Skip to content
This repository was archived by the owner on Oct 18, 2020. It is now read-only.
This repository was archived by the owner on Oct 18, 2020. It is now read-only.

ValueError: ANN Visualizer: Layer not supported for visualizing #30

@juanpamm

Description

@juanpamm

Hello, I am trying to plot my model but it keeps throwing the exception
ValueError: ANN Visualizer: Layer not supported for visualizing

Here is my code:

from tensorflow import keras
from ann_visualizer.visualize import ann_viz

def add_layers_to_network(model, nodes, activation_func):
    if activation_func == 'relu':
        model.add(keras.layers.Dense(nodes, activation=tf.nn.relu))
    elif activation_func == 'sigmoid':
        model.add(keras.layers.Dense(nodes, activation=tf.nn.sigmoid))
    elif activation_func == 'tanh':
        model.add(keras.layers.Dense(nodes, activation=tf.nn.tanh))
    elif activation_func == 'elu':
        model.add(keras.layers.Dense(nodes, activation=tf.nn.elu))
    elif activation_func == 'softmax':
        model.add(keras.layers.Dense(nodes, activation=tf.nn.softmax))

def build_neural_network(nlayers, nodes, act_functions, output_act_func):
    model = keras.Sequential([
       keras.layers.Flatten(input_shape=(utils.width, utils.height))
 ])

# Construction of the hidden layers
for i in range(nlayers):
    add_layers_to_network(model, nodes[i], act_functions[i])

# Construction of the output layer
add_layers_to_network(model, len(utils.class_names), output_act_func)

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=epochs)

ann_viz(model, title="My first neural network")

Thanks in advance.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions