diff --git a/.editorconfig b/.editorconfig index b8f6ef7f8e32..57a5b2fb5ea4 100644 --- a/.editorconfig +++ b/.editorconfig @@ -14,6 +14,10 @@ end_of_line = lf indent_style = space indent_size = 2 -[{*.py,*.conf,*.sublime-project}] +[{*.py}] +indent_style = space +indent_size = 4 + +[{*.conf,*.sublime-project}] indent_style = tab indent_size = 4 diff --git a/.github/contributing.md b/.github/contributing.md index 24b9dbdf8d0d..3113c1847c59 100644 --- a/.github/contributing.md +++ b/.github/contributing.md @@ -34,8 +34,11 @@ This project and everyone participating in it is governed by the [Marlin Code of We have a Message Board and a Facebook group where our knowledgable user community can provide helpful advice if you have questions. -* [Marlin RepRap forum](https://reprap.org/forum/list.php?415) -* [MarlinFirmware on Facebook](https://www.facebook.com/groups/1049718498464482/) +- [Marlin Documentation](https://marlinfw.org) - Official Marlin documentation +- Facebook Group ["Marlin Firmware"](https://www.facebook.com/groups/1049718498464482/) +- RepRap.org [Marlin Forum](https://forums.reprap.org/list.php?415) +- Facebook Group ["Marlin Firmware for 3D Printers"](https://www.facebook.com/groups/3Dtechtalk/) +- [Marlin Configuration](https://www.youtube.com/results?search_query=marlin+configuration) on YouTube If chat is more your speed, you can join the MarlinFirmware Discord server: diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h index c3b176d245ab..99ccba028c18 100644 --- a/Marlin/Configuration.h +++ b/Marlin/Configuration.h @@ -35,7 +35,7 @@ * * Advanced settings can be found in Configuration_adv.h */ -#define CONFIGURATION_H_VERSION 02000904 +#define CONFIGURATION_H_VERSION 02000905 //=========================================================================== //============================= Getting Started ============================= @@ -57,15 +57,6 @@ * https://www.thingiverse.com/thing:1278865 */ -//=========================================================================== -//========================== DELTA / SCARA / TPARA ========================== -//=========================================================================== -// -// Download configurations from the link above and customize for your machine. -// Examples are located in config/examples/delta, .../SCARA, and .../TPARA. -// -//=========================================================================== - // @section info // Author info of this build printed to the host during boot and M115 @@ -186,28 +177,27 @@ //#define E7_DRIVER_TYPE A4988 /** - * Axis codes for additional axes: - * This defines the axis code that is used in G-code commands to - * reference a specific axis. - * 'A' for rotational axis parallel to X - * 'B' for rotational axis parallel to Y - * 'C' for rotational axis parallel to Z - * 'U' for secondary linear axis parallel to X - * 'V' for secondary linear axis parallel to Y - * 'W' for secondary linear axis parallel to Z - * Regardless of the settings, firmware-internal axis IDs are - * I (AXIS4), J (AXIS5), K (AXIS6). + * Additional Axis Settings + * + * AXISn_NAME defines the letter used to refer to the axis in (most) G-code commands. + * By convention the names and roles are typically: + * 'A' : Rotational axis parallel to X + * 'B' : Rotational axis parallel to Y + * 'C' : Rotational axis parallel to Z + * 'U' : Secondary linear axis parallel to X + * 'V' : Secondary linear axis parallel to Y + * 'W' : Secondary linear axis parallel to Z + * + * Regardless of these settings the axes are internally named I, J, K. */ #ifdef I_DRIVER_TYPE #define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W'] #endif #ifdef J_DRIVER_TYPE #define AXIS5_NAME 'B' // :['B', 'C', 'U', 'V', 'W'] - #define AXIS5_ROTATES #endif #ifdef K_DRIVER_TYPE #define AXIS6_NAME 'C' // :['C', 'U', 'V', 'W'] - #define AXIS6_ROTATES #endif // @section extruder @@ -643,7 +633,7 @@ * * Use a physical model of the hotend to control temperature. When configured correctly * this gives better responsiveness and stability than PID and it also removes the need - * for PID_EXTRUSION_SCALING and PID_FAN_SCALING. Use M306 to autotune the model. + * for PID_EXTRUSION_SCALING and PID_FAN_SCALING. Use M306 T to autotune the model. */ #if ENABLED(MPCTEMP) //#define MPC_EDIT_MENU // Add MPC editing to the "Advanced Settings" menu. (~1300 bytes of flash) @@ -845,6 +835,134 @@ #define POLAR_SEGMENTS_PER_SECOND 5 #endif +// Enable for DELTA kinematics and configure below +//#define DELTA +#if ENABLED(DELTA) + + // Make delta curves from many straight lines (linear interpolation). + // This is a trade-off between visible corners (not enough segments) + // and processor overload (too many expensive sqrt calls). + #define DELTA_SEGMENTS_PER_SECOND 200 + + // After homing move down to a height where XY movement is unconstrained + //#define DELTA_HOME_TO_SAFE_ZONE + + // Delta calibration menu + // uncomment to add three points calibration menu option. + // See http://minow.blogspot.com/index.html#4918805519571907051 + //#define DELTA_CALIBRATION_MENU + + // uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) + //#define DELTA_AUTO_CALIBRATION + + // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them + + #if ENABLED(DELTA_AUTO_CALIBRATION) + // set the default number of probe points : n*n (1 -> 7) + #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + #endif + + #if EITHER(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU) + // Set the steprate for papertest probing + #define PROBE_MANUALLY_STEP 0.05 // (mm) + #endif + + // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). + #define DELTA_PRINTABLE_RADIUS 140.0 // (mm) + + // Maximum reachable area + #define DELTA_MAX_RADIUS 140.0 // (mm) + + // Center-to-center distance of the holes in the diagonal push rods. + #define DELTA_DIAGONAL_ROD 250.0 // (mm) + + // Distance between bed and nozzle Z home position + #define DELTA_HEIGHT 250.00 // (mm) Get this value from G33 auto calibrate + + #define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate + + // Horizontal distance bridged by diagonal push rods when effector is centered. + #define DELTA_RADIUS 124.0 // (mm) Get this value from G33 auto calibrate + + // Trim adjustments for individual towers + // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 + // measured in degrees anticlockwise looking from above the printer + #define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate + + // Delta radius and diagonal rod adjustments (mm) + //#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 } + //#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 } +#endif + +/** + * MORGAN_SCARA was developed by QHARLEY in South Africa in 2012-2013. + * Implemented and slightly reworked by JCERNY in June, 2014. + * + * Mostly Printed SCARA is an open source design by Tyler Williams. See: + * https://www.thingiverse.com/thing:2487048 + * https://www.thingiverse.com/thing:1241491 + */ +//#define MORGAN_SCARA +//#define MP_SCARA +#if EITHER(MORGAN_SCARA, MP_SCARA) + // If movement is choppy try lowering this value + #define SCARA_SEGMENTS_PER_SECOND 200 + + // Length of inner and outer support arms. Measure arm lengths precisely. + #define SCARA_LINKAGE_1 150 // (mm) + #define SCARA_LINKAGE_2 150 // (mm) + + // SCARA tower offset (position of Tower relative to bed zero position) + // This needs to be reasonably accurate as it defines the printbed position in the SCARA space. + #define SCARA_OFFSET_X 100 // (mm) + #define SCARA_OFFSET_Y -56 // (mm) + + #if ENABLED(MORGAN_SCARA) + + //#define DEBUG_SCARA_KINEMATICS + #define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly + + // Radius around the center where the arm cannot reach + #define MIDDLE_DEAD_ZONE_R 0 // (mm) + + #define THETA_HOMING_OFFSET 0 // Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 + #define PSI_HOMING_OFFSET 0 // Calculated from Calibration Guide and M364 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 + + #elif ENABLED(MP_SCARA) + + #define SCARA_OFFSET_THETA1 12 // degrees + #define SCARA_OFFSET_THETA2 131 // degrees + + #endif + +#endif + +// Enable for TPARA kinematics and configure below +//#define AXEL_TPARA +#if ENABLED(AXEL_TPARA) + #define DEBUG_ROBOT_KINEMATICS + #define ROBOT_SEGMENTS_PER_SECOND 200 + + // Length of inner and outer support arms. Measure arm lengths precisely. + #define ROBOT_LINKAGE_1 120 // (mm) + #define ROBOT_LINKAGE_2 120 // (mm) + + // SCARA tower offset (position of Tower relative to bed zero position) + // This needs to be reasonably accurate as it defines the printbed position in the SCARA space. + #define ROBOT_OFFSET_X 0 // (mm) + #define ROBOT_OFFSET_Y 0 // (mm) + #define ROBOT_OFFSET_Z 0 // (mm) + + #define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly + + // Radius around the center where the arm cannot reach + #define MIDDLE_DEAD_ZONE_R 0 // (mm) + + // Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 + #define THETA_HOMING_OFFSET 0 + #define PSI_HOMING_OFFSET 0 +#endif + //=========================================================================== //============================== Endstop Settings =========================== //=========================================================================== @@ -1001,9 +1119,9 @@ * M204 R Retract Acceleration * M204 T Travel Acceleration */ -#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves +#define DEFAULT_ACCELERATION 3000 // X, Y, Z ... and E acceleration for printing moves #define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts -#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves +#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z ... acceleration for travel (non printing) moves /** * Default Jerk limits (mm/s) @@ -1185,9 +1303,37 @@ */ //#define SENSORLESS_PROBING -// -// For Z_PROBE_ALLEN_KEY see the Delta example configurations. -// +/** + * Allen key retractable z-probe as seen on many Kossel delta printers - https://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe + * Deploys by touching z-axis belt. Retracts by pushing the probe down. + */ +//#define Z_PROBE_ALLEN_KEY +#if ENABLED(Z_PROBE_ALLEN_KEY) + // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29, + // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe. + + #define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, DELTA_PRINTABLE_RADIUS, 100.0 } + #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_FEEDRATE + + #define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, DELTA_PRINTABLE_RADIUS, 100.0 } + #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 + + #define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (DELTA_PRINTABLE_RADIUS) * 0.75, 100.0 } + #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_FEEDRATE + + #define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position + #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_FEEDRATE + + #define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 3.0 } // Push it down + #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 + + #define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 50.0 } // Move it up to clear + #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_FEEDRATE + + #define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 50.0 } + #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_FEEDRATE + +#endif // Z_PROBE_ALLEN_KEY /** * Nozzle-to-Probe offsets { X, Y, Z } @@ -1738,7 +1884,7 @@ //#define LCD_BED_TRAMMING #if ENABLED(LCD_BED_TRAMMING) - #define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets + #define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets #define BED_TRAMMING_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points #define BED_TRAMMING_Z_HOP 4.0 // (mm) Z height of nozzle between leveling points //#define BED_TRAMMING_INCLUDE_CENTER // Move to the center after the last corner diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 9b70dbbb650f..a6556b7108ff 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -30,7 +30,7 @@ * * Basic settings can be found in Configuration.h */ -#define CONFIGURATION_ADV_H_VERSION 02000904 +#define CONFIGURATION_ADV_H_VERSION 02000905 //=========================================================================== //============================= Thermal Settings ============================ @@ -54,87 +54,87 @@ // Custom Thermistor 1000 parameters // #if TEMP_SENSOR_0 == 1000 - #define HOTEND0_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND0_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND0_BETA 3950 // Beta value + #define HOTEND0_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND0_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND0_BETA 3950 // Beta value #endif #if TEMP_SENSOR_1 == 1000 - #define HOTEND1_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND1_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND1_BETA 3950 // Beta value + #define HOTEND1_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND1_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND1_BETA 3950 // Beta value #endif #if TEMP_SENSOR_2 == 1000 - #define HOTEND2_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND2_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND2_BETA 3950 // Beta value + #define HOTEND2_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND2_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND2_BETA 3950 // Beta value #endif #if TEMP_SENSOR_3 == 1000 - #define HOTEND3_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND3_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND3_BETA 3950 // Beta value + #define HOTEND3_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND3_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND3_BETA 3950 // Beta value #endif #if TEMP_SENSOR_4 == 1000 - #define HOTEND4_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND4_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND4_BETA 3950 // Beta value + #define HOTEND4_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND4_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND4_BETA 3950 // Beta value #endif #if TEMP_SENSOR_5 == 1000 - #define HOTEND5_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND5_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND5_BETA 3950 // Beta value + #define HOTEND5_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND5_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND5_BETA 3950 // Beta value #endif #if TEMP_SENSOR_6 == 1000 - #define HOTEND6_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND6_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND6_BETA 3950 // Beta value + #define HOTEND6_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND6_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND6_BETA 3950 // Beta value #endif #if TEMP_SENSOR_7 == 1000 - #define HOTEND7_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define HOTEND7_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define HOTEND7_BETA 3950 // Beta value + #define HOTEND7_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define HOTEND7_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define HOTEND7_BETA 3950 // Beta value #endif #if TEMP_SENSOR_BED == 1000 - #define BED_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define BED_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define BED_BETA 3950 // Beta value + #define BED_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define BED_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define BED_BETA 3950 // Beta value #endif #if TEMP_SENSOR_CHAMBER == 1000 - #define CHAMBER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define CHAMBER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define CHAMBER_BETA 3950 // Beta value + #define CHAMBER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define CHAMBER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define CHAMBER_BETA 3950 // Beta value #endif #if TEMP_SENSOR_COOLER == 1000 - #define COOLER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define COOLER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define COOLER_BETA 3950 // Beta value + #define COOLER_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define COOLER_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define COOLER_BETA 3950 // Beta value #endif #if TEMP_SENSOR_PROBE == 1000 - #define PROBE_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define PROBE_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define PROBE_BETA 3950 // Beta value + #define PROBE_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define PROBE_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define PROBE_BETA 3950 // Beta value #endif #if TEMP_SENSOR_BOARD == 1000 - #define BOARD_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define BOARD_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define BOARD_BETA 3950 // Beta value + #define BOARD_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define BOARD_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define BOARD_BETA 3950 // Beta value #endif #if TEMP_SENSOR_REDUNDANT == 1000 - #define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor - #define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C - #define REDUNDANT_BETA 3950 // Beta value + #define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor + #define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C + #define REDUNDANT_BETA 3950 // Beta value #endif /** @@ -923,9 +923,12 @@ */ //#define Z_STEPPER_AUTO_ALIGN #if ENABLED(Z_STEPPER_AUTO_ALIGN) - // Define probe X and Y positions for Z1, Z2 [, Z3 [, Z4]] - // If not defined, probe limits will be used. - // Override with 'M422 S X Y' + /** + * Define probe X and Y positions for Z1, Z2 [, Z3 [, Z4]] + * These positions are machine-relative and do not shift with the M206 home offset! + * If not defined, probe limits will be used. + * Override with 'M422 S X Y'. + */ //#define Z_STEPPER_ALIGN_XY { { 10, 190 }, { 100, 10 }, { 190, 190 } } /** @@ -3475,7 +3478,7 @@ // ESP32: If SPINDLE_LASER_PWM_PIN is onboard then <=78125Hz. For I2S expander // the frequency determines the PWM resolution. 2500Hz = 0-100, 977Hz = 0-255, ... // (250000 / SPINDLE_LASER_FREQUENCY) = max value. -#endif + #endif //#define AIR_EVACUATION // Cutter Vacuum / Laser Blower motor control with G-codes M10-M11 #if ENABLED(AIR_EVACUATION) @@ -3548,8 +3551,11 @@ #endif // Define the minimum and maximum test pulse time values for a laser test fire function - #define LASER_TEST_PULSE_MIN 1 // Used with Laser Control Menu - #define LASER_TEST_PULSE_MAX 999 // Caution: Menu may not show more than 3 characters + #define LASER_TEST_PULSE_MIN 1 // (ms) Used with Laser Control Menu + #define LASER_TEST_PULSE_MAX 999 // (ms) Caution: Menu may not show more than 3 characters + + #define SPINDLE_LASER_POWERUP_DELAY 50 // (ms) Delay to allow the spindle/laser to come up to speed/power + #define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop /** * Laser Safety Timeout @@ -3562,79 +3568,38 @@ #define LASER_SAFETY_TIMEOUT_MS 1000 // (ms) /** - * Enable inline laser power to be handled in the planner / stepper routines. - * Inline power is specified by the I (inline) flag in an M3 command (e.g., M3 S20 I) - * or by the 'S' parameter in G0/G1/G2/G3 moves (see LASER_MOVE_POWER). + * Any M3 or G1/2/3/5 command with the 'I' parameter enables continuous inline power mode. * - * This allows the laser to keep in perfect sync with the planner and removes - * the powerup/down delay since lasers require negligible time. + * e.g., 'M3 I' enables continuous inline power which is processed by the planner. + * Power is stored in move blocks and applied when blocks are processed by the Stepper ISR. + * + * 'M4 I' sets dynamic mode which uses the current feedrate to calculate a laser power OCR value. + * + * Any move in dynamic mode will use the current feedrate to calculate the laser power. + * Feed rates are set by the F parameter of a move command e.g. G1 X0 Y10 F6000 + * Laser power would be calculated by bit shifting off 8 LSB's. In binary this is div 256. + * The calculation gives us ocr values from 0 to 255, values over F65535 will be set as 255 . + * More refined power control such as compesation for accell/decell will be addressed in future releases. + * + * M5 I clears inline mode and set power to 0, M5 sets the power output to 0 but leaves inline mode on. */ - //#define LASER_POWER_INLINE - #if ENABLED(LASER_POWER_INLINE) - /** - * Scale the laser's power in proportion to the movement rate. - * - * - Sets the entry power proportional to the entry speed over the nominal speed. - * - Ramps the power up every N steps to approximate the speed trapezoid. - * - Due to the limited power resolution this is only approximate. - */ - #define LASER_POWER_INLINE_TRAPEZOID - - /** - * Continuously calculate the current power (nominal_power * current_rate / nominal_rate). - * Required for accurate power with non-trapezoidal acceleration (e.g., S_CURVE_ACCELERATION). - * This is a costly calculation so this option is discouraged on 8-bit AVR boards. - * - * LASER_POWER_INLINE_TRAPEZOID_CONT_PER defines how many step cycles there are between power updates. If your - * board isn't able to generate steps fast enough (and you are using LASER_POWER_INLINE_TRAPEZOID_CONT), increase this. - * Note that when this is zero it means it occurs every cycle; 1 means a delay wait one cycle then run, etc. - */ - //#define LASER_POWER_INLINE_TRAPEZOID_CONT - - /** - * Stepper iterations between power updates. Increase this value if the board - * can't keep up with the processing demands of LASER_POWER_INLINE_TRAPEZOID_CONT. - * Disable (or set to 0) to recalculate power on every stepper iteration. - */ - //#define LASER_POWER_INLINE_TRAPEZOID_CONT_PER 10 - - /** - * Include laser power in G0/G1/G2/G3/G5 commands with the 'S' parameter - */ - //#define LASER_MOVE_POWER - - #if ENABLED(LASER_MOVE_POWER) - // Turn off the laser on G0 moves with no power parameter. - // If a power parameter is provided, use that instead. - //#define LASER_MOVE_G0_OFF - - // Turn off the laser on G28 homing. - //#define LASER_MOVE_G28_OFF - #endif - - /** - * Inline flag inverted - * - * WARNING: M5 will NOT turn off the laser unless another move - * is done (so G-code files must end with 'M5 I'). - */ - //#define LASER_POWER_INLINE_INVERT - - /** - * Continuously apply inline power. ('M3 S3' == 'G1 S3' == 'M3 S3 I') - * - * The laser might do some weird things, so only enable this - * feature if you understand the implications. - */ - //#define LASER_POWER_INLINE_CONTINUOUS - - #else - - #define SPINDLE_LASER_POWERUP_DELAY 50 // (ms) Delay to allow the spindle/laser to come up to speed/power - #define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop + /** + * Enable M3 commands for laser mode inline power planner syncing. + * This feature enables any M3 S-value to be injected into the block buffers while in + * CUTTER_MODE_CONTINUOUS. The option allows M3 laser power to be commited without waiting + * for a planner syncronization + */ + //#define LASER_POWER_SYNC - #endif + /** + * Scale the laser's power in proportion to the movement rate. + * + * - Sets the entry power proportional to the entry speed over the nominal speed. + * - Ramps the power up every N steps to approximate the speed trapezoid. + * - Due to the limited power resolution this is only approximate. + */ + //#define LASER_POWER_TRAP // // Laser I2C Ammeter (High precision INA226 low/high side module) diff --git a/Marlin/Makefile b/Marlin/Makefile index 563354fdbe1f..c72c1d589607 100644 --- a/Marlin/Makefile +++ b/Marlin/Makefile @@ -317,123 +317,10 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1159) else ifeq ($(HARDWARE_MOTHERBOARD),1160) # Longer LKx PRO / Alfawise Uxx Pro (PRO version) else ifeq ($(HARDWARE_MOTHERBOARD),1161) - - -# 3Drag Controller -else ifeq ($(HARDWARE_MOTHERBOARD),1100) -# Velleman K8200 Controller (derived from 3Drag Controller) -else ifeq ($(HARDWARE_MOTHERBOARD),1101) -# Velleman K8400 Controller (derived from 3Drag Controller) -else ifeq ($(HARDWARE_MOTHERBOARD),1102) -# Velleman K8600 Controller (Vertex Nano) -else ifeq ($(HARDWARE_MOTHERBOARD),1103) -# Velleman K8800 Controller (Vertex Delta) -else ifeq ($(HARDWARE_MOTHERBOARD),1104) -# 2PrintBeta BAM&DICE with STK drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1105) -# 2PrintBeta BAM&DICE Due with STK drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1106) -# MKS BASE v1.0 -else ifeq ($(HARDWARE_MOTHERBOARD),1107) -# MKS v1.4 with A4982 stepper drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1108) -# MKS v1.5 with Allegro A4982 stepper drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1109) -# MKS v1.6 with Allegro A4982 stepper drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1110) -# MKS BASE 1.0 with Heroic HR4982 stepper drivers -else ifeq ($(HARDWARE_MOTHERBOARD),1111) -# MKS GEN v1.3 or 1.4 -else ifeq ($(HARDWARE_MOTHERBOARD),1112) -# MKS GEN L -else ifeq ($(HARDWARE_MOTHERBOARD),1113) -# zrib V2.0 control board (Chinese RAMPS replica) -else ifeq ($(HARDWARE_MOTHERBOARD),1114) -# BigTreeTech or BIQU KFB2.0 -else ifeq ($(HARDWARE_MOTHERBOARD),1115) -# Felix 2.0+ Electronics Board (RAMPS like) -else ifeq ($(HARDWARE_MOTHERBOARD),1116) -# Invent-A-Part RigidBoard -else ifeq ($(HARDWARE_MOTHERBOARD),1117) -# Invent-A-Part RigidBoard V2 -else ifeq ($(HARDWARE_MOTHERBOARD),1118) -# Sainsmart 2-in-1 board -else ifeq ($(HARDWARE_MOTHERBOARD),1119) -# Ultimaker -else ifeq ($(HARDWARE_MOTHERBOARD),1120) -# Ultimaker (Older electronics. Pre 1.5.4. This is rare) -else ifeq ($(HARDWARE_MOTHERBOARD),1121) - MCU ?= atmega1280 - PROG_MCU ?= m1280 - -# Azteeg X3 -else ifeq ($(HARDWARE_MOTHERBOARD),1122) -# Azteeg X3 Pro -else ifeq ($(HARDWARE_MOTHERBOARD),1123) -# Ultimainboard 2.x (Uses TEMP_SENSOR 20) -else ifeq ($(HARDWARE_MOTHERBOARD),1124) -# Rumba -else ifeq ($(HARDWARE_MOTHERBOARD),1125) -# Raise3D Rumba -else ifeq ($(HARDWARE_MOTHERBOARD),1126) -# Rapide Lite RL200 Rumba -else ifeq ($(HARDWARE_MOTHERBOARD),1127) -# Formbot T-Rex 2 Plus -else ifeq ($(HARDWARE_MOTHERBOARD),1128) -# Formbot T-Rex 3 -else ifeq ($(HARDWARE_MOTHERBOARD),1129) -# Formbot Raptor -else ifeq ($(HARDWARE_MOTHERBOARD),1130) -# Formbot Raptor 2 -else ifeq ($(HARDWARE_MOTHERBOARD),1131) -# bq ZUM Mega 3D -else ifeq ($(HARDWARE_MOTHERBOARD),1132) -# MakeBoard Mini v2.1.2 is a control board sold by MicroMake -else ifeq ($(HARDWARE_MOTHERBOARD),1133) -# TriGorilla Anycubic version 1.3 based on RAMPS EFB -else ifeq ($(HARDWARE_MOTHERBOARD),1134) -# TriGorilla Anycubic version 1.4 based on RAMPS EFB -else ifeq ($(HARDWARE_MOTHERBOARD),1135) -# TriGorilla Anycubic version 1.4 Rev 1.1 -else ifeq ($(HARDWARE_MOTHERBOARD),1136) -# Creality: Ender-4, CR-8 -else ifeq ($(HARDWARE_MOTHERBOARD),1137) -# Creality: CR10S, CR20, CR-X -else ifeq ($(HARDWARE_MOTHERBOARD),1138) -# Dagoma F5 -else ifeq ($(HARDWARE_MOTHERBOARD),1139) -# FYSETC F6 1.3 -else ifeq ($(HARDWARE_MOTHERBOARD),1140) -# FYSETC F6 1.5 -else ifeq ($(HARDWARE_MOTHERBOARD),1141) -# Duplicator i3 Plus -else ifeq ($(HARDWARE_MOTHERBOARD),1142) -# VORON -else ifeq ($(HARDWARE_MOTHERBOARD),1143) -# TRONXY V3 1.0 -else ifeq ($(HARDWARE_MOTHERBOARD),1144) -# Z-Bolt X Series -else ifeq ($(HARDWARE_MOTHERBOARD),1145) -# TT OSCAR -else ifeq ($(HARDWARE_MOTHERBOARD),1146) -# Overlord/Overlord Pro -else ifeq ($(HARDWARE_MOTHERBOARD),1147) -# ADIMLab Gantry v1 -else ifeq ($(HARDWARE_MOTHERBOARD),1148) -# ADIMLab Gantry v2 -else ifeq ($(HARDWARE_MOTHERBOARD),1149) -# BIQU Tango V1 -else ifeq ($(HARDWARE_MOTHERBOARD),1150) -# MKS GEN L V2 -else ifeq ($(HARDWARE_MOTHERBOARD),1151) -# MKS GEN L V2.1 -else ifeq ($(HARDWARE_MOTHERBOARD),1152) -# Copymaster 3D -else ifeq ($(HARDWARE_MOTHERBOARD),1153) -# Ortur 4 -else ifeq ($(HARDWARE_MOTHERBOARD),1154) -# Tenlog D3 Hero -else ifeq ($(HARDWARE_MOTHERBOARD),1155) +# Zonestar zrib V5.3 (Chinese RAMPS replica) +else ifeq ($(HARDWARE_MOTHERBOARD),1162) +# Pxmalion Core I3 +else ifeq ($(HARDWARE_MOTHERBOARD),1163) # # RAMBo and derivatives diff --git a/Marlin/Version.h b/Marlin/Version.h index 68d56f6e7ecf..bbeb3084f065 100644 --- a/Marlin/Version.h +++ b/Marlin/Version.h @@ -28,7 +28,7 @@ /** * Marlin release version identifier */ -//#define SHORT_BUILD_VERSION "2.0.9.4" +//#define SHORT_BUILD_VERSION "2.0.9.7" /** * Verbose version identifier which should contain a reference to the location @@ -41,7 +41,7 @@ * here we define this default string as the date where the latest release * version was tagged. */ -//#define STRING_DISTRIBUTION_DATE "2022-06-04" +//#define STRING_DISTRIBUTION_DATE "2023-07-04" /** * Defines a generic printer name to be output to the LCD after booting Marlin. diff --git a/Marlin/config.ini b/Marlin/config.ini new file mode 100644 index 000000000000..0fb9fb0c9308 --- /dev/null +++ b/Marlin/config.ini @@ -0,0 +1,211 @@ +# +# Marlin Firmware +# config.ini - Options to apply before the build +# +[config:base] +ini_use_config = none + +# Load all config: sections in this file +;ini_use_config = all +# Load config file relative to Marlin/ +;ini_use_config = another.ini +# Download configurations from GitHub +;ini_use_config = example/Creality/Ender-5 Plus @ bugfix-2.1.x +# Download configurations from your server +;ini_use_config = https://me.myserver.com/path/to/configs +# Evaluate config:base and do a config dump +;ini_use_config = base +;config_export = 2 + +[config:minimal] +motherboard = BOARD_RAMPS_14_EFB +serial_port = 0 +baudrate = 250000 + +use_watchdog = on +thermal_protection_hotends = on +thermal_protection_hysteresis = 4 +thermal_protection_period = 40 + +bufsize = 4 +block_buffer_size = 16 +max_cmd_size = 96 + +extruders = 1 +temp_sensor_0 = 1 + +temp_hysteresis = 3 +heater_0_mintemp = 5 +heater_0_maxtemp = 275 +preheat_1_temp_hotend = 180 + +bang_max = 255 +pidtemp = on +pid_k1 = 0.95 +pid_max = BANG_MAX +pid_functional_range = 10 + +default_kp = 22.20 +default_ki = 1.08 +default_kd = 114.00 + +x_driver_type = A4988 +y_driver_type = A4988 +z_driver_type = A4988 +e0_driver_type = A4988 + +x_bed_size = 200 +x_min_pos = 0 +x_max_pos = X_BED_SIZE + +y_bed_size = 200 +y_min_pos = 0 +y_max_pos = Y_BED_SIZE + +z_min_pos = 0 +z_max_pos = 200 + +x_home_dir = -1 +y_home_dir = -1 +z_home_dir = -1 + +use_xmin_plug = on +use_ymin_plug = on +use_zmin_plug = on + +x_min_endstop_inverting = false +y_min_endstop_inverting = false +z_min_endstop_inverting = false + +default_axis_steps_per_unit = { 80, 80, 400, 500 } +axis_relative_modes = { false, false, false, false } +default_max_feedrate = { 300, 300, 5, 25 } +default_max_acceleration = { 3000, 3000, 100, 10000 } + +homing_feedrate_mm_m = { (50*60), (50*60), (4*60) } +homing_bump_divisor = { 2, 2, 4 } + +x_enable_on = 0 +y_enable_on = 0 +z_enable_on = 0 +e_enable_on = 0 + +invert_x_dir = false +invert_y_dir = true +invert_z_dir = false +invert_e0_dir = false + +invert_e_step_pin = false +invert_x_step_pin = false +invert_y_step_pin = false +invert_z_step_pin = false + +disable_x = false +disable_y = false +disable_z = false +disable_e = false + +proportional_font_ratio = 1.0 +default_nominal_filament_dia = 1.75 + +junction_deviation_mm = 0.013 + +default_acceleration = 3000 +default_travel_acceleration = 3000 +default_retract_acceleration = 3000 + +default_minimumfeedrate = 0.0 +default_mintravelfeedrate = 0.0 + +minimum_planner_speed = 0.05 +min_steps_per_segment = 6 +default_minsegmenttime = 20000 + +[config:basic] +bed_overshoot = 10 +busy_while_heating = on +default_ejerk = 5.0 +default_keepalive_interval = 2 +default_leveling_fade_height = 0.0 +disable_inactive_extruder = on +display_charset_hd44780 = JAPANESE +eeprom_boot_silent = on +eeprom_chitchat = on +endstoppullups = on +extrude_maxlength = 200 +extrude_mintemp = 170 +host_keepalive_feature = on +hotend_overshoot = 15 +jd_handle_small_segments = on +lcd_info_screen_style = 0 +lcd_language = en +max_bed_power = 255 +mesh_inset = 0 +min_software_endstops = on +max_software_endstops = on +min_software_endstop_x = on +min_software_endstop_y = on +min_software_endstop_z = on +max_software_endstop_x = on +max_software_endstop_y = on +max_software_endstop_z = on +preheat_1_fan_speed = 0 +preheat_1_label = "PLA" +preheat_1_temp_bed = 70 +prevent_cold_extrusion = on +prevent_lengthy_extrude = on +printjob_timer_autostart = on +probing_margin = 10 +show_bootscreen = on +soft_pwm_scale = 0 +string_config_h_author = "(none, default config)" +temp_bed_hysteresis = 3 +temp_bed_residency_time = 10 +temp_bed_window = 1 +temp_residency_time = 10 +temp_window = 1 +validate_homing_endstops = on +xy_probe_feedrate = (133*60) +z_clearance_between_probes = 5 +z_clearance_deploy_probe = 10 +z_clearance_multi_probe = 5 + +[config:advanced] +arc_support = on +auto_report_temperatures = on +autotemp = on +autotemp_oldweight = 0.98 +bed_check_interval = 5000 +default_stepper_deactive_time = 120 +default_volumetric_extruder_limit = 0.00 +disable_inactive_e = true +disable_inactive_x = true +disable_inactive_y = true +disable_inactive_z = true +e0_auto_fan_pin = -1 +encoder_100x_steps_per_sec = 80 +encoder_10x_steps_per_sec = 30 +encoder_rate_multiplier = on +extended_capabilities_report = on +extruder_auto_fan_speed = 255 +extruder_auto_fan_temperature = 50 +fanmux0_pin = -1 +fanmux1_pin = -1 +fanmux2_pin = -1 +faster_gcode_parser = on +homing_bump_mm = { 5, 5, 2 } +max_arc_segment_mm = 1.0 +min_arc_segment_mm = 0.1 +min_circle_segments = 72 +n_arc_correction = 25 +serial_overrun_protection = on +slowdown = on +slowdown_divisor = 2 +temp_sensor_bed = 0 +thermal_protection_bed_hysteresis = 2 +thermocouple_max_errors = 15 +tx_buffer_size = 0 +watch_bed_temp_increase = 2 +watch_bed_temp_period = 60 +watch_temp_increase = 2 +watch_temp_period = 20 diff --git a/Marlin/src/HAL/AVR/HAL.h b/Marlin/src/HAL/AVR/HAL.h index 7185142175dc..149186772158 100644 --- a/Marlin/src/HAL/AVR/HAL.h +++ b/Marlin/src/HAL/AVR/HAL.h @@ -19,6 +19,10 @@ */ #pragma once +/** + * HAL for Arduino AVR + */ + #include "../shared/Marduino.h" #include "../shared/HAL_SPI.h" #include "fastio.h" diff --git a/Marlin/src/HAL/DUE/upload_extra_script.py b/Marlin/src/HAL/DUE/upload_extra_script.py index 4f7a494512b2..ca12b3b54f43 100644 --- a/Marlin/src/HAL/DUE/upload_extra_script.py +++ b/Marlin/src/HAL/DUE/upload_extra_script.py @@ -6,14 +6,14 @@ # import pioutil if pioutil.is_pio_build(): - import platform - current_OS = platform.system() + import platform + current_OS = platform.system() - if current_OS == 'Windows': + if current_OS == 'Windows': - Import("env") + Import("env") - # Use bossac.exe on Windows - env.Replace( - UPLOADCMD="bossac --info --unlock --write --verify --reset --erase -U false --boot $SOURCE" - ) + # Use bossac.exe on Windows + env.Replace( + UPLOADCMD="bossac --info --unlock --write --verify --reset --erase -U false --boot $SOURCE" + ) diff --git a/Marlin/src/HAL/ESP32/HAL.h b/Marlin/src/HAL/ESP32/HAL.h index 600ca8f5ee37..ddfedf92eed9 100644 --- a/Marlin/src/HAL/ESP32/HAL.h +++ b/Marlin/src/HAL/ESP32/HAL.h @@ -60,8 +60,8 @@ #endif #endif -#define CRITICAL_SECTION_START() portENTER_CRITICAL(&spinlock) -#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&spinlock) +#define CRITICAL_SECTION_START() portENTER_CRITICAL(&hal.spinlock) +#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&hal.spinlock) #define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment #define PWM_FREQUENCY 1000u // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency() diff --git a/Marlin/src/HAL/LPC1768/upload_extra_script.py b/Marlin/src/HAL/LPC1768/upload_extra_script.py index 7975f151f712..efd46fdd6309 100755 --- a/Marlin/src/HAL/LPC1768/upload_extra_script.py +++ b/Marlin/src/HAL/LPC1768/upload_extra_script.py @@ -9,119 +9,127 @@ import pioutil if pioutil.is_pio_build(): - target_filename = "FIRMWARE.CUR" - target_drive = "REARM" + target_filename = "FIRMWARE.CUR" + target_drive = "REARM" - import os,getpass,platform + import platform - current_OS = platform.system() - Import("env") + current_OS = platform.system() + Import("env") - def print_error(e): - print('\nUnable to find destination disk (%s)\n' \ - 'Please select it in platformio.ini using the upload_port keyword ' \ - '(https://docs.platformio.org/en/latest/projectconf/section_env_upload.html) ' \ - 'or copy the firmware (.pio/build/%s/firmware.bin) manually to the appropriate disk\n' \ - %(e, env.get('PIOENV'))) + def print_error(e): + print('\nUnable to find destination disk (%s)\n' \ + 'Please select it in platformio.ini using the upload_port keyword ' \ + '(https://docs.platformio.org/en/latest/projectconf/section_env_upload.html) ' \ + 'or copy the firmware (.pio/build/%s/firmware.bin) manually to the appropriate disk\n' \ + %(e, env.get('PIOENV'))) - def before_upload(source, target, env): - try: - # - # Find a disk for upload - # - upload_disk = 'Disk not found' - target_file_found = False - target_drive_found = False - if current_OS == 'Windows': - # - # platformio.ini will accept this for a Windows upload port designation: 'upload_port = L:' - # Windows - doesn't care about the disk's name, only cares about the drive letter - import subprocess,string - from ctypes import windll + def before_upload(source, target, env): + try: + from pathlib import Path + # + # Find a disk for upload + # + upload_disk = 'Disk not found' + target_file_found = False + target_drive_found = False + if current_OS == 'Windows': + # + # platformio.ini will accept this for a Windows upload port designation: 'upload_port = L:' + # Windows - doesn't care about the disk's name, only cares about the drive letter + import subprocess,string + from ctypes import windll + from pathlib import PureWindowsPath - # getting list of drives - # https://stackoverflow.com/questions/827371/is-there-a-way-to-list-all-the-available-drive-letters-in-python - drives = [] - bitmask = windll.kernel32.GetLogicalDrives() - for letter in string.ascii_uppercase: - if bitmask & 1: - drives.append(letter) - bitmask >>= 1 + # getting list of drives + # https://stackoverflow.com/questions/827371/is-there-a-way-to-list-all-the-available-drive-letters-in-python + drives = [] + bitmask = windll.kernel32.GetLogicalDrives() + for letter in string.ascii_uppercase: + if bitmask & 1: + drives.append(letter) + bitmask >>= 1 - for drive in drives: - final_drive_name = drive + ':\\' - # print ('disc check: {}'.format(final_drive_name)) - try: - volume_info = str(subprocess.check_output('cmd /C dir ' + final_drive_name, stderr=subprocess.STDOUT)) - except Exception as e: - print ('error:{}'.format(e)) - continue - else: - if target_drive in volume_info and not target_file_found: # set upload if not found target file yet - target_drive_found = True - upload_disk = final_drive_name - if target_filename in volume_info: - if not target_file_found: - upload_disk = final_drive_name - target_file_found = True + for drive in drives: + final_drive_name = drive + ':' + # print ('disc check: {}'.format(final_drive_name)) + try: + volume_info = str(subprocess.check_output('cmd /C dir ' + final_drive_name, stderr=subprocess.STDOUT)) + except Exception as e: + print ('error:{}'.format(e)) + continue + else: + if target_drive in volume_info and not target_file_found: # set upload if not found target file yet + target_drive_found = True + upload_disk = PureWindowsPath(final_drive_name) + if target_filename in volume_info: + if not target_file_found: + upload_disk = PureWindowsPath(final_drive_name) + target_file_found = True - elif current_OS == 'Linux': - # - # platformio.ini will accept this for a Linux upload port designation: 'upload_port = /media/media_name/drive' - # - drives = os.listdir(os.path.join(os.sep, 'media', getpass.getuser())) - if target_drive in drives: # If target drive is found, use it. - target_drive_found = True - upload_disk = os.path.join(os.sep, 'media', getpass.getuser(), target_drive) + os.sep - else: - for drive in drives: - try: - files = os.listdir(os.path.join(os.sep, 'media', getpass.getuser(), drive)) - except: - continue - else: - if target_filename in files: - upload_disk = os.path.join(os.sep, 'media', getpass.getuser(), drive) + os.sep - target_file_found = True - break - # - # set upload_port to drive if found - # + elif current_OS == 'Linux': + # + # platformio.ini will accept this for a Linux upload port designation: 'upload_port = /media/media_name/drive' + # + import getpass + user = getpass.getuser() + mpath = Path('/media', user) + drives = [ x for x in mpath.iterdir() if x.is_dir() ] + if target_drive in drives: # If target drive is found, use it. + target_drive_found = True + upload_disk = mpath / target_drive + else: + for drive in drives: + try: + fpath = mpath / drive + filenames = [ x.name for x in fpath.iterdir() if x.is_file() ] + except: + continue + else: + if target_filename in filenames: + upload_disk = mpath / drive + target_file_found = True + break + # + # set upload_port to drive if found + # - if target_file_found or target_drive_found: - env.Replace( - UPLOAD_FLAGS="-P$UPLOAD_PORT" - ) + if target_file_found or target_drive_found: + env.Replace( + UPLOAD_FLAGS="-P$UPLOAD_PORT" + ) - elif current_OS == 'Darwin': # MAC - # - # platformio.ini will accept this for a OSX upload port designation: 'upload_port = /media/media_name/drive' - # - drives = os.listdir('/Volumes') # human readable names - if target_drive in drives and not target_file_found: # set upload if not found target file yet - target_drive_found = True - upload_disk = '/Volumes/' + target_drive + '/' - for drive in drives: - try: - filenames = os.listdir('/Volumes/' + drive + '/') # will get an error if the drive is protected - except: - continue - else: - if target_filename in filenames: - if not target_file_found: - upload_disk = '/Volumes/' + drive + '/' - target_file_found = True + elif current_OS == 'Darwin': # MAC + # + # platformio.ini will accept this for a OSX upload port designation: 'upload_port = /media/media_name/drive' + # + dpath = Path('/Volumes') # human readable names + drives = [ x for x in dpath.iterdir() if x.is_dir() ] + if target_drive in drives and not target_file_found: # set upload if not found target file yet + target_drive_found = True + upload_disk = dpath / target_drive + for drive in drives: + try: + fpath = dpath / drive # will get an error if the drive is protected + filenames = [ x.name for x in fpath.iterdir() if x.is_file() ] + except: + continue + else: + if target_filename in filenames: + upload_disk = dpath / drive + target_file_found = True + break - # - # Set upload_port to drive if found - # - if target_file_found or target_drive_found: - env.Replace(UPLOAD_PORT=upload_disk) - print('\nUpload disk: ', upload_disk, '\n') - else: - print_error('Autodetect Error') + # + # Set upload_port to drive if found + # + if target_file_found or target_drive_found: + env.Replace(UPLOAD_PORT=str(upload_disk)) + print('\nUpload disk: ', upload_disk, '\n') + else: + print_error('Autodetect Error') - except Exception as e: - print_error(str(e)) + except Exception as e: + print_error(str(e)) - env.AddPreAction("upload", before_upload) + env.AddPreAction("upload", before_upload) diff --git a/Marlin/src/HAL/STM32/sdio.cpp b/Marlin/src/HAL/STM32/sdio.cpp index e958d8c3bc48..41fe90b82540 100644 --- a/Marlin/src/HAL/STM32/sdio.cpp +++ b/Marlin/src/HAL/STM32/sdio.cpp @@ -33,227 +33,410 @@ #include #include -// use local drivers #if defined(STM32F103xE) || defined(STM32F103xG) - #include + #include + #include #elif defined(STM32F4xx) - #include + #include + #include + #include + #include #elif defined(STM32F7xx) - #include + #include + #include + #include + #include #elif defined(STM32H7xx) - #include + #define SDIO_FOR_STM32H7 + #include + #include + #include + #include #else - #error "SDIO only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, or STM32H7xx." + #error "SDIO is only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, and STM32H7xx." #endif +// SDIO Max Clock (naming from STM Manual, don't change) +#define SDIOCLK 48000000 + // Target Clock, configurable. Default is 18MHz, from STM32F1 #ifndef SDIO_CLOCK #define SDIO_CLOCK 18000000 // 18 MHz #endif -#define SD_TIMEOUT 1000 // ms +SD_HandleTypeDef hsd; // SDIO structure -// SDIO Max Clock (naming from STM Manual, don't change) -#define SDIOCLK 48000000 +static uint32_t clock_to_divider(uint32_t clk) { + #ifdef SDIO_FOR_STM32H7 + // SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV]. + uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC); + return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0); + #else + // limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals + // Also limited to no more than 48Mhz (SDIOCLK). + const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq(); + clk = min(clk, (uint32_t)(pclk2 * 8 / 3)); + clk = min(clk, (uint32_t)SDIOCLK); + // Round up divider, so we don't run the card over the speed supported, + // and subtract by 2, because STM32 will add 2, as written in the manual: + // SDIO_CK frequency = SDIOCLK / [CLKDIV + 2] + return pclk2 / clk + (pclk2 % clk != 0) - 2; + #endif +} -#if defined(STM32F1xx) - DMA_HandleTypeDef hdma_sdio; - extern "C" void DMA2_Channel4_5_IRQHandler(void) { - HAL_DMA_IRQHandler(&hdma_sdio); - } -#elif defined(STM32F4xx) - DMA_HandleTypeDef hdma_sdio_rx; - DMA_HandleTypeDef hdma_sdio_tx; - extern "C" void DMA2_Stream3_IRQHandler(void) { - HAL_DMA_IRQHandler(&hdma_sdio_rx); +// Start the SDIO clock +void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { + UNUSED(hsd); + #ifdef SDIO_FOR_STM32H7 + pinmap_pinout(PC_12, PinMap_SD); + pinmap_pinout(PD_2, PinMap_SD); + pinmap_pinout(PC_8, PinMap_SD); + #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // Define D1-D3 only for 4-bit wide SDIO bus + pinmap_pinout(PC_9, PinMap_SD); + pinmap_pinout(PC_10, PinMap_SD); + pinmap_pinout(PC_11, PinMap_SD); + #endif + __HAL_RCC_SDMMC1_CLK_ENABLE(); + HAL_NVIC_EnableIRQ(SDMMC1_IRQn); + #else + __HAL_RCC_SDIO_CLK_ENABLE(); + #endif +} + +#ifdef SDIO_FOR_STM32H7 + + #define SD_TIMEOUT 1000 // ms + + extern "C" void SDMMC1_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); } + + uint8_t waitingRxCplt = 0, waitingTxCplt = 0; + void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { waitingTxCplt = 0; } + void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { waitingRxCplt = 0; } + + void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { + __HAL_RCC_SDMMC1_FORCE_RESET(); delay(10); + __HAL_RCC_SDMMC1_RELEASE_RESET(); delay(10); } - extern "C" void DMA2_Stream6_IRQHandler(void) { - HAL_DMA_IRQHandler(&hdma_sdio_tx); + bool SDIO_Init() { + HAL_StatusTypeDef sd_state = HAL_OK; + if (hsd.Instance == SDMMC1) HAL_SD_DeInit(&hsd); + + // HAL SD initialization + hsd.Instance = SDMMC1; + hsd.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING; + hsd.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE; + hsd.Init.BusWide = SDMMC_BUS_WIDE_1B; + hsd.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE; + hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); + sd_state = HAL_SD_Init(&hsd); + + #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) + if (sd_state == HAL_OK) + sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDMMC_BUS_WIDE_4B); + #endif + + return (sd_state == HAL_OK); } -#elif defined(STM32H7xx) - #define __HAL_RCC_SDIO_FORCE_RESET __HAL_RCC_SDMMC1_FORCE_RESET - #define __HAL_RCC_SDIO_RELEASE_RESET __HAL_RCC_SDMMC1_RELEASE_RESET - #define __HAL_RCC_SDIO_CLK_ENABLE __HAL_RCC_SDMMC1_CLK_ENABLE - #define SDIO SDMMC1 - #define SDIO_IRQn SDMMC1_IRQn - #define SDIO_IRQHandler SDMMC1_IRQHandler - #define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING - #define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE - #define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B - #define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B - #define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE -#endif -uint8_t waitingRxCplt = 0; -uint8_t waitingTxCplt = 0; -SD_HandleTypeDef hsd; +#else // !SDIO_FOR_STM32H7 -extern "C" void SDIO_IRQHandler(void) { - HAL_SD_IRQHandler(&hsd); -} + #define SD_TIMEOUT 500 // ms -void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { - waitingTxCplt = 0; -} + // SDIO retries, configurable. Default is 3, from STM32F1 + #ifndef SDIO_READ_RETRIES + #define SDIO_READ_RETRIES 3 + #endif -void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { - waitingRxCplt = 0; -} + // F4 supports one DMA for RX and another for TX, but Marlin will never + // do read and write at same time, so we use the same DMA for both. + DMA_HandleTypeDef hdma_sdio; -void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { - pinmap_pinout(PC_12, PinMap_SD); - pinmap_pinout(PD_2, PinMap_SD); - pinmap_pinout(PC_8, PinMap_SD); - #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus - // D1-D3 - pinmap_pinout(PC_9, PinMap_SD); - pinmap_pinout(PC_10, PinMap_SD); - pinmap_pinout(PC_11, PinMap_SD); + #ifdef STM32F1xx + #define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler + #elif defined(STM32F4xx) + #define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler + #else + #error "Unknown STM32 architecture." #endif - __HAL_RCC_SDIO_CLK_ENABLE(); - HAL_NVIC_EnableIRQ(SDIO_IRQn); + extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); } + extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); } + + /* + SDIO_INIT_CLK_DIV is 118 + SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2) + SDIO init clock frequency should not exceed 400kHz = 48MHz / (118 + 2) + + Default TRANSFER_CLOCK_DIV is 2 (118 / 40) + Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz + This might be too fast for stable SDIO operations + + MKS Robin SDIO seems stable with BusWide 1bit and ClockDiv 8 (i.e., 4.8MHz SDIO clock frequency) + More testing is required as there are clearly some 4bit init problems. + */ + + void go_to_transfer_speed() { + /* Default SDIO peripheral configuration for SD card initialization */ + hsd.Init.ClockEdge = hsd.Init.ClockEdge; + hsd.Init.ClockBypass = hsd.Init.ClockBypass; + hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave; + hsd.Init.BusWide = hsd.Init.BusWide; + hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl; + hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); + + /* Initialize SDIO peripheral interface with default configuration */ + SDIO_Init(hsd.Instance, hsd.Init); + } - // DMA Config - #if defined(STM32F1xx) - __HAL_RCC_DMA2_CLK_ENABLE(); - HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); - hdma_sdio.Instance = DMA2_Channel4; - hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY; + void SD_LowLevel_Init() { + uint32_t tempreg; + + // Enable GPIO clocks + __HAL_RCC_GPIOC_CLK_ENABLE(); + __HAL_RCC_GPIOD_CLK_ENABLE(); + + GPIO_InitTypeDef GPIO_InitStruct; + + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = 1; // GPIO_NOPULL + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; + + #if DISABLED(STM32F1xx) + GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; + #endif + + GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK + HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); + + #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus + GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3 + HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); + #endif + + // Configure PD.02 CMD line + GPIO_InitStruct.Pin = GPIO_PIN_2; + HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); + + // Setup DMA + #ifdef STM32F1xx + hdma_sdio.Init.Mode = DMA_NORMAL; + hdma_sdio.Instance = DMA2_Channel4; + HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); + #elif defined(STM32F4xx) + hdma_sdio.Init.Mode = DMA_PFCTRL; + hdma_sdio.Instance = DMA2_Stream3; + hdma_sdio.Init.Channel = DMA_CHANNEL_4; + hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE; + hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; + hdma_sdio.Init.MemBurst = DMA_MBURST_INC4; + hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4; + HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); + #endif + HAL_NVIC_EnableIRQ(SDIO_IRQn); hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sdio.Init.MemInc = DMA_MINC_ENABLE; hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; - hdma_sdio.Init.Mode = DMA_NORMAL; hdma_sdio.Init.Priority = DMA_PRIORITY_LOW; - HAL_DMA_Init(&hdma_sdio); + __HAL_LINKDMA(&hsd, hdmarx, hdma_sdio); + __HAL_LINKDMA(&hsd, hdmatx, hdma_sdio); + + #ifdef STM32F1xx + __HAL_RCC_SDIO_CLK_ENABLE(); + __HAL_RCC_DMA2_CLK_ENABLE(); + #else + __HAL_RCC_SDIO_FORCE_RESET(); delay(2); + __HAL_RCC_SDIO_RELEASE_RESET(); delay(2); + __HAL_RCC_SDIO_CLK_ENABLE(); + + __HAL_RCC_DMA2_FORCE_RESET(); delay(2); + __HAL_RCC_DMA2_RELEASE_RESET(); delay(2); + __HAL_RCC_DMA2_CLK_ENABLE(); + #endif + + // Initialize the SDIO (with initial <400Khz Clock) + tempreg = 0 // Reset value + | SDIO_CLKCR_CLKEN // Clock enabled + | SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz + // Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable + SDIO->CLKCR = tempreg; + + // Power up the SDIO + SDIO_PowerState_ON(SDIO); + hsd.Instance = SDIO; + } - __HAL_LINKDMA(hsd, hdmarx ,hdma_sdio); - __HAL_LINKDMA(hsd, hdmatx, hdma_sdio); - #elif defined(STM32F4xx) - __HAL_RCC_DMA2_CLK_ENABLE(); - HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); - HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); - hdma_sdio_rx.Instance = DMA2_Stream3; - hdma_sdio_rx.Init.Channel = DMA_CHANNEL_4; - hdma_sdio_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; - hdma_sdio_rx.Init.PeriphInc = DMA_PINC_DISABLE; - hdma_sdio_rx.Init.MemInc = DMA_MINC_ENABLE; - hdma_sdio_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; - hdma_sdio_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; - hdma_sdio_rx.Init.Mode = DMA_PFCTRL; - hdma_sdio_rx.Init.Priority = DMA_PRIORITY_LOW; - hdma_sdio_rx.Init.FIFOMode = DMA_FIFOMODE_ENABLE; - hdma_sdio_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; - hdma_sdio_rx.Init.MemBurst = DMA_MBURST_INC4; - hdma_sdio_rx.Init.PeriphBurst = DMA_PBURST_INC4; - HAL_DMA_Init(&hdma_sdio_rx); - - __HAL_LINKDMA(hsd,hdmarx,hdma_sdio_rx); - - hdma_sdio_tx.Instance = DMA2_Stream6; - hdma_sdio_tx.Init.Channel = DMA_CHANNEL_4; - hdma_sdio_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; - hdma_sdio_tx.Init.PeriphInc = DMA_PINC_DISABLE; - hdma_sdio_tx.Init.MemInc = DMA_MINC_ENABLE; - hdma_sdio_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; - hdma_sdio_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; - hdma_sdio_tx.Init.Mode = DMA_PFCTRL; - hdma_sdio_tx.Init.Priority = DMA_PRIORITY_LOW; - hdma_sdio_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE; - hdma_sdio_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; - hdma_sdio_tx.Init.MemBurst = DMA_MBURST_INC4; - hdma_sdio_tx.Init.PeriphBurst = DMA_PBURST_INC4; - HAL_DMA_Init(&hdma_sdio_tx); - - __HAL_LINKDMA(hsd,hdmatx,hdma_sdio_tx); - #endif -} + bool SDIO_Init() { + uint8_t retryCnt = SDIO_READ_RETRIES; -void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { - #if !defined(STM32F1xx) - __HAL_RCC_SDIO_FORCE_RESET(); - delay(10); - __HAL_RCC_SDIO_RELEASE_RESET(); - delay(10); - #endif -} + bool status; + hsd.Instance = SDIO; + hsd.State = HAL_SD_STATE_RESET; -static uint32_t clock_to_divider(uint32_t clk) { - #if defined(STM32H7xx) - // SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV]. - uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC); - return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0); - #else - // limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals - // Also limited to no more than 48Mhz (SDIOCLK). - const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq(); - clk = min(clk, (uint32_t)(pclk2 * 8 / 3)); - clk = min(clk, (uint32_t)SDIOCLK); - // Round up divider, so we don't run the card over the speed supported, - // and subtract by 2, because STM32 will add 2, as written in the manual: - // SDIO_CK frequency = SDIOCLK / [CLKDIV + 2] - return pclk2 / clk + (pclk2 % clk != 0) - 2; - #endif -} + SD_LowLevel_Init(); -bool SDIO_Init() { - HAL_StatusTypeDef sd_state = HAL_OK; - if (hsd.Instance == SDIO) - HAL_SD_DeInit(&hsd); - - /* HAL SD initialization */ - hsd.Instance = SDIO; - hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; - hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; - hsd.Init.BusWide = SDIO_BUS_WIDE_1B; - hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; - hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); - sd_state = HAL_SD_Init(&hsd); - - #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) - if (sd_state == HAL_OK) { - sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B); + uint8_t retry_Cnt = retryCnt; + for (;;) { + hal.watchdog_refresh(); + status = (bool) HAL_SD_Init(&hsd); + if (!status) break; + if (!--retry_Cnt) return false; // return failing status if retries are exhausted } - #endif - return (sd_state == HAL_OK) ? true : false; -} + go_to_transfer_speed(); + + #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined + retry_Cnt = retryCnt; + for (;;) { + hal.watchdog_refresh(); + if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required + if (!--retry_Cnt) break; + } + if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode + hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET + SD_LowLevel_Init(); + retry_Cnt = retryCnt; + for (;;) { + hal.watchdog_refresh(); + status = (bool) HAL_SD_Init(&hsd); + if (!status) break; + if (!--retry_Cnt) return false; // return failing status if retries are exhausted + } + go_to_transfer_speed(); + } + #endif + + return true; + } -bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { - uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; + /** + * @brief Read or Write a block + * @details Read or Write a block with SDIO + * + * @param block The block index + * @param src The data buffer source for a write + * @param dst The data buffer destination for a read + * + * @return true on success + */ + static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) { + if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false; + + hal.watchdog_refresh(); + + HAL_StatusTypeDef ret; + if (src) { + hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH; + HAL_DMA_Init(&hdma_sdio); + ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1); + } + else { + hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY; + HAL_DMA_Init(&hdma_sdio); + ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1); + } - while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) { - if (HAL_GetTick() >= timeout) return false; + if (ret != HAL_OK) { + HAL_DMA_Abort_IT(&hdma_sdio); + HAL_DMA_DeInit(&hdma_sdio); + return false; + } + + millis_t timeout = millis() + SD_TIMEOUT; + // Wait the transfer + while (hsd.State != HAL_SD_STATE_READY) { + if (ELAPSED(millis(), timeout)) { + HAL_DMA_Abort_IT(&hdma_sdio); + HAL_DMA_DeInit(&hdma_sdio); + return false; + } + } + + while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0 + || __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ } + + HAL_DMA_Abort_IT(&hdma_sdio); + HAL_DMA_DeInit(&hdma_sdio); + + timeout = millis() + SD_TIMEOUT; + while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false; + + return true; } - waitingRxCplt = 1; - if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)dst, block, 1) != HAL_OK) - return false; +#endif // !SDIO_FOR_STM32H7 + +/** + * @brief Read a block + * @details Read a block from media with SDIO + * + * @param block The block index + * @param src The block buffer + * + * @return true on success + */ +bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { + #ifdef SDIO_FOR_STM32H7 + + uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; + + while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) + if (HAL_GetTick() >= timeout) return false; - timeout = HAL_GetTick() + SD_TIMEOUT; - while (waitingRxCplt) - if (HAL_GetTick() >= timeout) return false; + waitingRxCplt = 1; + if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1) != HAL_OK) + return false; + + timeout = HAL_GetTick() + SD_TIMEOUT; + while (waitingRxCplt) + if (HAL_GetTick() >= timeout) return false; + + return true; + + #else + + uint8_t retries = SDIO_READ_RETRIES; + while (retries--) if (SDIO_ReadWriteBlock_DMA(block, nullptr, dst)) return true; + return false; - return true; + #endif } +/** + * @brief Write a block + * @details Write a block to media with SDIO + * + * @param block The block index + * @param src The block data + * + * @return true on success + */ bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { - uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; + #ifdef SDIO_FOR_STM32H7 - while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) - if (HAL_GetTick() >= timeout) return false; + uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; - waitingTxCplt = 1; - if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)src, block, 1) != HAL_OK) - return false; + while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) + if (HAL_GetTick() >= timeout) return false; + + waitingTxCplt = 1; + if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1) != HAL_OK) + return false; - timeout = HAL_GetTick() + SD_TIMEOUT; - while (waitingTxCplt) - if (HAL_GetTick() >= timeout) return false; + timeout = HAL_GetTick() + SD_TIMEOUT; + while (waitingTxCplt) + if (HAL_GetTick() >= timeout) return false; - return true; + return true; + + #else + + uint8_t retries = SDIO_READ_RETRIES; + while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, nullptr)) return true; + return false; + + #endif } bool SDIO_IsReady() { diff --git a/Marlin/src/HAL/STM32/tft/tft_ltdc.cpp b/Marlin/src/HAL/STM32/tft/tft_ltdc.cpp index 66cfd65995dd..95871bf41f5c 100644 --- a/Marlin/src/HAL/STM32/tft/tft_ltdc.cpp +++ b/Marlin/src/HAL/STM32/tft/tft_ltdc.cpp @@ -372,9 +372,9 @@ void TFT_LTDC::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Cou if (MemoryIncrease == DMA_PINC_ENABLE) { DrawImage(x_min, y_cur, x_min + width, y_cur + height, Data); Data += width * height; - } else { - DrawRect(x_min, y_cur, x_min + width, y_cur + height, *Data); } + else + DrawRect(x_min, y_cur, x_min + width, y_cur + height, *Data); y_cur += height; } diff --git a/Marlin/src/MarlinCore.cpp b/Marlin/src/MarlinCore.cpp index 7f1aabc43b28..e059c2edc4db 100644 --- a/Marlin/src/MarlinCore.cpp +++ b/Marlin/src/MarlinCore.cpp @@ -782,7 +782,7 @@ void idle(bool no_stepper_sleep/*=false*/) { manage_inactivity(no_stepper_sleep); // Manage Heaters (and Watchdog) - thermalManager.manage_heater(); + thermalManager.task(); // Max7219 heartbeat, animation, etc TERN_(MAX7219_DEBUG, max7219.idle_tasks()); diff --git a/Marlin/src/core/boards.h b/Marlin/src/core/boards.h index ef750056d6fc..55cab84ec947 100644 --- a/Marlin/src/core/boards.h +++ b/Marlin/src/core/boards.h @@ -238,6 +238,7 @@ #define BOARD_BTT_SKR_V1_1 2012 // BigTreeTech SKR v1.1 #define BOARD_BTT_SKR_V1_3 2013 // BigTreeTech SKR v1.3 #define BOARD_BTT_SKR_V1_4 2014 // BigTreeTech SKR v1.4 +#define BOARD_EMOTRONIC 2015 // eMotion-Tech eMotronic // // LPC1769 ARM Cortex M3 @@ -332,40 +333,41 @@ #define BOARD_BTT_SKR_E3_DIP 4029 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE) #define BOARD_BTT_SKR_CR6 4030 // BigTreeTech SKR CR6 v1.0 (STM32F103RE) #define BOARD_JGAURORA_A5S_A1 4031 // JGAurora A5S A1 (STM32F103ZE) -#define BOARD_FYSETC_AIO_II 4032 // FYSETC AIO_II -#define BOARD_FYSETC_CHEETAH 4033 // FYSETC Cheetah -#define BOARD_FYSETC_CHEETAH_V12 4034 // FYSETC Cheetah V1.2 -#define BOARD_LONGER3D_LK 4035 // Alfawise U20/U20+/U30 (Longer3D LK1/2) / STM32F103VE +#define BOARD_FYSETC_AIO_II 4032 // FYSETC AIO_II (STM32F103RC) +#define BOARD_FYSETC_CHEETAH 4033 // FYSETC Cheetah (STM32F103RC) +#define BOARD_FYSETC_CHEETAH_V12 4034 // FYSETC Cheetah V1.2 (STM32F103RC) +#define BOARD_LONGER3D_LK 4035 // Longer3D LK1/2 - Alfawise U20/U20+/U30 (STM32F103VE) #define BOARD_CCROBOT_MEEB_3DP 4036 // ccrobot-online.com MEEB_3DP (STM32F103RC) -#define BOARD_CHITU3D_V5 4037 // Chitu3D TronXY X5SA V5 Board -#define BOARD_CHITU3D_V6 4038 // Chitu3D TronXY X5SA V6 Board -#define BOARD_CHITU3D_V9 4039 // Chitu3D TronXY X5SA V9 Board +#define BOARD_CHITU3D_V5 4037 // Chitu3D TronXY X5SA V5 Board (STM32F103ZE) +#define BOARD_CHITU3D_V6 4038 // Chitu3D TronXY X5SA V6 Board (STM32F103ZE) +#define BOARD_CHITU3D_V9 4039 // Chitu3D TronXY X5SA V9 Board (STM32F103ZE) #define BOARD_CREALITY_V4 4040 // Creality v4.x (STM32F103RC / STM32F103RE) #define BOARD_CREALITY_V422 4041 // Creality v4.2.2 (STM32F103RC / STM32F103RE) #define BOARD_CREALITY_V423 4042 // Creality v4.2.3 (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V427 4043 // Creality v4.2.7 (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V4210 4044 // Creality v4.2.10 (STM32F103RC / STM32F103RE) as found in the CR-30 -#define BOARD_CREALITY_V431 4045 // Creality v4.3.1 (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V431_A 4046 // Creality v4.3.1a (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V431_B 4047 // Creality v4.3.1b (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V431_C 4048 // Creality v4.3.1c (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V431_D 4049 // Creality v4.3.1d (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V452 4050 // Creality v4.5.2 (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V453 4051 // Creality v4.5.3 (STM32F103RC / STM32F103RE) -#define BOARD_CREALITY_V24S1 4052 // Creality v2.4.S1 (STM32F103RC / STM32F103RE) v101 as found in the Ender-7 -#define BOARD_CREALITY_V24S1_301 4053 // Creality v2.4.S1_301 (STM32F103RC / STM32F103RE) v301 as found in the Ender-3 S1 -#define BOARD_CREALITY_V25S1 4054 // Creality v2.5.S1 (STM32F103RE) as found in the CR-10 Smart Pro -#define BOARD_TRIGORILLA_PRO 4055 // Trigorilla Pro (STM32F103ZE) -#define BOARD_FLY_MINI 4056 // FLYmaker FLY MINI (STM32F103RC) -#define BOARD_FLSUN_HISPEED 4057 // FLSUN HiSpeedV1 (STM32F103VE) -#define BOARD_BEAST 4058 // STM32F103RE Libmaple-based controller -#define BOARD_MINGDA_MPX_ARM_MINI 4059 // STM32F103ZE Mingda MD-16 -#define BOARD_GTM32_PRO_VD 4060 // STM32F103VE controller -#define BOARD_ZONESTAR_ZM3E2 4061 // Zonestar ZM3E2 (STM32F103RC) -#define BOARD_ZONESTAR_ZM3E4 4062 // Zonestar ZM3E4 V1 (STM32F103VC) -#define BOARD_ZONESTAR_ZM3E4V2 4063 // Zonestar ZM3E4 V2 (STM32F103VC) -#define BOARD_ERYONE_ERY32_MINI 4064 // Eryone Ery32 mini (STM32F103VE) -#define BOARD_PANDA_PI_V29 4065 // Panda Pi V2.9 - Standalone (STM32F103RC) +#define BOARD_CREALITY_V425 4043 // Creality v4.2.5 (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V427 4044 // Creality v4.2.7 (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V4210 4045 // Creality v4.2.10 (STM32F103RC / STM32F103RE) as found in the CR-30 +#define BOARD_CREALITY_V431 4046 // Creality v4.3.1 (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V431_A 4047 // Creality v4.3.1a (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V431_B 4048 // Creality v4.3.1b (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V431_C 4049 // Creality v4.3.1c (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V431_D 4050 // Creality v4.3.1d (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V452 4051 // Creality v4.5.2 (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V453 4052 // Creality v4.5.3 (STM32F103RC / STM32F103RE) +#define BOARD_CREALITY_V24S1 4053 // Creality v2.4.S1 (STM32F103RC / STM32F103RE) v101 as found in the Ender-7 +#define BOARD_CREALITY_V24S1_301 4054 // Creality v2.4.S1_301 (STM32F103RC / STM32F103RE) v301 as found in the Ender-3 S1 +#define BOARD_CREALITY_V25S1 4055 // Creality v2.5.S1 (STM32F103RE) as found in the CR-10 Smart Pro +#define BOARD_TRIGORILLA_PRO 4056 // Trigorilla Pro (STM32F103ZE) +#define BOARD_FLY_MINI 4057 // FLYmaker FLY MINI (STM32F103RC) +#define BOARD_FLSUN_HISPEED 4058 // FLSUN HiSpeedV1 (STM32F103VE) +#define BOARD_BEAST 4059 // STM32F103RE Libmaple-based controller +#define BOARD_MINGDA_MPX_ARM_MINI 4060 // STM32F103ZE Mingda MD-16 +#define BOARD_GTM32_PRO_VD 4061 // STM32F103VE controller +#define BOARD_ZONESTAR_ZM3E2 4062 // Zonestar ZM3E2 (STM32F103RC) +#define BOARD_ZONESTAR_ZM3E4 4063 // Zonestar ZM3E4 V1 (STM32F103VC) +#define BOARD_ZONESTAR_ZM3E4V2 4064 // Zonestar ZM3E4 V2 (STM32F103VC) +#define BOARD_ERYONE_ERY32_MINI 4065 // Eryone Ery32 mini (STM32F103VE) +#define BOARD_PANDA_PI_V29 4066 // Panda Pi V2.9 - Standalone (STM32F103RC) // // ARM Cortex-M4F @@ -395,7 +397,7 @@ #define BOARD_BTT_GTR_V1_0 4214 // BigTreeTech GTR v1.0 (STM32F407IGT) #define BOARD_BTT_OCTOPUS_V1_0 4215 // BigTreeTech Octopus v1.0 (STM32F446ZE) #define BOARD_BTT_OCTOPUS_V1_1 4216 // BigTreeTech Octopus v1.1 (STM32F446ZE) -#define BOARD_BTT_OCTOPUS_PRO_V1_0 4217 // BigTreeTech Octopus Pro v1.0 (STM32F446ZE/STM32F429ZG) +#define BOARD_BTT_OCTOPUS_PRO_V1_0 4217 // BigTreeTech Octopus Pro v1.0 (STM32F446ZE / STM32F429ZG) #define BOARD_LERDGE_K 4218 // Lerdge K (STM32F407ZG) #define BOARD_LERDGE_S 4219 // Lerdge S (STM32F407VE) #define BOARD_LERDGE_X 4220 // Lerdge X (STM32F407VE) @@ -408,17 +410,18 @@ #define BOARD_MKS_ROBIN_PRO_V2 4227 // MKS Robin Pro V2 (STM32F407VE) #define BOARD_MKS_ROBIN_NANO_V3 4228 // MKS Robin Nano V3 (STM32F407VG) #define BOARD_MKS_ROBIN_NANO_V3_1 4229 // MKS Robin Nano V3.1 (STM32F407VE) -#define BOARD_MKS_MONSTER8 4230 // MKS Monster8 (STM32F407VG) -#define BOARD_ANET_ET4 4231 // ANET ET4 V1.x (STM32F407VG) -#define BOARD_ANET_ET4P 4232 // ANET ET4P V1.x (STM32F407VG) -#define BOARD_FYSETC_CHEETAH_V20 4233 // FYSETC Cheetah V2.0 -#define BOARD_TH3D_EZBOARD_V2 4234 // TH3D EZBoard v2.0 -#define BOARD_INDEX_REV03 4235 // Index PnP Controller REV03 (STM32F407VE/VG) -#define BOARD_MKS_ROBIN_NANO_V1_3_F4 4236 // MKS Robin Nano V1.3 and MKS Robin Nano-S V1.3 (STM32F407VE) -#define BOARD_MKS_EAGLE 4237 // MKS Eagle (STM32F407VE) -#define BOARD_ARTILLERY_RUBY 4238 // Artillery Ruby (STM32F401RC) -#define BOARD_FYSETC_SPIDER_V2_2 4239 // FYSETC Spider V2.2 (STM32F446VE) -#define BOARD_CREALITY_V24S1_301F4 4240 // Creality v2.4.S1_301F4 (STM32F401RC) as found in the Ender-3 S1 F4 +#define BOARD_MKS_MONSTER8_V1 4230 // MKS Monster8 V1 (STM32F407VE) +#define BOARD_MKS_MONSTER8_V2 4231 // MKS Monster8 V2 (STM32F407VE) +#define BOARD_ANET_ET4 4232 // ANET ET4 V1.x (STM32F407VG) +#define BOARD_ANET_ET4P 4233 // ANET ET4P V1.x (STM32F407VG) +#define BOARD_FYSETC_CHEETAH_V20 4234 // FYSETC Cheetah V2.0 (STM32F401RC) +#define BOARD_TH3D_EZBOARD_V2 4235 // TH3D EZBoard v2.0 (STM32F405RG) +#define BOARD_OPULO_LUMEN_REV3 4236 // Opulo Lumen PnP Controller REV3 (STM32F407VE / STM32F407VG) +#define BOARD_MKS_ROBIN_NANO_V1_3_F4 4237 // MKS Robin Nano V1.3 and MKS Robin Nano-S V1.3 (STM32F407VE) +#define BOARD_MKS_EAGLE 4238 // MKS Eagle (STM32F407VE) +#define BOARD_ARTILLERY_RUBY 4239 // Artillery Ruby (STM32F401RC) +#define BOARD_FYSETC_SPIDER_V2_2 4240 // FYSETC Spider V2.2 (STM32F446VE) +#define BOARD_CREALITY_V24S1_301F4 4241 // Creality v2.4.S1_301F4 (STM32F401RC) as found in the Ender-3 S1 F4 // // ARM Cortex M7 @@ -428,9 +431,10 @@ #define BOARD_TEENSY41 5001 // Teensy 4.1 #define BOARD_T41U5XBB 5002 // T41U5XBB Teensy 4.1 breakout board #define BOARD_NUCLEO_F767ZI 5003 // ST NUCLEO-F767ZI Dev Board -#define BOARD_BTT_SKR_SE_BX 5004 // BigTreeTech SKR SE BX (STM32H743II) -#define BOARD_BTT_SKR_V3_0 5005 // BigTreeTech SKR V3.0 (STM32H743VG) -#define BOARD_BTT_SKR_V3_0_EZ 5006 // BigTreeTech SKR V3.0 EZ (STM32H743VG) +#define BOARD_BTT_SKR_SE_BX_V2 5004 // BigTreeTech SKR SE BX V2.0 (STM32H743II) +#define BOARD_BTT_SKR_SE_BX_V3 5005 // BigTreeTech SKR SE BX V3.0 (STM32H743II) +#define BOARD_BTT_SKR_V3_0 5006 // BigTreeTech SKR V3.0 (STM32H743VG) +#define BOARD_BTT_SKR_V3_0_EZ 5007 // BigTreeTech SKR V3.0 EZ (STM32H743VG) // // Espressif ESP32 WiFi diff --git a/Marlin/src/core/language.h b/Marlin/src/core/language.h index fe89a3536f1b..f225f916aa18 100644 --- a/Marlin/src/core/language.h +++ b/Marlin/src/core/language.h @@ -227,10 +227,6 @@ #define STR_PID_DEBUG " PID_DEBUG " #define STR_PID_DEBUG_INPUT ": Input " #define STR_PID_DEBUG_OUTPUT " Output " -#define STR_PID_DEBUG_PTERM " pTerm " -#define STR_PID_DEBUG_ITERM " iTerm " -#define STR_PID_DEBUG_DTERM " dTerm " -#define STR_PID_DEBUG_CTERM " cTerm " #define STR_INVALID_EXTRUDER_NUM " - Invalid extruder number !" #define STR_MPC_AUTOTUNE "MPC Autotune" #define STR_MPC_AUTOTUNE_START " start for " STR_E diff --git a/Marlin/src/core/macros.h b/Marlin/src/core/macros.h index 56aa21cada5c..ad06763d457d 100644 --- a/Marlin/src/core/macros.h +++ b/Marlin/src/core/macros.h @@ -350,7 +350,7 @@ #define _LIST_N(N,V...) LIST_##N(V) #define LIST_N(N,V...) _LIST_N(N,V) -#define LIST_N_1(N,K) _LIST_N(N,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K) +#define LIST_N_1(N,K) _LIST_N(N,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K) #define ARRAY_N(N,V...) { _LIST_N(N,V) } #define ARRAY_N_1(N,K) { LIST_N_1(N,K) } diff --git a/Marlin/src/core/serial.cpp b/Marlin/src/core/serial.cpp index 743a0601087a..990c892e64a1 100644 --- a/Marlin/src/core/serial.cpp +++ b/Marlin/src/core/serial.cpp @@ -30,16 +30,15 @@ uint8_t marlin_debug_flags = MARLIN_DEBUG_NONE; // Commonly-used strings in serial output -PGMSTR(NUL_STR, ""); PGMSTR(SP_P_STR, " P"); PGMSTR(SP_T_STR, " T"); -PGMSTR(X_STR, "X"); PGMSTR(Y_STR, "Y"); PGMSTR(Z_STR, "Z"); PGMSTR(E_STR, "E"); -PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMSTR(E_LBL, "E:"); -PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C"); -PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E"); -PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:"); -PGMSTR(I_STR, STR_I); PGMSTR(J_STR, STR_J); PGMSTR(K_STR, STR_K); -PGMSTR(I_LBL, STR_I ":"); PGMSTR(J_LBL, STR_J ":"); PGMSTR(K_LBL, STR_K ":"); -PGMSTR(SP_I_STR, " " STR_I); PGMSTR(SP_J_STR, " " STR_J); PGMSTR(SP_K_STR, " " STR_K); -PGMSTR(SP_I_LBL, " " STR_I ":"); PGMSTR(SP_J_LBL, " " STR_J ":"); PGMSTR(SP_K_LBL, " " STR_K ":"); +PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C"); +PGMSTR(SP_P_STR, " P"); PGMSTR(SP_T_STR, " T"); PGMSTR(NUL_STR, ""); + +#define _N_STR(N) PGMSTR(N##_STR, STR_##N); +#define _N_LBL(N) PGMSTR(N##_LBL, STR_##N ":"); +#define _SP_N_STR(N) PGMSTR(SP_##N##_STR, " " STR_##N); +#define _SP_N_LBL(N) PGMSTR(SP_##N##_LBL, " " STR_##N ":"); +MAP(_N_STR, LOGICAL_AXIS_NAMES); MAP(_SP_N_STR, LOGICAL_AXIS_NAMES); +MAP(_N_LBL, LOGICAL_AXIS_NAMES); MAP(_SP_N_LBL, LOGICAL_AXIS_NAMES); // Hook Meatpack if it's enabled on the first leaf #if ENABLED(MEATPACK_ON_SERIAL_PORT_1) @@ -102,10 +101,10 @@ void print_bin(uint16_t val) { } } -void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) { +void print_pos(NUM_AXIS_ARGS(const_float_t), FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) { if (prefix) serial_print(prefix); SERIAL_ECHOPGM_P( - LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k) + LIST_N(DOUBLE(NUM_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k) ); if (suffix) serial_print(suffix); else SERIAL_EOL(); } diff --git a/Marlin/src/core/serial.h b/Marlin/src/core/serial.h index 98e82b6d7281..c19bc087833d 100644 --- a/Marlin/src/core/serial.h +++ b/Marlin/src/core/serial.h @@ -28,19 +28,6 @@ #include "../feature/meatpack.h" #endif -// Commonly-used strings in serial output -extern const char NUL_STR[], - SP_X_STR[], SP_Y_STR[], SP_Z_STR[], - SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[], - SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[], - SP_I_STR[], SP_J_STR[], SP_K_STR[], - SP_I_LBL[], SP_J_LBL[], SP_K_LBL[], - SP_P_STR[], SP_T_STR[], - X_STR[], Y_STR[], Z_STR[], E_STR[], - I_STR[], J_STR[], K_STR[], - X_LBL[], Y_LBL[], Z_LBL[], E_LBL[], - I_LBL[], J_LBL[], K_LBL[]; - // // Debugging flags for use by M111 // @@ -348,11 +335,40 @@ void serial_spaces(uint8_t count); void serial_offset(const_float_t v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2) void print_bin(const uint16_t val); -void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr); +void print_pos(NUM_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr); inline void print_pos(const xyz_pos_t &xyz, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) { - print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix); + print_pos(NUM_AXIS_ELEM(xyz), prefix, suffix); } #define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, F(" " STRINGIFY(VAR) "="), F(" : " SUFFIX "\n")); }while(0) #define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, F(PREFIX)); }while(0) + +// +// Commonly-used strings in serial output +// + +#define _N_STR(N) N##_STR +#define _N_LBL(N) N##_LBL +#define _N_STR_A(N) _N_STR(N)[] +#define _N_LBL_A(N) _N_LBL(N)[] +#define _SP_N_STR(N) SP_##N##_STR +#define _SP_N_LBL(N) SP_##N##_LBL +#define _SP_N_STR_A(N) _SP_N_STR(N)[] +#define _SP_N_LBL_A(N) _SP_N_LBL(N)[] + +extern const char SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_P_STR[], SP_T_STR[], NUL_STR[], + MAPLIST(_N_STR_A, LOGICAL_AXIS_NAMES), MAPLIST(_SP_N_STR_A, LOGICAL_AXIS_NAMES), + MAPLIST(_N_LBL_A, LOGICAL_AXIS_NAMES), MAPLIST(_SP_N_LBL_A, LOGICAL_AXIS_NAMES); + +PGM_P const SP_AXIS_LBL[] PROGMEM = { MAPLIST(_SP_N_LBL, LOGICAL_AXIS_NAMES) }; +PGM_P const SP_AXIS_STR[] PROGMEM = { MAPLIST(_SP_N_STR, LOGICAL_AXIS_NAMES) }; + +#undef _N_STR +#undef _N_LBL +#undef _N_STR_A +#undef _N_LBL_A +#undef _SP_N_STR +#undef _SP_N_LBL +#undef _SP_N_STR_A +#undef _SP_N_LBL_A diff --git a/Marlin/src/core/serial_hook.h b/Marlin/src/core/serial_hook.h index 3972279452ef..65c553c70259 100644 --- a/Marlin/src/core/serial_hook.h +++ b/Marlin/src/core/serial_hook.h @@ -43,7 +43,9 @@ class SerialMask { } constexpr SerialMask(const uint8_t mask) : mask(mask) {} - constexpr SerialMask(const SerialMask & other) : mask(other.mask) {} // Can't use = default here since not all framework support this + constexpr SerialMask(const SerialMask &rs) : mask(rs.mask) {} // Can't use = default here since not all frameworks support this + + SerialMask& operator=(const SerialMask &rs) { mask = rs.mask; return *this; } static constexpr uint8_t All = 0xFF; }; diff --git a/Marlin/src/core/types.h b/Marlin/src/core/types.h index e6a706bd0ce0..e3c4b9e8343f 100644 --- a/Marlin/src/core/types.h +++ b/Marlin/src/core/types.h @@ -36,27 +36,26 @@ struct IF { typedef R type; }; template struct IF { typedef L type; }; -#define ALL_AXIS_NAMES X, X2, Y, Y2, Z, Z2, Z3, Z4, I, J, K, E0, E1, E2, E3, E4, E5, E6, E7 - -#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V) -#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V) -#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V) -#define LINEAR_AXIS_LIST_1(V) LIST_N_1(LINEAR_AXES, V) -#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) } -#define LINEAR_AXIS_ARRAY_1(V) { LINEAR_AXIS_LIST_1(V) } -#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k) -#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k) -#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V) - -#define MAIN_AXIS_NAMES LINEAR_AXIS_LIST(X, Y, Z, I, J, K) +#define NUM_AXIS_GANG(V...) GANG_N(NUM_AXES, V) +#define NUM_AXIS_CODE(V...) CODE_N(NUM_AXES, V) +#define NUM_AXIS_LIST(V...) LIST_N(NUM_AXES, V) +#define NUM_AXIS_LIST_1(V) LIST_N_1(NUM_AXES, V) +#define NUM_AXIS_ARRAY(V...) { NUM_AXIS_LIST(V) } +#define NUM_AXIS_ARRAY_1(V) { NUM_AXIS_LIST_1(V) } +#define NUM_AXIS_ARGS(T...) NUM_AXIS_LIST(T x, T y, T z, T i, T j, T k) +#define NUM_AXIS_ELEM(O) NUM_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k) +#define NUM_AXIS_DEFS(T,V) NUM_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V) + +#define MAIN_AXIS_NAMES NUM_AXIS_LIST(X, Y, Z, I, J, K) #define MAIN_AXIS_MAP(F) MAP(F, MAIN_AXIS_NAMES) +#define STR_AXES_MAIN NUM_AXIS_GANG("X", "Y", "Z", STR_I, STR_J, STR_K) -#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E) -#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E) -#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E) -#define LOGICAL_AXIS_LIST_1(E,V) LINEAR_AXIS_LIST_1(V) LIST_ITEM_E(E) +#define LOGICAL_AXIS_GANG(E,V...) NUM_AXIS_GANG(V) GANG_ITEM_E(E) +#define LOGICAL_AXIS_CODE(E,V...) NUM_AXIS_CODE(V) CODE_ITEM_E(E) +#define LOGICAL_AXIS_LIST(E,V...) NUM_AXIS_LIST(V) LIST_ITEM_E(E) +#define LOGICAL_AXIS_LIST_1(V) NUM_AXIS_LIST_1(V) LIST_ITEM_E(V) #define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) } -#define LOGICAL_AXIS_ARRAY_1(E,V) { LOGICAL_AXIS_LIST_1(E,V) } +#define LOGICAL_AXIS_ARRAY_1(V) { LOGICAL_AXIS_LIST_1(V) } #define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k) #define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k) #define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V) @@ -64,7 +63,13 @@ struct IF { typedef L type; }; #define LOGICAL_AXIS_NAMES LOGICAL_AXIS_LIST(E, X, Y, Z, I, J, K) #define LOGICAL_AXIS_MAP(F) MAP(F, LOGICAL_AXIS_NAMES) -#define LOGICAL_AXES_STRING LOGICAL_AXIS_GANG("E", "X", "Y", "Z", STR_I, STR_J, STR_K) +#define STR_AXES_LOGICAL LOGICAL_AXIS_GANG("E", "X", "Y", "Z", STR_I, STR_J, STR_K) + +#define XYZ_GANG(V...) GANG_N(PRIMARY_LINEAR_AXES, V) +#define XYZ_CODE(V...) CODE_N(PRIMARY_LINEAR_AXES, V) + +#define SECONDARY_AXIS_GANG(V...) GANG_N(SECONDARY_AXES, V) +#define SECONDARY_AXIS_CODE(V...) CODE_N(SECONDARY_AXES, V) #if HAS_EXTRUDERS #define LIST_ITEM_E(N) , N @@ -126,9 +131,9 @@ typedef struct AxisFlags { void set(const int n, const bool onoff) { flags.set(n, onoff); } void clear(const int n) { flags.clear(n); } bool test(const int n) const { return flags.test(n); } - bool operator[](const int n) { return flags[n]; } - const bool operator[](const int n) const { return flags[n]; } - const int size() const { return sizeof(flags); } + bool operator[](const int n) { return flags[n]; } + bool operator[](const int n) const { return flags[n]; } + int size() const { return sizeof(flags); } } axis_flags_t; // @@ -141,7 +146,7 @@ typedef struct AxisFlags { enum AxisEnum : uint8_t { // Linear axes may be controlled directly or indirectly - LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS) + NUM_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS) // Extruder axes may be considered distinctly #define _EN_ITEM(N) , E##N##_AXIS @@ -180,7 +185,7 @@ typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t; // Loop over axes // #define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS) -#define LOOP_LINEAR_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LINEAR_AXES) +#define LOOP_NUM_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, NUM_AXES) #define LOOP_LOGICAL_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LOGICAL_AXES) #define LOOP_DISTINCT_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, DISTINCT_AXES) #define LOOP_DISTINCT_E(VAR) LOOP_L_N(VAR, DISTINCT_E) @@ -325,10 +330,10 @@ struct XYval { FI void set(const T px, const T py) { x = px; y = py; } FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } #endif - #if LINEAR_AXES > XY - FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; } + #if NUM_AXES > XY + FI void set(const T (&arr)[NUM_AXES]) { x = arr[0]; y = arr[1]; } #endif - #if LOGICAL_AXES > LINEAR_AXES + #if LOGICAL_AXES > NUM_AXES FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; } #if DISTINCT_AXES > LOGICAL_AXES FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; } @@ -450,29 +455,29 @@ struct XYval { template struct XYZval { union { - struct { T LINEAR_AXIS_ARGS(); }; - struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); }; - T pos[LINEAR_AXES]; + struct { T NUM_AXIS_ARGS(); }; + struct { T NUM_AXIS_LIST(a, b, c, _i, _j, _k); }; + T pos[NUM_AXES]; }; // Set all to 0 - FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; } + FI void reset() { NUM_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; } // Setters taking struct types and arrays FI void set(const T px) { x = px; } FI void set(const T px, const T py) { x = px; y = py; } FI void set(const XYval pxy) { x = pxy.x; y = pxy.y; } - FI void set(const XYval pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); } + FI void set(const XYval pxy, const T pz) { NUM_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); } FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; } #if HAS_Z_AXIS - FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } - FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); } + FI void set(const T (&arr)[NUM_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } + FI void set(NUM_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k); } #endif - #if LOGICAL_AXES > LINEAR_AXES - FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } - FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); } + #if LOGICAL_AXES > NUM_AXES + FI void set(const T (&arr)[LOGICAL_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } + FI void set(LOGICAL_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k); } #if DISTINCT_AXES > LOGICAL_AXES - FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } + FI void set(const T (&arr)[DISTINCT_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); } #endif #endif #if HAS_I_AXIS @@ -486,24 +491,24 @@ struct XYZval { #endif // Length reduced to one dimension - FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); } + FI T magnitude() const { return (T)sqrtf(NUM_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); } // Pointer to the data as a simple array FI operator T* () { return pos; } // If any element is true then it's true - FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); } + FI operator bool() { return NUM_AXIS_GANG(x, || y, || z, || i, || j, || k); } // Explicit copy and copies with conversion FI XYZval copy() const { XYZval o = *this; return o; } - FI XYZval ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); } - FI XYZval asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } - FI XYZval asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } - FI XYZval asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } - FI XYZval asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } - FI XYZval ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } - FI XYZval ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } - FI XYZval asFloat() { return LINEAR_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); } - FI XYZval asFloat() const { return LINEAR_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); } - FI XYZval reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); } + FI XYZval ABS() const { return NUM_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); } + FI XYZval asInt() { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } + FI XYZval asInt() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); } + FI XYZval asLong() { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } + FI XYZval asLong() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); } + FI XYZval ROUNDL() { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } + FI XYZval ROUNDL() const { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); } + FI XYZval asFloat() { return NUM_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); } + FI XYZval asFloat() const { return NUM_AXIS_ARRAY(static_cast(x), static_cast(y), static_cast(z), static_cast(i), static_cast(j), static_cast(k)); } + FI XYZval reciprocal() const { return NUM_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); } // Marlin workspace shifting is done with G92 and M206 FI XYZval asLogical() const { XYZval o = asFloat(); toLogical(o); return o; } @@ -514,78 +519,78 @@ struct XYZval { FI operator const XYval&() const { return *(const XYval*)this; } // Cast to a type with more fields by making a new object - FI operator XYZEval() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); } + FI operator XYZEval() const { return NUM_AXIS_ARRAY(x, y, z, i, j, k); } // Accessor via an AxisEnum (or any integer) [index] FI T& operator[](const int n) { return pos[n]; } FI const T& operator[](const int n) const { return pos[n]; } // Assignment operator overrides do the expected thing - FI XYZval& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; } + FI XYZval& operator= (const T v) { set(ARRAY_N_1(NUM_AXES, v)); return *this; } FI XYZval& operator= (const XYval &rs) { set(rs.x, rs.y ); return *this; } - FI XYZval& operator= (const XYZEval &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; } + FI XYZval& operator= (const XYZEval &rs) { set(NUM_AXIS_ELEM(rs)); return *this; } // Override other operators to get intuitive behaviors - FI XYZval operator+ (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator+ (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator- (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator- (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator* (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator* (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator/ (const XYval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator/ (const XYval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } - FI XYZval operator+ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZval operator+ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZval operator- (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZval operator- (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZval operator* (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZval operator* (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZval operator/ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } - FI XYZval operator/ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } - FI XYZval operator+ (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZval operator+ (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZval operator- (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZval operator- (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZval operator* (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZval operator* (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZval operator/ (const XYZEval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } - FI XYZval operator/ (const XYZEval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } - FI XYZval operator* (const float &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } - FI XYZval operator* (const float &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } - FI XYZval operator* (const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } - FI XYZval operator* (const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } - FI XYZval operator/ (const float &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } - FI XYZval operator/ (const float &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } - FI XYZval operator/ (const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } - FI XYZval operator/ (const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } - FI XYZval operator>>(const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } - FI XYZval operator>>(const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } - FI XYZval operator<<(const int &v) const { XYZval ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } - FI XYZval operator<<(const int &v) { XYZval ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } - FI const XYZval operator-() const { XYZval o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } - FI XYZval operator-() { XYZval o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } + FI XYZval operator+ (const XYval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator+ (const XYval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator- (const XYval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator- (const XYval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator* (const XYval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator* (const XYval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator/ (const XYval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator/ (const XYval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; } + FI XYZval operator+ (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZval operator+ (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZval operator- (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZval operator- (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZval operator* (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZval operator* (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZval operator/ (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZval operator/ (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZval operator+ (const XYZEval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZval operator+ (const XYZEval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZval operator- (const XYZEval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZval operator- (const XYZEval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZval operator* (const XYZEval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZval operator* (const XYZEval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZval operator/ (const XYZEval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZval operator/ (const XYZEval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZval operator* (const float &v) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } + FI XYZval operator* (const float &v) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } + FI XYZval operator* (const int &v) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } + FI XYZval operator* (const int &v) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; } + FI XYZval operator/ (const float &v) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } + FI XYZval operator/ (const float &v) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } + FI XYZval operator/ (const int &v) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } + FI XYZval operator/ (const int &v) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; } + FI XYZval operator>>(const int &v) const { XYZval ls = *this; NUM_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } + FI XYZval operator>>(const int &v) { XYZval ls = *this; NUM_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; } + FI XYZval operator<<(const int &v) const { XYZval ls = *this; NUM_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } + FI XYZval operator<<(const int &v) { XYZval ls = *this; NUM_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; } + FI const XYZval operator-() const { XYZval o = *this; NUM_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } + FI XYZval operator-() { XYZval o = *this; NUM_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; } // Modifier operators - FI XYZval& operator+=(const XYval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } - FI XYZval& operator-=(const XYval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } - FI XYZval& operator*=(const XYval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } - FI XYZval& operator/=(const XYval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } - FI XYZval& operator+=(const XYZval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } - FI XYZval& operator-=(const XYZval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } - FI XYZval& operator*=(const XYZval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } - FI XYZval& operator/=(const XYZval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } - FI XYZval& operator+=(const XYZEval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } - FI XYZval& operator-=(const XYZEval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } - FI XYZval& operator*=(const XYZEval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } - FI XYZval& operator/=(const XYZEval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } - FI XYZval& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } - FI XYZval& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } - FI XYZval& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; } - FI XYZval& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; } + FI XYZval& operator+=(const XYval &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } + FI XYZval& operator-=(const XYval &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } + FI XYZval& operator*=(const XYval &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } + FI XYZval& operator/=(const XYval &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; } + FI XYZval& operator+=(const XYZval &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } + FI XYZval& operator-=(const XYZval &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } + FI XYZval& operator*=(const XYZval &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } + FI XYZval& operator/=(const XYZval &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } + FI XYZval& operator+=(const XYZEval &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } + FI XYZval& operator-=(const XYZEval &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } + FI XYZval& operator*=(const XYZEval &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } + FI XYZval& operator/=(const XYZEval &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } + FI XYZval& operator*=(const float &v) { NUM_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } + FI XYZval& operator*=(const int &v) { NUM_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; } + FI XYZval& operator>>=(const int &v) { NUM_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; } + FI XYZval& operator<<=(const int &v) { NUM_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; } // Exact comparisons. For floats a "NEAR" operation may be better. - FI bool operator==(const XYZEval &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } - FI bool operator==(const XYZEval &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } + FI bool operator==(const XYZEval &rs) { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } + FI bool operator==(const XYZEval &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } FI bool operator!=(const XYZEval &rs) { return !operator==(rs); } FI bool operator!=(const XYZEval &rs) const { return !operator==(rs); } }; @@ -597,7 +602,7 @@ template struct XYZEval { union { struct { T LOGICAL_AXIS_ARGS(); }; - struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); }; + struct { T LOGICAL_AXIS_LIST(_e, a, b, c, _i, _j, _k); }; T pos[LOGICAL_AXES]; }; // Reset all to 0 @@ -617,15 +622,15 @@ struct XYZEval { #endif // Setters taking struct types and arrays FI void set(const XYval pxy) { x = pxy.x; y = pxy.y; } - FI void set(const XYZval pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); } + FI void set(const XYZval pxyz) { set(NUM_AXIS_ELEM(pxyz)); } #if HAS_Z_AXIS - FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); } + FI void set(NUM_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k); } #endif FI void set(const XYval pxy, const T pz) { set(pxy); TERN_(HAS_Z_AXIS, z = pz); } - #if LOGICAL_AXES > LINEAR_AXES + #if LOGICAL_AXES > NUM_AXES FI void set(const XYval pxy, const T pz, const T pe) { set(pxy, pz); e = pe; } FI void set(const XYZval pxyz, const T pe) { set(pxyz); e = pe; } - FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); } + FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, _i = i, _j = j, _k = k); } #endif // Length reduced to one dimension @@ -663,9 +668,9 @@ struct XYZEval { FI const T& operator[](const int n) const { return pos[n]; } // Assignment operator overrides do the expected thing - FI XYZEval& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; } + FI XYZEval& operator= (const T v) { set(LOGICAL_AXIS_LIST_1(v)); return *this; } FI XYZEval& operator= (const XYval &rs) { set(rs.x, rs.y); return *this; } - FI XYZEval& operator= (const XYZval &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; } + FI XYZEval& operator= (const XYZval &rs) { set(NUM_AXIS_ELEM(rs)); return *this; } // Override other operators to get intuitive behaviors FI XYZEval operator+ (const XYval &rs) const { XYZEval ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; } @@ -676,14 +681,14 @@ struct XYZEval { FI XYZEval operator* (const XYval &rs) { XYZEval ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; } FI XYZEval operator/ (const XYval &rs) const { XYZEval ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } FI XYZEval operator/ (const XYval &rs) { XYZEval ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; } - FI XYZEval operator+ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZEval operator+ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } - FI XYZEval operator- (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZEval operator- (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } - FI XYZEval operator* (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZEval operator* (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } - FI XYZEval operator/ (const XYZval &rs) const { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } - FI XYZEval operator/ (const XYZval &rs) { XYZval ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZEval operator+ (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZEval operator+ (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } + FI XYZEval operator- (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZEval operator- (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } + FI XYZEval operator* (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZEval operator* (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; } + FI XYZEval operator/ (const XYZval &rs) const { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } + FI XYZEval operator/ (const XYZval &rs) { XYZval ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; } FI XYZEval operator+ (const XYZEval &rs) const { XYZEval ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } FI XYZEval operator+ (const XYZEval &rs) { XYZEval ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; } FI XYZEval operator- (const XYZEval &rs) const { XYZEval ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; } @@ -712,10 +717,10 @@ struct XYZEval { FI XYZEval& operator-=(const XYval &rs) { x -= rs.x; y -= rs.y; return *this; } FI XYZEval& operator*=(const XYval &rs) { x *= rs.x; y *= rs.y; return *this; } FI XYZEval& operator/=(const XYval &rs) { x /= rs.x; y /= rs.y; return *this; } - FI XYZEval& operator+=(const XYZval &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } - FI XYZEval& operator-=(const XYZval &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } - FI XYZEval& operator*=(const XYZval &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } - FI XYZEval& operator/=(const XYZval &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } + FI XYZEval& operator+=(const XYZval &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } + FI XYZEval& operator-=(const XYZval &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } + FI XYZEval& operator*=(const XYZval &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } + FI XYZEval& operator/=(const XYZval &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; } FI XYZEval& operator+=(const XYZEval &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; } FI XYZEval& operator-=(const XYZEval &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; } FI XYZEval& operator*=(const XYZEval &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; } @@ -725,8 +730,8 @@ struct XYZEval { FI XYZEval& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; } // Exact comparisons. For floats a "NEAR" operation may be better. - FI bool operator==(const XYZval &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } - FI bool operator==(const XYZval &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } + FI bool operator==(const XYZval &rs) { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } + FI bool operator==(const XYZval &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); } FI bool operator!=(const XYZval &rs) { return !operator==(rs); } FI bool operator!=(const XYZval &rs) const { return !operator==(rs); } }; diff --git a/Marlin/src/core/utility.cpp b/Marlin/src/core/utility.cpp index 7d33c25c3c43..e4fd52592475 100644 --- a/Marlin/src/core/utility.cpp +++ b/Marlin/src/core/utility.cpp @@ -29,10 +29,10 @@ void safe_delay(millis_t ms) { while (ms > 50) { ms -= 50; delay(50); - thermalManager.manage_heater(); + thermalManager.task(); } delay(ms); - thermalManager.manage_heater(); // This keeps us safe if too many small safe_delay() calls are made + thermalManager.task(); // This keeps us safe if too many small safe_delay() calls are made } // A delay to provide brittle hosts time to receive bytes @@ -51,7 +51,7 @@ void safe_delay(millis_t ms) { #include "../module/probe.h" #include "../module/motion.h" - #include "../module/stepper.h" + #include "../module/planner.h" #include "../libs/numtostr.h" #include "../feature/bedlevel/bedlevel.h" @@ -125,8 +125,8 @@ void safe_delay(millis_t ms) { #endif #if ABL_PLANAR SERIAL_ECHOPGM("ABL Adjustment"); - LOOP_LINEAR_AXES(a) { - SERIAL_CHAR(' ', AXIS_CHAR(a)); + LOOP_NUM_AXES(a) { + SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a])); serial_offset(planner.get_axis_position_mm(AxisEnum(a)) - current_position[a]); } #else diff --git a/Marlin/src/core/utility.h b/Marlin/src/core/utility.h index d248091ce575..a3cd7941bbb8 100644 --- a/Marlin/src/core/utility.h +++ b/Marlin/src/core/utility.h @@ -59,6 +59,11 @@ void safe_delay(millis_t ms); // Delay ensuring that temperatures are #define log_machine_info() NOOP #endif +/** + * A restorer instance remembers a variable's value before setting a + * new value, then restores the old value when it goes out of scope. + * Put operator= on your type to get extended behavior on value change. + */ template class restorer { T& ref_; @@ -77,10 +82,13 @@ class restorer { // in the range 0-100 while avoiding rounding artifacts constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; } +// Axis names for G-code parsing, reports, etc. const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME); - -#if LINEAR_AXES <= XYZ +#if NUM_AXES <= XYZ && !HAS_EXTRUDERS #define AXIS_CHAR(A) ((char)('X' + A)) + #define IAXIS_CHAR AXIS_CHAR #else + const xyze_char_t iaxis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', 'I', 'J', 'K'); #define AXIS_CHAR(A) axis_codes[A] + #define IAXIS_CHAR(A) iaxis_codes[A] #endif diff --git a/Marlin/src/feature/backlash.cpp b/Marlin/src/feature/backlash.cpp index 84382cf85680..13e2cd99eccb 100644 --- a/Marlin/src/feature/backlash.cpp +++ b/Marlin/src/feature/backlash.cpp @@ -97,7 +97,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const const float f_corr = float(correction) / all_on; - LOOP_LINEAR_AXES(axis) { + LOOP_NUM_AXES(axis) { if (distance_mm[axis]) { const bool reverse = TEST(dm, axis); @@ -145,7 +145,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const } int32_t Backlash::get_applied_steps(const AxisEnum axis) { - if (axis >= LINEAR_AXES) return 0; + if (axis >= NUM_AXES) return 0; const bool reverse = TEST(last_direction_bits, axis); @@ -162,32 +162,37 @@ int32_t Backlash::get_applied_steps(const AxisEnum axis) { } class Backlash::StepAdjuster { - xyz_long_t applied_steps; -public: - StepAdjuster() { - LOOP_LINEAR_AXES(axis) applied_steps[axis] = backlash.get_applied_steps((AxisEnum)axis); - } - ~StepAdjuster() { - // after backlash compensation parameter changes, ensure applied step count does not change - LOOP_LINEAR_AXES(axis) residual_error[axis] += backlash.get_applied_steps((AxisEnum)axis) - applied_steps[axis]; - } + private: + xyz_long_t applied_steps; + public: + StepAdjuster() { + LOOP_NUM_AXES(axis) applied_steps[axis] = backlash.get_applied_steps((AxisEnum)axis); + } + ~StepAdjuster() { + // after backlash compensation parameter changes, ensure applied step count does not change + LOOP_NUM_AXES(axis) residual_error[axis] += backlash.get_applied_steps((AxisEnum)axis) - applied_steps[axis]; + } }; -void Backlash::set_correction_uint8(const uint8_t v) { - StepAdjuster adjuster; - correction = v; -} +#if ENABLED(BACKLASH_GCODE) -void Backlash::set_distance_mm(const AxisEnum axis, const float v) { - StepAdjuster adjuster; - distance_mm[axis] = v; -} + void Backlash::set_correction_uint8(const uint8_t v) { + StepAdjuster adjuster; + correction = v; + } -#ifdef BACKLASH_SMOOTHING_MM - void Backlash::set_smoothing_mm(const float v) { + void Backlash::set_distance_mm(const AxisEnum axis, const float v) { StepAdjuster adjuster; - smoothing_mm = v; + distance_mm[axis] = v; } + + #ifdef BACKLASH_SMOOTHING_MM + void Backlash::set_smoothing_mm(const float v) { + StepAdjuster adjuster; + smoothing_mm = v; + } + #endif + #endif #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) diff --git a/Marlin/src/feature/bedlevel/bedlevel.cpp b/Marlin/src/feature/bedlevel/bedlevel.cpp index 1ca9696a3a30..2207884c3637 100644 --- a/Marlin/src/feature/bedlevel/bedlevel.cpp +++ b/Marlin/src/feature/bedlevel/bedlevel.cpp @@ -154,7 +154,7 @@ void reset_bed_level() { #endif LOOP_L_N(x, sx) { SERIAL_CHAR(' '); - const float offset = values[x * sx + y]; + const float offset = values[x * sy + y]; if (!isnan(offset)) { if (offset >= 0) SERIAL_CHAR('+'); SERIAL_ECHO_F(offset, int(precision)); diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp index eed9f61ebbcf..6b45e483ad9d 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl_G29.cpp @@ -31,7 +31,6 @@ #include "../../../libs/hex_print.h" #include "../../../module/settings.h" #include "../../../lcd/marlinui.h" -#include "../../../module/stepper.h" #include "../../../module/planner.h" #include "../../../module/motion.h" #include "../../../module/probe.h" diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp index 9fa2257dc8a6..18110c67fa8e 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp @@ -26,7 +26,6 @@ #include "../bedlevel.h" #include "../../../module/planner.h" -#include "../../../module/stepper.h" #include "../../../module/motion.h" #if ENABLED(DELTA) @@ -374,11 +373,12 @@ #endif NOLESS(segments, 1U); // Must have at least one segment - const float inv_segments = 1.0f / segments, // Reciprocal to save calculation - segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment + const float inv_segments = 1.0f / segments; // Reciprocal to save calculation + // Add hints to help optimize the move + PlannerHints hints(SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments); // Length of each segment #if ENABLED(SCARA_FEEDRATE_SCALING) - const float inv_duration = scaled_fr_mm_s / segment_xyz_mm; + hints.inv_duration = scaled_fr_mm_s / hints.millimeters; #endif xyze_float_t diff = total * inv_segments; @@ -392,13 +392,9 @@ if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) { while (--segments) { raw += diff; - planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm - OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) - ); + planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, hints); } - planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm - OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) - ); + planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, hints); return false; // Did not set current from destination } @@ -467,7 +463,7 @@ TERN_(ENABLE_LEVELING_FADE_HEIGHT, * fade_scaling_factor); // apply fade factor to interpolated height const float oldz = raw.z; raw.z += z_cxcy; - planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) ); + planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, hints); raw.z = oldz; if (segments == 0) // done with last segment diff --git a/Marlin/src/feature/dac/dac_dac084s085.cpp b/Marlin/src/feature/dac/dac_dac084s085.cpp index b88aaf802bdf..772bb68de42e 100644 --- a/Marlin/src/feature/dac/dac_dac084s085.cpp +++ b/Marlin/src/feature/dac/dac_dac084s085.cpp @@ -11,7 +11,6 @@ #include "dac_dac084s085.h" #include "../../MarlinCore.h" -#include "../../module/stepper.h" #include "../../HAL/shared/Delay.h" dac084s085::dac084s085() { } diff --git a/Marlin/src/feature/dac/stepper_dac.cpp b/Marlin/src/feature/dac/stepper_dac.cpp index 119a85959982..f5664bc59855 100644 --- a/Marlin/src/feature/dac/stepper_dac.cpp +++ b/Marlin/src/feature/dac/stepper_dac.cpp @@ -59,7 +59,7 @@ int StepperDAC::init() { } void StepperDAC::set_current_value(const uint8_t channel, uint16_t val) { - if (!dac_present) return; + if (!(dac_present && channel < LOGICAL_AXES)) return; NOMORE(val, uint16_t(DAC_STEPPER_MAX)); @@ -84,13 +84,11 @@ void StepperDAC::print_values() { if (!dac_present) return; SERIAL_ECHO_MSG("Stepper current values in % (Amps):"); SERIAL_ECHO_START(); - SERIAL_ECHOPGM_P(SP_X_LBL, dac_perc(X_AXIS), PSTR(" ("), dac_amps(X_AXIS), PSTR(")")); - #if HAS_Y_AXIS - SERIAL_ECHOPGM_P(SP_Y_LBL, dac_perc(Y_AXIS), PSTR(" ("), dac_amps(Y_AXIS), PSTR(")")); - #endif - #if HAS_Z_AXIS - SERIAL_ECHOPGM_P(SP_Z_LBL, dac_perc(Z_AXIS), PSTR(" ("), dac_amps(Z_AXIS), PSTR(")")); - #endif + LOOP_LOGICAL_AXES(a) { + SERIAL_CHAR(' ', IAXIS_CHAR(a), ':'); + SERIAL_ECHO(dac_perc(a)); + SERIAL_ECHOPGM_P(PSTR(" ("), dac_amps(AxisEnum(a)), PSTR(")")); + } #if HAS_EXTRUDERS SERIAL_ECHOLNPGM_P(SP_E_LBL, dac_perc(E_AXIS), PSTR(" ("), dac_amps(E_AXIS), PSTR(")")); #endif diff --git a/Marlin/src/feature/direct_stepping.cpp b/Marlin/src/feature/direct_stepping.cpp index 052e79de41e5..13cf71e07695 100644 --- a/Marlin/src/feature/direct_stepping.cpp +++ b/Marlin/src/feature/direct_stepping.cpp @@ -143,14 +143,16 @@ namespace DirectStepping { // special case for 8-bit, check if rolled back to 0 if (Cfg::DIRECTIONAL || !write_page_size) { // full 256 bytes if (write_byte_idx) return true; - } else { - if (write_byte_idx < write_page_size) return true; } - } else if (Cfg::DIRECTIONAL) { - if (write_byte_idx != Cfg::PAGE_SIZE) return true; - } else { - if (write_byte_idx < write_page_size) return true; + else if (write_byte_idx < write_page_size) + return true; + } + else if (Cfg::DIRECTIONAL) { + if (write_byte_idx != Cfg::PAGE_SIZE) + return true; } + else if (write_byte_idx < write_page_size) + return true; state = State::CHECKSUM; return true; @@ -161,11 +163,10 @@ namespace DirectStepping { return true; } case State::UNFAIL: - if (c == 0) { + if (c == 0) set_page_state(write_page_idx, PageState::FREE); - } else { + else fatal_error = true; - } state = State::MONITOR; return true; } diff --git a/Marlin/src/feature/encoder_i2c.cpp b/Marlin/src/feature/encoder_i2c.cpp index fa14c9ac715d..092ce0f8b852 100644 --- a/Marlin/src/feature/encoder_i2c.cpp +++ b/Marlin/src/feature/encoder_i2c.cpp @@ -49,7 +49,7 @@ void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) { initialized = true; - SERIAL_ECHOLNPGM("Setting up encoder on ", AS_CHAR(axis_codes[encoderAxis]), " axis, addr = ", address); + SERIAL_ECHOLNPGM("Setting up encoder on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis, addr = ", address); position = get_position(); } @@ -67,7 +67,7 @@ void I2CPositionEncoder::update() { /* if (trusted) { //commented out as part of the note below trusted = false; - SERIAL_ECHOLNPGM("Fault detected on ", AS_CHAR(axis_codes[encoderAxis]), " axis encoder. Disengaging error correction until module is trusted again."); + SERIAL_ECHOLNPGM("Fault detected on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis encoder. Disengaging error correction until module is trusted again."); } */ return; @@ -92,7 +92,7 @@ void I2CPositionEncoder::update() { if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) { trusted = true; - SERIAL_ECHOLNPGM("Untrusted encoder module on ", AS_CHAR(axis_codes[encoderAxis]), " axis has been fault-free for set duration, reinstating error correction."); + SERIAL_ECHOLNPGM("Untrusted encoder module on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis has been fault-free for set duration, reinstating error correction."); //the encoder likely lost its place when the error occurred, so we'll reset and use the printer's //idea of where it the axis is to re-initialize @@ -172,7 +172,7 @@ void I2CPositionEncoder::update() { float sumP = 0; LOOP_L_N(i, I2CPE_ERR_PRST_ARRAY_SIZE) sumP += errPrst[i]; const int32_t errorP = int32_t(sumP * RECIPROCAL(I2CPE_ERR_PRST_ARRAY_SIZE)); - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" : CORRECT ERR ", errorP * planner.mm_per_step[encoderAxis], "mm"); babystep.add_steps(encoderAxis, -LROUND(errorP)); errPrstIdx = 0; @@ -192,7 +192,7 @@ void I2CPositionEncoder::update() { if (ABS(error) > I2CPE_ERR_CNT_THRESH * planner.settings.axis_steps_per_mm[encoderAxis]) { const millis_t ms = millis(); if (ELAPSED(ms, nextErrorCountTime)) { - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" : LARGE ERR ", error, "; diffSum=", diffSum); errorCount++; nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS; @@ -212,7 +212,7 @@ void I2CPositionEncoder::set_homed() { homed = trusted = true; #ifdef I2CPE_DEBUG - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" axis encoder homed, offset of ", zeroOffset, " ticks."); #endif } @@ -223,7 +223,7 @@ void I2CPositionEncoder::set_unhomed() { homed = trusted = false; #ifdef I2CPE_DEBUG - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" axis encoder unhomed."); #endif } @@ -231,7 +231,7 @@ void I2CPositionEncoder::set_unhomed() { bool I2CPositionEncoder::passes_test(const bool report) { if (report) { if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. "); - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); serial_ternary(H == I2CPE_MAG_SIG_BAD, F(" axis "), F("magnetic strip "), F("encoder ")); switch (H) { case I2CPE_MAG_SIG_GOOD: @@ -252,7 +252,7 @@ float I2CPositionEncoder::get_axis_error_mm(const bool report) { error = ABS(diff) > 10000 ? 0 : diff; // Huge error is a bad reading if (report) { - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" axis target=", target, "mm; actual=", actual, "mm; err=", error, "mm"); } @@ -262,7 +262,7 @@ float I2CPositionEncoder::get_axis_error_mm(const bool report) { int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) { if (!active) { if (report) { - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" axis encoder not active!"); } return 0; @@ -287,7 +287,7 @@ int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) { errorPrev = error; if (report) { - SERIAL_CHAR(axis_codes[encoderAxis]); + SERIAL_CHAR(AXIS_CHAR(encoderAxis)); SERIAL_ECHOLNPGM(" axis target=", target, "; actual=", encoderCountInStepperTicksScaled, "; err=", error); } @@ -337,7 +337,7 @@ bool I2CPositionEncoder::test_axis() { ec = false; xyze_pos_t startCoord, endCoord; - LOOP_LINEAR_AXES(a) { + LOOP_NUM_AXES(a) { startCoord[a] = planner.get_axis_position_mm((AxisEnum)a); endCoord[a] = planner.get_axis_position_mm((AxisEnum)a); } @@ -395,7 +395,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) { travelDistance = endDistance - startDistance; xyze_pos_t startCoord, endCoord; - LOOP_LINEAR_AXES(a) { + LOOP_NUM_AXES(a) { startCoord[a] = planner.get_axis_position_mm((AxisEnum)a); endCoord[a] = planner.get_axis_position_mm((AxisEnum)a); } @@ -657,7 +657,7 @@ void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, else { if (noOffset) { const int32_t raw_count = encoders[idx].get_raw_count(); - SERIAL_CHAR(axis_codes[encoders[idx].get_axis()], ' '); + SERIAL_CHAR(AXIS_CHAR(encoders[idx).get_axis()], ' '); for (uint8_t j = 31; j > 0; j--) SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j))); @@ -712,7 +712,7 @@ void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const // and enable it (it will likely have failed initialization on power-up, before the address change). const int8_t idx = idx_from_addr(newaddr); if (idx >= 0 && !encoders[idx].get_active()) { - SERIAL_CHAR(axis_codes[encoders[idx].get_axis()]); + SERIAL_CHAR(AXIS_CHAR(encoders[idx).get_axis()]); SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again."); encoders[idx].set_active(encoders[idx].passes_test(true)); } @@ -814,7 +814,7 @@ void I2CPositionEncodersMgr::M860() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen_test(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen_test(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_position(idx, hasU, hasO); } @@ -841,7 +841,7 @@ void I2CPositionEncodersMgr::M861() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_status(idx); } @@ -869,7 +869,7 @@ void I2CPositionEncodersMgr::M862() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) test_axis(idx); } @@ -900,7 +900,7 @@ void I2CPositionEncodersMgr::M863() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations); } @@ -976,7 +976,7 @@ void I2CPositionEncodersMgr::M865() { if (!I2CPE_addr) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address()); } @@ -1007,7 +1007,7 @@ void I2CPositionEncodersMgr::M866() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { if (hasR) @@ -1045,7 +1045,7 @@ void I2CPositionEncodersMgr::M867() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff; @@ -1081,7 +1081,7 @@ void I2CPositionEncodersMgr::M868() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { if (newThreshold != -9999) @@ -1115,7 +1115,7 @@ void I2CPositionEncodersMgr::M869() { if (I2CPE_idx == 0xFF) { LOOP_LOGICAL_AXES(i) { - if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { + if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_error(idx); } diff --git a/Marlin/src/feature/encoder_i2c.h b/Marlin/src/feature/encoder_i2c.h index 50fb27a135ca..f25fe2ea6bc4 100644 --- a/Marlin/src/feature/encoder_i2c.h +++ b/Marlin/src/feature/encoder_i2c.h @@ -261,32 +261,32 @@ class I2CPositionEncodersMgr { static void report_error_count(const int8_t idx, const AxisEnum axis) { CHECK_IDX(); - SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(axis_codes[axis]), " axis is ", encoders[idx].get_error_count()); + SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(AXIS_CHAR(axis)), " axis is ", encoders[idx].get_error_count()); } static void reset_error_count(const int8_t idx, const AxisEnum axis) { CHECK_IDX(); encoders[idx].set_error_count(0); - SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(axis_codes[axis]), " axis has been reset."); + SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(AXIS_CHAR(axis)), " axis has been reset."); } static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) { CHECK_IDX(); encoders[idx].set_ec_enabled(enabled); - SERIAL_ECHOPGM("Error correction on ", AS_CHAR(axis_codes[axis])); + SERIAL_ECHOPGM("Error correction on ", AS_CHAR(AXIS_CHAR(axis))); SERIAL_ECHO_TERNARY(encoders[idx].get_ec_enabled(), " axis is ", "en", "dis", "abled.\n"); } static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) { CHECK_IDX(); encoders[idx].set_ec_threshold(newThreshold); - SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(axis_codes[axis]), " axis set to ", newThreshold, "mm."); + SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(AXIS_CHAR(axis)), " axis set to ", newThreshold, "mm."); } static void get_ec_threshold(const int8_t idx, const AxisEnum axis) { CHECK_IDX(); const float threshold = encoders[idx].get_ec_threshold(); - SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(axis_codes[axis]), " axis is ", threshold, "mm."); + SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(AXIS_CHAR(axis)), " axis is ", threshold, "mm."); } static int8_t idx_from_axis(const AxisEnum axis) { diff --git a/Marlin/src/feature/fwretract.cpp b/Marlin/src/feature/fwretract.cpp index 172c97accdda..28355640d223 100644 --- a/Marlin/src/feature/fwretract.cpp +++ b/Marlin/src/feature/fwretract.cpp @@ -34,7 +34,6 @@ FWRetract fwretract; // Single instance - this calls the constructor #include "../module/motion.h" #include "../module/planner.h" -#include "../module/stepper.h" #include "../gcode/gcode.h" diff --git a/Marlin/src/feature/joystick.cpp b/Marlin/src/feature/joystick.cpp index c68a2b8df90a..acab5d7437a2 100644 --- a/Marlin/src/feature/joystick.cpp +++ b/Marlin/src/feature/joystick.cpp @@ -163,7 +163,7 @@ Joystick joystick; // norm_jog values of [-1 .. 1] maps linearly to [-feedrate .. feedrate] xyz_float_t move_dist{0}; float hypot2 = 0; - LOOP_LINEAR_AXES(i) if (norm_jog[i]) { + LOOP_NUM_AXES(i) if (norm_jog[i]) { move_dist[i] = seg_time * norm_jog[i] * TERN(EXTENSIBLE_UI, manual_feedrate_mm_s, planner.settings.max_feedrate_mm_s)[i]; hypot2 += sq(move_dist[i]); } @@ -172,8 +172,9 @@ Joystick joystick; current_position += move_dist; apply_motion_limits(current_position); const float length = sqrt(hypot2); + PlannerHints hints(length); injecting_now = true; - planner.buffer_line(current_position, length / seg_time, active_extruder, length); + planner.buffer_line(current_position, length / seg_time, active_extruder, hints); injecting_now = false; } } diff --git a/Marlin/src/feature/max7219.cpp b/Marlin/src/feature/max7219.cpp index 474933aa1946..ef698f888c43 100644 --- a/Marlin/src/feature/max7219.cpp +++ b/Marlin/src/feature/max7219.cpp @@ -44,7 +44,6 @@ #include "max7219.h" #include "../module/planner.h" -#include "../module/stepper.h" #include "../MarlinCore.h" #include "../HAL/shared/Delay.h" diff --git a/Marlin/src/feature/pause.cpp b/Marlin/src/feature/pause.cpp index e9cb2df594d2..1c2ea59d4daf 100644 --- a/Marlin/src/feature/pause.cpp +++ b/Marlin/src/feature/pause.cpp @@ -35,10 +35,13 @@ #include "../gcode/gcode.h" #include "../module/motion.h" #include "../module/planner.h" -#include "../module/stepper.h" #include "../module/printcounter.h" #include "../module/temperature.h" +#if HAS_EXTRUDERS + #include "../module/stepper.h" +#endif + #if ENABLED(AUTO_BED_LEVELING_UBL) #include "bedlevel/bedlevel.h" #endif @@ -63,7 +66,7 @@ #include "../lcd/marlinui.h" -#if HAS_BUZZER +#if HAS_SOUND #include "../libs/buzzer.h" #endif @@ -98,7 +101,7 @@ fil_change_settings_t fc_settings[EXTRUDERS]; #define _PMSG(L) L##_LCD #endif -#if HAS_BUZZER +#if HAS_SOUND static void impatient_beep(const int8_t max_beep_count, const bool restart=false) { if (TERN0(HAS_MARLINUI_MENU, pause_mode == PAUSE_MODE_PAUSE_PRINT)) return; diff --git a/Marlin/src/feature/power.cpp b/Marlin/src/feature/power.cpp index c2ed169aa809..8a16628bac45 100644 --- a/Marlin/src/feature/power.cpp +++ b/Marlin/src/feature/power.cpp @@ -30,7 +30,7 @@ #include "power.h" #include "../module/planner.h" -#include "../module/stepper.h" +#include "../module/stepper/indirection.h" // for restore_stepper_drivers #include "../module/temperature.h" #include "../MarlinCore.h" @@ -46,6 +46,7 @@ Power powerManager; bool Power::psu_on; #if ENABLED(AUTO_POWER_CONTROL) + #include "../module/stepper.h" #include "../module/temperature.h" #if BOTH(USE_CONTROLLER_FAN, AUTO_POWER_CONTROLLERFAN) diff --git a/Marlin/src/feature/power_monitor.cpp b/Marlin/src/feature/power_monitor.cpp index 504f1ea48e3b..5a9db1ec24a1 100644 --- a/Marlin/src/feature/power_monitor.cpp +++ b/Marlin/src/feature/power_monitor.cpp @@ -53,7 +53,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor void PowerMonitor::draw_current() { const float amps = getAmps(); lcd_put_u8str(amps < 100 ? ftostr31ns(amps) : ui16tostr4rj((uint16_t)amps)); - lcd_put_wchar('A'); + lcd_put_lchar('A'); } #endif @@ -61,7 +61,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor void PowerMonitor::draw_voltage() { const float volts = getVolts(); lcd_put_u8str(volts < 100 ? ftostr31ns(volts) : ui16tostr4rj((uint16_t)volts)); - lcd_put_wchar('V'); + lcd_put_lchar('V'); } #endif @@ -69,7 +69,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor void PowerMonitor::draw_power() { const float power = getPower(); lcd_put_u8str(power < 100 ? ftostr31ns(power) : ui16tostr4rj((uint16_t)power)); - lcd_put_wchar('W'); + lcd_put_lchar('W'); } #endif diff --git a/Marlin/src/feature/powerloss.cpp b/Marlin/src/feature/powerloss.cpp index 944f2ee63c84..d4450adcd853 100644 --- a/Marlin/src/feature/powerloss.cpp +++ b/Marlin/src/feature/powerloss.cpp @@ -567,7 +567,7 @@ void PrintJobRecovery::resume() { TERN_(HAS_HOME_OFFSET, home_offset = info.home_offset); TERN_(HAS_POSITION_SHIFT, position_shift = info.position_shift); #if HAS_HOME_OFFSET || HAS_POSITION_SHIFT - LOOP_LINEAR_AXES(i) update_workspace_offset((AxisEnum)i); + LOOP_NUM_AXES(i) update_workspace_offset((AxisEnum)i); #endif // Relative axis modes @@ -617,7 +617,7 @@ void PrintJobRecovery::resume() { #if HAS_HOME_OFFSET DEBUG_ECHOPGM("home_offset: "); - LOOP_LINEAR_AXES(i) { + LOOP_NUM_AXES(i) { if (i) DEBUG_CHAR(','); DEBUG_DECIMAL(info.home_offset[i]); } @@ -626,7 +626,7 @@ void PrintJobRecovery::resume() { #if HAS_POSITION_SHIFT DEBUG_ECHOPGM("position_shift: "); - LOOP_LINEAR_AXES(i) { + LOOP_NUM_AXES(i) { if (i) DEBUG_CHAR(','); DEBUG_DECIMAL(info.position_shift[i]); } diff --git a/Marlin/src/feature/spindle_laser.cpp b/Marlin/src/feature/spindle_laser.cpp index 4f8f4d49dc2f..da38646a3674 100644 --- a/Marlin/src/feature/spindle_laser.cpp +++ b/Marlin/src/feature/spindle_laser.cpp @@ -39,18 +39,26 @@ #endif SpindleLaser cutter; -uint8_t SpindleLaser::power, +bool SpindleLaser::enable_state; // Virtual enable state, controls enable pin if present and or apply power if > 0 +uint8_t SpindleLaser::power, // Actual power output 0-255 ocr or "0 = off" > 0 = "on" SpindleLaser::last_power_applied; // = 0 // Basic power state tracking + #if ENABLED(LASER_FEATURE) - cutter_test_pulse_t SpindleLaser::testPulse = 50; // Test fire Pulse time ms value. + cutter_test_pulse_t SpindleLaser::testPulse = 50; // (ms) Test fire pulse default duration + uint8_t SpindleLaser::last_block_power; // = 0 // Track power changes for dynamic inline power + feedRate_t SpindleLaser::feedrate_mm_m = 1500, + SpindleLaser::last_feedrate_mm_m; // = 0 // (mm/min) Track feedrate changes for dynamic power #endif -bool SpindleLaser::isReady; // Ready to apply power setting from the UI to OCR -cutter_power_t SpindleLaser::menuPower, // Power set via LCD menu in PWM, PERCENT, or RPM - SpindleLaser::unitPower; // LCD status power in PWM, PERCENT, or RPM -#if ENABLED(MARLIN_DEV_MODE) - cutter_frequency_t SpindleLaser::frequency; // PWM frequency setting; range: 2K - 50K -#endif +bool SpindleLaser::isReadyForUI = false; // Ready to apply power setting from the UI to OCR +CutterMode SpindleLaser::cutter_mode = CUTTER_MODE_STANDARD; // Default is standard mode + +constexpr cutter_cpower_t SpindleLaser::power_floor; +cutter_power_t SpindleLaser::menuPower = 0, // Power value via LCD menu in PWM, PERCENT, or RPM based on configured format set by CUTTER_POWER_UNIT. + SpindleLaser::unitPower = 0; // Unit power is in PWM, PERCENT, or RPM based on CUTTER_POWER_UNIT. + +cutter_frequency_t SpindleLaser::frequency; // PWM frequency setting; range: 2K - 50K + #define SPINDLE_LASER_PWM_OFF TERN(SPINDLE_LASER_PWM_INVERT, 255, 0) /** @@ -65,14 +73,14 @@ void SpindleLaser::init() { #if ENABLED(SPINDLE_CHANGE_DIR) OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR); // Init rotation to clockwise (M3) #endif + #if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY + frequency = SPINDLE_LASER_FREQUENCY; + hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY); + #endif #if ENABLED(SPINDLE_LASER_USE_PWM) SET_PWM(SPINDLE_LASER_PWM_PIN); hal.set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Set to lowest speed #endif - #if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY - hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY); - TERN_(MARLIN_DEV_MODE, frequency = SPINDLE_LASER_FREQUENCY); - #endif #if ENABLED(AIR_EVACUATION) OUT_WRITE(AIR_EVACUATION_PIN, !AIR_EVACUATION_ACTIVE); // Init Vacuum/Blower OFF #endif @@ -90,7 +98,7 @@ void SpindleLaser::init() { */ void SpindleLaser::_set_ocr(const uint8_t ocr) { #if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY - hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), TERN(MARLIN_DEV_MODE, frequency, SPINDLE_LASER_FREQUENCY)); + hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), frequency); #endif hal.set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF); } @@ -107,35 +115,41 @@ void SpindleLaser::init() { #endif // SPINDLE_LASER_USE_PWM /** - * Apply power for laser/spindle + * Apply power for Laser or Spindle * * Apply cutter power value for PWM, Servo, and on/off pin. * - * @param opwr Power value. Range 0 to MAX. When 0 disable spindle/laser. + * @param opwr Power value. Range 0 to MAX. */ void SpindleLaser::apply_power(const uint8_t opwr) { - if (opwr == last_power_applied) return; - last_power_applied = opwr; - power = opwr; - #if ENABLED(SPINDLE_LASER_USE_PWM) - if (cutter.unitPower == 0 && CUTTER_UNIT_IS(RPM)) { - ocr_off(); - isReady = false; - } - else if (ENABLED(CUTTER_POWER_RELATIVE) || enabled()) { - set_ocr(power); - isReady = true; - } - else { - ocr_off(); - isReady = false; - } - #elif ENABLED(SPINDLE_SERVO) - servo[SPINDLE_SERVO_NR].move(power); - #else - WRITE(SPINDLE_LASER_ENA_PIN, enabled() ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE); - isReady = true; - #endif + if (enabled() || opwr == 0) { // 0 check allows us to disable where no ENA pin exists + // Test and set the last power used to improve performance + if (opwr == last_power_applied) return; + last_power_applied = opwr; + // Handle PWM driven or just simple on/off + #if ENABLED(SPINDLE_LASER_USE_PWM) + if (CUTTER_UNIT_IS(RPM) && unitPower == 0) + ocr_off(); + else if (ENABLED(CUTTER_POWER_RELATIVE) || enabled() || opwr == 0) { + set_ocr(opwr); + isReadyForUI = true; + } + else + ocr_off(); + #elif ENABLED(SPINDLE_SERVO) + MOVE_SERVO(SPINDLE_SERVO_NR, power); + #else + WRITE(SPINDLE_LASER_ENA_PIN, enabled() ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE); + isReadyForUI = true; + #endif + } + else { + #if PIN_EXISTS(SPINDLE_LASER_ENA) + WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_STATE); + #endif + isReadyForUI = false; // Only used for UI display updates. + TERN_(SPINDLE_LASER_USE_PWM, ocr_off()); + } } #if ENABLED(SPINDLE_CHANGE_DIR) diff --git a/Marlin/src/feature/spindle_laser.h b/Marlin/src/feature/spindle_laser.h index 808fa634e162..c4923a0ec5ac 100644 --- a/Marlin/src/feature/spindle_laser.h +++ b/Marlin/src/feature/spindle_laser.h @@ -34,85 +34,97 @@ #include "../libs/buzzer.h" #endif -#if ENABLED(LASER_POWER_INLINE) - #include "../module/planner.h" -#endif +// Inline laser power +#include "../module/planner.h" #define PCT_TO_PWM(X) ((X) * 255 / 100) #define PCT_TO_SERVO(X) ((X) * 180 / 100) +// Laser/Cutter operation mode +enum CutterMode : int8_t { + CUTTER_MODE_ERROR = -1, + CUTTER_MODE_STANDARD, // M3 power is applied directly and waits for planner moves to sync. + CUTTER_MODE_CONTINUOUS, // M3 or G1/2/3 move power is controlled within planner blocks, set with 'M3 I', cleared with 'M5 I'. + CUTTER_MODE_DYNAMIC // M4 laser power is proportional to the feed rate, set with 'M4 I', cleared with 'M5 I'. +}; + class SpindleLaser { public: - static const inline uint8_t pct_to_ocr(const_float_t pct) { return uint8_t(PCT_TO_PWM(pct)); } + static CutterMode cutter_mode; - // cpower = configured values (e.g., SPEED_POWER_MAX) + static constexpr uint8_t pct_to_ocr(const_float_t pct) { return uint8_t(PCT_TO_PWM(pct)); } + // cpower = configured values (e.g., SPEED_POWER_MAX) // Convert configured power range to a percentage - static const inline uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) { - constexpr cutter_cpower_t power_floor = TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0), - power_range = SPEED_POWER_MAX - power_floor; - return cpwr ? round(100.0f * (cpwr - power_floor) / power_range) : 0; + static constexpr cutter_cpower_t power_floor = TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0); + static constexpr uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) { + return cpwr ? round(100.0f * (cpwr - power_floor) / (SPEED_POWER_MAX - power_floor)) : 0; } - // Convert a cpower (e.g., SPEED_POWER_STARTUP) to unit power (upwr, upower), - // which can be PWM, Percent, Servo angle, or RPM (rel/abs). - static const inline cutter_power_t cpwr_to_upwr(const cutter_cpower_t cpwr) { // STARTUP power to Unit power - const cutter_power_t upwr = ( + // Convert config defines from RPM to %, angle or PWM when in Spindle mode + // and convert from PERCENT to PWM when in Laser mode + static constexpr cutter_power_t cpwr_to_upwr(const cutter_cpower_t cpwr) { // STARTUP power to Unit power + return ( #if ENABLED(SPINDLE_FEATURE) - // Spindle configured values are in RPM + // Spindle configured define values are in RPM #if CUTTER_UNIT_IS(RPM) - cpwr // to RPM - #elif CUTTER_UNIT_IS(PERCENT) // to PCT - cpwr_to_pct(cpwr) - #elif CUTTER_UNIT_IS(SERVO) // to SERVO angle - PCT_TO_SERVO(cpwr_to_pct(cpwr)) - #else // to PWM - PCT_TO_PWM(cpwr_to_pct(cpwr)) + cpwr // to same + #elif CUTTER_UNIT_IS(PERCENT) + cpwr_to_pct(cpwr) // to Percent + #elif CUTTER_UNIT_IS(SERVO) + PCT_TO_SERVO(cpwr_to_pct(cpwr)) // to SERVO angle + #else + PCT_TO_PWM(cpwr_to_pct(cpwr)) // to PWM #endif #else - // Laser configured values are in PCT + // Laser configured define values are in Percent #if CUTTER_UNIT_IS(PWM255) - PCT_TO_PWM(cpwr) + PCT_TO_PWM(cpwr) // to PWM #else - cpwr // to RPM/PCT + cpwr // to same #endif #endif ); - return upwr; } - static const cutter_power_t mpower_min() { return cpwr_to_upwr(SPEED_POWER_MIN); } - static const cutter_power_t mpower_max() { return cpwr_to_upwr(SPEED_POWER_MAX); } + static constexpr cutter_power_t mpower_min() { return cpwr_to_upwr(SPEED_POWER_MIN); } + static constexpr cutter_power_t mpower_max() { return cpwr_to_upwr(SPEED_POWER_MAX); } #if ENABLED(LASER_FEATURE) - static cutter_test_pulse_t testPulse; // Test fire Pulse ms value + static cutter_test_pulse_t testPulse; // (ms) Test fire pulse duration + static uint8_t last_block_power; // Track power changes for dynamic power + + static feedRate_t feedrate_mm_m, last_feedrate_mm_m; // (mm/min) Track feedrate changes for dynamic power + static bool laser_feedrate_changed() { + const bool changed = last_feedrate_mm_m != feedrate_mm_m; + if (changed) last_feedrate_mm_m = feedrate_mm_m; + return changed; + } #endif - static bool isReady; // Ready to apply power setting from the UI to OCR + static bool isReadyForUI; // Ready to apply power setting from the UI to OCR + static bool enable_state; static uint8_t power, last_power_applied; // Basic power state tracking - #if ENABLED(MARLIN_DEV_MODE) - static cutter_frequency_t frequency; // Set PWM frequency; range: 2K-50K - #endif + static cutter_frequency_t frequency; // Set PWM frequency; range: 2K-50K static cutter_power_t menuPower, // Power as set via LCD menu in PWM, Percentage or RPM unitPower; // Power as displayed status in PWM, Percentage or RPM static void init(); - #if ENABLED(MARLIN_DEV_MODE) + #if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY static void refresh_frequency() { hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), frequency); } #endif // Modifying this function should update everywhere static bool enabled(const cutter_power_t opwr) { return opwr > 0; } - static bool enabled() { return enabled(power); } + static bool enabled() { return enable_state; } static void apply_power(const uint8_t inpow); FORCE_INLINE static void refresh() { apply_power(power); } - FORCE_INLINE static void set_power(const uint8_t upwr) { power = upwr; refresh(); } #if ENABLED(SPINDLE_LASER_USE_PWM) @@ -123,7 +135,6 @@ class SpindleLaser { public: static void set_ocr(const uint8_t ocr); - static void ocr_set_power(const uint8_t ocr) { power = ocr; set_ocr(ocr); } static void ocr_off(); /** @@ -141,78 +152,76 @@ class SpindleLaser { ); } - /** - * Correct power to configured range - */ - static cutter_power_t power_to_range(const cutter_power_t pwr) { - return power_to_range(pwr, _CUTTER_POWER(CUTTER_POWER_UNIT)); - } - - static cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit) { - static constexpr float - min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, round(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)), - max_pct = TERN(SPINDLE_FEATURE, 100, SPEED_POWER_MAX); - if (pwr <= 0) return 0; - cutter_power_t upwr; - switch (pwrUnit) { - case _CUTTER_POWER_PWM255: - upwr = cutter_power_t( - (pwr < pct_to_ocr(min_pct)) ? pct_to_ocr(min_pct) // Use minimum if set below - : (pwr > pct_to_ocr(max_pct)) ? pct_to_ocr(max_pct) // Use maximum if set above - : pwr - ); - break; - case _CUTTER_POWER_PERCENT: - upwr = cutter_power_t( - (pwr < min_pct) ? min_pct // Use minimum if set below - : (pwr > max_pct) ? max_pct // Use maximum if set above - : pwr // PCT - ); - break; - case _CUTTER_POWER_RPM: - upwr = cutter_power_t( - (pwr < SPEED_POWER_MIN) ? SPEED_POWER_MIN // Use minimum if set below - : (pwr > SPEED_POWER_MAX) ? SPEED_POWER_MAX // Use maximum if set above - : pwr // Calculate OCR value - ); - break; - default: break; - } - return upwr; - } - #endif // SPINDLE_LASER_USE_PWM /** - * Enable/Disable spindle/laser - * @param enable true = enable; false = disable + * Correct power to configured range */ - static void set_enabled(const bool enable) { - uint8_t value = 0; - if (enable) { - #if ENABLED(SPINDLE_LASER_USE_PWM) - if (power) - value = power; - else if (unitPower) - value = upower_to_ocr(cpwr_to_upwr(SPEED_POWER_STARTUP)); - #else - value = 255; - #endif + static cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit=_CUTTER_POWER(CUTTER_POWER_UNIT)) { + static constexpr float + min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, round(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)), + max_pct = TERN(SPINDLE_FEATURE, 100, SPEED_POWER_MAX); + if (pwr <= 0) return 0; + cutter_power_t upwr; + switch (pwrUnit) { + case _CUTTER_POWER_PWM255: { // PWM + const uint8_t pmin = pct_to_ocr(min_pct), pmax = pct_to_ocr(max_pct); + upwr = cutter_power_t(constrain(pwr, pmin, pmax)); + } break; + case _CUTTER_POWER_PERCENT: // Percent + upwr = cutter_power_t(constrain(pwr, min_pct, max_pct)); + break; + case _CUTTER_POWER_RPM: // Calculate OCR value + upwr = cutter_power_t(constrain(pwr, SPEED_POWER_MIN, SPEED_POWER_MAX)); + break; + default: break; } - set_power(value); + return upwr; } - static void disable() { isReady = false; set_enabled(false); } - /** - * Wait for spindle to spin up or spin down + * Enable Laser or Spindle output. + * It's important to prevent changing the power output value during inline cutter operation. + * Inline power is adjusted in the planner to support LASER_TRAP_POWER and CUTTER_MODE_DYNAMIC mode. + * + * This method accepts one of the following control states: + * + * - For CUTTER_MODE_STANDARD the cutter power is either full on/off or ocr-based and it will apply + * SPEED_POWER_STARTUP if no value is assigned. * - * @param on true = state to on; false = state to off. + * - For CUTTER_MODE_CONTINUOUS inline and power remains where last set and the cutter output enable flag is set. + * + * - CUTTER_MODE_DYNAMIC is also inline-based and it just sets the enable output flag. + * + * - For CUTTER_MODE_ERROR set the output enable_state flag directly and set power to 0 for any mode. + * This mode allows a global power shutdown action to occur. */ - static void power_delay(const bool on) { - #if DISABLED(LASER_POWER_INLINE) - safe_delay(on ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY); + static void set_enabled(const bool enable) { + switch (cutter_mode) { + case CUTTER_MODE_STANDARD: + apply_power(enable ? TERN(SPINDLE_LASER_USE_PWM, (power ?: (unitPower ? upower_to_ocr(cpwr_to_upwr(SPEED_POWER_STARTUP)) : 0)), 255) : 0); + break; + case CUTTER_MODE_CONTINUOUS: + TERN_(LASER_FEATURE, set_inline_enabled(enable)); + break; + case CUTTER_MODE_DYNAMIC: + TERN_(LASER_FEATURE, set_inline_enabled(enable)); + break; + case CUTTER_MODE_ERROR: // Error mode, no enable and kill power. + enable_state = false; + apply_power(0); + } + #if SPINDLE_LASER_ENA_PIN + WRITE(SPINDLE_LASER_ENA_PIN, enable ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE); #endif + enable_state = enable; + } + + static void disable() { isReadyForUI = false; set_enabled(false); } + + // Wait for spindle/laser to startup or shutdown + static void power_delay(const bool on) { + safe_delay(on ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY); } #if ENABLED(SPINDLE_CHANGE_DIR) @@ -224,122 +233,97 @@ class SpindleLaser { #endif #if ENABLED(AIR_EVACUATION) - static void air_evac_enable(); // Turn On Cutter Vacuum or Laser Blower motor - static void air_evac_disable(); // Turn Off Cutter Vacuum or Laser Blower motor - static void air_evac_toggle(); // Toggle Cutter Vacuum or Laser Blower motor - static bool air_evac_state() { // Get current state + static void air_evac_enable(); // Turn On Cutter Vacuum or Laser Blower motor + static void air_evac_disable(); // Turn Off Cutter Vacuum or Laser Blower motor + static void air_evac_toggle(); // Toggle Cutter Vacuum or Laser Blower motor + static bool air_evac_state() { // Get current state return (READ(AIR_EVACUATION_PIN) == AIR_EVACUATION_ACTIVE); } #endif #if ENABLED(AIR_ASSIST) - static void air_assist_enable(); // Turn on air assist - static void air_assist_disable(); // Turn off air assist - static void air_assist_toggle(); // Toggle air assist - static bool air_assist_state() { // Get current state + static void air_assist_enable(); // Turn on air assist + static void air_assist_disable(); // Turn off air assist + static void air_assist_toggle(); // Toggle air assist + static bool air_assist_state() { // Get current state return (READ(AIR_ASSIST_PIN) == AIR_ASSIST_ACTIVE); } #endif #if HAS_MARLINUI_MENU - static void enable_with_dir(const bool reverse) { - isReady = true; - const uint8_t ocr = TERN(SPINDLE_LASER_USE_PWM, upower_to_ocr(menuPower), 255); - if (menuPower) - power = ocr; - else - menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP); - unitPower = menuPower; - set_reverse(reverse); - set_enabled(true); - } - FORCE_INLINE static void enable_forward() { enable_with_dir(false); } - FORCE_INLINE static void enable_reverse() { enable_with_dir(true); } - FORCE_INLINE static void enable_same_dir() { enable_with_dir(is_reverse()); } + + #if ENABLED(SPINDLE_FEATURE) + static void enable_with_dir(const bool reverse) { + isReadyForUI = true; + const uint8_t ocr = TERN(SPINDLE_LASER_USE_PWM, upower_to_ocr(menuPower), 255); + if (menuPower) + power = ocr; + else + menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP); + unitPower = menuPower; + set_reverse(reverse); + set_enabled(true); + } + FORCE_INLINE static void enable_forward() { enable_with_dir(false); } + FORCE_INLINE static void enable_reverse() { enable_with_dir(true); } + FORCE_INLINE static void enable_same_dir() { enable_with_dir(is_reverse()); } + #endif // SPINDLE_FEATURE #if ENABLED(SPINDLE_LASER_USE_PWM) static void update_from_mpower() { - if (isReady) power = upower_to_ocr(menuPower); + if (isReadyForUI) power = upower_to_ocr(menuPower); unitPower = menuPower; } #endif #if ENABLED(LASER_FEATURE) + // Toggle the laser on/off with menuPower. Apply SPEED_POWER_STARTUP if it was 0 on entry. + static void laser_menu_toggle(const bool state) { + set_enabled(state); + if (state) { + if (!menuPower) menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP); + power = upower_to_ocr(menuPower); + apply_power(power); + } + } + /** * Test fire the laser using the testPulse ms duration * Also fires with any PWM power that was previous set * If not set defaults to 80% power */ static void test_fire_pulse() { - TERN_(HAS_BEEPER, buzzer.tone(30, 3000)); - enable_forward(); // Turn Laser on (Spindle speak but same funct) + BUZZ(30, 3000); + cutter_mode = CUTTER_MODE_STANDARD;// Menu needs standard mode. + laser_menu_toggle(true); // Laser On delay(testPulse); // Delay for time set by user in pulse ms menu screen. - disable(); // Turn laser off + laser_menu_toggle(false); // Laser Off } - #endif + #endif // LASER_FEATURE #endif // HAS_MARLINUI_MENU - #if ENABLED(LASER_POWER_INLINE) - /** - * Inline power adds extra fields to the planner block - * to handle laser power and scale to movement speed. - */ + #if ENABLED(LASER_FEATURE) - // Force disengage planner power control - static void inline_disable() { - isReady = false; - unitPower = 0; - planner.laser_inline.status.isPlanned = false; - planner.laser_inline.status.isEnabled = false; - planner.laser_inline.power = 0; + // Dynamic mode rate calculation + static uint8_t calc_dynamic_power() { + if (feedrate_mm_m > 65535) return 255; // Too fast, go always on + uint16_t rate = uint16_t(feedrate_mm_m); // 16 bits from the G-code parser float input + rate >>= 8; // Take the G-code input e.g. F40000 and shift off the lower bits to get an OCR value from 1-255 + return uint8_t(rate); } // Inline modes of all other functions; all enable planner inline power control - static void set_inline_enabled(const bool enable) { - if (enable) - inline_power(255); - else { - isReady = false; - unitPower = menuPower = 0; - planner.laser_inline.status.isPlanned = false; - TERN(SPINDLE_LASER_USE_PWM, inline_ocr_power, inline_power)(0); - } - } + static void set_inline_enabled(const bool enable) { planner.laser_inline.status.isEnabled = enable;} // Set the power for subsequent movement blocks - static void inline_power(const cutter_power_t upwr) { - unitPower = menuPower = upwr; - #if ENABLED(SPINDLE_LASER_USE_PWM) - #if ENABLED(SPEED_POWER_RELATIVE) && !CUTTER_UNIT_IS(RPM) // relative mode does not turn laser off at 0, except for RPM - planner.laser_inline.status.isEnabled = true; - planner.laser_inline.power = upower_to_ocr(upwr); - isReady = true; - #else - inline_ocr_power(upower_to_ocr(upwr)); - #endif - #else - planner.laser_inline.status.isEnabled = enabled(upwr); - planner.laser_inline.power = upwr; - isReady = enabled(upwr); - #endif + static void inline_power(const cutter_power_t cpwr) { + TERN(SPINDLE_LASER_USE_PWM, power = planner.laser_inline.power = cpwr, planner.laser_inline.power = cpwr > 0 ? 255 : 0); } - static void inline_direction(const bool) { /* never */ } - - #if ENABLED(SPINDLE_LASER_USE_PWM) - static void inline_ocr_power(const uint8_t ocrpwr) { - isReady = ocrpwr > 0; - planner.laser_inline.status.isEnabled = ocrpwr > 0; - planner.laser_inline.power = ocrpwr; - } - #endif - #endif // LASER_POWER_INLINE + #endif // LASER_FEATURE - static void kill() { - TERN_(LASER_POWER_INLINE, inline_disable()); - disable(); - } + static void kill() { disable(); } }; extern SpindleLaser cutter; diff --git a/Marlin/src/feature/spindle_laser_types.h b/Marlin/src/feature/spindle_laser_types.h index d249a20e7531..2f36a68a1a32 100644 --- a/Marlin/src/feature/spindle_laser_types.h +++ b/Marlin/src/feature/spindle_laser_types.h @@ -74,12 +74,10 @@ typedef IF<(SPEED_POWER_MAX > 255), uint16_t, uint8_t>::type cutter_cpower_t; #endif #endif +typedef uint16_t cutter_frequency_t; + #if ENABLED(LASER_FEATURE) typedef uint16_t cutter_test_pulse_t; #define CUTTER_MENU_PULSE_TYPE uint16_3 -#endif - -#if ENABLED(MARLIN_DEV_MODE) - typedef uint16_t cutter_frequency_t; #define CUTTER_MENU_FREQUENCY_TYPE uint16_5 #endif diff --git a/Marlin/src/feature/tmc_util.cpp b/Marlin/src/feature/tmc_util.cpp index c69772bebcaf..ef3fb3a248bd 100644 --- a/Marlin/src/feature/tmc_util.cpp +++ b/Marlin/src/feature/tmc_util.cpp @@ -33,17 +33,12 @@ #include "../gcode/gcode.h" #if ENABLED(TMC_DEBUG) - #include "../module/planner.h" #include "../libs/hex_print.h" #if ENABLED(MONITOR_DRIVER_STATUS) static uint16_t report_tmc_status_interval; // = 0 #endif #endif -#if HAS_MARLINUI_MENU - #include "../module/stepper.h" -#endif - /** * Check for over temperature or short to ground error flags. * Report and log warning of overtemperature condition. diff --git a/Marlin/src/feature/tmc_util.h b/Marlin/src/feature/tmc_util.h index fc333b09dd99..c10bab62749d 100644 --- a/Marlin/src/feature/tmc_util.h +++ b/Marlin/src/feature/tmc_util.h @@ -348,7 +348,7 @@ void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true)); #if USE_SENSORLESS // Track enabled status of stealthChop and only re-enable where applicable - struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; }; + struct sensorless_t { bool NUM_AXIS_ARGS(), x2, y2, z2, z3, z4; }; #if ENABLED(IMPROVE_HOMING_RELIABILITY) extern millis_t sg_guard_period; diff --git a/Marlin/src/gcode/bedlevel/G26.cpp b/Marlin/src/gcode/bedlevel/G26.cpp index 21fa08fc107a..aa6e0c1f0c54 100644 --- a/Marlin/src/gcode/bedlevel/G26.cpp +++ b/Marlin/src/gcode/bedlevel/G26.cpp @@ -107,7 +107,6 @@ #include "../../MarlinCore.h" #include "../../module/planner.h" -#include "../../module/stepper.h" #include "../../module/motion.h" #include "../../module/tool_change.h" #include "../../module/temperature.h" @@ -306,7 +305,7 @@ typedef struct { LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1); #endif - if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y)) + if (position_is_reachable(s) && position_is_reachable(e)) print_line_from_here_to_there(s, e); } } diff --git a/Marlin/src/gcode/bedlevel/abl/G29.cpp b/Marlin/src/gcode/bedlevel/abl/G29.cpp index 0d247e47673c..a540eae2631b 100644 --- a/Marlin/src/gcode/bedlevel/abl/G29.cpp +++ b/Marlin/src/gcode/bedlevel/abl/G29.cpp @@ -32,7 +32,6 @@ #include "../../../feature/bedlevel/bedlevel.h" #include "../../../module/motion.h" #include "../../../module/planner.h" -#include "../../../module/stepper.h" #include "../../../module/probe.h" #include "../../queue.h" diff --git a/Marlin/src/gcode/bedlevel/mbl/G29.cpp b/Marlin/src/gcode/bedlevel/mbl/G29.cpp index 10b044b056aa..227964e9156a 100644 --- a/Marlin/src/gcode/bedlevel/mbl/G29.cpp +++ b/Marlin/src/gcode/bedlevel/mbl/G29.cpp @@ -36,7 +36,7 @@ #include "../../../libs/buzzer.h" #include "../../../lcd/marlinui.h" #include "../../../module/motion.h" -#include "../../../module/stepper.h" +#include "../../../module/planner.h" #if ENABLED(EXTENSIBLE_UI) #include "../../../lcd/extui/ui_api.h" diff --git a/Marlin/src/gcode/calibrate/G28.cpp b/Marlin/src/gcode/calibrate/G28.cpp index b2096ace7e51..f7b480a3e347 100644 --- a/Marlin/src/gcode/calibrate/G28.cpp +++ b/Marlin/src/gcode/calibrate/G28.cpp @@ -24,8 +24,9 @@ #include "../gcode.h" -#include "../../module/stepper.h" #include "../../module/endstops.h" +#include "../../module/planner.h" +#include "../../module/stepper.h" // for various #if HAS_MULTI_HOTEND #include "../../module/tool_change.h" @@ -59,7 +60,7 @@ #include "../../libs/L64XX/L64XX_Marlin.h" #endif -#if ENABLED(LASER_MOVE_G28_OFF) +#if ENABLED(LASER_FEATURE) #include "../../feature/spindle_laser.h" #endif @@ -82,7 +83,7 @@ #if ENABLED(SENSORLESS_HOMING) sensorless_t stealth_states { - LINEAR_AXIS_LIST( + NUM_AXIS_LIST( TERN0(X_SENSORLESS, tmc_enable_stallguard(stepperX)), TERN0(Y_SENSORLESS, tmc_enable_stallguard(stepperY)), false, false, false, false @@ -169,7 +170,7 @@ motion_state.jerk_state = planner.max_jerk; planner.max_jerk.set(0, 0 OPTARG(DELTA, 0)); #endif - planner.reset_acceleration_rates(); + planner.refresh_acceleration_rates(); return motion_state; } @@ -178,7 +179,7 @@ planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = motion_state.acceleration.y; TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = motion_state.acceleration.z); TERN_(HAS_CLASSIC_JERK, planner.max_jerk = motion_state.jerk_state); - planner.reset_acceleration_rates(); + planner.refresh_acceleration_rates(); } #endif // IMPROVE_HOMING_RELIABILITY @@ -205,7 +206,12 @@ void GcodeSuite::G28() { DEBUG_SECTION(log_G28, "G28", DEBUGGING(LEVELING)); if (DEBUGGING(LEVELING)) log_machine_info(); - TERN_(LASER_MOVE_G28_OFF, cutter.set_inline_enabled(false)); // turn off laser + /* + * Set the laser power to false to stop the planner from processing the current power setting. + */ + #if ENABLED(LASER_FEATURE) + planner.laser_inline.status.isPowered = false; + #endif #if ENABLED(DUAL_X_CARRIAGE) bool IDEX_saved_duplication_state = extruder_duplication_enabled; @@ -214,7 +220,7 @@ void GcodeSuite::G28() { #if ENABLED(MARLIN_DEV_MODE) if (parser.seen_test('S')) { - LOOP_LINEAR_AXES(a) set_axis_is_at_home((AxisEnum)a); + LOOP_NUM_AXES(a) set_axis_is_at_home((AxisEnum)a); sync_plan_position(); SERIAL_ECHOLNPGM("Simulated Homing"); report_current_position(); @@ -367,21 +373,21 @@ void GcodeSuite::G28() { #define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS)))) const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')), - LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing + NUM_AXIS_LIST( // Other axes should be homed before Z safe-homing needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K) ), - LINEAR_AXIS_LIST( // Home each axis if needed or flagged + NUM_AXIS_LIST( // Home each axis if needed or flagged homeX = needX || parser.seen_test('X'), homeY = needY || parser.seen_test('Y'), homeZZ = homeZ, homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME) ), - home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged + home_all = NUM_AXIS_GANG( // Home-all if all or none are flagged homeX == homeX, && homeY == homeX, && homeZ == homeX, && homeI == homeX, && homeJ == homeX, && homeK == homeX ), - LINEAR_AXIS_LIST( + NUM_AXIS_LIST( doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ, doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK ); @@ -397,7 +403,7 @@ void GcodeSuite::G28() { const bool seenR = parser.seenval('R'); const float z_homing_height = seenR ? parser.value_linear_units() : Z_HOMING_HEIGHT; - if (z_homing_height && (seenR || LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) { + if (z_homing_height && (seenR || NUM_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) { // Raise Z before homing any other axes and z is not already high enough (never lower z) if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Raise Z (before homing) by ", z_homing_height); do_z_clearance(z_homing_height); @@ -460,9 +466,11 @@ void GcodeSuite::G28() { } #endif - TERN_(HAS_I_AXIS, if (doI) homeaxis(I_AXIS)); - TERN_(HAS_J_AXIS, if (doJ) homeaxis(J_AXIS)); - TERN_(HAS_K_AXIS, if (doK) homeaxis(K_AXIS)); + SECONDARY_AXIS_CODE( + if (doI) homeaxis(I_AXIS), + if (doJ) homeaxis(J_AXIS), + if (doK) homeaxis(K_AXIS) + ); sync_plan_position(); @@ -568,7 +576,7 @@ void GcodeSuite::G28() { // If not, this will need a PROGMEM directive and an accessor. #define _EN_ITEM(N) , E_AXIS static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = { - LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS), + NUM_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS), X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS REPEAT(E_STEPPERS, _EN_ITEM) }; diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp index 05da2f94571d..656c23cb78ff 100644 --- a/Marlin/src/gcode/calibrate/G33.cpp +++ b/Marlin/src/gcode/calibrate/G33.cpp @@ -27,7 +27,7 @@ #include "../gcode.h" #include "../../module/delta.h" #include "../../module/motion.h" -#include "../../module/stepper.h" +#include "../../module/planner.h" #include "../../module/endstops.h" #include "../../lcd/marlinui.h" @@ -343,7 +343,7 @@ static float auto_tune_a(const float dcr) { abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f }; delta_t.reset(); - LOOP_LINEAR_AXES(axis) { + LOOP_NUM_AXES(axis) { delta_t[axis] = diff; calc_kinematics_diff_probe_points(z_pt, dcr, delta_e, delta_r, delta_t); delta_t[axis] = 0; @@ -437,7 +437,7 @@ void GcodeSuite::G33() { const bool stow_after_each = parser.seen_test('E'); #if HAS_DELTA_SENSORLESS_PROBING - probe.test_sensitivity.set(!parser.seen_test('X'), !parser.seen_test('Y'), !parser.seen_test('Z')); + probe.test_sensitivity = { !parser.seen_test('X'), !parser.seen_test('Y'), !parser.seen_test('Z') }; const bool do_save_offset_adj = parser.seen_test('S'); #endif @@ -557,7 +557,7 @@ void GcodeSuite::G33() { case 1: test_precision = 0.0f; // forced end - LOOP_LINEAR_AXES(axis) e_delta[axis] = +Z4(CEN); + LOOP_NUM_AXES(axis) e_delta[axis] = +Z4(CEN); break; case 2: @@ -605,14 +605,14 @@ void GcodeSuite::G33() { // Normalize angles to least-squares if (_angle_results) { float a_sum = 0.0f; - LOOP_LINEAR_AXES(axis) a_sum += delta_tower_angle_trim[axis]; - LOOP_LINEAR_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f; + LOOP_NUM_AXES(axis) a_sum += delta_tower_angle_trim[axis]; + LOOP_NUM_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f; } // adjust delta_height and endstops by the max amount const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c); delta_height -= z_temp; - LOOP_LINEAR_AXES(axis) delta_endstop_adj[axis] -= z_temp; + LOOP_NUM_AXES(axis) delta_endstop_adj[axis] -= z_temp; } recalc_delta_settings(); NOMORE(zero_std_dev_min, zero_std_dev); diff --git a/Marlin/src/gcode/calibrate/G34.cpp b/Marlin/src/gcode/calibrate/G34.cpp index 84b910212344..1be3952ffe2e 100644 --- a/Marlin/src/gcode/calibrate/G34.cpp +++ b/Marlin/src/gcode/calibrate/G34.cpp @@ -26,9 +26,12 @@ #include "../gcode.h" #include "../../module/motion.h" -#include "../../module/stepper.h" #include "../../module/endstops.h" +#if ANY(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM, HAS_TRINAMIC_CONFIG) + #include "../../module/stepper.h" +#endif + #if HAS_LEVELING #include "../../feature/bedlevel/bedlevel.h" #endif @@ -79,7 +82,7 @@ void GcodeSuite::G34() { stepper.set_digipot_current(Z_AXIS, target_current); #elif HAS_MOTOR_CURRENT_PWM const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT); - const uint32_t previous_current = stepper.motor_current_setting[Z_AXIS]; + const uint32_t previous_current = stepper.motor_current_setting[1]; // Z stepper.set_digipot_current(1, target_current); #elif HAS_MOTOR_CURRENT_DAC const float target_current = parser.floatval('S', GANTRY_CALIBRATION_CURRENT); diff --git a/Marlin/src/gcode/calibrate/G34_M422.cpp b/Marlin/src/gcode/calibrate/G34_M422.cpp index d68207885d39..8cf652cd8411 100644 --- a/Marlin/src/gcode/calibrate/G34_M422.cpp +++ b/Marlin/src/gcode/calibrate/G34_M422.cpp @@ -224,13 +224,15 @@ void GcodeSuite::G34() { // Safe clearance even on an incline if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe); + xy_pos_t &ppos = z_stepper_align.xy[iprobe]; + if (DEBUGGING(LEVELING)) - DEBUG_ECHOLNPGM_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y); + DEBUG_ECHOLNPGM_P(PSTR("Probing X"), ppos.x, SP_Y_STR, ppos.y); // Probe a Z height for each stepper. // Probing sanity check is disabled, as it would trigger even in normal cases because // current_position.z has been manually altered in the "dirty trick" above. - const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false); + const float z_probed_height = probe.probe_at_point(DIFF_TERN(HAS_HOME_OFFSET, ppos, xy_pos_t(home_offset)), raise_after, 0, true, false); if (isnan(z_probed_height)) { SERIAL_ECHOLNPGM("Probing failed"); LCD_MESSAGE(MSG_LCD_PROBING_FAILED); diff --git a/Marlin/src/gcode/calibrate/G425.cpp b/Marlin/src/gcode/calibrate/G425.cpp index a2dec64bc3a8..f4d05ae89e5b 100644 --- a/Marlin/src/gcode/calibrate/G425.cpp +++ b/Marlin/src/gcode/calibrate/G425.cpp @@ -88,7 +88,7 @@ enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES, - LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM) + LIST_N(DOUBLE(SECONDARY_AXES), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM) }; static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER; @@ -352,7 +352,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) { // The difference between the known and the measured location // of the calibration object is the positional error - LINEAR_AXIS_CODE( + NUM_AXIS_CODE( m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x), m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y), m.pos_error.z = true_center.z - m.obj_center.z, @@ -597,7 +597,7 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) { // New scope for TEMPORARY_BACKLASH_CORRECTION TEMPORARY_BACKLASH_CORRECTION(backlash.all_on); TEMPORARY_BACKLASH_SMOOTHING(0.0f); - const xyz_float_t move = LINEAR_AXIS_ARRAY( + const xyz_float_t move = NUM_AXIS_ARRAY( AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3, AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3 ); diff --git a/Marlin/src/gcode/calibrate/M425.cpp b/Marlin/src/gcode/calibrate/M425.cpp index 873d67032291..ba262c5a2c97 100644 --- a/Marlin/src/gcode/calibrate/M425.cpp +++ b/Marlin/src/gcode/calibrate/M425.cpp @@ -54,10 +54,10 @@ void GcodeSuite::M425() { } }; - LOOP_LINEAR_AXES(a) { + LOOP_NUM_AXES(a) { if (axis_can_calibrate(a) && parser.seen(AXIS_CHAR(a))) { planner.synchronize(); - backlash.set_distance_mm(AxisEnum(a), parser.has_value() ? parser.value_linear_units() : backlash.get_measurement(AxisEnum(a))); + backlash.set_distance_mm((AxisEnum)a, parser.has_value() ? parser.value_axis_units((AxisEnum)a) : backlash.get_measurement((AxisEnum)a)); noArgs = false; } } @@ -82,10 +82,8 @@ void GcodeSuite::M425() { SERIAL_ECHOLNPGM("active:"); SERIAL_ECHOLNPGM(" Correction Amount/Fade-out: F", backlash.get_correction(), " (F1.0 = full, F0.0 = none)"); SERIAL_ECHOPGM(" Backlash Distance (mm): "); - LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a)) { - SERIAL_CHAR(' ', AXIS_CHAR(a)); - SERIAL_ECHO(backlash.get_distance_mm(AxisEnum(a))); - SERIAL_EOL(); + LOOP_NUM_AXES(a) if (axis_can_calibrate(a)) { + SERIAL_ECHOLNPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a]), backlash.get_distance_mm((AxisEnum)a)); } #ifdef BACKLASH_SMOOTHING_MM @@ -95,9 +93,8 @@ void GcodeSuite::M425() { #if ENABLED(MEASURE_BACKLASH_WHEN_PROBING) SERIAL_ECHOPGM(" Average measured backlash (mm):"); if (backlash.has_any_measurement()) { - LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) { - SERIAL_CHAR(' ', AXIS_CHAR(a)); - SERIAL_ECHO(backlash.get_measurement(AxisEnum(a))); + LOOP_NUM_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) { + SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a]), backlash.get_measurement((AxisEnum)a)); } } else @@ -114,7 +111,7 @@ void GcodeSuite::M425_report(const bool forReplay/*=true*/) { #ifdef BACKLASH_SMOOTHING_MM , PSTR(" S"), LINEAR_UNIT(backlash.get_smoothing_mm()) #endif - , LIST_N(DOUBLE(LINEAR_AXES), + , LIST_N(DOUBLE(NUM_AXES), SP_X_STR, LINEAR_UNIT(backlash.get_distance_mm(X_AXIS)), SP_Y_STR, LINEAR_UNIT(backlash.get_distance_mm(Y_AXIS)), SP_Z_STR, LINEAR_UNIT(backlash.get_distance_mm(Z_AXIS)), diff --git a/Marlin/src/gcode/calibrate/M665.cpp b/Marlin/src/gcode/calibrate/M665.cpp index aa21471b6027..7dc657a61b43 100644 --- a/Marlin/src/gcode/calibrate/M665.cpp +++ b/Marlin/src/gcode/calibrate/M665.cpp @@ -86,13 +86,13 @@ * * Parameters: * - * S[segments-per-second] - Segments-per-second + * S[segments] - Segments-per-second * * Without NO_WORKSPACE_OFFSETS: * - * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle - * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle - * Z[z-offset] - Z offset, added to Z + * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle + * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle + * Z[z-offset] - Z offset, added to Z * * A, P, and X are all aliases for the shoulder angle * B, T, and Y are all aliases for the elbow angle @@ -152,18 +152,35 @@ * * Parameters: * - * S[segments-per-second] - Segments-per-second + * S[segments] - Segments-per-second + * L[left] - Work area minimum X + * R[right] - Work area maximum X + * T[top] - Work area maximum Y + * B[bottom] - Work area minimum Y + * H[length] - Maximum belt length */ void GcodeSuite::M665() { - if (parser.seenval('S')) - segments_per_second = parser.value_float(); - else - M665_report(); + if (!parser.seen_any()) return M665_report(); + if (parser.seenval('S')) segments_per_second = parser.value_float(); + if (parser.seenval('L')) draw_area_min.x = parser.value_linear_units(); + if (parser.seenval('R')) draw_area_max.x = parser.value_linear_units(); + if (parser.seenval('T')) draw_area_max.y = parser.value_linear_units(); + if (parser.seenval('B')) draw_area_min.y = parser.value_linear_units(); + if (parser.seenval('H')) polargraph_max_belt_len = parser.value_linear_units(); + draw_area_size.x = draw_area_max.x - draw_area_min.x; + draw_area_size.y = draw_area_max.y - draw_area_min.y; } void GcodeSuite::M665_report(const bool forReplay/*=true*/) { - report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS " (" STR_S_SEG_PER_SEC ")")); - SERIAL_ECHOLNPGM(" M665 S", segments_per_second); + report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS)); + SERIAL_ECHOLNPGM_P( + PSTR(" M665 S"), LINEAR_UNIT(segments_per_second), + PSTR(" L"), LINEAR_UNIT(draw_area_min.x), + PSTR(" R"), LINEAR_UNIT(draw_area_max.x), + SP_T_STR, LINEAR_UNIT(draw_area_max.y), + SP_B_STR, LINEAR_UNIT(draw_area_min.y), + PSTR(" H"), LINEAR_UNIT(polargraph_max_belt_len) + ); } #endif diff --git a/Marlin/src/gcode/calibrate/M666.cpp b/Marlin/src/gcode/calibrate/M666.cpp index aa8ba26bb6b2..90fad1811c8c 100644 --- a/Marlin/src/gcode/calibrate/M666.cpp +++ b/Marlin/src/gcode/calibrate/M666.cpp @@ -44,8 +44,8 @@ void GcodeSuite::M666() { DEBUG_SECTION(log_M666, "M666", DEBUGGING(LEVELING)); bool is_err = false, is_set = false; - LOOP_LINEAR_AXES(i) { - if (parser.seen(AXIS_CHAR(i))) { + LOOP_NUM_AXES(i) { + if (parser.seenval(AXIS_CHAR(i))) { is_set = true; const float v = parser.value_linear_units(); if (v > 0) diff --git a/Marlin/src/gcode/config/M200-M205.cpp b/Marlin/src/gcode/config/M200-M205.cpp index 08b50b968029..4190d40a17ab 100644 --- a/Marlin/src/gcode/config/M200-M205.cpp +++ b/Marlin/src/gcode/config/M200-M205.cpp @@ -122,7 +122,7 @@ * S : Speed factor percentage. */ void GcodeSuite::M201() { - if (!parser.seen("T" LOGICAL_AXES_STRING TERN_(XY_FREQUENCY_LIMIT, "FS"))) + if (!parser.seen("T" STR_AXES_LOGICAL TERN_(XY_FREQUENCY_LIMIT, "FS"))) return M201_report(); const int8_t target_extruder = get_target_extruder_from_command(); @@ -134,9 +134,9 @@ void GcodeSuite::M201() { #endif LOOP_LOGICAL_AXES(i) { - if (parser.seenval(axis_codes[i])) { - const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i); - planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a)); + if (parser.seenval(AXIS_CHAR(i))) { + const AxisEnum a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? E_AXIS_N(target_extruder) : (AxisEnum)i), (AxisEnum)i); + planner.set_max_acceleration(a, parser.value_axis_units(a)); } } } @@ -144,7 +144,7 @@ void GcodeSuite::M201() { void GcodeSuite::M201_report(const bool forReplay/*=true*/) { report_heading_etc(forReplay, F(STR_MAX_ACCELERATION)); SERIAL_ECHOLNPGM_P( - LIST_N(DOUBLE(LINEAR_AXES), + LIST_N(DOUBLE(NUM_AXES), PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]), SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]), SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]), @@ -173,23 +173,23 @@ void GcodeSuite::M201_report(const bool forReplay/*=true*/) { * With multiple extruders use T to specify which one. */ void GcodeSuite::M203() { - if (!parser.seen("T" LOGICAL_AXES_STRING)) + if (!parser.seen("T" STR_AXES_LOGICAL)) return M203_report(); const int8_t target_extruder = get_target_extruder_from_command(); if (target_extruder < 0) return; LOOP_LOGICAL_AXES(i) - if (parser.seenval(axis_codes[i])) { - const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i); - planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a)); + if (parser.seenval(AXIS_CHAR(i))) { + const AxisEnum a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? E_AXIS_N(target_extruder) : (AxisEnum)i), (AxisEnum)i); + planner.set_max_feedrate(a, parser.value_axis_units(a)); } } void GcodeSuite::M203_report(const bool forReplay/*=true*/) { report_heading_etc(forReplay, F(STR_MAX_FEEDRATES)); SERIAL_ECHOLNPGM_P( - LIST_N(DOUBLE(LINEAR_AXES), + LIST_N(DOUBLE(NUM_AXES), PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]), SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]), SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]), @@ -298,7 +298,7 @@ void GcodeSuite::M205_report(const bool forReplay/*=true*/) { "Advanced (B S T" TERN_(HAS_JUNCTION_DEVIATION, " J") #if HAS_CLASSIC_JERK - LINEAR_AXIS_GANG( + NUM_AXIS_GANG( " X", " Y", " Z", " " STR_I "", " " STR_J "", " " STR_K "" ) @@ -314,7 +314,7 @@ void GcodeSuite::M205_report(const bool forReplay/*=true*/) { , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm) #endif #if HAS_CLASSIC_JERK - , LIST_N(DOUBLE(LINEAR_AXES), + , LIST_N(DOUBLE(NUM_AXES), SP_X_STR, LINEAR_UNIT(planner.max_jerk.x), SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y), SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z), diff --git a/Marlin/src/gcode/config/M217.cpp b/Marlin/src/gcode/config/M217.cpp index 74932a64f8fe..1c8085835574 100644 --- a/Marlin/src/gcode/config/M217.cpp +++ b/Marlin/src/gcode/config/M217.cpp @@ -50,9 +50,9 @@ * W[linear] 0/1 Enable park & Z Raise * X[linear] Park X (Requires TOOLCHANGE_PARK) * Y[linear] Park Y (Requires TOOLCHANGE_PARK) - * I[linear] Park I (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 4) - * J[linear] Park J (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 5) - * K[linear] Park K (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 6) + * I[linear] Park I (Requires TOOLCHANGE_PARK and NUM_AXES >= 4) + * J[linear] Park J (Requires TOOLCHANGE_PARK and NUM_AXES >= 5) + * K[linear] Park K (Requires TOOLCHANGE_PARK and NUM_AXES >= 6) * Z[linear] Z Raise * F[speed] Fan Speed 0-255 * D[seconds] Fan time @@ -174,14 +174,12 @@ void GcodeSuite::M217_report(const bool forReplay/*=true*/) { #if HAS_Y_AXIS , SP_Y_STR, LINEAR_UNIT(toolchange_settings.change_point.y) #endif - #if HAS_I_AXIS - , SP_I_STR, LINEAR_UNIT(toolchange_settings.change_point.i) - #endif - #if HAS_J_AXIS - , SP_J_STR, LINEAR_UNIT(toolchange_settings.change_point.j) - #endif - #if HAS_K_AXIS - , SP_K_STR, LINEAR_UNIT(toolchange_settings.change_point.k) + #if SECONDARY_AXES >= 1 + , LIST_N(DOUBLE(SECONDARY_AXES), + SP_I_STR, I_AXIS_UNIT(toolchange_settings.change_point.i), + SP_J_STR, J_AXIS_UNIT(toolchange_settings.change_point.j), + SP_K_STR, K_AXIS_UNIT(toolchange_settings.change_point.k) + ) #endif ); } diff --git a/Marlin/src/gcode/config/M281.cpp b/Marlin/src/gcode/config/M281.cpp index b90de6be30f9..e4ef3ab40b8c 100644 --- a/Marlin/src/gcode/config/M281.cpp +++ b/Marlin/src/gcode/config/M281.cpp @@ -47,8 +47,8 @@ void GcodeSuite::M281() { return; } #endif - if (parser.seen('L')) servo_angles[servo_index][0] = parser.value_int(); - if (parser.seen('U')) servo_angles[servo_index][1] = parser.value_int(); + if (parser.seenval('L')) servo_angles[servo_index][0] = parser.value_int(); + if (parser.seenval('U')) servo_angles[servo_index][1] = parser.value_int(); } else SERIAL_ERROR_MSG("Servo ", servo_index, " out of range"); diff --git a/Marlin/src/gcode/config/M304.cpp b/Marlin/src/gcode/config/M304.cpp index 97dc4be25e1c..c970288238f5 100644 --- a/Marlin/src/gcode/config/M304.cpp +++ b/Marlin/src/gcode/config/M304.cpp @@ -36,9 +36,9 @@ */ void GcodeSuite::M304() { if (!parser.seen("PID")) return M304_report(); - if (parser.seen('P')) thermalManager.temp_bed.pid.Kp = parser.value_float(); - if (parser.seen('I')) thermalManager.temp_bed.pid.Ki = scalePID_i(parser.value_float()); - if (parser.seen('D')) thermalManager.temp_bed.pid.Kd = scalePID_d(parser.value_float()); + if (parser.seenval('P')) thermalManager.temp_bed.pid.Kp = parser.value_float(); + if (parser.seenval('I')) thermalManager.temp_bed.pid.Ki = scalePID_i(parser.value_float()); + if (parser.seenval('D')) thermalManager.temp_bed.pid.Kd = scalePID_d(parser.value_float()); } void GcodeSuite::M304_report(const bool forReplay/*=true*/) { diff --git a/Marlin/src/gcode/config/M305.cpp b/Marlin/src/gcode/config/M305.cpp index 6957eef050dd..e7746923b318 100644 --- a/Marlin/src/gcode/config/M305.cpp +++ b/Marlin/src/gcode/config/M305.cpp @@ -52,19 +52,19 @@ void GcodeSuite::M305() { if (t_index >= (USER_THERMISTORS) || (do_set && t_index < 0)) SERIAL_ECHO_MSG("!Invalid index. (0 <= P <= ", USER_THERMISTORS - 1, ")"); else if (do_set) { - if (parser.seen('R')) // Pullup resistor value + if (parser.seenval('R')) // Pullup resistor value if (!thermalManager.set_pull_up_res(t_index, parser.value_float())) SERIAL_ECHO_MSG("!Invalid series resistance. (0 < R < 1000000)"); - if (parser.seen('T')) // Resistance at 25C + if (parser.seenval('T')) // Resistance at 25C if (!thermalManager.set_res25(t_index, parser.value_float())) SERIAL_ECHO_MSG("!Invalid 25C resistance. (0 < T < 10000000)"); - if (parser.seen('B')) // Beta value + if (parser.seenval('B')) // Beta value if (!thermalManager.set_beta(t_index, parser.value_float())) SERIAL_ECHO_MSG("!Invalid beta. (0 < B < 1000000)"); - if (parser.seen('C')) // Steinhart-Hart C coefficient + if (parser.seenval('C')) // Steinhart-Hart C coefficient if (!thermalManager.set_sh_coeff(t_index, parser.value_float())) SERIAL_ECHO_MSG("!Invalid Steinhart-Hart C coeff. (-0.01 < C < +0.01)"); } // If not setting then report parameters diff --git a/Marlin/src/gcode/config/M540.cpp b/Marlin/src/gcode/config/M540.cpp index 54d52f3a31e2..e751248dd641 100644 --- a/Marlin/src/gcode/config/M540.cpp +++ b/Marlin/src/gcode/config/M540.cpp @@ -25,7 +25,7 @@ #if ENABLED(SD_ABORT_ON_ENDSTOP_HIT) #include "../gcode.h" -#include "../../module/stepper.h" +#include "../../module/planner.h" /** * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) diff --git a/Marlin/src/gcode/config/M92.cpp b/Marlin/src/gcode/config/M92.cpp index 8f527919fd83..b2ec3bec677a 100644 --- a/Marlin/src/gcode/config/M92.cpp +++ b/Marlin/src/gcode/config/M92.cpp @@ -43,11 +43,11 @@ void GcodeSuite::M92() { if (target_extruder < 0) return; // No arguments? Show M92 report. - if (!parser.seen(LOGICAL_AXES_STRING TERN_(MAGIC_NUMBERS_GCODE, "HL"))) + if (!parser.seen(STR_AXES_LOGICAL TERN_(MAGIC_NUMBERS_GCODE, "HL"))) return M92_report(true, target_extruder); LOOP_LOGICAL_AXES(i) { - if (parser.seenval(axis_codes[i])) { + if (parser.seenval(AXIS_CHAR(i))) { if (TERN1(HAS_EXTRUDERS, i != E_AXIS)) planner.settings.axis_steps_per_mm[i] = parser.value_per_axis_units((AxisEnum)i); else { @@ -92,7 +92,7 @@ void GcodeSuite::M92() { void GcodeSuite::M92_report(const bool forReplay/*=true*/, const int8_t e/*=-1*/) { report_heading_etc(forReplay, F(STR_STEPS_PER_UNIT)); - SERIAL_ECHOPGM_P(LIST_N(DOUBLE(LINEAR_AXES), + SERIAL_ECHOPGM_P(LIST_N(DOUBLE(NUM_AXES), PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]), SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]), SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]), diff --git a/Marlin/src/gcode/control/M111.cpp b/Marlin/src/gcode/control/M111.cpp index d6aeb774108b..a92d334ae9d3 100644 --- a/Marlin/src/gcode/control/M111.cpp +++ b/Marlin/src/gcode/control/M111.cpp @@ -49,7 +49,7 @@ void GcodeSuite::M111() { LOOP_L_N(i, COUNT(debug_strings)) { if (TEST(marlin_debug_flags, i)) { if (comma++) SERIAL_CHAR(','); - SERIAL_ECHOPGM_P((char*)pgm_read_ptr(&debug_strings[i])); + SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&debug_strings[i])); } } } diff --git a/Marlin/src/gcode/control/M17_M18_M84.cpp b/Marlin/src/gcode/control/M17_M18_M84.cpp index ac3a602687a9..ebe48d95d7b0 100644 --- a/Marlin/src/gcode/control/M17_M18_M84.cpp +++ b/Marlin/src/gcode/control/M17_M18_M84.cpp @@ -23,6 +23,8 @@ #include "../gcode.h" #include "../../MarlinCore.h" // for stepper_inactive_time, disable_e_steppers #include "../../lcd/marlinui.h" +#include "../../module/motion.h" // for e_axis_mask +#include "../../module/planner.h" #include "../../module/stepper.h" #if ENABLED(AUTO_BED_LEVELING_UBL) @@ -43,10 +45,10 @@ inline stepper_flags_t selected_axis_bits() { selected.bits = _BV(INDEX_OF_AXIS(E_AXIS, e)); } else - selected.bits = selected.e_bits(); + selected.bits = e_axis_mask; } #endif - selected.bits |= LINEAR_AXIS_GANG( + selected.bits |= NUM_AXIS_GANG( (parser.seen_test('X') << X_AXIS), | (parser.seen_test('Y') << Y_AXIS), | (parser.seen_test('Z') << Z_AXIS), @@ -69,10 +71,10 @@ void do_enable(const stepper_flags_t to_enable) { ena_mask_t also_enabled = 0; // Track steppers enabled due to overlap // Enable all flagged axes - LOOP_LINEAR_AXES(a) { + LOOP_NUM_AXES(a) { if (TEST(shall_enable, a)) { stepper.enable_axis(AxisEnum(a)); // Mark and enable the requested axis - DEBUG_ECHOLNPGM("Enabled ", axis_codes[a], " (", a, ") with overlap ", hex_word(enable_overlap[a]), " ... Enabled: ", hex_word(stepper.axis_enabled.bits)); + DEBUG_ECHOLNPGM("Enabled ", AXIS_CHAR(a), " (", a, ") with overlap ", hex_word(enable_overlap[a]), " ... Enabled: ", hex_word(stepper.axis_enabled.bits)); also_enabled |= enable_overlap[a]; } } @@ -89,7 +91,7 @@ void do_enable(const stepper_flags_t to_enable) { if ((also_enabled &= ~(shall_enable | was_enabled))) { SERIAL_CHAR('('); - LOOP_LINEAR_AXES(a) if (TEST(also_enabled, a)) SERIAL_CHAR(axis_codes[a], ' '); + LOOP_NUM_AXES(a) if (TEST(also_enabled, a)) SERIAL_CHAR(AXIS_CHAR(a), ' '); #if HAS_EXTRUDERS #define _EN_ALSO(N) if (TEST(also_enabled, INDEX_OF_AXIS(E_AXIS, N))) SERIAL_CHAR('E', '0' + N, ' '); REPEAT(EXTRUDERS, _EN_ALSO) @@ -125,14 +127,8 @@ void GcodeSuite::M17() { stepper.enable_e_steppers(); } #endif - LINEAR_AXIS_CODE( - if (parser.seen_test('X')) stepper.enable_axis(X_AXIS), - if (parser.seen_test('Y')) stepper.enable_axis(Y_AXIS), - if (parser.seen_test('Z')) stepper.enable_axis(Z_AXIS), - if (parser.seen_test(AXIS4_NAME)) stepper.enable_axis(I_AXIS), - if (parser.seen_test(AXIS5_NAME)) stepper.enable_axis(J_AXIS), - if (parser.seen_test(AXIS6_NAME)) stepper.enable_axis(K_AXIS) - ); + LOOP_NUM_AXES(a) + if (parser.seen_test(AXIS_CHAR(a))) stepper.enable_axis((AxisEnum)a); } } else { @@ -149,9 +145,9 @@ void try_to_disable(const stepper_flags_t to_disable) { if (!still_enabled) return; // Attempt to disable all flagged axes - LOOP_LINEAR_AXES(a) + LOOP_NUM_AXES(a) if (TEST(to_disable.bits, a)) { - DEBUG_ECHOPGM("Try to disable ", axis_codes[a], " (", a, ") with overlap ", hex_word(enable_overlap[a]), " ... "); + DEBUG_ECHOPGM("Try to disable ", AXIS_CHAR(a), " (", a, ") with overlap ", hex_word(enable_overlap[a]), " ... "); if (stepper.disable_axis(AxisEnum(a))) { // Mark the requested axis and request to disable DEBUG_ECHOPGM("OK"); still_enabled &= ~(_BV(a) | enable_overlap[a]); // If actually disabled, clear one or more tracked bits @@ -178,7 +174,7 @@ void try_to_disable(const stepper_flags_t to_disable) { auto overlap_warning = [](const ena_mask_t axis_bits) { SERIAL_ECHOPGM(" not disabled. Shared with"); - LOOP_LINEAR_AXES(a) if (TEST(axis_bits, a)) SERIAL_CHAR(' ', axis_codes[a]); + LOOP_NUM_AXES(a) if (TEST(axis_bits, a)) SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a])); #if HAS_EXTRUDERS #define _EN_STILLON(N) if (TEST(axis_bits, INDEX_OF_AXIS(E_AXIS, N))) SERIAL_CHAR(' ', 'E', '0' + N); REPEAT(EXTRUDERS, _EN_STILLON) @@ -187,9 +183,9 @@ void try_to_disable(const stepper_flags_t to_disable) { }; // If any of the requested axes are still enabled, give a warning - LOOP_LINEAR_AXES(a) { + LOOP_NUM_AXES(a) { if (TEST(still_enabled, a)) { - SERIAL_CHAR(axis_codes[a]); + SERIAL_CHAR(AXIS_CHAR(a)); overlap_warning(stepper.axis_enabled.bits & enable_overlap[a]); } } @@ -238,14 +234,8 @@ void GcodeSuite::M18_M84() { stepper.disable_e_steppers(); } #endif - LINEAR_AXIS_CODE( - if (parser.seen_test('X')) stepper.disable_axis(X_AXIS), - if (parser.seen_test('Y')) stepper.disable_axis(Y_AXIS), - if (parser.seen_test('Z')) stepper.disable_axis(Z_AXIS), - if (parser.seen_test(AXIS4_NAME)) stepper.disable_axis(I_AXIS), - if (parser.seen_test(AXIS5_NAME)) stepper.disable_axis(J_AXIS), - if (parser.seen_test(AXIS6_NAME)) stepper.disable_axis(K_AXIS) - ); + LOOP_NUM_AXES(a) + if (parser.seen_test(AXIS_CHAR(a))) stepper.disable_axis((AxisEnum)a); } } else diff --git a/Marlin/src/gcode/control/M226.cpp b/Marlin/src/gcode/control/M226.cpp index 63f022e82bd8..4eb3db4bc31f 100644 --- a/Marlin/src/gcode/control/M226.cpp +++ b/Marlin/src/gcode/control/M226.cpp @@ -26,7 +26,7 @@ #include "../gcode.h" #include "../../MarlinCore.h" // for pin_is_protected and idle() -#include "../../module/stepper.h" +#include "../../module/planner.h" void protected_pin_err(); diff --git a/Marlin/src/gcode/control/M280.cpp b/Marlin/src/gcode/control/M280.cpp index 930542999ee2..82981e44bcee 100644 --- a/Marlin/src/gcode/control/M280.cpp +++ b/Marlin/src/gcode/control/M280.cpp @@ -48,7 +48,7 @@ void GcodeSuite::M280() { const int anew = parser.value_int(); if (anew >= 0) { #if ENABLED(POLARGRAPH) - if (parser.seen('T')) { // (ms) Total duration of servo move + if (parser.seenval('T')) { // (ms) Total duration of servo move const int16_t t = constrain(parser.value_int(), 0, 10000); const int aold = servo[servo_index].read(); millis_t now = millis(); diff --git a/Marlin/src/gcode/control/M3-M5.cpp b/Marlin/src/gcode/control/M3-M5.cpp index a619b1b76208..5d5d44e8bfe8 100644 --- a/Marlin/src/gcode/control/M3-M5.cpp +++ b/Marlin/src/gcode/control/M3-M5.cpp @@ -26,22 +26,32 @@ #include "../gcode.h" #include "../../feature/spindle_laser.h" -#include "../../module/stepper.h" +#include "../../module/planner.h" /** * Laser: * M3 - Laser ON/Power (Ramped power) - * M4 - Laser ON/Power (Continuous power) + * M4 - Laser ON/Power (Ramped power) + * M5 - Set power output to 0 (leaving inline mode unchanged). + * + * M3I - Enable continuous inline power to be processed by the planner, with power + * calculated and set in the planner blocks, processed inline during stepping. + * Within inline mode M3 S-Values will set the power for the next moves e.g. G1 X10 Y10 powers on with the last S-Value. + * M3I must be set before using planner-synced M3 inline S-Values (LASER_POWER_SYNC). + * + * M4I - Set dynamic mode which calculates laser power OCR based on the current feedrate. + * + * M5I - Clear inline mode and set power to 0. * * Spindle: * M3 - Spindle ON (Clockwise) * M4 - Spindle ON (Counter-clockwise) + * M5 - Spindle OFF * * Parameters: - * S - Set power. S0 will turn the spindle/laser off, except in relative mode. - * O - Set power and OCR (oscillator count register) + * S - Set power. S0 will turn the spindle/laser off. * - * If no PWM pin is defined then M3/M4 just turns it on. + * If no PWM pin is defined then M3/M4 just turns it on or off. * * At least 12.8kHz (50Hz * 256) is needed for Spindle PWM. * Hardware PWM is required on AVR. ISRs are too slow. @@ -70,77 +80,77 @@ void GcodeSuite::M3_M4(const bool is_M4) { reset_stepper_timeout(); // Reset timeout to allow subsequent G-code to power the laser (imm.) #endif - #if EITHER(SPINDLE_LASER_USE_PWM, SPINDLE_SERVO) - auto get_s_power = [] { - if (parser.seenval('S')) { - const float spwr = parser.value_float(); - #if ENABLED(SPINDLE_SERVO) - cutter.unitPower = spwr; - #else - cutter.unitPower = TERN(SPINDLE_LASER_USE_PWM, - cutter.power_to_range(cutter_power_t(round(spwr))), - spwr > 0 ? 255 : 0); - #endif - } - else - cutter.unitPower = cutter.cpwr_to_upwr(SPEED_POWER_STARTUP); - return cutter.unitPower; - }; - #endif + if (cutter.cutter_mode == CUTTER_MODE_STANDARD) + planner.synchronize(); // Wait for previous movement commands (G0/G1/G2/G3) to complete before changing power - #if ENABLED(LASER_POWER_INLINE) - if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) { - // Laser power in inline mode - cutter.inline_direction(is_M4); // Should always be unused - #if ENABLED(SPINDLE_LASER_USE_PWM) - if (parser.seen('O')) { - cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0); - cutter.inline_ocr_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t) - } - else - cutter.inline_power(cutter.upower_to_ocr(get_s_power())); - #else - cutter.set_inline_enabled(true); - #endif - return; + #if ENABLED(LASER_FEATURE) + if (parser.seen_test('I')) { + cutter.cutter_mode = is_M4 ? CUTTER_MODE_DYNAMIC : CUTTER_MODE_CONTINUOUS; + cutter.inline_power(0); + cutter.set_enabled(true); } - // Non-inline, standard case - cutter.inline_disable(); // Prevent future blocks re-setting the power #endif - planner.synchronize(); // Wait for previous movement commands (G0/G0/G2/G3) to complete before changing power - cutter.set_reverse(is_M4); - - #if ENABLED(SPINDLE_LASER_USE_PWM) - if (parser.seenval('O')) { - cutter.unitPower = cutter.power_to_range(parser.value_byte(), 0); - cutter.ocr_set_power(cutter.unitPower); // The OCR is a value from 0 to 255 (uint8_t) + auto get_s_power = [] { + float u; + if (parser.seenval('S')) { + const float v = parser.value_float(); + u = TERN(LASER_POWER_TRAP, v, cutter.power_to_range(v)); } - else - cutter.set_power(cutter.upower_to_ocr(get_s_power())); - #elif ENABLED(SPINDLE_SERVO) - cutter.set_power(get_s_power()); - #else + else if (cutter.cutter_mode == CUTTER_MODE_STANDARD) + u = cutter.cpwr_to_upwr(SPEED_POWER_STARTUP); + + cutter.menuPower = cutter.unitPower = u; + + // PWM not implied, power converted to OCR from unit definition and on/off if not PWM. + cutter.power = TERN(SPINDLE_LASER_USE_PWM, cutter.upower_to_ocr(u), u > 0 ? 255 : 0); + return u; + }; + + if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS || cutter.cutter_mode == CUTTER_MODE_DYNAMIC) { // Laser power in inline mode + #if ENABLED(LASER_FEATURE) + planner.laser_inline.status.isPowered = true; // M3 or M4 is powered either way + get_s_power(); // Update cutter.power if seen + #if ENABLED(LASER_POWER_SYNC) + // With power sync we only set power so it does not effect queued inline power sets + planner.buffer_sync_block(BLOCK_BIT_LASER_PWR); // Send the flag, queueing inline power + #else + planner.synchronize(); + cutter.inline_power(cutter.power); + #endif + #endif + } + else { cutter.set_enabled(true); - #endif - cutter.menuPower = cutter.unitPower; + get_s_power(); + cutter.apply_power( + #if ENABLED(SPINDLE_SERVO) + cutter.unitPower + #elif ENABLED(SPINDLE_LASER_USE_PWM) + cutter.upower_to_ocr(cutter.unitPower) + #else + cutter.unitPower > 0 ? 255 : 0 + #endif + ); + TERN_(SPINDLE_CHANGE_DIR, cutter.set_reverse(is_M4)); + } } /** * M5 - Cutter OFF (when moves are complete) */ void GcodeSuite::M5() { - #if ENABLED(LASER_POWER_INLINE) - if (parser.seen('I') == DISABLED(LASER_POWER_INLINE_INVERT)) { - cutter.set_inline_enabled(false); // Laser power in inline mode - return; - } - // Non-inline, standard case - cutter.inline_disable(); // Prevent future blocks re-setting the power - #endif planner.synchronize(); - cutter.set_enabled(false); - cutter.menuPower = cutter.unitPower; + cutter.power = 0; + cutter.apply_power(0); // M5 just kills power, leaving inline mode unchanged + if (cutter.cutter_mode != CUTTER_MODE_STANDARD) { + if (parser.seen_test('I')) { + TERN_(LASER_FEATURE, cutter.inline_power(cutter.power)); + cutter.set_enabled(false); // Needs to happen while we are in inline mode to clear inline power. + cutter.cutter_mode = CUTTER_MODE_STANDARD; // Switch from inline to standard mode. + } + } + cutter.set_enabled(false); // Disable enable output setting } #endif // HAS_CUTTER diff --git a/Marlin/src/gcode/control/M350_M351.cpp b/Marlin/src/gcode/control/M350_M351.cpp index a92238e4bbf2..ac6b5a329b70 100644 --- a/Marlin/src/gcode/control/M350_M351.cpp +++ b/Marlin/src/gcode/control/M350_M351.cpp @@ -27,35 +27,45 @@ #include "../gcode.h" #include "../../module/stepper.h" +#if NUM_AXES == XYZ && EXTRUDERS >= 1 + #define HAS_M350_B_PARAM 1 // "5th axis" (after E0) for an original XYZEB setup. + #if AXIS_COLLISION('B') + #error "M350 parameter 'B' collision with axis name." + #endif +#endif + /** * M350: Set axis microstepping modes. S sets mode for all drivers. * * Warning: Steps-per-unit remains unchanged. */ void GcodeSuite::M350() { - if (parser.seen('S')) LOOP_LE_N(i, 4) stepper.microstep_mode(i, parser.value_byte()); - LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte()); - if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte()); + if (parser.seen('S')) LOOP_DISTINCT_AXES(i) stepper.microstep_mode(i, parser.value_byte()); + LOOP_LOGICAL_AXES(i) if (parser.seenval(AXIS_CHAR(i))) stepper.microstep_mode(i, parser.value_byte()); + TERN_(HAS_M350_B_PARAM, if (parser.seenval('B')) stepper.microstep_mode(E_AXIS + 1, parser.value_byte())); stepper.microstep_readings(); } /** - * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B + * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z . . . E [B] * S# determines MS1, MS2 or MS3, X# sets the pin high/low. + * + * Parameter 'B' sets "5th axis" (after E0) only for an original XYZEB setup. */ void GcodeSuite::M351() { + const int8_t bval = TERN(HAS_M350_B_PARAM, parser.byteval('B', -1), -1); UNUSED(bval); if (parser.seenval('S')) switch (parser.value_byte()) { case 1: - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1, -1); - if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1, -1); + LOOP_LOGICAL_AXES(i) if (parser.seenval(AXIS_CHAR(i))) stepper.microstep_ms(i, parser.value_byte(), -1, -1); + TERN_(HAS_M350_B_PARAM, if (bval >= 0) stepper.microstep_ms(E_AXIS + 1, bval != 0, -1, -1)); break; case 2: - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte(), -1); - if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte(), -1); + LOOP_LOGICAL_AXES(i) if (parser.seenval(AXIS_CHAR(i))) stepper.microstep_ms(i, -1, parser.value_byte(), -1); + TERN_(HAS_M350_B_PARAM, if (bval >= 0) stepper.microstep_ms(E_AXIS + 1, -1, bval != 0, -1)); break; case 3: - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, -1, parser.value_byte()); - if (parser.seenval('B')) stepper.microstep_ms(4, -1, -1, parser.value_byte()); + LOOP_LOGICAL_AXES(i) if (parser.seenval(AXIS_CHAR(i))) stepper.microstep_ms(i, -1, -1, parser.value_byte()); + TERN_(HAS_M350_B_PARAM, if (bval >= 0) stepper.microstep_ms(E_AXIS + 1, -1, -1, bval != 0)); break; } stepper.microstep_readings(); diff --git a/Marlin/src/gcode/control/M400.cpp b/Marlin/src/gcode/control/M400.cpp index 9a5ad4e9df80..6058fb894e97 100644 --- a/Marlin/src/gcode/control/M400.cpp +++ b/Marlin/src/gcode/control/M400.cpp @@ -21,7 +21,7 @@ */ #include "../gcode.h" -#include "../../module/stepper.h" +#include "../../module/planner.h" /** * M400: Finish all moves diff --git a/Marlin/src/gcode/control/M605.cpp b/Marlin/src/gcode/control/M605.cpp index 788659e7e27a..e3ca43e17fd5 100644 --- a/Marlin/src/gcode/control/M605.cpp +++ b/Marlin/src/gcode/control/M605.cpp @@ -28,7 +28,6 @@ #include "../gcode.h" #include "../../module/motion.h" -#include "../../module/stepper.h" #include "../../module/tool_change.h" #include "../../module/planner.h" @@ -64,7 +63,7 @@ void GcodeSuite::M605() { planner.synchronize(); - if (parser.seen('S')) { + if (parser.seenval('S')) { const DualXMode previous_mode = dual_x_carriage_mode; dual_x_carriage_mode = (DualXMode)parser.value_byte(); @@ -78,8 +77,8 @@ case DXC_DUPLICATION_MODE: // Set the X offset, but no less than the safety gap - if (parser.seen('X')) duplicate_extruder_x_offset = _MAX(parser.value_linear_units(), (X2_MIN_POS) - (X1_MIN_POS)); - if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff(); + if (parser.seenval('X')) duplicate_extruder_x_offset = _MAX(parser.value_linear_units(), (X2_MIN_POS) - (X1_MIN_POS)); + if (parser.seenval('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff(); // Always switch back to tool 0 if (active_extruder != 0) tool_change(0); break; @@ -146,7 +145,7 @@ HOTEND_LOOP() { DEBUG_ECHOPGM_P(SP_T_STR, e); - LOOP_LINEAR_AXES(a) DEBUG_ECHOPGM(" hotend_offset[", e, "].", AS_CHAR(AXIS_CHAR(a) | 0x20), "=", hotend_offset[e][a]); + LOOP_NUM_AXES(a) DEBUG_ECHOPGM(" hotend_offset[", e, "].", AS_CHAR(AXIS_CHAR(a) | 0x20), "=", hotend_offset[e][a]); DEBUG_EOL(); } DEBUG_EOL(); diff --git a/Marlin/src/gcode/feature/L6470/M906.cpp b/Marlin/src/gcode/feature/L6470/M906.cpp index f55405b798ad..ee0211dbadf2 100644 --- a/Marlin/src/gcode/feature/L6470/M906.cpp +++ b/Marlin/src/gcode/feature/L6470/M906.cpp @@ -25,7 +25,7 @@ #if HAS_L64XX #if AXIS_COLLISION('I') - #error "M906 parameter collision with axis name." + #error "M906 parameter 'I' collision with axis name." #endif #include "../../gcode.h" @@ -211,7 +211,7 @@ void L64XX_report_current(L64XX &motor, const L64XX_axis_t axis) { * 1 - monitor only X2, Y2, Z2 * 2 - monitor only Z3 * 3 - monitor only Z4 - * Xxxx, Yxxx, Zxxx, Exxx - axis to change (optional) + * Xxxx, Yxxx, Zxxx, Axxx, Bxxx, Cxxx, Exxx - axis to change (optional) * L6474 - current in mA (4A max) * All others - 0-255 * @@ -236,7 +236,7 @@ void GcodeSuite::M906() { constexpr int8_t index = -1; #endif - LOOP_LOGICAL_AXES(i) if (uint16_t value = parser.intval(axis_codes[i])) { + LOOP_LOGICAL_AXES(i) if (uint16_t value = parser.intval(AXIS_CHAR(i))) { report_current = false; diff --git a/Marlin/src/gcode/feature/advance/M900.cpp b/Marlin/src/gcode/feature/advance/M900.cpp index 8b59e88fb114..db09faa88310 100644 --- a/Marlin/src/gcode/feature/advance/M900.cpp +++ b/Marlin/src/gcode/feature/advance/M900.cpp @@ -26,7 +26,6 @@ #include "../../gcode.h" #include "../../../module/planner.h" -#include "../../../module/stepper.h" #if ENABLED(EXTRA_LIN_ADVANCE_K) float other_extruder_advance_K[EXTRUDERS]; diff --git a/Marlin/src/gcode/feature/cancel/M486.cpp b/Marlin/src/gcode/feature/cancel/M486.cpp index 1f14ae0fd26c..c1e90d1b9610 100644 --- a/Marlin/src/gcode/feature/cancel/M486.cpp +++ b/Marlin/src/gcode/feature/cancel/M486.cpp @@ -44,14 +44,14 @@ void GcodeSuite::M486() { cancelable.object_count = parser.intval('T', 1); } - if (parser.seen('S')) + if (parser.seenval('S')) cancelable.set_active_object(parser.value_int()); if (parser.seen('C')) cancelable.cancel_active_object(); - if (parser.seen('P')) cancelable.cancel_object(parser.value_int()); + if (parser.seenval('P')) cancelable.cancel_object(parser.value_int()); - if (parser.seen('U')) cancelable.uncancel_object(parser.value_int()); + if (parser.seenval('U')) cancelable.uncancel_object(parser.value_int()); } #endif // CANCEL_OBJECTS diff --git a/Marlin/src/gcode/feature/clean/G12.cpp b/Marlin/src/gcode/feature/clean/G12.cpp index 999a9b10bd85..0113170f1d9c 100644 --- a/Marlin/src/gcode/feature/clean/G12.cpp +++ b/Marlin/src/gcode/feature/clean/G12.cpp @@ -45,9 +45,10 @@ * X, Y, Z : Specify axes to move during cleaning. Default: ALL. */ void GcodeSuite::G12() { + // Don't allow nozzle cleaning without homing first - if (homing_needed_error(linear_bits & ~TERN0(NOZZLE_CLEAN_NO_Z, Z_AXIS) & ~TERN0(NOZZLE_CLEAN_NO_Y, Y_AXIS))) - return; + constexpr main_axes_bits_t clean_axis_mask = main_axes_mask & ~TERN0(NOZZLE_CLEAN_NO_Z, Z_AXIS) & ~TERN0(NOZZLE_CLEAN_NO_Y, Y_AXIS); + if (homing_needed_error(clean_axis_mask)) return; #ifdef WIPE_SEQUENCE_COMMANDS if (!parser.seen_any()) { diff --git a/Marlin/src/gcode/feature/digipot/M907-M910.cpp b/Marlin/src/gcode/feature/digipot/M907-M910.cpp index 95adde3ea532..372cb4b8e391 100644 --- a/Marlin/src/gcode/feature/digipot/M907-M910.cpp +++ b/Marlin/src/gcode/feature/digipot/M907-M910.cpp @@ -39,53 +39,76 @@ #endif /** - * M907: Set digital trimpot motor current using axis codes X [Y] [Z] [E] - * B - Special case for 4th (E) axis - * S - Special case to set first 3 axes + * M907: Set digital trimpot motor current using axis codes X [Y] [Z] [I] [J] [K] [E] + * B - Special case for E1 (Requires DIGIPOTSS_PIN or DIGIPOT_MCP4018 or DIGIPOT_MCP4451) + * C - Special case for E2 (Requires DIGIPOTSS_PIN or DIGIPOT_MCP4018 or DIGIPOT_MCP4451) + * S - Set current in mA for all axes (Requires DIGIPOTSS_PIN or DIGIPOT_MCP4018 or DIGIPOT_MCP4451), or + * Set percentage of max current for all axes (Requires HAS_DIGIPOT_DAC) */ void GcodeSuite::M907() { #if HAS_MOTOR_CURRENT_SPI - if (!parser.seen("BS" LOGICAL_AXES_STRING)) + if (!parser.seen("BS" STR_AXES_LOGICAL)) return M907_report(); - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.set_digipot_current(i, parser.value_int()); - if (parser.seenval('B')) stepper.set_digipot_current(4, parser.value_int()); - if (parser.seenval('S')) LOOP_LE_N(i, 4) stepper.set_digipot_current(i, parser.value_int()); + if (parser.seenval('S')) LOOP_L_N(i, MOTOR_CURRENT_COUNT) stepper.set_digipot_current(i, parser.value_int()); + LOOP_LOGICAL_AXES(i) if (parser.seenval(IAXIS_CHAR(i))) stepper.set_digipot_current(i, parser.value_int()); // X Y Z (I J K) E (map to drivers according to DIGIPOT_CHANNELS. Default with NUM_AXES 3: map X Y Z E to X Y Z E0) + // Additional extruders use B,C. + // TODO: Change these parameters because 'E' is used and D should be reserved for debugging. B? + #if E_STEPPERS >= 2 + if (parser.seenval('B')) stepper.set_digipot_current(E_AXIS + 1, parser.value_int()); + #if E_STEPPERS >= 3 + if (parser.seenval('C')) stepper.set_digipot_current(E_AXIS + 2, parser.value_int()); + #endif + #endif #elif HAS_MOTOR_CURRENT_PWM - if (!parser.seen( - #if ANY_PIN(MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_XY) - "XY" + #if ANY_PIN(MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_I, MOTOR_CURRENT_PWM_J, MOTOR_CURRENT_PWM_K) + #define HAS_X_Y_XY_I_J_K 1 + #endif + + #if HAS_X_Y_XY_I_J_K || ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_Z) + + if (!parser.seen("S" + #if HAS_X_Y_XY_I_J_K + "XY" SECONDARY_AXIS_GANG("I", "J", "K") + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) + "Z" + #endif + #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) + "E" + #endif + )) return M907_report(); + + if (parser.seenval('S')) LOOP_L_N(a, MOTOR_CURRENT_COUNT) stepper.set_digipot_current(a, parser.value_int()); + + #if HAS_X_Y_XY_I_J_K + if (NUM_AXIS_GANG( + parser.seenval('X'), || parser.seenval('Y'), || false, + || parser.seenval('I'), || parser.seenval('J'), || parser.seenval('K') + )) stepper.set_digipot_current(0, parser.value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) - "Z" + if (parser.seenval('Z')) stepper.set_digipot_current(1, parser.value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) - "E" + if (parser.seenval('E')) stepper.set_digipot_current(2, parser.value_int()); #endif - )) return M907_report(); - #if ANY_PIN(MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_XY) - if (parser.seenval('X') || parser.seenval('Y')) stepper.set_digipot_current(0, parser.value_int()); - #endif - #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) - if (parser.seenval('Z')) stepper.set_digipot_current(1, parser.value_int()); - #endif - #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) - if (parser.seenval('E')) stepper.set_digipot_current(2, parser.value_int()); #endif #endif // HAS_MOTOR_CURRENT_PWM #if HAS_MOTOR_CURRENT_I2C // this one uses actual amps in floating point - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) digipot_i2c.set_current(i, parser.value_float()); - // Additional extruders use B,C,D for channels 4,5,6. - // TODO: Change these parameters because 'E' is used. B? - #if HAS_EXTRUDERS - for (uint8_t i = E_AXIS + 1; i < DIGIPOT_I2C_NUM_CHANNELS; i++) + if (parser.seenval('S')) LOOP_L_N(q, DIGIPOT_I2C_NUM_CHANNELS) digipot_i2c.set_current(q, parser.value_float()); + LOOP_LOGICAL_AXES(i) if (parser.seenval(IAXIS_CHAR(i))) digipot_i2c.set_current(i, parser.value_float()); // X Y Z (I J K) E (map to drivers according to pots adresses. Default with NUM_AXES 3 X Y Z E: map to X Y Z E0) + // Additional extruders use B,C,D. + // TODO: Change these parameters because 'E' is used and because 'D' should be reserved for debugging. B? + #if E_STEPPERS >= 2 + for (uint8_t i = E_AXIS + 1; i < _MAX(DIGIPOT_I2C_NUM_CHANNELS, (NUM_AXES + 3)); i++) if (parser.seenval('B' + i - (E_AXIS + 1))) digipot_i2c.set_current(i, parser.value_float()); #endif #endif @@ -93,9 +116,9 @@ void GcodeSuite::M907() { #if HAS_MOTOR_CURRENT_DAC if (parser.seenval('S')) { const float dac_percent = parser.value_float(); - LOOP_LE_N(i, 4) stepper_dac.set_current_percent(i, dac_percent); + LOOP_LOGICAL_AXES(i) stepper_dac.set_current_percent(i, dac_percent); } - LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper_dac.set_current_percent(i, parser.value_float()); + LOOP_LOGICAL_AXES(i) if (parser.seenval(IAXIS_CHAR(i))) stepper_dac.set_current_percent(i, parser.value_float()); // X Y Z (I J K) E (map to drivers according to DAC_STEPPER_ORDER. Default with NUM_AXES 3: X Y Z E map to X Y Z E0) #endif } @@ -104,19 +127,25 @@ void GcodeSuite::M907() { void GcodeSuite::M907_report(const bool forReplay/*=true*/) { report_heading_etc(forReplay, F(STR_STEPPER_MOTOR_CURRENTS)); #if HAS_MOTOR_CURRENT_PWM - SERIAL_ECHOLNPGM_P( // PWM-based has 3 values: - PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y + SERIAL_ECHOLNPGM_P( // PWM-based has 3 values: + PSTR(" M907 X"), stepper.motor_current_setting[0] // X, Y, (I, J, K) , SP_Z_STR, stepper.motor_current_setting[1] // Z , SP_E_STR, stepper.motor_current_setting[2] // E ); #elif HAS_MOTOR_CURRENT_SPI SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values: LOOP_LOGICAL_AXES(q) { // X Y Z (I J K) E (map to X Y Z (I J K) E0 by default) - SERIAL_CHAR(' ', axis_codes[q]); + SERIAL_CHAR(' ', IAXIS_CHAR(q)); SERIAL_ECHO(stepper.motor_current_setting[q]); } - SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default) - SERIAL_ECHOLN(stepper.motor_current_setting[4]); + #if E_STEPPERS >= 2 + SERIAL_ECHOPGM_P(PSTR(" B"), stepper.motor_current_setting[E_AXIS + 1] // B (maps to E1 with NUM_AXES 3 according to DIGIPOT_CHANNELS) + #if E_STEPPERS >= 3 + , PSTR(" C"), stepper.motor_current_setting[E_AXIS + 2] // C (mapping to E2 must be defined by DIGIPOT_CHANNELS) + #endif + ); + #endif + SERIAL_EOL(); #endif } diff --git a/Marlin/src/gcode/feature/i2c/M260_M261.cpp b/Marlin/src/gcode/feature/i2c/M260_M261.cpp index e978fb5048fb..cf9bb7e583f4 100644 --- a/Marlin/src/gcode/feature/i2c/M260_M261.cpp +++ b/Marlin/src/gcode/feature/i2c/M260_M261.cpp @@ -45,10 +45,10 @@ */ void GcodeSuite::M260() { // Set the target address - if (parser.seen('A')) i2c.address(parser.value_byte()); + if (parser.seenval('A')) i2c.address(parser.value_byte()); // Add a new byte to the buffer - if (parser.seen('B')) i2c.addbyte(parser.value_byte()); + if (parser.seenval('B')) i2c.addbyte(parser.value_byte()); // Flush the buffer to the bus if (parser.seen('S')) i2c.send(); @@ -63,7 +63,7 @@ void GcodeSuite::M260() { * Usage: M261 A B S