-
Notifications
You must be signed in to change notification settings - Fork 4
Labels
breaking change ⚡May break client codeMay break client codedocumentation 📖Improvements or additions to documentationImprovements or additions to documentationtesting 🧪Additional automated testsAdditional automated tests
Milestone
Description
Stabilize the API to prepare for a 1.0.0 release. This includes checking the design, adding missing tests, and adding missing documentation. If a part of the API is not stable yet, it should be marked clearly in the documentation (#654).
Tables
- TableTransformer
- InvertibleTableTransformer
- FunctionalTableTransformer
- Discretizer
- KNearestNeighborsImputer
- LabelEncoder
- OneHotEncoder
- RangeScaler
- RobustScaler
- SimpleImputer
- StandardScaler
- SequentialTableTransformer
➡️ New release
- ColumnPlotter
- TablePlotter
➡️ New release
ML on Tables
- Dataset
- TabularDataset
- SupervisedModel
- Classifier
- AdaBoostClassifier
- BaselineClassifier
- DecisionTreeClassifier
- GradientBoostingClassifier
- KNearestNeighborsClassifier
- LogisticClassifier
- RandomForestClassifier
- SupportVectorClassifier
- Regressor
- AdaBoostRegressor
- BaselineRegressor
- DecisionTreeRegressor
- GradientBoostingRegressor
- KNearestNeighborsRegressor
- LinearRegressor
- RandomForestRegressor
- SupportVectorRegressor
- Choice (
self.elementsshould be a property) - ClassificationMetrics
- ClassifierMetrics (confusing to have both)
- RegressionMetrics
- RegressorMetrics (confusing to have both)
Other
- All exceptions
Everything that follows could be marked as experimental, and we could proceed with a 1.0.0 release.
Images
- Image
- ImageList
- ImageSize
- ImageDataset
- ConstantImageSize
- ModelImageSize
- VariableImageSize
Time Series
- TimeSeriesDataset
- ArimaModelRegressor (should be separated from the rest)
NNs
- NeuralNetworkClassifier
- NeuralNetworkRegressor (should be combined with NeuralNetworkClassifier)
- InputConversion + subclasses (should be hidden)
- AveragePooling2DLayer
- Convolutional2DLayer
- ConvolutionalTranspose2DLayer
- DropoutLayer
- FlattenLayer
- ForwardLayer
- GRULayer
- LSTMLayer
- Layer (maybe add new subclasses RecurrentLayer, ConvolutionalLayer?)
- MaxPooling2DLayer
Sub-issues
Metadata
Metadata
Assignees
Labels
breaking change ⚡May break client codeMay break client codedocumentation 📖Improvements or additions to documentationImprovements or additions to documentationtesting 🧪Additional automated testsAdditional automated tests
Type
Projects
Status
In Progress