Skip to content

Bad results of generating images of KITTI dataset #10

@withbrightmoon

Description

@withbrightmoon

Hi @akshaychawla. Thanks for the code.

I tried to generate images of KITTI dataset with yolov3 model but got bad results. I used my own yolov3 pretrained model / cfg file and KITTI dataset. From the 'losses.log' file I found the parameter 'unweighted/loss_r_feature' was 1083850.375. After changing the parameter 'self.bn_reg_scale' to 0.00001, the results are also bad.

I am not sure if there is a problem with my use of the code and also confused about why the parameter 'unweighted/loss_r_feature' is so big. Could you give me some guidance?

Best,
Xiu

1.Results of 2500 iteration:
image

2.losses.log of 1/2500 iteration:
ITERATION: 1
weighted/total_loss 108692.2578125
weighted/task_loss 174.9200897216797
weighted/prior_loss_var_l1 117.44781494140625
weighted/prior_loss_var_l2 0.0
weighted/loss_r_feature 108385.0390625
weighted/loss_r_feature_first 14.853784561157227
unweighted/task_loss 349.8401794433594
unweighted/prior_loss_var_l1 1.5659708976745605
unweighted/prior_loss_var_l2 6894.822265625
unweighted/loss_r_feature 1083850.375
unweighted/loss_r_feature_first 7.426892280578613
unweighted/inputs_norm 12.4415922164917
learning_Rate 0.1999999210431752
ITERATION: 2500
weighted/total_loss 58120.15625
weighted/task_loss 101.14430236816406
weighted/prior_loss_var_l1 77.38021850585938
weighted/prior_loss_var_l2 0.0
weighted/loss_r_feature 57935.38671875
weighted/loss_r_feature_first 6.245403289794922
unweighted/task_loss 202.28860473632812
unweighted/prior_loss_var_l1 1.0317362546920776
unweighted/prior_loss_var_l2 4149.73193359375
unweighted/loss_r_feature 579353.875
unweighted/loss_r_feature_first 3.122701644897461
unweighted/inputs_norm 13.469326972961426
learning_Rate 0.0
Verifier InvImage mPrec: 0.005173 mRec: 0.001166 mAP: 0.0006404 mF1: 0.001902
Teacher InvImage mPrec: 0.005173 mRec: 0.001166 mAP: 0.0006404 mF1: 0.001902
Verifier GeneratedImage mPrec: 0.005173 mRec: 0.001166 mAP: 0.0006404 mF1: 0.001902

  1. r_feature of different bn layers
    tensor(7.42703, device='cuda:0', grad_fn=)
    tensor(12243.45508, device='cuda:0', grad_fn=)
    tensor(696.13055, device='cuda:0', grad_fn=)
    tensor(3364.34961, device='cuda:0', grad_fn=)
    tensor(23411.76953, device='cuda:0', grad_fn=)
    tensor(1157.99390, device='cuda:0', grad_fn=)
    tensor(10253.75781, device='cuda:0', grad_fn=)
    tensor(805.68719, device='cuda:0', grad_fn=)
    tensor(2327.99268, device='cuda:0', grad_fn=)
    tensor(28308.19727, device='cuda:0', grad_fn=)
    tensor(875.56348, device='cuda:0', grad_fn=)
    tensor(2283.58887, device='cuda:0', grad_fn=)
    tensor(986.32434, device='cuda:0', grad_fn=)
    tensor(16160.01953, device='cuda:0', grad_fn=)
    tensor(1146.45435, device='cuda:0', grad_fn=)
    tensor(2227.72607, device='cuda:0', grad_fn=)
    tensor(891.68048, device='cuda:0', grad_fn=)
    tensor(1558.72815, device='cuda:0', grad_fn=)
    tensor(976.82690, device='cuda:0', grad_fn=)
    tensor(1683.61230, device='cuda:0', grad_fn=)
    tensor(942.91931, device='cuda:0', grad_fn=)
    tensor(770.93372, device='cuda:0', grad_fn=)
    tensor(981.38751, device='cuda:0', grad_fn=)
    tensor(775.02832, device='cuda:0', grad_fn=)
    tensor(875.90454, device='cuda:0', grad_fn=)
    tensor(673.36096, device='cuda:0', grad_fn=)
    tensor(24172.25781, device='cuda:0', grad_fn=)
    tensor(773.39252, device='cuda:0', grad_fn=)
    tensor(23998.14844, device='cuda:0', grad_fn=)
    tensor(705.16992, device='cuda:0', grad_fn=)
    tensor(7424.77148, device='cuda:0', grad_fn=)
    tensor(928.11621, device='cuda:0', grad_fn=)
    tensor(3338.66113, device='cuda:0', grad_fn=)
    tensor(896.17908, device='cuda:0', grad_fn=)
    tensor(2490.50635, device='cuda:0', grad_fn=)
    tensor(788.92633, device='cuda:0', grad_fn=)
    tensor(2501.64746, device='cuda:0', grad_fn=)
    tensor(872.77161, device='cuda:0', grad_fn=)
    tensor(1576.98535, device='cuda:0', grad_fn=)
    tensor(738.18060, device='cuda:0', grad_fn=)
    tensor(1244.70312, device='cuda:0', grad_fn=)
    tensor(763.75208, device='cuda:0', grad_fn=)
    tensor(787.21594, device='cuda:0', grad_fn=)
    tensor(20193.73828, device='cuda:0', grad_fn=)
    tensor(1710.63989, device='cuda:0', grad_fn=)
    tensor(266827.34375, device='cuda:0', grad_fn=)
    tensor(2827.42188, device='cuda:0', grad_fn=)
    tensor(93085.09375, device='cuda:0', grad_fn=)
    tensor(3639.37866, device='cuda:0', grad_fn=)
    tensor(92241.87500, device='cuda:0', grad_fn=)
    tensor(4282.84180, device='cuda:0', grad_fn=)
    tensor(408516.68750, device='cuda:0', grad_fn=)

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions