Skip to content

How to make multiclass classification using exercise two ? #24

@maxihidara

Description

@maxihidara

Hi, i am getting confuse, when i try to make multiclass classification using exercise two. How to make multiclass classification using binary classifier. Can i just add class, and feature_matrix in this code ?

def train_classifier(feature_matrix_0, feature_matrix_1, algorithm='SVM'):
"""Train a binary classifier.

Train a binary classifier. First perform Z-score normalization, then
fit

Args:
    feature_matrix_0 (numpy.ndarray): array of shape (n_samples,
        n_features) with examples for Class 0
    feature_matrix_0 (numpy.ndarray): array of shape (n_samples,
        n_features) with examples for Class 1
    alg (str): Type of classifer to use. Currently only SVM is
        supported.

Returns:
    (sklearn object): trained classifier (scikit object)
    (numpy.ndarray): normalization mean
    (numpy.ndarray): normalization standard deviation
"""
# Create vector Y (class labels)
class0 = np.zeros((feature_matrix_0.shape[0], 1))
class1 = np.ones((feature_matrix_1.shape[0], 1))

# Concatenate feature matrices and their respective labels
y = np.concatenate((class0, class1), axis=0)
features_all = np.concatenate((feature_matrix_0, feature_matrix_1),
                              axis=0)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions