diff --git a/CreditTask4_NikitinKirill(3821B1PR2).ipynb b/CreditTask4_NikitinKirill(3821B1PR2).ipynb new file mode 100644 index 0000000..534816f --- /dev/null +++ b/CreditTask4_NikitinKirill(3821B1PR2).ipynb @@ -0,0 +1,377 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d0b94fa8", + "metadata": {}, + "source": [ + "# 4. Численное интегрирование. Светимость черного тела.\n", + "### Выполнил: Никитин Кирилл Юрьевич\n", + "### Группа: 3821Б1ПР2\n", + "\n", + "## Шаги выполнения работы:\n", + "1. Постройте для Солнца график зависимости $\\varphi(\\lambda, T)$ от $\\lambda$.\n", + "2. Вычислить светимость Солнца на видимой области длин волн.\n", + "3. Вычислить светимость Солнца для всех длин волн.\n", + "4. Найти светимость Солнца с помощью закона Стефана - Больцмана.\n", + "5. Найти солнечную постоянную.\n", + "6. Результаты сравнить с данными из литературы.\n", + "7. Сделать выводы." + ] + }, + { + "cell_type": "markdown", + "id": "8721a12e", + "metadata": {}, + "source": [ + "## 1. График:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "5a3705ed", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAAEQCAYAAAAzovj4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgtklEQVR4nO3deZDcZ33n8fe3u+e+pRlJI81Isg5rJEsWxoOMZWy8hg0Y2AQIJhCcLBt2vaQ4zOZgk9ra2koqKZKQIkntBhZjIHFgbYhNwEmIMSEGYywLS7Z8SPIh67BG50hzX30++0d3j8bySNPSdPfv9/R8XlVdPd3Tx3eg/NHze37P8/2Zcw4REZ9Fgi5ARGS+FGQi4j0FmYh4T0EmIt5TkImI9xRkIuK9kgWZmX3NzE6b2fMFvPYmM3vKzFJm9oEZz6/KPb/HzPaa2cdLVa+I+MtKtY7MzG4CxoB7nHOb53jtaqAZ+B3gQefc/bnnq3M1xs2sEXge2O6cO16SokXESyUbkTnnHgUGZj5nZmvN7CEz221mPzWzntxrDzvnngUy531GwjkXzz2sKWW9IuKvcgfDXcCnnHPXkh19fXGuN5hZt5k9CxwF/lSjMRE5X6xcX5Q7NNwO/L2Z5Z+umet9zrmjwNVmthz4rpnd75w7VbpKRcQ3ZQsysqO/IefcGy7nzc6547kTBzcC9xezMBHxW9kOLZ1zI8AhM7sNwLK2Xuw9ZtZlZnW5n9uAtwAvlrxYEfFKKZdf3AvsADaYWZ+ZfQz4CPAxM3sG2Av8Uu61bzKzPuA24Mtmtjf3MRuBnbnX/wT4c+fcc6WqWUT8VLLlFyIi5aLlDCLivZJM9re3t7vVq1eX4qNFZAHbvXv3Gedcx/nPlyTIVq9eza5du0rx0SKygJnZkdme16GliHhPQSYi3lOQiYj3FGQi4j0FmYh4T0EmIt5TkImI9yoyyB7ee5K+wYmgyxCRMqm4IDtweow7/m43t9+9k+GJZNDliEgZVFyQfXvXUWIR49jQJJ+89ynSGW2KF6l0FRVkiVSGB3b38faNS/nDX9rMT18+w5899ELQZYlIiVVUkP1o/ynOjif4lW3dfHjbSj68bSVffvQgx4Ymgy5NREqooCAzs/+Wu67k82Z2r5nVlrqwy3Hfk0fpbKnlpvXZzfEf3b4agMde7g+wKhEptTmDzMxWAJ8GenPXp4wCHyp1YZfq2NAkj77cz2293UQj2YubXLm0kSVNNfz05TMBVycipVTooWUMqDOzGFAPhO6SbN99+hgAt13bNf2cmXHj+g4eO3BGk/4iFWzOIHPOHQP+HHgVOAEMO+cePv91ZnaHme0ys139/eU/lNt3YoRVi+rpXlT/mudvXN/O0ESSvceHy16TiJRHIYeWbWQvEnIFsBxoMLPbz3+dc+4u51yvc663o+N1DRxLrm9g4nUhBnDDunYAHV6KVLBCDi3fDhxyzvU755LAd8heaDdUjg5O0tX2+iDraKphY2czP9WEv0jFKiTIXgXebGb1lr1E+NuA/aUt69KMx1MMjCfoXlQ36+9vWt/O7iODTCRSZa5MRMqhkDmynWSv7P0U8FzuPXeVuK5LcjS3r7J7lhEZwI3rO0imHTsPDpSzLBEpk4LOWjrn/pdzrsc5t9k592vOuXipC7sURweyC15nmyMD6F3dRk0sonkykQpVESv7jw7kR2SzH1rWVkW5uquFPUcHy1mWiJRJZQTZ4AT11VEWNVRf8DWbV7Sw78QIqXSmjJWJSDlURpANTNLdVk/2XMTstqxoYSqZ4eCZ8TJWJiLlUBFB1jc4ccEzlnlbVrQA8FyfFsaKVBrvg8w5x9GBiVnXkM20pqOR+uoozx1TkIlUGu+DbHAiyXgiTdcFJvrzohFjU2czzyvIRCqO90E2fcbyAksvZtq8ooW9x0e0gVykwvgfZHMshp1py4oWJpNpDvaPlbosESkj/4NsejHsxQ8tAbZ05Sb8dXgpUlG8D7K+wQla66toqq2a87VrOxqpq9KEv0il8T7Ijg5OFnRYCbkJ/+Wa8BepNN4HWbYP2dyHlXmblzez9/gIGU34i1QMr4Msk3H0XcKIDLJnLicSaa3wF6kgXgdZ/1icRDpDVwFLL/I2LW8G4IWTI6UqS0TKzOsgOzOW7SbU0XjhzeLnW7ekkWjEeOHEaKnKEpEy8zrIhieSALTWFx5kNbEoa9obeOGkgkykUngdZIPTQTb30ouZNixr4sVTOrQUqRSeB1kCgLZLGJEBbOxs5ujAJGNx9fAXqQReB9lQLsgueUS2tAmAF3V4KVIRPA+yJPXVUWpi0Ut634Zl2SDTmUuRyuB1kA1OJGmtu7TRGEBXWx2NNTGNyEQqhNdBNjSRuKQzlnlmxoZlTTpzKVIhvA6ywYkEbQ2XPiID6FnWxAsnRnBOW5VEfOd1kA1NJmmtu/QRGWSDbGQqxcmRqSJXJSLl5neQTSQv+Yxl3oZlua1KWuEv4j1vgyyTcQxNJC55DVneuTOXCjIR33kbZKNTKTLu0teQ5bXUVbG8pZYXtQRDxHveBtnQZH4x7OWNyACduRSpEN4GWX6fZdtljsggO0/2Sv8YyXSmWGWJSAA8DrL5j8h6ljWRTDsOqcmiiNe8DbLL3Wc505XacylSETwOsvyh5eWPyNYuaSAaMQWZiOe8DbLBiSRm2bOPl6smFuUKNVkU8Z63QTY0kaC5topoxOb1ORuWNfHSKQWZiM88DrLLX9U/U8/SJl4dmGBcTRZFvOVtkA1eZueL812ZW+H/8umxeX+WiATD2yAbmkjOaw1ZXs+y/JlLrfAX8ZW3QTY4kbisporn626rp64qqgl/EY95G2TDE8miHFpGIsaVSxs14S/isYKCzMxazex+M3vBzPab2fWlLuxikukMo/HUvNaQzbRhWZPWkol4rNAR2V8BDznneoCtwP7SlTS36cWwl9kd9nxXLm3izFhi+srlIuKXOYPMzFqAm4CvAjjnEs65oRLXdVH57UnzWQw7U0+uyeJLGpWJeKmQEdkVQD/wdTN72szuNrOG819kZneY2S4z29Xf31/0Qmcampz/9qSZ8k0W9yvIRLxUSJDFgDcCX3LOXQOMA793/oucc3c553qdc70dHR1FLvO1Bscv7wrjF9LRVEN7YzUvnNASDBEfFRJkfUCfc25n7vH9ZIMtMPk5smKs7M/b2NmsJRginpozyJxzJ4GjZrYh99TbgH0lrWoOg0Vo4XO+ntyey5SaLIp4J1bg6z4FfNPMqoGDwH8qXUlzG5pMEosYjTWFlj+3nmXNxFMZDp+dYN2SxqJ9roiUXkFJ4JzbA/SWtpTC5a8wbja/zhcz9XTmr6o0oiAT8YyXK/uL1flipnVLGolGjP2a8BfxjpdBNjqVorm2eIeVkG2yuLajQRfsFfGQn0EWT9FYW9wRGWTnyXTmUsQ/XgbZ2FSSpiJO9Of1dDZxbGiS4dyCWxHxg59BFk8V9Yxl3sbO7FYlbSAX8YufQTaVorHIc2QAG3N7Ll9Qk0URr3gXZOmMYzyRLsmIbGlzDa31VTpzKeIZ74JsPJG9SEhTCUZkZkbPsib26cyliFe8C7KxqWyQlWJEBtl5spdOjpLOuJJ8vogUn39BlrtsWynmyACuWt7CZDLNoTO6qpKIL7wLstESj8iuWp6d8N97XPNkIr7wLsjyI7JSzJFBdqtSdSzC88eGS/L5IlJ8/gXZ9Iis+Cv7AaqiEXqWNWlEJuIR/4Isnl11X6o5MsgeXu49PoJzmvAX8YF3QVbqOTLITvgPTyY5NjRZsu8QkeLxLsimz1qWNMiyE/7PH9PhpYgP/AuyqRT11VGikeI1VTxfz7JmIgb7jmvCX8QH/gVZiTaMz1RXHWXdkkZN+It4wrsgy/YiK22QQXaeTEEm4gfvgmxsqvQjMsjOk50cmeLMWLzk3yUi8+NfkJXh0BKyIzLQCn8RH/gXZGUakW2aPnOpCX+RsPMvyMo0R9ZSV8Wa9gaeOTpU8u8SkfnxLshGS9SvfzZXd7XwTN9QWb5LRC6fV0HmnCvbiAxga3crp0binByeKsv3icjl8SrIJpNpMq50G8bPt7W7FUCjMpGQ8yrIpjtflGlEtqmzmVjENE8mEnJeBdlovhdZmebIaqui9HQ2aUQmEnJeBVmp+/XPZmtXK8/2DZNRD3+R0PIryErcr382W7tbGZ1KcejseNm+U0QujZ9BVuYRGaB5MpEQ8yvIpkrbr38265Y0Ul8dVZCJhJhfQRbAiCwaMbasaOGZPm1VEgkrP4OsjCMygDd0t7Lv+AjxVLqs3ysihfEqyEanUlRHI9TEomX93mtWtpFIZ7SBXCSkvAqysXiy7KMxgN7VbQA8eXiw7N8tInPzK8jK1MLnfO2NNVzR3sAuBZlIKPkVZGVqqjib3lVt7D4yoGtdioRQwUFmZlEze9rM/qmUBV3M6FT5Ol+cr3d1G4MTSV7p18JYkbC5lBHZncD+UhVSiLF4qmz7LM/Xu3oRALsODwTy/SJyYQUFmZl1Ae8G7i5tORdXzl5k51vT3sCihmp2HdE8mUjYFDoi+0vgs0DmQi8wszvMbJeZ7erv7y9Gba8T1GQ/gJlx7ao2jchEQmjOIDOz9wCnnXO7L/Y659xdzrle51xvR0dH0QqcqVzXtLyQ3lVtHD47Qf+oLhEnEiaFjMhuAH7RzA4D9wG3mNk3SlrVLOKpNIlUJrA5Mjg3T7b7iEZlImEyZ5A5537fOdflnFsNfAj4N+fc7SWv7Dzj8ez2oKAOLQE2r2imJhbRwliRkPFmHdm5Ntfl6dc/m5pYlDeubOPxV84GVoOIvN4lBZlz7sfOufeUqpiLGY0ngWBHZAA3rFvM/hMjDIwnAq1DRM7xb0QWcJBdv7YdgB0alYmEhj9BFi9/U8XZbO1qobEmxuOvnAm0DhE5x7sgawh4RBaLRth2xSLNk4mEiDdBNhpAm+sL2b52MYfOjHN8aDLoUkQEj4JsPIA21xeyXfNkIqHiTZCNxVOYQX11ebvDzqZnWRNt9VX8TPNkIqHgTZCN5vZZmlnQpRCJGNevXcyOV86qP5lICHgTZEG28JnN9rXtnBieUn8ykRDwJ8gCbKo4m7demd0Y/+MXTwdciYj4E2TxVOBLL2bqXlTP+iWNPKIgEwmcV0EWhjOWM93Ss4SfHxqYXuMmIsHwKsjCsIZspps3LCGZdjz2ss5eigTJnyALsDvshfSubqOpNsYjL+jwUiRI/gRZPEVjTXAtfGZTFY1w0/oOHnnxtJZhiATIiyDLZFygFx65mJs3dHB6NM7e4yNBlyKyYHkRZBPJfHfY4Ff1n+/mDUsALcMQCZIXQXauF1m4Di0BOppq2NrdysP7TgVdisiC5UeQ5bvDhvDQEuDWzct4tm+YvsGJoEsRWZC8CLLpFj4hO2uZd+vmZQA89PzJgCsRWZi8CLL8gtOwjshWLW7gquXN/IuCTCQQfgRZSPr1X8y7tnSy+8ggJ4engi5FZMHxI8hC1FTxQs4dXp4IuBKRhUdBViRrOhrpWdbE93V4KVJ2fgTZVDguPDKXWzd38uThAU6P6PBSpJz8CLJ4ippYhOpYuMt999WdOAcPPnM86FJEFpRwJ0POaAg7X8xm3ZJGtna18MBTx4IuRWRB8SLIwtj54kLe/8Yu9p8YYZ/2XoqUjRdBNh7SDeOz+cWty6mKGg881Rd0KSILhhdBNhpP0VDtR5C1NVRzS88SvrfnGMl0JuhyRBYEL4JsbMqPObK8X35jF2fGEjz6Un/QpYgsCH4EWQj79V/MzRuWsKihmvt36/BSpBz8CTKPRmTVsQjvu2YFP9x3SmvKRMrAjyCbCl+b67nc/uZVpDKOe39+NOhSRCpe6IMsnkqTSGe8miMDuKK9gZuu7OCbO49o0l+kxEIfZOPxbJvrhurwtbmey3+8fhWnR+M8vFfdY0VKKfRBNt3Cp9avQ0vITvp3tdVxz47DQZciUtFCH2Sj+TbXHp21zItGjNvfvIqdhwZ44aRW+ouUSuiDLD8i822OLO9Xerupq4rylUcPBV2KSMUKf5B50IvsYtoaqvnQtm6+t+eYLk4iUiJzBpmZdZvZI2a2z8z2mtmd5SgsL+z9+gvxX25cgxl85dGDQZciUpEKGZGlgN92zm0C3gx8wsw2lbasc/JBFtYrKBVieWsd77tmBfc9eZT+0XjQ5YhUnDmDzDl3wjn3VO7nUWA/sKLUheX50h12Lh9/61oS6Qxf/5nmykSK7ZLmyMxsNXANsHOW391hZrvMbFd/f/E2S4/FU5hBvYfryGZa09HIuzZ3cs+OIwyMJ4IuR6SiFBxkZtYIPAB8xjn3urUEzrm7nHO9zrnejo6OohU4mmuqaGZF+8ygfObt65lIpPjrRw4EXYpIRSkoyMysimyIfdM5953SlvRaY/GU1/NjM61f2sQHru3i73Yc0RlMkSIq5KylAV8F9jvnvlD6kl7Lp+6whfjM26/EDL7ww5eCLkWkYhQyIrsB+DXgFjPbk7u9q8R1TfOtF9lclrfW8dHtq/mHp49ptb9IkRRy1vIx55w55652zr0hd/t+OYqD7ByZ72csz/ebN6+lubaKP3hwH865oMsR8V7oV/YPTyZpqfNvw/jFtNZX87vv2MCOg2d1DUyRIgh9kJ0di7O4oTroMoruw9tWcnVXC3/0z/sZmUoGXY6I10IdZMl0hpGpFIsaaoIupeiiEeOP3ruZM2Nx/kIT/yLzEuogG8wtHF3UWHkjMoCru1r5yHUr+dvHD/P0q4NBlyPirVAH2dl8kNVXZpABfPadPXS21PHb336GyUQ66HJEvBTqIMtv5VlUgXNkec21VXz+A1dz8Mw4f/rQC0GXI+IlL4JscYUeWuZtX9fOR7ev5m8eP8zPDpwJuhwR73gRZJU8Isv77+/sYU1HA5/51h5dC1PkEoU6yM6OJzCDtgqeI8urq47ypY9cy9hUik/+v6d1CTmRSxDqIBsYj9NaV0U04n/ni0JsWNbE596/hZ8fHuDzP3gx6HJEvBHqvT8D44kFcVg503uvWcHuI4Pc9ehBNnY28b5ruoIuSST0Qj0iOzuWYHEFLoady/98zyauX7OYz97/LE8cPBt0OSKhF+ogW4gjMoDqWIT/e/u1rFrcwB337OLA6dGgSxIJtfAHWYUvvbiQlvoqvv7RN1Edi/LrX/05RwfUiFHkQkIbZJmMY3AiUZEbxgvVvaiee35jG+OJNB/+yhMcG5oMuiSRUAptkA1NJsm4hbH04mI2LW/mGx+7juHJJL/6lSc4rjATeZ3QBtnAePb6j5W+qr8QW7pauOc3tjEwluCXv/Q4L5/SnJnITKENsrNjC2dVfyGuWdnGt/7r9aQyjtu+vIPdR9QtQyQvtEG2kLYnFWrT8mYe+Ph2Wuqq+NWvPMH39hwLuiSRUAhtkOVb+CzEdWQXs3JxPd/5ze1s7W7lzvv28Ll/2U86o77/srCFNsjyTRXbGiqrX38xLG6s4Rsfu46PXLeSL//kILffvZOTw9poLgtXaIPs7HiCppoYNbFo0KWEUnUswh+/bwt/9oGr2XN0iFv/6lH+dd+poMsSCURog2whL4a9FB/s7eafPv0WOlvq+M/37OK3vr2HoYlE0GWJlFW4g0wT/QVZ29HIP3xiO5+6ZR0P7jnO27/wKA8+c1zXzJQFI7RBdnZ8Ya/qv1Q1sSi//QsbePCTb6GzpZZP3/s0v/LlJ9h7fDjo0kRKLrRBNjAeX/Cr+i/HpuXNfPcTN/C592/hQP8Y7/nfj/Fb39qjvZpS0ULZj8w5pzmyeYhGjA9vW8m7NnfyxR8f4G8eP8w/Pnuc23q7+fhNa1m5uD7oEkWKKpQjstF4imTa6dBynlrqq/j9d23kJ7/77/hgbzf37+rj5j9/hDvve5rn+nTIKZUjlCOygentSVoMWwzLWmr54/dt4dNvW8/dPz3IN3e+yvf2HOfaVW38+vWreMdVy6it0jIX8Vcog+zcqn6NyIppaXMt/+Pdm/jU29Zz/64+/nbHYe68bw8tdVW89w3Led8bu9ja1YLZwrhGglSOUAaZ9lmWVnNtFb/xliv46PbV7Dh4lm89eZR7nzzK3+44wqrF9fyHq5fzzs3LuGp5s0JNvBDKIMufYVvaXBtwJZUtEjFuWNfODevaGZ5M8oPnT/K9Z47xxR8f4P88coAVrXW8feMSbu5ZwvVrFuvwU0IrlEG24+BZuhfVsaxFQVYuLXVVfPBN3XzwTd2cHYvzo/2n+cHek3xrV3akVhOL0Lu6jRvWtfPmNYvZsqKFqmgozxXJAhS6IEtnHE8cPMu7t3QGXcqCtbixZjrUppJpdh4a4Ccv9vP4K2f4s4ey19usrYpwTXcb165q45qVrWztbqW9USdnJBihC7Lnjw0zOpXi+rWLgy5FgNqqKG+9soO3XtkBwJmxOE8eGmDnoQF2HRngSz95ZbqNUGdLLZtXtLCxs5lNnU30LGume1H9grnAsgQndEH2s1fOALB9bXvAlchs2htruHVLJ7fmRsyTiTTPHRvm2b4hnj82zHPHhvnR/lPkW6TVxCKsW9LI2o7sbU1HA6sXN7CqvZ7mWrVokuIIXZA9fuAsG5Y20dGkwxQf1FVH2XbFIrZdsWj6uclEmpdOjfLiyVFeOjXKS6fHeOrVQf7x2ePM3MfeWl/FykX1dLfVs6KtjuUttSxvrWN5ax1Lm2tZ3FBNRKM5KUCogiyeSvPk4QF+9bqVQZci81BXHWVrd3bebKbJRJrDZ8c5cnaCw2fHeXVggqMDE+w/McK/7j9FPJV5zetjEWNJUw1LmmvpaKqho6mG9sYa2hurWdxQQ1tD1fR9W321Tj4sYKEKsqeODBFPZbhBh5UVqa46ysbOZjZ2Nr/ud845zowlODE8yYnhKU4MTXJ6NM7JkSn6R+McHZjgqSODDEwkuFB3oqaaGC31VbTUvfbWXFdFU02MptoYTbVVNNbGaKzJ3hpqYjTURGmoiVFfFSWmMPRSQUFmZu8E/gqIAnc75/6kFMU8/soZohHjujWL5n6xVBQzmx51Xd114del0hkGJ5KcHY8zMJbg7HiCoYkEgxNJBsYTjEwmGZxIMDKV4sDpMYYnk4xOpZhMpguqozoWoaE6Sn11jLrqKHVV0en72qpI7j57q6mKUBt77X11NEJNVTR7H4tQnb9FX/tzVTRCVdSoyj2ORYxoxLQA+TLNGWRmFgX+Gvj3QB/wpJk96JzbV6wiMhnH88eHeXjvKbasaKFJk8ByAbFoZDrwLkUilWEsnmJsKsXIVJLxeIrxRIrRqRQTiXT2cTzNRCL7eCKRZjKZYjKRZjKZZmgiwVQyw0QyxVQyw1QyTTyZIZHOzP3lBTKDqkiEWNSIRYyqaP7nbOhFc89FI0ZsRvidf3/uFiFqZO8jM+7NiESMqGVfl/85Ypz7OWJEzIhGIGKWuzH9/PRjMyx3H4nkH5/7XcSy/0gZ516Tf7y0uXbW0fnlKGREtg044Jw7mP0f2+4DfgkoSpDds+Mwf/HDlxicSALwufdvKcbHirxGdSzColh10be9ZTKORDobbIlUhqlkhkQ6TTyVIZ7KkMjdkuncz+kMybSbfi6Zzj6XSrvcY0cqnSGVyT5OpR3JTPY+lcmQzrjcc45Mxk1/xmQy+3w6k7u57O9TmXPPpTKOjMv+nMm9Jj3zuTI3FH7vG5bzlx+6piifVUiQrQCOznjcB1x3/ovM7A7gDoCVKwufrF/aXMstPUu5cX12q4zOVopPIhGjNhKtmO1b+YDLOEcmQzbkcqHoHNO/cy67eN3l3jP9XO7e5d6Xfx0w4/fZ0CzmPypFm+x3zt0F3AXQ29tbcLa/46plvOOqZcUqQ0TmIRIxIvg3T1fIKZpjQPeMx12550REQqGQIHsSWG9mV5hZNfAh4MHSliUiUrg5Dy2dcykz+yTwA7LLL77mnNtb8spERApU0ByZc+77wPdLXIuIyGXRMmYR8Z6CTES8pyATEe8pyETEe+Yu1EpgPh9q1g8cucCv24EzRf/S4OjvCa9K+ltAfw/AKudcx/lPliTILsbMdjnnesv6pSWkvye8KulvAf09F6NDSxHxnoJMRLwXRJDdFcB3lpL+nvCqpL8F9PdcUNnnyEREik2HliLiPQWZiHivrEFmZu80sxfN7ICZ/V45v7vYzOxrZnbazJ4Pupb5MrNuM3vEzPaZ2V4zuzPomubDzGrN7Odm9kzu7/mDoGuaLzOLmtnTZvZPQddSDGZ22MyeM7M9ZrZr3p9Xrjmy3EVMXmLGRUyADxfzIiblZGY3AWPAPc65zUHXMx9m1gl0OueeMrMmYDfwXo//vzGgwTk3ZmZVwGPAnc65JwIu7bKZ2W8BvUCzc+49QdczX2Z2GOh1zhVlgW85R2TTFzFxziWA/EVMvOScexQYCLqOYnDOnXDOPZX7eRTYT/ZaDV5yWWO5h1W5m7dntcysC3g3cHfQtYRVOYNstouYePsfS6Uys9XANcDOgEuZl9yh2B7gNPBD55zPf89fAp8FinftueA54GEz2527cNG8aLJfpplZI/AA8Bnn3EjQ9cyHcy7tnHsD2WtMbDMzLw//zew9wGnn3O6gaymytzjn3gjcCnwiN1Vz2coZZLqISYjl5pIeAL7pnPtO0PUUi3NuCHgEeGfApVyuG4BfzM0p3QfcYmbfCLak+XPOHcvdnwb+gezU02UrZ5DpIiYhlZsc/yqw3zn3haDrmS8z6zCz1tzPdWRPML0QaFGXyTn3+865LufcarL/zfybc+72gMuaFzNryJ1UwswagF8A5nX2v2xB5pxLAfmLmOwHvu3zRUzM7F5gB7DBzPrM7GNB1zQPNwC/RvZf+z2527uCLmoeOoFHzOxZsv+A/tA5VxHLFirEUuAxM3sG+Dnwz865h+bzgdqiJCLe02S/iHhPQSYi3lOQiYj3FGQi4j0FmYjMS7EbKJjZSjN72Mz25xoZrJ7rPQoyEZmvv6G4C47vAT7vnNtIdqHs6bneoCATkXmZrYGCma01s4dyeyl/amY9hXyWmW0CYs65H+Y+e8w5NzHX+xRkIlIKdwGfcs5dC/wO8MUC33clMGRm38n1X/t8rgXYRcXmUaiIyOvkmg9sB/4+u/sNgJrc794P/OEsbzvmnHsH2Uy6kWwHlleBbwEfJbuF7oIUZCJSbBFgKNd95DVyDQku1pSgD9jjnDsIYGbfBd7MHEGmQ0sRKapcC6hDZnYbZJsSmNnWAt/+JNBqZh25x7cAc3YqVpCJyLxcoIHCR4CP5TaG76XAbtDOuTTZObUfmdlzgAFfmbMGbRoXEd9pRCYi3lOQiYj3FGQi4j0FmYh4T0EmIt5TkImI9xRkIuK9/w/+uEgeRb2IVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy import integrate\n", + "plt.figure(figsize = (5,4))\n", + "T = 5778\n", + "c = 2.9979*10**8\n", + "h = 6.6261*10**-34\n", + "k = 1.3806*10**-23\n", + "x = np.linspace(1*10**-7,50*10**-7,100)\n", + "y = (2*np.pi*h*c**2)/(x**5*(np.e**((h*c)/(x*k*T)) - 1))\n", + "plt.plot (x,y)\n", + "pass" + ] + }, + { + "cell_type": "markdown", + "id": "1d382cfa", + "metadata": {}, + "source": [ + "## 2. Светимость Солнца на видимой области длин волн:\n", + "\n", + "Для определения энергии, излучаемой телом в определенном диапазоне частот\n", + "$\\lambda_1$, $\\lambda_2$, необходимо найти следующий интеграл:\n", + "$$\n", + "R(\\lambda_1,\\lambda_2,T) = \\int_{\\lambda_1}^{\\lambda_2} \\varphi(\\lambda, T) d\\lambda.\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "a2ce09cc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26456374.429090716" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a = 3.5 * (10**(-7))\n", + "b = 7 * (10**(-7))\n", + "n = 100\n", + "h1 = (b - a)/n\n", + "x = np.arange(a + h1/2, b, h1)\n", + "y = (2*np.pi*h*c**2)/((x**5)*((np.e**((h*c)/(x*k*T))-1)))\n", + "\n", + "# Правило прямоугольника\n", + "I_rect = h1*sum(y)\n", + "I_rect" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "d235a663", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26239134.004388973" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Правило трапеции\n", + "I_trapz = integrate.trapz(y, x)\n", + "I_trapz" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "1941d231", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26239611.853874616" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Правило Симпсона\n", + "I_simps = integrate.simps(y, x)\n", + "I_simps" + ] + }, + { + "cell_type": "markdown", + "id": "e633efdd", + "metadata": {}, + "source": [ + "## 3. Вычислить светимость Солнца для всех длин волн: от $0$ до $\\infty$ (через несобственный интеграл):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "7b50af98", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\User\\AppData\\Local\\Temp\\ipykernel_1252\\3159490195.py:5: IntegrationWarning: The algorithm does not converge. Roundoff error is detected\n", + " in the extrapolation table. It is assumed that the requested tolerance\n", + " cannot be achieved, and that the returned result (if full_output = 1) is \n", + " the best which can be obtained.\n", + " noncI, abserr = integrate.quad(integrand, 0, np.inf)\n" + ] + }, + { + "data": { + "text/plain": [ + "62936791.375977434" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import scipy\n", + "def integrand (x):\n", + " return (2*np.pi*h*c**2)/(x**5*(np.e**((h*c)/(x*k*T)) - 1))\n", + "\n", + "noncI, abserr = integrate.quad(integrand, 0, np.inf)\n", + "noncI" + ] + }, + { + "cell_type": "markdown", + "id": "e816e0a6", + "metadata": {}, + "source": [ + "#### *Светимость Солнца для всех длин волн от $0$ до $\\infty$ равна:*" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "ed7e3f0f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.827881358837831e+26" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sunR = 6.957 * 10**8 # Радиус Солнца\n", + "L1 = noncI * 4 * np.pi * sunR**2\n", + "L1" + ] + }, + { + "cell_type": "markdown", + "id": "f2bdfd23", + "metadata": {}, + "source": [ + "## 4. Нахождение светимости Солнца с помощью закона Стефана - Больцмана:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "5656cbe9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.843397958410175e+26" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Радиус Солнца инициализирован выше, как \"sunR\"\n", + "sbConst = (2*(np.pi**5)*(k**4))/(15*(c**2)*(h**3)) # Константа Стефана-Больцмана (Вт·м^−2·К^−4)\n", + "R = sbConst * T**4 #(Вт/м^2)\n", + "L2 = R*4*np.pi*sunR**2 #(Вт)\n", + "L2" + ] + }, + { + "cell_type": "markdown", + "id": "849f3d72", + "metadata": {}, + "source": [ + "## 5. Нахождение солнечной постоянной:" + ] + }, + { + "cell_type": "markdown", + "id": "00abf5ab", + "metadata": {}, + "source": [ + "*Cолнечная постоянная* - мощность солнечного излучения, падающего перпендикулярно на единичную площадку на высоте верхней границы атмосферы Земли" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "fa6d05cd", + "metadata": {}, + "outputs": [], + "source": [ + "S = 149.6 * 10**9 # Расстояние от Солнца до Земли (в метрах)\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d63c1ac", + "metadata": {}, + "source": [ + "#### *Cолнечная постоянная равна :*" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b449b550", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1366.6027931665326" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "E = L2/(4*np.pi*S**2) #(Вт/м^2)\n", + "E" + ] + }, + { + "cell_type": "markdown", + "id": "40106868", + "metadata": {}, + "source": [ + "## 6. Сравнение результатов с данными из литературы:" + ] + }, + { + "cell_type": "markdown", + "id": "de26178e", + "metadata": {}, + "source": [ + "### *Данные из литературы (википедии) :*\n", + "#### *Солнечная светимость:* $L☉ = 3,827⋅10^{26}(Вт) $\n", + "#### *Солнечная постоянная:* $E = 1367 (Вт/м^{2})$\n", + "\n", + "### *Данные, полученные в ходе решения (+сравнение данных):*\n", + "#### *1. Cветимость Солнца на видимой области длин волн:* $L☉ = 26239611.8538 (Вт)$\n", + "#### *2. Cветимость Солнца для всех длин волн:* $L☉ = 3,827⋅10^{26}(Вт) $\n", + "#### *3. Cветимость Солнца с помощью несобственного интеграла:* $L☉ = 3,827⋅10^{26}(Вт)$\n", + "#### *4. Cветимость Солнца с помощью закона Стефана - Больцмана:* $L☉ = 3,843⋅10^{26}(Вт)$\n", + "#### *5. Солнечная постоянная:* $E = 1366.6027931665326 (Вт/м^{2})$" + ] + }, + { + "cell_type": "markdown", + "id": "93215436", + "metadata": {}, + "source": [ + "## 7. Вывод:\n", + "#### *1. С учётом погрешности полученные результаты совпадают с данными из литературы.*\n", + "#### *2. Во втором пункте (нахождение светимость Солнца на видимой области длин волн) способы трапеции и Симпсона дают более точный результат, нежели способ прямоугольника.*\n", + "#### *3. Вычисление солнечной постоянной с помощью несобственного интеграла дали более точный результат, чем способ с приминением закона Стефана - Больцмана.*" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}