPhwl/3Lly/XpEmTJEkzZ85URUWFpkyZosLCQg0ePFibN29WcHBwE3cLAAC8kUfDjGEYv3iOzWZTSkqKUlJS3N8QAACwHK+YAAwAANBYhBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBphBkAAGBpXrNqNgDflnuyRF8dOmZqzez8QlPrAbAmwgwAtyovK5UkzV/zpeav+dIt31FQdNotdQFYA2EGgFtVV1VKkobcfLsSBg0wtfaefXZt/9saFZdXmVoXgLUQZgA0iZD2YerSrZupNQ8fc5haD4A1MQEYAABYGmEGAABYGreZYJqcnBw5HOZf9s/Ozja9JgDAdxBmYIqcnBzFxfVReXmF277jxx/PuK02AMC6CDMwhcPhUHl5hd6dc7fiojuaWvvtjXu0eMOXqqkhzAAA6iPMwFRx0R01sFdnU2tG7Tpkaj0AgG9hAjAAALA0wgwAALA0bjPBVPack6bXPO4oMb0m4Gl2u90tdcPCwhQdHe2W2oC3IszAFHl5eZKkpNQP3PYdFdVMAIb15Z0qlU1SUlKSW+oHBgbIbv+WQINmhTADUxQVFUmSxtydpN6xPUytvWV7hvZ+8amqztSYWhfwhKKyShmSFk1J1ND+sabWtuecVFLqB3I4HIQZNCuEGZiqQ6dOpq+/E9TWPZfjAU/qGdXO9Cf/gOaKCcAAAMDSuDIDAB5w+PgpdTx0zNSa7piAD1gBYQYAmpCj+LQk6Yk30iWlu+U76ibkA80FYQYAmlBpRbUkadTYu9S/X5yptQ8ePqqPPnjXOSEfaC4IMwDgAe3DOpo+Wd5RXGZqPcAqmAAMAAAsjTADAAAsjdtMJnA4HGoZZN6EO4fDYVotAAB8HWHmEtQ9MbB27Vq1DGpvWt2aslMu9QEAwIURZi5B3RMDI67uoT69zXst+bcHD+tv/xRPJAAAcBEIMyZoF9RakR1CTKt3Iqi1abUAAPB1TAAGAACWRpgBAACWxm0mAJaXe7JEX5m8zlF2fqEk89dQOu4oMa0WgLMIMwAsq7ysVJI0f82Xmr/mS7d8h7vWUKqoPmN6TaC5IswAsKzqqkpJ0pCbb1fCoAGm1t6yPUN7v/jU9Np1davO1JhWE2juCDMALC+kfZjp6xwFtbW7pXZdXQDmYQIwAACwNK7MNEM5OTmmL5mQnZ1taj0AAC4WYaaZycnJUVxcH5WXV7il/o8/MqkRANC0CDPNjMPhUHl5hd6dc7fiojuaVvftjXu0eMOXqqkhzAAAmpZHw8z27dv16quvKjMzU3l5eVq3bp3Gjh3rPG4Yhl544QUtWbJEhYWFGjx4sF5//XX169fPc037iLjojhrYq7Np9aJ2HTKtFgAADeHRCcCnT5/WgAEDtGjRovMenz9/vhYsWKBFixZp9+7dioiI0OjRo1VaWtrEnQIAAG/l0Sszt9xyi2655ZbzHjMMQwsXLlRycrLGjRsnSVq5cqXCw8O1atUqTZ48uSlbBQAAXsprH83Ozs5Wfn6+EhMTnfv8/f01bNgwZWRkXPDnqqqqVFJS4rIBAADf5bVhJj8/X5IUHh7usj88PNx57HzS0tIUGhrq3Lp27erWPgEAgGd5bZipY7PZXD4bhlFv37lmz56t4uJi55abm+vuFgEAgAd57aPZERERks5eoYmMjHTuLygoqHe15lz+/v7y9/d3e38AAMA7eO2VmZiYGEVERCg9/f+vVltdXa1t27YpISHBg50BAABv4tErM2VlZfruu++cn7Ozs5WVlaX27dsrOjpa06dPV2pqqmJjYxUbG6vU1FQFBgZq/PjxHuwaAAB4E4+GmT179mjEiBHOzzNmzJAkTZw4UStWrNDMmTNVUVGhKVOmOF+at3nzZgUHB3uq5SaVnZ2tr776ytSadjsr9gK+zh1/doSFhSk6OtrUmoBZPBpmhg8fLsMwLnjcZrMpJSVFKSkpTdeUFygrPfs4+dy5czV37ly3fEfeKV48CPia8qqzy4m448+OwMAA2e3fEmjglbx2AnBzVlVxdhHIG8c/qfjrhpta++C+TH3055dUVFZpal0Anlf1n4VeZ901RHePHGRaXXvOSSWlfiCHw0GYgVcizHix0PAu6hJr7jpUDofD1HoAvE+XjsGmrr0GeDuvfZoJAADgYnBlBgBwUdz1AAGTi3GpCDMAgJ+Vd6pUNklJSUluqc/kYlwqwgwA4GcVlVXKkLRoSqKG9o81tTaTi2EGwgwA4KL0jGrHxGJ4JSYAAwAASyPMAAAAS+M2EwD4mNyTJfrq0DHT6mXnF5pW60Lc8aQUT0k1H4QZAPAR5WVnlymZv+ZLzV/zpen1C4pOm17TnU9K8ZRU80GYAQAfUV11dpmSITffroRBA0yru2efXdv/tkbF5VWm1azjrieleEqqeSHMAICPCWkfpi7duplW7/Ax9y+DwpNSuBRMAAYAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbGe2a8WGlJifLy8kytWVhUZGo9AM2H2cskSE2zVII75OTkyOEw//07LMHQOIQZL1T5Y40kac+ePdr77VFTa9eUnZIklZeXm1oXgO9y9zIJknuWSnCXnJwcxcX1UXl5hem1WYKhcQgzXqj6zNkwM+DyTkq45mpTa+/e+7W2/lOqqjb/teQAfJO7lkmQ3LtUgrs4HA6Vl1fo3Tl3Ky66o2l1WYKh8QgzXqxN61aK7BBias3gQH9T6wFoPsxeJkFqmqUS3CUuuiNLMHgJJgADAABLI8wAAABL4zZTM2X2UwnHHSWm1QLQ/Jj9Z5I95+TZ/7TbTavprO2Gmrg0hJlmxt1PJVRUnzG9JgDf5e4/k5KSkkyvWae0rMxttdEwhJlmxl1PJWzZnqG9X3yqqv88iQUAF8NdfybVPSU1664hunvkINPqStLGXYc0d1m6KisrTa2LxiPMNFNmP5UQ1JbLrgAaz+w/k+qekurSMdj0J47qbmHBezABGAAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBqrZgMA4EXsdrtb6lZVVcnf39/0umFhYYqOjja9bkMQZgAA8AJ5p0plk5SUlOSmb7BJMkyvGhAYqG/tdo8GGsIMAABeoKisUoakRVMSNbR/rKm1N+46pLnL0jVmcrJ69x9kWt0TOUf03ivPyOFwEGZ+yRtvvKFXX31VeXl56tevnxYuXKgbbrjB020BAGC6nlHtNLBXZ1Nr2nNOSpI6RHVTl9h+ptb2Bl4/Afj999/X9OnTlZycrL179+qGG27QLbfcopycHE+3BgAAvIDXh5kFCxbooYce0sMPP6y4uDgtXLhQXbt21eLFiz3dGgAA8AJefZupurpamZmZevbZZ132JyYmKiMj47w/U1VVpaqqKufn4uJiSVJJSYnp/ZWXl0uSvvvuqKqrq37h7It34vhxSdLx3Fzt2vOVaXXdWZuem6Y2PVu/Nj03Te3cH76XJGV8c0z+H+02ra4kffnN2TsDm/YcUU5htdfXPbf2d19nqrqywrS6p/JzJUllZWWm/z1bV88wLmLSsuHFjh07Zkgy/vGPf7jsf+mll4xevXqd92eef/55Q2ena7OxsbGxsbFZfMvNzf3FvODVV2bq2Gw2l8+GYdTbV2f27NmaMWOG83Ntba1OnTqlDh06XPBnGqKkpERdu3ZVbm6uQkJCLrmeN2KM1ufr45N8f4y+Pj6JMfoCd47PMAyVlpYqKirqF8/16jATFhamli1bKj8/32V/QUGBwsPDz/sz/v7+9V4K1LZtW9N7CwkJ8cl/Mc/FGK3P18cn+f4YfX18EmP0Be4aX2ho6EWd59UTgC+77DINGjRI6enpLvvT09OVkJDgoa4AAIA38eorM5I0Y8YM3X///YqPj9fQoUO1ZMkS5eTk6NFHH/V0awAAwAt4fZi555579O9//1svvvii8vLydMUVV2jjxo3q1q2bR/rx9/fX888/75b1LbwFY7Q+Xx+f5Ptj9PXxSYzRF3jL+GyGcTHPPAEAAHgnr54zAwAA8EsIMwAAwNIIMwAAwNIIMwAAwNIIMw30xhtvKCYmRq1bt9agQYP0xRdfeLqlRtu+fbtuu+02RUVFyWazaf369S7HDcNQSkqKoqKiFBAQoOHDh+vAgQOeabYR0tLSdM011yg4OFidOnXS2LFjdfDgQZdzrDzGxYsXq3///s6XVQ0dOlQff/yx87iVx3YhaWlpstlsmj59unOf1ceZkpIim83mskVERDiPW318knTs2DElJSWpQ4cOCgwM1FVXXaXMzEzncauPsXv37vV+hzabTY8//rgk649Pks6cOaPnnntOMTExCggIUI8ePfTiiy+qtrbWeY5Hx9nohZOaodWrVxutWrUy3nrrLeObb74xpk2bZrRp08b44YcfPN1ao2zcuNFITk42PvzwQ0OSsW7dOpfjL7/8shEcHGx8+OGHxv79+4177rnHiIyMNEpKSjzTcAPddNNNxvLly42vv/7ayMrKMsaMGWNER0cbZWVlznOsPMYNGzYYH330kXHw4EHj4MGDxpw5c4xWrVoZX3/9tWEY1h7b+ezatcvo3r270b9/f2PatGnO/VYf5/PPP2/069fPyMvLc24FBQXO41Yf36lTp4xu3boZkyZNMr788ksjOzvb+PTTT43vvvvOeY7Vx1hQUODy+0tPTzckGVu2bDEMw/rjMwzDmDdvntGhQwfj73//u5GdnW2sWbPGCAoKMhYuXOg8x5PjJMw0wLXXXms8+uijLvv69OljPPvssx7qyDw/DTO1tbVGRESE8fLLLzv3VVZWGqGhocabb77pgQ4vXUFBgSHJ2LZtm2EYvjnGdu3aGW+//bbPja20tNSIjY010tPTjWHDhjnDjC+M8/nnnzcGDBhw3mO+ML5Zs2YZ119//QWP+8IYf2ratGnG5ZdfbtTW1vrM+MaMGWM8+OCDLvvGjRtnJCUlGYbh+d8jt5kuUnV1tTIzM5WYmOiyPzExURkZGR7qyn2ys7OVn5/vMl5/f38NGzbMsuMtLi6WJLVv316Sb42xpqZGq1ev1unTpzV06FCfGpskPf744xozZoxGjRrlst9Xxnn48GFFRUUpJiZG9957r44ePSrJN8a3YcMGxcfH66677lKnTp109dVX66233nIe94Uxnqu6ulrvvvuuHnzwQdlsNp8Z3/XXX6/PPvtMhw4dkiT985//1I4dO/TrX/9akud/j17/BmBv4XA4VFNTU2+By/Dw8HoLYfqCujGdb7w//PCDJ1q6JIZhaMaMGbr++ut1xRVXSPKNMe7fv19Dhw5VZWWlgoKCtG7dOvXt29f5h4eVx1Zn9erVyszM1J49e+od84Xf4eDBg/XOO++oV69eOnHihObNm6eEhAQdOHDAJ8Z39OhRLV68WDNmzNCcOXO0a9cuPfnkk/L399cDDzzgE2M81/r161VUVKRJkyZJ8o1/RyVp1qxZKi4uVp8+fdSyZUvV1NTopZde0n333SfJ8+MkzDSQzWZz+WwYRr19vsRXxjt16lTt27dPO3bsqHfMymPs3bu3srKyVFRUpA8//FATJ07Utm3bnMetPDZJys3N1bRp07R582a1bt36gudZeZy33HKL879feeWVGjp0qC6//HKtXLlSQ4YMkWTt8dXW1io+Pl6pqamSpKuvvloHDhzQ4sWL9cADDzjPs/IYz7V06VLdcsstioqKctlv9fG9//77evfdd7Vq1Sr169dPWVlZmj59uqKiojRx4kTneZ4aJ7eZLlJYWJhatmxZ7ypMQUFBvSTqC+qepvCF8T7xxBPasGGDtmzZoi5dujj3+8IYL7vsMvXs2VPx8fFKS0vTgAED9Ic//MEnxiZJmZmZKigo0KBBg+Tn5yc/Pz9t27ZNf/zjH+Xn5+cci9XHea42bdroyiuv1OHDh33i9xgZGam+ffu67IuLi1NOTo4k3/jfYZ0ffvhBn376qR5++GHnPl8Z3zPPPKNnn31W9957r6688krdf//9euqpp5SWlibJ8+MkzFykyy67TIMGDVJ6errL/vT0dCUkJHioK/eJiYlRRESEy3irq6u1bds2y4zXMAxNnTpVa9eu1eeff66YmBiX474wxp8yDENVVVU+M7aRI0dq//79ysrKcm7x8fGaMGGCsrKy1KNHD58Y57mqqqpkt9sVGRnpE7/H6667rt4rEQ4dOuRcLNgXxlhn+fLl6tSpk8aMGePc5yvjKy8vV4sWrpGhZcuWzkezPT5Ot08x9iF1j2YvXbrU+Oabb4zp06cbbdq0Mb7//ntPt9YopaWlxt69e429e/cakowFCxYYe/fudT5q/vLLLxuhoaHG2rVrjf379xv33XefpR4nfOyxx4zQ0FBj69atLo9NlpeXO8+x8hhnz55tbN++3cjOzjb27dtnzJkzx2jRooWxefNmwzCsPbafc+7TTIZh/XE+/fTTxtatW42jR48aO3fuNG699VYjODjY+eeK1ce3a9cuw8/Pz3jppZeMw4cPG++9954RGBhovPvuu85zrD5GwzCMmpoaIzo62pg1a1a9Y74wvokTJxqdO3d2Ppq9du1aIywszJg5c6bzHE+OkzDTQK+//rrRrVs347LLLjMGDhzofMzXirZs2WJIqrdNnDjRMIyzj9o9//zzRkREhOHv72/ceOONxv79+z3bdAOcb2ySjOXLlzvPsfIYH3zwQee/ix07djRGjhzpDDKGYe2x/Zyfhhmrj7PuXRytWrUyoqKijHHjxhkHDhxwHrf6+AzDMP72t78ZV1xxheHv72/06dPHWLJkictxXxjjJ598YkgyDh48WO+YL4yvpKTEmDZtmhEdHW20bt3a6NGjh5GcnGxUVVU5z/HkOG2GYRjuv/4DAADgHsyZAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAeCVMjIy1LJlS918882ebgWAl2M5AwBe6eGHH1ZQUJDefvttffPNN4qOjvZ0SwC8FFdmAHid06dP64MPPtBjjz2mW2+9VStWrHA5vmHDBsXGxiogIEAjRozQypUrZbPZVFRU5DwnIyNDN954owICAtS1a1c9+eSTOn36dNMOBECTIMwA8Drvv/++evfurd69eyspKUnLly9X3UXk77//XnfeeafGjh2rrKwsTZ48WcnJyS4/v3//ft10000aN26c9u3bp/fff187duzQ1KlTPTEcAG7GbSYAXue6667T3XffrWnTpunMmTOKjIzUX/7yF40aNUrPPvusPvroI+3fv995/nPPPaeXXnpJhYWFatu2rR544AEFBAToz3/+s/OcHTt2aNiwYTp9+rRat27tiWEBcBOuzADwKgcPHtSuXbt07733SpL8/Px0zz33aNmyZc7j11xzjcvPXHvttS6fMzMztWLFCgUFBTm3m266SbW1tcrOzm6agQBoMn6ebgAAzrV06VKdOXNGnTt3du4zDEOtWrVSYWGhDMOQzWZz+ZmfXmCura3V5MmT9eSTT9arz0RiwPcQZgB4jTNnzuidd97R73//eyUmJrocu+OOO/Tee++pT58+2rhxo8uxPXv2uHweOHCgDhw4oJ49e7q9ZwCex5wZAF5j/fr1uueee1RQUKDQ0FCXY8nJydq4caPWrl2r3r1766mnntJDDz2krKwsPf300/rXv/6loqIihYaGat++fRoyZIj+67/+S4888ojatGkju92u9PR0/elPf/LQ6AC4C3NmAHiNpUuXatSoUfWCjHT2ykxWVpYKCwv117/+VWvXrlX//v21ePFi59NM/v7+kqT+/ftr27ZtOnz4sG644QZdffXVmjt3riIjI5t0PACaBldmAFjeSy+9pDfffFO5ubmebgWABzBnBoDlvPHGG7rmmmvUoUMH/eMf/9Crr77KO2SAZowwA8ByDh8+rHnz5unUqVOKjo7W008/rdmzZ3u6LQAewm0mAABgaUwABgAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlvb/AAPA3vzteZ9fAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.histplot(x=\"Age\", hue='Survived', hue_order = [1,0],data=train_data).legend([\"Dead\",\"Survived\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "998898bf",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzDElEQVR4nO3deXhU5d3/8c+QkMkeCEIWTFg0ghJ5ZJOKC1gh6SPwSHFBEZWKPmhciPoIUlCilUSijalSUawsLri0orUWhWg1lWILRFEEBERACMQICZnMJJlJZs7vD39MG1lEzmROknm/rutcZc6cmfs795V+4yfnzH1shmEYAgAAAICT1MHqAgAAAAC0bYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqAAAAABgCqECAAAAgCmECiAE9ezZU8XFxVaXAQDtXkVFhUaNGqWYmBh16tTJ0lqWLFlieQ1ovwgVCAmVlZWaOnWq0tPTZbfblZycrOzsbH388cdWlwYAOAFttY8//vjj2r9/vzZs2KBt27ZZXQ7QYsKtLgAIhssvv1yNjY1aunSpevfurW+//Vbvv/++qqqqrC4NAHAC2mof37FjhwYNGqSMjAyrSwFaFGcq0O4dOnRIq1ev1rx583TxxRerR48eOvfcczVz5kyNHj3af1xNTY3+93//V926dVN8fLx+/vOf67PPPpMkfffdd0pOTlZ+fr7/+H/961+KiIjQqlWrWqx2m82mZ555RmPGjFF0dLTOPPNMffzxx/rqq680YsQIxcTE6LzzztOOHTv8r9mxY4cuu+wyJSUlKTY2VkOGDNF777133HGO99kBwGpttY/37NlTr7/+up5//nnZbDZNnjz5R+uUpLy8PJ1zzjlatGiR0tPTFRsbq1tvvVVer1eFhYVKTk5Wt27dNHfu3GbjFRUV6eyzz1ZMTIzS0tKUk5Mjp9N53Br/8pe/aNCgQYqMjFTv3r314IMPqqmpKeBzgfaPUIF2LzY2VrGxsXrzzTfldruPeoxhGBo9erQqKiq0YsUKlZWVaeDAgbrkkktUVVWlrl27atGiRcrLy9P69evldDo1adIk5eTkKCsr65hj9+vXzz/+0bZ+/fr9aP2/+c1vdP3112vDhg3q27evJk6cqKlTp2rmzJlav369JOn222/3H+90OnXppZfqvffe06effqrs7GyNHTtW33zzzUl9dgCwWlvt4+vWrdMvfvELXXXVVdq/f79+97vfnXDP3bFjh9555x29++67evnll7Vo0SKNHj1ae/fuVWlpqebNm6fZs2frn//8p/81HTp00BNPPKEvvvhCS5cu1d/+9jdNnz79mPWtXLlSkyZN0p133qnNmzfrmWee0ZIlS44IK8AJMYAQ8Kc//cno3LmzERkZaQwbNsyYOXOm8dlnn/mff//99434+HijoaGh2etOO+0045lnnvE/zsnJMc444wzj2muvNTIzM436+vrjjrtr1y5j+/btx9x27dp13NdLMmbPnu1//PHHHxuSjOeee86/7+WXXzYiIyOP+z5nnXWW8eSTT/of9+jRw3j88cd/0mcHACu11T5+2WWXGTfccMNPqnPOnDlGdHS04XA4/M9nZ2cbPXv2NLxer39fnz59jIKCgmOO/dprrxldunTxP168eLGRkJDgf3zhhRca+fn5zV7zwgsvGCkpKcf9TMDR8J0KhITLL79co0eP1kcffaSPP/5Y7777rgoLC/WHP/xBkydPVllZmZxOp7p06dLsdfX19c0uLXrssceUmZmp1157TevXr1dkZORxx+3Ro4fp2vv37+//d1JSkiTp7LPPbravoaFBDodD8fHxcrlcevDBB/X2229r3759ampqUn19/THPVJzoZwcAK7XlPv6fTrTOnj17Ki4uzv84KSlJYWFh6tChQ7N9lZWV/scffPCB8vPztXnzZjkcDjU1NamhoUEul0sxMTFHrWXdunXNzkx4vV41NDSorq5O0dHRAfnMCA2ECoSMyMhIjRo1SqNGjdIDDzygm266SXPmzNHkyZPl8/mUkpKiDz/88IjX/efye19//bX27dsnn8+n3bt3N/sP/qPp16+fdu/efczne/TooU2bNh33PTp27Oj/t81mO+Y+n88nSbr33nu1cuVKPfbYYzr99NMVFRWlK664Qh6P56jvf6KfHQCs1lb7+H860Tr/s89L3/f6o+073Pt3796tSy+9VLfccot+85vfKDExUatXr9aUKVPU2Nh4zFoefPBBjR8//ojnfixsAT9EqEDIOuuss/Tmm29KkgYOHKiKigqFh4erZ8+eRz3e4/Ho2muv1YQJE9S3b19NmTJFGzdu9J89OJoVK1Ycs5lLR/7SCISPPvpIkydP1i9/+UtJ33/HYteuXcc8/kQ+OwC0Rm2xj7dUz12/fr2ampr029/+1n8247XXXvvRWrZu3arTTz89YHUgdBEq0O4dPHhQV155pW688Ub1799fcXFxWr9+vQoLC3XZZZdJkkaOHKnzzjtP48aN07x589SnTx/t27dPK1as0Lhx4zR48GDNmjVLNTU1euKJJxQbG6t33nlHU6ZM0dtvv33MsQN92vxEnH766Vq+fLnGjh0rm82m+++/3/+XrKM5kc8OAFZqT328pXruaaedpqamJj355JMaO3as/vGPf+jpp58+7mseeOABjRkzRmlpabryyivVoUMHff7559q4caMefvjhk6oDoYvVn9DuxcbGaujQoXr88cd10UUXKTMzU/fff79uvvlmzZ8/X9L3p5BXrFihiy66SDfeeKPOOOMMXX311dq1a5eSkpL04Ycfqri4WC+88ILi4+PVoUMHvfDCC1q9erUWLFhg8Sds7vHHH1fnzp01bNgwjR07VtnZ2Ro4cOAxj/+xzw4AVmtPfbyleu4555yjoqIizZs3T5mZmXrppZdUUFBw3NdkZ2fr7bffVklJiYYMGaKf/exnKioqsuQPYmj7bIZhGFYXAQAAAKDt4kwFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAExpk6HCMAw5HA6xGi4AtD/0eABoe9pkqKitrVVCQoJqa2utLgUAEGD0eABoe9pkqAAAAADQehAqAAAAAJhCqAAAAABgyk8OFX//+981duxYpaamymaz6c0332z2vGEYysvLU2pqqqKiojRixAht2rSp2TFut1t33HGHTjnlFMXExOh//ud/tHfvXlMfBAAAAIA1fnKocLlc+q//+i/Nnz//qM8XFhaqqKhI8+fP17p165ScnKxRo0Y1+8Jdbm6u3njjDb3yyitavXq1nE6nxowZI6/Xe/KfBAAAAIAlbIaJNftsNpveeOMNjRs3TtL3ZylSU1OVm5urGTNmSPr+rERSUpLmzZunqVOnqqamRl27dtULL7ygCRMmSJL27duntLQ0rVixQtnZ2T86rsPhUEJCgmpqahQfH3+y5QMAWiF6PAC0PQH9TsXOnTtVUVGhrKws/z673a7hw4drzZo1kqSysjI1NjY2OyY1NVWZmZn+YwAAAAC0HeGBfLOKigpJUlJSUrP9SUlJ2r17t/+YiIgIde7c+YhjDr/+h9xut9xut/+xw+EIZNkAAAvR4wGg7WuR1Z9sNluzx4ZhHLHvh453TEFBgRISEvxbWlpawGoFAFiLHg8AbV9AQ0VycrIkHXHGobKy0n/2Ijk5WR6PR9XV1cc85odmzpypmpoa/7Znz55Alg0AsBA9HgDavoCGil69eik5OVklJSX+fR6PR6WlpRo2bJgkadCgQerYsWOzY/bv368vvvjCf8wP2e12xcfHN9sAAO0DPR4A2r6f/J0Kp9Opr776yv94586d2rBhgxITE5Wenq7c3Fzl5+crIyNDGRkZys/PV3R0tCZOnChJSkhI0JQpU3TPPfeoS5cuSkxM1P/93//p7LPP1siRIwP3yQAAAAAExU8OFevXr9fFF1/sf3z33XdLkm644QYtWbJE06dPV319vXJyclRdXa2hQ4dq1apViouL87/m8ccfV3h4uK666irV19frkksu0ZIlSxQWFhaAjwQAAAAgmEzdp8IqrGEeGFVVVXI6nZbWEBsbq8TEREtrANC60OMBoO0J6JKyaDuqqqqUO/3XqnLUWVpHYny0igvzCRYAAABtGKEiRDmdTlU56tRlYLZiOne1pAZX9Xc6+MlKOZ1OQgUAAEAbRqgIcTGduyqha4pl4x+0bGQAAAAESovc/A4AAABA6CBUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADAl3OoCENo8HrfKy8stGz82NlaJiYmWjQ8AANAeECpgmQaXQ1u2bNbsgiJFRUZZUkNifLSKC/MJFgAAACYQKmCZRneDmhSmxAHZ6pqaHvTxXdXf6eAnK+V0OgkVAAAAJhAqYLmYTl2U0DXFkrEPWjIqAABA+8IXtQEAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqAAAAABgCqECAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGAKoQIAAACAKYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAApgQ8VDQ1NWn27Nnq1auXoqKi1Lt3bz300EPy+Xz+YwzDUF5enlJTUxUVFaURI0Zo06ZNgS4FAAAAQBAEPFTMmzdPTz/9tObPn68tW7aosLBQjz76qJ588kn/MYWFhSoqKtL8+fO1bt06JScna9SoUaqtrQ10OQAAAABaWMBDxccff6zLLrtMo0ePVs+ePXXFFVcoKytL69evl/T9WYri4mLNmjVL48ePV2ZmppYuXaq6ujotW7Ys0OUAAAAAaGEBDxUXXHCB3n//fW3btk2S9Nlnn2n16tW69NJLJUk7d+5URUWFsrKy/K+x2+0aPny41qxZE+hyAAAAALSw8EC/4YwZM1RTU6O+ffsqLCxMXq9Xc+fO1TXXXCNJqqiokCQlJSU1e11SUpJ279591Pd0u91yu93+xw6HI9BlAwAsQo8HgLYv4GcqXn31Vb344otatmyZPvnkEy1dulSPPfaYli5d2uw4m83W7LFhGEfsO6ygoEAJCQn+LS0tLdBlAwAsQo8HgLYv4KHi3nvv1X333aerr75aZ599tq677jrdddddKigokCQlJydL+vcZi8MqKyuPOHtx2MyZM1VTU+Pf9uzZE+iyAQAWoccDQNsX8FBRV1enDh2av21YWJh/SdlevXopOTlZJSUl/uc9Ho9KS0s1bNiwo76n3W5XfHx8sw0A0D7Q4wGg7Qv4dyrGjh2ruXPnKj09Xf369dOnn36qoqIi3XjjjZK+v+wpNzdX+fn5ysjIUEZGhvLz8xUdHa2JEycGuhwAAAAALSzgoeLJJ5/U/fffr5ycHFVWVio1NVVTp07VAw884D9m+vTpqq+vV05OjqqrqzV06FCtWrVKcXFxgS4HAAAAQAsLeKiIi4tTcXGxiouLj3mMzWZTXl6e8vLyAj08AAAAgCAL+HcqAAAAAIQWQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMCU8JZ40/Lycs2YMUPvvPOO6uvrdcYZZ+i5557ToEGDJEmGYejBBx/UwoULVV1draFDh+r3v/+9+vXr1xLlAMfk8bhVXl5uaQ2xsbFKTEy0tAYAAAAzAh4qqqurdf755+viiy/WO++8o27dumnHjh3q1KmT/5jCwkIVFRVpyZIlOuOMM/Twww9r1KhR2rp1q+Li4gJdEnBUDS6HtmzZrNkFRYqKjLKsjsT4aBUX5hMsAABAmxXwUDFv3jylpaVp8eLF/n09e/b0/9swDBUXF2vWrFkaP368JGnp0qVKSkrSsmXLNHXq1ECXBBxVo7tBTQpT4oBsdU1Nt6QGV/V3OvjJSjmdTkIFAABoswIeKt566y1lZ2fryiuvVGlpqbp3766cnBzdfPPNkqSdO3eqoqJCWVlZ/tfY7XYNHz5ca9asOWqocLvdcrvd/scOhyPQZSOExXTqooSuKZaNf9CykYHWgR4PAG1fwL+o/fXXX2vBggXKyMjQypUrdcstt+jOO+/U888/L0mqqKiQJCUlJTV7XVJSkv+5HyooKFBCQoJ/S0tLC3TZAACL0OMBoO0LeKjw+XwaOHCg8vPzNWDAAE2dOlU333yzFixY0Ow4m83W7LFhGEfsO2zmzJmqqanxb3v27Al02QAAi9DjAaDtC/jlTykpKTrrrLOa7TvzzDP1+uuvS5KSk5MlfX/GIiXl35ecVFZWHnH24jC73S673R7oUgEArQA9HgDavoCfqTj//PO1devWZvu2bdumHj16SJJ69eql5ORklZSU+J/3eDwqLS3VsGHDAl0OAAAAgBYW8DMVd911l4YNG6b8/HxdddVVWrt2rRYuXKiFCxdK+v6yp9zcXOXn5ysjI0MZGRnKz89XdHS0Jk6cGOhyAAAAALSwgIeKIUOG6I033tDMmTP10EMPqVevXiouLta1117rP2b69Omqr69XTk6O/+Z3q1at4h4VAAAAQBvUInfUHjNmjMaMGXPM5202m/Ly8pSXl9cSwwMAAAAIooB/pwIAAABAaCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFPCrS4AAAAEXlVVlZxOp6U1xMbGKjEx0dIaAAQHoQIAgHamqqpKc6bnylN7wNI6IuJO0YOFxQQLIAQQKgAAaGecTqc8tQd045A4pSTGWFLD/iqXFq07IKfTSagAQgChAgCAdiolMUbpXeMsrKDWwrEBBBNf1AYAAABgCqECAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGAKoQIAAACAKYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqAAAAABgCqECAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGAKoQIAAACAKYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqAAAAABgCqECAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGBKi4eKgoIC2Ww25ebm+vcZhqG8vDylpqYqKipKI0aM0KZNm1q6FAAAAAAtoEVDxbp167Rw4UL179+/2f7CwkIVFRVp/vz5WrdunZKTkzVq1CjV1ta2ZDkAAAAAWkCLhQqn06lrr71Wzz77rDp37uzfbxiGiouLNWvWLI0fP16ZmZlaunSp6urqtGzZspYqBwAAAEALabFQcdttt2n06NEaOXJks/07d+5URUWFsrKy/PvsdruGDx+uNWvWHPW93G63HA5Hsw0A0D7Q4wGg7WuRUPHKK6+orKxMBQUFRzxXUVEhSUpKSmq2Pykpyf/cDxUUFCghIcG/paWlBb5oAIAl6PEA0PYFPFTs2bNH06ZN00svvaTIyMhjHmez2Zo9NgzjiH2HzZw5UzU1Nf5tz549Aa0ZAGAdejwAtH3hgX7DsrIyVVZWatCgQf59Xq9Xf//73zV//nxt3bpV0vdnLFJSUvzHVFZWHnH24jC73S673R7oUgEArQA9Hi2lqqpKTqfT0hpiY2OVmJhoaQ1AMAQ8VFxyySXauHFjs32/+tWv1LdvX82YMUO9e/dWcnKySkpKNGDAAEmSx+NRaWmp5s2bF+hyAABACKqqqtKc6bny1B6wtI6IuFP0YGExwQLtXsBDRVxcnDIzM5vti4mJUZcuXfz7c3NzlZ+fr4yMDGVkZCg/P1/R0dGaOHFioMsBAAAhyOl0ylN7QDcOiVNKYowlNeyvcmnRugNyOp2ECrR7AQ8VJ2L69Omqr69XTk6OqqurNXToUK1atUpxcXFWlAMAANqplMQYpXe18r8vuAcXQkNQQsWHH37Y7LHNZlNeXp7y8vKCMTwAAACAFtSid9QGAAAA0P5ZcvkTgH/zeNwqLy+3bHxWJgEAAGYRKgALNbgc2rJls2YXFCkqMsqSGhLjo1VcmE+wAAAAJ41QAVio0d2gJoUpcUC2uqamB318V/V3OvjJSlYmAQAAphAqgFYgplMXJXRN+fEDW8BBS0YFEAoa3B7LLu8sLy9XY6PHkrGBUESoAAAAAXfI6dbmL7/Ugkd+bcnlnU5Xvfbs3K6GUUmSWLIeaGmECgAAEHAud6PsatTkwbE6vXvXoI//6Y5KPfpVo5qamoI+NhCKCBUAAKDFJHeKtuTmc+UHnUEfEwhl3KcCAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGAKoQIAAACAKYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqAAAAABgCqECAAAAgCmECgAAAACmECoAAAAAmEKoAAAAAGAKoQIAAACAKeFWF4DQ5vM2yVn9nWqiY4I+tuvQAfm8TUEfFwAAoL0hVMAy7jqnOjj2ad/KZ3QwKjro4ze4atXBsU9uV23QxwYAAGhPCBWwTJOnQXHhXk0aGKPuSacEffy9+7z6XblXjZ6GoI8NAADQnhAqYLnEOLuSE4N/+VOdwx70MQEAANojvqgNAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFMIFQAAAABMIVQAAAAAMIVQAQAAAMAUQgUAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTwq0uAIC1PB63ysvLLa0hNjZWiYmJltYAAABOHqECCGENLoe2bNms2QVFioqMsqyOxPhoFRfmEywAAGijCBVACGt0N6hJYUockK2uqemW1OCq/k4HP1kpp9NJqAAAoI0iVABQTKcuSuiaYtn4By0bGQAABAJf1AYAAABgSsBDRUFBgYYMGaK4uDh169ZN48aN09atW5sdYxiG8vLylJqaqqioKI0YMUKbNm0KdCkAAAAAgiDgoaK0tFS33Xab/vnPf6qkpERNTU3KysqSy+XyH1NYWKiioiLNnz9f69atU3JyskaNGqXa2tpAlwMAAACghQX8OxXvvvtus8eLFy9Wt27dVFZWposuukiGYai4uFizZs3S+PHjJUlLly5VUlKSli1bpqlTpwa6JAAAAAAtqMW/U1FTUyNJ/lVddu7cqYqKCmVlZfmPsdvtGj58uNasWdPS5QAAAAAIsBZd/ckwDN1999264IILlJmZKUmqqKiQJCUlJTU7NikpSbt37z7q+7jdbrndbv9jh8PRQhUDAIKNHg8AbV+Lnqm4/fbb9fnnn+vll18+4jmbzdbssWEYR+w7rKCgQAkJCf4tLS2tReoFAAQfPR4A2r4WCxV33HGH3nrrLX3wwQc69dRT/fuTk5Ml/fuMxWGVlZVHnL04bObMmaqpqfFve/bsaamyAQBBRo8HgLYv4Jc/GYahO+64Q2+88YY+/PBD9erVq9nzvXr1UnJyskpKSjRgwABJksfjUWlpqebNm3fU97Tb7bLb7YEuFQDQCrREj6+qqpLT6Qzoe/5UsbGx3CUeQMgIeKi47bbbtGzZMv35z39WXFyc/4xEQkKCoqKiZLPZlJubq/z8fGVkZCgjI0P5+fmKjo7WxIkTA10OACDEVFVVac70XHlqD1haR0TcKXqwsJhgASAkBDxULFiwQJI0YsSIZvsXL16syZMnS5KmT5+u+vp65eTkqLq6WkOHDtWqVasUFxcX6HIAACHG6XTKU3tANw6JU0pijCU17K9yadG6A3I6nYQKACGhRS5/+jE2m015eXnKy8sL9PBtipWn58vLy+Vp9FgyNgAEQ0pijNK7WvnHKm7oCiB0tOiSsji2qqoq5U7/taocdZaMX1/n0vadu5T+c/ePHwwAAAAcB6HCIk6nU1WOOnUZmK2Yzl2DPv63O7eocfsONTU1BX1sAAAAtC8hHSosv/zI41ZM565K6JoS9PFrqyqDPiYAAADap5ANFVavDlLfUK/yL7/RqRddaUmoAAAAAAIlZEOF1auDfFX+nTZ/6VajuyHoYwMAAACBFLKh4jCrVgdxulxBHxMAEDoaGz1yulyqjbJZMr6rrk5er1f1dXWqteBSY1ddnXw+X9DHBUJVyIcKAADam0OHDmnL1u1a12mvdsdFWFLDpr21qnE49OnGTarctzvo42/Z75LLVadGT2PQxwZCEaECAIB2xuVyqbHJK3vnVMUmdbakhvCa3TJUro7xXRXb/dSgjx9Rt18+Y7+amggVQDAQKgAAaKfCI+yKiIy2ZOyw8I7f/29EhCU1hHW05gzNDzW4PSovL7ds/MbGRnXs2NGy8WNjY7mrfIggVAAAALSAQ063Nn/5pRY88mtFRUYFffwGt0dffrVT/c7opY4WhayIuFP0YGExwSIEECoAAABagMvdKLsaNXlwrE7vHvwb3X66o1KPfunUpAFRloy/v8qlResOyOl0EipCAKECgOU8Hrellwdweh4twcrLXioqKmQYrHzUWiR3irZkpcnyg05Lx/9erUXjItgIFQAs1eByaMuWzZpdUGTJ5QGSlBgfreLCfIIFAsbqy14OVFWrwVkjL19SBhAkhAoAlmp0N6hJYUockK2uqelBH99V/Z0OfrKS0/MIKKsve/nHJo/yNxnyeb1BHxtAaCJUIKR5fYbqaqpU891+S8Z3HTogn7fJkrFbm5hOXZTQNcWSsQ9aMipCgVWXnWyLjwz6mABCG6ECIcvZ0KhGd4MOrH5J9Z/91ZIaGly16uDYJ7eLa04BAEDbRahAyGrweBUTIU06J1o90oJ/eYIk7d3n1e/KvWr0NFgyPgAAQCAQKhDyEuMilJwYY8nYdQ67JeMCAAAEUgerCwAAAADQthEqAAAAAJgS0pc/NTZ65HS5VBtlC/rY9XV1lt+YyOdtkrP6O9VEW3XpT7UMw7BkbAAAAAROyIaKQ4cOacvW7VrXaa92x0UEffz91fVyuurU6PEEfWxJctc51cGxT/tWPqODUdGW1FBTdVC2Jrd8jSypCgAA0JaFbKhwuVxqbPLK3jlVsUmdgz5+hK9ChlGpJovuUdDkaVBcuFeTBsaoe9IpltTw+bY6LfvWkM8gVAAAALRlIRsqDguPsCsiMvh/qQ/rGPyzI0eTGGe3bOWjb6JbxxwAAADAHL6oDQAAAMAUQgUAAAAAU0L+8ifAal6fobqaKtV8tz/oY7sOHZDPou/1tCYej1vl5eWW1hAbG6vExERLa0Bg+Xw+1dfVqdbpDPrY7oYGSayu1xpY+XPgqquTz2ftSpMIHYQKwELOhkY1uht0YPVLqv/sr0Efv8FVqw6OfXK7aoM+dmvR4HJoy5bNml1QpKjIKMvqSIyPVnFhPsGinXB7PHK56vTZpi9VuW930MffvNchr9dr+dLloc7qn4Mt+11yuerU6GkM+tgIPYQKwEINHq9iIqRJ50SrR1rXoI+/d59Xvyv3qtHTEPSxW4tGd4OaFKbEAdnqmppuSQ2u6u908JOVcjqdhIp2oqmpST7DUERCN8V2Tw76+B1rdsvQPvkIFZay+ucgom6/fMZ+NTURKtDyCBVAK5AYF2HJKlx1DnvQx2ytYjp1UULXFMvGP2jZyGhJYR0jrFlhMLxj0MfEsVn2c9BKVppEaOCL2gAAAABMIVQAAAAAMIXLnwAA7U5jo0dOl0u1UTZLxmf1JeB7DW4Pq+uFCEIFAKBdOXTokLZs3a51nfZqd5w115Sz+hIgHXK6tfnLL7XgkV9burpeRNwperCwmGDRwggVAIB2xeVyqbHJK3vnVMUmdbakBlZfAiSXu1F2NWry4Fid3j34KxxK0v4qlxatO8DqekFAqABCnJU335O4AR9aTniE3ZIVdyRWXwL+U3KnaKV3jbOwgtC9F1MwESqAEGb1zfckbsAHAEB7QKgAQpjVN9+TuAEfAADtAaHCQlZedlLnqJZhsDIJvmfVzfckbsAHoCUZqq9vUK3TacnorAKGUEKosIjVl53UVB2UrcktXyPXsgMA2h+ft0ler1dbtu9QbfW3ltTAKmAIJYQKi1h92cnn2+q07FtDPoNQAQBof3xerwxJEQldFdv9VEtqYBUwhBJChcWsuuzkm2hr1m4HACCYwiIiWAUMCIIOVhcAAAAAoG0jVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATGH1JwCWs/JGkK5DB+TzsrQyAABmECoAWMrqG0E2uGrVwbFPbldt0McGAKC9sDRUPPXUU3r00Ue1f/9+9evXT8XFxbrwwgutLAlAkFl9I8i9+7z6XblXjZ6GoI8NAEB7YVmoePXVV5Wbm6unnnpK559/vp555hn993//tzZv3qz09HSrygJgEatuBFnnsAd9zKNxOR0qKytTeXm5JeN369ZNp512miVjA2hJhurrG1TrdAZ9ZFddnbxer+rr6iwZX5KcLpcaGz2WjB1qLAsVRUVFmjJlim666SZJUnFxsVauXKkFCxaooKDAqrIAIOhqvivX1vWl+s32f6lDhzBLavB1jNYf//wOwQJoR3zeJnm9Xm3ZvkO11d8GffxNe2tV43Do042bVLlvd9DHl6TKWo+2bK3XoUOH+KN1C7MkVHg8HpWVlem+++5rtj8rK0tr1qyxoiQAsEx9bY1iw32afFG6UrslBn38yoMOLSrdrcrKSkIF0I74vF4ZkiISuiq2+6lBHz+8ZrcMlatjvDXjS1LNt9VqbNoml8tlyfihxJJQceDAAXm9XiUlJTXbn5SUpIqKiiOOd7vdcrvd/sc1NTWSJIfDcdI1uFwueb0+7d5fpTp38Fd+2XfAIa/P0J5va+TrcORnbu/jt4YarB6/NdRg9fitoYaKbw+pscmnyq+/VJjNFvTxJaly1zZ5vT41eLyW9KN6T5O8Xp9cLpepvhoXFyfbScxhoHu81f1dsv7n2urxW0MNVo/fGmo4PP6+6nrZIk/+/9sn69tD9ZaOL0nfVbnk9ni0du3akA4WKSkpSktLM/UeP9rjDQuUl5cbkow1a9Y02//www8bffr0OeL4OXPmGJLY2NjY2FrxVlNTc1K/E+jxbGxsbK1/+7EebzMMw1CQeTweRUdH649//KN++ctf+vdPmzZNGzZsUGlpabPjf/hXLJ/Pp6qqKnXp0uUn/1XM4XAoLS1Ne/bsUXx8vLkPEqKYw8BgHs1jDgMjUPMYqDMV9HhrMYeBwTyaxxwGRrB6vCWXP0VERGjQoEEqKSlpFipKSkp02WWXHXG83W6X3d58hZZOnTqZqiE+Pp4fUJOYw8BgHs1jDgPDqnmkx7dOzGFgMI/mMYeB0dLzaNnqT3fffbeuu+46DR48WOedd54WLlyob775RrfccotVJQEAAAA4CZaFigkTJujgwYN66KGHtH//fmVmZmrFihXq0aOHVSUBAAAAOAmW3lE7JydHOTk5QR3Tbrdrzpw5R5xqx4ljDgODeTSPOQyM9jSP7emzWIU5DAzm0TzmMDCCNY+WfFEbAAAAQPvRweoCAAAAALRthAoAAAAAphAqAAAAAJgSUqHiqaeeUq9evRQZGalBgwbpo48+srqkVq2goEBDhgxRXFycunXrpnHjxmnr1q3NjjEMQ3l5eUpNTVVUVJRGjBihTZs2WVRx61dQUCCbzabc3Fz/PubwxJSXl2vSpEnq0qWLoqOjdc4556isrMz/PPN4fE1NTZo9e7Z69eqlqKgo9e7dWw899JB8Pp//mLY+h/T4E0d/bxn0+JNDfzevVfT4495vux155ZVXjI4dOxrPPvussXnzZmPatGlGTEyMsXv3bqtLa7Wys7ONxYsXG1988YWxYcMGY/To0UZ6errhdDr9xzzyyCNGXFyc8frrrxsbN240JkyYYKSkpBgOh8PCyluntWvXGj179jT69+9vTJs2zb+fOfxxVVVVRo8ePYzJkycb//rXv4ydO3ca7733nvHVV1/5j2Eej+/hhx82unTpYrz99tvGzp07jT/+8Y9GbGysUVxc7D+mLc8hPf6nob8HHj3+5NDfA6M19PiQCRXnnnuuccsttzTb17dvX+O+++6zqKK2p7Ky0pBklJaWGoZhGD6fz0hOTjYeeeQR/zENDQ1GQkKC8fTTT1tVZqtUW1trZGRkGCUlJcbw4cP9v3CYwxMzY8YM44ILLjjm88zjjxs9erRx4403Nts3fvx4Y9KkSYZhtP05pMebQ383hx5/8ujvgdEaenxIXP7k8XhUVlamrKysZvuzsrK0Zs0ai6pqe2pqaiRJiYmJkqSdO3eqoqKi2bza7XYNHz6cef2B2267TaNHj9bIkSOb7WcOT8xbb72lwYMH68orr1S3bt00YMAAPfvss/7nmccfd8EFF+j999/Xtm3bJEmfffaZVq9erUsvvVRS255Derx59Hdz6PEnj/4eGK2hx1t687tgOXDggLxer5KSkprtT0pKUkVFhUVVtS2GYejuu+/WBRdcoMzMTEnyz93R5nX37t1Br7G1euWVV1RWVqb169cf8RxzeGK+/vprLViwQHfffbd+/etfa+3atbrzzjtlt9t1/fXXM48nYMaMGaqpqVHfvn0VFhYmr9eruXPn6pprrpHUtn8W6fHm0N/NocebQ38PjNbQ40MiVBxms9maPTYM44h9OLrbb79dn3/+uVavXn3Ec8zrse3Zs0fTpk3TqlWrFBkZeczjmMPj8/l8Gjx4sPLz8yVJAwYM0KZNm7RgwQJdf/31/uOYx2N79dVX9eKLL2rZsmXq16+fNmzYoNzcXKWmpuqGG27wH9eW57At124l+vvJo8ebR38PjNbQ40Pi8qdTTjlFYWFhR/zFqrKy8ojEhiPdcccdeuutt/TBBx/o1FNP9e9PTk6WJOb1OMrKylRZWalBgwYpPDxc4eHhKi0t1RNPPKHw8HD/PDGHx5eSkqKzzjqr2b4zzzxT33zzjSR+Fk/Evffeq/vuu09XX321zj77bF133XW66667VFBQIKltzyE9/uTR382hx5tHfw+M1tDjQyJUREREaNCgQSopKWm2v6SkRMOGDbOoqtbPMAzdfvvtWr58uf72t7+pV69ezZ7v1auXkpOTm82rx+NRaWkp8/r/XXLJJdq4caM2bNjg3wYPHqxrr71WGzZsUO/evZnDE3D++ecfsdzltm3b1KNHD0n8LJ6Iuro6dejQvOWHhYX5lxtsy3NIj//p6O+BQY83j/4eGK2ixwfk695twOHlBp977jlj8+bNRm5urhETE2Ps2rXL6tJarVtvvdVISEgwPvzwQ2P//v3+ra6uzn/MI488YiQkJBjLly83Nm7caFxzzTUs8/Yj/nNlEMNgDk/E2rVrjfDwcGPu3LnG9u3bjZdeesmIjo42XnzxRf8xzOPx3XDDDUb37t39yw0uX77cOOWUU4zp06f7j2nLc0iP/2no7y2HHv/T0N8DozX0+JAJFYZhGL///e+NHj16GBEREcbAgQP9S+fh6CQddVu8eLH/GJ/PZ8yZM8dITk427Ha7cdFFFxkbN260rug24Ie/cJjDE/OXv/zFyMzMNOx2u9G3b19j4cKFzZ5nHo/P4XAY06ZNM9LT043IyEijd+/exqxZswy32+0/pq3PIT3+xNHfWw49/qejv5vXGnq8zTAMIzDnPAAAAACEopD4TgUAAACAlkOoAAAAAGAKoQIAAACAKYQKAAAAAKYQKgAAAACYQqgAAAAAYAqhAgAAAIAphAoAAAAAphAqAAAAAJhCqABawJo1axQWFqZf/OIXVpcCAAgwejxwJJthGIbVRQDtzU033aTY2Fj94Q9/0ObNm5Wenm51SQCAAKHHA0fiTAUQYC6XS6+99ppuvfVWjRkzRkuWLGn2/FtvvaWMjAxFRUXp4osv1tKlS2Wz2XTo0CH/MWvWrNFFF12kqKgopaWl6c4775TL5QruBwEAHIEeDxwdoQIIsFdffVV9+vRRnz59NGnSJC1evFiHTwju2rVLV1xxhcaNG6cNGzZo6tSpmjVrVrPXb9y4UdnZ2Ro/frw+//xzvfrqq1q9erVuv/12Kz4OAOA/0OOBo+PyJyDAzj//fF111VWaNm2ampqalJKSopdfflkjR47Ufffdp7/+9a/auHGj//jZs2dr7ty5qq6uVqdOnXT99dcrKipKzzzzjP+Y1atXa/jw4XK5XIqMjLTiYwEARI8HjoUzFUAAbd26VWvXrtXVV18tSQoPD9eECRO0aNEi//NDhgxp9ppzzz232eOysjItWbJEsbGx/i07O1s+n087d+4MzgcBAByBHg8cW7jVBQDtyXPPPaempiZ1797dv88wDHXs2FHV1dUyDEM2m63Za354stDn82nq1Km68847j3h/vgwIANahxwPHRqgAAqSpqUnPP/+8fvvb3yorK6vZc5dffrleeukl9e3bVytWrGj23Pr165s9HjhwoDZt2qTTTz+9xWsGAJwYejxwfHynAgiQN998UxMmTFBlZaUSEhKaPTdr1iytWLFCy5cvV58+fXTXXXdpypQp2rBhg+655x7t3btXhw4dUkJCgj7//HP97Gc/069+9SvdfPPNiomJ0ZYtW1RSUqInn3zSok8HAKGNHg8cH9+pAALkueee08iRI4/4ZSN9/1esDRs2qLq6Wn/605+0fPly9e/fXwsWLPCvDGK32yVJ/fv3V2lpqbZv364LL7xQAwYM0P3336+UlJSgfh4AwL/R44Hj40wFYLG5c+fq6aef1p49e6wuBQAQYPR4hAq+UwEE2VNPPaUhQ4aoS5cu+sc//qFHH32U9ckBoJ2gxyNUESqAINu+fbsefvhhVVVVKT09Xffcc49mzpxpdVkAgACgxyNUcfkTAAAAAFP4ojYAAAAAUwgVAAAAAEwhVAAAAAAwhVABAAAAwBRCBQAAAABTCBUAAAAATCFUAAAAADCFUAEAAADAFEIFAAAAAFP+H0Ej9AM//DQIAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "g = sns.FacetGrid(train_data, col=\"Sex\", hue=\"Survived\", height=4)\n",
+ "\n",
+ "combined_age = train_data['Age'].dropna()\n",
+ "_, bin_edges = np.histogram(combined_age, bins=10)\n",
+ "\n",
+ "g.map(plt.hist, \"Age\", bins=bin_edges, alpha=0.6, edgecolor=\"black\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "f10625e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA390lEQVR4nO3de5RdZZkn/m/lVqkklYQKIZVggjCmQQ0MQdAZbsGfEGjBS+MFFaRpW5tuQIj0iNwcoy0JoE2nFUWgbWRGGGltdOjWUTM6pKUZBWMHGIgBMRIMxJBUkroldd2/PxxqjIBS4WTvSs7ns9Zey7PPPud9zrvCeazv2e/eDUVRFAEAAACAEo2qugAAAAAA6o9QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCl6Ec845J29961urLgOAiukHAOgFUDtCKerCOeeck4aGhjQ0NGTs2LE56KCD8p/+039KV1dX1aXtdjt27Mg555yTQw89NGPGjNFAgbpWz/3g7rvvzlve8pbMnDkzEydOzOGHH57bbrut6rIASlfPvWDNmjV5/etfnxkzZmT8+PE56KCDcuWVV6avr6/q0qhTY6ouAMpyyimn5JZbbklfX19+8IMf5P3vf3+6urpyww03VF3abjUwMJCmpqZceOGF+cd//MeqywGoXL32g3vvvTeHHXZYPvKRj2TGjBn55je/mbPPPjuTJ0/Om970pqrLAyhVvfaCsWPH5uyzz84RRxyRqVOn5oEHHsgHPvCBDA4OZsmSJVWXRx1yphR1o7GxMa2trZk9e3be85735Mwzz8w3vvGNoecffvjhnHrqqZk8eXKam5tz3HHH5fHHH3/e9/r2t7+dY489NlOnTs20adNy2mmn7XRsb29vLrjggsycOTPjx4/Py1/+8ixdunTo+cWLF2fOnDlpbGzMrFmzcuGFF+62zz1x4sTccMMN+cAHPpDW1tbdNg7AnqJe+8Hll1+ev/qrv8rRRx+df/fv/l0uvPDCnHLKKfn617++28YEGKnqtRccdNBB+ZM/+ZP8+3//73PAAQfkzW9+c84888z84Ac/2G1jwu8ilKJuNTU1DZ2mun79+hx//PEZP358vv/972flypV53/vel/7+/ud9bVdXVy6++OLcf//9+d73vpdRo0blj/7ojzI4OJgk+cxnPpO77ror//AP/5A1a9bky1/+cl7+8pcnSb72ta/lb/7mb3LjjTfmscceyze+8Y0ceuihL1jnD37wg0yaNOl3bn7VANh19dwPtm3blpaWlmG9BmBvVK+94Gc/+1m+/e1vZ8GCBS/6NVBLlu9Rl+67777cfvvtecMb3pAk+dznPpcpU6bkK1/5SsaOHZsk+YM/+IMXfP3b3va2nR5/8YtfzH777ZdHHnkk8+bNy7p16zJ37twce+yxaWhoyAEHHDB07Lp169La2poTTzwxY8eOzZw5c/La1772Bcc68sgjs2rVqt/5efxBAbBr6rkffO1rX8v999+fG2+88UW/BmBvVI+94Oijj85PfvKT9PT05M/+7M/yiU984ve+BnYHoRR145//+Z8zadKk9Pf3p6+vL295y1vy2c9+NkmyatWqHHfccUNN5/d5/PHH89GPfjQ//OEPs2nTpqFfQdatW5d58+blnHPOyUknnZSDDz44p5xySk477bQsXLgwSfKOd7wjy5Yty0EHHZRTTjklb3zjG/OmN70pY8Y8/3+OTU1NecUrXlGDGQAg0Q+SX1/0/JxzzsnNN9+cV7/61TV5T4A9Sb33gjvuuCMdHR154IEH8uEPfzif/vSnc8kll7zk94XhsnyPuvH6178+q1atypo1a7Jjx47ceeed2W+//ZL8+st9ON70pjdl8+bNufnmm/OjH/0oP/rRj5L8er14khxxxBFZu3Zt/uqv/irbt2/PO9/5zrz97W9PksyePTtr1qzJ5z73uTQ1NeW8887L8ccf/4J3vLB8D6C26r0frFixIm9605ty3XXX5eyzzx7W5wXYW9R7L5g9e3Ze9apX5d3vfneuvvrqLF68OAMDA8P63FALzpSibkycOPEFf1U47LDDcuutt6avr+/3/iKyefPmrF69OjfeeGOOO+64JMk999zznOMmT56cM844I2eccUbe/va355RTTklbW1taWlrS1NSUN7/5zXnzm9+c888/P4ccckgeeuihHHHEEc95H8v3AGqrnvvB3XffndNOOy3XXHNN/uzP/ux3HguwN6vnXvDbiqJIX19fiqIY1uugFoRSkOSCCy7IZz/72bzrXe/KZZddlilTpuSHP/xhXvva1+bggw/e6dh99tkn06ZNy0033ZSZM2dm3bp1ufTSS3c65m/+5m8yc+bMHH744Rk1alS++tWvprW1NVOnTs2XvvSlDAwM5HWve10mTJiQ//pf/2uampp2Wlv+m2pxiu4jjzyS3t7etLW1paOjY6iRHX744S/pfQH2NntzP7j77rtz6qmn5qKLLsrb3va2bNiwIUkybtw4P24A/Ia9uRfcdtttGTt2bA499NA0NjZm5cqVueyyy3LGGWe84JJB2J38q4Mk06ZNy/e///18+MMfzoIFCzJ69OgcfvjhOeaYY55z7KhRo/KVr3wlF154YebNm5eDDz44n/nMZ3LCCScMHTNp0qRcc801eeyxxzJ69OgcddRR+da3vpVRo0Zl6tSpufrqq3PxxRdnYGAghx56aP7pn/4p06ZN222f741vfGOeeOKJocfz589PEr+GAPyWvbkffOlLX0p3d3eWLl26063IFyxYkLvvvnu3jAmwJ9qbe8GYMWNyzTXX5NFHH01RFDnggANy/vnn50Mf+tBuGQ9+n4bCX6UAAAAAlMyFzgEAAAAonVAKAAAAgNIJpQAAAAAonVAKAAAAgNIJpQAAAAAonVAKAAAAgNKNuFCqKIq0t7enKIqqSwGgQvoBAHoBwN5txIVSHR0dmTJlSjo6OqouBYAK6QcA6AUAe7cRF0oBAAAAsPcTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUbU3UBAAAAlKOtrS2dnZ2V1jBp0qS0tLRUWgMwMgilAAAA6kBbW1sWXXJ52tq7K62jZfKELLt2iWAKEEoBAADUg87OzrS1d2faESdn4j7TK6mha8sz2fyT76Szs1MoBQilAAAA6snEfaZnyvSZlY2/ubKRgZHGhc4BAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSCaUAAAAAKJ1QCgAAAIDSDSuU6u/vz5VXXpkDDzwwTU1NOeigg/KJT3wig4ODQ8cURZHFixdn1qxZaWpqygknnJCHH3645oUDAAAAsOcaVih1zTXX5Atf+EKuv/76rF69Otdee20+9alP5bOf/ezQMddee22uu+66XH/99bn//vvT2tqak046KR0dHTUvHgAAAIA907BCqf/9v/933vKWt+TUU0/Ny1/+8rz97W/PwoUL8+Mf/zjJr8+SWrZsWa644oqcfvrpmTdvXm699dZ0d3fn9ttv3y0fAAAAAIA9z7BCqWOPPTbf+9738uijjyZJHnjggdxzzz154xvfmCRZu3ZtNmzYkIULFw69prGxMQsWLMi9995bw7IBAAAA2JONGc7BH/nIR7Jt27YccsghGT16dAYGBnLVVVfl3e9+d5Jkw4YNSZIZM2bs9LoZM2bkiSeeeN737OnpSU9Pz9Dj9vb2YX0AAPYO+gEAegFAfRnWmVJ33HFHvvzlL+f222/PT37yk9x666359Kc/nVtvvXWn4xoaGnZ6XBTFc/Y9a+nSpZkyZcrQNnv27GF+BAD2BvoBAHoBQH0ZVij14Q9/OJdeemne9a535dBDD8173/vefOhDH8rSpUuTJK2trUn+3xlTz9q4ceNzzp561mWXXZZt27YNbU8++eSufA4A9nD6AQB6AUB9Gdbyve7u7owatXOONXr06AwODiZJDjzwwLS2tmb58uWZP39+kqS3tzcrVqzINddc87zv2djYmMbGxl2pHYC9iH4AgF4AUF+GFUq96U1vylVXXZU5c+bk1a9+df7t3/4t1113Xd73vvcl+fWyvUWLFmXJkiWZO3du5s6dmyVLlmTChAl5z3ves1s+AAAAAAB7nmGFUp/97Gfz0Y9+NOedd142btyYWbNm5dxzz81//s//eeiYSy65JNu3b895552XLVu25HWve12++93vprm5uebFAwAAALBnGlYo1dzcnGXLlmXZsmUveExDQ0MWL16cxYsXv8TSAAAAANhbDetC5wAAAABQC0IpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEo3puoCAAAAqB+9vT1Zv3591WVk0qRJaWlpqboMqGtCKQAAAEqxo6s9q1c/kiuXXpem8U2V1tIyeUKWXbtEMAUVEkoBAABQir6eHenP6LTMPznTZ82prI6uLc9k80++k87OTqEUVEgoBQAAQKkmTp2WKdNnVlrD5kpHBxIXOgcAAACgAkIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEo37FBq/fr1OeusszJt2rRMmDAhhx9+eFauXDn0fFEUWbx4cWbNmpWmpqaccMIJefjhh2taNAAAAAB7tmGFUlu2bMkxxxyTsWPH5n/8j/+RRx55JH/913+dqVOnDh1z7bXX5rrrrsv111+f+++/P62trTnppJPS0dFR69oBAAAA2EONGc7B11xzTWbPnp1bbrllaN/LX/7yof9dFEWWLVuWK664IqeffnqS5NZbb82MGTNy++2359xzz61N1QAAAADs0YZ1ptRdd92VI488Mu94xzuy3377Zf78+bn55puHnl+7dm02bNiQhQsXDu1rbGzMggULcu+999auagAAAAD2aMM6U+rnP/95brjhhlx88cW5/PLLc9999+XCCy9MY2Njzj777GzYsCFJMmPGjJ1eN2PGjDzxxBPP+549PT3p6ekZetze3j7czwDAXkA/AEAvAKgvwzpTanBwMEcccUSWLFmS+fPn59xzz80HPvCB3HDDDTsd19DQsNPjoiies+9ZS5cuzZQpU4a22bNnD/MjALA30A8A0AsA6suwQqmZM2fmVa961U77XvnKV2bdunVJktbW1iQZOmPqWRs3bnzO2VPPuuyyy7Jt27ah7cknnxxOSQDsJfQDAPQCgPoyrOV7xxxzTNasWbPTvkcffTQHHHBAkuTAAw9Ma2trli9fnvnz5ydJent7s2LFilxzzTXP+56NjY1pbGzcldoB2IvoBwDoBQD1ZVih1Ic+9KEcffTRWbJkSd75znfmvvvuy0033ZSbbropya+X7S1atChLlizJ3LlzM3fu3CxZsiQTJkzIe97znt3yAQAAAADY8wwrlDrqqKPy9a9/PZdddlk+8YlP5MADD8yyZcty5plnDh1zySWXZPv27TnvvPOyZcuWvO51r8t3v/vdNDc317x4AAAAAPZMwwqlkuS0007Laaed9oLPNzQ0ZPHixVm8ePFLqQsAAACAvdiwLnQOAAAAALUglAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEonlAIAAACgdEIpAAAAAEr3kkKppUuXpqGhIYsWLRraVxRFFi9enFmzZqWpqSknnHBCHn744ZdaJwAAAAB7kV0Ope6///7cdNNNOeyww3baf+211+a6667L9ddfn/vvvz+tra056aST0tHR8ZKLBQAAAGDvsEuhVGdnZ84888zcfPPN2WeffYb2F0WRZcuW5Yorrsjpp5+eefPm5dZbb013d3duv/32mhUNAAAAwJ5tl0Kp888/P6eeempOPPHEnfavXbs2GzZsyMKFC4f2NTY2ZsGCBbn33nuf9716enrS3t6+0wZA/dEPANALAOrLsEOpr3zlK1m5cmWWLl36nOc2bNiQJJkxY8ZO+2fMmDH03G9bunRppkyZMrTNnj17uCUBsBfQDwDQCwDqy7BCqSeffDIXXXRRbrvttowfP/4Fj2toaNjpcVEUz9n3rMsuuyzbtm0b2p588snhlATAXkI/AEAvAKgvY4Zz8MqVK7Nx48a85jWvGdo3MDCQf/mXf8n111+fNWvWJPn1GVMzZ84cOmbjxo3POXvqWY2NjWlsbNyV2gHYi+gHAOgFAPVlWGdKveENb8hDDz2UVatWDW1HHnlkzjzzzKxatSoHHXRQWltbs3z58qHX9Pb2ZsWKFTn66KNrXjwAAAAAe6ZhnSnV3NycefPm7bRv4sSJmTZt2tD+RYsWZcmSJZk7d27mzp2bJUuWZMKECXnPe95Tu6oBAAAA2KMNK5R6MS655JJs37495513XrZs2ZLXve51+e53v5vm5uZaDwUAAADAHuolh1J33333To8bGhqyePHiLF68+KW+NQAAAAB7qWFdUwoAAAAAakEoBQAAAEDpan5NKQAAABjpent7sn79+kprmDRpUlpaWiqtAaoklAIAAKCu7Ohqz+rVj+TKpdelaXxTZXW0TJ6QZdcuEUxRt4RSAAAA1JW+nh3pz+i0zD8502fNqaSGri3PZPNPvpPOzk6hFHVLKAUAAEBdmjh1WqZMn1nZ+JsrGxlGBhc6BwAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0Y6ouAMrU1taWzs7OSmuYNGlSWlpaKq0BAAAAqiaUom60tbXlY5csSm/HpkrrGNe8bz5+7TLBFAAAAHVNKEXd6OzsTG/HprzvqObMbJlYSQ1Pt3Xl7+/flM7OTqEUAAAAdU0oRd2Z2TIxc6Y3V1hBR4VjAwAAwMjgQucAAAAAlE4oBQAAAEDphFIAAAAAlE4oBQAAAEDphFIAAAAAlE4oBQAAAEDphFIAAAAAlE4oBQAAAEDphFIAAAAAlE4oBQAAAEDpxlRdAABQP9ra2tLZ2VlpDZMmTUpLS0ulNQAAIJQCAErS1taWRZdcnrb27krraJk8IcuuXSKYAgComFAKAChFZ2dn2tq7M+2IkzNxn+mV1NC15Zls/sl30tnZKZQCAKiYUAoAKNXEfaZnyvSZlY2/ubKRAQD4TS50DgAAAEDphFIAAAAAlM7yPQAAAEozONCfzi3PZNuEiZXV0LV1UwYH+isb/1m9vT1Zv3591WW4My2VEUoBAABQip7uzoxqfypPfefGbG6aUFkdO7o6Mqr9qfR0dVRYQ3tWr34kVy69Lk3jmyqrI3FnWqojlAIAAKAU/b070jxmIGcdMTH7z9i3sjp++dRA/nb9QPp6d1RWQ1/PjvRndFrmn5zps+ZUVoc701IloRQAAAClamluTGtLdcv3utsbKxv7t02cOq3Su9Im7kxLdYRSAAAAJWhra0tnZ2dl469fvz69fb2VjQ/w24RSAAAAu1lbW1sWXXJ52tq7K6the3dXHlv7i8z5/3oqqwHgNwmlAAAAdrPOzs60tXdn2hEnZ+I+0yup4VdrV6fvscfT31/9XecAEqEUAABAaSbuM72y6wd1tG2sZFyAFzKq6gIAAAAAqD9CKQAAAABKZ/leHaj6Lh9JMmnSpLS0tFRaAwAA1LvBgf50bnkm2yZMrGT87vYtKYqikrGBkUcotZdra2vLxy5ZlN6OTZXWMa5533z82mWCKQAAqEhPd2dGtT+Vp75zYzY3Taikhm1tm9PQ35PBPhdbB4RSe73Ozs70dmzK+45qzsyWan4NebqtK39//6Z0dnYKpQAAoCL9vTvSPGYgZx0xMfvP2LeSGh58tDu3/6rIYCGUAoRSdWNmy8TMmd5cYQUdFY4NAAA8q6W5Ma0V/WC9bsK4SsYFRiYXOgcAAACgdEIpAAAAAEonlAIAAACgdMMKpZYuXZqjjjoqzc3N2W+//fLWt741a9as2emYoiiyePHizJo1K01NTTnhhBPy8MMP17RoAAAAAPZswwqlVqxYkfPPPz8//OEPs3z58vT392fhwoXp6uoaOubaa6/Nddddl+uvvz73339/Wltbc9JJJ6Wjw4WuAQAAAPi1Yd1979vf/vZOj2+55Zbst99+WblyZY4//vgURZFly5bliiuuyOmnn54kufXWWzNjxozcfvvtOffcc2tXOQAAAAB7rGGFUr9t27ZtSZKWlpYkydq1a7Nhw4YsXLhw6JjGxsYsWLAg99577/OGUj09Penp6Rl63N7e/lJKYoTa0dOb9evXV1rD+vXr09fXW2kNwAvTD3avtra2dHZ2VlrD+vXr0+t7GPgd9AKA+rLLoVRRFLn44otz7LHHZt68eUmSDRs2JElmzJix07EzZszIE0888bzvs3Tp0nz84x/f1TLYA2zt7MkjP/1pbrj68jSNb6qsjs6u7Xly7WPZcdKMJM2V1QE8P/1g92lra8uiSy5PW3t3pXVs7+7KY2t/kTn/X8/vPxioS3oBQH3Z5VDqggsuyIMPPph77rnnOc81NDTs9Lgoiufse9Zll12Wiy++eOhxe3t7Zs+evatlMQJ19fSlMX0558hJecX+0yur498e35hP/awv/f39ldUAvDD9YPfp7OxMW3t3ph1xcibuU9338K/Wrk7fY4/7HgZekF4AUF92KZT64Ac/mLvuuiv/8i//kpe97GVD+1tbW5P8+oypmTNnDu3fuHHjc86eelZjY2MaGxt3pQz2MK1TJ2TO9OrOUFq/udplK8Dvph/sfhP3mZ4p02f+/gN3k462jZWNDewZ9AKA+jKsUKooinzwgx/M17/+9dx999058MADd3r+wAMPTGtra5YvX5758+cnSXp7e7NixYpcc801tasaANgjDQ70p3PLM9k2YWIl43e0bUxXZ3vl1zlMkkmTJg1dlxMAoB4NK5Q6//zzc/vtt+e///f/nubm5qFrSE2ZMiVNTU1paGjIokWLsmTJksydOzdz587NkiVLMmHChLznPe/ZLR8AANgz9HR3ZlT7U3nqOzdmc9OEamrY3pVfrF2bj3y8yOTJUyqp4Vktkydk2bVLBFMAQN0aVih1ww03JElOOOGEnfbfcsstOeecc5Ikl1xySbZv357zzjsvW7Zsyete97p897vfTXOzC0sDQD3r792R5jEDOeuIidl/xr6V1PDLpwbyt08OpvmQozPnlfMrqSFJurY8k80/+U46OzuFUgBA3Rr28r3fp6GhIYsXL87ixYt3tSYAYC/W0tyY1pZqlu91t//6WjVNk/ep9PpaSbK50tEBAKo3quoCAAAAAKg/QikAAAAASieUAgAAAKB0w7qmFADsadra2tLZ2VlpDZMmTar8Yta9vT3paNtYaQ3d7Vte1PUpAWrt8ccfz8aN1X4HbtiwIV1dHZXWADDSCKUA2Gu1tbXlY5csSm/HpkrrGNe8bz5+7bLKgqmtW7dm/eofZ/vGtRkzrrGSGpJkW9vmNPT3ZLCvv7IagPrz+OOP5x1v+cOM6uuutI7BwYH8qr03LzvuHZXfaAFgpBBKAbDX6uzsTG/HprzvqObMrOhub0+3deXv79+Uzs7OykKprq6uNKUnZx0xMa377lNJDUny4KPduf1XRQYLoRRQno0bN2ZUX3fet+CA7DdtcmV1PLXhmVz/nceyvbvas3cBRhKhFNQpS5qoJzNbJmbO9OYKKxgZyzWmNY9Pa0XhXJKsmzCusrEB9ps2ObNn7lvZ+H09OyobG2CkEkpBHbKkCQAAgKoJpaAOWdIEAABA1YRSULIdPb1Zv359pTWsX78+fX29ljQBdWlgsEj3trZse+bpymroaNuY3t6eysYHABgJhFJQoq2dPXnkpz/NDVdfnqbxTZXV0dm1PU+ufSw7TpqRpMpQCqBcnTv60tezI5vuuS3bH/hmZXX09/akbfPmbN26NXPmzKmsDgCAKgmloERdPX1pTF/OOXJSXrH/9Mrq+LfHN+ZTP+tLf787YAH1ZUfvQCaOS846fEIOmF3d9/CGTVty8/Kn0tXVVVkNAABVE0pBBVqnTqh02dz6zW5FDNS3luZxld6JsK9ne2VjAwCMFKOqLgAAAACA+iOUAgAAAKB0QikAAAAASieUAgAAAKB0QikAAAAASieUAgAAAKB0Y6ouAOrN4OBgtnd3p6Ozs7Iaurq7Mzg4WNn4AAAAIJSCEvX09qarqzsPPPzTbHzqicrqWP10V7q6utPX21dZDQAAANQ3oRSUqL+/P4NFkXFT9suk/Vsrq2Nc99MZLJ5Of79QCgAAgGoIpaACo8eOy7jxEyodHwAAAKoklIK6VWT79h2VXduqs6srfX29lYwNAFCFgcEi3dvasu2ZpysZv7t9S4qiqGRsgOcjlII6NDjQn4GBgax+7PF0bPlVJTVs7OjN6jXbs3Xr1syZM6eSGgAAytK5oy99PTuy6Z7bsv2Bb1ZSw7a2zWno78lgX38l4wP8NqEU1KHBgYEUScZNmZ5J+7+skhq2/WpL+vofTVdXVyXjAwCUaUfvQCaOS846fEIOmD29khoefLQ7t/+qyGAhlAJGBqEUdWVwcDDbu7srW7LWs2NHkpFzyvTocdVd22rMuO5KxgUAqFJL87i0tkysZOx1E1xXFBhZhFLUjZ7e3nR1deeBh3+ajU89UUkNj/yyPQMDAymKwUrGBwAAgJFCKEXd6O/vz2BRZNyU/TJp/9ZKahi77YkUeSqDQikAAADqnFCKUlS9bC75f0vnRo+tbsna6DFjKxl3pCqKwWzYsCHr1q2rtI5JkyalpaWl0hoAAADqjVCK3W4kLJtLLJ0baQb6+9LZ2ZlPf+7vsk/L1yutpWXyhCy7dolgCgAAoERCKXa7kbBsLrF0bqT59R0AGzJ13vGZ88r5ldXRteWZbP7Jd9LZ2SmUAgAAKJFQitJUuWwusXRupGqavE+mTJ9ZaQ2bKx0dAACgPgmlAAAqMBKuq+eaegBAlYRSAAAlGynX1XNNPQCgSkIpAICSjYTr6rmmHgBQNaFUHejr601nV1c6mhoqGb9nx44kRSVjM7INDBbp3taWbc88XVkNHW0b09vbU9n4QP0aGCxSFNX1x8GiSFdne9avX19ZDc+yjBAA6pNQai+3devWrF7zWO6f+ss80Tyukhoe+WV7BgYGUrjrHb+hc0df+np2ZNM9t2X7A9+srI7+3p60bd6crVu3Zs6cOZXVAdSXkfAd2LO9K79YuzYf+XiRyZOnVFLDsywjBID6JJTay3V1daWvfyCN+8zKpBn7VFLD2G1PpMhTGRRK8Rt29A5k4rjkrMMn5IDZ0yurY8OmLbl5+VPp6uqqrAag/oyE78BfPjWQv31yMM2HHF3ZEsLEMkIAqGdCqToxZlxjxo2fUMnYo8eMrWRc9gwtzePS2jKxsvH7erZXNjZAld+B3e2NSZKmyftkyvSZldTwrM2Vjg4AVEUotZu1tbWls7OzsvE3bNhg2RwAAAAvqLe3p/JrDLq+YH0SSu1GbW1t+dgli9LbsamyGja1bcmOzm0Z6O+rrAYAAABGph1d7Vm9+pFcufS6NI1vqqwO1xesT0Kp3aizszO9HZvyvqOaM7OiU/P/9eHeLHm4yODAQCXjAwAAMHL19exIf0anZf7JmT6rmhv/uL5g/RJKlWBmy8TMmd5cydiPTh5fybiwJymKwWzYsCHr1q2rrAanKwNVGBgs0r2tLdueebqyGjraNqa3t6ey8YH6VfV3YNfWTRkc6K9k7Oczceq0Sq8x6PqC9UkoBdS1gf6+dHZ25tOf+7vs0/L1yupwujJQts4dfenr2ZFN99yW7Q98s7I6+nt70rZ5c7Zu3Zo5c6r5hR6oPyPhO3BHV0dGtT+Vnq6OSsaHkUAoBdS1wYGBFGnI1HnHV3ZLdKcrA1XY0TuQieOSsw6fkANmT6+sjg2btuTm5U+lq6urshqA+jMSvgN/+dRA/nb9QPp6d1QyPowEQimAVH9LdKcrA1VpaR6X1oqufZkkfT3bLaMGKlPld2B3e2Ml48JIIpQCAKAyllEDQP0SSgEAUBnLqAGgfgmlAAConGXUAFB/RlVdAAAAAAD1RygFAAAAQOmEUgAAAACUbq+9plRbW1s6OzsrrWH9+vXp6+uttAYAqtfZ1ZWVK1dm/fr1lYz/0EMPZWBgoJKxYU/R29tT2X+jz5o0aZILrUOdGRgs0r2tLdueebqyGrq2bsrgQH9l4z9rJHwP9/X1ZezYsZXWkNRXP9grQ6m2trZ87JJF6e3YVGkdnV3b8+Tax7LjpBlJmiutBYBqbGhrz333r8zqNedl1KjRldSwo6c3fd3b0tfbU8n4MNLt6GrP6tWP5Mql16VpfFNldbRMnpBl1y6pmz9EoN517uhLX8+ObLrntmx/4JuV1bGjqyOj2p9KT1dHhTVU/z3c29uTnz/2aA76g4Mzbuy4Smp4Vj31g70ylOrs7Exvx6a876jmzGyZWFkd//b4xnzqZ33p768+dQagGu1dOzJ+9GDOOXb/zGqdXkkN/+dn63PHv2zNwEBfJePDSNfXsyP9GZ2W+Sdn+qw5ldTQteWZbP7Jd9LZ2VkXf4QAyY7egUwcl5x1+IQcMLua/4+QJL98aiB/u34gfb07KqthJHwP/2rt6nStXpMph51YWQ1J/fWD3RZKff7zn8+nPvWpPP3003n1q1+dZcuW5bjjjttdwz1HX19vmhuTfZoaShvzt00clwwODlY2PrDnGAmnK9fTacJVmL5Pc2bP3LeSsZ9+Zmsl48KLVfXylWeXrkycOi1Tps+spIYk2VzZyECVWprHpbXCkym62xsrG/s3DQ70pyiq+/u5KIoR0QuS5Ok6+ttgt4RSd9xxRxYtWpTPf/7zOeaYY3LjjTfmD//wD/PII49kzpzdnzhu3bo1q9c8lvun/jJPNFd32t3qp7vS1dWdvl6/TAMvbEdXe9av/nFuuPrySpeNjGveNx+/dplgCijVSFi+MhKWrgDUs57uzoxqfypPfefGbG6aUEkNI6UXjISljEl5Swh3Syh13XXX5U//9E/z/ve/P0mybNmyfOc738kNN9yQpUuX7o4hd9LV1ZW+/oE07jMrk2bss9vHeyHjup/OYPF0+vuFUsAL6+vZkab05JwjJ+UV+1dz6vbTbV35+/s31c1pwsDIMRKWr4yEpSsA9ay/d0eaxwzkrCMmZv8Z1ZxZPlJ6wUhYyljmEsKah1K9vb1ZuXJlLr300p32L1y4MPfee2+th/udxoxrzLjx1aSsSTK64oujAXuW1qkTMmd6lTdFcIYAUJ0ql6+MlKUrAPWupblRL/i/ql5GWNaS8pqHUps2bcrAwEBmzJix0/4ZM2Zkw4YNzzm+p6cnPT3/725A27ZtS5K0t7fvcg1dXV0ZGBjME0+3pbunuouMr39mWwYGB/PTdZsz0FDNbSV/9svNGRgczJO/2pq+iq5r/9Sm9gwMFnnyV9syOOq5/wbqqY6RUMNIqWMk1JAkG361NX39g9n4859mdEM116BrW//z9Pb3ZfUvNqZzezVnVv5qW3e6tveko6PjJX3/Jklzc3MadmEud0c/6OjoSNf27Xng8aeyYVM1P1L4Hh5ZdYyEGkZKHSOhhpFSx0joBdvb29K2eWN+8IMfPOf/R5dt5syZmT179kt+n13pB3vz3wYj4d+6GkZWHSOhhmRkfAdu/MWjGRgYzLqnt6S3ov9MR8I8JP/3b4Md2/PUow9m+9ZNldSwvb0t27u7yvnboKix9evXF0mKe++9d6f9n/zkJ4uDDz74Ocd/7GMfK5LYbDabbS/Ztm3btkv9Qz+w2Wy2vWvblX6gF9hsNtvetf2+XtBQFEWRGurt7c2ECRPy1a9+NX/0R380tP+iiy7KqlWrsmLFip2O/+1fQwYHB9PW1pZp06YN+5eV9vb2zJ49O08++WQmT5780j4I5rPGzGdtmc/aquV81upMKf1g5DCftWU+a8t81lbV/UAvGLnMZ22Zz9oyn7VVZi+o+TqCcePG5TWveU2WL1++Uyi1fPnyvOUtb3nO8Y2NjWls3Hnt5tSpU19SDZMnT/YPsYbMZ22Zz9oyn7VV5XzqByOf+awt81lb5rO2qppPvWDkM5+1ZT5ry3zWVhnzuVsubnHxxRfnve99b4488sj8x//4H3PTTTdl3bp1+fM///PdMRwAAAAAe5jdEkqdccYZ2bx5cz7xiU/k6aefzrx58/Ktb30rBxxwwO4YDgAAAIA9zG67DdB5552X8847b3e9/fNqbGzMxz72seec8suuMZ+1ZT5ry3zW1t42n3vb56ma+awt81lb5rO29qb53Js+y0hgPmvLfNaW+aytMuez5hc6BwAAAIDfZ1TVBQAAAABQf4RSAAAAAJROKAUAAABA6faqUOrzn/98DjzwwIwfPz6vec1r8oMf/KDqkvYIS5cuzVFHHZXm5ubst99+eetb35o1a9bsdExRFFm8eHFmzZqVpqamnHDCCXn44YcrqnjPsXTp0jQ0NGTRokVD+8zl8K1fvz5nnXVWpk2blgkTJuTwww/PypUrh543py9Of39/rrzyyhx44IFpamrKQQcdlE984hMZHBwcOmZvmEu9YNfoBbuXfvDS6QW1ox/wQvSC3UsveOn0gtoZMb2g2Et85StfKcaOHVvcfPPNxSOPPFJcdNFFxcSJE4snnnii6tJGvJNPPrm45ZZbiv/zf/5PsWrVquLUU08t5syZU3R2dg4dc/XVVxfNzc3FP/7jPxYPPfRQccYZZxQzZ84s2tvbK6x8ZLvvvvuKl7/85cVhhx1WXHTRRUP7zeXwtLW1FQcccEBxzjnnFD/60Y+KtWvXFv/zf/7P4mc/+9nQMeb0xfnkJz9ZTJs2rfjnf/7nYu3atcVXv/rVYtKkScWyZcuGjtnT51Iv2HV6we6jH7x0ekFt6Qe8EL1g99ELXjq9oLZGSi/Ya0Kp1772tcWf//mf77TvkEMOKS699NKKKtpzbdy4sUhSrFixoiiKohgcHCxaW1uLq6++euiYHTt2FFOmTCm+8IUvVFXmiNbR0VHMnTu3WL58ebFgwYKhxmMuh+8jH/lIceyxx77g8+b0xTv11FOL973vfTvtO/3004uzzjqrKIq9Yy71gtrRC2pDP6gNvaC29ANeLL2gNvSC2tALamuk9IK9Yvleb29vVq5cmYULF+60f+HChbn33nsrqmrPtW3btiRJS0tLkmTt2rXZsGHDTvPb2NiYBQsWmN8XcP755+fUU0/NiSeeuNN+czl8d911V4488si84x3vyH777Zf58+fn5ptvHnrenL54xx57bL73ve/l0UcfTZI88MADueeee/LGN74xyZ4/l3pBbekFtaEf1IZeUFv6AS+WXlAbekFt6AW1NVJ6wZiavVOFNm3alIGBgcyYMWOn/TNmzMiGDRsqqmrPVBRFLr744hx77LGZN29ekgzN4fPN7xNPPFF6jSPdV77ylaxcuTI//vGPn/OcuRy+n//857nhhhty8cUX5/LLL899992XCy+8MI2NjTn77LPN6TB85CMfybZt23LIIYdk9OjRGRgYyFVXXZV3v/vdSfb8f596Qe3oBbWhH9SOXlBb+gEvhl5QG3pB7egFtTVSesFeEUo9q6GhYafHRVE8Zx+/2wUXXJAHH3ww99xzz3OeM7+/35NPPpmLLroo3/3udzN+/PgXPM5cvniDg4M58sgjs2TJkiTJ/Pnz8/DDD+eGG27I2WefPXScOf397rjjjnz5y1/O7bffnle/+tVZtWpVFi1alFmzZuWP//iPh47b0+dyT69/JNALXjr9oLb0gtrSD3gx9IKXTi+oLb2gtkZKL9grlu/tu+++GT169HN++di4ceNzUj1e2Ac/+MHcdddd+V//63/lZS972dD+1tbWJDG/L8LKlSuzcePGvOY1r8mYMWMyZsyYrFixIp/5zGcyZsyYofkyly/ezJkz86pXvWqnfa985Suzbt26JP59DseHP/zhXHrppXnXu96VQw89NO9973vzoQ99KEuXLk2y58+lXlAbekFt6Ae1pRfUln7A76MX1IZeUFt6QW2NlF6wV4RS48aNy2te85osX758p/3Lly/P0UcfXVFVe46iKHLBBRfkzjvvzPe///0ceOCBOz1/4IEHprW1daf57e3tzYoVK8zvb3nDG96Qhx56KKtWrRrajjzyyJx55plZtWpVDjroIHM5TMccc8xzbkX86KOP5oADDkji3+dwdHd3Z9Sonb/2R48ePXTb1z19LvWCl0YvqC39oLb0gtrSD3ghekFt6QW1pRfU1ojpBTW7ZHrFnr3t6xe/+MXikUceKRYtWlRMnDix+MUvflF1aSPeX/zFXxRTpkwp7r777uLpp58e2rq7u4eOufrqq4spU6YUd955Z/HQQw8V7373u91a80X6zTtsFIW5HK777ruvGDNmTHHVVVcVjz32WHHbbbcVEyZMKL785S8PHWNOX5w//uM/Lvbff/+h277eeeedxb777ltccsklQ8fs6XOpF+w6vWD30w92nV5QW/oBL0Qv2P30gl2nF9TWSOkFe00oVRRF8bnPfa444IADinHjxhVHHHHE0K1L+d2SPO92yy23DB0zODhYfOxjHytaW1uLxsbG4vjjjy8eeuih6oreg/x24zGXw/dP//RPxbx584rGxsbikEMOKW666aadnjenL057e3tx0UUXFXPmzCnGjx9fHHTQQcUVV1xR9PT0DB2zN8ylXrBr9ILdTz94afSC2tEPeCF6we6nF7w0ekHtjJRe0FAURVG7864AAAAA4PfbK64pBQAAAMCeRSgFAAAAQOmEUgAAAACUTigFAAAAQOmEUgAAAACUTigFAAAAQOmEUgAAAACUTigFAAAAQOmEUgAAAACUTigFNXLvvfdm9OjROeWUU6ouBYCK6AUAJPoBvFgNRVEUVRcBe4P3v//9mTRpUv7u7/4ujzzySObMmVN1SQCUTC8AINEP4MVyphTUQFdXV/7hH/4hf/EXf5HTTjstX/rSl3Z6/q677srcuXPT1NSU17/+9bn11lvT0NCQrVu3Dh1z77335vjjj09TU1Nmz56dCy+8MF1dXeV+EAB2mV4AQKIfwHAIpaAG7rjjjhx88ME5+OCDc9ZZZ+WWW27Jsych/uIXv8jb3/72vPWtb82qVaty7rnn5oorrtjp9Q899FBOPvnknH766XnwwQdzxx135J577skFF1xQxccBYBfoBQAk+gEMh+V7UAPHHHNM3vnOd+aiiy5Kf39/Zs6cmf/23/5bTjzxxFx66aX55je/mYceemjo+CuvvDJXXXVVtmzZkqlTp+bss89OU1NTbrzxxqFj7rnnnixYsCBdXV0ZP358FR8LgGHQCwBI9AMYDmdKwUu0Zs2a3HfffXnXu96VJBkzZkzOOOOM/P3f//3Q80cdddROr3nta1+70+OVK1fmS1/6UiZNmjS0nXzyyRkcHMzatWvL+SAA7DK9AIBEP4DhGlN1AbCn++IXv5j+/v7sv//+Q/uKosjYsWOzZcuWFEWRhoaGnV7z2ycoDg4O5txzz82FF174nPd3UUSAkU8vACDRD2C4hFLwEvT39+e//Jf/kr/+67/OwoULd3rubW97W2677bYccsgh+da3vrXTcz/+8Y93enzEEUfk4Ycfzite8YrdXjMAtaUXAJDoB7ArXFMKXoJvfOMbOeOMM7Jx48ZMmTJlp+euuOKKfOtb38qdd96Zgw8+OB/60Ifyp3/6p1m1alX+8i//Mr/85S+zdevWTJkyJQ8++GD+w3/4D/mTP/mTfOADH8jEiROzevXqLF++PJ/97Gcr+nQAvBh6AQCJfgC7wjWl4CX44he/mBNPPPE5TSf59a8hq1atypYtW/K1r30td955Zw477LDccMMNQ3fYaGxsTJIcdthhWbFiRR577LEcd9xxmT9/fj760Y9m5syZpX4eAIZPLwAg0Q9gVzhTCipw1VVX5Qtf+EKefPLJqksBoCJ6AQCJfkB9c00pKMHnP//5HHXUUZk2bVr+9V//NZ/61KdywQUXVF0WACXSCwBI9AP4TUIpKMFjjz2WT37yk2lra8ucOXPyl3/5l7nsssuqLguAEukFACT6Afwmy/cAAAAAKJ0LnQMAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQOqEUAAAAAKUTSgEAAABQuv8fsHbO+BGshwwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "g = sns.FacetGrid(train_data, col=\"Pclass\", hue=\"Survived\", height=4)\n",
+ "\n",
+ "combined_age = train_data['Age'].dropna()\n",
+ "_, bin_edges = np.histogram(combined_age, bins=10)\n",
+ "\n",
+ "g.map(plt.hist, \"Age\", bins=bin_edges, alpha=0.6, edgecolor=\"black\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "e34fcafd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9MUlEQVR4nO3de3hU1b3/8c9AyORKIFxy0QTDIYqK1AhKRY+gclGxRw+tWJFW6uXBgkLEiiJWIgcTSS1NjwiKVaAq1bZqj55aJbWVStEKKEoJAmq4GAgBcp1JMpPMrN8f/JjTCMhtsteQeb+eZz+aPTuzvlngd+GHvWa7jDFGAAAAAAAAgIM62S4AAAAAAAAA0YdQCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCjgGBQUFOv/889vlvd999125XC7V1taG7T23bdsml8ul9evXh+09ASAa0f8BIDrR/wFnEEqhQ5k4caJcLtchx1VXXWW7tA6nqqpKkyZNUnZ2ttxut9LT0zV69Gi9//77tksDEIXo/86qrKzU3Xffrb59+8rtdisrK0vf+c539M4779guDUCUof87a+fOnbrtttuUmZmp2NhY9enTR9OmTdP+/fttl4ZTVIztAoBwu+qqq7RkyZI259xut6VqvllLS4vtEk7Yd7/7XbW0tGjZsmXq27ev9uzZo3feeUfV1dW2SwMQpej/zti2bZsuueQSdevWTcXFxRo4cKBaWlr09ttva8qUKfrss89slwggytD/nfHll1/q4osv1plnnqnf/OY3ysnJ0caNG3XffffpT3/6kz744AOlpqbaLhOnGO6UQodz8K6dfz26d+8eet3lcunpp5/Wtddeq4SEBJ199tl6//339fnnn2v48OFKTEzUxRdfrC+++OKQ93766aeVlZWlhIQE3XDDDW1uuV2zZo1Gjhypnj17KiUlRcOGDdNHH33U5vtdLpeeeuopXXfddUpMTNTcuXMPGaOpqUljxozRt7/97VDAs2TJEp199tmKi4tT//79tXDhwjbf8+GHHyovL09xcXEaPHiwPv7445OZwqOqra3VqlWrNG/ePF1++eXq06ePLrroIs2cOVNjxoxp17EB4Ejo/+3f/yVp8uTJcrlc+vDDD/W9731PZ555ps4991xNnz5dH3zwQbuPDwBfR/93pv9PmTJFsbGxWrFihYYNG6bs7GxdffXV+vOf/6yKigrNmjWr3WtAB2SADuSWW24x11133TdeI8mcdtpp5uWXXzabN282119/vTnjjDPMFVdcYd566y1TVlZmvv3tb5urrroq9D2zZ882iYmJ5oorrjAff/yxWblypenXr58ZP3586Jp33nnHPP/886asrMyUlZWZ2267zaSlpZn6+vo2Y/fu3ds8++yz5osvvjDbtm0zf/3rX40kU1NTY2pra82ll15qRowYYTwejzHGmMWLF5uMjAzzyiuvmC+//NK88sorJjU11SxdutQYY4zH4zG9evUyN954o/nnP/9p3njjDdO3b18jyXz88cdHnIdJkyaZxMTEbzy2b99+2O9taWkxSUlJJj8/3zQ3Nx/tlwUA2h3935n+v3//fuNyuUxhYeHRfkkAwBH0/8jo/3fccYfp3r27CQaD3/hrAXwdoRQ6lFtuucV07tz5kOY6Z86c0DWSzEMPPRT6+v333zeSzLPPPhs695vf/MbExcWFvp49e7bp3Lmz2blzZ+jcn/70J9OpUyeze/fuw9bS2tpqkpOTzRtvvNFm7Pz8/DbXHVyUPvvsM/Otb33LjB071vh8vtDrWVlZZvny5W2+57/+67/MxRdfbIwx5umnnzapqanG6/WGXl+0aNFRF6U9e/aYrVu3fuPR0tJyxO///e9/b7p3727i4uLM0KFDzcyZM80nn3xyxOsBoD3R/w9o7/7/j3/8w0gyr7766hHfHwCcRP8/oL37/wcffGAkmddee+2wr8+fP99IMnv27Dni+MDh8JlS6HAuv/xyLVq0qM25r+9tHjhwYOjf09LSJEnnnXdem3PNzc2qr69X165dJUnZ2dk6/fTTQ9dcfPHFCgaD2rx5s9LT01VVVaWHH35Yf/nLX7Rnzx4FAgE1NjZqx44dbcYePHjwYeseMWKELrzwQv32t79V586dJUl79+4NfZjgHXfcEbq2tbVVKSkpkqRNmzbpW9/6lhISEtrUdjS9e/dW7969j3rdkXz3u9/VmDFj9N577+n999/XW2+9peLiYv3qV7/SxIkTT/h9AeBE0f/bv/8bYyQd2I4CAJGC/u/Mn/+/ycH1ITY2tl3eHx0XoRQ6nMTERPXr1+8br+nSpUvo3w/+wfpw54LB4BHf4+A1B/85ceJE7d27VyUlJerTp4/cbrcuvvhi+f3+Q+o7nDFjxuiVV15RWVlZaIE8OP4zzzyjIUOGtLn+4MJ1cAE4XnfeeadeeOGFb7ymrKxM2dnZR3w9Li5OI0eO1MiRI/Xwww/r9ttv1+zZswmlAFhB/z82J9P/c3Nz5XK5tGnTJl1//fUnND4AhBv9/9icTP/v16+fXC6XysrKDtv/P/vsM/Xq1UvdunU7odoQvQilgGO0Y8cO7dq1S5mZmZKk999/X506ddKZZ54pSXrvvfe0cOFCXXPNNZIOPC513759x/z+jz32mJKSknTllVfq3Xff1TnnnKO0tDSddtpp+vLLL3XzzTcf9vvOOeccPf/882pqalJ8fLwkHdMHzc6ZM0c/+clPvvGagz/rsTrnnHP0hz/84bi+BwAiHf3//6Smpmr06NF68sknNXXq1EP+R6u2tpb/IQHQYdD//0+PHj00cuRILVy4UPfcc09oXEmqrKzUiy++qClTphy1BuDrCKXQ4fh8PlVWVrY5FxMTo549e57U+8bFxemWW27R448/rvr6ek2dOlXjxo1Tenq6pAN/e/D8889r8ODBqq+v13333demWR+Lxx9/XIFAQFdccYXeffdd9e/fXwUFBZo6daq6du2qq6++Wj6fT2vXrlVNTY2mT5+u8ePHa9asWbrtttv00EMPadu2bXr88cePOtbJ3L67f/9+3XDDDbr11ls1cOBAJScna+3atSouLtZ11113Qu8JACeL/t/+/V+SFi5cqKFDh+qiiy7SnDlzNHDgQLW2tqq0tFSLFi3Spk2bTvi9AeBE0P+d6f8LFizQ0KFDNXr0aM2dO1c5OTnauHGj7rvvPp155pl6+OGHT/i9Eb062S4ACLe33npLGRkZbY5LL730pN+3X79+Gjt2rK655hqNGjVKAwYMaPNo1ueee041NTXKy8vTD37wA02dOvWEmv4vfvELjRs3TldccYW2bNmi22+/Xb/61a+0dOlSnXfeeRo2bJiWLl2qnJwcSVJSUpLeeOMNlZWVKS8vT7NmzdK8efNO+uf9JklJSRoyZIh+8Ytf6LLLLtOAAQP005/+VHfccYcWLFjQrmMDwJHQ/9u//0tSTk6OPvroI11++eW69957NWDAAI0cOVLvvPPOIZ/pAgBOoP870/9zc3O1Zs0a9e3bV+PGjVOfPn109dVX68wzz9Tf//53JSUltXsN6Hhc5kQ3pAIAAAAAgKg1e/ZszZ8/XytWrDimD1sHvo5QCgAAAAAAnJAlS5aorq5OU6dOVadObMbC8SGUAgAAAAAAgOOIMQEAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgONOyVDKGKP6+nrxGe0AEH1YAwAgOtH/AaDjOSVDqYaGBqWkpKihocF2KQAAh7EGAEB0ov8DQMdzSoZSAAAAAAAAOLURSgEAAAAAAMBxhFIAAAAAAABwHKEUAAAAAAAAHEcoBQAAAAAAAMcRSgEAAAAAAMBxhFIAAAAAAABw3HGHUn/729/0ne98R5mZmXK5XPrDH/7Q5nVjjAoKCpSZman4+HgNHz5cGzdubHONz+fT3XffrZ49eyoxMVH/8R//oa+++uqkfhAAAAAAAACcOo47lPJ6vfrWt76lBQsWHPb14uJizZ8/XwsWLNCaNWuUnp6ukSNHqqGhIXRNfn6+XnvtNb300ktatWqVPB6Prr32WgUCgRP/SQAAAAAAAHDKcBljzAl/s8ul1157Tddff72kA3dJZWZmKj8/X/fff7+kA3dFpaWlad68eZo0aZLq6urUq1cvPf/887rxxhslSbt27VJWVpbefPNNjR49+qjj1tfXKyUlRXV1derateuJlg8AOAWxBgBAdKL/A0DHE9bPlCovL1dlZaVGjRoVOud2uzVs2DCtXr1akrRu3Tq1tLS0uSYzM1MDBgwIXfN1Pp9P9fX1bQ4AQHRgDQCA6ET/B4COL6yhVGVlpSQpLS2tzfm0tLTQa5WVlYqNjVX37t2PeM3XFRUVKSUlJXRkZWWFs2wAQARjDQCA6ET/B4COr12evudyudp8bYw55NzXfdM1M2fOVF1dXejYuXNn2GoFAEQ21gAAiE70fwDo+GLC+Wbp6emSDtwNlZGRETpfVVUVunsqPT1dfr9fNTU1be6Wqqqq0tChQw/7vm63W263O5yl4l9UV1fL4/FYrSEpKUmpqalWawAQmVgDACA60f8BoOMLayiVk5Oj9PR0lZaWKi8vT5Lk9/u1cuVKzZs3T5I0aNAgdenSRaWlpRo3bpwkaffu3frnP/+p4uLicJaDY1BdXa38GQ+qur7Rah2pXRNUUlxIMAUAAAAAQJQ47lDK4/Ho888/D31dXl6u9evXKzU1VdnZ2crPz1dhYaFyc3OVm5urwsJCJSQkaPz48ZKklJQU3Xbbbbr33nvVo0cPpaam6ic/+YnOO+88jRgxInw/GY6Jx+NRdX2jelwwWonde1mpwVuzV/s/elsej4dQCgAAAACAKHHcodTatWt1+eWXh76ePn26JOmWW27R0qVLNWPGDDU1NWny5MmqqanRkCFDtGLFCiUnJ4e+5xe/+IViYmI0btw4NTU16corr9TSpUvVuXPnMPxIOBGJ3XsppVfG0S9sJ/utjQwAAAAAAGw47lBq+PDhMsYc8XWXy6WCggIVFBQc8Zq4uDg98cQTeuKJJ453eAAAAAAAAHQA7fL0PQAAAAAAAOCbEEoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHxdguAJAkv9+niooK22UoKSlJqamptssAAAAAAKDDI5SCdc3eem3aVKaHiuYrPi7eai2pXRNUUlxIMAUAAAAAQDsjlIJ1Lb5mtaqzUvNGq1dmtrU6vDV7tf+jt+XxeAilAAAAAABoZ4RSiBiJ3XoopVeG1Rr2Wx0dAAAAAIDowQedAwAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcF/ZQqrW1VQ899JBycnIUHx+vvn37as6cOQoGg6FrjDEqKChQZmam4uPjNXz4cG3cuDHcpQAAAAAAACBChT2Umjdvnp566iktWLBAmzZtUnFxsX72s5/piSeeCF1TXFys+fPna8GCBVqzZo3S09M1cuRINTQ0hLscAAAAAAAARKCwh1Lvv/++rrvuOo0ZM0ZnnHGGvve972nUqFFau3atpAN3SZWUlGjWrFkaO3asBgwYoGXLlqmxsVHLly8PdzkAAAAAAACIQGEPpS699FK988472rJliyTpk08+0apVq3TNNddIksrLy1VZWalRo0aFvsftdmvYsGFavXr1Yd/T5/Opvr6+zQEAiA6sAQAQnej/ANDxhT2Uuv/++3XTTTepf//+6tKli/Ly8pSfn6+bbrpJklRZWSlJSktLa/N9aWlpode+rqioSCkpKaEjKysr3GUDACIUawAARCf6PwB0fGEPpV5++WW98MILWr58uT766CMtW7ZMjz/+uJYtW9bmOpfL1eZrY8wh5w6aOXOm6urqQsfOnTvDXTYAIEKxBgBAdKL/A0DHFxPuN7zvvvv0wAMP6Pvf/74k6bzzztP27dtVVFSkW265Renp6ZIO3DGVkZER+r6qqqpD7p46yO12y+12h7tUAMApgDUAAKIT/R8AOr6w3ynV2NioTp3avm3nzp0VDAYlSTk5OUpPT1dpaWnodb/fr5UrV2ro0KHhLgcAAAAAAAARKOx3Sn3nO9/Ro48+quzsbJ177rn6+OOPNX/+fN16662SDmzby8/PV2FhoXJzc5Wbm6vCwkIlJCRo/Pjx4S4HAAAAAAAAESjsodQTTzyhn/70p5o8ebKqqqqUmZmpSZMm6eGHHw5dM2PGDDU1NWny5MmqqanRkCFDtGLFCiUnJ4e7HAAAAAAAAESgsIdSycnJKikpUUlJyRGvcblcKigoUEFBQbiHBwAAAAAAwCkg7J8pBQAAAAAAABwNoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHHtEkpVVFRowoQJ6tGjhxISEnT++edr3bp1odeNMSooKFBmZqbi4+M1fPhwbdy4sT1KAQAAAAAAQAQKeyhVU1OjSy65RF26dNGf/vQnlZWV6ec//7m6desWuqa4uFjz58/XggULtGbNGqWnp2vkyJFqaGgIdzkAAAAAAACIQDHhfsN58+YpKytLS5YsCZ0744wzQv9ujFFJSYlmzZqlsWPHSpKWLVumtLQ0LV++XJMmTQp3SQAAAAAAAIgwYb9T6vXXX9fgwYN1ww03qHfv3srLy9MzzzwTer28vFyVlZUaNWpU6Jzb7dawYcO0evXqw76nz+dTfX19mwMAEB1YAwAgOtH/AaDjC3so9eWXX2rRokXKzc3V22+/rTvvvFNTp07Vr3/9a0lSZWWlJCktLa3N96WlpYVe+7qioiKlpKSEjqysrHCXDQCIUKwBABCd6P8A0PGFPZQKBoO64IILVFhYqLy8PE2aNEl33HGHFi1a1OY6l8vV5mtjzCHnDpo5c6bq6upCx86dO8NdNgAgQrEGAEB0ov8DQMcX9s+UysjI0DnnnNPm3Nlnn61XXnlFkpSeni7pwB1TGRkZoWuqqqoOuXvqILfbLbfbHe5SAQCnANYAAIhO9H8A6PjCfqfUJZdcos2bN7c5t2XLFvXp00eSlJOTo/T0dJWWloZe9/v9WrlypYYOHRrucgAAAAAAABCBwn6n1D333KOhQ4eqsLBQ48aN04cffqjFixdr8eLFkg5s28vPz1dhYaFyc3OVm5urwsJCJSQkaPz48eEuBwAAAAAAABEo7KHUhRdeqNdee00zZ87UnDlzlJOTo5KSEt18882ha2bMmKGmpiZNnjxZNTU1GjJkiFasWKHk5ORwlwMAAAAAAIAIFPZQSpKuvfZaXXvttUd83eVyqaCgQAUFBe0xPAAAAAAAACJc2D9TCgAAAAAAADgaQikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4LsZ2AUAk8ft9qqiosFpDUlKSUlNTrdYAAAAAAEB7I5QC/r9mb702bSrTQ0XzFR8Xb62O1K4JKikuJJgCAAAAAHRohFLA/9fia1arOis1b7R6ZWZbqcFbs1f7P3pbHo+HUAoAAAAA0KERSgFfk9ith1J6ZVgbf7+1kQEAAAAAcA4fdA4AAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcTG2CwAkKRholadmr+oSEq3V4K3dp2Cg1dr4AAAAAABEE0IpWOdr9KhT/S7tevtp7Y9PsFZHs7dBnep3yedtsFYDAAAAAADRglAK1rX6m5UcE9CECxJ1WlpPa3V8tSugX1YE1OJvtlYDAAAAAADRglAKESM12a30VHvb9xrr3dbGBgAAAAAg2vBB5wAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHEx7T1AUVGRHnzwQU2bNk0lJSWSJGOMHnnkES1evFg1NTUaMmSInnzySZ177rntXQ4Ow+/3qaG6ytr4jfU1MsZYGz/S+P0+VVRUWK0hKSlJqampVmsAAAAAAHRs7RpKrVmzRosXL9bAgQPbnC8uLtb8+fO1dOlSnXnmmZo7d65GjhypzZs3Kzk5uT1LwtfU1taqYtNaNVWVKybWbaWGuur9crX6FGxptTJ+JGn21mvTpjI9VDRf8XHx1upI7ZqgkuJCgikAAAAAQLtpt1DK4/Ho5ptv1jPPPKO5c+eGzhtjVFJSolmzZmns2LGSpGXLliktLU3Lly/XpEmT2qskHIbX61W8fJpwQaLSe3a3UsOnWxq1fI9R0BBKtfia1arOSs0brV6Z2VZq8Nbs1f6P3pbH4yGUAgAAAAC0m3YLpaZMmaIxY8ZoxIgRbUKp8vJyVVZWatSoUaFzbrdbw4YN0+rVqw8bSvl8Pvl8vtDX9fX17VV21OqRHKf01EQrY+9IiLUybiRL7NZDKb0yrI2/39rIwKFYAwAgOtH/AaDja5cPOn/ppZe0bt06FRUVHfJaZWWlJCktLa3N+bS0tNBrX1dUVKSUlJTQkZWVFf6iAQARiTUAAKIT/R8AOr6wh1I7d+7UtGnT9OKLLyouLu6I17lcrjZfG2MOOXfQzJkzVVdXFzp27twZ1poBAJGLNQAAohP9HwA6vrBv31u3bp2qqqo0aNCg0LlAIKC//e1vWrBggTZv3izpwB1TGRn/tz2pqqrqkLunDnK73XK77XwIN6JLIGjUWFetur27rYzvrd2nYIDP1gL+FWsAAEQn+j8AdHxhD6WuvPJKbdiwoc25H/3oR+rfv7/uv/9+9e3bV+np6SotLVVeXp4kye/3a+XKlZo3b164ywGOmae5RS2+Zu1b9aKaPvmjlRqavQ3qVL9LPm+DlfEBAAAAAHBK2EOp5ORkDRgwoM25xMRE9ejRI3Q+Pz9fhYWFys3NVW5urgoLC5WQkKDx48eHuxzgmDX7A0qMlSacn6A+Wb2s1PDVroB+WRFQi7/ZyvgAAAAAADil3Z6+901mzJihpqYmTZ48WTU1NRoyZIhWrFih5ORkG+UAbaQmx1p7EmFjPbeoAwAAAACigyOh1Lvvvtvma5fLpYKCAhUUFDgxPAAAAAAAACJM2J++BwAAAAAAABwNoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHGEUgAAAAAAAHAcoRQAAAAAAAAcRygFAAAAAAAAxxFKAQAAAAAAwHExtguwqbq6Wh6Px2oNSUlJSk1NtVoDAAAAAACA06I2lKqurtbsGfnyN+yzWkdsck89UlxCMAUAAAAAAKJK1IZSHo9H/oZ9uvXCZGWkJlqpYXe1V8+t2SePx0MoBQAAAAAAokrUhlIHZaQmKrtXssUKGiyODQAAAAAAYAcfdA4AAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcByhFAAAAAAAABxHKAUAAAAAAADHEUoBAAAAAADAcYRSAAAAAAAAcFyM7QKiXUuLXxUVFdbGr6yslDFBa+MDAAAAAIDoRChlUbPPp02bt+qhRx9XfEKilRpq9u+Vx9uoYDBgZXwAAAAAABCdCKUsam1tVUtrQN0GXKa0nLOt1BD4ZLX2blqtoDFWxgcAAAAAANGJUCoCJKT0UEqvDCtjxyd3szIuAAAAAACIbnzQOQAAAAAAABwX9lCqqKhIF154oZKTk9W7d29df/312rx5c5trjDEqKChQZmam4uPjNXz4cG3cuDHcpQAAAAAAACBChT2UWrlypaZMmaIPPvhApaWlam1t1ahRo+T1ekPXFBcXa/78+VqwYIHWrFmj9PR0jRw5Ug0NDeEuBwAAAAAAABEo7J8p9dZbb7X5esmSJerdu7fWrVunyy67TMYYlZSUaNasWRo7dqwkadmyZUpLS9Py5cs1adKkcJcEAAAAAACACNPunylVV1cnSUpNTZUklZeXq7KyUqNGjQpd43a7NWzYMK1evbq9ywEAAAAAAEAEaNen7xljNH36dF166aUaMGCAJKmyslKSlJaW1ubatLQ0bd++/bDv4/P55PP5Ql/X19e3U8UAgEjDGtC+qqur5fF4rNaQlJQU+ssrADiI/g8AHV+7hlJ33XWXPv30U61ateqQ11wuV5uvjTGHnDuoqKhIjzzySLvUCACIbKwB7ae6ulqzZ+TL37DPah2xyT31SHEJwRSANuj/ANDxtVsodffdd+v111/X3/72N51++umh8+np6ZIO3DGVkZEROl9VVXXI3VMHzZw5U9OnTw99XV9fr6ysrHaqHAAQSVgD2o/H45G/YZ9uvTBZGamJVmrYXe3Vc2v2yePxEEoBaIP+DwAdX9hDKWOM7r77br322mt69913lZOT0+b1nJwcpaenq7S0VHl5eZIkv9+vlStXat68eYd9T7fbLbfbHe5SARyB3+9TRUWF1RrYzoODWAPaX0ZqorJ7JVusgKfvAjgU/R8AOr6wh1JTpkzR8uXL9T//8z9KTk4OfYZUSkqK4uPj5XK5lJ+fr8LCQuXm5io3N1eFhYVKSEjQ+PHjw10OgOPU7K3Xpk1leqhovuLj4q3Vkdo1QSXFhQRTAAAAANBBhT2UWrRokSRp+PDhbc4vWbJEEydOlCTNmDFDTU1Nmjx5smpqajRkyBCtWLFCyck2/5YWiAyBoFFjXbXq9u62Mn7tnq/kDxil5o1Wr8xsKzV4a/Zq/0dvs50HAAAAADqwdtm+dzQul0sFBQUqKCgI9/DAKc3T3KIWX7P2rXpRTZ/80UoNzd4GdarfpZgusUrplXH0b2gn+62NDAAAAABwQrs+fQ/A8Wn2B5QYK004P0F9snpZqeGrXQH9siKgFn+zlfEBAAAAANGBUAqIQKnJsUq39CSsxno+UBQAAAAA0P462S4AAAAAAAAA0YdQCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI6n7wEAAKuafX5VVFRYrSEpKUmpqalWawAAAIg2hFIAAMCaWo9PZZ99pkWPPaj4uHhrdcQm99QjxSUEUwAAAA4ilAIAANZ4fS1yq0UTByep32m9rNSwu9qr59bsk8fjIZQCAABwUFSHUi0tfnm8XjXEu6yM39TYKGOCVsYGACCSpHdLUHavZIsVNFgcGwAAIDpFbShVW1urTZu3ak23r7Q9OdZKDbtrmuTxNqrF77cyPgAAAAAAgC1RG0p5vV61tAbk7p6ppLTuVmqIDVbKmCq1BlqtjA8AAAAAAGBL1IZSB8XEuhUbl2Bl7M5d7NyhBQBAJAkGg2pqbFSDx2NlfI/Xq5YW7loGAABwWtSHUgAAwB6f3y+vt1GfbPxMVbu2W6mhqsGvTZubVFtbq+zsbCs1AAAARCNCKQAAYE1ra6uCxig2pbeSTku3UkPdnhq1tG6R1+u1Mj4AAEC0IpQCcIhA0Kixrlp1e3dbGb+hukpeT70qKiqsjH9QUlISj4cHHNK5S6y17fQxsY1WxgUAAIh2hFIA2vA0t6jF16x9q15U0yd/tFKDr8mrbeXluv8Ro65dU6zUIEmpXRNUUlxIMAUAAAAA7YBQCkAbzf6AEmOlCecnqE9WLys1fLUroF/uDCq5/1Bln51npQZvzV7t/+hteTweQikAAAAAaAeEUgAOKzU5VumpiVbGbqx3S5Liu3ZXSq8MKzVI0n5rIwPOaWnxy+P1qiHeZWV8X3OzJGNl7H/VGgiqsrJSO3bssFYDW4YBAEC0IZQCACBK1dbWatPmrVrT7SttT461UkPZV/UKBAIyJmhlfElqaPKrob5OLz1VrLe6dbdWR2xyTz1SXEIwBQAAogahFAAAUcrr9aqlNSB390wlpdkJY7rUbZfRLgUthlLN/oASYowmDkrSuf3sPAFwd7VXz63Zx5ZhAAAQVQilAACIcjGxbmtPvusc08XKuIcySo6VulvaxuhxH9hKCQAAEE0IpQAAQFQLBloVCAS0aesXaqjZY6WGqga/Nm1uUm1trbKzs63UAAAA4DRCKQAAENWCgYCMpNiUXko67XQrNdTtqVFL6xZ5vV4r4wMAANhAKGVZIGjUWFetur27rYzfWF8jY+w/9QgAANs6x8Za28YYE9toZdyvq66ulsfjsVoDTyEEACB6EEpZ5GluUYuvWftWvaimT/5opYa66v1ytfoUbGm1Mj4AAIgM1dXVmj0jX/6GfVbr4CmEAABED0Ipi5r9ASXGShPOT1CfrF5Wavh0S6OW7zEKGkIpAACimcfjkb9hn269MFkZqYlWauAphAAARBdCqQiQmhyrdEt/+NuREGtlXACwKRK2KElsU0JkykhNVHavZIsVNFgcGwAAOIlQCgAQVSJli5LENiUAAABEN0IpAEBUiYQtShLblAAAAABCKQBAVLK/RUlq9u1XRUWFtfErKytlTNDa+AAAAIhuhFIAAFhQ6/Gp7LPPtOixBxUfF2+lhn3VNWr21CnQ2mJlfAAAAEQ3QikAACzw+lrkVosmDk5Sv9PsPIH17xv9KtxoFAwErIwPAACA6EYoBQCARendEqxtI9zSNc7KuDi81kBQlZWV2rFjh5XxKyoq1NLitzI2AACIToRSAAAAljU0+dVQX6eXnirWW926W6nB423SzvKtah6ZJsnu560BAIDoQCgFAABgWbM/oIQYo4mDknRuv3QrNXz8RZV+9nmLWltbrYwPAACiD6EUgIgUCBo11lWrbu9uK+M3VFfJ7/dZGRtA9OqdEmdtO2fFfo+CwaCaGhvV4PFYqcHj9bKFEIgi1dXV8ljqN/8qKSlJqamptssAohKhFICI42luUYuvWftWvaimT/5opYZWv0/V+/ertrZW2dnZVmoAACf5/H55vY36ZONnqtq13UoNVQ1+bdrcRO8FokB1dbXyZzyo6vpG26UotWuCSooLCaYACwilAEScZn9AibHShPMT1CfLzlPJKvfV6JnSXfJ6vVbGBwCntba2KmiMYlN6K+k0O1sI6/bUqKV1C70XiAIej0fV9Y3qccFoJXa38+c9SfLW7NX+j96Wx+MhlAIsIJQCELFSk2OVnppoZewWX5OMsfskLInbyTs621ulfM3NkoyVsRG5OneJVWxcgpWxY2Lt3zGBji8StoxFwvpuex4qKirkb/ErsXsvpfTKsFaHJO23OjoQ3QilAOAwAq0t8ng8evzJX6l76mvW6uB28o4rErZKlX1Vr0AgIGOCVsYHAKdFypYx2+t7JMxDU6NXW8u3KfsKPsMTiGaEUgBwGMFAQEYudRtwmbLPzrNSA7eTd2yRsFWqS912Ge1SkFAKQJSIhC1jkbC+R8I87CnfpJatX/DETyDKEUoBwDeI79rd6i3l3E7e8dncKtU5pouVcXEkRk1NzVG/nbM1YH/rtCS1tLSoSxe7/41Ewhavjsr2lrHdfp8qKiqsjV9RUSG/32d1Hhqqq6yMCyCyEEoBAABYFgy0KhAIaNPWL9RQs8dKDZGwnbOhya+G+jq99FSx3urW3VodLS1+rd+yQz375Sk21m2tDttbvNA+mr31qti0Vosee1DxcfFWamhqblLFZzt0+mU3WP88JwDRjVAKAADAsgNbhqXYlF5KOu10KzVEwnbOZn9ACTFGEwcl6dx+dra1StLnFXv16cZGJfcfqrScs63UEAlbvNA+WnzNipdPEwcnqd9pdrbOfV6xV2Wf+dTia7YyPgAcRCgFAAAQITrHsp1TMkqOlbrHu6xVkBIrGRNUQkoPtnCj3aR3S1B2r2QrY3u8XrUGgvLW7lPd3t1WavDW7lOrv1memr2qS7DztGXpwDZCr6fe6nZKiS3DkcT2kyml6Pq1IJQCAABARIiEbYyStLumSR5vo1r8fms1AO2p1utTQ32ddv9lqWr+YSkYq6tRTE25vnrzSe1P6mqlBknyNXm1rbxc9z9i1LVripUa/H6fvty6RX3PPEuxXWKt1CCxZViKjCdTStH1a2E1lFq4cKF+9rOfaffu3Tr33HNVUlKif//3f7dZEgAAACyJhG2MkhQbrJQxVWoN8FQwdEyNvlYlxBhNyEvQ6Zl2thB+uqVRy3cZjf9WnPpk2alBkr7aFdAvdwaV3H+otScu7ynfJO+mzUoZOEK9MrOt1MCW4QMi4cmU0fZrYS2Uevnll5Wfn6+FCxfqkksu0dNPP62rr75aZWVlys628x8iAEQar6de69ats3pLee/evfVv//Zv1sYHEH1sbmOUDjwVE4gGqUlupafa2Tq3I+HAf2epybHWapCkxnq3AkEjY+w9fdQYo2CgVYnd2DJse+tcRUWF/C1+60/ojIRfC6dYC6Xmz5+v2267TbfffrskqaSkRG+//bYWLVqkoqIiW2UBQMSo21uhzWtX6r+2/kOdOnW2VkewS4J+9z9/IpgCAAAdjqe5RS2+Zu1b9aKaPvmjlRqavQ3qVL9LPm+DlfEjRSRsnWtq9Gpr+TZlX+GzVkO0sRJK+f1+rVu3Tg888ECb86NGjdLq1attlAQAEaepoU5JMUFNvCxbmb3t3Lpbtb9ez63crqqqKkIpAADQ4TT7A0qMlSacn2BtG+FXuwL6ZUVALf7ofhpiJGyd21O+SS1bv1BrK9u3nWIllNq3b58CgYDS0tLanE9LS1NlZeUh1/t8Pvl8/5dU1tXVSZLq6+tPuAav16tAIKjtu6vV6LPzG27XvnoFgkY799Qp2OnQn5saoq8OaoicGir31KqlNaiqLz9TZ5edJ0BVbduiQCCoZn/AWp9q8rcqEAjK6/WeVM+VpOTkZLlOYC7DvQY0NDTI29SkT77Ypcp99rYHff7VfgWCQe3cU6sWSzcuR8J/a9RADZFWgxQZa0BTfbWq91fpvffeO+TPzE7KyMhQVlbWSb1HpPR/6cAa0NTo1Veffaz9u7af8PucjOqKL+VvbdGmbVXyNLVYqYE16NA6vI1Nqqu3c6eS19tEz5G0Z88eVVfvVac9X6m5yc7dUvX7KuVvbtKuLZ+qqXaflRoi4ddCCk//l45hDTAWVFRUGElm9erVbc7PnTvXnHXWWYdcP3v2bCOJg4ODg+MUPurq6k5ozWAN4ODg4Di1D/o/BwcHR/QeR1sDXMY4/4lufr9fCQkJ+t3vfqf//M//DJ2fNm2a1q9fr5UrV7a5/ut/SxIMBlVdXa0ePXoc99+61NfXKysrSzt37lTXrvYePdoRMJfhxXyGD3MZPuGcy3D9TTlrQGRgLsOHuQwv5jN8wjWX9P+OhbkML+YzfJjL8HHy/wGs3KsZGxurQYMGqbS0tE0oVVpaquuuu+6Q691ut9xud5tz3bp1O6kaunbtym/UMGEuw4v5DB/mMnxsziVrQGRjLsOHuQwv5jN8bM0l/T+yMZfhxXyGD3MZPk7MpbWn702fPl0/+MEPNHjwYF188cVavHixduzYoTvvvNNWSQAAAAAAAHCItVDqxhtv1P79+zVnzhzt3r1bAwYM0Jtvvqk+ffrYKgkAAAAAAAAOsRZKSdLkyZM1efJkR8d0u92aPXv2IbcC4/gxl+HFfIYPcxk+HW0uO9rPYxNzGT7MZXgxn+HTkeayI/0stjGX4cV8hg9zGT5OzqWVDzoHAAAAAABAdOtkuwAAAAAAAABEH0IpAAAAAAAAOI5QCgAAAAAAAI6LulBq4cKFysnJUVxcnAYNGqT33nvPdkkRr6ioSBdeeKGSk5PVu3dvXX/99dq8eXOba4wxKigoUGZmpuLj4zV8+HBt3LjRUsWnjqKiIrlcLuXn54fOMZfHrqKiQhMmTFCPHj2UkJCg888/X+vWrQu9zlweu9bWVj300EPKyclRfHy8+vbtqzlz5igYDIauOdXnk/5//Oj/7Yf+f/JYA8IjGvq/xBpwIlgD2g9rwMmh/4dPRKwBJoq89NJLpkuXLuaZZ54xZWVlZtq0aSYxMdFs377ddmkRbfTo0WbJkiXmn//8p1m/fr0ZM2aMyc7ONh6PJ3TNY489ZpKTk80rr7xiNmzYYG688UaTkZFh6uvrLVYe2T788ENzxhlnmIEDB5pp06aFzjOXx6a6utr06dPHTJw40fzjH/8w5eXl5s9//rP5/PPPQ9cwl8du7ty5pkePHuZ///d/TXl5ufnd735nkpKSTElJSeiaU3k+6f8nhv7fPuj/J481IHw6ev83hjXgRLEGtA/WgJND/w+vSFgDoiqUuuiii8ydd97Z5lz//v3NAw88YKmiU1NVVZWRZFauXGmMMSYYDJr09HTz2GOPha5pbm42KSkp5qmnnrJVZkRraGgwubm5prS01AwbNiy0IDGXx+7+++83l1566RFfZy6Pz5gxY8ytt97a5tzYsWPNhAkTjDGn/nzS/8OD/n/y6P/hwRoQPh29/xvDGhAurAEnjzXg5NH/wysS1oCo2b7n9/u1bt06jRo1qs35UaNGafXq1ZaqOjXV1dVJklJTUyVJ5eXlqqysbDO3brdbw4YNY26PYMqUKRozZoxGjBjR5jxzeexef/11DR48WDfccIN69+6tvLw8PfPMM6HXmcvjc+mll+qdd97Rli1bJEmffPKJVq1apWuuuUbSqT2f9P/wof+fPPp/eLAGhE9H7v8Sa0A4sQacPNaAk0f/D69IWANiwvIup4B9+/YpEAgoLS2tzfm0tDRVVlZaqurUY4zR9OnTdemll2rAgAGSFJq/w83t9u3bHa8x0r300ktat26d1q5de8hrzOWx+/LLL7Vo0SJNnz5dDz74oD788ENNnTpVbrdbP/zhD5nL43T//ferrq5O/fv3V+fOnRUIBPToo4/qpptuknRq/96k/4cH/f/k0f/DhzUgfDpy/5dYA8KFNeDksQaEB/0/vCJhDYiaUOogl8vV5mtjzCHncGR33XWXPv30U61ateqQ15jbo9u5c6emTZumFStWKC4u7ojXMZdHFwwGNXjwYBUWFkqS8vLytHHjRi1atEg//OEPQ9cxl8fm5Zdf1gsvvKDly5fr3HPP1fr165Wfn6/MzEzdcsstoetO5fk8lWuPBPT/k0P/Dy/WgPCJhv4vnfr128YacHJYA8KH/h9ekbAGRM32vZ49e6pz586H/I1IVVXVIakfDu/uu+/W66+/rr/+9a86/fTTQ+fT09Mlibk9BuvWrVNVVZUGDRqkmJgYxcTEaOXKlfrv//5vxcTEhOaLuTy6jIwMnXPOOW3OnX322dqxY4ckfl8er/vuu08PPPCAvv/97+u8887TD37wA91zzz0qKiqSdGrPJ/3/5NH/Tx79P7xYA8KnI/d/iTUgHFgDTh5rQPjQ/8MrEtaAqAmlYmNjNWjQIJWWlrY5X1paqqFDh1qq6tRgjNFdd92lV199VX/5y1+Uk5PT5vWcnBylp6e3mVu/36+VK1cyt19z5ZVXasOGDVq/fn3oGDx4sG6++WatX79effv2ZS6P0SWXXHLIY4m3bNmiPn36SOL35fFqbGxUp05tl4TOnTuHHgd7Ks8n/f/E0f/Dh/4fXqwB4dOR+7/EGnAyWAPChzUgfOj/4RURa0BYPi79FHHwcbDPPvusKSsrM/n5+SYxMdFs27bNdmkR7cc//rFJSUkx7777rtm9e3foaGxsDF3z2GOPmZSUFPPqq6+aDRs2mJtuuonHbh6jf33yhjHM5bH68MMPTUxMjHn00UfN1q1bzYsvvmgSEhLMCy+8ELqGuTx2t9xyiznttNNCj4N99dVXTc+ePc2MGTNC15zK80n/PzH0//ZF/z9xrAHh09H7vzGsASeKNaB9sQacGPp/eEXCGhBVoZQxxjz55JOmT58+JjY21lxwwQWhR5riyCQd9liyZEnommAwaGbPnm3S09ON2+02l112mdmwYYO9ok8hX1+QmMtj98Ybb5gBAwYYt9tt+vfvbxYvXtzmdeby2NXX15tp06aZ7OxsExcXZ/r27WtmzZplfD5f6JpTfT7p/8eP/t++6P8nhzUgPKKh/xvDGnAiWAPaF2vAiaP/h08krAEuY4wJzz1XAAAAAAAAwLGJms+UAgAAAAAAQOQglAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIAAAAAAIDjCKUAAAAAAADgOEIpAAAAAAAAOI5QCgAAAAAAAI4jlAIcsHr1anXu3FlXXXWV7VIAAA5jDQCA6ET/B47OZYwxtosAOrrbb79dSUlJ+tWvfqWysjJlZ2fbLgkA4BDWAACITvR/4Oi4UwpoZ16vV7/97W/14x//WNdee62WLl3a5vXXX39dubm5io+P1+WXX65ly5bJ5XKptrY2dM3q1at12WWXKT4+XllZWZo6daq8Xq+zPwgA4LixBgBAdKL/A8eGUApoZy+//LLOOussnXXWWZowYYKWLFmigzcobtu2Td/73vd0/fXXa/369Zo0aZJmzZrV5vs3bNig0aNHa+zYsfr000/18ssva9WqVbrrrrts/DgAgOPAGgAA0Yn+Dxwbtu8B7eySSy7RuHHjNG3aNLW2tiojI0O/+c1vNGLECD3wwAP64x//qA0bNoSuf+ihh/Too4+qpqZG3bp10w9/+EPFx8fr6aefDl2zatUqDRs2TF6vV3FxcTZ+LADAMWANAIDoRP8Hjg13SgHtaPPmzfrwww/1/e9/X5IUExOjG2+8Uc8991zo9QsvvLDN91x00UVtvl63bp2WLl2qpKSk0DF69GgFg0GVl5c784MAAI4bawAARCf6P3DsYmwXAHRkzz77rFpbW3XaaaeFzhlj1KVLF9XU1MgYI5fL1eZ7vn7zYjAY1KRJkzR16tRD3p8PSwSAyMUaAADRif4PHDtCKaCdtLa26te//rV+/vOfa9SoUW1e++53v6sXX3xR/fv315tvvtnmtbVr17b5+oILLtDGjRvVr1+/dq8ZABAerAEAEJ3o/8Dx4TOlgHbyhz/8QTfeeKOqqqqUkpLS5rVZs2bpzTff1KuvvqqzzjpL99xzj2677TatX79e9957r7766ivV1tYqJSVFn376qb797W/rRz/6ke644w4lJiZq06ZNKi0t1RNPPGHppwMAfBPWAACITvR/4PjwmVJAO3n22Wc1YsSIQxYj6cDfkqxfv141NTX6/e9/r1dffVUDBw7UokWLQk/ecLvdkqSBAwdq5cqV2rp1q/793/9deXl5+ulPf6qMjAxHfx4AwLFjDQCA6ET/B44Pd0oBEebRRx/VU089pZ07d9ouBQDgMNYAAIhO9H9EKz5TCrBs4cKFuvDCC9WjRw/9/e9/189+9jPdddddtssCADiANQAAohP9HziAUAqwbOvWrZo7d66qq6uVnZ2te++9VzNnzrRdFgDAAawBABCd6P/AAWzfAwAAAAAAgOP4oHMAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA4jlAKAAAAAAAAjiOUAgAAAAAAgOMIpQAAAAAAAOA4QikAAAAAAAA47v8BUYUbGnUpNvMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "g = sns.FacetGrid(train_data, col=\"Embarked\", hue=\"Survived\", height=4)\n",
+ "\n",
+ "combined_age = train_data['Age'].dropna()\n",
+ "_, bin_edges = np.histogram(combined_age, bins=10)\n",
+ "\n",
+ "g.map(plt.hist, \"Age\", bins=bin_edges, alpha=0.6, edgecolor=\"black\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "c3e17b55",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2g0lEQVR4nO3de3wU9b3/8feSGyGXhQSSTTCEKBeBIFQCSGyFAAaooBZbUWkLldp6gZKCP1qgFo7HQ9RWoNWqtSLgheKxAtIjgkFuInIC0UgIlyAkECBhBZNswiUJyfz+4DC6IQgJG3YzvJ6Pxzwezsx3Zj7zTXDfmfnOrM0wDEMAAAAW1cLbBQAAADQlwg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0wg4AALA0f28X4Atqa2t19OhRhYWFyWazebscAABwGQzDUHl5uWJjY9WixcWv3xB2JB09elRxcXHeLgMAADRCYWGhrrvuuouuJ+xICgsLk3Sus8LDw71cDQAAuBwul0txcXHm5/jFEHYk89ZVeHg4YQcAgGbmUkNQGKAMAAAsjbADAAAsjbADAAAsjTE7AIBrSk1Njaqrq71dBi5DQECA/Pz8rng/hB0AwDXBMAwVFxertLTU26WgAVq3bi2Hw3FF78Ej7AAArgnng05UVJRatWrFS2R9nGEYOnXqlJxOpyQpJiam0fsi7AAALK+mpsYMOpGRkd4uB5cpODhYkuR0OhUVFdXoW1oMUAYAWN75MTqtWrXyciVoqPM/sysZZ0XYAQBcM7h11fx44mdG2AEAAJbm1TE76enpWrZsmfbs2aPg4GAlJyfrmWeeUdeuXc0248eP1+LFi92269+/v7Zu3WrOV1ZW6vHHH9c///lPnT59WkOGDNGLL774nV8KBgBAVVWVsrOzr9rxevfurcDAwKt2PJzj1bCzceNGPfbYY+rbt6/Onj2rmTNnKjU1Vbt27VJISIjZbvjw4Vq4cKE5X/cXJS0tTf/+97+1dOlSRUZGaurUqRo5cqSysrI88nw+AMCasrOzlfuvZ9WjY1STHyu3wClpmvr169fkx/Kkjh07Ki0tTWlpad4updG8GnZWr17tNr9w4UJFRUUpKytLt912m7k8KChIDoej3n2UlZVpwYIFeuONNzR06FBJ0ptvvqm4uDitXbtWw4YNu2CbyspKVVZWmvMul8sTpwMAaIZ6dIxSv25x3i7jor59h8Pf318RERG66aabdP/992v8+PFq0YIRKZfiUz1UVlYmSYqIiHBbvmHDBkVFRalLly566KGHzGfuJSkrK0vV1dVKTU01l8XGxioxMVFbtmyp9zjp6emy2+3mFBfnu7/kAAAMHz5cRUVFKigo0AcffKCUlBRNnjxZI0eO1NmzZ71dns/zmbBjGIamTJmi73//+0pMTDSXjxgxQm+99ZbWrVun5557Ttu2bdPgwYPNKzPFxcUKDAxUmzZt3PYXHR2t4uLieo81ffp0lZWVmVNhYWHTnVgdVVVVyszMdJuqqqqu2vEBAM3P+Tsc7du3180336wZM2bovffe0wcffKBFixZJOnfB4Fe/+pWioqIUHh6uwYMH64svvjD3sX//ft11112Kjo5WaGio+vbtq7Vr17odx+l0atSoUQoODlZCQoLeeuutq3maTcZnXio4ceJE7dixQ5s3b3ZbPmbMGPO/ExMTlZSUpPj4eL3//vsaPXr0RfdnGMZFH1cLCgpSUFCQZwpvoLr3h5vrPVwAgHcNHjxYvXr10rJlyzRhwgTdcccdioiI0KpVq2S32/X3v/9dQ4YMUV5eniIiIlRRUaEf/vCHeuqpp9SyZUstXrxYo0aN0t69e9WhQwdJ526ZFRYWat26dQoMDNRvfvMbt7spzZVPhJ1JkyZp5cqV2rRp0yWfoIqJiVF8fLz27dsnSXI4HKqqqlJJSYnb1R2n06nk5OQmrbuxfP3+MACgebjxxhu1Y8cOrV+/Xjk5OXI6neYf83/+85+1YsUK/etf/9KvfvUr9erVS7169TK3feqpp7R8+XKtXLlSEydOVF5enj744ANt3bpV/fv3lyQtWLBA3bp188q5eZJXb2MZhqGJEydq2bJlWrdunRISEi65zYkTJ1RYWGh+R0afPn0UEBCgjIwMs01RUZF27tzps2EHAABPOH8XIysrSxUVFYqMjFRoaKg55efna//+/ZKkkydPatq0aerevbtat26t0NBQ7dmzR4cOHZIk7d69W/7+/kpKSjL3f+ONN6p169beODWP8uqVnccee0xLlizRe++9p7CwMHOMjd1uV3BwsCoqKjR79mzdc889iomJUUFBgWbMmKG2bdvqRz/6kdl2woQJmjp1qiIjIxUREaHHH39cPXv2NJ/OAgDAinbv3q2EhATV1tYqJiZGGzZsuKDN+bDy//7f/9OaNWv05z//WZ06dVJwcLB+/OMfm+NGDcOQZM23THs17Lz00kuSpEGDBrktX7hwocaPHy8/Pz/l5OTo9ddfV2lpqWJiYpSSkqK3335bYWFhZvt58+bJ399f9957r/lSwUWLFvGOHQCAZa1bt045OTn67W9/q+uuu07FxcXy9/dXx44d623/8ccfa/z48ebFgoqKChUUFJjru3XrprNnz2r79u3mONK9e/eqtLS0ic+k6Xk17JxPkRcTHBysNWvWXHI/LVu21PPPP6/nn3/eU6UBAK4R5x4UuTrH6ZF06Xb1qaysVHFxsWpqanTs2DGtXr1a6enpGjlypH7+85+rRYsWGjBggO6++27zmwiOHj2qVatW6e6771ZSUpI6deqkZcuWadSoUbLZbHriiSdUW1trHqNr164aPny4HnroIb3yyivy9/dXWlqa+c3jzZlPDFAGAMAbevfuLWnaVTlWj6Tzx2u41atXKyYmRv7+/mrTpo169eqlv/71rxo3bpz5UsFVq1Zp5syZevDBB/XVV1/J4XDotttuU3R0tKRzd0EefPBBJScnq23btvrd7353wUt1Fy5cqF/+8pcaOHCgoqOj9dRTT+mJJ564ovP2BTbjUpdXrgEul0t2u11lZWUKDw9v0mNlZmZK2xeZT2Nl7i6Uksbz6DkANKEzZ84oPz9fCQkJatmypbfLQQN818/ucj+/fealggAAAE2BsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNNygDAK5ZVVVVys7OvmrH6927twIDA6/a8a7Ehg0blJKSopKSkib95vPx48ertLRUK1asaLJjEHYAANes7OxszfvvjxQd37nJj3Xs4D79VmrwG/OdTqeeeOIJffDBBzp27Jj5dRGzZ8/WgAEDmqZYScnJySoqKpLdbm+yY1wthB0AwDUtOr6z4m+8ydtlXNQ999yj6upqLV68WNdff72OHTumjz76SF9//XWj9mcYhmpqauTv/90RIDAwUA6Ho1HH8DWM2QEAwEeVlpZq8+bNeuaZZ5SSkqL4+Hj169dP06dP1x133KGCggLZbDa3W3GlpaWy2WzasGGDpHO3o2w2m9asWaOkpCQFBQVpwYIFstls2rNnj9vx5s6dq44dO8owDHO70tJSlZWVKTg4WKtXr3Zrv2zZMoWEhKiiokKSdOTIEY0ZM0Zt2rRRZGSk7rrrLhUUFJjta2pqNGXKFLVu3VqRkZGaNm2arsZXdBJ2AADwUaGhoQoNDdWKFStUWVl5RfuaNm2a0tPTtXv3bv34xz9Wnz599NZbb7m1WbJkiR544AHZbDa35Xa7XXfccUe97e+66y6Fhobq1KlTSklJUWhoqDZt2qTNmzcrNDRUw4cPV1VVlSTpueee02uvvaYFCxZo8+bN+vrrr7V8+fIrOq/LQdgBAMBH+fv7a9GiRVq8eLFat26tW2+9VTNmzNCOHTsavK8nn3xSt99+u2644QZFRkZq7NixWrJkibk+Ly9PWVlZ+ulPf1rv9mPHjtWKFSt06tQpSee+cfz999832y9dulQtWrTQq6++qp49e6pbt25auHChDh06ZF5lmj9/vqZPn6577rlH3bp108svv3xVxgQRdgAA8GH33HOPjh49qpUrV2rYsGHasGGDbr75Zi1atKhB+0lKSnKbv++++3Tw4EFt3bpVkvTWW2+pd+/e6t69e73b33HHHfL399fKlSslSe+++67CwsKUmpoqScrKytKXX36psLAw84pURESEzpw5o/3796usrExFRUVug6r9/f0vqKspEHYAAPBxLVu21O23364//vGP2rJli8aPH69Zs2apRYtzH+PfHvdSXV1d7z5CQkLc5mNiYpSSkmJe3fnnP/950as60rkByz/+8Y/N9kuWLNGYMWPMgc61tbXq06ePsrOz3aa8vDw98MADjT95DyDsAADQzHTv3l0nT55Uu3btJElFRUXmuoa8N2js2LF6++239emnn2r//v267777Ltl+9erVys3N1fr16zV27Fhz3c0336x9+/YpKipKnTp1cpvsdrvsdrtiYmLMK0mSdPbsWWVlZV12vY1F2AEAwEedOHFCgwcP1ptvvqkdO3YoPz9f77zzjp599lndddddCg4O1i233KKnn35au3bt0qZNm/SHP/zhsvc/evRouVwuPfLII0pJSVH79u2/s/3AgQMVHR2tsWPHqmPHjrrlllvMdWPHjlXbtm1111136eOPP1Z+fr42btyoyZMn6/Dhw5KkyZMn6+mnn9by5cu1Z88ePfrooyotLW1U3zQE79kBAFzTjh3cd/WO079Dg7YJDQ1V//79NW/ePO3fv1/V1dWKi4vTQw89pBkzZkiSXnvtNT344INKSkpS165d9eyzz5rjaC4lPDxco0aN0jvvvKPXXnvtku1tNpvuv/9+/elPf9If//hHt3WtWrXSpk2b9Lvf/U6jR49WeXm52rdvryFDhig8PFySNHXqVBUVFWn8+PFq0aKFHnzwQf3oRz9SWVlZg/qloWzG1XjA3ce5XC7Z7XaVlZWZP5CmkpmZKW1fpH7d4s7N7y6UksY3+I2aAIDLd+bMGeXn5yshIUEtW7Y0l/N1Eb7vYj876fI/v7myAwC4ZgUGBvLH5jWAMTsAAMDSCDsAAMDSCDsAAMDSCDsAgGsGz+Q0P574mRF2AACWFxAQIEnm9zqh+Tj/Mzv/M2wMnsYCAFien5+fWrduLafTKencO2HqfrM3fIthGDp16pScTqdat24tPz+/Ru+LsAMAuCY4HA5JMgMPmofWrVubP7vGIuwAAK4JNptNMTExioqKuuiXZcK3BAQEXNEVnfMIOwCAa4qfn59HPkDRfDBAGQAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWJpXw056err69u2rsLAwRUVF6e6779bevXvd2hiGodmzZys2NlbBwcEaNGiQcnNz3dpUVlZq0qRJatu2rUJCQnTnnXfq8OHDV/NUAACAj/Jq2Nm4caMee+wxbd26VRkZGTp79qxSU1N18uRJs82zzz6ruXPn6oUXXtC2bdvkcDh0++23q7y83GyTlpam5cuXa+nSpdq8ebMqKio0cuRI1dTUeOO0AACAD/H35sFXr17tNr9w4UJFRUUpKytLt912mwzD0Pz58zVz5kyNHj1akrR48WJFR0dryZIl+vWvf62ysjItWLBAb7zxhoYOHSpJevPNNxUXF6e1a9dq2LBhV/28AACA7/CpMTtlZWWSpIiICElSfn6+iouLlZqaarYJCgrSwIEDtWXLFklSVlaWqqur3drExsYqMTHRbFNXZWWlXC6X2wQAAKzJZ8KOYRiaMmWKvv/97ysxMVGSVFxcLEmKjo52axsdHW2uKy4uVmBgoNq0aXPRNnWlp6fLbrebU1xcnKdPBwAA+AifCTsTJ07Ujh079M9//vOCdTabzW3eMIwLltX1XW2mT5+usrIycyosLGx84QAAwKf5RNiZNGmSVq5cqfXr1+u6664zlzscDkm64AqN0+k0r/Y4HA5VVVWppKTkom3qCgoKUnh4uNsEAACsyathxzAMTZw4UcuWLdO6deuUkJDgtj4hIUEOh0MZGRnmsqqqKm3cuFHJycmSpD59+iggIMCtTVFRkXbu3Gm2AQAA1y6vPo312GOPacmSJXrvvfcUFhZmXsGx2+0KDg6WzWZTWlqa5syZo86dO6tz586aM2eOWrVqpQceeMBsO2HCBE2dOlWRkZGKiIjQ448/rp49e5pPZwEAgGuXV8POSy+9JEkaNGiQ2/KFCxdq/PjxkqRp06bp9OnTevTRR1VSUqL+/fvrww8/VFhYmNl+3rx58vf317333qvTp09ryJAhWrRokfz8/K7WqQAAAB9lMwzD8HYR3uZyuWS321VWVtbk43cyMzOl7YvUr9u5J8AydxdKSePVr1+/Jj0uAABWc7mf3z4xQBkAAKCpEHYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAICleTXsbNq0SaNGjVJsbKxsNptWrFjhtn78+PGy2Wxu0y233OLWprKyUpMmTVLbtm0VEhKiO++8U4cPH76KZwEAAHyZV8POyZMn1atXL73wwgsXbTN8+HAVFRWZ06pVq9zWp6Wlafny5Vq6dKk2b96siooKjRw5UjU1NU1dPgAAaAb8vXnwESNGaMSIEd/ZJigoSA6Ho951ZWVlWrBggd544w0NHTpUkvTmm28qLi5Oa9eu1bBhwzxeMwAAaF58fszOhg0bFBUVpS5duuihhx6S0+k012VlZam6ulqpqanmstjYWCUmJmrLli0X3WdlZaVcLpfbBAAArMmnw86IESP01ltvad26dXruuee0bds2DR48WJWVlZKk4uJiBQYGqk2bNm7bRUdHq7i4+KL7TU9Pl91uN6e4uLgmPQ8AAOA9Xr2NdSljxowx/zsxMVFJSUmKj4/X+++/r9GjR190O8MwZLPZLrp++vTpmjJlijnvcrkIPAAAWJRPX9mpKyYmRvHx8dq3b58kyeFwqKqqSiUlJW7tnE6noqOjL7qfoKAghYeHu00AAMCamlXYOXHihAoLCxUTEyNJ6tOnjwICApSRkWG2KSoq0s6dO5WcnOytMgEAgA/x6m2siooKffnll+Z8fn6+srOzFRERoYiICM2ePVv33HOPYmJiVFBQoBkzZqht27b60Y9+JEmy2+2aMGGCpk6dqsjISEVEROjxxx9Xz549zaezAADAtc2rYWf79u1KSUkx58+Poxk3bpxeeukl5eTk6PXXX1dpaaliYmKUkpKit99+W2FhYeY28+bNk7+/v+69916dPn1aQ4YM0aJFi+Tn53fVzwcAAPger4adQYMGyTCMi65fs2bNJffRsmVLPf/883r++ec9WRoAALCIZjVmBwAAoKEIOwAAwNIaFXauv/56nThx4oLlpaWluv7666+4KAAAAE9pVNgpKCio94s2KysrdeTIkSsuCgAAwFMaNEB55cqV5n+vWbNGdrvdnK+pqdFHH32kjh07eqw4AACAK9WgsHP33XdLkmw2m8aNG+e2LiAgQB07dtRzzz3nseIAAACuVIPCTm1trSQpISFB27ZtU9u2bZukKAAAAE9p1Ht28vPzPV0HAABAk2j0SwU/+ugjffTRR3I6neYVn/Nee+21Ky4MAADAExoVdv7jP/5DTz75pJKSkhQTEyObzebpugAAADyiUWHn5Zdf1qJFi/Szn/3M0/UAAAB4VKPes1NVVaXk5GRP1wIAAOBxjQo7v/zlL7VkyRJP1wIAAOBxjbqNdebMGb3yyitau3atbrrpJgUEBLitnzt3rkeKAwAAuFKNCjs7duxQ7969JUk7d+50W8dgZQAA4EsaFXbWr1/v6ToAAACaRKPG7AAAADQXjbqyk5KS8p23q9atW9foggAAADypUWHn/Hid86qrq5Wdna2dO3de8AWhAAAA3tSosDNv3rx6l8+ePVsVFRVXVBAAAIAneXTMzk9/+lO+FwsAAPgUj4adTz/9VC1btvTkLgEAAK5Io25jjR492m3eMAwVFRVp+/bteuKJJzxSGAAAgCc0KuzY7Xa3+RYtWqhr16568sknlZqa6pHCAAAAPKFRYWfhwoWergMAAKBJNCrsnJeVlaXdu3fLZrOpe/fu+t73vuepugAAADyiUWHH6XTqvvvu04YNG9S6dWsZhqGysjKlpKRo6dKlateunafrBAAAaJRGPY01adIkuVwu5ebm6uuvv1ZJSYl27twpl8ul3/zmN56uEQAAoNEadWVn9erVWrt2rbp162Yu6969u/72t78xQBkAAPiURl3Zqa2tVUBAwAXLAwICVFtbe8VFAQAAeEqjws7gwYM1efJkHT161Fx25MgR/fa3v9WQIUM8VhwAAMCValTYeeGFF1ReXq6OHTvqhhtuUKdOnZSQkKDy8nI9//zznq4RAACg0Ro1ZicuLk6fffaZMjIytGfPHhmGoe7du2vo0KGerg8AAOCKNOjKzrp169S9e3e5XC5J0u23365JkybpN7/5jfr27asePXro448/bpJCAQAAGqNBYWf+/Pl66KGHFB4efsE6u92uX//615o7d67HigMAALhSDQo7X3zxhYYPH37R9ampqcrKyrriogAAADylQWHn2LFj9T5yfp6/v7+++uqrKy4KAADAUxoUdtq3b6+cnJyLrt+xY4diYmKuuCgAAABPaVDY+eEPf6g//vGPOnPmzAXrTp8+rVmzZmnkyJEeKw4AAOBKNejR8z/84Q9atmyZunTpookTJ6pr166y2WzavXu3/va3v6mmpkYzZ85sqloBAAAarEFhJzo6Wlu2bNEjjzyi6dOnyzAMSZLNZtOwYcP04osvKjo6ukkKBQAAaIwGv1QwPj5eq1atUklJib788ksZhqHOnTurTZs2TVEfAADAFWnUG5QlqU2bNurbt68nawEAAPC4Rn03FgAAQHNB2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJZG2AEAAJbm1bCzadMmjRo1SrGxsbLZbFqxYoXbesMwNHv2bMXGxio4OFiDBg1Sbm6uW5vKykpNmjRJbdu2VUhIiO68804dPnz4Kp4FAADwZV4NOydPnlSvXr30wgsv1Lv+2Wef1dy5c/XCCy9o27Ztcjgcuv3221VeXm62SUtL0/Lly7V06VJt3rxZFRUVGjlypGpqaq7WaQAAAB/m782DjxgxQiNGjKh3nWEYmj9/vmbOnKnRo0dLkhYvXqzo6GgtWbJEv/71r1VWVqYFCxbojTfe0NChQyVJb775puLi4rR27VoNGzas3n1XVlaqsrLSnHe5XB4+MwAA4Ct8dsxOfn6+iouLlZqaai4LCgrSwIEDtWXLFklSVlaWqqur3drExsYqMTHRbFOf9PR02e12c4qLi2u6EwEAAF7ls2GnuLhYkhQdHe22PDo62lxXXFyswMBAtWnT5qJt6jN9+nSVlZWZU2FhoYerBwAAvsKrt7Euh81mc5s3DOOCZXVdqk1QUJCCgoI8Uh8AAPBtPntlx+FwSNIFV2icTqd5tcfhcKiqqkolJSUXbQMAAK5tPht2EhIS5HA4lJGRYS6rqqrSxo0blZycLEnq06ePAgIC3NoUFRVp586dZhsAAHBt8+ptrIqKCn355ZfmfH5+vrKzsxUREaEOHTooLS1Nc+bMUefOndW5c2fNmTNHrVq10gMPPCBJstvtmjBhgqZOnarIyEhFRETo8ccfV8+ePc2nswAAwLXNq2Fn+/btSklJMeenTJkiSRo3bpwWLVqkadOm6fTp03r00UdVUlKi/v3768MPP1RYWJi5zbx58+Tv7697771Xp0+f1pAhQ7Ro0SL5+fld9fMBAAC+x2YYhuHtIrzN5XLJbrerrKxM4eHhTXqszMxMafsi9et27nH3zN2FUtJ49evXr0mPCwCA1Vzu57fPjtkBAADwBMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNMIOAACwNH9vF3Ctqa6uVl7BMXM+t+CYuvSq9mJFAABYG2HnKsvLy9Pb+wN1o3+EJGnP/hKNycvTrbfe6uXKAACwJsKOF0RGRSs+4XpJkvPrCh04cECZmZnm+t69eyswMNBb5QEAYCmEHS8rO3VG5TmfSDEnJEm5BU5J09SvXz/vFgYAgEUQdnxAh3bh6tctzttlAABgSTyNBQAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI03KDdDVVVVys7OdlvG92kBAFA/wk4zlJ2drdx/PaseHaMk8X1aAAB8F8JOM9WjYxTfpwUAwGXw6TE7s2fPls1mc5scDoe53jAMzZ49W7GxsQoODtagQYOUm5vrxYoBAICv8emwI0k9evRQUVGROeXk5Jjrnn32Wc2dO1cvvPCCtm3bJofDodtvv13l5eVerBgAAPgSnw87/v7+cjgc5tSuXTtJ567qzJ8/XzNnztTo0aOVmJioxYsX69SpU1qyZImXqwYAAL7C58POvn37FBsbq4SEBN133306cOCAJCk/P1/FxcVKTU012wYFBWngwIHasmXLd+6zsrJSLpfLbQIAANbk02Gnf//+ev3117VmzRr94x//UHFxsZKTk3XixAkVFxdLkqKjo922iY6ONtddTHp6uux2uznFxTHQFwAAq/LpsDNixAjdc8896tmzp4YOHar3339fkrR48WKzjc1mc9vGMIwLltU1ffp0lZWVmVNhYaHniwcAAD7Bp8NOXSEhIerZs6f27dtnPpVV9yqO0+m84GpPXUFBQQoPD3ebAACANTWrsFNZWandu3crJiZGCQkJcjgcysjIMNdXVVVp48aNSk5O9mKVAADAl/j0SwUff/xxjRo1Sh06dJDT6dRTTz0ll8ulcePGyWazKS0tTXPmzFHnzp3VuXNnzZkzR61atdIDDzzg7dIBAICP8Omwc/jwYd1///06fvy42rVrp1tuuUVbt25VfHy8JGnatGk6ffq0Hn30UZWUlKh///768MMPFRYW5uXKL19tTY0OOV3K3H1u3FBuwTF16VXt5aoAALAOnw47S5cu/c71NptNs2fP1uzZs69OQU3AVXJCn1Q5pMMRkqQ9+0s0Ji9Pt956q5crAwDAGnw67Fwr7BFtFZ9wvSTpq5IKL1cDAIC1NKsBygAAAA3FlR0fYxjSgQMHlJmZaS7r3bu3AgMDvVgVAADNF2HHx5SdOqPynE+kmBOSpNwCp6Rp6tevn3cLAwCgmSLs+KAO7cLVrxtfYQEAgCcwZgcAAFgaV3aaoerqauUVHDPneTcPAAAXR9hphvLy8vT2/kDd6M+7eQAAuBTCTjMVGRXNu3kAALgMjNkBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACW5u/tAuCutqZGh5wuZe4ulCTlFhxTl17VXq4KAIDmi7DjY1wlJ/RJlUM6HCFJ2rO/RGPy8nTrrbd6uTIAAJonwo4Pske0VXzC9ZKkr0oqvFwNAADNG2HHAgxDOnDggDIzM81lvXv3VmBgoBerAgDANxB2LKDs1BmV53wixZyQJOUWOCVNU79+/bxbGAAAPoCwYxEd2oWrX7c4b5cBAIDP4dFzAABgaVzZ8XE1NTUXjMc5cOCADOObNjyuDgDAxRF2fFzJ8a+0rvSsyqMOmcu2flGgyNYh5jyPqwMAcHGEnWagdXSc4m+8yZzfnZ0pVbvc2vC4OgAA9SPsNAOucpeOHDlizleUl8seZHzHFgAA4DzCjo+rOFOlmprD0tFsc9nJrwoV3K6d94oCAKAZIew0A6FBAWrfzm7OhwTzskAAAC4Xj54DAABL48oO6lVVVaXs7Gy3ZXwFBQCgOSLsoF7Z2dma998fKTq+syTp2MF9+q3EV1AAAJodwk4Tqu/qyIEDB9RcnqOKju/s9sj7leJqEQDAGwg7TSg7O1u5/3pWPTpGmcuObM/UGUdfL1blPVwtAgB4A2GnifXoGOX2BZ3//nS3Sr1Xjtd5+moRAACXwtNYAADA0riycw1grAwA4FpG2LkG1B07lFvglDSNsTIAgGsCYecaUXfsEAAA1wrCjgUZxrlH3DMzMyVJubm5urG29ju3qXurKzc3V7W1rZqyTAAArgrCjgWVnTqj8pxPpJgTkqQDn+5Ru06RkuIvuk3dx8J3bd2mdjckKuFqFAwAQBMi7FhUh3bh5m2r3IJjl2xfXV2tFq3s8g+LlCTZWobKuMTVoG+rbxC01LCB0J7YBwAAdRF2IEnKy8tTacEOxbSslCRVFH0p/1atL3v7+l6g2NCB0HWvLkm8eBAAcOUIO9eAszW1yjtcqszdhZKkL/YXSQFfuLU5cOCA7CEt1b6dXZIU2rLhV1I8MQialw4CADyNsHMNOOQs1ebSNjp0OEKStG13sfruf0W9qr/52oqr8TUW1dXV+uorp/zDjkiSiouP6osvSsz1DIoGADQFws41ok3baMUnXC9J2nf4uDoElV31r7Goe6us8POPtWhftPqeaSOJQdEAgKZB2LGg2poaHXK6zNtWR467ZEQ3/LvWXeUuHTly7irMV185VV0d06Dtq8/WKC8315yv71aZf3Sceduq+OC+Btd4KQx6BgAQdizIVXJCn1Q5pP+7bbW9LExRYZUN2kfFmSrV1ByWjmZLkkoL9iovL1i33nqrpAtDxBdffCHtL3Lbx+pteQoLzJNOd5PUuFtlNWerlfutwCQ1LKhczqDnhn6dBgGqeeJrU4BrF2HHouwRbc3bVmHZuxq1j9CgAPMqTGF+gD7++GNz3YEDB7SnPFDtbzgXZLZmbJLfWZv6BkWYbbadaKN72n9zu6wxt8q+OlKgt3eW6MaKMEmNezrrUoOe6waiSx2Dp8bcNSZEeCN4NPTnDKBxfPEPC8IOLsvhI0dUVnFKlUHnnuLK+SJbcX1SzRCxOztT/tUuM2BJ58YGSWVXfOzI9h2b/Amthj4FxlNj32hMiPBW8ODnBjQ9X/zDwjJh58UXX9Sf/vQnFRUVqUePHpo/f75+8IMfeLssS3E4YpR087kPiuPHii/Z/nLGDn17XFBJSYkiW4ZdUY0VFRV65513zPl9+/apSA7zZYlSw8cfNearNOpuc+rUKe3bt0/+/uf+yZ09e1adO3dWq1bu+/n2Xz+++NfRxTQmRFzt4FH3acDGjEMDcHl87Q8LS4Sdt99+W2lpaXrxxRd166236u9//7tGjBihXbt2qUOHDl6rq7q6Wnl13l7c2MHCvujbQaWivFz2oDpB5hJjh+qOC3Id2adTNS0U+3/7lBoegN555x29+s6/1TH+3M9927btimjfUXGhNWabuuOPLqXuXyk7P81UUGScAu3fvECx7gdn3W22ZrynMxUl6tG1kyRpx+fZ8msbrx439ze3OXGkQE88WG3W5Yt/HdXnUiGivtD2xRdfyHms0gyhDQ0edUPteT/5yU8UGhpa7zZ1nwZs6O8BgObLEmFn7ty5mjBhgn75y19KkubPn681a9bopZdeUnp6utfqysvL09v7A3Wj/zfjWBozWNgX1Q0qJ78qVHC7dhe0u9TYoW+PC2rRwqbqkm/2KTX8Tc6S1DG+g3kFquDgIQV/6xiSVFTYskH7k9z/StmdnSnX0X1STLC5vr4PzrrbRLYOcaurxq/G/OCVpNJql/Ly8i66D191qRBR39u1P/13ppzhPRXbqrrebS6lbqiVzvWpJP3iF7+46Hatv/U0YGN+DwA0T80+7FRVVSkrK0u///3v3ZanpqZqy5Yt9W5TWVmpyspvPmTKys6NK3G5XB6t7fTp0ypxVejosRPmspOnz+jI4UJ9unWbJKm46KgCg12XPd+YberOHyrI1yc1hWq54lNzn9v2HJEzNEj+LRpyjFAd2p8nSSovPa7KyjMeqPObfUpS6XGnXDU5+nRtkCTp66OH9K/CIG3fvr3ePt+yZYu+PFam6qrKi/bfwUOHZSs/rtOnT0uSCgoKtLOoUkcPH6z3GHXXH96/Wy1qq3Ro/zcflseLjuijjz666D7Pb/NpgO2i53qpfVzq3L1ly5YtOn6sTIf+79zqOw8ddOp0ZZW5zdHjLn19psjsw7rbXM4xz1ZXmz9nSTpbXf2d+6j7u1H39wCAZ9T3/66KHnd5/DNW+uZz2zAuccfEaOaOHDliSDI++eQTt+X/9V//ZXTp0qXebWbNmmVIYmJiYmJiYrLAVFhY+J1Zodlf2TnPZrO5zRuGccGy86ZPn64pU6aY87W1tfr6668VGRl50W0aw+VyKS4uToWFhQoPD/fYfnEO/du06N+mRf82Lfq36flCHxuGofLycsXGxn5nu2Yfdtq2bSs/Pz8VF7s/HeR0OhUdHV3vNkFBQQoKCnJb1rp166YqUeHh4fxja0L0b9Oif5sW/du06N+m5+0+ttvtl2zT4irU0aQCAwPVp08fZWRkuC3PyMhQcnKyl6oCAAC+otlf2ZGkKVOm6Gc/+5mSkpI0YMAAvfLKKzp06JAefvhhb5cGAAC8zBJhZ8yYMTpx4oSefPJJFRUVKTExUatWrVJ8fLxX6woKCtKsWbMuuGUGz6B/mxb927To36ZF/za95tTHNsO41PNaAAAAzVezH7MDAADwXQg7AADA0gg7AADA0gg7AADA0gg7TejFF19UQkKCWrZsqT59+ujjjz/2dknNwqZNmzRq1CjFxsbKZrNpxYoVbusNw9Ds2bMVGxur4OBgDRo0SLm5uW5tKisrNWnSJLVt21YhISG68847dfjw4at4Fr4pPT1dffv2VVhYmKKionT33Xdr7969bm3o38Z76aWXdNNNN5kvWRswYIA++OADcz1961np6emy2WxKS0szl9HHjTd79mzZbDa3yeFwmOubdd9e6XdToX5Lly41AgICjH/84x/Grl27jMmTJxshISHGwYMHvV2az1u1apUxc+ZM49133zUkGcuXL3db//TTTxthYWHGu+++a+Tk5BhjxowxYmJiDJfLZbZ5+OGHjfbt2xsZGRnGZ599ZqSkpBi9evUyzp49e5XPxrcMGzbMWLhwobFz504jOzvbuOOOO4wOHToYFRUVZhv6t/FWrlxpvP/++8bevXuNvXv3GjNmzDACAgKMnTt3GoZB33pSZmam0bFjR+Omm24yJk+ebC6njxtv1qxZRo8ePYyioiJzcjqd5vrm3LeEnSbSr18/4+GHH3ZbduONNxq///3vvVRR81Q37NTW1hoOh8N4+umnzWVnzpwx7Ha78fLLLxuGYRilpaVGQECAsXTpUrPNkSNHjBYtWhirV6++arU3B06n05BkbNy40TAM+rcptGnTxnj11VfpWw8qLy83OnfubGRkZBgDBw40ww59fGVmzZpl9OrVq951zb1vuY3VBKqqqpSVlaXU1FS35ampqdqyZYuXqrKG/Px8FRcXu/VtUFCQBg4caPZtVlaWqqur3drExsYqMTGR/q+jrKxMkhQRESGJ/vWkmpoaLV26VCdPntSAAQPoWw967LHHdMcdd2jo0KFuy+njK7dv3z7FxsYqISFB9913nw4cOCCp+fetJd6g7GuOHz+umpqaC76INDo6+oIvLEXDnO+/+vr24MGDZpvAwEC1adPmgjb0/zcMw9CUKVP0/e9/X4mJiZLoX0/IycnRgAEDdObMGYWGhmr58uXq3r27+T97+vbKLF26VFlZWdq+ffsF6/j9vTL9+/fX66+/ri5duujYsWN66qmnlJycrNzc3Gbft4SdJmSz2dzmDcO4YBkapzF9S/+7mzhxonbs2KHNmzdfsI7+bbyuXbsqOztbpaWlevfddzVu3Dht3LjRXE/fNl5hYaEmT56sDz/8UC1btrxoO/q4cUaMGGH+d8+ePTVgwADdcMMNWrx4sW655RZJzbdvuY3VBNq2bSs/P78LkqzT6bwgFaNhzj8Z8F1963A4VFVVpZKSkou2udZNmjRJK1eu1Pr163XdddeZy+nfKxcYGKhOnTopKSlJ6enp6tWrl/7yl7/Qtx6QlZUlp9OpPn36yN/fX/7+/tq4caP++te/yt/f3+wj+tgzQkJC1LNnT+3bt6/Z//4SdppAYGCg+vTpo4yMDLflGRkZSk5O9lJV1pCQkCCHw+HWt1VVVdq4caPZt3369FFAQIBbm6KiIu3cufOa73/DMDRx4kQtW7ZM69atU0JCgtt6+tfzDMNQZWUlfesBQ4YMUU5OjrKzs80pKSlJY8eOVXZ2tq6//nr62IMqKyu1e/duxcTENP/fX2+Mir4WnH/0fMGCBcauXbuMtLQ0IyQkxCgoKPB2aT6vvLzc+Pzzz43PP//ckGTMnTvX+Pzzz83H9p9++mnDbrcby5YtM3Jycoz777+/3scfr7vuOmPt2rXGZ599ZgwePNgnHn/0tkceecSw2+3Ghg0b3B4vPXXqlNmG/m286dOnG5s2bTLy8/ONHTt2GDNmzDBatGhhfPjhh4Zh0LdN4dtPYxkGfXwlpk6damzYsME4cOCAsXXrVmPkyJFGWFiY+bnVnPuWsNOE/va3vxnx8fFGYGCgcfPNN5uP9+K7rV+/3pB0wTRu3DjDMM49Ajlr1izD4XAYQUFBxm233Wbk5OS47eP06dPGxIkTjYiICCM4ONgYOXKkcejQIS+cjW+pr18lGQsXLjTb0L+N9+CDD5r/5tu1a2cMGTLEDDqGQd82hbphhz5uvPPvzQkICDBiY2ON0aNHG7m5ueb65ty3NsMwDO9cUwIAAGh6jNkBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgBAACWRtgB0KyMHz9eNpvtgunLL7/0dmkAfJS/twsAgIYaPny4Fi5c6LasXbt2DdpHTU2NbDabWrTgbz7A6vhXDqDZCQoKksPhcJv+8pe/qGfPngoJCVFcXJweffRRVVRUmNssWrRIrVu31v/8z/+oe/fuCgoK0sGDB1VVVaVp06apffv2CgkJUf/+/bVhwwbvnRwAjyPsALCEFi1a6K9//at27typxYsXa926dZo2bZpbm1OnTik9PV2vvvqqcnNzFRUVpV/84hf65JNPtHTpUu3YsUM/+clPNHz4cO3bt89LZwLA0/jWcwDNyvjx4/Xmm2+qZcuW5rIRI0bonXfecWv3zjvv6JFHHtHx48clnbuy84tf/ELZ2dnq1auXJGn//v3q3LmzDh8+rNjYWHPboUOHql+/fpozZ85VOCMATY0xOwCanZSUFL300kvmfEhIiNavX685c+Zo165dcrlcOnv2rM6cOaOTJ08qJCREkhQYGKibbrrJ3O6zzz6TYRjq0qWL2/4rKysVGRl5dU4GQJMj7ABodkJCQtSpUydz/uDBg/rhD3+ohx9+WP/5n/+piIgIbd68WRMmTFB1dbXZLjg4WDabzZyvra2Vn5+fsrKy5Ofn53aM0NDQpj8RAFcFYQdAs7d9+3adPXtWzz33nPl01X//939fcrvvfe97qqmpkdPp1A9+8IOmLhOAlzBAGUCzd8MNN+js2bN6/vnndeDAAb3xxht6+eWXL7ldly5dNHbsWP385z/XsmXLlJ+fr23btumZZ57RqlWrrkLlAK4Gwg6AZq93796aO3eunnnmGSUmJuqtt95Senr6ZW27cOFC/fznP9fUqVPVtWtX3Xnnnfrf//1fxcXFNXHVAK4WnsYCAACWxpUdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaYQdAABgaf8fnj4HxeSl4dUAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.histplot(x=\"Fare\", hue='Survived', hue_order = [1,0],data=train_data).legend([\"Dead\",\"Survived\"])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "880e4782",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\Swastika\\anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6607: RuntimeWarning: All-NaN slice encountered\n",
+ " xmin = min(xmin, np.nanmin(xi))\n",
+ "C:\\Users\\Swastika\\anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py:6608: RuntimeWarning: All-NaN slice encountered\n",
+ " xmax = max(xmax, np.nanmax(xi))\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACuYAAAGGCAYAAACNRqXRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOp0lEQVR4nO3de3hddZ0v/k96S5MmTZu2NC00WKAKwmEoF5HLAJ6R1gGOePCugI7KMAMIVY+V20h1oIXKYMcLKIjIHEGYCypeRqgX+pMpDFAoYltuWimkLb3sNsneae7r98ecZgiFhLRrdyXZr9fzrOcha6+9v5/9fULeafvOSlmSJEkAAAAAAAAAAAAAAHtkRNYDAAAAAAAAAAAAAMBwoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFCjmAgAAAAAAAAAAAEAKFHMBAAAAAAAAAAAAIAWKuQAAAAAAAAAAAACQAsVcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgL/SgrK4sf/ehHERHxpz/9KcrKymLlypWZzgTA4CEnAOiPrACgL3ICgP7ICgD6IysA6IucgL1PMZeStmnTpjj//POjvr4+ysvLo66uLubOnRsPPfRQzzUbNmyIv/zLvxzQ6/7bv/1bHHvssVFTUxPV1dVx6KGHxuc+97m0xx+wbdu2xTnnnBM1NTVRU1MT55xzTmzfvj3rsQAGrVLLiWuuuSaOP/74qKysjAkTJmQ9DsCQUEpZ8ac//Sk++clPxsyZM6OioiIOPPDAuOqqq6K9vT3TuQAGs1LKiYiId7/73VFfXx9jx46NadOmxTnnnBPr16/PeiyAQa3UsmKntra2OOKIIxQCAN6AUsuKN73pTVFWVtbruPTSS7MeC2DQKrWcePbZZ+PMM8+MyZMnx/jx4+OEE06I3/zmN1mPBbsYlfUAkKX3vve90dHREbfffnsccMAB8fLLL8evfvWryOVyPdfU1dUN6DV/+ctfxoc+9KFYuHBhvPvd746ysrJYvXp1/OpXv0p7/AH7yEc+Ei+99FL84he/iIiIv/7rv45zzjknfvKTn2Q8GcDgVGo50d7eHu9///vjuOOOi1tvvTXrcQCGhFLKiqeffjq6u7vj29/+dhx00EHx+9//Ps4777woFApx/fXXZzobwGBVSjkREfGOd7wjLr/88pg2bVo0NDTE//k//yfe9773xfLly7MeDWDQKrWs2Gn+/Pkxffr0ePLJJ7MeBWDQK8Ws+PKXvxznnXdez8dVVVUZTgMwuJVaTpx++unx5je/OX79619HRUVFLFmyJM4444z4wx/+MOD3CUWVQInatm1bEhHJAw880Od1EZH88Ic/TJIkSdauXZtERPKDH/wgOe6445Ly8vLkrW99a/Kb3/ym5/pLLrkkOeWUU/p8zauuuir5sz/7s+Rb3/pWst9++yUVFRXJ+973vmTbtm17+K5e3+rVq5OISB5++OGecw899FASEcnTTz9dtHUBhqpSy4lXuu2225Kampq9shbAUFbKWbHT4sWLk5kzZ+7VNQGGCjmRJD/+8Y+TsrKypL29fa+uCzBUlGpW/PznP08OPvjgZNWqVUlEJE888UTR1wQYqkoxK/bff//kq1/9alHXABguSi0nNm/enERE8v/9f/9fz7mmpqYkIpJf/vKXRVsXdseIvVUAhsGmqqoqqqqq4kc/+lG0tbUN6Lmf//zn43Of+1w88cQTcfzxx8e73/3u2Lp1a0T810+ZrFq1Kn7/+9/3+RrPP/98/PM//3P85Cc/iV/84hexcuXKuPDCC9/QzK939HXb+Yceeihqamri2GOP7Tn39re/PWpqaty1BOA1lFpOADBwsiKisbExamtrB/QcgFJR6jmRy+XijjvuiOOPPz5Gjx79hp8HUEpKMStefvnlOO+88+L//t//G5WVlQN6zwClqBSzIiLiuuuui0mTJsURRxwR11xzTbS3t7/xNw5QQkotJyZNmhSHHHJI/NM//VMUCoXo7OyMb3/72zF16tQ46qijBvT+oeiybgZDlv71X/81mThxYjJ27Njk+OOPTy677LLkySef7HVNvMZPjVx77bU9j3d0dCT77bdfct111yVJkiT5fD457bTTkohI9t9//+SDH/xgcuuttyatra09z7nqqquSkSNHJi+++GLPuX//939PRowYkWzYsOF1533uuef6PF566aXXfe4111yTzJo1a5fzs2bNShYuXNj3RgGUqFLKiVdyx1yAN65UsyJJkuT5559Pxo8fn9xyyy1v+DkApaYUc2L+/PlJZWVlEhHJ29/+9mTLli1vaK8ASlUpZUV3d3fyrne9K/n7v//7Xu/FHXMB+lZKWZEkSXLDDTckDzzwQPLkk08mt9xySzJ58uTkk5/85BveL4BSU2o58dJLLyVHHXVUUlZWlowcOTKZPn26P1MwKLljLiXtve99b6xfvz7uvffemDt3bjzwwANx5JFHxve+970+n3fcccf1/PeoUaPi6KOPjjVr1kRExLhx4+JnP/tZPP/883HllVdGVVVVfO5zn4u3ve1t0dLS0vO8+vr62G+//Xq9Znd3dzzzzDOvu+5BBx3U57Hvvvv2OXdZWdku55Ikec3zAJReTgAwcKWaFevXr493vetd8f73vz8+9alPvaHnAJSiUsyJz3/+8/HEE0/E/fffHyNHjoxzzz03kiTp93kApaqUsuLrX/96NDU1xWWXXdbftgDwCqWUFRERn/nMZ+Lkk0+Oww8/PD71qU/Ft771rbj11lt77uIIQG+llBNJksQFF1wQ++yzT/z2t7+NRx55JM4888w444wzYsOGDf1tFexVirmUvLFjx8app54aX/ziF2P58uXx8Y9/PK666qoBv86ry60HHnhgfOpTn4rvfOc78fjjj8fq1avj7rvv7vf5fZVk9+R27nV1dfHyyy/vcn7z5s0xderU/t4eQMkqlZwAYPeVWlasX78+3vGOd8Rxxx0XN9988xt8dwClq9RyYvLkyfHmN785Tj311Ljrrrvi5z//eTz88MNv8F0ClKZSyYpf//rX8fDDD0d5eXmMGjUqDjrooIiIOProo+NjH/vYQN4qQMkplax4LW9/+9sj4r9+XToAr61UcuLXv/51/PSnP4277rorTjjhhDjyyCPjxhtvjIqKirj99tsH+G6huEZlPQAMNm9961vjRz/6UZ/XPPzww3HSSSdFRERnZ2esWLEiLrroote9/k1velNUVlZGoVDoObdu3bpYv359TJ8+PSIiHnrooRgxYkS8+c1vft3XWblyZZ9zVVRUvO5jxx13XDQ2NsYjjzwSb3vb2yIi4j//8z+jsbExjj/++D5fF4D/NlxzAoD0DOesaGhoiHe84x1x1FFHxW233RYjRvh5X4CBGs458Wo775Tb1tY2oOcBlLrhmhVf+9rX4uqrr+75eP369TF37ty4++6749hjj+3zdQHobbhmxWt54oknIiJi2rRpA3oeQCkbrjmx8269r/63iREjRkR3d3efrwt7m2IuJWvr1q3x/ve/Pz7xiU/E4YcfHtXV1fHYY4/F4sWL48wzz+zzud/85jdj1qxZccghh8RXv/rV2LZtW3ziE5+IiIgFCxZES0tLnHbaabH//vvH9u3b42tf+1p0dHTEqaee2vMaY8eOjY997GNx/fXXR1NTU1x88cXxgQ98IOrq6l533Z0/Pb47DjnkkHjXu94V5513Xnz729+OiIi//uu/jjPOOCPe8pa37PbrAgxXpZYTEf/1B6dcLhfr1q2Lrq6unj8UHXTQQVFVVbVHrw0wHJVaVqxfvz5OOeWUqK+vj+uvvz42b97c81hfawKUqlLLiUceeSQeeeSROPHEE2PixInxxz/+Mb74xS/GgQce2OtXIwLw30otK+rr63t9vPPvmw488MBev/4WgP9Walnx0EMPxcMPPxzveMc7oqamJh599NH4zGc+E+9+97t3yREASi8njjvuuJg4cWJ87GMfiy9+8YtRUVERt9xyS6xduzZOP/303X5dKAbFXEpWVVVVHHvssfHVr341/vCHP0RHR0fMmDEjzjvvvLj88sv7fO61114b1113XTzxxBNx4IEHxo9//OOYPHlyREScfPLJ8c1vfjPOPffcePnll2PixIkxe/bsuP/++3sVYA866KA466yz4rTTTotcLhennXZa3HjjjUV9z3fccUdcfPHFMWfOnIiIePe73x3f+MY3iromwFBVijnxxS9+sdev+Jg9e3ZERPzmN7+JU045pahrAwxFpZYV999/fzz//PPx/PPP7/KP5jvviAjAfyu1nKioqIh77rknrrrqqigUCjFt2rR417veFXfddVeUl5cXbV2AoazUsgKAgSu1rCgvL4+77747vvSlL0VbW1vsv//+cd5558X8+fOLtibAUFZqOTF58uT4xS9+EVdccUX8z//5P6OjoyMOPfTQ+PGPfxx/9md/VrR1YXeUJf71DPa6BQsWxI9+9KN+b88OQGmSEwD0R1YA0Bc5AUB/ZAUA/ZEVAPRFTkDfRmQ9AAAAAAAAAAAAAAAMB4q5AAAAAAAAAAAAAJCCsiRJkqyHAAAAAAAAAAAAAIChzh1zAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIwaAr5iZJEk1NTZEkSdajADBIyQoA+iMrAOiLnACgP7ICgP7ICgD6IicAStugK+Y2NzdHTU1NNDc3Zz0KAIOUrACgP7ICgL7ICQD6IysA6I+sAKAvcgKgtA26Yi4AAAAAAAAAAAAADEWKuQAAAAAAAAAAAACQAsVcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFCjmAgAAAAAAAAAAAEAKFHMBAAAAAAAAAAAAIAWKuQAAAAAAAAAAAACQAsVcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSMCrrAdh7crlc5PP5rMeIqqqqqK2tzXoMAAAAAAAAAAAAgFQp5paIXC4X8+ZfHrmmlqxHidrxlbFk8ULlXAAAAAAAAAAAAGBYUcwtEfl8PnJNLTHpyLkxbuKUzOYobNscWx+/L/L5vGIuAAAAAAAAAAAAMKwo5paYcROnRM2UaZnOsDXT1QEAAAAAAAAAAACKY0TWAwAAAAAAAAAAAADAcKCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUjCgYm5nZ2dceeWVMXPmzKioqIgDDjggvvzlL0d3d3fPNUmSxIIFC2L69OlRUVERp5xySqxatSr1wQEAAAAAAAAAAABgMBlQMfe6666Lb33rW/GNb3wj1qxZE4sXL46vfOUr8fWvf73nmsWLF8cNN9wQ3/jGN+LRRx+Nurq6OPXUU6O5uTn14QEAAAAAAAAAAABgsBhQMfehhx6KM888M04//fR405veFO973/tizpw58dhjj0XEf90td8mSJXHFFVfEWWedFYcddljcfvvt0dLSEnfeeWdR3gAAAAAAAAAAAAAADAYDKuaeeOKJ8atf/SqeffbZiIh48skn48EHH4zTTjstIiLWrl0bGzdujDlz5vQ8p7y8PE4++eRYvnx5imMDAAAAAAAAAAAAwOAyaiAXf+ELX4jGxsY4+OCDY+TIkdHV1RXXXHNNfPjDH46IiI0bN0ZExNSpU3s9b+rUqfHCCy+85mu2tbVFW1tbz8dNTU0DegMADH+yAoD+yAoA+iInAOiPrACgP7ICgL7ICQBeaUB3zL377rvj+9//ftx5553x+OOPx+233x7XX3993H777b2uKysr6/VxkiS7nNtp0aJFUVNT03PMmDFjgG8BgOFOVgDQH1kBQF/kBAD9kRUA9EdWANAXOQHAK5UlSZK80YtnzJgRl156aVx44YU9566++ur4/ve/H08//XT88Y9/jAMPPDAef/zxmD17ds81Z555ZkyYMGGXAm/Ea//EyIwZM6KxsTHGjx+/u++LV1m3bl1c8H+ujPq/ODtqpkzLbI7GzRti3a++Hzdef3XU19dnNgcwtMgKAPojKwDoi5wAoD+yAoD+yAoA+iInAHilUQO5uKWlJUaM6H2T3ZEjR0Z3d3dERMycOTPq6upi6dKlPcXc9vb2WLZsWVx33XWv+Zrl5eVRXl6+O7MDUCJkBQD9kRUA9EVOANAfWQFAf2QFAH2REwC80oCKuf/rf/2vuOaaa6K+vj4OPfTQeOKJJ+KGG26IT3ziExERUVZWFvPmzYuFCxfGrFmzYtasWbFw4cKorKyMj3zkI0V5AwAAAAAAAAAAAAAwGAyomPv1r389/u7v/i4uuOCC2LRpU0yfPj3OP//8+OIXv9hzzfz582PHjh1xwQUXxLZt2+LYY4+N+++/P6qrq1MfHgAAAAAAAAAAAAAGiwEVc6urq2PJkiWxZMmS172mrKwsFixYEAsWLNjD0QAAAAAAAAAAAABg6BiR9QAAAAAAAAAAAAAAMBwo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIwaisB6D0tLe3RUNDQ9ZjRFVVVdTW1mY9BgAAAAAAAAAAADBMKOayV7UWmmLNmtVx5aIbomJsRaaz1I6vjCWLFyrnAgAAAAAAAAAAAKlQzGWv6mhrjc4YGbWz58aU6fWZzVHYtjm2Pn5f5PN5xVwAAAAAAAAAAAAgFYq5ZGLchElRM2VapjNszXR1AAAAAAAAAAAAYLgZkfUAAAAAAAAAAAAAADAcKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBQMu5jY0NMTZZ58dkyZNisrKyjjiiCNixYoVPY8nSRILFiyI6dOnR0VFRZxyyimxatWqVIcGAAAAAAAAAAAAgMFmQMXcbdu2xQknnBCjR4+Of//3f4/Vq1fHP/zDP8SECRN6rlm8eHHccMMN8Y1vfCMeffTRqKuri1NPPTWam5vTnh0AAAAAAAAAAAAABo1RA7n4uuuuixkzZsRtt93Wc+5Nb3pTz38nSRJLliyJK664Is4666yIiLj99ttj6tSpceedd8b555+fztQAAAAAAAAAAAAAMMgM6I659957bxx99NHx/ve/P/bZZ5+YPXt23HLLLT2Pr127NjZu3Bhz5szpOVdeXh4nn3xyLF++PL2pAQAAAAAAAAAAAGCQGdAdc//4xz/GTTfdFJ/97Gfj8ssvj0ceeSQuvvjiKC8vj3PPPTc2btwYERFTp07t9bypU6fGCy+88Jqv2dbWFm1tbT0fNzU1DfQ9ADDMyQoA+iMrAOiLnACgP7ICgP7ICgD6IicAeKUB3TG3u7s7jjzyyFi4cGHMnj07zj///DjvvPPipptu6nVdWVlZr4+TJNnl3E6LFi2KmpqanmPGjBkDfAsADHeyAoD+yAoA+iInAOiPrACgP7ICgL7ICQBeaUDF3GnTpsVb3/rWXucOOeSQWLduXURE1NXVRUT03Dl3p02bNu1yF92dLrvssmhsbOw5XnzxxYGMBEAJkBUA9EdWANAXOQFAf2QFAP2RFQD0RU4A8EqjBnLxCSecEM8880yvc88++2zsv//+ERExc+bMqKuri6VLl8bs2bMjIqK9vT2WLVsW11133Wu+Znl5eZSXl+/O7ACUCFkBQH9kBQB9kRMA9EdWANAfWQFAX+QEAK80oGLuZz7zmTj++ONj4cKF8YEPfCAeeeSRuPnmm+Pmm2+OiIiysrKYN29eLFy4MGbNmhWzZs2KhQsXRmVlZXzkIx8pyhsAAAAAAAAAAAAAgMFgQMXcY445Jn74wx/GZZddFl/+8pdj5syZsWTJkvjoRz/ac838+fNjx44dccEFF8S2bdvi2GOPjfvvvz+qq6tTHx4AAAAAAAAAAAAABosBFXMjIs4444w444wzXvfxsrKyWLBgQSxYsGBP5gIAAAAAAAAAAACAIWVE1gMAAAAAAAAAAAAAwHCgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUKOYCAAAAAAAAAAAAQAoUcwEAAAAAAAAAAAAgBYq5AAAAAAAAAAAAAJACxVwAAAAAAAAAAAAASIFiLgAAAAAAAAAAAACkQDEXAAAAAAAAAAAAAFKgmAsAAAAAAAAAAAAAKVDMBQAAAAAAAAAAAIAUjMp6AEpPd1dn5LdtjsbKcZnN0JzbFO3tbZmtDwAAAAAAAAAAAAw/irnsVW0t+RjRtD7W3/ft2FpRmdkcne1tkdu6NbZv3x719fWZzQEAAAAAAAAAAAAMH4q57FWd7a1RPaorzj5yXOw7dXJmc2zcsi1uWbo+CoVCZjMAAAAAAAAAAAAAw4tiLpmorS6Putpxma3f0bYjs7UBAAAAAAAAAACA4Ukxl5KVJN2xcePGWLduXaZzVFVVRW1tbaYzAAAAAAAAAAAAAHtOMZeS1NXZEfl8Pq7/5ndiYu0PM52ldnxlLFm8UDkXAAAAAAAAAAAAhjjFXEpSd1dXJFEWEw47KeoPmZ3ZHIVtm2Pr4/dFPp9XzAUAAAAAAAAAAIAhTjGXklYxfmLUTJmW6QxbM10dAAAAAAAAAAAASMuIrAcAAAAAAAAAAAAAgOFAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRgj4q5ixYtirKyspg3b17PuSRJYsGCBTF9+vSoqKiIU045JVatWrWncwIAAAAAAAAAAADAoDZqd5/46KOPxs033xyHH354r/OLFy+OG264Ib73ve/Fm9/85rj66qvj1FNPjWeeeSaqq6v3eGB2X3t7WzTnNmU6Q0vTtkiSJNMZAAAAAAAAAAAAAIpht4q5+Xw+PvrRj8Ytt9wSV199dc/5JEliyZIlccUVV8RZZ50VERG33357TJ06Ne688844//zz05maAdu+fXs0rHksdmxaG6PGlGc2R2Nua5R1tkV3R2dmMwAAAAAAAAAAAAAUw24Vcy+88MI4/fTT453vfGevYu7atWtj48aNMWfOnJ5z5eXlcfLJJ8fy5csVczNUKBSiItri7CPHRd3kiZnN8btnW+LOl5PoThRzAQAAAAAAAAAAgOFlwMXcu+66K1asWBGPPfbYLo9t3LgxIiKmTp3a6/zUqVPjhRdeeM3Xa2tri7a2tp6Pm5qaBjoSAzCpemzU1Y7LbP11lWMyWxsYumQFAP2RFQD0RU4A0B9ZAUB/ZAUAfZETALzSiIFc/OKLL8Yll1wSd9xxR4wdO/Z1rysrK+v1cZIku5zbadGiRVFTU9NzzJgxYyAjAVACZAUA/ZEVAPRFTgDQH1kBQH9kBQB9kRMAvNKAirkrVqyITZs2xVFHHRWjRo2KUaNGxbJly+JrX/tajBo1qudOuTvvnLvTpk2bdrmL7k6XXXZZNDY29hwvvvjibr4VAIYrWQFAf2QFAH2REwD0R1YA0B9ZAUBf5AQArzRqIBf/xV/8RTz11FO9zv3VX/1VHHzwwfGFL3whDjjggKirq4ulS5fG7NmzIyKivb09li1bFtddd91rvmZ5eXmUl5fv5vgAlAJZAUB/ZAUAfZETAPRHVgDQH1kBQF/kBACvNKBibnV1dRx22GG9zo0bNy4mTZrUc37evHmxcOHCmDVrVsyaNSsWLlwYlZWV8ZGPfCS9qQEAAAAAAAAAAABgkBlQMfeNmD9/fuzYsSMuuOCC2LZtWxx77LFx//33R3V1ddpLAQAAAAAAAAAAAMCgscfF3AceeKDXx2VlZbFgwYJYsGDBnr40AAAAAAAAAAAAAAwZI7IeAAAAAAAAAAAAAACGA8VcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFCjmAgAAAAAAAAAAAEAKFHMBAAAAAAAAAAAAIAWKuQAAAAAAAAAAAACQAsVcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFCjmAgAAAAAAAAAAAEAKRmU9AJS69va2aGhoyHqMqKqqitra2qzHAAAAAAAAAAAAgCFLMRcy1FpoijVrVseVi26IirEVmc5SO74ylixeqJwLAAAAAAAAAAAAu0kxFzLU0dYanTEyamfPjSnT6zObo7Btc2x9/L7I5/OKuQAAAAAAAAAAALCbFHNhEBg3YVLUTJmW6QxbM10dAAAAAAAAAAAAhr4RWQ8AAAAAAAAAAAAAAMOBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFIzKegAAgFfK5XKRz+ezHiOqqqqitrY26zEAAAAAAAAAABhCFHMBgEEjl8vFvPmXR66pJetRonZ8ZSxZvFA5FwAAAAAAAACAN0wxFwAYNPL5fOSaWmLSkXNj3MQpmc1R2LY5tj5+X+TzecVcAAAAAAAAAADeMMVcAGDQGTdxStRMmZbpDFszXR0AAAAAAAAAgKFoRNYDAAAAAAAAAAAAAMBwoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFIzKegDISld3Ei2NuWjcvCGzGQrbt0R3V2dm6wMAAAAAAAAAAADpUcylJOVbO6KjrTW2PHhH7HjyZ5nN0VpojhFN66Ot0JzZDAAAAAAAAAAAAEA6FHMpSa3tXTFuTMTZR1TG/jOmZDbHS+u74h8buqKjvTWzGQAAAAAAAAAAAIB0KOZS0mqrx0Rd7bjM1m9pKs9sbQAAAAAAAAAAACBdI7IeAAAAAAAAAAAAAACGA8VcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApEAxFwAAAAAAAAAAAABSoJgLAAAAAAAAAAAAAClQzAUAAAAAAAAAAACAFCjmAgAAAAAAAAAAAEAKFHMBAAAAAAAAAAAAIAWKuQAAAAAAAAAAAACQAsVcAAAAAAAAAAAAAEiBYi4AAAAAAAAAAAAApGBU1gMAAAxG7e1t0dDQkPUYUVVVFbW1tVmPAQAAAAAAAADAG6CYCwDwKq2FpmhY81jcdO3lUTG2ItNZxlRPji8tXqKcCwAAAAAAAAAwBCjmAgC8Skdba1REW3z86Ko4aN8pmc2xIVeI7z66JfL5vGIuAAAAAAAAAMAQoJgLAPA66iZURv2U6oynaM54fQAAAAAAAAAA3qgRWQ8AAAAAAAAAAAAAAMOBYi4AAAAAAAAAAAAApGBAxdxFixbFMcccE9XV1bHPPvvEe97znnjmmWd6XZMkSSxYsCCmT58eFRUVccopp8SqVatSHRoAAAAAAAAAAAAABpsBFXOXLVsWF154YTz88MOxdOnS6OzsjDlz5kShUOi5ZvHixXHDDTfEN77xjXj00Uejrq4uTj311Ghubk59eAAAAAAAAAAAAAAYLEYN5OJf/OIXvT6+7bbbYp999okVK1bESSedFEmSxJIlS+KKK66Is846KyIibr/99pg6dWrceeedcf7556c3OQAAAAAAAAAAAAAMIgO6Y+6rNTY2RkREbW1tRESsXbs2Nm7cGHPmzOm5pry8PE4++eRYvnz5niwFAAAAAAAAAAAAAIPagO6Y+0pJksRnP/vZOPHEE+Owww6LiIiNGzdGRMTUqVN7XTt16tR44YUXXvN12traoq2trefjpqam3R0JgGFKVgDQH1kBQF/kBAD9kRUA9EdWANAXOQHAK+32HXMvuuii+N3vfhc/+MEPdnmsrKys18dJkuxybqdFixZFTU1NzzFjxozdHQmAYUpWANAfWQFAX+QEAP2RFQD0R1YA0Bc5AcAr7VYx99Of/nTce++98Zvf/Cb222+/nvN1dXUR8d93zt1p06ZNu9xFd6fLLrssGhsbe44XX3xxd0YCYBiTFQD0R1YA0Bc5AUB/ZAUA/ZEVAPRFTgDwSqMGcnGSJPHpT386fvjDH8YDDzwQM2fO7PX4zJkzo66uLpYuXRqzZ8+OiIj29vZYtmxZXHfdda/5muXl5VFeXr6b4wNpaW9vi4aGhqzHiKqqqqitrc16DAYZWQFAf2QFAH2REwD0R1YA0B9ZAUBf5AQArzSgYu6FF14Yd955Z/z4xz+O6urqnjvj1tTUREVFRZSVlcW8efNi4cKFMWvWrJg1a1YsXLgwKisr4yMf+UhR3gCw51oLTbFmzeq4ctENUTG2ItNZasdXxpLFC5VzAQAAAAAAAAAAGHIGVMy96aabIiLilFNO6XX+tttui49//OMRETF//vzYsWNHXHDBBbFt27Y49thj4/7774/q6upUBgbS19HWGp0xMmpnz40p0+szm6OwbXNsffy+yOfzirkAAAAAAAAAAAAMOQMq5iZJ0u81ZWVlsWDBgliwYMHuzgRkZNyESVEzZVqmM2zNdHUAAAAAAAAAAADYfSOyHgAAAAAAAAAAAAAAhgPFXAAAAAAAAAAAAABIwaisBwAAGIySpDt2tLREcz6f2Qz5QiE6OtozWx8AAAAAAAAAgIFRzAUAeJW2lubI5/Px5KpnYtP6FzKbY1Nze6x5Zkds37496uvrM5sDAAAAAAAAAIA3RjEXAOBVOtvbIomyKK+ti6rpUzKbo/HlbdHR+WwUCoXMZgAAAAAAAAAA4I1TzAWgZOVyucjn81mPEVVVVVFbW5v1GLyGkWPKY8zYyszWHzWmJbO1AQAAAAAAAAAYOMVcAEpSLpeLq+bPi/bmLVmPEmOqJ8eXFi9RzgUAAAAAAAAAgCFOMReAkpTP56O9eUt84pjqmFY7LrM5NuQK8d1Ht0Q+n1fMBQAAAAAAAACAIU4xF4CSNq12XNRPqc54iuaM1wcAAAAAAAAAANKgmAsZ6+pOoqUxF42bN2Q2Q2H7luju6sxsfWBwyOVykc/nM52hoaEhCvmmaM5tynSOlqZtkSRJpjMAAAAAAAAAADD0KOZChvKtHdHR1hpbHrwjdjz5s8zmaC00x4im9dFWcNdOKFW5XC6umj8v2pu3ZDrH9qamWLvid9G2dV2UV4zLbI7G3NYo62yL7g4/tAAAAAAAAAAAwBunmAsZam3vinFjIs4+ojL2nzElszleWt8V/9jQFR3trZnNAGQrn89He/OW+MQx1TGtNrtC7H+sao/VT3bGR/9sbOw3Pbuvi797tiXufDmJ7kQxFwAAAAAAAACAN04xFwaB2uoxUZdhEa6lqTyztYHBo6OjParLIyZWlGU2w/gxERFJ1FaVZ/p1cV3lmMzWBgAAAAAAAABg6FLMBQBi+/btseaZ5+LRCS/FC9XZlVJXv9QUXV1dkSTdmc0AAAAAAAAAAAC7SzEXAIhCoRAdnV1RPnF6VE2dmNkcoxtfiCTWR7diLgAAAAAAAAAAQ9CwLubmcrnI5/NZjxFVVVVRW1ub9RgwJLS3t0VDQ0PWY/j/lpI1akx5jBlbmdn6I0eNzmxtAAAAAAAAAADYU8O2mJvL5eKq+fOivXlL1qPEmOrJ8aXFS5T8oB+thaZYs2Z1XLnohqgYW5HpLLXjK2PJ4oX+vwUAAAAAAAAAAOANG7bF3Hw+H+3NW+ITx1THtNpxmc2xIVeI7z66JfL5vIIf9KOjrTU6Y2TUzp4bU6bXZzZHYdvm2Pr4ff6/BQAAAAAAAAAAYECGbTF3p2m146J+SnWmM7S2bY2GhoZMZ9i4cWMkSXemM8AbNW7CpKiZMi3TGbZmujoAAAAAAAAAAABD0bAv5mZte74tVj/9dNx07eVRMbYiszm25LZFa74xujo7MpsBAAAAAAAAAAAAYDhTzC2yQltHlEdHfPzoqjho3ymZzfEfq9pj4aokuru6MpsBAAAAAAAAAAAAYDhTzN1L6iZURv2U6szWf3b82MzWBgB2X5J0x8aNG2PdunVZjxJVVVVRW1ub9RgAAAAAAAAAAIOWYi4AwCDV1dkR+Xw+rv/md2Ji7Q+zHidqx1fGksULlXMBAAAAAAAAAF6HYi4AwCDV3dUVSZTFhMNOivpDZmc6S2Hb5tj6+H2Rz+cVcwEAAAAAAAAAXodiLhAREV3dSbQ05qJx84bMZihs3xLdXZ2ZrQ8wWFWMnxg1U6ZlPUZszXoAAAAAGGJyuVzk8/msx4iqqio/aAsAAACwlyjmApFv7YiOttbY8uAdsePJn2U2R2uhOUY0rY+2QnNmMwAAAAAApCGXy8W8+ZdHrqkl61GidnxlLFm8UDkXAAAAYC9QzAWitb0rxo2JOPuIyth/xpTM5nhpfVf8Y0NXdLS3ZjYDAAAAAEAa8vl85JpaYtKRc2PcxOz+3rWwbXNsffy+yOfzirkAAAAAe4Fi7l7Q3d0dO1paojnDX1fV1toaEUlm6zM01FaPibracZmt39JUntnaAINVV3cSLY25aNy8IdM5mnObopBvioaGhkzniPDrNwEAABhaxk2cEjVTpmU6w9ZMVwcAAAAoLYq5RdbW3h6FQks8uerp2LT+hczmWP1SU3R1dUWSdGc2AwAwMPnWjuhoa40tD94RO578Waaz7CgUYuMLz8fX/35rVFdXZzrLmOrJ8aXFS5RzAQAAAAAAAIBBRzG3yDo7O6M7SWJMzT5RtW9dZnOMbnwhklgf3Yq5ADBktLZ3xbgxEWcfURn7z8juV15GRKxe2xl3NnTGOUeMjUMPyu57mg25Qnz30S1+/SYAAAAAAAAAMCgp5u4lI0ePiTFjK7Nbf9TozNYGAPZMbfWYqKsdl+kM6zeVR0TEPjVjo35KtnfMjWjOeH0AAAAAAAAAgNemmAvwGtrb26KhoSHrMaKqqsodIQEAAAAAAAAAAIYIxVyAV2ktNMWaNavjykU3RMXYikxnqR1fGUsWL1TOBQAAAAAAAAAAGAIUcwFepaOtNTpjZNTOnhtTptdnNkdh2+bY+vh9kc/nFXMBAAAAAAAAAACGAMVcgNcxbsKkqJkyLdMZtma6OntLa1t7NDQ0ZDrDxo0bI0m6M50BAAAAAAAAAACGOsVcAMjQ9nxbrH766bjp2sujYmxFZnNsyW2L1nxjdHV2ZDYDAAAAAAAAAAAMdYq5AJChQltHlEdHfPzoqjho3ymZzfEfq9pj4aokuru6MpsBAAAAAAAAAACGOsVcYFDp6k6ipTEXjZs3ZDZDYfuW6O7qzGx9SlPdhMqon1Kd2frPjh+b2doADB25XC7y+XzWY0RVVVXU1tZmPQYAAAAAAADALhRzgUEj39oRHW2tseXBO2LHkz/LbI7WQnOMaFofbYXmzGYAABhscrlczJt/eeSaWrIeJWrHV8aSxQuVcwEAAAAAAIBBRzEXGDRa27ti3JiIs4+ojP1nTMlsjpfWd8U/NnRFR3trZjMAAAw2+Xw+ck0tMenIuTFuYnbfqxW2bY6tj98X+XxeMRcAAAAAAAAYdBRzgUGntnpM1NWOy2z9lqbyzNamNHV3d8eOlpZozvBXg7e1tkZEktn6DBVJ7NjRmunnar5QiI6O9szWp/TkcrnIZ/g5v1NVVdWgKaGOmzglaqZMy3SGrZmuDvDf5AQAQ0V7e1s0NDRkPYbMAgAAAEqCYi4AZKitvT0KhZZ4ctXTsWn9C5nNsfqlpujq6ook6c5sBga37q7O6OrqijXP/SGat72c2RybmttjzTM7Yvv27VFfX5/ZHJSGXC4XV82fF+3NW7IeJcZUT44vLV7iH7ABBpFcLhfz5l8euaaWrEeJ2vGVsWTxQjkBwGtqLTTFmjWr48pFN0TF2IpMZ5FZAAAAQClQzAWADHV2dkZ3ksSYmn2iat+6zOYY3fhCJLE+uhVzeR3dXV2RRMSYmilRte9+mc3R+PK26Oh8NgqFQmYzUDry+Xy0N2+JTxxTHdMyvJv/hlwhvvvolsjn8/7xGmAQyefzkWtqiUlHzo1xE6dkNkdh2+bY+vh9cgKA19XR1hqdMTJqZ8+NKdOz+yFXmQUAAACUCsVcABgERo4eE2PGVma3/qjRma3N0DJyTLafq6PGZH9HOkrPtNpxUT+lOuMpmjNe/7+0t7dFc25TpjM05zZFe3tbpjMAvNK4iVOiZsq0TGfYmunqAAwV4yZMklkAvK5cLhf5fD7rMaKqqsoPcAAAMOQp5gIAANCv7du3R8Oax2LHprUxakx5ZnN0trdFbuvW2L59e9TXZ3e3LwAAAIDhIpfLxbz5l0euKfsbI9SOr4wlixcq5wIAMKQp5gIAANCvQqEQFdEWZx85LuomT8xsjo1btsUtS9dHoVDIbAYAAACA4SSfz0euqSUmHTk3xk2cktkchW2bY+vj90U+n1fMBQBgSFPMBQBgSOns6o6NGzfGunXrMp3Dr1SjVE2qHht1teMyW7+jbUckia8DAAAAAGkbN3FK1EyZlukMWzNdHQAA0qGYCwDAkNG8oz2amxrjrm8tjl9MyO6OnRERY6onx5cWL1HKg72sq7Mj8vl8XP/N78TE2h9mOotfrQgAAAAAAAC8mmIuAABDRmt7V1SOSuLjR1XFoQfVZTbHhlwhvvvoFr9SDTLQ3dUVSZTFhMNOivpDZmc2h1+tCAAAAAAAALwWxVwAAIaYJKrHREysKMtsgnx5REdHe2brU3o6OtqjoaEh0xk2btwYSdKd6QyvVDF+ol+t+P/kcrnI5/NZjxEdHR0xevTorMeIqqoqZWlKTnt7W+Y5sZOvBQC9tbe3RXNuU6YzFLZvie6uzkxnAAAAACglirkAAAwZ3V2d0dXVFWue+0M0b3s5szk2NbfHmmd2xPbt26O+vj6zOSgNrW1tseaZ5+LKa66Pispxmc2xbevmyBdaoru7K7MZ2FUul4t58y+PXFNLpnO0t7fFluefiCPeXB+jR4/JdJYx1ZPjS4uXKORRMloLTbFmzeq4ctENUTG2ItNZfC0A6G379u3RsOax2LFpbYwaU57ZHK2F5hjRtD7aCs2ZzQAAAABQShRzAQAYMv7rV9hHjKmZElX77pfZHI0vb4uOzmejUChkNgOlo7OzMzo6u2LCYSfF1JmHZDZH15PLY/Oa5dGdJJnNwK7y+Xzkmlpi0pFzY9zEKZnN8fLaNZFb8x9x9uyKOGjf7ObYkCvEdx/dEvl8XhmPktHR1hqdMTJqZ8+NKdOz/YEhXwsAeisUClERbXH2keOibvLEzOZ4aX1X/GNDV3S0t2Y2AwAAAEApKVox98Ybb4yvfOUrsWHDhjj00ENjyZIl8ed//ufFWg4AgBIycsyYGDO2MrP1R43J9s6UlKbKmklRM2VaZutXVE/IbG36N27ilEw/P3b+eua6CZVRP6U6szn+3zQZrw/ZGDch25yI8LUA4PVMqh4bdbXZ/faLlqbs7tYLAAAAUIqKUsy9++67Y968eXHjjTfGCSecEN/+9rfjL//yL2P16tV79Vf9dnS0R75QiOaKsr225qu1tbZGhDtKAbunkG+KFStWRENDQ6Zz7LPPPnHggQdmOkMxyAlgTyRJd2zcuDHWrVuX6RxVVVXuBAcZaW9vy/z7tIaGhmjvaM90BoBXSpLu2NHSEs35fGYz5AuFyBcKmX+Njojo6OiI0aNHZz2G7xmBQWMwfA8d4esiMLjkcrnIZ/j9c4S/XwAAgLQVpZh7ww03xCc/+cn41Kc+FRERS5Ysifvuuy9uuummWLRoUTGW3MX27dtjzTPPxaMTXooXqsfslTVfy+qXmqKrqyuSpDuzGYChqXFzQzzz2LL4++f+M0aMGJnpLN2jK+Nffvzvw6qcKyeAPdHV2RH5fD6u/+Z3YmLtDzOdpXZ8ZSxZvNA/KMJe1lpoijVrVseVi26IirEVmc2xo6UQz639U9T/z7bMZgDYqa2lOfL5fDy56pnYtP6FzOb445Yd8cijG+Lrfz8/qquzu3Nva1t7PP382jj0zTNj9Ojs/twZETGmenJ8afES3zMCmWotNEXDmsfipmsvz/R76AhfF4HBI5fLxbz5l0euKdvf0OXvFwAAIF2pF3Pb29tjxYoVcemll/Y6P2fOnFi+fHnay72uQqEQHZ1dUT5xelRNnbjX1n210Y0vRBLro1vhChigHc2NUTWqOz5+Un1M3ye7vyDetLUpvrvshdi0adOwKubKCWBPdHd1RRJlMeGwk6L+kNmZzVHYtjm2Pn5f5PN5/5gIe1lHW2t0xsionT03pkzfe78Z5tVeXrsmOp77Q3R2dmY2A8BOne1tkURZlNfWRdX0KZnNkbRsiLEjG+KcI8bGoQfVZTbHE3/YFF95Oh9nz66Ig/bNbj825Arx3Ue3+J4RyFxHW2tURFt8/OgqXxcB/p98Ph+5ppaYdOTcGDcxu6+N/n4BAADSlXoxd8uWLdHV1RVTp07tdX7q1KmxcePGXa5va2uLtrb//sm7xsbGiIhoamraozkKhUJ0dXVHw9ZCtCfZ3Wny5e07oqs7iRdfbozuEbu+/71l/ZYmc5jDHG/Qxpe3R0dnd2z649Mxsqwsszk2/enZ6Orqjtb2rmhpy+4vQna0d0ZXV3cUCoU9/tpcXV0dZbuxp8XICjnR22D5/88cg3OOwTTLYJljZ1Y0b3k5tmZ4N7gdTbnIbd0Uv/3tb3f5/ntvmzZtWsyYMWOPX2cwZUVzc3MUduyIJ/+wPjZuqdzt19lTL768LdraO2LjH1ZFe+uOzObY+b3Jug3boj3Df6MZLN+r5Rr+GO2tO6JxU0OMiCSzOZq2bIz21h2x/tnfxY7tWzKbI9fwx2jv7Ig1f9oU+R0dmc3xcmNLbMk1Doqvi/Q2XHNiR0shXnr6iUy/H9j59SjrrwMR/50VDVtbomvEnv35cU9s3L4jurq7I9dYiI1btmc2x5bGfLR1dMS27fnYWD46szk2+drIEDEcs2Ln3z+9sCGX6d/vDarvoTt9XQR233DMiubm5ujoaI/21pYYvaOw26+zpzraWqO7qyu2v/xSjMouKqKwfUvsaCnEs88+G83NzdkNAgxJ48ePj5qamj1+ncGUEztfZ09fA4D/slezIklZQ0NDEhHJ8uXLe52/+uqrk7e85S27XH/VVVclEeFwOByOEjgaGxt3K1tkhcPhcJTOISscDofD0dchJxwOh8PR3yErHA6Hw9HfISscDofD0dchJxwOh8PR3/FGsqIsSZIkUtTe3h6VlZXxL//yL/G///f/7jl/ySWXxMqVK2PZsmW9rn/1T4x0d3dHLpeLSZMm7dZPoDQ1NcWMGTPixRdfjPHjx+/+G6GHPS0O+1oc9jV9ae5pWj9duCdZ4XOkOOxrcdjX9NnT4pAVvBH2NX32tDjsa/qGW05E+DwpBntaHPY1ffa0OIZbVvg8KQ77mj57Whz2tThkBf2xp8VhX4vDvqZPTvBG2NfisK/ps6fFsbezYtQerfAaxowZE0cddVQsXbq0VzF36dKlceaZZ+5yfXl5eZSXl/c6N2HChD2eY/z48T4xU2ZPi8O+Fod9TV+We1qMrPA5Uhz2tTjsa/rsaXHICt4I+5o+e1oc9jV9wy0nInyeFIM9LQ77mj57WhzDLSt8nhSHfU2fPS0O+1ocsoL+2NPisK/FYV/TJyd4I+xrcdjX9NnT4thb+5p6MTci4rOf/Wycc845cfTRR8dxxx0XN998c6xbty7+5m/+phjLAQAAAAAAAAAAAEDmilLM/eAHPxhbt26NL3/5y7Fhw4Y47LDD4uc//3nsv//+xVgOAAAAAAAAAAAAADJXlGJuRMQFF1wQF1xwQbFe/nWVl5fHVVddtcvt4dl99rQ47Gtx2Nf0Dbc9HW7vZ7Cwr8VhX9NnT4tjuO3rcHs/g4V9TZ89LQ77mr7huKfD8T1lzZ4Wh31Nnz0tjuG2r8Pt/QwW9jV99rQ47GtxDLd9HW7vZzCwp8VhX4vDvqZvuO3pcHs/g4V9LQ77mj57Whx7e1/LkiRJ9spKAAAAAAAAAAAAADCMjch6AAAAAAAAAAAAAAAYDhRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkIJhVcy98cYbY+bMmTF27Ng46qij4re//W3WIw0ZixYtimOOOSaqq6tjn332ife85z3xzDPP9LomSZJYsGBBTJ8+PSoqKuKUU06JVatWZTTx0LRo0aIoKyuLefPm9Zyzr7unoaEhzj777Jg0aVJUVlbGEUccEStWrOh53L4OTGdnZ1x55ZUxc+bMqKioiAMOOCC+/OUvR3d3d881w2VPZcXukxXFJyfSIyfSVypZISf2jKwoPlmRHlmRPllBf+TE3iEr0iMr0lUqOREhK/aErCg+OZEeOZG+UskKObFnZEXxyYr0yIp0lUpORMiKPSEn9g5ZkQ45kb5BlRXJMHHXXXclo0ePTm655ZZk9erVySWXXJKMGzcueeGFF7IebUiYO3ducttttyW///3vk5UrVyann356Ul9fn+Tz+Z5rrr322qS6ujr5t3/7t+Spp55KPvjBDybTpk1LmpqaMpx86HjkkUeSN73pTcnhhx+eXHLJJT3n7evA5XK5ZP/9908+/vGPJ//5n/+ZrF27NvnlL3+ZPP/88z3X2NeBufrqq5NJkyYlP/3pT5O1a9cm//Iv/5JUVVUlS5Ys6blmOOyprNgzsqK45ER65ERxlEJWyIk9JyuKS1akR1YUh6ygP3Ki+GRFemRF+kohJ5JEVuwpWVFcciI9cqI4SiEr5MSekxXFJSvSIyvSVwo5kSSyYk/JieKTFemQE8UxmLJi2BRz3/a2tyV/8zd/0+vcwQcfnFx66aUZTTS0bdq0KYmIZNmyZUmSJEl3d3dSV1eXXHvttT3XtLa2JjU1Ncm3vvWtrMYcMpqbm5NZs2YlS5cuTU4++eSeYLKvu+cLX/hCcuKJJ77u4/Z14E4//fTkE5/4RK9zZ511VnL22WcnSTJ89lRWpEtWpEdOpEtOFEcpZIWcSJ+sSI+sSJesKA5ZwUDJiXTJinTJivSVQk4kiaxIm6xIj5xIl5wojlLICjmRPlmRHlmRLlmRvlLIiSSRFWmTE+mSFemRE8UxmLJiRPr34N372tvbY8WKFTFnzpxe5+fMmRPLly/PaKqhrbGxMSIiamtrIyJi7dq1sXHjxl57XF5eHieffLI9fgMuvPDCOP300+Od73xnr/P2dffce++9cfTRR8f73//+2GeffWL27Nlxyy239DxuXwfuxBNPjF/96lfx7LPPRkTEk08+GQ8++GCcdtppETE89lRWpE9WpEdOpEtOFMdwzwo5URyyIj2yIl2yojhkBQMlJ9IlK9IlK9I33HMiQlYUg6xIj5xIl5wojuGeFXKiOGRFemRFumRF+oZ7TkTIimKQE+mSFemRE8UxmLJiVKqvlpEtW7ZEV1dXTJ06tdf5qVOnxsaNGzOaauhKkiQ++9nPxoknnhiHHXZYRETPPr7WHr/wwgt7fcah5K677ooVK1bEY489tstj9nX3/PGPf4ybbropPvvZz8bll18ejzzySFx88cVRXl4e5557rn3dDV/4wheisbExDj744Bg5cmR0dXXFNddcEx/+8IcjYnh8rsqKdMmK9MiJ9MmJ4hjuWSEn0icr0iMr0icrikNWMBByIl2yIn2yIn3DPSciZEXaZEV65ET65ERxDPeskBPpkxXpkRXpkxXpG+45ESEr0iYn0iUr0iUnimMwZcWwKObuVFZW1uvjJEl2OUf/Lrroovjd734XDz744C6P2eOBefHFF+OSSy6J+++/P8aOHfu619nXgenu7o6jjz46Fi5cGBERs2fPjlWrVsVNN90U5557bs919vWNu/vuu+P73/9+3HnnnXHooYfGypUrY968eTF9+vT42Mc+1nPdcNjT4fAeBgNZkQ45URxyojhKJSuG+vyDiaxIh6woDllRHLKCgZAT6ZEVxSEr0lcqORExPN7DYCAr0iEnikNOFEepZMVQn38wkRXpkBXFISvSVyo5ETE83sNgICfSIyvSJyeKYzBlxYhUXy0jkydPjpEjR+7y0yGbNm3apd1M3z796U/HvffeG7/5zW9iv/326zlfV1cXEWGPB2jFihWxadOmOOqoo2LUqFExatSoWLZsWXzta1+LUaNG9eydfR2YadOmxVvf+tZe5w455JBYt25dRPh83R2f//zn49JLL40PfehD8T/+x/+Ic845Jz7zmc/EokWLImJ47KmsSI+sSI+cKA45URzDPSvkRLpkRXpkRXHIiuKQFbxRciJdsqI4ZEX6hntORMiKNMmK9MiJ4pATxTHcs0JOpEtWpEdWFIesSN9wz4kIWZEmOZEuWZE+OVEcgykrhkUxd8yYMXHUUUfF0qVLe51funRpHH/88RlNNbQkSRIXXXRR3HPPPfHrX/86Zs6c2evxmTNnRl1dXa89bm9vj2XLltnjPvzFX/xFPPXUU7Fy5cqe4+ijj46PfvSjsXLlyjjggAPs62444YQT4plnnul17tlnn439998/Iny+7o6WlpYYMaJ3JIwcOTK6u7sjYnjsqazYc7IifXKiOOREcQz3rJAT6ZAV6ZMVxSErikNW0B85URyyojhkRfqGe05EyIo0yIr0yYnikBPFMdyzQk6kQ1akT1YUh6xI33DPiQhZkQY5URyyIn1yojgGVVYkw8Rdd92VjB49Orn11luT1atXJ/PmzUvGjRuX/OlPf8p6tCHhb//2b5OamprkgQceSDZs2NBztLS09Fxz7bXXJjU1Nck999yTPPXUU8mHP/zhZNq0aUlTU1OGkw89J598cnLJJZf0fGxfB+6RRx5JRo0alVxzzTXJc889l9xxxx1JZWVl8v3vf7/nGvs6MB/72MeSfffdN/npT3+arF27NrnnnnuSyZMnJ/Pnz++5ZjjsqazYM7Ji75ATe05OFEcpZIWc2HOyYu+QFXtOVhSHrKA/cmLvkRV7TlakrxRyIklkxZ6SFXuHnNhzcqI4SiEr5MSekxV7h6zYc7IifaWQE0kiK/aUnNh7ZMWekRPFMZiyYtgUc5MkSb75zW8m+++/fzJmzJjkyCOPTJYtW5b1SENGRLzmcdttt/Vc093dnVx11VVJXV1dUl5enpx00knJU089ld3QQ9Srg8m+7p6f/OQnyWGHHZaUl5cnBx98cHLzzTf3ety+DkxTU1NyySWXJPX19cnYsWOTAw44ILniiiuStra2nmuGy57Kit0nK/YOOZEOOZG+UskKObFnZMXeISvSISvSJyvoj5zYe2RFOmRFukolJ5JEVuwJWbF3yIl0yIn0lUpWyIk9Iyv2DlmRDlmRrlLJiSSRFXtCTuw9smLPyYn0DaasKEuSJEn3HrwAAAAAAAAAAAAAUHpGZD0AAAAAAAAAAAAAAAwHirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirlQJMuXL4+RI0fGu971rqxHAWAQkhMA9EdWANAXOQFAf2QFAP2RFQD0RU7A7itLkiTJeggYjj71qU9FVVVVfOc734nVq1dHfX191iMBMIjICQD6IysA6IucAKA/sgKA/sgKAPoiJ2D3uWMuFEGhUIh//ud/jr/927+NM844I773ve/1evzee++NWbNmRUVFRbzjHe+I22+/PcrKymL79u091yxfvjxOOumkqKioiBkzZsTFF18chUJh774RAIpCTgDQH1kBQF/kBAD9kRUA9EdWANAXOQF7RjEXiuDuu++Ot7zlLfGWt7wlzj777Ljtttti582p//SnP8X73ve+eM973hMrV66M888/P6644opez3/qqadi7ty5cdZZZ8Xvfve7uPvuu+PBBx+Miy66KIu3A0DK5AQA/ZEVAPRFTgDQH1kBQH9kBQB9kROwZ8qSnf/HAKk54YQT4gMf+EBccskl0dnZGdOmTYsf/OAH8c53vjMuvfTS+NnPfhZPPfVUz/VXXnllXHPNNbFt27aYMGFCnHvuuVFRURHf/va3e6558MEH4+STT45CoRBjx47N4m0BkBI5AUB/ZAUAfZETAPRHVgDQH1kBQF/kBOwZd8yFlD3zzDPxyCOPxIc+9KGIiBg1alR88IMfjO9+97s9jx9zzDG9nvO2t72t18crVqyI733ve1FVVdVzzJ07N7q7u2Pt2rV7540AUBRyAoD+yAoA+iInAOiPrACgP7ICgL7ICdhzo7IeAIabW2+9NTo7O2PfffftOZckSYwePTq2bdsWSZJEWVlZr+e8+sbV3d3dcf7558fFF1+8y+vX19cXZ3AA9go5AUB/ZAUAfZETAPRHVgDQH1kBQF/kBOw5xVxIUWdnZ/zTP/1T/MM//EPMmTOn12Pvfe9744477oiDDz44fv7zn/d67LHHHuv18ZFHHhmrVq2Kgw46qOgzA7D3yAkA+iMrAOiLnACgP7ICgP7ICgD6IicgHWXJq+vqwG770Y9+FB/84Adj06ZNUVNT0+uxK664In7+85/HPffcE295y1viM5/5THzyk5+MlStXxuc+97l46aWXYvv27VFTUxO/+93v4u1vf3v81V/9VZx33nkxbty4WLNmTSxdujS+/vWvZ/TuANhTcgKA/sgKAPoiJwDoj6wAoD+yAoC+yAlIx4isB4Dh5NZbb413vvOduwRTxH/91MjKlStj27Zt8a//+q9xzz33xOGHHx433XRTXHHFFRERUV5eHhERhx9+eCxbtiyee+65+PM///OYPXt2/N3f/V1MmzZtr74fANIlJwDoj6wAoC9yAoD+yAoA+iMrAOiLnIB0uGMuDALXXHNNfOtb34oXX3wx61EAGITkBAD9kRUA9EVOANAfWQFAf2QFAH2RE9DbqKwHgFJ04403xjHHHBOTJk2K//iP/4ivfOUrcdFFF2U9FgCDhJwAoD+yAoC+yAkA+iMrAOiPrACgL3IC+qaYCxl47rnn4uqrr45cLhf19fXxuc99Li677LKsxwJgkJATAPRHVgDQFzkBQH9kBQD9kRUA9EVOQN/KkiRJsh4CAAAAAAAAAAAAAIa6EVkPAAAAAAAAAAAAAADDgWIuAAAAAAAAAAAAAKRAMRcAAAAAAAAAAAAAUqCYCwAAAAAAAAAAAAApUMwFAAAAAAAAAAAAgBQo5gIAAAAAAAAAAABAChRzAQAAAAAAAAAAACAFirkAAAAAAAAAAAAAkALFXAAAAAAAAAAAAABIwf8PDwLj14h1oyAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "g = sns.FacetGrid(train_data, col=\"SibSp\", hue=\"Survived\", height=4)\n",
+ "\n",
+ "combined_age = train_data['Age'].dropna()\n",
+ "_, bin_edges = np.histogram(combined_age, bins=10)\n",
+ "\n",
+ "g.map(plt.hist, \"Age\", bins=bin_edges, alpha=0.6, edgecolor=\"black\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "0c604f49",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACuUAAAGGCAYAAABmcR7SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPUElEQVR4nO3de5RddX03/vdAMkMuQ2BCyCQ2wVAjUBC5Fh+gAksItVptaYuKoFbrwiKViBrFaA1WEkktTQsFC97oozzy9Cm1VG0lrRql6eISDGKIgDXcQoaQTJKZM5PMdf/+8Me0EWaAnDPZZzKv11p7rZx99jn7c74M5z2TvGefhqIoigAAAAAAAAAAAAAAe2y/sgcAAAAAAAAAAAAAgLFOKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRfqzKOPPpqGhoasXbu27FEAqENyAoDhyAgAhiMjABiJnABgODICgOHICBieUi6M4F3velcaGhrS0NCQiRMn5vDDD8+HP/zhdHV1lT1azRVFkSVLlmT27NmZNGlSzjzzzKxbt67ssQDq2njKidtuuy3nnntuDjnkED9cAbwI4yUj+vr68tGPfjSvetWrMmXKlMyePTvveMc78tRTT5U9GkDdGi8ZkSRLlizJkUcemSlTpuTggw/O2WefnbvuuqvssQDq2njKif/p4osvTkNDQ1asWFH2KAB1azxlxP98rc9ur3nNa8oeC6BujaeMSJL169fnTW96U6ZNm5bm5ua85jWvyeOPP172WDBEKRdewG/+5m9m06ZN+fnPf57PfOYzuf766/PhD394j56rKIr09/fXeMLaWL58ea655ppcd911ueeee9La2ppzzjknnZ2dZY8GUNfGS050dXXltNNOy2c/+9myRwEYM8ZDRnR3d+e+++7LJz/5ydx333257bbb8vDDD+dNb3pT2aMB1LXxkBFJ8spXvjLXXXddHnjggdx55515+ctfngULFuSZZ54pezSAujZecuJZ3/jGN3LXXXdl9uzZZY8CUPfGU0Y8+1qf3b797W+XPRJAXRsvGfFf//VfOf3003PkkUfm+9//fu6///588pOfzAEHHFD2aDBEKRdeQFNTU1pbWzNnzpxccMEFefvb355vfOMbSZKvfvWrOemkk9Lc3JzW1tZccMEF2bx589Bjv//976ehoSHf+c53ctJJJ6WpqSk//OEPMzg4mKuvvjqveMUr0tTUlLlz5+aqq67a7bw///nPc9ZZZ2Xy5Ml59atfnf/8z/8ctddYFEVWrFiRxYsX57zzzssxxxyTm2++Od3d3bnllltG7bwA+4LxkBNJctFFF+VP//RPc/bZZ4/qeQD2JeMhI6ZNm5aVK1fm/PPPzxFHHJHXvOY1ufbaa7NmzRq/lQ4wgvGQEUlywQUX5Oyzz87hhx+eo48+Otdcc006Ojry4x//eFTPCzDWjZecSJKNGzfm0ksvzde+9rVMnDhx1M8HMNaNp4x49rU+u7W0tIz6OQHGsvGSEYsXL85v/dZvZfny5Tn++ONz+OGH5w1veEMOPfTQUT0vvBRKufASTZo0KX19fUmS3t7e/Nmf/Vnuv//+fOMb38iGDRvyrne96zmPWbRoUZYtW5b169fn2GOPzRVXXJGrr746n/zkJ/Pggw/mlltuycyZM3d7zOLFi/PhD384a9euzStf+cq87W1vG/G3UF7/+tdn6tSpI27D2bBhQ9ra2rJgwYKhfU1NTTnjjDOyevXql7hCAOPbvpgTANTGeMmIHTt2pKGhIQcddNBLehzAeDYeMqK3tzc33nhjpk2blle/+tUv+nEA7Ls5MTg4mIsuuigf+chHcvTRR7/0hQFgn82I5BcFsUMPPTSvfOUr8973vne38hgAL2xfzIjBwcF861vfyitf+cqce+65OfTQQ3PKKacMlY+hbhTAsN75zncWb37zm4du33XXXcX06dOL888//3mPv/vuu4skRWdnZ1EURfG9732vSFJ84xvfGDqmo6OjaGpqKm666abnfY4NGzYUSYovfOELQ/vWrVtXJCnWr18/7KxPPvlk8cgjj4y4Dec//uM/iiTFxo0bd9v/3ve+t1iwYMGwjwMY78ZLTjzf+X/0ox+9qOMBxqvxmBFFURQ7d+4sTjzxxOLtb3/7i34MwHgz3jLin//5n4spU6YUDQ0NxezZs4u77777BR8DMJ6Np5xYunRpcc455xSDg4NFURTFYYcdVvzlX/7liI8BGM/GU0Z8/etfL775zW8WDzzwQHH77bcXr371q4ujjz662LVr14iPAxivxktGbNq0qUhSTJ48ubjmmmuKH/3oR8WyZcuKhoaG4vvf//6wj4O9bcJe6P3CmPbNb34zU6dOTX9/f/r6+vLmN7851157bZLkRz/6UZYsWZK1a9emvb09g4ODSZLHH388v/Zrvzb0HCeddNLQn9evX5+enp687nWvG/G8xx577NCfZ82alSTZvHlzjjzyyOc9/mUve9mevcD/oaGhYbfbRVE8Zx8AuxtPOQHASzPeMqKvry9vfetbMzg4mOuvv74mzwmwrxpPGXHWWWdl7dq12bJlS2666aacf/75ueuuu3ykIMAIxkNOrFmzJn/1V3+V++67z79DALwE4yEjkuQtb3nL0J+POeaYnHTSSTnssMPyrW99K+edd15Vzw2wrxoPGfHs3G9+85vzwQ9+MEly3HHHZfXq1fn85z+fM844Y4+fG2pJKRdewFlnnZUbbrghEydOzOzZszNx4sQkSVdXVxYsWJAFCxbkq1/9ambMmJHHH3885557bnp7e3d7jilTpgz9edKkSS/qvM+eJ/nvsuyz4fJ8Xv/61+eHP/zhiM9ZqVSed39ra2uSpK2tbSggk1+E5C9fdh6A3Y2HnABgz4ynjOjr68v555+fDRs25Lvf/W4OPPDAFzUrwHg1njJiypQpecUrXpFXvOIVec1rXpP58+fni1/8Yq644ooXNTPAeDQecuKHP/xhNm/enLlz5w7tGxgYyIc+9KGsWLEijz766IuaGWC8GQ8Z8XxmzZqVww47LI888siLfgzAeDMeMuKQQw7JhAkTdisSJ8lRRx2VO++880XNC3uDUi68gGf/4eCX/fSnP82WLVvy2c9+NnPmzEmS3HvvvS/4fPPnz8+kSZPy7//+7/mjP/qjms35hS98ITt37tyjx86bNy+tra1ZuXJljj/++CRJb29vVq1alauvvrpmMwLsi8ZDTgCwZ8ZLRjxbyH3kkUfyve99L9OnT6/ZbAD7qvGSEc+nKIr09PTU9DkB9jXjIScuuuiinH322bvtO/fcc3PRRRflD//wD2sxHsA+aTxkxPPZunVrnnjiid0uMAXA7sZDRjQ2Nubkk0/OQw89tNv+hx9+OIcddlgtxoOaUMqFPTR37tw0Njbm2muvzfve97785Cc/yZ/92Z+94OMOOOCAfPSjH82iRYvS2NiY0047Lc8880zWrVuX97znPXs8TzWXd29oaMjChQuzdOnSzJ8/P/Pnz8/SpUszefLkXHDBBXv8vADj2b6UE0nS3t6exx9/PE899VSSDP2g09raOnTFdQBenH0pI/r7+/P7v//7ue+++/LNb34zAwMDaWtrS5K0tLSksbFxj58bYDzalzKiq6srV111Vd70pjdl1qxZ2bp1a66//vo8+eST+YM/+IM9fl6A8Wxfyonp06c/5xf6Jk6cmNbW1hxxxBF7/LwA49W+lBGVSiVLlizJ7/3e72XWrFl59NFH8/GPfzyHHHJIfvd3f3ePnxdgvNqXMiJJPvKRj+Qtb3lLXvva1+ass87Kv/7rv+af//mf8/3vf7+q54VaUsqFPTRjxox85Stfycc//vH89V//dU444YR87nOfy5ve9KYXfOwnP/nJTJgwIX/6p3+ap556KrNmzcr73ve+vTD18BYtWpSdO3fmkksuybZt23LKKafkjjvuSHNzc6lzAYxV+1pO3H777btdpeStb31rkuRTn/pUlixZUtJUAGPTvpQRTz75ZG6//fYkyXHHHbfbfd/73vdy5pln7v2hAMawfSkj9t9///z0pz/NzTffnC1btmT69Ok5+eST88Mf/jBHH310aXMBjGX7Uk4AUFv7Ukbsv//+eeCBB/J3f/d32b59e2bNmpWzzjort956q3+7BtgD+1JGJMnv/u7v5vOf/3yWLVuWD3zgAzniiCPyD//wDzn99NNLnQv+p4aiKIqyhwAAAAAAAAAAAACAsWy/sgcAAAAAAAAAAAAAgLFOKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKY7KUWxRFOjo6UhRF2aMAUIfkBADDkREADEdGADASOQHAcGQEACOREwDjz5gs5XZ2dmbatGnp7OwsexQA6pCcAGA4MgKA4cgIAEYiJwAYjowAYCRyAmD8GZOlXAAAAAAAAAAAAACoJ0q5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKo0oewBqB/t7e2pVCplj5GpU6empaWl7DEAAAAAAAAAAAAAXjSlXJL8opC7cNHH097RXfYoaTlwclYsX6qYCwAAAAAAAAAAAIwZSrkkSSqVSto7ujP9hHMz5eAZpc3Rte2ZbL3vO6lUKkq5AAAAAAAAAAAAwJihlMtuphw8I9NmzCp1hq2lnh0AAAAAAAAAAADgpduv7AEAAAAAAAAAAAAAYKxTygUAAAAAAAAAAACAKinlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEovuZT7gx/8IL/927+d2bNnp6GhId/4xjd2u78oiixZsiSzZ8/OpEmTcuaZZ2bdunW7HdPT05M/+ZM/ySGHHJIpU6bkTW96U5588smqXggAAAAAAAAAAAAAlOUll3K7urry6le/Otddd93z3r98+fJcc801ue6663LPPfektbU155xzTjo7O4eOWbhwYf7xH/8xX//613PnnXemUqnkjW98YwYGBvb8lQAAAAAAAAAAAABASSa81Ae8/vWvz+tf//rnva8oiqxYsSKLFy/OeeedlyS5+eabM3PmzNxyyy25+OKLs2PHjnzxi1/M//7f/ztnn312kuSrX/1q5syZk3/7t3/LueeeW8XLAQAAAAAAAAAAAIC97yWXckeyYcOGtLW1ZcGCBUP7mpqacsYZZ2T16tW5+OKLs2bNmvT19e12zOzZs3PMMcdk9erVz1vK7enpSU9Pz9Dtjo6OWo4NwBgnJwAYjowAYDgyAoCRyAkAhiMjABiJnABgv1o+WVtbW5Jk5syZu+2fOXPm0H1tbW1pbGzMwQcfPOwxv2zZsmWZNm3a0DZnzpxajg3AGCcnABiOjABgODICgJHICQCGIyMAGImcAKCmpdxnNTQ07Ha7KIrn7PtlIx1zxRVXZMeOHUPbE088UbNZARj75AQAw5ERAAxHRgAwEjkBwHBkBAAjkRMATKjlk7W2tib5xdVwZ82aNbR/8+bNQ1fPbW1tTW9vb7Zt27bb1XI3b96cU0899Xmft6mpKU1NTbUcFYB9iJwAYDgyAoDhyAgARiInABiOjABgJHICgJpeKXfevHlpbW3NypUrh/b19vZm1apVQ4XbE088MRMnTtztmE2bNuUnP/nJsKVcAAAAAAAAAAAAAKhnL/lKuZVKJT/72c+Gbm/YsCFr165NS0tL5s6dm4ULF2bp0qWZP39+5s+fn6VLl2by5Mm54IILkiTTpk3Le97znnzoQx/K9OnT09LSkg9/+MN51atelbPPPrt2rwwAAAAAAAAAAAAA9pKXXMq99957c9ZZZw3dvvzyy5Mk73znO/OVr3wlixYtys6dO3PJJZdk27ZtOeWUU3LHHXekubl56DF/+Zd/mQkTJuT888/Pzp0787rXvS5f+cpXsv/++9fgJQEAAAAAAAAAAADA3vWSS7lnnnlmiqIY9v6GhoYsWbIkS5YsGfaYAw44INdee22uvfbal3p6AAAAAAAAAAAAAKg7+5U9AAAAAAAAAAAAAACMdUq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFClCWUPAL+st7cnGzduLHuMTJ06NS0tLWWPAQAAAAAAAAAAAIwBSrnUlV1dHVm//sF8Ytk1mXTApFJnaTlwclYsX6qYCwAAAAAAAAAAALwgpVzqSl/PrvRn/7Qcf25mzJ5b2hxd257J1vu+k0qlopQLAAAAAAAAAAAAvCClXOrSlIOmZ9qMWaXOsLXUswMAAAAAAAAAAABjyX5lDwAAAAAAAAAAAAAAY51SLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSjUv5fb39+cTn/hE5s2bl0mTJuXwww/Ppz/96QwODg4dUxRFlixZktmzZ2fSpEk588wzs27dulqPAgAAAAAAAAAAAAB7Rc1LuVdffXU+//nP57rrrsv69euzfPny/Pmf/3muvfbaoWOWL1+ea665Jtddd13uueeetLa25pxzzklnZ2etxwEAAAAAAAAAAACAUVfzUu5//ud/5s1vfnPe8IY35OUvf3l+//d/PwsWLMi9996b5BdXyV2xYkUWL16c8847L8ccc0xuvvnmdHd355Zbbqn1OAAAAAAAAAAAAAAw6mpeyj399NPz7//+73n44YeTJPfff3/uvPPO/NZv/VaSZMOGDWlra8uCBQuGHtPU1JQzzjgjq1evrvU4AAAAAAAAAAAAADDqJtT6CT/60Y9mx44dOfLII7P//vtnYGAgV111Vd72trclSdra2pIkM2fO3O1xM2fOzGOPPfa8z9nT05Oenp6h2x0dHbUeG4AxTE4AMBwZAcBwZAQAI5ETAAxHRgAwEjkBQM2vlHvrrbfmq1/9am655Zbcd999ufnmm/O5z30uN998827HNTQ07Ha7KIrn7HvWsmXLMm3atKFtzpw5tR4bgDFMTgAwHBkBwHBkBAAjkRMADEdGADASOQFAzUu5H/nIR/Kxj30sb33rW/OqV70qF110UT74wQ9m2bJlSZLW1tYk/33F3Gdt3rz5OVfPfdYVV1yRHTt2DG1PPPFErccGYAyTEwAMR0YAMBwZAcBI5AQAw5ERAIxETgAwodZP2N3dnf32273ru//++2dwcDBJMm/evLS2tmblypU5/vjjkyS9vb1ZtWpVrr766ud9zqampjQ1NdV6VAD2EXICgOHICACGIyMAGImcAGA4MgKAkcgJAGpeyv3t3/7tXHXVVZk7d26OPvro/OhHP8o111yTd7/73UmShoaGLFy4MEuXLs38+fMzf/78LF26NJMnT84FF1xQ63EAAAAAAAAAAAAAYNTVvJR77bXX5pOf/GQuueSSbN68ObNnz87FF1+cP/3TPx06ZtGiRdm5c2cuueSSbNu2LaecckruuOOONDc313ocAAAAAAAAAAAAABh1NS/lNjc3Z8WKFVmxYsWwxzQ0NGTJkiVZsmRJrU8PAAAAAAAAAAAAAHvdfmUPAAAAAAAAAAAAAABjnVIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCqNSil348aNufDCCzN9+vRMnjw5xx13XNasWTN0f1EUWbJkSWbPnp1JkyblzDPPzLp160ZjFAAAAAAAAAAAAAAYdTUv5W7bti2nnXZaJk6cmH/5l3/Jgw8+mL/4i7/IQQcdNHTM8uXLc8011+S6667LPffck9bW1pxzzjnp7Oys9TgAAAAAAAAAAAAAMOom1PoJr7766syZMydf/vKXh/a9/OUvH/pzURRZsWJFFi9enPPOOy9JcvPNN2fmzJm55ZZbcvHFF9d6JAAAAAAAAAAAAAAYVTW/Uu7tt9+ek046KX/wB3+QQw89NMcff3xuuummofs3bNiQtra2LFiwYGhfU1NTzjjjjKxevbrW4wAAAAAAAAAAAADAqKv5lXJ//vOf54Ybbsjll1+ej3/847n77rvzgQ98IE1NTXnHO96Rtra2JMnMmTN3e9zMmTPz2GOPPe9z9vT0pKenZ+h2R0dHrccGYAyTEwAMR0YAMBwZAcBI5AQAw5ERAIxETgBQ8yvlDg4O5oQTTsjSpUtz/PHH5+KLL8573/ve3HDDDbsd19DQsNvtoiies+9Zy5Yty7Rp04a2OXPm1HpsAMYwOQHAcGQEAMOREQCMRE4AMBwZAcBI5AQANS/lzpo1K7/2a7+2276jjjoqjz/+eJKktbU1SYaumPuszZs3P+fquc+64oorsmPHjqHtiSeeqPXYAIxhcgKA4cgIAIYjIwAYiZwAYDgyAoCRyAkAJtT6CU877bQ89NBDu+17+OGHc9hhhyVJ5s2bl9bW1qxcuTLHH398kqS3tzerVq3K1Vdf/bzP2dTUlKamplqPCsA+Qk4AMBwZAcBwZAQAI5ETAAxHRgAwEjkBQM1LuR/84Adz6qmnZunSpTn//PNz991358Ybb8yNN96YJGloaMjChQuzdOnSzJ8/P/Pnz8/SpUszefLkXHDBBbUeBwAAAAAAAAAAAABGXc1LuSeffHL+8R//MVdccUU+/elPZ968eVmxYkXe/va3Dx2zaNGi7Ny5M5dcckm2bduWU045JXfccUeam5trPQ4AAAAAAAAAAAAAjLqal3KT5I1vfGPe+MY3Dnt/Q0NDlixZkiVLlozG6QEAAAAAAAAAAABgr9qv7AEAAAAAAAAAAAAAYKwblSvlQjUGB/pT2fZMdkyeUtoMne2b09vbU9r5AQAAAAAAAAAAgLFFKZe60tNdyX4dT+Wp7/xttk6aXNoc/b09ad+6Ndu3b8/cuXNLmwMAAAAAAAAAAAAYG5RyqSv9vbvSPGEgF54wJS+beUhpc7Rt2ZabVj6Vrq6u0mYAAAAAAAAAAAAAxg6lXOpSS3NTWlumlHb+vp6dpZ0bAAAAAAAAAAAAGHv2K3sAAAAAAAAAAAAAABjrlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQJaVcAAAAAAAAAAAAAKiSUi4AAAAAAAAAAAAAVGlC2QNAvSqKwbS1teXxxx8vdY6pU6empaWl1BkAAAAAAAAAAACAkSnlwvMY6O9LpVLJ5/7mCzm45R9LnaXlwMlZsXypYi4AAAAAAAAAAADUMaVceB6DAwMp0pCDjnlt5h51fGlzdG17Jlvv+04qlYpSLgAAAAAAAAAAANQxpVwYwaQDD860GbNKnWFrqWcHAAAAAAAAAAAAXoz9yh4AAAAAAAAAAAAAAMY6pVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFAlpVwAAAAAAAAAAAAAqJJSLgAAAAAAAAAAAABUSSkXAAAAAAAAAAAAAKqklAsAAAAAAAAAAAAAVVLKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJWUcgEAAAAAAAAAAACgSqNeyl22bFkaGhqycOHCoX1FUWTJkiWZPXt2Jk2alDPPPDPr1q0b7VEAAAAAAAAAAAAAYFSMain3nnvuyY033phjjz12t/3Lly/PNddck+uuuy733HNPWltbc84556Szs3M0xwEAAAAAAAAAAACAUTFqpdxKpZK3v/3tuemmm3LwwQcP7S+KIitWrMjixYtz3nnn5ZhjjsnNN9+c7u7u3HLLLaM1DgAAAAAAAAAAAACMmgmj9cTvf//784Y3vCFnn312PvOZzwzt37BhQ9ra2rJgwYKhfU1NTTnjjDOyevXqXHzxxc95rp6envT09Azd7ujoGK2xx7Xe3p50tm8udYbujm0piqLUGYCxR04AMBwZAcBwZAQAI5ETAAxHRgAwEjkBwKiUcr/+9a9nzZo1uffee59zX1tbW5Jk5syZu+2fOXNmHnvssed9vmXLluXKK6+s/aAM2b59ezauvzc7N2/IhMam0ubY0b41Df09GezrL20GYOyREwAMR0YAMBwZAcBI5AQAw5ERAIxETgBQ81LuE088kcsuuyx33HFHDjjggGGPa2ho2O12URTP2fesK664IpdffvnQ7Y6OjsyZM6c2A5Mk6erqyqT05MITpqT1kINLm+PHD3fnlqeLDBZKucCLJycAGI6MAGA4MgKAkcgJAIYjIwAYiZwAoOal3DVr1mTz5s058cQTh/YNDAzkBz/4Qa677ro89NBDSX5xxdxZs2YNHbN58+bnXD33WU1NTWlqKu/qrePJ9OYD0toypbTzPz65sbRzA2OXnABgODICgOHICABGIicAGI6MAGAkcgKA/Wr9hK973evywAMPZO3atUPbSSedlLe//e1Zu3ZtDj/88LS2tmblypVDj+nt7c2qVaty6qmn1nocAAAAAAAAAAAAABh1Nb9SbnNzc4455pjd9k2ZMiXTp08f2r9w4cIsXbo08+fPz/z587N06dJMnjw5F1xwQa3HAQAAAAAAAAAAAIBRV/NS7ouxaNGi7Ny5M5dcckm2bduWU045JXfccUeam5vLGAcAAAAAAAAAAAAAqrJXSrnf//73d7vd0NCQJUuWZMmSJXvj9AAAAAAAAAAAAAAwqvYrewAAAAAAAAAAAAAAGOuUcgEAAAAAAAAAAACgSkq5AAAAAAAAAAAAAFClCWUPAPVqYLBI94727HhmU2kzdLZvTlelIxs3bixthmdNnTo1LS0tZY8BAAAAAAAAAAAAdUkpF55HZVdf+np2ZcudX8vO+79V2hw9O7vy6IYN+eiVRQ48cFppcyRJy4GTs2L5UsVcAAAAAAAAAAAAeB5KufA8dvUOZEpjcuFxk3PYnBmlzfHkUwP5qycG03zkqZl71PGlzdG17Zlsve87qVQqSrkAAAAAAAAAAADwPJRyYQQtzY1pbZlS2vm7O5qSJJMOPDjTZswqbY4k2Vrq2QEAAAAAAAAAAKC+7Vf2AAAAAAAAAAAAAAAw1inlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQJaVcAAAAAAAAAAAAAKiSUi4AAAAAAAAAAAAAVEkpFwAAAAAAAAAAAACqpJQLAAAAAAAAAAAAAFVSygUAAAAAAAAAAACAKinlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQJaVcAAAAAAAAAAAAAKiSUi4AAAAAAAAAAAAAVEkpFwAAAAAAAAAAAACqpJQLAAAAAAAAAAAAAFVSygUAAAAAAAAAAACAKinlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQJaVcAAAAAAAAAAAAAKiSUi4AAAAAAAAAAAAAVEkpFwAAAAAAAAAAAACqpJQLAAAAAAAAAAAAAFVSygUAAAAAAAAAAACAKinlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQJaVcAAAAAAAAAAAAAKiSUi4AAAAAAAAAAAAAVEkpFwAAAAAAAAAAAACqpJQLAAAAAAAAAAAAAFVSygUAAAAAAAAAAACAKinlAgAAAAAAAAAAAECVlHIBAAAAAAAAAAAAoEpKuQAAAAAAAAAAAABQpQllDwAA9aq9vT2VSqXsMTJ16tS0tLSUPQYAAAAAAAAAADACpVwAeB7t7e351KKF6e3cUvYoaWw+JFcuX6GYCwAAAAAAAAAAdazmpdxly5bltttuy09/+tNMmjQpp556aq6++uocccQRQ8cURZErr7wyN954Y7Zt25ZTTjklf/M3f5Ojjz661uMAwB6pVCrp7dySd5/cnFktU0qbY1N7V750z5ZUKhWlXAAAAAAAAAAAqGM1L+WuWrUq73//+3PyySenv78/ixcvzoIFC/Lggw9mypRflJqWL1+ea665Jl/5ylfyyle+Mp/5zGdyzjnn5KGHHkpzc3OtRwKAPTarZUrmzig7mzpLPj8AAAAAAAAAAPBCal7K/dd//dfdbn/5y1/OoYcemjVr1uS1r31tiqLIihUrsnjx4px33nlJkptvvjkzZ87MLbfckosvvrjWIwEAAAAAAAAAAADAqKp5KfeX7dixI0mGPnJ7w4YNaWtry4IFC4aOaWpqyhlnnJHVq1c/bym3p6cnPT09Q7c7OjpGeWrgl/X29mTjxo1lj5GpU6cOvZ/As+QEAMOREQAMR0YAMBI5AcBwZAQAI5ETAIxqKbcoilx++eU5/fTTc8wxxyRJ2trakiQzZ87c7diZM2fmsccee97nWbZsWa688srRHBUYwa6ujqxf/2A+seyaTDpgUqmztBw4OSuWL1XMZTdyAoDhyAgAhiMjABiJnABgODICgJHICQBGtZR76aWX5sc//nHuvPPO59zX0NCw2+2iKJ6z71lXXHFFLr/88qHbHR0dmTNnTm2HBYbV17Mr/dk/Lcefmxmz55Y2R9e2Z7L1vu+kUqko5bIbOQHAcGQEAMOREQCMRE4AMBwZAcBI5AQAo1bK/ZM/+ZPcfvvt+cEPfpBf+ZVfGdrf2tqa5BdXzJ01a9bQ/s2bNz/n6rnPampqSlNT02iNCrxIUw6anmkzZr3wgaNoa6lnp17JCQCGIyMAGI6MAGAkcgKA4cgIAEYiJwDYr9ZPWBRFLr300tx222357ne/m3nz5u12/7x589La2pqVK1cO7evt7c2qVaty6qmn1nocAAAAAAAAAAAAABh1Nb9S7vvf//7ccsst+ad/+qc0Nzenra0tSTJt2rRMmjQpDQ0NWbhwYZYuXZr58+dn/vz5Wbp0aSZPnpwLLrig1uMAAAAAAAAAAAAAwKireSn3hhtuSJKceeaZu+3/8pe/nHe9611JkkWLFmXnzp255JJLsm3btpxyyim544470tzcXOtxAAAAAAAAAAAAAGDU1byUWxTFCx7T0NCQJUuWZMmSJbU+PQAAAAAAAAAAAADsdfuVPQAAAAAAAAAAAAAAjHU1v1IuUFsDg0W6d7RnxzObSpuha/uWDA70l3Z+AAAAAAAAAAAAqHdKuVDHKrv60tezK1vu/Fp23v+t0ubY1dWZ/TqeSk9XZ2kzAAAAAAAAAAAAQD1TyoU6tqt3IFMakwuPm5zD5swobY4nnxrIX20cSF/vrtJmAAAAAAAAAAAAgHqmlAtjQEtzY1pbppR2/u6OpgwMFune0Z4dz2wqbY7O9s3p7e0p7fwAAAAAAAAAAAAwHKVc4AVVdvWlr2dXttz5tey8/1ulzdHf25P2rVuzffv2zJ07t7Q5AAAAAAAAAAAA4Jcp5QIvaFfvQKY0JhceNzmHzZlR2hxtW7blppVPpaurq7QZAAAAAAAAAAAA4Pko5QIvWktzY1pbppR2/r6enaWdGwAAAAAAAAAAAEayX9kDAAAAAAAAAAAAAMBY50q5AAAAVKW9vT2VSqXsMTJ16tS0tLSUPQYAAAAAAAAwTinlAgAAsMfa29vzqUUL09u5pexR0th8SK5cvkIxFwAAAAAAACiFUi4AAAB7rFKppLdzS959cnNmtUwpbY5N7V350j1bUqlUlHIBAAAAAACAUijlAgAAvETt7e2pVCplj5GpU6fWTQF1VsuUzJ3RXPIUnSWfHwAAAAAAABjPlHIBAABegvb29nxq0cL0dm4pe5Q0Nh+SK5evqJtiLgAAAAAAAMB4ppQLAADwElQqlfR2bsm7T27OrJYppc2xqb0rX7pnSyqVilIuAAAAAAAAQB1QygXGlKIYTFtbWx5//PFS56inj4oGAMoxq2VK5s5oLnmKzpLPDwAAAAAAAMCzlHKBMWOgvy+VSiWf+5sv5OCWfyx1lpYDJ2fF8qWKuQAAAAAAAAAAACRRygXGkMGBgRRpyEHHvDZzjzq+tDm6tj2Trfd9x0dFAwAAAAAAAAAAMEQptw60t7enUqmUOkNbW1uKYrDUGeDFmnTgwZk2Y1apM2wt9ezsLX19val0daVzUkNpM1S6utLX11va+QGob319vdm4cWOpM2zcuFFWAQAAAAAAAEQpt3Tt7e351KKF6e3cUuocW9q3ZVdlRwb6+0qdA6BebN++PesfeiT3HPRkHmtuLG2OzZ29Wf/Qzmzfvj1z584tbQ4A6s+unp6sf+iRfOKqz2XS5CmlzbGzuyvdGx7JrnNmJmkubQ4AAAAAAACAsinllqxSqaS3c0vefXJzZrWU9w/p/7GuN0vXFRkcGChtBoB60tXVlb7+gTQdPDtTZx5c2hw7nt6Wvv6H09XVVdoMANSn/v7+9PUP5KBjXpuZ844qbY6nN6zPjkfuSn9/f2kzAAAAAAAAANQDpdw60NfXm+am5OASPx79wMYkKUo7P0C9mtDYlMYDJpd4/u7Szs3I2tvbU6lUSp1h6tSpaWlpKXUGoHyTp03PtBmzSjt/Z/vm0s4NAAAAAAAAUE+UcktWLx+P/uCTHRkYGEhRDJY2AwCMFe3t7fnUooXp7dxS6hyNzYfkyuUrFHMBAAAAAAAAAOqAUm7J6uXj0SfueCxFnsqgUi4AvKBKpZLezi1598nNmdUypZQZNrV35Uv3bEmlUlHKBQAAAAAAAACoA0q5daLsj0fff8LE0s4NAGPVrJYpmTujucQJOks8NwAAAAAAAAAA/9N+ZQ8AAAAAAAAAAAAAAGOdK+UCAC9Ke3t7KpVK2WOkr68vEyeWe4X3jRs3pq+vt9QZAAAAAAAAAACoL0q5AMALam9vz8JFH097R3epc/T29uTnjzycw195RBonNpY2x87urnRveCS7zpmZpLm0OQAAAAAAAAAAqB9KuQDAC6pUKmnv6M70E87NlINnlDbH0xvWp2v9Q5l27NmZMXtuqXPseOSu9Pf3lzYDAAAAAAAAAAD1RSkXGFMGBot072jPjmc2lTZDZ/vmdFU6snHjxtJmeNbUqVPT0tJS9hiME729PRksilJnKIoigwP9mXLQ9EybMau0OTrbN5d2bqA+9PX1ptLVlc5JDaXNsLO7O0UxWNr5AQAAAAAAANidUi4wZlR29aWvZ1e23Pm17Lz/W6XN0bOzK49u2JCPXlnkwAOnlTZHkrQcODkrli9VzGXUbd++PRvX35udmzdkQmNTaXPs6urMfh1Ppaers7QZALZv3571Dz2Sew56Mo81N5Y2x6ZtO1Pp6k5fb29pMwAAAAAAAADw35RygTFjV+9ApjQmFx43OYfNmVHaHE8+NZC/emIwzUeemrlHHV/aHF3bnsnW+76TSqWilMuo6+rqyqT05MITpqT1kINLm+PJpwbyVxsH0te7q7QZALq6utLXP5Cmg2dn6szy3hMbB9tSFJvTP9Bf2gwAAAAAAAAA/DelXGDMaWluTGvLlNLO393xi6uETjrw4EybMau0OZJka6lnZzya3nxAXfz/Vw+KYjA7u7vTWamUcv5KV1cqXV3ZuHFjKef/n6ZOneqXAxiXJjQ2pfGAyaWdf/+J5V2lFwAAAAAAAIDnUsoFAHiJero7U6lUcv+6h7L5qcdKmeHnW3bm7ns25do/W5Tm5uZSZnhWY/MhuXL5CsVcAAAAAAAAAGBcU8oFAHiJ+nt7UqQhTS2tmTp7RikzFN2bcsD+G3PRcQfk6Fe0ljJDkmxq78qX7tmSSqWilAsAAAAAAAAAjGtKuQBQ5/r6+/PAAw+UOsMDDzyQgYGBUmd41sBgke4d7dnxzKbSZuju2JaiKLJ/iR9d/+zH1h867YDMnVHulXKTzpLPD1Bf2tvbU6lUyh4jU6dO9QsTAAAAAAAAsBcp5QJAHdvR2Z1t7e35m6s/mYkTJpY2x66e3vR170hfb09pMyRJZVdf+np2ZcudX8vO+79V2hw72remob8ng339pc0AQH1qb2/PpxYtTG/nlrJHSWPzIbly+QrFXAAAAAAAANhLlHIBoI517+rNlMbkXafPzpzZraXN8ZOfbcytP9iegYG+0mZIkl29A5nSmFx43OQcNmdGaXP8+OHu3PJ0kcGi7FJukZ07d6WzxKsxVrq6sm37jqxZsyYbN24sbY4kOfTQQ/Orv/qrpc4AlKuvr7f096KNGzemq/2pXHzq9MxqmVLaHJvau/Kle7akUqko5QIAAAAAAMBeopQLAGPAjIOnZs6sQ0o7/6Zntpd27ufT0tyY1hKLTo9Pbizt3M8aHOjPwMBA1j/yX+nc9nRpc/zs6a7cdc8Tefhn78uEEq/mnCSDEyfn7//pXxRzYZza1dOT9Q89kk9c9blMmlxeRuzs7kr3hkdy8DkzM3dGc2lz/EJnyecHAAAAAACA8UUpFwBgDBocGEiRpHHajEx92a+UNsfAjscyeeITeWfJV3PevLUjX1r1WDZv3qyUC+NUf39/+voHctAxr83MeUeVNsfTG9ZnxyN3pb+/7KupAwAAAAAAAHubUi4AwBi2f2NjGg+YXN75//+r45Z9NWcYrwYGi3TvaM+OZzaVNkPX9i0pisHSzv8/9Q8MpiiKUmcoiqJu1gMAAACAfUN7e3sqlUrZY2Tq1KlpaWkpewwAgLqmlAsAADAGVXb1pa9nV7bc+bXsvP9b5c3R2ZFdlR3p6+0rbYYk2d7Vk86OHdn03a9k213Npc1RL+sBAAAAwL6hvb09Cxd9PO0d3WWPkpYDJ2fF8qWKuQAAI1DKBQAAGIN29Q5kSmNy4XGTc9icGaXN8eCG/tyyqUh/f7kl1O6e/kyeUOTC4yfnV2ZbDwAAAAD2DZVKJe0d3Zl+wrmZcnB5f+/Vte2ZbL3vO6lUKkq5AAAjUMoFAGCf0D8wmLa2tjz++OOlztHX15eJEyeWOkPiY8TGk5bmxrS2TCnt/E9tbkpSZOfOXeks8SP0enbtSlKkZWqT9UhS6epKd3d3Nm7cWNoMz/J+BOObj1gFAACojSkHz8i0GbNKnWFrqWcHABgblHIBABjzOnf2prNjR77++eX514MOLm2Ovr7erH348RzyiuPT2NhU2hyJjxFj7xkc6M/AwEDWP/Jf6dz2dGlzPPhkRwYGBlIUg6XNkNTPerRt35V773s6i5YszbRp5b0vJt6PYDxrb2/PpxYtTG/nlrJHSWPzIbly+QrvRQAAAAAAjKpSS7nXX399/vzP/zybNm3K0UcfnRUrVuQ3fuM3yhwJAIAxaFfvQCZPKPKuE6fm6Fe0ljbHzzY+kx+v607zkadm5ryjSpvDx4ixNw0ODKRI0jhtRqa+7FdKm2PijsdS5KkMll7KrZP1GGzLQPF0Djzq9Mw96vjS5vB+BONbpVJJb+eWvPvk5swq8Srmm9q78qV7tngvAgAAAABg1JVWyr311luzcOHCXH/99TnttNPyt3/7t3n961+fBx98MHPnzt0rM9TDx+e1tbWVfiUnYOzqqnRkzZo1pX8s8aGHHppf/dVfLXUGgKRIc2Ny8KSG0iaY1pgUxWAmT5vuY8QYd/ZvbEzjAZPLO/+EiaWd+/mUvh4TGzMwWKQoitJmSJLBokhvb0+pMzyrHv4OIEmmTp2qFMheUQ9f8xs3bkxfX29mtUzJ3BnNpc6SdJZ8/vpSD18fSdLX15eJE8vPcO/NgPfF+pujXt6b6+Vro17WAyhPb29POts3lzpDZ/vmdFU6Sv93ycT7IkA98r0z/LfSSrnXXHNN3vOe9+SP/uiPkiQrVqzId77zndxwww1ZtmzZqJ+/Xj4+b0v7tuyq7MhAf1+pcwBjz45nNuahe1flzx65K/vtt3+pswxOnJy//6d/UcwFSlMvHxe/advOVLq609fbW9oMAElS2dWXvp5d2XLn17Lz/m+VNkd/b0/at27N9u3b99ov4D6f9vb2LFz08bR3dJc2w7NaDpycFcuX+ktBRlW9fM3v7O5K94ZHsuucmUnKLuXyrHr5+ujt7cmWn/0ox71ybiZObCx1lsbmQ3Ll8hXem2Gcqqf3xZ8/8nAOf+URaSzxfbFe5qiH75vr5WsjqY/1AMqzffv2bFx/b3Zu3pAJjU2lzdGzsyuPbtiQj15Z5MADp5U2R+J9EaDe+N4ZdldKKbe3tzdr1qzJxz72sd32L1iwIKtXr94rM9TLx+f9x7reLF1XZHBgoLQZgLFpZ+eOTJ0wmHe9dm5mH1reNxObt3bkS6sey+bNm5VygdLUy8fFNw62pSg2p3+gv7QZAJJkV+9ApjQmFx43OYfNmVHaHG1btuWmlU+lq6urtBmSX/wdQHtHd6afcG6mHFzeenRteyZb7/tOKpWKvxBkVNXL1/zTG9ZnxyN3pb/f90b1pJ6+PtrX/0cuPH5SXvGy8ubY1N6VL92zxXszjGP19L7Ytf6hTDv27MyYXd4vtNXDHPXyfXO9fG3Uy3oA5enq6sqk9OTCE6ak9ZCDS5vjyacG8ldPDKb5yFMz96jjS5vD+yJA/fG9M+yulFLuli1bMjAwkJkzZ+62f+bMmWlra3vO8T09Penp+e+Pu9yxY0eSpKOjY49n6OzsTNfOndm8bTANg+VdpXZHR1cGBgfzxNPb01fehYvz1JaODAwWeeLpHRnc77n/DcxhDnP8t7ant6evfzCbf/7T7N9Q3kekb3704QwMDGZX70C6e8r7B86dvf0ZGBhMV1dXVe/LSdLc3JyGPVjT0ciJrq6uDAwM5rFN7aWub7183Zuj/uaohxnqcY6ntu1MwwHVvRdVo629uy4yYmdHe9q3bs4Pf/jD53zPvbfNmjUrc+bMqfp5ZMRz1dv/f+aozzm6undmR0d5H9leqXSnp7c3d999d6nF3Keffjrt7c9kv6efzK6d5f2mfj29P9eLMnNiNDIiSZ544ols2rSpqueoVr18zXdsaUtvf1/WP7o5lZ3l/f3b0zu6s6V9h//3/n/19vWxbXslbU3lfUT6Zl8fdWtf/Fni2eep9jmorU2bNmXnzu707urOxJ3lfc/a17MrgwMD6evZmd5xPkfvru7s7O7Kww8/nM7O8n6eqZevjXpZj3py4IEHZtq06q/SWW8ZUQ8/S1Cf1q1bl97+vlQq3dnRWF6noKtrZ/r6B9O55elsfeqx0ubw9yu8kH3xZwk/R1DvfO/MWLHXfpYoSrBx48YiSbF69erd9n/mM58pjjjiiOcc/6lPfapIYrPZbLZ9fNuxY8ce5YqcsNlstn1/kxE2m81mG2nbk5yQETabzTY+Nj9L2Gw2m224TUbYbDabbaRNTthsNpttuO2FMqKhKIoie1lvb28mT56cv//7v8/v/u7vDu2/7LLLsnbt2qxatWq343/5t0gGBwfT3t6e6dOn79FvpXR0dGTOnDl54okncuCBB+75C2GINa09azo6rGvt1XJNa/XbhtXkhK+R2rOmo8O61p41rT0ZwYthXWvPmtaeNR0dZeeEv2+qf9a09qzp6LCutVd2RiR+lqh31nR0WNfas6a1JyN4Maxr7VnT2rOmo0NO8EKsae1Z09FhXWtvb2ZEKZ9t0NjYmBNPPDErV67crZS7cuXKvPnNb37O8U1NTWlqatpt30EHHVT1HAceeKAv2hqzprVnTUeHda29Mtd0NHLC10jtWdPRYV1rz5rWnozgxbCutWdNa8+ajo6y1tXfN40d1rT2rOnosK6152cJXog1HR3Wtfasae3JCF4M61p71rT2rOnokBO8EGtae9Z0dFjX2tsba1pKKTdJLr/88lx00UU56aST8r/+1//KjTfemMcffzzve9/7yhoJAAAAAAAAAAAAAPZIaaXct7zlLdm6dWs+/elPZ9OmTTnmmGPy7W9/O4cddlhZIwEAAAAAAAAAAADAHimtlJskl1xySS655JK9ft6mpqZ86lOfes7l4tlz1rT2rOnosK61t6+t6b72euqBNR0d1rX2rGnt7Wtruq+9nnphXWvPmtaeNR0d+9q67muvpx5Y09qzpqPDutbevram+9rrqQfWdHRY19qzprW3r63pvvZ66oV1rT1rWnvWdHTsa+u6r72eemBNa8+ajg7rWnt7c00biqIoRv0sAAAAAAAAAAAAALAP26/sAQAAAAAAAAAAAABgrFPKBQAAAAAAAAAAAIAqKeUCAAAAAAAAAAAAQJXGXSn3+uuvz7x583LAAQfkxBNPzA9/+MOyRxozli1blpNPPjnNzc059NBD8zu/8zt56KGHdjumKIosWbIks2fPzqRJk3LmmWdm3bp1JU089ixbtiwNDQ1ZuHDh0D5rumc2btyYCy+8MNOnT8/kyZNz3HHHZc2aNUP3W9eXpr+/P5/4xCcyb968TJo0KYcffng+/elPZ3BwcOiYfWFNZcSekxGjT0bUjoyorfGSEYmcqIacGH1yojZkRO2Nl5yQEXtORow+GVE7cqK2ZAQvREaMPhlROzKitsZLRiRyohpyYvTJidqQEbU3XnJCRuw5GTH6ZETtyInaqpuMKMaRr3/968XEiROLm266qXjwwQeLyy67rJgyZUrx2GOPlT3amHDuuecWX/7yl4uf/OQnxdq1a4s3vOENxdy5c4tKpTJ0zGc/+9miubm5+Id/+IfigQceKN7ylrcUs2bNKjo6OkqcfGy4++67i5e//OXFscceW1x22WVD+63pS9fe3l4cdthhxbve9a7irrvuKjZs2FD827/9W/Gzn/1s6Bjr+tJ85jOfKaZPn15885vfLDZs2FD8/d//fTF16tRixYoVQ8eM9TWVEdWREaNLRtSOjKi98ZARRSEnqiUnRpecqA0ZMTrGQ07IiOrIiNElI2pHTtSejOCFyIjRJSNqR0bU3njIiKKQE9WSE6NLTtSGjBgd4yEnZER1ZMTokhG1Iydqr14yYlyVcn/913+9eN/73rfbviOPPLL42Mc+VtJEY9vmzZuLJMWqVauKoiiKwcHBorW1tfjsZz87dMyuXbuKadOmFZ///OfLGnNM6OzsLObPn1+sXLmyOOOMM4ZCy5rumY9+9KPF6aefPuz91vWle8Mb3lC8+93v3m3feeedV1x44YVFUewbayojaktG1I6MqC0ZUXvjISOKQk7UmpyoHTlROzJidIyHnJARtSUjakdG1JacqD0ZwUslI2pHRtSWjKi98ZARRSEnak1O1I6cqB0ZMTrGQ07IiNqSEbUjI2pLTtRevWTEfrW97m796u3tzZo1a7JgwYLd9i9YsCCrV68uaaqxbceOHUmSlpaWJMmGDRvS1ta22xo3NTXljDPOsMYv4P3vf3/e8IY35Oyzz95tvzXdM7fffntOOumk/MEf/EEOPfTQHH/88bnpppuG7reuL93pp5+ef//3f8/DDz+cJLn//vtz55135rd+67eSjP01lRG1JyNqR0bUloyovX09IxI5MRrkRO3IidqREaNjX88JGVF7MqJ2ZERtyYnakxG8VDKidmREbcmI2tvXMyKRE6NBTtSOnKgdGTE69vWckBG1JyNqR0bUlpyovXrJiAk1e6Y6t2XLlgwMDGTmzJm77Z85c2ba2tpKmmrsKooil19+eU4//fQcc8wxSTK0js+3xo899then3Gs+PrXv541a9bk3nvvfc591nTP/PznP88NN9yQyy+/PB//+Mdz99135wMf+ECampryjne8w7rugY9+9KPZsWNHjjzyyOy///4ZGBjIVVddlbe97W1Jxv7XqoyoLRlROzKi9mRE7e3rGZHIiVqTE7UjJ2pLRoyOfT0nZERtyYjakRG1JydqT0bwUsiI2pERtScjam9fz4hETtSanKgdOVFbMmJ07Os5ISNqS0bUjoyoPTlRe/WSEeOmlPushoaG3W4XRfGcfbywSy+9ND/+8Y9z5513Puc+a/ziPfHEE7nssstyxx135IADDhj2OGv60gwODuakk07K0qVLkyTHH3981q1blxtuuCHveMc7ho6zri/erbfemq9+9au55ZZbcvTRR2ft2rVZuHBhZs+enXe+851Dx431NR3r89cLGVEbMmJ0yIjaGy8Zkewbr6EeyInakBO1JyNGx3jJibE+f72QEbUhI0aHnKg9GcFLISNqQ0aMDhlRe+MlI5J94zXUAzlRG3Ki9mTE6BgvOTHW568XMqI2ZMTokBO1Vy8ZsV/NnqnOHXLIIdl///2f81sjmzdvfk7zmZH9yZ/8SW6//fZ873vfy6/8yq8M7W9tbU0Sa/wSrFmzJps3b86JJ56YCRMmZMKECVm1alX++q//OhMmTBhaN2v60syaNSu/9mu/ttu+o446Ko8//ngSX6t74iMf+Ug+9rGP5a1vfWte9apX5aKLLsoHP/jBLFu2LMnYX1MZUTsyonZkxOiQEbW3r2dEIidqSU7UjpyoPRkxOvb1nJARtSMjakdGjA45UXsyghdLRtSOjBgdMqL29vWMSORELcmJ2pETtScjRse+nhMyonZkRO3IiNEhJ2qvXjJi3JRyGxsbc+KJJ2blypW77V+5cmVOPfXUkqYaW4qiyKWXXprbbrst3/3udzNv3rzd7p83b15aW1t3W+Pe3t6sWrXKGg/jda97XR544IGsXbt2aDvppJPy9re/PWvXrs3hhx9uTffAaaedloceemi3fQ8//HAOO+ywJL5W90R3d3f222/3yNh///0zODiYZOyvqYyonoyoPRkxOmRE7e3rGZHIiVqQE7UnJ2pPRoyOfT0nZET1ZETtyYjRISdqT0bwQmRE7cmI0SEjam9fz4hETtSCnKg9OVF7MmJ07Os5ISOqJyNqT0aMDjlRe3WTEcU48vWvf72YOHFi8cUvfrF48MEHi4ULFxZTpkwpHn300bJHGxP++I//uJg2bVrx/e9/v9i0adPQ1t3dPXTMZz/72WLatGnFbbfdVjzwwAPF2972tmLWrFlFR0dHiZOPLWeccUZx2WWXDd22pi/d3XffXUyYMKG46qqrikceeaT42te+VkyePLn46le/OnSMdX1p3vnOdxYve9nLim9+85vFhg0bittuu6045JBDikWLFg0dM9bXVEZUR0bsHTKiejKi9sZDRhSFnKiWnNg75ER1ZMToGA85ISOqIyP2DhlRPTlRezKCFyIj9g4ZUT0ZUXvjISOKQk5US07sHXKiOjJidIyHnJAR1ZERe4eMqJ6cqL16yYhxVcotiqL4m7/5m+Kwww4rGhsbixNOOKFYtWpV2SONGUmed/vyl788dMzg4GDxqU99qmhtbS2ampqK1772tcUDDzxQ3tBj0C+HljXdM//8z/9cHHPMMUVTU1Nx5JFHFjfeeONu91vXl6ajo6O47LLLirlz5xYHHHBAcfjhhxeLFy8uenp6ho7ZF9ZURuw5GbF3yIjakBG1NV4yoijkRDXkxN4hJ6onI2pvvOSEjNhzMmLvkBG1ISdqS0bwQmTE3iEjakNG1NZ4yYiikBPVkBN7h5yonoyovfGSEzJiz8mIvUNG1IacqK16yYiGoiiK2l13FwAAAAAAAAAAAADGn/3KHgAAAAAAAAAAAAAAxjqlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqqSUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXCjJ6tWrs//+++c3f/M3yx4FgDojIwAYjowAYCRyAoDhyAgARiInABiOjICXrqEoiqLsIWA8+qM/+qNMnTo1X/jCF/Lggw9m7ty5ZY8EQJ2QEQAMR0YAMBI5AcBwZAQAI5ETAAxHRsBL50q5UIKurq783//7f/PHf/zHeeMb35ivfOUru91/++23Z/78+Zk0aVLOOuus3HzzzWloaMj27duHjlm9enVe+9rXZtKkSZkzZ04+8IEPpKura+++EABqTkYAMBwZAcBI5AQAw5ERAIxETgAwHBkBe0YpF0pw66235ogjjsgRRxyRCy+8MF/+8pfz7EWrH3300fz+7/9+fud3fidr167NxRdfnMWLF+/2+AceeCDnnntuzjvvvPz4xz/OrbfemjvvvDOXXnppGS8HgBqSEQAMR0YAMBI5AcBwZAQAI5ETAAxHRsCeaSie/T8F2GtOO+20nH/++bnsssvS39+fWbNm5f/8n/+Ts88+Ox/72MfyrW99Kw888MDQ8Z/4xCdy1VVXZdu2bTnooIPyjne8I5MmTcrf/u3fDh1z55135owzzkhXV1cOOOCAMl4WADUgIwAYjowAYCRyAoDhyAgARiInABiOjIA940q5sJc99NBDufvuu/PWt741STJhwoS85S1vyZe+9KWh+08++eTdHvPrv/7ru91es2ZNvvKVr2Tq1KlD27nnnpvBwcFs2LBh77wQAGpORgAwHBkBwEjkBADDkREAjEROADAcGQF7bkLZA8B488UvfjH9/f152cteNrSvKIpMnDgx27ZtS1EUaWho2O0xv3xB68HBwVx88cX5wAc+8Jznnzt37ugMDsCokxEADEdGADASOQHAcGQEACOREwAMR0bAnlPKhb2ov78/f/d3f5e/+Iu/yIIFC3a77/d+7/fyta99LUceeWS+/e1v73bfvffeu9vtE044IevWrcsrXvGKUZ8ZgL1DRgAwHBkBwEjkBADDkREAjEROADAcGQHVaSh+uaIOjJpvfOMbectb3pLNmzdn2rRpu923ePHifPvb385tt92WI444Ih/84Afznve8J2vXrs2HPvShPPnkk9m+fXumTZuWH//4x3nNa16TP/zDP8x73/veTJkyJevXr8/KlStz7bXXlvTqAKiGjABgODICgJHICQCGIyMAGImcAGA4MgKqs1/ZA8B48sUvfjFnn332cwIr+cVvkqxduzbbtm3L//t//y+33XZbjj322Nxwww1ZvHhxkqSpqSlJcuyxx2bVqlV55JFH8hu/8Rs5/vjj88lPfjKzZs3aq68HgNqREQAMR0YAMBI5AcBwZAQAI5ETAAxHRkB1XCkXxoCrrroqn//85/PEE0+UPQoAdUZGADAcGQHASOQEAMOREQCMRE4AMBwZAb8woewBgOe6/vrrc/LJJ2f69On5j//4j/z5n/95Lr300rLHAqAOyAgAhiMjABiJnABgODICgJHICQCGIyPg+SnlQh165JFH8pnPfCbt7e2ZO3duPvShD+WKK64oeywA6oCMAGA4MgKAkcgJAIYjIwAYiZwAYDgyAp5fQ1EURdlDAAAAAAAAAAAAAMBYtl/ZAwAAAAAAAAAAAADAWKeUCwAAAAAAAAAAAABVUsoFAAAAAAAAAAAAgCop5QIAAAAAAAAAAABAlZRyAQAAAAAAAAAAAKBKSrkAAAAAAAAAAAAAUCWlXAAAAAAAAAAAAACoklIuAAAAAAAAAAAAAFRJKRcAAAAAAAAAAAAAqvT/AUVkyJg+JUc+AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "g = sns.FacetGrid(train_data, col=\"Parch\", hue=\"Survived\", height=4)\n",
+ "\n",
+ "combined_age = train_data['Age'].dropna()\n",
+ "_, bin_edges = np.histogram(combined_age, bins=10)\n",
+ "\n",
+ "g.map(plt.hist, \"Age\", bins=bin_edges, alpha=0.6, edgecolor=\"black\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "246ec7e8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data['Age'] = train_data['Age'].fillna(value = round(train_data.Age.mean()))\n",
+ "train_data['Fare'] = train_data['Fare'].fillna(value = 0)\n",
+ "train_data['Cabin'] = train_data['Cabin'].fillna(value = \"NA\")\n",
+ "train_data['Embarked'] = train_data['Embarked'].fillna(value = \"NA\")\n",
+ "\n",
+ "test_data['Age'] = test_data['Age'].fillna(value = round(train_data.Age.mean()))\n",
+ "test_data['Fare'] = test_data['Fare'].fillna(value = 0)\n",
+ "test_data['Cabin'] = test_data['Cabin'].fillna(value = \"NA\")\n",
+ "test_data['Embarked'] = test_data['Embarked'].fillna(value = \"NA\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "edffc455",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data_new = pd.get_dummies(train_data, columns=['Sex', 'Embarked'], drop_first=True)\n",
+ "train_data_new['TicketPrefix'] = train_data_new['Ticket'].str.extract('([A-Za-z]+)[^\\w]', expand=False)\n",
+ "train_data_new['TicketLength'] = train_data_new['Ticket'].str.len()\n",
+ "train_data_new['IsNumericTicket'] = train_data_new['Ticket'].str.isnumeric().astype(int)\n",
+ "train_data_new.drop('Ticket', axis=1, inplace=True)\n",
+ "train_data_new['Salutation'] = train_data_new['Name'].str.extract(' ([A-Za-z]+)\\.', expand=False)\n",
+ "train_data_new = pd.get_dummies(train_data_new, columns=['Salutation'], prefix='Salutation', drop_first=True)\n",
+ "train_data_new.drop('Name', axis=1, inplace=True)\n",
+ "train_data_new['Deck'] = train_data_new['Cabin'].str.slice(0, 1)\n",
+ "train_data_new = pd.get_dummies(train_data_new, columns=['Deck'], prefix='Deck', drop_first=True)\n",
+ "train_data_new['HasCabin'] = train_data_new['Cabin'].notnull().astype(int)\n",
+ "train_data_new.drop('Cabin', axis=1, inplace=True)\n",
+ "encoded_columns = train_data_new.drop('Survived', axis=1).columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "ba5f0e0a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Fare | \n",
+ " Sex_male | \n",
+ " Embarked_NA | \n",
+ " Embarked_Q | \n",
+ " ... | \n",
+ " Salutation_Sir | \n",
+ " Deck_B | \n",
+ " Deck_C | \n",
+ " Deck_D | \n",
+ " Deck_E | \n",
+ " Deck_F | \n",
+ " Deck_G | \n",
+ " Deck_N | \n",
+ " Deck_T | \n",
+ " HasCabin | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7.2500 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 71.2833 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.9250 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 53.1000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8.0500 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 39 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass Age SibSp Parch Fare Sex_male \\\n",
+ "0 1 0 3 22.0 1 0 7.2500 1 \n",
+ "1 2 1 1 38.0 1 0 71.2833 0 \n",
+ "2 3 1 3 26.0 0 0 7.9250 0 \n",
+ "3 4 1 1 35.0 1 0 53.1000 0 \n",
+ "4 5 0 3 35.0 0 0 8.0500 1 \n",
+ "\n",
+ " Embarked_NA Embarked_Q ... Salutation_Sir Deck_B Deck_C Deck_D \\\n",
+ "0 0 0 ... 0 0 0 0 \n",
+ "1 0 0 ... 0 0 1 0 \n",
+ "2 0 0 ... 0 0 0 0 \n",
+ "3 0 0 ... 0 0 1 0 \n",
+ "4 0 0 ... 0 0 0 0 \n",
+ "\n",
+ " Deck_E Deck_F Deck_G Deck_N Deck_T HasCabin \n",
+ "0 0 0 0 1 0 1 \n",
+ "1 0 0 0 0 0 1 \n",
+ "2 0 0 0 1 0 1 \n",
+ "3 0 0 0 0 0 1 \n",
+ "4 0 0 0 1 0 1 \n",
+ "\n",
+ "[5 rows x 39 columns]"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_data_new.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "9c26e3d0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Sex_male',\n",
+ " 'Embarked_NA', 'Embarked_Q', 'Embarked_S', 'TicketPrefix',\n",
+ " 'TicketLength', 'IsNumericTicket', 'Salutation_Col',\n",
+ " 'Salutation_Countess', 'Salutation_Don', 'Salutation_Dr',\n",
+ " 'Salutation_Jonkheer', 'Salutation_Lady', 'Salutation_Major',\n",
+ " 'Salutation_Master', 'Salutation_Miss', 'Salutation_Mlle',\n",
+ " 'Salutation_Mme', 'Salutation_Mr', 'Salutation_Mrs', 'Salutation_Ms',\n",
+ " 'Salutation_Rev', 'Salutation_Sir', 'Deck_B', 'Deck_C', 'Deck_D',\n",
+ " 'Deck_E', 'Deck_F', 'Deck_G', 'Deck_N', 'Deck_T', 'HasCabin'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "encoded_columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "b2605ade",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "from sklearn import metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "f8afa6dc",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 0.8212290502793296\n",
+ "Precision: 0.8088235294117647\n",
+ "Recall: 0.7432432432432432\n",
+ "Confusion Matrix:\n",
+ "[[92 13]\n",
+ " [19 55]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "X = train_data_new.drop('Survived', axis=1)\n",
+ "y = train_data_new['Survived']\n",
+ "\n",
+ "categorical_columns = X.select_dtypes(include=['object']).columns\n",
+ "\n",
+ "imputer = SimpleImputer(strategy='most_frequent')\n",
+ "X_imputed = imputer.fit_transform(X)\n",
+ "X_imputed = pd.DataFrame(X_imputed, columns=X.columns)\n",
+ "X_encoded = pd.get_dummies(X_imputed, columns=categorical_columns)\n",
+ "\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2, random_state=42)\n",
+ "\n",
+ "model = RandomForestClassifier()\n",
+ "model.fit(X_train, y_train)\n",
+ "\n",
+ "y_pred = model.predict(X_test)\n",
+ "\n",
+ "accuracy = metrics.accuracy_score(y_test, y_pred)\n",
+ "print(\"Accuracy:\", accuracy)\n",
+ "\n",
+ "precision = metrics.precision_score(y_test, y_pred)\n",
+ "print(\"Precision:\", precision)\n",
+ "\n",
+ "recall = metrics.recall_score(y_test, y_pred)\n",
+ "print(\"Recall:\", recall)\n",
+ "\n",
+ "confusion = metrics.confusion_matrix(y_test, y_pred)\n",
+ "print(\"Confusion Matrix:\")\n",
+ "print(confusion)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "e3872783",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "test_new = pd.get_dummies(test_data, columns=['Sex', 'Embarked'], drop_first=True)\n",
+ "test_new['TicketPrefix'] = test_new['Ticket'].str.extract('([A-Za-z]+)[^\\w]', expand=False)\n",
+ "test_new = pd.get_dummies(test_new, columns=['TicketPrefix'], prefix='TicketPrefix', drop_first=True)\n",
+ "test_new['TicketLength'] = test_new['Ticket'].str.len()\n",
+ "test_new['IsNumericTicket'] = test_new['Ticket'].str.isnumeric().astype(int)\n",
+ "test_new.drop('Ticket', axis=1, inplace=True)\n",
+ "test_new['Salutation'] = test_new['Name'].str.extract(' ([A-Za-z]+).', expand=False)\n",
+ "test_new = pd.get_dummies(test_new, columns=['Salutation'], prefix='Salutation', drop_first=True)\n",
+ "test_new.drop('Name', axis=1, inplace=True)\n",
+ "test_new['Deck'] = test_new['Cabin'].str.slice(0, 1)\n",
+ "test_new = pd.get_dummies(test_new, columns=['Deck'], prefix='Deck', drop_first=True)\n",
+ "test_new['HasCabin'] = test_new['Cabin'].notnull().astype(int)\n",
+ "test_new.drop('Cabin', axis=1, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "f078c516",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Pclass | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Fare | \n",
+ " Sex_male | \n",
+ " Embarked_Q | \n",
+ " Embarked_S | \n",
+ " TicketPrefix_AQ | \n",
+ " ... | \n",
+ " Salutation_Rev | \n",
+ " Salutation_y | \n",
+ " Deck_B | \n",
+ " Deck_C | \n",
+ " Deck_D | \n",
+ " Deck_E | \n",
+ " Deck_F | \n",
+ " Deck_G | \n",
+ " Deck_N | \n",
+ " HasCabin | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 892 | \n",
+ " 3 | \n",
+ " 34.5 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.8292 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 893 | \n",
+ " 3 | \n",
+ " 47.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7.0000 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 894 | \n",
+ " 2 | \n",
+ " 62.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9.6875 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 895 | \n",
+ " 3 | \n",
+ " 27.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8.6625 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 896 | \n",
+ " 3 | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 12.2875 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 46 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Pclass Age SibSp Parch Fare Sex_male Embarked_Q \\\n",
+ "0 892 3 34.5 0 0 7.8292 1 1 \n",
+ "1 893 3 47.0 1 0 7.0000 0 0 \n",
+ "2 894 2 62.0 0 0 9.6875 1 1 \n",
+ "3 895 3 27.0 0 0 8.6625 1 0 \n",
+ "4 896 3 22.0 1 1 12.2875 0 0 \n",
+ "\n",
+ " Embarked_S TicketPrefix_AQ ... Salutation_Rev Salutation_y Deck_B \\\n",
+ "0 0 0 ... 0 0 0 \n",
+ "1 1 0 ... 0 0 0 \n",
+ "2 0 0 ... 0 0 0 \n",
+ "3 1 0 ... 0 0 0 \n",
+ "4 1 0 ... 0 0 0 \n",
+ "\n",
+ " Deck_C Deck_D Deck_E Deck_F Deck_G Deck_N HasCabin \n",
+ "0 0 0 0 0 0 1 1 \n",
+ "1 0 0 0 0 0 1 1 \n",
+ "2 0 0 0 0 0 1 1 \n",
+ "3 0 0 0 0 0 1 1 \n",
+ "4 0 0 0 0 0 1 1 \n",
+ "\n",
+ "[5 rows x 46 columns]"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "test_new.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "2a310df5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "realigned_test = test_new.reindex(columns=encoded_columns, fill_value=0)\n",
+ "imputed_test = pd.DataFrame(imputer.transform(realigned_test), columns=realigned_test.columns)\n",
+ "imputed_test = imputed_test.reindex(columns=X_train.columns, fill_value=0)\n",
+ "predicted_test = model.predict(imputed_test)\n",
+ "\n",
+ "# Creating a DataFrame with 'PassengerId' and 'Survived' columns\n",
+ "result_df = pd.DataFrame({\n",
+ " 'PassengerId': test_data['PassengerId'],\n",
+ " 'Survived': predicted_test\n",
+ "})\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "22a07918",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 892 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 893 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 894 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 895 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 896 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived\n",
+ "0 892 0\n",
+ "1 893 1\n",
+ "2 894 0\n",
+ "3 895 0\n",
+ "4 896 1"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "result_df.head()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}