From 97e0dd0ec0a2fa60ddb8e4fb3eff3ed9f1bb867e Mon Sep 17 00:00:00 2001
From: Nileena <45648156+nil-pc@users.noreply.github.com>
Date: Fri, 25 Oct 2019 19:27:24 +0530
Subject: [PATCH 1/4] Initial commit
---
README.md | 2 ++
1 file changed, 2 insertions(+)
create mode 100644 README.md
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..a9a3858
--- /dev/null
+++ b/README.md
@@ -0,0 +1,2 @@
+# Pattern-Recognition---Assignment
+Pattern Recognition Assignment to predict client subscription for a bank
From 968bb1af1248d0b1789c013826061b89f562f847 Mon Sep 17 00:00:00 2001
From: Nileena <45648156+nil-pc@users.noreply.github.com>
Date: Fri, 25 Oct 2019 19:28:16 +0530
Subject: [PATCH 2/4] Created using Colaboratory
---
pr.ipynb | 3700 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 3700 insertions(+)
create mode 100644 pr.ipynb
diff --git a/pr.ipynb b/pr.ipynb
new file mode 100644
index 0000000..bcdd62e
--- /dev/null
+++ b/pr.ipynb
@@ -0,0 +1,3700 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "pr.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "include_colab_link": true
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VBPnw_-NjzB8",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "#just a file to try all codes!!!!!!!!!!!!!!"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "QTGLd5-XKAFF",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn import preprocessing\n",
+ "import matplotlib.pyplot as plt \n",
+ "plt.rc(\"font\", size=14)\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.pipeline import make_pipeline\n",
+ "from sklearn import metrics\n",
+ "import seaborn as sns\n",
+ "sns.set(style=\"white\")\n",
+ "sns.set(style=\"whitegrid\", color_codes=True)\n",
+ "from sklearn import datasets, linear_model"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "teIvuYPCLFPN",
+ "colab_type": "code",
+ "outputId": "1bd0e159-658c-41d9-edce-aaebf3706228",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ }
+ },
+ "source": [
+ "data=pd.read_csv('bank-additional-full.csv',sep=';')\n",
+ "data=data.dropna()\n",
+ "print(data.shape)\n",
+ "print(list(data.columns))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(41188, 21)\n",
+ "['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "euv_tB5xU27f",
+ "colab_type": "code",
+ "outputId": "5a4b11d7-33fd-4fa0-e33e-b287e64065f7",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ }
+ },
+ "source": [
+ "dat=pd.read_csv('bank-additional.csv',sep=';')\n",
+ "dat=dat.dropna()\n",
+ "print(dat.shape)\n",
+ "print(list(dat.columns))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(4119, 21)\n",
+ "['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "k1OuPD7TP3Ta",
+ "colab_type": "code",
+ "outputId": "30c72d43-03e8-4233-d3e6-47ae3b2014fb",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "data.head()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " job | \n",
+ " marital | \n",
+ " education | \n",
+ " default | \n",
+ " housing | \n",
+ " loan | \n",
+ " contact | \n",
+ " month | \n",
+ " day_of_week | \n",
+ " ... | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " poutcome | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ " y | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 56 | \n",
+ " housemaid | \n",
+ " married | \n",
+ " basic.4y | \n",
+ " no | \n",
+ " no | \n",
+ " no | \n",
+ " telephone | \n",
+ " may | \n",
+ " mon | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " nonexistent | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " no | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 57 | \n",
+ " services | \n",
+ " married | \n",
+ " high.school | \n",
+ " unknown | \n",
+ " no | \n",
+ " no | \n",
+ " telephone | \n",
+ " may | \n",
+ " mon | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " nonexistent | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " no | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 37 | \n",
+ " services | \n",
+ " married | \n",
+ " high.school | \n",
+ " no | \n",
+ " yes | \n",
+ " no | \n",
+ " telephone | \n",
+ " may | \n",
+ " mon | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " nonexistent | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " no | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 40 | \n",
+ " admin. | \n",
+ " married | \n",
+ " basic.6y | \n",
+ " no | \n",
+ " no | \n",
+ " no | \n",
+ " telephone | \n",
+ " may | \n",
+ " mon | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " nonexistent | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " no | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " services | \n",
+ " married | \n",
+ " high.school | \n",
+ " no | \n",
+ " no | \n",
+ " yes | \n",
+ " telephone | \n",
+ " may | \n",
+ " mon | \n",
+ " ... | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " nonexistent | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " no | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age job marital education default housing loan contact \\\n",
+ "0 56 housemaid married basic.4y no no no telephone \n",
+ "1 57 services married high.school unknown no no telephone \n",
+ "2 37 services married high.school no yes no telephone \n",
+ "3 40 admin. married basic.6y no no no telephone \n",
+ "4 56 services married high.school no no yes telephone \n",
+ "\n",
+ " month day_of_week ... campaign pdays previous poutcome emp.var.rate \\\n",
+ "0 may mon ... 1 999 0 nonexistent 1.1 \n",
+ "1 may mon ... 1 999 0 nonexistent 1.1 \n",
+ "2 may mon ... 1 999 0 nonexistent 1.1 \n",
+ "3 may mon ... 1 999 0 nonexistent 1.1 \n",
+ "4 may mon ... 1 999 0 nonexistent 1.1 \n",
+ "\n",
+ " cons.price.idx cons.conf.idx euribor3m nr.employed y \n",
+ "0 93.994 -36.4 4.857 5191.0 no \n",
+ "1 93.994 -36.4 4.857 5191.0 no \n",
+ "2 93.994 -36.4 4.857 5191.0 no \n",
+ "3 93.994 -36.4 4.857 5191.0 no \n",
+ "4 93.994 -36.4 4.857 5191.0 no \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 84
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "hLB3v50fQZ7I",
+ "colab_type": "code",
+ "outputId": "71313220-8260-4d5d-8d5c-59d29df2f0e9",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 72
+ }
+ },
+ "source": [
+ "data['education'].unique()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['basic.4y', 'high.school', 'basic.6y', 'basic.9y',\n",
+ " 'professional.course', 'unknown', 'university.degree',\n",
+ " 'illiterate'], dtype=object)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 85
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "jJw_uhRtSzdh",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "data['education']=np.where(data['education'] =='basic.9y', 'Basic', data['education'])\n",
+ "data['education']=np.where(data['education'] =='basic.6y', 'Basic', data['education'])\n",
+ "data['education']=np.where(data['education'] =='basic.4y', 'Basic', data['education'])"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "K85vf6CrQyPV",
+ "colab_type": "code",
+ "outputId": "991c1b1f-ae1f-4daf-c0b2-0804f8d92f1f",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 53
+ }
+ },
+ "source": [
+ "data['education'].unique()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['Basic', 'high.school', 'professional.course', 'unknown',\n",
+ " 'university.degree', 'illiterate'], dtype=object)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 87
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "U-uG7W_ni_un",
+ "colab_type": "code",
+ "outputId": "41e8ddb9-5578-4e53-f2a6-c706079f4719",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 72
+ }
+ },
+ "source": [
+ "data['y'].value_counts()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "no 36548\n",
+ "yes 4640\n",
+ "Name: y, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 88
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "lqnQ-BP2je3B",
+ "colab_type": "code",
+ "outputId": "8704118f-6ebb-4d0f-cc47-bfe49bcccf01",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 436
+ }
+ },
+ "source": [
+ "sns.countplot(x='y',data=data,palette='hls')\n",
+ "plt.show()\n",
+ "plt.savefig('count_plot')"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/seaborn/categorical.py:1428: FutureWarning: remove_na is deprecated and is a private function. Do not use.\n",
+ " stat_data = remove_na(group_data)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFYCAYAAABZHSXVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAH5tJREFUeJzt3X9Q1VXi//HXvXBvRF0yiGs6Y33G\nzcRWfigUKw4ZGpn0y1IMrGxaamKyHyZl7K1FzAzSxczVHdOymNySibYdahyxXHIykeLeGcM2t3an\n3XGx4F6VVFC5wf3+sdv9ZmXixhuE83zMNBPHcw/n7fTuyft9f2ALhUIhAQCAQc/e3xsAAAB9g+gD\nAGAIog8AgCGIPgAAhiD6AAAYgugDAGCIyP7egNW8Xm9/bwEAgD6Xmpr6g7FBH33pxw8cAIDB6mQX\nvNzeBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0A\nAAxB9AEAMIQRv3DHKo0PFvb3FoCfLW3lmv7eAoA+wpU+AACGIPoAABiC6AMAYAiiDwCAIYg+AACG\nIPoAABiC6AMAYAjL3qd/9OhRFRcXa//+/Tp+/Ljuu+8+1dbW6pNPPtGQIUMkSQUFBbrqqqtUU1Oj\nyspK2e12zZo1S7m5uQoGgyouLta+ffsUERGhsrIyjRgxQnv27FFpaakkafTo0Vq0aJFVhwAAwKBi\nWfTr6uo0duxY3XPPPWpubtavf/1rjRs3TvPnz1dWVlZ4XkdHh1avXq3q6mo5HA7NnDlT2dnZqqur\nU0xMjCoqKrR9+3ZVVFRoxYoVWrJkiTwej5KSklRUVKRt27Zp0qRJVh0GAACDhmW393NycnTPPfdI\nkr788ksNHTr0R+ft2rVLiYmJcrlcioqK0vjx4+Xz+VRfX6/s7GxJUkZGhnw+nzo7O9Xc3KykpCRJ\nUlZWlurr6606BAAABhXLn9PPy8vTI488Io/HI0nasGGD5syZo4cfflgHDhxQIBBQbGxseH5sbKz8\nfv8J43a7XTabTYFAQDExMeG5cXFx8vv9Vh8CAACDguWfvb9x40Z9+umnevTRR+XxeDRkyBCNGTNG\na9eu1apVqzRu3LgT5odCoR9d58fGTzb3+7xe7+lvHDAE5wdgDsuiv3v3bsXFxWnYsGEaM2aMurq6\ndOmllyouLk6SNHnyZJWWlmrq1KkKBALhx7W2tiolJUVut1t+v18JCQkKBoMKhUKKj49XW1tbeG5L\nS4vcbvcp95Kamtr7ByipsXKdJesCfcmq8wNA/znZD/OW3d5vbGzU+vXrJUmBQEAdHR0qKSnR3r17\nJUkNDQ0aNWqUkpOT1dTUpEOHDqm9vV0+n09paWmaOHGiNm/eLOk/LwpMT0+Xw+HQyJEj1djYKEna\nsmWLMjMzrToEAAAGFcuu9PPy8vT4449r9uzZOnbsmEpKShQdHa158+bp7LPPVnR0tMrKyhQVFaWi\noiIVFBTIZrNp7ty5crlcysnJ0Y4dO5Sfny+n06ny8nJJksfjUUlJibq7u5WcnKyMjAyrDgEAgEHF\nFurpE+MDlNfrte72/oOFlqwL9KW0lWv6ewsAetnJ2scn8gEAYAiiDwCAIYg+AACGIPoAABiC6AMA\nYAiiDwCAIYg+AACGIPoAABiC6AMAYAiiDwCAIYg+AACGIPoAABiC6AMAYAiiDwCAIYg+AACGIPoA\nABiC6AMAYAiiDwCAIYg+AACGIPoAABiC6AMAYAiiDwCAIYg+AACGIPoAABiC6AMAYAiiDwCAIYg+\nAACGIPoAABiC6AMAYAiiDwCAISKtWvjo0aMqLi7W/v37dfz4cd13331KSEjQggUL1NXVpfj4eC1b\ntkxOp1M1NTWqrKyU3W7XrFmzlJubq2AwqOLiYu3bt08REREqKyvTiBEjtGfPHpWWlkqSRo8erUWL\nFll1CAAADCqWXenX1dVp7Nix2rBhg1asWKHy8nKtXLlSs2fP1quvvqqLL75Y1dXV6ujo0OrVq/Xy\nyy/rlVdeUWVlpdra2vT2228rJiZGr732mgoLC1VRUSFJWrJkiTwejzZu3KgjR45o27ZtVh0CAACD\nimXRz8nJ0T333CNJ+vLLLzV06FA1NDRoypQpkqSsrCzV19dr165dSkxMlMvlUlRUlMaPHy+fz6f6\n+nplZ2dLkjIyMuTz+dTZ2anm5mYlJSWdsAYAADg1y27vfysvL09fffWV1qxZo7vuuktOp1OSFBcX\nJ7/fr0AgoNjY2PD82NjYH4zb7XbZbDYFAgHFxMSE5367BgAAODXLo79x40Z9+umnevTRRxUKhcLj\n3/337zqd8ZPN/T6v19ujeYCJOD8Ac1gW/d27dysuLk7Dhg3TmDFj1NXVpXPOOUfHjh1TVFSUWlpa\n5Ha75Xa7FQgEwo9rbW1VSkqK3G63/H6/EhISFAwGFQqFFB8fr7a2tvDcb9c4ldTUVEuOsbFynSXr\nAn3JqvMDQP852Q/zlj2n39jYqPXr10uSAoGAOjo6lJGRodraWknSli1blJmZqeTkZDU1NenQoUNq\nb2+Xz+dTWlqaJk6cqM2bN0v6z4sC09PT5XA4NHLkSDU2Np6wBgAAODXLrvTz8vL0+OOPa/bs2Tp2\n7JhKSko0duxYPfbYY6qqqtLw4cM1ffp0ORwOFRUVqaCgQDabTXPnzpXL5VJOTo527Nih/Px8OZ1O\nlZeXS5I8Ho9KSkrU3d2t5ORkZWRkWHUIAAAMKrZQT58YH6C8Xq91t/cfLLRkXaAvpa1c099bANDL\nTtY+PpEPAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB\n9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABD\nEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAwRaeXiS5culdfr\n1TfffKN7771Xf/nLX/TJJ59oyJAhkqSCggJdddVVqqmpUWVlpex2u2bNmqXc3FwFg0EVFxdr3759\nioiIUFlZmUaMGKE9e/aotLRUkjR69GgtWrTIykMAAGDQsCz6O3fu1Oeff66qqiodPHhQN998s371\nq19p/vz5ysrKCs/r6OjQ6tWrVV1dLYfDoZkzZyo7O1t1dXWKiYlRRUWFtm/froqKCq1YsUJLliyR\nx+NRUlKSioqKtG3bNk2aNMmqwwAAYNCw7Pb+5Zdfrueee06SFBMTo6NHj6qrq+sH83bt2qXExES5\nXC5FRUVp/Pjx8vl8qq+vV3Z2tiQpIyNDPp9PnZ2dam5uVlJSkiQpKytL9fX1Vh0CAACDimXRj4iI\nUHR0tCSpurpaV155pSIiIrRhwwbNmTNHDz/8sA4cOKBAIKDY2Njw42JjY+X3+08Yt9vtstlsCgQC\niomJCc+Ni4uT3++36hAAABhULH1OX5LeffddVVdXa/369dq9e7eGDBmiMWPGaO3atVq1apXGjRt3\nwvxQKPSj6/zY+Mnmfp/X6z39jQOG4PwAzGFp9N9//32tWbNGL7zwglwulyZMmBD+s8mTJ6u0tFRT\np05VIBAIj7e2tiolJUVut1t+v18JCQkKBoMKhUKKj49XW1tbeG5LS4vcbvcp95Gamtq7B/ZfjZXr\nLFkX6EtWnR8A+s/Jfpi37Pb+4cOHtXTpUj3//PPhV+s/8MAD2rt3rySpoaFBo0aNUnJyspqamnTo\n0CG1t7fL5/MpLS1NEydO1ObNmyVJdXV1Sk9Pl8Ph0MiRI9XY2ChJ2rJlizIzM606BAAABhXLrvQ3\nbdqkgwcPat68eeGxW265RfPmzdPZZ5+t6OholZWVKSoqSkVFRSooKJDNZtPcuXPlcrmUk5OjHTt2\nKD8/X06nU+Xl5ZIkj8ejkpISdXd3Kzk5WRkZGVYdAgAAg4ot1NMnxgcor9dr3e39BwstWRfoS2kr\n1/T3FgD0spO1j0/kAwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDA\nEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEA\nMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAED2KfnFx8Q/G\nCgoKen0zAADAOpE/9Yc1NTXauHGjPv/8c912223h8WAwqEAgcMrFly5dKq/Xq2+++Ub33nuvEhMT\ntWDBAnV1dSk+Pl7Lli2T0+lUTU2NKisrZbfbNWvWLOXm5ioYDKq4uFj79u1TRESEysrKNGLECO3Z\ns0elpaWSpNGjR2vRokU/728AAABD/GT0b7zxRqWnp+uRRx7RAw88EB632+265JJLfnLhnTt36vPP\nP1dVVZUOHjyom2++WRMmTNDs2bM1bdo0LV++XNXV1Zo+fbpWr16t6upqORwOzZw5U9nZ2aqrq1NM\nTIwqKiq0fft2VVRUaMWKFVqyZIk8Ho+SkpJUVFSkbdu2adKkSb3ztwEAwCB2ytv7Q4cO1SuvvKIx\nY8Zo2LBhGjZsmIYOHarDhw//5OMuv/xyPffcc5KkmJgYHT16VA0NDZoyZYokKSsrS/X19dq1a5cS\nExPlcrkUFRWl8ePHy+fzqb6+XtnZ2ZKkjIwM+Xw+dXZ2qrm5WUlJSSesAQAATu0nr/S/9dRTT+mN\nN95QbGysQqGQJMlms2nr1q0nfUxERISio6MlSdXV1bryyiu1fft2OZ1OSVJcXJz8fr8CgYBiY2PD\nj4uNjf3BuN1ul81mUyAQUExMTHjut2sAAIBT61H0GxoatHPnTp111lmn/Q3effddVVdXa/369brm\nmmvC49/+8PB9pzN+srnf5/V6ezQPMBHnB2COHkX/4osv/p+C//7772vNmjV64YUX5HK5FB0drWPH\njikqKkotLS1yu91yu90nvCiwtbVVKSkpcrvd8vv9SkhIUDAYVCgUUnx8vNra2sJzv13jVFJTU097\n7z3RWLnOknWBvmTV+QGg/5zsh/kevWXvwgsv1G233ably5frueeeC//zUw4fPqylS5fq+eef15Ah\nQyT957n52tpaSdKWLVuUmZmp5ORkNTU16dChQ2pvb5fP51NaWpomTpyozZs3S5Lq6uqUnp4uh8Oh\nkSNHqrGx8YQ1AADAqfXoSn/IkCGaMGHCaS28adMmHTx4UPPmzQuPlZeX64knnlBVVZWGDx+u6dOn\ny+FwqKioSAUFBbLZbJo7d65cLpdycnK0Y8cO5efny+l0qry8XJLk8XhUUlKi7u5uJScnKyMj47T2\nBQCAqWyhHjwx3t3d/aPjdvuZ/4F+Xq/Xutv7DxZasi7Ql9JWrunvLQDoZSdrX4+u9C+77DLZbLbw\n1zabTS6XSw0NDb23QwAAYKkeRX/Pnj3hf+/s7FR9fb3+9re/WbYpAADQ+077/rzT6dSkSZP0wQcf\nWLEfAABgkR5d6VdXV5/w9VdffaWWlhZLNgQAAKzRo+h///1+5557rlasWGHJhgAAgDV6FP2ysjJJ\nUltbm2w2m8477zxLNwUAAHpfj6Lv8/m0YMECtbe3KxQKaciQIVq2bJkSExOt3h8AAOglPYp+RUWF\n/vCHP+jSSy+VJP31r3/VkiVL9Mc//tHSzQEAgN7To1fv2+32cPCl/7xvPyIiwrJNAQCA3tfj6NfW\n1urIkSM6cuSINm3aRPQBABhgenR7f9GiRVq8eLGeeOIJ2e12JSQk6KmnnrJ6bwAAoBf16Er/gw8+\nkNPp1EcffaSGhgaFQiFt27bN6r0BAIBe1KPo19TUaNWqVeGv169fr7ffftuyTQEAgN7Xo+h3dXWd\n8By+zWZTD345HwAAOIP06Dn9yZMnKy8vT6mpqeru7tbOnTt1zTXXWL03AADQi3oU/fvuu09XXHGF\nPv74Y9lsNi1cuFApKSlW7w0AAPSiHkVfktLS0pSWlmblXgAAgIVO+1frAgCAgYnoAwBgCKIPAIAh\niD4AAIYg+gAAGILoAwBgCKIPAIAhiD4AAIYg+gAAGILoAwBgCKIPAIAhiD4AAIYg+gAAGMLS6H/2\n2We6+uqrtWHDBklScXGxbrjhBt1xxx2644479N5770mSampqNGPGDOXm5ur111+XJAWDQRUVFSk/\nP1+333679u7dK0nas2eP8vLylJeXp4ULF1q5fQAABpUe/2rd09XR0aHFixdrwoQJJ4zPnz9fWVlZ\nJ8xbvXq1qqur5XA4NHPmTGVnZ6uurk4xMTGqqKjQ9u3bVVFRoRUrVmjJkiXyeDxKSkpSUVGRtm3b\npkmTJll1GAAADBqWXek7nU6tW7dObrf7J+ft2rVLiYmJcrlcioqK0vjx4+Xz+VRfX6/s7GxJUkZG\nhnw+nzo7O9Xc3KykpCRJUlZWlurr6606BAAABhXLoh8ZGamoqKgfjG/YsEFz5szRww8/rAMHDigQ\nCCg2Njb857GxsfL7/SeM2+122Ww2BQIBxcTEhOfGxcXJ7/dbdQgAAAwqlt3e/zE33XSThgwZojFj\nxmjt2rVatWqVxo0bd8KcUCj0o4/9sfGTzf0+r9d7+psFDMH5AZijT6P/3ef3J0+erNLSUk2dOlWB\nQCA83traqpSUFLndbvn9fiUkJCgYDCoUCik+Pl5tbW3huS0tLad8+kCSUlNTe/dA/quxcp0l6wJ9\nyarzA0D/OdkP8336lr0HHngg/Cr8hoYGjRo1SsnJyWpqatKhQ4fU3t4un8+ntLQ0TZw4UZs3b5Yk\n1dXVKT09XQ6HQyNHjlRjY6MkacuWLcrMzOzLQwAAYMCy7Ep/9+7deuaZZ9Tc3KzIyEjV1tbq9ttv\n17x583T22WcrOjpaZWVlioqKUlFRkQoKCmSz2TR37ly5XC7l5ORox44dys/Pl9PpVHl5uSTJ4/Go\npKRE3d3dSk5OVkZGhlWHAADAoGIL9fSJ8QHK6/Vad3v/wUJL1gX6UtrKNf29BQC97GTt4xP5AAAw\nBNEHAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQRB8AAEMQfQAA\nDEH0AQAwBNEHAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQRB8A\nAEMQfQAADEH0AQAwBNEHAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQlkb/s88+09VXX60NGzZIkr78\n8kvdcccdmj17th566CF1dnZKkmpqajRjxgzl5ubq9ddflyQFg0EVFRUpPz9ft99+u/bu3StJ2rNn\nj/Ly8pSXl6eFCxdauX0AAAYVy6Lf0dGhxYsXa8KECeGxlStXavbs2Xr11Vd18cUXq7q6Wh0dHVq9\nerVefvllvfLKK6qsrFRbW5vefvttxcTE6LXXXlNhYaEqKiokSUuWLJHH49HGjRt15MgRbdu2zapD\nAABgULEs+k6nU+vWrZPb7Q6PNTQ0aMqUKZKkrKws1dfXa9euXUpMTJTL5VJUVJTGjx8vn8+n+vp6\nZWdnS5IyMjLk8/nU2dmp5uZmJSUlnbAGAAA4tUjLFo6MVGTkicsfPXpUTqdTkhQXFye/369AIKDY\n2NjwnNjY2B+M2+122Ww2BQIBxcTEhOd+uwYAADg1y6J/KqFQ6GePn2zu93m93p5vDDAM5wdgjj6N\nfnR0tI4dO6aoqCi1tLTI7XbL7XYrEAiE57S2tiolJUVut1t+v18JCQkKBoMKhUKKj49XW1tbeO63\na5xKamqqJcfTWLnOknWBvmTV+QGg/5zsh/k+fcteRkaGamtrJUlbtmxRZmamkpOT1dTUpEOHDqm9\nvV0+n09paWmaOHGiNm/eLEmqq6tTenq6HA6HRo4cqcbGxhPWAAAAp2bZlf7u3bv1zDPPqLm5WZGR\nkaqtrdXvfvc7FRcXq6qqSsOHD9f06dPlcDhUVFSkgoIC2Ww2zZ07Vy6XSzk5OdqxY4fy8/PldDpV\nXl4uSfJ4PCopKVF3d7eSk5OVkZFh1SEAADCo2EI9fWJ8gPJ6vdbd3n+w0JJ1gb6UtnJNf28BQC87\nWfv4RD4AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATR\nBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB\n9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMATRBwDAEEQfAABDEH0AAAxB9AEAMERkX36zhoYGPfTQ\nQxo1apQk6dJLL9Xdd9+tBQsWqKurS/Hx8Vq2bJmcTqdqampUWVkpu92uWbNmKTc3V8FgUMXFxdq3\nb58iIiJUVlamESNG9OUhAAAwYPVp9CXpiiuu0MqVK8Nf/+Y3v9Hs2bM1bdo0LV++XNXV1Zo+fbpW\nr16t6upqORwOzZw5U9nZ2aqrq1NMTIwqKiq0fft2VVRUaMWKFX19CAAADEj9fnu/oaFBU6ZMkSRl\nZWWpvr5eu3btUmJiolwul6KiojR+/Hj5fD7V19crOztbkpSRkSGfz9efWwcAYEDp8yv9v//97yos\nLNTXX3+t+++/X0ePHpXT6ZQkxcXFye/3KxAIKDY2NvyY2NjYH4zb7XbZbDZ1dnaGHw8AAE6uT6P/\nf//3f7r//vs1bdo07d27V3PmzFFXV1f4z0Oh0I8+7nTHv8/r9Z7+ZgFDcH4A5ujT6A8dOlQ5OTmS\npIsuukgXXHCBmpqadOzYMUVFRamlpUVut1tut1uBQCD8uNbWVqWkpMjtdsvv9yshIUHBYFChUKhH\nV/mpqamWHE9j5TpL1gX6klXnB4D+c7If5vv0Of2amhq9+OKLkiS/36/9+/frlltuUW1trSRpy5Yt\nyszMVHJyspqamnTo0CG1t7fL5/MpLS1NEydO1ObNmyVJdXV1Sk9P78vtAwAwoPXplf7kyZP1yCOP\naOvWrQoGgyotLdWYMWP02GOPqaqqSsOHD9f06dPlcDhUVFSkgoIC2Ww2zZ07Vy6XSzk5OdqxY4fy\n8/PldDpVXl7el9sHcIYo3NHY31sAfrY1GWl9/j37NPrnnnuu1qxZ84Pxl1566Qdj1157ra699toT\nxr59bz4AADh9/f6WPQAA0DeIPgAAhiD6AAAYgugDAGAIog8AgCGIPgAAhiD6AAAYgugDAGAIog8A\ngCGIPgAAhiD6AAAYgugDAGAIog8AgCGIPgAAhiD6AAAYgugDAGAIog8AgCGIPgAAhiD6AAAYgugD\nAGAIog8AgCGIPgAAhiD6AAAYgugDAGAIog8AgCGIPgAAhiD6AAAYgugDAGAIog8AgCGIPgAAhojs\n7w38L55++mnt2rVLNptNHo9HSUlJ/b0lAADOeAMu+h9++KH+9a9/qaqqSv/4xz/k8XhUVVXV39sC\nAOCMN+Bu79fX1+vqq6+WJP3iF7/Q119/rSNHjvTzrgAAOPMNuOgHAgGdf/754a9jY2Pl9/v7cUcA\nAAwMA+72/veFQqFTzvF6vZZ8b9ud91iyLtCXrDo/rHTPWbb+3gLws/XHuTfgou92uxUIBMJft7a2\nKj4+/qTzU1NT+2JbAACc8Qbc7f2JEyeqtrZWkvTJJ5/I7Xbr3HPP7eddAQBw5htwV/rjx4/XL3/5\nS+Xl5clms2nhwoX9vSUAAAYEW6gnT4oDAIABb8Dd3gcAAP8bog8AgCGIPgAAhiD6AAAYYsC9eh+D\n15/+9Cd5vV4dOHBAX3zxhQoKCnTRRRfp2WefVWRkpIYOHaqysjI5nc7+3iow4OXm5qqiokIXXXSR\nvvrqKxUWFuqyyy7T3r179c033+jBBx/UhAkT9Oc//1kbNmyQw+FQQkIC75ga4Ig+ziifffaZNm7c\nqH/+85+aP3++jh8/rpdeeknDhg3Tk08+qbfeekszZszo720CA95NN92kTZs2qbCwUFu3blV2drY6\nOzv19NNP68CBA7rzzjv11ltv6cUXX9TatWs1bNgwvfHGGzp27JiioqL6e/v4HxF9nFFSUlIUERGh\nCy+8UIcPH9ZZZ52lYcOGSZLS09P10Ucf9fMOgcHhuuuuU0FBgQoLC/Xee+/pggsuUFNTk3w+nyTp\n+PHj6uzs1PXXX6+5c+fqxhtv1PXXX0/wBziijzNKZOT//0/y66+/PuEjloPBoGw2PnMd6A3nn3++\nLrzwQn388cfq7u7WOeeco8LCQl1//fUnzLv33nt1ww03qLa2Vnfeeac2bNhwwi89w8DCC/lwxjrv\nvPNks9m0b98+SdKHH36osWPH9vOugMHjpptu0pNPPqlrr71WycnJ2rp1qyRp//79Wr58ubq7u/Xs\ns88qPj5ed911l1JSUsLnIwYmrvRxRlu8eLGKiooUGRmpESNG6LrrruvvLQGDRlZWln77299q6tSp\nio6O1s6dO5WXl6euri7df//9stvtOuecc3TrrbfK5XJpxIgRGjNmTH9vGz8DH8MLAIbauXOn3nzz\nTT3zzDP9vRX0Ea70AcBAK1eu1Pbt2/X73/++v7eCPsSVPgAAhuCFfAAAGILoAwBgCKIPAIAhiD4A\nAIYg+gAAGILoA+hVeXl5amhoCH999913a9u2bf24IwDfIvoAelVeXp7efPNNSVJbW5u++OILZWZm\n9vOuAEhEH0AvmzZtmnbu3Kn29na98847uuGGG2S3878a4EzAmQigV5111lnKzs7WO++8o9raWs2Y\nMaO/twTgv4g+gF5366236rXXXlMoFNKIESP6ezsA/ovoA+h1l1xyibq6unTLLbf091YAfAfRB9Dr\n/v3vf6ujo0PXXHNNf28FwHfwW/YA9Ko1a9Zo06ZNWrx4sRwOR39vB8B38Fv2AAAwBLf3AQAwBNEH\nAMAQRB8AAEMQfQAADEH0AQAwBNEHAMAQ/w+MdQwITuhqPQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "V12fzEAljqdo",
+ "colab_type": "code",
+ "outputId": "dde4d6b5-1adf-414a-f5c0-dcdd0dead3de",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 53
+ }
+ },
+ "source": [
+ "count_no_sub = len(data[data['y']=='no'])\n",
+ "count_sub = len(data[data['y']=='yes'])\n",
+ "pct_of_no_sub = count_no_sub/(count_no_sub+count_sub)\n",
+ "print(\"percentage of no subscription is\", pct_of_no_sub*100)\n",
+ "pct_of_sub = count_sub/(count_no_sub+count_sub)\n",
+ "print(\"percentage of subscription\", pct_of_sub*100)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "percentage of no subscription is 88.73458288821988\n",
+ "percentage of subscription 11.265417111780131\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "FT_C0qFR9ygQ",
+ "colab_type": "code",
+ "outputId": "7cea1fc5-cc4f-4af7-f4b3-fb58fff119d2",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 143
+ }
+ },
+ "source": [
+ "data.groupby('y').mean()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ "
\n",
+ " \n",
+ " | y | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | no | \n",
+ " 39.911185 | \n",
+ " 220.844807 | \n",
+ " 2.633085 | \n",
+ " 984.113878 | \n",
+ " 0.132374 | \n",
+ " 0.248875 | \n",
+ " 93.603757 | \n",
+ " -40.593097 | \n",
+ " 3.811491 | \n",
+ " 5176.166600 | \n",
+ "
\n",
+ " \n",
+ " | yes | \n",
+ " 40.913147 | \n",
+ " 553.191164 | \n",
+ " 2.051724 | \n",
+ " 792.035560 | \n",
+ " 0.492672 | \n",
+ " -1.233448 | \n",
+ " 93.354386 | \n",
+ " -39.789784 | \n",
+ " 2.123135 | \n",
+ " 5095.115991 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate \\\n",
+ "y \n",
+ "no 39.911185 220.844807 2.633085 984.113878 0.132374 0.248875 \n",
+ "yes 40.913147 553.191164 2.051724 792.035560 0.492672 -1.233448 \n",
+ "\n",
+ " cons.price.idx cons.conf.idx euribor3m nr.employed \n",
+ "y \n",
+ "no 93.603757 -40.593097 3.811491 5176.166600 \n",
+ "yes 93.354386 -39.789784 2.123135 5095.115991 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 91
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "sQfO5BJOkB5D",
+ "colab_type": "code",
+ "outputId": "8e65ffe2-7024-4130-f955-8a20ae045fc7",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 494
+ }
+ },
+ "source": [
+ "data.groupby('job').mean()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ "
\n",
+ " \n",
+ " | job | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | admin. | \n",
+ " 38.187296 | \n",
+ " 254.312128 | \n",
+ " 2.623489 | \n",
+ " 954.319229 | \n",
+ " 0.189023 | \n",
+ " 0.015563 | \n",
+ " 93.534054 | \n",
+ " -40.245433 | \n",
+ " 3.550274 | \n",
+ " 5164.125350 | \n",
+ "
\n",
+ " \n",
+ " | blue-collar | \n",
+ " 39.555760 | \n",
+ " 264.542360 | \n",
+ " 2.558461 | \n",
+ " 985.160363 | \n",
+ " 0.122542 | \n",
+ " 0.248995 | \n",
+ " 93.656656 | \n",
+ " -41.375816 | \n",
+ " 3.771996 | \n",
+ " 5175.615150 | \n",
+ "
\n",
+ " \n",
+ " | entrepreneur | \n",
+ " 41.723214 | \n",
+ " 263.267857 | \n",
+ " 2.535714 | \n",
+ " 981.267170 | \n",
+ " 0.138736 | \n",
+ " 0.158723 | \n",
+ " 93.605372 | \n",
+ " -41.283654 | \n",
+ " 3.791120 | \n",
+ " 5176.313530 | \n",
+ "
\n",
+ " \n",
+ " | housemaid | \n",
+ " 45.500000 | \n",
+ " 250.454717 | \n",
+ " 2.639623 | \n",
+ " 960.579245 | \n",
+ " 0.137736 | \n",
+ " 0.433396 | \n",
+ " 93.676576 | \n",
+ " -39.495283 | \n",
+ " 4.009645 | \n",
+ " 5179.529623 | \n",
+ "
\n",
+ " \n",
+ " | management | \n",
+ " 42.362859 | \n",
+ " 257.058140 | \n",
+ " 2.476060 | \n",
+ " 962.647059 | \n",
+ " 0.185021 | \n",
+ " -0.012688 | \n",
+ " 93.522755 | \n",
+ " -40.489466 | \n",
+ " 3.611316 | \n",
+ " 5166.650513 | \n",
+ "
\n",
+ " \n",
+ " | retired | \n",
+ " 62.027326 | \n",
+ " 273.712209 | \n",
+ " 2.476744 | \n",
+ " 897.936047 | \n",
+ " 0.327326 | \n",
+ " -0.698314 | \n",
+ " 93.430786 | \n",
+ " -38.573081 | \n",
+ " 2.770066 | \n",
+ " 5122.262151 | \n",
+ "
\n",
+ " \n",
+ " | self-employed | \n",
+ " 39.949331 | \n",
+ " 264.142153 | \n",
+ " 2.660802 | \n",
+ " 976.621393 | \n",
+ " 0.143561 | \n",
+ " 0.094159 | \n",
+ " 93.559982 | \n",
+ " -40.488107 | \n",
+ " 3.689376 | \n",
+ " 5170.674384 | \n",
+ "
\n",
+ " \n",
+ " | services | \n",
+ " 37.926430 | \n",
+ " 258.398085 | \n",
+ " 2.587805 | \n",
+ " 979.974049 | \n",
+ " 0.154951 | \n",
+ " 0.175359 | \n",
+ " 93.634659 | \n",
+ " -41.290048 | \n",
+ " 3.699187 | \n",
+ " 5171.600126 | \n",
+ "
\n",
+ " \n",
+ " | student | \n",
+ " 25.894857 | \n",
+ " 283.683429 | \n",
+ " 2.104000 | \n",
+ " 840.217143 | \n",
+ " 0.524571 | \n",
+ " -1.408000 | \n",
+ " 93.331613 | \n",
+ " -40.187543 | \n",
+ " 1.884224 | \n",
+ " 5085.939086 | \n",
+ "
\n",
+ " \n",
+ " | technician | \n",
+ " 38.507638 | \n",
+ " 250.232241 | \n",
+ " 2.577339 | \n",
+ " 964.408127 | \n",
+ " 0.153789 | \n",
+ " 0.274566 | \n",
+ " 93.561471 | \n",
+ " -39.927569 | \n",
+ " 3.820401 | \n",
+ " 5175.648391 | \n",
+ "
\n",
+ " \n",
+ " | unemployed | \n",
+ " 39.733728 | \n",
+ " 249.451677 | \n",
+ " 2.564103 | \n",
+ " 935.316568 | \n",
+ " 0.199211 | \n",
+ " -0.111736 | \n",
+ " 93.563781 | \n",
+ " -40.007594 | \n",
+ " 3.466583 | \n",
+ " 5157.156509 | \n",
+ "
\n",
+ " \n",
+ " | unknown | \n",
+ " 45.563636 | \n",
+ " 239.675758 | \n",
+ " 2.648485 | \n",
+ " 938.727273 | \n",
+ " 0.154545 | \n",
+ " 0.357879 | \n",
+ " 93.718942 | \n",
+ " -38.797879 | \n",
+ " 3.949033 | \n",
+ " 5172.931818 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous \\\n",
+ "job \n",
+ "admin. 38.187296 254.312128 2.623489 954.319229 0.189023 \n",
+ "blue-collar 39.555760 264.542360 2.558461 985.160363 0.122542 \n",
+ "entrepreneur 41.723214 263.267857 2.535714 981.267170 0.138736 \n",
+ "housemaid 45.500000 250.454717 2.639623 960.579245 0.137736 \n",
+ "management 42.362859 257.058140 2.476060 962.647059 0.185021 \n",
+ "retired 62.027326 273.712209 2.476744 897.936047 0.327326 \n",
+ "self-employed 39.949331 264.142153 2.660802 976.621393 0.143561 \n",
+ "services 37.926430 258.398085 2.587805 979.974049 0.154951 \n",
+ "student 25.894857 283.683429 2.104000 840.217143 0.524571 \n",
+ "technician 38.507638 250.232241 2.577339 964.408127 0.153789 \n",
+ "unemployed 39.733728 249.451677 2.564103 935.316568 0.199211 \n",
+ "unknown 45.563636 239.675758 2.648485 938.727273 0.154545 \n",
+ "\n",
+ " emp.var.rate cons.price.idx cons.conf.idx euribor3m \\\n",
+ "job \n",
+ "admin. 0.015563 93.534054 -40.245433 3.550274 \n",
+ "blue-collar 0.248995 93.656656 -41.375816 3.771996 \n",
+ "entrepreneur 0.158723 93.605372 -41.283654 3.791120 \n",
+ "housemaid 0.433396 93.676576 -39.495283 4.009645 \n",
+ "management -0.012688 93.522755 -40.489466 3.611316 \n",
+ "retired -0.698314 93.430786 -38.573081 2.770066 \n",
+ "self-employed 0.094159 93.559982 -40.488107 3.689376 \n",
+ "services 0.175359 93.634659 -41.290048 3.699187 \n",
+ "student -1.408000 93.331613 -40.187543 1.884224 \n",
+ "technician 0.274566 93.561471 -39.927569 3.820401 \n",
+ "unemployed -0.111736 93.563781 -40.007594 3.466583 \n",
+ "unknown 0.357879 93.718942 -38.797879 3.949033 \n",
+ "\n",
+ " nr.employed \n",
+ "job \n",
+ "admin. 5164.125350 \n",
+ "blue-collar 5175.615150 \n",
+ "entrepreneur 5176.313530 \n",
+ "housemaid 5179.529623 \n",
+ "management 5166.650513 \n",
+ "retired 5122.262151 \n",
+ "self-employed 5170.674384 \n",
+ "services 5171.600126 \n",
+ "student 5085.939086 \n",
+ "technician 5175.648391 \n",
+ "unemployed 5157.156509 \n",
+ "unknown 5172.931818 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 92
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "b_hhnAuk9mxn",
+ "colab_type": "code",
+ "outputId": "e158bd30-4aca-4fd6-ac77-c23b9760ac68",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
+ }
+ },
+ "source": [
+ "data.groupby('marital').mean()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ "
\n",
+ " \n",
+ " | marital | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | divorced | \n",
+ " 44.899393 | \n",
+ " 253.790330 | \n",
+ " 2.61340 | \n",
+ " 968.639853 | \n",
+ " 0.168690 | \n",
+ " 0.163985 | \n",
+ " 93.606563 | \n",
+ " -40.707069 | \n",
+ " 3.715603 | \n",
+ " 5170.878643 | \n",
+ "
\n",
+ " \n",
+ " | married | \n",
+ " 42.307165 | \n",
+ " 257.438623 | \n",
+ " 2.57281 | \n",
+ " 967.247673 | \n",
+ " 0.155608 | \n",
+ " 0.183625 | \n",
+ " 93.597367 | \n",
+ " -40.270659 | \n",
+ " 3.745832 | \n",
+ " 5171.848772 | \n",
+ "
\n",
+ " \n",
+ " | single | \n",
+ " 33.158714 | \n",
+ " 261.524378 | \n",
+ " 2.53380 | \n",
+ " 949.909578 | \n",
+ " 0.211359 | \n",
+ " -0.167989 | \n",
+ " 93.517300 | \n",
+ " -40.918698 | \n",
+ " 3.317447 | \n",
+ " 5155.199265 | \n",
+ "
\n",
+ " \n",
+ " | unknown | \n",
+ " 40.275000 | \n",
+ " 312.725000 | \n",
+ " 3.18750 | \n",
+ " 937.100000 | \n",
+ " 0.275000 | \n",
+ " -0.221250 | \n",
+ " 93.471250 | \n",
+ " -40.820000 | \n",
+ " 3.313037 | \n",
+ " 5157.393750 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate \\\n",
+ "marital \n",
+ "divorced 44.899393 253.790330 2.61340 968.639853 0.168690 0.163985 \n",
+ "married 42.307165 257.438623 2.57281 967.247673 0.155608 0.183625 \n",
+ "single 33.158714 261.524378 2.53380 949.909578 0.211359 -0.167989 \n",
+ "unknown 40.275000 312.725000 3.18750 937.100000 0.275000 -0.221250 \n",
+ "\n",
+ " cons.price.idx cons.conf.idx euribor3m nr.employed \n",
+ "marital \n",
+ "divorced 93.606563 -40.707069 3.715603 5170.878643 \n",
+ "married 93.597367 -40.270659 3.745832 5171.848772 \n",
+ "single 93.517300 -40.918698 3.317447 5155.199265 \n",
+ "unknown 93.471250 -40.820000 3.313037 5157.393750 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 93
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "gFUzJiVL-G_o",
+ "colab_type": "code",
+ "outputId": "d6bfc261-f113-4182-9449-d493473c1a98",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 289
+ }
+ },
+ "source": [
+ "data.groupby('education').mean()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ "
\n",
+ " \n",
+ " | education | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | Basic | \n",
+ " 42.163910 | \n",
+ " 263.043874 | \n",
+ " 2.559498 | \n",
+ " 974.877967 | \n",
+ " 0.141053 | \n",
+ " 0.191329 | \n",
+ " 93.639933 | \n",
+ " -40.927595 | \n",
+ " 3.729654 | \n",
+ " 5172.014113 | \n",
+ "
\n",
+ " \n",
+ " | high.school | \n",
+ " 37.998213 | \n",
+ " 260.886810 | \n",
+ " 2.568576 | \n",
+ " 964.358382 | \n",
+ " 0.185917 | \n",
+ " 0.032937 | \n",
+ " 93.584857 | \n",
+ " -40.940641 | \n",
+ " 3.556157 | \n",
+ " 5164.994735 | \n",
+ "
\n",
+ " \n",
+ " | illiterate | \n",
+ " 48.500000 | \n",
+ " 276.777778 | \n",
+ " 2.277778 | \n",
+ " 943.833333 | \n",
+ " 0.111111 | \n",
+ " -0.133333 | \n",
+ " 93.317333 | \n",
+ " -39.950000 | \n",
+ " 3.516556 | \n",
+ " 5171.777778 | \n",
+ "
\n",
+ " \n",
+ " | professional.course | \n",
+ " 40.080107 | \n",
+ " 252.533855 | \n",
+ " 2.586115 | \n",
+ " 960.765974 | \n",
+ " 0.163075 | \n",
+ " 0.173012 | \n",
+ " 93.569864 | \n",
+ " -40.124108 | \n",
+ " 3.710457 | \n",
+ " 5170.155979 | \n",
+ "
\n",
+ " \n",
+ " | university.degree | \n",
+ " 38.879191 | \n",
+ " 253.223373 | \n",
+ " 2.563527 | \n",
+ " 951.807692 | \n",
+ " 0.192390 | \n",
+ " -0.028090 | \n",
+ " 93.493466 | \n",
+ " -39.975805 | \n",
+ " 3.529663 | \n",
+ " 5163.226298 | \n",
+ "
\n",
+ " \n",
+ " | unknown | \n",
+ " 43.481225 | \n",
+ " 262.390526 | \n",
+ " 2.596187 | \n",
+ " 942.830734 | \n",
+ " 0.226459 | \n",
+ " 0.059099 | \n",
+ " 93.658615 | \n",
+ " -39.877816 | \n",
+ " 3.571098 | \n",
+ " 5159.549509 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous \\\n",
+ "education \n",
+ "Basic 42.163910 263.043874 2.559498 974.877967 0.141053 \n",
+ "high.school 37.998213 260.886810 2.568576 964.358382 0.185917 \n",
+ "illiterate 48.500000 276.777778 2.277778 943.833333 0.111111 \n",
+ "professional.course 40.080107 252.533855 2.586115 960.765974 0.163075 \n",
+ "university.degree 38.879191 253.223373 2.563527 951.807692 0.192390 \n",
+ "unknown 43.481225 262.390526 2.596187 942.830734 0.226459 \n",
+ "\n",
+ " emp.var.rate cons.price.idx cons.conf.idx euribor3m \\\n",
+ "education \n",
+ "Basic 0.191329 93.639933 -40.927595 3.729654 \n",
+ "high.school 0.032937 93.584857 -40.940641 3.556157 \n",
+ "illiterate -0.133333 93.317333 -39.950000 3.516556 \n",
+ "professional.course 0.173012 93.569864 -40.124108 3.710457 \n",
+ "university.degree -0.028090 93.493466 -39.975805 3.529663 \n",
+ "unknown 0.059099 93.658615 -39.877816 3.571098 \n",
+ "\n",
+ " nr.employed \n",
+ "education \n",
+ "Basic 5172.014113 \n",
+ "high.school 5164.994735 \n",
+ "illiterate 5171.777778 \n",
+ "professional.course 5170.155979 \n",
+ "university.degree 5163.226298 \n",
+ "unknown 5159.549509 "
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 94
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "nSbf32JfkI85",
+ "colab_type": "code",
+ "outputId": "f1ff7ea3-fb44-43af-e5ed-7a4f6dc9d760",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 573
+ }
+ },
+ "source": [
+ "%matplotlib inline\n",
+ "pd.crosstab(data.job,data.y).plot(kind='bar')\n",
+ "plt.title('Purchase Frequency for Job Title')\n",
+ "plt.xlabel('Job')\n",
+ "plt.ylabel('Frequency of Purchase')\n",
+ "plt.savefig('purchase_fre_job')"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "error",
+ "ename": "TypeError",
+ "evalue": "ignored",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcrosstab\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'bar'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Purchase Frequency for Job Title'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Job'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Frequency of Purchase'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msavefig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'purchase_fre_job'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mTypeError\u001b[0m: 'str' object is not callable"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAFKCAYAAAAT2pQ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm8VVX5x/HPlcEBB3ACFIfqV49T\nqZERaSmpqYGSA2kOGWqKOWualaZiauVPTcmcZ8MhcqJQURQVc7yYqNnjDwWH0BxI1ExQ7v39sdaJ\nfQ/nDnD32pez+b5fr/u69+yzz372uffcZ++91trPamhubkZERMprma7eARERSUuJXkSk5JToRURK\nToleRKTklOhFREpOiV5EpOS6d/UOSP7MrBl4EfiEcDCfA5zo7pNy2v73gX3dfbs8trcIcScDnwPe\nq3pqa3f/Z5H7UgQzGw5cDNzm7od2cluXAd8A1nP3Nv/v4+/5cne/vo11Ngb+GB+uAqwMvBofXwP8\nHdjZ3Q8wMwP6uvuDXfXZWdop0ZfXNu7+GoCZbQmMNzNz97e6eL8664S2ElDJ7EJIuCd3dkPu/gMz\nWx+Y3um9Ctt7DtgA2jzw3xq/70rINQ/mEVsWnRL9UsDdHzaz6cBgM3uPkDz+B8DMtqk8NrNTgbWB\nTYGxwPnAOYR/1I+By9z97Mp2zey3wA7APGBPd3/WzPoSzujWB5YFxrj7uXH9w4HDgAbCWflId3/O\nzDYCLgL6A3Pj8icX5T22su8nA/sAywG3Ace6+3wz2yLuY3dgPLBj3C/a+N0sC5wd1+0JXOruZ8b1\nZgJnAQcC6wBj3f24+Nz3gJPith8DDgKmAL9y93FxnWHAL9x9s8z7OQrYA5hnZv2AQ4DTgd3jKo8C\nh7n7v+MZ+MPAbsCB7v6XDv7OjgRGEa76HDgocyLweTN7nPA3uQsY5e7zO7LduO3vA/sS/g4/ie+j\nD/BMZp3ewBhgEOFvcbq7X9XRGNJxaqNfevQgJNH2fAv4lrv/hpAkv0xoLvkScISZfTmuNwi4yt0/\nC9wPHBOXnwTMcPcNgG2Bs8xsHTNbiZCovhyfOxsYambLEJLwte7+OULiud3MFuckJLvv+wLfifv/\nmfhVaf64CDg/xnsCsA5s+wRgI+DzwMbAHjFBV3wdGAwMJPyeBsQz6P8FtokxegFHAjcAe2deuytw\nYzaYu59POCM+391/EN/LTnH7GwO9WfA7p7J8EZL8V4DjCVd+GwCvEA5WFUMy+701MKx6Gx3h7uMz\n7+O4qqfPAZoIVwaDgNPMbJPFiSNtU6JfCpjZTkA/wllfex5z97fjz98Cxrn7x+7+HrAhITECPO/u\njfHnp4AB8ecjgSMA3P0l4A3gU8BHQDNwoJn1dfc/uPuvCf/kawJXxtc8DLwFfLWV/fu1mf098/V0\nK/u+M3Clu89x90+Ay4HdzGw5QlK8Ka53U9y39uwM/M7d57r7v4FrCWfQFWPdfb67zwL+STiz/ybw\nF3ef5e7NhOR+Xoy5o5mtYmbd4rZvbif+UOAad/93PLO+Km6/YoK7N3XgfWS3N87d34yPL6/a3jh3\n/9DdPwT+TDiI5W1nwgGgKV5J3ELL36nkRE035TXZzCqdsTOBndz9g9Av1qbZmZ9XB96tPIgJjriN\nbIfofKBb/HkLwln8unF5f2AZd//YzLYFfko4c5sG/BBYCVgBeD6zbysDq7Wyf2210Wf3vTfwIzM7\nOD7uTjiArBofz4nvqdnM3qZ9vYHzzOzM+HhZ4PHM83MyP1d+H9W/v8oB5R+xWWQ3Qqf5zHhQbMsa\nwL8yj/9FOEBWzGbRrAHMamN72b6cOYS/Y956AzfHzynA8sAfEsRZ6inRl9d/O2OrZJMyQJ82tvE2\nIVkBENvf/9NO3OsJZ60XxyT6j8oT7v4UMMLMehKaQi4mNA+9F5sP8jQLuMPdf5tdaGYrxB9XBubE\npqNK8m/rdzML+F93/9Mi7MPbZK5MzGxlYPk4QugGYAShc/Sm2i9v4Z+0PPitFpe1ycx2AR539zcI\nfQsfdHB7q2Z+7sOiH0g6YhbwbXd/NsG2JUNNN0uf14H+ZrZmbDbYp4117wC+a2bLmlkvQidie22o\nawKNMcnvT2iXXtHMPm9mfzCznu4+D3iS0JTzMvCame0BYGarm9kNMV5n3A7sV0nsZnaIme0fmyKm\nsaCJYB/CmSS0/bu5HTjIzLqZWYOZnWRmO7azDxOALc1sfTNrIBzYDozP/QHYitDh2l6zDcCfgH3N\nbIXYf3EgoUmlPQcRm9IIHcmPxJ//TGjKqiT7Q6q2t5uZLRf/DjsBD3UgVms+Jpy9V7ud0CeDmXU3\ns/PM7IudiCOtUKJfyrj7dEJ7+FOExN3W2PqbgLuB/4vrX9GBzr6TgVtj08yKwCXAZcCHwAzgOTN7\nDjgVOCq2Xe8FHG5mfycMwZtUaSbqhNsII2qmxu3uEt8LhBE2PzazF4AvEA427f1uLozrPUcYI75h\nXKdV8YrqYOA+4AXCge3c+Nzs+F5nuPurrW5kgXGEA0cj8CxhzPoFHXjdUcDW8b3uSehDwd0fB34J\nPBR/P72Bn2Vedy+hk/35+PNdHYjVmvHAKDMbV7X8ZGAVM3PC77Ub4SAsOWtQPXpZ2sWhpwe5++SC\n4/4OeNbdf1dkXFn66IxepAuY2WcJo5p+39X7IuWnRC9SMDMbDUwEDnf3Oe2tL9JZaroRESk5ndGL\niJScEr2ISMktkTdMNTY2qj1JRGQxDBw4sGGhhc3NzUvc15NPPtm8OBb3dYuryHhlfm+Kp3iKl0+8\n+LqFcqqabkRESk6JXkSk5JToRURKToleRKTklOhFREpOiV5EpOSU6EVESk6JXkSk5JbIO2PbsvNx\nt7f63Kl7D2j1ORGRpZXO6EVEOmnEiBG88sorALzxxhvstttu7byiWEr0IiKdNHz4cCZMmADApEmT\nGDp0aBfvUUtK9CIinTR06FAmTpwIwOTJkxk2bFgX71FLSvQiIp3Up08f+vXrx7Rp02hqaqJv375d\nvUstKNGLiORg+PDhjB49mh133LGrd2UhSvQiIjkYMmQIr7zyCjvssENX78pClOhFRHIwdepUhgwZ\nwsorr9zVu7KQuhtHLyKypLnggguYMmUKY8aM6epdqUln9CIinXTkkUdy8803L3GdsBVK9CIiJaem\nm3ao5IKI1Dud0YuIlJwSvYhIySnRi4iUnNroRWSp1Fb/W01jX2vz6fHnDO/E3qSlRC8iUpBbbrmF\nxsZGZs+ezYwZMzjwwANZd911Oe+88+jevTt9+/blrLPOyj2uEr2ISIFeeOEFbrzxRmbOnMmxxx7L\n3Llzueqqq+jfvz+jR49m/PjxrL/++rnGVBu9iEiBNttsM7p160a/fv14//33aWhooH///gAMGjSI\n559/PveYSvQiIgXq3n1BQ8qcOXNobm7+7+OPP/6YhoaG3GMq0YuIdJFVVlmFhoYGZs2aBcDjjz/O\nJptsknucdtvozWxF4FqgD7AscBrwBnAR0AxMc/dD47rHAyPi8tPcfYKZrQKMBVYBPgD2dvfZub8T\nEZE6dPrpp3PcccfRvXt31llnHYYOHcrTTz+da4yOdMZ+H3B3/4mZrQXcB7wOHOXuT5jZWDPbCfg7\nsBcwmJDUHzKzu4GjgcnufraZHQz8OH6JiHSZRRkO2djYyMCBAzsdMztpeK9evbjvvvsAuOGGGzq9\n7bZ0pOnmbWC1+HMfYDbwKXd/Ii4bD2wHDAHudPd57v4W8DKwEbAtcGvVuiIiUpB2E7273wisa2bT\ngQeBHwH/yqzyJtAf6Ae81c7yyjIRESlIR9ro9wVecfcdzWxTwtn5nMwqrXUR11re4e7kxsbGjq6a\ny+sWV5HxyvzeFE/xFC9dvI600W8J3A3g7k+b2fJAj8zzawOz4pe1srwf4eBQWdauVtvD2rkNOY92\ntC6N14q82ggVT/EUr7zxWjs4dKSNfjowCMDM1gPeB543s63i87sBdxE6aYeaWc/Yabs28DdgImEk\nDsDucV0RESlIR87oLwGuNLMH4vqjCMMrLzGzZYDH3P1eADO7jNCO3wwc6u5NZnYBcL2ZPQS8C+yb\n4H2IiEgr2k307v4B8J0aT32txrpjgDFVyz4Avr24OygiIp2jomYislT6zk2HLtoLpl/e5tM373lR\nJ/YmLSV6EZECjBgxgnPOOYd1112XN954g1GjRrHRRhvx6quv8sknn3DkkUcyePBgbrvtNi655BJ6\n9+7NBhtswCmnnNLp2Kp1IyJSgOHDhzNhwgQAJk2axPbbb88aa6zBddddx4UXXsiZZ54JwBVXXMEx\nxxzDDTfcwCabbMJHH33U6dg6oxcRKcDQoUM58MADGTVqFJMnT2b11VfnmWeeYerUqQDMnTuXefPm\nMWzYMM4991xmzZrFsGHDWG655TodW4leRKQAffr0oV+/fkybNo2mpiZ69erFqFGjGDZsWIv1Djnk\nENZff31mzZrF/vvvz/XXX0+fPn06FVtNNyIiBRk+fDijR49mxx13ZNNNN2XSpEkAvPPOO5x77rk0\nNTVx3nnn0bt3b0aOHMlmm2323xLGnaEzehGRggwZMoSTTz6ZHXbYgRVWWIFHH32Uvfbai/nz53P4\n4YezzDLL0KtXL0455RT69u3LOuusw4YbbtjpuEr0IrJUWpThkHmVQJg6dSpDhgxh5ZVXBuCMM85Y\naJ2DDz6YgQMH5lpyQYleRKQAF1xwAVOmTGHMmDHtr5wztdGLiBTgyCOP5Oabb6Zv376Fx1aiFxEp\nOSV6EZGSU6IXESk5JXoRkZJTohcRKTklehGRklOiFxEpOSV6EZGSU6IXESk5JXoRkZJTohcRKTkl\nehGRklOiFxEpOSV6EZGSU6IXESk5JXoRkZJTohcRKTklehGRklOiFxEpOSV6EZGSU6IXESk5JXoR\nkZJTohcRKTklehGRklOiFxEpOSV6EZGSU6IXESm57h1Zycz2AU4APgF+DkwDrgO6Aa8D+7n73Lje\n0UATcKm7X2FmPYCrgfWA+cBId38p7zciIiK1tXtGb2arAacAWwHDgOHAaOBCd/8aMB04wMx6EQ4C\n2wHbAMeY2arA3sC77r4VcAZwVoL3ISIirejIGf12wL3u/j7wPnCwmc0ARsXnxwM/Ahx4wt3nAJjZ\nw8CWwLbAtXHde4Er89t9ERFpT0cS/frACmZ2B9AHOBXo5e5z4/NvAv2BfsBbmdcttNzdm8ys2cx6\nuvu8toI2NjYuwtvo/OsWV5HxyvzeFE/xqp069rXWn9t7QN2/vyLjdSTRNwCrAbsS2tnvj8uyz7f2\nukVZ3sLAgQNrP9HGH7/N1y2uouO1orGxsbBYiqd4S0S8JeR/D+rn99nawaEjo27+CfzF3T9x9xcJ\nzTfvm9ny8fm1gVnxq1/mdQstjx2zDe2dzYuISH46kugnAt8ws2Vix+yKhLb23ePzuwN3AY8BW5hZ\nbzNbkdA+/1B8/Yi47s6EKwIRESlIu4ne3f8BjAMeBe4EjiCMwtnfzB4CVgWucff/ACcCdxMOBKfF\njtmbgG5mNgU4DPhJijciIiK1dWgcvbtfAlxStXj7GuuNIxwUssvmAyMXdwdFRKRzdGesiEjJKdGL\niJScEr2ISMkp0YuIlJwSvYhIySnRi4iUnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwSvYhIySnRi4iU\nnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwSvYhIySnRi4iUnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwS\nvYhIySnRi4iUnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwSvYhIySnRi4iUnBK9iEjJKdGLiJScEr2I\nSMkp0YuIlJwSvYhIySnRi4iUXPeOrGRmywPPAqcDk4DrgG7A68B+7j7XzPYBjgaagEvd/Qoz6wFc\nDawHzAdGuvtLub8LERFpVUfP6E8CZsefRwMXuvvXgOnAAWbWC/g5sB2wDXCMma0K7A286+5bAWcA\nZ+W47yIi0gHtJnoz2wDYCPhzXLQNcEf8eTwhuQ8CnnD3Oe7+H+BhYEtgW+DWuO69cZmIiBSoI2f0\n5wDHZh73cve58ec3gf5AP+CtzDoLLXf3JqDZzHp2dqdFRKTj2myjN7PvAY+4+wwzq7VKQysvXdTl\nC2lsbOzoqrm8bnEVGa/M703xFE/x0sVrrzN2KPBpMxsGDADmAh+Y2fKxiWZtYFb86pd53drAo5nl\nT8eO2QZ3n9eRHRs4cGDtJ8a+tnivW1xFx2tFY2NjYbEUT/GWiHhLyP8e1M/vs7WDQ5uJ3t33rPxs\nZqcCM4GvArsD18fvdwGPAZebWW/gE0Jb/NHAysAI4G5gZ+D+Rd5zERHplMUZR38KsL+ZPQSsClwT\nz+5PJCT0e4HT3H0OcBPQzcymAIcBP8lnt0VEpKM6NI4ewN1PzTzcvsbz44BxVcvmAyMXd+dERKTz\ndGesiEjJKdGLiJScEr2ISMl1uI1eRJYsOx93e6vPnbr3gAL3RJZ0OqMXESk5JXoRkZJTohcRKTkl\nehGRklOiFxEpOSV6EZGSU6IXESk5JXoRkZJTohcRKTklehGRklOiFxEpOSV6EZGSU6IXESk5JXoR\nkZJTohcRKTklehGRklOiFxEpOSV6EZGSU6IXESk5JXoRkZJTohcRKTklehGRklOiFxEpue5dvQOy\n9Nj5uNtbfe7UvQcUuCciSxed0YuIlJwSvYhIySnRi4iUnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwS\nvYhIySnRi4iUXIfujDWzXwNfi+ufBTwBXAd0A14H9nP3uWa2D3A00ARc6u5XmFkP4GpgPWA+MNLd\nX8r7jYiISG3tntGb2RBgE3cfDOwI/AYYDVzo7l8DpgMHmFkv4OfAdsA2wDFmtiqwN/Cuu28FnEE4\nUIiISEE60nTzIDAi/vwu0IuQyO+Iy8YTkvsg4Al3n+Pu/wEeBrYEtgVujeveG5eJiEhB2k307j7f\n3f8dHx4ITAB6ufvcuOxNoD/QD3gr89KFlrt7E9BsZj3z2X0REWlPh6tXmtlwQqL/JvB/macaWnnJ\noi5vobGxsaO7lsvrFleR8cr83hRP8RQvXbyOdsbuAPwM2NHd55jZB2a2fGyiWRuYFb/6ZV62NvBo\nZvnTsWO2wd3ntRdz4MCBtZ8Y+9rivW5xFR2vFY2NjYXFShZvCfldgn6fedP7WzLitXZw6Ehn7CrA\n2cAwd58dF98L7B5/3h24C3gM2MLMepvZioS2+IeAiSxo498ZuH+R915ERBZbR87o9wRWB242s8qy\n/YHLzewQ4GXgGnf/2MxOBO4GmoHT4tn/TcD2ZjYFmAt8P+f3ICIibWg30bv7pcClNZ7avsa644Bx\nVcvmAyMXdwdFRKRzdGesiEjJKdGLiJScEr2ISMkp0YuIlJwSvYhIySnRi4iUnBK9iEjJKdGLiJSc\nEr2ISMkp0YuIlFyHyxTXg19NvxymX17zuZv3vKjgvVl0Ox93e6vPnbr3gAL3RETKpFSJXiSr6AOn\nDtSypFLTjYhIySnRi4iUnBK9iEjJKdGLiJScEr2ISMkp0YuIlJwSvYhIyWkc/VJM475Flg46oxcR\nKTmd0YuIUO4rXJ3Ri4iUnBK9iEjJqelGROpOvVeqLZrO6EVESk5n9J2gswoRqQdK9CLSIWUelVJ2\naroRESk5JXoRkZJTohcRKTm10ctSSR3psjTRGb2ISMnpjF6WCDrDzpd+n5KlRC8inaYDy6Ircriq\nmm5EREpOiV5EpOQKaboxs/OArwDNwFHu/kQRcUWWFGraqG/1/vdLnujNbGvgs+4+2Mw2BK4EBqeO\nWzZFf9Dq/YMtIgsU0XSzLXAbgLs/D/Qxs5ULiCsiIkBDc3Nz0gBmdinwZ3e/PT5+CDjQ3V9o7TWN\njY1pd0pEpKQGDhzYUL2sK4ZXLrQT1WrtqIiILJ4imm5mAf0yj9cCXi8groiIUEyinwjsAWBmXwRm\nufv7BcQVEREKaKMHMLNfAl8HmoDD3P3p5EFFRAQoKNGLiEjX0Z2xIiIlp0QvIlJySvQiIiWnMsVL\nMDNrcPfknShmtm5bz7v7K6n3QTrHzLoBq7n7m2b2OWAj4C53/6iLd006KFYMWIXMvUZ5/e+VLtGb\n2UXufmiibf/B3Uek2HYrJgNbFxDnj4SCcz0BA14CugGfAp4iFKTLnZmNc/c9qpY96u65xjOz+wnv\nryZ3/0Y9xqrye+BGM/srMA64CfgusGeKYGZ2krv/omrZOe5+XKJ4A4DdWDgRjs45zlW0/fc7IM94\nmbiXAd8C/sGC99cMfDmP7Zcu0QOnJtz2bDM7E3gcmFdZ6O4TEsWbaWZja8T7XZ5B3H0LADO7Dhjm\n7q/Fx+sBp+UZK253d+BEYFMze5MFH+xlCAeWvB0ev/+AcAPf5BhrCNC7jmNl9XX328zsRGCMu19m\nZhPzDmJmuxEOIF83sy9knuoBbA4kSfTAeOAu4LVE268YF7/vAsyn5d9vbsK4mwMDUl3B13WiN7Ne\nhKJpLY7ywLWJQvYE+gPDM8uagVSJ/qX4fZWqeKl8rpLkAdz95dgMkCt3/yPwRzP7kbv/b97brxHv\nOQAz+4K7H5156lEzu7NeY1VZwcy2BPYFtjGz3sCqeQdx91vMbCrwW+DCzFNNwPN5x8t4x91/knD7\nALj7nwHM7Gh33z7z1I1m9qeEoZ8GVgfeSrHxuk70wL3ATFoe5ZMlQncfmX1sZj2AXM+uq9yfcNu1\nPGZmjwOPEf5xvwRMSxhvkpmdy8KX40kuj4HlzOwI4C+E97cF0KcEsQBOBk4Afunub5vZScAFKQK5\n+0wz2wv4Bi3/dp8i3UnWfWZ2GPAQ8ElmX/6WKN5qZjYMeIQF/wv5zu/X0meAl8zs/wjvrwFodnc1\n3QDz3P27RQUzswOA0wlH3rmEduyUR/kjMj9XLo2fBB5MEczdj4xzBmxE+KBd7u7PpIgVXU9IRqkv\nxytGAEcSmvcaAAe+U4JYuPtEM3uQWFequv08gXuAGYQ25YqUV5uVs+tsn04z4WCTwvcIB8+zCH+/\nvwMj23xF5/wceDnVxuv6zlgz+xHwN2AKLY/yHyaK9zihlMOd7j7EzHYBPuXu56eIVyP+CsAVeR/c\nzOwQd7/EzM6mxj+ru5+QZ7xM3LvcfccU224j5gBgfXefYmbLunuydteCY+1JSEy4+yZmdgHwpLsn\nOcM2swfcvYiBAm3tw8nufnrC7S8LrOXuM1LFyMS6C1gTmEq4kr/f3Wfltf16P6M/hIXfQzPw6UTx\nPnL3j8ysp5kt4+53xFEWhSR6wiXkRgm2OzN+f7bGcyk/I43x4FJ9OZ6kz8PMjiGcEfYCNgN+ZWav\nu/uv6jlWdDjwReDu+PgEQkdiqqaU8Wb2LYo7yfoWMJoF/Q49CVeCSRJ9bJo6KT5MfuB09x3NrAH4\nPLAlcJWZrefuG+Sx/bpO9O7+2YJDPmFmhxMqct5nZq8CK6QKZmZvEQ5clTbQJiD3efzc/e74/Roz\n2xhYLT61LHAucEXeMaO14vddM8tSdm5/2923jAdngGMIbegpkm+RsQDmu/s8M6tckaUcIQLFn2Sd\nSmgOu4bwedkdSFkF9zAKPHDGyr6DgUGE0VkvAzfntf26TPSVsfJm9gS1mxpy6cCosd3jzKxn/Ie6\nn9BWf0+KWDHeGqm2XYuZXQxsCGxAGNI5EPh1qnjuPjJeHvd395mp4mR0i98rn5nlSPc/UGQsgClx\neOwAM/sxYXhgys9m0SdZ/3b3GfFK+h3gUjO7B7ghUbyiD5yTgSeAMcA97v7vPDdel4meBWPl92hr\npbxUt12bWfbprxCO9iniDiB00vRx9xHxcvIRd0/VabOxu3/NzCa7+85mtg6x3TeFbLsyCy6Pn3D3\n6xKFHGtm9wGfNbOLCGOjf1OCWLj7SWa2FfAM4Z6L49z90VTxzGwTwtXeSu4+2MyOBh5096mJQv7D\nzPYDnjKz6wkdwWsmigULHzh3JuGBkzAia3NCs81lZrYKMNPdD8tj43WZ6N39n/HHNQk3b1SPo897\neF6ttusiXE5o/z8xPn4TuJqQNFLoXpm43czWcPdXzWzTRLGg9XblVIn+VkKz0JcJyfBMd381Uawb\nCoyFmW0EbO/up8THY8zs/cq4/gTGAD9kwfDiicClwFaJ4u1PSIY3AHsTmhd3ThQLwgnWV1lw4Dze\n3R9JGK+JcNXwH+AjYA1a3j/TKXWZ6DN+D/wS+Gd7K3ZSkpsYOqCbu99pZicAuPt9ZnZKwnhjCEMA\nxwDPmNnHhHsVUin68vjGOFJkZuI4EDopXyR8RouoOXMx8NPM4ysJSTjVyJhP3P35ytWtu//NzJry\nDmJmw939dkKfQNZcYBjp7mN5gXCg/r27P5YoRtbfCEOnHyCcFEzPc+P1nuifB64qoPBXdX2bSrwG\n0nYefmxm3wC6mVlfQifUfxLFwt3HVn42szsIl+WzU8WjdrtyygPL62b2MKEtNFtSIvemN3ffON6T\nMBy4w8xeB8ZWOr4T6OHuUzLxn4qjOFJ5N95X0svMBhE+m28miFMpG1FofxVhdNu2wMjYdDuZ8Pf7\ne6J4mxKuVDYHNjKzJwknJrkcPOt9HP1ehGaNabQc4pXqzkrM7NOEP8p84KnEl+P9CcPHvko4g3kM\nOM3dk0yubmaHAgcDK9PyTtVUIymI7cqV9/d4ystjM9u/1nJ3vyZhzNUII0RGAh8QLsdPcPfJOcf5\nDeHOzYdZUJvl7+7+ozzjZOKtCBxNy8/mb939g0TxegHbuvsd8fH3gD/m3WlZI243YDsWDO2cARyT\nd5NYPOH5F+GA0pNwJdbd3X+Qx/br/Yz+F4SmmySJr5qZHU+oBvgwYejhqWZ2mbvnPuQRwN1fN7Nj\nCclhGcLVQ48UsaLDCe2eqZvCADCz9Qlt9MsSRqVsb2bbe/4VCQfFy+/CmuDi2e6ehL/dWGC4hxLC\nlZFam+cZz92PNrNtCb/PT4BfuftDecYAMLOvZx4+SMu7tL9Ioru2CW3zkzKPlyP+XlMEM7MhwF6E\nztGJwKHuPtVC7aexhJIIeRrg7vtlHt8YO/NzUe+J/m/ufnmB8b4NDHL3+QBm1p3QppYk0VsoXboT\noQoiLGgqSjJ8lHBW9mHqs6TzVfftAAAQ3klEQVSMCYRqgakPLNsQ3lutEtOpmt4+Rzjza1GLJdah\nOTWvIJU2bDP7YVxU+dt93sw+7zlXOmVBWY4+hJt7niQMJR1IGJKbKtH3zt6B7u6XmlnK8ieHEMbM\n/7Dy/x7jvhD/L/PW08zWqtwNG0fc5XZSV++J/m0L9T2epGXTTZLhjoREm20zayJtfY/NgXUK6IOo\nmAa8bGb/pGVhpVRNNy+7+88Tbfu/MnejPlx9YhCvmFK4mHDFtxnhc/IkcIq7vx47F/NSaBu2x/kY\nzOxW4DOVppo4WitFAqx4L96sWGma+gYwJ2G8Q4GjgINjJ/OTwAXu/oG7X5Ig3s8IRf6aCO+vidCM\nmot6T/QPxK+i3ES4bf8RQhIcTBhSlkrS0qU1jAI2pqCmMOBKMxtPqEGfPVDn3XSzPfBN4DvWsuxy\nd0Lzyrl5xosuJ1zpHUtoc92GcIfxt/IMkulf+ALwB2B8QVdk69FylNSHpLsrFmAf4EeE5tr5hKuH\n7yWMdzUht4xmQZv5VdS+Kuy02GezoZn1AZrcPdeDWF0m+tgRA2nPphfi7ueb2e2EM+1mQknYlNPs\nfQZ40cymk6B0aQ2PAG8X2HRzOsU03TwKfExoBst2ojWRrrxDNw919ytuNLNcOtZacT6hvfqk+HkZ\nB9zh7u8lincj8IKZPUv4X9iABOUBYr2Xl4G1Ce302TthBxCGJaawkrtnTwAeNbNkI8LMbCShWWwV\noCEzbDWXg2ddJnpC2yCEM4j/YcHl3JaEGxxS1aPYGtjH3Q+Oj28xs9+4e6p2yZqjRBL6DKHp5kWK\nObDMcPeT2l+tc9z9fcJohk2suIqS88xsRIzbQGhqSHafQPwMPggcF+9aPZ7QfLRioni/NrNLCP9/\nAC+5+78ShDqKcFV0YY3nUpYp7mZmX3L3JyF06BNyTCrHE4aoJinZXZeJ3t2PBzCzPwMD3f2T+LgH\nORYCquEsINszfihwC+EAk8K/CCNh1oyjKoaQZqq9iv3aXyVX0+Pt7I/TsukmyU0wtqCi5IqEIbIp\nK0oeQLjsP4mQkB4HDkwQBwAz60kY970zoZT2NOD7CeMtNDeumeU+J667Hxu/p7obvDWHA7+JdxxD\nOIHMpRxBK15wd0+18bpM9BnrEC513omPlyfMcpNKN3d/MfM4ddv51YSheEPj4zUJQ7tybefNKPrA\n8nb8SjnzUlbyipIW5gyA8Ls8gpYTPaf0AuGzcitwtLvPa2f9zjo883MPQumD3G7Zr2ZmJ9NyIh4A\n3D1JvRsPE+5sm2LbrXgr9v09QoKBJfWe6H9N6Bx9n9DeugoJJrPO+KOZPUoYqteNcLNIqrosENoJ\nLzKz7wC4+01mNiphvKsp8MDi7qcV2JQCxVSUfI6WpaWr76JO1WE5wd1/2P5q+ahxw9Bfzexu4IxE\nIUcQJvlJfYNUpTR4tUozZqpCalPiV1ZuJwf1nuidMOzJCP/E/yAMU7oqSbDQLnkLoTP2E+BsT1dJ\nEmAZM/sM8Q9uZjuyIFmlUOiBxWpPzjHL3VOVRp5giStKuvt/ryhjCYLVCX+/dxIPk51vZgcTmoiy\n5R2SdFZmxu1X9GfB/AIpPE/mTDcVL7g0eMba7n5m5YGZrUmo45NLf2O9J/oLCIWcfkmopLcrYYRF\nMrHY0HQzO9/db00Zi3B5fAnwpVgr5WlyHFtbQ9EHltaaUlIl+h0IQ/IGETpGk1WUjOUWfkFowmkA\nVjKzn2brCeVsk/iVvYkoZWdlNiE2E5pPUzUpQugIdTObSsuBAknm4TWzbxLySuXg9TLw47xLV2Ss\naGbXAgcRrl5OAnIrYFjvif5Dd7/fzOa5eyOhGecu0k7YXfGFAmJ8xd23KyBORdEHlqIn53id0BRV\nKWq2ZexATHGD3THAZh4mySCWPrg3xs9dpbPSzHq4+8cpYlSZ71UTkJvZOcBxieL9NtF2W3M2YYTd\nswBm9gVCM22Sst3u/lMz24MwXPQ5YKvKZycPdZ/oLUzQPcPMziSUhV23oNhF3Kj1TTN7JGHFvBY8\nlJ0d5mFe3FWB9RLHrjU5R8r5d+9MuO1q/wCylT/fIXw+kzCzbQi/u2WBDczsDOABd5+Yc5zdCFcN\nX4/Jr6I7odZNqkT/IrAbC889ker/8I1Kkgdw92lmNjPvIFY1qRGhU/2zwI/zPAmp9+qVKwH9CDfc\nHE1oD722MvY1UczCOg/N7P8Io4j+zYJ212QdQmY2htDnMQG4jzACoNndq2uB5xlzfULtnrnA1FRN\nKUUzsxsIpW4fIDQ7DCbUwX8R8i/TEUuB7AqMc/chsY33dncfnGecGGt9Qr37uwlNpesShnL+3N0f\nzjtejDkVuItwAP0vd681vj6PeJcRmm0mEf5+WwHvEZuG8xoCbK1UVI2aPafJyOv6jD7eCFOZIDjX\n2+ZrKXgcdlfMy7mpux9hZkcBV7r7eRbm5UzCzK6sWjTczOYTkuHF7v5uqtgFuCt+VTyRON7H7v6O\nxUlcPFTKzH0ikLjtmRYK+t1NaG4bSZgS8ueEfpAUZrv7T9tfLTevxa+V4uPKMONcO2srJSwslmFm\n4SuWXNR1ou8CycdhZ3VBh9CyZrY2sC+wa/xn7t3OazrjbULNlDsIl687saC5I+X9AkW4hdAU1eIf\nN68ztBpmmNloYHULc/EOp2W5h7x97O5/jU0Pv3H3h+PnJVeZG5YejiN9ptBynHmqEgijCXfgV//9\nUt0Ffy+h1n32ikXDK7tI0Z2HhXYIEW4zn0CYSec1M/sFoWZKKgPdPXtTylgzu9PddzKznRLGLcID\nhLsps7MupWwnHU0YUTSFcAf3PMKEJ6l0N7OfEWYFO9nMtiBNuYXqpplsUbGUo4omEf7fq/9+qRL9\nPHffO9G2legXUdGdh4V0CGW2fy2ZcbsF1KHpEzvT/0K44e1LhGkFNyHc5VzP3nH3ImsVXUeoC7Mc\nsCFheN65pGtK2ZfQjLlb7Lz/NKH6aa6ypQ/MbDmPc++a2Sp5V3is0t3dv97+arkZb2ZDgYdoecXy\nYR4br+vO2K5QZOdhUR1CmXjZuwJ7Es7QZqTqKzCzzxPGCm9IuDyeThh73gDMdfe/pohbBDPbm9AB\nW12COVXBvUnuvm1sSnnI3e+oLEsRr2hmdiSwnbvvEh+PB+5x9wsSxTuAUJqj+u+X5Iw+Dryovmel\n2d0/k8f2dUa/CMzsKlpefg+PQ6BSzVFbSIdQRfVdgbGpaN8UsWK8ZwhnhZV4PYDfeU7zZHaxHxOa\nbjbMLEt5VlVUU0pX2YtwolOxC6GZKkmiJ1SO7QZ8JbMsZdNNDxb+fOTWma5Ev2iy7dWVQk7Jikd1\nQS2Y6vjTzOyrqbZvZgcS2pZXJ1whdaOYm92K8Ja7JztI1lBIU0oXqgwMqHTW9yPB6JSMZdx9q/ZX\ny83GmZ8rucXy2rgS/SJw9z9XLbrNzFLMNwoUXwvGzP5Ay7OKtVgwB2kKhxBq4N8Zx37vQtrqo0Vq\njJ3Z1SWYk3xeYhPieZnHN6WI04V+Rpj84z+EE4JlCGVPUrnHzA5i4b9fklE+NYq1/cnCNJfn5LF9\nJfpFYGbVw/36k3b6tKJrwWRvM28m9Ac8nSgWwEfx7LOnmS0T25XvJ20Hd1EqN7XtmlmWaiLy0nP3\ne4DPmdkahPILs9t7TSdVOoH3ySxLNsqnxh2ya7GgybbTlOgXTfXQrvdo+UHIW9HDOZ8m3GGcndB6\nOvBBonhPWJjweSJwn5m9CqzQzmvqgruPNLNlgf7uPrOr96fexZFY5xIqrA42s6OBB919aop4XVA7\n6NnMz82EE7pJeW1cib4DbMFkEilnmKml1nDOXMvqVrmGYidEPs7Merr7vHgmvxrhxpG6F29aOjk+\n3MTMLgCecPeU8xeU2RhCU01lpNlE4FJadtDmpqjaQRW+YJL3JJToO6YymQSEDqDV4uPZpJ1M4lbC\npf6XCZ2+ycrqRkVPiLwZ8D0zq9x92ECYCi/VKKYiHU4o8nV3fHwCYf5YJfrF80ksugeEtvJUJR6i\n0YRmmsoAjPOB2wkHmLqjRN8BHieTsDBT+2igkmx7ETqJUrnR3bcmFMMqQvWEyF8h7YTIvycMj0sy\nIXIXmx+vVConCIWNliqpd+PY9l4WJurelVDMMJXCagcVQYl+0RxNKPw1GyB2DN1DohrjwOtm9jAL\n6qcD+Vc+zDiMlhMiP0vakQ2vuvslCbfflaaY2XWEO31/TLhSSVYgbinwDGHww9vAiYTpPF9JGK+6\ndtC3CbXi65IS/aJ5DchWVHybhDXGqV0/PeVNN7sSJlSpjE/enHCDSKp5Mhsrd3JSwBDEIrn7SWa2\nFSFBzQWOd/dHuni36o5l6t8T+o8qwxAHET6fqerfHwzsTbgp6yuEZpubE8VKTom+AzJDn/4DPGVm\nU+LjwUDKiTm2cPfDq/blJnKaR7KGPShgAuaMSlXOUg5BdPcphDP7nyjJLx53vyXWov8tLQucNRHm\nkU1lecKoukcIJz49CTelpfrfS0qJvmMqQ5+qy74mqTFuZrsDxxJGa3w581SP+JXKNAqYgLnC3Udm\nH1dKIBQVv0DbEypKymKIw1OHFRw2adngoinRd0DqoU814v0xFm06l1CquKKJMO9prjJ3xK5EywmY\nK/uTagLmA4DTKWcJhKwXunoHZJElLRtcNCX6JVQcsfErQrNG9awzec+mVfTEyxWjKFkJBDM7w91/\nVvkO4O5lqjmztEhaNrhoSvRLtjsI09ElHX7o7kVMdF5LGUsgDDezDYEtzWyh8s6pro4kd4dQo2ww\n4cSk7ijRL9necfefdPVOJFSrBEK9TziyNaES4bosPDuS1I+kZYOLpkS/ZLvPzA5j4cvHuh3PW+Um\nwsTSyxL+iYZT/2PN+xKG3X6vq3dEOiVp2eCiKdEv2bYnnFV8F/iYBWcYqebJLNr1hMnPU97hWLQL\nCX+nWrXSU85xKjlKXTa4aEr0S7bRhCJmy7m7xcJKqWa46QrPA1e5e90OW6uWneMUCq1+KDlKXTa4\naEr0S7bTqF1Y6e5WX1FfbiDcgNZi/H7CqRkLU3T1Q8ld0rLBRVOiX7KVqrBSDb8gNN3kfm/AEqBU\n1Q+XNkXfO5OaEv2SrVZhpeq7c+vZ39z98q7eiUTKfpCWOqJEv2TLFlYaTBhXX7eFlWp428weJMxk\nlW26SVWds0jVB+nhlOsgLXVEiX4J5u5NhJEp13f1viTyQPwqo9GEIZZTCHVu5gG7d+keyVJLiV66\nTNnaQatcBxxFmOd3Q+AkQu2iHbpyp2TplHL2IJGl2Sfu/lfCWfx57v4wOrGSLqJEL5JGdzP7GbAL\nMNHMtgBW7OJ9kqWUEr1IGvsCHwK7uftHhAnkVcVSukRDc3NpbkoUEZEadEYvIlJySvQiIiWnRC9S\nxcw2M7MxbTx/tZkdVOQ+iXSGhnuJVInDIo/o6v0QyYs6Y0WqxMqTvwAOAC4mXPl2B0509ylmdjXh\nTtd1gQGEUst1Wadclg5quhFp3RjgInffBjgUuDbz3FrAToSZh35qZqsWv3siHaNEL9K6QcSpDd39\nGWBlM1s9Pnevuze7+7vAdGChicBFlhRK9CKtq27XbMgsa2plucgSR4lepHWPEouQmdnmwDvu/k58\n7htxeR/CXa8vdMkeinSARt2ItO4I4GIzGwX0APbLPDfLzG4D/gcYHZtwRJZISvQiC+tJqD45Hdiu\n+kl3/37heyTSCWq6Eckws00Jo21u7ep9EcmLxtGLiJSczuhFREpOiV5EpOSU6EVESk6JXkSk5JTo\nRURKToleRKTk/h+9JLXvCQ9gMgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "kdxOb3QikQ_I",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "table=pd.crosstab(data.marital,data.y)\n",
+ "table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)\n",
+ "plt.title('Stacked Bar Chart of Marital Status vs Purchase')\n",
+ "plt.xlabel('Marital Status')\n",
+ "plt.ylabel('Proportion of Customers')\n",
+ "plt.savefig('mariral_vs_pur_stack')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Oxml9PCn_KQA",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "table=pd.crosstab(data.education,data.y)\n",
+ "table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)\n",
+ "plt.title('Stacked Bar Chart of Education vs Purchase')\n",
+ "plt.xlabel('Education')\n",
+ "plt.ylabel('Proportion of Customers')\n",
+ "plt.savefig('edu_vs_pur_stack')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "nGYqmS2Ckrco",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "pd.crosstab(data.day_of_week,data.y).plot(kind='bar')\n",
+ "plt.title('Purchase Frequency for Day of Week')\n",
+ "plt.xlabel('Day of Week')\n",
+ "plt.ylabel('Frequency of Purchase')\n",
+ "plt.savefig('pur_dayofweek_bar')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "X5_8USBjkvzw",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "pd.crosstab(data.month,data.y).plot(kind='bar')\n",
+ "plt.title('Purchase Frequency for Month')\n",
+ "plt.xlabel('Month')\n",
+ "plt.ylabel('Frequency of Purchase')\n",
+ "plt.savefig('pur_fre_month_bar')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Ox-8rpTKkzBd",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "data.age.hist()\n",
+ "plt.title('Histogram of Age')\n",
+ "plt.xlabel('Age')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.savefig('hist_age')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "_rS77hPzk1AF",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "pd.crosstab(data.poutcome,data.y).plot(kind='bar')\n",
+ "plt.title('Purchase Frequency for Poutcome')\n",
+ "plt.xlabel('Poutcome')\n",
+ "plt.ylabel('Frequency of Purchase')\n",
+ "plt.savefig('pur_fre_pout_bar')"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "SxWJBHIrdYIl",
+ "colab_type": "code",
+ "outputId": "a93839e4-d2bc-4993-dda2-b0f45fca8baa",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "data=pd.get_dummies(data,prefix=['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week','poutcome'],columns=['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week','poutcome'])\n",
+ "data.head()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ " ... | \n",
+ " month_oct | \n",
+ " month_sep | \n",
+ " day_of_week_fri | \n",
+ " day_of_week_mon | \n",
+ " day_of_week_thu | \n",
+ " day_of_week_tue | \n",
+ " day_of_week_wed | \n",
+ " poutcome_failure | \n",
+ " poutcome_nonexistent | \n",
+ " poutcome_success | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 56 | \n",
+ " 261 | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 57 | \n",
+ " 149 | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 37 | \n",
+ " 226 | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 40 | \n",
+ " 151 | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " 307 | \n",
+ " 1 | \n",
+ " 999 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 62 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate cons.price.idx \\\n",
+ "0 56 261 1 999 0 1.1 93.994 \n",
+ "1 57 149 1 999 0 1.1 93.994 \n",
+ "2 37 226 1 999 0 1.1 93.994 \n",
+ "3 40 151 1 999 0 1.1 93.994 \n",
+ "4 56 307 1 999 0 1.1 93.994 \n",
+ "\n",
+ " cons.conf.idx euribor3m nr.employed ... month_oct \\\n",
+ "0 -36.4 4.857 5191.0 ... 0 \n",
+ "1 -36.4 4.857 5191.0 ... 0 \n",
+ "2 -36.4 4.857 5191.0 ... 0 \n",
+ "3 -36.4 4.857 5191.0 ... 0 \n",
+ "4 -36.4 4.857 5191.0 ... 0 \n",
+ "\n",
+ " month_sep day_of_week_fri day_of_week_mon day_of_week_thu \\\n",
+ "0 0 0 1 0 \n",
+ "1 0 0 1 0 \n",
+ "2 0 0 1 0 \n",
+ "3 0 0 1 0 \n",
+ "4 0 0 1 0 \n",
+ "\n",
+ " day_of_week_tue day_of_week_wed poutcome_failure poutcome_nonexistent \\\n",
+ "0 0 0 0 1 \n",
+ "1 0 0 0 1 \n",
+ "2 0 0 0 1 \n",
+ "3 0 0 0 1 \n",
+ "4 0 0 0 1 \n",
+ "\n",
+ " poutcome_success \n",
+ "0 0 \n",
+ "1 0 \n",
+ "2 0 \n",
+ "3 0 \n",
+ "4 0 \n",
+ "\n",
+ "[5 rows x 62 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 96
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "j8kc-MRFyr-Q",
+ "colab_type": "code",
+ "outputId": "478a006e-30a8-4333-87a8-3f0a3f56a6bc",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 55
+ }
+ },
+ "source": [
+ "print(list(data.columns))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 'marital_divorced', 'marital_married', 'marital_single', 'marital_unknown', 'education_Basic', 'education_high.school', 'education_illiterate', 'education_professional.course', 'education_university.degree', 'education_unknown', 'default_no', 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown', 'housing_yes', 'loan_no', 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue', 'day_of_week_wed', 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_success']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xCb9vEiyyv0d",
+ "colab_type": "code",
+ "outputId": "542588ea-c4c4-4f0c-a2b6-9bfd6d30bd67",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 344
+ }
+ },
+ "source": [
+ "data.columns.values"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate',\n",
+ " 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y',\n",
+ " 'job_admin.', 'job_blue-collar', 'job_entrepreneur',\n",
+ " 'job_housemaid', 'job_management', 'job_retired',\n",
+ " 'job_self-employed', 'job_services', 'job_student',\n",
+ " 'job_technician', 'job_unemployed', 'job_unknown',\n",
+ " 'marital_divorced', 'marital_married', 'marital_single',\n",
+ " 'marital_unknown', 'education_Basic', 'education_high.school',\n",
+ " 'education_illiterate', 'education_professional.course',\n",
+ " 'education_university.degree', 'education_unknown', 'default_no',\n",
+ " 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown',\n",
+ " 'housing_yes', 'loan_no', 'loan_unknown', 'loan_yes',\n",
+ " 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug',\n",
+ " 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may',\n",
+ " 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fri',\n",
+ " 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue',\n",
+ " 'day_of_week_wed', 'poutcome_failure', 'poutcome_nonexistent',\n",
+ " 'poutcome_success'], dtype=object)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 98
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "2rCmZD2Yznci",
+ "colab_type": "code",
+ "outputId": "ac6ba83b-7c60-490c-fc0e-d4fedf7e6ca0",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 341
+ }
+ },
+ "source": [
+ "y_count = data.y.value_counts()\n",
+ "print('Class 0:', y_count[0])\n",
+ "print('Class 1:', y_count[1])\n",
+ "print('Proportion:', round(y_count[0] / y_count[1], 2), ': 1')\n",
+ "\n",
+ "y_count.plot(kind='bar', title='Count (y)');"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Class 0: 36548\n",
+ "Class 1: 4640\n",
+ "Proportion: 7.88 : 1\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAENCAYAAAAG6bK5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFstJREFUeJzt3XGwnXV95/H3JYSKYUpMrCQNLIW6\n8512bVGvEfEmGgsRsEQriLTJMhLYjpuRHRLtdGHdYYFuJl1ZK63SlNTYIBYNxqEkRZNsLK0JSIyn\nA6gsX0vZ7TYmu8likoJks+Heu388T9bD5dx7TpLDPeT+3q+ZOznn9/ye5/yePHeez/n9fs9zn77h\n4WEkSeU5qdcNkCT1hgEgSYUyACSpUAaAJBXKAJCkQhkAklSok3vdAGk8REQfsAy4FphM9bu/Cbgp\nMw+8Ap93BnB+Zq4fZfmZwH8B5mXm/2qx/FeBe4ALMvOFbrdPAnsAKsfvA1cBF2dmAL8KnAL8ZR0O\n3fYe4P1jLP9T4LZWJ3+AzHwC+Atg+SvQNgmAPm8E00QXEdOAHwFvycynmspfA8wHHqQKgzuoTtxD\nwNeB383MwYgYBs7KzJ31esPAWcAbgRXAXwO/AbwGuAZ4DthM1cvYmJm/OaI9bwe+Uq+/BLg0My+r\nl50E7AYuBv4R+CHwS5m5p6v/KRL2AFSGdwA7m0/+AJn5fzJzQ2YOAUupTur/AngrMBf4rQ62/Rbg\n0cz8JeCPgX+fmX8LfA5YN/LkX/sQsL7+3K8CvxYR0+tlA8C+zHwsM58FvgMsOMr9lTpiAKgE04CW\nQy1Nfh1YlZkvZuZB4M+B93aw7ecy84H69d8C/6yDdd4O7ACov9lvpQoFgA8Ca5vqbgcu6GCb0lEz\nAFSC/w3MalPn54B9Te/3AW/oYNvNE8iDwKQO1nkD0Dyk82VgYf36A7w0APZ02A7pqBkAKsGjwBkR\n8dbmwoiYHBHLI+K1VD2E6U2Lp/PTXsMQ9Yk9Il7XhfaMnHS+H3hbRLwPeCEzn+zCZ0htGQCa8DJz\nP/Ap4IsR8UaA+qS/impi+AXgL4HrImJSREwBrqaaHIZqUva8+vW1VIHQzmFg6ijL9lD1OI607wCw\nkWoOYe2Iuj8H7O3g86SjZgCoCJl5C9UJf31EJNCg+oZ/eV3ls1RX3fwA+C5VIHy1XvZJYGVEPAb8\nBPinDj5yM9Xk7o4Wy74DzB5R9mXgbF4eAOcD3+7g86Sj5mWg0jiLiHdQ3eQV9ZVARy4N/Vxmvr2p\n3uuAp4FfHu1+Ael42AOQxllmPgr8d+AKgIg4GbgZ+KMRVa8H7vXkr1eKfwpC6o3rgI0R8T+A+6j+\nLMWfH1kYEb9CdWnoQG+apxI4BCRJhXIISJIKZQBIUqFOmDmARqPhWJUkHYP+/v6Wf/H2hAkAgP7+\n/l43YcJoNBr+f+pVyd/N7mo0GqMucwhIkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCS\nVKgT6kawE8GCTzzQvtKrxb07e92CtjZ8+gO9boI0YdkDkKRCGQCSVCgDQJIKZQBIUqHaTgJHxGuB\nNcAZwGuA36N6VF0/8Gxd7fbMfDAiFgFLgSFgVWaujojJ9fpnA4PA4sx8JiLOA1YCw8ATmbmkmzsm\nSRpbJz2ABcB3M/PdwIeBP6jLb8rMefXPgxExherB1hcB84BlETENWAjsz8w5wHJgRb3+HcANmTkA\nnB4Rl3ZtryRJbbXtAWTm2qa3ZwGjXTt4PrAjMw8ARMTDVA+0vhD4Yl1nC/CFiDgFOCczd9TlG6iC\n4xtHvQeSpGPS8X0AEfEIcCZwGfBx4PqI+DiwB7gemAHsbVplDzCzuTwzhyJiuC7b16KuJGmcdBwA\nmfnOiHgz8CVgGfBsZj4WETcCtwCPjFil5SPIRikfre5LjPVkG01MHvMyedzHRyeTwP3Ansz8x/qE\nfzLwvczcU1dZTzWZu47qm/0Rs4BHgV11+eP1hHAfsBuYPqLurnZtOSEeE3cC3F17Ijkhjrm6ykdC\ndtfxPhLyXcAnACLiDOA04K6IOLdePg/4PrAdmB0RUyPiNKrx/63AZuDKuu4C4KHMPAw8FRFz6vLL\ngY1HsU+SpOPUyRDQnwCrI2IrcCrwMeB5YG1EvFC/XpyZB+vhoE1Ul3bempkHImItMD8itgGHgGvq\n7S6lCpKTgO2ZuaWbOyZJGlsnVwEdpLqUc6TZLequoxoKai4bBBa3qPskMLfjlkqSuso7gSWpUAaA\nJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhS\noQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVKi2D4WPiNcCa4AzgNcAvwc8DtwDTAJ2A1dn5qGI\nWAQsBYaAVZm5OiIm1+ufDQwCizPzmYg4D1gJDANPZOaSLu+bJGkMnfQAFgDfzcx3Ax8G/gC4Dbgz\nM+cCTwPXRsQU4GbgImAesCwipgELgf2ZOQdYDqyot3sHcENmDgCnR8Sl3dstSVI7bXsAmbm26e1Z\nwE6qE/y/rss2AL8DJLAjMw8ARMTDwABwIfDFuu4W4AsRcQpwTmbuaNrGRcA3jmdnJEmdaxsAR0TE\nI8CZwGXAlsw8VC/aA8wEZgB7m1Z5WXlmDkXEcF22r0XdMTUajU6bqwnCY14mj/v46DgAMvOdEfFm\n4EtAX9OivlFWOZry0eq+RH9/fyfVeuvenb1uwYRyQhxzdVWj0fC4d9FYYdp2DiAi+iPiLIDMfIwq\nNJ6LiFPrKrOAXfXPjKZVX1ZeTwj3UU0cT29RV5I0TjqZBH4X8AmAiDgDOI1qLP+KevkVwEZgOzA7\nIqZGxGlU4/9bgc3AlXXdBcBDmXkYeCoi5tTll9fbkCSNk04C4E+AN0TEVuBB4GPAfwA+UpdNA+7O\nzIPAjcAmqoC4tZ4QXgtMioht9bo31dtdCqyoJ4v/PjO3dHG/JEltdHIV0EGqSzlHmt+i7jpg3Yiy\nQWBxi7pPAnM7bqkkqau8E1iSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgpl\nAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqVNtnAgNExKeont97\nMrACeD/QDzxbV7k9Mx+MiEVUD3sfAlZl5uqImAysAc4GBoHFmflMRJwHrASGgScyc0n3dkuS1E7b\nHkBEvAd4U2ZeAFwC3FEvuikz59U/D0bEFOBm4CJgHrAsIqZRPVB+f2bOAZZTBQj1dm7IzAHg9Ii4\ntJs7JkkaWydDQN8Crqxf7wemAJNa1Dsf2JGZBzLzIPAwMABcCNxf19kCDETEKcA5mbmjLt9AFRyS\npHHSdggoMweBn9RvrwO+TjWUc31EfBzYA1wPzAD2Nq26B5jZXJ6ZQxExXJfta1FXkjROOpoDAIiI\nD1AFwHuBtwHPZuZjEXEjcAvwyIhV+kbZVKvy0eq+RKPR6KyxmjA85mXyuI+PTieBLwY+CVySmQeA\nbzYtXk81mbuO6pv9EbOAR4Fddfnj9YRwH7AbmD6i7q527ejv7++kub11785et2BCOSGOubqq0Wh4\n3LtorDDtZBL4dOB24LLM/HFd9rWIOLeuMg/4PrAdmB0RUyPiNKrx/63AZn46h7AAeCgzDwNPRcSc\nuvxyYONR7pck6Th00gO4Cng9cF9EHCn7M2BtRLwAPE91aefBejhoE9Wlnbdm5oGIWAvMj4htwCHg\nmnobS4G7IuIkYHtmbunWTkmS2utkEngVsKrFortb1F1HNRTUXDYILG5R90mqewskST3gncCSVCgD\nQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAk\nqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoTp5KDwR8Smq5/eeDKwAdgD3AJOA3cDVmXkoIhZRPex9\nCFiVmasjYjKwBjgbGKR6gPwzEXEesJLqAfJPZOaSru6ZJGlMbXsAEfEe4E2ZeQFwCXAHcBtwZ2bO\nBZ4Gro2IKcDNwEXAPGBZREwDFgL7M3MOsJwqQKi3c0NmDgCnR8SlXd0zSdKYOhkC+hZwZf16PzCF\n6gS/vi7bQHXSPx/YkZkHMvMg8DAwAFwI3F/X3QIMRMQpwDmZuWPENiRJ46RtAGTmYGb+pH57HfB1\nYEpmHqrL9gAzgRnA3qZVX1aemUNUQz4zgH0t6kqSxklHcwAAEfEBqgB4L/B3TYv6RlnlaMpHq/sS\njUajk2qaQDzmZfK4j49OJ4EvBj4JXJKZByLi+Yg4tR7qmQXsqn9mNK02C3i0qfzxekK4j2riePqI\nurvataO/v7+T5vbWvTt73YIJ5YQ45uqqRqPhce+iscK0k0ng04Hbgcsy88d18Rbgivr1FcBGYDsw\nOyKmRsRpVOP/W4HN/HQOYQHwUGYeBp6KiDl1+eX1NiRJ46STHsBVwOuB+yLiSNlHgM9HxEeBfwDu\nzszDEXEjsIlqnP/WurewFpgfEduAQ8A19TaWAndFxEnA9szc0q2dkiS11zYAMnMVsKrFovkt6q4D\n1o0oGwQWt6j7JNW9BZKkHvBOYEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJ\nKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFartQ+EB\nIuJNwAPAZzLzcxGxBugHnq2r3J6ZD0bEImApMASsyszVETEZWAOcDQwCizPzmYg4D1gJDANPZOaS\nLu6XJKmNtj2AiJgCfBb45ohFN2XmvPrnwbrezcBFwDxgWURMAxYC+zNzDrAcWFGvfwdwQ2YOAKdH\nxKVd2SNJUkc6GQI6BLwP2NWm3vnAjsw8kJkHgYeBAeBC4P66zhZgICJOAc7JzB11+Qaq4JAkjZO2\nQ0CZ+SLwYkSMXHR9RHwc2ANcD8wA9jYt3wPMbC7PzKGIGK7L9rWoO6ZGo9GuiiYYj3mZPO7jo6M5\ngBbuAZ7NzMci4kbgFuCREXX6Rlm3VflodV+iv7+/4wb2zL07e92CCeWEOObqqkaj4XHvorHC9Jiu\nAsrMb2bmY/Xb9cCvUA0RzWiqNqsu+//l9YRwH7AbmN6iriRpnBxTAETE1yLi3PrtPOD7wHZgdkRM\njYjTqMb/twKbgSvruguAhzLzMPBURMypyy8HNh7bLkiSjkXbIaCI6Ac+DfwCcDgiPkR1VdDaiHgB\neJ7q0s6D9XDQJqpLO2/NzAMRsRaYHxHbqCaUr6k3vRS4KyJOArZn5pbu7pokaSydTAI3qL7lj/S1\nFnXXAetGlA0Ci1vUfRKY22lDJUnd5Z3AklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQ\npEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqHaPhMY\nICLeBDwAfCYzPxcRZwH3AJOA3cDVmXkoIhZRPex9CFiVmasjYjKwBjgbGKR6gPwzEXEesJLqAfJP\nZOaSLu+bJGkMbXsAETEF+Czwzabi24A7M3Mu8DRwbV3vZuAiqofIL4uIacBCYH9mzgGWAyvqbdwB\n3JCZA8DpEXFpd3ZJktSJToaADgHvA3Y1lc0D1tevN1Cd9M8HdmTmgcw8CDwMDAAXAvfXdbcAAxFx\nCnBOZu4YsQ1J0jhpGwCZ+WJ9Qm82JTMP1a/3ADOBGcDepjovK8/MIaohnxnAvhZ1JUnjpKM5gDb6\nulA+Wt2XaDQaHTVIE4fHvEwe9/FxrAHwfEScWvcMZlEND+2i+mZ/xCzg0abyx+sJ4T6qiePpI+o2\nDzG11N/ff4zNHUf37ux1CyaUE+KYq6sajYbHvYvGCtNjvQx0C3BF/foKYCOwHZgdEVMj4jSq8f+t\nwGbgyrruAuChzDwMPBURc+ryy+ttSJLGSdseQET0A58GfgE4HBEfAhYBayLio8A/AHdn5uGIuBHY\nRDXOf2tmHoiItcD8iNhGNaF8Tb3ppcBdEXESsD0zt3R31yRJY2kbAJnZoLrqZ6T5LequA9aNKBsE\nFreo+yQwt9OGSpK6yzuBJalQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaA\nJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEK1fSZwKxExD/gq8IO6\n6HvAp4B7gEnAbuDqzDwUEYuoHgA/BKzKzNURMRlYA5wNDAKLM/OZ49gPSdJROp4ewN9k5rz6598A\ntwF3ZuZc4Gng2oiYAtwMXET1YPllETENWAjsz8w5wHJgxfHshCTp6HVzCGgesL5+vYHqpH8+sCMz\nD2TmQeBhYAC4ELi/rrulLpMkjaPjCYBfjoj1EbEtIuYDUzLzUL1sDzATmAHsbVrnZeWZOQQMR8Qp\nx9EWSdJROqY5AODvgFuB+4BzgYdGbKtvlPWOtvwlGo1Gp+3TBOExL5PHfXwcUwBk5o+AtfXbv4+I\n/wnMjohT66GeWcCu+mdG06qzgEebyh+vJ4T7MvP/tvvc/v7+Y2nu+Lp3Z69bMKGcEMdcXdVoNDzu\nXTRWmB7rVUCLgJmZ+Z8jYgZwBvBnwBXAl+p/NwLbgc9HxFTgRaqx/qXAzwJXApuABVQ9CEmvsA+v\nXdLrJnTm6c/3ugVt3XfVyl434bgd6xzAeuDdEbEVeABYAnwS+EhdNg24u+4N3Eh1ot8C3JqZB6h6\nD5MiYhvwMeCm49sNSdLROtYhoOeovrmPNL9F3XXAuhFlg8DiY/lsSVJ3eCewJBXKAJCkQhkAklQo\nA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIA\nJKlQBoAkFcoAkKRCGQCSVCgDQJIKdUwPhe+WiPgM8A5gGLghM3f0sj2SVJKe9QAi4t3AP8/MC4Dr\ngD/qVVskqUS9HAK6EPgLgMz8r8DrIuJne9geSSpKL4eAZgCNpvd767J/Gm2FRqMx2qJXjVsWntnr\nJkwoJ8IxP5H82zf+q143YcKYCL+bPZ0DGKFvrIX9/f1jLpckHZ1eDgHtovrGf8TPA7t71BZJKk4v\nA2Az8CGAiHgrsCszn+theySpKH3Dw8M9+/CI+H3gXcAQ8LHMfLxnjZGkwvQ0ACRJveOdwJJUKANA\nkgplAEhSoQwAST0XET9T//u6iHhzr9tTCieBCxIRk4GFwFuorrz6LvCVzBzqacNUtIj4LNXv4jeA\nvwK+DQxl5kd72rAC2AMoyxeAtwHfAr4DzAXu6mmLJDgvM+8GfgtYnZm/DZzb4zYV4dX0pyD0yjsz\nM69uev+ViPirnrVGqvxMRMwC/iXwwYg4GZja4zYVwR5AWU6JiJ8/8iYizgQm97A9EsCdwNeBdZm5\nE7gFWNfTFhXCOYCC1M9gWEn1AJ6++t/fzsxHetowCYiIkzPzxYjoy0xPTOPAHkBZfhE4BJxK9cf3\nXgt8qactUvEiYl5EPA58vy76jxFxcS/bVArnAMryO8BvAD/qdUOkJrcBv8ZPh33+EHgA2NSzFhXC\nACjLDzPzh71uhDTCi5n5bEQMA2Tmnojw0uRxYACUZW9EfJvqOusXjxRm5u/2rkkSz0TEbcDrI+Iq\nql7qD3rcpiIYAGXZVv9IryZvBf4b1c1g7wDWA/f1tEWFMAAKUt9sI73aLADeD7wTmAl8D5jCGM8H\nV3d4GaikV42IeBvVfQG/CGwA/l1m+qjYV4g9AEk9FRHnAL8JfBDYCfwnqpP/HOBrVD0DvQIMAEm9\n9mXgi8AlmfnjpvKHImJzj9pUBIeAJKlQ3gksSYUyACSpUAaAJBXKAJCkQhkAklSo/weWBZf6b9aM\nDgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-NU-ibu51gUs",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "# Class count\n",
+ "count_class_0, count_class_1 = data.y.value_counts()\n",
+ "\n",
+ "# Divide by class\n",
+ "data_class_0 = data[data['y'] == 'no']\n",
+ "data_class_1 = data[data['y'] == 'yes']"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "tHiZUhiA2OVs",
+ "colab_type": "code",
+ "outputId": "c2510647-382b-4465-be12-a14d70ff0813",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 359
+ }
+ },
+ "source": [
+ "data_class_1_over = data_class_1.sample(count_class_0,replace=True)\n",
+ "data = pd.concat([data_class_0, data_class_1_over], axis=0)\n",
+ "\n",
+ "print('Random over-sampling:')\n",
+ "print(data.y.value_counts())\n",
+ "\n",
+ "data.y.value_counts().plot(kind='bar', title='Count (y)');"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Random over-sampling:\n",
+ "no 36548\n",
+ "yes 36548\n",
+ "Name: y, dtype: int64\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAENCAYAAAAG6bK5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFu1JREFUeJzt3X+U1fV95/HniNAYOJVAGrHoWm16\n3qfdtCaZEGMGElIlaipJIzG2sJ6Ibk/WE3uEJKermz1W7XLoxpPGbeJSWUkxpiYYcqxQE2BJ3Q1o\nJGR61CSu75TaXwR2YQ1QjZTizOwf3y+b63hn7mUY5zLzeT7OmcO9n+/n+73vL/ee+5rv5/P9zrdr\nYGAASVJ5Tul0AZKkzjAAJKlQBoAkFcoAkKRCGQCSVCgDQJIKdWqnC5DGQkR0AcuBa4HJVJ/9zcDN\nmXnoVXi9M4ALMnPDEMvPAv47MD8z/0+T5b8G3AdcmJkvjnZ9EngEoHL8IXAVcElmBvBrwBTgL+pw\nGG3vAd4/zPL/Btze7MsfIDOfAv4cWPEq1CYB0OWFYJroImIG8CPgLZn5TEP7a4AFwMNUYXAn1Rd3\nP/B14Pcysy8iBoCzM3N3vd4AcDbwRmAl8D+A3wReA1wDPA9soTrK2JSZvzWonrcDX6nXvx64LDMv\nr5edAuwFLgH+Efgh8MuZuW9U/1MkPAJQGd4B7G788gfIzH/OzI2Z2Q8so/pS/9fAW4F5wG+3se23\nAI9n5i8D/xX4j5n5V8DngfWDv/xrHwI21K/7VeDXI2JmvawHOJCZT2Tmc8B3gIXHub9SWwwAlWAG\n0HSopcFvAKsz86XMPAz8GfDeNrb9fGY+VD/+K+BftbHO24GdAPVv9tuoQgHgg8C6hr47gAvb2KZ0\n3AwAleD/ArNb9Pk54EDD8wPAG9rYduMEch8wqY113gA0Dul8GVhcP/4ALw+AfW3WIR03A0AleBw4\nIyLe2tgYEZMjYkVEvJbqCGFmw+KZ/PSooZ/6iz0iXjcK9QyedH4QeFtEvA94MTOfHoXXkFoyADTh\nZeZB4NPAFyPijQD1l/5qqonhF4G/AK6LiEkRMRW4mmpyGKpJ2fPrx9dSBUIrR4HpQyzbR3XEcay+\nQ8AmqjmEdYP6/hywv43Xk46bAaAiZOatVF/4GyIigV6q3/CvqLt8juqsmx8A36UKhK/Wyz4FrIqI\nJ4CfAP/UxktuoZrc3dlk2XeAOYPavgycwysD4ALg2228nnTcPA1UGmMR8Q6qi7yiPhPo2Kmhn8/M\ntzf0ex2wC/iVoa4XkE6ERwDSGMvMx4G/AxYBRMSpwC3AHw/qegNwv1/+erX4pyCkzrgO2BQR/wA8\nQPVnKf7s2MKI+FWqU0N7OlOeSuAQkCQVyiEgSSqUASBJhRo3cwC9vb2OVUnSCHR3dzf9i7fjJgAA\nuru7O13ChNHb2+v/p05KfjZHV29v75DLHAKSpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQ\nBoAkFWpcXQg2Hiz8xEOtO50s7t/d6Qpa2viZD3S6hAnlw+uu73QJ7dl1T6craOmBq1Z1uoQT5hGA\nJBXKAJCkQhkAklQoA0CSCtVyEjgiXgusBc4AXgP8AdWt6rqB5+pud2TmwxGxBFgG9AOrM3NNREyu\n1z8H6AOWZuazEXE+sAoYAJ7KzHEyOyVJE0M7RwALge9m5ruBDwN/VLffnJnz65+HI2Iq1Y2tLwbm\nA8sjYgawGDiYmXOBFcDKev07gRszswc4PSIuG7W9kiS11PIIIDPXNTw9Gxjq3MELgJ2ZeQggIh6l\nuqH1RcAX6z5bgS9ExBTg3MzcWbdvpAqObxz3HkiSRqTt6wAi4jHgLOBy4OPADRHxcWAfcAMwC9jf\nsMo+4MzG9szsj4iBuu1Ak76SpDHSdgBk5jsj4s3Al4DlwHOZ+URE3ATcCjw2aJWmtyAbon2ovi8z\n3J1tNDH5nutkNRE+m+1MAncD+zLzH+sv/FOB72XmvrrLBqrJ3PVUv9kfMxt4HNhTtz9ZTwh3AXuB\nmYP67mlVy7i4Tdw4uLp2PBkX7/l4Mg6usB0vxstn80RvCfku4BMAEXEGMA24OyLOq5fPB74P7ADm\nRMT0iJhGNf6/DdgCXFn3XQg8kplHgWciYm7dfgWw6Tj2SZJ0gtoZAvoTYE1EbANOAz4GvACsi4gX\n68dLM/NwPRy0merUztsy81BErAMWRMR24AhwTb3dZVRBcgqwIzO3juaOSZKG185ZQIepTuUcbE6T\nvuuphoIa2/qApU36Pg3Ma7tSSdKo8kpgSSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBI\nUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQV\nquVN4SPitcBa4AzgNcAfAE8C9wGTgL3A1Zl5JCKWAMuAfmB1Zq6JiMn1+ucAfcDSzHw2Is4HVgED\nwFOZef0o75skaRjtHAEsBL6bme8GPgz8EXA7cFdmzgN2AddGxFTgFuBiYD6wPCJmAIuBg5k5F1gB\nrKy3eydwY2b2AKdHxGWjt1uSpFZaHgFk5rqGp2cDu6m+4P9d3bYR+CSQwM7MPAQQEY8CPcBFwBfr\nvluBL0TEFODczNzZsI2LgW+cyM5IktrXMgCOiYjHgLOAy4GtmXmkXrQPOBOYBexvWOUV7ZnZHxED\ndduBJn2H1dvb2265miB8z3WymgifzbYDIDPfGRFvBr4EdDUs6hpileNpH6rvy3R3d7fTrbPu393p\nCiaUcfGejye77ul0BRPGePlsDhdULecAIqI7Is4GyMwnqELj+Yg4re4yG9hT/8xqWPUV7fWEcBfV\nxPHMJn0lSWOknUngdwGfAIiIM4BpVGP5i+rli4BNwA5gTkRMj4hpVOP/24AtwJV134XAI5l5FHgm\nIubW7VfU25AkjZF2AuBPgDdExDbgYeBjwO8DH6nbZgD3ZuZh4CZgM1VA3FZPCK8DJkXE9nrdm+vt\nLgNW1pPFf5OZW0dxvyRJLbRzFtBhqlM5B1vQpO96YP2gtj5gaZO+TwPz2q5UkjSqvBJYkgplAEhS\noQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXK\nAJCkQhkAklQoA0CSCmUASFKhDABJKlTLewIDRMSnqe7feyqwEng/0A08V3e5IzMfjoglVDd77wdW\nZ+aaiJgMrAXOAfqApZn5bEScD6wCBoCnMvP60dstSVIrLY8AIuI9wJsy80LgUuDOetHNmTm//nk4\nIqYCtwAXA/OB5RExg+qG8gczcy6wgipAqLdzY2b2AKdHxGWjuWOSpOG1MwT0LeDK+vFBYCowqUm/\nC4CdmXkoMw8DjwI9wEXAg3WfrUBPREwBzs3MnXX7RqrgkCSNkZZDQJnZB/ykfnod8HWqoZwbIuLj\nwD7gBmAWsL9h1X3AmY3tmdkfEQN124EmfSVJY6StOQCAiPgAVQC8F3gb8FxmPhERNwG3Ao8NWqVr\niE01ax+q78v09va2V6wmDN9znawmwmez3UngS4BPAZdm5iHgmw2LN1BN5q6n+s3+mNnA48Ceuv3J\nekK4C9gLzBzUd0+rOrq7u9spt7Pu393pCiaUcfGejye77ul0BRPGePlsDhdU7UwCnw7cAVyemT+u\n274WEefVXeYD3wd2AHMiYnpETKMa/98GbOGncwgLgUcy8yjwTETMrduvADYd535Jkk5AO0cAVwGv\nBx6IiGNtfwqsi4gXgReoTu08XA8HbaY6tfO2zDwUEeuABRGxHTgCXFNvYxlwd0ScAuzIzK2jtVOS\npNbamQReDaxusujeJn3XUw0FNbb1AUub9H2a6toCSVIHeCWwJBXKAJCkQhkAklQoA0CSCmUASFKh\nDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoA\nkKRCGQCSVKh2bgpPRHya6v69pwIrgZ3AfcAkYC9wdWYeiYglVDd77wdWZ+aaiJgMrAXOAfqobiD/\nbEScD6yiuoH8U5l5/ajumSRpWC2PACLiPcCbMvNC4FLgTuB24K7MnAfsAq6NiKnALcDFwHxgeUTM\nABYDBzNzLrCCKkCot3NjZvYAp0fEZaO6Z5KkYbUzBPQt4Mr68UFgKtUX/Ia6bSPVl/4FwM7MPJSZ\nh4FHgR7gIuDBuu9WoCcipgDnZubOQduQJI2RlgGQmX2Z+ZP66XXA14GpmXmkbtsHnAnMAvY3rPqK\n9szspxrymQUcaNJXkjRG2poDAIiID1AFwHuBv25Y1DXEKsfTPlTfl+nt7W2nmyYQ33OdrCbCZ7Pd\nSeBLgE8Bl2bmoYh4ISJOq4d6ZgN76p9ZDavNBh5vaH+ynhDuopo4njmo755WdXR3d7dTbmfdv7vT\nFUwo4+I9H0923dPpCiaM8fLZHC6o2pkEPh24A7g8M39cN28FFtWPFwGbgB3AnIiYHhHTqMb/twFb\n+OkcwkLgkcw8CjwTEXPr9ivqbUiSxkg7RwBXAa8HHoiIY20fAe6JiI8Cfw/cm5lHI+ImYDPVOP9t\n9dHCOmBBRGwHjgDX1NtYBtwdEacAOzJz62jtlCSptZYBkJmrgdVNFi1o0nc9sH5QWx+wtEnfp6mu\nLZAkdYBXAktSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUy\nACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAtbwoPEBFvAh4CPpuZn4+I\ntUA38Fzd5Y7MfDgilgDLgH5gdWauiYjJwFrgHKAPWJqZz0bE+cAqYAB4KjOvH8X9kiS10PIIICKm\nAp8Dvjlo0c2ZOb/+ebjudwtwMTAfWB4RM4DFwMHMnAusAFbW698J3JiZPcDpEXHZqOyRJKkt7QwB\nHQHeB+xp0e8CYGdmHsrMw8CjQA9wEfBg3Wcr0BMRU4BzM3Nn3b6RKjgkSWOk5RBQZr4EvBQRgxfd\nEBEfB/YBNwCzgP0Ny/cBZza2Z2Z/RAzUbQea9B1Wb29vqy6aYHzPdbKaCJ/NtuYAmrgPeC4zn4iI\nm4BbgccG9ekaYt1m7UP1fZnu7u62C+yY+3d3uoIJZVy85+PJrns6XcGEMV4+m8MF1YjOAsrMb2bm\nE/XTDcCvUg0RzWroNrtu+//t9YRwF7AXmNmkryRpjIwoACLiaxFxXv10PvB9YAcwJyKmR8Q0qvH/\nbcAW4Mq670Lgkcw8CjwTEXPr9iuATSPbBUnSSLQcAoqIbuAzwC8ARyPiQ1RnBa2LiBeBF6hO7Txc\nDwdtpjq187bMPBQR64AFEbGdakL5mnrTy4C7I+IUYEdmbh3dXZMkDaedSeBeqt/yB/tak77rgfWD\n2vqApU36Pg3Ma7dQSdLo8kpgSSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkq\nlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAt7wkMEBFvAh4C\nPpuZn4+Is4H7gEnAXuDqzDwSEUuobvbeD6zOzDURMRlYC5wD9FHdQP7ZiDgfWEV1A/mnMvP6Ud43\nSdIwWh4BRMRU4HPANxuabwfuysx5wC7g2rrfLcDFVDeRXx4RM4DFwMHMnAusAFbW27gTuDEze4DT\nI+Ky0dklSVI72hkCOgK8D9jT0DYf2FA/3kj1pX8BsDMzD2XmYeBRoAe4CHiw7rsV6ImIKcC5mblz\n0DYkSWOkZQBk5kv1F3qjqZl5pH68DzgTmAXsb+jzivbM7Kca8pkFHGjSV5I0RtqaA2ihaxTah+r7\nMr29vW0VpInD91wnq4nw2RxpALwQEafVRwazqYaH9lD9Zn/MbODxhvYn6wnhLqqJ45mD+jYOMTXV\n3d09wnLH0P27O13BhDIu3vPxZNc9na5gwhgvn83hgmqkp4FuBRbVjxcBm4AdwJyImB4R06jG/7cB\nW4Ar674LgUcy8yjwTETMrduvqLchSRojLY8AIqIb+AzwC8DRiPgQsARYGxEfBf4euDczj0bETcBm\nqnH+2zLzUESsAxZExHaqCeVr6k0vA+6OiFOAHZm5dXR3TZI0nJYBkJm9VGf9DLagSd/1wPpBbX3A\n0iZ9nwbmtVuoJGl0eSWwJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQ\npEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVKiW9wRuJiLmA18FflA3\nfQ/4NHAfMAnYC1ydmUciYgnVDeD7gdWZuSYiJgNrgXOAPmBpZj57AvshSTpOJ3IE8D8zc37987vA\n7cBdmTkP2AVcGxFTgVuAi6luLL88ImYAi4GDmTkXWAGsPJGdkCQdv9EcApoPbKgfb6T60r8A2JmZ\nhzLzMPAo0ANcBDxY991at0mSxtCJBMCvRMSGiNgeEQuAqZl5pF62DzgTmAXsb1jnFe2Z2Q8MRMSU\nE6hFknScRjQHAPw1cBvwAHAe8MigbXUNsd7xtr9Mb29vu/VpgvA918lqInw2RxQAmfkjYF399G8i\n4n8DcyLitHqoZzawp/6Z1bDqbODxhvYn6wnhrsz8l1av293dPZJyx9b9uztdwYQyLt7z8WTXPZ2u\nYMIYL5/N4YJqRENAEbEkIj5ZP54FnAH8KbCo7rII2ATsoAqG6RExjWqsfxuwBbiy7ruQ6ghCkjSG\nRjoHsAF4d0RsAx4Crgc+BXykbpsB3FsfDdwEbKaa7L0tMw9RHT1MiojtwMeAm09sNyRJx2ukQ0DP\nU/3mPtiCJn3XA+sHtfUBS0fy2pKk0eGVwJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoA\nkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJ\nKtSIbgo/WiLis8A7gAHgxszc2cl6JKkkHTsCiIh3A7+UmRcC1wF/3KlaJKlEnRwCugj4c4DM/F/A\n6yLiZztYjyQVpZNDQLOA3obn++u2fxpqhd7e3qEWnTRuXXxWp0uYUMbDez6e/Ps3/ttOlzBhTITP\nZkfnAAbpGm5hd3f3sMslScenk0NAe6h+4z/m54G9HapFkorTyQDYAnwIICLeCuzJzOc7WI8kFaVr\nYGCgYy8eEX8IvAvoBz6WmU92rBhJKkxHA0CS1DleCSxJhTIAJKlQBoAkFcoAkNRxEfEz9b+vi4g3\nd7qeUjgJXJCImAwsBt5CdebVd4GvZGZ/RwtT0SLic1SfxW8Afwl8G+jPzI92tLACeARQli8AbwO+\nBXwHmAfc3dGKJDg/M+8FfhtYk5m/A5zX4ZqKcDL9KQi9+s7KzKsbnn8lIv6yY9VIlZ+JiNnAvwE+\nGBGnAtM7XFMRPAIoy5SI+PljTyLiLGByB+uRAO4Cvg6sz8zdwK3A+o5WVAjnAApS34NhFdUNeLrq\nf38nMx/raGESEBGnZuZLEdGVmX4xjQGPAMryi8AR4DSqP773WuBLHa1IxYuI+RHxJPD9uuk/RcQl\nnaypFM4BlOWTwG8CP+p0IVKD24Ff56fDPv8FeAjY3LGKCmEAlOWHmfnDThchDfJSZj4XEQMAmbkv\nIjw1eQwYAGXZHxHfpjrP+qVjjZn5e50rSeLZiLgdeH1EXEV1lPqDDtdUBAOgLNvrH+lk8lbgb6ku\nBnsHsAF4oKMVFcIAKEh9sY10slkIvB94J3Am8D1gKsPcH1yjw9NAJZ00IuJtVNcF/CKwEfgPmemt\nYl8lHgFI6qiIOBf4LeCDwG7gP1N9+c8FvkZ1ZKBXgQEgqdO+DHwRuDQzf9zQ/khEbOlQTUVwCEiS\nCuWVwJJUKANAkgplAEhSoQwASSqUASBJhfp/VtON6PW9RyAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "LmxgIuvynsXS",
+ "colab_type": "code",
+ "outputId": "764fd06e-28c7-4629-b4e4-bc69ae5ad795",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 341
+ }
+ },
+ "source": [
+ "y_count = data.y.value_counts()\n",
+ "print('Class 0:', y_count[0])\n",
+ "print('Class 1:', y_count[1])\n",
+ "print('Proportion:', round(y_count[0] / y_count[1], 2), ': 1')\n",
+ "\n",
+ "y_count.plot(kind='bar', title='Count (y)');"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Class 0: 36548\n",
+ "Class 1: 36548\n",
+ "Proportion: 1.0 : 1\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAENCAYAAAAG6bK5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFu1JREFUeJzt3X+U1fV95/HniNAYOJVAGrHoWm16\n3qfdtCaZEGMGElIlaipJIzG2sJ6Ibk/WE3uEJKermz1W7XLoxpPGbeJSWUkxpiYYcqxQE2BJ3Q1o\nJGR61CSu75TaXwR2YQ1QjZTizOwf3y+b63hn7mUY5zLzeT7OmcO9n+/n+73vL/ee+5rv5/P9zrdr\nYGAASVJ5Tul0AZKkzjAAJKlQBoAkFcoAkKRCGQCSVCgDQJIKdWqnC5DGQkR0AcuBa4HJVJ/9zcDN\nmXnoVXi9M4ALMnPDEMvPAv47MD8z/0+T5b8G3AdcmJkvjnZ9EngEoHL8IXAVcElmBvBrwBTgL+pw\nGG3vAd4/zPL/Btze7MsfIDOfAv4cWPEq1CYB0OWFYJroImIG8CPgLZn5TEP7a4AFwMNUYXAn1Rd3\nP/B14Pcysy8iBoCzM3N3vd4AcDbwRmAl8D+A3wReA1wDPA9soTrK2JSZvzWonrcDX6nXvx64LDMv\nr5edAuwFLgH+Efgh8MuZuW9U/1MkPAJQGd4B7G788gfIzH/OzI2Z2Q8so/pS/9fAW4F5wG+3se23\nAI9n5i8D/xX4j5n5V8DngfWDv/xrHwI21K/7VeDXI2JmvawHOJCZT2Tmc8B3gIXHub9SWwwAlWAG\n0HSopcFvAKsz86XMPAz8GfDeNrb9fGY+VD/+K+BftbHO24GdAPVv9tuoQgHgg8C6hr47gAvb2KZ0\n3AwAleD/ArNb9Pk54EDD8wPAG9rYduMEch8wqY113gA0Dul8GVhcP/4ALw+AfW3WIR03A0AleBw4\nIyLe2tgYEZMjYkVEvJbqCGFmw+KZ/PSooZ/6iz0iXjcK9QyedH4QeFtEvA94MTOfHoXXkFoyADTh\nZeZB4NPAFyPijQD1l/5qqonhF4G/AK6LiEkRMRW4mmpyGKpJ2fPrx9dSBUIrR4HpQyzbR3XEcay+\nQ8AmqjmEdYP6/hywv43Xk46bAaAiZOatVF/4GyIigV6q3/CvqLt8juqsmx8A36UKhK/Wyz4FrIqI\nJ4CfAP/UxktuoZrc3dlk2XeAOYPavgycwysD4ALg2228nnTcPA1UGmMR8Q6qi7yiPhPo2Kmhn8/M\ntzf0ex2wC/iVoa4XkE6ERwDSGMvMx4G/AxYBRMSpwC3AHw/qegNwv1/+erX4pyCkzrgO2BQR/wA8\nQPVnKf7s2MKI+FWqU0N7OlOeSuAQkCQVyiEgSSqUASBJhRo3cwC9vb2OVUnSCHR3dzf9i7fjJgAA\nuru7O13ChNHb2+v/p05KfjZHV29v75DLHAKSpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQ\nBoAkFWpcXQg2Hiz8xEOtO50s7t/d6Qpa2viZD3S6hAnlw+uu73QJ7dl1T6craOmBq1Z1uoQT5hGA\nJBXKAJCkQhkAklQoA0CSCtVyEjgiXgusBc4AXgP8AdWt6rqB5+pud2TmwxGxBFgG9AOrM3NNREyu\n1z8H6AOWZuazEXE+sAoYAJ7KzHEyOyVJE0M7RwALge9m5ruBDwN/VLffnJnz65+HI2Iq1Y2tLwbm\nA8sjYgawGDiYmXOBFcDKev07gRszswc4PSIuG7W9kiS11PIIIDPXNTw9Gxjq3MELgJ2ZeQggIh6l\nuqH1RcAX6z5bgS9ExBTg3MzcWbdvpAqObxz3HkiSRqTt6wAi4jHgLOBy4OPADRHxcWAfcAMwC9jf\nsMo+4MzG9szsj4iBuu1Ak76SpDHSdgBk5jsj4s3Al4DlwHOZ+URE3ATcCjw2aJWmtyAbon2ovi8z\n3J1tNDH5nutkNRE+m+1MAncD+zLzH+sv/FOB72XmvrrLBqrJ3PVUv9kfMxt4HNhTtz9ZTwh3AXuB\nmYP67mlVy7i4Tdw4uLp2PBkX7/l4Mg6usB0vxstn80RvCfku4BMAEXEGMA24OyLOq5fPB74P7ADm\nRMT0iJhGNf6/DdgCXFn3XQg8kplHgWciYm7dfgWw6Tj2SZJ0gtoZAvoTYE1EbANOAz4GvACsi4gX\n68dLM/NwPRy0merUztsy81BErAMWRMR24AhwTb3dZVRBcgqwIzO3juaOSZKG185ZQIepTuUcbE6T\nvuuphoIa2/qApU36Pg3Ma7tSSdKo8kpgSSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBI\nUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQV\nquVN4SPitcBa4AzgNcAfAE8C9wGTgL3A1Zl5JCKWAMuAfmB1Zq6JiMn1+ucAfcDSzHw2Is4HVgED\nwFOZef0o75skaRjtHAEsBL6bme8GPgz8EXA7cFdmzgN2AddGxFTgFuBiYD6wPCJmAIuBg5k5F1gB\nrKy3eydwY2b2AKdHxGWjt1uSpFZaHgFk5rqGp2cDu6m+4P9d3bYR+CSQwM7MPAQQEY8CPcBFwBfr\nvluBL0TEFODczNzZsI2LgW+cyM5IktrXMgCOiYjHgLOAy4GtmXmkXrQPOBOYBexvWOUV7ZnZHxED\ndduBJn2H1dvb2265miB8z3WymgifzbYDIDPfGRFvBr4EdDUs6hpileNpH6rvy3R3d7fTrbPu393p\nCiaUcfGejye77ul0BRPGePlsDhdULecAIqI7Is4GyMwnqELj+Yg4re4yG9hT/8xqWPUV7fWEcBfV\nxPHMJn0lSWOknUngdwGfAIiIM4BpVGP5i+rli4BNwA5gTkRMj4hpVOP/24AtwJV134XAI5l5FHgm\nIubW7VfU25AkjZF2AuBPgDdExDbgYeBjwO8DH6nbZgD3ZuZh4CZgM1VA3FZPCK8DJkXE9nrdm+vt\nLgNW1pPFf5OZW0dxvyRJLbRzFtBhqlM5B1vQpO96YP2gtj5gaZO+TwPz2q5UkjSqvBJYkgplAEhS\noQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXK\nAJCkQhkAklQoA0CSCmUASFKhDABJKlTLewIDRMSnqe7feyqwEng/0A08V3e5IzMfjoglVDd77wdW\nZ+aaiJgMrAXOAfqApZn5bEScD6wCBoCnMvP60dstSVIrLY8AIuI9wJsy80LgUuDOetHNmTm//nk4\nIqYCtwAXA/OB5RExg+qG8gczcy6wgipAqLdzY2b2AKdHxGWjuWOSpOG1MwT0LeDK+vFBYCowqUm/\nC4CdmXkoMw8DjwI9wEXAg3WfrUBPREwBzs3MnXX7RqrgkCSNkZZDQJnZB/ykfnod8HWqoZwbIuLj\nwD7gBmAWsL9h1X3AmY3tmdkfEQN124EmfSVJY6StOQCAiPgAVQC8F3gb8FxmPhERNwG3Ao8NWqVr\niE01ax+q78v09va2V6wmDN9znawmwmez3UngS4BPAZdm5iHgmw2LN1BN5q6n+s3+mNnA48Ceuv3J\nekK4C9gLzBzUd0+rOrq7u9spt7Pu393pCiaUcfGejye77ul0BRPGePlsDhdU7UwCnw7cAVyemT+u\n274WEefVXeYD3wd2AHMiYnpETKMa/98GbOGncwgLgUcy8yjwTETMrduvADYd535Jkk5AO0cAVwGv\nBx6IiGNtfwqsi4gXgReoTu08XA8HbaY6tfO2zDwUEeuABRGxHTgCXFNvYxlwd0ScAuzIzK2jtVOS\npNbamQReDaxusujeJn3XUw0FNbb1AUub9H2a6toCSVIHeCWwJBXKAJCkQhkAklQoA0CSCmUASFKh\nDABJKpQBIEmFMgAkqVAGgCQVygCQpEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoA\nkKRCGQCSVKh2bgpPRHya6v69pwIrgZ3AfcAkYC9wdWYeiYglVDd77wdWZ+aaiJgMrAXOAfqobiD/\nbEScD6yiuoH8U5l5/ajumSRpWC2PACLiPcCbMvNC4FLgTuB24K7MnAfsAq6NiKnALcDFwHxgeUTM\nABYDBzNzLrCCKkCot3NjZvYAp0fEZaO6Z5KkYbUzBPQt4Mr68UFgKtUX/Ia6bSPVl/4FwM7MPJSZ\nh4FHgR7gIuDBuu9WoCcipgDnZubOQduQJI2RlgGQmX2Z+ZP66XXA14GpmXmkbtsHnAnMAvY3rPqK\n9szspxrymQUcaNJXkjRG2poDAIiID1AFwHuBv25Y1DXEKsfTPlTfl+nt7W2nmyYQ33OdrCbCZ7Pd\nSeBLgE8Bl2bmoYh4ISJOq4d6ZgN76p9ZDavNBh5vaH+ynhDuopo4njmo755WdXR3d7dTbmfdv7vT\nFUwo4+I9H0923dPpCiaM8fLZHC6o2pkEPh24A7g8M39cN28FFtWPFwGbgB3AnIiYHhHTqMb/twFb\n+OkcwkLgkcw8CjwTEXPr9ivqbUiSxkg7RwBXAa8HHoiIY20fAe6JiI8Cfw/cm5lHI+ImYDPVOP9t\n9dHCOmBBRGwHjgDX1NtYBtwdEacAOzJz62jtlCSptZYBkJmrgdVNFi1o0nc9sH5QWx+wtEnfp6mu\nLZAkdYBXAktSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUy\nACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAtbwoPEBFvAh4CPpuZn4+I\ntUA38Fzd5Y7MfDgilgDLgH5gdWauiYjJwFrgHKAPWJqZz0bE+cAqYAB4KjOvH8X9kiS10PIIICKm\nAp8Dvjlo0c2ZOb/+ebjudwtwMTAfWB4RM4DFwMHMnAusAFbW698J3JiZPcDpEXHZqOyRJKkt7QwB\nHQHeB+xp0e8CYGdmHsrMw8CjQA9wEfBg3Wcr0BMRU4BzM3Nn3b6RKjgkSWOk5RBQZr4EvBQRgxfd\nEBEfB/YBNwCzgP0Ny/cBZza2Z2Z/RAzUbQea9B1Wb29vqy6aYHzPdbKaCJ/NtuYAmrgPeC4zn4iI\nm4BbgccG9ekaYt1m7UP1fZnu7u62C+yY+3d3uoIJZVy85+PJrns6XcGEMV4+m8MF1YjOAsrMb2bm\nE/XTDcCvUg0RzWroNrtu+//t9YRwF7AXmNmkryRpjIwoACLiaxFxXv10PvB9YAcwJyKmR8Q0qvH/\nbcAW4Mq670Lgkcw8CjwTEXPr9iuATSPbBUnSSLQcAoqIbuAzwC8ARyPiQ1RnBa2LiBeBF6hO7Txc\nDwdtpjq187bMPBQR64AFEbGdakL5mnrTy4C7I+IUYEdmbh3dXZMkDaedSeBeqt/yB/tak77rgfWD\n2vqApU36Pg3Ma7dQSdLo8kpgSSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVCgDQJIKZQBIUqEMAEkq\nlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAt7wkMEBFvAh4C\nPpuZn4+Is4H7gEnAXuDqzDwSEUuobvbeD6zOzDURMRlYC5wD9FHdQP7ZiDgfWEV1A/mnMvP6Ud43\nSdIwWh4BRMRU4HPANxuabwfuysx5wC7g2rrfLcDFVDeRXx4RM4DFwMHMnAusAFbW27gTuDEze4DT\nI+Ky0dklSVI72hkCOgK8D9jT0DYf2FA/3kj1pX8BsDMzD2XmYeBRoAe4CHiw7rsV6ImIKcC5mblz\n0DYkSWOkZQBk5kv1F3qjqZl5pH68DzgTmAXsb+jzivbM7Kca8pkFHGjSV5I0RtqaA2ihaxTah+r7\nMr29vW0VpInD91wnq4nw2RxpALwQEafVRwazqYaH9lD9Zn/MbODxhvYn6wnhLqqJ45mD+jYOMTXV\n3d09wnLH0P27O13BhDIu3vPxZNc9na5gwhgvn83hgmqkp4FuBRbVjxcBm4AdwJyImB4R06jG/7cB\nW4Ar674LgUcy8yjwTETMrduvqLchSRojLY8AIqIb+AzwC8DRiPgQsARYGxEfBf4euDczj0bETcBm\nqnH+2zLzUESsAxZExHaqCeVr6k0vA+6OiFOAHZm5dXR3TZI0nJYBkJm9VGf9DLagSd/1wPpBbX3A\n0iZ9nwbmtVuoJGl0eSWwJBXKAJCkQhkAklQoA0CSCmUASFKhDABJKpQBIEmFMgAkqVAGgCQVygCQ\npEIZAJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoAkKRCGQCSVKiW9wRuJiLmA18FflA3\nfQ/4NHAfMAnYC1ydmUciYgnVDeD7gdWZuSYiJgNrgXOAPmBpZj57AvshSTpOJ3IE8D8zc37987vA\n7cBdmTkP2AVcGxFTgVuAi6luLL88ImYAi4GDmTkXWAGsPJGdkCQdv9EcApoPbKgfb6T60r8A2JmZ\nhzLzMPAo0ANcBDxY991at0mSxtCJBMCvRMSGiNgeEQuAqZl5pF62DzgTmAXsb1jnFe2Z2Q8MRMSU\nE6hFknScRjQHAPw1cBvwAHAe8MigbXUNsd7xtr9Mb29vu/VpgvA918lqInw2RxQAmfkjYF399G8i\n4n8DcyLitHqoZzawp/6Z1bDqbODxhvYn6wnhrsz8l1av293dPZJyx9b9uztdwYQyLt7z8WTXPZ2u\nYMIYL5/N4YJqRENAEbEkIj5ZP54FnAH8KbCo7rII2ATsoAqG6RExjWqsfxuwBbiy7ruQ6ghCkjSG\nRjoHsAF4d0RsAx4Crgc+BXykbpsB3FsfDdwEbKaa7L0tMw9RHT1MiojtwMeAm09sNyRJx2ukQ0DP\nU/3mPtiCJn3XA+sHtfUBS0fy2pKk0eGVwJJUKANAkgplAEhSoQwASSqUASBJhTIAJKlQBoAkFcoA\nkKRCGQCSVCgDQJIKZQBIUqEMAEkqlAEgSYUyACSpUAaAJBXKAJCkQhkAklQoA0CSCmUASFKhDABJ\nKtSIbgo/WiLis8A7gAHgxszc2cl6JKkkHTsCiIh3A7+UmRcC1wF/3KlaJKlEnRwCugj4c4DM/F/A\n6yLiZztYjyQVpZNDQLOA3obn++u2fxpqhd7e3qEWnTRuXXxWp0uYUMbDez6e/Ps3/ttOlzBhTITP\nZkfnAAbpGm5hd3f3sMslScenk0NAe6h+4z/m54G9HapFkorTyQDYAnwIICLeCuzJzOc7WI8kFaVr\nYGCgYy8eEX8IvAvoBz6WmU92rBhJKkxHA0CS1DleCSxJhTIAJKlQBoAkFcoAkNRxEfEz9b+vi4g3\nd7qeUjgJXJCImAwsBt5CdebVd4GvZGZ/RwtT0SLic1SfxW8Afwl8G+jPzI92tLACeARQli8AbwO+\nBXwHmAfc3dGKJDg/M+8FfhtYk5m/A5zX4ZqKcDL9KQi9+s7KzKsbnn8lIv6yY9VIlZ+JiNnAvwE+\nGBGnAtM7XFMRPAIoy5SI+PljTyLiLGByB+uRAO4Cvg6sz8zdwK3A+o5WVAjnAApS34NhFdUNeLrq\nf38nMx/raGESEBGnZuZLEdGVmX4xjQGPAMryi8AR4DSqP773WuBLHa1IxYuI+RHxJPD9uuk/RcQl\nnaypFM4BlOWTwG8CP+p0IVKD24Ff56fDPv8FeAjY3LGKCmEAlOWHmfnDThchDfJSZj4XEQMAmbkv\nIjw1eQwYAGXZHxHfpjrP+qVjjZn5e50rSeLZiLgdeH1EXEV1lPqDDtdUBAOgLNvrH+lk8lbgb6ku\nBnsHsAF4oKMVFcIAKEh9sY10slkIvB94J3Am8D1gKsPcH1yjw9NAJZ00IuJtVNcF/CKwEfgPmemt\nYl8lHgFI6qiIOBf4LeCDwG7gP1N9+c8FvkZ1ZKBXgQEgqdO+DHwRuDQzf9zQ/khEbOlQTUVwCEiS\nCuWVwJJUKANAkgplAEhSoQwASSqUASBJhfp/VtON6PW9RyAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "SX82xS2VxCoW",
+ "colab_type": "code",
+ "outputId": "bcb4dd9c-cd6b-4578-de19-ff2b6fe644c6",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 72
+ }
+ },
+ "source": [
+ "data['pdays'].unique()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([999, 6, 4, 3, 5, 1, 0, 8, 9, 11, 2, 10, 12,\n",
+ " 7, 13, 14, 15, 16, 17, 22, 18, 19, 20, 25, 26, 21,\n",
+ " 27])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 103
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "2S3iNgwGzEej",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "data['pdays']=np.where(data['pdays'] ==999, -1, data['pdays'])"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "9nBNHTtezjO8",
+ "colab_type": "code",
+ "outputId": "8b370159-c960-4b76-d1fb-3cb59329c3db",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 53
+ }
+ },
+ "source": [
+ "data['pdays'].unique()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([-1, 6, 4, 3, 5, 1, 0, 8, 9, 11, 2, 10, 12, 7, 13, 14, 15,\n",
+ " 16, 17, 22, 18, 19, 20, 25, 26, 21, 27])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 105
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "POWJrtu8znMc",
+ "colab_type": "code",
+ "outputId": "9fc1eec9-6851-416d-9831-894ae987caea",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "data.head()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ " ... | \n",
+ " month_oct | \n",
+ " month_sep | \n",
+ " day_of_week_fri | \n",
+ " day_of_week_mon | \n",
+ " day_of_week_thu | \n",
+ " day_of_week_tue | \n",
+ " day_of_week_wed | \n",
+ " poutcome_failure | \n",
+ " poutcome_nonexistent | \n",
+ " poutcome_success | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 56 | \n",
+ " 261 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 57 | \n",
+ " 149 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 37 | \n",
+ " 226 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 40 | \n",
+ " 151 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " 307 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 62 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate cons.price.idx \\\n",
+ "0 56 261 1 -1 0 1.1 93.994 \n",
+ "1 57 149 1 -1 0 1.1 93.994 \n",
+ "2 37 226 1 -1 0 1.1 93.994 \n",
+ "3 40 151 1 -1 0 1.1 93.994 \n",
+ "4 56 307 1 -1 0 1.1 93.994 \n",
+ "\n",
+ " cons.conf.idx euribor3m nr.employed ... month_oct \\\n",
+ "0 -36.4 4.857 5191.0 ... 0 \n",
+ "1 -36.4 4.857 5191.0 ... 0 \n",
+ "2 -36.4 4.857 5191.0 ... 0 \n",
+ "3 -36.4 4.857 5191.0 ... 0 \n",
+ "4 -36.4 4.857 5191.0 ... 0 \n",
+ "\n",
+ " month_sep day_of_week_fri day_of_week_mon day_of_week_thu \\\n",
+ "0 0 0 1 0 \n",
+ "1 0 0 1 0 \n",
+ "2 0 0 1 0 \n",
+ "3 0 0 1 0 \n",
+ "4 0 0 1 0 \n",
+ "\n",
+ " day_of_week_tue day_of_week_wed poutcome_failure poutcome_nonexistent \\\n",
+ "0 0 0 0 1 \n",
+ "1 0 0 0 1 \n",
+ "2 0 0 0 1 \n",
+ "3 0 0 0 1 \n",
+ "4 0 0 0 1 \n",
+ "\n",
+ " poutcome_success \n",
+ "0 0 \n",
+ "1 0 \n",
+ "2 0 \n",
+ "3 0 \n",
+ "4 0 \n",
+ "\n",
+ "[5 rows x 62 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 106
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "DzKmFG8r1Buc",
+ "colab_type": "code",
+ "outputId": "6e7a13b1-f279-43cf-e603-6a50ae136a25",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ }
+ },
+ "source": [
+ "data['y'].unique()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array(['no', 'yes'], dtype=object)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 107
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "KUJborikMnlq",
+ "colab_type": "code",
+ "outputId": "8678898b-52ce-412e-96df-cba178edf61a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 55
+ }
+ },
+ "source": [
+ "print(list(data.columns))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 'marital_divorced', 'marital_married', 'marital_single', 'marital_unknown', 'education_Basic', 'education_high.school', 'education_illiterate', 'education_professional.course', 'education_university.degree', 'education_unknown', 'default_no', 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown', 'housing_yes', 'loan_no', 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue', 'day_of_week_wed', 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_success']\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Q0CyKVu29wdd",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "from mlxtend.preprocessing import minmax_scaling\n",
+ "from sklearn.preprocessing import minmax_scale\n",
+ "from sklearn.preprocessing import normalize"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "PuRG24t4FkzM",
+ "colab_type": "code",
+ "outputId": "45e398b5-af7c-458a-9ccc-b7ae45cea4d4",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "data.head()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ " ... | \n",
+ " month_oct | \n",
+ " month_sep | \n",
+ " day_of_week_fri | \n",
+ " day_of_week_mon | \n",
+ " day_of_week_thu | \n",
+ " day_of_week_tue | \n",
+ " day_of_week_wed | \n",
+ " poutcome_failure | \n",
+ " poutcome_nonexistent | \n",
+ " poutcome_success | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 56 | \n",
+ " 261 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 57 | \n",
+ " 149 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 37 | \n",
+ " 226 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 40 | \n",
+ " 151 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " 307 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 62 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate cons.price.idx \\\n",
+ "0 56 261 1 -1 0 1.1 93.994 \n",
+ "1 57 149 1 -1 0 1.1 93.994 \n",
+ "2 37 226 1 -1 0 1.1 93.994 \n",
+ "3 40 151 1 -1 0 1.1 93.994 \n",
+ "4 56 307 1 -1 0 1.1 93.994 \n",
+ "\n",
+ " cons.conf.idx euribor3m nr.employed ... month_oct \\\n",
+ "0 -36.4 4.857 5191.0 ... 0 \n",
+ "1 -36.4 4.857 5191.0 ... 0 \n",
+ "2 -36.4 4.857 5191.0 ... 0 \n",
+ "3 -36.4 4.857 5191.0 ... 0 \n",
+ "4 -36.4 4.857 5191.0 ... 0 \n",
+ "\n",
+ " month_sep day_of_week_fri day_of_week_mon day_of_week_thu \\\n",
+ "0 0 0 1 0 \n",
+ "1 0 0 1 0 \n",
+ "2 0 0 1 0 \n",
+ "3 0 0 1 0 \n",
+ "4 0 0 1 0 \n",
+ "\n",
+ " day_of_week_tue day_of_week_wed poutcome_failure poutcome_nonexistent \\\n",
+ "0 0 0 0 1 \n",
+ "1 0 0 0 1 \n",
+ "2 0 0 0 1 \n",
+ "3 0 0 0 1 \n",
+ "4 0 0 0 1 \n",
+ "\n",
+ " poutcome_success \n",
+ "0 0 \n",
+ "1 0 \n",
+ "2 0 \n",
+ "3 0 \n",
+ "4 0 \n",
+ "\n",
+ "[5 rows x 62 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 110
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "AeGflexhnvMO",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "col_to_use=['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 'marital_divorced', 'marital_married', 'marital_single', 'marital_unknown', 'education_Basic', 'education_high.school', 'education_illiterate', 'education_professional.course', 'education_university.degree', 'education_unknown', 'default_no', 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown', 'housing_yes', 'loan_no', 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue', 'day_of_week_wed', 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_success']\n",
+ "X=data[col_to_use]\n",
+ "y=data.y\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "rmkWOmEEzs4l",
+ "colab_type": "code",
+ "outputId": "966a80d1-e9ff-40d0-c819-6b7341170e51",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "lm = LogisticRegression()\n",
+ "scores=(cross_val_score(lm,X,y,cv=5))\n",
+ "print(scores)\n",
+ "print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(),scores.std()*2)) "
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "[0.88276334 0.89384405 0.89829001 0.73867834 0.64427418]\n",
+ "Accuracy: 0.81 (+/- 0.21)\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "a6ZpJSthHlcA",
+ "colab_type": "code",
+ "outputId": "35f11fb7-a012-410e-cf7b-01cf3301aced",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 92
+ }
+ },
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0)\n",
+ "lm.fit(X_train,y_train)\n",
+ "pred=lm.predict(X_test)\n",
+ "print(accuracy_score(pred,y_test))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "0.868874885996186\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "5Ggp_LS8JNmg",
+ "colab_type": "code",
+ "outputId": "b1f9db89-960d-412c-bdf7-cfeb49f500a4",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 146
+ }
+ },
+ "source": [
+ "from sklearn.preprocessing import StandardScaler\n",
+ "sc=StandardScaler()\n",
+ "X_train_std=sc.fit_transform(X_train)\n",
+ "X_test_std=sc.transform(X_test)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:464: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " after removing the cwd from sys.path.\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "DcPBZ5cXKDNA",
+ "colab_type": "code",
+ "outputId": "ac0b74ed-3478-4304-e527-9860a7f3774d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 92
+ }
+ },
+ "source": [
+ "lm.fit(X_train_std,y_train)\n",
+ "pred=lm.predict(X_test_std)\n",
+ "print(accuracy_score(pred,y_test))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "0.8699941961694718\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "1SF1QFHTLLpm",
+ "colab_type": "code",
+ "outputId": "a2f1f30c-a3ef-4e7f-dc62-99411cc61eee",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 253
+ }
+ },
+ "source": [
+ "X_train_std"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "array([[-1.53951579, -0.64831503, -0.14603055, ..., 2.77633517,\n",
+ " -1.89560599, -0.33862485],\n",
+ " [ 1.56584223, -0.01778706, -0.14603055, ..., 2.77633517,\n",
+ " -1.89560599, -0.33862485],\n",
+ " [-0.02880108, -0.75569752, -0.14603055, ..., -0.36018706,\n",
+ " -1.89560599, 2.95312055],\n",
+ " ...,\n",
+ " [ 0.22298471, 2.18217736, -0.56873284, ..., 2.77633517,\n",
+ " -1.89560599, -0.33862485],\n",
+ " [-0.95201562, -0.70338298, -0.14603055, ..., 2.77633517,\n",
+ " -1.89560599, -0.33862485],\n",
+ " [ 0.97834206, -0.32341415, 0.27667174, ..., -0.36018706,\n",
+ " 0.52753579, -0.33862485]])"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 116
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "D9ajm5uQLw-A",
+ "colab_type": "code",
+ "outputId": "db3083e1-408f-40a3-8b67-5a2ac9ed9b05",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 255
+ }
+ },
+ "source": [
+ "data.head()"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " age | \n",
+ " duration | \n",
+ " campaign | \n",
+ " pdays | \n",
+ " previous | \n",
+ " emp.var.rate | \n",
+ " cons.price.idx | \n",
+ " cons.conf.idx | \n",
+ " euribor3m | \n",
+ " nr.employed | \n",
+ " ... | \n",
+ " month_oct | \n",
+ " month_sep | \n",
+ " day_of_week_fri | \n",
+ " day_of_week_mon | \n",
+ " day_of_week_thu | \n",
+ " day_of_week_tue | \n",
+ " day_of_week_wed | \n",
+ " poutcome_failure | \n",
+ " poutcome_nonexistent | \n",
+ " poutcome_success | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 56 | \n",
+ " 261 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 57 | \n",
+ " 149 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 37 | \n",
+ " 226 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 40 | \n",
+ " 151 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 56 | \n",
+ " 307 | \n",
+ " 1 | \n",
+ " -1 | \n",
+ " 0 | \n",
+ " 1.1 | \n",
+ " 93.994 | \n",
+ " -36.4 | \n",
+ " 4.857 | \n",
+ " 5191.0 | \n",
+ " ... | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 62 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " age duration campaign pdays previous emp.var.rate cons.price.idx \\\n",
+ "0 56 261 1 -1 0 1.1 93.994 \n",
+ "1 57 149 1 -1 0 1.1 93.994 \n",
+ "2 37 226 1 -1 0 1.1 93.994 \n",
+ "3 40 151 1 -1 0 1.1 93.994 \n",
+ "4 56 307 1 -1 0 1.1 93.994 \n",
+ "\n",
+ " cons.conf.idx euribor3m nr.employed ... month_oct \\\n",
+ "0 -36.4 4.857 5191.0 ... 0 \n",
+ "1 -36.4 4.857 5191.0 ... 0 \n",
+ "2 -36.4 4.857 5191.0 ... 0 \n",
+ "3 -36.4 4.857 5191.0 ... 0 \n",
+ "4 -36.4 4.857 5191.0 ... 0 \n",
+ "\n",
+ " month_sep day_of_week_fri day_of_week_mon day_of_week_thu \\\n",
+ "0 0 0 1 0 \n",
+ "1 0 0 1 0 \n",
+ "2 0 0 1 0 \n",
+ "3 0 0 1 0 \n",
+ "4 0 0 1 0 \n",
+ "\n",
+ " day_of_week_tue day_of_week_wed poutcome_failure poutcome_nonexistent \\\n",
+ "0 0 0 0 1 \n",
+ "1 0 0 0 1 \n",
+ "2 0 0 0 1 \n",
+ "3 0 0 0 1 \n",
+ "4 0 0 0 1 \n",
+ "\n",
+ " poutcome_success \n",
+ "0 0 \n",
+ "1 0 \n",
+ "2 0 \n",
+ "3 0 \n",
+ "4 0 \n",
+ "\n",
+ "[5 rows x 62 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 117
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "u5U2cDxO-1V7",
+ "colab_type": "code",
+ "outputId": "1b5d7ca5-f621-437b-e1a8-7c5cd1e7f67f",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 55
+ }
+ },
+ "source": [
+ "\"\"\"data['age'] = minmax_scale(data['age'])\n",
+ "data['duration']= minmax_scale(data['duration'])\n",
+ "data['campaign']= minmax_scale(data['campaign'])\n",
+ "data['pdays']= minmax_scale(data['pdays'])\n",
+ "data['previous']= minmax_scale(data['previous'])\n",
+ "data['emp.var.rate']= minmax_scale(data['emp.var.rate'])\n",
+ "data['cons.price.idx']= minmax_scale(data['cons.price.idx'])\n",
+ "data['cons.conf.idx']= minmax_scale(data['cons.conf.idx'])\n",
+ "data['euribor3m']= minmax_scale(data['euribor3m'])\n",
+ "data['nr.employed']= minmax_scale(data['nr.employed'])\"\"\""
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "\"data['age'] = minmax_scale(data['age'])\\ndata['duration']= minmax_scale(data['duration'])\\ndata['campaign']= minmax_scale(data['campaign'])\\ndata['pdays']= minmax_scale(data['pdays'])\\ndata['previous']= minmax_scale(data['previous'])\\ndata['emp.var.rate']= minmax_scale(data['emp.var.rate'])\\ndata['cons.price.idx']= minmax_scale(data['cons.price.idx'])\\ndata['cons.conf.idx']= minmax_scale(data['cons.conf.idx'])\\ndata['euribor3m']= minmax_scale(data['euribor3m'])\\ndata['nr.employed']= minmax_scale(data['nr.employed'])\""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 118
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xrw2nMjoMJ16",
+ "colab_type": "code",
+ "outputId": "36b59832-e0c9-4115-e71f-b9c7a6acb20d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ }
+ },
+ "source": [
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "sc=MinMaxScaler()\n",
+ "X_train_mm=sc.fit_transform(X_train)\n",
+ "X_test_mm=sc.transform(X_test)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:334: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by MinMaxScaler.\n",
+ " return self.partial_fit(X, y)\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "bhc5NQBMMTuj",
+ "colab_type": "code",
+ "outputId": "4579b5b4-2d05-40cb-df1e-dd0ff24d4403",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 92
+ }
+ },
+ "source": [
+ "lm.fit(X_train_mm,y_train)\n",
+ "pred=lm.predict(X_test_mm)\n",
+ "print(accuracy_score(pred,y_test))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "0.8671751927700854\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "cLOvFbqrMzKn",
+ "colab_type": "code",
+ "outputId": "2de7a529-6466-4286-c6e9-e4fdd0484975",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 73
+ }
+ },
+ "source": [
+ "my_pipe=make_pipeline(MinMaxScaler(),StandardScaler())\n",
+ "X_train_ms=my_pipe.fit_transform(X_train)\n",
+ "X_test_ms=my_pipe.transform(X_test)"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:334: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by MinMaxScaler.\n",
+ " return self.partial_fit(X, y)\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "isxrt4FRN6S0",
+ "colab_type": "code",
+ "outputId": "dd5582dd-ef39-4d12-f3ed-d7c03433a013",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 92
+ }
+ },
+ "source": [
+ "lm.fit(X_train_ms,y_train)\n",
+ "pred=lm.predict(X_test_ms)\n",
+ "print(accuracy_score(pred,y_test))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "0.8699941961694718\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "YQ-b0P2JOfLv",
+ "colab_type": "code",
+ "outputId": "7b3bee05-657c-4523-b167-d547138af3a1",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 201
+ }
+ },
+ "source": [
+ "my_pipe=make_pipeline(StandardScaler(),MinMaxScaler())\n",
+ "\n",
+ "X_train_sm=my_pipe.fit_transform(X_train)\n",
+ "\n",
+ "X_test_sm=my_pipe.transform(X_test)\n",
+ "lm.fit(X_train_sm,y_train)\n",
+ "pred=lm.predict(X_test_sm)\n",
+ "print(accuracy_score(pred,y_test))"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:464: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:451: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
+ " FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "0.8671751927700854\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xmcrRc8g6P2K",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "data['y']=np.where(data['y'] =='yes', 1, data['y'])\n",
+ "data['y']=np.where(data['y'] =='no', 0, data['y'])"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "IbpVvArK9GD4",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "y=data.y"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6xsnADhj5Lrp",
+ "colab_type": "code",
+ "outputId": "d648dfd6-7de7-40b7-aa96-1550d6ef273d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 800
+ }
+ },
+ "source": [
+ "from sklearn.ensemble import RandomForestRegressor\n",
+ "from sklearn.model_selection import cross_val_score\n",
+ "#rf = RandomForestRegressor()\n",
+ "my_pipe_rf=make_pipeline(StandardScaler(),MinMaxScaler(), RandomForestRegressor())\n",
+ "\n",
+ "scores=(cross_val_score(my_pipe_rf,X,y,cv=5))\n",
+ "print(scores)\n",
+ "print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(),scores.std()*2)) \n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:467: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, y, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:511: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:467: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, y, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:511: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:467: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, y, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:511: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:467: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, y, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:511: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.partial_fit(X, y)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/base.py:467: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " return self.fit(X, y, **fit_params).transform(X)\n",
+ "/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.\n",
+ " \"10 in version 0.20 to 100 in 0.22.\", FutureWarning)\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "[ 0. 0. -0.9363185 0. 0. ]\n",
+ "Accuracy: -0.19 (+/- 0.75)\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.6/dist-packages/sklearn/pipeline.py:511: DataConversionWarning: Data with input dtype uint8, int64, float64 were all converted to float64 by StandardScaler.\n",
+ " Xt = transform.transform(Xt)\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "aBLH4yu0QJi2",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "#Importing librairies\n",
+ "\n",
+ "import pandas as pd \n",
+ "import numpy as np\n",
+ "\n",
+ "# Scikit-learn library: For SVM\n",
+ "from sklearn import preprocessing\n",
+ "from sklearn.metrics import confusion_matrix\n",
+ "from sklearn import svm\n",
+ "\n",
+ "import itertools\n",
+ "\n",
+ "# Matplotlib library to plot the charts\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.mlab as mlab\n",
+ "\n",
+ "# Library for the statistic data vizualisation\n",
+ "import seaborn\n",
+ "\n",
+ "%matplotlib inline\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "04UX0KuZQhav",
+ "colab_type": "code",
+ "outputId": "bc6827f2-ebab-4364-dac3-caa2b9c1a964",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 740
+ }
+ },
+ "source": [
+ "df_corr = data.corr() # Calculation of the correlation coefficients in pairs, with the default method:\n",
+ " # Pearson, Standard Correlation Coefficient\n",
+ "\n",
+ "plt.figure(figsize=(15,10))\n",
+ "seaborn.heatmap(df_corr, cmap=\"YlGnBu\") # Displaying \n",
+ "seaborn.set(font_scale=2,style='white')\n",
+ "\n",
+ "plt.title('correlation')\n",
+ "plt.show()\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAALTCAYAAAB31X2bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XmYXEW5x/HvzGQmKwkJgRDCkrDc\nF7ksshNCIAHEqCCIoIgiAUGURbjKVRSEgCIu1yuyqCxCAAWuAqKgAiIkbIGwSxRe2RIgQCAQsieT\nWe4fVU06Tc9MVTIz6Zn5fZ6nn+455z3VdU6f7p7qqlNvVXNzMyIiIiIiIiLtpXptV0BERERERES6\nFzU0RUREREREpF2poSkiIiIiIiLtSg1NERERERERaVdqaIqIiIiIiEi7UkNTRERERERE2pUamiIi\nIhXAzCabWbOZTerA5xgXn2NmRz2HiIgIQK+1XQERERFpX2bWD1gAfN/dJxWteg34OfDu2qiXiIj0\nHGpoioiIdD87ATWlC939BeC0zq+OiIj0NBo6KyIi0v3surYrICIiPZt6NEVEpMsxs9GEnrmxwFBg\nLvBX4Fx3f6VM/J4xfgywPrAEeA74PfALd19aEt8cHw4DzgSOBN51d0tZH2MGAacChwJbxcWvAH8C\nfuju8zL292DgeGAXYD1gOfA88H/Az9x9eYwbCbxctOk5ZnYOMNXdx5nZOOBeYJa7jyx5jgHA14BP\nx/r2BuYA98fneKwkfhJwDnAp8C3gbOBwYCNgMTAVOMPd/526nyIi0n2oR1NERLoUMzuR0Pj5JDAN\nuIrQgDsW+JeZ7VAm/gFCI2gmcC2hsbUl8D/A1NjIKuck4PPAH4FbU9eb2XDgMeBcQsPwD3F9H+Cb\nwNNmtlni/p4dt/0o8CRwBXA7MBK4ALjDzArf5wsI12A+G/9+JP59UxvPMZRwLM8HRgB3A78BXic0\noh82s8+3sHkv4E7gc8A9wM3ACuBTwJTY4BYRkR5GPZoiItJlmNmHCA2n5cAYd3+qaN25hF61G4Bt\n4rL/jPEAh7j7H4viBxMarLsCk4DTyzzlUcDO7j6rhSq1tP5qQkP2ZuDzRT2OvYHLgKMJDeT92tjf\nQYQeU4DPuvstReuGAf8ExhEadTe7+7vAaWY2GfgQcEfJZEAtuQjYltAgn+Dui4ue58uxzpeZ2d/d\n/c2SbT8P3Af8h7svi9sMBZ4BhhN6dK9OqIOIiHQj6tEUEZGu5ETCj6TXFTcyox8SGjfzinoLvxLj\nby1uZALEoauFRtyxZlbux9e/t9LILLvezLYn9D4uAo4rNDLjcy4HTib0PO5rZlu3Ujax7l8mNIL/\nUFL/OazsRR3bRjktig3Wz8Q/TypuZMbnuRx4CuhPaFSW6gt8udDIjNvMBf4S/9x+desmIiJdl3o0\nRUSkKxkf7+8vXRGvsyxt1Owd7/9CeX8HmoHBwNbAjJL197ZRn3Lr943309z9vTL1XGRmU4GDCPvz\nXEuFu/s7wDWtPP/seL8mw1P3JMxQO9vd/9FCzN3Ah4HRZda95O6zyyx/vR3qJiIiXZQamiIi0pWM\njPflGjbljIr3L5dbGRt97xAmFNqUDzY032qj/HLrC3XczMwubGG7TeP9Vi2sf5+ZDSRM0nMgsFms\na+n3d1Vb5bSi1WMUzYz3m5ZZ92oL2zTGe42eEhHpgdTQFBGRrqRPvF+RGN8v3i9tJaYw5LNvmXWL\n2ii/3PrCxEL/EW+tGdjaSjMbAjwEGNAAPEjonV0YQ/YAdm/jOdqypsco9bUQEZEeRA1NERHpShYT\nGmeDM+P7tRJTWNdWozJVoZwb3P3INSzru4RG5ixgnzLXg57Hmjc0C9dkduYxEhGRbk7DWUREpCt5\nKd6PyIzfvNzKOKvrkPhna0NHc7wQ78sNM821T7y/uIVJicruV6ZWj1HJuvY6RiIi0s2poSkiIl1J\nYfKdA0pXmFm1mc02swYzK8zCOiXeH9hCeRPi/evA8+1Ux3vi/e5mVraxaWYTYuqVthRGHs0rU8aG\nwCHxz5au0Uy5dvNBwvDX4Wa2U5nnqSLMogsrj6eIiEir1NAUEZGu5FeERtEhZvaxknWnAhsRJq55\nKC67lJBz80AzO7g4ODbUzo9/XuTuze1RQXf/F3AnoZF4qZmtcl2jmU0A/gg8Ymbrt1Hcs/H+EyVl\nbAz8CXgiLtqkZLvCNZyb0YaYiuS6+OfPzax0CO03CDk53yLkKBUREWmTrtEUEZEuw93/bWanAL8E\nbjOzOwmznm5PSL2xCPiiuzfG+BfM7ETgCuAPZnYf8G9gQ0Lqk0HAbcBP27mqXyL0bB4IvGBmfwPq\ngf8kpBNpBE5w97fbKOcnwGHAoWb2CKFhuRHwEeAm4GJgOjDOzK4Hrnf324HH4vZfjL2qte7eWq7N\nbwA7AXsBz5vZ/YTJgXYAdiQc18+5+8KWixAREVlJPZoiItKluPtlwFhCA3EXQqNuJHAtsJO7P1QS\nfxUwBriZMAvsxLj908CxwKfcvaGd6zgb2BU4B3ib0FicSLhu83pgD3efnFDOY4ThsY8QGtNHAsOB\n04Cj3f1R4GfAfEKv5wZx098CV8ble9BGLsuY73Mv4DvAHEID+XPAusBlwIfd/Z6WSxAREVlVVXNz\nu4wUEhEREREREQHUoykiIiIiIiLtTA1NERERERERaVdqaIqIiIiIiEi7UkNTRERERERE2pUamiIi\nIiIiItKulEdT2l3fTT+XPJXx3leclFxuQ1NVcuzy+vTZlJsak0NZf2B6ufUZ9Z09J73cUcOTQ6mt\nTi+3X0167DvLa5JjF9WnH4dFC5uSY/v0SS93zg2zkmO3+FKb+e3ft05ten23G1yfHPvP9+qS4uZl\nvA5Ll6e/vm+/nb5fy95anhx7xdErkmMveLrVbByrePON9DfxrlumH4dZC9O/IqszfrYd1je9vjPf\nTS946/XTy33q1fRyBw9Oj61Of1tmaeqgCfI7qr6N6W8hatPfxtRnJOFZnvGez5HzPdjUnH6AlzWm\nx65bl36A316Sfv42ZZxoVRnnTl1tenDOudO7V3p9l2Z8F/euTa/Dioz/oQb1znjdFqTX96FD9+qg\nd3L7yvn/eE0tfeWGijgm6tEUERERERGRdqWGpoiIiIiIiLQrDZ3tocxsIHA90B/oB5wCGPBN4FVg\nLnAPcB1wObA5UAuc7e73rI06i4iIiIh0RVVVPa9/r+ftsRRsCFzp7uOBb8fbBcD+wOHA2Bh3JPBG\njDsEuHAt1FVERERERLoQ9Wj2XHOA75rZ6UBvQs/mAnefA2Bmf49xewJjzWyv+HdfM6tz9/SZTURE\nREREerCqHti/p4Zmz3UaMNvdjzKzXQhDZIvnDivMjFUPnO/uN3R2BUVEREREpGvqeU1rKRgKvBgf\nfwqYB6xnZoPNrC8wLq57BDgYwMw2MLMfdHZFRURERES6sqqq6k67VYrKqYl0tmuBr5vZXYTG5IbA\n94H7CZMEPUbo4fwdsMjMHgJui+tFRERERERaVNXc3Gm5Q6XCmdlhwD3u/q6Z3Qmc6+4P5Zbz0Tsf\nSD6p7jv+0uRyx115UnJsQ1N6nto+NR2TQDgnEfiwjATYby3smBy8A/qlxy5Znh5bU5Ne35zE5TkJ\n3HNei5yE6NUZP9X1yohN3bde1ekHIec9kXO8GjKSi+fI+WrKic1Jsp4Tm3PMcl63nIT3OXKSrNdk\nnLs5yeZzjm/O+ydHzvnbUedkn9r04PrGjO+2XunlLmtIL3fp0vRy1+nfMd/FC5annxB1GReJddRn\nas73VV1NevCS+vQ65ByHnO/BfnXp9V2wOL3cdfunx/75gL065oOyna0z6phOa3QtfPnqijgmukaz\nizKzAcAMdx+5mttvCmzo7tPN7ELg54Q0J/eY2WLgqdVpZIqIiIiIiKih2XPtCwwAprv7aXHZy4Qh\ntSIiIiIi0k6qcoZxdBNqaHYhZjYQuBnoAzwQl80EtnX3RWb2P8CMGP4xYCPgCOAbwG5xu18BfwQm\nASvM7BXg68DJwKvAZGBdoBb4mrs/YWYvALcCY4D3gE+4ewcNmBMRERERka5OkwF1LV8gDJcdCzzV\nRuymwN7AO8BMd98LGAuc5+5vExqUP3f3PxVtcyrwsLuPJ6Q/+VlcvjlwrbuPBgYD27fT/oiIiIiI\n9ADVnXirDJVTE0mxDVC4bnJKG7GPunuzuy8DhsRZY/8KrN/KNrsUynX3x4At4/IF7v6P+Pg1YFB+\n1UVEREREpKfQ0NmupQooDFkt/EhQPINVbdHjegAz24dwPeY+7r7CzBa1Un5zfI6CwhygpfOP9bxB\n5iIiIiIiq6mS8lt2lp63x12bE3odAcbH+wXAcDOrAfYos81Q4NXYyPwkUGNmdYQGa+kPDY8WyjWz\nPVh5vaeIiIiIiEgy9Wh2LdcCfzCzvxMmA2oGLgFuIzRC/1lmm7uBb5nZVMKEPrcDvwRuBK4xs7eL\nYn8OXG1m9xB+hEhPXCkiIiIiImX1xB7NquacrMLSLZnZGcBUd5/WHuXt99cHk0+qnMTEU467NDn2\nE5O/mhxbl5Gg+bHnM5JP90mPHTEsPfalVzpmwt+NNqppOyjK+djoqKT3OXKScOckRM85Dv0zkrIv\nSUyennO8GitgnujeGQnkc16HHB11juUkZO+oOgysTX+R5yxIr0TfvumxOedZTRf7nyvnNR7RPz3j\n/bOvpx+IkRuk1+HtJenl9q5tO6bgnXfTX+Sc78FBA9LrkPP5MLh3Y3rBGVY0pdfh3SXpsTkpMGoz\nuoty/t/K0Sfj+3XWW+nl/sfw9HJvHL93l7ika90tv9Jpja73XvhVRRwT9WgK7v7DtV0HERERERHp\nPtTQrDBmVgtcA2wGLAOOBS4F+gP9gFPcfbqZvQhcARwGvAA8DhwOPO/unzezycAiYGvCdZrHuPuT\nZva/FOXUdPcrY+xNwP3xvi/wF+B4dx8V82heBhwE9Ab2d/eFHX4wRERERES6gaoeODVOz9vjync0\n8Ka7jyE0JA8Broy5Lb8NfCvG1QBPALsCYwi5MncDxprZujGml7vvD3wXONvM+lCSU7Pkub8I/Cuu\nf4+Vs8v2Ap5z972Bl4H92nunRURERESk+1BDs/LsBDwI4O43ApOBT5vZA8CPgPWKYqe7ezMwB3gy\nLnuLlXku74730wBLyKn5ocJzA38qWXd/vFceTRERERGRDFVV1Z12qxSVUxMpaGTV1+U0YHbsZSyd\n4aahhceFnsjqor+bS3JqjgOWl5RXnKez9ILlcuWLiIiIiIh8gBqaledRQmMQMzsQOAt4Ma77FFCX\nUdbYeD8a+Bct59QseJGVeTo/tnrVFxERERGRYurRlEpwI9A/5r08Ddgf+LqZ3QU8AmxoZsckltXH\nzG4Hvke4HvNuYKtY9haszKlZMJlwjecUYBihd1VERERERCSLZp2tMO5eT5iUp9iHih4Xrp28umib\nXUofmxnAH9399pKydit6/LPiFWa2GXCeu99pZqOBfWKZI4vKPz1jd0REREREerxK6mnsLGpo9kBm\n9j/ADHefXLJqPqH39GzCdZhfW53yl9en56Ot7p1+uecnJpdeotqyP0/8ZdtB0YgPT0iOPe57GyXH\n/u31fsmxc+amJ8D+xl5Lk2OH9U0v93+eXic5dsQ66eUuXJH+wbp4Rfr5kJPsff6i9Nj11sk4f6vS\nY1+fm16HgYPSjsOK9JzwWYm9c/TJSAI+P/3UpTYjgfy6denn43v16SdOdcbV6I0Z4z8y8rzT2Jh+\nfF95L73cD22UXuE3lqSfPLU16XVoykhd3pj+Emd9NnSUp2elV2L05umvxazF6a9FdcZxWLg4/cUY\nPjT9BM542ZiXkTRt5JD0YzZnafpJuWB+eo1zPn+Hb5Ae+8EpMlq2tD79tWjM+OCpyviMWpJR7nUf\nm5cc+8n9X0ivxON7p8dKp1JDs5ty94mrsc17wEfbvzYiIiIiIj1XVQ+cS1MNzW7IzCYCE4CBwMaE\nIbIrCDk4XwOWAjPMbCBwPdAf6AecQkifcqS7HxXLugK4jTB891DCD5S3ufsPOnGXRERERESkC1FD\ns/v6T2BHYF3gacLEPrsA84DHY8yGwJXufquZ7UtoiH4G+LmZ9QHqgTHAScCvgeGxnK904n6IiIiI\niHRpPfEazZ63xz3HVHdvcPe5hMblYnd/y91XAA/GmDnAp83sAeBHwHru3kiYjfbjwO7A/XGCopsI\ns9YeD/y2k/dFRERERES6EDU0u6/i17Z0UHhh3WnAbHffCyieaeda4HDgk4Shtbj7Vwk9mRsCU8xM\nveEiIiIiIgl6Yh5NNRa6r9FmVgMMBtYBMLN1gcWE4bDTgKHAP2L8p4A6AHd/ysxGABsA3zGzQcCp\n7n4ecJ6Z7U24/vPdTtwfERERERHpItTQ7L5mAr8HtgTOBGqBqXH5jBhzLXCtmR0OXAJ8zsyOcfer\ngbuAddy9GZhvZuub2XRgEfCQu6uRKSIiIiKSoJJ6GjuLGprd14vufnrJsqvKxH2o6PGfAMysChhH\n0aQ/7n5Ke1dQRERERES6JzU0exgz+6O7H9zK+pHAzcDv3D0jW+5KTRmJy/vUpCdHrqtOT2I84sMT\nkmNnP3VHcuzIAUcnx+YkkV/cOz230sh10g/wkN7px6wqI0NzdVVGpvUMOUmicxK4N+XEpodCc06y\n7PRjVp1YbEaebDKePvn5O1JzB9W3o/atNuPbdHl9+s7lfJ42ZMTmfJ7mnDt1NRnJ5lekvxg550OO\nnM+RrCT2i9MrPLh3+gv3/ILa5NjamuRQGjLO35z6Ll6R3oNTnXGAlzemxy5dmv5a5JxnDSty3kM5\nxyHnezs5NCs25zi8dvPs5NiREzZMjq1eb530SkjFUkOzG3L3ya2sa7GRGdfPBHZu5yqJiIiIiPRg\nGjorFcjMJgITCBPwbAz8DPgO8BfgLeBqQp7LOkKey+MIk/sMihP4YGb3AqcC97j7UDPbDriU0IGz\nEDga2B442d0Pi9vMjbFfBE4m5NV82t1P6oz9FhERERGRrqnnNa27rv8kpBvZF/g+0Bv4q7ufD3wP\n+Km77wdcCHwXuAU4EMDMhgDD3P0fReX9HPhvdx9HmCTo1Fae+3Tg0zENymNm1rc9d0xEREREpDvr\nielNKqcm0pap7t7g7nOBeYTUJNPjuj2BSWY2Bfg2sJ67vwo0m9lw4BPArSXlbePuj8TH9wI7tvLc\nNwB/MLPTgL+4+9J22SMREREREemWNHS26yj+UaAKaCYMZSXeH+7ub5RscyuhV/OjwA9aKbuOMIS2\n9PLvWgB3v8DMfgscBtxjZnu7+zurtRciIiIiIj1MJfU0dpaet8dd12gzqzGzocA6QHFD7xHgEAAz\n29fMjozLbwE+Dmzp7k+UlDfDzEbHx/sAjwELgOGxnO2Bdcys2szOB95w9/8FpgGbtf/uiYiIiIhI\nd6Eeza5jJvB7YEvgTMJ1mQWTgKvN7HOEXsmJAO7uZrY5cGeZ8r4GXGpmzYShuMcAi4DFZvYQ8CAw\n092bzGwhMM3M5gMvAU+1+96JiIiIiHRTVT2wf08Nza7jRXc/vejv6woP3P11wvDYD3D3HUr+Hhrv\n/wWML7PJAUWP/zvG/hD44epVW0REREREeho1NKUsM/skcIe717cZXGL9gemZfufMT88g7O+mxx73\nvY2SY0cOODo59pjx1yTHbjJi7+TY7b6/bXLsYWNvSo7t12f95NjdLzowOXbGq+m/yg0alBxKTUaC\n8Zxk5DtttCI51ufXJccuX5Z+ru8xsiE59pm30pKyDxmQ/vwL69NfsxXp+dhZsDA99kPD0guevST9\n6+mVd9I/GwYMSA6lV8aPzznHbKOBTcmxOQnvD9x8WXLsr+5JP75bbJ0cyvxF6bF9M+YvH1ibfswW\nNWS8cBmhjelV4MJPLE6OPfV/lifHfu6L6XW4/bn0z7LdR6afwHdOSf88HZYxSf32w9M/I59/L+0z\nEmDjwen7tsU66fu2OOM8e/a99C+shqb0z7M+tenfAU3N6eUuq08v98SvD06O3e7Et5Jj/+vCTZJj\nu4qeeI2mGppdgLtPXgtP+3XgHlZOOCQiIiIiIpJEDc0OZGY1wOXA5oQZXM+Ot3uBjxBmer2GcE1l\nI7AfIQfmxsCmhIl5/tvd7ygq8w/Az9z9vpjP8lnAgKvidv2BSe5+e0x3MgPA3U8uKuP95YQhsYVh\nuLXA0YR0KXsAfzWz/YDjgSNjfW9195+2x/EREREREekJqqrSe5W7i57Xh9u5jiTM1jqeMCvshXH5\nG+6+F1ADDHH3sfHxdnH9CHc/IG5/QUmZtwAHxccfAe4CBgF3ufs+wGeAc4viZxQ3MsssHw6cF+t4\nFXCiu18HvAl8DBhBSGuyF7A38Gkz2zT/UIiIiIiISE+hHs2OtScw1sz2in/3JeSsnB7/fgN4Mj6e\nQ2gwAvwdwN2fMbMRJWXeBnyTMFHPwcD/EWaN3dXMvkzodVyvKH465RWWvwlcZGbnAoOBx0vidgO2\nIvTCQkitMhJ4pYVyRURERESkiK7RlPZWD5zv7jcUFsRhq8VXvBc/LvSpt3gmuvt7ZjbbzIzQkD0B\n+DwwBBgb7x8rqUNLdQM4D7jT3X9lZocBpTPC1AN/dvcTWqqTiIiIiIhIMTU0O9YjhF7HG8xsA+C0\nxO32An5sZtsDs8qs/wMhl+Y0d28ws6HAyzHn5aGEXtNUQ4EXzawq1rUwNVoT4fx4HPiRmfUDlhKG\n/57h7ksznkNEREREpMeqpDyaZvYzwnwszcCp7v5o0bqTgC8Q5o95zN1T2y8fUDl73D39DlhkZg8R\nhrzen7jdAjP7E/Bb4AwAM7vQzEbF9bcCRwCFPBc3AweZ2d+BxcBrZnZ2cYFm9uE4PLbUZcDFwF+B\nG4F9zOwAYArwALCE0Li8D3gYeFONTBERERGRrsfM9gG2cvfRwJeAi4rWDSRcnjc2ziezjZntsbrP\npR7NDuTuDcBxJYv/WrT+sNLHZjYOeNjdLykp67Six3Mo6rV095nA9kXhv4335xXFPAU8FR+PK1p+\nO3B70baFa0LvKlr2i3gTEREREZGuaz9CpxXu/qyZDTazge6+gHDJXD0wwMwWAf2Ad1f3idTQ7CbM\n7EbgmNXpbTSzDwOfcvdzSpbfBFzi7lNyyqvPSDZcnTHTc58+6cF/e71fcuy6delZuDcZsXdy7Kuz\n70uOPaBfekb0DT48Pjm2YZuhybFN6fmZqUvPlU1NTcdM592rOr3C79anJ8vulTHOY0V6sbyxNP3j\ntrYu7Zgta0w/ts0Zr2+O3r3TYxeuSD+4Oa9vTcbr0JT+dqe6Jr0OOdPW5wwlWrwivdzXM86xAeum\nH7Scz+kcjTmvRQXUIceQ3ukFVy1MT1f9zvL0s2f8liuSYxdkvDfpk37uzMn4l2TZBulX/dRl/Pc6\nJOM7/sWF6V9uOZ9nHaWpOef/rY75PHtrWcbn+q4bJMfeNTu9Dqdskxy6VlXQZEAbsurkn2/HZQvc\nfVkcAfkS4ZK5G93936v7RGpoVhh3n7Sa2x2xBs/5fm+niIiIiIj0GO+36uPQ2e8A/wEsAO4xsx3c\n/enVKVgNzXZiZrXANcBmwDLgWGASsDnQGzjb3e8ysxcI10UeFJfvT0gr8hvCRbe9gC+4+6yisicD\ni4CtCZP3HENIafKbuPySeNuWkNrkGsKkPrOAo4FhwK8Jw20bgePc/ZWi8scBJ7v7YWb2TeBzcduB\ncf2vgb+6+01mdiVwt7vf2D5HTkRERESke6ugHs3XCT2YBRsRUi4CfAh4yd3nApjZ/cDOwGo1NCtm\nj7uBowkT5YwBrgAmAsvcfR/gUEJDEEJD8jl33xt4mTBO+jDgb+4+HjgVGF6m/F7uvj/wXaAw0c+O\nwOfjdZYF5wP/6+5jCSfSLsD3gJ+6+36EiX2+W24HzGxd4ERgNHAUoeEKMW+nme0GjFAjU0RERESk\nS7qL0PbAzHYCXnf3hXHdTOBDZtY3/r0L8PzqPpEamu1nJ+BBgNgQW48wcyvu/jqw3MyGxNjC7LOv\nAYMIL/gXzeynQG93f7hM+XfH+2mAxccvuvs7rdTjm+7+CCHf5qSYw/PbsW7lbAn8092XxRPu8VjO\nO8DlhJlzT2n9MIiIiIiISLEqqjvt1hp3fwh4PGbFuAg4ycwmmtmn4oSjPwHuNbMHgCfdPTVrxgdo\n6Gz7aWTVhnszRWOeCcNWC1ekNxQtr3L3GWa2A3AAcIGZXeXu15aUXyi7KpYNYVaotupRiDvc3d8o\nE1+sqqiOxc8JoYt9EbAB8EIb5YiIiIiISAVy9zNKFj1dtO4ywmV+a0w9mu3nUWBfADM7EHgHGB//\n3gRocvf3ym1oZkcA27r7rcBZhG7qUmPj/WjgX4n1OM/M9gceAQ6Jy/Y1syNb2PZFQnd5XbwYeOe4\nzShCI3g/4Gdmph8oRERERERSVVV33q1CVE5Nur4bgf5mNhU4jTghj5ndG9ed0Mq2/wYuMbN7gHOA\nX5rZhmZW/GtCHzO7nXC95XnlConOAY6P9RgF3EuYlOgQM7svrp8GYGYXxkYkAO7+bqz3NMLkQY/G\nVRcD3475Ou8E/quNYyEiIiIiIj2YeqbaibvXA18sWXxcmbiRRY9PL1q1W5liixunfyyZ9AeKej6L\nyl1EmMm22OvAR8vU5bT48GVWXk/6PUJjttiUom3ORkREREREklXQrLOdRg3NHsbMtgb+BFzs7hcX\nLf+jux9cEnsyMDQ3t+fsOelJgbcoN79uCwYNSE/eO2dueoLmxb3Ty93u+9u2HRQd0G/r5Nhff/by\n5NidLz4pOXbjgenHYfbC9OOwzfDG5Nh3lqeXu2BZcihLyTkf0mPXG9J2zPux/dPP9XlL079gUnNl\n1ze0HVPQnF5V+talBy9akl5uQ0Ydlq1If82GDUo/z5syDsSijITsOcf3lXnp5VbXpBf8z3npCe+H\nZ3z2NmXsW21d+utWk/E/16KG9HJz3he9ajJiq9MPxDXP90+O7Td+YHKsDUr/kLzo2uXJsetsNyg5\n9iN7JIeyYEX6v5mLM97zI/qlv8jPL6hNjp09O/27rakx/XNn403ST7RBvdPLrW9KP2bzFyWHUtc7\nPfa5+emfO9ttnl7u86+nx0om2PgtAAAgAElEQVTlUkOzC3D3ie1Y3G7AX4obmfE5Dm4hXkRERERE\n1kBV6q/I3Ygamh3AzGoJ1zpuBiwDjiVcJ7k50Bs4293vMrMXCLM6HRSX7w8MBn5DmD22F/AFd59V\nVPZmsewaYBYhf+dw4CpWzmz7JcLMtNcQJvjZAXiSkNrkO4RrSV92958XlTvX3YeaWSHX5puE5K0v\nmdlRwO7ufrKZfQHYy92/0q4HTUREREREuo2eN1i4cxwNvOnuY4ArgInAMnffBzgUuCTG9QKec/e9\nCddJ7kdIoPo3dx8PnEpoRBY7H/hfdx9LuPZyF8LkQL9293HALwiNWgizxn4H2BX4OLAC+CHwf8WN\nzBIXEBq3HwGGArj7dYDFpK6nAaVTIouIiIiISAsqJY9mZ6qcmnQvOwEPArj7jcB6rJxs53VguZkV\nrgQrJEF9DRgE3AV80cx+CvR294dbKfub7v4IobE5Ja6/F9gxPn7B3d909yZCozTlIoyR7l7IpTO1\naPnXCDPO/rylNC0iIiIiIiKghmZHaWTVY9sMq8xcUhjiClB8RXuVu88gDHW9H7jAzEpnsi0tu7T8\nlsqmpA4tKb4Kvfh51gMWAhsnlCEiIiIiIlFVVXWn3SpF5dSke3kU2BfAzA4E3gHGx783AZpa6hU0\nsyOAbd39VuAsilKYlCn7PDPbPy4bH9fvAzy2BnWfbUEVMC4+Ty/gx8DewMFmNnINyhcRERERkW5O\nDc2OcSNhwp2phGsarwFqzOzeuO6EVrb9N3CJmd0DnAP80sw2NLPL4vpzgONj2aMIQ2XPJgy3vYdw\nPeg5KZU0s4lm9qmSxWcCNwG3Aa/GZf8F3OburxGu+bwEERERERGRFmjW2Q7g7vVA6ZDX48rEjSx6\nfHrRqt3KFHtCjHuVMDttsdeBj5XZ5v3eUHcvPJ5ctKz4cWHinzuAO8qUVYi7B7inpfUiIiIiIlJC\n6U2kqzGzP7r7wWY2BTg5XuOZs/0GhB7XPoTrO78eJxhabaMyEoG/tTD9TTf3nfQkxt/Ya2ly7Mh1\n0hM0Hzb2puTYDT48vu2gaOeLT0qOffyUS5Njn6ldJzl238uOSo59+tX0wRDrpFeBXr3Sz4ecz+vd\nNktP7v3ce+nJp+cuTa/EjhvWJ8c+9VZagvFBfZOLzEqGvrQ+PXbZsvT35XrrpccuaUg/x15/N72+\nA9dJj63OOMcam9NjN1o3/TgszTgOYzZYkhz7q3vSv/632Dr9PbGiPv1A9OqbfoD71aSX25CRxD7H\n8ob0cg8dmf4ddPcN6bFLt0//QB24fcr8f8GOm6afk397MP07c+imNcmxY0etSI59Zl7v5NjG9Ooy\nYdv04D4Z5+Sjc9OPw4L69Pd8n17pdeib8X5bkf6VybgNlyXHXvLjd5NjJ529bnolpGJp6GwX5+4H\nr2ERXwCui+lUvgN8b81rJSIiIiIi76vuxFuFUI9mhTCzGuByYHOglnDd5dnEXkozO5mQ13IKcDow\nAPgGcGdh2CvwJTPbEegHHO7us8zsx8AYwmt9ibtfF3s/ZwC4+8lF1diEkGYFM3uRkAP0MOAF4HHg\ncOB5d/98hxwEERERERHpFiqozdvjHQm8EXsWDwEubCV2O+Cj7v54yfI57j4OuBb4mpntTZjBdgxh\nptpJZlYYdzOj0MiMkw09Spjl9qy4vgZ4AtiV0FCd6e67AWPNTOMZRERERERSVVV13q1CqKFZOfYE\nDom9jTcBfQnXTJbztLsvL7P83ng/HTDCZEBTAdx9MfAvYKuiGOK6N919V+DrFE0WBEx392ZgDvBk\nXPYWkH7hh4iIiIiI9DhqaFaOeuB8dx8Xb1sBxY3J2pLYcppLHjcDxT9r1AGFK/7rAcxsHzMbDODu\nfwF2KopvaOFx5fxUIiIiIiJS6dSjKWvRI8DBEGaCNbMfAAuAwhyuYxLKGBvv9wCeBR4FxsUyBwBb\nAM+XbHMocHSM2Y6VuTNFRERERERWiyYDqhy/A/Y1s4cI10dOAh4ELjWz54EXE8rYwMz+CgwGDnP3\n18zscTO7j9Ajeoa7Lzaz4m2+B1xjZocCvYGvttseiYiIiIhIj+zeU0OzQrh7A3BcmVV/LrNsStF2\nQ+P9uBbKPbPMsnFFj+cCnygTM7Lo8S7lHouIiIiIiJSjhmY3ZWaTgLnufkk7l/sYobd0ZksxtdUZ\nmcs76HLPYX3Tk08P6Z1e33591k+ObdhmaNtB0cYD0+v7TG16wu76FQuTY3M0ZiRzbspIll1V23bM\n6uiV8Stic8bpmxPbET9kVlelV6Aq45qNnMs7qmvSg5syjldObHNGcFNzen2rM45DR10S0yvj8zRn\n3zqqwtXpeemzjm9DztdKhpw6ZHyUMXNh+oFo2qB/cuybS9P/bcv5nM75LGmuTf80y/mMzDl/G9O/\nMqnO+PDdsG/6Qetfm75zj87tnRybd8zSY3M+SxoyPh+WZpxnrEh/Fw3rm/OO6xqaK+jayc7SAztx\nRUREREREpCOpR7ODmdlEYC9gfULKkZ8AZwB/Ad5y9/OLYscCPwBWECblOZ6Q9uRUwqyvOwHnAxOA\nHYH/dvdbzWw2cDMh5+VsQk7O4jr8mDCZUC/gEuAx4HJ3HxvXnwksBO6O65vj3xPd/T0zuwgYDTgt\np1wREREREZFyel6Hpno0O8l2hNldDwFOIUzM89fiRmZ0EXCwu+9LyF15eFz+YeALwFeAHwLHxMcT\n4/qNgOvdfTThNP5YoUAz2xvY1t3HAPsSJhl6DehtZhvHsAOB/wMuBk5w9/2Au4CTzGwbQmN3d+Db\nhMayiIiIiIhIi9TQ7BzT3L2R0MAbFJdNLw4ws2HAVsAtZjYFGA+MiKufdvflwBvAv919MaEhWihr\nsbs/XHguVm0M7gJMBYjb/Ss+z2+Az5jZRsB8d58D7AZcEZ//KGAYsA3wiLs3ufurwEtreCxERERE\nRHqW6qrOu1UIDZ3tHMWXShde/fqSmHpgdunssWY2rmT7cmVVlywrvuK7mVU76+uAJuAGwnDbxfEx\nwBJgvLu/v72ZHR7jC/TjhIiIiIiItEqNhgrh7vMA4lBVzOwUM9s+cfO+ZrZzfDya0GtZ8CgwLpY5\nANgCeN7d3wbeJfRc3hJjnyZc/4mZHWFm+xGuy9zZzKrMbDNg1OrtoYiIiIiI9BRqaK5lZjbBzL4a\n//wScLWZ3U+YQMgTi3kH+ELcrgG4s7DC3R8AHjez+4C/AWfEIbQANxF6UQs5ME4FvmNmUwnXfz7p\n7v8AniEMyf0e8NTq7amIiIiISA9VVdV5twqhobMdzN0nFz1eBIwsWX9H0eMHCJPuFJsSb7j7DGLv\nZPHj+Pd/lWw3qWjdmS1U7yPAr4ringXGltmHE1rYXkRERERE5AOqmnMyw0q7MrMJwCh3/2WZdZOB\nm9z99oRy5rr70DZibgIucfcpZtaH0Hh91N1PKYn7MPApdz8nfU9W9cWpU5NPqjnL0pNa1zem/0LT\nkJHdOyeR/eC+6VmicxIpv7c0vQ5D+3XMe/aOY3+RHPv9Px+bHPv0u+kZcXKSsg/p3TGvxaIV6QM9\nhvROTyj9Xn36ub7lOiuS4p5bUJtc5sKM/VpQnx47on96tu5nX884toPTYyeMWJIc+9tn+iTHrjck\nvQ42qPSy+5bdfld67I5j+iXHznorOZRtR6S/f2Yv6ZjfpHPmq8jI805NxlitjqpD/fL0D51hA9Nj\n5y1P37mcOvTtm34gcj5Pe2W8FvXpHyUM6ZN+/i7I+OxrTC+WnH+fqytg/GDOa9GQcRxy3kN1NekH\nbdGy9HLv/+ReldOF14qt9r2i0xpdz99zfEUcE/VorkXFvZlrWE6rjcwy8cuAPVpY9xQaHisiIiIi\nImtADc21yMwmAtsCrwJHxMW3uvuP4uODzOw0YH3gGHd/ooVyNgaui3/WAke7+4tm9k3gc8AsYGCM\nnQQMBbYENgfOAo4lDOn9OLApcLK7H2ZmLwC3AmOA94BPuHvG71wiIiIiIlJJaUc6SwV05vd4owgT\n74yNt8+a2RZxXbO77w+cGW8tGQ6c5+7jgauAE81sXeBEwiy0RxEatAVD3H0C8HtCo7Tw+JMl5W4O\nXOvuo4HBQOosuCIiIiIi0oOpR3Pt2xG4090bAMzsQWCHuO7eeD8d+GErZbwJXGRm5xIahI8Teiz/\nGYfJLjOzx4vip8f7N1iZc3MOsF5JuQvirLMArwGDcnZMRERERESoqNlgO4t6NNe+ZqD4zKsDmorW\nUeZxqfMIjdW9gXPjsqqicmDV17qhhcel74DSS/N73jtERERERESyqUdz7XsSGG1mhddid+AHwCGE\nobS/I0zc82wrZQwFXjSzKuBgoAZ4EfiQmdUBfYCdO6b6IiIiIiLSqh7YXaOG5to3kzBEdiqh1/FK\nd59lZgCY2W3AJoTrLFtyGXBxLOti4HJgF+AaYBrwEvBoe1S2PdKfiIiIiIhI96Y8mmuRmX0Z2Nzd\nz1jbdWlPn7jrgeSTakFGnqSamvSfgjbsl57wrLoq/T0w49X00eZ16SkO2WZ4+mS+T2fUoTEjL9kx\nO6e/GGd94qrk2IOv+WpybE4ezYG1HTMB8pKG9OObU4dFDenn78aJ5+/Mxem/FS7NeP4cr2bkbtwm\nI3fjGxm5G1+5blZy7D4nbpQcO2tR+pt4eL/0N9vu6y9Pjr11Vv/k2B2GpJd7+z/Sj+8mG6fngG3I\nyDWZk1swJ//e8oxzPeeSqZw8hCMyzoenMj7TR6yfkfc5I8/vvOXpr/H8pcmhWcd33b7pr/FLr6XH\nbrlJeiV6ZdS3KuN/h3cycobnnGc5OU1zJjzNyWnapza9Eu/OTy93qw3Sz9/rx+3TJfoKt5pwVefl\n0bzj2Io4JurRXE1mNgEY5e6/LLNuMnCTu9/eyvajgW8BD5rZye5+Scn6uaX5Mc3sFmBISVHz3f3g\n1dyNQrlTgJOBw4C5pXURERERERHJoYbmanL3O9Zw+2nAFjGvZeo2h67Jc4qIiIiIyFpQEX2MnUsN\nzdVkZhMJuSlfBY6Ii2919x/FxweZ2WnA+sAx7v5EK8XtamZ3ARsBpxc3Ygu9je4+w8xOBoa6+yQz\nO58wWVANcIm731Cmjj8nTC7UAHwllvFjYAzhtb/E3a8rs10vwvWdGwP9gUnufnusywwAdz+5zYMk\nIiIiIiI9ktKbrJlRwERCg28s8Fkz2yKua3b3/YEz4601G7j7AYQG6/ltPamZjQU2i+lM9gXOMrO+\nJTH7A5u4+x7Ad2Ld9ga2dfcxcbtJZrZOmacYAtzl7vsAn2FlyhSAGWpkioiIiIika66q6rRbpVBD\nc83sCDzs7g3u3gA8COwQ190b76cD1kY5UwDcfQZhhtm27AnsEXsY7yS8jsNLYnaK9cHd73P37xJm\nop0aly0G/gVsVab8eYRe1gcJPZvrFa2bnlA/ERERERHpwTR0ds00s+qI6zqgqWgdZR63VE5LscV/\nF6ZArAd+7e4XFAea2WWERu3fgGV88IeE1upb7EhCr+bYeP9Y0br6FvdCREREREQ+KGfq325CPZpr\n5klgtJn1itc17h6XQWikAewBPNtGOXsBmNn2QOk8/QtY2Vs5Jt4/QrgGtNrM+pjZxQDufoK7j3P3\n8wl5M8fHcnc0s0vjsnFx2QBgC+D5MvUZCrzs7k3AoYQGqYiIiIiISBI1NNfMTOBywnDU+4Er3f39\nhqKZ3QacB3yvjXLeMrM/AdcD3y5ZdzlwqZn9GXgdwN0fIgzNnQbcBzxeWqC73wc8a2b3AxcBv3L3\nB4DHzew+Qq/nGXEIbambCQ3ZvwOLgdfM7Ow29kFERERERASAqubmTssd2q2Y2ZeBzd39jLVdl0qz\nz+0PJp9UOdcr58T269Ux5/WCZemxNTXpFe6fkfA4J1l2U0by9C3XSw+ub0rftz8e/YFUsy0ad+VJ\nybF11R3zGjdk7FtOHXKOWf/aciPaP2jhivTfCnMSe9c3pte1fnl6wRuskx47b3n6vtVk/GTapya9\nDjnv9wF90mMXlPt5rwX9+nbMUKsVGZ8NOce3ozSmvSUAyPm3pldNRmzG+71XxsuWc571yih4QOLn\nCMCyxvQXOefcyXktBtSlBy9p6JjPqAH9kkNpak6vQ87nb05szkjMjio3J3ZZfXol1u2bHnvbR8Z2\niTGpWx40udMaXS/cNrEijomu0SxiZhOAUe7+gf+MzWwycFNM8zEa+BZwQkbZtxCudyw2390PNrNP\nu/vNa1B1ERERERGRiqGGZpHi/JVtxE0jXN+YU/ah5Zab2Ujgc4ThqiIiIiIi0t1UUNqRzqKGZhEz\nmwhsC7xKyGkJcKu7/yg+PsjMTgPWB45x9ydaKGcd4GpgMOEYn+Lu/zCzF4DLgIOA3sD+wKXAbvEa\nyGpgc0J+znGE6zvHAjXAJe5+Q+xZXQRsTZi05xhCOpLfxOWXAPOBHwAr4r4cT0iJcjJhltkPEXpn\nzzWzbeI2zcBCQl7QdeP6XeL+PAYcBkwizDq7nrt/OufYioiIiIhIz1EBV15UnFGExtbYePusmRV6\nL5vdfX/gzHhryWnAHe6+H/BV4KdxeS/gOXffG3gZ2A/4CTDV3c+LMXXuPpbQMNwsxu4LnGVmfQvl\nxHp8FyhM0rMj8Hl3v50w+c/B7r4vMAc4PMbsFvdtNHBKXHYxcEKs611AWxfJvatGpoiIiIhIhuqq\nzrtVCPVoftCOwJ3u3gBgZg8CO8R198b76cAPWyljT2B9M/tC/Lv48vL74/1rwCDgvZJtpxeVsYeZ\nTYl/V7Myzcnd8X4aUOhtfdHd3zGzYcBWwC1mBtAfmAvMBp5w9yVxvwrPtxtwRfy7NyEFSmumt7Fe\nRERERER6ODU0P6gZKP4poI4w3LSwjjKPS9UThstOK7OuoehxuZ8c6ovuf+3uFxSvjA3CQk90VVE9\nireb7e7jSrYbV/LcBUuA8e7eXBS7WUlMbZn6iYiIiIhIisrpaOw0Gjr7QU8Co82sl5n1AnaPyyAM\npQXYA3i2lTIeAQ4BMLNtzOzrrcQ2Ub7B/wjhmtBqM+tjZhcXrSvUYzTwr+KN3H1e4Xnj/Slmtn0r\nz/80MCHGHmFm+wELgGFmVmVmG5I58ZGIiIiIiPRs6tH8oJmEIbJTCQ3xK919VmGoqZndBmwCHNVK\nGRcDk83sfsJEPl9rJfZZYCcz+xlhEh8A3P0hM7uXMDy2CvhF0TZ9zOz2WI8v8EFfAq42s3rgdeBy\nQqO0nFOBy83sDGApcKS7zzOzuwnDaJ9mZUNbRERERERy9cBZZ6uac7LpdnNm9mVgc3c/Y23XpSXF\n+TzXdl1asvMN9yefVEMGd0zC+Zzk3jnv+456uzQ2phdcU5Ne4Zx9G96v3Mjq8uqb0gte3JD+Gk85\n7tLk2P1/fWJybI6GjCTcdRkJ3BsyjlmfmrRylzSml5nz/PXpp0LWubt+//TYBSvSz5t589Lf8MOH\nph+HZRnHty7xNQPok3He5ByHnDosXp6+b7UZP0l31Gdvr4zxVznfFTmxOXLqu6IxPbajvq+aMl63\n6ox9q8mIzZm/pLqqYz57c86HCppvJUlDxnnWqyY9Nuc4NGScZznn5NQDx3SJV2PLQ6/rtEbXC7cc\nVRHHRD2akZmNBr4FnNBG3ARglLv/0sxuAYYUrd4amOnueyQ830RgW3c/ffVr3bFiHee7+x9Kls91\n96Frp1YiIiIiIl1MD+zRVEMzihP3tHktorvfUfT40OJ1hd7Gdq/cqs8/sSPLL3muyZ31XCIiIiIi\n0n2ooZmp0BMJvAocERff6u6FNCMHmdlpwPrAMe7+RCvFbWRmNwPbAD9x96vi7LA/AFYQUqAcC3yO\n2PtpZgOAGe4+0sy+BRxKmFDoNnf/gZmNLdr+VeB4QqqUUwmzzu4EnE+YAGhH4L/d/VYz+wZwGOG6\n1L+4+7lmNomQGuVXwPWEa0LbSn8iIiIiIiLFeuAUrD1wl9vFKGAiYfbXscBnzazQG9rs7vsDZ8Zb\nazYHPkOYobYwYdCvgM+6+z7APODIVrY/HRhDaEjOi8suAg52932BOcDhcfmHCRMHfYWQA/SY+Hhi\nUXl7EWbUnWhmA4uWHwDUuvto4LfAem3sl4iIiIiI9GBqaK6eHYGH3b3B3RuAB4Ed4rp74/10wNoo\n52F3bwRmA4PMbAihofpqUVk7trL9TcDdhF7L35rZMGAr4BYzmwKMB0bE2KfdfTnwBvBvd19MaIgO\niuuXEGbavRcYyqrXnm4DPATg7o8QZqcVEREREZEUVVWdd6sQGjq7eppZNe1qHWH4amEdZR6XUzy3\nY1Ur5RaXU1t44O5fNbOtCb2iU4CPArPdfVzxk8ThuMXPtcrzmtlmwNeBHd19kZnNKKlnFSv3D/QD\nhYiIiIiItEINhtXzJDDazHqZWS9gd1bmmhwb7/cg5MhM5u7zgGYz2zQu2gd4DFgADI/L9gIws0Fm\ndra7P+fu5wHvAo1x3Tbx/hQz2z7hqYcCb8VG5k7AZoRG7vtVA3aJZe4J9M7ZLxERERER6VnU0Fw9\nM4HLCUNN7weudPdZhZVmdhtwHvC91Sj7eOD6OPS1FrgR+Hso1qYQUqg0uft8YH0zm25m9xCG4b4L\nfAm42szuJzRKPeE5nwIWmdmDwGeBy4BfFK3/K9DXzKYSJkCavRr7JSIiIiLSM1V14q1CVDV3VAb6\nLqY4P2aZdZOBm9z9djP7MrC5u5/R2XWsBGZ2mLu3msJlzB8eSD6p+vRZ+++GnATjtRlJjHtlJGVf\nuiL9OHTU0Pv/HFyfHLukIb0S7yxPP2g5ybLv/tIv2g6KPjH5q8mxKzKSe/euSa/w8sb0cgfXpZ2U\n7yxP/62woTn9+XPOx2XL0o/BxoPT32zz69PPm2F9G9oOinLOsTlL068uWa9Pejb0h59Jr8QWW6bX\noTEjIXv/3ul1qM84d3OSwtd10MU7KzLqkPOZnnPu5MTmJLzPi02vREPG517Od1tOuTnHrC7js3fe\ngvRy+/fvmC/YnPouz/h+rcnoLuqoczKn3F4Z9W3I+N/s3o+PWfv/TCbY8rO/7bRG1wv/9/mKOCa6\nRjMqzo/ZEjMbDXwLOCG1XDO7hVUn1gGY7+4H59Vw7TOzOsK1nB2aK1REREREpDtpzmnBdxNqaEYp\n+TGBLYBFhOshWypnEuGaxy0J6UvOIuTCHAl8HHgFuCYOQ+0PTIo9pVOAvwH7xu0PAl4HrgE2Lond\nH7gQeJMwNPZtd59kZucTrhGtAS5x9xtib+xbwM6E3J4/IqQ2GUq4BnQRYRjw5oShume7+z0t1Odb\nwHZm9gt3PzH54IqIiIiISI+iazRX1V75MYe4+wTg98DRRY8/SejdvCvmyfwMcG7RdgvcfT/CNZGH\nthL7I+AowiyzOwKY2VhgM3ffm9A4PMvM+sb4hljuM8CecT+eIaQ/ORJ4w93HE/J5XthKfX4CuBqZ\nIiIiIiIZlN6kx9sRuDPmxiROjlMuP+YP2yhnerx/g5WpSeYA6wHzgF3jtZ5NcVnB/fH+tTZiN3P3\nJ2Md/0J4HfcE9og9kRB+RCjMVFtcn+eK6jOIMDvuWDPbKy7vG4fIlquPiIiIiIhIm9TQXFVH5Mcs\nzZV5JKGncmy8f2w1Y0vrUg/82t0vKF5pZm3Vpx44391vaGO7yvl5RERERESkK+mB/0lr6OyqOiQ/\nZomhwMvu3kQYjlq3GrFvmtnWZlYDHBCXPQIcZGbVZtbHzC5OrM8jwMEAZraBmf2gldgm9OOEiIiI\niIi0QQ3NVc2k4/JjFtxMaBD+HVgMvGZmZ2fGngXcAvyJ0OhtdPeHCMN7pwH3AY8n1ud3hByaDwG3\nsXK4bDlvAHVm9vvEskVEREREpLqq824VQnk0o66UH9PMDgD+7e4zzewyYKq7X7+261WgPJqB8mgG\nyqMZKI+m8mgWKI9moDyagfJoBsqjGSiPZtAd82hucdSNndboevG6IyrimGgYJGs3P6aZTQBGufsv\ny6ybDNzk7reXrKoC/mBmCwmT+iTltTSzTYEN3X26mV0I/NzdX86s74HAYe4+saWYOTfMamnVB4w6\ndmRybM6X5vxFyaE0ZXyY7bTRiuTYdzP+UZ4zN/3zYLfN0v+pzvlQz/myqAQ5jcc/T/zA26tFB1y1\n9idV7ojXIqfMpUvTg3PeP0N7p7cA5i5Nf//MeC39RN9sWHIoK9LfarydUd89t0s/Dq9nfJZVZ/0T\n1zH/g+TUoaM+c3J+jOuoOuS8h0asmx47Z1HH/CjZ1JhehwH90svtk9HAWrAsvdxhfdM/eOr7p783\nFy9Or29txn/Q1Rk/qvfu1TEn5bKMHxAzPtazDMr4Qe6Vd7rhoMsKmg22s6ihCbj7NEKOzJxtDm2n\n575jNba5E7hzNZ5uX2AAMN3dT1uN7UVERERERNqkhuZaZmYTgW2BV4Ej4uJb3f1H8fFBZnYasD5w\njLs/0UI5k4DNCblAxxGuJR0L1ACXAHcDk4AVZvYK8HXgZOCw1rZz9xvMbDvgWuBd4MV22XERERER\nkZ6i53VoajKgCjEKmEho4I0FPmtmhR7WZnffHzgz3lpT5+5jCTk1N3P3vQm9mGcBi4DJhOGyf0rd\nzsz6At8FJrn7fkDG1S8iIiIiItITqUezMuwI3OnuDQBm9iCwQ1x3b7yfDvywjXKmx/s9gT3MbEr8\nuxoYvgbbbQM8FJdNAT7WRj1ERERERKSggmaD7SxqaFaGZlbtUK9j5bXYzSVxrakvuv+1u19QvNLM\nVne7qqL6qBdcRERERERapUZDZXgSGG1mvcysF7B7XAZhKC3AHoScmSkeIVzbWW1mfczs4ri8idZ/\nXGhpOwd2iY/HJ9ZBRERERER6KPVoVoaZhCGyUwmN/yvdfVahB9LMbgM2AY5KKczdHzKze4FphJ7S\nQsLBacA1ZvZ25nbfB642s1OBlwg9riIiIiIikkJDZ2UtqAMa3P1S4NLiFa3lqizl7pNK/v7A5EHu\n/jdgo/jnb+P9jITtnoJDVTwAACAASURBVGDlNaMiIiIiIiKt6rENTTObAIxy9w9kcjezyf/P3p3H\nyVWV+R//dJLuToAkJCRssgbhGZBlQJasJEAUHMAgRMEgIYwLo0ZAxREHxYgDyCAKDos/BjDAIFuG\nfSQwAgk7YRNE4WHRsCXsWcja3en+/XFOkUpR1X1Od1fTSX/fr1e9uvrWueeee+6tW3XqnHseYIa7\n397J25xLCGWyBXArcBtwGHB8Rh43AoNLFi9y9wll0r7r7kPaW94K2z8EmNhaI3i7r26dnN+KxvRt\n98r4JWij/hkB59OLgC9K78ztkzEwfaPSI9qK5xeml6ElI+7z1v3To9M3ZAR7zwkMn3MsemUk/uzl\n30pOe9c/X9R2ouigjHxz6mFFYtrmlur8OrrB+hnHLOMce3Fx+rnbO+P984mh6eWtzTlxquTFN9PL\nu/FG6RW8oqk6x03y9euXfiwWNqSn7ZPxra22d3rapoy3RU7alRlpe2eU972V6YmbM8owaEB62oZV\n1bn+5uSbs299a9Pf9DmfVzneXpp+3IYOXPcuUlX6yO7WemxD091nfoyb3xv4g7t/H/h+zorufnh1\niiQiIiIiItI5emxD08ymEHoXXwOOiotvdvez4/NDzewkYChwXBw+Wi6f3Qn3Mq6MjyMJsSZ/Bwwi\n1PF33P2ZuMog4N+A9c3s7+5+flFevYFLgGFALXCau98Tw43cC3yG0OlzBSHu5irgAEKcyy2ArQjh\nSH5Q3JA2s10Iw3KbgQ+AY4GLgUvc/W4zqwf+ChjwM8IERL2BC9z9mrj+lcD7wMsJ1SsiIiIiIgU9\n8B7Nnj7r7LaEBtuY+DjSzLaLr7W4+3jC/Yqnll8dgOOAi9x9HHA2sClwEjDT3Q8AvgmcW5R+ASEe\n5nXFjcxoEjDf3fcjDKk9r+i1+e4+mtAAHOzuhcbgLvH1T7j7Z2Mea4QnAc4nND7HESYcOhG4itAo\nhtBYvQMYAWzt7vsC+wM/NrN+hIbstLg/q1qpCxERERERkR7f0NwdeMTdm9y9CXiQ1ZPe3Bv/ziH0\n9FVyC/ATM/s58La7Pw+MBP4l9kReBAxMLM9I4LC43gygn5kVbmqaE//OZ3Xok7eK8r4bwN3/DHyi\nJN+d3P3Rov3aHZgJjDazWmACYXKgkcDwuP07CefHZsBOwENx/VmJ+yIiIiIiIgA1NV336CZ67NDZ\nqIUQxqOgjtXzkbSUpCsrDj3dCziEEDrkZKCBMFz24bYKYGa3EBqLV8X1znD3a0rSABTP1FL8vFD+\n1B8N6oBmd28ys7sIvZmfcveHzWw4cJm7r9EjamY1rK6Xnv7jhIiIiIiItKGnNxqeAkaYWR8z6wPs\nw+rewjHx73DguUoZmNlUwlDWq4FfE3oLHyUMfcXMdjKz71Va390nuPs4d78srjchrrexmZ2ZsS+j\n43q7Aq+UvPasmY2Iz8cCj8fnVwGns7qX8lHCvam9zKyvmf1noZjAnvH5fhllEhERERGRXjVd9+gm\nenqP5lzCUNLZhEb3pe7+SuxBxMxuA7YEjmklj5eAG8xsEWEyoOOAZcB0M7ufcB/lCYnluR7Y38we\niutNy9iXxWZ2K+G+05NKXjsBuNDMWgj3iB4H4O5PmNlg4Pfx/4fM7F7gYUJPaSHOw78DvzOzE4G/\nEXpFRUREREREyqppyQm0tw4xs28Aw9z9lI+7LB1lZtOAd939gsz1diBMZDS+M8tz4J0PJJ9UKxrT\nf3XpldH/vl6f6sTRzIlTlxNHM0djxnRM3SGO5geN6RWRcyzqelXn2lWtOJo5dbZ+bVpNLM2o26aM\n6sqKfZqRb7V+ZO3bO70Q/fqkn2U5Md9yYgAuXpReho03yoi/mnF9qtax6A7nw7pchlUZF8lqxdGs\nVnlz5OxbQ/pHW1asyZx4lzl1lnPurG1xNBszjkX/+vTy/u9nR3efLrxWDPv2jV3W6PrbhYd3izrp\nkT2acRjpD4HjM9a5ERhcsniRu09oY72DgG3d/eIyr00HZrj77anl6AxmdgohzMpnCKFOOlX/xC/J\nAA2r0j8tchpNvWoyEmdE0F25Ij3fxowPwo3WT8/33eXp5c2ps8H16S3YZU3pDZyVOcGnk1NCfUbj\nIkdO43FmlRqlAxLfQ1l1m/HFoSnjx4y6jE+RnC+zOT/U5Pzo8NgjK5PT7rDHeslpU48ZwC7bpH/b\n+svC9AEkfTN+YFu6Mv18qK3SN4VqNcaq9aU+xwYZ58OCZekFrq9LT7tBxo8qyzKuJcvS30LU1abn\nW5dxTX9/cXoZBg9IT5tzPuS833J+BMr53M65/uY0jHOuvznX9RxZ3+Ok2+qRDc04Sc92bSZcc53D\n27mtmW2n6hh3n5aZ/hfx6Q87vzQiIiIiIrKGbjQbbFfpkQ3NrmRmU4CdgdeAo+Lim9397Pj8UDM7\nCRgKHOfuT1bIZ3fCPZMr4+NIQkzL3xF6J/sQZrp9xsxeBP4AvA0c6+47xDyOJYRvGUwIn3IncAWw\nNbACmAy8CVwCDANqgdPc/R4zmwxMJcyM+7S7f7vjtSMiIiIiIuuinj7rbFfZFphCmMl2DHCkmRV6\nVFviPZKnxkclxxHupxwHnA1sSpj0Z6a7HwB8Ezg3pq0F7nD3M4DXzOxTcfkEQgOz4FjgTXcfBfwX\n8HlgEjDf3fcjzJx7Xkx7MnCEu48GHjezftm1ICIiIiLSE2nWWamS3YE73b0JwMweJPQsQpj1FmAO\n8Isy6xbcAlwcJ/C5zt2fN7ORwFAz+0pMU3xD0Zz490ZCr+nLwKcIM8p+I762B3A3gLtfG8t2MTDG\nzEbHNP3MrA64BrjJzP4buMbdl2fVgIiIiIiI9BhqaHaNFkK4kII6Vs970lKSrix3v9vM9gIOAa4w\ns5MJw1i/E+85LdUQ/95ECJvyLKGx21II30IYelvaq90AnOHu15QsP8vMrgYmAveY2b7u/l6l8oqI\niIiISM+lobNd4ylghJn1MbM+wD5xGYShtADDgecqZWBmU4HB7n418GtCL+mjhOGtmNlOZva90vXc\nfR6hAftl1hw2C/AYsH9c/xAz+7eY54S4bGMzO9PMepnZGYQhtb8i9IpunVkHIiIiIiI9UktNTZc9\nugv1aHaNuYQhsrMJjftL3f2VQs+imd0GbAkc00oeLwE3mNkiwmRAxwHLgOlmdj/QGzihwrq3AieW\nyf9aYLyZzQYaCfdsvgXsb2YPxTynuXuzmX0APBy3/zfgT+m7LyIiIiIi3YGZ/ZrQydUCnOjuj5VJ\ncxYwIs4P0y5qaFZfHdDk7hcCFxa/4O5TUjOJYVLKhUo5okzabUr+Pwc4p8J2J5fJ82tl8vwFrd9D\nKiIiIiIi5XSTcaRmNhbY3t1HmNmOwOXAiJI0OwH7Ejqi2k0NzSoysxGEWJXHx/8PArZ194vLpJ1O\nGNr6z4TwI8UWufuENrY1ABju7ncllu1xYKK7z01Jn7ONXQY1tPbyGh54K33y2pyg7PPeTU7KqowI\nzcMzAq3PX57+9lqwPP3qs/um6fWbc01b2NA7OW1DRoDmhubuM4QjRVNGeQ+6/FvJaWf+80XJaSdc\n8c2kdDllzQlEPqRf+gHeYWD6+fj7Wenl/eSn6pPTNmXs2ybbp19zcuos5z0xb3n6e+2tt9IzHjAg\nvX43GZCe7+LG9CtJXe/0SlvekBHEPuNitn5tehk+WFmd69N7K3KORXp531uenu/ijE+AxvSPNgb0\nTS/vilXp+S5akp52yID0tDnXhyXL0tPmqK3LSJt+eaAp47qTMxFpzrWvKaOCtxyQfkK88GY3aZWt\nmw4AbgZw9+fMbJCZDXD3xUVpziVEw5jWkQ2poVlFcZKe7Yr+L9cjWbrO4e3c3B7AZ4GkhmY33oaI\niIiIyLql+4Qd2RR4ouj/d+KyxQBmNoVwu9/cjm5IDc0uFA/czsBrwFFx8c3ufnZ8fqiZnQQMBY5z\n9ycr5LM7cBHhXs2VwJGEYbkDzOwFYCQww91vN7NDCD2XU8zsN4SucScM6cXMNgcui/+vAr7m7q+a\n2UuEXztGAQuBg4u34e6XdFa9iIiIiIjIx+LDFrCZDSbMAzMe+ERHM1a/dNfbFphCmG12DHCkmRV6\nPVvcfTyhq/rUVvI4Drgo3px7NuFXiHMI8TXLNgDjWOuRhBlvfwQUYpz8HDjX3Q8AzgN+EpcPA650\n9xHAIGDXtrYhIiIiIiJl1NR03aN18whth4LNgfnx+f6EDq/7CSES94gTB7WLGppdb3fgEXdvcvcm\n4EFgt/javfHvHFY3BMu5BfiJmf0ceNvdn0/Y7k7Ao+7e7O6vEWaOhdD4nGZmswgN0I3i8sXu/kx8\n/jowMGEbIiIiIiLSfd0FTAQwsz2Aee7+AYC7z3D3ndx9OPAF4El3/257N6Shs12vhaIuasKQ1eai\n1yjzfA3ufreZ7QUcAlxhZieX2UZBbfxbU7QdWP0jQwPwRXefz5pKpwboNgPLRURERETWKt3kHk13\nf8jMnoihDJuBb8fb+xa5+02duS01NLveU8AIMyvU/T7AmcBhhKG01xPi2jxXKQMzmwr8r7tfbWY1\nhF7Sd1l9PBcDm8Xno+NfB74b029FGMIL8Gjc9sVmtj+wqbv/vsKmm9E5IyIiIiKy1nL3U0oWPV0m\nzVxgXEe2o0ZD15tLGCI7m9CreKm7v2IWRsqa2W3AlsAxreTxEnCDmS0iTAZ0HGE89dlm9jpwFXC1\nmR0B/AnA3Z8xsz8DDwMvFJYTpi3+nZl9mdATOqWV7T5Z2Ia7/zJvt0VEREREeqju0aHZpdTQ7Fp1\nQJO7X0iYwfVD7j4lNZMYJqU0VMpbrO7FhDL3eLr78RWyPLBM2iFFzycWvbRZaVoREREREZFiamh2\ngJkdBGzr7heXeW06McRI/H8E8EPgI409MxsADHf3u0qW3wgMLkm+yN0nxNfnAju7e5thjs3sWkLI\nlOVlXjsFmB3jfnbYXxamRybOCQq8rCn9p6ABA9PT5gyZ//PbtW0nimrr0jNue4Kw1f6UUYYcB221\nIjltTgD3ppb0nVvVnJ62f216pOqc82xFRhkGZJRhwhXfTE57y7EfuaSUdfD09DyXN6Ufs4UN6Wmf\neb8+Oe2W2ycnzbL9gMbktAPr0qOhv7U8/SPyLze8lZx2x4mbtp0o2nLz5KRZAe9zrMoICt8nY4rB\n3hmB6ZszyrBiVfp7OKcMOVoyrjkNGdecfnXpGb/7fnraDTdMP3AZh4I+vdLLUN83p7snPd+mjPqt\nTf/6kvW5nXM+NOVUcJXkHDdq0yti/rL0a+rAdXAKypZuco9mV1JDswNiz2Jq2oeB7Sq8vAfwWcIs\nUMXrHN7+0n1k+0e18tovOms7IiIiIiIiamh2QJyhaWfgNaDQkLvZ3c+Ozw81s5MI908e5+5PVsjq\nQmCAmb0A3A5cRhhmuwr4mru/ambHACcQfkz8lbtfF9edamb/RDiWBwJHECYAGkoYPnuOu19W6P0k\nhC+5AugNvAIcG7c3A7gP+D2wPrAe8B13n2NmLwH/DzgUqAfGF6ZBFhERERGRNvTAHk3F0ey4bQkT\n6IyJjyPNrNBz2eLu44FT46OSc4Dr3P0S4OfAue5+AHAeIV5mf+A0YF9CY3JS0brPuvu+hEbjAXHZ\nLsDhhNlkv1OyrTMIDdUxhICtexa9tilhcqL9CDE1fxiX9wGej9v5e9F2REREREREPkI9mh23O3Cn\nuzcBmNmDwG7xtXvj3zlA6vDUkSEb+zGh1/EdYEdCQ285sByYUJT+gfj3DaAwov1hd18VZ6AtHeW+\nB3AigLv/ayxz4UavtwgN25MJPZdLi9a7P/4tl6eIiIiIiMiH1NDsuBbWnLC4jtX3yreUpEvRAHzR\n3ecXFpjZp6nc+9xU9LymlWUFq1rJ6yTgDXc/xsz2BIpDmLSWp4iIiIiIVJIzg9Q6Qg3NjnsKGGFm\nhbrcBziTMGx1DHA9MBx4rpU8mll9LB6N615sZvsThrPeQujl3IDQ4LuNMHlQezwG7A9cZ2anE+7L\nLBgCPBOff4HQaBYREREREcmiezQ7bi5wCTCbMLz0Und/pfCimd0GnE6497KSJwn3dp4MTAMOM7P7\ngJ8ShsEuJdyj+UdgVtxGxtzTa/gp8HUzm024v/TeoteuBL5nZncRGrybmtlx7dyOiIiIiIhAaHV1\n1aObUI9mx9QBTe5+IWHm2A+5+5TUTNz9WWCzokUHlknze8KMsMXLtil6fnKZdZYA25SkXQKML0la\nXNYdi57fGv/+rrXtiIiIiIiIFFNDswIzOwjY1t0/EjndzKYDzwLfBI7PyPNGYHDJ4kXuPqFc+o4w\ns22AGe6+Z1tpM/OdCgxx92mV0ixYmR4BOycocE7Q5camttMUZGTL4A3Sy5sTNLwho7wD+6Wn7VWT\nXt7nF9cmp80JMP5BY3V+Wmtork6+zS3p+7Yy4xjnnL8HT/9m24mA/53ykctTRaMvmZqcNmcG9qWN\nGcHm69PzzQla/sQ76Rn3yjhtcuph68M2aztR1JQRvT3nfOyXcW1Y2FCde4VyyptTvxnZsirj3Old\npV/++/RJL/CKVdUpw+BB1fkM6pNRZ8szzrOc29cyDnHW+ZBThlUZx60+/eM169pXLQ0Zn205+vZJ\nv/YtWVGVIny8dI+mFLj7zDaSPO/u27WRpjTPwztQJBERERERkbWCGpoVmNkUYGfgNeCouPhmdz87\nPj/UzE4ChgLHufuTFfKZBrzr7heY2c7ABe4+zsxeAm4GRgELgYOB9QnDVAcRjs133P0ZM3sZ+C9g\nIvAS8ATwReBFdz869rAuAf6BMKHPccCCojKMI0xQ1EgIT/LPhEmAJrn7y2a2BWHCob0J95sOA2qB\n09z9HjMrxPR8E5gP/C27QkVEREREeqqcYRzriG50u2i3tC3h/sUx8XGkmRV6MVvcfTxwanzkGgZc\n6e4jCA3LXQnhRWa6+wGEYbnnxrS9CRMG7UVomM51972BMWa2YUzTJ5bnJ4SJg4r9FjjS3ccSGqCT\ngKuAI+Prnweuicvnu/t+hJlvz4uvnwV8xd0/Q2jIioiIiIiIVKSGZut2Bx5x9yZ3bwIeBHaLrxVm\na50DWDvyXuzuhVAirwMDgZHAv5jZLOCiuKxgTpxp9i1CSBWAt4vS/DH+fbi4PGY2mNAofq2o3LsT\nGpaFobyHxP9HEma8nQXMAPqZWR2wjbs/HdPObse+ioiIiIj0XL1quu7RTWjobOtagOKjVcfqe9Bb\nStK1lkdB8e3gpbfe1wANhOGyD5fJp6nC80L5ehX9X1q2j+yDu79nZq+b2V5AL3d/w8wagDPc/Zri\nDZtZ8a3p+nFCRERERERapUZD654CRphZHzPrA+zD6t7EMfHvcOC5VvJYzOrQJaPb2N6jhCGrmNlO\nZva9jLIWyjMC+GthobsvAFrMbKu4aCzweHx+FSEsy4yi7U+I29/YzM6My9+woAYYl1EmEREREZEe\nr6Wmpsse3YV6NFs3lzDUdDahUX6pu79iFkammtltwJbAMa3kcSPwv2a2N2ECntb8JzDdzO4n3Jd5\nQkZZ+5rZ7bE8Xyl57evA782sCXgZuDYuv40wyVChoXk9sL+ZPRS3Py0uPzWmeYUwOZKIiIiIiEhF\namhWVgc0ufuFhF6/D7n7lNRM3P0Vwuy1BT+Py4cUpZlY9PoRZfLYpuj5nqXPY8P3Fne/vWTVPWO6\nByjfmzoKuM3dF8Z0TcDXymx/JtBWuBcRERERESmnB44jVUOzDDMbAfwQOD5jnRuBwfHfwUBf4Dl3\nn1CSbjowo0yjsKMmmdk27n5BSmIz+xlwIGUath21fGV6QN76uvTu/Zygy7UZZ3ZzenH5oCH9KpER\nkz0r7dLGnADY1QmenlNneWkzCpFxwc4pQ47m5vTy5pRheVPazo2+ZGpyng98I+nSkJ1vVpD1jDpY\ntiw98Qbrpxeirnd6vjlBy3MCkefUw7z56VHhP7llennf/SBj3/qmp80JNt8n5z1cpZFgOde9nH3L\nOR+WrkwvRH1t22kKGtNPHfr0Tk/bVKWDUZfxuZ3z3qzN2rf0tL2q1Gio1jwuOdednO8kOZ8BOcet\nLuNcl+5LDc0y4mQ827WZcM11Dm87VXW4+5QYrzNnnZ8CP61OiURERERE5EPd6N7JrqKGZhWY2RTC\ncNnXgKPi4pvd/ez4/FAzOwkYChzn7k9WyGca8K67X2BmOwMXuPs4M3sJuJkw9HUhcHDJelcThrpu\nRwh/YvH5Se5+h5l9CfgeYfbaJ4AfAQ+7+25mtnks96bu/o6ZPQ38K+E+z2ZgR0KP7M86VEkiIiIi\nIrLO6oGjhbvMtsAUwmywY4AjzazQS9ri7uMJk+yc2o68hwFXuvsIYBCwa+EFMzsZeMXdr4qLtnT3\nfwJOBI43sw2AM4Hx7j465rUPsNjMNiQ0Xu8DhpvZUOBdYCWwd9yfEcB32lFmERERERHpIdSjWT27\nA3fGCXYwsweB3eJr98a/c4BftCPvxe7+THz+OqHXEuAAYCviJEDRAyXpdgBedPclcfmsWNb7CQ3O\nUcD5hAZlL8KMuwBPuvuyuC/tKLKIiIiISA9VrRtwuzH1aFZPC1B8RtURhp4WXqPM83J5FBTfFt1U\nkq6wnSHACtacYbapJF2lcs0ixATdHrgV+BSh0VloFJduU0REREREpCw1NKvnKWCEmfUxsz6E3sKn\n4mtj4t/hwHOt5LEY2Cw+LxeepNR1wFeBi8ysX4U0LwDbm1n/+P9Y4HHgobiNFe7eTGiQ7gE8mrBd\nERERERGppFdN1z26CTU0q2cucAlh6On9wKUxpiYAZnYbcDoxrmYFNwITzOz/gA1TNuruzwNXE+7D\nLPf6UuAHwEwzux94yt0fiENp1wcei0mfBZrdvSFluyIiIiIiIgU1LTnBciSJmX0DGObup3zcZfk4\njL7lgeSTqlpxNHtXKcZitWJj5qTNid2VM5P2gLr0Cs6ps4asWJPpafv0qk7cwhzVij3aJzHfnLqt\nVhzNrLhzGfW1ZOnaFUczJ9+cc+H1eekV3B3iaGad5xnXspzzLEe1yrC2xdHM+czM0Zhx003OvuWc\nZ9WKlZrzuZ0Ty7NqcZ+7QRzNanW03f25Ud2nC68VW//yni5rdL1y8v7dok40GVAnM7MRwA+B4zPW\nuREYXLJ4kbtP6MyydZV33km/Um+1RfrVN+MzM0vOhS/ngztHv7r0a8/yhvQC53wALG5I/6axQW36\nMc75st6c8SHfmLFzy5dXp9HSlHE+DOmXvnMLE49Fzrmb03jMaZT+/r7JyWkff7cuPW2v+uS0OV8O\nl1Xp/bM8o9Gf86Vz883SEy9amZ7vepVuriijO3zxrdaPOtXat5zrXu+M8yHnXK/PaOw2ZZy/OY3H\nnM+2lU0ZdZbRMF7RkF6G9dIvO1k/jOacZzk/qudcS6qVb845Wa33vHRfamh2Mnd/GNjOzA4ys2+6\n+8VmNtHdZ7Sy2mBgqrs/21b+ZvZLwrDWN4Ft3f3izil5GjObCgxx92lduV0RERERkbVVSw9sPauh\nWSXuPrPo31OA1hqaHc1fRERERESk21BDswIzm0KYkXUIIdTHqcCXgZ2Ao4Ejgb2BvsBv3f1SM5sO\nNAAbAbcBOwNvAbvF4bFfAq4AtiBMvDPN3W9PKMtXCMNxXweWA8/G8u0M9CZM6HNlTPsCYTbbY4Cj\nYhY3u/vZJeU7KpZla0JIlMmEXtJLgGGEcCqnufs9ZnYAcF58fT7wt+SKFBERERHp6XLux1hHaNbZ\n1m0PfB44C/gR8IX4/DhgrruPJoQqOb1onffd/YjCP+5+DuF+y8MJQ2TvcvexhEbnz9oqgJnVEGaQ\nPSCW5ZMlSW4EDo1pdyXMdjsQmBLLNgY40sy2KynfscCb7j4K+K+Y9yRgvrvvBxxGaFwS9/kr7v4Z\nQsNbRERERESkIvVotu5xd28xs/nAM+6+yszeAuqBwWb2EKGHcGjROnNayW8BsFeclbaZ0LPYlo2A\nD9z9bQAze7Dk9QeBy8ysDphAGKK7O/CIuzcVrbNbSfn2AO4GcPdrY7qLgTFmVojZ2S/mu427Px2X\nzQYyppEQEREREenhdI+mlGiq8HwbYDtgrLs3mtmSotdaizs5idCrOSb+fTyhDDWERmnBGr3Q7t5s\nZvcShvkeTOjdHB3XK6gryqNQvlWlecXXznD3a4oXmlnF7YuIiIiIiJRSo6F99gRei43MzwO9Y89f\nJYV6HgL83d2bgcMJDcC2vAcMNLMNzawWGFUmzY2EeyyXuvs7wFPACDPrY2Z9gH3ismKPAfsDmNkh\nZvZvwKOEXlHMbGMzOzOmfcOCGmBcQplFRERERKSgpgsf3YR6NNvnj8D2ZjYbuBm4HWgtzMhTZjaH\ncF/mrWY2HLgceN3MTmttQ7HHchphyOpcQmiTUvcAVwOnxXXmmtklcZ1ewKXu/oqZFa9zLTA+7kMj\n4Z7Nt4D945Dg3sC0mPZUwpDcV4DXWisvwIq304O5NW2+XnLaHH0zgqfnWPxBetr6jHhcS5alp12x\nIj1oVa/e6Vcb2yQ9KOSzr6f/RrX+eunHoiYneHpGLLec+Jw5cb7qMq6gOwxsbbDDmp55P+3kWdpY\nnZiQObExJ+17ZXLaN186Njnt5PvSY26++Eb6Ad5pm+SkvLs8PZhcToDzoX3TT953VqSfZNv0T8/3\nT6+lv9kGDUpPm1MPGW9L+lTpZ/FqxfUbVJ9+PX3t/fSdGzwgvQyLl6anrU1/u9G/Pr3Scq5RQ/ql\n19nbS9Pfm3W1GbGRc07KDDnnTrVihud8BuTUQ857Myem6YC+6flK96WGZgXuPr3o+e2ExuQaz4v8\nuo31DzCzg4DPufuuRXE1r45JiicTwsxmURRX090vJzRMK5W1kZJJetz9QuDCkmVTip43EHpBMbNT\ngK3c/Q3ga2XynwnMjGmnlm5LREREREQq69UDx5GqodlF2oqraWZ7A/8R//1H4HdmthS4zt1b6y3t\njLL9opr5i4iIEnjuIgAAIABJREFUiIhIz6KGZqKujKtZ2qNZpiwvE0KSTAReAp4Avgi86O5Hm9lu\nhN7MRsLopC8CA4D/BpYAFxB6Yf8AvE0I4zIDuAPF0RQRERERkQ7qgZ24HfKxx9WMegNPAnsRJgea\n6+57E0KTbAhsDHwnxsN8kNAQhhD25Og4/LcWuMPdzyjKV3E0RUREREQ6WU1N1z26CzU08zzu7i2E\nXr1n3H0VoYeyOK7mHeTH1XyQ0LOZElfzw3xjWd5i9YyybwMD47Iz40Q/Xy7K92V3f6+Vso0EDos9\nqjOoHEdTRERERESkIg2dzdMd4mq2VZYa4HzgbHefaWYnAxtUKEu5/xVHU0RERESkE3WnnsauokZD\n5+jKuJophgAvm1k98E8Z+SqOpoiIiIiIdJgamp2jOK7mdqTH1fwf4FAzuxtYSkJczUT/SYjveUN8\nfixhSG1brgeWxCHAtwH3x+WFOJq3kRBHU0REREREVqupqemyR3dR05ITXVkkwV1v/CH5pDrr6ZT2\nb1DXOyNI9IrkpFmGbZgeSvmDxvTfcZoy3oYb1adHUs4JRv6Xeenltc3Sy7C8qTq/Z/Xulb5zQzKC\np7+4OH1gQU79/u2vK5PTbrl9Whn61ad/mOSUdfjQ9DfQv+7amJx2009ekZx23KXfTk67ff/0Mjz6\nRm1y2g37JyfN8s576Qej/4D098+iRenvy3/cMj3ta0vT77Lpk/G+bGpOP3+bMqLY9+mdnjZHznto\n2bL0xFsOTj8Wby9N37mBfdPzXbEq/TxraGo7TUHOsViaUWcDN2g7TXusaEw/J6v1Xb6+T3o95JS3\nWu+LVemnGf3r0hMvWJa+bw9MGN19Wlat2O7i+7qs0fXyN/ftFnWiezS7ATM7CNjW3S82s4nuPqMk\nrmaxzYHDK4U+qZD/tcBx7r48Y53pwIw4Q62IiIiIiLRTN+po7DJqaHYD7j6z6N9TCA28OZS5HzLO\nCJub/1HtLpyIiIiIiEgmNTQ7gZlNAcYSJuH5FOGexi8DOxFiWB4J7A30BX7r7pfGHsMGQuiR24Cd\nCWFJdjOzGwlxNa8AtgDWB6al9C6a2Q8JEws1A7e5+5lmNjfmfwEwD/g0sBUhpuaTZvYbQmiTvwAG\nHFWUX2/gEmAYIfbmae5+TzuqSURERESkR+qJPZqaDKjzbA98HjgL+BHwhfj8OGCuu48mhDE5vWid\n9939iMI/7n4OsMjdDyeEO7nL3ccSGp0/SyzHycAoQsNxQZnX6939QEIIlMlmtgswmtAQ/iVhBt1i\nk4D57r4fcBhwXmI5RERERESkh1JDs/M87u4twHzgGXdfReihrAcGx5lc7wCGFq0zp5X8FgB7mdmD\nhJ7NjRLLMYMwC+7XgavLvF6YSfZ1wky0OwKPuHuzu/8ZmFuSfiRwWByyOwPo10boFhERERERKVLT\nq+se3YWGznaepgrPtyGEPBkb42wuKXqtoZX8JhF6NcfEv4+nFMLdv2lm/0DoBZ0VJxWqVM6a+Cie\nBqx0RqwG4Ax3vyZl+yIiIiIiIt2ozbvO2hN4LTYyPw/0bqNHsHBMhgB/d/dmwj2XbfYimtlAMzvN\n3Z9399OB94EBbaz2MvBpM6sxsx2BrUtefxSYEPPf2MzObKscIiIiIiKyWk1N1z26CzU0q++PwPZm\nNpvQs3k7cHEr6Z8ysznA/wCHmtndwFLgdTM7rbUNufsiYKiZzTGzewhDYt9vY53HgRcIDcqTgL8C\nxRHLrgeWxKG/t7F66K2IiIiIiEhZNS0tXRY7VLohM6sHjnT3K81sfeB5QkzPjJDMa9rvDw8mn1Q5\np1+1fqHJKUPvjJ9mcgKXVyvock6A8T4Z+9aUEaC5WvXbK+N8aMwI9l6tMuQci2rkmRNAfsP+6fn2\n7Z2eb0NzeoXN+tqFyWmH/3Zqctqc8zynfqt1PlbrGllbpetITvD2ar3Xcq5POfnmyKmHnGORoyHj\nUzznc6VausO5k/PerNZ7KCdtzvUhp7w576Ec1fqece8/jepGfXiV7XjZfV3W6Hruq/t2izrRPZqd\nzMwOIjTULjazie4+o5W0s4Cp7v5s5jb2Bv6jZPFw4BR3z5oV1t1XmtleZnYC4V7Nn3SkkSkiIiIi\nIqKGZidz95lF/55CmKm1s7cxBxhXvCzGyry0nfl9p8OFEhERERERidTQLGFmU4CxhMl4PgWcCnwZ\n2Ak4GjiSEHOyL/Bbd7/UzKYTZmfdiHAf486E0Ca7mdmNhBlgrwC2ANYHprn77QllmQvs7O5LzOyX\nQKHnczQhTIoB57j7ZUXrbAncBBxKuJ/y/8Xn9cB4YAVwCTAsLjsN2ArYyN3PNrN/A0a4+6FmNgL4\nBmFm2nnAp2Pao939yaQKFRERERHp4brTJD1dRZMBlbc98HngLOBHwBfi8+OAue4+mhB25PSidd53\n9yMK/7j7OcAidz+cEJ7kLncfS2h0/qyD5duFMBPtYUBxb2Rf4Crg6+4+n/BDwvPuvi/wd+AAQqN5\nRSzL4cAFwGzC0FsIjcnCW2EUcG98Xu/uBwLnA5M7WH4REREREVmHqaFZ3uPu3gLMB55x91WEHsp6\nYHCcgfUOQq9iwZxW8lsA7GVmDxJ6NjfqYPkejmV6HRhYtPy3wK3u/lTRssIssYW0ewKzANx9HrAS\neA/Y0sxqgFrgeTPbgdDQnFUhHxERERERSaDwJlLQVOH5NsD+wFh3H0dopBU0tJLfJEKv5hhC72iq\n4tmpaiuUqfh0eh04piROZ2nalpJ16giTAL0AfI4w6+wjwEhgU3d/tY1tioiIiIiIrEENzTx7Aq+5\ne6OZfR7oXdKoK1Wo3yHA3929mTBctbV1ii0GNjOz3qwe2tqaHwO3Aj9tJc1jwH7w4f2cze6+kDB8\n9nvAw4SG5iTgL4nlFBERERGRCmpqarrs0V2ooZnnj8D2ZjYb2A64Hbi4lfRPmdkc4H+AQ83sbmAp\n8LqZnZawvQsIkwvdSHqj7wzgc2b26QqvX0toIN8bnx8fl88m9NY+7O6vA//A6mGzIiIiIiIiyWpa\ncqK9iiTICUi78SbpEYR7ZfwssmFdeqTfnGDOr76Xnrh3RnDkTQamvw/nvZ9ehpaMyM9f/tSK5LQX\nnflOctptJm+dnHbBgvTjttMn0tM++3r6yfOJoen1W9crvX6bMi612w9oTEr3xDv1yXlWKyD7/Pnp\nEc7H75ie9s8LUgd+wCP/ckFy2l/feVxy2pteXS857d5D0t8/ew9NO74At7zaLznthrXp74lb/pQ+\n6fxWW6WfPE0ZAe9zfnSv75PxXmtOz3hVRlD43hmfQZv0Sw9H/cKb6RkPHZy+bwMzzof3VqYf4xUN\n6ceiV8YH7AZ16fm+8U562i03Tk5Kc0t6eXvVpJdhWVP6Mc75TpKjMeO9mSPnvfnB0vR8NxmQnu9N\n48d0ny68Vuxy5f1d1uj68+TuUScKb9IOZjYVGOLu0zohr1OAgwj3cPYlhBEBuM7dW+stbS3PccAN\nrO4F7U2Yifb5jDz+EfiCu7c2DFdEREREROQj1ND8GMX7Oz/v7iOrkP1sd58YtzMZ+C6rh8m2yd3/\nBPypCuUSEREREelRutGtk11GDc0y4uQ7lwDDCLO9nkaYafU84E1C2JO/xZ7DqUUNunfdfYiZ7Q5c\nRJjN9SF3/4GZjQd+TpiddgEhnuavgV3M7CJCeJSd3f1kMzsROCoW52Z3P9vMphN6Oz8NbAUc7e5P\nJu7SJsAbsYzlytEPuJ4QvqUe+DYwoLBvZnYMcELcn1+5+3XJlSkiIiIiIj2OJgMqbxIw3933Aw4j\nNDDPAr7i7p8hzCLbmt8Ax7v7KGATM9saGARMcvexhNlkDwTOAdzdv1VY0cy2BaYQQqGMAY40s+3i\ny/XufiBwPjC5jTKMNbNZZvYE8FVCw5kK5TgAeD2GbDka+PCOBjPrT2ho7xvTTmpjuyIiIiIiUqQn\nxtFUj2Z5I4ExZjY6/t8P2MLdn47/z47LKjF3fwbA3SfDhw3IS82sD6Gn9J4K6+4OPOLuTXG9B4Hd\n4mv3x7+vA/u0sQ/FQ2f3JfRY7gu8U6YcdwL/bma/BW5095mxtxZgR+B5d18OLAcmtLFdERERERHp\n4dSjWV4DcIa7j4uP7eOygkK9lc4eVRv/lpvq7XLCUNSxwC2tbLuFMEy3oK4ov+Jp7JJ/r3D3+4Ad\n4pDgj5TD3ecTGrM3At8sCb2yCp0nIiIiIiLt1hN7NNWAKO9RYs+dmW1sZmcCb1hQA4yL6RYDm8V0\nuwL94/K/mtk+cfllZrYjMBB41cw2BPZjdQOytFf5KWCEmfWJvY77xGXtFofeLnT3VeXKEe/bHO/u\ndwHfAfYsWv35kIVtYGZ9zez/Yh2IiIiIiIiUpaGz5V0P7G9mDxFCg0wD7gNmAK8Ar8V0TwNLY7oH\ngblx+YnAxWYGYRjsc2Z2YUzzAvAfMc87CA29G4D/BXD3uWZ2CWF4bi/gUnd/JeaVY6yZzYrPawn3\naQKUK8ck4Bwz+yGh8fvTuN+4+9LYw/nHuP6v3V3BV0VEREREElUrRmp3VtPSsu60GTo5vuVEd59h\nZgcB27Y3pmVJnlOIM8uWLL8WOC7eB1luvXfdva0JiFK2Px2Y4e63t3P9beL6e7aWbvLs2ckn1atL\n0n/ryAmW3ZxxWue88XPybc4IBD6gPj1xTuDnnPIuWphehn/cMj3y81vLq/N71sC69DIszaiz2l7p\nlfbYIyuT026yfWu3da9ph43T9u2Npel12zcjqPayhvQ3xdD10o/Da++nH4cBG6SX4Yit06OAf/fA\n3yWnHX3J1OS0uw9OPxd2GdyYnPbueX2T0760oHdy2kHrpZ8PSxqrM/ipWl+6usP1v653euIVjemF\n6JN+iBlQm35NX5xxjBsa0/etrjZj3zKuvUtXJCelX316GVamvzXpV5de3pVN6WXIGfbYJ+Ot2aum\nOuXNaUbknL8558OdB45eK5pwe/z+/i5rdD05aUy3qBP1aJYR41t+j9Comlnt7bn7UW2n+igzuxEY\nXLJ4kbtrwh4REREREfnYrFUNzXUkvuXmZvY/wE7AOe5+uZnNBXaO+3UFsBB4HBjq7lPiPpwOfBZ4\nDzjU3Zvd/fD42mRgatyH1+Oyj+xr3P5+see3UNanKuzXFoSJgwr3kn6Vj05+JCIiIiIibehOk/R0\nlbVtMqB1Ib7lMEJj9jDghJLXfgqcHvdv66Llgwm9q8Pj811L1jsZOMLdRwOPm1m/CvsK0OLuB8Wy\nHtvKfp0OXBZja15EuJdTRERERESkTWtbQ3MkcFic5GYGIZblJ0viW7ZmjfiW7v4Kq+NKzibMwrpR\nhXU/jG8ZY1xWim85sI0yPBJnf32jTNodY74AtxYtX1wod4X1rgFuMrOTgD/Eez3L7SvAAyX5VNqv\nPYFZMe29MZ2IiIiIiGRSeJPub12Ib9la2pqiPIv3oalMug+5+1nA4YT9v8fMNqL8vpbbfqX9Kl5e\nvK8iIiIiIiKtWtsamutUfMsyXmZ1DMvPpaxgZr3M7AzCkOJfAQ8Tht2W29dyKu3XY4T6ABhLuGdU\nREREREQy1fSq6bJHd7G2NTSvB5bEuJW3EYasnkoYRnsb5eNbHsOa8S3PNbMHgAXu/hyr40peQogr\n+SNCb14hviUQ4lvGNLPjdi8tGo7aWf4d+KWZ3Qm8DVSMG2Bm/2hmP3P3ZuAD4GEzuzuW/U8V9vUj\nWtmv04DJZnYP4R7On3bOLoqIiIiIyLpunYqjubYzs+HAMnd/xsx+BNS4+5kfd7lyKY5mTKs4moDi\naBYojqbiaBYojmagOJqB4mgGiqMZKI5mTLsOxtHc+4YHuqzRNeeL3aNO1qrwJmuLDsS3XAlcZmbL\ngWWEWXbXOq98kH5a9apSn3q1vsBkXdQzvmjkfJHL2bectBsNTi/DK0s+/i8lKzIasI2ldzl3kh32\nWC85bc6X1NTGec7xbVhVnS867y5P/+awYf/0SmjK+KHmplfTj0NO4/GBb1yQXoiMfJ9eUJectqk5\n/WDUp2fLkozGTXcYhZXz/qmWar3fcr58N6X/rsOC5vTrdM4PuTnX6Zw6yznX+9Wn59uYUWe1Gd+K\nc8qbU79Z51nGZ1uf3tX5DKhWJ0DOe0i6LzU0i8T4kkPcfVpH8nH3w81sorvPMLODgG3d/eKE9Z4C\n9mqlfFOARYR4n1PdfWJRjNDzCCFL3gOGu/tdHdmHQvk7koeIiIiIiHSv2WC7ihqaVWBmdcD3CLEv\nZ3ZWvu4+PeY/rsxrJxW99lmg3Q3N4vK3Nw8REREREem5elRD08x6Eya+GUYIeXIaIYTHecCbwHzg\nb7GxNtXdJ8b1Cr2GuwMXEWalfcjdf2Bm44GfE8KsLAC+BPwa2MXMLgLmADu7+8lmdiJwVCzOze5+\ntplNB+YBnwa2Ao529ycrlH8a8C7wbJnXZgFTCZMbDTCzF4DbgcsIM+muAr7m7q+a2YvAk4TG6Ctt\nlP87pXXm7vckVbiIiIiIiPTIHs21bdbZjppECAOyH3AYoYF5FvAVd/8MMKSN9X8DHO/uo4BNzGxr\nYBAwKcbhXAwcCJwDuLt/q7CimW1LmL11THwcaWbbxZfr3f1AwtDXyR3cx3OA69z9EkID8lx3PyDu\n609immHA6e5+WUL5y9WZiIiIiIhIRT2qRxMYCYwxs9Hx/37AFu7+dPx/dlxWibn7MwDuPhk+bEBe\nGmNQDgMq9fbtDjzi7k1xvQeB3eJr98e/rxPiWHaWkWFT9mOgN/BOXL7U3f8Sn7/TRvk/UmdmVufu\nDZ1YThERERGRdVZ3mFitq/W0hmYDcIa7X1NYYGZvFr1e6OEtnRerNv4tNw/i5cDB7v6cmbU2RWEL\nYZhuQV1RfsXzhnXmadgAfNHd55dZXtBW+T9SZyIiIiIiIq3paUNnHwUmAJjZxmZ2JvCGBTXAuJhu\nMbBZTLcr0D8u/6uZ7ROXX2ZmOwIDgVfNbENgP1Y3IEsb8U8BI8ysT+w93Ccu62zF236UMNwVM9vf\nzMqFS2mr/OXqTEREREREEtXUdN2ju+hpDc3rgSVm9hBwG2HI6qmE2VVvA16L6Z4GlsZ0xwBz4/IT\ngXPN7AFggbs/R5h850HChDn/AfyI0HtZZ2Y3FDbs7nNjmtlxu5e6+ytV2McnCfd/ngxMAw4zs/uA\nnwIPl0nfVvnL1ZmIiIiIiEhFNS0tHYuC3FmxJ2Ne2bEnq8nMbgU2cPf9O5jPecD57v73TijTu+7e\n1qRFH6v9/vBg8kmVM149J9DvqioFaF6VEUQ+5xelDr4NO6UMnxqUftvtwob036jeW5kRjTxD/9r0\ng/HO8uqUYXB9ehkaMs6dv9zwVlK6rQ/bLDnPvn3ST7LljeknTs6527c2PXFzS3oZhg9dnpx25ar0\nc/ep99Ojwj/wjdbunFjTqbd8NTntMwvrktPOW5y+b4PWSz8WH2S83/tlHOMVTenHOOea3rs6b/es\nz6umjPJW632xdFl6vv36pefbp1d1ytuYUWfVOs+q9Vlcm3FOZn3Xyfhcydm3uozvRU0ZZch5D+Xs\n26yDR3WjPrzKRt30QJXOsI968Auju0WddJt7NKsVe7KDxrj7oI5mUohxmcrMbgQGlyxe5O4TOloW\nERERERHpWjU9bRwpCQ3NdST25BYx3WbAD9x9ZkksyTmEIaTNwAfAsYQhtRuY2R3AIaV14O73mNlk\nQuzKBuBpd/92hWWz4rLXgOnAhjGfE9z9STN7CbgZGAUsBA4GNgeuirtRS2iEVzpGxwAnxPL/yt2v\nM7MvxXWagCfc/cRCHE53v8DMdgYucPdxJXXRWKb8OwEXEIbUfgBMcfeFlcojIiIiIiI9W0rbel2I\nPfkJd/9s3Jez4rLiWJLnExqg4wj3UJ7o7t8n9CJ+rkIdAJwMHOHuo4HHzaxfhWUFJxJCnOwHnERo\nXBfKcqW7j4h1syuhUXx6THs58C3KMLP+hMb/vrEeJ5nZBsCZwPhYjmFmtl8r9VNcF+XK/5+EY3gA\noTH67VbyEhERERGRIpoMqLyRhAllZhEmzekHfLIk9mRr1og9GSfAKcRunE2Y6XSjCut+GHsyxp+s\nFHtyYBtluDtu/8/AJ+Ky4liSO7n7o/H5vXG7xT5SB3Go7zXATWZ2EvAHd19eYVnBnsCsWJbHgU/G\n5YsLdVS0P28CJ8SJfL5L5TraEXje3Ze7+8I4vHYH4EV3XxLTzCqzT8WK66Jc+fcG/ivu/zHAJq3k\nJSIiIiIiPVzKPZrrQuzJcg3qSjOfFG+jOG25WJJnmdnVwETgHjPb190/sqwofen+FG4PL94XYprT\ngTvd/bdmNpEwfLecVXx0/8rV23LWPEa1Rc8/rIsK5V8G7OfuXXYTs4iIiIjIuqKmO3U1dpGUHs11\nIfbk6KJylQsp8qyZjYjPxwKPl7z+kTows15mdgZhSO2vCKFDti63rCifx+L+YmbDgWdbKfMQ4OVY\nxxMIdVTO8yE728DM+prZ/wEvANvHYbXF+/ThMSrUSbFK+0QI93JQTHOUmR3QSrlFRERERKSHS2lo\nrguxJxfHUCVXA6eUef0E4EwzuwfYi3Bfaat14O6FiYMeNrO7Y/n/VGFZwfnAp+N2fhHrppL/R7g3\n8g7gWmCsmX228KKZTTGzL7j7UsI9mn8kDJG9NC77ATDTzO4HnnL3B4AbgQmxMbph6QZb2acTgX+L\nQ52n0L7GvoiIiIhIj9QT79HscBzN7q54ptWPuyw9heJoBoqjGSiOZqA4moqjWaA4moHiaAaKoxko\njmagOJrBuhhHc+zt6d+PO2r2Id2jTrosjqaZTQWGuPu0TshrorvPMLODgG3d/eJKsSepQu+bmU0h\nzEh7UyfmWbwvE919Rub6H4Yr6awytdcm/dI/LRZkfIFpak5/z2QkZWVD+vt+8wHpV76ccEmvLkhP\nvfmGGVffDLffld7Q/P4X0yv4Wl8vOe3G/dOPxSN/Tk87cpf0c/LFN9P3bZdtSm+vrmxeRmN3x4mb\nJqVryvjmkPPlJedL0dC+6XXw/Lz083zAwPTjsPfQxuS0OT+SPL0gvZGX03g8Y8JlyWmPveYbyWmf\nX5xeZ/+wUfp7YllTep01rMppsCQnrZqcMuR8oV66JD3xJzZNT/v6B+lf21auTH/T19WnH7cBGY28\nJVk/JqTnu0n/jGv6e+kXtNq6jO8ZOR/FGdfUnAZWjpzGY46c91DOjxSLV7SjMN1cd+ppNLNfA8MJ\noxdPdPfHil4bT4hesYowMejP27udLmtodpY42+v3gBnuPrOw3N0P76oyuPv0KuQ5s+jfUwhDk0VE\nRERERDqFmY0Ftnf3EXHunMuBEUVJfkMImfgGMNvM/sfd/9qebXVaQ9PMehPupxxGmNH0NMLMp+cR\nQnXMB/5mZuOAqe4+Ma73rrsPMbPdgYsIkwI95O4/iC3qnxNmRV0AfIkQe3IXM7sImAPs7O4nm9mJ\nwFGxODe7+9lmNh2YB3wa2Ao42t2frFD+acQhtsW9g2b2EnAzMApYCBwc9+1d4ADg1+5+X4w3+Ryw\nHWHG2DGE37AucPdrYlkaCGFKvgv8N+GXgj7AVwiTBO0MvAXsFntoG4FL3P1uM6sH/koIF9MUy7wF\ncAOwknCPbGFfDge+T5jN9nF3/76ZDWR1eJo/AF93923N7MX4/9vA74DLCBMPrQK+5u6vlsuvXB2K\niIiIiMhHdaMezQMIbRtiBJBBZjbA3Reb2TDgfXd/DcDM/hDTt6uh2ZkDVyYRZivdDziM0MA8C/iK\nu3+GMItqa34DHO/uo4BNzGxrYBAwyd3HEmZMPRA4B3B3/1ZhRTPbljBJzZj4ONLMtosv17v7gYSJ\neCa3Y7+GAVe6+4hYnl2LXrsRODQ+/wxwFyHm5tbuvi+wP/Dj2AiFcOCOIIQO+b9YVyeyeiZY3P0c\nwrDcw4GrgCPjSwcAdxQamdEJwLVxuOy8WBcbAD8G9o/1tqWZjYr7/ld3H01oMBdO99qY7xmERv25\n7n4A4fj9pJX8RERERERk7bIp8E7R/+/EZeVee5uidkquzmxojgQOM7NZrO45+6S7F3raZrexvrn7\nMwDuPjnOLvsOcGmc7XQ/Qm9gObsDj7h7U2yIPQjsFl+7P/59nRBWJdfiQrnK5HEbMewHIQTJDEI9\nDI/1cCehjgsHaE78excw2czOJTSEH6mw7ZnAaDOrjflfXfL6TsBD8fms+PdThN7bO2MZtieEKNmR\nUC8At5bkUyjXSGBaXO9HhPqulJ+IiIiIiCToVdN1j0ytrdGhftjOvEezATjD3a8pLDCzN4teLzRq\nS+8Ero1/y93+fDlwcOzWbW1KvxbWrIhCXE4Iwz0LWqus4nLVFj0vneniwzzcfaGZvWFmRmikHU9o\nmF3m7mcVrxSS0BDXe9bMdgM+C5xlZpeXK5C7N5nZXYTezE+5+8NlylLYz0L9NgBPxF7c4u2PKUpb\negwaiv5+0d3nF623e7n8RERERERkrTOP1T2YAJsTbnEs99on4rJ26cwezUcJvW6Y2cZmdibwhgU1\nwLiYbjGxh8/MdgX6x+V/NbN94vLL4s2pA4FXzWxDQo9moQFZ2kB+ChhhZn3MrA+wD/mzzX5YLmB0\nxno3EeKKPhx7Ux8FDjWzXmbW18z+s3QFMzuKcG/pzYRhqXuWJCk+LlcR7vmcVWbbXrTufkXLdjSz\njeO2fmZmnwBeLkr7uQr78ihh2DNmtr+ZTWolPxERERERSdCNejTvItzGh5ntAcxz9w8A3H0uMMDM\ntoltqkNi+vbtc3tXLON6YImZPUQYUno/oQE2I/7/Wkz3NLA0pjsGmBuXnwica2YPAAvc/TngQsJw\nz0uA/yAM52wB6szshsKGY6VcQhieez9waRx6m+NGYIKZ/R+wYcZ6NxMmIZoRy/IQcC/wMHAf8ESZ\ndV4ALjCze4CfAheXvP6Umc2J+T1BCNvy+8KLZnZLfHo+8M9mdifh/lHcfRlwEvAHM3uQMPx1HjAd\nGBOHv26+cYcvAAAgAElEQVRCmOyn1DTC8Of7YrkebiU/ERERERFZi8S2yhOxLfYb4NtmNsXMvhCT\nfBO4htCmus7dX2jvtmpaqhWdVjqFme0AXOTu4zuYz9bAP7j7nWY2AviZu3+2UwpZ4qh770s+qaoV\nRzMnWHZO7K51OY7m4/enB73vDnE0n/hrej2M3CW9vDlxNEdVKY7m8sS4hU1VunznBFmvXhzN9LTf\n32VxctqcOJr//fL6yWnHbJwe9K1acTQf+lv63TB7b5t+kfz7B7VtJ2qHnPuIcmJY5qhWHM0PFqcn\n3qFKcTRzYnn2H5BeEYPq0/NdkhGDdUVGTOvtNly74mjWZ7yFGjO+v+TIiY9cLVlxNJem5/vgF0Z3\nn/lcW3HgnQ90WaPrzgO7R52sdXE0OyqGDRlcsniRu0/4OMrTGjP7F+AbwLGdkN0i4HtmVgg7c0In\n5FnW3PfTP1j6r1+d90FO47E546K+tDF935Y2pu9br97p5U1thEDeRX33UekNwptfSS/Dev3aTlOw\nOKPOtvtkehnmLUkvw8YbpdfZXxbWJad96630byVbbp6WLqdBOG9++om++Wbp30jeWZH+MdJ/QHJS\ncn4DveXV9JMs6werjLTPZJwLOY3HK758SXLa/S/9dnJafz/9uNVVp51Jc5W+cuU0YKtVhkEbZlyf\nlqanzQmPMHhQer4N6b8XsWBldcrbK+PAzc/44W69fhmfxTXpJ8SylclJaVyVXoacBmHO+Vutcz3n\nh/2+9emF6NW7W7STpIN6XEMzhg3BzKYCQ9x9WkfzNLOJ7j7DzA4CtnX30qGw7eLuvwV+m7D9acQY\noK3ktZAQHkZERERERKSqelxDs7OZWR3wPWCGu8/8uMsjIiIiIiLdSzvCjqz11tmGppn1JkwQNIwQ\nrqQwZPQ84E3CNL5/M7NxwFR3L8y+9K67D4lhPS4izHL7kLv/wMzGAz8nhAFZAHwJ+DWwi5ldRIhH\nubO7n2xmJxImCQK42d3PNrPphIl0Pk2ITXm0uz9ZofzTiL2UZrYzcIG7jzOzlwgTEI0CFgIHl6x3\nNSH+5naEWXstPj/J3e8wsy8RGsZNhImKfkSY9Gc3M9ucMGnTpu7+jpk9Dfwr8PVYDzsSGtQ/Sz8S\nIiIiIiLS03TmrLPdzSRgvrvvRwjZcR5wFvAVd/8MMKSN9X8DHO/uo4BN4mQ6g4BJ7j6WEA7lQOAc\nwN39W4UVzWxbYAowJj6ONLPt4sv1MSbl+cDkduzXMOBKdx8Ry7Nr0XZPBl5x96vioi3d/Z8IM/oe\nb2YbAGcC4919dMxrH2BxDCEzijBT7nAzGwq8C6wE9o77MwL4TjvKLCIiIiLSY/Xqwkd3sc72aAIj\nCeE8CjEx+wFbuPvT8f/ZcVkl5u7PALj7ZPiwAXlpjCszDP4/e3ceJmdV5v//3XsSQnaQiAEE4RZk\nkmFPCDGEgEhUQETZFOOo4ALCT3DEZVScrwviFhUQBiTCwIgwASPDpkBiiCwGoojizaIBAiSyJGTt\nvX9/nNOmUvZyTtLVXen6vK6rrq6uup9T51nqqTp1znNu7ulm2f2AB2JeTWJakEnxuUXx73JCIy/X\nms56xTJGxvszCb2khTk57yuK2wt40t07p0ZZEOu6KNZlKqEBPIVwnC6McY/ENCeY2RZUWURERERE\nKslgbmg2A19z9//pfMDMVhQ839ngL54Cq3N+va6miPwJ8A53f9zMup14J5ZZOBK7vqC8wrndehqt\nXVivwjn/iueG6yxjHNAIHMamxmzxa3VVr42EBucUYE/CsNoPEY6NXwI1XbymiIiIiIgkypnVeLAo\np97VvvYgcByAme1oZl8HnregCjg8xq0Bxse4icD28fE/m9kh8fGrzGxvQq/gs3GY6Qw2NSCLG+xL\ngSlmVht7Pw+Jj+X4R70Ijcfe3AB8GLjUzLrrqX0C2NPMOtdxOrAE+G18jUZ3byc0SPcnbEMRERER\nEZEsg7mh+XNgnZn9ltAztwj4AnBT/P+5GPcHYH2M+wCwLD5+DvAdM7sPWOXujwOXAIsJkwx9izCR\nTgdQb2Y3dr6wuy+LMQvj617p7s9k1n8ecJyZ/QoYlbKAu/8FuI5wHWZXz68HPgPcYWaLgKXufl8c\nSrsd8LsY+hjQ7u7NmXUWEREREZEi1VX9dysXVR05WbFFEsz+zcLkg+r5Demjt4fXpie8f/al5NCs\nZMMn7duYHPvCxvR1+9Oq9GTvR71+Q3Jse0f62Wbe4w3JsYfv0ZIc+8dV6eXWVqefj9Y3ZSThzvhJ\nLSfB+JDa9Pq+tq73mFxDMxKRD69Lf/+8lpGQfbft00fW//659HJHZSS8P3Bceub0B1akv9ca6tO3\nb1Nz+rGwZk167ITXpdfhno9ckhy78dn0ycOPuiP9hJozNCzn/NSccQFHbUbC+5wvZK3pbyFWrkj/\nYDli7/TYJS/U9R4UbTcsY/u2pO+3ccPSY1szvmK+tCa9vruPTd9mf30l/YDI+Uqc81kxcnh6bM77\noiXj+0tNxudgW8ax3tiYvtH2fV36G3nJM+n77fenTSujplX3jvv1on5rdP3iyPLYJoP5Gs1tgpnN\nA8bEf2uAg4A73f24LmLnA8Pd/YiM8mezKeXKie5+Ux9UW0REREREEg3mYaTdUUNzgLn7CZ33Y/qR\nx7pqZEbT3H30VrzcBYShwyIiIiIiIiWjhuYAM7MRwP8CQ4jpSMxsGuE6yxbCtaQfJeQAHW5mtwMn\nAdcTrqscBpzt7g+Z2TJC7+U6M/s24VrLztf5DDDJzOYVNm6L6jIXeAE4gJAq5TR3f8TMzgFOjmG3\nuPtFfbcFREREREQGt3K6drK/VGIvbrl5P6EXcxrw+/jYD4Dj4hDZlcB73f084DV3PwbYiTDB0AzC\nhESf7e1F3P3iuHyXjcwCDe5+NCGf5ukxd+hsYFq8nWRme+SupIiIiIiIVA71aA68fQiz00LIZ/k6\nQk7MeWYGodfy5aJlVgL/YWbnAw3A+j6sT2cOzuWEtCz7AQ+4eyuAmS0GJgFP9+FrioiIiIgMWlUV\nmEdTDc2BV0XIxQmhh7kZWOHuh/ewzLnA8+7+ATM7EPh2fLzwCE6fmm5zhVOCVcUyCzv7O3OHioiI\niIiIdElDZweeAwfG+zOAVQBmtk/8e7aZTSxaZhybehTfTWj8AawBxptZDTC5i9fakv29FJhiZrVm\nVkvo5Vy6BeWIiIiIiFSkSsyjqYbmwLsGmGxmdwNG6EH8MHC1mS0CDiM0RouX+bSZ3QU8COxkZh8C\nfgT8EpgH/KmL11pqZg/lVM7dlwFXEIb3LiJcG/pMThkiIiIiIlJZqjpystOKJPjX69IT0uYkZW9u\nSj9Wc5I511enl/vr36XHDh+Vnmx4/Pj02Ccfb06Ozckoffj+6bEPPJEe+/rXp69be8ag7O0aMpKG\nt6fXtz3jlNiSkUR+7NC+H3G+urk0759hQ9O310uvpK/Xv05Ij31+Q/qVHcueSX+/v3n39HVb15K+\nfYfXpa/b64am19dfTd8Oi47dMTl26C5fTo499PKzkmNbMxLI5yS8b6hNP36b29ILzvkKlJPwfu9R\n6efpex5PP0fuvWv6ur3alF7hYRnbd9W65FCq01eN1w1Pr8Oyv6eXu1v62yLrGrqOjvR98fLG9H2R\n876oy9i+rRkfQbUZx/qIjHPfky+kl7v/runlzn3r9DLqw+ve++79Tb81un4+461lsU10jWY3CnJa\n7tbN8/OB4XFm2NQyZxPSj5xvZie6e5/ktIxpSW5y91sTYuuBu7p4yt39zL6oj4iIiIiIbFKJw0jV\n0Nxy09x99FYsfwHQJw3NHO7eDBze368rIiIiIiKVQw3NAmY2AvhfYAhwX3xsGvB1oAV4Dvgo8A1g\nuJndDpwEXE9IQzIMONvdHzKzZYTey3Vm9m3gsYLX+QwwyczmdZfXsrCX0szeCZwIfAX4KWEioEnA\nUnf/SMEydcDtwNeADwIvAAcAuwCnufsjZnYOcHJc5Ja4vj9092PM7FDgNmAM4YeX3xNmtD0M2IFw\nDenF7n5V3pYVEREREalc1RWY3qQSe3F78n7CcNlphEYWwA+A4+IQ2ZXAe939POA1dz8G2IkwQc4M\n4HPAZ3t7EXe/OC7fZSOzFwcAnwcOAmaZ2aiC574H/Nzd743/N7j70cAc4HQzeyMwG5gWbycRJh96\ng5lVAVMJM8q+BfhXoHPioH8BTgCOB87egjqLiIiIiEgFUY/m5vYhzK4KsAB4HSGVyDwzg9Br+XLR\nMiuB/zCz84EGYH2J6/iUu68AMLMXgJHx8Q8SGpaFszYsin+XE9KS7Ac84O6tcfnFhJ7RPwJ7AQcD\nlwJTgKGEbVAN3O/ubWa2vOD1REREREQkQTmlHekvamhurgronOaqGmgGVrj74T0scy7wvLt/wMwO\nJAw1hdBT2KluC+rS3fLF81x2HrbVwO5mtqe7P9lFbFUss/Awryes7wJC3s1hwL3At4DhwHnAzC7K\nERERERER6ZaGzm7OgQPj/RnAKgAz2yf+PdvMJhYtM45wzSTAuwmNN4A1wHgzqyE04or1tu3XAOPj\n/cMS6n418CngqjgMtitLgSlmVmtmtYRezqWEXtwPEHpLXyZcj7mDuz+X8LoiIiIiItKD6n68lQv1\naG7uGuBmM7ubMBlQB/Bh4GozayZMrnNFF8tcY2bvBX4EnGJmH4r3f0lovP6pi9daamYPufvB3dTl\nWuA6M3sPm64X7ZG732Nm7yM0OLt6fpmZXUFoWFYTri19Bv7RmL4yhq4CVqS8ZldGj04/xHOGEQzN\nyO33YkYOvpy8iXu8OT02Z93y6lDfe9AWeH5DeuyEN5SkCll56nJy5ZVKXcYZdE1GTsa2vk+5yZAh\npcklmvN+f259aT7+dtklPZncupb0cnPew2szcppuaE2Prc8YD3PUHS8lx+bkxvztmT9Kjp384/Ry\nc7ZvTi7cHDnnnBx/WpV+nh4/vveYTqsz0ijn5AhtzDifDh2aXm6O1c3pdRg1qveYTq82pceWamhj\nbUa+yxw55+qc4yGn3Jx8rTuMSy+3VJ8X0r+qOnKOPOkz21KezlwzblucfFCVw3j1nBNqjlI1NEul\nHPaFBKVoaJbqC3XOsVsOx1ip6puzz0q1L0p1zimHhmaOcjgmy6EO5XBMloNy2BfloFTHQzls37uP\nmbpN7LnZv1nYb9/25r51ellsE/VoDjAzW9DFw842mqdTREREREREDc1+1FWeTuA/6Oc8nTElykOA\nuXuHmZ1GSJvybeAqwnWmbcBH3P1ZM/sB4drVGuAyd5/bd1tFRERERGRwUx5NKbWyyNPp7quBRwlp\nTACOIzRm/xP4jrvPBL5PSNsyBniHux9KmJRoS2bQFRERERGRCqIezf5VTnk6rwFONrMlwBvdfYmZ\nHQqYmX2R0Hv5kru/amZPmNkvgBvjciIiIiIikmgwXwPcHTU0+1c55em8ndCDeQRwa3ysmdCj+mJh\noLsfY2b7A6cCpwNv24LXExERERGRCqGhs/2rbPJ0unsL8Bvgq8B18eEHgeNjXY4ws1PNbDcz+5S7\nP+Lu5wNjk9ZURERERESAysyjWU51qQTXAJNjnk5j8zydiwjXQHoXy3zazO4iNAR3KsrTOY8e8nT2\nUp8bgA53fyr+/xXgeDP7DfBl4H5C7tBDzey3ZnYv8JOcFRYRERERkcqjPJoVzMwuBJa5+9V9We7M\n29PzaJYiXyBAXUZy5Nrq9PfAa+u2oDIJ6urTB+63NKfXtzpjOzRk1KG1Lb3cnETVOcdDzqmrugx+\nUquv6ftzbXtHxj4r0XstZz801KYHN7Wmr1upjoWc62ly9m9zW2ku1Mk5lzW2pNchZ5s98LH0nJun\nXX9mcuzlU9MzvU++cXVy7KTXtybHvrgh/WqjIRnHw/Or0/fF2O2TQ2nNeF/knEtaMs7/OZ9XQ4ak\n1yHnsyLnvFOq92bOOSrn+0uOnM+AUtW3qSU9dmh9eiXuPPqwbeLqxzPuW9Bvja4rDju8LLaJrtHs\nZ2Z2OHCWu5/Yh2V+H5jj7n8rerweuKuLRRx4A7CRMHRWRERERERKpBLTm6ihOQi4+7ndPN4MHN6/\ntRERERERkUqnhubAGG5m/w1MIqQMuRm4hDAj7Vrgg8BECno+zexldx9nZqcDZxFmiP2Du3/SzBbE\nx04ERhKu/9wDONfdbzezzwKnAH8lzFD7HXdf0FXFzOwp4HLgXYR0KkcCjcAVwO7xsS+5e1c9pSIi\nIiIiUqQS05uUwZVLFWkf4AxgCnA2MAf4TExzshA4p4dlzwfe4+6HAUvMbGjR8xPcfVYs40wzG0No\nhE4BPg5M76VutcBf3P2twN+AmYRGaqO7TwdOIExEJCIiIiIi0iU1NAfGI+6+wd3XEXJr7uPuD8bn\n7gX262HZ/wFuNrNzgdvcfWPR8/fFv8sJvZtvAv7o7hvdfSXQ20y0AIuKyjgQWADg7i8ATbEBKyIi\nIiIivaiu6r9buVBDc2D0NM1dPWEIbfEVw3UA7v4NQq9iNXCPmRXntSwsuyreCucaS7kSubiMjvi3\nuI4iIiIiIiL/RA3N8vCYmU2J96cDS4A1wHgAM5sIbG9m1Wb2NeBFd/8uIc/lrr2UvQzY18zqzGwH\nQu9krt8BM2JdJgDt7p4+f7yIiIiISAWr7sdbudBkQOXhU8AlZtYBrAI+BKwD1pvZb4HFhHyX7Wa2\nFrjfzF4jTO7z+54KdveVZnY9Ycjs4/FvRhYsAH4GHG5m9xJ6M9OTn4mIiIiISMWp6sjJyjrI9GdO\ny1Izs2XAvvG6z+LnZgPXE4bE/hE42t2Xl6ouM29fnHxQteckWi/RmPOcxM81GT8TlarcHKXaZjmJ\nn3PqkHM81GZss5xyc+SU25bx805NYgLsnG1bqv0wmN/DOcrh2M3Zvi05x2NGfd+4fXpG9utOvTw5\n9sM3nJEcO3F0c3LsOW+bmxw76+pPJMeuaUnfaDn7oqoMrr3KOX5LdZyV6v2W89mW8/U5Z7+V6lyd\nU9+6xM8ggKb0tzxD69Mr0dqeviHuPmZqGbwzenfuA/f0W6Pr+5OPKIttoh7NPtZdTssBthPwINAE\nXAe8PqZXKXaDu1/WrzUTEREREZFBRw3N8s5puYzYS2lm3wYei08dBuwQy77Y3a8qWGZCXId3EWaP\nvRyYFet4FJtyYlYRc2ICuwBj3f0yM/s8MMXd3xWvGz0jxr4AHBBjT3P3RzK3s4iIiIhIRSqn2WD7\nSzldLzpQyjmnZXf+hTDz7PGxzp2GANcCH3X3F0nPibkQmBzLOIBNM8xOJaRbAWhw96MJ2+f0Lay3\niIiIiIhUADU0yz+nZVfud/e2gnI7/RiY7+5LCx7rNScm8AowwcyqCL2sfzGzvQgNzQXdlCMiIiIi\nIgkqcdbZcqrLQCnnnJaFz9f1UG6n5cAHzKy+h9jucmI+ARwD/AV4ADgU2Mndn+3lNUVERERERDaj\nhuY/K6eclmuA8WZWw6ahrT35IjAf+HIPMd3lxFwIfJqwHg8ApwJ/SnhNERERERHpQXVV/93KhRqa\n/+xTwNfN7B7gIOAHwB/YlNPyA8ScloTJgu43s7sJPYW95rQkpBl5iHCtY285LX8E/BKYR3qj72vA\nMWZ2QDfP/wyoiTkxf8amnJgLgSMIw3KXA29m07BZERERERGRZBWdR3Mg9HdOy4GgPJqlLTeH8mjm\nl5tDeTQH93s4Rzkcu8qjGSiPZmkpj2agPJqB8mim+/eH+i+P5rcOVh7NQc/MDqcgLUq0VTktzez7\nwBx3/1sJqtwnyuELV84Xz5yT74i69IJzPizWtaYHD6vJOFFnrNva5vSd0VCbXnBTxrrlfLiVg5x9\n3JFzrCceZh05X0hK9EUn5z3c3NMV8UXqMz6dajOOx5wvL6X6IaFUWjPqMKSuNNvs8qnj0uuQ0Xi8\n6qQrkmMPueys5NicBuwjL6Zvh7aMg2fCmPTPlZXr0t9w1Rlv5JyGUM77YmRD+rqtyfgMyjnv5DSE\n6nK+FZfonJrTOM+R8/mas49TfxjNlXM+21ZUVVVe554amv3M3b8JfLPo4cMzlj+3TyskIiIiIiLS\nx9TQLL3hscdyEnAjcDNwCWGm17XAB4GJFPR8mtnL7j7OzE4n5N1sBv7g7p80swXxsRMJaUYM2AM4\n191vN7PPEnJl/pUwU+133H1BcaXM7BjgVHf/QPz/vwjXg64Cvg60AM8BHwWGAj8HGuLtk+7+SF9u\nJBERERGRwaqcJunpL5oMqPT2Ac4ApgBnEyYB+oy7H06YgOecHpY9H3iPux8GLDGzoUXPT3D3WbGM\nM81sDKEROgX4OGHW3O7cBRxiZkPMrJqQM/MOwuRHx7n7EcBK4L3ATGB5rPNpwI6J6y4iIiIiIhVI\nDc3Se8TdN7j7OsKI/n3c/cH43L3Afj0s+z/AzWZ2LnCbu28sev6++Hc5oXfzTcAf3X1jnOH2oe4K\ndvc24FZgFnAIsAgYDewJzIs9pzOAnQkpT6aY2Y+BN7n7HWmrLiIiIiIi1f14KxcaOlt6PU1/UU8Y\nQlt8dXAdgLt/w8yuIwyTvcfM3tpD2VXxVnjlfW9XHV8DfJaQ3/N6whDd52PP5WbMbBKh4flxM5vs\n7l/tpWwREREREalQ5dTorRSPmdmUeH86sARYA4wHMLOJwPZmVm1mXwNedPfvEnoVd+2l7GXAvmZW\nZ2Y7AAf2FOzuvyf0WB4M/MbdV8U67BP/nm1mE83sSOBId7+LMPy3x3JFRERERGST6qqOfruVC/Vo\n9r9PAZeYWQdh4p0PAeuA9Wb2W2AxsMzd281sLXC/mb1GmNzn9z0V7O4rzex6wpDZx+Pf3iaIvgvY\n3t07j8oPA1ebWTPwAnAFoSH833GioXbgy7krLSIiIiIilUMNzRKKs70uKPi/M8HYjC7C31Zw/zMx\nvqdUKI8VlPtYweNPAF8hDKv9I9Btvk0zq4rLfaygrPsI12wWWgYc1l05IiIiIiLSvUqcdVYNzcFn\nJ+BBoAm4Dnh9TK9S7AbgI8DP3f2pfqxfv6gp0aDwda2lKTgnkX1O8vQcOdusqTW9Dh0ZIzhykkS3\npecBz0pGniPnQ2O7uvSVa2xLKzhnG+TI2Q85ajMSe7dmrFt1xg4u1bqVKml5zjFWnVGH5sRjLNfk\nG1cnx350YnNy7CGXnZUc++DHf5Qce+pds5Njv3vIiOTYY+5sTI59pTF9x9XXJYdmnR/qSnT8rmlO\n/2DJ+azIkfPezNlmOZ+ZOeednHJzzg+l+nzNqW/OeadaF/cNCmpobmPMbDawr7uf39XzvfSCFrus\n72omIiIiIiJdqcQeTf1eICIiIiIiIn1KPZrbKDM7Bzg5/nuLu18UU5BcArQQJu15LzAC+CnwNDAJ\nWOruH+mh3KeAW4CpwGrgHcD2wFxgFCH1yqfc/ZESrJaIiIiIyKBTohHqZU09mtumNwKzgWnxdpKZ\n7QHsCJzt7jMIs9eeFuMPAD4PHATMMrNRPZS9O3CNu08BRgMTgXOAB2K55wLf6/M1EhERERGRQUMN\nzW3TfoSGX6u7txIalZOAlcDXzWwhcAowNsY/5e4r3L2dkLJkZA9lr3H3R+P95TH2QOLsue6+BHhT\nH6+PiIiIiMigVYl5NNXQ3DZ1AIWXFNcThsrOAea4+3Tg8oLni+c07ely5K5ii1+vEnv/RUREREQk\nkRqa26alwBQzqzWzWkLey6XAOOBpM2sAZhEaoH3hd8Tcn2Y2mYIcniIiIiIiIsU0GdC2aRlwL7CQ\n8GPBle7+jJn9kDCRz9PAD4EfEfJlbq05wNVmdk98vU/2QZkiIiIiIhWhEtObVHWUKkOuVKyZty9O\nPqhyEgiX6g1aqsTEpSo3R6m2WWvGupUqoXRtiZJl58hKgN2WHpuaYDxn25ZqPwzm93COcjh2c7Zv\nS87xmFHfN27fkhx73amX9x4UffiGM5JjJ45uTo49521zk2NnXf2J5Ng1LekbLWdfVJXBF9Wc47dU\nx1mp3m85n205X59z9lupztU59a3LuECqKf0tz9D69Eq0tqdviLuPmVoG74zeffMPv+q3RtcFk44q\ni22iHs2tYGazgX3d/fwyqMvL7j4uMfZY4NNdPDXH3W/u25qJiIiIiFS2SuzRVEOzArn7fGD+QNdD\nREREREQGJzU0+4CZnQOcHP+9xd0vMrNJwCVAC2FG2PcCI4CfEq6hnAQsdfeP9FDuP3opzewmwjWX\nhxNSjhiwB3Cuu99esMy/ApcCbwN+T7hmcyqwGngHsD0wFxgF1AGfAk4A/ujuN5jZj4FWdz/LzE4B\n9iJMBPQr4AjChEPvcvdnt3R7iYiIiIhUkpoK7NHUrLNb743AbGBavJ1kZnsAOwJnu/sMQp7L02L8\nAcDngYOAWWY2agtec4K7zwLOAc7sfNDMxgE/Bk5293XA7sA17j4FGA1MjMs8EOt1LvA9wqRCk2Mx\nOwET4v2phEmHIOTXnAncTmiYioiIiIiIdEkNza23H6Hh1ururYRG5SRgJfB1M1sInAKMjfFPufsK\nd28HXiD0Tua6L/5dXrB8NWGG2W8V9DaucfdHi2IPBBYAuPsS4E3Ab4H9zWw0sAbYYGbDgP2BB+Py\ni7p4TRERERER6UV1Vf/dyoUamluvAyjcpfWEobJzCJPrTAcKp9ZrLVo+9XCo66aMzuVHAI8CH+vl\ntYrrW+Pu64E2wrDcB4CHgZnAOndv6uE1RURERERE/okamltvKTDFzGrNrBY4JD42DnjazBqAWYQG\naK4OMxsWexf36yV2tbv/f8CLZvbRHuJ+R7jmEjObDDwWH3+QkB/zfkJj82zgN1tQZxERERERKVBd\n1dFvt3KhyYC23jLCdYwLCQ33K939GTP7IWEinqeBHxIm8rkhs+zLCA3APxN6GVOcC9xvZnd08/wc\n4GozuyfW95Px8YXAWYRe0XpgOvDVzPqKiIiIiIhQ1ZGTwVX6VTnl6cwx8/bFyQdVTqL1ckhUXaq3\nS16WR5IAACAASURBVENtesFNrQO/IXKSOef8stbclr5u5XANQk6y7LacxOWJ27dUib1zlKoOpdq/\n21odSqVU6zakJn3lcmJffC29wguOH5oce8q9G5Jjb/vQpcmxh1x2VnJszvm0NeMzsz5j++ace9sz\n6lCb9VmRHtuScz7NGLuXU4ecfVEqOd9JcrZDjnLYZvfOmloG3wh698M/39VvZ/+z93lbWWwT9WgO\nMDM7Fvh0F0/N6e+6iIiIiIiI9AU1NAeYu88H5nf1XOzRLEmeTjP7OPB6d/+P+P+vgPMIs9CeR5j8\nZ4m7n2dmuwD/TZgwqBZ4v7s/s5WrLiIiIiJSETI6+AcNTQZU/kqVp/MG4HgAMxtJSL/yV+CLwBFx\nttwJZjYVOBH4VXytc4Dxfb2SIiIiIiIyeKhHs/ztB9wZc3RiZp15Op8CLooz0r4euC7GP+XuK2Js\nZ57O1cWFuvurZvakme0PGHAj8BZgF+BOMyMuuytwF3BzbLTe5O73l2plRUREREQGm3KYW6K/qaFZ\n/nrK03mRu99hZucDw+PzOXk6ryEMud2V0As6GnjY3Y8uDoxDdd8GfMPMfuLu12zJyoiIiIiIyOCn\nobPlr5R5Om8D3gqMcvdlgAN7m9mOAGZ2oZntbGYnE2a/vYUwtPbArV0pEREREREZvNSjWf6WUaI8\nne7ebGaPE3N0uvsGMzsXuM3MmggN2heAJ4Afm9k6woRAn+qLFRMRERERqQQ56d4GCzU0y5i7zy34\n95Ki564Arih46Ob498CCmB57Hs1sCOF6z/MKlpkHzCsKfQQ4OLXeIiIiIiJS2dTQHOR6yNN5JyFl\nysXu/lpfvmZbRkLenGTDbxhefPlp9/7wTPqo8A3r0yvx/XesT44d05C+IX765HbJsSfstjE5dtna\n9Mm0r3l8WHLsbuPSs2W/1Jheh/aMwfw5iZ83bkzfx0OHpl+tP7wuvRKvNKaXm/q+qK1NL3NIbWmS\nt49uSD8Wnns1fQfn7IfXb5d+bnilKf14LFUS+/Xr0oNHj0rfZs+/kL4vjtg7PfZPq9KvzBhSk36c\nrWlJX7e29vRyj7mzMTm2uiq9DodcdlZy7IMf/1Fy7MZnL0yOnXjtyuTY9evSt9nrd07fDqtXp5f7\nkQPSP6+u+3P6Z9AH3rIhOfaqpUOTY7ffPv0939ycHMqOI9O32bqM90Vra8aXqIzPi4aMz4tnl6ef\nz07eP32j/fz3W3JFWHmrqcDJgHSNZj8ws/dswTLHmtlWv8tins7dgHcShuF+290Pd/dvuPskd//v\ngtdcZmbDuy5JREREREQkjRqaJWZmuwGnbMGin2bLJvgREREREZEyUl3Vf7dyoaGzCcysDvgpIQ1I\nI/BvwFeA3YEG4EvufpeZPQVcDrwrPn4k4drKg83sS8BPgGtjsXXAB939aTP7AGGCnXbgu4QG5mTg\ndjOb6e7/NNYg5rS8DhgBvEYYBlsFXE1IU1ILnO3uj3ax7GzCLLLnxx7Mx9x9t4LnJ8V6t8Q6vTe+\nzn8D64AfufuteVtRREREREQqhXo003wQWOHuU4H/AmYDje4+HTiBMOMrhMbdX9z9rcDfgJnAxcBC\nd/8qMB74qrvPIDQ6P2Fm2wNfIqQZORo41d2vBVYAx3TVyIzOB+5092nA3YRG7bnAHe4+E/g48J0t\nXN8dCY3UGcBi4LT4+H7AaWpkioiIiIikU4+mdGd/QmMOd/+Zmf0AWBD/f8HMmsxsTIxdFP8uB0YC\nqwvKWQH8wMwuJPQ6PgzsTWicbgQ2Asdl1Ok/Yh2+B2BmZwI7mNn7Y0z6lfWbWwlcZGbDgNcTek4B\nnnb3V7awTBERERERqRBqaKZpY/Pe3w7CMNVO9YQhpgCF0x8W/6bwVUIv5I/N7ETCBD3FZW9pnQCa\nCT2R9/eybOF0YnVdPD8HuMjd7zCz84HOCYIy5lgTEREREREor57G/qKhs2l+BxwBYGbvBF4BZsT/\nJwDt7r66m2Xb2dSgHwc8bWZVhJ7LeuAvoRgbbmZDzOxX8fnC5Xqr05lm9kHgQeD4+Ng+ZtZVWhOA\nNYRhvACHdfF8Zz0bgFloUiIREREREcmghmaanwHbmdlCwnWQPwVqzOze+NyZPSz7OLC/mX2PMFHQ\nD4Hb43LTgamEazR/TRiOe6W7d8T795nZuG7KnQMcamYLCD2j82LZbzKzRcCVwG+6WfZuQuN2AfBm\nNvXGdvohcAtwY7z/QcIwYBERERERyVRT1dFvt3JR1ZGaGVz+wcze4+7/m7nMsYSJerocfmpmI4DJ\n7n5XD2W87O7dNTy7W+YrwMvunp49eisddcfi5IOqOuPN8PKr6bEHTEhPRp6TcP7Ga9cmx1atTR9p\nPGzG+N6DovUPvpQc277jdsmx+01Nv6T3b+k5w7MSYNdkZDOuyfiZbFR9ekLp1c3pBTc1px+TO2yX\nHtvcnrYdGtvSt1dLa+8xnWpq0mM3bEhfrwlj0vfDa83plVi1Or3c7Yan79/ajO1QW52+HcZmnHNe\nWJ9+hcu+Y9LPOfc8nr5y48enx67POB6GDEk/fscNTd9mrzSm1zfnK1BdxvHwq7fvkBw7dJcvJ8ee\ndn1Pv2tvLuc4e2xVQ3LszsPSTyZ3/qYlOfaQKel1eHBxU3LsjLemD8p6KePYGVqbft5ZsTb9vNNQ\nn/6+GJZRh8a29Do0Z3xeTBqbft655aH0OrzzoPR1u/TQGdvEoNTrn76j3xpdp+7x9rLYJrpGM1NB\nXsyshiYhL+Y9dH+d4/7A24DNGppmNg/onGhoZOyFfM3dUycNEhERERGRAVSJw0grsqFZjnkxY7kj\nzOwJ4FbgqrhcG3C6uz8bezQPj9df3kOY1GctId3KKMJQ1yeAvYDfufsnYtn7mtmtwJ7AOXGSn/cR\nGr+twMPufk7s/RwJGLAHcK67325mJwDnxdgl7n7eFmx2EREREREpQ7F9NJfQPmoDPuTuf+0m9n+A\nJnef3VOZldi4hvLMi3kxcIO7XwH8J/CdmA/z+8Q0JgV+CJwZn78L+GR8fBJwAXAwcJCZTYqPj3P3\ndxIavx8zs+HA14Ej3f0wYHczmxFjJ7j7LOAc4MwY+0XgiLh9JpjZ1F63sIiIiIiIANtEHs1TgdWx\nbfA14BtdBZnZUYQOqV5VZI8m5ZkXs9ChhMl6vgjUAMUX5R0M/JeZQehp/V18/Al3f46w8IOEnkmA\n++Lf5+M67AU86e7r4uMLgP2KYjvX9y3ALsCd8fVGEn7pWLwF6yUiIiIiIuVnJnBNvP9rQifaZmJG\nii8C/4/QOdejSm1olmNezELNwHvd/cVunt8AzIiz0wL/uHa08HWr2JQvs3gdulrfjd3ENhOG1h6d\nuQ4iIiIiIrJt2InYueXu7WbWYWb1RaMxPwdcRkiV2KtKHTpbjnkxC58vzId5hJmdWhT7B+Dt8fmT\nzWxmfHwPMxtvZtXAIcCfu3mtJ4A94zBfCGlWlnQT68DeZrZjfL0LzWznHtZDREREREQKlNPQWTP7\niJk9UHgDjioKqypaZk/gQHf/WfI6pwYOMuWYF/MR4CQzO58wMdHxZvYb4MvA/UWx5wCfj/WfDSyN\njzvh2sv7gd+6+5+6eiF3Xw98Brgj5txc6u73dRO7gbCNbjOzxcBY4IVu1kFERERERMqYu1/p7pML\nb4T20E7wj4mBqop6M98B7BIbpZcC7zCzf+/pdSpy6GzcaKcXPfyRLuJ2K7h/fsFTuxTcv7XgfmFP\n3/VFZf1bL3V6jDC5UKd/GqramUPT3R8HphU+F/NwNrv7h4qW+UrRaxwe788D5m1prIiIiIiIpKnJ\nyB0/QO4C3gvcSci4cW/hk+7+fcIkpZjZ4cBsd/9WTwVWZENzIBXlxezUF3kxj4nl7wbc5O4HbmV5\nWywn0W91xtRYu+2Y/gZ9JiPJ+ZNr6pJjTyn+eaIHrzSlDxiwkY3JsRsnbt97ULRiY/p2ePTV9Pru\nvEP6vtjQWpqcwTmzqq1clx5cm3FWzEms/crG9Nih9X3/YdSQfpjTmp4nmzEj0mP/vj49GXpOfXcY\nk75tm9Nz2NOaEVtdlV6H5WvTD7KMYlnyQvpG23vX9GNsdXo+dsamn57YkPFZsXJd+vmpPuPYyTjU\ns94XE69dmRx72vU9DaLa3HWnXp4ce8p16eXmyNlm06fWJ8eubUk/2N9zVPq5ZMXG3mM6DalJf1+0\ntWec0xvSY9szTv/PF08V2YNdd0zfc63pm5eHMs47k/ZJX7kn16iJMgBuAI4ys/uAJsKoSczsAkLG\njeIRlr3SXuxn7t7rDE1b6MPufmBsaIqIiIiISJnYirQj/cLd24APdfH4N7t4bAExY0dP1NAcQGY2\nm3Bd5zhCGpEvAKcA+wCnAZOBk2P4Le5+kZnNJVwjeQBhCO9phOmIJ8Xe0k8D1WZ2GSENysPufkYP\ndTgPOJFwve5t7n6hmX0FeEMsfzzwGXe/w8yeJFxLepe7X9VX20FERERERAaXSp0MqJzsCRxLSIr6\nOeDd8f7nCV3W0+LtJDPrTI7aENONzAFOd/eLCcNvO3tL9wIuBA4CZpnZqF7qcBihUTs7XusJsLO7\nv42QvLUzYevuwFfVyBQRERERSVdOs872FzU0B96SOCvti8Cjsdt6JTAReMDdW929FVgMTIrLLIp/\nlwMjuyjzKXdf4e7twIpuYjptABYSLvgdx6brR+8GcPc/smmSo/XdzWQrIiIiIiLSSUNnB15rN/fH\nsHn+mno2XYNfGNfV7xbFUyx0+duGme1KGGq7n7uvM7PHCp7u6keIjCkhREREREQEyqunsb+oR7N8\n3QxMMbNaM6sFDmFTvsyubMm+HAf8PTYy9wd2JTRoIQynxcwmAs9sQdkiIiIiIlKh1NAsb1cQhrUu\nAq50954afEvN7KHM8n8PrDOzxcBJwOWEBKwAa8xsPnAdcEFmuSIiIiIiEtVU9d+tXGjo7ABy97kF\n928Fbi2+D1xStMzsbpaZWRB2YEFMt/k04/WgRxc/HmedfcDdf1QUP67nNRIREREREVFDc5tnZie6\n+00xf+ZNXTUszexYwrWYxea4+819XaempvSEvKMzknu/tCG9A746o6++LiMx8a1/SU8+PeNNLcmx\nP7imKTl2xMSe5nbaXFtGQvQRI9L32xuGp2eyr65K3xlrmzP2cVV6fXOS3uccD8Nr0xNgr8kYQPLy\nq2nrNmZ0+oq1pO8yGmrTt+2a9enljhmesb2a0rfX2O3Sy23KuEhmVXt6HdZvSN9mOefIMaPT61Cb\n8TP2q03psR0ZCeRbSzROqjpjv7WlHw5Z54b6mvQNsX5deuzYhvQ35ynXnZkc+z+nXZ4ce+RVn0iO\nzTnvNWZs4A1t6bEj6zPOJS3pB2VrxsGe8RGUJec6vtEZ54dXG9PLzXlfvG5k+r54dUN6wbWDsIWS\n871lsBiEu7HiXADc1FOAu88H5qcW6O5f2co6iYiIiIhIBVNDcwCY2WxgOmEynrcAXwBOAfYBTiPk\ntDw5ht/i7heZ2VzgBeAAYJcYNxOYZGbzCD2W1WZ2GXAw8LC7n9FDHc4DTiRcp3ubu18Yh8y+7O4/\nMrN9gR+5++Fm9tlYv78CdcB33H1BH20OEREREZFBrRInxqnEdS4XewLHAt8APge8O97/PDAbmBZv\nJ5nZHnGZBnc/GpgDnO7uFwOvufsJ8fm9gAuBg4BZZjaqlzocRmjUzjazEV0FmNkY4CxgCvBxQgNZ\nRERERESkW2poDpwl7t4BvAg8GifmWQlMJEzE0+rurcBiYFJcZlH8uxzo6kK9p9x9hbu3Ayu6iem0\ngTCj7b2EntUx3cS9Cfiju29095VA7sy2IiIiIiJSYTR0duC0dnN/DFB4tXQ90N5FXFdXVBdP/dLl\nVddmtithqO1+MYfmY/GpwquU6wrKKLzSu/KuZBYRERER2Qo5Ez0NFmpolp+bgSlm1rlvDgG+Dhzf\nTfyW9EqPA/4eG5n7A7sSGrRrgPEx5rD4dxmwr5nVAaMoSJ0iIiIiIiLSFQ2dLU9XEIa1LgKudPdn\neohdama5w1l/D6wzs8XAScDlwKXAPOA4M/sVoVFJHC57PWHI7Jz4NyNRgoiIiIhIZaup6r9buajq\nyEmQJRUpzpJ7PWFo7h+Bo919eXfxk//3vuSDaujQjJxKGT+LrF2fflzn5GraZ2x6YsrWjLfWkmXp\nyRv33zU9Z1VOzqZn1tX1HhQNycgn19yevo+b0lOPUpex3xob0+tb35Be35y8ehub08tNXbfWjJ98\najPyg+bIyVmYk6O0PeP9kzMcKafcUsnZZjkf0e0ZKzdiSHq5jRn5DXP2RWuJtkPOcZZThxytGR8A\nOfsiR875/9cfvjQ5NifnZo6cz4rhGbl+c47fnM/tUmlsyfhelHGs57w3c/Iu5xg7JP0Nt3xVeoUf\nPPGwMmpadW/hi7f12xE2ffysstgmGjo7iJnZsYRrMYvNcfebM4raCXgQaAKu66mRKSIiIiIim8v5\n8WewUENzEDCzE939JjPbDbjJ3Q8EcPf5wPzEMm4i5M1cUPycu38T+Gbf1VhERERERAYzXaM5OFww\n0BUQEREREZGuVVf1361cqEdzgMTrHqcTZoB9C/AF4BRgH+A0YDJwcgy/xd0vMrO5wAvAAcAuMW4m\nMMnM5hGGyVab2WXAwcDD7n5GD3X49/iazwAj4mPbA1cDownHx9nu/qiZHUWY/bYN+Jm7f79vtoSI\niIiIiAw26tEcWHsCxwLfAD4HvDve/zwwG5gWbyeZ2R5xmQZ3P5owA+zp7n4x8Jq7nxCf3wu4EDgI\nmGVmo7p64fj4J4ApwAeAfeNT5wJ3uPtM4OPAd8ysijAr7SxgKnCkmQ3tky0gIiIiIjLIqUdT+tsS\nd+8wsxeBR929zcxWAhMJjb1WgJiGZFJcZlH8u5yQY7PYU+6+Ii63AhgJrO4i7k3An9y9EWg0s4fj\n44cCO5jZ++P/w4AdgEZ3fyk+9s4tXF8REREREakAamgOrNZu7o8BCn+PqAfau4jr6jeL4vwb3f2u\nUVVQJmzq3W4mDJe9v/MJMxuLer9FRERERLZIJX6RVkOzPN0MTDGzzv1zCOH6yOO7id+SY/dpYG8z\nqweGEK77hJDG5HjgfjPbB3i7u3/XzGrMbGfCNaK/BN7v7l31lIqIiIiISIVTQ7N8XQEsJDQir3T3\nZ8ysu9ilZvYQ8L7Uwt39VTP7KXA/8Ffgd/GpHwJzzWwRUAN8Kj7+CeCmeP/nPTUydxiRnifopTXJ\noTQ3pZc7flz6APXRDemZie9c0JIcy5D0TMpHTU4v9leL0+vbUZf+G8Qeb06vw2sb02NrM84y1Rk/\nmdRWpx8Pw4ell5uTwH1DU3rsiCHp9U2tQm3G9mrNSIbeUjwuogfbN6Sv17rm0iQib2wuTW6y+rqM\n+mYcjyPq0mNXNaXv5HHD0stduSZ93YZmXJGfk+i9LmMft5co/VzOe6g5432xenV6hffePX2jZZye\nGF6bEX3VJ5JDf/3hS5NjP3xDt/MR/pO/N6YfEP86Ov3ku2xdXXLsmpb0AyJnX6zNKDfnc7AtoxIZ\nb02qMq7x23m79DfGo8+mr9xeO+ds4W1DznYdLNTQHCDuPrfg/q3ArcX3gUuKlpndzTIzC8IOLLj/\nTXdfVpxfs6CM/wT+s7huZlbr7tOKYu8h9LIeDpwFfC9hNUVEREREpAKpoTm4XWBmzYRZbM3MFhQ8\nN8fdb+5qIXc/rj8qJyIiIiJSCSqwQ1MNzXLT1/k1CWlSTgbmAY+zKb9ml43MWIeX3X1cbJie5e6P\nmdlZsU4L+m5tRURERERkMKrECZC2BQOWX1NERERERGRrqaFZnpa4ewfwj/yaQGd+zQfcvTXm2Owu\nv+bILsp8yt1XuHs7sKKbGBERERER6WNVVf13KxdqaJangcyvWahw2rz0adtERERERKSiqaG5bflH\nfs2YY/MQYGkP8Vu7f9cA4+P9qVtZloiIiIhIRarux1u5KKe6SJrO/JqLiPk1e4jtzK+5Na91iZn9\nH2GyIRERERERkV5VdXSUKAuy9DszO9Hdb+oub2YPy/2iM6WJmdUDz7r7Tltaj3fcdV/yQdWckUR+\n/Yb0Y3Xk8ORQhmQkWn9+VXp9V/rG5NhDpjYkxz69Ir0OOW/vsWPSf3dqbE4vuLo6I+l9RgL3HENq\n0uu7viW9vjUl+qmuNvGY3Nhcmgsxhtanb6+m1oHfXq0ZmchzjrGMQ7dkWjNylg+vSw9etSF95Rrq\n02MbG9OPnbqMckc2pK/bmub0Ay3nHJlz/B67y/rk2O/+In07TJ9anxw7rDZ9mz2/IT0Jwa7Di6/E\n6d5VJ12RHDvr6k8kx755ZHNybM66rcs4n3V0pMeuzjgmmzI+X0cOTQ6lsa00J7RR9RnH2eqM93zG\n97g7jz6sDM7WvVv6yq391ujab+w7y2KbKL3J4HIBcFNKoJkdC3y64P8F8e504Mo+r5mIiIiIiFQM\nNTQHWF/nzTSzeYQGZLWZXcamvJlnFL6uu88H5sc6FObN/Jcu8maeRZh0aG9CT+mFfb8lREREREQG\np7LoYuxnukazPJR73syDYz2mAGdvRTkiIiIiIlIB1NAsD+WeN/MRd9/g7uu2ogwRERERkYqkPJoy\nUMo9b2b6lf8iIiIiIlLx1NAsb8qbKSIiIiKyjavqx1u5UEOz/ClvpoiIiIiIbFM06+wAc/e5Bfdv\nBW4tvg9cUrTM7G6WmVkQdmBBTLf5NGPezNYY93/A/3URtqCgrHE9rpCIiIiIiGymHHIz9zc1NCtE\ncd7MAn2eNzMnKXBOQuna4enlrlqbHEp1xlXTE8enX67auGN6Yu31Lel1mPbGluTY9oyE0n94Jb2+\no4am5xxuz0hP3NyeXt+cRPZrGtNja2rSY+tr0lfutYyptBqGpG2HnAv+6zPO9k0ZScvHDW1Ljl2+\nKn0QzZDEbQAwvD59P7RmHI+tGcdjW8bx2NaWXonqjG8mL61Jj915VHodVjenl5uz33KsyUh435Gx\nj2syxnXlfEm87s/DkmMPmZJ+8KzN+KzYkPFZnHPu/Xtj+kly1tWfSI697UOXJsdud+3HkmPXtqTv\n5JztUCp1dRmfgxkHe2NjeuyI7ZJDeXlj+vYdPzL9WF+ZcT6T8qWG5jbOzE5095vMbDdCjssuey8L\n82aKiIiIiEj/qcSms67R3PZdMNAVEBERERERKaQezQFgZrMJQ1bHAW8BvgCcAuwDnAZMBk6O4be4\n+0VmNpcwQc8BwC4xbiYwyczmEYbFVpvZZcDBwMPufkYPdXia0MN5JHA74UeHo4Db3f0CMzsS+E+g\nGVgFvA84FDgfGA6c5+4P98X2EBERERGRwUU9mgNnT+BY4BvA54B3x/ufB2YD0+LtJDPbIy7T4O5H\nA3OA0939YuA1dz8hPr8XcCFwEDDLzEb18PpvBC4npEz5FHAjoYH7b/H50cCp7j6dkPbk6Pj4vwBH\nq5EpIiIiIpKmqqr/buVCDc2Bs8TdO4AXgUfdvQ1YCUwEHnD3VndvBRYDk+Iyi+Lf5cDILsp8yt1X\nuHs7sKKbmE5r3P0v7r4BWEfoAd3IpmPiJeBKM1sIzADGxsf/4O5NW7LCIiIiIiJSGdTQHDit3dwf\nw+bXC9cD7V3EdfV7RfGUqD39prFZbGzUFvoJcFbs0fxFwePNPZQpIiIiIiJFqvrxVi7U0Cw/NwNT\nzKzWzGoJQ1uX9hBfqn04Eng2Dr+dQWjwioiIiIiI9EoNzfJ0BbCQMFT2Snd/pofYpWb2UAnqcAlh\n2O4VwLcI15GOL8HriIiIiIgMapXYo1nVkZPZWMpGav7MgfCeuxclH1Q5iX5r03NEs8OQ9CTyTRlJ\nrV9tTK9vfcaczjsPKx653L3n1qcXnJNEfnRDevATz6WfN3Z8XfqOq68pzflodH36ur3SlF7fNevS\n6ztuRHJosozdS3PGcZ6jJf3QZWh9+vZqzUic/sqr6Vti+PD0coc2pMfWVqev2+syzk8vbkw/Hsc2\npJfrL6afy0aNSo/NOefkTFhRW6KfxVsz6pvzdek9b1yfHPvteekb4j1HpR8PIzPOe4++2pAce8DY\nxuTY9a3pOy7ns+3GD/w4OfaTN340OfbV5vT65pyj/ro6fb/V1aWXOyJjH2/I2Bct6acSWltL87m9\ny8j0Slx/+PRyalt16y+rb+23RtebR72zLLaJ0ptsuy4AbuopwMyOJaQ9KTbH3W8uSa1ERERERGQz\n1WXR9Otfamj2o/7On+nu8wm5Mgvr8DTwVjP7Kun5M68FrnD3u82sAfgzYF1MICQiIiIiIqJrNAfA\ntpg/81rgpPj8TEKjVI1MEREREZEElXiNphqa/W9bzJ95B3CYmdUBxwHXbdGai4iIiIhIRVBDs/9t\nc/kzY8xdhN7Mt7j7/T2ULyIiIiIiBaqqOvrtVi7U0Cwf5Z4/81rgq8CCEr2uiIiIiIgMEmpolpey\nzJ9pZuPd/WFCr+v1JXhNEREREZFBqxKv0dSss/3I3ecW3L8VuLX4PqGhV7jM7G6WmVkQdmBBTI/5\nNN19XE/33f1LwJcKFvkpgJntBSxz9z/3VL6IiIiIiIgamoNQX+fPNLOPAWcAH0yJf2lDekd5Q116\nPUbWpyfvXZmR5HzjxvSx7G8YnV6HMRmJlJ9ck74h2jISKVdnjFlY05Ie/KYJ6ev28tr07Vs9JP13\nuLXr0stt3i79eGjPSOA+ZkR6bE5O69RE4G0Zda1L3wQ0NqdXtj4juXiOnHxjE3ZMj21sSy84K2l5\nRvL2J19J3xnDhmYkhc8od7cd0/fxq03JoTTUppfb3pG+bk0t6XWoyTjWazPOke0Z7+Grlg5Njp3x\n1vQ38oqN6XXIOafnvC+WrUv/vGrOeF+szajvJ2/8aHLsJe/9r+TYWVd/Ijk253ioyzhP1tekF7ym\nuTQDE6syzr/Nzemxu4xNP9ZfWD/4mig523WwGHx7sQKZ2YnufpOZ7QbcFHs15/eyWDJ3/zHwAEd7\nYAAAIABJREFU474qT0REREREBjddozk4XDDQFRARERERka5V9+OtXKhHc4CY2WxgOjAOeAvwBeAU\nYB/gNGAycHIMv8XdLzKzucALwAHALjFuJjDJzOYRhstWm9llwMGEHJln9FCHp4BbgKnAauAdwPbA\nXGAUUAd8CpgGjHT3r8bl7gXOcfdH+2BTiIiIiIjIIFNOjd5KtCdwLPAN4HPAu+P9zwOzCQ28acBJ\nZrZHXKbB3Y8G5gCnu/vFwGvufkJ8fi/gQuAgYFZMU9Kd3YFr3H0KMBqYCJwDPODuM4Bzge8B84B3\nApjZGOB1amSKiIiIiEh31NAcWEvcvQN4EXjU3duAlYQG3wPu3ururYR0I5PiMovi3+WEnJfFnnL3\nFe7eDqzoJqbTmoIGY2d5BxJzZbr7EuBN7v4c0GFm4wm9nrds0dqKiIiIiFSgqqr+u5ULNTQHVms3\n98eweRqceqC9i7iuDqXWov97Oty6iu0oWqZz/r5bCL2axwE39VCmiIiIiIhUODU0y9PNwBQzqzWz\nWuAQYGkP8X25H38HzAAws8nAY/HxecAsQg/nI334eiIiIiIig1pVP97KhRqa5esKYCFhqOyV7v5M\nD7FLzeyhPnrdOcABZnYP8E3CNZu4uxOu6byrj15HREREREQGqaqOjoyMsyIJDvvFfckH1fbpOa3Z\nrjY90e/fVqb/npPzFjhqz/TMxE+vTU9q/ejT6XV4+77pWeR3Glo8Orp7dz0/LDl27JD0fbGuNX1f\nNGckDc+xfn36Th49oiRVYN2G9Ni6+rTtUKrrMHIShrdmJGRvTT90s9Ztu7r0+q5tSi+4LmNe9rb0\nt0SWhtr0dVu9Nr3cCWPSK7yqqab3oCgniX2O6ozjIWdf5BxntRk/zTc2p2+IEUPSyx2S8d6sqU6P\nfa05feVG16dv4NaM42Fja3odXpfx2fZac/rxe9uHLk2OPeLKTybHrmtOP9CG1advtI0t6eXmHOs5\n77emjGN9rzHp++3hZ9L32x/eP62cOvG69dz6X/Zbo2vCdu8qi22i9CaDiJmd6O43mdluwE3ufqCZ\nHUtIe1JsjrvfnFn+CGCyu6tXU0REREREuqWG5uByAUUT9bj7fGB+H5W/P/A2NHxWRERERCRZWXQx\n9jM1NAeYmc0GpgPjgLcAXwBOAfYBTgMmAyfH8Fvc/SIzmwu8ABwA7BLjZgKTzGweoQez2swuAw4G\nHnb3M3qow/viMq0x9pyYf/M6YATwWqzDJcAIM3vC3a/os40gIiIiIiKDiiYDKg97AscC3wA+B7w7\n3v88MBuYFm8nmdkecZkGdz+aMHnP6e5+MfCau58Qn98LuBA4CJgVG47/xMyGA18HjnT3w4DdzWwG\ncD5wp7tPA+4GjgQuBm5QI1NEREREJF11Vf/dyoUamuVhibt3AC8Cj7p7G7ASmAg84O6t7t4KLAYm\nxWUWxb/LgZFdlPmUu69w93ZgRTcxEBqkT7r7uvj/AmA/wjDZxQDu/j13v2VrVlBERERERCqHhs6W\nh9Zu7o9h8yHd9UB7F3Fd/XZRPLVXd79vdHTxGhuBNvRDhIiIiIjIViujjsZ+o4ZEebsZmGJmtWZW\nCxwCLO0hfkv25xPAnma2ffx/OrAE+B1wBICZnWlmHyQ0cvXjhIiIiIiI9EgNzfJ3BbCQMFT2Snd/\npofYpWb2UE7h7r4e+Axwh5ktApa6+32Eaz8PNbMFwDuBecAjhOtEz89fDRERERGRylRV1dFvt3JR\n1ZGTrV7KUlf5MweyPtPm35d8UA1JTEwPMKw2PUn0315MDqW1Jf09cMTe6Rnnn1xTlxz79N/S1+2E\n/dMTHu+8XXrsvL9tlxy7w7D07ZCTLDsn2XtObHNTenB9Q/oxOaQ2vdw165NDk+vQlr4bqM74WbEu\nfZdl7Ye29MM8qw5DatILbm5P37+tGbE569aeEZvzGd3Skl7uzqPSy13dnH7w5BwPOV8/akr0s3jO\nfstJeL9hQ/rKTRiTXom2jGOypjq9Dmtb0jfwyPrS1LexLT12bEP6yS9n3XLOD/d85JLk2EMvPys5\ntr4mfb81Z2yzcjhH/cu49JPUvY+nfwg8/uG3bhOjUldsnN9vja6dhh5bFttEwyAHh3/Kn1nMzI4l\npDApNsfdby5JrUREREREpCKv0VRDc4D0d/5Md58PzC+qww+Az5jZBcBl7j7XzE4AziNMJrTE3c+L\ndX07IafmG4DvufvVfb5RRERERERkUNA1mgNrIPNnjgHe4e6HAocBdTGn5heBI9x9OjDBzKbGRd4S\n63oE8P/MTMeOiIiIiIh0SY2FgTVg+TPd/VXgCTP7BXAScA2hMbkLcGecBGhPYNe4yMJYn5eBVYSe\nWBERERER6UVVVf/dyoWGzg6sgcyfibsfY2b7A6cCpwOfJQy3PbowLg6dLfxRooqQf1NEREREROSf\nqKFZnv6RPzP+fwjwdeD4buKze6bjDLXHuvsPgEfM7GHAgb3NbEd3/7uZXUhIr0KsTw0wGtgeeCX3\nNUVEREREKlEZdTT2Gw2dLV8lzZ9JmFToUDP7rZndC/zE3TcA5wK3mdliYGyMA1gG3AjcA3whDs0V\nERERERH5J+rRHCDuPrfg/q3ArcX3gUuKlpndzTIzC8IOLIjpNp+muzezaVbbwsfnAfMKHzMz+P/Z\nO+94O6qqfz83pFBCCR2lvQh+JVQFpEMCKCgIIgpSXgELiBJAEFEBsSBWRIoN4aUpRUV+gArSktBC\nABEQlEUXiBTpJYTU3x9rHzJ37sw5swMn3HDXk08+95w5a/bs6Xvt1eABM/ty250KgiAIgiAIgqAP\nA9G6F4pmA1I21rvMbOUutX8JMNzMtupC28X6mYsB7wTupkP9TEnvwcuhnAy8VFi+D57ltnbdoUOa\nOwfkFPd+dnLzdpdbunm7M2c1v/X/9XxGFfkMll+hebu3PJ0jO6yx7KCMJ+AzU5r3YVCXfEVyiloP\nmr87nZgyvXm7Q4Y2b7dp/ethQ5q3mUPOfZlzfpuXWM/rw+TpzS/enKLl82XcE0NyHg0ZstMyCrIv\nOKz5QXv61eY7Nzijvxm127MSVuRcZznXTreSZiy9aPNOPPFS83OxwLDudHhQT/P+vjSteX+nZly/\nOTyY8S4ekjMmyXg+bPKrAxvL3rj/KY1lv3zRZxrLDs54Rk3vkh/atY8v0Fj2X883fxGuuHykAnk7\nEIpm/2BzMxvRjYaL9TMljQIONLOPN1j1/cBfzOzkUntnvtl9DIIgCIIgCIK3M/0pG+zcIhTNGiQt\nAlwIzA9cn5btCYzBJ+bvNrP9JE0E9jCzByQtD1xsZuvVtLkW7g47E7cS7g0cCQyXdJmZfahinW2A\nXczsAEl7AF8zs7UkLQeci9e2PANP0jMYGGNmd0raHE8gNA14FPhcqd39gQ3M7LMV21wKr+W5kKSH\n8Pqed6WfnwaeNrPm03NBEARBEARBEAwoBqK7cFP2wt1lNwduT8sWArYzs02B9yTF8Ry8DiW40nde\nmzZPBA43s1F4op+Dzeww3BW1j5KZuBF4X/q8KfCUpEXT57F48p7LU5zmAcDxSfYkYKfkjvsk8IlW\ng5I2AXZJ8n0ws/8C3wcuMLMT0+K7zKy5n0gQBEEQBEEQBImeufi/fxCKZj0jcSUPYFz6+yxwsaTx\nwOp4VtbzgI+l33egvaI50swmps9jgfd26kTKBPuapAWBlfDSJxviiuY4YBPg85LGAT8HFpW0DLAa\n8Me0fDQemwmwXOrjp8xsWqftF8jNahsEQRAEQRAEwQAlXGfr6cFdXMEV8qG42+s6ZvaEpFbG12ck\nPSZpA2CQmU1q2P7QQvuduB7YGne3vQnYHrdyHgFMxd1lJ7SEJY0AJiXLKYXlo4BVgKuAzwLHNtw+\naTtBEARBEARBEGTS048sjXOLsGjWY8wuFTIaWBiYnpTMFdJvrfRZ5+BK6B86tHmXpI3T5y2BWxv2\nZTxwMG5VvAO3aE5OJUomAh8FkDRS0qFm9lzre/o7RtLaqa0b8HjNXSWt0XD7QRAEQRAEQRAEjQlF\ns56zgY0kXQ0IT4JzpaRbgGOAHwInSBoCXAqsSmdF8yDgOEnXABvgcZRNuAHYApiQ3F2Hp2Xg5UdW\nlXQdcBpwbVr+GeCMtHwzXHEGwMymAJ8HTpfUnXodQRAEQRAEQRAA0NMzaK797y/0zMopehVUImk0\nsI+Z7f1W96U/sPVlN3Tlopo6rXmzCzYvH8nMWd2p+5lDTm2/eS09drfqaA4e1PxkTJ/ZnU7kXA/d\neNRm1W7MoFt1NKdlFNLMqWGZQ7fqaHbrOs85ZsMGNz9xU6Y173BOHc1uPcty6gXmXL/deqYPH9L8\nQDyXUSO6P9TRzLnWu1VH87WpzfvbrTqaOfdF1NF0cup159TK/uu2m80TI6Pnp/5lrildiw39cL84\nJgM2RlPScDyT6spvsJ1vAdviWVyRtCJuDV0TL8t9RxIdb2bHtGmntV6ZTuuNonltzPK6Q4ErKn4y\nM9s/t70WOQONBYY0v+emTc+5Z3Jemm+9wrLosOYH7cWpzZ/U3Sqe3q2XW84A5rWM6yFnAJ4zMMo5\nvjlKYdNj1q1jm3MPZ+hBXTsPWUpIxnHIOWY5CkvO8c25bnImzbo1YZXX3+ay3Zqk6NY5fnla804M\na17DvmuTQDkTDznKwrSMCeIchTBHNkdhGdSlUXGO8vjjnU9vLHvkxc3b7dLwJet6yHlndmvy7q3l\nbblTbRmwiuabRVICjyl8fwQYJek5MxuR0c4jwKg3v4dttzl1bm8zCIIgCIIgCIK3PwNK0ZS0CHAh\nMD+eyRVJewJj8In5u81sP0kTgT3M7AFJywMXm9l6NW2uhScCmolnhd0bOBIYLumyqvqYkrYBdjGz\nAyTtAXzNzNaStBxwLl6P8wxgBH6OxpjZnZI2B44DpgGP4kl9iu3uD2xgZp+t6euZwFPAesBSwA+A\nfYEl8eREk4FT8cy0w4BvmNkVku4HfgV8JC3fxsxeqjvOQRAEQRAEQRAMbPpPtOjcYS/cXXZz4Pa0\nbCFgOzPbFHhPUhzPAXZLv+9I+9qYJwKHp1Ii44GDzeww4IUqJTNxI16eBLwe5lOSFk2fxwKHAJeb\n2dbAAcDxSfYkYCcz2wp4EvhEq0FJm+Duuwd0OAbTU7v/ADYxs23S59HA7sAUM9sSrw3aCioYDNxj\nZlsAD+GlVoIgCIIgCIIgaEDPXPw3J0gaIum3kq6XNF7SKhUy35V0g6QJkr7Sqc2BpmiOxJU8gHHp\n77PAxZLGA6sDS+CK5cfS7zvQXtEcaWYT0+exwHs7dcLMJgOvSVoQWAm4CC9Zsmnq1ybA5yWNA34O\nLCppGWA14I9p+WjgnanJ5VIfP5Wy0rbj5vT3ceDv6fOTwKJ4yZZxqY//SX1cPMlcl/4+lmSDIAiC\nIAiCIHh7sAfwvJltBnwX+F7xR0lrAqOTcW5TYF9Jy7ZrcEC5zuJRuK00DIPwOpg/A9ZJ9TH/BGBm\nz0h6TNIGwCAzm9Sw/aGF9jtxPW4ZfAm4Cdget3IeAUzF3WUntIQljQAmJcspheWjcFfXq4DPAsd2\n2O70ms89eAad4jRIcX/KskEQBEEQBEEQNKLfD5+3ZnZi0quA/yv9/gIwv6RheMLTmXjYXS0DzaJp\nuNUO3CK4MO5K+oSkFdJvrfxv5+BKaKfamHdJ2jh93hK4tWFfxgMH4xbGO3CL5uSUoGci8FEASSMl\nHWpmz7W+p79jJK2d2roBj9fcVdIaDbdfxS34cSEdj5lm9vwbaC8IgiAIgiAIgv7PssB/AcxsJjAr\nVaggLXsU+D3w7/T/l2b2YrsGB5pF82zgIklX4xbFp4Hxkm7Blb0fAidIWhe4FPg1nRXNg4CfSZoF\nPIcn12nCDWkbR5nZtFRupVVq5GTgTEnX4TMGB6XlnwHOkDQV+A+euGdjADObIunzwOmSNjWznKoD\nLc7HM+aOxRXuOS5xEgRBEARBEASB09PTf+x7kj6Le0IW2bD0vZcJNsVs7ox7Ug4BbpR0gZk9Vbed\nnlndqCL+NkDSaGAfM9v7re7LvMaoP9/Q+KLKqaP5ymsZRa2Hdue67lbx6UWGRh1N6F6tx7drHc0c\nunVsc+gPdTRzjm1Wfc5+UEczh3mtLmXOMcvpbw45/c2hW/UCc9qdOr2zzOvt9oM6mjlk1dHs0rlY\nf4kpjWW7VUcz41Rkce0TCzSWzXln5owPL/vgZv3eJxXgxWlXzjWla5EhH8g+Jqk6xXlm9ldJQ4CH\nzeydhd93AzYzszHp+3nAr83smro2B5pFsy3JqngXcBawLZ7FFUkrMttnucj4VEezrr3yemviFsqT\n2q33Rkgm7pvxREF3F34yM+tjoUx9XNbMbk4X2B/M7E9vpA85g8nJUzMKNGdcra9mtJujYM2f8eDL\nKZ4+NaOS8vwZxzdnYJQzsO9W0fAcujaYzBjQDs24JruhPHaLbik3OUXhc+7LHHKUx5zBd7f62x8U\n2G4pWP1Bccu5L3MGydOnNxcesWBz2Un/bd6HESOaX+yDM66HnOts0eY6CNMzDvD8GcpjtyZnc95B\nOc+dHOXxuzt1RynNIWffcsgZH8479Pt9ugKvaPFXvKTh2NLv9wOHSBqE6zNrAQ+2azAUzQqSEnhM\n4fsjwKg5aKfXepKeM7MRb0IX221zqqRDgAPN7OMNVtkKGM7sbLRBEARBEARBEAwsLgA+IOl64DVg\nHwBJX8WNaxMkXYGHHwKcZmYPt2twwCuakhYBLgTmJx04SXsCY4AZwN1mtp+kicAeZvaApOWBi81s\nvZo218ITCc3Es8ruDRwJDJd0WVV9TUnbALuY2QGS9gC+ZmZrSVoOOBev53kGMAI/b2PM7E5JmwPH\nAdOAR/GkQMV29wc2MLOyHzaSlgK+CUyT9EhaPFrSgcCKwJ543OkfzGz9tM6twMc7XVhBEARBEARB\nEDhzWt9ybpHyu/TJNWNm3y987mWM60T/iUp969gLuMvMNgduT8sWArZLdWLekxTHc4Dd0u870r62\n5onA4akUyXjgYDM7DHihSslM3IiXNwGvTfOUpEXT57HAIcDlZrY1cABwfJI9CdjJzLbC62F+otWg\npE1w998DqjZoZv8FzgRONLNL0uJZZrZd2oeITw2CIAiCIAiCIJtQNGEkruQBjEt/nwUuljQeWB1Y\nAlcsP5Z+34H2iuZIM5uYPo8F3tupE2Y2GXhN0oLASsBFePanTVO/NgE+L2kc8HNgUUnLAKsBf0zL\nR+OxmQDLpT5+ysymddp+gZY5fBKwaMZ6QRAEQRAEQRBU0DMX//UXBrzrLB6Z2wptH4SX9fgZsE6q\nr/knADN7RtJjkjYABpnZpIbtDy2034nr8WKpLwE3AdvjVs4jgKm4u+yElrCkEcCkZDmlsHwUnnr4\nKjx18bENtw9QTH/RA5RD44dktBUEQRAEQRAEwQAkLJpgwPrp82hgYWB6UjJXSL+1ipWegyuhnWpr\n3iVp4/R5S+DWhn0ZDxyMJ+a5A7doTjazqcBE4KMAkkZKOtTMnmt9T3/HSFo7tXUDHq+5q6Q12mxz\nJu0nHF4ElpHUI2lZ4F0N9yUIgiAIgiAIAsDVrrn1v3/Qf3ry1nE2sJGkqwEBTwNXSroFD3b9IXBC\nqidzKbAqnRXNg4DjJF0DbIDHUTbhBmALYEJydx2elgGcDKwq6TrgNODatPwzwBlp+Wa44gyAmU0B\nPg+cLqkuefkE4CspAVIfkjJ7FXAL8F3g7w33JQiCIAiCIAiCAUrPrJyiQQMcSaOBfcwskuS0YYtL\nb2h8UQ3LcMQdPKj5tfpql+r15dSLGtTTvL8vvdK83QUWyClk3526nznk1KnLqWGZUzQ8p92cWqk5\ntUe7VU+0KTk1C3NeCzn3T84xyJGdNqO5bE6d3+kZ9W2nZ/Qhp/5qf6hh2a3rIafdbtX9zKkJmVM3\nsVs1TYcPbt7ws1Oadzjnmsy533KO2ZQpzU/cghnvwW7VMM65fjdf9tXGsjnPviEZsjk1N7+aUXNz\n3OPNi6XmjKFyrrNx22/af4IS2/DK9PFzTelaaPCW/eKYRIxmAUnD8Qy0K1f89i1gWzyLK5JWxK2h\nZcan1L9V7V+CJxaqSs5Tu14uKUbz9TqakobiRVjLGG6lXNbMoo5mEARBEARBEARvCqFoNqRcN8bM\nHgFGZTazuZmNeDP71YQU4zmq6jdJ++AuuqFoBkEQBEEQBEHwpjDgFU1JiwAXAvOTSnukeMUxwAzg\nbjPbT9JEYA8ze0DS8sDFZrZeTZtr4UmDZuIZZPcGjgSGS7qsqpampG2AXczsAEl7AF8zs7UkLQec\ni9fuPAMYgZ+3MWZ2p6TNgeNwK+mjeAKgYrv7AxuY2WcrtrkU8E1gmqRHgENxS+hdkg4EljSzb0r6\nLrA5MB9wipm1K+0SBEEQBEEQBEEv+oU361wlkgHBXri77ObA7WnZQsB2ZrYp8J6kOJ4D7JZ+35H2\ndTRPBA5PZUfGAweb2WHAC1VKZuJGvJQJeO3MpyQtmj6PBQ4BLjezrYEDgOOT7EnATma2FfAk8IlW\ng5I2wV19D6jaoJn9FzgTONHMLqmSSYrsSma2BbAVcJSk5g75QRAEQRAEQRAMOAa8RRMYiSuDAOPS\n32eBiyUBrI7HVZ4H/BW3Hu5AyXJYbtPMJqbPYym43NZhZpMlvSZpQWAl4CK8vMmm6fPXgKUk7ZVW\nWVDSMsBqwB9TXxfCs+ZOApZLfd4wZbCdUzbBs/KOS98HpbYffANtBkEQBEEQBMGAoWcAWjRD0XQ7\ndisn2SC8ZubPgHVSLc0/AZjZM5Iek7QBMMjMJjVsf2ih/U5cD2yNu9veBGyPWzmPAKbi7rITWsKS\nRgCTkuWUwvJRwCp4WZLPAsc23H4xG1YrH+xU4HQz+17DNoIgCIIgCIIgGOCE66xnXl0/fR4NLAxM\nT0rmCum3oen3c3AltFMdzbskbZw+bwnc2rAv44GD8cQ8d+AWzckpmc9E4KMAkkZKOjTVuETSyPR3\njKS1U1s34FbXXSWt0WabM5k94fAibq0Et6SStvsRSYMkzS/p5Ib7EgRBEARBEAQB4GrX3PrfP+g/\nPXnrOBt3Db0aEO56eqWkW3CX1x8CJ0gaAlwKrEpnRfMg4DhJ1wAb4HGUTbgB2AKYkNxdh6dlACcD\nq0q6DjgNuDYt/wxwRlq+Ga44A2BmU4DPA6dLqqvUNQH4SkqAdCrwM0l/Bv6T2rgRd/+dkLb5t4b7\nEgRBEARBEATBAKVnVk7F2QGOpNHAPma291vdl/7MBy6/ofFFNXV683YXHNr8Wp0yvbkffM4tMGNG\nc+GejMrlgzKmfGZmFJ/OKZ7erT4MzihG3i2mZxR+zulvTmHtnCLygwc1E546ozvXeU4B+Zxi6N06\nXt16jeXcPzmFyHPIOQ4zMs5FzjmOPuT3oek9DDBlWvMLbZFhzXfupanduSiz3isZskPna37MXs04\nZt3q77SM8cuW73i1K30YkiGb8Rrk+zud3lh2s1MPbCyb877Iea6P237TeSL48dXpN841pWuBwZv0\ni2MyoGM0JQ3HM86u3ED2W8C2eBZXJK2IW0PLjE81N5F0CTA8ZYSl6Xq5pJjMA83s4zW/DwWuqPjJ\nzGz/zG29XvYkt59BEARBEARBEAwMBrSimUNSAo8pfH8EGNVhtc3NbESpnSbrvamkGM+5us0gCIIg\nCIIgCJwcT7e3CwNO0ZS0CHAhMD+e5ZUUnzgG9yy428z2kzQR2MPMHpC0PHCxma1X0+ZaeJKgmXjG\n2L2BI4Hhki6rqp0paRtgFzM7QNIewNfMbC1JywHn4rU6zwBG4OdpjJndmepaHgdMAx6lVGZF0v7A\nBmb22YptrgqcbGYfSjU2/wIsjsfq3g6sg8dproJnnf2GmV0jaWvgp8ATwONEaZMgCIIgCIIgCNow\nEJMB7YW7y26OK1fg9Se3M7NNgfckxfEcYLf0+454Tco6TgQOT2VGxgMHm9lhwAtVSmbiRrx0CXiG\n16ckLZo+jwUOAS43s62BA4Djk+xJwE7JHfdJ4BOtBpPyuEuS74OZ3Q8sL6knbefvwBrAunim2z2A\nx81sNJ7h9qdp1e8Be5nZB4Al2xyHIAiCIAiCIAj60DMX//cPBpxFExiJK4MA49LfZ4GLJQGsDiyB\nK5Z/xa2HO1CyHJbbNLOJ6fNYCi62dZjZZEmvSVoQWAm4CC9nsmn6/DVgKUl7pVUWlLQMsBrwx9TX\nhfAsuZPwsiTnARumjLV1/AN4N/B+4OfAxsAC6VhsAmwuabMku0CK71zZzO5Iy8Yn+SAIgiAIgiAI\ngkoGoqLZg7u4glt0h+Jur+uk2pl/AjCzZyQ9JmkDYJCZTWrY/tBC+524Htgad7e9Cdget3IeAUzF\n3WUntIQljQAmJcspheWjcHfXq4DPAse22eY4YCNgQVwp/iFeRuUwYD3gu2bWy3orqbg/A9EKHgRB\nEARBEARzTM8AHEIPvD32OpPrp8+jgYWB6UnJXCH9NjT9fg6uhHaqm3mXpI3T5y2BWxv2ZTxwMO62\negdu0ZyckvdMxN1XkTRS0qFm9lzre/o7RtLaqa0bcKvrrpLW6LDN/wXuN7OngaWApczs0bTNnVLb\nS0s6Lq0zSU4PkVQoCIIgCIIgCIIODERF82xgI0lXA8JdT6+UdAvu8vpD4ARJQ4BLgVXprGgeBBwn\n6RpgAzyOsgk3AFsAE5K76/C0DOBkYFVJ1wGnAdem5Z8BzkjLN8MVZwDMbArweeB0SZXVwczMcPfh\nlqX0OeD+9Pl3wMuSbsT3/bq0/Ej8GFyKJyAKgiAIgiAIgqAxAy9Gs2dWtypdvw2QNBrYx8z2fqv7\nMi8x6s83NL6oFhjS/PqbP6MA9rNTms+hPHZhU69o+MKhIzoLJZ7K6MM9LwztLJQYteyUxrKvZhSU\nvvrxBRvL5hQjnzmrOw+8nMLPMzNkB3epgPv06c2Fhzaswp2z/W4xOGO6clpGxfCcLPCG+Y29AAAg\nAElEQVQ5hd6nZBR679a1kHPMpmbcw6+91rwT71ws43n6WvMO5+zba+2yCZSYL+Nc5BS8n5ZxfIcN\naS772KTmF/sHRjaXvfk/zTuxzKLNz/ELGed4+eHND9qr05u3+/SrzWVnzGi+b1OnNhZlaPNXcdYz\nalDGRTko4x7Kud9y3pk57V6/3ymNZe/71x6NZY/62yKNZc/cYsv+o1m14bUZt8y1t/aw+TboF8dk\nIMZoNkLSt4Bt8SyuSFoRt4aWGW9mx0jaArjHzJ4qtdN2vTe5z18BPgXsiif6KbMAns1WwJpm9uU3\nc/tBEARBEARBEAQQimYtSQk8pvD9EdrHJ34a+DHQS9FssN6byXZ4GZJ/ttumUsraIAiCIAiCIAi6\nT0+OGfxtQiiaCUn74IraIsDywAnAQ3h5k2nAY7gyuTvJGihpOHAXnoTno8AaknbBEwIdhGef/YmZ\nXSBpV+BQYDrwNzM7WNI38bqUq+JZY49K21gZ+LCZPSjpu8DmwHzAKeWMsIX+/y+esfbXqSTK/ngJ\nk/mBX5rZaZLOpBBvKmll4A9mtn76fivwceCbeNbbJXDr6Kmpf0OAb5jZNdkHOAiCIAiCIAiCAcNA\nTAbUjjWAHYGt8BIhpwK7mdmWeNKcSudyM7sSuB3YN8l9A0/ysy2wR1JIjwO2MbPNgFVS/CfA4ma2\nHfB7YO/C5x0lbQ6sZGZbpD4dJamyhqWZnVPow7+Bh9O2Nge+PQfH4lkz2yXt8+NmNhpXpn86B20F\nQRAEQRAEwQBm4CUDCotmb8ab2XTgaUkvAD2p7Ad4zcktgds6tLE6Hqv5KvAqsJOk9wH3mdnLSWYc\n8N70+eb093GgFST8JG5N3ATPkDsuLR8ELAc82K4DZjZF0uIpe+xUvIRJLq1+bQJsLmmz9H0BSUNT\nCZYgCIIgCIIgCII+hKLZm6KFdxYwrPB9KO4KW8wYVZX+bQZ9LcWz6D29MBRXQsFdaan43IMriaeb\n2fc69ryApC1xC+iWZjZN0ss1ouXsV8X9mVr4+906l90gCIIgCIIgCNrTMwAdSQfeHrdnY0nzSVoS\nWBiYmrLGglszbwVexK2K4HUsW8zEFfd78Hw7wyXNL+lK4F5gNUkLl9rqxETgI5IGpbZObrgfSwKP\nJiVzR2A+SVVJu18ElpHUI2lZ4F01fdgJ36mlJR3XsA9BEARBEARBEAxQQtHszcN4fOQ1wJF4kp9z\nk+vqEOB84GpckRwHvAdXMAHG44l2VsZjNK/CXWRPM7NXgMOByyVdB/zdzK7v1BkzuxF32Z0AXAv8\nreF+XIUrtuNx5fFPwC8q2n8uyd4CfBf4e0VbvwNeTm64lwLXNexDEARBEARBEATAQIzR7Jk1qx9U\n/J4L1NW5LPy+D2+j2pKSzgf2TbGi5d9WBJY1s5v7rtm2zUbr7XTVdY0vqqdfan4zvPpq82v1nA+9\n0Fh25YWbFwVe6wuVl08lgzdYunm7qzQ/Dref9Z/GskxrXgj83fuu2Fko8fTzzbsw//zNZQcPbn4c\ncgpKLzq0+XF46pWMyvAZLL9w8yLnj09uFtUw/+CMouUzmh/bmRmvhenTmwsvtkBz2Skzmp/gVyY3\nb3eBBbpzHDLqsTN0vuYND+5pLrvMAs2v85sfan6dL7Vk83MxrfllzgJDuzP+yLnWc85FTrujluvz\n6q3l9GuronCqWWdk83Px/KvN+7v0Qs2Pw30Zr6AFF2zeh+UWbd6H/77SvN1lF57ZWSixyJDmsvNn\nXDv/er7KqayanGH5kO68rpje/DBwzpbPNpZdbfVzG8vedVdl/s1K3rXIR/qPZtWGaTNvn2tK15BB\n6/aLYzKQYjQr61zOayRX2EMrfjrRzC5qfTGzT7ZpZitgOLMT/jRlTtcLgiAIgiAIggFLTz+yNM4t\n5hlFs9t1LoHJwGaSrqcLdS7TPtwP/D9gU+B5YHs8FvRMYDHcPfcgM7utRnYh4FN4wqHBwJi03+OA\nKyUtBlyPx47eDqyJZ409Fk8+9CTwRbxO5jRJjwD3A6fgiYFeAvZJfTkLeABYB3ep/VpxPTO7pG4/\ngyAIgiAIgiAY2MxrMZrzbJ3LxCrA2Wa2MTACWBs4GLgp1ak8BFeg62QPAS43s62BA4DjzexZ4CfA\nV4GjgePMrOjYeCBwWDpG5+MK8Zm4BfQS4GRg/9TmFbgiCrAe8HVgA+DDuDJfXC8IgiAIgiAIggb0\n9PTMtf/9hXnGopmY1+tcvmhmd6bPjwGLAuvjiXgws1slrdpGdhNgKUl7peULpr9nAZcDM8zssNI2\nfw/8UtJvgfPM7AlJxd/fD/w6LRuGJwYCuN/MngCQ9J+0/SAIgiAIgiAIgo7Ma4rmvF7nspwmoadi\n2/O1kZ0KjDGzCaXfBuNK5yBJQ8xsWusHMztH0l9x1+FLJX28tO5kYLSZvX7cJK1cs/0gCIIgCIIg\nCLKZ1xxJ3zjz2h6/XepcFrkFGI13aiM8prTd9j6aZEdKaiUFOgy4AI/p7JUoSNLRwDQzOxV3nR3J\n7GMBcAce+4qkT0raus32i+sFQRAEQRAEQRBUMq8pDQ/jrqCr4nUuH8LrXE7HE9ecj1v2jkzurH+m\nb53LnZhd5xLgBDN7RVKrzuVM4Hozu17SNu06Y2Y3SmrVuewBfj4H+3QicIaka3DF/4ttZE8Gzky1\nOOcDDpK0EvAx3K12EHBzKm3S4hHgKknP4fGpP8GT/pwl6b94jOipkr6KW3H3wBMuVTGhtZ6Z/XYO\n9jUIgiAIgiAIBhwDMevsPFNH8+1W5/LtTNTRdKKOphN1NJ2ooxl1NFtEHU0n6mg6UUfTiTqaTtTR\ndN6OdTRnzrp7rildg3rW6BfHZF6zaL5lSNoCTyLUVtNoWufy7cx/X2x+bY8Y3rzdFRZrfn/uuM39\njWUHLbFwZ6HEl366QmPZKyY1Pw45L+5vfmOxxrI5A8/v/K15H1Zbunm7L01rPjB68bXmxyxjPMsj\nzzTvw1IZg51BGUrAvU8078OiDVNvvTylcZMMbT6WzVKaFsmYSHhucvOGh2T0d5lFmp+Hyc0v3SzF\nYkbGwOzFjPM2aL7mfXj0qeajzvet1LzDj77S/NrNUR6nz8y43zPO26CMSaicPuTwu9ubKxY7bNB8\n5+57sfmwbXDGCO+x55rLvvudza+dl6Y1P75PZowdVl68+TH7zyvND8R9/2neh6mvNb/WV1w+573S\nWJTJU5sLdysR6VF/az5Zn6M8rrlmc6X01Uc+0lg2mLvMM4qmmZ35Fnfh08CPgbaKZir9EeU/giAI\ngiAIgiBI9Asj41xlnlE03yjJ9XY7PP5webxe5UN4/cxpeAmRTwO7k1x0U33Nu4DP4Ul41pC0C54s\n6CA8/vMnZnaBpF1xS+Z04G9mdrCkbwJL4jGlqwBHpW2sDHzYzB6U9F1gczzm8hQzO6/NPpyEl0OZ\nD/iFmZ0p6WkzWzL9/gfgFLxm6G/Tvr4AfBI/1+VlPcAZeJ3OwXhG2zslHYHHfc4ELjWz46qW5Z2B\nIAiCIAiCIAgGCvNa1tk3yhrAjsBWwLHAqcBuZrYlniin0qZvZlfiytu+Se4bwBbAtsAeSSE9DtjG\nzDYDVpE0Oq2+uJlthycx2rvweUdJmwMrmdkWqU9HSVqgqg+SFge2N7NN8Gy67RzLvgz81cw2B64G\ntqlZdghwuZltDRwAHF9Yf1M8wdBzbZYFQRAEQRAEQdCBnp6eufa/vzBgLJqJ8WY2HXha0gtAj5k9\nmn4bi1sqb+vQxup4rOareJbWnSS9D7jPzF5OMuOA96bPN6e/jzO7xueTwBK40rZRypALrvgvBzxY\n3qiZPSvpXkkX44rq2W36+D7g6LTeCQCS9qtYtj+wlKS90noLpr9/wLPynotbQeuWBUEQBEEQBEEQ\n9GGgKZpFC+4sYFjh+1DcLbQYsV1lNZxBX0vwLHo7Xg/FlVDonbOk+LkHmAqcbmbf69hzwMw+lJTa\nPYBPAR8sibT6W9XHqmVTcXfZCaXtHCDpPcCuwDhJ769ZlpOPJQiCIAiCIAgGKAPNkXTgKZobS5oP\nj0lcGHhF0opm9ghuzbweeAW3KoK7qLaYiR+vewAld9npwKV4/OZqkhY2s5dSW8fi7qntmAj8WNIP\ncOX0R2Y2pkpQ0srAjmZ2EnCbpFaO0FmSWpbIlhX1FtwV95ZktZxSs2xi6vsESSPxGNbTgYPN7NvA\nt1O23XdK2ru0bBGgeU7rIAiCIAiCIAgGDANN0XwYdztdFTgSTwZ0rqTpwAPA+bj76JHJnfXPuIIJ\nMB53H90Jj9G8Ki0/wcxekXQ4cLmkmcD1Zna9pLaKppndKGksMAG3cP68jfh/gE0kfRJ4Dfi/tPwX\nuML4T6ClfJ4InJ324SXcAjqoYhnAmZKuwxMMHWRmL0haStLNwMvAjWb274ploWQGQRAEQRAEQQN6\nBmDW2Z5ZOZVh52FS1tk1zezLb3Vf3u5s8sfrG19UOXU0F84opHzLlzuF2s4mp47mQVl1NCvzOlXy\n7ycai3L4xpMby+bV0WxeC2uFRbpVR7O5bE6tvFdeaf6cW6phDUvIq6P5+DPN21100WY7N3Va8+0P\nHdKdF1xO0fIXmtewZ0hGfxcb2vzZMDmjNmZOHc2cV+m0qRk19TIKsr/0UvN2110hp45mRu3GQfNW\nHc2cmoUzM87xU0827/CWyqmj2bw+5/SM2q6TJzffuRUWz6mj2fxkvPRKY9Gu1dF87rnm+5ZXRzPj\n3TaP1dFceeHmUVRHr/tiY9m8OprnzSMa3L1zUel6d784JqFo9jMk7YiXSSlzopldNLf7EwRBEARB\nEARBkMuAUTSDIAiCIAiCIAiCucPAS38UBEEQBEEQBEEQdJVQNIMgCIIgCIIgCII3lVA0gyAIgiAI\ngiAIgjeVUDSDIAiCIAiCIAiCN5VQNIMgCIIgCIIgCII3lVA0gyAI3iCShqW/IySt+1b3JwiCIAiC\n4K0mypsEXUfSYDNrXtG3e/0YBCxiZs+3kRlmZq9JGgGsZGa3z70e9k8kHWNm36pYfpKZHdSwjd+b\n2Sc6yPwXaD2QlgBexSfDhgGTzGzFinVOMbMDS8suMLPdCt/PKLTbBzP79JzIFtY5GbgVuAy4BpgA\nzDSz/StkP2tmp5WWHWpmP6mQXQjYGlgUeL3wspmdXZD5Rl1fk+y3K9r9BjCG2fvZA8wys6XbtdUt\n+svzIYd5sc9vJZIWw++J5tXa30ZI+rCZ/aUL7e5rZme82e2mtoeZ2Wvp8yJz+9xJeq+Z/b2B3CAz\nm5nR7ppmdtcb611t20viz9JnutH+vEKT56OkHczsT6Vlu5vZeR3W6ziOC/oXg9/qDgRvXySNBn6K\nKwrvkfRd4Foz+2uN/Nr0HVRfWyHXcQBekP0q8BxwLjAOeEbSTWbWZ4DeUhgkva4wSKpUGJL88sDK\nZnZ98aVcIbermf2u8H0Q8CUzO75C9ufAV1svdUkrASeb2Y41bS9ScRweKfzeRzkrUpRtw/+rWd4j\naT/gZmBqoc1/Vsg+K+m4Ctm/FD4vlfp8IvBbM7s5fd8E2K3YmKRdgEOBNSW9v/DTEGBoadt/SH93\nBGbg18EgYDRQPmc5si3WMbMxkg4GTjezEyRdWervB4APArtKenepv7sCfRRN4CrgYeCxwrKyEtwa\n0LwfWBIYn/o7Cqg7t7vg1+0rNb8X+91Ykc1Veufg+bAu8Cn6Xu9Vyv+uwO5mtnP6fgVwqpn9IX2/\nheoJhZbS/f6K3xr3Od2XBwJLm9khab2/1w2OJG2MT2ydL2k5M3u8Ri5rkkDS/wDrADPT9h+tkdsX\nOAhYJLXZaneVCtlP4dftOcClwOLA/5nZLypkPwCcAkwBhkmaAexvZtdXyOac33XxY3uFpKOB9YAf\nmdkNNfu3Ln7eVsXvj7uAg83sXxWyywMfq+hH+fpdAVjOzG6WtBewPvALM7OKLhwo6cYmg+Om10Li\ng5ImmNk9DdrdomLxDOAhM/tPSfZg/B3beu/8VtKVZnZSQeb3tJ+U27XUZu4E1/GSPthgQudeSX/B\n3xkTO8gCnCRpafy99od2k8lNJwYl7QMcCzwLDJI0HPi6mZ1bkNnJzC6W9IWqbZnZzyu2nzPWqXzX\n173jkxfOcmb2cM3vczKJ2fH5KGkD/H11UKnPQ4DDgT6KZs44Luh/hKIZdJNvAVsxe/B+InAx0Gcg\nKenP+IClPKjuo2jSbADe4iNmtqmkzwH/z8y+I+mqGtmOCkOhv18CPg4MxwdyP5D0uJn9oEL8A5L2\nxgeey+AP4str+nAjcFVStpYHdgKOrOnDb4DNgacKi2fhD/EWF6ZlQwEBDwLzAf8D/B3YqKLdPgp/\nDWum/7uXtr9VhexQYLm0P0XZqln+9c3s4NYXM7sxvbAoLLtQ0qW4gvajwk8zgcdLsn8GkHSImX2g\n8NP5kv40p7IFhkl6J7AXsLOkwcBiJZmbgGnAh4C7S/09jWqmmtnuNb+1+vuz1N8dzWzb1nJJP8Dv\ntSruAZpa43IU2Vylt/HzIfFb4CR63/d1fAnYrvB9R3zyqLWtjzdoo4qmfT4TuBLYPn1fGh8kfbjc\noKQfASviStD5wP6SFq/xFsiZJPgKPkFzA37/fUvSqVUKIT7A25lmx/YA/LmzG3CHmX1F0tVAVbvf\nAka1lKWknJ2b1i+Tc35/BuyZFNl1gS8CZwHb1MifhE/u/S31Y6PURtWz6lL8+dypH78BDk5tfRo4\nOm1n2wrZRYBHJT2AT7RVTmhkXgvgyu1dkl5h9gRenfL2ZWBLYGJh3YnACpLOKb27dgM2K3zfEbg+\n7V+LU2r6VEfjazfxCnCfpDvoPTm5a0luJK6M7ZuO3zjg3Drl28y2knssbQ8cKeldwF/N7GstmTmY\nGDwEHz88k9ZfEh+nnFuQab0Tluq04wVyxjqtd31P6ue7gNvwc94LSZ8Ejkpf15R0EnBrSYGdk0nM\nJs/HJ4CX8WdS8VjMBPapaTdnHBf0M0LRDLrJNDN7RtIsADN7SlKdi8sIM9u4YbsdB+AF5ksWxD2A\nlmVy4RrZJgpDi4+mB9/Y9P1LuJLYR9E0s8+lWbwJwEvA1nWzjGb2G0l34w/mF4EtyrPNBVYzs5Vq\nfmu1twGApHOAHczssfR9Jfyl0Ischd/MRlesf3RNV45p188SkyRdiB/PmcAGQB9LgJlNTQrVzvRV\njPvMtgJLSNqB5NqKD7SWr+lDjuzPcIX5XDN7TNKxzH7Rtvr6EjBO0lrAWqX+LlHT7qWSPowP8F5X\nDM1scoXscurtErYqsHJNu4MAk3Rbqd3yAC5LkZ0DpTfn+QDwqJn9qs3vRebDXa9bDKK3ReDfqW+t\n+2Bd/DzfSvtrtWmfFzazX8gtq5jZBZI+X9Pm+mY2uvUsMbNvSrquRjZnkmAn4P1mNgPcnQ0fLFYp\nhPfWWOKqmGFm0yV9nNnPkPlrZKcWLXJm9qikaTWyOef3NTN7OCnTvzCzSek5X8f0lpKZ+nFT6xxW\n8ExR6ejQ5u1Jufmpmd0gab4a2T0rli1SsSznWsDMVmvQzxbT8HfGUwCSlgJOwCc/bqD3u6v17ns2\nfV+W0sSjmY1P7RxDtfIzvvQ959oF+HHFsmXLC8xsKnCZ3GthG/zZv7ukh/DJhbsr1nkuTSLPj+//\ndkDxnBcnBu9i9r7XTQxOYvaxAlfSHiht86z0cYk2EwdlGo91Wu/6FpKWBb5TI/5F4H3MVgC/givo\nryuacziJ2fH5aO5VcVYaa0yl2aR2zjgu6GeEohl0k4ckfRtYUtJuwEeBKrdKgOslrVH1UqggZwD+\nR3wG7fdmdm9ShOrcazoqDAVaA4rWC3Z+au4nuZvnl4Gv41a9syR9tcrNR+6++25gC3wW8feSLqmx\nlP5e0seA2+l9HKqU2He3lMwk8+/STG2Lxgp/OgffxhVT8BnKx6h+ubVmW1tyq+CzraMqZHfHZ5NH\n4sf5PDz+sYpLaGZ9AHfLOxr4Hv5iuwfY943Kplngs9NAHuBoM6sbxP4JGIEPTFrUWe73p+81NQs/\ndmW+BJwuaWXcHW4SbqWq4lTyrRE5imxT2ZznA8Df0qD+Onpf71VW8ZNxS8+/8Gvo3VQrkKfjiteh\n+HU5Ki3rY3nM7POgZCmZBSBpO2Y/M8oMkTSkILsk9Ypb40kC/LotDvJmUm8N+a+kCfjESrHdr1TI\n3ibpfv/Zbpc0hnoLx4OSfoYPYntwa8cDNbI553eqpF8DGwNj0vEdUtMuwPOSDi/149ka2WskfbGi\nH+XzPFjSkbhCf3SaTKwb/L6AK5utSaWhwN7ACiW5nGsBSR8Evg+8Iy36N3CEmY2rEF+F3hN2zwKr\n49dleRtHAjdJejX9PgiodPkEni72H9iU3s+3FuVrt2XVrbp2wZXfbel9zL4GXFAUkrtrfjJt9wrg\nADO7Lb3fzsUnCYvyRwM74PfD/8NDVe4tyhQmBjfEJ4YvSev+L25hLPMicLukltVvY+BhST9M7RXv\no5yQk5yxTi/M7AlJ69T8PCNN1LaeB3VhIZD37K96PtaN6Y7Dn7OtifQe+npktbiI5uO4oJ8RimbQ\nTfbDZ6Cux100L6H0kiiwM3CYpBeZ/UCtcwHKGYD/E3iHzY7zONFqkhq0FIbC96Oq5BLnSroGWE3S\nL/AYvp/WyH4I2N7MngWQdC7uUlIVdznRzMa0vsjjar5U0+56eFzVk4VldQ/qiZJuxh/OM9O6d1bI\n5Sj83wQ+gbus7Yy7Rr1UJdhktlUphoXZM5Yti9QK+LXUJ4aF5tYHzOwueXzZO8zsoTdLVtIo/HwO\nA94DHCupLtZwhJlt0rC/fawV8ligKtmrgQ0lDTGzOotRix8B/8UtDmPxa66TpSFHkW0qW3w+bIw/\nH35XIdeiNZjeubCs0v3azM6RdBE+kJ7uiyoHZ/OZ2YWF7+fL3bPqqOpz1TPtQOBXwPqSHgfuSOtW\ncTxuQVlRHh++Ou6KV0XOJMEFuPI2AR/8bgT8ukb2OnyfOmJmB8kThD2XFl0C/LJGfD984mgz/Llz\nLe4SWkXj84u7L26NT+rMSFbSvdp0ex/gYNxdcCZwC/WTTC2X+aJ7dVVIwF5JZmczmyJpFaDOav17\n3EPjk/g53BK/RspUXQt1z3/we3nPlhIgD3s4Bw/nKHM+cL+kO9P+rIFP4u1J6Ro2syuBdyer54zW\nu6uKluWrwE/lYQ1lcie3foe/T0bh19ho/J1TZn/8vf2FgvV+maSQVF3vLwAfM7MqZbjMecDVhe8L\n4MrrTiW5y+kdDnNLmzZzQk4aj3XUO+68Bw/TqXMvvV7u5bS8pCPwsUidbM6zP+eZ/j5ghTaTsq+T\nJtp/AK/nuDjTauLNg/5HKJpBN2m9+G9Kf4fgLi0PmNlNRcEcF6BMd6Edge8n96NzzazWDUm9s54O\nxeMvH6rZ3qn4AOj9+KzkcXhMSbG9VvKFs/E4iOLPPy7JfqPqcwdWtYpMrFWkweHquJWwBzjNzP5R\nIZqj8L9iZg/Js/49A5ya3JHaZo1L/amabW0Xw1L3MmpqfWgal5Iti1t1m8YaNlbkJa0PHEHvGf1l\n8fi/suwoCsqu2iTWMbN1k6VkE+AjwDHypFfblWUL6zRWZDvJphn6Fs/iVt4W21KtWIBfA9cA44rW\n+VLbx5jZt1SRqERSleVvqqRP0NvS1W52/yTzLMe/KbR7AaVkVWb2L3lWxSmSFseTu9TFjF0kd/tb\nA3+WmJm9WiVLxiSBmZ0o6WLgvbhy9X1LLsMVHI5PQo0DxrYbhMuT5XxD0gjzTNIb45bQqraH4QP7\nW/HjOxh/L1TdRx3Pb4HJ+KB/L/xZ+iSzLSN9MLMX07EYz2zLyfuo9iQYm/oxsd21bu4GPBF3hb8b\nv9/qEvcMMrNjJG1pZsdLOgVX7sru58Vr4TXcpbnuWgB4omBpwszulPRwTX9/IOlU3CIF8G9LbrRl\nJK2JxyEubGYbSzok7d9tFbIjS4uWwz0IyoyimYttixFm9jFJ48xzJyyGT2icU5L7X9wDZs/0jm1Z\nPt9l1a7Y1+HJjd6FW2trE0MBi5nZia0vZnaqpD6urGZ2ljokcZL0xaSU/9HMTq7Z53K7q6V1R+BZ\nm19oI16eGHnRapJPmdlRkjYD/oFfZ182swk1sjmTmBekZ8JvOsiBT74tiT/P2qLZyYB+i18vz8iT\nYOWE5ARvEaFoBt1kazzpQ2umbBQ+07eEpPtKlrtWVsDiw/+gqsGZpAcrtjUDd8n6evFlaGb7SeoB\nNgR2TErcrcCvzaxXO5aynha2szalWXK5e+QwfDC8HbMHyYPxWby1C+Kt/RuBD0b+hlsW1sPdZoqD\nnDkJvP+DpK3xY9rWrUaeBXNnClkwJS1WfhFlKvGTkivR3+WJiR7Ck570QX2zfPaZbbUUw5IUheHM\ndskdhrs1V9HU+gAN4lLmUDYn1rCoyE+jfebFk3F36x/gCVh2ZvakTZnGyq6kJfD7YUPcAvsKfr/V\nkqPINpBtV+amzoIFPrmzKZ41chl8cD/WeqfDb2VIbmo9+TR+7I5M274F+ExZSHlZjlsu8LfKs2G2\nMljPsuqSN8sD3wAWN7OPS/pkGkT1UdxyJgnUN4vrTknZ7pPFFY9RXRc/vscnS9Z9ZlZloTsNP79f\nTd+fwic/+sRs4/f4Q/R1Fa+iyflt8eu03VG4ojkKP4eV8WzyeLARuIt9Kx6szmX9Xnzi4PuSXk4y\nY8sDceUl7hmaJtYmyxPNPMhsha/Y5ra4Fev1uLV0zqqeZwCPpH27Gn9fbAa8oJTZ1AqZTOVxn1WT\nL1Vtn4y7yrbWvwI/P5tVyBafzbNwN9IqK2xTF9sWw+Qx1NPlbrCP4gntylxAM8tnixNpnhjqRUkH\n4m68g/AxTR9lr+G1cFBSbneRJ8XqhVW4qUvaJvVtCn4NzQT2s+rsyovh7tjla6cqa3NxMnt+PGHh\nB6w6k+woGj77aZBdvsC7gAfkbvhFV+oqj6xIBjQPE4pm0E2WANZsKT6SFgB+Y67Qq+YAACAASURB\nVGbbqW+Cg6qsgD+n+uH/azzW5BL8xfZh3Ao2NrVTfhkOwWdZV8YHhS8Dv5L0VzOrSjgAvD47XHZz\n/BA+4Hw/PhAqJgkYV1r/E2lfLsJnV19O3xeh5MJmcxZ4/zn6umrVuRCfSZssmO0sQal/VXE0e+OD\nt/Nwd5kl8MFvFY1nW+XxF/um9h7BX+CVSUIsJSRqONuaE5eSI9s41jBTkZ9sZmMlvZbui79Jupze\nFsAWOcruk/hExolmVpnRuIIcq21bWTPbF15PxFO+1maopi6euRfETZIuwRWtPfAY2vMKMnekjy9Q\nUf6ios1JaeDUKgFyW5VVytpnOa46zsUM1v9nbTJYk6G4ZU4SNM7iau5+OgV3V38FWBC3GFYxn5ld\nJk/Eg5ldI08IU8VUM9uj0/ZTOx3Pb4EVzGxfzU6ac4rcMl1Hjsv6+bgL9QK4YjEGj9cuH4+cxD1f\nxJ+5R+Dneon0t8xPcbfpJjHnJLnHmB0b+nf8nqryCim66g7B35OL1rQ73dwqD7iHSN3zxCqSwtXI\nNXWxbXE0ngjuO3iM/iJUh080tXy2yEkMtSeeX+E7+GT2LfjkTZkm18KO+LihnHm8Hd8mP2tzE5fg\nYp3PTkp/zrM/J7v83g362SKSAc3DhKIZdJMV8QFLy8I2FI/7WAx3Sy2S8/D/kJkVa4KdJukaM/ue\nerunIulsfFB2KfCD1kA0zbrdQsGFtULJegcld1gzuxQP0N/LzHq5h6TZxypWoreiMplqZRAyAu/N\nrM+MeBs6ZcFsbAlSTR0wfB93oHow8ByluoKS6uoKftjMVpE0Nr2830eNFaxmtnW8mV1RIV6OS/kI\nrnxXkSNbjku5GI/Jqupvy3o1wsw+IXfRrbRe4daPHXFF9jjcYl/nKp2ThGFFfCA/Os0QTwFuNrM+\niliBHEW2qez5uAL4cKFf/8Q9Ho4ys14DxaSAgCdmugn4tNW7eDYqf5GUpV1xi8Uw3EL4a6soAZIm\nHr6Eu+mVE5S8qyQ+TM0zWOcobjmTBI2zuEp6Dk/O9XPgcGsTkwdMk7QVPvhbBre017l3Nk5mknl+\nh6b3SCtpzur4+asjx2X9JDwufDLuhfLt9LdMx8Q9khZMH+9P/8GfkS333TIP1liKKqnz/jCzD1bI\nlvf9dkl/Bb5blsWTJ30aWEieEGdnepfRQtJFZrazeoecFJkOXNKyiqu5i22rv8XYyPL9VWSYmlk+\nWzRODGVmL8hL9zxLiu216hwPHa8FMzM8GdJlZvZ0RRtI+oWZHVBYlJu1+dSa38r7laP05zz7c1xZ\n+4wJ8ImSKiIZ0DxMKJpBN/kRnqHwRfwhvQRe1Hhr+tahyskKOEXSCfjgsFX+YmgaVL5ckj0X2Kdo\nIZG0t3lMxS4l2aKS1XIBuoNqbpC7yxQHnFvSN4sg+ID6Xkl3pXbfQ7ULJvQOvJ+Jz1b3CryXZzc8\nFrf2HY0PoN+Lv2A/b2ZViQjaZsEsWIL+jc+8llOOF+No2tUBq5scOJOGdQWBWXJ358GSFjDPIFg1\n+w/1s61ViubR+MztP3C3nsOtJi4FVwY3aSi7DLCQmX0BXo8nWZpSPc9EjtvhHnhM5oG4lWNtqmfT\nwa3be9IgCYOZ/UceB/YiniBmM3wGup2imZMhtqmsAZ+z2YlMVseTWx2Gu5uWLRI34e7Mwu+NGZKm\nmllVjM9r1rf8RVXW152ADa1ZCRBo7qZ3Cs0zWOcobjmTBDlZXLdP7e4G7CN3Z7vRzKomTD6DW3iW\nxK0aN1GfWCcncVvO+f06fo2sJs8s3OpXHS2X9Rfo7aZX5bLeyl47HVc2X6bao6FJEqe7mV3bsEXr\ne9VxMEm/o69iXjV5l+X9UTFB+A5mJ2Aqs2/al6fxZ9VESjUOzWzn9LfyfSBpKH4dtyY0m7rYttY/\nDj+n5bIq5XPW1PLZYh8aJoaS9FO85vR43KJ9tKTbKiZ5fkLDhF51SmZrk6XvHbM2a3bM+93yLLfl\na6fP/Z6p9OdMYuZklz+ThmMCKyQDStQmdQz6H6FoBt3kHjweUvi19jBwWI0lbh9mP/xn4T7+dYOX\nj+MD7tH4w/d+fMC4EKWkHLiLyAVylzOYnVDlrAor0h34y6FYU+9++iqv4MrdGUn+22n7lVklzeyH\nkn6FWyd7gAdsdsbGsuzVuAW2HT/B45FWxAdbhyWLyFp4HE1VeZKmWTD/gg+In6z4rUWlta4DOXUF\n/4Af198Cd0h6kpJluUDObOs4M9uSZtk178WPxW+togxNibPp7Qr9D/z66GNVoIH1StKGaZst96jV\nmJ1MpTIGFh8snQt8p8r1s9T+7bhr6XX4AOZ461xEvbHVtkK2Tukdab0TmfxL0nvNbHKVUmhmxxX2\noeXCfiHV77Gq8hdVcjklQKC5m95gMysmu2pX8qaouF2OD+rrSunkTBLkZOm9EbgxWYQ2whOsfILq\nc3wY8HMz+2zN/hTbrXUVl7R/0eKaeX4Xw90QF8etPpVu+A370cp23ZI9IC1fFH/H/Dhtq+xmeh9e\nhqo2iZOZ/U+7flXwQvo/oqF8Y+8Pek8QzsKVyF6Des1OYAcem1qMYa1LnlRJ8gC4tvC9kYttgQ/j\nyXWmdNhOU8tnSz4nMdT7rLf31PflJUzKbf4xWYdbSZysU78b0iRrc/l8N8naXKX012W6zpnEzKnl\n2XhMoFJyKuAzksZbRXKqoP8RimbQTU7CZ56/jycW6JPMRNJKSeFbHh9UFEsNtFzpWrKtAfhmeDKF\nYjKfDWtm6lt9aJJQ5Sz85fNtZlsoz6D6xT3NzM6QtI95eYQL5Yk/Xq/3qIwMmJ3ckEqzuNPM7Nq0\n3kFmdlmS+YekqeV1E1sDu9dYB4r828w6Zb39Gb1n6Ysp1esS8TSuK2hmr1u70zFdknqXmhxL28Py\n0jLlRAVVs98j8WO2b7IKjcOtU1WZQxcws9dfvGb252Sdr6KJ9WoUrmxUXXd1A4edcEv0acka/Hvg\nwppZ343xyYz3pv2cjJdeaEdHq23h/tyOZtlkb5J0K34/tgZ798gTTPWxHiflfCP8WXFv2seqEhFQ\nXf7iyxVyOSVAoLmb3gflCX3uAWijZIJ7XHRU2iBvksBSLGxNO71c9NJ99k58kmQc8EUr1RYscBtw\nRPK6+BM+GVOVoK0Tu1GwvmWe3x3x98p1+ARLbTbxBhxMIQ5eHuu5Ee7WPQO/F6ti+X+CK7q/B84r\nK5lFJD1ERTxyWQFO74tR+L05A8903e7ebOz9YdVutqfTe0KsnMDuVvw5XZXArgmzOr3bKLnYFrgS\nT751m1XEbLfIsHy25HMSQw1Jx/XVtO5CVLy35KWwhuATTpcCi0s63czqyv40ZQE6ZG222THvO5hZ\nr/h9VWTITfzEPAyoieydNMxIXcba1/LMqTVcTk71V+qTUwX9jFA0g27SSmYy1eqTmRyMz1yXlRfo\nq7SMIn8AnpNQZeGikoMPhOsym/VI2hJPs70f7s5Snr1uHPfYyQ2pxBRJnzRPWvERgGRZ2ZuaOpa4\nO9HFkp7Hk2v8sWaA+n/yWI2/09v95tuFz6/PTKeBy2r4oOi+NoOtokX1CeB2aizA8rjEfejrvlul\nwJZrtV5Mfd2u1mC4aJmoVADMbCpwWbIebYNPPuyeBoxfst7xTv+W9GNmZybciupSD9DAepXchFqy\n65vZzQDyDMPX1PR3Eu7u+Qt5WZSfAT9K5/LrJSvncbhL03g8hrrOHaxIE6vtKDLuT/OSO2vibmYA\nZ6SB8lArxWcmnsHdyJ/FB+ntXKcm45MJH5THbQ/DXQB7WTwsrwQIuJve+vR206vKiLw+cJekV5g9\nqVHnqrm03O3/FnpPgFTV/ZyTSYIqysrxGPwcrYPfy7VKk5mdi9cRHoJf6+clL4JfAmd3UKqL9JS+\nNz6/lpFNfA76sTZ+rR7VTnk0sw/KE7t9GDguPYMvxSekys/hNQufh+DeCn0mKOQhIeV7829WX9O5\nsfeHGrjZWkYCu6Z0erepr4tti5n4BMJL6R6uc3duZPks0DgxFHACcKeke/Fn+6pU15A8AD+nuwF3\nmNlX5LGdb1TRHI8/ayvL0ACk5/2GeFbbYgz/YDxb+nkF2Q1w6/xB6p35to9sgaqM1PdbdQbtci3P\npeldh7RIlZdVXQ3jxsmpgv5HKJpBN+mYzMTMDk0fO86wtQbg5Zn6NOCpi8nISagyn6T1zezW1O6G\n+Muliv/F4xoOwpWQHShZTCzFPZpZH1ebZBVphEquXbhCuVdqu+Xiujau6FZmcjN3SztO0nK4cnqZ\npEnAL0v9+w6dXWdb/doTj0/7Jz6QX0XSEWZ2UcX2/0UpEUsbfoS/uDv2AXeXfhG3gPXgluheM74F\nq3ljl195YoJP4i/XK4ADkhL0btyCsn5BfO/0fxt8kD6BUgH00gCgpbS3LMBDqOZMvDbgzen7FrjL\neJ9zLOl/Un93xmfqf4APejfDvQSKA6v1mriDlehotS0oyPdZwQ2yDvUtv1Gbjj/xCK4ATMEtizOA\n/c2syhW6UbH3NNteLAnQrgQIwIpmdkb6XOumV7ZUdWB73BJfpC6OcU4mCZqwC72TIn1LnhSpLjZw\nI/x6G4Vbgi7ASw1dkNppQlkhzTm/MIfZxBv044+4gvEuuQt3bZ1FczfMe/Dn78r4c+HTkn5qhbIs\nFZN6l8oTS5X7mXVv1nh/3J6+l98bOW62OQns3hBWcrEt8CG85E+7OqLQ0PJZoHFiKDP7XbKAvhu/\nTu612Vn0i8d3hplNT9bwb6Zl8/dpsAZJPWmCps/ki5l1ys76JH7tD6W3e/RMSnG1eEKdprJAbUbq\nun1rnF0en8goJ2fbHY/dL9MxOVXQfwlFM+gm5WQm61BKZlKajWs0w5YeOC2r0Gu4u0WVhbKqD2vj\nSmIVB+LZ11qB8v/As1VWcYTNrpFVNyhtxyG0SYRQole2SnP31xMkndTqg7krbVu3JknvwGdcP4pb\nD/6Eu4bubGat+IyH2syelzkQL+PQevEOx11a+iiayeLQxw2uxsJzO56IpMkMdccZX/Ks5i32x5XV\nL1hKFJP6e6889q/oKvpB3IX0z4X1P0BvC14rScJQ3JLxIH7drozv70YVfVjJzF6/X8wLvo+t2cfz\nUn+3s94ZQ8cmq2yRRu5gJXKstks1tNA1Lr+R+BbNU/03jaXMKQkAJZfYOlRRsxDAKmoWmllt5s0K\n5mSSoAl1SZH6KJqSDLc+nIMXem95Ptwgqe453ITG51eeTfz9+DOsbTbxOaBRnUW5y/5HcTffs4Fj\nzGyapPnxyaaiJelH9M1oXlWeYU7uTQDM7BF611zu5RJMXpK1qgR2ZzXpR4my4lRHlRX8KtyN+r4O\n6za1fLbISQzVmiSoCt0oHt/b5Am0zMxulzSGmvrXkk7FJy5b99pIPEncJvSN6z9DXpO37GFUdJ19\nFDhL0p+tQzbbHNnC944ZqSuu7+JvWKFGaMmq2tYCW6CYnOpreLjFPlXbC/ofoWgGXSO5D7VciPoU\nAk60m42rm8n7PG5NuCzNzO5IyW1VHjNR5uH0fw0q0tWb2T/wuK4m9MhdZsvxfnXxgeVt9VIyJX3R\nzH4maYyZnVySrXvBN+5DmjEeCvwG2KXwkvmtPD6txf2SfpPa7JT1cEZReTCzlyVNr5ADt5j8T8XM\nfhWX4/GU95b6UKUQdpzxzbGaFzgAH0jsl1x0bgVOMrOX7f+z9+Zhk1XVvf+nGxocolcE9ULgOiFf\nvaI4AOIIOGAMEVSMOIPGyFUccEAiSgQcrjij4oDiiExiVIgoRhAjCEYQJKgsfiqNiBql9YIxEZDu\n3x9rn65Tp/ap2ru66h1gfZ6nnnqr3l2n9jlVdc5e03cNBEx2ozBV1JJIgrxlyt+Y2S/S47vjC+wc\nayXtiadGNsZd3/F9DO5U+cfWfE8ys7VmdnhnbC4dbKRZeIdu1PYCRkUpGkojdMXtNxI1Uv+bqqyW\nsrglQKKdEnsD/YvU4p6FknKpnjfj2ReH2rDgxdSGyARqRJF2NrORpvWJqyvfs03N5zuiJp5es07S\nxyvmkJtHaautXwK7WkfYzcz+JOnkzth2r9N1+G86l1I4zW+zj+5+FafZ2hgBu0yktEmtHSp1SIZv\nV12+hr2AVxYYhKWRz2ZexcJQE2jv6yvkmgzNd+E0UtpsZpsXAV9Ja5S/x68fL0nb6X7fD8Edqfdr\nPddX7lGsZlszljJF6r5evjmqo6rpf5ea2Vtg/fquNEU/WGTC0AwWlT4PmwbpsLmL8Z/SxXwTeXP3\n01IEoe2dfUC6vxd+sWwiMU17i3ZqZY0QT8P26dY2VLLRMZX1TnyFvDB+n05kt5lDbrFRPAe8lvFq\nvJ5yK0l/bF2Yd2uNuzbd2qqHfSf0JoLRqPftTn9U9XL6jaQuh+Lpr2PVUxMTPb7TRM3xtNWxwlA2\nSBX9Hd7fq09kqs12jZGZtnFVMoRy7If3uHsHbniMU2I+Du9Ldk5rvruTqXnppIOtxVNdc/WAbU40\nr986bsI48GjQVyYPq2q/AQVS/y3G1lJqipYA6fmilFir61n4MeD/4YvTdXjN2V2Ab+LR1rbgxawM\nka4RUiyKNMbIhM4iVcMqpg03A1cyOu/iz9fMvjZmDs8gUxtXYQwVtdqy8UIve+DR5uZ7lhNhezSj\ndcvT/Db7GDpvW12abfM55/qHdsWTPop/Z3/FsLjOzl3HXg02pk90Z76lkc8SulHgcXSP7+9bf7ev\n7UPbNLOPSmoEdv4VP059In6/NbPnFs5nLliZIvXlZvbd1vd93PbWr/mAleZK8cKN6b40+ZMYXgve\nBnc27V29Q8GCE4ZmsFTYS1JpOuz3JL0Mr507W9LVeN3AeszsYFivMPfQJr0rGbCndMY2cuCPTVHN\niVidVHtJ78S98HSSJ9Hfo2pkDioX49kRr9kbqac0sxtaC8K+1Mzc+x8i6dFp2+vw1hp9wiQrAZP0\nfYYX9Ll6rovxViQlhmmJx7emhqWhRhjqB8DBKQXqTOBU668r+66kf8MXGetwNcdL2wMkbWpmN+AG\n/wGMqvvm2NrM2inhJ0nKCgdJemLabrc2MuegaPhdSkvsRs9zBtmBks6zCS0nqGi/kSiR+m/mtX5R\nIuk+3cgX07UEKHUaobqehU+y4XTYj0s628z+b0oFbO9XsSEi6VQze3rnuQvMbBc6KXpWL4rUR9eA\nfS3u9GhaBO2Y/t4Gz65o9/wt/nwr54A83f2v8RTpScbQ/hT2WSyYQ18NZPP+Q98zSXvgGTs1v81q\nbHKa7Ti6x/eheO3yhkSYSlNsG9rzLY18zmMexdvUqPr8NXiJxfHqqNC3uEjeg7ebYdR3jpw5KlOk\nbn7jNUKNH8SvU5fgRuvJ+O+/26IO4E5mtj6QYGbHjslGCpYYYWgGS4WJ6bANZvYauTLljSmSuTn9\nymbb4BftNenxbfu2Cxwt6a64WuypZnZJzQ6k1JlcGuTE3olmZrgh9lV8Id9VXM29X7EYD15rOq6e\nslrWPhlWjzezN6XHH5R0XSaaAwXKuy02xo/FD5hslE70+HY8qH8AtjSz1RPmUCwMlaKnn5G0KZ5a\n+n8knWBmI6JTKcXqfrhiKLhKZte58Uk8DbZp9t7QiAflRDk2kbSVmf0yzXdr+kWG3oen0JXWRoIb\n6Vsy7EHuW0DcEbha0k/x73Kz8Ns5za0xpPvqn/vYlAlS/8nr/ip8EXcsvoC5j1xt+YVN1NlagmKS\ntknfESQp/Rb7KHEaQb5n4Z7k+ZNcbfQ83LDZEf88n0Cnh2+Jk0DSPml+O0j6DYPzyEpSrVk3RU+j\nwkyTRJH66BobNwH3MbPfpPe5Cx6V/eu0v29vjZ34+U45B3ADeusSY8jq+ixOmkPtd/xo3IgqbiEx\nhhqjqWZs9xh+F3cQT2qdNcsU2/brSyOfJdQYy7X1pzXXwIbGWC51xs2Dl5tZNrNAg9rPd0C1UOPd\nzOxL8lZZHzCzj0n6l56x16fgQpOZ9jj8XBEsA8LQDJYKJemwwHqlyDelReU63NC6gnwk8CjcK9jU\notyejPokeA2gpM3wBeEbUirrmWb2+sJ9+FLP8yW9Exvelt5/xPOeGVssxsOEekqbTtb+I3iaa8Nx\n+EVl18zY83Bv51+a2bvkbS36FvR9AhU5ajy+j8NTKsFVCt+P96nLLWRrhKFIxuOT020dnvKYG/dJ\nhhcze3YX9Gb27HTf5xDJ8QbgLHl95krcYMm2jwF+ZmZnVmwbM3uBpHsxaH9xcWOcZXhO5rk7tv6e\nxpAGT5G7kuFFeHdh+DHcGLwb7n0/wMy+nX7Ln6IjLCPpqDR2//TUwZLWmNkhPXOY6DRKz+f6IWbF\nQXClxufjxuoKPF10b/xc1fXuT3QS2KCv72utXH21VpiplHvhacENv8OzDzZiVLmy5POdlh9QbgzV\n9FmcRPc73tD3Xf+JmXXFu8YyI+Ot+jhr0MpiI+Cn8tq9dkRx5874WabYls63JlKbZVbGsSV1d7nQ\n1jOArSZdC7uGW2deQ6I9PWP61GyLx/YZmc3LOtuoEWq8naRH4s6k3eSCbZv1jH0Onh3xFgZlJDkd\njmAJEoZmsFSYmA7b4pN4+lrT0uIReBrWgzNjV+Hf87Vp7Arcy57FzH6fvGq3wS+Kf4WrnA2hluJr\n67U/6NnsxN6JLR5CoeedOjGebj3lbuSbnOdk7fvaOKxqp4ia2cVyVcMcH8OjP7vhipC74cZRLv2l\nxiit8fi+DD++jZH1OtwYGTE0rUIYSq7C+XPcwH+GDfes7HJq6+9GJCZbnyPpBXikubvIGTHEzOwc\n4H7JUbJuQtqqSTqF0brEPs8z8pq1fRm0vzhc3v7iw5nh1+ELg83T403wetNt0vuMGNLyNhJ3tI6w\nSocbm9eOYa2lHpzyXrPfTu/1057fxiPMbL3xaWYvUr7VQkOR00j5fojZNiQpgvZ94FozO0nSlma2\nhkEWRpuJTgJ5zenI3633y9V01goz9dH9/Z+EC4xdiv8u74/XRD+HTgsgyj7faeYAfg6baAwlavos\njp1DqbNIg1TrX9T8NmdsvJXSvM/Tx44aZRYptrXUpsIOjZ/R8e3OoeZaOI6ukVesZlsztpLizDTc\n6fs6PE3/WklvpMdBi6/Zvmdmh6X5Ph83OINlQBiawVLhXcDvzOsFv4kbZX01cWvMrO0lO01SX6Pf\ng/Co3xoASc12P9cdKG9o/Te4Ufol4B9stBahoUZ19tfAsWb2ovQ+j0vP5Sj2vFMhxmPD9ZRrgbea\n2XmZoTWy9t+VdCqDdJbdGdRiddkmRcW+mebzQXnPsRzFF+K0zU0pS4e92Tzdulno3NAdoB5BKMbX\n/XzaCvpGpvl2RXK+JK+ByXEwg76YWTTcILv9fPN+uYX0delWIvjU8BTy7S9yhubncVXNZ+Lpq7uS\naW2TUqZ+j/8Wz8HrQM+3lIqd4XS52ER3Ed6uUWzvx/Wd1+f2cSO1eurJpffHLU7bTqMz6ZfZL25D\nIhdE+l+4sM9JwAGS7tx1ZCVKnARFNd4dioWZVFf7eVRa1DbpjVc1abQZSj7f5v1qRIYgr2B+x8xz\nUNFnsTTalZxl78Frvx8u6SDgX22gKNykWv863foiO11mZbzl6lrH7pulGt6+7wOjLZuKU2ynmW8P\nfS03SqOUxce3Yps118IaatRsa8bWMDEzTYPSiXPTDUm3Y3yEOMSAljFhaAZLhZPMbFcA856Q47hc\n0odwg3Elng73y7RI6S6OrmFYMXAN/UqV1wFPM7OS+pgaxddP41L4/5YePwZP+8gtfoo97y3j8aH0\niPFoVJSkMa52kLRD11Nuw7L24P0eH5qZJ2Z2UDKaH5LmelQTQcqwSUqNWZfmdT88Mpaj+EIsaV9G\n02G/10S1Opwrby+ytaRD8DTXoZoQM7tL5nWTKO0b2VY7bdiS/lTRK8zG1gtCfVQBPD1vvaNF3vcv\np4bapqb9xUrznp+7mtm7JX0Qj151U9iebGaPTE6iL5vZm9UvuARem9i9ZnXTD7dPhtiK1t/N/O+f\n2eaBwIfllvnNeBr+uHS0PRuHUYOkVzO6SKppQ7Jj8v433/fDJfX9jiY6CSy1Q5K0X/d/Y5gozKTp\naj9rhKdKPt+GGpEhmBBl71DUZ1F1AkMfAF7KoF7t67gT5lHgqdat7T4Aj1atA35kZj/OzLGhynir\nMIwnRvJKvg9pXFWK7TTzraEySll0fCu3WXMtLMYq1GxrxlZSkpk2TelEiAEtY8LQDJYKv5J0HqOL\n9Zx3+i/S/ZM7z/8to2mT1+OtBb6FXwAfjvdobIrX29v/Il77OVZRMr1uRHU2RURz3N3M1tcTpEV4\nn7przvjMIm/VsTeDRcmWklZbEoRJdA2n5sSe9QhLuie+IGovyHYlvyBr1D3PkvT6MUYmeC3n2bgw\nS7Nw+ruesTUX4r502JyheRiD9jY34s2nz8+Ma9Qf385gAX4VcIh5imqXdt/Ipsal74LZNpjX4d/P\nvnTB38rbTZzPcITnda2/m6jCDsCbcDXSpm65r3ftkyTdz8zeKOlR+OL3+J6xDbn2F339JzdJ8/mv\nZID/jIHjos1Gklbi+39Aei7XxL7h0WY2lAkg6SGdMe3j2xXfGBHjME/33iN54e+M/1ZHesKl/dgD\neIaG29GswuutugvfXBuSg3v2a5VcNKP5vm/BaP1iQ42TYPvOPHfB+93lapI/ZamGrLXtl7cf23S1\nnzXCUyWfb0ONyBAURtkTD7JOv1+5uFaXYoEhvDfnjzXINPiRvJ56iOSU2Qk3AFYC/yDpXBvtu1xt\nvFUaQxMjeRXfh2mcYfNKW4WCfZvi+NZElmuuhRNRhZptzdgJ7zlUzynp3ua1nB8Bfm5jMtNskB7/\nIOu0SpI0IqCXCDGgZUwYmsFS4auZ57In7RTt6vN0dvlaujV0Pd1tPkaZomQTmToSuHN6ahN8MfXm\nzHbXStoTX+isxKOe41p3HAE8CI8aXYgbEDk+jxtUTa3TLngN4Pr6osZTUivm/AAAIABJREFUnhay\nT8KN0rW4IZKr9fo07nE8KO3f3vSLyrR5AvB/x/z/jmb2ELmq7402vobwDQwuxJfj34MX9YydmA7b\n4pwUNe9rPdLmncBzGqND0gPxY71Dd6CZ9fXBzHGemQ01lE8Rse9nxq5PLWrRt5Aprls2s+dKek1a\nTP0JeLr1p4g3fBqPSD44zWFc+4sD8drZQ/Df0+bkBZ6+iKcJft7MrkiOmr7Ua/AU+ReZ2aXy1N3D\n8RrqHVv7lk1PbaPUNzf9/QHgQnn68tnA+ZLWmdkBnZddgBs33fZDa/HapiFsuA3JOjw63dcP8T1p\n+/9Lrjp9P1w5N0exk8BSi6fWfm/EcI1wmzdK2tbMjpMLJ32is5/T1n7WCE9N/Hxb1IgMQXmUHeBM\nSfs2mS2SXgS8moFSdENNmcP/kwul3F6uYP1U/PrSZee2EZMcMbmWUdMYbzXGUE2k9CxJ72H0evzC\ndF+bYls938rIZ8m+1R7f4uNlrmtQei0coWvkUadmW618q7J6zi9Kei6+htpfrtXQ9OTeGl9vdDlX\n0lvM7OR0bnoN7gjKOZfaYkB/xtdxIQa0TAhDM1hKFKV5ydMfH83gQt1EkHLppX31hTmKFCUTh+PR\nk0/ji4Z98NYZOfbDow7vYKCY1icGdBxe9/Zq3HjdLT2Xa4T832Z2TOvx9yQ9qWe7n8OP0wXp/kX4\nibqbfnKTmX1S0v4tj/UZ5B0BbSYZKi+T9B3rr89aT4qMNhfitbgx2ScS002H3Yv+2t7Vkk5gtK42\nJ7Tx63ZkKy1+V+c2qsn1V9NExMCNgsdR0OqGgrplDadR/wm4Gl8cPV7S43uOQ8N38fq3U4EvWqp5\nzpGOVbPw25/B77M77ihcFbrhaDO7Ps31ABsVp9kHbyPzZbxp+Gl4hkItd2r9vYOZvVzSK4FPmNl7\nlZfYv7OZnSNP1S5Z+D4DeFbLoP26pGPNbMTQM7N/knQmntp7A26UZlWpa5wE8rqnNlviNdc5ngS8\nV9KXcCPuFZno/TS1nzXCUzWfb43IEJRH2cEjnafKFYlfgpc95MSBagSGXoA7767FxeX6anuvUKtN\nEZ6RMnLcpzTeJhpD00RKcUdHr2KxClNsp5lv2n5R5LNm30qP75SR5YnXi9bYiUaeVajZ1oxtUVLP\neTyeUbAdcAzD16u+kqJH4w6u5+HXii8BD+uZww54mUtzbV+HO+OnUYIOFpgwNIOlQk2a13Zmdo85\nzKGmDckfzexKecH7GuDYtEA9sRmgQdH7tXhqYPsi2MdGycBrOCljMDSe9YuTUfzNtM1H4172HFtb\nR0lReXXNFZJ2BdbIxY5+Sr9qHBoI8fyfMfsEE3ordrbZFon5VprLBWb2j92xrcjOv+OL9NdaTzos\nvrgEv6hN4ucpInUWviB6FHBdY6x1Fspj668SVRGxxJl4ym47Fbrvu1NSt9xNo26+K3cZs13S6yWv\nHdsb+GdJ/4n3mh1RKpV0fHr//0hP9TqCOu/RFu/ZF/ho2l5jMK3BIw0fwb8X78TPFbXiFe193VTS\nX+IS+09NC7A7ZV5zEB5lzEUEcgupV+HRuIa98IjpekNTnlrWJ1bS7Y05jZOg/T1bh6eaDaU4arhm\n+Gu4U8zw1gN/ba16d5uu9nNiTek0n6/ViQxBeZQdM7tE0t/gxuylZvaanm3WCAytTdt6C6xXzcwd\nw+2An8lTrjfCjVlrDBob9KItNt4qjaFpIqVjFYutMuV6CuOtNPJZvG8Vx3ea41VyvWioEe2pUbOt\nEdybWM9p3kfzHZKea2bZDAuN9jS9EV9fbYx/3v9Nv5JsO41/FZ5ZcyFhaC4LwtAMlgSVaV6fl/Q0\n4BKGveR9fepKqWlDck3yxF2cFtZXMmi10TBN0fuNcuGbc9K4xzKaDnpM53E7itl3sf03STuZ2fcA\nJD2YfBrx8/DIxyvw1Nk98ZSVEeQ1rG9MDyf1pcz1VuyjLRLzJRsjEiOpbXzeBnhCchb8FDeE2t+P\nI7qvb21nfTpl4hfp1tQMNouLnFjQxPorM/sDcI68b9jdzFNFd8UvmH0L5JvNrPS4TaxbtkEa9Qrg\nAZRFStv78O/ymqIL8Gj4m0nGYIf7mNndS7fbQ3teze9nRet+R9wR1Pc7KuUYvKb7BDP7hbwnay7q\n+Kp0P5JG38NGDDupVjJ6rJsawb/HnQnnMFBv7hq71U4Cy7TWSEZim67I1h9bz3fr3RsmOgUl3T1F\nhT6fm1uH6s9XdSJDTZT9nnhk5H1k+sBqVHF6I7y/3/PJK07XCAyVqmYWqY9WGm/FxtCUkdJSxeKx\nKbbTzDdRFPms2bfS4zvl8Sqq103/qxHtqVGznThWU9Rz9hmZiW5P0/OBd5vZYcnB9xo8TXzkmFnq\n892a2+3wTK9gGRCGZrAk0Gia11b0p3k9FDeE/qP13MSISQH7W0dRcgwvwC+YJ+LG5BZ41GI9Nih6\nf5mNtrXo44W4gfdG3Av+PTpCARWL3TZPB14h6Y/4Yva2eKRwaBFlXpfUqO4OLQAyxtiBFPalxBfO\npWI1NSIxd8WNtTPSdvdI294GX6h2G9730V3YH0nGGLO8InJp/RX4gvMoec3su/BF7yfxtjrA0G/h\nK/JU6POY0O7B6uqW/xmPMLXVldcxxjucnCpPBh6IR9CPp/P9aDELR9D6BU7OYJoVySnS/r4elouM\nZIyQhr62Nx8ALkuG+Ub4934oIm+DlioPNLODWv+6QF6r2R5b7SSQtCMewWsbQv+TVrsiazWEz31/\nchQ6BV+Jp/8fw8B4bBiKAE/5+daIDJEyP5o+sJuQ6QNr9YrTNQJDpaqZv8fPq3czV/XeHTeK++r4\nJhpvNcZQTaS0xUTF4sTYFNva+dZGPqfct7HHd8ptTrxeTGPkUSeiVzK2up5zAt3zym6WSmKSQ/go\nSSeOvizLWkZrpoMlShiawVKhrfTYqHH2eRK3NbM+dbIN4a4qbFOB1ySeiS+wjjezrEcycaCk88Ys\nFtr8Eviomf0dgDI9NxuDr2/xm1n0YmY51cRausZYjRBPsVgNdSIx2wGPaowDeV3Vl8zsyerpW9hD\n9ziehS9gftMZkzPG2vVX/5Dmun/P+2xqXut3BPBeMztBUjdq3o7w5OaZi/AU1y0zXUP6B+Opht8p\nSFGbiyMoHaeXM7roq41o9tX7YmbrJL2pG/2uNULM7LOSvogL1NwMXN5zHgG4jVzh9Tv4Amon+vso\n1jgJPoArXDa1hk/Fo9EjyNNQ/5pBmnbv9yfjFByp/TSzV6f73SXdxlqqvrgDIjeHms+3RmQIPHK4\nsxX0gc1FS9M8utHSGoGhrmrmY8mrZn4Kr0VrHE93xSOfuRp9KDDeaoyhykhp85oXpGjxg/Dv+ki0\nODE2xXaK+VZFPqfZNyYc3ym32a3XzV0vpjHyatRsJ4616eo5x9G9bvylpJMZ1Kq+Cv9NjjgkO2ud\nFfh58iNTzCFYBMLQDBYVSVcyuqhegRs1h5JPjzg1GWDfY0Kkp5I98cXYFmlOa/ATWm6hcz/cw/hM\n4Gh524fP9yx+iusTKei52YoqPtEyAgI5JO2FX8wmLZ7G0b1Q1AjxTBSrac2pKxLzPvPU0xxb4hGe\nS9PjewP3ksukj2uVMYmNzSzXFD7HSvyzf4uk3fAF122B/8yMvY2k5+Dfmx0l3YNOzeiUEZ6auuWa\nhvSNKM/N+GJ97yblK801pzQ6C0dQzsg+GP99ToxiSXoQ/rsZiUSY2T4TXv6lzPa6EYYhetLI/pNW\nerpGa5Qa/hY3zA9Pc70cX9jlqHES/JeZfVPSDWZ2EZ7i+DXcWO3yEDydrqT2cmLtZ4Myqr7pNV1V\nX6j4fKkTGYK6PrCl0dIagaG2amYjCJdTzbyDmX1YLiaFuSLnuPr3icbblMZQaZorkg5mEC3elEy0\nOFGUYls635pI7bT7RqFxXLnN0/DfwtuAC6xV3tF6XbWRZxVqtjVjqav9rKFbq3omPbWqU2QbBEuI\nMDSDxWZ7/MR8KO7pPodBnVJf24i/B7oX3w2t1QI/8b8Fr7dcgRsq2d6YZvYn4HTgdLmK6BtwT3ZO\nWr+mPrGm5+a75D0Ax7VKaXgnHtX4j0kDS7E6IZ4SsRpgyPlA67m1ZpZbxL0K+ISkpibwV7iXWAza\n1EzDpyS9BvegtxdFucjRyXjaz8b4cR5Jh23xUtyj/RIz+4M8dfmNmXHIa2aebS3lUiCrXEpdumrT\nkP761thc+ifA6nQ/0luS/oX6WEeQBmJWWczsR3gadpcrzKzUk/45CtL00nweyOSU0VmkkeVEhpp0\n9UMKt1HsJMANoL2AKyW9Da9b7nMAFLfqyDlCNFr72VCq6gt1n+9EkaEOJ+EGb6O6/XD6+8CWRktr\nBIauo+daouGShJXy9jJNhsZf4ZkVfZTWR0KdMVSU5pp4CvCwgmhxaYpt0XynTFuFun0rPb4123w2\n3s/5acCbJf0XcK6Z5dqDFRt5qlOzLR5LXe3nOLrn1+Ja1XSdXIWXOZyO/9aOM7OIai4DwtAMFhVL\njbElPdLMDm3968S+BUnO4JC0/wymcxC+MFqTttk0G/5cd2AysPYCnoinsX2J/obsNfWJNT03/wv4\n/yT9gOFIaS4acgme9vinnm1Vo7wQzxPMLLdvE8VqWs91xUYejRuOI5jZN+j02ZP0RkvqjhV00yn3\nwxd4ba94X4piSTpsM99L8Pq15vF6YSeN1sC+mgnKpS2K01XN7D65ufVwN/UrZPYxyRHUFbPqjnus\nJdGqDr9NmQPnM7zoyxmlpWl6zaJlUirqnczsyxpWf20zMU3bKlotZb4LDTVOgmfjNZkvI53b6O89\nV9yqQwW1ny02VZmqLxR8vqoTGSIZCc1390r897QON0T6MgeKoqVWIDBUSPt4vBwX2NpR0q/x8/a4\nPsY1xluNMVQayYPCaLGVp9gWzXfKSC3U7Vvp8S3eppn9OjkNr8d7wT4MX0fkDM0aI69GzbZmbE3t\nZ1uJfnXnX90WXjXaBi/B1wH7Av9uZgdLOotIn10WhKEZLBVukPRuhuuUsp7cMQudT23gHK7BG383\nrMGjADleDXwBeGvyVo+jpj5xPwY9N5vGxH3Kt++c8L5tvob3kbyC4cVTTeps1xhr91JchXtpryFD\nulj2XYC6Y//Yeep0ef3GyGIiRUSPBO6cntoEX5iMGJopnfKNDAz+HwNvNrMfZtIpV5pZ7qKbY2I6\nbCHdBXiJcmlDcbqqetpq9HwXHpDu74WnBTY1Zo/EI9kjwk89kefmvQ+wMWJW8nrcPs5NtzZ9BnBp\nJGILMyvpxdl8NrkUrvVz0Ggt0dC4nEEob5HUVSnOGZlFTgJJ3zCzxwMnmdme6ek+x1ZDX0QyR3Ht\nJ4WqvomSz7dYZCjRjsT/EI+GTKIoWqoCgaFC2sJXPwIeX/rCSuOtxsCqiZQWRYsrUmxr51sTqYWK\nfas4vsXblKvI/geuRfDPwNvGZCXVGHnFEcLKscW1nxqjRG+tnqaJGm2Dm83sz5KeDjT187nssWAJ\nEoZmsFTYB/d674ZfLIxhL2KbmoVODdcDl8hFZFbiF8zVkt4Bw551M3ta98Utb3uXmvrEn+MtRkrY\njfxCOxddORQ/vr8at8EaY6wdjUu8L0WIctvdl0HqWHMB+p6ZfTYzth2FAPcq99VbHo5HRT+Nfw/2\nAfrqOT+Z9q2pf3048Fm8Pq3Lv0h6URrbXjj8KDO2OB12At3PcqJyaYuauuW2MuYq3IudNYwtKYzK\ne4o+tFkQyVVzT5m0Qxna/TH7nARvHvP60shqaSTizJJU1CYaaZNb5PTWEsnr+HJcIa9h/JyZ9Yle\nNdsocRL8l6TfAX/RSilc3z6kJ/p5eG675JWFi2s/raPqa2aTfhdjP1+rFBmqiSK36CtV6FIsMDQJ\n1asaN6+rMd5qjMeaSOkFuIH/JPy3/EXcUdydQ2mKbe18ayK1ULFvFce35ni9HXc2Pwl32P2bpO/0\nZHHUCPzURAiLx1pdPWexEr2Z/aek0/DvwEr8eD2EfNbQ91O2hZn3uX05GdGgYGkShmawJDAXeym9\nQNeIXNTwtXRryJ34x9E0de9SXJ+YQ9KHzewlmX9d2/p7bEQRTxU7Z4zntKHYGNNord2W9NfVvoz8\nBWjE0GRUgfg7DPega/NHM7syRYXWAMfKU65zMunX2nCbmdOSMZmjibq162tzEZPadNhirE65tLhu\nOWNUXSLpTDyS3sc2uDHaRLFvS3/q4TjaEajDKXcSQEH/xoZJkYjWwn4FcFhhKuok1kek03u/lOGs\ni13J91j838DjgBekhfU5eATw8szYiU4CM9srzeFdZpbtgZuhHWVsttvXr6+49rNjQG2Cp9Bf2ROZ\nLf58VScyVEtpc/gagaGxjHNQTKDGeCs2hiojpcfjxtPHJsy19njNPG0Vqvet6PjWbNPMTgBOkHRb\n/Hf/StxpPhKhqzTyStRsq8eqrp6zWIk+OS83wx0EzXUhW55iZq+Qq4E3WVWnkdJm1S+yFiwRwtAM\nliM1IhfFTOn9br8+Z2RCXX1ijsN73q84ooj/1k1ez9n2DnfrOWuMsfb7Ny1p+o5BTSuUpjfpg/GL\n9oUMGsl3uUbe4/FiScfjdVhDRkJj0OM1aB/CIxbrcIP/ytxGm/ROSavM7KYxc51EXz3aRCRtjUcw\n72xmT5f0TEnn56Lm49JVM9vt1hluyWBR18c7cK/y9fixuyM938sJtBeWNU6C9dHVBuX7Nzb/GxuJ\n2ICF/Tja+/Zp3GlzEB613ZueWjvzBuxflddtPT6Nf5ZcFOtVbcdApZPg9fJejX9pLcXK3PfZRvv8\nfikZcTmKaz+7x1kuvPTcnrHFny91IkNVWHlz+GKBIUkbd518ku5sZr+jVZLQ+s1vZmZ/m1IRs7/5\nRLHxVmMMVUZKfwx80iYrFtcIMs0lbXWKfSs6vjXbTNegB+PXwHPxEpin9My1xsibqGY75diaes4a\nJfqqNlstI5PO7+GV5FsKBUuEMDSD5ciB+MLtZbhh8yEq6lpmgaQ9cC9us0C/CjjEzM7pjrVWU/SC\n7W6D1zH+m6Tn4kI3HyajFpuJKG5Ff0Qxq4bY2tbUxlgh3QvQk/F+cTmOwxdf5zCIBO2OR+267Id7\nRRvjdHPyBn2bdk+67OJI3qbkaHzRcF9JbwW+ZWZf75lzHzURjm4N7MfTHBr13N/gdcgjx71yQdJe\n/DdtfPbMjFuPmR2PNwvfHF98rbFB79KmBUotE50EbVTQv7FFUSRC0icyr70Zd159ZEIEYRw3mdkn\nJe1vA9GSM4CvdgdK2h2v730kvoh7iZl9X65mfQItsatKJ8GxlCtWdvs0bkknGq7paj+HMBfQyS4u\nKz/fTVUuMrShDDWHV4XAUJrXpsAZcgXZJnKzCj+/PdCGSxKKf/OJGmO3xsCqiZSeiP+GL2XY0Oum\nXZem2NbOt1bNtmbfSo9vzTa/ALzGzP67+w+N9vCtMfJq1GxrxhbXc1qdEn2NgvY4xqmFB0uAMDSD\n5chxwMfM7HrgCEkX4fV/eyzgHN4JPMfMLoP1nvrP4t79iag/HfZ44JWSdsHrow7D60+emBnbCGJs\ngqe5XUd/RPE83OAaim60/l9sjGm6eqLDGAjI3AgcPOYCtLWZtetUT5J0ds/YLfGLZSMEsQJPAVq/\nAG4b+hUpU0fii6ImonI07jWtNTSHUJ0g0UZm9lW56AhmdrakN/VsunhBYpPrDHtTfVPkscv6ussC\n2ouC/fAFZ+Mk2IJRJ0GbH9KqNcS/7+8e8z4lkZ5r8fq+09L/n8RAEOwEhn8HNayQtCuwRtKLccO1\nL9X4APzc8dJmoQpgZldI6qYj1jgJahQr28832QndtkzVtZ8a7T+6Ff3ZCTWfb43IUBXKN4dvGww1\nAkNPwsWLdsbVxhvW4oZml5rfPNQZbzXGUE2a61twp+vY+n/KU2yr5luZCgt1+1Z6fGsiy31lIOBO\n1TY1Rl6xmm3NWCrqOeVCeA/BHQOTlOhrFLTHMVW6erBwhKEZLEdua2brhUjM7J8lldYizYpfN0Zm\nmsOlklZXvP7wnuf/bF7s/k7gfWZ2XrrA5jgSl9W/jZkpRd1u7hk7th9XjTE2ZdrhOWa2K6Oqkjk2\nkbSVmf0yzWdrPAKQ43S8rrakX2KNR/8mM1ujlOprZr/pu8BXUiNIdJOkxwIbSbobfmEe8YInalQE\nxzFNVGgFTNUf82QbNFr/TNpGb6N1y/RvbMhEVU/GU+rOx+uidyEfiXiomT2u9fgESV81sydJetK4\n/cnQjkg/D3eCvAL/ne4JvKbndRt3U1clXWBmu3QjxZVOgmLFynFZF41TzKar/Wz3H20M2B/0zKH4\n87V6kaFixp3f5PVgxSUW5kqbp0t6bsoKmETNbx7qjLcaA6smzfVHZvbxgvcvTbGtmm/leR3q9q30\n+FalBY+hG52rMfKK1WxrxlJX+3kG7vCZ2K/b6tpsBcuYMDSD5chVkt7FoNXCY/HU1YXk5/Ji9rPS\nHB4FXNektlmr55oq0mGBjSW9AU8NPkzSTgxqPLscQT7qlms2XhTdqLloy9OH3wZsjS8ArgL+IZc+\njKv3noAbWOtFRqzTmy7xBlyyfi1+bNfS30tujZm9vud/XWo8+ldKOhLYQq6Y+xQ8elFLNx22pgb2\n73AF1i3wz/QC+i/wNYqD45jGO9y8pqg/pvKN1tfhn/WIcmghQ1FVMzta0pfxWqi1wNstX+e2mbze\nu2mrtCOe3r09Lng0RIpIP59MK4V2RNrMrpGnGd8TT31s9rG9rWkbzvfRdRIcip+fShQrx9HtYVtc\n+4kblQfhjqu1eL31T4D/rJzD0OerOpGhWTJtPdiNbUdAiiYda2bdKGzNbx7qjLcaY6gmUnqtpH/F\nP9tx/W1LU2xr51urZluzb6XHtyoteAzd96kx8mrUbGvG1tRzXmVmfcroQ6Rz6fvwHr4b4ZkCr7C8\nCNo4InV2iROGZrAc2S/dHo9H3S7AL0oLyS/SrWm70SwMc97wmnTY5wJPB55iLt1/L0bVRBtqom6l\n0Y2ai/a7gGc1NRYpffh44IGZsT9L922FzL7UonOA+0naDFhr4/uUni3pQEaFIHJtSGo8+i/G0znP\nxaNhp9HTzqMkHVZT1MACe5rZkBEq6dWMNr6Gup5kc8EK+2Pa9I3Wx9FEVQ8ws49qtEXOIyXlFr/7\nAW/CU8ZW4EbQi4Dbk3dufI6CVgoaKCq2VaCHFBXncBya3/aVDKd+boxHV3+PR8/vvYHvU1z7iYsi\nfQuP6jb11p9kNFV/EkOLyW7UUWNEhmbMtIvaV+G1nA174Yv3rqFZ85uHOuOtxhiqiZR+i3xLrS6l\nKbYNM09bTdTsW+nxrU0LLqXYyLM6NdvisdTVc35CLkh4McPHK5c6+35c7OwigLQ++hAZZff0/74+\n3H2/jWCJEIZmsOxIJ9vjyCsBLhRH4s3su5GNXA+omnTY3+H1XA+V1IiAPIB8hKMm6pbrx5WLpNVc\ntH9lw4qYl6ZFbo6bzewt7SckZeuvJO2Ppxz+D7zWrdn+SKsOoOlN+PTWc9k2JFR49M1sLb54OF7S\nC8wsq4SaKEmHramBfQJeb/wMuSBMw8Z4ZGfkwmp1PclmzdDiWxP6Y7bSIO+m1KO2TcYYLKE5hqvT\n/WVjxiBpUzO7Af+tPb+1D43Tpq+NTGkrhYmKinM6DuBtQlbgv/lL8FrAlbigTJ9YWA01tZ93MLP2\n9/UCSX0qlOMYG1GyMSJDM2baerCNGE6BXUnrdzPNbz5RY7zVGEPFkdKKVOLSFNuGeaWt1kSBS49v\nbVpwH11HRrGRpzo12+KxVlfP+WYKU2fxddFFrfe5QANV+u58n8mgN3XTh/tCM/tMSk8PljBhaAbB\ndJyFLx7a6YnZHlDUpcN+A49wdSMhOdpRt4czJupm5f24Jl60NVC+/FWK3JyT5vgoOhcYSU/DIx2P\nSVGHhqY/Xa5u7WA89bOvJ2h7v3IKrId1HjcL+m3IqETKW+R8w8z6BIeehxuTfUxMh7U6QaILgJtw\nT37bcbCWHueKKnqSTWAo1Vf1dZcwuT/m6nSfMwY3CDNr0sZ3MrN2z0kkncygru+T+G+nEaBpaFJc\nc04NKG+lUKKouDrdz/Q4mNkfASQ90swObf3rRM2mBUhx7Sdea7ijmV2Yxu6CG1kbhOpEhpYCHwAu\nS06+jXCDv51iWP2bT9QYbzXGUG2aawmlKba1861NW63Zt9LjO3GbSqrNkr5iA9XmLkNtgiqNvBo1\n2+KxqqvnvNLK66X/n7xU5xz8vPtYBkJsXQ4k34d7pMdusPQIQzMIpmNjM3tM4diadNgbzezZJRtt\nR90K54GZrTeMWwZYrTHWpK1dmW5NW4KRqKuZ/ZOk7+OiIO0avrX4QiLHj83sipL9mRQ9S6xO95el\nW9cDugle/9VX33X9mPeGinRYFdTAmtkf8Ivo9rltpO10hV+Ke5KVpPq2KKq77Dw/tj9myxj8G+v0\nLNwAmtTZfXCVz+0l7dz6/ypaglLNb8zGCND0UNpKYaKiYus4nM2ghvt5wEOpr+2C0XrgG1LWQFN/\nuhNu5NTSjbLU1H4eiPf3bRwWl+HqyBs6h2KRoRkzVeqsmX1W0heB++HfB8Nr5Jr/T/ObhzrjrcbA\nqk1zLaE0xbZhXmmrNftWenxLtplTbW5YZ2Z37Toda4w8q1CzrRlLXT3nT+Stqv6N4eOV02LYH0/Z\nfSN+fvoeXgKSo6YPd7DECEMzCKbjU5Jew2gtQi6CVJMOe3oyYM7tbLcvlW9DWJ35e6IxZmOULxva\niyIzW51SXx7LcKrxPWl5JFt1dTdI+g7uqZ60eDqc8dGz9Qv6cSlekv493R9oZsdIermZfSC9LptS\nxBT9OakXruijK/xS05OsWPk2FzFu6EaOW5T2x/xdcmB0BaKGjLaaqKqZfSHVCL0HTwdrWMtwSniz\n7f1ppWm3tpmNaFphKwWrE6Vp13C/gDE13CoUI0rsgzu5dktjjWGh8r8bAAAgAElEQVQDub3dU22g\nANw8d4GZ7UJqG6Xpaj+fitdsN3N9MB5lz7VCyTnubsa/P93f/qxEhrJIuiOjx/jnTFkPlr4zL8X7\n/MKgXnWbis3kFKFrjLcaA6s2zXUiFSm2DfNKW63Zt9LjO3GbNp1qc42RN44aB0m3HrqmnvPadNts\n0puY2fVywbZvMcgk6Sv36Pbh3gvP/gqWAWFoBsF07IdHB9qtGPpSFWvSYQ9g9Hc5LpWvCEmv79Z1\ntCIqVcZYId1F0b8w+Rg0KYQ16q5jo2elmNkF6c9XSLo3sI9cLbg77nWtv6fpz1krXNFH9zU1Pclq\nlG+B4shxQ2l/zE1wQ2Xv1nO56GBVVDV5vl+FG0jthf3rGTWGitO0oVyVWXWKijU13EViRLA+SjbW\ngaEC5VsbqMlOU/v5dOCeTTrvBF6LG1/fTY93TH9vgxvj7cX1rESGRpD3Lv1r/DvRTkPf2aavB/t0\nmt9B+Jz3pl9Ju4+R80Sl8VZjYNWmuc6DmaWtdijet4rjW3O83irvjdooYl8IvN/MRpwklUbeOGqu\nMV3NgJp6ziMk7ZbG34zXUX4nN7am3MPM3ijpUXgf7huA11p/H+5giRGGZhBMx0oze1Th2Jp02PsA\nqExxtYa7ytuRdKNHxZHSljFWQvfCNvEYlFzUM+ljpdGzUvbC62C6tVLj5lTTx21W/daGKImgTZPq\n2+JwJkSOWxT1x7RO70ZJq3DVQTrjpomqnpzmtxteu7w7+d61xWnaidKIdI2iYlPDvReTa7hLxYiK\nsArlW5uu9nNo8T+Bm/CMid+k97kL8F7c6DsPj+40zEpkKMeDga0rImQl3GRmn5S0f+uYnwF8dYbv\nMYkaY6g2zXUezDJttc089q1mm5/CjamJTpIaI2+O1NRzvhd3in8LL6k5TNJFlq/brCn3uAce7dwU\nN7KfIOkJllezDZYYYWgGwXT8S4oCdWsRcm01itNhJT0ej+D8CRfdWAu82MzO28D57slw5AjcyNjQ\nVgelzColuBsp3Q/3ijbRs83JR89KuTrdzmK05q2PicaHNlyQaCxyBdBcxKNt2EyT6tswMXLcEx3r\n7Y8p7/vZ9Ay8AY/8/XPfBCqjqpuZ2dMknWNmL5eL13wET/GcNk0byiPSxYqKDGq4n2aTa7hLxYiK\nUEvtVuXKtxNrPzUQ67kDYPI67fZ8n5HZ7r1wwZOG3+E1jRsxGsGZi8hQ4gf4d/K3M9oeuHr2rsAa\nSS/GSylq64M3lGJjaIo013kws7TVNvPYt8pt3sHM2orr45wkNQI/49iQ1Nmaes6H2rB2xdsl9X2G\nNeUeZ1CuZhssMcLQDILp2B1fSO2Pe+KbRWQuYlGTDnsksJuZ/QogpW+egEedNoS3Ay9nuO5oIRsd\nzyoluLtY3waPBDX7tQL/TKb1dLZVSNvpPOPUSEuMj9XpflpBoi5dI7itsLoKVwBu9yydNtW3YWLk\nuCY6lvg/uKPjq2a2u6S9GL/4PpzyqOqmku4O/FneLuJqQK3/T5OmDR4pvUjS+bhhswv5iHSNouJ7\nrCWKZGYnj3n/UjGiUmr3H8pqPz9IPSfhYiKX4vt0f9yR8Rz8uLeZlchQjnvjUf+f4MbxCjwNfefx\nLxvL8/A08Vfg56a/IaO4LWlj64i9SLqzmf2OcsdXliViPBYzp7TVpUDXSfIwepwkJUaeKtRsa8YW\n0l1DrJJ028YwlnR7+gXImnKP6xj+neUykq4ys3/MPB8sA8LQDILpOBKvwbqNmUnSW+lpJVGZDntj\nY2Sm114t6aYx40t5LR55K6pFmwFDi6KS1M4pmamn0+pVSKEgHXaaGlhVqMNmvMKXSDoTeGvmfWpS\nfRsm1l2qvi/kn1IEb5MUKT0tRWaP7plDTT3uYXiN35vx9MQ70krLnTJNGzM7Wi5g0dRXvd3Mrsq8\nfH8Giorr8MyHPkXFIlGk9FyRGFEpzXGQtB+FdVxWUPtpZtWpiWZ2lKRjgW3TU1dZSyW7Q7HI0BTs\nl3nujhu4zRfYoI/wC2F9H+Ez0t8b47/FMyT9FYP9WoU7Kx7Y/c0H61kKab41HAgcnZwk63AnyYFT\nbKf5jtSo2VYr306ge854L3CppCtw43lbvA5+hHFrAkl7m9mXW099Qi7y1hVfjNTZZUAYmkEwHUfg\nUYpT0+OjgS8z6PO0nsp02J9JOoZBJGR3PM1qQ7mishZtIjWGkKTtccXGO5jZwyUdBPyrmX1/A6cx\nF09nyXxnnQ5rozWwxeqwGvQ2bdiSQfSryzTKtyV1l6vTfWlfyO9JehnwdeBsSVcDtx0zvrge18zO\nkrRNWjTdW9J9LS/EM471adrNZ91KuW14pKT1RrSkuyfDc2s87e0LrbH/C8il1peKIk3rJCih3VZj\nFf65XsYC9qmT9EQ882F91kU6trkskRqRoVquw6OobSGp/ahTiAWq+gg/CW/LszPD35G1+LUg6GEZ\nRmovw4V9RqhMh12XtlesZlszdhrM7BS5yE+zJrhiivIYcCdd29B8M5E6u2wJQzMIpuMmM1vT1F2Z\n2W+SAZmjJh32cDwa8ij8RH0Nniq4ofw2pfudz+zSi4oNIbxh+UsZRJW+jkf9SgWVGrrpY/PydJbM\nd3W6n1U6bJcaddi7tP5eB6zB63JzFCvf1tRdWn1/zJPxKN+maQ574+rEfZSq2SLpKOBu+G8J4LWS\n1pjZIQXzamgfk9XpPmdEt8e9EjcYjiGfgj1iNKUo5aZ4L83V3f93mFV7nO4chqIOkjZi4ERbKN6H\nq7JOVNSlTmSols/j9afPxH/zuzKcml6MFfYRNlezPV3Sc82suC9ycIujW/NYQ7GabeXYcQylzkp6\nBvCsJhNE0tclHWtmteeSbkrulZYXFAqWAWFoBsF0XCnpSGALSfviC8C+eqeadNjjgI+Z2SkAkvZM\nz+2xgfM9N91mSY0h9Gcz+7HkZXJm9qM+w7wmUsr8PJ0T5ztNOmwJmkIddpwXPJMCWqx8a/V1l1Ce\nCto0Wi/97IrUbBOPMLP1jhwze1Gq45qKlhG9k5kNGR2STm7mY2avTve7S7pNSg2+M3B3MoJI6fX7\n4qm+ANtLej/wPTP7bGb4rNrjdOdwu85TWwL33dDtVvKz1nHOoulEhmpZaWZvkrSrmb1b0gdxp8iX\nJ70whxX2EU7c2P69Svo6MM1CPVieTC3aQ4WabcnYKes5X4Vn9jTsBZxNvdOqe077Scpi6YovjqiU\nB0uPMDSDYDpejEdVzsUX6qcBp/SMrUmHvW1jZAKY2VdSutwGMcv0omkMIVwc5YXA7eXiB08F+uqv\naiKl8/J01sy3l0w6bAkbog6b404wXarvFHWXUJ4KWtRovSaq2mIjtRQN5S1Dpha/SnN4NW4ItkVh\nVqVbd/wHcGP+DHyhdX6a8wGZzb8M/243Rtbr8HNFztAsFSOqpe0kW4enj5Y6FmaFSTqFUWXq9mJy\nGpGhWjaRtANez/YE4GcM6kanpaSPMMxuoR4sT9bB1EZejZptydhp6jk3AtoKuSvZgPNui2vTbbMZ\nbCtYYMLQDIIpMLO1eESmJM3pcMrTYa+S9C68Bmsl7gXPiY0sJtMYQi/A0+KuBV6PN2Lfv2dsTaR0\nXp7O9nz/YcJ8Z4ptmDpsjuYzWZ3ua1J9268pwgr7Y1LYaH3KqOqBwIflIem1uCH1ktJ9SKxP0zaz\nL6QU7ffgvewa1jIcYWzYwbytyiuBT5jZe9Xfa/JmM7tRg/YnN/RNyMrFiKqwjAiWXCBoIbku3dqL\nyaHziU0hMjQFB+K1v4fgtfeb0y9QVUppL+V5LdSD5cVURp4K1WxLxk5Zz/kB4DJJP8a/y9sB02go\ndFusHCFpN/y8dzNwoZl9Z4rtBotAGJpBMH9q0mH3S7fH4yfUC/BUxyXDNIZQqv14S+5/TarYlJHS\neXk6VwKfN7O3pAvcg3ChmtoalqmZtfDLNKm+U9Rd1vTHLGq0Pk1U1cwuBh7TfT6z7QfhkYF2SiNm\n9sJumnYyBl+F/27bQjGvZ7Qf7aaS/hJvA/LUVEvZ7QHbcK6kzwJbSzoErzsdMkpVKEY0LZJ2xA2r\n9n79T2ZTHz7pvRsBpc/P+71KMLNL03ltB7xudIOUfROlfYRntVAPlicrYGojr0bNtmZsTT3nN4Ev\n4v1vbwYux8sGsqi/Nv09nXHvxVuLfQu4HXCYpIuibnN5EIZmEMyf4nRY8x5qx6XbkmaGhlCzAK+O\nlFbWJtZwMnBUMhDeiS84P4n3v1so5iL8Mo4xqb7FLTgo749Z2mh9dbovjqpK+i2D78wqvKZvtZl1\nUyA/B7yfMgEa8O/FH/AekqfhafCHZ8Ydg6cKn2Bmv5D0FvrTHw8DHgn8O35sDzaz8ztjVqf7SWJE\n0/IB4FDgKDzy+1TcybUQdAWUhqI35HsTzw1Jr2NwXtuE2Sj7FvURNrPPSmoW6n/Ge5Q+YgPeN1hi\nSLoQFwM8sa3dkOimwxYbeVahZlszlrJ6zi1w8bVP4Jk/jRr0tvh5b7vM+zwTL5GBQW36hWb2GXNx\nrDYPNbO24/DtkpZTS5tbNWFoBsH8WQ7psNMwK0OoUe6ddcpoXwSphE3N7BxJRwDvNbMTJPX1QZwX\nsxJ+2aBG74niFhyU98csarQ+TVTVzNoqvMhbSzw3M/TqFC0tZTMze5qkc1Jq7J2Aj9CppzSzz0g6\nJR2HzYBTzayvnvRneH3mqcDZKS2/uz9FYkQbwH+Z2Tcl3WBmF+F1oF8jH4meKTaFgNKc2RvYeZYO\nHivspZzOey9lOLK8K1O0VgmWLHvjtbcfl7QC/92fambXZ65zn6Jc4GccNWq23bEl9Zz3w/vDbsdw\nmURTYpTjQPK16blz2SpJtzWz/waQdHs84h8sA8LQDIL5s+TTYadkXgqYs4qUbshcbiPpOXiLgx0l\n3QNPr1xIitVhVafUW01F3SWU98esbbReE1UdIqVD5iJDF6V01G8zbOz2bXNTSXcH/ixpO+BqQN1B\nGogBfRUXc/mOpHVmlhMDuh/wBPy7drRc6OfzLeOyWoxoCv4rRZ6vTMf4p3jfzwVDdQJK82Tm5zWV\n91L+NG5IHIQbF3vjwnPBLQQzuwZ3Wnw4pawfA7wj1YAf2oly1gj8jGND1GxL6jm/DXxb0vFmdlbh\n+xTXpgPvBS6VdEV6722BDRZJDBaGMDSDYM4sp3TYSooNoUoWPGU0w0txQaCXmNkfJD2fQZrPXNEU\n6rDUKfVOM6fSukso7I85rla0h+KoqgZtMBq2YpDORed58FTRsdtMHAbsiB+LrwJ3JG9wt8WAjhsn\nBmRmf8KFmU5Pxusb8FYat2mNqRUjquXZeE3my3AjZwdG0/jmTY2A0jyZx3mttJfyTWb2SUn720AE\n6wz8uxbcAkhR62fi55xf4Onqp+NigV9gOFW6RuBnHDWOku7YmnrOj7cMx4a1mZIFGK1N3wvIGtFm\ndoqkrzBwpF6RqW8OlihhaAZBUMWUhtA4uqmdc4mU1pDSHF/Zery+2foG1n6WsDrd16jD1ij1TkNp\n3SXU98csojKq2m6DsQ64HvhBbps1adpmdpakbdKYe0u6r5ldnhm6qQrFgCQ9Cl9kPRFXpP4SGW99\npRhREUptFICTbNBG4chptjUDio/ZPNCw0NLIeW0DN1/aS3mFpF2BNZJejEeWN/S9g6XFiXh66F+Z\n2e8AJG2UUte/3hlbY+TNhcp6zu1bf6/CHSkjGR9pu29M575/x52Xr83Upjfv8wzgWdbqLysp+ssu\nE8LQDIKgltXpvtgQqkztnFVEYRa1iTnmuvi1CnVYTafUOw2ldZdQ2B+zlpKoqqRxCp170TGiatO0\nJR2Fi17sn556raQ1ZnZIZ2iNGNCr8UjGW/tq91qUihGVkmuj0AjyrDOzu27AtmupOWbzoC209ENG\nz2sbQmkv5efhUftX4N/VvwFeM8N5BIuMme0i6f54Gjz49fK9wAPM7PDO2Bojbxwbkjo7jqF6TjPr\nZo2cnpxjI22pUjnKQ/Dz7m2AJ0h6gpnlHF3RX3YZE4ZmEARV1BhCLSamdk4TKZ13bWIPCxpdzWED\nddhpeppOQ2ndJRT2x5yCkqjqmnS/M26QfgtPNdsN+Hlmm7Vp2o8ws/Xpjmb2Irmg0RBm9hngM2l7\nAId1DW9Je5vZl4Gz8Prf56SFZ7ONXLS2SIyoFJuujcJcaI5Z6/GCti6YIpW7hsMp66X8AjNr2kC9\nEEDSu+lP5Q6WGZI+gtdl3xe/Hu6Ip8/WMmTkqULNtmbsBIaMUo22X9oKV/zOcQZuKJZkvkR/2WVM\nGJpBEMwcG22TUZLauTrd16SMzrU2caljs1fq7aOo7jJR1B9zCiZGVZsUZ0l7mdkTm+dTJPLLmW3W\npmlvJOn+ZvbDtN2dyCx45L1Xj8aP132Bt0j617bAD4PI+BaZ9+mbw6YqECOagtdLehbwl2b2Lknb\nA2ZmufTOuaDhljSbAH8BXNkoti5zxvZSlvQ04FnAY+QKyQ2r8NYWEdW85XB/M3t0chY9OdXrHjbF\ndrrnnRo125qx4+iepy7r/O87uCMtx1VmVtojNvrLLmPC0AyCYG7UpHZOGSmdd23isqA2BXQKauou\nS/tj1lITVd1S0vYp9QzcOXGPzLiTceXZ83Ev+S6MT9M+EFeLFG6U/hDvO9nlSLyNUZPadTRu6K43\nNFvf8yOBB+BRzUle+lIxolqOBX6DR37fle7fgBs/C4KVt6RZjoztpWxm/yTp+3ht8TGt163FszSC\nWw4bS7ojgKS7pHrdB02xnSEjzyrUbGvGVnIiLiz2YNzheSF5ETaAT6T3u5jhzJdc6uw3gaa/7M3A\n5Xj7o2AZEIZmEATzZKapnU2kdAFrE3PMq/ZzQ5i3Um9N3WVRf8wpqImqHoR767fFW6FcA4ykhprZ\n0ZK+zKAh+tvNrLfHrZldDDym7/8tbjKzNUoKjGb2G3lLixz/DGyW5tiwDu+f133/UjGiWrZJwkjf\nTO/zQUm1vfpmivW3pFmOTOylbGar5U3sH8uw0+GebHif1GDp8AHgGen+Ukl/pv88Vowq1Gxrxk6g\n6xg7Dr8+nsOg7+fuwN9nXvtmJqTOStoCr4n/BJ563hit26bXblc4z2ARCUMzCIK5McfUzrnWJi5S\n7eeGMG+l3pq6y9r+mKXURFXXAbcD1piZJL2V1qKoqQfO1BQ9UlKvUdxJ71yF1x+ttlH5/islHQls\nIWlf3BHww565bmZmRQu7CjGiWjZJ9Z7r0vvcDzfoFwyVt6RZjpT2Uv4X3FHWdToEyxxJVzL4LJtz\n0VrcqbBr9kXj6Rp5NWq2xWMr6zm3NrPntR6fJKlPff7Kgjrs++G1ytsxnLmxFr8eBMuAMDSDIJg7\ns07tXIDaxOVW+zmvnqYNxXWXcxRVqYmqHoF70vtSV1en+8sYpXf7FemdL8ZTyM7FP4vTgFMy48D7\nya2v+5xAkRjRFByK11LdJ9VBAfzdDLZbQ1FLmuWIlfdSvtHMnr0AUwoWnu3xc/OhwCV41G8lfp7K\nRuZqjLxKNdvisdTVc24iaSsz+2Wa/9a4Qy7HTyQdj19j287LD7X+/jbwbUnHm1lfrWewxAlDMwiC\nhWAuqZ1zrE1cFrWfmn1P0z7mVXdZQ01UtUldbcYMpa62RHl2MrOXtV8o6WQKUxW76Z0a9KU83bwv\nZYnX/anAayRd39qvvtYiRWJEpWSiLBvj7TV+jztWpurPOSU/wFOeH4RHLC4EfgL85wLOYbE5PZUF\nnMvwdzya0y9zLLX+kPRIMzu09a8TJfWlzhYbeapQs60ZW1nPeSheP38zbrzeSD5tFuDadNus5/9t\nPt6UIbRYm8kkCZYgYWgGQbAQzCu1c6YG7CLXfk7D6nRfo9Q7DfOqu6yhRs22SV3dPJe6KmkfvH/l\n9pJ2br1uFf0e+JL0zm5fyobevpSVqqqlYkSlVEdZ5sin8d/ukQzquz7JaJr8LZkDGF2XrQPutQhz\nCebDDfKWNd/Bf8M74UqqI1QaeTVqtsVjK+s574mrRV+H9zq+Ay7C9p3Mvh0hV+deLxxkZiPjEtu3\n/l6FX49nobYdLABhaAZBsBDMK7Vz1gbsQvWlnAlTKvVOw7zqLmuoiaqOTV01sy+kxdp7gHe2XreW\n4e9Tl7HpnTZFX8okwDPy3TKzx2aeKxUjKmLKKMu8uIOZvaf1+AJJ31jgOSwqjdNB0mZ4xOa6RZ5S\nMHv2wdPtd8OvX4YbcSNUGnk1arY1Y2tqPw8CdjCzNWncFsA38PTf7r69F3egfAuvpz9M0kW5us3m\nPNXidEmvwhWygyVOGJpBEMyNBUjtnKkBuwC1nwuOjfY0nWYb82xmX0pxVNXMGrGI3tRVM7sxLVb2\nADZPT28CvJ5OyqikcT3b9sKjcG3eKulNDNRsLwTeb2a5NNB26u4qfBH5P3JvVCFGVEtxlGWObCRp\nRzO7EEDSLnh09VaDpMfjUas/4fVua4EXm9l5izuzYFaY2R8oz7ipMfJq1GyLx1bWc14D/K71eA3w\n0545PNTM2k6zt0vKOjMzom1b4ee+YBkQhmYQBPNkdbqfaWrnvA3YOdZ+BtMzj6jqycAf8OjCaXjK\n6OGZcWvS/c7AFmkeK9Prfp4Z/ym8PcnENNCMCNAlks4E3poZO69ek8VRljlyIPA+Sf87Pb4MeOkC\nz2GxORLYrUmJTCmNJ+CpgsGtjBIjL1NnDT1qtjVjW68prufEMzwuSQbjStzxu1rSO9L+tJ2CqyTd\n1sz+O73P7el3brVF29bhDrEQB1omhKEZBMHcmGNq5+p0P6/axHn3pQwqmVNUdTMze1qqVXq5vMXH\nR3AhnPZ7HwMgaS8ze2LzvLzdyJcz272Dmb279bg3DVRS15jaEvfYT6QrRjQtlVGWefFU4IEMFsAP\nxo31nCjSLZUb23V3KaXxpsWcULB4FBp5NXXW09Rk19R+fi3dGr43Zvfei0dTr0hz2BY4uGfsiXgp\nxPp6Tm45rY9u8YShGQTBojJNaucC1CbOuy9lsDTYVNLdgT9L2g64mvEiE1tK2t7MGg/7fXCxiy7d\nNNCH0Z8G2o5SrsOjp3vmBhaIES1nng7cM1OPdWviZ5KOwQ2AFbgB0Jd6GNzymWjk1dRZT1mTXVzP\nWeMMNLNTJH2FQa/qK8aoKx+HK2GfwyBDZHf6FW2DJUQYmkEQ3CLZwNrEefelDJYGh+FRgjcDXwXu\nyHBj8C4H4VL72+LS/dcAOdGfA4GjUxroOjzqfmBug2Z2RN+bSfqimbVTWG+xvSaBobY1t1IOB/bH\n63TX4d+vpVAfHSwONaI9NXXWNWNraj+LkfQM4FnN+U3S1yUda2anZoZvbWbPaz0+SdKGtuwKFogw\nNIMgCBILIF4ULCHM7CxJ2yShp3tLuq+ZXT7mJetwhcQ1ZiZJbyXfx3InM3vcDKZ4J5hKjGjZ0IrS\n3gEwSd9nWOzpGYs1t0XgOOBjZnYKgKQ903N7LOqsgsWixsirqbOeOHaaes5KXoVfXxv2As7Ge4V2\n2UTSVmb2yzS3rRnThipYWoShGQRBMGB1up93X8pgCZBqLO+GR5EAXitpjZkd0vOSI/CUrWYxdDRe\no3lmZ9weks6fYLSW0Cz0asWIlhMfnDzkVsNtGyMTwMy+koTJglsR0xh5NXXWhWPn3WN3I+C/W49X\nknfakeZwtqSb8WvwjUTa7LIhDM0gCILEAvalDJYGjzCz9YqeZvai1EKlj5vMbE1SgMTMfpNaUHTZ\nEbhM0h/xRRHAOjObSthmCjGiZYOZLXZ/1qXEVZLehatdrwQeC1y1uFMKFoF5G3kTWYAeux/Az5E/\nxo3O7YC+zI17An8BXAfcgGc/3ANP/Q2WOGFoBkEQVDCLvpTBkmEjSfdvWoxI2ol+rzrAlZKOBDaX\ntC+uTtxtT4KZzSviXSpGFCxP9ku3x+Pqmhfg9eLBrYgFMPJqmFeP3W8CX8RVdW8GLgfu3jP2IGAH\nM1sDIGkL4Bt4659giROGZhAEQXBr5UDgw/IQ5VrcaHzJmPEvxmX2z8UFok4DTukOkrQH8HYGbUqu\nAg4xs3Mq5/f7zuNSMaJgGWJmf8ZrMo9b7LkES4J5GXk1zLTHbjIS7wZ8Ai9ZaFSmt8VLEnIR22uA\n37UeryHUmJcNYWgGQRAEt0rM7GLgMRXj1wLHp9s43gk8p4k8Snog3ptzh+7ApCL5fLz+an001cxe\naGb7dIaXihEFQbD8mamRNw1z6LF7P+CFuEHZVvhuzq05rgcukdTUpj8cWC3pHWmOr5vh/IIZE4Zm\nEARBcKtE0m8ZiG6swmt/VpvZthu46V+30lsxs0slre4Z+zng/cAvCrZbKkYUBMEyZw5G3qJjZt8G\nvi3peDM7q/BlX0u3hu/NfmbBvAhDMwiCILhVYmZ3aT9OkcfnzmDTP0/NyM/CPfCPAq6T9NL0vm1P\n/tWppU4JpWJEQRAES5mPS1rXeW5tzsk3TpwvWPqEoRkEQRAErI88PmIGm/pFut0hPb443d+FQQS1\n4SJJ7wS+zXD/yDMy2y0SIwqCIFjibN/6exXwaECLNJdgjoShGQRBENwqkfR5hg2/rRiIU0yNmR0x\n5j2/2HmqEQxq116tA3KGZpEYURAEwVKmUdZtcbqkVwHvWoz5BPMjDM0gCILg1soHW3+vw0UnfjDn\n9/wf7Qdm9gJJ9wQehMv8X2xmV+deWCFGFARBsGRJWRxdJ98deoYHy5gwNIMgCIJbFZL6GoMD7AUc\nuYBzORjYFzgP2BQ4XNLHzOwWJQISBEHQ4rLW3+vwFi6l4kDBMiIMzSAIguDWxpp0vzOwBdDI5u8G\n/HyB5/IU4GFmdjOApI3TfMLQDILglsqJeBnAg/FMjguZQdlCsPQIQzMIgiC4VWFmxwBI2svMntg8\nL+kovF3IQrIC7yHXsJZRwaAgCIJbEscBvwfOATYBdsVbN/39Is4pmANhaAZBEAS3VraUtH2r5+V9\ngHvM+T1/33l8Mq48ez4eVd0FOHbOcwiCIFhMtjaz57Uen8Z8W1wAAAdsSURBVCTp7EWbTTA3Vqxb\nF47TIAiC4NaHpMcCbwO2BW4ErgHeYGZf38DtPgh4Pi78s6J53sxe2DP+HngK2VrgEjO7akPePwiC\nYCkj6Tzgb83sl+nx1sCJZvboxZ1ZMGsiohkEQRDcWlkH3A5YY2aS9FZahuEG8Dng/XgvzSySDjCz\nj2bUFx8pCTN73QzmEQRBsBQ5FDhb0s146uyNRNrsLZIwNIMgCIJbK0fgdUGnpsdH4zWaZ27gdq82\ns49OGLM63V+W+V+kGgVBcEvmnsBfANcBN+CtTe6Bq88GtyDC0AyCIAhurdxkZmskAWBmv5G0dsJr\nSrgoRSq/Dfy5edLMzmj93RizO5nZy9ovlnQy8JkZzCMIgmApchCwg5mtAZC0BfAN4IRFnVUwc8LQ\nDIIgCG6tXCnpSGBzSfvirUZ+OIPtbpXun9p6bh2w3tCUtA/wamB7STu3xq1KtyAIglsq1wC/az1e\nA/x0keYSzJEQAwqCIAhulUhaifdyewReI/Rd4JSmp+UGbvuewIPwHnEXm9nVmTGbAO8B3tl6ei2w\n1syu2dA5BEEQLEUknQj8bwY9jB+OlxP8FIga9VsQYWgGQRAEwQyRdDCwL3AesCmwM/AxM/twZuwq\nYA9g8/TUJsDrzezeCzTdIAiCBUXSfuP+b2afXqi5BPMlUmeDIAiCYLY8BXhYExmVtDHuuR8xNPE+\nmn8AdgNOw8WJDl+QWQZBECwCYUjeeli52BMIgiAIglsYK/AU2Ia19CvJbmZm+wFXmtnLgUcBe855\nfkEQBEEwdyKiGQRBEASz5WRcefZ83KG7C3Bsz9hNJd0d+LOk7YCrAS3MNIMgCIJgfkSNZhAEQRDM\nGEn3AB6MRzMvMbOresY9DrgTcC3wCeCOwIfM7E0LNNUgCIIgmAthaAZBEATBDJB0gJl9NPXQHLm4\n9ikpStqmUaWVdF8zu3zOUw2CIAiCuROps0EQBEEwG1an+8sy/8t6dSUdBdwN2D899VpJa8zskJnP\nLgiCIAgWkDA0gyAIgmAGmNmZ6c+dzOxl7f9JOhn4TOZljzCzR7e28SJJ/zrHaQZBEATBghCGZhAE\nQRDMAEn7AK8Gtpe0c+tfq9Itx0aS7m9mP0zb2AlXrQ2CIAiCZU3UaAZBEATBjJC0CfAe4J2tp9cC\na83smsz4BwNH40qza4EfAgeZWS79NgiCIAiWDWFoBkEQBMEMkbQK2APYPD21CfB6M7v34s0qCIIg\nCBaWSJ0NgiAIgtlyMvAHYDfgNGB34PDcQEm/ZSAUtAq4A7DazLad+yyDIAiCYI6sXOwJBEEQBMEt\njM3MbD/gSjN7OfAoYM/cQDO7i5ndNd02Ax4C/NMCzjUIgiAI5kIYmkEQBEEwWzaVdHfgz5K2A27A\nazAnYmaXAo+Y5+SCIAiCYCGI1NkgCIIgmC2HATsCbwa+CtwR+FBuoKTPM9xjcyvgj/OeYBAEQRDM\nmxADCoIgCIIZI2kbM7s6/X1fM7u8Z9yurYfrgOuBH5hZXJyDIAiCZU1ENIMgCIJghkg6CrgbsH96\n6rWS1pjZIa0x/zhmE3sBR85vhkEQBEEwf6JGMwiCIAhmyyPMbP/mgZm9CHh4Z8yadLs38DDgT8CN\neH3m1gszzSAIgiCYHxHRDIIgCILZspGk+5vZDwEk7QSsaA8ws2PS//Yysyc2z6do6JcXcrJBEARB\nMA/C0AyCIAiC2XIg8GFJAtYCPwRe0jN2S0nbm9ll6fF9gHvMf4pBEARBMF9CDCgIgiAIFglJjwXe\nBmyLp85eA7zBzL6+qBMLgiAIgg0kIppBEARBMEMk/ZZBy5JVwB2A1Wa2bWb4OuB2wBozk6S30kmz\nDYIgCILlSBiaQRAEQTBDzOwu7ceSHgg8t2f4EcDuwKnp8dF4jeaZc5tgEARBECwAoTobBEEQBHPE\nzC7F1WRz3GRma1pjf4PXdQZBEATBsiYimkEQBEEwQyR9nkHqLMBWwB97hl8p6Uhgc0n7Ak/BxYOC\nIAiCYFkThmYQBEEQzJYPtv5eB1wP/KBn7IuBZwPn4r02TwNOmevsgiAIgmABCNXZIAiCIJgBkv5x\n3P/N7MiFmksQBEEQLDZRoxkEQRAEs2FNut0beBjwJ7xlySOArRdxXkEQBEGw4EREMwiCIAhmiKQz\nzeyJrccrgC+b2V6LOK0gCIIgWFAiohkEQRAEs2VLSdu3Ht8HuMcizSUIgiAIFoUQAwqCIAiC2XIQ\n8HFJ2+Kps9cAr13cKQVBEATBwhIRzSAIgiCYLeuA2wFrzGwr4OvAisWdUhAEQRAsLGFoBkEQBMFs\nOQLYHfhlenw0cPiizSYIgiAIFoEwNIMgCIJgttxkZmuaB2b2G2DtIs4nCIIgCBacqNEMgiAIgtly\npaQjgc0l7Qs8BfjhIs8pCIIgCBaUiGgGQRAEwWx5MXAFcC7wcOA04CWLOqMgCIIgWGCij2YQBEEQ\nBEEQBEEwUyKiGQRBEARBEARBEMyU/7/9OhYAAAAAGORvPYmdZZFoAgAAsBJNAAAAVqIJAADASjQB\nAABYBf8YKUlRlMzSAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "aEcHx9CORXTp",
+ "colab_type": "code",
+ "outputId": "4a776000-d54d-4e34-b140-d2ae5a75ae33",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 481
+ }
+ },
+ "source": [
+ "classifier = svm.SVC(kernel='linear') # We set a SVM classifier, the default SVM Classifier (Kernel = Radial Basis Function)\n",
+ "#my_pipe_svm=make_pipeline(StandardScaler(),MinMaxScaler())\n",
+ "\n",
+ "classifier.fit(X_train, y_train) # Then we train our model, with our balanced data train."
+ ],
+ "execution_count": 0,
+ "outputs": [
+ {
+ "output_type": "error",
+ "ename": "KeyboardInterrupt",
+ "evalue": "ignored",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#my_pipe_svm=make_pipeline(StandardScaler(),MinMaxScaler())\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Then we train our model, with our balanced data train.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/sklearn/svm/base.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y, sample_weight)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m \u001b[0mseed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrnd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miinfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'i'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 212\u001b[0;31m \u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msample_weight\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msolver_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkernel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_seed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 213\u001b[0m \u001b[0;31m# see comment on the other call to np.iinfo in this file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/usr/local/lib/python3.6/dist-packages/sklearn/svm/base.py\u001b[0m in \u001b[0;36m_dense_fit\u001b[0;34m(self, X, y, sample_weight, solver_type, kernel, random_seed)\u001b[0m\n\u001b[1;32m 269\u001b[0m \u001b[0mcache_size\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcache_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcoef0\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcoef0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 270\u001b[0m \u001b[0mgamma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_gamma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mepsilon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mepsilon\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 271\u001b[0;31m max_iter=self.max_iter, random_seed=random_seed)\n\u001b[0m\u001b[1;32m 272\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 273\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_warn_from_fit_status\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "8rC3fNyAUcRJ",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "class_names=np.array(['1','0']) # Binary label, Class = 1 (fraud) and Class = 0 (no fraud)\n",
+ "\n",
+ "# Function to plot the confusion Matrix\n",
+ "def plot_confusion_matrix(cm, classes,\n",
+ " title='Confusion matrix',\n",
+ " cmap=plt.cm.Blues):\n",
+ " \n",
+ " plt.imshow(cm, interpolation='nearest', cmap=cmap)\n",
+ " plt.title(title)\n",
+ " plt.colorbar()\n",
+ " tick_marks = np.arange(len(classes))\n",
+ " plt.xticks(tick_marks, classes, rotation=45)\n",
+ " plt.yticks(tick_marks, classes)\n",
+ "\n",
+ " fmt = 'd' \n",
+ " thresh = cm.max() / 2.\n",
+ " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n",
+ " plt.text(j, i, format(cm[i, j], fmt),\n",
+ " horizontalalignment=\"center\",\n",
+ " color=\"white\" if cm[i, j] > thresh else \"black\")\n",
+ "\n",
+ " plt.tight_layout()\n",
+ " plt.ylabel('True label')\n",
+ " plt.xlabel('Predicted label')\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-_TEuAV_UNpq",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "prediction_SVM_all = classifier.predict(X_test) #And finally, we predict our data test.\n",
+ "\n",
+ "cm = confusion_matrix(y_test, prediction_SVM_all)\n",
+ "plot_confusion_matrix(cm,class_names)\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "weElqDFdVhlO",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "print(\"the accuracy is : \"+str((cm[0][0]+cm[1][1]) / (sum(cm[0]) + sum(cm[1]))))"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "MTwA0gYCVkPf",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "print(\"the sensitivity or recall is : \"+str((cm[0][0]) / (cm[0][1]+cm[0][0])))"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "6X7YRt2cXHSO",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "print(\"the specificity is : \"+str((cm[1][1]) / (cm[1][0]+cm[1][1])))"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "8XUZGfuoXVIS",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "print(\"the precision is : \"+str((cm[0][0]) / (cm[0][0]+cm[1][0])))"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xOEQ-u56YjD2",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "#PCA\n",
+ "\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "\n",
+ "scaler = StandardScaler()\n",
+ "\n",
+ "scaler.fit(data)\n",
+ "\n",
+ "scaled_data = scaler.transform(data)\n",
+ "\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "uiJ1lWoeZ5YX",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "\n",
+ "from sklearn.decomposition import PCA\n",
+ "\n",
+ "pca = PCA(n_components=2)\n",
+ "\n",
+ "pca.fit(scaled_data)\n",
+ "\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "5MDQzuOOZxR4",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "x_pca = pca.transform(scaled_data)\n",
+ "\n",
+ "scaled_data.shape\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "YJ3bWHQDZ2uV",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "x_pca.shape"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "aEhTdJ9IZ9EC",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "plt.figure(figsize=(10,6))\n",
+ "plt.scatter(x_pca[:,0], x_pca[:,1], c=data['y'], cmap='plasma')\n",
+ "plt.xlabel = \"First Principal Component\"\n",
+ "plt.ylabel = \"Second Principal component\"\n",
+ "plt.show()\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VV_R5U4OZ-er",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "pca.components_"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "QBjV6I7baBlA",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "correlation = data.corr()\n",
+ "correlation"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "tP_YAhC4bhhZ",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "eig_vals, eig_vecs = np.linalg.eig(correlation)\n",
+ "\n",
+ "print('Eigenvectors \\n%s' %eig_vecs)\n",
+ "print('\\nEigenvalues \\n%s' %eig_vals)"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "pqT50sqkf6sc",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "# Make a list of (eigenvalue, eigenvector) tuples\n",
+ "eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]\n",
+ "\n",
+ "# Sort the (eigenvalue, eigenvector) tuples from high to low\n",
+ "eig_pairs.sort(key=lambda x: x[0], reverse=True)\n",
+ "\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-Dm-aBmxgAih",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "tot = sum(eig_vals)\n",
+ "var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)]\n",
+ "# Visually confirm that the list is correctly sorted by decreasing eigenvalues\n",
+ "print('Eigenvalues in descending order:')\n",
+ "for i in eig_pairs:\n",
+ " print(i[0])\n",
+ " \n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "an2SELkDNpnz",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "var_exp"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "R6K7wreWilXA",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "count=0\n",
+ "sum=0\n",
+ "for i in var_exp:\n",
+ " if(sum<=80):\n",
+ " count=count+1\n",
+ " sum=sum+i\n",
+ "print (\"number of dimensions required to capture 80% of variance is \"+str(count)) "
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xMIwxO69gXwU",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "with plt.style.context('dark_background'):\n",
+ " plt.figure(figsize=(20, 10))\n",
+ "\n",
+ " plt.bar(range(61), var_exp, alpha=0.5, align='center',\n",
+ " label='individual explained variance')\n",
+ " # plt.ylabel('Explained variance ratio')\n",
+ " # plt.xlabel('Principal components')\n",
+ " plt.legend(loc='best')\n",
+ " plt.tight_layout()\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "xEB8gcQ2UiTY",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "from sklearn.preprocessing import StandardScaler\n",
+ "X_std = StandardScaler().fit_transform(X)\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "5bAsO_OyUQjn",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "from sklearn.decomposition import PCA\n",
+ "pca = PCA().fit(X_std)\n",
+ "plt.plot(np.cumsum(pca.explained_variance_ratio_))\n",
+ "plt.xlim(0,61,1)\n"
+ ],
+ "execution_count": 0,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
From dc3acbea70470e587af3c5215a7db6722e166521 Mon Sep 17 00:00:00 2001
From: NILEENA
Date: Fri, 25 Oct 2019 21:01:27 +0530
Subject: [PATCH 3/4] commit2
---
pr.ipynb | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/pr.ipynb b/pr.ipynb
index bcdd62e..423ccdf 100644
--- a/pr.ipynb
+++ b/pr.ipynb
@@ -32,7 +32,7 @@
"colab": {}
},
"source": [
- "#just a file to try all codes!!!!!!!!!!!!!!"
+ "#just a file to try all codes i.e try machine learning models and analyse data!!!!!!!!!!!!!!"
],
"execution_count": 0,
"outputs": []
@@ -3697,4 +3697,4 @@
"outputs": []
}
]
-}
\ No newline at end of file
+}
From 9d8cb4d3c8fd15ea2d7a48dbd9d256cb00b2d1ed Mon Sep 17 00:00:00 2001
From: NILEENA
Date: Fri, 25 Oct 2019 21:26:32 +0530
Subject: [PATCH 4/4] commit3
---
ABSTRACT_DBMS.docx | Bin 13632 -> 10014 bytes
1 file changed, 0 insertions(+), 0 deletions(-)
diff --git a/ABSTRACT_DBMS.docx b/ABSTRACT_DBMS.docx
index 1900ec1045576b47339866d8eef6f1b14dd3e35a..2631eb5ad782ba592d0e12c946ced33ba0471e66 100644
GIT binary patch
literal 10014
zcma)i1z23k(kN~rc+lVy+$~5TSa5fDXBgbw2?TeC;O_1g+!Gp9Z~FA9>h7xQs_L$mm4Jl80E2^r16%Y|lL7k;UOoTUu{E-^W1xR|mQHqxLo%Vj
zthr_AC%HM*DG3=?w+4@=h(w!0GE}3h1;^d654&9{x}2}nC$<^Ak^nCoUCmP84Rrr9IT80
z_VmtHmRqWewu|g29w#cgKVwI~P4|}d&kBuxtK0ZmY80MZGnJ17MK9Jv)B%=hx{o)WM9A>JhrJGNny;#Q~fLZ
z9U|RPJA4}>RzzR&hP8nS@C!0b$K)k_Z;5ArD^|)mD2d
zF~&80js5YV3a?$-mjN&V6tLlSb8}&C_hvDUyx(g=W{w@W?yO#gx($PJnVo2Adh<6J
zm}}2ztkG&&*#}Ee*WO~1C^#&INwfy;IRf|-fwQFNDMDXp8R`YvQofm4EfF;#6M@Y9
z6GaqS5uneS(ymYQsK)gC;+I|@4JVW6WEpKxSh4`hLsO~a4LoTSxC7FVhuY
zTR3v_Ov+H)j-gx8X3(UcZzo>P>zr&;N9MBkca7kH*Q>&ZY3Sm#cRjKQoD)d`2VK^u
z3t!o}MjklP;3Q<;Kob`tV$A83rY90~NVShuHj$m#8!Lu3&3e@W{Ax-a2ni5Y-*d-b
z&Mb}nrlkUHwy%dH+i
zSin|kk9^P`o9WslK5`(ZR>&@uO@T1fynxzGT`2;P;6#YNLSr2G0?3LO{(O5cT}eLj
zb)U_5UfbsJNubFq4q|NXz2VPOn+I4|O9BVMs}wS}yhE(d2Z*DPSGx_(5j)>oWA?Nh
zzv;w^Fc=yXg5?vZ_`lOj6DV)K^QJlsJVYbfv_!C*CmZK>&xC4w0}QHerP^iIfwXA2
zLe~^C-{nb~^laz}x4Vv9L5zFAXg?u5Bq(`1`kp@41G@5E{xa`*C9_z)XI=+s#Yp^0
zin~Eb_?gAflCyPHI1`n-fu%tBXG`ULToX7#pU4A}@mUl7aGkT@v&!YjQ_(#Pkds`g
zTe#Nzd<*+0kyJG?Sg0b%&b}7ebmop3LW;>(-L+KBZc
z`}6F|QS6;Ak0LUq^@bd)+0Fd=j>bvprqB$;Sw*=*V6!jBI6@eh+w|_CDZb|CG&0E{h0hN3R%qx2b}T#47*P3r*sStF{h&l
zCxA6KUN56=2uf>LJm>OdQzyfR6$G8-4$!c2f2r6{L=3&yFplv&6^Hv?^Mpv$PHu7M
zZaX(NHzb{`Fai6mb9jc&wb*ab7SO$i8@+RcHml*^`tYy0drx?iSYZW3!L`7P!l8HP
zSzSqfa?key%ntG()DcmN?g)Y}VvFCH(q@`=rQFhGDKYSCx4Syre&5=QS(VB7!0T~-
z;C?LCh#%=M+*r@&aWQtmP}}ZxcXm{5J>#t0(|)s6%;9x^Lw~86eYyOZgF&a|@$sPD
z(=*Szo)Q~l-2+1~Z`r4RffwyFG&O}cr0a(ePbgWr>^Of!GNL%S%x0eGaVKLiNa(WH
zM%*7VNwf;QIr4+h*8PH|-^+tpf2xF9B894lS1Q|chWVwS)mu|TxewJbk8DQOw6kUAbwuGp<<$BY0s
zC8lRmAsm92MBThwW-YvO;YkN64%HP*2X!2ZgmDXe-rFAWKB7M1@APX?q2D{hV4^#5
zu+ou;Db$_da1;iXa#=!-t)h&l0ju5Bsv`1V`l!Ft6MYRnjI1Q|anAl87F`hhkQy!=
z3}KZ4B!?$CiL7C`2aA?>;^U9Zu(n>sG84ro+KZu5vVs@={=nHy3Z^uu!5S}b`I*GX
zz9v5lW1$&EABY%;Vt&o1vOeHnAhsGRq&)9Ky|@HnTaxzx#VkjY+Z*0h87xNZ1|}%q
zWnx_y?`%vI0!}yOZbBO*sq)sLl3Ck^FKIB%iWndUnfd6vsOq+Gr75NAbg5G%BZ4++
zPz=l@)>?WB3)(t`fNSC{Rf3N5br-Lev82mnLKK`x!b^M8TUlUB_#AI+YXaC4EwA1_5!8%yZXk
zT;J4Bm8sx*)@to3KB(t|&RSh_u2n%_m@5`--Rl=hRf^(IRF;a8Cd)af*+6v~fKsKC
zrqX^pjn8omo>&Q?#aUfde3AM;`?3>a8F(Z9Jh+F0CrOlC6|CxyN1!7dBKbu%Vi|Uow9Y;
zWUo6Tk0@gXVi{f|!hEcQp-$!@Wvp(!eFm4F$!ptQgIa6)m|&xQlPc^oBeW8Q
zpOkM22;Qb5l2UAZ48REor$qB4QFuSLa>tB2c%%7qDKqwFx8wdzz#F3TW(+d@0fXm#
zr87-@ND`dzl|BN?Daq4@G3t>2h=7uYQhFz>5{Umc<0f@WFMdB`z(f9#)+_0$%rG@~
z<<>X14JE-(gK0CQYiKUzTxb~99CU7ws_tkLZ%nArNe}D99J3PJTgY*9~GiV#yFiX^(3E?q3Zme^R0>o#ol9GWbbElyolB1rK9xo@~!5Oc~*3v
z=XiOSGz2eA6+~B#DBxjFU-yn<`>9Mfr|M(MVM6L&$C=1oupR401!~l6kxr^%`7!B_
zkS{CyLYwtm6K5J}yWdNt?QfOeak&+vr#;onkZpMLVfoDY+~V#;2HOes;Go-l3E_Mv
zl&U~7ii4V8tg`Sv>Bl+{DAWyY0ELQ$2rs0`2!UerF-WEd`hgo2%YH{lbKDKx=A(&J
z2VI`}N;pC_=Ydp;L{cyFrgmS(-IQvHYVVI!|9n{9^hm{MFohqMTl`BY+bkD&&Z3~G
z+ym$IJ^$etJ8ODOm+a{AHt3x*bYvyKZY7Z{kAQAhHBZQ%JJ-5hdcoIJ1uk}cRt%==
z4W4AwpWC5y-&A>!f>X*#qU{mzf{b12rsYWCQn~a!N#JkYMP~VyLTkJ<%!03}kOifC
znsRKIy7x2iuqB_SJ9KYNU|^>BmPSVLOqbg=5r)Y*VLtDo##9$a!AbS(*
zh~-8O!aqwYmI|j{TaV-8DgmvWh1P4=QK9DoL3}-JMP^m$nOaldS*G0M*vBG}_EuPdy;G(*V9U-=o+`oOO4?H#gBC|YX_K0+^6-3HBgmJ6x3poz&2%HBq>
zE}vcwg}$Svb32r3iq@k9@nn)pR|{dbDI?!>caIW3k*m|GQOkSpewg-(_arczX{%B?
zL0Arw>|t&4aKU0ib+u;+J_stWU-8r2V^!cle0>@-%#0JoG!)m-{`9@tYaHV=N8EQ4
zD|^9{Or3zaB7_Lr5Fr{dSkye3O8+BsAnwY^y%B{P+W7b}y7p3Ilnu#7tZ;E8b)8~+
zgYpA%r{%ZP$6mB7P(Xq2z7LeL2D{|Ne8$qr>ddlOgrU){MtaiaCzhF`41}Y#TN!jm
z;6px~h!h)-=@WUuAyS!_krPlcF3q1-DnLegG4zwta_A?m)yDyyftW1GZ5L6H_nXKP
zXc{6l^g+gmjo7Nbz)z}r-8p3pSwq+aozbc54=kwQN!TzVx&A(K1G>73xY*c*U=Jtb
zg`Kync?y1)?JD`+s8ZnOjMRLj_>UoF=hM21p2oiw#~<^X7mdkKQ?HrW$l}IkBJCli
zQqN4u(c@cCh}-?$JK-=zUoCi$?A*>n;9zmsC`g)IsENFvrw1yMJbh=W$~MC^YJ^i3
zQo|M(tEsEQ2Zn7Ok64x`@zT0X^M$t|CygaABRcCBDp<7fXff$@2cx{jCEBO#Qd?FddGSQ8Gu`2yXQ*
zyYv=7V;cF1YPw^M{|?WADLmkc*X(o97_Ez?z5f*Z)BJa5%pGp4Rz@8hj`X^bDE4?M
zdgq00VeYIAj~^Z$wO~b4bjF8Q%f9`9h!7HPXmn{u@tuY$(glb^ZZ9;mP25WwP&=u4`^bp&g`eUv{U_
z)kfsBqSGcDt*c16oa7y$n(BQ?ACL2dz1O}MVY
zTk3R3ntnlraM}7uc|D42?xd(h&0Ty~4VUrN{Rb`~4-eNq5^A-qXtmG-1S6CazkAAb
z#;J{K_$N?N?3h5JMV>Ca-O>zNNnzNcW*Y!Ly2U0XA4Jz#Vz)GVH%r&a$O$;Gm(o<`
z$Sqih!>)H=VcU%AZ7HoUOX{Wo9OPI8Rs<}%ZYL94uGKv@7&{;Cjk>JfHW+ZHSspV$
z`?EWhph_S4v)B8ptAVb#KO4WZR~nPvrOrw7o}3Epd}Z+|>rGwG($_$}z_Bu!QwvGmg*K(usg0U&n6$U-xui;e-m$^;2JH^bsZ4z*^Q*#3;ISSWh1LJVfD&z$r
zl=ssitKMwVvkAR_#skQA58x}Ci+23NBmO(m$M~@LKatEufzi0SOV6}S3Wn3&yRu%jXJ{w+ypu{u_J;4z`T6Sbc5vpH54s$7afo0rDp
zwCZPs|J$UV+h-)<_(xNNWuch4X5BQI!x;EH-T#39=STkwh3D?8UV8pTzVxO0@~NO4}Ew
z*)?;MWuCl77mn8ztI3O4)a|qBMq2gZIXYNZydaV!AXWWtbTUXq(W-vRb~7*Dt~A!=
zn`66xv4Mh?qlfMei#P8O6IDA+l}@brodwC~*
zf0AcNke2IO)LBHWOD*;%?|Bf1+mTomwL#DuT7H$Nk^
zQiu=ls+G$}V)Lk6OE06l&7{-{AY1dv$%MRbelQfhn=~EV%IbCU#k!>Fu^&f@q`Wt3
z4|sP$(`ES$4#Uw6e`(!MG95>R>WQ=B5axwDj)p~6)6a8H`2S1u*csW|n*mII?Wt;G
zI;HVGA_ks#gw8At0Qkq*_5IdROlN9>pllo+TYB`3d6Lhnw9?x~VW6nduwoa7f7Ulm-d1?r?MUT*BBP*w3)ta0jE!3=NfKW?>T7-7gM(bouk
zt8Qc0h~lIfTC$uFOb7O4R>sG`PFOTCxJk2902ocAF3WhzimE3ep;Ij{!o{HXlHKcVySuqskn5e+GW
z=qDUl_vlT8qbIMBCXr}@y?zi=^?i!bIwd_7xip{eOd*DC389?eR)yA)zTEhr=9d&AP!;^iADe3fmiFt{AV?upA8dU)a?
zBZ`8N<2vHvyfJd^51aRdFS2W#xBz&7gMm#z{+ni_{YSHntpWCmdis_|FB{@o*^koQ
z&-#3UFyypf1M8oir$pWZf5|@tS$CXQX;@BLF1CAOvn(VK2`R8;d@?*bJZk%}Ub4$r
zai%zMQxXXwc9)Z-K)!l4b{!!PgyQnO^pE2q9lG2H%qP_5eX;h~LweC>
z?$%ZI$!+q9_boP|3l%&tI%<)|YTghaoq)mvV(Y!YZs0~XmB8bq3}{{d^7Y$!`YWGq
z8!MT%NZZxrm~fsXHFCZhxeyKlqD2yC{7_wn$0>rVI^MOw=p6mLJs`U{*CeLXrU>t~
zC4;n5So=Xu&prPIk_UP=S9SZ=@>*t)j=J5udXnzI57_wEyMb$=dF=b0Yu_Q_Rco!U
z>R`)PX>Wd|pYP-BRQaC;Q2eg~K>1w&dO+X{_tT<=UNl?y+FjVtVUZJ_yokF04RU1>
zSP1{TQeQfS$eG|(jrkKng1Fr5;r1wghDF5utzqCH9I?3xp8PiSK!kt{-0+Z=~q5<8t+@7Vt9C
z1c<6%mE@)|q~Vl(lJ8JO%X(%|pI#|RYae6rEmq6$jH)wwqQKp6+1h@K6YSodGb$Bi
zs#yRlmv_TBT)F!w;bZpRJ*OSA2P3Ak*m(~y@5(b=BOv?jbaaT1KSGsuv2H(iU4?zjSjk@-eiHREF56xKT0>y*+
zTM){ReQ=@krtO
zl1sDlTy@`cMHh?AOwTFCsmfn{l;{w{2)B71h&e5Lh$uMEo$Y7T=_=7E7so+~9f)9#
zBC_d>vT0oku5=KC%wzYpq;Xz?lj`W3_Cuiy!_twXpVoeE-4k{@tu^6&0WsFG3KReQ
zk8wCXgaRLu3Yf2SAf~asEu}VoHMHIsMq3?%2(jcyO4qavos%>@JPvBNja;x+Bmf4;
z;$wiq^;dMv%%qLUxisVSd+@oI?ChmEXhWi|18#;r;`)V9^Xi&U6&tdeho$}SB?lEB
zbe|%e3Hsy`!_LVl1|q`(Kao1Zv{m`iIn^iTwwY!$m0fNh;U}7X+DFI315lf;)8E@=
z%wxUC4Vmvg&E;8c2mdO!7c-?H_-y^3?`P;Jx&V#rv|biUYb>A4^Fryp_6+?-Bfi8;
zOwwc5>}*(wJ(c6=Ow|^|}o$MxU1X
zlneVHAng)pQ8Kv_=3_n_-XR#($ZV#%H=(Q
zju<|VPkyR8G7}vkc0!4dWf|Hs4QyPb3_NbEaC7Kk9eT~McmXzE@f({Djc42FbbOKO
zTWv5Z>>JQna5ubrY-FTT;}-qF*>v})4AZqU;|Ch`iM}vG$B7o9k3Cceuy!a;C`}Hw
zw(+eaL}+Fpu=J;mv=gE>ydV9KPmANI!JG#=OAl*2*jdKA0=yi+N5t04N)+0Rd=$BT
zHhJK?{9Q|1BsAhE-VaX%qhT=v6-K$>7YcPqdsri0Uck~@8XLvIhbK;tU(w}qEhGBJ
zX9-9@CtGDDz#%Ze{<=x@`xTm(n?!$yKLX8P!R0>@f6v~&+_3ozh@ZRqf9~7-6aDv7
z@|P6vU$FXocK!?fp9$Z8lK4GnemPG63+i6~N#d`=^?xG&9#g)=)qlZ0&Y#HtLzMkb
zO20=qe`f?7-hYPiTSWR#^xwVsOBnPQ^gNI27bE@_6#WzbcPI3+i2edXg8%CI|4HC?
zyZYj*{(?-x-w6Eax&Dd$`|AGt?2(9n!#4QS68{tZch&s+==(_it3i;JfPU5wFtAt8
Nzm8{%B1-mB`#=BN@c#e+
literal 13632
zcmeHu1y@{I)^;Jm2~G&^PH?y2?(XjH4oQH*-6goYTX1)`;BLW#>sQ?~J>8w@_5Fc&
z?pn3iI`Zr~_uRej*>>fnARy5JPyiSJ06+v-&zrW^1OosF-v9t;02pvBAv;@V6I*9J
zWeVA0C3R!|6Tuwcc3nQ#I~COS>!h10V$?Y#qc1fgc>}IFOg31
z5E{!1T=hA2p!KC44O~G5EC$Y+n2h;$jajwde`+b!8WyGAjqJxe-o(#wx)$s--xqf1
z{EXj|Z^kpM2@J7)vSw**doRrf#z0cv6Fa5^Czqa^?vJ5<2Z*Fjh*Bl>j9|tOc*11f
zxNTd5NLnMar;@9O#(Arog$f^6v%u$hX;4}}2(on0V4|F^HQ*b$JxfZpAKFaF6sblg7jf;-ldM9cHf01<70FH$pV*csxltBzY7nCe7+E2o7^z3pq`-^+@$oT+d*rYuUF4GI3f0liWMxMHay&7
z0@)+fi_4a+_Y93aEwmE8+4{2yg%yB|!3BJ&ozf(k%lSMW_I^>HKr%iz{-&hR|U_98+D3PHa
zQhHUR3%NgYyb4CN97U0a>wWgBw1_Yojb?UmTEFzAE$fRVFTTuK;&y4{9E^t9^KP^N
z+1tM1v{>@azzvVl8W&*UevW`qD|iZlRxgi?>N94F0<(^8T%mx(E>u~*#;kRW)hv26#;0cJjes&!@k$0sHUnM;M|g_D!mc`1
zhI^*fya(d6b~;TyNyZU2^J5$H#A`i=QA+an;)2+&c7@vFOtPKC
z!9G)##K!Dmv^fROL`n4nx{MqGMo$Qqc=I`=5=$w
z^eR)*x*vtl?^S=bdibN=PQw)Ob@6NB35lOqoibfgwh3)78lTL&EyS-EumWN<91=v6
zug?m1q~6pQsy;-I3%sR+i+U}L=Po@?k7xBb9EkxP&kvb$JQ|k5Qi}oIBk7{pJed}P
zead^-5ZD3Aj18T84-bucucasCr<<$?CkD&bNYAUR>JSU8kN)G$R)hzQcx~>LTF_gE
zFjhqHn{Hj4>K;Z%@Po$eKs+b+p0k9(cf(DYZE`YcyAt1Kr%(yDYKwC$e=ZnSKd
z#geSMxEt{9Dk6#86LUQ?O_2q+GcAe;a~MM7C;OQbg^?}ZL!wKtV4&p(23V0QV-Hmm
z5y4GBRXGW~zslD9ASgO_`9L;B(Q=%X>Dh?82l$z#np;i5@zcK{ODyc*Y*}~*U$Fcn
z`zU|saB()_+emv^MGP+=FIh5dN3dA1BFmVr=a$=z;y}S?eYiLK8#;8k#8Mmg{FvB|
z9r_aBIjX(nb4>9Lj8t2Q-Ej^DSY7910#6x5Y_b8tb>in+W#>I2m;`9#^gMmqq|A#c
z@*y;p^OBe!p$k3U-Y1&|$Z+P7#FuEBf6*hq0LmL3Fpnlq_TcfEha}5pV}F(&cPtYr
z!r&xh3J-&;zX|%(@W!8|U%P+d;@VavUrLLkh&M2WumJM$Yi~
ziTPo|RFJ#4j)>rJY)Wut=>iaHw8r#Onm_gL8<&N?G1md@mJn3wpocr~n?BnjpqLjv
zr6m@7_1WH(UA_jhV!TLTF^6hNVn{Kj^}nHUZ>prE7)0d=HAnfpiZw)aaAjcUbWTkl
zj}5fDZwj~Q?=c4I!K%eF^!1#C1@CXRcZ`}xX7>rS7Ly;w4|ZcSV9vHuGX=KHzhxgK
zq7*|Wd#^xI{EnKWrcRYHE3@>8sUGsEqpORj;3Pu)N~1JV)GUAF{to}MF(r+xuzyT%`blFNwTB=&kd
znQduh90i+qbP$;$AHeK7nPUpM>6L$!%MG@PNh+R17MzDCx>-e=Bcx{|9zAu3f40M_
z2y&ZX?%_xkTIRaA!F_-hG6}8kkSJOp9IDSW_gudR=Hj%h63lVhS{-Isxq$N|ujfc2
zUA-{aUm(Bol#Eu2&+$r8D$|{8w!DVoV#X%}RiaSE&Tw>>y)T|~ESjG`S3;X98TyDw
z@+qaF+6WIEQ<9h#;*(TeJMjz*)awbdTCZDi+d6!7guQE6t3fb2_l-^UPv<{&w|i{$
z;ObTyc~cZU)unev+rsGWs$I&}JzC%f2~87YKv2r_&TvNE=EHy>Rg7%~8rOHr2~x
zRw^V`3c;f5KIejxFvAjgQg=?P29YSNS+ZF41y86wX`(7AJ;F?
z|7317T$v?LLjeFoga81>ALfR$xrvPl{qL0VHxu<(Ln;hM47nZpk^tB|;yHF;P{ukf
zerdJ9wpQ;S)uw1wP@Z8iwYpT#0MyTPgoR9x7D8y=MHWP0?A?haFshPBCx|)1mtdy5
z?v2v%hyC_Ng}=SzrKO~$g~e%e>p7WAEE&E#Hd2dM%>gexd@-5SV4%&1fwo>-Ogugu
z#RT@W37&Q(j62iM73^ygN@O*}We7(Umo4e;v3E1AC_{KJCtDBfs0>zAOuz@E5u?aR
z0XylDddYl+NE8We3IWEVHpY}_6xX-$l5S@C-XAyhhy$^)6xu75jf4b^24+egP~lPJ
zPjQKs91OlPa`ScG=KqiHoC2Q-=v;^CAD{ObfP)dmct%K0@BIwf93L-R7
zdaX^HbsRP;DR&_Cehy87oUuY#-vR!%5Wsw&SOQh-gQ@!$(NFNmWI^d1-$=s=&rK-}
zz=1UN!&QnwuSeU5i8qv7Q3|qLc-SH3M12D&B(kP8+q!ScZQouV^@SxxWpsF7J&p`S
z>G3_dG~YC=n8XKoG_&*j{G6Df|JvdAcrg}dcj6v1(DAZcy5RS8uXmI$@Z+0VWhTGZ
z_49(?^HVSQnWJ-Z5J5B+{5}_-t8FzFo4E#n;PN((BN%x|$~jIx3zF(RyeA
z%9;(ky_0w};(Ott=g8$ZJt|+Nkj7n&>#4y#3};4nHy~it8^`lPR)&9QY=-ZHb(X
zwYV40FZKESn<&^41OgCK*{Pav139{;6`ZU?t3{4K5CL^=2ZNcr$fuj7((#E^<8Y&e
zNK%=yM@XSMXssc;)`2!RryRVZHb;+lgTme4Kh74QD)odXO={;X4rBGPM6HN0)x@mm
zoyQp16LrlH6^y#EGPV>tCGNi*2{lt4Ck?q=
zq%nje3QbRw)|6oQ8BoM`2Syfn+AdVJdD@tHvK$RO2Fo$sTX7|2V4m3iB8%KWb#}QZ
zUaccrHZ_$NBx-(UC_Tl9ZFIcSZrD?sV(>HkY7VAm*u=VaOvSjr$
zgP49VG1!`B+iBo~z>m;Ru|5Q-&3)3S
zF7P3HmgjV&SL3pQBFo)5`Lpk8CiSE$J9l>oufc;=ruAYVPC~lHCV7{5%erjhgk1Gr6%+4V~uOC
zLbH;v{AfbE8-g5jhk6JYRt^SA4B!prXY-TRjy6U6kmjHl6iz=62pgWtqY9PnuYQaR
z*Q%da_IeT?s;9}!*u7F)8**prBGF)obusv$V)&JpNZn--SNu$D+h{*}{GJXHc$ubR
z(#eS8XfwvR*}O4c))Z5bC^qH39*d_SY=)w_MtN_X(e2_TL(zyd=Io?q>ermoBhPu*
z+jzPhI4k_Y0#lptXufVgD#~qWU){uGT|c4VbWD3ecef=+YisA7V5DY4vVaU@gZzl7
zjAfxZ@=l^wkm(ej!%}0H>1+wSp^Dnk+I*Oet2+{L2h!Y8x@2~7cO_=zmpPgt7PNyY
z71w6^ubdQkw*q}y2pHd)c170=k!s1Maf
zvp-I9&oLHO;Z=AwTFH5=2oor)=g+@jU4x;namwl<^WL`u)=x0-Fp|Zxx$(p@+9L>k
z1sJF$uGu0LMi>DjB=`~QqH&(sKKgf4XciBtvuu-iROpH_n++Z&Ca&K$1+%{hazwA=
z=N0Ye)ON6KNtvhG30AG~#i=LAb51%KU?I=~&ZNrJpx(<*)b+-t(X=;o%TdMTHMM`zUu*@rlA*lak4p;IHO(u7FrYr)vYXX#d=cEHzu5>=L`C=aw6
zIjytQ#HHmhv@efq&ka8@Wl4ql$rzX_gBVyrHI!WAyYfV+?
zYeKj7(`B#8KCNnIe36O&DMqYJm`4Jogr-#Y7@mP{#Sg>Xa*okQlA^u2g|ChtN7JQ>)7&O%}bF?^+2IFK!<>
z1$7{^N=#~zUbxhL%W4%SF;7Z4Jz;u+NkdWV?QAS0#Sn^eRp=+NTC-GgMy}_as!vu)
zEJVOyD#DZTM>A5}nlP;9t|yg`EQO$HQSq39lnnt^lN*#`XY<^o_2iJ23VXnRg`}V$
zkb8GX{52AX!{^Hk)C*r=1D;r}gdYd4+{2JN*YQM8X%#;~p#xLLklm&8rQCAxi_+tz
z9>{F|?>JtM^THh~C^JF}ishmHVOX1jl9tK_hSny(y;N4>bnKQG(1B+ZC;aN|^!JpL
zY?eh_s(CgT?*g9zMzW|@FTvJ@RIk1iMBYW6kZs8YpFfUYT*NJ$S*`Q8Qc37`aTz#E
z=IV;Wn%gD{?o&N;W@@i0Zt=`Wkw*aID>|owruOA-U1Hy#;B{Ruk%bo4owrMW>AV0(
zcj8t0(myn+-p9kY#3MiYQZh_qt31@I4ny@s9o%Ct&K=GhWLP6@e`o2Q|MAh)M_+(=
z%3LjY+Q$5vvuV3
z)qi_Ybl0^$svHd!HDSgm!@#3V!?qg?w-D=J_ly3X-1<>h!c;4eY^GnJ&gU^^!XZWH
zK2O@_X+@PmFTtMD3-*0!-fP@Z$QyHEf}akfv*5R@_ZO9?8$L?|z5RE1z=ci1<8AtW
zg;yg(xr|UQ2jYQ{VY=>kzHFR}8DqhP1emto;jxnqDYcNsw`(p5KfV^q1U9DMFlsuv
zk9@y@qXVj)kf86N9Vx~IBjWLUP_ae-L7M=%7)&D7VitHji_e7j0
z>TEmYk=>6hV>~KOmIeBX-z5j9Y0B;&g-lYr3m*oQG|&bK8u}kX=4N83^p~?Mep0};
zhY?p=V}
zp*>=%z-HE9whe;1#5iqzO^70?fNgk_-g-WIsq?auORA5#>y3cJ
zjW@E7^G(mGylk13iDi;S+NEV~Ri+f;$Exjq6b)0*!RCZ2!kg2nc*s4WKl6|#OIdQO
za>e(JDx*i6_S=7i1Gy{pJnaYHx%l*KVszC{>IQ~HM}(J>ywF?xaG6iaNL3=_qryJ$
zSAn_IdYKv5jB4A6Q)9tTu#rZpA-^>aE?*Lgb?Oo$%W=?;1fD&^i9tA?#mBo5#}kZd)7-0}D(d%#uKb
zgS2_@fn4giuBIyc#iY<0yvvWfm$#^OxtvL39YsxS^1vuzRBq|?i^{sn7oK`n?h^BO
zA+~~u{!cdISSCi3sJF&QRnj!o&ErD2T_#)l2-q-sB{6HqM&E
zJIJ@Qf_2S+=N~td8BQ;6cR*HIW@-BRsO19?hwJeGwZM(k?;o?39&(>zT|pyHpjQdX
zUlqd0&hhu->VFymQitC(LUCORl%n)~_e3DMwp@o7uCRol43&e{bq}#_=xCK|gB@$_
z^x9_8;`;WMbZ7Il{fzI!x(?r~?U6qGQm`r}Wr!jACu6#IHMEmIEm6kh^=T8*=gR}Y
zPr9-=n_CA{hSf_q6&m5{F!aF-NoD$#KT}(&0ILl!SZ0MIiSU|iU4+V|TtYBR^y(nf
z`!CSh^{EOIw`3WVbBVdc9oZyHA}ZPdW>}WyA2t2sD7(Ze-mE6qBI4ioSqH4ra7f{G
z#ys2fim#lwPT6i1+rB_{(4A#IsR<7Gbt!j!#Vm+b_S^!v3cm$fWS1?gS2`-%dleT~OEq@a1AOcGN$!$n>Ma&SPZ7kA
z-W#P7@SFqz@Hyyf)|$aQzG|Ac1E5o+Nd0_OLej-Cb+_
zD&@4yfjV%eRloi@f98}ZW?fc$TbfL=^&;}bo!D$2AtpM2Rl@!*_~iZy{!^ZC32Z3h
z%|onu{6mn~Ex||sN>&0tQZ&(6u
zNM{Ho@+WGgS-Ie(bbEzcyKplA@}y77rj98cDiOt`42Y=bcX&fm)qZZ|xxgX6-Qc
z;kBWRDv5}){SL`9*l}&bPaaz$FMZe4iBwtvp?NL+O65Nh)L%>CAG5xYM8BA|8;c~H
zJs5drsuGmS?RC(+-%q)9?qbpl9vO;IKc97#MC4hFWL(?yu8NPGk1BDvZ{*oipT%W05aSy+SJ0~Ysanz_YtLA_pX62C)
zkFS%@LdBTg4|ZlJb0Tn+OU(m4${vfkmdjVsw79XtOEqr1yd1T@%hve#heUe2yw^d0
zkBauDbliiS*)D>G+v4cr*se_rTT?8VDHD$*y}`3Sd=oCHdqeq+=%vIeDff$^
zKkq1zR3eY73FUbN^@o2F*IxxoNf&w#Dd9h+GgTdCWd}FEdpGrkkPWSY*yw_T@U%Tu
zoQcvJJQd?!GfWs6(xvxFIkGa<*m%1qVzB=<0qC9?%CI9`#+{1HTz1j?xhq@_5y8~k
zRG(oR%^x^X)KZj#a;+>va#R&6I%{X*t$3{kYBc`Vz_9V|;0@+s5%PALbKvkkv&EEb
zqvC79cd8Ce(FBBN+LrJton_=(C)6099Lnt2f?}YHj(kHKeO_6~Gi;ayr(NH0-2(sV}?zZ%~(>$#EhI(ARYC5adGFLIO=_3{KFPgw*}l2B-n{AeiVl%wb{Uui@DK4Mp}enMf_)kw@V<~sh4WRGuzwPqU5XN37J_0!
zgN&1why_EDpko%H72lKZd5q|wC6$7}Uh)|pp;32~6;7|Eq?=Y=*y#oFeCIN_5qnH<8S
zTuKe9h3os*<*gPv7TeiGJ9wb5gDIXV1O4B#bhL5y-BTj)%m~hO)|3aprNzxK=@`nOF!xXOLp{
zNY_}plel~TQA&O9+vh~lLb?$?UT@PwBQwJE+rA0%fm+CQ4?T37aPF`Z_`C=cHJFTB
z5d|sgHL>*tGx#hwphdqezci1lS9s_#dU*PAd{;{i$phrg*H?5;(*cCkg4VG)H2oF!
zumb^-{j)&Y+Y>E{bm01|OF5>jLw}p>_{BMzTDe01T9khf4!7ZXlaUw#{-@($0g{+G
zTvpQWRQ?0xpl(7Fu`Ezs0?CFbjd>JKc~;wq`5USaxpToPpYRynIrYV|0^v~1vm@21
z7Evg(!JR0w1>rP{kUwKm3xh`9>2qWYdZo)}w}r_Q^@$WkfB9EG2q6gh`?Qknr8Ub_
zQe|-gcnso6!9bWg`7uw20QqcQ*`moc5Mqn?uVX~ubjraWK~v=g-|Wc>2BO!=|GTTc
zb#79pXcC`7+58LyaX_KY``6O`{YSsA=f9U|DT^72OkFnsi?Q?#218Lh0FLTEYx@`E
zx29xK=ZeIitM|Fk_?lCvW9k>YeqEqUt(-?uEi9aev^l
z=I(BN8DW524HL+sHJdndBva8$3huJ?bGhvGZ6>+Tj!;sG7ttuE5`h1`CG3r|?1Nyt
z1#E0i!I>?y~iS;ZiXAQmhoB|TiGaY3KN21&F$#v<$b#++BT4e~}
zU14WpM=*fCjTk`eQIbO%|2AI;@px$MVx6=>vdZ%c6%NOq;diz{S+;F9{4Vb;sF
zTb_LhmeNm?(S2Y^!5nE>!L|a()YG!0Q{)OhKNr2RWBJL!ja8WQ8+Oi$HX^iWSt$|N
z56j!G@3Quetes7u?sOf*-#|+5LDN6Eu#)QQ@Hz@M7_NZ2$18x8>}oxIc>ftfgq5v;
z!g5m+imxpt8XlV?loI`hjapR!gak3}8kz%apIQbxy0QviH!mIM)M-at+V|i#!dPK#
zk?#PBZ0&8axQwL`tp==%1?)!?vnnk!w`=kXW{v~0*J{y#EmN`|?`J~0xaT7Uy%r-K
zomf9;9XZy2lRp8mclaJVH`iocyzmDZI_62;0t$aFaq3S`tL
zkWDwn+p^#1WAdHLY@0y#jzrdjyeE_Ad{X8sU;Ua!{s;qofKtbViqN&u2+l3mn_VL<
znymXxmnx6Oc(!@g%aU6gl^~hEQl~PLkbY#$-AWY=-|J2)DTO(IBX&2wl!5+JOlyyp
zvf@ED%OgECoo^?Vmu}^2N9Ar6xpjr(1yY7z~_`8P-C+!ZJiMt58gezsS)##!j{~Z?Dbf=56+8+Z1jh
zd}mWC@+CN`Hm_S{3pqTpd)C`aAsB8j)XF{F+nylZ6h}9}e4JqLjbFe+{4i39rWe
zH~eqG^k4D6Mn?a{V-oxu|4W?oR}O!V5dMh=0OSb)fM4T