Skip to content

Embree SYCL primID always returns 0 #572

@101001000

Description

@101001000

Basically I'm unable to get other primID other than 0 for any valid intersection, independently of the triangle. I'm using an ARC770 with ubuntu 20.4, dpc++ 6.1.0 and latest level-zero-raytracing-support. I'm running the exact same code in embree CPU and embree SYCL and I see different results.

EDIT: The issue is in embree 4.4.0, in 4.3.2 i don't have such issue.

Minimal code reproduction code: the same as the example sycl minimal but with two different tris.

Expected result: Intersection in both triangles with different primIDs
Result in my machine: Intersection in both triangles with primID=0 in both cases.

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

/*
 * To use the Embree DPC++ API you have to include sycl.hpp before the
 * embree API headers.
 */
#include <sycl/sycl.hpp>
#include <embree4/rtcore.h>

#include <cstdio>
#include <limits>

#include "../common/sycl/util.h"

/*
 * A minimal tutorial. 
 *
 * It demonstrates how to intersect a ray with a single triangle. It is
 * meant to get you started as quickly as possible, and does not output
 * an image. 
 */

/* 
 * This is only required to make the tutorial compile even when
 * a custom namespace is set.
 */
#if defined(RTC_NAMESPACE_USE)
RTC_NAMESPACE_USE
#endif

const sycl::specialization_id<RTCFeatureFlags> feature_mask;
const RTCFeatureFlags required_features = RTC_FEATURE_FLAG_TRIANGLE;

struct Result {
  unsigned geomID;
  unsigned primID; 
  float tfar;
};

/*
 * This function allocated USM memory that is writeable by the device.
 */

template<typename T>
T* alignedSYCLMallocDeviceReadWrite(const sycl::queue& queue, size_t count, size_t align)
{
  if (count == 0)
    return nullptr;

  assert((align & (align - 1)) == 0);
  T *ptr = (T*)sycl::aligned_alloc(align, count * sizeof(T), queue, sycl::usm::alloc::shared);
  if (count != 0 && ptr == nullptr)
    throw std::bad_alloc();

  return ptr;
}

/*
 * This function allocated USM memory that is only readable by the
 * device. Using this mode many small allocations are possible by the
 * application.
 */

template<typename T>
T* alignedSYCLMallocDeviceReadOnly(const sycl::queue& queue, size_t count, size_t align)
{
  if (count == 0)
    return nullptr;

  assert((align & (align - 1)) == 0);
  T *ptr = (T*)sycl::aligned_alloc_shared(align, count * sizeof(T), queue, sycl::ext::oneapi::property::usm::device_read_only());
  if (count != 0 && ptr == nullptr)
    throw std::bad_alloc();

  return ptr;
}

void alignedSYCLFree(const sycl::queue& queue, void* ptr)
{
  if (ptr) sycl::free(ptr, queue);
}

/*
 * We will register this error handler with the device in initializeDevice(),
 * so that we are automatically informed on errors.
 * This is extremely helpful for finding bugs in your code, prevents you
 * from having to add explicit error checking to each Embree API call.
 */
void errorFunction(void* userPtr, enum RTCError error, const char* str)
{
  printf("error %s: %s\n", rtcGetErrorString(error), str);
}

/*
 * Embree has a notion of devices, which are entities that can run 
 * raytracing kernels.
 * We initialize our device here, and then register the error handler so that 
 * we don't miss any errors.
 *
 * rtcNewDevice() takes a configuration string as an argument. See the API docs
 * for more information.
 *
 * Note that RTCDevice is reference-counted.
 */
RTCDevice initializeDevice(sycl::context& sycl_context, sycl::device& sycl_device)
{
  RTCDevice device = rtcNewSYCLDevice(sycl_context, "");
  rtcSetDeviceSYCLDevice(device,sycl_device);

  if (!device) {
    printf("error %s: cannot create device. (reason: %s)\n", rtcGetErrorString(rtcGetDeviceError(NULL)), rtcGetDeviceLastErrorMessage(NULL));
    exit(1);
  }

  rtcSetDeviceErrorFunction(device, errorFunction, NULL);
  return device;
}

/*
 * Create a scene, which is a collection of geometry objects. Scenes are 
 * what the intersect / occluded functions work on. You can think of a 
 * scene as an acceleration structure, e.g. a bounding-volume hierarchy.
 *
 * Scenes, like devices, are reference-counted.
 */
RTCScene initializeScene(RTCDevice device, const sycl::queue& queue)
{
  RTCScene scene = rtcNewScene(device);

  /* 
   * Create a triangle mesh geometry, and initialize a single triangle.
   * You can look up geometry types in the API documentation to
   * find out which type expects which buffers.
   *
   * We create buffers directly on the device, but you can also use
   * shared buffers. For shared buffers, special care must be taken
   * to ensure proper alignment and padding. This is described in
   * more detail in the API documentation.
   */
  RTCGeometry geom = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

  float* vertices = alignedSYCLMallocDeviceReadOnly<float>(queue, 6 * 3, 16);

  rtcSetSharedGeometryBuffer(geom,
                            RTC_BUFFER_TYPE_VERTEX,
                            0,
                            RTC_FORMAT_FLOAT3,
                            vertices,
                            0,
                            3*sizeof(float),
                            6);

  unsigned* indices = alignedSYCLMallocDeviceReadOnly<unsigned>(queue, 2 * 3, 16);

  rtcSetSharedGeometryBuffer(geom,
                            RTC_BUFFER_TYPE_INDEX,
                            0,
                            RTC_FORMAT_UINT3,
                            indices,
                            0,
                            3*sizeof(unsigned),
                            2);

  if (vertices && indices)
  {
    vertices[0]  = 0.f; vertices[1]  = 0.f; vertices[2]  = 0.f;
    vertices[3]  = 1.f; vertices[4]  = 0.f; vertices[5]  = 0.f;
    vertices[6]  = 0.f; vertices[7]  = 1.f; vertices[8]  = 0.f;

    vertices[9]  = 2.f; vertices[10] = 0.f; vertices[11] = 0.f;
    vertices[12] = 3.f; vertices[13] = 0.f; vertices[14] = 0.f;
    vertices[15] = 2.f; vertices[16] = 1.f; vertices[17] = 0.f;
    
    indices[0] = 0; indices[1] = 1; indices[2] = 2;
    indices[3] = 3; indices[4] = 4; indices[5] = 5;
  }

  /*
   * You must commit geometry objects when you are done setting them up,
   * or you will not get any intersections.
   */
  rtcCommitGeometry(geom);

  /*
   * In rtcAttachGeometry(...), the scene takes ownership of the geom
   * by increasing its reference count. This means that we don't have
   * to hold on to the geom handle, and may release it. The geom object
   * will be released automatically when the scene is destroyed.
   *
   * rtcAttachGeometry() returns a geometry ID. We could use this to
   * identify intersected objects later on.
   */
  rtcAttachGeometry(scene, geom);
  rtcReleaseGeometry(geom);

  /*
   * Like geometry objects, scenes must be committed. This lets
   * Embree know that it may start building an acceleration structure.
   */
  rtcCommitScene(scene);

  return scene;
}

/*
 * Cast a single ray with origin (ox, oy, oz) and direction
 * (dx, dy, dz).
 */

void castRay(sycl::queue& queue, const RTCTraversable traversable,
             float ox, float oy, float oz,
             float dx, float dy, float dz, Result* result)
{
  queue.submit([=](sycl::handler& cgh)
  {
    cgh.set_specialization_constant<feature_mask>(required_features);

    cgh.parallel_for(sycl::range<1>(1),[=](sycl::item<1> item, sycl::kernel_handler kh)
    {
      /*
       * The intersect arguments can be used to pass a feature mask,
       * which improves performance and JIT compile times on the GPU
       */
      RTCIntersectArguments args;
      rtcInitIntersectArguments(&args);

      const RTCFeatureFlags features = kh.get_specialization_constant<feature_mask>();
      args.feature_mask = features;

      /*
       * The ray hit structure holds both the ray and the hit.
       * The user must initialize it properly -- see API documentation
       * for rtcIntersect1() for details.
       */
      struct RTCRayHit rayhit;
      rayhit.ray.org_x = ox;
      rayhit.ray.org_y = oy;
      rayhit.ray.org_z = oz;
      rayhit.ray.dir_x = dx;
      rayhit.ray.dir_y = dy;
      rayhit.ray.dir_z = dz;
      rayhit.ray.tnear = 0;
      rayhit.ray.tfar = std::numeric_limits<float>::infinity();
      rayhit.ray.mask = -1;
      rayhit.ray.flags = 0;
      rayhit.hit.geomID = RTC_INVALID_GEOMETRY_ID;
      rayhit.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;

      /*
       * There are multiple variants of rtcIntersect. This one
       * intersects a single ray with the scene.
       */
      rtcTraversableIntersect1(traversable, &rayhit, &args);

      /*
       * write hit result to output buffer
       */
      result->geomID = rayhit.hit.geomID;
      result->primID = rayhit.hit.primID;
      result->tfar = rayhit.ray.tfar;
    });
  });
  queue.wait_and_throw();

  printf("%f, %f, %f: ", ox, oy, oz);
  if (result->geomID != RTC_INVALID_GEOMETRY_ID)
  {
    /* Note how geomID and primID identify the geometry we just hit.
     * We could use them here to interpolate geometry information,
     * compute shading, etc.
     * Since there is only a single triangle in this scene, we will
     * get geomID=0 / primID=0 for all hits.
     * There is also instID, used for instancing. See
     * the instancing tutorials for more information */
    printf("Found intersection on geometry %d, primitive %d at tfar=%f\n", 
           result->geomID,
           result->primID,
           result->tfar);
  }
  else
    printf("Did not find any intersection.\n");
}

/*
 * Enable persistent JIT compilation caching. These environment
 * variables must be set before the SYCL device creation.
 */

void enablePersistentJITCache()
{
#if defined(_WIN32)
  _putenv_s("SYCL_CACHE_PERSISTENT","1");
  _putenv_s("SYCL_CACHE_DIR","cache");
#else
  setenv("SYCL_CACHE_PERSISTENT","1",1);
  setenv("SYCL_CACHE_DIR","cache",1);
#endif
}

/* -------------------------------------------------------------------------- */

int main()
{
  try {
  enablePersistentJITCache();

  /* This will select the first GPU supported by Embree */
  sycl::device sycl_device;
  try {
    sycl_device = sycl::device(rtcSYCLDeviceSelector);
  } catch(std::exception& e) {
    std::cerr << "Caught exception creating sycl::device: " << e.what() << std::endl;
    embree::printAllSYCLDevices();
    return 1;
  }

  sycl::queue sycl_queue(sycl_device);
  sycl::context sycl_context(sycl_device);

  RTCDevice device = initializeDevice(sycl_context,sycl_device);
  RTCScene scene = initializeScene(device, sycl_queue);
  RTCTraversable traversable = rtcGetSceneTraversable(scene);

  Result* result = alignedSYCLMallocDeviceReadWrite<Result>(sycl_queue, 1, 16);
  result->geomID = RTC_INVALID_GEOMETRY_ID;

  castRay(sycl_queue, traversable, 0.33f, 0.33f, -1.f, 0.f, 0.f, 1.f, result);

  castRay(sycl_queue, traversable, 2.33f, 0.33f, -1.f, 0.f, 0.f, 1.f, result);

  alignedSYCLFree(sycl_queue, result);

  /* Though not strictly necessary in this example, you should
   * always make sure to release resources allocated through Embree. */
  rtcReleaseScene(scene);
  rtcReleaseDevice(device);

  } catch(std::exception& e) {
    std::cerr << "Caught exception " << e.what() << std::endl;
    return 1;
  }
  return 0;
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions