-
Notifications
You must be signed in to change notification settings - Fork 157
Open
Labels
Milestone
Description
The model training loss is suddenly dropping to 0 after over 1000 steps. I've tried iterating over different dataset as well but got the same behaviour.
Details
I am following the notebook Transformers4Rec/examples/tutorial, to train a next item click prediction model for my own dataset on sequence of items.
Params which I've changed are: learning_rate=0.01, fp16=True, per_device_train_batch_size = 64, d_model=16, rest are as in the notebook. Following are the logs for 1st day of data.
{'loss': 14.3249, 'learning_rate': 0.009976389135451803, 'epoch': 0.01}
{'loss': 14.083, 'learning_rate': 0.009964554115628145, 'epoch': 0.01}
{'loss': 13.9319, 'learning_rate': 0.009953074146399196, 'epoch': 0.01}
{'loss': 13.8982, 'learning_rate': 0.009947452511982957, 'epoch': 0.02}
{'loss': 12.6002, 'learning_rate': 0.009938812947511687, 'epoch': 0.02}
{'loss': 0.0, 'learning_rate': 0.009926977927688029, 'epoch': 0.02}
{'loss': 0.0, 'learning_rate': 0.00991514290786437, 'epoch': 0.03}
{'loss': 0.0, 'learning_rate': 0.009903307888040712, 'epoch': 0.03}
{'loss': 0.0, 'learning_rate': 0.009891472868217054, 'epoch': 0.04}
{'loss': 0.0, 'learning_rate': 0.009879637848393396, 'epoch': 0.04}
{'loss': 0.0, 'learning_rate': 0.009867802828569739, 'epoch': 0.04}
{'loss': 0.0, 'learning_rate': 0.00985596780874608, 'epoch': 0.05}
{'loss': 0.0, 'learning_rate': 0.009844132788922422, 'epoch': 0.05}
{'loss': 0.0, 'learning_rate': 0.009832297769098764, 'epoch': 0.05}
{'loss': 0.0, 'learning_rate': 0.009820462749275106, 'epoch': 0.06}
{'loss': 0.0, 'learning_rate': 0.009808627729451447, 'epoch': 0.06}
{'loss': 0.0, 'learning_rate': 0.00979679270962779, 'epoch': 0.06}
{'loss': 0.0, 'learning_rate': 0.00978495768980413, 'epoch': 0.07}
{'loss': 0.0, 'learning_rate': 0.009773122669980473, 'epoch': 0.07}
{'loss': 0.0, 'learning_rate': 0.009761287650156814, 'epoch': 0.07}
{'loss': 0.0, 'learning_rate': 0.009749452630333156, 'epoch': 0.08}
{'loss': 0.0, 'learning_rate': 0.009737617610509498, 'epoch': 0.08}
{'loss': 0.0, 'learning_rate': 0.00972578259068584, 'epoch': 0.09}
{'loss': 0.0, 'learning_rate': 0.009713947570862181, 'epoch': 0.09}
{'loss': 0.0, 'learning_rate': 0.009702112551038523, 'epoch': 0.09}
{'loss': 0.0, 'learning_rate': 0.009690277531214864, 'epoch': 0.1}
{'loss': 0.0, 'learning_rate': 0.009678442511391206, 'epoch': 0.1}
{'loss': 0.0, 'learning_rate': 0.009666607491567548, 'epoch': 0.1}
{'loss': 0.0, 'learning_rate': 0.00965477247174389, 'epoch': 0.11}
{'loss': 0.0, 'learning_rate': 0.009642937451920231, 'epoch': 0.11}```
Additionally, I am using merlin container nvcr.io/nvidia/merlin/merlin-pytorch-training:22.05 for training.
Any suggestions on what might be the issue here?