From 4e70fbe95cb7a00fa52f64d15a3800a8896a402a Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Tue, 9 Sep 2025 20:10:00 -0700 Subject: [PATCH 01/29] Minor format change --- flystar/tests/test_startable.py | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 9962c05..cf3be71 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -554,9 +554,15 @@ def make_star_table(): starlist_names = np.array(['file1', 'file2', 'file3', 'file4', 'file5', 'file6', 'file7', 'file8']) # Generate the startable - startable = StarTable(name=name_in, x=x_in, y=y_in, m=m_in, xe=xe_in, ye=ye_in, me=me_in, n=n_in, - ref_list=1, - list_times=starlist_times, list_names=starlist_names) + startable = StarTable( + name=name_in, + x=x_in, y=y_in, m=m_in, + xe=xe_in, ye=ye_in, me=me_in, + n=n_in, + ref_list=1, + list_times=starlist_times, + list_names=starlist_names + ) return startable From 243b56f675d0757623861ec4d270b311691153a9 Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Wed, 17 Sep 2025 00:00:27 -0700 Subject: [PATCH 02/29] Remove 2-epoch linear fitting as scipy/matrix already handles it; Fixed absolute sigma in Linear model --- flystar/motion_model.py | 117 ++++++++++++++++++++-------------------- 1 file changed, 59 insertions(+), 58 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index ebf4c46..39e2573 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -3,7 +3,7 @@ import pdb from flystar import parallax from astropy.time import Time -from scipy.optimize import curve_fit +from scipy.optimize import curve_fit, OptimizeWarning import warnings class MotionModel(ABC): @@ -207,64 +207,65 @@ def run_fit(self, t, x, y, xe, ye, t0, weighting='var', params_guess=None, if params_guess is None: params_guess = [x.mean(),0.0,y.mean(),0.0] - # Handle 2-data point case - if len(np.unique(dt))==2: - if len(x)>2: # Catch case where bootstrap sends only 2 unique epochs - _,idx=np.unique(dt, return_index=True) - dt = dt[idx] - x = x[idx] - y = y[idx] - xe = xe[idx] - ye = ye[idx] - dx = np.diff(x)[0] - dy = np.diff(y)[0] - dt_diff = np.diff(dt)[0] - vx = dx / dt_diff - vy = dy / dt_diff - # TODO: still not sure about the error handling here - x0 = x[0] - dt[0]*vx # np.average(x, weights=x_wt) # - y0 = y[0] - dt[0]*vy # np.average(y, weights=y_wt) # - x0e = np.abs(dx) / 2**0.5 # np.sqrt(np.sum(xe**2)/2) # - y0e = np.abs(dy) / 2**0.5 # np.sqrt(np.sum(ye**2)/2) # - vxe = 0.0 #np.abs(vx) * np.sqrt(np.sum(xe**2/x**2)) - vye = 0.0 #np.abs(vy) * np.sqrt(np.sum(ye**2/y**2)) - + if use_scipy: + def linear(t, c0, c1): + return c0 + c1*t + x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) + x0, vx = x_opt + y0, vy = y_opt + x0e, vxe = np.sqrt(x_cov.diagonal()) + y0e, vye = np.sqrt(y_cov.diagonal()) + x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) else: - if use_scipy: - def linear(t, c0, c1): - return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) - x0, vx = x_opt - y0, vy = y_opt - x0e, vxe = np.sqrt(x_cov.diagonal()) - y0e, vye = np.sqrt(y_cov.diagonal()) - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) - else: - # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme - x = np.array(x) - y = np.array(y) - dt = np.array(dt) - X_mat_t = np.vander(dt, 2) - # x calculation - W_mat_x = np.diag(x_wt) - XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t - pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix - popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution - perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution - # y calculation - W_mat_y = np.diag(y_wt) - XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t - pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix - popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution - perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution - # prepare values to return - x0, vx = popt_x[1], popt_x[0] - y0, vy = popt_y[1], popt_y[0] - x0e, vxe = perr_x[1], perr_x[0] - y0e, vye = perr_y[1], perr_y[0] - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) - + # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme + x = np.array(x) + y = np.array(y) + dt = np.array(dt) + X_mat_t = np.vander(dt, 2) + # x calculation + W_mat_x = np.diag(x_wt) + XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t + pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix + popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution + perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution + # y calculation + W_mat_y = np.diag(y_wt) + XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t + pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix + popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution + perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution + # prepare values to return + vx, x0 = popt_x + vy, y0 = popt_y + vxe, x0e = perr_x + vye, y0e = perr_y + x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) + + residual_x = x - X_mat_t @ popt_x + residual_y = y - X_mat_t @ popt_y + + chi2_x = residual_x.T @ W_mat_x @ residual_x + chi2_y = residual_y.T @ W_mat_y @ residual_y + + if not absolute_sigma: + degree_of_freedom = len(x) - 2 + if degree_of_freedom > 0: + reduced_chi2_x = chi2_x/(len(x) - 2) + reduced_chi2_y = chi2_y/(len(x) - 2) + x0e *= reduced_chi2_x**0.5 + y0e *= reduced_chi2_y**0.5 + vxe *= reduced_chi2_x**0.5 + vye *= reduced_chi2_y**0.5 + else: + warnings.warn( + "Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to infinity.", + OptimizeWarning, stacklevel=2 + ) + x0e *= np.inf + y0e *= np.inf + vxe *= np.inf + vye *= np.inf params = [x0, vx, y0, vy] param_errors = [x0e, vxe, y0e, vye] return params, param_errors From 138546437d9a8adf352d15b7e2f4800c181c0c6c Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Wed, 17 Sep 2025 00:13:30 -0700 Subject: [PATCH 03/29] Add testing function for both absolute_sigma True and False --- flystar/tests/test_motion_model.py | 219 +++++++++++++++++++++++++++++ 1 file changed, 219 insertions(+) diff --git a/flystar/tests/test_motion_model.py b/flystar/tests/test_motion_model.py index a5d8fdb..2fa1b57 100755 --- a/flystar/tests/test_motion_model.py +++ b/flystar/tests/test_motion_model.py @@ -1,6 +1,8 @@ from flystar import motion_model import numpy as np import pytest +import matplotlib.pyplot as plt +from scipy.optimize import curve_fit def within_error(true_val, fit_val, fit_err, n_sigma=3): #print('True', true_val, 'Fit', fit_val, 'Fit err', fit_err) @@ -278,3 +280,220 @@ def test_Parallax_PA(): dat_pa90 = mod_pa90.get_pos_at_time([y0,vy,-x0,-vx,pi],[2020.0],t_set) assert (np.abs(dat_pa0[0]-(-dat_pa90[1]))<1e-10).all() assert (np.abs(dat_pa0[1]-(dat_pa90[0]))<1e-10).all() + + +def test_Linear_fit_vs_scipy(): + # Compare Linear fit results to scipy curve_fit results + t = np.array([0, 1., 2.2, 3.5, 5.]) + + x = np.array([ + [0., 0.5, 2.1, 3.2, 6.0], # Increasing 5 Epochs + [10.0, 8.9, 9.2, 7.4, 7.0], # Decreasing 5 Epochs + [2.5, np.nan, 5.2, np.nan, 5.0], # 3 Epochs + [np.nan, 6.2, np.nan, np.nan, 9.2], # 2 Epochs + # [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch + # [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs + ]) + + y = np.array([ + [10.2, 8.5, 9.1, 12.2, 13.0], # Increasing 5 Epochs + [8.0, 9.9, 8.2, 7.4, 7.0], # Decreasing 5 Epochs + [5.2, np.nan, 4.7, np.nan, 6.0], # 3 Epochs + [np.nan, 1.2, np.nan, np.nan, 3.2], # 2 Epochs + # [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch + # [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs + ]) + + xe = np.array([ + [0.2, 0.5, 0.3, 0.4, 0.6], + [0.5, 0.2, 0.7, 0.3, 0.2], + [0.5, np.nan, 0.6, np.nan, 0.3], + [np.nan, 0.6, np.nan, np.nan, 0.3], + # [np.nan, 0.4, np.nan, np.nan, np.nan], + # [np.nan, np.nan, np.nan, np.nan, np.nan] + ]) + + ye = np.array([ + [0.3, 0.2, 0.5, 0.2, 0.4], + [0.2, 0.5, 0.6, 0.4, 0.2], + [0.7, np.nan, 0.5, np.nan, 0.2], + [np.nan, 0.4, np.nan, np.nan, 0.5], + # [np.nan, 0.5, np.nan, np.nan, np.nan], + # [np.nan, np.nan, np.nan, np.nan, np.nan] + ]) + + x = np.ma.masked_invalid(x) + y = np.ma.masked_invalid(y) + xe = np.ma.masked_invalid(xe) + ye = np.ma.masked_invalid(ye) + mask = np.ma.getmaskarray(x) | np.ma.getmaskarray(y) | np.ma.getmaskarray(xe) | np.ma.getmaskarray(ye) + + # tab = StarTable({ + # 'x': x, + # 'y': y, + # 'xe': xe, + # 'ye': ye + # }) + # tab.meta['LIST_TIMES'] = t + # tab.fit_velocities(use_scipy=True, absolute_sigma=True) + + # Plot data + N = x.shape[0] + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) + for i in range(N): + line_mask = ~np.isnan(x[i]) & ~mask[i] + ax1.errorbar(t[line_mask], x[i][line_mask], yerr=xe[i][line_mask], fmt='o-', label=f'Line {i}') + ax2.errorbar(t[line_mask], y[i][line_mask], yerr=ye[i][line_mask], fmt='o-', label=f'Line {i}') + ax1.set_xlabel('Time') + ax1.set_ylabel('Position') + ax1.legend() + ax1.set_title('X vs Time') + ax2.set_xlabel('Time') + ax2.set_ylabel('Position') + ax2.legend() + ax2.set_title('Y vs Time') + plt.show() + + N = len(x) + t0 = np.average(np.broadcast_to(t, x.shape), weights=1./np.hypot(xe, ye), axis=1) + dt = np.zeros_like(x) + + # velfit + # vx_velfit = np.zeros(N) + # vxe_velfit = np.zeros(N) + # vy_velfit = np.zeros(N) + # vye_velfit = np.zeros(N) + # x0_velfit = np.zeros(N) + # x0e_velfit = np.zeros(N) + # y0_velfit = np.zeros(N) + # y0e_velfit = np.zeros(N) + + # scipy + vx_scipy = np.zeros(N) + vxe_scipy = np.zeros(N) + vy_scipy = np.zeros(N) + vye_scipy = np.zeros(N) + x0_scipy = np.zeros(N) + x0e_scipy = np.zeros(N) + y0_scipy = np.zeros(N) + y0e_scipy = np.zeros(N) + + # motion_model + mm = motion_model.Linear() + + vx_mm_scipy = np.zeros(N) + vxe_mm_scipy = np.zeros(N) + vy_mm_scipy = np.zeros(N) + vye_mm_scipy = np.zeros(N) + x0_mm_scipy = np.zeros(N) + x0e_mm_scipy = np.zeros(N) + y0_mm_scipy = np.zeros(N) + y0e_mm_scipy = np.zeros(N) + + vx_mm = np.zeros(N) + vxe_mm = np.zeros(N) + vy_mm = np.zeros(N) + vye_mm = np.zeros(N) + x0_mm = np.zeros(N) + x0e_mm = np.zeros(N) + y0_mm = np.zeros(N) + y0e_mm = np.zeros(N) + + def linear(t, c0, c1): + return c0 + c1*t + + # Absolute sigma + for absolute_sigma in [True, False]: + for i in range(N): + dt[i] = t - t0[i] + + # # velfit.linear_fit + # vx_velfit_results = linear_fit(dt[i][~mask[i]], x[i][~mask[i]], sigma=xe[i][~mask[i]], absolute_sigma=absolute_sigma) + # vy_velfit_results = linear_fit(dt[i][~mask[i]], y[i][~mask[i]], sigma=ye[i][~mask[i]], absolute_sigma=absolute_sigma) + + # vx_velfit[i] = vx_velfit_results['slope'] + # vxe_velfit[i] = vx_velfit_results['e_slope'] + # vy_velfit[i] = vy_velfit_results['slope'] + # vye_velfit[i] = vy_velfit_results['e_slope'] + # x0_velfit[i] = vx_velfit_results['intercept'] + # x0e_velfit[i] = vx_velfit_results['e_intercept'] + # y0_velfit[i] = vy_velfit_results['intercept'] + # y0e_velfit[i] = vy_velfit_results['e_intercept'] + + # scipy.curve_fit + p0x = np.array([0., x[i][~mask[i]].mean()]) + p0y = np.array([0., y[i][~mask[i]].mean()]) + popt_x, pcov_x = curve_fit(linear, dt[i][~mask[i]], x[i][~mask[i]], p0=p0x, sigma=xe[i][~mask[i]], absolute_sigma=absolute_sigma) + vx_scipy[i], vxe_scipy[i] = popt_x[1], np.sqrt(pcov_x[1, 1]) + x0_scipy[i], x0e_scipy[i] = popt_x[0], np.sqrt(pcov_x[0, 0]) + popt_y, pcov_y = curve_fit(linear, dt[i][~mask[i]], y[i][~mask[i]], p0=p0y, sigma=ye[i][~mask[i]], absolute_sigma=absolute_sigma) + vy_scipy[i], vye_scipy[i] = popt_y[1], np.sqrt(pcov_y[1, 1]) + y0_scipy[i], y0e_scipy[i] = popt_y[0], np.sqrt(pcov_y[0, 0]) + + # motion_model without scipy + params, param_errs = mm.fit_motion_model( + t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], + xe[i][~mask[i]], ye[i][~mask[i]], t0[i], + weighting='var', + use_scipy=False, + absolute_sigma=absolute_sigma + ) + vx_mm[i] = params[mm.fitter_param_names.index('vx')] + vy_mm[i] = params[mm.fitter_param_names.index('vy')] + vxe_mm[i] = param_errs[mm.fitter_param_names.index('vx')] + vye_mm[i] = param_errs[mm.fitter_param_names.index('vy')] + x0_mm[i] = params[mm.fitter_param_names.index('x0')] + y0_mm[i] = params[mm.fitter_param_names.index('y0')] + x0e_mm[i] = param_errs[mm.fitter_param_names.index('x0')] + y0e_mm[i] = param_errs[mm.fitter_param_names.index('y0')] + + # motion_model with scipy + params, param_errs = mm.fit_motion_model( + t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], + xe[i][~mask[i]], ye[i][~mask[i]], t0[i], + weighting='var', + use_scipy=True, + absolute_sigma=absolute_sigma + ) + vx_mm_scipy[i] = params[mm.fitter_param_names.index('vx')] + vy_mm_scipy[i] = params[mm.fitter_param_names.index('vy')] + vxe_mm_scipy[i] = param_errs[mm.fitter_param_names.index('vx')] + vye_mm_scipy[i] = param_errs[mm.fitter_param_names.index('vy')] + x0_mm_scipy[i] = params[mm.fitter_param_names.index('x0')] + y0_mm_scipy[i] = params[mm.fitter_param_names.index('y0')] + x0e_mm_scipy[i] = param_errs[mm.fitter_param_names.index('x0')] + y0e_mm_scipy[i] = param_errs[mm.fitter_param_names.index('y0')] + + rtol = 1e-5 + # np.testing.assert_allclose(vx_velfit, vx_scipy, rtol=rtol) + # np.testing.assert_allclose(vxe_velfit, vxe_scipy, rtol=rtol) + # np.testing.assert_allclose(vy_velfit, vy_scipy, rtol=rtol) + # np.testing.assert_allclose(vye_velfit, vye_scipy, rtol=rtol) + # np.testing.assert_allclose(x0_velfit, x0_scipy, rtol=rtol) + # np.testing.assert_allclose(x0e_velfit, x0e_scipy, rtol=rtol) + # np.testing.assert_allclose(y0_velfit, y0_scipy, rtol=rtol) + # np.testing.assert_allclose(y0e_velfit, y0e_scipy, rtol=rtol) + # np.testing.assert_allclose(vx_velfit, vx_mm, rtol=rtol) + # np.testing.assert_allclose(vxe_velfit, vxe_mm, rtol=rtol) + # np.testing.assert_allclose(vy_velfit, vy_mm, rtol=rtol) + # np.testing.assert_allclose(vye_velfit, vye_mm, rtol=rtol) + # np.testing.assert_allclose(x0_velfit, x0_mm, rtol=rtol) + # np.testing.assert_allclose(x0e_velfit, x0e_mm, rtol=rtol) + # np.testing.assert_allclose(y0_velfit, y0_mm, rtol=rtol) + # np.testing.assert_allclose(y0e_velfit, y0e_mm, rtol=rtol) + np.testing.assert_allclose(vx_scipy, vx_mm, rtol=rtol) + np.testing.assert_allclose(vxe_scipy, vxe_mm, rtol=rtol) + np.testing.assert_allclose(vy_scipy, vy_mm, rtol=rtol) + np.testing.assert_allclose(vye_scipy, vye_mm, rtol=rtol) + np.testing.assert_allclose(x0_scipy, x0_mm, rtol=rtol) + np.testing.assert_allclose(x0e_scipy, x0e_mm, rtol=rtol) + np.testing.assert_allclose(y0_scipy, y0_mm, rtol=rtol) + np.testing.assert_allclose(y0e_scipy, y0e_mm, rtol=rtol) + np.testing.assert_allclose(vx_scipy, vx_mm_scipy, rtol=rtol) + np.testing.assert_allclose(vxe_scipy, vxe_mm_scipy, rtol=rtol) + np.testing.assert_allclose(vy_scipy, vy_mm_scipy, rtol=rtol) + np.testing.assert_allclose(vye_scipy, vye_mm_scipy, rtol=rtol) + np.testing.assert_allclose(x0_scipy, x0_mm_scipy, rtol=rtol) + np.testing.assert_allclose(x0e_scipy, x0e_mm_scipy, rtol=rtol) + np.testing.assert_allclose(y0_scipy, y0_mm_scipy, rtol=rtol) + np.testing.assert_allclose(y0e_scipy, y0e_mm_scipy, rtol=rtol) From d7884e85dc250e44bc2394f732c21d53a9e22e3a Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Wed, 17 Sep 2025 00:14:14 -0700 Subject: [PATCH 04/29] Simple cleanup --- flystar/startables.py | 13 +++---------- 1 file changed, 3 insertions(+), 10 deletions(-) diff --git a/flystar/startables.py b/flystar/startables.py index a0bf3e3..422f9a7 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -828,7 +828,7 @@ def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scip # If the points do not cover multiple times, go to a fixed model if (t == t[0]).all(): motion_model_use = 'Fixed' - + self['motion_model_used'][ss] = motion_model_use # # Get the motion model object. @@ -960,15 +960,8 @@ def fit_velocities_all_detected(self, motion_model_to_fit, weighting='var', use_ valid_ye = np.all(self['ye'][select_stars, :][:, epoch_cols]!=0, axis=1) & np.all(np.isfinite(self['ye'][select_stars, :][:, epoch_cols]), axis=1) if mask_val: - x = np.ma.masked_values(self['x'][select_stars, :][:, epoch_cols], mask_val) - y = np.ma.masked_values(self['y'][select_stars, :][:, epoch_cols], mask_val) - - # If no mask, convert x.mask to list - if not np.ma.is_masked(x): - x.mask = np.zeros_like(self['x'][select_stars, :][:, epoch_cols].data, dtype=bool) - if not np.ma.is_masked(y): - y.mask = np.zeros_like(self['y'][select_stars, :][:, epoch_cols].data, dtype=bool) - + x = np.ma.masked_values(self['x'][select_stars, :][:, epoch_cols], mask_val, shrink=False) + y = np.ma.masked_values(self['y'][select_stars, :][:, epoch_cols], mask_val, shrink=False) valid_x = ~np.any(x.mask, axis=1) valid_y = ~np.any(y.mask, axis=1) detected_in_all_epochs = np.logical_and.reduce(( From 200d7e70653702411533cce2bc1ed50006eaa8bb Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Wed, 17 Sep 2025 10:09:56 -0700 Subject: [PATCH 05/29] Revert 2 epoch case changes --- flystar/motion_model.py | 138 +++++++++++++++++++++++----------------- 1 file changed, 80 insertions(+), 58 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 549b46a..c5642d6 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -207,65 +207,87 @@ def run_fit(self, t, x, y, xe, ye, t0, weighting='var', params_guess=None, if params_guess is None: params_guess = [x.mean(),0.0,y.mean(),0.0] - if use_scipy: - def linear(t, c0, c1): - return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) - x0, vx = x_opt - y0, vy = y_opt - x0e, vxe = np.sqrt(x_cov.diagonal()) - y0e, vye = np.sqrt(y_cov.diagonal()) - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) + # Handle 2-data point case + if len(np.unique(dt))==2: + if len(x)>2: # Catch case where bootstrap sends only 2 unique epochs + _,idx=np.unique(dt, return_index=True) + dt = dt[idx] + x = x[idx] + y = y[idx] + xe = xe[idx] + ye = ye[idx] + dx = np.diff(x)[0] + dy = np.diff(y)[0] + dt_diff = np.diff(dt)[0] + vx = dx / dt_diff + vy = dy / dt_diff + # TODO: still not sure about the error handling here + x0 = x[0] - dt[0]*vx # np.average(x, weights=x_wt) # + y0 = y[0] - dt[0]*vy # np.average(y, weights=y_wt) # + x0e = np.abs(dx) / 2**0.5 # np.sqrt(np.sum(xe**2)/2) # + y0e = np.abs(dy) / 2**0.5 # np.sqrt(np.sum(ye**2)/2) # + vxe = 0.0 #np.abs(vx) * np.sqrt(np.sum(xe**2/x**2)) + vye = 0.0 #np.abs(vy) * np.sqrt(np.sum(ye**2/y**2)) else: - # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme - x = np.array(x) - y = np.array(y) - dt = np.array(dt) - X_mat_t = np.vander(dt, 2) - # x calculation - W_mat_x = np.diag(x_wt) - XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t - pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix - popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution - perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution - # y calculation - W_mat_y = np.diag(y_wt) - XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t - pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix - popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution - perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution - # prepare values to return - vx, x0 = popt_x - vy, y0 = popt_y - vxe, x0e = perr_x - vye, y0e = perr_y - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) - - residual_x = x - X_mat_t @ popt_x - residual_y = y - X_mat_t @ popt_y - - chi2_x = residual_x.T @ W_mat_x @ residual_x - chi2_y = residual_y.T @ W_mat_y @ residual_y - - if not absolute_sigma: - degree_of_freedom = len(x) - 2 - if degree_of_freedom > 0: - reduced_chi2_x = chi2_x/(len(x) - 2) - reduced_chi2_y = chi2_y/(len(x) - 2) - x0e *= reduced_chi2_x**0.5 - y0e *= reduced_chi2_y**0.5 - vxe *= reduced_chi2_x**0.5 - vye *= reduced_chi2_y**0.5 - else: - warnings.warn( - "Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to infinity.", - OptimizeWarning, stacklevel=2 - ) - x0e *= np.inf - y0e *= np.inf - vxe *= np.inf - vye *= np.inf + if use_scipy: + def linear(t, c0, c1): + return c0 + c1*t + x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) + x0, vx = x_opt + y0, vy = y_opt + x0e, vxe = np.sqrt(x_cov.diagonal()) + y0e, vye = np.sqrt(y_cov.diagonal()) + x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) + else: + # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme + x = np.array(x) + y = np.array(y) + dt = np.array(dt) + X_mat_t = np.vander(dt, 2) + # x calculation + W_mat_x = np.diag(x_wt) + XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t + pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix + popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution + perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution + # y calculation + W_mat_y = np.diag(y_wt) + XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t + pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix + popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution + perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution + # prepare values to return + vx, x0 = popt_x + vy, y0 = popt_y + vxe, x0e = perr_x + vye, y0e = perr_y + x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) + + residual_x = x - X_mat_t @ popt_x + residual_y = y - X_mat_t @ popt_y + + chi2_x = residual_x.T @ W_mat_x @ residual_x + chi2_y = residual_y.T @ W_mat_y @ residual_y + + if not absolute_sigma: + degree_of_freedom = len(x) - 2 + if degree_of_freedom > 0: + reduced_chi2_x = chi2_x/(len(x) - 2) + reduced_chi2_y = chi2_y/(len(x) - 2) + x0e *= reduced_chi2_x**0.5 + y0e *= reduced_chi2_y**0.5 + vxe *= reduced_chi2_x**0.5 + vye *= reduced_chi2_y**0.5 + else: + warnings.warn( + "Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to infinity.", + OptimizeWarning, stacklevel=2 + ) + x0e *= np.inf + y0e *= np.inf + vxe *= np.inf + vye *= np.inf params = [x0, vx, y0, vy] param_errors = [x0e, vxe, y0e, vye] return params, param_errors From 5a859dbeefbe43427cb7026a1bd49816b89fe1aa Mon Sep 17 00:00:00 2001 From: Lingfeng Wei Date: Wed, 24 Sep 2025 18:17:01 -0700 Subject: [PATCH 06/29] Fix r string import warning --- flystar/plots.py | 12 ++++++------ flystar/starlists.py | 4 ++-- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/flystar/plots.py b/flystar/plots.py index be6f0fe..d6a8d40 100755 --- a/flystar/plots.py +++ b/flystar/plots.py @@ -262,7 +262,7 @@ def pos_diff_err_hist(ref_mat, starlist_mat, transform, nbins=25, bin_width=None py.plot(x, norm.pdf(x,mean,sigma), 'g-', linewidth=2) # Annotate reduced chi-sqared values in plot: with outliers - xstr = '$\chi^2_r$ = {0}'.format(np.round(chi_sq_red, decimals=3)) + xstr = r'$\chi^2_r$ = {0}'.format(np.round(chi_sq_red, decimals=3)) py.annotate(xstr, xy=(0.3, 0.77), xycoords='figure fraction', color='black') txt = r'$\nu$ = 2*{0} - {1} = {2}'.format(len(diff_x), num_mod_params, deg_freedom) @@ -273,7 +273,7 @@ def pos_diff_err_hist(ref_mat, starlist_mat, transform, nbins=25, bin_width=None py.annotate(xstr3, xy=(0.25, 0.80), xycoords='figure fraction', color='black') # Annotate reduced chi-sqared values in plot: without outliers - xstr = '$\chi^2_r$ = {0}'.format(np.round(chi_sq_red_good, decimals=3)) + xstr = r'$\chi^2_r$ = {0}'.format(np.round(chi_sq_red_good, decimals=3)) py.annotate(xstr, xy=(0.7, 0.8), xycoords='figure fraction', color='black') txt = r'$\nu$ = 2*{0} - {1} = {2}'.format(len(good[0]), num_mod_params, deg_freedom_good) @@ -2221,7 +2221,7 @@ def plot_chi2_dist(tab, Ndetect, motion_model_dict={}, xlim=40, n_bins=50, boot_ plt.hist(x[idx], bins=chi2_bins, histtype='step', label='X', density=True) plt.hist(y[idx], bins=chi2_bins, histtype='step', label='Y', density=True) plt.plot(chi2_xaxis, chi2.pdf(chi2_xaxis, Ndof), 'r-', alpha=0.6, - label='$\chi^2$ ' + str(Ndof) + ' dof') + label=r'$\chi^2$ ' + str(Ndof) + ' dof') plt.title('$N_{epoch} = $' + str(Ndetect) + ', $N_{dof} = $' + str(Ndof)) plt.xlim(0, xlim) plt.legend() @@ -2306,7 +2306,7 @@ def plot_chi2_dist_per_filter(tab, Ndetect, motion_model_dict={}, xlim=40, n_bin plt.hist(x[idx], bins=chi2_bins, histtype='stepfilled', label='RA', density=True, color='skyblue', alpha=0.8, edgecolor='k') plt.hist(y[idx], bins=chi2_bins, histtype='stepfilled', label='DEC', density=True, color='orange', alpha=0.8, edgecolor='k') plt.plot(chi2_xaxis, chi2.pdf(chi2_xaxis, Ndof), 'r-', alpha=0.6, - label='$\chi^2$ ' + str(Ndof) + ' dof') + label=r'$\chi^2$ ' + str(Ndof) + ' dof') #plt.title('$N_{epoch} = $' + str(Ndetect) + ', $N_{dof} = $' + str(Ndof)) plt.title(str(filter)+' (N = '+str(len(chi2_x_list))+')', fontsize=22) plt.xlim(0, xlim) @@ -2593,7 +2593,7 @@ def plot_chi2_dist_mag(tab, Ndetect, xlim=40, n_bins=30, boot_err=False): plt.clf() plt.hist(chi2_m[idx], bins=np.arange(xlim*10), histtype='step', density=True) plt.plot(chi2_maxis, chi2.pdf(chi2_maxis, Ndof), 'r-', alpha=0.6, - label='$\chi^2$ ' + str(Ndof) + ' dof') + label=r'$\chi^2$ ' + str(Ndof) + ' dof') plt.title('$N_{epoch} = $' + str(Ndetect) + ', $N_{dof} = $' + str(Ndof)) plt.xlim(0, xlim) plt.legend() @@ -2642,7 +2642,7 @@ def plot_chi2_dist_mag_per_filter(tab, Ndetect, mlim=40, n_bins=30, xlim=40, fil plt.clf() plt.hist(chi2_m[idx], bins=np.arange(xlim*10), label='mag', histtype='stepfilled', density=True, color='green', alpha=0.7, edgecolor='k') plt.plot(chi2_maxis, chi2.pdf(chi2_maxis, Ndof), 'r-', alpha=0.6, - label='$\chi^2$ ' + str(Ndof) + ' dof') + label=r'$\chi^2$ ' + str(Ndof) + ' dof') #plt.title('$N_{epoch} = $' + str(Ndetect) + ', $N_{dof} = $' + str(Ndof)) plt.xlim(0, xlim) plt.xlabel(r'$\chi^{2}$', fontsize=28) diff --git a/flystar/starlists.py b/flystar/starlists.py index 23df44f..f1f3278 100644 --- a/flystar/starlists.py +++ b/flystar/starlists.py @@ -421,7 +421,7 @@ def read_starlist(starlistFile, error=True): starlist astropy table. containing: name, m, x, y, xe, ye, t """ - t_ref = Table.read(starlistFile, format='ascii', delimiter='\s') + t_ref = Table.read(starlistFile, format='ascii', delimiter=r'\s') # Check if this already has column names: cols = t_ref.colnames @@ -624,7 +624,7 @@ def from_lis_file(cls, filename, error=True, fvu_file=None): ------ starlists.StarList() object (subclass of Astropy Table). """ - t_ref = Table.read(filename, format='ascii', delimiter='\s') + t_ref = Table.read(filename, format='ascii', delimiter=r'\s') # Check if this already has column names: cols = t_ref.colnames From 253c52db5b0337944237a490a4850a67aa1b950e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Fri, 7 Nov 2025 12:42:39 -0800 Subject: [PATCH 07/29] Clean up: Remove scale_errors; Update init functions; Update Linear model error calculations --- flystar/motion_model.py | 370 +++++++++++++++++++++------------------- 1 file changed, 199 insertions(+), 171 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index c5642d6..3c5069c 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -41,8 +41,13 @@ def get_batch_pos_at_time(self, t): #return x, y, x_err, y_err pass - def run_fit(self, t, x, y, xe, ye, t0, weighting='var', - use_scipy=True, absolute_sigma=True): + def run_fit( + self, t, x, y, xe, ye, t0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + fill_value=np.inf + ): # Run a single fit (used both for overall fit + bootstrap iterations) pass @@ -54,37 +59,43 @@ def get_weights(self, xe, ye, weighting='var'): else: warnings.warn("Invalid weighting, using default weighting scheme var.", UserWarning) return 1./xe**2, 1./ye**2 - - def scale_errors(self, errs, weighting='var'): - if weighting=='std': - return np.array(errs)**2 - elif weighting=='var': - return errs - else: - warnings.warn("Invalid weighting, using default weighting scheme var.", UserWarning) - return errs - def fit_motion_model(self, t, x, y, xe, ye, t0, bootstrap=0, weighting='var', - use_scipy=True, absolute_sigma=True): + def fit_motion_model( + self, t, x, y, xe, ye, t0, + bootstrap=0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + fill_value=np.inf, + rng=None + ): """ Fit the input positions on the sky and errors to determine new parameters for this motion model (MM). Best-fit parameters will be returned along with uncertainties. """ - params, param_errs = self.run_fit(t, x, y, xe, ye, t0=t0, weighting=weighting, - use_scipy=use_scipy, absolute_sigma=absolute_sigma) - - if bootstrap>0 and len(x)>(self.n_pts_req): + params, param_errs, chi2x, chi2y = self.run_fit( + t, x, y, xe, ye, t0=t0, + weighting=weighting, + use_scipy=use_scipy, + absolute_sigma=absolute_sigma, + fill_value=fill_value + ) + + if bootstrap > 0 and len(x) > (self.n_pts_req): edx = np.arange(len(x), dtype=int) bb_params = [] bb_params_errs = [] for bb in range(bootstrap): - bdx = np.random.choice(edx, len(x)) - while len(np.unique(bdx)) 0: + reduced_chi2x = chi2x / degree_of_freedom + reduced_chi2y = chi2y / degree_of_freedom + + param_errors[0] *= reduced_chi2x**0.5 + param_errors[1] *= reduced_chi2y**0.5 + else: + warnings.warn( + f'Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value {fill_value}.', + OptimizeWarning, stacklevel=2 + ) + param_errors = np.full_like(param_errors, fill_value) + + return params, param_errors, chi2x, chi2y + class Linear(MotionModel): """ A 2D linear motion model for a star on the sky. """ - n_pts_req = 2 - n_params=2 - fitter_param_names = ['x0', 'vx', 'y0', 'vy'] - fixed_param_names = ['t0'] - def __init__(self, **kwargs): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() + self.n_pts_req = 2 + self.n_params = 2 + self.fitter_param_names = ['x0', 'vx', 'y0', 'vy'] + self.fixed_param_names = ['t0'] return def get_pos_at_time(self, fit_params, fixed_params, t): @@ -183,7 +216,7 @@ def get_pos_at_time(self, fit_params, fixed_params, t): fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) dt = t-fixed_params_dict['t0'] return fit_params_dict['x0'] + fit_params_dict['vx']*dt, fit_params_dict['y0'] + fit_params_dict['vy']*dt - + def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], x0_err=[],vx_err=[], y0_err=[],vy_err=[], **kwargs): if hasattr(t, "__len__"): @@ -200,113 +233,98 @@ def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], y_err = np.hypot(y0_err, vy_err*dt) return x,y,x_err,y_err - def run_fit(self, t, x, y, xe, ye, t0, weighting='var', params_guess=None, - use_scipy=True, absolute_sigma=True): - dt = t-t0 - x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) + def run_fit( + self, t, x, y, xe, ye, t0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + params_guess=None, + fill_value=np.inf + ): + dt = t - t0 + x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) if params_guess is None: - params_guess = [x.mean(),0.0,y.mean(),0.0] - - # Handle 2-data point case - if len(np.unique(dt))==2: - if len(x)>2: # Catch case where bootstrap sends only 2 unique epochs - _,idx=np.unique(dt, return_index=True) - dt = dt[idx] - x = x[idx] - y = y[idx] - xe = xe[idx] - ye = ye[idx] - dx = np.diff(x)[0] - dy = np.diff(y)[0] - dt_diff = np.diff(dt)[0] - vx = dx / dt_diff - vy = dy / dt_diff - # TODO: still not sure about the error handling here - x0 = x[0] - dt[0]*vx # np.average(x, weights=x_wt) # - y0 = y[0] - dt[0]*vy # np.average(y, weights=y_wt) # - x0e = np.abs(dx) / 2**0.5 # np.sqrt(np.sum(xe**2)/2) # - y0e = np.abs(dy) / 2**0.5 # np.sqrt(np.sum(ye**2)/2) # - vxe = 0.0 #np.abs(vx) * np.sqrt(np.sum(xe**2/x**2)) - vye = 0.0 #np.abs(vy) * np.sqrt(np.sum(ye**2/y**2)) + params_guess = [x.mean(), 0., y.mean(), 0.] + + if use_scipy: + def linear(t, c0, c1): + return c0 + c1*t + x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) + x0, vx = x_opt + y0, vy = y_opt + x0e, vxe = np.sqrt(x_cov.diagonal()) + y0e, vye = np.sqrt(y_cov.diagonal()) + params = np.array([x0, vx, y0, vy]) + param_errors = np.array([x0e, vxe, y0e, vye]) + chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) + else: - if use_scipy: - def linear(t, c0, c1): - return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) - x0, vx = x_opt - y0, vy = y_opt - x0e, vxe = np.sqrt(x_cov.diagonal()) - y0e, vye = np.sqrt(y_cov.diagonal()) - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) - else: - # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme - x = np.array(x) - y = np.array(y) - dt = np.array(dt) - X_mat_t = np.vander(dt, 2) - # x calculation - W_mat_x = np.diag(x_wt) - XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t - pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix - popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution - perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution - # y calculation - W_mat_y = np.diag(y_wt) - XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t - pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix - popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution - perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution - # prepare values to return - vx, x0 = popt_x - vy, y0 = popt_y - vxe, x0e = perr_x - vye, y0e = perr_y - x0e, vxe, y0e, vye = self.scale_errors([x0e, vxe, y0e, vye], weighting=weighting) - - residual_x = x - X_mat_t @ popt_x - residual_y = y - X_mat_t @ popt_y - - chi2_x = residual_x.T @ W_mat_x @ residual_x - chi2_y = residual_y.T @ W_mat_y @ residual_y - - if not absolute_sigma: - degree_of_freedom = len(x) - 2 - if degree_of_freedom > 0: - reduced_chi2_x = chi2_x/(len(x) - 2) - reduced_chi2_y = chi2_y/(len(x) - 2) - x0e *= reduced_chi2_x**0.5 - y0e *= reduced_chi2_y**0.5 - vxe *= reduced_chi2_x**0.5 - vye *= reduced_chi2_y**0.5 - else: - warnings.warn( - "Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to infinity.", - OptimizeWarning, stacklevel=2 - ) - x0e *= np.inf - y0e *= np.inf - vxe *= np.inf - vye *= np.inf - params = [x0, vx, y0, vy] - param_errors = [x0e, vxe, y0e, vye] - return params, param_errors - - + # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme + x = np.array(x) + y = np.array(y) + dt = np.array(dt) + X_mat_t = np.vander(dt, 2) + # x calculation + W_mat_x = np.diag(x_wt) + XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t + pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix + popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution + perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution + # y calculation + W_mat_y = np.diag(y_wt) + XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t + pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix + popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution + perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution + # prepare values to return + vx, x0 = popt_x + vy, y0 = popt_y + vxe, x0e = perr_x + vye, y0e = perr_y + + # Does not use get_chi2 to accelerate calculation + residual_x = x - X_mat_t @ popt_x + residual_y = y - X_mat_t @ popt_y + + + chi2_x = residual_x.T @ W_mat_x @ residual_x + chi2_y = residual_y.T @ W_mat_y @ residual_y + + params = np.array([x0, vx, y0, vy]) + param_errors = np.array([x0e, vxe, y0e, vye]) + + if not absolute_sigma: + degree_of_freedom = len(x) - 2 + if degree_of_freedom > 0: + reduced_chi2_x = chi2_x/(len(x) - 2) + reduced_chi2_y = chi2_y/(len(x) - 2) + + param_errors[0:2] *= reduced_chi2_x**0.5 + param_errors[2:4] *= reduced_chi2_y**0.5 + + else: + warnings.warn( + f'Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value {fill_value}.', + OptimizeWarning, stacklevel=2 + ) + param_errors = np.full_like(param_errors, fill_value) + + return params, param_errors, chi2_x, chi2_y + class Acceleration(MotionModel): """ A 2D accelerating motion model for a star on the sky. """ - n_pts_req = 4 # TODO: consider special case for 3 pts - n_params=3 - fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] - fixed_param_names = ['t0'] - def __init__(self, x0=0, vx0=0, ax=0, y0=0, vy0=0, ay=0, t0=None, x0_err=0, vx0_err=0, ax_err=0, y0_err=0, vy0_err=0, ay_err=0, **kwargs): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() + self.n_pts_req = 4 # TODO: consider special case for 3 pts + self.n_params = 3 + self.fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] + self.fixed_param_names = ['t0'] return def get_pos_at_time(self, fit_params, fixed_params, t): @@ -334,18 +352,24 @@ def get_batch_pos_at_time(self,t, y_err = np.sqrt(y0_err**2 + (vy0_err*dt)**2 + (0.5*ay_err*dt**2)**2) return x,y,x_err,y_err - def run_fit(self, t, x, y, xe, ye, t0, weighting='var', params_guess=None, - use_scipy=True, absolute_sigma=True): + def run_fit( + self, t, x, y, xe, ye, t0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + params_guess=None, + fill_value=np.inf + ): if not use_scipy: Warning("Acceleration model has no non-scipy fitter option. Running with scipy.") - dt = t-t0 + dt = t - t0 x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) if params_guess is None: - params_guess = [x.mean(),0.0,0.0,y.mean(),0.0,0.0] - - def accel(t, c0,c1,c2): + params_guess = [x.mean(), 0., 0., y.mean(), 0., 0.] + + def accel(t, c0, c1, c2): return c0 + c1*t + 0.5*c2*t**2 - + x_opt, x_cov = curve_fit(accel, dt, x, p0=np.array(params_guess[:3]), sigma=1/x_wt**0.5, absolute_sigma=True) y_opt, y_cov = curve_fit(accel, dt, y, p0=np.array(params_guess[3:]), sigma=1/y_wt**0.5, absolute_sigma=True) x0 = x_opt[0] @@ -354,14 +378,13 @@ def accel(t, c0,c1,c2): vy0 = y_opt[1] ax = x_opt[2] ay = y_opt[2] - + x0e, vx0e, axe = np.sqrt(x_cov.diagonal()) y0e, vy0e, aye = np.sqrt(y_cov.diagonal()) - x0e, vx0e, axe, y0e, vy0e, aye = self.scale_errors([x0e, vx0e, axe, y0e, vy0e, aye], weighting=weighting) params = [x0, vx0, ax, y0, vy0, ay] param_errors = [x0e, vx0e, axe, y0e, vy0e, aye] - + return params, param_errors class Parallax(MotionModel): @@ -373,18 +396,17 @@ class Parallax(MotionModel): Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ - n_pts_req = 4 - n_params=3 - fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] - fixed_param_names = ['t0'] - fixed_meta_data = ['RA','Dec','PA','obs'] - def __init__(self, RA, Dec, PA=0.0, obs='earth', **kwargs): self.RA = RA self.Dec = Dec self.PA = PA self.obs = obs self.plx_vector_cached = None + self.n_pts_req = 4 + self.n_params = 3 + self.fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] + self.fixed_param_names = ['t0'] + self.fixed_meta_data = ['RA','Dec','PA','obs'] return def get_parallax_vector(self, t_mjd): @@ -411,7 +433,7 @@ def get_parallax_vector(self, t_mjd): def get_pos_at_time(self, fit_params, fixed_params, t): fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t-fixed_params_dict['t0'] + dt = t - fixed_params_dict['t0'] t_mjd = Time(t, format='decimalyear', scale='utc').mjd pvec = self.get_parallax_vector(t_mjd) @@ -420,7 +442,7 @@ def get_pos_at_time(self, fit_params, fixed_params, t): x = fit_params_dict['x0'] + fit_params_dict['vx']*dt + fit_params_dict['pi']*pvec_x y = fit_params_dict['y0'] + fit_params_dict['vy']*dt + fit_params_dict['pi']*pvec_y return x, y - + def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], pi=[], t0=[], x0_err=[],vx_err=[], y0_err=[],vy_err=[], pi_err=[], **kwargs): @@ -446,8 +468,14 @@ def get_batch_pos_at_time(self, t, x_err,y_err = [],[] return x,y,x_err,y_err - def run_fit(self, t, x, y, xe, ye, t0, weighting='var', params_guess=None, - use_scipy=True, absolute_sigma=True): + def run_fit( + self, t, x, y, xe, ye, t0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + params_guess=None, + fill_value=np.inf + ): if not use_scipy: Warning("Parallax model has no non-scipy fitter option. Running with scipy.") t_mjd = Time(t, format='decimalyear', scale='utc').mjd @@ -467,8 +495,8 @@ def fit_func(t, x0,vx, y0,vy, pi): y.mean(),(y[idx_last]-y[idx_first])/(t[idx_last]-t[idx_first]), 1] res = curve_fit(fit_func, np.append(t,t), np.append(x,y), p0=params_guess, sigma = 1.0/np.append(x_wt,y_wt)) - x0,vx,y0,vy,pi = res[0] - x0_err,vx_err,y0_err,vy_err,pi_err = self.scale_errors(np.sqrt(np.diag(res[1])), weighting=weighting) + x0, vx, y0, vy, pi = res[0] + x0_err, vx_err, y0_err, vy_err, pi_err = np.sqrt(np.diag(res[1])) params = [x0, vx, y0, vy, pi] param_errors = [x0_err, vx_err, y0_err, vy_err, pi_err] @@ -498,7 +526,7 @@ def validate_motion_model_dict(motion_model_dict, startable, default_motion_mode raise ValueError(f"Cannot use {mm} motion model without required metadata. Please initialize with required metadata and provide in motion_model_dict.") else: motion_model_dict[mm] = mm_obj() - warnings.warn(f"Using default model/fitter for {mm}.", UserWarning) + # warnings.warn(f"Using default model/fitter for {mm}.", UserWarning) return motion_model_dict From 0ba32c91bb052d2f6fa924e4c10c936962aa2220 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Fri, 7 Nov 2025 12:47:53 -0800 Subject: [PATCH 08/29] Rename py to plt; Add save path; Fix unclosed figure --- flystar/plots.py | 531 ++++++++++++++++++++++++----------------------- 1 file changed, 268 insertions(+), 263 deletions(-) diff --git a/flystar/plots.py b/flystar/plots.py index d6a8d40..d2dea16 100755 --- a/flystar/plots.py +++ b/flystar/plots.py @@ -1,9 +1,8 @@ from flystar import analysis, motion_model, startables -import pylab as py -import pylab as plt import numpy as np import matplotlib.mlab as mlab import matplotlib +import matplotlib.pyplot as plt from matplotlib import colors import matplotlib.cm as cm from scipy.stats import chi2 @@ -23,8 +22,8 @@ #################################################### -def trans_positions(ref, ref_mat, starlist, starlist_mat, xlim=None, ylim=None, fileName=None, - equal_axis=True, root='./'): +def trans_positions(ref, ref_mat, starlist, starlist_mat, xlim=None, ylim=None, + equal_axis=True, save_path=None, show_plot=True): """ Plot positions of stars in reference list and the transformed starlist, in reference list coordinates. Stars used in the transformation are @@ -55,31 +54,37 @@ def trans_positions(ref, ref_mat, starlist, starlist_mat, xlim=None, ylim=None, equal_axis: boolean If true, make axes equal. True by default + + save_path: string + Path to save the figure to. Default is None + show_plot: boolean + If true, show the plot. Default is True + """ - py.figure(figsize=(10,10)) - py.clf() - py.plot(ref['x'], ref['y'], 'g+', ms=5, label='Reference') - py.plot(starlist['x'], starlist['y'], 'rx', ms=5, label='starlist') - py.plot(ref_mat['x'], ref_mat['y'], color='skyblue', marker='s', ms=10, alpha=0.3, + plt.figure(figsize=(10,10)) + plt.clf() + plt.plot(ref['x'], ref['y'], 'g+', ms=5, label='Reference') + plt.plot(starlist['x'], starlist['y'], 'rx', ms=5, label='starlist') + plt.plot(ref_mat['x'], ref_mat['y'], color='skyblue', marker='s', ms=10, alpha=0.3, linestyle='None', label='Matched Reference') - py.plot(starlist_mat['x'], starlist_mat['y'], color='darkblue', marker='s', ms=5, alpha=0.3, + plt.plot(starlist_mat['x'], starlist_mat['y'], color='darkblue', marker='s', ms=5, alpha=0.3, linestyle='None', label='Matched starlist') - py.xlabel('X position (Reference Coords)') - py.ylabel('Y position (Reference Coords)') - py.legend(numpoints=1) - py.title('Label.dat Positions After Transformation') + plt.xlabel('X position (Reference Coords)') + plt.ylabel('Y position (Reference Coords)') + plt.legend(numpoints=1) + plt.title('Label.dat Positions After Transformation') if xlim != None: - py.axis([xlim[0], xlim[1], ylim[0], ylim[1]]) + plt.axis([xlim[0], xlim[1], ylim[0], ylim[1]]) if equal_axis: - py.axis('equal') - if fileName!=None: - #py.savefig(root + fileName[3:8] + 'Transformed_positions_' + '.png') - py.savefig(root + 'Transformed_positions_{0}'.format(fileName) + '.png') - else: - py.savefig(root + 'Transformed_positions.png') + plt.axis('equal') + + if save_path: + plt.savefig(save_path) + if show_plot: + plt.show() - py.close() + plt.close() return @@ -121,22 +126,22 @@ def pos_diff_hist(ref_mat, starlist_mat, nbins=25, bin_width=None, xlim=None, fi bins = np.arange(min_range, max_range+bin_width, bin_width) - py.figure(figsize=(10,10)) - py.clf() - py.hist(diff_x, histtype='step', bins=bins, color='blue', label='X') - py.hist(diff_y, histtype='step', bins=bins, color='red', label='Y') - py.xlabel('Reference Position - starlist Position') - py.ylabel('N stars') - py.title('Position Differences for matched stars') + plt.figure(figsize=(10,10)) + plt.clf() + plt.hist(diff_x, histtype='step', bins=bins, color='blue', label='X') + plt.hist(diff_y, histtype='step', bins=bins, color='red', label='Y') + plt.xlabel('Reference Position - starlist Position') + plt.ylabel('N stars') + plt.title('Position Differences for matched stars') if xlim != None: - py.xlim([xlim[0], xlim[1]]) - py.legend() + plt.xlim([xlim[0], xlim[1]]) + plt.legend() if fileName != None: - py.savefig(root + fileName[3:8] + 'Positions_hist_' + '.png') + plt.savefig(root + fileName[3:8] + 'Positions_hist_' + '.png') else: - py.savefig(root + 'Positions_hist.png') + plt.savefig(root + 'Positions_hist.png') - py.close() + plt.close() return def pos_diff_err_hist(ref_mat, starlist_mat, transform, nbins=25, bin_width=None, errs='both', xlim=None, @@ -248,51 +253,51 @@ def pos_diff_err_hist(ref_mat, starlist_mat, transform, nbins=25, bin_width=None bins = np.arange(min_range, max_range+bin_width, bin_width) - py.figure(figsize=(10,10)) - py.clf() - n_x, bins_x, p = py.hist(ratio_x, histtype='step', bins=bins, color='blue', + plt.figure(figsize=(10,10)) + plt.clf() + n_x, bins_x, p = plt.hist(ratio_x, histtype='step', bins=bins, color='blue', label='X', density=True, linewidth=2) - n_y, bins_y, p = py.hist(ratio_y, histtype='step', bins=bins, color='red', + n_y, bins_y, p = plt.hist(ratio_y, histtype='step', bins=bins, color='red', label='Y', density=True, linewidth=2) # Overplot a Gaussian, as well mean = 0 sigma = 1 x = np.arange(-6, 6, 0.1) - py.plot(x, norm.pdf(x,mean,sigma), 'g-', linewidth=2) + plt.plot(x, norm.pdf(x,mean,sigma), 'g-', linewidth=2) # Annotate reduced chi-sqared values in plot: with outliers xstr = r'$\chi^2_r$ = {0}'.format(np.round(chi_sq_red, decimals=3)) - py.annotate(xstr, xy=(0.3, 0.77), xycoords='figure fraction', color='black') + plt.annotate(xstr, xy=(0.3, 0.77), xycoords='figure fraction', color='black') txt = r'$\nu$ = 2*{0} - {1} = {2}'.format(len(diff_x), num_mod_params, deg_freedom) - py.annotate(txt, xy=(0.25,0.74), xycoords='figure fraction', color='black') + plt.annotate(txt, xy=(0.25,0.74), xycoords='figure fraction', color='black') xstr2 = 'With Outliers' xstr3 = '{0} with +/- {1}+ sigma'.format(len(ratio_x) - len(good[0]), outlier) - py.annotate(xstr2, xy=(0.29, 0.83), xycoords='figure fraction', color='black') - py.annotate(xstr3, xy=(0.25, 0.80), xycoords='figure fraction', color='black') + plt.annotate(xstr2, xy=(0.29, 0.83), xycoords='figure fraction', color='black') + plt.annotate(xstr3, xy=(0.25, 0.80), xycoords='figure fraction', color='black') # Annotate reduced chi-sqared values in plot: without outliers xstr = r'$\chi^2_r$ = {0}'.format(np.round(chi_sq_red_good, decimals=3)) - py.annotate(xstr, xy=(0.7, 0.8), xycoords='figure fraction', color='black') + plt.annotate(xstr, xy=(0.7, 0.8), xycoords='figure fraction', color='black') txt = r'$\nu$ = 2*{0} - {1} = {2}'.format(len(good[0]), num_mod_params, deg_freedom_good) - py.annotate(txt, xy=(0.65,0.77), xycoords='figure fraction', color='black') + plt.annotate(txt, xy=(0.65,0.77), xycoords='figure fraction', color='black') xstr2 = 'Without Outliers' - py.annotate(xstr2, xy=(0.67, 0.83), xycoords='figure fraction', color='black') + plt.annotate(xstr2, xy=(0.67, 0.83), xycoords='figure fraction', color='black') - py.xlabel('(Ref Pos - TransStarlist Pos) / Ast. Error') - py.ylabel('N stars (normalized)') - py.title('Position Residuals for Matched Stars') + plt.xlabel('(Ref Pos - TransStarlist Pos) / Ast. Error') + plt.ylabel('N stars (normalized)') + plt.title('Position Residuals for Matched Stars') if xlim != None: - py.xlim([xlim[0], xlim[1]]) - py.legend() + plt.xlim([xlim[0], xlim[1]]) + plt.legend() if fileName != None: - py.savefig(root + fileName[3:8] + 'Positions_err_ratio_hist_' + '.png') + plt.savefig(root + fileName[3:8] + 'Positions_err_ratio_hist_' + '.png') else: - py.savefig(root + 'Positions_err_ratio_hist.png') + plt.savefig(root + 'Positions_err_ratio_hist.png') - py.close() + plt.close() return @@ -319,18 +324,18 @@ def mag_diff_hist(ref_mat, starlist_mat, bins=25, fileName=None, root='./'): bad2 = np.where(bad == True) diff_m = np.delete(diff_m, bad2) - py.figure(figsize=(10,10)) - py.clf() - py.hist(diff_m, bins=bins) - py.xlabel('Reference Mag - TransStarlist Mag') - py.ylabel('N stars') - py.title('Magnitude Difference for matched stars') + plt.figure(figsize=(10,10)) + plt.clf() + plt.hist(diff_m, bins=bins) + plt.xlabel('Reference Mag - TransStarlist Mag') + plt.ylabel('N stars') + plt.title('Magnitude Difference for matched stars') if fileName != None: - py.savefig(root + fileName[3:8] + 'Magnitude_hist_' + '.png') + plt.savefig(root + fileName[3:8] + 'Magnitude_hist_' + '.png') else: - py.savefig(root + 'Magnitude_hist.png') + plt.savefig(root + 'Magnitude_hist.png') - py.close() + plt.close() return def pos_diff_quiver(ref_mat, starlist_mat, qscale=10, keyLength=0.2, xlim=None, ylim=None, @@ -411,35 +416,35 @@ def pos_diff_quiver(ref_mat, starlist_mat, qscale=10, keyLength=0.2, xlim=None, s = len(xpos) - py.figure(figsize=(10,10)) - py.clf() - q = py.quiver(xpos, ypos, diff_x, diff_y, scale=qscale) + plt.figure(figsize=(10,10)) + plt.clf() + q = plt.quiver(xpos, ypos, diff_x, diff_y, scale=qscale) fmt = '{0} ref units'.format(keyLength) - #py.quiverkey(q, 0.2, 0.92, keyLength, fmt, coordinates='figure', color='black') + #plt.quiverkey(q, 0.2, 0.92, keyLength, fmt, coordinates='figure', color='black') # Make our reference arrow a different color - q2 = py.quiver(xpos[s-2:s], ypos[s-2:s], diff_x[s-2:s], diff_y[s-2:s], scale=qscale, color='red') + q2 = plt.quiver(xpos[s-2:s], ypos[s-2:s], diff_x[s-2:s], diff_y[s-2:s], scale=qscale, color='red') # Annotate our reference quiver arrow - py.annotate(fmt, xy=(xpos[-1]-2, ypos[-1]+0.5), color='red') - py.xlabel('X Position (Reference coords)') - py.ylabel('Y Position (Reference coords)') + plt.annotate(fmt, xy=(xpos[-1]-2, ypos[-1]+0.5), color='red') + plt.xlabel('X Position (Reference coords)') + plt.ylabel('Y Position (Reference coords)') if xlim != None: - py.axis([xlim[0], ylim[1], ylim[0], ylim[1]]) + plt.axis([xlim[0], ylim[1], ylim[0], ylim[1]]) if sigma: if fileName != None: - py.title('(Reference - Transformed Starlist positions) / sigma') - py.savefig(root + fileName[3:8] + 'Positions_quiver_sigma_' + '.png') + plt.title('(Reference - Transformed Starlist positions) / sigma') + plt.savefig(root + fileName[3:8] + 'Positions_quiver_sigma_' + '.png') else: - py.title('(Reference - Transformed Starlist positions) / sigma') - py.savefig(root + 'Positions_quiver_sigma.png') + plt.title('(Reference - Transformed Starlist positions) / sigma') + plt.savefig(root + 'Positions_quiver_sigma.png') else: if fileName != None: - py.title('Reference - Transformed Starlist positions') - py.savefig(root + fileName[3:8] + 'Positions_quiver_' + '.png') + plt.title('Reference - Transformed Starlist positions') + plt.savefig(root + fileName[3:8] + 'Positions_quiver_' + '.png') else: - py.title('Reference - Transformed Starlist positions') - py.savefig(root + 'Positions_quiver.png') + plt.title('Reference - Transformed Starlist positions') + plt.savefig(root + 'Positions_quiver.png') - py.close() + plt.close() return def vpd(ref, starlist_trans, vxlim, vylim): @@ -472,17 +477,17 @@ def vpd(ref, starlist_trans, vxlim, vylim): trans_vx = starlist_trans['vx'] trans_vy = starlist_trans['vy'] - py.figure(figsize=(10,10)) - py.clf() - py.plot(trans_vx, trans_vy, 'k.', ms=8, label='Transformed', alpha=0.4) - py.plot(ref_vx, ref_vy, 'r.', ms=8, label='Reference', alpha=0.4) - py.xlabel('Vx (Reference units)') - py.ylabel('Vy (Reference units)') + plt.figure(figsize=(10,10)) + plt.clf() + plt.plot(trans_vx, trans_vy, 'k.', ms=8, label='Transformed', alpha=0.4) + plt.plot(ref_vx, ref_vy, 'r.', ms=8, label='Reference', alpha=0.4) + plt.xlabel('Vx (Reference units)') + plt.ylabel('Vy (Reference units)') if vxlim != None: - py.axis([vxlim[0], vylim[1], vylim[0], vylim[1]]) - py.title('Reference and Transformed Proper Motions') - py.legend() - py.savefig('Transformed_velocities.png') + plt.axis([vxlim[0], vylim[1], vylim[0], vylim[1]]) + plt.title('Reference and Transformed Proper Motions') + plt.legend() + plt.savefig('Transformed_velocities.png') return @@ -538,27 +543,27 @@ def vel_diff_err_hist(ref_mat, starlist_mat, nbins=25, bin_width=None, vxlim=Non sigma = 1 x = np.arange(-6, 6, 0.1) - py.figure(figsize=(20,10)) - py.subplot(121) - py.subplots_adjust(left=0.1) - py.hist(ratio_vx, bins=xbins, histtype='step', color='black', density=True, + plt.figure(figsize=(20,10)) + plt.subplot(121) + plt.subplots_adjust(left=0.1) + plt.hist(ratio_vx, bins=xbins, histtype='step', color='black', density=True, linewidth=2) - py.plot(x, norm.pdf(x,mean,sigma), 'r-', linewidth=2) - py.xlabel('(Ref Vx - Trans Vx) / Vxe') - py.ylabel('N_stars') - py.title('Vx Residuals, Matched') + plt.plot(x, norm.pdf(x,mean,sigma), 'r-', linewidth=2) + plt.xlabel('(Ref Vx - Trans Vx) / Vxe') + plt.ylabel('N_stars') + plt.title('Vx Residuals, Matched') if vxlim != None: - py.xlim([vxlim[0], vxlim[1]]) - py.subplot(122) - py.hist(ratio_vy, bins=ybins, histtype='step', color='black', density=True, + plt.xlim([vxlim[0], vxlim[1]]) + plt.subplot(122) + plt.hist(ratio_vy, bins=ybins, histtype='step', color='black', density=True, linewidth=2) - py.plot(x, norm.pdf(x,mean,sigma), 'r-', linewidth=2) - py.xlabel('(Ref Vy - Trans Vy) / Vye') - py.ylabel('N_stars') - py.title('Vy Residuals, Matched') + plt.plot(x, norm.pdf(x,mean,sigma), 'r-', linewidth=2) + plt.xlabel('(Ref Vy - Trans Vy) / Vye') + plt.ylabel('N_stars') + plt.title('Vy Residuals, Matched') if vylim != None: - py.xlim([vylim[0], vylim[1]]) - py.savefig('Vel_err_ratio_dist.png') + plt.xlim([vylim[0], vylim[1]]) + plt.savefig('Vel_err_ratio_dist.png') return @@ -606,17 +611,17 @@ def residual_vpd(ref_mat, starlist_trans_mat, pscale=None): yerr = np.hypot(ref_mat['vy_err'], starlist_trans_mat['vy_err']) # Plotting - py.figure(figsize=(10,10)) - py.clf() - py.errorbar(diff_x, diff_y, xerr=xerr, yerr=yerr, fmt='k.', ms=8, alpha=0.5) + plt.figure(figsize=(10,10)) + plt.clf() + plt.errorbar(diff_x, diff_y, xerr=xerr, yerr=yerr, fmt='k.', ms=8, alpha=0.5) if pscale != None: - py.xlabel('Reference_vx - Transformed_vx (mas/yr)') - py.ylabel('Reference_vy - Transformed_vy (mas/yr)') + plt.xlabel('Reference_vx - Transformed_vx (mas/yr)') + plt.ylabel('Reference_vy - Transformed_vy (mas/yr)') else: - py.xlabel('Reference_vx - Transformed_vx (reference coords)') - py.ylabel('Reference_vy - Transformed_vy (reference coords)') - py.title('Proper Motion Residuals') - py.savefig('resid_vpd.png') + plt.xlabel('Reference_vx - Transformed_vx (reference coords)') + plt.ylabel('Reference_vy - Transformed_vy (reference coords)') + plt.title('Proper Motion Residuals') + plt.savefig('resid_vpd.png') return @@ -636,8 +641,8 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', else: Nrows = math.ceil(Nstars / (Ncols / 2)) * 3 - py.close('all') - py.figure(2, figsize=figsize) + plt.close('all') + plt.figure(2, figsize=figsize) names = s.getArray('name') mag = s.getArray('mag') x = s.getArray('x') @@ -746,7 +751,7 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', t0 = int(np.floor(np.min(time))) tO = int(np.ceil(np.max(time))) - dateTicLoc = py.MultipleLocator(3) + dateTicLoc = plt.MultipleLocator(3) dateTicRng = [t0-1, tO+1] dateTics = np.arange(t0, tO+1) DateTicsLabel = dateTics-2000 @@ -754,7 +759,7 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', # See if we are using MJD instead. if time[0] > 50000: print('MJD') - dateTicLoc = py.MultipleLocator(1000) + dateTicLoc = plt.MultipleLocator(1000) t0 = int(np.round(np.min(time), 50)) tO = int(np.round(np.max(time), 50)) dateTicRng = [t0-200, tO+200] @@ -779,121 +784,121 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', ind = (row-1)*Ncols + col - paxes = py.subplot(Nrows, Ncols, ind) - py.plot(time, fitLineX, 'b-') - py.plot(time, fitLineX + fitSigX, 'b--') - py.plot(time, fitLineX - fitSigX, 'b--') - py.errorbar(time, x, yerr=xerr, fmt='k.') - rng = py.axis() - py.ylim(np.min(x-xerr-0.1),np.max(x+xerr+0.1)) - py.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) + paxes = plt.subplot(Nrows, Ncols, ind) + plt.plot(time, fitLineX, 'b-') + plt.plot(time, fitLineX + fitSigX, 'b--') + plt.plot(time, fitLineX - fitSigX, 'b--') + plt.errorbar(time, x, yerr=xerr, fmt='k.') + rng = plt.axis() + plt.ylim(np.min(x-xerr-0.1),np.max(x+xerr+0.1)) + plt.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) if time[0] > 50000: - py.xlabel('Date (MJD)', fontsize=fontsize1) - py.ylabel('X (pix)', fontsize=fontsize1) + plt.xlabel('Date (MJD)', fontsize=fontsize1) + plt.ylabel('X (pix)', fontsize=fontsize1) paxes.xaxis.set_major_formatter(fmtX) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.yaxis.set_major_formatter(fmtY) paxes.tick_params(axis='both', which='major', labelsize=fontsize1) - py.yticks(np.arange(np.min(x-xerr-0.1), np.max(x+xerr+0.1), 0.2)) - py.xticks(dateTics, DateTicsLabel) - py.xlim(np.min(dateTics), np.max(dateTics)) - py.annotate(starName,xy=(1.0,1.1), xycoords='axes fraction', fontsize=12, color='red') + plt.yticks(np.arange(np.min(x-xerr-0.1), np.max(x+xerr+0.1), 0.2)) + plt.xticks(dateTics, DateTicsLabel) + plt.xlim(np.min(dateTics), np.max(dateTics)) + plt.annotate(starName,xy=(1.0,1.1), xycoords='axes fraction', fontsize=12, color='red') col = col + 1 ind = (row-1)*Ncols + col - paxes = py.subplot(Nrows, Ncols, ind) - py.plot(time, fitLineY, 'b-') - py.plot(time, fitLineY + fitSigY, 'b--') - py.plot(time, fitLineY - fitSigY, 'b--') - py.errorbar(time, y, yerr=yerr, fmt='k.') - rng = py.axis() - py.axis(dateTicRng + [rng[2], rng[3]], fontsize=fontsize1) - py.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) + paxes = plt.subplot(Nrows, Ncols, ind) + plt.plot(time, fitLineY, 'b-') + plt.plot(time, fitLineY + fitSigY, 'b--') + plt.plot(time, fitLineY - fitSigY, 'b--') + plt.errorbar(time, y, yerr=yerr, fmt='k.') + rng = plt.axis() + plt.axis(dateTicRng + [rng[2], rng[3]], fontsize=fontsize1) + plt.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) if time[0] > 50000: - py.xlabel('Date (MJD)', fontsize=fontsize1) - py.ylabel('Y (pix)', fontsize=fontsize1) + plt.xlabel('Date (MJD)', fontsize=fontsize1) + plt.ylabel('Y (pix)', fontsize=fontsize1) #paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.xaxis.set_major_formatter(fmtX) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.yaxis.set_major_formatter(fmtY) paxes.tick_params(axis='both', which='major', labelsize=12) - py.ylim(np.min(y-yerr-0.1),np.max(y+yerr+0.1)) - py.yticks(np.arange(np.min(y-yerr-0.1), np.max(y+yerr+0.1), 0.2)) - py.xticks(dateTics, DateTicsLabel) - py.xlim(np.min(dateTics), np.max(dateTics)) + plt.ylim(np.min(y-yerr-0.1),np.max(y+yerr+0.1)) + plt.yticks(np.arange(np.min(y-yerr-0.1), np.max(y+yerr+0.1), 0.2)) + plt.xticks(dateTics, DateTicsLabel) + plt.xlim(np.min(dateTics), np.max(dateTics)) row = row + 1 col = col - 1 ind = (row-1)*Ncols + col - paxes = py.subplot(Nrows, Ncols, ind) - py.plot(time, np.zeros(len(time)), 'b-') - py.plot(time, fitSigX, 'b--') - py.plot(time, -fitSigX, 'b--') - py.errorbar(time, x - fitLineX, yerr=xerr, fmt='k.') - py.axis(dateTicRng + resTicRng, fontsize=fontsize1) - py.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) + paxes = plt.subplot(Nrows, Ncols, ind) + plt.plot(time, np.zeros(len(time)), 'b-') + plt.plot(time, fitSigX, 'b--') + plt.plot(time, -fitSigX, 'b--') + plt.errorbar(time, x - fitLineX, yerr=xerr, fmt='k.') + plt.axis(dateTicRng + resTicRng, fontsize=fontsize1) + plt.xlabel('Date - 2000 (yrs)', fontsize=fontsize1) if time[0] > 50000: - py.xlabel('Date (MJD)', fontsize=fontsize1) - py.ylabel('X Residuals (pix)', fontsize=fontsize1) + plt.xlabel('Date (MJD)', fontsize=fontsize1) + plt.ylabel('X Residuals (pix)', fontsize=fontsize1) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.xaxis.set_major_formatter(fmtX) paxes.tick_params(axis='both', which='major', labelsize=fontsize1) - py.xticks(dateTics, DateTicsLabel) - py.xlim(np.min(dateTics), np.max(dateTics)) + plt.xticks(dateTics, DateTicsLabel) + plt.xlim(np.min(dateTics), np.max(dateTics)) col = col + 1 ind = (row-1)*Ncols + col - paxes = py.subplot(Nrows, Ncols, ind) - py.plot(time, np.zeros(len(time)), 'b-') - py.plot(time, fitSigY, 'b--') - py.plot(time, -fitSigY, 'b--') - py.errorbar(time, y - fitLineY, yerr=yerr, fmt='k.') - py.axis(dateTicRng + resTicRng, fontsize=fontsize1) - py.xlabel('Date -2000 (yrs)', fontsize=fontsize1) + paxes = plt.subplot(Nrows, Ncols, ind) + plt.plot(time, np.zeros(len(time)), 'b-') + plt.plot(time, fitSigY, 'b--') + plt.plot(time, -fitSigY, 'b--') + plt.errorbar(time, y - fitLineY, yerr=yerr, fmt='k.') + plt.axis(dateTicRng + resTicRng, fontsize=fontsize1) + plt.xlabel('Date -2000 (yrs)', fontsize=fontsize1) if time[0] > 50000: - py.xlabel('Date (MJD)', fontsize=fontsize1) - py.ylabel('Y Residuals (pix)', fontsize=fontsize1) + plt.xlabel('Date (MJD)', fontsize=fontsize1) + plt.ylabel('Y Residuals (pix)', fontsize=fontsize1) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.xaxis.set_major_formatter(fmtX) paxes.tick_params(axis='both', which='major', labelsize=fontsize1) - py.xticks(dateTics, DateTicsLabel) - py.xlim(np.min(dateTics), np.max(dateTics)) + plt.xticks(dateTics, DateTicsLabel) + plt.xlim(np.min(dateTics), np.max(dateTics)) row = row + 1 col = col - 1 ind = (row-1)*Ncols + col - paxes = py.subplot(Nrows, Ncols, ind) - py.errorbar(x,y, xerr=xerr, yerr=yerr, fmt='k.') - py.yticks(np.arange(np.min(y-yerr-0.1), np.max(y+yerr+0.1), 0.2)) - py.xticks(np.arange(np.min(x-xerr-0.1), np.max(x+xerr+0.1), 0.2), rotation = 270) - py.axis('equal') + paxes = plt.subplot(Nrows, Ncols, ind) + plt.errorbar(x,y, xerr=xerr, yerr=yerr, fmt='k.') + plt.yticks(np.arange(np.min(y-yerr-0.1), np.max(y+yerr+0.1), 0.2)) + plt.xticks(np.arange(np.min(x-xerr-0.1), np.max(x+xerr+0.1), 0.2), rotation = 270) + plt.axis('equal') paxes.tick_params(axis='both', which='major', labelsize=fontsize1) paxes.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) paxes.xaxis.set_major_formatter(FormatStrFormatter('%.2f')) - py.xlabel('X (pix)', fontsize=fontsize1) - py.ylabel('Y (pix)', fontsize=fontsize1) - py.plot(fitLineX, fitLineY, 'b-') + plt.xlabel('X (pix)', fontsize=fontsize1) + plt.ylabel('Y (pix)', fontsize=fontsize1) + plt.plot(fitLineX, fitLineY, 'b-') col = col + 1 ind = (row-1)*Ncols + col bins = np.arange(-7.5, 7.5, 1) - paxes = py.subplot(Nrows, Ncols, ind) + paxes = plt.subplot(Nrows, Ncols, ind) id = np.where(diffY < 0)[0] sig[id] = -1.*sig[id] - (n, b, p) = py.hist(sigX, bins, histtype='stepfilled', color='b', label='X') - py.setp(p, 'facecolor', 'b') - (n, b, p) = py.hist(sigY, bins, histtype='step', color='r', label='Y') - py.axis([-7, 7, 0, 8], fontsize=10) - py.legend() - py.xlabel('Residuals (sigma)', fontsize=fontsize1) - py.ylabel('Number of Epochs', fontsize=fontsize1) + (n, b, p) = plt.hist(sigX, bins, histtype='stepfilled', color='b', label='X') + plt.setp(p, 'facecolor', 'b') + (n, b, p) = plt.hist(sigY, bins, histtype='step', color='r', label='Y') + plt.axis([-7, 7, 0, 8], fontsize=10) + plt.legend() + plt.xlabel('Residuals (sigma)', fontsize=fontsize1) + plt.ylabel('Number of Epochs', fontsize=fontsize1) ########## # @@ -901,9 +906,9 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', # ########## if (radial == True): - py.clf() + plt.clf() - dateTicLoc = py.MultipleLocator(3) + dateTicLoc = plt.MultipleLocator(3) maxErr = np.array([rerr, terr]).max() resTicRng = [-3*maxErr, 3*maxErr] @@ -912,83 +917,83 @@ def plotStar(starNames, rootDir='./', align='align/align_d_rms_1000_abs_t', fmtX = FormatStrFormatter('%5i') fmtY = FormatStrFormatter('%6.2f') - paxes = py.subplot(3,2,1) - py.plot(time, fitLineR, 'b-') - py.plot(time, fitLineR + fitSigR, 'b--') - py.plot(time, fitLineR - fitSigR, 'b--') - py.errorbar(time, r, yerr=rerr, fmt='k.') - rng = py.axis() - py.axis(dateTicRng + [rng[2], rng[3]]) - py.xlabel('Date (yrs)') - py.ylabel('R (pix)') + paxes = plt.subplot(3,2,1) + plt.plot(time, fitLineR, 'b-') + plt.plot(time, fitLineR + fitSigR, 'b--') + plt.plot(time, fitLineR - fitSigR, 'b--') + plt.errorbar(time, r, yerr=rerr, fmt='k.') + rng = plt.axis() + plt.axis(dateTicRng + [rng[2], rng[3]]) + plt.xlabel('Date (yrs)') + plt.ylabel('R (pix)') paxes.xaxis.set_major_formatter(fmtX) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.yaxis.set_major_formatter(fmtY) - paxes = py.subplot(3, 2, 2) - py.plot(time, fitLineT, 'b-') - py.plot(time, fitLineT + fitSigT, 'b--') - py.plot(time, fitLineT - fitSigT, 'b--') - py.errorbar(time, t, yerr=terr, fmt='k.') - rng = py.axis() - py.axis(dateTicRng + [rng[2], rng[3]]) - py.xlabel('Date (yrs)') - py.ylabel('T (pix)') + paxes = plt.subplot(3, 2, 2) + plt.plot(time, fitLineT, 'b-') + plt.plot(time, fitLineT + fitSigT, 'b--') + plt.plot(time, fitLineT - fitSigT, 'b--') + plt.errorbar(time, t, yerr=terr, fmt='k.') + rng = plt.axis() + plt.axis(dateTicRng + [rng[2], rng[3]]) + plt.xlabel('Date (yrs)') + plt.ylabel('T (pix)') paxes.xaxis.set_major_formatter(fmtX) paxes.get_xaxis().set_major_locator(dateTicLoc) paxes.yaxis.set_major_formatter(fmtY) - paxes = py.subplot(3, 2, 3) - py.plot(time, np.zeros(len(time)), 'b-') - py.plot(time, fitSigR, 'b--') - py.plot(time, -fitSigR, 'b--') - py.errorbar(time, r - fitLineR, yerr=rerr, fmt='k.') - py.axis(dateTicRng + resTicRng) - py.xlabel('Date (yrs)') - py.ylabel('R Residuals (pix)') + paxes = plt.subplot(3, 2, 3) + plt.plot(time, np.zeros(len(time)), 'b-') + plt.plot(time, fitSigR, 'b--') + plt.plot(time, -fitSigR, 'b--') + plt.errorbar(time, r - fitLineR, yerr=rerr, fmt='k.') + plt.axis(dateTicRng + resTicRng) + plt.xlabel('Date (yrs)') + plt.ylabel('R Residuals (pix)') paxes.get_xaxis().set_major_locator(dateTicLoc) - paxes = py.subplot(3, 2, 4) - py.plot(time, np.zeros(len(time)), 'b-') - py.plot(time, fitSigT, 'b--') - py.plot(time, -fitSigT, 'b--') - py.errorbar(time, t - fitLineT, yerr=terr, fmt='k.') - py.axis(dateTicRng + resTicRng) - py.xlabel('Date (yrs)') - py.ylabel('T Residuals (pix)') + paxes = plt.subplot(3, 2, 4) + plt.plot(time, np.zeros(len(time)), 'b-') + plt.plot(time, fitSigT, 'b--') + plt.plot(time, -fitSigT, 'b--') + plt.errorbar(time, t - fitLineT, yerr=terr, fmt='k.') + plt.axis(dateTicRng + resTicRng) + plt.xlabel('Date (yrs)') + plt.ylabel('T Residuals (pix)') paxes.get_xaxis().set_major_locator(dateTicLoc) bins = np.arange(-7, 7, 1) - py.subplot(3, 2, 5) - (n, b, p) = py.hist(sigR, bins) - py.setp(p, 'facecolor', 'k') - py.axis([-5, 5, 0, 20]) - py.xlabel('T Residuals (sigma)') - py.ylabel('Number of Epochs') - - py.subplot(3, 2, 6) - (n, b, p) = py.hist(sigT, bins) - py.axis([-5, 5, 0, 20]) - py.setp(p, 'facecolor', 'k') - py.xlabel('Y Residuals (sigma)') - py.ylabel('Number of Epochs') - - py.subplots_adjust(wspace=0.4, hspace=0.4, right=0.95, top=0.95) - py.savefig(rootDir+'plots/plotStarRadial_' + starName + '.png') - py.show() + plt.subplot(3, 2, 5) + (n, b, p) = plt.hist(sigR, bins) + plt.setp(p, 'facecolor', 'k') + plt.axis([-5, 5, 0, 20]) + plt.xlabel('T Residuals (sigma)') + plt.ylabel('Number of Epochs') + + plt.subplot(3, 2, 6) + (n, b, p) = plt.hist(sigT, bins) + plt.axis([-5, 5, 0, 20]) + plt.setp(p, 'facecolor', 'k') + plt.xlabel('Y Residuals (sigma)') + plt.ylabel('Number of Epochs') + + plt.subplots_adjust(wspace=0.4, hspace=0.4, right=0.95, top=0.95) + plt.savefig(rootDir+'plots/plotStarRadial_' + starName + '.png') + plt.show() title = rootDir.split('/')[-2] - py.suptitle(title, x=0.5, y=0.97) + plt.suptitle(title, x=0.5, y=0.97) if Nstars == 1: - py.subplots_adjust(wspace=0.4, hspace=0.4, left = 0.15, bottom = 0.1, right=0.9, top=0.9) - py.savefig(rootDir+'plots/plotStar_' + starName + '.png') + plt.subplots_adjust(wspace=0.4, hspace=0.4, left = 0.15, bottom = 0.1, right=0.9, top=0.9) + plt.savefig(rootDir+'plots/plotStar_' + starName + '.png') else: - py.subplots_adjust(wspace=0.6, hspace=0.6, left = 0.08, bottom = 0.05, right=0.95, top=0.90) - py.savefig(rootDir+'plots/plotStar_all.png') - py.show() + plt.subplots_adjust(wspace=0.6, hspace=0.6, left = 0.08, bottom = 0.05, right=0.95, top=0.90) + plt.savefig(rootDir+'plots/plotStar_all.png') + plt.show() - py.show() + plt.show() print('Fubar') @@ -1051,7 +1056,7 @@ def plot_pm_error(tab): plt.legend() plt.xlabel('Mag') plt.ylabel('PM Error (mas/yr)') - + plt.show() return def plot_mag_error(tab): @@ -3607,8 +3612,8 @@ def plot_sky(stars_tab, foo = cnorm(yearsInt[ee]) colorList.append( cmap(cnorm(yearsInt[ee])) ) - py.close(2) - fig = py.figure(2, figsize=(13,10)) + plt.close(2) + fig = plt.figure(2, figsize=(13,10)) previousYear = 0.0 @@ -3646,13 +3651,13 @@ def plot_sky(stars_tab, label = '_nolegend_' if plot_errors: - (line, foo1, foo2) = py.errorbar(x, y, xerr=xe, yerr=ye, + (line, foo1, foo2) = plt.errorbar(x, y, xerr=xe, yerr=ye, color=colorList[ee], fmt='^', markeredgecolor=colorList[ee], markerfacecolor=colorList[ee], label=label, picker=4) else: - (line, foo1, foo2) = py.errorbar(x, y, xerr=None, yerr=None, + (line, foo1, foo2) = plt.errorbar(x, y, xerr=None, yerr=None, color=colorList[ee], fmt='^', markeredgecolor=colorList[ee], markerfacecolor=colorList[ee], @@ -3670,19 +3675,19 @@ def plot_sky(stars_tab, point_labels[line] = points_info foo = PrintSelected(point_labels, fig, stars_tab, mag_range, manual_print=manual_print) - py.connect('pick_event', foo) + plt.connect('pick_event', foo) xlo = xcenter + (range) xhi = xcenter - (range) ylo = ycenter - (range) yhi = ycenter + (range) - py.axis('equal') - py.axis([xlo, xhi, ylo, yhi]) - py.xlabel('R.A. Offset from Sgr A* (arcsec)') - py.ylabel('Dec. Offset from Sgr A* (arcsec)') + plt.axis('equal') + plt.axis([xlo, xhi, ylo, yhi]) + plt.xlabel('R.A. Offset from Sgr A* (arcsec)') + plt.ylabel('Dec. Offset from Sgr A* (arcsec)') - py.legend(handles=epochs_legend, numpoints=1, loc='lower left', fontsize=12) + plt.legend(handles=epochs_legend, numpoints=1, loc='lower left', fontsize=12) if show_names: xpos = stars_tab['x0'] @@ -3690,16 +3695,16 @@ def plot_sky(stars_tab, goodind = np.where((xpos <= xlo) & (xpos >= xhi) & (ypos >= ylo) & (ypos <= yhi))[0] for ind in goodind: - py.text(xpos[ind], ypos[ind], stars_tab['name'][ind], size=10) + plt.text(xpos[ind], ypos[ind], stars_tab['name'][ind], size=10) if saveplot: - py.show(block=0) + plt.show(block=0) if (center_star != None): - py.savefig('plot_sky_' + center_star + '.png') + plt.savefig('plot_sky_' + center_star + '.png') else: - py.savefig('plot_sky.png') + plt.savefig('plot_sky.png') else: - py.show() + plt.show() return From f0e478cf0b0396f850e694771e3af6a969c2c1dc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Fri, 7 Nov 2025 12:51:14 -0800 Subject: [PATCH 09/29] Minor fix: Add assertion message; Add times into ref_table meta data; Update trans_positions --- flystar/align.py | 19 ++++++++++++------- 1 file changed, 12 insertions(+), 7 deletions(-) diff --git a/flystar/align.py b/flystar/align.py index 7b00ba0..152ceac 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -241,15 +241,15 @@ def = None. If not None, then this should contain an array or list of transform def fix_iterable_conditions(self): if not np.iterable(self.dr_tol): self.dr_tol = np.repeat(self.dr_tol, self.iters) - assert len(self.dr_tol) == self.iters + assert len(self.dr_tol) == self.iters, f'len(dr_tol)={len(self.dr_tol)} != iters={self.iters}' if not np.iterable(self.dm_tol): self.dm_tol = np.repeat(self.dm_tol, self.iters) - assert len(self.dm_tol) == self.iters + assert len(self.dm_tol) == self.iters, f'len(dm_tol)={len(self.dm_tol)} != iters={self.iters}' if not np.iterable(self.outlier_tol): self.outlier_tol = np.repeat(self.outlier_tol, self.iters) - assert len(self.outlier_tol) == self.iters + assert len(self.outlier_tol) == self.iters, f'len(outlier_tol)={len(self.outlier_tol)} != iters={self.iters}' if self.mag_lim is None: self.mag_lim = np.repeat([[None, None]], len(self.star_lists), axis=0) @@ -367,6 +367,10 @@ def fit(self): if self.iter_callback != None: self.iter_callback(self.ref_table, nn) + # Add times into ref_table meta data + complete_times = np.array([np.unique(col[~np.isnan(col)])[0] for col in self.ref_table['t'].T]) + self.ref_table.meta['LIST_TIMES'] = complete_times + if self.save_path: with open(self.save_path, 'wb') as file: pickle.dump(self, file) @@ -504,7 +508,7 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar dy=(star_t['y'] - star_r['y']) * 1e3, dm=(star_t['m'] - star_r['m']), xo=star_s['x'], yo=star_s['y'], mo=star_s['m'])) - + idx_lis, idx_ref, dr, dm = match.match(star_list_T['x'], star_list_T['y'], star_list_T['m'], ref_list['x'], ref_list['y'], ref_list['m'], dr_tol=dr_tol, dm_tol=dm_tol, verbose=self.verbose) @@ -515,7 +519,8 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar ## Make plot, if desired plots.trans_positions(ref_list, ref_list[idx_ref], star_list_T, star_list_T[idx_lis], - fileName='{0}'.format(star_list_T['t'][0])) + save_path=f"{self.save_path}/Transformed_Positions_{star_list_T['t'][0]}.png" if self.save_path else None, + show_plot=False) ### Update the observed (but transformed) values in the reference table. self.update_ref_table_from_list(star_list, star_list_T, ii, idx_ref, idx_lis, idx2) @@ -1424,7 +1429,7 @@ def __init__(self, ref_list, list_of_starlists, iters=2, If different from None, it indicates the minimum and maximum magnitude on the catalogs for finding the transformations. Note, if you want specify the mag_lim separately for each list and each iteration, you need to pass in a 2D array that - has shape (N_lists, 2). + has shape (N_lists, N_iters). ref_mag_lim : array If different from None, it indicates the minimum and maximum magnitude @@ -2485,7 +2490,7 @@ def transform_from_object(starlist, transform): keys = list(starlist.keys()) # Check to see if velocities or motion_model are present in starlist. - vel = ('vx' in keys)and ~("motion_model_input" in keys) + vel = ('vx' in keys) and ("motion_model_input" not in keys) mot = ("motion_model_input" in keys) # If the only motion models used are Fixed and Linear, we can still transform velocities. if mot: From 7b010034e7257ed3c6e64599c687e376ad7c92a0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Fri, 7 Nov 2025 12:52:02 -0800 Subject: [PATCH 10/29] Minor fix: Update startables accordingly with motion model --- flystar/startables.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/flystar/startables.py b/flystar/startables.py index 422f9a7..8f7a397 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -845,13 +845,13 @@ def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scip fixed_params = [self[par][ss] for par in mod.fixed_param_names] # Fit for the best parameters - params, param_errs = mod.fit_motion_model(t, x, y, xe, ye, t0, bootstrap=bootstrap, + params, param_errs, chi2_x, chi2_y = mod.fit_motion_model(t, x, y, xe, ye, t0, bootstrap=bootstrap, weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma) - chi2_x,chi2_y = mod.get_chi2(params,fixed_params, t,x,y,xe,ye) + # chi2_x,chi2_y = mod.get_chi2(params,fixed_params, t,x,y,xe,ye) self['chi2_x'][ss]=chi2_x self['chi2_y'][ss]=chi2_y self['n_params'][ss] = mod.n_params - + # Save parameters and errors to table. for pp in range(len(mod.fitter_param_names)): par = mod.fitter_param_names[pp] From 289150ddf5b054e539e8e56df0b2de16d1092730 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Fri, 7 Nov 2025 13:48:53 -0800 Subject: [PATCH 11/29] Revert class meta definitions --- flystar/motion_model.py | 58 +++++++++++++++++++++++++---------------- 1 file changed, 36 insertions(+), 22 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 3c5069c..27d84af 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -129,14 +129,15 @@ class Fixed(MotionModel): A non-moving motion model for a star on the sky. """ + n_pts_req = 1 + n_params = 1 + fitter_param_names = ['x0','y0'] + fixed_param_names = [] + def __init__(self, **kwargs): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() - self.n_pts_req = 1 - self.n_params = 1 - self.fitter_param_names = ['x0','y0'] - self.fixed_param_names = [] return def get_pos_at_time(self, fit_params, fixed_params, t): @@ -200,17 +201,19 @@ class Linear(MotionModel): """ A 2D linear motion model for a star on the sky. """ + + n_pts_req = 2 + n_params = 2 + fitter_param_names = ['x0', 'vx', 'y0', 'vy'] + fixed_param_names = ['t0'] + def __init__(self, **kwargs): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() - self.n_pts_req = 2 - self.n_params = 2 - self.fitter_param_names = ['x0', 'vx', 'y0', 'vy'] - self.fixed_param_names = ['t0'] return - + def get_pos_at_time(self, fit_params, fixed_params, t): fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) @@ -316,15 +319,16 @@ class Acceleration(MotionModel): """ A 2D accelerating motion model for a star on the sky. """ + n_pts_req = 4 # TODO: consider special case for 3 pts + n_params = 3 + fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] + fixed_param_names = ['t0'] + def __init__(self, x0=0, vx0=0, ax=0, y0=0, vy0=0, ay=0, t0=None, x0_err=0, vx0_err=0, ax_err=0, y0_err=0, vy0_err=0, ay_err=0, **kwargs): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() - self.n_pts_req = 4 # TODO: consider special case for 3 pts - self.n_params = 3 - self.fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] - self.fixed_param_names = ['t0'] return def get_pos_at_time(self, fit_params, fixed_params, t): @@ -396,17 +400,19 @@ class Parallax(MotionModel): Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ + + n_pts_req = 4 + n_params = 3 + fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] + fixed_param_names = ['t0'] + fixed_meta_data = ['RA','Dec','PA','obs'] + def __init__(self, RA, Dec, PA=0.0, obs='earth', **kwargs): self.RA = RA self.Dec = Dec self.PA = PA self.obs = obs self.plx_vector_cached = None - self.n_pts_req = 4 - self.n_params = 3 - self.fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] - self.fixed_param_names = ['t0'] - self.fixed_meta_data = ['RA','Dec','PA','obs'] return def get_parallax_vector(self, t_mjd): @@ -549,11 +555,19 @@ def get_one_motion_model_param_names(motion_model_name, with_errors=True, with_f Optionally, include fixed and error parameters (included by default). """ def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_fixed=True): + motion_model_map = { + 'Fixed': Fixed, + 'Linear': Linear, + 'Acceleration': Acceleration, + 'Parallax': Parallax + } + list_of_parameters = [] - all_motion_models = [eval(mm) for mm in np.unique(motion_model_list).tolist()] - for aa in range(len(all_motion_models)): - param_names = getattr(all_motion_models[aa], 'fitter_param_names') - param_fixed_names = getattr(all_motion_models[aa], 'fixed_param_names') + # all_motion_models = [eval(mm) for mm in np.unique(motion_model_list).tolist()] + for mm in range(len(motion_model_list)): + motion_model = motion_model_map[motion_model_list[mm]] + param_names = motion_model.fitter_param_names + param_fixed_names = motion_model.fixed_param_names param_err_names = [par+'_err' for par in param_names] list_of_parameters += param_names From 443c4bdff1ddbe09f980acc7a8d563d69998a178 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Tue, 11 Nov 2025 20:03:44 -0800 Subject: [PATCH 12/29] Add get_sigma --- flystar/motion_model.py | 32 +++++++++++++++++++++----------- 1 file changed, 21 insertions(+), 11 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index fd9f0cd..e38d6df 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -50,7 +50,16 @@ def run_fit( ): # Run a single fit (used both for overall fit + bootstrap iterations) pass - + + def get_sigma(self, xe, ye, weighting='var'): + if weighting=='std': + return xe**0.5, ye**0.5 + elif weighting=='var': + return xe, ye + else: + warnings.warn("Invalid weighting, using default weighting scheme var.", UserWarning) + return xe, ye + def get_weights(self, xe, ye, weighting='var'): if weighting=='std': return 1./xe, 1./ye @@ -74,7 +83,7 @@ def fit_motion_model( to determine new parameters for this motion model (MM). Best-fit parameters will be returned along with uncertainties. """ - params, param_errs, chi2x, chi2y = self.run_fit( + params, param_errs, chi2_x, chi2_y = self.run_fit( t, x, y, xe, ye, t0=t0, weighting=weighting, use_scipy=use_scipy, @@ -82,6 +91,7 @@ def fit_motion_model( fill_value=fill_value ) + # Bootstrap errors if bootstrap > 0 and len(x) > (self.n_pts_req): edx = np.arange(len(x), dtype=int) bb_params = [] @@ -101,12 +111,12 @@ def fit_motion_model( # Save the errors from the bootstrap param_errs = np.std(bb_params, axis=0) - + # Account for odd case inf_errs = [np.all(arr==np.inf) for arr in np.transpose(np.array(bb_params_errs))] param_errs[inf_errs] = 0.0 - return params, param_errs, chi2x, chi2y + return params, param_errs, chi2_x, chi2_y def get_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): """ @@ -217,7 +227,7 @@ def __init__(self, **kwargs): def get_pos_at_time(self, fit_params, fixed_params, t): fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t-fixed_params_dict['t0'] + dt = t - fixed_params_dict['t0'] return fit_params_dict['x0'] + fit_params_dict['vx']*dt, fit_params_dict['y0'] + fit_params_dict['vy']*dt def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], @@ -234,7 +244,7 @@ def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], y = y0 + dt*vy x_err = np.hypot(x0_err, vx_err*dt) y_err = np.hypot(y0_err, vy_err*dt) - return x,y,x_err,y_err + return x, y, x_err, y_err def run_fit( self, t, x, y, xe, ye, t0, @@ -245,15 +255,15 @@ def run_fit( fill_value=np.inf ): dt = t - t0 - x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) + sigma_x, sigma_y = self.get_sigma(xe, ye, weighting=weighting) if params_guess is None: params_guess = [x.mean(), 0., y.mean(), 0.] if use_scipy: def linear(t, c0, c1): return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/np.sqrt(x_wt), absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/np.sqrt(y_wt), absolute_sigma=absolute_sigma) + x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=sigma_x, absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=sigma_y, absolute_sigma=absolute_sigma) x0, vx = x_opt y0, vy = y_opt x0e, vxe = np.sqrt(x_cov.diagonal()) @@ -269,13 +279,13 @@ def linear(t, c0, c1): dt = np.array(dt) X_mat_t = np.vander(dt, 2) # x calculation - W_mat_x = np.diag(x_wt) + W_mat_x = np.diag(1 / sigma_x**2) XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution # y calculation - W_mat_y = np.diag(y_wt) + W_mat_y = np.diag(1 / sigma_y**2) XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution From a1ef471d1339816be94876531af6c4a88d1f04c1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Tue, 11 Nov 2025 20:15:31 -0800 Subject: [PATCH 13/29] Revert back to get_weight --- flystar/motion_model.py | 21 ++++++--------------- 1 file changed, 6 insertions(+), 15 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index e38d6df..90d1442 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -50,16 +50,7 @@ def run_fit( ): # Run a single fit (used both for overall fit + bootstrap iterations) pass - - def get_sigma(self, xe, ye, weighting='var'): - if weighting=='std': - return xe**0.5, ye**0.5 - elif weighting=='var': - return xe, ye - else: - warnings.warn("Invalid weighting, using default weighting scheme var.", UserWarning) - return xe, ye - + def get_weights(self, xe, ye, weighting='var'): if weighting=='std': return 1./xe, 1./ye @@ -255,15 +246,15 @@ def run_fit( fill_value=np.inf ): dt = t - t0 - sigma_x, sigma_y = self.get_sigma(xe, ye, weighting=weighting) + x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) if params_guess is None: params_guess = [x.mean(), 0., y.mean(), 0.] if use_scipy: def linear(t, c0, c1): return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=sigma_x, absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=sigma_y, absolute_sigma=absolute_sigma) + x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) x0, vx = x_opt y0, vy = y_opt x0e, vxe = np.sqrt(x_cov.diagonal()) @@ -279,13 +270,13 @@ def linear(t, c0, c1): dt = np.array(dt) X_mat_t = np.vander(dt, 2) # x calculation - W_mat_x = np.diag(1 / sigma_x**2) + W_mat_x = np.diag(x_wt) XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution # y calculation - W_mat_y = np.diag(1 / sigma_y**2) + W_mat_y = np.diag(y_wt) XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution From 1a7481d45e3ad44035c4bf2a8ca7dafaac5c9ba8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Wed, 12 Nov 2025 23:34:02 -0800 Subject: [PATCH 14/29] Major Update: Update data fitting logic: Compare observed data points with model parameters. If n_obs < n_params, return fill value for the parameters and infinity for the uncertainties; Otherwise, calculate parameters normally. If n_obs = n_params and absolute_sigma=False, return infinity for uncertainties (Same behavior as scipy curve fit). --- flystar/motion_model.py | 506 +++++++++++++++++++++++++++------------- 1 file changed, 343 insertions(+), 163 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 90d1442..939cd0b 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -7,8 +7,6 @@ import warnings class MotionModel(ABC): - # Number of data points required to fit model - n_pts_req = 0 # Degrees of freedom for model n_params = 0 @@ -33,7 +31,7 @@ def __init__(self, *args, **kwargs): setattr(self, param, np.array([param_var]))''' return - def get_pos_at_time(self, params, t): + def get_pos_at_time(self, fit_params, fixed_params, t): #return x, y pass @@ -46,10 +44,11 @@ def run_fit( weighting='var', use_scipy=True, absolute_sigma=True, - fill_value=np.inf + fill_value=np.nan, + verbose=True ): # Run a single fit (used both for overall fit + bootstrap iterations) - pass + return np.full(self.n_params, fill_value), np.full(self.n_params, np.inf), np.nan, np.nan def get_weights(self, xe, ye, weighting='var'): if weighting=='std': @@ -66,36 +65,74 @@ def fit_motion_model( weighting='var', use_scipy=True, absolute_sigma=True, - fill_value=np.inf, - rng=None + fill_value=np.nan, + verbose=True, + seed=None ): - """ - Fit the input positions on the sky and errors - to determine new parameters for this motion model (MM). - Best-fit parameters will be returned along with uncertainties. + """Fit stellar motion parameters + + Parameters + ---------- + t : array-like + Times of measurements + x : array-like + x-coordinates + y : array-like + y-coordinates + xe : array-like + Uncertainty of x + ye : array-like + Uncertainty of y + t0 : array-like + Reference time for fitting, i.e. dt = t - t0 will be used in fitting + bootstrap : int, optional + Bootstrapping uncertainties, by default 0 + weighting : str, optional + Use standard error weighting ('std': w=1/xe, 1/ye) or variance weighting ('var': w=1/xe**2, 1/ye**2), by default 'var' + use_scipy : bool, optional + Use scipy for optmization. Otherwise, use linear algebraic solution (Linear model only), which is faster for < 300 epochs, by default True + absolute_sigma : bool, optional + Absolute sigma. See scipy.optimize.curve_fit for details, by default True + fill_value : float, optional + Fill value for parameters when not enough data points to fit model, by default np.nan + verbose : bool, optional + Print warning messages, by default True + seed : int, optional + Seed for the random number generator, by default None + Returns + ------- + params, params_err, chi2_x, chi2_y + Parameters, uncertainties, and chi squares. The corresponding parameter names are in self.fitter_param_names. """ params, param_errs, chi2_x, chi2_y = self.run_fit( t, x, y, xe, ye, t0=t0, weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma, - fill_value=fill_value + fill_value=fill_value, + verbose=verbose ) - + if seed is not None: + rng = np.random.default_rng(seed) + else: + rng = np.random.default_rng() + # Bootstrap errors - if bootstrap > 0 and len(x) > (self.n_pts_req): - edx = np.arange(len(x), dtype=int) + n_obs = len(t) + if bootstrap > 0 and n_obs > (self.n_params): + edx = np.arange(n_obs, dtype=int) bb_params = [] bb_params_errs = [] for bb in range(bootstrap): - bdx = np.random.choice(edx, len(x), replace=False) + bdx = rng.choice(edx, n_obs, replace=False) params_bdx, param_errs_bdx, chi2x_bdx, chi2y_bdx = self.run_fit( t[bdx], x[bdx], y[bdx], xe[bdx], ye[bdx], t0=t0, weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma, params_guess=params, - fill_value=fill_value + fill_value=fill_value, + verbose=verbose ) bb_params.append(params_bdx) bb_params_errs.append(param_errs_bdx) @@ -125,12 +162,51 @@ def get_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): chi2x, chi2y = chi2x / dof, chi2y / dof return chi2x, chi2y +class Empty(MotionModel): + n_params = 0 + fitter_param_names = [] + fixed_param_names = [] + + def __init__(self, **kwargs): + """Empty motion model, returns nan for values and inf for uncertainties. + """ + super().__init__() + return + + def get_pos_at_time(self, fit_params, fixed_params, t): + if hasattr(t, "__len__"): + return np.full(len(t), np.nan), np.full(len(t), np.nan) + else: + return np.nan, np.nan + + def get_batch_pos_at_time(self,t, + x0=[],y0=[],t0=[], + x0_err=[], y0_err=[]): + if hasattr(t, "__len__"): + return np.full((len(x0), len(t)), np.nan), np.full((len(y0), len(t)), np.nan), np.full((len(x0), len(t)), np.nan), np.full((len(y0), len(t)), np.nan) + else: + return np.nan, np.nan, np.nan, np.nan + + def run_fit( + self, t, x, y, xe, ye, t0, + weighting='var', + use_scipy=True, + absolute_sigma=True, + fill_value=np.nan, + verbose=True + ): + if verbose: + warnings.warn(f"Empty data cannot be fit. Setting parameters to {fill_value} and uncertainties to np.inf.", OptimizeWarning, stacklevel=2) + params = np.full(self.n_params, fill_value) + param_errors = np.full(self.n_params, np.inf) + return params, param_errors, np.nan, np.nan + + class Fixed(MotionModel): """ A non-moving motion model for a star on the sky. """ - n_pts_req = 1 n_params = 1 fitter_param_names = ['x0','y0'] fixed_param_names = [] @@ -154,7 +230,7 @@ def get_batch_pos_at_time(self,t, if hasattr(t, "__len__"): return np.repeat(x0[:,np.newaxis],len(t),axis=1), np.repeat(y0[:,np.newaxis],len(t),axis=1), np.repeat(x0_err[:,np.newaxis],len(t),axis=1), np.repeat(y0_err[:,np.newaxis],len(t),axis=1) else: - return x0,y0,x0_err,y0_err + return x0, y0, x0_err, y0_err def run_fit( self, t, x, y, xe, ye, t0, @@ -162,26 +238,40 @@ def run_fit( use_scipy=True, absolute_sigma=True, params_guess=None, - fill_value=np.inf + fill_value=np.nan, + verbose=True ): - if not use_scipy: - Warning("Fixed model has no non-scipy fitter option. Running with scipy.") - # Handle single data point case - if len(x)==1: - x0, y0, x0e, y0e = x[0], y[0], xe[0], ye[0] - - else: - x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) - x0 = np.average(x, weights=x_wt) - x0e = np.sqrt(np.average((x - x0)**2, weights=x_wt)) - y0 = np.average(y, weights=y_wt) - y0e = np.sqrt(np.average((y - y0)**2, weights=y_wt)) + if verbose and (not use_scipy): + warnings.warn("Fixed model has no non-scipy fitter option. Running with scipy.") + + n_obs = len(t) + degree_of_freedom = n_obs - self.n_params + # Not enough data points to fit model + if degree_of_freedom < 0: + if verbose: + warnings.warn( + f'Not enough data points to fit model. Setting parameters to {fill_value} and uncertainties to np.inf.', + OptimizeWarning, stacklevel=2 + ) + params = np.full(self.n_params, fill_value) + param_errors = np.full(self.n_params, np.inf) + return params, param_errors, np.nan, np.nan + + # degree_of_freedom >= 0 + # Calculate weighted average position + x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) + x_wt_norm = x_wt / np.sum(x_wt) + y_wt_norm = y_wt / np.sum(y_wt) + x0 = np.average(x, weights=x_wt) + x0e = (np.sum(x_wt_norm**2 * xe**2))**0.5 / n_obs # Error propagation + y0 = np.average(y, weights=y_wt) + y0e = (np.sum(y_wt_norm**2 * ye**2))**0.5 / n_obs # Error propagation params = np.array([x0, y0]) param_errors = np.array([x0e, y0e]) chi2x, chi2y = self.get_chi2(params, [], t, x, y, xe, ye) - degree_of_freedom = len(x) - 1 + if not absolute_sigma: if degree_of_freedom > 0: reduced_chi2x = chi2x / degree_of_freedom @@ -190,11 +280,13 @@ def run_fit( param_errors[0] *= reduced_chi2x**0.5 param_errors[1] *= reduced_chi2y**0.5 else: + # degree_of_freedom == 0, as < 0 case already handled above warnings.warn( - f'Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value {fill_value}.', + f'Degree of freedom < 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value np.inf.', OptimizeWarning, stacklevel=2 ) - param_errors = np.full_like(param_errors, fill_value) + # Set parameter uncertainties to np.inf, same behavior as scipy.optimize.curve_fit + param_errors = np.full_like(param_errors, np.inf) return params, param_errors, chi2x, chi2y @@ -202,8 +294,6 @@ class Linear(MotionModel): """ A 2D linear motion model for a star on the sky. """ - - n_pts_req = 2 n_params = 2 fitter_param_names = ['x0', 'vx', 'y0', 'vy'] fixed_param_names = ['t0'] @@ -224,13 +314,13 @@ def get_pos_at_time(self, fit_params, fixed_params, t): def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], x0_err=[],vx_err=[], y0_err=[],vy_err=[], **kwargs): if hasattr(t, "__len__"): - dt = t-t0[:,np.newaxis] + dt = t - t0[:,np.newaxis] x = x0[:,np.newaxis] + dt*vx[:,np.newaxis] y = y0[:,np.newaxis] + dt*vy[:,np.newaxis] x_err = np.hypot(x0_err[:,np.newaxis], vx_err[:,np.newaxis]*dt) y_err = np.hypot(y0_err[:,np.newaxis], vy_err[:,np.newaxis]*dt) else: - dt = t-t0 + dt = t - t0 x = x0 + dt*vx y = y0 + dt*vy x_err = np.hypot(x0_err, vx_err*dt) @@ -243,8 +333,23 @@ def run_fit( use_scipy=True, absolute_sigma=True, params_guess=None, - fill_value=np.inf + fill_value=np.nan, + verbose=True ): + n_obs = len(t) + degree_of_freedom = n_obs - self.n_params + # Not enough data points to fit model + if degree_of_freedom < 0: + if verbose: + warnings.warn( + f'Not enough data points to fit model. Setting parameters to {fill_value} and uncertainties to np.inf.', + OptimizeWarning, stacklevel=2 + ) + params = np.full(self.n_params, fill_value) + param_errors = np.full(self.n_params, np.inf) + return params, param_errors, np.nan, np.nan + + # degree_of_freedom >= 0 dt = t - t0 x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) if params_guess is None: @@ -290,8 +395,7 @@ def linear(t, c0, c1): # Does not use get_chi2 to accelerate calculation residual_x = x - X_mat_t @ popt_x residual_y = y - X_mat_t @ popt_y - - + chi2_x = residual_x.T @ W_mat_x @ residual_x chi2_y = residual_y.T @ W_mat_y @ residual_y @@ -299,20 +403,21 @@ def linear(t, c0, c1): param_errors = np.array([x0e, vxe, y0e, vye]) if not absolute_sigma: - degree_of_freedom = len(x) - 2 if degree_of_freedom > 0: - reduced_chi2_x = chi2_x/(len(x) - 2) - reduced_chi2_y = chi2_y/(len(x) - 2) + reduced_chi2_x = chi2_x / degree_of_freedom + reduced_chi2_y = chi2_y / degree_of_freedom param_errors[0:2] *= reduced_chi2_x**0.5 param_errors[2:4] *= reduced_chi2_y**0.5 else: + # degree_of_freedom == 0, as < 0 case already handled above warnings.warn( - f'Degree of freedom <= 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value {fill_value}.', + f'Degree of freedom < 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value np.inf.', OptimizeWarning, stacklevel=2 ) - param_errors = np.full_like(param_errors, fill_value) + # Set parameter uncertainties to np.inf, same behavior as scipy.optimize.curve_fit + param_errors = np.full_like(param_errors, np.inf) return params, param_errors, chi2_x, chi2_y @@ -320,7 +425,6 @@ class Acceleration(MotionModel): """ A 2D accelerating motion model for a star on the sky. """ - n_pts_req = 4 # TODO: consider special case for 3 pts n_params = 3 fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] fixed_param_names = ['t0'] @@ -335,7 +439,7 @@ def __init__(self, x0=0, vx0=0, ax=0, y0=0, vy0=0, ay=0, t0=None, def get_pos_at_time(self, fit_params, fixed_params, t): fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t-fixed_params_dict['t0'] + dt = t - fixed_params_dict['t0'] x = fit_params_dict['x0'] + fit_params_dict['vx0']*dt + 0.5*fit_params_dict['ax']*dt**2 y = fit_params_dict['y0'] + fit_params_dict['vy0']*dt + 0.5*fit_params_dict['ay']*dt**2 return x, y @@ -344,18 +448,18 @@ def get_batch_pos_at_time(self,t, x0=[],vx0=[],ax=[], y0=[],vy0=[],ay=[], t0=[], x0_err=[],vx0_err=[],ax_err=[], y0_err=[],vy0_err=[],ay_err=[], **kwargs): if hasattr(t, "__len__"): - dt = t-t0[:,np.newaxis] - x = x0[:,np.newaxis] + dt*vx0[:,np.newaxis] + 0.5*dt**2*ax[:,np.newaxis] - y = y0[:,np.newaxis] + dt*vy0[:,np.newaxis] + 0.5*dt**2*ay[:,np.newaxis] - x_err = np.sqrt(x0_err[:,np.newaxis]**2 + (vx0_err[:,np.newaxis]*dt)**2 + (0.5*ax_err[:,np.newaxis]*dt**2)**2) - y_err = np.sqrt(y0_err[:,np.newaxis]**2 + (vy0_err[:,np.newaxis]*dt)**2 + (0.5*ay_err[:,np.newaxis]*dt**2)**2) + dt = t - t0[:,np.newaxis] + x = x0[:, np.newaxis] + dt * vx0[:, np.newaxis] + 0.5 * ax[:, np.newaxis] * dt**2 + y = y0[:, np.newaxis] + dt * vy0[:, np.newaxis] + 0.5 * ay[:, np.newaxis] * dt**2 + x_err = np.sqrt(x0_err[:, np.newaxis]**2 + (vx0_err[:, np.newaxis]*dt)**2 + (0.5*ax_err[:, np.newaxis]*dt**2)**2) + y_err = np.sqrt(y0_err[:, np.newaxis]**2 + (vy0_err[:, np.newaxis]*dt)**2 + (0.5*ay_err[:, np.newaxis]*dt**2)**2) else: - dt = t-t0 - x = x0 + dt*vx0 + 0.5*dt**2*ax - y = y0 + dt*vy0 + 0.5*dt**2*ay - x_err = np.sqrt(x0_err**2 + (vx0_err*dt)**2 + (0.5*ax_err*dt**2)**2) - y_err = np.sqrt(y0_err**2 + (vy0_err*dt)**2 + (0.5*ay_err*dt**2)**2) - return x,y,x_err,y_err + dt = t - t0 + x = x0 + dt * vx0 + 0.5 * ax * dt**2 + y = y0 + dt * vy0 + 0.5 * ay * dt**2 + x_err = np.sqrt(x0_err**2 + (vx0_err * dt)**2 + (0.5 * ax_err * dt**2)**2) + y_err = np.sqrt(y0_err**2 + (vy0_err * dt)**2 + (0.5 * ay_err * dt**2)**2) + return x, y, x_err, y_err def run_fit( self, t, x, y, xe, ye, t0, @@ -363,34 +467,50 @@ def run_fit( use_scipy=True, absolute_sigma=True, params_guess=None, - fill_value=np.inf + fill_value=np.nan, + verbose=True ): if not use_scipy: - Warning("Acceleration model has no non-scipy fitter option. Running with scipy.") + if verbose: + warnings.warn("Acceleration model has no non-scipy fitter option. Running with scipy.") + + n_obs = len(t) + degree_of_freedom = n_obs - self.n_params + # Not enough data points to fit model + if degree_of_freedom < 0: + if verbose: + warnings.warn( + f'Not enough data points to fit model. Setting parameters to {fill_value} and uncertainties to np.inf.', + OptimizeWarning, stacklevel=2 + ) + params = np.full(self.n_params, fill_value) + param_errors = np.full(self.n_params, np.inf) + return params, param_errors, np.nan, np.nan + + # degree_of_freedom >= 0 dt = t - t0 x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) if params_guess is None: - params_guess = [x.mean(), 0., 0., y.mean(), 0., 0.] + # Initial guess for velocity: + idx_first, idx_last = np.argmin(t), np.argmax(t) + t_span = t[idx_last] - t[idx_first] + params_guess = [x.mean(), (x[idx_last] - x[idx_first]) / t_span, 0., y.mean(), (y[idx_last] - y[idx_first]) / t_span, 0.] def accel(t, c0, c1, c2): return c0 + c1*t + 0.5*c2*t**2 - x_opt, x_cov = curve_fit(accel, dt, x, p0=np.array(params_guess[:3]), sigma=1/x_wt**0.5, absolute_sigma=True) - y_opt, y_cov = curve_fit(accel, dt, y, p0=np.array(params_guess[3:]), sigma=1/y_wt**0.5, absolute_sigma=True) - x0 = x_opt[0] - y0 = y_opt[0] - vx0 = x_opt[1] - vy0 = y_opt[1] - ax = x_opt[2] - ay = y_opt[2] - + x_opt, x_cov = curve_fit(accel, dt, x, p0=np.array(params_guess[:3]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(accel, dt, y, p0=np.array(params_guess[3:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) + x0, vx0, ax = x_opt + y0, vy0, ay = y_opt x0e, vx0e, axe = np.sqrt(x_cov.diagonal()) y0e, vy0e, aye = np.sqrt(y_cov.diagonal()) - params = [x0, vx0, ax, y0, vy0, ay] - param_errors = [x0e, vx0e, axe, y0e, vy0e, aye] + params = np.array([x0, vx0, ax, y0, vy0, ay]) + param_errors = np.array([x0e, vx0e, axe, y0e, vy0e, aye]) + chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) - return params, param_errors + return params, param_errors, chi2_x, chi2_y class Parallax(MotionModel): """ @@ -401,8 +521,6 @@ class Parallax(MotionModel): Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ - - n_pts_req = 4 n_params = 3 fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] fixed_param_names = ['t0'] @@ -473,7 +591,7 @@ def get_batch_pos_at_time(self, t, y_err = np.sqrt(y0_err**2 + (vy_err*dt)**2 + (pi_err*pvec[1])**2) except: x_err,y_err = [],[] - return x,y,x_err,y_err + return x, y, x_err, y_err def run_fit( self, t, x, y, xe, ye, t0, @@ -481,10 +599,27 @@ def run_fit( use_scipy=True, absolute_sigma=True, params_guess=None, - fill_value=np.inf + fill_value=np.nan, + verbose=True ): if not use_scipy: - Warning("Parallax model has no non-scipy fitter option. Running with scipy.") + if verbose: + warnings.warn("Parallax model has no non-scipy fitter option. Running with scipy.", UserWarning) + + n_obs = len(t) + degree_of_freedom = n_obs - self.n_params + # Not enough data points to fit model + if degree_of_freedom < 0: + if verbose: + warnings.warn( + f'Not enough data points to fit model. Setting parameters to {fill_value} and uncertainties to np.inf.', + OptimizeWarning, stacklevel=2 + ) + params = np.full(self.n_params, fill_value) + param_errors = np.full(self.n_params, np.inf) + return params, param_errors + + # degree_of_freedom >= 0 t_mjd = Time(t, format='decimalyear', scale='utc').mjd pvec = self.get_parallax_vector(t_mjd) x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) @@ -494,107 +629,152 @@ def fit_func(use_t, x0,vx, y0,vy, pi): return np.hstack([x_res, y_res]) # Initial guesses, x0,y0 as x,y averages; # vx,vy as average velocity if first and last points are perfectly measured; - # pi for 10 pc disance + # pi for 10 pc distance if params_guess is None: idx_first, idx_last = np.argmin(t), np.argmax(t) - params_guess = [x.mean(),(x[idx_last]-x[idx_first])/(t[idx_last]-t[idx_first]), - y.mean(),(y[idx_last]-y[idx_first])/(t[idx_last]-t[idx_first]), 0.1] - res = curve_fit(fit_func, t, np.hstack([x,y]), - p0=params_guess, sigma = 1.0/np.hstack([x_wt,y_wt])) + t_span = t[idx_last] - t[idx_first] + params_guess = [ + x.mean(), (x[idx_last] - x[idx_first]) / t_span, + y.mean(), (y[idx_last] - y[idx_first]) / t_span, + 0.1 + ] + res = curve_fit( + fit_func, t, np.hstack([x,y]), + p0=params_guess, sigma = 1.0/np.hstack([x_wt,y_wt]), + absolute_sigma=absolute_sigma + ) x0, vx, y0, vy, pi = res[0] x0_err, vx_err, y0_err, vy_err, pi_err = np.sqrt(np.diag(res[1])) - params = [x0, vx, y0, vy, pi] - param_errors = [x0_err, vx_err, y0_err, vy_err, pi_err] - return params, param_errors + params = np.array([x0, vx, y0, vy, pi]) + param_errors = np.array([x0_err, vx_err, y0_err, vy_err, pi_err]) + chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) -""" -Check that everything is set up properly for motion models to run and their -required metadata. -""" -def validate_motion_model_dict(motion_model_dict, startable, default_motion_model): - # Collect names of all motion models that might get used. - all_motion_model_names = ['Fixed'] - if default_motion_model is not None: - all_motion_model_names.append(default_motion_model) - if 'motion_model_input' in startable.columns: - all_motion_model_names += np.unique(startable['motion_model_input']).tolist() - if 'motion_model_used' in startable.columns: - all_motion_model_names += np.unique(startable['motion_model_used']).tolist() - all_motion_model_names = np.unique(all_motion_model_names) - - # Check whether all motion models are in the dict, and if not, try to add them - # here or raise an error. - for mm in all_motion_model_names: - if mm not in motion_model_dict: - mm_obj = eval(mm) - if len(mm_obj.fixed_meta_data)>0: - raise ValueError(f"Cannot use {mm} motion model without required metadata. Please initialize with required metadata and provide in motion_model_dict.") - else: - motion_model_dict[mm] = mm_obj() - # warnings.warn(f"Using default model/fitter for {mm}.", UserWarning) + return params, param_errors, chi2_x, chi2_y - return motion_model_dict - -""" -Get all the motion model parameters for a given motion_model_name. -Optionally, include fixed and error parameters (included by default). -""" -def get_one_motion_model_param_names(motion_model_name, with_errors=True, with_fixed=True): - mod = eval(motion_model_name) - list_of_parameters = [] - list_of_parameters += getattr(mod, 'fitter_param_names') - if with_fixed: - list_of_parameters += getattr(mod, 'fixed_param_names') - if with_errors: - list_of_parameters += [par+'_err' for par in getattr(mod, 'fitter_param_names')] - return list_of_parameters -""" -Get all the motion model parameters for all models given in motion_model_list. -Optionally, include fixed and error parameters (included by default). -""" -def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_fixed=True): +def validate_motion_models(motion_models, startable, default_motion_model): + """Validate that all the unique motion models in startable and default_motion_model are in the motion_models. If not, add available models to the list. + + Parameters + ---------- + motion_models : list of MotionModels + List of MotionModels that are expected to encompass all the motion models + startable : StarTable + Star table that possibly contains 'motion_model_input' and 'motion_model_used' + default_motion_model : MotionModel + Default MotionModel + """ motion_model_map = { 'Fixed': Fixed, 'Linear': Linear, 'Acceleration': Acceleration, 'Parallax': Parallax } + # Collect names of all motion models that might get used. + all_motion_model_names = set() + all_motion_model_names.add('Fixed') + if default_motion_model is not None: + all_motion_model_names.add(default_motion_model.__name__) + if 'motion_model_input' in startable.colnames: + all_motion_model_names.update(startable['motion_model_input'].tolist()) + if 'motion_model_used' in startable.colnames: + all_motion_model_names.update(startable['motion_model_used'].tolist()) + + # Check whether all motion models are in the list, and if not, raise an error. + all_motion_models = [motion_model_map[mm] for mm in all_motion_model_names] + for mm in all_motion_models: + if mm not in motion_models: + if len(mm.fixed_meta_data) > 0: + raise ValueError(f"Cannot use {mm} motion model without required metadata. Please initialize with required metadata and provide in motion_models.") + else: + motion_models.append(mm) + warnings.warn(f"{mm} not found in motion_models list. Added default instance.", UserWarning) + + return motion_models + + +def get_one_motion_model_param_names(motion_model, with_errors=True, with_fixed=True): + """Get all the motion model parameters + + Parameters + ---------- + motion_model : MotionModel + MotionModel instance + with_errors : bool, optional + Add uncertainty names with '_err' suffix or not, by default True + with_fixed : bool, optional + Add fixed param names with '_fixed' suffix or not, by default True + Returns + ------- + list + List of all parameter names for the motion model + """ list_of_parameters = [] - # all_motion_models = [eval(mm) for mm in np.unique(motion_model_list).tolist()] - for mm in range(len(motion_model_list)): - motion_model = motion_model_map[motion_model_list[mm]] - param_names = motion_model.fitter_param_names - param_fixed_names = motion_model.fixed_param_names - param_err_names = [par+'_err' for par in param_names] - - list_of_parameters += param_names - if with_fixed: - list_of_parameters += param_fixed_names - if with_errors: - list_of_parameters += param_err_names - return np.unique(list_of_parameters).tolist() + def list_add(name): + if name not in list_of_parameters: + list_of_parameters.append(name) + + for param in motion_model.fitter_param_names: + # Fitter params + list_add(param) + # Error params + if with_errors: + list_add(param + '_err') + # Fixed params + if with_fixed: + for param in motion_model.fixed_param_names: + list_add(param) + return list_of_parameters + -""" -Get all the motion model parameters for all models defined in this module. -Optionally, include fixed and error parameters (included by default). -""" -def get_all_motion_model_param_names(with_errors=True, with_fixed=True): +def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_fixed=True): + """Get all the motion model parameters + + Parameters + ---------- + motion_model_list : list + List of MotionModels + with_errors : bool, optional + Add uncertainty names with '_err' suffix or not, by default True + with_fixed : bool, optional + Add fixed param names with '_fixed' suffix or not, by default True + + Returns + ------- + list + List of all unique parameter names across all motion models + """ list_of_parameters = [] - all_motion_models = MotionModel.__subclasses__() - for aa in range(len(all_motion_models)): - param_names = getattr(all_motion_models[aa], 'fitter_param_names') - param_fixed_names = getattr(all_motion_models[aa], 'fixed_param_names') - param_err_names = [par+'_err' for par in param_names] - list_of_parameters += param_names + def list_add(name): + if name not in list_of_parameters: + list_of_parameters.append(name) + + for mm in motion_model_list: + for param in mm.fitter_param_names: + # Fitter params + list_add(param) + # Error params + if with_errors: + list_add(param + '_err') + # Fixed params if with_fixed: - list_of_parameters += param_fixed_names - if with_errors: - list_of_parameters += param_err_names - - return np.unique(list_of_parameters).tolist() - + for param in mm.fixed_param_names: + list_add(param) + return list(list_of_parameters) + + +def get_all_motion_model_names(with_errors=True, with_fixed=True): + return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) + +def motion_model_map(): + return { + 'Empty': Empty, + 'Fixed': Fixed, + 'Linear': Linear, + 'Acceleration': Acceleration, + 'Parallax': Parallax + } \ No newline at end of file From 77820b2ab6d28cbe519bfb7edd90a9473c6514ca Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Wed, 12 Nov 2025 23:37:32 -0800 Subject: [PATCH 15/29] Rewrite startable fit velocity function for acceleration and the new motion models. Update fitting logic: Provide multiple motion models, use the available model with the most number of parameters to fit according to the observed data points (i.e., choose the model with n_obs >= n_params). Removed motion_model_input and default_motion_model for clarity. --- flystar/startables.py | 296 ++++++++++++++++++++++++++++++++++-------- 1 file changed, 243 insertions(+), 53 deletions(-) diff --git a/flystar/startables.py b/flystar/startables.py index 8f7a397..60b8310 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -11,78 +11,74 @@ import copy from flystar import motion_model import pandas as pd +from flystar.motion_model import Empty, Fixed, Linear class StarTable(Table): - """ - A StarTable is an astropy.Table with stars matched from multiple starlists. + def __init__(self, *args, ref_list=0, **kwargs): + """ + A StarTable is an astropy.Table with stars matched from multiple starlists. - Required table columns (input as keywords): - ------------------------- - name : 1D numpy.array with shape = N_stars - List of unique names for each of the stars in the table. + Required table columns (input as keywords): + ------------------------- + name : 1D numpy.array with shape = N_stars + List of unique names for each of the stars in the table. - x : 2D numpy.array with shape = (N_stars, N_lists) - Positions of N_stars in each of N_lists in the x dimension. + x : 2D numpy.array with shape = (N_stars, N_lists) + Positions of N_stars in each of N_lists in the x dimension. - y : 2D numpy.array with shape = (N_stars, N_lists) - Positions of N_stars in each of N_lists in the y dimension. + y : 2D numpy.array with shape = (N_stars, N_lists) + Positions of N_stars in each of N_lists in the y dimension. - m : 2D numpy.array with shape = (N_stars, N_lists) - Magnitudes of N_stars in each of N_lists. + m : 2D numpy.array with shape = (N_stars, N_lists) + Magnitudes of N_stars in each of N_lists. - Optional table columns (input as keywords): - ------------------------- - motion_model : 1D numpy.array with shape = N_stars - string indicating motion model type for each star - - xe : 2D numpy.array with shape = (N_stars, N_lists) - Position uncertainties of N_stars in each of N_lists in the x dimension. + Optional table columns (input as keywords): + ------------------------- + motion_model : 1D numpy.array with shape = N_stars + string indicating motion model type for each star + + xe : 2D numpy.array with shape = (N_stars, N_lists) + Position uncertainties of N_stars in each of N_lists in the x dimension. - ye : 2D numpy.array with shape = (N_stars, N_lists) - Position uncertainties of N_stars in each of N_lists in the y dimension. + ye : 2D numpy.array with shape = (N_stars, N_lists) + Position uncertainties of N_stars in each of N_lists in the y dimension. - me : 2D numpy.array with shape = (N_stars, N_lists) - Magnitude uncertainties of N_stars in each of N_lists. + me : 2D numpy.array with shape = (N_stars, N_lists) + Magnitude uncertainties of N_stars in each of N_lists. - ep_name : 2D numpy.array with shape = (N_stars, N_lists) - Names in each epoch for each of N_stars in each of N_lists. This is - useful for tracking purposes. - - corr : 2D numpy.array with shape = (N_stars, N_lists) - Fitting correlation for each of N_stars in each of N_lists. + ep_name : 2D numpy.array with shape = (N_stars, N_lists) + Names in each epoch for each of N_stars in each of N_lists. This is + useful for tracking purposes. + + corr : 2D numpy.array with shape = (N_stars, N_lists) + Fitting correlation for each of N_stars in each of N_lists. - Optional table meta data - ------------------------- - list_names : list of strings - List of names, one for each of the starlists. + Optional table meta data + ------------------------- + list_names : list of strings + List of names, one for each of the starlists. - list_times : list of integers or floats - List of times/dates for each starlist. + list_times : list of integers or floats + List of times/dates for each starlist. - ref_list : int - Specify which list is the reference list (if any). + ref_list : int + Specify which list is the reference list (if any). - Examples - -------------------------- + Examples + -------------------------- - t = startables.StarTable(name=name, x=x, y=y, m=m) + t = startables.StarTable(name=name, x=x, y=y, m=m) - # Access the data: - print(t) - print(t['name'][0:10]) # print the first 10 star names - print(t['x'][0:10, 0]) # print x from the first epoch/list/column for the first 10 stars - """ - def __init__(self, *args, ref_list=0, **kwargs): - """ + # Access the data: + print(t) + print(t['name'][0:10]) # print the first 10 star names + print(t['x'][0:10, 0]) # print x from the first epoch/list/column for the first 10 stars """ # Check if the required arguments are present arg_req = ('name', 'x', 'y', 'm') - - found_all_required = True - for arg_test in arg_req: - if arg_test not in kwargs: - found_all_required = False + + found_all_required = all(arg in kwargs for arg in arg_req) if not found_all_required: if len(args) > 1: # If there are no arguments, it's because the @@ -151,7 +147,7 @@ def __init__(self, *args, ref_list=0, **kwargs): names=('name', 'x', 'y', 'm')) self['name'] = self['name'].astype('U20') self.meta = {'n_stars': n_stars, 'n_lists': n_lists, 'ref_list': ref_list} - + for meta_arg in meta_tab: if meta_arg in kwargs: self.meta[meta_arg] = kwargs[meta_arg] @@ -536,6 +532,200 @@ def detections(self): return + def fit_velocities_new( + self, + motion_models=['Empty', 'Fixed', 'Linear'], + weighting='var', + use_scipy=False, + absolute_sigma=True, + bootstrap=0, + fixed_t0=False, + verbose=True, + mask_value=None, + fill_value=np.nan, + show_progress=True + ): + """Fit velocity for star table + + Parameters + ---------- + motion_models : list, optional + Motion models name to use. + If multiple models are supplied, prioritize the model with the most parameters to fit. + If multiple models have the same number of parameters, raise AssertionError: not sure which to use. + When not enough data points, use the model with just enough parameters to fit, by default ['Empty, 'Fixed', 'Linear'] + weighting : str, optional + Uncertainty weighting, 'std' for weight=1/xe(ye) or 'var' for weight=1/xe(ye)**2, by default 'var' + use_scipy : bool, optional + Use scipy.optimize.curve_fit or algebraic solution (for Linear model only), by default False + absolute_sigma : bool, optional + Use absolute sigma or not, see scipy curve_fit for details, by default True + bootstrap : int, optional + Number of bootstrap for uncertainty resampling, by default 0 + fixed_t0 : bool or float, optional + If provided, use the fixed t0. Otherwise, use average t weighted by 1/np.hypot(xe, ye), by default False + verbose : bool, optional + Print verbose messages or not, by default True + mask_value : float, optional + Values to mask in data, by default None + fill_value : float, optional + Fill value when there is not enough data points to fit, by default np.nan + show_progress : bool, optional + Show progress bar or not, by default True + + Raises + ------ + ValueError + If weighting is not 'var' or 'std'. + KeyError + If time values are not found in the table or meta. + KeyError + If required columns 'x' and 'y' are missing in the table. + """ + ########################### + ####### Check Params ###### + ########################### + if weighting not in ['var', 'std']: + raise ValueError(f"fit_velocities: Weighting must either be 'var' or 'std', not {weighting}!") + + if ('t' not in self.colnames) and ('LIST_TIMES' not in self.meta): + raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'LIST_TIMES' in meta.") + + # Check if we have the required columns + if not all([_ in self.colnames for _ in ['x', 'y']]): + raise KeyError(f"fit_velocities: Missing required columns in the table: {', '.join(['x', 'y'])}!") + + # Convert motion models from strings to classes + motion_model_map = motion_model.motion_model_map() + if 'Empty' not in motion_models: + motion_models.insert(0, 'Empty') # Ensure Empty model is always included + motion_models = [motion_model_map[mm] for mm in motion_models] + + ########################### + ####### Prepare Data ###### + ########################### + # Prepare data for fitting + N_stars = len(self) + x_data = np.ma.masked_invalid(self['x'].data, copy=True) + y_data = np.ma.masked_invalid(self['y'].data, copy=True) + xe_data = np.ma.masked_invalid(self['xe'].data, copy=True) if 'xe' in self.colnames else None + ye_data = np.ma.masked_invalid(self['ye'].data, copy=True) if 'ye' in self.colnames else None + # t_data: 2d array with shape (N_stars, N_epochs) + # t0: 1d array with shape (N_stars,) + if 't' in self.colnames: + t_data = copy.deepcopy(self['t'].data) + t0 = np.average(t_data, axis=1, weights=1/np.hypot(xe_data, ye_data)) if not fixed_t0 else np.ones(N_stars)*fixed_t0 + else: + t_data = copy.deepcopy(np.array(self.meta['LIST_TIMES'])) + t_data = np.broadcast_to(t_data, x_data.shape) + t0 = np.average(t_data, axis=1, weights=1/np.hypot(xe_data, ye_data)) if not fixed_t0 else np.ones(N_stars)*fixed_t0 + if mask_value: + x_data = np.ma.masked_values(x_data, mask_value) + y_data = np.ma.masked_values(y_data, mask_value) + if xe_data is not None: + xe_data = np.ma.masked_values(xe_data, mask_value) + if ye_data is not None: + ye_data = np.ma.masked_values(ye_data, mask_value) + + # Calculate mask array + xy_mask = (~x_data.mask) & (~y_data.mask) + self['n_obs'] = xy_mask.sum(axis=1) + + # Convert to lists of arrays for faster access during fitting + t_stars = [np.array(t_data[i][xy_mask[i]]) for i in range(N_stars)] + x_stars = [np.array(x_data[i][xy_mask[i]]) for i in range(N_stars)] + y_stars = [np.array(y_data[i][xy_mask[i]]) for i in range(N_stars)] + xe_stars = [np.array(xe_data[i][xy_mask[i]]) if xe_data is not None else None for i in range(N_stars)] + ye_stars = [np.array(ye_data[i][xy_mask[i]]) if ye_data is not None else None for i in range(N_stars)] + + + ########################### + ####### Determine MM ###### + ########################### + mm_n_params = np.sort([mm.n_params for mm in motion_models]) + # Assert that motion model n_params are unique and sorted + assert len(mm_n_params) == len(set(mm_n_params)), "fit_velocities: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs." + + # Select motion model based on n_obs + mm_digitized = np.digitize( + x=self['n_obs'], + bins=mm_n_params + ) - 1 # -1 to convert to 0-based index + self['motion_model'] = np.array([motion_models[d].__name__ for d in mm_digitized]) + + # Fill table with all possible motion model parameter names as new columns. + new_col_list = motion_model.get_list_motion_model_param_names(motion_models, with_errors=True) + new_col_list += ['chi2_x', 'chi2_y', 'n_params'] + if 't0' not in new_col_list: + new_col_list.append('t0') + + # Replace old columns if they exist + for col in new_col_list: + if col.endswith('_err'): + self.add_column( + Column(data=np.full(N_stars, np.inf, dtype=float), name=col), + rename_duplicate=True + ) + else: + self.add_column( + Column(data=np.full(N_stars, np.nan, dtype=float), name=col), + rename_duplicate=True + ) + + # Add a column to keep track of the number of points used in a fit and number of bootstrap used. + self['n_bootstrap'] = bootstrap + + ########################### + ######### FITTING ######### + ########################### + unique_motion_models, unique_inv_indices = np.unique(self['motion_model'], return_inverse=True) + indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} + + for unique_motion_model, unique_index in indices_by_motion_model.items(): + # Create motion model instance + motion_model_instance = motion_model_map[unique_motion_model]() + # Initialize arrays to store results + n_stars_this_model = len(unique_index) + n_params = len(motion_model_instance.fitter_param_names) + + params_array = np.full((n_stars_this_model, n_params), fill_value, dtype=float) + param_errs_array = np.full((n_stars_this_model, n_params), np.inf, dtype=float) + chi2_x_array = np.full(n_stars_this_model, np.nan, dtype=float) + chi2_y_array = np.full(n_stars_this_model, np.nan, dtype=float) + + for idx, i_star in enumerate(tqdm(unique_index, disable=not show_progress, desc=f"Fitting motion model {unique_motion_model}")): + # Fit the star + params, param_errs, chi2_x, chi2_y = motion_model_instance.fit_motion_model( + t=t_stars[i_star], + x=x_stars[i_star], + y=y_stars[i_star], + xe=xe_stars[i_star], + ye=ye_stars[i_star], + t0=t0[i_star], + weighting=weighting, + use_scipy=use_scipy, + absolute_sigma=absolute_sigma, + bootstrap=bootstrap, + fill_value=fill_value, + verbose=verbose + ) + # Store results to arrays + params_array[idx] = params + param_errs_array[idx] = param_errs + chi2_x_array[idx] = chi2_x + chi2_y_array[idx] = chi2_y + + # Store results back to the table + param_names = motion_model_instance.fitter_param_names + for j, param_name in enumerate(param_names): + self[param_name][unique_index] = params_array[:, j] + self[param_name + '_err'][unique_index] = param_errs_array[:, j] + self['chi2_x'][unique_index] = chi2_x_array + self['chi2_y'][unique_index] = chi2_y_array + self['n_params'][unique_index] = n_params + self['t0'][unique_index] = t0[unique_index] + return + def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, bootstrap=0, fixed_t0=False, verbose=False, mask_val=None, mask_lists=False, show_progress=True, default_motion_model='Linear', reassign_motion_model=False, select_stars=None, motion_model_dict={}): From 043cdf1386c90320fa1b29f9b50ec8d23778630b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Sun, 16 Nov 2025 20:22:18 -0800 Subject: [PATCH 16/29] Add support for motion_model_input --- flystar/motion_model.py | 44 +++++++++++----- flystar/startables.py | 113 +++++++++++++++++++++++++++++----------- 2 files changed, 114 insertions(+), 43 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 939cd0b..4849214 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -7,12 +7,12 @@ import warnings class MotionModel(ABC): - # Degrees of freedom for model - n_params = 0 - # Fit paramters: Shared fit parameters fitter_param_names = [] + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) + # Fixed parameters: These are parameters that are required for the model, but are not # fit quantities. For example, RA and Dec in a parallax model. fixed_param_names = [] @@ -22,6 +22,7 @@ class MotionModel(ABC): # These parameters should be derived from the fit parameters and # they must exist as a variable on the model object optional_param_names = [] + name = "MotionModel" def __init__(self, *args, **kwargs): # TODO: do we need this? @@ -59,7 +60,7 @@ def get_weights(self, xe, ye, weighting='var'): warnings.warn("Invalid weighting, using default weighting scheme var.", UserWarning) return 1./xe**2, 1./ye**2 - def fit_motion_model( + def fit( self, t, x, y, xe, ye, t0, bootstrap=0, weighting='var', @@ -163,9 +164,11 @@ def get_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): return chi2x, chi2y class Empty(MotionModel): - n_params = 0 fitter_param_names = [] fixed_param_names = [] + name = "Empty" + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) def __init__(self, **kwargs): """Empty motion model, returns nan for values and inf for uncertainties. @@ -207,9 +210,12 @@ class Fixed(MotionModel): A non-moving motion model for a star on the sky. """ - n_params = 1 fitter_param_names = ['x0','y0'] fixed_param_names = [] + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) + + name = "Fixed" def __init__(self, **kwargs): # Must call after setting parameters. @@ -294,10 +300,14 @@ class Linear(MotionModel): """ A 2D linear motion model for a star on the sky. """ - n_params = 2 fitter_param_names = ['x0', 'vx', 'y0', 'vy'] fixed_param_names = ['t0'] + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) + + name = "Linear" + def __init__(self, **kwargs): # Must call after setting parameters. @@ -348,7 +358,7 @@ def run_fit( params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) return params, param_errors, np.nan, np.nan - + # degree_of_freedom >= 0 dt = t - t0 x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) @@ -425,9 +435,12 @@ class Acceleration(MotionModel): """ A 2D accelerating motion model for a star on the sky. """ - n_params = 3 fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] fixed_param_names = ['t0'] + name = "Acceleration" + + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) def __init__(self, x0=0, vx0=0, ax=0, y0=0, vy0=0, ay=0, t0=None, x0_err=0, vx0_err=0, ax_err=0, y0_err=0, vy0_err=0, ay_err=0, **kwargs): @@ -521,10 +534,13 @@ class Parallax(MotionModel): Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ - n_params = 3 fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] fixed_param_names = ['t0'] fixed_meta_data = ['RA','Dec','PA','obs'] + name = "Parallax" + + # Number of fit parameters/required observations in each direction + n_params = int(np.ceil(len(fitter_param_names) / 2)) def __init__(self, RA, Dec, PA=0.0, obs='earth', **kwargs): self.RA = RA @@ -771,10 +787,14 @@ def get_all_motion_model_names(with_errors=True, with_fixed=True): return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) def motion_model_map(): - return { + mm_map = { 'Empty': Empty, 'Fixed': Fixed, 'Linear': Linear, 'Acceleration': Acceleration, 'Parallax': Parallax - } \ No newline at end of file + } + + # Sort by n_params + mm_map = dict(sorted(mm_map.items(), key=lambda item: item[1].n_params)) + return mm_map \ No newline at end of file diff --git a/flystar/startables.py b/flystar/startables.py index 60b8310..08461a1 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -532,9 +532,9 @@ def detections(self): return - def fit_velocities_new( + def fit_motion_model( self, - motion_models=['Empty', 'Fixed', 'Linear'], + motion_models=[Empty(), Fixed(), Linear()], weighting='var', use_scipy=False, absolute_sigma=True, @@ -549,11 +549,19 @@ def fit_velocities_new( Parameters ---------- - motion_models : list, optional - Motion models name to use. - If multiple models are supplied, prioritize the model with the most parameters to fit. - If multiple models have the same number of parameters, raise AssertionError: not sure which to use. - When not enough data points, use the model with just enough parameters to fit, by default ['Empty, 'Fixed', 'Linear'] + motion_models : list of MotionModel, optional + Motion models to use. + Empty() and Fixed() models are always added automatically for stars with n_fit = 0 or 1. + The behavior is as follows: + 1. If 'motion_model_input' column is NOT in table: + - Use the most complex model that has enough parameters to fit the data (n_fit >= n_params). + - If multiple models are supplied, prioritize the model with the most parameters to fit. + - If multiple models have the same number of parameters, raise AssertionError: not sure which to use. + 2. If 'motion_model_input' column is in table: + - Use the model specified in the 'motion_model_input' column. + - If motion model requires initialization parameters, an instance of the motion model must be provided in motion_models list, i.e., motion_models=[Parallax(RA=0, DEC=0)]. + - If not enough data points to fit the specified model, use the most complex model that has enough parameters to fit the data (n_fit >= n_params) among the provided motion_models and 'motion_model_input'. + The actual used motion model is stored in the 'motion_model_used' column. The default motion_models are [Empty(), Fixed(), Linear()]. weighting : str, optional Uncertainty weighting, 'std' for weight=1/xe(ye) or 'var' for weight=1/xe(ye)**2, by default 'var' use_scipy : bool, optional @@ -595,11 +603,38 @@ def fit_velocities_new( if not all([_ in self.colnames for _ in ['x', 'y']]): raise KeyError(f"fit_velocities: Missing required columns in the table: {', '.join(['x', 'y'])}!") - # Convert motion models from strings to classes - motion_model_map = motion_model.motion_model_map() - if 'Empty' not in motion_models: - motion_models.insert(0, 'Empty') # Ensure Empty model is always included - motion_models = [motion_model_map[mm] for mm in motion_models] + # Always add Empty and Fixed in motion models + mm_names = [mm.name for mm in motion_models] + if 'Fixed' not in mm_names: + motion_models.insert(0, Fixed()) + if 'Empty' not in mm_names: + motion_models.insert(0, Empty()) + mm_names = [mm.name for mm in motion_models] + + # Construct motion models if motion_model_input column exists + all_mm_map = motion_model.motion_model_map() + if 'motion_model_input' in self.colnames: + input_mm_names = np.unique(self['motion_model_input']) + assert all([name in all_mm_map.keys() for name in input_mm_names]), \ + f"fit_velocities: Unknown motion model name(s) in 'motion_model_input' column. Available motion models are: {', '.join(all_mm_map.keys())}." + for mm_name in input_mm_names: + if mm_name not in mm_names: + try: + motion_models.append(all_mm_map[mm_name]()) + except Exception as e: + raise ValueError(f"fit_velocities: An instance of motion model {mm_name} with initialization parameters is missing in motion_models: {e}") + + # Sort motion models by n_params + motion_models = sorted(motion_models, key=lambda mm: mm.n_params) + + input_mm_map = {mm.name: mm for mm in motion_models} + + mm_n_params = np.sort([mm.n_params for mm in motion_models]) + if 'motion_model_input' not in self.colnames: + # If motion_model_input column is not provided, assert that motion model n_params are unique and sorted + # Otherwise the fitter does not know which motion model to use based on n_obs + assert len(mm_n_params) == len(set(mm_n_params)), "fit_velocities: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs. Please provide unique motion_models or a 'motion_model_input' column." + ########################### ####### Prepare Data ###### @@ -610,6 +645,7 @@ def fit_velocities_new( y_data = np.ma.masked_invalid(self['y'].data, copy=True) xe_data = np.ma.masked_invalid(self['xe'].data, copy=True) if 'xe' in self.colnames else None ye_data = np.ma.masked_invalid(self['ye'].data, copy=True) if 'ye' in self.colnames else None + # t_data: 2d array with shape (N_stars, N_epochs) # t0: 1d array with shape (N_stars,) if 't' in self.colnames: @@ -619,6 +655,7 @@ def fit_velocities_new( t_data = copy.deepcopy(np.array(self.meta['LIST_TIMES'])) t_data = np.broadcast_to(t_data, x_data.shape) t0 = np.average(t_data, axis=1, weights=1/np.hypot(xe_data, ye_data)) if not fixed_t0 else np.ones(N_stars)*fixed_t0 + if mask_value: x_data = np.ma.masked_values(x_data, mask_value) y_data = np.ma.masked_values(y_data, mask_value) @@ -629,7 +666,7 @@ def fit_velocities_new( # Calculate mask array xy_mask = (~x_data.mask) & (~y_data.mask) - self['n_obs'] = xy_mask.sum(axis=1) + self['n_fit'] = xy_mask.sum(axis=1) # Convert to lists of arrays for faster access during fitting t_stars = [np.array(t_data[i][xy_mask[i]]) for i in range(N_stars)] @@ -642,19 +679,31 @@ def fit_velocities_new( ########################### ####### Determine MM ###### ########################### - mm_n_params = np.sort([mm.n_params for mm in motion_models]) - # Assert that motion model n_params are unique and sorted - assert len(mm_n_params) == len(set(mm_n_params)), "fit_velocities: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs." + if 'motion_model_input' in self.colnames: + # Determine which motion model to use based on motion_model_input column + # If n_fit < required n_params for the input motion model, use the most complicated motion model with n_fit >= n_params + motion_model_names = np.unique(self['motion_model_input']) + required_params = [all_mm_map[mm_name].n_params for mm_name in self['motion_model_input']] + mm_digitized = np.digitize( + x=np.minimum(np.array(self['n_fit']), required_params), + bins=mm_n_params + ) - 1 # Convert to 0-based index + + else: + mm_digitized = np.digitize( + x=np.array(self['n_fit']), + bins=mm_n_params + ) - 1 # Convert to 0-based index + + self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized]) - # Select motion model based on n_obs - mm_digitized = np.digitize( - x=self['n_obs'], - bins=mm_n_params - ) - 1 # -1 to convert to 0-based index - self['motion_model'] = np.array([motion_models[d].__name__ for d in mm_digitized]) + ############################ + ####### Prepare Table ###### + ############################ # Fill table with all possible motion model parameter names as new columns. - new_col_list = motion_model.get_list_motion_model_param_names(motion_models, with_errors=True) + motion_model_used = [all_mm_map[name] for name in np.unique(self['motion_model_used'])] + new_col_list = motion_model.get_list_motion_model_param_names(motion_model_used, with_errors=True) new_col_list += ['chi2_x', 'chi2_y', 'n_params'] if 't0' not in new_col_list: new_col_list.append('t0') @@ -668,7 +717,7 @@ def fit_velocities_new( ) else: self.add_column( - Column(data=np.full(N_stars, np.nan, dtype=float), name=col), + Column(data=np.full(N_stars, fill_value, dtype=float), name=col), rename_duplicate=True ) @@ -678,12 +727,13 @@ def fit_velocities_new( ########################### ######### FITTING ######### ########################### - unique_motion_models, unique_inv_indices = np.unique(self['motion_model'], return_inverse=True) + unique_motion_models, unique_inv_indices = np.unique(self['motion_model_used'], return_inverse=True) indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} - + + start_time = time.time() for unique_motion_model, unique_index in indices_by_motion_model.items(): # Create motion model instance - motion_model_instance = motion_model_map[unique_motion_model]() + motion_model_instance = input_mm_map[unique_motion_model] # Initialize arrays to store results n_stars_this_model = len(unique_index) n_params = len(motion_model_instance.fitter_param_names) @@ -695,7 +745,7 @@ def fit_velocities_new( for idx, i_star in enumerate(tqdm(unique_index, disable=not show_progress, desc=f"Fitting motion model {unique_motion_model}")): # Fit the star - params, param_errs, chi2_x, chi2_y = motion_model_instance.fit_motion_model( + params, param_errs, chi2_x, chi2_y = motion_model_instance.fit( t=t_stars[i_star], x=x_stars[i_star], y=y_stars[i_star], @@ -709,7 +759,7 @@ def fit_velocities_new( fill_value=fill_value, verbose=verbose ) - # Store results to arrays + # print(f'{params_array.shape=}, {idx=}, {params=}') params_array[idx] = params param_errs_array[idx] = param_errs chi2_x_array[idx] = chi2_x @@ -722,10 +772,11 @@ def fit_velocities_new( self[param_name + '_err'][unique_index] = param_errs_array[:, j] self['chi2_x'][unique_index] = chi2_x_array self['chi2_y'][unique_index] = chi2_y_array - self['n_params'][unique_index] = n_params + self['n_params'][unique_index] = motion_model_instance.n_params self['t0'][unique_index] = t0[unique_index] return + def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, bootstrap=0, fixed_t0=False, verbose=False, mask_val=None, mask_lists=False, show_progress=True, default_motion_model='Linear', reassign_motion_model=False, select_stars=None, motion_model_dict={}): @@ -1100,7 +1151,7 @@ def get_star_positions_at_time(self, t, motion_model_dict, allow_alt_models=True param_dict[par] = self[par][idx] x[idx],y[idx],xe[idx],ye[idx] = mod.get_batch_pos_at_time(t,**param_dict) - return x,y,xe,ye + return x, y, xe, ye def fit_velocities_all_detected(self, motion_model_to_fit, weighting='var', use_scipy=True, absolute_sigma=True, times=None, From 5ec18cb6847b97562f8936c33890cf3b3bb7e8f5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Thu, 20 Nov 2025 19:05:15 -0800 Subject: [PATCH 17/29] Passed testing for fit_motion_model. Merged get_pos_at_time and get_batch_pos at_time into model; Renamed get_ functions into calc_ functions --- flystar/motion_model.py | 568 +++++++++++++++++++---------- flystar/parallax.py | 43 ++- flystar/startables.py | 17 +- flystar/tests/test_align.py | 2 +- flystar/tests/test_motion_model.py | 288 +++++++++------ flystar/tests/test_startable.py | 12 +- 6 files changed, 599 insertions(+), 331 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 4849214..5a542e0 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -8,10 +8,10 @@ class MotionModel(ABC): # Fit paramters: Shared fit parameters - fitter_param_names = [] + fit_param_names = [] # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) + n_params = int(np.ceil(len(fit_param_names) / 2)) # Fixed parameters: These are parameters that are required for the model, but are not # fit quantities. For example, RA and Dec in a parallax model. @@ -25,21 +25,16 @@ class MotionModel(ABC): name = "MotionModel" def __init__(self, *args, **kwargs): - # TODO: do we need this? - '''for param in self.fitter_param_names: - param_var = getattr(self, param) - if not isinstance(param_var, (list, np.ndarray)): - setattr(self, param, np.array([param_var]))''' return + + def model_fit(self, dt): + return np.full_like(dt, np.nan) + + def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): + if fit_param_errs is None: + return np.full_like(t, np.nan), np.full_like(t, np.nan) + return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) - def get_pos_at_time(self, fit_params, fixed_params, t): - #return x, y - pass - - def get_batch_pos_at_time(self, t): - #return x, y, x_err, y_err - pass - def run_fit( self, t, x, y, xe, ye, t0, weighting='var', @@ -103,7 +98,7 @@ def fit( Returns ------- params, params_err, chi2_x, chi2_y - Parameters, uncertainties, and chi squares. The corresponding parameter names are in self.fitter_param_names. + Parameters, uncertainties, and chi squares. The corresponding parameter names are in self.fit_param_names. """ params, param_errs, chi2_x, chi2_y = self.run_fit( t, x, y, xe, ye, t0=t0, @@ -147,48 +142,41 @@ def fit( return params, param_errs, chi2_x, chi2_y - def get_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): + def calc_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): """ Get the chi^2 value for the current MM and the input data. """ - x_pred, y_pred = self.get_pos_at_time(fit_params, fixed_params, t) + x_pred, y_pred = self.model(t, fit_params, fixed_params) chi2x = np.sum((x - x_pred)**2 / xe**2) chi2y = np.sum((y - y_pred)**2 / ye**2) if reduced: if len(t) == self.n_params: - chi2x, chi2y = 0, 0 + return np.inf, np.inf else: - dof = len(x) - self.n_params - chi2x, chi2y = chi2x / dof, chi2y / dof + degree_of_freedom = len(x) - self.n_params + chi2x, chi2y = chi2x / degree_of_freedom, chi2y / degree_of_freedom return chi2x, chi2y class Empty(MotionModel): - fitter_param_names = [] + fit_param_names = [] fixed_param_names = [] name = "Empty" # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) + n_params = int(np.ceil(len(fit_param_names) / 2)) def __init__(self, **kwargs): """Empty motion model, returns nan for values and inf for uncertainties. """ super().__init__() return - - def get_pos_at_time(self, fit_params, fixed_params, t): - if hasattr(t, "__len__"): - return np.full(len(t), np.nan), np.full(len(t), np.nan) - else: - return np.nan, np.nan + + def model_fit(self, dt): + return np.full_like(dt, np.nan) - def get_batch_pos_at_time(self,t, - x0=[],y0=[],t0=[], - x0_err=[], y0_err=[]): - if hasattr(t, "__len__"): - return np.full((len(x0), len(t)), np.nan), np.full((len(y0), len(t)), np.nan), np.full((len(x0), len(t)), np.nan), np.full((len(y0), len(t)), np.nan) - else: - return np.nan, np.nan, np.nan, np.nan + def model(self, t, fit_params, fixed_params, fixed_param_errs=None): + t = np.atleast_1d(t) + return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) def run_fit( self, t, x, y, xe, ye, t0, @@ -210,10 +198,10 @@ class Fixed(MotionModel): A non-moving motion model for a star on the sky. """ - fitter_param_names = ['x0','y0'] + fit_param_names = ['x0','y0'] fixed_param_names = [] # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) + n_params = int(np.ceil(len(fit_param_names) / 2)) name = "Fixed" @@ -222,22 +210,78 @@ def __init__(self, **kwargs): # This checks for proper parameter formatting. super().__init__() return + + def model_fit(self, dt, x0): + """Fit function for Fixed motion model + + Parameters + ---------- + dt : array-like + Time offset, shape (N_times,) + x0 : float or array-like + Average positions, scalar or shape (N_stars,) - def get_pos_at_time(self, fit_params, fixed_params, t): - fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) - if hasattr(t, "__len__"): - return np.repeat(fit_params_dict['x0'], len(t)), np.repeat(fit_params_dict['y0'], len(t)) - else: - return fit_params_dict['x0'], fit_params_dict['y0'] - - def get_batch_pos_at_time(self,t, - x0=[],y0=[],t0=[], - x0_err=[], y0_err=[]): - if hasattr(t, "__len__"): - return np.repeat(x0[:,np.newaxis],len(t),axis=1), np.repeat(y0[:,np.newaxis],len(t),axis=1), np.repeat(x0_err[:,np.newaxis],len(t),axis=1), np.repeat(y0_err[:,np.newaxis],len(t),axis=1) - else: - return x0, y0, x0_err, y0_err - + Returns + ------- + x : array-like + Predicted positions, shape (N_times,) if scalar x0, else (N_stars, N_times) + """ + dt = np.atleast_1d(dt) + x0 = np.asarray(x0) + return np.broadcast_to(x0[:, np.newaxis], (x0.shape[0], dt.shape[0])) if x0.ndim > 0 else np.full_like(dt, x0) + + def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): + """Predicted positions (and uncertainties, if fit_param_errs is provided) at time t of Fixed model. + + Parameters + ---------- + t : float or array-like + Time array, shape (N_times,) + fit_params : array-like + Fit parameters x0, y0 in shape (N_params,) or (N_stars, N_params) + fixed_params : array-like, optional + Not applicable for Fixed, by default None + fit_param_errs : array-like, optional + Uncertainties for x0, y0 in shape (N_params,) or (N_stars, N_params), by default None + + Returns + ------- + x, y (, xe, ye) + Predicted position (and uncertainties) of Fixed model, shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 + """ + t = np.atleast_1d(t) + fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) + + N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 + N_times = len(t) + x0, y0 = fit_params.T # Each shape (N_stars,) + + # Return results in (N_stars, N_times) shape + x = self.model_fit(t, x0) # Shape (N_stars, N_times) + y = self.model_fit(t, y0) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x = x.flatten() + y = y.flatten() + + if fit_param_errs is None: + return x, y + + fit_param_errs = np.atleast_2d(fit_param_errs) # (N_stars, N_params) + x0_err, y0_err = fit_param_errs.T + + # Return results in (N_stars, N_times) shape + x_err = np.broadcast_to(x0_err[:, np.newaxis], (N_stars, N_times)) + y_err = np.broadcast_to(y0_err[:, np.newaxis], (N_stars, N_times)) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x_err = x_err.flatten() + y_err = y_err.flatten() + + return x, y, x_err, y_err + def run_fit( self, t, x, y, xe, ye, t0, weighting='var', @@ -262,22 +306,22 @@ def run_fit( params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) return params, param_errors, np.nan, np.nan - + # degree_of_freedom >= 0 # Calculate weighted average position x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) x_wt_norm = x_wt / np.sum(x_wt) y_wt_norm = y_wt / np.sum(y_wt) x0 = np.average(x, weights=x_wt) - x0e = (np.sum(x_wt_norm**2 * xe**2))**0.5 / n_obs # Error propagation + x0e = (np.sum(x_wt_norm**2 * xe**2))**0.5 # Error propagation y0 = np.average(y, weights=y_wt) - y0e = (np.sum(y_wt_norm**2 * ye**2))**0.5 / n_obs # Error propagation + y0e = (np.sum(y_wt_norm**2 * ye**2))**0.5 # Error propagation params = np.array([x0, y0]) param_errors = np.array([x0e, y0e]) - - chi2x, chi2y = self.get_chi2(params, [], t, x, y, xe, ye) - + + chi2x, chi2y = self.calc_chi2(params, [], t, x, y, xe, ye) + if not absolute_sigma: if degree_of_freedom > 0: reduced_chi2x = chi2x / degree_of_freedom @@ -300,41 +344,89 @@ class Linear(MotionModel): """ A 2D linear motion model for a star on the sky. """ - fitter_param_names = ['x0', 'vx', 'y0', 'vy'] + fit_param_names = ['x0', 'vx', 'y0', 'vy'] fixed_param_names = ['t0'] # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) + n_params = int(np.ceil(len(fit_param_names) / 2)) name = "Linear" def __init__(self, **kwargs): - # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() return - def get_pos_at_time(self, fit_params, fixed_params, t): - fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) - fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t - fixed_params_dict['t0'] - return fit_params_dict['x0'] + fit_params_dict['vx']*dt, fit_params_dict['y0'] + fit_params_dict['vy']*dt - - def get_batch_pos_at_time(self, t, x0=[],vx=[], y0=[],vy=[], t0=[], - x0_err=[],vx_err=[], y0_err=[],vy_err=[], **kwargs): - if hasattr(t, "__len__"): - dt = t - t0[:,np.newaxis] - x = x0[:,np.newaxis] + dt*vx[:,np.newaxis] - y = y0[:,np.newaxis] + dt*vy[:,np.newaxis] - x_err = np.hypot(x0_err[:,np.newaxis], vx_err[:,np.newaxis]*dt) - y_err = np.hypot(y0_err[:,np.newaxis], vy_err[:,np.newaxis]*dt) - else: - dt = t - t0 - x = x0 + dt*vx - y = y0 + dt*vy - x_err = np.hypot(x0_err, vx_err*dt) - y_err = np.hypot(y0_err, vy_err*dt) + def model_fit(self, dt, x0, v): + """Linear motion model fit function + + Parameters + ---------- + dt : array-like + Time offset, shape (N_times,) + x0 : float or array-like + Initial position, shape (N_stars,) or scalar + v : float or array-like + Velocity, shape (N_stars,) or scalar + + Returns + ------- + x : array-like + Predicted position(s) + """ + return x0 + v * dt + + def model(self, t, fit_params, fixed_params, fit_param_errs=None): + """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Linear model. + + Parameters + ---------- + t : float or array-like + Time(s) at which to evaluate the model + fit_params : array-like + Fit parameters x0, vx, y0, vy in shape (N_params,) or (N_stars, N_params) + fixed_params : array-like + Fixed parameters t0 in shape (1,) or (N_stars, 1) + fit_param_errs : array-like, optional + Uncertainties of fit parameters in shape (N_params,) or (N_stars, N_params), by default None + + Returns + ------- + x, y (, xe, ye) + Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 + """ + t = np.atleast_1d(t) + fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) + + N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 + N_times = len(t) + + x0, vx, y0, vy = fit_params.T # Each shape (N_stars,) + t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) + + dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) + + x = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis]) # Shape (N_stars, N_times) + y = self.model_fit(dt, y0[:, np.newaxis], vy[:, np.newaxis]) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x = x.flatten() + y = y.flatten() + + if fit_param_errs is None: + return x, y + + fit_param_errs = np.atleast_2d(fit_param_errs) # (N_stars, N_params) + x0_err, vx_err, y0_err, vy_err = fit_param_errs.T # Each shape (N_stars,) + x_err = np.hypot(x0_err[:, np.newaxis], vx_err[:, np.newaxis] * dt) # Shape (N_stars, N_times) + y_err = np.hypot(y0_err[:, np.newaxis], vy_err[:, np.newaxis] * dt) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x_err = x_err.flatten() + y_err = y_err.flatten() return x, y, x_err, y_err def run_fit( @@ -366,17 +458,15 @@ def run_fit( params_guess = [x.mean(), 0., y.mean(), 0.] if use_scipy: - def linear(t, c0, c1): - return c0 + c1*t - x_opt, x_cov = curve_fit(linear, dt, x, p0=np.array(params_guess[:2]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(linear, dt, y, p0=np.array(params_guess[2:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) + x_opt, x_cov = curve_fit(self.model_fit, dt, x, p0=np.array(params_guess[:2]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(self.model_fit, dt, y, p0=np.array(params_guess[2:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) x0, vx = x_opt y0, vy = y_opt x0e, vxe = np.sqrt(x_cov.diagonal()) y0e, vye = np.sqrt(y_cov.diagonal()) params = np.array([x0, vx, y0, vy]) param_errors = np.array([x0e, vxe, y0e, vye]) - chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) + chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) else: # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme @@ -435,45 +525,94 @@ class Acceleration(MotionModel): """ A 2D accelerating motion model for a star on the sky. """ - fitter_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] + fit_param_names = ['x0', 'vx0', 'ax', 'y0', 'vy0', 'ay'] fixed_param_names = ['t0'] name = "Acceleration" # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) - - def __init__(self, x0=0, vx0=0, ax=0, y0=0, vy0=0, ay=0, t0=None, - x0_err=0, vx0_err=0, ax_err=0, y0_err=0, vy0_err=0, ay_err=0, **kwargs): + n_params = int(np.ceil(len(fit_param_names) / 2)) + + def __init__(self): # Must call after setting parameters. # This checks for proper parameter formatting. super().__init__() return + + def model_fit(self, t, x0, v0, a): + """Model positions at time t of Acceleration model. + + Parameters + ---------- + t : float or array-like + Time(s) at which to evaluate the model + x0 : float or array-like + Initial position(s) + v0 : float or array-like + Initial velocity(ies) + a : float or array-like + Acceleration(s) + + Returns + ------- + float or array-like + Model positions at time t of Acceleration model + """ + return x0 + v0*t + 0.5*a*t**2 + + def model(self, t, fit_params, fixed_params, fit_param_errs=None): + """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Acceleration model. + + Parameters + ---------- + t : float or array-like + Time(s) at which to evaluate the model + fit_params : array-like + Fit parameters with shape (N_stars, N_params) or (N_params,) + fixed_params : array-like + Fixed parameters with shape (N_stars, N_fixed_params) or (N_fixed_params,) + fit_param_errs : array-like, optional + Fit parameter uncertainties with shape (N_stars, N_params) or (N_params,), by default None + + Returns + ------- + x, y (, xe, ye) + Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 + """ + t = np.atleast_1d(t) + fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) + + N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 + N_times = len(t) - def get_pos_at_time(self, fit_params, fixed_params, t): - fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) - fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t - fixed_params_dict['t0'] - x = fit_params_dict['x0'] + fit_params_dict['vx0']*dt + 0.5*fit_params_dict['ax']*dt**2 - y = fit_params_dict['y0'] + fit_params_dict['vy0']*dt + 0.5*fit_params_dict['ay']*dt**2 - return x, y + x0, vx0, ax, y0, vy0, ay = fit_params.T # Each shape (N_stars,) + t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) - def get_batch_pos_at_time(self,t, - x0=[],vx0=[],ax=[], y0=[],vy0=[],ay=[], t0=[], - x0_err=[],vx0_err=[],ax_err=[], y0_err=[],vy0_err=[],ay_err=[], **kwargs): - if hasattr(t, "__len__"): - dt = t - t0[:,np.newaxis] - x = x0[:, np.newaxis] + dt * vx0[:, np.newaxis] + 0.5 * ax[:, np.newaxis] * dt**2 - y = y0[:, np.newaxis] + dt * vy0[:, np.newaxis] + 0.5 * ay[:, np.newaxis] * dt**2 - x_err = np.sqrt(x0_err[:, np.newaxis]**2 + (vx0_err[:, np.newaxis]*dt)**2 + (0.5*ax_err[:, np.newaxis]*dt**2)**2) - y_err = np.sqrt(y0_err[:, np.newaxis]**2 + (vy0_err[:, np.newaxis]*dt)**2 + (0.5*ay_err[:, np.newaxis]*dt**2)**2) - else: - dt = t - t0 - x = x0 + dt * vx0 + 0.5 * ax * dt**2 - y = y0 + dt * vy0 + 0.5 * ay * dt**2 - x_err = np.sqrt(x0_err**2 + (vx0_err * dt)**2 + (0.5 * ax_err * dt**2)**2) - y_err = np.sqrt(y0_err**2 + (vy0_err * dt)**2 + (0.5 * ay_err * dt**2)**2) + dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) + + x = self.model_fit(dt, x0[:, np.newaxis], vx0[:, np.newaxis], ax[:, np.newaxis]) # Shape (N_stars, N_times) + y = self.model_fit(dt, y0[:, np.newaxis], vy0[:, np.newaxis], ay[:, np.newaxis]) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x = x.flatten() + y = y.flatten() + + if fit_param_errs is None: + return x, y + + fit_param_errs = np.atleast_2d(fit_param_errs) # (N_stars, N_params) + x0_err, vx0_err, ax_err, y0_err, vy0_err, ay_err = fit_param_errs.T + x_err = np.sqrt(x0_err[:, np.newaxis]**2 + (vx0_err[:, np.newaxis] * dt)**2 + (0.5 * ax_err[:, np.newaxis] * dt**2)**2) # Shape (N_stars, N_times) + y_err = np.sqrt(y0_err[:, np.newaxis]**2 + (vy0_err[:, np.newaxis] * dt)**2 + (0.5 * ay_err[:, np.newaxis] * dt**2)**2) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x_err = x_err.flatten() + y_err = y_err.flatten() + return x, y, x_err, y_err + def run_fit( self, t, x, y, xe, ye, t0, weighting='var', @@ -509,11 +648,8 @@ def run_fit( t_span = t[idx_last] - t[idx_first] params_guess = [x.mean(), (x[idx_last] - x[idx_first]) / t_span, 0., y.mean(), (y[idx_last] - y[idx_first]) / t_span, 0.] - def accel(t, c0, c1, c2): - return c0 + c1*t + 0.5*c2*t**2 - - x_opt, x_cov = curve_fit(accel, dt, x, p0=np.array(params_guess[:3]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) - y_opt, y_cov = curve_fit(accel, dt, y, p0=np.array(params_guess[3:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) + x_opt, x_cov = curve_fit(self.model_fit, dt, x, p0=np.array(params_guess[:3]), sigma=1/x_wt**0.5, absolute_sigma=absolute_sigma) + y_opt, y_cov = curve_fit(self.model_fit, dt, y, p0=np.array(params_guess[3:]), sigma=1/y_wt**0.5, absolute_sigma=absolute_sigma) x0, vx0, ax = x_opt y0, vy0, ay = y_opt x0e, vx0e, axe = np.sqrt(x_cov.diagonal()) @@ -521,7 +657,7 @@ def accel(t, c0, c1, c2): params = np.array([x0, vx0, ax, y0, vy0, ay]) param_errors = np.array([x0e, vx0e, axe, y0e, vy0e, aye]) - chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) + chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) return params, param_errors, chi2_x, chi2_y @@ -534,81 +670,135 @@ class Parallax(MotionModel): Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ - fitter_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] + fit_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] fixed_param_names = ['t0'] fixed_meta_data = ['RA','Dec','PA','obs'] name = "Parallax" # Number of fit parameters/required observations in each direction - n_params = int(np.ceil(len(fitter_param_names) / 2)) - - def __init__(self, RA, Dec, PA=0.0, obs='earth', **kwargs): - self.RA = RA - self.Dec = Dec - self.PA = PA + n_params = int(np.ceil(len(fit_param_names) / 2)) + + def __init__(self, ra, dec, pa=0., obs='earth'): + super().__init__() + self.ra = ra + self.dec = dec + self.pa = pa self.obs = obs self.plx_vector_cached = None return - - def get_parallax_vector(self, t_mjd): - recalc_plx = True + + def calc_parallax_vector(self, t_mjd): + """Calculate parallax vector of shape (2, N_times) + + Parameters + ---------- + t_mjd : array-like + Time array in mjd + + Returns + ------- + pvec + Parallax vector of shape (2, N_times) + """ if self.plx_vector_cached is not None: - if hasattr(t_mjd, "__len__"): - if list(t_mjd) == list(self.plx_vector_cached[0]): - pvec = self.plx_vector_cached[1:] - recalc_plx = False - elif all([t_mjd_i in self.plx_vector_cached[0] for t_mjd_i in t_mjd]): - pvec_idxs = [np.argwhere(self.plx_vector_cached[0]==t_mjd_i)[0][0] for t_mjd_i in t_mjd] - pvec = [self.plx_vector_cached[1][pvec_idxs], self.plx_vector_cached[2][pvec_idxs]] - recalc_plx = False - elif t_mjd in self.plx_vector_cached[0]: - idx = np.where(t_mjd==self.plx_vector_cached[0])[0][0] - pvec = np.array([self.plx_vector_cached[1][idx], self.plx_vector_cached[2][idx]]) - recalc_plx = False - if recalc_plx: - pvec = parallax.parallax_in_direction(self.RA, self.Dec, t_mjd, obsLocation=self.obs, PA=self.PA).T - if hasattr(t_mjd, "__len__"): - self.plx_vector_cached = [t_mjd, pvec[0], pvec[1]] + t_mjd = np.atleast_1d(t_mjd) + t_mjd_cached = self.plx_vector_cached[0] + if np.allclose(t_mjd, t_mjd_cached): + # If cached values match input times, return cached values + return self.plx_vector_cached[1] + + elif all(np.isin(t_mjd, t_mjd_cached)): + # If all input times are in cached values, return those + # Calculate pvec_idxs such that t_mjd_cached[ pvec_idxs ] == t_mjd + pvec_idxs = np.array([np.where(t_mjd_cached==t_mjd_i)[0][0] for t_mjd_i in t_mjd]) + pvec = self.plx_vector_cached[1][:, pvec_idxs] + return pvec + + pvec = parallax.parallax_in_direction(self.ra, self.dec, t_mjd, obsLocation=self.obs, PA=self.pa).T + self.plx_vector_cached = [t_mjd, pvec] return pvec + + def model_fit(self, dt, x0, vx, y0, vy, pi): + """Model positions at time t of Parallax model. + + Parameters + ---------- + dt : float or array-like + Time(s) at which to evaluate the model + x0 : float or array-like + Initial position(s) + vx : float or array-like + Velocity(ies) + y0 : float or array-like + Initial position(s) + vy : float or array-like + Velocity(ies) + pi : float or array-like + Parallax factor(s) + + Returns + ------- + 2d array + Model positions at time t of Parallax model, shape (2, N_times) + """ + x_res = x0 + vx*dt + pi * self.pvec[0] + y_res = y0 + vy*dt + pi * self.pvec[1] + return np.vstack([x_res, y_res]) + + + def model(self, t, fit_params, fixed_params, fit_param_errs=None): + """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Parallax model. + + Parameters + ---------- + t : float or array-like + Times at which to evaluate the model + fit_params : array-like + Fit parameters for the model + fixed_params : array-like + Fixed parameters for the model + fit_param_errs : array-like, optional + Uncertainties in fit parameters, by default None + + Returns + ------- + x, y (, xe, ye) + Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 + """ + t = np.atleast_1d(t) + fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) - def get_pos_at_time(self, fit_params, fixed_params, t): - fit_params_dict = dict(zip(self.fitter_param_names, fit_params)) - fixed_params_dict = dict(zip(self.fixed_param_names, fixed_params)) - dt = t - fixed_params_dict['t0'] + N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 + N_times = len(t) + + x0, vx, y0, vy, pi = fit_params.T # Each shape (N_stars,) + t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) + + dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) + t_mjd = Time(t, format='decimalyear', scale='utc').mjd # Shape (N_times,) + self.pvec = self.calc_parallax_vector(t_mjd) # Shape (2, N_times) + x, y = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) + + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x = x.flatten() + y = y.flatten() + + if fit_param_errs is None: + return x, y + + fit_param_errs = np.atleast_2d(fit_param_errs) # (N_stars, N_params) + x0_err, vx_err, y0_err, vy_err, pi_err = fit_param_errs.T + x_err = np.sqrt(x0_err[:, np.newaxis]**2 + (vx_err[:, np.newaxis] * dt)**2 + (pi_err[:, np.newaxis] * self.pvec[0][np.newaxis, :])**2) # Shape (N_stars, N_times) + y_err = np.sqrt(y0_err[:, np.newaxis]**2 + (vy_err[:, np.newaxis] * dt)**2 + (pi_err[:, np.newaxis] * self.pvec[1][np.newaxis, :])**2) # Shape (N_stars, N_times) - t_mjd = Time(t, format='decimalyear', scale='utc').mjd - pvec = self.get_parallax_vector(t_mjd) - pvec_x = np.reshape(pvec[0], t.shape) - pvec_y = np.reshape(pvec[1], t.shape) - x = fit_params_dict['x0'] + fit_params_dict['vx']*dt + fit_params_dict['pi']*pvec_x - y = fit_params_dict['y0'] + fit_params_dict['vy']*dt + fit_params_dict['pi']*pvec_y - return x, y - - def get_batch_pos_at_time(self, t, - x0=[],vx=[], y0=[],vy=[], pi=[], t0=[], - x0_err=[],vx_err=[], y0_err=[],vy_err=[], pi_err=[], **kwargs): - t_mjd = Time(t, format='decimalyear', scale='utc').mjd - pvec = self.get_parallax_vector(t_mjd) - if hasattr(t, "__len__"): - dt = t-t0[:,np.newaxis] - x = x0[:,np.newaxis] + dt*vx[:,np.newaxis] + pi[:,np.newaxis]*pvec[0].T - y = y0[:,np.newaxis] + dt*vy[:,np.newaxis] + pi[:,np.newaxis]*pvec[1].T - try: - x_err = np.sqrt(x0_err[:,np.newaxis]**2 + (vx_err[:,np.newaxis]*dt)**2 + (pi_err[:,np.newaxis]*pvec[0].T)**2) - y_err = np.sqrt(y0_err[:,np.newaxis]**2 + (vy_err[:,np.newaxis]*dt)**2 + (pi_err[:,np.newaxis]*pvec[1].T)**2) - except: - x_err,y_err = [],[] - else: - dt = t-t0 - x = x0 + dt*vx + pi*pvec[0] - y = y0 + dt*vy + pi*pvec[1] - try: - x_err = np.sqrt(x0_err**2 + (vx_err*dt)**2 + (pi_err*pvec[0])**2) - y_err = np.sqrt(y0_err**2 + (vy_err*dt)**2 + (pi_err*pvec[1])**2) - except: - x_err,y_err = [],[] + if N_stars == 1 or N_times == 1: + # If only one star, return flattened arrays + x_err = x_err.flatten() + y_err = y_err.flatten() return x, y, x_err, y_err + def run_fit( self, t, x, y, xe, ye, t0, weighting='var', @@ -622,6 +812,7 @@ def run_fit( if verbose: warnings.warn("Parallax model has no non-scipy fitter option. Running with scipy.", UserWarning) + t = np.atleast_1d(t) n_obs = len(t) degree_of_freedom = n_obs - self.n_params # Not enough data points to fit model @@ -637,12 +828,9 @@ def run_fit( # degree_of_freedom >= 0 t_mjd = Time(t, format='decimalyear', scale='utc').mjd - pvec = self.get_parallax_vector(t_mjd) + self.pvec = self.get_parallax_vector(t_mjd) x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) - def fit_func(use_t, x0,vx, y0,vy, pi): - x_res = x0 + vx*(use_t-t0) + pi*pvec[0] - y_res = y0 + vy*(use_t-t0) + pi*pvec[1] - return np.hstack([x_res, y_res]) + # Initial guesses, x0,y0 as x,y averages; # vx,vy as average velocity if first and last points are perfectly measured; # pi for 10 pc distance @@ -655,7 +843,7 @@ def fit_func(use_t, x0,vx, y0,vy, pi): 0.1 ] res = curve_fit( - fit_func, t, np.hstack([x,y]), + self.model_fit, t - t0, np.vstack([x, y]), p0=params_guess, sigma = 1.0/np.hstack([x_wt,y_wt]), absolute_sigma=absolute_sigma ) @@ -664,7 +852,7 @@ def fit_func(use_t, x0,vx, y0,vy, pi): params = np.array([x0, vx, y0, vy, pi]) param_errors = np.array([x0_err, vx_err, y0_err, vy_err, pi_err]) - chi2_x, chi2_y = self.get_chi2(params, [t0], t, x, y, xe, ye) + chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) return params, param_errors, chi2_x, chi2_y @@ -733,7 +921,7 @@ def list_add(name): if name not in list_of_parameters: list_of_parameters.append(name) - for param in motion_model.fitter_param_names: + for param in motion_model.fit_param_names: # Fitter params list_add(param) # Error params @@ -770,7 +958,7 @@ def list_add(name): list_of_parameters.append(name) for mm in motion_model_list: - for param in mm.fitter_param_names: + for param in mm.fit_param_names: # Fitter params list_add(param) # Error params diff --git a/flystar/parallax.py b/flystar/parallax.py index b4b3a1b..3f7602b 100755 --- a/flystar/parallax.py +++ b/flystar/parallax.py @@ -24,20 +24,32 @@ cache_memory.reduce_size() @cache_memory.cache() -def parallax_in_direction(RA, Dec, mjd, obsLocation='earth', PA=0): +def parallax_in_direction(ra, dec, mjd, obsLocation='earth', PA=0.): """ - | R.A. in degrees. (J2000) - | Dec. in degrees. (J2000) - | MJD - | PA in degrees. (counterclockwise offset of the image y-axis from North) - - Equations following MulensModel. + Calculate the parallax vector in a given direction following MulensModel. + + Parameters + ---------- + RA : float + Right Ascension in degrees. (J2000) + Dec : float + Declination in degrees. (J2000) + mjd : float or array-like + Modified Julian Date. + obsLocation : str, optional + Observer location, by default 'earth'. + PA : float, optional + Position angle in degrees (counterclockwise offset of the image y-axis from North), by default 0. + + Returns + ------- + pvec : ndarray + Parallax vector components, shape of (N, 2), where N is the number of mjd entries. """ - #print('parallax_in_direction: len(t) = ', len(mjd)) - # Munge inputs into astropy format. - times = Time(mjd + 2400000.5, format='jd', scale='tdb') - coord = SkyCoord(RA, Dec, unit=(units.deg, units.deg)) + # times = Time(mjd + 2400000.5, format='jd', scale='tdb') + times = Time(mjd, format='mjd', scale='tdb') # convert to TDB + coord = SkyCoord(ra, dec, unit=(units.deg, units.deg)) direction = coord.cartesian.xyz.value north = np.array([0., 0., 1.]) @@ -58,13 +70,12 @@ def parallax_in_direction(RA, Dec, mjd, obsLocation='earth', PA=0): PA_rad = np.pi/180.0 * PA x = -e.value*np.cos(PA_rad) + n.value*np.sin(PA_rad) y = e.value*np.sin(PA_rad) + n.value*np.cos(PA_rad) - pvec = np.array([x, y]).T - + return pvec -def dparallax_dt_in_direction(RA, Dec, mjd, obsLocation='earth'): +def dparallax_dt_in_direction(ra, dec, mjd, obsLocation='earth'): """ R.A. in degrees. (J2000) Dec. in degrees. (J2000) @@ -76,8 +87,8 @@ def dparallax_dt_in_direction(RA, Dec, mjd, obsLocation='earth'): """ # print('parallax_in_direction: len(t) = ', len(mjd)) # Munge inputs into astropy format. - times = Time(mjd + 2400000.5, format='jd', scale='tdb') - coord = SkyCoord(RA, Dec, unit=(units.deg, units.deg)) + times = Time(mjd, format='mjd', scale='tdb') + coord = SkyCoord(ra, dec, unit=(units.deg, units.deg)) direction = coord.cartesian.xyz.value north = np.array([0., 0., 1.]) diff --git a/flystar/startables.py b/flystar/startables.py index 08461a1..661382f 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -730,19 +730,19 @@ def fit_motion_model( unique_motion_models, unique_inv_indices = np.unique(self['motion_model_used'], return_inverse=True) indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} - start_time = time.time() for unique_motion_model, unique_index in indices_by_motion_model.items(): # Create motion model instance motion_model_instance = input_mm_map[unique_motion_model] # Initialize arrays to store results n_stars_this_model = len(unique_index) - n_params = len(motion_model_instance.fitter_param_names) + n_params = len(motion_model_instance.fit_param_names) params_array = np.full((n_stars_this_model, n_params), fill_value, dtype=float) param_errs_array = np.full((n_stars_this_model, n_params), np.inf, dtype=float) chi2_x_array = np.full(n_stars_this_model, np.nan, dtype=float) chi2_y_array = np.full(n_stars_this_model, np.nan, dtype=float) + # Expensive for loop! Prepare everything beforehand to speed up. for idx, i_star in enumerate(tqdm(unique_index, disable=not show_progress, desc=f"Fitting motion model {unique_motion_model}")): # Fit the star params, param_errs, chi2_x, chi2_y = motion_model_instance.fit( @@ -759,14 +759,13 @@ def fit_motion_model( fill_value=fill_value, verbose=verbose ) - # print(f'{params_array.shape=}, {idx=}, {params=}') params_array[idx] = params param_errs_array[idx] = param_errs chi2_x_array[idx] = chi2_x chi2_y_array[idx] = chi2_y # Store results back to the table - param_names = motion_model_instance.fitter_param_names + param_names = motion_model_instance.fit_param_names for j, param_name in enumerate(param_names): self[param_name][unique_index] = params_array[:, j] self[param_name + '_err'][unique_index] = param_errs_array[:, j] @@ -1077,7 +1076,7 @@ def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scip # # # Load up any prior information on parameters for this model. # param_dict = {} -# for par in modClass.fitter_param_names+modClass.fixed_param_names: +# for par in modClass.fit_param_names+modClass.fixed_param_names: # if ~np.isnan(self[par][ss]): # param_dict[par] = self[par][ss] @@ -1094,8 +1093,8 @@ def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scip self['n_params'][ss] = mod.n_params # Save parameters and errors to table. - for pp in range(len(mod.fitter_param_names)): - par = mod.fitter_param_names[pp] + for pp in range(len(mod.fit_param_names)): + par = mod.fit_param_names[pp] par_err = par + '_err' self[par][ss] = params[pp] self[par_err][ss] = param_errs[pp] @@ -1131,7 +1130,7 @@ def get_star_positions_at_time(self, t, motion_model_dict, allow_alt_models=True mod = motion_model_dict[mm] # Set up parameters param_dict = {} - for par in mod.fitter_param_names + mod.fixed_param_names + [pm+'_err' for pm in mod.fitter_param_names]: + for par in mod.fit_param_names + mod.fixed_param_names + [pm+'_err' for pm in mod.fit_param_names]: param_dict[par] = self[par][idx] x[idx],y[idx],xe[idx],ye[idx] = mod.get_batch_pos_at_time(t,**param_dict) except: @@ -1211,7 +1210,7 @@ def fit_velocities_all_detected(self, motion_model_to_fit, weighting='var', use_ detected_in_all_epochs = np.logical_and(valid_xe, valid_ye) N = len(self['x'][select_stars, :]) - fit_params = motion_model_to_fit.fitter_param_names + fit_params = motion_model_to_fit.fit_param_names param_data = {p: np.zeros(N) for p in fit_params} param_data.update({p+'_err': np.zeros(N) for p in fit_params}) param_data.update({p: np.zeros(N) for p in motion_model_to_fit.fixed_param_names}) diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index 9b65eb6..195a67b 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -990,7 +990,7 @@ def make_fake_starlists_poly1_par(seed=-1): for ss in range(len(times)): dt = times[ss] - lis['t0'] - par_mod = motion_model.Parallax(PA=0,RA=18.0, Dec=-30.0) + par_mod = motion_model.Parallax(pa=0,ra=18.0, dec=-30.0) par_mod_dat = par_mod.get_batch_pos_at_time(dt+lis['t0'], x0=lis['x0'],vx=lis['vx']/1e3, pi=lis['pi'], y0=lis['y0'], vy=lis['vy']/1e3, t0=lis['t0']) x,y = par_mod_dat[0], par_mod_dat[1] diff --git a/flystar/tests/test_motion_model.py b/flystar/tests/test_motion_model.py index 2fa1b57..ccbba68 100755 --- a/flystar/tests/test_motion_model.py +++ b/flystar/tests/test_motion_model.py @@ -1,27 +1,35 @@ from flystar import motion_model import numpy as np -import pytest import matplotlib.pyplot as plt from scipy.optimize import curve_fit def within_error(true_val, fit_val, fit_err, n_sigma=3): #print('True', true_val, 'Fit', fit_val, 'Fit err', fit_err) - return (true_val < (fit_val+fit_err*n_sigma)) & (true_val> (fit_val-fit_err*n_sigma)) + # return (true_val < (fit_val + fit_err*n_sigma)) & (true_val > (fit_val - fit_err*n_sigma)) + return np.abs(true_val - fit_val) <= n_sigma*fit_err def test_Fixed(): # Test handling of a single star true_params = {'x0': 1.0, 'y0':0.5, 'x0_err':0.1, 'y0_err':0.1} mod = motion_model.Fixed() - param_list = mod.fitter_param_names + param_list = mod.fit_param_names fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t and array t - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], 0.0) + # x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], + # [true_params[p] for p in fixed_param_list], 0.0) + x_t, y_t = mod.model( + 0.0, + fit_params=np.array([true_params['x0'], true_params['y0']]).T + ) assert x_t==true_params['x0'] assert y_t==true_params['y0'] - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], - [0.0,2025.0,10000]) + # x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], + # [true_params[p] for p in fixed_param_list], + # [0.0,2025.0,10000]) + x_t, y_t = mod.model( + [0.0,2025.0,10000], + fit_params=np.array([true_params['x0'], true_params['y0']]).T + ) assert (x_t==true_params['x0']).all() assert (y_t==true_params['y0']).all() @@ -32,16 +40,26 @@ def test_Fixed(): y0_err_batch = np.repeat(0.1, 50) # Single epoch t_batch=2020.0 - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) + # x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, + # x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t_batch, + fit_params=np.array([x0_batch, y0_batch]).T, + fit_param_errs=np.array([x0_err_batch, y0_err_batch]).T + ) assert (x_t_batch==x0_batch).all() assert (y_t_batch==y0_batch).all() assert (x_err_t_batch==x0_err_batch).all() assert (y_err_t_batch==y0_err_batch).all() # Multiple times t_batch = np.arange(2015.0,2025.0, 0.5) - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) + # x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, + # x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t_batch, + fit_params=np.array([x0_batch, y0_batch]).T, + fit_param_errs=np.array([x0_err_batch, y0_err_batch]).T + ) assert (x_t_batch==np.array([np.repeat(x0_batch_i, len(t_batch)) for x0_batch_i in x0_batch])).all() assert (y_t_batch==np.array([np.repeat(y0_batch_i, len(t_batch)) for y0_batch_i in y0_batch])).all() assert (x_err_t_batch==np.array([np.repeat(x0_err_batch_i, len(t_batch)) for x0_err_batch_i in x0_err_batch])).all() @@ -50,15 +68,22 @@ def test_Fixed(): # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], t) + # x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], + # [true_params[p] for p in fixed_param_list], t) + x_true, y_true = mod.model( + t, + fit_params=np.array([true_params['x0'], true_params['y0']]) + ) x_sim = np.random.normal(x_true, true_params['x0_err']) y_sim = np.random.normal(y_true, true_params['y0_err']) # Run fit - params, param_errs = mod.fit_motion_model(t, x_sim,y_sim, - np.ones(len(t))*true_params['x0_err'], - np.ones(len(t))*true_params['y0_err'], - np.nan) + params, param_errs, _ , _ = mod.fit( + t, + x_sim,y_sim, + xe=np.ones(len(t))*true_params['x0_err'], + ye=np.ones(len(t))*true_params['y0_err'], + t0=np.nan + ) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) @@ -69,21 +94,25 @@ def test_Linear(): 'vx':0.2, 'vy':0.5, 'vx_err':0.05, 'vy_err':0.05, 't0':2025.0} mod = motion_model.Linear() - param_list = mod.fitter_param_names + param_list = mod.fit_param_names fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t=t0 and array t - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], - true_params['t0']) + x_t, y_t = mod.model( + t=true_params['t0'], + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) assert x_t==true_params['x0'] assert y_t==true_params['y0'] t_arr = np.array([2010.0,true_params['t0'],2030.0]) - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], - t_arr) + x_t, y_t = mod.model( + t=t_arr, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) assert (x_t==(true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx'])).all() assert (y_t==(true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy'])).all() - + # Check behavior of get_batch_pos_at_time x0_batch = np.random.uniform(-2.0,2.0, 50) y0_batch = np.random.uniform(-2.0,2.0, 50) @@ -96,20 +125,24 @@ def test_Linear(): t0_batch = np.repeat(2025.0,50) # Single epoch t_batch=2020.0 - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch, - vx=vx_batch, vy=vy_batch, vx_err=vx_err_batch, vy_err=vy_err_batch, - t0=t0_batch) + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t=t_batch, + fit_params=np.array([x0_batch, vx_batch, y0_batch, vy_batch]).T, + fit_param_errs=np.array([x0_err_batch, vx_err_batch, y0_err_batch, vy_err_batch]).T, + fixed_params=t0_batch + ) assert (x_t_batch==(x0_batch+(t_batch-t0_batch)*vx_batch)).all() assert (y_t_batch==(y0_batch+(t_batch-t0_batch)*vy_batch)).all() assert (x_err_t_batch==np.hypot(x0_err_batch, (t_batch-t0_batch)*vx_err_batch)).all() assert (y_err_t_batch==np.hypot(y0_err_batch, (t_batch-t0_batch)*vy_err_batch)).all() # Multiple times t_batch = np.arange(2015.0,2025.0, 0.5) - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch, - vx=vx_batch, vy=vy_batch, vx_err=vx_err_batch, vy_err=vy_err_batch, - t0=t0_batch) + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t=t_batch, + fit_params=np.array([x0_batch, vx_batch, y0_batch, vy_batch]).T, + fit_param_errs=np.array([x0_err_batch, vx_err_batch, y0_err_batch, vy_err_batch]).T, + fixed_params=t0_batch + ) assert (x_t_batch==np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx_batch[i] for i in range(len(x0_batch))])).all() assert (y_t_batch==np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy_batch[i] for i in range(len(x0_batch))])).all() assert (x_err_t_batch==np.array([np.hypot(x0_err_batch[i], (t_batch-t0_batch[i])*vx_err_batch[i]) for i in range(len(x0_batch))])).all() @@ -118,13 +151,24 @@ def test_Linear(): # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list],t) + # x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], + # [true_params[p] for p in fixed_param_list],t) + x_true, y_true = mod.model( + t=t, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) x_sim = np.random.normal(x_true, 0.05) y_sim = np.random.normal(y_true, 0.05) # Run fit - params, param_errs = mod.fit_motion_model(t, x_sim,y_sim, - np.repeat(0.05, len(t)), np.repeat(0.05,len(t)), true_params['t0']) + params, param_errs, _, _ = mod.fit( + t=t, + x=x_sim, + y=y_sim, + xe=np.repeat(0.05, len(t)), + ye=np.repeat(0.05,len(t)), + t0=true_params['t0'] + ) print(param_errs) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) @@ -138,11 +182,11 @@ def test_Linear(): x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - params, param_errs = mod.fit_motion_model(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0'],bootstrap=10) + params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0'],bootstrap=10) print(param_errs) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) - + # # Test fitter for 2 pts # t = np.array([2015.0,2025.0]) # # Get values from model and add scatter @@ -169,20 +213,24 @@ def test_Acceleration(): 'ax':0.1, 'ay':-0.1, 'ax_err':0.02, 'ay_err':0.02, 't0':2025.0} mod = motion_model.Acceleration() - param_list = mod.fitter_param_names + param_list = mod.fit_param_names fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t=t0 and array t - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], - true_params['t0']) - assert x_t==true_params['x0'] - assert y_t==true_params['y0'] - t_arr = np.array([2010.0,true_params['t0'],2030.0]) - x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list], - t_arr) - assert (x_t==(true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ax'])).all() - assert (y_t==(true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ay'])).all() + x_t, y_t = mod.model( + t=true_params['t0'], + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) + np.testing.assert_allclose(x_t, true_params['x0']) + np.testing.assert_allclose(y_t, true_params['y0']) + t_arr = np.array([2010.0, true_params['t0'], 2030.0]) + x_t, y_t = mod.model( + t=t_arr, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) + np.testing.assert_allclose(x_t, true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ax']) + np.testing.assert_allclose(y_t, true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ay']) # Check behavior of get_batch_pos_at_time x0_batch = np.random.uniform(-2.0,2.0, 50) @@ -200,43 +248,56 @@ def test_Acceleration(): t0_batch = np.repeat(2025.0,50) # Single epoch t_batch=2020.0 - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch, - vx0=vx0_batch, vy0=vy0_batch, vx0_err=vx0_err_batch, vy0_err=vy0_err_batch, - ax=ax_batch, ay=ay_batch, ax_err=ax_err_batch, ay_err=ay_err_batch, - t0=t0_batch) - assert (x_t_batch==(x0_batch + (t_batch-t0_batch)*vx0_batch + 0.5*(t_batch-t0_batch)**2*ax_batch)).all() - assert (y_t_batch==(y0_batch + (t_batch-t0_batch)*vy0_batch + 0.5*(t_batch-t0_batch)**2*ay_batch)).all() - assert (x_err_t_batch==np.sqrt(x0_err_batch**2 + ((t_batch-t0_batch)*vx0_err_batch)**2 + - (0.5*(t_batch-t0_batch)**2*ax_err_batch)**2)).all() - assert (y_err_t_batch==np.sqrt(y0_err_batch**2 + ((t_batch-t0_batch)*vy0_err_batch)**2 + - (0.5*(t_batch-t0_batch)**2*ay_err_batch)**2)).all() + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t=t_batch, + fit_params=np.array([x0_batch, vx0_batch, ax_batch, y0_batch, vy0_batch, ay_batch]).T, + fit_param_errs=np.array([x0_err_batch, vx0_err_batch, ax_err_batch, y0_err_batch, vy0_err_batch, ay_err_batch]).T, + fixed_params=t0_batch + ) + np.testing.assert_allclose(x_t_batch, x0_batch + (t_batch-t0_batch)*vx0_batch + 0.5*(t_batch-t0_batch)**2*ax_batch) + np.testing.assert_allclose(y_t_batch, y0_batch + (t_batch-t0_batch)*vy0_batch + 0.5*(t_batch-t0_batch)**2*ay_batch) + np.testing.assert_allclose(x_err_t_batch, np.sqrt(x0_err_batch**2 + ((t_batch-t0_batch)*vx0_err_batch)**2 + + (0.5*(t_batch-t0_batch)**2*ax_err_batch)**2)) + np.testing.assert_allclose(y_err_t_batch, np.sqrt(y0_err_batch**2 + ((t_batch-t0_batch)*vy0_err_batch)**2 + + (0.5*(t_batch-t0_batch)**2*ay_err_batch)**2)) + # Multiple times t_batch = np.arange(2015.0,2025.0, 0.5) - x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch, - vx0=vx0_batch, vy0=vy0_batch, vx0_err=vx0_err_batch, vy0_err=vy0_err_batch, - ax=ax_batch, ay=ay_batch, ax_err=ax_err_batch, ay_err=ay_err_batch, - t0=t0_batch) - assert (x_t_batch==np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ax_batch[i] for i in range(len(x0_batch))])).all() - assert (y_t_batch==np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ay_batch[i] for i in range(len(x0_batch))])).all() - assert (x_err_t_batch==np.array([np.sqrt(x0_err_batch[i]**2 + ((t_batch-t0_batch[i])*vx0_err_batch[i])**2 + (0.5*(t_batch-t0_batch[i])**2*ax_err_batch[i])**2) for i in range(len(x0_batch))])).all() - assert (y_err_t_batch==np.array([np.sqrt(y0_err_batch[i]**2 + ((t_batch-t0_batch[i])*vy0_err_batch[i])**2 + (0.5*(t_batch-t0_batch[i])**2*ay_err_batch[i])**2) for i in range(len(x0_batch))])).all() - + x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( + t=t_batch, + fit_params=np.array([x0_batch, vx0_batch, ax_batch, y0_batch, vy0_batch, ay_batch]).T, + fit_param_errs=np.array([x0_err_batch, vx0_err_batch, ax_err_batch, y0_err_batch, vy0_err_batch, ay_err_batch]).T, + fixed_params=t0_batch + ) + np.testing.assert_allclose(x_t_batch, np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ax_batch[i] for i in range(len(x0_batch))])) + np.testing.assert_allclose(y_t_batch, np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ay_batch[i] for i in range(len(x0_batch))])) + np.testing.assert_allclose(x_err_t_batch, np.array([np.sqrt(x0_err_batch[i]**2 + ((t_batch-t0_batch[i])*vx0_err_batch[i])**2 + (0.5*(t_batch-t0_batch[i])**2*ax_err_batch[i])**2) for i in range(len(x0_batch))])) + np.testing.assert_allclose(y_err_t_batch, np.array([np.sqrt(y0_err_batch[i]**2 + ((t_batch-t0_batch[i])*vy0_err_batch[i])**2 + (0.5*(t_batch-t0_batch[i])**2*ay_err_batch[i])**2) for i in range(len(x0_batch))])) + # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list],t) - x_true_err = np.sqrt(true_params['x0_err']**2 + ((t-true_params['t0'])*true_params['vx0_err'])**2 + - (0.5*(t-true_params['t0'])**2*true_params['ax_err'])**2) - y_true_err = np.sqrt(true_params['y0_err']**2 + ((t-true_params['t0'])*true_params['vy0_err'])**2 + - (0.5*(t-true_params['t0'])**2*true_params['ay_err'])**2) + x_true, y_true = mod.model( + t=t, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + ) + x_true_err = np.sqrt(true_params['x0_err']**2 + ((t - true_params['t0']) * true_params['vx0_err'])**2 + + (0.5*(t - true_params['t0'])**2 * true_params['ax_err'])**2) + y_true_err = np.sqrt(true_params['y0_err']**2 + ((t - true_params['t0']) * true_params['vy0_err'])**2 + + (0.5*(t - true_params['t0'])**2 * true_params['ay_err'])**2) x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - mod_fit = motion_model.Acceleration(t0=true_params['t0']) - params, param_errs = mod_fit.fit_motion_model(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0']) + mod_fit = motion_model.Acceleration() + params, param_errs, _, _ = mod_fit.fit( + t=t, + x=x_sim, + y=y_sim, + xe=x_true_err, + ye=y_true_err, + t0=true_params['t0'] + ) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) @@ -248,7 +309,7 @@ def test_Parallax(): 'pi':0.5, 'RA':17.76, 'Dec':-28.933, 'PA':0, 't0':2020.0} mod = motion_model.Parallax(**{'RA':17.76, 'Dec':-28.933, 'PA':0}) - param_list = mod.fitter_param_names + param_list = mod.fit_param_names fixed_param_list = mod.fixed_param_names print(param_list) @@ -261,7 +322,7 @@ def test_Parallax(): x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - params, param_errs = mod.fit_motion_model(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0']) + params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0']) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) @@ -270,16 +331,25 @@ def test_Parallax_PA(): # Set PA=0 model x0, y0 = 2.0, -1.0 vx, vy = 0.2, 0.5 - RA, Dec = 17.76, -28.933 + ra, dec = 17.76, -28.933 pi = 0.5 - mod_pa0 = motion_model.Parallax(RA=RA,Dec=Dec, PA=0) + mod_pa0 = motion_model.Parallax(ra=ra, dec=dec, pa=0) # Set PA=90 model with equivalent parameters in that frame - mod_pa90 = motion_model.Parallax(RA=RA,Dec=Dec,t0=2020.0, PA=90) - t_set = np.arange(2018,2024,0.01) - dat_pa0 = mod_pa0.get_pos_at_time([x0,vx,y0,vy,pi],[2020.0],t_set) - dat_pa90 = mod_pa90.get_pos_at_time([y0,vy,-x0,-vx,pi],[2020.0],t_set) - assert (np.abs(dat_pa0[0]-(-dat_pa90[1]))<1e-10).all() - assert (np.abs(dat_pa0[1]-(dat_pa90[0]))<1e-10).all() + mod_pa90 = motion_model.Parallax(ra=ra, dec=dec, pa=90) + + t_set = np.arange(2018, 2024, 0.01) + dat_pa0 = mod_pa0.model( + t = t_set, + fit_params = np.array([x0, vx, y0, vy, pi]).T, + fixed_params = [2020.0] + ) + dat_pa90 = mod_pa90.model( + t = t_set, + fit_params = np.array([y0, vy, -x0, -vx, pi]).T, + fixed_params = [2020.0] + ) + np.testing.assert_allclose(dat_pa0[0], -dat_pa90[1], atol=1e-10) + np.testing.assert_allclose(dat_pa0[1], dat_pa90[0], atol=1e-10) def test_Linear_fit_vs_scipy(): @@ -431,38 +501,38 @@ def linear(t, c0, c1): y0_scipy[i], y0e_scipy[i] = popt_y[0], np.sqrt(pcov_y[0, 0]) # motion_model without scipy - params, param_errs = mm.fit_motion_model( + params, param_errs = mm.fit( t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], xe[i][~mask[i]], ye[i][~mask[i]], t0[i], weighting='var', use_scipy=False, absolute_sigma=absolute_sigma ) - vx_mm[i] = params[mm.fitter_param_names.index('vx')] - vy_mm[i] = params[mm.fitter_param_names.index('vy')] - vxe_mm[i] = param_errs[mm.fitter_param_names.index('vx')] - vye_mm[i] = param_errs[mm.fitter_param_names.index('vy')] - x0_mm[i] = params[mm.fitter_param_names.index('x0')] - y0_mm[i] = params[mm.fitter_param_names.index('y0')] - x0e_mm[i] = param_errs[mm.fitter_param_names.index('x0')] - y0e_mm[i] = param_errs[mm.fitter_param_names.index('y0')] + vx_mm[i] = params[mm.fit_param_names.index('vx')] + vy_mm[i] = params[mm.fit_param_names.index('vy')] + vxe_mm[i] = param_errs[mm.fit_param_names.index('vx')] + vye_mm[i] = param_errs[mm.fit_param_names.index('vy')] + x0_mm[i] = params[mm.fit_param_names.index('x0')] + y0_mm[i] = params[mm.fit_param_names.index('y0')] + x0e_mm[i] = param_errs[mm.fit_param_names.index('x0')] + y0e_mm[i] = param_errs[mm.fit_param_names.index('y0')] # motion_model with scipy - params, param_errs = mm.fit_motion_model( + params, param_errs = mm.fit( t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], xe[i][~mask[i]], ye[i][~mask[i]], t0[i], weighting='var', use_scipy=True, absolute_sigma=absolute_sigma ) - vx_mm_scipy[i] = params[mm.fitter_param_names.index('vx')] - vy_mm_scipy[i] = params[mm.fitter_param_names.index('vy')] - vxe_mm_scipy[i] = param_errs[mm.fitter_param_names.index('vx')] - vye_mm_scipy[i] = param_errs[mm.fitter_param_names.index('vy')] - x0_mm_scipy[i] = params[mm.fitter_param_names.index('x0')] - y0_mm_scipy[i] = params[mm.fitter_param_names.index('y0')] - x0e_mm_scipy[i] = param_errs[mm.fitter_param_names.index('x0')] - y0e_mm_scipy[i] = param_errs[mm.fitter_param_names.index('y0')] + vx_mm_scipy[i] = params[mm.fit_param_names.index('vx')] + vy_mm_scipy[i] = params[mm.fit_param_names.index('vy')] + vxe_mm_scipy[i] = param_errs[mm.fit_param_names.index('vx')] + vye_mm_scipy[i] = param_errs[mm.fit_param_names.index('vy')] + x0_mm_scipy[i] = params[mm.fit_param_names.index('x0')] + y0_mm_scipy[i] = params[mm.fit_param_names.index('y0')] + x0e_mm_scipy[i] = param_errs[mm.fit_param_names.index('x0')] + y0e_mm_scipy[i] = param_errs[mm.fit_param_names.index('y0')] rtol = 1e-5 # np.testing.assert_allclose(vx_velfit, vx_scipy, rtol=rtol) diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index cf3be71..1b8e5cb 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -305,7 +305,7 @@ def test_fit_velocities(): tab = table.vstack((tab1, tab2, tab3)) tab.meta = tab1.meta - tab.fit_velocities(verbose=True) + tab.fit_motion_model(verbose=True) # Test creation of new variables assert len(tab['vx']) == len(tab) @@ -313,7 +313,7 @@ def test_fit_velocities(): assert len(tab['vx_err']) == len(tab) assert len(tab['vy_err']) == len(tab) assert len(tab['n_fit']) == len(tab) - assert tab.meta['n_fit_bootstrap'] == 0 + assert tab.meta['n_bootstrap'] == 0 # Test no-fit for stars with N<2 epochs. n_epochs = (tab['x'] >= 0).sum(axis=1) @@ -365,7 +365,7 @@ def test_fit_velocities(): tab_b.meta = tab1.meta tab_b.fit_velocities(verbose=True, bootstrap=50) - assert tab_b.meta['n_fit_bootstrap'] == 50 + assert tab_b.meta['n_bootstrap'] == 50 assert tab_b['x0_err'][0] > tab['x0_err'][0] assert tab_b['vx_err'][0] > tab['vx_err'][0] assert tab_b['y0_err'][0] > tab['y0_err'][0] @@ -559,10 +559,10 @@ def make_star_table(): x=x_in, y=y_in, m=m_in, xe=xe_in, ye=ye_in, me=me_in, n=n_in, - ref_list=1, - list_times=starlist_times, - list_names=starlist_names + ref_list=1 ) + startable.meta['LIST_TIMES'] = starlist_times + startable.meta['LIST_NAMES'] = starlist_names return startable From e0e0c2c13573ba5d199aa3019a0df2d14fa67b4e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Tue, 25 Nov 2025 15:54:47 -0800 Subject: [PATCH 18/29] MotionModel acceleration with passed testings. Merged get_pos_at_time and get_batch_pos_at_time into model; Replaced MotionModel.fit_motion_model with MotionModel.fit; Rewrote and accelerated StarTable.fit_velocities with StarTable.fit_motion_model --- flystar/motion_model.py | 479 +++-- flystar/parallax.py | 41 +- flystar/startables.py | 119 +- flystar/tests/test_all_detected.fits | 2911 -------------------------- flystar/tests/test_motion_model.py | 411 +--- flystar/tests/test_startable.py | 182 +- 6 files changed, 595 insertions(+), 3548 deletions(-) delete mode 100644 flystar/tests/test_all_detected.fits diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 5a542e0..5ccb6ee 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -1,6 +1,5 @@ import numpy as np from abc import ABC -import pdb from flystar import parallax from astropy.time import Time from scipy.optimize import curve_fit, OptimizeWarning @@ -36,17 +35,19 @@ def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, + params_guess=None, fill_value=np.nan, verbose=True ): # Run a single fit (used both for overall fit + bootstrap iterations) return np.full(self.n_params, fill_value), np.full(self.n_params, np.inf), np.nan, np.nan - def get_weights(self, xe, ye, weighting='var'): + def calc_weights(self, xe, ye, weighting='var'): if weighting=='std': return 1./xe, 1./ye elif weighting=='var': @@ -56,12 +57,15 @@ def get_weights(self, xe, ye, weighting='var'): return 1./xe**2, 1./ye**2 def fit( - self, t, x, y, xe, ye, t0, - bootstrap=0, + self, t, x, y, xe, ye, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, fill_value=np.nan, + params_guess=None, + return_chi2=False, + bootstrap=0, verbose=True, seed=None ): @@ -79,10 +83,8 @@ def fit( Uncertainty of x ye : array-like Uncertainty of y - t0 : array-like - Reference time for fitting, i.e. dt = t - t0 will be used in fitting - bootstrap : int, optional - Bootstrapping uncertainties, by default 0 + fixed_params_dict : dict, optional + Dictionary of fixed parameters, see each motion model's fixed_param_names for details, by default None weighting : str, optional Use standard error weighting ('std': w=1/xe, 1/ye) or variance weighting ('var': w=1/xe**2, 1/ye**2), by default 'var' use_scipy : bool, optional @@ -91,6 +93,12 @@ def fit( Absolute sigma. See scipy.optimize.curve_fit for details, by default True fill_value : float, optional Fill value for parameters when not enough data points to fit model, by default np.nan + params_guess : array-like, optional + Initial guess for the fit parameters used in scipy curve_fit, by default None + return_chi2 : bool, optional + Return chi^2 values along with parameters and uncertainties in params, param_errs, chi2_x, chi2_y, by default False + bootstrap : int, optional + Bootstrapping uncertainties, by default 0 verbose : bool, optional Print warning messages, by default True seed : int, optional @@ -100,39 +108,66 @@ def fit( params, params_err, chi2_x, chi2_y Parameters, uncertainties, and chi squares. The corresponding parameter names are in self.fit_param_names. """ - params, param_errs, chi2_x, chi2_y = self.run_fit( - t, x, y, xe, ye, t0=t0, + fit_result = self.run_fit( + t, x, y, xe, ye, + fixed_params_dict=fixed_params_dict, weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma, fill_value=fill_value, + params_guess=params_guess, + return_chi2=return_chi2, verbose=verbose ) - if seed is not None: - rng = np.random.default_rng(seed) + + if return_chi2: + params, param_errs, chi2_x, chi2_y = fit_result else: - rng = np.random.default_rng() + params, param_errs = fit_result + # Bootstrap errors n_obs = len(t) + if bootstrap > 0 and n_obs > (self.n_params): + # Use m out of n bootstrap to ensure enough unique points + m = np.max([self.n_params, int(len(t) * 0.8)]) + rng = np.random.default_rng(seed) edx = np.arange(n_obs, dtype=int) + # Precompute All Bootstrap Draws at Once + bdx_all = rng.choice(edx, size=(bootstrap, m), replace=True) + + # Count unique indices per bootstrap sample + uniq_counts = np.apply_along_axis(lambda x: len(np.unique(x)), 1, bdx_all) + + # Identify invalid samples + bad = uniq_counts < self.n_params + n_bad = bad.sum() + + while n_bad > 0: + # Resample only bad rows + bdx_all[bad] = rng.choice(edx, size=(n_bad, m), replace=True) + uniq_counts = np.apply_along_axis(lambda x: len(np.unique(x)), 1, bdx_all) + bad = uniq_counts < self.n_params + n_bad = bad.sum() + bb_params = [] bb_params_errs = [] - for bb in range(bootstrap): - bdx = rng.choice(edx, n_obs, replace=False) - params_bdx, param_errs_bdx, chi2x_bdx, chi2y_bdx = self.run_fit( - t[bdx], x[bdx], y[bdx], xe[bdx], ye[bdx], t0=t0, + for bdx in bdx_all: + params_bdx, param_errs_bdx = self.run_fit( + t[bdx], x[bdx], y[bdx], xe[bdx], ye[bdx], + fixed_params_dict=fixed_params_dict, weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma, params_guess=params, fill_value=fill_value, + return_chi2=False, verbose=verbose ) bb_params.append(params_bdx) bb_params_errs.append(param_errs_bdx) - + # Save the errors from the bootstrap param_errs = np.std(bb_params, axis=0) @@ -140,14 +175,18 @@ def fit( inf_errs = [np.all(arr==np.inf) for arr in np.transpose(np.array(bb_params_errs))] param_errs[inf_errs] = 0.0 - return params, param_errs, chi2_x, chi2_y + if return_chi2: + return params, param_errs, chi2_x, chi2_y + else: + return params, param_errs + - def calc_chi2(self, fit_params, fixed_params, t, x, y, xe, ye, reduced=False): + def calc_chi2(self, t, x, y, xe, ye, fit_params, fixed_params_dict=None, reduced=False): """ Get the chi^2 value for the current MM and the input data. """ - x_pred, y_pred = self.model(t, fit_params, fixed_params) + x_pred, y_pred = self.model(t, fit_params, fixed_params_dict) chi2x = np.sum((x - x_pred)**2 / xe**2) chi2y = np.sum((y - y_pred)**2 / ye**2) if reduced: @@ -174,23 +213,86 @@ def __init__(self, **kwargs): def model_fit(self, dt): return np.full_like(dt, np.nan) - def model(self, t, fit_params, fixed_params, fixed_param_errs=None): + def model(self, t, fit_params, fixed_params_dict, fixed_param_errs=None): + """Predicted positions (and uncertainties, if fit_param_errs is provided) at time t of Empty model. + + Parameters + ---------- + t : float or array-like + Time array, shape (N_times,) + fit_params : array-like + Fit parameters, shape (N_params,) or (N_stars, N_params) + fixed_params_dict : dict + Dictionary of fixed parameters, not applicable for Empty model + fixed_param_errs : array-like, optional + Uncertainties for fixed parameters, not applicable for Empty model, by default None + + Returns + ------- + x, y (, xe, ye) + Predicted position (and uncertainties) of Empty model, shape (N_times,) + """ + t = np.atleast_1d(t) + if fixed_param_errs is None: + return np.full_like(t, np.nan), np.full_like(t, np.nan) return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, fill_value=np.nan, + params_guess=None, + return_chi2=False, verbose=True ): + """Fit stellar motion parameters + + Parameters + ---------- + t : float or array-like + Time array, shape (N_times,) + x : array-like + Observed x positions, shape (N_times,) + y : array-like + Observed y positions, shape (N_times,) + xe : array-like + Observed uncertainties in x positions, shape (N_times,) + ye : array-like + Observed uncertainties in y positions, shape (N_times,) + fixed_params_dict : dict, optional + Dictionary of fixed parameters, not applicable for Empty model, by default None + weighting : str, optional + Weighting scheme to use, 'var' or 'std', by default 'var' + use_scipy : bool, optional + Whether to use scipy.optimize for fitting, by default True + absolute_sigma : bool, optional + Whether to treat sigma as absolute, by default True + fill_value : float, optional + Value to fill parameters with when fitting is not possible, by default np.nan + params_guess : array-like, optional + Initial guess for parameters, by default None + return_chi2 : bool, optional + Whether to return chi-squared value, by default False + verbose : bool, optional + Whether to print verbose output, by default True + + Returns + ------- + params, param_errors (, chi2_x, chi2_y) + Fitted parameters, their uncertainties, and optionally chi-squared values + """ if verbose: warnings.warn(f"Empty data cannot be fit. Setting parameters to {fill_value} and uncertainties to np.inf.", OptimizeWarning, stacklevel=2) params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) - return params, param_errors, np.nan, np.nan + if return_chi2: + return params, param_errors, np.nan, np.nan + else: + return params, param_errors class Fixed(MotionModel): @@ -230,7 +332,7 @@ def model_fit(self, dt, x0): x0 = np.asarray(x0) return np.broadcast_to(x0[:, np.newaxis], (x0.shape[0], dt.shape[0])) if x0.ndim > 0 else np.full_like(dt, x0) - def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): + def model(self, t, fit_params, fixed_params_dict=None, fit_param_errs=None): """Predicted positions (and uncertainties, if fit_param_errs is provided) at time t of Fixed model. Parameters @@ -238,8 +340,8 @@ def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): t : float or array-like Time array, shape (N_times,) fit_params : array-like - Fit parameters x0, y0 in shape (N_params,) or (N_stars, N_params) - fixed_params : array-like, optional + x0, y0 in shape (N_params,) or (N_stars, N_params) + fixed_params_dict : dict, optional Not applicable for Fixed, by default None fit_param_errs : array-like, optional Uncertainties for x0, y0 in shape (N_params,) or (N_stars, N_params), by default None @@ -283,12 +385,14 @@ def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): return x, y, x_err, y_err def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, - params_guess=None, fill_value=np.nan, + params_guess=None, + return_chi2=False, verbose=True ): if verbose and (not use_scipy): @@ -309,7 +413,7 @@ def run_fit( # degree_of_freedom >= 0 # Calculate weighted average position - x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) + x_wt, y_wt = self.calc_weights(xe, ye, weighting=weighting) x_wt_norm = x_wt / np.sum(x_wt) y_wt_norm = y_wt / np.sum(y_wt) x0 = np.average(x, weights=x_wt) @@ -320,7 +424,8 @@ def run_fit( params = np.array([x0, y0]) param_errors = np.array([x0e, y0e]) - chi2x, chi2y = self.calc_chi2(params, [], t, x, y, xe, ye) + if (not absolute_sigma) or return_chi2: + chi2x, chi2y = self.calc_chi2(t, x, y, xe, ye, params) if not absolute_sigma: if degree_of_freedom > 0: @@ -338,7 +443,10 @@ def run_fit( # Set parameter uncertainties to np.inf, same behavior as scipy.optimize.curve_fit param_errors = np.full_like(param_errors, np.inf) - return params, param_errors, chi2x, chi2y + if return_chi2: + return params, param_errors, chi2x, chi2y + else: + return params, param_errors class Linear(MotionModel): """ @@ -349,7 +457,6 @@ class Linear(MotionModel): # Number of fit parameters/required observations in each direction n_params = int(np.ceil(len(fit_param_names) / 2)) - name = "Linear" def __init__(self, **kwargs): @@ -377,7 +484,7 @@ def model_fit(self, dt, x0, v): """ return x0 + v * dt - def model(self, t, fit_params, fixed_params, fit_param_errs=None): + def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Linear model. Parameters @@ -385,9 +492,9 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): t : float or array-like Time(s) at which to evaluate the model fit_params : array-like - Fit parameters x0, vx, y0, vy in shape (N_params,) or (N_stars, N_params) - fixed_params : array-like - Fixed parameters t0 in shape (1,) or (N_stars, 1) + x0, vx, y0, vy in shape (N_params,) or (N_stars, N_params) + fixed_params_dict : dict + t0, shape (1,) or (N_stars,) fit_param_errs : array-like, optional Uncertainties of fit parameters in shape (N_params,) or (N_stars, N_params), by default None @@ -396,6 +503,8 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Linear model." + t = np.atleast_1d(t) fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) @@ -403,7 +512,7 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): N_times = len(t) x0, vx, y0, vy = fit_params.T # Each shape (N_stars,) - t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) + t0 = np.atleast_1d(fixed_params_dict['t0']) # Shape (N_stars,) or (1,) dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) @@ -430,14 +539,24 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): return x, y, x_err, y_err def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict, weighting='var', use_scipy=True, absolute_sigma=True, - params_guess=None, fill_value=np.nan, + params_guess=None, + return_chi2=False, verbose=True ): + assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Linear model." + t0 = fixed_params_dict['t0'] + t = np.atleast_1d(t) + x = np.atleast_1d(x) + y = np.atleast_1d(y) + xe = np.atleast_1d(xe) + ye = np.atleast_1d(ye) + n_obs = len(t) degree_of_freedom = n_obs - self.n_params # Not enough data points to fit model @@ -449,11 +568,14 @@ def run_fit( ) params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) - return params, param_errors, np.nan, np.nan + if return_chi2: + return params, param_errors, np.nan, np.nan + else: + return params, param_errors # degree_of_freedom >= 0 dt = t - t0 - x_wt, y_wt = self.get_weights(xe, ye, weighting=weighting) + x_wt, y_wt = self.calc_weights(xe, ye, weighting=weighting) if params_guess is None: params_guess = [x.mean(), 0., y.mean(), 0.] @@ -466,60 +588,65 @@ def run_fit( y0e, vye = np.sqrt(y_cov.diagonal()) params = np.array([x0, vx, y0, vy]) param_errors = np.array([x0e, vxe, y0e, vye]) - chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) - - else: - # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution scheme - x = np.array(x) - y = np.array(y) - dt = np.array(dt) - X_mat_t = np.vander(dt, 2) - # x calculation - W_mat_x = np.diag(x_wt) - XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t - pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix - popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution - perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution - # y calculation - W_mat_y = np.diag(y_wt) - XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t - pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix - popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution - perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution - # prepare values to return - vx, x0 = popt_x - vy, y0 = popt_y - vxe, x0e = perr_x - vye, y0e = perr_y - - # Does not use get_chi2 to accelerate calculation + if return_chi2: + chi2_x, chi2_y = self.calc_chi2(t, x, y, xe, ye, params, fixed_params_dict) + return params, param_errors, chi2_x, chi2_y + else: + return params, param_errors + + # Linear algebraic solution + # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution_scheme + X_mat_t = np.vander(dt, 2) + # x calculation + W_mat_x = np.diag(x_wt) + XTWX_mat_x = X_mat_t.T @ W_mat_x @ X_mat_t + pcov_x = np.linalg.inv(XTWX_mat_x) # Covariance Matrix + popt_x = pcov_x @ X_mat_t.T @ W_mat_x @ x # Linear Solution + perr_x = np.sqrt(np.diag(pcov_x)) # Uncertainty of Linear Solution + # y calculation + W_mat_y = np.diag(y_wt) + XTWX_mat_y = X_mat_t.T @ W_mat_y @ X_mat_t + pcov_y = np.linalg.inv(XTWX_mat_y) # Covariance Matrix + popt_y = pcov_y @ X_mat_t.T @ W_mat_y @ y # Linear Solution + perr_y = np.sqrt(np.diag(pcov_y)) # Uncertainty of Linear Solution + # prepare values to return + vx, x0 = popt_x + vy, y0 = popt_y + vxe, x0e = perr_x + vye, y0e = perr_y + + params = np.array([x0, vx, y0, vy]) + param_errors = np.array([x0e, vxe, y0e, vye]) + + # Does not use get_chi2 to accelerate calculation + if return_chi2 or (not absolute_sigma): residual_x = x - X_mat_t @ popt_x residual_y = y - X_mat_t @ popt_y chi2_x = residual_x.T @ W_mat_x @ residual_x chi2_y = residual_y.T @ W_mat_y @ residual_y - params = np.array([x0, vx, y0, vy]) - param_errors = np.array([x0e, vxe, y0e, vye]) + if not absolute_sigma: + if degree_of_freedom > 0: + reduced_chi2_x = chi2_x / degree_of_freedom + reduced_chi2_y = chi2_y / degree_of_freedom + + param_errors[0:2] *= reduced_chi2_x**0.5 + param_errors[2:4] *= reduced_chi2_y**0.5 - if not absolute_sigma: - if degree_of_freedom > 0: - reduced_chi2_x = chi2_x / degree_of_freedom - reduced_chi2_y = chi2_y / degree_of_freedom - - param_errors[0:2] *= reduced_chi2_x**0.5 - param_errors[2:4] *= reduced_chi2_y**0.5 - - else: - # degree_of_freedom == 0, as < 0 case already handled above - warnings.warn( - f'Degree of freedom < 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value np.inf.', - OptimizeWarning, stacklevel=2 - ) - # Set parameter uncertainties to np.inf, same behavior as scipy.optimize.curve_fit - param_errors = np.full_like(param_errors, np.inf) - - return params, param_errors, chi2_x, chi2_y + else: + # degree_of_freedom == 0, as < 0 case already handled above + warnings.warn( + f'Degree of freedom < 0. Covariance of the parameters could not be estimated. Setting parameter uncertainties to fill value np.inf.', + OptimizeWarning, stacklevel=2 + ) + # Set parameter uncertainties to np.inf, same behavior as scipy.optimize.curve_fit + param_errors = np.full_like(param_errors, np.inf) + + if return_chi2: + return params, param_errors, chi2_x, chi2_y + else: + return params, param_errors class Acceleration(MotionModel): """ @@ -559,7 +686,7 @@ def model_fit(self, t, x0, v0, a): """ return x0 + v0*t + 0.5*a*t**2 - def model(self, t, fit_params, fixed_params, fit_param_errs=None): + def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Acceleration model. Parameters @@ -567,9 +694,9 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): t : float or array-like Time(s) at which to evaluate the model fit_params : array-like - Fit parameters with shape (N_stars, N_params) or (N_params,) - fixed_params : array-like - Fixed parameters with shape (N_stars, N_fixed_params) or (N_fixed_params,) + x0, vx0, ax, y0, vy0, ay in shape (N_params,) or (N_stars, N_params) + fixed_params_dict : dict + t0, shape (1,) or (N_stars,) fit_param_errs : array-like, optional Fit parameter uncertainties with shape (N_stars, N_params) or (N_params,), by default None @@ -578,6 +705,8 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Acceleration model." + t = np.atleast_1d(t) fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) @@ -585,7 +714,7 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): N_times = len(t) x0, vx0, ax, y0, vy0, ay = fit_params.T # Each shape (N_stars,) - t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) + t0 = np.atleast_1d(fixed_params_dict['t0']) # Shape (N_stars,) or (1,) dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) @@ -614,18 +743,28 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict, weighting='var', use_scipy=True, absolute_sigma=True, params_guess=None, fill_value=np.nan, + return_chi2=False, verbose=True ): + assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Acceleration model." + t0 = fixed_params_dict['t0'] + t = np.atleast_1d(t) + x = np.atleast_1d(x) + y = np.atleast_1d(y) + xe = np.atleast_1d(xe) + ye = np.atleast_1d(ye) + if not use_scipy: if verbose: warnings.warn("Acceleration model has no non-scipy fitter option. Running with scipy.") - + n_obs = len(t) degree_of_freedom = n_obs - self.n_params # Not enough data points to fit model @@ -637,11 +776,14 @@ def run_fit( ) params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) - return params, param_errors, np.nan, np.nan + if return_chi2: + return params, param_errors, np.nan, np.nan + else: + return params, param_errors # degree_of_freedom >= 0 dt = t - t0 - x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) + x_wt, y_wt = self.calc_weights(xe,ye, weighting=weighting) if params_guess is None: # Initial guess for velocity: idx_first, idx_last = np.argmin(t), np.argmax(t) @@ -657,9 +799,11 @@ def run_fit( params = np.array([x0, vx0, ax, y0, vy0, ay]) param_errors = np.array([x0e, vx0e, axe, y0e, vy0e, aye]) - chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) - - return params, param_errors, chi2_x, chi2_y + if return_chi2: + chi2_x, chi2_y = self.calc_chi2(t, x, y, xe, ye, params, fixed_params_dict) + return params, param_errors, chi2_x, chi2_y + else: + return params, param_errors class Parallax(MotionModel): """ @@ -671,29 +815,32 @@ class Parallax(MotionModel): Optional obs parameter describes observer location, default is 'earth'. """ fit_param_names = ['x0', 'vx', 'y0', 'vy', 'pi'] - fixed_param_names = ['t0'] - fixed_meta_data = ['RA','Dec','PA','obs'] + fixed_param_names = ['t0', 'ra', 'dec', 'pa', 'obsLocation'] name = "Parallax" # Number of fit parameters/required observations in each direction n_params = int(np.ceil(len(fit_param_names) / 2)) - def __init__(self, ra, dec, pa=0., obs='earth'): + def __init__(self): super().__init__() - self.ra = ra - self.dec = dec - self.pa = pa - self.obs = obs - self.plx_vector_cached = None + self.plx_vector_cached = None # Cache for parallax vector return - def calc_parallax_vector(self, t_mjd): + def calc_parallax_vector(self, t_mjd, ra, dec, pa=0., obsLocation='earth'): """Calculate parallax vector of shape (2, N_times) Parameters ---------- t_mjd : array-like Time array in mjd + ra : float or array-like + Right ascension(s) in degrees + dec : float or array-like + Declination(s) in degrees + pa : float or array-like, optional + Position angle(s) of image y-axis from North in degrees, by default 0. + obsLocation : str, optional + Observer location, by default 'earth' Returns ------- @@ -710,11 +857,11 @@ def calc_parallax_vector(self, t_mjd): elif all(np.isin(t_mjd, t_mjd_cached)): # If all input times are in cached values, return those # Calculate pvec_idxs such that t_mjd_cached[ pvec_idxs ] == t_mjd - pvec_idxs = np.array([np.where(t_mjd_cached==t_mjd_i)[0][0] for t_mjd_i in t_mjd]) + pvec_idxs = np.array([np.where(t_mjd_cached == t_mjd_i)[0][0] for t_mjd_i in t_mjd]) pvec = self.plx_vector_cached[1][:, pvec_idxs] return pvec - pvec = parallax.parallax_in_direction(self.ra, self.dec, t_mjd, obsLocation=self.obs, PA=self.pa).T + pvec = parallax.parallax_in_direction(ra, dec, t_mjd, obsLocation=obsLocation, pa=pa) self.plx_vector_cached = [t_mjd, pvec] return pvec @@ -738,15 +885,20 @@ def model_fit(self, dt, x0, vx, y0, vy, pi): Returns ------- - 2d array - Model positions at time t of Parallax model, shape (2, N_times) + x_res, y_res : array-like + Model positions at time t of Parallax model """ - x_res = x0 + vx*dt + pi * self.pvec[0] - y_res = y0 + vy*dt + pi * self.pvec[1] - return np.vstack([x_res, y_res]) - + # x0, vx, y0, vy, pi are all shape (N_stars, N_times) + x_res = x0 + vx * dt + pi * self.pvec[0] + y_res = y0 + vy * dt + pi * self.pvec[1] + return x_res, y_res + + def _model_fit(self, dt, x0, vx, y0, vy, pi): + """Wrapper for model_fit to return concatenated results for scipy fitting.""" + x_res, y_res = self.model_fit(dt, x0, vx, y0, vy, pi) + return np.hstack([x_res, y_res]) # Shape (N_stars, 2*N_times) - def model(self, t, fit_params, fixed_params, fit_param_errs=None): + def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Parallax model. Parameters @@ -754,9 +906,13 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): t : float or array-like Times at which to evaluate the model fit_params : array-like - Fit parameters for the model - fixed_params : array-like - Fixed parameters for the model + x0, vx, y0, vy, pi in shape (N_params,) or (N_stars, N_params) + fixed_params : dict + - t0, shape (N_stars,) or (1,). + - ra, shape (N_stars,) or (1,). + - dec, shape (N_stars,) or (1,). + - pa, optional, shape (N_stars,) or (1,), by default 0. + - obsLocation, optional,shape (N_stars,) or (1,), by default 'earth' fit_param_errs : array-like, optional Uncertainties in fit parameters, by default None @@ -767,17 +923,22 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): """ t = np.atleast_1d(t) fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) - N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 N_times = len(t) x0, vx, y0, vy, pi = fit_params.T # Each shape (N_stars,) - t0 = np.atleast_1d(fixed_params[0]) # Shape (N_stars,) or (1,) + t0 = np.atleast_1d(fixed_params_dict['t0']) # Shape (N_stars,) or (1,) + ra = np.atleast_1d(fixed_params_dict['ra']) + dec = np.atleast_1d(fixed_params_dict['dec']) + pa = np.atleast_1d(fixed_params_dict.get('pa', 0.0)) + obsLocation = fixed_params_dict.get('obsLocation', 'earth') dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) t_mjd = Time(t, format='decimalyear', scale='utc').mjd # Shape (N_times,) - self.pvec = self.calc_parallax_vector(t_mjd) # Shape (2, N_times) - x, y = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) + self.pvec = self.calc_parallax_vector(t_mjd, ra, dec, pa=pa, obsLocation=obsLocation) # Shape (2, N_times) + xy = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) + x = xy[:, :N_times] # Shape (N_stars, N_times) + y = xy[:, N_times:] # Shape (N_stars, N_times) if N_stars == 1 or N_times == 1: # If only one star, return flattened arrays @@ -800,21 +961,30 @@ def model(self, t, fit_params, fixed_params, fit_param_errs=None): def run_fit( - self, t, x, y, xe, ye, t0, + self, t, x, y, xe, ye, + fixed_params_dict, weighting='var', use_scipy=True, absolute_sigma=True, params_guess=None, fill_value=np.nan, + return_chi2=False, verbose=True ): if not use_scipy: if verbose: warnings.warn("Parallax model has no non-scipy fitter option. Running with scipy.", UserWarning) - + + assert all([k in fixed_params_dict for k in ['t0', 'ra', 'dec']]), "Parallax model requires 't0', 'ra', and 'dec' in fixed_params." t = np.atleast_1d(t) - n_obs = len(t) - degree_of_freedom = n_obs - self.n_params + t0 = np.atleast_1d(fixed_params_dict['t0']) + ra = np.atleast_1d(fixed_params_dict['ra']) + dec = np.atleast_1d(fixed_params_dict['dec']) + pa = np.atleast_1d(fixed_params_dict.get('pa', 0.0)) + obsLocation = fixed_params_dict.get('obsLocation', 'earth') + + n_fit = len(t) + degree_of_freedom = n_fit - self.n_params # Not enough data points to fit model if degree_of_freedom < 0: if verbose: @@ -824,12 +994,15 @@ def run_fit( ) params = np.full(self.n_params, fill_value) param_errors = np.full(self.n_params, np.inf) - return params, param_errors - + if return_chi2: + return params, param_errors, np.nan, np.nan + else: + return params, param_errors + # degree_of_freedom >= 0 t_mjd = Time(t, format='decimalyear', scale='utc').mjd - self.pvec = self.get_parallax_vector(t_mjd) - x_wt, y_wt = self.get_weights(xe,ye, weighting=weighting) + self.pvec = self.calc_parallax_vector(t_mjd, ra, dec, pa=pa, obsLocation=obsLocation) # Shape (2, N_times) + x_wt, y_wt = self.calc_weights(xe, ye, weighting=weighting) # Initial guesses, x0,y0 as x,y averages; # vx,vy as average velocity if first and last points are perfectly measured; @@ -842,20 +1015,22 @@ def run_fit( y.mean(), (y[idx_last] - y[idx_first]) / t_span, 0.1 ] - res = curve_fit( - self.model_fit, t - t0, np.vstack([x, y]), - p0=params_guess, sigma = 1.0/np.hstack([x_wt,y_wt]), + popt, pcov = curve_fit( + self._model_fit, t - t0, np.hstack([x, y]), + p0=params_guess, sigma=np.hstack([x_wt, y_wt]), absolute_sigma=absolute_sigma ) - x0, vx, y0, vy, pi = res[0] - x0_err, vx_err, y0_err, vy_err, pi_err = np.sqrt(np.diag(res[1])) + x0, vx, y0, vy, pi = popt + x0_err, vx_err, y0_err, vy_err, pi_err = np.sqrt(pcov.diagonal()) params = np.array([x0, vx, y0, vy, pi]) param_errors = np.array([x0_err, vx_err, y0_err, vy_err, pi_err]) - chi2_x, chi2_y = self.calc_chi2(params, [t0], t, x, y, xe, ye) - return params, param_errors, chi2_x, chi2_y - + if return_chi2: + chi2_x, chi2_y = self.calc_chi2(t, x, y, xe, ye, params, fixed_params_dict) + return params, param_errors, chi2_x, chi2_y + else: + return params, param_errors def validate_motion_models(motion_models, startable, default_motion_model): """Validate that all the unique motion models in startable and default_motion_model are in the motion_models. If not, add available models to the list. @@ -869,12 +1044,7 @@ def validate_motion_models(motion_models, startable, default_motion_model): default_motion_model : MotionModel Default MotionModel """ - motion_model_map = { - 'Fixed': Fixed, - 'Linear': Linear, - 'Acceleration': Acceleration, - 'Parallax': Parallax - } + motion_model_map = motion_model_map() # Collect names of all motion models that might get used. all_motion_model_names = set() all_motion_model_names.add('Fixed') @@ -975,14 +1145,9 @@ def get_all_motion_model_names(with_errors=True, with_fixed=True): return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) def motion_model_map(): - mm_map = { - 'Empty': Empty, - 'Fixed': Fixed, - 'Linear': Linear, - 'Acceleration': Acceleration, - 'Parallax': Parallax - } - + mm_map = dict( + [(mm.__name__, mm()) for mm in MotionModel.__subclasses__()] + ) # Sort by n_params mm_map = dict(sorted(mm_map.items(), key=lambda item: item[1].n_params)) return mm_map \ No newline at end of file diff --git a/flystar/parallax.py b/flystar/parallax.py index 3f7602b..2bd352a 100755 --- a/flystar/parallax.py +++ b/flystar/parallax.py @@ -23,16 +23,16 @@ # Default cache size is 1 GB cache_memory.reduce_size() -@cache_memory.cache() -def parallax_in_direction(ra, dec, mjd, obsLocation='earth', PA=0.): +# @cache_memory.cache() +def parallax_in_direction(ra, dec, mjd, obsLocation='earth', pa=0.): """ Calculate the parallax vector in a given direction following MulensModel. Parameters ---------- - RA : float + RA : float or array-like Right Ascension in degrees. (J2000) - Dec : float + Dec : float or array-like Declination in degrees. (J2000) mjd : float or array-like Modified Julian Date. @@ -44,33 +44,42 @@ def parallax_in_direction(ra, dec, mjd, obsLocation='earth', PA=0.): Returns ------- pvec : ndarray - Parallax vector components, shape of (N, 2), where N is the number of mjd entries. + Parallax vector components, shape of (2, N) or (2,), where N is the number of stars. """ # Munge inputs into astropy format. # times = Time(mjd + 2400000.5, format='jd', scale='tdb') + ra = np.atleast_1d(ra) + dec = np.atleast_1d(dec) + mjd = np.atleast_1d(mjd) times = Time(mjd, format='mjd', scale='tdb') # convert to TDB coord = SkyCoord(ra, dec, unit=(units.deg, units.deg)) - direction = coord.cartesian.xyz.value + directions = coord.cartesian.xyz.value.T # Shape (N_stars, 3) north = np.array([0., 0., 1.]) - _east_projected = np.cross(north, direction) / np.linalg.norm(np.cross(north, direction)) - _north_projected = np.cross(direction, _east_projected) / np.linalg.norm(np.cross(direction, _east_projected)) + # Cross product of each star with north vector + _east_projected = np.cross(north, directions) + _east_projected /= np.linalg.norm(_east_projected, axis=1)[:, np.newaxis] # Shape (N_stars, 3) + _north_projected = np.cross(directions, _east_projected) + _north_projected /= np.linalg.norm(_north_projected, axis=1)[:, np.newaxis] # Shape (N_stars, 3) obs_pos = get_observer_barycentric(obsLocation, times) sun_pos = get_body_barycentric(body='sun', time=times) sun_obs_pos = sun_pos - obs_pos - pos = sun_obs_pos.xyz.T.to(units.au) + pos = sun_obs_pos.xyz.T.to(units.au).value # Shape (N_stars, 3) + + e = np.einsum('ij,ij->i', pos, _east_projected) # Shape (N_stars,) + n = np.einsum('ij,ij->i', pos, _north_projected) # Shape (N_stars,) - e = np.dot(pos, _east_projected) - n = np.dot(pos, _north_projected) - # Rotate frame e,n->x,y accounting for PA - PA_rad = np.pi/180.0 * PA - x = -e.value*np.cos(PA_rad) + n.value*np.sin(PA_rad) - y = e.value*np.sin(PA_rad) + n.value*np.cos(PA_rad) - pvec = np.array([x, y]).T + pa = np.deg2rad(pa) + x = -e * np.cos(pa) + n * np.sin(pa) + y = e * np.sin(pa) + n * np.cos(pa) + pvec = np.array([x, y]) # Shape (2, N_stars) + + if pvec.shape[1] == 1: + pvec = pvec.flatten() return pvec diff --git a/flystar/startables.py b/flystar/startables.py index 661382f..dd44178 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -125,7 +125,7 @@ def __init__(self, *args, ref_list=0, **kwargs): # We have to have special handling of meta-data (i.e. info that has # dimensions of n_lists). - meta_tab = ('LIST_TIMES', 'LIST_NAMES') + meta_tab = ('list_times', 'list_names') meta_type = ((float, int), str) for mm in range(len(meta_tab)): meta_test = meta_tab[mm] @@ -154,7 +154,7 @@ def __init__(self, *args, ref_list=0, **kwargs): del kwargs[meta_arg] for arg in kwargs: - if arg in ['name', 'x', 'y', 'm']: + if arg in ['name', 'x', 'y', 'm', 'list_times', 'list_names']: continue else: self.add_column(Column(data=kwargs[arg], name=arg)) @@ -218,7 +218,7 @@ def _add_list_data_from_starlist(self, starlist): else: # Add junk data it if wasn't input self._set_invalid_list_values(col_name, -1) - + ########## # Update the table meta-data. Remember that entries are lists not numpy arrays. ########## @@ -246,10 +246,10 @@ def _add_list_data_from_starlist(self, starlist): # Update the n_lists meta keyword. self.meta['n_lists'] += 1 - + return - - + + def _add_list_data_from_keywords(self, **kwargs): # # Check if the required arguments are present # arg_req = ('x', 'y', 'm') @@ -534,14 +534,15 @@ def detections(self): def fit_motion_model( self, - motion_models=[Empty(), Fixed(), Linear()], + motion_models=[Empty, Fixed, Linear], + fixed_params_dict=None, weighting='var', use_scipy=False, absolute_sigma=True, bootstrap=0, - fixed_t0=False, verbose=True, mask_value=None, + mask_lists=None, fill_value=np.nan, show_progress=True ): @@ -551,17 +552,21 @@ def fit_motion_model( ---------- motion_models : list of MotionModel, optional Motion models to use. - Empty() and Fixed() models are always added automatically for stars with n_fit = 0 or 1. + Empty and Fixed models are always added automatically for stars with n_fit = 0 or 1. The behavior is as follows: 1. If 'motion_model_input' column is NOT in table: - Use the most complex model that has enough parameters to fit the data (n_fit >= n_params). - If multiple models are supplied, prioritize the model with the most parameters to fit. - If multiple models have the same number of parameters, raise AssertionError: not sure which to use. - 2. If 'motion_model_input' column is in table: + 2. If 'motion_model_input' column IS in table: - Use the model specified in the 'motion_model_input' column. - - If motion model requires initialization parameters, an instance of the motion model must be provided in motion_models list, i.e., motion_models=[Parallax(RA=0, DEC=0)]. - - If not enough data points to fit the specified model, use the most complex model that has enough parameters to fit the data (n_fit >= n_params) among the provided motion_models and 'motion_model_input'. - The actual used motion model is stored in the 'motion_model_used' column. The default motion_models are [Empty(), Fixed(), Linear()]. + - If not enough data points to fit the specified model, use the most complex model in any 'motion_model_input' column that has enough parameters to fit the data (n_fit >= n_params) among the provided motion_models and 'motion_model_input'. + The actual used motion model is stored in the 'motion_model_used' column. The default motion_models are [Empty, Fixed, Linear]. + fixed_params_dict : dict, optional + Dictionary of fixed parameters for motion models, e.g., {'t0': 0., 'ra': np.array([...]), 'dec': np.array([...])}. + - Scalar values are used for all stars, array values should have length = N_stars. + - t0 is automatically calculated as np.average(t, weights=1/np.hypot(xe, ye)) if not provided. + - The keys should match the fixed parameter names in the motion models. See MotionModel class for details, by default None weighting : str, optional Uncertainty weighting, 'std' for weight=1/xe(ye) or 'var' for weight=1/xe(ye)**2, by default 'var' use_scipy : bool, optional @@ -570,12 +575,12 @@ def fit_motion_model( Use absolute sigma or not, see scipy curve_fit for details, by default True bootstrap : int, optional Number of bootstrap for uncertainty resampling, by default 0 - fixed_t0 : bool or float, optional - If provided, use the fixed t0. Otherwise, use average t weighted by 1/np.hypot(xe, ye), by default False verbose : bool, optional Print verbose messages or not, by default True mask_value : float, optional Values to mask in data, by default None + mask_lists : list of int, optional + Indices of lists to mask/exclude from fitting, by default None fill_value : float, optional Fill value when there is not enough data points to fit, by default np.nan show_progress : bool, optional @@ -596,19 +601,24 @@ def fit_motion_model( if weighting not in ['var', 'std']: raise ValueError(f"fit_velocities: Weighting must either be 'var' or 'std', not {weighting}!") - if ('t' not in self.colnames) and ('LIST_TIMES' not in self.meta): - raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'LIST_TIMES' in meta.") + if ('t' not in self.colnames) and ('list_times' not in self.meta): + raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'list_times' in meta.") # Check if we have the required columns if not all([_ in self.colnames for _ in ['x', 'y']]): raise KeyError(f"fit_velocities: Missing required columns in the table: {', '.join(['x', 'y'])}!") + # Check fixed_params_dict is a dict + if fixed_params_dict is not None: + if not isinstance(fixed_params_dict, dict): + raise ValueError("fit_velocities: fixed_params_dict must be a dictionary!") + # Always add Empty and Fixed in motion models mm_names = [mm.name for mm in motion_models] if 'Fixed' not in mm_names: - motion_models.insert(0, Fixed()) + motion_models.insert(0, Fixed) if 'Empty' not in mm_names: - motion_models.insert(0, Empty()) + motion_models.insert(0, Empty) mm_names = [mm.name for mm in motion_models] # Construct motion models if motion_model_input column exists @@ -643,19 +653,52 @@ def fit_motion_model( N_stars = len(self) x_data = np.ma.masked_invalid(self['x'].data, copy=True) y_data = np.ma.masked_invalid(self['y'].data, copy=True) - xe_data = np.ma.masked_invalid(self['xe'].data, copy=True) if 'xe' in self.colnames else None - ye_data = np.ma.masked_invalid(self['ye'].data, copy=True) if 'ye' in self.colnames else None + xe_data = np.ma.masked_invalid(self['xe'].data, copy=True) if 'xe' in self.colnames else np.ones_like(x_data) + ye_data = np.ma.masked_invalid(self['ye'].data, copy=True) if 'ye' in self.colnames else np.ones_like(y_data) + + if mask_lists is not None: + x_data.mask[:, mask_lists] = True + y_data.mask[:, mask_lists] = True + xe_data.mask[:, mask_lists] = True + ye_data.mask[:, mask_lists] = True # t_data: 2d array with shape (N_stars, N_epochs) # t0: 1d array with shape (N_stars,) if 't' in self.colnames: t_data = copy.deepcopy(self['t'].data) - t0 = np.average(t_data, axis=1, weights=1/np.hypot(xe_data, ye_data)) if not fixed_t0 else np.ones(N_stars)*fixed_t0 else: - t_data = copy.deepcopy(np.array(self.meta['LIST_TIMES'])) + t_data = copy.deepcopy(np.array(self.meta['list_times'])) t_data = np.broadcast_to(t_data, x_data.shape) - t0 = np.average(t_data, axis=1, weights=1/np.hypot(xe_data, ye_data)) if not fixed_t0 else np.ones(N_stars)*fixed_t0 + + # Add default t0 if not provided in fixed_params_dict + if fixed_params_dict is None: + weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None + t0 = np.average(t_data, axis=1, weights=weights) + fixed_params_dict = {'t0': t0} + elif 't0' not in fixed_params_dict: + weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None + fixed_params_dict['t0'] = np.average(t_data, axis=1, weights=weights) + else: + if np.ndim(fixed_params_dict['t0']) == 0: + fixed_params_dict['t0'] = np.full(N_stars, fixed_params_dict['t0']) + t0 = fixed_params_dict['t0'] + + # Prepare fixed_params_dict for each star + # This avoids checking types and slicing inside the fitting loop + fixed_params_stars = [{} for _ in range(N_stars)] + # Identify array parameters (length N_stars) and scalar parameters + array_params = {k: v for k, v in fixed_params_dict.items() if np.ndim(v) > 0 and len(v) == N_stars} + scalar_params = {k: v for k, v in fixed_params_dict.items() if k not in array_params} + + # Construct list of dicts for each star + # Using list comprehension for speed + fixed_params_stars = [ + {**scalar_params, **{k: v[i] for k, v in array_params.items()}} + for i in range(N_stars) + ] + + # Apply mask_value if provided if mask_value: x_data = np.ma.masked_values(x_data, mask_value) y_data = np.ma.masked_values(y_data, mask_value) @@ -664,6 +707,7 @@ def fit_motion_model( if ye_data is not None: ye_data = np.ma.masked_values(ye_data, mask_value) + # Calculate mask array xy_mask = (~x_data.mask) & (~y_data.mask) self['n_fit'] = xy_mask.sum(axis=1) @@ -682,7 +726,6 @@ def fit_motion_model( if 'motion_model_input' in self.colnames: # Determine which motion model to use based on motion_model_input column # If n_fit < required n_params for the input motion model, use the most complicated motion model with n_fit >= n_params - motion_model_names = np.unique(self['motion_model_input']) required_params = [all_mm_map[mm_name].n_params for mm_name in self['motion_model_input']] mm_digitized = np.digitize( x=np.minimum(np.array(self['n_fit']), required_params), @@ -694,7 +737,8 @@ def fit_motion_model( x=np.array(self['n_fit']), bins=mm_n_params ) - 1 # Convert to 0-based index - + + # Assign motion models to stars self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized]) @@ -722,7 +766,8 @@ def fit_motion_model( ) # Add a column to keep track of the number of points used in a fit and number of bootstrap used. - self['n_bootstrap'] = bootstrap + self.meta['n_bootstrap'] = bootstrap + ########################### ######### FITTING ######### @@ -730,9 +775,10 @@ def fit_motion_model( unique_motion_models, unique_inv_indices = np.unique(self['motion_model_used'], return_inverse=True) indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} + # Expensive for loop! Prepare everything beforehand to speed up. for unique_motion_model, unique_index in indices_by_motion_model.items(): # Create motion model instance - motion_model_instance = input_mm_map[unique_motion_model] + motion_model_instance = input_mm_map[unique_motion_model]() # Initialize arrays to store results n_stars_this_model = len(unique_index) n_params = len(motion_model_instance.fit_param_names) @@ -751,12 +797,13 @@ def fit_motion_model( y=y_stars[i_star], xe=xe_stars[i_star], ye=ye_stars[i_star], - t0=t0[i_star], + fixed_params_dict=fixed_params_stars[i_star], weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma, bootstrap=bootstrap, fill_value=fill_value, + return_chi2=True, verbose=verbose ) params_array[idx] = params @@ -808,8 +855,8 @@ def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, b if weighting not in ['var', 'std']: raise ValueError(f"fit_velocities: Weighting must either be 'var' or 'std', not {weighting}!") - if ('t' not in self.colnames) and ('LIST_TIMES' not in self.meta): - raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'LIST_TIMES' in meta.") + if ('t' not in self.colnames) and ('list_times' not in self.meta): + raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'list_times' in meta.") # Check if we have the required columns if not all([_ in self.colnames for _ in ['x', 'y']]): @@ -827,9 +874,9 @@ def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, b if ('motion_model_input' not in self.colnames) or reassign_motion_model: self['motion_model_input'] = default_motion_model self['motion_model_used'] = self['motion_model_input'] - + motion_model_dict = motion_model.validate_motion_model_dict(motion_model_dict, self, default_motion_model) - + # # Fill table with all possible motion model parameter names as new # columns. Make everything empty for now. @@ -864,7 +911,7 @@ def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, b if 't' in self.colnames: self['t0'] = self['t'] else: - self['t0'] = self.meta['LIST_TIMES'][0] + self['t0'] = self.meta['list_times'][0] if 'xe' in self.colnames: self['x0_err'] = self['xe'] self['y0_err'] = self['ye'] @@ -879,7 +926,7 @@ def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, b if 't' in self.colnames: self['t0'] = self['t'][:, 0] else: - self['t0'] = self.meta['LIST_TIMES'][0] + self['t0'] = self.meta['list_times'][0] if 'xe' in self.colnames: self['x0_err'] = self['xe'][:,0] self['y0_err'] = self['ye'][:,0] @@ -996,7 +1043,7 @@ def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scip if 't' in self.colnames: t = np.ma.masked_invalid(self['t'][ss, :].data) else: - t = np.ma.masked_invalid(self.meta['LIST_TIMES']) + t = np.ma.masked_invalid(self.meta['list_times']) if mask_val: t = np.ma.masked_values(t, mask_val) diff --git a/flystar/tests/test_all_detected.fits b/flystar/tests/test_all_detected.fits deleted file mode 100644 index ae56198..0000000 --- a/flystar/tests/test_all_detected.fits +++ /dev/null @@ -1,2911 +0,0 @@ -SIMPLE = T / conforms to FITS standard BITPIX = 8 / array data type NAXIS = 0 / number of array dimensions EXTEND = T END XTENSION= 'BINTABLE' / binary table extension BITPIX = 8 / array data type NAXIS = 2 / number of array dimensions NAXIS1 = 632 / length of dimension 1 NAXIS2 = 2000 / length of dimension 2 PCOUNT = 0 / number of group parameters GCOUNT = 1 / number of groups TFIELDS = 21 / number of table fields TTYPE1 = 'name ' TFORM1 = 'K ' TTYPE2 = 'x ' TFORM2 = '12D ' TDIM2 = '(2,6) ' TTYPE3 = 'y ' TFORM3 = '12D ' TDIM3 = '(2,6) ' TTYPE4 = 'm ' TFORM4 = '12D ' TDIM4 = '(2,6) ' TTYPE5 = 'xe ' TFORM5 = '6D ' TDIM5 = '(6) ' TTYPE6 = 'ye ' TFORM6 = '6D ' TDIM6 = '(6) ' TTYPE7 = 'me ' TFORM7 = '6D ' TDIM7 = '(6) ' TTYPE8 = 'n ' TFORM8 = '6D ' TDIM8 = '(6) ' TTYPE9 = 'det ' TFORM9 = '6D ' TDIM9 = '(6) ' TTYPE10 = 'vx ' TFORM10 = 'D ' TTYPE11 = 'vy ' TFORM11 = 'D ' TTYPE12 = 'vxe ' TFORM12 = 'D ' TTYPE13 = 'vye ' TFORM13 = 'D ' TTYPE14 = 'x0 ' TFORM14 = 'D ' TTYPE15 = 'y0 ' TFORM15 = 'D ' TTYPE16 = 'x0e ' TFORM16 = 'D ' TTYPE17 = 'y0e ' TFORM17 = 'D ' TTYPE18 = 'chi2_vx ' TFORM18 = 'D ' TTYPE19 = 'chi2_vy ' TFORM19 = 'D ' TTYPE20 = 't0 ' TFORM20 = 'D ' TTYPE21 = 'n_vfit ' TFORM21 = 'D ' EPNAMES = '2005_F814W_F1' EPNAMES = '2010_F125W_F3' EPNAMES = '2010_F139M_F2' EPNAMES = '2010_F160W_F1' EPNAMES = '2013_F160W_F1' EPNAMES = '2015_F160W_F1' ZPOINTS = 32.6783 ZPOINTS = 25.2305 ZPOINTS = 23.2835 ZPOINTS = 24.5698 ZPOINTS = 24.5698 ZPOINTS = 24.5698 YEARS = 2005.485 YEARS = 2010.652 YEARS = 2010.652 YEARS = 2010.652 YEARS = 2013.199 YEARS = 2015.148 HIERARCH DATE PRODUCED = '2025-06-30' HIERARCH INSTRUMENT = 'ACSWFC ' HIERARCH INSTRUMENT = 'WFC3IR ' HIERARCH INSTRUMENT = 'WFC3IR ' HIERARCH INSTRUMENT = 'WFC3IR ' HIERARCH INSTRUMENT = 'WFC3IR ' HIERARCH INSTRUMENT = 'WFC3IR ' END @Ÿ ˆ1&éy@Ÿ ›c+Ø(@Ÿ ˆ1&éy@Ÿ “4U‡*@Ÿ ˆ1&éy@Ÿ ¥ÆàOS@Ÿ ˆ1&éy@Ÿ…ÍÅ•Ü@Ÿ ˆ1&éy@Ÿ èÁ Î!@Ÿ ˆ1&éy@Ÿ]H/Ò@¢nzáG®@¢ns2ph@¢nzáG®@¢nˆ:ötä@¢nzáG®@¢mÐüùI±@¢nzáG®@¢mÓÐùòm@¢nzáG®@¢nbö3›@¢nzáG®@¢nsþ¤ÿŠ@8‚ò䎊@8m¥1›Š@4›¥ãSø@3¹Ã!dÏÎ@3š~ùÛ"Ñ@3Q@䩤@2èè§æ›@2h4¥àûZ@2èè§æ›@2•ÄŠÉRd@2èè§æ›@2–&îEK?¤hja¢ÖQ?¤ƒ´Æ*àä?¢iœy‘Ï?ÁÛÆÀï?» -Ld¢?²OU=°6i?¿/nI|Áâ?˜Š·¤‰ÿ?•`«²lñ??ºþ!æàg?Àî’”ï '?»Ï‡Ê1ñ?¶å¿#ý ?–ãjo¼ð?ƒ /±‘OÈ?‘‰©Þ¥e?£ü.Eôv?£ì¶Ñ [\@@"@@"@4@.?ð?ð?ð?ð?ð?ð?“EkŸ€?m¥•oÜ?zÁ•ºS ?œT 8O@ŸËÌÃ@¢n?ð/Ç? ? Csù?¹9wZe`?öª3#õ¶ì@ú溦z@ŸkøªÍ%>@@¤®`Ä›¥ã@¤®\¬1'@¤®`Ä›¥ã@¤®Q4êK@¤®`Ä›¥ã@¤®Mw1Ä@¤®`Ä›¥ã@¤®G¯·é@¤®`Ä›¥ã@¤®:6âë@¤®`Ä›¥ã@¤®4¼j~ú@ÛŠ=p£×@ÛŽV“@ÛŠ=p£×@Û{çl‹D@ÛŠ=p£×@Ûž¸Që…@ÛŠ=p£×@ÛTÉ…ð@ÛŠ=p£×@Û™b¶®@ÛŠ=p£×@ÛÌcñA@6=:’£@6:ÇË)^@4 í‘hr°@4SŽóMj@3ÒÐå`A‰@3ÕÂ\(ö@3._oÒ @3:¦L/ƒ|@3._oÒ @3BëC,¦@3._oÒ @3GÛô‡ü¹?‚á²Olºü?—.‰†5¸?™À‘öô{?™d`ÝXpœ?¨ÇÍµá ›?«Ú>˜¯;Õ?€‚ñêã ?™>%?›ÿµŽ:Þç?Ò–‚h±n?¤|Å9.)?¢¢@ ~?¥ -½ƒBÍ?¤7lyÎ\?¦Jê鞤à?’J×ñf?¡‘8²™ç?ÉJ6Л@@@@@,@(?ð?ð?ð?ð?ð?ð¿€ùC·Ü¿&óÐÔ ?*2iÛ‚A?Yé ˜~õ±@¤®OûÄZ@ÛŒ­˜c¦?DŸ²Ï?t¢NÔù'p?{«QÂ( ñ?ê™ú׺Â@Ÿbn{„Ø@@ª¦Ù‡+Á.„€@ª¦Ù‡+Á.„€@ª¦Ù‡+Á.„€@ª¦Ù‡+Á.„€@ª¦Ù‡+@ª¥Ù¦µ @ª¦Ù‡+@ª¤Àù kº@“(6E¡ÊÁÁ.„€@“(6E¡ÊÁÁ.„€@“(6E¡ÊÁÁ.„€@“(6E¡ÊÁÁ.„€@“(6E¡ÊÁ@“)¸Që…@“(6E¡ÊÁ@“!’ˆÎp<@8«µsê´Á.„>¤µÜÆ@4›¥ãSøÁ.„M‰ûçm@3€å`A‰7Á.„QnÙ‡@2æYJôðØÁ.„NÜC,¥@2æYJôðØ@2üú¬Ùè>@2æYJôðØ@1E2a|Ú@8J¨@8#˜@8¾:@8 >+?¥B¦­xT?Ég{ª£=@8J¨@8Î÷@8i§@8Å?¶VYkøƒ ?ÕŠuÝû@8p÷@8 * @8p÷@8¶?±éŽäþZ?·™Ý\í@@ ?ð?ðøøøøøøøøøøøø@­ÔzáG®@­ÏŸ¾w@­ÔzáG®@­ÏùrGF@­ÔzáG®@­Ûµsì@­ÔzáG®@­Ù=Ùb@­ÔzáG®@­Õ*™0@­ÔzáG®@­×Xâ@¨Õ·KƧð@¨Õ¼(õÂŽ@¨Õ·KƧð@¨ÕÄÂø7¶@¨Õ·KƧð@¨Õ·Xâ@¨Õ·KƧð@¨Õ·Á½¥@¨Õ·KƧð@¨Õ¶z˜@¨Õ·KƧð@¨Õ¸}¿H@8£g ù l@8£þ\‘ÑN@4¡hr° Ä@4§§†Â&€@4"-V@4*Ížƒä&@3B‚@·€5@3GKƧïž@3B‚@·€5@3GÛô‡ü¹@3B‚@·€5@3H´9Xb?š•§q!U?“+ÄWè? ¼¸](Þs?–¼A2xý?™¼wX¬?—>æV¡¶$?¨TU‚?˜[Gú,Ã?¢ðÒŒîI?œ¾,#“t¿?šs°Àãª?“ù|ö[ÿz?žþÓ–O_ö?“[ ·S?“ e?‘ñZa7Þ?“ÌUõÎs¼?ùDâΊ@@@@@*@(?ð?ð?ð?ð?ð?ð?VM²¿B“—x?QÔ¬•y!?B„ex.Œ@­ÕðW.V@¨Õ¸A£A?nçÉ¢f?[ƒç·~?Êéëu?œã+€\…t@ŸoF»5‹i@@¦¤E¸Qì@¦¤9RÒ4ë@¦¤E¸Qì@¦¤G2íì‚@¦¤E¸Qì@¦¤?'-Š9@¦¤E¸Qì@¦¤D›qN@¦¤E¸Qì@¦¤D †¶ï@¦¤E¸Qì@¦¤FÈöWÅ@œ/j~ùÛ#@œ/¨,‚ˆl@œ/j~ùÛ#@œ/iÍ3ߢ@œ/j~ùÛ#@œ/qjK>h@œ/j~ùÛ#@œ/fì¤X@œ/j~ùÛ#@œ/m“·*@œ/j~ùÛ#@œ/u½AªŽ@8£g ù l@8Ãu·¾”@2ør° Äœ@2ùQU|¼Ý@2gKƧïž@2lÂ7À6@1³&Á½¥@1¶ "Áª@1³&Á½¥@1´[ÞÎ@1³&Á½¥@1³} õt?„Ú¢Ó¯?ÿýÑí£œ?’b™ r}»?‹ÊN[×ßx?ó}Ê,AÞ?ñ ëÞJÑ?©¹ûP*i?’6 £Ð k?‘Àƒ¹ ZU?1ì«O}?Ë=еê?‘z¦p»àY?“iÓ èâ¨?V0qRŽi?Š@&àpp?…Ñ?øˆ~Þ?‡øÇãzA?‰Ad¾¬ä`@@ @&@"@&@.?ð?ð?ð?ð?ð?ð?gy—G{¿G;TŸŠ?DOúü­Ý?n@Ù¨3@¦¤C{y"E@œ/p4}pE?g j¯Ë?Öƒ$,¼?ÐgŒ*©âu?ù«8¬Ì·Ê@ŸoÊ›¯œÿ@@§íVÁ.„€@§íV@§Ü»fâ@§íV@§é…¤µÜÆ@3ã÷ÎÙ‡@3µÑ¹ wC@2ÐA‰7KÇ@2Õð……Ï@2(è§æ›@2ìD¦R@2(è§æ›@2÷Ñ4¢Ñ@2(è§æ›@2":>F¸f@8J¨?¡uPÖ„ -?ŸÎ¿}ž?“Í]9tã? ¦fN= ?´â‘wÒp@8J¨?Áo¨!ȼØ?¡@½²;ö?¡<ÜA´lª?žbÑõÐ:u?‡¾¥°Š@8p÷?‘ÕJ­Õø ?“{˜x-â’?“œ¢ÿC×?˜-”Aô?“”­ál­@(@&@&@3@0?ð?ð?ð?ð?ðøøøøøøøøøøøø@©¢Ñë…¸@©¢Òn—P@©¢Ñë…¸@©¢ÓüPG@©¢Ñë…¸@©¢Òñ©ûæ@©¢Ñë…¸@©¢ÔSŽóL@©¢Ñë…¸@©¢Ò-V@©¢Ñë…¸@©¢ÑÑN;Í@¦Õ~ùÛ"Ñ@¦Õ;dZ@¦Õ~ùÛ"Ñ@¦Õ€·€4o@¦Õ~ùÛ"Ñ@¦ÕØ­«Ÿ@¦Õ~ùÛ"Ñ@¦Õ€@¦Õ~ùÛ"Ñ@¦Õ!-w2@¦Õ~ùÛ"Ñ@¦ÕØ­«Ÿ@4T xFÜ@4S¼ÓZ…ˆ@2#÷ÎÙ‡@2&µ '»@0éÛ"Ðå`@0ë"Ðå`B@0‚@·€5@0Äýó¶E¢@0‚@·€5@0Ä÷eýŠÛ@0‚@·€5@0ÄêJŒM?}Ñ¿ž,?‘ ·èe?‘G¿yÛ?ï?‹¬àÌ’Ç?‘˜¯ -`É?‘•S‚üJ?|öOÿÝ?“[¡ŽuœÙ?ÙšlqùÚ?Níú¾?‘Ð¥uvý)­ü?¼¦ @?3fÍÍÅ-? -]¯ÔD@©¢Ò°ÇÇ´@¦ÕxnÚ@?SB!ÒÄ?8FîÌâ°?²Ø¼xqž ?|ÜsþÆ]Þ@ŸfÅžV@@¡ùàÄ›¥ã@¡ûF$Ý/@¡ùàÄ›¥ã@¡úC¼ÓZ†@¡ùàÄ›¥ã@¡úFÁ½¥@¡ùàÄ›¥ã@¡úrˆÎp;@¡ùàÄ›¥ã@¡úéDg8@¡ùàÄ›¥ã@¡úM:’£@¬•=p£× -@¬””¼j~ú@¬•=p£× -@¬•<í‘hs@¬•=p£× -@¬•<]cˆf@¬•=p£× -@¬•3 àÞÔ@¬•=p£× -@¬•æ1ø¡@¬•=p£× -@¬•!TÉ…ñ@87â‚@·€@7†“t¼@2žÙ‡+@2z…‡“ݘ@24“t¼j@2ò{²þÆ@1p–»˜Çã@1<]cˆe•@1p–»˜Çã@1"ø7´¢4@1p–»˜Çã@1-ã¼Ó[?õp·÷ÜÊ?¸ëgUêá?¹y(eM+?–àa¦vf¤µÜÆ@4c÷ÎÙ‡Á.„M‰ûçm@31‰7KƨÁ.„QnÙ‡@3G ù kºÁ.„NÜC,¥@3G ù kºÁ.„NÜC,¥@3G ù kºÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø -@¨;ì‹C•@¨;ø=ÁLº@¨;ì‹C•@¨;éê=Õ~@¨;ì‹C•@¨;ìQbç@¨;ì‹C•@¨;ì^˜Ê·@¨;ì‹C•@¨;í’ŸÇ@¨;ì‹C•@¨;í À@“Êœ¬1'@“Ê•Á¡e´@“Êœ¬1'@“Ê—•F˜o@“Êœ¬1'@“Êœ¨Z -l@“Êœ¬1'@“ÊŸ-fU…@“Êœ¬1'@“ʦ‡À¨@“Êœ¬1'@“Ê MÁ±@7õS&Á¾@7üvU÷@3k¥ãS÷Ï@3nesg'à@2Õ`A‰7L@2Ô6‰çù@2 ¿±[W?@2¬†ù,$@2 ¿±[W?@22Š¥•P@2 ¿±[W?@2 Tœn?}x—™C@R†$Ý/@RuÂ\(@R†$Ý/@R;µsë@R†$Ý/@R0ØDÐ@7í¥œàvÁ.„>¤µÜÆ@4GÎÙ‡+@43Ãa@N@4~ùÛ"Ñ@3çškP°ò@2ëxFÜ^@2á–R½<6@2ëxFÜ^@2êŒL˜_@2ëxFÜ^@2ëÓÃa@@8J¨?¤5‚O}Ó?Ï^sx?¤¥¶‰Ió,?¢L!ñ{©?™ÊU¹Á A@8J¨?i½ÆÝCv?¡z/=–ü?¢¯ÄÕ¨E­?¤•éõ9ð?¨­l÷º Ý@8p÷?Ÿ ‰$FÓ)?¾ï€SÓÌ?¦D'ôö?›˜tgië? ¦å_¹@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøø @¦1®zá@¦1®zá@¦1®zá@¦1 ^ž @¦1®zá@¦1RT`«@¦1®zá@¦1®zá@¦1®zá@¦1ï²-@¦1®zá@¦1l‹C–@¬ƒ« Iº@¬ƒªÀƒp@¬ƒ« Iº@¬ƒªŒL˜@¬ƒ« Iº@¬ƒ« I¹@¬ƒ« Iº@¬ƒªW§†Á@¬ƒ« Iº@¬ƒ«Æ§ïž@¬ƒ« Iº@¬ƒªçÕfÏ@4`ØDЩ@4`ªdÂø7@1i‡+ @1iÇy¦µ @1,j~ùÛ#@1-V”@0O „M@0·éùr@0O „M@0±[W>¬@0O „M@0v_Ø­¬?|¬Çëý ?x°ºà1?‘©ŠÕ ·Ñ?ŒªèkÜ?‘EÉ@Ú?‘C!ƒžÈ?|öOÿÝ?’Q_Ú¸FN?‘F·ˆN ?Œþ%å_D?‚˜YªüÏF?ƒƒQçÐ(?‡×7°º?‡×7°º@@@@@*@,?ð?ð?ð?ð?ð?ð¾àoùX?Ýx?Iç·9lÅ?Òoc2Ðï@¦1¬ƒu¹@¬ƒªåum ?'!·Å—Ã?@(6µ1Ú…?\^s1Ȧé?Š7C…&ð†@ŸfÃZ| @ @¯@ -=p¤@¯@y%¦Õ@¯@ -=p¤@¯@¬2@¯@ -=p¤@¯@ÜÆ?@¯@ -=p¤@¯@ŽóMj@¯@ -=p¤@¯@§†Â(@¯@ -=p¤@¯@z–@œ{>vÈ´9@œ{>ùÛ"Ñ@œ{>vÈ´9@œ{DêJŒ@œ{>vÈ´9@œ{D›¥ãT@œ{>vÈ´9@œ{B&€I@œ{>vÈ´9@œ{BÃÉîË@œ{>vÈ´9@œ{B&€J@4kµsê´@4kêk50@2J^5?|í@2K…¸Që@2 "Ðå`B@2 Oß;dZ@1xDЩ*@1z¹õY³Ñ@1xDЩ*@1yXbMÓ@1xDЩ*@1yÎ_oÒ?}x—™ZÌw?…<ò N ?гá‡}?Œ8¸wx¯@@@@@(@,?ð?ð?ð?ð?ð?ð¿5ªžð?:Á aÀ?@ŠÄ*óîz?º)ç¹@¯@€;_@œ{@Ê%;?`£‚Dµ?7¦$%¥+?ʾ[&+@8Iç@8Ù?†‡+ Iº@8Î÷@8i§@8Å@8S@8û—?˜s5r–¹@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@§EKƧïž@§EQ&éxÔ@§EKƧïžÁ.„€@§EKƧïžÁ.„€@§EKƧïžÁ.„€@§EKƧïžÁ.„€@§EKƧïžÁ.„€@¥êúáG®@¥êø“t¼j@¥êúáG®Á.„€@¥êúáG®Á.„€@¥êúáG®Á.„€@¥êúáG®Á.„€@¥êúáG®Á.„€@7 ØDЩ@7 -¬Ùè>B@3 í‘hr°Á.„M‰ûçm@2€å`A‰7Á.„QnÙ‡@1‘Þi­BÄÁ.„NÜC,¥@1‘Þi­BÄÁ.„NÜC,¥@1‘Þi­BÄÁ.„NÜC,¥?1·†Æjñ@8#˜@8¾:@8 >+@8Iç@8Ù?”¼íÒh?@8Î÷@8i§@8Å@8S@8û—?Úæ5BZ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@®:ŽV“Á.„€@®:ŽV“@®:”`ªdÃ@®:ŽV“@®:’•éá²@®:ŽV“@®:šÔ,<Ÿ@®:ŽV“@®:–ð¹@®:ŽV“@®:’•éá°@£$Ý/Á.„€@£$Ý/@£ŒèõÂ\@£$Ý/@£ŒõÂ\)@£$Ý/@£Œ½¿HÌ@£$Ý/@£ŒÝ²-V@£$Ý/@£ŒÈ§æ›@8Hè§æÁ.„>¤µÜÆ@3n5?|í‘@3d xFÜ@3²-V@3 [À7@2Öý!ÿ.I@2»jçÕfÏ@2Öý!ÿ.I@2·ü¹#¢@2Öý!ÿ.I@2º#9Àëî@8J¨?›úV˜[u9?‘–”«ëó?œ¦]`úæ? k‚ˆŸ;æ?™ÊU¹Á A@8J¨?ª´˜lV±°?šJ‘ÍÒÁ?»5;7Ä»M?¹ê®Q•Ò?»·ÕAû8D@8p÷?ŽOv_Ø­«?† - Ðló]?‡v¯ªIì?”ø™¾?¤ËÜþgì“@@@@,@,?ð?ð?ð?ð?ðøøøøøøøøøøøø@®þ3¶E¡Ë@®þ/ß;dZ@®þ3¶E¡Ë@®þ5Â\)@®þ3¶E¡Ë@®þ33332@®þ3¶E¡Ë@®þ3¶E¡Ë@®þ3¶E¡Ë@®þ3œ¾à@®þ3¶E¡Ë@®þ4!-w@£E1&éxÕ@£E.V“@£E1&éxÕ@£E2¼£@£E1&éxÕ@£E3©*0U@£E1&éxÕ@£E49Xb@£E1&éxÕ@£E3×Ûõ@£E1&éxÕ@£E8­«ŸW@6ý:’£@6ø†YJôñ@1û Iº^@1ù³Ð|„¶@1iÛ"Ðå`@1iŒ~($ @0‚@·€5@0ÂZîcŠ@0‚@·€5@0ÂGE8ï5@0‚@·€5@0¿¾vÈ´:?¦NIÉ®š?ÎÁ¯‰t0?‘¶å¤wk½?Œ‚èõЊ?‘Dj?‘#†»{׈?”¼íÒh??“í -Âô‚?‘}7ˆ.Ñ?‘M –=?‘+ùÔ!½‹?‘ ‡#é -´?¥¤Pà7?c I??…/‡ÙX·³?ƒ­=aÊw%?‡gϵ’õ?ˆ -¿„r©Ý@@@@@(@$?ð?ð?ð?ð?ð?ð?@%+sT?^> -3F?5?Ód/?BõZƦ@®þ3ƒëñõ@£E4q¿¨õ?I\Iñ;Œ?_)T¯`l¯?Ž:õ•{÷§?¸RÅ«\k@Ÿo£´y@@®Û©xÔýô@®Û©7Kƨ@®Û©xÔýô@®Û¯*Á…/@®Û©xÔýô@®Ün<ºÃZ@®Û©xÔýô@®Û¬‘™•u@®Û©xÔýô@®Û¨0Ñ/@®Û©xÔýô@®Û¥Íë»4@œ™™™™š@œš¬1@œ™™™™š@œ– “ÒÄ@œ™™™™š@œŽæì¾@œ™™™™š@œ›I]غ@œ™™™™š@œšœr@œ™™™™š@œ£ÀÑÓä@5:qÞi­C@5:’£S&@1J^5?|í@1žŠp}&Þ@0¾V“u@0íâJé×@0zÔ,<ží@0àW÷R#@0zÔ,<ží@0zãoõ Ö@0zÔ,<ží@0{85;‡÷?~ì“?ÕÒJ?Ïk…¼_?‘ÛåÅ?Ç?ŒIa‰UU?‘ ¯ö`*?¸gèïWœ?|Ñb×¶@?’<ð/Oí?„•à?^c¨gÖ5?‘´ _®?Oâ2¯Ö;?‚ÿÀ_~Š?Œ¬2aà?ƒ]nx+@8Iç@8Ù?‘ɱb)Q@8Î÷@8i§@8Å@8S@8û—?Äþ`ÈÿïS@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@ªbƒ•%@ªb„›¥ãT@ªbƒ•%@ªb„ÜucÕ@ªbƒ•%@ªb„¸œ@ªbƒ•%@ªb„ß©*Ä@ªbƒ•%@ªbƒZVn@ªbƒ•%@ªbƒ)o•U@™®µ?|í‘@™®¶E¡ÊÂ@™®µ?|í‘@™®µÌ¤«@™®µ?|í‘@™®µÃËéH@™®µ?|í‘@™®¶æºûq@™®µ?|í‘@™®¸~=ÂÌ@™®µ?|í‘@™®¸¢î‘@4 xFÜ@4ŸU›=@0&‡+ J@0&?Ü1’@/XÔýó¶F@/W¹Iô@.(Û‹¬q @.(_Œ÷n @.(Û‹¬q @.(ºÇË*@.(Û‹¬q @.(&°ÚI?}@T˜ÁÎ¥?ÜnøÃ!?‘Ûø÷BÉ?‹ÁšŸ™I?ëF BØ?Â*®¼?}@T˜ÁÎ¥?’ï R”?‚¼ FO??Šb£’?ÏnG$GI?]S¶X³d?‚o,¬qVÙ?ŒÂk®/¥?‚‘X ¶ ?‚øL¨ØxŠ?†ÏÅ1C?†‘·ª -9X@@,@$@*@4@7?ð?ð?ð?ð?ð?ð¿/Ú‡j ?.ÅKnà?"©£è¯¦S?ÒØÛoi@ªb„*l@™®·C‡aÜ?B˜lKÑJ?(PÀäñ3?’ž¹«hÉk?^rTÕÂ?›@ŸgäØ¿ @@«›u?|í‘@«›r-V@«›u?|í‘@«›q·Xâ@«›u?|í‘@«›jÚ¹õZ@«›u?|í‘@«›…Ö8†Z@«›u?|í‘@«›x_ö”@«›u?|í‘@«›|žì¿±@¦ÝåãS÷Ï@¦ÝâÐå`B@¦ÝåãS÷Ï@¦ÝéûçlŠ@¦ÝåãS÷Ï@¦Ýá°‰ &@¦ÝåãS÷Ï@¦ÝÛšu@¦ÝåãS÷Ï@¦Ýß¼@¦ÝåãS÷Ï@¦ÝÚ6âë@7*0U2b@7…ðoiD@4Œí‘hr°@4‡$tSŽó@3ûƧï²@3ùº^5?}@3ý!ÿ.I@3œàu÷@3ý!ÿ.I@3$Ý/@3ý!ÿ.I@3Ü]cˆf?ˆÿÀ)T¿Æ?™05¦ ê[?FwôÅ?”ø”gt>?”Å¥ÒB–W?”ÙA!Xá¨?‚á²Olºü?š«Õ LP?–¾Oäë ?‘tÄdªE·?“¹ ¾´î?˜„AP0P?˜o\¾Z{?‘ûKá•)†?”³Ž+k?‡ÕZ›µûÜ?<ש‹äN?Œ8¸wx¯@@@@@$@(?ð?ð?ð?ð?ð?ð?bíútÀ¿Z’¼?_L|H‚bK?EÊjœ-M0@«›y4_í@¦ÝÞ»úúÎ?› /ذ™?eëfÉб)?ùÚ8’ا?ÍK{~´‰@Ÿh,éóµ›@@¥¢Ä›¥ãT@¥¢ºáG®@¥¢Ä›¥ãT@¥¢Ã¼ÓZ‡@¥¢Ä›¥ãT@¥¢ÏhÛŒ@¥¢Ä›¥ãT@¥¢Å¸Qì@¥¢Ä›¥ãT@¥¢ÅýŠÚº@¥¢Ä›¥ãT@¥¢Éã¾@¡çð£× -=@¡çë…¸R@¡çð£× -=@¡çóMj@¡çð£× -=@¡è Iº^@¡çð£× -=@¡çô¼j~ú@¡çð£× -=@¡çð©*0@¡çð£× -=@¡çíOß;d@7įO „M@7Æ¡aä÷f@3k¥ãS÷Ï@3m¸ºÇË@2¹7KƧð@2½ÅÖ8†Y@1î_oÒ @1ð6âë@1î_oÒ @1â\(õÃ@1î_oÒ @1ân—Oà?}Ñ¿ž,?‘–Œ ˆŽ ?“IK¹É?nii)â?šÞjFáÊ?—Ò¸ùBz3?Œs¤DÅÐ?š8º¶{:?‘%gÇ¿µ?‘Nw]6»ô?žrø·óç?¡má\È@à?¯ßÁx}²?’Эs_ª`?‰~}œ…o_?‡õ{CxÞ?屘Úã?˜§zy@@@@@,@*?ð?ð?ð?ð?ð?ð?iŽ|š?W¸öÖ?8ò"ªœ‹?Ufݸbzi@¥¢Á¶• q@¡çïÒj¤þ?XwøÍ6O?rò8G®ËÍ?´Pžðäê?ÛnÿÒ9¶ô@Ÿf¡QF$`@@°=p£× -Á.„€@°=p£× -@°=quŽ@°=p£× -@°;’:)Ç@°=p£× -@°<L˜_@°=p£× -@°;P°ò|@°=p£× -@°;˜Çâ‚@žÈq©ûçmÁ.„€@žÈq©ûçm@žÈgRT`ª@žÈq©ûçm@žÈc¢œwš@žÈq©ûçm@žÈixÔýó@žÈq©ûçm@žÈg8}À@žÈq©ûçm@žÈd÷eý‹@7Âò䎊Á.„>¤µÜÆ@2û Iº^@2ùÔ•*™@2 ²-V@2 ˜Çâ‚A@1a:’£S@1_iDg8@1a:’£S@1_U›=È@1a:’£S@1_Aò×s@8J¨?­hX™*?‘=?ùKh?Œ:Z2‚b?‘ÇöÃÞ`?‘•S‚üJ@8J¨?“Á4œÝi?ÏtP°*?Ò–‚h±n?‘C å;Ã?‘]Ë™$ë>@8p÷?u/®Xã?‚‹¡8*ú?ƒÛ®«etZ?ˆCns¥ ?ˆ¾þúWZ‹@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøø@£Ï!ÊÀƒ@£Ï%¸Që@£Ï!ÊÀƒ@£Ï$÷eý‹@£Ï!ÊÀƒ@£Ï#ˆe”¯@£Ï!ÊÀƒ@£Ï$Âø7¶@£Ï!ÊÀƒ@£Ï!TÉ…ñ@£Ï!ÊÀƒ@£Ï!TÉ…ð@§¾n—@§¾õÂ[@§¾n—@§¾¶®}U@§¾n—@§¾g8~@§¾n—@§¾u%F @§¾n—@§¾n.±Ä@§¾n—@§¾\(ö@7Q|ÚQ@7QÊÀƒn@1O|í‘hr@1O–»˜È@01‰7Kƨ@01uŽ!–S@/fL/ƒ{K@/f€IQƒ@/fL/ƒ{K@/fL/ƒ{K@/fL/ƒ{K@/fÂ&€J? Eˆ‡ðó‹?êÚÏ$?‘,fŸCô6?‹ó#ƒt£?ÿ £‰¸9?¸û:?žˆ2}?’)£µ“[+@8Iç@8Ù?€‚ñêã @8Î÷@8i§@8Å@8S@8û—?œÁXÙðÿ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¬ÁnzáH@¬ÁmV@¬ÁnzáHÁ.„€@¬ÁnzáHÁ.„€@¬ÁnzáHÁ.„€@¬ÁnzáH@¬Áo²-@¬ÁnzáH@¬ÁmV@¯i@ƒn˜@¯i:^5?}@¯i@ƒn˜Á.„€@¯i@ƒn˜Á.„€@¯i@ƒn˜Á.„€@¯i@ƒn˜@¯iC× -=q@¯i@ƒn˜@¯i?|í‘h@8[¹Œ~($@8WéùrH@2€ Ä›¥ãÁ.„M‰ûçm@1€å`A‰7Á.„QnÙ‡@1 ù kºÁ.„NÜC,¥@1 ù kº@1â‚@·€@1 ù kº@1ÕϪ͟?£È‰·akû@8#˜@8¾:@8 >+?‘ ·èf?‘/¹ß…?‚á²Olºü@8Î÷@8i§@8Å?‘އ Àí?’9ñ9¶ò8?žhËJÎæ@8 * @8p÷@8¶?‹&¸ê±fÂ?’¸ø‰o@@@?ð?ð?ðøøøøøøøøøøøø@¢L¬‹C•@¢L¬‹C•@¢L¬‹C•@¢L®záH@¢L¬‹C•@¢L­‘hr°@¢L¬‹C•@¢L¯v_Ø®@¢L¬‹C•@¢L¨Ë’;@¢L¬‹C•@¢L©Çy¦µ@¦,`A‰7L@¦,`Ä›¥ã@¦,`A‰7L@¦,aaä÷f@¦,`A‰7L@¦,_;dZ@¦,`A‰7L@¦,]ŠÚ¹õ@¦,`A‰7L@¦,cÉîËû@¦,`A‰7L@¦,cn—@3 ]cˆe”@3 íúCþ\@/û"Ðå`A@/ô‡ü¹#¢@/N—Oß<@/C•$Ý@-õ¨Xy=Ú@-é­BÃÉï@-õ¨Xy=Ú@-ëP°ò{³@-õ¨Xy=Ú@-ëP°ò{´?€‚ñêã ?ûJ`ÕYð?‘"žæÆó¡?‹¬àÌ’Ç?”ä+ïè?“Q´Î`°€?|¬Çëý ?’eCŒO?œõLÁE?@§[*^?”*v7¹¿?“½w¢8…?‚s@ˆaÚ?=d­úå?‚¸“Îè ø?ƒžÂâk,?ˆëÅoë?Ž .0åv@@@@@,@,?ð?ð?ð?ð?ð?ð¿8ÃZâ¸?2Øà?HTœãË*?D)Zî£<@¢L¬7Lë@¦,aÀ%?g !í/Ù?cýtÏá2Á?×ÍIN½­£?щØmó&å@Ÿfg¨áµ`@@­ÀÀÁ.„€@­ÀÀ@­Á(ZªÖ;@­ÀÀ@­Áû S@­ÀÀ@­À¸w6Ç@­ÀÀ@­ÀçxQýÇ@­ÀÀ@­ÀÌ\&SÁ@›E49XbÁ.„€@›E49Xb@›E3ûÕi6@›E49Xb@›E £¯ºg@›E49Xb@›Dãµ\8…@›E49Xb@›E"ß;Ô·@›E49Xb@›E7gþù@8ð4mÅÖ8Á.„>¤µÜÆ@3¡hr° Ä@3{R­!4€@2Æ“t¼@2céN`@2 -0U2a|@1ÖPŠX§ô@2 -0U2a|@1ØÅˆöˆÂ@2 -0U2a|@1Ü·+•ò@8J¨?˜Á¥MŒtÞ?—s˜¥¸Î¿?®¦â|vã?“N?ªó¥±e@8J¨?p¦&tìC?™éø„s?£Yg3–÷?šŒŠJ](?›YöîÈÉé@8p÷?–¯´Å”s ?¹ -ÁNr)?’ål-¦Q?‘I`ÊïN?upß-z¢@&@"@*@.@0?ð?ð?ð?ð?ðøøøøøøøøøøøø@ž™‹C•@ž™¤Ô}@ž™‹C•@ž™‘­:=@ž™‹C•@ž™È¨ÉV@ž™‹C•@ž™ÊB%¥†@ž™‹C•@ž™½.Ûø@ž™‹C•@ž™ÂÍφ@ öœ(õÂ@ ö±ë…¸@ öœ(õÂ@ öòx[ññ@ öœ(õÂ@ öʾ€´@ öœ(õÂ@ öÔgº¨@ öœ(õÂ@ öÓgß^V@ öœ(õÂ@ öÔÇÄG@6*0U2b@6á(E\@1—+ Iº@1+­{N¾@0éÛ"Ðå`@0Îm°ðK@03&Á½¦@0©*SEŸ@03&Á½¦@0‚Ñ@03&Á½¦@0lÃðRÌ?€Z=ú‚¡?¤^£ ‰?™42`Ò??‹éþ7?”L–—í ?”Fœ0ê^?Œ}ØEò?•ð·÷ô'?•ÀÔÏ>?1ß”ñìÿ?•ìG -̾ù?”PQÌ-2?— abŽ?TàŒx?ŒŒ­Ÿèã?‡“m« pØ?Œ:w€…êB?޽±Yfž³@@"@$@@2@2?ð?ð?ð?ð?ð?ð?oÜá¾é?€Ð'8€?Y´P;rq§?d#ÈÍÁŠ@ž™¹¤äó}@ öÈ ß¼x?zXXd–¹W?ƒ•ta%?ú\2¶eÇ@.^F;!–@Ÿhú‹¶™@ @¨ÊÒñ©ü@¨Ê‘hr°@¨ÊÒñ©ü@¨ÊŒô!-@¨ÊÒñ©ü@¨Ê‹Æ§ïŸ@¨ÊÒñ©ü@¨Êqu@¨ÊÒñ©ü@¨ÊúCþ]@¨ÊÒñ©ü@¨ÊŒÌÌÌÍ@«‚“u@«‚KƧñ@«‚“u@«‚»˜Çã@«‚“u@«‚ðØDÑ@«‚“u@«‚škP±@«‚“u@«‚®}Vm@«‚“u@«‚+jçÕ@6ò䎊@6aä÷eþ@1 í‘hr°@1 wškP°@0¾V“u@0¼žì¿±[@0&YJôðØ@0&Á½¥@0&YJôðØ@0'¯·é@0&YJôðØ@0'1Å‚?1·†Æjñ?qÂ' -B›?’5 µ¿$„?Œ‚èõЊ?‘¾%î -ã?Ðýð^–Ö?|öOÿÝ?’4 "ëžØ?‘;¨™,?‘M –=?‘ ^Íü?ÿ?lINõÕ„?‡}¤íý?3I¶#i?ƒ!A -mº¹?ƒ­=aÊw%?†ùadô|?†Ü‘ °Ô@@@@@*@(?ð?ð?ð?ð?ð?ð¿›Y–¿&=3!@?²J¶‘Ô?ózÑÕ©)@¨ÊcÐXÌ@«‚ú¸ò:?<ó‡)ÄÑß?:»Çejâ?…Gæ¶ŸFa?ón AõÌ@Ÿg9.Íè¤@!@¨WŽV“Á.„€@¨WŽV“@¨W Ä›¥ã@¨WŽV“@¨W„ŽŠqß@¨WŽV“@¨WŠOv@¨WŽV“@¨W¾ í*@¨WŽV“@¨W˜†YJõ@ ƒn˜Á.„€@ ƒn˜@ ïŸ¾w@ ƒn˜@ ñø .@ ƒn˜@ û‹¬q @ ƒn˜@ óœ¾à@ ƒn˜@ ï'»/ì@8#g ù lÁ.„>¤µÜÆ@4!hr° Ä@3ü¾ß¤@@3lj~ùÛ#@3[xFÜ]@2°–»˜Çã@2®ŠqÞi®@2°–»˜Çã@2¨ -à@2°–»˜Çã@2£{J#9Á@8J¨?¡³¡Bš™?¥Äü¸§‚e?‘4ãM^?›À‰¥xsÎ?¥˜9‹´j@8J¨?Æ“¡0°Øf?±·`;9›?–ª'G_ßJ?žFl}ÖÑì?£:ó;Ãç@8p÷?›¿G¶‘µ?“ø­×N?Ÿ.BZO¶?œpO‹4I?™/ã̽`ª@@@@(@*?ð?ð?ð?ð?ðøøøøøøøøøøøø"@©Î—Oß;@©Î–È´9X@©Î—Oß;@©Î–‡+ @©Î—Oß;@©Î˜}¿G@©Î—Oß;@©Î“œ¾à@©Î—Oß;@©Î›²þÅm@©Î—Oß;@©ÎšCþ\’@­9XbN@­9XbN@­9XbN@­6_Ø­¬@­9XbN@­2ˆÎp:@­9XbN@­7Xâ@­9XbN@­0ØDÐ@­9XbN@­1Þi­C@6*0U2b@6K]Ìcò@2Ô›¥ãSø@2ÑTÉ…ðo@1ä¼j~ùÛ@1âGE8ï5@1B‚@·€5@1;P°ò{³@1B‚@·€5@1Fð¸»@1B‚@·€5@1DFs×Ü?1·†Æjñ?ôÊ_?“ „qç -*?•¬+ÌYI˜?”1މ,jˆ?‘&¶Gf¡?Œs¤DÅÐ?’7Îf¬ps?’±ä?—,àÐÑž?•ò±É*³¯?’ω:hT†?‡z"2Úù(?’á²Olºü?‡š¿]b?†ú#ѧ?‹ ˜1 D@?‹ì3åý@@@@@,@*?ð?ð?ð?ð?ð?ð?FÙÎ0¿[!˜”x?COÕصC?:õݶFNc@©Î˜IC”@­5m$žò?enþÂD`¸?[Ä7Yä–?Ð^d‚üqã?±õŽýÜ Ý@Ÿi2О‚;@#@¢"½ó¶E¢@¢,1&é@¢"½ó¶E¢@¢H`ù³@¢"½ó¶E¢@¢Z^Áë-@¢"½ó¶E¢@¢]&ãW@¢"½ó¶E¢@¢-¼Ÿ@¢"½ó¶E¢@¢2-0@˜"šŸ¾vÉ@˜%° Ä›¦@˜"šŸ¾vÉ@˜%šœy€@˜"šŸ¾vÉ@˜%… Œ@˜"šŸ¾vÉ@˜%)3°³@˜"šŸ¾vÉ@˜%‹]d*±@˜"šŸ¾vÉ@˜%1MY@6Ô xFÜ@3YîËû¶@3ÜIº^5?@/¥2Ø4Ž@2ìj~ùÛ#@.lÿð¾ o@2‘Þi­BÄ@-WM4@2‘Þi­BÄ@-jVwˆ®)@2‘Þi­BÄ@-]`߈?}@T˜ÁÎ¥?˜H%€]¾^?‘,Qú"Œ»?ÎÍQ#“ï?}x—™ÃMÐ?ƒ&C@=V?†Á‡ÄQS?†ºEZë€J@@ @"@$@,@0?ð?ð?ð?ð?ð?ð¿O-b,¿ ww€?@±LU?# œßã¥@ ÷-+¤,@¦ ·¶[’?_äܳ.?CÏ„ú—È?Çãdw"D?“JÏEÔ÷@ŸgÍv¶Y§@%@©“í‘hr°@©“í‘hr°@©“í‘hr°@©“î¿}n@©“í‘hr°@©“îòÙ9@©“í‘hr°@©“î"™Ü9@©“í‘hr°@©“ì³ew€@©“í‘hr°@©“ìÇÅøb@–©÷ÎÙ‡@–©÷ÎÙ‡@–©÷ÎÙ‡@–©ø}¿I@–©÷ÎÙ‡@–©÷æïÙ7@–©÷ÎÙ‡@–©øÐ6k”@–©÷ÎÙ‡@–©ø…Wã‘@–©÷ÎÙ‡@–©÷†“Ÿ€@3:qÞi­C@3:kP°ò|@-û"Ðå`A@-û?÷ÿ@-4ýó¶E¢@-5F -¦L0@,=Vlô"@,=‚÷…Š\@,=Vlô"@,=Áç–|¯@,=Vlô"@,=§°³‘“?|¬h2:“?Ëš]Üus?‘ùBì?‹®’‘8ø?î¤Ë)>ñ?ºT|/ÿ?|¬h2:“?’…;*;h?’Ìw¸&?1–‹ï ?Òh‘›1?T©£q/G?‚nÚ¨´8Ð?Œ¯ê¸wœ?‚u¹k‚=?‚ê ëZ“E?†Š7´is\?†Œ§÷‹Ý@@*@,@&@;@;?ð?ð?ð?ð?ð?ð¿ -xJà?'¬¯@?"ˆgÝé?{­²ºk@©“íb¨n@–©øR?p?Boû{ù×?2Ó@CŠ„¦?’¦…f´?r›6Æä@ŸfòÕN[¤@&@¬T5?|î@¬T/Ÿ¾@¬T5?|î@¬Tƒä%®@¬T5?|î@¬T¸Që…@¬T5?|î@¬T«6z@¬T5?|î@¬TÑ·@¬T5?|î@¬TVlô@©ÙIº^5?@©ÙLÌÌÌÎ@©ÙIº^5?@©ÙI7Kƨ@©ÙIº^5?@©ÙIº^5?@©ÙIº^5?@©ÙJŒL˜@©ÙIº^5?@©ÙIîËû@©ÙIº^5?@©ÙJW§†Â@6Q|ÚQ@6O\(õÂ@0Ò Iº^5@0ÒMÒñ©ü@/rn—Oà@/r{²þÅn@-p‰ 'RU@-p£× -=q@-p‰ 'RU@-p|„µÜÇ@-p‰ 'RU@-p°ò{²ÿ?|¬Çëý ?Òç{íj?‘G¿yÛ?ï?‹ÁË…ÉT?÷6r In?¶*WFÑ?…ÅBðrç?’›ÈÖÝ?»Þ‹"è?6) }’ë?â2„&ÿh?e¾DQ„Q?–Õ ­Ÿû?ŒÂ§dß±?‚˜YªüÏF?ƒE 8?†–f_ÔŠŠ?†©b/bJö@@@@@,@,?ð?ð?ð?ð?ð?ð?%WÛ­€¿CCW ?&èá.´?"›,|¡x@¬T±šù -@©ÙK<òv>?GÜ>uTô‚?B†ãèah?œ|NáRuÈ?ŠdË;T0@Ÿh¹pI™D@'@«™ Ƨïž@«™ ƧïŸ@«™ Ƨïž@«™ ÓÃa@«™ Ƨïž@«™ "h Õ@«™ Ƨïž@«™ ÌÌÌÍ@«™ Ƨïž@«™ cñA @«™ Ƨïž@«™ BÃÉï@¨+u?|í‘@¨+u$Ý@¨+u?|í‘@¨+tÉ…ðn@¨+u?|í‘@¨+u¨Xy>@¨+u?|í‘@¨+uéá°‹@¨+u?|í‘@¨+tmÅÖ:@¨+u?|í‘@¨+tÉ…ðo@5-¥œàv@5-úCþ\’@1sS÷ÎÙ@1sˆe”¯N@0ÝV”@0ÝIQ‚©“@0ëxFÜ^@0ëjçÕfÐ@0ëxFÜ^@0ìIº^5@@0ëxFÜ^@0ëíúCþ]?€‚ñêã ? ¸×KG?‘O‚%c?Žl¢¦µ¥?‘‘n{ÆäK?‘Ò\.:Ø@?|öOÿÝ?’CòO…?‘;¨™,?‘°ß‡O©?’l{9ÙŽ?¦QÎð\ã?„‘Za¹P?3I¶#i?‚Ì ÝŽ‚8?„ mŠmsi?‡L8õASÎ?ˆ‹”âó@@@@@,@,?ð?ð?ð?ð?ð?ð?1`åß¿#ZLw€?AdA•‡I?=!^é@«™ aPP@¨+u9¥¶:?4-4ÆLª:??'mwƒ?r«1ÃV0?‡Y[º¦Pœ@Ÿg%{Ñ’?@(@ d›¥ãSø@ dšÆkÅ”@ d›¥ãSøÁ.„€@ d›¥ãSøÁ.„€@ d›¥ãSøÁ.„€@ d›¥ãSøÁ.„€@ d›¥ãSøÁ.„€@§¨÷ÎÙ@§¨n—Q@§¨÷ÎÙÁ.„€@§¨÷ÎÙÁ.„€@§¨÷ÎÙÁ.„€@§¨÷ÎÙÁ.„€@§¨÷ÎÙÁ.„€@6Œ]cˆe”@6n*ó¨‡@2óS÷ÎÙÁ.„M‰ûçm@2t“t¼jÁ.„QnÙ‡@2 ¿±[W?Á.„NÜC,¥@2 ¿±[W?Á.„NÜC,¥@2 ¿±[W?Á.„NÜC,¥?€Z=ú‚¡@8#˜@8¾:@8 >+@8Iç@8Ù?ŽÕQp Î@8Î÷@8i§@8Å@8S@8û—?‚ãTʼ =@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø)@£#Cn—Á.„€@£#Cn—@£#9#¢œx@£#Cn—@£#F?@£#Cn—@£#5L˜_@£#Cn—@£#,VÕÏ«@£#Cn—@£#3 àÞÒ@§ž5?|îÁ.„€@§ž5?|î@§Ç ù m@§ž5?|î@§²° Ä›@§ž5?|î@§­BÃÉð@§ž5?|î@§­à q@§ž5?|î@§µfÏAò@9–»˜ÈÁ.„>¤µÜÆ@5Œí‘hr°@5ž5?|í‘@4²-V@4—Oß;d@40–»˜Çã@41$Ý/@40–»˜Çã@4$`ªdÂø@40–»˜Çã@4%¨Xy=Ú@8J¨?®ÖJ éf?¢Ø‹)¬Ô?¡àp½ùW²?¯ÂÿU܈9?¦ìm°Z³@8J¨?°k3–~?©oÌ„»É—?·Ë¿ o¶?°KNø»«ú?¬H"¨Û#¦@8p÷?³/ÇÅ‘B?«ý¿­¨?²Ž Ÿ‘W?®zoV÷?œÐ€IÙN†@@@@,@(?ð?ð?ð?ð?ðøøøøøøøøøøøø*@¥{dZ¬@¥xÔýó¶@¥{dZ¬@¥~ÒˆÎp@¥{dZ¬@¤þ‘[W>«@¥{dZ¬@¤ÿÿØ­«Ÿ@¥{dZ¬Á.„€@¥{dZ¬Á.„€@¦S_¾vÈ´@¦Sg+ K@¦S_¾vÈ´@¦S\¬1(@¦S_¾vÈ´@¦SYJôðÙ@¦S_¾vÈ´@¦S ùrG@¦S_¾vÈ´Á.„€@¦S_¾vÈ´Á.„€@6ð4mÅÖ8@6ïO „M@4ÇÎÙ‡+@4°@4RÐå`A‰@4žì¿±[W@4 ù kº@4 ¹Œ~($@4 ù kºÁ.„NÜC,¥@4 ù kºÁ.„NÜC,¥?‚á²Olºü?­ÙEÔy©Ñ?ê¶i’•ðX?´ÿ,¶ö -d@8Iç@8Ù?–ªÎ­¡?°k3–~?Çù9Ø‚àÁ?³R(gÉF²@8S@8û—?™N³“—õ?ÉôÒ:æøš?ȧuð Ì?¼ ÿvrC@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø+@§kPå`A‰@§kQ©ûçm@§kPå`A‰@§kEo@§kPå`A‰@§k-¸ºÇ@§kPå`A‰@§k(e”¯P@§kPå`A‰@§kSg ù@§kPå`A‰@§k‡“Ý—÷@­»X“t¼j@­»s÷ÎÙ@­»X“t¼j@­»3Mj@­»X“t¼j@­»W´¢3œ@­»X“t¼j@­»s àÞÓ@­»X“t¼j@­»h>BZî@­»X“t¼j@­»ª™0¾@95S&Á¾@9?v_Ø­¬@5ã÷ÎÙ‡@5ëP°ò{³@5lj~ùÛ#@5usê³g¡@4ž«6z‘@4ž}Vlô@4ž«6z‘@4¨è§æ›@4ž«6z‘@4z0U2a|?©W»¥ÿ$B?°õ - åã¢?Â9œÐ/¹?´>5’cª?§?7¡â±?¸Ú2džý?¼xòaz#û?¨Õ¼2®?¸P@÷ë?¶5O¯WÕ?ª#Uºû?Ì·ö~ø Ì?Ãm¢Üå?¢:™/ʼn?¢ó6õ··?§øe8ú?ªé¦ªC¨?²ÞY')î@@@@@$@(?ð?ð?ð?ð?ð?ð?k¶è{º€¿Ta}ø?€hãf®ëz?y·V"Ý@§kR¹öp@­»nÃ^Ò?ŸµÅßS~?‘¶ôÐ8ˆ¢@}—Àc?ÕélIß¡@Ÿlö¥å£@,@¯>=ó¶E¢@¯>9Û"Ðå@¯>=ó¶E¢@¯>C¼ÓZ‡@¯>=ó¶E¢@¯>F1ø @¯>=ó¶E¢@¯>Ik¹Œ}@¯>=ó¶E¢@¯>B Iº_@¯>=ó¶E¢@¯>@ƒn™@¨55Â\)@¨56E¡ÊÁ@¨55Â\)@¨5:6âë@¨55Â\)@¨52òä@¨55Â\)@¨58ï4Ö¡@¨55Â\)@¨5/hÛŒ@¨55Â\)@¨5/ìVÕÐ@4–šÔ,<Ÿ@4‹¹Œ~($@1û Iº^@1øbMÒò@1,j~ùÛ#@1(è§æš@0¸DЩ*@0µ '»0@0¸DЩ*@0³¼ÓZ…ˆ@0¸DЩ*@0³S&Â?›’qvš°•?‘U «¼é¥?–/¸Í”p?ZÁ».œ?’?;Áƒè?‘ë´¤G?›’qvš°•?’)£µ“[j¢Ó=?V­à¾$f‰@¯>CƱÿ@¨53Äz¢?|·M²l­?qµÉÓ‡l?ò³h<~5?Ù$m½ò @Ÿn“G ˆ.@-@®A‰7KÇÁ.„€@®A‰7KÇ@®A×Ûôˆ@®A‰7KÇ@®B‚@·€@®A‰7KÇ@®Aä÷eý@®A‰7KÇ@®@4mÅÖ@®A‰7KÇ@®@4mÅÖ@ ‰)xÔýôÁ.„€@ ‰)xÔýô@ ‰(r° Å@ ‰)xÔýô@ ‰(ÁTɆ@ ‰)xÔýô@ ‰(šu%@ ‰)xÔýô@ ‰)*0U2@ ‰)xÔýô@ ‰(ÁTÉ…@3įO „MÁ.„>¤µÜÆ@0n5?|í‘@0nvÈ´9X@/¥¡ÊÀƒ@/¥ðoiDg@.³üPH@.³@N¤¨Â@.³üPH@.³Z…‡“Þ@.³üPH@.²×süQ@8J¨? ¸×KG?‘\H{gX ?Œݶ\ñr?òǹíT­?Å{¿Ž<¹@8J¨?’0nà=Q“?‘Jâ”âj?7枪y7?ÚÌA B{?Sñƒ´V.@8p÷?ŒÂ§dß±?‚† SFò?ƒ!Ë *(?†£îž«î?†©b/bJö@@@@&@&?ð?ð?ð?ð?ðøøøøøøøøøøøø.@¥Û~vÈ´9@¥Û~ùÛ"Ñ@¥Û~vÈ´9@¥ÛU›=@¥Û~vÈ´9@¥Û}cˆe•@¥Û~vÈ´9@¥Û|Æ?@¥Û~vÈ´9@¥Û}!ÿ.I@¥Û~vÈ´9@¥Û~Ov_Ù@¨F,‹C•@¨F,‹C•@¨F,‹C•@¨F+àÞÒˆ@¨F,‹C•@¨F$ xH@¨F,‹C•@¨F&šÔ,=@¨F,‹C•@¨F)Dg8@¨F,‹C•@¨F'ÈK]Ë@3cg ù l@3cS÷ÎÙ@0Ô›¥ãSø@0ÕfÏAò@0š~ùÛ"Ñ@0›/ìVÕÐ@0cÉîËû@0eýŠÚ¹ö@0cÉîËû@0f$Ý/ @0cÉîËû@0eãS÷ÎÚ?|¬Çëý ?äm°û0Ž?’´ýBI{?‡{@áè?‘@@Nßo9?‘ë´¤G?|¬Çëý ?’j%ÓRa?•¶ÀA½ -;?’ƾ| ?‘êë·áþA?‘:i€ÑìÂ?‚nâwfÿ?Œþ%å_D?†úŒz_–È?…p=¤J‰?‰G±±ZÎ?ˆA0û)n@@@@@(@"?ð?ð?ð?ð?ð?ð¿5wå"x¿Q(Á©Š?-"Sù`ÏÀ?9z¸T‹ü@¥Û~%Ã1ž@¨F*$h(^?M8Mñ¡Ö?Y–Ðwª“6?¦&–YD!?¿G¹¤óñ@Ÿf–?®%<@/@©þÃn—@©þÁF£ç@©þÃn—@©þœáûÌx@©þÃn—@©þŸ|óÂ@©þÃn—@©þ£4‡.y@©þÃn—@©þ¦VÉ¡@©þÃn—@©þÎp:û@˜týó¶E¢@˜uPa$á@˜týó¶E¢@˜tôã÷Ô¿@˜týó¶E¢@˜udˆŽö?£¡q\^/ü?¯ˆÂ(¦#@@(@(@*@;@*?ð?ð?ð?ð?ð?ð¿q}o{?0tz–€?nAÖ…`Ä?hÜÃòk@©þ¼yö¼@˜uÙµ®o?‚¿ëBh?~õÜ,øãâ?ðîcs{eˆ?ïò4Ù~Ÿ@Ÿ^¸T@0@¥Z¬1@¥XQë…@¥Z¬1@¥OìVÕÐ@¥Z¬1@¥U›=È@¥Z¬1@¥TzáG®@¥Z¬1@¥9Û"Ðä@¥Z¬1@¥@N¤¨Á@£ ?|í‘h@£ 9Û"Ðå@£ ?|í‘h@£ mÅÖ8†@£ ?|í‘h@£ i^ž @£ ?|í‘h@£ QÄ2ÊX@£ ?|í‘h@£ Që…¸@£ ?|í‘h@£ ^Ov_Ù@7Ô xFÜ@7ÞÒˆÎp;@4i‡+ @4QÞi­BÄ@3Ú~ùÛ"Ñ@3»ÚQÎ@2ÏO „M@2½w1Å@2ÏO „M@2¶z–¼@2ÏO „M@2µ®æ1ø¡?¡EÉ@Ú?§îéZ]›$?¥×DZ?“êXÔ #{?«XàzÆ=?¨\LïTu?ˆÿÀ)T¿Æ?®*JŠË?¥ûS]:°¸?agÌf ?©®,<Å?²í(Uëó?±ÖÉ„‹?˜¼qlPg?ªÞe»þ?›a½%¨?žæŠ;Ü”ä?¨S![cé@@@@@&@*?ð?ð?ð?ð?ð?ð¿tt‚Ó ?€Þ’üE€?ijÀÉÐ?P–Ý€ò ?@¥Q§w³¹@£ M^^ÛG?°P}d?n7¼±/õ?ärý@øM?Çe¹½æI†@ŸhæÂâ@1@¨=å`A‰@¨=bMÒó@¨=å`A‰@¨="Ðå`B@¨=å`A‰@¨=!ÊÀƒ@¨=å`A‰@¨==ã¼Ó@¨=å`A‰@¨=LIº^4@¨=å`A‰@¨=_oÒô@£p£× -=@£p£× -=@£p£× -=@£q©ûçm@£p£× -=@£mà q@£p£× -=@£På`A‰@£p£× -=@£JÚ¹õZ@£p£× -=@£%zxl#@4Œ]cˆe”@4Œ¿ q@2Ìí‘hr°@2È Ô•*@2“t¼@1þHè§ç@2OO „M@29á°‰ (@2OO „M@20@2OO „M@20|„µÜÆ?~ì“?ÕÒJ?•ª „¼w(?Ÿçdl\’ž? l§s¼C^?´²Ò–ù?ºÙ Gýü?|¬h2:“?•Ð\ÄÙ?•Ó%Øc~?•è­¸‡?¸á®`cë?¿râÂ{?‚¬®eà?ލf†)"?‹v'þ­X?‡µ‚[Ö?–Ö8ýÆN0?–{=rƒ™K@@@@@(@,?ð?ð?ð?ð?ð?ð?¹=âÀ¿x¶œ<§?A‡¨:%^?<Âã|d±@¨= è¹$@£e#á¾?QÝv¥”í?Nbè$h?–Ý oˆ]ž?™œÉgŸuÑ@Ÿ]eß䟽@2@§¹Ç®zá@§¹âÐå`B@§¹Ç®zá@§¹Ãn.±Ã@§¹Ç®zá@§¹ÕϪ͟@§¹Ç®zá@§¹Ãn—@§¹Ç®zá@§¹Èšu%@§¹Ç®zá@§¹ÍBÃÉð@ªÞ¸Që…@ªíÒñ©û@ªÞ¸Që…@ªÎ±Ä2Ê@ªÞ¸Që…@ªÕµsê´@ªÞ¸Që…@ª½<63@ªÞ¸Që…@ª¬<žìÁ@ªÞ¸Që…@ª§ü¹#£@9[¹Œ~($@9múCþ\’@4}‘hr° @4sä%®æ2@4lj~ùÛ#@4gö+jçÕ@3èè§æ›@3ϱ[W>¬@3èè§æ›@3Óœ¾ß¤@3èè§æ›@3Ó{J#9Á?®í©@Šþ?”„ö}>žå?™¬þ.OÀ…? ¨1‚–Áx?£*bQtË6?¤=Bù+?­g;+³ût?”ï©ÛÉ?ŸíBðÐÄ? £½:…? øó¼o?³YðÕ{¸?Ání+î?•ða˜,F?žåÍ1¶ã‘?³d&ó? ü‡—Üä?£ªS@Gd·@@@@@$@(?ð?ð?ð?ð?ð?ð¿fê6tô¿M¤ -@?p‘Ba&\?a\ör”@§¹ËzP'¦@ª»}Þ,?ˆ#v <ã/?v ×ú"í?åרwGµ%?Â>íì÷Ïu@Ÿm)·\å@3@©KƧïž@©KƧïž@©KƧïž@©LVÕÏ«@©KƧïž@©LÌÌÌÍ@©KƧïž@©M„M;@©KƧïž@©KP°ò}@©KƧïž@©JŒL—@¥—vE¡ÊÁ@¥—vE¡ÊÁ@¥—vE¡ÊÁ@¥—vOva@¥—vE¡ÊÁ@¥—v4ê@¥—vE¡ÊÁ@¥—usê³i@¥—vE¡ÊÁ@¥—v»˜Çã@¥—vE¡ÊÁ@¥—vz–@2ºqÞi­C@2ºxl"h -@/ðå`A‰7@/ðØDЩ@.cn—P@.cS&Â@-Aò×t@-ŽóMj@-Aò×t@-Ÿ¾vÉ@-Aò×t@-'»/ìW?É^žQ5P‚?ôÊ_?‘@˜¯³¸?‹µ™eU!µ?‘ ·èf?¼‚Ë¡K?ÐbMçê_x?’ÍîfÕ?«'Q™µ?4–Ú‰3?‘Ú‚ýc¯?Sñƒ´V.?€n|ð̲?ŒÂ§dß±?‚¸“Îè ø?‚æÊ¬vã?†µ°jÆÃ?†£îž«î@@@@@,@(?ð?ð?ð?ð?ð?ð¿U,$  ?>;§ ”?.[}HÛÆ?/¹YXu® @©KøT;p@¥—v'†?=:æ|7v?>#¢},?tæO¬• ¾?sÀ3uó@Ÿsè˜'t@4@ª‘S÷ÎÙ@ª‘VE¡ÊÁ@ª‘S÷ÎÙ@ª‘„Щ*@ª‘S÷ÎÙ@ª‘F€IR@ª‘S÷ÎÙ@ª‘c,¥zx@ª‘S÷ÎÙ@ªúû~‘@ª‘S÷ÎÙ@ª‘Á½¥@¥.—Oß@¥-Òñ©ü@¥.—Oß@¥*™0¾@¥.—Oß@¥ ëíúD@¥.—Oß@¥ó&Á¾@¥.—Oß@¥ye+ÓÄ@¥.—Oß@¥mw1Å@8½:’£@8¯ò䎊r@4µãS÷ÎÙ@4‚MÒñ©ü@4“t¼j@4ÞÒˆÎp@3”mÅÖ8†@3D÷eýŠÛ@3”mÅÖ8†@3>BZîc @3”mÅÖ8†@3Q«ÇÑÚ?“ü”òÖÂ?‘!´ö‚?¯ðòçÊ’K?¬Dc†Ù?±a²OúDæ@@@@@*@(?ð?ð?ð?ð?ð?ð¿…³ô_€¿mWFt?Ñ¿ÿ¼?W¨ã8?‘@ª‘H¼o4ç@¥%Æf®?–À¤¥Óè?¥ú¶Â…•Ÿ?óÐÒÍè#x@ÏGF5—@Ÿ`ç17@5@£èr° Å@£áÊÀƒ@£èr° Å@£唯O@£èr° Å@£ç†Â&@£èr° Å@£èÎp:û@£èr° Å@£ç+ J@£èr° Å@£ÞOv_Ù@¤ÃF§ï²@¤ÃCn—Œ@¤ÃF§ï²@¤ÃC¢œwš@¤ÃF§ï²@¤Ã>žš@¤ÃF§ï²@¤Ã<£n0@¤ÃF§ï²@¤Ã>š@¤ÃF§ï²@¤Ã$?åÉ@8}:’£@8°‰ 'R@3ý‘hr° @3ùb¶®}@3V”@3êJŒL@2ò䎊r@2}:’£@2ò䎊r@2|~($ x@2ò䎊r@2qaä÷eþ?‚á²Olºü?”û#T©È?˜2<ºT?d"¹QZ?”¶q fì?˜Ê`1ó€`?¤ÊŽaÈ]Ó? 3ÝP‰j?­¾Ñ,†L?“{¡7¨Üò?žßÂÚÅ8‡?¤’sæmÅI?“²pÅâ-Ý?”3®èÚ ?•Wí+ Æ?’»•e¨ò?ˆT“Ÿÿ?”"éã/åY@@@@@(@*?ð?ð?ð?ð?ð?ð?F\àéпrôpÀ?S²r‘m@;?jÃ@® ‰{@£ä~3Ï?@¤Ã:©¶Tp?v,ûçœöU?z®ßÃÙ?çr3Zq?ç­˜êVó @Ÿl#UÚù@6@©t¼j~ú@©†$Ý/@©t¼j~ú@©r-V@©t¼j~ú@©v”Fs‚@©t¼j~ú@©tÉ…ðo@©t¼j~ú@©sœ¾à@©t¼j~ú@©ra|Ú@¨þÉ7Kƨ@¨þÖ‡+ @¨þÉ7Kƨ@¨þÅýŠÚ»@¨þÉ7Kƨ@¨þµöý!ÿ@¨þÉ7Kƨ@¨þ´`ªdÃ@¨þÉ7Kƨ@¨þ´ðØDÏ@¨þÉ7Kƨ@¨þ·´¢3œ@8m¥œàv@8h Ô•*@43S÷ÎÙ@4-cˆe”¯@3´“t¼j@3®Hè§ç@2ãÉîËû@2Ü„µÜÆ?@2ãÉîËû@2ÙÇy¦µ @2ãÉîËû@2ÝVlô"?¥Ìõ}êáþ?’bÓ}?•Mq —¦?¢Ö -ƒ«Y?Ÿ´°îéõl?žý¨B3ŒR?}Ñ¿ž,?™ÿÓH*¥?¢†$öf:?™ðyµCÒW?œCuC’?£On4;E?ôê÷º»â?ª‚eûƒ+?”ù‰ÚÞ©)?‹µ¼a?’;WZŸÿÔ?™^ÓnÔl©@@@@@*@*?ð?ð?ð?ð?ð?ð¿o“(²¿Õ2Ø?Rl‚ðÎ\8?^æ&¬Dg@©xM†@¨þ½¼J´?o]),Tð›?ƒõ'ªÌû?¸ïh…Yœ?ò uKq¢@Ÿl%McÌú@7@¥{ùÛ"Ðå@¥|G®{@¥{ùÛ"ÐåÁ.„€@¥{ùÛ"ÐåÁ.„€@¥{ùÛ"ÐåÁ.„€@¥{ùÛ"ÐåÁ.„€@¥{ùÛ"ÐåÁ.„€@¦5|í‘h@¦5ˆr° Å@¦5|í‘hÁ.„€@¦5|í‘hÁ.„€@¦5|í‘hÁ.„€@¦5|í‘hÁ.„€@¦5|í‘hÁ.„€@8kµsê´@8r Iº^6@6ÎÙ‡+Á.„M‰ûçm@4ñ‰7KƨÁ.„QnÙ‡@4Š0U2a|Á.„NÜC,¥@4Š0U2a|Á.„NÜC,¥@4Š0U2a|Á.„NÜC,¥?œä%—ëš@8#˜@8¾:@8 >+@8Iç@8Ù?¤I~Óy‘@8Î÷@8i§@8Å@8S@8û—?³Is -Æ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø8@ŸäâMÒñª@ŸäâMÒñ©@ŸäâMÒñª@Ÿä÷mâ@ŸäâMÒñª@ŸäçÁ¶´¿@ŸäâMÒñª@Ÿäè˜Ó³€@ŸäâMÒñª@ŸäçÉúT@ŸäâMÒñª@ŸääQ"Ú»@«}èr° Å@«}á#xæ`@«}èr° Å@«}íZX\@«}èr° Å@«}éÆtCx@«}èr° Å@«}çhâÕ…@«}èr° Å@«}èè @«}èr° Å@«}æ*Ý=¦@8 xFÜ@8 L³Àæ‚@3f‡+ J@3c­Ö@@2y7KƧð@2z Ï}Š @1ãÉîËû@1ß©s€ëÀ@1ãÉîËû@1ß‹'ZšE@1ãÉîËû@1á)5¢Fˆ?¿pÉÃV?“†}\¯\?’~€\Ñ ‹?…´£ÂÛ•?’¥W"/ãÂ?‘h$‡§ƒ[?ƒÔo"ë–?” -èÂ~>i?’ó†ÖàO%?Þ¿×I\¬?”qAx†û?‘/À•þª?¦ ¹kDþ?XM=nk?„QÇW%;2?„=ÈË\b -?'wChÌ?à -)¥€@@,@,@*@9@5?ð?ð?ð?ð?ð?ð??§x`x?VÀ6KÔ?6Säù­w‡?A5p¤ÉÎ@ŸäåA¯Ü@«}äÊÉß?VÁÒTDœm?a„0—x?·YVÁF*v?ƹHqñi@Ÿh+šœÈ@9@ ¡j~ùÛ#@ ¡oŸ¾w@ ¡j~ùÛ#Á.„€@ ¡j~ùÛ#Á.„€@ ¡j~ùÛ#Á.„€@ ¡j~ùÛ#Á.„€@ ¡j~ùÛ#Á.„€@•ˆô¼j~ú@•ˆêa/ Ö@•ˆô¼j~úÁ.„€@•ˆô¼j~úÁ.„€@•ˆô¼j~úÁ.„€@•ˆô¼j~úÁ.„€@•ˆô¼j~úÁ.„€@4Âò䎊@4­w1›Ø«@2Å?|í‘hÁ.„M‰ûçm@2§KƧïžÁ.„QnÙ‡@2O „MÁ.„NÜC,¥@2O „MÁ.„NÜC,¥@2O „MÁ.„NÜC,¥?|Í>·G3Ó@8#˜@8¾:@8 >+@8Iç@8Ù?‰PÑ&Éx®@8Î÷@8i§@8Å@8S@8û—?‚n—8ˆ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø:@§ž•%@§žA‰7L@§ž•%@§ž Iº^@§ž•%@§žo@§ž•%@§žñA \@§ž•%@§že+Õ@§ž•%@§ž{J#:@«qD›¥ãT@«qDZ¬@«qD›¥ãT@«qC¼ÓZ…@«qD›¥ãT@«qC,¥zx@«qD›¥ãT@«qCñA \@«qD›¥ãT@«qDŽŠqÞ@«qD›¥ãT@«qDZ¬@7Bò䎊@7BZîcŠ@2!hr° Ä@2!ÊÀƒn@0ä¼j~ùÛ@0äÖ¡aäø@0O „M@0b¶®}V@0O „M@0‘-w1Å@0O „M@0HË’:?‡YÍ_?Ï[äe?iT£C~t?ƒúʳ_Ä?ƒ=rµE=?‰©OO ¨?†Óß -tõ@@@@@,@,?ð?ð?ð?ð?ð?ð?EB -t>µ-•@?7Q m­¸?þ‘Š¥@§žCÈÍ@«qDQ®`?VF‹ôc/?0Ùeos ?²§å½?fåZÂRé@ŸiLò‰?@;@¢ ÌÌÌÍ@¢ŽøÔýó¶@¢ ÌÌÌÍÁ.„€@¢ ÌÌÌÍÁ.„€@¢ ÌÌÌÍÁ.„€@¢ ÌÌÌÍÁ.„€@¢ ÌÌÌÍÁ.„€@ ~mV@ ~TzáG®@ ~mVÁ.„€@ ~mVÁ.„€@ ~mVÁ.„€@ ~mVÁ.„€@ ~mVÁ.„€@8™*0U2b@8£t¼j~ú@5 -^5?|íÁ.„M‰ûçm@4š~ùÛ"ÑÁ.„QnÙ‡@4xDЩ*Á.„NÜC,¥@4xDЩ*Á.„NÜC,¥@4xDЩ*Á.„NÜC,¥?°{QBãï@8#˜@8¾:@8 >+@8Iç@8Ù?½=,ÜŠ{g@8Î÷@8i§@8Å@8S@8û—?§K¥xMÐR@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø<@­ÒùÛ"Ðå@­Òú¬1@­ÒùÛ"Ðå@­Òú^5?}@­ÒùÛ"Ðå@­Òûçl‹D@­ÒùÛ"Ðå@­Òÿ;dZ@­ÒùÛ"Ðå@­Òý²-V@­ÒùÛ"Ðå@­ÓA‰7L@®ÿ‰7KÇ@®ÿÊÀƒ@®ÿ‰7KÇ@®ÿ@®ÿ‰7KÇ@®þþùÛ"Ò@®ÿ‰7KÇ@®ÿ›¥ãT@®ÿ‰7KÇ@®ÿ`A‰7@®ÿ‰7KÇ@®ÿ+ I@3ð4mÅÖ8@3ð'RT`ª@0£÷ÎÙ‡@0¡ä÷eýŠ@/¿;dZ¬@/¹õY³Ð|@/#¼ÓZ…ˆ@/C,¥zy@/#¼ÓZ…ˆ@/5?|í’@/#¼ÓZ…ˆ@/]cˆe•?|öOÿÝ? ÿ1‡åH?‘*"AaIÐ?Œä%—ëš?‘Dj?’ëÆ[2?|öOÿÝ?’?Á• ñ:?Œqç©Fü?ni"Í š?ÏtP°*?’›â¾Ð'µ?‚Ÿ JŠÅ?îŠõ ?ƒmÕ+&¬Š?„XïWÉò~?†‰Oú|q?‡<û¡71@@@@@@?ð?ð?ð?ð?ð?ð?TS™ß8?P±¥D¸?5hápÿ8‚?ç® Ü±@­Òüä30@®ÿò˜ ¬?Tê´Zª²î?2ØO‡R?¶c—XZG®?qjôW“â`@Ÿfšžï¾@=@­ß²-V@­ßª=p£×@­ß²-V@­ßw1Å@­ß²-V@­ß Ä›¥â@­ß²-V@­ß Ä›¥ã@­ß²-V@­ßšQÎ@­ß²-VÁ.„€@Ÿ<Ÿ¾vÈ´@Ÿ<³3333@Ÿ<Ÿ¾vÈ´@Ÿ<¥”¯O@Ÿ<Ÿ¾vÈ´@Ÿ@ª²‘ë…¸@ª²ˆõÂ[@ª²‘ë…¸@ª²4Ö¡b@ª²‘ë…¸@ª²hÛ@ª²‘ë…¸@ª²’×s@ª²‘ë…¸@ª²°ò{²@ª²‘ë…¸@ª²’þÅm]@¨Ót¼j@¨Ì1&é@¨Ót¼j@¨ÕY³Ð|@¨Ót¼j@¨ÓÝ—ö+@¨Ót¼j@¨ÔSŽóM@¨Ót¼j@¨Ò䎊r@¨Ót¼j@¨ÓÐ|„¶@8Bò䎊@8C©*0U2@3i‡+ @3jŒL˜_@2b-V@2aø -à@1ÿò䎊r@2hr° Å@1ÿò䎊r@2ëíúCþ@1ÿò䎊r@2 [À7?°:-%šÀ?dYûë„{?’Õ ØÎ†{?Ž,OêK˜u?‘‘n{ÆäK?’»«ÒñŒ?žˆ2}?’&u÷E»@?‘½ÀèÑmK?’"Š6›Wz?‘Ð¥uvæ‹o²¿4.ƒ‡ˆ?Øé9ð?(L5}y@¦‹%Ë~‘%@¨¿cnï?!_¨æG»?9òӢס?=FÞ"”§W?ûfºyâ@Ÿs ©§Íû@@@¦Ìw@¦Ìw@¦Ìw@¦ÌðoiDg@¦Ìw@¦Ìðÿ—$s@¦Ìw@¦Ìð|„µÝ@¦Ìw@¦Ìí\ú¬Ù@¦Ìw@¦ÌíúCþ]@©Ž¡ÊÀƒ@©Ž¡ÊÀƒ@©Ž¡ÊÀƒ@©Ž¢‚@·€@©Ž¡ÊÀƒ@©Ž¡ÿ.Hè@©Ž¡ÊÀƒ@©Ž¢\(ö@©Ž¡ÊÀƒ@©Ž¢u%F @©Ž¡ÊÀƒ@©Ž¡°‰ '@0ð4mÅÖ8@0ð:û~‘@.MV“@.L篷è@.h1&éxÕ@.h1&éxÕ@.kjçÕfÐ@.kàÞÒˆÏ@.kjçÕfÐ@.k)^ž @.kjçÕfÐ@.kjçÕfÐ?É^žQ5P‚?äm°û0Ž?‘G¿yÛ?ï?‹ë¤½?‡á?‘Dj?ÛF»0?ÐbMçê_x?’ ,øÕC©?«'Q™µ?>\‰å‘?â2„&ÿh?{L Õ¢D?€bMÕky?Œµ3‰;šÏ?‚‹¡8*ú?‚ìxqC?†¯Mž684?†¼Š˜L¥÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿S‰üÖü¿7¥’L?B\‰Ã vS?"—´\{Yë@¦ÌîѪ@©Ž¢EÆŽ*?Q¦¥¨äÈØ?1“ó»Ž@?ž(+q:ºã?ZØ4ä§[†@ŸsY²¥@A@§ÿ -=p£×@§ÿ -~ùÛ#@§ÿ -=p£×@§ÿ -ŒL™@§ÿ -=p£×@§ÿÛ‹¬r@§ÿ -=p£×@§ÿ º^5?@§ÿ -=p£×@§ÿ1ø @§ÿ -=p£×@§ÿr° Å@¥q“t¼j@¥qÔýó¶@¥q“t¼j@¥qâëC@¥q“t¼j@¥qbMÔ@¥q“t¼j@¥q_ö“@¥q“t¼j@¥q‡ü¹$@¥q“t¼j@¥qµsê³@3Y*0U2b@3Y‡+ @1…?|í‘h@1„%®æ1ø@1t¼j~ú@1ohÛŒ@0”mÅÖ8†@0‘Þi­BÄ@0”mÅÖ8†@0‘Ä2ÊW§@0”mÅÖ8†@0’GE8ï5?|öOÿÝ?Kb½™×?‘½ÉaR º?Ça_b‹?’PY8~Qj?‘ø)±'3?|öOÿÝ?’V"y$R?Ê -ä\ä?‘< /0ç˜?‘ýuãá$6?‘pN.>7E?‚uÞ@>N ?Å9–o?ƒ¡É^&Ö?ƒË´ÔC¶¼?‡æê7²zE?’ymícw\@@@@@,@*?ð?ð?ð?ð?ð?ð¿C »ù ¿G¡T´?2ºïW²åy?1º>Œ`@§ÿ @3ÞJ@¥q]ÐÆã?R‡oÊ-'¼?QAfwºàŽ?±&¨­¾¬Â?¬à£ <@Ÿf‚²¦³;@B@¥ñÚŸ¾vÉ@¥ñÙ™™™š@¥ñÚŸ¾vÉ@¥ñÙ³Ð|…@¥ñÚŸ¾vÉ@¥ñÛ‹¬q@¥ñÚŸ¾vÉ@¥ñÛšt@¥ñÚŸ¾vÉ@¥ñÚ¬Ùè=@¥ñÚŸ¾vÉ@¥ñØÇâ‚A@¢ÉPå`A‰@¢ÉQhr°!@¢ÉPå`A‰@¢ÉP-à @¢ÉPå`A‰@¢ÉPbMÒò@¢ÉPå`A‰@¢ÉP:û~‘@¢ÉPå`A‰@¢ÉP¾ í)@¢ÉPå`A‰@¢ÉP°ò{³@5¥öý!ÿ.@5¥2a|Ú@1ë¥ãS÷Ï@1ëxFÜ]@0È“t¼j@0È“t¼j@0?ò䎊r@0@°ò{²ÿ@0?ò䎊r@0@HðŽ@0?ò䎊r@0?ß;dZ?|¬Çëý ?Úþþ³?‘"žæÆó¡?Œ:Z2‚b?‘¾%î -ã?ø·-/ge?}Ñ¿ž,?’ ŠŠ¤Hì?¹º–Èj?>\‰å‘?‘ ^Íü?ÿ?±—'¶Ü+?‚oÁÆÜ§ö?ŒÆò/¢äÍ?‚yî8Á$?ƒGϵ¨í'?†Ü‘ °Ô?‡ã ËÄž@@@@@(@,?ð?ð?ð?ð?ð?ð?r}M@¿([p?0a|ăó?6Y ²ª¼@¥ñÙêRO¼@¢ÉPò”Z?PU&„µ"°?8—¤ëÇò?¬¥ Cv??~`(üÄç˜@ŸfüÍè8@C@¯iÒn—P@¯iÒn—Q@¯iÒn—PÁ.„€@¯iÒn—PÁ.„€@¯iÒn—PÁ.„€@¯iÒn—PÁ.„€@¯iÒn—PÁ.„€@¯Ê=p£×@¯Ê=p£×@¯Ê=p£×Á.„€@¯Ê=p£×Á.„€@¯Ê=p£×Á.„€@¯Ê=p£×Á.„€@¯Ê=p£×Á.„€@4Y*0U2b@4XÇâ‚@¸@0ÜIº^5@Á.„M‰ûçm@06§ï²-Á.„QnÙ‡@/u¨Xy=ÚÁ.„NÜC,¥@/u¨Xy=ÚÁ.„NÜC,¥@/u¨Xy=ÚÁ.„NÜC,¥?}Ñ¿ž,@8#˜@8¾:@8 >+@8Iç@8Ù?|¬Çëý @8Î÷@8i§@8Å@8S@8û—?‚¯­Ù¤Áµ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøD@¦°MOß;d@¦°W -=p¤@¦°MOß;dÁ.„€@¦°MOß;dÁ.„€@¦°MOß;dÁ.„€@¦°MOß;dÁ.„€@¦°MOß;dÁ.„€@©ªo²-@©ª}²-W@©ªo²-Á.„€@©ªo²-Á.„€@©ªo²-Á.„€@©ªo²-Á.„€@©ªo²-Á.„€@9 xFÜ@8ñhr° Å@3ë¥ãS÷ÏÁ.„M‰ûçm@2ù7KƧðÁ.„QnÙ‡@2uµsê³hÁ.„NÜC,¥@2uµsê³hÁ.„NÜC,¥@2uµsê³hÁ.„NÜC,¥?Ÿ‹‘+-/Ü@8#˜@8¾:@8 >+@8Iç@8Ù?óA[ØïF@8Î÷@8i§@8Å@8S@8û—?Ä`âe@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøE@¥¶Ü¬1'@¥¶ë Iº@¥¶Ü¬1'Á.„€@¥¶Ü¬1'Á.„€@¥¶Ü¬1'Á.„€@¥¶Ü¬1'Á.„€@¥¶Ü¬1'Á.„€@§¥Àƒn˜@§¥¾¸Që…@§¥Àƒn˜Á.„€@§¥Àƒn˜Á.„€@§¥Àƒn˜Á.„€@§¥Àƒn˜Á.„€@§¥Àƒn˜Á.„€@7Ì]cˆe”@7ËP°ò{³@30Ä›¥ãTÁ.„M‰ûçm@2U`A‰7LÁ.„QnÙ‡@2Vý!ÿ.IÁ.„NÜC,¥@2Vý!ÿ.IÁ.„NÜC,¥@2Vý!ÿ.IÁ.„NÜC,¥?|¬Çëý @8#˜@8¾:@8 >+@8Iç@8Ù?°¼x‡Ç…Ä@8Î÷@8i§@8Å@8S@8û—?†' -³}÷B@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøF@¦ñ÷ÎÙ‡@¦ñÿ;dZ@¦ñ÷ÎÙ‡@¦ñúxl"h@¦ñ÷ÎÙ‡@¦ñö¡aä÷@¦ñ÷ÎÙ‡@¦ñöÈ´9X@¦ñ÷ÎÙ‡@¦ñ÷Xâe@¦ñ÷ÎÙ‡@¦ñùrGE8@¡cW -=p¤@¡cdZ¬@¡cW -=p¤@¡cSŽóMj@¡cW -=p¤@¡c["Ðå`@¡cW -=p¤@¡cR×sü@¡cW -=p¤@¡cVý!ÿ.@¡cW -=p¤@¡cUŽ!–S@804mÅÖ8@8.V“u@3Ìí‘hr°@3͸ºÇË@3lj~ùÛ#@3l]cˆe•@2Œ¿±[W?@2'RT`ª@2Œ¿±[W?@2U›=È@2Œ¿±[W?@2Aò×t?°¼x‡Ç…Ä?‘" Á°–•?‘\H{gX ? Ìç,Z?”z|œèç™?–"ûe”M?}Ñ¿ž,?’ÚlE0º?Å)Ì_“?’:u.ý ?–Â4¨ß?”æâ„o?µeão‘ñ?·ïö)h?ƒ~¨õ/¥O?…”rsw?ŠE§e,¤?”8©èÈí@@@@@,@,?ð?ð?ð?ð?ð?ð?./”0¸¿n) èÉ?P·6È;Õõ?R®îH|²Š@¦ñ÷±5l/@¡cW¸ªZJ?aÏk½Ù?yß^*˜‰ø?¶ö½×¸ ü?ê!M^#­b@ŸoŸÌ˜:(@G@ªü.—Oß@ªü5Â\(@ªü.—Oß@ªü3Mj@ªü.—Oß@ªüAohÜ@ªü.—Oß@ªü;‹¬q@ªü.—Oß@ªü.;Í5¨@ªü.—Oß@ªü)*0U2@ª>ûçl‹D@ª?ƒn™@ª>ûçl‹D@ª>úxl"h@ª>ûçl‹D@ª? w1Æ@ª>ûçl‹D@ª>û/ìVÕ@ª>ûçl‹D@ª? [À@ª>ûçl‹D@ª>ü¹#¢œ@7Âò䎊@7¿Ë’:)Ç@5?|í‘h@5>«6z@4iÛ"Ðå`@4k’:)Çz@4O „M@4?|í‘i@4O „M@4éá°‰ @4O „M@4-à ?›’qvš°•?Žd±Ìº?”‰oüq u?ž\ôÖeú?œhÈï?—oN„R?3ßa=„?“Á4œÝi?˜û9]t`? ZÁ».œ?žßÂÚÅ8‡?šÛ’ä|?´÷#i›ÄN?’K•ªQ5?’ÌRû ã?”AXÄ|åy?šz"+;‚á?›°Ô¤A]@@@@@,@(?ð?ð?ð?ð?ð?ð¿fþœH½Â?{våo‚¾‚?eäDF ,w?à;—Þ„ò?¸åÇè/5@Ÿk©¶’@H@®€¢MÒñª@®€¢MÒñª@®€¢MÒñª@®€¤ xF@®€¢MÒñª@®€ŸØ­«Ÿ@®€¢MÒñª@®€¡ohÜ@®€¢MÒñª@®€ uöý"@®€¢MÒñª@®€ Ñ·X@žÆƒn—@žÆƒn—@žÆƒn—@žÆò×s@žÆƒn—@žÆ‰7Kƨ@žÆƒn—@žÆ‚ Iº^@žÆƒn—@žÆƒ¯·é@žÆƒn—@žÆ‚&€I@35S&Á¾@352a|Ú@1k¥ãS÷Ï@1k…¸Që@1,j~ùÛ#@1+çl‹C–@0½cˆe”°@0¼‘ÑN;Î@0½cˆe”°@0¼Æ?@0½cˆe”°@0½!ÿ.Hé?|¬Çëý ?W[†?‘=?ùKh?ŒÇQ´—;}?a¢¶û\?™pf°Žœ@Ÿiˆqu´'@J@ª;ùÛ"Ðå@ª;ú¬1@ª;ùÛ"Ðå@ª;ûdZ¬@ª;ùÛ"Ðå@ª;ú^5?}@ª;ùÛ"Ðå@ª;úŸ¾vÊ@ª;ùÛ"Ðå@ª;ø†YJö@ª;ùÛ"Ðå@ª;øï4Ö¡@¯ w@¯ îÙ‡+@¯ w@¯ ï\(õÄ@¯ w@¯ ðå`A‰@¯ w@¯ ï²-@¯ w@¯ ïhÛ@¯ w@¯ î;Í5§@5¹Œ~($@5²þÅm^@/¤“t¼j@/£ñA [À@.ÄZ¬1@.Ä?åÉ@-zÇË)_@-z)Çy¦µ@-zÇË)_@-{"Ðå`B@-zÇË)_@-zÇË)_?|öOÿÝ?ß‹’bÏ?‘*"AaIÐ?‹¯eU5?‘2A¥Ø?¸û:?1·†Æjñ?’ aÒ¹zï?€s8rÅ?-õI¸`K?Ø¥²À<(?Uÿyu”#?‚íWçé„?Œáò¯ž¼ù?‚Ö˜>µDá?‚ôhBì^?†špk Y?†žóB» “@@@@@@?ð?ð?ð?ð?ð?ð¿-U–½À¿­†€?(U?¨”y×? òôéáãü@ª;ù¶¼ @¯ îÞ¯Ç,?Hbª3lþ?AJ-•x+?ŸÖ´¹[$?|Œ‹é@ŸgJª@¥ô2° Äœ@¥ô-Òñ©ü@¥ô2° Äœ@¥ôÀ qv@¥ô2° Äœ@¥ô¤%®æ1@¥ô2° Äœ@¥ôèr° Å@¥ô2° Äœ@¥óªqÞi®@¥ô2° Äœ@¥ô¬1@9Q|ÚQ@9BÞÑ·@6¦‡+ J@8QÊÀƒn@5Æ“t¼@6–ö”Fs‚@5a:’£S@7uŽ!–S@5a:’£S@5DÉ…ðoj@5a:’£S@5%+ÓÃa?Á¯Ì:¦å%?̰ùC?Ђ·x6?ÀáÜVÖI?¶ÏÇÖ¤¤?¸Ÿû•Öæ?¾„CÚ–•F?Ô¥(Ÿ‚Щ?ÆÆh2áEö?¸§p¦ÿæë?«¬5Kؘ£?Èç -ˆÍ5?ÄR¸P¸?➪“ûŸU?Éÿ*'þn?ÜýÙì 2,?µÝƒÏþ§?±¼BXFzS@@@@@&@*?ð?ð?ð?ð?ð?ð?T~| P¿¦m¼í·4?“¿~¡>?¬à–ú7@¨Ûj]©Ðø@¥ô - åžò?¯™˜òÔ?Ãõq§^×@»Ý§b«F@8æÛNE½ù@ŸmIY€|ü@L@¯› Iº^@¯šót¼j~@¯› Iº^@¯› ’:)Ç@¯› Iº^@¯› -ŒL˜@¯› Iº^@¯› Òñ©ü@¯› Iº^@¯›?åÉ@¯› Iº^@¯›þÅm\@Ÿ\—Oß;@Ÿ\›¥ãSù@Ÿ\—Oß;@Ÿ\¥ãS÷Ï@Ÿ\—Oß;@Ÿ\¤÷eýŠ@Ÿ\—Oß;@Ÿ\¬¿±[V@Ÿ\—Oß;@Ÿ\  qw@Ÿ\—Oß;@Ÿ\ÂZîc!@7ëµsê´@7ä!-w2@3‚° Ä›¦@34Ö¡aå@2²-V@2Šxl"h -@1¸DЩ*@1³S&Â@1¸DЩ*@1·+ Iº@1¸DЩ*@1¬Æ??гá‡}?•.å§ØjM? ±ubÊÅ5?‹¹GüÞõ?“êôÉøX?œˆš—I?}Ñ¿ž,?šr’nc?›«9ØYº,?9ÍÇ~FÀ?’¯dL¶t?–ẕ?ˆïhƒEõ¦?ž=fA:?“'ü#šgã?‰hS—p]Ð?€=P|?žTIœ@@@@@(@&?ð?ð?ð?ð?ð?ð?y$ÓÁÌ?d~×þ?ePEI?U7™°m‹‹@¯›ôR @Ÿ\§ï¢e?‚,1¼\µ?u­Ñœ=©·@Þ&;•©õ?ñ©’}…“Ã@ŸgØ\¼HŠ@M@£X4¼j~ú@£X4¼j~ú@£X4¼j~ú@£X5öý!ÿ@£X4¼j~ú@£X5?|í‘@£X4¼j~ú@£X4ðØDÐ@£X4¼j~ú@£X4mÅÖ:@£X4¼j~ú@£X4záG®@¨ã(õÂ@¨ãj~ùÛ@¨ã(õÂ@¨ãú¬Ùè@¨ã(õÂ@¨ã„µÜÆ@¨ã(õÂ@¨ãžì¿±@¨ã(õÂ@¨ã¹#¢œ@¨ã(õÂ@¨ã¬1'@2p4mÅÖ8@2p-à r@-ëÆ§ï²@-ëÓÃa@@-cn—P@-bÐå`A‰@,ëjçÕfÐ@,ë6z—@,ëjçÕfÐ@,ëjçÕfÐ@,ëjçÕfÐ@,ë6z—?É^žQ5P‚?°çR;?‘ÌË>¯f?‹ËØ|*(?ÿ £‰¸9?²õ/]?ÐbV‡,?’˜‰%F²?~ËQ§?;ß $Þû?ÚÌA B{?M\³Ù“@?€b¡´ñ@?Œµ3‰;šÏ?‚uÞ@>N ?‚ù8 ±^?†’Õaì+’?†’Õaì+’@@@@@*@ ?ð?ð?ð?ð?ð?ð¿, Ÿp>û¤ˆà?Ñ‹GK°x>ú”b9Ô‡@£X4¦ÖÑ@¨ãªáÜ‘?%ø³¹í? )º Îpn?E“•ò€t? ¸I £j,@Ÿs -Ý~¤¡@N@¥bl1&é@¥bl1&é@¥bl1&é@¥bnËûµ@¥bl1&é@¥bra|Ú@¥bl1&é@¥bw§†Â'@¥bl1&é@¥bx}¿H@¥bl1&é@¥bw -=p£@ý-V@ý-V@ý-V@ý1Å@ý-V@ý1Ä2ÊX@ý-V@ý6E¡ÊÂ@ý-V@ý7Xâ@ý-V@ý6”Fsƒ@0Bò䎊@0Be+ÓÃ@-ðå`A‰7@-íBÃÉîÌ@-h1&éxÕ@-b©“ àß@--úCþ\’@-#S&Â@--úCþ\’@-#¯·éú@--úCþ\’@-#ˆe”¯N?É^žQ5P‚?Úþþ³?” -Ÿ”îtI?“ׂa†Üü?–~9n4ºÀ?—oN„R?ÐbMçê_x?’&u÷E»@? Dñ£P?‘§›ßÉîj?’…4Ü.?’ Óº^?€bMÕky?Œ».êxóÚ?‚Ì ÝŽ‚8?„l¯¸‰ŒÎ?†ïRÉv‘Ñ?‰Â“yä–ê@@@@@,@*?ð?ð?ð?ð?ð?ð¾ü5Ÿu€?âWO?Cj®Ú=S?&PõNkxO@¥bw’}eõ@ý6™Ç ?R¥é[Ž?5 /|ÿíB?‘ÞWÔ ?`I¿7"Ö@Ÿrß“€·®@O@¡ ûdZ¬Á.„€@¡ ûdZ¬Á.„€@¡ ûdZ¬Á.„€@¡ ûdZ¬Á.„€@¡ ûdZ¬Á.„€@¡ ûdZ¬Á.„€@’ÝáG®{Á.„€@’ÝáG®{Á.„€@’ÝáG®{Á.„€@’ÝáG®{Á.„€@’ÝáG®{Á.„€@’ÝáG®{Á.„€@8Ù*0U2bÁ.„>¤µÜÆ@4Ù‡+Á.„M‰ûçm@3V”Á.„QnÙ‡@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøP@­4{çl‹D@­4{çl‹E@­4{çl‹D@­4xÔýó¶@­4{çl‹D@­4}ÈK^@­4{çl‹D@­4ÿÿÿÿ@­4{çl‹D@­4zîcŠ@­4{çl‹D@­4|64@ªÂq©ûçm@ªÂoß;dZ@ªÂq©ûçm@ªÂoÒòä@ªÂq©ûçm@ªÂnzáH@ªÂq©ûçm@ªÂpË)^ž@ªÂq©ûçm@ªÂt•*™@ªÂq©ûçm@ªÂt¯O „@5Ô xFÜ@5ÓÉîËû@3W+ Iº@3V¡aä÷f@2K"Ðå`B@2H*™0¾@1Åœàu÷@1Áÿ.Hè§@1Åœàu÷@1ÄðØDÐ@1Åœàu÷@1ÄmÅÖ8†?€‚ñêã ?‘€5{ºÎ#?‘ê ÷“'?Œ'õ‚$5ñ?’(æ„+Zk?‘‚ÊŸû©?1·†Æjñ?•Ð\ÄÙ?“„;Ë~½ú?ð{¥âdû?’ÞH†<²?›ªU3Îp?ƒ{¬ÉV?3ßa=„?„ü›ðÓ?ƒý¥ñÍú?‡…¤$Ó?ˆk! ¨l@@@@@,@"?ð?ð?ð?ð?ð?ð?'Ç}}`?OŸ“ƒ¨?C°[V‘ZÌ?.Ìüª‰š]@­4|»Ê>•@ªÂqë­¼ ?c”P±8Dj?OÏj.M?Ò6½Ÿh?¦ò,.Wê@ŸgsÐ8a@Q@«lgl‹C–@«lk ¿%Û@«lgl‹C–@«lm]j^ù@«lgl‹C–@«lxìÿb)@«lgl‹C–@«lx+ÞÃÆ@«lgl‹C–@«l…ž[Š@«lgl‹C–@«lzô«Ž×@™Ö“u@™ÂܶÆ@™Ö“u@™ê—µ¤<@™Ö“u@™¿ü›–ó@™Ö“u@™Û­„hò@™Ö“u@™ÌÌ,?@™Ö“u@™³`»úÛ@7ÿ–»˜È@8DóÁâ@3óS÷ÎÙ@3ù6a—Š0@3lj~ùÛ#@3kí/+Н@2}cˆe”°@2q”Gg"µ@2}cˆe”°@2q‹Þ -ÓŒ@2}cˆe”°@2pÝC»?¡D6?E?š×§að?—Rªð‰=»?‘°ûlð~?éñLÉeT?–%t;Ò?€Z=ú‚¡?šõÈí8?“8šYˆðà?–ö«ÂbÚ‘?¤Ž`äëî?˜KaÐOëb?¢&—ìô?“òipžR? Ý®ÙÐ5?6 aµ"?=E8šº?”ˆº¶,:‹@@*@(@&@7@3?ð?ð?ð?ð?ð?ð?kßñ®¿¸¥(?aç‘­"¡’?`0Ö²kÿs@«lx[8o@™ÄíìŒ?{[Dìs?„Œðú— -w?ãÂ@`žŸ?ù„˜Ç…^<@Ÿl*r>@R@£/Ÿ¾Á.„€@£/Ÿ¾@£ŸoÒó@£/Ÿ¾@£ži­BÅ@£/Ÿ¾@£ë…¸R@£/Ÿ¾@£ª0U2b@£/Ÿ¾@£¦s×Ü@ž­Ü(õÂÁ.„€@ž­Ü(õÂ@ž­Ã,¥zy@ž­Ü(õÂ@ž®$÷eý‹@ž­Ü(õÂ@žº?|í‘h@ž­Ü(õÂ@ž­´mÅÖ9@ž­Ü(õÂ@ž­“t¼j€@0òÃÉîËûÁ.„>¤µÜÆ@) -~ùÛ"Ð@)× -=p£@(wOß;d@(›²þÅm^@&¸7´¢3œ@,;À6âì@&¸7´¢3œ@& ÞÒˆÎq@&¸7´¢3œ@&¤%®æ1ù@8 -Näy?ÿ﯒?’,³Zêª@ŸÄ67ÅU?˜ -0˜ggk?˜ñ<óâg…@82rê?’j•×›c?›0–4,Þ@{Æ5_?-C i|â?¬ðþÒg(@8L?àQdËЈ?‡»¢Øˆ‹@ÄéKðo?†ïRÉv‘Ñ?ž#¢¦‘6@@@@$@,?ð?ð?ð?ð?ðøøøøøøøøøøøøS@«·ºáG®@«·»¥ãSø@«·ºáG®@«·¶Ov`@«·ºáG®@«·¾Ñ·@«·ºáG®@«··Á½¥@«·ºáG®@«·µÏªÍŸ@«·ºáG®@«·¸†YJõ@©@@©H1&éy@©@@©Hð@©@@©?U›= @©@@©@uöý"@©@@©4ôgŒ9?‘aYZ†«q?‘އ Àí?‘pN.>7E?©›¿Ínoð?[™ÕÈ™8?ˆïhƒEõ§?†Á{0Ÿà®?ˆ¾þúWZ‹?Š—à `ž@@@@@&@*?ð?ð?ð?ð?ð?ð¿€Dû¿aòÜ2?Jøµì’ÊA?E°*ÀÄ!ø@«··^lÈ@©?Ô"k4?Z_¥2ý¾w?hòsƈ?ª{…ÊR»?ͨˆß”n@Ÿq£ºVËè@T@¨° Ä›¦@¨¯ß;dZ@¨° Ä›¦@¨°Hð@¨° Ä›¦@¨°|„µÝ@¨° Ä›¦@¨°°ò{²@¨° Ä›¦@¨°°ò{²@¨° Ä›¦@¨±&éxÖ@«dæéxÔþ@«dæéxÔþ@«dæéxÔþ@«dèXy=Ø@«dæéxÔþ@«dìL˜_@«dæéxÔþ@«dçE8ï6@«dæéxÔþ@«dè´9X@«dæéxÔþ@«dç_oÒ @4[¹Œ~($@4[ô‡ü¹$@1c÷ÎÙ‡@1d!-w1@0Ͳ-V@0Ìú¬Ùè>@0œÚQÎ@0(Œç°@0œÚQÎ@0cˆe”°@0œÚQÎ@05¨Xy>?|öOÿÝ?¦Ì '?‘ùé éµ??Œ¸ðËb?‘VšÐ^Ø?ý‰w'¬?|¬Çëý ?’p RN%Î?‘´"«Õa?‘§›ßÉîj?‘=d¦^™?›ªU3Îp?‚‘´…=Ca?ŒöOÿÝ?ƒúʳ_Ä?ƒv_.^?‡?®\Âä?ˆk! ¨l@@@@@,@,?ð?ð?ð?ð?ð?ð?0jÂh`?+š{PÀ?v¼x$N»?"—|ú>‚@¨°l}dä@«dçb¶6? cñPG‚¿?C µ_=Õ?Lwz¨ØñL?’5ËPg$@ŸfÏbÙ -@U@£ÛÉ7Kƨ@£ÛÏß;dZ@£ÛÉ7Kƨ@£ÛÈe”¯O@£ÛÉ7Kƨ@£ÛÅÉã@£ÛÉ7Kƨ@£ÛÍÒñ©ü@£ÛÉ7Kƨ@£ÛÇï²-@£ÛÉ7Kƨ@£Û¼ÓZ…‰@¢`(õÂ@¢`XbN@¢`(õÂ@¢`e+ÓÄ@¢`(õÂ@¢`×sü@¢`(õÂ@¢`<65@¢`(õÂ@¢`ÌcñB@¢`(õÂ@¢`dZ¬@7įO „M@7Ãn—P@3|í‘hr@3Œ(õÂ\@3ï²-@3¶®}Vm@2._oÒ @2)ùrGF@2._oÒ @2'eýŠÚº@2._oÒ @2¿HË’?€‚ñêã ?•ìspîî?”Uy*ð>ýÜÇœ‰LØ>ûˆü²Á$®@¢Îh†›…Ú@•‰¼Î(Š?½~'b¢? Fýë¿Þ?H¹½u[9?DFLx‹0ï@Ÿgpôa@X@«˜—Oß;@«˜‹Æ§ïž@«˜—Oß;@«˜“œ¾à@«˜—Oß;@«˜’a|Û@«˜—Oß;@«˜ªÍž„@«˜—Oß;@«˜‘ÑN;Í@«˜—Oß;@«˜’䎊r@¤y4¼j~ú@¤y3¶E¡Ë@¤y4¼j~ú@¤y:Ÿ¾vÊ@¤y4¼j~ú@¤y9b¶¯@¤y4¼j~ú@¤y:)Çy§@¤y4¼j~ú@¤y;²þÅn@¤y4¼j~ú@¤y=¥œß@8ãg ù l@9ªdÂø8@4©‡+ @4¨Ôýó¶F@3V”@3cˆe”¯@2á:’£S@2ÝjOv@2á:’£S@2ÚÀƒn˜@2á:’£S@2Û…¸Qì?±ÿ}ö?—TÛ’}÷”?›£=Ñã5?šniÙÊ¢Ð?–(Ži´™^?’Ýå"çX?™™™™™™š?“«ö„@×®?“½ ™¸‹ì?—,àÐÑž?—å$ZÌÆ?”÷\Å©U?½&·-æ¨?–xéCìZÒ?ˆAᆽÃí?†ü¢q+ÄU?‘HAõY‚§?’Oûh´6c@@@@@,@&?ð?ð?ð?ð?ð?ð?W,d“œ?`"Ôa?IæOý*(?(ÍB¡Óœñ@«˜áé­w@¤y:î%ø?/%-³Á`?F32ƒH(Ì?E{YH™$?|?qÒŒ@Ÿpé&Ìq@Y@£ù¤Ý/ @£ù¥¸Qì@£ù¤Ý/ @£ù¢&€I@£ù¤Ý/ @£ùŸ;dZ@£ù¤Ý/ @£ù¥ýŠÚº@£ù¤Ý/ @£ù¥m\ú­@£ù¤Ý/ @£ù¢ÃÉîÍ@®Ì A‰7L@®Ì¡G®{@®Ì A‰7L@®Ì ÞÒˆÎ@®Ì A‰7L@®Ì¥`A‰7@®Ì A‰7L@®Ì£ñA [@®Ì A‰7L@®Ì£,¥zx@®Ì A‰7L@®Ì§ü¹#£@5Ù*0U2b@5ÙÎ_oÒ@3.5?|í‘@3-}¿HË@2H“t¼j@2GOß;d@2(è§æ›@2(1&éxÕ@2(è§æ›@2(Ë’:*@2(è§æ›@2&€IQƒ?1·†Æjñ?‘‘Ç`[?‘:€¾¶ˆ?Œ‚èõЊ?“Ýâqß?”ÙA!Xá¨?…ÅBðrç?“?xr¢I?³2ºŽ'?èÊ\då?•Ÿ6mþ)¢?“ 3—·²W?‚oÁÆÜ§ö?Ñ¿ž,?…~ÆÎÇ$‡?…bv{3dZ?‰®ââP\?ˆT“Ÿÿ@@@@@"@$?ð?ð?ð?ð?ð?ð¿"aã ?QÉ^̤?3};t$ß?7b|(Íkr@£ù¤ùHü@®Ì£œœà?SfQ -³?W:KÖãs°?®ÒŸHý|?±h9lÚþ@Ÿg¥/e+@Z@¨˜(õÂ\@¨˜)º^5?@¨˜(õÂ\@¨˜7süQ@¨˜(õÂ\@¨˜2ˆÎp;@¨˜(õÂ\@¨˜?|í‘h@¨˜(õÂ\@¨˜>i­BÄ@¨˜(õÂ\@¨˜fö”Ft@¦7¬1'@¦7çl‹E@¦7¬1'@¦7ŠÚ¹õ@¦7¬1'@¦7ÓZ…ˆ@¦7¬1'@¦7=ÈL@¦7¬1'@¦7&Á¾@¦7¬1'@¦7}¿H@4òÃÉîËû@4ò-V@0û Iº^@0ôðØDÐ@0'KƧïž@0!ë…¸R@0:Ô,<ží@02@·€4n@0:Ô,<ží@0&¸ºÇ@0:Ô,<ží@0'ÕfÏAò?|öOÿÝ?’g½þË£?‘Ú¾¯ïé?Ž‚¨Ø†{~?žî üÑ)?ºæ'Ýt?|öOÿÝ?’p RN%Î?ÏtP°*?‘§›ßÉîj?—÷Ë5D«ç? új^œqò?ƒ~¨õ/¥M?ŒÐ¤Âÿê?…/‡ÙX·³?…bv{3dZ?a…眷D? tÆùlŠ@@@@@ @,?ð?ð?ð?ð?ð?ð?~#|îK¿S{õD?VáŽã„Vn?FrŸ\Þ@¨˜4¸7ÜÄ@¦7BÐz?p·§W¨ZÁ?aüþ?Sî?ã £wšºp?Ê•ZŒ{Ô@Ÿax@15d@[@¥j~ùÛ#@¥hõÂ\@¥j~ùÛ#Á.„€@¥j~ùÛ#Á.„€@¥j~ùÛ#Á.„€@¥j~ùÛ#Á.„€@¥j~ùÛ#Á.„€@zLÌÌÌÍ@zN\2@zLÌÌÌÍÁ.„€@zLÌÌÌÍÁ.„€@zLÌÌÌÍÁ.„€@zLÌÌÌÍÁ.„€@zLÌÌÌÍÁ.„€@7ò䎊@7XÛIÇ@3óS÷ÎÙÁ.„M‰ûçm@3ÐA‰7KÇÁ.„QnÙ‡@3&YJôðØÁ.„NÜC,¥@3&YJôðØÁ.„NÜC,¥@3&YJôðØÁ.„NÜC,¥?…Hùg @8#˜@8¾:@8 >+@8Iç@8Ù?ƒÔo"ë–@8Î÷@8i§@8Å@8S@8û—?¡›Y,ën@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø\@¡)gï²-Á.„€@¡)gï²-Á.„€@¡)gï²-Á.„€@¡)gï²-Á.„€@¡)gï²-Á.„€@¡)gï²-Á.„€@¦hœ(õÂÁ.„€@¦hœ(õÂÁ.„€@¦hœ(õÂÁ.„€@¦hœ(õÂÁ.„€@¦hœ(õÂÁ.„€@¦hœ(õÂÁ.„€@8úqÞi­CÁ.„>¤µÜÆ@5Ê^5?|íÁ.„M‰ûçm@5v§ï²-Á.„QnÙ‡@4Ì¿±[W?Á.„NÜC,¥@4Ì¿±[W?Á.„NÜC,¥@4Ì¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø]@®Œ½p£× -@®ŒÇï²-@®Œ½p£× -@®ŒÂÐå`C@®Œ½p£× -@®ŒÈÛ‹¬r@®Œ½p£× -@®Œº6âë@®Œ½p£× -@®ŒŸb¶®}@®Œ½p£× -@®Œ¢ÃÉîÍ@¬¸F$Ý/@¬¸Iº^5?@¬¸F$Ý/@¬¸P Ä›¦@¬¸F$Ý/@¬¸xâe,@¬¸F$Ý/@¬¸FÂ&€œ@¬¸F$Ý/@¬¸pbMÒò@¬¸F$Ý/@¬¸lq ²–@8è†YJôñ@8à6âë@45ãS÷ÎÙ@4!£n.±Ä@3•`A‰7L@3mjOw@3O „M@2æs×Ûõ@3O „M@2í\ú¬Ùè@3O „M@2ï „M;?¤I~Óy‘?™•žõ‰Û?ª¦­|JOÐ?°ž‹<›Þ?©×žA:ã#?­½ò™Ýq?›’qvš°•?›ƒ¸Ý³?º÷hwpØc?²ÅD­ŒB,?¶£œ¤ƒ?ºÎŒtìn?¦ -Ð0ú:C?›Õ¼ÉUÓ›?’-BR1Å?’¤õ³Æ«?“!S{uu?¬·¹½'ñ›@@@@@*@,?ð?ð?ð?ð?ð?ð¿eº€?yõã:?^mC¿z?k*dSÁ -¾@®Œµõ9b@¬¸Vš¼°†?~MïlúÙ?‹€c£Û7Ö?Å„ Ìu`?×_ËI«ò@Ÿfîçˆ@^@žòIº^5?@žòJ=p£×@žòIº^5?@žòLIº^5@žòIº^5?@žòL"4jŒ@žòIº^5?@žòKÑ€ÚÁ@žòIº^5?@žòG1ÎlP@žòIº^5?@žòGB Ç@¬Rñ©ûç@¬Rñ©ûç@¬Rñ©ûç@¬Sv õØ@¬Rñ©ûç@¬SQlu@¬Rñ©ûç@¬SUÍ‘î@¬Rñ©ûç@¬S©²8e@¬Rñ©ûç@¬T.f’@1D¯O „M@1D¼j~ùÛ@,³t¼j~ù@,³x4Ÿ@+/ß;dZ@+/Ùý6÷å@+p‰ 'RU@+pIQ‚ª@+p‰ 'RU@+p|„µÜÇ@+p‰ 'RU@+pt#mR«?É^¨¯Âj?¾Œn‘†?‘-jõ¬?‹«ég€eÜ?쑪…Tƒ?µûê?ÐbMÝn½?’ΰ¡ày?[UòkV?2,gÉ Ô?ÐsRdéÑ?Iâo®É?€bMÔŠ»?Œ­Ea©Ó‰?‚nÚ¨´8Ñ?‚ç\fò ?†‰ýçïe?†Š®ÚH„ð@@@"@$@4@4?ð?ð?ð?ð?ð?ð¿Q"G/œ?7~fº‚?6ut¥Ì÷f? YUðoÜÚ@žòI¼²d@¬S¯kÖ›?Eš!K?ÔÎ>¡‹F?†ól¶ù©£?/¢‡ß²^|@Ÿs ƒê@_@¦¯mV@¦¯a$Ý/@¦¯mVÁ.„€@¦¯mVÁ.„€@¦¯mVÁ.„€@¦¯mVÁ.„€@¦¯mVÁ.„€@¤Ô;çl‹D@¤ÔA$Ý/@¤Ô;çl‹DÁ.„€@¤Ô;çl‹DÁ.„€@¤Ô;çl‹DÁ.„€@¤Ô;çl‹DÁ.„€@¤Ô;çl‹DÁ.„€@8?–»˜È@88ÁTÉ…ð@5Ù‡+Á.„M‰ûçm@5"-VÁ.„QnÙ‡@4QÞi­BÄÁ.„NÜC,¥@4QÞi­BÄÁ.„NÜC,¥@4QÞi­BÄÁ.„NÜC,¥?гá‡}@8#˜@8¾:@8 >+@8Iç@8Ù?¢Æ÷Xê†@8Î÷@8i§@8Å@8S@8û—?ƒúʳ_Ã@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø`@©˜ Iº^Á.„€@©˜ Iº^@©—úxl"h@©˜ Iº^@©—Çü¹#£@©˜ Iº^@©—ó@N¤¨@©˜ Iº^Á.„€@©˜ Iº^Á.„€@ŸYOß;dÁ.„€@ŸYOß;d@ŸY’:)Çz@ŸYOß;d@ŸZ Ä›¥ä@ŸYOß;d@ŸYÖR½<7@ŸYOß;dÁ.„€@ŸYOß;dÁ.„€@7„¯O „MÁ.„>¤µÜÆ@5›¥ãSø@4ÿHË’:@4±‰7Kƨ@4Æý!ÿ.I@3¦YJôðØ@3ž;Í5¨Y@3¦YJôðØÁ.„NÜC,¥@3¦YJôðØÁ.„NÜC,¥@8J¨?±;)ry²/?Æ”ø‹Ø¯?—Ýúâþ @8Iç@8Ù@8J¨?¢åµ0Å?Ä‹“IV÷q?®¡E¬Óɨ@8S@8û—@8p÷?¯r -e&#œ?Ã¾áØ³qª?ožQw@8 Ø@8 Ø@@@?ð?ð?ðøøøøøøøøøøøøa@ª"í‘hr°@ª"ï²-@ª"í‘hr°@ª"íBÃÉð@ª"í‘hr°@ª"éûçlŠ@ª"í‘hr°@ª"àƒn˜@ª"í‘hr°@ª"Ýp£× -@ª"í‘hr°@ª"áTÉ…ï@Ÿ­ 7Kƨ@Ÿ­n—P@Ÿ­ 7Kƨ@Ÿ­KƧïž@Ÿ­ 7Kƨ@Ÿ­¯4Ö¡b@Ÿ­ 7Kƨ@Ÿ­Ž¤¨ÁT@Ÿ­ 7Kƨ@Ÿ­w€4mÆ@Ÿ­ 7Kƨ@Ÿ­Ò×sû@7*0U2b@7"h Ô•@4}‘hr° @4v$Ý/ @4€å`A‰7@4iDg8~@3õµsê³h@3ØÛ‹¬q @3õµsê³h@3Ê Þ@3õµsê³h@3ÈõÂ\)?ð°–Ž]? dãŸ^?­;ðÕwß{?£ìߦË>?¡úñÙà?¡X“P#®?ð°–Ž]?&”ðÚ˜?´#f¨’L -?´f *N˜?»ðŒQÔE?ÄùËä#ÚÉ?ð*wjs—?“êXÔ #{?§K¥xMÐR?£øƒqÌ?¥VËMª¼‰?±¨ÙN;…?ð@@@@&@,?ð?ð?ð?ð?ð?ð?5maê?§0{£?U†«$+å'?…N1¥J»@ª"ßž: @Ÿ­“*RX´?e|œkÍP?’gÂÛ#?› “?Š8m?Æ)-[¤µÜÆ@3{ Iº^Á.„M‰ûçm@2Àå`A‰7Á.„QnÙ‡@2mÅÖ8†Á.„NÜC,¥@2mÅÖ8†Á.„NÜC,¥@2mÅÖ8†Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøc@¦¬€ƒn˜@¦¬yÛ"Ðå@¦¬€ƒn˜@¦¬m‘hr°@¦¬€ƒn˜@¦¬q[W>ª@¦¬€ƒn˜@¦¬gÈK]Ì@¦¬€ƒn˜@¦¬ezxl#@¦¬€ƒn˜@¦¬fµ (@§ìMÒñ©ü@§ìGl‹C–@§ìMÒñ©ü@§ì["Ðå_@§ìMÒñ©ü@§ìP°ò{³@§ìMÒñ©ü@§ìU¨Xy>@§ìMÒñ©ü@§ìYŒ~($@§ìMÒñ©ü@§ìWsüP@7`ØDЩ@7aœàuöý@1½‘hr° @1·RT`ªd@0¾V“u@0·´¢3œ@0 ¿±[W?@0 ^žš@0 ¿±[W?@0?åÉ@0 ¿±[W?@0'RT`ª?€‚ñêã ?“”üU§<­?˜g± ÓË?Ž,OêK˜u?Ÿˆ`“Q?¢zvíÈ­c?„F/·ÿP5?–wzCœËï?œ”ÒÚ×¾æ?0ÜN :s?œ—ø#\á?›¶x•7fÙ?ŒÊ­#г^? *i B??˜o\¾Z|?…âC£½¾Ý?ˆT“Ÿÿ?¢ŠEÈ>g@@@@@,@*?ð?ð?ð?ð?ð?ð¿vlYQ°?q Ôoî?QØß›i ?JÊ»½ÄÎ(@¦¬nôN†–@§ìO뫸?mÙ[’‰_ã?h%²8ºþ.?ÙÅxc^Ø?ÐÛ6VïñÒ@ŸdæWÍr@d@­}\¬1'@­}]p£× -@­}\¬1'@­}n;Í5§@­}\¬1'@­}¥o@­}\¬1'@­}—$tS@­}\¬1'@­}‰ 'Q@­}\¬1'@­}˜bMÓ@¢¼+ Iº@¢¼)º^5?@¢¼+ Iº@¢¼!$Ý/@¢¼+ Iº@¢¼)­BÃÊ@¢¼+ Iº@¢»æÁ½¥@¢¼+ Iº@¢¼hÛŒ@¢¼+ Iº@¢¼rGE9@5·â‚@·€@5¸ Ô•*@6¡hr° Ä@6&éxÔþ@6V”@5çXâe@5(è§æ›@4ïªÍžƒä@5(è§æ›@4õ`A‰7L@5(è§æ›@4ù…ðoiE?|öOÿÝ? í+ÁÁú?·¢…£qðÎ?ªî…T%?ªxàôTl?·ÞN*·?|öOÿÝ?™|ÎFe‰f?È7tgÛ?­&*N‡?´g“®zà?¹«5t3w9?ƒ>ZÌw~?¬œ”e¸?­æMBé–?¢U]^á,Ç?¡EL¬À?Ú¾ÉÛ²º@@@@@(@(?ð?ð?ð?ð?ð?ð?Žþ©€¿‡=Í€?g˯N™?|<ªjb@­}j&Ê@¢¼ÔÇ[?vØym¼Ù$?Š?­îà›­?åTjŠ\&@¹_³‘œ@Ÿ\¢¢éÈ@e@¥<Ÿ;dZ@¥<¨õÂ[@¥<Ÿ;dZ@¥=|¾ß¤@¥<Ÿ;dZ@¥=2° Äœ@¥<Ÿ;dZ@¥=ò¼£@¥<Ÿ;dZÁ.„€@¥<Ÿ;dZÁ.„€@«5?|î@«p£× -@«5?|î@«Ezxl"@«5?|î@«Hð@«5?|î@«G+ J@«5?|îÁ.„€@«5?|îÁ.„€@7#g ù l@7"þÅm\ú@4GÎÙ‡+@4÷ÎÙ‡@3{Ƨï²@3MV”@3+xFÜ^@2ÏU›=È@3+xFÜ^Á.„NÜC,¥@3+xFÜ^Á.„NÜC,¥?Œs¤DÅÐ?Í€¼îVê?à ñ•º?ÜKw¦¢£Ž@8Iç@8Ù?Ž=fA:?©ûÙ_Â.`?°ì3&‡Ì?Äcx!þaD@8S@8û—?•@K/Ù{?§Y+®„£:?§C9«ã?·ÌŸ²$@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøf@ª£ÍOß;d@ª£âMÒñ©@ª£ÍOß;d@ª£È1&éy@ª£ÍOß;d@ª£Æ¸ºÈ@ª£ÍOß;d@ª£ÈXy=Ú@ª£ÍOß;d@ª£Ð°ò{³@ª£ÍOß;d@ª£Ó×Ûõ@««Æ§ï²@««Ót¼j~@««Æ§ï²@««Â©“ á@««Æ§ï²@««¿|í‘h@««Æ§ï²@««ÅF -¦L@««Æ§ï²@««Á°‰ '@««Æ§ï²@««¸ -à@92ÃÉîËû@9<žì¿²@4ahr° Ä@4\„µÜÆ?@3±‰7Kƨ@3°A‰7KÆ@2î_oÒ @2ê…‡“ݘ@2î_oÒ @2ëW>«6z@2î_oÒ @2è†YJôñ?îŠõ ?‘@@Nßo9?”B 'nr?U›=ÈK?•bJÖµæÿ?•ï¢Ò®F?¿Ëg1Ñ?“£PuòN?—+Áèlç?‘M –=?“«YNÚ˜°?¢ðŒHößÃ?À -šeKsÁ?“8í¢ßA?‡š¿]b?…bv{3dZ?IÏáå$?–‘ñ ç{t@@@@@"@(?ð?ð?ð?ð?ð?ð¿\“^¿rC­6?nó·S l…?S~€È†Óñ@ª£ÏsðI@««Â·r½d?†}¿j½o?`ƒf¬ˆe@¼/sD36?­®XTWóï@Ÿp/%Æ5@g@§¯n—Oß@§¯wÎÙ‡@§¯n—Oß@§¯ov_Ø®@§¯n—Oß@§¯p£× -=@§¯n—Oß@§¯mà q@§¯n—Oß@§¯pØDÐ@§¯n—Oß@§¯p¾ í)@¨kÌIº^5@¨kÌ1&é@¨kÌIº^5@¨kÐ£× ->@¨kÌIº^5@¨kÐË)^Ÿ@¨kÌIº^5@¨kЖ»˜Ç@¨kÌIº^5@¨kË’:)Ç@¨kÌIº^5@¨kË Iº@7ò䎊@6ÿv_Ø­¬@2ahr° Ä@2cS&Á@1—ï²-@1šçÕfÏB@1a:’£S@1g§†Â&@1a:’£S@1cn.±Ä3@1a:’£S@1dFs×Ü?‚á²Olºü?µ‡:úÎ ?‘jh¨qã9? Ìç,Z?’o?P´À?‘À?ÙÂ#’?‡YÍ_?’u¦ieõ–?ö”iåó¨?”¡VòÄ\F?’ºñS©YÖ?“t‡o(ÚÊ?•‡C¿ ?]ÒivLÿ?…/‡ÙX·³?‡µ‚[Ö?ˆ©{2¡Î?‹DVóö@@@@@,@,?ð?ð?ð?ð?ð?ð¿]žZä¿Pè,€?Kxn‹º_?DAý)TÙ„@§¯r£ƒŸ@¨kÌrÎ@Î?k³µ W:·?d¾•~#µ^?ÞuP*üK?ÉÔõ™o»@Ÿhí>>w@h@¨s¯²-@¨s¯\(õÄ@¨s¯²-@¨s°¸»@¨s¯²-@¨s° Ä›¦@¨s¯²-@¨s°¸»@¨s¯²-@¨s¯hÛŒ@¨s¯²-@¨s®æ1ø¡@­ª®—Oß@­ª­Òñ©ü@­ª®—Oß@­ª¯Ÿ¾w@­ª®—Oß@­ª¯ƒ{J"@­ª®—Oß@­ª¯hÛŒ@­ª®—Oß@­ª®Ù‡+@­ª®—Oß@­ª®±Ä2Ê@4™*0U2b@4™“ àÞÒ@/Û"Ðå`@/è>BZî@,¿;dZ¬@,¿|í‘hs@+Ǔݗö,@+džÂ&€ž@+Ǔݗö,@+Ç ù kº@+Ǔݗö,@+Ǔݗö,?|öOÿÝ?ÉGãA­÷?‘!!Ø×‹7?‹¨þ„/š?ÿ £‰¸9?È2I/?|öOÿÝ?’ aÒ¹zï?ŠA)Nîá?7枪y7?Ö§­îQD?X78›š?ƒíÈm½!¾?Œ¯þuõí?‚‹¡8*ú?‚æÊ¬vã?†’Õaì+’?†½ª»—@@@@@,@(?ð?ð?ð?ð?ð?ð¿­ŽË€?.V¾þ?Ç™¶Õ?©û¬…@¨s¯Y3r&@­ª®a2+??ž¿á ¶¥?5{^Þ†1Ï?‹ù€º?wþTC0Ú@ŸgÌ[À@i@¡; Ä›¥ã@¡;¥`A‰6@¡; Ä›¥ã@¡;¢\(ö@¡; Ä›¥ã@¡;¡G®{@¡; Ä›¥ã@¡; Ä›¥ã@¡; Ä›¥ã@¡;¡@N¥@¡; Ä›¥ã@¡;¡ohÜ@«7ï²-@«7ÚáG®@«7ï²-@«7î;Í5¨@«7ï²-@«7ê¦L/ƒ@«7ï²-@«7ë…¸R@«7ï²-@«7ë]Ìcñ@«7ï²-@«7êÍžƒä@7Y*0U2b@7B½<64@1» Iº^@1ºÚ¹õY´@1Wï²-@1Vµ '»@1Œ~($ @1škP°ò@1Œ~($ @1*™0¾@1Œ~($ @1y¦µ ?ˆÿÀ)T¿Æ?ûJ`ÕYð?‘"žæÆó¡?ŒR‹w#z?’êÔÒ?’4¶ó?„F/·ÿP5?’5CàQ?ŽËÜ¿€?-õI¸`K?’W;„zY?’.8 -B?«ú—ÇZà?R©i»èi?ƒ´],m=?ƒv_.^?‡?®\Âä?‡?®\Âä@@@@@(@*?ð?ð?ð?ð?ð?ð¿OI=H¬?oKý ?9>ìÉ ×«?Q_X¹ëeÿ@¡;¢kòùÏ@«7å„ö6E?W¹|¬oJÉ?qÁyÔ .?³r+p€8?æfâÙ´k+@Ÿi˜!šyµ@j@«¢âMÒñª@«¢Û"Ðå`@«¢âMÒñª@«¢çÕfÏB@«¢âMÒñª@«¢ßb¶®}@«¢âMÒñª@«¢å`A‰6@«¢âMÒñª@«¢ßb¶®|@«¢âMÒñª@«¢å`A‰7@®Û"Ðå`@®çï²-@®Û"Ðå`@®ÜÆ?@®Û"Ðå`@®ÙÀëíû@®Û"Ðå`@®Ü]cˆf@®Û"Ðå`@®àƒn—@®Û"Ðå`@®Ü£n/@8‡>«6z@8’ˆÎp:ü@3ÜIº^5?@3Ý!ÿ.Hè@3Wï²-@3Z’£S&@3mÅÖ8†@3§†Â&@3mÅÖ8†@31Å‚@3mÅÖ8†@3?|í‘i?€‚ñêã ?‘+ùÔ!½Š?•XYäý?“ׂa†Üü?’yÊêºq?’*Mõis?¸¤(¾ÂeI?’ ·6Öc¤?•¶ÀA½ -;?›|¦l¯âU?“úaû]?‘Qïʾ?Ãp`ŠÛD?Ž*JŠË?‰¢Ò+ÜÝ—œ ?ŒC ãSG?Š|)-}í(@@@@@@?ð?ð?ð?ð?ð?ð?_O:Ë$¿RCu–?HÁw½ª?ZØ-Ê‹œ@«¢âP,{(@®ÞiÁ¶›?qšÚ_ºë?k›r -ç«þ?ÙºÿƒÿX?ÂTbî˜BO@Ÿr>:`´Ô@k@¨P½ó¶E¢@¨P¶‡+ @¨P½ó¶E¢@¨P½ó¶E¡@¨P½ó¶E¢@¨Pµéá°Š@¨P½ó¶E¢@¨P¼wškP@¨P½ó¶E¢@¨Pµ '»@¨P½ó¶E¢@¨P ÞÒˆÍ@§ó}ó¶E¢@§óy™™™š@§ó}ó¶E¢@§ó~Ov_Ø@§ó}ó¶E¢@§óˆK]Ìe@§ó}ó¶E¢@§óˆ$ x@§ó}ó¶E¢@§óxüPH@§ó}ó¶E¢@§ó~ÒˆÎp@8|ÚQ@8ë…¸R@3½‘hr° @3¹xÔýó¶@3PA‰7KÇ@3L‹C•@2«xFÜ^@2¬Æ?@2«xFÜ^@2¬ç¯·é@2«xFÜ^@2¦®}Vlô?1·†Æjñ?‘Ð`HÇh?™KÔ9\Ä?’èÞ㬱_?™ìbðCú?¥Œ#ghç›?–ªÎ­¡?’j%ÓRa?•ê?íuA?•WŠ­ ?—ˆ”„òõ¤?—vÑékÜ?— —‰Ò‡?’[éæóL³?qÂ' -Bœ?‹µ¼a?”"‚Ò#?›P^eNÇQ@@@@@,@*?ð?ð?ð?ð?ð?ð¿BC}Ø?@oqI¬?`1ðâXk?c̽Øf²,@¨Pµ·F®±@§ó~­ñ´?ry›ÏP„?‚ø,A?õÊ.ü‰³"?ó~~‹-m@ŸhûÔ V`@l@¦¾St¼j@¦¾==}mq@¦¾St¼j@¦¾ì‰Îô@¦¾St¼j@¦¾ Û:Žo@¦¾St¼j@¦½ý¿‚¬ì@¦¾St¼j@¦½ø+Ë@¦¾St¼j@¦¾­«ŸW@•°!ÊÀƒ@•°8Që…@•°!ÊÀƒ@•°/ÓùF@•°!ÊÀƒ@•°1‡T@•°!ÊÀƒ@•°2q‡I@•°!ÊÀƒ@•¯ÎÛZ@•°!ÊÀƒ@•°¡ÿ.Hé@7Âò䎊@7ªÐïtÔt@4Å?|í‘h@4¼ÇUį@3Ú~ùÛ"Ñ@3ÈJ!"6@3fYJôðØ@3T¤¡†fÆ@3fYJôðØ@3Cp~W“ÿ@3fYJôðØ@2ûçl‹C–?ƒ6ð]g™ä?¡fÕA½ž¶?¨Q¼O&7*?š³5ñ© -z?£ê-T³Ý?ÂH[ R§C?Ö?ŠÓ'P?´õm'Èx?³2õïÆ"?¦Íɳê?°N¨Gአ-?¹d -™Oe?¥•ÏÛäå°?¤{®ìbÆâ?§Ör7\Àå?§!N/p?¢k´¨†Çi?«ê3ƒsЍ@@(@,@(@7@*?ð?ð?ð?ð?ð?ð¿”RÔ¥i@¿f Üïß?k#£L4?¬Ðs4@¦¾£{‚Š@•°,ÔÅ»Â?ˆ9Q)Mf?ž‡Åx~?ù{½0“@ fíÅ0²›@Ÿd‰ÏU¹ @m@¦ÜÕ$Ý@¦ÜÔ¼j~ù@¦ÜÕ$Ý@¦ÜÖÈ´9X@¦ÜÕ$Ý@¦ÜÖ”Fsƒ@¦ÜÕ$Ý@¦ÜÖ8†YJ@¦ÜÕ$Ý@¦ÜÕ›=È@¦ÜÕ$Ý@¦ÜÔ`ªdÃ@«ô™™™™š@«ô—KƧñ@«ô™™™™š@«ô™‡+@«ô™™™™š@«ôŸ±[W@@«ô™™™™š@«ôœ£n0@«ô™™™™š@«ôš)Çy¨@«ô™™™™š@«ô˜_ö”@7-¥œàv@7.±Ä2ÊX@2é‡+ @2é=Ùb¶@2"-V@2"T`ªdÃ@1O „M@1Ÿ¾vÉ@1O „M@1!-w1@1O „M@1Žì¿±[X?’Óusÿ\Ã?ï1ïºÅ?’Õ ØÎ†{?ºgk\0?‘×´<î¯j?‘…Rgå.?„F/·ÿP5?’ -‰¸Ì?‘[RK¶ËE?‘~¬Àm?ó?‘†óèJL\?‘ ‡#é -´?“ d?îŠõ ?ƒÆ×q„nð?ƒ­=aÊw%?‡?®\Âä?‡YÍ_@@@@@,@*?ð?ð?ð?ð?ð?ð¿¥™Ç@??úË@?3ƒÔÌ]?@£_ý-@¦ÜÕNìü@«ô™#Ûì ?På“`¡|ô?aëat³wœ?ÒûV¿R?ÅÊNTp–@Ÿk¥˜ãoÅ@n@¤çl‹C–@¤âÐå`B@¤çl‹C–@¤åœàv@¤çl‹C–@¤ì‹C•@¤çl‹C–@¤ä2ÊW©@¤çl‹C–@¤ç¯·é@¤çl‹C–@¤ç®zá@¤ÅLIº^5@¤ÅNÙ‡+@¤ÅLIº^5@¤ÅHšu%@¤ÅLIº^5@¤ÅPË)^ž@¤ÅLIº^5@¤ÅHÛ‹¬q@¤ÅLIº^5@¤ÅIÔ•+@¤ÅLIº^5@¤ÅKC,¥@7” xFÜ@7quŽ"@3º^5?}@3~ÿ—$@2Ͳ-V@2Ξš@2fYJôðØ@2iQ‚©“ @2fYJôðØ@2iÇy¦µ @2fYJôðØ@2k=ÈK^?¡ÅꯨŠT?‘‘Ç`[?‘„ë2‘~?• +ÏÄ¡?“2{Áw¸?•(Ï¢Uÿ?•²»UbB2?“-N•I`(?‘t‰WZñ?—°Ó&v'ç?•nW*Ø„?•êÁØ|?„ò—TËÃ?Fƒ¿p7€?qÂ' -Bœ?‘l_zU’Ý?’3¨£„È?K·‘d\@@@@@*@*?ð?ð?ð?ð?ð?ð?R¾p<~¿KiÌ`¤?2Ð\C?CŒâÛ@¤å˜B“@¤ÅKfC -?K:8è•¶?b#Øyú?†XýÀ‹Qõ?µ¿Íjy <@ŸnT<ì?@o@¦ß;dZ@¦È1&éy@¦ß;dZ@¦ã× -=r@¦ß;dZ@¦ÙõY³Ñ@¦ß;dZ@¦ã¯·é@¦ß;dZ@¦àN¤¨Á@¦ß;dZ@¦Ûô‡ü¸@¬qàA‰7L@¬rzáH@¬qàA‰7L@¬qÚ¬1@¬qàA‰7L@¬qâÞÑ·@¬qàA‰7L@¬qá [À@¬qàA‰7L@¬qÜPHð@¬qàA‰7L@¬qàhÛ‹­@9‡>«6z@9g´¢3œ@4Ùº^5?}@4ߪ͞ƒä@4t“t¼j@4y¦µ (@3¸DЩ*@3¾ì¿±[X@3¸DЩ*@3¾_oÒ @3¸DЩ*@3À‰ 'RT?±ÿ}ö?êÚÏ$?¡ ×1èB?ŒGZ0eê;?—À °Ø§ ?—šÜ!2f…?±Á1Èáý?ƒÁþGEÛ?Hžyq?·ïö)h?„ã¼ÓZ…ˆ?„2ÌôÏ?ˆW|¶DC?ˆCns¥ @@@@@,@$?ð?ð?ð?ð?ð?ð¿6ÕnÛœ¿P/:[‚?@$ Âè?S»]^0ú_@§½O]¾ »@¦\#R,Ê?U‡³^.(?mHEšð?œê,xc…?¡Ì÷=ä·?—Ði&¿C?¢7ÿP›µK?‚~ƒ7qé“?m¸¼‚ý?…á%¦aȲ?˜…]k™7?]˜m3ÆŒ?ð2ƒX@@&@$@*@7@9?ð?ð?ð?ð?ð?ð?Uà£þ¿c‹Fc €?cl‘ jÏ?cÖö¢C@¦ö1ÐV@˜aoº."?‚(¤ZµN)?M·@]KÑV?þÆHì:º@Ÿc¦îÐ@r@¦>,1&é@¦>>Ø [@¦>,1&éÁ.„€@¦>,1&éÁ.„€@¦>,1&éÁ.„€@¦>,1&é@¦@¶“u@¦>,1&é@¦=#× -=q@œ)Àƒn˜@œ)­V@œ)Àƒn˜Á.„€@œ)Àƒn˜Á.„€@œ)Àƒn˜Á.„€@œ)Àƒn˜@œB Iº^@œ)Àƒn˜@œ.V‡+ @9|ÚQ@9 -¦7?1k@5pÄ›¥ãTÁ.„M‰ûçm@4â-VÁ.„QnÙ‡@4î_oÒ Á.„NÜC,¥@4î_oÒ @31Å‚@4î_oÒ @4Ö®}Vlô?‚Cš æI@8#˜@8¾:@8 >+?¢WÃTþi?ÁÜñÀdå¢?¦_»o_d@8Î÷@8i§@8Å?-C i|â?Å1=îIL?±Ž‰-»ÕÃ@8 * @8p÷@8¶?¼ïõÀq2?¬]Çwsƒ@@@?ð?ð?ðøøøøøøøøøøøøs@¥ObÐå`B@¥O`Ä›¥ã@¥ObÐå`B@¥Oa]­K©@¥ObÐå`B@¥OCŸéî@¥ObÐå`B@¥O`S@¥ObÐå`B@¥OHùGß@¥ObÐå`B@¥OR± ä@—„ 7Kƨ@—ƒ÷œ]y@—„ 7Kƨ@—ƒó†&½@—„ 7Kƨ@—ƒÛÃ[©@—„ 7Kƨ@—ƒIð¤Ú@—„ 7Kƨ@—ƒr›(@—„ 7Kƨ@—ƒcÐâ@8 Î_oÒ@8 #59 @2E?|í‘h@2#2íViú@1~V“u@1RzEn@0ÑÞi­BÄ@0¥éŠCô˜@0ÑÞi­BÄ@0¢b5€œ@0ÑÞi­BÄ@0£‰z&WÙ?¦]OëvÙú?šm@pZG?ŸóË[®·?©þK;0ê? ‚°ëÒ¦—?›Ázç9?•Ö/ê€÷Æ?—)ž®ˆ¡ø?”!vqG_¾?¦¾«Õñ(µ?™‚ááqQ'?—¯¦`R?¤¶e‰ ND?ßHQÅaG?œ³ùf-%l?V¸5Àñù?‘ &ºåX?”ôEö L@@ @$@(@2@3?ð?ð?ð?ð?ð?ð¿lûÅÓ¿˜…Eô`?e˜ß6å5?qP~Ë*h@¥OUJëkõ@—ƒ³Ñ޾?‚à¤XÛ?’I¾Ÿ%Ê?àÀ' fï@ƒš·" ã@Ÿnl.³:C@t@¤}ØbMÓ@¤}Ù‡+@¤}ØbMÓÁ.„€@¤}ØbMÓÁ.„€@¤}ØbMÓÁ.„€@¤}ØbMÓÁ.„€@¤}ØbMÓÁ.„€@¥ÃŸ¾vÈ´@¥Ã¶È´9W@¥ÃŸ¾vÈ´Á.„€@¥ÃŸ¾vÈ´Á.„€@¥ÃŸ¾vÈ´Á.„€@¥ÃŸ¾vÈ´Á.„€@¥ÃŸ¾vÈ´Á.„€@8Ù*0U2b@8宿1ø @4½‘hr° Á.„M‰ûçm@3†“t¼Á.„QnÙ‡@3Þi­BÄÁ.„NÜC,¥@3Þi­BÄÁ.„NÜC,¥@3Þi­BÄÁ.„NÜC,¥?îŠõ @8#˜@8¾:@8 >+@8Iç@8Ù?¢Æ÷Xê†@8Î÷@8i§@8Å@8S@8û—?«Æá뼑:@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøu@¤Ö+…¸R@¤Ö)º^5?@¤Ö+…¸R@¤Ö+C,¥@¤Ö+…¸R@¤ÖØ­«Ÿ@¤Ö+…¸R@¤ÖCˆe”¯@¤Ö+…¸R@¤Ö/Ÿ¾w@¤Ö+…¸R@¤Ö>쿱[@¬]eãS÷Ï@¬]gl‹C–@¬]eãS÷Ï@¬]>vÈ´9@¬]eãS÷Ï@¬]J=p£Ö@¬]eãS÷Ï@¬]XbMÔ@¬]eãS÷Ï@¬]Sê³g @¬]eãS÷Ï@¬]DЩ+@5Ù*0U2b@5×Ûô‡ü¹@20Ä›¥ãT@2XÁTÉ…ð@1çKƧïž@1ô2ÊW§†@1 -0U2a|@1":)Çy§@1 -0U2a|@1\ú¬Ùè@1 -0U2a|@1 xFÜ^?„F/·ÿP5?­Na~|¾>?°õ%ÆÛ'^?¤OXâi}i?›«Âp°¦ý?“èÿºp–Þ?|¬Çëý ?µØ~—ñ;„?®÷†ÕS w?œÎuµ/è?¬Ì0û?)?§lÅBCk?ƒ]€µ,VÞ?šà+>G–Ì?œÚ.ô §Æ?š"âŒÀxÐ?œño(?›8~à,ã™@@@@@,@&?ð?ð?ð?ð?ð?ð?oQ¿yZ¾õ?Y7ÿ£É¶?Ck®}™°@¤Ö/á’Âø@¬]]̽ýæ?yƒ_~? B[?¯ò5}'Î?œÿ‰eVé?£”S)$Å?šX“Øû?–Ãù‚ò@‰?—šÜ!2f…?¢Æ÷Xê†?žO£·»Ïy?ž‰_Ó?”`íÖ†›?™B°*Z?™šô•Üy?Ìùüy‰5Í?•¾Ä6Ü?—5"GWÈ?µõsÌþq?’d­©‡ò?—Ò¸ùBz4@@@@@(@&?ð?ð?ð?ð?ð?ð?rÿ¹‡ËÀ¿S•”l¸?QZ`E‚3?PM²Ÿç.$@© -MÝt@Ÿqi»N4?e¨ˆ'­ý·?g‰bS¼?² -•X ¬,?»ÚÒœ‰Y®@Ÿoðˆ Š®@z@  A‰7L@ ¤>70‚@  A‰7L@ ¡y÷†7@  A‰7L@ £?æ@  A‰7L@  w¢o @  A‰7L@ ŸÔLet@  A‰7L@ ž[…@¬õð£× -=@¬ö Iº^@¬õð£× -=@¬õî®âG„@¬õð£× -=@¬õîPý¾Ê@¬õð£× -=@¬õòŒ¬‘µ@¬õð£× -=@¬õð‘Ên@¬õð£× -=@¬õð’PAÐ@8zqÞi­C@8ˆ+[@2®5?|í‘@2®=LÄÁÀ@1ä¼j~ùÛ@1ä“s6zä@10–»˜Çã@11ÞBÒè@10–»˜Çã@10~@10–»˜Çã@10âómÀ?¦,¹(g©?ÿß -…×·?’ÝrõÂ+@8Iç@8Ù?®ƒ›‚á@8Î÷@8i§@8Å@8S@8û—?›pÒ̺Ô@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø|@ %Òñ©ü@ %ŽzáH@ %Òñ©ü@ %–ÕO,Ý@ %Òñ©ü@ %Ÿ]/‘ƒ@ %Òñ©ü@ %–èÌòó@ %Òñ©ü@ %—„¥ê@ %Òñ©ü@ %˜,v´{@WIº^5?@WI7Kƨ@WIº^5?@W-ÔH²—@WIº^5?@W1"Û¡y@WIº^5?@WYSP@WIº^5?@WaCUÓˆ@WIº^5?@Wa¿'@1«µsê´@1«;dZ¬@0 -^5?|î@0 -¨ÞTå@/ΗOß<@/Ó9Àëíû@.”`ªdÂù@.‡K+I@.”`ªdÂù@.ˆ“E›ñÓ@.”`ªdÂù@.Œm]Ÿ&œ?É^£eeäí?ϦÓlÛ„?•{ͱϑ?@ ú­Q»?’T) -K?’Ï¡Sbw>?ÐbOß;C–?”Ó\Ó¯¸­?™@?¼Ë.G?’º Š]è?’ˆ¾ú|‰5?“è&Üÿ´Í?€bbË™Æø?î:ÆÍ(?”¹[©c?“ =ãù±?eÁË?’@ £LÁD@ @,@$@*@7@7?ð?ð?ð?ð?ð?ð?CÆéŽ?_{õl‰?0ª¸ |3À?C/nT\ž.@ %—qLw>@W^6<œø??×þ«„(?QÊó>Õ ?uVÉÖi?”Æ®#;ŽÀ@ŸrÒ“\¢ñ@}@¯7ÎÙ‡@¯Ižz¼@¯7ÎÙ‡@¯g»/ìW@¯7ÎÙ‡@¯•Y³Ð~@¯7ÎÙ‡@¯®¾ß¤@@¯7ÎÙ‡@¯Í5¨W@¯7ÎÙ‡@¯™rGE9@œx¸Që…@œx?8I«e@œx¸Që…@œvï·éú@œx¸Që…@œwOß;@œx¸Që…@œwV8†YL@œx¸Që…@œv·´¢3œ@œx¸Që…@œyp‰ 'R@9(†YJôñ@9&ŠqÞi­@6pÄ›¥ãT@5Âø7´¢@6V”@4u8ï4Ö¡@5î_oÒ @4 Ä›¥ä@5î_oÒ @3ô9XbN@5î_oÒ @75ÜÆ??’j ÑÐ|?ßÜ¡÷u¸k?ºNéxZBÇ?ľ}'0y¥?¤š%OÜ–õ?ÑuYdÈP?³*Y¯*?ÌÅë¬òð¿?¢äEÊ»¶)?µùpQ$?¦OY¸¾?؆É8àÐ?³|Ö[¡Dÿ?§e¥n”UW?ž6Øìhâ?ª‰ ƒ~?žæŠ;Ü”ä?ÞÅÙÀ=ɧ@@@@@@"?ð?ð?ð?ð?ð?ð¿Øô‘»D€¿¨(ÓÉ?®Ô5ÞÜd?ƒY–rÓî@¯Чrs@œwUrÇ’À?ÑgΙtY?ªaã}„DG@mNƒ›}þ @éJ%SR3@Ÿi~fÝÑ@~@®L®záH@®L®V“@®L®záH@®L®¾ß¤@@®L®záH@®L±N;Í6@®L®záH@®L¯Ÿ¾x@®L®záH@®L¬¥zxl@®L®záH@®L«Æ§ïŸ@®f¦ffff@®f§+ K@®f¦ffff@®f¦éxÕ@®f¦ffff@®f¨Ë’:@®f¦ffff@®f¡ä÷eÿ@®f¦ffff@®f¦šÔ,<@®f¦ffff@®f¤ŽŠqÞ@4Y*0U2b@4XõÂ\)@2f‡+ J@2f‡+ J@2²-V@2HË’:@1ž«6z‘@1žƒä%¯@1ž«6z‘@1ŸŠ Þ@1ž«6z‘@1›íúCþ]?|öOÿÝ?jÝ‚È?’•íX~4w?ŒÖ -Äȱ?‘,IÝ Áé?‘W×ý°A?|öOÿÝ?’Òc§—Ûí?‘Ç€˜­r?’‘Ç#·X?Ø¥²À<(?‘]Ë™$ë>?ƒ´],mBZî@ªɺ^5?@ªÈÛ‹¬p@«-bMÒò@«-bMÒò@«-bMÒò@«-Ë)^ž@«-bMÒò@«--à @«-bMÒò@«-‚©“ @«-bMÒò@«-–»˜È@«-bMÒò@«-ÿ—$t@0¨†YJôñ@0¨†YJôñ@/¼j~ùÛ@/œ¾ß¥@- ƒn—@-Ÿ—$tS@-£¼ÓZ…ˆ@-¡:’£T@-£¼ÓZ…ˆ@-¡£n.±Å@-£¼ÓZ…ˆ@-¡°‰ 'S?É^žQ5P‚?é¥3i£ó?‘4!Ÿ•p’?‹¬àÌ’Ç?‘ ·èf?ÔCXsñ?ÐbMçê_x?’uß¿çÒ?†[‘'Í?6) }’ë?øóéM Ÿ?lINõÕ„?€bMÕky?ŒÆò/¢äÍ?‚2Y0âµ?‚ìxqC?†–f_ÔŠŠ?†žóB» “@@@@@,@(?ð?ð?ð?ð?ð?ð¿,¤µ<¿/Lm~è?0I¾úPÅ?,¦E½ÙX›@ªÈÔ‰N@«-F¼¾?>è-ú]+?;'ÅïóL%?wO6Ú/ά?p{&AÏE@ŸseÊ -å@€@¦ÄaÊÀƒ@¦ÄJ=p£×@¦ÄaÊÀƒ@¦Äd÷eýŠ@¦ÄaÊÀƒ@¦Äbø7´¢@¦ÄaÊÀƒ@¦ÄdЩ*@¦ÄaÊÀƒ@¦Äc× -=q@¦ÄaÊÀƒ@¦Äf?@ªË º^5?@ªËp£× -@ªË º^5?@ªËÈK]Ì@ªË º^5?@ªË )^ž@ªË º^5?@ªËDЩ@ªË º^5?@ªËMj@ªË º^5?@ªËý!ÿ-@9+µsê´@9,~($ x@4)‡+ @4(7´¢3œ@3)Û"Ðå`@3(K]Ìcñ@35µsê³h@34g8}À@35µsê³h@33ÉîËû@35µsê³h@30å`A‰8?´Žé`m?‘Ð`HÇh?’•íX~4w?‘´CF õ?–91£ƒ’?œH÷A”mà?ª[Xxöp?“Öæ…0Âû?’t-Eü?–r°¤»®?˜Op¢‘¬?—Õàq¶Ù?¬r¥R‚?‘ -òtMŠ?‹‘+-/Ý?Œw%è®?“6‰møŸã?›€*:€R}@@@@@(@(?ð?ð?ð?ð?ð?ð?aer¸%€¿U´ŽCÜ?b°ö®Üá?Qþã÷4@¦Ädh:@ªËþRÒ?rø“0ùUþ?g­–¢Sà?Òÿ„ìÙ™?¸ŠË6Ä›@ŸpH/¡Vz@@¡ª|í‘h@¡ª‚\(ö@¡ª|í‘h@¡ªßHË‘@¡ª|í‘h@¡«#{J#:@¡ª|í‘h@¡«QÎ@¡ª|í‘h@¡«/ìVÕÐ@¡ª|í‘hÁ.„€@¤±¾vÈ´@¤±ï²-@¤±¾vÈ´@¤±YÎ_p@¤±¾vÈ´@¤±u›=È@¤±¾vÈ´@¤±“ŽóMj@¤±¾vÈ´@¤±kP°ñ@¤±¾vÈ´Á.„€@8Û¹Œ~($@8¿Aò×s@4œIº^5?@4tZ¬1@4"-V@3×§†Â&@3kxFÜ^@3 P°ò{³@3kxFÜ^@3¼¤@3kxFÜ^Á.„NÜC,¥?ˆÿÀ)T¿Æ?·ts3¢ø?¨%1¿6?¶äŒ›%þØ?Ô®þ>†@8Ù?|öOÿÝ?³r‘‹O?°˜Â•0}|?´Eð)öpü?ÎA\"I @8û—?‹´¡`Ƕà? çaŸ¹5? øk@×õ{?¶7òh³Þù?¬·¹½'ñ›@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø‚@¢ñë…¸R@¢ñì1&é@¢ñë…¸R@¢ñõ*™0@¢ñë…¸R@¢ñúu%G@¢ñë…¸R@¢ò „M@¢ñë…¸R@¢ò àÞÒ‰@¢ñë…¸R@¢ò-V@¦æffff@¦æéxÔþ@¦æffff@¦î;Í5¨@¦æffff@¦‘¼ÓZ†@¦æffff@¦ÊÀƒp@¦æffff@¦£¯·é@¦æffff@¦ŸË’:*@4+µsê´@4+¥ãS÷Ï@1µãS÷ÎÙ@1©e+ÓÃa@16§ï²-@1,àuöý"@0ÔmÅÖ8†@0·ï²-@0ÔmÅÖ8†@0¼~($ x@0ÔmÅÖ8†@0½p£× ->?}Ñ¿ž,?¡'‹Q›p?—bÕ/ŸÓ?›©Ñ®vtQ?¨àt/1  ?¬‰…dkUÛ?|¬Çëý ?@`WÓæ?ŸÀh¡º?–= £6Ï?´”zœ&>?±à¦ÌTS?‚n—8‹8?›9WTêW?”US9úÅ?•*¥Q«_“?–í -e˜›ï?˜ŒL.C-¹@@@@@*@*?ð?ð?ð?ð?ð?ð?„Y›K]€¿‰ þÚÇ€?_çŸö§ðp?[Ï‚œÇÉÍ@¢ñ÷ÑÖ@¦Øâ%©š?t€×˜îà¢?q‰s0?ä1ó:X[É?Ü~Ÿ|@Ÿ_ÝÄX¿@ƒ@£ò&ffff@£ò49Xb@£ò&ffff@£òRT`©@£ò&ffff@£ò×s@£ò&ffff@£òÿ—$t@£ò&ffff@£ò}¿H€@£ò&ffff@£ò>«6y@£¸Ôýó¶@£¶“u@£¸Ôýó¶@£ËíúCÿ@£¸Ôýó¶@£Ì¥zxk@£¸Ôýó¶@£Õµsê³@£¸Ôýó¶@£é7KÆ©@£¸Ôýó¶@£Û=ÈK@8‚ò䎊@8}p£× ->@3c÷ÎÙ‡@3PIQ‚©@2Ú~ùÛ"Ñ@2ÊÇË)_@2&YJôðØ@2 ¹#¢œx@2&YJôðØ@1þËûµt@2&YJôðØ@1ÿË’:)È?¢Æ÷Xê†?‘Ð`HÇh?’´ýBI{? `ĉ5‘5?º,j -í[?º=¸¨cÏ?”¼íÒh??“[¡ŽuœÙ?–AuøG1?¡ 3Õ¬T?»É¬ê\©ù?½pî=ëDó?¿àéå=c"?“êXÔ #{?’q6tNø6?–ì k.÷A?•°QŸ?]Í?«¶Ûİ^Ï@@@@@*@*?ð?ð?ð?ð?ð?ð¿ƒkí™?†ÉsK€?náCâ¨0U?Yu@:Æû@£òô’Õ\@£ÌXùqx?‡D³4„Ii?uð2v#ã6?ß+>”F¾?¿×0ä¦Q@Ÿe[Æ:Ðá@„@Ÿ†dZ¬@Ÿ†cS÷ÎÙ@Ÿ†dZ¬@Ÿ†gÓ+s@Ÿ†dZ¬@Ÿ†lAûp@Ÿ†dZ¬@Ÿ†[#5y¹@Ÿ†dZ¬@Ÿ†c -óùk@Ÿ†dZ¬@Ÿ†c¼ç¢@¥ ô9Xb@¥ ô9Xb@¥ ô9Xb@¥ ÷oˆk´@¥ ô9Xb@¥ ö3íµ@¥ ô9Xb@¥ ýÕ2q­@¥ ô9Xb@¥ úÀIb@¥ ô9Xb@¥ üÖöž†@45S&Á¾@45L˜_ö@1 -^5?|î@1Fnß @0 "Ðå`B@0›…=KW@/á-w1Å@/ת,ú@/á-w1Å@/Ío¡œ@/á-w1Å@/Ó< ì -?|¬h2:“?Ãÿž«R÷?‘;"Ùµ•Û?‹¦S¹?‘…ù/¬] ?“&XÄ=†I?}@T˜ÁÎ¥?’“Dæ»Zœ?‘ =׿?Jôª?“Ô^ ?”Rnwø?‚o,¬qVÙ?2ãsF­H?…Ë„f?ƒéÚisŒ?‡çìI.Î?‰áRqœË1@@$@&@ @:@8?ð?ð?ð?ð?ð?ð¿1öp&À?`3kõÖ?B›ÁŒàob?FekÐÏ@Ÿ†a…ó_b@¥ ø D ?aä<Ò#O?e鈨g?ÐÂUÜð£Ö?Õ qþá,C@Ÿf>uJ}@…@¦ã× -=q@¦ä“t¼@¦ã× -=q@¦䎊qÞ@¦ã× -=q@¦ä÷eý‹@¦ã× -=q@¦ãˆe”®@¦ã× -=q@¦ãŠ @¦ã× -=q@¦ã9Àëî@¡@bÐå`B@¡@bÐå`B@¡@bÐå`B@¡@bMÒñª@¡@bÐå`B@¡@aÊÀƒ@¡@bÐå`B@¡@` qu@¡@bÐå`B@¡@bMÒñª@¡@bÐå`B@¡@bZîc!@1ÉÎ_oÒ@1ÉÛ"Ðå`@-Š~ùÛ"Ð@-Š0U2a}@+wOß;d@+w>«6z@+æL/ƒ{K@+å¡ÊÀƒ@+æL/ƒ{K@+åýŠÚ¹ö@+æL/ƒ{K@+æÁ½¥?É_\p)Ï?¾‰máÚ?‘@˜¯³¸?ŒArUã@?÷6r In?¾ƒìÈÁ?ÐbMçê_x?’)£µ“[M@Ÿs ‚ç@†@­\âMÒñª@­\à@­\âMÒñª@­\âø7´£@­\âMÒñª@­\âø7´¢@­\âMÒñª@­\ä“t¼@­\âMÒñª@­\âø7´¢@­\âMÒñª@­\Öý!ÿ.@¨ËD“t¼@¨ËDÝ/¡@¨ËD“t¼@¨ËCþ\‘Ñ@¨ËD“t¼@¨ËD÷eý‹@¨ËD“t¼@¨ËCn.±Å@¨ËD“t¼@¨ËD“t¼@¨ËD“t¼@¨Ë@IQƒ@5õS&Á¾@5ô“t¼j@2ahr° Ä@2b¼£n@1—ï²-@1™ k¹Œ~@1p–»˜Çã@1q·Xâ@1p–»˜Çã@1t2ÊW§‡@1p–»˜Çã@1múCþ\’?žˆ2}? ¸×KG?’Z¡*CÂ?nii)â?‘§›ßÉîj?•ÍÂ^mÄ*?|öOÿÝ?“$i «%h?üÓqÔN‰?|Ø}Õ…?‘¦‘=W?“f:[êc#?ƒmÕ+&¬‰?þrªbT?‚ù…žÄ`x?…<ò N ?‡×7°º?ŠÐ+`È“@@@@@(@*?ð?ð?ð?ð?ð?ð¿3OAÙ0¿BòÔL´?Tý÷ÙMô?0¡¡PKW®@­\à"QOh@¨ËC«Æv ?tV lÂwõ?Pª³>o -“?ðˆ'PŶ?©` Å ý@ŸfÇÄÐbs@‡@­UÛ¥ãSø@­UÉ7KƧ@­UÛ¥ãSø@­UÖ_Ø­¬@­UÛ¥ãSø@­UÙÀëíú@­UÛ¥ãSø@­UàIQƒ@­UÛ¥ãSø@­UÝ}¿H@­UÛ¥ãSø@­UÞžš@©ÖÎÙ‡+@©ÖÍOß;d@©ÖÎÙ‡+@©ÖÆ$Ý/@©ÖÎÙ‡+@©Öɺ^5>@©ÖÎÙ‡+@©ÖÇæšÓ@©ÖÎÙ‡+@©ÖÇü¹#¤@©ÖÎÙ‡+@©ÖƸºÇ@7ÞHè§æ@7Ùè>BZî@3k¥ãS÷Ï@3gsüPH@2Ãt¼j~ú@2Áø -à@2Eœàu÷@2ÒˆÎp;?—¤o„C?äm°û0Ž?”—ýÉò€?šAÈ|»x?–~9n4ºÀ?”ªEñeX?ˆÿÀ)T¿Æ?’“ºƒ;Nû?“5ñ µ?•Œ ;qí?—ˆ”„òõ¤?˜I­}ý½Ä? “˜¯ÃÛ?‚ñêã ?Šó¿á§E?ˆW„hðQ?‘ ê$4 ?$Ìj½BÙ@@@@@,@(?ð?ð?ð?ð?ð?ð?qnÈ¿Wü•¶|?[§¼÷?6ȃn9@­UØBXÄ@©ÖÉrÓ¹?yÙÕY?X¦/ÔÌ•h?ãŸ#¹<Д?§v/²¶¹‹@Ÿkj9l¾ë@ˆ@ Ïèr° ÅÁ.„€@ Ïèr° ÅÁ.„€@ Ïèr° ÅÁ.„€@ Ïèr° ÅÁ.„€@ Ïèr° ÅÁ.„€@ Ïèr° ÅÁ.„€@o¤Ý/ Á.„€@o¤Ý/ Á.„€@o¤Ý/ Á.„€@o¤Ý/ Á.„€@o¤Ý/ Á.„€@o¤Ý/ Á.„€@3è†YJôñÁ.„>¤µÜÆ@2; Iº^Á.„M‰ûçm@1Àå`A‰7Á.„QnÙ‡@0øDЩ*Á.„NÜC,¥@0øDЩ*Á.„NÜC,¥@0øDЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø‰@««§ï²-@«««Æ§ïž@««§ï²-@««­w1Å@««§ï²-@««³ àÞÒ@««§ï²-@««¾š@««§ï²-@««µsê³h@««§ï²-@««¸Çâ‚A@§?ñ©ûçm@§?ò-V@§?ñ©ûçm@§?á£n.²@§?ñ©ûçm@§?Ú^5?~@§?ñ©ûçm@§?º¹õY´@§?ñ©ûçm@§?±N;Í6@§?ñ©ûçm@§?ÑÅ@6¥öý!ÿ.@6¡–R½<6@3û Iº^@3û…¸Që@3Ãt¼j~ú@3¹ûçl‹D@3¡:’£S@3’u%F -¦@3¡:’£S@3”g8}À@3¡:’£S@3“×Ûôˆ?‡YÍ_?‘‹PƧ¢$?˜U%ÛÌx?ºgk\0?©¦¥Ò?šúÉ‚X|?€‚ñêã ?”ŸÚ²t©?—+Áèlç?’ü#q\-v?°Ã¾_.ö?§/\¸ Ó?’‡ïõ+üB?‘¼Åâ<{?•@K/Ù{?“¶º Yæ¸?¬àåŸ ?™ þg¿@@@@@&@"?ð?ð?ð?ð?ð?ð?p=^Œ'¿sã§<€?^ùPñ¯~?tÜþ«¨+@««´7 -Ìð@§?Ö&²5?zõ8R‰ ã?‘c6ZGøö?òm6c*4@bÚ[ðôê@Ÿc•³(@Š@¦ÕoŸ¾w@¦ÕnÙ‡+@¦ÕoŸ¾w@¦ÕnËûµ@¦ÕoŸ¾w@¦ÕoiDg7@¦ÕoŸ¾w@¦ÕoŸ¾w@¦ÕoŸ¾w@¦ÕmquŽ@¦ÕoŸ¾w@¦Õl²•éâ@ªÁ¥ãS÷Ï@ªÁ¦ffff@ªÁ¥ãS÷Ï@ªÁ¤÷eý‹@ªÁ¥ãS÷Ï@ªÁ¢œwšj@ªÁ¥ãS÷Ï@ªÁ¡°‰ &@ªÁ¥ãS÷Ï@ªÁ¢\(ö@ªÁ¥ãS÷Ï@ªÁ¡|ÚQ@5:qÞi­C@59Çy¦µ @35ãS÷ÎÙ@35µsê³h@34“t¼j@33œ¾ß¤@2Åœàu÷@2Å¡ÊÀƒ@2Åœàu÷@2ÄFs×Ü@2Åœàu÷@2Ã÷ÎÙ‡?1·†Æjñ?‘6 '8?“a#mU?‹ÝÉ!ë#?“´<×?”K¬Ò&?|¬Çëý ?’áÄïÃõ?“1Ú©! ?’ÁÛ/’:?“Æ×q„nð?“.½þ¹Š?‚ù…žÄ`w?Ž`ŸÝïöF?„A'Š_^?†ú#ѧ?’3¨£„È?<ש‹äN@@@@@*@(?ð?ð?ð?ð?ð?ð¿5´Í@¿QីD?*¡µ-(·?0nèÛ>4@¦ÕnIõ£*@ªÁ¤zg¼?Ip»Ø/2?P ›,Y?í$ÀÞ?¦•/ru2-@Ÿf'aù¼@‹@§ì¸Qì@§ì·W‘Î@§ì¸Qì@§ìMfÜ*@§ì¸Qì@§ì¢Iò·@§ì¸Qì@§ìTÇ4@§ì¸Qì@§ìtà@§ì¸Qì@§ìÃN1?@•MÀƒn˜@•M¹b÷½•@•MÀƒn˜@•Mº½5L@•MÀƒn˜@•MÀØN‚¸@•MÀƒn˜@•MÀ?‚"Ó@•MÀƒn˜@•MÀ¦GÂ@•MÀƒn˜@•M¿g,qz@7uS&Á¾@7tÜÃn;%@23S÷ÎÙ@23Q·ePå@1H“t¼j@1H6íê3@1ÚQÎ@1ÇÚUÅ‚@1ÚQÎ@1ûµsë@1ÚQÎ@1ZìÂ?™I'%ö«?;"Ò,íÂ?‘y÷Ÿ$?Œ¸LHfX)?‘[p2å×÷?‘;•>zÅ?’Á ˆ|Ί?’Cb°¬?µÈN{BU?‘ňøwž™@«8Rn—P@«8C× -=q@«8Rn—P@«8D¨ÁTË@«8Rn—P@«8LÌÌÌÌ@«8Rn—P@«8M(Œç@©@£S÷ÎÙ@©@¥`A‰7@©@£S÷ÎÙ@©@¤ŽŠqÞ@©@£S÷ÎÙ@©@ ÞÒˆÏ@©@£S÷ÎÙ@©@ 6âë@©@£S÷ÎÙ@©@¢e+Õ@©@£S÷ÎÙ@©@ N¤¨Â@7`ØDЩ@7`|„µÜÆ@2’ Iº^5@2Œ"h Ô•@1q‰7Kƨ@1lú¬Ùè>@0ÑÞi­BÄ@0ÌL˜_@0ÑÞi­BÄ@0ÌC,¥zy@0ÑÞi­BÄ@0Ìí‘hr°?„F/·ÿP5? )™È.‡ -?•ï9aýô?—^tø -a?”NtyÞ"§?”m\¶WqÓ?€‚ñêã ?”ï©ÛÉ?‘Ûcu%ç+?”€ø§¼û3?”V ìi!¾?”6ð a@B?’C߯K?ŒöOÿÝ?ƒ<Õp?ƒ¦$H?‡v>ª¸ ?‰_uñšó@@@@@,@,?ð?ð?ð?ð?ð?ð¿O…]b¿Q}V%?Q žé¢Aþ?4÷×e§1@«8MU ±v@©@¢ß¶hÐ?q¯QÒ?U¤½ì º?âÉ‘üÉš˜?°{’ip -@Ÿg= –2@@­ŒÍOß;dÁ.„€@­ŒÍOß;d@­ŒäB “‘@­ŒÍOß;d@­`NJçÀ@­ŒÍOß;d@­ŒÔÄ -‚@­ŒÍOß;d@­Œíwq_“@­ŒÍOß;d@­Œïi(ш@›:wÎÙ‡Á.„€@›:wÎÙ‡@›9óøŒMW@›:wÎÙ‡@›9å 4¾ý@›:wÎÙ‡@›:` í À@›:wÎÙ‡@›:Áïâ_ë@›:wÎÙ‡@›:™±âöÈ@9µS&Á¾Á.„>¤µÜÆ@5{ Iº^@5b!]4>@51‰7Kƨ@5’3y¬6@3ÔmÅÖ8†@3ÍëvEÉÉ@3ÔmÅÖ8†@3ÐO$‚@3ÔmÅÖ8†@3ÕVWàé@8J¨?˜©ë¡•²ã?°ÿ›Éò^?–Ö³ ¯?œióꚆ?š†bC3Û@8J¨?–„̹мÜ?²-êΦn‰?š¦nØíÌX?¢}B›°HÀ?‘ˆò–Ò–P@8p÷?˜â¢0UF?©#¤ò!¾å?—êÄÅQŒ?–NåA¸. ?–÷u€Ë¾@@(@(@2@,?ð?ð?ð?ð?ðøøøøøøøøøøøøŽ@ª´¼j~ú@ª¸Që…@ª´¼j~ú@ª¹JåØ@ª´¼j~ú@ª¸Õ,Ê*@ª´¼j~ú@ª¶¸zL^@ª´¼j~ú@ª²õd©ä@ª´¼j~ú@ª·hÀÝ@˜ô)ûçl‹@˜ô(r° Æ@˜ô)ûçl‹@˜ô(Þà@˜ô)ûçl‹@˜ôŠ&™$@˜ô)ûçl‹@˜ô!ÎtrJ@˜ô)ûçl‹@˜ô#;ZVÎ@˜ô)ûçl‹@˜ô!Ì‘e@7 ]cˆe”@7Nî—ûœ@3k¥ãS÷Ï@3m\ûÊ@3Ú~ùÛ"Ñ@3äú=(,ï@2Ê0U2a|@2Ï å¯Ö@2Ê0U2a|@2Î\^ðu—@2Ê0U2a|@2Îâp߃?’èþt?WB~±&ð?”À6z/ä?„Ê_\ƒ?“Kêé-\?‘‚ÜïŠ=ù?|Ñb×¶@?’¦y¼?š×i"Òá4?y?Ž <@¯@?½öÍ?…4ü²ƒ4]?‰mýãÖ©¯?‰®‚ZÕnÀ@@ @*@$@9@7?ð?ð?ð?ð?ð?ð¿@–í¿HsN‹È?CêLïç?(²mnló@ª¶ªÔì@˜ô$kcbv?bOUD‰ã?Kr%W+@8Iç@8Ù?³·÷ù—e@8Î÷@8i§@8Å@8S@8û—?¤yíœØAd@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¥äãS÷ÎÙ@¥äýó¶F@¥äãS÷ÎÙ@¥äã¼ÓZ†@¥äãS÷ÎÙ@¥äíBÃÉî@¥äãS÷ÎÙ@¥äÕÜÆ?@¥äãS÷ÎÙ@¥å1uŽ!–@¥äãS÷ÎÙ@¥å°ò{³@¥Šñ&éxÕ@¥‰€Ä›¥ã@¥Šñ&éxÕ@¥ŠòþÅm^@¥Šñ&éxÕ@¥‹ \ú¬Ú@¥Šñ&éxÕ@¥ŠýVlô@¥Šñ&éxÕ@¥‹#n.±Ä@¥Šñ&éxÕ@¥‹#n—@6ëµsê´@6]p£× ->@4R Iº^5@4W_oÒó@46§ï²-@4?iDg8@4TmÅÖ8†@4AÄ2ÊW¨@4TmÅÖ8†@4-ÈK]Ì@4TmÅÖ8†@4O·éùs?é‰w®Vzñ?—oN„Q?°70tæ_c?³n×È­?µý„¼N£?³_…]ÿ¸?öår5]v?•‡S‰Óü?²|ØèÍ?«ù Jy ?µ›Ì%v[Ÿ?³Ó½±bÈ·?ñ>Ò-‹µ?¤rI©‹×s?­ÌfÓ8‚º?´ÿB½À?¤åNka8?Óâlb% @@@@@@*@,?ð?ð?ð?ð?ð?ð?À(4ù´?“Zí•‚à?“šãã†.É?€°ݽa‹@¥åI~î…@¥‹~¹õœ?£S"‰Xò?]sC˜ ?õı=.G?Ô[Æç@ŸrÜżEf@‘@§ §ï²-Á.„€@§ §ï²-Á.„€@§ §ï²-Á.„€@§ §ï²-Á.„€@§ §ï²-Á.„€@§ §ï²-Á.„€@˜%¼j~ùÛÁ.„€@˜%¼j~ùÛÁ.„€@˜%¼j~ùÛÁ.„€@˜%¼j~ùÛÁ.„€@˜%¼j~ùÛÁ.„€@˜%¼j~ùÛÁ.„€@9%öý!ÿ.Á.„>¤µÜÆ@4™º^5?}Á.„M‰ûçm@3ÒÐå`A‰Á.„QnÙ‡@3:Ô,<žíÁ.„NÜC,¥@3:Ô,<žíÁ.„NÜC,¥@3:Ô,<žíÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø’@®N’ñ©ûç@®NªÍž„@®N’ñ©ûç@®N„w*äó@®N’ñ©ûç@®N…Qÿ“?@®N’ñ©ûç@®N“ÀÀÞ@®N’ñ©ûç@®NЏt¥@®N’ñ©ûç@®N‹'èOG@˜ë…¸R@˜èr° Å@˜ë…¸R@˜ëVÛåì@˜ë…¸R@˜ü[.æt@˜ë…¸R@˜ÍquŽ@˜ë…¸R@˜Ò—íº@˜ë…¸R@˜Òߤæ¼@7ÖšÔ,<Ÿ@7×Uí¡v@3À Ä›¥ã@3·©uÐ@2‹"Ðå`B@2‡V¤@2=cˆe”°@270…+hP@2=cˆe”°@25JWú7@2=cˆe”°@25ÇmÄ’ô?|çµB &€?“÷©ukBª?’ aMP?–.ÜbsÓ?”@‹sýÇM?”§QâèŒ?¢t Ø]Ù ?•Þðiß_?”?ðRÉ?š‰ÓÍ¡þ?•âôNï?”㾉´®Ú?Šv'GÛ?ŽúÞfP6…?†ð¦’½¶L?‡—jêAr?‹™t1ê«Ö? éT€O£@@*@*@,@8@7?ð?ð?ð?ð?ð?ð¿I..¸Ð¿ZkÊùŠ?G¦7Ô¸·?V̆œo@®N‹\N@˜Õ XŃ?oÝÃü¶?q6£²b‰Ú?Õ°¹¤%¿@?Ìr~žØH³@Ÿmí£èO@“@¦Æ$Ý/@¦Ä“t¼@¦Æ$Ý/@¦¿Ë’:*@¦Æ$Ý/@¦´mÅÖ9@¦Æ$Ý/@¦Í„M<@¦Æ$Ý/@¦Åm\ú­@¦Æ$Ý/@¦À6âë@¢ÐbMÒò@¢Ê~ùÛ#@¢ÐbMÒò@¢É­BÃË@¢ÐbMÒò@¢Ã9Àëî@¢ÐbMÒò@¢¹JôðØ@¢ÐbMÒò@¢Ç_oÒ @¢ÐbMÒò@¢Æ -¦L0@8(†YJôñ@8ü¹#¢œ@5c÷ÎÙ‡@5g -=p£×@4¶§ï²-@4Â\(õÃ@4QÞi­BÄ@4ˆºÇË*@4QÞi­BÄ@4[P°ò{³@4QÞi­BÄ@4Z…‡“ݘ?¡ÅꯨŠT?©o£þ„5’?±€ÐŸœï?·%W§Íþ$?þ"y?Žª?¦» VŒÂ¹?žŒÝÙ›P?¦wô›¦·?°Œ“ ¹‡?§×#Vz?Ÿ!ÞkDð?¥Ù6hC]?™{Tä=û?¥ð¡T³÷ñ?ªƒõêzÙ?¼¤5 -: £?™Øl›¹?˜ÒF€§ç@@@@@*@*?ð?ð?ð?ð?ð?ð¿1u®”¿MrR?Pò67?^ÊèØvl@¦Ä]Œ*ê@¢Æ±³­?oP'ÁLfƒ?}õë¯]`?³¡ÞT?Õµá¯Æ @ŸkÀ!f|Æ@”@¦ô@¦ô@¦ô@¦ôÞÒˆÎ@¦ô@¦ôªdÂø@¦ô@¦ôÞÒˆÎ@¦ô@¦óÿb¶®}@¦ô@¦óÿ¤?åÉ@¨Ã1©ûçm@¨Ã1©ûçm@¨Ã1©ûçm@¨Ã1ø .@¨Ã1©ûçm@¨Ã1N;Í7@¨Ã1©ûçm@¨Ã2¼£@¨Ã1©ûçm@¨Ã1ÑN;Í@¨Ã1©ûçm@¨Ã2¼£@0–šÔ,<Ÿ@0–šÔ,<Ÿ@,ëÆ§ï²@,ëÆ§ï²@,‘&éxÔþ@,‘‚©“ á@+ëjçÕfÐ@+ëxFÜ_@+ëjçÕfÐ@+ëC,¥{@+ëjçÕfÐ@+ëC•$?É^žQ5P‚?Òç{íj?‘$Cê¡@í?‹½XQê>æ?íOþtà?¼‚Ë¡K?ÐbMçê_x?’ ,øÕC©?Œqç©Fü?Hª¦ºón?Ø¥²À<(?Sñƒ´V.?€bMÕky?Œ¯þuõí?‚† SFò?‚ìxqC?†l&þ?†žóB» “@@@@@(@(?ð?ð?ð?ð?ð?ð¿Bú†€¾Ø½Ë€?1+žÀ˜ð£?u½›¥b@¦ôFOB@¨Ã1õòÎ?@‚'±=ƒH?!vȸN¯(?z¹%Ýrd³?:žKxf8@Ÿs -bû£@•@®‰öE¡ÊÁ@®‰ö“v@®‰öE¡ÊÁ@®‰ú¬1@®‰öE¡ÊÁ@®‰ùÎ_p@®‰öE¡ÊÁ@®‰þ¸Që…@®‰öE¡ÊÁ@®‰úÔ,<Ÿ@®‰öE¡ÊÁ@®‰ú’£S@§ÞÜ(õÂ@§ÞÛçl‹E@§ÞÜ(õÂ@§ÞÓ¶E¡Ë@§ÞÜ(õÂ@§ÞÒn—P@§ÞÜ(õÂ@§ÞËíúCÿ@§ÞÜ(õÂ@§ÞÊJŒM@§ÞÜ(õÂ@§ÞÉk¹Œ}@5ò䎊@5©ûçlŒ@2½‘hr° @2¹xÔýó¶@2'KƧïž@2"GE8ï5@1Ç ù kº@1Á-w1Æ@1Ç ù kº@1ÀU2a|@1Ç ù kº@1À©*0V?|öOÿÝ?¦Ì '?‘`×›mÏ?ŽwX/8?‘à2F0µÔ?’—ØPö«?|öOÿÝ?’0nà=Q“?“Ú%¿»8?‘èÒ§ˆ„Æ?’…4Ü.?–†F5Æ?…ÑTë0Ó?ŒÛÏ·+?ƒ´],m=?„À"aËô??‡´*žZ}Õ?ˆ”Tj«›ª@@@@@,@,?ð?ð?ð?ð?ð?ð?V½;Ï<¿qì‚=€?IB¡HÒ?F7õ~‚p@®‰ùOÞÅh@§ÞÒ£K Z?hÞJ‡PÍ‚?e«ýõ­[?ß`d>‰íD?Ó罜ÃÔ@ŸeíG"¯ã@–@ªT²-V@ªT²-V@ªT²-V@ªT´êJŒ@ªT²-V@ªT´ðØDÐ@ªT²-V@ªT´9Xb@ªT²-V@ªT± ²•ê@ªT²-V@ªT±œàu÷@¤ó‹C•@¤ó‹C•@¤ó‹C•@¤ó‹xFÝ@¤ó‹C•@¤ó‹’:)Ç@¤ó‹C•@¤óŠçÕfÐ@¤ó‹C•@¤ó‹’:)Ç@¤ó‹C•@¤óŠ~ùÛ#@3ÞHè§æ@3ÞcŠ @/ö“t¼@/óÝ—ö+j@.éxÔýô@.m\ú¬Ú@-­úCþ\’@-­V”@-­úCþ\’@-­„M:“@-­úCþ\’@-­„M:“?€‚ñêã ?jÝ‚È?‘WßÈDö@?‹ËØ|*(?ùª¨?À­Õß}º?|¬Çëý ?’,ö´´Ï#?Å)Ì_“?Hª¦ºón?ë,YÁ?{L Õ¢D?‚oÁÆÜ§ö?ŒË›Í‡Çq?‚§W®ê ?‚ð'ã:ÂÝ?†µ°jÆÃ?†špk Y@@@@@&@&?ð?ð?ð?ð?ð?ð¿ -‡+ -¿õE,@?7tw¤'6ù?RœÉ—M@ªT²RVPx@¤ó‹̃V?W@›êµ´?9ŒÓÉí¾?ºÌ2®L?á—Ñ~[@Ÿgv!ŸpÇ@—@¯ )xÔýô@¯ $¡àd@¯ )xÔýô@¯ (×*R@¯ )xÔýô@¯ 2¤Î@¯ )xÔýô@¯ %Éæ@¯ )xÔýô@¯ !>Ô^S@¯ )xÔýô@¯ äÕ×@›…\(õÃ@›…Š=p£×@›…\(õÃ@›…›Ýl…@›…\(õÃ@›…É;@@›…\(õÃ@›…Œ»È™@›…\(õÃ@›…œwß½@›…\(õÃ@›…œKpà@8‚ò䎊@8ƒ@Þ@3³S÷ÎÙ@3¶ú“¨$0@3“t¼@3 -G’v½z@2s&Á½¥@2wd"6É@2s&Á½¥@2uPyõ/–@2s&Á½¥@2qMò5–?Ĺó¥p?” ÆÄPˆ?’/b ?ÉV黀?‘€D”. -r?Ò°(=°Ï?…nDyB Ã?’þáOîö3?‘6'@ ?‘î!2Ã?Úz·O”«?W¼ÇX.ð?¶d¤vG݃?ÓI_°Sì?ƒzb¯˜êâ?ƒbcú»ê°?ÎN^@pá?‡—¥5Ÿ*[@@"@"@"@,@,?ð?ð?ð?ð?ð?ð¿U[&–à?_Ç>`?JYA¨b,?C”ºBÙÔ@¯ "Æ¢Ó@›…“ÈÒ2ß?g<=é,€?cÞÞÙ¥”z?ЕUqÆ?Ì.Ö€*@Ÿknò3@˜@°ç+ JÁ.„€@°ç+ J@°çÛô‡ý@°ç+ J@°æéxÔþ@°ç+ J@°ç´¢3@°ç+ J@°渺Ç@°ç+ J@°æ”Fs‚@«H!ÊÀƒÁ.„€@«H!ÊÀƒ@«H ù kº@«H!ÊÀƒ@«H Ä›¥ã@«H!ÊÀƒ@«H!ò×s@«H!ÊÀƒ@«H uöý!@«H!ÊÀƒ@«H!ò×t@5`ØDЩÁ.„>¤µÜÆ@1ÜIº^5?@1ÜÌÌÌÌÌ@0±‰7Kƨ@0±£n.±Ä@0#ÉîËû@0#× -=p¤@0#ÉîËû@0$?åÉ@0#ÉîËû@0#©*0U2@8J¨?¾‰máÚ?‘"žæÆó¡?ŒªèkÜ?ëÎ@ A2?ý‰w'¬@8J¨?’‡Iš÷?“û#ÆGf?e”[|ú(?Ö§­îQD?±—'¶Ü+@8p÷?3I¶#i?‚¸“Îè ø?ƒE 8?†¼Š˜L¥÷?†Óß -tõ@@@@ @*?ð?ð?ð?ð?ðøøøøøøøøøøøø™@¨ âMÒñª@¨ ãS÷ÎÙ@¨ âMÒñª@¨ æ¸ºÇ@¨ âMÒñª@¨ èe”¯O@¨ âMÒñª@¨ áG®{@¨ âMÒñª@¨ á:’£@¨ âMÒñª@¨ âø7´£@¡Ç+ J@¡Ç+ J@¡Ç+ J@¡ĵܯ?@¡Ç+ J@¡À4mÅ×@¡Ç+ J@¡Àƒn˜@¡Ç+ J@¡Â@·€4@¡Ç+ J@¡¿¤?åÉ@5Ì]cˆe”@5ÍBÃÉîÌ@2”›¥ãSø@2“t¼j~ú@1ö§ï²-@1öR½<6@1¨è§æ›@1§éùrG@1¨è§æ›@1©k¹Œ~(@1¨è§æ›@1§Á½¥?}Ñ¿ž,?’@k=[?”Uy*@1Åœàu÷@1ÅL˜_÷@1Åœàu÷@1ĵܯ?@1Åœàu÷@1Ä“t¼k?ˆÿÀ)T¿Æ?Æ4ÓLè?‘jh¨qã9?î®)„àµ?‘×´<î¯j?‘îƒÔ1a?}Ñ¿ž,?’CòO…?ß‹…&?Ë{4æk?‘Jâ”âj?“å¡jÚ?‚ù…žÄ`w?µœ7}?ˆAᆽÃí?ƒE 8?‡v>ª¸ ?‰_uñšó@@@@@(@,?ð?ð?ð?ð?ð?ð?H> €¾áž‚?#uw#–×Ñ·Y@2ƒt¼j~ú@2uŽ!–R½@1™Œ~($ @1ìVÕÏ«@1™Œ~($ @1”`ªdÂø@1™Œ~($ @1”ŽŠqÞj?„F/·ÿP5?¦@%:Èæ!?™ûР'®?–àa¦vfÚµÕ?‰6‰õË?ˆëÅoë@@@@@*@*?ð?ð?ð?ð?ð?ð?S<­L.?uˆB‰)?C3}ºÑ†?ZUǵ2@©WÃCL\@ž°ü?dËxŸ€Î ?z±GÃv>b?ʉGl¯~?ñkÖêBJa@ŸiÕêßl@œ@¤  Iº^@¤ þú??@¤  Iº^@¤ õ¢Ûñ@¤  Iº^@¤ ¼ñ}¹@¤  Iº^@¤ þžHá4@¤  Iº^@¤ ª=p£Ö@¤  Iº^@¤ ‡h§Àä@œQXbMÓ@œQc¤ °q@œQXbMÓ@œQ+øô@œQXbMÓ@œSªÐéùT@œQXbMÓ@œQ‡ø@œQXbMÓ@œQxQë…@œQXbMÓ@œP)~×ð@6Q|ÚQ@6SÿÚJ,§@3ahr° Ä@3Cj‡‰— @2¤¼j~ùÛ@2=Ëc;$L@2Þi­BÄ@1ÍáD|@2Þi­BÄ@1Õ¼£n/@2Þi­BÄ@1«=€üã?|¬Æ Væ?”Y@ðãT?¡Wˆ%ÞW?Ÿ§VWD^„?§¡«[q)?–2}‘hJ?¿pÉÃV?–¹ÐÑÎn?•óäƒK°”?£ô ä#ÿ?§œZ.žÈJ?¦"4M©?Љ ¯Ó1Ð?¦-œºš?œÞl½o?£{iÚO½Â?†ˆ#.÷?ˆþë]èÆ@@@ @$@@.?ð?ð?ð?ð?ð?ð¿Ž\a­¿“¶Mâ¹€?ÀÿCÞXÀ?†Ž^¼•p@¤ ì kŒ @œQ-óRx?¬k²³ŽÂ?¡#ÿçÆí@]r¬{0æ4@53é[½æ@Ÿaÿoçs@@¨| A‰7L@¨|ÎÙ†@¨| A‰7L@¨|$Ý/ @¨| A‰7L@¨|žš@¨| A‰7L@¨|" Iº^@¨| A‰7L@¨|]cˆg@¨| A‰7L@¨|U›=@¯ ÿ|í‘h@¯ -éxÔþ@¯ ÿ|í‘h@¯ ýVlô @¯ ÿ|í‘h@¯ ÿ—$tT@¯ ÿ|í‘h@¯ -MÒñª@¯ ÿ|í‘h@¯ -4mÅÖ@¯ ÿ|í‘h@¯ -Ä›¥ã@7Î쿱[X@7Ë=ÈK^@3pÄ›¥ãT@3s{J#9Á@2ö§ï²-@2ør° Äœ@2J0U2a|@2Fö”Fs‚@2J0U2a|@2KC•%@2J0U2a|@2Iº^5?}?гá‡}?‘è™è;?–•Kù̃æ?‹¯eU5?’êÔÒ?“lP {“›?|öOÿÝ?” Á lŸž?’üüšë‚J?1ð'7éÃ?”°XÍï#Ë?•åÖuÍa?…~ÆÎÇ$†?•¾Ä6Ü?šˆøQû±?‡¯½.SM?ˆ‹”âó?Š*ÊÔQãú@@@@@@?ð?ð?ð?ð?ð?ð?Y‰V8¿XSî\?Sl¨äD?)¥ºq,sl@¨|¯W¢@¯ -LeL?q îÔûõ?KP2s?ä•Yº6¡?™º +|@Ÿh5¿½`@ž@ªJ Oß;d@ªJ-#¯å@ªJ Oß;d@ªJ -î|#÷@ªJ Oß;d@ªJ¿ß¦¢@ªJ Oß;d@ªJì%%ì@ªJ Oß;d@ªJ[a™J@ªJ Oß;d@ªJ SøßS@œï²-@œèÁTɇ@œï²-@œí¯‘;@œï²-@œQÓóž@œï²-@œïË©½}@œï²-@œì:…µ@œï²-@œöMкß@8G>«6z@8=\E$õÅ@3Ô›¥ãSø@3Ù¢ÙâtÆ@36§ï²-@3;·Çóãj@2œÚQÎ@2ž6'Š­ @2œÚQÎ@2žÌ÷gëÄ@2œÚQÎ@2œvJßø#?Ĺó¥p?’åƒçµ?’­a0{"Y?}ñoð‡#?‘ ªÊë×?‘ å>µÇ¤?|ï"<¶~~?”„Xžq?”‚Z5_Ü?‘Ÿx¾¼Cþ?‘U—’Z"—?§zS!Ń?±‹ F÷?Ž%€$ ß?‡— ‹þUr?…»š¤Gtµ?wOH]Ý?‡8ÏœŒæf@@(@$@&@$@.?ð?ð?ð?ð?ð?ð¿H·Tó?Qœ¾­Æ?3„µm<?8H˜ƒŽ¶™@ªJïó¾@œîq[N¢?,‚!bG`?[ÊÎ[±¡?X9JÕØ*z?¾ÁòúÖ.¨@ŸjÖ<K@Ÿ@­‡:^5?}@­‡8bMÓ@­‡:^5?}@­‡;/ìVÖ@­‡:^5?}@­‡4¼@­‡:^5?}@­‡5Ž!–T@­‡:^5?}@­‡.ŠqÞk@­‡:^5?}@­‡.;Í5¨@¨(õÂ\@¨$Z¬@¨(õÂ\@¨Ÿ¾vÉ@¨(õÂ\@¨“t¼j@¨(õÂ\@¨ë…·@¨(õÂ\@¨Ë’:*@¨(õÂ\@¨ -à @6 Î_oÒ@6ÏAòØ@3|í‘hr@3‰ k¹Œ~@2þV“u@2õŽ!–R½@2£ÉîËû@2˜r° Äœ@2£ÉîËû@2›íúCþ\@2£ÉîËû@2›jçÕfÐ?„F/·ÿP5?—.‰†5¸?•ÝFê˜}é?”ø”gt>?—‰ QQ0¯?”›(¯“?“Æ×q„nï?i½ÆÝCv?ïCbŸNy?™Ücãgp?žFl}ÖÑì?™6Œ%ß6?–EÑ}?Ž`ŸÝïöF?ƒM¬Öe—_?Œ¶š?$Ìj½BÙ?‹ú èNÆö@@@@@,@*?ð?ð?ð?ð?ð?ð¿`R䑼¿QÑÅ?:û†ùË?c¹¸Tí@­‡37¡Læ@¨uÎ&p?]LOB½‹?‚ó¯áž½¥?¶e:é?ó2¦!Á@ŸiÂŒy@ @¯o²-@¯oß;dZ@¯o²-@¯p©*/@¯o²-@¯np:û~@¯o²-@¯q&éxÔ@¯o²-@¯næ1ø¡@¯o²-@¯nÙ‡*@¬KƧïž@¬LÌÌÌÎ@¬KƧïž@¬KíúCþ@¬KƧïž@¬KíúCý@¬KƧïž@¬MquŽ@¬KƧïž@¬L¿±[W@¬KƧïž@¬L<žìÁ@5kµsê´@5k’:)Çz@0‡ÎÙ‡+@0‰Î_oÒ@/íOß;dZ@/îV“t@-ÑÑN;Í6@-Ó33334@-ÑÑN;Í6@-ÒþÅm\ú@-ÑÑN;Í6@-ÒþÅm\ú?žˆ2}?ZÁ».œ?‘šÕU#?Œݶ\ñr?÷6r In?ÍàÊaùX?€‚ñêã ?’`5žña?ˆ9²0?‡@Cvì×?ÐFf$?–’+¸¢d?‚íWçé„?ŒË›Í‡Çq?‚ÂÌ]æ?ƒ3¸Î{Z?†Óß -tõ?†µ°jÆÃ@@@@@&@*?ð?ð?ð?ð?ð?ð¿!ës>€¿>&?1Trïsoÿ?A<.í¹@¯oÆù{h@¬L·»?QA°Ú¡X­?3å­Î&1?«¤}¡ôH‚?qþ˜–ãj@Ÿh&•‰Ü@¡@¥k…¸R@¥k Iº@¥k…¸R@¥l"h Ö@¥k…¸R@¥l1&é@¥k…¸R@¥lL˜_@¥k…¸R@¥k Iº@¥k…¸R@¥kC•@£È»çl‹D@£È¼(õÂ@£È»çl‹D@£È¼¾ß¤@£È»çl‹D@£È»quŽ"@£È»çl‹D@£È»quŽ#@£È»çl‹D@£È»À6ã@£È»çl‹D@£È»²þÅm@4„¯O „M@4„ohÜ@,`A‰7K@,S&Á½@) 1&éy@) íúCþ]@&æL/ƒ{K@&æ?¼@&æL/ƒ{K@&æ?¼@&æL/ƒ{K@&æL/ƒ{K?‚á²Olºü?°çR;?‘"žæÆó¡?‹µ™eU!µ?íOþtà?¶*WFÑ?|öOÿÝ?’˜‰%F²?ˆ9²0?1ð'7éÃ?Ó%y*£=?NÂò‚Ì`?‚2Y0â³?Œ°¶.Ä+Æ?‚q6tNø7?‚ãaÎúvh?†ˆ#.÷?†ˆ#.÷@@@@@,@*?ð?ð?ð?ð?ð?ð?‚~€¿a‘p ?#CT^Óß7? dw@ Ž@¥kP£8™@£È»Û¾Ò?BéØõtM¶?-·õÖªÉ?'cà<3d?eÔFX% ¹@Ÿh² 16@¢@¢ŒµÂ\)@¢Œ¶°_¯@¢ŒµÂ\)@¢Œ¹°d5ë@¢ŒµÂ\)@¢Œºƒ¹hç@¢ŒµÂ\)@¢Œ·~Ñ•@¢ŒµÂ\)@¢ŒÉù.@¢ŒµÂ\)@¢ŒÑ…®D@–\S÷ÎÙ@–\S,øü"@–\S÷ÎÙ@–\M@ÖA@–\S÷ÎÙ@–\JØ¡òK@–\S÷ÎÙ@–\lÝŠ@U@–\S÷ÎÙ@–\€Ã‚¿w@–\S÷ÎÙ@–\ªLËŒ@6–»˜È@6Uæâø2@3¡hr° Ä@3¨xìê×@3îùÛ"Ðå@3쌜q -¶@3…œàu÷@3‚ Ž£é,@3…œàu÷@3Švº‚@3…œàu÷@3Št' fµ?~Ov_Ø­«?–Hk«7®?µ„9­Ä /?ª8†®3šÀ?¦\þǵ"5?¤/…J§ÄÙ?„ÜNó7·å?•Ûq'æä?¶…X‹›A¦?¨jKfùŽ?£„\è³s?ªfõL®O?Š¥þ}¿t7?Ž~†^O0?¡Ï`¿xbò?«-Å Ûô?©FRv–.?¦6é`×%@@&@,@*@:@7?ð?ð?ð?ð?ð?ð?sËú½é?|<%@?Q©ˆÖÈ?SÌPÈGBf@¢Œ¼ööKe@–\f³îN -?kQÎ)±dç?o…̶¤?Ëîô‚½]Þ?ÌšrZÊðS@Ÿa3i® q@£@¬„ -=p¤@¬„KƧï@¬„ -=p¤@¬„éá°Š@¬„ -=p¤@¬„È´9Y@¬„ -=p¤@¬„$Ý@¬„ -=p¤@¬„_Ø­­@¬„ -=p¤@¬„ -=p¤@®¨ž¸Që…@®¨š^5?}@®¨ž¸Që…@®¨ŸØ­«Ÿ@®¨ž¸Që…@®¨ž5?|ï@®¨ž¸Që…@®¨ž\‘ÑO@®¨ž¸Që…@®¨IQ‚ª@®¨ž¸Që…@®¨¡–R½<@7ÖšÔ,<Ÿ@7Ñ‚©“ á@3J^5?|í@3KC,¥z@2—ï²-@2—ÎÙ‡+@2a:’£S@2a|ÚQ@2a:’£S@2aN;Í5¨@2a:’£S@2a:’£T?§Q,Äš¤?:LÓá -í?‘ŸÇSñ?Œ9‚Ù.?’¥.Kn Í?‘É=¦þï?Ž=fA:?“-N•I`(?»Þ‹"è?‘.}áµ$?”*v7¹¿?lINõÕ„?FpÉ'Ý?)‰€Zw?‚á²Olºý?…®×__C?ˆk! ¨l?†¼Š˜L¥÷@@@@@@?ð?ð?ð?ð?ð?ð?4ÏG,è?U/ŽX?5£ËÇ[ÌX?8–­â˜ˆ@¬„%§Ç¤@®¨ž=6?IÝœ¬&?Xùø#_Â?M}Þg‰K?¯b»]šÔ@ŸozaØ^@¤@­q7ÎÙ‡@­q/²- @­q7ÎÙ‡@­qO–»™@­q7ÎÙ‡@­qTêJŒ@­q7ÎÙ‡@­qLIº^4@­q7ÎÙ‡@­qHŒç°@­q7ÎÙ‡@­qG†Â&@ªF›¥ãT@ªF+ J@ªF›¥ãT@ªEü¹#¢›@ªF›¥ãT@ªEÿØ­« @ªF›¥ãT@ªFN¤¨À@ªF›¥ãT@ªFÉä@ªF›¥ãT@ªF *0U3@7¨†YJôñ@7«àÞÒˆÎ@2ý‘hr° @2úÀƒn—@2²-V@2‡1Å‚@1Ê0U2a|@1Äg8}¿@1Ê0U2a|@1Â@·€4n@1Ê0U2a|@1Áò×s?—¤o„C?“à‘û?¢µ‰Š’b?’ {½4?”‰Wïÿ·?–À¬‡$?‚á²Olºü?šÒ’](¼+?™”uÀdª?’RÖò?™Ÿ»6“?–ª ã*Ã?ŒÊ­#г^?îŠõ ?Цÿßë?¤?‡•ó¨–ˆ?>LR_5?‹Ûx§Þ@@@@@$@$?ð?ð?ð?ð?ð?ð?sžf<€¿3²z?g‰Ö‘é1?P£žüæé©@­qCƒy>ˆ@ªF³‡GÎ?ƒ‹°ÔZI?r¼m°Ç9À?ûg¦zOJ>?àîw¯`@Ÿkré @¥@¤s¶E¡Ë@¤‡ï²-@¤s¶E¡Ë@¤jrºaû@¤s¶E¡Ë@¤k/Š1l@¤s¶E¡Ë@¤kB«þ[@¤s¶E¡Ë@¤kÌ>ÒQ@¤s¶E¡Ë@¤k”ÝUæ@–ðE¡ÊÀƒ@–ð8Ôýó¶@–ðE¡ÊÀƒ@–ð30 @–ðE¡ÊÀƒ@–ð>eíH‚@–ðE¡ÊÀƒ@–ðD¦ê9@–ðE¡ÊÀƒ@–ðIÑ2­ª@–ðE¡ÊÀƒ@–ðGENO@8`ØDЩ@8XN¤¨ÁU@2?|í‘h@1ý>ŒâY@1å`A‰7@0ýKTkþŽ@0}cˆe”°@0z—~ýo¿@0}cˆe”°@0|c‹œ*@0}cˆe”°@0jâíDö?æ ç«Z–?”¬1ÅÊQ?‘–[Ze6?‹ÀG&ÁÌ®?’Žºù“H?‘4ލ«,X?æ ç«Z–?”òÌ¡ZùÞ?„š6?5‘Êß) ?’+Ñ2®?øŸ4Vå¡?æ¡‚á¾A?P¬êÝñ?‚€Ü‡Rçá?ƒ9†ò??ˆ¤¦­¤(¹?ŠuRZIòr@@,@$@$@:@2?ð?ð?ð?ð?ð?ð?#€L]¸?E|Á7§?2îìàHQ?Có´öµþ@¤kƒ#è#@–ðFÿ}–9?BdC;ö²š?Rô P”šh?~ªëÆet?”~H -@ŸsXñlšb@¦@¨–Iº^5?@¨–IxÔýõ@¨–Iº^5?@¨–IÔ•+@¨–Iº^5?@¨–IÇy¦µ@¨–Iº^5?@¨–IÇy¦µ@¨–Iº^5?@¨–I 'RS@¨–Iº^5?@¨–IxÔýô@«–“u@«–E¡ÊÂ@«–“u@«–Ov`@«–“u@«–R½<6@«–“u@«–‡+ @«–“u@«–z—@«–“u@«–“u@/Ñ ²•éâ@/Ñ ²•éâ@*©7KƧï@*©7KƧï@*E¡ÊÀƒ@*R½<6@)`ªdÂù@)SŽóMk@)`ªdÂù@)SŽóMk@)`ªdÂù@)`ªdÂù?É^³Dw'?Á+gÅß¶?‘ŸÇSñ?‹½XQê>æ?îú/´`?¶*WFÑ?ÐbV‡,?’ -‰¸Ì?ŠA)Nîá?3.Ylî?Ö§­îQD?Sñƒ´V.?€b¡´ñ@?Œ¬Çëý ?‚s@ˆaÛ?‚ãaÎúvh?†‰Oú|q?†‰Oú|q@@@@@,@*?ð?ð?ð?ð?ð?ð¿ ¡ˆëp¿+P*¹´>öÓÀ4ÇZ?0,ô–‚å@¨–I£ÙÀI@«–\€E¯?ô'ðú;&?$ÿÈYâš?¦KOþ˜?CTõêd5r@Ÿs¾ù¢¿@§@¦‹áÊÀƒÁ.„€@¦‹áÊÀƒÁ.„€@¦‹áÊÀƒÁ.„€@¦‹áÊÀƒÁ.„€@¦‹áÊÀƒÁ.„€@¦‹áÊÀƒÁ.„€@§3‡®záÁ.„€@§3‡®záÁ.„€@§3‡®záÁ.„€@§3‡®záÁ.„€@§3‡®záÁ.„€@§3‡®záÁ.„€@8õS&Á¾Á.„>¤µÜÆ@48r° ÄœÁ.„M‰ûçm@3'KƧïžÁ.„QnÙ‡@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¨@¦’}p£× -@¦’ŠÀƒo@¦’}p£× -@¦“ qv@¦’}p£× -@¦’ÔFs×@¦’}p£× -@¦‘á½¥@¦’}p£× -@¦‘HK]Ìc@¦’}p£× -@¦‘€-à @ªAݲ-V@ªAƧï²@ªAݲ-V@ªA íúCÿ@ªAݲ-V@ªA]/Ÿ½@ªAݲ-V@ªBD%®æ2@ªAݲ-V@ªA¼¹#¢œ@ªAݲ-V@ªAí„M;@8[¹Œ~($@80–»˜Çâ@3…?|í‘h@3„`ªdÂø@2v§ï²-@2i k¹Œ~@1øDЩ*@0óÉîËû@1øDЩ*@1aä÷eþ@1øDЩ*@1}¿H€?¬å'[ V÷?È”SÂëãî?Æ€v€Fd­?ÃTù Ö?ÓìôC€ò«7@¡þOß;@¡þXâe@¡þOß;@¡þlô!@8wâ‚@·€@8o·éùr@3µãS÷ÎÙ@3´ýó¶E¢@2¢-V@2 @1a:’£S@1bñ©ûçm@1a:’£S@1c¼ÓZ…ˆ@1a:’£S@1cn—P?гá‡}?”û#T©È?“=P™Ê?$¿ÀºÍ?“ £Ê­?’ß5¤µÜÆ@4£÷ÎÙ‡@4¨SÌ)¤@4b-V@4n¤èÙ +@35µsê³h@37庭ά@35µsê³h@35óf¹âÔ@35µsê³h@3ªn<Øà@8J¨?“ŸÈÖ?1?£œoðM¦"?ŽöW–}ä8?”pðÈ­°v?˜!žk$_@8J¨?˜œóÜš?šˆg^}®?ãGŒ%<â?”æÞ¡Ú_Z?•@ô¤,@8p÷?“I–ÏtþM?š6釯¤†?‹³¥vd‹ó?Žl_N?—Q"1Ú@*@*@$@:@8?ð?ð?ð?ð?ðøøøøøøøøøøøø¬@¯Bs3333@¯Bst¼j@¯Bs3333@¯Bs3334@¯Bs3333@¯Buµsê²@¯Bs3333@¯Bt9Xb@¯Bs3333@¯Bra|Ú@¯Bs3333@¯Bqë…¸@¦–¾vÈ´9@¦–¿|í‘h@¦–¾vÈ´9@¦–½ó¶E¢@¦–¾vÈ´9@¦–¿¤?åÉ@¦–¾vÈ´9@¦–¿|í‘i@¦–¾vÈ´9@¦–¿oÒô@¦–¾vÈ´9@¦–¾ƒä%¯@6VšÔ,<Ÿ@6TêJŒ@25ãS÷ÎÙ@26E¡ÊÀƒ@1;Ƨï²@1<"h Ô•@0³&Á½¥@0³¶E¡ÊÁ@0³&Á½¥@0³S÷ÎÙ@0³&Á½¥@0³Z…‡“Þ?|öOÿÝ?ï1ïºÅ?’ -·>á ?Œ9‚Ù.?‘˜¯ -`É?‘PÊÑ<Ýl?|¬Çëý ?’5CàQ?ð{¥âdú?‘*Uešß?‘\{3>Ôa?ÐnçK/?‚ù…žÄ`w?Å9–o?ƒúʳ_Ä?ƒ ?ÿ½?‡?®\Âä?†ïRÉv‘Ñ@@@@@(@,?ð?ð?ð?ð?ð?ð¿+A‡U ¿ã5€?*ÖkõË4?÷»ˆ?kJ@¯Bs#A•Â@¦–¿E+x?Jx—uÄ?5Yhâ5‡?¢ˆ-Óí§?vì_®Ã¡°@Ÿf»{’Î@­@¥Q'l‹C–@¥Q'l‹C–@¥Q'l‹C–@¥QFYJôñ@¥Q'l‹C–@¥Q-„M;@¥Q'l‹C–@¥Q#¯·é@¥Q'l‹C–@¥Q&ö”Ft@¥Q'l‹C–@¥Q*Ú¹õZ@©Iº^5?@©K…¸S@©Iº^5?@©JÍžƒä@©Iº^5?@©V+jçÕ@©Iº^5?@©LÌÌÌÌ@©Iº^5?@©QÞi­C@©Iº^5?@©P Ä›¦@7[¹Œ~($@7^ÿ—$t@2ÞÙ‡+@2Êu%F -@24“t¼j@2#&Á½¥@1B‚@·€5@1:Ú¹õY´@1B‚@·€5@19³Ð|„¶@1B‚@·€5@16µ '¼?ˆÿÀ)T¿Æ?©V½jnè¶?˜/×T•£ð?“zRÈUÄ?•BPbC¡©?™ÞW4»²—?–ªÎ­¡?¦;ûTM¿n?±ˆµZ7?—,àÐÑž?›Hدâ[Â?¢’©)u%?…™ï ufÝ?vùv“?‰6~„æAÕ?…<ò N ?Ž•w “w„?屘Úã@@@@@,@*?ð?ð?ð?ð?ð?ð?Lj…`?S–⛤?H7Äg?A"FSÈ@¥Q',¹¢@©N)ôLf?hL´‰² d?^m°…zlj?ÊlN· D7?¥‹†ûèÌÓ@Ÿi½=H/`@®@®ÐH´9X@®ÐBMÒñ©@®ÐH´9X@®ÐJŒL˜@®ÐH´9X@®ÐIá°‰ @®ÐH´9X@®ÐGRT`©@®ÐH´9X@®ÐF¸ºÇ@®ÐH´9X@®ÐHè§ç@¦¹Û"Ðå@¦¿;dZ@¦¹Û"Ðå@¦·€4mÆ@¦¹Û"Ðå@¦¹Û"Ðå@¦¹Û"Ðå@¦¹ k¹Œ@¦¹Û"Ðå@¦¶ð¹@¦¹Û"Ðå@¦¸ -à@87â‚@·€@823œ¾à@3pÄ›¥ãT@3r&€IQ@2´“t¼j@2·¯·é@2n_oÒ @2ohÛ‹­@2n_oÒ @2p6âë@2n_oÒ @2q4êJŒ?‡YÍ_?“…­tµH?“ï~í"?ŒR‹w#z?“r {#¥&?“Q´Î`°€?¥K¶{Oÿ?“£PuòN?–ˆkCünL?“^œW.‡?“ÀVâŸì?”Æ*%>g?¬¼•§&Œˆ?·ïö)h?† - Ðló]?„À"aËô??Š|)-}í(?‹¼`’ i2@@@@@*@,?ð?ð?ð?ð?ð?ð?U£»¥l¿R>]Ä2?4ds!—Â?G}‘[É­õ@®ÐF¢™@¦¹=ZÀ?UƇ"åçþ?_vz®ò?©Ÿ -gÎÐ1?­œ3Œw>@Ÿn‹úªoô@¯@§q&éxÕ@§o ‰ª@§q&éxÕ@§E9g@§q&éxÕ@§kHƾ@§q&éxÕ@§‘ˆ÷îk@§q&éxÕ@§cÈÑrÊ@§q&éxÕ@§zÿØú?@™.wÎÙ‡@™.vª@Ñ@™.wÎÙ‡@™.]Ø«˜7@™.wÎÙ‡@™-•Ølÿ]@™.wÎÙ‡@™-êé‰î@™.wÎÙ‡@™.gíF¶d@™.wÎÙ‡@™.háŸ@7D¯O „M@7@JK;æ˜@3; Iº^@3.„üc5u@2ù7KƧð@2æŠÇt@2zÔ,<ží@23‚õ]–@2zÔ,<ží@2Sß2û0@2zÔ,<ží@2UÍíà ­?e™”XWø?”áê ?•|i=÷ñ¾?ª ¦õc“?£¤Éí¢?¦Þ}‘çþ?“Ëî(Ù_]?’3ÿï¥Ç?¯üC#]Â?·Ñ©éµ.Ý?¦lŠ­É3Ç?¡l–ðf|?ŽÚ–ÙŽ¿¨?œ ÖHŒ3?‹y¸–æ?•yyȧÚ?¡*«niCÆ? ÙWƒœÕ@@$@@(@;@8?ð?ð?ð?ð?ð?ð?U¤4«¿^c4~"?l†–;ì?lÊÎë´Jˆ@§qlj&@™.lW+O+?‹€}l[:?ŽÖXl¨ê@g¯ Ë?ýsr¸(Î@Ÿe7çÅ@°@¦@oŸ¾w@¦@wKƧð@¦@oŸ¾w@¦@oDG/P@¦@oŸ¾w@¦@qäFÝ—@¦@oŸ¾w@¦@pŠÈÍÄ@¦@oŸ¾w@¦@mùF…W@¦@oŸ¾w@¦@ml½§–@–4V“@–4"MÒñª@–4V“@–4"†èu¯@–4V“@–4ô–›“@–4V“@–4 øª¦@–4V“@–4 ?;ÿ @–4V“@–4oJÓ@804mÅÖ8@8=Â\(ö@3…?|í‘h@3ŠTâ¯@2Ͳ-V@2ÑÖä|¶@23&Á½¥@26æûæÄ÷@23&Á½¥@2:Y»–Î@23&Á½¥@2;”„óç˜?æ ç«Z–?’PÕâ 6ö?–N²Â6ì?‹ÏOÁO;V?’ÇÅ—-?“±ÄÌÔ?æ ç«Z–?•hÎ)ý-?‘¥ÙïÉ¡%?–3¼9M?“ÅâÆ³?“ùà€Þ?æ¡‚á¾A?Ž-dʦí?®Õ>JM?‰t66ËÈò?‰[!.…×?Vçúm3Y@@(@,@@<@:?ð?ð?ð?ð?ð?ð¿W»ýc†?]®â&B?0¾D¡9\ä?L*zƒ5S±@¦@nÞÓvè@–4äðé??Çã[ý8 ?Z–3¼ ×þ?tÖ}*¸>d?¨—žåÍBt@Ÿrî8ð“ƒ@±@¬S Iº^5@¬S Òñ©ü@¬S Iº^5@¬S 5¨Xy@¬S Iº^5@¬S žƒä&@¬S Iº^5@¬S «ŸUš@¬S Iº^5@¬S ¹Œ~)@¬S Iº^5@¬S ÓÃa@®„“t¼@®‚\(ö@®„“t¼@®…ãS÷Î@®„“t¼@®„?åÉ@®„“t¼@®ƒ¯·é@®„“t¼@®„µÜÆ?@®„“t¼@®„%®æ2@5°4mÅÖ8@5°uöý!ÿ@1n5?|í‘@1nšu@0]V”@0]quŽ"@/™b¶®~@/™Û"Ðåa@/™b¶®~@/™¦µ (@/™b¶®~@/š6âëD?|¬Çëý ?%¼ÇÆÃ±?‘e -!ßC?ŒArUã@?‘2A¥Ø?âé¨ë7F?|¬Çëý ?’0nà=Q“?œõLÁE?Y‡…—Ø?‘=d¦^™?Éöm/w+@8Iç@8Ù?§Ò¸ùBz3@8Î÷@8i§@8Å@8S@8û—?ˆAᆽÃì@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø´@¯Ž1&éy@¯Ž1&éy@¯Ž1&éy@¯Ž´9X@¯Ž1&éy@¯Ž ÞÒ@¯Ž1&éy@¯Ž 7Kƨ@¯Ž1&éy@¯Ž“Ý—ö@¯Ž1&éy@¯Ž“Ý—÷@­0ÔzáG®@­0ÔzáG®@­0ÔzáG®@­0ÔÉ…ðo@­0ÔzáG®@­0ÔmÅÖ9@­0ÔzáG®@­0Ô¼j~ú@­0ÔzáG®@­0ÔðØDÐ@­0ÔzáG®@­0Ôã¼Ó[@0Î쿱[X@0Îæ1ø @,\j~ùÛ"@,\j~ùÛ"@*|¬1&ê@*|Æ?@*\¾ß¤@@*\ÚQÎ@*\¾ß¤@@*\ÚQÎ@*\¾ß¤@@*\(õÂ]?É^žQ5P‚?Úþþ³?‘(¥¿á?‹¦ ŸYÔ?îú/´`?·t¤¢‚J?ÐbMçê_x?’ -‰¸Ì?ˆ9²0?0ÜN :s?ÔÒ@úˆ‘?NÂò‚Ì`?€bMÕky?Œ­·Ž~('?‚q6tNø7?‚äÍ“½E'?†ŠúЀ>(?†l&þ@@@@@&@*?ð?ð?ð?ð?ð?ð¿HuG¶¨?Ò4” ?0¥ÕeLÄ?{ƒYâÀ@¯Ž=ˆ@­0ÔØ;Ã¥?>ËWÜMÅ ?ôkMîšh?wRÒóD2?!z›"ûÅ@@ŸsÕUßÖ@µ@§ŠJÀƒo@§ŠJ~ùÛ#@§ŠJÀƒo@§Š<¹#¢œ@§ŠJÀƒo@§Š,ÌÌÌÍ@§ŠJÀƒo@§Š)Çy¦µ@§ŠJÀƒo@§ŠquŽ!@§ŠJÀƒo@§Š xG@¦ï’ñ©ûç@¦ï™XbM@¦ï’ñ©ûç@¦ïàªdÂø@¦ï’ñ©ûç@¦ïØ“t¼j@¦ï’ñ©ûç@¦ðCn—Œ@¦ï’ñ©ûç@¦ðP£× ->@¦ï’ñ©ûç@¦ð)º^5?@6ºqÞi­C@6®ß¤?åÉ@2|í‘hr@1ÞÑ·Y@1b-V@1)ûçl‹D@1Þi­BÄ@0Åm\ú¬Ú@1Þi­BÄ@0Çy¦µ @1Þi­BÄ@0È>BZîc?žŒÝÙ›P? ³Q–“˜Ô?ŸÑF ðÿ.?© Êºd9.?«qÐS=²Ý?³y¥ÒØ?‡YÍ_?¡1™•ÿˆQ?¡c2M?ÍA„ÉÇÔ?Å,Q‰0åb?¿³r -?ÉÏt -j?‘a÷nñ?ÜÒƒN%?<±-ëÃV?’&Á¯»?’Oûh´6c@@@@@,@*?ð?ð?ð?ð?ð?ð¿Šp' Ì?¢'ÕÓl`?O¦Žªúw?}åEûxw@§Š8ª†Ç@¦ïˇ¬„©?mb'PNµ?•'|Ž a?ª!ʶb‘º?íyAåĈÿ@Ÿ`÷ê"­"@¶@¤á§l‹C–@¤á§ï²-@¤á§l‹C–@¤á¨Ë’9@¤á§l‹C–@¤á¨šu%@¤á§l‹C–@¤á¨ÁTɆ@¤á§l‹C–@¤á¦YJôñ@¤á§l‹C–@¤á¦YJôñ@¤ÍTýó¶F@¤ÍU?|í‘@¤ÍTýó¶F@¤ÍTÉ…ðo@¤ÍTýó¶F@¤ÍU*™1@¤ÍTýó¶F@¤ÍT¯O „@¤ÍTýó¶F@¤ÍU?|í‘@¤ÍTýó¶F@¤ÍU%F -¦@+¨ð¸@+¨ð¸@&kƧï²@&kƧï²@$÷Oß;d@$÷Oß;d@$¸7´¢3œ@$¸7´¢3œ@$¸7´¢3œ@$¸7´¢3œ@$¸7´¢3œ@$¸DЩ+?É^žQ5P‚?ÖÈ ¼?‘½ümüñ?‹ª½¨ª8v?éDEâ©×?·t¤¢‚J?ÐbV‡,?’ -‰¸Ì?¹º–Èj?/ò×ÈZø?Í(ÀT >?NÂò‚Ì`?€b¡´ñ@?Œ¬Çëý ?‚nâwg?‚â‡~ûÉ\?†‡hÉÈÓ?†ˆ#.÷@@@@@(@,?ð?ð?ð?ð?ð?ð¿R ¦ ‰?+t?7 -®¤9n4?òNÆá@¤á§Rí@¤ÍTÿ^÷¬?F'ß>Ž\?*pÆ®·‘?ˆ&CÊLAA?NºaËýJ†@Ÿs*)v@·@¡¢ƒn—@¡¢;dZ@¡¢ƒn—@¡¡·Xâe@¡¢ƒn—@¡¡]æšÔ,@¡¢ƒn—@¡¢æ¸ºÇ@¡¢ƒn—@¡¢8DЩ@¡¢ƒn—@¡¢be+Ô@ž;ÌÌÌÌÍ@ž;¸Që… @ž;ÌÌÌÌÍ@žë¢Ã`u? ¯2§ðci?ÒjÉ8¥´n?Ð1'hË -ç?¿N†Ï¸?¼(›Æ´?Ç ”\d?ÇÜà÷Í?µo Þøµ?Ö¾cÓ[†@@@@@,@(?ð?ð?ð?ð?ð?ð?¢Øœ±€¿¥DGKx ?‡¾‰¹[‹µ?{ÌE[úa@¡¢ÄÄ“1u@ž;H??¬?Ÿ:2*³Y¦?‘zòZæ@ªƒúyâ?êÀщ3@Ÿd|EgL@¸@ zNÙ‡+Á.„€@ zNÙ‡+@ zPP ?9@ zNÙ‡+@ zOß2Ô!@ zNÙ‡+@ zPù˜®@ zNÙ‡+@ zMéÈŠw@ zNÙ‡+@ zMÓ¾q@œ\V“uÁ.„€@œ\V“u@œ\V©‚‹@œ\V“u@œ\Y¯×*@œ\V“u@œ\V:ž¥¨@œ\V“u@œ\UîzO@œ\V“u@œ\U˜\;¡@/A°‰ 'RÁ.„>¤µÜÆ@*$“t¼j@*$}Êï‰@(´ýó¶E¢@(´®4·À@( -#9Àëî@( 8—ï‘@( -#9Àëî@( *žR%@( -#9Àëî@(.])—‡@8 -Näy?¾ŸÌVÏù?‘ÛΣ1?‹¬.ÎmA+?ëéû+?µ\ÖXV@82rê?’Î?ž£=?|™v«*å?3FN¡c$?Ü~Õ@#Z?O¦ZQûE@8L?Œ¬²ž–TÈ?‚qŒÊÒÕ?‚懒n°W?†Ò•@ì?†i= ç@(@,@2@=@9?ð?ð?ð?ð?ðøøøøøøøøøøøø¹@®áÿ|í‘h@®â·ïÂ$K@®áÿ|í‘h@®áþöá ‚@®áÿ|í‘h@®áëfL<3@®áÿ|í‘h@®â -ºZÀ(@®áÿ|í‘h@®áþàîf~@®áÿ|í‘h@®áùn©@—øk…¸R@—÷Æ$M{‹@—øk…¸R@—øRN«:@—øk…¸R@—øu.МS@—øk…¸R@—øvI‹@—øk…¸R@—øo«oµ@—øk…¸R@—øt| =Ú@8‰Î_oÒ@7¶‡)s£î@5+¥ãS÷Ï@539í¯I’@4A‰7KÇ@4˜á‹Å/³@4uµsê³h@4„"#á*@4uµsê³h@4†&®ö˜7@4uµsê³h@4‡"&ž?ß@l÷#?©×® Œ?’ß±äãÂ?œ¡Ðyçÿ? \l5wÈ? ë±jÎ×?Õ#{ñ¢W?”­+»21?“(w•ÆÔ?¡=#›o°?£MZèЮí?›Ìbº4?òKŸ:q¾Õ?‘0ÐÙm -i?•fÀ?R]Ñ?”¤.:›ÆN?•‰eæq+k?œ¨>÷â”…@@$@$@,@<@8?ð?ð?ð?ð?ð?ð¿Gæ.o ?IÊx ?nØ|N•W?l7¯yž]¬@®â¡ûP@—ørì¼7Ð?}Ùjð:¬Í?|^Áʲ ?Ø*7]Ò?Ñj@5§)Á@ŸsŽü-5@º@¨+1©ûçm@¨+2-V@¨+1©ûçm@¨+5Ž!–S@¨+1©ûçm@¨+1Þi­C@¨+1©ûçm@¨+/Åo@¨+1©ûçm@¨+1ë…¸@¨+1©ûçm@¨+4SŽóM@©Í8Ôýó¶@©Í9‡+@©Í8Ôýó¶@©Í8ï4Ö¡@©Í8Ôýó¶@©Í<í‘hs@©Í8Ôýó¶@©Í9Î_p@©Í8Ôýó¶@©Í8bMÓ@©Í8Ôýó¶@©Í9Œ~($@4úqÞi­C@4úû~ÿ—@3‡ÎÙ‡+@3‰…ðoiD@2Ct¼j~ú@2Cˆe”¯O@20–»˜Çã@21ë…¸R@20–»˜Çã@223œ¾à@20–»˜Çã@22{²þÅn?}Ñ¿ž,?‘<tc«6z@8ôM:’£@4@ Ä›¥ã@4F“t¼@41‰7Kƨ@4>5?|í‘@3ý!ÿ.I@3"T`ªdÃ@3ý!ÿ.I@3Ëûµt@3ý!ÿ.I@3¤?åÉ?«_$Øï†?%¼ÇÆÃ±?Ç ¾3з&? À߯K?žØ3Ä;5?”éëÀÍ?‘â%ì˜ ä?’uß¿çÒ?¹ £qÅõ)? ZÁ».œ?žÍhÿŒ?”'q²TrQ?°*?Ú±P?œûìôpØ?®'ºwò?‰®ðúcåZ?“KÌ&¨Í?“ÌUõÎs¼@@@@@,@&?ð?ð?ð?ð?ð?ð?]‰‰)T?bI•¯?vjCURÏ?OBzWOËÈ@©'³uj@¤³^õƒ1o?lÐYŽ™?qÈø–4µœ@¡:ãË?Ñ·Å»ú @ŸoÀݪz@½@¥Ëp Ä›¦Á.„€@¥Ëp Ä›¦Á.„€@¥Ëp Ä›¦Á.„€@¥Ëp Ä›¦Á.„€@¥Ëp Ä›¦Á.„€@¥Ëp Ä›¦Á.„€@§Ôýó¶FÁ.„€@§Ôýó¶FÁ.„€@§Ôýó¶FÁ.„€@§Ôýó¶FÁ.„€@§Ôýó¶FÁ.„€@§Ôýó¶FÁ.„€@7°4mÅÖ8Á.„>¤µÜÆ@3³S÷ÎÙÁ.„M‰ûçm@3 "Ðå`BÁ.„QnÙ‡@1ó&Á½¥Á.„NÜC,¥@1ó&Á½¥Á.„NÜC,¥@1ó&Á½¥Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¾@£üÄ›¥ãT@£üÄ›¥ãT@£üÄ›¥ãT@£üÅ¡ÊÀƒ@£üÄ›¥ãT@£üÄêJŒ@£üÄ›¥ãT@£üÅo@£üÄ›¥ãT@£üÃS÷ÎÚ@£üÄ›¥ãT@£üÃn.±Ä@ &éxÔþ@ &éxÔþ@ &éxÔþ@ &ffff@ &éxÔþ@ %8ï4×@ &éxÔþ@ %ýŠÚº@ &éxÔþ@ %F -¦L@ &éxÔþ@ %¼£n@3Û¹Œ~($@3Ü1&éy@0!hr° Ä@0!£n.±Ä@/mOß;dZ@/mÒñ©ûè@.½Vlô"@.»"Ðå`B@.½Vlô"@.¼wškP±@.½Vlô"@.¼C,¥zy?ð°–Ž]?Úþþ³?‘K]Ã4?‹²MÿAÿ8?ôê÷º»â?æöæ×t?ð°–Ž]?’NÛˆV(?ÔCXsò?3.Ylî?ÝIMÎ?oÌ‘'ýT?ð*wjs—?Œ¾»•lŽ?‚Ö˜>µDá?ƒžÂâk,?†ÃÛSPã?†¯Mž684?ð@@@@&@&?ð?ð?ð?ð?ð?ð¿H´+A–¿!§3¸?0Ïßݕ1?)Ïë0^j@£üÃÿ°¼Ñ@ %®¶!€?@4^3‘´?87‹·,‘?x»ùx¤?iˆUaÄ@Ÿs„BÚÇä@¿@®§s¶E¡Ë@®§v‡+@®§s¶E¡Ë@®§£{J#;@®§s¶E¡Ë@®§l"h Õ@®§s¶E¡Ë@®§tmÅÖ:@®§s¶E¡ËÁ.„€@®§s¶E¡ËÁ.„€@œpÓ÷ÎÙ@œpÔú ³@œpÓ÷ÎÙ@œp­V@œpÓ÷ÎÙ@œpÁ×Ûôˆ@œpÓ÷ÎÙ@œp—>«6y@œpÓ÷ÎÙÁ.„€@œpÓ÷ÎÙÁ.„€@8šÔ,<Ÿ@8ýIÑø@5‡ÎÙ‡+@5€ÞÒˆÎp@4Ͳ-V@4À-à r@3úÔ,<ží@3®($ x@3úÔ,<žíÁ.„NÜC,¥@3úÔ,<žíÁ.„NÜC,¥?”$úÀÁ’?¯"O.áÚ—?¦’޾ÕE?Ày‘Fµc@8Iç@8Ù?|¬Æ Væ?©á,ÌZ?§i©†˜s?Áƒ*¥o’Ü@8S@8û—?š5`‚b?Ÿ°À×þ‚î?«E©åý?¦Ñ"²ÔšÌ@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøÀ@«¦¬1&é@«¦¨´9X@«¦¬1&é@«¦–¡aä÷@«¦¬1&é@«¦ˆË’:@«¦¬1&é@«¦gæšÔ@«¦¬1&é@«¦lÙè>B@«¦¬1&é@«¦usê³h@§³»dZ¬@§³»¥ãSø@§³»dZ¬@§³¶¡aä÷@§³»dZ¬@§³®¾ß¤A@§³»dZ¬@§³«¹Œ~'@§³»dZ¬@§³¯v_د@§³»dZ¬@§³¥`A‰7@7>«6z@7eýŠÚº@3Ìí‘hr°@3¶Ü]cˆe@36§ï²-@3qÞi­C@2¡:’£S@2|ÚQÎ@2¡:’£S@2z)Çy¦µ@2¡:’£S@2|ô!-x?’Óusÿ\Ã?œPîñ°¦?¦br !?¢~ -]zýØ?´HàÙM¨?²¬}Ÿ}ã?1·†Æjñ?œK2ô6Ä?¤(Éõ •?™vEËõB?©>΀mù?¤ÚÄ^Uâô?ƒúʳ_Ã?5¿êÜ?ŒÊ­#г_?†O.ce?Ü×þë¿?£õ¹OONS@@@@@,@,?ð?ð?ð?ð?ð?ð¿‘R6£k¿sTÖ5–?u§ò¹ƒ.‚?JH<²Ž@«¦‰ó·i:@§³³Ž -?’nÙ¤¡;?f(ÜÒâd?ÿ³ÅÄZæ\?ÁêªQ± Ë@Ÿc&Ѓ@Á@ª9íV@ª9Ü(õÂ@ª9íV@ª9`[À8@ª9íV@ª9ŸË’:*@ª9íV@ª9ÎV“@ª9íV@ª9¹e+ÓÃ@ª9íV@ª9½ó¶E¢@ª6¬1'@ª6"MÒñ«@ª6¬1'@ª6ˆð@ª6¬1'@ª7Á½¥@ª6¬1'@ª7 -Àƒo@ª6¬1'@ª6[/ìVÕ@ª6¬1'@ª6ŸU›=@8 ]cˆe”@8Â\(ö@3£÷ÎÙ‡@3i k¹Œ~@3 ²-V@2Æ”FsØ@2 ù kº@1аò{²ÿ@2 ù kº@1ϾvÈ´:@2 ù kº@1ÏoÒòå?›’qvš°•?Ç©2‡?Ä(“ßbðµ?”oý]Þ‡&?«£·æì?¬ptí#°??§Ò¸ùBz3?à ÙÂW~·?Ñ%øiû|?¹·ѹ[0?¥<Õ–—EI?½ßI”2}Ú?¶P€¼@ø”?”!?; Õ?’ã0eʪv?ˆÝíá‰?%üdêË?‹aÊ•TI@@@@@ @*?ð?ð?ð?ð?ð?ð¿zcæ Ü?’Ü÷ß0?Y1/ï~|ù?”7ïDÇ@ª9ÍÜ ’h@ª6X-¥u?s$etŒgü?²ßÿL ¶›?ȋǧ©"7@*o \#j@Ÿh¹Žh -@Â@©–»dZ¬@©–½0æ0@©–»dZ¬@©–¸Øü§ò@©–»dZ¬@©–ÀNë!/@©–»dZ¬@©–¶o¾5™@©–»dZ¬@©–¸Ù§ú@©–»dZ¬@©–·ÆçbÝ@“K¾vÈ´9@“K·3É$@“K¾vÈ´9@“KÁDÃÈ@“K¾vÈ´9@“K§­£¼´@“K¾vÈ´9@“K±\yL@“K¾vÈ´9@“K·$šúP@“K¾vÈ´9@“K¼ªg^@8åöý!ÿ.@8êŒ È @4|í‘hr@4$wMp@2¾V“u@2½öp([”@2–ý!ÿ.I@2—ïoÒè@2–ý!ÿ.I@2™’Õ‰qm@2–ý!ÿ.I@2˜Ucñ¾?ª©ÑÉëÊ2?‘3ªº±°Í?‘›YsNÆ?ñV¢-TL?‘=î…é?óõ±{?ŸáŽJ\m?’­%Ž£‹™?þÛ0{rw?“²€m?”¢$ï,3ú?Èž]Ã?._?È-ìû ?…bsøÂ?…Ï4YQ¤?Šàå&N–?ˆ†–mt -û@@@"@&@3@*?ð?ð?ð?ð?ð?ð¿1Ù`?>&8Ùp?K¹x~Ò?Eeã©Ê“@©–·Ðüî@“K·ûÒãØ?`5E¦rx?e3]é]ð¨?µ°e{N±‹?ÄZjµ6ç4@Ÿp*Ü€ò@Ã@Ÿ³ Iº^5Á.„€@Ÿ³ Iº^5Á.„€@Ÿ³ Iº^5Á.„€@Ÿ³ Iº^5Á.„€@Ÿ³ Iº^5Á.„€@Ÿ³ Iº^5Á.„€@“’n—PÁ.„€@“’n—PÁ.„€@“’n—PÁ.„€@“’n—PÁ.„€@“’n—PÁ.„€@“’n—PÁ.„€@6-¥œàvÁ.„>¤µÜÆ@2Š^5?|íÁ.„M‰ûçm@1nùÛ"ÐæÁ.„QnÙ‡@0‚@·€5Á.„NÜC,¥@0‚@·€5Á.„NÜC,¥@0‚@·€5Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÄ@­p£× -=@­VE¡ÊÁ@­p£× -=@­†L/ƒ|@­p£× -=@­8*™0¿@­p£× -=@­S&Â@­p£× -=@­lÌÌÌÍ@­p£× -=@­lcñA@©áG®{@©Ôýó¶F@©áG®{@©¢3œ@©áG®{@©5fÏAò@©áG®{@©\(ö@©áG®{@©’° Ä›@©áG®{@©™‡+@8–šÔ,<Ÿ@8 uöý!ÿ@5®5?|í‘@5Ÿ\(õÂ@4ûƧï²@4ÎcŠ @4YŒ~($ @42½<64@4YŒ~($ @4JîcŠ @4YŒ~($ @4MVlô"?¥K¶{Oÿ?”·'‚5â–?¦†np½Ý?Àº¿]\ë?§|Qæý S?£6|Obœ?¦Ï±úQm‡?•%!{‚A? Z«42³?ºÇ`ؤ?´Mí¼#£?¤Â¤n°,i?²†N²N7?«…Éšûñ»?©uÃÇ?§¸'ôÔD[?¡xfrÂû?ªi‰o+p@@@@@*@"?ð?ð?ð?ð?ð?ð?thiD¿Š+Ÿç?vœÁÿšh}?z¢GÖWÊ@­ae…$€@©µ ²­õ?—ªßž  ?h6E-Åy?þû³tÄ;@ø™B#@ŸlæÛ ù@Å@©3¶E¡Ë@©3¶E¡Ë@©3¶E¡Ë@©4,<ží@©3¶E¡Ë@©4¢3œ@©3¶E¡Ë@©4FsØ@©3¶E¡Ë@©3ŽóMi@©3¶E¡Ë@©3Z…‡”@¢ÑQhr°!@¢ÑQhr°!@¢ÑQhr°!@¢ÑPØDÐ@¢ÑQhr°!@¢ÑP|„µÝ@¢ÑQhr°!@¢ÑQÎ_@¢ÑQhr°!@¢ÑQ4êK@¢ÑQhr°!@¢ÑPØDÐ@05S&Á¾@05S&Á¾@*ÍV“@*ÍV”@*:¬1'@*9õY³Ð}@(ÿåÉä@(ÿ¾vÈ´:@(ÿåÉä@(ÿ±[W>­@(ÿåÉä@(ÿË’:)È?É^žQ5P‚?Úþþ³?‘&Øç?‘?‹µ™eU!µ?îú/´`?¼‚Ë¡K?ÐbMçê_x?’¼  g¶?ŽËÜ¿€?6) }’ë?ÚÌA B{?PS2K¯™?€b¡´ñ@?Œ­·Ž~('?‚q6tNø7?‚äÍ“½E'?†‰Oú|q?†ŠúЀ>(@@@@@,@*?ð?ð?ð?ð?ð?ð¿:s¾Çð¿¢"« ?Ñ—;ï?x¶éÍå@©3È튰@¢ÑQíYŸ?$Hjòö?$é»à¡¾>?D/-ÎÌÑ’?C(aŠp@Ÿs_«pü@Æ@¦xG+ J@¦xH1&éy@¦xG+ J@¦xI“ àß@¦xG+ J@¦x)ûçl‹@¦xG+ J@¦xHK]Ìd@¦xG+ J@¦x7Ûô‡ü@¦xG+ J@¦x=—ö+k@¥í2° Äœ@¥í2-V@¥í2° Äœ@¥í1ÑN;Í@¥í2° Äœ@¥í0ÿ—$u@¥í2° Äœ@¥í>Åm\û@¥í2° Äœ@¥íiÇy¦¶@¥í2° Äœ@¥ídŽŠqÝ@6šÔ,<Ÿ@68†YJõ@3µãS÷ÎÙ@3¹0¾ í(@2îùÛ"Ðæ@2ô!-w2@2¦YJôðØ@2§_oÒó@2¦YJôðØ@2ÅÖ8†Z@2¦YJôðØ@2˜e”¯O?‚á²Olºü?/³)sšÌ?“ÔÃÆWž?’gh·T°?œ=òÙUä?¡î®ðÎ`~?|¬Çëý ?’uß¿çÒ?‘å†36åG?•%ôµh©F?°X‚O?ªl©N«½?‚q6tNø6?”É…ðoiE?•Wí+ Æ?‡W·ŽA:Þ?•XðküÏ?•XðküÏ@@@@@,@(?ð?ð?ð?ð?ð?ð¿aá-þÌ?ôM+o?W^ó«Å©?eq´ËTÄæ@¦xEW26d@¥í=°0è?sI1Uƒpƒ?€5áèÍË?åìóFa†Ö?õÈ¿ïû@ŸaÑ÷lh@Ç@ªD…¡ÊÀƒ@ªD‰ Ës@ªD…¡ÊÀƒ@ªDŠ’êc½@ªD…¡ÊÀƒ@ªD† ¤Vc@ªD…¡ÊÀƒ@ªDŠÊ˜4Ô@ªD…¡ÊÀƒ@ªD†#à'Ï@ªD…¡ÊÀƒ@ªD‚|…jt@›õÂ\)@›øÔýóµ@›õÂ\)@›ú¦ñ·@›õÂ\)@›úñLÎ @›õÂ\)@›ùÎ5@›õÂ\)@›ôŸï5g@›õÂ\)@›÷H’H@7VšÔ,<Ÿ@7Y’t²–@2—+ Iº@2—"P ™‡@1Ú~ùÛ"Ñ@1ÚŠÚÌå@1–ý!ÿ.I@1•@OÁ%à@1–ý!ÿ.I@1—4&£†³@1–ý!ÿ.I@1”nâ» ²?e™”XWø?<âï„?‘«* rÞ‹?wó™™+?‘2UÜç¶Á?Јæ«Vi?ˆÔ§xöß?’8~¿Ý#?ü‚„®Ö‹?’`]ŽY-?‘0œ3I?LúüÛ?_Ùwwo¸?–ö¹0,i?ƒp±>ÜÖ?„ úA¼?‡ÔÆsCÂa?†ˆHã‘@@"@$@(@0@,?ð?ð?ð?ð?ð?ð¿QBlô¿0ùîXè?CdÆÛ]Œ•?0u¤ÄÖz|@ªD‡iß1@›÷½Ž‹—?d±¡‹Õ=ì?P‡§²¤U;?Ò¬ªñ~ûÝ?¢!‰ -„Ve@Ÿiyh ÷@È@¯NW -=p¤@¯N^ùÛ"Ñ@¯NW -=p¤@¯Mßv Äð@¯NW -=p¤@¯MÖu@¯NW -=p¤@¯NHÅeU0@¯NW -=p¤@¯N—íZb@¯NW -=p¤@¯NÒ{ö$#@šÇó¶E¡Ë@šÈ1\L]„@šÇó¶E¡Ë@šÈr±+@šÇó¶E¡Ë@šÈyì -!@šÇó¶E¡Ë@šÈ”ÿ?”„ߦÑ?›ïkÓM¤µÜÆ@4 í‘hr°@4˜­«ŸU›@3V”@3\ú¬Ùè>@2fYJôðØ@2¡½¥œá@2fYJôðØ@2…ðoiDh@2fYJôðØÁ.„NÜC,¥@8J¨?ÆÇìÝ ý\?ÇD²Ú°*?´>5’cª?»i…Å -¼´@8Ù@8J¨?ǛȦBSÓ?Å€&®Õ—?¬Ã«S?¶Ê@û¤¤@8û—@8p÷?ÀÝÓ>UP?¯ÒÉUq(?£yD¼· ?¸MòÙƒNØ@8 Ø@@@@,?ð?ð?ð?ðøøøøøøøøøøøøÊ@¢.›¥ãSø@¢.žùÛ"Ñ@¢.›¥ãSø@¢.Ùb·@¢.›¥ãSø@¢.Ÿ¾vȳ@¢.›¥ãSø@¢.šxl"h@¢.›¥ãSø@¢.— -=p¤@¢.›¥ãSø@¢.™Àëíù@­[$Ý/@­[G®{@­[$Ý/@­[{šv@­[$Ý/@­[~Ov_Ù@­[$Ý/@­[~«6z@­[$Ý/@­[o4Ö¡c@­[$Ý/@­[r×sû@6 ]cˆe”@6 ~($ x@1é‡+ @1宿1ø @1A‰7KÇ@1 ÚQÎ@/Öð¸»@/Ð Ä›¥ä@/Öð¸»@/Ë…¸Qì@/Öð¸»@/̲•éá±?|öOÿÝ?äm°û0Ž?‘œÁùãJC?Uÿyu”#?“êôÉøX?’¯-! )m?|öOÿÝ?”Iõ`ÆÓ›?‘½ÀèÑmK?’„÷ò¸?˜hüÁ¯Y?”V.·H?‡z"2Úù(?Œèsq‡#?„ò—TËÄ?ƒGϵ¨í'?†å·ÑfWà?†Ü‘ °Ô@@@@@,@*?ð?ð?ð?ð?ð?ð¿WgÞÜ¿hº+¶?7¥š”:;H?O† ?£þö@¢.œ:ad@­[{€k?WTžfUI?nØa%\g¨?¹7É4ó2?âÆg^Óò@Ÿe‹(¯ŠV@Ë@¬Ì]/Ÿ¾@¬ÌXJ„@¬Ì]/Ÿ¾@¬ÌXNù@¬Ì]/Ÿ¾@¬ÌW\ðr.@¬Ì]/Ÿ¾@¬ÌWÔèiÐ@¬Ì]/Ÿ¾@¬ÌSž -˜²@¬Ì]/Ÿ¾@¬ÌTåöÂ@•ô$Ý/@•ôv¨p«è@•ô$Ý/@•ôP«³Þ@•ô$Ý/@•ô>ä0X¹@•ô$Ý/@•ô;ŠR&ç@•ô$Ý/@•ôVX­˜ã@•ô$Ý/@•ôBŸ÷µŒ@7ò䎊@7niši@2pÄ›¥ãT@2hѪÑG@2t¼j~ú@1÷Å`,ÇÛ@1TmÅÖ8†@1H±¨!ç@1TmÅÖ8†@1IÞíÀú@1TmÅÖ8†@1HÔÛL?}x—™?‘µ2uÌHA?’·3')Ö„?‚Cš æI?•©ÄSwñ–?Ÿ!m× -K€?š½CƒQl?–ö§;®l?²·bÓý?‚ï»°Wsþ?ŒÿÜÒÀrÝ?„r¨ún—Ž?ƒ€iÇ‘?ˆj³ïäLÊ?†äúußE@@(@(@(@8@:?ð?ð?ð?ð?ð?ð¿MK™@¿vY÷€?4RÏ:Køp?_Œ›¸Mè³@¬ÌVÖ¹Þ@•ô_ƒ¼ Õ?S|*Ëô¯?~àfCâ?_?³½Ÿ~èš?÷³S,Š2)@Ÿe¦í¬0@Ì@¥á)xÔýô@¥á)º^5@@¥á)xÔýô@¥á2n—P@¥á)xÔýô@¥á'l‹C–@¥á)xÔýô@¥á&Â&€@¥á)xÔýô@¥á%¸Qì@¥á)xÔýô@¥á&µ (@ªö©xÔýô@ªö§ï²-@ªö©xÔýô@ªö³Ð|„¶@ªö©xÔýô@ªö´9Xb@ªö©xÔýô@ªö±Å@ªö©xÔýô@ªö°bMÒò@ªö©xÔýô@ªö¬¥zxk@7÷â‚@·€@7úOv`@3”›¥ãSø@3•Ϫ͞„@2Wï²-@2W´¢3œ@2Œ~($ @2‘ÑN;Î@2Œ~($ @2«6z‘@2Œ~($ @2ü¹#¢?žŒÝÙ›P?“³ß )}o?‘RsÈW?”6Wé=t?“êôÉøX?”‹ÂØ*þ›?‘â%ì˜ ä?•¤-'Ä,?„¦Ô•]I?—êöªDH?“NM–8/?‘êey°úà?±A\ÿŸ#?‘pØ-Ÿt?„+£QKù?Šc^î½)Ô?%üdêË?8Ï£§@@@@@$@&?ð?ð?ð?ð?ð?ð¿E¢à_ˆ?SÃŒíÜ?;Ôå±åE2?P}îË…xî@¥á&Ð-ó&@ªö­A:Æ?Uc~™.›?p"Æ]S¶?Ôà”äB|?ÖùŸÉ@ŸmñI‰“@Í@® t9Xb@® xQë…@® t9Xb@® xüPH@® t9Xb@® rn—P@® t9Xb@® sê³g¡@® t9Xb@® }Ìcñ@@® t9Xb@® t,<žì@­]áÊÀƒ@­]ð Ä›¦@­]áÊÀƒ@­]ÑÅ€@­]áÊÀƒ@­]ÍOß;d@­]áÊÀƒ@­]µ '»@­]áÊÀƒ@­]ǯ·è@­]áÊÀƒ@­]¼„µÜÅ@8쿱[X@8?¼@3™º^5?}@3”÷eýŠÚ@3“t¼@3@N¤¨Á@2Vý!ÿ.I@2JÚ¹õY´@2Vý!ÿ.I@2IÞÑ·@2Vý!ÿ.I@2F_Ø­« ?¡ÅꯨŠT?Čۨ1A?” -Ÿ”îtI?‹©(ÓDÊ?¢Ì|(‘¾?«Á=)Jn?™™™™™™š?“oÆ †ä?’ÉÓDý?ªå9 ?¥þ–ÓOß?ªÜü˜á?¢ÀB§š7?œ]ŸFV”?ëýK|æ?ŒÅÐ7N³¬?^²®':Ì?—ÂÔèÄè@@@@@&@(?ð?ð?ð?ð?ð?ð?(褠п‡[\sÚ?[H\‰°?n˜>·@® wzpžô@­]о‘ÌÝ?vi}Ø@:?/‡'`?ÇÚÄO\ñ?ó§/‚Ï8@Ÿi´§ ¦þ@Î@£9Ä›¥ãT@£9ŸQí@£9Ä›¥ãT@£9Åo@£9Ä›¥ãT@£9È Ô•@£9Ä›¥ãT@£9ǯ·é@£9Ä›¥ãT@£9œwšk@£9Ä›¥ãT@£9ÂMÒñª@¤ó¬1'@¤ó/Ÿ¾@¤ó¬1'@¤ó"Ðå`@¤ó¬1'@¤ó}¿H€@¤ó¬1'@¤óŸ¾vÉ@¤ó¬1'@¤ó í(@¤ó¬1'@¤óˆÎp;@5£g ù l@5¢GE8ï5@2º^5?}@2l‹C•@0´“t¼j@0´µÜÆ?@0á:’£S@0à4mÅÖ9@0á:’£S@0âGE8ï5@0á:’£S@0Ýó¶E¡Ë?}Ñ¿ž,?*£|3Né?‘©ŠÕ ·Ñ?Wø0 ¥?’yÊêºq?‘Iãd©ì«6z@7 ²-V@2œIº^5?Á.„M‰ûçm@21‰7KƨÁ.„QnÙ‡@1½cˆe”°Á.„NÜC,¥@1½cˆe”°Á.„NÜC,¥@1½cˆe”°Á.„NÜC,¥?ˆÿÀ)T¿Æ@8#˜@8¾:@8 >+@8Iç@8Ù?›’qvš°•@8Î÷@8i§@8Å@8S@8û—?—­¦¾z£—@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÑ@­Uº^5?}@­U¥æ5o@­Uº^5?}@­U¾\AÇŽ@­Uº^5?}@­U¶ÐY¤Õ@­Uº^5?}@­Uº@­Uº^5?}@­Uº[|‡@­Uº^5?}@­Uµ¢Š“¨@šEH´9X@šEz@ŸföÜñ^m@Ó@¡w^5?|î@¡w^vÈ´9@¡w^5?|î@¡w^i­BÄ@¡w^5?|î@¡w^5?|î@¡w^5?|î@¡w^Åm\û@¡w^5?|î@¡w]<64@¡w^5?|î@¡w^Ov_Ù@¦ÏÄ“t¼@¦ÏÄ“t¼@¦ÏÄ“t¼@¦ÏÄ xF@¦ÏÄ“t¼@¦ÏÄoi@¦ÏÄ“t¼@¦ÏÄ›¥ãT@¦ÏÄ“t¼@¦ÏÄg8~@¦ÏÄ“t¼@¦ÏÄ“t¼@1Î쿱[X@1Îæ1ø @. -~ùÛ"Ð@. -³g ù @-–E¡ÊÀƒ@-–+jçÕg@,a-w1Å@,a-w1Å@,a-w1Å@,aohÛŒ@,a-w1Å@,a½¥œá?É^³Dw'?ï1ïºÅ?‘&Øç?‘?‹ÑqÔ@vÿ?üEÙáõ{?ºª$Ð?ÐbMçê_x?’&u÷E»@?†[‘'Í?K·‘d]?â2„&ÿh?X78›š?€b¡´ñ@?Œ¯þuõí?‚|׿pZ?‚ôhBì^?†špk Y?†©b/bJö@@@@@,@*?ð?ð?ð?ð?ð?ð¿3=9o¿+ï°ˆL?:µ7xH?¯¤R;sÐ@¡w^0)…@¦ÏÄdy?I²{ƒ‘9‚?† bON¶?èY1ù ?"UûÙÇPâ@Ÿs -ü~Ãi@Ô@¥—o²-@¥—f§ï²@¥—o²-@¥—C¹üi@¥—o²-@¥—Ž_<ý@¥—o²-@¥—–]Dy@¥—o²-@¥—‰T~j.@¥—o²-@¥—¹’Ç@–JQë…¸@–J\PeȦ@–JQë…¸@–J8”“¼=@–JQë…¸@–JG¾DÛ8@–JQë…¸@–Jgx.'@–JQë…¸@–J@·™”V@–JQë…¸@–JXÍ»-6@7zqÞi­C@7†d¼„Nž@3|í‘hr@3ÉNÉn›@2F“t¼@28£¸Š@1î_oÒ @1ß`X¦ÈŽ@1î_oÒ @1àh¹Ÿ%@1î_oÒ @1Þ´“Gí?”Òž“¸8A?£™@ EÕ?¤ K­‡ÿM?©Ó¾»Æÿ?šóÝ @õ?¥H_Ià($ x@§SKƧïž@§Q×´¢3œ@§SKƧïž@§S`uöý"@§SKƧïž@§S…‡“ݘ@©•ØbMÓ@©•áÊÀƒ@©•ØbMÓ@©•Ï4Ö¡b@©•ØbMÓ@©•âœwš@©•ØbMÓ@©•á£n.²@©•ØbMÓ@©•Ù#¢œx@©•ØbMÓ@©•Ê~ùÛ$@8–šÔ,<Ÿ@8V”@4!hr° Ä@4¾ƒä%®æ@3Õ`A‰7L@4sÉîËû@2ó&Á½¥@3ÀëíúCþ@2ó&Á½¥@2äÉ…ðoj@2ó&Á½¥@2㜾ߤ?¡EÉ@Ú?¨j¸K?ÈYœÖüoÈ?¢òߤºE?¨Š;µŸp‹?³™"ÕPx?îŠõ ?§îV1,¯·?­ ßåG?“{¡7¨Üò?š¹'¤Ò ?—Õàq¶Ù?”⦘¹Ô?¡j`cq?¹eÄk+ã?’èïÅ42ô?“6‰møŸã?“ÌUõÎs¼@@@@@$@(?ð?ð?ð?ð?ð?ð¿“°èk ¿szGü…?²Çƒ Q¶³?dL›G4a#@§RÈ€9M@©•ÜsÇÕ?вÎ3õç?€ñ“…£Í@qè°9u(K?í)lÄí0@Ÿiê¢ÿ«z@×@¡°MÒñ©ü@¡°P£× -<@¡°MÒñ©üÁ.„€@¡°MÒñ©üÁ.„€@¡°MÒñ©üÁ.„€@¡°MÒñ©üÁ.„€@¡°MÒñ©üÁ.„€@ Ú~vÈ´9@ Ú|í‘ht@ Ú~vÈ´9Á.„€@ Ú~vÈ´9Á.„€@ Ú~vÈ´9Á.„€@ Ú~vÈ´9Á.„€@ Ú~vÈ´9Á.„€@704mÅÖ8@7.ÒˆÎp;@4û Iº^Á.„M‰ûçm@4PA‰7KÇÁ.„QnÙ‡@4O „MÁ.„NÜC,¥@4O „MÁ.„NÜC,¥@4O „MÁ.„NÜC,¥?гá‡}@8#˜@8¾:@8 >+@8Iç@8Ù?…ÅBðrç@8Î÷@8i§@8Å@8S@8û—?FpÉ'Ý@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøØ@©w&ffffÁ.„€@©w&ffffÁ.„€@©w&ffffÁ.„€@©w&ffffÁ.„€@©w&ffffÁ.„€@©w&ffffÁ.„€@šÍ1&éxÕÁ.„€@šÍ1&éxÕÁ.„€@šÍ1&éxÕÁ.„€@šÍ1&éxÕÁ.„€@šÍ1&éxÕÁ.„€@šÍ1&éxÕÁ.„€@8–šÔ,<ŸÁ.„>¤µÜÆ@5¦‡+ JÁ.„M‰ûçm@4þV“uÁ.„QnÙ‡@4ž«6z‘Á.„NÜC,¥@4ž«6z‘Á.„NÜC,¥@4ž«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÙ@Ÿ™$Ý@Ÿ™$Ý@Ÿ™$Ý@Ÿ™v[Oà@Ÿ™$Ý@Ÿ™$*V@Ÿ™$Ý@Ÿ™ÅéTx@Ÿ™$Ý@Ÿ™Ý-¦‰@Ÿ™$Ý@Ÿ™+¸, -@ŸFèr° Å@ŸFèr° Å@ŸFèr° Å@ŸF攀M¼@ŸFèr° Å@ŸFå}ûÑÍ@ŸFèr° Å@ŸFå>|@ŸFèr° Å@ŸFç-ì<§@ŸFèr° Å@ŸFæk¤“È@1‘|ÚQ@1‘Çy¦µ @,æ§ï²-@,äÛK–@+ΗOß;@+Î^áôbû@+³üPH@+¬WÙÇß@+³üPH@+®`."R®@+³üPH@+¯8†T?çÞ–L I?Ô®m†¨#?‘!,1 ®þ?ŒIfÇ4)¿?‘ …¡Ç«O?Ô¿<Ž?èŽìr¡-?’øTöÕ·?€Ýörh?r©»i?þ¢w°?gã!_'?æ ýM¹<Ç?ŒÛ4ñ ]??‚vK»oº>?‚ë•ä™ Š?†£¢Ä«?†ŸF½"ªÒ@@*@(@*@9@5?ð?ð?ð?ð?ð?ð¿E…–Š?2*ø ²?9úf/5Œ´?,Å(Üxš&@Ÿ™Ä2€@ŸFæ:šÔ¶?H½$àNûÔ?:ÚîBlÃ?ýu#4Ä?o?Ó/8H@Ÿs†mø‡½@Ú@¨nzáH@¨iº^5?@¨nzáH@¨k…¸R@¨nzáH@¨l"h Õ@¨nzáH@¨kC,¦@¨nzáH@¨m:’¤@¨nzáH@¨jôðØF@ ø^¸Që…@ øa$Ý/@ ø^¸Që…@ ø[Í5¨W@ ø^¸Që…@ ø]ŠÚ¹õ@ ø^¸Që…@ ø^5?|î@ ø^¸Që…@ ø^($ x@ ø^¸Që…@ ø]cˆe•@7p4mÅÖ8@7nHè§æ@2ør° Äœ@2ù#¢œwš@2PA‰7KÇ@2R©“ àß@1Š0U2a|@1‹'»/ì@1Š0U2a|@1ŠÍžƒä&@1Š0U2a|@1Š…‡“ݘ?œä%—ëš?4ë©$è‰?‘Ú¾¯ïé?i²Pƒè?‘\Žýµ€7?‘)]•\¬?гá‡}?’Dê™.x?‘8“‡«G?‘ݤ`Ìh?‘®7Ö=^9?ú`@0k?Œó}?ï?þ,DöP?…ÑTë0Ô?ƒ¼9XNÄu?‡&üòI?‡&üòI@@@@@&@(?ð?ð?ð?ð?ð?ð?5¾§ °¿H=S™Ø?=£ÆÕÂ? Oþµ Ç@¨kU¼Ü@ ø^›Vp^?TÉ,¸ ?@¶¦5šI?¤Î -[ëêT?ÇèH°«‚@ŸmÍ[å@Û@£‡+ @£"Ðå`B@£‡+ Á.„€@£‡+ Á.„€@£‡+ Á.„€@£‡+ Á.„€@£‡+ Á.„€@”)ÊÀƒo@”)Å\å»3@”)ÊÀƒoÁ.„€@”)ÊÀƒoÁ.„€@”)ÊÀƒoÁ.„€@”)ÊÀƒoÁ.„€@”)ÊÀƒoÁ.„€@7ºqÞi­C@7×”8ê@3‡ÎÙ‡+Á.„M‰ûçm@3t¼j~úÁ.„QnÙ‡@2zÔ,<žíÁ.„NÜC,¥@2zÔ,<žíÁ.„NÜC,¥@2zÔ,<žíÁ.„NÜC,¥?|Ñb×¶@@8#˜@8¾:@8 >+@8Iç@8Ù?¥u´GS:@8Î÷@8i§@8Å@8S@8û—?Å,£N²N @8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÜ@­PNÙ‡+@­P_¾vÈ´@­PNÙ‡+@­PP Ä›§@­PNÙ‡+@­P;quŽ#@­PNÙ‡+@­PY³Ð|„@­PNÙ‡+@­P]¥œà@­PNÙ‡+Á.„€@ªN®—Oß@ªNÊÀƒ@ªN®—Oß@ªNÕÜÆ?@ªN®—Oß@ªNÜÚQ@ªN®—Oß@ªN˜bMÔ@ªN®—Oß@ªN•?|í‘@ªN®—OßÁ.„€@9Y*0U2b@9mVlô!@5ahr° Ä@5ZôðØDÐ@4ƒt¼j~ú@4‰Dg8~@3æYJôðØ@3ælô!.@3æYJôðØ@3ÖÜ]cˆf@3æYJôðØÁ.„NÜC,¥?¡ÅꯨŠT?¯‡¿\Öß?¿ôaBÔÓŒ?­XvŒM?±Ö©¾då@8Ù?ºðŽÄS?²U(˜?ÊÁä«$?•GÝóuS—?´®%ð"5@8û—?Vrÿä€?¯˜TúWÇn?´GLžl?˜<å05ä?¥È©¾ó‚ž@8 Ø@@@@@&?ð?ð?ð?ð?ðøøøøøøøøøøøøÝ@ªÔ§ï²@ªÔ Iº^5@ªÔ§ï²@ªÔ Ô•@ªÔ§ï²@ªÔ ã½@ªÔ§ï²@ªÔ íúCþ@ªÔ§ï²@ªÔ ŸU›>@ªÔ§ï²@ªÔ quŽ@«!½p£× -@«!º¬0@«!½p£× -@«!ºáG®@«!½p£× -@«!¶lô!@«!½p£× -@«!À'RTa@«!½p£× -@«!¾ì¿±[@«!½p£× -@«!»"Ðå`@7‡>«6z@7€Ä›¥ãT@2æ‡+ J@2â‚@·€4@2'KƧïž@2$Fs×Ü@1ÏO „M@1ÍVlô"@1ÏO „M@1ÍÙb¶¯@1ÏO „M@1ÎzáG®?3ßa=„?äm°û0Ž?“‡ƒ×¤?Ž,OêK˜u?”ä+ïè?”OPlðó[?гá‡}?’#maЀ?“h_N’%¾?‘.}áµ$?’êJ>áý?’9ñ9¶ò8?–-¤]î§É?ª‚eûƒ+?„ËD(ºp?†k3`E`-?‘HAõY‚§?IÏáå$@@@@@,@(?ð?ð?ð?ð?ð?ð? )å@?CšÆh?(b¶ý×i­?JZïlâ@ªÔ 3Øß@«!¼ÃƒÃ?EØÖ¢^Bû?j“ÒY;¹?‰kž„Š?ÓqÌêåWì@ŸjÖE¶É@Þ@Ÿw Iº^@Ÿw$Ý/@Ÿw Iº^@Ÿvæ³YÍ”@Ÿw Iº^@Ÿw†™ Å@Ÿw Iº^@ŸwLúP@Ÿw Iº^@ŸvòWé©!@Ÿw Iº^@Ÿw;¯è@¥žŽV“@¥žß;dY@¥žŽV“@¥ž{ÏF†@¥žŽV“@¥žf_>b@¥žŽV“@¥Ë$d³§@¥žŽV“@¥ž¨Pÿ,@¥žŽV“@¥ž©¶¼WI@5­¥œàv@5¬??¬¯X@2óS÷ÎÙ@2ú5e*NÔ@2U`A‰7L@2•*/êƒä@1Ç ù kº@1êÔ#ª:`@1Ç ù kº@1³kûÖfÇ@1Ç ù kº@1°¥¥$ëq?}@T˜ÁÎ¥?¬Æ‡‚s3â?­]>ô ª>?žƒ«6z@4Â&€I@3° Ä›¦@0°Ä›¥ãT@2×ï²-@0íúCþ\@2£ÉîËû@/^($ x@2£ÉîËû@/¬#»Ö(;@2£ÉîËû@/µÂ\(ö?æ ç«Z–?‘j`cq?¨ ƒ3 *??¯ð~aäí?¤Ôr‡³•#?±ùÐ % -?æ ç«Z–?“-N•I`(?¶*ÞºjÎ?¹÷Ø=ëEi?¢¡‰¶Üœ¶?°O­Rh™«?æ¡‚á¾A?Cx}¹x%?¨³Ð(14z?£…üWÅ?¥2§ÅÌþü?«Ý]2°ðƒ@@@@@1@?ð?ð?ð?ð?ð?ð¿—¶9†¹à?rEŸÚá€?yAXØ•?tmeŽîí@¡-òî@žÇÍÝ …¡?ƒòÔDïB?zc_í¬[5?ÈâÒˆŽm;?´éF/¥êý@ŸsçR@à@°¢\(öÁ.„€@°¢\(ö@°t xG@°¢\(ö@°Ä›¥ã@°¢\(ö@°ÎÙ‡@°¢\(ö@°ÈFÜ]@°¢\(öÁ.„€@¡H+…¸RÁ.„€@¡H+…¸R@¡H jçÕg@¡H+…¸R@¡Hå`A‰@¡H+…¸R@¡H#{J#:@¡H+…¸R@¡Gâh Ô•@¡H+…¸RÁ.„€@8£g ù lÁ.„>¤µÜÆ@5ÇÎÙ‡+@5¥zxl"h@5Àå`A‰7@5°ò{²ÿ@5!:’£S@4Ý¿HË’@5!:’£S@4È´9Xc@5!:’£SÁ.„NÜC,¥@8J¨?®££VºÓ‹?ÓK+ûHNÏ?º„Ú¡Ÿ?ÞÐ?”´ö@8Ù@8J¨?š˜‡þCî·?•Ã,X1Ø?¤G›LD3?¾_÷І@8û—@8p÷?­îŠõ ?¸Ü¸I½U,?°p)Õ?µ[}†?ö@8 Ø@@@@(?ð?ð?ð?ðøøøøøøøøøøøøá@Ÿ­VÁ.„€@Ÿ­VÁ.„€@Ÿ­VÁ.„€@Ÿ­VÁ.„€@Ÿ­VÁ.„€@Ÿ­VÁ.„€@“U-VÁ.„€@“U-VÁ.„€@“U-VÁ.„€@“U-VÁ.„€@“U-VÁ.„€@“U-VÁ.„€@7D¯O „MÁ.„>¤µÜÆ@3Œí‘hr°Á.„M‰ûçm@3Ct¼j~úÁ.„QnÙ‡@2ºÔ,<žíÁ.„NÜC,¥@2ºÔ,<žíÁ.„NÜC,¥@2ºÔ,<žíÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøâ@§³¢Ðå`B@§³•Â\(@§³¢Ðå`B@§³ŒøT2@§³¢Ðå`B@§³€÷KP@§³¢Ðå`B@§³–©@§³¢Ðå`B@§³˜Üå¶@§³¢Ðå`B@§³Ž<ä›þ@˜^÷ÎÙ‡@˜^Øv¯!@˜^÷ÎÙ‡@˜^äYR1}@˜^÷ÎÙ‡@˜^Ì-†#@˜^÷ÎÙ‡@˜_{K•|@˜^÷ÎÙ‡@˜^ð°µÄV@˜^÷ÎÙ‡@˜_ÝÐé@8G>«6z@8^ˆ6o@5E?|í‘h@5Qj§Ö˜@4¹7KƧð@4Þ3üèœ1@4=cˆe”°@4P›‡aºŠ@4=cˆe”°@4RÑfçá@4=cˆe”°@4[çÜûû¼?¤·V¶ Á?š•¹Š(¸a? ÍËÛÄõ?›äG>,)ç?§Ë÷úÜÇä?¢É æç·?ƒ6ð]g™ä?˜¨ŽóxSV?¡pCäëmï?›W²·w„?¡šä¿ë?®OaÕùü'?Á·ZÌYØ? )N!?¬ -¶±µÆÖ?ª|X¸.‚é?ž°ÿhk?šis^zaò@@&@*@$@8@9?ð?ð?ð?ð?ð?ð¿U’¥p?ˆž?ML?Fí'=á*?„ïœ:†b{@§³“Ð Yè@˜_rtÔ?e -óà¸?¢YîQ^Y?¶“ Ûù8”@4@‡bßT@Ÿd -P>Õ5@ã@¥+›¥ãTÁ.„€@¥+›¥ãT@¥/„M ¶®@¥+›¥ãT@¥/d©/9™@¥+›¥ãT@¥/‚w•â§@¥+›¥ãT@¥/o_p6Ä@¥+›¥ãT@¥/Rs*@”¦2-VÁ.„€@”¦2-V@”¬Œ¨îàÊ@”¦2-V@”¬·õ=>,@”¦2-V@”¬pÅ/¸Ÿ@”¦2-V@”¬pð Ø@”¦2-V@”¬²ÃŒ>Â@9N쿱[WÁ.„>¤µÜÆ@3û Iº^@1ݸ¢Z@3¢-V@1D=óp?@2–ý!ÿ.I@0Áškuß@2–ý!ÿ.I@0¿” W„@2–ý!ÿ.I@0°Ë¼U÷@8J¨?“)ÂkÙE5?›7ö.ÈC?¢—¢©¯?°vWW›£?¬eÍ+–ø@8J¨?šSáçþlÿ?³uCcCîO?¤@ú;+?°c¼Á‡Q?¥“"Ó8Ÿ@8p÷?t¢dÿÖ?ž'Ö+”Må?¦¶ùà÷v?™ÿ š'S³?¦[‚LÁ @$@*@&@:@1?ð?ð?ð?ð?ðøøøøøøøøøøøøä@ª-Ñhr°!@ª-Ê;~NŽ@ª-Ñhr°!@ª-%`A‰6@ª-Ñhr°!@ª,¤Ý/ @ª-Ñhr°!@ª,q©ûçm@ª-Ñhr°!@ª,¶‡+ @ª-Ñhr°!@ª-1Ä2ÊW@œã¦éxÔþ@œã»dZ¬@œã¦éxÔþ@œäè§æ›@œã¦éxÔþ@œåN¤¨Á@œã¦éxÔþ@œåáG®|@œã¦éxÔþ@œäÚîc‹@œã¦éxÔþ@œã€@7}:’£@7o”ØK¬=@4^Ù‡+@4 Ä›¥ã@3éÛ"Ðå`@3†§ï²-@3^«6z‘@3£× -=q@3^«6z‘@2ùŒ~($ @3^«6z‘@2àªdÂø8?|¬Æ Væ?´b0BiÅ‹?«/b²›?¡‹÷;Ïœ(?ÓÖ ‡ -ŽQ?Ìéí'iÙ?€‘gQÚÃ?³ŒW¦"°?²N…i?¨[3.ù?ÉWl4t ;?Ôë· ={2?ƒöä.)¨w?àìÚJ>?º6¤¨weN?“ûæÛØs?£‘6èYkC?Ê©D·P2@@@@@*@*?ð?ð?ð?ð?ð?ð¿¿¿åÀ?¶ï¥=ð?“ÿËðñ?—Â÷ÿ·Ú6@ª-ƒdo.´@œä$$è?œiùÁã¡?Ÿ­C¼é@2m¯ó>2±@-OÄc!â@ŸZxÝ;ßH@å@«|Rn—P@«|7KƧñ@«|Rn—P@«|TêJ@«|Rn—P@«|TÖ¡aå@«|Rn—P@«|S àÞÓ@«|Rn—P@«|QÅ@«|Rn—P@«|QuŽ!–@©<n—@©6@®ƒÐå`A‰@®ƒÑD=¶@®ƒÐå`A‰@®ƒÐÔ@®ƒÐå`A‰@®ƒÐ¥*Z¿@®ƒÐå`A‰@®ƒÐïÅ2@7Ç>«6z@7Æâú!Ÿ@1T›¥ãSø@1T¿±[W>@0t“t¼j@0tò›öŒ6@/QÑN;Í6@/RrÕ"õè@/QÑN;Í6@/Q~ô¥ô@/QÑN;Í6@/Qã!¢ç÷?( ˜?Úeqa†?‘Ûƒ{ÜÂ?‹²ô´úMŒ?ê4sFž ?ÌKšK$Þ?•w«ogŸl?’Îÿ@Í{?ƒ&Dd?2âÿ…6H?Íäwh??iåDbƒy?Œ‚°—‡Â[?ŒÃõßî;?‚s*ùÕ¦?ƒA&¡?†°"ŠõíŽ?†“‚I—²@@"@@(@1@1?ð?ð?ð?ð?ð?ð¿4Ô¸pˆ¿.Ó\ÿà?/‘ß1cû?/l·{áqö@ »4™x?IÑÓfx*³?—’¾û?çí?‘IØÅue@Ÿmò»ò!@è@¬ØÆ$Ý/@¬ØÐå`A‰@¬ØÆ$Ý/@¬ØÂ\(ö@¬ØÆ$Ý/@¬ØÉº^5@@¬ØÆ$Ý/@¬ØÈr° Å@¬ØÆ$Ý/@¬ØÏß;dZ@¬ØÆ$Ý/@¬Ø¹XbN@¯%ÿ|í‘h@¯& xÔýó@¯%ÿ|í‘h@¯&´9X@¯%ÿ|í‘h@¯& V@¯%ÿ|í‘h@¯%û¥ãSù@¯%ÿ|í‘h@¯%þ5?|î@¯%ÿ|í‘h@¯%ö‡+ @8–»˜È@8†È´9X@4#÷ÎÙ‡@4%`A‰7L@3€å`A‰7@3ƒþ\‘ÑN@2î_oÒ @2ñ4êJŒ@2î_oÒ @2ñ@N¤©@2î_oÒ @2òœwškQ?3ßa=„?’ÕOäª9ô?—go]Þ?i²Pƒè?‘#6‰¥_?ïˆ6ÏJ?­g;+³ût?’?Á• ñ:?‘½ÀèÑmK?ð{¥âdû?•¯ÃþƒR?—Q,Äš¤?‘c‚ׯ?Å{¿Ž<º?‡š¿]b?‚æÊ¬vã?‘¬xÆ×S?†¯Mž684@@@@@@?ð?ð?ð?ð?ð?ð¿l)°%¿cë¡ï§?d²®¸×a>?Zþ ‘$@¬ØÇžëb@¯%üÆ-æ?ƒ\{ò’Ü?nÒ:x·Ä @ëeQN?ÌÅÆôè@Ÿoq¸r@é@ª$Ý/@ªƒ\ªß?@ª$Ý/@ª’×s@ª$Ý/@ªt‡ü¹#@ª$Ý/@ª‹Æ§ïž@ª$Ý/Á.„€@ª$Ý/Á.„€@•BÙ‡+@•BÚ³ÊQ|@•BÙ‡+@•BÝcˆe”@•BÙ‡+@•Bï²-@•BÙ‡+@•BÑœàu÷@•BÙ‡+Á.„€@•BÙ‡+Á.„€@8 Î_oÒ@8 kãƒ@5’ Iº^5@5¡ÑN;Í6@4®ùÛ"Ðå@4´g8}¿@4–ý!ÿ.I@4¢ÊW§†Â@4–ý!ÿ.IÁ.„NÜC,¥@4–ý!ÿ.IÁ.„NÜC,¥?‰çõ×eµM?­¦¾iî7?™%LÑ”Ô?¬¸O#¶A@8Iç@8Ù?“ý)©>}?¤ÖãUá«?­Jæ;”.ñ?¦°!§ÆV@8S@8û—?-Iÿz?¥™þñt‹ ?¡7‡V/Žr?¦·}­2;¹@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøê@¦`Ÿ¾vÉ@¦`^5?}@¦`Ÿ¾vÉ@¦`šu@¦`Ÿ¾vÉ@¦`¾ß¤@¦`Ÿ¾vÉ@¦`¾ß£@¦`Ÿ¾vÉ@¦`³Ð|„@¦`Ÿ¾vÉ@¦`W>«6@¬õE¸Qì@¬õE¸Qí@¬õE¸Qì@¬õG“Ý—ö@¬õE¸Qì@¬õF$Ý/@¬õE¸Qì@¬õFYJôñ@¬õE¸Qì@¬õF$Ý/@¬õE¸Qì@¬õGl‹C–@2²ÃÉîËû@2±ò×s@1E?|í‘h@1DŽŠqÞj@0¢-V@0 ëíúCþ@/Ǔݗö,@/Åoi@/Ǔݗö,@/Ä xFÝ@/Ǔݗö,@/Å8ï4Ö¢?É^³Dw'?ÿ﯒?‘,fŸCô6?Œ'õ‚$5ñ?‘ƒZ)Àˆ?‘‚ÊŸû©?Ðbn—l‹…?’`5žña?‘N÷J’?Hª¦ºón?‘&”T¦mÂ?低NëV?„ ©¢¤þ?lío>÷?…cü›Š×Õ?„ªÎZ´?‰]³ß’Ý?‰6‰õË@@@@@*@*?ð?ð?ð?ð?ð?ð¿=×ÃL?<•°?DOÆ­·û?2$H~ v?@¦`,½zÖ@¬õF—ïŸ?SžôÒý\?A'©Ï4í¬?¢ò©ÿö?xëäx=lF@Ÿr÷û›f@ë@ gï²-@ nÙ‡+@ gï²-@ '_´­@ gï²-@ Ö—È0B@ gï²-@ iÐÞ Æ@ gï²-@ d71†@ gï²-@ i£[·%@¢ê0£× -=@¢ê4Ás%@¢ê0£× -=@¢ê=ðÓ@¢ê0£× -=@¢ê¥-/n@¢ê0£× -=@¢éø¶C*{@¢ê0£× -=@¢é¹Å††@¢ê0£× -=@¢éÆ?ׂc@8-¥œàv@89õY³Ð}@4Ìí‘hr°@4žE3O«p@497KƧð@3ó4+Ö’‚@3zÔ,<ží@3[ÃþQKN@3zÔ,<ží@3=›ä¤Ç@3zÔ,<ží@3I¸Ã‹õ2?’ÌRû ã?˜àYëÀ?ŸÛùJƒVX?˜Ÿ!?¬L³;G£?°Îè…”Œ?”þÐGžP?™õF¨üù?žé\]Ž®?šVˆk™‰G?¶ì“W¶·-?³H—樑¼?˜ -Àaóä?œ¡·¨KЧ?­ñ'*E?•¥b(Ù‚?¡×§{ç? SÛDâ2@@"@(@(@9@5?ð?ð?ð?ð?ð?ð¿]¼ÇÆ¿˜@Ð'(?A*–7ý°?d;y[ü„;@ kDÄtô@¢êÈŒûò?\·]x5?€™·Üu¸?¥QpR­Í?ÞµOéL®@ŸdâÓœp@ì@«‰;çl‹D@«‰5?|í‘@«‰;çl‹D@«‰Hj(ün@«‰;çl‹D@«‰?_Œ¿=@«‰;çl‹D@«‰K. Q@«‰;çl‹D@«‰<Ë<й@«‰;çl‹D@«‰?’ ɶ_£ ?}@T˜ÁÎ¥?’TÀ§!,ô?’ºMºw @7ÞHè§æ@7Û)å详@4À Ä›¥ã@4½JÙ‘ƒ@3ñ‰7Kƨ@3ïD=²:@3Þi­BÄ@3<'`@3Þi­BÄ@3ø§D|æ@3Þi­BÄ@3A;xvº?•'Z]Ô&?•Ü8Ï w·?’ -.Ý` Ì?’]ªýxõá?’Ù‘›ùlq?“ÅÓ/€ZÊ?‚Á¤õ“²&?š?ÇP¼Y?‘—Á=µRÀ?’Méå¿ái?‘±¨\/ÒÙ?”'ûˆ5êb?œwX '¯Ö?˜R+r7ùÈ?—™uª²êk?Œe;Ƶ?…§á¡1?¼­T(U@@&@&@,@:@:?ð?ð?ð?ð?ð?ð¿W×s8¿TSÕ2ì?S\½1L.å?>-tCX@¬ÙQê´ùÎ@˜“¦¶éQ?pÆê/¡$l?`↵R?×f•VŽ?Á2Öì6"@Ÿk}÷¦5t@ï@©§ï²-@©¦§ï²@©§ï²-@©¢\(÷@©§ï²-@©¨>BZî@©§ï²-@©¥`A‰7@©§ï²-@©¥¡ÊÀ‚@©§ï²-@©¤ŽŠqß@ž4ËÆ§ïž@ž4ÌIº^5@ž4ËÆ§ïž@ž4Þi­BÃ@ž4ËÆ§ïž@ž4ߤ?åÉ@ž4ËÆ§ïž@ž4Þƒä%¯@ž4ËÆ§ïž@ž4Ò£S'@ž4ËÆ§ïž@ž4Ñ·Xã@6^Hè§æ@6`Ë)^ž@1Ê^5?|í@1ļ£@1iÛ"Ðå`@1a ²•éâ@0hè§æ›@0cS&Â@0hè§æ›@0hÇâ‚@¸@0hè§æ›@0hK]Ìcñ?„F/·ÿP5?‘¸ü"ù€2?–QaéQR?’(æ„+Zk?‘¾%î -ã?‘ ê$4Ÿ?žˆ2}?•wi¢‚*?“èËôy?’.p»Cþ?‘–=û.e1?äqÅYÈ?— —‰Ò‡?“ü”òÖÂ?•o•ó}ó?Ž;­B·?‡gϵ’õ?Š|)-}í(@@@@@*@"?ð?ð?ð?ð?ð?ð¿8‘uKÀ?LFÌj´?ËD´ ?Lc þw@©¥¿Zib@ž4ѳ€d?6˜ß]ÇËÁ?mÜÔ £æ?s,çŠÁXf?âÓ5#@Ÿh¶{݆Ë@ð@¥–@1õµsê³hÁ.„NÜC,¥@1õµsê³h@1¯.Hè§?1·†Æjñ?±‡º`¸ú ?³ÿE Ü+?£à•ÒnÁ@8Iç?¾=Ä =ÐF?´M ó¬^õ?°M\³Ù“@?Â0ÒW) [?¬já{X@8S?·% mèc?Ö=¶Ñ!?¸Â ƒÌà?™Jz¬Uf?'ã{>ô‘@8 Ø?ÄLióA›@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøøò@«¨üj~ùÛ@«©¸Qí@«¨üj~ùÛ@«¨ýcˆe•@«¨üj~ùÛ@«¨þš@«¨üj~ùÛ@«¨ü¾ß¤@«¨üj~ùÛ@«¨úQZå@«¨üj~ùÛ@«¨û"ÒL@œšyÛ"Ðå@œšp¢ŠÑb@œšyÛ"Ðå@œšxl"h -@œšyÛ"Ðå@œšw€4mÇ@œšyÛ"Ðå@œšy#¢œy@œšyÛ"Ðå@œšwé©'@œšyÛ"Ðå@œšv®‚ÐH@7eöý!ÿ.@7gãׯ··@0ÞÙ‡+@0ß;dZ¬@0•`A‰7L@0•`A‰7L@0TmÅÖ8†@0T¼j~ùÜ@0TmÅÖ8†@0Um]aÄ@0TmÅÖ8†@0U`B&à?~ì“?ÕÒJ?4ë©$è‰?‘,fŸCô6?ŒR‹w#z?‘22ªÓ$?ý‰G¿~´?|¬Æ Væ?’uß¿çÒ?œõLÁE?|Ø}Õ…?‘=úAq|?Éõç6ß?…ò¤ãŠ?Œ¾»•lŽ?„›‹ÖO?ƒE 8?†Üù¡™´?‡gÏ*¿6ð@@@@@.@,?ð?ð?ð?ð?ð?ð¿cò_ì?JïÌSÄ??ðÎŒgÜ%?3g(@l€±@«¨ÿl¾Éµ@œšt˜%VP?_»?°”¯w?SÖ®W™Gð?ÉÄük†r«?³Ì£ ‘7@Ÿg¬Rlj@ó@ ¢m‘hr°@ ¢pmÞ‚Y@ ¢m‘hr°@ ¢qïg@ ¢m‘hr°@ ¢p–8fù@ ¢m‘hr°@ ¢q*ðõ@ ¢m‘hr°@ ¢wâ6B@ ¢m‘hr°@ ¢xõÑ\©@£3¾vÈ´9@£3¹n¼dÔ@£3¾vÈ´9@£3¹Lo¦@£3¾vÈ´9@£3¹Àëíù@£3¾vÈ´9@£3»+éoŒ@£3¾vÈ´9@£3»¢k@£3¾vÈ´9@£3ºø4J@7cg ù l@7iR§ëÊ@2žÙ‡+@2™~Ý®@1îùÛ"Ðæ@1î92„Ð@1kxFÜ^@1gLsáð@1kxFÜ^@1dWXnQ@1kxFÜ^@1d_©‰p™?|ò0p‰J?còÈúª?‘%`Bë`?Œ‘ä¥@h?“½1Çâ©Ò?•›×±ƒ4?ƒ…†r÷šâ?’Ôœ-4´•?ŸÕË\0.?‘*4Ýf¡?”vQ¾8¬?”0C¤³¡?‹´©šù'i?ÙHñâŒä?ƒ6Ýž}%?‰:r.¶;?š0Áòëe?N ˆÒå@@*@"@,@7@6?ð?ð?ð?ð?ð?ð?W³²j?<;3 -Ð?CkÈ u?!kGÏœ!\@ ¢sC°˜@£3ºuÐ>x?c&å8`+?A3-—k\ú?Ï^ž›Àb„?„P=í$@ŸfܲáZw@ô@ž¹›¥ãSø@ž¹š¬1@ž¹›¥ãSø@ž¹žYòºž@ž¹›¥ãSø@ž¹œ[¿§ @ž¹›¥ãSø@ž¹™ŽC˜W@ž¹›¥ãSø@ž¹˜ž¼Ë/@ž¹›¥ãSø@ž¹™Zw½ø@¥i"Ðå`B@¥i#× -=r@¥i"Ðå`B@¥i&›ÆÍ@¥i"Ðå`B@¥i/¾$åÁ@¥i"Ðå`B@¥i& ˆÇ -@¥i"Ðå`B@¥i%?*Å@¥i"Ðå`B@¥i#ú¬®@5`ØDЩ@5a–R½<6@0Ìí‘hr°@0Ëþ$ñ5¸@0’Ðå`A‰@0‘qÒÉB@/¸7´¢3œ@/´ “ïV¸@/¸7´¢3œ@/¶”†ê~ù@/¸7´¢3œ@/¶uÞ÷;?ŽÕQp Î?Øðù÷?‘SžÕºk²?‹ÂÂisåi?‘RyUq?‘>Õ/dŸò?~ì“?ÕÒJ?’´†LÓN?‘b̼Ýh?4ÁéVr?‘1Á‘{f«?jÛ»BF&?‚À%?56ëÀ#?„â¿Ë$?‰tª+<Ñ?‡²>®$ìŒ?‡p°Ý(Ö @@ @"@@5@4?ð?ð?ð?ð?ð?ð¿[J?/Õ"À?Tµg°G"?4žÁ =@ž¹™‘§²@¥i$™¦öø?(òžÓ­@?UP²ÅÕ J?Z¥ç&¿?µ³ÛÄ R@ŸgÙT¬Ï@õ@®Œ8Ôýó¶@®Œ+pôí@®Œ8Ôýó¶@®‹ç ù l@®Œ8Ôýó¶@®‹¢MÒñ«@®Œ8Ôýó¶@®‹ñÄ2ÊY@®Œ8Ôýó¶@®ŒÒˆÎp@®Œ8Ôýó¶@®Œ!‰7KÇ@œ³ˆ1&éy@œ³Öеâr@œ³ˆ1&éy@œ³!ÊÀƒ@œ³ˆ1&éy@œ²õ%F -¦@œ³ˆ1&éy@œ²á|ÚQ@œ³ˆ1&éy@œ³aG®{@œ³ˆ1&éy@œ³N¤¨ÁV@9-¥œàv@90–:Š’"@3Å?|í‘h@3œ£n.±@3F“t¼@3a|ÚQ@2³&Á½¥@2~ƒä%®æ@2³&Á½¥@2¡hr° Å@2³&Á½¥@2›W>«6z?›ÀM:±?ÅS²«ZŠ?Ò~³4âF…?ÀÁD ±·?£ ^&Â.?§Aù:Âü?|ôŒ<~%>?Â!“ZŠÑ?ÃOn{-Æ?¶;Á`ªÎ•?¡ºøò¤âÍ?«¾-ùOü?‚¡ïSÔÉ?£ÓM'-ç? ß2Wô?­5ªW®áù?Ž .0åv?•*†*Zû@@@@@*@*?ð?ð?ð?ð?ð?ð¿gž‰¿rÆI ?_”Ï’´Ÿà?sþ–M‚ó@®Œ'³NŸO@œ³®œ;?w‰"i”?Š_Ê|ƒÀ?ãó|/ @ ÈÌÛl@Ÿ_ÆÚ˜È@ö@ ¨r° ÅÁ.„€@ ¨r° ÅÁ.„€@ ¨r° ÅÁ.„€@ ¨r° ÅÁ.„€@ ¨r° ÅÁ.„€@ ¨r° ÅÁ.„€@ £/²-Á.„€@ £/²-Á.„€@ £/²-Á.„€@ £/²-Á.„€@ £/²-Á.„€@ £/²-Á.„€@8·â‚@·€Á.„>¤µÜÆ@3ý‘hr° Á.„M‰ûçm@3×ï²-Á.„QnÙ‡@3Eœàu÷Á.„NÜC,¥@3Eœàu÷Á.„NÜC,¥@3Eœàu÷Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø÷@¤ñ™™™š@¤ññ©ûç@¤ñ™™™š@¤ððB‹•@¤ñ™™™š@¤ñ&¯eá@¤ñ™™™š@¤ñÒ˜@@¤ñ™™™š@¤ñ Ñ¡å-@¤ñ™™™š@¤ñ=fí@™™\(õÃ@™™<,¢tÑ@™™\(õÃ@™™73E…@™™\(õÃ@™™5Ò„@™™\(õÃ@™™©“Üû@™™\(õÃ@™™ýœ]Á@™™\(õÃ@™™{hÆ@8VšÔ,<Ÿ@8?˜Œ¿°@2.5?|í‘@1é<"LR@1b-V@14‚‚q7@0YŒ~($ @0=èOMÑÝ@0YŒ~($ @0BxXd>@0YŒ~($ @0CüÁ ?”Òž“¸8A?“›2±Ì_?¬³ü“B?¡c'ï`Åò? BDr²“?œ Øvk‚c?£²Âýž?X× ç^‘?©uíž+«?¢p‹ÐÇÇ?¤7kM‘=;? lõ1èe?õ–Ž ï¨?Q…²<(?•]í× ´?ŠòýÛÒIÏ?(Â!My?’n›î\V@@ @*@*@9@8?ð?ð?ð?ð?ð?ð¿I¨àƨ¿pãÛáÀ?D~E.NTw?J»-<–£Æ@¤ñéÛª÷@™™!÷Ž—¯f?‹¦ ŸYÔ?çR`^?²œ>ÉÐ?ÐbMÝn½?’Ï>`Ï?ŠA)Nîá?-õI¸`K?Ía´ï?Jö²U4?€bMÕ]f?Œ¬2aå?‚oÁÆÜ§÷?‚â‡~ûÉ\?†‡[ÐJ³“?†‡¥âè@@@@@0@.?ð?ð?ð?ð?ð?ð¿S¹X÷?$mœ÷ô?0x”j|ä?,~{†ÆÊÏ@¢ãaW®³è@œÁŠ?ÇéÀ??¬ÅÇE&Ä?:öß§`P÷?x·MP•h?oüÿ¦[@Ÿs“ d @ù@¢Ö©xÔýô@¢Ö©ûçl‹@¢Ö©xÔýô@¢ÖªÍžƒä@¢Ö©xÔýô@¢Öª™0¾ @¢Ö©xÔýô@¢Ö« Iº@¢Ö©xÔýô@¢Ö¨>BZí@¢Ö©xÔýô@¢Ö¨ÁTɇ@§iJ=p£×@§iJ~ùÛ#@§iJ=p£×@§iJdÂø9@§iJ=p£×@§iJ=p£×@§iJ=p£×@§iK)^ž@§iJ=p£×@§iJÚ¹õZ@§iJ=p£×@§iJ³g ù@2Ç>«6z@2Ç>«6z@.a‰7Kƨ@.a‰7Kƨ@-º¬1'@-ºCþ\‘Ò@,ܾߤ@@,Ü£n.²@,ܾߤ@@,ÛÍ5¨Xz@,ܾߤ@@,Ûçl‹C–?É^žQ5P‚?Úþþ³?‘&Øç?‘?‹¯eU5?‘õbÐ\?Êëüâi{?ÐbV‡,?’ ,øÕC©?ŠA)Nîá?3.Ylî?äú’B[@¬£Y‡+@¬£Zxl"h@¬£Y‡+@¬£W§†Â&@¬£Y‡+@¬£Wéùq@¤\(õÂ@¤\*Aûk@¤\(õÂ@¤[šu@¤\(õÂ@¤[ô‡ü¹@¤\(õÂ@¤["Ðå`@¤\(õÂ@¤[W>«5@¤\(õÂ@¤\¾ß¤@/j¦L/ƒ|@/j¦L…g„@).V“t@).V“t@(&éxÔþ@(&éxÔþ@'Š#9Àëî@'ŠOv`@'Š#9Àëî@'‰ûçl‹D@'Š#9Àëî@'Š ÞÒ?É^¨¯Âj?ÉGãA­÷?‘½ümüñ?‹½XQê>æ?îú/´`?³×OÓ+y?ÐbMçµ7§?’¼  g¶?¹º–Èj?3.Ylî?ÔÒ@úˆ‘?J&d„?k?€bMÕ]f?Œ¬Çëý ?‚oÁÆÜ§÷?‚â‡~ûÉ\?†ˆ#.÷?†‡hÉÈÓ@@@@@,@*?ð?ð?ð?ð?ð?ð¿Sz†A¼?(¯û X?=Æ]QqX¤?ñ$ø¬Í˜@¬£XßZD@¤[y±?L£‚Ñh?=;Åj¶?” áý=‡ê?4Ó°³:@Ÿs ßùë…@û@£7'l‹C–Á.„€@£7'l‹C–@£7#S÷ÎÙ@£7'l‹C–@£7'H Zw@£7'l‹C–@£7Aé°@£7'l‹C–@£7*\ù¢@£7'l‹C–@£7$ -0§ @–¾­VÁ.„€@–¾­V@–¾¯WÀ@–¾­V@–¾¥bs¶¿@–¾­V@–¾ÉÞ]»ê@–¾­V@–¾«b¶L@–¾­V@–¾£VÄK@7-¥œàvÁ.„>¤µÜÆ@2À Ä›¥ã@2Ë€ÁV @1ô“t¼j@1úÃG&à@1ò䎊r@1‡úawéª@1ò䎊r@1}éŽWð@1ò䎊r@1ò5b@8J¨?™<õyŸÓû?”4=ø?’½°a&?‘ï~ºÝµ&?”ü¹ ¨õ@8J¨?˜ª7”&j…?—?ª«£Ãu?”^¢Ò˜5¹?’Ò`Ìùx\?‘µ§’Cƒ@8p÷?” .וå?‘?=“ðw{?š( Èß„?‘;Ö&-¹¥?˜¹E{‚ƒ@&@(@$@8@8?ð?ð?ð?ð?ðøøøøøøøøøøøøü@¥¼k Iº@¥¼g®zá@¥¼k Iº@¥¼k…¸R@¥¼k Iº@¥¼l/ƒ{J@¥¼k Iº@¥¼k’:)Ç@¥¼k Iº@¥¼j³g ù@¥¼k Iº@¥¼jqÞi­@¬<’ñ©ûç@¬<‘ë…¸@¬<’ñ©ûç@¬<”FsØ@¬<’ñ©ûç@¬<’ñ©ûç@¬<’ñ©ûç@¬<“g ù @¬<’ñ©ûç@¬<“ê³g¡@¬<’ñ©ûç@¬<“3333@6Ñ|ÚQ@6Í‘hr°"@0×+ Iº@0×Á½¥œ@0H“t¼j@0HüPHð@.Bu%F -§@.BZîc‹@.Bu%F -§@.C9Àëíû@.Bu%F -§@.CŠ Þ?–ªÎ­¡?Qdöÿô¼?‘jh¨qã9?ŒÖ -Äȱ?ùª¨?ÃwZL?3ßa=„?’Q_Ú¸FN?»Þ‹"è?Níú¾?õ<úU?Z˜°,aÝ?‘7#Œ!xv?ŒÆò/¢äÍ?‚¯­Ù¤Á¶?ƒ ?ÿ½?†Ë¢L1Ù?†¯Mž684@@@@@,@(?ð?ð?ð?ð?ð?ð?<€¥?4ó½Oˆ?>WDvÇg?%HŠŒ9øI@¥¼jlP¾,@¬<“"'‡Q?W‰ØË -mA?C”2^íû„?® rÌVoL?†¥ÈN†îÐ@ŸmM=µ˜@ý@¯èŠ=p£×@¯èOß;d@¯èŠ=p£×@¯è‰^ž @¯èŠ=p£×@¯èŠqÞi®@¯èŠ=p£×@¯èŠdÂø8@¯èŠ=p£×@¯è‰­BÃÊ@¯èŠ=p£×@¯è‰ã½@©. -Àƒo@©. …¸R@©. -Àƒo@©.§ï±@©. -Àƒo@©. 7Kƨ@©. -Àƒo@©. -™0¾@©. -Àƒo@©. -0U2a@©. -Àƒo@©.ÕfÏA@4–šÔ,<Ÿ@4’©“ àß@2—+ Iº@2˜âe+Ô@2å`A‰7@2ù k¹Œ@10–»˜Çã@11ÿ.Hè§@10–»˜Çã@10IQ‚ª@10–»˜Çã@1/HË’:?Œs¤DÅÐ?ôÊ_?’ >(lQ ?Œ^:Òf?‘ÇöÃÞ`?‘‚ÊŸû©?1·†Æjñ?’0nà=Q“?’TÖ©E?‘ǧ?D6?‘ýuãá$6?’j“O’I?¡]mZRØ?ŒÖ -ÄȲ?†¼Š˜L¥ø?…ÇóÏ€9"?‡Ä­‹›Ü?‡”_Õ­çW@@@@@,@*?ð?ð?ð?ð?ð?ð¿L›Ë/8¿B| 6l?”Œ–cKs?&Ú}viú@¯èŠæÔR@©. -)Âyð?:2*¾ýM2?IdÅpzt?v­8ïp?—|ÛÂÌ~V@ŸiÆë9Õ+@þ@¦t}p£× -@¦t}p£× -@¦t}p£× -@¦t}ôäÏÝ@¦t}p£× -@¦t~$ŠÆê@¦t}p£× -@¦t~ŒêsÍ@¦t}p£× -@¦t|ªøO@¦t}p£× -@¦t|jcxí@œ<$Ý/@œ<$Ý/@œ<$Ý/@œ<$®æë@œ<$Ý/@œ<ýŠÚº@œ<$Ý/@œ<‹qÿ@œ<$Ý/@œ<J^|@œ<$Ý/@œ<Eµ‡§@.}Vlô @.}Vlô @+ÂÐå`A‰@+»쪸¥@,4ýó¶E¢@,5p -@*³üPH@*³@N¤¨Â@*³üPH@*³Øm$…@*³üPH@*³KÿUõí?É^ž6õP?¾¡¹†ÂÏ?‘YK÷¬6?‹¨ÀœÓI?çZùêj¦?±æZaí?ÐbMÝn½?’Îð•§Œ?~¬@<Ê?/VbªÈ?͈jg¥?Jö²U4?€bMÔŠ»?Œ¬¡“Ò_-?‚rQœÇÕ?‚åáøC¯Ü?†‰Î¢ã‡?†‡f]² @@"@$@@1@0?ð?ð?ð?ð?ð?ð¿OEi/²?%WÈ?/å¼#õ~Â?0$”û5i@¦t}Y”æ¬@œ<þ?>­™–õ?ƒ@¥/{?w. _ ?3'žn}¼Û@ŸsôˆÒ@ÿ@¡? Ä›¥ã@¡?!$Ý/@¡? Ä›¥ã@¡?"©“ á@¡? Ä›¥ã@¡?"ÞÑ·@¡? Ä›¥ã@¡?!aä÷f@¡? Ä›¥ã@¡?¿HË@¡? Ä›¥ã@¡?!½¥@¨;{dZ¬@¨;{dZ¬@¨;{dZ¬@¨;~ž›@¨;{dZ¬@¨;€uöý"@¨;{dZ¬@¨;yXbN@¨;{dZ¬@¨;~ÿ—%@¨;{dZ¬@¨;zÇË)@4T xFÜ@4T`ªdÂø@2+ Iº@2 ù kº@1iÛ"Ðå`@1k6z–@1«6z‘@1U›=È@1«6z‘@1óMj@1«6z‘@1·éùs?|öOÿÝ?“Ãruöò²?‘£Ä›è?Uóú*˜?‘héø†|?‘C!ƒžÈ?|¬Çëý ?“$i «%h?’¤šÜI«?°‹Œ÷€?‘77…Âç?ÐnçK/?‚|׿pY?3XMÊV?”³Ž+k?…{BÕ0Þ?‡&üòI?ˆ -¿„r©Ý@@@@@"@"?ð?ð?ð?ð?ð?ð¿$— ð?Ç`@?9ÍrenœO??+r°¿Þ@¡? ®ÂÐØ@¨;{‚9þl?Y¬OÌ´(I?_„ UÌn®?Á4‹×ZW?ÉC‹bQi@ŸfÅ0á?@@ []/Ÿ¾@ [\¬1'@ []/Ÿ¾@ [O½i*O@ []/Ÿ¾@ [A- Œ@ []/Ÿ¾@ [Hg1#@ []/Ÿ¾@ [AlÁ"[@ []/Ÿ¾@ [@¾Øæ@¦¤½ó¶E¢@¦¤½ô\b@¦¤½ó¶E¢@¦¤½qüz@¦¤½ó¶E¢@¦¤Á»øB@¦¤½ó¶E¢@¦¤µר‘@¦¤½ó¶E¢@¦¤·óvM\@¦¤½ó¶E¢@¦¤·ü±¾@4T xFÜ@4S½vïºÀ@1Œí‘hr°@1…CÑa@1Z~ùÛ"Ñ@1S}!@0Š0U2a|@0ƒœ¢Ç¤Ô@0Š0U2a|@0ys P|@0Š0U2a|@0}d}â ?}@T˜ÁÎ¥?ðš›?‘nǾfü?7»¦X®t?”¦«²&vo?’è…ˆV'Í?|¬Æ Væ?’æÿ‚Ê?µj :O?˜!¼‡ñô?“÷À°B©y?’G县âú?‚«Kµ¶??`Û<·?†L7{™ -?„EëŸå{?‰¤A—ö5?ˆêfµFx@@ @@(@;@6?ð?ð?ð?ð?ð?ð¿z;Ë‚¿[üºíÚ?H–áÅEÌ?D¶›ÉÑ@ [O>/ì@¦¤ºÉÝæ?gàXúk?dŠca©‚?Úÿ¤)š¹ó?ÓÂÙ¤ša@Ÿfßd¨@@­–Ãn—@­–Ì‹C•@­–Ãn—@­–³ê³g¡@­–Ãn—@­–©*0U2@­–Ãn—@­–¢u%F @­–Ãn—@­–¹Û"Ðå@­–Ãn—@­–ÂZîc @¨G¼í‘hs@¨GÀA‰7M@¨G¼í‘hs@¨GÇ+ J@¨G¼í‘hs@¨GÂÞÑ·@¨G¼í‘hs@¨GÍà q@¨G¼í‘hs@¨G½æšÔ,@¨G¼í‘hs@¨G·süP@8 ØDЩ@8|í‘hr@5{ Iº^@5sñA [À@4¹7KƧð@4µF -¦L0@4¿ò䎊r@4µ®æ1ø¡@4¿ò䎊r@4Ì‹C•@4¿ò䎊r@4ÎBZîc ?¢F^ì¼Sð?ò}¥_Z’?—æ'=D´P?±òÛÝ"Ù?§|Qæý S?šèïdË?|öOÿÝ?£kŸ!µ?”Qä\‰Õ?©øpe³­ó?¤”ÈÞg°?¦ÍL ÖŽ?‚‘´…=Ca?™*ŪZÞ[?\ÍÅ“¢?¢ÇrˆG?1 –R¹ù?—Š9÷^Þ@@@@@,@$?ð?ð?ð?ð?ð?ð¿_pcUÄ¿CBW¸?j«XOð\×?XéôŽ(§ù@­–ÂôaÏ‚@¨G¾ãaŠ@«’H´9X@«’Hè§ç@«’H´9X@«’>¸Që…@8·â‚@·€@8Ðò{²þÆ@3ÜIº^5?@3ß¾vÈ´9@3q‰7Kƨ@3w»/ìVÖ@2^«6z‘@2c•$Þ@2^«6z‘@2^Ù‡+@2^«6z‘@2Z¬1'?¤ÊŽaÈ]Ó?•@K/Ùz?žG)ñ†Ü?Aš%ðï?’Þäi]i?“yÄö%Þî?óA[ØïF?•@¼Cк?š!Ïbõ³·?á>G]!?’ºñS©YÖ?“®°ýYè@?¼ÐÁß9&û?ÉGãA­ø?‰¢Ò+ÜÝB\@­ˆûdZ¬@­ˆû¥ãSù@­ˆûdZ¬@­‰@­ˆûdZ¬@­‰tSŽó@­ˆûdZ¬@­‰$Ý.@­ˆûdZ¬@­ˆþž›@­ˆûdZ¬@­ˆýp£× -@4m¥œàv@4mIQ‚©“@2?|í‘h@2g8}¿@2Ðå`A‰@2Ä›¥ãT@1³&Á½¥@1°ÞÒˆÎp@1³&Á½¥@1°-à @1³&Á½¥@1±‚©“ á?|öOÿÝ?‘‘Ç`[?’måGSžq?5~pY5?’[9ƒÍ,?‘£.'É?|öOÿÝ?”A}ý?‘ŽütÅÒ(?’ü#q\-v?’…4Ü.?‘Qïʾ?‚á²Olºü?µœ7}?ƒ´],m=?ƒ¼9XNÄu?ˆ©{2¡Î?Š*ÊÔQãú@@@@@(@ ?ð?ð?ð?ð?ð?ð?@pó ?E 'Àð?MìfMè‘?=Á]D¾Þº@¯šíc¨@­ˆýBZ=Ú?lÞ#ÈÚú—?^‚k=“6Ú?å§#ZNÄÉ?Æ …êÿ¦@Ÿf¢Ê@@@®\(õÃ@®-V@®\(õÃ@® -=p¥@®\(õÃ@®škP°@®\(õÃ@®Ûô‡ü@®\(õÃ@®}Vlô@®\(õÃ@®:)Çy@¥#Ÿ¾vÈ´@¥#¡$Ý/@¥#Ÿ¾vÈ´@¥#²:)Çz@¥#Ÿ¾vÈ´@¥#¦s×Ý@¥#Ÿ¾vÈ´@¥#¼žì¿²@¥#Ÿ¾vÈ´@¥#—süQ@¥#Ÿ¾vÈ´@¥#žÑ·@5‘|ÚQ@5ŒVÕϪÍ@1î5?|í‘@1Ò¶®}Vm@1PA‰7KÇ@14?åÉ@0°–»˜Çã@0¨“t¼j@0°–»˜Çã@0žp:û~‘@0°–»˜Çã@0—škP°ó?|öOÿÝ?¥|»5zÆ?™¬þ.OÀ…?“ׂa†Üü?g;+³ûu?£YîLUñ?|öOÿÝ?«éé¨Íyù?±]×öÂ"?ªå…Þøå?¥Á޾ƒ¢z?¶6‚/÷?‚§W®ê ?•è­¸‡? H6¤„?‘ñZa7Þ?1 –R¹ù?Æa]•o¾è@@@@@,@,?ð?ð?ð?ð?ð?ð?7Ð^à?*>‚à?PŽpö Ÿ?l=3¯Ú³ä@®ÏøìŠ@¥#¡nNl´?gÈ£5b“?Ýu6Λ?Ö…¸Ž6Ä6?óíòœ¿Šˆ@Ÿ_Cw©<%@@­æ§l‹C–@­æ±&éxÔ@­æ§l‹C–@­æ© 'RT@­æ§l‹C–@­æ«xFÜ@­æ§l‹C–@­æ¬L˜^@­æ§l‹C–@­æ©îËû@­æ§l‹C–@­æ§Ë)`@§¼‰7KÇ@§¼nÙ‡,@§¼‰7KÇ@§¼ƒ{J#:@§¼‰7KÇ@§¼€ qv@§¼‰7KÇ@§¼HË’@§¼‰7KÇ@§¼€N¤¨Á@§¼‰7KÇ@§¼€A‰7M@7IÎ_oÒ@7éxÔýô@2 -^5?|í@2 á°‰ '@1©Û"Ðå`@1¨Ë’:*@1 ù kº@1$Ý/@1 ù kº@1ð¸»@1 ù kº@1lô!.?£È‰·akû?:LÓá -í?“u*y?ØTnçE?‘¾%î -ã?‘®¬nÒMê?³Hß_`?’7Îf¬ps?‘†£„Â?°‹Œ÷€?ñ«Ý„ Õ?‘¿¤üî¾Ö?Øà‡›yºã?)‰€Zw?ƒ´],m=?‚þ——³§ø?‡…¤$Ó?ˆCns¥ @@@@@ @,?ð?ð?ð?ð?ð?ð¿`·Ø¬9?U7¯úé?(Çh=B¯?S5X#ˆSó@­æªbïå`@§¼XŽÊî??—~Ø?d)ŽÌÇç£?t½§`ÞjÚ?Àkƒ«@0@ŸqIUêÈò@@¨ž#S÷ÎÙ@¨žùÛ"Ñ@¨ž#S÷ÎÙ@¨ž$Z¬@¨ž#S÷ÎÙ@¨ž#¯·é@¨ž#S÷ÎÙ@¨ž!–R½<@¨ž#S÷ÎÙ@¨ž#þ\‘Ñ@¨ž#S÷ÎÙ@¨ž!G®|@©3›¥ãSø@©3å`A‰@©3›¥ãSø@©3œ¬1'@©3›¥ãSø@©3”mÅÖ9@©3›¥ãSø@©3¤êJŒ@©3›¥ãSø@©3¡‰7KÇ@©3›¥ãSø@©3<64@8žHè§æ@8œL˜_@3µãS÷ÎÙ@3´!-w1@31‰7Kƨ@32 Iº^5@2æYJôðØ@2ãüPH@2æYJôðØ@2åF -¦L0@2æYJôðØ@2åF -¦L0?±>ÏÅósN?’°BÉô-?–ý3¾ZÀ’?—IW`g’?“>û{Ñø~?‘£.'É?µ”Zm?’eCŒO?šJ‘ÍÒÁ?™Š‰nca?–Y:ŸèJ?›ªU3Îp?£ešñS„‰?]ÒivLÿ?‹’Ú[ßõ?¨¡ûðf?qÂ' -Bœ?ŒC ãSG@@@@@*@?ð?ð?ð?ð?ð?ð?Mn9¿WV T?LbFÈBÜ?b„´VÆ@¨ž"'&«¨@©3 h½*Û?_oFË;?t›bÍ3ë?­r´Hï´ý?ÕQ¤%ÄõÉ@Ÿr¢[]à@@¡&7ÎÙ‡@¡&>YÛ–†@¡&7ÎÙ‡@¡&9êçÇ@¡&7ÎÙ‡@¡&8Ñ÷žt@¡&7ÎÙ‡@¡&8Öëæ†@¡&7ÎÙ‡@¡&71Å@¡&7ÎÙ‡@¡&5É%Ëf@«»Ù‡+@«» ×úP@«»Ù‡+@«»©Î;@«»Ù‡+@«»S|]@«»Ù‡+@«»$÷‚@«»Ù‡+@«»¶4‹í@«»Ù‡+@«»¶f@8+µsê´@8/Ò„7Šü@2@ Ä›¥ã@2@YˆB-@0¤¼j~ùÛ@0¤üoìá@/Aò×t@/Žü 3W…@/Aò×t@/†Ÿe¾@/Aò×t@/²-U?‚Ú¡ËG7@¡ÇTýó¶F@¡Ç³Ð|„¶@¡ÇTýó¶FÁ.„€@¡ÇTýó¶FÁ.„€@¦ 7Kƨ@¦õÂ\@¦ 7Kƨ@¦Ð©*@¦ 7Kƨ@¦#ä%®æ@¦ 7Kƨ@¦À@¦ 7KƨÁ.„€@¦ 7KƨÁ.„€@6ÖšÔ,<Ÿ@6Ô‡ü¹#¢@4›¥ãSø@3æs×Ûô@3Ÿ²-V@3c{J#9Á@3p–»˜Çã@3%oi@3p–»˜ÇãÁ.„NÜC,¥@3p–»˜ÇãÁ.„NÜC,¥?}Ñ¿ž,?°UG -?¸Ñ³ÊÕ‚M?¨¸üÍø@8Iç@8Ù?’Óusÿ\Ã?¨€Sn\}?àÀM1#?Èà>½b×@8S@8û—?‚oÁÆÜ§ö?ª0½Uoý(?±¼Ë)–Öõ?¤¾¯S@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø @®CŸ¾vÉ@®C”Ø×@®CŸ¾vÉ@®C)kvÚ@®CŸ¾vÉ@®C±G@®CŸ¾vÉ@®C––@@®CŸ¾vÉ@®C-°‡Q@®CŸ¾vÉ@®C¢cI@“šŸ¾vÉ@“šŸ¾vÊ@“šŸ¾vÉ@“š …Ì@“šŸ¾vÉ@“—¼w¯@“šŸ¾vÉ@“˜’éãÛ@“šŸ¾vÉ@“—;A@“šŸ¾vÉ@“™uT"\@5­¥œàv@5¬XãR¾v@1° Ä›¦@1Áí_‚Ÿs@0]V”@0\ßNhZ=@0:Ô,<ží@09ÚŽUuö@0:Ô,<ží@09ÖúŒÎî@0:Ô,<ží@09ßÉ'º?|¬Æ Væ?7Ò×8?‘'«¿Wc»?‹¾\?¢­n?êNÕU?‘;%ú¿?}@T˜ÁÎ¥?’  A$¢?ˆ’?h¡?-õ$: Ÿ?éþv¿Sô?q¡Åç®­?‚“LÐÛ|?_è‚ ?‚Íz ¡(î?ƒ,Hýß X?†¹Ì*ýâú?†Ó3NóA@@$@*@@3@5?ð?ð?ð?ð?ð?ð¿ lƒ€¿0 ö—¤?7Gê#î¥>?!–uK«°@®C§r=@“™r-Ñå?WªÖЦ?ALÑ/$?¼Äÿ"?ŽâµbsîÐ@Ÿfñ Hâ@ @®cS÷ÎÙ@®c•%@®cS÷ÎÙ@®f§ï²@®cS÷ÎÙ@®aG®{@®cS÷ÎÙ@®b Iº^@®cS÷ÎÙ@®^ùÛ"Ñ@®cS÷ÎÙ@®[¥ãSø@¯ƒ•%@¯ˆ1&éz@¯ƒ•%@¯…¡ÊÀƒ@¯ƒ•%@¯†$Ý/@¯ƒ•%@¯†éxÔþ@¯ƒ•%@¯~vÈ´8@¯ƒ•%@¯ƒn—@7šÔ,<Ÿ@7µsê³h@2ã÷ÎÙ‡@2ãä%®æ2@1éÛ"Ðå`@1é‡+ @1«xFÜ^@1¬‘ÑN;Î@1«xFÜ^@1«¥ãS÷Ï@1«xFÜ^@1«jçÕfÐ?1·†Æjñ?ZÁ».œ?‘£Ä›è?‹û…†_?’°STðS?‘<ƒÜ_õ?‘â%ì˜ ä?’?Á• ñ:?’±ä?1ð'7éÃ?‘Uç·Býi?‘KÔ#•N ?›˜tgiê?ŒÂ§dß±?„„OW°ó?‚ù8 ±^?æšÔ,<ž?‡ã ËÄž@@@@@@?ð?ð?ð?ð?ð?ð¿U·ö È¿X¬ -Œ?7J nQ?P¦ÏmZ.š@®`C¢|î@¯„‡ÔÙo?Y§×@~¥?m‡²$û?ºF®uH?×b>šì•a@Ÿk -Z³)@@­ð£× -=@­ÚŸ¾vÊ@­ð£× -=@­ ¾BZîc@­ð£× -=@­ yè>B[@­ð£× -=@­ Sœ¾à@­ð£× -=@­ kàÞÒ‰@­ð£× -=@­ s÷ÎÙ@£ÇÒñ©ûç@£Ç×ÎÙ‡@£ÇÒñ©ûç@£Æ Dg8@£ÇÒñ©ûç@£Åæ?@£ÇÒñ©ûç@£Å­¸ºÇ@£ÇÒñ©ûç@£Å´ðØDÐ@£ÇÒñ©ûç@£Å¿—$tT@7àØDЩ@7Ö”FsØ@5n5?|í‘@4oiDg8@5²-V@3p[À6ã@5mÅÖ8†@2üVÕϪÎ@5mÅÖ8†@2÷ -=p£Ø@5mÅÖ8†@2ü£n.²?…ÅBðrç?Ëï¦ß]]©?¹Z{úf?‘öJî¯Ê®?¶‹•V•?²0 ï?š•§q!U?º_*_™'»?ÀHÖö’”?“Ôð,äÁ?©|¥ÔÜI -?¥*Ÿê?aäŽ -Ø? ÿ"èœM*?¡*æª\ù?”ûÅìÆÅ?š‘ÝÒcô? ¯Ýù5@@@@@,@*?ð?ð?ð?ð?ð?ð¿Øº±Å+è¿Á\N<à?±!su-?ªâÀ\‰ô@­ ŸKj1û@£Æebd¡?ÏWd~¯Ým?ÅFÆ ÛV@‡î¯`vÌé@q˜fyEå@ŸfHîÓ}@@¢õz›ð¨@¢õ?‘![ì$?‘«†PP]Ë?|Ñb×¶@?’:ø³ØÙl?‘¤¨Ä\þá?‘:GŽò ?‘B{ $Ñ?‘_ÒÈrd+?‚ˆóºRÉ?6¸¼ì?…ÊF³?„g—3#?ˆì͆å?ˆõ S¾Ë@@&@,@,@9@:?ð?ð?ð?ð?ð?ð¿I É¿K\?4œéd!L??12éð[>Ñ@¢õ;&¬™ê@”Ü€›%"?Ty¾èÇQ?Qnœ?µ«]eÔ?­ûýD ¹"@ŸfªZ¡‹8@@¡þaÊÀƒÁ.„€@¡þaÊÀƒ@¡þa‰7KÇ@¡þaÊÀƒ@¡þb Iº^@¡þaÊÀƒ@¡þIÔ•+@¡þaÊÀƒ@¡þqë…¸@¡þaÊÀƒÁ.„€@¯V‡+ Á.„€@¯V‡+ @¯Z…‡“Þ@¯V‡+ @¯}p£× @¯V‡+ @¯9õY³Ï@¯V‡+ @¯³t¼j~@¯V‡+ Á.„€@9D¯O „MÁ.„>¤µÜÆ@4”›¥ãSø@4›¬q ²–@3â-V@3ÞzáG®@3½cˆe”°@3Ƶ '¼@3½cˆe”°@3–R½<6@3½cˆe”°Á.„NÜC,¥@8J¨?¢“*Uä?‘ŸÇSñ?¡+ÇÍÑjÝ?•³™»7…@8Ù@8J¨?™3Ÿ9?“Z—H|:?©­Á –¹‹?©K+Gq)Ý@8û—@8p÷?7'în‹K?“>û{Ñø~?®8z™át?›°Ô¤A]@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø@­Á7KƧð@­Á6“u@­Á7KƧð@­Á64ê@­Á7KƧð@­Á5Ž!–S@­Á7KƧð@­Á8­«ŸU@­Á7KƧð@­Á7Xâ@­Á7KƧð@­Á1Ä2ÊX@£„¯Ÿ¾w@£„­V@£„¯Ÿ¾w@£„¯O „L@£„¯Ÿ¾w@£„¯iDg8@£„¯Ÿ¾w@£„½}¿H@£„¯Ÿ¾w@£„²{²þÅ@£„¯Ÿ¾w@£„·KƧð@82ÃÉîËû@8hÛ‹¬@2ðÄ›¥ãT@2ê¦L/ƒ{@2†“t¼@2}/Ÿ¾w@1®_oÒ @1¢Ðå`AŠ@1®_oÒ @1¢œwškQ@1®_oÒ @1¢×sü?„F/·ÿP5?“ò²nqV?“ï~í"?›î ó4°„?˜ -0˜ggk?—À °Ø§ ?µ”Zm?’áÄïÃõ?– íÇyz?¡çìh±J¼?–%¥ê3–? C˜.NTÃ?¥J´TACG?‘ÌAzÁý?† - Ðló]?…J]j?€=P|?Œ¸ðËb@@@@@$@(?ð?ð?ð?ð?ð?ð¿5’%Öà¿<~Ýå?C Nþ_.­?iÐ4‹@­Á5,|Œ(@£„µÖá³ð?j{άæÀ?{r·_T÷ô?Âݤê¦?Ô~g<‚@ŸpubŠ[Ì@@«7„›¥ãT@«7„›¥ãT@«7„›¥ãT@«7ƒþ\‘Ñ@«7„›¥ãT@«7ˆŒç°@«7„›¥ãT@«7†$Ý/@«7„›¥ãT@«7„›¥ãU@«7„›¥ãT@«7‰7KÇ@®|¼í‘hs@®|ºáG®@®|¼í‘hs@®|¾ùÛ"Ò@®|¼í‘hs@®|¾š@®|¼í‘hs@®|¼í‘ht@®|¼í‘hs@®|½<64@®|¼í‘hs@®|¾«6z@6Œ]cˆe”@6¿HË’@3ÎÙ‡+@31Å@26§ï²-@28K]Ìcñ@2‚@·€5@2?åÉ@2‚@·€5@2œwškQ@2‚@·€5@2{²þÅn?‚á²Olºü?/³)sšÌ?‘K]Ã4?Œj6_?‘¯GàBm?‘‚ÊŸû©?€‚ñêã ?’u¦ieõ–?ŽËÜ¿€?Ùט³ô?’íßš?‘C å;Ã?‚ù…žÄ`w?îŠõ ?‚¸“Îè ø?„À"aËô??€=P|?‰Ü)@Jq«@@@@@@ ?ð?ð?ð?ð?ð?ð¿3À4m ?Gn—?=rLvòù?®5òÛÌ@«7„V­TÙ@®|¼‹àß?]VHâ}?3a·Ã-Aé?ÂZ€OŒ}?oìâΑޘ@Ÿh+!ò£ç@@¬g× -=p¤@¬gÚ^5?}@¬g× -=p¤@¬gÙõY³Ð@¬g× -=p¤@¬gܹ#¢œ@¬g× -=p¤@¬gÖâëC@¬g× -=p¤@¬gÕ?|í@¬g× -=p¤@¬gÖ+jçÕ@ª“%ãS÷Ï@ª“ Ä›¥ã@ª“%ãS÷Ï@ª“1‚©“ @ª“%ãS÷Ï@ª“-quŽ@ª“%ãS÷Ï@ª“,Ùè>B@ª“%ãS÷Ï@ª“-jO@ª“%ãS÷Ï@ª“*#9Àì@6Ô xFÜ@6ÎùÛ"Ðæ@2£÷ÎÙ‡@2(Œç¯@1ñ‰7Kƨ@1ìj~ùÛ#@1B‚@·€5@1@««Ò -î?„Þþï Š?x¡uõ)å¹?ñX’º/?Ó‘ë±íò@Ÿtçé)«o@@¤4oŸ¾w@¤4qI4 s@¤4oŸ¾w@¤4£êÛ[o@¤4oŸ¾w@¤4š39H~@¤4oŸ¾w@¤4`y©x@¤4oŸ¾w@¤4uó}$¾@¤4oŸ¾w@¤4w§Ç c@˜Û¸Që…@˜Û±I¶¾@˜Û¸Që…@˜Ü)G¥&†@˜Û¸Që…@˜Ûõ”œ¡@˜Û¸Që…@˜ÛÊ~³¬@˜Û¸Që…@˜Û“<£{'@˜Û¸Që…@˜Û©þMhÊ@8Î쿱[W@8ÍźÕñê@3Ô›¥ãSø@3ªfo… @36§ï²-@3•ç²]@2YŒ~($ @2l—5œ~@2YŒ~($ @2mþ[auž@2YŒ~($ @2m¯?úx.?§›0µæ[Æ?¤¿±¿º]?ž™b…}ã?—dzé™?—.†¢­€?Ÿá ë&¦? [ó ðP~?¨!˜¨N¿d? VŠwU?”Ê£¥â7?—.¬×®ò3?—i¨§äWõ?»Ðàƒþ;z?Ÿ¬„Îab? ”†›]M-?‡­ù…Õº¨?™gyéá?’¼ÔûþX3@@$@&@*@9@6?ð?ð?ð?ð?ð?ð?móã¨v¿g£#É6€?rלå-;N?r1`ØþÔ@¤4l¤/u”@˜Û°˜Wsê?ŠCÍ‹/ñŽ?‹µ÷&¹?÷ÆÃMˆ}_@WbàF‡@Ÿn9®ü¹Ž@@ ê8Që…@ ê8bMÓ@ ê8Që…@ ê8øyVš@ ê8Që…@ ê8ÝhFW@ ê8Që…@ ê9¾L×I@ ê8Që…@ ê7¶4ÚÓ@ ê8Që…@ ê7eýŠÛ@«wV“u@«wUϪ͟@«wV“u@«wU¾î) @«wV“u@«wT×frH@«wV“u@«wV sÊy@«wV“u@«wU@TZö@«wV“u@«wU" ½@4ÉÎ_oÒ@4É…ðoiD@0)‡+ @0) }µúÐ@/íOß;dZ@/í÷¤ç«u@.(Û‹¬q @.(PÊAõ±@.(Û‹¬q @.(´IôÂ@.(Û‹¬q @.(A µ‹h?|Ñb×¶@?âxú•et?‘9Q&š?‹µgË„ ?ðÌÇßgé?µô£¹u?|çµB &€?’'3 -k?ºÏx†ãŒ?4ñÐkm?ÕB¯Nl?IX§uj?‚póaÏß?ŒèÕƒ¦ÒÐ?‚±uÇØ"7?ƒ -»’¢ïq?†’¸%9§G?†”3ËeBp@@,@,@(@5@3?ð?ð?ð?ð?ð?ð¾à7¿øžq?1S0%þ -?€9\e|@ ê88›:Ì@«wU•L¢?QAg%e\?5m;¦‡ÿ”?°@î5JË?w÷V®‚Ú@Ÿg=Þ‚@@ª/»dZ¬@ª/ºáG®@ª/»dZ¬@ª/¹Û"Ðä@ª/»dZ¬@ª/¿;dZ@ª/»dZ¬@ª/½Ùb¸@ª/»dZ¬@ª/¹XbM@ª/»dZ¬@ª/»¥ãS÷@©tÖ‡+ @©tÖ‡+ @©tÖ‡+ @©tÕY³Ð|@©tÖ‡+ @©tÙrGE9@©tÖ‡+ @©t×$tS@©tÖ‡+ @©tÕöý!þ@©tÖ‡+ @©tÕÂ\)@4įO „M@4ÄêJŒL@2Ê^5?|í@2Éûçl‹D@26§ï²-@26¸ºÇ@1Ì¿±[W?@1ÌVÕϪÎ@1Ì¿±[W?@1Í:’£@1Ì¿±[W?@1̞쿱\?}Ñ¿ž,?‘u:|ñ²¨?‘RsÈW?Ž,OêK˜u?‘èÒ§ˆ„Å?’Æ÷Xê†?|¬Çëý ?”‡r¦5MS?ÔCXsò?‘aYZ†«q?‘ýuãá$6?‘¿¤üî¾Ö?ƒ<Õp?Ž>ž¬ˆ?…™ï ufÞ?…bv{3dZ?‡gϵ’õ?‰w¿˜Í¶ª@@@@@,@*?ð?ð?ð?ð?ð?ð? —sÂ`¿ªýZÀ?>z…¦Z«?—CN*@ª/»X½æÖ@©tÖ].â+?]üëoòb?>ÜüñµZ?ŰT&Rùú?†ííS›óÿ@Ÿfz¼4æ.@@°Ÿ¾wÁ.„€@°Ÿ¾w@°trf@°Ÿ¾w@°MHhÖ@°Ÿ¾w@°•7Â@°Ÿ¾w@°lU/@°Ÿ¾w@°@%; @—FH´9XÁ.„€@—FH´9X@—FIE;s@—FH´9X@—FJÌŠ¹°@—FH´9X@—FH½¸@—FH´9X@—FIvGú@—FH´9X@—FIQ‚©“@3›¹Œ~($Á.„>¤µÜÆ@/ÍV“@/ÌóÒ+~%@/IxÔýó¶@/I¼ÕÒ"k@-#¼ÓZ…ˆ@-#rÐdR@-#¼ÓZ…ˆ@-#n.±Ä3@-#¼ÓZ…ˆ@-#ÉîËû@8J¨?ÂqCÜ ‰?‘((³ Dé?‹¦p¤?íÖéðw?¸«0íN@8J¨?’úC™l?ƒB–Vx?-ôö²-?Ôé.$¨‰?MmUѽ@8p÷?Œ³$-a5[?‚†µ”g¬?‚ãV*ÈÒ?†“D#ã?†ŽÉúª@,@(@ @;@:?ð?ð?ð?ð?ðøøøøøøøøøøøø@¤¡yÛ"Ðå@¤¡|¬1'@¤¡yÛ"Ðå@¤¡ƒ•&@¤¡yÛ"Ðå@¤¡f?@¤¡yÛ"Ðå@¤¡m\ú¬Ú@¤¡yÛ"Ðå@¤¡{dZ¬@¤¡yÛ"Ðå@¤¡t!-x@£)áÊÀƒ@£)·Oß;@£)áÊÀƒ@£)å`A‰6@£)áÊÀƒ@£)ã,¥zx@£)áÊÀƒ@£)æ -¦L0@£)áÊÀƒ@£)ÞùÛ"Ñ@£)áÊÀƒ@£)ÚáG®@9T xFÜ@9iè>BZî@4k¥ãS÷Ï@4t?åÉ@3—ï²-@3™³Ð|„¶@3œàu÷@3 Û"Ðå`@3œàu÷@3ê³g ù@3œàu÷@3Œ~($ ?Ç/q*q:?“”üU§<­?’•íX~4w?¡OÍÉ´Ž?§ö̺Œ ‘?¡AœÏŸ¦?ÀGÚCx4¾?—j2Uíï?‘C\ºÕ¶? Ñ¡b£?¾?Ÿ‹*¾F°?¨)P›?ª¹0ÇåÄ?™Uîœsú?Š[¦Råb?“ÍÁ!÷G?8Ï£§?¢XY-±[®@@@@@*@*?ð?ð?ð?ð?ð?ð?bŒŸö@?zÄà?hùÜb>J?uåÌ[>u@¤¡rjoŸ@£)ßáB°?{‰~vCúP?…ÓJ,_¨?È?v»“L?â >¶Fwv@Ÿq*˜Sn¾@@¨n\(õÂ@¨n\j~ùÛ@¨n\(õÂ@¨n\wškQ@¨n\(õÂ@¨n\¬1'@¨n\(õÂ@¨n\„µÜÆ@¨n\(õÂ@¨n[quŽ"@¨n\(õÂ@¨n\C,¥z@§ìl‹C•@§ìlÌÌÌÍ@§ìl‹C•@§ìm„M<@§ìl‹C•@§ìnzáI@§ìl‹C•@§ìl篷@§ìl‹C•@§ìmV@§ìl‹C•@§ìlcñA@2÷â‚@·€@2÷Ûô‡ü¹@0c÷ÎÙ‡@0d“t¼j@0$¼j~ùÛ@0%m\ú¬Ú@.åÉä@.€[À6â@.åÉä@.€A‰7KÇ@.åÉä@.€[À6ã?É^³Dw'?õ¹Ëh?‘WßÈDö@?‹¬àÌ’Ç?‘Dj?¾ƒìÈÁ?ÐbV‡,?’#maЀ?üÓqÔN‰?0ÜN :s?Ö§­îQD?Sñƒ´V.?€g‹)ØêÀ?ŒÖ -ÄȲ?‚ÂÌ]æ?ƒ=rµE=?†ÃÛSPã?†½ª»—@@@@@*@&?ð?ð?ð?ð?ð?ð¿'Ôe„ð¿*ZÜp?3dYa3ß?#ûºÝ¼h@¨n\" Þ’@§ìlÌäLD?B­ -SÒ¦Ù?2êl‰ÉŽ?Q4#ü?_a9$”;@Ÿs‘š‘u@@¢-‡+ @¢-‡+ @¢-‡+ @¢-‡+ @¢-‡+ @¢-Çâ‚A@¢-‡+ @¢-âëC@¢-‡+ @¢-R½<6@¢-‡+ @¢-Ž!–S@¬8¡G®{@¬8¡‰7KÈ@¬8¡G®{@¬8¡£n.²@¬8¡G®{@¬8¡ò×s@¬8¡G®{@¬8 Ä›¥ã@¬8¡G®{@¬8¢&€J@¬8¡G®{@¬8¢e+Ô@3:qÞi­C@3:W§†Â&@.®V“t@.®}Vlô@.‘&éxÔþ@.ÿ—$tT@--úCþ\’@-.!–R½=@--úCþ\’@-._oÒ @--úCþ\’@--úCþ\’?|¬Çëý ?¾¢`ƒ?‘7[ä­?‹¬àÌ’Ç?ôê÷º»â?×°ë*–w?|öOÿÝ?’j%ÓRa?«'Q™µ?-õI¸`K?â2„&ÿh?e¾DQ„Q?‚q6tNø6?Œ¯þuõí?‚uÞ@>N ?‚â‡~ûÉ\?†’Õaì+’?†l&þ@@@@@*@,?ð?ð?ð?ð?ð?ð¿ß»—à?~0@?'Ñœðõ?!OÙÇ_.@¢-`î ¡@¬8¡¤œß–?<þæøÿ?AžƒÏ†ƒÖ?†ñ$!÷9?#|ßд@Ÿfõß¿@@Ÿ$ Oß;dÁ.„€@Ÿ$ Oß;dÁ.„€@Ÿ$ Oß;dÁ.„€@Ÿ$ Oß;dÁ.„€@Ÿ$ Oß;dÁ.„€@Ÿ$ Oß;dÁ.„€@—m49XbÁ.„€@—m49XbÁ.„€@—m49XbÁ.„€@—m49XbÁ.„€@—m49XbÁ.„€@—m49XbÁ.„€@8D¯O „MÁ.„>¤µÜÆ@3ðÄ›¥ãTÁ.„M‰ûçm@3b-VÁ.„QnÙ‡@2J0U2a|Á.„NÜC,¥@2J0U2a|Á.„NÜC,¥@2J0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@¥.µ?|í‘Á.„€@¥.µ?|í‘@¥.¢\(ö@¥.µ?|í‘@¥.¯iDg8@¥.µ?|í‘@¥.¿ÿÿÿÿ@¥.µ?|í‘Á.„€@¥.µ?|í‘Á.„€@œÑ0 Ä›¦Á.„€@œÑ0 Ä›¦@œÑdŽŠqÞ@œÑ0 Ä›¦@œÑGË)_@œÑ0 Ä›¦@œÑ_ö”F@œÑ0 Ä›¦Á.„€@œÑ0 Ä›¦Á.„€@1àØDЩÁ.„>¤µÜÆ@0.5?|í‘@0Që…¸@/ÄZ¬1@/¯²-V@/ -#9Àëî@.Óg ù l@/ -#9ÀëîÁ.„NÜC,¥@/ -#9ÀëîÁ.„NÜC,¥@8 -Näy?©ˆ3Ú"Š?™çÙô½îé?Hžyq@8Iç@8Ù@82rê? ¬q¶™?˜áâ)(?¡–BÝŽ4@8S@8û—@8L?i-ý-›…?‘¼Åâ<{?P Ž)k@8 Ø@8 Ø@@@?ð?ð?ðøøøøøøøøøøøø@®`“t¼@®`Z¬@®`“t¼@®`Â&€@®`“t¼@®`ñA \@®`“t¼@®`Щ*@®`“t¼@®`S÷ÎÙ@®`“t¼@®`e+Ó@¢á)ûçl‹@¢á)ûçl‹@¢á)ûçl‹@¢á*Ov@¢á)ûçl‹@¢á)Q‚©“@¢á)ûçl‹@¢á,VÕÏ«@¢á)ûçl‹@¢á)7Kƨ@¢á)ûçl‹@¢á-«ŸU›@3uS&Á¾@3u`A‰7L@1^Ù‡+@1_iDg8@1iÛ"Ðå`@1iº^5?}@0£ÉîËû@0£¼ÓZ…ˆ@0£ÉîËû@0¤¢3œ¿@0£ÉîËû@0¢ÞÑ·?|öOÿÝ?é¥3i£ó?‘âTÀÊS“?Œ<…ÓÆÝ?‘ §‡g¾?‘PÊÑ<Ýl?|¬Çëý ?’›ÈÖÝ?‘Ûcu%ç+?‘²)ò@a,?øóéM Ÿ?× ³¸ÑZ?‚q6tNø6?2ô]7?‚¯­Ù¤Á¶?ƒ*|š\/´?‡ã ËÄž?‡YÍ_@@@@@&@&?ð?ð?ð?ð?ð?ð¿3”[¦?=¶^¨ ?+Yƒ›×?9æØt÷|@®`Ø>º@¢á*õWˆ?JÔ¹Ê*j¯?ZxÈ¿h·?£+dRÖ·?Á”ºoQÅ‹@ŸfÊ Ÿ?S@@¨‘o²-@¨‘nzáH@¨‘o²-@¨‘q©ûçl@¨‘o²-@¨‘hÎp:û@¨‘o²-@¨‘h§æœ@¨‘o²-@¨‘eðoiD@¨‘o²-@¨‘f€IR@¢¯E¡ÊÀƒ@¢¯Gï²-@¢¯E¡ÊÀƒ@¢¯B©“ á@¢¯E¡ÊÀƒ@¢¯<„µÜÆ@¢¯E¡ÊÀƒ@¢¯=ó¶E¢@¢¯E¡ÊÀƒ@¢¯Cˆe”¯@¢¯E¡ÊÀƒ@¢¯C9Àëî@6(†YJôñ@6!TÉ…ðo@2ÞÙ‡+@2Ý}¿HË@2¾V“u@2¿ùrGE9@2 ù kº@2 0¾ í)@2 ù kº@2S&Â@2 ù kº@2KƧïž?|¬Çëý ?‘‹PƧ¢$?–ý3¾ZÀ’?Ž,OêK˜u?–¡©ÚåŠ?–EŽù±Ò?„F/·ÿP5?’ñ©ûçlŒ?–¾Oäë ?“ÅÒÏPÉä?—v>ª¸ ?š>[F»h?°#ÃIÓ¨&?“&•Z÷˜#?“„*0x)Æ?“ˆÃúžáÓ?“aÑ#?©œÌ ãPÐ@@@@@,@*?ð?ð?ð?ð?ð?ð¿]ŽÍM$¿XÀá*?,@£Wa¿?Pµak;@¨‘jH.Èg@¢¯DNQ‹d?K*(ø¾ ”?oõŠÔOã?ž¡ðÌô2K?Ú@fpŸÈŸ@Ÿf -Aès•@ @¢™2-VÁ.„€@¢™2-V@¢™*~ùÛ#@¢™2-V@¢™8üPH@¢™2-V@¢™'ÈK]Ì@¢™2-V@¢™(Œç°@¢™2-V@¢™,1&é@¡záG®Á.„€@¡záG®@¡·éù@¡záG®@¡óMj@¡záG®@¡ Ô•@¡záG®@¡ŽŠqÞ@¡záG®@¡ -qÞi­@97â‚@·€Á.„>¤µÜÆ@5 Ä›¥ã@4÷´¢3œ@4A‰7KÇ@3ýquŽ"@3‡ ù kº@3t9XbN@3‡ ù kº@3s× -=p¤@3‡ ù kº@3wÎÙ‡+@8J¨?˜¶ÚæÁ€?©q-*³7?”ÑD²Û? `F§C:?¢ÀÂêVAg@8J¨?–XSüra1?œT¹o¿‹õ?Ò–‚h±n?¡7‚c/ç?¨>/ÀËÄÊ@8p÷?¢ŠÕfÐÏ1?¶j“êÜài?©”!ŽÓâï?žþôרì? ¾Á{þÆ%@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøø!@¥ù‡+ @¥øöªlŸ˜@¥ù‡+ @¥ùºÇË@¥ù‡+ @¥ùÁ½¥@¥ù‡+ @¥ù*™1@¥ù‡+ @¥ùðØDÐ@¥ù‡+ @¥ù‡ü¹$@CzáG®@C˜q^@CzáG®@Cš@CzáG®@COß:@CzáG®@C)ûçlŠ@CzáG®@C:)Çy¦@CzáG®@C$÷eýŒ@8Î쿱[W@8Û&-r»Ø@4#÷ÎÙ‡@4!©ûçl‹@3´“t¼j@3´Ð©*0@2‚@·€5@2Åœàu÷@2‚@·€5@2Ç1Å‚@2‚@·€5@2À:û~‘?z›Mß ?™D•ö¬ˆ? ±ubÊÅ5?{¾“úy6?’õ¡EE?“*“žj±»?¤Œã__`?œ_lWF_‚?¡„æZ;¥?–…%j»a?ŸNg xŸ?’ Óº^?†VÊ´}Þç?›’qvš°“?¢GûBå?ŒžVE’D?“‹Ü‚NÐ.?”"‚Ò#@@@@@,@?ð?ð?ð?ð?ð?ð?s½®8-À?a^ØÈE?hmgÖÐÅ?dþÓWa@¥ùªÃl@C%ýÓ?…‘›ö?€l_w5Ê?ú9&“T`Ä?éfxU¾Ð@Ÿo d˜€¢@"@£daG®{@£db Iº^@£daG®{@£dh´9X@£daG®{@£dj³g ú@£daG®{@£dTýó¶F@£daG®{@£dUŽ!–S@£daG®{@£dZ¬Ùè>@§uÔýó¶F@§uÔ¼j~ú@§uÔýó¶F@§u× -=p¤@§uÔýó¶F@§uǓݗö@§uÔýó¶F@§u¿½@§uÔýó¶F@§uÃ× -=r@§uÔýó¶F@§uÁ–R½<@8¨†YJôñ@8°ØDЩ@3ý‘hr° @4n—P@3“t¼@3쿱[W@2‚@·€5@2ÓñA [À@2‚@·€5@2ÍÈK]Ì@2‚@·€5@2Ƨï².?¯oÝ ÷6}?–:ð»}TÇ?—go]Þ?Hžyq?•õþèüäú?™S:Ъ;5?°:-%šÀ?—¿ºÖ÷?™luì<±È?”J6bº?— {ޏ`z?›vûËSÆÒ?§%XÕ’?’®ã‘\’?=Ÿo -F?–ì k.÷A?Ž•w “w„?šÙ,yf’Y@@@@@*@,?ð?ð?ð?ð?ð?ð?6l[äH¿Q䇔?_$ˆ„Í?dÒo54@£dV¾Žµü@§uÂ,§?q9ü.ç_?w›d™4c|?ÑÂZÖ‘0?Ú -]ò”›°@Ÿoíû¹C@#@¯ƒ9Û"Ðå@¯ƒ¼j~ú@¯ƒ9Û"Ðå@¯ƒ4¢3œ@¯ƒ9Û"Ðå@¯ƒA-w1@¯ƒ9Û"Ðå@¯ƒ4!-w@¯ƒ9Û"Ðå@¯ƒ<ÓZ…‡@¯ƒ9Û"Ðå@¯ƒ>Ov_Ú@­.záH@­E`A‰8@­.záH@­2° Ä›@­.záH@­(Îp:ü@­.záH@­<¬1'@­.záH@­0 Ä›§@­.záH@­+xFÝ@8í¥œàv@8îi­BÃÊ@5Iº^5?@5° Ä›¦@4¬j~ùÛ#@4¤,<žìÀ@4 ¿±[W?@3õµsê³h@4 ¿±[W?@44mÅÖ9@4 ¿±[W?@4T`ªdÄ?¡EÉ@Ú?žK›æ¶'B?“mî–‚Žr?¡Ëæ%ðÇ?£Ï½Át/9?ž C@L(?„F/·ÿP5?“6SÇ{Ó?–ˆkCünL?§×#Vz?¡Í‹>¬?¤†k ßð?«ú—ÇZà?à í¡h„?ŠÌ÷7Õ}?™Ø^FC}?•°QŸ?]Í?°4\ɵ@@@@@*@&?ð?ð?ð?ð?ð?ð?xÛ‚ö€¿tý´e;€?Yö9id•?>øù›¬@¯ƒ.%€tì@­8ñôT?wÃlÄç?bcÏÎö-?Íæ!Þ?§8ôêýÚ@ŸjLÖ–B×@$@¨#‰º^5?Á.„€@¨#‰º^5?Á.„€@¨#‰º^5?Á.„€@¨#‰º^5?Á.„€@¨#‰º^5?Á.„€@¨#‰º^5?@¨$–”Fsƒ@£KC•Á.„€@£KC•Á.„€@£KC•Á.„€@£KC•Á.„€@£KC•Á.„€@£KC•@£f§ï²@9VšÔ,<ŸÁ.„>¤µÜÆ@4óS÷ÎÙÁ.„M‰ûçm@4~ùÛ"ÑÁ.„QnÙ‡@3¦YJôðØÁ.„NÜC,¥@3¦YJôðØÁ.„NÜC,¥@3¦YJôðØ@4­BÃÉï@8J¨@8#˜@8¾:@8 >+@8Iç?Êòµõô‡]@8J¨@8Î÷@8i§@8Å@8S?Ìbû—ê*ç@8p÷@8 * @8p÷@8¶@8 Ø?ÂHucLú@&?ðøøøøøøøøøøøø%@­þ}ó¶E¢Á.„€@­þ}ó¶E¢Á.„€@­þ}ó¶E¢Á.„€@­þ}ó¶E¢Á.„€@­þ}ó¶E¢Á.„€@­þ}ó¶E¢Á.„€@˜Ñë…¸Á.„€@˜Ñë…¸Á.„€@˜Ñë…¸Á.„€@˜Ñë…¸Á.„€@˜Ñë…¸Á.„€@˜Ñë…¸Á.„€@8–šÔ,<ŸÁ.„>¤µÜÆ@3ã÷ÎÙ‡Á.„M‰ûçm@2Õ`A‰7LÁ.„QnÙ‡@2ž«6z‘Á.„NÜC,¥@2ž«6z‘Á.„NÜC,¥@2ž«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø&@®Ùz^5?}@®ÙlIº^5@®Ùz^5?}@®ÙÈõÂ[@®Ùz^5?}@®ÙÜj~ùÛ@®Ùz^5?}@®ÙŒL˜_@®Ùz^5?}@®Ù…¸Që@®Ùz^5?}@®ØÔFsØ@ª¢Òñ©ü@ª¢\j~ùÜ@ª¢Òñ©ü@ª¢Å¡ÊÀƒ@ª¢Òñ©ü@ª¢²ÊW§‡@ª¢Òñ©ü@ª¢½¥œà@ª¢Òñ©ü@ª¢¼ÚQ@ª¢Òñ©ü@ª¢lVÕÏ«@9h†YJôñ@9Y#¢œwš@4Ê^5?|í@4ãÝ—ö+k@4“t¼@4 P°ò{³@3…œàu÷@3‚h Ô•@3…œàu÷@3’ÃÉîËû@3…œàu÷@35Â\(ö?Çpíë"¬7?¤÷¢qþó?©3}ÛCºß?© Êºd9.?±ä*í5>?ºD1 `?®k|j“ʨ?²ìÊfä“?³ƒ$G"»ª?lná<9?­I€phùË?Àþ"µ–¥v?£˜Œo7\Ì?­ÀÎJÒfA?µ†wØGò?™Gs#4Iú?¬*fÒdº«?¾C3`ow¥@@@@@(@"?ð?ð?ð?ð?ð?ð¿¡EÄáÐ?•M nò@? œfO¶m?&÷Î@D@®ÙxGG:@ª¢¶E¥?±‹Á”ü0U?£þ\7Y@$úà@ƒòÃŽ¿Ð@Ÿm‚ê[¤@'@¬«6z@8~ƒä%®æ@5 Ä›¥ãÁ.„M‰ûçm@4'KƧïžÁ.„QnÙ‡@3cÉîËûÁ.„NÜC,¥@3cÉîËûÁ.„NÜC,¥@3cÉîËûÁ.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøø)@§Ù1&éxÕ@§Ù1hr°"@§Ù1&éxÕ@§Ù1Å@§Ù1&éxÕ@§Ù2n—P@§Ù1&éxÕ@§Ù1Ä2ÊY@§Ù1&éxÕ@§Ù0–»˜È@§Ù1&éxÕ@§Ù0¾ í)@§¹›¥ãT@§¹Ý/¡@§¹›¥ãT@§¹¸Qì@§¹›¥ãT@§¹8ï4×@§¹›¥ãT@§¹8ï4Ø@§¹›¥ãT@§¹+ÓÃa@§¹›¥ãT@§¹o@2쿱[X@2æ1ø @-\j~ùÛ"@-\wškP±@-]ó¶E¡Ë@-^Ov_Ø®@+̲•éá±@+̲•éá±@+̲•éá±@+Ì¿±[W?@+̲•éá±@+Ì‹C•?É^³Dw'?°çR;?‘=?ùKh?‹¹GüÞõ?÷6r In?À­Õß}º?ÐbV‡,?’ -‰¸Ì?‘N÷J’?6) }’ë?ÚÌA B{?_Ø~tñ?€cPßQª?Œ°¶.Ä+Æ?‚yî8Á$?‚éXëLL÷?†’Õaì+’?†½ª»—@@@@@,@,?ð?ð?ð?ð?ð?ð¿?€ûVœ¿Êû¥À?)ÅÆÿôj>üŽ?ù•"@§Ù1û¯£@§¹%NÇý?8ʘ߯P? ¨·Ñ?n“_H‚?é¿|8­@Ÿsœ32v@*@¨R“t¼@¨RÇ_…@¨R“t¼Á.„€@¨R“t¼Á.„€@¨R“t¼Á.„€@¨R“t¼Á.„€@¨R“t¼Á.„€@šÃí‘hr°@šÃéûçlŠ@šÃí‘hr°Á.„€@šÃí‘hr°Á.„€@šÃí‘hr°Á.„€@šÃí‘hr°Á.„€@šÃí‘hr°Á.„€@8VšÔ,<Ÿ@8[AjZ C@40Ä›¥ãTÁ.„M‰ûçm@3±‰7KƨÁ.„QnÙ‡@2s&Á½¥Á.„NÜC,¥@2s&Á½¥Á.„NÜC,¥@2s&Á½¥Á.„NÜC,¥?¤ïŒ7娠@8#˜@8¾:@8 >+@8Iç@8Ù?‹!»¼ôï@8Î÷@8i§@8Å@8S@8û—?¬æçßÌiâ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø+@¡­Ö“u@¡­× -ã@¡­Ö“uÁ.„€@¡­Ö“uÁ.„€@¡­Ö“uÁ.„€@¡­Ö“uÁ.„€@¡­Ö“uÁ.„€@›¢èr° Å@›¢â€ù[C@›¢èr° ÅÁ.„€@›¢èr° ÅÁ.„€@›¢èr° ÅÁ.„€@›¢èr° ÅÁ.„€@›¢èr° ÅÁ.„€@6ý:’£@6ÿ—I0<¨@3+ IºÁ.„M‰ûçm@2§KƧïžÁ.„QnÙ‡@2 -0U2a|Á.„NÜC,¥@2 -0U2a|Á.„NÜC,¥@2 -0U2a|Á.„NÜC,¥?|¬Æ Væ@8#˜@8¾:@8 >+@8Iç@8Ù?e™”XWø@8Î÷@8i§@8Å@8S@8û—?•ß^$ŒÉû@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø,@§LÍOß;d@§LÐå`A‰@§LÍOß;d@§L× -=p¤@§LÍOß;d@§Lèr° Å@§LÍOß;d@§M Oß;d@§LÍOß;d@§LÒ×s@§LÍOß;d@§LÒ-V@¯u C•@¯uå`A‰@¯u C•@¯u•%@¯u C•@¯u º^5?@¯u C•@¯uß;dZ@¯u C•@¯týp£× -@¯u C•@¯uí‘hs@8p4mÅÖ8@8t,<žìÀ@5!hr° Ä@5=æšÔ,<@4K"Ðå`B@4aN;Í5¨@4p–»˜Çã@4¤µÜÆ?@4p–»˜Çã@4|²•éá±@4p–»˜Çã@4oÒòä?°{QBãï?ð}óßd?ð’FB:?ð_ŒB?¦ ÍÚMý,?“*“žj±»?‚á²Olºü?ð¢dx/?ð‡äR³s?ð‚àÓÁ?¬tPYÓz?L "¾?® 'ð %ö?ðfÁbÂô?ð*wjs—?ð,’Ú|‚?”¦”x£b?†‡+œC@?ð?ð?ð@@?ð?ð?ð?ð?ð?ð?.aö@?a/9š?Bz^öʉ?U™î0f¥±@§LÑæÝ2@¯ug´5Ö?ZóÃÔ?€ØVa?bõ?‹äYS”üÜ?ï±\ùU¸@Ÿrz2÷6\@-@¦/µÂ\)@¦/¶“v@¦/µÂ\)@¦/¶4ê@¦/µÂ\)@¦/¶Ov`@¦/µÂ\)@¦/¶‡+ @¦/µÂ\)@¦/´É…ðo@¦/µÂ\)@¦/³÷ÎÙ@£fX“t¼j@£fXÔýó¶@£fX“t¼j@£fX7´¢4@£fX“t¼j@£fW´¢3œ@£fX“t¼j@£fY‡+@£fX“t¼j@£fXDЩ@£fX“t¼j@£fWškP±@0Ç>«6z@0Ç>«6z@0 Iº^5@0ò×s@.›dZ¬@.›dZ¬@.åÉä@.¾vÈ´:@.åÉä@.Ø­«ŸV@.åÉä@.åÉä?É^³Dw'?é¥3i£ó?‘7[ä­?‹×lÇ…N9?‘Dj?Å{¿Ž<¹?ÐbV‡,?’7Îf¬ps?–ÐO(·Š?7枪y7?õ<úU?sxÙ/T?€bMÕky?ŒÐ¤Âÿê?‚‹¡8*ú?ƒ†+ Å?†špk Y?†©b/bJö@@@@@,@&?ð?ð?ð?ð?ð?ð¿R*Šö°¿DÁgÔF?"ÁÌ[¤þï? |oÐ[XÈ@¦/µ=Ø¢@£fXe…jÙ?2 á¢%­ë?/l#ÁÄ?_µWŸqŒ\?-m‡ŠßNì@Ÿs5ДÉ@.@¡}@ƒn˜@¡}@Ä›¥ã@¡}@ƒn˜@¡}<í‘hs@¡}@ƒn˜@¡};˜Çâ‚@¡}@ƒn˜@¡}B\(ö@¡}@ƒn˜@¡}@Ñ·Y@¡}@ƒn˜@¡}AÊÀƒ@«’« Iº@«’¶‡+ @«’« Iº@«’¯iDg8@«’« Iº@«’ªW§†Â@«’« Iº@«’«]Ìcñ@«’« Iº@«’­w1Å@«’« Iº@«’®—OÞ@7Ù*0U2b@7Ö¸ºÇ@3—+ Iº@3›µsê³@3)Û"Ðå`@3-à qv@2mÅÖ8†@2éá°‰ @2mÅÖ8†@2•*™1@2mÅÖ8†@2›=ÈL?óA[ØïF?•ßóV_Ü^?•|®6zj?$Ìj½BÙ?‘5ø gµÒ?“ d?”¼íÒh??—ò•kÕK2?•¶ÀA½ -;?‘.“¥?‘†óèJL\?’.8 -B?™¬<÷aý?–P¢k"?“„*0x)Æ?†3_¾ˆ?ˆëÅoë?‡Õ˜]–GÄ@@@@@$@*?ð?ð?ð?ð?ð?ð? \J&À¿YPþ’j?3%0Y.Ï?S\ξ‘ß@¡}AŠï—@«’¯&OŠ.?Pã”:…OÀ?p\!ð+Ö4?Ÿ­ƒ -¾2?Ù‰@0x1@Ÿl§!±Å@/@ Z^¸Që…@ `y™™™š@ Z^¸Që…Á.„€@ Z^¸Që…Á.„€@ Z^¸Që…Á.„€@ Z^¸Që…Á.„€@ Z^¸Që…Á.„€@•™õÂ\)@•˜¸Që…@•™õÂ\)Á.„€@•™õÂ\)Á.„€@•™õÂ\)Á.„€@•™õÂ\)Á.„€@•™õÂ\)Á.„€@8Hè§æ@77l‹C•€@5.5?|í‘Á.„M‰ûçm@4d¼j~ùÛÁ.„QnÙ‡@4J0U2a|Á.„NÜC,¥@4J0U2a|Á.„NÜC,¥@4J0U2a|Á.„NÜC,¥?ïT,J(¤r@8#˜@8¾:@8 >+@8Iç@8Ù?ÖFÉ ÿòÞ@8Î÷@8i§@8Å@8S@8û—?ö=ÌÅ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø0@ª?©xÔýô@ª?©xÔýõ@ª?©xÔýô@ª?ªW§†Á@ª?©xÔýô@ª?ª¦L/ƒ@ª?©xÔýô@ª?«C,¥@ª?©xÔýô@ª?©Q‚©“@ª?©xÔýô@ª?©á°‰ @£P° Ä›¦@£P°bMÒó@£P° Ä›¦@£P°U2a|@£P° Ä›¦@£P¯v_Ø®@£P° Ä›¦@£P¯·éù@£P° Ä›¦@£P°‰ 'R@£P° Ä›¦@£P¯–»™@3T xFÜ@3Sþ\‘ÑN@0 Ä›¥ã@/ùè>BZî@.ØÔýó¶F@.Ó&Á½¥@.Aò×t@.ŽËûµt@.Aò×t@. „M;@.Aò×t@.Žæ1ø ‘?}Ñ¿ž,?jú‚<·™?‘:€¾¶ˆ?‹ª½¨ª8v?òǹíT­?âé¨ë7F?|öOÿÝ?’‡Iš÷?ö”iåó¨?/ò×ÈZø?ÔÒ@úˆ‘?hï,ðà?‚uÞ@>N ?ŒöOÿÝ?‚¸“Îè ø?ƒ!Ë *(?†žóB» “?†å·ÑfWà@@@@@$@,?ð?ð?ð?ð?ð?ð? /(@ ¿Ù ?, mŒâ¹ã?Ü;ñ¬@@ª?©ßrƒ@£P°!Ò!?KÛßµÞsq?9am’,p?¤™]ÑÅö?€¥×ñ -€Ý@Ÿg@ÿ0¯@1@«Jz^5?}@«JwKƧñ@«Jz^5?}@«Jx­«ŸV@«Jz^5?}@«JwÎÙˆ@«Jz^5?}@«J|wškQ@«Jz^5?}@«J{çl‹D@«Jz^5?}@«J|¬1'@­ùäÝ/ @­ùæ$Ý/@­ùäÝ/ @­ùäZ¬ @­ùäÝ/ @­ùë…¸Q@­ùäÝ/ @­ùæfffg@­ùäÝ/ @­ùéÞÒ@­ùäÝ/ @­ùè>BZí@7úqÞi­C@7óŠ Þ@3’ Iº^5@3“Ð|„µÜ@3Ct¼j~ú@3DµÜÆ?@2œÚQÎ@2}¿HÌ@2œÚQÎ@2žOv_Ø®@2œÚQÎ@2ŠÚ¹õZ?›’qvš°•?äm°û0Ž?‘RsÈW?“ŒÒ•ÿV{?”§RXFÖf?’?=ÆþÎò?„F/·ÿP5?’5CàQ?‘Jâ”âj?–¼Š˜L¥ø?•’nî …?“ÌUõÎs¼?„+£QKø?Ž`ŸÝïöF?ƒ~¨õ/¥O?ˆW„hðQ?‰ö±«tï?Š`½i=ÓØ@@@@@*@&?ð?ð?ð?ð?ð?ð?N™2_8?@µÝ¸?;V[”lîE?'>w–ä¨@«J{E«3Ê@­ùç‰ ¬`?VhÆCņ?Kz‰àç­Í?¡‚q7V¬Ê?‘„=¯‰£@Ÿl××#Îs@2@ª*ß¾vÈ´@ª*ß¾vÈ´@ª*ß¾vÈ´@ª*àIQƒ@ª*ß¾vÈ´@ª*Üj~ùÛ@ª*ß¾vÈ´@ª*á [À@ª*ß¾vÈ´@ª*äZ¬@ª*ß¾vÈ´@ª*áÊÀƒ@¨ÞbMÒò@¨Þ Ä›¦@¨ÞbMÒò@¨ÞŒ"h Õ@¨ÞbMÒò@¨Þ‰7Kƨ@¨ÞbMÒò@¨Þ|(õÂ@¨ÞbMÒò@¨Þ‘hr°!@¨ÞbMÒò@¨ÞŽ}Vlõ@5µS&Á¾@5µF -¦L0@3ahr° Ä@3_ß;dZ@2ûƧï²@2ùe+ÓÃa@2¦YJôðØ@2 ù k¹@2¦YJôðØ@2«ŸU›>@2¦YJôðØ@2œ¥zxl"?|¬Çëý ?Čۨ1A?”‰oüq u?Hžyq?›ÿËRÈ?•½0 -Žø?„F/·ÿP5?’j%ÓRa?“v@á¿bî?’ äÅ?™=M÷‹¸? J,û¾õ?ƒíÈm½!¾?3ßa=„?¶,1õ'®?ƒžÂâk,?Ü×þë¿?Ž•w “w„@@@@@*@(?ð?ð?ð?ð?ð?ð?C>,Ù`¿^ØšŒ$?/z’ü“?h•¡1©ê@ª*àé(ù@¨ÞŠÎx*£?M›<£—š(?†wnÌÜã?¡Fq|¤ös@ -kâY)@ŸeF’V¦¶@3@¤Ñô¼j~ú@¤Ñõ$Ý@¤Ñô¼j~ú@¤ÑÿÔjž@¤Ñô¼j~ú@¤Ò×.@¤Ñô¼j~ú@¤Ñ÷O9n)@¤Ñô¼j~ú@¤Ñûlgb@¤Ñô¼j~ú@¤ÑúÀ®ŸS@–…¯Ÿ¾w@–…­V@–…¯Ÿ¾w@–…¾óÕž@–…¯Ÿ¾w@–…ßû"¡P@–…¯Ÿ¾w@–…ÏfqŸ¯@–…¯Ÿ¾w@–…ËhXc·@–…¯Ÿ¾w@–…ÜúCÆ@4¿–»˜È@4Àºú£“ò@2; Iº^@23øÒÍž@1ö§ï²-@1ïËaÓÚ@1=cˆe”°@19åâØ‡@1=cˆe”°@14¿w¸5@1=cˆe”°@15N–?|Ñb×¶@?’ò@­9•Ð?›[6.©š7?Ž­Ñºn?“ÿ<$a·?“\¯Û…vŸ?}@T˜ÁÎ¥?’¸«‹Žy?œø)3ÁÐ^?”C\7hv?—3|¯OiÜ?•C⟗áù?„°¼óSôS?Ém±O5?âÔ–o=€?‹Á°üø%A?‘Öl¸h8?‘ÒÅ?ÇÂ@@@&@(@,@9@7?ð?ð?ð?ð?ð?ð?Qú¶ÄÖ?spl?-h^ù]K[?FúÌ;®@¤Ñ÷›¨P@–…ÀnÑk?L$™­q\}?fšÿ6÷?£@üøð“?ÓóƒôÕ¡@ŸereX¯Ý@4@£ÇvE¡ÊÁ@£Çv‡+ @£ÇvE¡ÊÁ@£Çq”¹-Ï@£ÇvE¡ÊÁ@£ÇOì@£ÇvE¡ÊÁ@£ÇpO*Ä@£ÇvE¡ÊÁ@£Çª ÍF@£ÇvE¡ÊÁ@£ÆæMPA@™é¶E¡ÊÁ@™é¶È´9X@™é¶E¡ÊÁ@™é·u @™é¶E¡ÊÁ@™éž=ýl”@™é¶E¡ÊÁ@™éQ(ù@™é¶E¡ÊÁ@™éiñ4£@™é¶E¡ÊÁ@™éØ‘ÑkÎ@3ÞHè§æ@3ÝUhÆ“@0sS÷ÎÙ@0eþRžì@0.ùÛ"Ðæ@0£’påF@0&YJôðØ@/¦Ý̵d@0&YJôðØ@/ªì’J¹S@0&YJôðØ@/¢yUY‘?}õ¬#„­?…þÄž¶?§ÞéÒ‘°Ç?±:7–C1ò?ÀóçWØ?È. |Ý[?|Ñb×¶@?’ý#wgé?§±_m24?¦}å5®,?ÁvÜ.°ø*?¼éEim?‚nÓ3î‰?“KŽå‚U!?ÂeW^¯_?œuÞù<^? ¥a,ŽÄ=?™"­ŒÛ€A@@$@*@$@9@:?ð?ð?ð?ð?ð?𿟋f†Ž^’Ù€?oéóÖTrÆ?}­Óþ†«™@£Çc(E¤;@™é¨:áˆû?v?rå.I-?†oFÚ?×x®%é»A@²Ó¹0 -@ŸZê(ìçP@5@¨F§ï²@¨Gï²,@¨F§ï²@¨@ªdÂ÷@¨F§ï²@¨Aò×r@¨F§ï²@¨G†Â&@¨F§ï²@¨I­BÃÉ@¨F§ï²@¨JÀƒo@£Îæffff@£Îã•%@£Îæffff@£ÎçË)_@£Îæffff@£ÎàA‰7M@£Îæffff@£ÎãFÜ]e@£Îæffff@£ÎåS&Â@£Îæffff@£ÎæL/ƒ|@6è†YJôñ@6éÀëíúD@2Ùº^5?}@2Ö+jçÕf@2,j~ùÛ#@2)ã¼Ô@1³&Á½¥@1¯'»/ìW@1³&Á½¥@1³g ù l@1³&Á½¥@1²° Ä›¦?гá‡}?•Íñ¤Ý q?’,³Zêª?ç\Š2˜?‘˜¯ -`É?‘Iãd©ìGcª# @ªI·i@¤ixm$?C>ìÂÉ?^ÜZ¸P‹¼?’Úg…×+?Ä£fó!˜±@Ÿg¢ÜÏN;@7@¡{å`A‰7Á.„€@¡{å`A‰7@¡{áä÷eþ@¡{å`A‰7@¡{Ö+jçÕ@¡{å`A‰7@¡{ç“Ý—ö@¡{å`A‰7@¡{üÚQ@¡{å`A‰7Á.„€@ªÛ$Ý/Á.„€@ªÛ$Ý/@ªÛ3÷ÎÙ@ªÛ$Ý/@ªÚð¸º@ªÛ$Ý/@ªÚë)^ž@ªÛ$Ý/@ªÛ|ÚR@ªÛ$Ý/Á.„€@3” xFÜÁ.„>¤µÜÆ@08r° Äœ@0M¿HË’@/Ó¶E¡ÊÀ@/ºŸ¾vÈ´@.¸7´¢3œ@.µ '»0@.¸7´¢3œ@.ÅðoiDi@.¸7´¢3œÁ.„NÜC,¥@8J¨?—É·R©Ï? „„³ÉuN?œéû¢­0K?œ=òÙUä@8Ù@8J¨?—® QnS#?ºUŠ"ÄÅ?–sZ -™ø?¬1H9v@8û—@8p÷?—Ö¸¨ú.?¶j“êÜài?Ž«]O8èº?ªƒ&‘n_@8 Ø@@@@&?ð?ð?ð?ðøøøøøøøøøøøø8@Ÿ¾8Që…Á.„€@Ÿ¾8Që…Á.„€@Ÿ¾8Që…Á.„€@Ÿ¾8Që…Á.„€@Ÿ¾8Që…Á.„€@Ÿ¾8Që…Á.„€@œÓs¶E¡ËÁ.„€@œÓs¶E¡ËÁ.„€@œÓs¶E¡ËÁ.„€@œÓs¶E¡ËÁ.„€@œÓs¶E¡ËÁ.„€@œÓs¶E¡ËÁ.„€@7¹Œ~($Á.„>¤µÜÆ@2!hr° ÄÁ.„M‰ûçm@1Ë"Ðå`BÁ.„QnÙ‡@0Åœàu÷Á.„NÜC,¥@0Åœàu÷Á.„NÜC,¥@0Åœàu÷Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø9@¥¦j~ùÛ#@¥¦h1&éy@¥¦j~ùÛ#@¥¦oAò×@¥¦j~ùÛ#@¥¦kÓÃa@¥¦j~ùÛ#@¥¦k¹Œ~(@¥¦j~ùÛ#@¥¦dµÜÆ?@¥¦j~ùÛ#@¥¦f€IQ@¬Ý€@¬Ý‰7KÈ@¬Ý€@¬Ý~5?|î@¬Ý€@¬Ý£n.³@¬Ý€@¬Ý.Hè§@¬Ý€@¬Ý„oi@¬Ý€@¬Ýƒ,¥zy@6è†YJôñ@6èï4Ö¡b@3; Iº^@3;µsê³@2Àå`A‰7@2ˆÎp:ü@2?ò䎊r@2C,¥zxl@2?ò䎊r@2>ߤ?åÉ@2?ò䎊r@2?Åo?„F/·ÿP5?‘¡çL¤?‘ñê&ètä?‘´CF õ?“ £Ê­?šæ5ƒ‹Å‹?}Ñ¿ž,?’š'†­`í?‘¡Kd·´+?‘.}áµ$?“þþ¿=?“‘k–šj?‹v'þ­X?þþoÀM?„ã¼ÓZ…ˆ?„Ö©Ú0?‘„1ôñÂß?ŽÜÂÎÛÖa@@@@@*@*?ð?ð?ð?ð?ð?ð¿4©ëR?2õÄõp?Iv%Òaq?>Ç Ý¤Ã@¥¦göX Æ@¬Ý÷¢Ý?hS,“P?^ÿŸÁO Ä?Ò>tãkà ?ÃìèêC@Ÿf©˜ÝK‡@:@§µ;çl‹D@§µ;dZ¬@§µ;çl‹D@§µhr° Å@§µ;çl‹D@§µ@ qw@§µ;çl‹D@§µX“t¼j@§µ;çl‹D@§µ?oÒó@§µ;çl‹D@§µ ÅÖ8†@¢ƒ£S÷ÎÙ@¢ƒ§ï²-@¢ƒ£S÷ÎÙ@¢ƒÚŸ¾vÉ@¢ƒ£S÷ÎÙ@¢ƒŸö”E@¢ƒ£S÷ÎÙ@¢ƒBÃÉï@¢ƒ£S÷ÎÙ@¢ƒŽËûµ@¢ƒ£S÷ÎÙ@¢ƒÌ¿±[W@8½:’£@8ÄSŽóMj@4Œí‘hr°@4ÀhÛ‹¬q@3©Û"Ðå`@3¿ƒ{J#:@3ý!ÿ.I@3@-à @3ý!ÿ.I@3Q-w1Å@3ý!ÿ.I@3óMj?¯ò5}'Î?¢Ú>¨I ¿?©3}ÛCºß?³•(&V?¬  KüÞ?°»ÂOY‰ò?¢Æ÷Xê†?¬'ø'5?°9›|/ß?¶ãc6; ?¸§e‰B?±€ü@ Ø¤?ÅÃÑ /x/?¡ú-8ûõö?›f°ùr[‚?›ÄAÚ þ ?ªöwóƒY?¸&ä¾±4ý@@@@@,@&?ð?ð?ð?ð?ð?ð¿y5[á6?k‹!_?2§rù¸‚?y|†J¶'¶@§µ9,d‡õ@¢ƒ­%,˜?ŸÝU©fX?ÈŽqŒã?þE½jF(v?÷À>0÷¦õ@Ÿj…ïè¶´@;@¥ÉcS÷ÎÙ@¥ÉcS÷ÎÙ@¥ÉcS÷ÎÙ@¥Éeo@¥ÉcS÷ÎÙ@¥É`-à @¥ÉcS÷ÎÙ@¥Éc{J#:@¥ÉcS÷ÎÙ@¥Éd“t»@¥ÉcS÷ÎÙ@¥Écˆe”®@¡¹dZ¬@¡¹d›¥ãT@¡¹dZ¬@¡¹Z’£S@¡¹dZ¬@¡¹]!ÿ.I@¡¹dZ¬@¡¹gæšÔ@¡¹dZ¬@¡¹e‡“ݘ@¡¹dZ¬@¡¹ezxl"@4įO „M@4Å+ÓÃa@0Ùº^5?|@0×E8ï4Ö@0»Æ§ï²@0¸õÂ\)@0‚@·€4@0ªdÂø8@0‚@·€4@0&€IR@0‚@·€4@0ÿ.Hè¨?|¬Çëý ?‘¸ü"ù€2?•™Þ õ?ޝ“¶¶ÒÍ?‘VšÐ^Ø?‘f]£àG?|öOÿÝ?“¡ƒ[¤45?“èËôy?“3ÏÇF0?‘†óèJL\?Éöm/wE›Æ@¥Éc‡˜c|@¡¹eF¦.p?/ wƒØ›?L¹Õ›Do?i»®«3y?£ ˆ·Uu^@Ÿf©{ʺ@<@¡AÙ™™™š@¡AÙ™™™š@¡AÙ™™™š@¡AÛ˜Çâ‚@¡AÙ™™™š@¡AÚáG®@¡AÙ™™™š@¡A×´¢3œ@¡AÙ™™™š@¡AÙÛ"Ðå@¡AÙ™™™š@¡AØ­«ŸV@®/"MÒñª@®/“t¼i@®/"MÒñª@®/%o@®/"MÒñª@®/(1&éy@®/"MÒñª@®/$Z¬ @®/"MÒñª@®/#{J#:@®/"MÒñª@®/!×Ûô‰@7uS&Á¾@7s àÞÒˆ@3žÙ‡+@3Ÿ.Hè§@3U`A‰7L@3V“t¼@2J0U2a|@2JCþ\‘Ò@2J0U2a|@2L(õÂ\@2J0U2a|@2KÓÃa@?Œs¤DÅÐ?—oN„Q?š^ÇÙ*G?’³Žbtx=?“™p[³ì?—‡XE%:?ˆÿÀ)T¿Æ?œ7»fU‡?’t-Eü?’F—T \*?“'ü#šgâ?“‘k–šj?‡~ ~ã?•<€¥¿ý¢? t€4Ã?„À"aËô??‹ú èNÆö?‹ ˜1 D@@@@@@(@&?ð?ð?ð?ð?ð?ð¿ ²•¾ ?c¤H?3}SñÄ'?MãÙ8Xð@¡AÙ‘1A@®/&E]?R\¤“^y—?míãÈœ? ·£®æ?Ùa¬|ÄÛ@ŸiÓFz3ó@=@¬ðgl‹C–@¬ðbMÒñª@¬ðgl‹C–@¬ðaä÷eþ@¬ðgl‹C–@¬ðezxl"@¬ðgl‹C–@¬ðn}Vlô@¬ðgl‹C–@¬ð\ú¬Ùè@¬ðgl‹C–@¬ð\„µÜÆ@¨ôyXbN@¨ô~¸Që„@¨ôyXbN@¨ô‚Zîc @¨ôyXbN@¨ô.Hè§@¨ôyXbN@¨ôn±Ä2Ê@¨ôyXbN@¨ô–¡aä÷@¨ôyXbN@¨ô Ä›¦@82ÃÉîËû@8%?|í‘h@4+ Iº@4»˜Çâ‚@3M²-V@3M¸ºÇË@2ÜÚQÎ@2Ð@2ÜÚQÎ@2ÛÍ5¨Xz@2ÜÚQÎ@2Ú0U2a|?ªÝ8Ⱥ™J?Æ -×?•Œ–?—;±C??›m¤´¨×¦?”ÙA!Xá¨?¢F^ì¼Sð?’áÄïÃõ?’±ä?ðK^‡?¢€fç½Î?Ÿ…4æµ°?º f -¦?‘pØ-Ÿt?†' -³}÷C?Q§ ç´Í?”èÙ£—?•mCìc¿4@@@@@*@*?ð?ð?ð?ð?ð?ð¿pŽÑÁá?tŸAyù€?jŠ˜êïÝ‹?uªöÚaÞÉ@¬ðd½nä@¨ô„o]ÆÏ?‚‡`þm08?’âø:þ2ú?ì,Ƀ!x4@‹øk.j@ŸnÜó‹·ñ@>@¥†ì‹C•@¥†ìÌÌÌÍ@¥†ì‹C•@¥†ìô!-@¥†ì‹C•@¥†é…ðoi@¥†ì‹C•@¥†ìcñA @¥†ì‹C•@¥†ðHð@¥†ì‹C•@¥†î—OÞ@§•öÈ´9X@§•öÈ´9X@§•öÈ´9X@§•ì1&é@§•öÈ´9X@§•è§æ›@§•öÈ´9X@§•äêJŒ@§•öÈ´9X@§•ö4ê@§•öÈ´9X@§•ò£S%@3|ÚQ@3aä÷eþ@/Û"Ðå`@/U2a|@-òn—Oß@-à·€4mÆ@.žš@-þ í(Œç@.žš@.‡“Ý—÷@.žš@.ÉîËû?|öOÿÝ?òb[±?•Mq —¦?šÞx‚xí¨?˜h†5+P?˜ C®k¯?|¬Çëý ?’¼MÒÀ7F?šˆFy® -?§™sÒ†ŸL? ,¡r×gÁ?£Šï-[w?‚‹¡8*ùÿ?µœ7}?†aÞàI*•?‡¯½.SM?‡”_Õ­çW?‡´*žZ}Õ@@@@@,@,?ð?ð?ð?ð?ð?ð??[‚°0¿Qy4¨ô?1,9˜Qtœ?V7Ð:àg-@¥†í„¼Ÿ@§•ôÿƒ·?N3Èõ V?r:s~\Kš?¡Ï´æ'?Ý#Šœ;@Ÿb™»¹I@?@¯ÚxQë…@¯Úx“t¼j@¯ÚxQë…@¯ÚyXbN@¯ÚxQë…@¯Úye+ÓÂ@¯ÚxQë…@¯Úye+ÓÄ@¯ÚxQë…@¯Úw>«6z@¯ÚxQë…@¯ÚwKƧñ@œ“m‘hr°@œ“nzáI@œ“m‘hr°@œ“lq ²–@œ“m‘hr°@œ“l"h Õ@œ“m‘hr°@œ“l¥zxm@œ“m‘hr°@œ“mÅÖ8†@œ“m‘hr°@œ“mBÃÉî@0÷â‚@·€@0÷â‚@·€@+MV“@+MquŽ!@*ÉxÔýó¶@*É 'RTa@*oi@*÷eýŠÛ@*oi@*oh@*oi@*oi?É^¨¯Âj?ÖÈ ¼?‘&Øç?‘?‹¯eU5?êtÿKÑc?·t¤¢‚J?ÐbQë„›¦?’¼  g¶?¹º–Èj?;ß $Þû?ÐFf$?Sñƒ´V.?€bMÕ]f?Œ¯þuõí?‚uÞ@>N ?‚ãaÎúvh?†l&þ?†½ª»—@@@@@(@,?ð?ð?ð?ð?ð?ð¿O–Z°?"ºªJ?5/•”BÊÇ?!À—63±@¯Úx!J‡€@œ“m.à«,?D_?o´oâ?0ÊP7Ñç?„g7¤‘jß?X²'ÈEc@Ÿs ¸9 @@@¦Àƒn˜@¦³÷ÎÙ@¦Àƒn˜@¦É7Kƨ@¦Àƒn˜@¦®óMj@¦Àƒn˜@¦¸üPH@¦Àƒn˜@¦¢Ðå`B@¦Àƒn˜@¦¢e+Õ@¥$•$Ý@¥$°bMÒò@¥$•$Ý@¥$`hÛ‹«@¥$•$Ý@¥$NV“@¥$•$Ý@¥$Q ²•ê@¥$•$Ý@¥#çy¦µ @¥$•$Ý@¥#ëíúCý@8ý:’£@8Κu@4O|í‘hr@4E '»0@3ÝV”@3ÉîËû¶@3fYJôðØ@3Z¬Ùè>C@3fYJôðØ@3TtSŽóN@3fYJôðØ@3L‘ÑN;Î? Eˆ‡ðó‹?™05¦ ê[?–ý3¾ZÀ’?’9ñ9¶ò8?¯+|ƒº<ó?²Æ ºÔæP?±Á1ÈËŸÓ @Ÿg÷Ï`ã@A@Ÿ³àA‰7L@Ÿ³ð˜°¢Æ@Ÿ³àA‰7LÁ.„€@Ÿ³àA‰7LÁ.„€@Ÿ³àA‰7LÁ.„€@Ÿ³àA‰7L@Ÿ¯B|áöz@Ÿ³àA‰7L@Ÿ¯Õ$Ý@­y¶E¡ÊÁ@­y¹XbL@­y¶E¡ÊÁÁ.„€@­y¶E¡ÊÁÁ.„€@­y¶E¡ÊÁÁ.„€@­y¶E¡ÊÁ@­|åS-@­y¶E¡ÊÁ@­|µY³Ð~@8‡>«6z@8q– -ÌW@3õãS÷ÎÙÁ.„M‰ûçm@2çKƧïžÁ.„QnÙ‡@2Ç ù kºÁ.„NÜC,¥@2Ç ù kº@1¢ú*,¦»@2Ç ù kº@1i0¾ í(?¡`»¢ƒÙÔ@8#˜@8¾:@8 >+?µÒŽ×Óè?Ñ»­, é?‘w×vHf@8Î÷@8i§@8Å?¹ñÒ—#‡?Ú‘ý—L'?š^}\Б@8 * @8p÷@8¶?´óî÷Ôþ?«] óºä@@2@*?ð?ð?ðøøøøøøøøøøøøB@£sèõÂ\@£sé7Kƨ@£sèõÂ\@£sç ù l@£sèõÂ\@£sç“Ý—ö@£sèõÂ\@£sç®zà@£sèõÂ\@£såo@£sèõÂ\@£sâœwšk@® ¹Û"Ðå@® ¹Û"Ðå@® ¹Û"Ðå@® ºu%F@® ¹Û"Ðå@® ¹Û"Ðå@® ¹Û"Ðå@® ¸y=Ù~@® ¹Û"Ðå@® ¸Ôýó¶@® ¹Û"Ðå@® ¸y=Ù@3IÎ_oÒ@3IÇy¦µ @1xr° Äœ@1xl"h Ô@1"-V@1!Î_p@0Åœàu÷@0Â䎊qÞ@0Åœàu÷@0à àÞÒ‰@0Åœàu÷@0Ã@N¤¨Â?žˆ2}?]àÛ‘?‘ê ÷“'? Ìç,Z?‘u×íËÄî?‘·díW‚?|¬Çëý ?’Q_Ú¸FN?‘}7ˆ.Ñ?‘Ò–¬q?‘Uç·Býi?ó‹P=´?‚nâwfÿ?ŒïQ¼º“ã?‚Ö˜>µDá?ƒ¼9XNÄu?‡×7°º?ˆk! ¨l@@@@@&@&?ð?ð?ð?ð?ð?ð¿Ríü®¿3…*‚?0ÿòiÒT?]XØ—&Â@£sæÙ;ž0@® ¹')Ĩ?PÖCÃ\i™?4#ŠÅµAr?©8ù¸(q?s[Pæƒ@ŸgrC 0@C@©¥ãSø@©dZ¬@©¥ãSø@©5?|î@©¥ãSø@©!£n.²@©¥ãSø@©ã¼Ó\@©¥ãSø@© žƒä'@©¥ãSø@©ÊW§‡@©±ñ©ûçm@©±ò° Ä@©±ñ©ûçm@©±éxÔýô@©±ñ©ûçm@©±àhÛ‹¬@©±ñ©ûçm@©±ýó¶E¢@©±ñ©ûçm@©±åãS÷Ï@©±ñ©ûçm@©±ê™0¾@6Hè§æ@6}Vlô@3}‘hr° @3}‘hr° @3{Ƨï²@3|wškP±@3‚@·€5@3œwškQ@3‚@·€5@3䎊qÞ@3‚@·€5@31&éxÕ?1·†Æjñ?*£|3Né?‘ÄÑ ø?•oÕ=\<Â?–~9n4ºÀ?ž»‚>äÚ>?€‚ñêã ?’7Îf¬ps?üÓqÔN‰?”Â1`´? CÚ B÷?Ÿ¥O[õÆ?‚nâwfÿ?pù51íÒ?–EÑ~?ŒžVE’D? ã΋÷ÑN?ŸHF!œ6²@@@@@,@(?ð?ð?ð?ð?ð?ð¿e„Y?n¿Ac]Ðx?D… ¯ÜH~?c’0-©—@©®»ÿ\@©±òz ˜œ?br“cP‰?ZÝÞ£á¯?ÆYÙ±¾@ÎÜfÀÎ@ŸcÌ -°4@D@§ÝG+ J@§ÝFffff@§ÝG+ J@§ÝFÂ&€ž@§ÝG+ J@§ÝGÕfÏB@§ÝG+ J@§ÝCn—@§ÝG+ J@§ÝJ¦L/ƒ@§ÝG+ J@§ÝIîËû@§àÐå`A‰@§àÒ-V@§àÐå`A‰@§àо í*@§àÐå`A‰@§àÎV“@§àÐå`A‰@§àÑhr°!@§àÐå`A‰@§àʦL/„@§àÐå`A‰@§àÏß;dZ@7¥öý!ÿ.@7ªÍžƒä&@3)‡+ @3)0¾ í(@2`A‰7L@21&éxÕ@1î_oÒ @1ï4Ö¡aå@1î_oÒ @1ë’:)Çz@1î_oÒ @1êxl"h -?š•§q!U?‘_¦X ë -?”P"ÒhI?î®)„àµ?”äPÚ=æ?‘ø)±'3?–ªÎ­¡?“H¼k#è?’Qÿc -?iêhAÜ?“ðÐ ?“.½þ¹Š?‡z"2Úù(?7'în‹K?†aÞàI*•?‰®ðúcåZ?Œ¸ðËb?“ )D)@@@@@*@,?ð?ð?ð?ð?ð?ð?UMX=x¿MÕóžô?TFÏIëÿË?PsRž¿“ç@§ÝF° Jl@§àÏÎ|?n 3,Vÿ|?jæV ß*;?ÔÜçé°ÊÁ?Ï…œÆÌž@Ÿm¦üã4@E@¨Å¸Qì@¨Óˆæ¢å@¨Å¸Qì@¨éÂkX@¨Å¸Qì@¨à¯75@¨Å¸Qì@¨Û+ñ¦L@¨Å¸Qì@¨Ïdèål@¨Å¸Qì@¨Õ[~„.@™ct¼j~ú@™cžþö;(@™ct¼j~ú@™c‰DªnÏ@™ct¼j~ú@™cw¨^Æ(@™ct¼j~ú@™cm…*©J@™ct¼j~ú@™ckƒËe@™ct¼j~ú@™cnRãßã@8Î쿱[W@8Ã(õÛ’P@3”›¥ãSø@3‚6=ÐC@2q‰7Kƨ@2f]Ñçùb@1«xFÜ^@1¢ãa+èE@1«xFÜ^@1¢0¸ÙÆL@1«xFÜ^@1£*GQ†ˆ?†Dʯθ?™u‚3ßËv?•E&Ê?£üy?”´äØ÷ô?—Óöœ´%±?œÆæXÆd?•ññì4?‘1Í»?,?·:ÁÌÙ?’2%õ“ô?’Æ8 -$?³ØÇ’}’Ÿ?“(tíl­?… ‘gz?†ÔgKâê?ˆšsÓß ö?‹Fü¶u@@"@(@&@8@5?ð?ð?ð?ð?ð?ð?1ÀK¿q:×ö(À?W€?Ä€»?bÙ¶Þ7^«@¨ÕKî…†@™cvZb¤;?yRÔT˜;?|ˆX¡´ª?îqjZ‡?ðAn]oV@Ÿl Ó1£ä@F@¡v"MÒñª@¡v!ÊÀƒ@¡v"MÒñª@¡v#,¥zw@¡v"MÒñª@¡v"\(ö@¡v"MÒñª@¡v!ÿ.Hé@¡v"MÒñª@¡vË’:*@¡v"MÒñª@¡v" Iº^@­l‹C•@­l1&é@­l‹C•@­m5¨Xx@­l‹C•@­m(Œç@­l‹C•@­lÙè>B@­l‹C•@­l~($ @­l‹C•@­m(Œç@4šÔ,<Ÿ@4lô!.@0R Iº^5@0R×sü@/ØÔýó¶F@/؆YJôñ@/G“Ý—ö,@/F¸ºÇ@/G“Ý—ö,@/FéxÔýô@/G“Ý—ö,@/Gï²-?|¬Çëý ?Čۨ1A?‘"žæÆó¡?Œ:Z2‚b?‘,IÝ Áé?¾ƒìÈÁ?}Ñ¿ž,?’j%ÓRa?ŠA)Nîá?>\‰å‘?çêÑHcÇ?Uÿyu”#?‚‹¡8*ùÿ?)‰€Zw?‚˜YªüÏF?ƒE 8?†Ë¢L1Ù?ˆA0û)n@@@@@*@$?ð?ð?ð?ð?ð?ð¿oqQ?*{:ëÀ?-÷t{ Ћ?±EÙMž@¡v!)L@­l|Øù?Møì¯ø‰?/GîñÎÉ|?¨, Sˆô?hêé¡Ñý@Ÿg¯IzA@G@¤o)xÔýô@¤o)º^5?@¤o)xÔýô@¤o)Dg8@¤o)xÔýô@¤o)ã¼@¤o)xÔýô@¤o.—Oß@¤o)xÔýô@¤o) 'RS@¤o)xÔýô@¤o)îËû@ªëbMÒñª@ªëh´9X@ªëbMÒñª@ªë`·€4n@ªëbMÒñª@ªëem\ú­@ªëbMÒñª@ªëg“Ý—ö@ªëbMÒñª@ªëe”¯O@ªëbMÒñª@ªëhK]Ìc@8–šÔ,<Ÿ@8š’£S&@3ahr° Ä@3`4mÅÖ8@3,j~ùÛ#@3+ŸU›=@2«6z‘@2Ùb¶¯@2«6z‘@2i­BÃÊ@2«6z‘@2ã¼Ó[?’Óusÿ\Ã?’‚€‡d_s?œ -¦ÃDþ?‹ÝÉ!ë#?‘‘n{ÆäK?‘îƒÔ1a?¯oÝ ÷6}?•\´jÒË?– íÇyz?@§[*^?‘c3¸cÜ(?’ ÃCÀ`ú? ânIð?’|׿pZ?“²pÅâ-Ý?†Á{0Ÿà®?‰/ã̽`ª?Œ˜ˆTÙ8ª@@@@@(@(?ð?ð?ð?ð?ð?ð¿# -g ¾Õcú?O»˜™Ö@^?Gæ!1€ÚN@¤o+nП$@ªëg/ iƒ?k—äÿ×?ZªË_IÄš?Ó†qíý¬ ?« ‰oÑ@ŸpHZ£Cº@H@¡p$Ý/@¡pG®{@¡p$Ý/@¡p‚ Iº_@¡p$Ý/@¡pohÜ@¡p$Ý/@¡p–R½<@¡p$Ý/@¡p¤?åÊ@¡p$Ý/@¡pË’:)@ e#S÷ÎÙ@ e#•%@ e#S÷ÎÙ@ e"Ðå`B@ e#S÷ÎÙ@ e!aä÷f@ e#S÷ÎÙ@ e"œwšk@ e#S÷ÎÙ@ e"\(ö@ e#S÷ÎÙ@ e"&€I@2žHè§æ@2ž.±Ä2Ë@-€A‰7KÆ@-€IQ‚©@-¿;dZ¬@-À[À6ã@-fL/ƒ{K@-gÕfÏAò@-fL/ƒ{K@-i*0U2b@-fL/ƒ{K@-hÛ‹¬q?É^³Dw'?Ì&ÏøHÃ?‘(¥¿á?‹ä†€{6è?ÿ £‰¸9?ÍàÊaùX?ÐbV‡,?’j%ÓRa?„¦Ô•]I?e”[|ú(?øóéM Ÿ?r¼Jsž?€‘:9”?Œ°¶.Ä+Æ?‚¯­Ù¤Á¶?‚ôhBì^?†Ë¢L1Ù?†¼Š˜L¥÷@@@@@*@(?ð?ð?ð?ð?ð?ð¿KS½ý¼¿)z@{?4!ÊK×p?þØQ8-@¡p€y̸à@ e"vR·Ú?CQ—‘Zòø?!÷Æ—%?‚!¨÷ñr–?;¸&•bä@ŸsÆ04è@I@­Ç`A‰7L@­Ç`ƒn™@­Ç`A‰7L@­Ça‰7KÆ@­Ç`A‰7L@­Ça‰7KÆ@­Ç`A‰7L@­Çb Iº^@­Ç`A‰7L@­Ç^Åm\ü@­Ç`A‰7L@­Ç_ö”F@¤[° Ä›¦@¤[°bMÒó@¤[° Ä›¦@¤[°‰ 'R@¤[° Ä›¦@¤[°¸»@¤[° Ä›¦@¤[°Ë)^ž@¤[° Ä›¦@¤[°°ò{³@¤[° Ä›¦@¤[°bMÒò@304mÅÖ8@30A‰7KÇ@.ëÆ§ï²@.ë¬q ²”@.éxÔýô@. ù kº@-…oi@-…m\ú¬Ù@-…oi@-…S&Á½@-…oi@-…m\ú¬Ù?|öOÿÝ?ÖÈ ¼?‘=?ùKh?‹×lÇ…N9?‘ ·èf?È2I/?|öOÿÝ?’ ,øÕC©?–ÐO(·Š?Y‡…—Ø?ÝIMÎ?r¼Jsž?‚q6tNø6?Œ».êxóÚ?‚2Y0âµ?‚ù8 ±^?†špk Y?†špk Y@@@@@*@,?ð?ð?ð?ð?ð?ð¿,‹ô ?Ê5€?5Õ”Z]4c? ©Ü½b R@­Ç`>Ð@¤[°€ëò?U»ñÏ$?*&"VÞí?¹‘x%ŽŒµ?a¡ŠK‰@ŸfúÄÙ|@J@¯ß¥ãS÷Ï@¯ß©ûçl‹@¯ß¥ãS÷Ï@¯ß¤Z¬ @¯ß¥ãS÷Ï@¯ß¡G®{@¯ß¥ãS÷Ï@¯ß hÛ‹«@¯ß¥ãS÷Ï@¯ßÙb·@¯ß¥ãS÷Ï@¯ßæšÔ,@¤¼ß;dZ@¤¼àA‰7L@¤¼ß;dZ@¤¼ä2ÊW¨@¤¼ß;dZ@¤¼Û˜Çâ‚@¤¼ß;dZ@¤¼Û~ÿ—@¤¼ß;dZ@¤¼Ú–¼@¤¼ß;dZ@¤¼ÛdZ¬@6ëµsê´@6èbMÒò@2‚° Ä›¦@2}ŠÚ¹õY@1Æ“t¼@1° Ä›¦@1!:’£S@1«ŸU›=@1!:’£S@1îcŠ @1!:’£S@1¾ß¤@?‚á²Olºü?½Ë9ØŠ§?“ýª‘À?‹¬àÌ’Ç?•òJj~u?•Þ©qk#?ˆÿÀ)T¿Æ?’p RN%Î?’¤šÜI«?£û,Ɇ?”Ï#:d ?“t‡o(ÚÊ?†Æ‹™þ?3ßa=„?ˆdÁ --?ƒÈGó?ˆ0&YÊEd?«e(Os@@@@@,@,?ð?ð?ð?ð?ð?ð¿gŒ3Ö¿SúŒ­?=yþ |%?6ö:@KÏ@¯ß¢ÂìN@¤¼Üø9†š?\Ö˜e®$X?Vc5*iÃ?½æ£)ãÒ?­y°Ù$ @Ÿh”PˆÒ@K@ŸËƧïž@ŸÊ=p£×@ŸËƧïž@ŸÌÌ2cæ@ŸËƧïž@ŸËêeÂ@ŸËƧïž@ŸËÿÏÞ`@ŸËƧïž@Ÿȱ¥AÀ@ŸËƧïž@ŸÇü¹#£@¤H¾vÈ´9@¤H¿hÃY@¤H¾vÈ´9@¤H½2þ³—@¤H¾vÈ´9@¤H½+Ú@¤H¾vÈ´9@¤H¾©R/ @¤H¾vÈ´9@¤H¿&ëÔ@¤H¾vÈ´9@¤H¿/6vY@5 xFÜ@5ÇÉÖÚ@.kƧï²@.lˆKÜk=@-Ó¶E¡ÊÁ@-Ô«¾_KÀ@+£¼ÓZ…ˆ@+¥)_­µ´@+£¼ÓZ…ˆ@+¤ I?’@+£¼ÓZ…ˆ@+¤Ç l?|Ñb×¶@?âÂyßði?‘&°!­R?‹±V­{À?êÃËT^?½6m*wÓ?}x—™?‚òs°n?†y €¤Y?†‘"‘Fùá@@*@(@,@7@9?ð?ð?ð?ð?ð?ð¿!¿_$À¿E4€?)Cñʽ!?-@ŸÉæPÊÏ@¤H¿1ÿž‡?I/ñ#J:?3L$R©ï×?¡Bë Ü ?s"Àªq@Ÿgf`Š„@L@¨w¨r° Å@¨w¨r° Å@¨w¨r° Å@¨w© ªŸ@¨w¨r° Å@¨w©IŸu(@¨w¨r° Å@¨w©2ÂùZ@¨w¨r° Å@¨w§tœ&ñ@¨w¨r° Å@¨w§•fýŠ@– -V@– -‘hr°@– -V@– ,‹C•@– -V@– ,p¥t@– -V@– ,œŽg@– -V@– ,@Ò&R@– -V@– ,Ùè>B@/úu%F -@/úu%F -@)Š~ùÛ"Ð@)Š`º†‰°@(S¶E¡ÊÁ@(SŠ;WÄã@'½Vlô"@'½ÈK]Í@'½Vlô"@'½ÈK]Í@'½Vlô"@'½ã¼Ó[?É^ž6õP?Á±¼Ç l?‘õ?‰?‹®úÄD?èäî‰s&?³Ò4Q™?ÐbQë„›¦?’ªK‹}?€qÀñΪ?2j)Å6e?μšjH0?L5–S€k?€bMÕ]f?Œ¬ŒîP0?‚pDøïRh?‚ãáÞ×N?†ˆŠ_cd?†‡î8‹ž'@@(@,@&@:@9?ð?ð?ð?ð?ð?ð¿H~_â?ªÜð?2#—‚¨?‚íZSÏV@¨w¨3öe@– ,’´.?Apö^‡¤ù?%M'¢»\?}ïâÎó!?CïÏqgJÜ@Ÿs Æûž@M@Ÿe¬1'@Ÿe2ÈÍå@Ÿe¬1'Á.„€@Ÿe¬1'Á.„€@Ÿe¬1'Á.„€@Ÿe¬1'Á.„€@Ÿe¬1'Á.„€@\ñ©ûçm@\û"Æiô@\ñ©ûçmÁ.„€@\ñ©ûçmÁ.„€@\ñ©ûçmÁ.„€@\ñ©ûçmÁ.„€@\ñ©ûçmÁ.„€@7·â‚@·€@7¡XGmI@2õãS÷ÎÙÁ.„M‰ûçm@1©Û"Ðå`Á.„QnÙ‡@1Vý!ÿ.IÁ.„NÜC,¥@1Vý!ÿ.IÁ.„NÜC,¥@1Vý!ÿ.IÁ.„NÜC,¥?‘ÀQ.K†ä@8#˜@8¾:@8 >+@8Iç@8Ù?š™»ŽÛr@8Î÷@8i§@8Å@8S@8û—?§kZ—‘™@8 * @8p÷@8¶@8 Ø@8 Ø@ ?ðøøøøøøøøøøøøN@£t‰7Kƨ@£tŠ~ùÛ#@£t‰7KƨÁ.„€@£t‰7KƨÁ.„€@£t‰7KƨÁ.„€@£t‰7KƨÁ.„€@£t‰7KƨÁ.„€@“D@“Cýp£× -@“DÁ.„€@“DÁ.„€@“DÁ.„€@“DÁ.„€@“DÁ.„€@1D¯O „M@1AA [À@-”¼j~ùÛÁ.„M‰ûçm@,›dZ¬Á.„QnÙ‡@,Vð¸»Á.„NÜC,¥@,Vð¸»Á.„NÜC,¥@,Vð¸»Á.„NÜC,¥?É`¤~E @8#˜@8¾:@8 >+@8Iç@8Ù?ÐbQë„›¦@8Î÷@8i§@8Å@8S@8û—?¡çL¤@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøO@¢®$Z¬@¢®#•%@¢®$Z¬@¢®,cñA @¢®$Z¬@¢®*W§†Á@¢®$Z¬@¢®8­«ŸV@¢®$Z¬@¢®1Å@¢®$Z¬Á.„€@§gG+ J@§gG®zá@§gG+ J@§gD“t¼@§gG+ J@§gB¶®}V@§gG+ J@§g;=ÈK@§gG+ J@§g6‡+ @§gG+ JÁ.„€@35S&Á¾@33&Á½¤@1½‘hr° @1¹ÀëíúD@1U`A‰7L@1LPHð@0‚@·€5@0Àù k¹@0‚@·€5@0¾¾ß¤?æ@0‚@·€5Á.„NÜC,¥?|öOÿÝ?‘+ùÔ!½Š?ž1ï3Î??F‘q/b?šµV0o~8@8Ù?|¬Çëý ?’HGªÂÛ^?”Qä\‰Õ?‘< /0ç˜?“ÀVâŸì@8û—?‚† SFñ?i-ý-›…?ŒArUãA?•q$¨_54?•@¼Cк@8 Ø@@@@@*?ð?ð?ð?ð?ðøøøøøøøøøøøøP@¢ÿ$Ý/@¢ÿŠÀƒp@¢ÿ$Ý/@¢ÿ£n.²@¢ÿ$Ý/@¢ÿTÉ…ð@¢ÿ$Ý/@¢ÿ‚ø7´¢@¢ÿ$Ý/@¢ÿ€ªdÂø@¢ÿ$Ý/@¢ÿ~쿱[@®íºáG®@®íÄZ¬@®íºáG®@®í·ÎÙ‡@®íºáG®@®íº)Çy§@®íºáG®@®íº)Çy¨@®íºáG®@®íº¹õY´@®íºáG®@®í¼¹#¢œ@8L]cˆe”@8N;Í5¨X@2+¥ãS÷Ï@2*çÕfÏB@1t“t¼j@1sñA [À@0cÉîËû@0c¯·éú@0cÉîËû@0dzáG®@0cÉîËû@0c¯·éù?­éW«ZM›?]àÛ‘?‘ÓKñá»Ù?ŒvHn&³?ç\Š2˜?‘£‡9²þ? Eˆ‡ðó‹?“ÈÂ`?“ |ɽ‡?Œ°1Ù?‘ ^Íü?ÿ?ó‹P=´?¯x“Jß?ŒïQ¼º“ã?ƒ´],m=?ƒE 8?†å·ÑfWà?‡´*žZ}Õ@@@@@@"?ð?ð?ð?ð?ð?ð¿`0Ü[£¿MÆg'”?1? ‹6?T%ô R@“@¢ÿ» Dë@®í¼l;ò?B»'ª#½Û?keôr2—O?€WóxZx?Ñ4cÌBM6@Ÿp˜„&»U@Q@«_ûçl‹D@«_û¥ãSø@«_ûçl‹DÁ.„€@«_ûçl‹DÁ.„€@«_ûçl‹DÁ.„€@«_ûçl‹D@«_øÔýó¶@«_ûçl‹D@«_ùÛ"Ðå@¯ŽG®zá@¯ŽDZ¬@¯ŽG®záÁ.„€@¯ŽG®záÁ.„€@¯ŽG®záÁ.„€@¯ŽG®zá@¯ŽB Iº^@¯ŽG®zá@¯ŽG®zá@6L]cˆe”@6JqÞi­C@2Lí‘hr°Á.„M‰ûçm@1¤¼j~ùÛÁ.„QnÙ‡@1 ¿±[W?Á.„NÜC,¥@1 ¿±[W?@1¸Që…@1 ¿±[W?@1 -–»™?žˆ2}@8#˜@8¾:@8 >+?ðŽºJ+½?ð‹Ið˜ ?„F/·ÿP5@8Î÷@8i§@8Å?ðÅìq?ð„‰p„Ã?ƒ]€µ,VÞ@8 * @8p÷@8¶?ð?oÚ•¼?ð?oÚ•¼@?ð?ð?ð?ð?ðøøøøøøøøøøøøR@ªýp£× -@ªýó¶E¢@ªýp£× -@ªýæšÔ,@ªýp£× -@ªþÅm\û@ªýp£× -@ªýIQ‚ª@ªýp£× -@ªý—ö+k@ªýp£× -@ªüú¬Ùè@ª’Rn—P@ª’Rñ©ûç@ª’Rn—P@ª’S@N¤©@ª’Rn—P@ª’SÃa@@ª’Rn—P@ª’RÊW§‡@ª’Rn—P@ª’S×Ûõ@ª’Rn—P@ª’R䎊s@3kµsê´@3k'»/ì@/på`A‰7@/pò{²þÅ@/*Àƒn˜@/*0U2a|@.`ªdÂù@.9XbN@.`ªdÂù@.záG®@.`ªdÂù@.¯O „L?|¬Çëý ?Òç{íj?‘1f_¨Ï÷?Œݶ\ñr?òǹíT­?È2I/?|¬Çëý ?’0nà=Q“?–ÐO(·Š?@§[*^?îCq$u?–’+¸¢d?‚uÞ@>N ?Œ¸†‡ÄÅ?‚¸“Îè ø?ƒ†+ Å?†£îž«î?†Ë¢L1Ù@@@@@*@,?ð?ð?ð?ð?ð?ð¿&ŽKÙ@? 7ò? ­%̓)1?Ó0þƒVË@ªý‘¾›@ª’S^ÈB?+ ¬¥.?2*–åì?d±•+8¯é?qª†’ñ@ŸfåfX$Ã@S@¡H›¥ãTÁ.„€@¡H›¥ãTÁ.„€@¡H›¥ãTÁ.„€@¡H›¥ãTÁ.„€@¡H›¥ãTÁ.„€@¡H›¥ãTÁ.„€@žã¸Që…Á.„€@žã¸Që…Á.„€@žã¸Që…Á.„€@žã¸Që…Á.„€@žã¸Që…Á.„€@žã¸Që…Á.„€@9í¥œàvÁ.„>¤µÜÆ@5óS÷ÎÙÁ.„M‰ûçm@5.ùÛ"ÐåÁ.„QnÙ‡@4¡:’£SÁ.„NÜC,¥@4¡:’£SÁ.„NÜC,¥@4¡:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøT@¦ß;dZÁ.„€@¦ß;dZ@¦˜7´¢4@¦ß;dZ@¦—KƧð@¦ß;dZ@¦¡ÊÀƒ@¦ß;dZ@¦ª Þ@¦ß;dZ@¦­5¨Xy@Ÿ.áG®{Á.„€@Ÿ.áG®{@Ÿ.šu@Ÿ.áG®{@Ÿ.‹xFÜ@Ÿ.áG®{@Ÿ.š¬1@Ÿ.áG®{@Ÿ.‹’:)Ç@Ÿ.áG®{@Ÿ.‰7KÆ©@9Û¹Œ~($Á.„>¤µÜÆ@3Ìí‘hr°@3ÀIQ‚ª@3)Û"Ðå`@3’:)Çz@2ºÔ,<ží@2±°‰ 'R@2ºÔ,<ží@2·škP°ó@2ºÔ,<ží@2¸ Ô•+@8J¨?£-Ÿ56æ+?¢µ‰Š’b?•Ô¦?n¸?ŸrA:/™?›8½üãüÏ@8J¨?Á®æ’,g?®…á—{2Š?¥ŸÒ?¤pè·FÌs?¦ò CQÍ«@8p÷?žåÌÆöj?›Mf¸ ?”µ¨É™›Ò?¢2ðø:Uù?£R|à¹Ý@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøøU@¥´/²-@¥´/Òòå@¥´/²-@¥´0ú`P@¥´/²-@¥´09˜@¥´/²-@¥´0àœŒ%@¥´/²-@¥´./§Ia@¥´/²-@¥´/ÃÅ(ó@œY„“t¼@œY„›¥ãT@œY„“t¼@œY…Q¿¥Ù@œY„“t¼@œY‡‡ ù@œY„“t¼@œY†‹<”@œY„“t¼@œYƒ¤aG@œY„“t¼@œY†•ÐxÞ@4ð4mÅÖ8@4ïzhJ[°@0©‡+ @0©/Õ4]@0Ú~ùÛ"Ñ@0ÛP›%„ó@/a-w1Å@/b#¨ù-=@/a-w1Å@/a8‚‘*:@/a-w1Å@/až¥r?|çµB &€?Ù£šA±V?‘+m«7¡Ø?‹®´¤:Xv?‘/Æ[ap?´ž˜Û`?|Ñb×¶@?’ õ‘Ò?˜‘ð1¢!?1“œáí?è…F7*?Kö~½P²?‚qÑ9Ð?Œ½Ê À ?ƒmÃá6›`?ƒÞFÜà ?†ŠÇ¤E+?†‡gÓ¼c@@"@$@ @0@,?ð?ð?ð?ð?ð?ð¿è ? i¬€?0“Ü)‚¿?$-¯@…%@¥´/Á}ò@œY…+ƒ¡?Pfqw³a?D’>³Ýf?­¥4QòF"?–+O%ÒX@ŸfýÉËô@V@«§¶E¡ÊÁ@«§±©ûçm@«§¶E¡ÊÁ@«§¶®}Vm@«§¶E¡ÊÁ@«§¸Që…@«§¶E¡ÊÁ@«§·süQ@«§¶E¡ÊÁ@«§¶4ê@«§¶E¡ÊÁ@«§µsê³h@«Ö`A‰7L@«Öa$Ý/@«Ö`A‰7L@«Ö^ߤ?ç@«Ö`A‰7L@«Ö`·€4m@«Ö`A‰7L@«ÖaTÉ…ð@«Ö`A‰7L@«Ö^ߤ?ç@«Ö`A‰7L@«Ö_—$tT@7ÿ–»˜È@8¸Që…@1×+ Iº@1×RT`ªd@0ä¼j~ùÛ@0äêJŒL@0ý!ÿ.I@0ö”Fs‚@0ý!ÿ.I@0æšÔ,@0ý!ÿ.I@0Ë)^ž?«á¬å÷‰?ï1ïºÅ?‘âTÀÊS“?ŒªèkÜ?‘¾%î -ã?‘‚ÊŸû©?žˆ2}?’j•×›c?‘8“‡«G?á>G]!?ë,YÁ?‘A_f;j?–í -e˜›ð?GÚ -­ ?ƒ´],m=?ƒ ?ÿ½?†Ë¢L1Ù?†ïRÉv‘Ñ@@@@@&@*?ð?ð?ð?ð?ð?ð¿1üÏ(¿6M¹0?FÓóúAv -?)òô9v?¸@«§¶f± ²@«Ö_ýnn?Yºk¶Fð?PhPô¬Û6?®hKüÂld?ž9LÑ@ŸpÅ—ƒ~@W@ŸÍ["Ðå`@ŸÍXUGS"@ŸÍ["Ðå`@ŸÍUPôm@ŸÍ["Ðå`@ŸÍS˜œ¼@ŸÍ["Ðå`@ŸÍQ>Z[½@ŸÍ["Ðå`@ŸÍK¾½l@ŸÍ["Ðå`@ŸÍC“áN-@¡’‰7KÇ@¡‘ÿ|í‘h@¡’‰7KÇ@¡’0ÂßÏ@¡’‰7KÇ@¡’”(å@¡’‰7KÇ@¡’sJ'@¡’‰7KÇ@¡’ ®5ë@¡’‰7KÇ@¡’ªÌë@6¿–»˜È@6ÀÕ+1·@2©‡+ @2©ñyˆ@1È“t¼j@1Ç@ÌÁ³¸@1+xFÜ^@1%™™@1+xFÜ^@1$2Œ0Õ‹@1+xFÜ^@1$Óšð?¥¢É?‘Qì%±?’˜~dOÖæ?fb -YÀ,?’~¢7ix”?“Od·Bþ!?‚n—O߇?†{C%O]"?ŠF÷ÉÌ?Ž(¾„,!B@@(@(@,@6@4?ð?ð?ð?ð?ð?ð¿_ûáwt?W†£WZ?5þf©ÓD?Bj‘×À„@ŸÍOV?‹H@¡’>Áá¢?T3¢÷²8?c—Þ¡mÈ?¥»é«{ ?ÉAu8H@Ÿj.¢°@X@¦ë5?|îÁ.„€@¦ë5?|î@¦ë%çKë @¦ë5?|î@¦ë'ú›ü§@¦ë5?|î@¦ë$ŸÕJÎ@¦ë5?|î@¦ë"k6¥@¦ë5?|î@¦ë {(%@–Ä›¥ãTÁ.„€@–Ä›¥ãT@–é!$OC@–Ä›¥ãT@–²ÍgL¤@–Ä›¥ãT@–¬:öަ@–Ä›¥ãT@–œâðE‚@–Ä›¥ãT@–ûub%@8T xFÜÁ.„>¤µÜÆ@4ÎÙ‡+@4|¨žh¼@2±‰7Kƨ@2ªüo$Þ‘@2Š0U2a|@2†SKÒ@2Š0U2a|@2‡"ûæ@2Š0U2a|@2‡|>ö:@8J¨?‘õå'g?‘Ãiãtv ?‹ÒK! Å?“dô{B?“þ -ÞÓwú@8J¨?’‚ATa?’Š6·ë©?u°Ç8þ?•ÛÁäŸ?–Z`ªLâ@8p÷?³÷z\Ç?ƒzÆô¤?†KªwÀK?Ž7üÒÏ?Œ%dŸ](¿@&@"@"@;@:?ð?ð?ð?ð?ðøøøøøøøøøøøøY@¤×Oß;@¤ëƧïŸ@¤×Oß;@¤ÍÒñ©ü@¤×Oß;@¤ÐbMÒò@¤×Oß;@¤ÑÎ_@¤×Oß;@¤ÙÛ"Ðå@¤×Oß;@¤Ø}¿I@¤ãmV@¤ãkƧïž@¤ãmV@¤ãl/ƒ{K@¤ãmV@¤ãeðoiD@¤ãmV@¤ãnHè§@¤ãmV@¤ãl‹C•‚@¤ãmV@¤ãl篷@7Ì]cˆe”@7¾záG®@4i‡+ @4mÈK]Ì@3’Ðå`A‰@3™ÞÑ·@2á:’£S@2é0¾ í)@2á:’£S@2â×sü@2á:’£S@2æÜ]cˆf?–ªÎ­¡?œ;=?ªT?¤MD¢e?Ÿ½¼/õ?— -æÙõ¡? ­DIö½x?„F/·ÿP5?–¦ÆçŽ -?ž(?{k4?’ƾ| ?–%¥ê3–?˜6@(/ÇÝ?›˜tgiê?•è­¸‡?š?G'ôÜ?ϯ<«¬í?’÷ ¬n±?¾]M>s &@@@@@*@,?ð?ð?ð?ð?ð?ð¿q¼¨ˆû€?5VYX°?ahW$DGÐ?1`)~ˆ@¤Þ Ù@¤ãlÈD©j?€|~ÛYjl?R‚<5d?èà%;$­U? »g%ŽÎC@ŸiúÒE²ª@Z@¬¿^5?|î@¬¿^vÈ´9@¬¿^5?|î@¬¿_¼@¬¿^5?|î@¬¿_;dZ@¬¿^5?|î@¬¿^5?|î@¬¿^5?|î@¬¿]/Ÿ½@¬¿^5?|î@¬¿]—ö+j@®b Iº^5@®b ÌÌÌÍ@®b Iº^5@®b Iº^5@®b Iº^5@®b ²•éâ@®b Iº^5@®b /ƒ{J@®b Iº^5@®b ûµt@®b Iº^5@®b Ƨïž@3›¹Œ~($@3›¹Œ~($@/kƧï²@/k6z•@- ƒn—@-ŸŠ Þ@-Vð¸»@-UÜÆ?@-Vð¸»@-Uéá°‰¡@-Vð¸»@-U›=ÈL?|öOÿÝ?ß‹’bÏ?‘$Cê¡@í?‹ÝÉ!ë#?‘¾%î -ã?¼‚Ë¡K?|¬Çëý ?’NÛˆV(?ŠA)Nîá?]bËn~?Ó%y*£=?X78›š?‚oÁÆÜ§ö?Œ°¶.Ä+Æ?‚yî8Á$?ƒE 8?†µ°jÆÃ?†l&þ@@@@@"@?ð?ð?ð?ð?ð?ð¿+h/À¿+̾`?ƒò·\˜>à2S[j @¬¿^½ïZ@®b V›<Þ?3mÔÞJL?…~½D?to9Ðu‰ˆ? …ýb÷Ô@ŸföÝ8ó@[@§Çûçl‹D@§Çòn—P@§Çûçl‹D@§È -W§†Â@§Çûçl‹D@§È BÃÉî@§Çûçl‹D@§ÈÂø7µ@§Çûçl‹D@§ÇøQë…@§Çûçl‹D@§ÈË)_@¨jÒn—P@¨jÒ-V@¨jÒn—P@¨j³3333@¨jÒn—P@¨jÉk¹Œ~@¨jÒn—P@¨j·§†Â&@¨jÒn—P@¨jµY³Ð~@¨jÒn—P@¨j³©*0V@8*0U2b@8³Ð|„¶@3&‡+ J@3¯O „M@2H“t¼j@23n.±Ä3@1Œ¿±[W?@1|/ƒ{J$@1Œ¿±[W?@1y™™™™š@1Œ¿±[W?@1vµ '¼?¡EÉ@Ú? …BÓ÷ ¡?£ˆ‰•ýkç?‘¾®ªŸV?¨@t¾†~?˜úiêÔÇ?¦NIÉ®š?¢²Ö¤}Ð?¹ £qÅõ)?–ª'G_ßJ?µõÓâ$,? îê÷Ï!?£ešñS„‰?3ßa=„?“'ü#šgã?…®×__C?‘HAõY‚§?™ þg¿@@@@@*@ ?ð?ð?ð?ð?ð?ð?jß“¡]¿w [W?b”.Sg†?b^jêsò @§ÈΘ<ð@¨jºi¯þK?{ª&T>ØÓ?{‘)nÿƒ ?ã—³¯äV„?Ôúv¤º@Ÿl‰9ù¯@\@¤7¡ÊÀƒ@¤7p£× @¤7¡ÊÀƒ@¤7œPHð@¤7¡ÊÀƒ@¤7¤oi@¤7¡ÊÀƒ@¤7¢¶®}V@¤7¡ÊÀƒ@¤7žÒˆÎp@¤7¡ÊÀƒ@¤7Ÿò䎉@ ²“u@ ²!ÊÀƒ@ ²“u@ ²,1&é@ ²“u@ ²Cþ\‘@ ²“u@ ²Oß;@ ²“u@ ²z—@ ²“u@ ²òä@7„¯O „M@7…éá°‰ @2ã÷ÎÙ‡@2ÑA [À@1È“t¼j@1¿ß;dZ@1QÞi­BÄ@1Mžƒä%¯@1QÞi­BÄ@1OŠ Þ@1QÞi­BÄ@1P6âë? Eˆ‡ðó‹?Žd±Ìº?’måGSžq?:LÓá -í?“øâ#0ŸY?˜}>h”'?ˆÿÀ)T¿Æ?–gÝ3ýø’?‘F·ˆRX†à?‚˜YªüÏE?OéáÜtx?„„OW°ó?‘˜†Œ/ž?%üdêË?—ÂÔèÄè@@@@@,@,?ð?ð?ð?ð?ð?ð¾ã=|´¿idFùk?Pw ~Îíì?6mƒ,òH@¤7 ‹½Ç@ ²eÒ ‘?f©ÀIÖy?Wòòóóôõ?Áêz°r˜™?ª–®Ÿ{ØD@Ÿm7B’@]@¨<í‘hs@¨;FêVz@¨<í‘hsÁ.„€@¨<í‘hsÁ.„€@¨<í‘hsÁ.„€@¨<í‘hsÁ.„€@¨<í‘hsÁ.„€@šLÌÌÌÍ@šH´9X@šLÌÌÌÍÁ.„€@šLÌÌÌÍÁ.„€@šLÌÌÌÍÁ.„€@šLÌÌÌÍÁ.„€@šLÌÌÌÍÁ.„€@8Ô xFÜ@8ìDpˆ_@4sS÷ÎÙÁ.„M‰ûçm@4å`A‰7Á.„QnÙ‡@2n_oÒ Á.„NÜC,¥@2n_oÒ Á.„NÜC,¥@2n_oÒ Á.„NÜC,¥?–…­à Ø—@8#˜@8¾:@8 >+@8Iç@8Ù?«cnæçÅ€@8Î÷@8i§@8Å@8S@8û—?¾‚+;=ÑH@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø^@¦¸“t¼j@¦¸“¶E¡Ë@¦¸“t¼jÁ.„€@¦¸“t¼jÁ.„€@¦¸“t¼jÁ.„€@¦¸“t¼j@¦¸’n—P@¦¸“t¼j@¦¸’GE8ï@¯†k…¸R@¯†k…¸R@¯†k…¸RÁ.„€@¯†k…¸RÁ.„€@¯†k…¸RÁ.„€@¯†k…¸R@¯†k]Ìcð@¯†k…¸R@¯†k]Ìcð@1Ñ|ÚQ@1ÒˆÎp:ü@-á‰7KƨÁ.„M‰ûçm@,†éxÔýôÁ.„QnÙ‡@,³üPHÁ.„NÜC,¥@,³üPH@,³©*0U4@,³üPH@,³t¼j~ú?É_\p)Ï@8#˜@8¾:@8 >+?‘ ·èf?ÃwZL?ÐbMçê_x@8Î÷@8i§@8Å?Î ¯xV?Sñƒ´V.?‡çÐ4eè¹@8 * @8p÷@8¶?†£îž«î?†‰Oú|q@@@?ð?ð?ðøøøøøøøøøøøø_@¥ìå`A‰@¥ì–E¡ÊÀ@¥ìå`A‰@¥ìvâ8ª@¥ìå`A‰@¥ìopKQÔ@¥ìå`A‰@¥ìf -¦L0@¥ìå`A‰@¥ìçiöú@¥ìå`A‰@¥ìŒô;­ë@”VvÈ´9X@”VeU’ôV@”VvÈ´9X@”VÖ”¦GÎ@”VvÈ´9X@”V¹3mïÑ@”VvÈ´9X@”V½kÚ8`@”VvÈ´9X@”V­?ÙÙæ@”VvÈ´9X@”VˆÿÆÌ@8N쿱[X@8SŸ¦âßz@3õãS÷ÎÙ@3çĺÌ`[@2ìj~ùÛ#@2Þ†òïº@2³&Á½¥@2˜òZÒ¦H@2³&Á½¥@2žFAŒ$@2³&Á½¥@2Á?Ù¾ù?ª>­¹,Ì*?¦ºãOÎ_?§# -t¨®?¬˜v7Ê7|?™nVVª*V?¡)jgÆÃ¯?¢-CÁ]?§ž\À·ãç? å¿š"²~?¤ÛÏœÔ?¡ v¬òe\?© -ÉkÈ™ç?¦ýv´¸íV?œ™wEH?— ”¤Žn”?˜í±¨á‘?¦V¹y/s?•앸4ÿƒ@@,@,@,@5@6?ð?ð?ð?ð?ð?ð?!Kå P?yÚÅe@?y†ße?t£Îžû’@¥ì‹•È8^@”Všç/¹ÿ?“†½,ìA?“ËC%! -@þBô³õ?ý8“`j@Ÿm¢à²ÀB@`@§ …¡ÊÀƒ@§ ‹ I»@§ …¡ÊÀƒÁ.„€@§ …¡ÊÀƒÁ.„€@§ …¡ÊÀƒÁ.„€@§ …¡ÊÀƒÁ.„€@§ …¡ÊÀƒÁ.„€@¦0¬1@¦/½²-V@¦0¬1Á.„€@¦0¬1Á.„€@¦0¬1Á.„€@¦0¬1Á.„€@¦0¬1Á.„€@8wâ‚@·€@8*Ú¹õY´@4?|í‘hÁ.„M‰ûçm@3€å`A‰7Á.„QnÙ‡@3ÚQÎÁ.„NÜC,¥@3ÚQÎÁ.„NÜC,¥@3ÚQÎÁ.„NÜC,¥?»sW…Ç]â@8#˜@8¾:@8 >+@8Iç@8Ù?ÖwípÑ@8Î÷@8i§@8Å@8S@8û—?á×¢”H®'@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøa@ nÀƒn˜@ nÄû¤æ@ nÀƒn˜@ nËzƒ<Î@ nÀƒn˜@ nÖÏÇ@ nÀƒn˜@ nËøY¹º@ nÀƒn˜@ nÅK»7@ nÀƒn˜@ nÈ›òüQ@£©Â\(ö@£©Ë…¸R@£©Â\(ö@£©²'»Ÿ@£©Â\(ö@£©Ã˜¢@£©Â\(ö@£©¶‹ì¼#@£©Â\(ö@£©Ã.^@£©Â\(ö@£©¾êÄ?‡@7¥öý!ÿ.@7ŸåÉä@3Œí‘hr°@3˜²´«LK@2ñ‰7Kƨ@2ûÀ§Ã@2(è§æ›@2/߬Ÿo[@2(è§æ›@20¡ÆÂÉ @2(è§æ›@2/Óïípe?…ðE[i)?ä*§¶eÔ?’¡R¸ì»Ã?o³›¿ç?“côaК!?’½ÎŒ£#?~ì“?ÕÒJ?’¤]ŸøY?’±Nþw -?“…wæà¨™?“nÞë·Ñ_?‘žH³Õ2C?MœÅ…?“ª4SÐ?o;!†Rõ?‡úËRI=?Šåýëh9?‰ïY¯†õ@@ @"@&@9@7?ð?ð?ð?ð?ð?ð?Gù>œ¿h7cÀ¿?LV"…t"@¦læffff@¦l篷é@­å¤Ý/ @­å¥`A‰7@­å¤Ý/ @­å£¯·é@­å¤Ý/ @­å¤Z¬@­å¤Ý/ @­å¤¨ÁTÉ@­å¤Ý/ @­å¤¨ÁTÊ@­å¤Ý/ @­å¤oi@5?–»˜È@5@6âë@2+ Iº@2fffff@0ô“t¼j@0óMjP@0ºÔ,<ží@0»µsê´@0ºÔ,<ží@0º0U2a|@0ºÔ,<ží@0ºqÞi­C?|öOÿÝ?W[†?‘šÕU#?Uóú*˜?‘\Žýµ€7?Êëüâi{?}Ñ¿ž,?“Á4œÝi?„¦Ô•]I?· ÝûYÁ?‘&”T¦mÂ?hï,ðà?„m~Z_s,?GÚ -­ ?ƒ<Õp?ƒ3¸Î{Z?‡ã ËÄž?‡2[síç@@@@@*@$?ð?ð?ð?ð?ð?ð¿Ϫ5À¿(”üÛ€?Ý“ãHv>þ -`ý‹z@¦lç!å‰Ù@­å¤òÓ¬Ó?8ôœWE«?´ ß²N?€Y”òê-Ä?G•KõÃ÷@ŸgªY@c@Ÿææffff@Ÿææffff@Ÿææffff@Ÿç4mÅÖ@Ÿææffff@ŸæèÓüÅ@Ÿææffff@Ÿæã¢œw™@Ÿææffff@Ÿæßº‰Úµ@Ÿææffff@Ÿæßú ð‹@£;Ÿ;dZ@£;Ÿ;dZ@£;Ÿ;dZ@£;­¡¦Øó@£;Ÿ;dZ@£;–¦k³f@£;Ÿ;dZ@£;˜âe,@£;Ÿ;dZ@£;™»‰>×@£;Ÿ;dZ@£;› 9Sg@2wâ‚@·€@2wåÉä@0µãS÷ÎÙ@0ÄHt±P<@0q‰7Kƨ@0výá¡Ú@/á-w1Å@/â&€IR@/á-w1Å@/ëS†M@/á-w1Å@/æ±l\?É^ž6õP?ÑwæaGÄ?‘Ö·øHkÖ?Ú¾ÉÛ²º?‘)ÕCŸ3²?‘gúÉœY^?ÐbMÝn½?’%l ÇZ?“¸¹R*ò?‘§›ßÉîj?‘[w}^ʨ?‘#q·¥A?€bwÄ' g?Œ»&&Y?„æ €ÛÑ¿?†O.ce?ˆ7kPÍz¿?а­ÈÇ­7@@@,@@9@7?ð?ð?ð?ð?ð?ð¿L®‚`?L«dÔk€?3Ðc±0‹?2‘è¿èþ’@ŸæáW}°t@£;™Î‘â?Bâ@Û¹?Ai3›ù?ô„6 3z?w¯/ c¬#@Ÿs5pP @d@£Óª~ùÛ#@£ÓšáG®@£Óª~ùÛ#@£Ó©ÞÓ@£Óª~ùÛ#@£Ó§Ë)_@£Óª~ùÛ#@£Ó­5¨Xz@£Óª~ùÛ#@£Ó¨Ë’9@£Óª~ùÛ#@£Ó©º^5?@©KƧïž@©Hr° Æ@©KƧïž@©KƧï@©KƧïž@©O'»/ë@©KƧïž@©PË)^ž@©KƧïž@©O–»˜@©KƧïž@©OŸ¾w@8*0U2b@8œwškP@3xr° Äœ@3zÍžƒä&@2±‰7Kƨ@2µ¨Xy=Ú@2J0U2a|@2L²•éá±@2J0U2a|@2L(õÂ\@2J0U2a|@2K’:)Çz?¡EÉ@Ú?•@K/Ùz?“1‘´¹V?ŒÇQ´ž¬ˆ?‡»¢Øˆ‹?‡W·ŽA:Þ@8 Ø?¾Á{þÆ%@@@@@&?ð?ð?ð?ð?ðøøøøøøøøøøøøf@¯—2-V@¯—•ÂÞ¯9@¯—2-V@¯—4~‹f7@¯—2-V@¯—09 r@¯—2-V@¯—5 SÖ,@¯—2-V@¯—1¨*Ï4@¯—2-V@¯—0å`A‰@”˜~ùÛ"Ñ@”˜ A‰7K@”˜~ùÛ"Ñ@”˜xœÁåO@”˜~ùÛ"Ñ@”˜sBÝñ@”˜~ùÛ"Ñ@”˜uMU@”˜~ùÛ"Ñ@”˜yQù²@”˜~ùÛ"Ñ@”˜|¹Ãƒ@8­¥œàv@8 šD@2Ê^5?|í@2Á÷ÞA¾è@1©Û"Ðå`@1¨t{û†@0¸DЩ*@0¶$31@0¸DЩ*@0µÎÈì±”@0¸DЩ*@0µéÌdä?Ó%Û2)ž`?>™k^Ú?‘žUw³ÿ&?‹Ó²Ãég?‘(e±­ ­?ãÎ?ay?Ær4?’m:ûx'?‘ÿ7›ýùì?qHõO?‘,Ð^þÚ°?›ôÃËÁ9?ëC ãs¹?€¶ÍÅ?„ |Ð~?ƒ[yמíG?‡X¶ yäa?‡AShŠU@@$@,@(@9@4?ð?ð?ð?ð?ð?ð¿bNaI?`XÍó ?`GŸì³?XY’¥ØÊæ@¯—2æT[Ï@”˜x!*é?o!Æë„=?gT`¡Es?×[Å¥ h?Ç'£Yƒ_þ@Ÿs …ý#@g@¢€@¢€ƒn˜@¢€@¢$Ý/@¢€@¢‚&€H@¢€@¢‚@·€4@¢€@¢€IQƒ@¢€@¢Ø­«Ÿ@­Ñë…¸@­Ó3333@­Ñë…¸@­Òñ©ûè@­Ñë…¸@­Ò½<6@­Ñë…¸@­Ò½<6@­Ñë…¸@­ÑÞi­C@­Ñë…¸@­ÒGE8ð@7ÖšÔ,<Ÿ@7Ú¬1'@2 Ä›¥ã@1ÿìVÕÏ«@0ö§ï²-@0÷¯·é@0‘Þi­BÄ@0’©“ àß@0‘Þi­BÄ@0’ÊW§†Â@0‘Þi­BÄ@0’ò䎋?Œs¤DÅÐ?ZÁ».œ?‘ÄÑ ø?ŒôƒA˜c ?‘¿ÐÅu?‘W×ý°A?1·†Æjñ?’,ö´´Ï#?™Îd0RÜ?‘.“¥?‘ ÛÌÏõA? êBÐ8ã?† - Ðló\?Å9–o?‚ù…žÄ`x?ƒGϵ¨í'?†µ°jÆÃ?‡×7°º@@@@@$@(?ð?ð?ð?ð?ð?ð¿Eݺ ¿.€X@?6ÑIÈÍ?¼1t2'V@¢€ç…Q)@­Ò™<ñ ?T6¯‡ŸkÈ?2\šbýŒ?ªätöåvd?l<#9œ@Ÿjl‚¦¦@h@«ÐËÆ§ïž@«ÐÒn—P@«ÐËÆ§ïž@«ÑnµË§@«ÐËÆ§ïž@«Ðä!›7ý@«ÐËÆ§ïž@«ÐÜàuk'@«ÐËÆ§ïž@«Ðäfãfn@«ÐËÆ§ïž@«Ðßv$ñ@™úâMÒñª@™úèsüY @™úâMÒñª@™ûüõ‘@™úâMÒñª@™ú莀@™úâMÒñª@™úÿ›=AÛ@™úâMÒñª@™úù‡Úó@™úâMÒñª@™ûË7Ç@7Y*0U2b@7[°™X"ö@4Ò Iº^5@4¶…ßF M@3²-V@3ºÁÞcç@2Þ«6z‘@2Í”³J˜G@2Þ«6z‘@2ÎõÐK—@2Þ«6z‘@2ÎÛçõó?’ÌRû ã?›/¾’sµ?›3ÒsLý¦?1ň_?8U`¦¸ÿ?–Ñh<Žw?|¬Æ Væ?™6عÊÓ?•ÍIé^?”9(GÂ|–?šaˆ£mü2?™›G(Žy?)hä¤ù%?–ûzמÈ?ïÜr!¹1?†²2bê§?ŒÝïâå¬?’—h÷aÇÒ@@&@(@&@9@4?ð?ð?ð?ð?ð?ð?iV T?gÇÎT?Nþ€Œ“,?DÐwY}Qá@«ÐÛ*ÏG@™úöæ¿X?j2fQŠi?g %ìüÞR?ÍÉ¥@˜€?ÉP<˜Ôß<@Ÿhê¦Ø'„@i@¡’p£× -=@¡’o\(õÃ@¡’p£× -=@¡’Vz—@¡’p£× -=@¡’[quŽ"@¡’p£× -=@¡’QuŽ!–@¡’p£× -=@¡’KC,¥@¡’p£× -=@¡’Fµ (@©ù4¼j~ú@©ù4záG®@©ù4¼j~ú@©ù)ÞÒ@©ù4¼j~ú@©ù,1&é@©ù4¼j~ú@©ù&Ü]cˆ@©ù4¼j~ú@©ù#n—Ž@©ù4¼j~ú@©ùOv_Ù@5µS&Á¾@5´êJŒL@2; Iº^@2?·éùr@1±‰7Kƨ@1¯;dZ¬@1YŒ~($ @1U®æ1ø @1YŒ~($ @1YÞѸ@1YŒ~($ @1Y 'RTa?1·†Æjñ?šÏD²öå ?•Mq —¦?˜Ë=ð½ìÔ?’Þäi]i?™zÀnÝÿ?1·†Æjñ?™Ú"üT÷î?’t-Eü?“¶Ì¶Öj”?”îC¯·æo?’ω:hT†?†' -³}÷B?™:K²ïÏ?ˆT“Ÿÿ?’aP¸¾¦Ö?Ž .0åv?‹&¸ê±fÂ@@@@@(@*?ð?ð?ð?ð?ð?ð¿‚bž§@¿r’Úš–?IgZDL0?+7Á¼o@¡’]°—R@©ù+In`?höÇè‘ÝŠ?Jô•Þž®Â?ÕQ,ÅŒ¥?ž -©Õ‚@Ÿež5ÈêÐ@j@¤¹#× -=q@¤¹+…¸R@¤¹#× -=q@¤¹$÷eý‹@¤¹#× -=q@¤¹#ñA \@¤¹#× -=q@¤¹$%®æ1@¤¹#× -=q@¤¹!ò×s@¤¹#× -=q@¤¹!TÉ…ï@®a´¼j~ú@®a»çl‹E@®a´¼j~ú@®a±Ä2ÊX@®a´¼j~ú@®a·Oß;@®a´¼j~ú@®a¸DЪ@®a´¼j~ú@®a´¼j~û@®a´¼j~ú@®a´‡ü¹%@7Ç>«6z@7¿Ÿ¾vÈ@3º^5?}@3P°ò{³@2y7KƧð@2z^5?|î@1kxFÜ^@1m‘hr°!@1kxFÜ^@1l1&éy@1kxFÜ^@1kô‡ü¹$?•²»UbB2?Eˆ‡ðó‹?’Q/Èö -®?ŽwX/8?‘ŠR%¨(0?‘f]£àG?€‚ñêã ?“-N•I`(?‘}7ˆ.Ñ?‘’â·ýÅ?‘¾ãazÅ?‘C å;Ã?ŽŽp±µær?Žrø·óæ?„m~Z_s,?…<ò N ?‡ã ËÄž?‡YÍ_@@@@@$@ ?ð?ð?ð?ð?ð?ð¿`ÕRYE¿Yæ0Ü?8•Æ ê È?#·×~> @¤¹$ªªN¾@®a·na?Sæ9Õñ¨.?FΚ¶,”?¤#˜j(â’?‘Ó{Hð@Ÿl;öð¤@k@¤©ûçl‹@¤«C•@¤©ûçl‹@¤¦éxÔþ@¤©ûçl‹@¤¬1&é@¤©ûçl‹@¤¦ -¦L0@¤©ûçl‹@¤³¶WŠ@¤©ûçl‹@¤ª6´ã>@œß²-V@œß›¥ãSù@œß²-V@œß¨Xy=Ù@œß²-V@œß»µsë@œß²-V@œß¥œàv@œß²-V@œßšŠ}Ñ@œß²-V@œßŠ=p£Ø@6=:’£@6;¡‘}@33S÷ÎÙ@3,~($ x@2¤¼j~ùÛ@2 ƒn—Ž@2._oÒ @2%ãS÷ÎÚ@2._oÒ @2躇@2._oÒ @2$ê¦\”n?|¬h2:“?’ Œ#Çî«?–/ØÃ‡fð?’³Žbtx=?åt—8 ½?–ø¼àÈM¹?‚n—Oß«6z@3p–»˜Çã@3{W>«6z@3p–»˜Çã@3vlô!.?›’qvš°•?˜+Rjþa?§çÆÿë?–&1‰}º?']ð—‘?¢cJlD¿?›’qvš°•?¢¾S̵EÙ?«Þô¯®€?šBÁ3ÍÆ?–Y:ŸèJ?™›,4rÕ9?³fgÁ˜?–l&ÿ?¢Ì÷y\ÛÎ?”*+JÒšF?’Oûh´6c?©P$`¾*@@@@@,@,?ð?ð?ð?ð?ð?ð?QMOÞL?w‡&Ž×€?BlÙ5–Ý?Tïñ>GÛ@§êíšM,@«ï+ãL×ä?^¿¤…ÆH?r2’îlº?£’Þ¦ 9Î?Ð_Õtc°˜@Ÿl}÷rQ@o@¡NaG®{Á.„€@¡NaG®{@¡Nƒn.±Ä@¡NaG®{@¡N‰ÞÒ@¡NaG®{@¡N‚MÒñª@¡NaG®{@¡N…zxl"@¡NaG®{@¡Nn±Ä2Ê@­$Ý/Á.„€@­$Ý/@¬ÿõϪ͠@­$Ý/@¬ÿê³g ù@­$Ý/@¬ÿð:û~’@­$Ý/@¬ÿôFsØ@­$Ý/@­Z¬@904mÅÖ8Á.„>¤µÜÆ@2 -^5?|í@1éÀëíúD@1¤¼j~ùÛ@1}ÈK]Ì@0«xFÜ^@0Žß¤?åÊ@0«xFÜ^@0Œj~ùÛ#@0«xFÜ^@0HðŽ@8J¨?®ÖJ éf?¨bY¶®å?ž‹¬':î?­˜›œÓ0O?µKA¢bŒ@8J¨?ªåøÖ¶£­?©Jœ£&Ñç?¡"JîÃ!?¡^候¼?—œ­ÛpùÄ@8p÷?”ïœ`µPŽ?aäŽ -Ù?‡õ{CxÞ?%üdêË?¢¯À<ÝÞ@@@@,@&?ð?ð?ð?ð?ðøøøøøøøøøøøøp@«ãgï²-@«ãhr° Æ@«ãgï²-@«ãhšu%@«ãgï²-@«ãi*0U2@«ãgï²-@«ãiã½@«ãgï²-@«ãfö”Ft@«ãgï²-@«ãgË)`@­n ÌÌÌÍ@­n V@­n ÌÌÌÍ@­n jO@­n ÌÌÌÍ@­n \ú¬Ú@­n ÌÌÌÍ@­n ²•éâ@­n ÌÌÌÍ@­n 5¨Xy@­n ÌÌÌÍ@­n ô!-@0¿–»˜È@0¿–»˜È@+WKƧï@+WXâe+@+XÔýó¶F@+Xï4Ö¡c@)Öð¸»@)Öý!ÿ.I@)Öð¸»@)Öð¸¼@)Öð¸»@)Öý!ÿ.J?É^òÀXæN?Ï[äe¤µÜÆ@3sS÷ÎÙ@3i^žš@2â-V@2âT`ªdÃ@25µsê³h@20-à r@25µsê³h@2+ûµsë@25µsê³h@2&µ '¼@8J¨?£-Ÿ56æ+?“IK¹É?Ž‚¨Ø†{~?›Yïÿ¾?¨Oüô÷•Ð@8J¨?—{UƒO?‘Ña„>&?•%ôµh©F?šs°Àãª?¡V·ÏŠÞ²@8p÷?–<‘þ2’‚?šÒÅšnê?Œw%è®?•°QŸ?]Í?¥œïÎ@@@@$@(?ð?ð?ð?ð?ðøøøøøøøøøøøør@­Hfffff@­Hk Iº@­Hfffff@­HfšÔ,=@­Hfffff@­HfÂ&€@­Hfffff@­HeðoiD@­Hfffff@­He®æ1ù@­Hfffff@­He”¯O@Ÿ‡+ J@ŸvÈ´9Y@Ÿ‡+ J@Ÿ†$Ý/@Ÿ‡+ J@Ÿ„êJŒ@Ÿ‡+ J@Ÿ†¸ºÇ@Ÿ‡+ J@Ÿ†ö”Ft@Ÿ‡+ J@Ÿ†YJôñ@8Bò䎊@89b¶®~@1&‡+ J@1'Ë)^ž@0_²-V@0_v_Ø­¬@.ܾߤ@@.Üú¬Ùè?@.ܾߤ@@.Ý¿HË“@.ܾߤ@@.ÝVlô"? Å{¿Ž<º?4ë©$è‰?‘½ümüñ?‹ä†€{6è?‘ä~|+?ïˆ6ÏJ?¬å'[ V÷?’0nà=Q“?~ËQ§?e”[|ú(?‘ ÛÌÏõA?›ªU3Îp?¬Öva4z?ŒÂ§dß±?ƒúʳ_Ä?‚þ——³§ø?†–f_ÔŠŠ?†ïRÉv‘Ñ@@@@@*@*?ð?ð?ð?ð?ð?ð¿I×y¸È?CÏu)?=O•¦%²?F€Äo+®ý@­Hf"w³Ü@Ÿ…ÍÏqØ?RæV2J?Y»}©l$?¢÷f?«2¸ÚYh]@ŸpH÷¿@s@«9!G®{@«9!‰7KÈ@«9!G®{@«9"u%F @«9!G®{@«9#S÷ÎØ@«9!G®{@«9!G®{@«9!G®{@«9 ƒn˜@«9!G®{@«9 Ä›¥â@¡ŠdÝ/ @¡Še¸Qí@¡ŠdÝ/ @¡Šdg8~@¡ŠdÝ/ @¡Šcþ\‘Ñ@¡ŠdÝ/ @¡ŠdtSŽó@¡ŠdÝ/ @¡Šeœàv@¡ŠdÝ/ @¡Šf§ï²@3N쿱[X@3OhÛ‹¬@0{ Iº^@0{'»/ì@/ü¬1&ê@/üÆ?@/#¼ÓZ…ˆ@/"¶®}Vm@/#¼ÓZ…ˆ@/$tSŽóN@/#¼ÓZ…ˆ@/%œàu÷?|öOÿÝ?õ¹Ëh?‘G¿yÛ?ï?‹²MÿAÿ8?‘'¬Å™» ?ß-tT?|öOÿÝ?’)£µ“[B@°nzáH@°|žì¿±@°nzáH@°|PHñ@°nzáH@°pÄ›¥ã@°nzáH@°l]cˆf@­u2° ÄœÁ.„€@­u2° Äœ@­u9õY³Ï@­u2° Äœ@­u-(Œç@­u2° Äœ@­u9#¢œx@­u2° Äœ@­u-žƒä%@­u2° Äœ@­uŠÚ¹õ@8Ì]cˆe•Á.„>¤µÜÆ@6|í‘hr@6ÊW§†Â@5nùÛ"Ðå@5yJôðØE@4Þ«6z‘@4îzáG®@4Þ«6z‘@4ãÃa@O@4Þ«6z‘@4éÀëíúD@8J¨?¡ÿ¶?B ?žõ|“”·?¯©C“Ë—?©²x7®VÈ?žc¬+:X£@8J¨?ªvðj?›R?¨:¶$I0?¨©&‚?®¶h†i¾m?¡â/‡ßü+@8p÷?àÛe«]Z?«†CRvÉÂ?³>0O¶m˜?¨ªíß?¨Ϭ -fà@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøøu@£ë•%@£ë•%@£ë•%@£ërüÎ -@£ë•%@£ë­’­@£ë•%@£ën`V@@£ë•%@£ëÔ<&@£ë•%@£ë%–³ˆ@–âzáG®@–â¼@–âzáG®@–âE_@–âzáG®@–⸒üÇ@–âzáG®@–âFÜ\@–âzáG®@–â -]³@–âzáG®@–âN²µ²@4ò䎊@4-V@0Œí‘hr°@0ޏQë…@/|¬1&ê@/}¾ŽÆ@.æL/ƒ{K@.蛈‘Å@.æL/ƒ{K@.çX ù@.æL/ƒ{K@.æÉ1"ª?~ì“?ÕÒJ?Ü>Èg?‘Fí<4½?‹ÒKÝiï8?ÿÃhý?ÐäÊ‹ñâ?|çµB &€?’'úà7x?³†é]Ô¼?Açy>¡$;?“ÌUõÎs¼?º’ ï &?]ÒivLÿ?…µsê³g¡?ƒ¼9XNÄu?‡ø¢:›¸1?ˆW|¶DC@@@@@,@(?ð?ð?ð?ð?ð?ð¿YäøF~?=:žÐ?KbÁh ½?YW8`ÒGÍ@©iŽ^Yé@¥Qhò…Ð?ck¯îwH?t‘(Oåml?Â7Ö–‘–?Þä0þ9®ü@ŸmÞЬ›²@x@¢“>ùÛ"Ñ@¢“6‡+ @¢“>ùÛ"ÑÁ.„€@¢“>ùÛ"ÑÁ.„€@¢“>ùÛ"ÑÁ.„€@¢“>ùÛ"ÑÁ.„€@¢“>ùÛ"ÑÁ.„€@”g¥ãSø@”g&-1@”g¥ãSøÁ.„€@”g¥ãSøÁ.„€@”g¥ãSøÁ.„€@”g¥ãSøÁ.„€@”g¥ãSøÁ.„€@7쿱[X@7 ¨câù@40Ä›¥ãTÁ.„M‰ûçm@3.ùÛ"ÐæÁ.„QnÙ‡@3!:’£SÁ.„NÜC,¥@3!:’£SÁ.„NÜC,¥@3!:’£SÁ.„NÜC,¥?‹?2»ZìF@8#˜@8¾:@8 >+@8Iç@8Ù?ƒÔo"ë–@8Î÷@8i§@8Å@8S@8û—? ž¤ïË[@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøy@¨³¶E¡Ë@¨³÷ÎÙ@¨³¶E¡Ë@¨´¼j~ú@¨³¶E¡Ë@¨´ýó¶G@¨³¶E¡Ë@¨´FsØ@¨³¶E¡Ë@¨²-V@¨³¶E¡Ë@¨²a|Ú@­8$Ý/@­8$Ý/@­8$Ý/@­8€ªdÂø@­8$Ý/@­8$Ý.@­8$Ý/@­8€ù k¹@­8$Ý/@­8ä÷eý@­8$Ý/@­8aä÷f@.­5¨Xy>@.­5¨Xy>@- -~ùÛ"Ð@- -³g ù @, ƒn—@, ªdÂø8@,¨Û‹¬q @,©Çy¦µ -@,¨Û‹¬q @,©­BÃÉï@,¨Û‹¬q @,©­BÃÉï?É^³Dw'?Ì&ÏøHÃ?‘½ümüñ?‹ÝÉ!ë#?ëÎ@ A2?¾ƒìÈÁ?ÐbMçê_x?’ -‰¸Ì?™Îd0RÜ?7枪y7?çêÑHcÇ?Z˜°,aÝ?€bMÕky?Œ¯þuõí?‚2Y0âµ?‚éXëLL÷?†žóB» “?†žóB» “@@@@@$@&?ð?ð?ð?ð?ð?ð¿Lýô€<?*‡f ?6 µ2#4Ô?.Å4æqú@¨³NÅÊ@­8aŠ.ð?EC Eª??=$Ï(tõo?†([ú«Ì?rŠ:#@Ÿs Êpã@z@¬ÝöÈ´9X@¬ÝúŸ¾vÈ@¬ÝöÈ´9X@¬Ýú…‡“ß@¬ÝöÈ´9X@¬Ý÷škP²@¬ÝöÈ´9X@¬ÝùXbO@¬ÝöÈ´9X@¬Ýõ%F -¦@¬ÝöÈ´9X@¬ÝôFsØ@­ïŸ¾w@­øbMÔ@­ïŸ¾w@­ð£× -<@­ïŸ¾w@­öE¡ÊÁ@­ïŸ¾w@­ò¼¢@­ïŸ¾w@­îÙ‡+@­ïŸ¾w@­îæ1ø¡@7Ô xFÜ@7Øl"h Ô@2î5?|í‘@2ñÑN;Í6@2¢-V@2¤•*™1@1ÏO „M@1ÔZ¬2@1ÏO „M@1Ñ|ÚQ@1ÏO „M@1Íà qv?гá‡}?‘J–?-.º?““¶”ÿµb?¨•Ù?‘˜¯ -`É?’Æ÷Xê†?”¼íÒh??’¼MÒÀ7F?”¯_©ïM?•jÛ<÷x?’íßš?’÷fAzQa?’-BR1Ä?R©i»èi?‚ù…žÄ`x?ƒ ?ÿ½?‰/ã̽`ª?¦Òý>¶9î@@@@@&@,?ð?ð?ð?ð?ð?ð¿U^Ȩ¿`,ãz?7KRþ+??4xÆWƒ™õ@¬Ý÷j¿Aú@­ò”Ø?V·gfT1›?R\ ¸Ûo2?®`…ÛÖ@?›’ºæ]º@Ÿl()}¼Ä@{@ª->vÈ´9Á.„€@ª->vÈ´9@ª- 4mÅÖ@ª->vÈ´9@ª-SÐ|„¶@ª->vÈ´9@ª-*dÂø7@ª->vÈ´9@ª- íØÎ@ª->vÈ´9@ª-¼ÑÉ@œ„†$Ý/Á.„€@œ„†$Ý/@œ„Œ/ƒ{J@œ„†$Ý/@œ„„Щ)@œ„†$Ý/@œ„TÉ…ð@œ„†$Ý/@œ„U[„©u@œ„†$Ý/@œ„yz¿-7@9}:’£Á.„>¤µÜÆ@5&‡+ J@5‚©“ á@4"-V@4ÑN;Í6@4Þi­BÄ@3øDЩ+@4Þi­BÄ@3ÿM‰Mvl@4Þi­BÄ@3ýòÛð8Ô@8J¨?²”>I·}´?˜Bg2³ôö?šX“Øû?¦Ks(I,?ŸÌñOöÖ”@8J¨?ªQûpÇj?–¾Oäë ?™9½œÔ.?™guoĺ?Ÿèí†w@8p÷?—ƒFÛ¯/?•ë þÅ?š‹ˆe´?˜?[-¨D?“Ó.}y@@@@.@.?ð?ð?ð?ð?ðøøøøøøøøøøøø|@§ÁÎV“@§ÁÎö¤ß@§ÁÎV“@§ÁÍjO@§ÁÎV“@§ÁÎp:û~@§ÁÎV“@§ÁÍ:’£@§ÁÎV“@§ÁÌ/†7@§ÁÎV“@§ÁÌ‹Rî2@œø²-V@œø­in@œø²-V@œø²{²þÅ@œø²-V@œø¯O „M@œø²-V@œø§ï²-@œø²-V@œø¨Áp†¬@œø²-V@œø¤t«ï9@6µS&Á¾@6´ˆez~ø@2 í‘hr°@2}Vlô@1©Û"Ðå`@1¬PHð@0ÑÞi­BÄ@0Ñ·Xâ@0ÑÞi­BÄ@0ÏùvAâÑ@0ÑÞi­BÄ@0Ïb¿oÚ(?‚Ú¡ËG7@.åÉä@.~˾“©®@.åÉä@.+|”Õ?É^žP¬!?Û*Ð ?‘.t·ç`>?‹¬=ã§@v?ñ1ê\ß?È #­ºØ?ÐbQë„›¦?’Îü¥ó ?¢-Æ´Ô?0rìÝ>ê?Ö9¬%~E?]ÝíVÏK?€bîF¾§?Œ®Í"µ€?‚—Ú¸cX?‚æ“ì{ 4?†öÊEz?†˜G›S@@"@,@"@6@4?ð?ð?ð?ð?ð?ð¿Oºžîl¿ úUˆð?*WVTb@º?™¯°¢²@¡A¶ñ-Ñ@«àéZ?9R­0/?(-Á?Í?oo(¹ê?IšOó”w@Ÿs›´u@~@¦ÍÒñ©ü@¦ÎzáI@¦ÍÒñ©ü@¦Ï\(õÃ@¦ÍÒñ©ü@¦Î±Ä2Ê@¦ÍÒñ©ü@¦Íí(Œç@¦ÍÒñ©ü@¦ÌcñA @¦ÍÒñ©ü@¦ËC,¥@  ¬1'@  /Ÿ¾@  ¬1'@  ‹¬q @  ¬1'@  ¥ãSø@  ¬1'@  ¥ãSø@  ¬1'@  <64@  ¬1'@  ]cˆf@3àØDЩ@3á$Ý/@0ÇÎÙ‡+@0Çy¦µ @0“t¼@0sê³g¡@/­úCþ\’@/­í(Œç@/­úCþ\’@/­í(Œç@/­úCþ\’@/­Òñ©ûè?|öOÿÝ?W[†?‘°&޲P?Wø0 ¥?‘¿ÐÅu?‘äÿ̉ߚ?|¬Çëý ?’j•×›c?ß‹…&?iêhAÜ?‘Jâ”âj?低NëV?‚q6tNø6?Œþ%å_D?ƒÚ@êA²?ƒE 8?†ÃÛSPã?†Ë¢L1Ù@@@@@(@,?ð?ð?ð?ð?ð?ð¿>Uâ±ð¿$ƒßm ?&ãüYâ•?%Ãý7Ã@¦Í2€þ@  ÇÃ$æ?F±B, $?F¸èT<|?š€JÈÞØ?˜ãgcå)@Ÿf¹©|‰@@ªó£S÷ÎÙ@ªó£•%@ªó£S÷ÎÙ@ªó¤µÜÆ?@ªó£S÷ÎÙ@ªó¤Ý/ @ªó£S÷ÎÙ@ªó¤›¥ãT@ªó£S÷ÎÙ@ªó¢@·€5@ªó£S÷ÎÙ@ªó¢&€I@£xñ©ûç@£xñ©ûç@£xñ©ûç@£xÊW§‡@£xñ©ûç@£x•éá²@£xñ©ûç@£xGE8ï@£xñ©ûç@£x£S&@£xñ©ûç@£xˆÎp:@+-5¨Xy>@+-5¨Xy>@')7KƧï@')Dg8}@&cn—P@&cn—P@&zÇË)_@&zÇË)_@&zÇË)_@&zÇË)_@&zÇË)_@&zÇË)_?É`¯&xŽ?ÉGãA­÷?‘!!Ø×‹7?‹²MÿAÿ8?éDEâ©×?¸û:?ÐbMçê_x?’ -‰¸Ì?~ËQ§?6) }’ë?ÔÒ@úˆ‘?Kcìë?€bMÕky?Œ¬8 T£?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†ˆ#.÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿REs–%?ö_Ű?5©§¥Jáx?uœ4=@ªó£,L Ú@£xwç±?DӹȘ(?#Û?îB¹?…PúôZîz??½UfTü@Ÿs >Q±ô@€@§ùÿ|í‘h@§ú‰7KÆ@§ùÿ|í‘h@§ùõ?|í’@§ùÿ|í‘h@§ùú¬2@§ùÿ|í‘h@§ùíÒñ©ü@§ùÿ|í‘h@§ùì1&è@§ùÿ|í‘h@§ùÞBZîc@®{dZ¬@®†$Ý/@®{dZ¬@®yè>B\@®{dZ¬@®xbMÓ@®{dZ¬@®u›=É@®{dZ¬@®|„µÜÅ@®{dZ¬@®|‘ÑN<@8ÖšÔ,<Ÿ@8¸§æšÔ@5B° Ä›¦@5?–»˜È@5K"Ðå`B@5Gâ‚@·€@4½cˆe”°@4³9Àëíú@4½cˆe”°@4¶éxÔýô@4½cˆe”°@4µöý!ÿ.?¨Ö_pP1?ŸáE‚Xû„?”^RžpX?¡‹÷;Ïœ(?¨VK?¬ptí#°??µ”Zm?¡‹=0ïÍ?›ê‰¬>V?£m¤ˆÛ€|?£<1*T!Â?¯ˆpoIo ?°Ÿ ÜE©?šÇ,þâ?¯M,L¯6?šæÚ§³Á?› £­²ý?¨D d}ù@@@@@$@(?ð?ð?ð?ð?ð?ð¿zl„Ï.€¿?,òf ?S¡üñ¯?ewB…NCæ@§ùíD³›P@®z¾bØ?o¥åjŽr?zÜx+ÈýC?®€•¥ý³?Éw:5@Ÿm“ZÒ`P@@©qWOß;@©q]²-V@©qWOß;@©qOAò×@©qWOß;@©q\(õÂ@©qWOß;@©q>BZîd@©qWOß;@©q@ù kº@©qWOß;@©qA [À@KÂ\(ö@K¨õÂ^@KÂ\(ö@K»²þÅn@KÂ\(ö@KÅ¡ÊÀ„@KÂ\(ö@KÚ¬1@KÂ\(ö@KÒ½<6@KÂ\(ö@KÐbMÒò@7p4mÅÖ8@7_ ?Dº@3Ê^5?|í@3½!ÿ.Hè@26§ï²-@2/±[W>«@2Š0U2a|@2z#9Àëî@2Š0U2a|@2z’£S&@2Š0U2a|@2€‰ 'RT?‰çõ×eµM?›úV˜[u9?‘O‚%c?¤»Ä¢? çÇ?ó1?Ÿò5}'Î?Ïy¨jP? >Ô±µR?“®ÂrVŽx? 1°€µóÒ?Ÿz\½~Û?˜"ߨÇ>?ŠPn -E³?ÉGãA­ø?‚íWçé…?‹Ûu¤ó†4?”Ò -.Ô•?§8©$ -"º@@@@@,@*?ð?ð?ð?ð?ð?ð¿{ƒë€?rsøçÀ?XFÖ=bÛ©?Y;G¦ÀŸ@©qM˜ÃKº@KÀ«õÍÜ?z!k?z–0‘ý1?à÷¤B¹¤µÜÆ@3”›¥ãSø@3wÈK]Ìd@3 ²-V@2ô“t¼j@2\ÚQÎ@2KC,¥{@2\ÚQÎ@2U '»0@2\ÚQÎ@22½<64@8J¨?•ßóV_Ü^?±¦ôˆ¤ªq?’èÞ㬱_?˜{ )é™?³lRA‘ƒ@8J¨?šækM..?¦P{ìjÿ?¨^à18??¢.Óñ€?Эnñ~¤µÜÆ@3ÜIº^5?@3ÛJ#9Àì@2ù7KƧð@2õzxl"h@2kxFÜ^@2jdÂø7µ@2kxFÜ^@2hÛ‹¬q @2kxFÜ^@2iÇy¦µ @8J¨?’ Œ#Çî«?œœê´°EÚ?«àÓ RÆ?”Å¥ÒB–W?•¿!— ö@8J¨?”Ô„÷ËD?“$zü¾6?’k­ªì¢H?•Ñ^¢?•Âê&ÅÅ@8p÷?êzŽx?…íŽ(þÇ?…<ò N ?Œ8¸wx¯?Œ˜ˆTÙ8ª@@@@(@,?ð?ð?ð?ð?ðøøøøøøøøøøøø„@­ë[¥ãSø@­ê¯²-@­ë[¥ãSø@­ëM(Œç@­ë[¥ãSø@­ë[¥ãSø@­ë[¥ãSø@­ëYè>B[@­ë[¥ãSø@­ëWškP±@­ë[¥ãSø@­ëUY³Ð}@ ­‡+@ ®ß;dZ@ ­‡+@ ­ úCþ]@ ­‡+@ ­?|í@ ­‡+@ ­+jçÕ@ ­‡+@ ­>«6z@ ­‡+@ ­¼@8™*0U2b@6öL/ƒ{J@4=‘hr° @46”FsØ@3Ͳ-V@3Ȍ篸@2Ì¿±[W?@2ÈK]Ìcò@2Ì¿±[W?@2ËW>«6z@2Ì¿±[W?@2ÇOß;d?ð°–Ž]?—hÄ”V?“ï~í"?“U†žév?•õþèüäú?“‡SË{d—?ð°–Ž]?˜ü^Š1??’€fç½Î?—ýÖ³²³ÿ?’l{9ÙŽ?”µìSõüS?ð*wjs—?“ÆQ6þ?•bkòí?ŒOà†cÍ?‰ö±«tï?‹Ûx§Þ?ð@@@@&@&?ð?ð?ð?ð?ð?ð¿^ÉçLÈ?m•ŒÔΘ?W¤CÑC3º?p{†ÀfP±@­ëW“7ŠÆ@ ­@ðOü?fž(Kwb?|(¸»gOK?¾'h8/V‡?åîW;°C@Ÿt -’@…@¯Æ>ùÛ"Ñ@¯Æ€@¯Æ>ùÛ"Ñ@¯ÆLIº^5@¯Æ>ùÛ"Ñ@¯ÆVE¡ÊÁ@¯Æ>ùÛ"Ñ@¯ÆHË’:@¯Æ>ùÛ"Ñ@¯ÆWsüO@¯Æ>ùÛ"Ñ@¯ÆPË)^Ÿ@ªjì‹C•@ªj¡ÊÀƒ@ªjì‹C•@ªjð|„µÞ@ªjì‹C•@ªjé7Kƨ@ªjì‹C•@ªjî¾ß¤@@ªjì‹C•@ªjêdÂø7@ªjì‹C•@ªjåœàv@8^Hè§æ@7‹ Iº^@4#÷ÎÙ‡@4!‰7Kƨ@3@å`A‰7@3>BZîc @2á:’£S@2á–R½<6@2á:’£S@2ךkP°ó@2á:’£S@2×KƧïž?×LàðVôð?“ÓLáS{?š†Ä$íf%?–¶±½WÇû?¦ö/cÕ¥?©„¹ïq÷;?Ðæån…âi? îÑšˆHÉ?—cG‰‹o?“§ÞÐÞû?Ä —+¥A?¥/[?jÒ?ù×)2ÿ²?“8í¢ßA?ƒ~¨õ/¥O?éàQx˜?”8©èÈí? \'ÎjK@@@@@,@,?ð?ð?ð?ð?ð?ð?s2X¶Ø¿fNÒ?pj,zò;?pÎûÀÅ @¯ÆMlÖ@ªjë¼dˆ?|Ñé\‘C?{±&]-)?ÑR_uWä??Ù³o¶Y7@Ÿp™ðº¡X@†@©”1&éy@©” C•@©”1&éy@©”y¦µ @©”1&éy@©“äµÜÆ?@©”1&éy@©“â&€H@©”1&éy@©“ýcˆe”@©”1&éy@©“ÙÛ"Ðæ@® E¸Qì@® G+ J@® E¸Qì@® S÷ÎÙ@® E¸Qì@® XüPH@® E¸Qì@® H´9X@® E¸Qì@® i7KÆ©@® E¸Qì@® X“t¼j@6÷â‚@·€@6òþÅm\ú@4+¥ãS÷Ï@4<64@46§ï²-@4%Éã½@3B‚@·€5@3$÷eýŠÛ@3B‚@·€5@3'Ûô‡ü¹@3B‚@·€5@3¬Ùè>B?€‚ñêã ?’«p~v]Ù?©»KÞ9yA?žtN+®6?­ME(©l?›$ kH§2?“Æ×q„nï?›æ¤p¥½?¦<¦Ü7T? £½:…?¾R$Ê(Â×?±Í‚cÊ5?ƒíÈm½!¾?“A ç’?šˆøQû±?¡ãz‘ÈÆ?¥J'Y=¢?¦“€œ„%5@@@@@*@?ð?ð?ð?ð?ð?ð¿„×/ß©?e—ñŠx?cñ‹“§?`Ýz2^ä@©“ù}¤½@® K†c`?0g¬›ˆù?zš/™ìu?ú»‡Ú«ª?ÑNøÇA@@ŸcMÚ¿¾Û@‡@¦õ·ÎÙ‡@¦õ¸bMÓ@¦õ·ÎÙ‡@¦õ»çl‹D@¦õ·ÎÙ‡@¦õºû~‘@¦õ·ÎÙ‡@¦õ»quŽ"@¦õ·ÎÙ‡@¦õµY³Ð}@¦õ·ÎÙ‡@¦õ¸üPH@§·TzáG®@§·T¼j~ú@§·TzáG®@§·TzáG­@§·TzáG®@§·QN;Í6@§·TzáG®@§·P¾ í)@§·TzáG®@§·Q‚©“ @§·TzáG®@§·R•éá°@2ÿ–»˜È@2ÿ—$tS@/×KƧï@/ÏAò×r@-¥¡ÊÀƒ@-Ÿ±[W>«@-­úCþ\’@-¨ÁTÉ…ñ@-­úCþ\’@-ŸåÉä@-­úCþ\’@-¡ä÷eýŠ?É^³Dw'?qÂ' -B›?‘ŒQ®üX?Œ^:Òf?’yÊêºq?’u¹k‚=?ÐbV‡,?’0nà=Q“?§^ ÿo˜?wàËxR?“£c”?’ ÃCÀ`ú?€j|î–éë?ŒÐ¤Âÿê?ƒ!A -mº¹?…®×__C?‡L8õASÎ?Šì¾ ;8´@@@@@*@(?ð?ð?ð?ð?ð?ð¿WÙúÐ?HˆþŽL?XG=]ð.?)6’†.tÅ@¦õ¹=ÊÛ@§·QíÓP?gg°ãðÊl?8E±õþ'?Ç«½àìO2?fX¶h}@Ÿr¹µ+@@ˆ@®ûçl‹DÁ.„€@®ûçl‹DÁ.„€@®ûçl‹DÁ.„€@®ûçl‹DÁ.„€@®ûçl‹DÁ.„€@®ûçl‹DÁ.„€@›YÌÌÌÌÍÁ.„€@›YÌÌÌÌÍÁ.„€@›YÌÌÌÌÍÁ.„€@›YÌÌÌÌÍÁ.„€@›YÌÌÌÌÍÁ.„€@›YÌÌÌÌÍÁ.„€@5›¹Œ~($Á.„>¤µÜÆ@2”›¥ãSøÁ.„M‰ûçm@1€å`A‰7Á.„QnÙ‡@1cÉîËûÁ.„NÜC,¥@1cÉîËûÁ.„NÜC,¥@1cÉîËûÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø‰@¡GäÝ/ @¡Gã•%@¡GäÝ/ @¡GæÂ&€@¡GäÝ/ @¡GÆÁ½¥@¡GäÝ/ @¡GÒ×sü@¡GäÝ/ @¡Gèr° Å@¡GäÝ/ @¡GçæšÔ@¨nûçl‹D@¨nÿ;dZ@¨nûçl‹D@¨o ¸ºÇ@¨nûçl‹D@¨o¢3œ@¨nûçl‹D@¨o1Å@¨nûçl‹D@¨oh Ô•@¨nûçl‹D@¨ov_Ø®@6Ì]cˆe”@6Çü¹#¢œ@2GÎÙ‡+@2X$ xF@1’Ðå`A‰@1—æšÔ,@0𖻘Çã@0ðØDЪ@0𖻘Çã@0î¸Që…@0𖻘Çã@0ñò×s?‡YÍ_?¤^ÎÀ¸ô?£AóôpJ?’9ñ9¶ò8?–[À5ž¨?ŸlgŽ|*?‡YÍ_?–HÞÆzì²?•ûú·ø¨?šüU(\;™ð?†”°…S„N?…žÛ¨[uµ@ [¾¢’û†?ÿ¹¦^…û@Ÿf _”Ï®@Š@ŸWê~ùÛ#@ŸVükS@ŸWê~ùÛ#@ŸW鎂¼@ŸWê~ùÛ#@ŸWís¼ ‚@ŸWê~ùÛ#@ŸWêœX²X@ŸWê~ùÛ#@ŸWæÏäíÇ@ŸWê~ùÛ#@ŸWëÐT&@¯æffff@¯ÙXbN@¯æffff@¯èD_@¯æffff@¯çâ9,z@¯æffff@¯åïÝ–À@¯æffff@¯ç/Sæ@¯æffff@¯è¿«L@7h†YJôñ@7"ZîcŠ@3Ï|í‘hr@3Ò;~š&@2ÝV”@2Þ /2l@2OO „M@2QÙJ7Ð@2OO „M@2RIIqÆ7@2OO „M@2RRð$öç?ÖP£acíÝ?‘¾mîøÀ„?‘9{Scr?„Ñ.HF,?’Lœ@¶Q?‘Ç“ëV“uÁ.„QnÙ‡@3«6z‘Á.„NÜC,¥@3«6z‘Á.„NÜC,¥@3«6z‘Á.„NÜC,¥?¡EÉ@Ú@8#˜@8¾:@8 >+@8Iç@8Ù?“Æ×q„nï@8Î÷@8i§@8Å@8S@8û—?Ÿ®64 Ú@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¨äµÂ\)@¨ä»¥ãSø@¨äµÂ\)@¨ä­jO@¨äµÂ\)@¨ä®—Oß@¨äµÂ\)@¨ä³ê³g¡@¨äµÂ\)@¨ä°oiDh@¨äµÂ\)@¨ä³ê³g¡@§<+…¸R@§<<í‘hs@§<+…¸R@§<"Ðå`@§<+…¸R@§<"3œ¿@§<+…¸R@§<,¿±[W@§<+…¸R@§<,ÌÌÌÍ@§<+…¸R@§<)*0U2@8·â‚@·€@8§RT`ªd@4W+ Iº@4V¸ºÇ@3V”@3œÙè>B[@2ò䎊r@2|VÕϪÎ@2ò䎊r@2|Æ?@2ò䎊r@2}¥œàv?¢F^ì¼Sð?˜“'\žå?šÿ»^ª@?,¡r×gÁ?’PY8~Qj?”éëÀÍ?•²»UbB2?—½Qéœ?•ûú·ø¨?‘.}áµ$?“h_N’%¿?–†F5Æ?´&¾¬Ç‰m?–Ê Dì¢S?•bkòí?‰‹„áùO"?Ä;Ãkr>?“¶Ì¶Öj”@@@@@*@,?ð?ð?ð?ð?ð?ð¿XIû[P¿oË m?Qß‚Xc?QJ˜g(ÒÎ@¨ä³ÛS~|@§<.©t?g‘‡(Ûê¨?m&±tr/?Äõɹ_9ú?Я3Þax@Ÿn(Ëß;@Ž@¥/²-@¥.—Oß@¥/²-@¥4mÅÖ9@¥/²-@¥1hr°!@¥/²-@¥4¼j~ù@¥/²-@¥0¸»@¥/²-@¥/Aò×@£¤j~ùÛ#@£¤j~ùÛ"@£¤j~ùÛ#@£¤kxFÜ@£¤j~ùÛ#@£¤g“Ý—ö@£¤j~ùÛ#@£¤fffff@£¤j~ùÛ#@£¤o\(õÃ@£¤j~ùÛ#@£¤m„M:@7„¯O „M@7ƒ,¥zxl@3ÇÎÙ‡+@3Ê™0¾ í@3"-V@3"þÅm\û@2:Ô,<ží@2?;dZ¬@2:Ô,<ží@2<篷é@2:Ô,<ží@2<ÓZ…‡”? Å{¿Ž<º?”êÎlŒy?‘£Ä›è?F‘q/b?“XMHñëž?’Æ÷Xê†?—¤o„C?šÒ’](¼+?‘kþE<%?íu…XÚ?”¤¦ð¹e?“{P»á?™¯Ùºà?“&•Z÷˜#?‡~ ~ã?ŽY8Z•?‡Ä­‹›Ü?‹ ˜1 D@@@@@@*@(?ð?ð?ð?ð?ð?ð¿G'~_Š?R/[õF?T‚¿OÙ@?VÀ. ·@¥1ÚW@£¤k -…;?kí5“Ù?qÕP;“áè?Ð×C”*é?Û ú䞃e@ŸnXeœ“@@¯ -Àƒo@¯  Iº@¯ -Àƒo@¯ jçÕg@¯ -Àƒo@¯ -ŒL—@¯ -Àƒo@¯ P°ò}@¯ -Àƒo@¯ Dg8@¯ -Àƒo@¯ï²,@¢*ØbMÓ@¢*×ÎÙ‡@¢*ØbMÓ@¢*Ö®}Vm@¢*ØbMÓ@¢*ÖÕϪÏ@¢*ØbMÓ@¢*غÇË@¢*ØbMÓ@¢*×1Å@¢*ØbMÓ@¢*×Xâ@5=:’£@5<ÌÌÌÌÍ@1€ Ä›¥ã@1€uöý!ÿ@0þV“u@0þ¤¨ÁTÉ@0ž«6z‘@0žËûµt@0ž«6z‘@0ž±Ä2ÊX@0ž«6z‘@0žóMj?|öOÿÝ?:LÓá -í?‘`×›mÏ?‹ó#ƒt£?‘|†³„¸?ß-tT?|öOÿÝ?’,ö´´Ï#?»Þ‹"è?e”[|ú(?‘!U?Ð{Ò?oÌ‘'ýT?ƒúʳ_Ã?)‰€Zw?‚Ì ÝŽ‚8?ƒv_.^?‡gϵ’õ?†ùadô|@@@@@,@$?ð?ð?ð?ð?ð?ð¿=ðx%п•°€?0CúÚA?$.˜×hó@¯ -.'–Ë@¢*×°É}“?Oâ-R8/?DZÈöƒõ?«!Ÿ A|œ?•ºû‹fòñ@Ÿfëo+Q}@@§Š¢Ðå`B@§Š£× -=q@§Š¢Ðå`B@§Š A‰7L@§Š¢Ðå`B@§Š¡ÊÀƒ@§Š¢Ðå`B@§Š£,¥zx@§Š¢Ðå`B@§Š ù kº@§Š¢Ðå`B@§Š 'RTb@¯)—Oß;@¯)™XbO@¯)—Oß;@¯)–E¡ÊÁ@¯)—Oß;@¯)˜Që…@¯)—Oß;@¯)˜bMÔ@¯)—Oß;@¯)˜y=Ù~@¯)—Oß;@¯)˜DЩ@7N쿱[X@7N¤¨ÁTÊ@1)‡+ @1(>BZîc@0¤¼j~ùÛ@0¤êJŒ@.žžš@.ã¼Ó[@.žžš@.ž\‘ÑN<@.žžš@.Vlô"?3ßa=„?¾¢`ƒ?‘WßÈDö@?Œä%—ëš?÷6r In?Êëüâi{?óA[ØïF?’ aÒ¹zï? Dñ£P?‘°ß‡O©?çêÑHcÇ?ˆ9²0?š?G'ôÜ?ŒÆò/¢äÍ?ƒúʳ_Ä?‚ôhBì^?†ïRÉv‘Ñ?†¼Š˜L¥÷@@@@@@?ð?ð?ð?ð?ð?ð¿HÖâ -ø¿*Úc^À?.nœ›½ß?ì¶mœ&@§Š¢«È@¯)˜‹g@õ?JÛC€WÌ?;/\‰½?–ÇxSÚ…?tÉ´že¦J@Ÿl^„¾â@‘@  -cS÷ÎÙ@  -^ùÛ"Ñ@  -cS÷ÎÙ@  -h6§é@  -cS÷ÎÙ@  -gˆ­è×@  -cS÷ÎÙ@  -h—”y@  -cS÷ÎÙ@  -d \‘@  -cS÷ÎÙ@  -bÔç'C@©wÒñ©ü@©wOß;d@©wÒñ©ü@©w—~á à@©wÒñ©ü@©wŽ÷|x@©wÒñ©ü@©wìVÕÒ@©wÒñ©ü@©w“hVŠa@©wÒñ©ü@©wÏ©„@8ò䎊@8 -;[kû#@3›¥ãSø@32ádª@2A‰7KÇ@2=¯‹Fí@15µsê³h@13“o¬K»@15µsê³h@14ݶÿè@15µsê³h@13"ž3°?œgØ^XÕF?µÜ,ÄßÌ?‘Š5¶ \n?‹«¦ÖI?‘C?#’pj?‘|ëN2?Ĺó¥p?’êNüÒ?µ…K¦­Ø?9Ø^ÕÛ?‘5ÖYó¾‡?‘4¥;QQ|?Éå¢Ñ‘?ògvfÐb?…lÝýéû?ƒÃ‚6$?‡dZ²VÇ?‡´ UÂb@@&@&@@5@8?ð?ð?ð?ð?ð?ð¿ C× ?O;—Vð?Yô8ý@kñ??€o³›«@  -eJ`Ê@©w†Ð:8?r½5gš?\•INË÷?à¸oþú–¥?¶·”\@Ÿmè ö?{@’@ ÛÐbMÒòÁ.„€@ ÛÐbMÒòÁ.„€@ ÛÐbMÒòÁ.„€@ ÛÐbMÒòÁ.„€@ ÛÐbMÒòÁ.„€@ ÛÐbMÒòÁ.„€@› ŒIº^5Á.„€@› ŒIº^5Á.„€@› ŒIº^5Á.„€@› ŒIº^5Á.„€@› ŒIº^5Á.„€@› ŒIº^5Á.„€@9*0U2bÁ.„>¤µÜÆ@4î5?|í‘Á.„M‰ûçm@4A‰7KÇÁ.„QnÙ‡@3ò䎊rÁ.„NÜC,¥@3ò䎊rÁ.„NÜC,¥@3ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø“@ªõœ(õÂÁ.„€@ªõœ(õÂ@ªõ§ ù l@ªõœ(õÂ@ªõžš@ªõœ(õÂ@ªõ´`ªdÄ@ªõœ(õÂ@ªõ¢&€H@ªõœ(õÂ@ªõ¥œàv@§žY‡+Á.„€@§žY‡+@§žMw1Æ@§žY‡+@§ž?—$tT@§žY‡+@§ž3g ù @§žY‡+@§ž:^5?}@§žY‡+@§žE8ï4×@8÷â‚@·€Á.„>¤µÜÆ@4—+ Iº@4‘hr° @3V”@3–È´9X@3O „M@35%F -¦L@3O „M@3æšÔ,@3O „M@37´¢3œ@8J¨?ŸY?2Õ6?š#Ñ-è ?­‹ 'òUA?— -æÙõ¡?™S:Ъ;5@8J¨?—I9ÝBæf?šJ‘ÍÒÁ?°z€Äã…?šRýi¡ô?™Ã¸å4@8p÷?™:K²ïÏ?•o•ó}ó?ÀËõ›ÄÉ:?–Mí\{WÐ?” 4‹eñ -@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøø”@¥ëŽÙ‡+@¥ëˆ1Íç@¥ëŽÙ‡+@¥éå—ñÞ@¥ëŽÙ‡+@¥éˆ~|pA@¥ëŽÙ‡+@¥é€ˆˆø@¥ëŽÙ‡+@¥éêdÂø8@¥ëŽÙ‡+@¥êXºÇÊ@—Vq©ûçm@—Vm‘hr°@—Vq©ûçm@—Tgöú ]@—Vq©ûçm@—T-©Ç„~@—Vq©ûçm@—T8ßÚ¶s@—Vq©ûçm@—S€IQƒ@—Vq©ûçm@—TGy¦µ @4Âò䎊@4¹© z@2™º^5?}@1ý¾ ¢í @2 "Ðå`B@1cÛoB'@1Š0U2a|@0çºs’"@1Š0U2a|@0×ÈK]Ìd@1Š0U2a|@0Þÿ—$u?|¬Æ Væ?ÕQt€hü?Öh7JÌZ?Õ”¨Ædœ?Ü'z_ó6³?Ù1[ݶÆÃ?}@T˜ÁÎ¥?ÈÐÃàÒ[?˸ÀRÅ{?ÀŽ7f9PÎ?ÎÀÚ$m´>?Ë•V u?‚/»yÅ?¦"vJÈC?“Áj¦ ?Ÿ¤@¦lŒIº^5@¦lw1Æ@¦lŒIº^5@¦l‹íúCþ@8Hè§æ@8µsê´@3f‡+ J@3f1ø .@2q‰7Kƨ@2rn—Oß@1Œ¿±[W?@1Œ˜_ö”@1Œ¿±[W?@1IQ‚©”@1Œ¿±[W?@1„M:“?žˆ2}?ZÁ».œ?’Gßk;m?‡{@áè?’o?P´À?‘&¶Gf¡?‘â%ì˜ ä?’5CàQ?‘C\ºÕ¶?’ž²¢# Y?’pP‡È»?ú`@0k? .ùge%ý?à í¡h„?‚§W®ê ?ƒ3¸Î{Z?‡Õ˜]–GÄ?‡æê7²zE@@@@@,@*?ð?ð?ð?ð?ð?ð¿^ *4°¿fLßd?*8q<^î–?Ujò³™¥ @ª K\Áp@¦lÎÜÆu?L¢Å7 [B?sãU)åÞ?{R[ ?ãWñrNܨ@Ÿk!ÅÅ‹õ@–@¢ül1&é@¢ühr° Å@¢ül1&é@¢üqN;Í7@¢ül1&é@¢üiº^5?@¢ül1&é@¢üwÎÙ‡@¢ül1&é@¢üw$tS@¢ül1&é@¢üsŽóMj@­hIº^5?@­hH1&éz@­hIº^5?@­hOß;dZ@­hIº^5?@­hQÄ2ÊX@­hIº^5?@­hQ·Xâ@­hIº^5?@­hNHè§@­hIº^5?@­hGE8ï4@7`ØDЩ@7aTÉ…ðp@2ÞÙ‡+@2ÔM:’£@1ß²-V@1×l‹C•@1(è§æ›@1 Ñ·Xâ@1(è§æ›@1¤¨ÁTÊ@1(è§æ›@1O „M?ˆÿÀ)T¿Æ?•ßóV_Ü^?‘ÄÑ ø?”–¹rÕ‰?›ÿËRÈ?–4<‘7?‘â%ì˜ ä?™ÿÓH*¥?’¤šÜI«?˜_?[0o_?¡SmImbˆ?•åÖuÍa?¶,1õ'®?ŽõÕJ?„+£QKù?†ü¢q+ÄU?ˆ0&YÊEd?Ò0aˆ‡‡@@@@@*@&?ð?ð?ð?ð?ð?ð?hrYRl?/£tíÀ?TžTI7/?WHâ¿T/S@¢üq!Æ@­hJ·+žž?u€Ô,­?wÊ_•$Æ?ãŸZd.aý?áarÎïËô@Ÿi‡Ò•Vô@—@ªõ|í‘h@ªõ}²-V@ªõ|í‘h@ªô—´¢3œ@ªõ|í‘h@ªóú^5?~@ªõ|í‘h@ªôü„µÜÆ@ªõ|í‘h@ªöG ù l@ªõ|í‘h@ªõ(Xy=Ú@£È@£Çî—Oß@£È@£Ç»À6ã@£È@£Æži­BÅ@£È@£ÇKàÞÒ‰@£È@£È¸ï4Ö¡@£È@£Ç”êJŒ@8`ØDЩ@8G1Å‚@3µãS÷ÎÙ@3yã¼Ó@3¶§ï²-@3@©*0U@2s&Á½¥@2'â‚@·€@2s&Á½¥@3V”FsØ@2s&Á½¥@2>5?|í‘?¨TU‚?¦Ó[T‚®¾?ÙC¤q;˜l?ÐdÜcšÍ?¾§m×¢Aü?½M­9ü?}Ñ¿ž,?ž%Œ@&—?Ö!-•FÀâ?ÎS„^Ù™?À,ÙŠùûë?Æ"šYÃ?›bO—ç†?3XMÊV?šˆøQû±?˜$– Ñê?«ißÛãÀ ?˜uqR¿7@@@@@*@*?ð?ð?ð?ð?ð?ð?u?’Ž €?…Úû€ˆ€?œž8PN?›Ã‰ƒ"¤}@ªõ‰m±…c@£Çÿí,I?»Þ^ñÉb?¶›¡ç­ù@+“ –ÔP@(>ÿŠÚ@Ÿb1ÉËf@˜@¯ŒTýó¶F@¯Œi7Kƨ@¯ŒTýó¶F@¯ŒJ*NWY@¯ŒTýó¶F@¯ŒNN-á¡@¯ŒTýó¶F@¯Œ:”Ę@¯ŒTýó¶F@¯ŒF|W /@¯ŒTýó¶F@¯ŒJ¼Ä™@–ýOß;@–ý"Ðå_@–ýOß;@–ý#©UfÝ@–ýOß;@–ý.<3àÙ@–ýOß;@–ý4šS2@–ýOß;@–ý%q!r @–ýOß;@–ýK‚…Ì@9‡>«6z@9wì^er@4 Ä›¥ã@4Àœ­)Ý@3~V“u@3}#+ê@3+xFÜ^@3,êã@3+xFÜ^@3+r[©ñ @3+xFÜ^@31á†Tñ?( ˜?”/À•?“ñ=Ûÿ•?å»ÿݵ?•ð³õ&a?—ÿ£e¦?®CÌ2ýõ?“µ>™99ß?‘cg >'?c>Ep|?•º–¸­E?—sa3¬6?Ë"ôuM¬Ò?•í\Bæ ?‹˜·êÿÓõ?“µ‹«#ãh¿M9jhü?8ËO§Â$k?&Î'þx -@¤#áúÍ$@¡“!åï†?Xœ/ÃÕ‚o?FjÆû9MÚ?¿&÷R¸Ïz?—oZGº@Ÿg1m -@š@®Àð£× -=@®Àð£× -=@®Àð£× -=@®ÀçlN“ˆ@®Àð£× -=@®Àï`çº|@®Àð£× -=@®Àô?U+U@®Àð£× -=@®Àë>{“@®Àð£× -=@®Àé?l@”™™™š@”¬0@”™™™š@”WÕµŒ@”™™™š@”!j%‹@”™™™š@” Ê¿Wr@”™™™š@”¢êW@”™™™š@”ýý^%Ž@6 ]cˆe”@6 9ÿÖ–@2 Ä›¥ã@1ã`7½~@1©Û"Ðå`@1¤Tͬ@0œÚQÎ@0’ †;„@0œÚQÎ@0“26•†@0œÚQÎ@0”EVA^?}@T˜ÁÎ¥?‘mÓSòÜØ?“o:6@è—?H§—ÅO?“®[Å`?“H‚ÏAu?€‘gQÚÃ?˜ÈOS˜Ü6?”â)ÈøU?—ÏÞÐ}ëá?–­&ÿ“Šè?“}Füè[n?‚p°M¼¯>?’Mûüå?„ù— y7?†v$áä/?ˆN%É–š?Š8Ðñ¢ÀÌ@@ @(@*@:@7?ð?ð?ð?ð?ð?ð¿PÄÿh¿gÀ¸,î?NbÊ"?~òÂ@*@®ÀïiÚì@”!é¢|?mÑ9Õ{?2×õË?äT×bî?iUåÕÊi@Ÿeÿ6‚:@›@¡- A‰7LÁ.„€@¡- A‰7L@¡-•éá°‹@¡- A‰7L@¡-“Ãa@@¡- A‰7L@¡-¡$Ý/@¡- A‰7L@¡- <[·»@¡- A‰7L@¡-’çÆ¨±@£†‡+ JÁ.„€@£†‡+ J@£†«6z‘@£†‡+ J@£†–ý!ÿ.@£†‡+ J@£††$Ý/@£†‡+ J@£††Á#ßó@£†‡+ J@£†”rü@9ÉÎ_oÒÁ.„>¤µÜÆ@4n5?|í‘@4u›=ÈL@3Ãt¼j~ú@3ÊQÎ`@3Œ~($ @3ô!-x@3Œ~($ @3=ë´M@3Œ~($ @3¥ZÅá@8J¨?–„Ø?8ˆ?£þ³Lqa/?”ääܳA³?”O5cOÈ:? !QÓØi@8J¨? ¥¬ ˆ?«¹f‰Ôü¯?—³ÄpÐ? %9½\Ö?–+•><£@8p÷?•cKç4+?ªÑkµn}á?¥k2ïm?ÉïŸJ¿à?œdWj>ö@@@@1@0?ð?ð?ð?ð?ðøøøøøøøøøøøøœ@®Dî—Oß@®Dï\(õÄ@®Dî—Oß@®Ez:µ^@®Dî—Oß@®EÁãˆ@®Dî—Oß@®E0?ˆ”@®Dî—Oß@®EAã”np@®Dî—Oß@®E9ùÀ-@–r¢Ðå`B@–r«IE£Å@–r¢Ðå`B@–rÜ$¶Î@–r¢Ðå`B@–rç¬\A@–r¢Ðå`B@–s2±Ép‘@–r¢Ðå`B@–s:ø_@–r¢Ðå`B@–rè÷õÓ@7žHè§æ@7Ÿ - ¨B¾@2î5?|í‘@2Úiˆs@2H“t¼j@22Š -6#Ñ@2uµsê³h@2I2²1PH@2uµsê³h@2JuQÄQ-@2uµsê³h@2KG§5{†?Ïy¨jP?‘uA Úbô?™Ê_ps?ªLýä5‡á?«¨Î¡–ÿ›?©T†ň¸?…ðE[i)?–g¿l£Fñ?—.»¾­¬Ð?¢yÝÞ7Ï? E‰.ÕÿX?›¾4(¤?˜ª´¤Œª?PgDÌm?ƒÝIE„²?ˆÊ~O0?‡ÿd °/?Ž{çcm¼è@@$@&@*@7@8?ð?ð?ð?ð?ð?ð?’aô§c?‚Ñ8E# ?g¾«í×ò?s"’íRP,@®E¼a6@–rÒ9àQB?†ø„㬃?“P-„­?ìÌ?ëÕÊ¢@i“ÊÛL@Ÿdéõv@È@@¨>]/Ÿ¾@¨>W -=p¤@¨>]/Ÿ¾@¨>V_¸ÿ‹@¨>]/Ÿ¾@¨>m&–ž/@¨>]/Ÿ¾@¨>Z9,µ6@¨>]/Ÿ¾@¨>Y:™Yù@¨>]/Ÿ¾@¨>Ysf9T@›?Ÿ¾vÈ´@›?Ú` À|@›?Ÿ¾vÈ´@›?™ˆƒ:@›?Ÿ¾vÈ´@›?•Jé¸L@›?Ÿ¾vÈ´@›?¡Ã§…2@›?Ÿ¾vÈ´@›?¢½…#@›?Ÿ¾vÈ´@›?¢¿Œ”G@8–šÔ,<Ÿ@8Žž9« @2Ìí‘hr°@2Äψ­×@2Ðå`A‰@2 ѹ{Þ@1=cˆe”°@1;(ˆ5n@1=cˆe”°@195Ä @1=cˆe”°@1;F2ºT{?”$úÀÁ’?’aÉUYÝÝ?‘,Û?Œ…¨F|?‘mt‹?Ý"ˆíƒ&?š­˜]?–…¯Ý Eá?’, e²RZ?‘ $< ¡?’ñÁC+?†Oxû|Î?‘ð±¼?Ž–áÐMÊ?„§Ð‹]@ù?„u„ņÇ?ˆŸC"V?‰@¿ ÁrŽ@@$@&@$@1@2?ð?ð?ð?ð?ð?ð?:¡ñ]¿sNÀÇ@?8?Uµo!?do¦Ø»N«@¨>YF޾™@›?¬ >?Sdê<9ž ?—“ÆÌÔ{?¥šJ–¤Ð?ö87?ü§@Ÿn= nò@ž@¨»²-V@¨»³÷ÎÙ@¨»²-VÁ.„€@¨»²-VÁ.„€@¨»²-VÁ.„€@¨»²-V@¨»®záI@¨»²-V@¨»¨´9X@¯˜Æ§ï²@¯˜ÌIº^5@¯˜Æ§ï²Á.„€@¯˜Æ§ï²Á.„€@¯˜Æ§ï²Á.„€@¯˜Æ§ï²@¯˜ÊÀƒn@¯˜Æ§ï²@¯˜Ãn—@7Bò䎊@7>šu@3W+ IºÁ.„M‰ûçm@2Æ“t¼Á.„QnÙ‡@1𖻘ÇãÁ.„NÜC,¥@1𖻘Çã@1óÉîËû@1𖻘Çã@1óä%®æ2?гá‡}@8#˜@8¾:@8 >+?‘ ·èf?“ d?|¬Çëý @8Î÷@8i§@8Å?‘áÙž­ò?Éöm/w@*›dZ¬@*šáG®{@+L²•éá±@+K…¸Qì@+L²•éá±@+K]ÌcñB@+L²•éá±@+KC•&?É`¯&xŽ?ÉGãA­÷?‘(¥¿á?‹¹GüÞõ?‘Dj?ÃwZL?ÐbV‡,?’ ,øÕC©?†[‘'Í?@§[*^?îCq$u?X78›š?€b¡´ñ@?Œ°¶.Ä+Æ?‚s@ˆaÛ?‚ù8 ±^?†£îž«î?†©b/bJö@@@@@,@(?ð?ð?ð?ð?ð?ð¿:ÙâYˆ?9P1æ`?‹E;?#Ç&Ðü@­‘ny«z@£Aè¯_bÆ? äaIÛÙî?2½¯²Ù\ ?;Þ12NŠh?^–ãsLì@Ÿs˜d#í@ @¯ Ïß;dZ@¯ äZ¬@¯ Ïß;dZ@¯ ÌcñA @¯ Ïß;dZ@¯ Î.±Ä3@¯ Ïß;dZ@¯ Ï·éø@¯ Ïß;dZ@¯ ÎV”@¯ Ïß;dZ@¯ ÌL˜`@©UOß;@©UãS÷Ï@©UOß;@©Uçl‹D@©UOß;@©Uµsê³@©UOß;@©UÛ"Ðå@©UOß;@©UFÜ]@©UOß;@©UJ#9Á@904mÅÖ8@9.záG®@3Ï|í‘hr@3Ò@·€4n@3"-V@3$•*™1@28DЩ*@2:…‡“ݘ@28DЩ*@2:dÂø7´@28DЩ*@29ûçl‹D?³‰ÑpEIt?“Ãruöò²?”lš5B¬î?{¾“úy6?‘·Xâe?’€ú¤ˆ4 ?ÀÊ»d9\?”zòžÕÿ?•¶ÀA½ -;?’:u.ý ?’>H>d#?‘1鄽 Ú?ȉÿ‹¤vw?*øT?ˆdÁ --?…J]j?‰Ü)@Jq«?^^ω•@@@@@,@&?ð?ð?ð?ð?ð?ð¿cŠJe€?OóB{#?TP÷²ZÐ ?TäÂ6ià;@¯ ΚFv@©Uk³ýo?dÚ+O#Ž?dÇB¼ÅN?ÂçNÜïOÏ?¾ïKÆ ì_@ŸrCŠ´@¡@ª.9XbNÁ.„€@ª.9XbN@ª-"œwšk@ª.9XbN@ª,¡G®{@ª.9XbN@ª,”Ö¡aå@ª.9XbN@ª-NHè§@ª.9XbNÁ.„€@œâÕ%Á.„€@œâÕ%@œäìô!-@œâÕ%@œäÏv_Ø®@œâÕ%@œåšîc‰@œâÕ%@œã%zxl"@œâÕ%Á.„€@9p4mÅÖ8Á.„>¤µÜÆ@4Ô›¥ãSø@4\64ê@44“t¼j@3¼¾ß¤@@3uµsê³h@3Ôýó¶F@3uµsê³h@2èl"h Ô@3uµsê³hÁ.„NÜC,¥@8J¨?¾æ'‹ÕlÞ?»²Ï -· ?­dÒ¦Ó 3?ÔÿÖœ¾r@8Ù@8J¨?ÀîluûÞ?¼!z£sØÙ?°.OŠcÉ?ÖÊSx×À@8û—@8p÷?‘S1Êz?õª?ÉØ|Rüs¿?ÂõK/JRZ?‘Èx4ñž?¦W¾ »ZÕ?£¢6¿üs?¤~'àúT#?·}ߊÔ9È?ÝN•—w"?¾"“QÃ$@@@@@,@(?ð?ð?ð?ð?ð?ð? ïF£ ¿ž´7ÞºÀ?–1‹«½§?z„°Ø}ø@©t×fä{õ@§=öÞ‹Þ?©rì›§¢ ?5¸ÚAæ—@/¥"G{ï?ãíà!K?$@Ÿ^>ž>FT@¤@¨Êq&éxÕÁ.„€@¨Êq&éxÕÁ.„€@¨Êq&éxÕÁ.„€@¨Êq&éxÕÁ.„€@¨Êq&éxÕÁ.„€@¨Êq&éxÕÁ.„€@¬ »çl‹DÁ.„€@¬ »çl‹DÁ.„€@¬ »çl‹DÁ.„€@¬ »çl‹DÁ.„€@¬ »çl‹DÁ.„€@¬ »çl‹DÁ.„€@75S&Á¾Á.„>¤µÜÆ@3‚° Ä›¦Á.„M‰ûçm@2¢-VÁ.„QnÙ‡@1ó&Á½¥Á.„NÜC,¥@1ó&Á½¥Á.„NÜC,¥@1ó&Á½¥Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¥@«²-V@«¥ãSø@«²-V@«šu%@«²-V@«ÙrGE9@«²-V@«Ölô!@«²-V@«ä“t½@«²-V@«è$ x@¢0%`A‰7@¢0 A‰7L@¢0%`A‰7@¢0' ù l@¢0%`A‰7@¢0*#9Àì@¢0%`A‰7@¢07éùr@¢0%`A‰7@¢02ñ©ûç@¢0%`A‰7@¢0 'RT`@8í¥œàv@8åéá°‰ @4J^5?|í@4?;dZ¬@3ß²-V@3ÎÅm\ú­@3 -0U2a|@2ð4mÅÖ9@3 -0U2a|@2ñA [À@3 -0U2a|@2òMÒñ©ü?Ÿ‹‘+-/Ü?éDEâ©Ö?–s3g¾²p?¢Ç˃.†?¦KÊbo¨Þ?´Fø}^«? Å{¿Ž<º?™´¦]˜ó?”_й@’?*ß(…Ž?¦Ì¢„“eE?¨÷¸0Å?ˆLdB"%? e@ˆ’„'?Š[¦Råb?˜µÑ½8|ò? ee«¿?·ßM(® @@@@@&@*?ð?ð?ð?ð?ð?ð¿ŽÍŒvD?cË× þ?yÛµ²àò´?q/ÂóüÉÛ@«ð"Ê@@¢0,ñWF.?—tnQZ?HpG.ï@KÍ=Ø?ô(ÑMöUw@Ÿi+ö‹˜@¦@¥½49Xb@¥½6‡+ @¥½49XbÁ.„€@¥½49XbÁ.„€@¥½49XbÁ.„€@¥½49Xb@¥½C× -=q@¥½49Xb@¥½Iº^5>@¯í‘hr°@¯ïß;dZ@¯í‘hr°Á.„€@¯í‘hr°Á.„€@¯í‘hr°Á.„€@¯í‘hr°@¯ V@¯í‘hr°@¯ -Ow@7ð4mÅÖ8@7ñ ²•éâ@3pÄ›¥ãTÁ.„M‰ûçm@2b-VÁ.„QnÙ‡@1p–»˜ÇãÁ.„NÜC,¥@1p–»˜Çã@1„2ÊW§‡@1p–»˜Çã@1r×sü? Eˆ‡ðó‹@8#˜@8¾:@8 >+?éDEâ©×?˜}>h”'?žˆ2}@8Î÷@8i§@8Å?¢õ%ÒgÔ?ŸÒOÝ&P?‘ -òtMŠ@8 * @8p÷@8¶?°4\ɵ?ŽÜÂÎÛÖa@@@?ð?ð?ðøøøøøøøøøøøø§@¡g 7Kƨ@¡g\(ö@¡g 7Kƨ@¡fö8†YK@¡g 7Kƨ@¡fù0¾ í@¡g 7Kƨ@¡fÉùrG@¡g 7Kƨ@¡fê~ùÛ#@¡g 7Kƨ@¡füPHð@¨ùݲ-V@¨ùÌÌÌÌÍ@¨ùݲ-V@¨ùÏ4Ö¡b@¨ùݲ-V@¨ùÖE¡ÊÁ@¨ùݲ-V@¨ùÕL˜_@¨ùݲ-V@¨ùÑø .@¨ùݲ-V@¨ù°U2a|@8²ÃÉîËû@8±œàuöý@3Ò Iº^5@3Ñ©ûçl‹@36§ï²-@31°‰ 'R@2µµsê³h@2±&éxÔþ@2µµsê³h@2²äŽŠqÞ@2µµsê³h@2¦šÔ,<Ÿ?‚á²Olºü?¢Û)Qé?§$jЂ†Ë?º¬šÄB?¦¬÷4çí?šC…{‹?“Æ×q„nï?­Uóú*˜?¦+öbÚË›?¥ZÑpÉç?¥yoÌå?¢©¨èÖ%˜?¶/é8R”é?ŸÈ$éþ(@@@@@*@*?ð?ð?ð?ð?ð?ð¿Q=½Œ?(ˆ©ÚT?29¿º]êÚ?áXd)´?Qwq»–^ß@Ÿs -m_^Ò@©@¯Ò„›¥ãT@¯Ò„›¥ãT@¯Ò„›¥ãT@¯Ò†YJôñ@¯Ò„›¥ãT@¯Ò…+ÓÃa@¯Ò„›¥ãT@¯Ò…Éä@¯Ò„›¥ãT@¯Òƒˆe”®@¯Ò„›¥ãT@¯ÒƒS÷ÎÙ@¥¦G+ J@¥¦FéxÔþ@¥¦G+ J@¥¦H$ x@¥¦G+ J@¥¦G†Â&@¥¦G+ J@¥¦H>BZî@¥¦G+ J@¥¦G8}¾@¥¦G+ J@¥¦HK]Ìd@3­¥œàv@3­¸ºÇË@0º^5?|@0Ô•*™@/|¬1&ê@/|]cˆe”@.fL/ƒ{K@.f€IQƒ@.fL/ƒ{K@.fL/ƒ{K@.fL/ƒ{K@.f1ø .?€‚ñêã ?¾‰máÚ?‘K]Ã4?Œ ßõIyû?‘õbÐ\?Êëüâi{?|öOÿÝ?’LÁŒÀ´a?«'Q™µ?iêhAÜ?ñ«Ý„ Õ?R g!Ú¢?‚|׿pY?ŒÆò/¢äÍ?‚† SFò?ƒ†+ Å?†¼Š˜L¥÷?†¼Š˜L¥÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿&‹>Ö?/™X0?0øv›±ªd?ÔX`™@¯Ò„lwûþ@¥¦G}‰ß?PÜ6÷@N?@pË<9r¢?«öÎNĬ?‹M7ÔüÛµ@ŸgQ(¿H@ª@¯‹‚\(öÁ.„€@¯‹‚\(ö@¯ˆbMÒñ©@¯‹‚\(ö@¯ˆ "h Õ@¯‹‚\(öÁ.„€@¯‹‚\(ö@¯¼]cˆf@¯‹‚\(ö@¯“ŽóMi@«'ï²-Á.„€@«'ï²-@«Z…‡”@«'ï²-@«öý!ÿ@«'ï²-Á.„€@«'ï²-@«þƒä%®@«'ï²-@«Ù0¾ í@:VšÔ,<ŸÁ.„>¤µÜÆ@5Å?|í‘h@6)“ àÞÒ@5>V“u@5wXâe@4L¿±[W?Á.„NÜC,¥@4L¿±[W?@2ÚÔ,<ží@4L¿±[W?@2»¹Œ~($@8J¨?ë’ŒØPÀè?öýôƒQ¹@8 >+?ÀaC1 ?ÑôA0R@8J¨?Ú¤4H4’Œ?ßÊî„™'Ò@8Å?¹¶ó:†‡V?ÉòàMpù@8p÷?Ñ -Š6ü#6?ÙûæqL…ý@8¶?˜F†éôâß?£Ä·èŠ@@@,@*?ð?ð?ð?ðøøøøøøøøøøøø«@ªž“t¼j@ªž5?|î@ªž“t¼j@ªžÿ—$@ªž“t¼j@ªž#Š @ªž“t¼j@ªž&¸ºÈ@ªž“t¼j@ªž1œàu÷@ªž“t¼j@ªž0–»˜È@¨)’ñ©ûç@¨)’-V@¨)’ñ©ûç@¨)«)^ž@¨)’ñ©ûç@¨)†ÏAò@¨)’ñ©ûç@¨)ƒ,¥zw@¨)’ñ©ûç@¨)l/ƒ{J@¨)’ñ©ûç@¨)‚ Iº^@7ð4mÅÖ8@7í«ŸU›=@4ë¥ãS÷Ï@4ÔohÛ@4t“t¼j@4Wl‹C•@3³&Á½¥@3›¹Œ~($@3³&Á½¥@3ŸHË’:@3³&Á½¥@3¢-V?3ßa=„?œPîñ°¦?·æhÎŒF?©H} ¬ýy?°™û§ü¦?¤;»ŒKå.? Eˆ‡ðó‹?”ÇtæMPÐ?·'_#Š?± Çÿm -È?µh`‘©i¤?¢©¨èÖ%˜?À»¾Ô«­?Å{¿Ž<º?œvå\ƒd?šlFÛj¿þ?˜£™Ðåˆ?ªvWÚÓ;å@@@@@,@*?ð?ð?ð?ð?ð?ð?o‹¥{ ¿owMå?;-O·ËÜ?`â !3:@ªž'B~¸@¨)ˆ3¶F?]ñG¥J -?пv?–ä¿ëkò?Ôo7!w×R@Ÿh_ñ. @¬@¦ÔF§ï²@¦ÔFéxÔþ@¦ÔF§ï²@¦ÔH Ô•@¦ÔF§ï²@¦ÔG®zá@¦ÔF§ï²@¦ÔGâ‚@¸@¦ÔF§ï²@¦ÔE®æ1ù@¦ÔF§ï²@¦ÔE¡ÊÀƒ@¬ãXbMÓ@¬ãXbMÓ@¬ãXbMÓ@¬ãXy=Ù@¬ãXbMÓ@¬ãX_ö”@¬ãXbMÓ@¬ãX†YJô@¬ãXbMÓ@¬ãX}¿G@¬ãXbMÓ@¬ãX­«ŸV@-"ø7´¢4@-"ø7´¢4@%3t¼j~ù@%3t¼j~ù@#XÔýó¶F@#XÔýó¶F@"á-w1Å@"á-w1Å@"á-w1Å@"á-w1Å@"á-w1Å@"á-w1Å?É^³Dw'?°çR;?‘ÌË>¯f?‹²MÿAÿ8?êtÿKÑc?¶*WFÑ?ÐbMçê_x?’ -‰¸Ì?†[‘'Í?9ÍÇ~FÀ?Î ¯xV?L "¾?€bMÕky?Œ¬8 T£?‚nâwg?‚â‡~ûÉ\?†‡hÉÈÓ?†‡hÉÈÓ@@@@@,@*?ð?ð?ð?ð?ð?ð¿PËæRà? ±›÷?4µj¾  ?&9 (@¦ÔFŽ—Ô@¬ãXpµÞ?Céñèz?5ß‚«tå?ƒ~-óF>¿?cd“(cõo@Ÿs Þ5gÓ@­@¢4bMÒò@¢4záG®@¢4bMÒò@¢4$%®æ2@¢4bMÒò@¢4$µÜÆ?@¢4bMÒò@¢4|í‘h@¢4bMÒò@¢4ô‡ü¹@¢4bMÒò@¢4=ÈK@«Iœ(õÂ@«Iž5?|ï@«Iœ(õÂ@«I˜DЩ@«Iœ(õÂ@«I–“u@«Iœ(õÂ@«I–“v@«Iœ(õÂ@«I©*1@«Iœ(õÂ@«I“üPI@7¹Œ~($@7“Ý—ö,@2€ Ä›¥ã@2wy¦µ @1ñ‰7Kƨ@1ëŸU›=@0𖻘Çã@0é=Ùb·@0𖻘Çã@0åzxl"h@0𖻘Çã@0åY³Ð|…?‚á²Olºü?›Î ¥/?˜þ÷þ†ø‰?‹ë¤½?‡á?’Z†Ažj?•8öJ&7µ?€‚ñêã ?”ºu(†¼¦?”aB#Gi?“mŸqa?‘êë·áþA?‘µEÂBÕl?”⦘¹Ô?šÑ~¿²Ô?Ÿ|–„aQ?ƒ*|š\/´?‰6‰õË?Š`½i=ÓØ@@@@@(@(?ð?ð?ð?ð?ð?ð?`« ß¿fŒ¾?QZËà˜Êœ?A¹†#‘t×@¢4ýjï`@«I—Î{¸™?p”_רÁs?bl°žÇðÃ?å«Ù7‹?Ëâí¡°z@ŸgŽœk,Æ@®@¤W‰7KÇ@¤W‰7KÇ@¤W‰7KÇ@¤W€4mÅÖ@¤W‰7KÇ@¤W}!ÿ.J@¤W‰7KÇ@¤WzáG®@¤W‰7KÇ@¤W{"Ðå`@¤W‰7KÇ@¤WzQÎ@® 6E¡ÊÁ@® 6‡+ @® 6E¡ÊÁ@® <„µÜÇ@® 6E¡ÊÁ@® :^5?|@® 6E¡ÊÁ@® ;ÚQÎ@® 6E¡ÊÁ@® 8Ôýóµ@® 6E¡ÊÁ@® 7$tSŽ@5(†YJôñ@5(ºÇË*@3E?|í‘h@3D¢3œ¿@3)Û"Ðå`@3*qÞi­C@2Š0U2a|@2ˆè§æ›@2Š0U2a|@2‡€4mÅÖ@2Š0U2a|@2ˆe”¯O?|¬Çëý ?qÂ' -B›?™™w4fà¨?”oý]Þ‡&?“´<×?“”üU§<­?|öOÿÝ?”Iõ`ÆÓ›?”Ÿ•/ø]Ÿ?“ÅÒÏPÉä?’LÁŒÀ´a?× ³¸ÑZ?‚q6tNø6?œ‘z¥æ?‰¢Ò+ÜÝ®€?–àa¦vf¥?«”©Î›?—ý>5Ptv@Ÿt/NB„¨@°@©õ?|í‘@©×Ûôˆ@©õ?|í‘@©DcÈwb@©õ?|í‘@©1lFp¦@©õ?|í‘@©em¥(×@©õ?|í‘@©:a2¬ @©õ?|í‘@©;T½B@™K9XbN@™K6E¡ÊÂ@™K9XbN@™Kº¹B|‘@™K9XbN@™KYðñ·¥@™K9XbN@™K"¦º@™K9XbN@™KP/½9ƒ@™K9XbN@™K\ŒyO@7#g ù l@7×srh@3ã÷ÎÙ‡@3×t•×ë@3“t¼@2ë¼Ù&'V@2Ê0U2a|@2°N"¥j @2Ê0U2a|@2¸†„Ö«@2Ê0U2a|@2°WPb‰K?|çµB &€? žˆ€¡AÒ?²Cý´È}?§!V™k?žó·eÿ€?™|**ú?˜ê?©úté?©x„œº¥?°€ĉ§?™‰rØï_?¡ ó„íó*?¬Ãëçu¾ñ? è+Áø?•LÔwy»?—³F:>^Ì?’Uÿg·„?™–B¢‚½?›ºÉIÜ'@@,@,@*@9@:?ð?ð?ð?ð?ð?ð?ŒH’À?oþã¨?ra÷`À?€±™¢×@©!jƒãb@™K[Ž |?”R¸6ý[?œ=ˆÇ= @ Qá¢-øô@ƒ¬2¯ð+@ŸgŽnÑ~Ï@±@®ÖÏ\(õÃ@®ÖÓ¶E¡Ë@®ÖÏ\(õÃ@®ÖÙJôðÙ@®ÖÏ\(õÃ@®ÖÊÚ¹õZ@®ÖÏ\(õÃ@®Ö½p£× @®ÖÏ\(õÃ@®ÖÈr° Å@®ÖÏ\(õÃ@®ÖЉ 'R@§Ï º^5?@§Ï C•@§Ï º^5?@§Ï¢œwš@§Ï º^5?@§Ï º^5?@§Ï º^5?@§Ï (Œç@§Ï º^5?@§Ï/Ÿ¾@§Ï º^5?@§ÏwškQ@7·â‚@·€@7¹õY³Ð|@4Ùº^5?}@4á|ÚQ@4A‰7KÇ@4¤¯O „M@4¡:’£S@4¹#¢œw›@4¡:’£S@4¿ò䎊r@4¡:’£S@4¿ö”Ft?°:-%šÀ?¡U¢WªÂ?Ÿýˆh¾b ?¥:-ê°Ü?ªSŸ÷2Ì?ª $Μ$´?3ßa=„?œ°¶.Ä+Æ?­Õ\K\¢?®b̤?©&5³ -M?£®µZš…g?‚nâwfÿ?‘Žèã&!+?£XßÏTo×?¤wúb¼?§^ÐÜ_žr?±Ö$•3É@@@@@*@$?ð?ð?ð?ð?ð?ð¾¾U#°?m:o˜?p d’$u?I©y÷@®ÖÈ&c’@§ÏcŒKM?‰}Qb’þ=?pNK¾Š?ß–’•?µ·ËT¶BÒ@Ÿltqå×ë@²@«p•%@«oÿ|í‘h@«p•%@«pS÷ÎÙ@«p•%@«pS÷ÎÙ@«p•%@«p‰7KÇ@«p•%@«p£n.±@«p•%@«p¶®}V@¯$]²-V@¯$`A‰7L@¯$]²-V@¯$[çl‹D@¯$]²-V@¯$_¾vÈ´@¯$]²-V@¯$]ó¶E¢@¯$]²-V@¯$^ߤ?æ@¯$]²-V@¯$a [À@7G>«6z@7DohÜ@2E?|í‘h@2Eœàu÷@1•`A‰7L@1•¨Xy=Ú@1:Ô,<ží@1;"Ðå`B@1:Ô,<ží@19Û"Ðå`@1:Ô,<ží@1:#9Àëî? Å{¿Ž<º?ZÁ».œ?‘ŸÇSñ?‹¦ ŸYÔ?‘ÏX¼ãs~?‘£‡9²þ?‚á²Olºü?’&u÷E»@?Œqç©Fü?1ð'7éÃ?‘Ú‚ýc¯?ú`@0k?—ÅΤ'Eë?GÚ -­ ?‚˜YªüÏF?‚ù8 ±^?‰]³ß’Ý?‰©OO ¨@@@@@@?ð?ð?ð?ð?ð?ð?B]ã:пk€?# ÆWV?7è±3)@«p׳I@¯$_«éÞï?9!–0rŽÇ?[›ÙQ?n3Ųb?¸Xñ¾4!@Ÿn$êX¿V@³@§Ù§ï²-@§ÙŸ;dZ@§Ù§ï²-@§Ù£,¥zw@§Ù§ï²-@§Ù¢Ðå`B@§Ù§ï²-@§Ù¡ [À@§Ù§ï²-@§ÙŸö”F@§Ù§ï²-@§Ùš^5?|@¥y’ñ©ûç@¥y²-@¥y’ñ©ûç@¥y—éùs@¥y’ñ©ûç@¥y—eýŠÛ@¥y’ñ©ûç@¥y—´¢3œ@¥y’ñ©ûç@¥y£n.²@¥y’ñ©ûç@¥y‡8}¿@7·â‚@·€@7¯ªÍžƒä@2ÎÙ‡+@28†YJõ@0²-V@0\ú¬Ùè@0OO „M@0M(Œç°@0OO „M@0B×sü@0OO „M@0C¢œwšl?}Ñ¿ž,?—ð:±µ~+?‘yß]³Õø?ŽÝ¡uÒ(r?Ÿ0 碽ü?Ÿ)áÚ/aW?Ž=fA:?••´þDê‘?’TÖ©E?“¶Ì¶Öj”?¨ª±(‹yK?  -ýt¨!à? t€4Â?GÚ -­ ?ƒ<Õp?„ mŠmsi?“÷Š>õª?•ƒ•&+B@@@@@,@,?ð?ð?ð?ð?ð?𿠺Ǫ ¿FÞ~ô?CÚ³;¼?c1!ðìÛ™@§ÙŸ0²ï—@¥y ~_X?bSù#ññÿ?t÷Kç?ÚÁ¶IÉ?óDíßd@Ÿeíoˆê@´@¢¶˜“t¼j@¢¶Ÿ¾vÈ´@¢¶˜“t¼j@¢¶Æs×Ü@¢¶˜“t¼j@¢¶µµsê³@¢¶˜“t¼j@¢¶¸ï4Ö¡@¢¶˜“t¼j@¢¶µÏªÍŸ@¢¶˜“t¼j@¢¶¶”Fs‚@ ón—P@ ó"Ðå`@ ón—P@ ó=¿HÌ@ ón—P@ ó<‘ÑN<@ ón—P@ ó@IQ‚@ ón—P@ ó2ñ©ûç@ ón—P@ ó9JôðØ@6[¹Œ~($@6RþÅm\ú@2©‡+ @2vÂ&€I@1®ùÛ"Ðæ@1Šxl"h -@1O „M@0ê0U2a|@1O „M@0ê)Çy¦µ@1O „M@0éDg8~?‚á²Olºü?—.‰†5¸?˜/×T•£ð?‘sNX„êÒ?˜BaÖœÈ?”OPlðó[?‚á²Olºü?±µŠá¤V?¦Öµ gø?™Ücãgp?s»Hz¾?–¼åCÝqÕ?–]_«Q?Žrø·óæ?Ž“‹}Tz?…bv{3dZ?‰_uñšó?‹¼`’ i2@@@@@(@$?ð?ð?ð?ð?ð?ð?vÝ%¥ä€?|n””R?[q<Ço?b»8-O~ø@¢¶¬Äx´-@ ó*×0kˆ?{Ê^ -/ò?ƒ>ù—Œ•Ú?øW÷p½@ˆ‹{ù @ŸfvÇn‹@µ@­Wçl‹C–@­Wçl‹C–@­Wçl‹C–@­WèË’:@­Wçl‹C–@­Wèr° Å@­Wçl‹C–@­Wè§æœ@­Wçl‹C–@­Wæs×Ü@­Wçl‹C–@­WæL/ƒ{@«rQë…¸@«rQë…¸@«rQë…¸@«rQë…¸@«rQë…¸@«rRn—P@«rQë…¸@«rRòä@«rQë…¸@«rRòä@«rQë…¸@«rR{²þÅ@/“œ¾ß¤@/“œ¾ß¤@)MV“@)M(Œç¯@'è1&éxÕ@'èð¹@'”`ªdÂù@'”`ªdÂù@'”`ªdÂù@'”`ªdÂù@'”`ªdÂù@'”SŽóMk?É^žQ5P‚?Æ¿5›7÷?‘Ûü†Nã?‹ª½¨ª8v?êtÿKÑc?¶*WFÑ?ÐbMçê_x?’ ,øÕC©?|™,Ž!?/ò×ÈZø?Ó%y*£=?M\³Ù“@?€bMÕky?Œ¬Çëý ?‚oÁÆÜ§÷?‚äÍ“½E'?†‰Oú|q?†ˆ#.÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿QhUÌ>?#6b”¼?3ß{È~*|?5;· ¢\@­WçKHw@«rR:À×?C} V?!<(âÃ?ø'ƒÅ{¥?:Tª9Ot@ŸsM9 @¶@®ü±&éxÕ@®ü±&éxÕ@®ü±&éxÕ@®ü° Ä›¥@®ü±&éxÕ@®ü±&éxÖ@®ü±&éxÕ@®ü°£× -=@®ü±&éxÕ@®ü¯ „M@®ü±&éxÕ@®ü¯–»™@¨$<í‘hs@¨$=/Ÿ¾@¨$<í‘hs@¨$=Ùb¸@¨$<í‘hs@¨$=—ö+k@¨$<í‘hs@¨$>Ov_Ù@¨$<í‘hs@¨$=ŠÚ¹ô@¨$<í‘hs@¨$>š@3›¹Œ~($@3›~ÿ—$@.…`A‰7K@.„?åÉ@,‘&éxÔþ@,–»˜Çä@+™b¶®~@+˜y=Ùd@+™b¶®~@+˜ºÇË+@+™b¶®~@+˜†YJôð?}Ñ¿ž,?ÖÈ ¼?‘!!Ø×‹7?‹ÁË…ÉT?÷6r In?ºª$Ð?|öOÿÝ?’ÍîfÕ?~ËQ§?;ß $Þû?ÝIMÎ?PS2K¯™?‚s@ˆaÚ?Œ¸†‡ÄÅ?‚yî8Á$?‚äÍ“½E'?†½ª»—?†l&þ@@@@@(@*?ð?ð?ð?ð?ð?ð¿8 øp?'ô3Y? e0ÌL?„i¨‡ã@®ü°`F@Q@¨$= nHè?<í ’Žrß?9€7®†Ê?†B6 n™K?€@ÃYx<¢@Ÿg¤&Qó@·@¦½÷ÎÙ@¦½t¼j@¦½÷ÎÙ@¦½¹ª Ï@¦½÷ÎÙ@¦½ÞAª@¦½÷ÎÙ@¦½¬l=W@¦½÷ÎÙ@¦½Š-$@¦½÷ÎÙ@¦½\fÈ—@™9ê~ùÛ#@™9ë…¸R@™9ê~ùÛ#@™9ìëÕ>I@™9ê~ùÛ#@™9é*0U2@™9ê~ùÛ#@™9ë?Oêå@™9ê~ùÛ#@™9ì¬× @™9ê~ùÛ#@™9ñÄ2ÊX@47â‚@·€@47ú=@ÒF@0f‡+ J@0fe¸×´.@/ÊÀƒn@/¹»#?@.p‰ 'RU@.pì¹—"…@.p‰ 'RU@.s˃Úî@.p‰ 'RU@.s,„Ý?}@T˜ÁÎ¥?ço -W¤?‘@Ѹü?‹¬LdTËO?ùØGBx‡?Ýž¡¾{?}@T˜ÁÎ¥?’hjSƒ?‘‘Sù`ï?0×rà…“?é‚t]r?ÇgTפµÜÆ@0n5?|í‘@0‹J#9Àë@0ï²-@0($ x@0Œ~($ @0p°ò{²ÿ@0Œ~($ Á.„NÜC,¥@0Œ~($ Á.„NÜC,¥@8 -Näy?¨^S2{Ž¡?ºÃU¼í÷É?®½;Ñw~4@8Iç@8Ù@82rê?¡–}y¢‘?¸6kùÔ?°ìô¥MŠ#@8S@8û—@8L?«ë"{Ę?°Mêʸ?Á*Á½ÄvZ@8 Ø@8 Ø@@@?ð?ð?ðøøøøøøøøøøøø¹@®î-V@®î,‹C•@®î-V@®î..±Ä3@®î-V@®î.æ1ø¢@®î-V@®î-Oß;d@®î-V@®î+’:)Ç@®î-VÁ.„€@¨ÿ¸Qì@¨ÿ›¥ãT@¨ÿ¸Qì@¨ÿðŽ@¨ÿ¸Qì@¨ÿ€IS@¨ÿ¸Qì@¨ÿýŠÚº@¨ÿ¸Qì@¨ÿ¢œwš@¨ÿ¸QìÁ.„€@6‰Î_oÒ@6‰îËû¶@2«¥ãS÷Ï@2¬¾ß¤@@2PA‰7KÇ@2OŠ Þ@1£ÉîËû@1¤ŽŠqÞj@1£ÉîËû@1£œ¾ß¤@1£ÉîËûÁ.„NÜC,¥?}Ñ¿ž,??ÖCã ?’´ýBI{?Uÿyu”#?’o?P´À@8Ù?}Ñ¿ž,?’V"y$R?‘K54;­?øQñĨó?’öhšº–Ï@8û—?Œ¢yëjk±?lío>÷?ˆïhƒEõ§?Œ(æQ?ˆA0û)n@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøøº@¬ü‹Æ§ïž@¬ü‹Æ§ïŸ@¬ü‹Æ§ïž@¬üquŽ@¬ü‹Æ§ïž@¬üŒVÕÏ«@¬ü‹Æ§ïž@¬üqu@¬ü‹Æ§ïž@¬ü‹Æ§ïŸ@¬ü‹Æ§ïž@¬ü‹C,¦@¬†”ýó¶F@¬†–‡+ @¬†”ýó¶F@¬†˜l"h -@¬†”ýó¶F@¬†—éùs@¬†”ýó¶F@¬†˜l"h -@¬†”ýó¶F@¬†˜Ôýó·@¬†”ýó¶F@¬†™Û"Ðæ@4ºqÞi­C@4º^5?|î@0ë¥ãS÷Î@0êxl"h -@0H“t¼j@0G8}¿H@/QÑN;Í6@/OAò×t@/QÑN;Í6@/N!–R½=@/QÑN;Í6@/M\ú¬Ùé?}Ñ¿ž,? ¸×KG?’5 µ¿$„?ŒªèkÜ?‘¿ÐÅu?‘)]•\¬?}Ñ¿ž,?“«ö„@×®?’TÖ©E?£û,Ɇ?‘!U?Ð{Ò?‘õe\Š«p?‚q6tNø6?ŒïQ¼º“ã?ƒÆ×q„nð?ƒË´ÔC¶¼?‡v>ª¸ ?ˆCns¥ @@@@@$@*?ð?ð?ð?ð?ð?ð¾»Ã½?E6áI?+’_¹6w²?ë@6 -^5?|íÁ.„M‰ûçm@5ß²-VÁ.„QnÙ‡@5ò䎊rÁ.„NÜC,¥@5ò䎊rÁ.„NÜC,¥@5ò䎊rÁ.„NÜC,¥?›’qvš°•@8#˜@8¾:@8 >+@8Iç@8Ù?óA[ØïF@8Î÷@8i§@8Å@8S@8û—?Žd°3š>@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø¼@§œ.—Oß@§œ"Ðå`B@§œ.—Oß@§œ(e”¯O@§œ.—Oß@§œ€4mÆ@§œ.—Oß@§œ¦µ @§œ.—Oß@§œquŽ!@§œ.—Oß@§œÕϪÎ@¨%Õ%@¨%¥¡ÊÀƒ@¨%Õ%@¨%Á$Ý/@¨%Õ%@¨%ɺ^5?@¨%Õ%@¨%ÑÞi­C@¨%Õ%@¨%³Ãa@@¨%Õ%@¨%»/ìVÕ@8įO „M@8­æšÔ,<@4Iº^5?@4Ñ·Xâ@3©Û"Ðå`@3oÒòä@3!:’£S@3¾ß¤?æ@3!:’£S@3 àÞÒ‰@3!:’£S@3 ú¬Ùè>?´ Z è´ß?£-Ÿ56æ+?»˜èèay?ªE> Ì?¬ ‰M%?§ÙYlãp?¦NIÉ®š?¤³u¿9õ“?·Gž¿£ö?²8”k -7H?°¬ ô ô?ª.Wæ—“?«yWRÉqf?“&•Z÷˜#?—eI¥Ð6?“DάR²? ¦å_¹?¡è9)—N-@@@@@,@,?ð?ð?ð?ð?ð?ð¿`ã~•g?q­ýãÎ?I"¾{mþ¥?p"/Ñpë@§œ -ðð¤@¨%·W°O?cùz[á·?‘>›Ç4.?D–ÇÃ,?ç-§oÚ @ŸmÄÙ.Þ@½@¡¾Ù‡+@¡¾ÙXbN@¡¾Ù‡+@¡¾Ú^5?}@¡¾Ù‡+@¡¾Ù³Ð|…@¡¾Ù‡+@¡¾Ú¬1@¡¾Ù‡+@¡¾×Ûô‡ý@¡¾Ù‡+@¡¾Ø7´¢3@ªnKƧïž@ªnKƧïž@ªnKƧïž@ªnL1&é@ªnKƧïž@ªnKíúCþ@ªnKƧïž@ªnLcñA @ªnKƧïž@ªnL¥zxl@ªnKƧïž@ªnL˜_÷@2úqÞi­C@2ú~ùÛ"Ñ@-{"Ðå`A@-{W>«6z@,|¬1&ê@,|ÓZ…‡•@+Bu%F -§@+Bh Ô•@+Bu%F -§@+BÞÑ·@+Bu%F -§@+BÐå`AŠ?É_\p)Ï?ÉGãA­÷?‘"žæÆó¡?‹½XQê>æ?íOþtà?¼‚Ë¡K?ÐbMçê_x?’ ,øÕC©?~ËQ§?9ÍÇ~FÀ?Ó%y*£=?M\³Ù“@?€cPßQª?Œ°¶.Ä+Æ?‚yî8Á$?‚æÊ¬vã?†½ª»—?†–f_ÔŠŠ@@@@@*@(?ð?ð?ð?ð?ð?ð¿MM˜v²?I}˜?9n©QËÛv? ¢²z2q¼@¡¾ØáA2C@ªnL‡’S?Hsƒ³·8?B[M‘kN?P:î»L‚?)̬w ˆr@Ÿs ‡p@¾@ªÅɺ^5?@ªÆ[¥ãSø@ªÅɺ^5?@ªÅ‹¬q ³@ªÅɺ^5?@ªÅA½¥ž@ªÅɺ^5?@ªÅˆ1&éy@ªÅɺ^5?@ªÅÝæšÔ-@ªÅɺ^5?@ªÅÞÑ·@«‚ Iº^@«ÊÀƒo@«‚ Iº^@«XüPH@«‚ Iº^@«féxÔþ@«‚ Iº^@«;Í5¨X@«‚ Iº^@«Z^5?}@«‚ Iº^@«nóMj@9šÔ,<Ÿ@9ØK]Ìcñ@4E?|í‘h@4#¯·éù@3È“t¼j@3 Ë)^ž@2Ê0U2a|@2¤•*™1@2Ê0U2a|@2®ÿ—$t@2Ê0U2a|@2²×sü?ð°–Ž]?¬97êºþ?½$°¦×›?³U oiý?«oDŽ?®¿sY°(?ð°–Ž]?±Îæ.ð»?²P#G¤Ó—?Àý¾!=?µ•^o i¤?§yÂ~3Y?ð*wjs—?“¢ ßÌF2?¥1?⇦?œX^2If=?œ EÝ‘z6?¤²¢Òó?ð@@@@,@*?ð?ð?ð?ð?ð?ð?¡`1`?“µª›>@?‘ʹÄ\Îë?}ò«_ÃÑ@ªÅËщ)@«\W²?eаÒê?Š*n’ƒØR?õ¦›;XA?Âd«DÉð%@ŸuF¢º{@¿@£›~vÈ´9@£œ$Ý/Ÿ@£›~vÈ´9@£›PbMÒò@£›~vÈ´9@£›y³Ð|…@£›~vÈ´9@£›„tSŽó@£›~vÈ´9@£›r° Äœ@£›~vÈ´9@£›m‘hr¯@¥Ñó¶E¡Ë@¥ÑÉ7Kƨ@¥Ñó¶E¡Ë@¥Ò Ùè>B@¥Ñó¶E¡Ë@¥Ò\(õÃ@¥Ñó¶E¡Ë@¥Ò¶®}V@¥Ñó¶E¡Ë@¥ÑøÇâ‚A@¥Ñó¶E¡Ë@¥ÑÿåÉ@8Q|ÚQ@8 bMÒñª@4R Iº^5@4Rñ©ûçl@3;Ƨï²@34ã¼ÓZ†@2”mÅÖ8†@2’h Ô•@2”mÅÖ8†@2¼@2”mÅÖ8†@2’ëC,¦?æf¯Ìi„¸?©V½jnè¶?”âLñ¹D?”ÑD²Û?•Äí¥×?šæ5ƒ‹Å‹?ÅÇGË`O_?§S„ë`c?’€fç½Î?™MßïšNÆ?” E®!—?˜¿Df©v=?Õ ºúÔ©ù?¢r«X™÷?‚¯­Ù¤Á¶?’wÓ^2&Ú?‘¬xÆ×S?•*†*Zû@@@@@"@*?ð?ð?ð?ð?ð?ð¿…÷­[@¾áòM@?dúÖÓÈÚ?r¨›ÈwJn@£›wŸåHæ@¥ÑýAgQ$?rÛ²>*.­?€³ŠWdÅ?ÐYEÝn/?é5<Éqx%@ŸsKú¤V{@À@«Š(õÂ\@«Š(H¾µ³@«Š(õÂ\@«Š)Ý 4$@«Š(õÂ\@«Š+›Ž‘•@«Š(õÂ\@«Š*^>åp@«Š(õÂ\@«Š)O^Ux@«Š(õÂ\@«Š(ùBúH@š_;dZ@š_;dZ@š_;dZ@šaêù½s@š_;dZ@šaSÚ*P@š_;dZ@šb;@š_;dZ@š`êøu@š_;dZ@šc)fÔ@3«µsê´@3« ¢t#*@0?|í‘h@0ÓÈ™-å@/ÊÀƒn@/€Ç:¼”p@.³üPH@.±×Ûô‡ý@.³üPH@.±~5@.³üPH@.±lðîcŒ?~Ov_Ø­«?ÐzÀ ?‘/S}]û?‹ÇZk÷8?‘dƒ25Û?Êû«?|¬h2:“?’ óž;a?ƒ+GÍ·?Z3—Ñ^:@«Š)×»ÿ@š`Ðïå?L’ž£TÀ?8ñš¨Á?¥ti–´^?€Í|pòÞ@ŸgÏ„ÂÏ@Á@£ Ƨïž@£¤¨ÁU@£ Ƨïž@£FÜ]cˆ@£ Ƨïž@£”¢3œ@£ Ƨïž@£ q ²—@£ Ƨïž@£ÞùÛ"Ñ@£ ƧïžÁ.„€@wÎÙ‡@ƒn—@wÎÙ‡@¿|í‘h@wÎÙ‡@‰…ðoi@wÎÙ‡@œý33333@wÎÙ‡@œþŸ¤?åÊ@wÎÙ‡Á.„€@3£g ù l@3“˜µ--š@0B° Ä›¦@/Ë]ÌcñA@/dZ¬@.[šu%@.žžš@-hr° Äœ@.žžš@- ƒn—Ž@.žžšÁ.„NÜC,¥?|çµB &€?ÐÏbl$‡I?¾TìÄË[?ªE> Ì?Ù Øq—×&@8Ù?}@T˜ÁÎ¥?Ø£áú?¤´ë'‰O?²20&† ?ÙôqéJö@8û—?ŠÐQØÚ3Ö?¥C‡y¿^?‘MM….äí?œq*ƒÒ?ªÃ4|ñ;@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøøÂ@¨PùXbN@¨Pù™™™š@¨PùXbN@¨Q L˜_@¨PùXbN@¨Q Òñ©ü@¨PùXbN@¨Q?U›=@¨PùXbN@¨Q%œàu@¨PùXbN@¨QÅm\û@ -8Që…@ -9õY³Ð@ -8Që…@ -BÃÉîÌ@ -8Që…@ ý¿HË@ -8Që…@ -@ -8Që…@ -ƒä%°@ -8Që…@ -&ÏAò@5°4mÅÖ8@5­äËXê@1¸r° Äœ@1­¿HË’@1$¼j~ùÛ@1Â\(ö@0ëxFÜ^@0Í\ú¬Ùè@0ëxFÜ^@0Ñ$Ý/@0ëxFÜ^@0Ò‚@·€5?ŽÕQp Î?¢{V ‰]?¦zNaË Ð?´Ød¯]QÍ?²…Ð$þ"?±ùÐ % -?|çµB &€?›–ë•ñ^?¡î-™5×U?©| 5r4?§þwÏÇÏ??¬;•{cÉâ?ƒNeý¡|?•¾Ä6Ü?¡]mZRØ?–Ô¿»X¨?ÉJ6Л?§^ÐÜ_žr@@@@@,@,?ð?ð?ð?ð?ð?ð?†-Œa>€¿p ç•Ô?qJ{ü{†B?bmmd*@¨Q!B~ @ -1p,µ|?„ ²Ó•?v¦æ¶]t?òÖpøëwe?å D­§@Ÿ^ãÿs@Ã@£ÝZŸ¾vÉ@£ÝHõÂ\@£ÝZŸ¾vÉ@£Ýe¡ÊÀƒ@£ÝZŸ¾vÉ@£ÝX7´¢5@£ÝZŸ¾vÉ@£ÝZÇË(@£ÝZŸ¾vÉ@£ÝQœàu÷@£ÝZŸ¾vÉ@£ÝYrGE9@¡ýô¼j~ú@¡ýëÆ§ïž@¡ýô¼j~ú@¡ýò-V@¡ýô¼j~ú@¡ýâÐå`B@¡ýô¼j~ú@¡ýìcñA @¡ýô¼j~ú@¡ýíÒñ©ü@¡ýô¼j~ú@¡ýø“t¼j@9 ]cˆe•@9,žì¿±\@4f‡+ J@4_v_Ø­¬@3ù7KƧð@3àù k¹Œ@2æYJôðØ@2ܬ1&ê@2æYJôðØ@2Ýw1Å@2æYJôðØ@2ÝÌcñA!?°:-%šÀ?šÏD²öå ?¢{Xn |?nii)â?‘ÏX¼ãs~?˜Ê`1ó€`?±Á1È$å@¡a«n;¡È@¤ù¨ŠÛØÂ?R–2Œ¢K0?XàA6:•4?±SJDÎ?¹ `œG+L@Ÿgæ·Cmˆ@Å@«>B Iº^@«>D›¥ãU@«>B Iº^@«>A½¥@«>B Iº^@«>Aaä÷f@«>B Iº^@«>>BZîd@«>B Iº^@«><àuöý@«>B Iº^@«>=¿HÌ@£, Iº^@£+üj~ùÛ@£, Iº^@£,n—@£, Iº^@£,÷eý‹@£, Iº^@£,'RTa@£, Iº^@£,-à @£, Iº^@£,Š @7õS&Á¾@7ò×sü@3R Iº^5@3Qø -à@2ö§ï²-@2øXy=Ù€@1úÔ,<ží@1úÔ,<ží@1úÔ,<ží@1ùŒ~($ @1úÔ,<ží@1ù=Ùb·?îŠõ ?’Mj…•Ì‘?•]˜P?Ég(6ßð?’»–j˜ú?’Ýå"çX?}Ñ¿ž,?’“ºƒ;Nû?“÷Š>õª?‘aYZ†«q?”¤¦ð¹e?‘]Ë™$ë>? ¹aÕm ?ŽOv_Ø­«?‡»¢Øˆ‹?„†YÊ’È?ˆÔÞÑ—æJ?ˆ‹”âó@@@@@,@(?ð?ð?ð?ð?ð?ð¿Tu!ˆ¤?TþÝ×z?Bã¸1–71?ú ›å‰@«>>æo¬9@£,AÆ6?\Nvpß´?Cîàl9¼BZî@œÞ³3333@œÞ®}Vlô@œÞ³3333@œÞ³œ¾à@œÞ³3333@œÞÏAò×@œÞ³3333@œÞÚÔ,<ž@7 xFÜ@7ú]|@33S÷ÎÙ@37ÎÙ‡+@2Z~ùÛ"Ñ@2]‘hr°!@1Þ«6z‘@1ã÷ÎÙˆ@1Þ«6z‘@1èõÂ\)@1Þ«6z‘@1åL˜_÷?‡‡á´WÉ?¥nÇx?)?’>¯\¾¦?Žl¢¦µ¥?’¥.Kn Í?–yí+PYu?‡ D¥…ô?’LÁŒÀ´a?’¤šÜI«?ni"Í š?•¯ÃþƒR?—é aÀ‹å?ÚžQâa?Žâç.¡È?‘7#Œ!xv?Ž0 ½~ÿ?Š|)-}í(?„å;m7.@@@@@*@(?ð?ð?ð?ð?ð?ð¿eÎ8Q6?f Ý - ?2¿ü„‡Š?[*˜úTq@ªçŽ5§_@œÞÁDI¯?Q¶¢eTë?z±…§ -Ó?£¸â¦’ ?ó‡¢eb·@@ŸhŽ^dJÂ@Ç@§æ° Ä›¦@§æ¤Z¬@§æ° Ä›¦@§æ±N;Í6@§æ° Ä›¦@§æ°¾ í*@§æ° Ä›¦@§æ°|„µÝ@§æ° Ä›¦@§æ¯hÛŒ@§æ° Ä›¦@§æ¯\(õÃ@§KŠ=p£×@§KKC•@§KŠ=p£×@§K‹ŸU›<@§KŠ=p£×@§KŠW§†Â@§KŠ=p£×@§KŠÀƒp@§KŠ=p£×@§K‹6z‘@§KŠ=p£×@§K‹]Ìcò@7wâ‚@·€@7.ߤ?åÉ@1!hr° Ä@1 uöý!ÿ@0Ÿ²-V@0¡&éxÔþ@/ÑÑN;Í6@/Òn—Oß@/ÑÑN;Í6@/Òn—Oà@/ÑÑN;Í6@/Ò¼£o?¯ò5}'Î?Čۨ1A?‘\H{gX ?‹¬àÌ’Ç?‘'¬Å™» ?‘<ƒÜ_õ?¯ò5}'Î?’r/BÖ?‘c–…•#$?6) }’ë?‘Jâ”âj?¦QÎð\ã?–½™C)?†¡HŸÊç?ˆdÁ --?‚ù8 ±^?‡<û¡71?‡ã ËÄž@@@@@,@,?ð?ð?ð?ð?ð?ð?0ºsæ¸?r´g“á@?R&¥úPåp?tçQTb¹Ç@§æ¯¥ë @§Kˆš8iù?cUWé~??†÷n­h–?Â+‘ ð>æ@S—Ç8X@ŸqJ›’j³@È@¯aG®{@¯a‰7KÇ@¯aG®{@¯aÊÀƒ@¯aG®{@¯bZîc @¯aG®{@¯b‚@·€@¯aG®{@¯`4mÅÖ@¯aG®{@¯`4mÅÖ@©å™™™™š@©å™Û"Ðå@©å™™™™š@©å™õY³Ð@©å™™™™š@©åškP°ò@©å™™™™š@©åšŸ¾vÉ@©å™™™™š@©åšu%F@©å™™™™š@©åš¬1@/KíúCþ\@/KíúCþ\@(a‰7Kƨ@(a|ÚQ@(¿;dZ¬@(¿;dZ¬@'#¼ÓZ…ˆ@'#¼ÓZ…ˆ@'#¼ÓZ…ˆ@'#¼ÓZ…ˆ@'#¼ÓZ…ˆ@'#¼ÓZ…ˆ?É_\p)Ï?Čۨ1A?‘!!Ø×‹7?‹ª½¨ª8v?ëÎ@ A2?ºª$Ð?ÐbV‡,?’˜‰%F²?„¦Ô•]I?-õI¸`K?Ó%y*£=?L "¾?€b¡´ñ@?Œ¬Çëý ?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†ˆ#.÷@@@@@,@,?ð?ð?ð?ð?ð?ð¿QAÁâ¿-Þ úx?6/³q ?OÓ+7 @¯a#¨˜@©åšG¶+?EUt_”îº?,±îDÔØ?†_n’?RÐHH<@ŸsÃÁñ“@É@£ ¥ãS÷Ï@£ |í‘h@£ ¥ãS÷ÏÁ.„€@£ ¥ãS÷ÏÁ.„€@£ ¥ãS÷ÏÁ.„€@£ ¥ãS÷ÏÁ.„€@£ ¥ãS÷ÏÁ.„€@ º^5?}@ × -=p¤@ º^5?}Á.„€@ º^5?}Á.„€@ º^5?}Á.„€@ º^5?}Á.„€@ º^5?}Á.„€@6wâ‚@·€@6fý!ÿ.I@2{ Iº^Á.„M‰ûçm@1Ͳ-VÁ.„QnÙ‡@1®_oÒ Á.„NÜC,¥@1®_oÒ Á.„NÜC,¥@1®_oÒ Á.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøøÊ@ ´œ(õÂ@ ´œL’o”@ ´œ(õÂ@ ´¢ê‰Åâ@ ´œ(õÂ@ ´©×>@ ´œ(õÂ@ ´£ÁÍ7@ ´œ(õÂ@ ´¤,Få@ ´œ(õÂ@ ´¢æâ8ù@¡AÀ@¡A½²-V@¡AÀ@¡A¾9Ïl@¡AÀ@¡Aµžœ~@¡AÀ@¡A¹ÚmpÒ@¡AÀ@¡Aµ”.Ü@¡AÀ@¡A¼Ô¹v@6è†YJôñ@6ïÊÓ¤°ó@2…?|í‘h@2ˆU2a|@2"-V@2*ì¸mÕ@1p–»˜Çã@1v<é&C@1p–»˜Çã@1vµ0­°@1p–»˜Çã@1wT‡x§?…ðE[i)?¤ûHˆ?”mX!—î%?ìÌ$8ëå?“Œ(ša?“[é˜Áo?|¬h2:“?’¬ÄþõŒƒ?“eÆŸ¡ì?‘X«*_?“™EÈeØ_?“Eï®ÖÂ?‡~P[—]?Ö(‚¬›í?Ø{Ñ—5?‡ºs´6ô?Šw‹/Éxv?Š¢“öÎ×@@&@&@&@4@2?ð?ð?ð?ð?ð?ð?[ϦÔÀ¿NØ]ÇH?BÛ±=î?G_iºøñ@ ´ » €Þ@¡A»Y~D?a—k/™?hYš§à¡K?Å9ž~f?ØàF2¡è@Ÿg»&8£t@Ë@¤Ñ&ffff@¤Ñ&éxÔþ@¤Ñ&ffff@¤Ñ!ÊÀƒ@¤Ñ&ffff@¤Ñ* Þ@¤Ñ&ffff@¤Ñ'ÈK]Ì@¤Ñ&ffff@¤Ñ'»/ìW@¤Ñ&ffff@¤Ñ#þ\‘Ð@© :^5?}@© ;çl‹D@© :^5?}@© 2° Äœ@© :^5?}@© 5sê³g@© :^5?}@© ;À6ã@© :^5?}@© 4¯O „@© :^5?}@© 4ã¼Ó[@6‡>«6z@6‡>«6z@3@ Ä›¥ã@3=ÅÖ8†Y@3 "Ðå`B@3fffff@2\ÚQÎ@2ZQÎ`@2\ÚQÎ@2YJôðØE@2\ÚQÎ@2XË’:*?€‚ñêã ?éDEâ©Ö?™ïfô?‹ÁË…ÉT?”?õ±oW?“ d?Œs¤DÅÐ?“eB^¤t?š }Õ>_?agÌf ?”GO˺Ÿû?“.½þ¹Š?—eI¥Ð5?ŒÐ¤Âÿê?‘bR?ˆã1µR?‹Ûx§Þ?‰ö±«tï@@@@@,@(?ð?ð?ð?ð?ð?ð¿*‰²R ¿XÛ7t?8üè2ÔÀ?F9\cÑ@¤Ñ&¦%?š@© 9—>®?YÓ:´\¦³?e€):?¹ñ…À4†>?È‘ÐRTt@ŸiJwÆ?S@Ì@ŸÙ¦éxÔþ@ŸÙ£ØVvL@ŸÙ¦éxÔþÁ.„€@ŸÙ¦éxÔþÁ.„€@ŸÙ¦éxÔþÁ.„€@ŸÙ¦éxÔþÁ.„€@ŸÙ¦éxÔþÁ.„€@§X˜“t¼j@§X˜“t¼j@§X˜“t¼jÁ.„€@§X˜“t¼jÁ.„€@§X˜“t¼jÁ.„€@§X˜“t¼jÁ.„€@§X˜“t¼jÁ.„€@6zqÞi­C@6{(ò}qv@2{ Iº^Á.„M‰ûçm@1€å`A‰7Á.„QnÙ‡@1TmÅÖ8†Á.„NÜC,¥@1TmÅÖ8†Á.„NÜC,¥@1TmÅÖ8†Á.„NÜC,¥?|¬Æ Væ@8#˜@8¾:@8 >+@8Iç@8Ù?‚n—Oß<@8Î÷@8i§@8Å@8S@8û—?„&z7 @8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÍ@¡AÊÀƒo@¡AÊÀƒp@¡AÊÀƒo@¡AË0#Y@¡AÊÀƒo@¡AˆÉb@¡AÊÀƒo@¡AÊí^Åš@¡AÊÀƒo@¡AËZéô@¡AÊÀƒo@¡AÊÏÏ/@˜ÊŽV“@˜ÊŽV“@˜ÊŽV“@˜Ê؆8@˜ÊŽV“@˜ÊNGcX@˜ÊŽV“@˜ÊŽæ¥­@˜ÊŽV“@˜Ê‹liQ@˜ÊŽV“@˜ÊŒ–5R@1T xFÜ@1T!-w2@,æ§ï²-@,æ¯åAçÖ@,DZ¬1@,E:wˆÿ)@+̲•éá±@+ÏÅ`X­@+̲•éá±@+ÊN–Êï“@+̲•éá±@+Ê¥Û­‹?É^ÈmÔ d?Ôä'µ‡?‘7%Y´£?‹ùùã0of?‘í‡6Q?Æi·¼?ÐbMÝn½?’ X¬ä7?|™~o¬?¼´ÔC¥©? -ÐÎË—½@ŸsÔÔ6›@Î@ bMÒò@ Ë+ô@ bMÒò@ kÅ4@ bMÒò@ Jîé@ bMÒò@ Ä2ÊY@ bMÒò@  Åy¨'@ bMÒò@  €åÛ‡@¤Á'ï²-@¤Á'ï²,@¤Á'ï²-@¤Á(§ËÊ•@¤Á'ï²-@¤Á( Ô•@¤Á'ï²-@¤Á(; €@¤Á'ï²-@¤Á(IÒ"3@¤Á'ï²-@¤Á'Û±l@5m¥œàv@5mvä ×ø@0µãS÷ÎÙ@0µƒ¥;ŽL@0A‰7KÇ@0È6g¸?@.Âu%F -§@.Á]2XÕ@.Âu%F -§@.ÀIQ‚ª@.Âu%F -§@.ÀQ-lºÊ?}x—™ÿ›þ€?<'êˆ_Ì? -V–±¯ @ g!Û÷@¤Á(m&?\Ú€Ö§ì?*ß ‰Q&^?Å„³Ðïþ?aaÔúÁ…¢@Ÿga»5m.@Ï@¡ú!ÊÀƒ@¡ú#n—@¡ú!ÊÀƒ@¡ú"\(ö@¡ú!ÊÀƒ@¡ú"©“ á@¡ú!ÊÀƒ@¡ú"MÒñ©@¡ú!ÊÀƒ@¡ú"Zîc @¡ú!ÊÀƒ@¡ú!aä÷f@«™s¶E¡Ë@«™s3333@«™s¶E¡Ë@«™w$tS@«™s¶E¡Ë@«™tFsØ@«™s¶E¡Ë@«™wKƧð@«™s¶E¡Ë@«™t9Xb@«™s¶E¡Ë@«™sÝ—ö*@5¿–»˜È@5¿U›=È@2B° Ä›¦@2B&€IQ@1Z~ùÛ"Ñ@1Z¬1'@0𖻘Çã@0ïò䎊r@0𖻘Çã@0ð6âë@0𖻘Çã@0ð‰ 'RT?|öOÿÝ?/³)sšÌ?’#ç}iïë?F‘q/b?‘'¬Å™» ?’_‘Oo¨Ž?€‚ñêã ?’u¦ieõ–?‘å†36åG?‘Nw]6»ô?øóéM Ÿ?ú`@0k?‡»¢Øˆ‹?R©i»èi?ƒ~¨õ/¥O?ƒÛ®«etZ?†¼Š˜L¥÷?‰®ââP\@@@@@$@*?ð?ð?ð?ð?ð?ð¿2T—,P?4, B`?(,/#´¢?<7Ȥçù@¡ú"vÁ -@«™t,9Ýû?0*…yŒ±ƒ?\£›»ûg?iÝCt`?®„ðÿhŠ@Ÿg/À<Á¡@Ð@ œ7ÎÙ‡Á.„€@ œ7ÎÙ‡Á.„€@ œ7ÎÙ‡Á.„€@ œ7ÎÙ‡Á.„€@ œ7ÎÙ‡Á.„€@ œ7ÎÙ‡Á.„€@vD›¥ãTÁ.„€@vD›¥ãTÁ.„€@vD›¥ãTÁ.„€@vD›¥ãTÁ.„€@vD›¥ãTÁ.„€@vD›¥ãTÁ.„€@8Žì¿±[XÁ.„>¤µÜÆ@4ÇÎÙ‡+Á.„M‰ûçm@4;Ƨï²Á.„QnÙ‡@3ëxFÜ^Á.„NÜC,¥@3ëxFÜ^Á.„NÜC,¥@3ëxFÜ^Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÑ@ª ž¸Që…@ª ©ûçlŒ@ª ž¸Që…@ª ”¢3œ@ª ž¸Që…@ª ¡G®{@ª ž¸Që…@ª ˜Ôýó¶@ª ž¸Që…@ª ’° Ä@ª ž¸Që…@ª ŽcŠ @ªâ¸Qì@ªâß;dZ@ªâ¸Qì@ªâs×Û@ªâ¸Qì@ªâ‡“Ý—@ªâ¸Qì@ªáüj~ùÛ@ªâ¸Qì@ªâ®æ1ú@ªâ¸Qì@ªây¦µ -@8Y*0U2b@8V¡aä÷f@3T›¥ãSø@3WéùrG@2ä¼j~ùÛ@2æµ '¼@1î_oÒ @1ò¼£n@1î_oÒ @1îóMj@1î_oÒ @1ï!-w1?Ÿ‹‘+-/Ü?“ÓLáS{?’d3ð"7?ŽõÕJ?–lô!-w?—Q,Äš¤?•²»UbB2?˜ଚÿw?’ÖsÄÖ?ð{¥âdû?“4¦{ºÕ?‘êey°úà? zkê 3U?Cx}¹x%?’Z†Ažj?‡v¯ªIì?^^ω•?˜§zy@@@@@*@(?ð?ð?ð?ð?ð?ð¿vH‡´·¿Tyʲ?@£ØòN;?e¼åápR0@ª —ªáò@ªâO 0n?W%ôgiÍ?‚<™¸lMJ?£@,;ˆí,?þdoÑn -@Ÿm£L…*ƒ@Ò@ž¿(õÂ\@ž¿`Ä›¥ã@ž¿(õÂ\@ž¿`¹iÂd@ž¿(õÂ\@ž¿Y¸Šñû@ž¿(õÂ\@ž¿X!TÇ@ž¿(õÂ\@ž¿U O{Q@ž¿(õÂ\@ž¿ˆ¤Ü¿@¢x3¶E¡Ë@¢x ~f›@¢x3¶E¡Ë@¢wžqˆðˆ@¢x3¶E¡Ë@¢xQ6ˆ`v@¢x3¶E¡Ë@¢xUëÐæ€@¢x3¶E¡Ë@¢x[¥ƒ Ð@¢x3¶E¡Ë@¢xq;À@8” xFÜ@8Š?•»ø@3ahr° Ä@3Wî±n·È@2Ãt¼j~ú@2½<0a!(@2O „M@2‘ݪýÐ@2O „M@2-$Y†f@2O „M@2„… B?¨'Yb! ?ª.œ!…~?¡ÉšwP½J?™µ·Ú:þ™?™ËØQ[?¨ø¦¢s?›Q®úL§?¦ ½ ¸%? ‰/ŠS,?¡ƒðâF?—VH¥]?¥Ø]ˆU û?‚…«Ç?’…Y£c;`?¡¶  öˆ¥?‘&°„¼?—ø6_x?’ßfÂ&@@@@ @(@3?ð?ð?ð?ð?ð?ð?XØ ?”e¹ÉõÀ?o´ëAŠ´£?h½)ç°@ž¿\Z8õš@¢xKnãB@1Š0U2a|@1!Ä2ÊW¨?|öOÿÝ?ÐA¿SU–?Î'è{ž÷~?Ò’ÞkúÅ€?Ð3kseý?Ö_…¶¹ÿJ?}Ñ¿ž,?Á¡ã%®L?ÇfTEkúÍ?ÍJÔ‰Àå?ÍR¿‘j ?Í ­Þ…;¦?‚‹¡8*ùÿ?§L²Ÿþ—É?š&½-\aÛ?¦êÉŠYÏ?¦GaªmÀ?À0xÓhŸÖ@@@@@*@,?ð?ð?ð?ð?ð?𿯠ˆô–@?§¾hÝ`?“ÊI¡Y8?†2ÑŸGª@¯ãÖí3U@«JI -c?‰ ÷³…Úç?~|xræ@?÷úÊÕ;"V?éí!0{Ä2@ŸX.äŽ&Ž@Õ@¨XÊ=p£×@¨XÊ=p£×@¨XÊ=p£×@¨XËC•@¨XÊ=p£×@¨XÊÀƒn@¨XÊ=p£×@¨XËP°ò}@¨XÊ=p£×@¨XÉã½@¨XÊ=p£×@¨XÈõÂ\@­•˜“t¼j@­•˜“t¼j@­•˜“t¼j@­•˜“t¼j@­•˜“t¼j@­•˜üPH@­•˜“t¼j@­•™#¢œx@­•˜“t¼j@­•™ k¹Œ@­•˜“t¼j@­•™ k¹Œ@0cg ù l@0cg ù l@*{"Ðå`A@*{µsê³@*òn—Oß@*ò•éá°Š@)ÿåÉä@)ÿåÉä@)ÿåÉä@)ÿåÉã@)ÿåÉä@)ÿØ­«ŸW?É^žQ5P‚?¾¢`ƒ?‘šÕU#?‹µ™eU!µ?êtÿKÑc?²õ/]?ÐbMçê_x?’Ï>`Ï?¹º–Èj?;ß $Þû?Ó%y*£=?M\³Ù“@?€bMÕky?Œ¬8 T£?‚uÞ@>N ?‚äÍ“½E'?†’Õaì+’?†‰Oú|q@@@@@*@&?ð?ð?ð?ð?ð?ð¿Qk6½Z¿Hú¥ ?3À4? $>ømU–Õ:@@¨XÉô1q@­•™q…?BþØÌIkÈ?!t¬À?¼ý~“”?i‹áä§@Ÿs -Såc@Ö@® µÂ\)@® ³â·G@® µÂ\)@® ³8ÌÕ§@® µÂ\)@® ¬Ý(r@® µÂ\)@® ± wf@® µÂ\)@® ´YKuj@® µÂ\)@® ¯pB,Â@— m‘hr°@— oÛ`7@— m‘hr°@— jJ-N@— m‘hr°@— aÓ®:@— m‘hr°@— näs¹6@— m‘hr°@— geu @— m‘hr°@— gk݆@6Ù*0U2b@6Ö`:è n@40Ä›¥ãT@434k£@3´“t¼j@3¸¾&Hõh@3?ò䎊r@3CÕ[X„À@3?ò䎊r@3B–7eÿ@3?ò䎊r@3B!{T?‚Ú¡ËG7Õà=›?”d~»™?~‹ý‰þk??”§'$SÛ?•ÕÕxð‘?’ÈI3º»$?’ïË_<4ý?”Y:ƒ°©Ù?ט¸5?I&†?³Vk%e/?…Jð9‚A´?‹ñŸÏeà\?ŒRê±êЇ@@,@(@*@6@9?ð?ð?ð?ð?ð?ð¿AØù ø¿K\ïîÖ?>ÅRUw€U?0Z–Ïk@® ²ª‚$Š@— lbϧx?^–©®øfÜ?P«¤áMÁQ?ÁÊp½ ?¥ÖmÜ{kš@Ÿg ãMóû@×@¢I6E¡ÊÁ@¢I6È´9X@¢I6E¡ÊÁ@¢I:QÎ@¢I6E¡ÊÁ@¢I8y=Ù@¢I6E¡ÊÁ@¢I9‡+@¢I6E¡ÊÁ@¢I0©*1@¢I6E¡ÊÁ@¢I3g ù @¡„äZ¬@¡„äZ¬@¡„äZ¬@¡„ÜPHð@¡„äZ¬@¡„çE8ï5@¡„äZ¬@¡„åzxl#@¡„äZ¬@¡„å¼£n@¡„äZ¬@¡„æYJôò@3” xFÜ@3”!-w2@0Yº^5?|@0Vlô!.@/¿;dZ¬@/©á°‰ (@.ÑÑN;Í6@.ÅÉã½@.ÑÑN;Í6@.ÃÉîËû@.ÑÑN;Í6@.Æ -¦L/„?|¬Çëý ?‘‹PƧ¢$?’´ýBI{?Œ¸ðËb?–Õ“z‰öì?”K¬Ò&?|¬Çëý ?•¤-'Ä,?ÏtP°*?˜ò¶Ðú?—?—³’sB?–Ï9xä]e?‚n—8‹8?Å{¿Ž<º?†ž5ðqë?…p=¤J‰?‡<û¡71?Œx[‡:©@@@@@,@,?ð?ð?ð?ð?ð?ð¿C8¼D?9¿Æð?Iœ&é ó>øüM°uõk@¢I5õm¿H@¡„åì+?h Ï5¡É¯?‘Žºûˆ'?ÛST)Jh?6l¼{5°ø@Ÿe&_×£þ@Ø@®;?¯ßÁx}²?•ða˜,F?š?G'ôÜ?|ënÓ¿Ü? "ƒrÅÇ?¤€3¼¾BÁ@@@@@$@*?ð?ð?ð?ð?ð?ð?ZåÈOx¿Sà Œ?S‚¾¾¥'?EñÞa¦@®@0®_oÒ @0¯Ÿ¾vÉ@0®_oÒ @0®vÈ´9X@0®_oÒ @0®\‘ÑN¤µÜÆ@3µãS÷ÎÙÁ.„M‰ûçm@2nùÛ"ÐæÁ.„QnÙ‡@1³&Á½¥Á.„NÜC,¥@1³&Á½¥Á.„NÜC,¥@1³&Á½¥Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÛ@£Ó)xÔýôÁ.„€@£Ó)xÔýô@£Ö¿JpS+@£Ó)xÔýô@£ÖÏñ<@£Ó)xÔýô@£Ö¹ƒŽ6@£Ó)xÔýô@£Ö¶Ÿ.¨@£Ó)xÔýô@£ÖºIG§Ý@˜÷¤Ý/ Á.„€@˜÷¤Ý/ @˜÷7´ë‹Ý@˜÷¤Ý/ @˜÷<ô:@˜÷¤Ý/ @˜÷5¬E©@˜÷¤Ý/ @˜÷uJåpà@˜÷¤Ý/ @˜÷vg^±@7 ØDЩÁ.„>¤µÜÆ@2c÷ÎÙ‡@+ô7¬†@2'KƧïž@+¾‚%@1ò䎊r@*q»©Õò@1ò䎊r@*|<òSt @1ò䎊r@*yy®Oͽ@8J¨?’k’ç¢?“nèÙìØ?“ñ3,.?˜tKÄÎhú?—´·ò•@8J¨?”ÉV±‘C'?”ž¨®¶?•.b𦄯?•‰¸T/Ú?‘êÎe²k°@8p÷?‘÷3ìQøì?„ñ=œŒ?‡Ý…Xøwt?Š¡ûIrÊV?Фz{‚@$@$@$@;@8?ð?ð?ð?ð?ðøøøøøøøøøøøøÜ@«?‚‘´…=Ca?Å{¿Ž<º?•ýÿLîO?™/#ÕË®r?¢2ðø:Uù?›ßóÝYM@@@@@,@$?ð?ð?ð?ð?ð?ð>Ùa£¸?{ -Wª?]O½©£é?V€ßßÚø @«ë×?t»ºÃO—Ù?ú­Ä¼:P`?å"Qù~†î@Ÿcâh×Ó@Ý@¥^NÙ‡+@¥^NÙ‡+@¥^NÙ‡+@¥^QÝL×@¥^NÙ‡+@¥^O•~Š}@¥^NÙ‡+@¥^QÎ'} @¥^NÙ‡+@¥^[6‰@¥^NÙ‡+@¥^S‚ªðk@›7‰7Kƨ@›7‰7Kƨ@›7‰7Kƨ@›7{?n@›7‰7Kƨ@›7|Êñ@›7‰7Kƨ@›7uÑO8F@›7‰7Kƨ@›7k%S1–@›7‰7Kƨ@›7j¬]ç@1ÉÎ_oÒ@1ÉÑN;Í6@0 í‘hr°@0Q¢nó¶@/?;dZ¬@/3ºpÅà1@.b¶®~@.òKÑÄ7@.b¶®~@. 3Ô?9G@.b¶®~@. ËäxD‚?É^ž6õP?(©bÊŸ$?‘w´¾QZ?‹Á¨”È7Œ?“¥?{úO?‘K’˜ bT?ÐbMÝn½?’&Y-ƒ(¿?ùÉþÀó¹?6 ºBY?”‹¹ w_†?™Í™§ãe?€cÇ>º)¨?3K_n Û?ƒ#FßÔú?‚ýv>é÷?‡ØðÎÙP?†ä~¶@ê.@@&@"@ @6@5?ð?ð?ð?ð?ð?ð?V«ÐGí¿fûOFü?e5Ù: ?GòûP +]@¥^T‹{¸@›7oÇ[j-?tÒ¢cžZ€?UÉ'ó{û?ãQ´9†ã?œÌóÍ“æ@Ÿr)Uò)@Þ@­|gï²-@­|h´9X@­|gï²-@­|hè§æ@­|gï²-@­|iã½@­|gï²-@­|hË’:@­|gï²-@­|g“Ý—ö@­|gï²-@­|g®zá@¬$Ý@¬“v@¬$Ý@¬ðØDÏ@¬$Ý@¬8†YK@¬$Ý@¬ýó¶E@¬$Ý@¬L˜_@¬$Ý@¬2a|@4í¥œàv@4íjOw@0³S÷ÎÙ@0³¶E¡ÊÀ@0"-V@0"©“ àÞ@.ÿåÉä@/-w1Å@.ÿåÉä@/@N¤©@.ÿåÉä@/ZîcŠ?1·†Æjñ?W[†?‘jh¨qã9?Œ:Z2‚b?‘Dj?ÍàÊaùX?}Ñ¿ž,?’š'†­`í?·t¤¢‚J?@§[*^?‘ ·èf?ŒÙ¶êm¥?‚yî8Á#?ŒÐ¤Âÿê?‚ÂÌ]æ?ƒ¦$H?†¼Š˜L¥÷?‡”_Õ­çW@@@@@&@(?ð?ð?ð?ð?ð?ð¿+ò”À¿)‹f=€?ï´“„?×x{Ÿ¼À@­|hC0ß}@¬Š@¤?1 BöÛ.?2Ge -È$?m›jû)K?p°qRs@ŸgV/ p@ß@¡Å¡ÊÀƒÁ.„€@¡Å¡ÊÀƒ@¡·KƧð@¡Å¡ÊÀƒ@¡µ$Ü@¡Å¡ÊÀƒ@¡Ý}¿H€@¡Å¡ÊÀƒ@¡ùÀëíú@¡Å¡ÊÀƒ@¡Ø_ö”@«š›¥ãSøÁ.„€@«š›¥ãSø@«šŽÙ‡+@«š›¥ãSø@«šê¦L/ƒ@«š›¥ãSø@«š¼ú¬Ùé@«š›¥ãSø@«›QÎ^@«š›¥ãSø@«šúû~‘@9Âò䎊Á.„>¤µÜÆ@6 Ä›¥ã@6’£S&@6'KƧïž@6hy=Ùc@5œÚQÎ@5‚GE8ï5@5œÚQÎ@5lÆ?@5œÚQÎ@5lL˜_@8J¨?¡lôÅø²?ºAú¼ë|?¶(¾Þžs˜?¹¸öb&?ºÒ“÷a¼@8J¨?ªòR¾ŽÜ†?°¥u:Â?ªšêPo?½hŽÁáA?ш—oÙ­@8p÷?ÏÑò©Â­?⃰UjÎ?¸ Vú|LÐ?©\á¥T·?°r™›´@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøà@ zéxÔýôÁ.„€@ zéxÔýô@ {M$ @ zéxÔýô@ {ˆjá'@ zéxÔýô@ { ñÀFÔ@ zéxÔýô@ zói›7„@ zéxÔýô@ zìiˆ‰q@¤©xÔýôÁ.„€@¤©xÔýô@¤Ô‚ØOm@¤©xÔýô@¤‡YËz @¤©xÔýô@¤2v™Ï@¤©xÔýô@¤%2G#ö@¤©xÔýô@¤ -O}|]@9£g ù lÁ.„>¤µÜÆ@4ahr° Ä@4 ÇÄÒÅ@3;Ƨï²@3$’Á¥@2J0U2a|@2+%‹@ó@2J0U2a|@2— -n@2J0U2a|@2 `¢.¼í@8J¨?Ÿ ºQ"ð0?˜.Ä%±ý?”¹Ë‹õUO?›?Kf£/?£€ ôÑ£@8J¨?£ÁÀõÀÓ¯?™O“‚bN?’ -/É -¬ë?µ`§jNn?´ŸQ³\€@8p÷? àtlÕ* ?“ä)oÆÂ?—Ó\)ö? ‘.¨ÑÈÈ?ŸæÃ¨u@"@@$@:@7?ð?ð?ð?ð?ðøøøøøøøøøøøøá@¬„r° Äœ@¬„rñ©ûæ@¬„r° Äœ@¬„r×sü@¬„r° Äœ@¬„s3333@¬„r° Äœ@¬„sŽóMj@¬„r° Äœ@¬„r-V@¬„r° Äœ@¬„r:)Çz@­Åß;dZ@­Åß;dZ@­Åß;dZ@­Å¸¼@­Åß;dZ@­Å:û~‘@­Åß;dZ@­ÅbMÒñ@­Åß;dZ@­Å£× -=@­Åß;dZ@­ÅHð@/ïÅo@/ïÅo@)Üj~ùÛ"@)Üj~ùÛ"@*rn—Oß@*rˆÎp:ü@(¨Û‹¬q @(¨Û‹¬q @(¨Û‹¬q @(¨Û‹¬q @(¨Û‹¬q @(¨è§æ›?É_\p)Ï?Òç{íj?‘(¥¿á?‹ª½¨ª8v?íOþtà?¾ƒìÈÁ?ÐbMçê_x?’˜‰%F²?ŠA)Nîá?0ÜN :s?Ñ¡b£?¾?R g!Ú¢?€b¡´ñ@?Œ¬Çëý ?‚q6tNø7?‚ãaÎúvh?†ŠúЀ>(?†‰Oú|q@@@@@(@*?ð?ð?ð?ð?ð?ð¿DôÞ¾þæ+€?+»Þ)TŸœ?sk³]@¬„rÀL• @­Åníµ8?:ªŸóÓhå?*ìF_ô?qvèöLÂd?OÑêÁÆ$@Ÿs,Ó2@â@¡Œ]/Ÿ¾@¡ŒQ©ûçn@¡Œ]/Ÿ¾@¡ŒHŒç°@¡Œ]/Ÿ¾@¡Œ=ÌcñA@¡Œ]/Ÿ¾@¡ŒSMj@¡Œ]/Ÿ¾@¡ŒYXbN@¡Œ]/Ÿ¾@¡ŒL1&é@¥ŽÈ´9X@¥ŽÈ1&éy@¥ŽÈ´9X@¥ŽÓœ¾à@¥ŽÈ´9X@¥Ž¿U›=@¥ŽÈ´9X@¥Ž³t¼j@¥ŽÈ´9X@¥Ž¢e+Ô@¥ŽÈ´9X@¥Ž´Ö¡aæ@8è†YJôñ@8÷škP°ò@5; Iº^@5:çÕfÏB@5 "Ðå`B@53{J#9Á@4OO „M@4^¾ß¤?æ@4OO „M@4Pÿ—$tT@4OO „M@4RT`ªdÃ?ÎYgo¢K?­hX™*?ÇT†ˆHÖ?—Ýúâþ ? U ¡,Ø?¨+ âÅw?´ Z è´ß?•%!{‚A?Ä’ŽªÛ‡?©ßˆ¬ÅÛ{?¨AsÊ?¦þLäžÏ?µRW¢ŠP?´þ5.¸žÊ?Û_Y›ÍKÌ?¦÷œ¤Òé(?©CRù¼U?­¸óÛ[Ñ‘@@@@@*@,?ð?ð?ð?ð?ð?ð¿CšÐ4¿q1r°€?júˆ0‚\¼?rbPbÐQ¼@¡ŒT«Ôy@¥Ž°í?wðy35³t?‹ó‚‚·_?˧œÞ"÷‚?àÉÂú”@Ÿqdð|£@ã@¤ Ö‡+ @¤ öÈ´9X@¤ Ö‡+ Á.„€@¤ Ö‡+ Á.„€@¤ Ö‡+ Á.„€@¤ Ö‡+ Á.„€@¤ Ö‡+ Á.„€@¦…¼j~ùÛ@¦…« Iº@¦…¼j~ùÛÁ.„€@¦…¼j~ùÛÁ.„€@¦…¼j~ùÛÁ.„€@¦…¼j~ùÛÁ.„€@¦…¼j~ùÛÁ.„€@8½:’£@8¶È´9X@4n5?|í‘Á.„M‰ûçm@3§KƧïžÁ.„QnÙ‡@2Öý!ÿ.IÁ.„NÜC,¥@2Öý!ÿ.IÁ.„NÜC,¥@2Öý!ÿ.IÁ.„NÜC,¥?}Ñ¿ž,@8#˜@8¾:@8 >+@8Iç@8Ù?°{QBãï@8Î÷@8i§@8Å@8S@8û—?µ“Æÿ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøä@£¥­‘hr°Á.„€@£¥­‘hr°@£¥°"!@£¥­‘hr°@£¥»2º„@£¥­‘hr°@£¥³ø‚>@£¥­‘hr°@£¥ª›k@£¥­‘hr°@£¥£GC\@—9ˆ1&éyÁ.„€@—9ˆ1&éy@—9‹ -MŸ@—9ˆ1&éy@—9¬˜b}Ö@—9ˆ1&éy@—9„>º«Z@—9ˆ1&éy@—9¯3“M@—9ˆ1&éy@—9¢„ìº@8è†YJôñÁ.„>¤µÜÆ@3» Iº^@3ªGPí’@3RÐå`A‰@39NÇá@2TmÅÖ8†@2Fõþ¹BI@2TmÅÖ8†@2[4¡D@2TmÅÖ8†@2\ô!-x@8J¨?—KÆQt -?¥9eÌ5?•*ÞF”É?•’'c$ƒx?”ï+×Ì@8J¨?•uãýœk?˜ˆïý{?“ÝÖ–i?˜‘E*²z–?“åáÓÄÈ@8p÷?›ñ˜`K?µ0|wF?Žy¾þšk?R HðE?”[úsšÁ½@&@&@(@8@7?ð?ð?ð?ð?ðøøøøøøøøøøøøå@¡7(õÂ@¡7Oß;@¡7(õÂÁ.„€@¡7(õÂÁ.„€@¡7(õÂÁ.„€@¡7(õÂÁ.„€@¡7(õÂÁ.„€@Ÿnj~ùÛ#@Ÿn_;dZ@Ÿnj~ùÛ#Á.„€@Ÿnj~ùÛ#Á.„€@Ÿnj~ùÛ#Á.„€@Ÿnj~ùÛ#Á.„€@Ÿnj~ùÛ#Á.„€@7*0U2b@7#÷ÎÙ‡@3ÜIº^5?Á.„M‰ûçm@3v§ï²-Á.„QnÙ‡@2Öý!ÿ.IÁ.„NÜC,¥@2Öý!ÿ.IÁ.„NÜC,¥@2Öý!ÿ.IÁ.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøøæ@¬à¡ÊÀƒÁ.„€@¬à¡ÊÀƒ@¬á@6âë@¬à¡ÊÀƒ@¬á-w1Å@¬à¡ÊÀƒ@¬áiùrF@¬à¡ÊÀƒ@¬áeS&Â@¬à¡ÊÀƒ@¬ábø7´¢@¢òD›¥ãTÁ.„€@¢òD›¥ãT@¢òá@N¥@¢òD›¥ãT@¢òÂ3œÀ@¢òD›¥ãT@¢òÛ"Ðå`@¢òD›¥ãT@¢òHð@¢òD›¥ãT@¢ò|64@9p4mÅÖ8Á.„>¤µÜÆ@4Ï|í‘hr@3í!ÿ.Hè@4'KƧïž@3E¡ÊÀƒ@3Eœàu÷@2€bMÒñª@3Eœàu÷@2ò䎊r@3Eœàu÷@2~—Oß<@8J¨?»ðj#?ÄIM\g-?ºŠòTÓÁ?À&Çe‰S¿?½®ýã|Êø@8J¨?¶%xW8¸É?ËäêîÂÆ?¶¶=qŒÚÚ?ºó÷z­¾Ã?´M«‡c2h@8p÷?œ ùæ´?Ð?¢Z°`´ä(?Ì@ˆj-?™GXêâ?›P^eNÇQ@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøç@£^q©ûçm@£^rñ©ûç@£^q©ûçm@£^q‚©“ @£^q©ûçm@£^r£S&@£^q©ûçm@£^qÎ_@£^q©ûçm@£^n!–R½@£^q©ûçm@£^mBÃÉï@¥YÄ›¥ãT@¥Y¢\(ö@¥YÄ›¥ãT@¥Y«¬q ³@¥YÄ›¥ãT@¥Y®Hè§@¥YÄ›¥ãT@¥YµÂ\)@¥YÄ›¥ãT@¥Y¶4ê@¥YÄ›¥ãT@¥Y³ÃaA@5Ù*0U2b@5ºu%F -@1³S÷ÎÙ@1¢MÒñ©ü@0Õ`A‰7L@0ÉŒ~($ @/õ¨Xy=Ú@/㯷éú@/õ¨Xy=Ú@/åS&Á¾@/õ¨Xy=Ú@/ãñA [Á?‡YÍ_?àIü'?‘œÁùãJC?Œ:Z2‚b?‘PÊÑ<Ým?‘Iãd©ìÇ?uÎC´Ÿ0!?˜ü5ñâ ?ðHÙz#Ù,@Ÿi`¤ðCª@è@ª-X“t¼j@ª-X“t¼j@ª-X“t¼j@ª-YÎ_p@ª-X“t¼j@ª-XQë… @ª-X“t¼j@ª-Y¦µ @ª-X“t¼j@ª-VâëC@ª-X“t¼j@ª-SÐ|„¶@¢¦ffff@¢¦$Ý/@¢¦ffff@¢§8}¾@¢¦ffff@¢¤÷eý‹@¢¦ffff@¢¥Ö8†X@¢¦ffff@¢¥+ÓÃa@¢¦ffff@¢©Q‚©“@5-¥œàv@5-æšÔ,<@0Ô›¥ãSø@0Ó÷ÎÙ‡@0²-V@0Ÿ¾vÉ@.žš@.Ñ·Y@.žš@.¥œàv@.žš@.õY³Ð}?|¬Çëý ?¾‰máÚ?‘–”«ëó?‹×lÇ…N9?ÿ £‰¸9?‘ë´¤G?|öOÿÝ?’4 "ëžØ?ê‰O)AT?agÌf ?‘Ú‚ýc¯?«àÓ RÆ?‚oÁÆÜ§ö?Œ¾»•lŽ?ƒúʳ_Ä?ƒ ?ÿ½?†µ°jÆÃ?‡gϵ’õ@@@@@&@(?ð?ð?ð?ð?ð?ð¿CGÌP0?2âÑX?=¾…s§´ý?8ÊÆ1÷@ª-W™©Æ“@¢¦—…þ±?]‚VOX?Xj#oéÈ?ÇŠ>‡ÍF?¾ŠÕ F -Ø@Ÿfà10•™@é@ªòk…¸R@ªòe z0@ªòk…¸RÁ.„€@ªòk…¸RÁ.„€@ªòk…¸RÁ.„€@ªòk…¸RÁ.„€@ªòk…¸RÁ.„€@”&çl‹C–@”&ë Iº@”&çl‹C–Á.„€@”&çl‹C–Á.„€@”&çl‹C–Á.„€@”&çl‹C–Á.„€@”&çl‹C–Á.„€@8·â‚@·€@8µ¦¢©!@5k¥ãS÷ÏÁ.„M‰ûçm@4þV“uÁ.„QnÙ‡@4¸DЩ*Á.„NÜC,¥@4¸DЩ*Á.„NÜC,¥@4¸DЩ*Á.„NÜC,¥?‚Ú¡ËG7<@8#˜@8¾:@8 >+@8Iç@8Ù?Ï€×>²„@8Î÷@8i§@8Å@8S@8û—?Œ¨/¸Œr„@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøê@£”‰7KÇ@£”ÊÀƒ@£”‰7KÇ@£”($ w@£”‰7KÇ@£” 7Kƨ@£”‰7KÇ@£” q ²–@£”‰7KÇ@£”šu$@£”‰7KÇ@£”ÉîËû@£j³¶E¡Ë@£j³¶E¡Ë@£j³¶E¡Ë@£j´¯O ƒ@£j³¶E¡Ë@£j IQƒ@£j³¶E¡Ë@£j›¥ãSø@£j³¶E¡Ë@£j‘·Xâ@£j³¶E¡Ë@£jƒ{J#@3½:’£@3½5¨Xy>@2?|í‘h@1ýà qu@1®ùÛ"Ðæ@1©“ àÞÒ@15µsê³h@1,ÓZ…‡”@15µsê³h@1-Òñ©ûè@15µsê³h@1.æ1ø ?|öOÿÝ? œE|s8å?‘yß]³Õø?‹û…†_?šPUó`ÿ?•ŠàuVº`?|¬Çëý ? I­ß4>?‘kþE<%?e”[|ú(?™Ÿ»6“?™^ªÍ€@!?‚Ÿ JŠÅ?1·†Æjñ?‡9Â@0wç?ƒ ?ÿ½?’;WZŸÿÔ?8Ï£§@@@@@*@$?ð?ð?ð?ð?ð?ð?[ï*ü¿€§À?UtðP¨L?D½ÉÕü÷†@£”•£š·@£j¤6i£D?sŒ¦¬DJ?bô˜µ[`?ñP-.2À"?Ë^—¹iñQ@Ÿd›Ýî‹_@ë@¤¼œ¬1'@¤¼™Û"Ðå@¤¼œ¬1'@¤¼Ÿ¼@¤¼œ¬1'@¤¼—ö+jè@¤¼œ¬1'@¤¼¤2ÊW¨@¤¼œ¬1'@¤¼›/ìVÖ@¤¼œ¬1'@¤¼cˆe”@¡ë”ýó¶F@¡ë’-V@¡ë”ýó¶F@¡ëŠôðØE@¡ë”ýó¶F@¡ëŽzáH@¡ë”ýó¶F@¡ë„›¥ãT@¡ë”ýó¶F@¡ë¸ºÇ@¡ë”ýó¶F@¡ëÅÖ8†@6Ù*0U2b@6Ì/ƒ{J$@4€ Ä›¥ã@4‚ZîcŠ@3ä¼j~ùÛ@3í!ÿ.Hé@3a:’£S@3_4Ö¡aå@3a:’£S@3b½<64@3a:’£S@3b×sü?|öOÿÝ?œ½Øu4Þ•?›·Ù!Gfð?º HN¸?¨ƒ ¹´?•(Ï¢Uÿ?гá‡}?¡S"ꉯ?™ ?G·W?Ÿ'Žb÷A?•~VèÔªÂ?›Œ³¶Ñ×?¶W€BH?–Ê Dì¢S?“ø­×N?’aP¸¾¦Ö?•ƒ•&+B?Ÿ‘±bÌ@@@@@&@*?ð?ð?ð?ð?ð?ð?Mjߢˆ¿TS­CØ?IA“­²/Û?R˜&"@¤¼›øü¶P@¡ëŽÇÔZŒ?j˜²Wz¦\?rÓt£`åÉ?Ô$-jCÅ7?ÛªKL£D -@ŸfÀEmņ@ì@¤W+…¸R@¤W#n—@¤W+…¸R@¤W*Ížƒå@¤W+…¸R@¤W/iDg7@¤W+…¸R@¤W-ÅÖ8†@¤W+…¸R@¤W0–»˜È@¤W+…¸R@¤W)îËû@§œ7KƧð@§œ>vÈ´9@§œ7KƧð@§œ:)Çy§@§œ7KƧð@§œ'ü¹#£@§œ7KƧð@§œ=ó¶E¢@§œ7KƧð@§œ8*™0½@§œ7KƧð@§œ9³Ð|†@8-¥œàv@8-!ÿ.Hè@3ÞÙ‡+@3Ù0¾ í(@2ß²-V@2âÞÑ·@2p–»˜Çã@2m5¨Xy>@2p–»˜Çã@2m¸ºÇË@2p–»˜Çã@2l64ê?˜ž^ƒÿ*ˆ?“I\ÄO£º?—2 :M?Ég(6ßð?•³™»7…?˜ÝÈYD?|¬Çëý ?š¾ˆè ”?¢ðÒŒîI? ¬%)¯?˜Ü“Œ¾?• °jà?$¿ÀºÍ?’+0ê­ìT?™“ÇÙ¹?•çѳÍ9?˜F†éôâß?šÁc€RÏ@@@@@,@&?ð?ð?ð?ð?ð?ð?__GË¿Qí4ºn?Y#7J3è?3í3uŠÞK@¤W+i1n€@§œ;‰\Ìä?sÛâC”yA?X›Á´Ñ0E?ÛÒ¡ÙÓWP?ªÄP,¨C@ŸjþxDËù@í@¡mY‡+@¡mWOß;@¡mY‡+@¡m>š@¡mY‡+@¡mG+ J@¡mY‡+@¡mhK]Ìe@¡mY‡+@¡mG®zá@¡mY‡+@¡mI­BÃÊ@£]ž5?|î@£]®Ù‡*@£]ž5?|î@£]“t¼j€@£]ž5?|î@£]—éùq@£]ž5?|î@£]‰á°‰ @£]ž5?|î@£]­ÅÖ8†@£]ž5?|î@£]Á:’£@7ð4mÅÖ8@7éÞÑ·@5º^5?}@5-à @4V”@3ò©“ àß@3úÔ,<ží@3ãÉîËû@3úÔ,<ží@3éÛ"Ðå`@3úÔ,<ží@3çOß;d?“Æ×q„nï?³”¦Ê¿nP?Ÿæ‹—«? Ð ÷Ž ?£|çp9’?›Ê—Am¡?гá‡}?±#ïú¬OÚ?¢Àì#Ì*0?•%ôµh©F?£ ƒU¾Š?±óÌSЧ?–.¨ÿ\?©ñºåÇÂ-?¥$RHŠÇZ?¬@Éléò?®ÔF©Ëåì?¥‰aœÂZ­@@@@@&@(?ð?ð?ð?ð?ð?ð¿[~\1B¿wª®"?tß ‹áWµ?z—·M’ú’@¡m\]—;Æ@£]ŸßäiX?‘‚-¬C?˜–”Àä¸@©”QXÈà@Æ~úQ$@Ÿf˜È¶I@î@°È´9XÁ.„€@°È´9X@°ÕϪÎ@°È´9X@°Û"Ðå@°È´9X@°b¶®@°È´9X@°üPH@°È´9X@°ï²-@¬úÚ¬1Á.„€@¬úÚ¬1@¬ú×ö+jç@¬úÚ¬1@¬ú× -=p¤@¬úÚ¬1@¬úÜ64@¬úÚ¬1@¬úÙ¦µ @¬úÚ¬1@¬úÕsê³h@6” xFÜÁ.„>¤µÜÆ@1é‡+ @1ìq ²•ê@1"-V@1#¼ÓZ…‡@0ºÔ,<ží@0ÅðoiDg@0ºÔ,<ží@0Èð¹@0ºÔ,<ží@0Æý!ÿ.I@8J¨?‘6 '8?‘O‚%c?“Þ5d‡?›Ýr¶?—c‚L±bµ@8J¨?“eB^¤t?³2ºŽ'? ÿ«[á? ‘åP!=4?šÏ7â4l@8p÷?“=ä!ƒK?…µsê³g¡?Ž«]O8èº?8Ï£§?’:™/ʼn@@@@,@,?ð?ð?ð?ð?ðøøøøøøøøøøøøï@£oäÝ/ Á.„€@£oäÝ/ Á.„€@£oäÝ/ Á.„€@£oäÝ/ Á.„€@£oäÝ/ Á.„€@£oäÝ/ Á.„€@ó¶E¡ËÁ.„€@ó¶E¡ËÁ.„€@ó¶E¡ËÁ.„€@ó¶E¡ËÁ.„€@ó¶E¡ËÁ.„€@ó¶E¡ËÁ.„€@8Bò䎊Á.„>¤µÜÆ@3}‘hr° Á.„M‰ûçm@2¹7KƧðÁ.„QnÙ‡@2Š0U2a|Á.„NÜC,¥@2Š0U2a|Á.„NÜC,¥@2Š0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøð@¬¨F$Ý/@¬¨.záI@¬¨F$Ý/@¬¨R:)Ç{@¬¨F$Ý/@¬¨H$ x@¬¨F$Ý/@¬¨B3œ¿@¬¨F$Ý/@¬¨>ÿ—%@¬¨F$Ý/@¬¨6Ov`@­6È´9X@­'+ I@­6È´9X@­8Që…@­6È´9X@­0|„µÜ@­6È´9X@­1Ä2ÊX@­6È´9X@­2n—P@­6È´9X@­+C•@5„¯O „M@5iá°‰ (@1—+ Iº@1™³Ð|„¶@11‰7Kƨ@106âë@0Eœàu÷@0B䎊qÞ@0Eœàu÷@0A‚©“ á@0Eœàu÷@0=Vlô"?›’qvš°•?®1Âe¾ -þ?«†‰X´‹?è}fУ?•BPbC¡©?—Q,Äš¤?„F/·ÿP5?«0ä,3?³C˜\ >?Ÿ=øU1WK?š+hd{ö?—é aÀ‹å?ªÇ,þâ?©¦/‰oš?¨Y²Y¬Æñ?—†0ÚŒ#?‘4hÆpÉ„?$Ìj½BÙ@@@@@,@(?ð?ð?ð?ð?ð?ð?_Þ¥÷ü?[I ¬?d`@¯Þ¾?P*»Ú¸¢@¬¨8§f@­,E w?‚:JBE!Ð?sjµ4q×Ú?ð^ëGˆßæ?ÙNhw|Jé@ŸkÈ9®K@ñ@­0äÝ/ @­1&$Ý/@­0äÝ/ @­0åÉä@­0äÝ/ @­0æ§ï²@­0äÝ/ @­0æÏAò@­0äÝ/ @­0äЩ*@­0äÝ/ Á.„€@Ÿøn—@Ÿøhr°"@Ÿøn—@Ÿø$Ý/@Ÿøn—@Ÿ÷ú^5?}@Ÿøn—@Ÿ÷ÿ|í‘h@Ÿøn—@Ÿ÷öý!ÿ.@Ÿøn—Á.„€@1 ]cˆe”@1Xè§æ›@.×KƧï@.Õ›=ÈK@/4ýó¶E¢@/87´¢3œ@.åÉä@.~ÿ—$u@.åÉä@.…F -¦L0@.åÉäÁ.„NÜC,¥?ËOƒÐÎl?äm°û0Ž?‘ŸÇSñ?ŒÇQ´¤µÜÆ@/$“t¼jÁ.„M‰ûçm@.]ó¶E¡Ë@&$.èLÈ@,ܾߤ@Á.„NÜC,¥@,ܾߤ@Á.„NÜC,¥@,ܾߤ@Á.„NÜC,¥@8 -Näy@8#˜?š`ém_B@8 >+@8Iç@8Ù@82rê@8Î÷?œ#¸(‘¾v@8Å@8S@8û—@8L@8 * ?мÅ&Ÿ|½@8¶@8 Ø@8 Ø@6?ðøøøøøøøøøøøøó@­G¿|í‘h@­G¿|í‘h@­G¿|í‘h@­G¿Ë’:+@­G¿|í‘h@­GÀ qv@­G¿|í‘h@­G¿|í‘h@­G¿|í‘h@­G¿b¶®}@­G¿|í‘h@­G¿;dZ@­Ë+…¸R@­Ë+ƧïŸ@­Ë+…¸R@­Ë+ÓÃa@­Ë+…¸R@­Ë+…¸R@­Ë+…¸R@­Ë+àÞÒ‰@­Ë+…¸R@­Ë+’:)Ç@­Ë+…¸R@­Ë,"h Ö@0½:’£@0½:’£@(…`A‰7K@(…`A‰7K@'íOß;dZ@'íOß;dZ@&³üPH@&³üPH@&³üPH@&³&Á½¥@&³üPH@&³üPH?É^žQ5P‚?Ï[äeñ>™JžÕ?$<'ε³@­G¿a<=ò@­Ë+ÛW¬ì?”½ªq<Ò?3%)¨U>û ¼ Ÿƒ—?`¢1¸<Î@Ÿs¶;Ï@ô@©<$Ý/Á.„€@©<$Ý/@©;ü¾ß¤@©<$Ý/@©;ü„µÜÆ@©<$Ý/@©;ô`ªdÄ@©<$Ý/@©;ëC,¥@©<$Ý/@©;ðU2a{@œ°î—OßÁ.„€@œ°î—Oß@œ°æµ (@œ°î—Oß@œ°å+ÓÃ`@œ°î—Oß@œ°äZ¬@œ°î—Oß@œ°Õ›=È@œ°î—Oß@œ°Õµsê³@3‡>«6zÁ.„>¤µÜÆ@/žùÛ"Ðå@/ìVÕϪ@-ãn—P@-Ö®}Vlô@-…oi@-q©ûçlŒ@-…oi@-@[À6ã@-…oi@-FÏAòØ@8J¨?äm°û0Ž?•¬¡´¯ÿ'?‘öJî¯Ê®?ª!ýgÚ7 ?±A+KÄW@8J¨?’ ·6Öc¤?’ÉÓDý?’_3Í\Æ?£Ö ¯†e‚?¢cšŠ5W@8p÷?þþoÀM?…/‡ÙX·³?…üðÿË÷?’3¨£„È?£Eóƒvn@@@@*@,?ð?ð?ð?ð?ðøøøøøøøøøøøøõ@«ögï²-@«öhr° Æ@«ögï²-Á.„€@«ögï²-Á.„€@«ögï²-Á.„€@«ögï²-Á.„€@«ögï²-Á.„€@­'"Ðå`@­'|í‘h@­'"Ðå`Á.„€@­'"Ðå`Á.„€@­'"Ðå`Á.„€@­'"Ðå`Á.„€@­'"Ðå`Á.„€@8Hè§æ@8"GE8ï5@4° Ä›¦Á.„M‰ûçm@3lj~ùÛ#Á.„QnÙ‡@2õµsê³hÁ.„NÜC,¥@2õµsê³hÁ.„NÜC,¥@2õµsê³hÁ.„NÜC,¥?}Ñ¿ž,@8#˜@8¾:@8 >+@8Iç@8Ù?š•§q!U@8Î÷@8i§@8Å@8S@8û—?‘c‚ׯ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøö@¬ÎÙ‡+@¬ÎÙ‡+@¬ÎÙ‡+@¬ÏùrGE@¬ÎÙ‡+@¬ÐbMÒó@¬ÎÙ‡+@¬Ð:û~‘@¬ÎÙ‡+@¬ÍBÃÉï@¬ÎÙ‡+@¬Íí(Œç@Ý;dZ¬@Ý;çl‹E@Ý;dZ¬@Ý:¬Ùè>@Ý;dZ¬@Ý:ÇË)@Ý;dZ¬@Ý:)Çy¨@Ý;dZ¬@Ý:¬Ùè?@Ý;dZ¬@Ý;˜Çâ‚@2ÿ–»˜È@2ÿ—$tS@/8“t¼j@/8ï4Ö¡b@. ƒn—@. ·€4mÆ@-QÑN;Í6@-R° Ä›¦@-QÑN;Í6@-Rn—Oß@-QÑN;Í6@-Ra|ÚR?É^žQ5P‚?ÖÈ ¼?‘"žæÆó¡?‹¹GüÞõ?òǹíT­?È2I/?ÐbV‡,?’&u÷E»@?†[‘'Í?6) }’ë?Ø¥²À<(?hï,ðà?€cPßQª?Œ²ÅŒÕ6?‚§W®ê ?ƒ ?ÿ½?†’Õaì+’?†£îž«î@@@@@&@*?ð?ð?ð?ð?ð?ð¿RΦ?3fŠB?AèXÒüêm?ìUcîÌ@¬ΪÞãô@Ý:¾õd ?Q6åI÷­Î? óÌ «ö?Z -Zóe?9°±ÊÔy@Ÿs4gK@÷@¨—e`A‰7@¨—kC•@¨—e`A‰7@¨—f?@¨—e`A‰7@¨—d¨ÁTÊ@¨—e`A‰7@¨—e”¯O@¨—e`A‰7@¨—dg8~@¨—e`A‰7@¨—eS&Â@­¹àÄ›¥ã@­¹ëƧïž@­¹àÄ›¥ã@­¹áTÉ…ð@­¹àÄ›¥ã@­¹àëíúD@­¹àÄ›¥ã@­¹á:’£@­¹àÄ›¥ã@­¹àªdÂø@­¹àÄ›¥ã@­¹á–R½=@5„¯O „M@5xÎp:û~@1.5?|í‘@1.Ñ·X@0v§ï²-@0v¸ºÇ@0?ò䎊r@0@:û~‘@0?ò䎊r@0@HðŽ@0?ò䎊r@0@:û~‘?˜ž^ƒÿ*ˆ?/³)sšÌ?‘WßÈDö@?‹ó#ƒt£?‘u×íËÄî?‘Iãd©ì«6z@5„•*™1@1µãS÷ÎÙ@1«’:)Çy@0ù7KƧð@0ëçl‹C•@0cÉîËû@0UãS÷ÎÚ@0cÉîËû@0T`ªdÂø@0cÉîËû@0TmÅÖ8†?}Ñ¿ž,?’bÓ}?™KÔ9\Ä?‘öJî¯Ê®?™'Ö™:0í?œ´‹ÛZ?}Ñ¿ž,?“-N•I`(?•ê?íuA?–a6io?£Žæ b×V?¤2R2'Ö•?…/‡ÙX·²?“ü”òÖÂ?†úŒz_–È?†k3`E`-?^²®':Ì?’Ì÷y\ÛÎ@@@@@,@*?ð?ð?ð?ð?ð?ð¿-³¼Ð?c'"&<?Eá’!Qà?N‡ÀOlr–@£„70áµ^@£gÒäæö?b¨Å(B o?hõØ[·ù®?ËŽ3*r?ÍÚßÍQ˜%@Ÿb–HΑ@ù@«úŽÙ‡+@«úŽÙ‡+@«úŽÙ‡+@«ú¸»@«úŽÙ‡+@«úoiDg@«úŽÙ‡+@«úå`A‰@«úŽÙ‡+@«ú£× -=@«úŽÙ‡+@«ú:û~‘@¡I¬1'@¡I¬1'@¡I¬1'@¡I‘ÑN<@¡I¬1'@¡Icˆe•@¡I¬1'@¡I\‘ÑN@¡I¬1'@¡I¥œà@¡I¬1'@¡I<64@0eöý!ÿ.@0eÜÆ?@*\j~ùÛ"@*["Ðå`A@)´ýó¶E¢@)³g ù m@)b¶®~@)Xâf@)b¶®~@)Xâf@)b¶®~@)eýŠÚ»?É_ð©«?ÉGãA­÷?‘K]Ã4?‹¦ ŸYÔ?‘2A¥Ø?âé¨ë7F?ÐbMçê_x?’ -‰¸Ì?¯éÊSÜ?0ÜN :s?ß’ºèh!?hï,ðà?€e@ˆ’„'?Œ¬Çëý ?‚q6tNø7?‚éXëLL÷?†ŠúЀ>(?†©b/bJö@@@@@*@,?ð?ð?ð?ð?ð?ð¿0é›X¿?7¢¡?\5Q6 -?°ó2BX@«ú‰ –@¡IÎ1Äç?(f:€†°†?$‡è^ûÂ?LùqþÕ´?BelôÙü@Ÿs¾TR@ú@¯:ë…¸@¯:È´9X@¯:ë…¸@¯: xF@¯:ë…¸@¯: -Ú¹õZ@¯:ë…¸@¯:®zà@¯:ë…¸@¯:Ðå`B@¯:ë…¸@¯:ýŠÚº@£-‡®zá@£-”9Xb@£-‡®zá@£-t‡ü¹$@£-‡®zá@£-t¼@£-‡®zá@£-wOß;@£-‡®zá@£-ròä@£-‡®zá@£-sœ¾à@8¥öý!ÿ.@8™“ àÞÒ@3£÷ÎÙ‡@3™0¾ í(@2È“t¼j@2¼j~ùÛ#@2 ¿±[W?@2Åo@2 ¿±[W?@2°‰ 'R@2 ¿±[W?@2ò䎊?|öOÿÝ?’¹KTŒDÄ?•Mq —¦?ŽAtùð¥t?’<_+fjä?“7ƒÆD -¹?²C¨y3?•\´jÒË?–Ðf·ËŒ‚?‘èÒ§ˆ„Æ?”¡S•Ÿ¯?˜—àÌÛÆ;?©[K-$›I?¬HO?‡}¤íþ?„Ö©Ú0?ˆ”Tj«›ª?•°QŸ?]Í@@@@@*@,?ð?ð?ð?ð?ð?ð¿q±´X¿p<,)sÀ?Ke3¸8/?b·±´hºI@¯:ûCGR@£-vfÔè?roÛ‡Î!?tTo£at?áf`}º^?Ö½ò“uº@ŸoðïEÛ¿@û@©õÊ=p£×@©õÈr° Å@©õÊ=p£×@©õŸQì@©õÊ=p£×@©õÉ^ž @©õÊ=p£×@©õË'»0@©õÊ=p£×@©õ¾ß¤?æ@©õÊ=p£×@©õƸºÆ@®Ï5?|î@®Ï Ä›¥ã@®Ï5?|î@®Ï¬2@®Ï5?|î@®Ï¾ß¥@®Ï5?|î@®Ï;dZ@®Ï5?|î@®Ï!$Ý/@®Ï5?|î@®ÏÌcñB@7D¯O „M@7Eéá°‰ @4c÷ÎÙ‡@4esê³g¡@4v§ï²-@4}ŠÚ¹õZ@3TmÅÖ8†@3X Ô•+@3TmÅÖ8†@3W1Å‚@3TmÅÖ8†@3Y 'RTa?’Óusÿ\Ã?›ŽÊ–SS?¤:Îrú ?’m’‹}©9?›«Âp°¦ý?—­l²â›}?ˆÿÀ)T¿Æ?—Œ,T®? Ü]^ß¿?–¼Š˜L¥ø?˜hüÁ¯Y?“®°ýYè@?‡»¢Øˆ‹?’Эs_ª`?’%Crì?ÓLÞ?æ?šÙ,yf’Y?•*†*Zû@@@@@@?ð?ð?ð?ð?ð?ð¿Jû5p¿<ÄŽ0?V„xØ_p?29¹–œo¬@©õÇiú~@®Ï¬F~ -?t©y°@ý?Sú •„.?ÞAüá@?¡z¨ŽÜl@Ÿj6µFø@ü@®ÿ;dZ@®ÿ|í‘h@®ÿ;dZ@®ÿåÉ@®ÿ;dZ@®ÿ;dZ@®ÿ;dZ@®ÿ¾vÈ´@®ÿ;dZ@®ÿ!-w2@®ÿ;dZ@®ÿ쿱\@§v¤Ý/ @§v¤›¥ãT@§v¤Ý/ @§v¦?@§v¤Ý/ @§v¦§ï²@§v¤Ý/ @§v¦§ï²@§v¤Ý/ @§v§+ I@§v¤Ý/ @§v¥®æ1ø@4`ØDЩ@4`ØDЩ@0‡ÎÙ‡+@0ˆð¸@/´ýó¶E¢@/µfÏAò@.ÿåÉä@.ÿ¾vÈ´:@.ÿåÉä@.ÿ!-w1@.ÿåÉä@/-à ?|öOÿÝ?ZÁ».œ?‘*"AaIÐ?‹×lÇ…N9?üEÙáõ{?ïˆ6ÏJ?1·†Æjñ?’#maЀ?™Îd0RÜ?;ß $Þû?‘c3¸cÜ(?‘¡ë Þf?‚s@ˆaÚ?ŒÛÏ·+?‚¯­Ù¤Á¶?ƒR¨º“JÞ?†µ°jÆÃ?‰Ü)@Jq«@@@@@*@(?ð?ð?ð?ð?ð?ð¿ƇÖ?:¾6«x?·U˜ëã?+§Ê8¥<@®ÿ^h¾@§v¥¢1Æ?2µK†5?L+Ú57Û?rªÊ ´ ?£*¬ZOëž@Ÿg2ÖxÂ+@ý@¨ßc× -=q@¨ß\¬1'@¨ßc× -=q@¨ßNV“@¨ßc× -=q@¨ßV_Ø­¬@¨ßc× -=q@¨ßVOv`@¨ßc× -=q@¨ß\64@¨ßc× -=q@¨ßW§†Â&@§$¶E¡ÊÁ@§$»dZ¬@§$¶E¡ÊÁ@§$ÛÍ5¨X@§$¶E¡ÊÁ@§$ÖâëC@§$¶E¡ÊÁ@§$Û=ÈL@§$¶E¡ÊÁ@§$ÆšÔ,=@§$¶E¡ÊÁ@§$Ò¼£@8T xFÜ@8SŠ Þ@3|í‘hr@3~Hè§æ@2Àå`A‰7@2­/Ÿ¾w@1Ì¿±[W?@1·éùrH@1Ì¿±[W?@1Ã@N¤¨Â@1Ì¿±[W?@1¾žš?¨Ö_pP1?‘¡çL¤?šJØÜi«?”ƒSÌz?’Þäi]i?‘PÊÑ<Ýl?™™™™™™š?’{cü€øõ?šï/>¬¹’?•ãÿ§…|?•=ƒ™íx?‘ÔÄ÷Õ?£¾Æ¨'–È?Ó%y*£=?ˆ©CwBÅÉ?‰‹„áùO"?mŽÃÎŽ?ùDâΊ@@@@@*@"?ð?ð?ð?ð?ð?ð¿7F`?j„äª?Xo×9R0´?oZ îÙ@¨ßXôûÖ‚@§$Í ¬0Ú?oxz˜d ?ŠŒ|”ñT[?α¨œ¯v°@ I¹ªeÛ@Ÿp;N§ Ü@þ@®ËÍÒñ©ü@®ËÉxÔýô@®ËÍÒñ©ü@®Ëýó¶E£@®ËÍÒñ©ü@®Ëá–R½<@®ËÍÒñ©ü@®Ëñ4êK@®ËÍÒñ©ü@®ËÛ¥ãSø@®ËÍÒñ©ü@®ËÕ¨Xy?@¬Ö¨r° Å@¬Ö¬ÌÌÌÍ@¬Ö¨r° Å@¬Ö¯–»˜@¬Ö¨r° Å@¬Öà-à@¬Ö¨r° Å@¬Ö¹0¾ ì@¬Ö¨r° Å@¬Ö™Û"Ðæ@¬Ö¨r° Å@¬Ö™#¢œx@904mÅÖ8@9üFV?±>ÏÅósN?ÂÂo΃Ù?»¦SóDN?¾FMGô¯¦?°°¶ñÃ9?¤þýª¢Í‘?··#qÉ¥?¼ƒžxåÈê?¥}ç›–Z?ža—㸂?˜F†éôâß?¢2ðø:Uù@@@@@,@(?ð?ð?ð?ð?ð?ð¿=¦@¿r'Áí&?u,®·Ü^?aåܼÔ-Y@®ËÚ¡rJL@¬Ö s×:?޲ƒˆÛ¾»?€¿1Ïà l?õÒŽæå€?ÂÇþh,þX@Ÿp8:T@ÿ@¥ŽV“@¥”9Xc@¥ŽV“@¥›~ÿ—@¥ŽV“@¥“¶E¡Ë@¥ŽV“@¥ޱÄ2Ê@¥ŽV“@¥ˆ§æ›@¥ŽV“@¥†€IR@£$3¶E¡Ë@£$.V“@£$3¶E¡Ë@£$)Çy¦µ@£$3¶E¡Ë@£$(Œç°@£$3¶E¡Ë@£$1hr° @£$3¶E¡Ë@£$*ŒL˜@£$3¶E¡Ë@£$,L˜_@7 ØDЩ@7Ÿ|í‘hr@3óS÷ÎÙ@3ê¬Ùè>B@2A‰7KÇ@2w1Å@23&Á½¥@20£× -=q@23&Á½¥@21œàuöý@23&Á½¥@21Þi­BÄ?–ªÎ­¡?¡³¡Bš™?•ÝFê˜}é?ŽÆv‹‰k?‘èÒ§ˆ„Å?‘_ Ýß?ª[Xxöp?› —/Ù‘?•Ó%Øc~?‘!¥zt9Û?’W;„zY?Éöm/w+?¸ïµ(ýd?Íù7„¯ây?Œs¤DÅÐ@8Î÷@8i§@8Å?¹(¿¢÷SÐ?ÀH{’íŽ? “˜¯ÃÛ@8 * @8p÷@8¶?¨“‘¬?Âè*—NÔ@@@?ð?ð?ðøøøøøøøøøøøø@¬Ÿn—OßÁ.„€@¬Ÿn—OßÁ.„€@¬Ÿn—OßÁ.„€@¬Ÿn—OßÁ.„€@¬Ÿn—OßÁ.„€@¬Ÿn—OßÁ.„€@¦1È1&éyÁ.„€@¦1È1&éyÁ.„€@¦1È1&éyÁ.„€@¦1È1&éyÁ.„€@¦1È1&éyÁ.„€@¦1È1&éyÁ.„€@8ÖšÔ,<ŸÁ.„>¤µÜÆ@5+ IºÁ.„M‰ûçm@4Æ“t¼Á.„QnÙ‡@4._oÒ Á.„NÜC,¥@4._oÒ Á.„NÜC,¥@4._oÒ Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@Ÿ:MÒñ©üÁ.„€@Ÿ:MÒñ©ü@Ÿ:hä`‡î@Ÿ:MÒñ©ü@Ÿ:]”‰*@Ÿ:MÒñ©ü@Ÿ:N×ù*7@Ÿ:MÒñ©ü@Ÿ:S{Gâ¸@Ÿ:MÒñ©ü@Ÿ:Q>9ˆç@¢Ž´¼j~úÁ.„€@¢Ž´¼j~ú@¢Ž°LLÆ@¢Ž´¼j~ú@¢Ž£næ–@¢Ž´¼j~ú@¢Ž¶|ºËû@¢Ž´¼j~ú@¢Ž¸:¶hÎ@¢Ž´¼j~ú@¢ŽÀfE_ž@3cg ù lÁ.„>¤µÜÆ@/.V“t@/-.™‘ˆ@.Ó¶E¡ÊÀ@.½jô@-QÑN;Í6@-?‰ -!@-QÑN;Í6@-B÷þdzF@-QÑN;Í6@->:•È@8J¨?èr€W?‘•¤Ñ禛?Ž*’ý&?‘á„h Þ?‘Mm,bzý@8J¨?’ýhî­?‘W  âï?˜#Ì~\•ê?•ö.Ø—?•Ü=óÝ@8p÷?@c ÃMQ?‚“¾'¥¤<íöÃ?ýÿ3…ô"@%»‘¯@Ÿj§rZ~[@@®B>ùÛ"ÑÁ.„€@®B>ùÛ"Ñ@®BDM:“@®B>ùÛ"Ñ@®B?±[W@@®B>ùÛ"Ñ@®B5*™2@®B>ùÛ"Ñ@®B3t¼j€@®B>ùÛ"Ñ@®B¤µÜÆ@3ðÄ›¥ãT@3øï4Ö¡b@3—ï²-@3£Ð|„µÝ@3!:’£S@37€4mÅÖ@3!:’£S@32MÒñ©ü@3!:’£S@32a|ÚQ@8J¨?”·'‚5â–?¡ ×1èB?¡ÈFªû"b?¤áøl‡ä(?ŸÁÝ·®Š@8J¨?› —/Ù‘?«Þô¯®€?³˜¬6öl@0=cˆe”°@0<ÓZ…‡”@0=cˆe”°@0‹ÿp`¿L^-m?[¢ÿÎc‚û?QÄÔåãÒY@¦8å’¤@® -äfõà?k©p·Î ¤?i¼ÛíD!á?Î\ÖzÏ?ÉB4ü¹H@Ÿqk]áè¿@@®k»çl‹D@®k­BÃÉï@®k»çl‹D@®k¸üPH@®k»çl‹D@®k»À6ã@®k»çl‹D@®k»‹¬q@®k»çl‹D@®k¹Û"Ðæ@®k»çl‹D@®kº–½@lyÛ"Ðå@l\(õÄ@lyÛ"Ðå@lzÇË)@lyÛ"Ðå@lxï4Ö @lyÛ"Ðå@lrGE8î@lyÛ"Ðå@lxl"h -@lyÛ"Ðå@lxQë…@7¨†YJôñ@7 ñ/y¦'@3Š^5?|í@3«ŸU›=@2©Û"Ðå`@2¬Ùè>B[@1œÚQÎ@1žvÈ´9X@1œÚQÎ@1ž!–R½=@1œÚQÎ@1  Ä›¥ä?|çµB &€?—޼½:?•XYäý?îZ¼!ÇŸ?’¥.Kn Í?’?=ÆþÎò?¤ïŒ7娠?–øÐ°€l?“?T¾¹µ ?’:u.ý ?“m^÷´?’j“O’I?™4f5×…?‘Žèã&!+?D/ -b°Þ?…”rsw?ˆW|¶DC?‰]³ß’Ý@@@@@,@,?ð?ð?ð?ð?ð?ð?j¢ú¿NéB›Ä?LÐûØÄôS?[dö›=…@®k·Ý(§Ç@lx™1_I?rÃ_¢}ò?r[$ÕâQ?ã¶ïjïLË?Ö¦/’‡iŽ@ŸnÊ*3{@ @¬†1©ûçm@¬†+Ƨïž@¬†1©ûçm@¬†/ „M@¬†1©ûçm@¬†4•*˜@¬†1©ûçm@¬†0£× -=@¬†1©ûçm@¬†1A [¿@¬†1©ûçm@¬†1ë…¹@¡>ž¸Që…@¡>›dZ¬@¡>ž¸Që…@¡>›ô‡ü¹@¡>ž¸Që…@¡>ÌcñA@¡>ž¸Që…@¡>ã¼Ó@¡>ž¸Që…@¡>ŸoÒó@¡>ž¸Që…@¡>›À6ã@7‚ò䎊@7{)^ž@3\Iº^5?@3`ªdÂø8@2iÛ"Ðå`@2o;dZ¬@1úÔ,<ží@2ÿ—$tT@1úÔ,<ží@2× -=p¤@1úÔ,<ží@2•éá°Š?1·†Æjñ?–[‹Å ?’ª®pµ?Ž‚¨Ø†{~?”NtyÞ"§?’u¹k‚=?„F/·ÿP5?˜¢K½š?’üüšë‚J?“%¾ . »?”ýó¶E¡Ë?’9ñ9¶ò8?”&¥1“V?ª‚eûƒ+?ˆìûIèœlûe?JŒ¤µÜÆ@4B° Ä›¦Á.„M‰ûçm@3A‰7KÇÁ.„QnÙ‡@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø @ªÍ6È´9X@ªÍ8Që…@ªÍ6È´9X@ªÍ*Ížƒä@ªÍ6È´9X@ªÍ 4mÅÖ@ªÍ6È´9X@ªÍ%Ö8†X@ªÍ6È´9X@ªÍ'ï²-@ªÍ6È´9X@ªÍ6“u@ª¥~ùÛ"Ñ@ª¥„›¥ãT@ª¥~ùÛ"Ñ@ª¥8­«ŸV@ª¥~ùÛ"Ñ@ª¥'ü¹#¢@ª¥~ùÛ"Ñ@ª¥GÕfÏB@ª¥~ùÛ"Ñ@ª¥>«6z@ª¥~ùÛ"Ñ@ª¥dÝ/ @7ý:’£@7ýcˆe”°@33S÷ÎÙ@3 Ë)^ž@2M²-V@2<¾ß¤@@1YŒ~($ @1KC,¥{@1YŒ~($ @1MÈK]Ì@1YŒ~($ @1N¾ß¤?æ?«á¬å÷‰?®ÖJ éf?³X€Õ‡s_?¬fJ5 ?¦KÊbo¨Þ?šèïdË?Œs¤DÅÐ?¿µ,i›ª?ÃĽ²;!?¿]«$_2.?»¼¸ölƒ?²m(~ 2ø?·–†»µ½D?“[ ·S?‹’Ú[ßõ?ˆ»ñJî¯Î?‰_uñšó?—ã ËÄž@@@@@,@(?ð?ð?ð?ð?ð?ð?7€cܰ¿„"ëÈ€?i2\  -ÀÎ?q@ñ\ð)@ªÍ1ö"d@ª¥k‚Z?ЏœD‰??”ùjL›¨Ò?àÍ#y+b?êÖcg:@Ÿi£‘y6Ø@ @®j¹XbN@®j³*À¥ô@®j¹XbN@®j¶ºóŽv@®j¹XbN@®j´ãM'@®j¹XbN@®j¶Ê'CÇ@®j¹XbN@®j¶¦«Ë@®j¹XbN@®j´û€’é@“9ÌÌÌÌÍ@“9Óv=ƒ@“9ÌÌÌÌÍ@“9¾’@“9ÌÌÌÌÍ@“9×­í´@“9ÌÌÌÌÍ@“9É<]y@“9ÌÌÌÌÍ@“9Á°O @“9ÌÌÌÌÍ@“9ºŽŒb@8£g ù l@8ŸÈGvÔ@4ahr° Ä@4c?²úrz@3“t¼j@3  zã¢@2ÏO „M@2ÒvðAª@@2ÏO „M@2ÔM™Ø{@2ÏO „M@2Õ¦2´?—‡ŸTVm?’-½Z?‘^ìç¤I•?¤¹èž?’Û±[âVÞ?’*JÛ“†·?–¼À›÷=?“'a¡÷ž?‘poØ?’¸S.ã&?”`´úñ½?‘çM…{3i?™­‹#B?6¢•c?…¿[ÁŽK?„⹯ò{?Š›ìC9ˆ?צmˆ8@@"@"@*@7@3?ð?ð?ð?ð?ð?ð?6l6(¿dUU/?A7¨*0l?2cr×R¡c@®jµ¯§É@“9Ån8š?[K¬ ¿«?O_6 Ûï?±BÁ³Ô:?”`ˆµv½@Ÿm¡-]½G@ @©„çï²-@©„î—Oß@©„çï²-Á.„€@©„çï²-Á.„€@©„çï²-Á.„€@©„çï²-Á.„€@©„çï²-@©„˜DЩ@­ Û¥ãSø@­ ‡+ J@­ Û¥ãSøÁ.„€@­ Û¥ãSøÁ.„€@­ Û¥ãSøÁ.„€@­ Û¥ãSøÁ.„€@­ Û¥ãSø@­ ±Î_@7ý:’£@7›C•%@3#÷ÎÙ‡Á.„M‰ûçm@2Ct¼j~úÁ.„QnÙ‡@1¸DЩ*Á.„NÜC,¥@1¸DЩ*Á.„NÜC,¥@1¸DЩ*@1ªdÂø8?¦Ï±úQm‡@8#˜@8¾:@8 >+@8Iç?ÎN5“‹W¢?îŠõ @8Î÷@8i§@8Å@8S?ÐÜÜ»ã¸?”³Ž+k@8 * @8p÷@8¶@8 Ø?æ®SH²@@*?ð?ðøøøøøøøøøøøø@«—äZ¬@«—䛥ãT@«—äZ¬@«—ãÉîËú@«—äZ¬@«—åÉä@«—äZ¬@«—äM:”@«—äZ¬@«—ãˆe”®@«—äZ¬@«—äg8~@¨÷F§ï²@¨÷G+ J@¨÷F§ï²@¨÷GæšÔ@¨÷F§ï²@¨÷G“Ý—ö@¨÷F§ï²@¨÷GæšÕ@¨÷F§ï²@¨÷Fffff@¨÷F§ï²@¨÷H1&éy@3Âò䎊@3Áÿ.Hè¨@1+¥ãS÷Î@1,L˜_@0±‰7Kƨ@0²3œ¾à@0¨è§æ›@0©XbMÓ@0¨è§æ›@0©Q‚©“ @0¨è§æ›@0©^žš?|öOÿÝ?jú‚<·™?‘yß]³Õø?ŒÇQ´?cvóJz×?€bõ•C?Œ´3‚n”'?‚€.]Øå?‚ù]f¼ÃÈ?†“‚I—²?†œ¶•ÒZ@@$@&@,@4@6?ð?ð?ð?ð?ð?ð¿E·Ènð?4p ·9?#»´?Û?Ü?'ôUt¸‘÷@¬…¦ ¿r…@šnvÇFÖ?2òœµö?6¦efæ"¨?a:êƒ4”?f+qtoþ @Ÿs æ"ø„@@¢à¨õÂ\@¢à¡G®{@¢à¨õÂ\Á.„€@¢à¨õÂ\Á.„€@¢à¨õÂ\Á.„€@¢à¨õÂ\Á.„€@¢à¨õÂ\Á.„€@ ‡+ J@ ‹C•@ ‡+ JÁ.„€@ ‡+ JÁ.„€@ ‡+ JÁ.„€@ ‡+ JÁ.„€@ ‡+ JÁ.„€@7Q|ÚQ@7bGE8ï5@2°Ä›¥ãTÁ.„M‰ûçm@1’Ðå`A‰Á.„QnÙ‡@1hè§æ›Á.„NÜC,¥@1hè§æ›Á.„NÜC,¥@1hè§æ›Á.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøø@¢MáÊÀƒ@¢Mâ Iº^@¢MáÊÀƒ@¢Mϲ-@¢MáÊÀƒ@¢MØï4Ö¡@¢MáÊÀƒ@¢MÆÜ]c‰@¢MáÊÀƒ@¢MÅÉä@¢MáÊÀƒ@¢MµÏªÍ @®Î 7Kƨ@®Î®zá@®Î 7Kƨ@®ÍùõY³Ð@®Î 7Kƨ@®ÍþOv_Ù@®Î 7Kƨ@®Í²äŽŠs@®Î 7Kƨ@®Í¾vÈ´9@®Î 7Kƨ@®Íаò{²@6#g ù l@6!ÊÀƒn@4c÷ÎÙ‡@4Q–R½<6@3;Ƨï²@34?åÉ@4TmÅÖ8†@4/ß;dZ@4TmÅÖ8†@41Î_p@4TmÅÖ8†@4,wškP²?|öOÿÝ?Ÿø5Õb&?˜g± ÓË?°Ëm$.ž?¤F™¢þ¸?´9Uð·d?€‚ñêã ?¢n4Ñ?£¯ðï?³øæp:ì2?§ò0û˜/f?¯íÉv8' ?ˆdÁ -,?«R²QFÆ?Vrÿä?P Ž)k?·C$\ûj$?¶ºjË)™@@@@@ @$?ð?ð?ð?ð?ð?ð¿€>îÍÀ¿ºe€ ?J<]éà?q;½WÛ@¢MÙyfÀK@®ÍõË/hÞ?_\Å*Kb?…?èî`¾?²{êîm&?ýØó‡®6@Ÿ^_ÉU~@@¯…‡+Á.„€@¯…‡+@¯‡=<64@¯…‡+@¯‡SMj@¯…‡+@¯‡QÅ‚@¯…‡+@¯‡sMj@¯…‡+@¯‡• '»@¦»Ù™™™šÁ.„€@¦»Ù™™™š@¦º­¸ºÇ@¦»Ù™™™š@¦ºÅœàw@¦»Ù™™™š@¦º·škP°@¦»Ù™™™š@¦º“üPH@¦»Ù™™™š@¦º$oi@9ãg ù lÁ.„>¤µÜÆ@5ÜIº^5?@5#FÜ]cˆ@5`A‰7L@4Qä÷eý‹@4fYJôðØ@3—€4mÅÖ@4fYJôðØ@3›6z—@4fYJôðØ@3žp:û~‘@8J¨?àÞ;gFÙí?áC>Ó¾S?ᾡ;¦?ÚV…¾Ò¾?Ø8‹R} -.@8J¨?Æîíä”$a?È ŒªgƒA?Æ„@l|L?ÌÙÒ¨PÝ'?Ô9Y14ó5@8p÷?ž°« /I#?˜èò_?þËæ¨Ý?¤¦”x£b?¡!¥zt9Û@@@@,@(?ð?ð?ð?ð?ðøøøøøøøøøøøø@¦›(õÂ@¦›E¡ÊÂ@¦›(õÂ@¦›àuöþ@¦›(õÂ@¦›"MÒñª@¦›(õÂ@¦›)­BÃÊ@¦›(õÂ@¦›쿱\@¦›(õÂ@¦›ã¼Ò@¨sD“t¼@¨s8Ôýóµ@¨sD“t¼@¨s?åÉ@¨sD“t¼@¨s@·€4o@¨sD“t¼@¨s«6z@8Y*0U2b@8aÿ.Hè§@3W+ Iº@3UÜÆ?@2lj~ùÛ#@2n쿱[W@1ºÔ,<ží@1·ÈK]Ìd@1ºÔ,<ží@1³üPH@1ºÔ,<ží@1¶”FsØ?¸bÌk0ÀÕ?‘ĵS…ç_?’µ<ëvar?Ž £Ú?– ÷œ È?–äm¦Qȳ?¯ò5}'Î?’LÁŒÀ´a?”Qä\‰Õ?ni"Í š?“«YNÚ˜°?’ ÃCÀ`ú?«†CRvÉÂ?”~ªd•?D/ -b°Þ?'dÂã—…?“KÌ&¨Í?“!S{uu@@@@@(@(?ð?ð?ð?ð?ð?ð¿r‰g¿ @?X"±¹j?eœ»‘W·?_âxî,*Ã@¦›#ú´ùF@¨s?B$­?u¥ýòªêp?qôýüŒÐ?ßüLþQ??Ø Y”%…è@ŸqAH˜w@@¦ä›"Ðå`@¦ä›¥ãSø@¦ä›"Ðå`@¦ä›˜Çâƒ@¦ä›"Ðå`@¦äIQ‚«@¦ä›"Ðå`@¦ä›"Ðåa@¦ä›"Ðå`@¦ä˜Ôýó¶@¦ä›"Ðå`@¦ä™ k¹Œ@¤ZNÙ‡+@¤ZN—Oß@¤ZNÙ‡+@¤ZNæ1ø¡@¤ZNÙ‡+@¤ZPbMÒò@¤ZNÙ‡+@¤ZTÉ…ðo@¤ZNÙ‡+@¤ZTSŽóM@¤ZNÙ‡+@¤ZRñ©ûç@4™*0U2b@4˜üPHð@0õãS÷ÎÙ@0õÖ8†YJ@0¬j~ùÛ#@0¬"h Ô•@0(è§æ›@0'l‹C•€@0(è§æ›@0'ÕfÏAò@0(è§æ›@0'®záH?}Ñ¿ž,?Kb½™×?‘WßÈDö@?Œ^:Òf?îú/´`?‘)]•\¬?1·†Æjñ?’4 "ëžØ?ö”iåó¨?‘jýÚXÜ?‘Oyn¥Ïj?‘fû›1-&?ƒ´],m÷?‚ù…žÄ`x?ƒR¨º“JÞ?‡ã ËÄž?†Óß -tõ@@@@@&@*?ð?ð?ð?ð?ð?ð¿A¤n\?Sø{"?%!P¸<d?<î¶ê1bc@¦äšŠû¾@¤ZQå(-?EPÐ }?]b}»Ö?— Á.+?Äðn`@Ÿg%Ú\æ"@@¥V“@¥—OÞ@¥V“@¥Ë’:@¥V“@¥üj~ùÚ@¥V“@¥›¥ãS@¥V“@¥r° Å@¥V“@¥§æ›@©8:áG®@©8:Ÿ¾vÊ@©8:áG®@©814êK@©8:áG®@©81Ä2ÊW@©8:áG®@©8=æšÔ,@©8:áG®@©85L˜_@©8:áG®@©84FsØ@3žHè§æ@3ž.±Ä2Ê@0E?|í‘h@0<¹#¢œx@0`A‰7L@0ðØDÐ@.b¶®~@-ü]cˆe•@.b¶®~@-þ«6z’@.b¶®~@.6âë?žˆ2}?—É·R©Ï?¥é+(³?žÑá•®ö0?Ÿ0 碽ü?Ÿò5}'Î?|öOÿÝ? ·yÈG³?¡œåVÉh?”Ò}“® ?Ÿé„ærrl?¢íÐFW?‚nâwfÿ?îŠõ ?†úŒz_–È?‡¯½.SM?‹ ˜1 D@?™/ã̽`ª@@@@@,@,?ð?ð?ð?ð?ð?ð¿[iP¥(¿B u ?FÆpQ˜?Mý®Ðg -@¥ žˆˆ@©89ìÉ/¦?d1žºDt ?i,ŠÞu‰)?Ã3Ÿº±ä?ÒŸo>Èa@Ÿbí›"J£@@£I7KƨÁ.„€@£I7KƨÁ.„€@£I7KƨÁ.„€@£I7KƨÁ.„€@£I7KƨÁ.„€@£I7KƨÁ.„€@/ð£× -=Á.„€@/ð£× -=Á.„€@/ð£× -=Á.„€@/ð£× -=Á.„€@/ð£× -=Á.„€@/ð£× -=Á.„€@6½:’£Á.„>¤µÜÆ@2½‘hr° Á.„M‰ûçm@2V”Á.„QnÙ‡@1ò䎊rÁ.„NÜC,¥@1ò䎊rÁ.„NÜC,¥@1ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@¢¸éxÔýô@¢¸êÀƒo@¢¸éxÔýô@¢¸ìEÈõí@¢¸éxÔýô@¢¸ß} Ê[@¢¸éxÔýô@¢¸ÁO~¦@¢¸éxÔýô@¢¸Ø´˜:)@¢¸éxÔýô@¢¸×_oÒ@˜¤t¼j@˜¤ñ©ûç@˜¤t¼j@˜¤<éu>@˜¤t¼j@˜¤B‹ÔÊÈ@˜¤t¼j@˜¤â9†î@˜¤t¼j@˜¤?ÏÑç@˜¤t¼j@˜¤3=¥øº@6IÎ_oÒ@6G1Å@4 Ä›¥ã@3þcÈb•@3]V”@3qÄQØdñ@30–»˜Çã@3?§}á@”@30–»˜Çã@3:úZÆ@30–»˜Çã@3@¬CHÞ±?}õ¬#„­?˜öð÷v¥§? CÊa›&?‘C`ÞvgÝ?˜yÃó±å?¡ÂdövÁ?€‘gQÚÃ?šg'Ú*/³?«À%/Ï´? ˜TM–G¢?™£ähè—?ŸîÃÈçe’?„væc0·?ÈÞGÈ?§Wyì•+Î?©½I ‡?£oû»yì?¥pÞøA‰Õ@@(@(@"@7@7?ð?ð?ð?ð?ð?ð¿ë«É ?qTû÷?€?qÑ—~?™i1Æ?°ˆÉÕ–z?œ26d®æ?ž‚l{ð :?©:ŠÊÙ?¢D( ?›Àß·Ú™T?’&'Þ’c?Ÿ&ÌZ—ô€?ž÷çî!«?¥vöôÛ-?“¿ŽÁ{¢?“£ïHŸÛë?‘?Ðü ?“qþægu?÷(6 ˜+@@(@*@$@<@9?ð?ð?ð?ð?ð?ð?Oj -Bt?wãa·£??¦à®ª±›?w¶¢ònÓB@¤I…Û°åE@˜lõ…¦‡z?\þ±ÄRj?[…}Ö\?©)ÖëÔ,@§Ñ&%ª@Ÿm-½ÅÚ1@@¤>^¸Që…@¤>V‡+ @¤>^¸Që…@¤>Rñ©ûç@¤>^¸Që…@¤>L"h Õ@¤>^¸Që…@¤>?b¶®}@¤>^¸Që…@¤>\C,¥z@¤>^¸Që…@¤>P°ò{³@©i•$Ý@©i–“u@©i•$Ý@©iŸ¾x@©i•$Ý@©i†€IQ@©i•$Ý@©i·éù@©i•$Ý@©i•›=È@©i•$Ý@©iœÆ?@7¨†YJôñ@7©*0U2b@2T›¥ãSø@2R•éá°Š@1Õ`A‰7L@1Ï!-w1@1B‚@·€5@1:=p£× -@1B‚@·€5@1E$Ý/@1B‚@·€5@1<ô!-w?ð°–Ž]?¾¢`ƒ?ž´g–Ow? l§s¼C^?’dÓÙiº?•ŠàuVº`?ð°–Ž]?“¶†ÿê¡?žËcÃoŸ?¤9Û6 ó?‘†óèJL\?‘õe\Š«p?ð*wjs—?ŒÖ -ÄȲ?ŠÇÿú?Šˆ€!B®?‰G±±ZÎ?IÏáå$?ð@@@@$@"?ð?ð?ð?ð?ð?ð?tœª¹€?y{ÏH?Ž:ìû -?HE¢Ÿ&33@¤>SUWÈ@©i–ÄôÝ7?ŠM½ ]?Q‡¨¾4V@㺚\,?ŽsG 5—Ü@Ÿup²;f¹@@¬D¡ÊÀƒ@¬DŸ;dZ@¬D¡ÊÀƒ@¬D sºPo@¬D¡ÊÀƒ@¬D£~<#@¬D¡ÊÀƒ@¬D¡ÁñÀ@¬D¡ÊÀƒ@¬D¢«Æb7@¬D¡ÊÀƒ@¬DŸµN‡@—|ixÔýô@—|_ycZy@—|ixÔýô@—|€×ÆM9@—|ixÔýô@—|mÂÒþÈ@—|ixÔýô@—|msxÞ@—|ixÔýô@—|kŸ„ce@—|ixÔýô@—|kRö(Ñ@8D¯O „M@85”Ï-¦@4i‡+ @4k—ƒiŠF@3RÐå`A‰@3VK ÿà@2s&Á½¥@2w˜>Éáx@2s&Á½¥@2võ¢å°@2s&Á½¥@2w -‰O)?°cÖ÷ГA?3ª?qJ?‘k<º…EÅ?Óê¸Üð—?“‰·I¯s?‘œnÛùŠ?Ž\Õl6Ò?’ $4;}?‘ÑM uÝ?“©&úSÙ?“có{ç?“)¥ö‚HV?œ9Àåáñs?‘p¦òÝA?†]"ïŠ_/?†OÙ3—¯?ˆ9cjRkÄ?‡Þß 3ª@@$@@*@<@:?ð?ð?ð?ð?ð?ð¿:£Íè?UÐy5?FÜ©Ü6âè?A-̹ @¬D¡TËæø@—|js6\?Yå‘P£†B?bT£µì† ?©híÛÍ¢?»¿p²j´@Ÿpr;ß@@«ñë…¸R@«ñðå`A‰@«ñë…¸R@«ñíÒñ©û@«ñë…¸R@«ñçÈK]Ì@«ñë…¸R@«ñì~($ @«ñë…¸R@«ñëàÞÒŠ@«ñë…¸R@«ñëjçÕg@­Ë‘hr°!@­Ë”9Xc@­Ë‘hr°!@­Ë“ àÞÒ@­Ë‘hr°!@­Ë“Ð|„¶@­Ë‘hr°!@­Ë’ÊW§ˆ@­Ë‘hr°!@­Ëÿ—$t@­Ë‘hr°!@­Ë“ÃaA@6ëµsê´@6âMÒñ©ü@2©‡+ @2©ã¼Ó@2¶§ï²-@2¶§ï²-@2œàu÷@2¼j~ùÛ@2œàu÷@2ŽŠqÞj@2œàu÷@2g ù l?„F/·ÿP5?W[†?‘K]Ã4?’ {½4?’êÔÒ?ø·-/ge?˜ž^ƒÿ*ˆ?’“ºƒ;Nû?üÓqÔN‰?‘ˆ¶´M=?‘®7Ö=^9?·t¤¢‚K?³p}Ù[^8?Žâç.¡È?…íŽ(þÇ?„•ˆG’Z¾?Š*ÊÔQãú?ˆ0&YÊEd@@@@@&@$?ð?ð?ð?ð?ð?ð¿S•a¨¿(ýÊ&@?'/™1òQ?@Æ÷»>Ã@«ñí3 e,@­Ë’ßmô“?IýZ‘T?[)¯§V7Š?•Vò©“,?°SuY4Þ@ŸmrÃ*­@@¨D´¼j~ú@¨DÂÐå`B@¨D´¼j~ú@¨Dµ$Ý@¨D´¼j~ú@¨D°oiDh@¨D´¼j~ú@¨DµY³Ð}@¨D´¼j~ú@¨D±&éxÕ@¨D´¼j~ú@¨D¯·éù@¨N¬1@¨N%`A‰6@¨N¬1@¨Néùs@¨N¬1@¨Nú¬Ùè@¨N¬1@¨NÁ½¥@¨N¬1@¨NÓZ…ˆ@¨N¬1@¨N64@8>«6z@8 Û"Ðå`@3R Iº^5@3Rø7´¢4@2,j~ùÛ#@2,cñA \@1£ÉîËû@1£ÉîËû@1£ÉîËû@1¢u%F -¦@1£ÉîËû@1£FÜ]cˆ?1·†Æjñ?‘Ü„ Þ(£?”4 bà5?‡{@áè?’<_+fjä?’ëÆ[2?™™™™™™š?“?xr¢I?“’OÕƒõ‘?@§[*^?’.<ù?‘–íÍQÜ?¸éÅR[SA?Ž»žä4?…íŽ(þÇ?„2ÌôÏ?ˆ -¿„r©Ý?‹&¸ê±fÂ@@@@@*@,?ð?ð?ð?ð?ð?ð¿q[áâ¿S¦›Ž?:Ç}%\3l?[Þšójö@¨D¶CJ¨«@¨N“Ô¬?_£6¤/?uãt§ #²?¿Û´$Z=ƒ?äò‡qàÐ@ŸlÑâ͸@@©. Oß;d@©.&éxÔ@©. Oß;d@©. ¥zxl@©. Oß;d@©. -=p£×@©. Oß;d@©. ÌÌÌÍ@©. Oß;d@©. 1&é@©. Oß;d@©. ’:)Ç@ži•$Ý@žiŽÙ‡+@ži•$Ý@ži›À6ã@ži•$Ý@ži¤%®æ2@ži•$Ý@ži™™™™š@ži•$Ý@ži—Ûô‡ý@ži•$Ý@ži—ö+jé@7>«6z@7+ÓÃa@1½‘hr° @1»Æ§ï²@1 "Ðå`B@1ÕfÏAò@.ÿåÉä@.üÓZ…‡”@.ÿåÉä@.ÿ.Hè§@.ÿåÉä@.þùÛ"Ðå?š•§q!U?:LÓá -í?‘:€¾¶ˆ?Œj6_?ùª¨?ÛF»0?žˆ2}?“-N•I`(?¯éÊSÜ?Ò–‚h±n?Ø¥²À<(?–’+¸¢d?žšÅö´^'?†¡HŸÊç?…µsê³g¡?ƒ!Ë *(?†Óß -tõ?‡?®\Âä@@@@@$@,?ð?ð?ð?ð?ð?ð¿P½¹%²?QÐ-{?1þ¯í?±Ü?6Œû/Y˜7@©. ísœ@ži•ê<É?JIŽà…: ?Z&"Û1 ú?‘¡u*<–?·f«5©S@ŸmR}ñ´J@@¦¹‰º^5?@¦¹šCYVþ@¦¹‰º^5?@¦¹‡ÏÂ+@¦¹‰º^5?@¦¹wÂÞ@¦¹‰º^5?@¦¹†áMšÖ@¦¹‰º^5?@¦¹…|vIÙ@¦¹‰º^5?@¦¹‹VgWW@˜üí‘hs@˜áÊÀƒ@˜üí‘hs@˜ŽÂ¿Ô @˜üí‘hs@˜áø½ @˜üí‘hs@˜êåSœ¯@˜üí‘hs@˜àòï(ã@˜üí‘hs@˜û„ @8?–»˜È@7ÖšÔ,<ž@3žÙ‡+@3¡‘ó>@2Ͳ-V@2ÍýÃV¢†@2Œ~($ @2#(rÅ8@2Œ~($ @2(fM°@2Œ~($ @2$ÌÆ¿ê6?‹œãµ,r—?dûþ»ÛÀ?’7¦m-§J?×îN*â°?”#Ô¶}_=?“™ kR?“x/0 ª?”ž«¸¹ÐŠ?‘œq(.ÛW?‘úû'®Œ¸?–#)X;?—UÙCJL?µ—bº§|&?‘—»eñ!?†DÁ‘uÞ?ˆ«(A›ë?Š -e»°û?ŒÓúS©À‚@@*@$@&@7@8?ð?ð?ð?ð?ð?ð¿oá¼\¼?[¡®(I?\Î;üXL(?XbeøŸÛ@¦¹WÅ@˜é¬±?|+TÐ~?!?u_²¥F/?õynŒÖ¿?á’»Ôg#t@ŸkAci†@@¬ Iº^@¬ Iº^@¬ Iº^@¬¿U›=@¬ Iº^@¬ÀÄ›¥ã@¬ Iº^@¬üÓZ†@¬ Iº^@¬¾š@¬ Iº^@¬½Ùb·@ªa$Ý/@ªa Iº^@ªa$Ý/@ªañA \@ªa$Ý/@ªaMÒñ©@ªa$Ý/@ªan.±Ä@ªa$Ý/@ªan.±Ä@ªa$Ý/@ªaëC-@5ÿ–»˜È@5ÿò䎊r@2° Ä›¦@2À4mÅÖ8@2 ²-V@2 )^ž @1£ÉîËû@1¡‚©“ á@1£ÉîËû@1£× -=p¤@1£ÉîËû@1¤¨ÁTɆ?‚á²Olºü?ÖÈ ¼?‘e -!ßC?Uÿyu”#?‘¯GàBm?“”üU§<­?‚á²Olºü?’4 "ëžØ?‘8“‡«G?‘¼Øzé±ï?‘êë·áþA?‘fû›1-&?ˆïhƒEõ¦? $gú‡v?ƒÚ@êA²?ˆ6‘F:™Ê?ˆÔÞÑ—æJ?‘p&Æ ç–@@@@@&@&?ð?ð?ð?ð?ð?ð¿Gؾ?1ÚóÐ?BaÌç)¡?yö#Í º@¬ÀÁ&6º@ªaÀ'@?bw")sÄ??Xƒ‰§Z·?ÉšÕ˜¨Î?‚û}]°;Ð@ŸhAž’†¬@ @®ðíV@®ðâ\(õ@®ðíV@®ðç¼¢ã«@®ðíV@®ðæÿÍSã@®ðíV@®ðê¸MI@®ðíV@®ðí¬NYA@®ðíV@®ðäM:“@˜4m‘hr°@˜4l1&è@˜4m‘hr°@˜4W0E@0@˜4m‘hr°@˜4t¨êäµ@˜4m‘hr°@˜4 •| - @˜4m‘hr°@˜4‚x¹ù@˜4m‘hr°@˜4r×s@8:qÞi­C@81äQ›>®@5» Iº^@5µ–Ó3@5Z~ùÛ"Ñ@5d¡×Íd~@5:Ô,<ží@5;«V©+:@5:Ô,<ží@5@-¥¸§S@5:Ô,<ží@5=¸ºÇË?‘w×vHf?›Íîç -?¤°"RÙÃ? Œ—È­â»?¤h?zF?²ù-VñŸ4?“O‹}Ìe?£,d†@Ÿe&i`ôO@!@¤ž³3333@¤¢ÂMÒñª@¤ž³3333@¤¡QÄ2ÊW@¤ž³3333@¤¡-w1@¤ž³3333@¤¡¬"h Õ@¤ž³3333@¤¡7Xâe@¤ž³3333@¤ Ó3333@®|«…¸R@®{‚Ðå`A@®|«…¸R@®|¸»@®|«…¸R@®| Oß;d@®|«…¸R@®{ùXbN@®|«…¸R@®|ŠÚ¹õ@®|«…¸R@®|BÞÑ·@8G>«6z@7+ Iº^@5£÷ÎÙ‡@4NcŠ @4éÛ"Ðå`@3ÒGE8ï5@4œÚQÎ@3aø -à@4œÚQÎ@3_Š Þ@4œÚQÎ@3[~ÿ—%?¢F^ì¼Sð?ØøÛtð?¶§U…A”ô?ÄøÃç÷%?»°Â„Þ ‹?Ø üRAøQ?œä%—ëš?²¦Î^Ï?—Àó%â­?§7&Öcè?šâ6¿°P?§‘§ß±Zî?°*?Ú±P?œFg*V¿3?¤1މ,j†?«~?‹]B0?©CRù¼U?™/ã̽`ª@@@@@ @&?ð?ð?ð?ð?ð?ð¿¹Ìi@?¤´@?Wf>h—ß?^ì==QVÓ@¤¢C³x¯@®{ÄWÁ&Ð?soª0æ‡?€(O-hhÆ?˜ˆÑÑ’³?Ø4P— ¬@Ÿb¤]|å9@"@­š-‘hr°@­š-Òñ©ü@­š-‘hr°@­š.óMj@­š-‘hr°@­š.záH@­š-‘hr°@­š,¿±[V@­š-‘hr°@­š+]Ìcñ@­š-‘hr°@­š+…¸R@­Ï•$Ý@­Ï–“u@­Ï•$Ý@­Ï–È´9Y@­Ï•$Ý@­Ï—>«6z@­Ï•$Ý@­Ï”¢3œ@­Ï•$Ý@­Ï”9Xc@­Ï•$Ý@­Ï—süP@3÷â‚@·€@3÷â‚@·€@2!hr° Ä@2!½¥œà@1çKƧïž@1ç€4mÅÖ@1\ÚQÎ@1\¿±[W?@1\ÚQÎ@1\j~ùÛ#@1\ÚQÎ@1\¾ß¤@?1·†Æjñ?ß‹’bÏ?“­læ>®€? Ìç,Z?‘§›ßÉîj?‘_ Ýß?|¬Çëý ?’LÁŒÀ´a?’hÕü‰­?‘!¥zt9Û?‘¦‘=W?‘C å;Ã?ƒ/‹ÍY}‘?Œáò¯ž¼ù?„ò—TËÄ?ƒiñj6Â?‡L8õASÎ?‡YÍ_@@@@@(@*?ð?ð?ð?ð?ð?ð¿@¼0¿Þ T?s@óå(?5Q[v|@­š,½ Ũ@­Ï•Êwů?3[F"3a«?UÂï±?'?rTrb Éz?·Ð5D¤@ŸfìNÈãk@#@¦bšŸ¾vÉ@¦b›"Ðå`@¦bšŸ¾vÉ@¦b°Ë)^ž@¦bšŸ¾vÉ@¦b¤Z¬@¦bšŸ¾vÉ@¦b©“ àß@¦bšŸ¾vÉ@¦bv®}Vl@¦bšŸ¾vÉ@¦c ¹Œ~)@ª…âMÒñª@ª…â Iº^@ª…âMÒñª@ª…úQÎ@ª…âMÒñª@ª…öðº@ª…âMÒñª@ª…ýŠÚ¹õ@ª…âMÒñª@ª…±hr°!@ª…âMÒñª@ª†i­BÃÉ@7 ØDЩ@7 -à r@3º^5?}@3+…¸Që@1þV“u@2 õY³Ð|@1«xFÜ^@1¼j~ùÛ#@1«xFÜ^@1A‰7KÆ@1«xFÜ^@2zxl"h?‘â%ì˜ ä?¢L -xNCõ?‘–”«ëó?˜Ë=ð½ìÔ?µ—5"Ž?¾ZF,U?’Óusÿ\Ã?¥|ë-ÈJÐ?‘Ûcu%ç+?•è­¸‡?²´Xxeü?Ŷüë'þ?‚‘´…=Ca?÷¾I1;?„‘Za¹Q?ƒžÂâk,?¡S1Êz?GÅ?‘jÐÅx?‘yÃúCŠ?én™‘=Î?Œþ%å_D?ƒ/‹ÍY}’?ƒR¨º“JÞ?‡¤o„C?‡´*žZ}Õ@@@@@(@*?ð?ð?ð?ð?ð?ð¿ZÖt$?Q÷™3?4™ó4Bå?^f¹0Òû½@¬’±yÞÄ@©„WûvÆ?Qu³I$æé?ryFÁáé? ë¾%Lw$?Ú¢‡þ|!@Ÿo¯’¤å@'@©ahõÂ\@©aixÔýô@©ahõÂ\@©ah§æœ@©ahõÂ\@©an;Í5©@©ahõÂ\@©ai*0U2@©ahõÂ\@©ai7Kƨ@©ahõÂ\@©ae¼£n@ ƒmV@ ƒl‹C•@ ƒmV@ ƒiûçl‹@ ƒmV@ ƒféxÔþ@ ƒmV@ ƒl/ƒ{J@ ƒmV@ ƒnËûµ@ ƒmV@ ƒncŠ @6°4mÅÖ8@6¯O „M@3Ìí‘hr°@3ÍVlô!@3ˆ“t¼j@3ˆË’:*@2ž«6z‘@2ÈK]Ì@2ž«6z‘@2<64@2ž«6z‘@2«ŸU›=?ð°–Ž]?”Øÿ4ÙKl?‘e -!ßC?Hð¹?˜¡4wˆŒ?“¾Ž¿ô€?ð°–Ž]?”=øŽî‚}?低NëU?‘ǧ?D6?–›·†ø?‘fû›1-&?ð*wjs—?†¡HŸÊç?‰~}œ…o_?…bv{3dZ?Š`½i=ÓØ?‰G±±ZÎ?ð@@@@,@(?ð?ð?ð?ð?ð?ð¿VwqÉá?P,sPqÀ?B/ù©%Ù?:òno'b¶@©agç‘(@ ƒm˜ÞJ?R8£<Ši}?J~Ùûd¨·?”æ”@èÊë?‡Ó%SŠEk@Ÿsup$z@(@¯âwKƧð@¯âwÎÙ‡@¯âwKƧð@¯âxQë…@¯âwKƧð@¯âx_ö•@¯âwKƧð@¯âwXâd@¯âwKƧð@¯âvOv`@¯âwKƧð@¯âv+jçÔ@¡À­‘hr°@¡À®V“@¡À­‘hr°@¡À­„M;@¡À­‘hr°@¡À®záH@¡À­‘hr°@¡À®cŠ @¡À­‘hr°@¡À­ÅÖ8†@¡À­‘hr°@¡À­úCþ]@1eöý!ÿ.@1e”¯O „@,Çï²-@,ÇÈK]Ìd@+´ýó¶E¢@+´•*™1@+3üPH@+2䎊qà@+3üPH@+2{²þÅn@+3üPH@+2° Ä›¦?Éa—Ã(Ê?ÉGãA­÷?‘ŸÇSñ?‹ë¤½?‡á?òǹíT­?¼‚Ë¡K?ÐbV‡,?’ ÃCÀ`ú?ŽËÜ¿€?@§[*^?ë,YÁ?R g!Ú¢?ma7Î?Œ°¶.Ä+Æ?‚uÞ@>N ?‚äÍ“½E'?†ŠúЀ>(?†–f_ÔŠŠ@@@@@,@*?ð?ð?ð?ð?ð?ð¿Aù  ˜¿(àÂð?'×:Œe’N?!Få çØ@¯âv¡ž‘p@¡À®$Q›?6êº„Š¢?06üÊX0d?i™ÙEì\?Vï*§¨è<@Ÿs j8 .@)@¦‘Ä“t¼@¦‘ÎÙ‡+@¦‘Ä“t¼@¦‘Õ%F -¥@¦‘Ä“t¼@¦‘Î;Í5§@¦‘Ä“t¼@¦‘Æ€IR@¦‘Ä“t¼@¦‘Ð-à @¦‘Ä“t¼@¦‘ÀªdÂ÷@­/z^5?}@­/|j~ùÚ@­/z^5?}@­/s@N¤©@­/z^5?}@­/d›¥ãS@­/z^5?}@­/{~ÿ˜@­/z^5?}@­/gü¹#£@­/z^5?}@­/zÇË)@7·â‚@·€@7µsê³g¡@53S÷ÎÙ@5/U›=È@4Àå`A‰7@4ÇRT`ªe@4 ¿±[W?@4JŒL˜@4 ¿±[W?@4üPH@4 ¿±[W?@4 '»/ì?‚á²Olºü?žÒ·Ì‚? 6K¼Xææ?˜öÔþ¹û?§pˆ/™Š?™òc¾ÿ:e?îŠõ ?Ÿ.Í -üò?¡¿®ªã‹B?ŸjÝá3(?£ù°‘ -sï? ö«ö'ƒ?6´×–°?W<Óܾo?¢Ì÷y\ÛÎ? ²j÷v ?™t#‰$ ?”NtyÞ"§@@@@@,@(?ð?ð?ð?ð?ð?ð¿d„˦ú¿T~ŸØ?M -s7ý£?cÜX«‘@¦‘ÈSÁ @­/x±I8þ?pù=œÍ?ƒŒ:8í?ѧ‡ÀÛû?ç` ºl@Ÿj6®´wË@*@¨k‹Æ§ïž@¨k‹…¸R@¨k‹Æ§ïž@¨k‹ïU©Œ@¨k‹Æ§ïž@¨k‹ŸU›=@¨k‹Æ§ïž@¨kŒx›'@¨k‹Æ§ïž@¨k‹àÞÒ‡@¨k‹Æ§ïž@¨k‹áØv@›^cS÷ÎÙ@›^cS÷ÎÙ@›^cS÷ÎÙ@›^b’Tâg@›^cS÷ÎÙ@›^b¨a@@›^cS÷ÎÙ@›^bñfà@›^cS÷ÎÙ@›^cÑTvw@›^cS÷ÎÙ@›^e|*§þ@3ò䎊@3¥µ0Ï@/\j~ùÛ"@/]ët´`@-òn—Oß@-ò̱Qð•@,žžš@,žì.‚@,žžš@,žéÿ<0G@,žžš@,Ÿ °½1å?|Ñb×¶@?רéª÷4?‘"þ(#*m?‹ªO*j«e?ðÖì¶-?·Œ“Ͷ?|¬h2:“?’’ÛR‘?ŒJà“:?9ÍÇ~FÀ?Ú¥ªÔW?Jö²U4?‚pDøïRg?Œº“zí+‡?‚xþuhy¿?‚éST)FS?†‘Ò®â­c?†Š®ÚH„ð@@*@(@*@3@,?ð?ð?ð?ð?ð?ð?§öl€?"òˆ`?Í|$HÊÓ?}c[ª.@¨k‹Ù@›^cÑ‘Ê?9«–Y×iØ?8÷o}šý—?‚ …$f¾?€X’*¯ @Ÿfø>E@+@£ƒâÐå`BÁ.„€@£ƒâÐå`BÁ.„€@£ƒâÐå`BÁ.„€@£ƒâÐå`BÁ.„€@£ƒâÐå`BÁ.„€@£ƒâÐå`BÁ.„€@bMÒñªÁ.„€@bMÒñªÁ.„€@bMÒñªÁ.„€@bMÒñªÁ.„€@bMÒñªÁ.„€@bMÒñªÁ.„€@4‚ò䎊Á.„>¤µÜÆ@2T›¥ãSøÁ.„M‰ûçm@1È“t¼jÁ.„QnÙ‡@1a:’£SÁ.„NÜC,¥@1a:’£SÁ.„NÜC,¥@1a:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø,@§w<í‘hs@§w6‡+ @§w<í‘hs@§w:¹õY´@§w<í‘hs@§w:ÇË)@§w<í‘hs@§w<Æ?@§w<í‘hs@§w:Ô,<Ÿ@§w<í‘hsÁ.„€@ž+È´9X@ž+º^5?}@ž+È´9X@ž+ÂÞѸ@ž+È´9X@ž+Ì~($ @ž+È´9X@ž+Çü¹#£@ž+È´9X@ž+¾($ x@ž+È´9XÁ.„€@7*0U2b@7Ô•*™@3 Iº^5@3:’£S@1ñ‰7Kƨ@1ñ-w1Å@1µµsê³h@1¶4êK@1µµsê³h@1µS&Á¾@1µµsê³hÁ.„NÜC,¥?˜ž^ƒÿ*ˆ?*£|3Né?‘°&޲P?‹ÑqÔ@vÿ?‘×´<î¯j@8Ù?}Ñ¿ž,?’[ KÄ0R?‘[RK¶ËE?RLnj?” E®!—@8û—?“²pÅâ-Ý?’òÌ&Œ®3?„W;RT?„À"aËô??‰_uñšó@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø-@¡I¡ÊÀƒ@¡I A‰7L@¡I¡ÊÀƒ@¡I¨õÂ\@¡I¡ÊÀƒ@¡I´¼j~ú@¡I¡ÊÀƒ@¡I±Å@¡I¡ÊÀƒ@¡I¸7´¢4@¡I¡ÊÀƒ@¡IÁaä÷f@ ]A‰7KÇ@ ]@Ä›¥ã@ ]A‰7KÇ@ ]S÷ÎÙ@ ]A‰7KÇ@ ]I“ àß@ ]A‰7KÇ@ ]=¿HÌ@ ]A‰7KÇ@ ]ZáG®@ ]A‰7KÇ@ ]YŒ~(#@7uS&Á¾@7uzxl"h@2À Ä›¥ã@2¹Û"Ðå`@1´“t¼j@1°–»˜Çâ@1B‚@·€5@1F¸ºÇ@1B‚@·€5@1.Ù‡+@1B‚@·€5@1/|í‘hs?“Æ×q„nï?•Íñ¤Ý q?–™@^Ú¢?‘´CF õ?­Ê޽˹ÿ?£¸½X—Œ?–ªÎ­¡?”n‹rÕ|?“®ÂrVŽx?“ä$š„…œ?®õw¸æd«?›Œ³¶Ñ×?‹ÛÛÐïE?‘ -òtMŠ?“„*0x)Æ?ˆW„hðQ?—H—‹‰ -0?‘ýÂHåÅÐ@@@@@,@$?ð?ð?ð?ð?ð?ð?zã¸?r¢|?)O_‘úöÙ?j"n¯þ¡q@¡I¯üâfb@ ]FCt M?EIM”;¶ ?‡‚§íâBò?v.Ù)«ª?ú½Óù²·õ@Ÿh¸È@.@¬ -î—Oß@¬ -íöÓa*@¬ -î—Oß@¬ -æ=x@¬ -î—Oß@¬ -Þ’,ü@¬ -î—Oß@¬ -ÖNûü@¬ -î—Oß@¬ -Ðu¶b@¬ -î—Oß@¬ -Ï@`¦@“J,1&é@“J+jçÕg@“J,1&é@“J&šÔ,<@“J,1&é@“J+?ÅI¦@“J,1&é@“J&©ùJß@“J,1&é@“Jo-LP@“J,1&é@“J ¨Ž‚ß@5ý:’£@5û‡ò~Æ¢@3žÙ‡+@3™Öµþf@3 ²-V@3€9à@2ÿò䎊r@2ðìîÀ<Í@2ÿò䎊r@2ñ´c9n@2ÿò䎊r@2ñ"Áš?„ÜNó7·å?“´QzjÇ‹?•· ˜Ùn&?‘Xã‹`Ó?¤µÌ¤ŽÎm?¢ '4&%?|çµB &€?“ultCé?”œ×ŒÇ?=ͱl•8?špU,»?”M€ä ÷?‚¹ !€¶¸?Ž@y‡‘;?‡)T;‹?‡[ž=9á?É´i­Åw?Gr±¼_@@&@$@"@8@3?ð?ð?ð?ð?ð?ð¿~Ͱ¶&¿g…n;?Pù{ƒA?Lr×>ön @¬ -ßGÑÿ4@“J!k·¿X?m—®øË‰é?j°ž;1»?ÓQÍeSÇz?Þ»Šÿçˆ@Ÿd£¼ý®¦@/@¢C•%@¢,ÌÌÌÍ@¢C•%@¢j¦L/ƒ@¢C•%@¢IÔ•,@¢C•%@¢\PHð@¢C•%@¢]ã¼Ó@¢C•%Á.„€@§¯/Ÿ¾@§¯;dZ­@§¯/Ÿ¾@§®üj~ùÛ@§¯/Ÿ¾@§¯ˆÎp;@§¯/Ÿ¾@§¯WXâ@§¯/Ÿ¾@§¯Q4êK@§¯/Ÿ¾Á.„€@9>«6z@9#33333@6 Ä›¥ã@5߃{J#:@5t¼j~ú@5"MÒñ©ü@4‘Þi­BÄ@4ÄŽŠqÞj@4‘Þi­BÄ@4¡ë…¸R@4‘Þi­BÄÁ.„NÜC,¥?|öOÿÝ?¹Lxé5BL?¿ -¢“Šôì?»lE ƒ]?ÛÄÒ®Uš@8Ù?µŸ£'Ñ&?ªvðj?›R?±ÝF͵sS?¶éÖŽyPâ?¶Ý”J {×@8û—?ÅT”#¨ ?¹W»¥ÿ$B?¹§Âƒj?¹é›÷Kûä?Â11õÔ6©@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø0@«€¬1&é@«€¸0 -¢T@«€¬1&é@«€ªˆI:‚@«€¬1&é@«€¦R½<6@«€¬1&é@«€±†©Ô@«€¬1&é@«€²^uÆ–@«€¬1&é@«€¯›]@”é·KƧð@”éÎ Ëåd@”é·KƧð@”é´ö“Î@”é·KƧð@”鳋÷@O@”é·KƧð@”é¶õH.c@”é·KƧð@”é¬Ò °1@”é·KƧð@”é©ÜŸøú@7Ì]cˆe”@7À¡·˜žŒ@3f‡+ J@3li.pÄ@2A‰7KÇ@2Bžy@2‚@·€5@1û¦ƒ)Û.@2‚@·€5@1ûèM{å@2‚@·€5@1úpKÔ?–…­à Ø—?’°weŒ ?“bº|ÄS?ŒuÓ)Pnf?’²¶!©ã=?’臫¡°?‚Ú¡ËG7?%üdêË?%üdêË@@@@@(@(?ð?ð?ð?ð?ð?ð?A~8ü?L(T ?0yäÆ/L®?D}Û_*ù@«ÝpØÚ§@«ºùÃ/=é?NMÿ?A³?b€‰35ê?šun«”'2?»7%@ -“Z@ŸdF¡:þg@2@¨+…¸R@¨{#@¨+…¸R@¨&•Ê8X@¨+…¸R@¨')n“@¨+…¸R@¨%º°õ@¨+…¸R@¨ -̯Q@¨+…¸R@¨$[ŸÚ@˜óvÈ´9X@˜ðÿ;?F|@˜óvÈ´9X@˜óyâ–„@˜óvÈ´9X@˜ó~°é€;@˜óvÈ´9X@˜óxiagØ@˜óvÈ´9X@˜óoäÓ@˜óvÈ´9X@˜ónÇ~y@8ÞHè§ç@7ã/è¦>m@3W+ Iº@3SÁ<¸Ñû@2éÛ"Ðå`@2äð“Fªj@2hè§æ›@2_JrêÎz@2hè§æ›@2WlêgŸ@2hè§æ›@2^ùïÑK?ä¦ÂFæ?ÁEê `?”·¯ZZ/?”M2êñæ?¨Ë„Ve*?›hÆSG?î·¬µ8ˆc?“Ž¿Ñà™f?“¦:s -íÊ?›+¹ï< ?¤ž¨ß}]?œ¸pD³D?õ›4<ý?êö‰°wú?ˆ¿ñ:[ì?‘µÓƒÀÏ?žAVøq[?‘EH ~ -@@(@*@,@8@6?ð?ð?ð?ð?ð?ð¿yw¿fz@¿]S’×À?v:ö΄?p5·§ð:@¨?‘Κ@˜ós!_'ò?‡=CIJ–?€…‰¦œ§?ñVìj­T8?Û¢‚Ãë+@Ÿró¦,­W@3@£õ?|í‘@£õ?|í‘@£õ?|í‘@£õfÏAò@£õ?|í‘@£ñÄ2ÊX@£õ?|í‘@£ù k¹@£õ?|í‘@£íjO@£õ?|í‘@£î¾ß¤@@¨cáÊÀƒ@¨cãS÷ÎÙ@¨cáÊÀƒ@¨cçl‹C•@¨cáÊÀƒ@¨cæ$Ý/@¨cáÊÀƒ@¨cã× -=q@¨cáÊÀƒ@¨câëC-@¨cáÊÀƒ@¨cá [À@4” xFÜ@4“¢œwšl@0®5?|í‘@0°¾ í(Œ@06§ï²-@09k¹Œ~(@/½Vlô"@/Á:’£T@/½Vlô"@/¹³Ð|„¶@/½Vlô"@/¸FÜ]d?€‚ñêã ?jÝ‚È?‘WßÈDö@?U›=ÈK?“>û{Ñø~?’ŒZzˆZ”?€‚ñêã ?’áÄïÃõ?‘8“‡«G?‘!¥zt9Û?“m^÷´?‘ éñ^?ƒ~¨õ/¥M?Ž•ýÙ—±?‡»¢Øˆ‹?†k3`E`-?‘  ¶‚3?’Ž<Dxƒ@@@@@*@"?ð?ð?ð?ð?ð?ð¿Rd/ïÄ¿1õtˆ€?QÈÑ*_†®?+Íü•S-@£ógˆ·4@¨câÜA?qЉkÁì•?LX­õrÖª?êÞÀ¦X[? û„©0ˆ@Ÿg:o¨™C@4@©b« Iº@©b°£× -=@©b« Iº@©b¶lô!@©b« Iº@©b³ê³g @©b« Iº@©bÒGE8ï@©b« Iº@©b…‡“ݘ@©b« Iº@©bº–¼@¦ÝZ¬1@¦ÝZ^5?}@¦ÝZ¬1@¦ÝX -à@¦ÝZ¬1@¦Ýa@N¦@¦ÝZ¬1@¦Ý4Ö¡b@¦ÝZ¬1@¦ÝŠ Þ@¦ÝZ¬1@¦Üü„µÜÆ@7‡>«6z@7ƒŽóMj@4æ‡+ J@5 'RT`@4ÐA‰7KÇ@5aä÷eþ@4:Ô,<ží@4¥Éã½@4:Ô,<ží@4ùÎ_oÒ@4:Ô,<ží@4ÈK]Ìcò?Œs¤DÅÐ?­gžóÉ?¯qÏ}è ?•ƒäôKwö?ÉW±çOrÙ?ÁMȳYh‚?„F/·ÿP5?¶2MÄ®î?²vux"ÕE?™Ç“y”[½?ƨuf -?ÉÓ‰‚?™“ÇÙ¸?°˜­á=­?§C9«ã?ÀY 0–™?Ôý >"Q?Ó!7Ù~.W@@@@@*@,?ð?ð?ð?ð?ð?ð?†É û¿›ît²€?nÁ7’5R?dôÕòÇØ@©b¾Ÿ)œ@¦Ý9{õ‚?ƒÚŸ‰\í?y¥Íÿ´š?õ*† ¢\?à×yü±@Ÿ_Os§² @5@«úáG®@«úáG®@«úáG®@«ûdZ¬@«úáG®@«û‹¬q @«úáG®@«û‹¬q @«úáG®@«úîcŠ@«úáG®@«ú…‡“Ý@®$:áG®@®$;¥ãSù@®$:áG®@®$;˜Çâƒ@®$:áG®@®$;W>«6@®$:áG®@®$;‹¬q @®$:áG®@®$<(õÂ@®$:áG®@®$:Cþ\’@5­¥œàv@5­Ùb¶®@0ý‘hr° @0ý¿HË’@/XÔýó¶F@/XÇâ‚@¸@.£¼ÓZ…ˆ@.¤ xFÜ@.£¼ÓZ…ˆ@.£¼ÓZ…‰@.£¼ÓZ…ˆ@.¤“t¼j?}Ñ¿ž,?õ¹Ëh?‘ÌË>¯f?‹×lÇ…N9?‘çG¸?ß-tT?|öOÿÝ?’NÛˆV(?«'Q™µ?K·‘d]?üÓqÔNŠ?lINõÕ„?ƒ¡É^&Ö?ŒÖ -ÄȲ?‚¸“Îè ø?‚ù8 ±^?†©b/bJö?†Óß -tõ@@@@@&@$?ð?ð?ð?ð?ð?ð>¥5E ¿ }søÀ?\pnìÀ?%FŽcCç@«úõeÙ1@®$;luTÞ?<46#?E{#}Ï?„þSQ¾ëƒ?—µùÐÜ2@Ÿgãœä@6@¯ý6E¡ÊÁ@¯ý5Â\)@¯ý6E¡ÊÁ@¯ýG{þ@¯ý6E¡ÊÁ@¯ýK¯I+@¯ý6E¡ÊÁ@¯ýcêO÷@¯ý6E¡ÊÁ@¯ýfÊO@¯ý6E¡ÊÁ@¯ýdñli@˜Yçl‹C–@˜YéxÔýô@˜Yçl‹C–@˜YáPÉYa@˜Yçl‹C–@˜Yò9@˜Yçl‹C–@˜Y÷¶Þ‡`@˜Yçl‹C–@˜YïèQ­@˜Yçl‹C–@˜Yöa%@6Q|ÚQ@6RÀƒn˜@3ÇÎÙ‡+@3Ì®@RÏ’@3®ùÛ"Ðå@3ª™ÙƒuH@3ÚQÎ@3‡e¤Á@3ÚQÎ@3þ‘~‘Á@3ÚQÎ@3…ðžä?|¬h2:“?“"i!¦¨?”¶zðB"?—.)/­I?§ Éîò–¬?ªC .½?€Ã{s°úi?”tð”»,?“TÂmÕœ?’oh˜¹$?“¿k¡‡±‚?›à.jd·Y?ƒ²üQå€?ŽŸ¡áÉŒ±?‚«s¼r•?…%ÇbÈœ?Ž“:9³Â‚?+[+ -â~@@*@(@$@:@:?ð?ð?ð?ð?ð?ð?‹ò›•?VÊOé?e,*Ã;Ž?D.H ©Ø@¯ýK|S¼Ò@˜Yî,û=X?€…nÁ4sT?a¡èl~8Ë?öAŽwô*?ÈúŸ¹Þþ@Ÿb%Æ÷Ÿî@7@§ÇKC•@§Çu?|í‘@§ÇKC•@§ÇKƧïž@§ÇKC•@§ÇH´9X@§ÇKC•@§ÇKC•@§ÇKC•@§ÇIûçl‹@§ÇKC•@§ÇKƧïž@¯ ŽÙ‡+@¯ ¬1&é@¯ ŽÙ‡+@¯ å`Aˆ@¯ ŽÙ‡+@¯ ²-@¯ ŽÙ‡+@¯ úCþ\@¯ ŽÙ‡+@¯ ²-@¯ ŽÙ‡+@¯ bMÒò@9¹Œ~($@9 ¿HË’@1©‡+ @1¨ -à @0ƒt¼j~ú@0ƒn—P@/ÑÑN;Í6@/Ñ·Xâ@/ÑÑN;Í6@/ÒÊW§†Ã@/ÑÑN;Í6@/Ó àÞÒ‰?ÈÙ þT?ß‹’bÏ?‘Ûü†Nã?‹ó#ƒt£?éDEâ©×?±ŒR°?¸!q Ý?’‡Iš÷?€s8rÅ?9ÍÇ~FÀ?ÏtP°*?H, -r_? ânIð?ŒÐ¤Âÿê?‚† SFò?ƒ!Ë *(?†¼Š˜L¥÷?‡×7°º@@@@@@?ð?ð?ð?ð?ð?ð¿.´†/À¿Gç<à?Wè 칸?`áö§<«@§ÇK"Ì¡ˆ@¯ šA|:?føšŒ_Ë?pëàhú»‰?ÉÑ ˆº×?ÙWß÷÷@Ÿrºï Þ¥@8@§j£× -=q@§j‘ë…¸@§j£× -=q@§j¯hÛŒ@§j£× -=q@§j¡ÊÀƒ@§j£× -=q@§j¨r° Ä@§j£× -=q@§j§æšÔ@§j£× -=q@§j¥8ï4×@®Û?|í‘h@®Û<í‘hs@®Û?|í‘h@®Û:¹õYµ@®Û?|í‘h@®ÛD2ÊW©@®Û?|í‘h@®ÛB&€I@®Û?|í‘h@®ÛCFÜ]d@®Û?|í‘h@®ÛGï².@9Q|ÚQ@9AN;Í5¨@4|í‘hr@4 è>BZî@3—ï²-@3’Ðå`A‰@2æYJôðØ@2â¶®}Vm@2æYJôðØ@2ã9Àëíú@2æYJôðØ@2äêJŒ?ð°–Ž]?’Mj…•Ì‘?™%LÑ”Ô?‘ÔþÆvI‡?”] -° ?’ŒZzˆZ”?ð°–Ž]?”V ìi!¾?¤`á1Bí(?’„÷ò¸?”*v7¹¿?’vMëôUu?ð*wjs—?’žÿ§:­?‡9Â@0wç?ˆÝíá‰?ŒXk-¯‚7?Œúq‘?ð@@@@@?ð?ð?ð?ð?ð?ð¿Vk‰Ùb?cÿ#c?0íÃüíË?Gm9šV'Ý@§j¦ó%²P@®ÛDs³íä?@(¯ãz :?V-˜¬ð{?q­ýí¥€? Ufî–3@Ÿs»Þ¼’@9@§x«…¸R@§x¬Iº^4@§x«…¸R@§x­í(Œç@§x«…¸R@§x¬¿±[W@§x«…¸R@§xª0U2a@§x«…¸R@§x®V“@§x«…¸R@§x¯ƒ{J#@ª º^5?@ªŒù™™™š@ª º^5?@ª xFÛ@ª º^5?@ª «ŸU›@ª º^5?@ª¸ºÇ@ª º^5?@ª - Þ@ª º^5?@ª;Í5¨@97â‚@·€@9(1&éxÕ@3ÇÎÙ‡+@3Åsê³g @2ûƧï²@2úÇË)_@2œÚQÎ@2šQÎ`@2œÚQÎ@2›"Ðå`B@2œÚQÎ@2šçÕfÏB?¾„CÚ–•F?•tæïá,•?”ñ-a} ?ŒôƒA˜c ?’Æ÷Xê†?•½0 -Žø?±>ÏÅósN?”&OÖýæï?—>4ôgŒ9?‘Ò–¬q?’˜£“µ~Ð?“X<‡÷Ú?³iû÷òx.?êzŽx?‡9Â@0wç?Šˆ€!B®?Œ8¸wx¯?޹Þwò,@@@@@*@*?ð?ð?ð?ð?ð?ð?bv2Lú?mJîé?C` Ð3.‹?;Ø><ëU@§x¬¤éc÷@ª "¦?R™÷Õrüê?N}„Ãïë?›róG¸?±êý¥fJ@Ÿq 4ÓÛd@:@§3{çl‹D@§3|j~ùÚ@§3{çl‹D@§3t‡ü¹$@§3{çl‹D@§3y k¹Œ@§3{çl‹D@§3wsüP@§3{çl‹D@§3*Àƒn@§3{çl‹D@§3fÜ]c‰@¡ J=p£×@¡ NzáI@¡ J=p£×@¡ L¿±[W@¡ J=p£×@¡ D xG@¡ J=p£×@¡ Iûçl‹@¡ J=p£×@¡ '†Â&@¡ J=p£×@¡ 2-V@6įO „M@6ȧæšÔ@4sS÷ÎÙ@4v$Ý/ @3ìj~ùÛ#@3è­«ŸU›@3Š0U2a|@3‹ûµsë@3Š0U2a|@3n«6z‘@3Š0U2a|@3u8ï4Ö¢?ˆÿÀ)T¿Æ?ŸoÝ ÷6}?¨¬âö'?’m’‹}©9?Á³jâräz?¢Ø@<š˜*?|öOÿÝ?&”ðÚ˜?°Œ“ ¹‡?–sZ -™ø?¹ƒ:ýw±?°V Õy?³&Ô,ô?Ÿß‹’bÏ?ªÞUWºci?”AXÄ|åy?´kJÂJ¥¶?µ'˜ÒD@@@@@*@ ?ð?ð?ð?ð?ð?ð¿m@Qjö¿k cj?c”˜Y¶=‚?_ºj#@§3wå·qš@¡ Ipí]ˆ?B=âé^?vos=Òb?ò¶Êe½¢ê?áa.ãŽÛ@Ÿa\‹øEÂ@;@¡w•%@¡w‰7KÈ@¡w•%@¡wSœ¾à@¡w•%@¡xʳg ù@¡w•%@¡vþ5?|î@¡w•%@¡vÿoÒô@¡w•%@¡vþOv_Ù@©àÄ›¥ã@©àÄ›¥ä@©àÄ›¥ã@©ÌIº^5@©àÄ›¥ã@©ÔmÅÖ9@©àÄ›¥ã@©ã•%@©àÄ›¥ã@©Û=ÈK@©àÄ›¥ã@©ÛdZ«@7Î쿱[X@7ÍÅÖ8†Z@3©‡+ @3ã,¥zxl@2â-V@3ÍÈK]Ì@2+xFÜ^@2&L/ƒ{J@2+xFÜ^@2+ûµsë@2+xFÜ^@2+)^ž ?…ÅBðrç?µ‡:úÎ ?ϰ.¶48?Ž £Ú?”˜Ié‚%5?’€ú¤ˆ4 ?›’qvš°•?’7Îf¬ps?Â:–Ád¯¢?“AúìÊ„?” E®!—?“{P»á?¨še ?‘D‡>S9?¿¹²Çò?¨Æ# -3/g?ˆÔÞÑ—æJ?гá‡}@@@@@(@&?ð?ð?ð?ð?ð?ð¿F¬Yм¿Z¸?1–,ñWë?SB#No@¡vÿ>@ÙX@©ßP?RÊp‰áh?o¦©}PÌ?¤£œ¢Yžr?Ñš¬ªƒ±ò@ŸlßßèG‘@<@ Æ‰7KÇ@ Æ‰7KÇ@ Æ‰7KÇ@ Æ„-BH@ Æ‰7KÇ@ Æeðõ¡@ Æ‰7KÇ@ Æ? h@ Æ‰7KÇ@ ÆÃãÖ@ Æ‰7KÇ@ Æ[“@©Iñ©ûçm@©Iñª¢Ú@©Iñ©ûçm@©IñªFbü@©Iñ©ûçm@©IñÞSX+@©Iñ©ûçm@©IòYù7þ@©Iñ©ûçm@©Iò"S·)@©Iñ©ûçm@©Iñèáœ@3?–»˜È@3?x5›Ã@@0Œí‘hr°@0åã12@0“t¼j@0l"h Ô@.½Vlô"@.½–ÉV6@.½Vlô"@.½½DFô@.½Vlô"@.½¨½# ž?}@T˜ÁÎ¥?Ä @þ¿ ?‘"®šñÅ?‹ªtš§þ€?ô0 ¼¢s?È®`e˜ú?|¬Æ Væ?’Ï Ó«I?‘8ο?/ÌÔSϵ?ÞW#&-¿?\Ûüøî–?‚pDøïRg?Œ²ßÛ’f?‚–Ë)¬j?‚ìf GA?†—¤ž[w?†“‚I—²@@$@*@(@7@5?ð?ð?ð?ð?ð?ð¿þÔ[?¨t£À?<äf׎»?t—Q0Ûß@ Æ¾{´@©Iñéµ¢?\¸2¦³³w?0ǵée8?ÆGmj‰· ?mj¹ Þ@Ÿg´r™@=@­ˆ´9X@­•$Ý@­ˆ´9X@­ˆÁTɆ@­ˆ´9X@­ˆõÂ\@­ˆ´9X@­Œ/ƒ{J@­ˆ´9X@­ˆÁTɆ@­ˆ´9X@­ŠdÂø7@­£Ã•%@­£Ë…¸Q@­£Ã•%@­£ËÓÃa@­£Ã•%@­£Èð@­£Ã•%@­£ÇRT`«@­£Ã•%@­£Ã{J#;@­£Ã•%@­£Ãa@N@8šÔ,<Ÿ@8ÞѸ@3pÄ›¥ãT@3oŠ Þ@2ˆ“t¼j@2†ö”Fs‚@1Ì¿±[W?@1Ê6âëD@1Ì¿±[W?@1Î쿱[X@1Ì¿±[W?@1Ï–»˜È?}Ñ¿ž,?”"¶²'Ýþ?’Gßk;m?‘sNX„êÒ?“XMHñëž?’IåŠú?гá‡}?›ªÊît…?‘Ç€˜­r?“ ç¥Íç&?’.<ù?’j“O’I?„ò—TËÃ?•ÙK°FÑ?ˆìûIèpÝ"Á<Ô?+?wllé™@­ŽªÊJ@­£Ç.„Ù?`€eÐ}w?JúŽŠÄ¾­?Äô·€Û©¯?”ÖpmRÏð@Ÿig¹²@>@¯>‡+ @¯>“t¼i@¯>‡+ @¯>b¶®}@¯>‡+ @¯>ÇË(@¯>‡+ @¯>!ÊÀƒ@¯>‡+ @¯>záG®@¯>‡+ @¯>5?|ï@¨Ä“t¼@¨Ƨï²@¨Ä“t¼@¨Ïß;dZ@¨Ä“t¼@¨ËC,¦@¨Ä“t¼@¨Ï4Ö¡b@¨Ä“t¼@¨ÅãS÷Ð@¨Ä“t¼@¨ÚkP°ò@2T xFÜ@2Z…‡“ݘ@/²-V@/„g8}¿@/*Àƒn˜@/"@·€4n@/Bu%F -§@/7ö+jçÖ@/Bu%F -§@/DÂø7´£@/Bu%F -§@/1&éxÔþ?É^žQ5P‚?“Ž3ò1p?”Uy*ž¬ˆ?ˆAᆽÃí?‡¯½.SM?гá‡}?qÂ' -Bœ@@@@@,@&?ð?ð?ð?ð?ð?ð¿cfÑJô?l‰'H -?qZõ¶dÿ?xßlŒoø@¯>›;׫@¨Í̉F9?)u h÷j?…Åp:¯ú@?íJãõ½ç?ù‹Až ëY@Ÿrågƒ<@?@©ìë…¸@©ìÈ´9W@©ìë…¸@©ìn—O@©ìë…¸@©ìzáG®@©ìë…¸@©ì×sý@©ìë…¸@©ìN;Í6@©ìë…¸@©ìÄ2ÊX@®ãF§ï²@®ãHr° Å@®ãF§ï²@®ãDg8~@®ãF§ï²@®ãG®zá@®ãF§ï²@®ãG“Ý—ö@®ãF§ï²@®ãEðoiD@®ãF§ï²@®ãFÂ&€@7zqÞi­C@7xÁTÉ…ð@1Ô›¥ãSø@1ÔêJŒ@0¤¼j~ùÛ@0¤Âø7´¢@0Vý!ÿ.I@0W -=p£Ø@0Vý!ÿ.I@0WË)^ž@0Vý!ÿ.I@0WsüPI?‡YÍ_?•ìspîî?‘Ûü†Nã?‹ÝÉ!ë#?‘#6‰¥_?‘C!ƒžÈ?”¼íÒh??’CòO…?Œqç©Fü?siÅqe?ñ«Ý„ Õ?ó‹P=´?ŸÇKÆ‹?Œþ%å_D?‚oÁÆÜ§÷?ƒ!Ë *(?‡L8õASÎ?†©b/bJö@@@@@@?ð?ð?ð?ð?ð?ð¿S+†¿<6ûx?,ôág÷0?+ )Má³@©ì0Û@®ãG0á$?L©VCë?FÉó”ò…?œÜóÐøû?ŠO n©ç>@ŸlX|Ôƒ@@@¦¥bÐå`B@¦¥dÝ/ @¦¥bÐå`B@¦¥eœàv@¦¥bÐå`B@¦¥`hÛ‹¬@¦¥bÐå`B@¦¥bMÒñ©@¦¥bÐå`B@¦¥`ëíúD@¦¥bÐå`B@¦¥c,¥zx@ jàA‰7L@ jæffff@ jàA‰7L@ jÜ„µÜÆ@ jàA‰7L@ jÞ í(Œ@ jàA‰7L@ jÞÒˆÎp@ jàA‰7L@ jÞ\‘ÑN@ jàA‰7L@ jÝÈK^@6ÞHè§æ@6ÜÆ?@2° Ä›¦@2Ä?åÉ@2“t¼@2ýŠÚ¹õ@1ò䎊r@1‚{²þÅn@1ò䎊r@1‚ Iº^6@1ò䎊r@1ÿ.Hè§?ð°–Ž]?­hX™*?‘£Ä›è?Wø0 ¥?‘PÊÑ<Ým?‘•S‚üJ?ð°–Ž]?“£PuòN?ˆ9²0?‘.“¥?‘x9ξÞO?‘ÔÄ÷Õ?ð*wjs—?vùv“?‚ù…žÄ`x?„l¯¸‰ŒÎ?ˆ -¿„r©Ý?†ùadô|?ð@@@@(@&?ð?ð?ð?ð?ð?ð?-„ã’È¿H«ËÐÔ?DRwûö0?*˜ ¬…ø@¦¥b)ò¬@ jÞÀ´é?S4ïQÆá??8Ð×íѬ? jO¹ÀiŠ?f¶šäaf@Ÿs].²G@A@­;…¡ÊÀƒ@­;ŽV“@­;…¡ÊÀƒ@­:JÀƒp@­;…¡ÊÀƒ@­:Næ1ø¡@­;…¡ÊÀƒ@­;;dZ@­;…¡ÊÀƒ@­;Vlô @­;…¡ÊÀƒ@­;V®}Vn@ŸßÀƒn˜@ŸßØ“t¼j@ŸßÀƒn˜@Ÿß‡®zá@ŸßÀƒn˜@ŸÝï4Ö¡b@ŸßÀƒn˜@Ÿß–8†YK@ŸßÀƒn˜@Ÿß3œ¾â@ŸßÀƒn˜@ŸßäÝ/ @8£g ù l@8¢GE8ï5@4#÷ÎÙ‡@3­V“@3Ðå`A‰@2µ8ï4Ö¢@1Þ«6z‘@1¥ãS÷ÎÚ@1Þ«6z‘@1¯v_Ø­¬@1Þ«6z‘@1µzxl"h?®í©@Šþ?ÙÒ."Õ$?à×*;k|?¥‘¢Ñ4À?¸ö*©U¯ -? 1\*]Á?˜ž^ƒÿ*ˆ?ÛGæ²0ÓÎ?æ‹ó®AÇD?¯,lBQÆF?¶c92åMò?¦kxÜ““?œ^:Òe?¾ef×l+?¶ͰöÐ{?µðE@Rsi?«íy#œ®?˜/QBu @@@@@ @*?ð?ð?ð?ð?ð?ð¿t ™±¿cy¦Â?Ž}´ãÄm?{â ùFy'@­;N™¥OX@ŸßÅUøó?«\˜B^4ë?¡4â´Ë@#[òÖ­c@»F+ÌF@ŸlK{éAÔ@B@ŸIRñ©ûç@ŸID“t¼@ŸIRñ©ûç@ŸIV®(,@ŸIRñ©ûç@ŸIScË+@ŸIRñ©ûç@ŸIQqî59@ŸIRñ©ûç@ŸIVo½ @ŸIRñ©ûç@ŸIV -;b^@§ö•%@§ö•%@§ö•%@§öß -îÇ@§ö•%@§ö¶É@@§ö•%@§ö -d––s@§ö•%@§ö“®@§ö•%@§öñA¸r@7¨†YJôñ@7ªÙ¹]„@2sS÷ÎÙ@2vl­Ò9@1@å`A‰7@1B»LÆÑu@0ýcˆe”°@1ÈçĨ@0ýcˆe”°@1 èS©2@0ýcˆe”°@1O®:ù?ƒ_ÿKt˜à?¦a]MmÒ?‘ÍÔVÂi?Œû“äÀW?‘ÝëèÎ?’*Í«[?‡‡á´WÉ?“¨f{¯?‹¬tK±»?‘@EK¶?Þÿð‚>ú?‘-g³½fQ?ƒCgE ?ŒÊ=U -3¤?…?iAÊAþ?‚æÅÙêÿì?ˆÂ_ÑPV ?‰LµQÏ9@@$@ @ @3@7?ð?ð?ð?ð?ð?ð?`ü9' ?¦ø$à?2ÇhÅ{êW?PmÊév @ŸINð(X@§öþ!TJ?Rƽëa—E?p`eo Y?«§Ü¹]ª?â‚+Ø" @Ÿir#:êò@C@§gWOß;@§gNzáI@§gWOß;@§gU%F -¦@§gWOß;@§gUÜÆ?@§gWOß;@§gU*™1@§gWOß;@§gT¼j~ù@§gWOß;@§gS3333@©»(õÂ\@©»&ffff@©»(õÂ\@©»/'»/ì@©»(õÂ\@©»,‹C•@©»(õÂ\@©»%Éã@©»(õÂ\@©»&¸ºÈ@©»(õÂ\@©»* Þ@7åöý!ÿ.@7ælô!-@33S÷ÎÙ@34mÅÖ8†@2lj~ùÛ#@2j…‡“ݘ@1ÿò䎊r@2‰ 'RT@1ÿò䎊r@1ÿHË’:@1ÿò䎊r@1ý‘hr°!?|öOÿÝ?×s·IÓ?’,³Zêª?Ú¾ÉÛ²º?’š'†­`í?’ß5H>d#?‘]Ë™$ë>?–.¨ÿ\?”ïœ`µPŽ?ƒúʳ_Ä?…®×__C?‡Ä­‹›Ü?‰]³ß’Ý@@@@@*@*?ð?ð?ð?ð?ð?ð?X±‡—?;*¨?A_ޝÞVÂ?6P ŠÐÇ}@§gQ”²¤¿@©»'ò?aÇÇI?V”¸°u?Ì3èz‘?¸#ÐO̸^@Ÿf{v8®N@D@§3A‰7KÇ@§3AÊÀƒ@§3A‰7KÇ@§3B¶®}U@§3A‰7KÇ@§3B\(ö@§3A‰7KÇ@§3B\(÷@§3A‰7KÇ@§3@hÛ‹¬@§3A‰7KÇ@§3@[À7@¤yŸ¾vÉ@¤yŸ¾vÉ@¤yŸ¾vÉ@¤yQÎ@¤yŸ¾vÉ@¤yJ#9À@¤yŸ¾vÉ@¤yÇË)@¤yŸ¾vÉ@¤yû~‘@¤yŸ¾vÉ@¤yáG®@0ÞHè§æ@0ÞOv_Ø­@+`A‰7K@+m\ú¬Ù@*rn—Oß@*r{²þÅm@)õ¨Xy=Ú@)õ¨Xy=Ú@)õ¨Xy=Ú@)õÂ\(ö@)õ¨Xy=Ú@)õÂ\(ö?Ébª¸'Ñf?Òç{íj?‘!!Ø×‹7?‹¹GüÞõ?÷6r In?·t¤¢‚J?ÐbMçê_x?’¼  g¶?ˆ9²0?@§[*^?Ø¥²À<(?]#ÍìO¤?€bMÕky?Œ­·Ž~('?‚s@ˆaÛ?‚éXëLL÷?†‰Oú|q?†ŠúЀ>(@@@@@,@,?ð?ð?ð?ð?ð?ð¿Pmöo? -vXWÐ?4ºã½°M? -FŽùxž@§3AC¬}@¤yß#é¨?CL´;Š?ž?Ús<ã¢k?‚BÑÍe(ò?*÷JI¬r~@ŸsÝv†@E@ŸA« Iº@ŸA« Iº@ŸA« Iº@ŸA¯—¥q@ŸA« Iº@ŸAºV7‚@ŸA« Iº@ŸA¹Wõ -/@ŸA« Iº@ŸA­Mßh@ŸA« Iº@ŸAªpŸ ,@ª D“t¼@ª C,ÌZ@ª D“t¼@ª Gý@@ª D“t¼@ª FšzÊ@ª D“t¼@ª Eöº!@ª D“t¼@ª J…bƒ@ª D“t¼@ª OÆE2P@6¯O „M@6cúlr@3{ Iº^@3~R'HÏ@3Z~ùÛ"Ñ@3YLCZ%õ@2‚@·€5@2Ãä‡$²ô@2‚@·€5@2ÄØB$*2@2‚@·€5@2úm’^?~ì“?ÕÒJ?'XtM,È?‘œ$Oªní?‹¦ädá?‘‚(¥B?’ÿÚ»ý ?e™”XWø?’bãsÊâí?Œfuw©?Q’Ý蹟?“= pô*?“-Þå?¡‡?†³Di¿?Œµ¤!„??Œð”÷<½€?…Ê|ƒÜº˜?‹1«[Ü*?‰èHIy:H@@ @"@"@4@5?ð?ð?ð?ð?ð?ð?AwÏXà?aW| -?P:<¹Ýá??÷(ô7@ŸA®§¦"(@ª Go¹ó?oRw”~ª2?_æ§! Ú?çúsÅ™Õ?ÅœjÍW<@ŸfÄZó/D@F@®ÖÄ“t¼@®ÖÅ¡ÊÀƒ@®ÖÄ“t¼@®ÖĨÁTË@®ÖÄ“t¼@®ÖÄ÷eý‹@®ÖÄ“t¼@®ÖÅ8ï4Ø@®ÖÄ“t¼@®ÖÃ,¥zx@®ÖÄ“t¼Á.„€@«¸Që…@«¸“t¼j@«¸Që…@«¹ k¹Œ@«¸Që…@«¸†YJõ@«¸Që…@«ºáG®@«¸Që…@«¶E¡ÊÁ@«¸Që…Á.„€@2G>«6z@2D•*™1@0³S÷ÎÙ@0²©“ àÞ@0å`A‰7@0‰ 'RT@/Öð¸»@/Ö4êK@/Öð¸»@/Ø­«ŸU@/Öð¸»Á.„NÜC,¥?É^žQ5P‚?dYûë„{?’,³Zêª?ŒGZ0eê;?‘ñ•/m£{@8Ù?ÐbV‡,?”V ìi!¾?‘}7ˆ.Ñ?ø,~[´?’we °÷¬@8û—?‚i ú?¨,?ލf†)"?„›‹ÖO?…”rsw?ŒC ãSG@8 Ø@@@@@*?ð?ð?ð?ð?ðøøøøøøøøøøøøG@£+ J@£1&éy@£+ J@£’{²þÅ@£+ J@£éá°Š@£+ J@£X_ö”@£+ JÁ.„€@£+ JÁ.„€@ 6;dZ¬@ 6@@ 6;dZ¬@ 6M(Œç@ 6;dZ¬@ 60 Ä›¦@ 6;dZ¬@ 6ÑA [À@ 6;dZ¬Á.„€@ 6;dZ¬Á.„€@1òÃÉîËû@1ï—$tS@0‡ÎÙ‡+@0ã¶E¡ÊÀ@/¿;dZ¬@/ÖâëC,@/¸7´¢3œ@/8“t¼j@/¸7´¢3œÁ.„NÜC,¥@/¸7´¢3œÁ.„NÜC,¥?ðO­W¬ÃÆ?ÆO'q|õù?žG)ñ†Ü?ÒónxŠˆ@8Iç@8Ù?ð„ƒ;0?Ã’Â7•=œ?Ÿª3’®ý?ÐæÛ!ü¢@8S@8û—?ð!̃?Ü®©á|\?ˆÌ7^|Â?ÁÞ’7:ʪ@8 Ø@8 Ø?ð@@@?ð?ð?ð?ðøøøøøøøøøøøøH@©³På`A‰Á.„€@©³På`A‰Á.„€@©³På`A‰Á.„€@©³På`A‰Á.„€@©³På`A‰Á.„€@©³På`A‰@©³d%®æ3@’÷Y‡+Á.„€@’÷Y‡+Á.„€@’÷Y‡+Á.„€@’÷Y‡+Á.„€@’÷Y‡+Á.„€@’÷Y‡+@’÷†s×Ü@8Û¹Œ~($Á.„>¤µÜÆ@3’ Iº^5Á.„M‰ûçm@2×ï²-Á.„QnÙ‡@1á:’£SÁ.„NÜC,¥@1á:’£SÁ.„NÜC,¥@1á:’£S@1áë…¸R@8J¨@8#˜@8¾:@8 >+@8Iç?Ÿ‚ ˆÃ@8J¨@8Î÷@8i§@8Å@8S?œâ™:;{ˆ@8p÷@8 * @8p÷@8¶@8 Ø?•XðküÏ@&?ðøøøøøøøøøøøøI@¤Ý/Ÿ¾@¤Þ5?|ï@¤Ý/Ÿ¾@¤ÝæšÔ-@¤Ý/Ÿ¾@¤ÝæšÔ-@¤Ý/Ÿ¾@¤Þžš@¤Ý/Ÿ¾@¤ÛquŽ"@¤Ý/Ÿ¾@¤Û˜Çâ‚@¤æ²-V@¤æ²n—P@¤æ²-V@¤æ²ÊW§‡@¤æ²-V@¤æ°ØDÐ@¤æ²-V@¤æ±Ä2ÊX@¤æ²-V@¤æ²£S&@¤æ²-V@¤æ²äŽŠs@4Q|ÚQ@4Q[W>«6@0‚° Ä›¦@0‚GE8ï4@0]V”@0\C,¥zx@/”`ªdÂù@/“œ¾ß¥@/”`ªdÂù@/”záG®@/”`ªdÂù@/”!-w2?€‚ñêã ?õ¹Ëh?‘RsÈW?‹ÑqÔ@vÿ?‘Dj?¾ƒìÈÁ?|öOÿÝ?’ -‰¸Ì?ÀpMºÅ?@§[*^?‘&”T¦mÂ?b¶­-Óx?‚§W®ê ?ŒÆò/¢äÍ?‚Ÿ JŠÆ?‚ôhBì^?†ÃÛSPã?†Ë¢L1Ù@@@@@,@$?ð?ð?ð?ð?ð?ð¿@7Ô?=GÀ?2¡[°?+ýètî@¤ÝMÑ£@¤æ²vÓ­Û?R{¡á -dM?<Kåt³µ?°äM½?ƒÁGqÍ@Ÿg| kdº@J@ 4¼j~úÁ.„€@ 4¼j~ú@ DüóĈ@ 4¼j~ú@ =ÈÄ¥ @ 4¼j~ú@ X’;yÖ@ 4¼j~ú@ O -‡œp@ 4¼j~ú@ @OvÁØ@›r™™™™šÁ.„€@›r™™™™š@›rž«ƒv¢@›r™™™™š@›rÔû²Ô0@›r™™™™š@›r®ÅÌÎ.@›r™™™™š@›r¹\%ÿÚ@›r™™™™š@›ríͳB @4Y*0U2bÁ.„>¤µÜÆ@0ý‘hr° @0ã’"‚h@0'KƧïž@0õ8@05µsê³h@0 Wš§åª@05µsê³h@0 -saØ@05µsê³h@/þõº -@8J¨?›ø…;‹…??‘¡tpÿš{?“”ÆgoA?•u;ßVží?“ú‚Hö@8J¨? á,ØEæ?|™ŠQHf?‘=Øæ B0?™hã<ÛÛ?˜0T,Ái@8p÷?W9cS­Ò?„•ƒaåm?†Fö,lQo?’EõQxƒÄ?Œ”Þ%·þÒ@:@0@6@?@??ð?ð?ð?ð?ðøøøøøøøøøøøøK@£ËyXbN@£Ë}p£× -@£ËyXbN@£Ëm„M<@£ËyXbN@£Ër-V@£ËyXbN@£Ëy=Ùc@£ËyXbN@£Ë|žì¿±@£ËyXbN@£Ë}Ùb¸@¡HîzáH@¡Hú^5?}@¡HîzáH@¡Hí5¨Xy@¡HîzáH@¡HêÀƒo@¡HîzáH@¡Hò䎊r@¡HîzáH@¡Hó@N¤©@¡HîzáH@¡HöÕϪÎ@6įO „M@6¶lô!.@1}‘hr° @1}Ùb¶®@0Wï²-@0U`A‰7L@.ð‰ 'RU@.îËûµt@.ð‰ 'RU@.öR½<6@.ð‰ 'RU@.ìq ²•ê?…ÅBðrç?•tæïá,•?”^RžpX?ŒR‹w#z?‘,IÝ Áé?’_‘Oo¨Ž?‚á²Olºü?—áZk·×?•ûú·ø¨?£û,Ɇ?‘ ÛÌÏõA?‘1鄽 Ú?Šó¿á§E?’®ã‘\’?‡z"2Úù)?„€ã$V?„å;m7.?qÂ' -Bœ@@@@@@$?ð?ð?ð?ð?ð?ð¿'´tÀ¿T}QžÀ?EEℌ–Û?Gó°ö‚@£Ë|<€‹@¡Hö­[;½?d}<˜ØPÁ?h« žæe:?Ð VFº±À?Ø&úÿ&1@ŸiÛmî@L@¢Ä Òñ©üÁ.„€@¢Ä Òñ©ü@¢ÃáohÜ@¢Ä Òñ©ü@¢Ä Iº^5@¢Ä Òñ©ü@¢ÄëíúD@¢Ä Òñ©ü@¢Ä VÕÏ«@¢Ä Òñ©ü@¢Äp£× -@¥Ä$Ý/ Á.„€@¥Ä$Ý/ @¥Äˆe”¯@¥Ä$Ý/ @¥Ä,‹C•€@¥Ä$Ý/ @¥ÄfÏAó@¥Ä$Ý/ @¥Ä2•éá±@¥Ä$Ý/ @¥Ä1[W>«@8·â‚@·€Á.„>¤µÜÆ@3\Iº^5?@3­ÌcñA @2’Ðå`A‰@2¥¡ÊÀƒ@2O „M@2D2ÊW§‡@2O „M@2®æ1ø¡@2O „M@2"@·€4n@8J¨?À%ß°¸…?žX‹<ìu?¨3íçyà?™7reiü? ¡ì„Ìá˜@8J¨?½FÚËlÉ›?”ÿŒÙÿIí?­×4="Ø ?X2»æÕ$?ž…–½´Ö@8p÷?÷Ýù‰Ÿ¿?—’h…b?¤+|¯Ï4E?´~Äé?œè¢ü V@@@@ @(?ð?ð?ð?ð?ðøøøøøøøøøøøøM@§ Ƨïž@§ ƧïŸ@§ ƧïžÁ.„€@§ ƧïžÁ.„€@§ ƧïžÁ.„€@§ Ƨïž@§øy=Ù~@§ ƧïžÁ.„€@¨/Ÿ¾@¨í‘hs@¨/Ÿ¾Á.„€@¨/Ÿ¾Á.„€@¨/Ÿ¾Á.„€@¨/Ÿ¾@¨#{J#9@¨/Ÿ¾Á.„€@5¿–»˜È@5¿ß;dZ@1» Iº^Á.„M‰ûçm@1š~ùÛ"ÑÁ.„QnÙ‡@0𖻘ÇãÁ.„NÜC,¥@0𖻘Çã@0ê’£S&@0𖻘ÇãÁ.„NÜC,¥?€‚ñêã @8#˜@8¾:@8 >+?ž?=€T^@8Ù?„F/·ÿP5@8Î÷@8i§@8Å?•=ƒ™íx@8û—?‚ù…žÄ`w@8 * @8p÷@8¶?”¼íÒh@@8 Ø@@ ?ð?ðøøøøøøøøøøøøN@£ß·KƧð@£ß«åæ–K@£ß·KƧð@£ß–ù@£ß·KƧð@£ß¦"–îˆ@£ß·KƧð@£ß»«.’@£ß·KƧð@£ß8ï4Ö @£ß·KƧð@£ßYPšIþ@—˜¥ãSø@—˜&fffe@—˜¥ãSø@——ß×ÿµm@—˜¥ãSø@—˜LK÷Lþ@—˜¥ãSø@—˜ó§—@—˜¥ãSø@—˜½¿HÌ@—˜¥ãSø@—˜·0µa@6ÞHè§æ@6¾¿Ã]{.@4GÎÙ‡+@4=]j¢†o@3v§ï²-@3bÙ׃Â@3QÞi­BÄ@3Sùâ÷¾r@3QÞi­BÄ@30oiDg8@3QÞi­BÄ@3%Hˆ­ú?‘ 1˜Ó ?±;¤µÜÆ@3×+ IºÁ.„M‰ûçm@4~ùÛ"ÑÁ.„QnÙ‡@2ÏO „MÁ.„NÜC,¥@2ÏO „MÁ.„NÜC,¥@2ÏO „MÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøP@ iäÝ/ @ iæ$Ý/@ iäÝ/ @ iâòù‡@@ iäÝ/ @ iâýi8ˆ@ iäÝ/ @ iäó¢(@ iäÝ/ @ iä>£Ô(@ iäÝ/ @ iâòf“@¤Ì¸Që…@¤ÌCS÷ÎÙ@¤Ì¸Që…@¤Ì!ˆ%@¤Ì¸Që…@¤Ì+MéÚ‘@¤Ì¸Që…@¤Ì'Ž’>s@¤Ì¸Që…@¤Ì&4¬Ãœ@¤Ì¸Që…@¤Ì'ÌÃ’@8™*0U2b@8ŽŒ“ç˜:@3&‡+ J@3%÷Ff2@2;Ƨï²@29ˆäý¹_@1¦YJôðØ@1¤raÏ¥•@1¦YJôðØ@1¢É5–fÜ@1¦YJôðØ@1¤¡™_?Ÿ>KtAÿ?4Tÿ±N?’¸vô|*f?ŒxL’É€?‘§Jß/ ?‘‘ë^L~õ?ŠÊuq•ú?’] mœ?‘å p â«?‘…x_á½?‘xŸ7m¥#?‘?Ö™DÌQ?¢IÍ‘Q?Žp ž›Ì?†“k° ›¸?ƒÄÑŽf@?ˆÎ#ë&z?ˆ¦^§Ð°~@@ @(@(@5@6?ð?ð?ð?ð?ð?ð¿F@¿zÊ[V€?"z&CJò?\€Ëψ@ iäˆ99-@¤Ì-MÐÏJ?9F\”*\?}{f±pƒ§?nmèQÇj?ø¾;šEAG@Ÿn~Œ5p@Q@¢›èõÂ\@¢›è´9X@¢›èõÂ\@¢›ì‹C•@¢›èõÂ\@¢›êOv@¢›èõÂ\@¢›ï'»/ì@¢›èõÂ\@¢›ìL˜`@¢›èõÂ\@¢›ì˜_÷@ ×H´9X@ ×HõÂ\@ ×H´9X@ ×H1&éy@ ×H´9X@ ×K¬q ³@ ×H´9X@ ×LÌÌÌÍ@ ×H´9X@ ×L‹C•‚@ ×H´9X@ ×KC•@3Ç>«6z@3ÇeýŠÚº@1³S÷ÎÙ@1²{²þÅm@1©Û"Ðå`@1¬àuöý"@1}cˆe”°@1}jOv@1}cˆe”°@1zÀƒn˜@1}cˆe”°@1zŒL˜_?|öOÿÝ?‘¡çL¤?‘ojVrnBZî@4’ Iº^5@4”µÜÆ?@4’Ðå`A‰@4‡8}¿H@4‚@·€5@4êJŒM@4‚@·€5@4—$tS@4‚@·€5Á.„NÜC,¥?š•§q!U? …BÓ÷ ¡?¯&)_?¢Ö -ƒ«Y?µÝ\†¶Ç¿@8Ù?Œs¤DÅÐ?›–ë•ñ^?± ·uå¦?ªZ¯åf?¬B<…ª'­@8û—?…™ï ufÝ?Ÿ ‰$FÓ)?§òÄ U¸?™Á7²1lQ?´WÑÞ1x‹@8 Ø@@@@@*?ð?ð?ð?ð?ðøøøøøøøøøøøøS@¦žú^5?}@¦žønØ¢Ô@¦žú^5?}@¦ŸRº~à@¦žú^5?}@¦Ÿ ¯Ý9@¦žú^5?}@¦ŸÇËP@¦žú^5?}@¦Ÿ\A³2@¦žú^5?}@¦ŸD=F²@™§å`A‰7@™§çl°^@™§å`A‰7@™§õ}T˜¹@™§å`A‰7@™§÷f çÜ@™§å`A‰7@™§ô¿ÔGD@™§å`A‰7@™§èU÷¸Í@™§å`A‰7@™§÷n¼!Ê@6²ÃÉîËû@6´33Ü@2E?|í‘h@2C&g/@y@1ƒt¼j~ú@1|‘è¢@0ÔmÅÖ8†@0ÐUÀÕ‘B@0ÔmÅÖ8†@0Ò5†›“*@0ÔmÅÖ8†@0ËfGˆ)ô?‚Ú¡ËG7â?“ï ;m° ?’שÎå;?|¬Çµƒç9?” %M‡}?’j‚B/™œ?=Àaêk3?“ï)RÆPã?”B³ÔL¼ù?”¿éÂÊ?: O'·m?†³!2â{?†ô ‹LÆ?Š­-•üóè?Œg²p¡ý0@@"@ @"@3@2?ð?ð?ð?ð?ð?ð?g vD?UHÈKð?PžWp´ý(?Hˆ­.œQ@¦žÿxxYU@™§íc¬ø?p>¿BñúÅ?h®Þ]whÀ?äà 5Tøø?ÙÍŠ?ÿˆ@Ÿfõ(¥yï@T@ :ýó¶E¢@ :×ð X©@ :ýó¶E¢@ ;µ[?@ :ýó¶E¢@ ;ñJÅÜ@ :ýó¶E¢@ :üi¦½§@ :ýó¶E¢@ ;}ò̇@ :ýó¶E¢@ ;®†E@®•(õÂ\@®•;²Ìú@®•(õÂ\@®•+"»v@®•(õÂ\@®•.5)jÙ@®•(õÂ\@®•'c3Äj@®•(õÂ\@®•!­« @®•(õÂ\@®•&ù* @8h†YJôñ@8C;p@4!hr° Ä@4#%ÚW@3´“t¼j@3±sÙž]@2£ÉîËû@2¥·¿‚V@2£ÉîËû@2¦Öóhèb@2£ÉîËû@2¦Q!¾ùø?«ìÕMoÃ?Îòc -_È?”ÏY«ž&?õÿâ¢?‘jëŸÜ6Ý?‘X¬ ù‡ã?’àÕÂÎ7½?“0f–?“ç%¤%Þ?”BTV„®?Ø›HúN?“»Hò_³? —J£ó?”ªU’n?‘Ŷ0šlW?‡ƒèÏœ˜?ŠÊ@ i2?‹Û)B¢}@@&@(@,@"@(?ð?ð?ð?ð?ð?ð?x×Ýì@@¿t0XU·?b•O -óÇ?[müL x@ :ýŸ±ò@®•(PÜ·&?ub©'Ü/?yP×㞺 -?â–{-—ŠÔ?ìH;Ò}@ŸpCÒ7@z@U@ E0£× -=@ E0å`Aˆ@ E0£× -=@ E1¯:Ï@ E0£× -=@ E1'®+Ÿ@ E0£× -=@ E2+ìÇ­@ E0£× -=@ E.ŽþÇ@ E0£× -=@ E.uÁµµ@§üíV@§üí‘hr°@§üíV@§üì@¯‹@§üíV@§üì(ŸÐ@§üíV@§üí.Øï@§üíV@§üì<íà]@§üíV@§ü쪗éb@1‚ò䎊@1‚ò䎊@,€A‰7KÆ@,Òòä@+ªÀƒn˜@+ªû“‰¶@*õ¨Xy=Ú@*ôSü÷º@*õ¨Xy=Ú@*ôã¼ÓZ†@*õ¨Xy=Ú@*ô÷2#n?É_¦›ùôä?Ëû–´²R?‘ÛêÊlj?‹¦É¯}?ê˜çŽ?´O×û÷«?ÐbMÝn½?’Îð•§Œ?±vÍþ?-õ4ø¦?ÓJ/51^?Tð`0?€bîF¾§?Œ¬ßâýªr?‚nÚ¨´8Ñ?‚æp²ßÆ?†Š%ip¹-?†ŠYæ­p–@@ @"@ @:@8?ð?ð?ð?ð?ð?ð¿[³‚С¿)T0®p?@ʶ•n¨?*«Ž¾N!1@ E/ýʨú@§üì¯¯Š¡?P%¹"æ,?9= -BVàT?™­#~cyp?kö1'€a@Ÿs]¿Q‰@V@ªìŸ¾vÉ@ªí—Oà@ªìŸ¾vÉ@ªì9XbN@ªìŸ¾vÉ@ªì4•*™@ªìŸ¾vÉ@ªì,‹C•@ªìŸ¾vÉ@ªì*JŒM@ªìŸ¾vÉ@ªì,L˜_@­y®—Oß@­z¦éxÔþ@­y®—Oß@­yãþ\‘Ð@­y®—Oß@­y·§†Â'@­y®—Oß@­y¿!-w3@­y®—Oß@­y¸“t¼j@­y®—Oß@­y¾ÿ—%@8eöý!ÿ.@7Ýw1Å@5žÙ‡+@5¼<žì¿±@4þV“u@5Ñ·Xâ@4&YJôðØ@44%®æ1ù@4&YJôðØ@40å`A‰8@4&YJôðØ@4-ÅÖ8†Z?ìå™'• ?¯Ç0¾!©?£À¹¿1?¥¢‹WÕÜ?§5Ç•÷?š”JpÃT"?ð{ä6O?¬ûjŒ{­–?¥ûS]:°¸?ŸY`òƒë?«/móâ“?ž*“ÀMõL?ðÙ§µü??©¿[¡e'?¢€Âï7ÏÅ?˜$– Ñê?š3 ˜ÔDš?y½¼ŸŽ@@@@@,@(?ð?ð?ð?ð?ð?ð¿CI¡‰²¿Dà›?nl~*€€?k6wÇ…‰n@ªì,$VJÀ@­y¾¶Ù‹?}¾Éíé?|x°›ó?Ï%{c”—8?Ϫ]1I @Ÿtj¦ñ¨°@W@ ËC•@ ÅÀÊ@±@ ËC•@ ÐCó~ª@ ËC•@ Ï’ygz@ ËC•@ Êl~¹¦@ ËC•@ Ê’T3 @ ËC•@ ÊÙ_j˜@©¸œ¬1'@©¸œj~ùÛ@©¸œ¬1'@©¸ÉæK¿@©¸œ¬1'@©¸›':K'@©¸œ¬1'@©¸š  @©¸œ¬1'@©¸›×²@©¸œ¬1'@©¸š*Y$O@7m¥œàv@7hG~#Rè@3B° Ä›¦@3Dí†Bí$@2t“t¼j@2uQ“pŠ­@1n_oÒ @1oFŸ@1n_oÒ @1n+(ô+H@1n_oÒ @1n+kÏþw?Ž\Õl6Ò?’@-ï?U?‘+@8Iç@8Ù?¾lO»x#@8Î÷@8i§@8Å@8S@8û—?Äü8ïä$É@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøZ@¥ÆMÒñ©ü@¥ÆPØ_@¥ÆMÒñ©ü@¥Ç”záG®@¥ÆMÒñ©ü@¥Ç”¼j~ù@¥ÆMÒñ©ü@¥Ç†€IR@¥ÆMÒñ©ü@¥ÆÑ‚©“ @¥ÆMÒñ©ü@¥Æzxl#@›häZ¬@›hæºI<‰@›häZ¬@›i&Á¾@›häZ¬@›iM„M;@›häZ¬@›i“t¼j@›häZ¬@›hì1&ê@›häZ¬@›h×Á½¥@6wâ‚@·€@6vÜ=6›ö@3J^5?|í@3y=Ùb@2Ú~ùÛ"Ñ@2¡4êJŒ@2TmÅÖ8†@2>BZîc@2TmÅÖ8†@2·éùr@2TmÅÖ8†@2xFÜ]d?…ðE[i)?¿h(©O‡¬? Þ‘KOî¦?™ ­:>Co?ºFILòXT?—À °Ø§ ?~Ov_Ø­«?šKËlÖ€?¦² ͉«?¨ÿÛ¦k®Q?¡G÷fx^K?“®°ýYè@?‚ˆóºRÉ?‘ûKá•)†?¢ïJ8ÈŸ?šÿh1oS?Žrø·óæ?Š|)-}í(@@@@@@?ð?ð?ð?ð?ð?ð?{˲N¿K{µ†ð?¦q¥Ÿ,„?ZÞ.ò7©‹@¥ÆtmIæ@›hä^Ûá•?ÅRïF*?z€b^f•ë@‚æËv ?ör´Úúb­@Ÿd!1<@[@£R`A‰7L@£R`Ä›¥ã@£R`A‰7L@£RTÖ¡aå@£R`A‰7L@£RWškP±@£R`A‰7L@£RV_Ø­¬@£R`A‰7L@£Rzu%F@£R`A‰7L@£R¾vÈ´@¢W -=p¤@¢S÷ÎÙ@¢W -=p¤@¢KC,¥@¢W -=p¤@¢P©*0@¢W -=p¤@¢G†Â&@¢W -=p¤@¢wÎÙ‡@¢W -=p¤@¢ohÛŒ@6ºqÞi­C@6º³g ù -@3”›¥ãSø@3¡A [À@3 ²-V@3cŠ @2‘Þi­BÄ@2¤M:’£@2‘Þi­BÄ@2£a@N¥@2‘Þi­BÄ@2¡ø -à?€‚ñêã ?“”üU§<­?£|Á±ûŸ?’ {½4?¡ áãà³?¢û‰˜·‡]?‚á²Olºü?–gÝ3ýø’?—uæË}üI?Œ°1Ù?ªä¬¯kF?œ –sPf¤µÜÆ@3 í‘hr°@2[Cô K@2U`A‰7L@1®Œºµ6@1¸DЩ*@1!9üíÎ@1¸DЩ*@1"8aáÒö@1¸DЩ*@1$£õ_*Y@8J¨?°ò û:ºŽ?ËMži1¬ç?ƦJG?Ì ’Ï×’3?Îí^ùºM”@8J¨?ÌEò¹ÞW¾?Ùìç9‡™V?ØnŒÂY§¤?Óó÷su*o?ß­À%Üß@8p÷?—Ö¢úŸö?‘CJã…"h?•J¨€PÖ?œˆ#÷™©_?¥¹p?Í8>@&@,@,@<@;?ð?ð?ð?ð?ðøøøøøøøøøøøø]@©òdÝ/ @©ò\í‘hs@©òdÝ/ @©òBZîc!@©òdÝ/ @©òñA \@©òdÝ/ @©òSMj@©òdÝ/ @©òca@N@©òdÝ/ @©òkC•@£]­V@£]™Û"Ðå@£]­V@£]½}¿H€@£]­V@£]®p:û@£]­V@£]Á:’£@£]­V@£]¾žš@£]­V@£]¹õY³Ð@8‡>«6z@8}cˆe”°@5œIº^5?@5²-V@4V”@4‰…ðoiD@3ÑÞi­BÄ@3ÅŽ!–R¾@3ÑÞi­BÄ@3ÄtSŽóN@3ÑÞi­BÄ@3Á [À7?–ªÎ­¡?¦Ld{±õ6?·•¡°¯äÚ>?œä%—ëš?žãîôÑU˜?’ã0eʪv?’.p»Cþ? ¨„¨ƒZ?¡â/‡ßü+?Šó¿á§E?”܉a^±‚?—M3§´ ?‰Ò–(?”ø™¾?—ÂÔèÄè@@@@@*@(?ð?ð?ð?ð?ð?ð¿[˜¿v[æ€?Fq¥ö®u%?[ñíl·t@ª—Æï^)‰@¤d<ŠR?eÔÂ;…NÊ?u$ˆŸÅÞ?¹Ŷ ù»?Õ6FV$c‹@ŸjyQè/ @`@§h‰º^5?@§h‰ûçl‹@§h‰º^5?@§h‹C•@§h‰º^5?@§h‹Æ§ï@§h‰º^5?@§hŠ=p£×@§h‰º^5?@§hˆÛ‹¬r@§h‰º^5?@§h‡ÕfÏB@©9©ûçl‹@©9ª~ùÛ#@©9©ûçl‹@©9©º^5?@©9©ûçl‹@©9© 'RT@©9©ûçl‹@©9© 'RT@©9©ûçl‹@©9ª¦L/ƒ@©9©ûçl‹@©9©*0U3@3ý:’£@3üô!-x@0Ô›¥ãSø@0Ô¯O „N@/ÉxÔýó¶@/ÈõÂ\)@0«6z‘@0}Vlô @0«6z‘@0Aò×t@0«6z‘@0Aò×t?|öOÿÝ?¦Ì '?‘G¿yÛ?ï?ŒR‹w#z?‘#6‰¥_?ïˆ6ÏJ?|¬Çëý ?’?Á• ñ:?»Þ‹"è?UÕh;·Å?‘ÞIŸö?sxÙ/T?‚íWçé„?ŒÆò/¢äÍ?‚¯­Ù¤Á¶?ƒR¨º“JÞ?†©b/bJö?‡”_Õ­çW@@@@@,@(?ð?ð?ð?ð?ð?ð¿4h¶(à¿'¨¾¦@?&ÍPDüß?!(K´%¤@§h‰l²ÝÔ@©9ª¨Rp?F³[M.šÈ?Ax4ÇY#©?›Œ}Ø!â?¦X*ö¾l@Ÿfæ v³@a@ª9NV“@ª9MV@ª9NV“@ª9YÎ_q@ª9NV“@ª9?Š Þ@ª9NV“@ª9Kûµt@ª9NV“@ª9UÜÆ?@ª9NV“@ª9WÎÙˆ@ªèÙ‡+@ªèØÔýó¶@ªèÙ‡+@ªèÌ¥zxl@ªèÙ‡+@ªèÎ_oÑ@ªèÙ‡+@ªèÈ1&éz@ªèÙ‡+@ªèϪ͞ƒ@ªèÙ‡+@ªèÌ¿±[X@6µS&Á¾@6¶8†YJõ@3æ‡+ J@3Ã9Àëíú@3²-V@3R¼£n@2ÔmÅÖ8†@2¸Îp:û@2ÔmÅÖ8†@2Ô¯O „M@2ÔmÅÖ8†@2Ò䎊qÞ?„F/·ÿP5?¦2ð¥?·¨÷³±FI?¢º™ÁLŠ?“eð7Õ@?™S:Ъ;5?’Óusÿ\Ã?«z]藍Ð?¾Üœžõ?´lyxƒ?•]ÅvüM ?š>[F»h?ƒ!A -mº¸?”3®èÚ ?“àÕèéa‚? ÁpLµAÑ?”¦”x£b?˜§zy@@@@@@ ?ð?ð?ð?ð?ð?ð?aΫ¿cªÄÄÏ?Aân&ן·?@£E|–ó@ª9RQ¯v@ªèÒ®UÁ?câüØèk?a’ðU:©P?Áo³%Œ7^?°SÉQ0þ@ŸišÉˆ=ä@b@¦Që…¸Á.„€@¦Që…¸@¦Xy=Ù@¦Që…¸@¦Qhr°!@¦Që…¸@¦Y‡+@¦Që…¸@¦UL˜_@¦Që…¸@¦QN;Í6@­× Òñ©üÁ.„€@­× Òñ©ü@­×Îp:û@­× Òñ©ü@­×|„µÝ@­× Òñ©ü@­× ¹Œ~'@­× Òñ©ü@­× ²•éâ@­× Òñ©ü@­× ùrF@8è†YJôñÁ.„>¤µÜÆ@4µãS÷ÎÙ@4·ï²-@41‰7Kƨ@42¶®}Vm@3TmÅÖ8†@3\(õÂ\@3TmÅÖ8†@3ZÔ,<ží@3TmÅÖ8†@3YQ‚©“ @8J¨?•˜Qi{cj?œñ=¼™Õ›?¡ÔZûto?™¼wX¬?›ß‘@rY@8J¨?š¾ˆè ”?œlôU °?–…%j»a?™B°*Z?˜]'ŠÎØY@8p÷?’+0ê­ìT?=Ÿo -F?{ЇÞ?“vuØcʲ?™/ã̽`ª@@@@*@,?ð?ð?ð?ð?ðøøøøøøøøøøøøc@¢^7ÎÙ‡@¢^6È´9X@¢^7ÎÙ‡@¢^0|„µÝ@¢^7ÎÙ‡@¢^$Z¬@¢^7ÎÙ‡@¢^%8ï4×@¢^7ÎÙ‡@¢^#¢œwš@¢^7ÎÙ‡@¢^3 àÞÓ@®pîzáH@®píV@®pîzáH@®pÑë…¹@®pîzáH@®pî±Ä2Ë@®pîzáH@®q$Ý/@®pîzáH@®q*³g ù@®pîzáH@®qîcŠ@7‰Î_oÒ@7‡¯·é@5‡ÎÙ‡+@5¦ -¦L/ƒ@56§ï²-@5St¼j~ú@4‚‚@·€5@4‰Q‚©“ @4‚‚@·€5@4„ohÜ@4‚‚@·€5@4n.±Ä2Ê?€‚ñêã ?—A«ª°×Z?­"à‹åÈÞ?¤×%I _¨?¯QW᎕?¢Ì€¬ím?—¤o„C?›ªÊît…?£Å„œ ¹ô?£_™*ã>?«Å0ì7á\?¢übÉ&‘…?˜èò_?¦ªÎ­¡?³ß"xþ?­O‰Mññy?¥pZ;d?³-oÀä@@@@@*@$?ð?ð?ð?ð?ð?ð¿b¦³(7?…¥$€?\¾tý÷G¥?e/æ~†Q>@¢^1»U»h@®qR— ?} 9Šž‹?…U-wX^/?â/ocÍÿ?éo@<@Ÿfs[¨ñ@d@¦ç\¬1'@¦ç5?|í‘@¦ç\¬1'@¦çо í)@¦ç\¬1'@¦íòn—P@¦ç\¬1'@¦çèr° Å@¦ç\¬1'Á.„€@¦ç\¬1'Á.„€@¦Õ­‘hr°@¦Õ”¼j~ú@¦Õ­‘hr°@¦ÕÔ!-w@¦Õ­‘hr°@¦Ó²-V@¦Õ­‘hr°@¦ØO–»™@¦Õ­‘hr°Á.„€@¦Õ­‘hr°Á.„€@8åöý!ÿ.@8Þ.±Ä2Ê@4|í‘hr@35ðoiDg@3È“t¼j@2Í‘hr°!@2ó&Á½¥@2DµÜÆ?@2ó&Á½¥Á.„NÜC,¥@2ó&Á½¥Á.„NÜC,¥?³‰ÑpEIt?àÒÄ©ßaö@åx¾Ë–?Û9ü¸1GÁ@8Iç@8Ù?ºmÇXÿÖ?Ùókbû?ïm e\£?Ûû &Þ÷@8S@8û—?¿d¹ÖÏû?ªî —[b?ßËDø;?¶ôõÝiä,@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøe@­‹C•@­|í‘hs@­‹C•@­”Ö¡aå@­‹C•@­˜bMÓ@­‹C•@­žƒä&@­‹C•@­”É…ðn@­‹C•@­“ÃaA@¤ÙvÈ´9X@¤Ù‡ï²-@¤ÙvÈ´9X@¤Ùr½<6@¤ÙvÈ´9X@¤Ù‚&€I@¤ÙvÈ´9X@¤ÙzîcŠ@¤ÙvÈ´9X@¤ÙxÔýóµ@¤ÙvÈ´9X@¤ÙxüPH@8h†YJôñ@8iº^5?}@4ðÄ›¥ãT@4ïò䎊r@4V”@4 'RTa@3«xFÜ^@3£÷ÎÙˆ@3«xFÜ^@3£S&Â@3«xFÜ^@3£33334?£È‰·akû?¦¢:<ƒ§²?™Ô/©[wÚ?œw!·E3?£¬3¥ê©©?—Ò¸ùBz3? Eˆ‡ðó‹?—·f;m?¤W8K?œ¨…2Œ?£kj \Ä™?˜æØ.ô?±4^Ê ¥T?”~ªd•?¿N†Ï¹?'dÂã—…?›hB1ÌËí?–¿nè$„@@@@@,@"?ð?ð?ð?ð?ð?ð?r5Asw¿h*2RW?Px ö½X?KÅ á ÞÜ@­JÇe’@¤Ù|Ï@+kjçÕfÐ@+kC•%@+kjçÕfÐ@+k’:)Çz@+kjçÕfÐ@+kŸU›=?É^žQ5P‚?Čۨ1A?‘$Cê¡@í?‹¨þ„/š?ëÎ@ A2?À­Õß}º?ÐbV‡,?’Ï>`Ï?†[‘'Í?3.Ylî?ÔÒ@úˆ‘?Z˜°,aÝ?€b¡´ñ@?Œ­·Ž~('?‚‹¡8*ú?‚äÍ“½E'?†½ª»—?†l&þ@@@@@(@*?ð?ð?ð?ð?ð?ð¿Mý+d?%À”?4qmœC? Gϼ>óB@¡Å‡<ç´@«’ý™Õy?C¦ÕÎ9«4?.΃¬ð±N?‚ø¬wXæ9?TÉAZÝ›´@ŸsSùè@g@¦–Rn—P@¦–cŠ @¦–Rn—P@¦–FL@¦–Rn—P@¦–RÞž@¦–Rn—P@¦–*—!7@¦–Rn—P@¦–/fn̉@¦–Rn—P@¦–(¥*è@š.7KƧð@š.>ùÛ"Ð@š.7KƧð@š.‰ί@š.7KƧð@š...n@š.7KƧð@š.kÈáW@š.7KƧð@š.r9$`’@š.7KƧð@š.H¼èj,@8ÿ–»˜È@9ÖO· Ö@4Iº^5?@4"—îí0@3PA‰7KÇ@3KšOy´@2O „M@2ˆò¡ëe@2O „M@2Ž »©t@2O „M@2’j¦ë=6?|çµB &€?—–·Í¼Ô¦?§ïÖòsó?¢sòN·Èº?ž5m;0 Õ?¥ŸÙ`š²¥?³E„ŒgŽ?”ù¯ò?«{.áV?“{ÕÀ€©?¥¶¡c°O(?¨aïÅ‘Õ ?¨KËo¨?›ïâ‹%j?™µö*ÿå?”ÜX³?–ð`oeÝ^?¡û!Žø8œ@@ @(@ @2@9?ð?ð?ð?ð?ð?ð¿Œ&ÃSäÀ¿<–IZÄ?cT¾§KŒF?tl -;ÒÙî@¦–9s–Õ@š.f¸3t9?‹¤] ¸?„d}È1Gˆ?öŠE< Ã?èé]03^@Ÿmq(¬Õð@h@¡—Oß;@¡¢MÒñª@¡—Oß;@¡03[ðÖ@¡—Oß;@¡}X‚ˆ@¡—Oß;@¡?~ÙÓ@¡—Oß;@¡VŒu1z@¡—Oß;@¡Yu%ù/@¬ðÖ‡+ @¬ð×Ç÷ñ›@¬ðÖ‡+ @¬ðÌ&f ­@¬ðÖ‡+ @¬ñðE¡µ@¬ðÖ‡+ @¬ðãY8òî@¬ðÖ‡+ @¬ð¬ûãá‡@¬ðÖ‡+ @¬ð{CìRs@7ÞHè§æ@7Û#ä©@@3ÇÎÙ‡+@4S ŠÇR½@2ûƧï²@2üUä´‘@2¡:’£S@3a`q"@2¡:’£S@2ǯKò¶@2¡:’£S@2ÇÙ°J™Å?‡©½(‡üÐ?«[e‘„?–x,Þöu?ª0±2¡B?­2¹e˜Hv?®&i;~Ô?Žì«ÍÊ#?¼táíáÇ?š;n ?¸ÜÌJqz?¥’è©0ôh?š Ó /?’¥æÀj?²MVÂNlF?•þ¨G’FQ?¡›y²¶©í?™qDÜðå?”%ÐóD¸b@@&@$@(@6@4?ð?ð?ð?ð?ð?ð¿”©z À¿‘ŽXžÃ@?yvXÕ‹£?lM¼ÈDœ@¡~ÄÖ†`@¬ð»°CŠb?–gQ 7Ö?޼/OåæŒ@1¬‡=@¢õG«óW@ŸcNbTè4@i@¡œwKƧð@¡œtýó¶F@¡œwKƧð@¡œt`ªdÃ@¡œwKƧð@¡œu '»@¡œwKƧð@¡œwÎÙ‡@¡œwKƧð@¡œwXâe@¡œwKƧð@¡œiÞÒ@©Qhr°!@©Që…¸@©Qhr°!@©O'»/ë@©Qhr°!@©M„M;@©Qhr°!@©M(Œç@©Qhr°!@©OÅp@©Qhr°!@©@ÞÒˆÍ@7^Hè§æ@7aë…¸R@2» Iº^@2ºkP°ò|@2;Ƨï²@2=žƒä%¯@1Vý!ÿ.I@1VÁ½¥@1Vý!ÿ.I@1U¼£n/@1Vý!ÿ.I@1CÐ|„µÝ?„F/·ÿP5?ÎÁ¯‰t0?’#ç}iïë?Œ'õ‚$5ñ?’ðä¼_?«ûm÷0|?‘â%ì˜ ä?“¡ƒ[¤45?‘Jâ”âj?0ÜN :s?’˜£“µ~Ð?˜"ߨÇ>?¢ó6õ··?êzŽx?ˆ©CwBÅÉ?„•ˆG’Z¾?ˆÔÞÑ—æJ?¨*ކáÁ@@@@@,@*?ð?ð?ð?ð?ð?ð?9 …óP¿aÒÉç?M_d»É—?YñÈ %Š@¡œvJïÕw@©M½ùÏ`?k2Ê¢rP?v}–²:w\?Ôó™k³Â!?çÙ1QÛ(@ŸhŽÿ/òÍ@j@§ÛùXbN@§ÛöÈ´9X@§ÛùXbN@§ÛùXbM@§ÛùXbN@§Ûü„µÜÆ@§ÛùXbN@§ÛùÛ"Ðå@§ÛùXbN@§ÛøFÜ]@§ÛùXbN@§ÛøQë…@¤èyÛ"Ðå@¤èz¬1@¤èyÛ"Ðå@¤è{šu@¤èyÛ"Ðå@¤è{µsì@¤èyÛ"Ðå@¤èyXbN@¤èyÛ"Ðå@¤èz)Çy§@¤èyÛ"Ðå@¤èyb¶®@6Ì]cˆe”@6ÉÎ_oÒ@2Ìí‘hr°@2ÌÌÌÌÌÌ@2~ùÛ"Ñ@2…‡“ݘ@1Š0U2a|@1‹…¸Qì@1Š0U2a|@1ŠW§†Â'@1Š0U2a|@1Š…‡“ݘ?…ÅBðrç?×s·IÓ?‘t‘ócjë?$Ìj½BÙ?’FL{öó?‘<ƒÜ_õ?|öOÿÝ?’Êå\tW?‘%gÇ¿µ?‘.“¥?‘ØèOÍ ì?低NëV?„ò—TËÃ?1·†Æjñ?ƒ~¨õ/¥O?„l¯¸‰ŒÎ?ˆCns¥ ?ˆ”Tj«›ª@@@@@*@&?ð?ð?ð?ð?ð?ð?8à]P¿}*ë`?5>œhcÄ ?6Èï÷Í@§Ûø{Æ@¤èyÙO–?Tþf|X1{?7„ß -6ü#?°Y¸ª^S?xôN „@ŸhmH¢ k@k@¥Oß;Á.„€@¥Oß;@¥±¢ Ì@¥Oß;@¥‚*†³@¥Oß;@¥£³²“º@¥Oß;@¥«Ð‡YV@¥Oß;@¥Æðçu@•+éxÔýôÁ.„€@•+éxÔýô@•+¾ãÙx~@•+éxÔýô@•)¾¢½êN@•+éxÔýô@•,~®yW@•+éxÔýô@•,xüg²0@•+éxÔýô@•,®±l “@8Žì¿±[XÁ.„>¤µÜÆ@4i‡+ @49=]?ê@3Æ“t¼@3KD‚àPŸ@2𖻘Çã@2¬¶oEí¶@2𖻘Çã@2žs%9s@2𖻘Çã@2£¦F¯h@8J¨?ºÂ2‘?¹!Ò±rå?Àó¼ceˆt?¹*- -QÊ?¼öaú@,@8J¨?¶Is|±¿?¿«Ì,ünš?Á^\Nb¾æ?ÅD?Þ?¿ “®†ùÝ@8p÷?¦ðsgá̘?¤u™ìc4ÿ?¦ûä7¡,œ?§áä<?¯þ+Ü̪W@*@&@(@;@8?ð?ð?ð?ð?ðøøøøøøøøøøøøl@ž{ÌÌÌÌÍ@ž{ÊÁÏKJ@ž{ÌÌÌÌÍ@ž{Þ³cû®@ž{ÌÌÌÌÍ@ž{é\NýÃ@ž{ÌÌÌÌÍ@ž{Ò4.@ž{ÌÌÌÌÍ@ž{ëÅØ%&@ž{ÌÌÌÌÍ@ž{ÚUöÏ–@£=p£× -@£=ó)4@£=p£× -@£K‚ç³@£=p£× -@£:œ 2ñ@£=p£× -@£=hH@£=p£× -@£BlJüa@£=p£× -@£A³fñ­@4” xFÜ@4”“t¼j@1õãS÷ÎÙ@1òB•Jv@1‹"Ðå`B@1‹±vG6è@0õµsê³h@0Ô%¯@0õµsê³h@0öy/rÆ@0õµsê³h@0õ0æã ?|¬Æ Væ?Õ|«2×8?‘€ÝøßN…?Œ‚±÷`?›]jÍõ­á?• P€+ü?|¬Æ Væ?’æl0þF?ŒjÃÙÖ?aËÝš¦?—Ÿ±¦p?’Ü OYbç?‚×—‘»®ÿ?Œî(åc€ª?‰Çˆ Âç?ƒ¨úž+@ì?‹“ª×1¿?‹ÆGØÊ@@@@ @2@,?ð?ð?ð?ð?ð?ð?`¿ùè?F<²ÿ?L×—Ô˜à«?9 3PØù@ž{Ò“ƒ)×@£?ðÿª?jÊ"<@D?XT×±ž!?ÞÐKõØw?º{ì­Ði@@Ÿe'b}Ïâ@m@¤LvE¡ÊÁ@¤Lv‡+ @¤LvE¡ÊÁ@¤LuÂ\)@¤LvE¡ÊÁ@¤Lv”Fs‚@¤LvE¡ÊÁ@¤LvR½<6@¤LvE¡ÊÁ@¤Luµsê³@¤LvE¡ÊÁ@¤Lu*™1@ªÝ’n—P@ªÝ’° Ä@ªÝ’n—P@ªÝ’:)Çz@ªÝ’n—P@ªÝ’¼£@ªÝ’n—P@ªÝ“Ãa@@ªÝ’n—P@ªÝ“3333@ªÝ’n—P@ªÝ“t¼j@304mÅÖ8@30:û~‘@0›¥ãSø@0¯O „M@/ÊÀƒn@/G®zâ@.̲•éá±@.̘_ö–@.̲•éá±@.̲•éá±@.̲•éá±@.̲•éá±?|öOÿÝ?é¥3i£ó?‘1f_¨Ï÷?ŒvHn&³?‘ ·èf?Ðýð^–Ö?|öOÿÝ?’¼  g¶?‘N÷J’?íu…XÚ?îCq$u?b¶­-Óx?‚nâwfÿ?Œ¯þuõí?‚uÞ@>N ?‚äÍ“½E'?†ÃÛSPã?†¯Mž684@@@@@*@(?ð?ð?ð?ð?ð?ð¿.³z–`?&Ì ?F §°?›^C¿ù@¤Lv^¯Ø@ªÝ“¬Œ?2>ù=q?5†ÃE?ù?qÔïø=ÔÍ?wÔï"œù‹@ŸføW½þ@n@¬ïŸ¾w@¬í³]þ×@¬ïŸ¾w@¬ò(R@¬ïŸ¾w@¬÷q5ç@¬ïŸ¾w@¬öôº(@¬ïŸ¾w@¬òqOhŽ@¬ïŸ¾w@¬ðÚ§}ª@™³"Ðå`B@™³$ˆ(*@™³"Ðå`B@™³'Lß>‰@™³"Ðå`B@™³$ÌqB@™³"Ðå`B@™³ À¾z@™³"Ðå`B@™³$[§ Ü@™³"Ðå`B@™³”î¦À@8 ]cˆe”@8cA&II@3Š^5?|í@3ˆ‰nÏš@2Àå`A‰7@2½Á[„@2zÔ,<ží@2t°R!LT@2zÔ,<ží@2vYt¹í@2zÔ,<ží@2vËVì?•'Z]Ô&?ä5;-?’`&בɽ?‘ÛÛ2K?‘Ë5‹Þ¸?‘šµû"®?™I'%ö«?’2S÷8žä?’“¿yŒÕ'?”ã‡EƒÑ?’JWV'ñ?‘aÓ¾?—%—º«?@w%±?‚ÝD÷3?…ÉvCy?‰ aç³7?Š®§ª*ç¶@@$@(@,@4@2?ð?ð?ð?ð?ð?ð?>Ðø¿C3º/Æ?Um_ÁsÇØ?Bñ^Ö0É@¬òkUò_@™³!V -?qïMy›G?_9óîßmÓ?ßKÖø`‚?³QÿJ†e6@Ÿn9@ym@o@¡  Iº^@¡ u a@¡  Iº^@¡ n—@¡  Iº^@¡ ÞÑ·@¡  Iº^@¡ …‡ ¨@¡  Iº^@¡ å`AŠ@¡  Iº^@¡ Ín;˜@£bPbMÒò@£bP£× -=@£bPbMÒò@£bPc^K@£bPbMÒò@£bP¡v7¢@£bPbMÒò@£bPô]0@£bPbMÒò@£bP ò1 @£bPbMÒò@£bP|„µÞ@4Û¹Œ~($@4Ü¥zƒ(Ø@.8“t¼j@.8¯ûÂjZ@-h1&éxÕ@-hˆ õÆß@+87´¢3œ@+8_ÌW›1@+87´¢3œ@+8•2&°@+87´¢3œ@+8†YJôð?}x—™Ö@¨Là‰C?d‚3r?p»œ‰Xìá?È—° ø?Ö9Gø¢Èü@Ÿm߀€@q@¨3Z¬1@¨3Z¬1@¨3Z¬1@¨3\]cˆf@¨3Z¬1@¨3XÔýóµ@¨3Z¬1@¨3Zû~‘@¨3Z¬1@¨3YJôðØ@¨3Z¬1@¨3YXbN@¤’« Iº@¤’ª~ùÛ#@¤’« Iº@¤’«¹Œ~'@¤’« Iº@¤’ª™0¾@¤’« Iº@¤’«xFÜ@¤’« Iº@¤’«6z@¤’« Iº@¤’«xFÜ@5>«6z@5+ Iº@1Ùº^5?}@1ÙÛ"Ðå`@0»Æ§ï²@0»ÚQÎ@0œàu÷@0”¯O „@0œàu÷@02a|Ú@0œàu÷@02a|Ú?}Ñ¿ž,?¥nÇx?)?‘°&޲P?Œ^:Òf?‘,IÝ Áé?Ðýð^–Ö?}Ñ¿ž,?’0nà=Q“?ÔCXsò?‡@Cvì×?‘Uç·Býi?]#ÍìO¤?…ÑTë0Ó?ŒïQ¼º“ã?‚ù…žÄ`x?‚ù8 ±^?†ÃÛSPã?†Ë¢L1Ù@@@@@,@&?ð?ð?ð?ð?ð?ð¿ò³¾?+‘^è0?'Râå¼ö? ï|X }@¨3Yÿ{äî@¤’ªý…hŽ?GP)&^²?-¡~}eí?œ^;ûI?eÝIº—¥q@Ÿg%ºã·u@r@£(õÂ@£(1&éy@£(õÂ@£"Ðå`B@£(õÂ@£ -à @£(õÂ@£À6â@£(õÂ@£l"h -@£(õÂ@£!ä÷eý@«òô9Xb@«òòñ©ûç@«òô9Xb@«òðoiDg@«òô9Xb@«òá½¥ž@«òô9Xb@«òôSŽóM@«òô9Xb@«òöÈ´9W@«òô9Xb@«òÿ½@7í¥œàv@7ì<žì¿²@3Ù‡+@3"3œ¾à@2Ë"Ðå`B@2Òn—Oß@1èè§æ›@1ì¥zxl"@1èè§æ›@1ôM:’£@1èè§æ›@1ó&Á½¥?–ªÎ­¡?’‚€‡d_s? Þ‘KOî¦?$¿ÀºÍ?[F»h?¥ñ.EkÐ?’Эs_ª`?ŽâS[ÞDí?ŒÅÐ7N³¬?°4\ɵ?ŠE§e,¤@@@@@&@*?ð?ð?ð?ð?ð?ð¿JX£|p¿c¼õûX?e%6À×¾?T\¤Ò®@¤v¿|„#Ò@­ƒçÿ8Pp?wÍN†÷I?nž‚&K¾?á¥ß'aM?ÇN¿Ú7Ù¤@ŸoHúwði@t@ ø8Ôýó¶@ ø8FÜ]@ ø8Ôýó¶@ ø7Ý0Vn@ ø8Ôýó¶@ ø9èG§¨@ ø8Ôýó¶@ ø7!÷nñ@ ø8Ôýó¶@ ø5ú(=«@ ø8Ôýó¶@ ø4¡…À @¦«r-V@¦«që…¸@¦«r-V@¦«q¦<Ú@¦«r-V@¦«ròæ‰@¦«r-V@¦«uÂ`/À@¦«r-V@¦«q·¹'@¦«r-V@¦«r±B¤@4*0U2b@4˜E¬å@1Œí‘hr°@1Ž£õ’@0ˆ“t¼j@0†ò‘V®¬@0TmÅÖ8†@0Rû~ÿ˜@0TmÅÖ8†@0TGa¹&Ô@0TmÅÖ8†@0S_g{µ‚?|çµB &€?Áù9§?‘e¨>ëc-?‹¯“'â?‘6θ„ À?‘€’9ñd?|Ñb×¶@?’ÎáëÕ~?‹>ºIA?-õHºD4?‘i¤”Ö­?x9f‰‰?‚t¢w{O?Œ·«HÍZS?‚Þþ̯.3?ƒ:I³l¬?†ð˜½#®?†æñŽŒ$@@@ @ @3@2?ð?ð?ð?ð?ð?ð¿Bòaw?/EÊ«à?DP®Ýp?<ŸydÏÝD@ ø6Öì@¦«r©æÜ?>þœÎ´“7?]úþ|•?‰Çc¬x‡š?Åõ>î––@Ÿfångb@u@¦åþùÛ"Ñ@¦åþ¸Që…@¦åþùÛ"Ñ@¦åÿ.Hè¦@¦åþùÛ"Ñ@¦åþùÛ"Ñ@¦åþùÛ"Ñ@¦åþvÈ´9@¦åþùÛ"Ñ@¦åý²-V@¦åþùÛ"Ñ@¦åýŠÚ¹õ@¥YÓ÷ÎÙ@¥YÔzáG®@¥YÓ÷ÎÙ@¥YÓÃa?@¥YÓ÷ÎÙ@¥YÓ÷ÎÙ@¥YÓ÷ÎÙ@¥YÔSŽóN@¥YÓ÷ÎÙ@¥YÓMj@¥YÓ÷ÎÙ@¥YÓ3332@3‚ò䎊@3‚&€IR@0 Ä›¥ã@/ÿU›=È@.DZ¬1@.CFÜ]cˆ@.Vð¸»@.U¨Xy=Ú@.Vð¸»@.UϪ͞„@.Vð¸»@.UfÏAò?|öOÿÝ?¦Ì '?‘šÕU#?Œ<…ÓÆÝ?ÿ £‰¸9?ÍàÊaùX?|¬Çëý ?’4 "ëžØ?«'Q™µ?˜ò¶Ðú?îCq$u?e¾DQ„Q?‚nâwfÿ?ŒÂ§dß±?‚|׿pZ?ƒ ?ÿ½?†¼Š˜L¥÷?†ÃÛSPã@@@@@(@*?ð?ð?ð?ð?ð?ð¿-d%°¿0YÖ½è? ŸLÑ¡F)?¸ï….}H@¦åþCj=Ü@¥YÓøYh3?+†nÔ¡]Ö?2$3Uì[?di\TÝù -?põ¬ LG¦@ŸfðIZw9@v@¢«ûdZ¬@¢«þå°êk@¢«ûdZ¬Á.„€@¢«ûdZ¬Á.„€@¢«ûdZ¬Á.„€@¢«ûdZ¬Á.„€@¢«ûdZ¬Á.„€@–Ò&éxÔþ@–ÒBÓ®ú!@–Ò&éxÔþÁ.„€@–Ò&éxÔþÁ.„€@–Ò&éxÔþÁ.„€@–Ò&éxÔþÁ.„€@–Ò&éxÔþÁ.„€@8%öý!ÿ.@8'¾ömÀ›@43S÷ÎÙÁ.„M‰ûçm@3Wï²-Á.„QnÙ‡@2Ê0U2a|Á.„NÜC,¥@2Ê0U2a|Á.„NÜC,¥@2Ê0U2a|Á.„NÜC,¥?}x—™+@8Iç@8Ù?’t D5·±@8Î÷@8i§@8Å@8S@8û—?¤«¥lˆï{@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøw@¦¥Â Iº^@¦¥¼í‘hs@¦¥Â Iº^@¦¥ÄtSŽó@¦¥Â Iº^@¦¥Ã{J#:@¦¥Â Iº^@¦¥ÀÞÒˆÎ@¦¥Â Iº^@¦¥Á-w1@¦¥Â Iº^@¦¥¿¾vȵ@­Û"Ðå`@­Ôýó¶F@­Û"Ðå`@­ØüPH@­Û"Ðå`@­Þžš@­Û"Ðå`@­Úû~‘@­Û"Ðå`@­Ú)Çy§@­Û"Ðå`@­Ú)Çy§@8 Î_oÒ@8s×Ûô@3° Ä›¦@3Ä9XbN@2Ãt¼j~ú@2Âø7´¢4@2…œàu÷@2„ã¼ÓZ†@2…œàu÷@2†z–¼@2…œàu÷@2†“t½?¢Æ÷Xê†?•tæïá,•?’Q/Èö -®?‹¬àÌ’Ç?“eð7Õ@?“7ƒÆD -¹?ˆÿÀ)T¿Æ?–9}»Ö=?• -o‡É§?£û,Ɇ?‘áÙž­ò?“å¡jÚ?oeư0?3ßa=„?ˆìûIè«6y@®=“u@®=“u@®=“u@®=*™1@¥~6E¡ÊÁ@¥~4ýó¶F@¥~6E¡ÊÁ@¥~7´¢3œ@¥~6E¡ÊÁ@¥~6z—@¥~6E¡ÊÁ@¥~5Y³Ð~@¥~6E¡ÊÁ@¥~5*™1@¥~6E¡ÊÁ@¥~4¢3œ@5ÞHè§æ@5Üàuöý"@2+ Iº@2_ö”F@1ÐA‰7KÇ@1Òu%F -¦@0?ò䎊r@0@ù k¹Œ@0?ò䎊r@0@Ñ·Xâ@0?ò䎊r@0@ Ä›¥ä?|öOÿÝ?Qdöÿô¼?“njĕ‹x?Œ'õ‚$5ñ?‘#6‰¥_?‘f]£àG?„F/·ÿP5?’[ KÄ0R?‘´"«Õa?Níú¾?‘<¸ö}½?Éöm/wª¸ ?€=P|@@@@@,@*?ð?ð?ð?ð?ð?ð¿ØØ€¾ûVTx€?*(ä‹43Ñ?=ç¨é~@®=0às«@¥~5Šˆ?JÝ„–inj?3Va‚”‘ê?¡Åg’Î?mð,÷!‚@Ÿh>ÐïË@y@¦ø“u@¦øS÷ÎÙ@¦ø“u@¦ø33334@¦ø“u@¦õ+…¸R@¦ø“u@¦÷Þ5?|í@¦ø“uÁ.„€@¦ø“uÁ.„€@§w½p£× -@§wÇ+ K@§w½p£× -@§w^ÿ—$@§w½p£× -@§vÚ¬1@§w½p£× -@§wQhr°!@§w½p£× -Á.„€@§w½p£× -Á.„€@8^Hè§æ@8`-à @3Œí‘hr°@3EãS÷ÎÙ@3v§ï²-@2šÚ¹õY´@2ÙŒ~($ @2OhÛ‹­@2ÙŒ~($ Á.„NÜC,¥@2ÙŒ~($ Á.„NÜC,¥?óA[ØïF?µpo‚_?ÓãPàQáÇ?¹f¨P¸Ëý@8Iç@8Ù?ªÝ8Ⱥ™J?³&àÖ`ç?Ð;+óå¬Ç?·øõЦûX@8S@8û—?ªÞUWºci?°ëç¡×4r?¦þ“ßH/b?ÇÓDZ›€@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøz@¯ˆ:^5?}@¯ˆ;dZ¬@¯ˆ:^5?}@¯ˆ;šu@¯ˆ:^5?}@¯ˆ:^5?}@¯ˆ:^5?}@¯ˆ9Î_q@¯ˆ:^5?}@¯ˆ8ï4Ö¡@¯ˆ:^5?}@¯ˆ8“t¼j@ ¶ÌÌÌÌÍ@ ¶ÌÌÌÌÍ@ ¶ÌÌÌÌÍ@ ¶ÍjO@ ¶ÌÌÌÌÍ@ ¶ÍúCþ\@ ¶ÌÌÌÌÍ@ ¶Ì"h Õ@ ¶ÌÌÌÌÍ@ ¶ËÓÃa@ ¶ÌÌÌÌÍ@ ¶ËÓÃa@5[¹Œ~($@5\ô!-w@1Iº^5@@1Oß;dZ@0"-V@0"Ðå`A‰@/Ǔݗö,@/Çâ‚@·€@/Ǔݗö,@/É 'RTa@/Ǔݗö,@/É…ðoiE?ð°–Ž]?ûJ`ÕYð?‘"žæÆó¡?ŒÖ -Äȱ?‘'¬Å™» ?ë+ʦÜ_?ð°–Ž]?’p RN%Î?ˆ9²0?Hª¦ºón?‘ ·èf?›ªU3Îp?ð*wjs—?Å9–o?„ËD(ºp?ƒv_.^?†ÃÛSPã?ŠEÝ‹N?ð@@@@,@,?ð?ð?ð?ð?ð?ð¿Aéû¿ ¿"=cÁü? ÞkàÆõ™? Sgœ½>@¯ˆ9$7,@ ¶Ëðxþ?c)²xT)?kAêä\ó?2»¤ž!ö¼?%ÇPz÷XÖ@Ÿs~÷í@{@ªTr-V@ªT~vÈ´9@ªTr-V@ªToAò×@ªTr-V@ªTuL˜_@ªTr-V@ªTuéá°‹@ªTr-V@ªTp Ä›¦@ªTr-V@ªT‚h Ô•@ªµøÔýó¶@ªµöÈ´9W@ªµøÔýó¶@ªµô¼@ªµøÔýó¶@ªµó àÞÔ@ªµøÔýó¶@ª¶ðoiC@ªµøÔýó¶@ª¶œwšk@ªµøÔýó¶@ª¶SŽóM@8ãg ù l@8ÝÈK]Ì@4E?|í‘h@4Gâ‚@·€@3´“t¼j@3´÷eýŠÛ@3J0U2a|@3HÇâ‚@¸@3J0U2a|@3H´9Xc@3J0U2a|@3CŽóMj?—¤o„C? È»v\¶?–™@^Ú¢?—IW`g’?ž–n.õ}ø?¥ìõ`$-š?º,eª ™?•¤-'Ä,?™ ?G·W?•è­¸‡? !o‹j`?#°‘N˜?–í -e˜›ð?vùv“?“Vné?‹Ûu¤ó†4?¢Kà7~w>?žµ½èq¨®@@@@@*@(?ð?ð?ð?ð?ð?ð¿[u±Ô?upY-Ú€?að{ÎÎïÐ?hN<ñ¾Dd@ªTw:Âòp@ª¶c—Ä?½÷Zàáw?zú•›?ã蔊 w:?Ø‹þ?n@Ÿo4Rš6ž@|@¬šbÐå`B@¬š}/Ÿ½@¬šbÐå`B@¬šÙ0¾ ì@¬šbÐå`B@¬š­V@¬šbÐå`B@¬š×KƧð@¬šbÐå`B@¬›Ð©*@¬šbÐå`B@¬›ò×r@¬TÌIº^5@¬TÃn—@¬TÌIº^5@¬TºCþ\’@¬TÌIº^5@¬TÄÝ/ @¬TÌIº^5@¬TƧï²@¬TÌIº^5@¬T¬ç¯¸@¬TÌIº^5@¬T¬~($ @5åöý!ÿ.@5¾ í(Œæ@2° Ä›¦@2€ Ä›¥ã@2Ðå`A‰@1ã¶E¡ÊÀ@2ý!ÿ.I@1Í}¿HÌ@2ý!ÿ.I@1ÒÐå`A‰@2ý!ÿ.I@1Óˆe”¯O?žˆ2}?¹Rñão¬@?¬Œª:bËf?¢Š3?Úyd?¾w/á›F?¾Wºñø…í?“Æ×q„nï?@`WÓæ?¢zhû›\¾?”¡VòÄ\F?£Pr¶ã™?œŒ9•`}·?¼ÐÁß9&û?’žÿ§:­?™båïVý?…bv{3dZ?$Ìj½BÙ?’&Á¯»@@@@@,@*?ð?ð?ð?ð?ð?ð? ¦ÙÁA€¿pÆ -?aÈŠX¤µÜÆ@3B° Ä›¦@3@A‰7KÆ@2Ðå`A‰@2£n.±Ä@1ÑÞi­BÄ@1Ïß;dZ@1ÑÞi­BÄ@1Ðò{²þÆ@1ÑÞi­BÄ@1аò{²ÿ@8J¨?W[†?“=P™Ê?î®)„àµ?‘¿ÐÅu?’?=ÆþÎò@8J¨?“‚Û£0Τ?”p¶I”“ž?’„÷ò¸?‘ ^Íü?ÿ?“X<‡÷Ú@8p÷?3ßa=„?…/‡ÙX·³?„À"aËô??ŠEÝ‹N?Š—à `ž@@@@ @,?ð?ð?ð?ð?ðøøøøøøøøøøøø~@¤ª²-V@¤ª°£× -=@¤ª²-V@¤ª¥®æ1ù@¤ª²-V@¤ªÁTÉ…ñ@¤ª²-V@¤ªÂh Ô•@¤ª²-V@¤ªÆö”Ft@¤ª²-V@¤ª´!-w@« A‰7L@«¨´9X@« A‰7L@«¸FÜ]@« A‰7L@«£ñA \@« A‰7L@«‹ûµt@« A‰7L@«ˆ Ô•@« A‰7L@«¤%®æ2@7eöý!ÿ.@7e`A‰7L@4Š^5?|í@4”¼j~ùÛ@3ä¼j~ùÛ@3òœwškQ@3…œàu÷@3˜ÁTÉ…ñ@3…œàu÷@3±Î_p@3…œàu÷@3¬¹#¢œx?‘â%ì˜ ä?˜¶ÚæÁ€?”Ä0óçî?¤ïâ NŠ:?´¢¦è?²P£zjÊ?1·†Æjñ?¡Ú4\á2?¡)~Y¡6 ?ª*G„kì?¸û9]t`?·æ±/&?‘MM….äí?™:K²ïÏ?¡§~gN? C×.ΰ?¢ŠEÈ>g?°óËr:vI@@@@@,@,?ð?ð?ð?ð?ð?ð?n ¯¬<¿yùÞ`?b!ftB ?j0a$mT"@¤ª¶d4ˆÔ@«Ÿö:t?|#NÍ?ÐPÒãÅö?ÕÅ@l.d„?ဩ™·™P@Ÿ`‹¡Ôß@@«2wÎÙ‡@«2€ƒn˜@«2wÎÙ‡@«2|PHð@«2wÎÙ‡@«2v4é@«2wÎÙ‡@«2uéá°Š@«2wÎÙ‡@«2t!-v@«2wÎÙ‡@«2v“v@­·ƒn˜@­·Ä›¥ã@­·ƒn˜@­¶ÿ±[W?@­·ƒn˜@­·s×Ü@­·ƒn˜@­¶øï4Ö¢@­·ƒn˜@­¶ö“u@­·ƒn˜@­¶õϪ͟@8uS&Á¾@8kàÞÒˆÎ@3áhr° Ä@3ÝBÃÉîÌ@3Ú~ùÛ"Ñ@3Ô%®æ1ù@3mÅÖ8†@3Ñ·Y@3mÅÖ8†@3êJŒM@3mÅÖ8†@3·éùr?®í©@Šþ?’u~•Ñ?˜²éÃ_ÓÔ?’9ñ9¶ò8?™‰‰…Â?–yí+PYu?|öOÿÝ?”zòžÕÿ?¡âŠÊ -?•ãÿ§…|?•MšuVÑQ?˜6@(/ÇÝ?–uDJ‘`º?*øT?™“ÇÙ¹?‰‹„áùO"?‘\,‚†!?>LR_5@@@@@*@*?ð?ð?ð?ð?ð?ð¿Q¯r{>¿dŒlHL?QŸâ¶"ˆŒ?/U0ÛL¨@«2v<¦šê@­¶ø­"?eA1Ä‹Gµ?Uý˜ºTK‹?·[Éö2? q³8¢@ŸoBçM3@€@žŒp£× -=@ž‹Ã:ÉAÉ@žŒp£× -=Á.„€@žŒp£× -=Á.„€@žŒp£× -=Á.„€@žŒp£× -=Á.„€@žŒp£× -=Á.„€@–$´9Xb@–$ûÌFÂ<@–$´9XbÁ.„€@–$´9XbÁ.„€@–$´9XbÁ.„€@–$´9XbÁ.„€@–$´9XbÁ.„€@7*0U2b@7»¼Y×@3”›¥ãSøÁ.„M‰ûçm@3$¼j~ùÛÁ.„QnÙ‡@3ý!ÿ.IÁ.„NÜC,¥@3ý!ÿ.IÁ.„NÜC,¥@3ý!ÿ.IÁ.„NÜC,¥?•¬š3€å®@8#˜@8¾:@8 >+@8Iç@8Ù?€kz½ -~@8Î÷@8i§@8Å@8S@8û—?kŸsŽŸP@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@žÎ\(õÃÁ.„€@žÎ\(õÃÁ.„€@žÎ\(õÃÁ.„€@žÎ\(õÃÁ.„€@žÎ\(õÃÁ.„€@žÎ\(õÃÁ.„€@™*Ý/Ÿ¾Á.„€@™*Ý/Ÿ¾Á.„€@™*Ý/Ÿ¾Á.„€@™*Ý/Ÿ¾Á.„€@™*Ý/Ÿ¾Á.„€@™*Ý/Ÿ¾Á.„€@7Ñ|ÚQÁ.„>¤µÜÆ@3xr° ÄœÁ.„M‰ûçm@2Z~ùÛ"ÑÁ.„QnÙ‡@1𖻘ÇãÁ.„NÜC,¥@1𖻘ÇãÁ.„NÜC,¥@1𖻘ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø‚@©/Þ¸Që…@©/ñë…¸@©/Þ¸Që…@©/© 'RU@©/Þ¸Që…@©/ÍOß;e@©/Þ¸Që…@©/wéùs@©/Þ¸Që…@©/Ó&Á¾@©/Þ¸Që…@©/®cŠ -@®é¯Ÿ¾w@®ép£× -@®é¯Ÿ¾w@®é“¶E¡Ê@®é¯Ÿ¾w@®é¨´9X@®é¯Ÿ¾w@®é™0¾ í@®é¯Ÿ¾w@®é“@N¤©@®é¯Ÿ¾w@®ê™³Ð|…@9Y*0U2b@9N($ x@5®5?|í‘@5¾cŠ @5 "Ðå`B@5ÑN;Í6@4Œ¿±[W?@4»ÓÃa@@4Œ¿±[W?@4wÁ½¥@4Œ¿±[W?@4áœàuöý?ÁxgÀ?—µ”öŒqÒ?’´ýBI{?£ìߦË>?¤¦aR¢o?«ÿÄå3:?·à¦_ëý?°M\³Ù“@? Dñ£P?¨œ»ÁÔé?®ƒý{T»¯?°?6-Kò?Ò^áÁèw?¤A8 Kú¿?¹§Âƒj?¤„»•Uñ#?˜uqR¿7?¦Tј+‰@@@@@@?ð?ð?ð?ð?ð?ð?´>¶F@?¨¸º5 ?š3+0‘|\?¥>Hr&Ûø@©/¥u÷@®éÕPrf?¬pYÂfL?½Ùy1ŠÊD@#Ž›¶/†>@=rQÎȈ8@ŸosÄÕ–@ƒ@«aÊÀƒ@«aô±î#@«aÊÀƒ@«a’tûš@«aÊÀƒ@«e““L@«aÊÀƒ@«Šd……|@«aÊÀƒ@«ˆ6‹Lü@«aÊÀƒ@«Šè±0:@•jcS÷ÎÙ@•jR·ÏÀ€@•jcS÷ÎÙ@•iÍ[Y˜@•jcS÷ÎÙ@•iœ@Ϭ×@•jcS÷ÎÙ@•iÃU¾ -ß@•jcS÷ÎÙ@•iàê".Ä@•jcS÷ÎÙ@•iÒAÙ‚;@7›¹Œ~($@7ž+÷ë£p@3W+ Iº@2ú€e*ìA@1ÐA‰7KÇ@1ž¶;Ìù@1ž«6z‘@1jp|&Û @1ž«6z‘@1k åÉÌ’@1ž«6z‘@1pëœz&?~Ov_Ø­«?®ÅWMʨ ? íµß'N5?«ùšô1…ê?¦\?°ZÖl?§lhFB?‚Ú¡ËG7?†K@oþ?ŽƒuèÂ:d?’Á¡QËÙ?‘èÅ~òu‡@@&@ @,@:@9?ð?ð?ð?ð?ð?ð?ƒk±~ù¿ŽD뎀?XÊ´ÎÇè?fí2†™Ìü@«mGmù@•j/(?p¥û½Ú?}ë"5Æãy?׋à¨ùù:?älŒ“5òB@Ÿ_(—Š¿@„@¦]­V@¦]­Oß;d@¦]­V@¦]®p:û@¦]­V@¦]¸y=Ù@¦]­V@¦]·ÎÙˆ@¦]­V@¦]²:)Çz@¦]­V@¦]©^ž @ž3 Ä›¥ã@ž3¡G®{@ž3 Ä›¥ã@ž3©*0U2@ž3 Ä›¥ã@ž3™JôðØ@ž3 Ä›¥ã@ž3œú¬Ùé@ž3 Ä›¥ã@ž3¢œwšj@ž3 Ä›¥ã@ž39#¢œw@3Ñ|ÚQ@3Òe+ÓÄ@2n5?|í‘@2j¹õY³Ð@24“t¼j@23S&Â@1Ê0U2a|@1Ã× -=p¤@1Ê0U2a|@1ÈÇâ‚@¸@1Ê0U2a|@1°ÞÒˆÎp?|öOÿÝ?‘6 '8? ±ubÊÅ5?“U†žév?”#?3ÆÂƒ?¨ÅkÊL?|öOÿÝ?’馿œãj?œ*&Ækúµ?•{G_r¤V?“Ô¼2“#š?½«YÙ­ 8?‚|׿pY?•ŠPç<}¨?“„*0x)Æ?“äÐå÷à?ùDâΊ?ÇùØò¸@@@@@*@*?ð?ð?ð?ð?ð?ð?Yòú­~¿;á×óô?Tú:‡4À?WÙk3^"@¦]°òäª@ž3ŸüÌM]?p¦sHe·G?rüDç¯î?åpAKÇ|Ü?èÅxÙ…ª@Ÿaõc5U @…@¥ü4¼j~ú@¥ü4¼j~ú@¥ü4¼j~ú@¥ü5$Ý@¥ü4¼j~ú@¥ü6“u@¥ü4¼j~ú@¥ü5Â\*@¥ü4¼j~ú@¥ü5 '»@¥ü4¼j~ú@¥ü3œ¾à@¯F&éxÔþ@¯F'+ K@¯F&éxÔþ@¯F'l‹C–@¯F&éxÔþ@¯F)7Kƨ@¯F&éxÔþ@¯F'ï²-@¯F&éxÔþ@¯F)Dg8@¯F&éxÔþ@¯F(Xy=Ø@2Bò䎊@2Be+ÓÄ@-{"Ðå`A@-{çl‹C”@-%¡ÊÀƒ@-%+ÓÃa@,#¼ÓZ…ˆ@,#9Àëíû@,#¼ÓZ…ˆ@,"ÞÑ·@,#¼ÓZ…ˆ@,"‚@·€5?É^žQ5P‚?Æ¿5›7÷?‘ŸÇSñ?‹ËØ|*(?îú/´`?Å{¿Ž<¹?ÐbV‡,?’Ï>`Ï?€s8rÅ?-õI¸`K?ÔÒ@úˆ‘?M\³Ù“@?€cPßQª?Œµ3‰;šÏ?‚|׿pZ?ƒ^ ›¨¬a?†špk Y?†špk Y@@@@@@?ð?ð?ð?ð?ð?ð¿Lpð¢?-8"Ûx?)~˜WÃåÛ?8Šî•Ïù—@¥ü4ä=CÄ@¯F(xŸ)À?8€™¼õ?G<788Z?mWZª§á?‡·©l1@Ÿs -ú@†@¨ ¬1'@¨ ¬1'@¨ ¬1'@¨ ÓZ…ˆ@¨ ¬1'@¨ ¬1(@¨ ¬1'@¨ Æ?@¨ ¬1'@¨ àuöý@¨ ¬1'@¨ —ö+k@®Lèr° Å@®Lè´9X@®Lèr° Å@®Lä“t»@®Lèr° Å@®LäÝ/ @®Lèr° Å@®Lâh Ô•@®Lèr° Å@®Lß|í‘h@®Lèr° Å@®LãFÜ]e@4(†YJôñ@4(e”¯O@0‚° Ä›¦@0‚¼£n@/Ýó¶E¡Ë@/Ûµsê´@.̲•éá±@.Ç+ I»@.̲•éá±@.Ǔݗö+@.̲•éá±@.ȧæšÕ?|¬Çëý ?:LÓá -í?‘D&»ä?Ž‚¨Ø†{~?‘EÉ@Ú?ô Î]V?|öOÿÝ?’®> -fuæ?‘N÷J’?‘.“¥?•¯ÃþƒR?’ Óº^?‚¯­Ù¤Áµ?Œèsq‡#?‚ù…žÄ`x?ƒ*|š\/´?†µ°jÆÃ?‡L8õASÎ@@@@@&@&?ð?ð?ð?ð?ð?ð? hï ¿Z¢ô?ƒd²Óì~?@øõÐ5@¨ 笿Ž@®Lå(Ž(?/N££D?a q²:…8?j xG¸ë ?ɳ¿?¶@ŸfQñÑè@‡@¤4¼j~ú@¤+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøøˆ@¥Õ$Ý@¥Ö‡+ @¥Õ$Ý@¥Ó÷ÎÙ@¥Õ$Ý@¥ÔÉ…ðo@¥Õ$Ý@¥Ö+jçÕ@¥Õ$Ý@¥Öz˜@¥Õ$Ý@¥Öý!ÿ.@¬ÇuÂ\)@¬Çv“u@¬ÇuÂ\)@¬ÇvÈ´9X@¬ÇuÂ\)@¬Çxï4Ö¢@¬ÇuÂ\)@¬Çu*™1@¬ÇuÂ\)@¬ÇqÅ‚@¬ÇuÂ\)@¬Çsg ù @6Q|ÚQ@6Q4êJŒ@2Ù‡+@2í(Œç@1’Ðå`A‰@1‘aä÷eþ@0á:’£S@0Þ}Vlô@0á:’£S@0ßË’:)È@0á:’£S@0à?}Ñ¿ž,?¾¢`ƒ?‘RsÈW?‹ÁË…ÉT?’<_+fjä?‘®¬nÒMê?„F/·ÿP5?’ ,øÕC©?ö”iåó¨?@§[*^?“Æ×q„nð?‘"›ö?ƒM¬Öe—^?Œ°¶.Ä+Æ?„„OW°ó?ƒ3¸Î{Z?†Ü‘ °Ô?‡gϵ’õ@@@@@,@*?ð?ð?ð?ð?ð?ð>ù©¿Eýã‚`?«~sL+¥?2©wÌ}ò@¥Öˆ5*@¬Çt„Zl?4óªuëÑ?R½—õÆ6?uÛb`?©ñQ U…@Ÿgò!‰1È@‰@ d%ãS÷Ï@ d%ãS÷Ï@ d%ãS÷Ï@ d&™Î[@ d%ãS÷Ï@ d&$PR@ d%ãS÷Ï@ d''ÃA@ d%ãS÷Ï@ d%Yfa@ d%ãS÷Ï@ d$Ζ,Š@­÷ÎÙ‡@­øbMÓ@­÷ÎÙ‡@­ø®µ¾f@­÷ÎÙ‡@­øXz£x@­÷ÎÙ‡@­øhÄ@­÷ÎÙ‡@­÷´¢3œ@­÷ÎÙ‡@­ø}¿G@2ò䎊@2ò䎊@/Gï²-@/GéùrG@-|¬1&ê@-{–®E¸÷@-(Û‹¬q @-(fsøF@-(Û‹¬q @-)'WŒ{N@-(Û‹¬q @-(^¹‡§9?É^ž6õP?ÎÅ…ÐS?‘,žÔë5?‹Æ÷– ø?é4ôØ­5?¿óÈj?ÐbQë„›¦?’±5-¨?”Ùí˜6?8³QÁ9Ö?מ‚d?\j¥Ý4?€bwÄ' g?Œ·Zæ[?‚{›ÜL’‚?‚ì&{A‡ð?†”3†° ?†Žpu{,@@,@,@,@8@7?ð?ð?ð?ð?ð?ð¿PÒÙJ¿#dTX?)ÄãP‡"·?(ÐY˜9-@ d%éÌd@­øôi/?8ÃÎÿd?6È -voE?nôÂ)Õ?f²»Ï¹ÿ@Ÿs%[@Š@­ël°@3‚° Ä›¦@3ƒ/€Þ–Ô@2¹7KƧð@2ºÈ?ö¡2@2ò䎊r@2|`æÓºM@2ò䎊r@2€î¢ «@2ò䎊r@2~Ôð·)¤µÜÆ@3!hr° ÄÁ.„M‰ûçm@2ÒÐå`A‰Á.„QnÙ‡@2«6z‘Á.„NÜC,¥@2«6z‘Á.„NÜC,¥@2«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@­š¬1@­˜Që…@­š¬1@­¯Aò×@­š¬1@­¯hÛŒ@­š¬1@­¹b¶®@­š¬1@­¯\(õÃ@­š¬1@­±Þi­C@©Å 7Kƨ@©Ål‹C–@©Å 7Kƨ@©ÅÅ€@©Å 7Kƨ@©Åå`Aˆ@©Å 7Kƨ@©Å÷ÎÙ@©Å 7Kƨ@©Å#¢œx@©Å 7Kƨ@©Å¨Xy=@7Hè§æ@7±Ä2ÊW@3”›¥ãSø@3jOv@36§ï²-@3*Ÿ¾vÈ´@2s&Á½¥@2_—$tS@2s&Á½¥@2b3œ¾à@2s&Á½¥@2bò䎋?žˆ2}?ªi1Ÿ[„ñ?¢ž<³Óž?Ég(6ßð?¬¶Íl…ÿ?ªà—èðŒô?‡YÍ_?—Ð/ω(2?•ÙK°FÑ?—×:`‰?±ÂÍ–M?­87ÞŽ?‘¼Åâ<{?™î  lƒ?˜Ÿó6P¤?‹Bºá­?’Ì÷y\ÛÎ?–í -e˜›ï@@@@@,@,?ð?ð?ð?ð?ð?ð?„Ò4>?p™'³?fP•3?[×?Fœœê@­¨Z4Mf@©Å 뛑Æ?€è7ˆWê?a6 +ª?û¸9Ýÿ?°ya}Qò*@ŸbàOoò@Ž@ŸýÁ‰7KÇ@ŸýÂŽð@ŸýÁ‰7KÇÁ.„€@ŸýÁ‰7KÇÁ.„€@ŸýÁ‰7KÇÁ.„€@ŸýÁ‰7KÇÁ.„€@ŸýÁ‰7KÇÁ.„€@§eOß;@§eÕÉ»[@§eOß;Á.„€@§eOß;Á.„€@§eOß;Á.„€@§eOß;Á.„€@§eOß;Á.„€@7Q|ÚQ@7Q°ùEû@3Ìí‘hr°Á.„M‰ûçm@2’Ðå`A‰Á.„QnÙ‡@1¡:’£SÁ.„NÜC,¥@1¡:’£SÁ.„NÜC,¥@1¡:’£SÁ.„NÜC,¥?|¬Æ Væ@8#˜@8¾:@8 >+@8Iç@8Ù?…ðE[i)@8Î÷@8i§@8Å@8S@8û—?‚§jÃK¶@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@­%›¥ãT@­%~¹T@­%›¥ãT@­%*î€@­%›¥ãT@­%³Oÿ@­%›¥ãT@­%wåÆ@­%›¥ãT@­%…t5@­%›¥ãT@­%¥´á@“AøÔýó¶@“BáÔêé@“AøÔýó¶@“BM:“@“AøÔýó¶@“B¡û®@“AøÔýó¶@“Aö¥+³@“AøÔýó¶@“Aýé(a@“AøÔýó¶@“Aò#¥ËÅ@8zqÞi­C@8{Èh Ö@4 Ä›¥ã@4Y¼¶L@41‰7Kƨ@45ô-yÂ@3”mÅÖ8†@3˜)œÖqb@3”mÅÖ8†@3›Xè¹íC@3”mÅÖ8†@3 ó|ñÜã?‚Cš æI?ðÓ¡ãö€?“ÊÚgÅ?“¦î‘?™ ¶¦€_? Ç -å¸*?©Å°C°ýz?’â›üŸ?”ŽqP:6?™¶  -1Ê?›Ì¦Ú2ô?¡JS¢«6z?É^žQ5P‚?*£|3Né?’d3ð"7?ŽÝ¡uÒ(r?’<_+fjä?‘·díW‚?ÐbMçê_x?’#maЀ?–¬HðºDŸ?¡Ð`HÇi?—ÒGþUÀ?›öBhéÀ?€ÖùL[]–? $gú‡v?ƒM¬Öe—_?ƒR¨º“JÞ?‡<û¡71?†ùadô|@@@@@*@*?ð?ð?ð?ð?ð?ð¿]+ð?|!„V"À?G€ÛÄXZ¯?l°Öb^ç@¢LÙPߥ@¬Q]DK?@?V±þl‹«­?xËÑTR‘\?¥_H®Ëm ?ÑÆôUá›h@Ÿs&a@‘@ªƒn˜@ª%$]\@ªƒn˜@ªòEã©O@ªƒn˜@ªü"Á @ªƒn˜@ªïgÁ{}@ªƒn˜@ªøÉ)L¬@ªƒn˜@ªõ‹oˆ@›¶n—P@›¶[§ E@›¶n—P@›¶Û’R{@›¶n—P@›¶ ‹¬¿È@›¶n—P@›¶ ¤-W@›¶n—P@›¶Ÿ\B³@›¶n—P@›µæÕ#B–@8šÔ,<Ÿ@8A`M* @4óS÷ÎÙ@4öŸwô°@3îùÛ"Ðå@3ï>@¶ãO@3p–»˜Çã@3oÜa@Ø@3p–»˜Çã@3nOx4h@@3p–»˜Çã@3p³­j÷¬?¤c|iÅqd?Ã…tÁâ.?šXMXö?Œ4’“ê<~?‘?ïä7œÝ?’n¥³w‚e?ñ3<' ?’\PÏ‘?–Ì´ù?-õIâG?ÏQ7Ù?’E͵kò?¡Þ—f8§u?“K»jw˜?!× f†?‹Äñ|þäõ?è° ˆ¨›?ŽéºuŠÉT@@@&@ @,@,?ð?ð?ð?ð?ð?ð?6¦ðõ ¿qâxõò?gSZ iÕu?QíW L(@ªô\æ@›µÿöó¡A?|ˆ¦,œez?u…ˆfÑ’µ?ò†q˜+Öð?냣V Qî@ŸnÁØHÆ&@’@¨Ã« Iº@¨Ã©ûçl‹@¨Ã« Iº@¨Ã‡ü¹#£@¨Ã« Iº@¨ÃP‰ 'R@¨Ã« Iº@¨ÃC¼ÓZ†@¨Ã« Iº@¨Ã`ëíúD@¨Ã« Iº@¨Ãf$Ý/@§ Òñ©ûç@§ Ð Ä›¦@§ Òñ©ûç@§ ¨§æ›@§ Òñ©ûç@§ ŽÙ‡+@§ Òñ©ûç@§ ¡ohÛ@§ Òñ©ûç@§ Æffff@§ Òñ©ûç@§ ¿U›=@6í¥œàv@6æ_Ø­« @3õãS÷ÎÙ@3àU2a|@3‹"Ðå`B@3nvÈ´9X@2½cˆe”°@2šOv`@2½cˆe”°@2”ŽŠqÞj@2½cˆe”°@2™0¾ í)?™™™™™™š? )™È.‡ -?·‚L7œS?°ž‹<›Þ?½ø5eyèé?ºæ'Ýt?‡YÍ_?®@ ‰VBš?¹á æèóÏ?µZ]Éÿ·?Àž˜ &°Ô?µ¦’?³&Ô,ô?ž™€ZÁ£ç?¡ƒZ)Àˆ?’oÍb4U?y½¼ŸŽ?¥cp Ž@@@@@,@,?ð?ð?ð?ð?ð?ð¿–ßà{–€¿wé¥L;?°›ÔåŒ?p©Á›:@¨Ã‡i[¿Ù@§ Lj6ùQ?›Ýtî ;¾?ˆcú‹øå@›9‰Ü/â?äàOºBý,@ŸaSn>@“@ªTbMÒò@ªT£× -=@ªTbMÒò@ªT ²•ê@ªTbMÒò@ªT° Äœ@ªTbMÒò@ªTÒòæ@ªTbMÒò@ªTóMj@ªTbMÒò@ªTë…¸@ èÙ‡+@ è²-@ èÙ‡+@ è úCþ]@ èÙ‡+@ è÷ÎÙ@ èÙ‡+@ èŠqÞj@ èÙ‡+@ è :’¢@ èÙ‡+@ è í(Ž@5½:’£@5½æšÔ,<@2Ï|í‘hr@2Ð-à @2$¼j~ùÛ@2%zxl"h@2«6z‘@2! ²•éâ@2«6z‘@2"ˆÎp:ü@2«6z‘@2(õÂ\?žˆ2}?’‚€‡d_s?’,³Zêª?Ô@R’?“øâ#0ŸY?•½0 -Žø?1·†Æjñ?”ºu(†¼¦?•Q²rz¢ù?ð{¥âdû?—QÀ–Íù?–Ï9xä]e?…™ï ufÝ?ŽÎ"”`ù…?ÉÏt -j?ƒ¼9XNÄu?ˆ‹”âó?‘À³ûê%§@@@@@,@*?ð?ð?ð?ð?ð?ð¿#z?SüÀ†°?2 @;@{?W…)'ù´Ç@ªTd%/ß@ è¡K—T?Qú0ɳ´ß?vôþS[?©^¶±?òã])^3@Ÿf8K ³@”@¬¾ C•@¬¾ ÌÌÌÎ@¬¾ C•@¬½üC,¥z@¬¾ C•@¬¾ÇË)@¬¾ C•@¬¾¨Xy?@¬¾ C•@¬¾ŽŠqÞ@¬¾ C•Á.„€@£³þùÛ"Ñ@£´n—@£³þùÛ"Ñ@£³ô‡ü¹$@£³þùÛ"Ñ@£´DЪ@£³þùÛ"Ñ@£³÷§†Â'@£³þùÛ"Ñ@£³ãþ\‘Ñ@£³þùÛ"ÑÁ.„€@6ÿ–»˜È@7-à @3» Iº^@3¯Ø­«ŸV@3Ãt¼j~ú@3¾¤¨ÁTÊ@2õµsê³h@2ìžì¿±\@2õµsê³h@2øÎp:û@2õµsê³hÁ.„NÜC,¥?€‚ñêã ?­Ì£\C)»?³eI2·?¥Â²ãE…|?¢û`ÞŽ q@8Ù?›’qvš°•?¥¬ŽáíÛ~?¶ÚOTá?Ú@/@õ{?®8i¿=F @8û—?Ÿ|–„aQ?™Uîœsú?¡F·ˆõª@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø•@¥Å‹Æ§ïž@¥Å‹Æ§ïž@¥Å‹Æ§ïž@¥Å‹¬q ´@¥Å‹Æ§ïž@¥ÅŒ"h Ô@¥Å‹Æ§ïž@¥ÅŒ"h Ö@¥Å‹Æ§ïž@¥Å‹¹Œ~(@¥Å‹Æ§ïž@¥Å‹Æ§ï@«Ú†§ï²@«Ú†§ï²@«Ú†§ï²@«Ú†Â&€@«Ú†§ï²@«Ú†§ï²@«Ú†§ï²@«Ú†§ï±@«Ú†§ï²@«Ú†Ü]cˆ@«Ú†§ï²@«Ú†Â&€œ@0-¥œàv@0-¥œàv@*³t¼j~ù@*³×Ûôˆ@)´ýó¶E¢@)µ%F -¦L@*#¼ÓZ…ˆ@*#× -=p¤@*#¼ÓZ…ˆ@*#× -=p¤@*#¼ÓZ…ˆ@*#ñA [Â?É^žQ5P‚?°çR;?‘$Cê¡@í?‹ª½¨ª8v?íOþtà?³×OÓ+y?ÐbMçê_x?’˜‰%F²?¹º–Èj?0ÜN :s?ÝIMÎ?Kcìë?€bMÕky?Œ¯þuõí?‚oÁÆÜ§÷?‚ãaÎúvh?†‰Oú|q?†½ª»—@@@@@,@&?ð?ð?ð?ð?ð?ð¿%Ë1X? þ?Að?fÏæiºÛ? -4ó—*K@¥Å‹çï‘ã@«Ú†ÀÖ[?!³vû¿y?ÓSë¤?>Ô+d?¶·?+ :Ž-y @Ÿs›è›@–@¦ìûçl‹D@¦ìüí‘hs@¦ìûçl‹D@¦ìüí‘hs@¦ìûçl‹D@¦ìúáG®@¦ìûçl‹D@¦ìþš@¦ìûçl‹D@¦ìúÇË)@¦ìûçl‹D@¦ìý²-V@­G}ó¶E¢@­GyXbN@­G}ó¶E¢@­G}<64@­G}ó¶E¢@­G{çl‹D@­G}ó¶E¢@­G}IQ‚ª@­G}ó¶E¢@­G~ÿ—%@­G}ó¶E¢@­G€'RTa@8%öý!ÿ.@8# àÞÒ‰@2Ê^5?|í@2Ë/ìVÕÐ@2•`A‰7L@2—ï²-@2TmÅÖ8†@2V“t½@2TmÅÖ8†@2VR½<6@2TmÅÖ8†@2Vlô!.?îŠõ ?‘6 '8?’´ýBI{?ŽAtùð¥t?’õ¡EE?“°™²!¨w?ˆÿÀ)T¿Æ?“£PuòN?’±ä?‘ǧ?D6?’$) ‘?’›â¾Ð'µ?ƒ<Õp?ŽátÖÁ»‡?† - Ðló]?Q§ ç´Í?>LR_5?Žrø·óæ@@@@@*@,?ð?ð?ð?ð?ð?ð¿&çÌ3P?V\–Ì ?E§´%CüÃ? {èÑ—@¦ìý·J@­G}zw²W?^Ý2ä:Ã?/‡ª£ï½ñ?´•0f’?ZöÕYZÌw~?˜U6º y?›f°ùr[‚?—|M4ä^Ì?˜!ÄD‘?šbk6â÷¡@@@@@(@(?ð?ð?ð?ð?ð?ð¿b¤§ä?xâsg5?shYþ*’?d½‡òXÔ@¯“h±q¦…@¬VZoøÄ?0–AµÒq?„{EqÐÒ5?F<7 _öÂ?âE£b§®Ø@Ÿg¡Ÿž@˜@ ÖbÐå`B@ Ötÿ§i @ ÖbÐå`B@ × Ä›¦@ ÖbÐå`B@ ×-V@ ÖbÐå`B@ ×33333@ ÖbÐå`BÁ.„€@ ÖbÐå`BÁ.„€@ C A‰7L@ C&>©Ê@ C A‰7L@ Bš¬1@ C A‰7L@ Bå¡ÊÀƒ@ C A‰7L@ A~¸Që„@ C A‰7LÁ.„€@ C A‰7LÁ.„€@8|ÚQ@8g‘·b@2½‘hr° @2‚‚@·€4@2ƒt¼j~ú@2XbMÒò@2 ¿±[W?@1…Â\(ö@2 ¿±[W?Á.„NÜC,¥@2 ¿±[W?Á.„NÜC,¥?¬tÕJ”?Êóÿ¥Yzí?°$:H’T=?ªö;kE_@8Iç@8Ù?’t D5·±?žyÛ>Ócv?’üüšë‚J?ϪZ»y@8S@8û—?ªT -a?¶[9»Ü×\?´6¤_[í?£èŠFÊ@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø™@ž¬“t¼@ž¬ 3gã@ž¬“t¼@ž«Í¼|Mì@ž¬“t¼@ž«å/ üØ@ž¬“t¼@ž¬=„‡$7@ž¬“t¼@ž¬yYGî‚@ž¬“t¼@ž¬s„f·Ö@§¹6E¡ÊÁ@§¹2F¡ŠÐ@§¹6E¡ÊÁ@§¹I{ 6ó@§¹6E¡ÊÁ@§¹(¿ydð@§¹6E¡ÊÁ@§¹SJVÍó@§¹6E¡ÊÁ@§¹@ÉB-¹@§¹6E¡ÊÁ@§¹C¬Ér@7-¥œàv@7,Ýøæ`@4O|í‘hr@4bLÔmU@3‹"Ðå`B@3¼ªñfñ‡@2¨è§æ›@2¶5îh‘@2¨è§æ›@2 í³Åx@2¨è§æ›@2¢‚ P€À?Œßô™ 8+?«ÈÉ…K“º?‘¢éwï[W?’Ñ"Ôó‰?Ÿ®[Œ@F'?”ZÕ&ôv?e™”XWø?¢Ê A:?¥ü®Œ°?• ,É%L1?¢©PB’ël?š$nçæ¶¦?„†Wl÷ŒÎ?¦í‘Ø<Ç?†nbÆ?ŠÊ)á€zT?­ÓJ(ß.f?›ÿ ø«ã@@$@"@"@3@,?ð?ð?ð?ð?ð?ð?†Ž˜ƒCÀ?v§d¸¦?W¶6–«ùÀ?hÏúÍi.@ž¬:¶ßŒ@@§¹?‚ëc -?wf7/àÙ?‰ {þúƒ?èF~*çô@ L³¶ &@Ÿg(S)À@š@­f/Ÿ¾@­fp£× -@­f/Ÿ¾@­fžƒä%¯@­f/Ÿ¾@­fž¸Që…@­f/Ÿ¾@­fž5?|î@­f/Ÿ¾@­f›À6ã@­f/Ÿ¾@­f›çl‹D@¦uƒn—@¦uƒn—@¦uƒn—@¦uƒa@P@¦uƒn—@¦uƒ•%@¦uƒn—@¦uƒa@P@¦uƒn—@¦uƒˆe”¯@¦uƒn—@¦uƒ9Àëí@0ÉÎ_oÒ@0ÉÎ_oÒ@*a‰7Kƨ@*a–R½<6@*éxÔýô@*ö”Fs‚@'úÇË)_@'úÔ,<žî@'úÇË)_@'úÔ,<ží@'úÇË)_@'úÔ,<žî?É^³Dw'?Ï[äeN ?‚äÍ“½E'?†ˆ#.÷?†‰Oú|q@@@@@,@*?ð?ð?ð?ð?ð?ð¿QzNs`¿ ¬™÷Ð?9\*¿Ñ?Ä£„-Ân@­fœËÒ@¦uƒa«Ú?H"?Væ„?$„ô ?Œ§ ±E?B¨d>8à -@Ÿs#ÿ~Ï@›@¬s5?|î@¬s¥ãSø@¬s5?|î@¬s$Щ*@¬s5?|î@¬s)Q‚©’@¬s5?|î@¬s;dZ@¬s5?|î@¬s ÌÌÌÍ@¬s5?|î@¬qÿHË’@®OàA‰7L@®Oò-V@®OàA‰7L@®O»quŽ"@®OàA‰7L@®O¿U›=@®OàA‰7L@®OÌ"h Õ@®OàA‰7L@®O¼PHñ@®OàA‰7L@®UtzáG®@8h†YJôñ@8c•$Ý@4sS÷ÎÙ@4~žš@3¢-V@3­p£× ->@3TmÅÖ8†@3aÅo@3TmÅÖ8†@3`-à r@3TmÅÖ8†@2³ê³g ù?îŠõ ?¢N`¡?—ø}òg?nii)â?§3!E?ãü+Õº?îŠõ ?¥ £áÔ?•ÙK°FÑ?”ÑÓTœ?¥mÉ£&Z?ø8Ý烔o?‹f°ùr[‚?žk8¤é'è?$¿ÀºÍ?–]ªÍ-W,?§‘¶s½™€?ºìÝóqmE@@@@@$@$?ð?ð?ð?ð?ð?ð¿P6¸x¿Œ/—dà?s ´ -??£ŒØ`ÿ8@¬sõ¯´¾@®OÔ"ÃÂZ?…Üæl\6??”æU>b?õ„æÍÆ^@ >+†9;Z@ŸfO‘½@œ@®‡^5?|î@®‡^5?|î@®‡^5?|î@®‡?ö”E@®‡^5?|î@®‡ŠqÞi@®‡^5?|î@®‡uÜÆ?@®‡^5?|îÁ.„€@®‡^5?|î@®‡ÀÄ›¥â@­ í‘hr°@­ äZ¬@­ í‘hr°@­ ÚQÎ@­ í‘hr°@­ é 'RS@­ í‘hr°@­ 6®}Vn@­ í‘hr°Á.„€@­ í‘hr°@­ ™XbO@8 ]cˆe”@8¼j~ùÛ@4½‘hr° @5I#¢œwš@4.ùÛ"Ðå@4Žƒä%®æ@3–ý!ÿ.I@4Ðå`AŠ@3–ý!ÿ.IÁ.„NÜC,¥@3–ý!ÿ.I@3›6z—?—¤o„C?ÁZùÓ÷¼?б†óM”?ÃÓjÕ0«@8Iç?¦N›:?Œs¤DÅÐ?Ôo,?Ø0Ç?ÇÎÉM‹0D?¾¡=Cì(@8S?¤ÚÄ^Uâô?FpÉ'Ý?¯KÂ^ -N?Ä'˜Á*Ù?Áøºˆ5Ê@8 Ø?´¿°$®@@@@@?ð?ð?ð?ð?ðøøøøøøøøøøøø@­Œ&ffff@­Œ&§ï²@­Œ&ffff@­Œ'ÈK]Ë@­Œ&ffff@­Œ'Ë)_@­Œ&ffff@­Œ&€IR@­Œ&ffff@­Œ$ xG@­Œ&ffff@­Œ#•&@\;dZ¬@\:^5?}@\;dZ¬@\=!ÿ.J@\;dZ¬@\>($ x@\;dZ¬@\6ý!ÿ/@\;dZ¬@\8ºÇË@\;dZ¬@\8}¿H@4›¹Œ~($@4›×ái—Ò@2³S÷ÎÙ@2´•*™1@2‹"Ðå`B@2ŒPHð@1øDЩ*@1úqÞi­C@1øDЩ*@1úu%F @1øDЩ*@1ú…‡“ݘ?|Ñb×¶@?š¾ßÍZ?“›ÿ3?Ça_b‹?’õ¡EE?’_‘Oo¨Ž?|¬h2:“?“Œõ¼dÛã?‘å†36åG?‘§›ßÉîj?”V ìi!¾?‘«VTÓ?‚€Û€¸Ì?Å9–o?…µsê³g¡?„ªÎZ´?‹ ˜1 D@?ˆ”Tj«›ª@@@@@,@*?ð?ð?ð?ð?ð?ð¿A´ §¨¿1ñ*Gà?*h îb? Êv Xwv@­Œ%¤«…”@\9“+L?IÝŽ[u"´?@ába.? ‘‘ý”>?ŠY)y7Šÿ@Ÿf,™{ïˆ@ž@®±MOß;d@®±T9Xb@®±MOß;d@®±zÇË)@®±MOß;d@®±l~($ @®±MOß;d@®±WškP±@®±MOß;d@®±y k¹Œ@®±MOß;d@®±gy¦µ @ªNt¼j@ªN V@ªNt¼j@ªMVð¹@ªNt¼j@ªM=¿HÍ@ªNt¼j@ªM.p:û€@ªNt¼j@ªMä%®æ2@ªNt¼j@ªM”É…ðn@7í¥œàv@7åF -¦L0@3i‡+ @3>}Vlô@2çKƧïž@2ºdÂø7µ@2(è§æ›@1ûxFÜ^@2(è§æ›@1üj~ùÛ#@2(è§æ›@1üPHð?ª[Xxöp?« 烧?°=‚âEDA?®ã kS“?³¨¾ ÃË?°û’—?žŒÝÙ›P?ÐÏêÉgUm?Õ&cu?×=¿×©Dò?¶êvÏÛÂI?ÏpQ…iBÔ?¬ãfi’?Ÿ ‰$FÓ)?¢ÀB§š7?š -r˜ -Dw?ª ßJ‘›?±-÷ôÔß@@@@@@*?ð?ð?ð?ð?ð?ð?tÍD#'¿@GI¿ ?i~|.Û™?‚º÷ -ý÷@®±\xÂÇ…@ªMñëI]?‰Çª0è3Æ? â‘æ¯bô?ÔK¨¡õ³?ô µóª@Ÿd¨à¯`Ë@Ÿ@ =p£× -@ ;¥ãSø@ =p£× -@ AbJ˜@ =p£× -@ =42÷Õ@ =p£× -@ =´lš@ =p£× -@ 5f*h@ =p£× -@ (ÑQ­@«Ì›¥ãSø@«Ì/Ÿ¾@«Ì›¥ãSø@«Ì£ÈZ'ê@«Ì›¥ãSø@«Ì¡¸ƒ¢b@«Ì›¥ãSø@«ÌžŠ5Ð@«Ì›¥ãSø@«Ì—®—yë@«Ì›¥ãSø@«Ì˜ú¨×@6÷â‚@·€@6õ˜‘g™@3GÎÙ‡+@3Iß[YÈ@2)Û"Ðå`@2.FÊ9´»@1hè§æ›@1j†6\+¦@1hè§æ›@1d߯íÍ@1hè§æ›@1_"¬Å@1‚@·€5@1Sê³g ù@1‚@·€5@1[C•%?|çµB &€?À„2w²–8?³9 2me?­hiýFÌ?¸{z¼¤ù?µ5ú`?€Ã{s°úi?°ŒbU'V…?¡n¡Žv›-?¢ÁÛ/’:?¸`‡å53?¶Þ¥¦9?ƒ1BO2˜?Ç?ý‰(£?¿…gê°Ä›?¶lê@†²?¦“€œ„%5?ÄmzÅÅÉ@@@@@,@,?ð?ð?ð?ð?ð?ð?{& ›?knކ?kHðvÖÃþ?ƒ»šÐ@¨‹÷.ÙÒ@œûRv°+{?zk¿© -«ê?”~§§??ãÁ0œg+@©H¨è=t@Ÿ\ãéˆâ>@¢@¡€vÈ´9X@¡€qhr°!@¡€vÈ´9X@¡€hõÂ]@¡€vÈ´9X@¡€}Vlô@¡€vÈ´9X@¡€x†YJõ@¡€vÈ´9X@¡€g†Â&@¡€vÈ´9X@¡€dg8~@¨Ê³¶E¡Ë@¨Ê¸Ôýó¶@¨Ê³¶E¡Ë@¨Ê¾¸Që…@¨Ê³¶E¡Ë@¨Ê¹XbO@¨Ê³¶E¡Ë@¨Ê¸ï4Ö¡@¨Ê³¶E¡Ë@¨ÊÕsê³h@¨Ê³¶E¡Ë@¨ÊÙJôðØ@7Ç>«6z@7Éûçl‹D@1ã÷ÎÙ‡@1Ú=p£× -@0¾V“u@0ªxl"h -@0?ò䎊r@0+P°ò{³@0?ò䎊r@0#&Á½¦@0?ò䎊r@0$ohÜ?”¼íÒh??ß‹’bÏ?¥¬ã×a6H? „rÓ‚¼?©Ë;†ÌçÈ?¬WfŠ¥8?}Ñ¿ž,?“-N•I`(?ŸP­Ñ‚Ÿ½?›|¦l¯âU?¡SmImbˆ?¡ùŠÀs›?©4¡y©ØX?Œ».êxóÚ?£L%.I£0?¥·VK}Ø -?•Vû›¦Ã¡? "ƒrÅÇ@@@@@&@$?ð?ð?ð?ð?ð?ð¿TßrˆÈ?v- í¸?aµ{ûyr„?a©-j1m@¡€pQ&R @¨ÊÃ;»B?€3»ŸRÜ?†„CM™?Ý…ÞÍW{h?õM -ÞÎ*Ø@Ÿe‡K.Œ@£@¤{ß;dZÁ.„€@¤{ß;dZ@¤y½p£× -@¤{ß;dZ@¤yσ{J#@¤{ß;dZ@¤y°°ò{³@¤{ß;dZ@¤y¢ÞÑ·@¤{ß;dZ@¤y´•*™@¨â\(õÂÁ.„€@¨â\(õÂ@¨äÂMÒñª@¨â\(õÂ@¨äÖ“u@¨â\(õÂ@¨äåo@¨â\(õÂ@¨äû/ìV×@¨â\(õÂ@¨å Ô•@5Ù*0U2bÁ.„>¤µÜÆ@3”›¥ãSø@1q ²•ê@2ù7KƧð@0h$ xG@3:Ô,<ží@/«Æ§ï³@3:Ô,<ží@/ŸoÒòå@3:Ô,<ží@/ŸØ­«ŸV@8J¨?š{ ½÷lÙ?¥d· -?¤ïâ NŠ:?¦éÕž‹æe?”øÕ¥ Ìž@8J¨?ž¹i…V‚•?±êùŽ‚?±2ý}û¢í?–žóB» ”?™¯m,·¦h@8p÷?™î  lƒ?‹?ü}(´3?†Á{0Ÿà®?޹Þwò,?‰ö±«tï@@@@"@?ð?ð?ð?ð?ðøøøøøøøøøøøø¤@¤š{dZ¬@¤šs¶E¡Ë@¤š{dZ¬@¤š­BÃÉï@¤š{dZ¬@¤šsê³g¡@¤š{dZ¬@¤šn¾ß¤A@¤š{dZ¬@¤šf1ø @¤š{dZ¬Á.„€@£¢éxÔýô@£¢ñhr°!@£¢éxÔýô@£¢ÀÑ·Y@£¢éxÔýô@£¢óê³g¡@£¢éxÔýô@££‡+@£¢éxÔýô@££/iDg9@£¢éxÔýôÁ.„€@8^Hè§æ@8cS&Â@4Å?|í‘h@4‰ÀëíúD@3V”@3Œ]cˆe•@3 ù kº@2ÓŠ Þ@3 ù kº@2â‚@·€5@3 ù kºÁ.„NÜC,¥?Œs¤DÅÐ?°/Ë -ð¾Ê?œ4D›´A£?ª+½»°ý?QÊÃv8F@8Ù?гá‡}?±áìH{üV?¦² ͉«?ÌU¬¼ÿ/?¸Ábª½ -ˆ@8û—?¡7‡V/Žr?«’qvš°•?šëetîü??›a½%¨?¤ñ¹ÜY¡I@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø¥@¦ì>vÈ´9@¦ì8bMÓ@¦ì>vÈ´9@¦ìXï4Ö¡@¦ì>vÈ´9@¦ì[J#9Á@¦ì>vÈ´9@¦ìQÎ_@¦ì>vÈ´9@¦ì/–»™@¦ì>vÈ´9Á.„€@¨¤²-V@¨¤q&éxÕ@¨¤²-V@¨¢Ô!-w@¨¤²-V@¨¢‰7KÇ@¨¤²-V@¨ âu%F @¨¤²-V@¨ Üàuöý@¨¤²-VÁ.„€@7úqÞi­C@7åéá°‰ @3W+ Iº@2±‰7Kƨ@3'KƧïž@2…¸Që@2Vý!ÿ.I@1sn—P@2Vý!ÿ.I@1nÅm\ú­@2Vý!ÿ.IÁ.„NÜC,¥?1·†Æjñ?¨9)×ðu?µeäàJª>?¬&¾L=§‰?±ÉíDØp@8Ù?•²»UbB2?©+Q™e]-?Âí³HÜ?ß–_-¯0Þ?ç‘Dú¹@8û—?ˆ†Ô‡º:?¹Ìˆ„º¬?ŒR‹w#{?°,U¬f{?±µÉïà 2@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø¦@ŸsÜ(õÂ@ŸsÝ/Ÿ¾@ŸsÜ(õÂ@ŸsÙÎx"@ŸsÜ(õÂ@ŸsÉ7LYú@ŸsÜ(õÂ@ŸsŽÅ@ŸsÜ(õÂ@ŸsО€^Ô@ŸsÜ(õÂ@ŸsÝ{Õ@¯h33333@¯h33333@¯h33333@¯h4ã¹Ý@¯h33333@¯h2ñª0„@¯h33333@¯h3t¼’{@¯h33333@¯h5Ré$í@¯h33333@¯h?¾vȵ@3Q|ÚQ@3QÅo@0ÜIº^5@@0Û6yþ$ú@0¹7KƧð@0¶ö”GB7@0!:’£T@0vȱy©@0!:’£T@0.±¸õ~@0!:’£T@0jÔ‘e?‹¿òȧx?’ÜQ>¿È?‘|ú»½]x?|çµB &€?’‰Ô, þ›?ºvŽüV?-õIGmR?’Ô"£‘˜F?‘f«q{Ü?ƒ0x±æs?Ž·D^0'?ƒ†Kèá¬O?ƒc—[|Â?‡Ý5yƶ\?‡ŸHÄLÎâ@@*@$@$@;@9?ð?ð?ð?ð?ð?ð¿EÝ\¿>Ja€?=.”?Êç? ”n$d^@ Pι“.G@ªÕ9„[Š?\°‰lÛ+?@ÂÙ#e®?ÄÚS}ð?‹Ÿ+@8Iç@8Ù?Œs¤DÅÐ@8Î÷@8i§@8Å@8S@8û—?£ØE.9ì@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø©@©üyXbN@©üy‡+@©üyXbN@©üzCþ\’@©üyXbN@©üz…‡“ß@©üyXbN@©üz–½@©üyXbN@©üwö+jé@©üyXbN@©üx*™0¾@¢MÌÌÌÌÍ@¢MÌÌÌÌÍ@¢MÌÌÌÌÍ@¢MËíúCþ@¢MÌÌÌÌÍ@¢MÌVÕÏ«@¢MÌÌÌÌÍ@¢MÌIº^5@¢MÌÌÌÌÍ@¢MÌô!-@¢MÌÌÌÌÍ@¢MÌ¥zxl@/‰^žš@/‰^žš@)Çï²-@)Çâ‚@·@(÷Oß;d@(÷süPI@(™b¶®~@(™0¾ í)@(™b¶®~@(™0¾ í)@(™b¶®~@(™0¾ í)?É^³Dw'?ÉGãA­÷?‘*"AaIÐ?‹¹GüÞõ?ëÎ@ A2?¸û:?ÐbMçê_x?’ ,øÕC©?ƒ‰/BH?@§[*^?ÝIMÎ?NÂò‚Ì`?€bMÕky?Œ­·Ž~('?‚q6tNø7?‚ãaÎúvh?†‰Oú|q?†‰Oú|q@@@@@,@(?ð?ð?ð?ð?ð?ð¿LÙû\?&´è?6oè´üG-?$Üz­ºŠQ@©üxßYÎ@¢MÌšFêÍ?E’åD¸j9?3À†™ë?†Ø°. Œ1?a ç(ò@Ÿs -âc -@ª@¯l´¼j~ú@¯l´¼j~ú@¯l´¼j~ú@¯l¹¦µ @¯l´¼j~ú@¯l¹=Ùc@¯l´¼j~ú@¯l»˜Çâ‚@¯l´¼j~ú@¯l²þÅm\@¯l´¼j~ú@¯l¶‡+ @ XÑë…¸@ XÑë…¸@ XÑë…¸@ X×´¢3œ@ XÑë…¸@ X×eýŠÛ@ XÑë…¸@ Xß¾vÈ´@ XÑë…¸@ XÛ²þÅm@ XÑë…¸@ X×´¢3œ@4=:’£@4<Æ?@1µãS÷ÎÙ@1²×süP@1V”@1ï4Ö¡b@0úÔ,<ží@0ò@·€4n@0úÔ,<ží@0ñN;Í5¨@0úÔ,<ží@0ñä÷eý‹?ð°–Ž]?‘6 '8?’‹»Ùï§? Ð ÷Ž ?”NtyÞ"§?“lP {“›?ð°–Ž]?•%!{‚A?’±ä?”ãâˆm?š¹'¤Ò ?–,}úºoJ?ð*wjs—?R©i»èi?†Æ‹™ÿ?„E£R ÕY?‡Ä­‹›Ü?–d‘…’Ã~?ð@@@@,@(?ð?ð?ð?ð?ð?ð¿e²3.v¿lQ„Ã.€?]ŠVw®†?1^œ ”@¯l·Œ9˪@ XÛñþ ƒ?loè·'Âð?@²xÍ30Ð?Í +Ù³˜Ì?i‹Ë0a@@Ÿs`{f@«@¥b¾vÈ´9@¥b¾vÈ´9@¥b¾vÈ´9@¥b¼¾ß¤@¥b¾vÈ´9@¥bº¬Ùè>@¥b¾vÈ´9@¥bº^5?}@¥b¾vÈ´9@¥b»J#9Á@¥b¾vÈ´9@¥b¼¹#¢@¬[Ä“t¼@¬[Ä“t¼@¬[Ä“t¼@¬[Åzxl#@¬[Ä“t¼@¬[Å®æ1ù@¬[Ä“t¼@¬[ÃñA [@¬[Ä“t¼@¬[Ä2ÊW©@¬[Ä“t¼@¬[Æ$Ý/@3Ì]cˆe”@3Ì]cˆe”@1û Iº^@1ü£n.²@1š~ùÛ"Ñ@1›W>«6z@1n_oÒ @1q$Ý/@1n_oÒ @1nÅm\ú­@1n_oÒ @1n±Ä2ÊX?|¬Çëý ?qÂ' -B›?”^RžpX? Ð ÷Ž ?’[9ƒÍ,?‘®¬nÒMê?|¬Çëý ?’j•×›c?‘t‰WZñ?‘²)ò@a,?’pP‡È»?‘¿¤üî¾Ö?‚¸“Îè ÷?]ÒivLÿ?„³3Z\ð…?…bv{3dZ?‡ø¢:›¸1?ŠEÝ‹N@@@@@,@*?ð?ð?ð?ð?ð?ð¿EvO$ð?/_©à?8ŠVPOš’?'2½Uˆ@¥b¼Þ„ b@¬[Ä…´Ð?XoúŸ¿)?G6ª\µc?½á–É?™™æÇQ @Ÿf`bØÄ@¬@©Ž‡+ J@©Žˆ´9X@©Ž‡+ J@©Žò×s@©Ž‡+ J@©Ž‚©“ á@©Ž‡+ J@©Ž~BZîc@©Ž‡+ J@©Ž‹Æ§ïž@©Ž‡+ J@©Ž‹¹Œ~(@¬¨r° Å@¬ ƒn˜@¬¨r° Å@¬¬ô!.@¬¨r° Å@¬«¹Œ~(@¬¨r° Å@¬¡ÿ.Hé@¬¨r° Å@¬§8}¿@¬¨r° Å@¬§RT`ª@8Y*0U2b@8Gï²-@3° Ä›¦@3Áÿ.Hè§@3,j~ùÛ#@3%Éã½@2Öý!ÿ.I@2Ø7´¢3œ@2Öý!ÿ.I@2ÒÞÑ·@2Öý!ÿ.I@2аò{²ÿ?3ßa=„?’u~•Ñ?’µ<ëvar?™¦|3Ä?’o?P´À?—Ò¸ùBz3?±>ÏÅósN?”­ŽzF”?’üüšë‚J?œ¾,#“t¿?’ºñS©YÖ?”6ð a@B?¾ÛzYï@?œ‘z¥æ?lû˜¡R?&à|Òß?Š—à `ž?‹Ûx§Þ@@@@@$@*?ð?ð?ð?ð?ð?ð?Bë¿ ?]¶å!P?YO +7#”?H]U5ï¿@©Ž‰$m -¬@¬¥%˜”^?{â½o“Á?\„¾%V*?é§À o;?¡š[–OÞÅ@Ÿp´OÌ~-@­@ž€œ¬1'Á.„€@ž€œ¬1'Á.„€@ž€œ¬1'Á.„€@ž€œ¬1'Á.„€@ž€œ¬1'Á.„€@ž€œ¬1'Á.„€@¦m]²-VÁ.„€@¦m]²-VÁ.„€@¦m]²-VÁ.„€@¦m]²-VÁ.„€@¦m]²-VÁ.„€@¦m]²-VÁ.„€@8ãg ù lÁ.„>¤µÜÆ@3Iº^5?Á.„M‰ûçm@2¬j~ùÛ#Á.„QnÙ‡@1Ì¿±[W?Á.„NÜC,¥@1Ì¿±[W?Á.„NÜC,¥@1Ì¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø®@¬¼ß¾vÈ´@¬¼à@¬¼ß¾vÈ´@¬¼à[À7@¬¼ß¾vÈ´@¬¼ßU›=@¬¼ß¾vÈ´@¬¼Ü£n0@¬¼ß¾vÈ´@¬¼ÖÕϪÎ@¬¼ß¾vÈ´@¬¼×éùr@¤üj~ùÛ@¤ú¬1@¤üj~ùÛ@¤ýÈK^@¤üj~ùÛ@¤ü(õÂ@¤üj~ùÛ@¤ü‘ÑN<@¤üj~ùÛ@¤ xG@¤üj~ùÛ@¤¯·é@5¥öý!ÿ.@5¦z–¼@2’ Iº^5@2’þÅm\û@1Ÿ²-V@1Ÿ·éùr@1Ì¿±[W?@1ÉŒ~($ @1Ì¿±[W?@1À¸ºÇ@1Ì¿±[W?@1À–»˜Çã?1·†Æjñ?qÂ' -B›?‘¶å¤wk½?U›=ÈK?¢†\›†oÈ? V“uÁ.„QnÙ‡@1ÿò䎊rÁ.„NÜC,¥@1ÿò䎊rÁ.„NÜC,¥@1ÿò䎊rÁ.„NÜC,¥?1·†Æjñ@8#˜@8¾:@8 >+@8Iç@8Ù?|¬Çëý @8Î÷@8i§@8Å@8S@8û—?‚† SFñ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø°@¨ Ö‡+ @¨ Ö‡+ @¨ Ö‡+ @¨ Ö‡+ @¨ Ö‡+ @¨ ÖE¡ÊÂ@¨ Ö‡+ @¨ × -=p¤@¨ Ö‡+ @¨ Õµsê³@¨ Ö‡+ @¨ Õ¨Xy>@#$Ý/@#$Ý/@#$Ý/@#¸Qì@#$Ý/@#êJŒ@#$Ý/@#m\ú­@#$Ý/@#¼£m@#$Ý/@#m\ú­@2ò䎊@2 IåP:@,²-V@,O „M@*Ýó¶E¡Ë@*ÝÙb¶¯@)-úCþ\’@)-Òñ©ûè@)-úCþ\’@)-à qv@)-úCþ\’@)-ÅÖ8†[?É^ž6õP?ÉGãA­÷?‘"žæÆó¡?‹²MÿAÿ8?òǹíT­?·t¤¢‚J?ÐbMÝn½?’MœœN ?}Ò€º‡?3.Ylî?ÔÒ@úˆ‘?Uÿyu”#?€bMÕ]f?Œ°¶.Ä+Æ?‚s@ˆaÛ?‚ãaÎúvh?†‰Oú|q?†½ª»—@@@@@,@*?ð?ð?ð?ð?ð?ð¿D”È=6>Ñy”æ?(}éÉLè? Ô_[èY2@¨ Ö;fÔ‚@#†_¡J?7ÎvYf?Ud˜C ¬?kAG}ª©Š?.fÂε@Ÿsçw(@±@¢twKƧð@¢twOß:@¢twKƧð@¢txÔýóµ@¢twKƧð@¢tx“t¼j@¢twKƧð@¢tyJôðØ@¢twKƧð@¢tv»˜Çã@¢twKƧð@¢tvð¹@©Ãn—@©Ä“t¼@©Ãn—@©¿Ø­«ž@©Ãn—@©¾žš@©Ãn—@©¿¤?åÉ@©Ãn—@©ÂÞÑ·@©Ãn—@©Áä÷eÿ@8¥öý!ÿ.@8¡$Ý/@3; Iº^@3;àÞÒˆÎ@2²-V@2Aò×s@1èè§æ›@1éÀëíúD@1èè§æ›@1éã¼Ô@1èè§æ›@1èè§æ›?¢F^ì¼Sð?¦Ì '?’ëÏ™¨?:LÓá -í?’¥.Kn Í?’£sðU Z?ˆÿÀ)T¿Æ?’0nà=Q“?”p¶I”“ž?‘.}áµ$?’£ôùÎ8ï?’„³GÓ’?¢Z°`´ä(?·ïö)h?‡»¢Øˆ‹?„l¯¸‰ŒÎ?ŠEÝ‹N?‰]³ß’Ý@@@@@,@(?ð?ð?ð?ð?ð?ð¿@5_;¾¿>¿—/ø?@}4«6z@1V”@1œô!-w@1 ¿±[W?@1 \ú¬Ùè@1 ¿±[W?@1 «ŸU›=@1 ¿±[W?@1 cˆe”°?|öOÿÝ?äm°û0Ž?‘.Ò®ó_ ?‹ä†€{6è?‘héø†|?æöæ×t?|¬Çëý ?’¼  g¶?·t¤¢‚J?½¶³±×ò?‘77…Âç?¦QÎð\ã?‚s@ˆaÚ?ŒöOÿÝ?ƒ{¬ÉW?ƒ3¸Î{Z?‡&üòI?†Ü‘ °Ô@@@@@*@$?ð?ð?ð?ð?ð?ð¿1RÛ?0Õ²?&ÀJPit?0-&¼Œä@¨ 1LÏ:e@® -5ü?F”¥Úè¡?PMNòã73?›[ãÁ¿ÉÄ?«5Ü7Ÿ¼@ŸfØP'@³@£[µÂ\)Á.„€@£[µÂ\)Á.„€@£[µÂ\)Á.„€@£[µÂ\)Á.„€@£[µÂ\)Á.„€@£[µÂ\)Á.„€@šïýó¶E¢Á.„€@šïýó¶E¢Á.„€@šïýó¶E¢Á.„€@šïýó¶E¢Á.„€@šïýó¶E¢Á.„€@šïýó¶E¢Á.„€@804mÅÖ8Á.„>¤µÜÆ@3ÜIº^5?Á.„M‰ûçm@2¹7KƧðÁ.„QnÙ‡@2«6z‘Á.„NÜC,¥@2«6z‘Á.„NÜC,¥@2«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø´@¦¾vÈ´9@¦ÁÊÀƒ@¦¾vÈ´9@¦Áª¤Æî@¦¾vÈ´9@¦Å -[Zf@¦¾vÈ´9@¦Ây>Iä@¦¾vÈ´9@¦Ãc/¹«@¦¾vÈ´9@¦ÃÁÝèŸ@“—}ó¶E¢@“—…¡ÊÀƒ@“—}ó¶E¢@“—}â~Ú@“—}ó¶E¢@“—|•šZ@“—}ó¶E¢@“—}vÎßB@“—}ó¶E¢@“—{/@“—}ó¶E¢@“—äGÖ@7åöý!ÿ.@7Ûö   8@2?|í‘h@2º°âk@0ÒÐå`A‰@0ÑÕefñ @/ÑÑN;Í6@/Î ÿ¤†¨@/ÑÑN;Í6@/ËÀFaë@/ÑÑN;Í6@/Í>ÄÀI?|ï"<¶~~?…†Ò€Öü?‘M8r»v??‹±À&ÍÄK?‘cŠÚ eW?é“újóá?‚Á¤õ“²&?’¬Xõ£ä£?ŠH«?7OÑi?‘††7’k?”œ›ƒÇ? ¹p0$?Q[/9À?ƒp±>ÜÖ?ƒ`âä>r?‡"‘K©…?‡R&U x@@&@ @"@7@1?ð?ð?ð?ð?ð?ð?8ÄöBX¿L ¥|? -j=µžD?8ۃ˷S@¦¡röt@“—Öö?*å»@â?Á?±Ìž¿@Ÿb‚àËÏì@¶@¥Òñ©ü@¥²-@¥Òñ©ü@¥Œ‹C•‚@¥Òñ©ü@¥‘hr°!@¥Òñ©ü@¥ Ä›§@¥Òñ©ü@¥’×sü@¥Òñ©ü@¥Œç¯¸@¯'W -=p¤@¯'W -=p¤@¯'W -=p¤@¯'XbMÓ@¯'W -=p¤@¯'WOß<@¯'W -=p¤@¯'W -=p¤@¯'W -=p¤@¯&²° Äœ@¯'W -=p¤@¯'V‡+ @6ò䎊@6[W>«6@2™º^5?}@2™#¢œwš@1©Û"Ðå`@1ªOv`@1 -0U2a|@1 -~ùÛ"Ñ@1 -0U2a|@1Hšu%F@1 -0U2a|@1 -¦L/ƒ|?1·†Æjñ?Æ¿5›7÷?’‹»Ùï§?‹¯eU5?›ÕZæ´Ä?‘…Rgå.?|¬Çëý ?’NÛˆV(?‘¡Kd·´+?>\‰å‘?• ¸°R¨?‘A_f;j?Žd°3š>?Œ­·Ž~('?ƒ!A -mº¹?ƒE 8?ˆCns¥ ?†£îž«î@@@@@@?ð?ð?ð?ð?ð?ð¿)ªGç ¿„‚/OZ€?= _jý [?Žé¯çc,@¥d¡~F@¯'A´çÈj?\Iî}­?®òÇ[›9?Ÿ½´hu@gþa}G@Ÿf8¤@·@¨G/Ÿ¾w@¨G0 Ä›¦@¨G/Ÿ¾w@¨G0‰ 'R@¨G/Ÿ¾w@¨G,<žìÀ@¨G/Ÿ¾w@¨G1[W>ª@¨G/Ÿ¾w@¨G,²•éâ@¨G/Ÿ¾w@¨G,ô!,@¦¼ã× -=q@¦¼ãn—@¦¼ã× -=q@¦¼ç¯·è@¦¼ã× -=q@¦¼ä xG@¦¼ã× -=q@¦¼ê³g ù@¦¼ã× -=q@¦¼å‡“Ý™@¦¼ã× -=q@¦¼åýŠÚ¹@704mÅÖ8@7,]cˆe”@3Lí‘hr°@3Qœàuöý@3“t¼@3 -çÕfÏB@2^«6z‘@2c9Àëíú@2^«6z‘@2^Ov_Ø®@2^«6z‘@2_iDg8?…ÅBðrç?Žd±Ìº?“ï~í"?ö€(tUo?’Z†Ažj?•ÍÂ^mÄ*?„F/·ÿP5?’§ioŠ?˜“º£¹‡b?•jÛ<÷x?“þþ¿=?’?;Áƒè?•‡C¿ ?1·†Æjñ?‰¢Ò+ÜÝõÑ.ÓŒ?F;[­ãk@¨G/âªÿ@¦¼å[ô‰²?^t‘ŠoC‹?g]x†Ÿ>D?½i™ù–¬7?ÑHkIm@ŸhhÖ,Æ­@¸@¦ê~ùÛ#@¦ê~ùÛ#@¦ê~ùÛ#@¦ëûµt@¦ê~ùÛ#@¦êÚ¹õ[@¦ê~ùÛ#@¦ë'»0@¦ê~ùÛ#@¦êÚ¹õY@¦ê~ùÛ#@¦ê™0¾ @žÉº^5?@žÉº^5?@žÉº^5?@žÆ§ï²@žÉº^5?@žÄµÜÆ?@žÉº^5?@žÉ 'RT@žÉº^5?@žËƧïŸ@žÉº^5?@žÊ Þ@3àØDЩ@3à‰ 'RT@1c÷ÎÙ‡@1dZ¬1@0ö§ï²-@0÷8}¿H@0+xFÜ^@0+àÞÒˆÎ@0+xFÜ^@0-Oß;dZ@0+xFÜ^@0-/Ÿ¾w?|¬Çëý ?Kb½™×?‘t‘ócjë?Œ2ÌUÃT?ðÌÇßgé?‘_ Ýß?|¬Çëý ?’‡Iš÷?‘˜ÆôõD?Níú¾?ë,YÁ?ú`@0k?‚¯­Ù¤Áµ?3I¶#i?ƒ!A -mº¹?ƒ^ ›¨¬a?‡2[síç?‡¤o„C@@@@@"@*?ð?ð?ð?ð?ð?ð?î­ ?Y}À?ŠYV<Û?ñ4$m!±@¦ê±Qð™@žÊ%~?0`©¸tœÙ?:?8Üý?lÆõ‚"!?±ð;GwŠ@ŸfÇ•Þp;@¹@¬;#× -=qÁ.„€@¬;#× -=q@¬;!ohÝ@¬;#× -=q@¬;/Ÿ¾@¬;#× -=q@¬;#¼ÓZ†@¬;#× -=q@¬;Š Þ@¬;#× -=q@¬;vÈ´9@®.záHÁ.„€@®.záH@®2•éá±@®.záH@®(Îp:ü@®.záH@®,"h Ô@®.záH@®.V“@®.záH@®+íúCÿ@8ëµsê´Á.„>¤µÜÆ@45ãS÷ÎÙ@47Xâe@3Ͳ-V@3Ò3œ¾à@2¡:’£S@2£¢œwšl@2¡:’£S@2¢ÃÉîËû@2¡:’£S@2£ä%®æ2@8J¨?àIü'?–ý3¾ZÀ’?,¡r×gÁ?•"§šmè?’Æ÷Xê†@8J¨?’Q_Ú¸FN?”Ï3½fvI?‘²)ò@a,?”ýó¶E¡Ë?–,}úºoJ@8p÷?3XMÊV?•(¯(Wø?ˆ»ñJî¯Î?‰G±±ZÎ?Žrø·óæ@@@@(@(?ð?ð?ð?ð?ðøøøøøøøøøøøøº@ ãF§ï²Á.„€@ ãF§ï²Á.„€@ ãF§ï²Á.„€@ ãF§ï²Á.„€@ ãF§ï²Á.„€@ ãF§ï²Á.„€@˜À&éxÔþÁ.„€@˜À&éxÔþÁ.„€@˜À&éxÔþÁ.„€@˜À&éxÔþÁ.„€@˜À&éxÔþÁ.„€@˜À&éxÔþÁ.„€@9¹Œ~($Á.„>¤µÜÆ@3°Ä›¥ãTÁ.„M‰ûçm@3'KƧïžÁ.„QnÙ‡@2Þ«6z‘Á.„NÜC,¥@2Þ«6z‘Á.„NÜC,¥@2Þ«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø»@£~¸Qì@£~@£~¸Qì@£~ (Œç@£~¸Qì@£}ö+jçÕ@£~¸Qì@£~=Ùc@£~¸Qì@£}ù=Ùc@£~¸Qì@£}ñœàu÷@žt‹C•@žtŠ=p£×@žt‹C•@žt”É…ðp@žt‹C•@žt)*0U2@žt‹C•@žtE‡“Ý™@žt‹C•@žtŒIº^5@žt‹C•@žt€IQƒ@5ÞHè§æ@5ÝÅÖ8†Y@2+ Iº@2e”¯O @1´“t¼j@1â-V@1=cˆe”°@1S àÞÒ‰@1=cˆe”°@1ZW§†Â'@1=cˆe”°@1em\ú¬Ú?€‚ñêã ?•’nî „?¬¸. ¡? Tã|ø2Ñ?¤¾¯d…8?®þ‹‡Õœu?ˆÿÀ)T¿Æ?•íÌÖf?¨x`¶In?­×4="Ø ?¦ñ5ÜnM8?²&àrP'?‡9Â@0wæ?›’qvš°“?¦~9n4º¿?±VÊMÑx?š‘ÝÒcô?™ì ª# Ù@@@@@(@*?ð?ð?ð?ð?ð?ð?RÊÎQ¤¿^ö¸é>?pn¶@^aÍ?k’J~×@£~0nBË@žtƒì|…ò?ˆ{x»—«¾?…’ª2lq@Z®¬EÊœ?ñÓmv1N@ŸaCÅ¿Õ@¼@ ÖWOß;@ ÖWÎÙ‡@ ÖWOß;@ Ö 0½“ @ ÖWOß;@ Ö0kׄH@ ÖWOß;@ Õé×Ü V@ ÖWOß;@ ÕÄß¼@ ÖWOß;@ Ö?¨n±@”ÁÊÀƒo@”ÁËC•@”ÁÊÀƒo@”Â0·´ @”ÁÊÀƒo@”ÁÊ<~é5@”ÁÊÀƒo@”Áç©ÝžØ@”ÁÊÀƒo@”Â0kòÞ@”ÁÊÀƒo@”Áø'¢9@2kµsê´@2jÝhLŽ×@1 Ä›¥ã@0ÖO °³@/íOß;dZ@/±’]Ä@0J0U2a|@0ßT8ò°@0J0U2a|@/ËQÁq@0J0U2a|@/À‹ê4ã?É^¥(Úx?µÊŒ¤µÜÆ@3 Iº^5@3ZîcŠ@2y7KƧð@2y™™™™š@18DЩ*@187´¢3œ@18DЩ*@17>«6z@18DЩ*@17>«6z@8J¨?ÎÁ¯‰t0?•ï9aýô?ŒôƒA˜c ?’2’Ö¼9?’ Ù–¥£@8J¨?’ ·6Öc¤?“v@á¿bî?‘!¥zt9Û?‘®7Ö=^9?±—'¶Ü+@8p÷?Žrø·óæ?†ž5ðqë?„À"aËô??‡”_Õ­çW?ˆ©{2¡Î@@@@&@&?ð?ð?ð?ð?ðøøøøøøøøøøøø¾@©î« Iº@©î« Iº@©î« IºÁ.„€@©î« IºÁ.„€@©î« IºÁ.„€@©î« Iº@©î©ûçl‹@©î« Iº@©î¨õÂ\@¯‹bMÒò@¯‹bMÒò@¯‹bMÒòÁ.„€@¯‹bMÒòÁ.„€@¯‹bMÒòÁ.„€@¯‹bMÒò@¯‹’° Äœ@¯‹bMÒò@¯‹bMÒó@2Hè§æ@2BZîc @.…`A‰7KÁ.„M‰ûçm@.rn—OßÁ.„QnÙ‡@-™b¶®~Á.„NÜC,¥@-™b¶®~@-™³Ð|„¶@-™b¶®~@-™#¢œw›?É^žQ5P‚@8#˜@8¾:@8 >+?‘b©b<]ô?±ŒR°?ÐbMçê_x@8Î÷@8i§@8Å?‘ÞIŸö?hï,ðà?€b¡´ñ@@8 * @8p÷@8¶?†µ°jÆÃ?†¼Š˜L¥÷@@@?ð?ð?ðøøøøøøøøøøøø¿@¡«KC•@¡«KW¿¹l@¡«KC•Á.„€@¡«KC•Á.„€@¡«KC•Á.„€@¡«KC•Á.„€@¡«KC•Á.„€@˜›A‰7KÇ@˜›?|í‘h@˜›A‰7KÇÁ.„€@˜›A‰7KÇÁ.„€@˜›A‰7KÇÁ.„€@˜›A‰7KÇÁ.„€@˜›A‰7KÇÁ.„€@6wâ‚@·€@6yFlò@3; Iº^Á.„M‰ûçm@2Ͳ-VÁ.„QnÙ‡@2OO „MÁ.„NÜC,¥@2OO „MÁ.„NÜC,¥@2OO „MÁ.„NÜC,¥?}x—™+@8Iç@8Ù?}õ¬#„­@8Î÷@8i§@8Å@8S@8û—?Ž5‹\a@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÀ@¨%/Ÿ¾w@¨%0bMÒñ@¨%/Ÿ¾w@¨%LÌÌÌÍ@¨%/Ÿ¾w@¨%7éùr@¨%/Ÿ¾w@¨%bu%F @¨%/Ÿ¾w@¨%I*0U3@¨%/Ÿ¾w@¨%Aaä÷f@¬C´¼j~ú@¬C¸bMÓ@¬C´¼j~ú@¬CñN;Í6@¬C´¼j~ú@¬Cÿ—$tT@¬C´¼j~ú@¬D" Iº^@¬C´¼j~ú@¬DHè§@¬C´¼j~ú@¬D ù m@6¥öý!ÿ.@6¢@·€4n@4©‡+ @4œÆ?@4`A‰7L@4-à @3ò䎊r@3b½<64@3ò䎊r@3`oiDg8@3ò䎊r@3]žƒä%¯?‡YÍ_?“ÓLáS{?™À‘öô{?¢¢ˆß@p—?£ŸOÖÆC?žy—™öW?1·†Æjñ?æ¦Qì/J?¨.cE:"^?—,àÐÑž?¡Òá%L$?œ ò¿á¼D?ƒ´],mg@@@@@,@(?ð?ð?ð?ð?ð?ð?wXÎ?–×YÃÄ€?p,W–|Õ'?~¹¶Ù¥§~@¨%"@¤xÔýó¶@¤x¢St@¤xÔýó¶@¤w%‡@¤xÔýó¶@¤v”Fs‚@¤xÔýó¶@¤wRC4@šå`A‰7@šå`A‰7@šå`A‰7@šæë²»å@šå`A‰7@šèñ»&@šå`A‰7@šç°³‘”@šå`A‰7@šæ`ÇÝ@šå`A‰7@šæ/#K$@4 ]cˆe”@4 Ã¥H@0Ò Iº^5@0ÒsCå„@0y7KƧð@0zk‘Cœ²@/™b¶®~@/›yRÒ4ì@/™b¶®~@/›+ B@/™b¶®~@/›Œ®x5?|¬h2:“?fÈúÆ?‘1èûzáþ?‹æJJýµ0?‘jf‹Ä€?Ð>Œ,ÖÂ?}@T˜ÁÎ¥?’ZNZSB?‰Õ=¶ :?A¹¿EŠ?ö̶e#‰?fôQ:ý?‚Öð÷îF?ŒÊZSX?‚Ψ,UiW?ƒƒ?m‚¬òÇç_?UC5}&ñ@©…?4Ô7h@žçò†¹£?„8ÊÃ’ƒ±?qÎODƒ™?ïî7´pú?ÊZî-êöœ@Ÿm¯“ÃFÞ@Å@ ³œ(õÂ@ ³ CB@ ³œ(õÂ@ ³›åãO@ ³œ(õÂ@ ³ŸV†x¨@ ³œ(õÂ@ ³šK¾Õ¢@ ³œ(õÂ@ ³š&ó{@ ³œ(õÂ@ ³›P_† @«²\(õÃ@«²Á“ä=@«²\(õÃ@«²ŠñBMø@«²\(õÃ@«²ŽCŽþa@«²\(õÃ@«²°ò{´@«²\(õÃ@«²ŽÑXêÎ@«²\(õÃ@«²1©`W@8>«6z@8Ë&Ämk@35ãS÷ÎÙ@35é š–@2]V”@2[þI6$@1n_oÒ @1mçõôÎ@1n_oÒ @1mAqÆâ@1n_oÒ @1lЇÏÄ?›`^Ãz•T?ÄdóN’?‘8Cõ)*Â?Œw¢?´rò?‘˜¯ -`É?‘S¥?–1¯?„ÜNó7·å?’Gvû§Q?ÈÒÀ©_;?‘ êÈZr ?‘FjØõmY?÷ÎV”&Õ?—NþuæÃ?ž2@غ ?†ZCM?ƒmþœ~MU?‡ Þ3T?ˆGgŸ@@@"@*@8@4?ð?ð?ð?ð?ð?ð¿Hœk.Æ¿–õ¹€?F†°˜¼~?(~˜Ô´ý@ ³›YI%æ@«²Šd™_?_ô·bD€‹?K}”›çT?¹-¥f;?—2SÊ1*ü@Ÿmf¾¤È@Æ@¥¥bMÒò@¥¤Ð‹>@¥¥bMÒò@¥¥âÿÓ@¥¥bMÒò@¥¥793å@¥¥bMÒò@¥¥L(˜œ”@¥¥bMÒò@¥¥QOMo<@¥¥bMÒò@¥¥'ïžÔÜ@œbƧï²@œb³3334@œbƧï²@œb Ç@ZT@œbƧï²@œbS'f›è@œbƧï²@œabT -Mh@œbƧï²@œb´X×@œbƧï²@œb)@9Hè§ç@9yŽ@@3õãS÷ÎÙ@4 -OíF@3v§ï²-@3ƒ®/è£@2«xFÜ^@2ér¦<[©@2«xFÜ^@2ˆº²Ê¬@2«xFÜ^@2‰“Ï\s4?‰çõ×eµM?ÏZi6&Ë?‘–Êv:?v]ÆJ?™´_Évð?±ƒ‹1?¡ùõŠm ?©ôû(¸ÛÞ?•s–«+Ñ\?§)CH ³Ê?•‹R^– ?”O È*Ñ¥?µch0Ñë?” ªûö?–XŽæ¤j?ƒwXPöjÝD8b@Ç@¡ªŒIº^5@¡ªr° Äœ@¡ªŒIº^5@¡ª–”Fs‚@¡ªŒIº^5@¡ªOß;e@¡ªŒIº^5@¡ª—1Å@¡ªŒIº^5@¡ª•2a|@¡ªŒIº^5@¡ª¯iDg8@¬’É7Kƨ@¬’ÕÂ\)@¬’É7Kƨ@¬’ãS&@¬’É7Kƨ@¬’Þ\‘ÑN@¬’É7Kƨ@¬’êOv@¬’É7Kƨ@¬’Ù0¾ î@¬’É7Kƨ@¬’à'RTa@8Î쿱[W@8×Oß;d@5¦‡+ J@5¤?åÉ@4Ãt¼j~ú@4ÀhÛ‹¬q@4¨è§æ›@4ŸË’:)È@4¨è§æ›@4¡4êJŒ@4¨è§æ›@4œ²•éá±?›’qvš°•?ªi1Ÿ[„ñ?’ >(lQ ?š„Åè-ƒ?œè¢ü V?¢}ÉTãvÃ@@@@@*@*?ð?ð?ð?ð?ð?ð?‡ ÍÞ@?p|²;?a¶~Ûdè?c@û2Ÿ$4@¡ªŽ34-Þ@¬’ßR¸Ð¤?~UóðS¶"?„B\_[Œ?ÙÒƒ®ðȸ?øËO©"êG@Ÿg•—p\R@È@¨<‘hr°!@¨<‘AÅaU@¨<‘hr°!@¨<’9&@¨<‘hr°!@¨<’)¯¡3@¨<‘hr°!@¨<•ï˜r@¨<‘hr°!@¨<†œ†ïŽ@¨<‘hr°!@¨<‘äÅ+@–ª^5?|î@–ªˆ´9X@–ª^5?|î@–ªgs;7@–ª^5?|î@–ªKQ —@–ª^5?|î@–ªf±òš“@–ª^5?|î@–ªy5öUé@–ª^5?|î@–ªl–ÁŽY@8–šÔ,<Ÿ@8Œ¨RW÷‘@3óS÷ÎÙ@3ëûYU8ž@3F“t¼@3JXƒJ¶¡@2ÜÚQÎ@2×¢H”ÄH@2ÜÚQÎ@2öÑ+bGz@2ÜÚQÎ@2ØÂ«3$Ð?‹œãµ,r—?”¹GiD ?’@«h¥¤?-êšVç?˜FÖãZ!?“zAõ±?¿¹5,±?˜þ˜ã‰?‘ºÿ¾€F€?”ƒzÇý¢t?™ƒ6WOA?”@[WÄ@ã?¤zø¶ëÊ?]Ö « Ï?Œrè—Q ô?…y߀1í?”ÍÈ`&L?³ÖOªõ#@@*@$@$@;@8?ð?ð?ð?ð?ð?ð¿8eúC¿gB·?Z”X£¹èJ?XŸ‰>êjx@¨<‘=pÏÌ@–ªvîü ¦?yÃ…ÇÆ/ß?xâÓtbrG?ñBƒÍ¶+?êE釋_@Ÿj.yö@É@­Ò5Â\)@­Ò5$Ý@­Ò5Â\)@­Ò:QÎ@­Ò5Â\)@­Ò:6âë@­Ò5Â\)@­Ò:áG®@­Ò5Â\)@­Ò:¬Ùè?@­Ò5Â\)@­Ò9Û"Ðå@¡¬oŸ¾w@¡¬oŸ¾w@¡¬oŸ¾w@¡¬oiDg8@¡¬oŸ¾w@¡¬oƒ{J#@¡¬oŸ¾w@¡¬m‘hr°@¡¬oŸ¾w@¡¬nHè§@¡¬oŸ¾w@¡¬mw1Å@3žHè§æ@3žHè§æ@1×+ Iº@1Ø Ô•*@1Z~ùÛ"Ñ@1[)^ž @1ý!ÿ.I@1+ Iº@1ý!ÿ.I@1l‹C•@1ý!ÿ.I@1 ù kº?|öOÿÝ?Eˆ‡ðó‹?‘âTÀÊS“?‹¹GüÞõ?‘·Xâe?‘¦ µÚ?|¬Çëý ?’§ioŠ?‘†£„Â?6) }’ë?‘êë·áþA? êBÐ8ã?‚uÞ@>N ?2ô]7?„‘Za¹Q?ƒ^ ›¨¬a?‡&üòI?‡v>ª¸ @@@@@,@&?ð?ð?ð?ð?ð?ð?Srž€¿5I^ù ?9R¾–;—Ú?6 pdv¤@­Ò8QµÖŽ@¡¬n\èð?Y -è@5Då?;š_\é|T?À¯: áŽ?ƒ]¼÷L/N@ŸfÄT……û@Ê@¢U°£× -=@¢U°bMÒó@¢U°£× -=@¢U±©ûçm@¢U°£× -=@¢U±ÑN;Í@¢U°£× -=@¢U±Þi­C@¢U°£× -=@¢U°ò{³@¢U°£× -=@¢U°bMÒò@­!St¼j@­!St¼j@­!St¼j@­!S©*0U@­!St¼j@­!Sê³g¡@­!St¼j@­!T!-w@­!St¼j@­!R䎊r@­!St¼j@­!S&Á¾@2=:’£@2=V”@.\j~ùÛ"@.\¾ß¤?@.éxÔýô@.ãS÷ÎÙ@,QÑN;Í6@,På`A‰8@,QÑN;Í6@,P‰ 'RU@,QÑN;Í6@,P£× -=r?É^³Dw'?Úþþ³?‘=?ùKh?‹Æ úJ-M?‘\Žýµ€7?ïˆ6ÏJ?ÐbMçê_x?’›ÈÖÝ?ŽËÜ¿€?wàËxR?‘+ùÔ!½‹?]#ÍìO¤?€cPßQª?Œ».êxóÚ?‚|׿pZ?‚ôhBì^?†špk Y?†½ª»—@@@@@,@*?ð?ð?ð?ð?ð?ð¿Då¿<ž¸Æ?YƒÒ†D?.¢ a r`@¢U±%_1@­!StÔþ?*k9qá&Â?=_"€£?P·¾YfL³?rrj¸.@ŸsÉѬ@Ë@¥èÄ“t¼@¥èÎV“@¥èÄ“t¼@¥èÄÝ/Ÿ@¥èÄ“t¼@¥èÄ›¥ãT@¥èÄ“t¼@¥èĨÁTÊ@¥èÄ“t¼@¥èÃS÷ÎÙ@¥èÄ“t¼@¥èÄ“t¼@®/_;dZ@®/R° Ä›@®/_;dZ@®/_ÿÿÿÿ@®/_;dZ@®/`-à @®/_;dZ@®/^ߤ?æ@®/_;dZ@®/_|í‘h@®/_;dZ@®/_Ø­«Ÿ@5-¥œàv@5!TÉ…ðp@05ãS÷ÎÙ@06$Ý/ @0t¼j~ú@0¢œwšk@.Vð¸»@.W -=p£×@.Vð¸»@.W>«6z@.Vð¸»@.WXâf?¤ÊŽaÈ]Ó?Čۨ1A?‘"žæÆó¡?‹ÑqÔ@vÿ?üEÙáõ{?È2I/?©W»¥ÿ$B?’j%ÓRa?†[‘'Í?;ß $Þû?øóéM Ÿ?{L Õ¢D?¸¨„À!†[?Œµ3‰;šÏ?ƒM¬Öe—_?‚äÍ“½E'?†žóB» “?†–f_ÔŠŠ@@@@@*@*?ð?ð?ð?ð?ð?ð¿U*<·A?WØU­?LòÆ%D¥?P ó®Æ!Ó@¥èĸ¡ãû@®/^‰¤0?aO㘠ÞÞ?bÞ¨ðµ&‘?¾[ÕÓŽü?¾h83µ$V@Ÿp•s ø£@Ì@¨Íüí‘hs@¨Íýp£× -@¨Íüí‘hs@¨Íý/Ÿ¾@¨Íüí‘hs@¨Íýã¼Ó@¨Íüí‘hs@¨Íýó¶E¡@¨Íüí‘hs@¨ÍüPHð@¨Íüí‘hs@¨ÍüwškQ@¨ÄyÛ"Ðå@¨ÄyÛ"Ðå@¨ÄyÛ"Ðå@¨Äy™™™š@¨ÄyÛ"Ðå@¨ÄzCþ\’@¨ÄyÛ"Ðå@¨Äyè>B[@¨ÄyÛ"Ðå@¨ÄzCþ\’@¨ÄyÛ"Ðå@¨ÄyrGE9@2*0U2b@2*0U2b@.û"Ðå`A@.úîcŠ @-è1&éxÕ@-ç»/ìVÖ@-åÉä@-|í‘hs@-åÉä@-|í‘hs@-åÉä@-¾vÈ´:?É^òÀXæN?Čۨ1A?‘,fŸCô6?‹û…†_?‘ §‡g¾?Å{¿Ž<¹?ÐbMçê_x?’j%ÓRa?ŽËÜ¿€?CÚ B÷?çêÑHcÇ?_Ø~tñ?€n|ð̲?ŒË›Í‡Çq?‚¯­Ù¤Á¶?‚æÊ¬vã?†£îž«î?†žóB» “@@@@@*@,?ð?ð?ð?ð?ð?ð¿F›nú¦¿&¡C´?1LÙÐÐè?+ÀÐ;ýSO@¨Íýž@¨ÄyâL‹‹?@¤Í¥S ?:EÂB)q?z֨”&ô?n ÒWF@Ÿs æ«@Í@§Ct¼j@§C–±ö§@§Ct¼j@§CË -PR@§Ct¼j@§CÌ5î¿@§Ct¼j@§C‡^>@§Ct¼j@§CcïÎO@§Ct¼j@§CãÝ+Z@“¢þùÛ"Ñ@“£İž™@“¢þùÛ"Ñ@“£s×Ü@“¢þùÛ"Ñ@“£†€@“¢þùÛ"Ñ@“£m“è@“¢þùÛ"Ñ@“¢ÿÌ;K@“¢þùÛ"Ñ@“£øÝvŠ@7|ÚQ@7š³*`@3‡ÎÙ‡+@3„1 FËÝ@2K"Ðå`B@2JoÊF'ƒ@1Ç ù kº@1ÇL¼J¹}@1Ç ù kº@1È0HÑ@1Ç ù kº@1ÈÊ>´c?•'Z]Ô&?Vö#.ãž?‘B-“šÂ?¤“¯¸ˆV?‘æ*^ú @?‘]¾õ»ý?~Ov_Ø­«?’p`íH”c?Î ´E>Î?‘§WWM@?’‹æ‘¯Î?‘Z§ÓWÈ?œ57E?‰6~„æAÔ?Ž•ýÙ—±?†ž5ðqë?…2 Ôî½?‡&üòI?†ïRÉv‘Ñ@@@@@*@(?ð?ð?ð?ð?ð?ð¿B’ÿœ?>Láø@?†Ç¦ ÆO?-!KêÉ-@¡8Ô º6£@ª1šzÄ!?.Â`òlŠ?Nxݨ<ýf?e¢J³6?¤q~-•@ŸgHž~k4@Ð@ªÝ`A‰7L@ªÝ`A‰7M@ªÝ`A‰7L@ªÝaG®z@ªÝ`A‰7L@ªÝa:’£@ªÝ`A‰7L@ªÝ_ò䎊@ªÝ`A‰7L@ªÝ_Ø­«Ÿ@ªÝ`A‰7L@ªÝb3œÀ@¦Ü§ï²-@¦Ü§ï²-@¦Ü§ï²-@¦Ü®—Oà@¦Ü§ï²-@¦Ü¬˜_÷@¦Ü§ï²-@¦Ü¯Ån@¦Ü§ï²-@¦Ü«Æ§ïž@¦Ü§ï²-@¦Ü§â‚@¸@6ÖšÔ,<Ÿ@6Ö_Ø­« @3Ò Iº^5@3×+ Iº@3ï²-@3‹¬q ²@2¸DЩ*@2»Æ§ï²@2¸DЩ*@2»ŸU›=@2¸DЩ*@2»µsê´?}Ñ¿ž,?‘è™è;?—Á§ Rp?“ý?çðo»?’õ¡EE?’»«ÒñŒ?ˆÿÀ)T¿Æ?›44]Åùt?—ÓÙggÞô?—QÀ–Íù?”îC¯·æo?• D·?ƒ¡É^&Ö?‘žˆ2}?…/‡ÙX·³?ˆ6‘F:™Ê?‹Ûx§Þ?‹ú èNÆö@@@@@*@*?ð?ð?ð?ð?ð?ð?'pÏJ ?@çÿax?+]}ޤF‹?N(õ›@ªÝ`˜]–@¦Ü©õ¿¯?M(¿åé?nÀ<Ò{¦M? uõØ£?×c¢B'Ö@Ÿh"Gø@Ñ@­À‰º^5?@­¿ãn—Ž@­À‰º^5?@­À°¾ í)@­À‰º^5?@­ÀŸ¾vȵ@­À‰º^5?@­À½/Ÿ¾@­À‰º^5?@­ÀÏv_Ø­@­À‰º^5?@­ÀÙè>B\@ª 2-V@ª ÆéxÔþ@ª 2-V@ª @ëíúE@ª 2-V@ª 3Mj@ª 2-V@ª 1©ûçm@ª 2-V@ª Qhr°!@ª 2-V@ª 7Xâd@804mÅÖ8@7—l‹C•@1ðÄ›¥ãT@1Ú¹õY³Ð@0Ë"Ðå`B@0· ù k¹@0L¿±[W?@0!N;Í5¨@0L¿±[W?@0ëC,¦@0L¿±[W?@0éxÔýô?áÓMç©0»?±4ÈáËÓ‹?–Èó^ù„?«Úˆœà§‘?À ŠïÒöµ?Ã) ®oî*?âú1Ç ù©?­„•Ñ.M?˜ºµ²¢Dœ?±2ý}û¢í?ÃZC: ­;?Ã;/…S¢¤?ó$—Òc*?šÊýÛל?”Ê}ÛXœ?§«OÊJI-?žTIœ?³µ›«x¼@@@@@,@,?ð?ð?ð?ð?ð?ð?“k¢×À?QûÎà?Š=ÈP'ëÕ?‹è·’ˆÄ @­Àň]>Ò@ª 8lš2²?•´dÐS2?˜÷S žõ?ר:àU´?×,̱˜b@Ÿo‡åFú@Ò@¤1«…¸R@¤1¤Ý/ @¤1«…¸R@¤1t9Xb@¤1«…¸R@¤1‹P°ò}@¤1«…¸R@¤2µÜÆ?@¤1«…¸RÁ.„€@¤1«…¸RÁ.„€@¥"XbMÓ@¥"dZ¬@¥"XbMÓ@¥"F$Ý/@¥"XbMÓ@¥"ŠôðØE@¥"XbMÓ@¥"zCþ\’@¥"XbMÓÁ.„€@¥"XbMÓÁ.„€@7°4mÅÖ8@7°ëíúCþ@5pÄ›¥ãT@5TðØDÐ@4ˆ“t¼j@4aÑN;Í6@4}cˆe”°@4iîËû¶@4}cˆe”°Á.„NÜC,¥@4}cˆe”°Á.„NÜC,¥?£È‰·akû?m’Ìaø?¿ß¹e/?²Lì÷ïòä@8Iç@8Ù?3ßa=„?“Á4œÝi?Å2µú–6?»U£ ­Þ @8S@8û—?„ã¼ÓZ…‡?®²¼“gz?©[K-$›I?Á'|ÝåVÄ@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøÓ@¤Ý¶E¡ÊÁ@¤Ý¶E¡ÊÂ@¤Ý¶E¡ÊÁ@¤Ý¶¡aäö@¤Ý¶E¡ÊÁ@¤Ý¶âëC@¤Ý¶E¡ÊÁ@¤Ý·eýŠÛ@¤Ý¶E¡ÊÁ@¤Ý´9Xb@¤Ý¶E¡ÊÁ@¤Ýµ '»@£‰€@£‰€@£‰€@£‰€'RTa@£‰€@£‰—$tT@£‰€@£‰€hÛ‹¬@£‰€@£‰HË’@£‰€@£‰b¶®}@4=:’£@4=BÃÉîÌ@0¸r° Äœ@0¸K]Ìcñ@0@å`A‰7@0AA [À@/æL/ƒ{K@/宿1ø¢@/æL/ƒ{K@/åãS÷ÎÚ@/æL/ƒ{K@/åÖ8†YJ?}Ñ¿ž,?Čۨ1A?‘O‚%c?‹Æ úJ-M?‘#6‰¥_?‘‚ÊŸû©?|¬Çëý ?’j%ÓRa?£½:…?;ß $Þû?‘=d¦^™?›ªU3Îp?‚2Y0â³?3I¶#i?‚¯­Ù¤Á¶?ƒGϵ¨í'?‡ã ËÄž?†å·ÑfWà@@@@@*@*?ð?ð?ð?ð?ð?ð¿.UòQ ¿¿9à?3ƒÿËóº?O·ÒZÁ@¤ÝµíÝ -@£‰Îö/Û?SXöj'9?9É(p<Ü?³À-b -"?rÏÙ¨&@ŸfúŒ±±ø@Ô@«St¼j@«O²- @«St¼j@«S÷ÎÙ@«St¼j@«U%F -¦@«St¼j@«RÊW§‡@«St¼j@«OiDg8@«St¼j@«NËû¶@¥/`Ä›¥ã@¥/c•%@¥/`Ä›¥ã@¥/bÐå`B@¥/`Ä›¥ã@¥/a-w1@¥/`Ä›¥ã@¥/_;dZ@¥/`Ä›¥ã@¥/_Š Þ@¥/`Ä›¥ã@¥/`@6 ØDЩ@6 oiDg8@2ÞÙ‡+@2ÝquŽ"@1š~ùÛ"Ñ@1š ÞÒ@1¦YJôðØ@1¢ÊW§†Â@1¦YJôðØ@1£n.±Ä3@1¦YJôðØ@1œ1&éy?‡YÍ_?êÚÏ$?‘ê ÷“'?U›=ÈK?“Á¿À3<ô?–VòFNLG?žˆ2}?’Ï>`Ï?‘C\ºÕ¶?‘¼Øzé±ï?‘®7Ö=^9?’.8 -B?˜Ÿó6P£?Å9–o?ƒíÈm½!¿?„ìsMQ(Œ?‡æê7²zE?µ£f$Åx@@@@@*@*?ð?ð?ð?ð?ð?ð? a@Ä¿Mþêsì?B -MÍ÷¨?2–ÓèÑê@«PPrRÝ@¥/a6kæj?a0Õ2¿ö?SEZ¸†?ÁôDþAĵ?­êl¸]@Ÿhf¿%^@Õ@¨ ]/Ÿ¾@¨ ]/Ÿ¾@¨ ]/Ÿ¾@¨ \Æ?@¨ ]/Ÿ¾@¨ U¨Xy?@¨ ]/Ÿ¾@¨ I^ž@¨ ]/Ÿ¾@¨ C¼ÓZ‡@¨ ]/Ÿ¾@¨ ?ö”E@ªpô9Xb@ªpô¼j~ú@ªpô9Xb@ªq@ªpô9Xb@ªpúáG®@ªpô9Xb@ªpý/Ÿ¿@ªpô9Xb@ªpþùÛ"Ð@ªpô9Xb@ªpÿ;dZ@3įO „M@3ļj~ùÚ@1ahr° Ä@1Y k¹Œ~@1Ct¼j~ú@1:Ÿ¾vÈ´@0ÔmÅÖ8†@0Æö”Fs‚@0ÔmÅÖ8†@0ÆÏAòØ@0ÔmÅÖ8†@0Æ8†YJõ?}Ñ¿ž,?“+ÄWè?’måGSžq?’³Žbtx=?•‚•‹€\†?•iá¸OL™?|¬Çëý ?™Ú"üT÷î?”¯_©ïM?’ äÅ?“úaû]?”æâ„o?‚† SFñ?’žÿ§:­?‘ -òtMŠ?’aP¸¾¦Ö?·♊N?‘˜M\ÿŠ@@@@@,@*?ð?ð?ð?ð?ð?ð¿zHq¸?d¦ÖX?;ƒ -ÂDø?55ý§g„4@¨ P:ÔÉ@ªpù¾…P?Z½&¶.Ý?T•îÛ§?¼L›Ák8?²°—‹¾@Ÿezü;7@Ö@¢paÊÀƒ@¢p]/Ÿ½@¢paÊÀƒ@¢p`XÖ#@¢paÊÀƒ@¢p^¿Áà@¢paÊÀƒ@¢pZõ¤u@¢paÊÀƒ@¢pgó½ë@¢paÊÀƒ@¢pa*‰lô@˜z•$Ý@˜z•$Þ@˜z•$Ý@˜z˜ :!1@˜z•$Ý@˜zš¼bò/@˜z•$Ý@˜zžK/…”@˜z•$Ý@˜z‡‡5i@˜z•$Ý@˜z‡àõÓœ@6ºqÞi­C@6¶ÕÈ>` @2º^5?}@2Cù¡G@1Ͳ-V@1ÌÓà10@1B‚@·€5@14†<ûeì@1B‚@·€5@1DWùù@1B‚@·€5@1BwûÍè?¿¹5,±?•°Wzo¨¬?’Æ­ù¡Ñ”?•Rf‰-ˆŠ?” u•< ?“®Ü#& ?”$úÀÁ’?™‰ŸþÿÎÏ?‘?ÂÝò‚Ø?”ñž°¾?’rË °v?“‹ûÓ;q?‚náÉ!?Mr‰B¨?„x;@&b ?‹ø£Þ—jt?Š@®Tf?‰+“û5.*@@*@$@*@;@:?ð?ð?ð?ð?ð?ð?V´°Þ¿[³ß÷÷?V—ÞFËa ?VÕsUð@¢p`IùÆÓ@˜ze=]?vé/Ï.]?t¡ƒ@¥g,?çÍÀ¬2Q?ák‹@Ÿkô’„¯@×@«šô¼j~ú@«šíV@«šô¼j~ú@«šöE¡ÊÁ@«šô¼j~ú@«šíí(Œè@«šô¼j~ú@«šò{²þÆ@«šô¼j~ú@«šòT`ªd@«šô¼j~ú@«šô•*™@«(ÚŸ¾vÉ@«(ß¾vȵ@«(ÚŸ¾vÉ@«(ÖE¡ÊÂ@«(ÚŸ¾vÉ@«(ÛÍ5¨W@«(ÚŸ¾vÉ@«(Ù0¾ í@«(ÚŸ¾vÉ@«(Ûµsë@«(ÚŸ¾vÉ@«(Þ í(@8ëµsê´@8ê™0¾ í@3Ô›¥ãSø@3Ú0U2a|@3A‰7KÇ@32ÊW§‡@1î_oÒ @1ó9Àëíú@1î_oÒ @1ð[À6ã@1î_oÒ @1îÒˆÎp;?Â2´É½â?•ò‘éÃ!?’5 µ¿$„? Í‹hÆ?‘úy«ôÊ%?‘)]•\¬?§Ò¸ùBz3?˜´1…9„?¯éÊSÜ?‡@Cvì×?’l{9ÙŽ?‘fû›1-&?–uDJ‘`º?’lUˆ%s§?ƒ/‹ÍY}’?ŠŒµIÍ?‰©OO ¨?‰®ââP\@@@@@*@&?ð?ð?ð?ð?ð?ð?Lâ-•$?J ÇL?=@q,5Bð?R_YzÆJ@«šòúŠ @«(ÛŒš8?LÎãÁ„®9?f*@²]?‘} XÛ?ÄU©[‰Ç@Ÿr@n¿½r@Ø@¯*bMÓ@¯*Oß;@¯*bMÓ@¯*ï4Ö¡@¯*bMÓ@¯*¬1@¯*bMÓ@¯*âe+@¯*bMÓ@¯*Ôýó¶@¯*bMÓ@¯*DЪ@ ÈLIº^5@ ÈKƧïž@ ÈLIº^5@ ÈLVÕÏ«@ ÈLIº^5@ ÈP¸»@ ÈLIº^5@ ÈLL˜_@ ÈLIº^5@ ÈL1&é@ ÈLIº^5@ ÈLcñA!@4p4mÅÖ8@4p4mÅÖ8@0ÞÙ‡+@0ß;dZ¬@0b-V@0bœwškQ@/³üPH@/²×süQ@/³üPH@/±ø -ß@/³üPH@/±A [À?ð°–Ž]?êÚÏ$?‘Ûü†Nã?Œ2ÌUÃT?‘#6‰¥_?Êëüâi{?ð°–Ž]?’ ŠŠ¤Hì?ŽËÜ¿€?RLnj?‘77…Âç?ˆ9²0?ð*wjs—?2ô]7?„ò—TËÄ?ƒE 8?†µ°jÆÃ?†¯Mž684?ð@@@@*@&?ð?ð?ð?ð?ð?ð¿/óÀ? SM((?h5kßé/?$†uåÔ@¯*©ÿð‹@ ÈL*w ?(>¼X,Ð?"Ü ïˆ -Â?Kë„Zvΰ?>¡ÁÖ·Ö4@ŸsŒ®˜NÔ@Ù@¦ák…¸RÁ.„€@¦ák…¸R@¦á/iDg7@¦ák…¸R@¦á8âe+@¦ák…¸R@¦áEm\ú®@¦ák…¸R@¦áC¼ÓZ†@¦ák…¸R@¦á-jO@¨2~ùÛ"ÑÁ.„€@¨2~ùÛ"Ñ@¨4µsê³h@¨2~ùÛ"Ñ@¨45sê³h@¨2~ùÛ"Ñ@¨3ú^5?}@¨2~ùÛ"Ñ@¨3°ò{³@¨2~ùÛ"Ñ@¨2ù0¾ í@9IÎ_oÒÁ.„>¤µÜÆ@4° Ä›¦@3ixÔýó¶@3~ùÛ"Ñ@2Ÿö”Ft@25µsê³h@1àëíúCþ@25µsê³h@1ìžì¿±\@25µsê³h@1ò-V@8J¨?Ê2yH?ËX¾ ÙM?³‚1½Á?®ìl\L˜W?£â³x‰»@8J¨?Õš‘¡ìŠ?Ó¢û®ásø?СâÕÎùÓ?ÓÕöD¬?¿X£íŒ1@8p÷?“¢ ßÌF2?¢¦Ú¬šæà?åÃõâü?Ÿ/Òѯ¢?¦ 24 -¾Š@@@@,@?ð?ð?ð?ð?ðøøøøøøøøøøøøÚ@«_ùÛ"Ðå@«_û"Ðå`@«_ùÛ"Ðå@«_÷ÎÙ‡@«_ùÛ"Ðå@«_û/ìVÖ@«_ùÛ"Ðå@«_þOv_Ù@«_ùÛ"Ðå@«_üÚQ@«_ùÛ"Ðå@«_ù™™™š@­£° Ä›¦@­£®—OÞ@­£° Ä›¦@­£¬²•éã@­£° Ä›¦@­£¤ xG@­£° Ä›¦@­£¦¸ºÇ@­£° Ä›¦@­£§ÕfÏA@­£° Ä›¦@­£§_oÒ @7 xFÜ@7ÿ.Hè§@3GÎÙ‡+@3Aÿ.Hè§@2€å`A‰7@2|"h Ô•@1³&Á½¥@1­\ú¬Ùè@1³&Á½¥@1­/Ÿ¾w@1³&Á½¥@1®p:û~‘?‡YÍ_?‘ ·èe?’à©GMõ?—^tø -a?–lô!-w?•iá¸OL™?3ßa=„?’{cü€øõ?œê¹ÂÁR×?—d¨XM?•Àb¤| W?–Ï9xä]e?ˆïhƒEõ¦?‘D‡>S9?„m~Z_s,?‡µ‚[Ö?‰©OO ¨?qÂ' -Bœ@@@@@*@*?ð?ð?ð?ð?ð?ð¾øf]î¿ZM½Û ?>`™Øæ?A¸Û‚o‰u@«_ûr´ &@­£©ã7›)?`0Öˆ‰B?a›ÇèI1_?¸“$Cðâ?·úA!Ťá@Ÿi¡{Ü•ÿ@Û@žÓOß;d@žÓß;dZ@žÓOß;d@žÓ—z¨°@žÓOß;d@žÓ€äPäy@žÓOß;d@žÓz(ðÚü@žÓOß;d@žÓ…[²¼@žÓOß;d@žÓ‰Ï¹UL@¡ÚLÌÌÌÍ@¡ÚK/kH @¡ÚLÌÌÌÍ@¡ÚL´®–Ÿ@¡ÚLÌÌÌÍ@¡ÚT›ÇÇ@¡ÚLÌÌÌÍ@¡Ú9°ˆ0ê@¡ÚLÌÌÌÍ@¡ÚF g°ì@¡ÚLÌÌÌÍ@¡ÚIQJË@6šÔ,<Ÿ@6 Ýc{Mj@2sS÷ÎÙ@2oFM¼xu@2“t¼@1ü£8¬9@2!:’£S@2" Ue @2!:’£S@25T>úÐ@2!:’£S@21>x<Üè?}õ¬#„­?™¹w/óª\?“–fù&Ëù?‹úq¹Ë§×? §ÃÚ‘? õ?Lo?}x—™h ?~á=õ–…?èSöÒ7Í<@nùèÒhÈ@Ÿcxƒ6Ìà@Ü@¤‡¸Qì@¤‡ß;dZ@¤‡¸Qì@¤‡ÿ—$t@¤‡¸Qì@¤‡¸»@¤‡¸Qì@¤‡âëC@¤‡¸Qì@¤‡&€J@¤‡¸Qì@¤‡S&Â@«{¦éxÔþ@«{º^5?}@«{¦éxÔþ@«{ 'RTb@«{¦éxÔþ@«{’䎊r@«{¦éxÔþ@«{ŒÌÌÌÍ@«{¦éxÔþ@«{:û~’@«{¦éxÔþ@«{ŸåÉ@8£g ù l@8}¿HÌ@4‡ÎÙ‡+@4ªÍžƒä@3Ÿ²-V@3˜üPHð@3+xFÜ^@3 £× -=q@3+xFÜ^@38e”¯O@3+xFÜ^@3A4êJŒ?3ßa=„?•¼¦|Ó1?›Ì~” #?’èÞ㬱_?œÑÎ$ôïÔ?žMdzr?¢Æ÷Xê†?›44]Åùt?šˆFy® -?˜® ™¥g?˜ÈÀWTŒá?ª`1`Wâã?£Ë…®ýW™?—ì;!ðß?—M3§´ ?‘®« Ó¤“?–¨¬:­÷?™ þg¿@@@@@$@(?ð?ð?ð?ð?ð?ð¿\¨ód¿€ëÍ^?dt²ë°?và';Ïß@¤‡ ˜Ô…}@«{˜z¬dÝ?„8 ]Å?‡s¹U§ˆ?ø‹&˜€˜@³à68o@Ÿk/§°Þç@Ý@£¾D›¥ãT@£¾DÝ/ @£¾D›¥ãT@£¾F§ï²@£¾D›¥ãT@£¾D›¥ãU@£¾D›¥ãT@£¾EÉä@£¾D›¥ãT@£¾CñA \@£¾D›¥ãT@£¾DM:“@¥ïª~ùÛ#@¥ïª=p£×@¥ïª~ùÛ#@¥ïªÀƒo@¥ïª~ùÛ#@¥ïª~ùÛ#@¥ïª~ùÛ#@¥ïªÀƒo@¥ïª~ùÛ#@¥ï«¹Œ~(@¥ïª~ùÛ#@¥ï«P°ò}@3šÔ,<Ÿ@3¡aä÷f@.{"Ðå`A@.zîcŠ @-N—Oß;@-NV“u@,åÉä@,~BZîc @,åÉä@,}!ÿ.Hé@,åÉä@,}IQ‚©’?|öOÿÝ?¾¢`ƒ?‘*"AaIÐ?‹ë¤½?‡á?‘õbÐ\?ÛF»0?|öOÿÝ?’ aÒ¹zï?|™,Ž!?Y‡…—Ø?ÝIMÎ?ˆ9²0?‚oÁÆÜ§ö?Œ¬2aå?‚† SFò?ƒ!Ë *(?†µ°jÆÃ?†Óß -tõ@@@@@$@&?ð?ð?ð?ð?ð?ð¿£G€?1[Ò:°?(36’k´?·³YX@£¾DÉÆü&@¥ïªÑçt?H캲d ?1ð½þdŒ?ŸL ¢Y"?p–ñ}—R@Ÿf÷e¬î@Þ@£áîzáH@£áç+ J@£áîzáH@£áõÜÆ?@£áîzáH@£áù³Ð|…@£áîzáH@£áöâëC@£áîzáH@£áë¬q ³@£áîzáH@£áîcŠ @¥J•$Ý@¥J‘hr°!@¥J•$Ý@¥J”ã¼Ó[@¥J•$Ý@¥J©*0@¥J•$Ý@¥J°ò{³@¥J•$Ý@¥Jˆ Ô•@¥J•$Ý@¥J‹6z‘@7Âò䎊@7¾óMj@3Iº^5?@3ÁTÉ…ð@2Ct¼j~ú@2>ŠqÞi­@1á:’£S@1á‚©“ á@1á:’£S@1àªdÂø8@1á:’£S@1áÎ_p?š•§q!U?’ -ܦ%Ö?š®ìZ-­l?r*ž¾Ž?’Þäi]i?”éëÀÍ?‘â%ì˜ ä?“6SÇ{Ó?˜ÎEψCÛ?”Ò}“® ?’pP‡È»?—œ­ÛpùÄ?¤±AK\Þ ?•±ŽnBTß?šÒÅšnê?‡•ó¨–ˆ?ŽNîV˜C&?‹aÊ•TI@@@@@$@,?ð?ð?ð?ð?ð?ð?;œü ¿\/¦)–?e³1tã ß?M»ïw>e@£áïŸü@¥JŒègÎ?€xAsÈR*?kàÄÈÊ#?õ´^±“†k?ο–ôÂ@ŸlÙY¯œ¸@ß@Ÿè6E¡ÊÁ@ŸèE¸Qê@Ÿè6E¡ÊÁ@ŸèÑQò@Ÿè6E¡ÊÁ@Ÿè)9êÝZ@Ÿè6E¡ÊÁ@ŸèD2ÊW¨@Ÿè6E¡ÊÁ@Ÿè4¼Éf@Ÿè6E¡ÊÁ@Ÿè9¾x@£èýó¶F@£è î#I+@£èýó¶F@£èû†š@£èýó¶F@£è —*ó@£èýó¶F@£è%¼#ÿ@£èýó¶F@£è ‚-@£èýó¶F@£èÃpô@7µS&Á¾@7¬ƒ @2°Ä›¥ãT@2œê7m>p@1ù7KƧð@1ï%2»í^@1:Ô,<ží@14<{ã¬@1:Ô,<ží@17Ý‚bp`@1:Ô,<ží@16V)eüS?…nDyB Ã?öÒk_ã?”E—ÐÈø‚?Œ?tk¨?’\UýÅ?“‘CDb?¥—å–?žœð'2ã?šdÌwª¸¹?÷’X`&?’)®²½šP?”·üw#?¥Õ6Ù -?ޏïáì•q?‰ýø‘î?„c¶QÌÀõ?Šq~y¾?ŠZÃæv'@@"@"@@7@3?ð?ð?ð?ð?ð?ð¿UÜ›³ž?QǺ4?Fþ3¨î°v?Ez´êÕçµ@Ÿè=œg @£èzžÆ?iB™ R…M?[uÝ ñ;$?ÒMÕhCâ?ªÐ6¥Ú“@ŸnœÞtå¨@à@¬gÔýó¶F@¬gÖ“v@¬gÔýó¶F@¬gàù k»@¬gÔýó¶F@¬gâ\(ö@¬gÔýó¶F@¬gαÄ2Ê@¬gÔýó¶F@¬g¾ß¤?æ@¬gÔýó¶F@¬g¿Š ß@­[íV@­[ï²-@­[íV@­[áaä÷g@­[íV@­[Ñhr°!@­[íV@­[þÒˆÎp@­[íV@­\ -¦L/‚@­[íV@­\ …ðoi@6VšÔ,<Ÿ@6TÉ…ðoi@3û Iº^@3ûÚQÎ@3§KƧïž@3¥Â\(ö@3._oÒ @3@¾ í(@3._oÒ @3'éùrH@3._oÒ @3#ñA [À?…ÅBðrç?‘Ü„ Þ(£?œrôeEÜ?Œ:Z2‚b?¤vNh/?ŸlgŽ|*?|¬Çëý ?—8©$ -"º?ž¿cS?‘E:PXdÅ?˜Op¢‘¬?•lÓªü<?†DJ~_–?­[C½³i?—M3§´ ?†ü¢q+ÄU?—_ŒMŸ]D?ž„ýŸÒ`Ø@@@@@*@"?ð?ð?ð?ð?ð?ð¿pcU*t?wŽI›Î?Pë]–©Ù?Aß]î‰<@¬gÎÆè¡@­[úüg¼v?lëûÀÖ?a£Á©9ò?Öcÿ¯•Ó?Ç—?õ·U@ŸeJ“(˜@á@§’n—P@§œí‘hr@§’n—P@§‹¹Œ~(@§’n—P@§B&€I@§’n—P@§CÉîËû@§’n—P@§3©*0U@§’n—P@§,1&é@§^©xÔýô@§^°å`A‰@§^©xÔýô@§^{çl‹D@§^©xÔýô@§^DÝ/ @§^©xÔýô@§^ºîcŠ@§^©xÔýô@§^ÜwškQ@§^©xÔýô@§^Ä?åÉ@7L]cˆe”@7A×Ûô‡ý@4—+ Iº@4¶µ '»@3×ï²-@4 ³Ð|„¶@3&YJôðØ@2Óä%®æ2@3&YJôðØ@3ù k¹@3&YJôðØ@3®záH? Eˆ‡ðó‹?±è&Ô¸?¾ã°±ÞV?Äß$È×ç?¼ s:¢?³ìixU3?Ž=fA:?½¡†r6ê ?çh¤„]¿?Á\BÓâ9?ĉO’iïÓ?ºÕ¾F}«$ ?`yz|Ž¿a@§w[©@§^¸óyk'?€O©?y¯–>Š~e?Âý·c…Z?¸w‰Å“@Ÿaî«ÅŒ@â@¥zݲ-V@¥zÝó¶E¢@¥zݲ-V@¥zÞ5?|ï@¥zݲ-V@¥zÞž™@¥zݲ-V@¥zÞ í(@¥zݲ-V@¥zÜPHð@¥zݲ-V@¥zܾߤ@®Ëå`A‰@®Ëå`A‰@®Ëå`A‰@®Ë·Xâ@®Ëå`A‰@®Ë&éxÕ@®Ëå`A‰@®ËÎ_@®Ëå`A‰@®ËoiDg@®Ëå`A‰@®Ë4êL@2zqÞi­C@2zdÂø7´@.=²-V@.=cˆe”¯@-]ó¶E¡Ë@-^Ñ·Y@-b¶®~@-=Ùb·@-b¶®~@-JôðØE@-b¶®~@-Çâ‚@¸?É^³Dw'?Ï[äeæ?ÿ £‰¸9?¶*WFÑ?ÐbMçê_x?’˜‰%F²?‘N÷J’?6) }’ë?‘ ·èf?NÂò‚Ì`?€cPßQª?Œ¾»•lŽ?‚‹¡8*ú?ƒ¦$H?†£îž«î?†Ë¢L1Ù@@@@@"@?ð?ð?ð?ð?ð?ð¿Mf"†À>ñëÑÀ€?+L‡Ê¥ÏP?0 -ŽüÚ>¿@¥zÜðÙðð@®ËìÝ~@?:GÄÂÛ3>?>wkè·çÎ?pèªg{u?t6ÒµM£@Ÿs…žz,@ã@¬çÊ=p£×@¬çË…¸R@¬çÊ=p£×@¬çËC•@¬çÊ=p£×@¬çÆÜ]c‰@¬çÊ=p£×@¬ç˹Œ~'@¬çÊ=p£×@¬çË'»0@¬çÊ=p£×@¬çËC,¥@§ÿr° Äœ@§ÿs¶E¡Ë@§ÿr° Äœ@§ÿufÏAó@§ÿr° Äœ@§ÿuöý!ÿ@§ÿr° Äœ@§ÿtã¼ÓZ@§ÿr° Äœ@§ÿt,<ží@§ÿr° Äœ@§ÿuöý!ÿ@6ÞHè§æ@6ß—$tS@3+ Iº@3´9Xb@2~V“u@2hÛ‹¬@1¸DЩ*@1¸_ö”G@1¸DЩ*@1¹ùrGF@1¸DЩ*@1·ü¹#¢œ?‡YÍ_?’«p~v]Ù?’ -N»A3?Œåvæ" ?‘èÒ§ˆ„Å?‘îƒÔ1a?ˆÿÀ)T¿Æ?”üjÒÒtþ?‘ŽütÅÒ(?½¶³±×ò?‘Ð¥uv@£#hõÂ\@£#hÙ˜ä9@£#hõÂ\@£#h’÷ï8@›H33333@›H33333@›H33333@›H4fdµù@›H33333@›H6óáä@›H33333@›H/tçaÎ@›H33333@›H,¾AýÌ@›H33333@›H.væÑ@1žHè§æ@1ž\‘ÑN<@,{"Ðå`A@,u; $¨´@,dZ¬@,-’Ò„@+žžš@+ŸÍ„ÊÛ@+žžš@+ Ef¦Ù@+žžš@+ Ç:¼”q?É^žP¬!?y —“ú@?‘=uÐF¾Þ?‹ØÆ|€Ñ?‘%V¸772?ÝÍŽ$“?ÐbMÝn½?’kcc??¡dc?¢E?Y“ÐÃ|?þ†AùЊ?låƒ,?€feãt²1?ŒÃ}]É}?‚¦‹©¶u?ƒä²§MJ?†Æyu­¦¯?†–— )º`@@(@(@*@6@5?ð?ð?ð?ð?ð?ð¿Q»9n\¿6ÉÍ_?3[²ɾ?5Ùm y@£#i£†=@›H.8\ÅØ?BeZÿIx?D²»óÉú?€W.ù¸qm?‚w Oòœ`@Ÿs€m@å@ í¸Ôýó¶@ í¸ÔW×H@ í¸Ôýó¶@ í¼”Ü@ í¸Ôýó¶@ í»ïq„à@ í¸Ôýó¶@ í»Ú—@ í¸Ôýó¶@ íÇôt€h@ í¸Ôýó¶@ í¼˜D¤@¦2,‹C•@¦2,‹é±ï@¦2,‹C•@¦23¶š@¦2,‹C•@¦2.n»U–@¦2,‹C•@¦2.3˜âÚ@¦2,‹C•@¦2,R@¦2,‹C•@¦2/Ágšé@4Ç>«6z@4È^µ+ù«@1€ Ä›¥ã@1|,7\dþ@0ä¼j~ùÛ@0ßt½ËçÜ@0OO „M@0CüýÅ@0OO „M@0Eû–ž8@0OO „M@0JÂ4OÚ(?|¬Æ Væ?{X`(’b?‘"zùì?Œò¹nPE?˜œG€(M ?‘ž&>7?|¬Æ Væ?’å[ƒA÷‹?‘F¼æÞÀW?…K.w?š`¹¯0l×?”ÆQ_{?‚«Kµ¶??ŽêÂ7q?ƒ”süw"?ƒsÑËùQ?Šœ -áØ‡Í?ˆ”ÈO„@@@@@4@6?ð?ð?ð?ð?ð?ð?V [??¯þ#p?Pp.ýˆø?0ÓŽ+üÙÈ@ í»ãÍ—@¦2-OW?oKÀù·?P=ÜvÈ•)?èéëï8?¥Âλš™@Ÿeu/É‚O@æ@ ‹ó¶E¡Ë@ ‹ó¶E¡Ë@ ‹ó¶E¡Ë@ ‹ôaxý@ ‹ó¶E¡Ë@ ‹ôÀ\0@ ‹ó¶E¡Ë@ ‹ôýýP@ ‹ó¶E¡Ë@ ‹ò/+@ ‹ó¶E¡Ë@ ‹ò9Æë-@¤`ËC•@¤`ËÆ§ïŸ@¤`ËC•@¤`É“y@¤`ËC•@¤`Ë ³À@¤`ËC•@¤`ÌHOT@¤`ËC•@¤`˜ӌÅ@¤`ËC•@¤`ËØÃ™@4­¥œàv@4­ÈãL?4@0áhr° Ä@0âu%F -@0—ï²-@0˜·žŸ±@/ÿåÉä@0¼÷ðŠ@/ÿåÉä@0À @/ÿåÉä@09Åhà?}@T˜ÁÎ¥?ð^Kñ?‘=|x”;¡?‹«F§B ?‘î‡?Ú^8­Ç?}@T˜ÁÎ¥?’ ¤{¾?‘p‹»à?-õ(ƒ½?ßM$rÈ?kÆŠîÜõ?‚;X8?ŒÑb×¶@?‚¹O¼¹ÝX?ƒQÚBnåž?†­Jê˃?†¥<ï˜à@@&@*@ @8@7?ð?ð?ð?ð?ð?ð¿,áâÉ>ñ(k?3zžk"N”?=Û¬äµØ@ ‹óiSÄ~@¤`Ë×Íér?Sa=n˜?1“ w¿J-@ †ŠÀƒo@ †…†òs@ †ŠÀƒo@ †~àJ×@¬  Ä›¥ã@¬ &fffg@¬  Ä›¥ã@¬ #1§@¬  Ä›¥ã@¬ !Cc;@¬  Ä›¥ã@¬ .Ô§½'@¬  Ä›¥ã@¬ 'y®¨@¬  Ä›¥ã@¬ &mT2§@7Ì]cˆe”@7ËfŠä@3žÙ‡+@3F:`ˆ@2çKƧïž@2â^P:}ö@2”mÅÖ8†@2‹»'ðÚ@2”mÅÖ8†@2“‹r–ö@2”mÅÖ8†@2”¬Ohhð?‰çõ×eµM?ãØƒ ?‘‹cerí`?ºÛ.ðìØ?”5'Å¡?“§Ê;  ?ŠÊuq•ú?’kà»Ê¤«?‘hajƒO=?’–=k¥¶?•ÇS ÎÀ?‘›# -îз?‰lÛÐNÉ#?‘8üô´»?´KWQûÝ?†sX¢ê?!ä-«¿C?Fß= 1@@$@$@(@9@5?ð?ð?ð?ð?ð?ð¿LÀ„Ð?*¸6(€?D}ò¨s%?R¹†.âÞ@ †ƒ;t¦y@¬ (M®†?cÍéÓÝu?sjhYç?ƽCËJ0?ä1Iï–;@ŸjÏ”¼@ê@¯gï²-@¯}/Ÿ¾@¯gï²-@¯mí(Œæ@¯gï²-@¯n.±Ä3@¯gï²-@¯nóMj@¯gï²-@¯dÂø7µ@¯gï²-@¯fYJôò@«åÐå`A‰@«åÏ\(õÃ@«åÐå`A‰@«åØFÜ]@«åÐå`A‰@«åÓÝ—ö*@«åÐå`A‰@«åÕ%F -¦@«åÐå`A‰@«åÓ àÞÒ@«åÐå`A‰@«åÒ×sü@5N쿱[X@5A ²•éâ@2GÎÙ‡+@2P Ä›¥ã@1PA‰7KÇ@1TSŽóMj@10–»˜Çã@16YJôðØ@10–»˜Çã@10©*0V@10–»˜Çã@1/¾vÈ´:?µÕjùq®p?“¤bDÒ¼*?’#ç}iïë?‘öJî¯Ê®?‘oNÅ’+?‘¦‘=W?ˆÿÀ)T¿Æ?› —/Ù‘?’€fç½Î?“ ç¥Íç&?‘x9ξÞO?‘ ‡#é -´?¹8¿íxš?ŒË›Í‡Çq?‚ù…žÄ`x?„•ˆG’Z¾?†ïRÉv‘Ñ?ˆ‹”âó@@@@@*@*?ð?ð?ð?ð?ð?ð¿q"NÁ!?Jó©º0?\ÖÑÓRü?@ úÕ]¶ò@¯j!«@«åÒÜà ?n328ow?bžöÅ«{¯?Ð`š*… ë?À†ÿ°4@Ÿq“œ±¢@ë@¯ÅËÆ§ïž@¯ÅÎV“@¯ÅËÆ§ïž@¯ÅÃîÕ¨ô@¯ÅËÆ§ïž@¯ÅÃð2Üñ@¯ÅËÆ§ïž@¯ÅÐß«U@¯ÅËÆ§ïž@¯ÅÌ7ήm@¯ÅËÆ§ïž@¯ÅÌß³@—$‰7Kƨ@—$€J˜H@—$‰7Kƨ@—$7ÿƒdï@—$‰7Kƨ@—$« y¶Ž@—$‰7Kƨ@—$¹÷èlL@—$‰7Kƨ@—$º+ç@7쿱[X@7 "<5@3; Iº^@34ÃF}¾À@2lj~ùÛ#@2gI™a”@1î_oÒ @2 ×oÇ@1î_oÒ @1âHµjœf@1î_oÒ @1âÝ×ny?‡©½(‡üÐ?É3ðèF?‘ð°ˆÔd?—.ê{„±>?“ðY®3Bå?–J¢"þƒ?ñ3<' ?”9E†ìC?‘¨$þâWÚ?¢šà‹ˆ‹?–†OŠR^?˜±jñ -?‡Ù$PUdG?Ô¦O‹?…¢|~±†!?‡aDr€Ä?A´`Òlÿ?ŒÃœØúøÌ@@$@@,@8@7?ð?ð?ð?ð?ð?ð¿;I0½`?zÍ‚ìÔÀ?7_Ú;ÿ?E›5Ù@¯ÅͪÑ~±@—$ı¤|?WÆ †ëã?föÈ…>A¹?­„D¯¨Ð»?É®VÅ0~@ŸgLÀ¡Ý~@ì@¢®Ä“t¼@¢®Ã× -=r@¢®Ä“t¼@¢®Æ?@¢®Ä“t¼@¢®Áä÷eÿ@¢®Ä“t¼@¢®ÅÖ8†Y@¢®Ä“t¼@¢®µÂ\)@¢®Ä“t¼@¢®¦1ø @¬^¸Qì@¬^ãS÷Ï@¬^¸Qì@¬^u%F @¬^¸Qì@¬^ýŠÚ»@¬^¸Qì@¬^ÃÉîË@¬^¸Qì@¬]ø}¿H@¬^¸Qì@¬]ßË’:+@3`ØDЩ@3_ìVÕÏ«@/³t¼j~ù@/¶»˜Çâƒ@/wOß;d@/vE¡ÊÀƒ@.­úCþ\’@.¹e+ÓÃ`@.­úCþ\’@. ëíúD@.­úCþ\’@.†ÏAò×?|öOÿÝ?:LÓá -í?”B 'nr?’9ñ9¶ò8?”¶q fì?œs[Îæz?|öOÿÝ?’&u÷E»@?’TÖ©E?’RÖò?” E®!—?Òƒ~/[™?‚‹¡8*ùÿ?ŒïQ¼º“ã?…/‡ÙX·³?†3_¾ˆ?‡Õ˜]–GÄ?‰®ââP\@@@@@&@(?ð?ð?ð?ð?ð?ð¿m8ʳϿr1·ƒ?`¿öŒ´-l?`‡AtFÙ@¢®¾ -WÀÃ@¬]þ_Öóù?~qA|yÞ?}ö÷ÿ À @Ía£§i‘@6¼+¨D@ŸdQ#ü~@í@­ÎÁ‰7KÇÁ.„€@­ÎÁ‰7KÇ@­Î¤µÜÆ?@­ÎÁ‰7KÇ@­Î¯ùrGD@­ÎÁ‰7KÇ@­Î’¼£@­ÎÁ‰7KÇ@­ÎÙè>BZ@­ÎÁ‰7KÇÁ.„€@£Ï\(õÃÁ.„€@£Ï\(õÃ@£áò×r@£Ï\(õÃ@£ÍÒñ©ý@£Ï\(õÃ@£Ék¹Œ~@£Ï\(õÃ@£Ú…‡“Ý@£Ï\(õÃÁ.„€@8ëµsê´Á.„>¤µÜÆ@4 Iº^5@4 uöý!ÿ@2ìj~ùÛ#@3:û~‘@2L¿±[W?@2gsüPH@2L¿±[W?@2Ahr° Å@2L¿±[W?Á.„NÜC,¥@8J¨?²š¥Z#'f?¥¬ã×a6H?žE 2#Å?¶Ëvö@›@8Ù@8J¨?¶¬HðºDŸ?®`)Ô¤Ü?°?Í{%¼?°Ý aKå¯@8û—@8p÷?¬©Eä„m?©¨¤•£ ‰?°Y¹VϪ·?³G]•ÈJa@8 Ø@@@@*?ð?ð?ð?ðøøøøøøøøøøøøî@¤—Oß;@¤™‡+@¤—Oß;@¤—ö+jè@¤—Oß;@¤˜“t¼j@¤—Oß;@¤˜bMÓ@¤—Oß;@¤–¡aä÷@¤—Oß;@¤–ý!ÿ.@¡–É7Kƨ@¡–È´9X@¡–É7Kƨ@¡–ÈŒç°@¡–É7Kƨ@¡–É7Kƨ@¡–É7Kƨ@¡–ÉQ‚©“@¡–É7Kƨ@¡–ÈË’:@¡–É7Kƨ@¡–ÈXy=Ù@5p4mÅÖ8@5oªÍžƒä@/¸“t¼j@/¸“t¼j@-†éxÔýô@-†ö”Fs‚@+Aò×t@+Ÿ¾vÉ@+Aò×t@+ªÍžƒä@+Aò×t@+–»˜È?‚á²Olºü?äm°û0Ž?‘(¥¿á?‹µ™eU!µ?ðÌÇßgé?´âµÇ>¬?‚á²Olºü?’›ÈÖÝ?Œqç©Fü?6) }’ë?Ø¥²À<(?PS2K¯™?‚¯­Ù¤Áµ?ŒÖ -ÄȲ?‚† SFò?‚ìxqC?†špk Y?†©b/bJö@@@@@*@&?ð?ð?ð?ð?ð?ð¿?ƒØ¿Ò±‰À?*H*?ù?ž:®B@¤—ï…"Ý@¡–ȱÉ‚?8ýžV\â?;I£¨øI>?{‘l»~ló?0">±éƒoð¿bLJ˜?CeÑ9êy©?Gó`@Ü÷–@ªØ±më·:@«9Z¼?aÇ}·q÷T?e<_%n ?Ï»ƒ^ƒ4?ÎtIå‰D@ŸdFâåç@ð@­¸çl‹C–@­¸è1&éz@­¸çl‹C–@­¸éxÔýô@­¸çl‹C–@­¸éº^5?@­¸çl‹C–@­¸æéxÔÿ@­¸çl‹C–@­¸áò×s@­¸çl‹C–@­¸ã•&@¨ñ&éxÕ@¨ñhr°"@¨ñ&éxÕ@¨òþÅm]@¨ñ&éxÕ@¨ñÅ@¨ñ&éxÕ@¨ó@N¤¨@¨ñ&éxÕ@¨ô¢3œ@¨ñ&éxÕ@¨÷€4mÆ@4Ñ|ÚQ@4Ñ·Xâ@2¸r° Äœ@2·KƧïž@297KƧð@27ï²-@1á:’£S@1Þߤ?åÉ@1á:’£S@1ÞHè§æ@1á:’£S@1ÝÌcñA ?|öOÿÝ?4ë©$è‰?‘âTÀÊS“?Žl¢¦µ¥?‘ñ•/m£{?‘m×e\»?|öOÿÝ?“[¡ŽuœÙ?‘ú-8ûõö?’:u.ý ?‘†óèJL\?‘:i€ÑìÂ?ƒ´],mÖ,¤?)F››˜@­¸æ=§ú@¨óŒ?16?V5z•µç?IÃTÆé§Æ?¸õ)þÚÕL?  uEl9¦@ŸfŸ¢Ï×ý@ñ@®;dZ@®|í‘h@®;dZ@® -JŒM@®;dZ@®tSŽò@®;dZ@®Ñë…¸@®;dZ@®ôFsØ@®;dZ@®Øï4Ö¡@§4îzáH@§4îzáH@§4îzáH@§5!ÿ.Hê@§4îzáH@§5êJ‹@§4îzáH@§5 ~($ @§4îzáH@§4ü¬1&@§4îzáH@§5•%@3kµsê´@3k/ìVÕÐ@2!hr° Ä@2$Ý/@1F“t¼@16_Ø­«Ÿ@1YŒ~($ @1<64ê@1YŒ~($ @1«6z@5ÈQë…¸@1xr° Äœ@1wéùrG@1U`A‰7L@1S àÞÒˆ@0kxFÜ^@0i*0U2b@0kxFÜ^@0jÚ¹õY´@0kxFÜ^@0j’£S&?|öOÿÝ?]àÛ‘?’>¯\¾¦?Œ<…ÓÆÝ?‘PÊÑ<Ým?æöæ×t?1·†Æjñ?’7Îf¬ps?‘t‰WZñ?èÊ\då?‘®7Ö=^9?ó‹P=´?‚ÂÌ]å?ŒöOÿÝ?ƒíÈm½!¿?„†YÊ’È?‡YÍ_?†å·ÑfWà@@@@@ @"?ð?ð?ð?ð?ð?ð?>a#¿2…{?4å¼ïÑ?,6DÀ>ü@«Ô¡»œ»P@®„ë®é?Tûþ|Ø÷?L ñ¬®Ú!?µ0眭öã?£._ŽM‹@ŸgS1r¿@ö@¢Ý©ûçl‹@¢Ýž¸Që…@¢Ý©ûçl‹@¢Ý­¸ºÇ@¢Ý©ûçl‹@¢Ý¬²•éá@¢Ý©ûçl‹@¢Ý¬~($ @¢Ý©ûçl‹@¢Ý£S÷ÎÚ@¢Ý©ûçl‹@¢Ý¤÷eý‹@¢¤²-V@¢¤)ûçl‹@¢¤²-V@¢¤;dZ@¢¤²-V@¢¤b¶®}@¢¤²-V@¢¤"œwšk@¢¤²-V@¢¤ðº@¢¤²-V@¢¤rGE9@8–šÔ,<Ÿ@8‹)^ž@2.5?|í‘@21$Ý/@1_²-V@1`:û~‘@0…œàu÷@0‚‚@·€4@0…œàu÷@0ƒn—P@0…œàu÷@0‚ÃÉîËü?…ÅBðrç?‘6 '8?‘&Øç?‘?ŒÖ -Äȱ?’<_+fjä?‘m×e\»?‘â%ì˜ ä?’p RN%Î?ŽËÜ¿€?ø,~[´?’pP‡È»?’ Óº^?‹f°ùr[‚?pù51íÒ?Š6EŸòÙ?†ü¢q+ÄU?°4\ɵ?‹&¸ê±fÂ@@@@@*@(?ð?ð?ð?ð?ð?ð?Z?ÖAè¿o4;u!?Zb?ª5 ?PœÑÿ@@¢Ý¤æ¡<$@¢¤ü$\?z©Š”95?mª´âYÞ®?ùH¢‰ _?Ö_éÆ@j@ŸkOÚm“@÷@¨pøÔýó¶@¨p÷ÎÙ†@¨pøÔýó¶@¨pù³Ð|„@¨pøÔýó¶@¨pùè>B[@¨pøÔýó¶@¨pùe+ÓÃ@¨pøÔýó¶@¨pøºÇË@¨pøÔýó¶@¨pù k¹Œ@ª¯²-@ª­V@ª¯²-@ª±&éxÕ@ª¯²-@ª®æ1ø¡@ª¯²-@ª¯Ÿ¾w@ª¯²-@ª®¾ß¤?@ª¯²-@ª¯Aò×@6zqÞi­C@6yÎ_oÒ@0° Ä›¦@0Â䎊qÞ@/|¬1&ê@/|žì¿±\@.¸7´¢3œ@.·$tSŽô@.¸7´¢3œ@.·$tSŽó@.¸7´¢3œ@.·>«6z?ˆÿÀ)T¿Æ?Čۨ1A?‘=?ùKh?‹ä†€{6è?îú/´`?ÍàÊaùX?}Ñ¿ž,?’ ,øÕC©?Å)Ì_“?e”[|ú(?Ö§­îQD?lINõÕ„?ŽâS[ÞDí?Œáò¯ž¼ù?‚¸“Îè ø?ƒ†+ Å?†µ°jÆÃ?†¯Mž684@@@@@&@(?ð?ð?ð?ð?ð?ð?1.¨ ??fû€?$iú=A­z?{h£Ìaž@¨pø­¬–@ª®Ms_f?C*2л?=»w9Åù&?‹;íö#Ô?ƒçj×”ƒ@ŸiwíºÄ@ø@¢)°£× -=Á.„€@¢)°£× -=Á.„€@¢)°£× -=Á.„€@¢)°£× -=Á.„€@¢)°£× -=Á.„€@¢)°£× -=Á.„€@šÀ¹XbNÁ.„€@šÀ¹XbNÁ.„€@šÀ¹XbNÁ.„€@šÀ¹XbNÁ.„€@šÀ¹XbNÁ.„€@šÀ¹XbNÁ.„€@7Žì¿±[XÁ.„>¤µÜÆ@4{ Iº^Á.„M‰ûçm@4"-VÁ.„QnÙ‡@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøù@®¿€@®¿€@®¿€@®¿€ƒn˜@®¿€@®¿€N¤¨Á@®¿€@®¿£n.³@®¿€@®¿b¶®|@®¿€@®¿~ùÛ"Ñ@®2° Äœ@®2-V@®2° Äœ@®2:)Ç{@®2° Äœ@®2½<6@®2° Äœ@®3œ¾à@®2° Äœ@®2-V@®2° Äœ@®4¼@5šÔ,<Ÿ@5R½<6@0Ìí‘hr°@0ÍŠÚ¹õZ@/÷Oß;d@/øy=Ùd@0 -0U2a|@0 -’£S&@0 -0U2a|@0 -™0¾ î@0 -0U2a|@0 -çÕfÏB?}Ñ¿ž,?Qdöÿô¼?‘\H{gX ?‹ó#ƒt£?‘¿ÐÅu?À­Õß}º?}Ñ¿ž,?’u¦ieõ–?ð{¥âdú?Hª¦ºón?øóéM Ÿ?M\³Ù“@?‚¸“Îè ÷?ŒïQ¼º“ã?‚Ö˜>µDá?ƒ¦$H?‡×7°º?‡v>ª¸ @@@@@$@?ð?ð?ð?ð?ð?ð¿9òÆ€?2{-Wp?2¶Ä:nGg?'N”\ðÛ@®¿€×I@®2Ñî½(?R°ei&8U?G×pG0} ?²`çAn º?œ» -Ïï"Ó@Ÿg4eÚyö@ú@¤¨^¸Që…@¤¨^ùÛ"Ñ@¤¨^¸Që…@¤¨\wškQ@¤¨^¸Që…@¤¨]/Ÿ¾@¤¨^¸Që…@¤¨`ù kº@¤¨^¸Që…@¤¨`4mÅÖ@¤¨^¸Që…@¤¨_±[W@@¥ A‰7L@¥5?|ï@¥ A‰7L@¥¬1'@¥ A‰7L@¥\‘ÑN@¥ A‰7L@¥i­BÄ@¥ A‰7L@¥ 'RTa@¥ A‰7L@¥oÒó@7T xFÜ@7RëC,¦@2Ô›¥ãSø@2ÓŠ Þ@1ù7KƧð@1óÉîËû@1QÞi­BÄ@1Q·Xâ@1QÞi­BÄ@1P6âë@1QÞi­BÄ@1PU2a|?Ž=fA:?‘­b š=?“ýª‘À?Œ‚èõЊ?’êÔÒ?‘¦‘=W?€‚ñêã ?–øÐ°€l?”ïZºœ·?‘jýÚXÜ?‘ô 5Y?‘T¾_Þ?’ž²¢# Y?†¡HŸÊç?† - Ðló]?ƒË´ÔC¶¼?ˆ -¿„r©Ý?‡Õ˜]–GÄ@@@@@,@,?ð?ð?ð?ð?ð?ð?)ʬ{°?4Æïà?1šuÿ„j~? Ðïräë•@¤¨_ý0Šö@¥ùÓÂW?OªÂ(ˆòÐ?Bmêóþ÷?Ÿ?]ês¨?‰À¡¿ ~@Ÿj6IM#3@û@­ó4¼j~ú@­óÈ´9W@­ó4¼j~ú@­óž5?|î@­ó4¼j~ú@­óÆö”Ft@­ó4¼j~ú@­ó§l‹C•@­ó4¼j~ú@­ó_Ø­«Ÿ@­ó4¼j~ú@­ót¯O „@«¹{çl‹D@«¹}ó¶E¢@«¹{çl‹D@«¹kàÞÒ‰@«¹{çl‹D@«¹^($ x@«¹{çl‹D@«¹~ÒˆÎp@«¹{çl‹D@«¹X7´¢3@«¹{çl‹D@«¹i7Kƨ@8™*0U2b@8–_Ø­« @3sS÷ÎÙ@3·€4mÆ@2×ï²-@2rMÒñ©ü@2–ý!ÿ.I@2§ï²-@2–ý!ÿ.I@2*³g ù -@2–ý!ÿ.I@23üPH?­g;+³ût?Íê[º_¹P?Ì nŽæ+?ÊbàÒfgµ?Èÿˆ‰Ûã?Ì,af2 ?Œs¤DÅÐ?ÐAµ#Ã(?Än;ÔIÆ ?Ï—X÷®–€?Õ {Å·?Ó@¤šž”.?‹?ü}(´2? ·õzúÂ?’úz."?¨ŸŠOºÌ™?¢}ÉTãvÃ?º˜$¬‚Í@@@@@,@,?ð?ð?ð?ð?ð?ð?˜2‹ê2À¿sÖÉœ?„† ¯PÍP?d#¾~87‘@­ó6îæÕ`@«¹x±Ì? ZðÂObs?xúÈ£9%?å¾3,›59?˜Ë¬€B\@Ÿ_¿Ï¶n@ü@¬\¬1'Á.„€@¬\¬1'@¬8bMÓ@¬\¬1'@¬>ùÛ"Ñ@¬\¬1'@¬1N;Í6@¬\¬1'@¬?¾vȵ@¬\¬1'@¬FÂ&€@¬¾nzáHÁ.„€@¬¾nzáH@¬¾i7Kƨ@¬¾nzáH@¬¾gE8ï5@¬¾nzáH@¬¾g“Ý—ö@¬¾nzáH@¬¾n¤¨ÁT@¬¾nzáH@¬¾oAò×@9kµsê´Á.„>¤µÜÆ@4» Iº^@4¦lô!.@3çKƧïž@3ØÁTÉ…ð@2á:’£S@2ÒëC,¦@2á:’£S@2Ûšu&@2á:’£S@2Û…¸Qì@8J¨?˜óV“,M?™ûР'®?™¼”Ý‘l??›‚Oã<?šWDáÌ· @8J¨?› Öü{?ÏtP°*?œR6ŠÂU?—uG<Ê?•lÓªü<@8p÷?’;WZŸÿÔ?“>û{Ñø~?‰E^uŠš?ŠEÝ‹N?–¨¬:­÷@@@@,@(?ð?ð?ð?ð?ðøøøøøøøøøøøøý@Ÿ¥ãSøÁ.„€@Ÿ¥ãSø@Ÿë041@Ÿ¥ãSø@Ÿ9Ù}@Ÿ¥ãSø@ŸÛçÕÑ@Ÿ¥ãSø@Ÿì"µ²Ä@Ÿ¥ãSø@Ÿ©¹Ã¥Å@£ZæéxÔþÁ.„€@£ZæéxÔþ@£ZÓH³%â@£ZæéxÔþ@£Z»cÓàù@£ZæéxÔþ@£[ã£5/@£ZæéxÔþ@£Zô$'6@£ZæéxÔþ@£ZôM>Rü@9:qÞi­CÁ.„>¤µÜÆ@4T›¥ãSø@4_|í‘€–@3ÒÐå`A‰@3ÌCFO4@2ó&Á½¥@2æ4»èÃ@2ó&Á½¥@2Ì^!c3@2ó&Á½¥@2Î<†+¦@8J¨?•á‰â7«é?§Vo‚?“EÓÁ˜Ž?¦ßœÚªAó?®>Ëxÿn)@8J¨?’_ê´¼#?¢ÈÎë1Ö?‘xR$;Xy?¤QŠ¡•j{? põ]ö“@8p÷?Œ¬2aå?¡»‚º»?‘O´2é«?—¯“úàú›?•Z ¬P…@"@ @@2@1?ð?ð?ð?ð?ðøøøøøøøøøøøøþ@£!^5?|î@£!lIº^5@£!^5?|î@£!Iá°‰ @£!^5?|î@£!V‡+ @£!^5?|î@£!bø7´¡@£!^5?|î@£!YÛ"Ðå@£!^5?|î@£![W>«6@¥š ÌÌÌÍ@¥™Ü¬1'@¥š ÌÌÌÍ@¥š ô!.@¥š ÌÌÌÍ@¥š`A‰6@¥š ÌÌÌÍ@¥š -³g ù@¥š ÌÌÌÍ@¥š -qÞi­@¥š ÌÌÌÍ@¥šï²,@8 ]cˆe”@7üàuöý"@3°Ä›¥ãT@3¹ 'RT`@2²-V@2•‡“Ý—ö@2O „M@2Š Þ@2O „M@2@·€4n@2O „M@2©*0U2?±Á1È]?“`xþðê@ŸrýTPw@@¦¾bÐå`B@¦¾N¸@¦¾bÐå`B@¦¾e¸Që@¦¾bÐå`B@¦¾]—ö+l@¦¾bÐå`B@¦¾ezxl"@¦¾bÐå`B@¦¾eÌó@¦¾bÐå`B@¦¾eãYôÇ@œ¦Å¡ÊÀƒ@œ¦»ŽÜ¡f@œ¦Å¡ÊÀƒ@œ¦½¥ž@œ¦Å¡ÊÀƒ@œ¦—Xâf@œ¦Å¡ÊÀƒ@œ¦¡–R½<@œ¦Å¡ÊÀƒ@œ¦•ÈÓoÛ@œ¦Å¡ÊÀƒ@œ¦°+6ÿ@7è†YJôñ@7æRcH@3‚° Ä›¦@3z¬1'@2¬j~ùÛ#@2®Ov_Ø®@1ýcˆe”°@1öµ '¼@1ýcˆe”°@1ùÂåÌ/ý@1ýcˆe”°@1÷•ÜWK´?£‚ƒåuCb?–:ð»}TÇ?‘RsÈW?’èÞ㬱_?é>&óÄý?±l8á?€”ëû·«?¤OíÄ?•Q²rz¢ù?—êöªDH?’‡¤Óú]?’ á©ú†—?Ÿ -ãlqbY?“Ø/‰ #?˜‡¦*3?‰Ò–(?ŠV©Þ'f‰?Œ!×]ð@@@@@$@.?ð?ð?ð?ð?ð?ð?j´Wòš¿e6-•)?`´$7 -–«?Y„w烡@¦¾bzè *@œ¦© SÌÜ?v¦9ÿ‡?€ÌŸâ"I¢?ã÷•f?û”Çó¨@Ÿoܪxú@@ŸdvÈ´9X@ŸdwKƧð@ŸdvÈ´9X@Ÿdz‹¥€’@ŸdvÈ´9X@Ÿd‚¶‡S@ŸdvÈ´9X@Ÿd‡DA´y@ŸdvÈ´9X@Ÿdt]ðX‹@ŸdvÈ´9X@ŸdsÛÆ5@£Ÿfffff@£ŸfšÔ,=@£Ÿfffff@£Ÿf..@£Ÿfffff@£Ÿf¶DÉ@£Ÿfffff@£ŸV&åÛ1@£Ÿfffff@£ŸfS‡B@£Ÿfffff@£Ÿe›=È@4VšÔ,<Ÿ@4UíÆå¬"@/ÂÐå`A‰@/Ï%ºÅW@/Œ1&éy@/§êv¨â™@.kjçÕfÐ@.yõC @.kjçÕfÐ@.k%½ø@.kjçÕfÐ@.jèEi{?€‘gQÚÃ?Ï*åŽß?‘MÚÜÖ„¬?‹ýmñëOº?íOà¡™2?Ã9H[áŒ?|çµB &€?’ -wÉ\Ço?¨PqÞlg?VÝch¸?×IÉ»Ba?Sü D¢¨?‚¬®eà?ŒÞ¸ºeq?‚ƒ KKã?ƒÍ©&?†­Jê˃?†¯©ï\3@@$@&@"@5@7?ð?ð?ð?ð?ð?ð?½ãà¿K0‚©à?SÿîfÖy‹?^—c¤Í@ŸdyŠðö<@£Ÿc±)æ;?sãÜB»¯'?ˆ>,‘C?óê P,ö@ QÝÅ@ŸgeãD>5@@¢åãS÷Ï@¢âïäào@¢åãS÷Ï@¢ôêJŒ@¢åãS÷Ï@¢ç¯·é@¢åãS÷Ï@¢îæ1ø¡@¢åãS÷Ï@¢ë]6j@¢åãS÷Ï@¢æU˜ø@a©ûçl‹@aŠÿ_Ë@a©ûçl‹@a° Ä›¥@a©ûçl‹@aº^5?}@a©ûçl‹@a‡Ë)_@a©ûçl‹@aò©/=@a©ûçl‹@a‹›M ¹@7G>«6z@7-i~ÝU‰@2|í‘hr@2 -Ížƒä&@1{Ƨï²@1‚\(õÂ@0ÔmÅÖ8†@0ÐbMÒñª@0ÔmÅÖ8†@0ÑA"jœ@0ÔmÅÖ8†@0О7'L?Ž\Õl6Ò?™¿µ´¿1´?™™w4fà¨?˜Ë;Äõ6?æú ¯_Ñ?—ú'H¸?‘ 1˜Ó ?––ïFHÇN?šï/>¬¹’?¤¥cSÑßÑ?ž†J¥Y&Í?æß­¹Ð)?…϶ ¡œÀ?“êXÔ #{? ;ŠaÙ?’ª=˜Å?’y +5G?—Œ—jc­@@@@@.@*?ð?ð?ð?ð?ð?ð?U£@6Â?0nD˜?UŠÔr;žÕ?:ØŽ‘T^@¢çŽ×±ò@aŒÓhÁ?v(ôMÆ$¾?\¿êç¾DÀ?á!CËÜ„ˆ?¢æFwN†@ŸhöûÎÇ@@Ÿóì‹C•Á.„€@Ÿóì‹C•@ŸõÄ›¥ãS@Ÿóì‹C•@Ÿõcˆe”@Ÿóì‹C•@ŸõÅo@Ÿóì‹C•Á.„€@Ÿóì‹C•Á.„€@ž¢+ IºÁ.„€@ž¢+ Iº@ž£È´9X@ž¢+ Iº@ž£S÷ÎÙ@ž¢+ Iº@ž¤{J#9Â@ž¢+ IºÁ.„€@ž¢+ IºÁ.„€@3àØDЩÁ.„>¤µÜÆ@0f‡+ J@.Í5¨Xy=@/S¶E¡ÊÀ@-ª¦L/ƒ{@.Š#9Àëî@,¡½¥œá@.Š#9ÀëîÁ.„NÜC,¥@.Š#9ÀëîÁ.„NÜC,¥@8J¨?šÏD²öå ? ±ubÊÅ5?­dÒ¦Ó 3@8Iç@8Ù@8J¨?¢²Ö¤}Ð?ŸÀh¡º?О:hØ÷@8S@8û—@8p÷?›ì8h z=?‹‘+-/Ý?³úÜfK/Ñ@8 Ø@8 Ø@@@?ð?ð?ðøøøøøøøøøøøø@¢aW -=p¤@¢aT¼j~ú@¢aW -=p¤@¢axl"h @¢aW -=p¤@¢a|‘ÑN<@¢aW -=p¤@¢acñA \@¢aW -=p¤@¢aN}Vlô@¢aW -=p¤@¢aYõY³Ñ@¬åCn—@¬åL1&é@¬åCn—@¬åU$Ü@¬åCn—@¬åES&Â@¬åCn—@¬åZ6âë@¬åCn—@¬å@·€4@¬åCn—@¬å /ƒ{I@7Ç>«6z@7ÆÏAòØ@3f‡+ J@3WeýŠÚº@2®ùÛ"Ðæ@2”%®æ1ù@1𖻘Çã@1Ô xFÝ@1𖻘Çã@1ÍVlô!@1𖻘Çã@1È´9Xc?–ªÎ­¡?œf¨Db?­ß -Ú¹ `?‘CÀ><¹?²i=Í—Ž?·ãöâ?1·†Æjñ?•@¼Cк?±„ -9œ×?˜® ™¥g?œ××€§©? ª w³ -?³&Ô,ô?i-ý-›…?”ù‰ÚÞ©)?”AXÄ|åy?Œ8¸wx¯?гá‡}@@@@@&@*?ð?ð?ð?ð?ð?ð?p;á ¿‡CŒ‹Õ€?fû‰F¼‘?|£OP1ƒå@¢a^(°}@¬å7ÃÀª?ÔákI”?šã´ÇÛ?å«K„u¹@0ã» ä´º@ŸdïB»U¸@@¥ ÌÌÌÍ@¥ Iº^5@¥ ÌÌÌÍ@¥ë…¹@¥ ÌÌÌÍ@¥ w1Å@¥ ÌÌÌÍ@¥ŠqÞj@¥ ÌÌÌÍ@¥Ëû¶@¥ ÌÌÌÍ@¥ L˜_@¬D/²-@¬D/²-@¬D/²-@¬D9³Ð|„@¬D/²-@¬D8*™0¾@¬D/²-@¬D3©*0U@¬D/²-@¬D0°ò{³@¬D/²-@¬D.ŠqÞk@1¯O „M@1¯O „M@/Üj~ùÛ"@/ÓŽóMj@.IxÔýó¶@.@A‰7KÇ@.Bu%F -§@.7Xâf@.Bu%F -§@.6R½<6@.Bu%F -§@.6È´9X?É^òÀXæN?Kb½™×?‘Š©Nà¶?º•÷ ?“2{Áw¸?’4¶ó?ÐbMçê_x?’p RN%Î?üÓqÔN‰?’‘Ç#·X?“Al.6¸?‘yÃúCŠ?€b¡´ñ@?ŒÖ -ÄȲ?‚á²Olºý?…bv{3dZ?‡¤o„C?‰]³ß’Ý@@@@@$@,?ð?ð?ð?ð?ð?ð¿NQmmß¿a¯ 7.`?Bp’èš~Þ?2îµÄ…@¥ ÔäsL@¬D1+ÃØv?QÒQÍÙ¥?B%aˆœ?—±hôY>¾?vìgeàŽ7@Ÿs0¶ô{Ù@@­‰ Ƨïž@­‰ 7Kƨ@­‰ Ƨïž@­‰b¶®}@­‰ Ƨïž@­‰µsê³@­‰ Ƨïž@­‰>«6z@­‰ ƧïžÁ.„€@­‰ ƧïžÁ.„€@ª2(õÂ@ª2å`A‰@ª2(õÂ@ª29³Ð|†@ª2(õÂ@ª21ÑN;Ì@ª2(õÂ@ª2ðoiD@ª2(õÂÁ.„€@ª2(õÂÁ.„€@85S&Á¾@8BZîcŠ@4€ Ä›¥ã@4—§†Â&€@4'KƧïž@4Nÿ—$t@3Œ¿±[W?@3¹“ àÞÓ@3Œ¿±[W?Á.„NÜC,¥@3Œ¿±[W?Á.„NÜC,¥?}Ñ¿ž,?³è csÜ?ªËîi‹à[?³Â´K - ¸@8Iç@8Ù?3ßa=„?®úØÈ?ÀvY'äÆ?´¦MVÜú<@8S@8û—?°…T½cØ?œC ãSG?šˆøQû±?£’´w-@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø@®3Ót¼j@®3Ú¬1@®3Ót¼j@®3Ô!-w@®3Ót¼j@®3ÖE¡ÊÁ@®3Ót¼j@®3Ölô!@®3Ót¼j@®3ÕfÏAò@®3Ót¼j@®3ÑÑN;Î@¨Ý 7Kƨ@¨Ý´9X@¨Ý 7Kƨ@¨Ý¸Qì@¨Ý 7Kƨ@¨ÝzáH@¨Ý 7Kƨ@¨Ý -Àƒo@¨Ý 7Kƨ@¨Ý ~($ @¨Ý 7Kƨ@¨Ý$ x@7Ì]cˆe”@7Ë"Ðå`B@3°Ä›¥ãT@3°6âë@3>V“u@3?b¶®}V@2Ç ù kº@2ƸºÇ@2Ç ù kº@2ËW>«6z@2Ç ù kº@2ÊŒL˜`?€‚ñêã ?×s·IÓ?“ï~í"?ŽAtùð¥t?“r {#¥&?’u¹k‚=?‘â%ì˜ ä?”&OÖýæï?•Ó%Øc~?’_3Í\Æ?–G÷z}YÎ?”'q²TrQ?¬ýG¬Eq¾?Ž.]L ¼?‡}¤íþ?‡•ó¨–ˆ?$Ìj½BÙ?‘  ¶‚3@@@@@*@*?ð?ð?ð?ð?ð?ð¿X}UƒØ?'Õà?(©…^ï~y?CJõ׿¨ó@®3ÖGòÚ£@¨Ý ÜÐI±?J¨°ü”?aó¹–ÔRý?™óá÷Ö€à?»:¾•,´@ŸjRF7q@ @¥ˆãS÷ÎÙ@¥ˆá$Ý/@¥ˆãS÷ÎÙ@¥ˆú^5?}@¥ˆãS÷ÎÙ@¥ˆüú¬Ùè@¥ˆãS÷ÎÙ@¥‰¢œwš@¥ˆãS÷ÎÙ@¥ˆý¥œà@¥ˆãS÷ÎÙ@¥ˆú…‡“Þ@©4`A‰7L@©4a‰7KÇ@©4`A‰7L@©4D÷eý‹@©4`A‰7L@©4R:)Çz@©4`A‰7L@©4KP°ò|@©4`A‰7L@©47ö+jè@©4`A‰7L@©4C¢œwš@7Hè§æ@7Òñ©ûè@2‡ÎÙ‡+@2têJŒL@1nùÛ"Ðæ@1^ÿ—$t@1‚@·€5@0ìí‘hr°@1‚@·€5@0íÙb¶¯@1‚@·€5@0í!ÿ.Hé?¢F^ì¼Sð?®££VºÓ‹?¥|ÀôîÆ?¤ÊÈ8Ó~ö?£ÿ6—@G^?œ^%VÂÜN?‡YÍ_?¨úd”‘$?AFnDk?™ðyµCÒW?¬¦l—ªjÎ?œøD4f™?¢Ì÷y\ÛÎ?œ‘z¥æ?ƒ]€µ,Vß?ˆÝíá‰?‰_uñšó?‹aÊ•TI@@@@@,@"?ð?ð?ð?ð?ð?ð?tFtο|Œµr?gÖÄâ,§?TÂÝ«'¢y@¥ˆôŽ‹‚9@©4N#'Â6?‡)"²KX?x–”¥ `|?éü“ -1?Ú½èé´ÛH@Ÿk3‚~å0@ -@®{ë…¸@®{hr°"@®{ë…¸@®{ñ©ûç@®{ë…¸@®{ë…¸@®{ë…¸@®{{²þÅ@®{ë…¸@®{U2a|@®{ë…¸@®{Î_@ª…•$Ý@ª…•Â\)@ª…•$Ý@ª…•%F -¦@ª…•$Ý@ª…—Á½¥@ª…•$Ý@ª…•Y³Ð~@ª…•$Ý@ª…”‡ü¹$@ª…•$Ý@ª…•$Ý@6:qÞi­C@6;µsê´@2&‡+ J@2&®}Vlô@0éÛ"Ðå`@0ê#9Àëî@0Ê0U2a|@0ÊôðØDÐ@0Ê0U2a|@0Ê6âëD@0Ê0U2a|@0Ê0U2a|?}Ñ¿ž,?4ë©$è‰?‘"žæÆó¡?Œ2ÌUÃT?‘oNÅ’+?‘É=¦þï?žˆ2}?’#maЀ?ŽËÜ¿€?íu…XÚ?‘އ Àí?‘!U?Ð{Ò?‚† SFñ?3I¶#i?ƒ~¨õ/¥O?ƒË´ÔC¶¼?†ùadô|?‡×7°º@@@@@,@,?ð?ð?ð?ð?ð?ð¿ çp¿"°˜à?,:ŒbE?ê‡c&Bâ@®{dˆ 0@ª…•hæÏ?L4A}áX“?ð?£›tÐû”??ß‘ÞÌ;@ŸgŽî»4_@ @¢ü$Ý/@¢ü|í‘h@¢ü$Ý/@¢ü¾ í*@¢ü$Ý/@¢ü…F -¦L@¢ü$Ý/@¢ü~ÒˆÎp@¢ü$Ý/@¢üu?|í‘@¢ü$Ý/@¢ü‡»/ìW@£˜Ù‡+@£˜ß;dZ@£˜Ù‡+@£—óZ…‡”@£˜Ù‡+@£—÷§†Â'@£˜Ù‡+@£—·$tS@£˜Ù‡+@£—óZ…‡”@£˜Ù‡+@£—ð¾ í)@7`ØDЩ@7eöý!ÿ.@3J^5?|í@36Â&€I@2ï²-@2œàuöý@1ÔmÅÖ8†@1±ÿ.Hè¨@1ÔmÅÖ8†@1²-V@1ÔmÅÖ8†@1®ùÛ"Ðæ?îŠõ ?–¼åCÝqÕ?’w·†m?¢e¼€¦B?ªª–- —¾?¯JOËëæ?‘â%ì˜ ä?“H¼k#è?‘Ûcu%ç+?¬]~ɺ¶@?²uD¹â?±íj\SD¼?…™ï ufÝ?1·†Æjñ?†Æ‹™ÿ?'ã{>ô‘? \'ÎjK?¤s™·ra@@@@@,@(?ð?ð?ð?ð?ð?ð¿&_U࿈~; ñÀ?] ÎHÅX?“\úÐ?@¢ü~§6ñ @£—ôâÁÚú?z4ß= ƒ?¡jJÍëÖ?Êý8øû*@hpº@Ÿf"øp@ @£ìwKƧð@£ìw -=p¤@£ìwKƧð@£ìwKƧñ@£ìwKƧð@£ìw§†Â(@£ìwKƧð@£ìx7´¢4@£ìwKƧð@£ìvÈ´9X@£ìwKƧð@£ìuöý!ÿ@§œ,‹C•@§œ,ÌÌÌÍ@§œ,‹C•@§œ-qu@§œ,‹C•@§œ+ÓÃa@§œ,‹C•@§œ.p:û€@§œ,‹C•@§œ-ÅÖ8†@§œ,‹C•@§œ,ÌÌÌÍ@2¯O „M@2¯O „M@0®5?|í‘@0®V“t@/ü¬1&ê@/ýIQ‚©“@0‚@·€4@0n—Oà@0‚@·€4@0䎊qÞ@0‚@·€4@0\(õÃ?É`¯&xŽ?êÚÏ$?‘–”«ëó?ŒvHn&³?‘\Žýµ€7?×°ë*–w?ÐbV‡,?’LÁŒÀ´a?Ê -ä\ä?Hª¦ºón?‘Uç·Býi?ŒÙ¶êm¥?€e@ˆ’„'?ŒÖ -ÄȲ?‚¯­Ù¤Á¶?„ mŠmsi?†Ë¢L1Ù?†Óß -tõ@@@@@,@(?ð?ð?ð?ð?ð?ð¿O|ÉµŠ¿FV-x:?!{Û:Òç? ñÔ=äø@£ìwƒ¼Ã@§œ-¾ŸoG?0z;mÒ?0Æ1"¬à?YÏ|íÄ?V$ƒÆ÷ -@Ÿs3Iì.@ @£Ì²-VÁ.„€@£Ì²-VÁ.„€@£Ì²-VÁ.„€@£Ì²-VÁ.„€@£Ì²-VÁ.„€@£Ì²-VÁ.„€@£­‘hr°Á.„€@£­‘hr°Á.„€@£­‘hr°Á.„€@£­‘hr°Á.„€@£­‘hr°Á.„€@£­‘hr°Á.„€@9G>«6zÁ.„>¤µÜÆ@5é‡+ Á.„M‰ûçm@4È“t¼jÁ.„QnÙ‡@3°–»˜ÇãÁ.„NÜC,¥@3°–»˜ÇãÁ.„NÜC,¥@3°–»˜ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@¨b…¡ÊÀƒÁ.„€@¨b…¡ÊÀƒ@¨cÿU›=@¨b…¡ÊÀƒ@¨c«]Ìcò@¨b…¡ÊÀƒ@¨dQ ²•ê@¨b…¡ÊÀƒ@¨dŽ_oÒ@¨b…¡ÊÀƒ@¨ds×Ü@­àì‹C•Á.„€@­àì‹C•@­àå`A‰7@­àì‹C•@­àú¬1@­àì‹C•@­àè$ x@­àì‹C•@­à½/Ÿ¾@­àì‹C•@­à»Í5¨X@9–»˜ÈÁ.„>¤µÜÆ@5³S÷ÎÙ@5 W>«6z@4t“t¼j@3ò:)Çy§@3ó&Á½¥@3?\(õÂ@3ó&Á½¥@3Sä%®æ2@3ó&Á½¥@3;C•%@8J¨?°#M+«l?À-ýgêi?Õ5?íS?ÑÇQ£Ú¤µÜÆ@4 -^5?|íÁ.„M‰ûçm@3ä¼j~ùÛÁ.„QnÙ‡@3°–»˜ÇãÁ.„NÜC,¥@3°–»˜ÇãÁ.„NÜC,¥@3°–»˜ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@¯‰ÌÌÌÌÍ@¯‰Ó3333@¯‰ÌÌÌÌÍ@¯‰Ì”îx®@¯‰ÌÌÌÌÍ@¯‰Ä°õÇÖ@¯‰ÌÌÌÌÍ@¯‰ÐÓãË@¯‰ÌÌÌÌÍ@¯‰Îàh4@¯‰ÌÌÌÌÍ@¯‰ÍH»ÎW@–.záH@–V‡+ @–.záH@– Ns)¶@–.záH@–'_Øó@–.záH@–1iÄé{@–.záH@–9…[Ü?@–.záH@–=‹Áþn@7ý:’£@7Ô%ضF@3€ Ä›¥ã@3~eƒN3@3RÐå`A‰@3QPƒf@2‡ ù kº@2†6˜ÑQT@2‡ ù kº@2†þÚ2èé@2‡ ù kº@2†]')®R?‘w×vHf?Ý'$ü?“’i?ÀhéRr¯?’MŒý¨L ?‘Í$Rü‰?¢+é’Y?’;ø±}º?’; 3=;?‘/ÐeGÚ­?’ÅvY ÿd?’@¶^à†Õ?­j•%ø?W?Ž;¾‡]+Ð?ŠQ‘Õ¶îN?‰Yå*^?‰TÄ=ÛsA?‹¥„ð#"ç@@$@&@,@9@9?ð?ð?ð?ð?ð?ð¿S@1DØ¿P -‹r -?uš¸($í?ccÔNkð@¯‰Ï°’»@–:ãÀh?5¦k·HŒÍ?z½É§Db1?iE zŠ'T?êÉÙäó@Ÿn’yEŸü@@£ÛËC•@£Û8Që…@£ÛËC•@£Ûâ&€H@£ÛËC•@£ÛØÇâ‚A@£ÛËC•@£ÛÏ'»/ì@£ÛËC•@£Ûí\ú¬Û@£ÛËC•@£ÛíquŽ@¡½p£× -@¡ϲ-@¡½p£× -@¡³Z…‡”@¡½p£× -@¡š¹õY´@¡½p£× -@¡¡-w1@¡½p£× -@¡µÜÆ?@¡½p£× -@¡³ŽóMj@7eöý!ÿ.@6êJŒL˜@2ã÷ÎÙ‡@2Òø7´¢4@2PA‰7KÇ@29™™™™š@1½cˆe”°@1!ÿ.Hé@1½cˆe”°@1ÌcñA @1½cˆe”°@1 ù k¹?às»g;?•ìspîî?Ÿýˆh¾b ? l§s¼C^?µ<³5D|ê?´ tÓ??°¼x‡Ç…Ä?“6SÇ{Ó? Âf¶hå÷?£>û}©Ñ?·˜€×+•Á?µU- nÜ¿?ë(ðùÌ(?¢*Mõis?$¿ÀºÍ?žH®hú'$?™ì ª# Ù?¨D d}ù@@@@@,@,?ð?ð?ð?ð?ð?ð?Ȓ圿| ÄÐ}€?xšßÅÎ?}¨h®Àa˜@£ÛÙ—5øÏ@¡©-Ī,?„ËêÆö‘.?—ôPt»?Ï£€M9ôŒ?ðŒ“γ]˜@Ÿoº4éI@@¢\o²-@¢\r‹Ë@¢\o²-@¢\\¬|•é@¢\o²-@¢\L— –@¢\o²-@¢\™' ïl@¢\o²-Á.„€@¢\o²-Á.„€@šŸ²-V@šŸ“t¼j@šŸ²-V@šŸIä²åo@šŸ²-V@šŸK5 =¦@šŸ²-V@šŸ¤¬qÈ«@šŸ²-VÁ.„€@šŸ²-VÁ.„€@6ºqÞi­C@6»bŞƊ@2õãS÷ÎÙ@3#‹–…Q«@1×ï²-@1é9Ú"Ç@1zÔ,<ží@1£BSÔbæ@1zÔ,<žíÁ.„NÜC,¥@1zÔ,<žíÁ.„NÜC,¥?‰døëŽìÃ?£êëëq$?”gý1ºÒÊ?ž;9”Î¥@8Iç@8Ù?}@T˜ÁÎ¥?¨è•ÁLë?“É.ª¼.?¬Ìurí –@8S@8û—?‘J÷±A0?𫤒þnÂ?˜60<)y ?‰9ߺ›C@8 Ø@8 Ø@@,@(@,?ð?ð?ð?ðøøøøøøøøøøøø@§H‰7KÇ@§H‚\(÷@§H‰7KÇ@§H€µûû@@§H‰7KÇ@§H„7'”@§H‰7KÇ@§H…AûÒè@§H‰7KÇ@§H‘å¿7ˆ@§H‰7KÇ@§H|ñ,@•éàA‰7L@•éß;dZ@•éàA‰7L@•éáte\@•éàA‰7L@•éÞ⊚²@•éàA‰7L@•éçíc@•éàA‰7L@•éågB+@•éàA‰7L@•ê 8Ò÷¯@2¿–»˜È@2¼í‘hr°@/û"Ðå`A@/ë R  @.cn—P@._Á³x@-…oi@-~ŸG1½<@-…oi@-™9»û@-…oi@-X‘±euc?É^ÈmÔ d?†BŠV?‘ǧE1Y?É Ï„?™—½¼ûAx?œ!d¯0Ã?Ðb^57KÏ?’¼¯Ä­vþ?‘¶4Á¸i:?؈‡¸ð?œa½CÁN?™·Bùå?€—q° ?’rÁº¶‰’?ƒ–ÚÈ×·>?„nÄÙom?‹ò^óô?˜š¨îã@@&@,@*@<@4?ð?ð?ð?ð?ð?ð?rÕ?€?{ûWL@?cÁC¯¢‡Ó?k¬)Ãß@§HŠ.aç@•éñ à\‚?rJTébt«?zºo®zr?ҪȚ(Yâ?â–××E@Ÿqaæ1µo@@¦¾vÈ´@¦ @¦¾vÈ´@¦ A‰7L@¦¾vÈ´@¦!-w1@¦¾vÈ´@¦ 4mÅÖ@¦¾vÈ´@¦«6z@¦¾vÈ´@¦5?|î@¤ ûdZ¬@¤ ûdZ¬@¤ ûdZ¬@¤ û"Ðå`@¤ ûdZ¬@¤ û‹¬q@¤ ûdZ¬@¤ ûdZ¬@¤ ûdZ¬@¤ ûÍ5¨W@¤ ûdZ¬@¤ û¥ãSø@.[J#9Àì@.[J#9Àì@+æ§ï²-@+æö”Fs@,E¡ÊÀƒ@,»˜Çâ‚@,žš@,ߤ?åÊ@,žš@,ùÛ"Ðæ@,žš@,U›=É?É^³Dw'?Òç{íj?‘½ümüñ?ŒR‹w#z?÷6r In?Å{¿Ž<¹?ÐbMçê_x?’ ,øÕC©?~ËQ§?ø,~[´?Ö§­îQD?Uÿyu”#?€bMÕky?Œµ3‰;šÏ?‚2Y0âµ?‚ð'ã:ÂÝ?†–f_ÔŠŠ?†Ë¢L1Ù@@@@@$@*?ð?ð?ð?ð?ð?ð¿LËç‚¶?*ºT`?#ýNnBÝ?àåÊ?ñ@¦$0(%@¤ û˜è·ª?31R -œK?&Š9ŽGT?a·ÿ q‹ ?EïœÎ¢ð@Ÿs¹¸"@@®ûÏß;dZ@®ûËå§oÌ@®ûÏß;dZ@®ûЮ‘@®ûÏß;dZ@®ûÎfýÿª@®ûÏß;dZ@®ûÐYœÚ@®ûÏß;dZ@®ûÒܰ—d@®ûÏß;dZ@®ûÊóD Í@˜Öî—Oß@˜Öò-V@˜Öî—Oß@˜×Òã˜7@˜Öî—Oß@˜Ö÷l7>@˜Öî—Oß@˜ÖíÿÂ&3@˜Öî—Oß@˜Öõc$h¸@˜Öî—Oß@˜×«¬ß@8?–»˜È@8DÇñ‰=Å@4‚° Ä›¦@4…¦Ø¤/@44“t¼j@48ÌÐÉ:4@2ýcˆe”°@2ÿÈtäè@2ýcˆe”°@2ÿÄÔ@2ýcˆe”°@3aUè4‘?Ž\Õl6Ò?•„°¬|Äþ?“G"eÕÅ?‘%ªÁÓ€1?”Íæ!?’¢_!6]?‘lUIòr?›:Éý¢™?ß! hå?óÔÅJ~?”;àQ¢C?’ÙÖæ×dp?©ÁZ+Þ}?·Ü"/k­?“4º¡LJ?‡ª 2c%C?Œ2·Óå?Œ  óõƒ/@@(@@&@9@6?ð?ð?ð?ð?ð?ð?8ÈÚs ?V-ž\}?Q0+ -iQÝ?RJo2î@®ûÎ!¸ÎÛ@˜ÖõŽl?p†8ÈÅqÜ?pˆV¼»?ÛÇÈQÕÐÿ?Ú]& :ìØ@Ÿky‰*‹@@­ß€ƒn˜Á.„€@­ß€ƒn˜@­ß×{ãòÓ@­ß€ƒn˜@­ß«½ÔÁ@@­ß€ƒn˜@­ßqíà(Ï@­ß€ƒn˜@­ßwKtàÂ@­ß€ƒn˜@­ßoqrÒÁ@šS$Ý/Á.„€@šS$Ý/@šSfÅÃíØ@šS$Ý/@šS+•èÖ@šS$Ý/@šSÛñê1@šS$Ý/@šS&•¡ã@šS$Ý/@šS®¨º@9T xFÜÁ.„>¤µÜÆ@5Lí‘hr°@5klòX3@4F“t¼@4C{WgÃ…@3¿ò䎊r@3·¼…«ê@3¿ò䎊r@3¼Ý7w„Œ@3¿ò䎊r@3¼ÅЃìC@8J¨?¹IÜŸ¸ä? ÈX­€ø?‹úÊ?—D­>è?’êÕõÛ-W@8J¨?µÔ)Û£±Õ?•)¹ÅŠ®Ê?‘X_ªuSZ?ŸÀåÝ5C„?“úR/ô‚Ç@8p÷?Ÿeta˜î?”Ç´°‰Þi?Š¢µ‰PP?˜% ?ð -ºƒc@(@"@@3@,?ð?ð?ð?ð?ðøøøøøøøøøøøø@©ó¶E¡Ë@©Å‚’<4@©ó¶E¡Ë@©jÅÜ1@©ó¶E¡Ë@©£÷ˆË@©ó¶E¡Ë@©ƒÓ/Ré@©ó¶E¡Ë@©£Ù"Ö[@©ó¶E¡Ë@©¦HþÒ@”ewÎÙ‡@”edÛ&éX@”ewÎÙ‡@”f ½q@”ewÎÙ‡@”ef¡ xK@”ewÎÙ‡@”fLœÄ8Ë@”ewÎÙ‡@”ffQ3ô@”ewÎÙ‡@”f̽W@8òÃÉîËû@8æf7n$S@3ÇÎÙ‡+@3w2‹žÙ²@3 ²-V@2·P´^‘²@2‡ ù kº@2/©Ý3Æ@2‡ ù kº@2 Y”®@2‡ ù kº@2*iŽý¥f?§?†'„Ü¢?°Æ*º¢½¾?´5¼$Ź·?½BIÀ%?»BÄg@p?¸ìà‘Ô?·k—<8ð?»Šíž²?²6Ü„aÁé?¾‹¥S¬?ºà9 ‘<_?¿ž•¬Q ?´Ñi©½W´?¦ùÆdÝü?¤Ÿ±…Š @?©—¨[˜-H?ª¤SnÞ„?°'ÿÓYÁ@@(@*@(@9@8?ð?ð?ð?ð?ð?ð¿{¾õ€?¡î§ÏŒH?t¥–oÞ]Ó?p¿““®óf@©¬É’ñú@”fß - ?—Ž:öåÆ? /DPv1?âoCÛWœ??ž­ÇÃ@Ÿiëu¸ †@@£Êk Iº@£Êf§ï±@£Êk IºÁ.„€@£Êk IºÁ.„€@£Êk IºÁ.„€@£Êk IºÁ.„€@£Êk IºÁ.„€@¥ 3¶E¡Ë@¥ &éxÔþ@¥ 3¶E¡ËÁ.„€@¥ 3¶E¡ËÁ.„€@¥ 3¶E¡ËÁ.„€@¥ 3¶E¡ËÁ.„€@¥ 3¶E¡ËÁ.„€@8L]cˆe”@8OìVÕÏ«@4é‡+ Á.„M‰ûçm@4ÐA‰7KÇÁ.„QnÙ‡@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥?гá‡}@8#˜@8¾:@8 >+@8Iç@8Ù?¤ÊŽaÈ]Ó@8Î÷@8i§@8Å@8S@8û—?’C߯K@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¢RU$Ý@¢RJÔ­JÕ@¢RU$Ý@¢Rb¶®}V@¢RU$Ý@¢R_Š Þ@¢RU$Ý@¢Raä÷eþ@¢RU$Ý@¢R_äV @¢RU$Ý@¢Ra±«Ç@œÇÐå`A‰@œÇÓÆ6“‘@œÇÐå`A‰@œÇÎ_oÒ@œÇÐå`A‰@œÇ®záG@œÇÐå`A‰@œÇº)Çy§@œÇÐå`A‰@œÇÍ ãuí@œÇÐå`A‰@œÇÉiÚÄE@7h†YJôñ@7ƒÄ¡Ö:@3° Ä›¦@3 =Ùb¶@2Wï²-@2]ÌcñA @1kxFÜ^@1kÚQÎ@1kxFÜ^@1l0³ò @1kxFÜ^@1kül€Â?}x—™?˜I­}ý½Ä?¤œá˜¡ðè?–O!mS -?‘÷·ÃŠ—?‘—6Ç9ìº?ž91ç |?–µ°jÆÄ?“²pÅâ-Ý?|ënÓ¿Ü?–•RAº*?‰ÄêÈÆŽù@@@@@*@.?ð?ð?ð?ð?ð?ð?v-ÊÅ¿TÄóvü?T©Ò“ÉI?O­\-‹ï@¢RVݯõ@œÇ͵i=Ø?t†øó«Sä?pCjÈ9“@?óˆ2ßö"?è ŒðÈÎí@ŸfL¯¥ @@¯Ñ¯Ÿ¾w@¯Ñ¶È´9X@¯Ñ¯Ÿ¾w@¯Ñ‚ø7´¢@¯Ñ¯Ÿ¾w@¯ÑˆðŽ@¯Ñ¯Ÿ¾w@¯ÑP©*0@¯Ñ¯Ÿ¾w@¯Ñ [À@¯Ñ¯Ÿ¾w@¯ÑrþÅm^@¦ÆY‡+@¦Æ^vÈ´9@¦ÆY‡+@¦ÆNŠqÞj@¦ÆY‡+@¦ÆVE¡ÊÁ@¦ÆY‡+@¦ÆR:)Çz@¦ÆY‡+@¦ÆJOv@¦ÆY‡+@¦ÆU¨Xy>@804mÅÖ8@8/oÒòå@4c÷ÎÙ‡@4P£× -=p@3;Ƨï²@3.Åm\ú­@3!:’£S@3 k¹Œ~@3!:’£S@3ð¹@3!:’£S@3 ùrGE?°ý¢¾Ýb?¦Ç­oK‘?§yĪoè]?¹,:‚ê?µ T.Ûo?µš‡" » ?­g;+³ût?U -£?00?“$zü¾6? vùv“?¥mÉ£&Z?«M~W`?–-¤]î§É?–P¢k"? øk@×õ{?‡9 ƒ–’”?š3 ˜ÔDš?IQ‚©“ @@@@@,@*?ð?ð?ð?ð?ð?𿌺Dc¿g2€?£X_ËC?bôU OP -@¯Ñ…"p‘@¦ÆRÖÜÓì?¡ÁO3 ˜­?{HÉÂqµ8?÷LŽ2N„?ÈÓ!À°@Ÿkìhw8ñ@@¥Èƒ•%@¥È‰º^5?@¥Èƒ•%@¥ÈaohÜ@¥Èƒ•%@¥ÈW -=p¤@¥Èƒ•%@¥ÇçE8ï5@¥Èƒ•%@¥ÈŠÚ¹õ@¥Èƒ•%@¥È³Ð|…@¢rƒn˜@¢rÄ›¥ã@¢rƒn˜@¢qÔÖ¡aå@¢rƒn˜@¢r -ôðØE@¢rƒn˜@¢q¾ÒˆÎp@¢rƒn˜@¢qéÔ•+@¢rƒn˜@¢qÙrGE9@7wâ‚@·€@7r Iº^6@3«¥ãS÷Ï@3˜­«ŸU›@2È“t¼j@2»quŽ!–@2°–»˜Çã@2„záG®@2°–»˜Çã@2‘hr°!@2°–»˜Çã@2ß;dZ?¨Ö_pP1?³T~=¥ªI?ª\=§uÌ?ÐÝð\ùN?´(Ôx±/È?ÉZjðìšÇ?’Óusÿ\Ã?º’ÔQ;®v?¬6¦eI…?Íëæ?¸MWée]{?²_¨³‡#„@Ÿk±&Ë™}@@ªÿŠÀƒo@ªÿ†ffff@ªÿŠÀƒo@ªÿ†$Ý/@ªÿŠÀƒo@ªÿ…‡“ݘ@ªÿŠÀƒo@ªÿ‰7KƧ@ªÿŠÀƒo@ªÿ‡“Ý—ö@ªÿŠÀƒo@ªÿ…¼£n@¢™\(õÂ@¢™[çl‹E@¢™\(õÂ@¢™[J#9Á@¢™\(õÂ@¢™Y=Ùb@¢™\(õÂ@¢™Wö+jè@¢™\(õÂ@¢™YJôðÙ@¢™\(õÂ@¢™W$tS@7[¹Œ~($@7\¬1&ê@3B° Ä›¦@3F -¦L/„@2ˆ“t¼j@2‹Í5¨Xy@1𖻘Çã@1òÐå`AŠ@1𖻘Çã@1òˆÎp:ü@1𖻘Çã@1òÊW§†Â?Ž=fA:?•ìspîî?’Q/Èö -®?Wø0 ¥?‘¯GàBm?”1Ÿøš?|öOÿÝ?’[ KÄ0R?’±ä?‘.“¥?‘ ÛÌÏõA?“‘k–šj?ÞïÏ·çÔ?ŽÎ"”`ù…?Ž“‹}Tz?ˆW„hðQ?ˆ”Tj«›ª?ˆ0&YÊEd@@@@@"@*?ð?ð?ð?ð?ð?ð?õ¥¿NÑ*¬?Aàž•ð?/¡Ç|Ÿu@ªÿ‡oÍN@¢™YƒfÊ?^ZdŽè+º?QP˜7¦,?»Ó–“ëö?§10P«"¿@ŸiùUq@ @¨ç@ƒn˜@¨ç@ƒn˜@¨ç@ƒn˜@¨çAÊÀƒ@¨ç@ƒn˜@¨çAä÷eþ@¨ç@ƒn˜@¨çA£n.³@¨ç@ƒn˜@¨ç?b¶®}@¨ç@ƒn˜@¨ç?b¶®~@©!hõÂ\@©!i7Kƨ@©!hõÂ\@©!hŒç°@©!hõÂ\@©!iã½@©!hõÂ\@©!h´9X@©!hõÂ\@©!i^ž @©!hõÂ\@©!i 'RU@2?–»˜È@2?Š Þ@/¸“t¼j@/¸y=Ùb@.XÔýó¶F@.Y k¹Œ~@-fL/ƒ{K@-fs×Ûõ@-fL/ƒ{K@-fs×Ûõ@-fL/ƒ{K@-fšÔ,<Ÿ?É^žQ5P‚?é¥3i£ó?‘D&»ä?‹¹GüÞõ?÷6r In?Êëüâi{?ÐbV‡,?’7Îf¬ps?œõLÁE?>\‰å‘?Ø¥²À<(?b¶­-Óx?€e@ˆ’„'?Œ».êxóÚ?‚2Y0âµ?‚þ——³§ø?†–f_ÔŠŠ?†£îž«î@@@@@*@*?ð?ð?ð?ð?ð?ð¿PÛ@FB?: tD?5Ó¥»à€?µ;d–sÄ@¨ç@L#… @©!i.õÂg?Düiôm?šÝ‰MD?…‡Ùgb7N?5ËÜ)Š@ŸsDŒ @!@£Ÿ¾vÈ´@£ž5?|î@£Ÿ¾vÈ´@£¦Â&€@£Ÿ¾vÈ´@£¥Éä@£Ÿ¾vÈ´@£¨ðŽ@£Ÿ¾vÈ´@£¤¨ÁTÊ@£Ÿ¾vÈ´@£¢ÃÉîÌ@¨_|í‘h@¨_|í‘h@¨_|í‘h@¨_U›=@¨_|í‘h@¨_€hÛ‹­@¨_|í‘h@¨_ƒˆe”®@¨_|í‘h@¨_TÉ…ð@¨_|í‘h@¨_‚3œ¿@5Î쿱[X@5ÎÒˆÎp;@1Å?|í‘h@1Âò䎊@0†“t¼@0ƒÉîËû@/­úCþ\’@/§ï²-@/­úCþ\’@/§»/ìVÖ@/­úCþ\’@/©^žš?‚á²Olºü?’ñ¼õì?’à©GMõ?[d?”§RXFÖf?“ d?}Ñ¿ž,?•íÌÖf?’F^ì¼Sï?‘ô 5Y?‘ÇmEB«?ÝÒ¥X[?ƒ]€µ,VÞ?=d­úå?‚¸“Îè ø?ƒ!Ë *(?†ùadô|?‡´*žZ}Õ@@@@@,@,?ð?ð?ð?ð?ð?ð?X‚5™(?DZY `?OÚ¥ttøî?3¨ÕPö|@£¢\±ˆ@¨_½¤?oº´›\9?Tl‹á̳?â‹ÕÞµ?³S<­œ˜B@Ÿgm{&ë3@"@©XdZ¬@©Xe¸Qì@©XdZ¬@©Xe”¯O@©XdZ¬@©X_åÉ@©XdZ¬@©XeÉä@©XdZ¬@©XbëC-@©XdZ¬@©Xem\ú­@§å§ï²-@§å§®zá@§å§ï²-@§å¥+ÓÃ`@§å§ï²-@§å¥ãS÷Ï@§å§ï²-@§å«íúCþ@§å§ï²-@§å¡|ÚQ@§å§ï²-@§å¡ohÜ@6ò䎊@6ÊW§†Â@3° Ä›¦@3ÉùrGE@3.ùÛ"Ðæ@32‚@·€4@2‘Þi­BÄ@2š¬1'@2‘Þi­BÄ@2HðŽ@2‘Þi­BÄ@2‘[W>«6?žˆ2}?”Øÿ4ÙKl?‘jh¨qã9?ŒGZ0eê;?”] -° ?’Æ÷Xê†?|öOÿÝ?—áZk·×?„¦Ô•]I?Ä…à6 -æ?–žóB» ”?“ù|ö[ÿz?‚|׿pY?Ž»žä4?‰¢Ò+ÜÝP?R *Ñn?V^²³öˆ‚?HmE£fÚâ@©â{¯?‡î@œ¹p¶Î?vdŒPUÀ?hæðr9ãl?ø¹^r׺?ß­ìRT\œ@Ÿg3JYC@$@«6H´9X@«6Gï²,@«6H´9X@«6FL/ƒz@«6H´9X@«6JqÞi®@«6H´9X@«6G¯·é@«6H´9X@«6)ùrG@«6H´9X@«64¼@®)dÝ/ @®)bÐå`B@®)dÝ/ @®) á°‰ @®)dÝ/ @®)†YJô@®)dÝ/ @®(ñø .@®)dÝ/ @®'ðU2a|@®)dÝ/ @®(F1ø ‘@7¯O „M@7ZîcŠ@3Ù‡+@2ò•éá°Š@2H“t¼j@2¾ß¤?æ@23&Á½¥@1þËûµt@23&Á½¥@1Ìàuöý"@23&Á½¥@1Ö$Ý/ ?‡YÍ_?’ñ¼õì?¦†np½Ý?”½±·CåV?¡ ª¾Tº¥?  =%º?ˆÿÀ)T¿Æ?”ºu(†¼¦?¯ÁÝï7%O?¸àú¬Öp?ÜË%8‘®?×Ö ´ S?‚2Y0â³?‘ÓP!¹p?U”šYC?Ž0 ½~ÿ? ü‡—Üä?ÀçN¬óZ@@@@@(@&?ð?ð?ð?ð?ð?ð¿pËî¬A¿©è¦?cˆÏÆ'vp?„'WÒPÑD@«6F0ƒÆ6@®)B§”¶µ?§WâËdé?Œ\¯ŠSl ?ù¿ç qL?èXÔ­4M@Ÿ[ÒN(æ@%@¨.¾vÈ´9@¨.½ó¶E¢@¨.¾vÈ´9@¨.¾ß¤?æ@¨.¾vÈ´9@¨.Àƒn™@¨.¾vÈ´9@¨.¿!-w2@¨.¾vÈ´9@¨.¾ í(@¨.¾vÈ´9@¨.½æšÔ,@©ŒÖ“u@©ŒÚŸ¾vÊ@©ŒÖ“u@©ŒÖ+jçÖ@©ŒÖ“u@©ŒÖ“v@©ŒÖ“u@©ŒÖ¡aäø@©ŒÖ“u@©ŒÖz—@©ŒÖ“u@©ŒÖ“u@5=:’£@5>Ëûµt@1GÎÙ‡+@1GOß;d@0Ðå`A‰@0ˆÎp:ü@/Bu%F -§@/Aÿ.Hè¨@/Bu%F -§@/B\(õÃ@/Bu%F -§@/Be+ÓÅ?€‚ñêã ?4ë©$è‰?‘"žæÆó¡?5~pY5?‘,IÝ Áé?ÔCXsñ?…ÅBðrç?’LÁŒÀ´a?„¦Ô•]I?Y‡…—Ø?‘ ÛÌÏõA?]#ÍìO¤?„³3Z\ð„?ŒË›Í‡Çq?‚¸“Îè ø?‚þ——³§ø?†Ë¢L1Ù?‡×7°º@@@@@*@*?ð?ð?ð?ð?ð?ð? ¸„'€¿PgWæ¼?$œÑ§ÿ§·?* -F³œï@¨.¾6¡4¶@©Œ×ô!hL?EG6:€Šn?J ’c ÂÌ?”qÓN ¥c?™õ}Öô)@ŸiU°8$@&@©îxÔýó¶@©îˆ1&éy@©îxÔýó¶@©î‰ 'Q@©îxÔýó¶@©î¿!-w3@©îxÔýó¶@©îhÛŒ@©îxÔýó¶Á.„€@©îxÔýó¶@©î¹#¢œx@ xâMÒñª@ xæffff@ xâMÒñª@ x·ö+jè@ xâMÒñª@ x‰“ àß@ xâMÒñª@ xŠ=p£×@ xâMÒñªÁ.„€@ xâMÒñª@ xĨÁTÊ@8eöý!ÿ.@8ZçÕfÏB@4…?|í‘h@4jÀƒn—@4~V“u@48_ö”F@3Þ«6z‘@3žóMj@3Þ«6z‘Á.„NÜC,¥@3Þ«6z‘@3žÒˆÎp;?ð°–Ž]?”„ö}>žå?´9äÐ9?²YÌ3ÉÛ„@8Iç?Àíif}?ð°–Ž]? €l ×Û?ÀÑdjÜ!"`?‹°»vÆr;?û¿Xx?ÿ?¸9cXæ?|Ñb×¶@?’]æ&¬º?•Œä™£K?9ˆ[ƒÄO?ý¹€äÏ?T›ô,í‡?‚„UAÕ|?ŒºÿB’?‚Ò•)úL?ƒh€| 8?‡!éðêÎ?†ÐÐUf@@*@*@(@1@0?ð?ð?ð?ð?ð?ð¾üÔöO¿4¾p!?6is;>¶I?"­ ›W@­†ñMËä÷@™÷¦ªþ´?VM=Zó?C ¼€/?»@Q u?’Ú}ê½´j@Ÿfófò7b@(@¢§|í‘hs@¢§ˆ´9X@¢§|í‘hs@¢§|j~ùÛ@¢§|í‘hs@¢§z^5?}@¢§|í‘hs@¢§x}¿H@¢§|í‘hs@¢§|64@¢§|í‘hs@¢§wÁ½¥@¤¨ñ©ûçm@¤¨äÝ/ @¤¨ñ©ûçm@¤¨ò䎊q@¤¨ñ©ûçm@¤¨ô¼@¤¨ñ©ûçm@¤¨óê³g¡@¤¨ñ©ûçm@¤¨ô¼@¤¨ñ©ûçm@¤¨õsê³h@8Y*0U2b@8?b¶®}V@3°Ä›¥ãT@3´¨ÁTɆ@3“t¼@3 Í5¨Xy@2YŒ~($ @2\í‘hr°@2YŒ~($ @2Ye+ÓÃa@2YŒ~($ @2XÇâ‚@¸?‘â%ì˜ ä?š–ÿô3?“‡ƒ×¤?Wø0 ¥?“Ýâqß?–ËÒÙI°?Â÷Üê~\?•@¼Cк?“v@á¿bî?‘3)10ÑF?’pP‡È»?–¼åCÝqÕ?¸ã>Ì'¯Ž?’®ã‘\’?—eI¥Ð6?ƒÛ®«etZ?‰/ã̽`ª?‹DVóö@@@@@&@,?ð?ð?ð?ð?ð?ð¿kqŒ1^?L'Ô(?Yšúˆ3¨?Gú[ÕŽ{.@¢§z/tš@¤¨ô&Ës­?xS)âf·g?Vz?³®f?ç-j£{Š? to¦ÿŽf@Ÿqb Ÿ2j@)@¡‚r-V@¡‚wÎÙ‡@¡‚r-VÁ.„€@¡‚r-VÁ.„€@¡‚r-VÁ.„€@¡‚r-VÁ.„€@¡‚r-VÁ.„€@ž6B\(ö@ž62-V@ž6B\(öÁ.„€@ž6B\(öÁ.„€@ž6B\(öÁ.„€@ž6B\(öÁ.„€@ž6B\(öÁ.„€@6[¹Œ~($@6aaä÷eþ@3©‡+ Á.„M‰ûçm@3¬j~ùÛ#Á.„QnÙ‡@3¡:’£SÁ.„NÜC,¥@3¡:’£SÁ.„NÜC,¥@3¡:’£SÁ.„NÜC,¥?…ÅBðrç@8#˜@8¾:@8 >+@8Iç@8Ù?}Ñ¿ž,@8Î÷@8i§@8Å@8S@8û—? ;ŠaÙ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø*@¯ ûdZ¬@¯ û¥ãSø@¯ ûdZ¬@¯ ò×sý@¯ ûdZ¬@¯ ÜPHð@¯ ûdZ¬@¯ ŸU›=@¯ ûdZ¬@¯[À6@¯ ûdZ¬@¯ ûçl‹C@¬M#× -=q@¬M.V”@¬M#× -=q@¬M,篸@¬M#× -=q@¬M*#9Àí@¬M#× -=q@¬M!£n.³@¬M#× -=q@¬M%ðoiD@¬M#× -=q@¬M8FÜ]@7VšÔ,<Ÿ@7VšÔ,< @4{ Iº^@4zîcŠ @46§ï²-@4%$Ý/@3¦YJôðØ@3N¤¨ÁU@3¦YJôðØ@3v_Ø­¬@3¦YJôðØ@3’n—Oß?–ªÎ­¡?¡lôÅø²?±Õdð?ž‹¬':î?¦ö/cÕ¥?£ÄžS^· ?£G± *Ç‚?šr’nc?¬6¦eI…?‘ǧ?D6?£w¤µÜÆ@2Iº^5?@2}¿HË@1Ct¼j~ú@1DÝ/Ÿ¾@05µsê³h@06L/ƒ{J@05µsê³h@06?¼@05µsê³h@06z–¼@8J¨?ÿ﯒?‘jh¨qã9?Œ'õ‚$5ñ?‘'¬Å™» ?ø·-/ge@8J¨?’ñ©ûçlŒ?ð{¥âdú?°‹Œ÷€?‘=d¦^™?äqÅYÈ@8p÷?ŒïQ¼º“ã?ƒÆ×q„nð?ƒžÂâk,?‡ã ËÄž?‡&üòI@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøø,@«8|í‘h@«8~¸Që…@«8|í‘h@«8~vÈ´9@«8|í‘h@«8€'RTa@«8|í‘h@«8€hÛ‹«@«8|í‘h@«8~vÈ´9@«8|í‘h@«8~ùÛ"Ò@¤Îå`A‰@¤Î Ä›¦@¤Îå`A‰@¤În—P@¤Îå`A‰@¤ÎˆÎp;@¤Îå`A‰@¤ÎÝ—ö+@¤Îå`A‰@¤ÎuŽ!–@¤Îå`A‰@¤Îë…¹@6[¹Œ~($@6ZîcŠ@1Ê^5?|í@1É­BÃÉî@1iÛ"Ðå`@1hy=Ùc@0Åœàu÷@0Ãa@N¥@0Åœàu÷@0ÃS&Â@0Åœàu÷@0ÃZ…‡“Þ?|öOÿÝ?êÚÏ$?‘K]Ã4?Uóú*˜?‘ñ•/m£{?‘ ê$4Ÿ?„F/·ÿP5?’ ,øÕC©?‘}7ˆ.Ñ?;ß $Þû?‘žˆ2}?äqÅYÈ?…íŽ(þÆ?Å9–o?„ËD(ºp?ƒì%­¹Ï‘?‡×7°º?†Óß -tõ@@@@@,@(?ð?ð?ð?ð?ð?ð?9R?<­Œ*p?-‰Ú·r"?8¬­ \#@«8ôNŠ@¤Î Zö?N>·ÖŠ?XÐ" “ -?¥½Û(³"a?¸I¼ì…3@Ÿh1B3• @-@ kÑë…¸@ kÑë…¸@ kÑë…¸@ lªdù@ kÑë…¸@ l '­5@ kÑë…¸@ kë"Õ)a@ kÑë…¸@ k×Yux@ kÑë…¸@ kÜX%‰@¡ò!ÊÀƒ@¡ò$›¥ãT@¡ò!ÊÀƒ@¡ò.ºs8@¡ò!ÊÀƒ@¡ò6úÀ@¡ò!ÊÀƒ@¡òS’-ú@¡ò!ÊÀƒ@¡òCtù‹@¡ò!ÊÀƒ@¡ò>ŸâÖ@6›¹Œ~($@6™ ’‚È0@3’ Iº^5@3h:ÒÉ -@2ÝV”@2«¡í0Lì@2‘Þi­BÄ@2v•Îó£@2‘Þi­BÄ@2€#BÓ'@2‘Þi­BÄ@2y'š„?}@T˜ÁÎ¥?~âqò4Ï?£Öú¥ø[Â?œÍÀ(¶?˜>=d4PÃ?˜ X<-/?|Ñb×¶@?”Á­iE=µ?žÚ™¡íE?—nõ[>L?—›«Ð¨†?˜Q@´$?S¬\H?–ÑÂy¡Ÿ?ŽïH?å´?›ftÛð?—)ôEbw?’à -Ñ:…8@@$@(@(@5@2?ð?ð?ð?ð?ð?ð?e&'º§¿`ã²;Ø?_´r>¼?KÍCZ?@ k×ú@¡ò –,Q?}êÅŽž‹?iB‘§€På?þ&¼?F[,?Öÿ„‡F4ª@Ÿd&ÆqfJ@.@ªV“u@ªVE¡ÊÂ@ªV“u@ªX -à@ªV“u@ªWXâe@ªV“u@ªV“u@ªV“u@ªT9Xa@ªV“u@ªT¼j~ú@¹vÈ´9X@¹vÈ´9X@¹vÈ´9X@¹uÂ\)@¹vÈ´9X@¹y k¹Œ@¹vÈ´9X@¹z¬Ùè>@¹vÈ´9X@¹uŽ!–S@¹vÈ´9X@¹yXbN@4Ù*0U2b@4Ú–»™@2xr° Äœ@2wï²-@1ö§ï²-@1öð¸»@1”mÅÖ8†@1”`ªdÂø@1”mÅÖ8†@1’©“ àß@1”mÅÖ8†@1“FÜ]c‰?|öOÿÝ?’g½þË£?‘ùé éµ??Œ ßõIyû?‘úy«ôÊ%?‘îƒÔ1a?}Ñ¿ž,?“¡ƒ[¤45?‘ª¦ZqÍ?wàËxR?”*v7¹¿?’Q½£a C?‚uÞ@>N ?²É5†±ó?‰ÕäÖ‚‚?„ìsMQ(Œ?ˆCns¥ ?‹ ˜1 D@@@@@@(@(?ð?ð?ð?ð?ð?ð¿6(=Å?+Ì|µ?!Gðs¼D?0¸>ŠIA @ªU›,~’@¹wØr?@éÜŒ¹vŒ?Pµ.`ÛÉ?¿j $??© /ä^È@ŸfqGÎ@/@¬„n—P@¬„ÕæÈe@¬„n—P@¬„‡Q¨S@¬„n—P@¬„tT]‚@¬„n—P@¬„ŠÎœ(@¬„n—P@¬„£GTÑ@¬„n—P@¬„%5ï@”5`A‰7L@”5i3€@”5`A‰7L@”5^î¶s‰@”5`A‰7L@”5f6¡@”5`A‰7L@”5g9¡V@”5`A‰7L@”5bÒjõÒ@”5`A‰7L@”5iµDõ@7Î쿱[X@7Î(¶&ê5@3Å?|í‘h@3Ç€fT?@3`A‰7L@3^À c@2”mÅÖ8†@2–¼@¸Ô@2”mÅÖ8†@2•éÏ4P@2”mÅÖ8†@2”Û{Ò|–?“mÚÑ‘>Â?L ¤Î‹?’K§øÖ?’AÙ¯,Æ?“WPJJ˜"?‘â·×æÖ?Šš¶ÈŰ?’)XZ…§&?qÍ~[À?“óLJ~:Ú?”ŠÝb°Í?’¢É×ÿ?¥¯–˜*à?Éà–(¤µÜÆ@3¦‡+ JÁ.„M‰ûçm@3å`A‰7Á.„QnÙ‡@28DЩ*Á.„NÜC,¥@28DЩ*Á.„NÜC,¥@28DЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø1@¢Ñ`A‰7LÁ.„€@¢Ñ`A‰7LÁ.„€@¢Ñ`A‰7LÁ.„€@¢Ñ`A‰7LÁ.„€@¢Ñ`A‰7LÁ.„€@¢Ñ`A‰7LÁ.„€@¢£$ÝÁ.„€@¢£$ÝÁ.„€@¢£$ÝÁ.„€@¢£$ÝÁ.„€@¢£$ÝÁ.„€@¢£$ÝÁ.„€@9N쿱[WÁ.„>¤µÜÆ@4žÙ‡+Á.„M‰ûçm@4ï²-Á.„QnÙ‡@3³&Á½¥Á.„NÜC,¥@3³&Á½¥Á.„NÜC,¥@3³&Á½¥Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø2@¯Ç¯²-@¯Ç¯²-@¯Ç¯²-@¯Ç°bMÒó@¯Ç¯²-@¯Ç¯²-@¯Ç¯²-@¯Ç¯iDg8@¯Ç¯²-@¯Ç®_oÒ@¯Ç¯²-@¯Ç­Òñ©ü@¡Ù« Iº@¡Ù« Iº@¡Ù« Iº@¡ÙªÚ¹õZ@¡Ù« Iº@¡ÙªçÕfÏ@¡Ù« Iº@¡Ù«…¸R@¡Ù« Iº@¡Ù«C•@¡Ù« Iº@¡Ù«ŸU›=@0-¥œàv@0-¥œàv@*8“t¼j@*8FÜ]c@)¥¡ÊÀƒ@)¤¨ÁTɆ@(̲•éá±@(Ë’:)Çz@(̲•éá±@(ËxFÜ]@(̲•éá±@(ˬq ²•?É^žQ5P‚?Ï[äeæ?òǹíT­?À­Õß}º?ÐbMçê_x?’r/BÖ?ˆ9²0?9ÍÇ~FÀ?ß’ºèh!?Uÿyu”#?€bMÕky?Œ°¶.Ä+Æ?‚2Y0âµ?‚ð'ã:ÂÝ?†špk Y?†špk Y@@@@@,@,?ð?ð?ð?ð?ð?ð¿Gsw6¸?ûRð?%LÚ4Hľ? ­#ðØ¿@¯Ç®†¸ÒN@¡Ù«x5D?4{QÕ î?*¡¿ ‚³¡?dЍ%̤C?O-ìb4Ç@ŸstA@3@¥?u?|í‘@¥?xbMÓ@¥?u?|í‘@¥?uöý!þ@¥?u?|í‘@¥?v4ê@¥?u?|í‘@¥?t`ªdÄ@¥?u?|í‘@¥?uϪ͞@¥?u?|í‘@¥?vz—@­Bl1&é@­BixÔýõ@­Bl1&é@­BkÓÃa@­Bl1&é@­Bl/ƒ{K@­Bl1&é@­BjôðØD@­Bl1&é@­Bn_oÒ@­Bl1&é@­BdM:’@6·â‚@·€@6¶_Ø­« @25ãS÷ÎÙ@25éá°‰ @1‹"Ðå`B@1‹quŽ!–@18DЩ*@19™™™™š@18DЩ*@19Q‚©“ @18DЩ*@14Âø7´¢?1·†Æjñ?jú‚<·™?‘@˜¯³¸?ŽVåç0ÇO?’š'†­`í?’Ýå"çX?‘â%ì˜ ä?’馿œãj?‘K54;­?èÊ\då?’…4Ü.?‘ÔÄ÷Õ?•ë þÅ? $gú‡v?ƒ{¬ÉW?ƒžÂâk,?‡2[síç?гá‡}@@@@@(@*?ð?ð?ð?ð?ð?ð¿Bn#ô¿>E¹àP?7'íß ?UL´+ˆ™¥@¥?vXî=@­BiÊ4µ`?Yµ•L®Å?s*Õ‘ÌÀ3?¸™¢Y ½?â£#¹ã—i@ŸjÙ0¿jW@4@§féxÔþ@§h´9X@§féxÔþ@§tX¼·%@§féxÔþ@§XgÖÝÚ@§féxÔþ@§†ËKö@§féxÔþ@§ W¢.@§féxÔþ@§œð{:”@–Iž¸Që…@–IüiV@–Iž¸Që…@–Io>J¾.@–Iž¸Që…@–IaJ,^%@–Iž¸Që…@–I•æÔ!@–Iž¸Që…@–I BpY@–Iž¸Që…@–IŒ ´î@5òÃÉîËû@5ê@·€4n@3›¥ãSø@2öÆ;ªÎ@2ä¼j~ùÛ@2Æ3Ƚ@2?ò䎊r@2"n;Ÿ> @2?ò䎊r@2j¤ž+ø@2?ò䎊r@2éè§Ãƒ?|¬h2:“?•°‘oN«?”²“üÎ?ަÓõVqä?«xÑŒ8 ?¦5üR‰Æå?ñ3<' ?¡qÖÏl÷? 0¦ ·Ç·?ÊÞYI?©iùðØ?¦€\ã¯d½?„Ôl‡aoÚ?‘ëÜ«ÙÝ?”ñy¦â?‰Yå*^?‘h1È^µ¿?¢<Ø9î}@@&@ @@<@;?ð?ð?ð?ð?ð?ð?‡t1Ù™€¿[ûÀƤ?Irë „UC?'J<ÿ @§zese@–I˜Î\?cPÍyñú?Aí±ÑÓË?lj¸Ö"Tf?€½s‹L¸±@ŸbA©å@5@­œ¬1&é@­œ A‰7M@­œ¬1&é@­œ›šu@­œ¬1&é@­œš–½@­œ¬1&é@­œ”Ö¡aå@­œ¬1&é@­œ”‡ü¹$@­œ¬1&é@­œ•sê³i@¬(S÷ÎÙ@¬(N—Oß@¬(S÷ÎÙ@¬(,1&ê@¬(S÷ÎÙ@¬( ²•é@¬(S÷ÎÙ@¬'ûW>«6@¬(S÷ÎÙ@¬(1[W>«@¬(S÷ÎÙ@¬(K¹Œ~(@8[¹Œ~($@8TêJŒ@3óS÷ÎÙ@3áÞi­BÃ@3q‰7Kƨ@3^!–R½<@2Ì¿±[W?@2³•$Þ@2Ì¿±[W?@2´tSŽóN@2Ì¿±[W?@2´ã¼ÓZ†? Å{¿Ž<º?œÓ¶åø×g?žˆ’By„?­‹ 'òUA?§­DÊ—Š?¨ãòC¾N”?Ž=fA:?±iˆ7î33?¹LJ98Â?Á;‘2 k…?°jú‚<·™? ‡Ü*Qk?’®Üq“£?›’qvš°“?“ÉŸ“_Æ?–¥ Ý})\? Cž#’>?©vq¦[½@@@@@(@$?ð?ð?ð?ð?ð?ð¿d¼r7¿]•H?EþÕÓß,¦?k‰$Æö)@­œ™ŒúH@¬(I¥s-?ffà:#Ù?Ê[ìx(? .zXå@?ýüÚj¤+@Ÿhvå–é@6@¨6aÊÀƒ@¨6wÎÙ‡@¨6aÊÀƒÁ.„€@¨6aÊÀƒÁ.„€@¨6aÊÀƒÁ.„€@¨6aÊÀƒÁ.„€@¨6aÊÀƒÁ.„€@©-49Xb@©-?¾vÈ´@©-49XbÁ.„€@©-49XbÁ.„€@©-49XbÁ.„€@©-49XbÁ.„€@©-49XbÁ.„€@9|ÚQ@9A [À@4{ Iº^Á.„M‰ûçm@3¬j~ùÛ#Á.„QnÙ‡@2õµsê³hÁ.„NÜC,¥@2õµsê³hÁ.„NÜC,¥@2õµsê³hÁ.„NÜC,¥?¸¤(¾ÂeI@8#˜@8¾:@8 >+@8Iç@8Ù?ª[Xxöp@8Î÷@8i§@8Å@8S@8û—?ªÞUWºci@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø7@¨E¡ÊÀƒ@¨FéxÔþ@¨E¡ÊÀƒ@¨JÑôiÿ@¨E¡ÊÀƒ@¨G{Tƒ@¨E¡ÊÀƒ@¨L`Vpy@¨E¡ÊÀƒ@¨@[)',@¨E¡ÊÀƒ@¨@ WÆ@—…Ïß;dZ@—…Óö‚ ;@—…Ïß;dZ@—…¿pøŒÁ@—…Ïß;dZ@—…Ë a @—…Ïß;dZ@—…Í -'Òô@—…Ïß;dZ@—…ÒA¡ X@—…Ïß;dZ@—…Ù1”ëj@7:qÞi­C@7;µsê´@3¡hr° Ä@3¡ÄM=$@2ñ‰7Kƨ@2ó_„yAÖ@2Š0U2a|@2Œ3»Œ-@2Š0U2a|@2‚¼ºßdx@2Š0U2a|@2“rk)C?¡ùõŠm ?“¬Âbî¾?‘‘‡¼Có?&I«$Ò>?“õz©ÕK?–¿Ù“)?|¬Æ Væ?”ÙOfÑo?‘3ühúoç?–,>¬Û,?–S60†?˜X’Ò™N_?'Æh¶[8?ܺ_ïIˆ?ŽXB:3 -?‰ÏÉ›~1¼?ŠùÅBqÐ?äSJVÉ@@,@&@,@4@5?ð?ð?ð?ð?ð?ð¿fLÙW>Åqk?bm¦÷UÕx?@úF„Ùù@¨FÂ:˜z@—…Ó¡‘?y‰<Y:?eù,u ½d?æâÚ&wl.?ÂÀU2^@Ÿlã§õ–M@8@¥Cò-V@¥CôðØDÑ@¥Cò-V@¥D+ñÚJƒ@¥Cò-V@¥D--Gð@¥Cò-V@¥D=ó‡-½@¥Cò-V@¥D'‡^Ò@¥Cò-V@¥DE²ª‹R@›j:^5?}@›j3¶E¡Ë@›j:^5?}@›i}ÇÇz@›j:^5?}@›ijå àý@›j:^5?}@›i1?"úË@›j:^5?}@›h4P‰Áo@›j:^5?}@›iFóÇþ@4-¥œàv@4* ¹„~@2=‘hr° @1ý¯o‡Þ@1§KƧïž@1_÷ï£ø@1OO „M@0ù`p)u¦@1OO „M@0ù4Ãèµ @1OO „M@0ùt· É?|çµB &€? )¬¤!,?¡0Ô?šúfŠÍ‡?š¦ˆ¶FÚS?—Ô^á/rÌ?}õ¬#„­?—ªËÄZz?ª €?‘0ÔÜ Œ_?šó-„¬ï?–~Ô|J›?…Q–e¾ö?œ…`’1?…ô{Rvâ¬?‡ yƒ‘õ?ˆ´OjöH?‡â-™aá@@$@&@$@2@1?ð?ð?ð?ð?ð?ð?÷cwq ¿£Í«R‘Ð?lhOhÿìÜ?ŒžÃæÒÁÁ@¥D u'@›iž£_5£?ŠÕêƒHHå?ª`7Pûu\@‡£–ÒMÄ@[>Œ.£Éè@ŸdD`í²@9@ª{çl‹D@ª{¥ãSø@ª{çl‹D@ª|¾ß¤@ª{çl‹D@ª|àuöý@ª{çl‹D@ª}/Ÿ¾@ª{çl‹D@ª{=ÈK@ª{çl‹D@ª{²þÅn@¤îƧï²@¤îÇ+ J@¤îƧï²@¤îÆÂ&€@¤îƧï²@¤îÆö”Ft@¤îƧï²@¤îÇï²-@¤îƧï²@¤îƵ '@¤îƧï²@¤îÇæšÔ@2=:’£@2=V”@.ðå`A‰7@.ð|„µÜÆ@.cn—P@.bÃÉîËû@.kjçÕfÐ@.jçÕfÏB@.kjçÕfÐ@.jôðØDÐ@.kjçÕfÐ@.j¦L/ƒ|?É^³Dw'?°çR;?‘.Ò®ó_ ?‹×lÇ…N9?‘ ·èf?È2I/?ÐbMçê_x?’˜‰%F²?Œqç©Fü?>\‰å‘?‘Ú‚ýc¯?r¼Jsž?€bMÕky?ŒÛÏ·+?‚2Y0âµ?‚ù8 ±^?†©b/bJö?†špk Y@@@@@,@(?ð?ð?ð?ð?ð?ð¿G.}œ ¿8É¿–¦?8 -²ÄŸ´?1?ÇõßÙ@ª|*ö\m@¤îÇO«Æ3?G òSÍì;?@V+vÇ?Š(,66?wj !C€@ŸsdBP@:@¢Ð¸Qì@¢Ð1&éy@¢Ð¸Qì@¢Ð$Ý/@¢Ð¸Qì@¢Ð Ƨïž@¢Ð¸Qì@¢Ð 7Kƨ@¢Ð¸Qì@¢Ðn—@¢Ð¸Qì@¢Ïþš@¯”ì‹C•@¯”ì‹C•@¯”ì‹C•@¯”èr° Å@¯”ì‹C•@¯”áÊÀƒ@¯”ì‹C•@¯”Ù‡+@¯”ì‹C•@¯”ØQë…@¯”ì‹C•@¯”çË)_@5Âò䎊@5ÁÞi­BÄ@1¸r° Äœ@1¶8†YJõ@0®ùÛ"Ðæ@0¬£n.²@0Vý!ÿ.I@0Q-w1Å@0Vý!ÿ.I@0PË)^ž@0Vý!ÿ.I@0R3œ¾à?ð°–Ž]?ð}óßd?ð’FB:?ð_ŒB?åt—‚XS?’ß5@?™:¤ Ø?@Ÿx6¶ÊK,@;@¡.—Oß@¡.záH@¡.—Oß@¡1ë…¸@¡.—Oß@¡&§ï³@¡.—Oß@¡5Â\(@¡.—Oß@¡)Ô•+@¡.—Oß@¡.Hè§@ ˆËƧïž@ ˆÎ—Oß@ ˆËƧïž@ ˆÄZ¬@ ˆËƧïž@ ˆÍV@ ˆËƧïž@ ˆ´¼j~ú@ ˆËƧïž@ ˆÁ–R½<@ ˆËƧïž@ ˆÃñA \@5ð4mÅÖ8@5ïU›=È@1ør° Äœ@1ÛÓÃa@@0ù7KƧð@0Ýp£× ->@0^«6z‘@0Hâe+Ô@0^«6z‘@0F¸ºÇ@0^«6z‘@0Hšu%F?|¬Çëý ?”ŸÍFÒ?¡"‰HÒur?’úˆ_šª?¢Ì|(‘¾?¡Ëæ%ðÇ?„F/·ÿP5?®€YÏP·?£¹›vp6d?•¯TÒV?©2rz%6ù?¤Wf˯?“àÕèéa‚?²ô‚èBM?¶ddÆ ?…{BÕ0Þ?ˆ¾þúWZ‹?‘øù>3}@@@@@,@,?ð?ð?ð?ð?ð?ð?J:—œ,¿u:…is?T‘¶–1 -X?gzLB…7@¡/²¨$¤@ ˆÄõÊ?qîŒÆÿ;?ƒ’‰GñS ?á@½-SÒ?ýtÔ=0é`@ŸbÞZâ?@<@¢c× -=q@¢ws¤K@¢c× -=q@¢[òt@¢c× -=q@¢G1IŽÁ@¢c× -=q@¢sÔbÏ@¢c× -=q@¢^ÜÍŠ@¢c× -=q@¢Xï4Ö¡@–[˜“t¼j@–[vÈ´9X@–[˜“t¼j@–[Ž•Ÿ@–[˜“t¼j@–[¸é»9Ä@–[˜“t¼j@–[Àø̈@–[˜“t¼j@–[¦”÷@–[˜“t¼j@–[âÐå`B@8rÃÉîËû@8kz7>!@@3» Iº^@3À,m³ -@3A‰7KÇ@3 [$5z@2QÞi­BÄ@29Øa…Š`@2QÞi­BÄ@2H=?°º@2QÞi­BÄ@2P-à r?žÕÈNAc?‘NHR­pÚ?•!È}'û)?Íxeûñ'?™> -¢; ?š½+òªª?¶(-~¢ù1?›eÛÊ@½ ?œ#“Ð:©?“4oýŸÃ?—®Yë(?œ –sPfç?|ÆÁïf^@¢h|ùæR@–[¼‰ˆ¨?‚wwb›?Ž…òÕdÁ?ó¦y›–â@¹£œ×è@ŸoÁ•ôö@=@¨‰å`A‰Á.„€@¨‰å`A‰@¨‰ov_Ø®@¨‰å`A‰@¨‰‚h Ô•@¨‰å`A‰@¨‰$Ý/@¨‰å`A‰@¨‰{µsì@¨‰å`A‰@¨‰{ÚQÏ@ Qhr°!Á.„€@ Qhr°!@ Cn.±Ä@ Qhr°!@ 9XbN@ Qhr°!@ 8l"h -@ Qhr°!@ áG®@ Qhr°!@ &€IS@7ÿ–»˜ÈÁ.„>¤µÜÆ@3ør° Äœ@3áø -à@2ñ‰7Kƨ@2á$Ý/@2”mÅÖ8†@2|í‘hr°@2”mÅÖ8†@2wl‹C•@2”mÅÖ8†@2w†Â&€ž@8J¨?§5ÈÔ—jN?Ÿya´ R?œÖ,? vÁ.þ¼å?¢†)™„}U@8J¨? ¥¬ ˆ? ÍÑtƒ!¢?¡"JîÃ!?°¯l¯Ê?°|Í@¢À@8p÷?—ƒFÛ¯/?‰Ç^)7H?‘V]9½êV?’3¨£„È?’ymícw\@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøø>@ªg÷ÎÙ‡Á.„€@ªg÷ÎÙ‡@ªg+]Ìcñ@ªg÷ÎÙ‡@ªgÔýó¶@ªg÷ÎÙ‡@ªg&šÔ,=@ªg÷ÎÙ‡@ªgC,¥z@ªg÷ÎÙ‡@ªg$Ý/Ÿ@ªÕ¥`A‰7Á.„€@ªÕ¥`A‰7@ªÑ¯Ÿ¾w@ªÕ¥`A‰7@ªÑ“¶E¡Ê@ªÕ¥`A‰7@ªÑÒòä@ªÕ¥`A‰7@ªÑP‰ 'R@ªÕ¥`A‰7@ªÑ4!-w@9}:’£Á.„>¤µÜÆ@5ÎÙ‡+@2XK]Ìcñ@41‰7Kƨ@18bMÒò@3‡ ù kº@0,<žìÀ@3‡ ù kº@0ÕfÏAò@3‡ ù kº@0ã¼Ô@8J¨?“…­tµH?œ‡ë8Ê–?™ÒµR24°?œhÈï?›wMÿIf@8J¨? 3ÝP‰j?¥EE+­?¡¡çL¤?™)Â>¡$;?¡ùŠÀs›@8p÷?îÑšˆHÉ?‰~}œ…o_?eLýÂ2G?æšÔ,<ž?’:™/ʼn@@@@(@*?ð?ð?ð?ð?ðøøøøøøøøøøøø?@«LÌÌÌÍ@«OŸ¾v@«LÌÌÌÍ@«MÒñ©ü@«LÌÌÌÍ@«N!–R¼@«LÌÌÌÍ@«L¿±[W@«LÌÌÌÍ@«L¥zxk@«LÌÌÌÍ@«L¿±[W@¥@Þ5?|î@¥@ݲ-V@¥@Þ5?|î@¥@ßoÒó@¥@Þ5?|î@¥@áÊÀƒ@¥@Þ5?|î@¥@Þi­BÄ@¥@Þ5?|î@¥@à[À8@¥@Þ5?|î@¥@ÝÈK^@6²ÃÉîËû@6±ÿ.Hè§@2i‡+ @2irGE8ï@1©Û"Ðå`@1«àÞÒˆÎ@0𖻘Çã@0ñuŽ!–S@0𖻘Çã@0òa|ÚQ@0𖻘Çã@0ñA [À?‡YÍ_?‘" Á°–•?‘¶å¤wk½?Œ^:Òf?’ðä¼_?ø·-/ge?Œs¤DÅÐ?’ùÎ {?‘Ç€˜­r?½¶³±×ò?’8,²ñ±T?ƒÁþGEÛ?„›‹ÖO?ŒÖ -ÄȲ?„+£QKù?ƒì%­¹Ï‘?‡v>ª¸ ?‡×7°º@@@@@*@&?ð?ð?ð?ð?ð?ð¿Að ?%N  ?%tƒ-xý?:ó€îì´@«Mk°|¾@¥@Þ<éßÎ?Dò/v&4û?Yù½òfµ“?œ“ê «?´xx5i½@Ÿjʧ¹/Å@@@¯ÑÞ5?|î@¯ÑÞ¸Që…@¯ÑÞ5?|î@¯ÑàA‰7K@¯ÑÞ5?|î@¯ÑàhÛ‹«@¯ÑÞ5?|î@¯ÑàhÛ‹¬@¯ÑÞ5?|î@¯Ñܞ쿱@¯ÑÞ5?|î@¯ÑÝ—ö+l@¥¦$Ý/@¥¦$Ý/@¥¦$Ý/@¥¦ðoiD@¥¦$Ý/@¥¦§ï²@¥¦$Ý/@¥¦µ (@¥¦$Ý/@¥¦?@¥¦$Ý/@¥¦E8ï5@2” xFÜ@2”¼¤@0sS÷ÎÙ@0sn.±Ä2@0Ÿ²-V@0ŸÅo@03&Á½¦@03Š Þ@03&Á½¦@03g ù l@03&Á½¦@03,¥zxl?É_ð©«?¦Ì '?‘@˜¯³¸?Œj6_?‘'¬Å™» ?‘ë´¤G?ÐbMçê_x?’7Îf¬ps?Œqç©Fü?K·‘d]?îCq$u?½y ¦Å?€b¡´ñ@?ŒÖ -ÄȲ?‚yî8Á$?ƒ!Ë *(?†Óß -tõ?†µ°jÆÃ@@@@@&@,?ð?ð?ð?ð?ð?ð¿VDIÈ&?+`’~”?Gª°gØý?1€pIm_@¯ÑÞs÷Æ@¥¦¸ûd*?Vµk5Ì(G?@‚;Ç >´?¨NJÌÛ@?w_–Š8…@Ÿrÿ>Ê?š@A@¦Ã¬1'@¦ÃÀ¹#@¦Ã¬1'@¦Ã(ð@¦Ã¬1'@¦Ã/ìVÕÐ@¦Ã¬1'@¦Ã($ x@¦Ã¬1'@¦Ã' ù l@¦Ã¬1'@¦Ã+àÞÒ‰@kY‡+@k.Þñõ„@kY‡+@k£× -=q@kY‡+@kÀhÛ‹«@kY‡+@kŒ~($ -@kY‡+@kš…‡“Þ@kY‡+@k©*/@8 ]cˆe”@7à©òï\Ø@2¦‡+ J@2™XbMÓ@2Z~ùÛ"Ñ@2<ú¬Ùè>@1ÜÚQÎ@1Õ¨Xy=Ú@1ÜÚQÎ@1ÖÜ]cˆf@1ÜÚQÎ@1Ó9Àëíú?¥Jí “^»? WZwnÖ;?± ˜Ú¿ðA?–¼A2xý?”Ôð|c¤?•ŠàuVº`?™9A¨»ý?¯lßÔìy=?¼Aå qi?¡Ð`HÇi?°ö…8Ó}?¢?Êÿ*ç?†×ÔÍ¥Èï?•ÙK°FÑ? “˜¯ÃÛ?‘¶i - ?•ƼÀÖæu?™ì ª# Ù@@@@@,@*?ð?ð?ð?ð?ð?ð?`Úüþö€?†šÈ.GÀ?FåZ)µ™ð?h² b„aÉ@¦Ã' PÓ@kun+¬@?avÖØtõ?ŠâåÃùÖÁ?ªgCeÉ?ð=ÉÇœ@ŸlrM -е@B@ªµMOß;d@ªµM‘hr°@ªµMOß;d@ªµMí(Œç@ªµMOß;d@ªµNV“@ªµMOß;d@ªµMí(Œç@ªµMOß;d@ªµLÌÌÌÍ@ªµMOß;d@ªµLIº^5@®¿àA‰7L@®¿àƒn™@®¿àA‰7L@®¿àÞÒˆÎ@®¿àA‰7L@®¿àªdÂù@®¿àA‰7L@®¿àÞÒˆÎ@®¿àA‰7L@®¿á [À@®¿àA‰7L@®¿àÄ›¥ã@0ý:’£@0üú¬Ùè>@,kƧï²@,kíúCþ\@+?;dZ¬@+?b¶®}V@*Âu%F -§@*Â\(õÃ@*Âu%F -§@*ÂZîc‹@*Âu%F -§@*œwškQ?É^³Dw'?Úþþ³?‘"žæÆó¡?‹Æ úJ-M?åt—‚XS?À­Õß}º?ÐbV‡,?’ -‰¸Ì?ŠA)Nîá?3.Ylî?Î ¯xV?hï,ðà?€bMÕky?Œ­·Ž~('?‚q6tNø7?‚æÊ¬vã?†½ª»—?†ŠúЀ>(@@@@@@?ð?ð?ð?ð?ð?ð¿GHüºà¾þ]šrÀ?æ³/ý?ZËà5û™@ªµM;È8@®¿àë¨:®?'ë5ØÁnu?*ËŸ[óË?L ̱U--?Om¦æ¢!@Ÿs’?]a@C@¨Ê…¸Qì@¨Ê…¸Qì@¨Ê…¸Qì@¨Ê‚\(÷@¨Ê…¸Qì@¨Ê„?åÉ@¨Ê…¸Qì@¨Ê†ö”Ft@¨Ê…¸Qì@¨Ê†Ü]cˆ@¨Ê…¸Qì@¨ÊƒŠ @¢0‚ Iº^@¢0ƒS÷ÎÙ@¢0‚ Iº^@¢0ˆ´9X@¢0‚ Iº^@¢0ƒ•&@¢0‚ Iº^@¢0ƒFÜ]d@¢0‚ Iº^@¢0‚MÒñª@¢0‚ Iº^@¢0TÉ…ð@5™*0U2b@5™JôðØD@2é‡+ @2ìIº^5?@2¬j~ùÛ#@2¯ „M:@2L¿±[W?@2R-V@2L¿±[W?@2PhÛ‹¬q@2L¿±[W?@2PA‰7KÇ?|¬Çëý ?Ï[äe‹w™³@¨Ê…‚"h@¢0‚³Yg?W»#[Hœ?7£9ûmܵ?·M:îä?vVqX¾ @Ÿe¤–;øÞ@D@ »@ƒn˜@ »@A‰7L@ »@ƒn˜@ »=8Qf@ »@ƒn˜@ »?2zÔZ@ »@ƒn˜@ »?}5þ@ »@ƒn˜@ »8•Äß@ »@ƒn˜@ »9N±ç.@ ÄixÔýô@ Ähr -W@ ÄixÔýô@ ÄmôŸ¨@ ÄixÔýô@ Ä„‹›\†@ ÄixÔýô@ Ä„äG³C@ ÄixÔýô@ Ät@ ÄixÔýô@ Äs—mîÿ@42ÃÉîËû@43Í…^L@0¡hr° Ä@0Xu\x’@/íOß;dZ@/åÊnæù@/¸7´¢3œ@/§ÂY¼ô@/¸7´¢3œ@/¥’8\h@/¸7´¢3œ@/¤âsù†J?}õ¬#„­?¨%àçø?‘J}+&ný?‹Á‰¯ö}?’oŽ@%“Û?“W­lH?|¬Æ Væ?’ŽT‘}ø˜?‘£ÌUò?‘µâ´Ñü?˜"ê¬X?—ø+éߊ?‚ûÿû‚ÜJ?Iþòxd?ƒw¦¯äÌ:?„]Þ­*~6?‡G2aÆgŠ?ˆ*?Q@¼@@(@"@"@0@.?ð?ð?ð?ð?ð?ð¿Vd~È?qY~mY?A¡³q¯N”?g>UVˆ‰K@ »=ÑNÚ@ Äqò}e¹?`¦mÁ,FÐ?†,! Sd?Ì]“„Sæp@RciÔƒ@Ÿef²qk@E@¬jféxÔþ@¬jg+ K@¬jféxÔþ@¬jhŒç°@¬jféxÔþ@¬jjW§†Â@¬jféxÔþ@¬jh§æ›@¬jféxÔþ@¬jfšÔ,=@¬jféxÔþ@¬jeýŠÚ¹@ òSt¼j@ òSt¼j@ òSt¼j@ òSüPH@ òSt¼j@ òR×s@ òSt¼j@ òQë…·@ òSt¼j@ òR° Äœ@ òSt¼j@ òQÞi­C@3÷â‚@·€@3ø Ô•*@0£÷ÎÙ‡@0£ê³g ù@/ãn—P@/áò×s@.õ¨Xy=Ú@.õ2a|Û@.õ¨Xy=Ú@.õL˜_÷@.õ¨Xy=Ú@.ô¯O „M?|öOÿÝ?ôÊ_?‘SŸ[ÈÙ?Œ'õ‚$5ñ?‘ §‡g¾?ß-tT?|¬Çëý ?’ ŠŠ¤Hì?™Îd0RÜ?]bËn~?ÚÌA B{?sxÙ/T?‚nâwfÿ?ŒÖ -ÄȲ?‚˜YªüÏF?‚þ——³§ø?†¼Š˜L¥÷?†Óß -tõ@@@@@(@,?ð?ð?ð?ð?ð?ð¿7P¿4JiF@?1’ ‘?ŽwF @¬jg$ø;4@ òR½Žj¡?Q~`Šqm?<¡õ¯$” ?°tmä­”?…Vº²;+@ŸfîËŸ¤@F@«ô Ä›¥ã@«ô¡$Ý/@«ô Ä›¥ã@«ô ðE×'@«ô Ä›¥ã@«ô¡ [À@«ô Ä›¥ã@«ô¡J¯{"@«ô Ä›¥ã@«ô Xߊ­@«ô Ä›¥ã@«ô N%²N@–8 Iº^5@–8 Iº^5@–8 Iº^5@–8 ¦ŽB @–8 Iº^5@–8 ;ß¼@–8 Iº^5@–8 1&é@–8 Iº^5@–8  -%@–8 Iº^5@–8 ,ädš@-zu%F -@-zu%F -@&žùÛ"Ðå@&Ÿö”Fs@%›dZ¬@%›quŽ!–@$fL/ƒ{K@$fV«Þ?¼@$fL/ƒ{K@$fYJôðÙ@$fL/ƒ{K@$fL/ƒ{K?É^¨¯Âj?Âܸ“n?‘…3:?è?‹«F§B ?èy’”&€?´O×û÷«?ÐbMÝn½?’Fó®â?}¸)"Òª?2^€ùù?Ï £mv¡?J› öWˆ?€bMÕ]f?Œ¬.гî?‚nÓ3îŠ?‚âxðÄFD?†‡[ÐJ³“?†‡I‚ÿ¯Û@@&@*@*@<@:?ð?ð?ð?ð?ð?ð¿=f‰IØ>þÝ©0?!$O¤wj>ßL]h2]>@«ô ·e+Æ@–8 D“'?0{ë2x8>ížfuÆyÖ?Z¿®E”Ïe>ÓG=¡ŽŒ@Ÿs ÷[g@G@ kò° Äœ@ kw@ kò° Äœ@ kæ0õM@ kò° Äœ@ kæ>ÿFe@ kò° Äœ@ kÞm„Œ.@ kò° Äœ@ kØbMÓ@ kò° Äœ@ k×´¢3œ@®ÿÕ$Ý@®ÿÔ¯O „@®ÿÕ$Ý@®ÿÐa÷5¥@®ÿÕ$Ý@®ÿÎI—(2@®ÿÕ$Ý@®ÿÄ”¤A„@®ÿÕ$Ý@®ÿÈ´9X@®ÿÕ$Ý@®ÿËŸU›=@4ÞHè§æ@4Úÿ_Ãq@1R Iº^5@1Eí8†@0»Æ§ï²@0¬Iº^5@@0…œàu÷@0mÈ´@0…œàu÷@0oÅo@0…œàu÷@0p-à ?}@T˜ÁÎ¥?Æ–wå1?‘m ØÆs?Œ.@miûz?’Þäi]i?‘•S‚üJ?|çµB &€?’ϹXå?ï»ðæ=‡?Š˜õ¼N0?‘I0‚ìB?ÝÒ¥X[?ƒ±`P„~V?„º{6–?ƒ^6™•±?ƒ\µT¯–?‡×7°º?‡Õ˜]–GÄ@@"@&@&@ @?ð?ð?ð?ð?ð?ð¿u³Pìê¿f­8 ?C92ÿq?T®“Ò“Ó@ kãe¼’Æ@®ÿÎ'§¼r?bÞ»³wü?tïTk"¨™?Ñþ‘~WúÝ?öAµyü4š@Ÿf²ùÍŒ@H@¡5l‹C•Á.„€@¡5l‹C•Á.„€@¡5l‹C•Á.„€@¡5l‹C•Á.„€@¡5l‹C•Á.„€@¡5l‹C•Á.„€@”"49XbÁ.„€@”"49XbÁ.„€@”"49XbÁ.„€@”"49XbÁ.„€@”"49XbÁ.„€@”"49XbÁ.„€@6(†YJôñÁ.„>¤µÜÆ@1Å?|í‘hÁ.„M‰ûçm@0²-VÁ.„QnÙ‡@0®_oÒ Á.„NÜC,¥@0®_oÒ Á.„NÜC,¥@0®_oÒ Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøI@®År-V@®Åo\(õÂ@®År-V@®ÅcS&@®År-V@®Åc× -=r@®År-V@®ÅbÐå`C@®År-V@®Ågâ‚@¸@®År-V@®Åe”¯O@¨_MÒñ©ü@¨_PbMÒò@¨_MÒñ©ü@¨_B Iº^@¨_MÒñ©ü@¨_JÀƒo@¨_MÒñ©ü@¨_9³Ð|…@¨_MÒñ©ü@¨_;quŽ"@¨_MÒñ©ü@¨_:–»@62ÃÉîËû@6/O „M@3uãS÷ÎÙ@3j0U2a|@2¾V“u@2¸ºÇË*@2”mÅÖ8†@2ˆy=Ùc@2”mÅÖ8†@2…ýŠÚ¹ö@2”mÅÖ8†@2€bMÒñª?‡YÍ_?žŽ´)D1ü?”Ä0óçî?‘£ºáõÑ?“Ýâqß?›‹ÞV‘?‚á²Olºü? îÑšˆHÉ?低NëU?¥ZÑpÉç?¡Ý¤`Ìi?¡Ö„æ5ç?…ÑTë0Ó?vùv“?‹f°ùr[ƒ?Šˆ€!B®?’¸ø‰o?’áû¦h@@@@@*@&?ð?ð?ð?ð?ð?ð¿cUŒ¦Æ¿u6#ž2?Rxõd…¦?N¥*µù@®Åi× Ø²@¨_F7¦?q V„>Ø\?mçþ±yøÂ?à†(l– ‘?ÊÔe¹rW•@Ÿe5mzÆÄ@J@¦á™™™™š@¦á¨1&éy@¦á™™™™š@¦á™è>B[@¦á™™™™š@¦áš¬Ùè>@¦á™™™™š@¦á›J#9Á@¦á™™™™š@¦á™#¢œx@¦á™™™™š@¦á™¦µ @ª¼Ù‡+@ª¼Ù‡+@ª¼Ù‡+@ª¼Ùe+ÓÃ@ª¼Ù‡+@ª¼Ø}¿I@ª¼Ù‡+@ª¼Ú¹õYµ@ª¼Ù‡+@ª¼Øâe,@ª¼Ù‡+@ª¼Ùè>B[@8Û¹Œ~($@8伤@1.5?|í‘@1.žš@0;Ƨï²@0;íúCþ\@-³üPH@-³üPH@-³üPH@-³&Á½¥@-³üPH@-³33334?¦NIÉ®š?jú‚<·™?‘ŒQ®üX?‹ó#ƒt£?‘2A¥Ø?ÛF»0?¡ÅꯨŠT?’LÁŒÀ´a?ê‰O)AT?Níú¾?ë,YÁ?e¾DQ„Q?Å 6•™ËÅ?Œþ%å_D?ƒ!A -mº¹?ƒE 8?†£îž«î?†žóB» “@@@@@,@*?ð?ð?ð?ð?ð?ð¿_!Ž¿•¤á ?Qq2–µ&?9¾‰KÐs@¦á›cþR@ª¼ÙÔtX?d“Uxvúh?Pøà6$ ?ÄÒp‹ ?š^/æ›Mò@Ÿp.å$—‘@K@«Š’ñ©ûç@«Š‘ë…¸@«Š’ñ©ûç@«Š£× -=p@«Š’ñ©ûç@«Š¾ í)@«Š’ñ©ûç@«Š„Âø7µ@«Š’ñ©ûçÁ.„€@«Š’ñ©ûçÁ.„€@•Å Oß;d@•ѳÀZ@•Å Oß;d@•Äɺ^5?@•Å Oß;d@•ÄçæšÔ@•Å Oß;d@•Ŧµ @•Å Oß;dÁ.„€@•Å Oß;dÁ.„€@2^Hè§æ@2o“ÎWÄ¿@0E?|í‘h@0/¤?åÉ@0 "Ðå`B@0 JôðØE@/Âu%F -§@/‘hr°!@/Âu%F -§Á.„NÜC,¥@/Âu%F -§Á.„NÜC,¥?Éb¿Þ6ùÛ"Ñ@ övE¡ÊÁ@ ö…ãS÷Ï@ övE¡ÊÁ@ öª™0¾@ övE¡ÊÁ@ öÐå`A‰@ övE¡ÊÁ@ ö®Hè§@ övE¡ÊÁ@ ö¹Àëíú@804mÅÖ8@7}jOv@5c÷ÎÙ‡@5]ÈK]Ì@4¶§ï²-@4«"Ðå`B@4zÔ,<ží@4^_oÒ @4zÔ,<ží@4i 'RTa@4zÔ,<ží@4lÙè>B[?õ\<4ØÉ?ÆøØö‚?­‡-¯ÅsA?³añ÷­þ? k‚ˆŸ;æ?±gU¯»aJ?êñç,ÄÄ?¦ KBI?ªBûúÈ…˜?³ç1‹ñ¹?¦OY¸¾?­‚‰%TUx?õÓâ‚:B©?’žÿ§:­?°^&Mªka?šæÚ§³Á?±¯Q—, -?®†ø.ìP´@@@@@&@(?ð?ð?ð?ð?ð?ð?…ë°Þ3X¿ƒÝy/ ?…ÙþXÚH?„è Ò@«™ÌÜb˜š@ ö¹i¶˜?‰ô ’±?@k0ÿþâ?ÚÀ‹L6G?ß²nÖÛÁì@ŸtÃëû@M@ª‚´¼j~úÁ.„€@ª‚´¼j~ú@ª‚Çp•ãw@ª‚´¼j~ú@ª‚‹ÞÚ™@ª‚´¼j~ú@ª‚u³]@ª‚´¼j~ú@ª‚Ó>å-ð@ª‚´¼j~ú@ª‚ÉØ«@”–¬1&éÁ.„€@”–¬1&é@”–E§ÉÌ­@”–¬1&é@”–"C8…@”–¬1&é@”–‘ñJûO@”–¬1&é@”–\ô(G@”–¬1&é@”–±ôëÊõ@8°4mÅÖ8Á.„>¤µÜÆ@2 Ä›¥ã@1—ºÇNɶ@1,j~ùÛ#@0Ýâ«qyR@0B‚@·€4@0ÜÏz¬@0B‚@·€4@0Ó%ìJb@0B‚@·€4@0Rß«¯g@8J¨?±v>ÅÏF?  v—á®?—Õú›?«Cç4-k?¥Ôû‡.[@8J¨?µGÍ̲„f?”t—Di˜g?œI»ÍÈtå?°ÙÜE¹ˆê?°€qjÛߢ@8p÷?±€„*¸?…±?Aeǘ?ˆûqÆàô‹?æsc`D?”0›Â~6Ë@(@@$@<@:?ð?ð?ð?ð?ðøøøøøøøøøøøøN@¤0¯Ÿ¾w@¤0¯²- @¤0¯Ÿ¾w@¤0¯ªÍž„@¤0¯Ÿ¾w@¤0­úCþ]@¤0¯Ÿ¾w@¤0¯²-@¤0¯Ÿ¾w@¤0°-à @¤0¯Ÿ¾w@¤0± ²•ê@¤«\(õÂ@¤«KƧïž@¤«\(õÂ@¤«aohÝ@¤«\(õÂ@¤«Y=Ùc@¤«\(õÂ@¤«[‹¬q@¤«\(õÂ@¤«^Ñ·@¤«\(õÂ@¤«]p£× -@8 xFÜ@8\‘ÑN<@3¡hr° Ä@3¡Î_p@2Õ`A‰7L@2Õœàu÷@2 -0U2a|@2 -…‡“ݘ@2 -0U2a|@2 àÞÒˆÎ@2 -0U2a|@2 P°ò{³?“Æ×q„nï?”êÎlŒy?‘âTÀÊS“?Œåvæ" ?“r {#¥&?‘É=¦þï?£È‰·akû?—YÜCêî?’€fç½Î?‘W×ý°A?’ºñS©YÖ?‘«VTÓ?–EÑ}?’¿½Ë‡è·?‹v'þ­X?ŒžVE’D?‹¹ÇlŒ?‰_uñšó@@@@@,@(?ð?ð?ð?ð?ð?ð?2<ê`?f¡÷Y€?#DÞzÙOB?U‘Ÿß¼Í@¤0°%5@à@¤«ZÒâ~Ó?@)Ö"T ?lòd Q`?zàÝ/÷¾?Ï“*:oç@ŸnøeÝeÜ@O@£‚‰7Kƨ@£~°bMÒò@£‚‰7Kƨ@£~îV”@£‚‰7Kƨ@£@N¥@£‚‰7Kƨ@£~ñ[W>«@£‚‰7Kƨ@£~èŒç°@£‚‰7Kƨ@£~îŠqÞj@¤(õÂ\@¤‚ØbMÓ@¤(õÂ\@¤‚³ŽóMj@¤(õÂ\@¤‚¹³Ð|…@¤(õÂ\@¤‚ÁTÉ…ð@¤(õÂ\@¤‚Ó¶E¡Ë@¤(õÂ\@¤‚غÇË@6‚ò䎊@3±&éxÔþ@2Ê^5?|í@0^vÈ´9X@2iÛ"Ðå`@/ÄohÜ@2Œ~($ @/v_Ø­­@2Œ~($ @/eýŠÚº@2Œ~($ @/Ÿ¾vȵ?1·†Æjñ?¡U¢WªÂ?¤MD¢e?¥F’ë‚ÝÌ?£”ŠFÉÇ¥?žy—™öW?}Ñ¿ž,?&”ðÚ˜?œjá{X?›çôQPL? ¨„¨ƒZ?šÏ7â4l?Œznyž-g?ŽõÕJ?‡»¢Øˆ‹?‹h¢íc„„?“¡NÙ(£(?Œ8¸wx¯@@@@@*@$?ð?ð?ð?ð?ð?ð?Œ»¤ß@¿Vîù§.?eHòªÙ>é?c]žÏÏzï@£~ÇLSÿQ@¤‚Õ9ðp?‚]°¬&tÅ?€ÎtSô÷Â?þÛ°™’@>ì˜Pr@Ÿbuä ÝÔ@P@¥rMÒñ©ü@¥rMOß;d@¥rMÒñ©ü@¥rN¾ß¤@@¥rMÒñ©ü@¥rPU2a{@¥rMÒñ©ü@¥rPbMÒò@¥rMÒñ©ü@¥rQ©ûçm@¥rMÒñ©ü@¥rRòäŽ@Ÿmò° Äœ@Ÿmó¶E¡Ë@Ÿmò° Äœ@Ÿmó3333@Ÿmò° Äœ@Ÿmîæ1ø¡@Ÿmò° Äœ@ŸmëC,¥@Ÿmò° Äœ@ŸmñÅ@Ÿmò° Äœ@ŸmïhÛŒ@2£g ù l@2£t¼j~ú@0E?|í‘h@0AA [À@.÷Oß;d@.ðbMÒñª@/åÉä@/v8†YJõ@/åÉä@/vð¸»@/åÉä@/vÈ´9X?ðO­W¬ÃÆ?‘–Œ ˆŽ ?’Gßk;m?‘Ä{Oç¿`?’ÒuèçxY?’IåŠú?ð„ƒ;0?“$i «%h?‘½ÀèÑmK?‘.“¥?“4¦{ºÕ?’vMëôUu?ð!̃?ŒÛÏ·+?‚˜YªüÏF?„Ö©Ú0?†ùadô|?‡¤o„C?ð@@@@,@*?ð?ð?ð?ð?ð?ð?I7Ý–?O_õNá?d¦¸öv?G+Â>YI@¥rQYëdÏ@ŸmîWÙ²{?(­áûˆX?UçÌ+Õ?EßAÖò?¡dw"‡ñz@Ÿs¦qgA˜@Q@©!G®záÁ.„€@©!G®záÁ.„€@©!G®záÁ.„€@©!G®záÁ.„€@©!G®záÁ.„€@©!G®záÁ.„€@œ}Á‰7KÇÁ.„€@œ}Á‰7KÇÁ.„€@œ}Á‰7KÇÁ.„€@œ}Á‰7KÇÁ.„€@œ}Á‰7KÇÁ.„€@œ}Á‰7KÇÁ.„€@9¹Œ~($Á.„>¤µÜÆ@4Å?|í‘hÁ.„M‰ûçm@3¬j~ùÛ#Á.„QnÙ‡@3Œ¿±[W?Á.„NÜC,¥@3Œ¿±[W?Á.„NÜC,¥@3Œ¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøR@ŸÜ›¥ãSø@ŸÜœ¬1'@ŸÜ›¥ãSø@ŸÜœö墷@ŸÜ›¥ãSø@ŸÜ¢þ¿cÊ@ŸÜ›¥ãSø@ŸÜ£m¤S]@ŸÜ›¥ãSø@ŸÜ˜ ŸÅ@ŸÜ›¥ãSø@ŸÜ™®Êç@¨ZéxÔýô@¨ZéxÔýõ@¨ZéxÔýô@¨Zç[÷ @¨ZéxÔýô@¨ZæÏAò@¨ZéxÔýô@¨Zèma-i@¨ZéxÔýô@¨ZægÃ]·@¨ZéxÔýô@¨Zæ&êÐ@1åöý!ÿ.@1åÙ/¬Â¨@0^Ù‡+@0^ž`¬ÄŠ@0 ²-V@0 =Æ¢:ò@0#ÉîËû@0%WÞ¨`@0#ÉîËû@0$9n Å@0#ÉîËû@0#¤àQô?É^ž6õP?é=ðL?‘m ØÆs?‹½3H+á?‘,kêcµ”?Ò¸QÛgv?Ðb^57KÏ?’!SP¿˜ú?¦ƒUñ…›?xx1’ó?‘Ì´×>.?^­ÿ|&Õ?€t4æ—nÐ?Œ¸UQxÌš?‚ß\3?‚ñjNÒí,?†ú{j½ì?†Â¿'Ù@@*@*@&@8@1?ð?ð?ð?ð?ð?ð¿b4J{¿P€ÙÄ/?Lð߆0£?0‚‚,—û@ŸÜU_ò@¨Zç ìë?[éó]??L5¤Õ9?²ßª+6 ç?tü¼5ºk…@Ÿs -Šôö @S@žµj~ùÛ#Á.„€@žµj~ùÛ#Á.„€@žµj~ùÛ#Á.„€@žµj~ùÛ#Á.„€@žµj~ùÛ#Á.„€@žµj~ùÛ#Á.„€@¥ Iº^Á.„€@¥ Iº^Á.„€@¥ Iº^Á.„€@¥ Iº^Á.„€@¥ Iº^Á.„€@¥ Iº^Á.„€@8¨†YJôñÁ.„>¤µÜÆ@3Š^5?|íÁ.„M‰ûçm@2gKƧïžÁ.„QnÙ‡@1á:’£SÁ.„NÜC,¥@1á:’£SÁ.„NÜC,¥@1á:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøT@¨7Ý/Ÿ¾@¨7Ýp£× -@¨7Ý/Ÿ¾@¨7Ý©ˆ”¶@¨7Ý/Ÿ¾@¨7Ý$¿Á @¨7Ý/Ÿ¾@¨7Ý®%ã@¨7Ý/Ÿ¾@¨7ÜÊRs%@¨7Ý/Ÿ¾@¨7ÜäþÄL@•î¼j~ùÛ@•î¼j~ùÛ@•î¼j~ùÛ@•î¼n&ßc@•î¼j~ùÛ@•î¼t•:Ý@•î¼j~ùÛ@•î¼\akû@•î¼j~ùÛ@•î»ÑÂñ@•î¼j~ùÛ@•œÐ(@5ò䎊@5:’£S@0i‡+ @0iM”‰b@/¯ß;dZ@/¯ç˜Å@.fL/ƒ{K@.fw„6Ì·@.fL/ƒ{K@.f4‘G$@.fL/ƒ{K@.fCìó‡0?|Ñb×¶@?ù>J|Ç×?‘@5$³_2?‹²»ø4!Ó?òë6­?¾cÞISá?}@T˜ÁÎ¥?’ã€Õ?—Ó>º¿?1Œ˜x?à!WSñm?WµfóÚ?‚o,¬qVÙ?Œ¶Ï7ƒ­)?‚v«#0ñ&?‚è$: ¦œ?†’¸%9§G?†–Ðé(Y÷@@,@*@(@<@:?ð?ð?ð?ð?ð?ð¿xC€¿3¡@?6À(æA>ô? ¥#£@¨7ÝEàÍÄ@•î¼'G¬?5"êJ›T?¢ìF,ç›?xQÙ¼Sd??5ý|FFŒš@Ÿg -È~=@U@¯8­VÁ.„€@¯8­VÁ.„€@¯8­VÁ.„€@¯8­VÁ.„€@¯8­VÁ.„€@¯8­VÁ.„€@§ üj~ùÛÁ.„€@§ üj~ùÛÁ.„€@§ üj~ùÛÁ.„€@§ üj~ùÛÁ.„€@§ üj~ùÛÁ.„€@§ üj~ùÛÁ.„€@8`ØDЩÁ.„>¤µÜÆ@3Ê^5?|íÁ.„M‰ûçm@3'KƧïžÁ.„QnÙ‡@2ý!ÿ.IÁ.„NÜC,¥@2ý!ÿ.IÁ.„NÜC,¥@2ý!ÿ.IÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøV@®#LIº^5@®#EãS÷Ï@®#LIº^5@®#NÙ‡+@®#LIº^5@®#QÞi­B@®#LIº^5@®#M(Œç@®#LIº^5@®#N.±Ä3@®#LIº^5@®#LcñA!@Ÿ1&éy@Ÿ“t¼@Ÿ1&éy@Ÿ :’¢@Ÿ1&éy@ŸüÓZ…‰@Ÿ1&éy@Ÿ:’£@Ÿ1&éy@ŸëíúE@Ÿ1&éy@Ÿóê³g¡@6rÃÉîËû@6nzáG®@3xr° Äœ@3wü¹#¢œ@2t“t¼j@2têJŒ@2\ÚQÎ@2\cñA \@2\ÚQÎ@2_¤?åÉ@2\ÚQÎ@2]\ú¬Ùè?£G± *Ç‚?’ÕOäª9ô?“mî–‚Žr?ç\Š2˜?–úc‘c?“‡SË{d—?}Ñ¿ž,?”ï©ÛÉ?“®ÂrVŽx?’„÷ò¸?•Ñ^¢?”æâ„o?­dÒ¦Ó 4?îŠõ ?† - Ðló]?‰hS—p]Ð?Œ¸ðËb?Šì¾ ;8´@@@@@,@*?ð?ð?ð?ð?ð?ð?M#à¿R §6¢?Kwü”˜ú??ã¥nW:Ê@®#LFÛ;v@Ÿý®v¢¨?cË¡`¹?d±@ô,?·ðt›jwÿ?ÃPõß“Zþ@ŸmÖݤb@W@¦Ó>ùÛ"ÑÁ.„€@¦Ó>ùÛ"ÑÁ.„€@¦Ó>ùÛ"ÑÁ.„€@¦Ó>ùÛ"ÑÁ.„€@¦Ó>ùÛ"ÑÁ.„€@¦Ó>ùÛ"ÑÁ.„€@ž4|í‘hsÁ.„€@ž4|í‘hsÁ.„€@ž4|í‘hsÁ.„€@ž4|í‘hsÁ.„€@ž4|í‘hsÁ.„€@ž4|í‘hsÁ.„€@8Bò䎊Á.„>¤µÜÆ@3|í‘hrÁ.„M‰ûçm@2çKƧïžÁ.„QnÙ‡@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøX@«8Æ$Ý/@«8Ƨï²@«8Æ$Ý/@«8ÂuåÌñ@«8Æ$Ý/@«8¿(ñµ@«8Æ$Ý/@«8ÂpŸY’@«8Æ$Ý/@«8À²]Q™@«8Æ$Ý/@«8Â__Ä@”b¾vÈ´@”b¾vÈ´@”b¾vÈ´@”b?DÓ@”b¾vÈ´@”b ­šªf@”b¾vÈ´@”b‹Éô@”b¾vÈ´@”b I×@”b¾vÈ´@”b.*ÙÛ@5%öý!ÿ.@5&ÊŒƒž@2é‡+ @2ê¶ËœÀ¦@2¹7KƧð@2¾g1b@2œàu÷@2EPC6@2œàu÷@2TT•‰ä@2œàu÷@2gKo™è?}õ¬#„­?´œCé`?’Ö HCP@?ŒQõôð‚?‘¶,92ïd?’ª¡‰öÇ[?}—êíW?’Ô}^Ãö?‘…kÜ«?mÈuÁ¤‚?‘ª¶ô´yÝ?’)ÉlÕv?„Æxëk?ºc%ù™¶?‡RǶh¼?…ßÂ2ÇÞP?ŠJÝtѧ'?ŠüÛ‘ÖD×@@,@(@&@8@8?ð?ð?ð?ð?ð?ð¿S˜æS8¿JåÈh?3Y Ægm?4¦xü^ê©@«8Ãð—Àã@”b™¯Z¼?RïÜCu¥#?T¶TÄ ;6?±Ã)bZ£Ð?´iN#l˜*@Ÿfª Õ±®@Y@«ß;dZ@«\(õÄ@«ß;dZ@«·éù@«ß;dZ@«Ž.±Ä3@«ß;dZ@«ŠÀƒn@«ß;dZ@«Œ~($ @«ß;dZ@«ŠôðØE@ªz Ä›¥ã@ªz"Ðå`B@ªz Ä›¥ã@ªz A‰7L@ªz Ä›¥ã@ªzžš@ªz Ä›¥ã@ªz!:’£@ªz Ä›¥ã@ªz" Iº^@ªz Ä›¥ã@ªz!×Ûô‡@6#g ù l@6#n.±Ä3@1ã÷ÎÙ‡@1ä“t¼j@1K"Ðå`B@1K¹Œ~($@0Þ«6z‘@0ߟ¾vÉ@0Þ«6z‘@0ß—$tS@0Þ«6z‘@0ÞÙ‡+?€‚ñêã ?­hX™*?‘,fŸCô6?=]. ?‘héø†|?‘£.'É?ˆÿÀ)T¿Æ?“6SÇ{Ó?’¤šÜI«?‘§›ßÉîj?üÓqÔNŠ?‘êey°úà?‚ÂÌ]å?=d­úå?„ò—TËÄ?ƒR¨º“JÞ?‡ã ËÄž?‡&üòI@@@@@&@,?ð?ð?ð?ð?ð?ð¿N°†Óà¿+äªß0?4Ø–íq!#?#•ˆ#Æ\@«ŒÓO‘~@ªz"B 7?U÷þ‘%á´?CL÷¨a}?´}Õ'UõW?‡õ@Tí³@Ÿib‚]ÑÏ@Z@£ Ü(õÂ@£ àîõ@£ Ü(õÂ@£ ßXÍÈ·@£ Ü(õÂ@£ ÓB Êø@£ Ü(õÂ@£ äñx²ó@£ Ü(õÂ@£ Îj09W@£ Ü(õÂ@£ Ò ¿Sþ@˜t -=p£×@˜t÷ÎÙ@˜t -=p£×@˜súÈ@˜t -=p£×@˜søB5µW@˜t -=p£×@˜t%bWö5@˜t -=p£×@˜t(VnÈs@˜t -=p£×@˜t3_E’Ð@5wâ‚@·€@5o H˜@@1õãS÷ÎÙ@1ûÒâ=7@1U`A‰7L@1^+&ŸŽ`@1s&Á½¥@1‚¼‘"Ø @1s&Á½¥@1vÈl·@1s&Á½¥@1s‚õ꣊?~Ov_Ø­«?‘2§Çøoæ?’v=§Ó ?••ÃÖŸ"?¹ p)¶/?˜ó«mÃ?|Ñb×¶@?“"HS?°?’¨g-ÿÿ?™z7ä{û‚?–Uœ:0Û?–bc畯?‚»³hËk?–\Í‘¨iŸ?‡CÿE•¿R?—¢&àûÒ?žÆ”‰¬ôq?žï=L"Ûú@@$@ @$@:@7?ð?ð?ð?ð?ð?ð¿etk þ?hqxÂS?[ra±¨?.Ï’Sƒ/“@£ Ü›@˜tí&A‚?y ”¯?MT¿NrÿI?õZÞ[ƒÇ? 6D(õ²—@ŸdKWkÓF@[@¥X“t¼j@¥X^5?}@¥X“t¼j@¥XKŠ¢ˆ@¥X“t¼j@¥XYÅÙ@¥X“t¼j@¥X¨õõ5@¥X“t¼j@¥X&ÉF@¥X“t¼j@¥X  Ñ.@šš†$Ý/@šš{)² -K@šš†$Ý/@ššŠŒå†@šš†$Ý/@šš‹A"›C@šš†$Ý/@šš‡ôøO•@šš†$Ý/@ššˆÂHa¼@šš†$Ý/@šš‚Q³‹ @7 xFÜ@7Ù”ÿb@1xr° Äœ@1vúu¬@0,j~ùÛ#@0*Ø#l‹^@/#¼ÓZ…ˆ@/©ó±÷@/#¼ÓZ…ˆ@/BA9¾@/#¼ÓZ…ˆ@/ßÜR1q?ƒ_ÿKt˜à?ZUëb?‘9DËç{p?‹ØÆ|€Ñ?‘;—Û [?‘¡­NpI?ƒÔo"ë–?’;ƒùÐêq?¥0ýùŠ?s8”±š?‘ Àþ­?¶Ôò“‰?Ÿ£èyÑ¿?zb›¥¼H?ƒ~m»²Ó?‚ödt?ÍE?†ÙBÖz6ò?‡$°²¾M@@*@&@(@7@8?ð?ð?ð?ð?ð?ð¿OÙÈ?Rûé:p?óD.XV?Dz˜/"×Ë@¥Xý„@ššüõÃ?6¹_T.n?dç¤@ñ‡"?uã î1iÌ?ÑcHù¥Ž@Ÿi ,Žn@\@ ß¶È´9XÁ.„€@ ß¶È´9X@ ß’-V@ ß¶È´9X@ ßtzáG®@ ß¶È´9X@ ßGÈK]Ì@ ß¶È´9X@ ß1‚©“ @ ß¶È´9X@ ßW1Å@¨WOß;Á.„€@¨WOß;@¨x“t¼j@¨WOß;@¨JÚ¹õ[@¨WOß;@¨$Ý/ @¨WOß;@¨H´9X@¨WOß;@¨iÇy¦µ@9‰Î_oÒÁ.„>¤µÜÆ@4Ùº^5?}@4ÔЩ*0@4ï²-@3þ_oÒ @3¨è§æ›@3°-à @3¨è§æ›@3ßb¶®}W@3¨è§æ›@3Õ%F -¦L@8J¨?žè~Œ7* ?°ÛÉÀG?¼ š¥"d?É:NŠð¥?¨¦>Í›Ä@8J¨?«öQÅŽe?²Ã&EÖ«?¹B¥ŽS”?È"ÂÌÑ>?Åáe¤IÌ@8p÷?«Fˆ¶ƒïu?°k pÄ“*?¹›LÎD?¿¨TS§?¾ÙJ½‚*@@@@$@ ?ð?ð?ð?ð?ðøøøøøøøøøøøø]@¬yXbN@¬e¡ÊÀƒ@¬yXbN@¬v8†YJ@¬yXbN@¬zû~‘@¬yXbN@¬y0¾ í@¬yXbN@¬wÎÙ‡@¬yXbN@¬xl"h -@§­,1&é@§­7Oß;@§­,1&é@§­*0U2a@§­,1&é@§­%¸Që@§­,1&é@§­*™0¾@§­,1&é@§­)Q‚©“@§­,1&é@§­)Ô•+@8Ù*0U2b@8Ò° Ä›¦@3° Ä›¦@3ȆYJôñ@3.ùÛ"Ðæ@34›¥ãSø@2‘Þi­BÄ@2•zxl"h@2‘Þi­BÄ@2—RT`ªe@2‘Þi­BÄ@2–R½<6?|öOÿÝ?›ŽÊ–SS?““¶”ÿµb? Ð ÷Ž ?•Ô¦?n¸?–4<‘7?žŒÝÙ›P?i½ÆÝCv?–¬HðºDŸ?‘ÿŒŒhÚ?“â¹Í[Óh?“‚í?eBZ?³äøG—â?˜¼qlPg?–í -e˜›ð?…p=¤J‰?‰©OO ¨?ŠÐ+`È“@@@@@*@*?ð?ð?ð?ð?ð?ð?s¤,,x¿cù*‘¨?S±Øµ* j?RJ•â¤@¬t.õoº@§­,“¢?x<´•Op¼?k· /FÖ#?íw(+¤Î?ÊsOš¿<@Ÿl²\»õ@^@¥Ÿƒn˜@¥žäZ¬@¥Ÿƒn˜@¥Ÿ§æœ@¥Ÿƒn˜@¥žöR½<5@¥Ÿƒn˜@¥žøQë…@¥Ÿƒn˜@¥žû"Ðå`@¥Ÿƒn˜@¥žùrGE9@¤dSt¼j@¤dcn—@¤dSt¼j@¤dK'»1@¤dSt¼j@¤dDêJŒ@¤dSt¼j@¤d=ó¶E£@¤dSt¼j@¤d;/ìV×@¤dSt¼j@¤d-í(Œç@9*0U2b@9ohÜ@3õãS÷ÎÙ@3èDЩ*@3¬j~ùÛ#@3›'»/ì@2𖻘Çã@2ã× -=p¤@2𖻘Çã@2æ$Ý/ @2𖻘Çã@2Ðÿ—$tT?Ÿ‹‘+-/Ü?©•È–¿g?©ÖÌC³1?š+‚¦Ðfñ?–²p+æ0P?«´½H k?š•§q!U?—·f;m?£õ81þ9Ì?¡"JîÃ!?ªËÆŠâqf?®LT1ˆQo?Á[Nä­ð?˜‹”âó?¡D(¸ÿôn?žÞG¤¸'ö?•ó¬>¨ûÝ?¾æX2ú@@@@@@,@&?ð?ð?ð?ð?ð?ð?u… ˆ¿‡ Ìõà€?Uö8y4z?Zw^à†Ûu@¥žó¯5Å -@¤dEíAèÄ?qb/D®ß?yQCqݳ?Æ -¼¥?ÉVÉ]$4@Ÿi7,7™@_@¢¿k…¸R@¢¿Òñ©ü@¢¿k…¸R@¢ÀsMj@¢¿k…¸R@¢¿û"Ðå`@¢¿k…¸R@¢À\(÷@¢¿k…¸RÁ.„€@¢¿k…¸R@¢À Ñ·X@¬j~ùÛ#@¬!ÊÀƒ@¬j~ùÛ#@¬ñë…¸@¬j~ùÛ#@¬WKƧñ@¬j~ùÛ#@¬A$Ý0@¬j~ùÛ#Á.„€@¬j~ùÛ#@¬•Y³Ð|@8‘|ÚQ@8LÚQÎ@4)‡+ @3‰b¶®}@3—ï²-@3 ô!-w@2«xFÜ^@2B&€IR@2«xFÜ^Á.„NÜC,¥@2«xFÜ^@2‚@·€5?£È‰·akû?ÙBÖ}Ï;º?¿>‘9B¨¬?É —§˜È@8Iç?ÝriÉc,?¹&ä"¾ü°?ÑyñCNúë?¢äEÊ»¶)?®Ç4U¤oé@8S?ÙAv"_+S?‘MM….äí?¸G^¿¿~ê?¢æbÂfïU?°%Ùñ¥÷)@8 Ø?ÉJ6Л@@@@@*?ð?ð?ð?ð?ðøøøøøøøøøøøø`@¬;dZ¬@¬8î‘(‚@¬;dZ¬@¬T4M@¬;dZ¬@¬=#èú@¬;dZ¬@¬:S±/d@¬;dZ¬@¬; -Y±L@“/Þ5?|î@“0¸Qì@“/Þ5?|î@“/Þ)c”4@“/Þ5?|î@“/×j¿Â¹@“/Þ5?|î@“/ܵÊgº@“/Þ5?|î@“/ݳ,~@“/Þ5?|î@“/ÞÓz÷@8åöý!ÿ.@8óJ€¿ß¦@3?|í‘h@3S’å`ù@2A‰7KÇ@2Nrª‰¨@1._oÒ @1.š,fX@1._oÒ @1.­ó@m;@1._oÒ @1.Ó Àï?‡ôCbyV?dc:Ná?‘Š‹^‚·Ô?‹ég.ù$W?‘j eéI?‘iÊê›Ø?•$Ý/?’6¸íc?‘ -¯rmH_?fìÃ|w?‘,á4„¯N?±xˆ¬4½?ª³‚úŸ³Š?ŒðãSïê?‚¯Êyˆj?ƒ=¿¼{:é?‡Yû#AÚ2?†ôS˜Í¨@@"@"@"@5@4?ð?ð?ð?ð?ð?ð?? %q°¿mÀhå®?@j”·læ?\ÄzÍQ[ê@¬:ôϺ@“/æwœó?`(‘q¥³Ø?wçY;m?Â2[7¡Õï?ì‡^"{Qý@Ÿl‘~·ÞÆ@a@£ -=p£×@£ -~ùÛ#@£ -=p£×@£ ¹Œ~(@£ -=p£×@£ Ƨïž@£ -=p£×@£ L˜_@£ -=p£×@£ ÁTɆ@£ -=p£×@£ Dg8@§ñV‡+ @§ñVÈ´9X@§ñV‡+ @§ñVÕϪÎ@§ñV‡+ @§ñVâëC@§ñV‡+ @§ñWXâe@§ñV‡+ @§ñWXâ@§ñV‡+ @§ñW>«6z@1-¥œàv@1-‘hr°!@,²-V@,–»˜È@+›dZ¬@+›‹¬q ³@*Aò×t@*O „M@*Aò×t@*\(õÂ@*Aò×t@*\(õÂ?É^³Dw'?Úþþ³?‘Ûü†Nã?‹ª½¨ª8v?íOþtà?´âµÇ>¬?ÐbV‡,?’ -‰¸Ì?r¼Jsž?/ò×ÈZø?Ó%y*£=?X78›š?€rTg€½?Œ­·Ž~('?‚uÞ@>N ?‚â‡~ûÉ\?†ˆ#.÷?†ŠúЀ>(@@@@@,@,?ð?ð?ð?ð?ð?ð¿U²æëË¿ ü ?Bǽ^NK½??<]¤Ä @£ -Bˆ&æ@§ñW<`Óé?Rd8Ó¿ý?!CŽGtØé?  + :œ?:%M¸@ŸsaÍä¢@b@¤ù•$Ý@¤÷àA‰7L@¤ù•$Ý@¤ùjW§†Â@¤ù•$Ý@¤ùo4Ö¡b@¤ù•$Ý@¤ùdoi@¤ù•$ÝÁ.„€@¤ù•$ÝÁ.„€@¥¥áÊÀƒ@¥©›¥ãT@¥¥áÊÀƒ@¥¦fÏAò@¥¥áÊÀƒ@¥¥ôã¼Ó[@¥¥áÊÀƒ@¥¦tSŽò@¥¥áÊÀƒÁ.„€@¥¥áÊÀƒÁ.„€@9m¥œàv@6/hÛ‹¬@5+¥ãS÷Ï@5ˆÎp:û@4 ²-V@4Á½¥@3s&Á½¥@3Oƒ{J#:@3s&Á½¥Á.„NÜC,¥@3s&Á½¥Á.„NÜC,¥?ð°–Ž]?µC\ PçÙ?š6õÂ\9?ŽÝ¡uÒ(r@8Iç@8Ù?ð°–Ž]?¥q¾Ó¡h?•Q²rz¢ù?Ò–‚h±n@8S@8û—?ð*wjs—?¬µöÂ};?ŸÛð°|°?ˆã1µR@8 Ø@8 Ø?ð@@@?ð?ð?ð?ðøøøøøøøøøøøøc@ªÂ9XbNÁ.„€@ªÂ9XbNÁ.„€@ªÂ9XbNÁ.„€@ªÂ9XbNÁ.„€@ªÂ9XbNÁ.„€@ªÂ9XbNÁ.„€@”« 7KƨÁ.„€@”« 7KƨÁ.„€@”« 7KƨÁ.„€@”« 7KƨÁ.„€@”« 7KƨÁ.„€@”« 7KƨÁ.„€@9™*0U2bÁ.„>¤µÜÆ@43S÷ÎÙÁ.„M‰ûçm@34“t¼jÁ.„QnÙ‡@2°–»˜ÇãÁ.„NÜC,¥@2°–»˜ÇãÁ.„NÜC,¥@2°–»˜ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøød@§Äã× -=q@§ÄÞ5?|ï@§Äã× -=q@§Äáä÷eý@§Äã× -=q@§ÄèÎp:ü@§Äã× -=q@§ÄçæšÔ@§Äã× -=q@§ÄàªdÂù@§Äã× -=q@§ÄÜ64@¡*öE¡ÊÁ@¡*ï\(õÃ@¡*öE¡ÊÁ@¡*õY³Ð~@¡*öE¡ÊÁ@¡*ý—ö+k@¡*öE¡ÊÁ@¡*ô¼j~ú@¡*öE¡ÊÁ@¡*÷Ûô‡ý@¡*öE¡ÊÁ@¡*ë’:)Ç@7žHè§æ@7 ©*0U@3œIº^5?@3œC,¥zx@2éÛ"Ðå`@2ê¹õY³Ñ@2Š0U2a|@2ˆÇâ‚@¸@2Š0U2a|@2‰Î_oÒ@2Š0U2a|@2„!-w2?…ÅBðrç?’«p~v]Ù?’5 µ¿$„?”oý]Þ‡&?’êÔÒ?•zWmoàí?”¼íÒh??’u¦ieõ–?‘K54;­?’¸Ý8h\?“h_N’%¿?˜ÓI­ÂÅ?“²pÅâ-Ý?‘ÓP!¹p?‚Ö˜>µDá?gt»Hö…?ŒXk-¯‚7?·♊N@@@@@&@(?ð?ð?ð?ð?ð?ð?4€ˆR?:WîÀ?Rô¤¨¼ý?]6è̳ Æ@§Äà3Lá@¡*ò°ä‹*?t?ÿï%i¿?y(ïßî:?æ1zü7¶Õ?çÔ™>È@ŸjòËt³Í@e@©Šò° Äœ@©Šõ^Eš@©Šò° Äœ@©ŠÐ‘ƒ*@©Šò° Äœ@©ŠÆ;Û G@©Šò° Äœ@©ŠÖü«@©Šò° Äœ@©Šº,l“n@©Šò° Äœ@©Š¼‚)]@•iõÂ\)@•iï²-@•iõÂ\)@•jy®ÁÇ@•iõÂ\)@•j£amO@•iõÂ\)@•jì-Ö@•iõÂ\)@•jd¦47 @•iõÂ\)@•jEï6À¹@7 ]cˆe”@7 (Wú[D@3ã÷ÎÙ‡@3²’ ™+@3~ùÛ"Ñ@2äð%ŽpT@1Ê0U2a|@1§#‚$@1Ê0U2a|@1§]QùÀû@1Ê0U2a|@1¥uO2?‹ÖFÔÜÚ$?“»ö†Ñ¤h?¦›©ú)³?ŽÖ£‚æ?­¯TŸê-?¨’ŠƒàÎ?‚n—OßÁE@®é+çúó®@žM…õÆõ?PþR+ƒˆ?vn?£JÝ?‰z&6é?Ë=¾ÇpE(@ŸlXÖ°B@h@­±üí‘hsÁ.„€@­±üí‘hs@­±âœwšk@­±üí‘hs@­±å‡“ݘ@­±üí‘hs@­±×Á½¥@­±üí‘hs@­±Ù k¹‹@­±üí‘hs@­±ä÷eý‹@¢5?|îÁ.„€@¢5?|î@¢P-à @¢5?|î@¢4•*™@¢5?|î@¢ZîcŠ@¢5?|î@¢UÂ\)@¢5?|î@¢^ƒä%®@;ð4mÅÖ8Á.„>¤µÜÆ@6«¥ãS÷Ï@6— ù k¹@5²-V@5}ÌcñA @5 ¿±[W?@4ê–»™@5 ¿±[W?@5$Ý0@5 ¿±[W?@5¡ÊÀƒ@8J¨?ÁŸ ¡`?¯ü¦NJL?¨üà«W¦ü?¦Wì07q³?³ŒTAøÉ'@8J¨?ÁI`—Þ?¯µ5®Ë~B?¤á¾Õ·L?ª*-@sØ3?­87ÞŽ@8p÷?®ØùüSY~?¯Vê 2Ó?£ßÊihÂ?¨ƒÑ0¹C?°¬¹57¶ø@@@@(@*?ð?ð?ð?ð?ðøøøøøøøøøøøøi@¤Ç[¥ãSø@¤Ç[¥ãSø@¤Ç[¥ãSø@¤Ç]!ÿ.I@¤Ç[¥ãSø@¤Ç]/Ÿ¾@¤Ç[¥ãSø@¤Ç]cˆe–@¤Ç[¥ãSø@¤ÇZ–½@¤Ç[¥ãSø@¤ÇYõY³Ð@¡+ º^5?@¡+ ûçl‹@¡+ º^5?@¡+ ÞÒ@¡+ º^5?@¡+ÕfÏB@¡+ º^5?@¡+ ù l@¡+ º^5?@¡+â‚@¸@¡+ º^5?@¡+â‚@¸@3 xFÜ@3%®æ1ø@/ö“t¼@/ôýó¶E¡@.ãn—P@.â@·€4n@-ÑÑN;Í6@-ÐU2a|@-ÑÑN;Í6@-ÒGE8ï5@-ÑÑN;Í6@-ÒGE8ï5?|¬Çëý ?ï1ïºÅ?‘\H{gX ?‹ª½¨ª8v?‘ ·èf?ïˆ6ÏJ?|öOÿÝ?’5CàQ?†[‘'Í?Níú¾?üÓqÔNŠ?oÌ‘'ýT?‚n—8‹8?ŒÂ§dß±?‚¯­Ù¤Á¶?‚ù8 ±^?†£îž«î?†©b/bJö@@@@@,@(?ð?ð?ð?ð?ð?ð¿+_}¿@®›W€?7°r©{ø@?"ºŸ£!@¤Ç[jÔÚÔ@¡+ÊÓÞÁ?W‡8ò7ÿ?BméW¯v—?¾}Ýðo??‘Žãçör@Ÿfìü®(‰@j@ª·bMÒò@ª·‘ë…¸@ª·bMÒò@ª·!-w2@ª·bMÒò@ª·n;Í5§@ª·bMÒò@ª·ÈK]@ª·bMÒò@ª·e‡“Ý—@ª·bMÒò@ª·cä%®æ@©qú^5?}@©rÊÀƒ@©qú^5?}@©qË]Ìcñ@©qú^5?}@©qÌ"h Ö@©qú^5?}@©q¢¶®}V@©qú^5?}@©q‡E8ï6@©qú^5?}@©qñ&éxÕ@7įO „M@7ÅÜÆ?@3ÜIº^5?@3ÊŒL˜_@3"-V@3-ã¼ÓZ@23&Á½¥@2QÎ`@23&Á½¥@1òGE8ï5@23&Á½¥@2Ä›¥ãT?îŠõ ?¦®ñd¥?”zùeߎ?¢)[fI?Ã-;‰ ö?¾ ×….ž?˜ž^ƒÿ*ˆ?¤x‰\F®p?—>4ôgŒ9?šªy/2v‘?Ñ0ÂÑ-+þ?°í|:Âã? zkê 3U?ºòã‹3E?¢N²üß0?°FE%ñŽ5?­…zéµl¦?»h¶ðcÓ—@@@@@*@$?ð?ð?ð?ð?ð?ð¿Rˆ´Œ¿”›\Ž@?xÎ‘Š’ƒ?ŽÛõG|2@ª·’ë¸%6@©qÑ |?’è -õJ—ƒ?¨ #ˆwyÅ?ôÕGFz@-_njÏ@Ÿd@žb~¡@k@¨_›¥ãT@¨_›¥ãT@¨_›¥ãT@¨_œàu@¨_›¥ãT@¨_Щ*@¨_›¥ãT@¨_zxl#@¨_›¥ãT@¨_ŽŠqÞ@¨_›¥ãT@¨_ˆe”¯@®ƒ`Ä›¥ã@®ƒ`Ä›¥ã@®ƒ`Ä›¥ã@®ƒa@N¦@®ƒ`Ä›¥ã@®ƒ`ëíúD@®ƒ`Ä›¥ã@®ƒa [À@®ƒ`Ä›¥ã@®ƒ`ù k¹@®ƒ`Ä›¥ã@®ƒa-w1‘@0Hè§ç@0;Í5¨Y@-ÍV“@-Í:’£@-‘&éxÔþ@-å`A‰8@-87´¢3œ@-8 -à @-87´¢3œ@-87´¢3œ@-87´¢3œ@-8}¿H?É^žQ5P‚?Òç{íj?‘1f_¨Ï÷?‹ÑqÔ@vÿ?éDEâ©×?¾ƒìÈÁ?ÐbMçê_x?’#maЀ?ÀpMºÅ?>\‰å‘?ÔÒ@úˆ‘?hï,ðà?€cPßQª?Œµ3‰;šÏ?‚yî8Á$?‚ð'ã:ÂÝ?†©b/bJö?†špk Y@@@@@@"?ð?ð?ð?ð?ð?ð¿JuÃÁ®>ñI(K@?Î8Þ1Ÿå?u‚ϹÛ@¨_-_@®ƒaŸ.Ú?,£Š¯Tð?+óc?TÂ݆ÿÔ?5ì‚­iÙ@Ÿs7êŠæ@l@ U¬‹C•@ U¬Iº^5@ U¬‹C•@ U€K@ßF@ U¬‹C•@ U®“„Þ1@ U¬‹C•@ U­z|rß@ U¬‹C•@ Uœ×Æ*@ U¬‹C•@ Uš#²-@£Fë Iº@£FëÆ§ïŸ@£Fë Iº@£FìèEÔ©@£Fë Iº@£FäsŒ[€@£Fë Iº@£Fá­[@£Fë Iº@£Fé) „Y@£Fë Iº@£Fä­¨ï@4Ç>«6z@4ÇAÕ¥S @2 Iº^5@2È^»õ@1v§ï²-@1f²?êb@1L¿±[W?@18ß }Ê´@1L¿±[W?@1>¶bš/7@1L¿±[W?@1>ÒRˆï?|Ñb×¶@?“u$ðM?‘)Ì~Ï™?”ôOŸ”?š±U'-æ·?š)CÊ"f ?|Ñb×¶@?“VÔ)oÆ?‘P3b东?‘Fq©<?œ×Fj.¤%?•õ7nŸÚ??‚ë‘/ˆ$?±æ‘’Ñ?ƒ'0À­ÅS?‡þVLéSÖ?–: Ê?Œ«ü=–B-@@(@@(@9@8?ð?ð?ð?ð?ð?ð¿gþ¥f§¿]€AŸ?V ÛÛpÊ?O>×ù N@ U§iá’@£Fè*Ø8¨?t•l7y=•?lzQ³M+Þ?ìÛ84ða¯?àQRF#@ŸdK›…†@m@­AG®záÁ.„€@­AG®zá@­A,ÌÌÌÍ@­AG®zá@­AIº^5@@­AG®zá@­AIxÔýõ@­AG®zá@­AVÈ´9X@­AG®zá@­A9‡+@®ÿzáG®Á.„€@®ÿzáG®@®ÿ$Ý@®ÿzáG®@®ÿE¡ÊÁ@®ÿzáG®@®ÿŸ¾v@®ÿzáG®@®ÿfÏAò@®ÿzáG®@®ÿ‡+@7|ÚQÁ.„>¤µÜÆ@2° Ä›¦@2¯HË’:@1ä¼j~ùÛ@1àoiDg8@1G ù kº@1E¡ÊÀƒ@1G ù kº@1?.Hè§@1G ù kº@1@©*0V@8J¨?”ŸÍFÒ?“â÷!N?‹¯eU5?­;â¬"?”º²¶;@8J¨?’‡Iš÷?‘;¨™,?RLnj?”¡S•Ÿ¯?X78›š@8p÷?Fƒ¿p7€?…íŽ(þÇ?„XïWÉò~?‹&¸ê±fÂ?ˆ¾þúWZ‹@@@@@?ð?ð?ð?ð?ðøøøøøøøøøøøøn@¢°>ùÛ"ÑÁ.„€@¢°>ùÛ"ÑÁ.„€@¢°>ùÛ"ÑÁ.„€@¢°>ùÛ"ÑÁ.„€@¢°>ùÛ"ÑÁ.„€@¢°>ùÛ"ÑÁ.„€@–‹E¡ÊÀƒÁ.„€@–‹E¡ÊÀƒÁ.„€@–‹E¡ÊÀƒÁ.„€@–‹E¡ÊÀƒÁ.„€@–‹E¡ÊÀƒÁ.„€@–‹E¡ÊÀƒÁ.„€@9T xFÜÁ.„>¤µÜÆ@4Ìí‘hr°Á.„M‰ûçm@46§ï²-Á.„QnÙ‡@3n_oÒ Á.„NÜC,¥@3n_oÒ Á.„NÜC,¥@3n_oÒ Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøo@¥Ì¸Që…@¥Ìñ©ûç@¥Ì¸Që…@¥Ì¬1&@¥Ì¸Që…@¥Í"u%F @¥Ì¸Që…@¥ÌŸQì@¥Ì¸Që…@¥ÌtÖ¡aå@¥Ì¸Që…@¥Ìk6z‘@ ¯Oß;@ ¯)º^5?@ ¯Oß;@ ±ÊW§‡@ ¯Oß;@ ±÷Oß:@ ¯Oß;@ °ÊdÂø8@ ¯Oß;@ °…+ÓÃa@ ¯Oß;@ °(Û‹¬q@8šÔ,<Ÿ@8_Ø­« @3’ Iº^5@3*Ú¹õY´@2Æ“t¼@2[¬q ²–@1ãÉîËû@1šáG®{@1ãÉîËû@1—$tSŽô@1ãÉîËû@1“ê³g ú?±ÿ}ö?Ó»‹KLý?Î$£»íVL?ØM©. j ?ÂRßqJ ?õ"- -`Ï?™Îd0RÜ?1ð'7éÃ?‘ô 5Y?e¾DQ„Q?…àú^À?Œ²ÅŒÕ6?ƒ<Õp?‚â>¹S?†Óß -tõ?‡L8õASÎ@@@@@ @?ð?ð?ð?ð?ð?ð?@6Åt?0F+/p??&&”¡ º?òþ÷ò^\@¢XÍ4Øð@®ÿŽ×sæ?^ËÃÿ†¯?:º^#®9s?Ç1ågtƒÉ?ÐO%¨@ŸgVϯ µ@q@­èr° Å@­ðbMÒò@­èr° Å@­¾i­BÄ@­èr° Å@­ÌÌÌÌÍ@­èr° Å@­¾š@­èr° Å@­®Ù‡+@­èr° Å@­VR½<6@¦v2-V@¦v+…¸R@¦v2-V@¦v>Åm\û@¦v2-V@¦v7Oß;@¦v2-V@¦v9è>B[@¦v2-V@¦vFÁ½¥@¦v2-V@¦vU*™1@8°4mÅÖ8@8³33334@4#÷ÎÙ‡@4åÉã@3$¼j~ùÛ@3L/ƒ{J@2YŒ~($ @2CÝ—ö+k@2YŒ~($ @2?åÉä@2YŒ~($ @2¸ºÇ?žŒÝÙ›P?¯¡ãƒù?¢X…^ -”1?¢ºã‘~]¦?¬Üd‰ùY5?τˎ^í*?•²»UbB2? ùëङm?¢©cÝä›?¡-ÙóÊÊ´?¨ÃXÜDo|?ÉòàMpù?»ªÔ+Ê„?¡RHÖ¿b?šº(Æ(í?• Cm¨k?—ã ËÄž?¿A·¬çøÈ@@@@@,@$?ð?ð?ð?ð?ð?𿒽̇|@?yÊÆàu?f^o-ýoß?Fˆ>zàØ@­ÍeáðÖ@¦v77ºi?õˆŒÓ‹“?bñh$qéú?Ô\¿GDÔã?Ÿã.ÆqTX@ŸdÐBãØ@r@¥ÿ^¸Që…@¥ÿa$Ý/@¥ÿ^¸Që…@¥ÿ~5?|î@¥ÿ^¸Që…@¥ÿhõÂ[@¥ÿ^¸Që…@¥ÿl‹C•@¥ÿ^¸Që…@¥ÿHXy=Ù@¥ÿ^¸Që…@¥ÿZu%F@¯ „“t¼@¯ ‡l‹C–@¯ „“t¼@¯ ˜Ôýó¶@¯ „“t¼@¯ ³¶E¡Ì@¯ „“t¼@¯ •$Ý@¯ „“t¼@¯ l‹C•@¯ „“t¼@¯ pØDÐ@6Ô xFÜ@6Ô¯O „M@4©‡+ @4”êJŒ@4_²-V@4ZÚ¹õY´@3¦YJôðØ@3¨šu%F@3¦YJôðØ@3²œwškQ@3¦YJôðØ@3µÜÆ??1·†Æjñ?’u~•Ñ?”¦¢œŒÕ?–:²çäÍÍ?’š'†­`í?¥ùÏ@Ì?„F/·ÿP5?¢›â¾Ð'µ?“Z—H|:?¡Ü;çåAˆ?™Ÿ»6“? !™¡kz7?àäœú?Å{¿Ž<º?­~¶Ùµx?¶ºK5ÚAø?– -0gspè? hˆB°š@@@@@@?ð?ð?ð?ð?ð?ð¿l»®f°¿sM›£?k½R.PÃ?gX0ÔÏQ’@¥ÿ[UœHJ@¯ yÔÏ?‰êþÀÒ ?†5ÃkÌÇÁ@ÎÓ`…‡@ÓjF°`@ŸdB1ÛŸú@s@®§xQë…@®§på`A‰@®§xQë…@®§zx$¡@®§xQë…@®§w×j@®§xQë…@®§~U»U{@®§xQë…@®§x±MV@®§xQë…@®§uôûè`@—Ÿhr° Å@—Ÿg=Eªb@—Ÿhr° Å@—Ÿhý8$ @—Ÿhr° Å@—Ÿd”î!.@—Ÿhr° Å@—Ÿcb/ø¼@—Ÿhr° Å@—Ÿeœš³ž@—Ÿhr° Å@—Ÿg²PU‚@8ò䎊@7øKƒ¶8¬@3° Ä›¦@3ÆÐÉŸÀŽ@3)Û"Ðå`@3-K÷uÞ@2\ÚQÎ@2azÃF’ù@2\ÚQÎ@2]²B'Án@2\ÚQÎ@2_ -ö¿ -a?‚n—Oß«_¤?øq¤éyi?§@Ûꘄ@ŸhÑì–ÿ˜@t@¥™ÿ|í‘h@¥šƒn™@¥™ÿ|í‘h@¥™ök)ž@¥™ÿ|í‘h@¥™öñ„3@¥™ÿ|í‘h@¥™÷2§@¥™ý¥ðCÊ@›YûŸj?q{?uª˜M?lÿö½ÉÄ{?츜iy?â·ûâb?“@Ÿf ñ:`;@u@¢CŒIº^5@¢C€ƒn™@¢CŒIº^5@¢C‰Dg8@¢CŒIº^5@¢Cwéùs@¢CŒIº^5@¢Cpÿ—$t@¢CŒIº^5@¢C|wškQ@¢CŒIº^5@¢C¦s×Ü@¦×Që…¸@¦×D›¥ãT@¦×Që…¸@¦×JôðØ@¦×Që…¸@¦×<„µÜÇ@¦×Që…¸@¦× Oß;d@¦×Që…¸@¦×”¼j~ú@¦×Që…¸@¦×Wéùr@7ëµsê´@7å?|í‘h@4)‡+ @4‡1Å@36§ï²-@3kŸU›=@2úÔ,<ží@3z¬Ùè>C@2úÔ,<ží@3ÞcŠ @2úÔ,<ží@3õµsê³h?…ÅBðrç?¿:§A{oŽ?´%=O>Ëæ?ºŠòTÓÁ?ÍéU(Ÿ”?Î^ó§?îŠõ ?Ř¡õ„×Ê?µëªI\8S?ÈÖqÆ‘÷?Ĉ25ƒÇ?Ñ×R9yŒ?£´<×?°hˆB°™?Ãïóˆ5?ÜS~iX?Éë| ¸’?ÕŒžÆì@@@@@*@,?ð?ð?ð?ð?ð?ð¿AÝ} ?‚&˜÷Ü@?q5½ëCÊ{?†yƒnSF@¢Cò#Gv@¦×L-Û¬?ç–ŸÛe¢?˜ç'4DÞ?ÇS÷ÓwÜ?î³*?¦ñÆ@Ÿ]sœY@v@¯”ûçl‹D@¯”õ$Ý@¯”ûçl‹D@¯”þU"!@¯”ûçl‹D@¯”ý!"¿f@¯”ûçl‹D@¯”üþ3}Ž@¯”ûçl‹D@¯”ýí @¯”ûçl‹D@¯”ý0,@™°ËƧïž@™°½+\µ:@™°ËƧïž@™°Ò¯Sü$@™°ËƧïž@™°Õ:Ïân@™°ËƧïž@™°Ñ¾Ö_˜@™°ËƧïž@™°Ò‚“@™°ËƧïž@™°ØhTÂ@8ÉÎ_oÒ@8¸­*c@3ÎÙ‡+@3u)Hl@2ÒÐå`A‰@2Ò¢{c«@1Öý!ÿ.I@1Õb²aZ@1Öý!ÿ.I@1ÕÕUvEÈ@1Öý!ÿ.I@1Ô÷ŒŒÌ?©–Rª—´?ð5 S±?“ }øà?ŒRšúÐË?‘ yòï…nS?’U2ÙLÍ?¢.EZ±?¹Ã4zs?†(Æcf{?–¢Ã­bÖ?‘£"ÃIì¬?—¦GåEP@@@@@4@(?ð?ð?ð?ð?ð?ð?\—-D?WDo²ñ€?Sõ·J{^?gÍ=O#@¦2 mÑm@“¬—;°à?n [™!Ñh?{°ëŒ¨5¹?Ò¿S«÷U?æ'ÿ¹¹y«@Ÿpº~ D@y@¨aÊÀƒ@¨lÌÌÌÎ@¨aÊÀƒ@¨Sœ¾ß@¨aÊÀƒ@¨MjO@¨aÊÀƒ@¨Tã¼ÓZ@¨aÊÀƒ@¨T‡ü¹$@¨aÊÀƒ@¨WsüO@¥õã× -=q@¥õçï²-@¥õã× -=q@¥õð Ä›¦@¥õã× -=q@¥õ×§†Â'@¥õã× -=q@¥õÜàuöý@¥õã× -=q@¥õá°‰ '@¥õã× -=q@¥õåðoiD@7¿–»˜È@7ÃMjP@4}‘hr° @4~ŠqÞi­@3y7KƧð@3yÎ_oÒ@2¨è§æ›@2«~ÿ—%@2¨è§æ›@2«µsê´@2¨è§æ›@2«dZ¬ ?˜ž^ƒÿ*ˆ?›¤<½ÎTß?–™@^Ú¢?Uóú*˜?”§RXFÖf?–҄έ¿o? Å{¿Ž<º?––ïFHÇN?“5ñ µ?Ä…à6 -æ?–å·ÑfWâ?˜Œ» -?ŒÊ­#г^?”kcÿä©Ú?³&Ô,ô?‹8¹ª?Œx[‡:©?‘„1ôñÂß@@@@@,@*?ð?ð?ð?ð?ð?ð¿q§®¯€?1KÆ_H?dºïÓiWà?a'3i…Û×@¨X©Û–¥@¥õá ÷m‘?~ïZÜNh©?x8¾˜¶?ôSÖ(lN?âŒ]C&@Ÿmv<{@z@¡óËC•@¡óÍV@¡óËC•@¡óÚ3ÕN@¡óËC•@¡óâ´0«¦@¡óËC•@¡óài9,@¡óËC•@¡óâÐå`B@¡óËC•@¡óêmw3@“® Iº^@“®SâÖ#@“® Iº^@“­óø¢ñE@“® Iº^@“®rp¡Û@“® Iº^@“­ÙoêO@“® Iº^@“­ÞÑAŸ@“® Iº^@“­Õ‘Ôl(@504mÅÖ8@50m¹ùîÐ@2³S÷ÎÙ@2´ª,4\@3²-V@38i:X…@2G ù kº@2bÈ®@ã@2G ù kº@2N~ááO@2G ù kº@2Sçw¦ ?|Ñb×¶@?“áÍw&?¨óuÌG?ŒF¹lQ‡ô?•#uÃ^´?šñivÌ€?~Ov_Ø­«?“¦èX×?«'_ñóT?žÁÉXÌšý?•J ì'Å—?™· -®]?‚„.™tsÂ?tvÙ•îÐ?ˆ?C Mà:?’N~ÞOÁ?¡TuÃ?™N»lT)ž@@ @@@5@4?ð?ð?ð?ð?ð?ð?y6És€¿r·\ÄþÀ?Ee\lþäî?FÒg ¥­|@¡óØ´ª´@“­ïãGJ?býÓy5Û?e¼ÆfPàp?ÐMØ1á?Ï$‚úrf@Ÿda’WD‡@{@ž•?|í‘h@ž—éûçlŒ@ž•?|í‘h@ž•éÄ)¼m@ž•?|í‘h@ž•ÉF7¹P@ž•?|í‘h@ž”Þj€Q@ž•?|í‘h@ž”Ó4ŒÔ<@ž•?|í‘h@ž”ãbÄ‚r@¤ÛáÊÀƒ@¤Ý€ƒ(\ì@¤ÛáÊÀƒ@¤Üö…®Â@¤ÛáÊÀƒ@¤Ü9u+Ú@¤ÛáÊÀƒ@¤ÛºöÄî@¤ÛáÊÀƒ@¤ÛÁLJñ@¤ÛáÊÀƒ@¤Û»ïý´F@8m¥œàv@8Ã7]P@3f‡+ J@3d1ÚØï@2nùÛ"Ðæ@2k6 Ç@2O „M@2ŒXQÞ›@2O „M@2Ÿ#ÿ ~@2O „M@2¡Tª(¬ö?ìÎ:Å}–?¤uË !a?žb­´‰bÔ?š¸”ò7“‰?°ï¤ N,?¥hqcéDë?ñOqyŸŒ!? Íß#Êû?¢ä¸#²ˆ?›ÈsÖ‚’i?®îLŸ ª…¥¤?[ñ®;b@@"@"@(@9@7?ð?ð?ð?ð?ð?ð¿ƒôaò´¿™¨¶¦]€?j ïõÏ/ó?€<°9İ@ ¤oéYÚb@©·kÚBõü?†ä=åÀFœ?™ÍÝ.—9@Ø"pm‚ƒ@(dV»Q+R@Ÿa¶K[šG@}@ ìÎV“Á.„€@ ìÎV“Á.„€@ ìÎV“Á.„€@ ìÎV“Á.„€@ ìÎV“Á.„€@ ìÎV“Á.„€@šæ;dZ¬Á.„€@šæ;dZ¬Á.„€@šæ;dZ¬Á.„€@šæ;dZ¬Á.„€@šæ;dZ¬Á.„€@šæ;dZ¬Á.„€@5ºqÞi­CÁ.„>¤µÜÆ@3|í‘hrÁ.„M‰ûçm@2M²-VÁ.„QnÙ‡@1ÏO „MÁ.„NÜC,¥@1ÏO „MÁ.„NÜC,¥@1ÏO „MÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø~@©Å3¶E¡Ë@©Å3÷ÎÙ@©Å3¶E¡Ë@©Å/²-@©Å3¶E¡Ë@©Å,cñA @©Å3¶E¡Ë@©ÅLÌÌÌÍ@©Å3¶E¡Ë@©ÅU*™1@©Å3¶E¡Ë@©Å\PHð@£ùwKƧð@£ùw -=p¤@£ùwKƧð@£ùw§†Â'@£ùwKƧð@£ù…o@£ùwKƧð@£ù™=Ùc@£ùwKƧð@£ù§l‹C–@£ùwKƧð@£ù¥+ÓÃa@3‡>«6z@3‡RT`ªd@05ãS÷ÎÙ@0._oÒ @.ΗOß<@.À quŽ@.æL/ƒ{K@.Áaä÷eþ@.æL/ƒ{K@.ÃS&Â@.æL/ƒ{K@.ÅF -¦L0?|öOÿÝ?àIü'?£À¹¿1?¬&¾L=§‰?¹¤¡X‚ ?¯|ÚxÎ?|öOÿÝ?’¼MÒÀ7F?£éIõ¹?³ŸÛ-w?´:±»S÷?¬¬û‹¾5?‚|׿pY?àQdËЈ?†ž5ðqë?Šc^î½)Ô?°4\ɵ?•™ï ufÝ@@@@@,@,?ð?ð?ð?ð?ð?ð?Sô½Ã€?…%ÿ,€?7~Ï"-Ð?Qc^zçW@©Å;«žÌ§@£ù€t¼ ?Höé]€ ?b0dó!^Z?„>!jô–?¸‡Ä7 ¸f@Ÿ]þ a@@¥ÔzáG®@¥Ë Iº@¥ÔzáG®@¥Û/ìVÖ@¥ÔzáG®@¥Õ$Ý@¥ÔzáG®@¥Ù³Ð|…@¥ÔzáG®@¥Õ '»@¥ÔzáG®@¥Ôýó¶F@¥“:^5?}@¥“["Ðå_@¥“:^5?}@¥“:…‡“Þ@¥“:^5?}@¥“7ö+jè@¥“:^5?}@¥“=¿HË@¥“:^5?}@¥“9õY³Ð@¥“:^5?}@¥“9Û"Ðå@7Û¹Œ~($@7ÈDЩ*@2Ùº^5?}@2×KƧï@2M²-V@2LÙè>B[@1œàu÷@1MÒñ©ü@1œàu÷@1•$Ý@1œàu÷@1-V?£G± *Ç‚?”•µ³S_?“u*y?Wø0 ¥?’FL{öó?×°ë*–w?¿Ëg1Ñ?”ï©ÛÉ?–AuøG1?Ë{4æk?’.<ù?ƒÁþGEÛ?»ªÔ+Ê„?ŽátÖÁ»‡?“„*0x)Æ?†‡ °´¥`?ˆ©{2¡Î?‰_uñšó@@@@@,@?ð?ð?ð?ð?ð?ð?/w2õø¿bä'ãîà?_ñ€÷ª9!?VáÔ¨|¤’@¥ÖO#)@¥“;òtI³?t"©’<K?gþ9øY?ã¼ëM¬Â?ÄúAûzÕ>@ŸrŒŒ™ó@€@Ÿ(£× -=q@Ÿ(¼Þ3pª@Ÿ(£× -=qÁ.„€@Ÿ(£× -=qÁ.„€@Ÿ(£× -=qÁ.„€@Ÿ(£× -=qÁ.„€@Ÿ(£× -=qÁ.„€@¥ÑZ¬1@¥Ñm­sªŒ@¥ÑZ¬1Á.„€@¥ÑZ¬1Á.„€@¥ÑZ¬1Á.„€@¥ÑZ¬1Á.„€@¥ÑZ¬1Á.„€@8÷â‚@·€@8õ·¿­%@4{ Iº^Á.„M‰ûçm@3{Ƨï²Á.„QnÙ‡@3 ù kºÁ.„NÜC,¥@3 ù kºÁ.„NÜC,¥@3 ù kºÁ.„NÜC,¥?Œ`àËQã”@8#˜@8¾:@8 >+@8Iç@8Ù?™ÌÜ%=( @8Î÷@8i§@8Å@8S@8û—?¡P:òÔ” @8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¦­‘ë…¸@¦­bMÒó@¦­‘ë…¸@¦­•?|í’@¦­‘ë…¸@¦­˜_ö”@¦­‘ë…¸@¦­§†Â&@¦­‘ë…¸@¦­”`ªdÃ@¦­‘ë…¸@¦­”¼@¨‡ñ&éxÕ@¨‡îV“@¨‡ñ&éxÕ@¨‡×ÎÙ‡@¨‡ñ&éxÕ@¨‡Èe”¯O@¨‡ñ&éxÕ@¨‡éá°‰¡@¨‡ñ&éxÕ@¨‡ëíúCþ@¨‡ñ&éxÕ@¨‡ì1&é@6¯O „M@6S÷ÎÙ@3ã÷ÎÙ‡@3ç»/ìVÖ@3@å`A‰7@3?\(õÂ@2ºÔ,<ží@2³MjP@2ºÔ,<ží@2ºJŒL™@2ºÔ,<ží@2º0U2a|?}Ñ¿ž,?•tæïá,•?”µ^CjD²?™ÿ " ž?˜/˜Jë­? ^?:à ?„F/·ÿP5?“?xr¢I?“1Ú©! ?‘ˆ¶´M=?˜Uý"ÕT?˜æØ.ô?aäŽ -Ø?›9WTêW?˜Ð™Q$Ò? +ƒBä³?”¦”x£b?– ¼µ(0Q@@@@@*@*?ð?ð?ð?ð?ð?ð?a?ìz"¿H=­ ?bã„ÕžþÏ?=J^L§-@¦­•ÕlÍ@¨‡ì–ö)ò?ô3=àp?[_?sÁ -ñ@Æ¡#ôÔ?¶§„G)M:@ŸeÔdKF@‚@¡:fffff@¡:o\(õÃ@¡:fffffÁ.„€@¡:fffffÁ.„€@¡:fffffÁ.„€@¡:fffffÁ.„€@¡:fffffÁ.„€@¨¥5Â\)@¨¥JÀƒp@¨¥5Â\)Á.„€@¨¥5Â\)Á.„€@¨¥5Â\)Á.„€@¨¥5Â\)Á.„€@¨¥5Â\)Á.„€@8uS&Á¾@8k¹Œ~($@5sS÷ÎÙÁ.„M‰ûçm@4Ÿ²-VÁ.„QnÙ‡@4«xFÜ^Á.„NÜC,¥@4«xFÜ^Á.„NÜC,¥@4«xFÜ^Á.„NÜC,¥?’Óusÿ\Ã@8#˜@8¾:@8 >+@8Iç@8Ù?}Ñ¿ž,@8Î÷@8i§@8Å@8S@8û—?µõ@6¯¢[@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøƒ@ ~ùÛ"Ñ@ bÐå`B@ ~ùÛ"Ñ@Ÿÿ¶Ôaì”@ ~ùÛ"Ñ@Ÿþüt>b@ ~ùÛ"Ñ@Ÿþ°~'‹@ ~ùÛ"Ñ@ŸþÒ¹2/@ ~ùÛ"Ñ@Ÿþùã?@¥ð±©ûçm@¥ð¶%·~@¥ð±©ûçm@¥ñÑæFìL@¥ð±©ûçm@¥ñŒ¡™ÿÕ@¥ð±©ûçm@¥ñßQ²Q@¥ð±©ûçm@¥òoz‹@¥ð±©ûçm@¥ò6´‚' -@7cg ù l@7IJÜ~RÌ@4|í‘hr@3`¡Äm0z@4lj~ùÛ#@2êAÊ Ýœ@3Öý!ÿ.I@2\ GÑÉB@3Öý!ÿ.I@2l¾<9@3Öý!ÿ.I@2~ C±Ál?…Hùg ?¤òe= ü@? ŒV|Ôx{?ޝ5ÜIz?»os{pø?³ž¼µ]Þœ?œÆæXÆd?›Ï5h–$¦?¥"_lû^¢?–·²òa£?±m\=ÖŒ(?°æèh~?¤g|®v¬?ŸE#±&¥Ú?¨'Ì Å?¦„GÛ‹õ³?°h¨ËÂ>?²´Mj¯¶@@(@$@"@9@5?ð?ð?ð?ð?ð?ð¿ÑKO¡n¬?¸<³J`?¥6|»?×n})žA@ 5‰w–À@¥ñˆ¼êø?ÁÐ÷~Hå?©¶> ö‰@t/–€~5@1ÿŸvfò@Ÿeº£.q»@„@­j¤Z¬@­j£n—@­j¤Z¬@­j™Î_p@­j¤Z¬@­j©º^5?@­j¤Z¬@­j‚¶®}V@­j¤Z¬@­jÇE8ï5@­j¤Z¬Á.„€@ª<@@ª<6“u@ª<@@ª<'Ë)_@ª<@@ª<‡+@ª<@@ª<]Ùb·@ª<@@ª`Ï?r¼Jsž?9ÍÇ~FÀ?çêÑHcÇ?e¾DQ„Q?‚¯­Ù¤Áµ?Œ¯þuõí?‚¸“Îè ø?‚ð'ã:ÂÝ?†žóB» “?†špk Y@@@@@,@,?ð?ð?ð?ð?ð?ð¿-:Ó‚À>Ó˜¢?'…šg&œ?ìµ@4dß@¯½< Q@¦Nc›¹&L?GhÇ}…?$GHØ`rÂ?¹ØŸ)æ?U[~@¯sW@ŸfðÞKèH@‡@¬…KƧïžÁ.„€@¬…KƧïž@¬…K'»0@¬…KƧïž@¬…J=p£×@¬…KƧïž@¬…Që…¸@¬…KƧïž@¬…H1&éy@¬…KƧïž@¬…NzáH@Ÿè²-VÁ.„€@Ÿè²-V@Ÿèí(Œè@Ÿè²-V@Ÿè„êJŒ@Ÿè²-V@Ÿè®Ëû´@Ÿè²-V@ŸèTÉ…ð@Ÿè²-V@Ÿè‘ÑN;Í@9¨†YJôñÁ.„>¤µÜÆ@4£÷ÎÙ‡@4¢‚@·€4@3d¼j~ùÛ@3e '»0@3YŒ~($ @3Q·Xâ@3YŒ~($ @3XõÂ\*@3YŒ~($ @3XK]Ìcò@8J¨?–[‹Å ?“ÔÃÆWž?‹¹GüÞõ?–(Ži´™^?™òc¾ÿ:e@8J¨?•íÌÖf?˜Y ¶E–X?“¶Ì¶Öj”?• ¸°R¨?™rÊêÚ×þ@8p÷?•vÇC šŽ?”ù‰ÚÞ©)?‹Bºá­?˜§zy?”Ò -.Ô•@@@@&@*?ð?ð?ð?ð?ðøøøøøøøøøøøøˆ@¨²/Ÿ¾wÁ.„€@¨²/Ÿ¾w@¨²/O „M@¨²/Ÿ¾w@¨²$%®æ2@¨²/Ÿ¾w@¨².±Ä2Ë@¨²/Ÿ¾w@¨²5 rË—@¨²/Ÿ¾w@¨²-_>ü@œHA‰7KÇÁ.„€@œHA‰7KÇ@œH_;dZ@œHA‰7KÇ@œHS&Á¾@œHA‰7KÇ@œHGü¹#¤@œHA‰7KÇ@œHQHýŸÓ@œHA‰7KÇ@œHLÏ'³Ž@9IÎ_oÒÁ.„>¤µÜÆ@4Ô›¥ãSø@4Èšu%F@3b-V@3V$Ý/ @2Åœàu÷@2œwškQ@2Åœàu÷@2ºà@xK˜@2Åœàu÷@2ÅjOR@8J¨?¡'‹Q›p?¡fÛ6Eí?‘ƒZ)Àˆ?“.¶Ã>{ -?•ô)‡è,Û@8J¨?¢ÉÓDý?”Ÿ•/ø]Ÿ?“mŸqa?•U­g¨ã$?‘M/)Üa@8p÷?¬Cʯ–ÕÝ?•(¯(Wø?‡9 ƒ–’”?£×LǺŸ?ä–Âü7@@@@.@&?ð?ð?ð?ð?ðøøøøøøøøøøøø‰@®½·ÎÙ‡@®½¸“t¼j@®½·ÎÙ‡@®½Åðµ{@®½·ÎÙ‡@®½Å ƒ@®½·ÎÙ‡@®½¼´ék@®½·ÎÙ‡@®½»­‘3û@®½·ÎÙ‡@®½ºÇXaï@“ïå`A‰7@“ï刕ú@“ïå`A‰7@“ïö`5+æ@“ïå`A‰7@“ïùV=O¼@“ïå`A‰7@“ïì͉N@“ïå`A‰7@“ðX¤v©@“ïå`A‰7@“ïüÜ”¹@5­¥œàv@5¬L˜_@2° Ä›¦@2¸,=²¢Ï@2F“t¼@2?ŠU×ø@1«xFÜ^@1ž6ß#íý@1«xFÜ^@1¢v|Ý2@1«xFÜ^@1¢¸Œ7'(?|Ñb×¶@?•δ¸k?’mH…Šÿ?Ô6óúÑ?“u"Å0X?’–8ƒt_?}x—™ºD A?^êI³e$}?¶ÈPcŽW?ÀÝ8ä€I@ŸeCV[YH@Š@¡$öE¡ÊÁ@¡$ý?þ¦@¡$öE¡ÊÁ@¡$òþ »¦@¡$öE¡ÊÁ@¡$ê–hZ@¡$öE¡ÊÁ@¡$ÞÓ‘@¡$öE¡ÊÁ@¡$íÇ93@¡$öE¡ÊÁ@¡$ìîõLo@•êë…¸R@•êï@h›@•êë…¸R@•êéCøƒ@•êë…¸R@•êÔÍ šF@•êë…¸R@•ëHõva@•êë…¸R@•ëEb´§@•êë…¸R@•ëUËè.U@6=:’£@6/›ˆ*@2E?|í‘h@28J¦<1q@1’Ðå`A‰@1|j@¯¯Z@1J0U2a|@18v -‚èÃ@1J0U2a|@17Mà}U@1J0U2a|@18ܦËf2?DÛ5C‹?™ªm°:S?—(îÕ‚A?“¥aG€¤S?›ñ½´îÌ?•r¹beEZ?‚5Ù‹?›íÆbÜZ*?¡$ñÑ( ?˜K[À×?’zd¡ŠHô?@'ÃP?”VOhŸZ?“¯øgýR§?“1݉?$õ?¸ÝXTl?‘j*Ó«l?–’¾“"5@@.@,@*@<@<?ð?ð?ð?ð?ð?ð¿sábA?„‘²Ö`@?eB`Õéªè?\“‰ØÃ@¡$ò¾åP8@•ë?{‰È?„ŸÌô̶ï?{rŽíòÏ@ zQ÷8?÷BW·óë@Ÿe©$@˜"^5?|î@˜"Trƒœ`@8 Î_oÒ@8 Xêš@2}‘hr° @2v85ö³˜@1Ãt¼j~ú@1½&Á\œ1@1cÉîËû@1]Ò8@1cÉîËû@1[Wåë(@1cÉîËû@1Z¡«öÄ?˜—"ÝÚá?”÷dþâ¤L?’y"Bã´x?‘GQæèA?”ʦøŸ­ý?–D;§6k?®ÌÅþõ¤À?”ÞèÁu3?“g²’Pl?“Xy™b2«?•Àø·D+?–¯³F%]?.ªzu?޶$š‡ã?ƒ­àX[”Ì?ƒ1ž^ô€g?‰ó­v׿å?ŽÎPcÄWÕ@@*@(@*@<@;?ð?ð?ð?ð?ð?ð?ó–h`¿` ·Å]?4r$þƒä?HÑ¥Já"â@¦grÈ c@˜"XvVè?PšÃ¯ºÎ?]RŠKh¼é?“öÀvõÀB?¦£ Žäèd@Ÿožf}Þ@Œ@¢ Iº^@¢¾ùÛ"Ñ@¢ Iº^@¢²¢ÒÎ]@¢ Iº^@¢¦(§{,@¢ Iº^@¢¹Ji;@¢ Iº^@¢«c¹@¢ Iº^@¢«¨ Ö @”ÕdZ¬@”ÕiP€'@”ÕdZ¬@”ÕPKUÇ?@”ÕdZ¬@”ÔþB“¸@”ÕdZ¬@”ÕGúÒi@”ÕdZ¬@”Õ$“'¦ñ@”ÕdZ¬@”Õ<ˆ -¢@6>«6z@6a®pÁ4@3Ù‡+@3 ÷_Óm@2ûƧï²@2Ó_ïK:ï@2Þi­BÄ@2Çgü³?@2Þi­BÄ@2|ât£¢@2Þi­BÄ@1ût+/¸?~ì“?ÕÒJ?ž*pÌ@¾"?ªÓ vWa?Œ×6åÌ?˜nƒ¢Š¸?œ®•Ùû ³?}x—™ ?’;â9Ö?“;+Ìt"\?“ÍÌËdÏ@@,@*@@<@:?ð?ð?ð?ð?ð?ð¿må48 ¿v¼ -ü?O‹n[IY?R«üŸ>ãî@¢¸Æø+‰@”ÕTàÑöH?kl\£ú÷ó?pú3Í;M“?ÞóEèwS?äajX˜@Ÿdl¿‰„@@©XöE¡ÊÁ@©Xö‡+ @©XöE¡ÊÁ@©Xö»˜Çã@©XöE¡ÊÁ@©Xö»˜Çã@©XöE¡ÊÁ@©X÷KƧð@©XöE¡ÊÁ@©Xõ$Ý@©XöE¡ÊÁ@©Xö4ê@©Ò?|í‘h@©Ò?|í‘h@©Ò?|í‘h@©Ò@4mÅÖ@©Ò?|í‘h@©Ò@N¤¨Á@©Ò?|í‘h@©Ò?Š Þ@©Ò?|í‘h@©Ò@uöý"@©Ò?|í‘h@©Ò?|í‘h@4Ç>«6z@4Ç$tSŽô@0J^5?|î@0J^5?|î@0`A‰7L@0`A‰7L@.ð‰ 'RU@.ðU2a|@.ð‰ 'RU@.ð:û~‘@.ð‰ 'RU@.ð¸ºÇ?|öOÿÝ?¾‰máÚ?‘7[ä­?‹ÑqÔ@vÿ?òǹíT­?ë+ʦÜ_?|¬Çëý ?’NÛˆV(?ß‹…&?;ß $Þû?ß’ºèh!?›ªU3Îp?‚nâwfÿ?ŒÆò/¢äÍ?‚íWçé…?‚ð'ã:ÂÝ?†©b/bJö?†¼Š˜L¥÷@@@@@(@,?ð?ð?ð?ð?ð?ð¿ûÕñ?3…À?&c£Ê»HØ?̬re±\@©Xöl¤éè@©Ò?«»ÑÆ?F;ñušÌ?::Ĺv>?šÃ9Õ‘²‡?Øý¦¶X\@Ÿfëð7Ì@Ž@©ŒÂ\(ö@©ŒÅ¡ÊÀƒ@©ŒÂ\(ö@©ŒÁaä÷f@©ŒÂ\(ö@©ŒÁä÷eþ@©ŒÂ\(ö@©ŒÃS&@©ŒÂ\(ö@©ŒÁ½¥@©ŒÂ\(ö@©ŒÂMÒñª@ ËC•@ Ê=p£×@ ËC•@ Ê~ùÛ#@ ËC•@ ÌIº^5@ ËC•@ ËC,¥@ ËC•@ ËjçÕg@ ËC•@ ˹Œ~(@6:qÞi­C@68õÂ\)@2° Ä›¦@2ä%®æ2@197KƧð@1:Ô,<ží@0Œ¿±[W?@0Žp:û~‘@0Œ¿±[W?@0Ž_oÒ @0Œ¿±[W?@0Žšv?ð°–Ž]?¾‰máÚ?‘šÕU#?ŒÖ -Äȱ?‘5ø gµÒ?ô Î]V?ð°–Ž]?’‡Iš÷?|™,Ž!?°‹Œ÷€?‘ ·èf?¦QÎð\ã?ð*wjs—?ŒÛÏ·+?„A'Š_^?„ mŠmsi?‡L8õASÎ?‡2[síç?ð@@@@(@&?ð?ð?ð?ð?ð?ð¿8­-„?1eÔçÒ?2´$DNô€>íà:^ÆÄ‰@©ŒÂgs4Æ@ Ëg™i?A˘°ulñ>û¾boïÞ?}R ÄÎGÐ>ðXšÌÐaE@Ÿs˜åxa÷@@¤Û3¶E¡Ë@¤Û6E¡ÊÁ@¤Û3¶E¡ËÁ.„€@¤Û3¶E¡ËÁ.„€@¤Û3¶E¡ËÁ.„€@¤Û3¶E¡ËÁ.„€@¤Û3¶E¡ËÁ.„€@¦må`A‰@¦m~¸Që„@¦må`A‰Á.„€@¦må`A‰Á.„€@¦må`A‰Á.„€@¦må`A‰Á.„€@¦må`A‰Á.„€@7uS&Á¾@7P°ò{²þ@5}‘hr° Á.„M‰ûçm@5å`A‰7Á.„QnÙ‡@4 ù kºÁ.„NÜC,¥@4 ù kºÁ.„NÜC,¥@4 ù kºÁ.„NÜC,¥?™™™™™™š@8#˜@8¾:@8 >+@8Iç@8Ù?‡YÍ_@8Î÷@8i§@8Å@8S@8û—?„‘Za¹P@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@«ØŠ=p£×@«ØŠ=p£×@«ØŠ=p£×@«Ø‡ÈK]Í@«ØŠ=p£×@«ØÊÀƒ@«ØŠ=p£×@«Ø{šu@«ØŠ=p£×@«Øö”F@«ØŠ=p£×@«Ø$Ý/@¡`ÎÙ‡+@¡`ÎÙ‡+@¡`ÎÙ‡+@¡`Î.±Ä3@¡`ÎÙ‡+@¡`ÎzáI@¡`ÎÙ‡+@¡`Ïß;dY@¡`ÎÙ‡+@¡`Щ*0@¡`ÎÙ‡+@¡`Í«ŸU›@3 ]cˆe”@3 j~ùÛ#@/²-V@/ Iº^5?@.rn—Oß@.múCþ\’@.£¼ÓZ…ˆ@.›˜Çâ‚B@.£¼ÓZ…ˆ@.š^5?|î@.£¼ÓZ…ˆ@.›‹¬q ³?|¬Çëý ?Qdöÿô¼?“ï~í"?™ ­:>Co?–Õ“z‰öì?”º²¶;?|¬Çëý ?’›ÈÖÝ?ö”iåó¨?’.p»Cþ?’Bg4ð3f?ó‹P=´?‚oÁÆÜ§ö?Œáò¯ž¼ù?‚á²Olºý?„ªÎZ´?ˆ¾þúWZ‹?Š*ÊÔQãú@@@@@,@*?ð?ð?ð?ð?ð?ð¿d­GŸ’¾ã Π?Or^•ñwÆ?/“oQ*’@«Ø„ÛgÙ†@¡`Îï q\?or<ÐÚõ?O|ß˺ƒî?â êÀ©k}?©!QÈGÝ€@Ÿe” “׺@‘@«lýó¶E¢@«lþvÈ´9@«lýó¶E¢@«mƒn—@«lýó¶E¢@«m Iº^@«lýó¶E¢@«lüí‘hs@«lýó¶E¢@«lÿò䎋@«lýó¶E¢@«m[À8@«(‡+ @«(È´9X@«(‡+ @«(A [¿@«(‡+ @«(PHï@«(‡+ @«(àuöü@«(‡+ @«("Ðå`@«(‡+ @«(=Ùd@4(†YJôñ@4(*™0¾@2c÷ÎÙ‡@2a$Ý/@2t“t¼j@2q&éxÔþ@1ÔmÅÖ8†@1Ò•éá°Š@1ÔmÅÖ8†@1ÑG®zâ@1ÔmÅÖ8†@1Ñ×Ûô‡ý?€‚ñêã ?Eˆ‡ðó‹?”^RžpX?‹û…†_?‘¿ -Óñ›?‘¦ µÚ?|öOÿÝ?’j%ÓRa?”ß<ö¥?‘¼Øzé±ï?’êJ>áý?±—'¶Ü+?‚|׿pY?Œ¾»•lŽ?† - Ðló]?†3_¾ˆ?‰©OO ¨?„å;m7.@@@@@,@?ð?ð?ð?ð?ð?ð?0/''p?L%$ H?7:½·^û?A2@ßG]@«lþ»È—Ã@«(ùHŸ?VíæuR"?aÒ‚Xì Ñ?¹r»zÆ)?͵³áÔÛÒ@Ÿg0Õì¸ý@’@Ÿ¢NÙ‡+@Ÿ¢=Ó¼Ú°@Ÿ¢NÙ‡+Á.„€@Ÿ¢NÙ‡+Á.„€@Ÿ¢NÙ‡+Á.„€@Ÿ¢NÙ‡+Á.„€@Ÿ¢NÙ‡+Á.„€@Zž¸Që…@ZT‹@Zž¸Që…Á.„€@Zž¸Që…Á.„€@Zž¸Që…Á.„€@Zž¸Që…Á.„€@Zž¸Që…Á.„€@7>«6z@7»ÝA)ú@4«¥ãS÷ÏÁ.„M‰ûçm@4ˆ“t¼jÁ.„QnÙ‡@40–»˜ÇãÁ.„NÜC,¥@40–»˜ÇãÁ.„NÜC,¥@40–»˜ÇãÁ.„NÜC,¥?Œ1†YPÓ@8#˜@8¾:@8 >+@8Iç@8Ù?’ëà€l@8Î÷@8i§@8Å@8S@8û—?„D%aFy¼@8 * @8p÷@8¶@8 Ø@8 Ø@ ?ðøøøøøøøøøøøø“@¯aÏ\(õÃ@¯aΗOß@¯aÏ\(õÃ@¯aÑÎ^@¯aÏ\(õÃ@¯aÓMj@¯aÏ\(õÃ@¯aÔ¯O ƒ@¯aÏ\(õÃ@¯aÏ·éø@¯aÏ\(õÃ@¯aϪ͞…@«{¸Qì@«{Ðå`B@«{¸Qì@«{\(ö@«{¸Qì@«{×Ûôˆ@«{¸Qì@«{s×Ý@«{¸Qì@«{ÕfÏB@«{¸Qì@«{$ x@5í¥œàv@5çKƧï@2Ù‡+@2úCþ\’@1€å`A‰7@1[W>«6@1 -0U2a|@1“t¼j@1 -0U2a|@1y=Ùc@1 -0U2a|@1 ÞÑ·?|öOÿÝ?•ìspîî?’¿êvG¨½?Wø0 ¥?’š'†­`í?’?=ÆþÎò?„F/·ÿP5?’4 "ëžØ?‘ŽütÅÒ(?‡@Cvì×?‘ØèOÍ ì?‘õe\Š«p?„+£QKø?R©i»èi?ƒÆ×q„nð?„l¯¸‰ŒÎ?‡<û¡71?ˆCns¥ @@@@@,@,?ð?ð?ð?ð?ð?ð?Bø{.¸?SÜl?G “% L ?ï "äýì@¯aÐWºˆ@«{–=o"?h)Þt•y?=âyªz÷ð?ÚÛ¥]žS?€è£ Ž@ŸgØëÖ.I@”@«šô¼j~úÁ.„€@«šô¼j~ú@«šþ…àN@«šô¼j~ú@«šú^¬§Î@«šô¼j~ú@«›@Ðq·å@«šô¼j~ú@«›Ú @«šô¼j~ú@«›w½F@•+33333Á.„€@•+33333@•+q€cá@•+33333@•*–©ƒ@•+33333@•++¨äÜ)@•+33333@•, -#S‹`@•+33333@•,"Z$îû@7zqÞi­CÁ.„>¤µÜÆ@45ãS÷ÎÙ@3éîÒ7º@3ƒt¼j~ú@3:ÎÅ>…$@3L¿±[W?@2ûîMöÕÜ@3L¿±[W?@2û/Øu Í@3L¿±[W?@3â«Þ'@8J¨?¯‹Îˆé—`?¥IþQ‘§?¼wÇoÔê?Å¥ƒ·æ I?ÅÌ8Þ^Üž@8J¨?«´b–?¡˜d á?¼ÝМçõ®?Ãã`HlµØ?Æ \eeb@8p÷?¤`I›ÔM‡?–ñĺêñ?›Š•Hö¼X?¢iuòx_?  -6²[@&@"@,@<@;?ð?ð?ð?ð?ðøøøøøøøøøøøø•@¯¯ÌIº^5@¯¯ËƧïž@¯¯ÌIº^5@¯¯Ñ ²•ê@¯¯ÌIº^5@¯¯Ï–»˜@¯¯ÌIº^5@¯¯Ç“Ý—ö@¯¯ÌIº^5@¯¯ÅýŠÚº@¯¯ÌIº^5@¯¯Çï²-@©AÃn—@©AÂÐå`C@©AÃn—@©A Iº^@©AÃn—@©A½p£× -@©AÃn—@©AÂMÒñ«@©AÃn—@©AºÔ,<Ÿ@©AÃn—@©A¾¸Që†@5[¹Œ~($@5\„µÜÆ>@3uãS÷ÎÙ@3oÒòäŽ@3ï²-@3•$Ý@2YŒ~($ @2Týó¶E¢@2YŒ~($ @2UY³Ð|…@2YŒ~($ @2V€IQƒ?|¬Çëý ?—µ”öŒqÒ?•œ‘æ¦M?‘4ãM^?”Å¥ÒB–W?“¢¾_ÂÜ?|öOÿÝ?”ŸÚ²t©?”_й@’?’ƾ| ?“úaû]?’]Ðgµ0 -?‡9Â@0wæ?œ‘z¥æ?† - Ðló]?…p=¤J‰?‹¹ÇlŒ?‘4hÆpÉ„@@@@@(@*?ð?ð?ð?ð?ð?ð¿RrÓä¿RsÌ(?4 âdB˜?B ø» @¯¯ÉgÁÜv@©AÀ”ë¸?Sµ€"³9÷?bRéÝ%?±àz©©£?ÍÁ“Xi€ö@ŸeÛT‹Åè@–@¨Ó)ûçl‹@¨Ó)º^5?@¨Ó)ûçl‹@¨Ó€IS@¨Ó)ûçl‹@¨ÓµÜÆ?@¨Ó)ûçl‹@¨Óø7´¢@¨Ó)ûçl‹Á.„€@¨Ó)ûçl‹Á.„€@¡&×Oß;@¡&Ù‡+@¡&×Oß;@¡&ÙXbN@¡&×Oß;@¡&È´9X@¡&×Oß;@¡&Ð Ä›¥@¡&×Oß;Á.„€@¡&×Oß;Á.„€@7kµsê´@7oÅo@2«¥ãS÷Ï@2ŽùÛ"Ðå@1Æ“t¼@1¨7´¢3œ@1«xFÜ^@1pò{²þÆ@1«xFÜ^Á.„NÜC,¥@1«xFÜ^Á.„NÜC,¥?”¼íÒh??¢Û)Qé?—ø}òg?œÒø.D‡@8Iç@8Ù?¡ÅꯨŠT?¡i‹ë&6?”_й@’?± Çÿm -È@8S@8û—?†' -³}÷B?²É5†±ó?‹’Ú[ßõ?¡‹ áQ´?@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø—@­”µÂ\)@­”¶È´9X@­”µÂ\)@­”´ã¼Ó[@­”µÂ\)@­”»=ÈK@­”µÂ\)@­”·$tS@­”µÂ\)@­”´¼j~ú@­”µÂ\)@­”²ÊW§‡@¦I7Kƨ@¦H´9X@¦I7Kƨ@¦?—$tT@¦I7Kƨ@¦;=ÈL@¦I7Kƨ@¦?!-w2@¦I7Kƨ@¦=æšÔ-@¦I7Kƨ@¦A-w1‘@5–»˜È@5—$tS@30Ä›¥ãT@3/²-V@3t¼j~ú@3|„µÜÆ@2¡:’£S@2™­BÃÉï@2¡:’£S@2›ŸU›=@2¡:’£S@2à qv?€‚ñêã ?’ñ¼õì?‘âTÀÊS“?U›=ÈK?”#?3ÆÂƒ?“DŽèw–?€‚ñêã ?”2¦ww ?‘%gÇ¿µ?Y‡…—Ø?—?—³’sB?’Âuþ!BÖ?‚s@ˆaÚ?†¡HŸÊç?„W;RT?‰hS—p]Ð?‘˜M\ÿŠ?°4\ɵ@@@@@*@&?ð?ð?ð?ð?ð?ð¿Bã)}@¿amo|?4µÊ'Ä ?H+,‰9ý…@­”µÂƒ®0@¦Cª:kV?TwÀ[Ãr?h.²@âD?±b< -a1?ÖëûX¡ „@Ÿf¿U@û@˜@©biûçl‹Á.„€@©biûçl‹Á.„€@©biûçl‹Á.„€@©biûçl‹Á.„€@©biûçl‹Á.„€@©biûçl‹Á.„€@£ï¼j~ùÛÁ.„€@£ï¼j~ùÛÁ.„€@£ï¼j~ùÛÁ.„€@£ï¼j~ùÛÁ.„€@£ï¼j~ùÛÁ.„€@£ï¼j~ùÛÁ.„€@9>«6zÁ.„>¤µÜÆ@4xr° ÄœÁ.„M‰ûçm@3ÝV”Á.„QnÙ‡@2æYJôðØÁ.„NÜC,¥@2æYJôðØÁ.„NÜC,¥@2æYJôðØÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø™@¡Ã4¼j~ú@¡Ã4záG®@¡Ã4¼j~ú@¡Ã6E¡ÊÁ@¡Ã4¼j~ú@¡Ã6Ov`@¡Ã4¼j~ú@¡Ã6E¡ÊÂ@¡Ã4¼j~ú@¡Ã3g ù @¡Ã4¼j~ú@¡Ã3×Ûõ@«­V@«­V@«­V@«­jO@«­V@«¬cñA!@«­V@«®_oÒ@«­V@«¯ƒ{J#@«­V@«®ŠqÞj@0^Hè§ç@0^Ov_Ø®@-\j~ùÛ"@-\j~ùÛ!@-Ó¶E¡ÊÁ@-Ó@N¤¨Á@-p‰ 'RU@-o·éùs@-p‰ 'RU@-nóMj@-p‰ 'RU@-nŠqÞi®?É^³Dw'?ÖÈ ¼?‘4!Ÿ•p’?‹¹GüÞõ?‘õbÐ\?ÃwZL?ÐbMçê_x?’MœœN ?§^ ÿo˜?CÚ B÷?üÓqÔNŠ?]#ÍìO¤?€b¡´ñ@?Œ°¶.Ä+Æ?‚† SFò?ƒ†+ Å?†špk Y?†žóB» “@@@@@*@&?ð?ð?ð?ð?ð?ð¿TÁ8V?1Áüq”?=yºk?:˜MÉ~Ôg@¡Ã4˜êšþ@«®£Øª?Kð¶ªø¾;?I84Éo?“³n´^c?‹›®Qø@ŸsC{dw@š@¤ORn—P@¤ORñ©ûç@¤ORn—P@¤ORGE8ï@¤ORn—P@¤OU$Ü@¤ORn—P@¤OVR½<6@¤ORn—P@¤OVlô"@¤ORn—P@¤O]ŠÚ¹õ@«§l‹C–@«§l‹C–@«§l‹C–@««)^ž@«§l‹C–@«©“ àß@«§l‹C–@«©­BÃÉ@«§l‹C–@«ª~ùÛ$@«§l‹C–@«©ã¼@4è†YJôñ@4çâ‚@·€@2¦‡+ J@2§ÎÙ‡*@2'KƧïž@2'y¦µ @1ÜÚQÎ@1Ú’£S&@1ÜÚQÎ@1ØFÜ]d@1ÜÚQÎ@1Ö‡+ J?}Ñ¿ž,?“‹ë÷?’ª®pµ?’³Žbtx=?’°STðS?•Y‚¦\(?|¬Çëý ?•yom?•ÇØ¼áêZ?’ü#q\-v?’.<ù?’¨¢†¼ ¼?‚|׿pY?êzŽx?ŒÊ­#г_?‡¯½.SM?Šì¾ ;8´?‹¼`’ i2@@@@@&@(?ð?ð?ð?ð?ð?ð?YlÑt?Aãˆ??á†Gë’?) aÕÈ„@¤OUþeÐV@«¨­MÐ?_]ïý‰Û-?I¸ñΔ?Äk¾qûßÐ?5«iXº8@Ÿeì»R³*@›@«ÿ° Ä›¦Á.„€@«ÿ° Ä›¦@«ÿË)^ž@«ÿ° Ä›¦@«ÿǓݗö@«ÿ° Ä›¦@«ÿÁ‰7KÈ@«ÿ° Ä›¦@«ÿÊ @«ÿ° Ä›¦@«ÿÈðŽ@£/”záG®Á.„€@£/”záG®@£/µÜÆ?@£/”záG®@£/£ˆe”¯@£/”záG®@£/ŠÀƒo@£/”záG®@£/š6âë@£/”záG®@£/”¼@9=:’£Á.„>¤µÜÆ@5i‡+ @5ZôðØDÐ@4v§ï²-@4i#¢œwš@3«xFÜ^@3 å`A‰8@3«xFÜ^@3•Ϫ͞„@3«xFÜ^@3šOv`@8J¨?¢Ú>¨I ¿?°û}\ie?£à•ÒnÁ?£Mµ¼Ä1?¡úIä?^e@8J¨? us76Ùc?¢n®Ú| X?›‘Ûê\PK?­0d@Ïè‹?¥ <»Þ\@8p÷?¡Ö$•3É?š6v;vî?>æ¿Îï?£,ãR¯o?¥ÕS^^G>@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøøœ@£r»çl‹D@£r¼(õÂ@£r»çl‹D@£r½p£× -@£r»çl‹D@£r½IQ‚ª@£r»çl‹D@£r½cˆe–@£r»çl‹D@£r»šu@£r»çl‹D@£r»/ìVÖ@¥·+ Iº@¥·+C•@¥·+ Iº@¥·*³g ù@¥·+ Iº@¥·*ôðØF@¥·+ Iº@¥·+6z@¥·+ Iº@¥·+xFÜ@¥·+ Iº@¥·+C•@1¥öý!ÿ.@1¦ -¦L/„@)³t¼j~ù@)³üPH@'Ýó¶E¡Ë@'ÝÌcñA @'fL/ƒ{K@'e¼£n/@'fL/ƒ{K@'e¼£n/@'fL/ƒ{K@'eÉã½?É`¯&xŽ?ÉGãA­÷?‘ÌË>¯f?‹µ™eU!µ?òǹíT­?¸û:?ÐbV‡,?’˜‰%F²?€s8rÅ?7枪y7?ß’ºèh!?NÂò‚Ì`?€cPßQª?Œ¬Çëý ?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†ŠúЀ>(@@@@@,@*?ð?ð?ð?ð?ð?ð¿P¤‚ƒ>ÿòý ?8lÅ1±E±?Aj²o æ@£r¼…»b@¥·+NÓ©?G~ÓðîÑj?#/LÙÔÇ4?‹¦åaë%?@ukƒw@Ÿsè‡;‡@@¤l¸Ôýó¶@¤l¶“v@¤l¸Ôýó¶Á.„€@¤l¸Ôýó¶Á.„€@¤l¸Ôýó¶Á.„€@¤l¸Ôýó¶Á.„€@¤l¸Ôýó¶Á.„€@¢þâÐå`B@¢ÿ  Iº@¢þâÐå`BÁ.„€@¢þâÐå`BÁ.„€@¢þâÐå`BÁ.„€@¢þâÐå`BÁ.„€@¢þâÐå`BÁ.„€@9šÔ,<Ÿ@9‚©“ á@6k¥ãS÷ÏÁ.„M‰ûçm@6 ²-VÁ.„QnÙ‡@6 -0U2a|Á.„NÜC,¥@6 -0U2a|Á.„NÜC,¥@6 -0U2a|Á.„NÜC,¥?žŒÝÙ›P@8#˜@8¾:@8 >+@8Iç@8Ù?š•§q!U@8Î÷@8i§@8Å@8S@8û—?µ*”éÌ’@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøž@¡Ç…¡ÊÀƒ@¡Ç‚MÒñª@¡Ç…¡ÊÀƒ@¡Ç„Âø7µ@¡Ç…¡ÊÀƒ@¡Ç‹àÞÒ‰@¡Ç…¡ÊÀƒ@¡Ç‚¶®}V@¡Ç…¡ÊÀƒ@¡Ç~\‘ÑN@¡Ç…¡ÊÀƒ@¡ÇxQë…@¡úÞ¸Që…@¡úÞ5?|î@¡úÞ¸Që…@¡úã× -=q@¡úÞ¸Që…@¡úߊ ß@¡úÞ¸Që…@¡úèK]Ìd@¡úÞ¸Që…@¡úá‰7KÇ@¡úÞ¸Që…@¡úÜPHð@7šÔ,<Ÿ@78ï4Ö¢@3Ê^5?|í@3Æ_Ø­«Ÿ@2U`A‰7L@2TêJŒM@25µsê³h@23¯·éú@25µsê³h@22:)Çy§@25µsê³h@2-\ú¬Ùè?žˆ2}?“+ÄWè?“=P™Ê?“ׂa†Üü?”‰Wïÿ·?Ÿ@*Få?‚á²Olºü?˜&§dU(?‘Ûcu%ç+?”`íÖ†›?”¡S•Ÿ¯?•ÔWŒ°R¨?‚íWçé„?—E!Üý·'?ŠÇÿú?Q§ ç´Í?‰©OO ¨?Š—à `ž@@@@@*@*?ð?ð?ð?ð?ð?ð¿R®™´?@ÿµ°8?E|ì¬W(¢?TŲȺç‚@¡Ç€=˜.@¡úàJCx?d¦KÅ?t˜ø¾äÓO?ȯ¸ŒÿçL?ëº ÐŸ,ð@Ÿf[ØÌ9@Ÿ@£ƒð Ä›¦@£„Ä›¥ã@£ƒð Ä›¦@£ƒÞš@£ƒð Ä›¦@£ƒó3333@£ƒð Ä›¦@£ƒË’:)Æ@£ƒð Ä›¦@£ƒñœàu÷@£ƒð Ä›¦@£„ùÛ"Ò@«jt¼j~ú@«jnV“@«jt¼j~ú@«jnzáI@«jt¼j~ú@«j‹ÓÃa@«jt¼j~ú@«jmžƒä%@«jt¼j~ú@«jj#9Àì@«jt¼j~ú@«jSÃaA@8eöý!ÿ.@8b½<64@4J^5?|í@4L£n.²@3V”@3§Xâe@3L¿±[W?@3WOß;d@3L¿±[W?@3L£n.²@3L¿±[W?@38ð¹?–ªÎ­¡?–„Ø?8ˆ?¡ÙuüZÍ?§¶¡Àc?¨ƒ ¹´?³†Z Ü—?Ž=fA:?›Ò¦—†ž?©º?SRÏ?«­Îþl^%?˜ -†Y ë*?¸üTPš?¡ÿ¶?B ?¥\7e)?¨Y²Y¬Æñ?™/#ÕË®r?óRÏ4?™Øl›¹@@@@@(@&?ð?ð?ð?ð?ð?ð¿jñ3´¿W)éjð?zå=~Ý8A?Q4×±aÐ@£ƒõßGtF@«jk…ˆæ?™—Ç2H^?pêOã¡Y@íÇñ3àh?ÈYIQÈ–È@Ÿf’5¨¿@ @©áÑhr°!@©áB\(ö@©áÑhr°!@©áÊ Þ@©áÑhr°!@©áÆ$Ý/@©áÑhr°!@©áÈ Ô•@©áÑhr°!@©áËŸU›>@©áÑhr°!@©áÇ_oÒ @«ízáG®@«í|(õÂ@«ízáG®@«í á°‰ @«ízáG®@«í -Ížƒã@«ízáG®@«í?@«ízáG®@«í¾ß¤A@«ízáG®@«íü¹#¢@7wâ‚@·€@6È$ xG@3E?|í‘h@3=ÌcñA @2•`A‰7L@2—ö+jè@1î_oÒ @1ãÝ—ö+k@1î_oÒ @1ê)Çy¦µ@1î_oÒ @1ç8}¿H?áüBØ&³W?’@k=[?”lš5B¬î?ŽAtùð¥t?’¥.Kn Í?’¯-! )m?Ú. Íù#?”ï©ÛÉ?“?T¾¹µ ?”A8 Kú¿?’8,²ñ±T?•ÔWŒ°R¨?öªë˜Zj¯?ï7è-ÖR?„„OW°ó?‡¯½.SM?‰©OO ¨?$Ìj½BÙ@@@@@*@$?ð?ð?ð?ð?ð?ð?*ÁÎÄ0?L˜ò+ ?aTá¬OÄ[?oMÝò/]@©áÈØÌü“@«í -*5æ?p}‹© -›Z?{¦œXOà?ÕÔóíÙ•ê?çut%PC@ŸsC(mºM@¡@¡<¶È´9X@¡<¶È´9X@¡<¶È´9X@¡<±Fª?U@¡<¶È´9X@¡<°‡’ÃÏ@¡<¶È´9X@¡<º›¡»„@¡<¶È´9X@¡<¾üÊuš@¡<¶È´9X@¡<¯ Ê×V@œcS÷ÎÙ@œbÐå`C@œcS÷ÎÙ@œ~ ¨ -ð@œcS÷ÎÙ@œZ¶Ö@œcS÷ÎÙ@œK-z®8@œcS÷ÎÙ@œ*Â;a @œcS÷ÎÙ@œU‰4'A@3¿–»˜È@3¾á[ Ͼ@0…?|í‘h@0 ‚#+ @/´ýó¶E¢@/­Ž·¸UF@/åÉä@/zåsŸÑÉ@/åÉä@/…ˆÁ>™b@/åÉä@/yI×K( ?}@T˜ÁÎ¥?’é0§ÕÎq?‘S4zïÎs?‹Ó&=ø?]?‘ ó—4ˆw?•§2ðñ?|Ñb×¶@?”¦´´ç´?€€óì–'?P}^ˆU=?‘Ã-ß(?‘ãùR¿?‚r—Ge?‘ÓªÑýœ?„t(XW?ƒ3êp>?” ÝšÒi?“«=ºÜx@@$@@@.@1?ð?ð?ð?ð?ð?ð?@/íпl”w Þ?V¤¢ü!Æ?b¸è¸}@¡<¸KÁ.!@œRî8!?u¦W0ÀP?‚Oû‰[?öÙTÇV_—@¬[¿1Ó@ŸfPð @¢@®îûçl‹D@®îýp£× -@®îûçl‹D@®ï$Ý0@®îûçl‹D@®îþš@®îûçl‹D@®îÿ¾vÈ´@®îûçl‹D@®îûÀ6ã@®îûçl‹D@®îý!ÿ.I@£*¤Z¬@£*œí‘hs@£*¤Z¬@£*£× -=q@£*¤Z¬@£*¥ðoiD@£*¤Z¬@£*¡ä÷eþ@£*¤Z¬@£*¤Ý/¡@£*¤Z¬@£*¤÷eý‹@5T xFÜ@5PÑ·Xâ@2ã÷ÎÙ‡@2æµ '»@24“t¼j@28r° Äœ@1™Œ~($ @1›xFÜ^@1™Œ~($ @1šÀƒn˜@1™Œ~($ @1šÇË)_?€‚ñêã ?”SyÑûê?’µ<ëvar?Œ9‚Ù.?’»–j˜ú?‘C!ƒžÈ? Eˆ‡ðó‹?•jÒb¹¾®?“èËôy?Ä…à6 -æ?‘êë·áþA?‘C å;Ã?šÒÅšnê?‘ -òtMŠ?‡9Â@0wç?„ìsMQ(Œ?‡YÍ_?ˆ -¿„r©Ý@@@@@,@*?ð?ð?ð?ð?ð?ð¾ÿ£Ñ=?Z»÷‡,?;43¦ÿ¼K?4@ßùP@®îýšç÷€@£*¢óîf?`3èo¼0?MØGj·?Àú‘Ë\&?‘1¬fú4@Ÿmîp̧%@£@¢ªÆ§ï²@¢¨ A‰7L@¢ªÆ§ï²@¢¨¸ºÇË@¢ªÆ§ï²@¢¨Â Iº]@¢ªÆ§ï²@¢¨¼‘ÑN<@¢ªÆ§ï²@¢¨©Dg8@¢ªÆ§ï²@¢¨°|„µÞ@Ä+ Iº@Ì'l‹C–@Ä+ Iº@Ëóê³g @Ä+ Iº@ËÐHð@Ä+ Iº@ˈ1&éz@Ä+ Iº@Ì©“ á@Ä+ Iº@Ìu%F @7Û¹Œ~($@4fffff@4©‡+ @0”SŽóMj@4t¼j~ú@0 #¢œwš@3°–»˜Çã@/C,¥zxn@3°–»˜Çã@/87´¢3œ@3°–»˜Çã@/@>ØjO㛦@ŸdÙ®.×@¤@¢ôíV@¢ôì‹C•@¢ôíV@¢ôíjO@¢ôíV@¢ôíOß;d@¢ôíV@¢ôí¸ºÇ@¢ôíV@¢ô첕éâ@¢ôíV@¢ôì¥zxl@®Rn—P@®R° Ä@®Rn—P@®RÊW§‡@®Rn—P@®R•éá²@®Rn—P@®R䎊s@®Rn—P@®Rñ©ûè@®Rn—P@®R䎊r@0D¯O „M@0D¯O „M@*)7KƧï@*)*0U2b@)h1&éxÕ@)h Ô•+@(̲•éá±@(̘_ö•@(̲•éá±@(̲•éá²@(̲•éá±@(̲•éá±?É^žQ5P‚?Ï[äeÊxê?$ë.¦ÑÕ>ó>ƒ¼=eP@¢ôíL@Œ@®Rè“®ô?3>pzc‹y?3xÎà[?b+ù+ë>ý 7Z,ä@ŸsIѨZ@¥@­tÚ¬1@­tÞ5?|ï@­tÚ¬1@­tÐ£× ->@­tÚ¬1@­tÝ}¿H€@­tÚ¬1@­tߊ Þ@­tÚ¬1@­t؆YJö@­tÚ¬1@­tÞi­BÅ@¾« Iº@¾²-V@¾« Iº@¾©ûçl‹@¾« Iº@¾œ¬1'@¾« Iº@¾„M:“@¾« Iº@¾¹=Ùd@¾« Iº@¾—$tS@7-¥œàv@7/b¶®}V@4Å?|í‘h@4µ¸Që…@3ß²-V@3Ý}¿HÌ@4ý!ÿ.I@4¸Që…@4ý!ÿ.I@4'†Â&€ž@4ý!ÿ.I@4ƒ{J#:?‘â%ì˜ ä?•ßóV_Ü^?•|®6zj?©aµ`aÊ?¦p3/ ¤?š›dFÍ?}Ñ¿ž,?—8©$ -"º?™”uÀdª? Ñ¡b£?¾?¢ üb9Ú×? !™¡kz7?ŠÇÿú?•)1Îá_?³&Ô,ô?±å«Oÿ.­?¢ÈÀºn–¿?±GÔšÔj@@@@@,@ ?ð?ð?ð?ð?ð?ð¿%àJ]¿d‘þ›#?A^÷ÔÑ ?byì"@­tÝÍB'@¾§ÏP?c‹q[b?‚ð¦Óæµ?¯S6ƒ#i°?÷åÉ S z@Ÿfp_Gm£@¦@­7O\(õÃ@­7a$Ý0@­7O\(õÃ@­7WeýŠÛ@­7O\(õÃ@­7SMj@­7O\(õÃ@­7UY³Ð|@­7O\(õÃ@­7Mí(Œç@­7O\(õÃ@­7MBÃÉï@¡þå`A‰@¡þ¡$Ý/@¡þå`A‰@¡þ’n—P@¡þå`A‰@¡þ°ò{³@¡þå`A‰@¡þ•¨Xy>@¡þå`A‰@¡þ‰ 'R@¡þå`A‰@¡þ’:)Çz@9 Î_oÒ@9Fs×Ü@3ør° Äœ@3øK]Ìcñ@3q‰7Kƨ@3uzxl"h@3‚@·€5@3Që…¹@3‚@·€5@3‡+ J@3‚@·€5@38}¿I?´M ó¬^õ?’Z†Aži?˜U%ÛÌx?Ú¾ÉÛ²º?”§RXFÖf?˜Cíˆi- ?µÕjùq®p?“ÈÂ`?˜€OìØ¯i?@§[*^?”dápŠ?™J•Ø3ÈÖ?–¥}°i?\{ÏïŽ?†Æ‹™ÿ?ˆã1µR?ˆT“Ÿÿ?ŽNîV˜C&@@@@@(@,?ð?ð?ð?ð?ð?ð¿p—¿–ð¿ci+r?KH\•ß™&?Qþžô¿@­7Qõúcª@¡þ“º¥Ø?[@!)‚ ?aÚCÈB¹?©Éùªçu·?´ >îá½@Ÿp‡9>½@§@¢^¥`A‰7@¢^žvÈ´9@¢^¥`A‰7@¢]̲•éâ@¢^¥`A‰7@¢]ÚÔ,< @¢^¥`A‰7@¢]7ö+jè@¢^¥`A‰7Á.„€@¢^¥`A‰7Á.„€@¦«³3333@¦«¤›¥ãT@¦«³3333@¦¬f -¦L/@¦«³3333@¦«¼64@¦«³3333@¦«Ì‹C•@¦«³3333Á.„€@¦«³3333Á.„€@8·â‚@·€@8¹³Ð|„¶@4Ìí‘hr°@4+ÓÃa@@4~ùÛ"Ñ@3~ƒä%®æ@3kxFÜ^@3Ov_Ø®@3kxFÜ^Á.„NÜC,¥@3kxFÜ^Á.„NÜC,¥?|öOÿÝ?Å)—·#á?ß´UmsA?ÊyÄHá>c@8Iç@8Ù?¥K¶{Oÿ?¿l{׬?׉B,|̶?¼8‘F²µ@8S@8û—?±¶K¬ÞYæ?·z‡ÏÓJ?ÇæWüÌ©'?±/Ö…tÿ,@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø¨@­‰“t¼j@­‰”ýó¶F@­‰“t¼j@­‰®æ1ø¡@­‰“t¼j@­‰ÆL/ƒ{@­‰“t¼j@­‰­Òñ©ü@­‰“t¼j@­‰£¼l?@­‰“t¼j@­‰¢Õ$ô®@œ&MÒñ©ü@œ&M5¨Xy@œ&MÒñ©ü@œ&…8ï4×@œ&MÒñ©ü@œ&‡Ë)^@œ&MÒñ©ü@œ&qÞi­C@œ&MÒñ©ü@œ&{…¤—Å@œ&MÒñ©ü@œ&#pÅ¢@5–»˜È@5€SàO:<@3#÷ÎÙ‡@2ÿ¾vÈ´:@2~V“u@2V+jçÕg@2ý!ÿ.I@1ù 'RTa@2ý!ÿ.I@1ù£â2@2ý!ÿ.I@1õ®½ði?€Ã{s°úi?®ÖJ éf?¸þåx€+?£¯u]÷¥?£c‰Aqæ¤?¢H ¢N_Î?|çµB &€?º¹•»È?¹8䂪P$?¨F'^÷ŠD?§~c]–êl?™Æjð8g/?ƒÄV©äE ?ªájÔø$Û?¬¯¥´öE@©@¨° Ä›¦@¨°bMÒó@¨° Ä›¦@¨¯€‚è“@¨° Ä›¦@¨°YßB@¨° Ä›¦@¨±ú D@¨° Ä›¦@¨®Ý @¨° Ä›¦@¨¯™øX,@•ÒäZ¬@•Òã¼ÓZ†@•ÒäZ¬@•Ò彨>@•ÒäZ¬@•ÒäÅïðË@•ÒäZ¬@•ÒãôÓ`‚@•ÒäZ¬@•Òä;ÿfq@•ÒäZ¬@•ÒäÒ^µ@4zqÞi­C@4ziÜn¦@0Œí‘hr°@0Œó˜épq@0ï²-@0 /¡­W@.½Vlô"@.½ÞJü@.½Vlô"@.½’Ã&‹S@.½Vlô"@.½„M:”?|Ñb×¶@?ÐU£L p?‘1õ‡²"?‹ÁË…ÉT?ðgû*ã±?Ïà­î®š?|çµB &€?’Ø úR?U.VŽœ?FàQ"qH?Ù™r“‘?ZÒì#¼\?‚¨ò15?Œ°XI¬|!?‚ÄA„vÀ?‚ê¬Ù:âk?† Ýèƒ?†•‘d®Bæ@@(@(@,@:@:?ð?ð?ð?ð?ð?ð¿& ¸¤?*î¹`?)jou8IÜ>ìbýè¼C±@¨°ª{†@•Òãë‚2°?IJN˜?? îÒe±?¡eÚjCºé?%Åî&¬þ@Ÿfú0£³@ª@ªŠfffffÁ.„€@ªŠfffff@ªŠAohÜ@ªŠfffff@ªŠ\wškQ@ªŠfffff@ªŠi­BÄ@ªŠfffff@ª‰Ð‰ 'R@ªŠfffffÁ.„€@”Y#× -=qÁ.„€@”Y#× -=q@”XþÅm\û@”Y#× -=q@”Z!-w1@”Y#× -=q@”X>vÈ´9@”Y#× -=q@”X Iº^@”Y#× -=qÁ.„€@9¥öý!ÿ.Á.„>¤µÜÆ@4Œí‘hr°@4Ë’:)Ç@3â-V@3­ó¶E¡Ë@3cÉîËû@3*^5?|î@3cÉîËû@3E2a|Ú@3cÉîËûÁ.„NÜC,¥@8J¨?¶²ÅRž{•?Ã> -ØöA?ÀÔÒ’¢Ÿ?·oŠÀ‡”@8Ù@8J¨?³…±Û!ø?Ã>¦¹ý—?ÂtC½ãœ?®èÚB.ªå@8û—@8p÷?«Ÿ¾=X?¼°=É9?¥÷RãÅü^?®ï£îÏé@8 Ø@@@@*?ð?ð?ð?ðøøøøøøøøøøøø«@ªu·ÎÙ‡@ªu¬Iº^5@ªu·ÎÙ‡@ªu¹b¶®@ªu·ÎÙ‡@ªu²×sû@ªu·ÎÙ‡@ªu¾ÒˆÎp@ªu·ÎÙ‡@ªuÀƒn—@ªu·ÎÙ‡@ªuÁG®z@©‹wÎÙ‡@©‹}/Ÿ¾@©‹wÎÙ‡@©‹^ߤ?æ@©‹wÎÙ‡@©‹Që…¸@©‹wÎÙ‡@©‹mjO@©‹wÎÙ‡@©‹d›¥ãT@©‹wÎÙ‡@©‹gË)_@7òÃÉîËû@7æ1ø .@3E?|í‘h@3:u%F -@2d¼j~ùÛ@2X*™0¾@1Œ¿±[W?@1ë…¸R@1Œ¿±[W?@1}Oß;dZ@1Œ¿±[W?@1'»/ìW?|öOÿÝ?‘6 '8?•XYäý?r*ž¾Ž?—ÒGþUÀ?˜ÝÈYD? Eˆ‡ðó‹?’uß¿çÒ?—ˆ”„òõ¤?“AúìÊ„?—QÀ–Íù?œøD4f™?ëýK|æ?¬HO?…cü›Š×Õ?‡9 ƒ–’”?ˆk! ¨l?™GXêâ@@@@@,@,?ð?ð?ð?ð?ð?ð?u*3(h¿tPÑ -F?Nø<}Úå?SùT'÷µ@ªu»,àˆP@©‹mBbž?r+´n—­g?mœì±«Å?Þ œ/ÕïX?ÆÕe2‰ô@ŸkÚë¤J@¬@¢´®záH@¢´¯\(õÃ@¢´®záH@¢´¯Òòå@¢´®záH@¢´®;Í5¨@¢´®záH@¢´®¤¨ÁU@¢´®záH@¢´­\ú¬Ú@¢´®záH@¢´¬ô!-@¨&ŸQì@¨&¿;dZ@¨&ŸQì@¨&ÈË’:@¨&ŸQì@¨&ÅF -¦L@¨&ŸQì@¨&Ƶ (@¨&ŸQì@¨&Æ$Ý/@¨&ŸQì@¨&Åm\ú®@7 ]cˆe”@7y¦µ @2’ Iº^5@2‘×Ûô‡ü@2U`A‰7L@2UÜÆ?@15µsê³h@16YJôðØ@15µsê³h@168†YJõ@15µsê³h@16“t¼?‡YÍ_?ûJ`ÕYð?‘£Ä›è?Œ2ÌUÃT?’(æ„+Zk?’ïJ8Èž?гá‡}?’Q_Ú¸FN?ŽËÜ¿€?’ÁÛ/’:?‘ØèOÍ ì?‘C å;Ã?•bkòì?3I¶#i?…~ÆÎÇ$‡?†3_¾ˆ?‡YÍ_?ˆ©{2¡Î@@@@@,@*?ð?ð?ð?ð?ð?ð¿?p{ø?W¦D=?<ýž•ø?Byñ;­°@¢´®<›â¤@¨&ÃÈ’Ì?88obtÝ?bF4Í Š?t´çúÙ]†?Äøß"D@Ÿj\†ñºW@­@ ÔÎÙ‡+@ ÔÑ&éxÕ@ ÔÎÙ‡+@ ÔÛxÄX¬@ ÔÎÙ‡+@ ÔÝ6 ¤·@ ÔÎÙ‡+@ ÔকǞ@ ÔÎÙ‡+@ ÔÐ?îî @ ÔÎÙ‡+@ ÔΣ€Ñ@§+Ðå`A‰@§+ÐK¡Ðl@§+Ðå`A‰@§+é¡ÝPí@§+Ðå`A‰@§+ð9Û’@§+Ðå`A‰@§+âRû»@§+Ðå`A‰@§+×ÛB¬@§+Ðå`A‰@§+îÍ6\@6ð4mÅÖ8@6ñÝ$‰Ù¢@2õãS÷ÎÙ@2燛SZ¦@2²-V@2;6K.@1¸DЩ*@1¥•Ö .T@1¸DЩ*@1¨àç%$@1¸DЩ*@1ª³|òà?ƒ_ÿKt˜à?™º0–„7Ä?—DÊŠ,?ŒÃ0íj+ä?’x††d?’läËU?ƒ…†r÷šâ?©1èÂéé?¢š¦ðÓÈ?í¹a0 ”?‘èçý>"?žŒ®Û- ?†¡ÎUë##?ð¾¾LE?žó³Ëö?VDx-~¥?‹è¹”†?—šú]‡…_@@"@$@@0@2?ð?ð?ð?ð?ð?ð?5ý P?ph=@€?dZÌx¬V¢?aá¼T1õC@ ÔÔ:måÞ@§+Ùºô]b?ƒ²•†Q?!n­ *š@ì^²zÚ@.ÖRähR@Ÿg^ÛŽŠL@®@ sY‡+@ sS3333@ sY‡+Á.„€@ sY‡+Á.„€@ sY‡+Á.„€@ sY‡+Á.„€@ sY‡+Á.„€@Ÿ§hr° Å@Ÿ§cS÷ÎÙ@Ÿ§hr° ÅÁ.„€@Ÿ§hr° ÅÁ.„€@Ÿ§hr° ÅÁ.„€@Ÿ§hr° ÅÁ.„€@Ÿ§hr° ÅÁ.„€@7>«6z@6ì¾ß¤@@3xr° ÄœÁ.„M‰ûçm@2>V“uÁ.„QnÙ‡@1ÔmÅÖ8†Á.„NÜC,¥@1ÔmÅÖ8†Á.„NÜC,¥@1ÔmÅÖ8†Á.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø¯@¤HaÊÀƒ@¤HaÊÀƒ@¤HaÊÀƒ@¤Haä÷eÿ@¤HaÊÀƒ@¤Ha×Ûôˆ@¤HaÊÀƒ@¤Hb@·€4@¤HaÊÀƒ@¤Ha-w1@¤HaÊÀƒ@¤Hbe+Ô@¤þ(õÂ\@¤þ(õÂ\@¤þ(õÂ\@¤þ(õÂ\@¤þ(õÂ\@¤þ)*0U1@¤þ(õÂ\@¤þ%S&Â@¤þ(õÂ\@¤þ'»/ìW@¤þ(õÂ\@¤þ(Œç°@2D¯O „M@2D¼j~ùÛ@0µãS÷ÎÙ@0µÏªÍž„@0ï²-@0´¢3œ@0Þi­BÄ@0N;Í5¨@0Þi­BÄ@0ÑN;Í6@0Þi­BÄ@0ÊÀƒo?É^žQ5P‚?°çR;?‘\H{gX ?ŒÖ -Äȱ?‘§›ßÉîj?‘W×ý°A?ÐbMçê_x?’ -‰¸Ì?Å)Ì_“?‘~¬Àm?ó?‘\{3>Ôa?ó‹P=´?€cPßQª?Œ¸†‡ÄÅ?‚ù…žÄ`x?ƒì%­¹Ï‘?‡<û¡71?†ïRÉv‘Ñ@@@@@*@*?ð?ð?ð?ð?ð?ð¿"*À?V‚â*?4¤¥ð)zË?2Ÿ YÏCÄ@¤Haå#‰@¤þ' —— ?Cæ‡I²-?A‡ 륕?öÒìán?xHDØ}`T@Ÿsb^Xö@°@Ÿc‡+ J@Ÿc…¡ÊÀ„@Ÿc‡+ JÁ.„€@Ÿc‡+ JÁ.„€@Ÿc‡+ JÁ.„€@Ÿc‡+ JÁ.„€@Ÿc‡+ JÁ.„€@Ÿ9¦éxÔþ@Ÿ9»çl‹D@Ÿ9¦éxÔþÁ.„€@Ÿ9¦éxÔþÁ.„€@Ÿ9¦éxÔþÁ.„€@Ÿ9¦éxÔþÁ.„€@Ÿ9¦éxÔþÁ.„€@7D¯O „M@7HË’:*@4‡ÎÙ‡+Á.„M‰ûçm@4_²-VÁ.„QnÙ‡@3Åœàu÷Á.„NÜC,¥@3Åœàu÷Á.„NÜC,¥@3Åœàu÷Á.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø±@¯J=p£×@¯J=p£×@¯J=p£×Á.„€@¯J=p£×Á.„€@¯J=p£×Á.„€@¯J=p£×Á.„€@¯J=p£×Á.„€@¡VIº^5?@¡VIxÔýô@¡VIº^5?Á.„€@¡VIº^5?Á.„€@¡VIº^5?Á.„€@¡VIº^5?Á.„€@¡VIº^5?Á.„€@3G>«6z@3GæšÔ-@1áhr° ÄÁ.„M‰ûçm@1éÛ"Ðå`Á.„QnÙ‡@1Œ~($ Á.„NÜC,¥@1Œ~($ Á.„NÜC,¥@1Œ~($ Á.„NÜC,¥?|¬Çëý @8#˜@8¾:@8 >+@8Iç@8Ù?|öOÿÝ@8Î÷@8i§@8Å@8S@8û—?‚yî8Á#@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø²@¢» A‰7L@¢»'®zá@¢» A‰7L@¢»2䎊r@¢» A‰7L@¢»($ x@¢» A‰7L@¢»®¾ß¤@@¢» A‰7L@¢»Ov_Ø®@¢» A‰7L@¢»VâëC@¨z'l‹C–@¨zŸ¾w@¨z'l‹C–@¨z•L˜_@¨z'l‹C–@¨z'8}¿@¨z'l‹C–@¨z=—ö+k@¨z'l‹C–@¨zl‹C–@¨z'l‹C–@¨zS&Ã@6õS&Á¾@6ÕÉã½@4?|í‘h@4n—Oß@3b-V@3vÁ½¥@3‚@·€5@3(Ë’:*@3‚@·€5@3œàu÷@3‚@·€5@2ð[À6ã?|öOÿÝ?±(¬úÝ?¹EïZS‹)?¿™C‰Ü?²¯oÊA>?»̇Ùa?¦NIÉ®š?«Ñ]¼‘’?¡œåVÉh?ªò<8?®¶h†i¾m?¯I$ŠP ‹?¢š'†­`í?µK¶{Oÿ?²+HŽKdÅ?¶ágw_؆?½XSª]ÿ•?Ã&A@% @@@@@&@(?ð?ð?ð?ð?ð?ð?‹F¤ÏÇ@¿Oþ¼ñ?€É ài?€–/„>ä @¢»CŸt˜›@¨z Ï?¡£ÓñtÓ?Ÿç ‚óX@ˆÆ¤ð @@Û1膄@Ÿf@ÒO'n@³@¬ƒÄ“t¼Á.„€@¬ƒÄ“t¼@¬ƒïŸ¾w@¬ƒÄ“t¼@¬ƒÍÒñ©ý@¬ƒÄ“t¼@¬ƒÆYJôñ@¬ƒÄ“t¼@¬ƒÉùrG@¬ƒÄ“t¼@¬ƒÁG®z@§·KƧðÁ.„€@§·KƧð@§ˆ>BZï@§·KƧð@§˜üPH@§·KƧð@§Ÿ±[W?@§·KƧð@§¨Œç°@§·KƧð@§«Æ§ïž@9 xFÜÁ.„>¤µÜÆ@3Å?|í‘h@3²° Ä›¦@2ƒt¼j~ú@2xbMÒò@1Š0U2a|@14Ö¡aå@1Š0U2a|@1@N¤©@1Š0U2a|@1‚ZîcŠ@8J¨?°Uíù˜&? õ/ ebà?F?H´>©?”óÆ»1Ta?–"ûe”M@8J¨?¬Ö ¿_øË?›«9ØYº,?š‰+D¨x?’êJ>áý?‘–íÍQÜ@8p÷?¡"ÒIHÛœ?’-BR1Å?‹h¢íc„„?‘ÔþÆvI‡?’3¨£„È@@@@"@ ?ð?ð?ð?ð?ðøøøøøøøøøøøø´@¥æÛ¥ãSø@¥æÝp£× -@¥æÛ¥ãSø@¥æËxFÝ@¥æÛ¥ãSø@¥æÙ¦µ @¥æÛ¥ãSø@¥ææµ (@¥æÛ¥ãSø@¥æà-à @¥æÛ¥ãSø@¥æ×ÎÙ‡@ ®Rñ©ûç@ ®OŸ¾w@ ®Rñ©ûç@ ®=cˆe•@ ®Rñ©ûç@ ®b&€I@ ®Rñ©ûç@ ®Aò×s@ ®Rñ©ûç@ ®Z)Çy§@ ®Rñ©ûç@ ®]²-V@7ÉÎ_oÒ@7Èâe+Ô@4û Iº^@5æ1ø @3´“t¼j@3¶z–¼@3£ÉîËû@3Ÿ–»˜È@3£ÉîËû@3oiDg8@3£ÉîËû@3•‡“Ý—ö?1·†Æjñ?­ìªJý‘?šQ"Äš%?¢50«åµÎ?§?7¡â±?£¸½X—Œ?¤I~Óy‘?¶™~ˆFs?¦oi(¢î? ô%bB§Û?°±îã"?¦kxÜ““?‚á²Olºü?ª‡ªfƒ‚?šWÔ\æ%¢?¤DúÚ`?®,ÐZ´¹?¡‘8²™ç@@@@@&@$?ð?ð?ð?ð?ð?ð?&ʵ ?f›×:?Ut› ²eÔ?pB’`Ä@¥æÞ@bü@ ®NE¶+?ySÒì–?ŒÌñª=¥ü?Ön”ëzT?íhaj¬è@Ÿi¦ùâní@µ@¯F•%@¯F“t¼@¯F•%@¯F€:ß5@¯F•%@¯FÏf¡À@¯F•%@¯F‡ª‰@¯F•%@¯F*‚ü:@¯F•%@¯FÏ=†@•Ƨï²-@•ƧîQyR@•Ƨï²-@•ƨÊRÝ@•Ƨï²-@•Ʀûü¶d@•Ƨï²-@•ƨ -™ö@•Ƨï²-@•Ƨí[+Û@•Ƨï²-@•ƧÁœ@3«µsê´@3«)^ž@1pÄ›¥ãT@1p¦âô-Þ@0)Û"Ðå`@0)ˆn t@/åÉä@/P3;@/åÉä@/ϲ+ì@/åÉä@/cþ -ºÂ?}@T˜ÁÎ¥?å- ?‘/NÇ‹?ŒL7Š÷?þÞâ(á¸?ÄQg–HÄ?|¬Æ Væ?’ ¦ï)óè?¤¯Õ”öù?6¦K'Y -?á¥,Uw¯?sîÇ0êÒ?‚|´ †Ë#?Œ×ÑŸTŸ?‚­ôÌbø‚?‚æVSà -x?†–9Ζ{?†¬?³$ë@@,@*@(@:@9?ð?ð?ð?ð?ð?ð¿@Í÷¾àèŠ €>öéÓ­ÙŸ>é!TIJm~@¯F÷qéÞ@•Ƨè÷Á?ÐàÐ7? ›ÀGFF?;ù¥Åyâ>?!mœ»%z@ŸfýBåº*@¶@¬[ Ƨïž@¬[ ÌÌÌÍ@¬[ Ƨïž@¬[;Í5¨@¬[ Ƨïž@¬[4Ö¡b@¬[ Ƨïž@¬[ Ô•+@¬[ Ƨïž@¬[ ^ž @¬[ Ƨïž@¬[ Iº^5@¬rß¾vÈ´@¬rÝ/Ÿ¾@¬rß¾vÈ´@¬rèðŽ@¬rß¾vÈ´@¬rßb¶®}@¬rß¾vÈ´@¬r唯O@¬rß¾vÈ´@¬rÝŠÚ¹ö@¬rß¾vÈ´@¬ráaä÷e@6·â‚@·€@6¸è§æ›@4W+ Iº@4Y³Ð|„¶@3ÐA‰7KÇ@3ÒZîcŠ@3Eœàu÷@3GæšÔ,@3Eœàu÷@3DðØDÐ@3Eœàu÷@3Eœàu÷?ˆÿÀ)T¿Æ?–[‹Å ?’d3ð"7?Wø0 ¥?”#?3ÆÂƒ?”1Ÿøš?}Ñ¿ž,?–ÖÀeªw?—ÿfFº?”‘v»?” E®!—?•}ç›–X?Ž“‹}Ty?“êXÔ #{?†aÞàI*•?ŒÅÐ7N³¬?IÏáå$?’Oûh´6c@@@@@(@*?ð?ð?ð?ð?ð?ð¿=6(Þ°?LiH› ?>%KÁÏò?K1ÞúÏž¤@¬[ ?L«s@¬rßuŽ¡Ñ?\(ë¹®?lë.ÅÝÁÓ?¹Þ¬ÔKž?Üç¿6γ@Ÿh§e`@·@®]²-V@®]²-V@®]²-V@®^6Gt@®]²-V@®^ ×Q³@®]²-V@®\e²í@®]²-V@®Y|ß8@®]²-V@®Ywß+@•ý$Ý/@•ýؤT@•ý$Ý/@•ý|p£­@•ý$Ý/@•ý~°‰@•ý$Ý/@•ý{/«ßÙ@•ý$Ý/@•ýzǧ€@•ý$Ý/@•ý|‚V|k@3ºqÞi­C@3º…‡“ݘ@2J^5?|í@2Dž?h@1ÒÐå`A‰@1ѲƒÎ@0î_oÒ @0êŠÅÁ?Ñ@0î_oÒ @0ìzÖq±@0î_oÒ @0ìàv¶M'?}@T˜ÁÎ¥?‘q ªÖ‘?‘FxÌ+IÕ?‹Ð Û¸ig?‘˜DH/7¨?‘y“>Ôm?|¬Æ Væ?“Á¼ó!T?¥CÖ÷W?—WHF,ó?‘}é†ëóv?{8–õä?‚nݺªšG?ÁµFG?ƒ¸‹–æ?ƒ?¾$ɘ1?‡ñîŃH?‡ IÛµ­p@@$@(@"@6@1?ð?ð?ð?ð?ð?ð¿M²ñø¿D–—Xz?'ã q·z@?*Ò(8vK@®[Õå[ª@•ý~ã|?G­()”1â?KXŸLÏÎÐ?°ÐXTÈ?£ÈêÔXº@ŸfÜ#€b[@¸@­ÄÐbMÒò@­ÄÐbMÒò@­ÄÐbMÒò@­ÄÑÄ2ÊX@­ÄÐbMÒò@­ÄÕ*™2@­ÄÐbMÒò@­ÄÎ.±Ä3@­ÄÐbMÒò@­ÄÎ}Vlô@­ÄÐbMÒò@­ÄÌô!-@¤ôã× -=q@¤ôã•%@¤ôã× -=q@¤ôâu%F @¤ôã× -=q@¤ôéùrG@¤ôã× -=q@¤ôß¾vÈ´@¤ôã× -=q@¤ôá½¥@¤ôã× -=q@¤ôâh Ô•@6‚ò䎊@6‚£S&@3+¥ãS÷Ï@3+P°ò{²@2—ï²-@2˜è§æ›@2OO „M@2N¤¨ÁTÊ@2OO „M@2NOv_Ø®@2OO „M@2NOv_Ø®?ˆÿÀ)T¿Æ?‘u:|ñ²¨?”Ä0óçî? Ð ÷Ž ?“r {#¥&?“ÚÁRš )?Ž=fA:?“$i «%h?’Qÿc -?“ŠH#=?” E®!—?’j“O’I?‚nâwfÿ?ŽátÖÁ»‡?„ËD(ºp?‡ÕZ›µûÜ?ˆ0&YÊEd?Š|)-}í(@@@@@*@*?ð?ð?ð?ð?ð?ð¿Dåß¿5#Y¾P?!é¦){¡­?<áX¦O¿ï@­ÄΣlo0@¤ôâË( -?A‚•z$z–?\f¦¸ïî?‚ ™AÀ­‹?³ÿÈöFG@Ÿjtö©ú@¹@¯í‘hr°@¯‘ðÕ¥ñ@¯í‘hr°@¯cI]Ñß@¯í‘hr°@¯ÀJϽš@¯í‘hr°@¯·TU/@¯í‘hr°@¯ì;„݇@¯í‘hr°@¯lÖJ{+@–ÕJÀƒo@–Õ6E¡ÊÂ@–ÕJÀƒo@–ÖQèâíò@–ÕJÀƒo@–ÕâTkq@–ÕJÀƒo@–ÕÉ”úž@–ÕJÀƒo@–Õqÿ°î@–ÕJÀƒo@–ÖJ;ˆŸ@8÷â‚@·€@8õÆ*»IA@4½‘hr° @4z#ñ„yù@3A‰7KÇ@3Tíœg–-@2ÏO „M@2›˜¥—@2ÏO „M@2¤g¦êÐ@2ÏO „M@2 ôûqª?µ…7YuÍì?Åa%Ü莠?´Ë`[þŠ?«c¿ÚV?•Ë=½%uÐ?Ìã*¹~?Ÿ>KtAÿ?ÄeTëC?½ÄXx+Á?·“2ƒhe?•ÎJèÃæÃ?Â-=~º·?ÁȧÄí£?¡;’MÕšw?–¢öúAº²?•Mu]P%®?»f=ä›®?«ø–Oþú@@(@,@,@5@7?ð?ð?ð?ð?ð?ð?Pø“ -?v™0$¾?lõA˜@¹?sôÈðÑ­@¯åK–z@–Õiv§Ë?¡›ù7Ê?’!×ê1@L¡üxèP@±b×Öð@Ÿm§]Ó@º@®æùÛ"Ðå@®æÍV@®æùÛ"Ðå@®æþƒä%¯@®æùÛ"Ðå@®çªdÂø@®æùÛ"Ðå@®æûdZ¬@®æùÛ"Ðå@®æú¬1@®æùÛ"Ðå@®æ÷>«6{@¬"ÌIº^5@¬"œí‘hr@¬"ÌIº^5@¬"ÉùrF@¬"ÌIº^5@¬"Ð:û~‘@¬"ÌIº^5@¬"ÊW§†Â@¬"ÌIº^5@¬"Ì~($ -@¬"ÌIº^5@¬"Í‘hr¯@7°4mÅÖ8@7‡¯·é@3R Iº^5@3R•éá°‰@2Ÿ²-V@2 °ò{²ÿ@28DЩ*@29xÔýó¶@28DЩ*@2:¬1'@28DЩ*@29‡+ ?´Ð3¥}Å?’Qÿc -?‘K]Ã4?Œ9‚Ù.?’ÒuèçxY?’»«ÒñŒ?”ä¸zé—?”&OÖýæï?ß‹…&?Ë{4æk?“uR4ìH?‘êey°úà?´:Fõa¢á?ÉGãA­ø?…ÑTë0Ô?…<ò N ?‰®ââP\?ˆk! ¨l@@@@@*@(?ð?ð?ð?ð?ð?ð?A€"„?a¹³#?mÞm³z?`•G”b{@®æùX7qV@¬"Ës~µ?~¯:­œI?p æs¨—?ô ü:ŽöŽ?ÒÆX—a¦@Ÿr¢Ýµ)@»@¦ø~ùÛ"Ñ@¦ø;dZ@¦ø~ùÛ"Ñ@¦ø€D(Mý@¦ø~ùÛ"Ñ@¦ø€8SVE@¦ø~ùÛ"Ñ@¦ø€%³œ¦@¦ø~ùÛ"Ñ@¦ø~»mš@¦ø~ùÛ"Ñ@¦ø}æšÔ-@•²'ï²-@•²'ï²-@•²'ï²-@•²'†Â&‚@•²'ï²-@•²(1&éy@•²'ï²-@•²'Øåó@•²'ï²-@•²'Â#›@•²'ï²-@•²(PïÝ@+Ùb¶®@+Ùb¶®@%Gï²-@%Gï²-@#N—Oß;@#N—Oß;@#`ªdÂù@#g8}À@#`ªdÂù@#`ªdÂù@#`ªdÂù@#`ªdÂù?É^¨¯Âj?Á؆Qùd?‘c“Ô?‹©`ƆƵ?çzn~1?²ê¶vQS?ÐbMÝn½?’ªK‹}?lÒ:¼?/ÑÕ -Ä?μšjH0?I¼ì'ô%?€bMÔŠ»?Œ¬ (ÇÊ¢?‚n¼Õ‰W?‚âc[ø€?†‡I‚ÿ¯Û?†‡I‚ÿ¯Û@@(@*@(@;@:?ð?ð?ð?ð?ð?ð¿P‹…A?JF(?1m76òm“?¿ô›Šâ@¦ø~ß)&@•²'âä -Ÿ?@Âì+'?±qlð?{©+ßj€P?»¡”ØJî@Ÿsäòº@¼@¤ËâMÒñª@¤Ëç®zá@¤ËâMÒñª@¤ËÞ¸Që…@¤ËâMÒñª@¤ËâÐå`B@¤ËâMÒñª@¤ËÞÒˆÎp@¤ËâMÒñª@¤Ëâ‚@·@¤ËâMÒñª@¤ËâZîc!@«­_;dZ@«­dZ¬@«­_;dZ@«­\í‘hr@«­_;dZ@«­ixÔýó@«­_;dZ@«­`6âê@«­_;dZ@«­aä÷eÿ@«­_;dZ@«­a [À@7Ç>«6z@7Åzxl"h@3‡ÎÙ‡+@3‚a|ÚQ@3Ct¼j~ú@35oi@2Eœàu÷@2<ô!-x@2Eœàu÷@2Ezxl"h@2Eœàu÷@2E¼£n/?¦NIÉ®š?‘6 '8?–™@^Ú¢?ޝ“¶¶ÒÍ?’êÔÒ?’€ú¤ˆ4 ?|¬Çëý ?”‡r¦5MS?¢K‹´ºe?—QÀ–Íù?“NM–8/?’„³GÓ’?„+£QKø?ÉGãA­ø?‹‘+-/Ý?ˆÝíá‰?Š*ÊÔQãú?гá‡}@@@@@*@(?ð?ð?ð?ð?ð?ð?0˜1€¿GwíY(?U& ø‹Ûè?/ˉ¼ª@¤Ëá.ýÕ€@«­añÉ­ÿ?iØøÝ>Z?UYaÀÝ£?ËIùÖ«ïc?¥ÜMÏS:Ú@Ÿo@‚ @½@£nâMÒñª@£nâMÒñª@£nâMÒñª@£n䎊qß@£nâMÒñª@£náÊÀƒ@£nâMÒñª@£nãn.±Ã@£nâMÒñª@£ná×Ûôˆ@£nâMÒñª@£náÊÀƒ@ ‚^¸Që…@ ‚_;dZ@ ‚^¸Që…@ ‚^ž™@ ‚^¸Që…@ ‚^ í(@ ‚^¸Që…@ ‚]ÌcñA@ ‚^¸Që…@ ‚_ö”F@ ‚^¸Që…@ ‚^ùÛ"Ñ@4Bò䎊@4B3œ¾à@/žùÛ"Ðå@/žvÈ´9X@/DZ¬1@/D“t¼k@-£¼ÓZ…ˆ@-¢ÃÉîËü@-£¼ÓZ…ˆ@-£FÜ]c‰@-£¼ÓZ…ˆ@-£S÷ÎÙ?€‚ñêã ?Ì&ÏøHÃ?‘Ûü†Nã?‹ë¤½?‡á?ÿ £‰¸9?Ðýð^–Ö?€‚ñêã ?’MœœN ?r¼Jsž?EÇàÔPà?‘Ú‚ýc¯?hï,ðà?‚Ÿ JŠÅ?ŒöOÿÝ?‚yî8Á$?‚æÊ¬vã?†Ë¢L1Ù?†£îž«î@@@@@*@(?ð?ð?ð?ð?ð?ð¿?°¶€¿.j“?)¬½êS†E?$×Â6¤7@£nâ^?@”@ ‚^ãÍuF?I¯4UÈ?EmLž-gr?ŸýœGÈ;?•3ÊK‹¢u@Ÿgìjvx—@¾@¦×Â\(ö@¦×¾5?|î@¦×Â\(öÁ.„€@¦×Â\(öÁ.„€@¦×Â\(öÁ.„€@¦×Â\(ö@¦×Çï²-@¦×Â\(ö@¦×¿¾vÈ´@¯‰éûçl‹@¯‰æ§ï²@¯‰éûçl‹Á.„€@¯‰éûçl‹Á.„€@¯‰éûçl‹Á.„€@¯‰éûçl‹@¯‰Û¥ãSø@¯‰éûçl‹@¯‰ØÔýó¶@6Û¹Œ~($@6àªdÂø8@3c÷ÎÙ‡Á.„M‰ûçm@3nùÛ"ÐåÁ.„QnÙ‡@2ó&Á½¥Á.„NÜC,¥@2ó&Á½¥@2ùŒ~($ @2ó&Á½¥@2ú0U2a|?š•§q!U@8#˜@8¾:@8 >+?éDEâ©×?‘W_Ì?1·†Æjñ@8Î÷@8i§@8Å?”dápŠ?‘"›ö?¢Ì÷y\ÛÎ@8 * @8p÷@8¶?™^ÓnÔl©?”¦”x£b@@@?ð?ð?ðøøøøøøøøøøøø¿@¨6ËÆ§ïž@¨6ÌÌÌÌÍ@¨6ËÆ§ïž@¨6É^ž -@¨6ËÆ§ïž@¨6ÊçÕfÏ@¨6ËÆ§ïž@¨6ÊôðØE@¨6ËÆ§ïž@¨6ÌIº^5@¨6ËÆ§ïž@¨6ÊçÕfÏ@¡¿‰7KÇ@¡¿§ï±@¡¿‰7KÇ@¡¿n.±Ã@¡¿‰7KÇ@¡¿n—Ž@¡¿‰7KÇ@¡¿|ÚQ@¡¿‰7KÇ@¡¿uöý"@¡¿‰7KÇ@¡¿-à @6h†YJôñ@6fR½<6@2xr° Äœ@2x$ xG@1~V“u@1}Òñ©ûç@1(è§æ›@1)Çy¦µ @1(è§æ›@1)ùrGE@1(è§æ›@1(ÁTÉ…ñ?€‚ñêã ?’&Á¯»?“a#mU?ŽõÕJ?‘˜¯ -`É?‘·díW‚?ˆÿÀ)T¿Æ?’áÄïÃõ?‘å†36åG?‘l™šU?‘¦‘=W?‘Ê$̤T?‘¼Åâ<{?îŠõ ?„³3Z\ð…?ƒ¼9XNÄu?‡”_Õ­çW?‡gϵ’õ@@@@@*@,?ð?ð?ð?ð?ð?ð¿6aUˆ¿V€2¤H?'²¨ÔÕ?1äv0Ÿ@¨6Ëá‡@¡¿êW:Û?H8ØÞ&XQ?Q’)z±£ý?˜WÄ]Ê­?£ä?OÃ@ŸiDÝá‡.@À@¤Õ¥ãSø@¤Õ^5?}@¤Õ¥ãSø@¤ÖžùÛ"Ñ@¤Õ¥ãSø@¤Ö{"Ðå`@¤Õ¥ãSø@¤Ö Iº_@¤Õ¥ãSø@¤ÕgRT`«@¤Õ¥ãSø@¤ÕJ=p£×@¯D†$Ý/@¯D‡l‹C•@¯D†$Ý/@¯D´¼j~û@¯D†$Ý/@¯DÉxÔýô@¯D†$Ý/@¯EA‰7K@¯D†$Ý/@¯C•fÏAò@¯D†$Ý/@¯DÓ÷ÎÙ@6àØDЩ@6Ý«ŸU›=@4¦‡+ J@4hÛ‹¬q @4V”@3ÀIQ‚ª@3µµsê³h@35sê³g¡@3µµsê³h@4Mó¶E¡Ë@3µµsê³h@3†µ '¼?žˆ2}?»EÉa¬:j?ÅøºB¿?Ȇ³Î?°STýÑ;‚?‘<ƒÜ_õ?‡YÍ_?¥ˆÒ¯ó•?³M•Q±?²¸xG‚„?±oEcƒ¼r?‘KÔ#•N ?‡š¿]bœ?”£®e›Ðg?‘Ó0<ïL{?®†*®®?™GXêâ?ˆCns¥ @@@@@@?ð?ð?ð?ð?ð?ð?…ê8³€?‹4ª]€?w{x)2É?Š«º¥@¤Õ0”9@¯D¡ìŠ[?™ËöK•,?®FŽ(¶?@1¶Ê*Î q@S†LU\%O@Ÿf(ê@Á@¯ú²-VÁ.„€@¯ú²-V@¯úkš­¸^@¯ú²-V@¯úލÜàP@¯ú²-V@¯û­ ÔE@¯ú²-V@¯û òt@¯ú²-V@¯úöq†³@–h¼j~ùÛÁ.„€@–h¼j~ùÛ@–hγm(@–h¼j~ùÛ@–gª8ð@–h¼j~ùÛ@–h`îýJ•@–h¼j~ùÛ@–h„pD@–h¼j~ùÛ@–h–›ÿCó@82ÃÉîËûÁ.„>¤µÜÆ@4×+ Iº@5;u8²{@4 "Ðå`B@4G·=ÞŒ@3‘Þi­BÄ@3îzšûR6@3‘Þi­BÄ@3Ñ!A@3‘Þi­BÄ@3¹5.†@8J¨?À–pˆóë?½ž®¯'?£ do) ?­ dßý?°’ZüK@8J¨?Á”;ž]^Y?Çðé7?²)„LÝ ?·ŠeŒòr?´=¶ž -ß@8p÷?Á r`ŸÓ?¬™—s±«K?±ÎH‹b‘L?¨2“Q†·?­¨ÀË^Ð@*@,@(@<@:?ð?ð?ð?ð?ðøøøøøøøøøøøøÂ@£Wð Ä›¦@£XÄ›¥ã@£Wð Ä›¦@£WÞ5?|î@£Wð Ä›¦@£XaÊÀƒ@£Wð Ä›¦@£XL¥zxm@£Wð Ä›¦@£XŠ=p£Ø@£Wð Ä›¦Á.„€@¬e­‘hr°@¬e¬ÌÌÌÍ@¬e­‘hr°@¬dݲ-W@¬e­‘hr°@¬d¸»@¬e­‘hr°@¬e…+ÓÃa@¬e­‘hr°@¬eÄ xG@¬e­‘hr°Á.„€@8–»˜È@8dSŽóMj@4\Iº^5?@3øK]Ìcñ@3Ãt¼j~ú@3"Ðå`B@3YŒ~($ @2çö+jçÖ@3YŒ~($ @2Ùº^5?~@3YŒ~($ Á.„NÜC,¥?žŒÝÙ›P?ǯ;ÔF?Ô³Œ/#*?ÈÊ6ÔÁÁV?Á! Ù¤5ž@8Ù?°:-%šÀ?ÃÀTíŠ î?ËÃSXt'›?ÙŽVån‘?¶i©0Kª @8û—?¨À°ÒÞ@?«l{)ÞŠ?¦W¾ »ZÕ?¥wc U/?²Ì7r_@8 Ø@@@@@?ð?ð?ð?ð?ðøøøøøøøøøøøøÃ@­#•$Ý@­#˜“t¼i@­#•$ÝÁ.„€@­#•$ÝÁ.„€@­#•$ÝÁ.„€@­#•$Ý@­#ÄZ¬@­#•$Ý@­#Çl‹C—@¯0ß;dZ@¯0Û¥ãSø@¯0ß;dZÁ.„€@¯0ß;dZÁ.„€@¯0ß;dZÁ.„€@¯0ß;dZ@¯/w -=p£@¯0ß;dZ@¯/è´9X@6#g ù l@6!$Ý/@4=‘hr° Á.„M‰ûçm@3Õ`A‰7LÁ.„QnÙ‡@2ºÔ,<žíÁ.„NÜC,¥@2ºÔ,<ží@2úCþ\’@2ºÔ,<ží@2Œ¬1&ê?ˆÿÀ)T¿Æ@8#˜@8¾:@8 >+?¸ÏjeЕ?¨ü¦:ka?ˆÿÀ)T¿Æ@8Î÷@8i§@8Å?Ò,¡Û¯á?Äw[¹ä@?D/ -b°Þ@8 * @8p÷@8¶?•ó¬>¨ûÝ?¢¯À<ÝÞ@@@?ð?ð?ðøøøøøøøøøøøøÄ@«Î›"Ðå`@«Î›¥ãSø@«Î›"Ðå`@«Î¸Që…@«Î›"Ðå`@«Ïò䎋@«Î›"Ðå`@«Ïå¼£n@«Î›"Ðå`@«Ï·ö+jé@«Î›"Ðå`@«Ï¬²•éâ@ªûD“t¼@ªûDZ¬@ªûD“t¼@ªû¥‡“ݘ@ªûD“t¼@ªû}¥œà@ªûD“t¼@ªû¶”Fs‚@ªûD“t¼@ªû¡:’£@ªûD“t¼@ªû–ð¸@2ý:’£@2üàuöý"@0\Iº^5@@02•éá°Š@/|¬1&ê@/ w1Å@/(Û‹¬q @.]ÌcñA!@/(Û‹¬q @.^Ñ·Y@/(Û‹¬q @.\¾ß¤@?É^žQ5P‚?•QÂ^ø™?ÃNSCçÚQ?Ét4B¥T?ͤ±ròõ?ÐÐ-†(³?ÐbV‡,?—¿ºÖ÷?³æû8KÝ?¶!úþ!öñ?°‘0Äñ×?±ùý¿?€cPßQª? $gú‡v?Œznyž-i?˜$– Ñê?•XðküÏ?“¡NÙ(£(@@@@@,@*?ð?ð?ð?ð?ð?ð?°/XÚ ¿Eê“Ì?ž€sµ{Ê™?‰•Ï*i@«ÏŒ-múö@ªû g‚ì´?¼iTJ†?¡‚An?þìäÆm9¤µÜÆ@/ö“t¼@/õÜ5%jQ@.cn—P@.c)£`n;@-Ǔݗö,@-ÇlÅÐê@-Ǔݗö,@-Ç.J/@-Ǔݗö,@-Ç&”sˇ@8 -Näy?ÍÛòM9?‘(u‹¹HØ?‹¦ïbew?òë6­?ÃNñÓðó@82rê?’ EÇNÔ?‹ð"à ?0§j3A?× m"öƒ?Xžëú–@8L?ŒËQ=sÝß?‚À%?‚ägûȶÿ?†‘$Ñþþ‘?†–í8Ñ(@,@,@&@:@;?ð?ð?ð?ð?ðøøøøøøøøøøøøÆ@°Â\)Á.„€@°Â\)@°†L/ƒ{@°Â\)@°„›¥ãT@°Â\)@°‹…¸R@°Â\)@°Oò䎊@°Â\)@°KíúCþ@œ«8Që…Á.„€@œ«8Që…@œ«oj@œ«8Që…@œªô¼j~ú@œ«8Që…@œªÙ‡+@œ«8Që…@œ«t¼j@œ«8Që…@œ«*³g ù@8p4mÅÖ8Á.„>¤µÜÆ@3k¥ãS÷Ï@34ðØDÐ@2©Û"Ðå`@2~($ x@2 ¿±[W?@1á&éxÔþ@2 ¿±[W?@1à|„µÜÆ@2 ¿±[W?@1â×süP@8J¨?Öî÷Œ¬ûì?°Ânö Ö‹?®=“ •0˜?Lj!þ_¸ï?È ÷Vß¹Ñ@8J¨?»N4Ï7Š?§‚42¾?¯ò,?°1üTn]?²fÄF›Ž7@8p÷?¡ A™fg?©é‰ÊØo'@@@@@(@*?ð?ð?ð?ð?ð?ð¿g,!¯*¿ƒˆynÓ€?3‡h™ì’?Ró÷¢´³@ª©†þÙaò@¦È…VÚ[?Nïß ?iOÐïXvj?™û™Æ•Ö?½Ï™¢?`R@Ÿ`'æ%Ë@È@¬Ìð Ä›¦Á.„€@¬Ìð Ä›¦@¬Ìû‹¬q @¬Ìð Ä›¦@¬Ìæ?@¬Ìð Ä›¦@¬Ìî¾ß¤@@¬Ìð Ä›¦@¬ÌíOß;d@¬Ìð Ä›¦@¬Ìíí(Œæ@¡‡¥`A‰7Á.„€@¡‡¥`A‰7@¡‡±&éxÕ@¡‡¥`A‰7@¡‡¨Û‹¬q@¡‡¥`A‰7@¡‡žžš@¡‡¥`A‰7@¡‡¥œàv@¡‡¥`A‰7@¡‡£9Àëî@9–»˜ÈÁ.„>¤µÜÆ@4æ‡+ J@4ë~ÿ—$@3ÝV”@3ÜPHð@2Ì¿±[W?@2ÎvÈ´9X@2Ì¿±[W?@2Ð@2Ì¿±[W?@2Ð|„µÜÆ@8J¨?“ÓLáS{?ššÒèôɲ?d"¹QZ?–Õ“z‰öì?“^õA‰°@8J¨?–gÝ3ýø’?¢W@3tå²?”Â1`´?”s̯}¼?”F„t*•5@8p÷?’|׿pZ?’úz."?ˆ6‘F:™Ê?mŽÃÎŽ?”ø™¾@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøøÉ@­òÐbMÒò@­òÕ%@­òÐbMÒòÁ.„€@­òÐbMÒòÁ.„€@­òÐbMÒòÁ.„€@­òÐbMÒòÁ.„€@­òÐbMÒò@­òÅ”¯O @ $Ý/@ n—@ $Ý/Á.„€@ $Ý/Á.„€@ $Ý/Á.„€@ $Ý/Á.„€@ $Ý/@ Õ›=È@7rÃÉîËû@7rT`ªdÃ@5|í‘hrÁ.„M‰ûçm@4ä¼j~ùÛÁ.„QnÙ‡@4a:’£SÁ.„NÜC,¥@4a:’£SÁ.„NÜC,¥@4a:’£S@4s¶E¡ÊÁ?ð°–Ž]@8#˜@8¾:@8 >+@8Iç?³9!.€ê ?ð°–Ž]@8Î÷@8i§@8Å@8S?ª« -#9ï”?ð*wjs—@8 * @8p÷@8¶@8 Ø?¥J'Y=¢?ð@(?ð?ðøøøøøøøøøøøøÊ@­5»dZ¬@­5Í‘hr°@­5»dZ¬@­5Í«ŸUš@­5»dZ¬@­5¶È´9Y@­5»dZ¬@­5¨´9X@­5»dZ¬@­5Ì‹C•€@­5»dZ¬@­5¾vÈ´8@§Ï“t¼j@§Ï¸Që…@§Ï“t¼j@§Îÿö”G@§Ï“t¼j@§Ï%zxl!@§Ï“t¼j@§Ï( Ô•@§Ï“t¼j@§ÏA£n.²@§Ï“t¼j@§ÏLÙè>C@7åöý!ÿ.@7Üú¬Ùè>@4¡hr° Ä@4›C•%@3A‰7KÇ@3‡Á½¥@3¡:’£S@3¡ ²•éâ@3¡:’£S@3¿HË’@3¡:’£S@3ƒg ù l?óA[ØïF?§¤Æµï\?–•Kù̃æ?•èöyÈÜQ?–JØi™”?§Zs»¢Z?©Ùƒ|ËI?²‡†üÇS?•¥º~§?¡Dþ zC1?•MšuVÑQ?¯áƒÙ²? Ú }P!?Á½ï5Jܦ?•Wí+ Æ?˜<å05ä?‘À³ûê%§?®á)»ž0@@@@@@*?ð?ð?ð?ð?ð?ð¿hUAr?…߬¶à?wÞ`) è?iÙ\àwa@­5ÀA@§Ï4½O´?—ב¤Ë?”`ÔØ1@²+ÑG“×?Þ½_â6ÿ@Ÿl¢6k4×@Ë@ ’]²-V@ ’lÌÌÌÍ@ ’]²-VÁ.„€@ ’]²-VÁ.„€@ ’]²-VÁ.„€@ ’]²-VÁ.„€@ ’]²-VÁ.„€@2m‘hr°@2aÊÀƒ@2m‘hr°Á.„€@2m‘hr°Á.„€@2m‘hr°Á.„€@2m‘hr°Á.„€@2m‘hr°Á.„€@4uS&Á¾@4W=ãÎg @1Ê^5?|íÁ.„M‰ûçm@1H“t¼jÁ.„QnÙ‡@0úÔ,<žíÁ.„NÜC,¥@0úÔ,<žíÁ.„NÜC,¥@0úÔ,<žíÁ.„NÜC,¥?}‰c™ýI®@8#˜@8¾:@8 >+@8Iç@8Ù?|Äô­ú}q@8Î÷@8i§@8Å@8S@8û—?‚¬h3zÙ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÌ@ À§ï²-@ À¨§æ›@ À§ï²-@ À¦v î@ À§ï²-@ À¦-Ô¹@ À§ï²-@ À®N ?‚ìxqC?†ŠúЀ>(?†–f_ÔŠŠ@@@@@(@*?ð?ð?ð?ð?ð?ð¿<ÙŒ?%å%eà?ñûºÇe?Ü)æÃÞ’@§ÓÂ…¦œ&@¦µ’u$c?,È #°K?#¹Å>ÿÝ”?TS³7T˜?A™üfÃ@Ÿs¹£û@Î@¨÷Ü(õÂ@¨÷ìÌÌÌÍ@¨÷Ü(õÂ@¨÷Ûµsë@¨÷Ü(õÂ@¨÷ÕfÏAó@¨÷Ü(õÂ@¨÷ß¾vȵ@¨÷Ü(õÂ@¨÷×Oß;@¨÷Ü(õÂ@¨÷Ø_ö”@­Hçl‹C–@­Hâ\(÷@­Hçl‹C–@­HàÄ›¥ã@­Hçl‹C–@­HÚ¬1@­Hçl‹C–@­Håzxl"@­Hçl‹C–@­Hèè§ç@­Hçl‹C–@­Hèe”¯P@5 ØDЩ@5—Xâe@3}‘hr° @3}úCþ\’@3t“t¼j@3qÿ.Hè§@2¨è§æ›@2¤êJŒL@2¨è§æ›@2¥éá°‰ @2¨è§æ›@2§Á½¥?¯oÝ ÷6}?“”üU§<­?–•Kù̃æ?‡{@áè?“XMHñëž?•zWmoàí?óA[ØïF?“áêqú ?“’OÕƒõ‘?—]à4?’ºñS©YÖ?˜ÓI­ÂÅ?´6¤_[í?Ž•ýÙ—±?†Æ‹™ÿ?„•ˆG’Z¾?Œ¸ðËb?‘4hÆpÉ„@@@@@*@(?ð?ð?ð?ð?ð?ð¿pbw¡…?Vk[?Sn’úœ›?0¶…hÛ@¨÷ÜÀCf_@­Hçu±â?eKøÀ k?QU;ªãBñ?À¯Š9?“øwè»B@Ÿo¼‡êgM@Ï@®©ùXbN@®©ù‹6Ëç@®©ùXbN@®©û,}/ @®©ùXbN@®©ü—ÊÈ@®©ùXbN@®©úŸÏ^3@®©ùXbN@®©ø™ï?@®©ùXbN@®©ø”@™’…¸Qì@™’ˆFØ¿¿@™’…¸Qì@™’„h|›ó@™’…¸Qì@™’‰»`Q«@™’…¸Qì@™’†ç6N«@™’…¸Qì@™’„÷ºñ@™’…¸Qì@™’„þDr6@7Žì¿±[X@7ä 1Âh@1¡hr° Ä@1¡ÙÓEŒÒ@0€å`A‰7@07dŒ7ì@/…oi@/…œN×°@/…oi@/…ðoiDg@/…oi@/†W€}„†?ƒ6ð]g™ä?$ëÕæG?‘$‚Ð2_Ó?‹¬=ã§@v?‘ -T* B?»pôe>—?†c£ïDì?’CW¶Ð?Uåä#v?0rìÝ>ê?éR•+¾?^´¡•à•?…ùL÷ëw?ŒÑÚ÷e?‚ÐñétbJ?‚ï%U|5?†žy½œ4h?†Ÿ¥ÊóšÁ@@$@ @"@9@5?ð?ð?ð?ð?ð?ð¿+ÓŒÏÀ¿7:éX?1Á3Ú[ž*? ¬^\ÓÝ—@®©ùJˆÎ$@™’†ŒC?QÀ”üÊ"0?-«·p‡*°?ªî|<ž ?`l`‰z@Ÿi¸ñ†´@Ð@¥ú’ñ©ûç@¥úˆr° Å@¥ú’ñ©ûçÁ.„€@¥ú’ñ©ûçÁ.„€@¥ú’ñ©ûçÁ.„€@¥ú’ñ©ûçÁ.„€@¥ú’ñ©ûçÁ.„€@¯y¤Z¬@¯y™‡+@¯y¤Z¬Á.„€@¯y¤Z¬Á.„€@¯y¤Z¬Á.„€@¯y¤Z¬Á.„€@¯y¤Z¬Á.„€@4p4mÅÖ8@4a·Xâ@2”›¥ãSøÁ.„M‰ûçm@2A‰7KÇÁ.„QnÙ‡@1O „MÁ.„NÜC,¥@1O „MÁ.„NÜC,¥@1O „MÁ.„NÜC,¥?žˆ2}@8#˜@8¾:@8 >+@8Iç@8Ù?|¬Çëý @8Î÷@8i§@8Å@8S@8û—?˜&™*0ø\@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÑ@¨\Týó¶F@¨\Cn—@¨\Týó¶F@¨\Rñ©ûç@¨\Týó¶F@¨\^š@¨\Týó¶F@¨\Y=Ùc@¨\Týó¶F@¨\O·éø@¨\Týó¶F@¨\JqÞi­@¬ß¤Z¬@¬ß/Ÿ¾@¬ß¤Z¬@¬ß¢&€H@¬ß¤Z¬@¬ß†Â&€ž@¬ß¤Z¬@¬ß¾ í)@¬ß¤Z¬@¬ßŸ¾w@¬ß¤Z¬@¬ß”mÅÖ9@8rÃÉîËû@8p@4B° Ä›¦@4?v_Ø­¬@3’Ðå`A‰@3ŠîcŠ @3(è§æ›@3v_Ø­¬@3(è§æ›@3! [À7@3(è§æ›@3$‡ü¹#£?¡ÅꯨŠT?éDEâ©Ö?¡¶ü_΋å?•˜Ú܆‡?•RC}Ëq?›µ¥Ë»‡ ?™™™™™™š?™´¦]˜ó?•swŽ)Ò? ŒÙ¶êm¤?–ÓîTî?œa8wóì|?“mŸq`?š³á‡}?”US9úÅ?‘@fº¬o(?š3 ˜ÔDš?–7Qûñ@@@@@(@*?ð?ð?ð?ð?ð?ð?D%¾–¿c´ô&7?lÿrY·b?U÷œ¯Ä@¨\P#‡Åž@¬ß”èœ~?…>ªƒ[?s—Ê« -zY?ögOÁö?Ñef§Ž@Ÿm‡nˆáý@Ò@­+#× -=q@­+#× -=q@­+#× -=q@­+%¾À@­+#× -=q@­+$P¼=T@­+#× -=q@­+$ûrí@­+#× -=q@­+")U@­+#× -=q@­+#;Oò@“_p£× -=@“_p Ä›¦@“_p£× -=@“_m¥tMd@“_p£× -=@“_o¡Úâ@“_p£× -=@“_q.ð®@“_p£× -=@“_p‰¯ß@“_p£× -=@“_p{µ´@4õS&Á¾@4õrö|ò*@1#÷ÎÙ‡@1$2ÁÓwÌ@0PA‰7KÇ@0PP3ò:@0B‚@·€4@0BÆåA ~@0B‚@·€4@0Bó±Ñ!@0B‚@·€4@0BÞÑ·?|¬h2:“?ÐÍpPïb?‘hÌŒQK?‹öɰŸM6?ò“A]2?Ï"{@Y8?|Ñb×¶@?’AÌ*À¹?Uåä#v?=W:f&/?ÖdȨ –?Uk°>&‚?‚ªp“5/?Œ¾·EÊš?‚®Ë Ë?‚îúb²~?†·6Ö´É@?†° Ñòo@@$@ @"@2@4?ð?ð?ð?ð?ð?ð¿l–ˆÀ? È€ž`?+ÎöxNRv?õ°£5@­+#Í q4@“_pmkf?K²Šþ7s?'c»ša?¤àÖ!l&?\—=n~®@Ÿfó*]½Â@Ó@­2-V@­.Ù‡+@­2-V@­"ÞѸ@­2-V@­Ô,<ž@­2-V@­'»/ì@­2-V@­,¥zxl@­2-V@­*~ùÛ"@ª^bMÒñª@ª^wOß;@ª^bMÒñª@ª^DêJŒ@ª^bMÒñª@ª^<64@ª^bMÒñª@ª^>BZîd@ª^bMÒñª@ª^TzáG®@ª^bMÒñª@ª^Vlô"@8Bò䎊@8E '»0@3œIº^5?@3ŠkP°ò|@2Ú~ùÛ"Ñ@2ÃFÜ]cˆ@2Öý!ÿ.I@2µ$Ý/@2Öý!ÿ.I@2Ó•$Þ@2Öý!ÿ.I@2Õ¸Që…?žˆ2}?«‰O\Íê™?©ÖÌC³1?°«]m…Mä?’PY8~Qj?–"ûe”M?|öOÿÝ?²ÿãkÇ@‚?´pg}5z?³ŸÛ-w?”*v7¹¿?™J•Ø3ÈÖ?§>Ìx¢Þƒ?™¬¨YWî?£´<×?­Ðí+L?ž„ýŸÒ`Ø?Ÿba_¸†@@@@@"@(?ð?ð?ð?ð?ð?ð¿L\(†¿€AÜI?À?Sy=t& ?YP0Z®0Þ@­,ÿ œ,@ª^g늵5?sÜTàž?yõW±¶Q?écMF¿#E?óëûž¦?@ŸeBÖa@Ô@¡ê.—Oß@¡ê0 Ä›¦@¡ê.—OßÁ.„€@¡ê.—OßÁ.„€@¡ê.—OßÁ.„€@¡ê.—OßÁ.„€@¡ê.—OßÁ.„€@¤iˆ1&éy@¤iƒn—@¤iˆ1&éyÁ.„€@¤iˆ1&éyÁ.„€@¤iˆ1&éyÁ.„€@¤iˆ1&éyÁ.„€@¤iˆ1&éyÁ.„€@3쿱[X@3®}Vlô@1 Iº^5Á.„M‰ûçm@1t¼j~úÁ.„QnÙ‡@0ÑÞi­BÄÁ.„NÜC,¥@0ÑÞi­BÄÁ.„NÜC,¥@0ÑÞi­BÄÁ.„NÜC,¥?|¬Çëý @8#˜@8¾:@8 >+@8Iç@8Ù?‚á²Olºü@8Î÷@8i§@8Å@8S@8û—?†aÞàI*”@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÕ@«û/²-Á.„€@«û/²-@«û0ØDÐ@«û/²-@«û.V“@«û/²-@«û0|„µÞ@«û/²-@«û/Aò×@«û/²-@«û.}Vlô@©Ô ÌÌÌÍÁ.„€@©Ô ÌÌÌÍ@©Ô ¸ºÇ@©Ô ÌÌÌÍ@©ÔzáG@©Ô ÌÌÌÍ@©Ô.±Ä2@©Ô ÌÌÌÍ@©Ô¾ß¤?@©Ô ÌÌÌÍ@©ÔŠqÞj@9[¹Œ~($Á.„>¤µÜÆ@2³S÷ÎÙ@2³•$Ý@1×ï²-@1؆YJôð@1YŒ~($ @1Z=p£× -@1YŒ~($ @1Z™0¾ î@1YŒ~($ @1ZÔ,<ží@8J¨?Žd±Ìº?‘t‘ócjë?ŒÇQ´æ?íOþtà?·t¤¢‚J?ÐbMçê_x?’˜‰%F²?†[‘'Í?1ð'7éÃ?ÔÒ@úˆ‘?PS2K¯™?€b¡´ñ@?Œ¯þuõí?‚nâwg?‚äÍ“½E'?†‰Oú|q?†ˆ#.÷@@@@@,@,?ð?ð?ð?ð?ð?ð¿SÓõnd?_ì;à?8Ö’e?óîµÒ(Ÿ@­/·ž]må@žò4kt?GáßµZÝ%?ýê¾Ü0G?‹üÍ(mð?WGˆó†@ŸsßµÃ@×@¯UxÔýó¶@¯UxbMÓ@¯UxÔýó¶@¯Up£× ->@¯UxÔýó¶@¯Ur-V@¯UxÔýó¶@¯UnzáH@¯UxÔýó¶@¯Ug8}¾@¯UxÔýó¶@¯Uiá°‰¡@££ŠÀƒo@££‹ Iº@££ŠÀƒo@££¬L˜^@££ŠÀƒo@££¦$Ý/@££ŠÀƒo@££³Z…‡”@££ŠÀƒo@££¶8†YJ@££ŠÀƒo@££§RT`ª@5Q|ÚQ@5R&€IR@3žÙ‡+@3“&Á½¥@3;Ƨï²@3+ÓÃa@@2¸DЩ*@2¡hr° Å@2¸DЩ*@2 -à @2¸DЩ*@2¢T`ªdÃ?|öOÿÝ?“gU·q#?”P"ÒhI?¢º™ÁLŠ?¥-wî?¦ æY²dR?„m~Z_s,?àìÚJ>?‘ -òtMŠ?ŒOà†cÍ?¢—„¯l?˜øÁ«}@@@@@,@(?ð?ð?ð?ð?ð?ð¿j¿‘æT?~j/€??Ü¿ù×?a½  ¿¹}@¯Uso¬P@££•ŒëÕ?Z°Î•ª|«6zÁ.„>¤µÜÆ@4 Iº^5Á.„M‰ûçm@3)Û"Ðå`Á.„QnÙ‡@2ò䎊rÁ.„NÜC,¥@2ò䎊rÁ.„NÜC,¥@2ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÚ@©féxÔþ@©;dZ¬@©féxÔþÁ.„€@©féxÔþÁ.„€@©féxÔþÁ.„€@©féxÔþÁ.„€@©féxÔþÁ.„€@Ÿ»Oß;d@Ÿ»‰7Kƨ@Ÿ»Oß;dÁ.„€@Ÿ»Oß;dÁ.„€@Ÿ»Oß;dÁ.„€@Ÿ»Oß;dÁ.„€@Ÿ»Oß;dÁ.„€@8N쿱[X@8m²-V@5sS÷ÎÙÁ.„M‰ûçm@5@å`A‰7Á.„QnÙ‡@4s&Á½¥Á.„NÜC,¥@4s&Á½¥Á.„NÜC,¥@4s&Á½¥Á.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøøÛ@£Í¸Qì@£ÍZ¬@£Í¸Qì@£Í“t¼@£Í¸Qì@£ÌþÑ·@£Í¸Qì@£Ìüàuöý@£Í¸Qì@£Ìù™™™š@£Í¸Qì@£ÌýÌcñA@¢0Ö“u@¢0ÕÂ\)@¢0Ö“u@¢0ÓŽóMk@¢0Ö“u@¢0Ô,<ží@¢0Ö“u@¢0Ô‡ü¹$@¢0Ö“u@¢0Ó÷ÎÙ@¢0Ö“u@¢0Òòä@4£g ù l@4¢h Ô•@0°Ä›¥ãT@0®¤¨ÁTÊ@0A‰7KÇ@0Œ¥zxl"@/ܾߤ@@/Ô¢3œ¾@/ܾߤ@@/Ô`ªdÂù@/ܾߤ@@/Õ2a|Û?|öOÿÝ?%¼ÇÆÃ±?“â÷!N?,¡r×gÁ?•rf?¢ê€?‘À?ÙÂ#’?|öOÿÝ?’u¦ieõ–?“v@á¿bî?‘jýÚXÜ?‘+ùÔ!½‹?äqÅYÈ?‚ÂÌ]å?ŒÆò/¢äÍ?„ò—TËÄ?„XïWÉò~?‡…¤$Ó?‡L8õASÎ@@@@@,@&?ð?ð?ð?ð?ð?ð¿^óÛø¿D<} ?C¯ËNE‹?#ý9 [¸@£Íc3@¢0Ô‚ <±?c·ËšŠ€­??‚º'äÄÿ?ÑÓœu=V?‰BßõBW(@Ÿfi[7f)@Ü@ "gl‹C–@ "dÝ/ @ "gl‹C–@ "jˆ³‚i@ "gl‹C–@ "q ²•ë@ "gl‹C–@ "gjÈeô@ "gl‹C–@ "fYWH°@ "gl‹C–@ "e®æ1ù@¨ °£× -=@¨ °=±¹Y@¨ °£× -=@¨ ¯#¦'a@¨ °£× -=@¨ °ßºcq@¨ °£× -=@¨ ¯:²µþ@¨ °£× -=@¨ ¯cÚÅn@¨ °£× -=@¨ ¯:Zþ@6²ÃÉîËû@6°AûY¬ @1Yº^5?}@1] -ïc‚@/ΗOß<@/Üó©-µ±@.úÇË)_@/ziçUõ@.úÇË)_@.û¤¿Ê.@.úÇË)_@.ü© -\†ö?|¬h2:“?äE««²Ø?‘(™Ö€?‹¸³…_¼‘?ûÁ ÿW?»pôe>—?‚Ú¡ËG7ø•©Òp>ý ¬så@®3ÊšÊef@¬B¨ÏNGÜ?¦ –‘¤? ʘH¥@1‘Þi­BÄ@0©=Ùb·@1‘Þi­BÄ@0¤•*™1?‚á²Olºü?Ú™ U–?Ñ-Ì\8?ÀlˆfW¬?×ù¦½é‚?ÜôäO©#? Eˆ‡ðó‹?²š5¥´¢?¿»1ˆÙ?»5;7Ä»M?È4Ö="C!?ÏEÏSŒ±?˜Ð™Q$Ò?œÎgœTíþ?™Ä¶BϪ?“äÐå÷à?Ú¾ÉÛ²º?–{=rƒ™K@@@@@*@*?ð?ð?ð?ð?ð?ð?Ãs¡÷ø(?²¶O9¨P?Ÿ˜Do¡Á?oŽËƒÙ@£ÉŒ‘Ò@¨!±ûà~?«.Å8r†÷?”2MÚwø@6¹Oå`ÿ?ç2âD -@Ÿ\¶oÔ|@ß@­ŸA$Ý/@­Ÿ2° Äœ@­ŸA$Ý/@­Ÿ?|í‘g@­ŸA$Ý/@­Ÿ1&éxÕ@­ŸA$Ý/@­Ÿ)ùrG@­ŸA$Ý/@­Ÿ,cñA @­ŸA$Ý/@­ŸL篹@¦ÈdÝ/ @¦Èy‡+@¦ÈdÝ/ @¦Èk…¸R@¦ÈdÝ/ @¦ÈnV“@¦ÈdÝ/ @¦Èbø7´¢@¦ÈdÝ/ @¦Èk]Ìcñ@¦ÈdÝ/ @¦ÈU›=@8žHè§æ@7ñuŽ!–S@4\Iº^5?@4_ªÍžƒä@3y7KƧð@3ÿ.Hè§@3ž«6z‘@3¦_Ø­« @3ž«6z‘@3¤‡ü¹#£@3ž«6z‘@3A [À?DzʘzT?£ Ú³ñ?¤½’ƒÚc?˜ŸÉZ ÃT?¥r.,¨i†?¥à×Ê/?˜ž^ƒÿ*ˆ? Í”{Í?¢zhû›\¾?žuÉ>—M?£ ƒU¾Š?¬ÞçP°ÐI?õT€…tn?Ÿ$Ìj½BÙ?’q6tNø6?—4`¾ÓÍì?•*†*Zû?­ìpÔÍ@@@@@(@*?ð?ð?ð?ð?ð?ð?‡™ ÇãÀ¿ƒö2Èö?vãß„ÛÅŽ?yMõë6ª@­Ÿ0e½­z@¦È[PB'­?†Ïšh?œ-ð+«ýÍ?å^µœn!æ@ êúF< -T@Ÿo¨°W(ê@à@¬¹’n—P@¬¸áÊÀƒ@¬¹’n—P@¬¹u0ð@¬¹’n—P@¬¹9!±Ï@¬¹’n—P@¬¹—¸m@¬¹’n—P@¬¹•ÔGi”@¬¹’n—P@¬¹’Ø€ûv@“dixÔýô@“bÚàm—@“dixÔýô@“di³2 @“dixÔýô@“dZ¢U]@“dixÔýô@“d\ÆwÇ@“dixÔýô@“da#3G @“dixÔýô@“d^ð÷@8è†YJôñ@7±Û ú–Æ@4\Iº^5?@4U¤ÐkAV@3K"Ðå`B@3B)µàÎ@3‚@·€5@3”,ä@3‚@·€5@2þãd?³@3‚@·€5@3-Q÷-b?ØqT Ä?ž`ñýŸMÉ?—:Ò–DåÎ?‘ð8©(/?’‡#<'?–5xw!¬?â‹_¡Rè?ŸÆçp‚")?–w žº?”yáÜ$¨Ã?’$;î™d3?‘{è,o®û?þ~6„×Èé?’‰½"„Ú?‡5«òì¤?‰ð’;MeÙ?Š_¦òûûœ?Œ#"oØ…K@@*@&@*@2@6?ð?ð?ð?ð?ð?ð¿Q],íª?B4L£¼@?pŠAÀ_ùl?fÎ\Ó–„@¬¹•Qü…„@“d^sd•Œ?}ÇËlœ}˜?t¡ÂT³€5?ìæ„`¾NÒ?ÜלvúJ@Ÿs‹xÏ9@@á@¥ì1&é@¥æffff@¥ì1&é@¥åzxl"@¥ì1&é@¥ì¥zxl@¥ì1&é@¥í‘hr°@¥ì1&é@¥î—Oß@¥ì1&é@¥í„M;@¯ŠÀƒo@¯„›¥ãT@¯ŠÀƒo@¯{~ÿ—@¯ŠÀƒo@¯z^5?~@¯ŠÀƒo@¯mV@¯ŠÀƒo@¯vð¹@¯ŠÀƒo@¯s¶E¡Ë@8?–»˜È@8/Ë’:)È@4B° Ä›¦@4M@¨CTTȺ@¯fî¼ÿ±€?{AVÀ^?V[éÖ¾{ð?ߎ{@ ˆ?˜HÏoLh@Ÿr0-`u@ã@©_!G®{Á.„€@©_!G®{@©`0£× ->@©_!G®{@©`ªdÂ÷@©_!G®{@©`}—ö+j@©_!G®{@©`KC•@©_!G®{@©`?.Hè§@ ¯·ÎÙ‡Á.„€@ ¯·ÎÙ‡@ ±/ „M@ ¯·ÎÙ‡@ °ðË)^ž@ ¯·ÎÙ‡@ ±T!-w@ ¯·ÎÙ‡@ ±ÿ.Hé@ ¯·ÎÙ‡@ ±“Ý—ö+@9šÔ,<ŸÁ.„>¤µÜÆ@4½‘hr° @3Ñ‚©“ á@3ÒÐå`A‰@3z–¼@3Š0U2a|@2~ùÛ"Ðæ@3Š0U2a|@2um\ú¬Ú@3Š0U2a|@2y#¢œw›@8J¨?©•È–¿g?¡rF§‚Å)?¡¤ˆ«>?·rýƒá7?¬cíxë â@8J¨?ÇàI>Wj?¡4þŒk†U?£Á4œÝi?ÆUT¼jî?¿>Äy÷ú@8p÷?—b…ªH=?‡~ ~ã?>æ¿Îï?IÏáå$?¾Á{þÆ%@@@@,@(?ð?ð?ð?ð?ðøøøøøøøøøøøøä@ ¿âÐå`B@ ¿Í±›-ž@ ¿âÐå`B@ ¿×…*>~@ ¿âÐå`B@ ¿ßž9)­@ ¿âÐå`B@ ¿êš*Ó¿@ ¿âÐå`B@ ¿â,ø—@ ¿âÐå`B@ ¿â´Ì"¸@¬høQë…@¬i$¼>± -@¬høQë…@¬hý`´wF@¬høQë…@¬hðhfR@¬høQë…@¬hê’Æ{F@¬høQë…@¬hÔ-nãZ@¬høQë…@¬hïIDC@75S&Á¾@74mŠÝC@40Ä›¥ãT@42žfn@3È“t¼j@3ÚJ³•@²@2ÏO „M@2åpÖ0ƒ@2ÏO „M@2Þæñ ,é@2ÏO „M@2Ý”,L•O?¥—å–?®Ôcö8?›a»òî?çÓ¯×/?•[_¸Ž0?“òÿ|‘G»?Á[‚ÎÉy?’PéC9 -ë?šd)EÑÕÓ?¢Zé¢gæ¹?“Ëî4ó…°?™]Úex‰?Ð}Wä‡?”6ÄTW;?Š_›àq¿Z?§§Î)–N?Œ{:5ÞiÍ?“ýý#¯@@$@*@,@6@8?ð?ð?ð?ð?ð?ð?P{Í¿2)9Þ0?o -xÚ[ö?ˆ­ÉäZß@ ¿äç‰Û~@¬háÇ8?ƒèJ MT\?–ƒu×PœR?üFùÇ‚_@­¼½l@Ÿry±“ -:¥7?–|€‹èÔ2?–f¦¢‚~ƒ?¹ñø« 2¶?‘­$÷Ì™?Ž5-³³?‰pWúÏ¿Ö?Â-qvP?“üO<ˆþï@@$@$@&@9@7?ð?ð?ð?ð?ð?ð?r68€?]±cÊ·€?eI"xð—%?hÔ×p…@­¨¢ãíï¤@— c/Eåj?}+”Õ˜Ý?x~H¨O­ô?í¾µŽg-ø?ß â|Œ@ŸqµkÙd@æ@¬eÈ´9XÁ.„€@¬eÈ´9X@¬e¶ð¸@¬eÈ´9X@¬e‘&éxÕ@¬eÈ´9X@¬e¯O „N@¬eÈ´9X@¬eßåÉ@¬eÈ´9XÁ.„€@¢.Ÿ¾vÉÁ.„€@¢.Ÿ¾vÉ@¢.ùÛ"Ñ@¢.Ÿ¾vÉ@¢.¼j~ú@¢.Ÿ¾vÉ@¢.)á°‰ @¢.Ÿ¾vÉ@¢.;ô‡ü¹@¢.Ÿ¾vÉÁ.„€@7IÎ_oÒÁ.„>¤µÜÆ@2W+ Iº@2Sa@N¤@2t“t¼j@2‚-V@1a:’£S@1hQë…¸@1a:’£S@1Wï²-@1a:’£SÁ.„NÜC,¥@8J¨?‘u:|ñ²¨?Ÿ!=T®?â?žéQÁö£?¥õŒôÓ"@8Ù@8J¨?”¤P ƒË?’ðÀ,°ø?—d¨XM?¡G÷fx^K@8û—@8p÷?›ì8h z=?³çÞOÚD?¡‹ áQ´??ž S è›@8 Ø@@@@&?ð?ð?ð?ðøøøøøøøøøøøøç@ª¸÷ÎÙ‡@ª¸ñƒçù`@ª¸÷ÎÙ‡@ª¸ñ@Çß@ª¸÷ÎÙ‡@ª¸ùT6ö@ª¸÷ÎÙ‡@ª¸ìkj0@ª¸÷ÎÙ‡@ª¸ðÕÊŸ@@ª¸÷ÎÙ‡@ª¸óHÇgÀ@›ð€@›ð†ë,‡Ä@›ð€@›ðÆ|E@›ð€@›ð‚ðUú@›ð€@›ð‰_ý!Ÿ@›ð€@›ðuý_5@›ð€@›ð„§Y|K@7Ç>«6z@7¾þ·76@4J^5?|í@4E áÉÝ@3M²-V@3Lé/×r@38DЩ*@32Ö~AoÞ@38DЩ*@333áM‡@38DЩ*@35õñ–äŽ?Ž\Õl6Ò?–·±áå0?”9 %S½?Œ† }-.Ý?“;<äA›«?À|ÏtËE?œÆæXÆd?“qÌ©ào?’†jN(˜É?³)0ù•?•ø~# ?’ ð½:(œ?‰%‡Ø„DZ?ŽƒÈS­t"?…øf‚ËkÄ?†V¼™²ä?ˆ•úæ©ß?×2в@@(@$@ @0@.?ð?ð?ð?ð?ð?ð?.H²Z¿M-ôBZ?PQ6Ÿ?[A¶˜iÃi@ª¸ðEØT@›ðƒ¨Èïi?n¬º[Oܬ?tØ?MßÞK?Ü#µY$R?àí7úK•@Ÿm’Ì XQ@è@¡rÄ“t¼@¡rÅ¡ÊÀƒ@¡rÄ“t¼@¡rÅ¡ÊÀ„@¡rÄ“t¼@¡rÃñA \@¡rÄ“t¼@¡rÆs×Ü@¡rÄ“t¼@¡rÂ@·€4@¡rÄ“t¼@¡rÂMÒñª@§Õ¯²-@§Õ±ë…¸@§Õ¯²-@§Õ®óMj@§Õ¯²-@§Õ­5¨Xy@§Õ¯²-@§Õ²ÊW§‡@§Õ¯²-@§Õ¯v_Ø®@§Õ¯²-@§Õ®Ù‡*@6D¯O „M@6EÂ\(ö@2k¥ãS÷Ï@2k¹Œ~($@1×ï²-@1×€4mÅÖ@1._oÒ @1,1&éy@1._oÒ @1,‘ÑN;Î@1._oÒ @1,í‘hr°?€‚ñêã ?ï1ïºÅ?‘\H{gX ?ŒÖ -Äȱ?“2{Áw¸?‘W×ý°A?|öOÿÝ?’4 "ëžØ? Dñ£P?’GÎ>GÅ?‘êë·áþA?’ ÃCÀ`ú?„³3Z\ð„?2ô]7?‚ù…žÄ`x?Šˆ€!B®?‡Õ˜]–GÄ?‰_uñšó@@@@@,@*?ð?ð?ð?ð?ð?ð¿Bý/›¿@WtÆh?9zÍŸñi—?3Ô‘¯¨N@¡rÄ¢g›Ú@§Õ°ýŒú¼?Y6Ô3Ê ?T 99ªq©?½jQþ*?³ -:¦÷ê@ŸfþÄ€@é@«p@«o¼í‘hs@«p@«oü¬1'@«p@«p¶®}U@«p@«p ¹Œ~)@«p@«p ûµt@«p@«pÅm\ú@«ÑÒñ©ü@«Ñ¼í‘hs@«ÑÒñ©ü@«Ñƒ9Àëí@«ÑÒñ©ü@«Ñ„êJŒ@«ÑÒñ©ü@«ÑquŽ@«ÑÒñ©ü@«Ñà r@«ÑÒñ©ü@«ÑŒô!-@8ÿ–»˜È@8ì¥zxl#@4áhr° Ä@4æÁ½¥@3ìj~ùÛ#@3ñÎ_p@3”mÅÖ8†@3™Çy¦µ @3”mÅÖ8†@3“œ¾ß¤@3”mÅÖ8†@3oÒòå?ÏÁ³Uy?’°BÉô-?[_œ(Ä? ãçùÇùw?“Ïb³0)3?§—´ ¼r?Á,æ*D7Ö?œ"ÛJÓUO?¦P{ìjÿ?“ÅÒÏPÉä?‘†óèJL\?™J•Ø3ÈÖ?Îî÷! ˜È?Ÿ‚Þ'h»?“àÕèéa‚?Ž«]O8èº?·♊N?¥È©¾ó‚ž@@@@@$@,?ð?ð?ð?ð?ð?ð?~ îÈ[¿W­)®?wyšI®=û?hJFÒ±@«p Åg6ƒ@«ÑØqx/?€ÞF[)?u†}ηx?áã8E-^ œ?è±1uw@¢*~ÞMlJ@¨&挿CX?C5 hG6?$½í‹IŽß?ñŒ…>?B¾~‚q²F@Ÿs¨OÔ±@ì@¬[?|í‘h@¬[<ÈsD™@¬[?|í‘h@¬[< aWB@¬[?|í‘h@¬[@µ<Õ@¬[?|í‘h@¬[>ÔIb²@¬[?|í‘h@¬[?O€yÍ@¬[?|í‘h@¬[?á†h@šø‚ Iº^@šø‚\(õ@šø‚ Iº^@šø€¢€–U@šø‚ Iº^@šøƒ»@šø‚ Iº^@šø~¾Ί@šø‚ Iº^@šø…S]ÏH@šø‚ Iº^@šø„G[åR@6ð4mÅÖ8@6ðbaênØ@2Å?|í‘h@2Ƥ#ͽÆ@2å`A‰7@2&ýëá\@1cÉîËû@1d¢†Øû@1cÉîËû@1c¥œ?©@1cÉîËû@1c¶–•G€?ñ3<' ?O©äú?‘£­ÿÃÏ?‹¬½Þꃩ?‘¯5Gí±½?‘Qãm²0I?†‡+ Iº?’$%Ÿè'?ãõÞ¿`?0Ò£Ìî ?‘Qõ9¥ï?ô<üîìG?Žh 3·œA?k…f¼ü ?‚׆W­–?ƒ$æJîÇ?†ç¬CÈ?†ôð¾6^@@&@(@ @4@2?ð?ð?ð?ð?ð?ð?EIh\h?&®–áÐ? ³ozA«7?87;g¡Ë¤@¬[>nà¿L@šø‚°½½?,ô+·öe?X?܃ݴ?bD®n” ?µ$Å](6@Ÿi/›^¤.@í@¡ñ&éxÕ@¡íOß;d@¡ñ&éxÕ@¡Î'*û"@¡ñ&éxÕ@¡œ}ûÙ@¡ñ&éxÕ@¡è?¨$@¡ñ&éxÕ@¡ö p @¡ñ&éxÕ@¡…:(@Ÿ]üí‘hs@Ÿ]çï².@Ÿ]üí‘hs@Ÿ]±7ñý¨@Ÿ]üí‘hs@Ÿ]sùå3@Ÿ]üí‘hs@Ÿ]Ã>äô,@Ÿ]üí‘hs@Ÿ]°ì)oñ@Ÿ]üí‘hs@Ÿ]öõ•›6@8 Î_oÒ@8åÉä@2Ùº^5?}@2ÇÝ ˆþW@2ˆ“t¼j@2A´P%ä@1kxFÜ^@1M¡-o#@1kxFÜ^@1I‹~Í_@1kxFÜ^@1^%\ïI”?æ ç«Z–?§›BÞ -à‰? "|æ=e?œã}MãmH?š0„ÈRpµ?—!¬CÔ?æ ç«Z–?¬~9;¸xN? ýŒsEj?œ -ø@Ÿjn‰[ØS@ï@¥ -ËÆ§ïžÁ.„€@¥ -ËÆ§ïžÁ.„€@¥ -ËÆ§ïžÁ.„€@¥ -ËÆ§ïžÁ.„€@¥ -ËÆ§ïžÁ.„€@¥ -ËÆ§ïžÁ.„€@š ¢Ðå`BÁ.„€@š ¢Ðå`BÁ.„€@š ¢Ðå`BÁ.„€@š ¢Ðå`BÁ.„€@š ¢Ðå`BÁ.„€@š ¢Ðå`BÁ.„€@8¯O „MÁ.„>¤µÜÆ@4’ Iº^5Á.„M‰ûçm@4Ðå`A‰Á.„QnÙ‡@3”mÅÖ8†Á.„NÜC,¥@3”mÅÖ8†Á.„NÜC,¥@3”mÅÖ8†Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøð@®ªë…¸@®ª`ƒn™@®ªë…¸@®ªa|Ú@®ªë…¸@®ªë…¸@®ªë…¸@®ªbMÓ@®ªë…¸@®ªùrGE@®ªë…¸@®ªGE8î@©8ýó¶E¢@©8‘ë…¸@©8ýó¶E¢@©8þÑ·@©8ýó¶E¢@©8ý¥œà@©8ýó¶E¢@©8øy=Ù~@©8ýó¶E¢@©9Ý/ @©8ýó¶E¢@©8ùÀëíû@7ÿ–»˜È@7Éûçl‹D@3ÞÙ‡+@3áä÷eý‹@2ˆ“t¼j@2‹’:)Çz@2Œ¿±[W?@2'»/ìW@2Œ¿±[W?@2ˆ7´¢3œ@2Œ¿±[W?@2ŽHè§ç?Ûa‚ßi?—hÄ”V?’ʶ‹ùs?Ž,OêK˜u?–JØi™”?•(Ï¢Uÿ?ÙYܲð?˜ü^Š1??• -o‡É§?‘Ò–¬q?¡ºøò¤âÍ?“ 3—·²W?׬˜çß?’pP‡È»?† - Ðló]?†ü¢q+ÄU?Š—à `ž?mŽÃÎŽ@@@@@,@(?ð?ð?ð?ð?ð?ð¿i®@R?QïÞz®À?^zž)ý ?iرô­ƒŠ@®ªI—«@©8úQ ®û?m/ìoו ?{pbf_?ÌÜD߉EÎ?äÃl\lÎ@Ÿr·Ç¬ <@ñ@¯>+…¸R@¯>+ Iº@¯>+…¸R@¯>,ô!.@¯>+…¸R@¯>+àÞÒ‰@¯>+…¸R@¯>-\ú¬Ú@¯>+…¸R@¯>+)^ž@¯>+…¸R@¯>+ I»@ ý*~ùÛ#@ ý)ûçl‹@ ý*~ùÛ#@ ý*JŒM@ ý*~ùÛ#@ ý+)^ž@ ý*~ùÛ#@ ý*³g ù@ ý*~ùÛ#@ ý*qÞi­@ ý*~ùÛ#@ ý+¹Œ~(@4‘|ÚQ@4ޱÄ2ÊX@0žÙ‡+@0ž—Oß;@0A‰7KÇ@0N¤¨ÁT@/(Û‹¬q @/)Dg8~@/(Û‹¬q @/(>BZîd@/(Û‹¬q @/(´9Xb?ð°–Ž]?õ¹Ëh?‘D&»ä?Œ:Z2‚b?‘Dj?ë+ʦÜ_?ð°–Ž]?’ÍîfÕ? Dñ£P?CÚ B÷?ñ«Ý„ Õ?«àÓ RÆ?ð*wjs—?Œáò¯ž¼ù?‚|׿pZ?ƒ¦$H?†špk Y?†µ°jÆÃ?ð@@@@&@*?ð?ð?ð?ð?ð?ð¿QÝ«Ä?:¿ú?2šÍ5Á*Â?2çÊÖ®@¯>+ð¤Á¯@ ý*ñÚ?Aµ?»ØF©?A›îË7I?}Ï·A¬ª?zäS'sJ@Ÿs…87e@ò@®Ðõ?|í‘@®Ñ Iº]@®Ðõ?|í‘@®Ðóïò¨@®Ðõ?|í‘@®Ðõ¢öºL@®Ðõ?|í‘@®Ðõ: ¥Œ@®Ðõ?|í‘@®ÐòŠm, -@®Ðõ?|í‘@®Ð÷Šqq…@˜ Ä›¥ã@˜"•™Ø^@˜ Ä›¥ã@˜0zØËé@˜ Ä›¥ã@˜rX–V@˜ Ä›¥ã@˜A³öÐ@˜ Ä›¥ã@˜8ºïñ@˜ Ä›¥ã@˜,T|þ@9Hè§ç@9+âÙ¦@3Ê^5?|í@3ÐjJèJ@3²-V@3##N™à@2}cˆe”°@2ƒÚ]6væ@2}cˆe”°@2{Ô¸æAQ@2}cˆe”°@2…¸pe°?§›&°#;?ÝÙä3ð?–Õ)`x¿y?ÙzëÄö?’:׉êÑ?’ŸÜùý?£Vå”Åz?“Ú)?¡T‘H³N?ï=?’6ad á=?’p<þþe‹?¸ TÆûØv?D‡¡ÖýÌ?„Ôô²*™ÿ?†%"¸ü?‡‚¹§JDà?Š0‹Ñr;ü@@ @*@&@7@8?ð?ð?ð?ð?ð?ð¿Op x$¿`Ü}‘€?]A?I±Fƒ?q©²L„ßz@®Ðõê° Æ@˜-ÆÎ]?q¹!¸¿¥?†è¹ Ȱ?ÙYüæÁº\@ÒþíB“½@ŸpV¢BÎ@ó@¥[ -=p£×@¥[ ûçl‹@¥[ -=p£×@¥[ jçÕg@¥[ -=p£×@¥[ -™0¾@¥[ -=p£×@¥[ C•@¥[ -=p£×@¥[ -=p£×@¥[ -=p£×@¥[ ÞÒ@­9`Ä›¥ã@­9`Ä›¥ã@­9`Ä›¥ã@­9b@·€4@­9`Ä›¥ã@­9`uöý"@­9`Ä›¥ã@­9`IQ‚@­9`Ä›¥ã@­9b\(ö@­9`Ä›¥ã@­9a [À@4Ç>«6z@4Ç$tSŽô@1 -^5?|î@1 -Ô,<žì@0v§ï²-@0vÈ´9X@0 ù kº@0â‚@·€@0 ù kº@0Oß;e@0 ù kº@0†Â&€ž?|öOÿÝ?*£|3Né?‘°&޲P?ŒArUã@?‘ ·èf?‘£.'É?}Ñ¿ž,?’LÁŒÀ´a?§^ ÿo˜?]bËn~?‘!U?Ð{Ò?hï,ðà?ƒ¡É^&Ö?ŒÖ -ÄȲ?‚ÂÌ]æ?‚þ——³§ø?†Ü‘ °Ô?†ÃÛSPã@@@@@*@&?ð?ð?ð?ð?ð?ð¾îZœb?&ùõ‡ ?-ŠÂ÷±“²?&Š‚Gj}@¥[ -vcG@­9a"ä1Q?Mps»µƒ:?Fü9;„Ät?§Hi ?šžS=-ðv@Ÿg •vä@ô@¬ÔÞ¸Që…@¬Ôݲ-V@¬ÔÞ¸Që…@¬ÔÞ‰ŒUí@¬ÔÞ¸Që…@¬ÔÞ‹Æ^Z@¬ÔÞ¸Që…@¬ÔÝmk„6@¬ÔÞ¸Që…@¬ÔÞ[íE<@¬ÔÞ¸Që…@¬ÔÝ_/ëÇ@–‡ð£× -=@–‡è Ô•@–‡ð£× -=@–‡ôÌö”@–‡ð£× -=@–‡ïȈ¹@–‡ð£× -=@–‡ð'8®@–‡ð£× -=@–‡îÕ˜M@–‡ð£× -=@–‡ï@oC@6” xFÜ@6‘eÚ>iÎ@2^Ù‡+@2^x†çˆ@2.ùÛ"Ðæ@2-Yû×ò@1s&Á½¥@1q¤é›@1s&Á½¥@1rIR1I@1s&Á½¥@1qyAê¥?€‘gQÚÃ?©ýSÏìÅ?‘ÀbÑÀç?Œ´›È?‘ÇÜc娸?‘PÉRŸŒ?|ï"<¶~~?“¿ñ#ëu?‘^Ö:[Î,? íkßÞ?‘w«~A?¹ØÖ3?„ö–'@¡è?ŒÚ¦üˆƒ?†[µó¥t‚?ƒ•sç -í ?‡÷2o»9?‡5zj›«@@(@$@$@9@6?ð?ð?ð?ð?ð?ð¾Ásëø?L†[d?Ìt:ÇDž?.:EÑ•i@¬ÔÝ®Uà@–‡ìÁî?:u, Í?O°zˆ¤?H¸A>q?§Óbù]ÕH@Ÿg2ŒpÎ|@õ@§[ݲ-V@§[ݲ-V@§[ݲ-V@§[Þi­BÄ@§[ݲ-V@§[ÝÙb·@§[ݲ-V@§[ÞÑ·@§[ݲ-V@§[Ü]cˆf@§[ݲ-V@§[Ûçl‹E@°n—P@°n—P@°n—P@°¤¨ÁU@°n—P@° Ô•+@°n—P@° …ðoj@°n—P@° ]Ìcñ@°n—P@° Òñ©û@3Ù*0U2b@3ÙQ‚©“ @/žùÛ"Ðå@/œàuöý"@/dZ¬@/FÜ]d@.-úCþ\’@.*#9Àëî@.-úCþ\’@.*~ùÛ"Ð@.-úCþ\’@.*¦L/ƒ|?|¬Çëý ?dYûë„{?‘£Ä›è?ŽÆv‹‰k?‘‘n{ÆäK?ý‰w'¬?|¬Çëý ?’j•×›c?‘ŽütÅÒ(?‘èÒ§ˆ„Æ?‘c3¸cÜ(?‘á.†8?‚˜YªüÏE?ŒË›Í‡Çq?‚¯­Ù¤Á¶?ƒ*|š\/´?†špk Y?‡&üòI@@@@@,@*?ð?ð?ð?ð?ð?ð¿3ÜÕ€¿G×8t\?$2e¬XD?6Ñãe2f[@§[Ý)¨‘@°ï`Ëi?DAÝ€â?WG6ÀÕ8@2OO „M@2L篷é?¡ë MV{¶?¹sOeÖwS?›(`¥Æ´?¥__z8Ž`?g;+³ûu?¦ŠãóŒìš?Žì«ÍÊ#?¾Iû ÖÒÍ?’ðÀ,°ø?¦róPès¥?¦kG r©Ï?©Êâaþ¾?—¹|­T â?žTK eð?”³Ž+k?ŸB-j·ï?¬D©`Ä?¡‘8²™ç@@@@@,@*?ð?ð?ð?ð?ð?ð¿t ºŸì¿~`H?~y(Kæ¬u?]IXêwe@§„zˆ5æÚ@œÊ]êt–?›—? p™Œ?€‰Rp@Š6´S?Ù¥„¨È÷f@Ÿi”³uÎd@÷@¤ìŠÀƒo@¤ì‰Y:1¨@¤ìŠÀƒoÁ.„€@¤ìŠÀƒoÁ.„€@¤ìŠÀƒoÁ.„€@¤ìŠÀƒoÁ.„€@¤ìŠÀƒoÁ.„€@$D›¥ãT@$Qèó@Ñ@$D›¥ãTÁ.„€@$D›¥ãTÁ.„€@$D›¥ãTÁ.„€@$D›¥ãTÁ.„€@$D›¥ãTÁ.„€@8VšÔ,<Ÿ@8;ô‡ü¹$@4Å?|í‘hÁ.„M‰ûçm@4¢-VÁ.„QnÙ‡@4 ¿±[W?Á.„NÜC,¥@4 ¿±[W?Á.„NÜC,¥@4 ¿±[W?Á.„NÜC,¥?®ÌÅþõ¤À@8#˜@8¾:@8 >+@8Iç@8Ù?²ŒNìK3Í@8Î÷@8i§@8Å@8S@8û—?¢O>Fâ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøø@¥NÙ‡+@¥j~ùÛ"@¥NÙ‡+@¥'†Â&@¥NÙ‡+@¥Ä2ÊX@¥NÙ‡+@¥÷eý‹@¥NÙ‡+@¥õÂ\@¥NÙ‡+@¥ á°‰Ÿ@­tvÈ´9X@­tˆ´9X@­tvÈ´9X@­tN;Í5§@­tvÈ´9X@­tD2ÊW¨@­tvÈ´9X@­tF§ï²@­tvÈ´9X@­tDÝ/ @­tvÈ´9X@­t=Ùb·@8Œ]cˆe”@8yDg8~@3uãS÷ÎÙ@3\ÓZ…‡”@2ù7KƧð@2Ò©“ àß@25µsê³h@2 <64@25µsê³h@2Ov_Ø®@25µsê³h@2 <žì¿²?½=,ÜŠ{g? È»v\¶?¤½’ƒÚc? Tã|ø2Ñ?¡YË@ÜíÛ?©©åðLè…?´ Z è´ß?&”ðÚ˜?£€-S¡^?›=:=N…>?œC]F~Ü?°•†(z@†?º‡Øpi?œ‘z¥æ?‹v'þ­X?…âC£½¾Ý?‰w¿˜Í¶ª?Š`½i=ÓØ@@@@@*@*?ð?ð?ð?ð?ð?ð¿€ü¸)¥¿‡„9‹?„ðÕ"[êº?y;ØÝ÷3…@¥ `¢ôR@­tH¬±-?–CѱK€ª?ŠPäTD‹@öAÅÏ„\?ð…é`¦%*@Ÿo-±û‚@ù@¥-ØbMÓ@¥-ÖE¡ÊÁ@¥-ØbMÓ@¥-Ó×Ûõ@¥-ØbMÓ@¥-ÏŸ¾w@¥-ØbMÓ@¥-Ò×sü@¥-ØbMÓ@¥-×eýŠÛ@¥-ØbMÓ@¥-Ô!-w@«bMÒò@«’n—P@«bMÒò@«”¯O „@«bMÒò@«“3332@«bMÒò@«‹íúCÿ@«bMÒò@«•µsê³@«bMÒò@«:û~‘@6” xFÜ@6•ðoiDh@3E?|í‘h@3IÇy¦µ @2•`A‰7L@2˜y=Ùc@2#ÉîËû@2)ã¼Ó@2#ÉîËû@2)rGE8ð@2#ÉîËû@2)rGE8ð?„F/·ÿP5?—A«ª°×Z?™çÙô½îé?ç\Š2˜?µDá?…2 Ôî½?‰G±±ZÎ?‹Ûx§Þ@@@@@*@,?ð?ð?ð?ð?ð?ð?$a€¿2¶Ô`?9~ñ¶°êÒ?:áçÈZUš@©ù+ÿwˆ@£J÷`”?Xî ”?­õ?[&¼*5l?¿—im4˜ÇÅÏ?]G|¤Ý?0-B¿q›?Í—uèø*?L5–S€k?€bMÔŠ»?Œ¬h2:“?‚nÓ3îŠ?‚â>¹R÷K?†‡I‚ÿ¯Û?†‡I‚ÿ¯Û@@,@,@,@7@;?ð?ð?ð?ð?ð?ð¿CD¨ƒ¿ŠØL¤?/ùÏ·”>ñWu,¦{g@®K”%ê@—?i¤6?>¾ò´7q?hš# l®?w>ï1¨è>÷­¿Ôm¬@Ÿs *rW¥@ý@Ÿ7Që…¸@Ÿ7Rn—Q@Ÿ7Që…¸Á.„€@Ÿ7Që…¸Á.„€@Ÿ7Që…¸Á.„€@Ÿ7Që…¸Á.„€@Ÿ7Që…¸Á.„€@$5?|í‘@$34l@$5?|í‘Á.„€@$5?|í‘Á.„€@$5?|í‘Á.„€@$5?|í‘Á.„€@$5?|í‘Á.„€@4쿱[X@4 YüŸ@1Ìí‘hr°Á.„M‰ûçm@1Ë"Ðå`BÁ.„QnÙ‡@1 -0U2a|Á.„NÜC,¥@1 -0U2a|Á.„NÜC,¥@1 -0U2a|Á.„NÜC,¥?|¾»•lŽ@8#˜@8¾:@8 >+@8Iç@8Ù?|¬g68ó@8Î÷@8i§@8Å@8S@8û—?‚”½Í}@8 * @8p÷@8¶@8 Ø@8 Ø@ ?ðøøøøøøøøøøøøþ@ªÏ}p£× -@ªÏ‚\(ö@ªÏ}p£× -@ªÏb\(ö@ªÏ}p£× -@ªÏt¢3œ@ªÏ}p£× -@ªÏpË)^Ÿ@ªÏ}p£× -@ªÏs@N¤©@ªÏ}p£× -@ªÏst¼j~@¨}aG®{@¨}O\(õÄ@¨}aG®{@¨}R•éá±@¨}aG®{@¨}WOß:@¨}aG®{@¨}ca@P@¨}aG®{@¨}^Åm\û@¨}aG®{@¨}a [À@8Ñ|ÚQ@8¹“ àÞÒ@4f‡+ J@4`°ò{²þ@3—ï²-@3ÿ—$tT@2Œ¿±[W?@2…Y³Ð|…@2Œ¿±[W?@2†È´9X@2Œ¿±[W?@2‡€4mÅ×?3ßa=„?“³ß )}o?›Q-(¥Z°?˜Š4¨]t?•bJÖµæÿ?—>æV¡¶$?­éW«ZM›?œœUX |e?•¥º~§?—wžÈAV?” E®!—?“f:[êc#?¾Ôm¶W?”¶’8¾J?‹?ü}(´3?‡¯½.SM?‹Ûx§Þ?Žrø·óæ@@@@@*@*?ð?ð?ð?ð?ð?ð¿lƒ–0?V"¤ÊQ?SÅt`7´&?ai Ÿ~©@ªÏu…D$t@¨}_…&Þ1?uûÔlîtÄ?uGWùôIM?Ý›sê'z?Ö1å_á@ŸoÿÐ@ÿ@¢Á¬1&é@¢Á¾¸Që…@¢Á¬1&é@¢¼Ñ4êK@¢Á¬1&é@¢¼¾ùÛ"Ñ@¢Á¬1&é@¢¼CŠ @¢Á¬1&é@¢¼VOv`@¢Á¬1&é@¢¼š¬1@¦’—Oß;@¦’‡®zá@¦’—Oß;@¦ßö”E@¦’—Oß;@¦ýÌcñA@¦’—Oß;@¦·€4mÆ@¦’—Oß;@¦ú–¼@¦’—Oß;@¦Ý/Ÿ@8ý:’£@9\(õÃ@4ÇÎÙ‡+@2&Â&€I@3Õ`A‰7L@1em\ú¬Ú@3p–»˜Çã@0Ù“ àÞÓ@3p–»˜Çã@0ÊÀƒn˜@3p–»˜Çã@0ÅýŠÚ¹ö?ÁІ$±™?ÕO;‹5²à?Ñ D¿‡º ?Å^‚¨ˆ2È?Ë.ÐÊI?̼+èHn?µQN?ÂŽsÜ3 ?Æ÷[ì†ú?ÇAöþMª?ÃzÖª=ô‡?ÅXbáé?ÃÕÇêF¬(?……+Qt?£%øZîo ?°LÁ(±“?°;û}¼?¥ÕS^^G>@@@@@*@*?ð?ð?ð?ð?ð?ð¿ÔnTûH¿Ã¬¿t¢H?ºù4/?¤zqC@ç@¢¾#0_¸@¦ðWõú?Ù„mk ?Å¿ó¸È@DK|©>Á@)©.©”µ@Ÿi7Ñų&@@¯ë5?|í‘@¯ëL…ÏçÞ@¯ë5?|í‘@¯ê|ÚP@¯ë5?|í‘@¯ëk…¸R@¯ë5?|í‘@¯ëwškQ@¯ë5?|í‘@¯ëXy‰B@¯ë5?|í‘@¯ë$9?¦]OëvÙú?Ú¢‘:]S?àŸT±f‡x?ÚE³P¤\?ÂË/¯ƒj~?Æ Rhª§?¥“ÓÛƒ ‹?»Ç­Kåß?Å&ÁÐQ~?¿ü)½ÀÍ?˜Ñ‹>?³gÕJªš‚@@@@@5@6?ð?ð?ð?ð?ð?ð¿gmÐ(*¿E Ù`?u º-i¤ß?‚äø£;k@¯ëFº,%·@”óøÕèv?’ýã4{Ý7?¡ -9çÞ/?áÎCà¥t?ì}S?Öa@Ÿc a;N@@ªÝaG®{@ªÝa‰7KÈ@ªÝaG®{@ªÝaÊÀƒ@ªÝaG®{@ªÝaÊÀƒ@ªÝaG®{@ªÝaaä÷f@ªÝaG®{@ªÝ`ªdÂø@ªÝaG®{@ªÝ`ƒn˜@ŸÇ®zá@ŸÇ®zá@ŸÇ®zá@ŸÈð@ŸÇ®zá@ŸÇ®zá@ŸÇ®zá@ŸÉk¹Œ}@ŸÇ®zá@ŸÇâ‚@¸@ŸÇ®zá@ŸÈË’:@3¹Œ~($@3Ƨï²@/¼j~ùÛ@/!-w1@.&éxÔþ@.HðŽ@-`ªdÂù@-©*0U3@-`ªdÂù@-×Ûôˆ@-`ªdÂù@-œ¾ß¥?|öOÿÝ?Ï[äe?¢Ûdâ_#?¶.ŠcC€?½Œ¬@¶[¨?í“C¸<É?Ãd¼Þô?™¬Ð3S³Î?–µPKYÅh?¢m« €R?šÓ”«ú?—¼l3Ê`a?™ä±†Ö4ƒ@@&@ @&@9@7?ð?ð?ð?ð?ð?ð?‰(;V¿”*ª±› ?ayÁÛêÕ³?h´Ø«Vù›@ª¹•ÚŒÍ@•³€¹±°¦?v_hw“RË?€ÈǨlŠ?Ä·.ÍM?Â_ܵµ@Ÿ_s=äÙ@@®Ƨï²Á.„€@®Ƨï²@®Ï\(õÃ@®Ƨï²@®Ò£S&@®Ƨï²@®ãˆe”¯@®Ƨï²@®èÁTɇ@®Ƨï²@®ÝæšÔ-@ D†$Ý/Á.„€@ D†$Ý/@ Dœ¾ß¤@ D†$Ý/@ D‘ÑN;Í@ D†$Ý/@ D§ü¹#£@ D†$Ý/@ D†Á½¥@ D†$Ý/@ DºáG®@9›¹Œ~($Á.„>¤µÜÆ@5€ Ä›¥ã@5jÍžƒä&@4Ú~ùÛ"Ñ@4Êû~ÿ—@4^«6z‘@45Â\(ö@4^«6z‘@4F€IQƒ@4^«6z‘@4*Ížƒä&@8J¨?°o\3dŽØ?ŸcOÖ²Ü?¡ø -à ?«î¢¥'&‡?·ãöâ@8J¨?±ûKá•)†?œ*&Ækúµ?¸Yà5}Go?¬€Ö¡(?µ.•Э[@8p÷?¡:¥UYP§?¦þ“ßH/b?•*¥Q«_“?¥VËMª¼‰?¯!›ÖËf@@@@,@$?ð?ð?ð?ð?ðøøøøøøøøøøøø@§nœ(õÂ@§nœj~ùÛ@§nœ(õÂ@§n/Ÿ¾@§nœ(õÂ@§nœwškP@§nœ(õÂ@§n!ÿ.I@§nœ(õÂ@§n›µsë@§nœ(õÂ@§n›‹¬q @¤Pm‘hr°@¤PmÒñ©ü@¤Pm‘hr°@¤Pm5¨Xy@¤Pm‘hr°@¤PmBÃÉï@¤Pm‘hr°@¤Pm\ú¬Ú@¤Pm‘hr°@¤Pmžƒä&@¤Pm‘hr°@¤PmÒñ©ü@2¥öý!ÿ.@2¥ðoiDh@/Gï²-@/Gü¹#¢œ@.mOß;dZ@.m¸ºÇË@.½Vlô"@.½!ÿ.Hé@.½Vlô"@.½!ÿ.Hé@.½Vlô"@.½}¿HÌ?É^³Dw'?ûJ`ÕYð?‘$Cê¡@í?‹Æ úJ-M?‘¿ÐÅu?ë+ʦÜ_?ÐbV‡,?’&u÷E»@?ƒ‰/BH?K·‘d]?üÓqÔNŠ?{L Õ¢D?€b¡´ñ@?Œ²ÅŒÕ6?‚|׿pZ?ƒ ?ÿ½?†©b/bJö?†–f_ÔŠŠ@@@@@,@*?ð?ð?ð?ð?ð?ð¿I¢SZ?)\‚Ø?8ŠŽY#™`>û•åw„œ@§nœ >Ù@¤Pm”)²˜?GœüùßµÊ? -0Ö^¶J?Š÷9tµÖ´? oÞMš@ŸsëœgÞ@@¤½q©ûçm@¤½q©ûçn@¤½q©ûçm@¤½q©ûçm@¤½q©ûçm@¤½rÊW§‡@¤½q©ûçm@¤½u?|í‘@¤½q©ûçm@¤½pHð@¤½q©ûçm@¤½k6z‘@£oŸ¾w@£nÙ‡+@£oŸ¾w@£m‘hr°@£oŸ¾w@£kÓÃa@£oŸ¾w@£lcñA@£oŸ¾w@£mí(Œç@£oŸ¾w@£lÙè>B@4[¹Œ~($@4[àÞÒˆÎ@0ør° Äœ@0÷y¦µ @0b-V@0`ëíúCþ@/QÑN;Í6@/N!–R½=@/QÑN;Í6@/OªÍžƒæ@/QÑN;Í6@/H´9Xb?}Ñ¿ž,?¾¢`ƒ?‘$Cê¡@í?‹¹GüÞõ?‘ä~|+?’¯-! )m?|öOÿÝ?’ ,øÕC©?–ÐO(·Š?9ÍÇ~FÀ?õ<úU?ëÎ@ A2?‚‘´…=Ca?ŒÐ¤Âÿê?‚ÂÌ]æ?‚ôhBì^?‡×7°º?Š—à `ž@@@@@&@*?ð?ð?ð?ð?ð?ð¿A†]¤¿:ÛÌ®À?MQîÏŸ77?)õÕÓÍK”@¤½qFj^@£m߀íï?l¯Ûì?JD<ÆM×?ä×t‹¦C‚?¡¥8åò@ŸfÏTËIÃ@@¥È€@¥Èr° Äœ@¥È€@¥ÈlÌÌÌÍ@¥È€@¥È|žì¿±@¥È€@¥Èz^5?}@¥È€Á.„€@¥È€Á.„€@žò(õÂ\@žò$Ý@žò(õÂ\@žñýp£× @žò(õÂ\@žñ÷1Å@žò(õÂ\@žò Òñ©ý@žò(õÂ\Á.„€@žò(õÂ\Á.„€@8Q|ÚQ@8J³g ù -@4›¥ãSø@4ÎÙ‡+@3V”@3FÜ]cˆ@2a:’£S@2V€IQƒ@2a:’£SÁ.„NÜC,¥@2a:’£SÁ.„NÜC,¥?™™™™™™š?ÜFÕ^c?¤Ôê -ûQ÷?’úˆ_šª@8Iç@8Ù?¢Æ÷Xê†?¡1™•ÿˆQ?¢Ì²ðˆ»?¡"JîÃ!@8S@8û—?¹ -f)Á7 ?¦…ƒ´3ž?žïó­M?›0Œ’$ž@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø@ ô˜bMÓ@ ô•äÈœk@ ô˜bMÓ@ ô²7Q\@ ô˜bMÓ@ ôŸ99˜@ ô˜bMÓ@ ô¨ÙE@ ô˜bMÓ@ ô™¹›n@ ô˜bMÓ@ ôª‡ @ &éxÔþ@ +Ƨïž@ &éxÔþ@ =ZnIy@ &éxÔþ@ +¡ê¡@ &éxÔþ@ 8)Ïp@ &éxÔþ@ Ú8@¥MzáG®@¥MzÅ*Õ6@¥MzáG®@¥M{6×’º@3uS&Á¾@3uL˜_÷@1º^5?|@1Zñº`@0¶§ï²-@0¶ÿ\˜Ý@0Þi­BÄ@0PwS@0Þi­BÄ@0ŸC?¶@0Þi­BÄ@0½,ÅV?|Ñb×¶@?ëzÐRð¼?‘7*¹£¶€?‹«ég€eÜ?ÿ¡c7A?ÛàuZΑ?|¬h2:“?’³.ª?“(Wò§g?2s `²?äÍ *+R?SR‰—eÇ?‚†µ”g¬?ŒÀÈŠv¯?‚Ψ,UiW?ƒÍ©&?†þ†ÊB1-?†ïÉ'f—@@*@$@@4@4?ð?ð?ð?ð?ð?ð¿8äòñh? ‰gP?¹GJ¯¸?0ƒ0-C.D@ —JÀRŸÚ@¥M{GÍSÅ?7’2ßC?PÑ‚ç§Õ†?~9î]áÞ?­§ãGh¯@Ÿfðð †@ @¬ŸŸ¾vÉ@¬Ÿ¦×@@¬ŸŸ¾vÉ@¬Ÿý!ÿ/@¬ŸŸ¾vÉ@¬ŸOv_Ú@¬ŸŸ¾vÉ@¬Ÿ¬1@¬ŸŸ¾vÉ@¬Ÿ6âë@¬ŸŸ¾vÉ@¬ŸzáI@$³3333@$®6Òo*@$³3333@$«íúCþ@$³3333@$²þÅm]@$³3333@$¦€IQ@$³3333@$¬VÕÏ«@$³3333@$­‘hr°@7µS&Á¾@7³Ô!ª:@4GÎÙ‡+@4N\‘ÑN<@3'KƧïž@3) 'RTa@3?ò䎊r@3Nÿ—$t@3?ò䎊r@3FE¡ÊÀƒ@3?ò䎊r@3YÔ•*™?‡‡á´WÉ?™¿µ´¿1´?”Ä0óçî?˜^ܪɅ ?š(:)[a?¬¯!ò8¾‰?‰ŒÊQ¥?Ÿy­\Ÿ€?’]:»›.ó?ž¡‘dŸ–c?—?—³’sB?¯áƒÙ²?—'WÍüæ?˜jN‹­÷R?ƒ{¬ÉW?šSÌ·ï$€?‹ì3åý?°¬¹57¶ø@@@@@*@,?ð?ð?ð?ð?ð?ð?Y§Œ¶ ¿9}¿T?Qq°ñetC?:Ù¤_èø#@¬Ÿ§x~@$¬e¥ Á?o6rr$Î?XÅ3G½Êå?Ðèú?£–7S#Ám@ŸePÇÎ@ -@©ùíV@©ùíV@©ùíV@©ùî.±Ä3@©ùíV@©ùîV“@©ùíV@©ùî¾ß¤A@©ùíV@©ùëûµt@©ùíV@©ùëŸU›=@¥`Ù‡+@¥`ÙXbN@¥`Ù‡+@¥`Ùe+ÓÃ@¥`Ù‡+@¥`Úu%E@¥`Ù‡+@¥`Ù=Ùc@¥`Ù‡+@¥`ÙÛ"Ðå@¥`Ù‡+@¥`Ùe+ÓÃ@2p4mÅÖ8@2p'RT`ª@.Gï²-@.HK]Ìcñ@-?;dZ¬@-?HË’:@- -#9Àëî@- -dÂø7µ@- -#9Àëî@- -W§†Â'@- -#9Àëî@- -qÞi­C?É^žQ5P‚?ÉGãA­÷?‘"žæÆó¡?‹ÝÉ!ë#?÷6r In?ºª$Ð?ÐbV‡,?’ ÃCÀ`ú?ˆ9²0?EÇàÔPà?ë,YÁ?X78›š?€cPßQª?Œ°¶.Ä+Æ?‚uÞ@>N ?‚ôhBì^?†½ª»—?†–f_ÔŠŠ@@@@@*@(?ð?ð?ð?ð?ð?ð¿VÙ ÿo?m¯ï ?7†Þdh*9?'‰ -«è¨B@©ùìü_JW@¥`ÙzŸW?F nÇzl?6JD¸µjº?ˆü—'·è=?e Ë\ ”±@Ÿs -Û’ó¶@ @­tQë…¸@­tL‹C•€@­tQë…¸@­tK¹Œ~(@­tQë…¸@­tBh Ô”@­tQë…¸@­tBëC,@­tQë…¸@­tUÜÆ?@­tQë…¸@­t+…¸S@§JÑë…¸@§JÍÒñ©ü@§JÑë…¸@§JÏ'»/ë@§JÑë…¸@§JÒn—P@§JÑë…¸@§JЉ 'R@§JÑë…¸@§Jξߤ@@§JÑë…¸@§JÄ“t¼@6Î쿱[X@6Ñ|ÚQ@3+¥ãS÷Ï@3+quŽ!–@2´“t¼j@2´tSŽóN@2ò䎊r@2ƒœ¾ß¤@2ò䎊r@2‹ŸU›=@2ò䎊r@2z^5?|î?„F/·ÿP5?–(.À·÷?“u*y?‘ÔþÆvI‡?£”ŠFÉÇ¥?¡6% v -?•²»UbB2?—áZk·×?³2ºŽ'?’¸Ý8h\?—uG<Ê? µ‘ƒ>?…~ÆÎÇ$†?Å{¿Ž<º?ˆÌ7^|Â?¢ÇrˆG?” 4‹eñ -?›°Ô¤A]@@@@@(@&?ð?ð?ð?ð?ð?ð¿nÓò‘ì¿IœÄt?fmç[¦ÀÈ?W‰Äô}7@­tCñŸÔ#@§JÎvP?†Ç®5 ¡?s´Zð‰.s@ÄÏ.E…Ú?×ë?Óq.@Ÿhw8r4^@ @¢2Rñ©ûç@¢2Q&éxÕ@¢2Rñ©ûç@¢2eF -¦L@¢2Rñ©ûç@¢2_±[W?@¢2Rñ©ûç@¢2SMj@¢2Rñ©ûç@¢2cÉîËû@¢2Rñ©ûç@¢2dÝ/ @£Q·KƧð@£QÑ©ûçm@£Q·KƧð@£Qwéùr@£Q·KƧð@£Q”,<ží@£Q·KƧð@£Q²×sü@£Q·KƧð@£Qç†Â&@£Q·KƧð@£QêçÕfÐ@8Ù*0U2b@8ä¢3œ¿@3¡hr° Ä@3°U2a|@2¤¼j~ùÛ@2¯ìVÕÏ«@2YŒ~($ @2zÇË)_@2YŒ~($ @2}V”@2YŒ~($ @2nŠqÞi®?´M ó¬^õ?’°BÉô-?›mqò -×?• Q™iå”?­×p°C²E?£šÅF ?§Q,Äš¤?›44]Åùt?°&˜1õjb?˜ýšJ¼|T?±"û¤]N?¦_BñWk?˜W|¶DC?“êXÔ #{? “˜¯ÃÛ?éàQx˜?±ö€»H? ¦å_¹@@@@@,@(?ð?ð?ð?ð?ð?ð?xåÈäÑ?xÀK›&?b?Nû,¬C?…K‚%Ö@¢2W”¢÷Ü@£QÇÕ®ü]?t’¥­ôJz?Ÿ±s -gxO?Æ·Dj•MB@|èwøKY@Ÿmt`ÿ‡Q@ @¦`Ôýó¶F@¦`Ö. þ‡@¦`Ôýó¶F@¦`ÐåA `@¦`Ôýó¶F@¦`Óë(O‘@¦`Ôýó¶F@¦`ÊZþ*@¦`Ôýó¶F@¦`ÅŒòw/@¦`Ôýó¶F@¦`Èo€AB@•z Oß;d@•zV“@•z Oß;d@•zVAeº@•z Oß;d@•zä.¦@@•z Oß;d@•z±5@•z Oß;d@•yùº<|É@•z Oß;d@•yùË»N1@5ãg ù l@5â-V@2Ìí‘hr°@2Ë’fŒ|@26§ï²-@25‰ÍI -@2B‚@·€5@2>»‰â37@2B‚@·€5@2?q›ª@2B‚@·€5@2A -PÆ?~Ov_Ø­«?¶AÜ?’IŸþ õ'?‹¬Ä‚‹Œ?“þfR¼ æbÕ?Páêé‹TP?Ø‚êùÀQJ?ª|KÉ"λ@Ÿfým(tÎ@@¡#@@¡#@ƒn˜@¡#@@¡#AÞ\@¡#@@¡#Fbت@¡#@@¡#DX šk@¡#@@¡#@ÒÖÈ@¡#@@¡#Aû;s@§.—Oß@§.Ù‡+@§.—Oß@§3îEN@§.—Oß@§/4œl®@§.—Oß@§9•ŒÄ!@§.—Oß@§6ù#+k@§.—Oß@§=ÜŒ"@4Ô xFÜ@4Ô«šØ@2=‘hr° @2:ºc>ª@1A‰7KÇ@1o‰º(@0úÔ,<ží@0÷Šc¡¦a@0úÔ,<ží@0÷³!( @0úÔ,<ží@0÷Ìø9@¤?|¬h2:“?‘h.vbˆ‚?’†f£ò ?‹¯Q•xÏ?’@µÔ>„?Áª^|#D?|Ñb×¶@?’ÛðQ¬Yó?‘à?“Ú™?1æk4x1?’µ#„Á?Znv`#?„Ç(å?âqÞÒñä?‚xýeS¡¼?ƒ²¶Ê½?‹Šv"s®?‡Oô¦BX@@$@ @ @4@,?ð?ð?ð?ð?ð?ð?;3 n@?g•.¼ì?=ÿ˜Sú?B‡9Â>@¡#Aª`a4@§58Æò?\Ðêr`¥q?bÖ!~R??ÆSM¦!?ÒkC-b@ŸfËAˆçÙ@@ ‰7KÇÁ.„€@ ‰7KÇ@ ¦¼üQ$@ ‰7KÇ@ ¢9Ô@ ‰7KÇ@ ¸aw@ ‰7KÇ@ »çÒÝ@ ‰7KÇ@ ÃÉo@4‡+ Á.„€@4‡+ @8˜l6A@4‡+ @7tO’‘@4‡+ @8ù@ê+:@4‡+ @9üLÐà @4‡+ @7Ížæ†@4(†YJôñÁ.„>¤µÜÆ@0xr° Äœ@/R§ÝO&+@/º¬1'@.QÖ+­u@/™b¶®~@-Øk}ª@/™b¶®~@-ú°ÇIp@/™b¶®~@-õÔ%Êî@8J¨?•]ý¼?¬±?²ò?£¦dX4/?¨ ÛAîwÇ?¥/Xye²@8J¨?žªòìÔ¼Œ?©^C~+°?¾F6ÑHy?šÒ‰[²\¦?¬6rç'×@8p÷?‘ñ`×T?‹C¢ª°?…ü±_-?‡÷™x™…?‡ÎvûþH=@"@"@(@>@<?ð?ð?ð?ð?ðøøøøøøøøøøøø@«Èñ&éxÕ@«Èó¶E¡Ì@«Èñ&éxÕ@«Èéº^5@@«Èñ&éxÕ@«Èç+ I@«Èñ&éxÕ@«Èé*0U2@«Èñ&éxÕ@«ÈéùrG@«Èñ&éxÕ@«Èâu%F @¬…“u@¬…“t¼j@¬…“u@¬…Â\*@¬…“u@¬…Â\)@¬…“u@¬…±Ä2Ë@¬…“u@¬…¤?åÈ@¬…“u@¬…"Ðå`B@8h†YJôñ@8j=p£× -@3µãS÷ÎÙ@3­„M:’@2ù7KƧð@2òò䎊@2hè§æ›@2bëC,¦@2hè§æ›@2\˜_ö•@2hè§æ›@2]æšÔ,=?…ÅBðrç?“âÜ[ê• ?•þ„@óg?“1ÕËt?”Å¥ÒB–W?¢zvíÈ­c?3ßa=„?œ7»fU‡?™ù6×$l?™ðyµCÒW?’LÁŒÀ´a?šøñÒ_¾I?¸¼öݾª?‘ÛÖæÒk~?„‘Za¹Q?†ÞåØÜÓ?Ä;Ãkr>?¡¶|+üÎ~@@@@@$@,?ð?ð?ð?ð?ð?ð¿jðúV?\`›5˜?@: -˜?@?_6{’ª@«Èì!Nt@¬…Æ·?` AÑÆ?~RÚ.Ò3?¶°?Ò?ñåÜG|Z@ŸhoŸ`w@@®¦ffff@®¦ffff@®¦ffff@®¦ffff@®¦ffff@®©…ðoi@®¦ffff@®¬cñA @®¦ffff@®§®zá@®¦ffff@®¦?@®:›¥ãSø@®:œ(õÂ@®:›¥ãSø@®:}¿H€@®:›¥ãSø@®:žƒä%°@®:›¥ãSø@®:Ÿ;dZ@®:›¥ãSø@®:šŸ¾vÉ@®:›¥ãSø@®:Ùb¸@5h†YJôñ@5i#¢œwš@3Iº^5?@35¨Xy>@2»Æ§ï²@2¾}Vlô@2p–»˜Çã@2oAò×s@2p–»˜Çã@2p°ò{²ÿ@2p–»˜Çã@2p°ò{²ÿ?}Ñ¿ž,?’@k=[?’÷˜–Èä?Œj6_?’ §¹i»µ?’4¶ó?}Ñ¿ž,?”zòžÕÿ?‘å†36åG?6) }’ë?‘ýuãá$6?‘¿¤üî¾Ö?‚oÁÆÜ§ö?ŽátÖÁ»‡?ˆìûIè¶@1°–»˜Çã@1›çÄN@1°–»˜Çã@1Š<×Ë·@1°–»˜Çã@1‹äw‘k?„`™ˆ/.~?à³Иô?—ü_”¿p‰?6狳nú?¡ÞA©2f?­™Zf¦ü?¨Sp*?•].>x3?˜7$]°?‘ 2ý‹?¹?”’o²H¢Œ?’DÙkÀ'?‘®§µ†2Ø?Ü2ÄT˜?‘`zö©ˆ&?†ù²˜?Š^.×’Í4?‰#”á4U@@&@"@@7@:?ð?ð?ð?ð?ð?ð?“5 Q?EõS^p?a¡+W†2²?V4h1ÁEè@©'>«bÞ@˜ ^<Üu®?|éåæZ?uk&gƒn?ò}p×9 B?ôÕàÇ@Ÿd-¤”á—@@®‚ Iº^@®­‘hr°@®‚ Iº^@® [À@®‚ Iº^@®Œ"h Õ@®‚ Iº^@®vlô!@®‚ Iº^@®yŒ~($@®‚ Iº^@®{˜Çâ‚@¦¼|j~ùÛ@¦¼aÊÀƒ@¦¼|j~ùÛ@¦¼s àÞÓ@¦¼|j~ùÛ@¦¼uéá°Š@¦¼|j~ùÛ@¦¼p£× -=@¦¼|j~ùÛ@¦¼he”¯O@¦¼|j~ùÛ@¦¼kC,¥@8ëµsê´@8ÕϪ͞„@48r° Äœ@4/·éùr@3'KƧïž@3Ëûµt@2½cˆe”°@2¯iDg8@2½cˆe”°@2¶s×Ûô@2½cˆe”°@2´záG®?¶™b’jk±?•tæïá,•?¢ž<³Óž?’\GyÆ©?˜h†5+P?—c‚L±bµ?°{QBãï?”­ŽzF”?¢n®Ú| X?’àêE©³?£í̽,¶y?¡V·ÏŠÞ²?¾ü'£Ê1…?ª‚eûƒ+?ôê÷º»â?‘ÄÚ êÛu?”NtyÞ"§?“¶Ì¶Öj”@@@@@,@*?ð?ð?ð?ð?ð?ð¿RäËùN¿6PB!ø?s˜MB&x?dïàø[r@®yÿS@¦¼m¥aÙH?…|2 j|?xÙRƒb?öÝgilþ¨?ÔVüsè z@Ÿo¡•ôº@@¤šå`A‰@¤š-‘hr°@¤šå`A‰@¤šT`ªe@¤šå`A‰@¤š¤¨ÁU@¤šå`A‰@¤š -0U2a@¤šå`A‰@¤š "h Õ@¤šå`A‰@¤š -JŒM@ž9Ñë…¸@ž9½ó¶E¢@ž9Ñë…¸@ž9Æö”Fu@ž9Ñë…¸@ž9Ï–»™@ž9Ñë…¸@ž9É 'RS@ž9Ñë…¸@ž9ÏÅo@ž9Ñë…¸@ž9Ïv_Ø®@8Ù*0U2b@8ÐN¤¨ÁU@1î5?|í‘@1îV“t@1M²-V@1IXbMÓ@0+xFÜ^@0(DЩ*@0+xFÜ^@0'y¦µ @0+xFÜ^@0' ù kº?Áñ@5Å@Â?/³)sšÌ?“njĕ‹x?îZ¼!ÇŸ?‘¿ -Óñ›?’_‘Oo¨Ž?¥K¶{Oÿ?’eCŒO?’/ý‡…,v?‘!¥zt9Û?’8,²ñ±T?‘C å;Ã?²“P(?nÂ?ލf†)"?‡Ü̈- -?„•ˆG’Z¾?‡YÍ_?‹aÊ•TI@@@@@(@,?ð?ð?ð?ð?ð?ð¿>zGYH?Zúu9¾€?]§ åÒÓ.An@¬óŠq Yf@˜ê õ»c?Rš Û¦ú?7³lí­?²Ð,¥–ÉÄ?}pxïXVn@Ÿfõ06À@@¯1¿|í‘hÁ.„€@¯1¿|í‘h@¯1ºÇË)@¯1¿|í‘h@¯1½¥œá@¯1¿|í‘h@¯1ÓÐ|„¶@¯1¿|í‘h@¯1Ã,¥zx@¯1¿|í‘h@¯1Çâ‚@¸@§¾n—OßÁ.„€@§¾n—Oß@§¾U$Ü@§¾n—Oß@§¾xºÇË@§¾n—Oß@§¾Z…‡“Þ@§¾n—Oß@§¾s3333@§¾n—Oß@§¾r{²þÅ@7 ]cˆe”Á.„>¤µÜÆ@2Ìí‘hr°@2àhÛ‹¬q@2'KƧïž@2*)Çy¦µ@1uµsê³h@1¸ºÇË@1uµsê³h@1†éxÔýô@1uµsê³h@1‚T`ªdÃ@8J¨?¡„OaMyñ?”P"ÒhI?›8˜îi? k‚ˆŸ;æ?šÑ«Äµ~õ@8J¨?£kŸ!µ?–AuøG1? Ñ¡b£?¾?¢ÒUöˆ?” ™¾,@8p÷?¢f—í¡I%?—ö+jçÕf?—pü”_ù?Ä;Ãkr>?Œ8¸wx¯@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøø@ +.—Oß@ +,ÌÌÌÍ@ +.—Oß@ +(Å6«@ +.—Oß@ +&Þ*7@ +.—Oß@ +8'ÛV|@ +.—Oß@ +3#‚6@ +.—Oß@ +7@.ä1@¬_Ÿ¾vÉ@¬_:S¸ä@¬_Ÿ¾vÉ@¬_ƒ=ü@¬_Ÿ¾vÉ@¬_Æ4@¬_Ÿ¾vÉ@¬_ šHª<@¬_Ÿ¾vÉ@¬_~È3‡@¬_Ÿ¾vÉ@¬_˜…¦À@65S&Á¾@65/9àÊ@3º^5?}@3E) -¢@2]V”@2SÑ£[ôr@1QÞi­BÄ@1;ž†³Ð5@1QÞi­BÄ@16HO™ãö@1QÞi­BÄ@16 ø·Óª?€”ëû·«?’”:¯[º?’‡9#êš?¬ –àrU?›÷øùC¼?›&)˜?~Ov_Ø­«?“>Û¶Å}¼?‘Ì!(Æ8Œ?’A¬|½:?’¤Ê]gõ[?›;Rtbš?…ÎPI»Á¾?’Þ&ÜÝ®7?‰67Dx?‡ -˜ƒèd?7ÎǺ?>ú-œ!@@*@"@ @:@8?ð?ð?ð?ð?ð?ð?e=|¿KF©Mà?Nf„ëOØ?aC=Hž@ +2pwî@¬_ôÜe?kÉ kVå?½µ Â3c?ØêOBJSª@öQ¶{5µ@ŸdÚ§Ú̼@@¡a9XbN@¡a<(õÂŽ@¡a9XbNÁ.„€@¡a9XbNÁ.„€@¡a9XbNÁ.„€@¡a9XbN@¡a:kP°ò@¡a9XbN@¡a;~ÿ—@¤s3333@¤vE¡ÊÂ@¤s3333Á.„€@¤s3333Á.„€@¤s3333Á.„€@¤s3333@¤yb¶¯@¤s3333@¤w1Å@7™*0U2b@7“,¥zxl@3žÙ‡+Á.„M‰ûçm@2Õ`A‰7LÁ.„QnÙ‡@2._oÒ Á.„NÜC,¥@2._oÒ @2)Î_oÒ@2._oÒ @2)Ô•*š?¢F^ì¼Sð@8#˜@8¾:@8 >+?“Ýâqß?’÷åâ6¹?…ÅBðrç@8Î÷@8i§@8Å?—?—³’sB?• °jà?ŽŽp±µær@8 * @8p÷@8¶?‰Ü)@Jq«?‰Ü)@Jq«@@,@*?ð?ð?ðøøøøøøøøøøøø@£Y¾vÈ´Á.„€@£Y¾vÈ´@£Y†9{i@£Y¾vÈ´@£Yô{Ì@£Y¾vÈ´@£Y!ëÿáO@£Y¾vÈ´@£Y篸@£Y¾vÈ´@£YDc“@—¼záG®Á.„€@—¼záG®@—¼xäQú@—¼záG®@—¼z·ö!@—¼záG®@—¼„-Á#@—¼záG®@—¼°‰ (@—¼záG®@—¼Š"1¨G@4eöý!ÿ.Á.„>¤µÜÆ@0’ Iº^5@0–ož©:@.è1&éxÕ@.è“)"«ô@-Âu%F -§@-Åc¿^5@-Âu%F -§@-Ä6:”¡Ð@-Âu%F -§@-Ʋü1ƒ¶@8J¨?EüUà¬?‘pÇ-n†?ŒŒ5¦ª?‘[æÁõ•á?íÈy÷Ù@8J¨?’´7rRÎ?‘SÎ|]•­?†Ã„5Ãù?‘]^ÆA»?’œ+ïð¥±@8p÷?Öözß”"?ƒyŽu?ƒá„¢ïo?‡~3]³é¾?‡«ÇÙý1I@$@(@$@;@8?ð?ð?ð?ð?ðøøøøøøøøøøøø@ ì{dZ¬@ ì|j~ùÛ@ ì{dZ¬@ ì„u%û•@ ì{dZ¬@ ì‚¨•Î/@ ì{dZ¬@ ìƒõprœ@ ì{dZ¬@ ì‘u®°=@ ì{dZ¬@ ì•Ü -Wr@ Á^¸Që…@ Á_¾vÈ´@ Á^¸Që…@ ÁiÈÍ@ Á^¸Që…@ Á,Tð`@ Á^¸Që…@ Á@?«Q[@ Á^¸Që…@ Á6b"YÎ@ Á^¸Që…@ Á<Ñ0 º@4åöý!ÿ.@4Ú­ž›>@0¡hr° Ä@0Žñ}”Ì@0;Ƨï²@0%¾&ûY@/£¼ÓZ…ˆ@/oúœXKo@/£¼ÓZ…ˆ@/y%!ÊÙ@/£¼ÓZ…ˆ@/tfy§9Š?}@T˜ÁÎ¥?ÄŠña>?•9 ·ÂpØ?—Xÿ5ñ?g•íVˆ?œÐåÕ¨zj?‚n—Oß?ø_Æ6+ï@Ÿdð0È\|@@®}@®}A‰7M@®}@®}aä÷e@®}@®}-w1@®}@®}ÞÒˆÎ@®}@®|þÒˆÎo@®}@®|þÿ—%@­â_;dZ@­â_;dZ@­â_;dZ@­â_¾vÈ´@­â_;dZ@­â_åÉ@­â_;dZ@­â_åÉ@­â_;dZ@­â^ƒä%¯@­â_;dZ@­â^Ov_Ù@3Žì¿±[X@3ŽËûµt@0?|í‘h@0›=ÈJ@.¯ß;dZ@.°:û~ÿ@/L²•éá±@/L¥zxl"@/L²•éá±@/Lq ²•ê@/L²•éá±@/LL˜_?|öOÿÝ?Čۨ1A?‘7[ä­?Œݶ\ñr?‘VšÐ^Ø?‘)]•\¬?|¬Çëý ?’ ,øÕC©?ÙšlqùÚ?’GÎ>GÅ?‘77…Âç?‘"›ö?‚‘´…=Ca?Œèsq‡#?‚§W®ê ?ƒ¦$H?†Ü‘ °Ô?‡<û¡71@@@@@$@$?ð?ð?ð?ð?ð?ð¿1Üñ°¿!GÀ?*à=Ž¥3?!ßÜÒ]@®|ÿÒ¤Ô«@­â_€–D?J”^]ña?B |[±QÇ?¢ß ìÈ=r?3°²Æ/@Ÿf·{Æ^@@®â@ƒn˜@®â@ƒn—@®â@ƒn˜@®âC9Àëî@®â@ƒn˜@®âL"h Õ@®â@ƒn˜@®â=Vlô@®â@ƒn˜@®â>($ x@®â@ƒn˜@®âÖGB™?‘žˆ2}?‰¢Ò+ÜݤµÜÆ@4ÎÙ‡+@4Ôýó¶F@397KƧð@39e+ÓÃa@3+xFÜ^@3*6âëD@3+xFÜ^@3*qÞi­C@3+xFÜ^@3* ÞÒ@8J¨?”„ö}>žå?‘–”«ëó?$Ìj½BÙ?“Á¿À3<ô?—Q,Äš¤@8J¨?’Dê™.x?‘F·ˆ -fuæ?’Qÿc -?RLnj?‘®7Ö=^9?–’+¸¢d?…cü›Š×Õ?üÓqÔN‰?ƒ<Õp?ƒžÂâk,?‡æê7²zE?’3¨£„È@@@@@*@"?ð?ð?ð?ð?ð?ð?/¼À›0?;:Wðè?8\%ÒÖœ5?+“²ø_®@£‡*Æ×­{@¥úé{ëì6?X5©9uöü?L$<«úû»?¾Ð¶ªÙ¹æ?£‚Ùýà²@Ÿg’üé:@$@¡ÑyÛ"Ðå@¡Ñy™™™™@¡ÑyÛ"Ðå@¡Ñx­«ŸV@¡ÑyÛ"Ðå@¡Ñ×Ûôˆ@¡ÑyÛ"Ðå@¡Ñ}ÌcñA@¡ÑyÛ"Ðå@¡Ñwö+jè@¡ÑyÛ"Ðå@¡ÑxÔýóµ@ªS:^5?}@ªS?ˆïhƒEõ§?ƒ^ ›¨¬a?ŒXk-¯‚7?¢—„¯l@@@@@$@&?ð?ð?ð?ð?ð?ð¿þ€¿5/zà?IzÍâàDÃ?3•ÃG¥o@¡Ñz;ÏXà@ªS;­8ô?hu51D%?T(~*à?Ö&9¤¸:?­ àkÊCÊ@Ÿi$šnQô@%@£’bMÒò@£’£× -=@£’bMÒò@£’GE8ï@£’bMÒò@£’ÊW§‡@£’bMÒò@£’Ð|„¶@£’bMÒò@£’|„µÝ@£’bMÒò@£’–»™@¥_`A‰7L@¥_`ƒn™@¥_`A‰7L@¥_dg8~@¥_`A‰7L@¥_g8}¿@¥_`A‰7L@¥_pÿ—$t@¥_`A‰7L@¥_jqÞi­@¥_`A‰7L@¥_iîËû@2[¹Œ~($@2[²þÅm\@.)7KƧï@.%oh@-4ýó¶E¢@-0‰ 'RT@,³üPH@,¬q ²•ê@,³üPH@,«C•%@,³üPH@,¬~($ x?É^³Dw'?½Ë9ØŠ§?‘e -!ßC?‹ÑqÔ@vÿ?‘ …É¿¼?‘…Rgå.?ÐbV‡,?”­ŽzF”?“Z—H|:?9ÍÇ~FÀ?—­l²â›}?—œ­ÛpùÄ?€|Ã;}_?Œµ3‰;šÏ?‚Ö˜>µDá?ƒ†+ Å?ˆW|¶DC?ˆ‹”âó@@@@@,@,?ð?ð?ð?ð?ð?ð¿^ˆrxö¿iü_×?9“ËeΡ??R´žnŸH@£’¿‘Ö@¥_mVt©#?H™*I(†í?aL«ù ¨J?Œ:}逭À?±~`wlLF@Ÿr5/VM„@&@¥4#× -=q@¥4vÈ´:@¥4#× -=q@¥4$“t½@¥4#× -=q@¥4#2¥—@¥4#× -=q@¥4$7îÞ¡@¥4#× -=q@¥4"ÏM¢@¥4#× -=q@¥4!¯D&Ÿ@˜° Ä›¦@˜¯Ý|@@˜° Ä›¦@˜¬·q«ù@˜° Ä›¦@˜µb ¿)@˜° Ä›¦@˜¨mJy”@˜° Ä›¦@˜­Ë¶bŽ@˜° Ä›¦@˜¯hIXg@8cg ù l@8WÍö:<†@2)‡+ @2(ŠËmê@1•`A‰7L@1”ÀY¡‹¤@0Ì¿±[W?@0ÍÀ€ç ^@0Ì¿±[W?@0ÍZoÂT@0Ì¿±[W?@0ÍKð†R ?©–Rª—´? ߥØÛÖ?‘Eë—ØqF?‹Ý×Ó1Û?‘> cí?‘Ëç œ?œzó|3?’1bÅŸIr?‘)jS‰õc?H°<˜kÅ?‘´ _®?„dôPë?¬|’œw6 ?×a»D?ƒƒ]€ó¯z?ƒ -»ø”>?†ÑÜ uv?‡ðX8KØ@@(@&@ @7@6?ð?ð?ð?ð?ð?ð¿+@8Iç@8Ù?‘â%ì˜ ä@8Î÷@8i§@8Å@8S@8û—?¸”ñ¬n´@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø(@ªïÒn—P@ªð䛥ãT@ªïÒn—P@ªïÙõY³Ð@ªïÒn—P@ªïé7KƧ@ªïÒn—P@ªïÐbMÒò@ªïÒn—P@ªïÒ-V@ªïÒn—P@ªïË Iº@¯6˜bMÓ@¯6EãS÷Î@¯6˜bMÓ@¯6£S÷ÎÙ@¯6˜bMÓ@¯6¥¡ÊÀƒ@¯6˜bMÓ@¯6— -=p¤@¯6˜bMÓ@¯6¡ÊÀƒ@¯6˜bMÓ@¯6— -=p£@8«µsê´@7æÂ&€J@4f‡+ J@4dM:’£@3ìj~ùÛ#@3ücñA \@2ãÉîËû@2ÞzáG®@2ãÉîËû@2ݲ-V@2ãÉîËû@2æOv_Ù?ðVAæKÍ?™05¦ ê[?[_œ(Ä?=]. ?’[9ƒÍ,?‘m×e\»?Ö¤´ª3¼?™¡û¶ ?‘½ÀèÑmK?ni"Í š?‘ ^Íü?ÿ?‘ÔÄ÷Õ?ø¸mh.?‘žˆ2}?›û…†_?ƒR¨º“JÞ?ŸHF!œ6²?¢áÄïÃõ@@@@@@?ð?ð?ð?ð?ð?ð¿a{qe€?N™ß±†?cáOo>‡À?pÞ¢D}ÍÉ@ªïÏ,Ò†@¯6š’]»b?rß»uË«w??è¦zXþ?Ý·ÀR\?ôŽGϽ@Ÿs{\_ðÑ@)@©ÒÏ\(õÃ@©ÒÏ\(õÃ@©ÒÏ\(õÃ@©ÒÐ:û~‘@©ÒÏ\(õÃ@©ÒÐHð@©ÒÏ\(õÃ@©ÒÐ:û~‘@©ÒÏ\(õÃ@©ÒÎV’@©ÒÏ\(õÃ@©ÒÎcŠ @©üA$Ý/@©üAG®{@©üA$Ý/@©üA£n.²@©üA$Ý/@©üA£n.²@©üA$Ý/@©üA°‰ '@©üA$Ý/@©üAohÜ@©üA$Ý/@©üA°‰ '@-e‡“Ý—ö@-e‡“Ý—ö@+$“t¼j@+#þ\‘ÑN@*òn—Oß@*òò䎊@)žžš@)žvÈ´9W@)žžš@)žƒä%®è@)žžš@)ži­BÃÊ?É^žQ5P‚?ÉGãA­÷?‘ÌË>¯f?‹²MÿAÿ8?è<`.Ÿ?¸û:?ÐbV‡,?’r/BÖ?¹º–Èj?3.Ylî?ÔÒ@úˆ‘?R g!Ú¢?€b¡´ñ@?Œ¯þuõí?‚s@ˆaÛ?‚éXëLL÷?†‰Oú|q?†ŠúЀ>(@@@@@(@,?ð?ð?ð?ð?ð?ð¿K·¥~¾à'ˆ@?2Ö4Î:ó?õ…OÚ@©ÒÏ~€@©üA›Ì¼T?BÓ Å %?%Æ\O:Ê?€3[ uä?DˤžÎvÒ@ŸsK$&é@*@£eE¸Qì@£eE¸Qí@£eE¸Qì@£eE¡ÊÀƒ@£eE¸Qì@£eD2ÊW¨@£eE¸Qì@£eCS÷ÎÙ@£eE¸Qì@£eCþ\‘Ñ@£eE¸Qì@£eDg8~@ªR!ÊÀƒ@ªR" Iº^@ªR!ÊÀƒ@ªR!°‰ '@ªR!ÊÀƒ@ªRò䎊@ªR!ÊÀƒ@ªRvÈ´9@ªR!ÊÀƒ@ªR"u%F @ªR!ÊÀƒ@ªR"MÒñª@1òÃÉîËû@1òÃÉîËû@/WKƧï@/UY³Ð|„@.ÊÀƒo@.ö”Ft@.žš@.~ÿ—%@.žš@.žš@.žš@.«6z‘?É^òÀXæN?õ¹Ëh?‘.Ò®ó_ ?‹¯eU5?üEÙáõ{?âé¨ë7F?ÐbV‡,?’ ŠŠ¤Hì?«'Q™µ?RLnj?ë,YÁ?wN —z_?€b¡´ñ@?ŒÛÏ·+?‚Ö˜>µDá?ƒË´ÔC¶¼?†£îž«î?†žóB» “@@@@@,@*?ð?ð?ð?ð?ð?ð?=j6Ó?[ÍŽ•€?†ZD¿d?Eh±¡8¡@£eCÚ(@ªR اãy?(‡]cŸ˜?T?hA?MR¥×§.Š?¡·±[Ò—@Ÿs|Ю+@+@¬‘Õ%@¬‘Ã× -=r@¬‘Õ%@¬‘Ãúvâ@¬‘Õ%@¬‘Äû°!@¬‘Õ%@¬‘Ãï!!@¬‘Õ%@¬‘Öº@¬‘Õ%@¬‘ÃÏ»â@˜gyÛ"Ðå@˜gyÛ"Ðå@˜gyÛ"Ðå@˜gyÛ«á@˜gyÛ"Ðå@˜gyÛ"Ðæ@˜gyÛ"Ðå@˜gzØt#@˜gyÛ"Ðå@˜gzJÙu@˜gyÛ"Ðå@˜gyo¨.‡@0úqÞi­C@0úqÞi­C@.MV“@.M)bŸù<@-ΗOß;@-ÎXQjw@-zÇË)_@-z¾DÑ{ú@-zÇË)_@-zŽ8@-zÇË)_@-z¥ ¸Ïý?É^¨¯Âj?Ã{TV½‹?‘"þ(#*m?‹ªœñ•ª?ð%r}•Ã?ºT|/ÿ?ÐbMÝn½?’Îùx¥?…àø??/Úå[˜2?Ö“jø?S’ð!¥ó?€bMÔŠ»?Œ±9¯¬ý³?‚u؆"ÂÀ?‚ë•ä™ Š?†‘"‘Fùá?†‹s`@@$@,@&@;@9?ð?ð?ð?ð?ð?ð¿;ZÝàè¿ T&g?³ «¶?!o… -øa@¬‘ÃhÞî[@˜gzÕþf?*òg}ú‡*?0 -¼ÆÝ?QÖ¨Ïð°¢?Wå‚0‡4@Ÿs-ÊHÎ@,@¦aRñ©ûç@¦aRñ©ûç@¦aRñ©ûç@¦aSŽóMj@¦aRñ©ûç@¦aSÐ|„¶@¦aRñ©ûç@¦aSÃa@@¦aRñ©ûç@¦aQ·Xâ@¦aRñ©ûç@¦aQÅ@¢ôÙ™™™š@¢ôÙ™™™š@¢ôÙ™™™š@¢ôØÔýó¶@¢ôÙ™™™š@¢ôØüPH@¢ôÙ™™™š@¢ôÙ k¹Œ@¢ôÙ™™™š@¢ôØÇâ‚A@¢ôÙ™™™š@¢ôÙe+ÓÃ@1}:’£@1}:’£@/¼j~ùÛ@/%F -¦L@.ΗOß<@.αÄ2ÊX@.£¼ÓZ…ˆ@.¤M:’£@.£¼ÓZ…ˆ@.£ÉîËû@.£¼ÓZ…ˆ@.£¯·éú?É^žQ5P‚?Ï[äe¤µÜÆ@4GÎÙ‡+@4$Ù`´@4Ðå`A‰@3À”ºó@3#ÉîËû@2ñFX‡ë=@3#ÉîËû@3Çâ‚@¸@3#ÉîËû@3 “ àÞÓ@8J¨?Ï[×.[?·‡­‹"¬!?šaÀU¦?½ª[Ç$Î$?—‡XE%:@8J¨?™ ¼—;&ì?³Þ‹C·‡º?ÁA4ð«¾?º³=i6º?šÛ’ä|@8p÷?™¤·¾Ag?ª޻ɩ}?“Σªw'Y?™t#‰$ ?˜ÒF€§ç@@$@@@?ð?ð?ð?ð?ðøøøøøøøøøøøø.@¦ÝÌÌÌÌÍ@¦ÝË…¸R@¦ÝÌÌÌÌÍÁ.„€@¦ÝÌÌÌÌÍÁ.„€@¦ÝÌÌÌÌÍÁ.„€@¦ÝÌÌÌÌÍÁ.„€@¦ÝÌÌÌÌÍÁ.„€@ªQhr°!@ªMOß;d@ªQhr°!Á.„€@ªQhr°!Á.„€@ªQhr°!Á.„€@ªQhr°!Á.„€@ªQhr°!Á.„€@7(†YJôñ@7&_Ø­« @4Œí‘hr°Á.„M‰ûçm@4å`A‰7Á.„QnÙ‡@3Œ¿±[W?Á.„NÜC,¥@3Œ¿±[W?Á.„NÜC,¥@3Œ¿±[W?Á.„NÜC,¥?1·†Æjñ@8#˜@8¾:@8 >+@8Iç@8Ù?Œs¤DÅÐ@8Î÷@8i§@8Å@8S@8û—?¶,1õ'®@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø/@¨vE¡ÊÀƒ@¨vE¡ÊÀƒ@¨vE¡ÊÀƒ@¨vJçÕfÏ@¨vE¡ÊÀƒ@¨vES&Â@¨vE¡ÊÀƒ@¨vKC•@¨vE¡ÊÀƒ@¨vIîËû@¨vE¡ÊÀƒ@¨vMí(Œç@¬Š=p£×@¬Š=p£×@¬Š=p£×@¬ˆðŽ@¬Š=p£×@¬‰ã½@¬Š=p£×@¬‰^ž @¬Š=p£×@¬„êJŒ@¬Š=p£×@¬„÷eý‹@1úqÞi­C@1ú~ùÛ"Ò@-ÍV“@-ÅÉã¼@+ãn—P@+Þ\‘ÑN<@,Aò×t@, Ô•+@,Aò×t@,ÈK]Ìe@,Aò×t@, ù kº?É^òÀXæN?¦Ì '?‘G¿yÛ?ï?5~pY5?‘úy«ôÊ%?”ªEñeX?ÐbMçê_x?’CòO…?£½:…?@§[*^?‘êë·áþA?“ 3—·²W?€e@ˆ’„'?Å9–o?‚‹¡8*ú?„À"aËô??ˆ”Tj«›ª?ˆ¾þúWZ‹@@@@@$@*?ð?ð?ð?ð?ð?ð?JÁkèø¿`Éw9Þ?NÛÙÏE³þ?F.ÀB¶„@¨vKˆ.yô@¬†Í™jT?\ÓÀr”¸C?Tʤ?°¸<-î? ŸE+\€÷@Ÿrƒ'Qš@0@­ö]/Ÿ¾@­önzáH@­ö]/Ÿ¾@­öjqÞi­@­ö]/Ÿ¾@­ö^ߤ?æ@­ö]/Ÿ¾@­öW1Å@­ö]/Ÿ¾Á.„€@­ö]/Ÿ¾@­õÿò䎊@«£.záH@«£;dZ@«£.záH@«£‡æšÔ@«£.záH@«£¾vÈ´@«£.záH@«£†€IR@«£.záHÁ.„€@«£.záH@«£Éá°‰¡@9h†YJôñ@9VéxÔýô@5B° Ä›¦@5Á½¥@4d¼j~ùÛ@42ò䎊@3ÜÚQÎ@3£n.±Ä3@3ÜÚQÎÁ.„NÜC,¥@3ÜÚQÎ@3ŽBZîc ?ˆÿÀ)T¿Æ?²Íáœ^y?º‰æÒ’n?±²‘Ñ -@8Iç?ÉÏýS*Õ ?ÆJ>xÛé?ÃÓÝ_’çÇ?€škš?µAÌôjš@8S?Ó:; ݹ?À -šeKsÁ?¨”dÛþö?³"i]äPö?±Š¼’ ¸a@8 Ø?¯üÚ‰øßæ@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø1@ª¢¯Ÿ¾w@ª¢¯²-@ª¢¯Ÿ¾w@ª£kʇ0@ª¢¯Ÿ¾w@ª£^ìð.š@ª¢¯Ÿ¾w@ª£li™÷¾@ª¢¯Ÿ¾w@ª¢ÇŸ÷'@ª¢¯Ÿ¾w@ª¢ÎøÙ@“ ž¸Që…@“ ¡ÊÀƒ@“ ž¸Që…@“ª_¬Éç@“ ž¸Që…@“J„¿t@“ ž¸Që…@“% ë+×@“ ž¸Që…@“ ¹CV¯@“ ž¸Që…@“ UÍS)@3uS&Á¾@3tg|«ó@1‚° Ä›¦@0¬Ã£íÎ@1$¼j~ùÛ@0 ZÀZ@0³&Á½¥@/ìBîÕö@0³&Á½¥@0¨")[>@0³&Á½¥@0©[R®‰Á?|¬h2:“?™z½ÉÓ~?‘Äyãn×'?˜›ÅGw?”¬À¿ß#?°täÇm?}@T˜ÁÎ¥?¾¹óËŸ”g? Gš€tÌ?Çuª:z0?—™d=ûk?¸l€lg|?‚ň¸™?¦R¨Ñ¢y?ŠÒžM?%½?—„\_‚¸?’«Èe< Ž?¥á×ée@@ @@ @4@5?ð?ð?ð?ð?ð?ð?“dìFµ@?SmYÖ¬À?•K -Ò5Wf?޵Ñ\>b#@ª¢Ë ÛvÚ@“ ¥Ý‡‡j?¯„\±H=K?¦›-ûâ:@c?bÓ¤â @IF`y<í@Ÿ_ÚØèÕž@2@¯¹XbN@¯¹‡+@¯¹XbN@¯¼°wáe@¯¹XbN@¯¹QÓu@¯¹XbN@¯·˜Ó§@¯¹XbN@¯·¶„¡T@¯¹XbN@¯·ŸðêŽ@•k\(õÃ@•kZܼç@•k\(õÃ@•kî¦øå@•k\(õÃ@•kýh´H@•k\(õÃ@•kŽM—ç€@•k\(õÃ@•k’Àm¼@•k\(õÃ@•k—†…º@47â‚@·€@48L–ïP@0®5?|í‘@0¬2ÊW§†@0 ²-V@0 ¢ˆGb¢@0^«6z‘@0XЯfó@0^«6z‘@0Yj *6@0^«6z‘@0XÞÒˆÎp?|Ñb×¶@?Õ¶úÂ]?‘_Vfvì?ŽÝõÞZ3g?’‰säCó?’2} ?|¬Æ Væ?’ Í?Å(½Ùr?‘óíé;?’¨®ŒÀ—”?’ÚZÛÖ½?‚wÆ«±Ã ?ŒÃõßî;?‚ÄA„vÀ?ƒºµ¿+?†È[’ùÑï?†ÀÞ°ª@@$@*@*@:@8?ð?ð?ð?ð?ð?ð¿7°‡à?$–Ò?q³Fɸk?#Ò ^”+/@¯¸NhÝÍ@•këú ?6+xö©X?CÎ.Ã@?x3ÑÆ%~?‘îkˆaòø@Ÿf.Y—×@3@¡)"MÒñªÁ.„€@¡)"MÒñªÁ.„€@¡)"MÒñªÁ.„€@¡)"MÒñªÁ.„€@¡)"MÒñªÁ.„€@¡)"MÒñªÁ.„€@X33333Á.„€@X33333Á.„€@X33333Á.„€@X33333Á.„€@X33333Á.„€@X33333Á.„€@9|ÚQÁ.„>¤µÜÆ@5B° Ä›¦Á.„M‰ûçm@4Æ“t¼Á.„QnÙ‡@4ò䎊rÁ.„NÜC,¥@4ò䎊rÁ.„NÜC,¥@4ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø4@¨« Iº@¨«Æ§ïž@¨« Iº@¨±‚©“ @¨« Iº@¨«’:)Ç@¨« Iº@¨¬1&é@¨« Iº@¨¬/ƒ{K@¨« Iº@¨§“Ý—õ@¤ Ù‡+@¤ Ÿ¾w@¤ Ù‡+@¤ º^5@@¤ Ù‡+@¤ Ëûµ@¤ Ù‡+@¤ üPH@¤ Ù‡+@¤ æ1ø¡@¤ Ù‡+@¤ -çÕfÏ@6‚ò䎊@6„ xFÜ@3f‡+ J@3esê³g¡@2Æ“t¼@2Åœàu÷@25µsê³h@23n—P@25µsê³h@23FÜ]cˆ@25µsê³h@2/ƒ{J#:?‡YÍ_?%¼ÇÆÃ±?“1‘´¹V?Œ'õ‚$5ñ?”ä+ïè?•ÍÂ^mÄ*?„F/·ÿP5?’馿œãj?“ |ɽ‡?RLnj?”‚ÍÊL¾l?“X<‡÷Ú?‚˜YªüÏE?•ða˜,F?Šó¿á§E?“DάR²?‹ì3åý?¢—„¯l@@@@@*@&?ð?ð?ð?ð?ð?ð¿9äÁ ¿5‰A ð?>Ç‘oè?K4©½èêƒ@¨«:Û–>@¤ íÎr?\¹$<ó]E?km>ÅòÓ/?º¶ *F?ÙH?çNi@Ÿh•x ‚@5@¥|§ï²-@¥|´ýó¶F@¥|§ï²-@¥}/Ån@¥|§ï²-@¥|fšÔ,=@¥|§ï²-@¥}Ÿ¾vÉ@¥|§ï²-Á.„€@¥|§ï²-Á.„€@ ©ô9Xb@ ©ú^5?}@ ©ô9Xb@ ªHè§@ ©ô9Xb@ ©ýŠÚ¹õ@ ©ô9Xb@ ©Ù=Ùc@ ©ô9XbÁ.„€@ ©ô9XbÁ.„€@804mÅÖ8@86$Ý/ @3¦‡+ J@3XFÜ]c@2ß²-V@2Æý!ÿ.I@2¨è§æ›@2ƒ× -=p¤@2¨è§æ›Á.„NÜC,¥@2¨è§æ›Á.„NÜC,¥?óA[ØïF?Å«û}ü›?³ÞÐοF;?ÁóÀª Ò!@8Iç@8Ù?£È‰·akû?ÀYB9˜J?§‚42¾?¹n¬·«y@8S@8û—?·ø^$f, ?«ë"{Ę?«à¼(??µã=U)¼@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø6@¢“|í‘hs@¢“{çl‹E@¢“|í‘hs@¢“|j~ùÛ@¢“|í‘hs@¢“¾vÈ´@¢“|í‘hs@¢“}ó¶E¢@¢“|í‘hs@¢“{quŽ"@¢“|í‘hs@¢“|í‘hs@®ø° Ä›¦@®øªÀƒo@®ø° Ä›¦@®ø±Å@®ø° Ä›¦@®ø¯v_Ø­@®ø° Ä›¦@®ø®záH@®ø° Ä›¦@®ø­žƒä'@®ø° Ä›¦@®ø±A [¿@6í¥œàv@6ëW>«6z@2ã÷ÎÙ‡@2ãn.±Ä2@2“t¼j@2Çâ‚@¸@1ÜÚQÎ@1ÛÍ5¨Xz@1ÜÚQÎ@1ÛjçÕfÏ@1ÜÚQÎ@1ÚôðØDÐ?…ÅBðrç?‘ ·èe?‘ÓKñá»Ù?ŒvHn&³?’ §¹i»µ?‘#†»{׈?Ž=fA:?” Á lŸž?«'Q™µ?’_3Í\Æ?’8,²ñ±T?‘á.†8?ˆÌ7^|Â?œ‘z¥æ?ƒ]€µ,Vß?†‡ °´¥`?‡´*žZ}Õ?ˆ0&YÊEd@@@@@ @?ð?ð?ð?ð?ð?ð?%‰Žê ?RÑN°?4½r$ù?4¿³„W@¢“|›Ä"»@®ø­¸#Q?T¯º{é×+?T ¯b°7?¯ĘD¢ð?¦1>Öt¤@ŸjÊ嬕Œ@7@¬ÿ¸Që…@¬ÿ‡+@¬ÿ¸Që…@¬ÿƒä%¯@¬ÿ¸Që…@¬ÿí‘hs@¬ÿ¸Që…@¬ÿ! [À@¬ÿ¸Që…@¬ÿæšÔ+@¬ÿ¸Që…@¬ÿj~ùÛ@¤/Ÿ¾@¤ @¤/Ÿ¾@¤æšÔ-@¤/Ÿ¾@¤/Ÿ½@¤/Ÿ¾@¤žžš@¤/Ÿ¾@¤<64@¤/Ÿ¾@¤}¿H@6òÃÉîËû@6ò° Ä›¦@2Ê^5?|í@2Ê^5?|í@2{Ƨï²@2{ŸU›=@1£ÉîËû@1£Ð|„µÝ@1£ÉîËû@1£FÜ]c‰@1£ÉîËû@1£×Ûôˆ?“Æ×q„nï?Žd±Ìº?‘°&޲P? Í‹hÆ?‘·Xâe?’T«¥-ÚN?žˆ2}?’ñ©ûçlŒ?«'Q™µ?‘~¬Àm?ó?‘¾ãazÅ?’.8 -B?‚íWçé„?àìÚJ>?†¼Š˜L¥ø?ƒì%­¹Ï‘?ˆA0û)n?ˆA0û)n@@@@@,@*?ð?ð?ð?ð?ð?ð?DkZX¿BÄñ†d?R>fv\Ä?rlòüœ@¬ÿœ–@¤žinë\?n»9ÖKÝõ?7ø/$ôY€?×ìZ†ýdE?sLtzm@Ÿk~ ‚k@8@ª–~ùÛ"ÑÁ.„€@ª–~ùÛ"Ñ@ª–€žòB}@ª–~ùÛ"Ñ@ª–¶- „@ª–~ùÛ"Ñ@ª–ŠÌ‘=O@ª–~ùÛ"Ñ@ª–’Zùô@ª–~ùÛ"Ñ@ª–¢½9Éw@›bMÒñªÁ.„€@›bMÒñª@›^¬Ž.@›bMÒñª@›¹¡Wç@›bMÒñª@››˜=Y@›bMÒñª@›GÎÎ<Ê@›bMÒñª@›šr²ë@9wâ‚@·€Á.„>¤µÜÆ@4J^5?|í@47^3Ê -@46§ï²-@4‰E3ú¢@3TmÅÖ8†@3! ¯ææ®@3TmÅÖ8†@3%,0â@3TmÅÖ8†@3 TR!Wh@8J¨?—pçÙÒ?¶]ý€]Ûó?¥c ÷³Ü?²/´Ö1û?¨èz+Í›˜@8J¨?—ù›5ot?±N-+gâÐ?«Š`nŠk?°xu‘ç‰ñ?£±Ðt¯ @8p÷?}aE’·?“`oÙ¶º?Š„I›H?™°ñÇ«þê?‘zžò½‡@$@(@(@3@1?ð?ð?ð?ð?ðøøøøøøøøøøøø9@§-˜“t¼j@§-ˆr° Æ@§-˜“t¼j@§-›~ÿ—@§-˜“t¼j@§-¥œàv@§-˜“t¼j@§-žvÈ´9@§-˜“t¼j@§-¦$Ý/@§-˜“t¼j@§-¨1&éx@£]t¼j~ú@£]µ$Ý@£]t¼j~ú@£^ýŠÚº@£]t¼j~ú@£]ÔFsØ@£]t¼j~ú@£]Ôã¼Ó[@£]t¼j~ú@£]ª¦L/ƒ@£]t¼j~ú@£]¾vÈ´9@8ÖšÔ,<Ÿ@8Ñ-w1Å@3Ò Iº^5@3ÈõÂ\)@3M²-V@3GË)^ž@3ý!ÿ.I@3 íúCþ]@3ý!ÿ.I@2þ!–R½<@3ý!ÿ.I@2ùXbMÓ?ºðŽÄS?—A«ª°×Z?¤uzH{*?ŸÆ^¼ò˜?¨ƒ ¹´?­Ðxšh`?ȸaÞ­å?™¡û¶ ?´]&7®í?°ù¯'ýŽy?­ˆOLߎ?¯/Õ’¬Œ»?¿Õ²€?ŽOv_Ø­«?ˆÌ7^|Â?˜m7>ên?™¼òQh@? ËD7<@@@@@ @&?ð?ð?ð?ð?ð?ð?xx•Ÿ`€¿våêNe€?RtR#Þßj?ƒúí@ ?@§-¢l‹H@£]¿*²¨Î?b¼p?—' -ë¨%?›7Œý7!ú?èp~”›z@Ÿp°í¹°@:@¨Åî—Oß@¨Åë…¸R@¨Åî—Oß@¨ÅíÅÖ8…@¨Åî—Oß@¨Åí‘hr°@¨Åî—Oß@¨Åø -à@¨Åî—Oß@¨ÅîŠqÞj@¨Åî—Oß@¨Åï·éù@¨û"Ðå`B@¨û¾vÈ´@¨û"Ðå`B@¨û!-w1@¨û"Ðå`B@¨û¥ãSø@¨û"Ðå`B@¨û!ò×s@¨û"Ðå`B@¨ûŠ Þ@¨û"Ðå`B@¨û64@87â‚@·€@8: ÞÒ@3R Iº^5@3Np:û~@2´“t¼j@2±ä÷eý‹@2L¿±[W?@2HŒç¯¸@2L¿±[W?@2F1ø .@2L¿±[W?@2G$tSŽô? Å{¿Ž<º?š¾ßÍZ?’ -N»A3?’èÞ㬱_?“¦Æ_ÌdA?“Ì›`×ñ¾?¨Ö_pP1?’p RN%Î?‘}7ˆ.Ñ?“§ÞÐÞû?”¤¦ð¹e?”e!¶?° ё٤i?ŽátÖÁ»‡?ƒ{¬ÉW?„†YÊ’È?ˆW|¶DC?ŒÙ”!Çx‡@@@@@(@*?ð?ð?ð?ð?ð?ð¿<íÎ͸¿V¬qmÀ?bîÃå¿ó?Kß®Šõ@¨ÅñÒl8¬@¨û¿‰Ð?{á¦8?a;ô;ÇZ?飓2)?²/3'ÿ7ö@ŸoØë2¡Ð@;@Ÿ#èr° ÅÁ.„€@Ÿ#èr° ÅÁ.„€@Ÿ#èr° ÅÁ.„€@Ÿ#èr° ÅÁ.„€@Ÿ#èr° ÅÁ.„€@Ÿ#èr° ÅÁ.„€@’žvÈ´Á.„€@’žvÈ´Á.„€@’žvÈ´Á.„€@’žvÈ´Á.„€@’žvÈ´Á.„€@’žvÈ´Á.„€@8è†YJôñÁ.„>¤µÜÆ@4‡ÎÙ‡+Á.„M‰ûçm@3â-VÁ.„QnÙ‡@3ž«6z‘Á.„NÜC,¥@3ž«6z‘Á.„NÜC,¥@3ž«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø<@žó'ï²-@žó(r° Æ@žó'ï²-@žó+6ª@žó'ï²-@žó-\ú¬Ù@žó'ï²-@žó+æÃ¥X@žó'ï²-@žó$Ù]I¾@žó'ï²-@žó%JP@¨Ó’ñ©ûç@¨Ó’ñ©ûç@¨Ó’ñ©ûç@¨Ó’\™S.@¨Ó’ñ©ûç@¨Ó[JÎx@¨Ó’ñ©ûç@¨ÓPèä@¨Ó’ñ©ûç@¨Ó’Y“ Ì@¨Ó’ñ©ûç@¨Ó’\Œ„>@2Ô xFÜ@2Ó÷ÎÙˆ@1T›¥ãSø@1Te˜í•¦@1“t¼@1«ÀãŠ@0kxFÜ^@0jj´Ïâ@0kxFÜ^@0iy–@0kxFÜ^@0iÿi}„ä?É^¨¯Âj?ÛñªF -?‘;"½à{?Œ U}ÔƒŸ?‘“äh2$?ÀÁ݆?ÐbMÝn½?’³.ª?€<~zÝ?áaæNl½?ÚÿQ» ?ƒ@âÅÁ)?€z¿nÔU?Œåç“r,?ƒíÁˆ;Üú?‚äÉ…œ%ã?‡´-ê“Ö#?‡Zoh$lå@@"@ @$@3@4?ð?ð?ð?ð?ð?ð¿XéÅP?MvhÉ?B7ƒij›Ò?5¤$õòÀ@žó'Ð53@¨Ó‘“_‹÷?‚ÂÌ]æ?„2ÌôÏ?‡×7°º?‡ø¢:›¸1?ð@@@@*@*?ð?ð?ð?ð?ð?ð¾ñàŽ€?0*<à?8½@ŧ¶?$wǪrEÒ@¨õëýY7g@Ÿòúä27Ú?Gœ”ÂÏ?3îüÆx™?‰ïCOÐ ?^å gê”@Ÿs‹À½Ÿ@>@¬M>vÈ´9Á.„€@¬M>vÈ´9@¬M+’:)È@¬M>vÈ´9@¬M;À6ä@¬M>vÈ´9@¬M>\‘ÑN@¬M>vÈ´9@¬M<£n/@¬M>vÈ´9Á.„€@žt+ IºÁ.„€@žt+ Iº@žtkíúCþ@žt+ Iº@žti*0U1@žt+ Iº@žtSŽóMk@žt+ Iº@žt6z—@žt+ IºÁ.„€@7Žì¿±[XÁ.„>¤µÜÆ@2¸r° Äœ@2ŨXy=Ù@21‰7Kƨ@2;íúCþ\@1O „M@1•Y³Ð|…@1O „M@1/Ÿ¾w@1O „MÁ.„NÜC,¥@8J¨?¬97êºþ?–Èó^ù„?ZÁ».œ?“êôÉøX@8Ù@8J¨?±Û”Ãbâã?¬ÿwŸSïZ?íu…XÚ?¡^候¼@8û—@8p÷?°RQÒ¿¦?¡jÐÅx?‘V]9½êV?•mCìc¿4@8 Ø@@@@*?ð?ð?ð?ðøøøøøøøøøøøø?@©žàÄ›¥ã@©ž‚Ðå`B@©žàÄ›¥ã@©žâe+Ô@©žàÄ›¥ã@©žó3333@©žàÄ›¥ã@©žö»˜Çâ@©žàÄ›¥ã@©žûô‡ü¹@©žàÄ›¥ã@©žù‡+@¤œ¡ÊÀƒ@¤›èr° Å@¤œ¡ÊÀƒ@¤›ò•éá±@¤œ¡ÊÀƒ@¤œƒS&@¤œ¡ÊÀƒ@¤›-žƒä&@¤œ¡ÊÀƒ@¤›VâëC@¤œ¡ÊÀƒ@¤›R{²þÅ@8}:’£@7ÇÎÙ‡+@3û Iº^@3ý«ŸU›=@397KƧð@3/HË’:@2𖻘Çã@2Ñ©ûçlŒ@2𖻘Çã@2º’£S&@2𖻘Çã@2¹õY³Ð}?ÎÜk!Ë«Ü?‘ ·èe?žrÞÀ±ä?¤wá­P?º?Ñl#à¹?µ-AäpaÂ?­éW«ZM›?–÷-A?¿Î¯¼M?œˆ.6·k?¥=ƒ™íx@@@@@(@&?ð?ð?ð?ð?ð?ð?Öʈ¿¡å0Èo?„m¾Õãà‘?€Èö'åY¥@©žô ,@¤›}#a8œ?“‡Ñ“)/£?¦ï‘p:ˆ?åÓ- -ÅA?ß®Æ@‡@Ÿm~¸Øñ@@@¬Ï‡+ J@¬Ï‚ Iº^@¬Ï‡+ J@¬Ï†fffe@¬Ï‡+ J@¬Ï„›¥ãT@¬Ï‡+ J@¬Ï…8ï4×@¬Ï‡+ J@¬Ïƒ,¥zw@¬Ï‡+ J@¬Ï€ÞÒˆÎ@­xTýó¶F@­xWÎÙ‡@­xTýó¶F@­xT!-w@­xTýó¶F@­xS3333@­xTýó¶F@­xN}Vlô@­xTýó¶F@­xSŽóMj@­xTýó¶F@­xT,<ží@7uS&Á¾@7u$Ý/@2xr° Äœ@2usê³g¡@1ß²-V@1Þšv@1n_oÒ @1jdÂø7µ@1n_oÒ @1làuöý"@1n_oÒ @1lC,¥zy?}Ñ¿ž,?’«p~v]Ù?‘jh¨qã9?Aš%ðï?’ÒuèçxY?’Ýå"çX?–ªÎ­¡?“í -Âô‚?Å)Ì_“?‘°ß‡O©?“A ç’?‘ÔÄ÷Õ?ÉÏt -j?3ßa=„?ŒArUãA?‡ÕZ›µûÜ?‰Â“yä–ê?‡æê7²zE@@@@@*@(?ð?ð?ð?ð?ð?ð?#rFQà¿«6z@ }àA‰7L@ }Ü(õÂ@8zqÞi­C@8n í(Œç@4+¥ãS÷Ï@4-!ÿ.Hè@3A‰7KÇ@3“g ù l@3#ÉîËû@3'Á½¥@3#ÉîËû@3 ·€4mÆ@3#ÉîËû@3ƒ{J#:?ð°–Ž]? ÿ1‡åH?–¦r…û?Œä%—ëš?š¡ ùß8{?“Q´Î`°€?ð°–Ž]?•Ð\ÄÙ?—®ÓÿÛ?RLnj?˜| ´uþÁ?’Ü·Õ-í?ð*wjs—?šÑ~¿²Ô?”=øŽî‚}?‘@fº¬o(?Ä;Ãkr>?’ymícw\?ð@@@@,@"?ð?ð?ð?ð?ð?ð¿^$6ÝÞ?@õoŽ?KÔ@†Óò?S(ÑBSˆX@®+‚$DMÂ@ }ÚhÊ)?\U ®Ïá}?c2Ђx?]?¬VY¹s?¸DV¯ùR@Ÿrû#¯YY@B@«¶È´9XÁ.„€@«¶È´9X@«Áò×s@«¶È´9X@«¸ -à@«¶È´9X@«Â‚@·@«¶È´9X@«Ð-à @«¶È´9X@«¸üPH@¨9šŸ¾vÉÁ.„€@¨9šŸ¾vÉ@¨9žš@¨9šŸ¾vÉ@¨9•¨Xy>@¨9šŸ¾vÉ@¨9‘ë…¸@¨9šŸ¾vÉ@¨9˜ -à@¨9šŸ¾vÉ@¨9“3332@9Âò䎊Á.„>¤µÜÆ@58r° Äœ@58>BZîc@3´“t¼j@3´Ð©*0@3î_oÒ @3í¿HË’@3î_oÒ @3ãŽóMj@3î_oÒ @3åsê³g¡@8J¨?–:ð»}TÇ?˜g± ÓË?™ ­:>Co?¥êäa`Œ??µKA¢bŒ@8J¨?’HGªÂÛ^?˜“º£¹‡b? Ý aKå°? CÚ B÷?¡?–ÿŒ4@8p÷?¢»:³ãíÔ?ˆ†Ô‡º:?“¶º Yæ¸?¨ƒÑ0¹C?¤²¢Òó@@@@*@&?ð?ð?ð?ð?ðøøøøøøøøøøøøC@°y‡+Á.„€@°y‡+@°zˆâ.©@°y‡+@°z뤦@°y‡+@°z––@@°y‡+@°xä•âV@°y‡+@°x+š1@—; Ä›¥ãÁ.„€@—; Ä›¥ã@—;¤õ1ß@—; Ä›¥ã@—;£pÞ@—; Ä›¥ã@—;£• М@—; Ä›¥ã@—;Ÿ6Fé'@—; Ä›¥ã@—;¡]á»y@5m¥œàvÁ.„>¤µÜÆ@1©‡+ @1©à,í"@1Z~ùÛ"Ñ@1[åE´@0£ÉîËû@0£Ýxe@0£ÉîËû@0£›V.\K@0£ÉîËû@0£5ÑõH@8J¨?êôýÏIŒ?‘G6ÝÙX]?‹¬–Or†?‘)]«™¿E?ðS{ëaœ@8J¨?’V•ì ?Žg›è$?0ÌIíjû?‘(~Ð ——?›ÊéÅ@8p÷?!ê€ ½?‚æÀ:ÏC8?ƒ!ç•/1?†ÇÏSÿ/¦?†Ã²ØÑ@"@$@@8@5?ð?ð?ð?ð?ðøøøøøøøøøøøøD@Ÿ+ Iº@Ÿa‚Ï@Ÿ+ IºÁ.„€@Ÿ+ IºÁ.„€@Ÿ+ IºÁ.„€@Ÿ+ Iº@ŸÖ£'©¡@Ÿ+ Iº@ŸDÓôœÿ@¬Fˆ´9X@¬F‰xÔýô@¬Fˆ´9XÁ.„€@¬Fˆ´9XÁ.„€@¬Fˆ´9XÁ.„€@¬Fˆ´9X@¬F %zÜc@¬Fˆ´9X@¬F€ÌXk@6VšÔ,<Ÿ@6TÜÇ(À¶@25ãS÷ÎÙÁ.„M‰ûçm@1’Ðå`A‰Á.„QnÙ‡@1zÔ,<žíÁ.„NÜC,¥@1zÔ,<ží@1M¼ á»@1zÔ,<ží@1žÅ±Ë%â?’t D5·±@8#˜@8¾:@8 >+?¨“ðý" -?šÑIÊ ?}@T˜ÁÎ¥@8Î÷@8i§@8Å?¤k¯½µÈ?›JïŸ?Š9sîgD@8 * @8p÷@8¶?—i¾Cþr.?•Ìì K¹é@@5@$?ð?ð?ðøøøøøøøøøøøøE@ží+@8Iç@8Ù?…ðE[i)@8Î÷@8i§@8Å@8S@8û—?ÞwÆvë@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøF@¯6”záG®@¯6“÷ÎÙ@¯6”záG®@¯6”9Xb@¯6”záG®@¯6˜“t¼j@¯6”záG®@¯6“Z…‡”@¯6”záG®@¯6‘©ûçl@¯6”záG®Á.„€@¬ùwÎÙ‡@¬ùwÎÙ‡@¬ùwÎÙ‡@¬ùxl"h -@¬ùwÎÙ‡@¬ùy‡+@¬ùwÎÙ‡@¬ù|PHð@¬ùwÎÙ‡@¬ùu?|í‘@¬ùwÎÙ‡Á.„€@3ÿ–»˜È@3ÿoÒòä@0@ Ä›¥ã@0@Ë)^ž@0'KƧïž@0'8}¿H@/p‰ 'RU@/s÷ÎÙˆ@/p‰ 'RU@/p£× -=p@/p‰ 'RUÁ.„NÜC,¥?€‚ñêã ?ÎÁ¯‰t0?‘¶å¤wk½?Ú¾ÉÛ²º?‘ƒZ)Àˆ@8Ù?}Ñ¿ž,?’j•×›c?‘F·ˆ¤µÜÆ@4@ Ä›¥ãÁ.„M‰ûçm@3È“t¼jÁ.„QnÙ‡@2á:’£SÁ.„NÜC,¥@2á:’£SÁ.„NÜC,¥@2á:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøH@¢Ûhr° Å@¢Ûi7Kƨ@¢Ûhr° Å@¢ÛeðoiD@¢Ûhr° Å@¢Ûp©*0@¢Ûhr° Å@¢Ûyb¶®@¢Ûhr° ÅÁ.„€@¢Ûhr° ÅÁ.„€@ª‹«…¸R@ª‹­V@ª‹«…¸R@ª‹«…¸R@ª‹«…¸R@ª‹£ÉîËú@ª‹«…¸R@ª‹›¥ãSø@ª‹«…¸RÁ.„€@ª‹«…¸RÁ.„€@6^Hè§æ@6]\ú¬Ùè@3¡hr° Ä@3¤mÅÖ8†@3ö§ï²-@3øï4Ö¡b@3œÚQÎ@3˜Xy=Ù€@3œÚQÎÁ.„NÜC,¥@3œÚQÎÁ.„NÜC,¥?|öOÿÝ?—.‰†5¸?£Ï[ì—:¤µÜÆ@4Ï|í‘hrÁ.„M‰ûçm@3îùÛ"ÐåÁ.„QnÙ‡@3½cˆe”°Á.„NÜC,¥@3½cˆe”°Á.„NÜC,¥@3½cˆe”°Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøK@¡kùÛ"Ðå@¡lÊÀƒ@¡kùÛ"Ðå@¡kø†YJõ@¡kùÛ"Ðå@¡kéxÔýô@¡kùÛ"Ðå@¡kõ*™1@¡kùÛ"Ðå@¡kñ4êJ@¡kùÛ"Ðå@¡kìL˜_@ªN{çl‹D@ªNžùÛ"Ñ@ªN{çl‹D@ªNoÒó@ªN{çl‹D@ªNn—Oß@ªN{çl‹D@ªN‡æšÓ@ªN{çl‹D@ªN‰“ àà@ªN{çl‹D@ªN†ÏAò@6¥öý!ÿ.@6•öý!ÿ.@4œIº^5?@4'RT`ª@3×ï²-@3Ñø -à@3ž«6z‘@3œ˜_ö”@3ž«6z‘@3 A‰7KÇ@3ž«6z‘@3¡$Ý/?àþTxvc?¢4o:™v?£YtBs6…?‘CÀ><¹?—­¦¾z£—?œˆš—I?ÀÊ»d9\?©™™™™™š?œT¹o¿‹õ?’àêE©³?™)Â>¡$;?™¯m,·¦h?½`{ÕÄwz?›Õ¼ÉUÓ›?‘¦dpnÐû?”oɼ|)E?–í -e˜›ï?•mCìc¿4@@@@@*@*?ð?ð?ð?ð?ð?ð¿p_kàK€¿DFàì?c¿{¬œ?[ͨ¤T@¡kñ±u>æ@ªN‡ß¦U›?qz+EÃ.?k†ÂQñS?Î2L»Ò‚?ÁûðÊ•ž@Ÿr/wÃ0D@L@¬ r-V@¬ q©ûçn@¬ r-V@¬ sZ…‡”@¬ r-V@¬ sœ¾á@¬ r-V@¬ s@N¤©@¬ r-V@¬ qhr°!@¬ r-V@¬ qÎ_@­ q&éxÕ@­ q&éxÕ@­ q&éxÕ@­ qhr°"@­ q&éxÕ@­ r×s@­ q&éxÕ@­ q[W>¬@­ q&éxÕ@­ quŽ!–@­ q&éxÕ@­ qœàu÷@12ÃÉîËû@12ÃÉîËû@,ÍV“@,Í:’£@,Œ1&éy@,‹àÞÒˆÎ@+G“Ý—ö,@+G ù kº@+G“Ý—ö,@+G_oÒó@+G“Ý—ö,@+Gy¦µ ?É^òÀXæN?°çR;?‘"žæÆó¡?‹Æ úJ-M?ðÌÇßgé?·t¤¢‚J?ÐbMçê_x?’ ,øÕC©?¹º–Èj?;ß $Þû?â2„&ÿh?PS2K¯™?€bMÕky?Œ°¶.Ä+Æ?‚|׿pZ?‚éXëLL÷?†ŠúЀ>(?†’Õaì+’@@@@@,@*?ð?ð?ð?ð?ð?ð¿O7ý#@?—د¸?/ϰÕ>îâïA@ч@¬ rˆ@­ qv³,,?=à^ Þ„Ì>ý@© =Ф?uÝÌÛ©7>ò´äΦ~@Ÿs -}%‚@M@®¹1&éy@®¹éxÔþ@®¹1&éy@®¹â‚@¹@®¹1&éy@®¹ÈK]Ì@®¹1&éy@®¹»/ìW@®¹1&éy@®¹Ë)_@®¹1&éy@®¹ýŠÚ¹@¥*H1&éy@¥*H1&éy@¥*H1&éy@¥*FÏAò@¥*H1&éy@¥*GE8ï6@¥*H1&éy@¥*H§æš@¥*H1&éy@¥*Iã½@¥*H1&éy@¥*Iã½@4–šÔ,<Ÿ@4•¡ÊÀƒ@0Š^5?|î@0ޏQë…@0t“t¼j@0tÖ¡aäø@.­úCþ\’@.¹ k¹Œ@.­úCþ\’@.·škP°ó@.­úCþ\’@.±œàuöþ?žˆ2}?òb[±?‘©ŠÕ ·Ñ?’ {½4?’ §¹i»µ?‘Iãd©ìòîAú.(@®¹Þ -Fé@¥*H ~ô?E»:-?LÇâQ~?’qù¥.?0[Ü^4Îú@Ÿg+ -ì‹^@N@«R_;dZ@«RlFtM@«R_;dZ@«R_W“@«R_;dZ@«R]ô’Eô@«R_;dZ@«R` s‡@«R_;dZ@«R]ÈK]@«R_;dZ@«R]~JÑ@™te`A‰7@™t]tbs|@™te`A‰7@™tv©ms8@™te`A‰7@™tm-ÝÍ@™te`A‰7@™tg2+¦@™te`A‰7@™ttÿß$÷@™te`A‰7@™tk>òµ@8Žì¿±[X@8‹w§r–@2GÎÙ‡+@2B˜tþyB@1>V“u@19-€©@/úÇË)_@/óŠlóU®@/úÇË)_@/ó÷@ ¶ò@/úÇË)_@/ó“Æ©­v?ŸÙù)Ë@ý?î÷ƒ}?‘ýKúñÖ?Œ;Òmîœ?‘1)8’™X?Ù4€nr?£Vå”Åz?“G Dh1Õ?’X˜^¤µÜÆ@3¦‡+ J@3ÔzáG®@2RÐå`A‰@2^p:û~‘@1ÜÚQÎ@1Þƒä%®æ@1ÜÚQÎ@1Üô!-w@1ÜÚQÎÁ.„NÜC,¥@8J¨?µ½½5FÄ´@Ÿp¿ú@Q@¨+çï²-@¨+èõrî@¨+çï²-@¨+çRT`ª@¨+çï²-@¨+êôðØE@¨+çï²-@¨+æ -¦L0@¨+çï²-@¨+è22ë-@¨+çï²-@¨+ë Úœ@œpˆ1&éy@œp‰º^5?@œpˆ1&éy@œpx7´¢4@œpˆ1&éy@œp}Vlô@œpˆ1&éy@œpzCþ\’@œpˆ1&éy@œp†®¸ˆ½@œpˆ1&éy@œpxÔøÒS@4£g ù l@4£dZ¬@2#÷ÎÙ‡@2!Î_p@1²-V@1”M:’£@1+xFÜ^@1<¾ß¤@@1+xFÜ^@14RÀèP@1+xFÜ^@11ŽÓxöv?|¬Æ Væ?‡åƒêM?—bÕ/ŸÓ?›©Ñ®vtQ?éB®ÀTS?‘¾›¡‚ ?|Ñb×¶@?“ý•‘|? rƒ ?@²ËÏ(?‘CX-““?H, -U}?‚n¼Õ‰Vÿ?ŽOv_Ø­«?ˆ†Ô‡º:?ˆW„hðQ?Š2±ÀÒ#Z?ŒŸ6/ºðÐ@@@@@0@0?ð?ð?ð?ð?ð?ð?:Mâ ¿U…ÿœä?7C›IU{?D´Qs@¨+é}]@œp„4‚Ã÷?X18²$´Ç?eNFØ&?ºD·µÎî?Ôò°”¼$@ŸfnB^ Ä@R@©‰7KÇ@©z>åHs@©‰7KÇ@©…ªtò›@©‰7KÇ@©‡ºñs6@©‰7KÇ@©óÞ6@©‰7KÇ@©~¬ªb@©‰7KÇ@©¢’E6@—‹—Oß;@—‹”záG®@—‹—Oß;@—‹ ÍgîŠ@—‹—Oß;@—‹³óf @—‹—Oß;@—‹š}°y@—‹—Oß;@—‹ž¾ƒq@—‹—Oß;@—‹Ÿ'ÛXß@7 ]cˆe”@7Ø0¢v @0î5?|í‘@0îÆ6°–5@0]V”@0\dªÀ½!@/p‰ 'RU@/pßl¯;|@/p‰ 'RU@/oëB&Æ@/p‰ 'RU@/l\ž£?‘ɱb)Q?ª‡:4?‘})°Y°©?Œ=…?‘]Xýæä?‘Ô"†?å ?‚n—Oß>?šÑ~¿²Ô?„ˆëC&z?ƒ¦bŒšl?‡R‚8ë«?†ÿ‘ýöŠÃ@@$@(@(@;@:?ð?ð?ð?ð?ð?ð?PØC‚n?RôT$?A·'&óD>?‡ÍãN|@©~7õÅ @—‹šÏ¢Pˆ?]ô(‘J%?:œœæ?º-/wÄJP?y=–vÙ.ä@Ÿk.§ÀÂ@S@ û×Oß;@ û×Oß;@ û×Oß;Á.„€@ û×Oß;Á.„€@ û×Oß;Á.„€@ û×Oß;Á.„€@ û×Oß;Á.„€@š?éxÔýô@š?ì‹ê…@š?éxÔýôÁ.„€@š?éxÔýôÁ.„€@š?éxÔýôÁ.„€@š?éxÔýôÁ.„€@š?éxÔýôÁ.„€@3·â‚@·€@3¹2åõEÿ@/)7KƧïÁ.„M‰ûçm@-ÄZ¬1Á.„QnÙ‡@-kjçÕfÐÁ.„NÜC,¥@-kjçÕfÐÁ.„NÜC,¥@-kjçÕfÐÁ.„NÜC,¥?}9ãXÕ@8#˜@8¾:@8 >+@8Iç@8Ù?|¬g•~D@8Î÷@8i§@8Å@8S@8û—?‚ïýˆÚ=@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøT@«vÍÒñ©ü@«vÑ©ûçm@«vÍÒñ©ü@«vÃn.±Ã@«vÍÒñ©ü@«vÅm\ú­@«vÍÒñ©ü@«vÎp:û€@«vÍÒñ©ü@«vÊdÂø9@«vÍÒñ©ü@«vÏ·éù@¢ý(õÂ@¢ý$“t¼@¢ý(õÂ@¢ýŠÚ¹õ@¢ý(õÂ@¢ýÀëíú@¢ý(õÂ@¢ýÿ—$@¢ý(õÂ@¢ý3Ð|„¶@¢ý(õÂ@¢ý1ø .@6¨†YJôñ@6¦®}Vlô@4€ Ä›¥ã@4-w1Å@3´“t¼j@3¸ºÇË*@35µsê³h@35‡“Ý—ö@35µsê³h@3.\‘ÑN<@35µsê³h@3/¤?åÉ?¡EÉ@Ú?}S]N -?ÛÁB‰)?’¡ð¾÷ÅÝ?œÑÎ$ôïÔ?œs[Îæz?–ªÎ­¡?›ªÊît…?”¿?>‚#§?’k­ªì¢H?šRýi¡ô?›LÔp%„Y?—}d1HØÂ?™î  lƒ?ˆLdB"%?Œ(æQ?¡ÏX¼ãs~?‘øù>3}@@@@@$@"?ð?ð?ð?ð?ð?ð¿G!-ã ?iç<¦¼?Nk¤Lö?Ï?gåÏ|f1a@«vÎk@¢ý(;-Ål?f2Zwæ½W?„~²n˜R?¸#FtÇ ?ùLîPæ¥@Ÿl‡eeú)@U@¤pOß;dÁ.„€@¤pOß;dÁ.„€@¤pOß;dÁ.„€@¤pOß;dÁ.„€@¤pOß;dÁ.„€@¤pOß;dÁ.„€@ “Ôýó¶FÁ.„€@ “Ôýó¶FÁ.„€@ “Ôýó¶FÁ.„€@ “Ôýó¶FÁ.„€@ “Ôýó¶FÁ.„€@ “Ôýó¶FÁ.„€@9p4mÅÖ8Á.„>¤µÜÆ@6°Ä›¥ãTÁ.„M‰ûçm@5gKƧïžÁ.„QnÙ‡@4æYJôðØÁ.„NÜC,¥@4æYJôðØÁ.„NÜC,¥@4æYJôðØÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøV@¯§Ç®zá@¯§â$Ÿ@¯§Ç®zá@¯¨û—]c@¯§Ç®zá@¯§±ç~@¯§Ç®zá@¯§ý÷fyD@¯§Ç®zá@¯§¨êÄJ@¯§Ç®zá@¯§ÌÙè>B@”É]/Ÿ¾@”É C•@”É]/Ÿ¾@”É _ȱ@”É]/Ÿ¾@”ÉnÄ@Hô@”É]/Ÿ¾@”É$J(ÚÉ@”É]/Ÿ¾@”ÉKµ (Å@”É]/Ÿ¾@”É)“ àß@8ÖšÔ,<Ÿ@8.ʾj¼@5f‡+ J@5FL{|@4Àå`A‰7@4í¼“‹@4‚@·€5@4QoV¢@4‚@·€5@4*ñB΃q@4‚@·€5@4&ÏAòØ?|ò0p‰J?¢X‹û/Z¬?°Ö„;yK?­3ÊR2\?¬–ùLáD?²±ñ?©:ŠÊÙ?©O¸»Ã?±PÈõJ?ž|±‡y‘?¨ögˆzË›?± ÜŠñ+œ?¢ÐÛ&˜Þ?˜$nªiJ=?«’ Gjæ?¢cò[èz?§,B S?°8€4|@@&@(@*@<@*?ð?ð?ð?ð?ð?ð¿xLüƒV?vp/ÿ@?z„øiî?h%b™@¯§ÓË=0@”É%¶ˆšœ?Ÿ5²À±ã÷?x6iPm@ ¶—W;¥?Óí_¸®ò*@Ÿhÿ0f‚f@W@­}Û"Ðå`@­}Þ5?|î@­}Û"Ðå`@­}âZîc @­}Û"Ðå`@­}ÚîcŠ@­}Û"Ðå`@­}áG®{@­}Û"Ðå`@­}èr° Ä@­}Û"Ðå`@­}×´¢3@«ËŸ;dZ@«Ë²-U@«ËŸ;dZ@«ËŠÚ¹õ@«ËŸ;dZ@«Ëœ‘ÑN;@«ËŸ;dZ@«ËˆÎp:û@«ËŸ;dZ@«Ë¦1ø @«ËŸ;dZ@«Ë¤÷eýŒ@7 ØDЩ@7!‰7Kƨ@4¦‡+ J@4¢GE8ï5@3ûƧï²@3ö+jçÕg@4uµsê³h@4d9XbN@4uµsê³h@4r@·€4n@4uµsê³h@4r@·€4n?Œs¤DÅÐ?™Æ‰©·?–·ª_r’ ?–O@:åÊ?žÎÑé?¢†)™„}U?3ßa=„?ž%Œ@&—?—ˆ”„òõ¤?š€ßF à?›™¬ï?£+ÍNPÞ?…~ÆÎÇ$†?‘a÷nñ?‘7#Œ!xv?™Ø^FC}?¥¯X昘?¡è9)—N-@@@@@"@&?ð?ð?ð?ð?ð?ð?D§}¬¸?A*Õ°?Y²–“ŽP?n=Ž9 Òî@­}à’¼K@«Ëœ.=~?wò^BÉ~8?/Xϼ?á[°³@-¼àìé@ŸgsùW@X@¨Š%`A‰7@¨Š%¸Qí@¨Š%`A‰7@¨Š(Îp:û@¨Š%`A‰7@¨Š'“Ý—ö@¨Š%`A‰7@¨Š'»/ìW@¨Š%`A‰7@¨Š$Âø7µ@¨Š%`A‰7@¨Š!ÿ.Hé@©"ÎÙ‡+@©"Ò-V@©"ÎÙ‡+@©"Ж»˜È@©"ÎÙ‡+@©"ÎV“@©"ÎÙ‡+@©"Ó&Á¾@©"ÎÙ‡+@©"Ðå`Aˆ@©"ÎÙ‡+@©"Ð-à @7òÃÉîËû@7íæšÔ,<@3£÷ÎÙ‡@3§+ Iº@2â-V@2ãþ\‘ÑN@2 ¿±[W?@2 «ŸU›=@2 ¿±[W?@2 ¿HË“@2 ¿±[W?@2 —ö+jè?žŒÝÙ›P?“gU·q#?“a#mU?ŽËÜ¿€?’?;Áƒè?’?=ÆþÎò?’Óusÿ\Ã?–HÞÆzì²?˜ Þ€ÁìŸ?“ÅÒÏPÉä?’ÞH†<²?‘)]•\­?–-¤]î§É?÷¾I1;?…/‡ÙX·³?†O.ce?‰/ã̽`ª?ˆCns¥ @@@@@*@&?ð?ð?ð?ð?ð?ð¿P4é¿;ü‘?KËA'o3?4 -Kêÿu¸@¨Š%N=Äö@©"ÑqYN?d… ¥%?Ry§ÛšÛº?À™,&j2q?Ÿ€5ÍóQZ@ŸnBNb<@Y@«;vÈ´9X@«;nÙ‡+@«;vÈ´9X@«;|¾ß¤@«;vÈ´9X@«;yÎ_p@«;vÈ´9X@«;}Ùb¶@«;vÈ´9X@«;yÎ_o@«;vÈ´9X@«;x -á@£´@£´Ðå`B@£´@£³öE¡ÊÀ@£´@£³öÈ´9X@£´@£³ð£× -=@£´@£³ö4ë@£´@£³óMj@7ð4mÅÖ8@7ñ©ûçlŒ@3?|í‘h@3üPH@2—ï²-@2“Ý—ö+k@23&Á½¥@2,ÌÌÌÌÍ@23&Á½¥@2-žƒä%¯@23&Á½¥@2.\‘ÑNµDà?‘­b š=?“ÉŸ“_Æ?—pü”_ù?—ã ËÄž?–í -e˜›ï@@@@@*@&?ð?ð?ð?ð?ð?ð¿gÖ%tX?FšGˆ˜?Qµu¦†2?eL1 -cFƒ@«H8/Â@£¬qÏ66?qõêà;Ð?ƒC*9ê¢?Óß”X‰C?äÂö@Ÿkú­º|²@[@¦“Ä›¥ãT@¦“ϲ-@¦“Ä›¥ãT@¦”;‹¬q @¦“Ä›¥ãT@¦”P°ò{³@¦“Ä›¥ãT@¦‘BZîc @¦“Ä›¥ãT@¦û/ìVÖ@¦“Ä›¥ãT@¦m\ú¬Û@ªFèõÂ\@ªFåãS÷Ï@ªFèõÂ\@ªDK¹Œ~)@ªFèõÂ\@ªFžOv_Ù@ªFèõÂ\@ªCÂ\(ö@ªFèõÂ\@ªC—ö+k@ªFèõÂ\@ªCcÉîËû@8쿱[X@8ÊÀƒn@3ÇÎÙ‡+@52œwškP@3t¼j~ú@3C¯·éú@2ãÉîËû@1;çl‹C–@2ãÉîËû@1J¬Ùè>B@2ãÉîËû@1[…¸Qì?§Q,Äš¤?ËÎ÷‹#c•?Òê¨\æð¥?Ô›_'÷ ?Û-hR?Û§¯Á:b?•²»UbB2?ìg«ný?äôÚ›Ìÿ?á!sÑz?áu¢‚ú?ß[y jXÓ?„A'Š_]?úi‚§œ^6?áN(† ï?« -°š´*?”¼íÒh@?”dIt£©P@@@@@*@*?ð?ð?ð?ð?ð?ð¿ËIÄ'%(¿Ê‰[ì@?š»»³{ßÃ?‡J^`u@¦“5OŸž˜@ªFP¿÷3?¨‚ww?¥½7fªÊ?÷Y­uÃê}?ò=ãÕ›Ô@Ÿ[ˆnùE@\@©ŸmV@©ŸmOß;d@©ŸmV@©Ÿn_oÑ@©ŸmV@©Ÿn¾ß¤@@©ŸmV@©Ÿn_oÒ@©ŸmV@©ŸkŸU›=@©ŸmV@©Ÿlq ²–@¢‰— -=p¤@¢‰— -=p¤@¢‰— -=p¤@¢‰–‡+ @¢‰— -=p¤@¢‰–_Ø­¬@¢‰— -=p¤@¢‰–‡+ @¢‰— -=p¤@¢‰–È´9X@¢‰— -=p¤@¢‰–ð¹@32ÃÉîËû@32ÃÉîËû@.f§ï²-@.fÂ&€I@,ãn—P@,ãn—P@-#¼ÓZ…ˆ@-#ä%®æ2@-#¼ÓZ…ˆ@-#ä%®æ2@-#¼ÓZ…ˆ@-#¯·éú?|öOÿÝ?Òç{íj?‘"žæÆó¡?‹ä†€{6è?‘ ·èf?×°ë*–w?|¬Çëý ?’5CàQ?†[‘'Í?CÚ B÷?îCq$u?_Ø~tñ?‚n—8‹8?Œ¸†‡ÄÅ?‚2Y0âµ?‚ð'ã:ÂÝ?†’Õaì+’?†špk Y@@@@@*@,?ð?ð?ð?ð?ð?ð¿(‹_±@¿ õö@?,-#ÛÍø? -ÑM–z†@©Ÿm^1@¢‰–äi³š?LUs§Cê?+SÍçÚý?¥9gèŽÀ=?cz£BÇ"Õ@Ÿfò‰ì²-@]@¡ÎÑë…¸@¡ÎÒn—P@¡ÎÑë…¸@¡ÎÒÏéHz@¡ÎÑë…¸@¡ÎÒtGF–@¡ÎÑë…¸@¡ÎÔ$Ú“@¡ÎÑë…¸@¡ÎÑêH±r@¡ÎÑë…¸@¡ÎÓYqî@›Z9XbN@›Z9XbN@›Z9XbN@›Z<´@¸>@›Z9XbN@›Z,§ê@-凓ݗö@-凓ݗö@+©7KƧï@+¨Ö-êiá@+Ó¶E¡ÊÁ@+ÓU´AB@*õ¨Xy=Ú@*ñâœ5÷.@*õ¨Xy=Ú@*÷e¡!Tb@*õ¨Xy=Ú@*öX¹÷}?É^ÈmÔ d?ÂjÕͪ_?‘ ëÙn?‹¬ÑÊ–áŽ?‘&¤Ò{Šï?ÄüÃAn?ÐbMÝn½?’¬›Úc’?4Ó˜.?@M÷)Ä%?äÂDE$?jTô–ò ?€bMÔŠ»?Œ¶4=á ‘?‚xºœA}?„]s4P;?†™jËfNª?†«{{¡@@@&@"@"@5@1?ð?ð?ð?ð?ð?ð¿B0<\\¿F© ޝ€?AJSÆÖÖ¯?9 ±E¯„@¡ÎÓ0Îò’@›Z?,—î?P­‹®G<7?G³^v˜Š¦?›óŸD+?ˆn}HÊ@ŸsÔŸ¸ @^@®Á;çl‹D@®Á=\yž£@®Á;çl‹D@®Á=—ö+k@®Á;çl‹D@®Á@ÞÒˆÍ@®Á;çl‹D@®Á<£n.@®Á;çl‹D@®Á?¾vȳ@®Á;çl‹D@®Á<àuöý@:Oß;dZ@:["Ðå`@:Oß;dZ@:JÚ¹õZ@:Oß;dZ@:H´9X@:Oß;dZ@:P|„µÞ@:Oß;dZ@:S àÞÓ@:Oß;dZ@:N;Í5¨@7uS&Á¾@7p -PëöÄ@2£÷ÎÙ‡@2¥‡“Ý—ö@2q‰7Kƨ@2tðØDÐ@1Ê0U2a|@1Ì¿±[W?@1Ê0U2a|@1ÍIQ‚©“@1Ê0U2a|@1Í¿HË’?}x—™åC~¿TÅìáª?6î’QLõW?6%1ÓøBï@®Á=I Ó@:T¤µáí?WŽ=‡Î[À?UÇY6b.?¸QÊÑHøT?°“þ­¹“@Ÿh? ÞÅ@_@° · -=p¤@° · -=p¤@° · -=p¤@° ¶ð¹@° · -=p¤@° · ù m@° · -=p¤@° ·æšÔ@° · -=p¤@° ·Ë)_@° · -=p¤@° ·¯·é@ÒÐå`A‰@ÒÑë…¸@ÒÐå`A‰@ÒÏv_د@ÒÐå`A‰@ÒÍ„M<@ÒÐå`A‰@ÒÔ,<ží@ÒÐå`A‰@ÒÑÎ_@ÒÐå`A‰@ÒÏv_د@5™*0U2b@5˜K]Ìcò@1ë¥ãS÷Ï@1ëÓÃa@@1 "Ðå`B@1 C•%@0ž«6z‘@0žì¿±[X@0ž«6z‘@0žùÛ"Ðå@0ž«6z‘@0žß¤?åÊ?}Ñ¿ž,?š¾ßÍZ?‘ñê&ètä?Œ2ÌUÃT?‘çG¸?‘ë´¤G?‚á²Olºü?’Ȳõa®?ÔCXsò?UÕh;·Å?‘jÐÅx?–’+¸¢d?‚á²Olºü?ŒïQ¼º“ã?‚á²Olºý?ƒ¼9XNÄu?†å·ÑfWà?‡×7°º@@@@@,@(?ð?ð?ð?ð?ð?ð>ܽȿ#N-# >÷ÐñiY? ?,Óâ­Ýû_@° ·K&®@ÒѤp¡\?A( P?M@ÿD’F?=C€jÆ®?¡ÝtE šD@Ÿh «êÜ@`@  ŽV“@  ‘hr°@  ŽV“@  \´Õ”§@  ŽV“@  Êi¯@  ŽV“@  y9v@  ŽV“@  ^x°™×@  ŽV“@  e´\{ @¢zG®zá@¢z@Ñ·Y@¢zG®zá@¢yùãM7|@¢zG®zá@¢y¹ž¶ -¥@¢zG®zá@¢yúVeð@¢zG®zá@¢z1‘lHî@¢zG®zá@¢z5#.©f@8|ÚQ@8àT¶’@3‚° Ä›¦@3‘ ʈ@34“t¼j@3N)JC @2cÉîËû@2hïJÄXH@2cÉîËû@2]³G\¥Ê@2cÉîËû@2_¸.Íø™?‘õRLä1T? Ó¶ºzñ—?¹ˆÑ &bÄ?²Z: mÁ?¡ -:âg?–7ç«í–ž?|çµB &€?©žo0üD?Á—’3ìü?© •ЂA?—ÚËÐ…Æ?™pkQÏ2?Šßä_4'0?™G†²TUò? Óì ¤åÄ?‹¨ÄŒ®?ÆFca¼? ÙöÍÐQ@@*@(@*@5@3?ð?ð?ð?ð?ð?ð¿âD…À¿o`…G?Yn;ª8¿u?mâ®[ |ð@  x«Äq@¢z7VDj?|´2Øÿh?¥‹:˜* ?äRõiRT@iw$/*@ŸhûÜFê@a@£_çl‹C–@£_ç®zà@£_çl‹C–@£_èð@£_çl‹C–@£_èK]Ìd@£_çl‹C–@£_èK]Ìd@£_çl‹C–@£_æšÔ,=@£_çl‹C–@£_æšÔ,=@­€u?|í‘@­€u?|í‘@­€u?|í‘@­€u›=È@­€u?|í‘@­€u›=È@­€u?|í‘@­€u?|í‘@­€u?|í‘@­€usê³h@­€u?|í‘@­€u›=È@-7süPH@-7süPH@&MV“@&MquŽ!@$ãn—P@$ãn—P@$…oi@$…œàu÷@$…oi@$…œàu÷@$…oi@$…œàu÷?É_\p)Ï?Ï[äeæºW†Ë¦@£_çIÈk¬@­€ujÑÕÅ??)=3ج>õ@i½h0?wã»DÛ®e>äHÝviŽ@Ÿs¼Ϋ@b@©§_;dZ@©§_;dZ@©§_;dZ@©§Uéá°‰@©§_;dZ@©§WXâe@©§_;dZ@©§U›=Ç@©§_;dZ@©§ZáG®@©§_;dZ@©§X*™0½@¨9)ûçl‹@¨9%`A‰7@¨9)ûçl‹@¨9 º^5?@¨9)ûçl‹@¨8üj~ùÛ@¨9)ûçl‹@¨8óÝ—ö+@¨9)ûçl‹@¨8ÿ¤?åÈ@¨9)ûçl‹@¨8óÃa@@5Hè§æ@5Çy¦µ @3=‘hr° @3,(õÂ\@3"-V@3 ³Ð|„¶@2¿ò䎊r@2¨l"h Ô@2¿ò䎊r@2­Òñ©ûè@2¿ò䎊r@2®!–R½ -fuæ?œ”ÒÚ×¾æ?’"Š6›Wz?¥þ–ÓOß?­*cuùV?‚¸“Îè ÷?Ž>ž¬ˆ?Œ¢yëjk±?|ënÓ¿Ü?Š|)-}í(?Š—à `ž@@@@@,@*?ð?ð?ð?ð?ð?ð¿[BMZl¿ŽLš'?GE~{_m£?k­gã¤Î@©§\v-id@¨9ƒ *„?d·¿Kb ý?„®ù …‰?Ó*6ïÚë¸@„O+?r@Ÿa²Þ˜?•öÉbÒ%?¥èT+ä?¥¤ð!u†?‘¶ð ‘“ˆ?’'‹Œ®„?‹ˆv>?‹—mGŸÀC?–U$M\ñ?”û²žRY=@@$@@@7@5?ð?ð?ð?ð?ð?𿚠g #¿„#([Ì?bŒe=}w(?B0{VO@¬Žn«´ì@š#…rJ^?yíØ"l>?ZAðÐ4¡ô?ò…­n*ÎÀ?³rø—°@Ÿ`M%Í@d@ªðÈ1&éy@ªð°å`A‰@ªðÈ1&éy@ªðÈË’:@ªðÈ1&éy@ªð»št@ªðÈ1&éy@ªð³g ù @ªðÈ1&éy@ªð¹0¾ í@ªðÈ1&éy@ªð¹õY³Ï@­¬I7Kƨ@­¬@Ä›¥ä@­¬I7Kƨ@­¬JÀƒo@­¬I7Kƨ@­¬I^ž -@­¬I7Kƨ@­¬F?@­¬I7Kƨ@­¬Aò×s@­¬I7Kƨ@­¬AG®|@8Ù*0U2b@8ðbMÒñª@4 Iº^5@43œ¾à@3RÐå`A‰@3R@·€4n@3‚@·€5@2û‹¬q ²@3‚@·€5@2úáG®{@3‚@·€5@2þžš?žˆ2}?ÎÁ¯‰t0?˜²éÃ_ÓÔ?Ég(6ßð?¤R„¯” ,?˜Ê`1ó€`?Ž=fA:?”=øŽî‚}?’$ûJw"Ú?‘~¬Àm?ó?œC]F~Ü?™J•Ø3ÈÖ?¤±AK\Þ ?‘­b š=?•ë þÅ?•B¿²ô@?‘p&Æ ç–?¥0àro{8@@@@@,@*?ð?ð?ð?ð?ð?ð?Z‡8`?<3ÏÀ?8@`ˆ‰b¯?Lªiá@ªð´UÚÛL@­¬BÈcïÎ?XV+ëk?iò²²¸•£?­À¦‡Ôô?ËÚrüÃ×’@Ÿgluôb@e@©däÝ/ @©d䛥ãT@©däÝ/ @©dåðoiC@©däÝ/ @©d凓ݘ@©däÝ/ @©dæ -¦L0@©däÝ/ @©dã× -=q@©däÝ/ @©d㢜wš@©Ô›¥ãSø@©Ô›¥ãSø@©Ô›¥ãSø@©Ô›¥ãSø@©Ô›¥ãSø@©Ôœ„µÜÆ@©Ô›¥ãSø@©ÔœPHð@©Ô›¥ãSø@©Ôœ]cˆf@©Ô›¥ãSø@©ÔœPHð@1¨†YJôñ@1¨Œç¯¸@-©7KƧï@-©7KƧï@-Œ1&éy@-Œ/ƒ{J#@+”`ªdÂù@+”Fs×Û@+”`ªdÂù@+”mÅÖ8‡@+”`ªdÂù@+”‡ü¹#£?É^³Dw'?ÖÈ ¼?‘.Ò®ó_ ?‹²MÿAÿ8?ðÌÇßgé?¾ƒìÈÁ?ÐbMçê_x?’#maЀ?ŽËÜ¿€?3.Ylî?ÚÌA B{?Uÿyu”#?€b¡´ñ@?Œ²ÅŒÕ6?‚2Y0âµ?‚éXëLL÷?†–f_ÔŠŠ?†l&þ@@@@@*@(?ð?ð?ð?ð?ð?ð¿Q´µ>שw5?3vV? >úAÑÐ}n@©däª×d©@©ÔœTñY?BÏ^9Çô?¯Q>Û…;?[d¦Ÿœ;? -¯·¸C3¾@Ÿs/÷[@f@Ÿ9‰7Kƨ@Ÿ9Z¡5›R@Ÿ9‰7KƨÁ.„€@Ÿ9‰7KƨÁ.„€@Ÿ9‰7KƨÁ.„€@Ÿ9‰7KƨÁ.„€@Ÿ9‰7KƨÁ.„€@œÀ©ûçl‹@œÀB5O@œÀ©ûçl‹Á.„€@œÀ©ûçl‹Á.„€@œÀ©ûçl‹Á.„€@œÀ©ûçl‹Á.„€@œÀ©ûçl‹Á.„€@7ÞHè§æ@7ö"LýïQ@3®5?|í‘Á.„M‰ûçm@3ÝV”Á.„QnÙ‡@2”mÅÖ8†Á.„NÜC,¥@2”mÅÖ8†Á.„NÜC,¥@2”mÅÖ8†Á.„NÜC,¥?|¬gvÃ×é@8#˜@8¾:@8 >+@8Iç@8Ù?ƒÑùÑc@8Î÷@8i§@8Å@8S@8û—?Ÿþã’ô™û@8 * @8p÷@8¶@8 Ø@8 Ø@ ?ðøøøøøøøøøøøøg@®mñ©ûçmÁ.„€@®mñ©ûçm@®mò×sü@®mñ©ûçm@®mòn—P@®mñ©ûçm@®mòˆÎp:@®mñ©ûçm@®mðØDÐ@®mñ©ûçm@®mðØDÐ@¨¼¯²-Á.„€@¨¼¯²-@¨¼¯–»š@¨¼¯²-@¨¼¯²- @¨¼¯²-@¨¼¯ìVÕÑ@¨¼¯²-@¨¼¯ùrGE@¨¼¯²-@¨¼¯ìVÕÐ@(oÅoÁ.„>¤µÜÆ@"¸“t¼j@"¸ -à @!ÉxÔýó¶@!ÉxÔýó¶@!oj@!oj@!oj@!oj@!oj@!oj@8 -Näy?°çR;?‘½ümüñ?‹Æ úJ-M?êtÿKÑc?´âµÇ>¬@82rê?’ aÒ¹zï?r¼Jsž?/ò×ÈZø?ÏtP°*?L "¾@8L?Œ¬8 T£?‚nâwg?‚â‡~ûÉ\?†‡hÉÈÓ?†‡hÉÈÓ@@@@,@&?ð?ð?ð?ð?ðøøøøøøøøøøøøh@žÇ1&éxÕÁ.„€@žÇ1&éxÕÁ.„€@žÇ1&éxÕÁ.„€@žÇ1&éxÕÁ.„€@žÇ1&éxÕÁ.„€@žÇ1&éxÕÁ.„€@¥I7KƨÁ.„€@¥I7KƨÁ.„€@¥I7KƨÁ.„€@¥I7KƨÁ.„€@¥I7KƨÁ.„€@¥I7KƨÁ.„€@8ëµsê´Á.„>¤µÜÆ@4=‘hr° Á.„M‰ûçm@3éÛ"Ðå`Á.„QnÙ‡@3ÚQÎÁ.„NÜC,¥@3ÚQÎÁ.„NÜC,¥@3ÚQÎÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøi@¡¢Cn—Á.„€@¡¢Cn—Á.„€@¡¢Cn—Á.„€@¡¢Cn—Á.„€@¡¢Cn—Á.„€@¡¢Cn—Á.„€@ž9éxÔýôÁ.„€@ž9éxÔýôÁ.„€@ž9éxÔýôÁ.„€@ž9éxÔýôÁ.„€@ž9éxÔýôÁ.„€@ž9éxÔýôÁ.„€@9%öý!ÿ.Á.„>¤µÜÆ@4i‡+ Á.„M‰ûçm@3®ùÛ"ÐåÁ.„QnÙ‡@2ýcˆe”°Á.„NÜC,¥@2ýcˆe”°Á.„NÜC,¥@2ýcˆe”°Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøj@¢,‹C•@¢+C•@¢,‹C•@¢0-à @¢,‹C•@¢.Ëû´@¢,‹C•@¢,1&é@¢,‹C•@¢/iDg8@¢,‹C•@¢-úCþ]@¬àò-V@¬àò° Ä@¬àò-V@¬àò¼¤@¬àò-V@¬àômÅÖ9@¬àò-V@¬àò•éá°@¬àò-V@¬à÷§†Â&@¬àò-V@¬àú–½@6²ÃÉîËû@6²ÃÉîËú@2° Ä›¦@2À[À6ã@2RÐå`A‰@2OªÍžƒä@1+xFÜ^@1)*0U2b@1+xFÜ^@1&Â&€J@1+xFÜ^@1&Ov_Ù?„F/·ÿP5?’g½þË£?‘Ëü²ü ?Œ ßõIyû?’Z†Ažj?’÷åâ6¹?}Ñ¿ž,?“í -Âô‚?’½N‹üHù?K·‘d]?‘žˆ2}?‘fû›1-&?‡9Â@0wæ?Ž•ýÙ—±?‰¢Ò+ÜÝÂå‡ãJ@¢,²G\@¬àõ=>°M?RPÿØ?_퀊O@‚?©¹kK¡tˆ?Ç_1G£@Ÿgò+6¦@k@¢Ím‘hr°@¢Ím‘hr°@¢Ím‘hr°@¢ÍnzáH@¢Ím‘hr°@¢ÍmV@¢Ím‘hr°@¢Ím‘hr°@¢Ím‘hr°@¢Íj=p£×@¢Ím‘hr°@¢Ík…¸R@¯–ÐbMÒò@¯–ÐbMÒò@¯–ÐbMÒò@¯–Ðå`A‰@¯–ÐbMÒò@¯–Ñhr°!@¯–ÐbMÒò@¯–ØbMÓ@¯–ÐbMÒò@¯–Ö‡+ @¯–ÐbMÒò@¯–Ë…¸R@4¹Œ~($@4C,¥zx@08r° Äœ@07 ù kº@/›dZ¬@/˜DЩ*@0«6z‘@0è>BZî@0«6z‘@0Cþ\‘Ò@0«6z‘@0^5?|î?ð°–Ž]?ð}óßd?ð’FB:?ð_ŒB?‘ …É¿¼?À­Õß}º?ð°–Ž]?ð¢dx/?ð‡äR³s?ð‚àÓÁ?’LÁŒÀ´a?lINõÕ„?ð*wjs—?ðfÁbÂô?ð*wjs—?ð,’Ú|‚?†ùadô|?†ˆ#.÷?ð?ð?ð?ð@@?ð?ð?ð?ð?ð?ð?T–£±0¿†Mm8 ?%D¬ê¦€?L=˜ë} ò@¢Íj׎ùä@¯–Ñ[ÉAÜ?$÷Y–÷?KðÄM°1Ò?7ñ„&pú?„QzÂê1C@Ÿxq6°äô@l@°T¼j~úÁ.„€@°T¼j~ú@°Usê³h@°T¼j~ú@°Sa@O@°T¼j~ú@°U%F -¦@°T¼j~ú@°SS÷ÎÙ@°T¼j~ú@°R©“ á@¦5³3333Á.„€@¦5³3333@¦5µÂ\)@¦5³3333@¦5µfÏAó@¦5³3333@¦5¼j~ùÜ@¦5³3333@¦5¶z—@¦5³3333@¦5»J#9Á@8ÿ–»˜ÈÁ.„>¤µÜÆ@3Š^5?|í@3Š…‡“ݘ@2ûƧï²@2üÓZ…‡”@2OO „M@2Mw1Å@2OO „M@2O\(õÂ@2OO „M@2WOß;d@8J¨?’ãy)­3c?“›ÿ3?Ô@R’?’š'†­`í?•¬+ÌYI˜@8J¨?“ÈÂ`?’F^ì¼Sï?íu…XÚ?’£ôùÎ8ï?“®°ýYè@@8p÷?Ž.]L ¼?Š[¦Råb?…âC£½¾Ý?‡Ä­‹›Ü?”dIt£©P@@@@,@,?ð?ð?ð?ð?ðøøøøøøøøøøøøm@­*I7Kƨ@­*H´9X@­*I7Kƨ@­*I7Kƨ@­*I7Kƨ@­*F?@­*I7Kƨ@­*I“ àÞ@­*I7Kƨ@­*G+ J@­*I7Kƨ@­*GÕfÏB@§D›¥ãT@§DÝ/ @§D›¥ãT@§EÉä@§D›¥ãT@§E¸Qì@§D›¥ãT@§F€IR@§D›¥ãT@§D%®æ2@§D›¥ãT@§DêJŒ@5·â‚@·€@5¹b¶®}@1€ Ä›¥ã@1€ quŽ@0È“t¼j@0ÇsüPH@/fL/ƒ{K@/f -¦L/„@/fL/ƒ{K@/fÏAòØ@/fL/ƒ{K@/f$Ý/ ?|¬Çëý ?ï1ïºÅ?‘e -!ßC?‹¬àÌ’Ç?üEÙáõ{?‘ ê$4Ÿ?1·†Æjñ?’uß¿çÒ?‘N÷J’?0ÜN :s?ë,YÁ? êBÐ8ã?…ÑTë0Ó?lío>÷?ƒ!A -mº¹?ƒÛ®«etZ?†¼Š˜L¥÷?†©b/bJö@@@@@(@*?ð?ð?ð?ð?ð?ð¿%¢Ú, >îØOe?-Y?ÜW‘?.{æèá@­*Hsô.ä@§Eƒ¤"?MOx_YeÉ?NûMC÷7e?§ -¤yH?§vÕDó@Ÿg.“¿7@n@§çÖ‡+ @§ç×Oß;@§çÖ‡+ @§çÙ¦µ @§çÖ‡+ @§çØï4Ö¡@§çÖ‡+ @§çÖð¹@§çÖ‡+ @§çÕéá°Š@§çÖ‡+ @§çÔÉ…ðp@ å¢Ðå`B@ å¤Ý/ @ å¢Ðå`B@ å¢ÞÑ·@ å¢Ðå`B@ å¤÷eýŒ@ å¢Ðå`B@ å¡£n.²@ å¢Ðå`B@ å¢‚@·€@ å¢Ðå`B@ å¡aä÷f@6|ÚQ@6\(õÂ@1…?|í‘h@1ƒˆe”¯O@1²-V@1±Ä2ÊX@0L¿±[W?@0L"h Ô–@0L¿±[W?@0L(õÂ\@0L¿±[W?@0L"h Ô–?…ÅBðrç?•ìspîî?‘`×›mÏ?‹ÝÉ!ë#?‘5ø gµÒ?‘C!ƒžÈ?|¬Çëý ?“$i «%h?低NëU?CÚ B÷?ñ«Ý„ Õ?‘¡ë Þf?‚|׿pY?Œþ%å_D?ƒ´],m=?ƒ*|š\/´?†Ë¢L1Ù?‡L8õASÎ@@@@@,@,?ð?ð?ð?ð?ð?ð¿?Íi(¿GÛõ­ð? ·Ð=lj?']39ø@§çÖŒFNF@ å£ >&¢?@‡2¾L_?HÑ™-fHø?„¦EKüël?G_XWž›@ŸhœÕzz@o@°†éxÔþÁ.„€@°†éxÔþ@°A‰7L@°†éxÔþ@°Em\ú­@°†éxÔþ@°v1ø @°†éxÔþ@°ÕðoiD@°†éxÔþ@°³©*0U@­²-VÁ.„€@­²-V@­,/ƒ{I@­²-V@­bu%F @­²-V@­^\‘ÑN@­²-V@­ì~($ @­²-V@­ø“t¼j@8õS&Á¾Á.„>¤µÜÆ@4k¥ãS÷Ï@4*™0¾@3†“t¼@3ÒˆÎp;@2ÜÚQÎ@2>Ëûµt@2ÜÚQÎ@2(šu%F@2ÜÚQÎ@2=Ùb¶¯@8J¨?ÚW…ËÞ©Ÿ?Òš«÷9ƒ?ÔTE|÷?Ï÷ª\Ù¹?ˉ4+½ö@8J¨?Ô2?Ó ¶ÿ”?Ò`k£Y›?Ñ0ÂÑ-+þ?ÎMQcçó@8p÷?¨F¦Â p•?žÇ™žsŠ?©{ïÖ/!?«)¿ÜÚv¹?ÊtéÑXñr@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøp@ª‘X“t¼j@ª‘^vÈ´8@ª‘X“t¼j@ª‘\¬1(@ª‘X“t¼j@ª‘e`A‰7@ª‘X“t¼j@ª‘]/Ÿ½@ª‘X“t¼j@ª‘T9Xb@ª‘X“t¼j@ª‘]cˆe•@¯ àÄ›¥ã@¯ á‰7KÈ@¯ àÄ›¥ã@¯ éûçl‹@¯ àÄ›¥ã@¯ éûçlŠ@¯ àÄ›¥ã@¯ í‘hr¯@¯ àÄ›¥ã@¯ äZ¬@¯ àÄ›¥ã@¯ ãS&@5-¥œàv@5¥zxl"@1¡hr° Ä@1›quŽ!–@0’Ðå`A‰@0O „M@0J0U2a|@0C¶E¡ÊÀ@0J0U2a|@0EÖ8†YK@0J0U2a|@0EL˜_÷?гá‡}?ß‹’bÏ?‘*"AaIÐ?ŒôƒA˜c ?”] -° ?—oN„R?|öOÿÝ?’ñ©ûçlŒ?”ÿŒÙÿIí?“ä$š„…œ?‘¾ãazÅ?” ™¾,?6´×–°?¨ ‰‹U)?‡þ:ó-êÏ?Œ(æQ?гá‡}?‡æê7²zE@@@@@@?ð?ð?ð?ð?ð?ð¿Q—fë@?N.ð?Ræ§/Î2?S0œI_J@ª‘[ÿUÕú@¯ ä9l?qY -Kôh?t‰ßX´‹?àë‘Sh›?ðJ¦^à@Ÿh]œ¡@q@¬)s¶E¡Ë@¬)s¶E¡Ë@¬)s¶E¡Ë@¬)t¼@¬)s¶E¡Ë@¬)u?|í‘@¬)s¶E¡Ë@¬)tã¼Ó\@¬)s¶E¡Ë@¬)uϪ͠@¬)s¶E¡Ë@¬)v4ê@£þKC•@£þKC•@£þKC•@£þLIº^5@£þKC•@£þJÀƒo@£þKC•@£þLÌÌÌÍ@£þKC•@£þM„M;@£þKC•@£þK¬q ³@4 Î_oÒ@4 Î_oÒ@0©‡+ @0¨­«ŸU›@0Ct¼j~ú@0B‚@·€4@0œàu÷@0M:’£@0œàu÷@0•$Þ@0œàu÷@0¯·éù?|¬Çëý ?Čۨ1A?‘1f_¨Ï÷?Œ9‚Ù.?‘\Žýµ€7?âé¨ë7F?|¬Çëý ?’ ,øÕC©?|™,Ž!?‘!¥zt9Û?‘¾ãazÅ?½y ¦Å?ƒíÈm½!¾?2ô]7?‚uÞ@>N ?„l¯¸‰ŒÎ?‡×7°º?‰G±±ZÎ@@@@@,@$?ð?ð?ð?ð?ð?ð??ÿ${?2ªÜÆ8>ýÄÆFvS?+OØ<Qç@¬)tÁ|‹ø@£þK÷ž‘ô?ø|æ4`y?K×K¾œ}O?F†nNlñ3?£Y°Šm²‚@Ÿf¾ÿù²ƒ@r@¤)8Ôýó¶@¤)4záG®@¤)8Ôýó¶@¤)=IQ‚ª@¤)8Ôýó¶@¤)64ê@¤)8Ôýó¶@¤):¹õY´@¤)8Ôýó¶@¤)6E¡ÊÁ@¤)8Ôýó¶@¤)5Ž!–R@ª¹XbN@ª½²-W@ª¹XbN@ª»quŽ"@ª¹XbN@ª¸l"h -@ª¹XbN@ª¹XbN@ª¹XbN@ª¼¹#¢@ª¹XbN@ª»quŽ#@5Q|ÚQ@5HüPHð@3#÷ÎÙ‡@3% '»0@2È“t¼j@2Ê)Çy¦µ@2cÉîËû@2g -=p£×@2cÉîËû@2hË’:*@2cÉîËû@2fµ '¼?’Óusÿ\Ã?‘+ùÔ!½Š?’ʶ‹ùs?,¡r×gÁ?’yÊêºq?“DŽèw–?Ž=fA:?“oÆ †ä?“Z—H|:?’‘Ç#·X?“Al.6¸?’Ü·Õ-í?®¨žŽ´Ä?Žƒä%®æ2?ˆdÁ --?…®×__C?‰G±±ZÎ?ŠEÝ‹N@@@@@(@*?ð?ð?ð?ð?ð?ð?'Ma¿;&ýÁ¨?P` ý€@}?@÷{ÂÐH@¤)7×H+@ª»ä-ˆ(?lTåNÿÁ?`ˆ¿«†%?Ó¬ÛI'X?»f`mð@ŸkÖÒ[H¨@s@«®V“u@«®?|í‘h@«®V“u@«®<(õÂ@«®V“u@«®±Ä2ÊX?™™™™™™š?˜ଚÿw? bídC?£~fܤžv?ªG6NïÌM?Õ¨:Jê0?¢F^ì¼Sð?¢56Q‘?˜ºµ²¢Dœ?¬ôbŸyp?§Ò;~ë`?æÜ-j²í?Ãz00‘!µ? ”w}'bŠ?“àÕèéa‚?§ÅhÒ?O?šJ¹Ê¿?Ácg—–î@@@@@*@&?ð?ð?ð?ð?ð?ð¿Äѳ5h?ÞÚï- š?½îÈd?Íæ…•Ì0@«­:ŠcÇ @¬€ÝÐxSØ?Ùt’a"T?év…g`õ @…ïWV2—@Ÿ/Àa8 -@Ÿdõ& »@t@°f$Ý/Á.„€@°f$Ý/@°g®zá@°f$Ý/@°j’£S@°f$Ý/@°m²-V@°f$Ý/@°f4ê@°f$Ý/@°eY³Ð}@¥áÎÙ‡+Á.„€@¥áÎÙ‡+@¥á¹rGE9@¥áÎÙ‡+@¥á¸­«ŸV@¥áÎÙ‡+@¥áÇ+ J@¥áÎÙ‡+@¥á¶z—@¥áÎÙ‡+@¥á}¿H@8£g ù lÁ.„>¤µÜÆ@4» Iº^@4ªW§†Â&@3çKƧïž@3ÕÖ8†YK@2ÿò䎊r@2õÜÆ?@2ÿò䎊r@2óŽóMj@2ÿò䎊r@2ó àÞÒ‰@8J¨?©=Ùb¶®?¶ÚÔ&‚¶ï?,¡r×gÁ?™Ä¶BϪ?˜ñ<óâg…@8J¨?°Þl²`Û?°lVbjÞ?˜šGja7Ü?¡%£å“J÷?°Îºaa@8p÷?—ì;!ðß?§Ì/¹¸ ?ϯ<«¬í?“vuØcʲ?“KÌ&¨Í@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøøu@Ÿh²-V@Ÿh Yž×@Ÿh²-V@Ÿhiæ¹ ^@Ÿh²-V@Ÿh’Ñ=j£@Ÿh²-V@ŸhŽ*Ák2@Ÿh²-V@Ÿh„–Ìe @Ÿh²-V@Ÿh—’[+@¤k{dZ¬@¤kw±ëøÓ@¤k{dZ¬@¤k€aa͸@¤k{dZ¬@¤k‚ÄÕ@¤k{dZ¬@¤k­€7³œ@¤k{dZ¬@¤kqa»¹È@¤k{dZ¬@¤kWh+Ô¢@62ÃÉîËû@63ÅÙrzä@2.5?|í‘@2¬0¨@1Z~ùÛ"Ñ@1o¡¿x@0¨è§æ›@0 ôKC@0¨è§æ›@0œ|uøT.@0¨è§æ›@0œ%¸¿‰Å?~Ov_Ø­«?“ê„bøÙ~?¤Ë{LÞ!vÈ´:@¦€B\(ö@¦€;J#9Á@¦€B\(ö@¦€L¥zxl@¦€B\(ö@¦€UfÏAò@¡‰å`A‰@¡‰ ‘hr°@¡‰å`A‰@¡‰ÜÆ?@¡‰å`A‰@¡ˆù¦µ @¡‰å`A‰@¡ˆð:û~‘@¡‰å`A‰@¡ˆè Ô•@¡‰å`A‰@¡ˆêçÕfÏ@7Î쿱[X@7ÐN¤¨ÁV@4+¥ãS÷Ï@4ÉîËû@2ö§ï²-@2ÝVlô"@2ÜÚQÎ@2®šu@2ÜÚQÎ@2Á-w1Æ@2ÜÚQÎ@2Â&€IR?žŒÝÙ›P?œ%“=ý7"?®ußãz?»&ìS¢FË?£ˆ¸óùé?©Â±|ºÏ?|öOÿÝ?Ÿ#ïÀŸª¸?§¿Ÿ.ój ?°€Û=M”6?¬NÀ®Z×­?­‚‰%TUx? T®ãÌ…æ?®ÄAIŠa?®›©L Ý/?·wZR)w?œ¸a<›ú?¤A8 Kú¿@@@@@,@*?ð?ð?ð?ð?ð?ð?iOLf¿(Ó`U@?S'mÒŸ©?Qó9>˜2@¦€H•I…Ö@¡ˆûÖÁ§/?t Öøp»?rvx|÷\m?¼É‚ˆu»?¿ß}[¤Þ@Ÿfk¦^’@x@Ÿ¢Ðå`BÁ.„€@Ÿ¢Ðå`BÁ.„€@Ÿ¢Ðå`BÁ.„€@Ÿ¢Ðå`BÁ.„€@Ÿ¢Ðå`BÁ.„€@Ÿ¢Ðå`BÁ.„€@“i%ãS÷ÏÁ.„€@“i%ãS÷ÏÁ.„€@“i%ãS÷ÏÁ.„€@“i%ãS÷ÏÁ.„€@“i%ãS÷ÏÁ.„€@“i%ãS÷ÏÁ.„€@5ÉÎ_oÒÁ.„>¤µÜÆ@2Š^5?|íÁ.„M‰ûçm@1×ï²-Á.„QnÙ‡@1O „MÁ.„NÜC,¥@1O „MÁ.„NÜC,¥@1O „MÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøy@¥lýó¶F@¥lýó¶G@¥lýó¶F@¥lzáG®@¥lýó¶F@¥l?|í‘@¥lýó¶F@¥lâëB@¥lýó¶F@¥lø .@¥lýó¶F@¥lüPH@f Ä›¥ã@f Ä›¥ã@f Ä›¥ã@f£S÷ÎØ@f Ä›¥ã@f¡ÿ.Hè@f Ä›¥ã@f²-V@f Ä›¥ã@f©ûçlŒ@f Ä›¥ã@f¨Xy=Ù@3G>«6z@3H $ p¹@/f§ï²-@/a–R½<6@. ƒn—@.e+ÓÃa@,½Vlô"@,²T`ªdÂ@,½Vlô"@,³g ù l@,½Vlô"@,³Ãa@O?}@T˜ÁÎ¥? ÿ1‡åH?‘G¿yÛ?ï?‹¬àÌ’Ç?‘à2F0µÔ?‘&¶Gf¡?|¬h2:“?’Dê™.x?ŠA)Nîá?6) }’ë?’˜£“µ~Ð?‘ ‡#é -´?‚nÚ¨´8Ð?3I¶#i?‰ì ª# Ù?‚þ——³§ø?‡×7°º?‰®ââP\@@@@@,@,?ð?ð?ð?ð?ð?ð¿4ÍuP?G5»­4?>î3u=8g?@Ni=Þ®@¥l‘6¶@f£W?I?^eËÊø6š?`wë\F ?È*bVËŠ?ÊÛFóôÓÁ@Ÿf¥§ÝU@z@ŸH+ JÁ.„€@ŸH+ J@ŸH zV[t@ŸH+ J@ŸH"ÌNÐ_@ŸH+ J@ŸHì¶m@ŸH+ J@ŸG÷ša@ŸH+ J@ŸH·}þ@ª÷´9XÁ.„€@ª÷´9X@ªöÿ;R†@ª÷´9X@ª÷KÛÄì@ª÷´9X@ª÷ -Á÷·@ª÷´9X@ª÷ !ÚÙÙ@ª÷´9X@ª÷Z:û@6è†YJôñÁ.„>¤µÜÆ@2Œí‘hr°@2’±$¡æ@1¬j~ùÛ#@1²¿²óÚÒ@1+xFÜ^@1+j1¿Ü@1+xFÜ^@1*ÈX™sU@1+xFÜ^@1+Táâ+ì@8J¨?EkĤ¥?ŸÍŒóɼµ?“ -Aí?’&«>šç“?’V)WE7A@8J¨?“Po³SÖ?–ReItû{Ñø~?™f÷ȹ}h?š•§q!U?”n‹rÕ|?“ |ɽ‡?°‹Œ÷€?’pP‡È»?˜ú³¬Ôë?«ÓÎôy…z?ŽOv_Ø­«?‹ÛÛÐïF?ŠÒ(>—œ ?>LR_5?^²®':Ì@@@@@*@*?ð?ð?ð?ð?ð?ð¿^êž@?b}¢`?U -ݵ€Îì?C!ª9:‰‚@©fOBK¼@®E5¿)?sã–=šø?\¢ã]A¯?äB€`oì¥?®‰Þ1ÿÊ@ŸkîJçÌ@|@¡‹!G®{@¡‹!ÊÀƒ@¡‹!G®{@¡‹#•$@¡‹!G®{@¡‹#× -=r@¡‹!G®{@¡‹%o@¡‹!G®{@¡‹!°‰ '@¡‹!G®{@¡‹!ò×s@«Ò“t¼j@«Ò“÷ÎÙ@«Ò“t¼j@«Ò”záG®@«Ò“t¼j@«Ò‘Å@«Ò“t¼j@«Ò–âëC@«Ò“t¼j@«Ò•Ž!–S@«Ò“t¼j@«Ò•éá°‹@4‰Î_oÒ@4‰­BÃÉð@2J^5?|í@2J’£S&@1Ãt¼j~ú@1ÃÉîËû@1^«6z‘@1]ã¼Ó[@1^«6z‘@1]<64@1^«6z‘@1]ÌcñA ?|¬Çëý ?Čۨ1A?’´ýBI{?Žl¢¦µ¥?‘×´<î¯j?’Ýå"çX?|¬Çëý ?’ -‰¸Ì?‘ú-8ûõö?½¶³±×ò?‘އ Àí?ÝÒ¥X[?ƒ´],m@0U`A‰7L@0UÂ\(ö@/b¶®~@/¬1'@/b¶®~@/…‡“ݘ@/b¶®~@/¬1'?€‚ñêã ?Òç{íj?‘K]Ã4?Œj6_?‘¾%î -ã?æöæ×t?|¬Çëý ?’¼  g¶?ÙšlqùÚ?· ÝûYÁ?çêÑHcÇ?sxÙ/T?‚‹¡8*ùÿ?Œ».êxóÚ?‚uÞ@>N ?ƒE 8?†Ë¢L1Ù?†µ°jÆÃ@@@@@(@(?ð?ð?ð?ð?ð?ð¿œÝDÀ?!¼]SÐ?;5ì¥ì7G>ï¬J@¤JRP$@¢«ìôM?[ .‚G…ê?ÓÏYä?ÁÕS ã½?*£u¸¢@ŸglR|àê@@©agl‹C–@©a{¥ãSø@©agl‹C–@©aféxÔþ@©agl‹C–@©aixÔýô@©agl‹C–@©aa$Ý0@©agl‹C–@©aiÞÒ@©agl‹C–@©abu%F @¦µ?|í‘@¦¬Iº^5@¦µ?|í‘@¦°Hð@¦µ?|í‘@¦»‹¬q @¦µ?|í‘@¦¶È´9X@¦µ?|í‘@¦·1Å@¦µ?|í‘@¦¸­«ŸV@9h†YJôñ@9Fs×Ûô@4{ Iº^@4‚ÊW§†Â@3>V“u@3DzáG®@2ó&Á½¥@2ù“ àÞÓ@2ó&Á½¥@2ú^5?|î@2ó&Á½¥@2úŸ¾vÈ´?¬c°Åxt?”Øÿ4ÙKl?[_œ(Ä?“1ÕËt?™póK ?–‹ƒüMAG?¿VŒ†?•ÞèI1Æ@?“Ú%¿»8?‘~¬Àm?ó?›44]Åùs?™rÊêÚ×þ?”US9úÅ?—0b])‘? “˜¯ÃÛ?‰öuП—?Œúq‘?‘À³ûê%§@@@@@(@(?ð?ð?ð?ð?ð?ð¿_ŒLyÆ?QR#~?i¹滸¹?Bä5!Öb@©adÁ ¾@¦·9HÙ%?Wq¢§?S¶eâ?éÍK -?í?’3âgsw@Ÿpý×hÉ@€@«Ô‰7KÇÁ.„€@«Ô‰7KÇ@«Ô†€IR@«Ô‰7KÇ@«Ôqø .@«Ô‰7KÇ@«Ô‰7KÈ@«Ô‰7KÇ@«ÔlIº^4@«Ô‰7KÇ@«Ô`N¤¨Á@ „ -=p¤Á.„€@ „ -=p¤@ „üPH@ „ -=p¤@ „&€I@ „ -=p¤@ „„µÜÆ@ „ -=p¤@ „ Çy¦µ@ „ -=p¤@ „쿱[@9D¯O „MÁ.„>¤µÜÆ@4&‡+ J@461ø .@3ä¼j~ùÛ@3ê6âëC@3 ¿±[W?@3*0U2b@3 ¿±[W?@2ÿiDg8@3 ¿±[W?@2ïªÍžƒä@8J¨?–ª'G_ßI?š6õÂ\9?•ƒäôKwö?Òß© ÷?¨ÅkÊL@8J¨?œ_lWF_‚?•ƒäôKwö?•GÝóuS—?¨ykz4q>?¶cœô:l@8p÷?›’qvš°“?œÚ.ô §Æ?›ø×…N?šðún¤D.? hvÅÜk@@@@*@,?ð?ð?ð?ð?ðøøøøøøøøøøøø@§± -=p¤@§±%¸Qì@§± -=p¤@§±#ˆe”¯@§± -=p¤@§±ãS÷Ð@§± -=p¤@§°é 'RT@§± -=p¤@§°ò¼¤@§± -=p¤@§± qu@£>’n—P@£>“t¼j@£>’n—P@£>œ¾ß¤@£>’n—P@£>“Ð|„¶@£>’n—P@£>ŠÚ¹õ@£>’n—P@£>¥S&Á@£>’n—P@£> Ä›¥ã@8cg ù l@8TðØDÐ@6Iº^5?@6(Xy=Ù@5¬j~ùÛ#@5ȧæšÔ@5Öý!ÿ.I@5Ü¥zxl#@5Öý!ÿ.I@5×®záH@5Öý!ÿ.I@5á [À7?œä%—ëš?¸äï È,[?¯e2½è¾?¢º™ÁLŠ?ÅÒV#m¤?»zòkŸ?•²»UbB2?¬'ø'5?¿Á° ›_¶?ŸjÝá3(?Çí¤ëëí?½åǪrý»?³±’W_æl?¦"55A;?¾ï€SÓÌ?µÅ8'Œe?¸œ›Z|?¸3éYÀ4¨@@@@@,@(?ð?ð?ð?ð?ð?ð¿…}\@?m~Úê?|VŠÏ?:¼ÿm#@§±¢Ñ3›@£>™ÂA#?•Är%b?TAúõ,?üçiëñÕ?€áPlu×@Ÿca$Õ†.@‚@ªhr°!@ªE¡ÊÂ@ªhr°!Á.„€@ªhr°!Á.„€@ªhr°!Á.„€@ªhr°!@ª“u@ªhr°!Á.„€@®ýå`A‰@®ý‡+ @®ýå`A‰Á.„€@®ýå`A‰Á.„€@®ýå`A‰Á.„€@®ýå`A‰@®ý4êK@®ýå`A‰Á.„€@7Ñ|ÚQ@7ÑA [À@3GÎÙ‡+Á.„M‰ûçm@2ä¼j~ùÛÁ.„QnÙ‡@2=cˆe”°Á.„NÜC,¥@2=cˆe”°@2Cä%®æ2@2=cˆe”°Á.„NÜC,¥?²Æ—ÕŒ@8#˜@8¾:@8 >+?”§RXFÖf@8Ù?›’qvš°•@8Î÷@8i§@8Å?¡ºøò¤âÍ@8û—?¬É…À±.Á@8 * @8p÷@8¶?•°QŸ?]Í@8 Ø@@?ð?ðøøøøøøøøøøøøƒ@¯9ˆ1&éy@¯9ˆ1&éz@¯9ˆ1&éy@¯9‰º^5?@¯9ˆ1&éy@¯9‰*0U2@¯9ˆ1&éy@¯9‰7Kƨ@¯9ˆ1&éy@¯9†ö”Fu@¯9ˆ1&éy@¯9‡Ë)`@¦N(@@@@@(@(?ð?ð?ð?ð?ð?ð¿P8'vä¿:n$p?6ϳ˜ —2?v4é;F@¯9‡çÔ}J@¦N<íàjo?EïÒ ¸Ò©?w: t?‡¢ÛÛz8N?1Ç}UÎ@ŸsÊÇ0@„@ªÂ™™™š@ªÂ#•%@ªÂ™™™š@ªÂÎÙ‡@ªÂ™™™š@ªÁíqu@ªÂ™™™š@ªÁÀ4mÅÖ@ªÂ™™™šÁ.„€@ªÂ™™™š@ªÁ´,<ží@•eTýó¶F@•e]/Ÿ¿@•eTýó¶F@•b§ ù l@•eTýó¶F@•bëŸU›<@•eTýó¶F@•a4SŽóM@•eTýó¶FÁ.„€@•eTýó¶F@•b_U›=@8Bò䎊@8,¹'Ÿf6@3°Ä›¥ãT@2õýŠÚ¹õ@3²-V@2™b¶®}@2𖻘Çã@2Ù‡+@2𖻘ÇãÁ.„NÜC,¥@2𖻘Çã@2Z™0¾ í?ª«´ØJµ?µIÌU0âƒ?Ñ«·^š–Š?Ô,‚}¯@8Iç?Г¬í²k’?¨)n•­j²?ÖÑvɃè?á‘´-;Œ?ã'Çg.@8S?Øö(0$d¾?®ÏâÆ©×{?¶¯V#Q5?ÂúŸeŸ†í?ººz«ž®@@8 Ø?Ášíùˆ¿Õ@@@@@(?ð?ð?ð?ð?ðøøøøøøøøøøøø…@¯m‘hr°@¯mOß;d@¯m‘hr°@¯n¾ß¤?@¯m‘hr°@¯n!–R½@¯m‘hr°@¯nzáH@¯m‘hr°@¯l¿±[W@¯m‘hr°@¯m:’£@©¶KC•@©¶KƧïž@©¶KC•@©¶IÔ•,@©¶KC•@©¶JŒL˜@©¶KC•@©¶KƧïž@©¶KC•@©¶KC,¥@©¶KC•@©¶JW§†Â@4™*0U2b@4™ k¹Œ~@0°Ä›¥ãT@0°N¤¨ÁT@0PA‰7KÇ@0O²-V@/b¶®~@/7´¢3œ@/b¶®~@/0¾ í)@/b¶®~@/b¶®}?|öOÿÝ?Úþþ³?‘œÁùãJC?‹ÝÉ!ë#?‘çG¸?ïˆ6ÏJ?|¬Çëý ?’ ,øÕC©?Ê -ä\ä?Hª¦ºón?‘ ^Íü?ÿ? êBÐ8ã?‚ÂÌ]å?ŒÆò/¢äÍ?‚¸“Îè ø?ƒ†+ Å?†©b/bJö?†Ë¢L1Ù@@@@@,@*?ð?ð?ð?ð?ð?ð¿Ü3x¿,«[ ?"0H‡Š(?A¸üˆ¨m@¯mQMëQ@©¶KZ¤VÄ?B…`Áç?7£ÏTšçÔ?‘’²&?|ÚX¦çž@Ÿfãë­â@†@¡æß¾vÈ´@¡æâÐå`B@¡æß¾vÈ´@¡æâ\(ö@¡æß¾vÈ´@¡æÞÅm\û@¡æß¾vÈ´@¡ææéxÔþ@¡æß¾vÈ´@¡æá‰7KÇ@¡æß¾vÈ´@¡æÞÑ·@«J=p£×@«J~ùÛ#@«J=p£×@«EF -¦L@«J=p£×@«DêJŒ@«J=p£×@«IîËû@«J=p£×@«Iá°‰Ÿ@«J=p£×@«F$Ý/@7?–»˜È@7DÂø7´¢@3ë¥ãS÷Ï@3å¡ÊÀƒ@2ÒÐå`A‰@2Ð:û~‘@2‚‚@·€5@2}5¨Xy>@2‚‚@·€5@2v_Ø­¬@2‚‚@·€5@2z¹õY³Ñ?‚á²Olºü?”û#T©È?’>¯\¾¦?•3ö¬' ó?—vÑékÜ?—,¯&€â=?œä%—ëš?™ìôº¥Ï?“?T¾¹µ ?¡"JîÃ!?™‹ôM`¨%?”Ö|HKr^?†ž5ðqê?”àÝ×K?’µ~Yºì?Š>ÚµÕ?“áêqú ?”¼íÒh@@@@@@*@$?ð?ð?ð?ð?ð?ð¿<Ë.‚È¿J(%ù€?I.K¢þ¨®?>òS!ä§@¡æâá˜r@«HóP˜,?mæNwú¥?](vœV©?ÒK¦…3ëô?¢Ñ®¯r,@Ÿl&·@‡@ª“¢Ðå`B@ª“¹XbN@ª“¢Ðå`B@ª“¢MÒñª@ª“¢Ðå`B@ª“¥F -¦L@ª“¢Ðå`B@ª“¸bMÔ@ª“¢Ðå`B@ª“²:)Ç{@ª“¢Ðå`B@ª“¶‡+ @¢!G®{@¢ýó¶E¢@¢!G®{@¢¾vÈ´@¢!G®{@¢"ø7´¢@¢!G®{@¢$Ý/ @¢!G®{@¢Xâ@¢!G®{@¢áG®@8Œ]cˆe”@8šxl"h -@4c÷ÎÙ‡@4` Ä›¥ã@3´“t¼j@3°ò{²þÆ@3+xFÜ^@3)ÀëíúD@3+xFÜ^@3#©*0U2@3+xFÜ^@3!£n.±Ä?Àh’AÝà§?‘­b š=?•lÚ®¡õµ?‡{@áè?“ £Ê­?¨ÅkÊL?‚á²Olºü?•Ð\ÄÙ?˜Y ¶E–X?“3ÏÇF0?• ¸°R¨?¡§î•½y?ÅuIE ²?’òÌ&Œ®3?•¶°nÎf¯?•·Ûïk6¿?¦«DðL?›€*:€R}@@@@@@*?ð?ð?ð?ð?ð?ð¿eú¶Ù?€MgPÐ@?YÈ£_C?i潊N:@ª“µ­zâ@¢©e˜?d3Ô$Ñó?‘4e Ô -?·­ÑŒ²Dœ@ ÁHcÅÚ@Ÿo¤åL‘j@ˆ@§‡´9Xb@§‡´9Xb@§‡´9Xb@§‡µ*™2@§‡´9Xb@§‡µ$Ý@§‡´9Xb@§‡´ýó¶G@§‡´9Xb@§‡³@N¤©@§‡´9Xb@§‡³@N¤ª@¦ágï²-@¦áh1&éy@¦ágï²-@¦áhÎp:ü@¦ágï²-@¦ág“Ý—õ@¦ágï²-@¦áh1&éy@¦ágï²-@¦áh1&éy@¦ágï²-@¦áhXy=Ù@4è†YJôñ@4è Ô•*@.²-V@.¸ºÇ@,ÊÀƒo@,‚&€IR@*-úCþ\’@*.V“u@*-úCþ\’@*-í(Œç@*-úCþ\’@*.záG¯?€‚ñêã ?Ï[äe?Uÿyu”#?ˆAᆽÃì?Œ¯þuõí?‚yî8Á$?‚æÊ¬vã?†‰Oú|q?†’Õaì+’@@@@@&@&?ð?ð?ð?ð?ð?ð¿#tÙ!>ó >ƒ€?(–PÖ`Ž<>ìÞ£d?´‡@§‡´B*¬@¦áh9ëfô?H~`´k? ½™ 'a?‹8âì3?%hwû¿nº@Ÿgů:y¢@‰@£¨dZ¬@£¨d~QÚ$@£¨dZ¬@£¨hGlÏ@£¨dZ¬@£¨^Ðp@£¨dZ¬@£¨iV<~û@£¨dZ¬@£¨g±Mkc@£¨dZ¬@£¨fU@–U¸Që…@–U»çl‹D@–U¸Që…@–UÁg¸×ÿ@–U¸Që…@–UÏ*Wj{@–U¸Që…@–U¼6‰V@–U¸Që…@–U¿’á'X@–U¸Që…@–UÑPÒç¼@6Hè§æ@6²÷Sˆ@3+¥ãS÷Ï@33ÑiË@3t¼j~ú@3ìV62@2á:’£S@2ïK^¢D@2á:’£S@2é­R)®@2á:’£S@2èIŒ'º;?ƒÔo"ë–?“£îömªN?§àqg8¬?ž¸«~j@t?“È}vk·?“eÁá}B?€Ã{s°úi?”•âxm?ŸßXFZ\=?—•ž*d7:?—q•ŠbtÁ?‘ÅTóÅ—?…€vqGœ¨?•ŸN#9·?fÿ;ö?˜ßµ_Oa?“röW÷ì?z5Kï@@,@(@(@5@0?ð?ð?ð?ð?ð?ð?CœõÈ?Zç†Õ·?5ô -„Š6ú?H»B¬hÓ@£¨eùµM»@–U‹Ëå´?WW–‘ÈÓ?iÂUôÐý?°UñýiYp?×ÄuA6›@Ÿg_?<"Ø@Š@­.—Oß@­/Ÿ¾w@­.—Oß@­"ø7´¢@­.—Oß@­'¯·é@­.—Oß@­)ã½@­.—Oß@­#S÷ÎÙ@­.—Oß@­)7Kƨ@ž^záG®@ž^}p£× -@ž^záG®@ž^‘·Xâ@ž^záG®@ž^¸Që…@ž^záG®@ž^°¸º@ž^záG®@ž^§ÕfÏB@ž^záG®@ž^Ÿ;dZ@5cg ù l@5b¼£n@3GÎÙ‡+@31×Ûô‡ü@2Æ“t¼@2«/ìVÕÐ@1î_oÒ @1Ùb¶®~@1î_oÒ @1Ù*0U2b@1î_oÒ @1Ö4êK?‚á²Olºü?‘J–?-.º?‘£Ä›è?‘£ºáõÑ?‘§›ßÉîj?’u¹k‚=?|öOÿÝ?“ÈÂ`?œT¹o¿‹õ?”A8 Kú¿?’¯dL¶t?’µ~Yºì?ƒÆ×q„nï?[™ÕÈ™8?‡YÍ`?„À"aËô??‰®ââP\?‹aÊ•TI@@@@@*@$?ð?ð?ð?ð?ð?ð¿_$zÙ?s0•­˜€?Hõ—UÕ5?[EO?¤3@­*‘"½¡@ž^“Ð1L?i­®©#¢?|td›à‰A?Ø~‡Ñ°¶@¸ïä,ÝÌ@ŸgK½êÞg@‹@«òY‡+@«òXQë…@«òY‡+@«òX÷c -@«òY‡+@«ò[n*ó‹@«òY‡+@«òYÉêH@«òY‡+@«òXà<+k@«òY‡+@«òXÁî}@™ŒzáG®@™ŒÒ»@™ŒzáG®@™Œ%¬'’@™ŒzáG®@™ŒÁÛO²@™ŒzáG®@™ŒÔ «5@™ŒzáG®@™Œ®}Vm@™ŒzáG®@™Œ2a|@7¨†YJôñ@7¥_×Ö½=@3i‡+ @3jæ¥ †v@2×ï²-@2ÙÁO±Y@2 ¿±[W?@2I¼]Iˆ@2 ¿±[W?@2 ‡Ü°`ž@2 ¿±[W?@2E¤¬ ?•w«ogŸl? dJgQ?’:­*QÎ?÷î|£[?‘¡8I²«¤?‘àÇAe ?†É×Hq"1?’¤Ý—†¬?‘b ´±6?ºŒ©¡§Î?’I¿|­q?‘/¹ß†?’‚<(_‡?%>ÇpÑ?‡³jó ?„&};-?‡zGhƦq?ˆ<Éh8kÑ@@$@(@*@8@7?ð?ð?ð?ð?ð?ð?éôà¿ éÕ €?ÖtN4–i?2÷æ‚Ö-Ð@«òXÓ_@™ŒõhŽ™?65ë¥q?Sä}k;h&?i¼£©?¢¬?¨î{èå÷@ŸlET{@Œ@¯éŸ¾vÈ´@¯é¹/Z‹@¯éŸ¾vÈ´@¯é Ì%Ö@¯éŸ¾vÈ´@¯éŸÚh×—@¯éŸ¾vÈ´@¯éŸ9Á•Ì@¯éŸ¾vÈ´@¯éœòO+@¯éŸ¾vÈ´@¯éœÚQ@•¬1'@•"MÒñª@•¬1'@•O½Ô×@•¬1'@•jOÓm@•¬1'@•´×¯@•¬1'@•$H¥¯ï@•¬1'@•Å£±Æ@7m¥œàv@7d`ªdÂø@3ðÄ›¥ãT@3óÛ¿†‘¯@3†“t¼@3‹¶Ä[…2@2”mÅÖ8†@2˜—–#@2”mÅÖ8†@2˜¿i¿)Ï@2”mÅÖ8†@2™öÛAx?Ž'QR x!?’ÓÁŽ[~?’a•¦û?£SqZ¬ˆ?’ÈwD['Ž?’Lú¬ày?€Ã{s°úi?”Ô4å?‘V—(ô>Õ?ó‹@Ê<›?’6ç~œä±?“Vée?´Ëu5¦×?Žœî¤>ë?…ÙŸŒR ð?…¨hrJe?ˆ>)A-?‰5ß+›Ö„@@*@$@$@9@9?ð?ð?ð?ð?ð?ð?g ëª^¿¤µÜÆ@4?|í‘h@3õ”¯O „@31‰7Kƨ@3($ xG@2Œ¿±[W?@2ƒ× -=p¤@2Œ¿±[W?@2€lÏžƒ@2Œ¿±[W?@2|@À)@8J¨?‘¸ü"ù€2?šëwÍœ‹Ý?“1ÕËt?‘(­gxý?—u.%Jº@8J¨?•2ã(_Ïù?ž(?{k4?‘W×ý°A?˜o -E\K?‘¢U¥].è@8p÷?‘a÷nñ?•Îo´ÀÙ?‹Ûu¤ó†4?Šp¹XmÉ>?M[70@@@@0@,?ð?ð?ð?ð?ðøøøøøøøøøøøø@¬sõÂ\)Á.„€@¬sõÂ\)@¬sá‰7KÇ@¬sõÂ\)@¬sæffff@¬sõÂ\)@¬sÒñ©ü@¬sõÂ\)@¬sØÔýó¶@¬sõÂ\)@¬sé7KƧ@¥€¾vÈ´Á.„€@¥€¾vÈ´@¥€ezxl#@¥€¾vÈ´@¥€%‡“ݘ@¥€¾vÈ´@¥€n—Oß@¥€¾vÈ´@¥€<ÓZ…ˆ@¥€¾vÈ´@¥¿!-w2@8[¹Œ~($Á.„>¤µÜÆ@2sS÷ÎÙ@2€6âë@1iÛ"Ðå`@1eÉã½@0ÑÞi­BÄ@1Ëûµt@0ÑÞi­BÄ@0Òh Ô•@0ÑÞi­BÄ@0•ðoiDg@8J¨?§¿u‚3?¤.#ÓYæ?ç\Š2˜?¨4+åRÚ–?¨.¿Èá@8J¨?Åð¡“X ¸?’ã0eʪv?Ÿ'Žb÷A?«Þ.Ïĵd?½Pz‹ Ô@8p÷?¸›¥e©˜Í?œÄDóÙk?Ÿ[+{A†ÿ?–d‘…’Ã~?µb•Hó@@@@(@*?ð?ð?ð?ð?ðøøøøøøøøøøøø@¢_ËÆ§ïž@¢_Ê=p£×@¢_ËÆ§ïžÁ.„€@¢_ËÆ§ïžÁ.„€@¢_ËÆ§ïžÁ.„€@¢_ËÆ§ïžÁ.„€@¢_ËÆ§ïžÁ.„€@Ÿ]F§ï²@Ÿ]XbMÓ@Ÿ]F§ï²Á.„€@Ÿ]F§ï²Á.„€@Ÿ]F§ï²Á.„€@Ÿ]F§ï²Á.„€@Ÿ]F§ï²Á.„€@7ð4mÅÖ8@7ðË)^ž@55ãS÷ÎÙÁ.„M‰ûçm@5;Ƨï²Á.„QnÙ‡@4(è§æ›Á.„NÜC,¥@4(è§æ›Á.„NÜC,¥@4(è§æ›Á.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøø‘@ Ðn—OßÁ.„€@ Ðn—OßÁ.„€@ Ðn—OßÁ.„€@ Ðn—OßÁ.„€@ Ðn—OßÁ.„€@ Ðn—OßÁ.„€@˜¦0 Ä›¦Á.„€@˜¦0 Ä›¦Á.„€@˜¦0 Ä›¦Á.„€@˜¦0 Ä›¦Á.„€@˜¦0 Ä›¦Á.„€@˜¦0 Ä›¦Á.„€@4ð4mÅÖ8Á.„>¤µÜÆ@15ãS÷ÎÙÁ.„M‰ûçm@0V”Á.„QnÙ‡@/åÉäÁ.„NÜC,¥@/åÉäÁ.„NÜC,¥@/åÉäÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø’@¥€ ÌÌÌÍ@¥€È´9X@¥€ ÌÌÌÍ@¥€ Ƨïž@¥€ ÌÌÌÍ@¥€ :’£@¥€ ÌÌÌÍ@¥€V“@¥€ ÌÌÌÍ@¥€ -³g ù@¥€ ÌÌÌÍ@¥€ ¥zxl@¢.¯Ÿ¾w@¢.³÷ÎÙ@¢.¯Ÿ¾w@¢.¯Åo@¢.¯Ÿ¾w@¢.®Hè§@¢.¯Ÿ¾w@¢.±Ä2ÊX@¢.¯Ÿ¾w@¢.¬"h Ö@¢.¯Ÿ¾w@¢.¬¿±[W@87â‚@·€@83@N¤¨Â@2J^5?|í@2JôðØDÐ@1Ct¼j~ú@1D`ªdÂø@0zÔ,<ží@0{’:)Çz@0zÔ,<ží@0z™0¾ î@0zÔ,<ží@0zqÞi­C? Eˆ‡ðó‹?jÝ‚È?‘t‘ócjë?‹ó#ƒt£?‘EÉ@Ú?‘ ê$4Ÿ?¡EÉ@Ú?’®> -fuæ?‘4ãM^?siÅqe?‘1…šá?«àÓ RÆ?± ã)è ˆ?)‰€Zw?ƒíÈm½!¿?„•ˆG’Z¾?‡&üòI?‡æê7²zE@@@@@*@(?ð?ð?ð?ð?ð?ð¿^W‡Q¿^]¾×l?LXÏí"¼§?GB¯ž¹@¥€ Î? š@¢.¯:mY6?b£RÍÚàÌ?_s Aàžë?Á¯•­{©?µÓ»E2'@Ÿoá÷Î@“@£V‚\(öÁ.„€@£V‚\(öÁ.„€@£V‚\(öÁ.„€@£V‚\(öÁ.„€@£V‚\(öÁ.„€@£V‚\(öÁ.„€@“f¸QìÁ.„€@“f¸QìÁ.„€@“f¸QìÁ.„€@“f¸QìÁ.„€@“f¸QìÁ.„€@“f¸QìÁ.„€@8IÎ_oÒÁ.„>¤µÜÆ@3|í‘hrÁ.„M‰ûçm@2¤¼j~ùÛÁ.„QnÙ‡@28DЩ*Á.„NÜC,¥@28DЩ*Á.„NÜC,¥@28DЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø”@¥çÃn—@¥çÃn—@¥çÃn—@¥ç¿‰À@@¥çÃn—@¥çÀŒí@¥çÃn—@¥ç¿òL@¥çÃn—@¥çÀ럺O@¥çÃn—@¥ç¿(<>"@“vD›¥ãT@“vE¡ÊÀƒ@“vD›¥ãT@“vAб@“vD›¥ãT@“vBtUÅ@“vD›¥ãT@“vCª}@“vD›¥ãT@“v?×t͘@“vD›¥ãT@“v=SÍÝn@4uS&Á¾@4u@Ø -õØ@2pÄ›¥ãT@2n£Ç'@1¬j~ùÛ#@1« `G@1O „M@1‹Ð‘±Ht@1O „M@1‹·°aó#@1O „M@1Ššáãq›?|¬h2:“?‘1J÷*@?‘)¡zІÌ?£Ä£êÌ?’¬‚¹è?Ü_1“<ž?}@T˜ÁÎ¥?’¸ê°g?‘^Æè»ðK?ý³çMfÛ?’01€s #?v4M°§ä?‚xþuhy¾?ŒÊsµ0dþ?ƒ@Š·•`?„aAv3ê`?‰x÷ß»š§?†ôð¾6^@@&@"@$@6@.?ð?ð?ð?ð?ð?ð¿Ii5¸ ¿H×h¨?(„?[¡³?!ðWpAŸ¾@¥çÁRôç$@“vB‡:yª?HŽ2h+Õk?BO/ß.6?Ÿ`!»ýkˆ?•cűâ@ŸfÆøA˜@•@¬ý­V@¬ý®V“@¬ý­V@¬ý«¬q ´@¬ý­V@¬ý«C•@¬ý­V@¬ý­jO@¬ý­V@¬ý˜FÜ]@¬ý­V@¬ýgÕfÏA@«XX“t¼j@«XZ^5?~@«XX“t¼j@«X]!ÿ.I@«XX“t¼j@«XYXbN@«XX“t¼j@«X]Vlô@«XX“t¼j@«Xf$Ý/@«XX“t¼j@«X`ƒn˜@6„¯O „M@6†“t¼@2³S÷ÎÙ@2´É…ðoi@2;Ƨï²@2=ÅÖ8†Y@1‡ ù kº@1Šxl"h -@1‡ ù kº@1”÷eýŠÛ@1‡ ù kº@1®¾ß¤?æ?„F/·ÿP5?‘J–?-.º?’5 µ¿$„?Œj6_?™°ñÃM?£â³x‰»?„F/·ÿP5?”n‹rÕ|?’$ûJw"Ú?@§[*^?›†þ.D?˜6@(/ÇÝ?‚Ì ÝŽ‚8?Ñ¿ž,?„+£QKù?†ÞåØÜÓ?ˆëÅoë?IÏáå$@@@@@,@*?ð?ð?ð?ð?ð?ð¿xg·µP?Z¸} ?sÏÆåf?F;™v¯ó@¬ý¤õ"×ò@«X]Ÿ  ?‘ATÎ O?dá„dÿ·?@ äØRh“Ä?Éê~îaD@Ÿeé*FÕ@–@¥Žûçl‹DÁ.„€@¥Žûçl‹D@¥ŽóüPH@¥Žûçl‹D@¥Žê³g ø@¥Žûçl‹D@¥Žèšu%@¥Žûçl‹D@¥ŽãS÷ÎÙ@¥Žûçl‹D@¥Žæ -¦L0@«wŒIº^5Á.„€@«wŒIº^5@«wHË’9@«wŒIº^5@«wò{²þ@«wŒIº^5@«w’ñ©ûç@«wŒIº^5@«wÒñ©ý@«wŒIº^5@«w‡E8ï5@8 ]cˆe”Á.„>¤µÜÆ@3ÎÙ‡+@2ë¬q ²–@2 ²-V@2E¡ÊÀƒ@1L¿±[W?@1NÑ·Y@1L¿±[W?@1:QÎ`@1L¿±[W?@12×sü@8J¨?¡Ýq+qW?˜ëàÕÁc0?”7lyÎ\?¦p3/ ¤?§°:ÛAJ+@8J¨?¡­·k$Õ?¸V¶nþ„ý?™vEËõB?™d‰u‰5Ž?±§<þ"(o@8p÷?›¿G¶‘µ?‰¢Ò+ÜÝX8ý‘ ?¥é+(³?œ¦]`úæ?•Äí¥×?–®ã–†áž?©W»¥ÿ$B? >Ô±µR?¡¨{ª’®W?“ÅÒÏPÉä?•nW*Ø„?šºi 0/¥?•;¯(ó?”Ú¢Ó¯?—’h…b?ÓLÞ?æ?šÙ,yf’Y?›ÇûP|@@@@@*@,?ð?ð?ð?ð?ð?ð¿ne±ƒ7?~‘l¦À?RàsìS¢?lŽ^—y–í@¤äKz«0Ä@¤9á¬H8¨?cÇ*JÔê?Bî ¾[?¬×FMAr?îþr`¹‹i@Ÿq5XÇñ@™@¬^yÛ"Ðå@¬^k Iº@¬^yÛ"Ðå@¬^X“t¼j@¬^yÛ"Ðå@¬^H1&éy@¬^yÛ"Ðå@¬^Mžƒä&@¬^yÛ"Ðå@¬^QÄ2ÊW@¬^yÛ"Ðå@¬^OŸ¾x@¢±Ï\(õÃ@¢±ÎV“@¢±Ï\(õÃ@¢±Ðå`A‰@¢±Ï\(õÃ@¢±Ö“u@¢±Ï\(õÃ@¢±Òñ©ûç@¢±Ï\(õÃ@¢±Î!–R½@¢±Ï\(õÃ@¢±Ï'»/ì@6 xFÜ@6|ÚQ@1)‡+ @1Dg8~@0¬j~ùÛ#@0™7KƧð@/õ¨Xy=Ú@/ÖOv_Ú@/õ¨Xy=Ú@/Ò½<63@/õ¨Xy=Ú@/Ñø -ß?•²»UbB2?‘¡çL¤?¬4F&xé?¨‹™µ¸¤?°¿ Ý2 ¦?°|S6³Y?Œs¤DÅÐ?’7Îf¬ps?“Ë— -"3?‘.“¥?–ÓîTî?—+Áèlç?ªìýi?Ž*JŠË?aäŽ -Ù?Þ‚ ‡F?^^ω•?‹Ûx§Þ@@@@@,@(?ð?ð?ð?ð?ð?ð¿|€U?1M¬Ê ?]þZÇ?Géwh¶7Ò@¬^[Ô>W@¢±Ïµ{É„?}(Ï{…iR?f[d©m@'?Î&v‘»/?È?:QÓ $@Ÿf×e`â@š@¯oc× -=qÁ.„€@¯oc× -=q@¯l„tSŽó@¯oc× -=q@¯lžƒä&@¯oc× -=q@¯lœ¬1'@¯oc× -=q@¯lÈÎp:ü@¯oc× -=q@¯lÓg ù @¬Ï\(õÃÁ.„€@¬Ï\(õÃ@¬Ž$Ý/@¬Ï\(õÃ@¬ŽŠqÞj@¬Ï\(õÃ@¬Ž¯·è@¬Ï\(õÃ@¬Ó àÞÔ@¬Ï\(õÃ@¬Íw1Æ@9ò䎊Á.„>¤µÜÆ@3Š^5?|í@-’ò䎊@2»Æ§ï²@,™#¢œwš@1Œ¿±[W?@+×éùrH@1Œ¿±[W?@+íw1Å@1Œ¿±[W?@+éá°‰ (@8J¨?¡2¶Qã=t?—U’¹DÆü?•Ô¦?n¸?ž)‚^°y?ŸŸ[‹¹5@8J¨?˜ü^Š1??šJ‘ÍÒÁ?“ä$š„…œ? p G)L?šºi 0/¥@8p÷?•ða˜,F?ŠÇÿú?‹h¢íc„„?“KÌ&¨Í?ˆT“Ÿÿ@@@@(@&?ð?ð?ð?ð?ðøøøøøøøøøøøø›@¬ÜdÝ/ Á.„€@¬ÜdÝ/ @¬Û‰xÔýô@¬ÜdÝ/ @¬ÛÚkP°ò@¬ÜdÝ/ @¬ÛùõY³Ð@¬ÜdÝ/ @¬ÛÞ($ x@¬ÜdÝ/ @¬ÛÈÁTɆ@¥]/Ÿ¾Á.„€@¥]/Ÿ¾@¥ÂMÒñª@¥]/Ÿ¾@¥gl‹C–@¥]/Ÿ¾@¥…o@¥]/Ÿ¾@¥Çâ‚@¸@¥]/Ÿ¾@¥úû~‘@8eöý!ÿ.Á.„>¤µÜÆ@4}‘hr° @3ùk¹Œ~(@3‹"Ðå`B@3<˜_ö”@3 ù kº@2Á©ûçlŒ@3 ù kº@2Â:)Çy§@3 ù kº@2Êû~ÿ—@8J¨?ÇW‘ßÃq?È®|1¹?¾G#}«?ÆlB_l@©˜Ãñ–O0?V7S§ë ]?R,X¼mt?µôtNÙ–?­Ž¥@@ŸgËŒ—^@@©gÚ¬1@©gÚáG®@©gÚ¬1@©gÚ)Çy§@©gÚ¬1@©gÚp[? @©gÚ¬1@©gÚŸ¾vÉ@©gÚ¬1@©gØN¼Ü@©gÚ¬1@©g׻Ȱk@•e¬1&é@•e£S÷ÎÙ@•e¬1&é@•eŸ‚Úÿk@•e¬1&é@•e¡$ì­æ@•e¬1&é@•e¡<%J<@•e¬1&é@•e¡ôÿž~@•e¬1&é@•e¢Çyùõ@3Žì¿±[X@3‰ªôfJ*@0; Iº^@07ÇÀœ@/†éxÔýô@/â!ýv:@.³üPH@.«íúCþ]@.³üPH@.¬'S1@.³üPH@.«ûµsê?ŽÕQp Î?u:I1?‘%ja •a?‹»³!.H.?÷(l¨˜?ưz÷_3?|Ñb×¶@?’!‡!{?™ö-@§y?9ÍÇ~FÀ?äU1 -¶?kN? ïv?‚“rÉÜ?Œ½K ìë?‚À%?‚íS¸0iBZîd?|¬Çëý ?ûJ`ÕYð?‘D&»ä?‹×lÇ…N9?‘2A¥Ø?âé¨ë7F?|¬Çëý ?’&u÷E»@?§^ ÿo˜?K·‘d]?‘ ÛÌÏõA?–’+¸¢d?‚‹¡8*ùÿ?Œ¾»•lŽ?‚¸“Îè ø?ƒ ?ÿ½?†µ°jÆÃ?†–f_ÔŠŠ@@@@@,@,?ð?ð?ð?ð?ð?ð¿©V@¿%óŽW?c«6,9>ŤN(\»@§Rq¢‰@§Ï‹i\ç?':¢{u^>åþ5n½/ð?]^„¸Ë2>Ùõ`ºµÐ@ŸfÞ}ÿõ@ @¯¶4¼j~úÁ.„€@¯¶4¼j~úÁ.„€@¯¶4¼j~úÁ.„€@¯¶4¼j~úÁ.„€@¯¶4¼j~úÁ.„€@¯¶4¼j~úÁ.„€@¨äŽV“Á.„€@¨äŽV“Á.„€@¨äŽV“Á.„€@¨äŽV“Á.„€@¨äŽV“Á.„€@¨äŽV“Á.„€@9 ]cˆe•Á.„>¤µÜÆ@5» Iº^Á.„M‰ûçm@5“t¼jÁ.„QnÙ‡@4Ì¿±[W?Á.„NÜC,¥@4Ì¿±[W?Á.„NÜC,¥@4Ì¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¡@¢éY‡+@¢éY‡+@¢éY‡+@¢éXy=Ù@¢éY‡+@¢éYõY³Ï@¢éY‡+@¢éX†YJõ@¢éY‡+@¢éXDЩ@¢éY‡+@¢éY™™™™@©Ë'ï²-@©Ë'ï²-@©Ë'ï²-@©Ë)Çy¦µ@©Ë'ï²-@©Ë*W§†Â@©Ë'ï²-@©Ë-¸ºÇ@©Ë'ï²-@©Ë,q ²–@©Ë'ï²-@©Ë-¸ºÇ@32ÃÉîËû@32䎊qÞ@0)‡+ @0(FÜ]d@.›dZ¬@.™™™™™š@/#¼ÓZ…ˆ@/i­BÃÊ@/#¼ÓZ…ˆ@/ @/#¼ÓZ…ˆ@/ A‰7KÇ?‚á²Olºü?*£|3Né?‘7[ä­?Aš%ðï?‘˜¯ -`É?‘#†»{׈?}Ñ¿ž,?’Q_Ú¸FN?‘twæ³?“óoãwlP?‘Uç·Býi?ó‹P=´?‚† SFñ?lío>÷?‚§W®ê ?ƒv_.^?‡´*žZ}Õ?‡<û¡71@@@@@*@&?ð?ð?ð?ð?ð?ð¾úx˜?T_ÙÂÞ?#–uY¿7?2;->à¯@¢éXë6}r@©Ë*íãÃ?CYZ3JM?STUeG 7?'—çÍ*Ã?°‘n®b;·@Ÿgâÿa@¢@¡ ]²-VÁ.„€@¡ ]²-VÁ.„€@¡ ]²-VÁ.„€@¡ ]²-VÁ.„€@¡ ]²-V@¡ ’x7Çþ@¡ ]²-V@¡ ÓŽóMj@¢lKC•Á.„€@¢lKC•Á.„€@¢lKC•Á.„€@¢lKC•Á.„€@¢lKC•@¢lgY|ƒ@¢lKC•@¢l*JŒL@>2ÃÉîËûÁ.„>¤µÜÆ@7Ìí‘hr°Á.„M‰ûçm@6Ͳ-VÁ.„QnÙ‡@5«xFÜ^Á.„NÜC,¥@5«xFÜ^@5––óñ©(@5«xFÜ^@5¼ÌÌÌÌÍ@8@8#˜@8¾:@8 >+? ¶ÕIò…T?Öˆp&`ÁF@8@8Î÷@8i§@8Å? ?cˆ³H‹?ÏBŠ>œÅâ@8@8 * @8p÷@8¶?½µÏΙ¬?ÄŠ†^¤¿è@.@?ð?ðøøøøøøøøøøøø£@Ÿóê~ùÛ#@Ÿô -ü\&û@Ÿóê~ùÛ#Á.„€@Ÿóê~ùÛ#Á.„€@Ÿóê~ùÛ#Á.„€@Ÿóê~ùÛ#@Ÿøõöý!ÿ@Ÿóê~ùÛ#Á.„€@­É}p£× -@­Éaô±î#@­É}p£× -Á.„€@­É}p£× -Á.„€@­É}p£× -Á.„€@­É}p£× -@­ËVlô@­É}p£× -Á.„€@7í¥œàv@7¬ûùÎìü@3…?|í‘hÁ.„M‰ûçm@2â-VÁ.„QnÙ‡@2¨è§æ›Á.„NÜC,¥@2¨è§æ›@1cˆe”¯@2¨è§æ›Á.„NÜC,¥?…ðE[i)@8#˜@8¾:@8 >+?â•`i%|@8Ù?~Ov_Ø­«@8Î÷@8i§@8Å?ó´«×õ¹ð@8û—?…kô%,@8 * @8p÷@8¶?­E(É¡¨@8 Ø@@(?ð?ðøøøøøøøøøøøø¤@ªÒñ©ü@ª‘&éxÖ@ªÒñ©ü@ª(Œç@ªÒñ©ü@ªœ(õÂ@ªÒñ©ü@ª’n—P@ªÒñ©ü@ª“¶E¡Ì@ªÒñ©ü@ª¤µÜÆ?@¬ÃÆ$Ý/@¬ÃÏ\(õÃ@¬ÃÆ$Ý/@¬Ã§_oÒ @¬ÃÆ$Ý/@¬Ãœ¬1&@¬ÃÆ$Ý/@¬Ã´9Xb@¬ÃÆ$Ý/@¬Ã¸†YJö@¬ÃÆ$Ý/@¬Ãª=p£×@9ò䎊@8ýÒñ©ûç@5 Ä›¥ã@4ü‘ÑN;Í@497KƧð@4+çl‹C–@2úÔ,<ží@2ù=Ùb·@2úÔ,<ží@2úÔ,<ží@2úÔ,<ží@2ð©*0V?¹hC%¿ï?¥­|¨Þ?›(`¥Æ´?› { xÄç?¡ãÑWÐö?¡{7]['?ªÝ8Ⱥ™J?¡ÿ}ö?˜“º£¹‡b?™MßïšNÆ?›™¬ï?¥Í " z?ºy„à‘?—E!Üý·'?›Ny”…?–¼ä1ZüŽ?–7Qûñ?¥VËMª¼‰@@@@@,@*?ð?ð?ð?ð?ð?ð?všn5Ò¿vDõM:?gøn[cN`?hÌ?ŠDM’@ª–D¦åô@¬Ã¶oãç"?{…“  ?€âV½?ÑÇÃß¿§|?Þ Àƒˆ@Ÿoxƒð|‹@¥@£Ì>vÈ´9Á.„€@£Ì>vÈ´9Á.„€@£Ì>vÈ´9Á.„€@£Ì>vÈ´9Á.„€@£Ì>vÈ´9Á.„€@£Ì>vÈ´9Á.„€@“±¦éxÔþÁ.„€@“±¦éxÔþÁ.„€@“±¦éxÔþÁ.„€@“±¦éxÔþÁ.„€@“±¦éxÔþÁ.„€@“±¦éxÔþÁ.„€@7ÖšÔ,<ŸÁ.„>¤µÜÆ@5 Iº^5Á.„M‰ûçm@4A‰7KÇÁ.„QnÙ‡@4!:’£SÁ.„NÜC,¥@4!:’£SÁ.„NÜC,¥@4!:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¦@¤NÙ‡+@¤NÙ‡+@¤NÙ‡+@¤NÙ‡*@¤NÙ‡+@¤OhÛŒ@¤NÙ‡+@¤Lô!-@¤NÙ‡+@¤LIº^5@¤NÙ‡+@¤LÌÌÌÌ@£ ° Ä›¦@£ ° Ä›¦@£ ° Ä›¦@£ ¯ „M@£ ° Ä›¦@£ °ØDÐ@£ ° Ä›¦@£ ¯O „M@£ ° Ä›¦@£ ®æ1ø¡@£ ° Ä›¦@£ ¯4Ö¡b@1‡>«6z@1‡RT`ªe@.®V“t@.¯²-W@.Œ1&éy@.5¨Xy>@-u¨Xy=Ú@-u%F -¦N@-u¨Xy=Ú@-vÈ´9X@-u¨Xy=Ú@-w1Ń?É^žQ5P‚?ûJ`ÕYð?‘@˜¯³¸?‹×lÇ…N9?‘çG¸?ß-tT?ÐbMçê_x?’4 "ëžØ?³2ºŽ'?Níú¾?üÓqÔNŠ?ˆ9²0?€g‹)ØêÀ?Œ²ÅŒÕ6?ƒM¬Öe—_?ƒƒQçÐ(?‡<û¡71?†Ü‘ °Ô@@@@@,@(?ð?ð?ð?ð?ð?ð¿ #À¿xáÃh?)%)òS¨?ÖÂ0¶èK@¤L¸5†g@£ ¯&ï Î?85 -TØ¿?.!76^?lR­¬Íç ?SŠÐlU X@Ÿsã“ã[@§@¦õã× -=q@¦õàA‰7L@¦õã× -=q@¦õÎV”@¦õã× -=q@¦õÉã¼@¦õã× -=q@¦õËC,¥@¦õã× -=q@¦õÊ™0¾@¦õã× -=q@¦õÁÿ.Hé@¦(õÂ@¦XbN@¦(õÂ@¦ Ä›¥ã@¦(õÂ@¦/·éù@¦(õÂ@¦ó¶E¢@¦(õÂ@¦ÌcñA@¦(õÂ@¦dZ­@7÷â‚@·€@7ôŽŠqÞj@3xr° Äœ@3o'»/ìW@3Ct¼j~ú@3*W§†Â&@2…œàu÷@2–»˜È@2…œàu÷@2~Ñ·Y@2…œàu÷@2}í(Œç?€‚ñêã ?£Äìµç¯?œI!S¨?’èÞ㬱_?ž)‚^°y?£‰I$4}?¢F^ì¼Sð?§±¬¯Ö~æ?©Óɰ?›‘Ûê\PK?•޼ÿ>#G?¡íÜ'Ln‹?¥×»xG–? î$£G?¡§~gN?ýÿJÔ{?¡FÍb2x?žµ½èq¨®@@@@@&@&?ð?ð?ð?ð?ð?ð¿zÄz?Dœ~Ò?L÷”ºžþ?ExäVLS™@¦õÎ4˜}a@¦…ó ª@”“Oß;dZ@”“Y.•Æ@”“Oß;dZ@”“Y÷òu’@”“Oß;dZ@”“[cî/@0įO „M@0ÄÉ…ðoi@/€A‰7KÆ@/d?›•@/&éxÔþ@/ Z¼P7@-æL/ƒ{K@-äq°ã@-æL/ƒ{K@-æUê˜6@-æL/ƒ{K@-èÚD!?É^ž-?ü#Ä×ÇÊ?‘ó™èû?Œ]¯Ľ?‘Å åš?´š"·Ù·?ÐbMÙï;Ó?’Y«FÑ£?º:q¬À?Í9GE…?ìÃÉÿ¹i?KäÆÀ?€b×Vï£?Œ·aéÝ?ƒiˆâ2?ƒ/»ñ¶[?‡Ú!ccC?†±KVPn@@(@*@,@@@8?ð?ð?ð?ð?ð?ð?OƲ×?@ÖYÞ?.+s3ú^?C÷©ð¤@ è‡øçÃE@”“ZmŠâ?=ˆakà -?-:¨)?t90ÝìÉ·?R¸ï¸BZ@ŸsÏ“w@©@¦Í Iº^@¦Íoj‹@¦Í Iº^@¦Ìì5C:/@¦Í Iº^@¦Ìögî½@¦Í Iº^@¦ÍH>ä@¦Í Iº^@¦Í¬Öæ@¦Í Iº^@¦Í!¼Æ@•kbMÒò@•j÷€\ç’@•kbMÒò@•k]þ·ã@•kbMÒò@•k œ{©@•kbMÒò@•kwývè@•kbMÒò@•k*Õè ¢@•kbMÒò@•k9š@9(†YJôñ@9);=­e^@4!hr° Ä@4 Èu\pÆ@3.ùÛ"Ðæ@3/8[ã_@2𖻘Çã@2óm !«×@2𖻘Çã@2öÿW6@2𖻘Çã@2ðywÇW?µ³h—†È¶?“t2«xÕ8?“€@m|xù?ñÊÇ/·?¡U‘·ÙÉË?œ1÷ïâá(? Ôøx¡9»?“ëÄA ¿S?“0–­}h-?’²ãˆn©,?Ÿej¡˜ó–?˜ÿ2 Ö2ê?…Üò•Št¤?‘ý£#LŽ?‘ `ÕÞÍ?Ž/©zˆ?òLšÄ—?—$òïñX³@@(@&@"@;@6?ð?ð?ð?ð?ð?ð?ˆ>@L± ?{Ú¢$U@?k•Lø÷Zß?A£Ë[ˆÙ¸@¦Í ÙçzT@•k 8…TÅ?|§ÿ$i?ZáÅrJ‹?ä(ÉafÙÃ?¢p€C¦:@ŸoXÚÔ»@ª@­¯Š=p£×@­¯Š=p£×@­¯Š=p£×@­¯ŠJŒN@­¯Š=p£×@­¯Š™0¾ @­¯Š=p£×@­¯Š³g ù@­¯Š=p£×@­¯‰­BÃÊ@­¯Š=p£×@­¯‰“ àÞ@«³@«³@«³@«²ÿË’:+@«³@«²ÿ¤?åÈ@«³@«³@N¥@«³@«²ÿò䎊@«³@«³ÞÒˆÏ@2™*0U2b@2™7KƧð@.ÂÐå`A‰@.¶®}Vm@-¯ß;dZ@-¯²-V@-½Vlô"@-¼àuöý!@-½Vlô"@-½IQ‚©’@-½Vlô"@-½!ÿ.Hé?É^žQ5P‚?êÚÏ$?‘šÕU#?‹Æ úJ-M?‘¿ÐÅu?ß-tT?ÐbMçê_x?’#maЀ?r¼Jsž?Y‡…—Ø?äú’?6²#šZQ@­¯Šs@«³¨·/µ?1GúÇ?Eyx"hM°?\Ó÷°ÐŽ?ƒûÓr{@ŸsVB@«@¬ÒÖ“u@¬ÒÖ“u@¬ÒÖ“u@¬Ò×1Å@¬ÒÖ“u@¬Ò×Xâe@¬ÒÖ“u@¬Ò×$tS@¬ÒÖ“u@¬ÒÔÖ¡aå@¬ÒÖ“u@¬ÒÔÉ…ðo@¦Îl‹C•@¦ÎlÌÌÌÍ@¦Îl‹C•@¦Îl²•éâ@¦Îl‹C•@¦ÎmV@¦Îl‹C•@¦Îlô!-@¦Îl‹C•@¦Îl¿±[W@¦Îl‹C•@¦ÎmquŽ@/!-w1@/!-w1@){"Ðå`A@){"Ðå`A@(S¶E¡ÊÁ@(SÃa@O@'¸7´¢3œ@'¸7´¢3œ@'¸7´¢3œ@'¸7´¢3œ@'¸7´¢3œ@'¸DЩ+?É^žQ5P‚?ÉGãA­÷?‘$Cê¡@í?‹²MÿAÿ8?îú/´`?·t¤¢‚J?ÐbV‡,?’ -‰¸Ì?¹º–Èj?3.Ylî?Ó%y*£=?J&d„?k?€b¡´ñ@?Œ¬Çëý ?‚oÁÆÜ§÷?‚ãaÎúvh?†‡hÉÈÓ?†ˆ#.÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿QŒ"°? õ9@?5Ãó=«Þ¶?{¹wÎ@¬ÒÕÁýÆ@¦Îlï**”?Dï:õ°H«?(­*«–j?…†ˆöÚ_Á?J½·È‡¸@Ÿs (È@¬@­&Š=p£×@­&dÝ/ @­&Š=p£×Á.„€@­&Š=p£×Á.„€@­&Š=p£×Á.„€@­&Š=p£×@­&ŠÀƒo@­&Š=p£×@­&’n—P@¯us3333@¯tô9Xc@¯us3333Á.„€@¯us3333Á.„€@¯us3333Á.„€@¯us3333@¯ut9Xb@¯us3333@¯uuÂ\)@8Âò䎊@8($ xG@3õãS÷ÎÙÁ.„M‰ûçm@3_²-VÁ.„QnÙ‡@2ëxFÜ^Á.„NÜC,¥@2ëxFÜ^@2îV“u@2ëxFÜ^@2ó{J#9Á?Ó–ÐÌlÏP@8#˜@8¾:@8 >+?ðŽºJ+½?ð‹Ið˜ ?ßž‚.ÂÓ­@8Î÷@8i§@8Å?ðÅìq?ð„‰p„Ã?ë4hÒâ§N@8 * @8p÷@8¶?ð?oÚ•¼?ð?oÚ•¼@?ð?ð?ð?ð?ðøøøøøøøøøøøø­@¡üOß;@¡üOß;@¡üOß;@¡ü_ö”@¡üOß;@¡ü€4mÆ@¡üOß;@¡ü}¿H@¡üOß;@¡üfÏAò@¡üOß;@¡üÂ\)@¦Ô­V@¦Ô­Oß;d@¦Ô­V@¦Ô¯Òòå@¦Ô­V@¦Ô¯AòÖ@¦Ô­V@¦Ô­í(Œæ@¦Ô­V@¦Ô­„M;@¦Ô­V@¦Ô®!–R½@5IÎ_oÒ@5IÛ"Ðå`@08r° Äœ@07ÈK]Ìd@.ÉxÔýó¶@.É*0U2b@,ܾߤ@@,Û¥ãS÷Î@,ܾߤ@@,ÚÔ,<ží@,ܾߤ@@,ÚáG®{?|¬Çëý ?Òç{íj?‘G¿yÛ?ï?‹×lÇ…N9?ÿ £‰¸9?ÔCXsñ?1·†Æjñ?’CòO…?‘kþE<%?]bËn~?ÔÒ@úˆ‘?hï,ðà?ƒ¡É^&Ö?ŒÂ§dß±?„ã¼ÓZ…ˆ?‚éXëLL÷?†ÃÛSPã?†ïRÉv‘Ñ@@@@@&@,?ð?ð?ð?ð?ð?ð¿5ίP?!ë\?/˜•/5T? 19”…@¡üñvéü@¦Ô­ A?O)ýªáÑâ?.ºƒh[©?ªÿ³AG?g0VÀƒm’@Ÿg;óøF˜@®@ª§ž5?|î@ª§¨´9X@ª§ž5?|î@ª§¶ý!ÿ-@ª§ž5?|î@ª§Ÿò䎊@ª§ž5?|î@ª§˜“t¼j@ª§ž5?|î@ª§Ž¤¨ÁU@ª§ž5?|î@ª§œC,¥z@§ê C•@§ê …¸R@§ê C•@§êmÅÖ9@§ê C•@§ê!–R½@§ê C•@§êT`ªe@§ê C•@§ê ^ž @§ê C•@§êñ©ûè@8ëµsê´@8àÞÒˆÎp@5#÷ÎÙ‡@5$!-w1@4¤¼j~ùÛ@4¨ -à @3Ê0U2a|@3ÉõY³Ð}@3Ê0U2a|@3ÖšÔ,<Ÿ@3Ê0U2a|@3Ò‚@·€5?гá‡}?°»¸ ßÛ?–¦r…û?ŽVåç0ÇO?šŒÐ&îèx?¢©LÚTk?¦NIÉ®š?¤„OW°ò?’˜l%F…Z?’ÁÛ/’:?š¹'¤Ò ? “EÅse?¨¦ï»xŒ?§âŒ$“ná?˜o\¾Z|?‡9 ƒ–’”?” 4‹eñ -?–Mí\{WÐ@@@@@$@&?ð?ð?ð?ð?ð?ð¿tÞ)ƒö?bà·@?Zç õL?bL¦Bò@ª§™;i@§ê¯ˆ<&?z÷~8Úu»?w,ÍF·>?è Z &2ª?ØuHl«–}@ŸlLð¦Ð©@¯@¥"(õÂ\@¥")xÔýô@¥"(õÂ\@¥"&ffff@¥"(õÂ\@¥"%¸Qì@¥"(õÂ\@¥"&¸ºÈ@¥"(õÂ\@¥"%o@¥"(õÂ\@¥"$¨ÁTÉ@®E¡ÊÀƒ@®E¸Qí@®E¡ÊÀƒ@®=ó¶E£@®E¡ÊÀƒ@®?Ë’:)@®E¡ÊÀƒ@®8ï4Ö¡@®E¡ÊÀƒ@®;˜Çâƒ@®E¡ÊÀƒ@®<£n/@3ð4mÅÖ8@3îå¦gCb@0@ Ä›¥ã@0@|„µÜÆ@/ØÔýó¶F@/ÚCþ\‘Ò@/ -#9Àëî@/ …ðoiE@/ -#9Àëî@/Ë’:*@/ -#9Àëî@/ ùrGF?|¬h2:“?¾‰máÚ?‘£Ä›è?Ô@R’?‘ŠR%¨(0?×°ë*–w?|Ñb×¶@?’7Îf¬ps?’±ä?‘aYZ†«q?‘–=û.e1?·t¤¢‚K?‚ÁQ(®U?Œèsq‡#?…I‘ÒÁ/À?†¤c·Ó—1?‡v>ª¸ ?‡2[síç@@@@@,@&?ð?ð?ð?ð?ð?ð¿Pù’q¶¿Rè®$?’ûE´.›?9æíLÛî@@¥"'8:°O@®?µås?0ºô‹C`h?Zm2ôI¤Â?l»ØïMóF?Áh;Iá¶Ï@Ÿfºû'±•@°@¨#Ïß;dZ@¨#Ù‡+@¨#Ïß;dZ@¨#Ø -á@¨#Ïß;dZ@¨#Ô¼j~û@¨#Ïß;dZ@¨#Ô`ªdÃ@¨#Ïß;dZ@¨#Ñ‚©“ @¨#Ïß;dZ@¨#ÒþÅm]@ª–ß;dZ@ª–£× -=@ª–ß;dZ@ª–¨è§ç@ª–ß;dZ@ª–›~ÿ—@ª–ß;dZ@ª–•µsê²@ª–ß;dZ@ª– [À7@ª–ß;dZ@ª–žƒä%¯@8šÔ,<Ÿ@8Åo@1k¥ãS÷Ï@1a×Ûô‡ü@0A‰7KÇ@0 Çy¦µ @.£¼ÓZ…ˆ@.–+jçÕg@.£¼ÓZ…ˆ@.•ÜÆ?@.£¼ÓZ…ˆ@.—süPI?°{QBãï?‘_¦X ë -?’©ßc«?Œ2ÌUÃT?’(æ„+Zk?’—ØPö«?«_$Øï†?¦ KBI?—+Áèlç?’„÷ò¸?Ÿé„ærrl?¦¤Wë'?•ë þÅ?i-ý-›…?ƒíÈm½!¿?…®×__C?‡æê7²zE?Œúq‘@@@@@*@*?ð?ð?ð?ð?ð?ð¿P;ì½¶?nкû?DÏ2Ne÷?Uú”˜ üy@¨#Ó˜™l@ª–™|U›6?V£öù!¹ ?jÌJ‰ª*µ?¥·ú3*?¾ºñÔûáQ@Ÿo–ÕzåY@±@¯ÈéxÔýô@¯ÈèõÂ\@¯ÈéxÔýô@¯Èë I»@¯ÈéxÔýô@¯Èê Þ@¯ÈéxÔýô@¯Èë¬q ²@¯ÈéxÔýô@¯ÈèË’;@¯ÈéxÔýô@¯ÈèŒç°@­Tñ©ûçm@­Tñë…¸@­Tñ©ûçm@­Tò•éá±@­Tñ©ûçm@­Tñ[W>¬@­Tñ©ûçm@­Tò-V@­Tñ©ûçm@­Tòñ©ûæ@­Tñ©ûçm@­TòGE8ï@2Ô xFÜ@2Ô¼¤@0k¥ãS÷Î@0kÓÃa@@0M²-V@0MÌcñA @.æL/ƒ{K@.æ€IQƒ@.æL/ƒ{K@.æ -¦L/„@.æL/ƒ{K@.æ§ï²-?É^òÀXæN?õ¹Ëh?‘WßÈDö@?‹¬àÌ’Ç?ÿ £‰¸9?ô Î]V?ÐbV‡,?’5CàQ?‘twæ³?-õI¸`K?çêÑHcÇ?{L Õ¢D?€e@ˆ’„'?ŒÆò/¢äÍ?ƒmÕ+&¬Š?‚æÊ¬vã?†žóB» “?†¼Š˜L¥÷@@@@@*@*?ð?ð?ð?ð?ð?ð¿W[sêD?Â"§°?@#Ÿ›~Ì?/°û‰¹¢@¯ÈéÍ{o@­TòréÏ?NíñÏB­Ö?=þ™õ#eŠ?—A¤qWî?s“Ç+è@Ÿrý£ñøo@²@¬8âMÒñªÁ.„€@¬8âMÒñª@¬8ðX°±7@¬8âMÒñª@¬8ø¯„@¬8âMÒñª@¬8î}¥@¬8âMÒñª@¬8êgqŸU@¬8âMÒñª@¬8ç~êé@•#På`A‰Á.„€@•#På`A‰@•#J¶æ§x@•#På`A‰@•#Fn‘ê@•#På`A‰@•#6 -&÷9@•#På`A‰@•#4f~+@•#På`A‰@•#/aOÿ @9#g ù lÁ.„>¤µÜÆ@4.5?|í‘@41p@3¹7KƧð@3µ˜)k@3‚@·€5@3€b‘SC@3‚@·€5@3N0óöô@3‚@·€5@30Í©@8J¨?‘݇CD&?ÄšFË ç?‘´7ã@ô?’И©ZŽN?“*qh!–@8J¨?’3jR6Þà?—¾b8[.Þ?°vb'Þ?“SÉ)½z?”¿”@8p÷?’;”Ä>p?’mýݹæ?‰/Æ6 4?– ³G+?Ònëĸ@$@*@,@;@9?ð?ð?ð?ð?ðøøøøøøøøøøøø³@©CÒñ©ü@©CŒ1&é@©CÒñ©ü@©CŽ}Vlô@©CÒñ©ü@©CAò×@©CÒñ©ü@©CŽŠqÞj@©CÒñ©ü@©C‰“ àÞ@©CÒñ©ü@©C‹C,¥@©Së…¸R@©SëC•@©Së…¸R@©SîóMj@©Së…¸R@©SóMj@©Së…¸R@©SñÞi­C@©Së…¸R@©Só&Á¾@©Së…¸R@©SñuŽ!–@7^Hè§æ@7`bMÒñª@2ðÄ›¥ãT@2í‘hr° @1—ï²-@1–“t¼@1?ò䎊r@1=Òñ©ûè@1?ò䎊r@1=¿HË“@1?ò䎊r@1=í(Œç?˜ž^ƒÿ*ˆ?Žd±Ìº?‘ñê&ètä?ŽVåç0ÇO?’dÓÙiº?‘îƒÔ1a?–ªÎ­¡?•²»UbB3?’$ûJw"Ú?’ü#q\-v?‘êë·áþA?’?;Áƒè?†Æ‹™þ?iT£C~t?…~ÆÎÇ$‡?…2 Ôî½?‡×7°º?ˆ©{2¡Î@@@@@,@,?ð?ð?ð?ð?ð?ð¿Bd‚(€?UÅôûš?JˆHä]Dð?DñÑpº@©CŒ,ë| -@©SðÈÃ!Z?dNKLŠ¢¦?a…S*%›?úõJ·È„?ºBÌŒ Î@ŸmÏ4V@´@ äu?|í‘@ äxOÊáÐ@ äu?|í‘@ ähQ]@ äu?|í‘@ ä_Á +™@ äu?|í‘@ ätVü¢@ äu?|í‘@ är†¼ìl@ äu?|í‘@ äxôXÉ©@­ˆ“÷ÎÙ@­ˆ‡®zà@­ˆ“÷ÎÙ@­ˆ¢ðjƒ@­ˆ“÷ÎÙ@­ˆ¥h”@­ˆ“÷ÎÙ@­ˆÚ¯âË@­ˆ“÷ÎÙ@­ˆ“ ”¥W@­ˆ“÷ÎÙ@­ˆ’õ»DŸ@9(†YJôñ@9 Á>0!X@4Š^5?|í@4|NÆ@3v§ï²-@3n„ˆÅ¦¶@33&Á½¥@3*)ª™ Ÿ@33&Á½¥@3%¥ÊK@33&Á½¥@3#Þ~*GÇ?”>¢¿,À@?”¾¨R{ä°?—åLôÕ?‘`m޼ÿ?• i¸È?–èÑrÐ7?‡‡á´WÉ?–¨!ãmþ~?“0à"Ì?’RGçÏl€?”JGY$Ãl?“çË,–s?¼P–5¯¶s?šœ…(êÁÒ?ŒtqNæŒ;?:åùkÔÀ?˜¾[%©à?®öÖ¢.@@$@&@&@4@5?ð?ð?ð?ð?ð?ð¿6í`%ð?`ßJøÈ?P`Ÿñµ?`ÃI]º¤ @ äuÚ¥ö=@­ˆ‹oœ¯?l^©‹@ºž?ËŸ9ôå?Ð-~À:T@lp Â;ü@ŸkêÚæ@µ@¨TzáG®@¨S÷ÎÙ@¨TzáG®@¨V4ê@¨TzáG®@¨Vðº@¨TzáG®@¨[¥ãSù@¨TzáG®@¨YŒ~($@¨TzáG®@¨;=ÈK@®¤`Ä›¥ã@®¤`A‰7M@®¤`Ä›¥ã@®¤VâëC@®¤`Ä›¥ã@®¤[šv@®¤`Ä›¥ã@®¤SMj@®¤`Ä›¥ã@®¤]Vlô@®¤`Ä›¥ã@®¤6®}Vm@5wâ‚@·€@5vµ '»@2T›¥ãSø@2PØDЩ@26§ï²-@21Þi­BÄ@1zÔ,<ží@1v»˜Çâ‚@1zÔ,<ží@1w€4mÅ×@1zÔ,<ží@1_—$tS?}Ñ¿ž,?–âFpë3?™_*®k?‘£ºáõÑ?•BPbC¡©?ž»‚>äÚ>?€‚ñêã ?˜I­}ý½Ä?™”uÀdª?“{¡7¨Üò?’êJ>áý?¢¢@ ~?‚‘´…=Ca?à í¡h„?† - Ðló]?ˆx»€ñö2?ŒÙ”!Çx‡?•mCìc¿4@@@@@ @?ð?ð?ð?ð?ð?ð¿:ÃZ½X¿lŽÀùË?eè1Aüýž?e¾(]ðPÌ@¨T-–s@®¤YØJ't?ƒØ 4Û¸?ƒºê©7.š@ EIý†§@ -!3 k°F@Ÿd„”̯Ï@¶@ Ÿ¾vÉ@ ãR5~{@ Ÿ¾vÉÁ.„€@ Ÿ¾vÉÁ.„€@ Ÿ¾vÉÁ.„€@ Ÿ¾vÉÁ.„€@ Ÿ¾vÉÁ.„€@¢?ÚŸ¾vÉ@¢?ýÐ ¢,@¢?ÚŸ¾vÉÁ.„€@¢?ÚŸ¾vÉÁ.„€@¢?ÚŸ¾vÉÁ.„€@¢?ÚŸ¾vÉÁ.„€@¢?ÚŸ¾vÉÁ.„€@9^Hè§ç@9`^ùcc‡@4n5?|í‘Á.„M‰ûçm@3×ï²-Á.„QnÙ‡@2ÿò䎊rÁ.„NÜC,¥@2ÿò䎊rÁ.„NÜC,¥@2ÿò䎊rÁ.„NÜC,¥?»)¢||n@8#˜@8¾:@8 >+@8Iç@8Ù?¿¢ši.&@8Î÷@8i§@8Å@8S@8û—?¶móEKT@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø·@ŸG‘hr°!@ŸGŽÙ‡+@ŸG‘hr°!@ŸG’K«c@ŸG‘hr°!@ŸG“\_y8@ŸG‘hr°!@ŸGN‰'Ò@ŸG‘hr°!@ŸG‰ýF¿ß@ŸG‘hr°!@ŸGˆ²E@¢4m‘hr°@¢4n}ú@¢4m‘hr°@¢4nËû¶@¢4m‘hr°@¢4pù kº@¢4m‘hr°@¢4met@¢4m‘hr°@¢4n\‘ÑN@¢4m‘hr°@¢4nCË6)@5µS&Á¾@5”¹£îz@1^Ù‡+@1^0Èí#b@0È“t¼j@0Ǻ—<@08DЩ*@07Ç$›AÈ@08DЩ*@06¢-Egå@08DЩ*@07 -Õ xÖ?|Ñb×¶@?×Ý¢t’'?‘[È4òÊ?‹ï Æ?‘00‡Ÿ?ýÐýsC?e™”XWø?’ Ö]…â?ǧ5u°?U&¢>/¥?‘Kf¸@í?¨K t ?ƒ]nx¤µÜÆ@4{ Iº^Á.„M‰ûçm@3y7KƧðÁ.„QnÙ‡@2ãÉîËûÁ.„NÜC,¥@2ãÉîËûÁ.„NÜC,¥@2ãÉîËûÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø¹@¤¥ë…¸@¤¥ Òñ©û@¤¥ë…¸@¤¥PS @¤¥ë…¸@¤¥!UŽÃÝ@¤¥ë…¸@¤¥óž»@¤¥ë…¸@¤¥ ªe"@¤¥ë…¸@¤¥xàs @“Ðî—Oß@“ÐîCªy¼@“Ðî—Oß@“Ñ(úè ý@“Ðî—Oß@“ÐôÆßO¹@“Ðî—Oß@“Ðü#Ø·@“Ðî—Oß@“Ðô—.÷¥@“Ðî—Oß@“ÐðpÒÅ@7šÔ,<Ÿ@7*¢¤ Ì@3?|í‘h@3J“â@2b-V@2Z/á>ÇË@1î_oÒ @1é騥¦@1î_oÒ @1äé(p½L@1î_oÒ @1æLR>±¨?Ĺó¥p?Ì -…"ˆÔ?’@»ó>¯é?†úâ™Ú?–Ú ØžÙ?’gà=aù?~Ov_Ø­«?’$•œa?‘ß<å1Iñ?1ÊGe»|?˜µ[ÄŽ™þ?•Bü5„1r?Ÿéd¡GE?Á&Ÿ>G?‘!+Üä?ƒ:šœœÙâ?ŽûJr ¦7?ŽüÇßéy@@@ @@5@5?ð?ð?ð?ð?ð?ð?P½:("?K]>¯V?XQ«î?™?Jý}w½r@¤¥ uÎ=@“ÐóM£ì€?u×[By1Ò?m‰1-M‘?è´UábS?Úy‹ðÈÿB@Ÿi‚á~6@º@«L/²-@«L-Òñ©ü@«L/²-@«L1œàu÷@«L/²-@«L0U2a|@«L/²-@«L3¶E¡Ë@«L/²-@«L/–»™@«L/²-@«L/ùrGE@§…¸Qì@§Ž—OÞ@§…¸Qì@§‡RT`ª@§…¸Qì@§‡»/ìW@§…¸Qì@§‰^ž @§…¸Qì@§…`A‰7@§…¸Qì@§‡ÈK]Ì@7Ô xFÜ@7Óg ù l@3+ Iº@3Éã¼@2“t¼j@2 ÞÑ·@1a:’£S@1`-à r@1a:’£S@1_¾vÈ´9@1a:’£S@1_ìVÕÏ«?š•§q!U?’ Œ#Çî«?’Gßk;m?Ça_b‹?’yÊêºq?âé¨ë7F?‡YÍ_?”ÇtæMPÐ?‘ïɇ}~?’_3Í\Æ?’$) ‘?“IëH!w?ôê÷º»â?Ž»žä4?ŒR‹w#{?„l¯¸‰ŒÎ?‡gϵ’õ?‹ ˜1 D@@@@@@,@(?ð?ð?ð?ð?ð?ð¿ku¿\¤j?P‚i¹û±?<éþ{·"&@«L1ps4@§‰+ã[ ?hë½Ü $‰?_2¶ð’[½?Í6*ÓÎ?º±=[Ex@Ÿm7ƒœ@»@¦¬“t¼j@¦¬3333@¦¬“t¼j@¦¬ ƒn™@¦¬“t¼j@¦¬(õÂ@¦¬“t¼j@¦¬ƒä%¯@¦¬“t¼j@¦¬&$Ý/@¦¬“t¼j@¦¬+ûµt@¢Ç¯²-@¢Ç½ó¶E¢@¢Ç¯²-@¢Ç«¬q ³@¢Ç¯²-@¢Ç¬"h Õ@¢Ç¯²-@¢Ç¥m\ú­@¢Ç¯²-@¢Çš¹õY´@¢Ç¯²-@¢ÇŸHË’@8Ñ|ÚQ@8È­«ŸU›@4Lí‘hr°@4J…‡“ݘ@3€å`A‰7@3Ø­«ŸV@3B‚@·€5@36 -¦L/„@3B‚@·€5@3EðoiDh@3B‚@·€5@3Esê³g¡?|öOÿÝ?‘_¦X ë -?—¯}_ƒÜ»?›"Jª]u?—åaÿ0Ð?¥sú·–Á[?Ÿ‹‘+-/Ü?’CòO…?“’OÕƒõ‘?¢"|ÐOV?™³¤Áa5?¥å`Åðu3?´Ã»™Ö ?–¡aä÷eþ?‘!´ö‚?’ª=˜Å?™ì ª# Ù? hvÅÜk@@@@@&@,?ð?ð?ð?ð?ð?ð?sƒ×ã¿p+É"€?(ÒÔù“s?ZÀYmMg@¦¬l]„^@¢Ç¨fŠc??MJjMP|?w§è|a}d?ˆó˜õ¦?ÐÊ@‚/¦@Ÿj Ø1ñ[@¼@ªÅ@ªÄù™™™š@ªÅ@ªÅ ÞÒˆÎ@ªÅ@ªÅbMÒò@ªÅ@ªÅe+ÓÃ@ªÅ@ªÅã¼Ó@ªÅ@ªÅ"e+Ô@ æÉ7Kƨ@ æÎV“@ æÉ7Kƨ@ æ‹C,¥@ æÉ7Kƨ@ æ•Â\)@ æÉ7Kƨ@ æwKƧï@ æÉ7Kƨ@ ævR½<7@ æÉ7Kƨ@ ælÌÌÌÍ@8wâ‚@·€@8l1&éy@4 í‘hr°@3ßoÒòä@3_²-V@35¸Që…@3 ¿±[W?@2Ñ-w1Å@3 ¿±[W?@2Љ 'RT@3 ¿±[W?@2Ñ‚©“ á?¬c°Åxt?¤eÄ…àÖ‚?Ÿ7'»ˆv?¥__z8Ž`?¨eTm5[]?¬Jà"ÃFr?¹©¢þµ|õ?¨î+³M?ªÊÏËùô?°.OŠcÉ?¶|ùŒg?¾T+)¶ª?…™ï ufÝ?”XÁyÁ´š¬1@¨>ŸF=E@@¨>š¬1@¨>ºÉ@=@¨>š¬1@¨>›Ô»¾@¨>š¬1@¨>­ÁéÁ9@¨>š¬1@¨>¶_­þÉ@¨>š¬1@¨>¬NÄ|@˜&dZ¬@˜&BÑ®K%@˜&dZ¬@˜&’Pþ@˜&dZ¬@˜&™òñU@˜&dZ¬@˜& êHÍ@˜&dZ¬@˜&¶;°·°@˜&dZ¬@˜&œ›ö-@8òÃÉîËû@9˜orX@3î5?|í‘@3ÚZîcŠ@2éÛ"Ðå`@2ØÏD­@2£ÉîËû@2ŠSsFÿ -@2£ÉîËû@2†X r Í@2£ÉîËû@2…À¶ÀNö?†c£ïDì?°òè$nba?•ÂÁm´Bñ?§ö„$~q?«QeÄ,•?¤uhÒ¨ìÏ?®p¹EkIõ?¨ª{9JgD? ·W)²Be?²– ’Äc¢?¯ÙíÒ ?°4Fò§:?°½ |ȶ?’…û: æ?‡ôæ‰[?ŒÑìZ£%¢?‹Û•Ý“ý?b$QߤA@@*@&@*@;@8?ð?ð?ð?ð?ð?ð?nh -2?…ÍehW ?R~| -hÄ?pïA:Oó@¨>©­rÓ@˜&ˆ??w;-´²™?Žg×n„ô?ÉÛâL©Ìæ?ÛæÜW'Æ@ŸkÖëþc@¾@£šyÛ"Ðå@£š½/Ÿ¾@£šyÛ"Ðå@£šxFÜ]@£šyÛ"Ðå@£šyb¶®@£šyÛ"Ðå@£š|‘ÑN<@£šyÛ"Ðå@£šz–¼@£šyÛ"Ðå@£švR½<5@§»àA‰7L@§¼^5?~@§»àA‰7L@§»ãñA \@§»àA‰7L@§»âëC,@§»àA‰7L@§»âø7´¢@§»àA‰7L@§»Ûšv@§»àA‰7L@§»à'RTa@9?–»˜È@8œ²•éá°@3õãS÷ÎÙ@3ý!ÿ.Hè@2Õ`A‰7L@2ÚîcŠ @2B‚@·€5@2E%F -¦L@2B‚@·€5@2GeýŠÚº@2B‚@·€5@2F¸ºÇ?Ô­FLgŽ4?Kb½™×?“‡ƒ×¤?’~ò™rV?•Qð^ûF?’j•×›b?£G± *Ç‚?“Öæ…0Âû?š }Õ>_?—°Ó&v'ç?–%¥ê3–?•lÓªü<?ñLÆ´G¤?“Ø/‰ #?6´×–±?‹µ¼a?ˆk! ¨l?Œ¸ðËb@@@@@*@&?ð?ð?ð?ð?ð?ð¿h «òˆ€¿„¿ ¡ÌÀ?Vïn(I›®?s¯˜@£šyêÇ2¢@§»âáÍí¤?f2Š“‘/? ]¹3É?¿æšO”³×@ýÉti;¬@ŸsN%`EE@¿@®r‘ë…¸@®r‡®zá@®r‘ë…¸@®r‰7Kƨ@®r‘ë…¸@®r•%F -¥@®r‘ë…¸@®r¾ í*@®r‘ë…¸@®rˆÛ‹¬p@®r‘ë…¸@®rŠ™0¾@ E Ä›¥ã@ E¡G®{@ E Ä›¥ã@ Eœ¹#¢@ E Ä›¥ã@ E¤2ÊW¨@ E Ä›¥ã@ Eš^5?}@ E Ä›¥ã@ Ežƒä%¯@ E Ä›¥ã@ E™=Ùc@8+µsê´@81hr° Ä@3ã÷ÎÙ‡@3ßb¶®}V@3lj~ùÛ#@3fÁ½¥@2kxFÜ^@2ffffff@2kxFÜ^@2he”¯O@2kxFÜ^@2hy=Ùc?ð°–Ž]?‘" Á°–•?’ -·>á ?ŒÇQ´ë…¸R@ž>õÂ\)@ž>ë…¸RÁ.„€@ž>ë…¸RÁ.„€@ž>ë…¸RÁ.„€@ž>ë…¸RÁ.„€@ž>ë…¸RÁ.„€@6£g ù l@6¥¸Që…@3|í‘hrÁ.„M‰ûçm@2¬j~ùÛ#Á.„QnÙ‡@1¸DЩ*Á.„NÜC,¥@1¸DЩ*Á.„NÜC,¥@1¸DЩ*Á.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÁ@¡+ܬ1'@¡+ñbÂa@¡+ܬ1'@¡+«tŠH@¡+ܬ1'@¡+ðþ­-@¡+ܬ1'@¡+!u/@¡+ܬ1'@¡+“xEú—@¡+ܬ1'@¡+«]ú¬!@¡#…¸Qì@¡#´Ø%e˜@¡#…¸Qì@¡#ôTg@¡#…¸Qì@¡#ᒖË@¡#…¸Qì@¡$‰Ø·@¡#…¸Qì@¡#²àcƒ@¡#…¸Qì@¡#ÇðœÏ @8Ù*0U2b@8ª›3›þ»@4)‡+ @3ÌUéªÛ@3²-V@3"œ™ðÇs@2µµsê³h@2f„ä+e@2µµsê³h@2y{“¶2@2µµsê³h@2z)$ä? ý+úª?”Xføö[?ž}q㉽a?‘å-ví<?š•«ú'ݘ?“ -U[?¥¢É?˜#P€•5a?¨ÅJÇõ?“ “p®<Ú?îCJÄ?’í¯ )&ü?Š{×§EG?š­(g³`B?ª¨ 7¹Ü9?ˆT¨VX¶W?“…‹×[Çh?˜* ô;•@@ @"@@.@"?ð?ð?ð?ð?ð?ð¿±(¾W@?`ïŽbÏ?ˆá¶Ä{1`?Œ¯¦ÞçTý@¡+¦Ó³®a@¡#ÍUíÎÇ?¢Í£€§Ç?«¤Y¯âÏ@65bÝ]þ@S‘Ï#´@Ÿmè0”þÓ@Â@§§záG®@§§{¥ãSø@§§záG®@§§zÔ,<Ÿ@§§záG®@§§z^5?}@§§záG®@§§záG®@§§záG®@§§z–½@§§záG®@§§z¬Ùè>@¡fŸQì@¡fÇï²-@¡fŸQì@¡fÆ1ø @¡fŸQì@¡fÄÂø7¶@¡fŸQì@¡fÄ›¥ãT@¡fŸQì@¡fÄ?åÉ@¡fŸQì@¡fÄ÷eý‹@5uS&Á¾@5vR½<6@1O|í‘hr@1NùÛ"Ðå@0•`A‰7L@0•¸Që…@/ÑÑN;Í6@/Ñ4êJ@/ÑÑN;Í6@/ÑuŽ!–S@/ÑÑN;Í6@/ÑÞi­BÄ?|öOÿÝ?Qdöÿô¼?‘K]Ã4?Œ'õ‚$5ñ?‘ ·èf?×°ë*–w?1·†Æjñ?’HGªÂÛ^?üÓqÔN‰?iêhAÜ?ß’ºèh!?oÌ‘'ýT?„ü›ðÓ?2ô]7?‚§W®ê ?ƒE 8?†µ°jÆÃ?†Ü‘ °Ô@@@@@$@(?ð?ð?ð?ð?ð?ð¿1ç°"¿II½ÿ?®íLCÛg?+çCÆ8°@@§§{Б@¡fƈýæ?4À’» T?L{€:­*Â?vØ>ˆ8øÚ?£ØË ¸@Ÿg@Ü)!T@Ã@¢Â`A‰7L@¢Â`ƒn™@¢Â`A‰7L@¢Âa×Ûôˆ@¢Â`A‰7L@¢Âa£n.²@¢Â`A‰7L@¢Âa|ÚQ@¢Â`A‰7L@¢Â` qv@¢Â`A‰7L@¢Â`ÞÒˆÎ@¨1ò-V@¨1ó3333@¨1ò-V@¨1ò䎊r@¨1ò-V@¨1ó àÞÓ@¨1ò-V@¨1óÝ—ö*@¨1ò-V@¨1òÊW§ˆ@¨1ò-V@¨1òT`ªe@6Hè§æ@6„M:’@1 Iº^5@1aä÷eþ@0y7KƧð@0xÎp:û~@.p‰ 'RU@.oÅo@.p‰ 'RU@.ov_Ø­¬@.p‰ 'RU@.oÅo?|öOÿÝ?õ¹Ëh?‘"žæÆó¡?‹½XQê>æ?‘¿ÐÅu?À­Õß}º?…ÅBðrç?’HGªÂÛ^?ŽËÜ¿€?UÕh;·Å?õ<úU?e¾DQ„Q?Œznyž-g?Œáò¯ž¼ù?‚ÂÌ]æ?ƒ ?ÿ½?†©b/bJö?†¯Mž684@@@@@,@$?ð?ð?ð?ð?ð?ð?õáN€¿ á²?P?#ƒ¼(´?#P—µ9®@¢Â`¸°¨ª@¨1óÔ£?DKE•Ð-?CRqE} !?”l-LÅ?Œð•Lo@Ÿh¹-æ9@Ä@ ’øÔýó¶@ ’ùCæ)è@ ’øÔýó¶@ ’üî¾q«@ ’øÔýó¶@ ’õÑqž@ ’øÔýó¶@ ’øE¯Hu@ ’øÔýó¶@ ’Û,ç1Ü@ ’øÔýó¶@ ’ᆸ>•@¡½p£× -@¡¾BZîd@¡½p£× -@¡½ó¢Æ¬@¡½p£× -@¡ÈkŒc@¡½p£× -@¡ðM©%@¡½p£× -@¡Ûd'k0@¡½p£× -@¡ßgûPw@5m¥œàv@5m,Ç -@1áhr° Ä@1ÊÑlš @0ûƧï²@0òi0X•'@0õµsê³h@0ÚárJ@0õµsê³h@0Úfy½T@0õµsê³h@0Ø1#%H?}x—™¼:@£¯²-@£°ÎÏ(@£¯²-@£¯ ”_@£¯²-@£¯ŒÄ@£¯²-@£¯>뽕@•õÂ\)@•õÂ\)@•õÂ\)@•õÀ4"_@•õÂ\)@•ö±»C@•õÂ\)@•ô¾Y¸@•õÂ\)@•ö‡¶_@•õÂ\)@•õè/´q@0|ÚQ@0|ÚQ@)=²-V@)>Jüµ@) 1&éy@) ™Bö¬@'Ǔݗö,@'ÇʤÐRø@'Ǔݗö,@'È0ÌÕ>±@'Ǔݗö,@'È?»õN?É^ž6õP?ų6¨¹?‘ YƒÓ`?‹¦ à:?è³/ï†?¶‚µxÅ?ÐbMÝn½?’²ÖxÉ?†t0^[?-õ(ƒ½?Ñ_$^Þ?N@™ˆ£?€bwÄ' g?Œ­ÛÊ™· ?‚zŽbœ¡½?‚ç¬V–…‰?†Žÿ󰉋?†y €¤Y@@(@,@$@;@:?ð?ð?ð?ð?ð?ð¿(ÏŠÓ(?1›:Èþ?“ºVÆ|ø?)rû{A@£¯YÁM”@•õ¥f˜¡?+zÃZQ'?8?WÉx¼$?H쮽âøÐ?B~)ß›ì@¥Œ"®˜Ž@¯©V–H?bÝÃØ„f)?gm="å[?¼æÏÚZl?ÑrdÉàüJ@Ÿm¼»9X¬@Ç@®€ß¾vÈ´@®€ÞvÈ´9@®€ß¾vÈ´@®€à-à @®€ß¾vÈ´@®€á$Ý/@®€ß¾vÈ´@®€à-à @®€ß¾vÈ´@®€Þÿ—$@®€ß¾vÈ´@®€ÞvÈ´9@­£9Û"Ðå@­£9Û"Ðå@­£9Û"Ðå@­£:áG®@­£9Û"Ðå@­£:^5?|@­£9Û"Ðå@­£:)Çy¨@­£9Û"Ðå@­£:xl"h@­£9Û"Ðå@­£:6âë@4Ô xFÜ@4Ñä÷eý‹@/Üj~ùÛ"@/Û~ÿ—$@.N—Oß;@.NV“v@-QÑN;Í6@-Qø -ß@-QÑN;Í6@-QÑN;Í5@-QÑN;Í6@-Q‚©“ á?žˆ2}?ZÁ».œ?‘4!Ÿ•p’?‹ª½¨ª8v?ðÌÇßgé?Êëüâi{?€‚ñêã ?’4 "ëžØ?†[‘'Í?/ò×ÈZø?â2„&ÿh?sxÙ/T?‚nâwfÿ?Œ».êxóÚ?‚q6tNø7?‚éXëLL÷?†špk Y?†špk Y@@@@@(@*?ð?ð?ð?ð?ð?ð?_Gz€?ê+­À?3_û['?ÑŠ±Ÿ:H@®€Þø„‰@­£:¢G¶?S>>ÜØ u?"b³äÇù?±P!>Ý‹I?O‘ÙY -@Ÿh,Ùl,²@È@¦ôD“t¼@¦ôDZ¬@¦ôD“t¼@¦ôDÂø7µ@¦ôD“t¼@¦ôDÝ/ @¦ôD“t¼@¦ôE‡“ݘ@¦ôD“t¼@¦ôC9Àëî@¦ôD“t¼@¦ôC¯·é@ªpô¼j~ú@ªpô¼j~ú@ªpô¼j~ú@ªpõ2a|@ªpô¼j~ú@ªpô¢3œ@ªpô¼j~ú@ªpô¢3œ@ªpô¼j~ú@ªpóg ù @ªpô¼j~ú@ªpóÝ—ö,@204mÅÖ8@20A‰7KÆ@/žùÛ"Ðå@/Ÿö”Fs@.¯ß;dZ@.®Ù‡+@.3üPH@.1hr° Æ@.3üPH@.-úCþ\’@.3üPH@.-žƒä%¯?É^³Dw'?äm°û0Ž?‘.Ò®ó_ ?‹ÑqÔ@vÿ?‘¿ -Óñ›?‘‚ÊŸû©?ÐbMçê_x?’)£µ“[+@8Iç@8Ù?Š÷iž$@8Î÷@8i§@8Å@8S@8û—?« ¡½ÄðJ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøË@ª+…¸R@ª33333@ª+…¸R@ª4¼@ª+…¸R@ª9XbN@ª+…¸R@ª`hÛ‹­@ª+…¸R@ª–lô"@ª+…¸R@ªvR½<6@¡ÖX“t¼j@¡ÖV‡+ @¡ÖX“t¼j@¡Öi 'RT@¡ÖX“t¼j@¡ÖPå`A‰@¡ÖX“t¼j@¡Ög†Â&@¡ÖX“t¼j@¡ÖLÙè>C@¡ÖX“t¼j@¡ÖCŠ @7ëµsê´@7é^žš@5sS÷ÎÙ@5sn.±Ä2@4ù7KƧð@4÷¯·é@4¸DЩ*@4ª³g ù -@4¸DЩ*@4¶lô!.@4¸DЩ*@4­5¨Xy>?}Ñ¿ž,?’‚€‡d_s?”^RžpX?­×‡·lôg?ÊI]mû­B?½:7{ë*J?—¤o„C?’{cü€øõ?低NëU?¬]~ɺ¶@?¯¦>5¬‡?³º{$Õ@?¤WÙAâèå?™Uîœsú?©¼wX¬?§¸'ôÔD[?§R†Í?§8©$ -"º@@@@@*@*?ð?ð?ð?ð?ð?ð? H¼c@¿X—JL?b´½ôÀË?jïdÓx@ªHË„@¡ÖUÿü¯ð?xNæX(&?†Á3ƒHò’?Å…p’øç•?ä4Kð?Ùü@Ÿ`QlüÙ;@Ì@£]3¶E¡ËÁ.„€@£]3¶E¡ËÁ.„€@£]3¶E¡ËÁ.„€@£]3¶E¡ËÁ.„€@£]3¶E¡ËÁ.„€@£]3¶E¡ËÁ.„€@¬>0£× -=Á.„€@¬>0£× -=Á.„€@¬>0£× -=Á.„€@¬>0£× -=Á.„€@¬>0£× -=Á.„€@¬>0£× -=Á.„€@9=:’£Á.„>¤µÜÆ@4œIº^5?Á.„M‰ûçm@3~V“uÁ.„QnÙ‡@3._oÒ Á.„NÜC,¥@3._oÒ Á.„NÜC,¥@3._oÒ Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÍ@©èØbMÓ@©èØQë… @©èØbMÓ@©èØÆäÍø@©èØbMÓ@©è×ÚÅ=Ò@©èØbMÓ@©èØ~çÆ@©èØbMÓ@©è×ÿû£u@©èØbMÓ@©èØÅ†@“+ J@“,NE%@“+ J@“ÍiG@“+ J@“2ÈÙŠ@“+ J@“ö”Fs@“+ J@“4R!@“+ J@“d. @204mÅÖ8@20FÇd®@.Çï²-@.È>BZîc@-›dZ¬@-›Và·e\@.­úCþ\’@.®Xsœ–@.­úCþ\’@.­ì*Ÿýó@.­úCþ\’@.­ã,Ù¢´?É^¨¯Âj?ÅÁè]9?‘"žÉQJé?‹ÇÁBÙù*?üYY%?ÍÊ/z?ÐbMçµ7§?’Ï9þn?„=¾ý,D?4ái¶Ù?ÜÜv©¢ -?\Ÿ¨ð :?€b™Qž?Œ¬7c‹­Ï?‚~ƒ”@\?‚ë•ä™ Š?†‘"‘Fùá?†ßÁL“å@@"@"@&@6@5?ð?ð?ð?ð?ð?ð¿'¼üÈè¿5sæ]ø?6Éúê€?|\·Ãt—@©èØ<Öô—@“`€´R?'HJ´+b?%Hínì?JnðÃGˆ ?CÎÙüYt@Ÿs&)Ž?@Î@­¡oŸ¾w@­¡nV’@­¡oŸ¾w@­¡l‹C•‚@­¡oŸ¾w@­¡hr° Å@­¡oŸ¾w@­¡tðØDÏ@­¡oŸ¾w@­¡n¤¨ÁU@­¡oŸ¾w@­¡mí(Œç@£ÍbMÓ@£Í#× -=q@£ÍbMÓ@£Íéùr@£ÍbMÓ@£Íéùr@£ÍbMÓ@£ÍÃa@@£ÍbMÓ@£ÍeýŠÛ@£ÍbMÓ@£Íï4Ö¡@8¿–»˜È@8©“ àß@3^Ù‡+@3_Š Þ@2Ú~ùÛ"Ñ@2Ü/ƒ{J#@2&YJôðØ@2&”FsØ@2&YJôðØ@2&¸ºÇ@2&YJôðØ@2%m\ú¬Ú?žˆ2}?—É·R©Ï?‘yß]³Õø?ZÁ».œ?‘·Xâe?’£sðU Z?Ÿ‹‘+-/Ü?•yom?‘F·ˆH>d#?’÷fAzQa?Æ<äQøN?ŽõÕJ?„ü›ðÓ?ƒ¼9XNÄu?‡¤o„C?‘  ¶‚3@@@@@ @&?ð?ð?ð?ð?ð?ð?2‡Ô‹¿Xn1‚Æ?Lá¶ ·B÷?^8¶¦ÈÆÄ@­¡oÚŠ@@£Í˜J‚?pþóÎz‹?wsÒ·J?áQ´ê£ú±?áÈxtâ @Ÿm®Èáp§@Ï@¡¹H´9X@¡¹M‘hr¯@¡¹H´9X@¡¹IÞÑ@¡¹H´9X@¡¹K’:)Ç@¡¹H´9X@¡¹G®zá@¡¹H´9X@¡¹GÕfÏB@¡¹H´9X@¡¹KP°ò|@¢îbMÒñª@¢îdÝ/ @¢îbMÒñª@¢îjW§†Â@¢îbMÒñª@¢îjÚ¹õZ@¢îbMÒñª@¢îhÎp:û@¢îbMÒñª@¢îh Ô•@¢îbMÒñª@¢îf1ø @7|ÚQ@7°‰ 'R@3° Ä›¦@34êJ@2>V“u@2BˆÎp:û@1æYJôðØ@1èï4Ö¡b@1æYJôðØ@1ãFÜ]cˆ@1æYJôðØ@1áÄ2ÊW¨?гá‡}?‘‹PƧ¢$?–™@^Ú¢?ŒR‹w#z?“K–ºé…/?‘Û.Yrî?‘â%ì˜ ä?–HÞÆzì²?’üüšë‚J?@§[*^?’we °÷¬?’÷fAzQa?¿N†Ï¸?à í¡h„?„‘Za¹Q?ˆã1µR?Œúq‘?Ä;Ãkr>@@@@@&@(?ð?ð?ð?ð?ð?ð¿K8IÑÐ?9íì¨?I™ÄcÔà?B  eÝŠ@¡¹J-aã@¢îgIrR?h4n«R­Û?_à¨l§¡â?Ò5.ØD?¹¥CtéØ@ŸkzÿNCÄ@Ð@¢Ðå`A‰@¢záG®@¢Ðå`A‰Á.„€@¢Ðå`A‰Á.„€@¢Ðå`A‰Á.„€@¢Ðå`A‰Á.„€@¢Ðå`A‰Á.„€@•ð$Ý/@•öÝ/Ÿ¾@•ð$Ý/Á.„€@•ð$Ý/Á.„€@•ð$Ý/Á.„€@•ð$Ý/Á.„€@•ð$Ý/Á.„€@8G>«6z@5ŠT`ªdÃ@4Yº^5?}Á.„M‰ûçm@3²-VÁ.„QnÙ‡@3O „MÁ.„NÜC,¥@3O „MÁ.„NÜC,¥@3O „MÁ.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÑ@« ¤Z¬@« ¤Z¬@« ¤Z¬@« ¦ -¦L/@« ¤Z¬@« ¢ø7´£@« ¤Z¬@« ¥Éä@« ¤Z¬@« ¡×Ûô‡@« ¤Z¬@« ¡‰7KÆ@ª¡l‹C•@ª¡lIº^5@ª¡l‹C•@ª¡o–»™@ª¡l‹C•@ª¡m\ú¬Ú@ª¡l‹C•@ª¡l¥zxl@ª¡l‹C•@ª¡n.±Ä3@ª¡l‹C•@ª¡m\ú¬Ú@4‡>«6z@4‡§†Â&@25ãS÷ÎÙ@25ÜÆ?@1ÐA‰7KÇ@1Ð quŽ@1._oÒ @1-ŠÚ¹õZ@1._oÒ @1+˜Çâ‚A@1._oÒ @1+çl‹C–?|¬Çëý ?jú‚<·™?” -Ÿ”îtI?Œ<…ÓÆÝ?‘ÏX¼ãs~?’IåŠú?|öOÿÝ?’µ4ãÝÿ?’hÕü‰­?;ß $Þû?’ºñS©YÖ?‘õe\Š«p?‚Ö˜>µDà?=d­úå?ƒ]€µ,Vß?†ÞåØÜÓ?ˆ0&YÊEd?Š|)-}í(@@@@@,@,?ð?ð?ð?ð?ð?ð¿:\F“`?2«ÍÓ?:¤×iÿj-?öƒàJ!@« £¼ÛèÎ@ª¡làuP?Z NV=Sê?=ì >R£h?Á”fæ_H?…zRWëÅ@ŸfiÊí‘ò@Ò@£ìQhr°!@£ì^vÈ´9@£ìQhr°!@£ë;Í5¨X@£ìQhr°!@£ê»²þÅm@£ìQhr°!@£ê·éù@£ìQhr°!@£ê¥®æ1ù@£ìQhr°!@£ê¼„µÜÆ@£Ú»dZ¬@£ÚÆ$Ý/@£Ú»dZ¬@£Ù™‡+@£Ú»dZ¬@£Øç ù l@£Ú»dZ¬@£Øû=ÈJ@£Ú»dZ¬@£Ù}¿H@£Ú»dZ¬@£ØïÒòå@7½:’£@7¢{²þÅn@5™º^5?}@4ó{J#9Á@5`A‰7L@4+À6âë@4O „M@3…+ÓÃa@4O „M@3•Â\(ö@4O „M@3Òñ©ûè?„F/·ÿP5?¿ &ð/d%?Äüjl|Õ?¶÷üG>à -?Ë ^㪶Ê?ÑB¦[!?¡ÅꯨŠT?»üÉ–›ú¢?¿¡3A×ÑO?£…} ÑÉ?ÓfµÙú¶?Ô‚ûüï»Ê?•@K/Ù{?²€8Ð7½À?­ó@¯@ ×? :>è-ƒ?¤€3¼¾BÁ?¦ÆIÊv:@@@@@,@*?ð?ð?ð?ð?ð?ð¿ÂåÖ=@¿Å<¼/Œ?œu˜¶MŒ?“4ܹ³@£ë»Sû\@£ÚòT¼Í?°Oº4¼+?©pÕ˜¥zm@"’LÈ@@‰(‘3S@Ÿ^ïò{ˆ@Ó@«3ºáG®@«3ºŸ¾vÊ@«3ºáG®@«3½ eÐ2@«3ºáG®@«3ºõÈÊ@«3ºáG®@«3¾`Ðc=@«3ºáG®@«3»Ó¤¥\@«3ºáG®@«3¼¶óöý@”?üí‘hs@”?ûè¸Ä@”?üí‘hs@”?þÍþ+@”?üí‘hs@”?þJ¿ô“@”?üí‘hs@”?ýCz‚Í@”?üí‘hs@”@Z ñ@”?üí‘hs@”?ÿÝ>À@3ëµsê´@3ëP°ab@1 Ä›¥ã@0þŸÊe1@0Z~ùÛ"Ñ@0Y~´N0@0‚@·€4@0^×{ê@0‚@·€4@0W… ’1@0‚@·€4@0Oô4ä?|Ñb×¶@?Hˆ]ñ9?‘)ûÍÿ×þ?‹¸–¿;ŸÅ?‘×±T©?‘(ØHÙ?|¬Æ Væ?’Eµ§¢~*?¿§³Œ -?0Ô¾1R -?ÿ±6X?„x++?‚zÄÌí*?ŒÐñX‰I?‚‹HÊoù?‚÷ëá÷?†° Ñòo?†©b/bJö@@,@&@$@7@8?ð?ð?ð?ð?ð?ð?AžÖè?;ÇÊq?8\¼áË[?$ÀG7è2£@«3¼rv@”?ý½ýoÝ?X%v1ÚE©?Eå}¬g?¿‚Š%}ÖZ?—" †´ô³@Ÿfá]‚d@Ô@£ -_¾vÈ´@£ -T9Xb@£ -_¾vÈ´@£ -~Åm\ú@£ -_¾vÈ´@£ -¬<žìÀ@£ -_¾vÈ´@£ -™Î_p@£ -_¾vÈ´@£ -wXâd@£ -_¾vÈ´@£ -}—ö+l@¨¯“÷ÎÙ@¨¯ŽzáI@¨¯“÷ÎÙ@¨¯6ÕϪÎ@¨¯“÷ÎÙ@¨¯0ØDÐ@¨¯“÷ÎÙ@¨®÷§†Â'@¨¯“÷ÎÙ@¨¯ -à@¨¯“÷ÎÙ@¨¯!½¥@8%öý!ÿ.@8)XbMÓ@3i‡+ @3P–»˜Çâ@2þV“u@2áÎ_p@2ž«6z‘@2ò䎊r@2ž«6z‘@2•Ϫ͞„@2ž«6z‘@2ÌcñA ? Eˆ‡ðó‹?ª½Š†kf?¬s¨›¶ |?¦áU³6Ö§?¡úñÙà?¦—d4â?Ž=fA:?·Àº0æo>?³Ã7È‘<Ö?Áî˜/áÕÎ?»¼¸ölƒ?¹P¢¹’s³?”⦘¹Ô?¡:¥UYP§?špdÃ2-´?¦PöÔMmk?¨S![cé?ªi‰o+p@@@@@(@*?ð?ð?ð?ð?ð?ð?‚-ÉiÒÀ¿›éûFB?z2WûiY?|±p^óõH@£ -lWip¼@¨¯[c:ƒb?š©£Áxa -?šI.údS@ i7üßîC@¢ÿÄ›¥ãT@¢ÿ±hr°!@¢ÿÄ›¥ãT@¢ÿ`[À7@¢ÿÄ›¥ãT@¢ýäM:“@¢ÿÄ›¥ãT@¢ÿã{J#:@¢ÿÄ›¥ãT@¢ÿ¬˜_÷@¢ÿÄ›¥ãT@¢ÿ“©*0U@8õS&Á¾@8÷“Ý—ö,@5ør° Äœ@6VÈ´9X@5•`A‰7L@6tmÅÖ8†@4ÑÞi­BÄ@6œwškQ@4ÑÞi­BÄ@5ª…‡“ݘ@4ÑÞi­BÄ@5-ÈK]Í?гá‡}?³ÔØZ:“1?可jÝk?È,J à3?Lj!þ_¸ï?É{='"­?±Á1È+@8Iç@8Ù?“Æ×q„nï@8Î÷@8i§@8Å@8S@8û—?‰¢Ò+ÜÝ:@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø×@¡Ò["Ðå`@¡Ò[¥ãSø@¡Ò["Ðå`@¡ÒXï4Ö¡@¡Ò["Ðå`@¡ÒZkP°ò@¡Ò["Ðå`@¡ÒYÎ_p@¡Ò["Ðå`@¡ÒYJôðØ@¡Ò["Ðå`@¡ÒV®}Vm@£×ŠÀƒo@£×Š~ùÛ#@£×ŠÀƒo@£×‰Dg8@£×ŠÀƒo@£×Š#9Àì@£×ŠÀƒo@£×‹àÞÒ‰@£×ŠÀƒo@£×ŽHè§@£×ŠÀƒo@£×hÛŒ@4 ]cˆe”@4 VÕϪÎ@0‚° Ä›¦@0uŽ!–R@0Z~ùÛ"Ñ@0TÂø7´¢@/Ǔݗö,@/»"Ðå`A@/Ǔݗö,@/¾ì¿±[X@/Ǔݗö,@/¾ì¿±[X?‚á²Olºü?µ‡:úÎ ?‘\H{gX ?Uóú*˜?“”>C,4?’ëÆ[2?|öOÿÝ?’u¦ieõ–?ð{¥âdú?°‹Œ÷€?”8©èÈí?“‘k–šj?‚|׿pY?2ô]7?‹v'þ­X?ˆW„hðQ?‰©OO ¨?ˆ0&YÊEd@@@@@,@,?ð?ð?ð?ð?ð?ð¿KjÁ˜?LR§Ð?&Ñ‘hy?!Ã(¨|Ð@¡ÒYè#@£×ŒTëCÛ?F,F‹i?B ˆSÀ” ?“âzûrt?‹ž…-@Ÿg¾Z@Ø@ž–Z¬1@ž–q©ûçm@ž–Z¬1@ž–YA={@ž–Z¬1@ž–]/}:l@ž–Z¬1@ž–_µÝi@ž–Z¬1@ž–Z•(¿ù@ž–Z¬1@ž–Y–%Óð@ªÛ“÷ÎÙ@ªÛ›Ïeì@ªÛ“÷ÎÙ@ªÛ”ÁÍ’ä@ªÛ“÷ÎÙ@ªÛ”V:[@ªÛ“÷ÎÙ@ªÛ•Ps¾ë@ªÛ“÷ÎÙ@ªÛ–Çã2H@ªÛ“÷ÎÙ@ªÛ•¼@7Ì]cˆe”@7ưj¤~@1‡ÎÙ‡+@1†½À$0@0Z~ùÛ"Ñ@0YpC aí@0kxFÜ^@0iyV )x@0kxFÜ^@0h*ôÎ}@0kxFÜ^@0h(¥ñu?Ö?ŠÓ'P?Üaas?‘Ûø{½?Œ}Ñ -½‰ ?ÿÃhý?Ñskîy¤?Ž\Õl6Ò?’ 71ùR -?€Z5kÙÈ?p™[!¹B?ÑI}/‘@?•VãÒÁ?´LuÛ³?ŒÉ¯›nR\?‚{zÞ&U?ƒ!™ä!È?†¨5 Y?†Ê°Ìæ@@"@ @$@2@2?ð?ð?ð?ð?ð?ð¿b$>ü.¿TdŒâ?AûÿõAJ“?>,ZÌÊaé@ž–_€Umy@ªÛ–ì²ó”?X÷q‘9ò?\¡²Ô­¦è?¯7–!DŸ?¸ü‹ä@Ÿn+ÐïM@Ù@ U7ÎÙ‡@ U8bMÒ@ U7ÎÙ‡@ U8ÄVº@ U7ÎÙ‡@ U8‚Ü;Ñ@ U7ÎÙ‡@ U8žïñ@ U7ÎÙ‡@ U7Xâf@ U7ÎÙ‡@ U7*o@¬í¬1@¬í^5?}@¬í¬1@¬í;X÷,@¬í¬1@¬íåÂ*@¬í¬1@¬ífµÀp@¬í¬1@¬íFŠSs@¬í¬1@¬ívJÐ@1}:’£@1}:’£@.Û"Ðå`@.óUzùz@.]ó¶E¡Ë@.]³+@-u¨Xy=Ú@-u’¼–A@-u¨Xy=Ú@-u÷¢'“¦@-u¨Xy=Ú@-uÉã½?É`úBcM?Ì}Ãûp[?‘-5AÔ˜ß?‹¸šŠš?èמ©?¸‹œ1Y?ÐbQë„›¦?’à,Ä2Þ?Œ÷Ïãk?3]Z@˜Û?Í£Mm/?SÜ»_¼j?€bMÕ]f?Œ®–v?‚€Û€¸Í?‚ê¬Ù:âk?†•7 b ?†ÏÅ1C@@*@(@$@5@9?ð?ð?ð?ð?ð?ð¿9ð|”>ôØo€?÷,_\ ? ©Íf‡Ê@ U7”00@¬ía$Ó]?"^ã2űe?óŠ6¢Á?@“À`ác,?0!kNQK@Ÿs¦K ù@Ú@¦D.—Oß@¦D'ÛsyÆ@¦D.—Oß@¦D#n.±Ä@¦D.—Oß@¦CðbMÒò@¦D.—Oß@¦CûdZ¬@¦D.—Oß@¦D–R½<@¦D.—Oß@¦Cÿ;dZ@rŠ=p£×@r}:ì -@rŠ=p£×@r¿¼@rŠ=p£×@rz)Çy§@rŠ=p£×@rÞi­BÄ@rŠ=p£×@rå`A‰7@rŠ=p£×@s+6z@7wâ‚@·€@7n¶TËb@5+¥ãS÷Ï@5"° Ä›¦@4â-V@4Ðuöý!ÿ@48DЩ*@4Ëûµt@48DЩ*@4*u%F @48DЩ*@4¸Që…?}x—™¤µÜÆ@-¤“t¼j@-{Ó·1#Ù@- 1&éy@-€ É® ­@,#¼ÓZ…ˆ@,/3ºvÊ@,#¼ÓZ…ˆ@+ú)Þˆxû@,#¼ÓZ…ˆ@,1ÍS߬@8 -Näy?*)ÖHé?›Ðê9ÐÙ?È? -˜0B?Ÿ¸ÆÍ­ú?–×UØgsj@82rê?’“pÔðU_?’©†g—´b?š>ÿ¡!¹u?¬Ç–&÷æï?œŒäQc@8L?Œî™%ÜÄ?„€1QcFe?„PÉûÍÀ0?‰]ÞÉ^Ï?‰ « Gg@$@$@$@9@3?ð?ð?ð?ð?ðøøøøøøøøøøøøÜ@§ÊeãS÷Ï@§Êm¯hLÖ@§ÊeãS÷Ï@§Êš[07@§ÊeãS÷Ï@§Êc¬ò2P@§ÊeãS÷Ï@§Ê[kÎê:@§ÊeãS÷Ï@§Ê[›„Ÿ@§ÊeãS÷Ï@§Ê[Ž8ì @•*•$Ý@•*–Mþ˜[@•*•$Ý@•*¨¬ñ®@•*•$Ý@•*¤_êË@•*•$Ý@•*˜G={@•*•$Ý@•*‹Éвn@•*•$Ý@•*ŽJ¯ùÑ@9|ÚQ@9_˜.Î@3Ï|í‘hr@3H+Étw@3Z~ùÛ"Ñ@3,±·aQ@2TmÅÖ8†@2FA¢–a@2TmÅÖ8†@2C]Ÿ±p¿@2TmÅÖ8†@2C9rJÖ³?š­˜]?’v÷KŸ?¬>žžŸÖÞ?]“:VE?”žìÝ}?–§ŽØìT?’t D5·±?¢q Aì«'?¤lôH?‘Qã)\üŽ?”¸r|Øæ2?›<þ–`Þ?·6;:?’öÝ^5ûÜ?•ü -V‚¾?‡¨ŠÍæ?‰àÑ:˜?‹½äøé<@@"@(@$@:@9?ð?ð?ð?ð?ð?ð¿l·¨ñ¿P^äÈ?[Ç ¼éÀ?I˜h#LÀ@§Ê^ãÞ_Ö@•*’¯Çn¬?u(‚h?f°×J0β?à¡ho­??íaßk´@Ÿl=”6¥Ÿ@Ý@¦ªÐbMÒò@¦ªÑÇOðœ@¦ªÐbMÒò@¦ªÒð• @¦ªÐbMÒò@¦ªÌ qo@¦ªÐbMÒò@¦ªÐ"·cÞ@¦ªÐbMÒò@¦ªË@ÙGt@¦ªÐbMÒò@¦ªÌÚÆˆz@•ã@ƒn˜@•ã?EjGw@•ã@ƒn˜@•ã@'—‡@•ã@ƒn˜@•ã<øRø¬@•ã@ƒn˜@•ã6ó âú@•ã@ƒn˜@•ã1Èñe@•ã@ƒn˜@•ã:Vßò=@6쿱[X@6 ¬Èß4@2?|í‘h@2="§ž*@0¶§ï²-@0µ´)¶@0…œàu÷@05ÉÍúå@0…œàu÷@0Ë«GL@0…œàu÷@0¹^4?ƒÔo"ë–?ðÓ¡ãö€?‘)úô}>?ŒŸ?B6?’½u=Ý?‘B&ñYè?¨Sp*?“hã ø+ð?€vnþ×A?» tEÙz?“Nô €s?ÝZ!}ˆ?‚ãTʼ =? ç£Þµ?‚oÁ0_+*?„°ìQ?‡©*ô¿®?ˆz´”w®@@*@"@(@4@8?ð?ð?ð?ð?ð?ð¿RÑ(4¿N¯[ëT?8çBú ?@í;ݾ@¦ªÏC²Ö(@•ã:L‘Wà?W¡úcmën?aŸÇh€M?¶ÚT©=yr?Ép´Ø3|@ŸhX(<@Þ@žz}ó¶E¢Á.„€@žz}ó¶E¢@žzcˆe•@žz}ó¶E¢@žz€@žz}ó¶E¢@žz“&Á¿@žz}ó¶E¢@žzd9ÈKî@žz}ó¶E¢@žz~bb¦@­Å#S÷ÎÙÁ.„€@­Å#S÷ÎÙ@­ÅkP°ó@­Å#S÷ÎÙ@­Å(Œç¯@­Å#S÷ÎÙ@­ÅØ­«Ÿ@­Å#S÷ÎÙ@­Ä­7c3‚@­Å#S÷ÎÙ@­ÅVBD:@9eöý!ÿ.Á.„>¤µÜÆ@4=‘hr° @46»˜Çâ‚@3U`A‰7L@3L‹C•@2Ì¿±[W?@2Å '»0@2Ì¿±[W?@3Ÿ6áL@2Ì¿±[W?@2Ç’0¢d@8J¨?«W@!âÏ?‘RsÈW?”–¹rÕ‰?”ª•âP·?‘™t¦£š -@8J¨?“«ö„@×®?–¬HðºDŸ?”Ò}“® ?“ªÇŠÈ@Í?‘«,3vF@8p÷?› ’„ÚAI?–Ϥ?œC‰þx%?’uÛà ?Š$rM´£y@@@@.@,?ð?ð?ð?ð?ðøøøøøøøøøøøøß@¡el1&é@¡e|(õÂ@¡el1&é@¡eP‰ 'R@¡el1&é@¡eÑN;Í@¡el1&é@¡eSÐ|„¶@¡el1&é@¡e„Щ*@¡el1&é@¡evz—@¬¿MOß;d@¬¿49Xb@¬¿MOß;d@¬¿!-w@¬¿MOß;d@¬¿YõY³Ð@¬¿MOß;d@¬¿:Ÿ¾vÉ@¬¿MOß;d@¬¿³©*0U@¬¿MOß;d@¬¾Ç_oÒ @9D¯O „M@9X­«ŸUœ@5Yº^5?}@51&éxÔþ@4d¼j~ùÛ@4"@·€4n@3¿ò䎊r@3:’£S@3¿ò䎊r@3¡œàuöý@3¿ò䎊r@3¦»˜Çâ‚?°¼x‡Ç…Ä?˜?"‡6$?¸Þ)ÒÆ?°ÅaMzÚ?±$—Ú@â?±›»»Ž?´ Z è´ß?®*JŠË?Çc«ó¶?¸š‚ÄöËÙ?°1üTn]?ºsà_Nùr?œÁXÙðÿ?¥C‡y¿^?¢tñÓu?£èŠFÊ?ª¹0ÇåÄ?¨Ðaî#¾ÿ@@@@@,@&?ð?ð?ð?ð?ð?ð?<åû¶Ð?|/Å}Ñ?}7‹õö"? ŠN"911@¡er—v‹ @¬¿X›«eª?šb Æ/G?½qwHŒ ?óx‡eç³@0C—¯X='@Ÿlz@à@£q Iº^@£qÊ~ùÛ#@£q Iº^Á.„€@£q Iº^Á.„€@£q Iº^Á.„€@£q Iº^Á.„€@£q Iº^Á.„€@¬P=ó¶E¢@¬P1hr° @¬P=ó¶E¢Á.„€@¬P=ó¶E¢Á.„€@¬P=ó¶E¢Á.„€@¬P=ó¶E¢Á.„€@¬P=ó¶E¢Á.„€@8įO „M@8Ú™0¾ í@4sS÷ÎÙÁ.„M‰ûçm@3Æ“t¼Á.„QnÙ‡@3O „MÁ.„NÜC,¥@3O „MÁ.„NÜC,¥@3O „MÁ.„NÜC,¥?¶Ú·Œò¸›@8#˜@8¾:@8 >+@8Iç@8Ù?©W»¥ÿ$B@8Î÷@8i§@8Å@8S@8û—?ÆSÌ~6d)@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøá@«gõÂ\)@«gÛ"Ðå`@«gõÂ\)@«gïv_Ø®@«gõÂ\)@«g·´¢3œ@«gõÂ\)@«gçâ‚@¸@«gõÂ\)@«géDg8@«gõÂ\)@«géùrG@žm‘hr°@žs3333@žm‘hr°@ž.Ëûµ@žm‘hr°@žJÀƒn@žm‘hr°@žc¢œwš@žm‘hr°@ž…ðoiE@žm‘hr°@ž‘ÑN;Í@4Û¹Œ~($@4Êxl"h -@1Ùº^5?}@1·¯·é@1`A‰7L@0í¥œàv@0G ù kº@03&Á½¦@0G ù kº@00bMÒñª@0G ù kº@02&€IR?ˆÿÀ)T¿Æ?”êÎlŒy?¤™9tø3C?“²¡Ž+?“”>C,4?–yí+PYu?š•§q!U?šÒ’](¼+?¹íþ™Æôì? j—SV·?˜hüÁ¯Y?¢µu*ó,?±hU¬óø?”~ªd•?”l´~ðJ?„XïWÉò~?‡Õ˜]–GÄ? ²jÖ]É@@@@@*@,?ð?ð?ð?ð?ð?ð?jМ$¢?fpÛ‚X?FiSÁs>?bgÉõnW@«gäÁ…@ž{‰mtÌ?g^¿Ëœ?€Ì6†Êrl?Ê Èÿ€™?å_¹æ cø@Ÿjïq¥½Å@â@¡Vp Ä›¦@¡Vs÷ÎÙ@¡Vp Ä›¦@¡Vuéá°Š@¡Vp Ä›¦@¡VuÂ\*@¡Vp Ä›¦@¡Vr×sû@¡Vp Ä›¦@¡Vròä@¡Vp Ä›¦@¡VqÄ2ÊW@©P« Iº@©Pª~ùÛ#@©P« Iº@©P¨šu%@©P« Iº@©Pª0U2a@©P« Iº@©Pª=p£×@©P« Iº@©PªqÞi­@©P« Iº@©P«¬q ´@6Âò䎊@6ÀØDШ@2Ï|í‘hr@2Ì‘ÑN;Í@2.ùÛ"Ðæ@2+C•%@1–ý!ÿ.I@1•oi@1–ý!ÿ.I@1–âëC-@1–ý!ÿ.I@1—8}¿H?žˆ2}?ÿ﯒?’ -N»A3?{¾“úy6?’ðä¼_?’4¶ó?|¬Çëý ?’&u÷E»@?’üüšë‚J?‘.}áµ$?’íßš?‘µEÂBÕl?Š:t†?ލf†)"?‡z"2Úù)?„†YÊ’È?‰ö±«tï?Šì¾ ;8´@@@@@,@*?ð?ð?ð?ð?ð?ð¿=o§e€?YÇã€>ì‚°M‘êÎ?/Ô Ø¹@¡Vrû4@©Pª´£®? …-G—ó?@—wÕl -?!,Y=M[?‡ÐÄÅ¥”Ð@Ÿg7H~Í@ã@®¤œ(õÂ@®¤©xÔýó@®¤œ(õÂ@®¤¡×Ûôˆ@®¤œ(õÂ@®¤¿HÌ@®¤œ(õÂ@®¤ž\‘ÑM@®¤œ(õÂ@®¤›²þÅm@®¤œ(õÂ@®¤Žæ1ø¡@¨÷…¸Qì@¨÷ƒn—@¨÷…¸Qì@¨÷‚œwšk@¨÷…¸Qì@¨÷$Ý/@¨÷…¸Qì@¨÷ƒn.±Ã@¨÷…¸Qì@¨÷’¼£@¨÷…¸Qì@¨÷n—Oß@8%öý!ÿ.@8$ohÜ@3©‡+ @3ªáG®{@2ûƧï²@2ü]cˆe•@2‚‚@·€5@2‚‚@·€4@2‚‚@·€5@2yb¶®~@2‚‚@·€5@2ŠCþ\‘Ñ?¢Æ÷Xê†?”žP1²"?“ óÎéð\?ö€(tUo?ž€—zcŠR?ÊþtûÙµ?}Ñ¿ž,?•ÞèI1Æ@?•ÇØ¼áêZ?–ª'G_ßJ?¢ÒUöˆ?¯/Õ’¬Œ»?ŒR‹w#z?‘žˆ2}?‹’Ú[ßõ?Ž‚1(w?‘p&Æ ç–?§ÞF-™ü@@@@@,@*?ð?ð?ð?ð?ð?ð¿t’¹“€?BÔX?T7aØÚ?aàs„aYE@®¤žŒCP(@¨÷„†iL~?l6Sl´ì£?„îe w!°?‚;£gN?ð`‚NZ³+@Ÿi㹎Ë\@ä@£˜å`A‰Á.„€@£˜å`A‰@£˜ í(Œç@£˜å`A‰@£˜;çl‹D@£˜å`A‰@£—ò¼£@£˜å`A‰@£—í\ú¬Ú@£˜å`A‰@£—ò×sü@¡š#S÷ÎÙÁ.„€@¡š#S÷ÎÙ@¡šb¶®}V@¡š#S÷ÎÙ@¡šaä÷eþ@¡š#S÷ÎÙ@¡™÷süP@¡š#S÷ÎÙ@¡šNp:û@¡š#S÷ÎÙ@¡šcÉîËú@8›¹Œ~($Á.„>¤µÜÆ@3Ô›¥ãSø@3k¥ãS÷Ï@2V”@2WÎÙ‡+@2=cˆe”°@1ÝOß;dZ@2=cˆe”°@1ì1&éy@2=cˆe”°@2ÞÒˆÎq@8J¨?´¼6¶¦Êü?½…\­½Æ.?¬&¾L=§‰?Ó[XõÿLj?ÉÆ0ý2Û¼@8J¨?¨áókðI}?ÂQaQÞš·?° ¡ðÒ?Àüàfî÷Þ?ÅÊ-a)—@8p÷?±Ù,å,ÀÓ? Ú }P!?°Ôù· -K?­ùO²Þ‚Ù?Ó"Úþöñõ@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøå@ž¢éxÔýô@ž¢éxÔýô@ž¢éxÔýôÁ.„€@ž¢éxÔýôÁ.„€@ž¢éxÔýôÁ.„€@ž¢éxÔýôÁ.„€@ž¢éxÔýôÁ.„€@›ÏB\(ö@›ÏA‰7KÇ@›ÏB\(öÁ.„€@›ÏB\(öÁ.„€@›ÏB\(öÁ.„€@›ÏB\(öÁ.„€@›ÏB\(öÁ.„€@1žHè§æ@1蛋5à@0\Iº^5@Á.„M‰ûçm@0>V“uÁ.„QnÙ‡@/á-w1ÅÁ.„NÜC,¥@/á-w1ÅÁ.„NÜC,¥@/á-w1ÅÁ.„NÜC,¥?É^ž(“Ç­@8#˜@8¾:@8 >+@8Iç@8Ù?ÐbMØ/×^@8Î÷@8i§@8Å@8S@8û—?€ngH2É9@8 * @8p÷@8¶@8 Ø@8 Ø@ ?ðøøøøøøøøøøøøæ@¯ -Àƒo@¯›¥ãS@¯ -Àƒo@¯ -™0¾@¯ -Àƒo@¯ -™0¾@¯ -Àƒo@¯ÿ—$t@¯ -Àƒo@¯§æ›@¯ -Àƒo@¯{J#:@­$ÐbMÒò@­$Òn—P@­$ÐbMÒò@­$ÐbMÒò@­$ÐbMÒò@­$×Oß<@­$ÐbMÒò@­$ÌÌÌÌÍ@­$ÐbMÒò@­$Øâe-@­$ÐbMÒò@­$ß.Hè¦@9>«6z@8û’:)Çz@4J^5?|í@4Iè>BZî@3®ùÛ"Ðå@3¬¾ß¤@@2î_oÒ @2èQë…¸@2î_oÒ @2ê)Çy¦µ@2î_oÒ @2èK]Ìcò?²„× ì²x?˜¶ÚæÁ€?–/¸Í”p?’\GyÆ©?”Å¥ÒB–W?”º²¶;?ˆÿÀ)T¿Æ?—{UƒO?‘¡Kd·´+?“§ÞÐÞû?›r=Þw‘‰?›¶x•7fÙ?ÀKøù°ê?’ *ïsr?ˆT“Ÿÿ?R è®ãî?ŒÙ”!Çx‡?‹ú èNÆö@@@@@*@&?ð?ð?ð?ð?ð?ð¿pBê¸Ë?X,¤8?cra@ãÆ?\”Äl¬U@¯ ®-}z@­$ÕÓÚà?uµtê³?£öàGà?ÚZ}%n¯?ð«6û›œ@Ÿo—¼:ª¦@ç@Ÿõ8Që…@Ÿõ8Që…@Ÿõ8Që…@Ÿõ9¶ê\h@Ÿõ8Që…@Ÿõ9YŒ¢ @Ÿõ8Që…@Ÿõ;„ö³s@Ÿõ8Që…@Ÿõ6¶- Þ@Ÿõ8Që…@Ÿõ8eC°ü@­8gï²-@­8gï²-@­8gï²-@­8häú¼@­8gï²-@­8j&_h§@­8gï²-@­8i-^˜@­8gï²-@­8i—Í]@­8gï²-@­8ky¶“Ú@2#g ù l@2#g ù l@.8“t¼j@.7¿¢’×E@.*Àƒn˜@.&&V39@-¨Û‹¬q @-£¼ÓZ…ˆ@-¨Û‹¬q @-¤„Œµòð@-¨Û‹¬q @-¤X‘éú^?É^ž6õP?Ëi<õ?‘O¬±G Ñ?Œúoù?ÿÃhý?Þ³EÆ49?ÐbMÝn½?’ ÌÐvLª?à÷ "ù†?‡Õ$µãœ?íˆ »‡?~ð–šdÃ?€b™Qž?Œ³ºžˆ®>?‚ƒ}µà.™?‚ój1s=?†–Ðé(Y÷?† X^)@@@(@*@*@5@8?ð?ð?ð?ð?ð?ð¿IP- ?O^¦?@WÒõ¥Ê?4˜Éâ@Ÿõ9)6fè@­8iú5”K?Odħ.£?Bþ2ôˆ¾‡?—Ä$¶_›D?~ÓÂßAF@Ÿs Ò™O6@è@¦¾õÂ\)Á.„€@¦¾õÂ\)@¦¾ô/õ¼@¦¾õÂ\)@¦¾ãìÊ÷@¦¾õÂ\)@¦¾æfl´Ì@¦¾õÂ\)@¦¾äh³@J@¦¾õÂ\)@¦¾ñ›/ì}@“áG®{Á.„€@“áG®{@“¡`\J @“áG®{@“$q‘y@“áG®{@“Ø*À%€@“áG®{@“¹š@“áG®{@“ǯe H@7òÃÉîËûÁ.„>¤µÜÆ@3¦‡+ J@3±¢ ðM@3€å`A‰7@3о'|Q5@2Œ¿±[W?@2”8þmR@2Œ¿±[W?@2ŒCGVÌ@2Œ¿±[W?@2ƒÒ}@ -@8J¨?”*†¯û}v?—0ŽÏxO?‹¦ >N?˜AÓ æñ?—H¿Fé™@8J¨?¨¸ç¢ÿ¾?¬¬u† P;?•¼ÏK–È•?—#PG?’^Y:·p@8p÷?Ž˜Ýµ#U?ƒÄ¡Íœ¨+?Šˆ^×›',?Œ—ðøÆ8V?Ž<ûŽU““@"@ @"@4@*?ð?ð?ð?ð?ðøøøøøøøøøøøøé@¡2“t¼j@¡2Ôýó¶@¡2“t¼j@¡2õY³Ð@¡2“t¼j@¡2ï4Ö¡@¡2“t¼j@¡2ºÇË@¡2“t¼j@¡2öý!ÿ@¡2“t¼j@¡2öý!ÿ@¡‚å`A‰@¡‚‘&éxÕ@¡‚å`A‰@¡‚¾ í*@¡‚å`A‰@¡‚–»˜È@¡‚å`A‰@¡‚–»˜È@¡‚å`A‰@¡‚°ò{³@¡‚å`A‰@¡‚°ò{³@1-¥œàv@1-žƒä%¯@,ùÛ"Ðå@,Åm\ú¬@,*Àƒn˜@,*dÂø7µ@+åÉä@+HË’;@+åÉä@+!-w1@+åÉä@+!-w1?É_\p)Ï?Òç{íj?‘$Cê¡@í?‹ÑqÔ@vÿ?ÿ £‰¸9?Å{¿Ž<¹?ÐbV‡,?’ ,øÕC©?¹º–Èj?K·‘d]?ÝIMÎ?]#ÍìO¤?€b¡´ñ@?Œ¯þuõí?‚s@ˆaÛ?‚æÊ¬vã?†–f_ÔŠŠ?†l&þ@@@@@,@,?ð?ð?ð?ð?ð?ð¿TبI­?E½?9Û‰ï³>Ã>ø|À§O@¡2©Ù@¡‚¦îÛ?HßÅ#,?)µ*FT?Ž'Û‚™ž?Zªü"&@Ÿs ”¢ü@ê@ Ø33333@ Ø3÷ÎÙ@ Ø33333Á.„€@ Ø33333Á.„€@ Ø33333Á.„€@ Ø33333Á.„€@ Ø33333Á.„€@¨@ÌIº^5@¨@Ñhr°!@¨@ÌIº^5Á.„€@¨@ÌIº^5Á.„€@¨@ÌIº^5Á.„€@¨@ÌIº^5Á.„€@¨@ÌIº^5Á.„€@7eöý!ÿ.@7gÕmët@3¸r° ÄœÁ.„M‰ûçm@3 ²-VÁ.„QnÙ‡@2èè§æ›Á.„NÜC,¥@2èè§æ›Á.„NÜC,¥@2èè§æ›Á.„NÜC,¥?|¬h2:“@8#˜@8¾:@8 >+@8Iç@8Ù?ƒ6ð]g™ä@8Î÷@8i§@8Å@8S@8û—?ƒ„Zgr´@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøë@¡|í‘hs@¡’L¶ª…@¡|í‘hs@¡~Ð]ÜÔ@¡|í‘hs@¡Ìvù@¡|í‘hs@¡‰)·jÕ@¡|í‘hs@¡‰Z¶t@¡|í‘hs@¡ŽT'-K@¢¡t¼j@¢¡ m±oE@¢¡t¼j@¢¡6óRw@¢¡t¼j@¢¡!NAaw@¢¡t¼j@¢¡g@¢¡t¼j@¢¡˜”@¢¡t¼j@¢¡¿©¶@7ð4mÅÖ8@7ïRþR@3—+ Iº@3‰h k@2¹7KƧð@2µÈ+Ä@2zÔ,<ží@2}0ù—Q@2zÔ,<ží@2}ÜÈ›@2zÔ,<ží@2~RQ44©?–…­à Ø—?’ó̇+ø?’ß ¶Tª÷?Ž×îoïcÃ?’†YB­Ú2?ó”—B?—Õ˜ b2Û?£åº~Ï?—}T9IÐÉ?’‘4Kv–x?“|;‡õ*?PO W”Ó?‡Ì Â93¿?“mçŒ-Ì?‘|6}Š>?„iÁY^#¿?”2êTå?²>ô!@@&@$@"@.@1?ð?ð?ð?ð?ð?ð¿H‰n?bÚ¡íc?Wã-‡?V8rÅNÀ@¡Œ#?Óó@¢¡2‡ ¸?rqFûnš?rdFo7«?á 0@½Š¦?ÝS=6`p@ŸmýûÌ¥Ú@ì@¨%Ÿ;dZ@¨%¢ Iº]@¨%Ÿ;dZÁ.„€@¨%Ÿ;dZÁ.„€@¨%Ÿ;dZÁ.„€@¨%Ÿ;dZ@¨%“©*0V@¨%Ÿ;dZ@¨%˜ -à@¨ôº^5?}@¨ô»dZ¬@¨ôº^5?}Á.„€@¨ôº^5?}Á.„€@¨ôº^5?}Á.„€@¨ôº^5?}@¨ô¾¸Që…@¨ôº^5?}@¨ô»/ìV×@7 ]cˆe”@7 …¸Qì@3é‡+ Á.„M‰ûçm@2¾V“uÁ.„QnÙ‡@2‘Þi­BÄÁ.„NÜC,¥@2‘Þi­BÄ@2·€4mÆ@2‘Þi­BÄ@2·éùr?‡YÍ_@8#˜@8¾:@8 >+?“K–ºé…/?™¢tY+9>?ˆÿÀ)T¿Æ@8Î÷@8i§@8Å?’¯dL¶t?•÷f¸D¦?aäŽ -Ø@8 * @8p÷@8¶?屘Úã?‹¹ÇlŒ@@ @(?ð?ð?ðøøøøøøøøøøøøí@¢ª¬‹C•@¢©n—Oß@¢ª¬‹C•@¢ª±Ä2ÊX@¢ª¬‹C•@¢ª´ã¼Ó[@¢ª¬‹C•@¢ª®æ1ø¡@¢ª¬‹C•@¢ª®±Ä2Ê@¢ª¬‹C•@¢ª«jçÕg@¡‰7KÇ@¡lIº^5@¡‰7KÇ@¡ÞÒˆÏ@¡‰7KÇ@¡ù³Ð|…@¡‰7KÇ@¡IQ‚@¡‰7KÇ@¡ý²-V@¡‰7KÇ@¡û=ÈK@7Y*0U2b@6ÀA‰7KÇ@2€ Ä›¥ã@2{6z–@2 ²-V@2 Û"Ðå`@1._oÒ @1*…‡“ݘ@1._oÒ @1)õY³Ð}@1._oÒ @1*Ÿ¾vÈ´?ó÷ãnÐ(t?”•µ³S_?”ñ-a} ?Žëâÿ1¥?•³™»7…?’ŒZzˆZ”?ÙH²6m§Å?—{UƒO?”p¶I”“ž?èÊ\då?“‚Û£0Î¥?’÷fAzQa?ó˜êޤžR?u/®Xã?‹v'þ­X?‘ÄÚ êÛu?‡v>ª¸ ?‡´*žZ}Õ@@@@@*@(?ð?ð?ð?ð?ð?ð¿U”NÙ¿eQó÷?_-ÌÔ&_ê?_w=™eê"@¢ª­žúèw@¡þ"C(?nÉÃ|äg©?méšu[€?ѿȡ9«?Ïã…5Ta¡@ŸsB.ž @î@¡/å`A‰@¡/å`A‰@¡/å`A‰@¡/šÏem@¡/å`A‰@¡/ëC -@¡/å`A‰@¡/NÌý2@¡/å`A‰@¡/ñÄ@¡/å`A‰@¡/oQV@¤HŸ;dZ@¤HŸ;dZ@¤HŸ;dZ@¤H›hah@¤HŸ;dZ@¤H£Ó›g@¤HŸ;dZ@¤H¥):O7@¤HŸ;dZ@¤H£(Ê•V@¤HŸ;dZ@¤H›núÈž@4í¥œàv@4î_oÒ @1Š^5?|í@1†/Hxqœ@0ô“t¼j@0ê3¡ -z|@0œÚQÎ@0” Ó'Ð@0œÚQÎ@0‘;«äÙ@0œÚQÎ@0’Û("wk?|Ñb×¶@?Š›°i?‘rÞµò?Œ‚•zòÅ?• GœÏÐe?’׎L'y#?|¬h2:“?’¸FšDí?|™"x‹?5Ôá…?–x_OqÊ?•»ÐŽVæN?ƒ’íÕà­?DÆÞ£xÔ?‚þå9¦]±?„2Eó×ùò?Œ=`XªDÔ@3‚° Ä›¦@3fL/ƒ{J@3 "Ðå`B@2Ò×sü@2+xFÜ^@2° Ä›¦@2+xFÜ^@20L`}@2+xFÜ^@2Õ˜4>b?‡‡á´WÉ?´Í U?£Û/_ ·?´jŽ}ªý›?£ t4ÂgU?›ëj5¾?|¬Æ Væ?͹/vö\?Ñ.Ô†U?ÂjVß^ÈÂ?ž^J+¯ƒ‹?¦`‡Lk.î?‚ 8œ@Ž?¨! þý6?³ß"xþ?±]CÞ¶è?› Ž­È™©?©Ð½MrѶ@@@@@7@7?ð?ð?ð?ð?ð?ð¿k`¡j§?OjG¦P?b@v³@Q?aë“ÿ<ðâ@¥¦×lœØ²@—Ë ƒ?¹eHè?~n‘™2?ôòƒªàŒ?ð««ò¿†@ŸbŽ’èä~@ð@­™¼í‘hs@­™½/Ÿ¾@­™¼í‘hs@­™½<63@­™¼í‘hs@­™½²-V@­™¼í‘hs@­™À[À8@­™¼í‘hs@­™»‹¬q @­™¼í‘hs@­™½<64@¢î²-V@¢î²-V@¢î²-V@¢î²½<6@¢î²-V@¢î°å`A‰@¢î²-V@¢îµ*™2@¢î²-V@¢î²äŽŠr@¢î²-V@¢î³3333@4” xFÜ@4“Ð|„µÝ@2i‡+ @2h†YJôñ@1Ÿ²-V@1ŸAò×s@0𖻘Çã@0ïhÛ‹­@0𖻘Çã@0ð'RT`ª@0𖻘Çã@0ïß;dZ?|öOÿÝ?•ìspîî?‘ùé éµ??ŒÇQ´¤µÜÆ@4Ï|í‘hrÁ.„M‰ûçm@4`A‰7LÁ.„QnÙ‡@3Þ«6z‘Á.„NÜC,¥@3Þ«6z‘Á.„NÜC,¥@3Þ«6z‘Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøò@¯È0 Ä›¦@¯È/²-@¯È0 Ä›¦@¯È14êJ@¯È0 Ä›¦@¯È0 Ä›¦@¯È0 Ä›¦@¯È0oiDg@¯È0 Ä›¦@¯È.}Vlõ@¯È0 Ä›¦@¯È.p:û€@ªÛž¸Që…@ªÛŸ;dZ@ªÛž¸Që…@ªÛŸ—$tT@ªÛž¸Që…@ªÛŸ±[W?@ªÛž¸Që…@ªÛŸ;dZ@ªÛž¸Që…@ªÛžß¤?æ@ªÛž¸Që…@ªÛŸb¶®}@4²ÃÉîËû@4²a|ÚR@/Š~ùÛ"Ð@/Š ÞÑ@.rn—Oß@.që…¸R@,ÑÑN;Í6@,Ñ&éxÔÿ@,ÑÑN;Í6@,ÑN;Í5©@,ÑÑN;Í6@,Ñ4êJ?€‚ñêã ?ÖÈ ¼?‘1f_¨Ï÷?Œ<…ÓÆÝ?üEÙáõ{?¾ƒìÈÁ?}Ñ¿ž,?’¼  g¶?ŠA)Nîá?e”[|ú(?äú’M @Ÿkúû“‚ @õ@ ×Â\(ö@ ×Öi*w@ ×Â\(ö@ ××#[@ ×Â\(ö@ ×ØdÙ@ ×Â\(ö@ ×ÄœBýo@ ×Â\(ö@ ×·[]Ñ@ ×Â\(ö@ ×»XÖƒA@¥ö&ffff@¥ö0@ÜEý@¥ö&ffff@¥ö7ž @¥ö&ffff@¥ö5·U>@¥ö&ffff@¥ö'ÀgÁ@¥ö&ffff@¥ö*¢Ù@¥ö&ffff@¥ö3`q3¡@8ÿ–»˜È@8ü«P׌@3Ê^5?|í@3ÁûÊú@3A‰7KÇ@3 psÞ@2ÏO „M@2È9jÃÄ—@2ÏO „M@2¿`Ê,u@2ÏO „M@2Ä ç†7L?šž†%³Õh?ÏZu‰­D?•Ó)sÄó?’âÍÑß?“f94IÝ?’ùŠƒÌ`?¡ë MV{¶?’U:÷”?’—eíhd­?˜,=ãÌÎ?•Økîn™?”‰—Ðhã?‚©³:«?Ž%f+Ö?À…®£?v#wŒ)•?—_¦3+z?‘÷ßÏ åa@@@"@$@3@.?ð?ð?ð?ð?ð?ð¿x,;¥@?R¢Í5Z?[\-þ'+y?a+rf˦Ó@ ×ÁsowÁ@¥ö-Îå·?u¢ÝNwž?z('«†µ?â í¤Í?â5–»z¶à@ŸnÕ¼Ng®@ö@©h-V@©h,ÌÌÌÍ@©h-V@©h+¹Œ~)@©h-V@©h.—Oß@©h-V@©h0 Ä›¦@©h-V@©h/ìVÕÐ@©h-V@©h/·éù@ª©ÌÌÌÌÍ@ª©ÍOß;d@ª©ÌÌÌÌÍ@ª©ÎcŠ -@ª©ÌÌÌÌÍ@ª©Í«ŸU›@ª©ÌÌÌÌÍ@ª©Ð¸º@ª©ÌÌÌÌÍ@ª©Ï\(õÃ@ª©ÌÌÌÌÍ@ª©ÑÞi­C@5[¹Œ~($@5[¹Œ~($@2ý‘hr° @2ü¥zxl"@2•`A‰7L@2”÷eýŠÛ@1õµsê³h@1õÖ8†YK@1õµsê³h@1ôÂø7´¢@1õµsê³h@1óg ù l?|öOÿÝ?“âÜ[ê• ?“IK¹É?ŒR‹w#z?‘·Xâe?‘¦‘=W?}Ñ¿ž,?•íÌÖf?—+Áèlç?RLnj?‘އ Àí?‘C å;Ã?„ã¼ÓZ…‡?7'în‹K?ˆ†Ô‡º:?ƒ=rµE=?‡´*žZ}Õ?‰©OO ¨@@@@@"@$?ð?ð?ð?ð?ð?ð?HÑBF?Jqá8Ø?,ùóéÚW?'._üøÍ@©h.“¨k@ª©ÏËžf?L®…hdÀ,?Gf•p$)q?¥B—\g!?šÀÚAª“®@ŸfÊAƒš˜@÷@§ŸÉº^5?@§ŸÊZ]Á‹@§ŸÉº^5?@§ŸÏQ%Í7@§ŸÉº^5?@§ŸÏô‘nˆ@§ŸÉº^5?@§ŸÎ‚3 -@§ŸÉº^5?@§ŸÏ² Å@§ŸÉº^5?@§ŸËŠiÛ´@”Ù‡+@”ÎSï1@”Ù‡+@”Ƨ8Þd@”Ù‡+@”¸¬<:@”Ù‡+@”ɶaN‘@”Ù‡+@”àîã=@”Ù‡+@”ßøìŽ@6Ñ|ÚQ@6ÑWï¾vˆ@3#÷ÎÙ‡@3'‰Óm1x@2ƒt¼j~ú@2ˆm߸ ª@2Þi­BÄ@2ƒô‰»@2Þi­BÄ@2¡SÑ@2Þi­BÄ@2Íâ^{¬?‚Ú¡ËG7èFo˜?Q+6Í–¡;@§ŸÌk”œö@”ÔÙ§ÛÉ?bÖvÝ´j?qn9ƒ 'l?Ê/o¢¾?ã>GX@Ÿi2¸9#Ë@ø@¥ïàA‰7L@¥ïàÄ›¥ã@¥ïàA‰7L@¥ïàIQƒ@¥ïàA‰7L@¥ïàuöý"@¥ïàA‰7L@¥ïàuöý"@¥ïàA‰7L@¥ïá@N¥@¥ïàA‰7L@¥ïßåÉ@¨“k Iº@¨“k Iº@¨“k Iº@¨“lIº^5@¨“k Iº@¨“i^ž @¨“k Iº@¨“k6z‘@¨“k Iº@¨“jqÞi¬@¨“k Iº@¨“iá°‰ @4” xFÜ@4”“t¼j@0» Iº^@0º¦L/ƒ{@0,j~ùÛ#@0,¬1&ê@/Ǔݗö,@/ÆÂ&€J@/Ǔݗö,@/Á‰7Kƨ@/Ǔݗö,@/Á–R½<6?|¬Çëý ?ß‹’bÏ?‘=?ùKh?‹ÝÉ!ë#?’Z†Ažj?‘£‡9²þ?}Ñ¿ž,?’NÛˆV(?£½:…?ø,~[´?’aÔæ -/ ?Éöm/wBZ@2}:’£@2}ÈK]Ì@1° Ä›¦@14êJŒ@/íOß;dZ@/èÎp:û~@0Œ~($ @04êJŒ@0Œ~($ @0öý!ÿ.@0Œ~($ @0lô!.?É^žQ5P‚?Eˆ‡ðó‹?’>¯\¾¦?—^tø -a?‘oNÅ’+?“ d?ÐbMçê_x?’)£µ“[ -fuæ?”3jà’_?’‘Ç#·X?‘žˆ2}?’.8 -B?ƒ/‹ÍY}‘?þ,DöP?‡Ü̈- -?…”rsw?‡?®\Âä?‡ã ËÄž@@@@@$@*?ð?ð?ð?ð?ð?ð¿BWR¿N–‚ŠŒ?`ö`íA?7ªÑb—~@¥9í¹:x*@ž±’˜?;eH _C?Xø½€­Yb?zÛJ.IR?¹‘ù¢çñë@ŸhC‘ù9=@ý@¬5w@¬5î—Oß@¬5w@¬5ïÅo@¬5w@¬5ïìVÕÐ@¬5w@¬5ï·éù@¬5w@¬5î.±Ä4@¬5w@¬5îzáH@Ÿ­XbMÓ@Ÿ­Y™™™›@Ÿ­XbMÓ@Ÿ­W -=p¤@Ÿ­XbMÓ@Ÿ­WXâe@Ÿ­XbMÓ@Ÿ­WXâe@Ÿ­XbMÓ@Ÿ­WsüP@Ÿ­XbMÓ@Ÿ­Vð¹@1wâ‚@·€@1wKƧïž@+WKƧï@+WXâe,@* 1&éy@* 1&éz@(ÿåÉä@(ÿåÉå@(ÿåÉä@(ÿØ­«ŸW@(ÿåÉä@(ÿò䎊r?É^òÀXæN?Ï[äevÈ´8@®”7ÎÙ‡@®”6E¡ÊÀ@®”7ÎÙ‡@®”_oÓ@®”7ÎÙ‡@®”MBÃÉï@®”7ÎÙ‡@®”R{²þÄ@®”7ÎÙ‡@®”UfÏAò@­¿33333@­¿.—Oß@­¿33333@­¿1&éxÕ@­¿33333@­¿ /ƒ{J@­¿33333@­¿@4mÅÖ@­¿33333@­¿IDg8@­¿33333@­¿?Š Þ@7uS&Á¾@7t9XbN@4™º^5?}@4®V“t@4Ãt¼j~ú@4Üàuöý"@4\ÚQÎ@4xDЩ*@4\ÚQÎ@4ŒIº^5@@4\ÚQÎ@4Ž\‘ÑNp³ø?8Y¸ÀV?Èv0{Gt?v󒇾O@«^µ0WÞp@œw‹6öŠ?+®ëoð¿??)ýƒ­ë¥?Ráƒ%È{A?M´; ´Yç@ŸszÑl@@¤š‡+@¤šðbMÒñ@¤š‡+Á.„€@¤š‡+Á.„€@¤š‡+Á.„€@¤š‡+Á.„€@¤š‡+Á.„€@”Ô‡+ @”Ór-V@”Ô‡+ Á.„€@”Ô‡+ Á.„€@”Ô‡+ Á.„€@”Ô‡+ Á.„€@”Ô‡+ Á.„€@7„¯O „M@6õt-N@5uãS÷ÎÙÁ.„M‰ûçm@4ÒÐå`A‰Á.„QnÙ‡@4–ý!ÿ.IÁ.„NÜC,¥@4–ý!ÿ.IÁ.„NÜC,¥@4–ý!ÿ.IÁ.„NÜC,¥?"r+©©£@8#˜@8¾:@8 >+@8Iç@8Ù? Sñƒ´V-@8Î÷@8i§@8Å@8S@8û—?‚£Ë @8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@ªøQë…@ªõÂ\)@ªøQë…@ªñ;„g‘@ªøQë…@ª𸵜Ã@ªøQë…@ª÷tw[Â@ªøQë…@ªõore@ªøQë…@ªõ¹ èy@“}G®zá@“}A‰7KÇ@“}G®zá@“}VZ3(@“}G®zá@“}KÖ>à%@“}G®zá@“}aGAÅ @“}G®zá@“}O[A‚*@“}G®zá@“}O¼Ç0Ú@7Ì]cˆe”@7·Ï[X?@33S÷ÎÙ@33z{ªéª@2€å`A‰7@2êìn@@2:Ô,<ží@2=¸Ø†@2:Ô,<ží@2=‰ËÌéï@2:Ô,<ží@2=Õ$0šw?~ì“?ÕÒJ?Þ÷ð`¾?‘)õó Ä?Œ»ãÞ~?’O¾mI³?’á\o¯p?a÷nñ?’Y’A?‘“EE/J?-õI­¬?’Húüˆ¦?‘°KÊìCá?©˜­Þ†·f?†Y ‡Ü?ƒÝŠXì#?†»QíB?‰]€Ñ–ÜË?‰ Èt_‚á@@"@"@ @9@6?ð?ð?ð?ð?ð?ð?¤ÏiÀ?`ÐtT?0=ŠMöu?XûHýWq»@ªöKê@“}Lùå=?P.ÔÈ T?y*·bUiû?¨@äÂæxË?úåè¥QZ@Ÿg]£'@@£”¥ãSø@£”“u@£”¥ãSø@£”.æ1ø¡@£”¥ãSø@£”/Aò×@£”¥ãSø@£”+ÓÃa@£”¥ãSø@£”"ÃÉîÌ@£”¥ãSø@£”&ö”Ft@®1©ûçl‹@®1–‡+ @®1©ûçl‹@®1¸ºÇË@®1©ûçl‹@®1ºQÎ@®1©ûçl‹@®1«¹Œ~(@®1©ûçl‹@®1 ëíúD@®1©ûçl‹@®1™b¶¯@8p4mÅÖ8@8T¯O „M@5uãS÷ÎÙ@5~æ1ø @56§ï²-@5,žì¿±[@4æYJôðØ@5æšÔ,@4æYJôðØ@4éîËû¶@4æYJôðØ@4êu%F ?Ÿ‹‘+-/Ü?œ’1„<Ô ?¸Š³ùÓ³¢?¤3Òƒ°?³•Šä•ìS?®¿sY°(?•²»UbB2?¢n4Ñ?¶EÎ%:9?œ¾,#“t¿?®+Ò¥õÿ/?¤n]3mÍ?­$°*a„?¦.œ9؇8?®'ºwò?¡~l’VoŸ?©)Ũ‰(æ?£ªS@Gd·@@@@@(@(?ð?ð?ð?ð?ð?ð?qõëØ<€?c¡W_°?aˆ(Ëžý?hÞ\z‹1³@£”"+s@®1Ÿ)ëV“u@1=›Ñ{@0uµsê³h@0utÐn) -@0uµsê³h@0tZNò¢@0uµsê³h@0v5 Ùì–?}õ¬#„­?!Ô¡.?‘L߉N2;?‹À0ЀÐ?‘-'¬‘Ãi?òrCêÝ?|¬h2:“?’tìFLjù?‚‰í41ð’?ƒ%¹=|ÊV?‡%çqߌ?†àV·þzÇ@@$@ @@4@5?ð?ð?ð?ð?ð?ð¿JLøä?Qs*Μ?0EsÉ€?&Ž Åò@žóüÌ_J@¬¶((Ī?P!³÷Îx?GTÄV¥Ø?«nL¢;uÐ?› -z -ƧL@ŸfýŒ];?@@¢Î½p£× -Á.„€@¢Î½p£× -@¢ÎÛÍ5¨Y@¢Î½p£× -@¢Î³œ¾à@¢Î½p£× -@¢ÎàëíúD@¢Î½p£× -@¢Ï{¥ãSø@¢Î½p£× -@¢Ïô¯O „@¥¢÷ÎÙÁ.„€@¥¢÷ÎÙ@¥¡§l‹C–@¥¢÷ÎÙ@¥¡â©“ á@¥¢÷ÎÙ@¥¢¼@¥¢÷ÎÙ@¥¢ [À@¥¢÷ÎÙ@¥¢”Ö¡aæ@6Ñ|ÚQÁ.„>¤µÜÆ@4J^5?|í@42-V@3éÛ"Ðå`@3ÿ „M;@3p–»˜Çã@3gXâe,@3p–»˜Çã@3%öý!ÿ.@3p–»˜Çã@3-í(Œç@8J¨?¢æ# ßèÄ?ÁHå,Käó?¯©C“Ë—?ѶöÄ¥±¾?ÒüHŽæg@8J¨?£ëÇfÜ\?ËŠè`R*?¿=,Ü„oè?ÇޞEæ?Ç ŸPÅ7L@8p÷?ª‡ªfƒ‚?¼-t*zþË?¨+Î&*ô?«ªwô, ?°Í=üi@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøø@¤¢Qhr°!Á.„€@¤¢Qhr°!Á.„€@¤¢Qhr°!Á.„€@¤¢Qhr°!Á.„€@¤¢Qhr°!Á.„€@¤¢Qhr°!Á.„€@¨× -=p£×Á.„€@¨× -=p£×Á.„€@¨× -=p£×Á.„€@¨× -=p£×Á.„€@¨× -=p£×Á.„€@¨× -=p£×Á.„€@7Y*0U2bÁ.„>¤µÜÆ@3{ Iº^Á.„M‰ûçm@2—ï²-Á.„QnÙ‡@2”mÅÖ8†Á.„NÜC,¥@2”mÅÖ8†Á.„NÜC,¥@2”mÅÖ8†Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@§ívÈ´9X@§íxQë… @§ívÈ´9X@§í}—ö+k@§ívÈ´9X@§íjÚ¹õZ@§ívÈ´9X@§íc× -=r@§ívÈ´9X@§ímÒñ©ü@§ívÈ´9X@§íkûµt@®k¸Qì@®kï²-@®k¸Qì@®kØDÐ@®k¸Qì@®ksüP@®k¸Qì@®k¡ÊÀ‚@®k¸Qì@®k:)Çz@®k¸Qì@®kû~‘@6>«6z@6F -¦L/@3½‘hr° @3¾ŠqÞi­@3‹"Ðå`B@3~Ñ·Y@3:Ô,<ží@33•$Þ@3:Ô,<ží@3..±Ä2Ë@3:Ô,<ží@3*¹õY³Ñ?€‚ñêã ?™ýÏËJ6|?›õåzI#…?‘“~mïÑW?›Ýr¶?¡AœÏŸ¦?1·†Æjñ?•N¬Ÿª`Ž?™ÐÈï£L?“3ÏÇF0?ž0 2Î\é?¡íÜ'Ln‹?ƒmÕ+&¬‰?˜ÔÞÑ—æJ?‡9Â@0wç?“-;dø'ˆ?‘\,‚†!?”8©èÈí@@@@@&@&?ð?ð?ð?ð?ð?ð¿q"@h?`35Ût?`V (‚?Z[˲O@§ípGS|’@®k -â(æÕ?|’ŒF¯?vtðÀø?øŽQH¤æÚ?ìqÛŠ|@Ÿc ‹”@ @§´çï²-@§´Ýó¶E¢@§´çï²-@§´¾Ov_Ù@§´çï²-@§´ÉÞÒ@§´çï²-@§´ÓMj@§´çï²-@§´¤?åÉ@§´çï²-@§´Ë Iº@§ ;çl‹D@§ 6È´9X@§ ;çl‹D@§ NV“@§ ;çl‹D@§ {quŽ"@§ ;çl‹D@§ Xï4Ö¡@§ ;çl‹D@§ -€@§ ;çl‹D@§ 9Î_o@7Î쿱[X@7ÇæšÔ,@4®5?|í‘@4œq ²•ê@4t¼j~ú@4@3ÔmÅÖ8†@3Â\(õÃ@3ÔmÅÖ8†@4DmÅÖ8†@3ÔmÅÖ8†@3ÁÑN;Í6?гá‡}?™öä+†>?­ ÒJ°?“ׂa†Üü?°ët#®ªV?±€Éó/U€?Ÿ‹‘+-/Ü?ž%Œ@&—?µ±¾ïï?”‘v»?À)™È.‡ ?±mݪƒÒ?¢t€FI?“&•Z÷˜#?©uÃÇ?žH®hú'$?°e¯ÜT‰Í?°úAäÈ&»@@@@@(@*?ð?ð?ð?ð?ð?ð¿v”j¾?p_‘ø?i>:³ç?Wú85â@§´Òß¹H3@§ JBŃ?†+L?¥?¤Ĺ+?õY`øò,‡@*?fþ%H}@ŸfFÅW - -@ -@¯ùPå`A‰@¯ùQ©ûçm@¯ùPå`A‰@¯ùR9dfp@¯ùPå`A‰@¯ùPò{²þ@¯ùPå`A‰@¯ùQ¹07Õ@¯ùPå`A‰@¯ùOK‚?@¯ùPå`A‰@¯ùOôg@—€Ÿ¾vÉ@—€¡ -¯¤@—€Ÿ¾vÉ@—€¥ãS÷@—€Ÿ¾vÉ@—€‰Àjà@—€Ÿ¾vÉ@—€Ì\@—€Ÿ¾vÉ@—€œëFí@—€Ÿ¾vÉ@—€f`”m@304mÅÖ8@30'RT`ª@0!hr° Ä@0![Ý?„ø@.¯ß;dZ@.¯ÚÍËÛé@-Öð¸»@-×deg„@-Öð¸»@-Ö»C²È@-Öð¸»@-ÖÁªeŸ›?}õ¬#„­?Úeqa†?‘ 5¾ãC?‹Î -F[?ôáa¦f?ÂKqœ?|¬Æ Væ?’úC™l?‚&šÙ£v?8f_w•³?ÕbÏzÚF?^p_‘Œ?‚t¢w{O?Œº“zí+‡?‚siH4á?‚ïñ-øB\@.ÛJ#9Àì@.ÛJ#9Àì@)`A‰7K@)zxl"h@' ƒn—@' IQ‚ª@'a-w1Å@'aG®zâ@'a-w1Å@'aG®zã@'a-w1Å@'a:’£T?É^žQ5P‚?Æ¿5›7÷?‘ŸÇSñ?‹²MÿAÿ8?êtÿKÑc?·t¤¢‚J?ÐbMçê_x?’¼  g¶?ˆ9²0?7枪y7?ÔÒ@úˆ‘?L "¾?€b¡´ñ@?Œ¬8 T£?‚oÁÆÜ§÷?‚ãaÎúvh?†‰Oú|q?†ˆ#.÷@@@@@&@(?ð?ð?ð?ð?ð?ð¿RÀ d?Bȹ ¬©^@­ïì„ë¢@®yƽ¸?Gl´´aé>×f’ˆü 6?Š÷£Œ‹4C>¨Vp¾ª@Ÿs nY:O@ @§,ݲ-V@§,Ý/Ÿ¾@§,ݲ-V@§,à6âë@§,ݲ-V@§,õ*™1@§,ݲ-V@§,àhÛ‹¬@§,ݲ-V@§,ÛW>«7@§,ݲ-V@§,ÜC,¥y@¥ê\¬1'@¥ê]²-V@¥ê\¬1'@¥êgË)_@¥ê\¬1'@¥êcS÷ÎØ@¥ê\¬1'@¥êmV@¥ê\¬1'@¥êa@N¥@¥ê\¬1'@¥ê\PHð@5IÎ_oÒ@5IrGE8ï@2\Iº^5?@2ZÔ,<žì@1¾V“u@1¹b¶®}@1¦YJôðØ@1¤¼j~ùÛ@1¦YJôðØ@1«)^ž@1¦YJôðØ@1ª6âëD?|¬Çëý ?4ë©$è‰?–•Kù̃æ?ŽwX/8?’o?P´À?“ d?€‚ñêã ?’`5žña?“1Ú©! ?œé®|oí?’íßš?•êÁØ|?ƒÆ×q„nï?þþoÀM?„›‹ÖO?…âC£½¾Ý?‹¹ÇlŒ?Ž .0åv@@@@@*@*?ð?ð?ð?ð?ð?ð¿ èö@?A”S=d?A¡Îïó¾?Uerh£OÀ@§,Ý\“\Û@¥ê_ZA@Ç?a?(åáJ³?uêÚ>@?Í´[_Ô?ñ'Þ.}\@Ÿf7!Aá9@ @¨Qô9Xb@¨Qè1&éy@¨Qô9Xb@¨QíÅÖ8†@¨Qô9Xb@¨Qñœàu÷@¨Qô9Xb@¨Qóg ù @¨Qô9Xb@¨QíjO@¨Qô9Xb@¨Qí:’¢@§âÈ1&éy@§âºŸ¾vÊ@§âÈ1&éy@§âÆö”Ft@§âÈ1&éy@§â¼àuöþ@§âÈ1&éy@§â½¥œà@§âÈ1&éy@§âµ$Ý@§âÈ1&éy@§âÆ€IR@8‰Î_oÒ@8‰ÞÑ·@4^Ù‡+@4aTÉ…ðo@4²-V@4'süPH@3G ù kº@3GškP°ó@3G ù kº@3DmÅÖ8†@3G ù kº@3EF -¦L0?©W»¥ÿ$B?“vuØcʲ?•XYäý?š›'©ÓZ¸?šPUó`ÿ?–"ûe”M?žŒÝÙ›P?”b?Etã?¤xÝH +Ê?š. Œžô?X2»æÕ$?˜]'ŠÎØY?žÇ™žsŠ?‘ÌAzÁý?•ýÿLîO?‰öuП—?”ø™¾?ž S è›@@@@@*@,?ð?ð?ð?ð?ð?ð¿/2ÞA?\%Ç<?Zü™ñÕΈ?b{ø}–b@¨Qî•1ψ@§â¾?ý{Ò?sDs×Y?œÛx¾l?Ì=žMýìd?åhÿò™s„@Ÿo0z¥×ú@@®ïLIº^5@®ïGl‹C–@®ïLIº^5@®ïLIº^5@®ïLIº^5@®ïJ=p£×@®ïLIº^5@®ïM«ŸUœ@®ïLIº^5@®ïJôðØE@®ïLIº^5@®ïL˜_ø@«2ï²-@«2ô¼j~ú@«2ï²-@«2ïùrGF@«2ï²-@«2íjN@«2ï²-@«2ð|„µÝ@«2ï²-@«2ïiDg9@«2ï²-@«2ïìVÕÐ@8ò䎊@7öâëC,@3°Ä›¥ãT@3±hr° Ä@2®ùÛ"Ðæ@2®¤¨ÁTÊ@1èè§æ›@1é=Ùb·@1èè§æ›@1éÞÑ·@1èè§æ›@1é7KƧð?§Q,Äš¤?“…­tµH?“UGNAÂÆ?ŽõÕJ?‘§›ßÉîj?’ïJ8Èž?‚á²Olºü?– ÕDÛuÝ?“$zü¾6?˜ò¶Ðú?’.<ù?‘:i€ÑìÂ?·ˆ]ø„?vùv“?‡Ü̈- -?„ªÎZ´?‡ø¢:›¸1?‡YÍ_@@@@@(@(?ð?ð?ð?ð?ð?ð?#q·@¿R¿S>è?LåN‚½Jt?.V,«ø@®ïLBÐm"@«2ðÒiâ1?al9'}?R9Y {y?¹•G4q?¢‹tˆ `Ø@Ÿo_SÖ!A@@¯ETýó¶F@¯EU$Ý@¯ETýó¶F@¯EUϪ͠@¯ETýó¶F@¯EU$Ý@¯ETýó¶F@¯EUϪ͞@¯ETýó¶F@¯ES÷ÎÙ@¯ETýó¶F@¯ES©*0U@ªbMÒò@ª&éxÕ@ªbMÒò@ª°ò{³@ªbMÒò@ª£× -=@ªbMÒò@ªÎ^@ªbMÒò@ªhr°!@ªbMÒò@ªò{²ÿ@4(†YJôñ@4(e”¯O@0 Ä›¥ã@0-à r@/ÊÀƒn@/‰7Kƨ@.a-w1Å@.aohÛŒ@.a-w1Å@.aG®zâ@.a-w1Å@.aG®zâ?€‚ñêã ?Ì&ÏøHÃ?‘*"AaIÐ?Œݶ\ñr?‘Dj?È2I/?|öOÿÝ?’ ÃCÀ`ú?ŠA)Nîá?]bËn~?äú’«6z@4F÷åLy@0½‘hr° @0½pÕz 8@0H“t¼j@0H8%€‚%@/žžš@/Ÿ8ì½9¿@/žžš@/»)ŠÛ•@/žžš@/žz‚‰?}õ¬#„­?Çé'ÐŒ?‘3W¦?%¥?‹­B¦·‡‰?‘×±T©?ÊVÑñ?|¬h2:“?’Ÿ1(µ?ˆ—tÒy!?7íÞݸ?ê\C„)è?s¬cð§)?‚o«E—P}?Œ³ßl< ?‚x¢ú½û¯?‚ùÉÃk†?†¡“ÿ4?†ž6Íã@@@ @ @5@3?ð?ð?ð?ð?ð?ð¿ -fuæ?‘[RK¶ËE?˜ò¶Ðú?’˜£“µ~Ð?‘A_f;j?¡jÐÅx?Œèsq‡#?†úŒz_–È?ƒ ?ÿ½?‡ø¢:›¸1?‡v>ª¸ @@@@@*@*?ð?ð?ð?ð?ð?ð¿JÇ:jä¿]²zq?NDK·Rs?@:‹Ê~@§Û^›LŒà@£Tn¬‡©n?gÚáÒ?Vã‘á5ß?ËÐV7qF,?¥cÃx -e@Ÿn™G’çc@@§D49Xb@§D3÷ÎÙ@§D49Xb@§D4FsØ@§D49Xb@§D4ðØDÐ@§D49Xb@§D4SŽóM@§D49Xb@§D33333@§D49Xb@§D3×Ûõ@\…¸Qì@\…¸Qì@\…¸Qì@\ƒa@P@\…¸Qì@\‚&€I@\…¸Qì@\ƒn—@\…¸Qì@\‚Zîc @\…¸Qì@\„“t»@25S&Á¾@25Vlô!@/€A‰7KÆ@/oÒòä@/ ƒn—Ž@/Ÿ¼@.`ªdÂù@.!-w2@.`ªdÂù@.záG®@.`ªdÂù@.¢3œÀ?É^ýTïŽ?Ì&ÏøHÃ?‘`×›mÏ?‹ª½¨ª8v?‘Dj?¾ƒìÈÁ?ÐbMÝn½?’ ,øÕC©?·t¤¢‚J?3.Ylî?ß’ºèh!?e¾DQ„Q?€bMÔŠ»?Œµ3‰;šÏ?‚§W®ê ?‚ð'ã:ÂÝ?†¼Š˜L¥÷?†¼Š˜L¥÷@@@@@,@&?ð?ð?ð?ð?ð?ð¿:€å,?(Šƒ¿Ä?,¦ÄŒ»_?->{Ž!6@§D3À§Wÿ@\ƒ&œ‘â?;Ù¹VlB?;÷½ˆÅÊ?qï"øLQŽ?q~Íaú@Ÿsõ\9¬@@¤.s3333@¤.rñ©ûç@¤.s3333@¤.týó¶G@¤.s3333@¤.uÂ\)@¤.s3333@¤.s àÞÔ@¤.s3333@¤.rT`ªe@¤.s3333@¤.qÞi­D@¬…»çl‹D@¬…»¥ãSø@¬…»çl‹D@¬…¾\‘ÑO@¬…»çl‹D@¬…¾ í(@¬…»çl‹D@¬…»ô‡ü¹@¬…»çl‹D@¬…¼]cˆf@¬…»çl‹D@¬…¼žì¿±@4rÃÉîËû@4r䎊qÞ@0£÷ÎÙ‡@0£ê³g ù@0H“t¼j@0HºÇË)@/¨Û‹¬q @/©­BÃÉï@/¨Û‹¬q @/ª~ùÛ"Ñ@/¨Û‹¬q @/ª¦L/ƒ|?|öOÿÝ?ß‹’bÏ?‘e -!ßC?‹ó#ƒt£?ôê÷º»â?‘¦ µÚ?1·†Æjñ?’7Îf¬ps?«'Q™µ?‡@Cvì×?øóéM Ÿ?r¼Jsž?‚2Y0â³?ŒïQ¼º“ã?‚† SFò?ƒ^ ›¨¬a?†Ë¢L1Ù?†å·ÑfWà@@@@@(@,?ð?ð?ð?ð?ð?ð¿$íºÁ?(3á?/.Ü(x>ùj$ö ðc@¤.r¥â¬Ã@¬…¼ œp?6,s•toÓ?ðv˜3q?z%´˜ü?@]¿kåh$@Ÿg5™©à@@¬Þ¦ffff@¬Þ¡‰7KÈ@¬Þ¦ffff@¬Þ­BÃÉï@¬Þ¦ffff@¬Þ¥ýŠÚº@¬Þ¦ffff@¬Þ¥¼£n@¬Þ¦ffff@¬Þ¤¨ÁTÊ@¬Þ¦ffff@¬Þ§E8ï5@ª“¾ùÛ"Ñ@ª“ŸQì@ª“¾ùÛ"Ñ@ª“âœwš@ª“¾ùÛ"Ñ@ª“¾Ov_Ù@ª“¾ùÛ"Ñ@ª“À@ª“¾ùÛ"Ñ@ª“¾ùÛ"Ò@ª“¾ùÛ"Ñ@ª“¿|í‘h@7­¥œàv@7¯–»˜È@2W+ Iº@2W8}¿H@1lj~ùÛ#@1l¬1&é@0s&Á½¦@0ra|ÚR@0s&Á½¦@0rGE8ï5@0s&Á½¦@0r@·€4n?|öOÿÝ?™à*­Ÿš?’ -N»A3?‹¬àÌ’Ç?‘VšÐ^Ø?ß-tT?¡ÅꯨŠT?™Eo…Æ&?‘ŽütÅÒ(?-õI¸`K?‘77…Âç?ŒÙ¶êm¥?‡þ:ó-êÏ?ï7è-ÖR?ƒÚ@êA²?ƒžÂâk,?‡2[síç?‡ã ËÄž@@@@@(@"?ð?ð?ð?ð?ð?ð?RAåD¿Lø&Q?0ÄÕµg?>KMU9Ò@¬Þ¥!³›@ª“ÀD¨8·?TäÅ>È`?T¾‹Ç @?«–B WA?¢,;òô1@Ÿnvr.Ìk@@žŽ~ùÛ"Ñ@žŽ¼j~ùÛ@žŽ~ùÛ"Ñ@žŽéëyFØ@žŽ~ùÛ"Ñ@žŽ×O.+@žŽ~ùÛ"Ñ@ž&'A¥@žŽ~ùÛ"Ñ@žA:’£@žŽ~ùÛ"Ñ@ž’šó¦@¬ÇºáG®@¬Ç¬Iº^5@¬ÇºáG®@¬Ç›l“‘@¬ÇºáG®@¬ÇƒÝUûË@¬ÇºáG®@¬Ç€õx”@¬ÇºáG®@¬Æç ù l@¬ÇºáG®@¬Çt/=~=@8cg ù l@8[_Oå…ä@4 Iº^5@3¾ë8@3Wï²-@3*ˆŠ¥b@3^«6z‘@2Ë -8¬|@3^«6z‘@2â‚@·€5@3^«6z‘@2ÙjD)o‹?™¤Ï}IT?«BGt×ì?¤r¢8¼M?»!\|“?!?½i~ür0)? >£¢;f_?¨'Yb! ?½~6gäL‡?·‰ÛªéÇb?̳÷r`f­?Ëu¥{¤0®?’ôå¸ÿß ?–æSp?¡Œhb“óE?£{ÙÓâ¹­?­G[]=ÿ?¡ÛÈxŪÄ?†ËŽÎY½x@@@ @ @$@&?ð?ð?ð?ð?ð?ð?€zBoÀ¿†æå Õ€?a°—F/§/?tî¶‘€ƒâ@žŽîO–m¡@¬Ç‰)¾èf?†*ˆË¹ZÌ?•œö†ò‡?átÃ"z™Ð?þ Sß@ŸmGhÀ%J@@¤óùXbN@¤óùÛ"Ðå@¤óùXbN@¤óü£n/@¤óùXbN@¤óùõY³Ð@¤óùXbN@¤óùÛ"Ðå@¤óùXbN@¤óø7´¢4@¤óùXbN@¤óø}¿H@ ü A‰7L@ ü Ä›¥ã@ ü A‰7L@ ü¡G®{@ ü A‰7L@ ü ƒn˜@ ü A‰7L@ ü @ ü A‰7L@ ü¢e+Ô@ ü A‰7L@ ü¡½¥ž@3Î쿱[X@3Îæ1ø @0ør° Äœ@0÷§†Â&€@0’Ðå`A‰@0’GE8ï5@/Ǔݗö,@/ÆšÔ,<Ÿ@/Ǔݗö,@/ÈÁTÉ…ò@/Ǔݗö,@/Èð¹?}Ñ¿ž,?Úþþ³?‘`×›mÏ?‹¦ ŸYÔ?‘VšÐ^Ø?‘‚ÊŸû©?|¬Çëý ?’›ÈÖÝ?ö”iåó¨?1ð'7éÃ?‘c3¸cÜ(?äqÅYÈ?ƒ/‹ÍY}‘?ŒÖ -ÄȲ?‚Ì ÝŽ‚8?ƒžÂâk,?†Ü‘ °Ô?‡v>ª¸ @@@@@*@&?ð?ð?ð?ð?ð?ð¿4Õ«€€?'âÈñ ?!ö=ã"½K?'];ÇØŸ@¤óù?ËeÆ@ ü¡ôÔ?AÈ .Sö?GÁèÇ&zý?«›"}e?œ³ &k -@Ÿfð¾Óº@@¯¸Ôýó¶@¯º^5?}@¯¸Ôýó¶@¯¹Û"Ðä@¯¸Ôýó¶@¯¼64@¯¸Ôýó¶@¯ºáG®@¯¸Ôýó¶@¯¸ -à@¯¸Ôýó¶@¯·Oß;@¬MuÂ\)@¬M~¸Që…@¬MuÂ\)@¬MtÖ¡aå@¬MuÂ\)@¬Mqø .@¬MuÂ\)@¬MsŽóMj@¬MuÂ\)@¬Mv¡aä÷@¬MuÂ\)@¬MvR½<6@8šÔ,<Ÿ@8þÅm\û@1ë¥ãS÷Ï@1éÔ•*™@1Z~ùÛ"Ñ@1X“t¼j@0}cˆe”°@0{xFÜ^@0}cˆe”°@0{²þÅm]@0}cˆe”°@0|wškP±?Œs¤DÅÐ?×s·IÓ?‘Š©Nà¶?F‘q/b?‘ƒZ)Àˆ?‘ë´¤G?«_$Øï†?’{cü€øõ?§^ ÿo˜?’"Š6›Wz?‘<¸ö}½?›ªU3Îp? ânIð?ŒÛÏ·+?‚‘´…=Cb?„•ˆG’Z¾?‡ø¢:›¸1?‡v>ª¸ @@@@@&@&?ð?ð?ð?ð?ð?ð¿A•ˆà¿Ç|¯@?53N½î?Tþ1†¯ @@¯¹+—”@¬Mué^-x?U'–tec$?iÍy4ª+?¨óFRÁ?Ç»•ûÔ@Ÿp9Znfü@@©2ß¾vÈ´@©2ã•$@©2ß¾vÈ´@©2Ó÷ÎÙ@©2ß¾vÈ´@©2ŸQí@©2ß¾vÈ´@©2ÕÜÆ?@©2ß¾vÈ´@©2Ý¿HÌ@©2ß¾vÈ´@©2Ý—ö+k@¡:·KƧð@¡:ºŸ¾vÉ@¡:·KƧð@¡:/Ÿ¾@¡:·KƧð@¡:~«6z@¡:·KƧð@¡:Œ²•éâ@¡:·KƧð@¡:¦Á½¥@¡:·KƧð@¡:¢ø7´¢@6òÃÉîËû@6ð-à r@2° Ä›¦@2°¸ºÇ@2ˆ“t¼j@2nšu@1Þi­BÄ@1ohÜ@1Þi­BÄ@1 rGE8ð@1Þi­BÄ@1tSŽóN?‡YÍ_?‘€5{ºÎ#?£«ëS–_??”oý]Þ‡&?”k¸!¯eÕ?žy—™öW?‡YÍ_?œ¾ß¤?æ?±Wz>ð­œ?©1}çï ?¢i ú?¨,?e -,ùž?œÚ.ô §Æ?“~tÒZE?–½™C)?Ž«]O8èº?‡Õ˜]–GÄ?™¼òQh@@@@@@,@&?ð?ð?ð?ð?ð?ð¿_'øÝÆ¿vµ†&A€?W0l’_+6?d'Ê™Ol‡@©2Þ¯ýzë@¡:®…ÐP?uæ®n“ ?„æ“”?çóE['?ùtËص1@Ÿeú¸Y@@¢ÖŠ=p£×@¢ÖOß;d@¢ÖŠ=p£×@¢Ö”ýó¶F@¢ÖŠ=p£×@¢Ö¸ºÇ@¢ÖŠ=p£×@¢Ö“g ù @¢ÖŠ=p£×@¢Ö›ô‡ü¹@¢ÖŠ=p£×@¢Ö!ÿ.I@¢vŸQì@¢vÅãS÷Ï@¢vŸQì@¢v§®zá@¢vŸQì@¢v·§†Â'@¢vŸQì@¢vÆö”Ft@¢vŸQì@¢vÀ4mÅÖ@¢vŸQì@¢vÈè§ç@7Î쿱[X@7Õœàuö@3ã÷ÎÙ‡@3Ó¯·éù@36§ï²-@3)7KƧð@2ýcˆe”°@2èõÂ\)@2ýcˆe”°@2èr° Äœ@2ýcˆe”°@2ëçl‹C–?•²»UbB2?“à‘û?¥p»`£@i? „rÓ‚¼?¤¾¯d…8?¬Jà"ÃFr?¤I~Óy‘?—b…ªH=?ªýîm¿ùl?±?»ä?«Ÿ¸VÅc?«˜™1Á_A?ƒ¡É^&Ö?“=ä!ƒK?Цÿßë?¤?•YžŽAdå?žµ½èq¨®?ŸÂ°çR=@@@@@,@,?ð?ð?ð?ð?ð?ð?j}ÄLŸ¿ -ü´?A+U{³5?PÎ+'àc@¢Ö•H1^@¢vÅq˜1?aÁA²‡—?q, Yõÿê?÷’C=?«±ûƒÜ¾@Ÿihãi¥@@¬U Iº^@¬UÁG®{@¬U Iº^@¬U¡G®{@¬U Iº^@¬UbMÒñ@¬U Iº^@¬U­‘hr°@¬U Iº^@¬Ui 'RT@¬U Iº^@¬U–”Fs@¡.‰7KÇ@¡.ÊÀƒ@¡.‰7KÇ@¡.0Hð@¡.‰7KÇ@¡.M(Œç@¡.‰7KÇ@¡.LIº^5@¡.‰7KÇ@¡/ê³g¡@¡.‰7KÇ@¡/ðoiD@6­¥œàv@6¢3œ¾à@2@ Ä›¥ã@2+xFÜ]@1´“t¼j@1˜Û‹¬q @1TmÅÖ8†@1.Ov_Ø®@1TmÅÖ8†@1ã¼Ó[@1TmÅÖ8†@1u%F -¦?¥K¶{Oÿ?®–ú—ÿ>¦?® ¸¡¢¢?¥©Ù%°Ù\?À¯B¾´¶?¼ìc>Ý‘?óA[ØïF?´«z¤ ³Ð?¹Y8쪒•?¤G›LD3?ÐðûÿôÇÔ?ÆÏ›Ú¾2?‚ÂÌ]å?\{ÏïŽ?›®­,ë?’oÍb4U?“ )D)?–í -e˜›ï@@@@@(@(?ð?ð?ð?ð?ð?ð¿…p§è€?¡GW%€À?tj¸ '8ß?ÓY ô"@¬U±$"Ø9@¡.;¢ëÛ? -µ7ð?œÇÑþ½\ã?ãõm:Ô³ƒ@þµ‡ƒÛæ@Ÿcm.)‘:@@¯ßš¬1@¯ß–E¡ÊÁ@¯ßš¬1@¯ßšû~‘@¯ßš¬1@¯ß›"Ðå`@¯ßš¬1@¯ß›À6ã@¯ßš¬1@¯ß™rGE8@¯ßš¬1@¯ß˜ -à@®=ixÔýô@®=kC•@®=ixÔýô@®=iûçlŠ@®=ixÔýô@®=iQ‚©“@®=ixÔýô@®=i“ àÞ@®=ixÔýô@®=iã¼@®=ixÔýô@®=i“ àß@2šÔ,<Ÿ@2£S&@-kƧï²@-k¬q ²•@,rn—Oß@,rGE8ï5@,Ǔݗö,@,ÇË)^Ÿ@,Ǔݗö,@,Æö”Fs‚@,Ǔݗö,@,džÂ&€ž?Éq0ÀŠ$?Òç{íj?‘*"AaIÐ?‹ÑqÔ@vÿ?è<`.Ÿ?Ðýð^–Ö?Ðcš¾µE?’)£µ“[µDà? $gú‡v?„›‹ÖO?ŒÅÐ7N³¬?Š*ÊÔQãú?‹¹ÇlŒ@@@@@(@(?ð?ð?ð?ð?ð?ð?R`š„¿W~Ô$P?5£çÝ3@?2ÕÎII/ò@¤Ÿa!F?@¬Êøü«}§?TÕ>µ?R«¾©õv?´¡À&Úx?«ŽgA_@Ÿeá¿Om@@¡Iñ©ûçÁ.„€@¡Iñ©ûçÁ.„€@¡Iñ©ûçÁ.„€@¡Iñ©ûçÁ.„€@¡Iñ©ûçÁ.„€@¡Iñ©ûçÁ.„€@žÙüí‘hsÁ.„€@žÙüí‘hsÁ.„€@žÙüí‘hsÁ.„€@žÙüí‘hsÁ.„€@žÙüí‘hsÁ.„€@žÙüí‘hsÁ.„€@7úqÞi­CÁ.„>¤µÜÆ@4ý‘hr° Á.„M‰ûçm@5“t¼Á.„QnÙ‡@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø @¬—ƒn—@¬—ƒn—@¬—ƒn—Á.„€@¬—ƒn—Á.„€@¬—ƒn—Á.„€@¬—ƒn—@¬—5Y³Ð}@¬—ƒn—@¬—ËàÞÒ‰@¬vÓt¼j@¬vÓt¼j@¬vÓt¼jÁ.„€@¬vÓt¼jÁ.„€@¬vÓt¼jÁ.„€@¬vÓt¼j@¬w7Xâe@¬vÓt¼j@¬vzÔ,<Ÿ@4?–»˜È@4?ß;dZ@2—+ IºÁ.„M‰ûçm@2F“t¼Á.„QnÙ‡@1µµsê³hÁ.„NÜC,¥@1µµsê³h@1æÁ½¥@1µµsê³h@1ƒ¯·éú?}Ñ¿ž,@8#˜@8¾:@8 >+?»B¬W2ì9?¸à”ͬc?|¬Çëý @8Î÷@8i§@8Å?¶"Ý “Sí?·KÃãùE~?‚|׿pY@8 * @8p÷@8¶?«I„t?°XÆl­‘i@@(@*?ð?ð?ðøøøøøøøøøøøø!@¢ˆxQë…Á.„€@¢ˆxQë…@¢ˆtFsØ@¢ˆxQë…@¢ˆxºÇË@¢ˆxQë…@¢ˆzáG®@¢ˆxQë…@¢ˆu$Ý@¢ˆxQë…@¢ˆtzáG®@¨ëD›¥ãTÁ.„€@¨ëD›¥ãT@¨ëDÂø7µ@¨ëD›¥ãT@¨ë@[À7@¨ëD›¥ãT@¨ëCÉîËû@¨ëD›¥ãT@¨ë<¬1'@¨ëD›¥ãT@¨ë>($ y@8^Hè§æÁ.„>¤µÜÆ@4@ Ä›¥ã@4=žƒä%®@3K"Ðå`B@3KŸU›=@2èè§æ›@2æÜ]cˆf@2èè§æ›@2é=Ùb·@2èè§æ›@2éŒ~($ @8J¨?Az;öè?”zùeߎ?º•÷ ?˜ -0˜ggk?–®UÒ.@8J¨?œÅ x[{?•Ó%Øc~?˜8wxšq?™x9ÿ¥l?–b+¡m°:@8p÷?‘ë…¸Qì?–EÑ~?>æ¿Îï?ˆT“Ÿÿ?¢—„¯l@@@@*@(?ð?ð?ð?ð?ðøøøøøøøøøøøø"@¦•%@¦0Ä»ùS@¦•%Á.„€@¦•%Á.„€@¦•%Á.„€@¦•%Á.„€@¦•%Á.„€@˜.záH@˜¦ì°9@˜.záHÁ.„€@˜.záHÁ.„€@˜.záHÁ.„€@˜.záHÁ.„€@˜.záHÁ.„€@8åöý!ÿ.@7ô?Ø\zt@6#÷ÎÙ‡Á.„M‰ûçm@5Àå`A‰7Á.„QnÙ‡@6!:’£SÁ.„NÜC,¥@6!:’£SÁ.„NÜC,¥@6!:’£SÁ.„NÜC,¥?Ç)HÞ@8#˜@8¾:@8 >+@8Iç@8Ù?Í„¡g_H@8Î÷@8i§@8Å@8S@8û—?ô€«ä\é@@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø#@ ƒ³3333@ ƒ¼64@ ƒ³3333@ ƒ°oiDh@ ƒ³3333@ ƒ¸1'ü@ ƒ³3333@ ƒ­( î@ ƒ³3333@ ƒ«™C@ ƒ³3333@ ƒ¥¸6-]@¤µhõÂ\@¤µQÑN;Í@¤µhõÂ\@¤µebKe@¤µhõÂ\@¤µhzÔ÷K@¤µhõÂ\@¤µeÀRü:@¤µhõÂ\@¤µoâÈzþ@¤µhõÂ\@¤µt’¬9¬@8Žì¿±[X@8‡4,Np´@3Ò Iº^5@3Öc%n¤?@3d¼j~ùÛ@3fµ '»@2‡ ù kº@2‹&@\@2‡ ù kº@2}ûNå@2‡ ù kº@2íé.f?|ï"<¶~~?£Ç lJ?”’âùFÁ:?¾à} Ê?”±9/<â£?•5¦«ÿ’\?…%!{‚A?“F¡ö€IÃ?”øõx²?‘/­ÿ6ïí?˜€i›"Å?˜>+W²?›8¢ìþ…^?¥…ü¬X¼?—*ñ*µ?ˆT[S+?Ž ºÕqø?¡,Éëw.@@"@(@ @:@5?ð?ð?ð?ð?ð?ð¿s/‡o€?}ے䮀??¯düª/?0N|ñk³H@ ƒ²ü@¤µa€ßúÇ?D7™‰˜ð@¡9“Î&2@¥âДÀø.?Oå°v«F?d-]]NÝ­?¨Íõ2 ´ñ?ÑWs‡D@Ÿf3ÏÎ@%@¦o!G®{@¦o!‰7KÈ@¦o!G®{@¦o&1ø @¦o!G®{@¦oDZ¬ @¦o!G®{@¦ož¸Që…@¦o!G®{@¦od¨ÁTÊ@¦o!G®{@¦oNV“@ªçÀ@ªçÀƒn™@ªçÀ@ªç§æšÔ@ªçÀ@ªç£n—@ªçÀ@ªçtã¼Ó\@ªçÀ@ªç…®æ1ù@ªçÀ@ªç‹…¸R@4T xFÜ@4SÝ—ö+k@1 Iº^5@1¼j~ùÛ@0lj~ùÛ#@0]w1Å@08DЩ*@0#¢œwš@08DЩ*@0dÂø7µ@08DЩ*@0µsê´?|öOÿÝ?£]fÊÿm?§ôÑw‹‡?Æ ¡'•½`?à t(’“?ÂÔ]GWÔ?}Ñ¿ž,?~y°޵?¢"š°j?¾È7ß™å´?ª¿Tiî©õ?±³þG·)g?‚uÞ@>N ?‚ñêã ?ˆ©CwBÅÉ?•Ïzl¼ãh?8Ï£§?§ÞF-™ü@@@@@,@*?ð?ð?ð?ð?ð?ð?{áÿŠ¿‹É^\À?x˜ª#ý?f2=9ÃC@¦o+þšÿ@ªç¸rá?…à~©?rö Ì(?ñ}²Œ¸EP?ã¢á{^œ@ŸZˆzyª‡@&@­>§ï²-@­>˜“t¼i@­>§ï²-@­>£¨ 5@­>§ï²-@­>¨±ï}V@­>§ï²-@­>¨ãtÚ3@­>§ï²-@­>§8a~@­>§ï²-@­>¦ãâ2@–žÅ¡ÊÀƒ@–žËZ¶ßÖ@–žÅ¡ÊÀƒ@–žÂÂÏT>@–žÅ¡ÊÀƒ@–žÈD5ñš@–žÅ¡ÊÀƒ@–žÄäsxø@–žÅ¡ÊÀƒ@–žÄ†QÇi@–žÅ¡ÊÀƒ@–žÀÚv¤d@6õS&Á¾@6ì~QùÜE@3.5?|í‘@3/=<$n @2PA‰7KÇ@2QaDÐWd@1‚‚@·€5@1ƒÄẄô@1‚‚@·€5@1†@>÷é@1‚‚@·€5@1„m¿ùË©?( ˜?C\Ïç-?‘§øDù¡w?Œ9CŒýµˆ?’×U5?‘?à´:(?|ò0p‰J?’RóEP?‘ˆÅn,…?hÿöžy¾?’¦ñ*_?ÅL Ø -?Šu„Ó7Gý?8ÍG§?‚äê/|?ƒ Ãgñê?ˆb’qÙ?‡n+.'5@@"@(@(@:@7?ð?ð?ð?ð?ð?ð?hËZì¿PÁ­ŽN?XÑ¡šù¿?C'3š8ã@­>£›DX/@–žÅìzaæ?uä µîÓµ?>µbðh ?í/‚nxtÏ?ƒ%OÍA@Ÿj~åV©S@'@¨TøÔýó¶@¨TøQë… @¨TøÔýó¶@¨Tø.KN²@¨TøÔýó¶@¨Tü©Kú@¨TøÔýó¶@¨Tû¤Yf@¨TøÔýó¶@¨TùÏR@¨TøÔýó¶@¨TùXg³K@˜çŽV“@˜ç¦`’S@˜çŽV“@˜ç‘uk\W@˜çŽV“@˜ç«Û Þ@˜çŽV“@˜çŽO$1@˜çŽV“@˜çŠÌ,˜x@˜çŽV“@˜ç e@7í¥œàv@7÷Òçº>@3E?|í‘h@3F§;(@2Ͳ-V@2ÎÜÛ[@2Vý!ÿ.I@2W¿…q22@2Vý!ÿ.I@2XªFÛÆM@2Vý!ÿ.I@2X’Ò±ïd?–0kÎñÉ?’¬˜«!d?“œ‘A ?¨ŽÉ‘  ?’¦ F`"?’[„ä&«?žƒ¸r2ã?“TT%ìô?“1 -ÉúÔ?‘ëÂ^´?’Î=­YÚ?‘Öœf};?›)‰xr? Pkñ?†¯Ä\1—k?‡{®j•9@?‡x–j*ö?‰‡“¤Ë®@@,@*@*@:@:?ð?ð?ð?ð?ð?ð?Uhù@¿aôW€?BŸ~?Q¨¤OyPµ@¨Tù㌵#@˜çƾ -J?]K3nà?iò r?´=bB{N ?Ë 2XËÂ@ŸnFLj@(@§r†§ï²@§r‡+ K@§r†§ï²@§r‰^ž @§r†§ï²@§r%F -¦L@§r†§ï²@§q£{J#;@§r†§ï²@§rU*™2@§r†§ï²@§rl²•éâ@¦´p Ä›¦@¦´k Iº@¦´p Ä›¦@¦´”Ö¡aå@¦´p Ä›¦@¦³U¨Xy>@¦´p Ä›¦@¦³úÔ,<Ÿ@¦´p Ä›¦@¦³ûJ#9Á@¦´p Ä›¦@¦´ÏAò@7” xFÜ@7’ò䎊@4ÇÎÙ‡+@4Îi­BÃÊ@5$¼j~ùÛ@4ê¬1'@4G ù kº@4»/ìVÖ@4G ù kº@4=¥œàv@4G ù kº@48K]Ìcò?€‚ñêã ?’3ˆq×?ÔOLï>?ϩƧ;2k?·ÆÐtµô?«óB?)3y?‚á²Olºü?••´þDê‘?ÊhýýTÈ7?Å÷îØßsÃ?Äø&‰2d?¼?þ®o´÷?’úz."?¤rI©‹×s?а7DuI‘?· Vò§?ÀÀ‰³ŒÍ?Ãô(4ÄÕž@@@@@*@*?ð?ð?ð?ð?ð?ð¿~â;¨b¿˜Pܽ§À?yûÖ:!?réÍ €I@§r¬åmÁ@¦´Z IØÐ?ˆ¾9¡˜§à?~$©Ö™¨à@,K^î!g?ÝæwÁg‚@Ÿ[~;LG@)@©záG®@©f$Ý/@©záG®@©Œq ²—@©záG®@©iDg8@©záG®@©ŠqÞi­@©záG®@©€ qv@©záG®@©b¶®}@¢Ç´9Xb@¢Ç­‘hr°@¢Ç´9Xb@¢Ç½¿HÌ@¢Ç´9Xb@¢Ç¶”Fs‚@¢Ç´9Xb@¢ÇÇÕfÏB@¢Ç´9Xb@¢ÇÔFsØ@¢Ç´9Xb@¢ÇϪ͞„@8ð4mÅÖ8@8ïåÉä@5}‘hr° @5}„M:’@5ï²-@5škP°ò@4®_oÒ @4´›¥ãSø@4®_oÒ @4¯—$tS@4®_oÒ @4ºu%F ?„F/·ÿP5?¡Ýq+qW?©¢“øÌ—>?¢Ç˃.†?¨Ô ‹ÿÑ?«DX ÍSþ?­éW«ZM›?£‚Û£0Τ?´ý³Bí?¥6r”00M?¨;çCÛ=?§ô*²]µ6?Çöµmâ‚?—n„Tºn?¢›Sný{?¦·}­2;¹?¡£‡9²þ?¦«DðL@@@@@"@$?ð?ð?ð?ð?ð?ð?Gе?}äÌí?e¹SFµëF?aGø“ @©{®ÆâÑ@¢ÇÅí\H·?‹­wQüýì?| “Å€Âs?îâP›ÈaŠ?ÄRu§]¶ê@Ÿky@rgÁ@*@ªá£× -=q@ªá¤Ý/ @ªá£× -=q@ªá›¥ãSø@ªá£× -=q@ªá™™™™›@ªá£× -=q@ªá/Ÿ½@ªá£× -=q@ªá¥¸Që@ªá£× -=q@ªá¢ Iº]@¯>éxÔýô@¯>ëC•@¯>éxÔýô@¯>èr° Å@¯>éxÔýô@¯>å¸Qì@¯>éxÔýô@¯?‡+@¯>éxÔýô@¯>êÀƒo@¯>éxÔýô@¯>ñë…¹@8L]cˆe”@8H­«ŸUœ@3µãS÷ÎÙ@3±4êJŒ@3~ùÛ"Ñ@3 ¸ºÇË@2Œ¿±[W?@2Š Þ@2Œ¿±[W?@2}ó¶E¡Ë@2Œ¿±[W?@2}¥œàv?ªÝ8Ⱥ™J?¾¢`ƒ?›£=Ñã5?š„ÅX™c?W2©D?ZF/Dç6Û?dØè‚&ì@ªá¡8‡ø@¯>ð| tM?r~扩-O?Œ~ÊGD7?Å|åFþï@˜)' –¦@ŸoÜýa@+@©oâÐå`B@©oäÝ/¡@©oâÐå`B@©oä2ÊW¨@©oâÐå`B@©oä2ÊW¨@©oâÐå`B@©o㯷é@©oâÐå`B@©oâZîc @©oâÐå`B@©oâ¶®}V@zÏß;dZ@zÒ5Áfj@zÏß;dZ@zË]Ìcñ@zÏß;dZ@zˬq ´@zÏß;dZ@zÍqu@zÏß;dZ@zÍqu@zÏß;dZ@z͸ºÇ@6°4mÅÖ8@6²×süP@1° Ä›¦@1ÃÝ—ö+k@1t¼j~ú@1ŽŠqÞj@0&YJôðØ@0'¯·é@0&YJôðØ@0'ÈK]Ìd@0&YJôðØ@0'»/ìVÖ?‚n—OߤµÜÆ@3n5?|í‘Á.„M‰ûçm@3M²-VÁ.„QnÙ‡@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø.@   Iº^Á.„€@   Iº^Á.„€@   Iº^Á.„€@   Iº^Á.„€@   Iº^Á.„€@   Iº^Á.„€@žÖ“uÁ.„€@žÖ“uÁ.„€@žÖ“uÁ.„€@žÖ“uÁ.„€@žÖ“uÁ.„€@žÖ“uÁ.„€@8ÖšÔ,<ŸÁ.„>¤µÜÆ@3° Ä›¦Á.„M‰ûçm@3Ðå`A‰Á.„QnÙ‡@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø/@£ô/Ÿ¾@£ôœ¬1'@£ô/Ÿ¾@£ôžÒˆÎp@£ô/Ÿ¾@£ôž í(@£ô/Ÿ¾@£ôŸò䎊@£ô/Ÿ¾@£ô›À6ã@£ô/Ÿ¾@£ô˜†YJõ@¨IX“t¼j@¨IXÔýó¶@¨IX“t¼j@¨IYXbN@¨IX“t¼j@¨IXl"h -@¨IX“t¼j@¨IY=Ùd@¨IX“t¼j@¨IYb¶®@¨IX“t¼j@¨I`ëíúE@3Âò䎊@3¼£n@0óS÷ÎÙ@0ó{J#9À@0¶§ï²-@0·ÕfÏAò@0uµsê³h@0v1ø .@0uµsê³h@0uÂ\(ö@0uµsê³h@0q–R½<6?}Ñ¿ž,?ZÁ».œ?‘jh¨qã9?Œä%—ëš?‘@@Nßo9?“yÄö%Þî?|öOÿÝ?’)£µ“[ZÌw?ƒì%­¹Ï‘?‡Õ˜]–GÄ?‰]³ß’Ý@@@@@$@&?ð?ð?ð?ð?ð?ð¿1Ï*?PM÷Ì?F¥©:¿Ù?DˆÎôÿÖH@£ôœˆžÜ@¨IZ¦Ëþâ?f q…C$?d´”¼ËÇñ?×î$Üæ‡ª?ÔôHx¡|@Ÿfà,2í@0@ ŸÍÒñ©ü@ ŸÜj~ùÛ@ ŸÍÒñ©ü@  5?|í‘@ ŸÍÒñ©ü@  0 Ä›¥@ ŸÍÒñ©ü@  !°‰ (@ ŸÍÒñ©ü@  —ð¡¨å@ ŸÍÒñ©ü@  ÈõÂ\@œÅ["Ðå`@œÅ™³,Í@œÅ["Ðå`@œÇ“÷ÎÙ@œÅ["Ðå`@œÈÛquŽ"@œÅ["Ðå`@œÇ ù kº@œÅ["Ðå`@œÉûþE¡h@œÅ["Ðå`@œÇ“t½@5ÉÎ_oÒ@5ë vkT@2}‘hr° @1CMjO@2'KƧïž@0s@N¤¨Á@1œàu÷@/Ø­«ŸU›@1œàu÷@/Ÿ’aÅçT@1œàu÷@/²-V?ˆ°„kº?ªŽµcùX?¶ÔdÒ í?ÀMN:Ò?ξÕW¢×¡?¡]¡q;j?€C‹~?–¦ÆçŽ -?Úö´ºð“?ÖCRn™?R?Ç¥Ôéät»?¨”¯G0¤Ý?³³&°ÕÓ?®fI÷‚=C?·4³;ê$Œ?³ÓÑžoh?°ïÓVläÞ?¹$ÏFtYÜ@@@@@(@?ð?ð?ð?ð?ð?ð?¨I‹s`?¦{€Küð?bu\®¡ü?½ž 1@  ‡Ë@œÅ㫘Ô?~Vþ÷i'?£Ð)ÿ݃?èÏ)g1…@3˜­ÿ7÷@Ÿ^Ï -ÎÝ@1@¥ˆ4¼j~ú@¥ˆß;dZ@¥ˆ4¼j~úÁ.„€@¥ˆ4¼j~úÁ.„€@¥ˆ4¼j~úÁ.„€@¥ˆ4¼j~úÁ.„€@¥ˆ4¼j~úÁ.„€@ž|På`A‰@ž|$Ý.@ž|På`A‰Á.„€@ž|På`A‰Á.„€@ž|På`A‰Á.„€@ž|På`A‰Á.„€@ž|På`A‰Á.„€@8òÃÉîËû@9R½<6@5Yº^5?}Á.„M‰ûçm@4q‰7KƨÁ.„QnÙ‡@4#ÉîËûÁ.„NÜC,¥@4#ÉîËûÁ.„NÜC,¥@4#ÉîËûÁ.„NÜC,¥?´ Z è´ß@8#˜@8¾:@8 >+@8Iç@8Ù?²„× ì²x@8Î÷@8i§@8Å@8S@8û—?©'¾²[@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø2@¨ãt¼j~ú@¨ãv“u@¨ãt¼j~ú@¨ã{–Œ)%@¨ãt¼j~ú@¨ãf£bèm@¨ãt¼j~ú@¨ãh:Ië@@¨ãt¼j~ú@¨ã`º''@¨ãt¼j~ú@¨ãiÄ8B6@œ'ê~ùÛ#@œ'Ý÷@|‘@œ'ê~ùÛ#@œ(“üáé@œ'ê~ùÛ#@œ(aé Ó@œ'ê~ùÛ#@œ(”4ûa@œ'ê~ùÛ#@œ(1Œ—M?@œ'ê~ùÛ#@œ(ù’R¾@9*0U2b@9(”À8ì@4£÷ÎÙ‡@4¥Êö.@4 "Ðå`B@4*XÀis`@3Þi­BÄ@3å“|Њ@3Þi­BÄ@3ÃÕ­Ã@3Þi­BÄ@3Ko?µŸ)Ø1?”:¶a?“ô0ÿèç?,’H!Ó?‘).%@g?“`P(ee?°ÒY%îö?µYÕÎÒØ?¡"U¥\#?å²mÝ?3ç1?œËkÆa"à?¶œH„r’?›Tý”?Y?:å81?†Xh>þ*Ë?ÙAÌ+dý?•…:#ˆ€™@@&@"@@0@*?ð?ð?ð?ð?ð?ð?oØWŸ€?jÚ•³—€?‡È&:Ö-?tÿÆ3’™Î@¨ãs U±@œ(pù ?— e x—?‡£6lw@&±½°¿†N?ùÍÃ^È4@Ÿp8_v¿@3@£&âÐå`B@£&âÐå`B@£&âÐå`B@£&äÝ/ @£&âÐå`B@£&ã9Àëî@£&âÐå`B@£&ÁU@£&âÐå`B@£&ôFs×@£&âÐå`B@£&ê=p£×@¢Rk…¸R@¢Rl1&é@¢Rk…¸R@¢R^\‘ÑM@¢Rk…¸R@¢RdÂø7µ@¢Rk…¸R@¢R;ô‡ü¹@¢Rk…¸R@¢RE8ï4Ø@¢Rk…¸R@¢RC× -=q@4|ÚQ@4G®zâ@1{ Iº^@1vý!ÿ.I@1{Ƨï²@1u8ï4Ö¡@1Œ¿±[W?@1y‡+ @1Œ¿±[W?@1{'»/ì@1Œ¿±[W?@1|‹C•?|¬Çëý ?ÉGãA­÷?’ʶ‹ùs?™ÿ " ž?Òß© ÷?¡Ëê™õ£¥?|¬Çëý ?“‚Û£0Τ?“1Ú©! ?ª\(­A?ª²âëL¢?±š|9?‚yî8Á#?êzŽx?™¯Ùºà?š;UïçAE?›ÇûP|?¤²¢Òó@@@@@(@,?ð?ð?ð?ð?ð?ð?j(!Z꿆 -¥µ½À?Qþ\õtå]?e漫z @£&æÉ]üÛ@¢R_ÚÊl?j®®…ÿ?{”`î\a?Ù`V‘éÜ?æ§ò.}[@Ÿ_>aÎ6@4@­'¢MÒñª@­'£u¶Ä6@­'¢MÒñª@­'¡@N¥@­'¢MÒñª@­'/Ÿ¿@­'¢MÒñª@­'«C,¥@­'¢MÒñª@­'¨ÁTɆ@­'¢MÒñª@­'­úCþ]@œ— Ä›¥ã@œ—£× -=p@œ— Ä›¥ã@œ—´ðØDÑ@œ— Ä›¥ã@œ—§8}¿@œ— Ä›¥ã@œ—‚\(õ@œ— Ä›¥ã@œ—‹'»0@œ— Ä›¥ã@œ—„êJŒ@7½:’£@7ÄÞïl@5+¥ãS÷Ï@51ä÷eý‹@4'KƧïž@4&?¼@3Ê0U2a|@3Ê™0¾ í@3Ê0U2a|@3ÏÒòä@3Ê0U2a|@3Ƈ+ J?™I'%ö«?œ%“=ý7"?’©ßc«?i²Pƒè?šdt O?”|„¥&?ŽÕQp Î?ªåøÖ¶£­?ŽËÜ¿€?’îy†Ò‡‚?™x9ÿ¥l?ŸÙXˆ‡#?‚˜>¸?­Ú@/@õ{?Š[¦Råb?”ûÅìÆÅ?ŸHF!œ6²?–¿nè$„@@@@@*@(?ð?ð?ð?ð?ð?ð?]ü -¿oá­Ë?H¥0H^Ï?SEŸ@­'©¦d®@œ—ŽUn!#?chKqºÕ±?ušÐ/…×e?¼ÞÌ,p?áp:q¯¶¿@Ÿj…$ß2 @5@¡ž€ƒn˜@¡žš^5?}@¡ž€ƒn˜@¡ž€ƒn˜@¡ž€ƒn˜@¡ž~š@¡ž€ƒn˜@¡žTÉ…ð@¡ž€ƒn˜@¡ž¼@¡ž€ƒn˜@¡ž€A‰7M@¥ÂŒÌÌÌÍ@¥Â‡+ J@¥ÂŒÌÌÌÍ@¥ÂBÃÉð@¥ÂŒÌÌÌÍ@¥ÂŒÌÌÌÍ@¥ÂŒÌÌÌÍ@¥ÂŽ_oÒ@¥ÂŒÌÌÌÍ@¥Â5¨Xx@¥ÂŒÌÌÌÍ@¥ÂÒñ©ü@8N쿱[X@8X Ô•*@2?|í‘h@2éá°‰ @1RÐå`A‰@1R䎊qÞ@0 ¿±[W?@0 «ŸU›=@0 ¿±[W?@0 篷ê@0 ¿±[W?@0 ˜_ö”?|öOÿÝ?ÎÁ¯‰t0?‘šÕU#?ŒvHn&³?üEÙáõ{?‘¦ µÚ?´Žé`m?“?xr¢I?„¦Ô•]I?Y‡…—Ø?üÓqÔNŠ?Éöm/w²„?°vs‚¹R_?©¬‰[Ùg??¡Ó㯗Ë?–4Ê?™2ÿËtÎ?~ì“?ÕÒJ?¬ƒÁ^èî?¬“°€?Ÿ¾ä#žˆ?šô8&¨¯?“»lÂÜ`Û?±GJ¬ä ?¡¸­lq³ß?•1C'÷Ó3?’¡ ;’n?’ÖÂäÔ%?•ž}Œæ’@@*@,@*@8@6?ð?ð?ð?ð?ð?ð?yiJ?lâÆð?g "³$Uz?aÕ'¢ÙúJ@¯ X‰˜@™ ,zÕ?…ìF¥¶åæ?† I?ñy¹B -@¥xAQ](@Ÿkô‡Jé²@7@§mØbMÓ@§mØbMÓ@§mØbMÓ@§mÙrGE9@§mØbMÓ@§mÙ™™™š@§mØbMÓ@§mØÔýó¶@§mØbMÓ@§m×´¢3›@§mØbMÓ@§m×>«6y@«4fffff@«4f§ï²@«4fffff@«4g8}¿@«4fffff@«4hðŽ@«4fffff@«4fÏAò@«4fffff@«4fÜ]cˆ@«4fffff@«4g»/ìW@3Žì¿±[X@3¼@.MV“@.MBÃÉîÌ@-òn—Oß@-òGE8ï5@.½Vlô"@.½²-V@.½Vlô"@.½p£× ->@.½Vlô"@.½—ö+jé?|¬Çëý ?é¥3i£ó?‘Ûü†Nã?‹×lÇ…N9?òǹíT­?ß-tT?|öOÿÝ?’#maЀ?r¼Jsž?EÇàÔPà?Ø¥²À<(?{L Õ¢D?‚2Y0â³?Œµ3‰;šÏ?‚s@ˆaÛ?‚æÊ¬vã?†špk Y?†©b/bJö@@@@@(@*?ð?ð?ð?ð?ð?𿜖¿à?#W‹`?#éÊc¬ƒl?†e”® @§m؃ÄX@«4fòšê?CÏkÀ~½?2ÙŸu?'p?•\»JYõô?rg³¿âÁê@Ÿfñlaú@8@¡Î·ÎÙ‡@¡Î´9Xa@¡Î·ÎÙ‡@¡Î·ÎÙ‡@¡Î·ÎÙ‡@¡Î¹Àëíú@¡Î·ÎÙ‡@¡Îº^5?}@¡Î·ÎÙ‡@¡Î·éùs@¡Î·ÎÙ‡@¡Î¸y=Ù@¯»çl‹D@¯º^5?}@¯»çl‹D@¯½p£× @¯»çl‹D@¯½!ÿ.I@¯»çl‹D@¯½/Ÿ¾@¯»çl‹D@¯¼£n.@¯»çl‹D@¯¼]cˆe@6=:’£@63¢œwšl@1GÎÙ‡+@1GškP°ò@0iÛ"Ðå`@0i³Ð|„¶@0._oÒ @0/ „M;@0._oÒ @0.¾ß¤?æ@0._oÒ @0/HË’:?ˆÿÀ)T¿Æ?¥nÇx?)?‘.Ò®ó_ ?‹¦ ŸYÔ?‘; ÷^?‘<ƒÜ_õ?}Ñ¿ž,?’Dê™.x?ÏtP°*?1ð'7éÃ?çêÑHcÇ?ÐnçK/?±êH´ÿ±?lío>÷?ƒ~¨õ/¥O?ƒGϵ¨í'?ˆA0û)n?‡v>ª¸ @@@@@@ ?ð?ð?ð?ð?ð?ð?O{³ôŒ??ç~Ð?D­‡ŽÕ7P?+FF ,ø@¡Î·†6J@¯»°J?cSH:QÚ|?MYŒui+ ?Ë]_̨?£9áT­7Ì@ŸiWæÔ‘D@9@£•Ù‡+@£•ØbMÓ@£•Ù‡+@£•Ô`ªdÃ@£•Ù‡+@£•×eýŠÛ@£•Ù‡+@£•×ö+jè@£•Ù‡+@£•Ót¼j@£•Ù‡+@£•Ô•*™@«¹ãS÷ÎÙ@«¹å¸Qì@«¹ãS÷ÎÙ@«¹âh Ô•@«¹ãS÷ÎÙ@«¹ãn.±Ä@«¹ãS÷ÎÙ@«¹å®æ1ù@«¹ãS÷ÎÙ@«¹æs×Ü@«¹ãS÷ÎÙ@«¹ä xG@5í¥œàv@5ëçl‹C–@2’ Iº^5@2’n—Oß@2Z~ùÛ"Ñ@2\¿±[W?@1Ê0U2a|@1Ì/ƒ{J$@1Ê0U2a|@1Í:’£@1Ê0U2a|@1ɺ^5?}?|¬Çëý ?­hX™*?‘ojVrn7E?ƒ/‹ÍY}‘?OéáÜtx?‡»¢Øˆ‹?„E£R ÕY?гá‡}?‰®ââP\@@@@@,@(?ð?ð?ð?ð?ð?ð¿H>Gà¾ù“¹?4¸k,ËiŸ?-ï.qبÚ@£•Ö”h˜´@«¹å-´‘h?U²¦X5€?NoZ–V?³LMa›!à?¢žª%ý“@ŸfáÏ…@:@¨m8Ôýó¶@¨maÊÀƒ@¨m8Ôýó¶@¨m5*™0@¨m8Ôýó¶@¨m/4Ö¡b@¨m8Ôýó¶@¨m/ƒ{J#@¨m8Ôýó¶@¨m)îËû@¨m8Ôýó¶@¨m..±Ä3@£Ø -=p¤@£Ø3333@£Ø -=p¤@£×ýp£× -@£Ø -=p¤@£×þÿ—$@£Ø -=p¤@£×ú)Çy§@£Ø -=p¤@£Ø Ô•@£Ø -=p¤@£ØÎp:û@7 Î_oÒ@6óŽóMj@38r° Äœ@33FÜ]cˆ@2y7KƧð@2r£S&@1ó&Á½¥@1éÀëíúD@1ó&Á½¥@1é‡+ @1ó&Á½¥@1éQ‚©“ ?Àët#®ªV?qÂ' -B›?”&$#ú/ò?ö€(tUo?šÉ¨³˜+?“÷Vdà?”¼íÒh??•2ã(_Ïù?“Ú%¿»8?–r°¤»®?š+hd{ö?’›â¾Ð'µ?¼ÐÁß9&û?‚ñêã ?„A'Š_^?‡µ‚[Ö?‰/ã̽`ª?Š—à `ž@@@@@,@(?ð?ð?ð?ð?ð?ð¿_á®䀿_ [µè?g¸OØgØá?gà¤ìb-@¨m.ƒ½¨|@£Ø»Í¢?xïüS•æ?ˆTr´"?âk(ЙùÍ@)å”Ç‘i@Ÿqì°JÔ@;@®(r° Å@®(õÂ\@®(r° Å@®)ÞÒ@®(r° Å@®)*0U1@®(r° Å@®(õÂ\@®(r° Å@®'“Ý—ö@®(r° Å@®'“Ý—õ@¢¥Þ¸Që…@¢¥ß;dZ@¢¥Þ¸Që…@¢¥Þ«6z@¢¥Þ¸Që…@¢¥Þ5?|ï@¢¥Þ¸Që…@¢¥Þ¸Që…@¢¥Þ¸Që…@¢¥ÞvÈ´9@¢¥Þ¸Që…@¢¥Þš@3úqÞi­C@3úŒL˜_@/Gï²-@/Hr° Ä›@-/ß;dZ@-/ìVÕÏ«@,u¨Xy=Ú@,usê³g¡@,u¨Xy=Ú@,uéá°‰¡@,u¨Xy=Ú@,uÂ\(ö?}Ñ¿ž,?ZÁ».œ?‘$Cê¡@í?‹¦ ŸYÔ?ôê÷º»â?¼‚Ë¡K?|¬Çëý ?’#maЀ?„¦Ô•]I?-õI¸`K?ß’ºèh!?Uÿyu”#?‚Ì ÝŽ‚8?ŒÂ§dß±?‚|׿pZ?‚æÊ¬vã?†½ª»—?†£îž«î@@@@@*@&?ð?ð?ð?ð?ð?ð¿1½÷à¿+ý2À?ŽLžÛ>îKõKç@®(tŸb}@¢¥ÞÅ[Ô?=bqw©Y?ôÈœL?‡ Ü”k?(õ•¤Ý€˜@Ÿgfƒi@<@©Š ÌÌÌÍ@©Š ¤õ@©Š ÌÌÌÍ@©Š ™hi)@©Š ÌÌÌÍ@©Š ÓGqû@©Š ÌÌÌÍ@©Š »¦¢é@©Š ÌÌÌÍ@©ŠAIZ`@©Š ÌÌÌÍ@©Š(C@“&W -=p¤@“&V× @“&W -=p¤@“&R·è%w@“&W -=p¤@“&T¼eÞ)@“&W -=p¤@“&S©þù@“&W -=p¤@“&Y¨H.*@“&W -=p¤@“&Sö+ó±@6šÔ,<Ÿ@6ÜÌjJ@2B° Ä›¦@2A7¤kE@1v§ï²-@1tË)äõ@0ãÉîËû@0áÞœÏßO@0ãÉîËû@0ámÑÇíÐ@0ãÉîËû@0à%ÞsÔ ?~Ov_Ø­«?þC*«!?‘Ûùw¡|?‹¦ÿ>'‡?’) / 7ã?í…q¥Ú?e™”XWø?’8Á™N?‹^Ónu§?1sææÅ#?’ZpÉs{Ÿ?W¶žî»?‚U«£?!0Æ1?‚s9½+6d?ƒl‘pM?‡Ê¨—ÉÆt?‰e-$#…{@@@ @ @6@(?ð?ð?ð?ð?ð?ð?L=ñE°¿#5A¨?C»+0E÷?3Û)}Ÿè@©Š ¡+ð%@“&VØ¡B?c­Ÿ±Ëˆ?TLæ´]±¼?ÓŸí©?³…¾]¸‚@ŸgC@IAé@=@¢Ð²-V@¢Ð°£× -=@¢Ð²-V@¢ÐœPHñ@¢Ð²-V@¢Ð˜DЩ@¢Ð²-V@¢Ð™™™™š@¢Ð²-V@¢Ð—´¢3œ@¢Ð²-V@¢Ð‘·Xâ@®ÈŒIº^5@®ÈŒ1&é@®ÈŒIº^5@®Èž\‘ÑN@®ÈŒIº^5@®È–“u@®ÈŒIº^5@®È§E8ï5@®ÈŒIº^5@®ÈƒFÜ]e@®ÈŒIº^5@®È—>«6z@8ºqÞi­C@8ÌÌÌÌÌÍ@5ÎÙ‡+@5_ö”F@4Ë"Ðå`B@4Êû~ÿ—@4 -0U2a|@4¯·éú@4 -0U2a|@4:’£@4 -0U2a|@4u%F -¦?¨Ö_pP1?œf¨Db?›£=Ñã5?Uÿyu”#?žî üÑ)?›‹ÞV‘?¢F^ì¼Sð?©\Lž)C?¥iÕ¯‚ùŠ?ŸY`òƒë?¡f’@?¦¤Wë'?¡Âœ•Ð,Ã?˜ª"_¾­?¦—âŸ7 ?‡ÕZ›µûÜ?›€*:€R}?‘øù>3}@@@@@"@$?ð?ð?ð?ð?ð?ð¿t‹„€?6øJÔð?Z ýcû´¿?uÁYEÏ@¢Ð™[,·Ç@®È”·lÒ?oy‹£˜/?’é4‘Ï?ÉÉO7Ï—R@-9™Y²@Ÿn?»©Ú÷@>@ àNV“@ àN_oÓ@ àNV“@ àOìVÕÐ@ àNV“@ àOÅFX@ àNV“@ àLÉQ@ àNV“@ àIÓ0ÊÄ@ àNV“@ àJf:Ç}@§¼í‘hs@§¼î7„à@§¼í‘hs@§¸[ŽÁô@§¼í‘hs@§¾8\~@§¼í‘hs@§´È8ã@§¼í‘hs@§¶æx¹°@§¼í‘hs@§µ¡c@4ÖšÔ,<Ÿ@4׿šÔ,@13S÷ÎÙ@13?ä4Þ†@0¾V“u@0½ï%…©¿@0Eœàu÷@0A¥ÇÌÉ@0Eœàu÷@0>¨ºÝ”@0Eœàu÷@0@-à,ZÎ?|çµB &€?ÃUV&w$?‘'7 O|¬?Œ#™®ÂZ?’ÅÀ;éA1?‘ÂeVV¸?|¬Æ Væ?’´•£Œ? oò|?’kë»S?’Q„xy_?’.?¨p?‚oºáܺ?<œçáTJ?…,mÕ6O?†Sð.Di?‡sžöI?ˆX† ¼|î@@@"@&@6@5?ð?ð?ð?ð?ð?ð¿KBb;¸¿\®Ôp? —›:Àù??2\Û½Ùm@ àLH[Ù@§¹ -ò=è?@9¯yÜò?_ZÿüŽA?‹2KÎ ¬?ƺ?øø¡ @ŸfO×ø\ì@?@«£6È´9X@«£>vÈ´9@«£6È´9X@«¢ö“u@«£6È´9X@«¢ì<žìÀ@«£6È´9X@«¢ò-V@«£6È´9X@«©mžƒä&@«£6È´9X@«©“×Ûõ@¢d“t¼j@¢dñ©ûç@¢d“t¼j@¢dJçÕfÏ@¢d“t¼j@¢cïiDg8@¢d“t¼j@¢cï²-@¢d“t¼j@¢býó¶F@¢d“t¼j@¢bJ=p£×@7Bò䎊@7>p:û~‘@4…?|í‘h@4¶+jçÕf@4ƒt¼j~ú@4Ón.±Ä3@43&Á½¥@4’ñ©ûçm@43&Á½¥@3`:û~‘@43&Á½¥@3ZÀƒn˜?‚á²Olºü?§Bx1 ·?Àñi“Á?»¨òß>ð-?ɧ‡dD2?Î’Ü9ÖÊ?¨Ö_pP1?¨gôÏ*å¯?ÁÕ¬{TÓ?Ì•ËTY?µŽðËèúR?ÃbIÄß­?‚¸“Îè ÷?©ñºåÇÂ-?µûįJ˜?³ÀKá{~?µ‰2 ßý?»N£²›R\@@@@@ @"?ð?ð?ð?ð?ð?ð?É“ü±*¸¿¼ù4I ?ÁÄÈTÛ ?—ZkùÄ@«¤[žš#@¢cqíMÙF?Ù£¾d¼5?µô>rÅ£@jý1,%µ@"qÝh-@Ÿa'‹!¢ù@@@§Òí‘hr°@§Òã•%@§Òí‘hr°@§ÒÓ÷ÎÙ@§Òí‘hr°@§Ò×´¢3œ@§Òí‘hr°@§Ò×§†Â'@§Òí‘hr°@§ÒÓüPG@§Òí‘hr°@§ÒÖ”Fs@®îß¾vÈ´@®îçï²-@®îß¾vÈ´@®î»çl‹D@®îß¾vÈ´@®îÈð@®îß¾vÈ´@®î¡aä÷f@®îß¾vÈ´@®î‹jçÕg@®îß¾vÈ´@®î‡8}¿@8ÿ–»˜È@8ï²-V@5¦‡+ J@5¢ZîcŠ@4ä¼j~ùÛ@4ÎóMj@4–ý!ÿ.I@4pÞÒˆÎp@4–ý!ÿ.I@4‹Í5¨Xz@4–ý!ÿ.I@4…oi?|öOÿÝ?¥?áýí¯?¡.íN?ªÒè"co?¥60«‹a?§¼œ¾ó?¶™b’jk±?¨½P|÷©ß?”ÿŒÙÿIí?´ÓKÓÈÂ?³ÍÂ]%ž®?©üˆ“ª»P?ºÆF¯{ƒ³?¢ß”ÑY?™Jz¬Uf?œC‰þx%?Ÿ/Òѯ¢?¢£A=ñ®@@@@@@?ð?ð?ð?ð?ð?ð¿l6ʪ˜¿“Wü£õÀ?C ŽTUj?krv‘o|@§ÒÙ…¤d@®î¥Ð¸‹?l#ë#qÔ?ˆe7¨&?®0lÝFt8?ˮͿtƒ¹@Ÿm¢÷Ì9Í@A@¬ÂÖ“u@¬ÂÕÂ\)@¬ÂÖ“u@¬Â×eýŠÛ@¬ÂÖ“u@¬ÂÔ`ªdÃ@¬ÂÖ“u@¬ÂÖ_Ø­¬@¬ÂÖ“u@¬ÂÓŽóMj@¬ÂÖ“u@¬ÂÖ‡+ @ þ«…¸R@ þ«Æ§ïž@ þ«…¸R@ þ­5¨Xz@ þ«…¸R@ þ©xÔýô@ þ«…¸R@ þªJŒM@ þ«…¸R@ þ´ýó¶F@ þ«…¸R@ þ±ø .@5N쿱[X@5Nƒä%®æ@2©‡+ @2¨­«ŸU›@2ï²-@2Xy=Ù€@1ãÉîËû@1âÃÉîËû@1ãÉîËû@1â©“ àß@1ãÉîËû@1ã9Àëíû?|öOÿÝ?W[†?‘yß]³Õø?ŽwX/8?‘ …É¿¼?‘…Rgå.?1·†Æjñ?’,ö´´Ï#?‘8“‡«G?•GÝóuS—?’ºñS©YÖ?“IëH!w?ƒmÕ+&¬‰?c I??ƒ]€µ,Vß?„XïWÉò~?Ž .0åv?‘4hÆpÉ„@@@@@&@(?ð?ð?ð?ð?ð?ð¿ +4?Wæ-j?3zàŽÓÔ?H¤"ÓÏG(@¬ÂÕ§™ˆ¶@ þ®­¤M¶?SW -LCô?i%dl[1?³2Xºd{?ÙVoåÖÇ@Ÿf†H5JÏ@B@¤¡˜“t¼j@¤¡œ¬1'@¤¡˜“t¼j@¤¢ -Àƒo@¤¡˜“t¼j@¤¡§ÕfÏC@¤¡˜“t¼j@¤¡Éº^5@@¤¡˜“t¼jÁ.„€@¤¡˜“t¼jÁ.„€@¦GÈ´9X@¦GÅãS÷Î@¦GÈ´9X@¦G™=Ùc@¦GÈ´9X@¦GåãS÷Ï@¦GÈ´9X@¦Gý—ö+l@¦GÈ´9XÁ.„€@¦GÈ´9XÁ.„€@7–»˜È@7Åo@5‚° Ä›¦@5]Oß;dZ@4K"Ðå`B@4|²•éá°@4‚@·€5@3Óþ\‘ÑN@4‚@·€5Á.„NÜC,¥@4‚@·€5Á.„NÜC,¥?Œs¤DÅÐ?²ÔIšéö³?À*ç´ÃþÝ?´]£—´œ/@8Iç@8Ù?‡YÍ_?¢W;„zY?¸ÙàÝ ?ºúèï„@8S@8û—?„W;RS?³A@¯S~`?½µkÈç§?ž/Ç"êõâ@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøC@ C¡ÊÀƒÁ.„€@ C¡ÊÀƒÁ.„€@ C¡ÊÀƒÁ.„€@ C¡ÊÀƒÁ.„€@ C¡ÊÀƒÁ.„€@ C¡ÊÀƒÁ.„€@™–ƒn—Á.„€@™–ƒn—Á.„€@™–ƒn—Á.„€@™–ƒn—Á.„€@™–ƒn—Á.„€@™–ƒn—Á.„€@7rÃÉîËûÁ.„>¤µÜÆ@3 Iº^5Á.„M‰ûçm@3gKƧïžÁ.„QnÙ‡@1õµsê³hÁ.„NÜC,¥@1õµsê³hÁ.„NÜC,¥@1õµsê³hÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøD@£™™™™šÁ.„€@£™™™™šÁ.„€@£™™™™šÁ.„€@£™™™™šÁ.„€@£™™™™šÁ.„€@£™™™™šÁ.„€@ž üí‘hsÁ.„€@ž üí‘hsÁ.„€@ž üí‘hsÁ.„€@ž üí‘hsÁ.„€@ž üí‘hsÁ.„€@ž üí‘hsÁ.„€@8½:’£Á.„>¤µÜÆ@4µãS÷ÎÙÁ.„M‰ûçm@3Ë"Ðå`BÁ.„QnÙ‡@3 -0U2a|Á.„NÜC,¥@3 -0U2a|Á.„NÜC,¥@3 -0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøE@ªì¨õÂ\@ªì¦éxÔþ@ªì¨õÂ\@ªì¥8ï4Ö@ªì¨õÂ\@ªì£¢œwš@ªì¨õÂ\@ªìž5?|î@ªì¨õÂ\@ªì¥”¯O@ªì¨õÂ\@ªì¥ýŠÚº@©®—Oß@©­V@©®—Oß@©¬˜_÷@©®—Oß@©©“ àà@©®—Oß@©§ ù l@©®—Oß@©ªÀƒo@©®—Oß@©«íúCþ@6¥öý!ÿ.@6¥ðoiDh@3i‡+ @3cñA [À@2v§ï²-@2r Iº^5@2 ¿±[W?@2ñA [À@2 ¿±[W?@2 Dg8~@2 ¿±[W?@24êK?}Ñ¿ž,?•Íñ¤Ý q?“%HCâ=s?—³Q+Ùv?’<_+fjä?’ß5éõJÈ¿A.”íà?HŽD–=ñ??;õ%Â\á‹@ªì¥§›Ñ@©«Öx« ?hÒ>F¾p?[ù~žw?Úd©('¾?½uE‚ï@ŸeÅû0Úà@F@«îð£× -=@«îñ&éxÕ@«îð£× -=@«îðË)^ž@«îð£× -=@«îð¾ í*@«îð£× -=@«îñÅ@«îð£× -=@«îð-à @«îð£× -=@«îð¸»@©|¯²-@©|¯²-@©|¯²-@©|¯v_Ø®@©|¯²-@©|°¸¼@©|¯²-@©|°¸¼@©|¯²-@©|°‰ 'R@©|¯²-@©|°Hð@6¯O „M@6&Á½¤@/³t¼j~ù@/³ŽóMj@-ãn—P@-âÞÑ·@,`ªdÂù@,mÅÖ8‡@,`ªdÂù@,9XbN@,`ªdÂù@,9XbN?€‚ñêã ?é¥3i£ó?‘½ümüñ?‹ª½¨ª8v?êtÿKÑc?¶*WFÑ?}Ñ¿ž,?’›ÈÖÝ?~ËQ§?/ò×ÈZø?ÔÒ@úˆ‘?M\³Ù“@?ƒ¡É^&Ö?Œ°¶.Ä+Æ?‚‹¡8*ú?‚ð'ã:ÂÝ?†½ª»—?†–f_ÔŠŠ@@@@@,@$?ð?ð?ð?ð?ð?ð¿(…`?%ò¥À?"Õnµ#?‹¥6¤G@«îðÙI@©|°NOÆ?BµãŒ6Q?%1ÚO]Þ?‘VÔéç;?Vj0Õ¸JÅ@Ÿg MCE–@G@¯=Ƨï²@¯=Ƨï²@¯=Ƨï²@¯=Â3œ¿@¯=Ƨï²@¯=¶®}W@¯=Ƨï²@¯=ÂÞÑ·@¯=Ƨï²@¯=Õ%@¯=Ƨï²@¯=¶®}V@®"ÍOß;d@®"ËÆ§ïž@®"ÍOß;d@®"Љ 'R@®"ÍOß;d@®"Ò½<6@®"ÍOß;d@®"Ðò{²ÿ@®"ÍOß;d@®"Íà p@®"ÍOß;d@®"ÍúCþ\@5=:’£@5:îcŠ -@1sS÷ÎÙ@1hÇâ‚@·@0V”@0“{J#9Á@/á-w1Å@/Ì1&éy@/á-w1Å@/ÌÙè>BZ@/á-w1Å@/ÎóMj?‚á²Olºü?‘¸ü"ù€2?—¿ÔÌÆ?’×­“·?“¦Æ_ÌdA?’Ýå"çX?|¬Çëý ?”­ŽzF”?”p¶I”“ž?”1}…B†-?˜#ÛbŸ^?“å¡jÚ?„›‹ÖO?3I¶#i?ƒM¬Öe—_?ƒv_.^?†å·ÑfWà?mŽÃÎŽ@@@@@"@(?ð?ð?ð?ð?ð?ð¿KÒfâ¸?E~âg0?*ʆºœk?BZîb@.3t¼j~ù@.3&Á½¥@-ãn—P@-âëC,§@+¨Û‹¬q @+©Dg8~@+¨Û‹¬q @+©7KƧð@+¨Û‹¬q @+¨è§æ›?|¬Çëý ?Ï[äe(lQ ?ŽwX/8?”¶q fì?’IåŠú?„F/·ÿP5?’ ·6Öc¤?‘ïɇ}~?’‘Ç#·X?Ä —+¥A?•J佪™^?ŒR‹w#z?pù51íÒ?„³3Z\ð…?…ÇóÏ€9"?‹&¸ê±fÂ?‹ ˜1 D@@@@@@,@&?ð?ð?ð?ð?ð?ð?H7.«@?P]žDŒ?1µï\±>?M6mQl!A@§¶X+‰@£î‰Á[äØ?OZGóØP?o -Æ•i-°?›¸þÖ¡Î?×ÜDÄ !ž@ŸiE™]@O@¬Ÿ¾vÈ´@¬Ÿ¾vÈ´@¬Ÿ¾vÈ´@¬¢@·€5@¬Ÿ¾vÈ´@¬¢¶®}V@¬Ÿ¾vÈ´@¬¢&€J@¬Ÿ¾vÈ´@¬¡–R½<@¬Ÿ¾vÈ´@¬¢¶®}W@«Û§ï²@«Û$Ý/@«Û§ï²@«ÚþÑ·@«Û§ï²@«Ûƒn˜@«Û§ï²@«Úÿ.Hè§@«Û§ï²@«ÛëíúD@«Û§ï²@«ÚÿØ­«Ÿ@2Ì]cˆe”@2Ëûµsê@-½²-V@-¶¡aä÷f@+–E¡ÊÀƒ@+‘4êJŒ@*úÇË)_@*õ*™0¾@*úÇË)_@*ô¯O „L@*úÇË)_@*óê³g ù?É^òÀXæN?‘J–?-.º?‘°&޲P?Œ9‚Ù.?‘ÇöÃÞ`?’ Ù–¥£?ÐbMçê_x?“6SÇ{Ó?Ê -ä\ä?£û,Ɇ?‘†óèJL\?‘C å;Ã?€g‹)ØêÀ?þrªbT?ƒ´],m=?ƒ­=aÊw%?‡ø¢:›¸1?ˆCns¥ @@@@@,@*?ð?ð?ð?ð?ð?ð?'d°¢?4;”½p?2àNHíþU?@Ÿ ÃÙQ@¬¢&ƒ@«Úÿíýéî?B¯×7 ?O|#D/Ù?|úŠÚ!Ü?” `ÜWÀ@ŸrâY¶Y:@P@§*ˆ´9X@§*†éxÔÿ@§*ˆ´9X@§*ŒIº^5@§*ˆ´9X@§*”!-v@§*ˆ´9X@§*ŠqÞi­@§*ˆ´9X@§*•Â\)@§*ˆ´9X@§*–R½<5@¢ 7Kƨ@¢ -Àƒp@¢ 7Kƨ@¢®zá@¢ 7Kƨ@¢üí‘hs@¢ 7Kƨ@¢–R½<@¢ 7Kƨ@¢:’£@¢ 7Kƨ@¢Zîc @7wâ‚@·€@7xâe+Ô@3®5?|í‘@3£ê³g ù@2Ãt¼j~ú@2¸ºÇË*@2TmÅÖ8†@2O4Ö¡aæ@2TmÅÖ8†@2>ÿ—$t@2TmÅÖ8†@2@IQ‚ª?˜ž^ƒÿ*ˆ?—hÄ”V?ž1ï3Î??’èÞ㬱_?§|Qæý S?¥[ÖàÇй?‘â%ì˜ ä?”zòžÕÿ? :-%šÀ?’"Š6›Wz?­VA®o?­uð!#©ç?–-¤]î§É?îÑšˆHÉ?ŒÊ­#г_?‡ÕZ›µûÜ?¡ÏX¼ãs~?¢qM¾,ð@@@@@,@(?ð?ð?ð?ð?ð?ð?g*Í^¿f f?RÜn#Oæ±?GÂ?„ƒ´@§*‹¸ƒJj@¢öRRª?m ÐE ?c¡š¾Ã'Å?ó»^Ê?±d²ó$’@Ÿg•° -o@Q@¯¬1'@¯!µŒ—@¯¬1'@¯\¬1'@¯¬1'@¯„µÜÆ@¯¬1'@¯#× -=q@¯¬1'@¯¯O „@¯¬1'@¯>ƒä%¯@•¬Iº^5?@•¬&ffff@•¬Iº^5?@•­=¿HÌ@•¬Iº^5?@•®—Xâe@•¬Iº^5?@•­öz—@•¬Iº^5?@•¬±&éxÕ@•¬Iº^5?@•¬–»˜È@8¥öý!ÿ.@8¦qãî9Â@4 í‘hr°@3¼žì¿±\@3‹"Ðå`B@31-w1Å@2¨è§æ›@2_4Ö¡aå@2¨è§æ›@2]ó¶E¡Ë@2¨è§æ›@2XK]Ìcò?|ò0p‰J?ÍŽÏö­#?Û¸F>±î8?×ÅÂôGe?Ù ÏqsU?ÒlT%ÊuÂ?¹9µ§òó?ÓÿïJ/p?ζa'~©?ËϬÑl×”?Ô¹dë-@Q?ÒN„)‰O·?‚ìÞ[N„Ú?¢ëµ~Ô™ï?«ÓÎôy…z?7<ï 4?°’ãMX¥ç?¥È©¾ó‚ž@@@@@,@&?ð?ð?ð?ð?ð?ð¿¬Ûa“ðà?œòç.8€?ˆKyFÆ4?›%ãÂì@¯ÊÊ#@•¬—@!$?¢TåÅâ?·»§±×Ä?Þn"ãeïf@•Ó#&¥@ŸaÿEb4ž@R@¥¼¥`A‰7@¥¼¥_›lÊ@¥¼¥`A‰7@¥¼¦ -¦L0@¥¼¥`A‰7@¥¼ª~ùÛ#@¥¼¥`A‰7@¥¼ª=p£Ø@¥¼¥`A‰7@¥¼¦µ (@¥¼¥`A‰7@¥¼¤›¥ãU@9aG®{@9bMÒñª@9aG®{@9|žì¿°@9aG®{@9°ò{³@9aG®{@9ˆè§ç@9aG®{@9xÔýó¶@9aG®{@9«ŸU›<@3=:’£@3<篷é@1}‘hr° @1zdÂø7´@297KƧð@2-<64@1zÔ,<ží@1sþ\‘ÑN@1zÔ,<ží@1sMjP@1zÔ,<ží@1kjçÕfÐ?|¬Æ Væ?äm°û0Ž?•=ÛtQ¾F?’(æ„+Zk?•³™»7…?–öfsPa?|¬h2:“?’j%ÓRa?¢Àì#Ì*0?•õ°­¿Èì?–›·†ø?£Ä=à?‚ofî@Ú?Œ¾»•lŽ?™{Tä=û?ŠÒ(>—œ ?°4\ɵ?›8~à,ã™@@@@@,@*?ð?ð?ð?ð?ð?ð?7­ûYp?t«›Ü*?D°»a?\ôœAS@@¥¼¦D.«³@9tDF–?bL…d³ö?yu‰¥Æg2?Í/MW­?ôˆ—¶ü±@Ÿc¯M½1é@S@«á–‡+ Á.„€@«á–‡+ @«á¡–R½<@«á–‡+ @«á4Ö¡a@«á–‡+ @«á™‡+@«á–‡+ @«á™‡+@«á–‡+ @«á”9Xb@œ²;dZ¬Á.„€@œ²;dZ¬@œ²@ëíúD@œ²;dZ¬@œ²>«6z@œ²;dZ¬@œ²@IQƒ@œ²;dZ¬@œ²DµÜÆ?@œ²;dZ¬@œ²=ó¶E¢@9Bò䎊Á.„>¤µÜÆ@4Iº^5?@4!‚©“ à@4“t¼@4SŽóMj@2p–»˜Çã@2pØDЪ@2p–»˜Çã@2pÞÒˆÎp@2p–»˜Çã@2pƒn—Ž@8J¨?›¹·þq§?’ -·>á ?‘ÔþÆvI‡?‘à2F0µÔ?‘Û.Yrî@8J¨?ž%Œ@&—?”p¶I”“ž?’:u.ý ?’aÔæ -/ ?“ <°·Ê@8p÷?™Ø7&½ x?¢AQˆ³3?ˆÝíá‰?Š|)-}í(?ŠÐ+`È“@@@@(@(?ð?ð?ð?ð?ðøøøøøøøøøøøøT@£ø« Iº@£øÊ/®Yÿ@£ø« IºÁ.„€@£ø« IºÁ.„€@£ø« IºÁ.„€@£ø« IºÁ.„€@£ø« IºÁ.„€@—?|í‘h@—Eìéµí@—?|í‘hÁ.„€@—?|í‘hÁ.„€@—?|í‘hÁ.„€@—?|í‘hÁ.„€@—?|í‘hÁ.„€@8¨†YJôñ@8˜5øµ¡@5k¥ãS÷ÏÁ.„M‰ûçm@5)Û"Ðå`Á.„QnÙ‡@4&YJôðØÁ.„NÜC,¥@4&YJôðØÁ.„NÜC,¥@4&YJôðØÁ.„NÜC,¥?œR¦FØR@8#˜@8¾:@8 >+@8Iç@8Ù?¦ˆIùºþ‚@8Î÷@8i§@8Å@8S@8û—?©üþÀUC @8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøU@¡ÎS÷ÎÙ@¡Î¾vȵ@¡ÎS÷ÎÙ@¡ÎcÉîËû@¡ÎS÷ÎÙ@¡Îbu%F @¡ÎS÷ÎÙ@¡Î[šu@¡ÎS÷ÎÙ@¡ÎS©*0U@¡ÎS÷ÎÙ@¡ÎT,<ží@£îPå`A‰@£î¤“t¼@£îPå`A‰@£îy0¾ í@£îPå`A‰@£îl"h Õ@£îPå`A‰@£î]ó¶E¡@£îPå`A‰@£îY#¢œx@£îPå`A‰@£îZ¹õY´@8wâ‚@·€@8)‡+ @2Œí‘hr°@2usê³g @1A‰7KÇ@1ªÍžƒä@0ÚQÎ@0mÅÖ8†@0ÚQÎ@0Ëûµt@0ÚQÎ@0Åo?–ªÎ­¡?òb[±?’÷˜–Èä?Œ^:Òf?’»–j˜ú?‘À?ÙÂ#’?¢F^ì¼Sð?“Öæ…0Âû?ÀpMºÅ?wàËxR?—¿îÁ˜Ë¬?—+Áèlç?®Mìi,†¢?ŽátÖÁ»‡?„ü›ðÓ?ƒƒQçÐ(?‘ ê$4 ?•*†*Zû@@@@@,@,?ð?ð?ð?ð?ð?ð¿)Ew@¿ˆÈRñ ?eðÈ>cž*?zññùò?Ã@¡Î]X!Žå@£îd5±¯Ñ?rËRàˆ?’Lâ[bv?ýó8Þv@oàuG@Ÿn 2@V@¤˜ˆ1&éy@¤˜ˆ´9X@¤˜ˆ1&éy@¤˜‰Çy¦µ@¤˜ˆ1&éy@¤˜‰Ô•,@¤˜ˆ1&éy@¤˜ˆŒç°@¤˜ˆ1&éy@¤˜†¸ºÇ@¤˜ˆ1&éy@¤˜‡ü¹#£@¬ITzáG®@¬ITzáG®@¬ITzáG®@¬IT,<ží@¬ITzáG®@¬IVE¡ÊÁ@¬ITzáG®@¬IT¢3œ@¬ITzáG®@¬IU2a|@¬ITzáG®@¬IU$Ü@5” xFÜ@5”ohÜ@1Ìí‘hr°@1ËÀ6âë@0çKƧïž@0çy¦µ @0°–»˜Çã@0°·€4mÆ@0°–»˜Çã@0±A [À@0°–»˜Çã@0°Ë)^ž?|¬Çëý ?*£|3Né?‘1f_¨Ï÷?Œ ßõIyû?‘u×íËÄî?ÍàÊaùX?€‚ñêã ?’pP‡È»?³2ºŽ'?íu…XÚ?‘q1ýAt?e¾DQ„Q?ƒ]€µ,VÞ?u/®Xã?„‘Za¹Q?ƒ ?ÿ½?‡<û¡71?†ùadô|@@@@@*@&?ð?ð?ð?ð?ð?ð¿0^à2Ð?(<±b@?&ª«/Ñ'?úÉxD4P@¤˜ˆ*Z%@¬ITÛí A?FØ8?ª¥?(‚LJ3„?›jüºÏl?[ÈÈh!Q@ŸgaÒsN@W@®J´9X@®J Iº^@®J´9X@®JŒç°@®J´9X@®J -Àƒp@®J´9X@®J w1Å@®J´9X@®J ÓÃa@®J´9X@®J ‘hr°@®/õ?|í‘@®/æfffg@®/õ?|í‘@®/öý!ÿ.@®/õ?|í‘@®/õŽ!–S@®/õ?|í‘@®/ôýó¶G@®/õ?|í‘@®/ô•*™@®/õ?|í‘@®/ñë…¸@7„¯O „M@7~Ëûµt@33S÷ÎÙ@33MjO@2A‰7KÇ@24mÅÖ8@2QÞi­BÄ@2QuŽ!–S@2QÞi­BÄ@2Q×Ûô‡ý@2QÞi­BÄ@2Q$Ý/?}Ñ¿ž,?’ÕOäª9ô?“‡ƒ×¤?Œ9‚Ù.?’FL{öó?‘äÿ̉ߚ?¥Ìõ}êáþ?”n‹rÕ|?”ïZºœ·?‘l™šU?’$) ‘?”V.·H?‡š¿]bœ?3XMÊV?†ž5ðqë?†k3`E`-?‰_uñšó?ˆk! ¨l@@@@@"@$?ð?ð?ð?ð?ð?ð?f -úq?Q¬ÄŠ?FœêxDê«?\Ày+€1²@®J ›ú@®/òæ}Äà?l•F§ ?r0‚ªZ?ØÆ:žÕÆh?×Qá Ù@Ÿn½­ôJi@X@¥ãáÊÀƒ@¥ãâ Iº^@¥ãáÊÀƒ@¥ãÞxfg@¥ãáÊÀƒ@¥ãÜJÃ@¥ãáÊÀƒ@¥ãÛQ`g™@¥ãáÊÀƒ@¥ãÚ0Kµ@¥ãáÊÀƒ@¥ãÚë8?=@˜}ó¶E¢@˜}ó¶E¢@˜}ó¶E¢@˜‚jÃÙ‡@˜}ó¶E¢@˜ !Hˆ@˜}ó¶E¢@˜uÂÎW¶@˜}ó¶E¢@˜†Ü€,‹@˜}ó¶E¢@˜‡°Èî@1Hè§æ@1Hè±Úœ@.ö“t¼@.ð Ëæÿ@.íOß;dZ@.áTÉ…ðp@-ÑÑN;Í6@-Â:lˆ4Z@-ÑÑN;Í6@-¿”ŸÌí@-ÑÑN;Í6@-½æ]¦¼¤?É^¨¯Âj?$Ê›:kf?“aHÆÎc ?Œ¼åž.4"?’ŸK¶ÖAü?’7gÎ]]?ÐbMÝn½?’~¥ÚBÛX?“]¸ò4q?-õI{Væ?‘V¬#œ?‘#ajÿ?€bMÕgô?Œ×2@,^Ç?‚}{Ifm?‚é­9œ«?‡>xA ´V?†ØÞÅð,Ÿ@@$@"@"@6@7?ð?ð?ð?ð?ð?ð¿3Ɇó?p]ÕÖ€?6Ô+iíÐ?T.ÒTHD½@¥ãÚæzQ@˜€-åV™?F"<å1e?c!8v±°Ä?…™äOsÜ?¾£ã–›l@ŸrØH^˜Ù@Y@«è÷KƧð@«èýߌ =@«è÷KƧð@«èöõ¿/@«è÷KƧð@«èózD€–@«è÷KƧð@«èóÀHL>@«è÷KƧð@«èõÿG -¹@«è÷KƧð@«èôò¶8j@™{q©ûçm@™{€=ÿ\@™{q©ûçm@™{l/Kñ@™{q©ûçm@™{h—™»H@™{q©ûçm@™{q‰ù½@™{q©ûçm@™{q¨(aÕ@™{q©ûçm@™{u×åB@7òÃÉîËû@7ðçìwZ0@3|í‘hr@3§·©å<@2çKƧïž@2èµù­„õ@2(è§æ›@2,$g¢/}@2(è§æ›@2,Ÿ©å@2(è§æ›@2,gPÄ)?}x—™¤µÜÆ@4; Iº^@3Ò¶®}Vm@2çKƧïž@2¬C,¥zx@2«xFÜ^@2^Ù‡+@2«xFÜ^@2hy=Ùc@2«xFÜ^@2l‹C•@8J¨?εŒŸ(C?»˜èèay?¾¼¬9»?·_¦ò” -Ÿ?Ƀ…*8@8J¨?ÆBÖ›¹?ÁÿýLAÌ?σº&ï¯a?Ä[­“Ÿö ?ÊÇ;|hˆ@8p÷?¡š5w?‘!´ö‚?£yD¼· ?™¼òQh@?»HíÕöU@@@@$@*?ð?ð?ð?ð?ðøøøøøøøøøøøø\@®NÐbMÒò@®NÅ`A‰8@®NÐbMÒò@®NÎ ÚÖ@®NÐbMÒò@®NÑ‘ËvÇ@®NÐbMÒò@®NГë¬:@®NÐbMÒò@®NÊt¿Ù»@®NÐbMÒò@®NÈÄ@¼+@“På`A‰@“ì‹C•@“På`A‰@“G­¼1S@“På`A‰@“BÖÙú#@“På`A‰@“9Ùq:µ@“På`A‰@“A·¸M–@“På`A‰@“IÈy¾‚@8úqÞi­C@8µBZî@2ö§ï²-@1“t¼j~ú@2kxFÜ^@0½Vlô"@2kxFÜ^@0¾¤¨ÁTÊ@2kxFÜ^@0¿|í‘hs?˜ž^ƒÿ*ˆ?Ðf¶ÓH¬?ÄÎȵs¥?‘sNX„êÒ?ºÎ(Q!ƒK?¬È7…‚9?‘â%ì˜ ä?ä©^ú?Îê¤/ù?¦)©`%;?ÉGZ> -º?ÀXEMˆä?¼Ã±0âŠh? Ï§¥7?–Ϥ?–¥ Ý})\?“6‰møŸã?”Ò -.Ô•@@@@@,@&?ð?ð?ð?ð?ð?ð¿Èø2vp?ÞÖ,€<<?«ztÝi?»³v0B¶d@¬­êwF˜@§…|o†È?Ã¸Š¨ðFÿ?ÕèH÷b²(@or“ò>O›@z¾Véãt¬@ŸbÎ|tó7@^@¡²Ã•%@¡²†éxÔþ@¡²Ã•%@¡²š¹õYµ@¡²Ã•%@¡²¦1ø @¡²Ã•%@¡²¥`A‰7@¡²Ã•%@¡²“ŽóMj@¡²Ã•%@¡²‘hr°!@¥žÛ¥ãSø@¥žÊÀƒ@¥žÛ¥ãSø@¥ž¯Ÿ¾w@¥žÛ¥ãSø@¥ž¹Œ~($@¥žÛ¥ãSø@¥ž­í(Œç@¥žÛ¥ãSø@¥žžß¤?æ@¥žÛ¥ãSø@¥žŸ¤?åÉ@5ëµsê´@5<Æ?@1ÜIº^5?@1£ÉîËû@1`A‰7L@0馵 (@0𖻘Çã@0¸ÁTÉ…ñ@0𖻘Çã@0¹ùrGF@0𖻘Çã@0¹e+ÓÃa?1·†Æjñ?•ò‘éÃ!?˜²éÃ_ÓÔ?ŒR‹w#z?•2q±ÏºÜ?—‡XE%:?žˆ2}?“—-´œc?’F^ì¼Sï?Ò–‚h±n? dÈr”K?¡ìøV?‚á²Olºü?Cx}¹x%?‚ÂÌ]æ?ƒR¨º“JÞ?‰]³ß’Ý?‡Ä­‹›Ü@@@@@(@*?ð?ð?ð?ð?ð?ð?sgèçÇ?§xáÕ`?l°ö{¼¶?‰%bðŒÆ@¡²‘é@¥ž^÷Œõ?Šhî¶d?¦Rç÷!ˆ@OPs/±8@Jî4rïì@Ÿd½.E«Ÿ@_@ ¯\(õÃ@ ¯ çù„à@ ¯\(õÃ@ ®ßEP2ì@ ¯\(õÃ@ ®w5õÄi@ ¯\(õÃ@ ®Èí!u@ ¯\(õÃ@ ®£æÚAH@ ¯\(õÃ@ ®…Ñq'@­~MOß;d@­~9Û"Ðæ@­~MOß;d@­~]#çGr@­~MOß;d@­~']ûD@­~MOß;d@­~4Àüú@­~MOß;d@­~ -PÔa¿@­~MOß;d@­~ØŠ&@8h†YJôñ@8j˜Vs¸@5E?|í‘h@5^î$@4Ct¼j~ú@4c—v¨+«@4mÅÖ8†@4 Þ(Óqµ@4mÅÖ8†@4‹Þq@4mÅÖ8†@4œžÒ &?¥ÕÍWh¿?ªáA‡¤ó?—H¬¯ñnk?™¿-3’0c?­w )qà?½”œÀ/NT?Ÿó%d(¤?±*Tòhg?“Ч©ÿHg?Ÿ„Yªp4q?§Œ%A`Q?°3È -¡¾?ˆlÌOAx°?² -™y$¦?À&XýØÐ?£ˆÂbZ ®?°Ã´f–Ø?¬øñ§æ”@@(@@&@9@6?ð?ð?ð?ð?ð?ð¿šÓòœ˜@¿Ã×i±?L«Y®ß"ç?rÜÃÅäðË@ ®ÍÒþÛ@­~)ˆÍuW?b·ˆDà¾?GÐ’ptß?š“NçÆh?õ÷~C³u@ŸhÓ>ÿçî@`@¬céûçl‹@¬céûçl‹@¬céûçl‹@¬cíV@¬céûçl‹@¬côFsØ@¬céûçl‹@¬cõÜÆ?@¬céûçl‹@¬cÿ|í‘h@¬céûçl‹@¬cø -à@ $Ý/@ ‰7KÇ@ $Ý/@  Ä›¦@ $Ý/@ Xâe@ $Ý/@ Z…‡”@ $Ý/@ JôðØ@ $Ý/@ ð¹@2ãg ù l@2ãˆe”¯O@1#÷ÎÙ‡@1—Oß;@0þV“u@0ôzáG®@0:Ô,<ží@01A [À@0:Ô,<ží@00ØDЪ@0:Ô,<ží@01$Ý/?ðO­W¬ÃÆ?Qdöÿô¼?™8ŠAWdm?“ׂa†Üü? £× -=p¤?4Üûõ¯?ð„ƒ;0?’ ŠŠ¤Hì?¥-hm7ªµ? vùv“?¤ Á lŸŸ?¢cšŠ5W?ð!̃?ŒöOÿÝ?…I‘ÒÁ/À?†O.ce?‡”_Õ­çW?>LR_5?ð@@@@,@*?ð?ð?ð?ð?ð?ð?_üz°º?]_þ{#?b9ûÐvµ?TbÚ„ ô@¬cøæÇ f@  ¢„?ró€Î Æ?c‡bŠKÆ?Æç»WXÈ"?›t-bPÖ¾@ŸsæÃf@a@¨Ä‡+ J@¨Ä‡®zá@¨Ä‡+ J@¨Ä‡+ J@¨Ä‡+ J@¨Ä‡®zà@¨Ä‡+ J@¨Ä†§ï²@¨Ä‡+ J@¨Ä†Ü]cˆ@¨Ä‡+ J@¨Ä†§ï²@¦Ä(õÂ\@¦Ä)7Kƨ@¦Ä(õÂ\@¦Ä(ÁTɆ@¦Ä(õÂ\@¦Ä(ÁTɆ@¦Ä(õÂ\@¦Ä(ÁTɆ@¦Ä(õÂ\@¦Ä)7Kƨ@¦Ä(õÂ\@¦Ä)ùrF@0ºqÞi­C@0ºqÞi­C@/.V“t@/.Hè§ç@.Ýó¶E¡Ë@.ÝÙb¶®@-u¨Xy=Ú@-u¨Xy=Ú@-u¨Xy=Ú@-u$Ý0@-u¨Xy=Ú@-uÂ\(ö?Éa—Ã(Ê?äm°û0Ž?‘@˜¯³¸?‹¦ ŸYÔ?ùª¨?¾ƒìÈÁ?ÐbV‡,?’&u÷E»@?ŽËÜ¿€?/ò×ÈZø?Ó%y*£=?oÌ‘'ýT?€b¡´ñ@?Œ­·Ž~('?‚2Y0âµ?ƒE 8?†–f_ÔŠŠ?†žóB» “@@@@@&@*?ð?ð?ð?ð?ð?ð>â €€?"{ˆŠx?Ì b?4öb@¨Ä†·Zsî@¦Ä(ýš28?"Z‹ ?(ij›/¨?@†Ö¿9õ?JÒswÅ`{@Ÿs÷E@b@ ‹¢MÒñª@ ‹¢MÒñª@ ‹¢MÒñª@ ‹š>/Í}@ ‹¢MÒñª@ ‹¦ËÖ•@ ‹¢MÒñª@ ‹˜wzÒ‘@ ‹¢MÒñª@ ‹³µÒŽ¢@ ‹¢MÒñª@ ‹·¿¸@ŸÜ™™™š@ŸÜ™™™š@ŸÜ™™™š@ŸÛÛIøL”@ŸÜ™™™š@ŸÜ5ãñ…@ŸÜ™™™š@ŸÜkãe@ŸÜ™™™š@ŸÜ –ð€Ã@ŸÜ™™™š@ŸÜSÑ Þ@2Y*0U2b@2Y&éxÔþ@.Çï²-@.¦Õ -Wç@- ƒn—@-–,7‰.4@-™b¶®~@-< -!°G?@-™b¶®~@-e…x âb@-™b¶®~@-~‚l¤e?çÞ–L I?‘óýÔ+B?“®(¬ 'õ?Žóä”r2?š•ñù#h…?¢uülP“ç?èŽìr¡-?’†jö¼»²?‘M¡¥?š6ͧzÞ÷?ýˆ‘aE?¤§º~Ó€?æ ýM¹<Ç?Œ°°½oª?ƒ”‡åÌ2?‡à[JÅé?‘‘w¹d4?Œ!‰ør;@@"@"@$@,@0?ð?ð?ð?ð?ð?ð?:%Ì&À¿š)Xæ`?i=ˆbCƒ?{1Þ‘¨Á@ ‹¨":0_@ŸÜ3¬"ÕÌ?v4uÏq™?ˆ¦ók¿³?Ô³´'xo?í<Þјóú@Ÿq僥´@c@ O?|í‘h@ O7§N÷š@ O?|í‘h@ OVbIKo@ O?|í‘h@ OF(Â%@ O?|í‘h@ ORÀ?@ O?|í‘h@ OEî*8@ O?|í‘h@ OAiñ@¢b¼í‘hs@¢b«èn˜ @¢b¼í‘hs@¢bi,SG@¢b¼í‘hs@¢b‚j[@¢b¼í‘hs@¢bã×9@¢b¼í‘hs@¢bŒK,Ó@¢b¼í‘hs@¢bžájrV@8·â‚@·€@8ã’?îµê@4{ Iº^@4aˆ -—Á@3²-V@3‚¾šÃÌH@2ÔmÅÖ8†@2Âûg3 9@2ÔmÅÖ8†@2ª Ô?yÊ@2ÔmÅÖ8†@2”vФž?‰døëŽìÃ?Ÿ ‰àü;O?—œy;4å?ò'ìûLä? Ëæ}ßw?©"j­ñª÷?±»àd„˜?¨“äÝýìÀ?”øŠIpì"?˜«¨ƒ'ùŠ?±,?³›çÈ0s?ÊXN;0q‹?ž?µO7Ø?—½}´²|?–gƒ»¹›’?™º‘ò‰È? ´ÁäÒ‹@@,@$@&@8@8?ð?ð?ð?ð?ð?ð?xirl€¿o§+«–?jetÏÂßð?td’¿@c@ OI®Ÿ§„@¢b“B_ÿä?‹X² -Â?…Ã{æz9Ó@Ç) H#¦?àä¥ÛG‚@Ÿk:è«xÚ@d@¢³ËC•@¢³Ë Iº@¢³ËC•@¢³³Mj@¢³ËC•@¢³®Ëûµ@¢³ËC•@¢³¿¤?åÊ@¢³ËC•@¢³¿¼@¢³ËC•@¢³¹ k¹Œ@¨®÷ÎÙ@¨®° Ä@¨®÷ÎÙ@¨­æ -¦L0@¨®÷ÎÙ@¨­ßU›=@¨®÷ÎÙ@¨­ïŸ¾w@¨®÷ÎÙ@¨­óMj@¨®÷ÎÙ@¨­ë…¸R@5›¹Œ~($@5šCþ\‘Ò@2”›¥ãSø@2ƒn—P@2;Ƨï²@2$!-w2@2œàu÷@1å*™0¾@2œàu÷@1ï¾vÈ´:@2œàu÷@1öOv_Ù?1·†Æjñ? 5)ZS?­Y)Þ=’?¡sâ½ë?£¬3¥ê©©?¡ÀX É ö?|öOÿÝ?¯!ÍMHß?¦¢´‰åR?©º1ø°`?²Õ™ý?«ÊµøÍC?‚á²Olºü?”~ªd•?’‡ïõ+üB?Ž‚1(w?›ÇûP|?¢áÄïÃõ@@@@@,@,?ð?ð?ð?ð?ð?ð¿m'“wÔ¿‚cGÑ?4‰éÛš‚?Yà…ý\Ù@¢³Æ± ž@¨®ÄÂjd?Mæ0œÁ`?p™9³cÍ?™#sýb?ЕXŒ¶êÆ@Ÿ_ZÎØNz@e@¥r&éxÔþ@¥pL1&é@¥r&éxÔþ@¥p]ŠÚ¹õ@¥r&éxÔþ@¥pdµÜÆ?@¥r&éxÔþ@¥p[=ÈK@¥r&éxÔþ@¥p>ùÛ"Ò@¥r&éxÔþ@¥pK’:)Ç@¡‹bMÒò@¡ˆRñ©ûç@¡‹bMÒò@¡ˆyXbN@¡‹bMÒò@¡ˆm(Œç@¡‹bMÒò@¡ˆs¶E¡Ë@¡‹bMÒò@¡ˆxï4Ö¡@¡‹bMÒò@¡ˆ£n.²@9}:’£@6%?|í‘h@50Ä›¥ãT@1{ÓÃa@@4‹"Ðå`B@0ˬq ²–@3Ê0U2a|@0Aä÷eý‹@3Ê0U2a|@0>žš@3Ê0U2a|@0;xFÜ^?óA[ØïF?ZÁ».œ?“ºo½Ô€?”½±·CåV? ÅÃsaS?›ô”G5v?•²»UbB2?’Òc§—Ûí?¢‘âÇZÓT?“Ôð,äÁ?£¾Lך7?ž…–½´Ö?ŒArUã@?“A ç’?Œ¢yëjk±?ŠÒ(>—œ ?Ä;Ãkr>?‹¼`’ i2@@@@@*@&?ð?ð?ð?ð?ð?ð¿ ¼œ…À?„´Œ@?j¦6d(R ?W³aÍ0@¥pNè>&q@¡ˆmïhãâ?‰ÙMæ«`†?uþ-nÚ@æÚRm½¶?Ö‡½W•œ±@Ÿi˜áq?ï@f@¯ÉèõÂ\@¯É÷KƧð@¯ÉèõÂ\@¯Éí¸ºÇ@¯ÉèõÂ\@¯Éèr° Å@¯ÉèõÂ\@¯ÉìcñA @¯ÉèõÂ\@¯Éç“Ý—õ@¯ÉèõÂ\@¯Éç“Ý—ö@ž…¸Qì@ž²-V@ž…¸Qì@ž…¸Qí@ž…¸Qì@žz’£R@ž…¸Qì@ž…¸Qì@ž…¸Qì@ž‡Ë)_@ž…¸Qì@žŒ~($ @8²ÃÉîËû@8¯ìVÕϪ@3žÙ‡+@3 N¤¨ÁT@3@å`A‰7@3Aaä÷eþ@2\ÚQÎ@2\¬1&ê@2\ÚQÎ@2\ÌÌÌÌÍ@2\ÚQÎ@2\64ê?îŠõ ?Žd±Ìº?”&$#ú/ò?’×­“·?“Œ4f(Rú?’IåŠú?•²»UbB2?“?xr¢I?“?T¾¹µ ?”±¤ëµu]?•nW*Ø„?‘êey°úà?»!°ÏŸÛº?Žrø·óæ?aäŽ -Ù?ˆš5|Gå?‹ì3åý?ˆk! ¨l@@@@@,@*?ð?ð?ð?ð?ð?ð¿iº]sy¿nóþdø?EQå¡Ç“N?`P™‘wö+@¯ÉëÑFñü@ž‘§É/R?`]—Œ¶³d?}Z:[ýÔ?³Á¡Á$–Î?ðÍÔq•”ÿ@Ÿn2MÒx<@g@¥eýó¶E¢@¥eþvÈ´9@¥eýó¶E¢Á.„€@¥eýó¶E¢Á.„€@¥eýó¶E¢Á.„€@¥eýó¶E¢Á.„€@¥eýó¶E¢Á.„€@¨%6E¡ÊÁ@¨%6E¡ÊÁ@¨%6E¡ÊÁÁ.„€@¨%6E¡ÊÁÁ.„€@¨%6E¡ÊÁÁ.„€@¨%6E¡ÊÁÁ.„€@¨%6E¡ÊÁÁ.„€@7¹Œ~($@7xÔýó¶@4}‘hr° Á.„M‰ûçm@3þV“uÁ.„QnÙ‡@3úÔ,<žíÁ.„NÜC,¥@3úÔ,<žíÁ.„NÜC,¥@3úÔ,<žíÁ.„NÜC,¥?3ßa=„@8#˜@8¾:@8 >+@8Iç@8Ù?3ßa=„@8Î÷@8i§@8Å@8S@8û—?…ÑTë0Ó@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøh@ªíV@ªíV@ªíV@ªíúCþ^@ªíV@ªð¸»@ªíV@ªì<žì¿@ªíV@ªê0U2a@ªíV@ªó¶E¡Ì@¢!ß;dZ@¢! Ä›¦@¢!ß;dZ@¢!V@¢!ß;dZ@¢!Œ²•éâ@¢!ß;dZ@¢!‘·Xá@¢!ß;dZ@¢!“÷ÎÙ@¢!ß;dZ@¢!…ðoiC@4[¹Œ~($@4[¥ãS÷Ï@2° Ä›¦@2-à @1§KƧïž@1§KƧïž@1:Ô,<ží@19Dg8~@1:Ô,<ží@1;~ÿ—%@1:Ô,<ží@1/Åo?|¬Çëý ?Žd±Ìº?—¿ÔÌÆ?ØTnçE?”?õ±oW?‘äÿ̉ߚ?|öOÿÝ?’“ºƒ;Nû?•ACžO?®>)ž!­?™x9ÿ¥l?‘êey°úà?‚‘´…=Ca?Ž>ž¬ˆ?‡9Â@0wç?’4i+Ëè?’ymícw\?屘Úã@@@@@(@ ?ð?ð?ð?ð?ð?ð?BC9…(¿T€C ?JWÜ,JB7?Qš+†±@ªíàÅøõ@¢!æ3¹?iÞ´hjOü?r¦l<ì?à)6ç°KP?èÙÃ×Þý:@Ÿe…õ•aÂ@i@ Sˆ1&éy@ S†¨•º @ Sˆ1&éy@ SŽÀ±tÁ@ Sˆ1&éy@ S‡ t @ Sˆ1&éy@ S‹{Þ+þ@ Sˆ1&éy@ S‹ã%j¡@ Sˆ1&éy@ SÑNÀì@­5n—Oß@­5n˜3lM@­5n—Oß@­5pÛc-@­5n—Oß@­5|ã½.@­5n—Oß@­5yCŸ¹@­5n—Oß@­5|š;c”@­5n—Oß@­57¨i£@3¥öý!ÿ.@3¤Z¬1@1×+ Iº@1Û”ƒ¤½4@1Ct¼j~ú@1F›!J”ð@1œàu÷@1¾‡N0@1œàu÷@1.ÓL½T@1œàu÷@1íí|cš?|¬Æ Væ?-ubÞô*?’X»Öb8?Œh«IÿRÙ?’o°ÉÏó½?’ë'QŒ?|¬Æ Væ?’S!Æ8Î?‘nG¢7?‘œø>ŽÿO?‘£€´Ë@?’S -ûÚ"j?‹t& -rº$?Žbæ«^åå?ƒ9Á„£f?…3Z#m_?‹oWâ´e?ŠTÐ(~@@$@(@&@8@6?ð?ð?ð?ð?ð?ð?X0±Èl?n}x¨2?%u í(8?"ê›[α@ S‰ÒW:³@­5vgì¯Î?Doj+FÊ?B õ[ÏŽ?•„N\ ¬?BÈ×?˜,@ŸfB˜¸s§@j@¯·!ÊÀƒ@¯·" Iº^@¯·!ÊÀƒ@¯·‰9?¶@¯·!ÊÀƒ@¯·8?mE@¯·!ÊÀƒ@¯·$\{B®@¯·!ÊÀƒ@¯¶÷z’% @¯·!ÊÀƒ@¯¶òD·Â@’Èj~ùÛ#@’Èq©ûçn@’Èj~ùÛ#@’ÈŠãò@’Èj~ùÛ#@’ÈbjvxF@’Èj~ùÛ#@’ÈÇ«Õl@’Èj~ùÛ#@’ÈÂçgG«@’Èj~ùÛ#@’ÈŒKk@4Ì]cˆe”@4Ñ}Œ"3@1ahr° Ä@1FÇSöP»@0Ͳ-V@0¹Ÿ÷T@0®_oÒ @0Qé,3®@0®_oÒ @0ƒÐ¹Ý@0®_oÒ @0…5"uµ\?€‘gQÚÃ?§ÛÂPîÙ½?—€¤6ÖS\?hÎѺ³?¥ª%/_ä[?¿FvÅS?~ì“?ÕÒJ?§3@$;?¦„‚Ÿ¢?¦ uºri¦?­Ú/\Ø?œ»Žšš?‚qnÌ鼿?äØ2ѧ7?„lþmUA?‡!ýe? =CQ»”Þ?™g`ž¾O±@@&@"@"@4@,?ð?ð?ð?ð?ð?ð¿uèw¬?sp’µ¼?rèòâ™7?jŸd¯†@¯·¦Dë@’ÈKõ>%?Œß‹s?®>?†ˆ|h[å@û¢ (U@æôVŠ’@Ÿb¹Îh@k@¬©ïŸ¾w@¬©ðbMÒó@¬©ïŸ¾w@¬©ïÅp@¬©ïŸ¾w@¬©ñN;Í6@¬©ïŸ¾w@¬©ñ‚©“ @¬©ïŸ¾w@¬©ïªÍž„@¬©ïŸ¾w@¬©ë¹Œ~'@¬Îœ(õÂ@¬Î›"Ðå`@¬Îœ(õÂ@¬Îó¶E¢@¬Îœ(õÂ@¬Îœžì¿±@¬Îœ(õÂ@¬Î Ä›¥ã@¬Îœ(õÂ@¬ÎžÅm\ü@¬Îœ(õÂ@¬Îžÿ—#@6VšÔ,<Ÿ@6X_ö”F@1û Iº^@1ú#9Àëî@1È“t¼j@1Èe”¯O@15µsê³h@14‡ü¹#£@15µsê³h@15Â\(ö@15µsê³h@15`A‰7L?|öOÿÝ?àIü'?’Z¡*CÂ?Œä%—ëš?‘úy«ôÊ%?‘_ Ýß?€‚ñêã ?“ÈÂ`?’˜l%F…Z?Níú¾?‘¦‘=W?× ³¸ÑZ?ƒÆ×q„nï?3I¶#i?„A'Š_^?ƒ¼9XNÄu?‡ã ËÄž?‡…¤$Ó@@@@@*@$?ð?ð?ð?ð?ð?ð¿@ŒÑOx?Mó£ò0?>öS­þ ?=”8M‹Ú<@¬©ïŽ«‰r@¬Î} y¹?_ð0¨5D?^j„7Ǫ?Èg˜¶@̨?Ä¡™’Ÿ@Ÿg>ÿœs@l@§?bMÒñª@§?_¾vȳ@§?bMÒñª@§?a-w1‘@§?bMÒñª@§?^ߤ?æ@§?bMÒñª@§?R×s@§?bMÒñª@§?]ŠÚ¹õ@§?bMÒñª@§?XºÇË@ ËY‡+@ ËY‡+@ ËY‡+@ ËWÁ½¥@ ËY‡+@ ËRñ©ûç@ ËY‡+@ ËYrGE9@ ËY‡+@ ËUÂ\)@ ËY‡+@ ËTzáG­@7 ØDЩ@7œô!-w@2ë¥ãS÷Ï@2éb¶®}@1ûƧï²@1øÎp:û~@1‘Þi­BÄ@1‹quŽ!–@1‘Þi­BÄ@1ŠçÕfÏB@1‘Þi­BÄ@1Žžš?¤ÊŽaÈ]Ó?”·'‚5â–?“%HCâ=s?’gh·T°? `F§C:?–À¬‡$?›’qvš°•?”n‹rÕ|?•0›ˆÄØû?øQñĨó?™=M÷‹¸?”µìSõüS?”l´~ðJ?ŽátÖÁ»‡?…àú^Á?†3_¾ˆ?K·‘d\?Žrø·óæ@@@@@,@(?ð?ð?ð?ð?ð?ð?%;†T€¿R(’?d.ÎÃůÌ?BÓϼ®@§?W bn@ ËWcPwÈ?|©D+3`å?] ±“?äyÞÃmq?®ZÝ5Z¼J@Ÿn/Tös,@m@¨ßÒñ©ûç@¨ßÓ3333@¨ßÒñ©ûç@¨ßÔ#Ý)@¨ßÒñ©ûç@¨ßÔ6ö/_@¨ßÒñ©ûç@¨ßÔ!~Šƒ@¨ßÒñ©ûç@¨ßщ7KÇ@¨ßÒñ©ûç@¨ßÒ(”é@šç¾vÈ´9@šç¾vÈ´9@šç¾vÈ´9@šç¼òÏ•Õ@šç¾vÈ´9@šç¿Ë’:)@šç¾vÈ´9@šçÀVPÒ2@šç¾vÈ´9@šç½É]›ÿ@šç¾vÈ´9@šç¾Ö¥t -@1[¹Œ~($@1[Ƨī®@0}‘hr° @0}ÅáØ@²@/†éxÔýô@/‡AbÚ|”@/úÇË)_@/ûFø.”@/úÇË)_@/û‰ Z[—@/úÇË)_@/û¿²øQ„?É^ýTïŽ?áq«yÈÊ?‘8R¡~Äx?‹Ôo«$Í ?þ!!.Æ?¼nh&Í?ÐbMÝn½?’½ò?«1©;ýà?5' *x?êê-4éB?bRu£PL?€bMÕ]f?Œ¾ŸY¤?‚ˆT.g?ƒv¡s{Ô?†¸_æ=DÃ?†¤2ËU@@*@,@(@4@2?ð?ð?ð?ð?ð?ð¿OQF–¿6ð*??w”½É(?3+ú‚£í@¨ßÒÇ#¤@šç¿ñó?N^k ¹Ä?B(t–Žž[?–=æ`…¡?|ÂË‹¶‚@Ÿs„•Fü@n@¤ƒ%`A‰7@¤‚Ö“u@¤ƒ%`A‰7@¤ƒ*W§†Â@¤ƒ%`A‰7@¤ƒ%¡ÊÀ‚@¤ƒ%`A‰7@¤ƒ$Z¬@¤ƒ%`A‰7@¤ƒ&µ (@¤ƒ%`A‰7@¤ƒ$?åÉ@¯IzáG®@¯Ie`A‰7@¯IzáG®@¯I{À6ã@¯IzáG®@¯Iz¬2@¯IzáG®@¯IxQë…@¯IzáG®@¯I}p£× -@¯IzáG®@¯I{²þÅm@7” xFÜ@7Iã¼Ô@2—+ Iº@2˜FÜ]c@2Ðå`A‰@2,<žìÀ@1\ÚQÎ@1^p:û~‘@1\ÚQÎ@1]ÈK]Í@1\ÚQÎ@1\]cˆe•?Ô[_ÇgÂ?‘ ·èe?‘=?ùKh?‹ËØ|*(?‘ŠR%¨(0?‘uu‡éÚÇ?°ý¢¾Ýb?—b…ªH=?€s8rÅ?-õI¸`K?‘¶|+üÎ~?Éöm/wˆ?=d­úå?ƒúʳ_Ä?†¤c·Ó—1?‡&üòI?ˆA0û)n@@@@@@?ð?ð?ð?ð?ð?ð?:½}h8?e"2ñ™€?]JvT£Ì?YB=åéH@¤ƒ$ïèmÚ@¯Iz}ü=x?kÅCï=˜ë?k^6YV?Ҭ˷g -?ÏoÆF¹>7@Ÿrç-’“b@o@¢à["Ðå`@¢à[çl‹E@¢à["Ðå`@¢àZŸ¾vÉ@¢à["Ðå`@¢àTÉ…ðo@¢à["Ðå`@¢àWéùr@¢à["Ðå`@¢àXQë…@¢à["Ðå`@¢àW1Å@­¡°£× -=@­¡°å`Aˆ@­¡°£× -=@­¡®±Ä2É@­¡°£× -=@­¡³Ý—ö,@­¡°£× -=@­¡²-V@­¡°£× -=@­¡¬<žìÀ@­¡°£× -=@­¡°-à @5Hè§æ@5!–R½<@2õãS÷ÎÙ@2ö?¼@2â-V@2äFs×Ü@2(è§æ›@2*dÂø7µ@2(è§æ›@2-w1Å@2(è§æ›@2+µsê´?|öOÿÝ?µ‡:úÎ ?” -Ÿ”îtI?‹ÑqÔ@vÿ?“¦Æ_ÌdA?“DŽèw–?1·†Æjñ?“$i «%h?’$ûJw"Ú?’GÎ>GÅ?•’nî …?‘yÃúCŠ?‚Ö˜>µDà?ŽOv_Ø­«?ˆïhƒEõ§?ƒ­=aÊw%?ŒC ãSG?‰w¿˜Í¶ª@@@@@*@&?ð?ð?ð?ð?ð?ð¿Q2ÀŸn¿4¬<¨`?+ìARG*T??íŽdY.V@¢àY’¡…(@­¡°WP]Š?Kèz[/?`¡“°ž?¡Ã—ö:P?ÆÀ[Kêl@Ÿff[ðâ˜@p@ªº&ffff@ªºLíÆ«!@ªº&ffff@ªº;ö„»@ªº&ffff@ªº3„fO@ªº&ffff@ªº0ÀÃåç@ªº&ffff@ªºxŒ½É@ªº&ffff@ªºV¥ø‡#@–ÃNÙ‡+@–ÃÌv N@–ÃNÙ‡+@–©E¥rÛ@–ÃNÙ‡+@–´{»€ò@–ÃNÙ‡+@–ÂWWO]<@–ÃNÙ‡+@–†û]ô@–ÃNÙ‡+@–š¦ƒ´@7+µsê´@7(¸ò @4«¥ãS÷Ï@4ŠZ΢PU@4†“t¼@4\"8Âlä@3ýcˆe”°@3ÒÈÒÙã@3ýcˆe”°@3ÈL|¾U@3ýcˆe”°@3Ù¸íÍ?¼þUÜÆ?œ¦ú—k'?©_ ¿ê4°?£ª˸ŸM?±ªaÔE=?¦8ò3@À?Æ¢¾üÒ?¢1ÞF#†ÿ?±ÜGŠ}¸?±W¸ýöL*?´¡À8J?¸z wv?ÎÄhÜ<žƒ?ÕdÞÄX?‘¾§ðc"?‰éê?"‚ÿ?”4N³e6Ú?™Sák€@@$@,@*@9@:?ð?ð?ð?ð?ð?ð?…°½­U¿-OCo ?‡&:¡?–Óe˜ Í%@ªºFÔ…Ð@–Â)Þ â?ž¤2¿ùðÎ?¬Frûm@§ì4h«Â@â<Ö•§ú@Ÿo((°(ø@q@ ‰ÍÒñ©ü@ ‰ÎV“@ ‰ÍÒñ©ü@ ‰Ï;À®Ø@ ‰ÍÒñ©ü@ ‰ÐÜI%…@ ‰ÍÒñ©ü@ ‰Ñ¿^Wv@ ‰ÍÒñ©ü@ ‰ÐoeêØ@ ‰ÍÒñ©ü@ ‰Ï^‰Oô@¤‹Æ§ïž@¤‹ÇN @¤‹Æ§ïž@¤‰ßõ]©@¤‹Æ§ïž@¤‰v¹Â¼@¤‹Æ§ïž@¤ˆ]·k<@¤‹Æ§ïž@¤‰G§²ï@¤‹Æ§ïž@¤ˆ‘2ˆ¿@3IÎ_oÒ@3IîËû¶@/…`A‰7K@/ƒ¿ø¨ó©@/ÊÀƒn@.þ¸Që…@.…oi@.€²XmúÍ@.…oi@.€e«yZ3@.…oi@.€yãë"?|¬h2:“?ÔˆN³ -U?‘NUŸ˜–?‹îJ×ûú?‘ƒê­ñ?Ö³L_™v?|¬Æ Væ?’ŽcLä±?ùc1ut?W%æ29?‘8¬è_ u?þ¦9™#?‚nÓ3î‰?Œµ»Ò]?‚ƒ„b%£u?‚ò¸ÞÚu^?†²!”,ª8?†´%ü:Ã@@(@*@$@8@6?ð?ð?ð?ð?ð?ð?>¢TõÀ¿G“b*Œ?7J]÷92‹?*‘}&S“@ ‰Ï•G.A@¤Š¢Ñ¡?W)†mû?Jê­_ç!?½$h7\ç”?¢fÕ° -@ô@ŸfÎa®±u@r@¬V„“t¼@¬V†$Ý/@¬V„“t¼@¬V—ö+l@¬V„“t¼@¬VªÚ¹õY@¬V„“t¼@¬VÓ àÞÓ@¬V„“t¼@¬VÝÈK_@¬V„“t¼@¬VÄM:“@¨uâMÒñª@¨uâMÒñª@¨uâMÒñª@¨uÿb¶®}@¨uâMÒñª@¨v -ôðØE@¨uâMÒñª@¨vóMj@¨uâMÒñª@¨v(´9X@¨uâMÒñª@¨v:)Çz@5²ÃÉîËû@5²¶®}Vm@1ã÷ÎÙ‡@1Ò¼£n@1PA‰7KÇ@17eýŠÚº@1 -0U2a|@0ã9Àëíú@1 -0U2a|@0â×sü@1 -0U2a|@0ãÉîËû?|¬Çëý ?ŸB¦Áe‡?©ÖÌC³1?¹§—~ÃL?½ë;V?²¹DrÜþ¸?€‚ñêã ?ŸNÀH?®SiÙ܃ú?©%™¬ÅW?¾ -ÁHQÏj?°ˆÑªC¬#?‹?ü}(´2?\{ÏïŽ?‹f°ùr[ƒ?“äÐå÷à?“ )D)?§^ÐÜ_žr@@@@@,@&?ð?ð?ð?ð?ð?ð?f†pÀ?‰ùó=1?pÝÝ ÊK¨?e´OäýAÍ@¬V“yÛ@¨uìñ«?~Í!¿|_?u?@†0ù?êňR\?àD‚–c¼Ú@Ÿ\e_Íþ@s@žÿZ¬1@žÿ_¾vÈ´@žÿZ¬1@žÿTÉ…ðp@žÿZ¬1@žÿz–¼@žÿZ¬1@žÿžƒä%°@žÿZ¬1@žÿ<žý[ï@žÿZ¬1@žÿCa@N@«ª¨õÂ\@«ª®¹)æ\@«ª¨õÂ\@«ªªJŒM@«ª¨õÂ\@«ªíúCþ^@«ª¨õÂ\@«ªâ¶®}V@«ª¨õÂ\@«ª°›+ñê@«ª¨õÂ\@«ª©îËû@8Ç>«6z@8Æ•e.Í@4+ Iº@4êJŒL@397KƧð@3&»˜Çâ‚@3QÞi­BÄ@33t¼j~ú@3QÞi­BÄ@3BT=¹¦à@3QÞi­BÄ@3>±Ä2ÊX?•w«ogŸl?­gžóÉ?¦¶÷w¿û?°8 ÆYÍ?›šØõ×Ü¡?¢ÀÂêVAg?µ(ÖÐl_‚?§,•4,ô`?½Çýë/?¸èÛ”ýY?™T=ö®ÝU?¤2R2'Ö•?³{ÐQ×y?ª=Xçý?¡©LÒü¬?ª¢×¿l?˜d7õ—?²¥WÁÞú¬@@@@@3@&?ð?ð?ð?ð?ð?ð¿k¤oK*€¿jœ¯BÐ?j/-Ñ:ð?z˜‚°;A@žÿK¯^pB@«ª²¶+Ô?}[ÍŠÑL?:T²?ú_Z%ES?ïêýËz@Ÿp2«Ú@t@ ³õ?|í‘Á.„€@ ³õ?|í‘@ ´!|4bé@ ³õ?|í‘@ ³þ¼‹Î@ ³õ?|í‘@ ³ý îû¬@ ³õ?|í‘@ ³ÑËÓøE@ ³õ?|í‘@ ³Ú^0AJ@¡rr-VÁ.„€@¡rr-V@¡r~ûX P@¡rr-V@¡r^€ÿ#S@¡rr-V@¡re m@¡rr-V@¡rFx @¡rr-V@¡r8‘ôSM@8è†YJôñÁ.„>¤µÜÆ@4^Ù‡+@45@¶ã³ƒ@3»Æ§ï²@3ŠBÕ´në@2ó&Á½¥@2Ö [­ú@2ó&Á½¥@2ÈšÔ«ª@2ó&Á½¥@2ÊÕé 7û@8J¨?š /¹|?‘y2ÈãÁž?‘ÌÑîšóÉ?©Vï2ª¥?¤|Û·t¼@8J¨?’\pe³ -? 7ê OW?•!ZÁó“ ?°möC¤?¬¬Ñ½­4@8p÷?£ÉleÏž$?¥”§puÏ?„¢GyÜt¡?›Ëm\•è‘? 4ÃîŸ@@@@4@3?ð?ð?ð?ð?ðøøøøøøøøøøøøu@¨TOß;d@¨TˆõÂ\@¨TOß;d@¨TÅÖ8†@¨TOß;d@¨TŽV“@¨TOß;d@¨TÒñ©ü@¨TOß;d@¨T‹'»0@¨TOß;d@¨T‰“ àß@¤úß;dZ@¤úäÝ/ @¤úß;dZ@¤úß¼@¤úß;dZ@¤úßU›=@¤úß;dZ@¤úßb¶®}@¤úß;dZ@¤úßåÉ@¤úß;dZ@¤úܹ#¢œ@7}:’£@7z)Çy¦µ@0J^5?|î@0J6âëC@.N—Oß;@.NŠqÞi­@,Vð¸»@,V®}Vlö@,Vð¸»@,Usê³g¡@,Vð¸»@,UY³Ð|…?1·†Æjñ?êÚÏ$?‘ÌË>¯f?‹¦ ŸYÔ?’š'†­`í?‘PÊÑ<Ýl?‚á²Olºü?’7Îf¬ps?~ËQ§?0ÜN :s?’£ôùÎ8ï?Éöm/wN ?ƒ ?ÿ½?†©b/bJö?†Óß -tõ@@@@@(@$?ð?ð?ð?ð?ð?ð?@¢_{¿YÝ;r?Cͳ;h%?0“ŽCÜC…@¨TŠ’§\Î@¤úák•P?cªBçš)?PÏ×"Ì?B?ÒHax´2Ð?¦îïNÜñ+@ŸgðjE’ù@v@¥4öÈ´9X@¥5ì‹C•@¥4öÈ´9X@¥5y=Ù@¥4öÈ´9X@¥4ï²-@¥4öÈ´9X@¥5‰ 'R@¥4öÈ´9X@¥5¯O „@¥4öÈ´9X@¥5 -#9Àë@¦Ä Òñ©ü@¦ÃE`A‰8@¦Ä Òñ©ü@¦Ä1[W>«@¦Ä Òñ©ü@¦Ä8Që…@¦Ä Òñ©ü@¦Ä*W§†Â@¦Ä Òñ©ü@¦ÃöÈ´9X@¦Ä Òñ©ü@¦Äu%F @7Ç>«6z@7–E¡ÊÀƒ@3\Iº^5?@3PHðŽ@2gKƧïž@26lô!.@1æYJôðØ@1ù^žš@1æYJôðØ@2[À6ã@1æYJôðØ@2tSŽóN?î5uê[EÙ?¤5‚O}Ó?¨bY¶®å?¤C: -?® ÍÓâš?¢©LÚTk?è9›ïŸ“?U -£?00?Ÿ}M ¾ñ?§7&Öcè?³‡Täþ¦Ï?¯ áñ M?Ö°\“Wôg?©(p@òvù?±A\ÿŸ#?¡ÖÖk³R?¨4¨æž?ª\»Oå :@@@@@,@*?ð?ð?ð?ð?ð?ð¿jg-C€¿’ ¨ @?qy´Ò×?†ÏÔb‹ðº@¥5+*þŠ@¦Äc¼[»?Ï…¤ã—%?—ešª?Ï%ZŒ"Y†?íÌ -RRC@ŸrÄ;X¿@w@¦mŠÀƒoÁ.„€@¦mŠÀƒo@¦bÌ¥zxl@¦mŠÀƒoÁ.„€@¦mŠÀƒo@¦iþùÛ"Ò@¦mŠÀƒoÁ.„€@¦mŠÀƒo@¦ihÛ‹@šOY‡+Á.„€@šOY‡+@šR° Ä›§@šOY‡+Á.„€@šOY‡+@šG\(õÂŽ@šOY‡+Á.„€@šOY‡+@šI-(Œç@8ãg ù lÁ.„>¤µÜÆ@4Ô›¥ãSø@1™Çy¦µ -@3¶§ï²-Á.„QnÙ‡@3°–»˜Çã@11ë…¸R@3°–»˜ÇãÁ.„NÜC,¥@3°–»˜Çã@1 ¾ß¤@@8J¨?ÄÛ.¯qÊ@8¾:?Áu86@8Iç?ÐUŠ¢’zW@8J¨?¼ž‰´7*@8i§?´Ù¹£—N›@8S?Ô|pU½w@8p÷?”܉a^±‚@8p÷?‹µ¼a@8 Ø?ªé¦ªC¨@@@*?ð?ð?ðøøøøøøøøøøøøx@©Â"Ðå`@©Â^5?~@©Â"Ðå`@©Â¸Që…@©Â"Ðå`@©ÂÇâ‚A@©Â"Ðå`@©Âýó¶E@©Â"Ðå`@©Âe+ÓÃ@©Â"Ðå`@©ÂE¡ÊÁ@¬";dZ@¬"áG®@¬";dZ@¬"ÈK^@¬";dZ@¬"×Ûôˆ@¬";dZ@¬"ÊW§‡@¬";dZ@¬"Z¬ @¬";dZ@¬"$ x@8(†YJôñ@8,¹#¢œx@3ý‘hr° @3õŽ!–R½@3¾V“u@3´Ö¡aä÷@3n_oÒ @3g_oÒó@3n_oÒ @3iÔ•*™@3n_oÒ @3kW>«6z?¥K¶{Oÿ?àIü'?›Ì~” #?–àa¦vfVŠ?“ŸºõÒ‡©?’Oûh´6c?°4\ɵ@@@@@*@*?ð?ð?ð?ð?ð?ð¿)›§ïp¿p·ÿ,?Qp€ŒÍm‚?I»¸g}'÷@©Âke A@¬"Ʋ~b?i¿øÝõ¨­?oÆ[XhŠË?¹yš?¾ÉÖ×÷°@Ÿk^„Œ>Î@y@Ÿ­F§ï²@Ÿ­'l‹C–@Ÿ­F§ï²Á.„€@Ÿ­F§ï²Á.„€@Ÿ­F§ï²Á.„€@Ÿ­F§ï²Á.„€@Ÿ­F§ï²Á.„€@Ÿã -=p£×@Ÿã 7Kƨ@Ÿã -=p£×Á.„€@Ÿã -=p£×Á.„€@Ÿã -=p£×Á.„€@Ÿã -=p£×Á.„€@Ÿã -=p£×Á.„€@7›¹Œ~($@7lµÜÆ?@3=‘hr° Á.„M‰ûçm@2y7KƧðÁ.„QnÙ‡@1ÙŒ~($ Á.„NÜC,¥@1ÙŒ~($ Á.„NÜC,¥@1ÙŒ~($ Á.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøz@ ü¸Ôýó¶@ ü¹‡+@ ü¸Ôýó¶@ üºZP”ê@ ü¸Ôýó¶@ üºÐÔõ@ ü¸Ôýó¶@ üº[–(Ì@ ü¸Ôýó¶@ ü·Ó¹«Ü@ ü¸Ôýó¶@ ü·ñë¤@¤`A‰7L@¤`A‰7L@¤`A‰7L@¤_;ÌH@¤`A‰7L@¤^Kmî+@¤`A‰7L@¤^5½*â@¤`A‰7L@¤ate‹@¤`A‰7L@¤_¯2­ø@2Î쿱[X@2Ï(½LWØ@/{"Ðå`A@/x -à @.&éxÔþ@.¨agš@-³üPH@-°ØÏ˰@-³üPH@-°f},GT@-³üPH@-°ÕàÓú?É^ž6õP?¾¡¦£–?‘(u‹¹HØ?‹½ö’˜©?‘7p‰?³U@Zþ?ÐbMÝn½?’Îü¥ó ?‡š?-õF|îè?ò wÿ!H?Jê©Ùãu?€—7݉‡?ŒµœÛ»~r?‚„UAÕ|?‚èLV#7?†ªÀÜ?†ØÄ|°ˆ@@@ @"@4@(?ð?ð?ð?ð?ð?ð¿R,1µ(?Gf1»?9¦‰ÜñƆ?JéXg9é,@ ü¸ãh°^@¤_§}5?H³X¦^ø·?YˆTþºÕ?ß³š ´?¬‡±3w‰@Ÿs‰ é‚@{@§`Rn—P@§`BÐå`C@§`Rn—P@§`$tS@§`Rn—P@§_þ5?|ï@§`Rn—P@§`W>«6@§`Rn—P@§`p£× ->@§`Rn—P@§`1&éxÕ@¦KéxÔýô@¦KÒn—P@¦KéxÔýô@¦KÛšu@¦KéxÔýô@¦K£× -=@¦KéxÔýô@¦L“t½@¦KéxÔýô@¦Kãä%®æ@¦KéxÔýô@¦Lˆe”®@9 Î_oÒ@9IQ‚©@4®5?|í‘@4° Ä›¦@4¢-V@4ÅãS÷ÎÙ@3µµsê³h@3¨1&éxÕ@3µµsê³h@38bMÒò@3µµsê³h@31N;Í5¨?óA[ØïF?¥d`ÿwªÁ?·ÖËÂ~?º ÞÑ·?Ê«[‰â?Õã$q¬ à?º,eª ™?•wi¢‚*?¤å ù%£a?§ãcé(&ò?Ó’âºÚ ?Ó¾x´ÁF?ɦÇvY¸?¥k2ïm?’÷ ¬n±?’Oûh´6c@@@@@*@(?ð?ð?ð?ð?ð?ð¿o!u‡Ñ¿—a{K½À?c8ž¤¯9?tÿr€ïÞ@¯Ç.zY@¤˜e†þ>??}/§KÄÒ?”2*váb?Þ"Ó±ª@m‰UæwÓ@Ÿk™9×@¼@}@Ÿ¢1&éyÁ.„€@Ÿ¢1&éy@Ÿ¢×G @Ÿ¢1&éy@Ÿ¢8992@Ÿ¢1&éy@Ÿ¢E"yÙ@Ÿ¢1&éy@Ÿ¢\S@Ÿ¢1&éy@Ÿ£å{@¤|¢Ðå`BÁ.„€@¤|¢Ðå`B@¤|ZêlH@¤|¢Ðå`B@¤|¦t±ò@¤|¢Ðå`B@¤|‹°eñÒ@¤|¢Ðå`B@¤|‘2•Ç@¤|¢Ðå`B@¤‚¸Ï&b@9p4mÅÖ8Á.„>¤µÜÆ@3Ê^5?|í@3´vƆë&@2´“t¼j@2¦$6þ¶@2ÚQÎ@1þö”Fs‚@2ÚQÎ@2ã¡ ò@2ÚQÎ@3)¾xê@8J¨?cÞ~¬Vî?£Tªÿó¨?œv«S }?¢âQ×Wb(?°î6ÀäÌ@8J¨?“•>u N—?¨Õ Ýu}?§þØÕª¿Q?¡h["ÒÎÝ?«WìuFY@8p÷?Œ÷8Ï)sü?•¬[†ƒ?ÖYÉdz?Œ9ûÃO­ì?šSLé´ˆ½@"@*@$@8@1?ð?ð?ð?ð?ðøøøøøøøøøøøø~@©4¼j~ú@©]p£× @©4¼j~ú@©— -=p¤@©4¼j~ú@©¬L˜_@©4¼j~ú@©GE8ï6@©4¼j~úÁ.„€@©4¼j~úÁ.„€@ üËC•@ ý 1&é@ üËC•@ üû=ÈK@ üËC•@ üÈ´9X@ üËC•@ ü£S÷ÎÙ@ üËC•Á.„€@ üËC•Á.„€@8Žì¿±[X@8%$Ý/@5ë¥ãS÷Ï@5ÚCþ\‘Ñ@5’Ðå`A‰@5-w1Å@50–»˜Çã@5F§ï²-@50–»˜ÇãÁ.„NÜC,¥@50–»˜ÇãÁ.„NÜC,¥?¸å…þW&l?” ©›’?È„ 2 Ë?°X}vÕé@8Iç@8Ù?ÀÊ»d9\?¾¤¸ß¤ -B?À­ŸÇ¿?¾ÀI å @8S@8û—?èóºWßu€?­#Çò¯½?³fgÁ˜?¼å…¯Öé©@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøø@«[…¡ÊÀƒ@«[o\(õÃ@«[…¡ÊÀƒÁ.„€@«[…¡ÊÀƒÁ.„€@«[…¡ÊÀƒÁ.„€@«[…¡ÊÀƒÁ.„€@«[…¡ÊÀƒÁ.„€@ª1º^5?}@ª1·ÎÙ†@ª1º^5?}Á.„€@ª1º^5?}Á.„€@ª1º^5?}Á.„€@ª1º^5?}Á.„€@ª1º^5?}Á.„€@92ÃÉîËû@92ÞÑ·@5° Ä›¦Á.„M‰ûçm@4K"Ðå`BÁ.„QnÙ‡@3𖻘ÇãÁ.„NÜC,¥@3𖻘ÇãÁ.„NÜC,¥@3𖻘ÇãÁ.„NÜC,¥?­g;+³ût@8#˜@8¾:@8 >+@8Iç@8Ù?3ßa=„@8Î÷@8i§@8Å@8S@8û—?²yMa‘€@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø€@¬Ç?|í‘h@¬Çc× -=r@¬Ç?|í‘h@¬ÇL~($ -@¬Ç?|í‘h@¬ÇB\(ö@¬Ç?|í‘h@¬ÇQÅ@¬Ç?|í‘h@¬Ç<àuöü@¬Ç?|í‘hÁ.„€@¤Í÷KƧð@¤Î Iº^@¤Í÷KƧð@¤Î›¥ãT@¤Í÷KƧð@¤Î¯·é@¤Í÷KƧð@¤Î Iº^5@¤Í÷KƧð@¤ÎÁTɇ@¤Í÷KƧðÁ.„€@9zqÞi­C@9SFÜ]cˆ@4uãS÷ÎÙ@4lÌÌÌÌÌ@3ƒt¼j~ú@3~Ov_Ø®@3&YJôðØ@3ÕfÏAò@3&YJôðØ@3~ÿ—%@3&YJôðØÁ.„NÜC,¥?‘â%ì˜ ä?žK›æ¶'B?˜ëàÕÁc0?ŒôƒA˜c ?•RC}Ëq@8Ù?3ßa=„? (úSú±5?—ˆ”„òõ¤?‘²)ò@a,?•¯ÃþƒR@8û—?ÅÔ-~QvG?‘­b š=?‰6~„æAÕ?‹µ¼a?·♊N@8 Ø@@@@@&?ð?ð?ð?ð?ðøøøøøøøøøøøø@§ö¤b^@§öLχ @§ö+@8Iç@8Ù?®k|j“ʨ@8Î÷@8i§@8Å@8S@8û—?¡7‡V/Žr@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøƒ@ª?]²-V@ª?]ó¶E£@ª?]²-V@ª?[J#9Á@ª?]²-V@ª?]Vlô@ª?]²-V@ª?a£n.²@ª?]²-V@ª?cñA ]@ª?]²-V@ª?`Ä›¥ã@¥8Ôýó¶@¥8Ôýó¶@¥8Ôýó¶@¥8Që…@¥8Ôýó¶@¥:^5?}@¥8Ôýó¶@¥=ÌcñA@¥8Ôýó¶@¥:áG®@¥8Ôýó¶@¥8 -à@5úqÞi­C@5û‹¬q ²@3Yº^5?}@3]cˆe”¯@34“t¼j@3;jçÕfÏ@2‚@·€5@2Ç1Å‚@2‚@·€5@2Åzxl"h@2‚@·€5@2ÆšÔ,< ?|öOÿÝ?Qdöÿô¼?™¬þ.OÀ…?{¾“úy6?“K–ºé…/?–"ûe”M?€‚ñêã ?’ùÎ {?˜€OìØ¯i?•è­¸‡?‘êë·áþA?™›,4rÕ9?‚Ì ÝŽ‚8?šÑ~¿²Ô?ˆÌ7^|Â?Ž«]O8èº?ŒXk-¯‚7?“6‰møŸã@@@@@$@(?ð?ð?ð?ð?ð?ð?Q„WÂ?=£ßa?8`È“„±?A™]ëÓ@ª?`=€ò@¥9üB…¦?Wøö¿z?`©ÎçÝá¶?¸^s@Æqu?ô_Øvü@ŸeµÑŽ5ó@„@Ÿµ-V@Ÿµ0£× -=@Ÿµ-V@Ÿ¶ Ä^©@Ÿµ-V@Ÿ¶'nA¯@Ÿµ-V@Ÿ¶íšž@Ÿµ-V@Ÿ¶¨E÷A†@Ÿµ-V@Ÿ¶;J#9Â@¨AzáG®@¨AE¡ÊÂ@¨AzáG®@¨A;ô‡üº@¨AzáG®@¨ARõLA@¨AzáG®@¨A†aŽÄP@¨AzáG®@¨A9D8 @¨AzáG®@¨A:)Çy§@2–šÔ,<Ÿ@2”›¥ãSø@.½²-V@.èÿ׫Ž@.dZ¬@-º0×ZÄ…@,ܾߤ@@,m‘ámH@,ܾߤ@@,k*µ …@,ܾߤ@@,m¸ºÇÌ?É^¨¯Âj?’mëc^½Í?‘Ÿ«®m+?Ž‘dÞEã?b~e -/?¸Ó¨Qt¦®?ÐbQë„›¦?“R³‹ ·2?»¼yL,{?ïªj?BÑ?£Zc÷Lc? |uO¦'?€üç«»(?ŒöRèa -A?‚xÌLâƒþ?„cI`àTv?‡VÆ“(pü?‰/ã̽`ª@@$@"@"@4@(?ð?ð?ð?ð?ð?ð?( õ¿¢ºÙ2`@?ŽÁ¾Vwq?ŠJ~½U¶@Ÿ¶–W(¯æ@¨Al}Ãô³?“æ­Z& -‡?—‚_ä@B[\ž@g‹à,ùý@Ÿo:RiØ@…@¬-.záH@¬-.záH@¬-.záH@¬-/Åo@¬-.záH@¬-.;Í5§@¬-.záH@¬-.ŠqÞi@¬-.záH@¬-,Ùè>B@¬-.záH@¬--quŽ@ JÀƒo@ JÀƒo@ JÀƒo@ IQ‚©“@ JÀƒo@ J™0¾@ JÀƒo@ IDg8@ JÀƒo@ K Iº@ JÀƒo@ JJŒM@3T xFÜ@3T2ÊW§‡@0\Iº^5@@0\64ê@/¥¡ÊÀƒ@/¤¨ÁTɆ@.åÉä@.Š Þ@.åÉä@.¾vÈ´:@.åÉä@.åÉä?ð°–Ž]?%¼ÇÆÃ±?‘7[ä­?Œݶ\ñr?‘ §‡g¾?æöæ×t?ð°–Ž]?’CòO…? Dñ£P?e”[|ú(?üÓqÔNŠ?wN —z_?ð*wjs—?Œ¸†‡ÄÅ?‚˜YªüÏF?ƒ ?ÿ½?†’Õaì+’?†špk Y?ð@@@@,@*?ð?ð?ð?ð?ð?ð¿F©6Û¸??÷d>R?2±6*×&?::õ–¨g-@¬--‘Á¼v@ J$÷?AÎÄ ÞÍ{?Hu¬ÑVçž?~'ö0È6ƒ?‰òŒªE1 @Ÿs[ PM@†@¡‡+ @¡=á\@¡‡+ @¡Ä“„Û@¡‡+ @¡ yÔ‘@¡‡+ @¡ É¿§Î@¡‡+ @¡ 7N8‰@¡‡+ @¡Æ žä@¢bfffff@¢bFFK=Õ@¢bfffff@¢bn¹’â@¢bfffff@¢bw±ÃÁÑ@¢bfffff@¢bn—s‡@¢bfffff@¢bo¦Ö²¡@¢bfffff@¢bs3*¦/@8ÞHè§ç@8ߌâ´ý@4¦‡+ J@4ž”¨³õf@3©Û"Ðå`@3¦¨Çže@3Eœàu÷@3@Z8Ü@3Eœàu÷@390µN@3Eœàu÷@3C‘ã*?µ…7YuÍì?“nËšž@õ?˜ÎçUÛ³õ?‹ËÃù‹áã?‘ÉIõß?˜µHœÛ‚ð?¢EénÐ)v?“ãg(±[Q?›8à>¨Ü?-õIS¦?’p"ñ.?H, -kc?«¥ ÷Qж?”¼Ð!«›?š+®þÆÃ?‚ìgÒ¤Ç?‘‘^à Îr?”5„Žõå¾@@"@"@ @.@.?ð?ð?ð?ð?ð?ð?3ø_?z·É+€?^[f–ás+?joéÈ'~9@¡ [a‚‚@¢bl©®ù™?l‘wÁ@lb?{5 F?Ð~^éÓ>?û-“®,) -@ŸpŸ”`²á@‡@ŸÌ$Ý/@ŸÌƒÎW- @ŸÌ$Ý/@ŸÌ—ZnŽÆ@ŸÌ$Ý/@ŸÌ†„‘WQ@ŸÌ$Ý/@ŸÌ„ˆµ|@ŸÌ$Ý/@ŸÌ„WY ƒ@ŸÌ$Ý/@ŸÌ„kGih@®9‡®zá@®9ŠŒLš@®9‡®zá@®9„¬û¡Ø@®9‡®zá@®9‰£&u@®9‡®zá@®9ˆÎp:ý@®9‡®zá@®9v½Ó,@®9‡®zá@®9{ÕGKr@67â‚@·€@661ø .@1T›¥ãSø@1Riù«@0Ú~ùÛ"Ñ@0Ú›íµQr@0^«6z‘@0]®|Yô@0^«6z‘@0Zº„e…Ô@0^«6z‘@0Y¬yp.f?ñ3<' ?^-' -˜p?‘Jv­–³‘?ŒpüCza¹?‘sÞ¼‰Mß?‘QÁÝÿ^ ?|çµB &€?’M6G-\ü?„œµ'µ•??gÌ$Î%?‘†Å)·÷¢?öâXõ?‚pëí’ŸÏ?Œá‹J8Ž?ƒâ1u•‚?ƒ®Ú À?‡}­b38/?‡*ïêÙ%@@"@ @$@4@6?ð?ð?ð?ð?ð?ð?Twg ¿k¨÷p>Ø6Fq )?Um£ë™=@ŸÌ„š·@®9ƒF?¬ú>÷Ý?)ðŠÖ?v&¬aq¢>ùµèÒP¤µÜÆ@4sS÷ÎÙÁ.„M‰ûçm@3b-VÁ.„QnÙ‡@2𖻘ÇãÁ.„NÜC,¥@2𖻘ÇãÁ.„NÜC,¥@2𖻘ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø‹@ªä'ï²-@ªä'j@@ªä'ï²-@ªä7”D2Œ@ªä'ï²-@ªä3féÂc@ªä'ï²-@ªä7ù/Ú@ªä'ï²-@ªä2³Â=E@ªä'ï²-@ªä4‰•CÜ@–‡+ @– @`E@–‡+ @–ìs½.Š@–‡+ @–Í™bÄ@–‡+ @–÷¼û¬@–‡+ @–ý Ü5Ü@–‡+ @–úy5@6^Hè§æ@6]YŸ€Ìr@2õãS÷ÎÙ@2ê - ñŸ@1†“t¼@1÷H±{m@1«6z‘@1uÙ’@1«6z‘@1ÎID¡!@1«6z‘@1L7ÌÂÞ?~Ov_Ø­«?–@HÔMÁ?’…­¦Z È?‘ibª?‘· ¿§U¶?‘ó;›Xd?ñ3<' ?•Nnçu“>?’Á³iI?‘NsC)f"?‘³;°5L?’î %žO)?‘kOvó ?ŒòLΰ‚ë?ƒ4 K ?ƒhŠaý6?‡Ÿò-|£Q?‡®_€Û&@@*@*@,@8@9?ð?ð?ð?ð?ð?ð?jf½"Ø¿ccC J?Rs5¹ìÝ?H÷Ä6@ªä.çŸ`/@–{®?réf–~?h+=ß“–?ð–y‡ˆ?×/r=2æ®@Ÿg\¹hËM@Œ@¥¼9XbN@¥¼1ë…¸@¥¼9XbN@¥¼=Ùb·@¥¼9XbN@¥¼8y=Ù@¥¼9XbN@¥¼:’£S@¥¼9XbN@¥¼5sê³h@¥¼9XbN@¥¼2T`ªe@¬ï}p£× -@¬ï}²-V@¬ï}p£× -@¬ï|¬1'@¬ï}p£× -@¬ï}ÌcñA@¬ï}p£× -@¬ï‚ÃÉîÌ@¬ï}p£× -@¬ï~ƒä%¯@¬ï}p£× -@¬ï~ߤ?å@7í¥œàv@7è§æšÔ@3Œí‘hr°@3ŽBZîc@3Wï²-@3YÔ•*™@2hè§æ›@2k Iº^@2hè§æ›@2t•*™1@2hè§æ›@2rø7´¢4?”¼íÒh??“gU·q#?’´ýBI{?=]. ?™NÆÁÝãÔ?›Ê—Am¡?„F/·ÿP5?” Á lŸž?”Bœ<\ v?˜Õ¼2®?™Çk}Xã??O:bõ@?ž6Øìhâ?’"0÷ú?0ÜN :s?…<ò N ?Žrø·óæ?’£ÂÛ‚@@@@@,@*?ð?ð?ð?ð?ð?ð?A=üÒ?>šÜL?ZuÌe_?A¡€W¦ö@¥¼6^Ø@¬ïÚ‘±?u|xG{"?cCóÓ‘˜?á Šçò](?º¹<<™@ŸiOûîrï@@¯bMÒñª@¯_|í‘h@¯bMÒñª@¯gE8ï4@¯bMÒñª@¯mjN@¯bMÒñª@¯kP°ò|@¯bMÒñª@¯a½¥@¯bMÒñª@¯cˆe”°@ª¤° Ä›¦@ª¤®záH@ª¤° Ä›¦@ª¤¯'»/ì@ª¤° Ä›¦@ª¤©Q‚©“@ª¤° Ä›¦@ª¤¬<žì¿@ª¤° Ä›¦@ª¤®æ1ø¡@ª¤° Ä›¦@ª¤¬"h Õ@72ÃÉîËû@76+jçÕg@3E?|í‘h@3DohÛ@3å`A‰7@3ØDЩ@20–»˜Çã@2..±Ä2Ê@20–»˜Çã@20:û~‘@20–»˜Çã@2/Š Þ?|öOÿÝ?‘ ·èe?‘K]Ã4?€l ×Û?‘|†³„¸?’€ú¤ˆ4 ?|¬Çëý ?“£PuòN?üÓqÔN‰?’ž²¢# Y?‘žˆ2}?’EÈ€›º? H6¤„?Ž*JŠË?„„OW°ó?„ìsMQ(Œ?æšÔ,<ž?Š—à `ž@@@@@(@*?ð?ð?ð?ð?ð?ð?Sââÿ¿,´šG@?SÎ'øeÄm?2wn5 œÏ@¯b¤÷‰Ñ@ª¤­—›0?s²C¯yÕÀ?R¡¥áðö:?òÕß•­ ?°Tñ©RcB@ŸfW‡š@Ž@¦-V@¦,1&é@¦-V@¦-:’£@¦-V@¦ÜÆ?@¦-V@¦*çÕfÏ@¦-V@¦,Iº^5@¦-V@¦/iDg8@©ÎåãS÷Ï@©Îè1&éy@©ÎåãS÷Ï@©ÎâÐå`B@©ÎåãS÷Ï@©ÎÑÄ2ÊX@©ÎåãS÷Ï@©ÎÏAò×@©ÎåãS÷Ï@©ÎÈõÂ]@©ÎåãS÷Ï@©ÎÍ:’£@6µS&Á¾@6­w1Å@3ør° Äœ@3ôã¼ÓZ…@3ìj~ùÛ#@3ã×Ûôˆ@3n_oÒ @3gškP°ó@3n_oÒ @3iè>BZî@3n_oÒ @3cÃa@O?ˆÿÀ)T¿Æ?—µ”öŒqÒ?‘\H{gX ?™zbž61?›À‰¥xsÎ?—uæË}üI?|öOÿÝ?”ºu(†¼¦?˜û9]t`?—Š¢ -Ç—ê?¤¸µ†ê©ö?”Æ*%>g?’-BR1Ä?‘ÛÖæÒk~?ŠÌ÷7Õ}?=2Væð?’:™/ʼn?–{=rƒ™K@@@@@*@"?ð?ð?ð?ð?ð?ð?;Â]?˜¿yàWÉ?8Y‡ÝÌ—?SlTy( {@¦,¥í¡˜@©ÎÚ²zd?X´ž$!(™?sçFG¼øs?©ÃóBëé?çˆu™Œ@ŸfAù¤ëZ@@¡Ð¶È´9X@¡Ð· -=p¤@¡Ð¶È´9X@¡Ð·ö+jè@¡Ð¶È´9X@¡Ð¸†YJõ@¡Ð¶È´9X@¡Ð»çl‹D@¡Ð¶È´9X@¡Ð¸ºÇË@¡Ð¶È´9X@¡Ð¸Çâ‚A@žÐå`A‰@žÐå`A‰@žÐå`A‰@žÏ\(õÃ@žÐå`A‰@žÎ!–R¾@žÐå`A‰@žÇ_oÒ @žÐå`A‰@žÏ'»/ì@žÐå`A‰@žÏªÍž…@2%öý!ÿ.@2&1ø .@-3t¼j~ù@-2ˆÎp:û@,wOß;d@,u¨Xy=Ú@,=Vlô"@,7ö+jçÖ@,=Vlô"@,8ºÇË*@,=Vlô"@,8âe+Ô?É^³Dw'?Ï[äevÈ´9@9cg ù lÁ.„>¤µÜÆ@3° Ä›¦Á.„M‰ûçm@3Ðå`A‰Á.„QnÙ‡@2½cˆe”°Á.„NÜC,¥@2½cˆe”°Á.„NÜC,¥@2½cˆe”°@2‚ZîcŠ@8J¨@8#˜@8¾:@8 >+@8Iç?»G!rÌŸY@8J¨@8Î÷@8i§@8Å@8S?ÂÉ(/æ°œ@8p÷@8 * @8p÷@8¶@8 Ø?«v³Û‹7@$?ðøøøøøøøøøøøø‘@®Z›¥ãSøÁ.„€@®Z›¥ãSø@®Z  qw@®Z›¥ãSø@®ZŠÚ¹ô@®Z›¥ãSø@®ZŠÚ¹õ@®Z›¥ãSø@®Z›~ÿ—@®Z›¥ãSø@®Z›J#9Á@¨øÔýó¶Á.„€@¨øÔýó¶@¨e+Ô@¨øÔýó¶@¨üPHñ@¨øÔýó¶@¨ûçl‹D@¨øÔýó¶@¨uöý"@¨øÔýó¶@¨ü‘ÑN<@9šÔ,<ŸÁ.„>¤µÜÆ@2f‡+ J@2bÐå`A‰@0çKƧïž@0äýó¶E¢@/ÑÑN;Í6@/Î_oÒ @/ÑÑN;Í6@/Î;Í5¨Y@/ÑÑN;Í6@/Τ¨ÁTÊ@8J¨?’&Á¯»?‘yß]³Õø?Œ‚èõЊ?‘¿ÐÅu?Êëüâi{@8J¨?“Öæ…0Âû?»Þ‹"è?‘²)ò@a,?‘ØèOÍ ì?Éöm/w<@8p÷?c I??‚á²Olºý?ƒ†+ Å?†¼Š˜L¥÷?†£îž«î@@@@&@*?ð?ð?ð?ð?ðøøøøøøøøøøøø’@¤°ò-V@¤°ð£× -=@¤°ò-V@¤±RT`ª@¤°ò-V@¤°¥o@¤°ò-V@¤±(õÂ\@¤°ò-VÁ.„€@¤°ò-VÁ.„€@ 3NV“@ 3A‰7KÇ@ 3NV“@ 2u›=È@ 3NV“@ 1»À6ã@ 3NV“@ 2–ð¹@ 3NV“Á.„€@ 3NV“Á.„€@8 ]cˆe”@8–»™@5›¥ãSø@4•ÜÆ?@5~ùÛ"Ñ@4S¢œwšk@4\ÚQÎ@4 ]cˆe•@4\ÚQÎÁ.„NÜC,¥@4\ÚQÎÁ.„NÜC,¥?ð°–Ž]?±ˆLŸ0?±G¤®t Š?ÅN.!b@8Iç@8Ù?ð°–Ž]?•¤-'Ä,?½™°ÅC=?«{ÿÀT@8S@8û—?ð*wjs—?¼I²çÝ·?Æ~WCû #?À8á|7@8 Ø@8 Ø?ð@@@?ð?ð?ð?ðøøøøøøøøøøøø“@¤x›¥ãSø@¤xšáG®@¤x›¥ãSø@¤x¢MÒñª@¤x›¥ãSø@¤x¡£n.²@¤x›¥ãSø@¤x¤Âø7µ@¤x›¥ãSø@¤x§RT`ª@¤x›¥ãSø@¤x£þ\‘Ñ@¡¦ž¸Që…@¡¦£S÷ÎÙ@¡¦ž¸Që…@¡¦hÛŒ@¡¦ž¸Që…@¡¦£{J#;@¡¦ž¸Që…@¡¦šu%F@¡¦ž¸Që…@¡¦‘ÑN;Í@¡¦ž¸Që…@¡¦ŠÚ¹õ@8 Î_oÒ@8 xÔýó·@4…?|í‘h@4† -¦L/ƒ@3ù7KƧð@3ûquŽ!–@3ÜÚQÎ@3Ýà qv@3ÜÚQÎ@3âñ©ûçm@3ÜÚQÎ@3èÇâ‚@¸?‡YÍ_?‘¡çL¤?œÇY#W]?{¾“úy6? (E•¦ðç?¡o’ü:Â?ˆÿÀ)T¿Æ?“—-´œc?š_x¾¶2?š¿Tiî©ó? {QBãï?¡ùŠÀs›?ˆT“Ÿÿ?˜ÔÞÑ—æJ?§r20¡î/?’èïÅ42ô?šz"+;‚á?²ó6õ··@@@@@*@,?ð?ð?ð?ð?ð?ð?g «Û@¿f›Y¦?H€ú+4Ö?Teoî-/Î@¤x¡Hb¥@¡¦u@Æ…?eú·ª,á?s¬r®=À?ÅÇËL kg?×Äá¼@ŸeàHl°%@”@¡#”ýó¶F@¡#‹§¹Y@¡#”ýó¶F@¡#ƒë2ší@¡#”ýó¶F@¡#Bã¹ZÌ@¡#”ýó¶F@¡#)ºßZ@¡#”ýó¶F@¡#Xgr @¡#”ýó¶F@¡#LÄ]-@¦¬cS÷ÎÙ@¦¬_çq@¦¬cS÷ÎÙ@¦¬råÙÅ@¦¬cS÷ÎÙ@¦¬lEnü,@¦¬cS÷ÎÙ@¦¬mtƒ „@¦¬cS÷ÎÙ@¦¬3ˆLÙ@¦¬cS÷ÎÙ@¦¬'=©ª/@7zqÞi­C@7jh’ÄŹ@4«¥ãS÷Ï@4£ñ±á\â@4§KƧïž@4„FPÀžô@4«6z‘@4¬êU³@4«6z‘@4â®Á@4«6z‘@4¯Cŧ?£¬è3Û?”mg´þ{ß?û™˜4ô?›€²:€ÓG?¡ø€±ç—?“0¾;W;À?‡ D¥…ô?“h éãbê?¢ìâ?xÂP?–ê=ëNBé?¢ÜÈz=ˆ?Ö|‡(™?©A6PP 4?ÃͶÿÙ?«¶’$Ec?¨¨ž,»¹Œ?¤0WÀ}Á ?¡Ô`P@@@@@0@&?ð?ð?ð?ð?ð?ð¿{Ó£*ö¿…N0—¼€?†ÉAk¯’?tÏÿ¤½^@¡#Q/®L+@¦¬CÏïà˜?£8ƒ£7t?˜‰Y‡g×_@,ÞÍp~‹@(ž»Qc¦æ@Ÿn/[É‚t@•@§‘¸Që…@§‘¸Që…@§‘¸Që…@§‘¸Që…@§‘¸Që…@§‘¸ºÇË@§‘¸Që…@§‘¶È´9X@§‘¸Që…@§‘³&Á¿@§‘¸Që…@§‘³t¼j@¨‘È´9X@¨‘ÉxÔýô@¨‘È´9X@¨‘ÈõÂ\@¨‘È´9X@¨‘Ék¹Œ@¨‘È´9X@¨‘Æfffg@¨‘È´9X@¨‘ÌÌÌÌÍ@¨‘È´9X@¨‘Ïv_Ø®@1ãg ù l@1âÞÑ·@-R-V@-MúCþ\‘@-÷Oß;d@-ñø -á@,­úCþ\’@,¢ÞÑ·@,­úCþ\’@,—ö+jç@,­úCþ\’@,Ùb¶¯?É^žQ5P‚?¾¢`ƒ?‘jh¨qã9?Žëâÿ1¥?“K–ºé…/?˜£µ³ÿ)?Ðb—Œ©þÒ?’ aÒ¹zï?’TÖ©E?’ äÅ?™ïIÄè?˜p®0=-#?‚:)Çy¦µ?ŒÂ§dß±?ƒ{¬ÉW?Šˆ€!B®?‡ã ËÄž?ŽÜÂÎÛÖa@@@@@(@&?ð?ð?ð?ð?ð?ð¿\4®Ø?p#ŸT§?CG~ä‹0?Ca5((2@§‘´Û›rí@¨‘ÊkzÐ?Q‹xm‚A¨?RÛÀh#õ?•V€j ì?‘Äñ _Ï/@ŸqìÀýÿ¸@–@¢­‘hr°@¢­V@¢­‘hr°@¢°£× -=@¢­‘hr°@¢´`ªdÃ@¢­‘hr°@¢³ àÞÓ@¢­‘hr°@¢±Þi­C@¢­‘hr°@¢²ˆÎp;@©cþvÈ´9@©cþ¸Që…@©cþvÈ´9@©d×Ûô‰@©cþvÈ´9@©d°‰ '@©cþvÈ´9@©dn—@©cþvÈ´9@©dA‰7L@©cþvÈ´9@©d¶®}V@5IÎ_oÒ@5IÛ"Ðå`@1#÷ÎÙ‡@1 ·€4mÆ@0¢-V@0žËûµt@/­úCþ\’@/¦¸ºÇ@/­úCþ\’@/ @/­úCþ\’@/¢&€IS?}Ñ¿ž,?ß‹’bÏ?‘,fŸCô6?‹¬àÌ’Ç?“2{Áw¸?”|„¥&?1·†Æjñ?’,ö´´Ï#?‘kþE<%?Níú¾?”¤¦ð¹e?˜6@(/ÇÝ?‚2Y0â³?ŒÛÏ·+?‚Ÿ JŠÆ?ƒ^ ›¨¬a?‡L8õASÎ?‹¼`’ i2@@@@@*@*?ð?ð?ð?ð?ð?ð?V§üò?JäôšX?;›áÖå?:Ÿ„RLÌ­@¢°  ’@©d -?Z,É:J»™?Yhúñ ±?Àv×—Mó?¹Kgbt@ŸeÜ•¦€z@—@¥…¸QìÁ.„€@¥…¸Qì@¥¿ál-@¥…¸Qì@¥ˆªœO@¥…¸Qì@¥† ?É©@¥…¸Qì@¥¶ŒÓÖ@¥…¸Qì@¥®@RBM@–Oß;dZÁ.„€@–Oß;dZ@–µdi@–Oß;dZ@–‘h¡Ä8@–Oß;dZ@–x¥¹U@–Oß;dZ@–tYÿ-@–Oß;dZ@–k–Ü@5Ç>«6zÁ.„>¤µÜÆ@/€A‰7KÆ@/@†6õñ@-è1&éxÕ@-¬j½L]@+á-w1Å@+»v¢Ôˆ@+á-w1Å@+½M‘a»í@+á-w1Å@+¾†å+àé@8J¨?°óˆi[ÈË?“% -sÜ?ÝV&sÀ?°mwHË+?®‡Hžˆyì@8J¨?±dJî™ÑH?—q ­,êª?‘y­ïp£?§ÿTþV”(? ³w ¹x@8p÷?“¤¤‡'M?‚ŸP -ÈgN?ƒJjë?‰½Ü*ˆl?Šõ.V‘¥@*@$@@;@8?ð?ð?ð?ð?ðøøøøøøøøøøøø˜@¤l‹C•@¤lÌÌÌÍ@¤l‹C•@¤jÚ¹õZ@¤l‹C•@¤gÈK]Ì@¤l‹C•@¤cˆe”¯@¤l‹C•@¤eÒ©?@¤l‹C•@¤^=/¬@œúµ?|í‘@œúµÂ\)@œúµ?|í‘@œú¨§æ›@œúµ?|í‘@œú©Çy¦µ@œúµ?|í‘@œúÛ"Ðå_@œúµ?|í‘@œú‚Ah@œúµ?|í‘@œú˜]`UH@4£g ù l@4Ÿ#äi´¯@2Yº^5?}@2Uöý!ÿ.@1ù7KƧð@1óÉîËû@1£ÉîËû@1©#¢œw›@1£ÉîËû@1 ›€#p¬@1£ÉîËû@1^gÆ’?ƒ_ÿKt˜à?¾‰máÚ?—U’¹DÆü?”7lyÎ\?‘üTºFEQ?”€ÿ' e?|Ñb×¶@?’uß¿çÒ?£BÕx™„?š¿Tiî©ó?’ò@°Ø0ñ?–àÙÐÖ¾?ƒR¨éŠÛ™?ÉGãA­ø?›û…†_?’»•e¨ò?‰YfÓ¶ -Ô?Фz{‚@@@@@.@.?ð?ð?ð?ð?ð?ð¿ewjHS¿n1F?AtA‰EH?i„¡À>Áw@¤g ,5¼@œú§G-ö_?a=_ŒÌg?Š7ÈRúºÎ?ÄxuqÀ·…@è«Ú«@Ÿf˜p]@™@­ª™™™™š@­ª¥¸Qí@­ª™™™™š@­ªžÒˆÎo@­ª™™™™š@­ª›Í5¨X@­ª™™™™š@­ª˜“t¼j@­ª™™™™š@­ªŸŠ Þ@­ª™™™™š@­ªžÅm\û@Ÿñ Oß;d@ŸòX“t¼j@Ÿñ Oß;d@Ÿñ›¥ãT@Ÿñ Oß;d@Ÿñòä@Ÿñ Oß;d@ŸñÅm@Ÿñ Oß;d@Ÿðó×Ûö@Ÿñ Oß;d@ŸñêJŒ@8ÞHè§ç@8ŸhÛ‹¬@4» Iº^@4»À6âë@497KƧð@4;Ƨï²@3Åœàu÷@3Å›=ÈL@3Åœàu÷@3ÈõÂ\)@3Åœàu÷@3ÈÇâ‚@¸?£G± *Ç‚?˜ß!Á}Pé?›tZ'Ð?–.¨ÿ[?–(Ži´™^?Ÿ@*Få?çµÚNö®?“Ëÿ.¬Hp? Ü]^ß¿?“¶Ì¶Öj”?—÷Ë5D«ç?›7Î&Tß+?æoâh56â?“~tÒZE?›˜tgië?‹µ¼a?¾Á{þÆ%?– ¼µ(0Q@@@@@*@(?ð?ð?ð?ð?ð?ð¿?ß¡¨¿p˜zò?`_üO©\»?qv\-Âù2@­ªoÁ'!@Ÿñüóüš?xnªîy­?€ TÕål¹?س…dŸs?çi D£@Ÿr¡£Á² @š@¦×c× -=q@¦×c6"@V@¦×c× -=q@¦×MeÓÒO@¦×c× -=q@¦×\IH™‰@¦×c× -=q@¦×Vý8Ü@¦×c× -=q@¦×HtïLß@¦×c× -=q@¦×N[àñÍ@“Ð$Ý/@“Ðt~k~@“Ð$Ý/@“Ðflàâö@“Ð$Ý/@“ÐOÈØ@“Ð$Ý/@“ÐkÚ^”@“Ð$Ý/@“Ðn¼Ð ¹@“Ð$Ý/@“Ðk?Ú¯ü@8è†YJôñ@8¹ä²t W@4!hr° Ä@4*¼¶e@3)Û"Ðå`@3*WE?;@2ÔmÅÖ8†@2Þù¼±âº@2ÔmÅÖ8†@2Ò -‚@2ÔmÅÖ8†@2׆n5æ?™I'%ö«?áÊ7ƒÀ?‘<ü³î?/ J3?™¤Fº_ØW?”<°1 ”v?Ž\Õl6Ò?’J®?|™e°?1ìqúH:?•@€I?^d?“¶|3Çî?”ªñw43?’ûŽ<‚y?ŽƒPVÍðý?•rð„"Æ–?—æ×N?•eÀl@@"@"@@5@4?ð?ð?ð?ð?ð?ð¿sc®Ì¿M÷„QX?X‚ñœÜ´;?< ¾,lPÈ@¦×U;héÿ@“Ðn–¥?rã¶u õ?ZܳCàiÐ?Üý`€C?±ÐÕÉ8ª@ŸlEÂtž@›@«™ŒIº^5@«™Œ1&é@«™ŒIº^5@«™:’£@«™ŒIº^5@«™Œ<žìÀ@«™ŒIº^5@«™ŒVÕÏ«@«™ŒIº^5@«™‹àÞÒ‰@«™ŒIº^5@«™‹]Ìcñ@8'ï²-@8'ï²-@8'ï²-@8&€IQ@8'ï²-@8%ýŠÚº@8'ï²-@8%zxl"@8'ï²-@8$Âø7µ@8'ï²-@8$%®æ2@1úqÞi­C@1ú~ùÛ"Ñ@0=‘hr° @0=²-V@//ß;dZ@/0‰ 'RT@.p‰ 'RU@.p Ä›¥ä@.p‰ 'RU@.p–»˜Çã@.p‰ 'RU@.p£× -=q?É^¨¯Âj?ï1ïºÅ?‘\H{gX ?Œ ßõIyû?‘#6‰¥_?×°ë*–w?ÐbMÝn½?’&u÷E»@?»Þ‹"è?UÕh;·Å?‘<¸ö}½?¦QÎð\ã?€bœÅÏÑ+?2ô]7?‚‘´…=Cb?ƒ!Ë *(?‡ã ËÄž?†ùadô|@@@@@,@*?ð?ð?ð?ð?ð?ð¿:…Hÿè¿3ø+:? Ó6ÊÁ>ìú¹áê`Õ@«™‹èln;@8$Þ¤z!?ؾ¡>ûpÖäÜ)?1™=–VÃä>ð£êA@ŸsQ @œ@­K²° Äœ@­K³‡ W@­K²° Äœ@­Kµ «´½@­K²° Äœ@­K´²ÛDî@­K²° Äœ@­K±Ø·ªó@­K²° Äœ@­K±ÛÌïÄ@­K²° Äœ@­K³^°É@š[§ï²-@š[¥`A‰6@š[§ï²-@š[¥¿M»/@š[§ï²-@š[¥’Sª@š[§ï²-@š[¥+ÓÃb@š[§ï²-@š[¨ÌÊ@š[§ï²-@š[ª³y‰¢@6åöý!ÿ.@6æ½Ì­dJ@2áhr° Ä@2ãC(a³Ï@2Wï²-@2X˵aõg@1zÔ,<ží@1|TÉ©@1zÔ,<ží@1|Û¹›L@1zÔ,<ží@1|çHµ?a÷nñ?DàÓôæ?‘ûø›a¤?ŒÃå%9bg?‘VQòhFa?‘/k™`î¯?…nDyB Ã?’ß‹óšû?ú:d&‰?Ù:Qˆ²?‘M³Ñsy?ÆyÉ[üš?…9Ž2j¸Ó?Žžÿå¡ ?…D¤W—4L?„Ò²æƒúÉ?†ìÌ´¼N?‡ÂÇ÷Û%@@&@*@,@5@5?ð?ð?ð?ð?ð?ð¿-ÃX‰@?<÷fQp?-ý’ýÓA¦?)°çKZã@­K²ÊûfC@š[§òâú?Nƒ”¾Ç?Ió»i8ý?¤eeÅ=Ã?™æ1ü´ô@ŸhñL²öÿ@@§éûçl‹@§ÙXbN@§éûçl‹@§p|„µÞ@§éûçl‹@§²GE8ï@§éûçl‹@§ÙXbN@§éûçl‹@§Àëíú@§éûçl‹@§q4êJ@§ ]/Ÿ¾@§ Z¬1@§ ]/Ÿ¾@§ H$ x@§ ]/Ÿ¾@§ s àÞÓ@§ ]/Ÿ¾@§ ^\‘ÑN@§ ]/Ÿ¾@§ mžƒä&@§ ]/Ÿ¾@§ …+ÓÃ`@7£g ù l@7ž}Vlô@45ãS÷ÎÙ@41 [À7@3gKƧïž@3!aä÷eþ@2Ì¿±[W?@2~záG®@2Ì¿±[W?@2nŠqÞi­@2Ì¿±[W?@2ЦL/ƒ|?гá‡}?¾ó'@¡Ÿ/?½¿º&Õ/Ì?Âå*‰ã6?¼íÓ¯ì?´yzž|wù?}Ñ¿ž,?°ŒbU'V…?Áìu^]?³‹Ù6ˆ‘—?´j‹G ²?¶ª„!–4?™Ý2÷‚Ë?¤(µ”4è?±ÉÊB\ÞT?´ŠØÉf±{@–MJÀƒo@–M?§¦j†@–MJÀƒo@–MMÆÀ£@–MJÀƒo@–MR«ó4@–MJÀƒo@–MV/ +@–MJÀƒo@–MRÈæŸû@8įO „M@8­.maù»@3GÎÙ‡+@3:Ov`@2Ú~ùÛ"Ñ@2Ì: -ÖmÐ@1ÿò䎊r@1õ«T E@1ÿò䎊r@1ùlõƒ%@1ÿò䎊r@1ú™ÄMµ?¹}ïJÎh~9ZÁ? ¯ã4?„¯ö¼æú?ŒjÉ:‰‰?ŽKwš~u=@@$@*@$@<@;?ð?ð?ð?ð?ð?ð?Nã7ñ°?^²àiÉ?P{™²mÿ?PmÒ垸ê@¥¹$ä ¬@–MQÛ瀛?`˜â 3u?hºÓ2E?°—âÆèbp?Ã= 3µh,@Ÿp5R¿¤h@Ÿ@¬Ú…¸Qì@¬Ú„“t»@¬Ú…¸Qì@¬Ú†ÏAò@¬Ú…¸Qì@¬Úƒ¼ÓZ†@¬Ú…¸Qì@¬Ú†Â&€ž@¬Ú…¸Qì@¬Ú~š@¬Ú…¸Qì@¬Ú€ù kº@¤n½ó¶E¢@¤nº¬1@¤n½ó¶E¢@¤nÂëC-@¤n½ó¶E¢@¤n¼Æ?@¤n½ó¶E¢@¤n¹Œ~($@¤n½ó¶E¢@¤n¼¹#¢œ@¤n½ó¶E¢@¤n»Í5¨X@7p4mÅÖ8@7pË)^ž@3û Iº^@3ûÍ5¨Xy@3Ct¼j~ú@3D÷eýŠÛ@2µµsê³h@2·€4mÅÖ@2µµsê³h@2µ›=ÈL@2µµsê³h@2¶µ '¼?Œs¤DÅÐ?ÖÈ ¼?”^RžpX?Ô@R’?”z|œèç™?“¾§²~Î?œä%—ëš?’áÄïÃõ?”ïZºœ·?‘’â·ýÅ?”‚ÍÊL¾l?’¨¢†¼ ¼?ŒArUã@?‘¼Åâ<{?Šó¿á§E?…âC£½¾Ý?¢—„¯l?Œx[‡:©@@@@@,@(?ð?ð?ð?ð?ð?ð¿J;¹P?BB¨Žä?O}E t?=2æ5Ué@¬Ú‚¾¢N@¤nºàm°?o çÔv?V²°PrJ?جfÞ7?£"p·ZwA@Ÿm32ZQ;@ @¬çl‹C–@¬ç+ K@¬çl‹C–@¬çï².@¬çl‹C–@¬éDg8@¬çl‹C–@¬è Ô•@¬çl‹C–@¬æffff@¬çl‹C–@¬æÂ&€@­B¶È´9X@­B¶‡+ @­B¶È´9X@­B·§†Â'@­B¶È´9X@­B·$tS@­B¶È´9X@­Bµ$Ý@­B¶È´9X@­B·1Å@­B¶È´9X@­B¶»˜Çä@3í¥œàv@3í¸ºÇË@0#÷ÎÙ‡@0#¶E¡ÊÀ@/´ýó¶E¢@/´¼¤@/b¶®~@/üPHð@/b¶®~@/ k¹Œ€@/b¶®~@/Ôýó¶F?|öOÿÝ??ÖCã ?‘Š©Nà¶?‹û…†_?‘Dj?ø·-/ge?|öOÿÝ?’)£µ“[µDá?ƒ*|š\/´?†Ü‘ °Ô?†–f_ÔŠŠ@@@@@,@,?ð?ð?ð?ð?ð?ð¿ |Ó³?¡|?%½»•&–?$c§)ië‡@¬ç#Hr?@­B¶‡\§¦?EžœuAn?DÉ7Z‹B?™!¾%tc?–=DX`¾@ŸfòšÅõ3@¡@¤Wð Ä›¦@¤Wå¡ÊÀƒ@¤Wð Ä›¦@¤WðHð@¤Wð Ä›¦@¤WðU2a|@¤Wð Ä›¦@¤Wñø .@¤Wð Ä›¦@¤Wñhr°!@¤Wð Ä›¦@¤Wï\(õÃ@¬ö× -=p¤@¬öÛ¥ãSù@¬ö× -=p¤@¬öÙÛ"Ðå@¬ö× -=p¤@¬ö×1Å@¬ö× -=p¤@¬öÝ¥œá@¬ö× -=p¤@¬öÚÔ,<Ÿ@¬ö× -=p¤@¬öÙ‡+@8›¹Œ~($@8™Q‚©“ @28r° Äœ@25ÜÆ?@1U`A‰7L@1P–»˜Çâ@0fYJôðØ@0a$Ý/@0fYJôðØ@0a [À6@0fYJôðØ@0a·Xâ?©W»¥ÿ$B?‡åƒêM?’à©GMõ?ºgk\0?”‰Wïÿ·?‘f]£àG?€‚ñêã ?•¤-'Ä,?”ÿŒÙÿIí?–= £6Ï?—÷Ë5D«ç?›ªU3Îp?±¯Ì:¦å%?u/®Xã?ƒíÈm½!¿?„Ö©Ú0?†Óß -tõ?Š|)-}í(@@@@@,@$?ð?ð?ð?ð?ð?ð?7[€Eп7mø… ?Vÿ縆]?5ÈgD´@¤Wðd†P6@¬öÚ¦þö??l=I ºË6?]®5ä«è?Î+e‡ ™^?´øÖ r@ŸoÅÌÀ=‰@¢@­(õÂ\@­(õÂ\@­(õÂ\@­)Ô•,@­(õÂ\@­*qÞi­@­(õÂ\@­)*0U2@­(õÂ\@­'_oÒ@­(õÂ\@­($ x@£+ò-V@£+ò-V@£+ò-V@£+ò-V@£+ò-V@£+ò{²þÅ@£+ò-V@£+ðØDÐ@£+ò-V@£+ñ‚©“ @£+ò-V@£+ñ©ûçn@3ÖšÔ,<Ÿ@3ÖšÔ,< @1›¥ãSø@1Ö¡aä÷@06§ï²-@06‡+ J@.æL/ƒ{K@.åzxl"g@.æL/ƒ{K@.åÖ8†YK@.æL/ƒ{K@.åÖ8†YJ?|¬Çëý ?Kb½™×?‘t‘ócjë?‹×lÇ…N9?‘ä~|+?æöæ×t?|¬Çëý ?’Q_Ú¸FN?»Þ‹"è?@§[*^?‘ ^Íü?ÿ?sxÙ/T?‚Ÿ JŠÅ?Œáò¯ž¼ù?‚† SFò?‚þ——³§ø?†£îž«î?†µ°jÆÃ@@@@@*@*?ð?ð?ð?ð?ð?ð¿*fˆS ¿&€ÔÐ?#}É9À2®?0®ü¯¦6@­(“Ñ‹ò@£+ñ½BùÙ?C]Ý·ù??¹8ê!ß?”`Ë>;/¬?Š/HWóŸ@Ÿfâ%tùµ@£@¢ª)xÔýô@¢ª-V@¢ª)xÔýô@¢ªáG®@¢ª)xÔýô@¢ª®zâ@¢ª)xÔýô@¢©öE¡ÊÁ@¢ª)xÔýô@¢ª¯·é@¢ª)xÔýô@¢©àÄ›¥ã@¨»Â Iº^@¨»ÁG®{@¨»Â Iº^@¨»z^5?~@¨»Â Iº^@¨»<¾ß¤@¨»Â Iº^@¨»$Ý/@¨»Â Iº^@¨».Ëûµ@¨»Â Iº^@¨»HË’:@6„¯O „M@6†ö”Fs‚@4k¥ãS÷Ï@4?Ó™~$“?„W Ä™\?ð,’Ú|‚?ÃAöź®?™ Êû®‡@@@?ð@0@(?ð?ð?ð?ð?ð?ð¿’ßÕœë@¿v‘=»?]ÚºÌj?4­-¸"4m@ –þ¤îÒ@§äFUz´‡?sã¨vO?K·.œÕ,?á)B“Ðaú?”•AŒbyö@Ÿ^^¯Ÿ8@¥@©®=ó¶E¢@©®<¬1'@©®=ó¶E¢@©®BZîc @©®=ó¶E¢@©®>žš@©®=ó¶E¢@©®<ÚQ@©®=ó¶E¢@©®A°‰ '@©®=ó¶E¢@©®Enÿ@ªIdZ¬@ªIfffff@ªIdZ¬@ªIbu%F @ªIdZ¬@ªI^¸Që…@ªIdZ¬@ªIe”¯O@ªIdZ¬@ªIa [À@ªIdZ¬@ªI`hÛ‹¬@5eöý!ÿ.@5bÞÑ·@2€ Ä›¥ã@2Ÿ¾vÈ@2¾V“u@2ÀHðŽ@2B‚@·€5@2H“t¼j@2B‚@·€5@2Cn—P@2B‚@·€5@2@[À6ä?žˆ2}?‘j`cq?•Ìüb¢? Ìç,Z?•bJÖµæÿ?—>æV¡¶$?‚á²Olºü?“oÆ †ä?‘}7ˆ.Ñ?‘.}áµ$?”‚ÍÊL¾l?™^ªÍ€@!?˜¸DU#L†?Ž.]L ¼?•ýÿLîO?ŒísOÅ>?qÂ' -Bœ?ŒXk-¯‚7@@@@@,@*?ð?ð?ð?ð?ð?ð?RºSf`¿R‘Vì?FÏp7?7r®{ý3Ú@©®>¢ù@ªId@ܼ?e¹Ïnµh–?V¬ç*»>W?ÑS6¤?°@³pM(Í@Ÿfœ:èp@¦@ ˜Iº^5?@ ˜Nøf~6@ ˜Iº^5?@ ˜JV|P@ ˜Iº^5?@ ˜JgD]2@ ˜Iº^5?@ ˜JÊ£È%@ ˜Iº^5?@ ˜HVà -@ ˜Iº^5?@ ˜H‹}¨²@¤I@@¤I8³>þZ@¤I@@¤I;Äg–Û@¤I@@¤I=¯÷¥@¤I@@¤I?²qÍ@¤I@@¤I?^i¶e@¤I@@¤I>íž3Ê@4úqÞi­C@4óÃoÔ¢N@1+ Iº@1”ê4@04“t¼j@03F´§É&@0&YJôðØ@0%ȓ쿊@0&YJôðØ@0&º=žHk@0&YJôðØ@0&¸Që…?‘ɱb)Q?ÎÝ;D?‘lȼÛê?ŒJˆ_÷?‘±ãTÈ?»;G 1œ?™I'%ö«?’bâƒR˜?‹%¥¿f[?L½o2ã?‘—t« ð?lÈCYÞ?¥As Ý$?ŒÑ׫}F•?‚Ð׳SÎ\?ƒŒhïú„?†Ì’=Æý?†¶¢œ¸’*@@ @ @*@8@2?ð?ð?ð?ð?ð?ð¿VÇ&‹$?Q)DYN?.pâ€PÇn?Fp 2j@ ˜Jh#ÎP@¤I>/A8R?IÛú­(‰Å?aU^%Áïd?”*/Ñs¼?¼ì±þñÞ@ŸmÏ»k@§@¬5¯²-@¬5±hr° @¬5¯²-@¬5µsê³h@¬5¯²-@¬5¸*™0¾@¬5¯²-@¬5ŸØ­«ž@¬5¯²-@¬5¤?åÉ@¬5¯²-@¬5ŸåÉ@¤Îå`A‰@¤Î²-@¤Îå`A‰@¤Î -à @¤Îå`A‰@¤Ît¼j@¤Îå`A‰@¤ÎÙ‡+@¤Îå`A‰@¤ÎHË‘@¤Îå`A‰@¤Îû~ÿ@6#g ù l@6#33333@40Ä›¥ãT@4+²þÅm]@3Ÿ²-V@3•`A‰7L@33&Á½¥@3 Ô•+@33&Á½¥@3HË’:@33&Á½¥@3!ø -à?„F/·ÿP5?–âFpë3?‘=?ùKh?šniÙÊ¢Ð?£óV·s?ž¥‚±hÕ%?‡YÍ_?–*1€ V?“ |ɽ‡?™9½œÔ.?¤è®Áp™c?œâ™:;{ˆ?„ËD(ºo?“¢ ßÌF2?†aÞàI*•?¤÷™ïy\,?£,ãR¯o?¡£‡9²þ@@@@@*@&?ð?ð?ð?ð?ð?ð¿p®O¸?aˆäÍF?Qæaܪc?Rå¶ 8a^@¬5©ÅtÄ@¤ÎK¿z?pPÅ*¸\,?r3U—vø?Ó¥=¡ Ë×?×Ó»6»Ý£@Ÿeözê¹@¨@¡)`A‰7L@¡)a'ë…ž@¡)`A‰7LÁ.„€@¡)`A‰7LÁ.„€@¡)`A‰7LÁ.„€@¡)`A‰7LÁ.„€@¡)`A‰7LÁ.„€@¤wß¾vÈ´@¤wß;œ6È@¤wß¾vÈ´Á.„€@¤wß¾vÈ´Á.„€@¤wß¾vÈ´Á.„€@¤wß¾vÈ´Á.„€@¤wß¾vÈ´Á.„€@7«µsê´@7¬<žì¿²@3£÷ÎÙ‡Á.„M‰ûçm@2©Û"Ðå`Á.„QnÙ‡@1ýcˆe”°Á.„NÜC,¥@1ýcˆe”°Á.„NÜC,¥@1ýcˆe”°Á.„NÜC,¥?˜—"ÝÚá@8#˜@8¾:@8 >+@8Iç@8Ù?|¬Çµƒç9@8Î÷@8i§@8Å@8S@8û—?“z&FÉ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø©@­NÙ‡+@­0å`A‰@­NÙ‡+@­R•éá²@­NÙ‡+@­K¬q ´@­NÙ‡+@­Mw1Å@­NÙ‡+@­K¹Œ~(@­NÙ‡+@­Lq ²–@¦B–“u@¦BµÂ\*@¦B–“u@¦Bšxl"h@¦B–“u@¦B“œ¾à@¦B–“u@¦B uöý!@¦B–“u@¦B’½<6@¦B–“u@¦B¥¡ÊÀ„@9#g ù l@9 ²þÅm]@3{ Iº^@3|Iº^5?@2{Ƨï²@2yûçl‹D@1¦YJôðØ@1 'RT`ª@1¦YJôðØ@1­:’£@1¦YJôðØ@1¡TÉ…ðp?’Óusÿ\Ã?‘Ü„ Þ(£?’5 µ¿$„?‘S;²~?’Þäi]i?–VòFNLG?É\ OôZ?’Ȳõa®?”p¶I”“ž?¡Š €ùª?”Ï#:d ?œ¡Åë¶TÞ?²“P(?nÂ?–®UÒ.?†úŒz_–È?“¶º Yæ¸?ˆ‹”âó?“vuØcʲ@@@@@,@(?ð?ð?ð?ð?ð?ð?x[ß×®€?YZHu+?bè»yZ?~~Á»Pjž@­K1xDÑ@¦BšSº4?‚¾²Nxâb?‰þL'ÝÌ?÷ìÝz\ôÔ?õ‘68^¬@Ÿr°—wüé@ª@ŸÎÔýó¶F@ŸÎÎÚbÀ@ŸÎÔýó¶F@ŸÎ×d¬uE@ŸÎÔýó¶F@ŸÎÕ-#N¹@ŸÎÔýó¶F@ŸÎÔ–9@0@ŸÎÔýó¶F@ŸÎД™Ó@ŸÎÔýó¶F@ŸÎÏ”àœ@¨nõÂ\)@¨n÷Oß;@¨nõÂ\)@¨nó ±(r@¨nõÂ\)@¨nõeòë>@¨nõÂ\)@¨nòˆêƒ@¨nõÂ\)@¨nõ¸š¬l@¨nõÂ\)@¨nôÅœ}@5÷â‚@·€@5ñüP™(@1sS÷ÎÙ@1n©+èd@0_²-V@0^ k+®Á@/æL/ƒ{K@/æìW<Ü@/æL/ƒ{K@/äG£(²@/æL/ƒ{K@/ãªy»­Á?|¬Æ Væ?2x™¶?‘ -HžOœ?‹û T!×?‘/+‡I?÷…»fq\?ƒ_ÿKt˜à?’5‰]¶g?‘„w9L?]»Æ]?‘ïM£?Ÿ,ã´?…wç{„²?ŒØîë?‚Ì8Kç6?ƒJ™½a7?‡¥ËŒ£?†ë'º£ Z@@"@@(@:@8?ð?ð?ð?ð?ð?ð?0xýHX¿Dæš0Ô?6ws??#%Æ>3@ŸÎÐvÇø@¨nõªX?W—6hz?_yƒ—1Y?ºüp°ê€Þ?Ä|–Žb|@ŸhwuÑ@«@©gOß;dZ@©gP£× -=@©gOß;dZ@©gP—y‡ @©gOß;dZ@©gP—)'@©gOß;dZ@©gPŠï²«@©gOß;dZ@©gO.°Ö§@©gOß;dZ@©gOÂzc@–=hr°!@–=ë…¸@–=hr°!@–=$ÏÜ @–=hr°!@–=‹[SJ@–=hr°!@–=]öU\@–=hr°!@–=G3Qä@–=hr°!@–=„„®q@3úqÞi­C@3úhaã:z@+€A‰7KÆ@+€0Ð"¹@)¥¡ÊÀƒ@)¥žµöÀŽKXP­@©gP ÈY:@–=ž·u1?=ÞRÚj§O?¢eZª·?…>„°R”»?<+5á£9F@ŸgÇØ÷ü@¬@¤cƒn˜@¤cÄ›¥ã@¤cƒn˜@¤c[À7@¤cƒn˜@¤chÛ‹«@¤cƒn˜@¤c©“ á@¤cƒn˜@¤bþ«6z@¤cƒn˜@¤c[À6@¢î¾vÈ´@¢î5?|ï@¢î¾vÈ´@¢î¼@¢î¾vÈ´@¢îƒä%¯@¢î¾vÈ´@¢îã¼Ó@¢î¾vÈ´@¢î«6z@¢î¾vÈ´@¢îU›=@4 ]cˆe”@4 -’£S&@0|í‘hr@0v_Ø­¬@0²-V@0ªÍžƒä@/žžš@/ž\‘ÑN<@/žžš@/Ÿ.Hè§@/žžš@/žvÈ´9W?žˆ2}?Čۨ1A?‘$Cê¡@í?‹Æ úJ-M?‘5ø gµÒ?ÔCXsñ?}Ñ¿ž,?’uß¿çÒ?–ÐO(·Š?Hª¦ºón?‘77…Âç?‘¡ë Þf?†úŒz_–È?Œ¾»•lŽ?ƒÆ×q„nð?ƒ!Ë *(?‡gϵ’õ?†å·ÑfWà@@@@@*@*?ð?ð?ð?ð?ð?ð¿G;z€?¼Qö?;‚àBk?)ÕóY¢ F@¤cÂwƒ<@¢î\„?Z³Õ¶Í»†?JÄâö¹M?À¶rwÿ9q?¡R¸ø*†@ŸgÊ0`å½@­@«šÄ“t¼Á.„€@«šÄ“t¼Á.„€@«šÄ“t¼Á.„€@«šÄ“t¼Á.„€@«šÄ“t¼Á.„€@«šÄ“t¼Á.„€@–ð£× -=Á.„€@–ð£× -=Á.„€@–ð£× -=Á.„€@–ð£× -=Á.„€@–ð£× -=Á.„€@–ð£× -=Á.„€@8Žì¿±[XÁ.„>¤µÜÆ@4Iº^5?Á.„M‰ûçm@3"-VÁ.„QnÙ‡@3Œ~($ Á.„NÜC,¥@3Œ~($ Á.„NÜC,¥@3Œ~($ Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø®@ª“ùÛ"Ðå@ª“ùÛ"Ðå@ª“ùÛ"Ðå@ª“þÒˆÎp@ª“ùÛ"Ðå@ª“ü]cˆg@ª“ùÛ"Ðå@ª“ü64@ª“ùÛ"Ðå@ª“üàuöü@ª“ùÛ"Ðå@ª“üú¬Ùç@¥åV“u@¥åVE¡ÊÀ@¥åV“u@¥åR×s@¥åV“u@¥åSê³g¡@¥åV“u@¥åV®}Vm@¥åV“u@¥åS¶E¡Ë@¥åV“u@¥åOAò×@4}:’£@4|ÓZ…‡”@1óS÷ÎÙ@1òa|ÚQ@1ï²-@1éùrH@0ÏO „M@0ÏhÛ‹­@0ÏO „M@0Í\ú¬Ùè@0ÏO „M@0ËÚQÎ?|¬Çëý ?ÖÈ ¼?“zkrØ-å?5~pY5?‘ÏX¼ãs~?‘#†»{׈?1·†Æjñ?’4 "ëžØ?‘c–…•#$?Ä…à6 -æ?’ºñS©YÖ?‘ éñ^?ƒÚ@êA²?Œ¾»•lŽ?‚ù…žÄ`x?ƒÈGó?‡Ä­‹›Ü?ˆ©{2¡Î@@@@@,@(?ð?ð?ð?ð?ð?ð?G;S»x¿Paë+4?ÒìMÄ\?@¢×5£qå@ª“ûq@Mè@¥åTl[}@2´“t¼j@2²:6¹Ùþ@1ÿò䎊r@1ÿKŽV¼@1ÿò䎊r@1ÿÂ+/iƒ@1ÿò䎊r@1ÿÔ<'??|¬Æ Væ?œe×å›Å?’ŸËÅî]R?‘TêÞ'€?’$åcCy¿?’¤w¼ê -Þ?}õ¬#„­?’hS°áÀ?‘83Ë_K?Ž[l7ˆé?‘Æüú øT?“sŠã;?ƒ+ÖÏZËã?ˆÉ‘øš6?‡c¡: -{?„TJ¿‚úÛ?‹ VZßà¹?‰¹§´ü“}@@$@ @$@1@4?ð?ð?ð?ð?ð?ð?)ÓÒ8ð¿G6s?Q€½^#A?*éBœ«®@žµØŸb€¼@£ÂÌ­ón?q}«M'Mq?J–fp|µ?ìºßü»? ?õsäèŸ@ŸfL¥e¥þ@°@®¤yÛ"Ðå@®¤y™™™š@®¤yÛ"Ðå@®¤{ÂÜ:@®¤yÛ"Ðå@®¤xw´P@®¤yÛ"Ðå@®¤m˜Ê&@®¤yÛ"Ðå@®¤þDk@®¤yÛ"Ðå@®¤}Ùb·@•'ï²-@•'RT`«@•'ï²-@•;IÁ@•'ï²-@•3´GO_@•'ï²-@•/Hû@•'ï²-@•+¾‘ø@•'ï²-@•,î^ —@5òÃÉîËû@5ô.h"@2» Iº^@2ÃÊ{ZÀ@2)Û"Ðå`@2,,R¢Z|@1a:’£S@1fAó+ª˜@1a:’£S@1d[ªžHh@1a:’£S@1dS9Ãñ=?~ì“?ÕÒJ?’ù¾3ü8o?‘<ºOõ`Ž?³±Qje?‘½{`?‘ØÐ{5J?|çµB &€?”µžÃ«hš?Ù¨à‰Ù?‘¤£§‰á&?‘Oõ9o?‘.OJ;@?‡½Ÿ_ y?ŒáÆ_„žœ?†Í¿ÄF?ƒTA¨8¬d?‡˜Þ•+åç?‡=`Ã-Ÿ@@(@$@*@:@5?ð?ð?ð?ð?ð?ð?T؆x?E¾4QÀ?>ƒ>ÒqÆ?2M7Ø@®¤|±Ëíþ@•*ðs?^z€3$Y?RÅ„Èôgÿ?ÇEÆÕ{Éj?±œÀ å@Ÿgí{l@±@©Õ+…¸R@©Õ/²-@©Õ+…¸R@©Õaÿ.Hé@©Õ+…¸R@©ÕQ4êK@©Õ+…¸R@©ÕHõÂ\@©Õ+…¸R@©Õ90¾ ì@©Õ+…¸R@©Õ> í(@­úÚ¬1@­ú×Oß;@­úÚ¬1@­ùÒÊW§‡@­úÚ¬1@­ú}¥œà@­úÚ¬1@­ú°¾ í(@­úÚ¬1@­úÓ©*0V@­úÚ¬1@­úÍ\ú¬Ú@3`ØDЩ@3Zu%F -@0O|í‘hr@03œ¾à@/¯ß;dZ@/!×Ûô‡ý@.-úCþ\’@-¯ùrGE9@.-úCþ\’@. á°‰ (@.-úCþ\’@.ÞÑ·?|¬Çëý ?·Èo|Z[?´ÕÞ@ò?³4ÏÚÓõ?’dÓÙiº?“ d?|¬Çëý ?Ý{æ6ï?Ä’ŽªÛ‡?²%i[¿>?’.<ù?“®°ýYè@?‚ÂÌ]å?°¡Ùir¯?¶ͰöÐ{?²a ä‰ ù?‡ã ËÄž?‰ö±«tï@@@@@,@*?ð?ð?ð?ð?ð?ð?fÊnæÚ¿\‹Oò?Cbk¼QkL?Sæìßsë@©Õ5vÄÚ@­úÔ+‚?cÌmo™Ðî?t>ì¨Ö12?ϵЛ.ká?ðWEn_Kö@Ÿe6à,¿Œ@²@¡cS÷ÎÙ@¡cS÷ÎÙ@¡cS÷ÎÙ@¡cÑä<@¡cS÷ÎÙ@¡c7LG›@¡cS÷ÎÙ@¡d¤¸ã@¡cS÷ÎÙ@¡a¾"è@¡cS÷ÎÙ@¡aßP:w@®ñ©ûçm@®ñ©ûçm@®ñ©ûçm@®ñÿxø@®ñ©ûçm@®ò ?ü2@®ñ©ûçm@®ò\@®ñ©ûçm@®ñ$$é@®ñ©ûçm@®ð<Ý0z@4¹Œ~($@4ë¯$@1T›¥ãSø@1Ucé_û:@0þV“u@0ÿAîH@0‚‚@·€4@0ƒqÛ|@0‚‚@·€4@0ƒEŒÒ -ú@0‚‚@·€4@0ƒ˜pJ¥Á?}@T˜ÁÎ¥?ö¦¿ˆ19?‘);`·Ž¤?‹òæý¾.?‘Cju÷³Œ?‘0_Ä•x?|¬h2:“?’ÝÍ£Ã?‹‚n‡Jd?;4 ïš‘?‘2r¤tŠf?z(-½Ÿ%?‚nÓ3î‰?Œæ»!½œË?‚õ’ºè?ƒV,‚?†¬jG¢Ñr?†Ý~Ã3F@@(@ @&@3@3?ð?ð?ð?ð?ð?ð¿+#;„€¿)*á~@?3ŒDÂM@Ò? æ”å0úV@¡cä¾@®ñS9t -?S`f¡äÕ?A1g7Ÿml?³ÛpQZ+è?Žš \{|’@Ÿfä`Š^@³@£€J=p£×@£€#n—@£€J=p£×@£€êçÕfÏ@£€J=p£×@£÷ -=p¤@£€J=p£×@£€#{J#:@£€J=p£×@£ÿ;dZ@£€J=p£×@£€¸ºÇ@¦›/²-@¦›33333@¦›/²-@¦œË)^ž@¦›/²-@¦œÂ\)@¦›/²-@¦ž ’:)Ç@¦›/²-@¦›ÿ.Hê@¦›/²-@¦›[W>«@8àØDЩ@8ËC•%@4Iº^5?@5u%F -@3A‰7KÇ@4Wâ‚@·€@2O „M@3X1&éxÕ@2O „M@2lô!.@2O „M@2 wškP²?§Q,Äš¤?Øç(Äx~•?ÅazLÑ&{?ºùlmÄŽA?¡ãÑWÐö?ª>Ô›„ïª?¾B×Õrµà?Ë=úÊ„¤?ÔXšŽ4†3}? ¦å_¹@@@@@,@*?ð?ð?ð?ð?ð?ð¿~*É ¿‰£l•€?fEz tg?¥#¹œ'@£€åäü@¦›¬?…‚ÝVïÏ?½ìœ8Äû?×’¦uȧ&@6 ùzͯ@ŸqF=r ö@´@®¢ú^5?}@®£ cg×@®¢ú^5?}Á.„€@®¢ú^5?}Á.„€@®¢ú^5?}Á.„€@®¢ú^5?}Á.„€@®¢ú^5?}Á.„€@˜ÉV“@˜Èì‹C•‚@˜ÉV“Á.„€@˜ÉV“Á.„€@˜ÉV“Á.„€@˜ÉV“Á.„€@˜ÉV“Á.„€@804mÅÖ8@80 - !°@5…?|í‘hÁ.„M‰ûçm@4ù7KƧðÁ.„QnÙ‡@4…œàu÷Á.„NÜC,¥@4…œàu÷Á.„NÜC,¥@4…œàu÷Á.„NÜC,¥?™û-™,Èß@8#˜@8¾:@8 >+@8Iç@8Ù?ŠÊuq•ú@8Î÷@8i§@8Å@8S@8û—?©ÀÛNáN@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøµ@®B\(ö@®L1&é@®B\(ö@®=¥œá@®B\(ö@®A|ÚP@®B\(ö@®OiDg8@®B\(ö@®CFÜ]d@®B\(ö@®H´9X@ª€\(õÃ@ª€…`A‰7@ª€\(õÃ@ª€˜_ö“@ª€\(õÃ@ª€·éú@ª€\(õÃ@ª€ŠçÕfÎ@ª€\(õÃ@ª€Ë)^ž@ª€\(õÃ@ª€y³Ð|†@9Y*0U2b@9OåÉä@5Ùº^5?}@5â3œ¾ß@5M²-V@5TµÜÆ?@5mÅÖ8†@5%›=ÈL@5mÅÖ8†@5eýŠÚº@5mÅÖ8†@5þ\‘ÑN?±>ÏÅósN?›äÄö/>?««ì'Qt?·ñšä~ä?¬„µÜÆ??¤ãn±µ««?¦NIÉ®š?–øÐ°€l?³üë5˜U?´’ö­‡½?£_™QÛÊ -?¤†k ßð? mÖ¿tE?nçO™å?¢ÿÐ4Ây€?§DÛ–£?²Ì7r_?¦ 24 -¾Š@@@@@&@"?ð?ð?ð?ð?ð?ð¿P(áX¿N ÀÉ”?Už–”¯?kj¼–.Ž@®I@UÙ@ª€†&‘O?s ¹5Ó°D?Š>•ý|?ªVœ&Sn?åb?ݽb@Ÿn…\CÚõ@¶@ª¢¬1@ª¡ìæËå*@ª¢¬1@ª¢1g$×@ª¢¬1@ª¢(úŒ@ª¢¬1@ª¢»#ØM@ª¢¬1@ª¢A·ø@ª¢¬1@ª¢—ŽÔŽ@—Ê 7Kƨ@—É㘳€@—Ê 7Kƨ@—Éÿ§ëð@—Ê 7Kƨ@—É÷h•ä*@—Ê 7Kƨ@—Éû -[á@—Ê 7Kƨ@—Éÿ«Û°#@—Ê 7Kƨ@—ÉøjÓP0@8 ØDЩ@8‡>«6z@3R Iº^5@3R*¹ƒŒ2@2ô“t¼j@2÷H§:+h@2fYJôðØ@2c–ÇrÖ¾@2fYJôðØ@2bÕ°ß»¼@2fYJôðØ@2c$š‹Æ?‰døëŽìÃ?‘Cä7j÷?‘Ûür8‡?ŽËú%µ é?’»µ$Qé§?“úïR¸Ø?«é:Ƶ§?’á‡bz½2?‘Jz*(`A?“$Ê H*?“cP×{ï(?‘ä`ÃÃÎ ?ˆ,`´èI?Ž¢f‚ÀàË?‰[eòdWR?|B¡6g?1‹xˆkÔ?‹RR–ó@@*@$@,@<@6?ð?ð?ð?ð?ð?ð?†˜Ë»Í€?KˆÓ/?b™¥iLR‰?XK“_™›@ª¢z–pÊ@—Éùéï@¢?„%~”-M;?n ²Esþ@b2G ?Ëù»»Õb[@ŸoÖb†(@·@§Ô-V@§Ô(õÂ[@§Ô-V@§Ô,/ƒ{J@§Ô-V@§Ô0Ë)^@§Ô-V@§Ô*W§†Â@§Ô-V@§Ô+ Iº@§Ô-V@§Ô-:’£@¬ã¼í‘hs@¬ã»çl‹D@¬ã¼í‘hs@¬ãºCþ\“@¬ã¼í‘hs@¬ã¹Î_p@¬ã¼í‘hs@¬ã³3333@¬ã¼í‘hs@¬ã¸*™0¿@¬ã¼í‘hs@¬ã·KƧñ@7}:’£@7‚u%F -¦@3n5?|í‘@3nHè§æ@2’Ðå`A‰@2•®æ1ø @2™Œ~($ @2›¬q ²–@2™Œ~($ @2›˜Çâ‚A@2™Œ~($ @2›ÓÃa@?ˆÿÀ)T¿Æ?“vuØcʲ?•œ‘æ¦M?‘ƒZ)Àˆ?’Þäi]i?“”üU§<­?Œs¤DÅÐ?’Òc§—Ûí?”_й@’?•Œ ;qí?–žóB» ”?“êXÔ #{?œ¨…2Œ?ލf†)"?„ËD(ºp?‡•ó¨–ˆ?‰/ã̽`ª?$Ìj½BÙ@@@@@(@&?ð?ð?ð?ð?ð?ð?FàxÍ<¿Q%KFÀ?#ïh#€‘¿?K xaq¹@§Ô*ž…äb@¬ã¸N»28?CÉMcc±ù?k¡41I?†²Æ <=?Ñ<€ëšÏe@Ÿi÷;úB@¸@«³É7Kƨ@«³Èr° Å@«³É7Kƨ@«³ÊôðØF@«³É7Kƨ@«³Ê=p£×@«³É7Kƨ@«³È Ô•@«³É7Kƨ@«³ÇæšÔ@«³É7Kƨ@«³Ç“Ý—õ@ªH¥ãSø@ªHQë…@ªH¥ãSø@ªHW>«6@ªH¥ãSø@ªH¬1'@ªH¥ãSø@ªHPHð@ªH¥ãSø@ªH¬1'@ªH¥ãSø@ªHp£× -@6½:’£@6½Òñ©ûè@2&‡+ J@2'süPH@1Õ`A‰7L@1ÖšÔ,<Ÿ@0ÏO „M@0Ð Ä›¥ä@0ÏO „M@0αÄ2ÊX@0ÏO „M@0Î;Í5¨Y?1·†Æjñ??ÖCã ?‘ñê&ètä?$¿ÀºÍ?‘b©b<]ô?‘Iãd©ì?ŒÅð´¯=Í?‚ã<ظÜ??ƒʾÏê?†¨›Z‡–X?†¶Ûã-†@@*@*@*@9@3?ð?ð?ð?ð?ð?ð¿'Ú¶ô@¿”þ€?È]îñ(?YØ@ -&×@©^­b¿×Í@”¶[’½ô?3²KOØ­??ó®¨1s?u%Øà¸õ?Š”}ƒ_%ª@Ÿfí/›M@º@­*~ùÛ#@­*~ùÛ$@­*~ùÛ#@­,1&ê@­*~ùÛ#@­+’:)Ç@­*~ùÛ#@­+íúCý@­*~ùÛ#@­)ÞÑ@­*~ùÛ#@­)7Kƨ@¦ë²-V@¦ë²n—P@¦ë²-V@¦ë³¶E¡Ë@¦ë²-V@¦ë²T`ªe@¦ë²-V@¦ë³Z…‡•@¦ë²-V@¦ë²£S&@¦ë²-V@¦ë²½<6@1cg ù l@1cg ù l@0ÎÙ‡+@0§†Â&€@.ü¬1&ê@.üÚQÎ@/Öð¸»@/ÖOv_Ù@/Öð¸»@/Õ$Ý1@/Öð¸»@/Ö_Ø­« ?É^òÀXæN?Æ¿5›7÷?‘WßÈDö@?Œݶ\ñr?‘EÉ@Ú?ë+ʦÜ_?ÐbV‡,?’NÛˆV(?§^ ÿo˜?Y‡…—Ø?üÓqÔNŠ?wN —z_?€b¡´ñ@?ŒË›Í‡Çq?ƒmÕ+&¬Š?ƒ!Ë *(?†©b/bJö?†¼Š˜L¥÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿T€ûŽ0¿1Û$y¤?>DÊ,ž¤?!W"™2œ@­*Bj.„@¦ë²ò…zš?M-K±\Ó@?0j­KØÙ'?”K3Ó óá?W5…-ï©¶@Ÿs~ùR@»@­hI7Kƨ@­hHõÂ\@­hI7Kƨ@­hOO „M@­hI7Kƨ@­hO4Ö¡b@­hI7Kƨ@­hM«ŸU›@­hI7Kƨ@­hJçÕfÏ@­hI7Kƨ@­hK]Ìcñ@¥«ZŸ¾vÉ@¥«ZáG®@¥«ZŸ¾vÉ@¥«X7´¢4@¥«ZŸ¾vÉ@¥«X*™0¾@¥«ZŸ¾vÉ@¥«Zxl"h@¥«ZŸ¾vÉ@¥«WXâf@¥«ZŸ¾vÉ@¥«X}¿H@4›¹Œ~($@4›)^ž@0ã÷ÎÙ‡@0á×Ûô‡ü@0Wï²-@0VE¡ÊÀƒ@/Š#9Àëî@/†ÏAòØ@/Š#9Àëî@/ˆÎp:û@/Š#9Àëî@/‡â‚@·?|öOÿÝ?š¾ßÍZ?‘Ëü²ü ?‹¬àÌ’Ç?òǹíT­?ÛF»0?|öOÿÝ?’4 "ëžØ?ÀpMºÅ?@§[*^?ÚÌA B{?«àÓ RÆ?ƒ>ZÌw~?vùv“?‰6~„æAÕ?ŠŒµIÍ?ˆ0&YÊEd?‡…¤$Ó@@@@@@(?ð?ð?ð?ð?ð?ð?FM1ùX¿DT†Ï<?=Ý_ Ô?+ßõ‡ƒ@­hJ¼Ø¨@¥«Y—çv?]«°‰ˆ|?LViSÐö?Çä¦\Æï?¤¢w7z@ŸfõØÅp¢@¼@©qZ¬1@©qY™™™›@©qZ¬1@©q^ÒˆÎp@©qZ¬1@©q]Vlô@©qZ¬1@©q`@©qZ¬1@©q]¥œà@©qZ¬1@©qcn.±Ä@§ì1&é@§ï\(õÂ@§ì1&é@§ëjçÕg@§ì1&é@§ñë…¸@§ì1&é@§ª~ùÛ"@§ì1&é@§Ó÷ÎÙ@§ì1&é@§ÑÎ_@6÷â‚@·€@6ø§æšÔ@3¸r° Äœ@3º³g ù @3>V“u@3D,<žìÀ@3OO „M@3DÂø7´¢@3OO „M@3S9Àëíú@3OO „M@3MæšÔ,ëéPå€?)ÿÊõïÈé>ý³PJ‰®@¤"ÙÔà@™€6ÙG ö?8ÿü†÷? -––A?n¼îø ¹€?Xi6S@Ÿs Or’@¾@£õ?|í‘@£ñ©ûçm@£õ?|í‘@£ø}¿H@£õ?|í‘@£ò•éá±@£õ?|í‘@£÷ö+jè@£õ?|í‘@£øâe-@£õ?|í‘@£÷€4mÆ@©ovÈ´9X@©os÷ÎÙ@©ovÈ´9X@©ov”Fs‚@©ovÈ´9X@©o|í‘hs@©ovÈ´9X@©o~Ov_Ù@©ovÈ´9X@©ow€4mÇ@©ovÈ´9X@©oz¬1@7D¯O „M@7Ib¶®~@3‡ÎÙ‡+@3ŠOv`@2ä¼j~ùÛ@2ä¼j~ùÛ@2n_oÒ @2mÌcñA @2n_oÒ @2p¸ºÇ@2n_oÒ @2pØDЩ?3ßa=„?“:„aGS?‘ùé éµ??Œ:Z2‚b?•Äí¥×?”OPlðó[?¥K¶{Oÿ?—·f;m?’€fç½Î?‘~¬Àm?ó?”‚ÍÊL¾l?” ™¾,?…/‡ÙX·²?†¡HŸÊç?Š[¦Råb?†3_¾ˆ?‰6‰õË?ùDâΊ@@@@@,@,?ð?ð?ð?ð?ð?ð?W+¤ ª¿'<ìº?B¶š Où†?\çäÄ-û=@£÷xÔI@©oz¦Xò?abè«éaÉ?sÊ,ÊÂÔ?¼û®-Œ~L?×™&¯Zw@ŸnnG>´|@¿@ d¸Që…@ dµ¢¨y@ d¸Që…@ d”u"ŒH@ d¸Që…@ d¬ËqŸQ@ d¸Që…@ dµ ßý@ d¸Që…@ d«]6Èß@ d¸Që…@ d³ÑvL*@¢r-V@¢{žÂƒõ@¢r-V@¢gø ^@¢r-V@¢q¿+@¢r-V@¢vqXû@¢r-V@¢r¡4Y@¢r-V@¢pLÎ@9ò䎊@9j~ùÛ#@3¸r° Äœ@3»fßì¸@2Ÿ²-V@2§Xžý†©@1n_oÒ @1q¿W @1n_oÒ @1p{å¾f!@1n_oÒ @1qß•XÄñ?´Ÿƒ|…9‰?“húÑø[?”Ь ÷Ô!?cnvmÌ?‘”\‹•¯,?éî¼6-"?¤%„Ä]è?•Sq‹ãú?”hAůö>?Ñt‚U?’0 (ê‚`?k$zø^s?´0Wøî–n?•‘%’›Š?ð{*ÄŒ?„.P3­öc?ˆPBÃc,w?ˆÉZžúÏÒ@@@@$@2@,?ð?ð?ð?ð?ð?ð¿RˆDæÌ¿dÎâ­õ€?e׋%u?+’ÙvFVŽ@ d²'0«@¢s¡f?v¶ÌúL—!?Aˆ8»?çvå§ODß?z† ´ý“A@ŸqnÖ~Ö@À@­Z{dZ¬@­Z{dZ¬@­Z{dZ¬@­Z|‘ÑN=@­Z{dZ¬@­Z|Æ?@­Z{dZ¬@­Z|C,¥z@­Z{dZ¬@­ZzkP°ò@­Z{dZ¬@­Zz–¼@«s3333@«st¼j@«s3333@«s©*0U@«s3333@«t•*˜@«s3333@«s©*0U@«s3333@«sMj@«s3333@«s@N¤©@2ý:’£@2ýquŽ"@/ðå`A‰7@/ñ4êJŒ@-ÄZ¬1@-ÄohÛ@-…oi@-„Ý/ŸÀ@-…oi@-„êJŒM@-…oi@-…oi?É^žQ5P‚?êÚÏ$?‘4!Ÿ•p’?‹û…†_?‘Dj?È2I/?ÐbV‡,?’¼  g¶?ŽËÜ¿€?9ÍÇ~FÀ?îCq$u?_Ø~tñ?€bMÕky?Œ¾»•lŽ?‚† SFò?‚ìxqC?†špk Y?†¯Mž684@@@@@,@,?ð?ð?ð?ð?ð?ð¿P;ù¤¿'ÐÖ?,©f­ïï?D yû¹X@­Z{ Ð@«smâ9?;‘Ù¸µr?üǹ§s—?ri…·ò?'úϕї@Ÿs¥}@Á@£/²-@£ ƒn˜@£/²-@£1‚©“ @£/²-@£.}Vlô@£/²-@£1N;Í7@£/²-@£)7Kƨ@£/²-@£*W§†Â@«ƒ•%@«xbMÓ@«ƒ•%@«‰ 'R@«ƒ•%@«í(Œç@«ƒ•%@«„M:”@«ƒ•%@«‡»/ìW@«ƒ•%@«‚MÒñª@9eöý!ÿ.@9oò䎊r@4?|í‘h@4 àÞÒˆÎ@3²-V@3iDg8@2OO „M@2W¯·é@2OO „M@2R Iº^6@2OO „M@2OùrGE9?ÁxgÀ?’ãy)­3c?—2 :M?”ƒSÌz?“ £Ê­?”OPlðó[?¼ûÃv…cÞ?˜Ø*ªl€ô?ÃŽœ -Üi?•è­¸‡?’‚[fúbF?“t‡o(ÚÊ?¢'õ@hQ?vùv“?†ž5ðqë?…{BÕ0Þ?Œúq‘?<ש‹äN@@@@@&@,?ð?ð?ð?ð?ð?ð¿dÅJ>^@¿)¡<}ð?`*äÚôž?_>zõ0µ¤@£,m”ÊG@«„Õ}¥N?nùNÖs‚ï?ntPÓ¢?Ì~«æÂ–?Ë“"Žv²«@ŸrµäÃË@Â@Ÿ—wÎÙ‡@Ÿ—¥`A‰8@Ÿ—wÎÙ‡@Ÿ—ʼn~c@Ÿ—wÎÙ‡@Ÿ—Kg3ð@Ÿ—wÎÙ‡@Ÿ—䘧]@Ÿ—wÎÙ‡@Ÿ—£üE›h@Ÿ—wÎÙ‡@Ÿ—¯z¼Äy@¤H2-V@¤GêàÆŸß@¤H2-V@¤Hú£à<@¤H2-V@¤H&Ç2=3@¤H2-V@¤HVÌþ@¤H2-V@¤HLpäó@¤H2-V@¤H½0k@8rÃÉîËû@8-i}@3™º^5?}@3‰BHmJy@2ƒt¼j~ú@2o…dÜ.l@28DЩ*@2BÁ,FÍî@28DЩ*@2JdÀЬ@28DЩ*@2@";¡Û?¥¨«Ã& ?¤<¿C=?¨˜]ͱ%e?™TI@¨?£ØiÐ_>•?¤}CÞÙÒ?‚Cš æI?›ó×ÊÜ?>$WŠª9?šx™Hgrê?¥èTìPÝÚ?¡¨× -ic?¤¿Žèút?¯§ëC³9?›_RS´8?•~e÷Bˆ­?“_5 ~ö¼?•yþçÝ^Â@@(@"@&@9@8?ð?ð?ð?ð?ð?ð>ò»|d€?…ÚzÃ?jΗX?q^ºÈ½¯@Ÿ—µ[@¤H稜Ö?„*hõâ¨N?”Étó«9?åQV†W@6‘cý£ @Ÿk e/@Ã@¨@B Iº^@¨@B Iº^@¨@B Iº^@¨@B©“ â@¨@B Iº^@¨@EÉå@¨@B Iº^@¨@ES&Á@¨@B Iº^@¨@>ùÛ"Ñ@¨@B Iº^@¨@?b¶®}@¬ªhõÂ\@¬ªi7Kƨ@¬ªhõÂ\@¬ªmw1Å@¬ªhõÂ\@¬ªmžƒä'@¬ªhõÂ\@¬ªlÙè>A@¬ªhõÂ\@¬ªfö”Ft@¬ªhõÂ\@¬ªg®zà@27â‚@·€@27â‚@·€@.€A‰7KÆ@.v®}Vlô@-dZ¬@-½<64@,QÑN;Í6@,KƧï³@,QÑN;Í6@,KƧï³@,QÑN;Í6@,KŸU›=?É^òÀXæN?éDEâ©Ö?’÷˜–Èä?Uóú*˜?‘à2F0µÔ?‘•S‚üJ?ÐbV‡,?“[¡ŽuœÙ?“„;Ë~½ú?‘!¥zt9Û?‘¶|+üÎ~?‘:i€ÑìÂ?€g‹)ØêÀ?ŒÛÏ·+?‚ÂÌ]æ?ƒ3¸Î{Z?†å·ÑfWà?‡gϵ’õ@@@@@*@,?ð?ð?ð?ð?ð?ð¿fb¢èT€¿bá÷5ç@?Pv,Û8ü?Q ˆ;S0s@¨@A¯^ûœ@¬ªi|vrò?_½,ßî?`$Ž• ª?¶[ûO»’?´BŒ¡@Ë@ŸrÿÇ~çé@Ä@¦ö\¬1'@¦öMV@¦ö\¬1'@¦öKC,¥@¦ö\¬1'@¦öx_ö”@¦ö\¬1'@¦ör:)Çz@¦ö\¬1'Á.„€@¦ö\¬1'Á.„€@ ¥U$Ý@ ¥NzáH@ ¥U$Ý@ ¥fffff@ ¥U$Ý@ ¥Y=Ùc@ ¥U$Ý@ ¥V®}Vm@ ¥U$ÝÁ.„€@ ¥U$ÝÁ.„€@9-¥œàv@9Ö8†YK@4» Iº^@4¯Ÿ¾vÈ@3>V“u@3)îËû¶@2æYJôðØ@2ÒZîcŠ@2æYJôðØÁ.„NÜC,¥@2æYJôðØÁ.„NÜC,¥?¿‰ø«pâ¬?¥HyR‰á?Ã4Eá!³°?ÀlˆfW¬@8Iç@8Ù?ŦŠT±F÷?ŸÏݼÃE?¢ÌïRt?¥à„Ÿ¹Ø@8S@8û—?¤$Ë×ù´A?©P£(®¥?£%øZîo ?¨Ó&È@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøÅ@¥/Ù™™™šÁ.„€@¥/Ù™™™š@¥0ö”Fu@¥/Ù™™™š@¥/ùõY³Ï@¥/Ù™™™š@¥0§ï²@¥/Ù™™™š@¥0 P°ò|@¥/Ù™™™š@¥0SŽóM@ŸÜ‚ Iº^Á.„€@ŸÜ‚ Iº^@ŸÜg ù l@ŸÜ‚ Iº^@ŸÜfšÔ,<@ŸÜ‚ Iº^@ŸÜu%F @ŸÜ‚ Iº^@ŸÛÜC,¥z@ŸÜ‚ Iº^@ŸÜ1&éy@7`ØDЩÁ.„>¤µÜÆ@2Ô›¥ãSø@2³ÉîËû@1¢-V@1‹Í5¨Xy@1zÔ,<ží@1T‡ü¹#¢@1zÔ,<ží@1W†Â&€ž@1zÔ,<ží@1Zu%F -@8J¨?¢4o:™v?›(`¥Æ´?·€r,Ö?° ½Pð Q?³ÒÇÎÛ@8J¨?Ñ¿ž,?˜Y ¶E–X?·0Ï+×Pl?´Ž6ÖEy?·ÙÇJ¡r.@8p÷?ª‚eûƒ+?Œ¢yëjk±?…ÇóÏ€9"?’:™/ʼn?£„©Ó8@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøÆ@¬ç.—Oß@¬ç+ Iº@¬ç.—Oß@¬ç,VÕϪ@¬ç.—Oß@¬ç+)^ž@¬ç.—Oß@¬ç.Ëûµ@¬ç.—Oß@¬ç._oÒ@¬ç.—Oß@¬ç/²- @«[/Ÿ¾@«[%¸Qí@«[/Ÿ¾@«[¬1'@«[/Ÿ¾@«[¹õYµ@«[/Ÿ¾@«[}¿H@«[/Ÿ¾@«[žì¿°@«[/Ÿ¾@«[¸Që…@8­¥œàv@8´ðØDÐ@3uãS÷ÎÙ@3vÈ´9X@2]V”@2](Œç°@1øDЩ*@1öOv_Ù@1øDЩ*@1øÁTÉ…ñ@1øDЩ*@1ú ÞÒ?¯ò5}'Î?“‹ë÷?’måGSžq? Ð ÷Ž ?“”>C,4?‘f]£àG?¥K¶{Oÿ?–HÞÆzì²?‘ª¦ZqÍ?’‘Ç#·X?“h_N’%¿?‘ÔÄ÷Õ?ɽ±•4á?Ó%y*£=?ƒÚ@êA²?„•ˆG’Z¾?ˆëÅoë?‹&¸ê±fÂ@@@@@,@(?ð?ð?ð?ð?ð?ð??Z. @?2ÿ2p?:·«êümù?^°"é$éÀ@¬ç.¨öxæ@«[_•¸Í?MðL¡n׸?sÊ\¹,ÁW?‘ÖûF¾}î?ÜbÉyî³2@ŸpíˆE»@Ç@£X§ï²@£X× -=q@£X§ï²@£Wù#¢œx@£X§ï²@£X¶®}V@£X§ï²@£WúQÎ@£X§ï²@£XÝ/Ÿ@£X§ï²@£X Iº^5@ª¶Þ¸Që…@ª¶Üj~ùÛ@ª¶Þ¸Që…@ª¶È1&éy@ª¶Þ¸Që…@ª¶Õ '»@ª¶Þ¸Që…@ª¶Í„M<@ª¶Þ¸Që…@ª¶¨è§ç@ª¶Þ¸Që…@ª¶…‡“ݘ@6?–»˜È@6@–»˜Çâ@3R Iº^5@3IXbMÓ@3“t¼j@2ûxFÜ^@2£ÉîËû@2’GE8ï5@2£ÉîËû@2’n—Oà@2£ÉîËû@2Œ‘ÑN;Î?„F/·ÿP5?¥¡J®öT?° -ô«Çñ?¤ÊÈ8Ó~ö?¥–X%ü¯›?©9j -?|öOÿÝ?¬Y©YFpb?£~$Ã9y?™³0%rp?¹\r¸øˆ€?·ŒMÏ>²?†ž5ðqê?”kcÿä©Ú?Œó}?ï?’4i+Ëè?’;WZŸÿÔ?žÎ"”`ù…@@@@@*@(?ð?ð?ð?ð?ð?ð?.5ò@¿ÌU”?WšF: <¬?m 2Xv@£XÕµ I@ª¶ÒÂew?pìˆW¹?6ˆwïh?Ô4,ð~ž?õú™rD@Ÿ^ÝS~ÂP@È@¯ã=ó¶E¢@¯ã>ùÛ"Ñ@¯ã=ó¶E¢@¯ã>ߤ?æ@¯ã=ó¶E¢@¯ã>Åm\û@¯ã=ó¶E¢@¯ã>Åm\ú@¯ã=ó¶E¢@¯ã<ú¬Ùé@¯ã=ó¶E¢@¯ã<ú¬Ùè@ —MÒñ©ü@ —NV“@ —MÒñ©ü@ —MÒñ©û@ —MÒñ©ü@ —N_oÒ@ —MÒñ©ü@ —M\ú¬Ú@ —MÒñ©ü@ —Mžƒä&@ —MÒñ©ü@ —Mžƒä&@0eöý!ÿ.@0eðoiDg@*¼j~ùÛ@*É…ðoi@(´ýó¶E¢@(´ðØDÐ@(Bu%F -§@(Bh Ô•@(Bu%F -§@(Bu%F -§@(Bu%F -§@(B‚@·€5?ðO­W¬ÃÆ?ÉGãA­÷?‘ÌË>¯f?‹Æ úJ-M?ëÎ@ A2?ºª$Ð?ð„ƒ;0?’j%ÓRa?†[‘'Í?CÚ B÷?ÔÒ@úˆ‘?M\³Ù“@?ð!̃?Œ¯þuõí?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†‰Oú|q?ð@@@@,@,?ð?ð?ð?ð?ð?ð¿K€t? ^7°?0‚Lœ`Z?„ÃÜ#éß@¯ã=¦ÂøP@ —M†¡h??}TYT#‘?!ŒœPA¦?x÷ÃÙû*? *Û<['@Ÿs.½µv@É@¥¨õÂ\@¥¦$Ý/@¥¨õÂ\@¥cˆe•@¥¨õÂ\@¥œ¹#¢@¥¨õÂ\@¥Ž¤¨ÁU@¥¨õÂ\@¥iDg7@¥¨õÂ\@¥’° Äœ@©á,1&é@©á(õÂ[@©á,1&é@©á -à @©á,1&é@©á!TÉ…ñ@©á,1&é@©á¥œá@©á,1&é@©áb¶®|@©á,1&é@©á¿HÌ@7åöý!ÿ.@7ÝŠÚ¹õZ@3\Iº^5?@3V¸ºÇ@2Õ`A‰7L@2Ìí‘hr°@2ò䎊r@2vYJôðØ@2ò䎊r@2ufÏAò@2ò䎊r@2w€4mÅÖ?‡YÍ_?”"¶²'Ýþ?›£=Ñã5?œIXo_í? (E•¦ðç?à¸å¯X8ý‘ ?œñ=¼™Õ›?£(¸u¡w,?›/ÜŠ—‰¶? Ú¼öíËF?§Ò¸ùBz3?ž:“ñŸ«ä?© °¨Þÿ?§7&Öcè?¨`Í“=B‘?ªéyú¤Ÿh?†aÞàI*”?“[ ·S?¦$syW?R è®ãî?•Vû›¦Ã¡?”"‚Ò#@@@@@,@$?ð?ð?ð?ð?ð?ð¿_:ßÃÈ?|õaP?ešÛÚL?cRl°ö~@¥²ã9K¥:@¢f½/×Q®?r‘)2 ?SžÔ8]Î?à)à[C?Ïó4d¥×P@Ÿlµ%š@Ë@«/ž¸Që…@«/ž5?|ï@«/ž¸Që…@«/¥F -¦L@«/ž¸Që…@«/§ÕfÏC@«/ž¸Që…@«/œÚQ@«/ž¸Që…@«/ŸØ­« @«/ž¸Që…@«/ŸË’:*@œé8Që…@œé@t=3@œé8Që…@œéQ·Xâ@œé8Që…@œé7KƧð@œé8Që…@œé>Åm\ú@œé8Që…@œé>\‘ÑM@œé8Që…@œé>«6z@8IÎ_oÒ@8Sg ù l@3|í‘hr@3‰Q‚©“ @2Æ“t¼@2À4mÅÖ8@2Eœàu÷@2AohÛŒ@2Eœàu÷@2Aä÷eý‹@2Eœàu÷@2B×sü?˜ê?©úté?¦Ì '?” -Ÿ”îtI? Ìç,Z?–[À5ž¨?“lP {“›?¦¸Ùûu‘?˜ଚÿw?‘ŽütÅÒ(?›¼`’ i2?•]ÅvüM ?“ÛKÂè• ? ˜û½#Z?·ïö)h?‡9Â@0wç?‰®ðúcåZ?‹aÊ•TI?‹¼`’ i2@@@@@,@(?ð?ð?ð?ð?ð?ð?B 6ø¿åÌ5ð?E°¨†¬Û? *kçÛÛ@«/ž!dJ­@œé>ÎF·÷?`×Ò&D°ˆ?*‹UnÔ£ì?¸!ÃÉØ A?@-ªo¹@Ÿor¼’94@Ì@©Pq©ûçm@©P}ó¶E¢@©Pq©ûçm@©Pmí(Œæ@©Pq©ûçm@©Pw1Å@©Pq©ûçm@©Ps3334@©Pq©ûçm@©PsŽóMj@©Pq©ûçm@©Pu?|í‘@®á33333@®á+ Iº@®á33333@®á2° Ä@®á33333@®á1Ä2ÊY@®á33333@®á-í(Œæ@®á33333@®á0bMÒò@®á33333@®á49Xb@7í¥œàv@7öÁ½¥@3ahr° Ä@3a©ûçl‹@2~V“u@2U›=È@2+xFÜ^@2* ÞÒ@2+xFÜ^@2,j~ùÛ#@2+xFÜ^@2+ŸU›=?¡ÅꯨŠT?W[†?“%HCâ=s?ŽVåç0ÇO?‘õbÐ\?‘_ Ýß?™™™™™™š?’Òc§—Ûí?’ŒZzˆZ•?‘!¥zt9Û?üÓqÔNŠ?X78›š?¶)d”K‚A?ŒÖ -ÄȲ?ƒ>ZÌw?…”rsw?ˆ©{2¡Î?ˆÔÞÑ—æJ@@@@@@?ð?ð?ð?ð?ð?ð¿NµŸ ?_@§²?Tšš¨Ub„?=H«lÃÉ@©PtЈ£@®á/ëýàÉ?jÙõ VM?VkŸèè³0?ЛgR9Ø?¨2ÃoñŠ@ŸoPœo@Í@®>ùXbN@®?@®>ùXbN@®>ùõY³Ï@®>ùXbN@®>üPHñ@®>ùXbN@®?–R½;@®>ùXbN@®>þi­BÄ@®>ùXbN@®?¼£n@¬Î¼í‘hs@¬ÎÈõÂ\@¬Î¼í‘hs@¬Î»dZ¬@¬Î¼í‘hs@¬Î¾ùÛ"Ò@¬Î¼í‘hs@¬Î¸y=Ù~@¬Î¼í‘hs@¬Î³üPI@¬Î¼í‘hs@¬ÎƸºÇ@7Û¹Œ~($@7Ô‡ü¹#¢@4° Ä›¦@4ÈÔýó¶F@4"-V@4'Xâe,@3cÉîËû@3i¦µ (@3cÉîËû@3aN;Í5¨@3cÉîËû@3U`A‰7L?€‚ñêã ?—Ü¡UŒœ-?›£=Ñã5?—³Q+Ùv?¤áøl‡ä(?¤ Yâ9>?š•§q!U?˜[Gú,Ã?¥Eét'?–…%j»a?¤pè·FÌs?¥ý¸Às( ?Ó ¾îóô?–µ°jÆÄ?Vrÿä?•2YyÐ?£P;røo?ž\?/dž@@@@@(@&?ð?ð?ð?ð?ð?ð?C„„4(¿h?&þ?>ßÒ½RDÌ?hëÇ]*@®?XbóZ@¬Î¾e=Nâ?`uŽúÚ ?ƒøSkQ»?¬ó¨ËŒ?ì±3X\*V@Ÿgõ¤hÎ@Î@¬gl‹C–@¬k Iº@¬gl‹C–Á.„€@¬gl‹C–Á.„€@¬gl‹C–Á.„€@¬gl‹C–Á.„€@¬gl‹C–Á.„€@¥Ë¶E¡ÊÁ@¥Ë´9Xa@¥Ë¶E¡ÊÁÁ.„€@¥Ë¶E¡ÊÁÁ.„€@¥Ë¶E¡ÊÁÁ.„€@¥Ë¶E¡ÊÁÁ.„€@¥Ë¶E¡ÊÁÁ.„€@6Žì¿±[X@6Žæ1ø @4)‡+ Á.„M‰ûçm@4t¼j~úÁ.„QnÙ‡@3³&Á½¥Á.„NÜC,¥@3³&Á½¥Á.„NÜC,¥@3³&Á½¥Á.„NÜC,¥?|¬Çëý @8#˜@8¾:@8 >+@8Iç@8Ù?ˆÿÀ)T¿Æ@8Î÷@8i§@8Å@8S@8û—?˜Ð™Q$Ò@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÏ@¥¯ -Àƒo@¥®&éxÔþ@¥¯ -Àƒo@¥®ø_ö”@¥¯ -Àƒo@¥®ü‘ÑN<@¥¯ -Àƒo@¥¯ŠqÞk@¥¯ -Àƒo@¥¯ŽŠqÞ@¥¯ -Àƒo@¥¯ Ƨï@¨Ø²° Äœ@¨Øg+ J@¨Ø²° Äœ@¨Ø¬VÕÏ«@¨Ø²° Äœ@¨Ø§ÕfÏA@¨Ø²° Äœ@¨Ø¡£n.²@¨Ø²° Äœ@¨Ø°å`A‰@¨Ø²° Äœ@¨Ø¬~($ @7^Hè§æ@7X§æšÔ@35ãS÷ÎÙ@3,àuöý"@2K"Ðå`B@2A:’£S@1î_oÒ @1å*™0¾@1î_oÒ @1êÍžƒä&@1î_oÒ @1ê^5?|î?íðÇìLâ?Ÿ†€–5YM?š^ÇÙ*G?“Ÿd§„À?•bJÖµæÿ?”É–wç†è?Óf<Ç4?ŸÏݼÃE?ŸÀh¡º?—,àÐÑž?• ¸°R¨?”'q²TrQ?Цÿßë?£?‘a÷nñ?‰ZaizÚD?‰*6SpK?Œ8¸wx¯?<ש‹äN@@@@@*@&?ð?ð?ð?ð?ð?ð¿XŸ÷þ?t¼ÿ -X?mZ¹…~sP?mS›ŒE¨é@¥¯ -{§°ª@¨Øª5`€Š?{™8)íw?{¯ˆá”E?å›ð[ôÆÀ?âü’üE<Œ@ŸsÖ×I}@Ð@£+Y™™™š@£+UÂ\*@£+Y™™™š@£+f -¦L0@£+Y™™™š@£+qhr°!@£+Y™™™š@£+B3œ¿@£+Y™™™šÁ.„€@£+Y™™™š@£+Eœàv@§M£S÷ÎÙ@§M•Â\)@§M£S÷ÎÙ@§M–È´9Y@§M£S÷ÎÙ@§M—KƧï@§M£S÷ÎÙ@§MmjO@§M£S÷ÎÙÁ.„€@§M£S÷ÎÙ@§M˜y=Ù@8įO „M@8½jOv@4+¥ãS÷Ï@4Fs×Ü@3A‰7KÇ@3‚&€IQ@3L¿±[W?@3)ÞÑ·@3L¿±[W?Á.„NÜC,¥@3L¿±[W?@3Ý—ö+k?’Óusÿ\Ã?¡ùŠÀs› ?¦ªÓz%d?‘4ãM^@8Iç?ÀYëÿMß?ÅèWl ª?¥5Ÿþ:7?  õ%w?žätmî>@8S?ÁšTEkc?›Ny”…?šæÿ1­Í?˜¸DU#L†?²a ä‰ ù@8 Ø?Â>C]æþÅ@@@@@(?ð?ð?ð?ð?ðøøøøøøøøøøøøÑ@¬ š¬1Á.„€@¬ š¬1@¬ ]Æá#Þ@¬ š¬1@¬ |ÚÎ,*@¬ š¬1@¬ AAgDÎ@¬ š¬1@¬ CÏó`Ð@¬ š¬1@¬ Pú@‰‘@•ßþùÛ"ÑÁ.„€@•ßþùÛ"Ñ@•ßÈe¼þù@•ßþùÛ"Ñ@•ßꎠ~@•ßþùÛ"Ñ@•ß™hÿZ@•ßþùÛ"Ñ@•ߪ0Oí[@•ßþùÛ"Ñ@•߈$*€¶@8Ç>«6zÁ.„>¤µÜÆ@3Ìí‘hr°@3«is6¥@2ƒt¼j~ú@2maeÐÌ_@2Œ¿±[W?@2dq¾ÀY+@2Œ¿±[W?@2dÛ¿Š»{@2Œ¿±[W?@2j˜ë¯@8J¨?˜=‚…ذc?—”·17lÞ?³ê?UbBl?¶„H¯!?³|Js3@8J¨?˜²Æ?ÁÕ?œ2OozUÇ?¬ekÉ~‰?¯Xq ®z?¬4PTýFÃ@8p÷?•»„´µî…?ì-b_ž9?‘›>Ûù±?‘r꟧ô?šŽÃhS´þ@@ @,@<@:?ð?ð?ð?ð?ðøøøøøøøøøøøøÒ@¡}bÐå`B@¡}s3333@¡}bÐå`B@¡}` qv@¡}bÐå`B@¡}JŒL˜@¡}bÐå`B@¡}X7´¢4@¡}bÐå`B@¡}M„M;@¡}bÐå`B@¡}Q·Xâ@Ÿÿ8Që…@Ÿÿ8Që…@Ÿÿ8Që…@Ÿÿ 'RTa@Ÿÿ8Që…@Ÿÿ?|í‘h@Ÿÿ8Që…@Ÿÿ*Ov@Ÿÿ8Që…@Ÿÿ6+jçÕ@Ÿÿ8Që…@Ÿÿ=p£× -@7²ÃÉîËû@7¯ƒ{J#:@38r° Äœ@3=¥œàv@2v§ï²-@2hÛ‹¬@1‚‚@·€5@1„!-w2@1‚‚@·€5@1ƒ,¥zxl@1‚‚@·€5@1„ohÜ?ð°–Ž]?’°BÉô-?žÉÖìäÔ”?ŽVåç0ÇO?˜ -0˜ggk?š¨¶$NxÌ?ð°–Ž]?”ºu(†¼¦?ŸP­Ñ‚Ÿ½?”J6bº?“â¹Í[Óh?”æâ„o?ð*wjs—?‘Žèã&!+?¬Öva4z?—†0ÚŒ#?Ü×þë¿?‘  ¶‚3?ð@@@@,@*?ð?ð?ð?ð?ð?ð¿p!I$?qKx°…@?aƒÝFgXs?0©:Šþ{@¡}SAÜc@Ÿÿ3^˜Üg?pºÁpäà?>«Ü T?ÍÕØ.ç@È?kEPÊS@Ÿrß›åX<@Ó@¯§’ñ©ûç@¯§“3333@¯§’ñ©ûç@¯§º^5?~@¯§’ñ©ûç@¯§G®{@¯§’ñ©ûç@¯§˜Që…@¯§’ñ©ûç@¯§”ðØDÐ@¯§’ñ©ûç@¯§Œ"h Õ@žL´9Xb@žL´9Xb@žL´9Xb@žMaG®{@žL´9Xb@žLô9Xa@žL´9Xb@žM)xÔýô@žL´9Xb@žM?@žL´9Xb@žLøFÜ^@5#g ù l@5#Š Þ@6@ Ä›¥ã@6>BZîc@5;Ƨï²@5+ÚQÎ@4œÚQÎ@4…µsê³h@4œÚQÎ@4†ÏAòØ@4œÚQÎ@4‹6z—?|öOÿÝ?¯;©$.ˆ?¡}´v†M÷?¢~ -]zýØ? 3sG &?›8½üãüÏ?}Ñ¿ž,?¯ê‡J˜®2? PÇ´âþ?±Å¢/ó”‡?£ ƒU¾Š?¤VTº¨ÄJ?…/‡ÙX·²?¶Ü£×ìD?£å$óMš?™òvÈc?¢2ðø:Uù?“aÑ#@@@@@@"?ð?ð?ð?ð?ð?ð¿D3Úx?‚mjh?LÉ­Ð=æ^?e|•ï@¯§’z+¨ö@žLÎ^Á ?g° ·N?€>÷7¶ëû?Ò5Õ¿Vl?ôû:Cº€@Ÿa/É·@Ô@¢ïÜ(õÂÁ.„€@¢ïÜ(õÂ@¢ï£Ë ¢@¢ïÜ(õÂ@¢ðx„J˜Ã@¢ïÜ(õÂ@¢ïâÆ~[|@¢ïÜ(õÂ@¢ï ’r¡@¢ïÜ(õÂ@¢ï£Ž ¾Z@šéì‹C•Á.„€@šéì‹C•@šêùòhì@šéì‹C•@šé÷îÄ'4@šéì‹C•@šê€þ .3@šéì‹C•@šé}³o³@šéì‹C•@šéýv¤ãE@8í¥œàvÁ.„>¤µÜÆ@4£÷ÎÙ‡@4R꿪š­@3V”@3} ¼ZÃ@3Þi­BÄ@3È;3¯T@3Þi­BÄ@2ßApÂz¶@3Þi­BÄ@2Óµx¯,@8J¨?¬äJ' o£?˜‘psÚ?©Ž˜7#wš?¢ÎQº'?¬¢jT¦ƒ½@8J¨?µŒS«Ô+?¡ö,æÿC?£V%/@6_?²‡5I¾è?°Ê(®ã@8p÷?®ñôæ\…?²3„´º7¾?¨ë[-ä$ÿ?£îï…ä^?¤J^&¶+ @&@"@&@5@5?ð?ð?ð?ð?ðøøøøøøøøøøøøÕ@§ë­V@§ë¤Ý/Ÿ@§ë­V@§ë|64@§ë­V@§ëohÛŒ@§ë­V@§ëf?@§ë­V@§ë A‰7L@§ë­V@§ë{"Ðå`@¥UxQë…@¥UXQë…@¥UxQë…@¥UÎ_p@¥UxQë…@¥Týã¼Ó@¥UxQë…@¥U"ø7´¢@¥UxQë…@¥Uu$Þ@¥UxQë…@¥UH´9X@6Hè§æ@6oiDg8@2À Ä›¥ã@2‰#¢œwš@2RÐå`A‰@2†Â&€@1cÉîËû@1/Š Þ@1cÉîËû@13œ¾ß¥@1cÉîËû@1× -=p¤?¢Æ÷Xê†?¼±¾YÞd?µR¡™&öù?¶a‰]?“”>C,4?˜£µ³ÿ)?¾„CÚ–•F?ÇFû6£ä¿?Êo†™Æ J?Æö|1©Ö?šâ6¿°P?£+ÍNPÞ?ºWHõVÄå?«R²QFÆ?­$°*a„?¥]Ñ=‹Çÿ?†Ü‘ °Ô?ˆCns¥ @@@@@@?ð?ð?ð?ð?ð?ð¿z?Ïñä¿€¸Ô?~k)ž?‘ÑåOß‹@§ë“¸¬@J@¥Uh–ÊY™?–ý¥M†a7? aƒÚ-/U@6? …(@•Q•ïÛñ@Ÿrñ]C£Ê@Ö@¢ü;dZ¬@¢ü<¬1'@¢ü;dZ¬Á.„€@¢ü;dZ¬Á.„€@¢ü;dZ¬Á.„€@¢ü;dZ¬Á.„€@¢ü;dZ¬Á.„€@œ‡Éº^5?@œ‡Ïß;dZ@œ‡Éº^5?Á.„€@œ‡Éº^5?Á.„€@œ‡Éº^5?Á.„€@œ‡Éº^5?Á.„€@œ‡Éº^5?Á.„€@4 Î_oÒ@4ù7c5@0}‘hr° Á.„M‰ûçm@0“t¼jÁ.„QnÙ‡@/#¼ÓZ…ˆÁ.„NÜC,¥@/#¼ÓZ…ˆÁ.„NÜC,¥@/#¼ÓZ…ˆÁ.„NÜC,¥?|Ñb×¶@@8#˜@8¾:@8 >+@8Iç@8Ù?~ì“?ÕÒJ@8Î÷@8i§@8Å@8S@8û—?Ôgl˹@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø×@ @D›¥ãT@ @E`A‰7@ @D›¥ãT@ @F3H+é@ @D›¥ãT@ @FBN‘@ @D›¥ãT@ @E·ù1À@ @D›¥ãT@ @Cm¯»O@ @D›¥ãT@ @Cj=@¤H±&éxÕ@¤H±&C\g@¤H±&éxÕ@¤H±"„@¤H±&éxÕ@¤H°,Ø@¤H±&éxÕ@¤H±o힟@¤H±&éxÕ@¤H±¯Èœ@¤H±&éxÕ@¤H°òl3\@3ò䎊@3e+ÓÄ@-û"Ðå`A@-û ˆ¤~Ð@,´ýó¶E¢@,´·F!;ü@+Aò×t@+Žål—™¦@+Aò×t@+ކil»©@+Aò×t@+Ž“„Þ17?}õ¬#„­?Ó‡V?‘¦ÿ?‹³Q‹Ï‹Í?è³/ï†?¹ÝGIv ?|¬Æ Væ?’ÈI™™?‡ÜIêÉ?4£´k?Í`äÓ@?PGê&¦?‚nÓ3î‰?Œ­Œl³J?‚wyó2uÕ?‚ä CñB ?†‰Î¢ã‡?†‰Î¢ã‡@@,@*@*@8@9?ð?ð?ð?ð?ð?ð¿7§¾X¾öt»€?*Ä·­ìËT?ÈÓÈ÷ @ @D»†«@¤H±!ßî?JŸù|ý¼Y?(QÍ”ß0¿?¢Ý Ó‘cE?^×ZÑß~@Ÿgô8•@Ø@©\(õÂ@©Y‡+@©\(õÂ@©_¼@©\(õÂ@©[šu@©\(õÂ@©d¨ÁTÊ@©\(õÂ@©_ö”F@©\(õÂ@©^ í(@¨õŸQì@¨õÅ¡ÊÀƒ@¨õŸQì@¨õÀuöý#@¨õŸQì@¨õÇï²,@¨õŸQì@¨õĵܯ?@¨õŸQì@¨õĨÁTÊ@¨õŸQì@¨õÂ\(÷@7N쿱[X@7L~($ x@3|í‘hr@3Œ<žì¿±@2×ï²-@2Ü¥zxl"@2cÉîËû@2ba|ÚQ@2cÉîËû@2ct¼j~ú@2cÉîËû@2bˆÎp:ü?€‚ñêã ?•˜Qi{cj?’÷˜–Èä?[d?“¦Æ_ÌdA?“*“žj±»?}Ñ¿ž,?˜Æ&ÀÒ ˆ?’€fç½Î?‘Ò–¬q?–›·†ø?’"(îL?ŒR‹w#z?‘žˆ2}?ƒ/‹ÍY}’?ŽY8Z•?Ž .0åv?—¤“<†›O@@@@@,@(?ð?ð?ð?ð?ð?ð?ZîÏÞ@¿@"^.ð?R]&œ•ªc?"c¼O¢µÆ@©]RÉj@¨õÄ¢²qç?r#0µÂQ?B¢îOŒ¢?ë˜wDönÓ?GÐxº@Ÿf„럳d@Ù@­ÿŸ¾vÈ´@­ÿŸ¾vÈ´@­ÿŸ¾vÈ´@­ÿŸ|í‘h@­ÿŸ¾vÈ´@­ÿ uöý!@­ÿŸ¾vÈ´@­ÿ ªdÂù@­ÿŸ¾vÈ´@­ÿž¸Që…@­ÿŸ¾vÈ´@­ÿŸö”F@§Ê§ï²@§Êffff@§Ê§ï²@§Ê€IR@§Ê§ï²@§Êâ‚@¸@§Ê§ï²@§ÊÏAò@§Ê§ï²@§Ê$Ý/@§Ê§ï²@§ÊæšÓ@5rÃÉîËû@5qò×s@13S÷ÎÙ@13t¼j~ú@0]V”@0]!ÿ.Hè@/̲•éá±@/ÍjOw@/̲•éá±@/ÍBÃÉîÌ@/̲•éá±@/Ì篷é?|¬Çëý ?ß‹’bÏ?‘O‚%c?Œ ßõIyû?‘ ·èf?ý‰w'¬?|öOÿÝ?’,ö´´Ï#?ÀpMºÅ?6) }’ë?‘Ú‚ýc¯?ÐnçK/?ƒÚ@êA²?ŒÖ -ÄȲ?‚Ì ÝŽ‚8?ƒ¦$H?†©b/bJö?ˆk! ¨l@@@@@&@,?ð?ð?ð?ð?ð?ð¿gÀ?È4?à?)Y9{xŠ«?£ÞR–@­ÿŸžËü@§Ê‘ßæ?I0„þC³?6ó‡’…È7?¡*ÑÖžRµ?zòË1èÝZ@Ÿfß+¯¤/@Ú@§®J=p£×@§®KC•@§®J=p£×@§®EÖ8†Y@§®J=p£×@§®IùrG@§®J=p£×@§®Hð@§®J=p£×@§®He”¯O@§®J=p£×@§®C¼ÓZ†@ª>1&éy@ª>´9X@ª>1&éy@ª> Çy¦´@ª>1&éy@ª>:û~‘@ª>1&éy@ª> Òñ©ü@ª>1&éy@ª>Xâ@ª>1&éy@ª>½<6@4½:’£@4¼ú¬Ùè>@2…?|í‘h@2„mÅÖ8†@1éÛ"Ðå`@1çæšÔ,@1…œàu÷@1.Hè§@1…œàu÷@1~ùÛ"Ðæ@1…œàu÷@1~ŠqÞi®?‚á²Olºü?“XMHñëœ?‘e -!ßC?F‘q/b?•bJÖµæÿ?•ï¢Ò®F?}Ñ¿ž,?“oÆ †ä? Dñ£P?‘M –=?•ò±É*³¯?šèkî?‚|׿pY?þxÖ?„+£QKù?ƒ­=aÊw%?‡”_Õ­çW?‡<û¡71@@@@@*@*?ð?ð?ð?ð?ð?ð¿Sýóë ?e8s³B?3ûÜf:ÒD?EQÛEÙ¾b@§®HѦSo@ª> þÏ?R¿'JšÀÆ?dƒLzÅ{?ªT§(ïŸ?ÍAå‰(à@Ÿf à‹ø@Û@«&·KƧð@«&·Oß;@«&·KƧð@«&¶hˆÚò@«&·KƧð@«&±Îd½H@«&·KƧð@«&¥Çi2­@«&·KƧð@«&¤WøP@«&·KƧð@«& ¼Òõ@›r["Ðå`@›r[v³»ƒ@›r["Ðå`@›r[æ\_?@›r["Ðå`@›rg@EB@›r["Ðå`@›ro¡*µÄ@›r["Ðå`@›rYUHaæ@›r["Ðå`@›raþß¶v@5rÃÉîËû@5rÃÉîËû@3.5?|í‘@3*d‡&@2A‰7KÇ@2Š^û¹ùø@2”mÅÖ8†@2„9¨f|Z@2”mÅÖ8†@2…Ø®P*@2”mÅÖ8†@2…ä#=ŽÐ?}õ¬#„­?Ä…"Ð$§?”TÖ—©g?˜SŠá¼Ïd?“ã ’Æüò?˜OIf½^ ?~Ov_Ø­«?’AödûÇ?’>)Skáh?“QX{Q=?’Ö¢GcÙ?”›RÑ¥„J?‚±T¶éA?ŽT?ïö¤?ƒŽ¢5a›&?„5d|ÍÍ ?Š´ýÚ[“®?Ž5# ÉVë@@"@&@(@0@1?ð?ð?ð?ð?ð?ð¿t>«6z@4ÇsüPH@2’ Iº^5@2’ÞÑ·@2€å`A‰7@2„¼¤@1úÔ,<ží@1ýquŽ"@1úÔ,<ží@1ûÀ6âë@1úÔ,<ží@1ûŸU›=?|¬Çëý ?¥nÇx?)?’´ýBI{?‘ÔÌ’h?“´6=‹á{?“‡SË{d—?|¬Çëý ?’Òc§—Ûí?’°æfÅM“?“™*êÅ*?’pP‡È»?“ 3—·²W?‚íWçé„?Ž*JŠË?„ËD(ºp?ƒ­=aÊw%?‡ø¢:›¸1?ˆëÅoë@@@@@,@,?ð?ð?ð?ð?ð?ð¿œïÀ?Âk¾€?*Ì­û»Ä?*æÍ4)@«Çö¬þ@ªR£b5?JP3º:E'?:9¬ú†?ŸM*-{\?~œSÊ^ÏJ@Ÿe×Û’/@Ý@§™™™™š@§™Û"Ðå@§™™™™š@§™™™™š@§™™™™š@§™"Ðå`@§™™™™š@§™…‡“Þ@§™™™™š@§™Çâ‚A@§™™™™š@§™ -à@¦q^¸Që…@¦q^¸Që…@¦q^¸Që…@¦q]Vlô@¦q^¸Që…@¦q^š@¦q^¸Që…@¦q^ÒˆÎp@¦q^¸Që…@¦q_oÒó@¦q^¸Që…@¦q_ò䎊@1µS&Á¾@1µS&Á¾@0®5?|í‘@0®ß¤?åÉ@0 "Ðå`B@0 jçÕfÏ@/£¼ÓZ…ˆ@/¢ø7´¢4@/£¼ÓZ…ˆ@/¢œwškP@/£¼ÓZ…ˆ@/£Š Þ?É_\p)Ï?õ¹Ëh?‘,fŸCô6?Œ‚èõЊ?‘EÉ@Ú?æöæ×t?ÐbMçê_x?’&u÷E»@?£½:…?9ÍÇ~FÀ?‘!U?Ð{Ò?¦QÎð\ã?€bMÕky?ŒÐ¤Âÿê?ƒ<Õp?ƒ†+ Å?†Óß -tõ?‡?®\Âä@@@@@,@,?ð?ð?ð?ð?ð?ð¿Kà7=P??‘àÖÀ?.^AÞdÕî?*/uf§@§™p“1@¦q_X3?==t4W„¹?D|'Ý¡ú?t(+‘ÙØû?°éë@Ÿs¸ä@Þ@¬.¥ãSø@¬.|í‘h@¬.¥ãSø@¬.7´¢4@¬.¥ãSø@¬.!-w@¬.¥ãSø@¬. ûçlŠ@¬.¥ãSø@¬.–»˜È@¬.¥ãSø@¬.v_Ø®@¡¥ŒÌÌÌÍ@¡¥‹Æ§ïŸ@¡¥ŒÌÌÌÍ@¡¥Œç¯¹@¡¥ŒÌÌÌÍ@¡¥V@¡¥ŒÌÌÌÍ@¡¥‹ Iº@¡¥ŒÌÌÌÍ@¡¥ŒÙè>B@¡¥ŒÌÌÌÍ@¡¥‹àÞÒ‰@6«µsê´@6«xFÜ^@1î5?|í‘@1ëC•%@1t“t¼j@1qN;Í5¨@1O „M@1 ÓÃa@@1O „M@1 ¹Œ~($@1O „M@1 ÌÌÌÌÍ?гá‡}?‘+ùÔ!½Š?’ -N»A3?[d?—÷‘Ý<þ­?•ÍÂ^mÄ*?}Ñ¿ž,?“[¡ŽuœÙ?’Qÿc -?‘.“¥?“'ü#šgâ?’]Ðgµ0 -? aBg`­?iT£C~t?„›‹ÖO?ƒv_.^?ˆk! ¨l?ŠÐ+`È“@@@@@,@*?ð?ð?ð?ð?ð?ð¿pEÛ? ~p@?`ÉÃ#¬EH?$ÿ£¾%Â'@¬.™è 7@¡¥‹Ügâ?Íç‰ æ?F9Ñká¹?úF}^•ã‚?”–Á#î@Ÿhe,äÜ@ß@ ðó¶E¡Ë@ ðó¶E¡Ë@ ðó¶E¡Ë@ ðõK-žÞ@ ðó¶E¡Ë@ ðô8… -@ ðó¶E¡Ë@ ðõðh.@ ðó¶E¡Ë@ ðóeâY@ ðó¶E¡Ë@ ðóg©}:@¦'ŠÀƒo@¦'ŠÀƒo@¦'ŠÀƒo@¦'‰½£Õ@¦'ŠÀƒo@¦'‰³Ð|…@¦'ŠÀƒo@¦'ˆ`ÿ–@¦'ŠÀƒo@¦'‡HIôß@¦'ŠÀƒo@¦'‡M1@0°4mÅÖ8@0¯ò䎊r@+ -~ùÛ"Ð@+Ѹƒ@)íOß;dZ@)é_ ¯@(ÿåÉä@(ûšR¤@(ÿåÉä@(ûÀ6âë@(ÿåÉä@(ü¿Ké;?É^ž6õP?¾ èÑÐ{?‘*=³C?‹¶›£òq^?ç)¸Ðïë?¸³eaÙ?ÐbMÝn½?’G˜ie?€m sMµ?0Ú;®yŠ?‘¤§‘éV?¦xЧqÑ?€iLC-É?Œ¬5NW?‚o«E—P~?‚ùÉÃk†?†ÏÅ1C?†™Ì¹UÖP@@@@@2@3?ð?ð?ð?ð?ð?ð¿P ò!S¿;Ñ_Ø?5¹s¯ •?ÝŠ®ûÎÆ@ ðôFÒeY@¦'‡‡{ÆÙ?Dàìg’˃?%§[gÌ.?…mŒ~"b?D-œ’MÅý@Ÿrÿ¤ —s@à@§ÄÂ\(ö@§ÄÂMÒñª@§ÄÂ\(ö@§ÄÒ:)Çz@§ÄÂ\(ö@§ÄÓê³g¡@§ÄÂ\(ö@§Ä䎊qÞ@§ÄÂ\(ö@§ÄÏÒòå@§ÄÂ\(ö@§ÄÙ0¾ ì@«ï A‰7L@«ïŸ¾vÈ´@«ï A‰7L@«ï¡ [À@«ï A‰7L@«ï¡TÉ…ï@«ï A‰7L@«ïž5?|í@«ï A‰7L@«ï–+jçÕ@«ï A‰7L@«ï˜âe+@5?–»˜È@5?ªÍžƒä@1óS÷ÎÙ@1ìPHð@1PA‰7KÇ@1GKƧïž@0𖻘Çã@0á-w1Å@0𖻘Çã@0ß|í‘hs@0𖻘Çã@0á–R½<6?1·†Æjñ?ž5JÜà ä?›õåzI#…?¡¼3Їàæ?¤j_(!ª³?¤ Yâ9>?|¬Çëý ?” Á lŸž?”ß<ö¥?˜8"–•„?£¦–Jn ? ª w³ -?ƒ´],m%@§ÄËD,ú@«ï¹/?€yO-—4½?Ye9 ‹¸q?öÈnWéÈ?²úþ‚_@Ÿa`JC®¥@á@§l¾ùÛ"Ñ@§l¾vÈ´9@§l¾ùÛ"Ñ@§lÊ @§l¾ùÛ"Ñ@§lº¹õY´@§l¾ùÛ"Ñ@§l¼ÓZ…ˆ@§l¾ùÛ"Ñ@§l¸üPH@§l¾ùÛ"Ñ@§lÇE8ï5@«ä0 Ä›¦@«ä0å`Aˆ@«ä0 Ä›¦@«ä2£S'@«ä0 Ä›¦@«ä8­«ŸU@«ä0 Ä›¦@«ä7škP±@«ä0 Ä›¦@«ä.Ëû´@«ä0 Ä›¦@«ä0Hð@7¹Œ~($@7¿HË“@2Ê^5?|í@2ÕS&Á½@297KƧð@2;6z—@1=cˆe”°@1D‡ü¹#£@1=cˆe”°@1B&€IR@1=cˆe”°@16fffff?ˆÿÀ)T¿Æ?”SyÑûê?‘K]Ã4?’\GyÆ©?‘¯GàBm?˜VûAÑž?1·†Æjñ?š8º¶{:? Dñ£P?›|zk?”¿³+L5?•[ÒÛ6¢?˜W|¶DC?êzŽx?’®Üq“¤?ƒžÂâk,?ˆ -¿„r©Ý?’Ì÷y\ÛÎ@@@@@,@,?ð?ð?ð?ð?ð?ð? \@;`¿ô‹€?WýnÌ¡ ¬?F¿€«Ô@§l½ø­ä@«ä0ò·˜?ví$óÄW?hg%_H1m?íqñÞFP»?Ò]l'—-‹@ŸgÀÿJ@â@ªYÎV“@ªYÏ\(õÄ@ªYÎV“@ªYÑÂê¡3@ªYÎV“@ªYÒÿljÈ@ªYÎV“@ªYÚ„Làˆ@ªYÎV“@ªYÕ½©\@ªYÎV“@ªYÕ¡ °@”Ù·KƧð@”Ù³3333@”Ù·KƧð@”Ùµ•þÚf@”Ù·KƧð@”Ùµ«Ž{>@”Ù·KƧð@”Ù¾“@‹`@”Ù·KƧð@”ÙµÝéQÀ@”Ù·KƧð@”Ùº,ÿ%L@3ºqÞi­C@3´ƒs9?Þ@1žÙ‡+@1ä<.Ì?@1A‰7KÇ@1Œ¥U@1mÅÖ8†@1V¾u`@1mÅÖ8†@1]lñ¯:@1mÅÖ8†@1@ŽˆÁ?}@T˜ÁÎ¥?ã˜Pnx™?‘Kg(^Õ…?Œ¦¡«@5òÃÉîËû@5ó× -=p¤@2áhr° Ä@2àªdÂø8@2q‰7Kƨ@2pù k¹Œ@20–»˜Çã@2.Ov_Ø®@20–»˜Çã@20¸ºÇ@20–»˜Çã@2/iDg8?€‚ñêã ?‘" Á°–•?•Œ–?ö€(tUo?“ϲšI?’j•×›b?|öOÿÝ?“RƒwS5?”Ï3½fvI?‘W×ý°A?•=ƒ™íx?“½w¢8…?ƒÚ@êA²?ŽõÕJ?…íŽ(þÇ?ƒ­=aÊw%?“áêqú ?‰G±±ZÎ@@@@@,@&?ð?ð?ð?ð?ð?ð?J;#Âð¿[ ¢@?SA%ûvÔ? —ïÌØ@@¯€Z‡†ø˜@¢:±J)×?s/‡=Ü?@• 0šÃ"?ïx€I&v?†Ø‰¹7²#@Ÿfg -´!Ï@æ@­ü A‰7L@­ü ƒn™@­ü A‰7L@­ü!–R½<@­ü A‰7L@­ü!TÉ…ð@­ü A‰7L@­ü"h Ô•@­ü A‰7L@­üÒˆÎo@­ü A‰7L@­üö”G@¤™¥ãS÷Ï@¤™¥ãS÷Ï@¤™¥ãS÷Ï@¤™¦ -¦L0@¤™¥ãS÷Ï@¤™¥”¯O@¤™¥ãS÷Ï@¤™¦L/ƒ{@¤™¥ãS÷Ï@¤™¦YJôñ@¤™¥ãS÷Ï@¤™¥ðoiE@0­¥œàv@0­žƒä%¯@*½²-V@*½—ö+jç@*/ß;dZ@*/ß;dZ@)Aò×t@)4Ö¡aæ@)Aò×t@)Aò×t@)Aò×t@)'»/ìW?É^³Dw'?Ï[äe(@@@@@*@,?ð?ð?ð?ð?ð?ð¿Y„–Œ¿"„Òà?Bt˜÷Q/à?² lrÇ@­ü U @¤™¦5:k?Q¾÷“‡àÊ?&<ÕX u?žçHR_ ?E±§=%@ŸsZW"@ç@§\±&éxÕ@§\°å`A‰@§\±&éxÕÁ.„€@§\±&éxÕÁ.„€@§\±&éxÕÁ.„€@§\±&éxÕÁ.„€@§\±&éxÕÁ.„€@¨Ý["Ðå`@¨Ý`ƒn˜@¨Ý["Ðå`Á.„€@¨Ý["Ðå`Á.„€@¨Ý["Ðå`Á.„€@¨Ý["Ðå`Á.„€@¨Ý["Ðå`Á.„€@7ý:’£@7ûƧï²@3T›¥ãSøÁ.„M‰ûçm@2¾V“uÁ.„QnÙ‡@2s&Á½¥Á.„NÜC,¥@2s&Á½¥Á.„NÜC,¥@2s&Á½¥Á.„NÜC,¥?š•§q!U@8#˜@8¾:@8 >+@8Iç@8Ù?žˆ2}@8Î÷@8i§@8Å@8S@8û—?œó}?ð@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøè@¯f‰º^5?Á.„€@¯f‰º^5?@¯fHÛ‹¬r@¯f‰º^5?@¯f-à q@¯f‰º^5?@¯fXl"h -@¯f‰º^5?@¯f=ŠÚ¹õ@¯f‰º^5?@¯fA×Ûô‡@ Ç‡+Á.„€@ Ç‡+@ Ça [À@ Ç‡+@ Çbœwšk@ Ç‡+@ ÇHÎp:û@ Ç‡+@ ÇB Iº^@ Ç‡+@ ÇHŒç±@9 ØDЩÁ.„>¤µÜÆ@3¦‡+ J@3}!ÿ.Hè@3“t¼j@2Ó¯·éù@1õµsê³h@1Ë"Ðå`B@1õµsê³h@1ÊŸ¾vÈ´@1õµsê³h@1Ǔݗö,@8J¨?%¼ÇÆÃ±?³%bŽIßö?§ƒü¾^Zè?§ö̺Œ ‘?©FÔbú%i@8J¨?œîµƒ”?±£çí-Ò?©ëü6Ûù?¢ºã‘~]¦?ªÐ~ªèNO@8p÷?—E!Üý·'?‘c‚ׯ?'dÂã—…?y½¼ŸŽ?–Mí\{WÐ@@@@*@&?ð?ð?ð?ð?ðøøøøøøøøøøøøé@¢è<í‘hs@¢è=—Q%Ö@¢è<í‘hs@¢èRFÖä]@¢è<í‘hs@¢èh‰…ªe@¢è<í‘hs@¢èX6}-7@¢è<í‘hs@¢è;+3]@¢è<í‘hs@¢èD Bè@•<ì‹C•@•<öÈ´9Y@•<ì‹C•@•<Ü©YœÍ@•<ì‹C•@•<·ÑÏ6@•<ì‹C•@•<¯ëfµU@•<ì‹C•@•<{yç($@•<ì‹C•@•<Âçy‡@55S&Á¾@53B¡±@2¦‡+ J@2±ÅÁzv@2lj~ùÛ#@2U›%Ë@2._oÒ @2®ôÁ=Û@2._oÒ @2-JÕAþ`@2._oÒ @2/"X 6?€Z=ú‚¡?—‚V3ò?¥Ä\ÔKÞú?Œ &ŽËÕ~?œÙè¯ ?£Jü.h‹7?|Ñb×¶@?—Œ6x©?¡íO‰Ú¬?Þünž?¦×›—÷¯? ¿ž›öþ?…9Ž2j¸Ó?—2Yö&µÙ?¤»)òüH?£Z¬QÕ§?¨ý ìãª?¦WŒçµ¾@@,@(@@;@:?ð?ð?ð?ð?ð?ð?rëp•C¿„›u­@?pð¼DWvÏ?kÖX²K:@¢èFð¥·%@•<Óšÿ„?‹hày=ç8?‡°FzN@îÌø ú@ËŸ…’@Ÿbû”_¥ç@ê@©ËA$Ý/Á.„€@©ËA$Ý/@©Ë'>ýìñ@©ËA$Ý/@©Ë¤¶ïÛ@©ËA$Ý/@©Ë›H·Œ@©ËA$Ý/@©ËE†Ú @©ËA$Ý/@©Ë¾@”áG®{Á.„€@”áG®{@”è~F@”áG®{@”{OÎ@@”áG®{@”[ï2ò @”áG®{@”þ¶«2W@”áG®{@”u¤µÜÆ@4é‡+ @4©†âÕ­@46§ï²-@3ýAŠ«Ô@3uµsê³h@3>RÛÖbo@3uµsê³h@3b¼Pܘâ@3uµsê³h@3•Æ\»¸t@8J¨?¢h/E?¿ý™@Å -?¼[ü9Å??ž¼mÄC?Ÿýv•”Cá@8J¨?«p…t4¹?½H$/걺?¼¯†Rf?ŸÞ19:ñ?žV›N4LM@8p÷?”åè¿ÐtÐ?—¡“I&a?Âò÷2°?‘zÎö'?Ù¦SqUm@$@,@*@7@5?ð?ð?ð?ð?ðøøøøøøøøøøøøë@©LÚ¬1@©LÓÖ¹Â@©LÚ¬1@©L‰1¡½Ì@©LÚ¬1@©L 2ܶ@©LÚ¬1@©LÚÓœg{@©LÚ¬1@©LÕÐ¥Þ¢@©LÚ¬1@©LÑØ‹Îš@˜çQë…¸@˜çX‰_ 8@˜çQë…¸@˜çp¤c›Ú@˜çQë…¸@˜æàÏVÂ@˜çQë…¸@˜çý]œ~@˜çQë…¸@˜æà¼ß"Þ@˜çQë…¸@˜æÑ•šÞ«@8£g ù l@8ŽÈ¯€Ý…@4#÷ÎÙ‡@4(oä8ÏÐ@3´“t¼j@3ÁOì1 @2¦YJôðØ@2°‚/Ìþ@2¦YJôðØ@2¦~sÿŠ@2¦YJôðØ@2¦Õ«ýà?²£ád_) ?šBÄ|3?¥LÆWôÈ ?”–ù0¹? N~ãb?›7 -ü®8¸?}x—™¥·?|¬Æ Væ?Jå9ÞB»?–tT|Ø2?¦ê!s’6?–Í®E41?‘¸^ªý­?|¬h2:“?’|4c¦ì+?‘Ó!*Í?VÇEÒ,–?•îõ›Ï=?‘—^ _?‚¾<æËS?Œ°£ÂŠ?‚›M$:£»?ƒáîLÀ?ˆª„Ée_:?‰jÕY%Â@@"@$@*@7@0?ð?ð?ð?ð?ð?ð?cžJ¿aâê+?Y›¡…öÏŒ?+wƒ+è@ ŸY–M9!@¢.xi„“?za«4ÙÿÎ?Kùd†~9ä?û;ÿ¤øö? ]'ý=@ŸeSžË¸@ï@¬_X“t¼j@¬_WKƧð@¬_X“t¼jÁ.„€@¬_X“t¼jÁ.„€@¬_X“t¼jÁ.„€@¬_X“t¼jÁ.„€@¬_X“t¼jÁ.„€@¯pšŸ¾vÉ@¯p™Û"Ðä@¯pšŸ¾vÉÁ.„€@¯pšŸ¾vÉÁ.„€@¯pšŸ¾vÉÁ.„€@¯pšŸ¾vÉÁ.„€@¯pšŸ¾vÉÁ.„€@5=:’£@5; Iº^@1 í‘hr°Á.„M‰ûçm@0Ct¼j~úÁ.„QnÙ‡@0 ¿±[W?Á.„NÜC,¥@0 ¿±[W?Á.„NÜC,¥@0 ¿±[W?Á.„NÜC,¥?1·†Æjñ@8#˜@8¾:@8 >+@8Iç@8Ù?1·†Æjñ@8Î÷@8i§@8Å@8S@8û—?ƒmÕ+&¬‰@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøð@­ò° Äœ@­áG®@­ò° Äœ@­ì²æ@­ò° Äœ@­öйµ@­ò° Äœ@­Þ 5Oi@­ò° Äœ@­èmÆíš@­ò° Äœ@­â‰(æ@—Ô>vÈ´9@—ÔMOß;d@—Ô>vÈ´9@—ÔvÈ´9@—Ô$<c@—Ô>vÈ´9@—Ô6i-Ô„@—Ô>vÈ´9@—Ô8hq@—Ô>vÈ´9@—Ô!Î -_g@8ºqÞi­C@8±TÉ…ðp@4Ò Iº^5@4鞦½:õ@4)Û"Ðå`@4EØÞ½@3‡ ù kº@3›ü‘ÛU@3‡ ù kº@3œ?)ðL¼@3‡ ù kº@3—¥YñÌU?æ ç«Z–?”Ç-$ž‰?•° J0Á?µ TKF?œ‰j6‹ª?›Y1×ðz?æ ç«Z–?˜ñÎXw8Ç?•4 ´m?‘16yÄ?œMQ¡eá¥?–DtÛ±T?æ¡‚á¾A?†jÊ&?†˜M­Õ?“ÀˆoÁt?”1¬3C1Ú?›°{0+@@(@ @ @:@8?ð?ð?ð?ð?ð?ð?gotlg¿p{%6·à?bÌ–Õ?]Ê G݉@­á£%|å@—Ô0U#&0?qñúlÓkj?m­R¥}?ÐwÆàBÑÕ?Ç‘½*¯Ê@Ÿr)VZƒ@ñ@¤Ìú^5?}@¤ÌúáG®@¤Ìú^5?}@¤Ìúû~‘@¤Ìú^5?}@¤Ìû²þÅm@¤Ìú^5?}@¤ÌúáG®@¤Ìú^5?}@¤Ìùe+ÓÃ@¤Ìú^5?}@¤ÌùŒ~($@ª?|í‘h@ª?¾vÈ´@ª?|í‘h@ª?|í‘h@ª?|í‘h@ª?|í‘h@ª?|í‘h@ª?HË’@ª?|í‘h@ª?b¶®}@ª?|í‘h@ª?.Hè§@3ÞHè§æ@3ÞHè§æ@00Ä›¥ãT@00ÿ—$tT@0$¼j~ùÛ@0$Âø7´¢@/åÉä@/Š Þ@/åÉä@/€ qu@/åÉä@/€6âë?}Ñ¿ž,?Òç{íj?‘,fŸCô6?ŒArUã@?‘ ·èf?ø·-/ge?|öOÿÝ?’NÛˆV(?‘N÷J’?Y‡…—Ø?ñ«Ý„ Õ?›ªU3Îp?‚q6tNø6?Œ».êxóÚ?‚Ö˜>µDá?‚ìxqC?†¯Mž684?†©b/bJö@@@@@*@,?ð?ð?ð?ð?ð?ð¿1?æ-п±T À?ìÄå¬>ø’ʃk@¤Ìú^åP@ª?|d{?>½P´¢Qð?üÂöˆ›6?ˆá(”æ#r??åþ­Uä@Ÿg -@ò@¢N×i[@?BÐ3 [@¤?)«§lINš@¢N< ŽÐò@¢f²fWØÑ?^ëö+H¬º?MœÝOY8ß?¶ Ç)™p?œOÞhÁå@Ÿkóí6Ž@ó@£JÌÌÌÌÍ@£JÐbMÒò@£JÌÌÌÌÍ@£JÈ´9X@£JÌÌÌÌÍ@£JÎ!–R½@£JÌÌÌÌÍ@£JË'»/@£JÌÌÌÌÍ@£J˹Œ~(@£JÌÌÌÌÍ@£JËÓÃa@©ŸÁ‰7KÇ@©Ÿ¯ß;dZ@©ŸÁ‰7KÇ@©ŸÁ$Ý/@©ŸÁ‰7KÇ@©ŸÁ£n.²@©ŸÁ‰7KÇ@©ŸÆ1ø ‘@©ŸÁ‰7KÇ@©Ÿºû~‘@©ŸÁ‰7KÇ@©ŸÄ“t¼@8^Hè§æ@8Xšu%F@3xr° Äœ@3|L˜_@2‹"Ðå`B@2\(õÂ@2ý!ÿ.I@2 k¹Œ~@2ý!ÿ.I@2Ov`@2ý!ÿ.I@2RT`ªe?“Æ×q„nï?dYûë„{?’‹»Ùï§?‘c[=î#©?“êôÉøX?‘Û.Yrî?„F/·ÿP5?’ ,øÕC©?‘ú-8ûõö?•Xî¨}iQ?•nW*Ø„?’?;Áƒè?…/‡ÙX·²?‘žˆ2}?ˆAᆽÃí?‘l_zU’Ý?Ž .0åv?^^ω•@@@@@(@$?ð?ð?ð?ð?ð?ð¿M¬˜ `?p´¡Z??’‰Å3l?Xþ±%t2Z@£JÌÍ^:Ä@©Ÿ»éhçÜ?\§ÖJ¬?|&Þ))ÿõ?±ÝFÙöÇ?õ]Oò­@Ÿk\Ù¿ªº@ô@¡†ùXbN@¡†ùXbN@¡†ùXbN@¡†ùb¶®@¡†ùXbN@¡†úCþ\’@¡†ùXbN@¡†úxl"h@¡†ùXbN@¡†õÂ\)@¡†ùXbN@¡†õ*™1@¬[¶E¡ÊÁ@¬[¶E¡ÊÁ@¬[¶E¡ÊÁ@¬[´ýó¶F@¬[¶E¡ÊÁ@¬[µÂ\)@¬[¶E¡ÊÁ@¬[µ?|í‘@¬[¶E¡ÊÁ@¬[·Xâ@¬[¶E¡ÊÁ@¬[´¢3œ@4” xFÜ@4”êJŒ@1›¥ãSø@1Fs×Ü@0"-V@0!œàuöý@0._oÒ @0,ÌÌÌÌÍ@0._oÒ @0+ÓÃaA@0._oÒ @0+Ƨï³?}Ñ¿ž,?Ï[äe_«9º^?-/3ÍrD­@¡†ø'q½J@¬[µæuo?^.¬Ws;Ÿ?MÎ8ët?Çúÿ^ªGÒ?¦ÜoçБD@ŸgF(˜n@õ@¯ î—Oß@¯ õÂ\)@¯ î—Oß@¯ îŸâ¾@¯ î—Oß@¯ ðA‰7M@¯ î—Oß@¯ ¾Þ@¯ î—Oß@¯ îþý‡…@¯ î—Oß@¯ ï­Fæ@–JšŸ¾vÉ@–J˜bMÓ@–JšŸ¾vÉ@–J™²ªª@–JšŸ¾vÉ@–JœZÖ\6@–JšŸ¾vÉ@–J–¤¨Ç@–JšŸ¾vÉ@–J—[ò]D@–JšŸ¾vÉ@–J˜F“5@7 ØDЩ@7ùŽsnN@2¸r° Äœ@2¹4³•ë@1þV“u@1þ¡rÎêÛ@1‘Þi­BÄ@1’b˧2à@1‘Þi­BÄ@1“gâê@1‘Þi­BÄ@1“8ñ3ž>?€‘gQÚÃ?ûœûþSÁ?‘MV4½*-?¤xŒ|‰?‘4zùu'¦W½ù›?ÛŒqn‡j@¯ ñ‘%Íi@–J—·ç§ï?^Î -ij?9P-m ˜M?ÅÇÔ{I,?y®1ÚW@"@ŸhGL œÙ@ö@Ÿ`¸Që…@Ÿ`¸¥Î[B@Ÿ`¸Që…@Ÿ`º¯Õês@Ÿ`¸Që…@Ÿ`»帶@Ÿ`¸Që…@Ÿ`¼vZ\@Ÿ`¸Që…@Ÿ`µW&ŠÓ@Ÿ`¸Që…@Ÿ`µŒGà¨@£¦4¼j~ú@£¦4¼j~ú@£¦4¼j~ú@£¦3¶â{@£¦4¼j~ú@£¦4‡E{@£¦4¼j~ú@£¦4¼n8[@£¦4¼j~ú@£¦4azá)@£¦4¼j~ú@£¦4wÉæâ@3 ]cˆe”@3 ñ >(@/ÂÐå`A‰@/ÂGE8ï4@- ƒn—@- G+™àÅ@-Ǔݗö,@-Ç&%Sž@-Ǔݗö,@-Ç%ÃÞç‚@-Ǔݗö,@-ÇO¨ ?~Ov_Ø­«?Ù:¶’?‘*£[Êúu¯÷Æ¥ó@Ÿ`¸I?Ob@£¦45+°?Y2 íƒÞ¯œ¤ ?7x\Á0?4†pkÈ>÷.W7ì1)@©4jÒ{=@®C@¸?T€k­?ÚáFά¾?³?LÃ×af?8ÓZ矣@Ÿh\†ê¯ö@ù@®œ—Oß;@®œŠ~ùÛ$@®œ—Oß;@®œž\‘ÑM@®œ—Oß;@®œ¶¡aä÷@®œ—Oß;@®œ±Ä2ÊX@®œ—Oß;@®œ±A [À@®œ—Oß;@®œÔ¢3œ@©·ÎÙ‡@©°bMÒò@©·ÎÙ‡@©©ûçl‹@©·ÎÙ‡@©U¨Xy>@©·ÎÙ‡@©xl"h -@©·ÎÙ‡@©Ë’:*@©·ÎÙ‡@©q©ûçm@8*0U2b@8 ú¬Ùè>@3©‡+ @3¤!-w2@3y7KƧð@3kÚQÎ@2…œàu÷@2~vÈ´9X@2…œàu÷@2zu%F -@2…œàu÷@2l‘ÑN;Î?˜ž^ƒÿ*ˆ?“vuØcʲ?«/b²›?¨˜-£ÔiÉ?ŸrA:/™?¤w€ùŸb@?1·†Æjñ?’HGªÂÛ^?ÁwKëvþ‹?¦-ÒM—?£ƒwž{_?¾n%м!?…àú^À?ŽÎ"”`ù…?•@K/Ù{?…®×__C?‘éXñ„–†?Ÿ/Òѯ¢@@@@@&@*?ð?ð?ð?ð?ð?ð?‰íäS‘€¿A}ã@?e¬àÕFŽ?fÛ-Ï3@®œ¢RÁ@©”ªHHü?† -4~:Ì?„Éí¤²?ì×:÷¤?êzy ô°@Ÿdÿ‚–\@ú@®|n—P@®|n—P@®|n—P@®|t¼j@®|n—P@®|÷ÎÙ@®|n—P@®|Ãa@@®|n—P@®|&éxÕ@®|n—P@®|&éxÕ@ŸÆ33333@ŸÆ3¶E¡Ì@ŸÆ33333@ŸÆ2×s@ŸÆ33333@ŸÆ2{²þÅ@ŸÆ33333@ŸÆ2-V@ŸÆ33333@ŸÆ2×s@ŸÆ33333@ŸÆ2a|Ú@.¨ð¸@.¨ð¸@,¤“t¼j@,£ñA [À@,wOß;d@,w§†Â&@+p‰ 'RU@+p–»˜Çã@+p‰ 'RU@+poiDg9@+p‰ 'RU@+p|„µÜÇ?É^žQ5P‚?Ï[äe(?†–f_ÔŠŠ@@@@@,@*?ð?ð?ð?ð?ð?ð¿S€þD?¾’@?9d¥«»Xc?1àÙ•éB@®|4ƒçš@ŸÆ24æR?HebÜ‘¿?î2K Ä? ×V%4T?% `Ú3j@Ÿs ;*S@û@¥pÎV“@¥pÎzáI@¥pÎV“@¥pÌIº^4@¥pÎV“@¥pË Iº@¥pÎV“@¥pÊ=p£×@¥pÎV“@¥p¼j~ùÚ@¥pÎV“@¥p®Ëûµ@¥sò-V@¥sò-V@¥sò-V@¥sò×sü@¥sò-V@¥söâëC@¥sò-V@¥sô,<žî@¥sò-V@¥sðØDÐ@¥sò-V@¥sòa|Ù@4[¹Œ~($@4[]ÌcñA@1Ìí‘hr°@1Ì£n.²@1çKƧïž@1å '»0@1(è§æ›@1'Ûô‡ü¹@1(è§æ›@1b¶®}W@1(è§æ›@1<64?|öOÿÝ?‡åƒêM?“1‘´¹V?ŽwX/8?—.‰†5¸€?°‚ªaÚõ1?}Ñ¿ž,?’Dê™.x?‘c–…•#$?‘ݤ`Ìh?™=M÷‹¸?›7Î&Tß+?‚yî8Á#?îŠõ ?‰6~„æAÕ?†Á{0Ÿà®?™ þg¿?—¤“<†›O@@@@@ @,?ð?ð?ð?ð?ð?ð¿kC&p?ÌaÆ ?VÚ“kó­™?64‚{e{@¥pÉ †}@¥sònœn'?r/Ñߢ?SL»ø›P?è»Hɾ¥.?¬™½ùY!@Ÿb´ýôÉ@ü@« Ƨïž@«9Xb@« Ƨïž@«Ä2ÊX@« Ƨïž@«)xÔýô@« Ƨïž@«Hð@« Ƨïž@«y¦µ @« Ƨïž@« "h Õ@®Îu?|í‘@®Îqhr° @®Îu?|í‘@®ÎaG®{@®Îu?|í‘@®ÎxQë…@®Îu?|í‘@®Îusê³h@®Îu?|í‘@®ÎhÁTÉ…@®Îu?|í‘@®Î±[W>@8m¥œàv@8h Ô•*@5û Iº^@5òe+ÓÃ@5{Ƨï²@5~cŠ @4hè§æ›@4kC,¥{@4hè§æ›@4h_ö”G@4hè§æ›@4k/ìVÕÐ?˜ž^ƒÿ*ˆ?›äÄö/>?ñAaú[?¡gÙµ¡V?™¼wX¬?žc¬+:X£?ª[Xxöp?š˜‡þCî·?”ÿŒÙÿIí?”J6bº? á>G]!?žƒ2¶Í¾?¤ GÍ0µò?²¦Î^Î?Ÿ•"x*=k?Ÿ¿8ÖÌk4?£9jé jh?“ )D)@@@@@@?ð?ð?ð?ð?ð?ð¿bšàr"?^òø9ž?O{Jï0Šà?n¥p°ëta@« -QÅI@®Îtå–i?nàKÁ?ƒ­Ó< t?Âæ{ÃIìÀ?ítjÈ%up@ŸnœE¿%@ý@¦‘ Iº^@¦‘ Iº^@¦‘ Iº^@¦‘Ê @¦‘ Iº^@¦‘Ã9Àëî@¦‘ Iº^@¦‘Áò×s@¦‘ Iº^@¦‘Á–R½<@¦‘ Iº^@¦‘À4mÅÖ@­ò:^5?}@­ò:^5?}@­ò:^5?}@­ò;quŽ"@­ò:^5?}@­ò;"Ðå`@­ò:^5?}@­ò9™™™š@­ò:^5?}@­ò:kP°ñ@­ò:^5?}@­ò8*™0¾@3ÉÎ_oÒ@3ÉÇy¦µ @0|í‘hr@0Aò×r@/´ýó¶E¢@/´¢3œÀ@/…oi@/„µÜÆ?@/…oi@/„ohÜ@/…oi@/‚&€IR?}Ñ¿ž,?/³)sšÌ?‘.Ò®ó_ ?‹¹GüÞõ?‘K!UéÄŒ?ïˆ6ÏJ?|¬Çëý ?’[ KÄ0R?‘N÷J’?9ÍÇ~FÀ?øóéM Ÿ?‘Qïʾ?‚Ÿ JŠÅ?ŒÐ¤Âÿê?‚Ÿ JŠÆ?ƒ*|š\/´?†£îž«î?‡ã ËÄž@@@@@,@*?ð?ð?ð?ð?ð?ð¿0 kïh¿27"? 劓9`«?'?”"éã/åY@@@@@,@&?ð?ð?ð?ð?ð?ð?aKéTø¿X„Ÿ˜8?I:âå²µZ?U D]td@¨GþÇ@ª¤·Ø .•?hôÙ‡?u.A´ Š?Ù3ŽE`Ä?ï9—ÏyO@ŸeèM-äç@@«hH1&éy@«h;çl‹E@«hH1&éy@«hE¼£n@«hH1&éy@«hHŒç°@«hH1&éy@«hHè§æ@«hH1&éy@«hG_oÒ@«hH1&éy@«hG“Ý—ö@§’n—P@§ŒIº^5@§’n—P@§ŽóMj@§’n—P@§:û~@§’n—P@§bMÒò@§’n—P@§‘ø .@§’n—P@§‘&éxÕ@6[¹Œ~($@6M¿HË’@2+ Iº@2§ï²-@0ö§ï²-@0öâëC-@0n_oÒ @0nÑ·Z@0n_oÒ @0n í(Œæ@0n_oÒ @0mæšÔ,=?¥Ìõ}êáþ?W[†?‘ùé éµ??Œݶ\ñr?‘héø†|?‘W_Ì?3ßa=„?’[ KÄ0R?‘,­æ& -\?>\‰å‘?‘x9ξÞO?oÌ‘'ýT?¸gE³=`?ŒïQ¼º“ã?‚ù…žÄ`x?ƒ ?ÿ½?†Óß -tõ?†µ°jÆÃ@@@@@,@&?ð?ð?ð?ð?ð?ð?L>RÔ?Qé.º?Vsì™®“e?3£”bÝ@«hGYä·@§U]S‹?kåõÔ9õ?RCJ\Ð|?ÑNÔŠ$»?£ï õ@Ÿom2ô(@@¯†âMÒñª@¯†ãn—@¯†âMÒñª@¯†âaÛ@¯†âMÒñª@¯†áT•b¦@¯†âMÒñª@¯†ã3ÄÐD@¯†âMÒñª@¯†á†ýT@¯†âMÒñª@¯†áÞi­B@—JQë…¸@—JRñ©ûç@—JQë…¸@—JS§¬»@—JQë…¸@—JS´ É«@—JQë…¸@—JQ Ʊ@—JQë…¸@—JNpç®@—JQë…¸@—JR´²é7@5|ÚQ@5LÑÃÈ@1°Ä›¥ãT@1°+9k=@11‰7Kƨ@11bˆ¾‘@0¦YJôðØ@0¦9KRØð@0¦YJôðØ@0¦Tã§§Ö@0¦YJôðØ@0¦u]M?|Ñb×¶@?ˆå;¬?‘(ã[0?‹ØÆ|€Ñ?‘'ÓI¤­'?磮Rã?|¬h2:“?’,9B?‡jz©®?nŸ„“í-?‘E¹=:ä?g©e\‰ª?ƒ™°oÁR?ŒÃ®“”‹!?‚ª}ö¥_Ø?ƒ9Ãdk?†Î ž 3?†¥š{Ó)@@&@$@(@<@6?ð?ð?ð?ð?ð?ð¿0¬ªP¿,Çx²˜?!Ñ<žhE?+¥Œz{ßµ@¯†â›Nȳ@—JQâžvP?A³ª/§¿w?L+ÒPäØ?ï|üå””?¤N'g@Ÿfåñïv÷@@®ü -Àƒo@®ü  Iº@®ü -Àƒo@®ü ¬q ²@®ü -Àƒo@®ü ‹C•€@®ü -Àƒo@®ü -çÕfÐ@®ü -Àƒo@®ü ûçl‹@®ü -Àƒo@®ü -ŒL˜@Ÿ¡‚ Iº^@Ÿ¡‚ Iº^@Ÿ¡‚ Iº^@Ÿ¡×Ûô‰@Ÿ¡‚ Iº^@Ÿ¡~Åm\ü@Ÿ¡‚ Iº^@Ÿ¡‚Zîc @Ÿ¡‚ Iº^@Ÿ¡‚&€I@Ÿ¡‚ Iº^@Ÿ¡½¥ž@3ãg ù l@3㜾ߤ@1°Ä›¥ãT@1±4êJŒ@1U`A‰7L@1U¼£n/@0«xFÜ^@0¬1&éy@0«xFÜ^@0«¹Œ~($@0«xFÜ^@0«Í5¨Xz?|öOÿÝ?Úþþ³?‘Š©Nà¶?ŒvHn&³?‘ñ•/m£{?‘/¹ß…?}Ñ¿ž,?’u¦ieõ–?‘Ña„>&?‘tÄdªE·?‘c3¸cÜ(?–’+¸¢d?‚yî8Á#?ŒïQ¼º“ã?‚ù…žÄ`x?ƒ*|š\/´?†ïRÉv‘Ñ?†Óß -tõ@@@@@,@,?ð?ð?ð?ð?ð?ð¿!zïíà¾áö5E?T™–™ß>üæÆi:Î@®ü -»¢ž@Ÿ¡‚ -LÚ?3‡Ð¹ý*‘?“›ãBb?sÇí?¼@¨?EmI‹kœœ@Ÿfâî¶å¨@@¦/†§ï²@¦/†}þ2Ÿ@¦/†§ï²@¦/ˆksý@¦/†§ï²@¦/‹1ðº@¦/†§ï²@¦/ŠžÃö©@¦/†§ï²@¦/‹Š\å´@¦/†§ï²@¦/Š ¡ô±@”ÉÅ¡ÊÀƒ@”ɳs··@”ÉÅ¡ÊÀƒ@”ÉÊר©@”ÉÅ¡ÊÀƒ@”ÉјzŽ@”ÉÅ¡ÊÀƒ@”ÉÖêØ*©@”ÉÅ¡ÊÀƒ@”ÉÚQ°@”ÉÅ¡ÊÀƒ@”ÉÛ.ÜÌé@3 ØDЩ@3‘@N¤©@1=‘hr° @19àxþ÷C@0Ãt¼j~ú@0À(wg’@0._oÒ @0-z;aô:@0._oÒ @0*¦{©•@0._oÒ @0*yèQ?~Ov_Ø­«?‘l£¯(?“rðÖÞ[?‹õ(¸#×O?’>XÇ`Ÿ?‘[PPî;€ A@“^Ý/Ÿ¾@“^Üíˆ7 -@“^Ý/Ÿ¾@“^ÜÞq¾'@“^Ý/Ÿ¾@“^Ü]úà@-ÛJ#9Àì@-ÛJ#9Àì@,A‰7KÆ@,4îÔ ù@+º¬1'@+¹Û"Ðåa@+åÉä@+d·Ýõ¹@+åÉä@+\(õÂ@+åÉä@+f¹ n?É^ž6õP?¾ jžÍ?‘ÛÙ@?‹¯@y¥[?ëŒE>)¨?³âÒŶ?ÐbQë„›¦?’ÕB“ºÿ?…!.ð$w?5e’Òåi?аì¶?Iâo®É?€bMÕ]f?Œ¬6H^4Ð?‚pã®MG?‚è$: ¦œ?†Š%ip¹-?†Œîa€@@@(@*@8@4?ð?ð?ð?ð?ð?ð¿P¯ð¿'k‡ì?6¿ÎÅLv?CPoÎÚÂ@®:¢ß @“^ܨNe?E:Ùˆ´I?":ëÕ9íò?†*Œ—×Íø?=0I”ù0@Ÿs žZMø@@®¤~ùÛ"Ñ@®¤€@®¤~ùÛ"Ñ@®¤~쿱[@®¤~ùÛ"Ñ@®¤HË’@®¤~ùÛ"Ñ@®¤G®{@®¤~ùÛ"Ñ@®¤}IQ‚ª@®¤~ùÛ"Ñ@®¤}Vlô @§m¦ffff@§m¥¡ÊÀƒ@§m¦ffff@§m¢ÃÉîÌ@§m¦ffff@§m¢‚@·@§m¦ffff@§m¤tSŽó@§m¦ffff@§m£n—@§m¦ffff@§m£¢œwš@5¨†YJôñ@5¨†YJôð@2n5?|í‘@2l²•éá°@2“t¼@24êJ@1œàu÷@1ÞÑ·@1œàu÷@1Ð|„µÝ@1œàu÷@1¼ÓZ…ˆ?}Ñ¿ž,?òb[±?’#ç}iïë?‹ÝÉ!ë#?’ÒuèçxY?‘W×ý°A?1·†Æjñ?’¼MÒÀ7F?’Q½£a C?RLnj?‘®7Ö=^9?‘A_f;j?‚† SFñ?Žâç.¡È?‡š¿]b?„XïWÉò~?‡…¤$Ó?†ïRÉv‘Ñ@@@@@*@,?ð?ð?ð?ð?ð?ð¿;Oü¿?±)ˆ?9·‡÷øV?y çCH@®¤VìQõ@§m¤Ÿ3 ?Y,ôåÆ?9Ð,%Þ„?ÀOzþ•Æ?|–Y«1R@Ÿgæc’@@®“t9Xb@®“z¬1@®“t9Xb@®“týó¶G@®“t9Xb@®“{/ìV×@®“t9Xb@®“uÂ\)@®“t9Xb@®“vâëC@®“t9Xb@®“×Ûôˆ@¬k=p£× -@¬k9XbN@¬k=p£× -@¬kA-w1@¬k=p£× -@¬k:¬Ùè>@¬k=p£× -@¬k=²-V@¬k=p£× -@¬k:–¼@¬k=p£× -@¬k6R½<6@72ÃÉîËû@71ÑN;Í6@2…?|í‘h@2†z–¼@2>V“u@2?·éùr@1‡ ù kº@1ˆy=Ùc@1‡ ù kº@1†éxÔýô@1‡ ù kº@1€ù k¹?žˆ2}?’g½þË£?”Ä0óçî?«àÓ RÆ?’[9ƒÍ,?“‡SË{d—?•²»UbB2?•Ð\ÄÙ?‘ú-8ûõö?íu…XÚ?“4¦{ºÕ?“{P»á?„A'Š_]?Ž>ž¬ˆ?…ÑTë0Ô?…üðÿË÷?Š`½i=ÓØ?˜§zy@@@@@*@&?ð?ð?ð?ð?ð?ð?6>пDY¤Œ?Sí ¨ÞÑT?Q”0Ïéð@®“zJA7¤@¬k:V`.?vA72ÃÆh?m„m9޳?ïuÖR²Æ?Ó/¨Ä@ŸkŸ|%Fr@ @©ïyÛ"Ðå@©ïyÛ"Ðå@©ïyÛ"Ðå@©ï~vÈ´9@©ïyÛ"Ðå@©ïufÏAò@©ïyÛ"Ðå@©ïx­«ŸV@©ïyÛ"Ðå@©ï~i­BÄ@©ïyÛ"Ðå@©ï{Í5¨W@¥æZ¬1@¥æ]/Ÿ¾@¥æZ¬1@¥æXï4Ö @¥æZ¬1@¥æW1Å@¥æZ¬1@¥æY³Ð|…@¥æZ¬1@¥æV»˜Çâ@¥æZ¬1@¥æU2a|@6–šÔ,<Ÿ@6–éxÔýô@3°Ä›¥ãT@3®óMj@3²-V@3 ëíúCþ@2\ÚQÎ@2[W>«6z@2\ÚQÎ@2Yk¹Œ~(@2\ÚQÎ@2Zxl"h -?‚á²Olºü?–—x)nÛ?”Ä0óçî?ŒGZ0eê;?–(Ži´™^?ø·-/ge?}Ñ¿ž,?˜ü^Š1??“v@á¿bî?’‘Ç#·X?“¹ ¾´î?‘ƒZ)Àˆ?ŠÌ÷7Õ}?þ,DöP?…ÑTë0Ô?ƒÛ®«etZ?‘„1ôñÂß?¢—„¯l@@@@@,@"?ð?ð?ð?ð?ð?ð?<šÚr`¿ZŸˆ -?@Y´*jì?°õ ™i@©ïz‡Øv@¥æY¬‡Ä?`˜Ç@?8º˜ÐJø?ÅW¨Ë>‡?yúg¸5&@ŸgnÀp–Ò@ -@¨„E¸Qì@¨„DÝ/¡@¨„E¸Qì@¨„E”¯O@¨„E¸Qì@¨„KàÞÒ‰@¨„E¸Qì@¨„C,¥zw@¨„E¸Qì@¨„DÂø7µ@¨„E¸Qì@¨„B@·€4@¢á…¡ÊÀƒ@¢áƒn—@¢á…¡ÊÀƒ@¢áaä÷g@¢á…¡ÊÀƒ@¢á†$Ý/@¢á…¡ÊÀƒ@¢á~5?|î@¢á…¡ÊÀƒ@¢áØ­«Ÿ@¢á…¡ÊÀƒ@¢áò䎊@6ÞHè§æ@6ߨ­«ŸU@2º^5?}@2$ xG@1ä¼j~ùÛ@1éîËû¶@13&Á½¥@11Åo@13&Á½¥@11:’£S@13&Á½¥@11×Ûô‡ý?|öOÿÝ?µ‡:úÎ ?•ï9aýô?‹û…†_?’<_+fjä?‘É=¦þï?Œs¤DÅÐ?”V ìi!¾?•¥º~§?’GÎ>GÅ?’W;„zY?’9ñ9¶ò8?…ÑTë0Ó?GÚ -­ ?„m~Z_s,?ƒiñj6Â?‡v>ª¸ ?‰Ü)@Jq«@@@@@*@,?ð?ð?ð?ð?ð?ð¿:ªó@¿G¤èÂ|?,oÃ?‚n—8‹8?Ž•ýÙ—±?…/‡ÙX·³?ˆ»ñJî¯Î?ŒC ãSG?ŒC ãSG@@@@@(@*?ð?ð?ð?ð?ð?ð¿GŽà‘à¿7/j˜?4Î3XNÔ?;-±š”äO@®FxÿË»ö@¡Éi¿ó?T×q¾fî?[·÷ð¸?³…É «–?À69A`nÈ@Ÿg`{pšR@ @«ÈZŸ¾vÉ@«È+C•@«ÈZŸ¾vÉ@«ÈTì!œ§@«ÈZŸ¾vÉ@«È](Ì«@«ÈZŸ¾vÉ@«ÈgJSS7@«ÈZŸ¾vÉ@«ÈYñ@«ÈZŸ¾vÉ@«ÈZÍå¤@›_Týó¶F@›_zBg,@›_Týó¶F@›_K„oEÕ@›_Týó¶F@›_gYÿ±H@›_Týó¶F@›_D*>Ï@›_Týó¶F@›_fä=ü@›_Týó¶F@›_U¿éˆ@9-¥œàv@94.Ã4@4W+ Iº@4]0/^@3ˆ“t¼j@3‰ð”AZD@35µsê³h@3=V šÃJ@35µsê³h@36’×ç8p@35µsê³h@38v¤RЯ?˜Òøƒ3N?äTÁ‰ÁÃ?”ÇÃâ7¨ù?Œdº2ÚfÆ?‘úPÙݱq?’»“™¯?ºŽ¢N'P?’31?úB?“P°Q­AÎ?‘Þ4LÃ9?Ï”Ñûz?‘-’ͧGÊ?×?>D&?rywÍK ?Šd¬“Xïä?ƒ -A3­5¸%`¯3Ÿ@«}YÓ=Ö”@”M#=û?c-Ê“À­M?^%Ð=ùð%?Ìç,xš?¼æH2/Ñ@Ÿj57ºœ@@¥íÁ‰7KÇ@¥íÁ‰7KÇ@¥íÁ‰7KÇ@¥í Iº^@¥íÁ‰7KÇ@¥íÂ3œ¿@¥íÁ‰7KÇ@¥í Iº^@¥íÁ‰7KÇ@¥íÀÄ›¥ã@¥íÁ‰7KÇ@¥íÀÑ·X@¡w¡ÊÀƒ@¡w¡ÊÀƒ@¡w¡ÊÀƒ@¡w¡–R½<@¡w¡ÊÀƒ@¡w¡ò×s@¡w¡ÊÀƒ@¡w¡TÉ…ð@¡w¡ÊÀƒ@¡w¡|ÚQ@¡w¡ÊÀƒ@¡w¡‰7KÇ@0=:’£@0=:’£@*Üj~ùÛ"@*Ü]cˆe“@)ØÔýó¶F@)Ø“t¼j@(æL/ƒ{K@(æ -¦L/…@(æL/ƒ{K@(æ -¦L/„@(æL/ƒ{K@(æ -¦L/…?É^žQ5P‚?ÖÈ ¼?‘½ümüñ?‹Æ úJ-M?êtÿKÑc?ºª$Ð?ÐbMçê_x?’ ,øÕC©?‘N÷J’?1ð'7éÃ?ÏtP°*?Z˜°,aÝ?€bMÕky?Œ°¶.Ä+Æ?‚s@ˆaÛ?‚äÍ“½E'?†l&þ?†½ª»—@@@@@,@,?ð?ð?ð?ð?ð?ð¿B†ô*æ?ºžý¸?)¹¥!«>÷L©–amj@¥íÁM=ù@¡w¡pµZõ?8º íki?ޣķ?mø#bñE,?K™hò@Ÿs2éƒ@@©ïRñ©ûç@©ïS3333@©ïRñ©ûç@©ïSZ…‡”@©ïRñ©ûç@©ïSÐ|„µ@©ïRñ©ûç@©ïS÷ÎÙ@©ïRñ©ûç@©ïR•éá±@©ïRñ©ûç@©ïR䎊s@«óæffff@«óæffff@«óæffff@«ó宿1ú@«óæffff@«óçE8ï5@«óæffff@«óåãS÷Ï@«óæffff@«óæÜ]c‡@«óæffff@«óæ€IQ@3Hè§æ@3p:û~‘@.ðå`A‰7@.ðØDЩ@-Œ1&éy@-Œ1&éy@,ëjçÕfÐ@,ë…¸Qì@,ëjçÕfÐ@,ëP°ò{³@,ëjçÕfÐ@,ëC•&?|öOÿÝ?ÉGãA­÷?‘&Øç?‘?‹¦ ŸYÔ?‘2A¥Ø?À­Õß}º?|¬Çëý ?’˜‰%F²?™Îd0RÜ?-õI¸`K?ÝIMÎ?e¾DQ„Q?‚2Y0â³?Œ°¶.Ä+Æ?‚2Y0âµ?‚éXëLL÷?†–f_ÔŠŠ?†©b/bJö@@@@@,@*?ð?ð?ð?ð?ð?ð¿ú³«€>üj#?"˜ôÈ:~ÿ?²û¢€ù@©ïS2 h@«óæl1ÿ;?B}1!æ7?7 Ãp´?’“?ÛršÀ?{ðÓÄõ˜@Ÿföo¡îê@@ †µ?|í‘@ †²-V@ †µ?|í‘Á.„€@ †µ?|í‘Á.„€@ †µ?|í‘Á.„€@ †µ?|í‘Á.„€@ †µ?|í‘Á.„€@®|í‘hs@®» [@®|í‘hsÁ.„€@®|í‘hsÁ.„€@®|í‘hsÁ.„€@®|í‘hsÁ.„€@®|í‘hsÁ.„€@8¥öý!ÿ.@8¤«§êå@4E?|í‘hÁ.„M‰ûçm@3Ú~ùÛ"ÑÁ.„QnÙ‡@2ÿò䎊rÁ.„NÜC,¥@2ÿò䎊rÁ.„NÜC,¥@2ÿò䎊rÁ.„NÜC,¥?§m*HšÎ@8#˜@8¾:@8 >+@8Iç@8Ù?•Ö/ê€÷Æ@8Î÷@8i§@8Å@8S@8û—?À\ï;.=ø@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¦9k…¸RÁ.„€@¦9k…¸RÁ.„€@¦9k…¸RÁ.„€@¦9k…¸RÁ.„€@¦9k…¸RÁ.„€@¦9k…¸RÁ.„€@š4Ÿ¾vÈ´Á.„€@š4Ÿ¾vÈ´Á.„€@š4Ÿ¾vÈ´Á.„€@š4Ÿ¾vÈ´Á.„€@š4Ÿ¾vÈ´Á.„€@š4Ÿ¾vÈ´Á.„€@8í¥œàvÁ.„>¤µÜÆ@4+ IºÁ.„M‰ûçm@3PA‰7KÇÁ.„QnÙ‡@2èè§æ›Á.„NÜC,¥@2èè§æ›Á.„NÜC,¥@2èè§æ›Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@«½ó¶E¢@«ÀgPÉŸ@«½ó¶E¢@«ÀgŠÁ@«½ó¶E¢@«ÁPÔm@«½ó¶E¢@«¿ub˜@«½ó¶E¢@«½cW÷¼@«½ó¶E¢@«»éÖòŸ@œ7XbMÓ@œ7Y™™™›@œ7XbMÓ@œ7Y;ò$@œ7XbMÓ@œ7aÕ9a@œ7XbMÓ@œ7Z¢G*ó@œ7XbMÓ@œ7\¡Œé)@œ7XbMÓ@œ7_9(Ã@6¥öý!ÿ.@6¤P#Nl@1ÞÙ‡+@1ß3$e…á@1H“t¼j@1H\²êeÒ@0ãÉîËû@0â Œûü@0ãÉîËû@0áKü;Â@0ãÉîËû@0àî¢K¶Æ?¨Sp*?Ę'} ?’6nXé?‹Ø7e?‘8‰\\?’D\Zõ(?ˆ´\Ηþ?’¼[“L?‘&aƒD2Õ?`‡úaé^?‘-Ï÷ÃÑ?‘H€ÈX?š@VÇ;Q?ŒÆ‰)ÕÆ?ƒ×ÈÒàS¤?ƒ#ˆïº¤?†ÜÕI±´Ù?‡÷2o»9@@"@"@@,@*?ð?ð?ð?ð?ð?ð¿I‘•?@'KXt?)sí[”ƒt?"ê{H8£@«¾ ~¡0@œ7[®Oÿ¾?I÷kyQK?B{M„Ò¶?œ§Cµ3?‡ ‹-*J‡@Ÿi\¯õ @@¦\G+ J@¦\[ÈÄ’ï@¦\G+ J@¦\PNUÙ @¦\G+ J@¦\I¾²ì'@¦\G+ J@¦\_MÕô5@¦\G+ JÁ.„€@¦\G+ JÁ.„€@˜ç“t¼j@˜çŽ'a@˜ç“t¼j@˜æ¨¢GÔ'@˜ç“t¼j@˜æÙ“Uï@˜ç“t¼j@˜æÃrÑ @˜ç“t¼jÁ.„€@˜ç“t¼jÁ.„€@8*0U2b@8@0f‡+ J@0hð¸@/íOß;dZ@/ëàÞÒˆÎ@/\¾ß¤@@/`[À6â@/\¾ß¤@@/]Ùb¶¯@/\¾ß¤@@/Y‡+ ?}Ñ¿ž,?õ¹Ëh?‘1f_¨Ï÷?Aš%ðï?‘\Žýµ€7?×°ë*–w?|öOÿÝ?’4 "ëžØ?ŽËÜ¿€?‘M –=?‘=d¦^™?hï,ðà?‚† SFñ?2ô]7?ƒ<Õp?ƒ=rµE=?†ùadô|?‡&üòI@@@@@(@$?ð?ð?ð?ð?ð?ð¿H#Cš ?A/Ô,Ø?9{<¥‡.?7ÞÄs—»½@¡MŒDá@¬æœ ?Y|=tëEš?Xz>ÈÕÌ?Àʪ÷ü?¾@n©?+^@Ÿg<œë˜@@§¸n—@§¸Ÿ¾x@§¸n—@§·õéá°Š@§¸n—@§¸ŠqÞi@§¸n—@§¸üPH@§¸n—@§¸'y¦µ @§¸n—@§¸)º^5?@¡«ýó¶E¢@¡«ü¬1'@¡«ýó¶E¢@¡¬/Aò×@¡«ýó¶E¢@¡¬{J#:@¡«ýó¶E¢@¡¬B©“ á@¡«ýó¶E¢@¡¬?|í‘h@¡«ýó¶E¢@¡¬fÂ&€@7m¥œàv@7F+jçÕg@3!hr° Ä@3”FsØ@2A‰7KÇ@2…¼£n/@2+xFÜ^@1ù k¹Œ~@2+xFÜ^@2Ϫ͞„@2+xFÜ^@1ìC,¥zx?óA[ØïF?ªŽµcùX?¡äøLAJ.?¡[Òö¿ì? £× -=p¤?»Õ¥¤8*?‡YÍ_?§8©$ -"º?VÇ·Þóï?¨g(Z%?£ƒwž{_?¼è¦²îCU?—M3§´ ?¢C‰'—˜?“'ü#šgã?·wZR)w?¶sr°ÔY?¯Ô m9@@@@@&@&?ð?ð?ð?ð?ð?ð?v¼-ÒÒ€?“À!)Å?M–xA1·Û?gçdÒi@§¸ YýÔ@¡¬Aœæ?i*ì£Lz?ƒó1Fšg°?¸ŠŠæ~ñ ?ìB6ñ`ÏÎ@ŸcŒ*€»@@¯ËZŸ¾vÉ@¯ËV“u@¯ËZŸ¾vÉ@¯ËQhr° @¯ËZŸ¾vÉ@¯ËOhÛŒ@¯ËZŸ¾vÉ@¯ËO4Ö¡b@¯ËZŸ¾vÉ@¯ËN!–R¼@¯ËZŸ¾vÉ@¯ËVÈ´9Y@§z.—Oß@§zI7Kƨ@§z.—Oß@§z)^ž @§z.—Oß@§z)ÞÒ@§z.—Oß@§z5*™1@§z.—Oß@§z,Iº^5@§z.—Oß@§z6âëB@7÷â‚@·€@7ñÑN;Í6@3!hr° Ä@3FÜ]c@2H“t¼j@2=Oß;dZ@1ãÉîËû@1ÒMÒñ©ü@1ãÉîËû@1Ù“ àÞÓ@1ãÉîËû@1Û²þÅm]?ˆÿÀ)T¿Æ?“¤bDÒ¼*?šQ"Äš%?]]gºÉQ?˜´1…9„?•zWmoàí?¤ÊŽaÈ]Ó?Ñ¿ž,?¤ÙS§`G?¥fóa]G? dÈr”K?”•®fÙ­'?¬Uu6EE?àìÚJ>?•ë þÅ?¥k2ïm?æšÔ,<ž?ŒC ãSG@@@@@*@*?ð?ð?ð?ð?ð?ð¿CñìпkCÜÄ?PàÆÂ?­Í?eQGjP#@¯ËSŒF@§z9åêº?t˜,ãK?‚±A˜{^%?Ûš"üHN?å)~+¥Ž@Ÿn]d‹ h@@­®D›¥ãT@­®'®zá@­®D›¥ãT@­®;À6â@­®D›¥ãT@­®/Òòä@­®D›¥ãT@­®/·éù@­®D›¥ãT@­®EãS÷Î@­®D›¥ãT@­®GÈK]Ì@£5Á$Ý/@£5Ðå`A‰@£5Á$Ý/@£6-w1@£5Á$Ý/@£6P-à @£5Á$Ý/@£6?U›=@£5Á$Ý/@£6<£n0@£5Á$Ý/@£65sê³h@8í¥œàv@8ü1&éy@4™º^5?}@4Uœàu÷@3¬j~ùÛ#@3y‡+ @3«6z‘@2ß—$tS@3«6z‘@2ê¹õY³Ñ@3«6z‘@2ðA‰7KÇ?´M ó¬^õ?º<ß‚9¥?±“áí=1-?·Ô\û‡Ú?£¸ -ÁX¶?I: ­¬?¶¼=Ða?É¥Þµ¶.ó?ÅË,Øh§ß?º2ƒ˜ü?³4)=åD“?°è*T`Í?ÒC -÷ Dk?–(Ži´™^?™Ä¶BϪ?¡2¿ônM|?™^ÓnÔl©?’Ž<Dxƒ@@@@@*@*?ð?ð?ð?ð?ð?ð?{œv'š?”³!îÛ`?[5ö´‹?€¢bÐÑd@­®=q «è@£6"Ö6Ú?u¥Ç$Úº?9õÝò8?µÅ¥Íí0?ð˜meY@ŸoJo@@@ªˆV‡+ @ªˆVE¡ÊÂ@ªˆV‡+ @ªˆ[Í5¨X@ªˆV‡+ @ªˆWXâd@ªˆV‡+ @ªˆYJôðØ@ªˆV‡+ @ªˆY‡+@ªˆV‡+ @ªˆXy=Ù@¥)šŸ¾vÉ@¥)šŸ¾vÉ@¥)šŸ¾vÉ@¥)™Àëíù@¥)šŸ¾vÉ@¥)›¥ãSø@¥)šŸ¾vÉ@¥)–8†YK@¥)šŸ¾vÉ@¥)—>«6z@¥)šŸ¾vÉ@¥)—$tS@4ò䎊@4£S&@1é‡+ @1è_ö”F@0"-V@0"•éá°Š@0𖻘Çã@0îƒä%®æ@0𖻘Çã@0î}Vlô@0𖻘Çã@0î}Vlô?|öOÿÝ?äm°û0Ž?‘G¿yÛ?ï?r*ž¾Ž?’°STðS?‘¦‘=W?|¬Çëý ?’r/BÖ?§^ ÿo˜?’îy†Ò‡‚?’íßš?‘–íÍQÜ?‚yî8Á#?ŒË›Í‡Çq?‚§W®ê ?„2ÌôÏ?ˆÔÞÑ—æJ?ˆ‹”âó@@@@@(@$?ð?ð?ð?ð?ð?ð?D. H¿KÕÞ¢´?,<ЧùàŸ?19á^¹®ã@ªˆW°á3—@¥)˜´5úY?LFgÕðz?Q€OA¯ø3?£VâLiW¦?¬þ vªmt@ŸfcTF×Þ@@ ÑÏß;dZ@ ÑÐ Ä›¦@ ÑÏß;dZ@ ÑѨž@ ÑÏß;dZ@ Ñß/UX!@ ÑÏß;dZ@ ÑÐs½FI@ ÑÏß;dZ@ ÑÏ´(lQ ?ê(~?–ðÒš±r(?‘ëóqÎW?}@T˜ÁÎ¥?’ ü~5ö?’?ÂÛ*9?l‡¹ïœt?”‹ô?”ìÛX*?‚o˜¥Å÷?25´Ð?…´ÕËA‰´?‹hðM5³?“ÅÀ#Åœf?‘÷lÉ™d@@@@@2@4?ð?ð?ð?ð?ð?ð¿P×ÖØÞ?5»"”ð?Eí© S›Û?IÆ3#H)|@ ÑÎ[«@¦Q!U`³?e»¡t¾ÚÃ?iG÷H -?ÔàncXZ?Û -ùϸÃ@ŸeÖŒx:y@@®+öE¡ÊÁ@®+ô9Xb@®+öE¡ÊÁ@®+öý!ÿ.@®+öE¡ÊÁ@®+÷´¢3œ@®+öE¡ÊÁ@®+ùXbO@®+öE¡ÊÁ@®+õöý!ÿ@®+öE¡ÊÁ@®+õ›=È@£V;dZ@£V|í‘h@£V;dZ@£V uöý"@£V;dZ@£VW>«6@£V;dZ@£V„µÜÆ@£V;dZ@£V($ x@£V;dZ@£Vÿ—%@7ÉÎ_oÒ@7Éá°‰ (@1Ï|í‘hr@1ÏåÉä@1PA‰7KÇ@1PA‰7KÇ@0n_oÒ @0n í(Œç@0n_oÒ @0ncŠ @0n_oÒ @0n.±Ä2Ê?…ÅBðrç?¾‰máÚ?‘£Ä›è?‹¹GüÞõ?‘'¬Å™» ?×°ë*–w?žŒÝÙ›P?’7Îf¬ps?³2ºŽ'?@§[*^?‘Uç·Býi?NÂò‚Ì`?˜Ÿó6P£?GÚ -­ ?‚Ì ÝŽ‚8?ƒ!Ë *(?†ùadô|?†¯Mž684@@@@@,@"?ð?ð?ð?ð?ð?ð?>…¨ ?ü+0?EŒkã´Ûã??Ý987g@®+öwË.Y@£V×Çœ?f¸£í@?W-aÌÞd†?Ñv°)î?§ªF7ŒMö@Ÿnšµ;@@¦ãyXbN@¦ãuÂ\)@¦ãyXbN@¦ãyÀëíú@¦ãyXbN@¦ã¤?åÉ@¦ãyXbN@¦ãsÐ|„¶@¦ãyXbN@¦ãzQÎ@¦ãyXbN@¦ãuŽ!–T@£pë…¸R@£qÄ›¥ã@£pë…¸R@£pèr° Å@£pë…¸R@£púŸ¾vÉ@£pë…¸R@£pót¼j@£pë…¸R@£púÔ,<Ÿ@£pë…¸R@£pøºÇË@8›¹Œ~($@8uöý!ÿ.@3£÷ÎÙ‡@3£S&Â@3“t¼@3*™0¾@2£ÉîËû@2¤!-w2@2£ÉîËû@2£t¼j~ú@2£ÉîËû@2£n.±Ä3?€‚ñêã ?–(.À·÷?’w·†m?’(æ„+Zk?šŒÐ&îèx?¢ïĵÐ^M?»ö#°€Ô[?£½‹„@p?‘S1Êz? -ªê@£pöm6¤?m˜Ï­Ÿ0?pëÙýT»‚?Ä\µ¶z|?Ç‘8»ÓEÿ@ŸoCï—ÿÉ@@¤ Ƨïž@¤ L˜_@¤ Ƨïž@¤ ¹Œ~(@¤ Ƨïž@¤ M=\@¤ Ƨïž@¤ ßÊ}å@¤ Ƨïž@¤ _À/@¤ Ƨïž@¤ D'@™óáG®{@™óàÄ›¥ã@™óáG®{@™óá]^Q@™óáG®{@™óâ“7@™óáG®{@™óá\Âv@™óáG®{@™óâ Iº^@™óáG®{@™óâÐå`B@4Ô xFÜ@4Ó²ñÝ›0@0Ù‡+@0Ò/oz^@.&éxÔþ@.•ˆ@,87´¢3œ@,8µó|»š@,87´¢3œ@,8¤TÞ@,87´¢3œ@,8« ˆ¤?|çµB &€?ã«ÁÜq?‘lȼÛê?‹µý-M+ì?ìXk™Z³?º1 -qV?|Ñb×¶@?’ €£·?F¡{r‹?2Nk6y¬?Õa$ÄÂd?VñTL}Á?‚’¤I å?Œ²£ ?‚’¤I æ?‚òƒ¼‡?†Š7´is\?†‹îªViö@@(@$@(@:@:?ð?ð?ð?ð?ð?ð¿$—·5 ?'ì-‡?>çÉÍ@>ÿç²DÝö@¤ ÂƒÝæ@™óᇋ?!*c#è$?«A—=7á?P%¹ö#ä?J.#gdU…@Ÿfþ51ç@@¢àA‰7LÁ.„€@¢àA‰7LÁ.„€@¢àA‰7LÁ.„€@¢àA‰7LÁ.„€@¢àA‰7LÁ.„€@¢àA‰7LÁ.„€@ -Rñ©ûçÁ.„€@ -Rñ©ûçÁ.„€@ -Rñ©ûçÁ.„€@ -Rñ©ûçÁ.„€@ -Rñ©ûçÁ.„€@ -Rñ©ûçÁ.„€@87â‚@·€Á.„>¤µÜÆ@4Œí‘hr°Á.„M‰ûçm@3§KƧïžÁ.„QnÙ‡@2á:’£SÁ.„NÜC,¥@2á:’£SÁ.„NÜC,¥@2á:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø@¯š¬1@¯¢MÒñª@¯š¬1@¯œ¹#¢œ@¯š¬1@¯¢3œÀ@¯š¬1@¯Ÿ!-w2@¯š¬1@¯™ k¹‹@¯š¬1@¯—€4mÇ@¢¯@¢¯`A‰6@¢¯@¢®ý<64@¢¯@¢¯ëíúD@¢¯@¢®ûšu@¢¯@¢®ü¹#¢œ@¢¯@¢®üàuöý@7‡>«6z@7‰Î_oÒ@2^Ù‡+@2\篷é@2M²-V@2Hè§æ›@1Eœàu÷@1@oiDg8@1Eœàu÷@1B3œ¾à@1Eœàu÷@1B Iº^6?•²»UbB2?“:„aGS?’ -N»A3?ŽAtùð¥t?’š'†­`í?‘¦ µÚ?žˆ2}?•wi¢‚*?”3jà’_?”±¤ëµu]?’ÞH†<²?“ <°·Ê?“ÉŸ“_Æ?c I??‹f°ùr[ƒ?ƒR¨º“JÞ?‡&üòI?·♊N@@@@@(@*?ð?ð?ð?ð?ð?ð¿cƒmú¿aKõ>?Bз`Ë?D1#Xj@¯œýÆ¥I@¢®ÿ)¡F6?^pë{ ?gwÁ/óÒ-?¶å|>iH?Ïg+·‰@ŸkÓ@@¤©’n—P@¤©’-V@¤©’n—P@¤©”ã¼Ó\@¤©’n—P@¤©“ŽóMj@¤©’n—P@¤©–_Ø­¬@¤©’n—P@¤©“¶E¡Ë@¤©’n—P@¤©“×Ûõ@¡›¥ãSø@¡œj~ùÛ@¡›¥ãSø@¡šu%F@¡›¥ãSø@¡™0¾ í@¡›¥ãSø@¡˜bMÓ@¡›¥ãSø@¡š^5?}@¡›¥ãSø@¡š)Çy§@4¿–»˜È@4¾óMj@0ë¥ãS÷Î@0ê™0¾ í@0“t¼@0¯O „M@0Œ~($ @0>«6z@0Œ~($ @0ùrGF@0Œ~($ @0*0U2a?|öOÿÝ?°çR;?‘K]Ã4?‹ÑqÔ@vÿ?‘1 °µv¦?‘PÊÑ<Ýl?|öOÿÝ?’uß¿çÒ?³2ºŽ'?6) }’ë?‘<¸ö}½?±—'¶Ü+?ƒmÕ+&¬‰?Œ¯þuõí?‚ù…žÄ`x?ƒ ?ÿ½?†Ü‘ °Ô?‡´*žZ}Õ@@@@@*@,?ð?ð?ð?ð?ð?ð?@ºŽSp¿D ˆ½ä?=§ L±?8M$@¤©““‡Ÿ@¡šà¦?]Z§`63?XZ¢ºí?Æí[š»$Æ?¾f†þdç@ŸfÝ…ï @ @§æî—Oß@§æî—Oß@§æî—Oß@§æï#àJÊ@§æî—Oß@§æïY~Ò@§æî—Oß@§æï>Õ(@§æî—Oß@§æíI(—"@§æî—Oß@§æíV@“+_;dZ@“+_;dZ@“+_;dZ@“+^;L's@“+_;dZ@“+^h¾>@“+_;dZ@“+]xèY¯@“+_;dZ@“+_ÐIñ@“+_;dZ@“+^%˜Í³@1^Hè§æ@1^V“u@+ëÆ§ï²@+달q ±@+íOß;dZ@+ì»^h(@+zÇË)_@+z¹AM^Ö@+zÇË)_@+y`6Âû@+zÇË)_@+zÿçSà?É^ž6õP?¾Ÿˆf¥^?‘F¢þó?‹½ö’˜©?ìXk™Z³?µûê?ÐbMÝn½?’ÎV‡?ƒæjªÄ?7þi¦UÄ?Ú5V¥·?NÍÐ)Çh?€bMÔŠ»?Œ°ž:ød?‚r{e•{t?‚ä°Õ›ƒ’?†§mÇÕ™¤µÜÆ@7+¥ãS÷ÏÁ.„M‰ûçm@6€å`A‰7Á.„QnÙ‡@5«xFÜ^Á.„NÜC,¥@5«xFÜ^Á.„NÜC,¥@5«xFÜ^Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø"@®Òñ©ü@®‹a–zœ@®Òñ©ü@®Žß¸3“@®Òñ©ü@®xðÕ@®Òñ©ü@®~Êõ2Q@®Òñ©ü@®Žo”Ë@®Òñ©ü@®ˆtž|.@›¿ Iº^@›¾÷͌ݬ@›¿ Iº^@›¾Ú¡Ú¦@›¿ Iº^@›¿Õ»ö-@›¿ Iº^@›¾ãL,èú@›¿ Iº^@›¿ ±S{X@›¿ Iº^@›¿d3þ@8[¹Œ~($@8[íXÓz'@3Ê^5?|í@3Ñk¾6@@2Õ`A‰7L@2Þ×ë µ†@2G ù kº@2O´Êj†ê@2G ù kº@2Kæ·k@2G ù kº@2L:þ„GŒ?šž†%³Õh?‘>EˆéG?•üìw•y ?‹ðãÚ6J°?”|yðlŽô?’+w³w?|¬Æ Væ?›Ûœ,º!¤?¡C^]òò?‘@§…Et1?’Äøò‚BE?Ó]ꆑ?…ç¾":,ô?ãR ›èp?ˆ˜)§éG?‚ü6ãm?‰mçûŒ†?$^Ñ}VÈ@@&@&@@0@0?ð?ð?ð?ð?ð?ð?MÌ·„?N,ÃC”?hiV£Ù—Ì?\yQ'‹/@®…žºJò@›¾û¯ŠÏ[?‚ -Ư½Ìÿ?u¶Ífv?þ>iëÿ@w¦A›Š;@ŸlÈű1@#@¦±†$Ý/Á.„€@¦±†$Ý/@¦±„µÜÆ@@¦±†$Ý/@¦±€ªdÂø@¦±†$Ý/@¦±ŽËûµ@¦±†$Ý/@¦±‰^ž -@¦±†$Ý/@¦±†ö”Ft@®cݲ-VÁ.„€@®cݲ-V@®c宿1ù@®cݲ-V@®cáaä÷f@®cݲ-V@®cÜÚQ@®cݲ-V@®cØl"h -@®cݲ-V@®cÐbMÒò@904mÅÖ8Á.„>¤µÜÆ@4O|í‘hr@4H*™0¾@3~V“u@3}ÈK]Ì@3ý!ÿ.I@3¾ í(@3ý!ÿ.I@3å`A‰8@3ý!ÿ.I@33œ¾à@8J¨?šQ&Üg4Ó?—go]Þ?—IW`g’?|³K’!\?›‹ÞV‘@8J¨?› Öü{?”€@N¯â?”!Ø×Ï“è?š¹'¤Ò ?Ÿ¥O[õÆ@8p÷?”É…ðoiE?‘bR?‘˜†Œ/ž?’Oûh´6c?’3¨£„È@@@@$@&?ð?ð?ð?ð?ðøøøøøøøøøøøø$@ªÍ,1&é@ªÍ+…¸R@ªÍ,1&é@ªÍÚQÎ@ªÍ,1&é@ªÍ qv@ªÍ,1&é@ªÍGE8î@ªÍ,1&é@ªÍ[À7@ªÍ,1&é@ªÍ§ï²@¬öýp£× -@¬öý²-V@¬öýp£× -@¬öðË)^Ÿ@¬öýp£× -@¬ö×éùr@¬öýp£× -@¬öØbMÔ@¬öýp£× -@¬öåÉä@¬öýp£× -@¬öëP°ò{@5„¯O „M@5„÷eýŠÛ@3‚° Ä›¦@3yÛ"Ðå`@3€å`A‰7@3sFÜ]cˆ@3OO „M@3AÎ_p@3OO „M@3C¯·éú@3OO „M@3C&Á½¥?|¬Çëý ?¡Iü¤µÜÆ@3&‡+ JÁ.„M‰ûçm@2M²-VÁ.„QnÙ‡@1ãÉîËûÁ.„NÜC,¥@1ãÉîËûÁ.„NÜC,¥@1ãÉîËûÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø&@ªB©xÔýôÁ.„€@ªB©xÔýô@ªB©Q‚©“@ªB©xÔýô@ªB¡ÊÀƒ@ªB©xÔýô@ªB¿HÌ@ªB©xÔýô@ªB›ô‡ü¹@ªB©xÔýô@ªB¡ÊÀƒ@¢õ33333Á.„€@¢õ33333@¢õ,cñA@¢õ33333@¢õ0Ë)^ž@¢õ33333@¢õ-\ú¬Ú@¢õ33333@¢õ$M:’@¢õ33333@¢õ*W§†Â@9Î쿱[WÁ.„>¤µÜÆ@3«¥ãS÷Ï@3¬"h Ô•@2Æ“t¼@2ÄêJŒL@2zÔ,<ží@2|í‘hr°@2zÔ,<ží@2u8ï4Ö¢@2zÔ,<ží@2vµ '»@8J¨?4ë©$è‰?’à©GMõ?žtN+®6?•’ØŒi³?—uæË}üI@8J¨?—áZk·×?‘Ûcu%ç+?žätmî>?œ—ø#\á?š¥£Âº²ƒ@8p÷?‘ë…¸Qì?‚‹¡8*ú?†ÞåØÜÓ?ŽNîV˜C&?óRÏ4@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøø'@¥™£S÷ÎÙ@¥™­Òñ©ü@¥™£S÷ÎÙ@¥™£S÷ÎÙ@¥™£S÷ÎÙ@¥™£ˆe”¯@¥™£S÷ÎÙ@¥™£S÷ÎÙ@¥™£S÷ÎÙ@¥™£,¥zx@¥™£S÷ÎÙ@¥™£FÜ]d@«¾Ý²-V@«¾å¸Qì@«¾Ý²-V@«¾Ýcˆe–@«¾Ý²-V@«¾Þ($ x@«¾Ý²-V@«¾ÞÑ·@«¾Ý²-V@«¾ÝÙb¸@«¾Ý²-V@«¾Þ($ x@6cg ù l@6q©ûçlŒ@-$“t¼j@-$?åÉ@+IxÔýó¶@+I…ðoiC@)ܾߤ@@)Ü(õÂ^@)ܾߤ@@)ܾߤA@)ܾߤ@@)ÜÚQÍ?1·†Æjñ?é¥3i£ó?‘½ümüñ?‹Æ úJ-M?êtÿKÑc?ºª$Ð?„F/·ÿP5?’ ,øÕC©?ƒ‰/BH?;ß $Þû?Ó%y*£=?X78›š?‰6~„æAÔ?Œµ3‰;šÏ?‚uÞ@>N ?‚äÍ“½E'?†‰Oú|q?†’Õaì+’@@@@@*@,?ð?ð?ð?ð?ð?ð¿dñ欿Z¶Ã?DU–ÄñÑ4?¤µÜÆ@4^Ù‡+@4çl‹C•@3§KƧïž@3[àÞÒˆÎ@3+xFÜ^@2Ò° Ä›¦@3+xFÜ^@2Ô?åÉ@3+xFÜ^@2ÔŽŠqÞj@8J¨?·-ie˜ýZ?¼¯páÈZ™?»3ì‡}s¤?¹—³ÔKÒ?µ€Ï7¯eÊ@8J¨?¢ì]veb?Ç4Z~Ð?ÉïZhB·¤?ÄÇ?jy•?¶×¦¿75@8p÷?þxÖ?Ž“‹}Tz?Þ‚ ‡F?’Oûh´6c?“!S{uu@@@@,@(?ð?ð?ð?ð?ðøøøøøøøøøøøø)@¤+…¸R@¤9™™™š@¤+…¸R@¤ô‡ü¹@¤+…¸R@¤"ø7´¢@¤+…¸R@¤u%F@¤+…¸R@¤!ä÷eþ@¤+…¸R@¤(K]Ìd@¬ìµÂ\)@¬ì±ë…¸@¬ìµÂ\)@¬ì«'»/@¬ìµÂ\)@¬ì³¶E¡Ë@¬ìµÂ\)@¬ìÈÎp:ü@¬ìµÂ\)@¬ìËjçÕf@¬ìµÂ\)@¬ìÂÞÑ·@9šÔ,<Ÿ@9䎊qß@4?|í‘h@4ëíúCþ@34“t¼j@35S&Á¾@3mÅÖ8†@35¨Xy>@3mÅÖ8†@3'Ë)^ž@3mÅÖ8†@3(*™0¾?¢F^ì¼Sð?¦ëñ[ñ”¶?‘šÕU#?Œä%—ëš?˜U7t—{V?¤ËiU´v]?„F/·ÿP5?œÙ”!Çx‡?‘S1Êz?/{Ü?œg> Üb -@Ÿg#ï{[N@+@Ÿ8¹XbN@Ÿ8¹Û"Ðå@Ÿ8¹XbN@Ÿ9mL##@Ÿ8¹XbN@Ÿ9¨>Ä&ƒ@Ÿ8¹XbN@Ÿ97PŽÇb@Ÿ8¹XbN@Ÿ9 -`ZÕ@Ÿ8¹XbN@Ÿ9#gTí©@šÕdZ¬@šÕdZ¬@šÕdZ¬@šÖ á8ô@šÕdZ¬@šÖÙ ¤Žý@šÕdZ¬@šÖl×@šÕdZ¬@šÕ!Ö9 «@šÕdZ¬@šÕÎ8~@1·â‚@·€@1¸?â’®¾@-³t¼j~ù@-'Õû¾è¤@,–E¡ÊÀƒ@+•'ï´ž^@+ëjçÕfÐ@+CÞ*)§˜@+ëjçÕfÐ@+\<Öûg@+ëjçÕfÐ@+|¹¨X?É^£eeäí?¤Åz褪ä?™mŸ‰©_?A¸™l?žÇtø•îÁ?­yKËúÇ?ÐbMØ/×^?£ÓõÌÑ ?£ýîûA.¡?”myb¨Á? AÁ¬¸YT?¦hYón?€r5 -<Ðø?“?(Ó†jñ?“?GKÓ®?˜z^Xè{ü?šž°tkòû?Ÿ/€@öÓ)@ @5@5@7@A@C?ð?ð?ð?ð?ð?ð¿€åe*€¿­Ý½ÍèÀ?~ö¿8?­ð?¤JŒ-‚wQ@Ÿ9'ž¶åj@šÕþò¾¨D?‡Êt+——?±;¹ï‹Õ·?ô5Ú9ç@B›Ò‰ ¸ñ@Ÿoâr¦ @,@£¥úáG®@£¥ó3333@£¥úáG®@£¥ùJôðØ@£¥úáG®@£¥ýp£× -@£¥úáG®@£¥ý—ö+k@£¥úáG®@£¥ý}¿H€@£¥úáG®@£¦ÞÑ·@©&ûdZ¬@©&è´9X@©&ûdZ¬@©'8}À@©&ûdZ¬@©'Œç°@©&ûdZ¬@©' V@©&ûdZ¬@©' cñA @©&ûdZ¬@©'œàu@9eöý!ÿ.@9M‘hr°!@4f‡+ J@4ZqÞi­B@3 "Ðå`B@3Ö¡aäø@2ÑÞi­BÄ@2˲þÅm^@2ÑÞi­BÄ@2Í!ÿ.Hé@2ÑÞi­BÄ@2ÌwškP²?¡ÅꯨŠT?«»‡Ä(Bo?‘"žæÆó¡?‡{@áè?—­¦¾z£—?•ŠàuVº`?ÀjáR î?©ïŽ’v1á?–ôÃj¢T?šWl¬Ëz?™Ÿ»6“?–˜k|‹ ;?ÁTÄàj0­?“ÆQ6þ?…µsê³g¡?ˆã1µR?Œ8¸wx¯?¢—„¯l@@@@@*@(?ð?ð?ð?ð?ð?ð?f?ãÖ€¿Vþ1R-€?I_bà??kèNLœ %@£¥þÇN¨T@©' ÈsMZÌw~?ŒïQ¼º“ã?ƒ!A -mº¹?ƒGϵ¨í'?†å·ÑfWà?†ùadô|@@@@@"@,?ð?ð?ð?ð?ð?ð¿E1Qå? Q ?02Óëä?&ä -;ôð[@¡R §}&@¢Œ8IèO$?OÆéÿ)4A?G2zWL‰?ªÍxZN›?›^àà\E¦@ŸfÙ˜E@.@ª'‰7KÇ@ª'‰7KÇ@ª'‰7KÇ@ª'TÉ…ð@ª'‰7KÇ@ª'½¥@ª'‰7KÇ@ª'|ÚQ@ª'‰7KÇ@ª'ò䎊@ª'‰7KÇ@ª'€[À7@ªÁ©ûçl‹@ªÁ©ûçl‹@ªÁ©ûçl‹@ªÁ©Ô•+@ªÁ©ûçl‹@ªÁªdÂø8@ªÁ©ûçl‹@ªÁª Þ@ªÁ©ûçl‹@ªÁ©ûçl‹@ªÁ©ûçl‹@ªÁ©Ô•*@0‰Î_oÒ@0‰Î_oÒ@+½²-V@+½<64@*¯ß;dZ@*¯O „M@*L²•éá±@*KàÞÒˆÐ@*L²•éá±@*L1&éz@*L²•éá±@*LIº^5@?É^žQ5P‚?é¥3i£ó?‘,fŸCô6?‹Æ úJ-M?ùª¨?¸û:?ÐbMçê_x?’uß¿çÒ?¹º–Èj?4–Ú‰3?ÔÒ@úˆ‘?R g!Ú¢?€b¡´ñ@?Œ°¶.Ä+Æ?‚‹¡8*ú?ƒ!Ë *(?†£îž«î?†’Õaì+’@@@@@*@*?ð?ð?ð?ð?ð?ð¿Bö:(¿>Ôk€?2ð~(y|¾>ø“QÒ -…¹@ª'€²—1@ªÁ©õò?B9Iÿ«Ž?A­ÆvÒ?€?n¢¦‚?·‹3÷7×@Ÿs Ò1j@/@¯°÷KƧð@¯°æéxÔþ@¯°÷KƧðÁ.„€@¯°÷KƧðÁ.„€@¯°÷KƧðÁ.„€@¯°÷KƧðÁ.„€@¯°÷KƧðÁ.„€@©ÖÀ@©Ö»¥ãSù@©ÖÀÁ.„€@©ÖÀÁ.„€@©ÖÀÁ.„€@©ÖÀÁ.„€@©ÖÀÁ.„€@8›¹Œ~($@8€[À6ã@5óS÷ÎÙÁ.„M‰ûçm@5ñ‰7KƨÁ.„QnÙ‡@5Vý!ÿ.IÁ.„NÜC,¥@5Vý!ÿ.IÁ.„NÜC,¥@5Vý!ÿ.IÁ.„NÜC,¥?•²»UbB2@8#˜@8¾:@8 >+@8Iç@8Ù?óA[ØïF@8Î÷@8i§@8Å@8S@8û—?Èèì 1@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø0@Ÿ»o²-@Ÿ»P¡þ‰=@Ÿ»o²-Á.„€@Ÿ»o²-Á.„€@Ÿ»o²-Á.„€@Ÿ»o²-Á.„€@Ÿ»o²-Á.„€@¦ç¬‹C•@¦ç¦„à@¦ç¬‹C•Á.„€@¦ç¬‹C•Á.„€@¦ç¬‹C•Á.„€@¦ç¬‹C•Á.„€@¦ç¬‹C•Á.„€@8ý:’£@9?W:*—@4û Iº^Á.„M‰ûçm@3ÝV”Á.„QnÙ‡@3s&Á½¥Á.„NÜC,¥@3s&Á½¥Á.„NÜC,¥@3s&Á½¥Á.„NÜC,¥?š­˜]@8#˜@8¾:@8 >+@8Iç@8Ù?¾»AH­=ø@8Î÷@8i§@8Å@8S@8û—?µÖúLwÊ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø1@¦_[¥ãSø@¦_^5?|î@¦_[¥ãSøÁ.„€@¦_[¥ãSøÁ.„€@¦_[¥ãSøÁ.„€@¦_[¥ãSøÁ.„€@¦_[¥ãSøÁ.„€@¦&ffff@¦!G®{@¦&ffffÁ.„€@¦&ffffÁ.„€@¦&ffffÁ.„€@¦&ffffÁ.„€@¦&ffffÁ.„€@7Y*0U2b@7UðoiDh@4¦‡+ JÁ.„M‰ûçm@4b-VÁ.„QnÙ‡@3ÿò䎊rÁ.„NÜC,¥@3ÿò䎊rÁ.„NÜC,¥@3ÿò䎊rÁ.„NÜC,¥?‚á²Olºü@8#˜@8¾:@8 >+@8Iç@8Ù?3ßa=„@8Î÷@8i§@8Å@8S@8û—?‘c‚ׯ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø2@¦`o²-@¦`p Ä›¦@¦`o²-@¦`n—Oß@¦`o²-@¦`o „M@¦`o²-@¦`oìVÕÐ@¦`o²-@¦`l¿±[W@¦`o²-@¦`l˜_÷@¦ t9Xb@¦ týó¶G@¦ t9Xb@¦ t‡ü¹$@¦ t9Xb@¦ t•*š@¦ t9Xb@¦ vE¡ÊÁ@¦ t9Xb@¦ u '»@¦ t9Xb@¦ u›=È@4‚ò䎊@4[W>«6@15ãS÷ÎÙ@161ø .@0²-V@0 –»˜Çâ@/Aò×t@/Ž_oÒ!@/Aò×t@/hÛ‹­@/Aò×t@/Ž—Oß+@8Iç@8Ù?¸®ˆ¤óÇþ@8Î÷@8i§@8Å@8S@8û—?µ{åÐÖÚ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø5@ª$G®zá@ª$X0yø*@ª$G®zá@ª$dñ›O*@ª$G®zá@ª$Í¢`Ë@ª$G®zá@ª$µðgì¹@ª$G®zá@ª$´áòI@ª$G®zá@ª$Åî|ßø@•øÔýó¶@•ú …@•øÔýó¶@•©‰2"•@•øÔýó¶@•A9t@•øÔýó¶@• ‡Œ‡@•øÔýó¶@•KsÿK@•øÔýó¶@•Xdc 4@8Âò䎊@8³Á;¬³h@5ør° Äœ@5í¶¿±·@61‰7Kƨ@6qæL5@4á:’£S@4³fLoj@4á:’£S@4”;ž$ä‚@4á:’£S@4’­ù ?¡ë MV{¶?“»N+³9G?µ?û¤J?©~ê}²·6?ºt¼2Én?¾Ü“K3ûº?®ÌÅþõ¤À?¢2ðð;Z¦?¶•!|/ñš?· .ß³Q{?Ål™1¡}?Äí‚‘²ƒô?˜óB1ßPÅ?žXzâ×)Ø?»Úဃ?›/ÿŠÆe¹?¤lP‘R©{?¥’SÉF"@@ @&@(@<@9?ð?ð?ð?ð?ð?ð?œj -îÀ?x=lÆ?vßG¤[J©?g×ò¬vWØ@ª$”²wc)@•e‰1?”)Ó‹ %¢?…ÄZtÐ;!?ì…Ÿ4,ñ?·Àµ † f@Ÿfh飤@6@ª2;dZ@ª25?|î@ª2;dZ@ª21&éx@ª2;dZ@ª27´¢4@ª2;dZ@ª2zxl!@ª2;dZ@ª1ÿoÒó@ª2;dZ@ª1þÑ·@§/9XbN@§/6È´9X@§/9XbN@§.Çü¹#£@§/9XbN@§.ô9Xb@§/9XbN@§.Ãn.±Ä@§/9XbN@§.ÉÇy¦µ@§/9XbN@§.½IQ‚ª@8¿–»˜È@8¦+jçÕg@43S÷ÎÙ@4a@N¤@2ß²-V@2ÅF -¦L0@2î_oÒ @2ºçÕfÏB@2î_oÒ @2º¦L/ƒ|@2î_oÒ @2¹™™™™š?¦Ï±úQm‡?“vuØcʲ?“njĕ‹x?ØTnçE?–[À5ž¨?–VòFNLG?—¤o„C?›ªÊît…?•swŽ)Ò?±2ý}û¢í?°KNø»«ú?²fÄF›Ž7?£ ‡ººbë?‘ÌAzÁý?ƒÆ×q„nð?‹h¢íc„„?•XðküÏ?–Ö8ýÆN0@@@@@,@*?ð?ð?ð?ð?ð?ð¿v>£hi€¿œËÑœ ?Z{»„®ˆ†?u‰Ü'#ì@ª2Ú‘î@§.ë’.õÐ?sV}‹zÿ?˜äËiC?ÑVÕ.¥f?ùÈT|Xˆ@ŸjEpÔ É@7@¦ä:áG®@¦ä6‡+ @¦ä:áG®@¦äDÝ/ @¦ä:áG®@¦ä×s@¦ä:áG®@¦ä#,¥zx@¦ä:áG®@¦ä*Ú¹õY@¦ä:áG®@¦ä)xÔýô@¥¸ó3333@¥¸ñ©ûçn@¥¸ó3333@¥¹×sü@¥¸ó3333@¥¸ãS&@¥¸ó3333@¥¸ëxFÜ@¥¸ó3333@¥¹ ]Ìcñ@¥¸ó3333@¥¹ÓZ…ˆ@8 ]cˆe”@8škP°ò@4½‘hr° @4šqÞi­B@4Wï²-@4'_oÒó@3‚@·€5@2å?|í‘i@3‚@·€5@2òœwškQ@3‚@·€5@2÷“Ý—ö,?š•§q!U?¬}æàÀæ?µ¹eüº¦Þ?§ÔÅȉ›?œ=òÙUä?¢‘Þ')ÚÌ?‘â%ì˜ ä?¢›â¾Ð'µ?®Ÿîæ½ä?¬Û7èfQ?¡j`cq?¨V⌰Ö?Œznyž-g?¦; y»Ÿ?¦qeP•QZ?—ôŠÊô?•*†*Zû? kÿà¬@@@@@(@(?ð?ð?ð?ð?ð?ð¿gÂ݃?|meþZ€?Vs`éz7ñ?dC¨’ç'«@¦ä.& Œ$@¥¹ž¬û?v2Í5…/?†/]1?În*P„Â?êü¬ -7h…@Ÿi}R§ê@8@¥JšŸ¾vÉ@¥J›"Ðå`@¥JšŸ¾vÉ@¥JœPHð@¥JšŸ¾vÉ@¥Jœ(õÂ@¥JšŸ¾vÉ@¥Jšû~‘@¥JšŸ¾vÉ@¥J˜l"h @¥JšŸ¾vÉ@¥J™¦µ @¥XbMÓ@¥XbMÓ@¥XbMÓ@¥WOß;@¥XbMÓ@¥Sœ¾ß@¥XbMÓ@¥XQë…@¥XbMÓ@¥Vð¹@¥XbMÓ@¥Vð¹@4÷â‚@·€@4÷_oÒó@1=‘hr° @1>záG®@0§KƧïž@0§ÈK]Ìd@0(è§æ›@0(ï4Ö¡b@0(è§æ›@0(ºÇË*@0(è§æ›@0(è§æ›?|¬Çëý ?ôÊ_?‘"žæÆó¡?ŒÇQ´uøiÛ@ ƒ'ï²-@ ƒEåA‘@ªëó3333@ªëï½É×f@ªëó3333@ªëõO8œ@ªëó3333@ªìrÓæ*@ªëó3333@ªëöGPñÚ@ªëó3333@ªëðé(å¸@ªëó3333@ªëñ—!@8Bò䎊@8Bü)@Œ@58r° Äœ@5>ùH2¸@4—ï²-@4Ö”¬Î@4QÞi­BÄ@4M—ú¼¹®@4QÞi­BÄ@4JG˜Åzg@4QÞi­BÄ@4I0ß I»?Ĺó¥p?”D]„Û?‘i£ð ?”l¨G×D? Et¨×?©·GÃáÏ„?¡ë MV{¶?•h™Oô6?’ ¬G|¦?™Üq—èÂõ?˜ å­fgÓ?–eVC6d?‘}й?*?ŽÆÝŒUÐÊ?ŒÜÏKÚ?¢Ÿ t_?“¾f"7ÿ?šäõõ(åâ@@&@"@(@5@:?ð?ð?ð?ð?ð?ð?wMÁ°ê€¿UBÁ@?n˜ «Š?Q>OÅ\’@ ƒEUð5V@ªëòaõÅY?ìFƒZ?m:“õb@õžJŸ•?ÀæT‡‡÷@ŸkÁ)0j@:@ ðØ“t¼j@ ðÄDKAw@ ðØ“t¼jÁ.„€@ ðØ“t¼jÁ.„€@ ðØ“t¼jÁ.„€@ ðØ“t¼jÁ.„€@ ðØ“t¼jÁ.„€@•]Ÿ¾vÉ@•]"~Ìä@•]Ÿ¾vÉÁ.„€@•]Ÿ¾vÉÁ.„€@•]Ÿ¾vÉÁ.„€@•]Ÿ¾vÉÁ.„€@•]Ÿ¾vÉÁ.„€@7uS&Á¾@7u‹‘ w@5#÷ÎÙ‡Á.„M‰ûçm@4PA‰7KÇÁ.„QnÙ‡@4ÚQÎÁ.„NÜC,¥@4ÚQÎÁ.„NÜC,¥@4ÚQÎÁ.„NÜC,¥?˜²Tëg@8#˜@8¾:@8 >+@8Iç@8Ù?Žýf´ù:ú@8Î÷@8i§@8Å@8S@8û—? ‰M„6™~@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø;@«Ý¼í‘hs@«Ý»D—Î@«Ý¼í‘hs@«Ý¿ZÑ*@«Ý¼í‘hs@«Ý¼ÃùÓ@«Ý¼í‘hs@«Ý»³_ø•@«Ý¼í‘hs@«Ý¹Ñ¶ò:@«Ý¼í‘hs@«Ý¸ÿÊ!>@“c®záH@“cÊÀƒn@“c®záH@“c¯ç¨/…@“c®záH@“cªˆ)8'@“c®záH@“c©ãìÖQ@“c®záH@“c¤Rß%¯@“c®záH@“c¨Ëèú@8}:’£@8õHt4F@4.5?|í‘@41 k¹Œ~@3$¼j~ùÛ@3$®za»°@3 -0U2a|@3 /ñÁÐÅ@3 -0U2a|@3"æQ–±@3 -0U2a|@3 à¡wǘ?˜—"ÝÚá?’ÇŠb4?‘\Уp±•?³©€hš?”[P"mr?Þ@;#Ö?±I€ ¢´‡?”ûP–˜?‘5QTà¡?ì_Ú²±Z?•X1-?^ÅtÙ¤C?ªÏ*DU™?¹ç^2¢+?‡Áã$µG?ˆû™‡îf?Š>º¶Æ?ŠŒ'ê^`N@@&@$@&@8@0?ð?ð?ð?ð?ð?ð¿BæÞøl¿ULJÇÀ?5Q‰þ0ÇÒ?WCiD,‚F@«ÝºZME@“c©Ì÷2ç?P›üî?k(Ž&;ZÞ?šfÄ-£õ?Ê–Œ*@ŸpÇ}UèŽ@<@¦wKƧð@¦w -=p¤@¦wKƧð@¦w¨æd@¦wKƧð@¦{,mIm@¦wKƧð@¦~<ñ·l@¦wKƧð@¦qù³…Ñ@¦wKƧð@¦v*(²"@™ @ƒn˜@™ =ó¶E¢@™ @ƒn˜@™ GÀ{þÜ@™ @ƒn˜@™ 6”ŒEž@™ @ƒn˜@™ c7Ž"@™ @ƒn˜@™ W7#Õr@™ @ƒn˜@™ G!cÄ @6¥öý!ÿ.@6¥ôui×@2é‡+ @2À%3þ@2RÐå`A‰@2㣭Q’@2&YJôðØ@2 Ÿš¶Ã@2&YJôðØ@2/ûR´HÄ@2&YJôðØ@21¢ûmEN?|Ñb×¶@?’,/*¦!Û?”¿’ C%²?‹úßb¦ƒ…?žìÍýÅG8?œÉ…»ã¤Œ?€‘gQÚÃ?”¦HïÃå?˜(32“G?¼Î°ß@?¢+,PíË?¡—@©…÷O?’—Å·zÉ?‘ÀžÂœ?‡¨¶â+‹?‘»ªy@?÷ºYÇó„?«£¡@@(@"@ @8@;?ð?ð?ð?ð?ð?ð?GÛð´?oÀðø?VVÞöoº?aæ„I”ƒx@¦xÊÇ @™ LßÿSÖ?rÓt:I°U?~¼²¿ƒI?ì޷舜,?ú”¡û1 |@Ÿch™[qÈ@=@©€ÚŸ¾vÉ@©€Ó¶E¡Ë@©€ÚŸ¾vÉ@©€Ù k¹Œ@©€ÚŸ¾vÉ@©€ÐË)^ž@©€ÚŸ¾vÉ@©€â Iº^@©€ÚŸ¾vÉ@©€Øl"h -@©€ÚŸ¾vÉ@©€Ù¦µ @¬8*~ùÛ#@¬8*~ùÛ$@¬8*~ùÛ#@¬8'Ë)_@¬8*~ùÛ#@¬8-ÅÖ8†@¬8*~ùÛ#@¬8*™0¾@¬8*~ùÛ#@¬8+'»1@¬8*~ùÛ#@¬8*dÂø8@7­¥œàv@7«íúCþ\@3W+ Iº@3TmÅÖ8†@2¤¼j~ùÛ@2Ÿ¼@1æYJôðØ@1ç8}¿I@1æYJôðØ@1å¼£n/@1æYJôðØ@1åÂ\(ö?‡YÍ_?’ -ܦ%Ö?’ >(lQ ?Ž £Ú?“”>C,4?’¯-! )m?Ÿ‹‘+-/Ü?˜Æ&ÀÒ ˆ?’F^ì¼Sï?‘W×ý°A?’l{9ÙŽ?“{P»á?³czƒ—­?•<€¥¿ý¢?‘c‚ׯ?ƒì%­¹Ï‘?‡L8õASÎ?‡gϵ’õ@@@@@*@*?ð?ð?ð?ð?ð?ð?Z>;î0>æÐSU?\ÕyÞn×? ñb†•F#@©€ÚžÙ|@¬8*©Óð˜?~6ºQÒà=?8²™¶vQ?úS«¾ t?fúEíº¦@Ÿm—Eû€Ã@>@®œ]/Ÿ¾@®œ]ó¶E£@®œ]/Ÿ¾@®œ]—ö+j@®œ]/Ÿ¾@®œ]ÈK]@®œ]/Ÿ¾@®œ]/Ÿ¾@®œ]/Ÿ¾@®œ\C,¥{@®œ]/Ÿ¾@®œ\žì¿²@¤–“u@¤”ýó¶F@¤–“u@¤—eýŠÛ@¤–“u@¤–+jçÕ@¤–“u@¤•$Ý@¤–“u@¤”ðØDÐ@¤–“u@¤•Ϫ͟@6Ç>«6z@6Å8ï4Ö¢@1Œí‘hr°@1‹'»/ì@/ãn—P@/âø7´¢4@/³üPH@/°£× -=q@/³üPH@/²° Ä›¥@/³üPH@/³33334?|öOÿÝ?š¾ßÍZ?‘šÕU#?‹¦ ŸYÔ?‘çG¸?‘W_Ì?|¬Çëý ?’ùÎ {?ŽËÜ¿€?EÇàÔPà?‘ ·èf?«àÓ RÆ?‡}¤íý?îŠõ ?‚|׿pZ?ƒì%­¹Ï‘?†Ë¢L1Ù?‡?®\Âä@@@@@,@,?ð?ð?ð?ð?ð?ð¿5 -à?0?}ÛmÀ?eÈwßxã?ÂØÊ73A@®œ]@:@¤•<¾šÓ?0= õ˜~?4HVwÙ×?ll9sÌ„—?tËà\†i;@Ÿfß(úI@?@¯Üµ?|í‘@¯Üϲ-@¯Üµ?|í‘@¯Ü²ÛÄ¢€@¯Üµ?|í‘@¯Üºvް_@¯Üµ?|í‘@¯ÜºW­Õ,@¯Üµ?|í‘@¯Ü²C\5‹@¯Üµ?|í‘@¯Ü¶kkºw@š{çl‹D@šŒÌÌÌÌ@š{çl‹D@šx9°_¢@š{çl‹D@šƒ 4Ö@š{çl‹D@š„)óÃ6@š{çl‹D@šxBÑF@š{çl‹D@šw•Ѿœ@9쿱[W@8õ¯fŸ@4; Iº^@4:äÆyÿ@3¤¼j~ùÛ@3¥¹„q$ã@3 -0U2a|@3 =­Öð@3 -0U2a|@3 ->˜£ïF@3 -0U2a|@3 £ _ -¥?†c£ïDì?’pvoK‹?“ñ>®kj?ŽØ„èà¯e?‘ºïö©1.?”éÅcÇæZ?¡ÍÜ -Ü?“sŒPì;Š?•²ùuq?ba§U¸?‘ ßäéAÒ?“¤A—Ñ„Ë?•ghZS ?Žb(!èIË?‰8: If…?„$Þ<‚B?‰é Hé‚?U#Ç–ø@@(@*@(@2@5?ð?ð?ð?ð?ð?ð¿yÓ&¾¿d‰5ö€?TÐüòœ|?D<3…@¯Ü»NÈÞ¨@šÝiZb?v^%@K ?[ÓÎí׬|?ëêjrBt?®×›e@Ÿm·©ÓÄ@@@¡½ñ©ûçm@¡½öE¡ÊÁ@¡½ñ©ûçm@¡½Ï–»™@¡½ñ©ûçm@¡½Ðÿ—$t@¡½ñ©ûçm@¡½Þߤ?æ@¡½ñ©ûçmÁ.„€@¡½ñ©ûçmÁ.„€@¬/B\(ö@¬/XÔýó¶@¬/B\(ö@¬/.óMj@¬/B\(ö@¬/@hÛ‹¬@¬/B\(ö@¬/;çl‹E@¬/B\(öÁ.„€@¬/B\(öÁ.„€@8Ì]cˆe•@8»W>«6z@43S÷ÎÙ@4²þÅm]@3¹7KƧð@3›íúCþ\@3ý!ÿ.I@2ýÈK]Ì@3ý!ÿ.IÁ.„NÜC,¥@3ý!ÿ.IÁ.„NÜC,¥?‚á²Olºü?¬„¸ßÜñ|?ªËîi‹à[? [@Ì{@8Iç@8Ù?˜ž^ƒÿ*ˆ?¨î+³M?¥Öä›?ŸÛ€l ì™@8S@8û—?¶j“êÜài?™¬¨YWî?”³Ž+k?‹Ûu¤ó†4@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøA@ª'ß;dZ@ª' …¸Q@ª'ß;dZ@ª'†Â&@ª'ß;dZ@ª' qv@ª'ß;dZ@ª'—Oß@ª'ß;dZ@ª'¼ÓZ†@ª'ß;dZ@ª'¡ÊÀƒ@­ÔàA‰7L@­ÔíÒñ©ý@­ÔàA‰7L@­Ô× -=p¤@­ÔàA‰7L@­ÔÔ¢3œ@­ÔàA‰7L@­ÔÆ$Ý/@­ÔàA‰7L@­Ô÷Xâe@­ÔàA‰7L@­ÔÓ¶E¡Ë@8™*0U2b@8ˆ´9Xb@3”›¥ãSø@3ˆÛ‹¬q @3)Û"Ðå`@3!4êJŒ@3 ù kº@2ý¥œàv@3 ù kº@2ð¸ºÇ@3 ù kº@2éÛ"Ðå`?„F/·ÿP5?”û#T©È?ŸM¾‰Å´?Œ'õ‚$5ñ?¡Ìº"æh?¦5^ÒYŒ?²C¨y3?˜&§dU(?  5q²Ó/?’ äÅ?·$uA Ç?ÁŠ2š`?ÅùðEû?‘5ø gµÒ?‹v'þ­X?‰E^uŠš?£Ü”~‡ÑT?ª7•"U›@@@@@(@(?ð?ð?ð?ð?ð?ð¿#ðÖ¹ ¿vx¤»­?SÄlW™’?‡Ô½d¦¬ÿ@ª' ´ƒÖ@­ÔÊYÎdm?sÓ¡‹(S?¶)”ÚÏ?Ü#ÃBÏ™?þ’7K¬ñ@@ŸiÝ‘ÙÛ@B@¡€äZ¬@¡€ä›¥ãT@¡€äZ¬@¡€ç“Ý—õ@¡€äZ¬@¡€çï².@¡€äZ¬@¡€åýŠÚº@¡€äZ¬@¡€äg8~@¡€äZ¬@¡€äZ¬@«¾‚ Iº^@«¾‚\(ö@«¾‚ Iº^@«¾€ªdÂø@«¾‚ Iº^@«¾ÊÀƒ@«¾‚ Iº^@«¾ohÜ@«¾‚ Iº^@«¾‚e+Ô@«¾‚ Iº^@«¾ [À@3òÃÉîËû@3òœwškQ@1Ô›¥ãSø@1Ô¢3œ¿@1´“t¼j@1³Ý—ö+k@1‚‚@·€5@1‚ø7´¢4@1‚‚@·€5@1ÊÀƒn@1‚‚@·€5@1‚&€IR?|öOÿÝ?ÖÈ ¼?’µ<ëvar?î®)„àµ?’Z†Ažj?‘£‡9²þ?|¬Çëý ?’r/BÖ?’±ä?’:u.ý ?‘¾ãazÅ?‘yÃúCŠ?‚˜YªüÏE?¨ ‰‹U)?ƒ¡É^&Ö?„€ã$V?‡?®\Âä?‡”_Õ­çW@@@@@,@*?ð?ð?ð?ð?ð?ð?ç‚0DEÉ@?)°£Óªa?Yæ.9ë@¡€äË_G@«¾‚Ô†Æ?Iyºþ°ï ?7µí´=óŸ? ]gð«€?{=ÅeHi@ŸfÂZ-@C@¨ð÷ÎÙ@¨ðzáG®@¨ð÷ÎÙ@¨ðÜÆ?@¨ð÷ÎÙ@¨ð:û~‘@¨ð÷ÎÙ@¨ð k¹Œ}@¨ð÷ÎÙ@¨ð8}¿@¨ð÷ÎÙ@¨ðr° Å@©šÌIº^5@©šÌ‹C•@©šÌIº^5@©šË’:)È@©šÌIº^5@©šÉ^ž @©šÌIº^5@©šÎ±Ä2Ë@©šÌIº^5@©šÏhÛŒ@©šÌIº^5@©šÐ¾ í)@5G>«6z@5Gy¦µ @1pÄ›¥ãT@1o¤?åÉ@1A‰7KÇ@1i­BÃÊ@03&Á½¦@0-í(Œç@03&Á½¦@0-(Œç°@03&Á½¦@0.—Oߪ¸ ?“ÌUõÎs¼@@@@@,@(?ð?ð?ð?ð?ð?ð¿gúe„?IcÛ’P?B~û”¹–S?Ú\Î;ÝË@¨ð5ö@©šÎ'ÌN?b„Å8ym$?7 ¢Út!?ϰMû$±Â?v24†/©”@ŸfJ½í;½@D@ ºc× -=q@ ºcÂà -@ ºc× -=q@ ºeo@ ºc× -=q@ ºe£µ`†@ ºc× -=q@ ºc‚>Y@ ºc× -=q@ ºd]¬|@ ºc× -=q@ ºbÑÌî3@«c -Àƒo@«c -¿Üö@«c -Àƒo@«c ãrèÛ@«c -Àƒo@«c vèöK@«c -Àƒo@«c ]Ìcñ@«c -Àƒo@«c -}šÜZ@«c -Àƒo@«c -(…£Â@3 ØDЩ@3 ñ,'¦7@1?|í‘h@1õ Ô@1t¼j~ú@1 ÿ»@08DЩ*@08Âþ[ü@08DЩ*@09¸Ž6@08DЩ*@0:,†ƒ„?}x—™9Oa?‘7ìyï%?óe6ºº­?|¬Æ Væ?’!_í<Ý?ÃFÝÖü?:Íí"íÕ?ÿr<&?‡'P„i?‚o†#BpW?Œ»G•Ýó?‚ëmÄãN?‚ê¬Ù:âk?†âq¯~ï—?†×ézÇ]*@@*@,@&@9@8?ð?ð?ð?ð?ð?ð¿C¦‹@¿pÞ0@?!SÁøpÉ?š?Ab6@ ºc¢qÁ¸@«c -¬ï¶ ?A2e»&ä?<¡ÿÀ›¨?ke!ræ”?„sdñ z -@ŸfötÄ÷/@E@žŠÙ‡+@žŠÙ‡+@žŠÙ‡+@žŠÞ3¢‚¨@žŠÙ‡+@žŠ×:&)×@žŠÙ‡+@žŠÚóì@žŠÙ‡+@žŠØ¿I @žŠÙ‡+@žŠ×„@Èó@¨¯Ù‡+@¨¯Ù‡+@¨¯Ù‡+@¨¯¨eá³@¨¯Ù‡+@¨¯ ÛÍ{@¨¯Ù‡+@¨¯óÚ‘Û@¨¯Ù‡+@¨¯è‹K@¨¯Ù‡+@¨¯ªkÿÕ@2T xFÜ@2T’8]@0ÞÙ‡+@0ÞÉ\@0V”@0R~¹1@0³&Á½¥@0³¥š…@0³&Á½¥@0³`$OÒ@0³&Á½¥@0³ÛÖCUº?É^ÈmÔ d?¾¡òE ë?‘7ë>a*?‹åPvÆoï?‘ çX‹Ñï?ëÝž2?ÐbMÝn½?’ËÙ‘%?‹^Ónu§?Z<ð?ˆ?÷êjãë9?k ö‡_?€b™Qž?Œµ PÜÞ?‚ŠxÝKhù?ƒè?ÉÐ?†ý\áè*¢?†õr {%u@@ @"@ @3@1?ð?ð?ð?ð?ð?ð¿Híµn:?2éÑ?&¶A™²4z?$4×ã›ï@žŠÙ!ë’@¨¯%¸‘ß?5Úötráh?3!γ M?fÿ‚&$Tô?_•UoØ· @Ÿs+O`Ñ@F@©±Rn—P@©±Rn—P@©±Rn—P@©±SüPH@©±Rn—P@©±Rñ©ûè@©±Rn—P@©±R×sü@©±Rn—P@©±R¼£@©±Rn—P@©±QÞi­D@ `ÿ|í‘h@ `ÿ|í‘h@ `ÿ|í‘h@ `ÿö”G@ `ÿ|í‘h@ `þÿ—$@ `ÿ|í‘h@ `ÿ¼@ `ÿ|í‘h@ `ÿö”F@ `ÿ|í‘h@ `ÿö”F@0¯O „M@0¯O „M@*Š~ùÛ"Ð@*Š~ùÛ"Ð@)ΗOß;@)ΗOß<@(b¶®~@(Œ~($ @(b¶®~@(Œ~($ @(b¶®~@(rGE8ð?ðO­W¬ÃÆ?Òç{íj?‘!!Ø×‹7?‹¨þ„/š?íOþtà?¸û:?ð„ƒ;0?’ ÃCÀ`ú?}Ò€º‡?3.Ylî?ÔÒ@úˆ‘?PS2K¯™?ð!̃?Œ¬Çëý ?‚q6tNø7?‚ãaÎúvh?†ˆ#.÷?†‰Oú|q?ð@@@@*@,?ð?ð?ð?ð?ð?ð¿=sÉ@¾øXùà?ÜiŸžn}>àÃ~'â`@©±RGš½Û@ `ÿ Ľ?%иg [>ïFý©VN?G##`L>Õ§ñ5ëÎ@Ÿs‹ÕÈUÇ@G@¯CMOß;d@¯CM‘hr°@¯CMOß;d@¯CNHè§@¯CMOß;d@¯CM‘hr°@¯CMOß;d@¯CMÒñ©û@¯CMOß;d@¯CK¬q ³@¯CMOß;d@¯CKP°ûÖ@œW£× -=q@œW£× -=q@œW£× -=q@œW¢¶®}V@œW£× -=q@œW¢e+Ó@œW£× -=q@œW¢‚@·€@œW£× -=q@œW¡ä÷eþ@œW£× -=q@œW¡ÿ.C@/„?åÉ@/ƒñA [À@,Üj~ùÛ"@,Ü64ê@,íOß;dZ@,íquŽ"@,á-w1Å@,àƒn—@,á-w1Å@,àÞÒˆÎq@,á-w1Å@,àëíå¦X?É_¦›ùôä?Òç{íj?‘,fŸCô6?‹½XQê>æ?ÿ £‰¸9?ºª€LI?ÐbMÝn½?’MœœN ?ŽËÜ¿€?K·‘d]?ß’ºèh!?Uÿwëâ„?€}æô+,b?Œ¯þuõí?‚|׿pZ?‚ù8 ±^?†žóB» “?†žóA,Þ}@@@@@*@(?ð?ð?ð?ð?ð?ð¿RhĦ¿Or{l?0‹!u¼ À? †eøj…@¯CLoÇê@œW¢+–T??Ù#á¤Tm?ðùõò= ?xÐ1o§=Ð?1~fløa@Ÿs -Mù…@H@¥ôØ“t¼j@¥ôØÔýóµ@¥ôØ“t¼j@¥ôÙŒ~(%@¥ôØ“t¼j@¥ôÙ‡+@¥ôØ“t¼j@¥ôÙJôðØ@¥ôØ“t¼j@¥ô×Ûô‡ý@¥ôØ“t¼j@¥ôØFÜ]@¤ÝõÂ\)@¤Ýö“v@¤ÝõÂ\)@¤Ýõöý!ÿ@¤ÝõÂ\)@¤Ýõöý!ÿ@¤ÝõÂ\)@¤Ýö4ê@¤ÝõÂ\)@¤Ýö4ê@¤ÝõÂ\)@¤Ýö4ê@0è†YJôñ@0è†YJôñ@)Üj~ùÛ"@)ÜPHð@(–E¡ÊÀƒ@(–+jçÕg@'ÑÑN;Í6@'Ñ·Xâ@'ÑÑN;Í6@'ÑÑN;Í6@'ÑÑN;Í6@'ÑÑN;Í6?É_\p)Ï?ï1ïºÅ?‘Ûü†Nã?‹¹GüÞõ?ëÎ@ A2?¼‚Ë¡K?ÐbV‡,?’5CàQ?~ËQ§?6) }’ë?Ñ¡b£?¾?R g!Ú¢?€bMÕky?Œ­·Ž~('?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†ˆ#.÷@@@@@,@,?ð?ð?ð?ð?ð?ð¿C–d¸>’¢=ˆ?.·´ú ³Î>¶–XÈ)ô@¥ôØ|sñ@¤Ýö-š?=‡Ü8w7>Å^Èò|èË?ud¶-Î1ª>„å -^SÀ@Ÿs–÷y¼@I@¦Á‰7KÇ@¦Ã× -=q@¦Á‰7KÇ@¦¿Ø­«Ÿ@¦Á‰7KÇ@¦Âh Ô•@¦Á‰7KÇ@¦Á–R½<@¦Á‰7KÇ@¦¿b¶®}@¦Á‰7KÇ@¦¿Ø­«Ÿ@¬µfffff@¬µi7Kƨ@¬µfffff@¬µg¯·é@¬µfffff@¬µiã½@¬µfffff@¬µg_oÒ @¬µfffff@¬µg_oÒ @¬µfffff@¬µf§ï³@6Û¹Œ~($@6ÛW>«6z@1=‘hr° @1÷?ƒíÈm½!¿?ƒE 8?†Ë¢L1Ù?‡2[síç@@@@@*@,?ð?ð?ð?ð?ð?ð¿M…;fœ¿A¦' ?(ïíë„Ãð?ùŠÖ Ag@¦Á_ÃÛ@¬µgÉt,¶?E»–lóZ?3GC}Õ?Œai‰ :?n„=K³ô@ŸjéÁ$J3@J@¨BÓt¼j@¨BÒn—P@¨BÓt¼j@¨BÖ8†YK@¨BÓt¼j@¨BÖÕϪÎ@¨BÓt¼j@¨B×Xâ@¨BÓt¼j@¨BÖð¹@¨BÓt¼j@¨BÖý!ÿ-@ òcS÷ÎÙ@ òc•%@ òcS÷ÎÙ@ òaÿ.Hé@ òcS÷ÎÙ@ òaG®{@ òcS÷ÎÙ@ òaÿ.Hé@ òcS÷ÎÙ@ òa|ÚP@ òcS÷ÎÙ@ òb Iº^@6+µsê´@6* ÞÒ@0×+ Iº@0Õ8ï4Ö¡@0Ct¼j~ú@0@‰ 'RT@/3üPH@/-‘hr°!@/3üPH@/-quŽ"@/3üPH@/-í(Œç?3ßa=„?û¤â]?”¦¢œŒÕ?’KŸÐÇ¡?‘ÇöÃÞ`?‘f]£àG?„F/·ÿP5?’HGªÂÛ^?‘twæ³?ø,~[´?‘„ÅMè?‘¿¤üî¾Ö?‚˜YªüÏE?ŒÛÏ·+?‚§W®ê ?‚ôhBì^?†¯Mž684?‡Ä­‹›Ü@@@@@,@,?ð?ð?ð?ð?ð?ð?OÞUªä¿:­Ã—¨?5&@d[«?2Eg™@¨BÕ˜½È@ òbeG¤Ú?Sÿ‚l¼XL?@X]Œ‰v~?¥QÆ–î?‚¤è&Hóô@ŸjÙÒ’ªa@K@¦Õ;dZ¬@¦Õ0£× -=@¦Õ;dZ¬@¦Õ8†YJõ@¦Õ;dZ¬@¦Õ;‹¬q @¦Õ;dZ¬@¦Õ;quŽ"@¦Õ;dZ¬@¦ÕA:’£@¦Õ;dZ¬@¦Õ<¾ß¤@­ùÚ¬1@­ùÚ¬1@­ùÚ¬1@­ùà[À7@­ùÚ¬1@­ùÛJ#9À@­ùÚ¬1@­ùß;dZ@­ùÚ¬1@­ùÛquŽ"@­ùÚ¬1@­ùÚÔ,<ž@7ÖšÔ,<Ÿ@7Ý‘hr°!@4|í‘hr@4¾ í(Œ@3.ùÛ"Ðæ@30–»˜Çâ@2èè§æ›@2ê0U2a|@2èè§æ›@2øð¹@2èè§æ›@2÷Xâf?™™™™™™š?‘+ùÔ!½Š?™À‘öô{?—IW`g’?¡“&t‹®q?¥ùÏ@Ì?“Æ×q„nï?••´þDê‘?’Qÿc -?šl Ĩ™ë?¢Œ~0d?£–Úd ªØ?‹’Ú[ßô?[™ÕÈ™8?ŒÊ­#г_?ùïJÓ?•°QŸ?]Í?‘ýÂHåÅÐ@@@@@,@*?ð?ð?ð?ð?ð?ð?j¼'T-?@äAP?PiÓ€7b?G×¾>¸F@¦Õ9¨H«À@­ùÜ Ñ"?kF7ÅnÛ?g$\/ rU?»”WúP?´¸­ùû¨y@Ÿi5˜(%ß@L@§@\(õÃÁ.„€@§@\(õÃ@§@ -=p£×@§@\(õÃ@§@ ÌÌÌÌ@§@\(õÃ@§@‚©“ @§@\(õÃ@§@O „L@§@\(õÃÁ.„€@«rk IºÁ.„€@«rk Iº@«ri*0U2@«rk Iº@«rt¯O …@«rk Iº@«rt¼@«rk Iº@«rn.±Ä2@«rk IºÁ.„€@8è†YJôñÁ.„>¤µÜÆ@4›¥ãSø@4䎊qÞ@3€å`A‰7@3~ÒˆÎp;@2ž«6z‘@2›íúCþ]@2ž«6z‘@25¨Xy>@2ž«6z‘Á.„NÜC,¥@8J¨?–ϱúQm‡?—U’¹DÆü?’KŸÐÇ¡?—ÒGþUÀ@8Ù@8J¨?žd»®~?ŸfújŒ‚$?–¼Š˜L¥ø?–{ôÖãWª@8û—@8p÷?˜êJìž.Ô?˜èò_?ŒOà†cÍ?޹Þwò,@8 Ø@@@@*?ð?ð?ð?ðøøøøøøøøøøøøM@  ¸Qì@  ûçl‹D@  ¸Qì@  !-w1@  ¸Qì@  @@  ¸Qì@  -”!-w@  ¸QìÁ.„€@  ¸QìÁ.„€@§På`A‰@§?ÜcRú@§På`A‰@§yXbN@§På`A‰@§4SŽóL@§På`A‰@§Åo@§På`A‰Á.„€@§På`A‰Á.„€@7ý:’£@7ùcÜF@4|í‘hr@4…Y³Ð|„@3gKƧïž@5S¶E¡ÊÁ@2QÞi­BÄ@1±Ä2ÊW¨@2QÞi­BÄÁ.„NÜC,¥@2QÞi­BÄÁ.„NÜC,¥?¿¹5,±?­PŒ“ð?·¯iÓ—€?Ó“Õ]ãõ–@8Iç@8Ù?…ðE[i)?°Ø1ÀÎ?É% ¹®U??Ó—F)okN@8S@8û—?ŸáRË}1Á?Édþ_ËÚ?ð:S¦¯3V?¶ÀÏÞ~Ð*@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøN@¢Që…¸R@¢Qö‡+ @¢Që…¸R@¢Qöð¹@¢Që…¸R@¢QñA [À@¢Që…¸R@¢Qôã¼Ó[@¢Që…¸R@¢Q÷Xâe@¢Që…¸R@¢Qôã¼Ó[@§*WOß;@§*\j~ùÛ@§*WOß;@§*YõY³Ð@§*WOß;@§*["Ðå`@§*WOß;@§*T¢3œ@§*WOß;@§*^¸Që…@§*WOß;@§*_¼@8­¥œàv@8«Í5¨Xz@3k¥ãS÷Ï@3i“ àÞÒ@3$¼j~ùÛ@3!ò×s@2«xFÜ^@2¦fffff@2«xFÜ^@2©*0U2b@2«xFÜ^@2ª0U2a|?žˆ2}?éDEâ©Ö?•¬¡´¯ÿ'?ŽõÕJ?“&Á½¥?“°™²!¨w?óA[ØïF?’‡Iš÷?ŸfújŒ‚$?ø,~[´?“ðÐ ?•lÓªü<?‘7#Œ!xv?–Ê Dì¢S?lû˜¡R?ŒžVE’D?ŒÙ”!Çx‡?^^ω•@@@@@$@(?ð?ð?ð?ð?ð?ð¿*˜p™Ð?@ýØ\?2™1y6™?Zõ.5$®@¢QõìÆ7˜@§*ZüP -™?S­ŽF}è“?x93N­ko?ªÞºdù\?ëÌJ¼ „;@Ÿj x˜KŽ@O@ ÈdÝ/ Á.„€@ ÈdÝ/ @ È[Õ¼â@ ÈdÝ/ @ Èa´£û@ ÈdÝ/ @ ÈhÕÇ’Ë@ ÈdÝ/ @ ÈjÌÞ—˜@ ÈdÝ/ @ È]Dëø@•:p£× -=Á.„€@•:p£× -=@•:Ÿ -}"@•:p£× -=@•:T®îÂ@•:p£× -=@•:mÞŒö@•:p£× -=@•9ãù}*-@•:p£× -=@•:{^Æ@2‘|ÚQÁ.„>¤µÜÆ@,²-V@,_F»£d¾@*rn—Oß@*X¾¥ó;”@)æL/ƒ{K@)Þ@7È»@)æL/ƒ{K@)°ù¡u?¡@)æL/ƒ{K@)ÛòƒB4@8 -Näy?½Ã·&R?‘ÄÃ-¹š¸?Œ1Ë)¿ð?“\'8•Ý?’ *ëvL@82rê?—4‘êL?”^Äp@â?’o„ÓøÎ?’ÈŽµB[0?PRž,S¬@8L?‘la¹’é?‡>xLpïß?†ÄŒ³Av?†©J¯{?¯5»ù@,@,@0@3@8?ð?ð?ð?ð?ðøøøøøøøøøøøøP@¨\úáG®@¨\þ¸Që…@¨\úáG®@¨\ù‡+@¨\úáG®@¨\ÿ|í‘i@¨\úáG®@¨\ú^5?|@¨\úáG®@¨\ò•éá±@¨\úáG®@¨\õéá°‹@¯5å`A‰@¯5å`A‰@¯5å`A‰@¯5ÎÙ‡@¯5å`A‰@¯5XQë… @¯5å`A‰@¯5)º^5?@¯5å`A‰@¯5Që…@¯5å`A‰@¯5®}Vm@7Ñ|ÚQ@7Òu%F -¦@3J^5?|í@3G®záH@3’Ðå`A‰@3‡ -=p£×@1ÏO „M@1ÈÇâ‚@¸@1ÏO „M@1̾ߤ@@1ÏO „M@1Ì‹C•?|öOÿÝ?Æ¿5›7÷?‘WßÈDö@?Uÿyu”#?“”>C,4?‘®¬nÒMê?}Ñ¿ž,?—Œ,T®?’üüšë‚J?RLnj?’l{9ÙŽ?’vMëôUu?Š6EŸòÙ?Œ²ÅŒÕ6?•Îo´ÀÙ?ƒGϵ¨í'?Œx[‡:©?†ùadô|@@@@@@?ð?ð?ð?ð?ð?ð¿aøÃ(?dªt` -?@õ ð˜Ù?eoćD¢j@¨\ú71*¼@¯5¶=§v?`þÏ‘2‹›?…XËR]µ4?˳Ç<Ü@<*Ÿù¯@Ÿfr »Ä@Q@¬˜™‡+@¬˜ç–|®@¬˜™‡+@¬˜çâ°@¬˜™‡+@¬˜âÞ›@¬˜™‡+@¬˜‚ÃÉîÍ@¬˜™‡+@¬˜Ž¸"3@¬˜™‡+@¬˜ŽµÇD@˜Á™™™™š@˜ÁÙëø5@˜Á™™™™š@˜Áÿ0(/@˜Á™™™™š@˜Á 7fÖ@˜Á™™™™š@˜ÁT¦¨Í @˜Á™™™™š@˜ÁhNsß@˜Á™™™™š@˜Á}ˆ`<@9cg ù l@9f•ª'Ì@6}‘hr° @6jŽ2Ò6}@5K"Ðå`B@5GÍöõÚ@40–»˜Çã@4+ZÅJí¬@40–»˜Çã@4.vvÝ)þ@40–»˜Çã@4)²»å2×?a÷nñ?·(¨Ãõ?µÂJFvYß?–ä^£ëW?•)Žb•3?–È¥æ#@?‡ôCbyV?µeV¬Ÿ¦2?¸t%I?š›õûîòÿ?—”ÿwúoÄ?—³ pA™Ÿ?±Ç÷*¶?®ÔÀ³»¤?ž_xÒ®8?’eºÄX?—³½I?’^bì’+Ø@@*@,@,@5@7?ð?ð?ð?ð?ð?ð?dš÷ŽÔ¿ˆÖÅʤ?H9ï¦ò²ñ?r†­ô¢@¬˜‡2z¯b@˜Áœíš5 ?i -—9•€?“KYjP?Ò¿'ÉUê@ OE}r@ŸgDHÿÌ]@R@¡+^¸Që…@¡+^¸øó@¡+^¸Që…@¡+YÇ.¬ð@¡+^¸Që…@¡+^fŒíz@¡+^¸Që…@¡+bu%F @¡+^¸Që…@¡+S¤œu¥@¡+^¸Që…@¡+YH,í@­’½p£× -@­’½Ú#Õ@­’½p£× -@­’¾×„@­’½p£× -@­’²4¢Ý@­’½p£× -@­’±e>²@­’½p£× -@­’º…Ǥˆ@­’½p£× -@­’¹ÄtÊÃ@6½:’£@6» Ⱥ¢p@3‚° Ä›¦@3‹wd­ƒ@3²-V@3‘žÿÕ‹@2ºÔ,<ží@2ÃÕh׿@2ºÔ,<ží@2»góNÈ@2ºÔ,<ží@2¹ˆùò?|¬Æ Væ?nžùR¨?“·r6xµ?’ætðf*?‘Anz;©?“o^¤ì?e™”XWø?’_]ý¶?š5”ÜEy¬?’‚!A¹a*?‘]Qlùþñ?‘|Àƒp7%?†`­² v?ŽSÔ– Ò? Ý³K“Ø®?†t{ùÒi?ŠèÇê)`Ê?ŠWrè±û@@ @(@*@1@2?ð?ð?ð?ð?ð?ð¿Wè4¿SÓ¥p?RômвfÒ?Se’§Ë@¡+[ãñöv@­’º˜úµc?s?Nkß¹?s½vWhª?ðÐâÖ‚‘5?ñÃt)9”5@Ÿf¬½üŠ @S@£ÅÀ@£ÅÇ Cî@£ÅÀ@£Ã㯷é@£ÅÀ@£Âèr° Å@£ÅÀ@£Äº…‡“Þ@£ÅÀ@£ÅÝp£× -@£ÅÀ@£ÅÔýó¶F@œÆRñ©ûç@œÆ–H‹÷@œÆRñ©ûç@œÄ’£S&@œÆRñ©ûç@œÌV‡+ @œÆRñ©ûç@œÇBÞѸ@œÆRñ©ûç@œÆ5?|í‘@œÆRñ©ûç@œÅ -Àƒo@6¿–»˜È@6©Ãá6Þ@2Œí‘hr°@1hŒç¯¸@1Àå`A‰7@0¥m\ú¬Ú@1Œ~($ @0œàuöþ@1Œ~($ @0ç_oÒó@1Œ~($ @0ÇsüPH?™I'%ö«?Þ'gj¯Fs?À÷½„#µ?ºìl±,IÔ?Ÿ´°îéõl?—‡XE%:?‘ɱb)Q?çÁ£ÝÊ?Î ØÒë>?§Ê»1ð ]?§ò0û˜/f?lINõÕ„?¤ûŒÆ>³?¶'{%ñMÍ?²HFÜOu?ªHŠW ?†l&þ?²˜bè#õÜ@@@@@@?ð?ð?ð?ð?ð?ð?n Ž&¿£ÞŠ€€?‰+²¨eg?ŽÉ*‘|@£ÅÌ'ùÒ@œÅÕ€Ú?«(SI˜ˆ?±›Î.×â²@:‘”9ÁäB@S-š¾ê4D@Ÿl#߉Ž@T@ªþvÈ´9@ª@ªþvÈ´9Á.„€@ªþvÈ´9Á.„€@ªþvÈ´9Á.„€@ªþvÈ´9Á.„€@ªþvÈ´9Á.„€@ªÁ„›¥ãT@ªÁ†§ï²@ªÁ„›¥ãTÁ.„€@ªÁ„›¥ãTÁ.„€@ªÁ„›¥ãTÁ.„€@ªÁ„›¥ãTÁ.„€@ªÁ„›¥ãTÁ.„€@7«µsê´@7­—ö+jè@4¡hr° ÄÁ.„M‰ûçm@4q‰7KƨÁ.„QnÙ‡@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥@4Eœàu÷Á.„NÜC,¥?€‚ñêã @8#˜@8¾:@8 >+@8Iç@8Ù?‚á²Olºü@8Î÷@8i§@8Å@8S@8û—?°xÈŸˆ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøU@£9V“uÁ.„€@£9V“u@£9W•÷»@£9V“u@£9T¥ù@£9V“u@£9W] °H@£9V“u@£9_eÓQ²@£9V“u@£9\磔@”ŸÎÙ‡+Á.„€@”ŸÎÙ‡+@”ŸÈë­s*@”ŸÎÙ‡+@”Ÿ×7+=|@”ŸÎÙ‡+@”ŸÅ ÁûS@”ŸÎÙ‡+@”ŸÒz7Pb@”ŸÎÙ‡+@”ŸÈé»…@2ò䎊Á.„>¤µÜÆ@/Û"Ðå`@/UŒ«P@-Ýó¶E¡Ë@-Ùê Èà@.žš@.+)Ò@.žš@.%Åç F@.žš@."O‡Ûä@8 -Näy?ÄNçÍ"?‘bT]u?Œ6¤ÛŠ/‚?’ütAýƒ2?’ÏÇÙ×@82rê?’OÃÛ¡?ÁŸxð?[› —çë?’Hrß`?‘Eг¿ô@8L?,Cì»Q?…ÏŸ´£ö?„¹êˆr‡ ?‹/f¦§D?$+½ïˆ@@$@"@:@6?ð?ð?ð?ð?ðøøøøøøøøøøøøV@ ,A‰7KÇ@ ,BÐå`B@ ,A‰7KÇ@ ,%®æ1ù@ ,A‰7KÇ@ ,:ÓFÿ@ ,A‰7KÇ@ ,&§è@ ,A‰7KÇ@ ,1”šÑÎ@ ,A‰7KÇ@ ,57ÓNL@¯"¬1@¯"”Ø×@¯"¬1@¯" íRi¾@¯"¬1@¯" Tù;r@¯"¬1@¯"uUÂ@¯"¬1@¯"Ñ{¿@¯"¬1@¯"âÚx@5‘|ÚQ@5‘Ö@2Ô›¥ãSø@2ê›A›4@2t“t¼j@2wÿêÉØ)@1èè§æ›@2gÌ…ô@1èè§æ›@1älŽ-Ò@1èè§æ›@2_Õ‰¤æ?ùª¨?¼‚Ë¡K?ÐbV‡,?’ ,øÕC©?œõLÁE?@§[*^?ÝIMÎ?X78›š?€cPßQª?Œ°¶.Ä+Æ?‚† SFò?‚ð'ã:ÂÝ?†l&þ?†ŠúЀ>(@@@@@,@,?ð?ð?ð?ð?ð?ð¿G÷XR8?ž¸?©Pÿ –?Žy9û•@¦„úBôz@¨ûMÔÖFÅ?+“•.*M5? ƒ$D'æ?RœÙ‚â@?8lX[.@Ÿsà†µË@Z@ û -=p¤Á.„€@ û -=p¤Á.„€@ û -=p¤Á.„€@ û -=p¤Á.„€@ û -=p¤Á.„€@ û -=p¤Á.„€@šgl‹C–Á.„€@šgl‹C–Á.„€@šgl‹C–Á.„€@šgl‹C–Á.„€@šgl‹C–Á.„€@šgl‹C–Á.„€@8L]cˆe”Á.„>¤µÜÆ@3\Iº^5?Á.„M‰ûçm@3H“t¼jÁ.„QnÙ‡@2 ¿±[W?Á.„NÜC,¥@2 ¿±[W?Á.„NÜC,¥@2 ¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø[@«óËÆ§ïž@«óÌ‹C•@«óËÆ§ïž@«óÎ}Vlô@«óËÆ§ïž@«óÊÚ¹õ[@«óËÆ§ïž@«óÇRT`ª@«óËÆ§ïž@«óÊ0U2a@«óËÆ§ïž@«ó̲•éâ@©0¥`A‰7@©0£•&@©0¥`A‰7@©0¦éxÔþ@©0¥`A‰7@©0¢‚@·€@©0¥`A‰7@©0¨K]Ìd@©0¥`A‰7@©0«íúCÿ@©0¥`A‰7@©0¦éxÔþ@6Ù*0U2b@6ÑÄ2ÊW¨@3û Iº^@4[À6â@3~ùÛ"Ñ@3‘ÑN;Í@2Þ«6z‘@2ä2ÊW§‡@2Þ«6z‘@2áN;Í5¨@2Þ«6z‘@2áA [À?|öOÿÝ?ZÁ».œ?‘„ë2‘~?•ýS0H†?•"§šmè?“‡SË{d—?óA[ØïF?’ ·6Öc¤?”_й@’?•Xî¨}iQ?› °Ö7?•lÓªü<?¦W¾ »ZÕ?”£®e›Ðg?Œznyž-i?Œw%è®?‹DVóö?ŒÙ”!Çx‡@@@@@,@(?ð?ð?ð?ð?ð?ð¿7âÐ# ?QM[ˆ?Ar[yq£?F³ÍLЃ!@«óËlAÜ@©0¦Ñú›Ë?c—åhúßù?fgǘn?ȧÞäK »?Â{Q'˜@Ÿi@xWC@\@¯h¦éxÔþ@¯hŽÙ‡+@¯h¦éxÔþÁ.„€@¯h¦éxÔþÁ.„€@¯h¦éxÔþÁ.„€@¯h¦éxÔþ@¯h}æšÔ,@¯h¦éxÔþÁ.„€@¡~ò° Äœ@¡~Þ¸Që…@¡~ò° ÄœÁ.„€@¡~ò° ÄœÁ.„€@¡~ò° ÄœÁ.„€@¡~ò° Äœ@¡N!–R½@¡~ò° ÄœÁ.„€@8£g ù l@8™e+ÓÃa@5T›¥ãSøÁ.„M‰ûçm@4ÝV”Á.„QnÙ‡@4hè§æ›Á.„NÜC,¥@4hè§æ›@4~ÿ—$t@4hè§æ›Á.„NÜC,¥? Å{¿Ž<º@8#˜@8¾:@8 >+?¦NMwE«@8Ù?•²»UbB2@8Î÷@8i§@8Å?¤ˆÒ¿@8û—?»±\[Pí@8 * @8p÷@8¶?®SrY@³5@8 Ø@@$?ð?ðøøøøøøøøøøøø]@¢f¹XbNÁ.„€@¢f¹XbN@¢fµÂ\)@¢f¹XbN@¢fµ?|í‘@¢f¹XbN@¢fܬ1'@¢f¹XbN@¢fÇ»/ìW@¢f¹XbN@¢f½ó¶E¢@¥³fffffÁ.„€@¥³fffff@¥³p|„µÝ@¥³fffff@¥³oAò×@¥³fffff@¥³_;dZ@¥³fffff@¥³„ŽŠqÞ@¥³fffff@¥³vz˜@9›¹Œ~($Á.„>¤µÜÆ@4Å?|í‘h@4Ñ:’£S@3Ë"Ðå`B@3ÖOv_Ù@3QÞi­BÄ@3q:’£S@3QÞi­BÄ@3oHË’:@3QÞi­BÄ@3k…¸Qì@8J¨?žþÿí©‚7?›mqò -×?º•÷ ?©h?Ñ$|?§ÙYlãp@8J¨?“—-´œc?Føë?wàËxR?¯s´~º‘‹?ª…›´î@8p÷?£} Â±ù? zkê 3U?¨¡ûðf?±ˆ€Ða?­Ÿ6÷0lP@@@@,@,?ð?ð?ð?ð?ðøøøøøøøøøøøø^@¨À©xÔýô@¨À£× -=q@¨À©xÔýô@¨À®—Oß@¨À©xÔýô@¨À¬‹C•@¨À©xÔýô@¨À©xÔýô@¨À©xÔýô@¨Àª~ùÛ#@¨À©xÔýô@¨Àª¦L/„@¯^¼j~ùÛ@¯^½ó¶E¢@¯^¼j~ùÛ@¯^»çl‹D@¯^¼j~ùÛ@¯^¾ùÛ"Ñ@¯^¼j~ùÛ@¯^¹Û"Ðå@¯^¼j~ùÛ@¯^¼í‘hs@¯^¼j~ùÛ@¯^½p£× @8쿱[X@8 Î_oÒ@3Ù‡+@3 IQ‚©@21‰7Kƨ@20ÞÒˆÎp@1½cˆe”°@1½¿HË’@1½cˆe”°@1¼q ²•ê@1½cˆe”°@1¼cñA \?Œs¤DÅÐ?ð}óßd?ð’FB:?ð_ŒB?‘oNÅ’+?’»«ÒñŒ?¦Ï±úQm‡?ð¢dx/?ð‡äR³s?ð‚àÓÁ?‘Uç·Býi?“‘k–šj?º f -¦?ðfÁbÂô?ð*wjs—?ð,’Ú|‚?‰/ã̽`ª?†Ü‘ °Ô@?ð?ð?ð@@?ð?ð?ð?ð?ð?ð?XZÍQ¿«¦€?$Þ³U^?&íxå‘9£@¨À©­x @¯^½BY0µ?Hþ&mÍ%µ?>ØeO…?†ÅÓId^¡?d(‡õ7@Ÿq(V -@_@«#öÈ´9X@«$Ò‹µr@«#öÈ´9X@«$]Õàì@«#öÈ´9X@«#øSò/I@«#öÈ´9X@«#úàÀ|@«#öÈ´9X@«#øL4¥;@«#öÈ´9X@«#ùˆ$êæ@™:e`A‰7@™:VC»™@™:e`A‰7@™:5_aT-@™:e`A‰7@™:JAªh @™:e`A‰7@™:F˜¦÷·@™:e`A‰7@™:29&oè@™:e`A‰7@™:9SÌ€~@87â‚@·€@8=ŠŸMÀ@3^Ù‡+@3M ŠJ”Ë@2)Û"Ðå`@2¨ç+?ô@1°–»˜Çã@1 A<2[@1°–»˜Çã@1 OSÑ Ö@1°–»˜Çã@1 ùËcKo?”e¡Æ<ìæ?—_ŠFw˜?“¯L¤™`¹?“yÏt¦>n?”‡'AUŠœ?œ«ãÜLl?™û-™,Èß? QNÞ0P?•Ht¨ë!?—›p µ?Ÿ–uœ‡?œÅ%7*V;? qD»Ó?Ž=¶ÁD]ø?†çAÇ«¢î?„V…¸Xl?Š -&¹}Ø?гjd«@@*@(@,@;@:?ð?ð?ð?ð?ð?ð¿kß{½¿køm€?L­ÇÏÕ/d?M¡‘Ðà×@«#ý;qP@™:Cº²®?hüê‰øR?j{¾Û…?Åešh'ª?¾í÷l`P÷@Ÿk_íŠ@`@©ïOß;@©ï?|í‘@©ïOß;@©ï!–R½;@©ïOß;@©ïp:û@©ïOß;@©ïÅm\ú@©ïOß;@©ï"ø7´¢@©ïOß;@©ï"\(õ@­Å:áG®@­Å8Që…@­Å:áG®@­Å6ð¹@­Å:áG®@­ÅBÃÉîÌ@­Å:áG®@­ÅJ Þ@­Å:áG®@­Å@ëíúD@­Å:áG®@­ÅH´9X@7ÞHè§æ@7Ò‚@·€4@4™º^5?}@4µöý!ÿ.@3ìj~ùÛ#@3ùXbMÓ@3«6z‘@3#¶E¡ÊÁ@3«6z‘@3!ÿ.Hè§@3«6z‘@3Ÿ¾vÈ´?¦NIÉ®š?µÜSÍ?œœê´°EÚ?§×…Õ ô? I×J j?”ªEñeX?ˆÿÀ)T¿Æ?©URZÁ?¥¾ _S?›Ñ¯•ú%¾?œ­3Ââ&†?•J佪™^?„+£QKø?¬Ö4•?­~¶Ùµx?’èïÅ42ô?–¿nè$„?™¼òQh@@@@@@,@$?ð?ð?ð?ð?ð?ð?e ɱj?jãS ?Cµå2?RuÏíﲬ@©ïÌÖJh@­ÅCQ%Dr?`¿øù°‹H?vüìvš_?ŸÂ–ïi-¦?ßãÊ„ @œì‹C•@œï‡y(@œì‹C•@œóÒ‚™»@œì‹C•@œí@å%%@œì‹C•@œ,/âî@6>«6z@6¥@@2ahr° Ä@2\5…ñfü@1t“t¼j@1pžiJð@1Š0U2a|@1ƒk)yA@1Š0U2a|@1…éUñ]@1Š0U2a|@1‚®š9ì?€”ëû·«?Ƹ^ Ûþ?‘ZÓKèbn?ŽÎì(y?ô¨lNR?’Êö 9¸N?¨Sp*?’ \¬Ý -’?‹Úð<î?‘ ÿØR7?í¢8yÆò?…ÿ’0„?ŽIÊäïàÿ?‚Uz]~?‚µ¾™¶ßA?ƒûÚ8±~?ˆ^¼n]?Œ[]ÂJrñ@@"@ @ @0@.?ð?ð?ð?ð?ð?ð¿`ç‡Ð0?ký>NÚ?G!:¥+@?g!óÜrŸ@©ŽÅ11@œþ*Ýý?g=È”º9?‡Äyw‹ì?×§/lÀ@:\¶š…@ŸgÇþ=0@c@«ô¼j~ú@«@«ô¼j~ú@«ïI³Ÿž@«ô¼j~ú@«íG¨~$@«ô¼j~ú@«ñzs›É@«ô¼j~ú@«õJS Ç@«ô¼j~ú@«ò?š ;@šÂäZ¬@šÂÜ(õÂ@šÂäZ¬@šÂn¼JЧ@šÂäZ¬@šÂ“\½_´@šÂäZ¬@šÂ~Z–@šÂäZ¬@šÂìˆçaŽ@šÂäZ¬@šÂ÷þ‚@8¯O „M@8B )¿@3\Iº^5?@3m®«ïc@2ìj~ùÛ#@3‡þz=6@2J0U2a|@2`5Æd§@2J0U2a|@2FuÊJ|ö@2J0U2a|@2C}öÐBà?~ì“?ÕÒJ?‘L™p‹1?“{•6kº? ³Ø¡Äí?‘»Y‰^ßz?“²lz)m? ®iØ©÷•?œR˜Ãš/q?’¾=E?šƒ%Ī?“7ŒgßBU?•¨ÀV8¼?”Ü"+y Å?‘·Të\y?Š©6'F‰?’`É€öM­?‹;nøänL?6éÒ€@@,@$@"@0@1?ð?ð?ð?ð?ð?ð¿iÝ]¡Ì?z`2?/?NÞxD^?ƒSq“ù\@«õç°5~@šÂÑ8²}ò?rÞî\õµ?žTоmÈ[?äéR5¾UZ@(Y{d`§>@Ÿm–xjÞR@d@¢!—Oß;@¢!£n—Ž@¢!—Oß;Á.„€@¢!—Oß;Á.„€@¢!—Oß;Á.„€@¢!—Oß;Á.„€@¢!—Oß;Á.„€@œèr° Å@œØbMÓ@œèr° ÅÁ.„€@œèr° ÅÁ.„€@œèr° ÅÁ.„€@œèr° ÅÁ.„€@œèr° ÅÁ.„€@8„¯O „M@8ß;dZ@5 Iº^5Á.„M‰ûçm@4±‰7KƨÁ.„QnÙ‡@4xDЩ*Á.„NÜC,¥@4xDЩ*Á.„NÜC,¥@4xDЩ*Á.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøe@©»dZ¬@©|í‘hs@©»dZ¬@©½¥œà@©»dZ¬@©¾5?|í@©»dZ¬@©½ó¶E¢@©»dZ¬@©ºÔ,<ž@©»dZ¬@©¹Û"Ðä@ {„›¥ãT@ {e`A‰7@ {„›¥ãT@ {ƒˆe”¯@ {„›¥ãT@ {„Z¬@ {„›¥ãT@ {‰7KÇ@ {„›¥ãT@ {×Ûôˆ@ {„›¥ãT@ {@N¥@6Ù*0U2b@6·_oÒó@1c÷ÎÙ‡@1b Iº^5@0—ï²-@0–fffff@/Š#9Àëî@/‡l‹C•‚@/Š#9Àëî@/‡Ë)^Ÿ@/Š#9Àëî@/‡_oÒó?ð°–Ž]?Æ4ÓLè?‘šÕU#?Œ:Z2‚b?‘oNÅ’+?×°ë*–w?ð°–Ž]?’{cü€øõ?ŠA)Nîá?RLnj?‘q1ýAt?ŒÙ¶êm¥?ð*wjs—?u/®Xã?‚‘´…=Cb?ƒ ?ÿ½?‡2[síç?†Ü‘ °Ô?ð@@@@&@?ð?ð?ð?ð?ð?ð¿]Ê>li¿%ðgÖœ?AÑjõĦ?2)ðÞ¿k—@©»¯ïÜ„@ {z\ÍL?PTNSðL?Aþp¹L?™.Œµmï?xâÄôrÑ@Ÿsˆª¶S@f@ “t¼@ n—@ “t¼@ ð ‚ @ “t¼@ `Kû:ñ@ “t¼@ ë_¶ªÉ@ “t¼@ ØZòöª@ “t¼@ Üþ¸þ@¦s(r° Å@¦s(á˜Vö@¦s(r° Å@¦s,º¨ÝÙ@¦s(r° Å@¦s9Øô{ô@¦s(r° Å@¦s,Ü]x!@¦s(r° Å@¦s#Æ7Î(@¦s(r° Å@¦s0R°­@6#g ù l@6"†?·À$@2}‘hr° @2€1h®@@1ÐA‰7KÇ@1©·%¨©7@1YŒ~($ @1OÆ•DS0@1YŒ~($ @1KdÅÕÖ@1YŒ~($ @18i áýÄ?~ì“?ÕÒJ?’s3O¥»?–‡¥Øñ8â?™:©»0æb?¥¹X"@L?¢ZýúIßP?}x—™?Ž*JŠË?…I‘ÒÁ/À?ƒ¼9XNÄu?ŒÙ”!Çx‡?²Ù->tÜÙ@@@@@*@*?ð?ð?ð?ð?ð?ð?eØÙÎ?\ùIJÀ?OÍ&$Y}?kÝfZîã@¤qÛ‘Œ>@©ö8tE6º?gAùkŽU?ƒœÐÂ1§”?É«[¼æ¼?û¸¡õiq@ŸaØ¿\K@h@­üŽV“Á.„€@­üŽV“@­ü®jÜó±@­üŽV“@­üBO:õ@­üŽV“@­ü¼r¢jX@­üŽV“@­ý=^v}~@­üŽV“@­ý €Å"è@š›^5?|îÁ.„€@š›^5?|î@š›ˆ–…Ž@š›^5?|î@šœ|WßF@š›^5?|î@š›`Ðå„­@š›^5?|î@ššÌ‘YA@š›^5?|î@šš¹X@ÔÔ@6 xFÜÁ.„>¤µÜÆ@48r° Äœ@3½wkÎM@4“t¼@3Íc'˜ó:@3J0U2a|@3j˹‰v@3J0U2a|@3'%î=‘@3J0U2a|@3-oÅO¨\@8J¨?¾ùÝŒ[¨?™Ñlqš³a?“÷¡ {îþ?´€ø2»ï?¶u­$í¸a@8J¨?ÂTãÉ«ÀŸ?™/6½Z¦×?¨³±t{ Ê?¼Ï²Uà?¹(®Àú š@8p÷?©´1öÔ?² FºÆã?‰¾ÂÀеa?£>hØè¤i?­…SÍóø@*@$@(@4@3?ð?ð?ð?ð?ðøøøøøøøøøøøøi@©|ò-V@©|ëÆ§ïŸ@©|ò-V@©{…¸Qì@©|ò-V@©{Œ¿±[X@©|ò-V@©{„M:’@©|ò-V@©{p¸»@©|ò-V@©{q4êL@£;dZ@£&éxÕ@£;dZ@£„·ö+jè@£;dZ@£„°Ë)^ž@£;dZ@£„¸Ôýó¶@£;dZ@£„ÈË’:@£;dZ@£„Àuöý"@5šÔ,<Ÿ@4÷$tSŽô@2¸r° Äœ@.S×Ûô‡@2 "Ðå`B@-(Îp:û@1Ê0U2a|@,OiDg8@1Ê0U2a|@,L‹C•@1Ê0U2a|@,N.±Ä2Ë?Ž=fA:?”C#ç…%?¤ìÔÓìö?žÑá•®ö0?˜íËj#?›b;ƒ°¾x?гá‡}?U -£?00?œÕ4FégI?¤u1ñ ?œ××€§©?ŸèØŸ#ߦ?µeão‘ñ?”܉a^±‚?Žd°3š>?'dÂã—…?޹Þwò,?޹Þwò,@@@@@*@*?ð?ð?ð?ð?ð?ð¿¶\„¤¤P?Ì>ÏZx´?‘ÇÈHi”f?¤=©î¬Lý@©|Y˜—H@£ƒÙ#[ô?²<•ÂqÉ?ŃXü+{`@UjèK\æ@y ïÎÌÚì@ŸgÖú×Þš@j@ £Á$Ý/Á.„€@ £Á$Ý/Á.„€@ £Á$Ý/Á.„€@ £Á$Ý/Á.„€@ £Á$Ý/Á.„€@ £Á$Ý/Á.„€@˜³$Ý/Á.„€@˜³$Ý/Á.„€@˜³$Ý/Á.„€@˜³$Ý/Á.„€@˜³$Ý/Á.„€@˜³$Ý/Á.„€@7°4mÅÖ8Á.„>¤µÜÆ@5B° Ä›¦Á.„M‰ûçm@5 ²-VÁ.„QnÙ‡@4Ç ù kºÁ.„NÜC,¥@4Ç ù kºÁ.„NÜC,¥@4Ç ù kºÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøk@ª(<í‘hs@ª(?¾vÈ´@ª(<í‘hsÁ.„€@ª(<í‘hsÁ.„€@ª(<í‘hsÁ.„€@ª(<í‘hs@ª(=ó¶E¢@ª(<í‘hs@ª(;"Ðå_@¯–ô9Xb@¯–üí‘hr@¯–ô9XbÁ.„€@¯–ô9XbÁ.„€@¯–ô9XbÁ.„€@¯–ô9Xb@¯–øQë…@¯–ô9Xb@¯–þvÈ´9@8cg ù l@8]w1Å@2Ìí‘hr°Á.„M‰ûçm@1È“t¼jÁ.„QnÙ‡@0ÜÚQÎÁ.„NÜC,¥@0ÜÚQÎ@0âMÒñ©ü@0ÜÚQÎ@0Ú¦L/ƒ|?1·†Æjñ@8#˜@8¾:@8 >+?ðŽºJ+½?“ d?3ßa=„@8Î÷@8i§@8Å?ðÅìq?”e!¶?©ÂnË“"Ý@8 * @8p÷@8¶?ð?oÚ•¼?‡Ä­‹›Ü@?ð@?ð?ð?ðøøøøøøøøøøøøl@¬t$Ý@¬tbMÒò@¬t$Ý@¬t ²•é@¬t$Ý@¬t£S&@¬t$Ý@¬t÷ÎÙ@¬t$Ý@¬t¼@¬t$Ý@¬t@N¤©@žÕ“t¼j@žÕ¯Ÿ¾w@žÕ“t¼j@žÕ‘4êK@žÕ“t¼j@žÕv_Ø®@žÕ“t¼j@žÕ‹¬q ´@žÕ“t¼j@žÕ”¼@žÕ“t¼j@žÕ‹’:)Ç@8«µsê´@8—†Â&€ž@3R Iº^5@3P°ò{²ÿ@2Ÿ²-V@2 Ñ·Xâ@2Œ~($ @2xl"h -@2Œ~($ @2Ížƒä&@2Œ~($ @2À6âë?¬å'[ V÷?‘­b š=?’÷˜–Èä?{¾“úy6?“>û{Ñø~?’ Ù–¥£?³‰ÑpEIt?“øGKTæH?–Ðf·ËŒ‚?’"Š6›Wz?’…4Ü.?’¨¢†¼ ¼?¹$€²§‡s?œ‘z¥æ?Š:t†?†O.ce?‡YÍ_?‰w¿˜Í¶ª@@@@@*@*?ð?ð?ð?ð?ð?ð?úiH ¿KŒårê?:}Îþëà?^–ÊIg/ì@¬t¯0Ïê@žÕ†=Ñà?M²jÑé?pG~e¸T-?’ŸzK«f?ÒKȤµÜÆ@3—+ Iº@3Žp:û~‘@3q‰7Kƨ@3rÐå`AŠ@3¦YJôðØ@3¥fÏAò@3¦YJôðØ@3¥ '»0@3¦YJôðØ@3«¬q ²–@8J¨?›úV˜[u9?™rPt3?š+‚¦Ðfñ?šxœÏs´i?“”üU§<­@8J¨? (úSú±5?™ ?G·W?˜8wxšq?ž³ÑŽúƒ?” ™¾,@8p÷?àìÚJ>?‡z"2Úù)?—Äd<³Î? tÆùlŠ?šÁc€RÏ@@@@(@"?ð?ð?ð?ð?ðøøøøøøøøøøøøn@¦7Rn—P@¦7<í‘ht@¦7Rn—P@¦7XÔýó·@¦7Rn—P@¦7R{²þÅ@¦7Rn—P@¦7På`A‰@¦7Rn—P@¦7S©*0U@¦7Rn—P@¦7QÑN;Î@¢TÂ\(ö@¢T¹™™™š@¢TÂ\(ö@¢TÁä÷eþ@¢TÂ\(ö@¢TÀ·€4n@¢TÂ\(ö@¢TÅo@¢TÂ\(ö@¢TÀ4mÅÖ@¢TÂ\(ö@¢T¿ò䎊@8ð4mÅÖ8@8èð¹@3‚° Ä›¦@3~Ov_Ø®@2ß²-V@2Ü64ê@2&YJôðØ@2¥zxl"@2&YJôðØ@2!×Ûô‡ý@2&YJôðØ@2#ŽóMj?Àët#®ªV?—޼½:?–¦r…û?,¡r×gÁ?“´<×?“7ƒÆD -¹?žˆ2}?’ñ©ûçlŒ?ŸÖÒä-2¢?–= £6Ï?“â¹Í[Óh?’µ~Yºì?´çnñŸ?pù51íÒ?¥‡´{?†Á{0Ÿà®?’3¨£„È?$Ìj½BÙ@@@@@*@*?ð?ð?ð?ð?ð?ð?OükëÔ?Zì;Åò?S°›)m©W?J„1¿æ¤@¦7QÆ(c°@¢TÀ\è†?cn/*ÁRÒ?s ¡4¡¢l?»·ð¦Ðfœ?Û;nã¡+@Ÿr+#ÃM@o@¨Ý/Ÿ¾@¨Ýp£× -@¨Ý/Ÿ¾@¨ÞBZîb@¨Ý/Ÿ¾@¨Þ¸Që…@¨Ý/Ÿ¾@¨Þi­BÄ@¨Ý/Ÿ¾@¨Ûô‡ü¹@¨Ý/Ÿ¾@¨ÜÚQ@§îOß;d@§îOß;d@§îOß;d@§îžƒä&@§îOß;d@§îOß;d@§îOß;d@§î¸ºÇ@§îOß;d@§îÅÖ8†@§îOß;d@§îžƒä&@0òÃÉîËû@0òÃÉîËû@)”¼j~ùÛ@)”¼j~ùÜ@'ªÀƒn˜@'ªÀƒn˜@&QÑN;Í6@&QÞi­BÄ@&QÑN;Í6@&QÑN;Í6@&QÑN;Í6@&QÞi­BÄ?É^³Dw'?Òç{íj?‘Ûü†Nã?‹ª½¨ª8v?éDEâ©×?·t¤¢‚J?ÐbMçê_x?’¼  g¶?|™,Ž!?/3ÉÚgC?ÏtP°*?M\³Ù“@?€b¡´ñ@?Œ­·Ž~('?‚s@ˆaÛ?‚â‡~ûÉ\?†ˆ#.÷?†ˆ#.÷@@@@@,@*?ð?ð?ð?ð?ð?ð¿QtVÂ?¿‘Q ?9<ðh—xœ?éêrú½ê@¨Üÿ!7v@§î´õ@~?HD‚—ûq˜?Ê~î¼å?Œùg?µ)?!7†ÀÆ@Ÿs.¶-@p@­Œî—Oß@­ŒòtÑÄ`@­Œî—Oß@­ŒðoiDg@­Œî—Oß@­Œò° Äœ@­Œî—Oß@­Œí5¨Xy@­Œî—Oß@­Œê™0¾@­Œî—Oß@­ŒîÙ‡+@œµ&éxÔþ@œµ4¼j~ú@œµ&éxÔþ@œµ!-w1@œµ&éxÔþ@œµ¤?åÊ@œµ&éxÔþ@œµ+ Iº@œµ&éxÔþ@œµ*dÂø8@œµ&éxÔþ@œµ$ŽŠqß@7ëµsê´@7â0ü®Ò@3‚° Ä›¦@3…¼£n.@2²-V@2ùrGE9@2Œ~($ @2¥ãS÷Ï@2Œ~($ @2jçÕfÐ@2Œ~($ @2C•%?Ĺó¥p?’Mj…•Ì‘?•œ‘æ¦M?Hžyq?‘¯GàBm?’Æ÷Xê†?§r.†¹‹X?––ïFHÇN?’TÖ©E?’"Š6›Wz?’£ôùÎ8ï?“X<‡÷Ú?ƒ­f‡²Y$?[™ÕÈ™8?–Ϥ?…üðÿË÷?ˆëÅoë?‡ø¢:›¸1@@@@@(@*?ð?ð?ð?ð?ð?ð¿R{8f>¿Wn³äè?I -Br^À?:ª©\y«@­ŒíÄcWl@œµ*i.Ø\?gwÌKWí?PÅct/j?ËÆK³À?’Ï#–ľz@ŸoYÃzP@q@¯î—Oß@¯ãn—@¯î—Oß@¯ñ ޤ0@¯î—Oß@¯þ-Áe@¯î—Oß@¯Ê¤èu@¯î—Oß@¯ß}o@¯î—Oß@¯õ±^É@›q©ûçm@›b¨v/@›q©ûçm@›r›+%@›q©ûçm@›k!äÓß@›q©ûçm@›£)¹GÆ@›q©ûçm@›cqë¿Ö@›q©ûçm@›€¨æÕ@7¹Œ~($@7O­KÛK@2û Iº^@3£{äM@2Ct¼j~ú@2AÖJò×@1èè§æ›@2*h˜w‹@1èè§æ›@1óŽmAjÄ@1èè§æ›@1åÔÕ0Ü?‘w×vHf?–Ÿ]u–û?‘“@ Æ—?©·åÝsY›?éDã\?£ÂgS÷Ó&?œÆæXÆd?Ò¸…†?’&^ǘK?¯°Ñš=Í?‘ 9fɾ?žàU¤K½?·‡å¿CO?u¼¦Oi?„¡Z¶•.? .œ‰R?7c=»•ª?™°ÉYß@@*@$@*@0@2?ð?ð?ð?ð?ð?ð?0J@@?UêÈÜ?fÔ gåá?jFIƒú³o@¯áë2@›jŠQ?‡/ßÝæ©Æ?†ªÑú?¤?ÿ1ìȨŠ?÷œ³W'@Ÿl=™˜çV@r@®€€@®€‚MÒñª@®€€@®€‚e+Ô@®€€@®€ƒñA ]@®€€@®€-w1@®€€@®€~Åm\û@®€€@®€~BZîe@¦àr-V@¦àr° Äœ@¦àr-V@¦àuÂ\*@¦àr-V@¦àt`ªdÄ@¦àr-V@¦àp Ä›§@¦àr-V@¦àtÉ…ðp@¦àr-V@¦àsZ…‡”@6Ô xFÜ@6ÉQ‚©“ @2ðÄ›¥ãT@2ï|í‘hr@2K"Ðå`B@2K Iº^@1kxFÜ^@1k~ÿ—%@1kxFÜ^@1kÀ6âì@1kxFÜ^@1kÚQÎ?|öOÿÝ?’bÓ}?‘âTÀÊS“?ºgk\0?‘˜¯ -`É?‘&¶Gf¡?îŠõ ?•²»UbB3?§^ ÿo˜?‘aYZ†«q?‘q1ýAt?’‚¸7w¼:?§1óÃQ…:?Ž*JŠË?†' -³}÷C?ƒý¥ñÍú?‡×7°º?Œ˜ˆTÙ8ª@@@@@,@,?ð?ð?ð?ð?ð?ð¿Iç½çà?B·‰¯`?"jÞ©ØÃØ?J_'4U‹•@®€ÿWíZ@¦àr€]¶?F±üº…ã?c™h«'mÎ?‘YTl?¾¤rãdvŸ@Ÿmm¼×øî@s@ õô9XbÁ.„€@ õô9XbÁ.„€@ õô9XbÁ.„€@ õô9XbÁ.„€@ õô9XbÁ.„€@ õô9XbÁ.„€@žM 7KƨÁ.„€@žM 7KƨÁ.„€@žM 7KƨÁ.„€@žM 7KƨÁ.„€@žM 7KƨÁ.„€@žM 7KƨÁ.„€@5G>«6zÁ.„>¤µÜÆ@3{ Iº^Á.„M‰ûçm@2ƒt¼j~úÁ.„QnÙ‡@2G ù kºÁ.„NÜC,¥@2G ù kºÁ.„NÜC,¥@2G ù kºÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøt@©œ/Ÿ¾@©œp£× -@©œ/Ÿ¾@©œp£× @©œ/Ÿ¾@©œž í(Œ@©œ/Ÿ¾@©œ 6âê@©œ/Ÿ¾@©œœ¹#¢œ@©œ/Ÿ¾@©œžùÛ"Ñ@¡ª/Ÿ¾@¡ª/Ÿ¾@¡ª/Ÿ¾@¡ª^5?}@¡ª/Ÿ¾@¡ªÔ,<Ÿ@¡ª/Ÿ¾@¡ªPHð@¡ª/Ÿ¾@¡ª(õÂ@¡ª/Ÿ¾@¡ª¥ãSø@2}:’£@2|ú¬Ùè>@1Iº^5@@1"h Ô•@0A‰7KÇ@0:û~‘@0¡:’£S@0 HðŽ@0¡:’£S@0 ƒn—Ž@0¡:’£S@0 :û~‘?É^³Dw'?ÖÈ ¼?‘G¿yÛ?ï?‹¬àÌ’Ç?‘×´<î¯j?ÃwZL?ÐbMçê_x?’ÍîfÕ?ê‰O)AT?@§[*^?‘q1ýAt?ˆ9²0?€b¡´ñ@?ŒÂ§dß±?ƒ!A -mº¹?ƒ¦$H?‡gϵ’õ?‡ã ËÄž@@@@@,@$?ð?ð?ð?ð?ð?ð¿E½$Ø¿2dÓù ?Kö—ïZ8f?”Åq0;@©œž×Þf@¡ª,Äè?[>‹×¡É?"¯¬OJfA?±±kªõk?=ª9¥‡lÃ@ŸrýFêÊW@u@­‚çï²-@­‚ç+ K@­‚çï²-@­‚àIQ‚@­‚çï²-@­‚àhÛ‹¬@­‚çï²-@­‚ÜPHñ@­‚çï²-@­‚ÚCþ\’@­‚çï²-@­‚Ù#¢œx@¢ñ[¥ãSø@¢ñ[¥ãSø@¢ñ[¥ãSø@¢ñZŸ¾vÉ@¢ñ[¥ãSø@¢ñY™™™›@¢ñ[¥ãSø@¢ñS÷ÎÙ@¢ñ[¥ãSø@¢ñV_Ø­¬@¢ñ[¥ãSø@¢ñRÊW§‡@6cg ù l@6ca@N¥@3xr° Äœ@3wE8ï4×@2©Û"Ðå`@2§æšÔ,@2xDЩ*@2p–»˜Çã@2xDЩ*@2ooÒòå@2xDЩ*@2o·éùr?|öOÿÝ?‡åƒêM?‘£Ä›è?”6Wé=t?˜´1…9„?–ËÒÙI°?€‚ñêã ?’Ï>`Ï?“û#ÆGf?”ÑÓTœ?ƒ@…ˆAd?˜«ŒˆÀS)?„ËD(ºo?àQdËЈ?ƒ<Õp?ƒiñj6Â?Š*ÊÔQãú?‰Ü)@Jq«@@@@@,@(?ð?ð?ð?ð?ð?ð¿iЖIJ¿_×V?8¨›Pò€?=œ­›¶à@­‚á?|~@¢ñWå?o6?Wwú³;?[Ý`´D?´ÏU¸]Óv?·Õm>XUŠ@Ÿd¸Añ•<@v@¯K§l‹C–@¯K¶È´9W@¯K§l‹C–@¯K©^ž -@¯K§l‹C–@¯K¦ffff@¯K§l‹C–@¯K©“ àß@¯K§l‹C–@¯K¨Îp:û@¯K§l‹C–@¯K¥m\ú¬@ŸùcS÷ÎÙ@ŸùzáG®@ŸùcS÷ÎÙ@ŸùbMÒñ©@ŸùcS÷ÎÙ@ŸùiÇy¦µ@ŸùcS÷ÎÙ@Ÿùhr° Å@ŸùcS÷ÎÙ@Ÿùeœàu@ŸùcS÷ÎÙ@Ÿùg8}¿@8Ç>«6z@8²n—Oà@3Ï|í‘hr@3Ñ&éxÔþ@3²-V@3Žšu@2Š0U2a|@2ŠîcŠ @2Š0U2a|@2‹ŸU›=@2Š0U2a|@2quŽ"?«á¬å÷‰?‘_¦X ë -?”Uy*þÿà «›?¹Âþµ~B@ªF*²œ.û@šæ¶ÓÔì?ÃÇ•(ó0?4p×'±?I¿ÇQƪÎ?t‘s܋֫@Ÿf㺛O7@z@¨(®—Oß@¨(¯Ÿ¾w@¨(®—Oß@¨(¯–»™@¨(®—Oß@¨(¯'»/ì@¨(®—Oß@¨(°ÿ—$u@¨(®—Oß@¨(­ÅÖ8†@¨(®—Oß@¨(®!–R¾@§záG®@§záG®@§záG®@§{W>«6@§záG®@§{À6â@§záG®@§záG®@§záG®@§zÇË)@§záG®@§{quŽ"@3¯O „M@3Щ*0@/æ§ï²-@/çË)^ž@.ü¬1&ê@.üÓZ…‡”@.a-w1Å@.`'RT`«@.a-w1Å@.^«6z‘@.a-w1Å@.^ÒˆÎp:?}Ñ¿ž,?äm°û0Ž?‘SŸ[ÈÙ?‹ä†€{6è?‘'¬Å™» ?ý‰w'¬?|¬Çëý ?’ ÃCÀ`ú?£½:…?>\‰å‘?ñ«Ý„ Õ?ˆ9²0?‚nâwfÿ?ŒË›Í‡Çq?‚¯­Ù¤Á¶?‚éXëLL÷?†ÃÛSPã?†å·ÑfWà@@@@@*@,?ð?ð?ð?ð?ð?ð¿°Ð€? óžÃ?6×0­ó ? ê?SÐPp@¨(¯…Ä@§zûmè„?V¬ã§]#”?.~¾úª¢þ?»Çì6ò?h @•¸µ0@Ÿg=Û¼p@{@°q&éxÕÁ.„€@°q&éxÕ@°qbïP@°q&éxÕ@°t¼ÀÇQ@°q&éxÕ@°vz±C@°q&éxÕ@°o[z*Û@°q&éxÕ@°lþÁXÝ@”JÀƒoÁ.„€@”JÀƒo@”JSž·+@”JÀƒo@”<…í2à@”JÀƒo@”Gb“J,@”JÀƒo@”5—_oS@”JÀƒo@”C­Kp@6àØDЩÁ.„>¤µÜÆ@3û Iº^@3õäÄà¹@3ÐA‰7KÇ@3ÊÃü¿xF@3ÔmÅÖ8†@3Ȫpª@3ÔmÅÖ8†@3κÌY#z@3ÔmÅÖ8†@3Ë—":2°@8J¨?‘{?Ÿ–†¼éY?›Åeú©¤@8p÷?T¢#0¦?oŸt-kŠ?“$e±æ¤È?Ÿ‹–¥ÿq?›çž§&Ò€@*@(@(@9@6?ð?ð?ð?ð?ðøøøøøøøøøøøø|@¯Û A‰7L@¯Û @¯Û A‰7L@¯Û å ¾¿@¯Û A‰7L@¯Û Ž™ÿÝ@¯Û A‰7L@¯Û Á\{±@¯Û A‰7L@¯ÛË÷Râ@¯Û A‰7L@¯Ûê ¹@”ϾvÈ´@”Ï A‰7L@”ϾvÈ´@”Ï]LKJ@”ϾvÈ´@”ÏyÚ -@”ϾvÈ´@”Ï!DíŽl@”ϾvÈ´@”Ïb(¡@”ϾvÈ´@”Ï E!¤@4í¥œàv@4î‚b™R@0û Iº^@0û©Qà@097KƧð@09 wî@/úÇË)_@/ûY2OºX@/úÇË)_@/û´à±¤d@/úÇË)_@/û‹E2{L?|Ñb×¶@?ȶ¶ú# ?‘6ó4Y?µ?‹´M¢ÍÕ¼?ñ(Gâö¢?ÄÇÚÕ?|Ñb×¶@?’/èÞçq?©4Á?«ü?MCFn3×?éç Ã¤?d¨ã"“H?‚pDøïRg?Œ¹î äý»?‚‰’Í¡v?ƒŒhïú„?†¦9¸yt?†ÈH‚oÇ@@*@,@*@9@:?ð?ð?ð?ð?ð?ð>òSº¿Ì Æ ?VCl? NÈ;x@¯Û ¦Ê@”Ï -šçd?=-ËÒŸ!4?@U?‡:ò;òñ¤?Œ¯·B)Øè@ŸföDj¬„@}@­*^¸Që…@­*k…¸Q@­*^¸Që…@­*\C,¥z@­*^¸Që…@­*_ò䎊@­*^¸Që…@­*_|í‘i@­*^¸Që…@­*\žì¿±@­*^¸Që…@­*\¾ß¤@©jýó¶F@©j“t¼i@©jýó¶F@©jã¼Ó@©jýó¶F@©j_ö”@©jýó¶F@©jy=Ù@©jýó¶F@©jCþ\“@©jýó¶F@©j+jçÕ@8ºqÞi­C@8Áä÷eý‹@3@ Ä›¥ã@3AÊÀƒn@2d¼j~ùÛ@2eoi@2O „M@2'RT`ª@2O „M@2šu@2O „M@2($ x?3ßa=„?‘¸ü"ù€2?”‰oüq u?‡{@áè?“¦Æ_ÌdA?’—ØPö«?›’qvš°•?“H¼k#è?’Q½£a C?íu…XÚ?’˜£“µ~Ð?’›â¾Ð'µ?©'¾²[?Å9–o?…/‡ÙX·³?…<ò N ?‰©OO ¨?ˆ0&YÊEd@@@@@(@(?ð?ð?ð?ð?ð?ð¿k.™t~¿5(”à?D„=ù{‹?E²ˆÐtd(@­*`tòf@©jq¿r½?cú¾ÁsI?`v©ø!¿?ÂÚfĦ9Î?¶c|®[@Ÿm[V?K@~@Ÿ;dZ¬@Ÿ+@8Iç@8Ù?‰døëŽìÃ@8Î÷@8i§@8Å@8S@8û—?¡B€‹{Ü¡@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø‚@®ÊY™™™š@®ÊY™™™™@®ÊY™™™š@®ÊZw¶:@®ÊY™™™š@®ÊW3ú1K@®ÊY™™™š@®ÊXÛ)Wþ@®ÊY™™™š@®ÊWh.…@®ÊY™™™š@®ÊY2ÄÈ@”Ñ$Ý/@”щ7KÈ@”Ñ$Ý/@”Ñ› -²á@”Ñ$Ý/@”Ñ#à¤Q@”Ñ$Ý/@”Ñ9(›þ@”Ñ$Ý/@”Ðüâp,@”Ñ$Ý/@”Ðü!½ @4wâ‚@·€@4wÒ¸T:’@1æ‡+ J@1æåœ P©@1q‰7Kƨ@1q•Uà@1Þi­BÄ@1ÌÌš}@1Þi­BÄ@1þâÖï@1Þi­BÄ@1ðˆçÂ?€Ã{s°úi?<—àMt?‘+5xøªò?ŒA·qŒo?‘è¹í¡?‘2k…‡bð?|Ñb×¶@?’eCŒO?‡anØ¥?‡P°R²ß?‘¹xò(+?½„†æîÑ?‚•÷Çé¹a?Œîݺ?‚¼nž÷?ƒu3±ëX?†ü (Ÿ=d?†Î*OÌôû@@,@ @,@:@9?ð?ð?ð?ð?ð?ð¿0ÀC‘@¿BJõÙÞ?) AÐñ? ×jÌ}Ÿ@®ÊXøµ* @”Ðÿ"Ï4?HÜžÜ,yô?@—”2¡­=?­¦À¼ ?‹R#sÕc@Ÿgl`»vB@ƒ@«B 7Kƨ@«B -AÍá3@«B 7Kƨ@«B z`Ð@«B 7Kƨ@«B}höÆ@«B 7Kƨ@«B ý} @«B 7Kƨ@«B ó:@«B 7Kƨ@«BÔ''Å@˜Y -=p£×@˜Y –É‚@˜Y -=p£×@˜YO«ƒ@˜Y -=p£×@˜Y -©iå @˜Y -=p£×@˜Y <ù1@˜Y -=p£×@˜XÿÄ Ê¯@˜Y -=p£×@˜YñÂå@8 ]cˆe”@8 -FVMÙŒ@3‡ÎÙ‡+@3ˆ>þ‡n@2Àå`A‰7@2Âb¡ - @1ó&Á½¥@1ôZûܳu@1ó&Á½¥@1ô3>4¥@1ó&Á½¥@1ôÈq;${?–×ôäL™?ȱÿ²•c?’ú4vȺ?ŒÀ®ôB5 ?‘]Xýæä?‘—Ë™3HQ?›Q®úL§?’Îç9{»?‘ÁbNù|V?„Å÷Mª?‘^YZ8ÔÐ?äÔhÕ•Q?²PµU+D±?Ž"Çá¸x?‚½l1Y=3?ƒt'†Óß?‡dOõÃ@?‡˜Þ•+åç@@(@*@*@:@9?ð?ð?ð?ð?ð?ð¿<À”(À¿VdÍÄ?@UßÊ5M?Kf“ aXc@«B -`òë@˜Y!#;Æ?Y"€Å"î?d‹«á`ü?°³æ?åt -Îõí?¶D»J¥X?èŽìr¡-?’,ö´´Ï#?€s8rÅ?4–Ú‰3?Ë=̘ê_?PL·Dǽ?æ ýM¹<Ç?Œ²ÅŒÕ6?‚˜YªüÏF?‚ð'ã:ÂÝ?†Æ¸¹%?†‰~±.@@@@@@ ?ð?ð?ð?ð?ð?ð¿AIˆç8>ý8ßÓ@?-u+)3¨x?"hªÈ£?@žÓ„@;5@¯C´œRƒ$?<ÏîRp?¹[Í_?s/ꉄ6H?4¾~L3ø@Ÿs~ËR%ò@…@£ÎV“@£É7Kƨ@£ÎV“@£Ò{²þÅ@£ÎV“@£Ò•éá±@£ÎV“@£Ðå`A‰@£ÎV“@£Í5¨Xy@£ÎV“@£ÎzáH@«¾¸Ôýó¶@«¾¶“u@«¾¸Ôýó¶@«¾¼¹#¢œ@«¾¸Ôýó¶@«¾¼C,¥y@«¾¸Ôýó¶@«¾¼ÓZ…‰@«¾¸Ôýó¶@«¾¸bMÓ@«¾¸Ôýó¶@«¾´¢3œ@8D¯O „M@8JJŒL˜@2ør° Äœ@2ø­«ŸU›@2iÛ"Ðå`@2ju%F @1‡ ù kº@1ƒFÜ]cˆ@1‡ ù kº@1ЦL/ƒ{@1‡ ù kº@1‹’:)Çz?“Æ×q„nï?’ãy)­3c?‘=?ùKh?U›=ÈK?’ÒuèçxY?‘Ò\.:Ø@?«_$Øï†?—·f;m?¯éÊSÜ?‘W×ý°A?‘ÇmEB«?‘êey°úà?ÂðÏvÕûA?•ŠPç<}¨?ŠÇÿú?„•ˆG’Z¾?‰Ü)@Jq«?€=P|@@@@@*@&?ð?ð?ð?ð?ð?ð?J”¶VP¿`çùÍ€?O8¾ü1“?WXE¢uÊ@£Î«`@«¾¹=Òe’?k ÏejMß?kÃÚ+$v?Ñ©ïÜô°?Ì“?$©ÿ@Ÿp uÜÛ@†@ WH´9X@ WK¡‰ËÅ@ WH´9X@ WH:Wt@ WH´9X@ W‡‰·ÅJ@ WH´9X@ W_Ó$@ WH´9X@ WPJæ@ WH´9X@ WR´É§@¯ :^5?}@¯ )™H@¯ :^5?}@¯ ´ØÎ“@¯ :^5?}@¯ G¬Råb@¯ :^5?}@¯ ÂbÜ@¯ :^5?}@¯ $z˜Âq@¯ :^5?}@¯ i©@õý@904mÅÖ8@9>¶ @4ÇÎÙ‡+@4–™d–@@3§KƧïž@3†*'2!ö@3?ò䎊r@3)8–éˆ@3?ò䎊r@3(z­ã’õ@3?ò䎊r@3*Œ |3?ñ3<' ?’ŠïÏØ$? Ÿ£Qî´?–es1“xÕ?˜Ì›B—O/?–Ìù—ã¾µ?§ŸsX]?“,¯ë?£†úþ'±¯?•¾ìiÉ®?‘*Ex Áž?›mr)?ƒ‰"úÿŠì?›w+ã*ª?ˆ%AÉC±‚?‰8‹bÊ-Y?Ï2ÉN‹ü?‹keWP'X@@"@$@ @$@"?ð?ð?ð?ð?ð?ð?a9;j?—Åõ·?^Þ5’A -?¢x¿}=@ WSœs¾@¯ %¶øe¢?ƒž=½-ç?¢YPšd½?úr•sGÈ´@1³dÜ ï@@Ÿn?Žà¼Ð@‡@¨O^¸Që…@¨OaÊÀƒ@¨O^¸Që…@¨O`Ñ·Y@¨O^¸Që…@¨O_Š Þ@¨O^¸Që…@¨ObëC-@¨O^¸Që…@¨O`-à @¨O^¸Që…@¨O[=ÈK@¤ "Ðå`@¤ "MÒñª@¤ "Ðå`@¤ àuöý@¤ "Ðå`@¤ Ov`@¤ "Ðå`@¤ À6ã@¤ "Ðå`@¤ ã¼Ò@¤ "Ðå`@¤ _ö”@72ÃÉîËû@70ƒn—Ž@3û Iº^@3ý(Œç°@3ù7KƧð@4IQ‚ª@2ÙŒ~($ @2ÚW§†Â'@2ÙŒ~($ @2ÝÅÖ8†Z@2ÙŒ~($ @2Ý!ÿ.Hé?•²»UbB2?’‚€‡d_s?–Èó^ù„?“zRÈUÄ?”] -° ?•zWmoàí?Œs¤DÅÐ?£àÂ’âÿ?™ÐÈï£L?–…%j»a?“‚Û£0Î¥?“ù|ö[ÿz? t€4Â?üÓqÔN‰?¡è™è;?…J]j?Ž .0åv?€=P|@@@@@*@*?ð?ð?ð?ð?ð?ð¿R-·²¿]p(ï,?K® _WŒ?;¬'yÃ) @¨O`d´@¤ (°†p?h-y'bÁ@?\”ÂIâ½?ÅÁ§ûPe×?²§)”ï@ŸkÜñî­¯@ˆ@ Ð-‘hr°@ Ð*Àƒo@ Ð-‘hr°@ Ð-cåÜ@ Ð-‘hr°@ Ð.Î÷³H@ Ð-‘hr°@ Ð.˜zš_@ Ð-‘hr°@ Ð,¶øˆ@ Ð-‘hr°@ Ð,¤jhM@­V× -=p¤@­VÔÙ¾ˆ+@­V× -=p¤@­VÖ2ÃŬ@­V× -=p¤@­VÖÕ‚v\@­V× -=p¤@­VÖÆa/÷@­V× -=p¤@­V×ÿ=‚@­V× -=p¤@­V×ãxË@6­¥œàv@6¬s«ÉG@0ÜIº^5@@0Ü‘’…—F@/]ó¶E¡Ë@/]o—g2@.£¼ÓZ…ˆ@.¢jK•(@.£¼ÓZ…ˆ@.£H«EÓ@.£¼ÓZ…ˆ@.¢òù‡?û?ŽÕQp Î?)bÓºÉx?‘-[ÑÈo?‹±mcâcx?ÿor¢òÈ?ÃvURn*?ƒÔo"ë–?’-ä‹Ð?þ%›§Ä?9d‰Ù™Ä?é*’Ð_?cØ•ZI?‚o†#BpW?Œ¿Ïôq¼6?‚˜YªüÏF?‚ý› û¼?†œ!R#?†“[R¿vs@@,@,@&@8@7?ð?ð?ð?ð?ð?ð?Að!ÍH?F<"ž?9zY æ·Ý?PvÚî8©@ Ð,ms8n@­VÖˆîJ?Y ìF Ö™?5¥¬ÝÛÜ?¾êL(Ö¬?s -ÂzØd@ŸhÓ%…xI@‰@ ­•%@ ­× -=q@ ­•%@ ­Ø·f@ ­•%@ ­]èU@ ­•%@ ­ëî@è@ ­•%@ ­Þ¿ÖJ@ ­•%@ ­¯\Tä@ Z›¥ãT@ Z›¥ãT@ Z›¥ãT@ Z$PŒd@ Z›¥ãT@ Z±-éK@ Z›¥ãT@ Z[¯5@ Z›¥ãT@ Zµ$•@ Z›¥ãT@ ZÁÔ÷Ñ@2–»˜È@2|í‘hr@0×+ Iº@0ÛfW˜ -Ø@0ä¼j~ùÛ@0òzP·¦@08DЩ*@0H¨äº•Œ@08DЩ*@0Cîô&Y@08DЩ*@0@ØDЩ?É^¨¯Âj?ÏWº¤¯?“©’Qõ¾?Ž# 8ðÖ‘?“¾”c¼.?“Jq×s=?ÐbMÝn½?’7ÌÇû!?šµÂ%2Ù}? )Nk·@¤dÝ/ @¤b3œ¿@ªc»dZ¬@ªc»çl‹D@ªc»dZ¬@ªc·süP@ªc»dZ¬@ªcµ›=Ç@ªc»dZ¬@ªc¸*™0½@ªc»dZ¬@ªcº…‡“Þ@ªc»dZ¬@ªc·škP²@7`ØDЩ@7bZîcŠ@2i‡+ @2hï4Ö¡b@1È“t¼j@1Ç ù kº@1ý!ÿ.I@1R½<6@1ý!ÿ.I@1}¿H€@1ý!ÿ.I@1Ë)^ž?1·†Æjñ?‘€5{ºÎ#?“­læ>®€?Ça_b‹?‘˜¯ -`É?’ ÖMüõi?ˆÿÀ)T¿Æ?’‡Iš÷?–AuøG1?’.p»Cþ?’>H>d#?‘)]•\­?ŒR‹w#z?¨ ‰‹U)?…àú^Á?„ªÎZ´?ˆ”Tj«›ª?‰G±±ZÎ@@@@@(@(?ð?ð?ð?ð?ð?ð?&Aø ¿H%÷H?1,;@-?7ðÓ?‘™@¤ct/${@ªc¹ç¤(ð?RK­I¶Š?Wò‹†yã ?«Åò þ æ?²Œ\ÐìR@Ÿi&• -—Ë@‹@ ¸Ôýó¶@ ·ÎÙ‡@ ¸Ôýó¶Á.„€@ ¸Ôýó¶Á.„€@ ¸Ôýó¶Á.„€@ ¸Ôýó¶Á.„€@ ¸Ôýó¶Á.„€@ ‘@ îV“@ ‘Á.„€@ ‘Á.„€@ ‘Á.„€@ ‘Á.„€@ ‘Á.„€@6 ØDЩ@6`ªdÂù@3@ Ä›¥ãÁ.„M‰ûçm@2y7KƧðÁ.„QnÙ‡@1èè§æ›Á.„NÜC,¥@1èè§æ›Á.„NÜC,¥@1èè§æ›Á.„NÜC,¥?…ÅBðrç@8#˜@8¾:@8 >+@8Iç@8Ù?–ªÎ­¡@8Î÷@8i§@8Å@8S@8û—?§˜Áuf·@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøŒ@ ÿ|í‘h@ ÿ¾vÈ´@ ÿ|í‘h@ Tˆ¸@ ÿ|í‘h@ PÌ’N@ ÿ|í‘h@ ý–6‰Ö@ ÿ|í‘h@ þ•b’@ ÿ|í‘h@ þÈêbR@  -‰7KÇ@  -ÊÀƒ@  -‰7KÇ@  -~ߤ?ç@  -‰7KÇ@  -sR@  -‰7KÇ@  -ƒI}ÆŠ@  -‰7KÇ@  -‚Í=X|@  -‰7KÇ@  -”Ú !@1ÉÎ_oÒ@1ÉÀëíúD@0Š^5?|î@0‹ý¦çÍc@/òn—Oà@/óñG&À@/õ¨Xy=Ú@/üo០@/õ¨Xy=Ú@/ø£¡9î@/õ¨Xy=Ú@/ùäÁéI±?É^¨¯Âj?Ô­)?‘'æÚÄ ?ŒP4äq{è?‘s£Zò?‘!Ž ¸?ÐbQë„›¦?’½ò?„<ˆ6?húgÊÚö?ôO³â¾?·t7ôT?€bîF¾§?ŒôÊ“:$Ñ?‚´ÎtÎq£?ƒÅ#+Ïé?‡xý’’lÔ?‡>d»S@@$@$@*@6@5?ð?ð?ð?ð?ð?ð?@ùb8Æ¿F÷7øÎ?#úÓß{ÈF?(èÅ}ØX•@ þ>ÎÒ®@  -‚¢Òê?3.N%6?7~EHbeð?axf!@¨½?g‡óz§Ì@ŸsÇ+0w@@¡ý²° Äœ@¡ý·KƧñ@¡ý²° Äœ@¡ý½ÌcñA@¡ý²° Äœ@¡ýÅ`A‰7@¡ý²° Äœ@¡ý°ÿ—$t@¡ý²° Äœ@¡ý°¾ í)@¡ý²° Äœ@¡ý¸ï4Ö¡@ ï`A‰7L@ ïW -=p¤@ ï`A‰7L@ ïv“u@ ï`A‰7L@ ï€ƒn˜@ ï`A‰7L@ ïZ¹õY´@ ï`A‰7L@ ï[¥ãSø@ ï`A‰7L@ ï^¸Që…@7p4mÅÖ8@7l¹#¢œx@3æ‡+ J@3õY³Ð|„@2Ãt¼j~ú@2ØXy=Ù€@2œàu÷@2 ’:)Çz@2œàu÷@2HðŽ@2œàu÷@2 quŽ"?€‚ñêã ?”Øÿ4ÙKl?¡È‡ å? Í‹hÆ?–[À5ž¨?œ´‹ÛZ?|¬Çëý ? Í”{Í?”p¶I”“ž?‘~¬Àm?ó?“â¹Í[Óh?™"Ьç¿?Ÿ•"x*=k?¥*Û:'+)?Œó}?ï?éàQx˜?“aÑ#?˜!ÄD‘@@@@@(@(?ð?ð?ð?ð?ð?ð¿Qä@;.?VpÌÏÄ?O¢´†…?"Ng6Gj³@¡ý´½MéÁ@ ïY®ÀD?lÊ\­Ä{?A1tò–6?ÝÞ -“°è¢?‡õi]û¬Õ@ŸeÕx¸Ç@Ž@¡ýH´9X@¡ýH1&éy@¡ýH´9X@¡ý Ä›¥ã@¡ýH´9X@¡ýC¼ÓZ†@¡ýH´9X@¡ý-¸ºÇ@¡ýH´9X@¡ýFµ '@¡ýH´9X@¡ýG ù l@§\{dZ¬@§\{dZ¬@§\{dZ¬@§[¿¼@§\{dZ¬@§\]Vlô@§\{dZ¬@§[üí‘hs@§\{dZ¬@§\|£n0@§\{dZ¬@§\|£n/@4Bò䎊@4Bh Ô•@0×+ Iº@1 -à @01‰7Kƨ@0>Hè§ç@0ÚQÎ@0L/ƒ{J$@0ÚQÎ@0’:)Çz@0ÚQÎ@0²þÅm]?}Ñ¿ž,?©­ïáuùM?’,³Zêª?$¿ÀºÍ?‘˜¯ -`É?‘…Rgå.?|¬Çëý ?¶EŽù±Ò?¯éÊSÜ?›üfšˆ‚Á?‘C å;Ã?–’+¸¢d?ƒ{¬ÉV?¨ ‰‹U)?ƒÚ@êA²?–Ô¿»X¨?‡<û¡71?†ùadô|@@@@@,@,?ð?ð?ð?ð?ð?ð¿ZðÓP¿`58* ?kô ™îÒç?ƒZ ¸8¶N@¡ýBƒ9>@§\sø8p®?‹¡É–n+k?¤]æ3,Ù"@#z–ˆÔ%@SÒ½‚t@Ÿfú[á§@@¤œ@¤›ïß;dZ@¤œÁ.„€@¤œÁ.„€@¤œÁ.„€@¤œÁ.„€@¤œÁ.„€@¥ËËC•@¥Ë‘ë…¸@¥ËËC•Á.„€@¥ËËC•Á.„€@¥ËËC•Á.„€@¥ËËC•Á.„€@¥ËËC•Á.„€@9G>«6z@9H Ô•+@4µãS÷ÎÙÁ.„M‰ûçm@3ñ‰7KƨÁ.„QnÙ‡@3Š0U2a|Á.„NÜC,¥@3Š0U2a|Á.„NÜC,¥@3Š0U2a|Á.„NÜC,¥?Äâc9X@8#˜@8¾:@8 >+@8Iç@8Ù?îŠõ @8Î÷@8i§@8Å@8S@8û—?ĆpÑ,@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¥ÓIº^5?Á.„€@¥ÓIº^5?@¥ÒÏ]yhì@¥ÓIº^5?@¥Òŵ¸ {@¥ÓIº^5?@¥ÒüxÉ[³@¥ÓIº^5?@¥Ó'_oÒ @¥ÓIº^5?@¥Ó7Oß:@˜•ÍÒñ©üÁ.„€@˜•ÍÒñ©ü@˜•¸¨éÙ@˜•ÍÒñ©ü@˜•ÊçôZž@˜•ÍÒñ©ü@˜•j2ÿÈã@˜•ÍÒñ©ü@˜•zxl"i@˜•ÍÒñ©ü@˜•„“t¼@8” xFÜÁ.„>¤µÜÆ@5° Ä›¦@4ÆüÙ_jK@4Ÿ²-V@4•ñbŽ&Â@4:Ô,<ží@4LΡÙm¯@4:Ô,<ží@3ùÛ"Ðå`@4:Ô,<ží@4 PHð@8J¨?·Uq‚dÏ??xÈÄ@?¹ýݧ·Þâ?ÁxܬiÍ?ªºŠY‡@8J¨?¼óC€TæÃ?µða¢–?Š?ºÙ¿f|‹?Æ"Q¾S–?¯UÌ•"¨–@8p÷?¬«ã-Ýq?´ói°ŒIÖ?Àƒ?ÃF›?Àñkú±0?»N£²›R\@(@$@&@*@$?ð?ð?ð?ð?ðøøøøøøøøøøøø‘@§þ“t¼j@§þ‡+ @§þ“t¼j@§þ1Å@§þ“t¼j@§þmÅÖ9@§þ“t¼j@§þŽóMj@§þ“t¼j@§þ[W>«@§þ“t¼j@§þbMÒ@¡~À@¡~Á‰7KÈ@¡~À@¡~Àƒn˜@¡~À@¡~Äg8~@¡~À@¡~ÅýŠÚº@¡~À@¡~Îp:û@¡~À@¡~Ò¼¢@6}:’£@6~óMj@2ë¥ãS÷Ï@2á×Ûô‡ü@1ˆ“t¼j@1ë…¸R@1a:’£S@1TêJŒL@1a:’£S@1RÃÉîËû@1a:’£S@1TêJŒM?‚á²Olºü?¥nÇx?)?–„6âpñ?ŽËÜ¿€?šòl? ¬?˜j@\"?€‚ñêã ?’§ioŠ?’€fç½Î?‘.“¥?ïeÑÙN¤?ž™<û!æ?ˆÌ7^|Â?Ó%y*£=?‡Ü̈- -?ˆš5|Gå?æšÔ,<ž?ˆ¾þúWZ‹@@@@@&@(?ð?ð?ð?ð?ð?ð¿;J+ð?fötóÑ?EŒƒD½ ?bä–¶ýÑ?É|‚ g–?ÄPÙflý²@Ÿe,¤ 5@’@¡ËdÝ/ @¡Ëe`A‰7@¡ËdÝ/ @¡Ëem\ú­@¡ËdÝ/ @¡Ëgl‹C—@¡ËdÝ/ @¡Ëe‡“ݘ@¡ËdÝ/ @¡Ëb‚@·€@¡ËdÝ/ @¡Ëa–R½=@  LÌÌÌÍ@  LÌÌÌÍ@  LÌÌÌÍ@  L˜_÷@  LÌÌÌÍ@  KC,¥@  LÌÌÌÍ@  Kûµt@  LÌÌÌÍ@  Np:û@  LÌÌÌÍ@  NËûµ@2Q|ÚQ@2Qhr° Ä@.û"Ðå`A@.ù=Ùb¶@.cn—P@.^¸Që…@.Vð¸»@.OÅo@.Vð¸»@.N_oÒ @.Vð¸»@.O „M;?ðO­W¬ÃÆ?%¼ÇÆÃ±?‘ŒQ®üX?,¡r×gÁ?‘úy«ôÊ%?’ ÖMüõi?ð„ƒ;0?’MœœN ?³2ºŽ'?‘aYZ†«q?’ÞH†<²?‘õe\Š«p?ð!̃?Œ¸†‡ÄÅ?‚‘´…=Cb?„ mŠmsi?‰©OO ¨?ŒÙ”!Çx‡?ð@@@@*@,?ð?ð?ð?ð?ð?ð¿\Ýá^?T¡Ü€?1ŒÔ{H²N?3JGZúÆ@¡ËcO¸7@  M¦Ó>?@vø8ûZã?Aù© -à?uŸ‡«ê³6?wÓ/Ÿ.#Ÿ@ŸsšgOx@“@­ C•@­å`A‰@­ C•@¬ÿÁä÷eþ@­ C•@¬ÿ˜bMÒ@­ C•@¬ÿ×éùr@­ C•Á.„€@­ C•@¬þ„ xH@¢}âMÒñª@¢}ß¾vÈ´@¢}âMÒñª@¢}ò¼£@¢}âMÒñª@¢}ý—ö+k@¢}âMÒñª@¢}ì¥zxm@¢}âMÒñªÁ.„€@¢}âMÒñª@¢}Ò£S%@8Ì]cˆe•@8¾_oÒ @4½‘hr° @4¦Ov_Ø@4U`A‰7L@49Q‚©“ @3ý!ÿ.I@3 šu&@3ý!ÿ.IÁ.„NÜC,¥@3ý!ÿ.I@2Ü篷é?ªÝ8Ⱥ™J?Ÿø5Õb&?Äüjl|Õ?³ïàó„âè@8Iç?ä<´3:‰?}Ñ¿ž,? >Ô±µR?—ÿfFº?•õ°­¿Èì@8S?æ¹ÎŸ=²?É*cˆº?¤Y¾Â,v?¨çTBÜôŒ?¥À¨@8 Ø?º6fe>¥º@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø”@®&È´9X@®&ËC•@®&È´9X@®&Ø“t¼j@®&È´9X@®&Ü£n/@®&È´9X@®&ëjçÕg@®&È´9X@®&Ölô!@®&È´9X@®&Ý}¿H€@©®—Oß@©®V“@©®—Oß@©xl"h @©®—Oß@©EãS÷Î@©®—Oß@©ÿ|í‘h@©®—Oß@©Ù‡+@©®—Oß@©˜*™0¾@6#g ù l@6%¸Që…@3³S÷ÎÙ@3š ÞÒ@3iÛ"Ðå`@3=²-V@3 -0U2a|@2Ë)^ž @3 -0U2a|@2Í—ö+jè@3 -0U2a|@2Ö»˜Çâ‚?…ÅBðrç?©Æßˆ J?°]!Àò\Ã?³üɹÀçà?±J¶‰jcJ?°0JeãÝÕ?„F/·ÿP5?³ý•‘|?Ä pÎôÛ“?ÍîI-ØU4?ÐÕ/xÿº?ÝBHÉ¿_?‚ÂÌ]å?œ]ŸFV”?¢³Žbtx=?¡ðc+þ™?¢&z²ÖQ³?²0Ãà÷ïŸ@@@@@(@,?ð?ð?ð?ð?ð?ð?qŒGŒ¿ªG–wY0?`j ÑX`?€ ·¬Ÿ%@®&Í_ݲ@©–Ð.ÉL?p¿¸M°?¤µÜÆ@3W+ IºÁ.„M‰ûçm@2A‰7KÇÁ.„QnÙ‡@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø–@¥FÚ¬1@¥FÚ^5?}@¥FÚ¬1@¥FÙõY³Ð@¥FÚ¬1@¥FÙrGE9@¥FÚ¬1@¥FÛdZ¬@¥FÚ¬1@¥FÚCþ\‘@¥FÚ¬1@¥FÛµsë@¬¨=ó¶E¢@¬¨>5?|ï@¬¨=ó¶E¢@¬¨=¥œà@¬¨=ó¶E¢@¬¨:Ÿ¾vÉ@¬¨=ó¶E¢@¬¨;"Ðå`@¬¨=ó¶E¢@¬¨6ý!ÿ.@¬¨=ó¶E¢@¬¨:¹õYµ@4N쿱[X@4OŸ¾vÈ@1Œí‘hr°@1:’£@1²-V@1 @1¨è§æ›@1¦Ov_Ù@1¨è§æ›@1®}Vlô@1¨è§æ›@1­í(Œç?|öOÿÝ?qÂ' -B›?‘RsÈW?ŒvHn&³?“2{Áw¸?‘£.'É?|öOÿÝ?’Dê™.x? Dñ£P?|Ø}Õ…?–›·†ø?’9ñ9¶ò8?‚Ì ÝŽ‚8? $gú‡v?‚Ì ÝŽ‚8?…J]j?ˆëÅoë?‡&üòI@@@@@(@&?ð?ð?ð?ð?ð?ð?"+½0¿Q'S,Ø? ‰ó) ?9 e¼yvÑ@¥FÚµÊîó@¬¨;ïËy–??§[>î_?YŽ‘ö‚Á?Š4ˆ†)²?½ u±™À@ŸfA,3ªã@—@©ý(õÂ\@©ý(r° Å@©ý(õÂ\@©ý(Îp:û@©ý(õÂ\@©ý+ I¹@©ý(õÂ\@©ý) 'RT@©ý(õÂ\@©ý'y¦µ @©ý(õÂ\@©ý)^ž@¥Pô¼j~ú@¥Pô9Xb@¥Pô¼j~ú@¥Pô9Xb@¥Pô¼j~ú@¥Pñ4êK@¥Pô¼j~ú@¥P÷ -=p£@¥Pô¼j~ú@¥PôðØDÏ@¥Pô¼j~ú@¥Põ›=È@5–šÔ,<Ÿ@5–1ø .@2Ò Iº^5@2Ðù k¹Œ@2v§ï²-@2u2a|Ú@2ý!ÿ.I@2µsê³h@2ý!ÿ.I@2”FsØ@2ý!ÿ.I@2ýó¶E¢?‚á²Olºü?ÎÁ¯‰t0?’ª®pµ?ŒÖ -Äȱ?’»–j˜ú?”ªEñeX?}Ñ¿ž,?’Òc§—Ûí?•ƒäôKwö?á>G]!?“£c”?“ÛKÂè• ?…/‡ÙX·²?]ÒivLÿ?†Æ‹™ÿ?„l¯¸‰ŒÎ?Š*ÊÔQãú?ŠEÝ‹N@@@@@,@*?ð?ð?ð?ð?ð?ð?š£??7ÁC¶X?0…ÅV9u?1öÈ_ùQ@©ý(º† t@¥Põ&=ÕI?Oží™pØ%?R+«üÙF?£½ËpN&³?« m‰*žc@Ÿg­»Ñ=@˜@§e Iº^5@§e Iº^6@§e Iº^5@§e´9X@§e Iº^5@§eéùs@§e Iº^5@§eÄ2ÊY@§e Iº^5@§eXâ@§e Iº^5@§e­«ŸV@©0£× -=@©6È´9X@©0£× -=@©#Š @©0£× -=@©0ÿ—$t@©0£× -=@©—$tU@©0£× -=@©E¼£n@©0£× -=@©CS÷ÎÙ@8¨†YJôñ@8¼ÚQÎ@5)‡+ @5,j~ùÛ"@4ä¼j~ùÛ@4ðÞÒˆÎp@45µsê³h@49º^5?~@45µsê³h@4"u%F -¦@45µsê³h@4Ëûµt?Ÿ‹‘+-/Ü? @u-I­?«ÍÏOø? ãçùÇùw?­rî9X”Y?ª $Μ$´?¨Ö_pP1?›¾³vÈ´9@¥(B\(õ@¥(>vÈ´9@¥(8}¿H@¥(>vÈ´9@¥(BëC-@¥(>vÈ´9@¥(>Ov_Ù@¥(>vÈ´9@¥(9Àëíû@¥(>vÈ´9@¥(;ô‡ü¹@8‰Î_oÒ@8…Â\(ö@3sS÷ÎÙ@3vOv_Ø@2Wï²-@2[ Iº^@2‚@·€5@2ï²-@2‚@·€5@2$Ý0@2‚@·€5@2F -¦L0?…ÅBðrç?™ér¨kÏ?šÿ»^ª@?ŽwX/8?”¶q fì?’*Mõis?—¤o„C?™ Ê£ð‡V?šœ‘9‹T‚?‘ݤ`Ìh?’Òc§—Ûí?•J佪™^?Ày»öô3?\{ÏïŽ?–]_«Q?‡v¯ªIì?ŒC ãSG?ŠEÝ‹N@@@@@*@*?ð?ð?ð?ð?ð?ð?D 0Ø¿Z²w¼º?"’ÆB ²¬?Cв_>Ò@£«)Nv]¸@¥(= ó-d?CzÁ¸V ?_ò`žJ®?‡HCK›¸?³ðÒ_k@ŸkÿÚv@š@ª'féxÔþ@ª'f§ï²@ª'féxÔþ@ª'e®æ1ú@ª'féxÔþ@ª'hõÂ\@ª'féxÔþ@ª'g+ I@ª'féxÔþ@ª'fšÔ,<@ª'féxÔþ@ª'fÁ½¥@£ºk…¸R@£ºkƧïŸ@£ºk…¸R@£ºj0U2a@£ºk…¸R@£ºk¬q ´@£ºk…¸R@£ºjW§†Â@£ºk…¸R@£ºl1&é@£ºk…¸R@£ºoªÍž„@47â‚@·€@47ÎÙ‡*@0¦‡+ J@0§+ Iº@0†“t¼@0†šÔ,<Ÿ@/ëjçÕfÐ@/ëàÞÒˆÏ@/ëjçÕfÐ@/éùrGF@/ëjçÕfÐ@/æYJôðÙ?|öOÿÝ?dYûë„{?‘&Øç?‘?‹ë¤½?‡á?‘VšÐ^Ø?‘<ƒÜ_õ?|öOÿÝ?’;µ” È?„¦Ô•]I?K·‘d]?‘x9ξÞO?‘]Ë™$ë>?‚|׿pY?Œþ%å_D?‚á²Olºý?ƒ=rµE=?†ùadô|?Š`½i=ÓØ@@@@@,@*?ð?ð?ð?ð?ð?𿦆#€?9Êg0?º?‚!&ã?<;•ëÝsÉ@ª'f¥ÃªK@£ºlap½Ë?:l`gòÜ‚?\o¸%R ?‚žµ+G9?Ä+An¸{@ŸfÁ¾î¯@›@§*àA‰7LÁ.„€@§*àA‰7LÁ.„€@§*àA‰7LÁ.„€@§*àA‰7LÁ.„€@§*àA‰7LÁ.„€@§*àA‰7LÁ.„€@•ÿ÷ÎÙ‡Á.„€@•ÿ÷ÎÙ‡Á.„€@•ÿ÷ÎÙ‡Á.„€@•ÿ÷ÎÙ‡Á.„€@•ÿ÷ÎÙ‡Á.„€@•ÿ÷ÎÙ‡Á.„€@9šÔ,<ŸÁ.„>¤µÜÆ@4!hr° ÄÁ.„M‰ûçm@3,j~ùÛ#Á.„QnÙ‡@2Ê0U2a|Á.„NÜC,¥@2Ê0U2a|Á.„NÜC,¥@2Ê0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøœ@£×šŸ¾vÉ@£×šŸ¾vÉ@£×šŸ¾vÉ@£×›ô‡ü¹@£×šŸ¾vÉ@£×›quŽ"@£×šŸ¾vÉ@£×›"Ðå`@£×šŸ¾vÉ@£×™Œ~($@£×šŸ¾vÉ@£×™Î_p@®î Ä›¥ã@®î Ä›¥ã@®î Ä›¥ã@®î ù k»@®î Ä›¥ã@®î Ä›¥ã@®î Ä›¥ã@®î¡G®{@®î Ä›¥ã@®î¡|ÚQ@®î Ä›¥ã@®î ù k»@2-¥œàv@2-¥œàv@-ÂÐå`A‰@-ÂëC,¥@-/ß;dZ@-/–»˜È@,fL/ƒ{K@,e¼£n0@,fL/ƒ{K@,fffffg@,fL/ƒ{K@,eðoiDh?É^žQ5P‚?Òç{íj?‘=?ùKh?‹¦ ŸYÔ?òǹíT­?ÔCXsñ?ÐbMçê_x?’ ÃCÀ`ú?¯éÊSÜ?-õI¸`K?Ó%y*£=?J&d„?k?€bMÕky?Œ¬Çëý ?‚˜YªüÏF?‚äÍ“½E'?†–f_ÔŠŠ?†žóB» “@@@@@@"?ð?ð?ð?ð?ð?ð¿Dª[O°¿Ûû`?1ï•…ó·?!5nµ¡ÿ˜@£×šE19@®î¡@Î[y?A<á!ÏÊL?0K˜(ú?}Nˆk?WVd}j3ú@Ÿs:8¢†@@Ÿôó¶E¡ËÁ.„€@Ÿôó¶E¡ËÁ.„€@Ÿôó¶E¡ËÁ.„€@Ÿôó¶E¡ËÁ.„€@Ÿôó¶E¡ËÁ.„€@Ÿôó¶E¡ËÁ.„€@–%—Oß;Á.„€@–%—Oß;Á.„€@–%—Oß;Á.„€@–%—Oß;Á.„€@–%—Oß;Á.„€@–%—Oß;Á.„€@8²ÃÉîËûÁ.„>¤µÜÆ@4 Iº^5Á.„M‰ûçm@2â-VÁ.„QnÙ‡@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@2!:’£SÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøž@«–)ûçl‹@«–+ Iº@«–)ûçl‹@«–) 'RU@«–)ûçl‹@«–,1&é@«–)ûçl‹@«–,"h Õ@«–)ûçl‹@«–)ÞÑ@«–)ûçl‹@«–)“ àß@¡Á¸Që…@¡Á¸“t¼j@¡Á¸Që…@¡Á¸7´¢4@¡Á¸Që…@¡Á¶âëC@¡Á¸Që…@¡Áµ '»@¡Á¸Që…@¡Á·škP±@¡Á¸Që…@¡Á¶È´9X@5kµsê´@5kšu&@2Œí‘hr°@2V“@1H“t¼j@1H†YJôñ@1 -0U2a|@1 =ÈK^@1 -0U2a|@1 -¦L/ƒ|@1 -0U2a|@1 µsê´?}Ñ¿ž,?‘‘Ç`[?‘1f_¨Ï÷?Wø0 ¥?‘,IÝ Áé?‘C!ƒžÈ?|öOÿÝ?’V"y$R?‘4ãM^?EÇàÔPà?‘žˆ2}?‘Qïʾ?‚ÂÌ]å?Ž.]L ¼?ƒmÕ+&¬Š?„ mŠmsi?‡ã ËÄž?‰]³ß’Ý@@@@@,@(?ð?ð?ð?ð?ð?ð¿0îØ`¿=£ð?2ïßÛæ$l?5N4 -FZ@«–*š~Õª@¡Á·qª?RÝÜœ^Ì ?U›W¾£m`?²?k?·9u¡¬Ôy@Ÿfáva @Ÿ@ª7mVÁ.„€@ª7mV@ª7y0¾ í@ª7mV@ª7ŠÚ¹õ[@ª7mV@ª7€A‰7K@ª7mV@ª7FÏAò@ª7mV@ª7ŽcŠ @ l“t¼jÁ.„€@ l“t¼j@ kvâëC@ l“t¼j@ ktýó¶F@ l“t¼j@ kĵܯ?@ l“t¼j@ k³×Ûõ@ l“t¼j@ kÄЩ*@6p4mÅÖ8Á.„>¤µÜÆ@2GÎÙ‡+@1ýúCþ\’@1¹7KƧð@1jW§†Â&@1 ù kº@0³ä%®æ2@1 ù kº@0¾;Í5¨X@1 ù kº@1Òòä@8J¨?Á b¥—}/?Ã-ˆøº_?Á¯C :‡ò?Øþ¿ý†5}?Ì”ôJ>@(@8J¨?¸[:À|àQ?ÊË.%?Ír…£”?ǘ(ކßK?Ä%ÙÍ„ @8p÷?”É…ðoiE?–í -e˜›ð?›zYì3®?? ü‡—Üä?ô@éžî®@@@@,@$?ð?ð?ð?ð?ðøøøøøøøøøøøø @£¨öE¡ÊÁ@£¨íOß;c@£¨öE¡ÊÁ@£¨òT`ªe@£¨öE¡ÊÁ@£¨ô¼j~ú@£¨öE¡ÊÁ@£¨ùÎ_p@£¨öE¡ÊÁ@£¨ó×Ûö@£¨öE¡ÊÁ@£¨ñuŽ!–@¨Ò%`A‰7@¨Ò$›¥ãS@¨Ò%`A‰7@¨Ò'Ë)_@¨Ò%`A‰7@¨Ò& -¦L0@¨Ò%`A‰7@¨Ò$oi@¨Ò%`A‰7@¨Ò%o@¨Ò%`A‰7@¨Ò%m\ú­@8zqÞi­C@8{C•%@3«¥ãS÷Ï@3¬ú¬Ùè>@2Ë"Ðå`B@2Í:’£@1ÿò䎊r@1þ¸Që…@1ÿò䎊r@1ÿìVÕÏ«@1ÿò䎊r@1ÿªÍžƒä?гá‡}?‘€5{ºÎ#?•]˜P?ØTnçE?’Æ÷Xê†?‘6 '8?¢F^ì¼Sð?•yom?”Bœ<\ v?’GÎ>GÅ?’íßš?‘¡ë Þf?¤ŠíšÄ,+?\{ÏïŽ?†úŒz_–È?‡•ó¨–ˆ?‰Ü)@Jq«?‰]³ß’Ý@@@@@,@ ?ð?ð?ð?ð?ð?ð?S2¦O˜?/ýq¨?Wä±¶V=ß? ×Á@£¨ó™Xd@¨Ò$ÛU&v?xã^áã e?37ïßÑ÷?ð«=‹êç?^<–×i@Ÿn½è!^8@¡@¡gxQë…@¡gxQë…@¡gxQë…@¡gyM¼Þ[@¡gxQë…@¡gkŸúd@¡gxQë…@¡gW!Êçí@¡gxQë…@¡gaCqØÝ@¡gxQë…@¡gkÿÿF·@•Ç®zá@•Ìxéö©@•Ç®zá@•˜•@•Ç®zá@•Ë϶‰¬@•Ç®zá@•é¶Õ]@•Ç®zá@•·Xöû@•Ç®zá@•¨±×9@7>«6z@7 3ø÷ù¤@3uãS÷ÎÙ@3q}-Ð@2q‰7Kƨ@2ÔЭÅ@2Vý!ÿ.I@2g0ÏÐ-@2Vý!ÿ.I@2aâ -‹K°@2Vý!ÿ.I@2d1Hf" ?“x/0 ª?’‘a4ÅÞ¯?›•²’Æ›?—<é²–Wò?š|eˆÄP:?¡Ó!o “?~Ov_Ø­«?•xj~‚Á?“cG4W#?˜ð¢:˜&?–¹Œ¿Ú’?žÒ§|á -?¢a>1l¬?˜ÃÑ"ܰ?•Dô\e“‡?ž8É”Ó%.?œ*$]Ø+Õ?šu"I¢(@@"@&@*@7@:?ð?ð?ð?ð?ð?ð¿t`˜å¿^:÷?pÌ._+Ü?dåY ò™@¡ggírš@•ÅQlšô?€†ûµo?†zß¹Êî@!:@ü¼@ts¯$HR@Ÿh”¹ïÓ@¢@§m‚\(ö@§mc4åß@§m‚\(ö@§my­:.-@§m‚\(ö@§mŠb¡p†@§m‚\(ö@§mw£MÕ@§m‚\(ö@§mvA½A{@§m‚\(ö@§mtœ¿¨ö@“hbMÒò@“ho[Uï'@“hbMÒò@“h°;ˆà¾@“hbMÒò@“hÉØ‰Ø@“hbMÒò@“h¿ÞÓÈ@“hbMÒò@“h¸ö‘´@“hbMÒò@“hô'¿ù@8?–»˜È@80uä/p@4&‡+ J@4¤²[·i@3lj~ùÛ#@3R>ïІ@2Œ¿±[W?@2syÂÙZ9@2Œ¿±[W?@2hXÑ©;…@2Œ¿±[W?@2vÎ üˆ³?´C/àÐ?’jÒ¯•?—£‡;¯¡?Ÿ¡Wç§•?œ‚¶üí»³?žÆó©?­®£Õek?–Ón%»t?‘@^ó8"B?¨?ï¶„~? `øÒæ?Ÿõ2Òò?À1CWç6¤µÜÆ@1Œí‘hr°@1~Äk@+@1F“t¼@10gg£§U@0ž«6z‘@0ˆÿ€ÆÙf@0ž«6z‘@0‰£Ðy@0ž«6z‘@0‰Ë%ÿJ@8J¨?‘|ŒBnû‡?•üÎ?˜±w“J?“à¨e?’ý,XsGí@8J¨?“Fæ1ÚQ?’KcûŸUÿ?’ÎùïÛôÐ?‘mñwùÙ?Á–\qâ'@8p÷?%c+5 ?ƒ$4;›?ƒ¦/É>?†î§ZQêË?†ßÌ?€7Ô@*@,@,@<@:?ð?ð?ð?ð?ðøøøøøøøøøøøø¥@¬CŒIº^5@¬C‹Æ§ïŸ@¬CŒIº^5@¬C•%F -¦@¬CŒIº^5@¬CŒÌÌÌÍ@¬CŒIº^5@¬C“ê³g¡@¬CŒIº^5@¬CquŽ@¬CŒIº^5@¬CŒ~($ @¬#D“t¼@¬#K…¸Q@¬#D“t¼@¬#IùrF@¬#D“t¼@¬#;dZ¬@¬#D“t¼@¬#E¸Qì@¬#D“t¼@¬#C× -=p@¬#D“t¼@¬#A½¥@7™*0U2b@7ž±Ä2ÊX@3Ò Iº^5@3Ñ@N¤¨@3q‰7Kƨ@3oØ­«ŸV@2ãÉîËû@2ß±[W>¬@2ãÉîËû@2Ý\ú¬Ùè@2ãÉîËû@2Ü„µÜÆ??}Ñ¿ž,?”tcN~k?’‹»Ùï§?’³Žbtx=?•bJÖµæÿ?”"éã/åY?”¼íÒh??“¡ƒ[¤45?‘¡Kd·´+?”Â1`´?“‚Û£0Î¥?’µ~Yºì?¡D(¸ÿôn?àìÚJ>?†¼Š˜L¥ø?†ú#ѧ?‹Ûx§Þ?‘\,‚†!@@@@@&@$?ð?ð?ð?ð?ð?ð?D Ép¿_¿<r?MZWÉ ¡?)…ÚÕf½k@¬CØ%n&@¬#Eíñ¨6?q8œîc¬?GRDÚj?áˆã¥kû?…b‘¬7«@Ÿky–å@¦@§£@@§£>vÈ´9@§£@@§£>žš@§£@@§£>쿱\@§£@@§£;J#9Á@§£@@§£Bø7´¢@§£@@§£Aä÷eþ@£ X“t¼j@£ X“t¼j@£ X“t¼j@£ Z¹õY³@£ X“t¼j@£ Xâe,@£ X“t¼j@£ Y‡+@£ X“t¼j@£ Zxl"h@£ X“t¼j@£ ZÔ,<Ÿ@6½:’£@6»Í5¨Xz@2©‡+ @2©Ô•*™@1ÝV”@1Þ;Í5¨Y@1‘Þi­BÄ@1‘‰7Kƨ@1‘Þi­BÄ@1‘Þi­BÄ@1‘Þi­BÄ@1‘|ÚQ?€‚ñêã ?’Ç@Š)M?‘ojVrnû{Ñø~?“7ƒÆD -¹?‚á²Olºü?”ï©ÛÉ?‘t‰WZñ?‘< /0ç˜?‘–=û.e1?“ù|ö[ÿz?•ë þÅ?þxÖ?„ã¼ÓZ…ˆ?„2ÌôÏ?ˆ0&YÊEd?‡Õ˜]–GÄ@@@@@,@(?ð?ð?ð?ð?ð?ð?A%ã7¸?<ŠØ0?I é.q?é»õ*)‡@§£?*²€Œ@£ Y}Ÿ#¦?i{¯âq?8Þ²‰mÍÓ?Û-è畺?w&,ìYj@Ÿg‰\ñ¾€@§@®Š±&éxÕ@®Š–ê‹Ë_@®Š±&éxÕ@®ŠÑ ³Äö@®Š±&éxÕ@®‹_€A¦@®Š±&éxÕ@®Š¿ÀéÅG@®Š±&éxÕ@®Š¸G¾Ôu@®Š±&éxÕ@®Šª­‚œ@”ê‡+ J@”êÄW›‡Ñ@”ê‡+ J@”êŠ,U€e@”ê‡+ J@”êà‚‚2@”ê‡+ J@”êÏ図@”ê‡+ J@”ê¯ÂIëU@”ê‡+ J@”ê™}€£H@95S&Á¾@98Á^ø@^@3ør° Äœ@3àvÇá±@3²-V@2ç· ¼M«@2Þi­BÄ@1ö§An¢`@2Þi­BÄ@1í=Ŷ«Û@2Þi­BÄ@1ð+ª„à?—5ÅTêÚ?£®• HT|?¼ ='f?“u"˜L†‚?œ|¤¦.? Sj–±¶“?¬¤¶Î›Êô?™iå‚ùyš?·Ø´c‰Ž?¦À3…PD?žN‡´ä‚?§EYC:Ñ?Ì[hë¤ê ?˜M69!t¯?­NvÝ\b?†%&P)?›@›g¤ƒ?¡óÝYâ4–@@ @(@&@5@8?ð?ð?ð?ð?ð?ð?yɦÄ¿s¯nË?vNU º\?g²é©Èæ@®Š³všÕ @”ê·áÐt8?“s"®ZO?Â7†÷‰@[SY·õï?ÖgS{´¢ó@Ÿm„)kØ@¨@¦WRn—PÁ.„€@¦WRn—P@¦WR•éá²@¦WRn—P@¦WR×s@¦WRn—P@¦W]²-V@¦WRn—P@¦WUŽ!–S@¦WRn—P@¦WVlô!@¤¼Æ$Ý/Á.„€@¤¼Æ$Ý/@¤¼Ðå`A‰@¤¼Æ$Ý/@¤¼Ö_Ø­¬@¤¼Æ$Ý/@¤¼ØüPH@¤¼Æ$Ý/@¤¼Ûô‡ü¹@¤¼Æ$Ý/@¤¼ØDЩ@5Ñ|ÚQÁ.„>¤µÜÆ@1Ê^5?|í@1ÄSŽóMj@1ï²-@1hÛ‹¬q@0æYJôðØ@0Öz–¼@0æYJôðØ@0ׯ·é@0æYJôðØ@0Õzxl"h@8J¨?“Ãruöò²?•™Þ õ?’ñ¼wn-?Ÿ0 碽ü?£6|Obœ@8J¨?˜s˜»ì•?™0˱Á[©?”¡VòÄ\F?¤•éõ9ð?¢cšŠ5W@8p÷?iT£C~t?†úŒz_–È?‡¯½.SM?‹DVóö?Š|)-}í(@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøø©@§Öéûçl‹@§Öß¾vÈ´@§Öéûçl‹@§Öý}¿H@§Öéûçl‹@§×ÏAò@§Öéûçl‹@§×_oÒ@§Öéûçl‹@§Öú¬1@§Öéûçl‹@§×8ï4×@£óRñ©ûç@£ógl‹C–@£óRñ©ûç@£ó_Ë’:+@£óRñ©ûç@£ó_|í‘h@£óRñ©ûç@£óY0¾ í@£óRñ©ûç@£óc9Àëî@£óRñ©ûç@£ów€4mÆ@8?–»˜È@8A [À7@3sS÷ÎÙ@3kÀ6âë@3†“t¼@3|àuöý"@2Š0U2a|@2€ƒn—Ž@2Š0U2a|@2xè§æ›@2Š0U2a|@2lÚQÎ?}Ñ¿ž,?¥d`ÿwªÁ?¡P ÚI?—³Q+Ùv?šxœÏs´i?²’ñZ¶­˜?´Žé`m?¡–}y¢‘?™äú‚#ë?—QÀ–Íù?•’nî …?±aG=)? T®ãÌ…æ?*øT?‘yÃúCŠ?¥k2ïm?‘ÔþÆvI‡?§k‰ K)@@@@@(@,?ð?ð?ð?ð?ð?ð?‚ÿÅ!!@?rkh?gØøGê1?r9zP[ÀÐ@§Öüi÷´@£ó^ºš»ˆ?$#™W?¥íKd½>@v•f‚K?ãÈtYØú}@ŸmeBÐ%V@ª@¨”r-VÁ.„€@¨”r-V@¨—ß;dZ@¨”r-V@¨˜Em\ú­@¨”r-V@¨˜4ê@¨”r-VÁ.„€@¨”r-V@¨—•%F -¦@¢:=ó¶E¢Á.„€@¢:=ó¶E¢@¢;Â3œ¿@¢:=ó¶E¢@¢<“×Ûõ@¢:=ó¶E¢@¢¤µÜÆ@3c÷ÎÙ‡@2%ÜÆ?@2ñ‰7Kƨ@1žOv_Ø®@2=cˆe”°@1 Ùb¶®@2=cˆe”°Á.„NÜC,¥@2=cˆe”°@1…¡ÊÀƒ@8J¨?Þ°ôÕrQÅ?à†áz˜œ?Ý|ËJA]@8Iç?ÜØ/8èJ@8J¨?ÜŸ¯~Œyv?ã?p…—ç?åäÒÕà @8S?ã–`uý%l@8p÷?“&•Z÷˜#?’-BR1Å?¦wfà*-n@8 Ø?ø<È͸÷R@@@@,?ð?ð?ð?ðøøøøøøøøøøøø«@§‚o²-@§‚o²-@§‚o²-@§‚pý\@§‚o²-@§‚p?q`@§‚o²-@§‚pÎE@§‚o²-@§‚n¾¾k]@§‚o²-@§‚n® -¯@“Ïñ©ûçm@“Ïò-V@“Ïñ©ûçm@“Ïî—Z™š@“Ïñ©ûçm@“Ïò \@“Ïñ©ûçm@“Ï¼î@“Ïñ©ûçm@“ÏñžiÛŠ@“Ïñ©ûçm@“Ïò ô@3^Hè§æ@3^1xT²@0?|í‘h@00j+@.ΗOß<@.Î…ªVGL@.=Vlô"@.<¬kÛÏ(@.=Vlô"@.=e d`@.=Vlô"@.=?qÍrK?|¬h2:“?Ís§#?‘&„µ<àa?‹¦p¤?ôÄ ¬Oö?Éâ¦JV?|Ñb×¶@?’+ñßK"?!òEu?-õ=k™ž?Ö“jø?{p²}¸?‚†µ”g¬?Œ­Œl³J?‚{›ÜL’‚?‚â†Æ„µT?†–äÙ¼?†š·8˜ë @@$@&@@8@8?ð?ð?ð?ð?ð?ð¿#ÿ*¿ga‚?!YâR?"lÛßù@§‚oaWœ<@“Ïñ¢Ð[Ä?A­?OÎ?B½8)„®§?¸Sß7?’HK’°?@Ÿfði¯r@¬@®œÒñ©ûç@®œÒ° Ä@®œÒñ©ûç@®œÓœ¾ß@®œÒñ©ûç@®œÓê³g¡@®œÒñ©ûç@®œÔSŽóM@®œÒñ©ûç@®œÑÑN;Í@®œÒñ©ûç@®œÑ‚©“ @­‡+@­Ôýó¶@­‡+@­~ÿ–@­‡+@­5?|î@­‡+@­Ùb¶@­‡+@­ @­‡+@­&YJôñ@4쿱[X@4ߤ?åÉ@1ã÷ÎÙ‡@1á-w1Å@1lj~ùÛ#@1h­«ŸU›@1xDЩ*@1qhr° Å@1xDЩ*@1o!-w1@1xDЩ*@1q$Ý/?|öOÿÝ?‘j`cq?•Mq —¦?Œj6_?˜h†5+P?—ˆZêtü?|öOÿÝ?”¤P ƒË?—›P“o-?½¶³±×ò?™ïIÄè?ŸaùÓH?‚† SFñ?R©i»èi?…~ÆÎÇ$‡?ˆ6‘F:™Ê?‰Â“yä–ê?£ªS@Gd·@@@@@$@*?ð?ð?ð?ð?ð?ð>ÙË1X?aÕŠ5h?5˜Y£*¤?5É…]·A„@®œÒÛ~òÈ@­µ_%X?S@œTTF?S9÷ñþ—á?°·òpB’(?©›ÿ—Zà@Ÿd"nŽÄR@­@§ã²-V@§ãçl‹D@§ã²-V@§ã 4mÅÖ@§ã²-V@§ã#¼ÓZ†@§ã²-V@§ãb¶®~@§ã²-V@§ãHË’@§ã²-V@§ã—ö+k@¬)‰7KÇ@¬(þ5?|ï@¬)‰7KÇ@¬(ø_ö“@¬)‰7KÇ@¬(úu%F@¬)‰7KÇ@¬(þBZîb@¬)‰7KÇ@¬)›¥ãT@¬)‰7KÇ@¬)·€4n@7–šÔ,<Ÿ@7‘A [À@3áhr° Ä@3à@36§ï²-@32MÒñ©ü@2fYJôðØ@2jCþ\‘Ò@2fYJôðØ@2`–»˜Çã@2fYJôðØ@2`oiDg8?š•§q!U?’ñ¼õì?•]˜P?‘ƒZ)Àˆ?“K–ºé…/?•¿!— ö?žŒÝÙ›P?–ÖÀeªw?“Lé94?™Ücãgp?–žóB» ”?—vÑékÜ?‰ì ª# Ø?ŽõÕJ?ޏQë…¹?†¤c·Ó—1?ŠEÝ‹N?‹ì3åý@@@@@,@,?ð?ð?ð?ð?ð?ð?6H"gH?M…Ó¬ ?@ò¬]F[4?NÈ,¨>@§ãdqtÜ@¬)½W*ê?ZËά]?h÷„”~ÒÐ?ª,˜Õ3’?¿3-7¯O@Ÿmè»>@®@«<í‘hs@«<í‘hs@«<í‘hs@«=ÌcñA@«<í‘hs@«=Ùb·@«<í‘hs@«>š@«<í‘hs@«<64@«<í‘hs@«;²þÅm@¨ìŸQì@¨ìŸQì@¨ìŸQì@¨ìÅ+ÓÃa@¨ìŸQì@¨ìÅÉã@¨ìŸQì@¨ìÅm\ú­@¨ìŸQì@¨ìÅm\ú­@¨ìŸQì@¨ìÅ`A‰7@/j¦L/ƒ|@/j¦L/ƒ|@+žùÛ"Ðå@+žùÛ"Ðå@+¿;dZ¬@+¿.Hè§@*æL/ƒ{K@*æs×Ûö@*æL/ƒ{K@*æ?»@*æL/ƒ{K@*æ1ø .?É^žQ5P‚?Òç{íj?‘ÌË>¯f?‹²MÿAÿ8?îú/´`?¶*WFÑ?ÐbMçê_x?’#maЀ?ˆ9²0?>\‰å‘?ÚÌA B{?NÂò‚Ì`?€bMÕky?Œ¬Çëý ?‚|׿pZ?‚äÍ“½E'?†l&þ?†–f_ÔŠŠ@@@@@,@,?ð?ð?ð?ð?ð?ð¿QT«ÀV¾ôh5 ?+‡bTÍw>í"¸vF”@«<Ñ–ûf@¨ìÅi]M8?:zÊù¶~¬>û”Ú¯”¨’?q8ý¼=T>ð£­ÌÌ>@Ÿs ÌA0å@¯@§§ûçl‹D@§§ûçl‹D@§§ûçl‹D@§§ûçl‹D@§§ûçl‹D@§§ûô‡ü¹@§§ûçl‹D@§§ü£n/@§§ûçl‹D@§§ûÍ5¨Y@§§ûçl‹D@§§û²þÅm@­¨;dZ@­¨;dZ@­¨;dZ@­¨¼@­¨;dZ@­¨HË’@­¨;dZ@­¨|í‘h@­¨;dZ@­¨oÒó@­¨;dZ@­¨—$tS@.­5¨Xy>@.­5¨Xy>@(v“t¼@(v4êJ@(dZ¬@(~ÿ—%@&”`ªdÂù@&”mÅÖ8‡@&”`ªdÂù@&”mÅÖ8‡@&”`ªdÂù@&”`ªdÂù?É^žQ5P‚?ÉGãA­÷?‘ŸÇSñ?‹²MÿAÿ8?ëÎ@ A2?¸û:?ÐbMçê_x?’˜‰%F²?ŠA)Nîá?/ò×ÈZø?Ñ¡b£?¾?R g!Ú¢?€bMÕky?Œ¬Çëý ?‚oÁÆÜ§÷?‚ãaÎúvh?†ˆ#.÷?†ˆ#.÷@@@@@,@,?ð?ð?ð?ð?ð?ð¿!]%d ?pÂO`>ò8#L8e?•ß©•~@§§ûÚY¾$@­¨€_~[?„Ó!çÑ_?ˆzÔîG>þ'úÖ;½?)‰Eì1œ@Ÿsò åª@°@¦£ð£× -=@¦£÷ -=p¤@¦£ð£× -=@¦£óÃa@@¦£ð£× -=@¦£ðHð@¦£ð£× -=@¦£ïŸ¾v@¦£ð£× -=@¦£ó&Á¾@¦£ð£× -=@¦£ö+jçÕ@ žë Iº@ žðå`A‰@ žë Iº@ žæ¸ºÈ@ žë Iº@ žìô!-@ žë Iº@ žæ€IS@ žë Iº@ žà4mÅÖ@ žë Iº@ žã¼ÓZ†@8è†YJôñ@8êxl"h -@3û Iº^@3ù¦µ (@3Ðå`A‰@3Xâe,@2µµsê³h@2¶âëC-@2µµsê³h@2´¯O „M@2µµsê³h@2³a@N¥?¤I~Óy‘?“+ÄWè?’÷˜–Èä?“1ÕËt?•Äí¥×?’ß5n?Ñ[NÑé#é?ѱRÇC@Ÿn¤Pwã@±@©ØbMÓ@©ØQë… @©ØbMÓ@©×éùr@©ØbMÓ@©ØFÜ]@©ØbMÓ@©Ø7´¢3@©ØbMÓ@©Ölô!@©ØbMÓ@©ÖÈ´9X@¦]þùÛ"Ñ@¦]ÿ|í‘h@¦]þùÛ"Ñ@¦]þÒˆÎp@¦]þùÛ"Ñ@¦^'RTa@¦]þùÛ"Ñ@¦^'RT`@¦]þùÛ"Ñ@¦]ÿò䎊@¦]þùÛ"Ñ@¦]ÿåÉ@4­¥œàv@4­ÌcñA @0sS÷ÎÙ@0sS÷ÎÙ@0'KƧïž@0'süPH@.ð‰ 'RU@.ðå`A‰8@.ð‰ 'RU@.ðØDЫ@.ð‰ 'RU@.ñ&éxÔþ?|öOÿÝ?Ï[äe+@8Iç@8Ù?©W»¥ÿ$B@8Î÷@8i§@8Å@8S@8û—?§ Tò"Å@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø³@«ˆâÐå`B@«ˆù_‡Š$@«ˆâÐå`B@«ˆÒ{çmK@«ˆâÐå`B@«ˆÓn—Ž@«ˆâÐå`B@«ˆÜXU~½@«ˆâÐå`B@«ˆÜCV@«ˆâÐå`B@«ˆÖø]@™#|í‘hs@™#†d@y£@™#|í‘hs@™#o!> V@™#|í‘hs@™#jhKÉI@™#|í‘hs@™#ƒ: ù@™#|í‘hs@™#vÏ=šŸ@™#|í‘hs@™#‡øÝy@8„¯O „M@8tÅ*wc@4+ Iº@4àÆÆÐL@3 ²-V@3 5K'y@2£ÉîËû@2άÝÄB@2£ÉîËû@2¢zjL,@2£ÉîËû@2›­ÑΊ?š7¼ˆŒ ?’heÀSœÕ?‘®]|ޝ??‘w•ìõ?“ûä)6?˜gV„ä?—5ÅTêÚ?” µ9~ç?‘ãÐös^q?×äÈÝ ?”(?†ŠúЀ>(@@@@@,@*?ð?ð?ð?ð?ð?ð¿[¶J>û, ÞÀ?:+¦ÇÖ/?*f£~V@¢~óq#é¼@­4n¬6,?I?–‡Âýþ?–išî³[?Ž™ú»Ì ?4d¿µ{ü²@Ÿs '˜Í…@µ@®Y²° Äœ@®Y²ñ©ûç@®Y²° Äœ@®Y³¶E¡Ê@®Y²° Äœ@®Y³ê³g @®Y²° Äœ@®Y³Ý—ö+@®Y²° Äœ@®Y°ò{³@®Y²° Äœ@®Y± ²•ê@¨Jú^5?}@¨JôzáG¯@¨Jú^5?}@¨Jú^5?}@¨Jú^5?}@¨JúîcŠ@¨Jú^5?}@¨Jú’£S@¨Jú^5?}@¨Jú¬Ùè=@¨Jú^5?}@¨JúCþ\’@5ý:’£@5ù­BÃÉï@1’ Iº^5@1‘ò×s@0È“t¼j@0Èï4Ö¡b@0‡ ù kº@0‡®záH@0‡ ù kº@0‡ÈK]Ìd@0‡ ù kº@0‡»/ìVÖ?1·†Æjñ?W[†?‘âTÀÊS“?Aš%ðï?‘@@Nßo9?æöæ×t?–ªÎ­¡?’j•×›c?‘C\ºÕ¶?]bËn~?‘c3¸cÜ(?«àÓ RÆ?œÁXÙðÿ?Å9–o?ƒ{¬ÉW?ƒ=rµE=?†Ë¢L1Ù?†å·ÑfWà@@@@@,@*?ð?ð?ð?ð?ð?ð¿50ýú0?QÀ·&?2.ÏrŸÇP?AÝ ¾Ÿåx@®Y²0àC‚@¨Jù.• Î?TåP˜ùa”?]Nᩨ?°‹½7Ñ“Ž?´¢íoRf«@ŸloN‚|D@¶@¢ë-V@¢ë0bMÒò@¢ë-V@¢ë,²•éâ@¢ë-V@¢ë1N;Í5@¢ë-V@¢ë2•éá±@¢ë-V@¢ë*³g ø@¢ë-V@¢ë14êK@¤Åüj~ùÛ@¤Åú¬0@¤Åüj~ùÛ@¤ÅùÛ"Ðå@¤Åüj~ùÛ@¤Å÷ -=p¤@¤Åüj~ùÛ@¤ÅüC,¥z@¤Åüj~ùÛ@¤Åý¿HÌ@¤Åüj~ùÛ@¤Æ·€4n@7¯O „M@7§ï²-@2ðÄ›¥ãT@2í¿HË’@2v§ï²-@2t9XbN@1³&Á½¥@1°-à r@1³&Á½¥@1°ù k¹@1³&Á½¥@1®Ov_Ø®?˜ž^ƒÿ*ˆ?­hX™*?”ÓKÒì"?ŒÇQ´«6@¯ó(õÂ@¯ó!ä÷eþ@øß;dZ@øæéxÔý@øß;dZ@øà'RTb@øß;dZ@øß;dZ@øß;dZ@øç8}À@øß;dZ@øà qu@øß;dZ@ø×Xâf@6[¹Œ~($@6[²þÅm]@2óS÷ÎÙ@2ó× -=p¤@2v§ï²-@2všÔ,<Ÿ@1õµsê³h@1ö‡+ J@1õµsê³h@1õ¼£n/@1õµsê³h@1õ '»0?|öOÿÝ?‘" Á°–•?–Èó^ù„?‹û…†_?’?;Áƒè?ø·-/ge?гá‡}?“?xr¢I?”¿?>‚#§?ª/íÈ«?’êJ>áý?·t¤¢‚K?„‘Za¹P?Ž*JŠË?†' -³}÷C?„l¯¸‰ŒÎ?‰®ââP\?ˆ0&YÊEd@@@@@,@ ?ð?ð?ð?ð?ð?ð?Ovíq ¿Uòʼ??ÀÔ>$Yb?DÒbHŒŠ@¯ó"õ} -@øâõÕ -?`ò¢w?dYãg{÷?Éí¡ì¹Ó?ÉÎzä­@Ÿis·Ò¦@¸@¥§«…¸R@¥§ª³g ú@¥§«…¸R@¥§ª+Õ¢{@¥§«…¸R@¥§«¸0T@¥§«…¸R@¥§¬€kQ@¥§«…¸R@¥§©…x E@¥§«…¸R@¥§ªÒ"NÑ@“ÐaG®{@“Ð`A‰7L@“ÐaG®{@“Ðd–U>@“ÐaG®{@“Ð`ä ˜o@“ÐaG®{@“ÐdYÄœP@“ÐaG®{@“Ð`\A ’@“ÐaG®{@“Ð`sŒÖÑ@5àØDЩ@5àæ¤:è@2+ Iº@2Îóƒ@1M²-V@1N1ø .@0°–»˜Çã@0±w*hÉ@0°–»˜Çã@0°rÆ~_ˆ@0°–»˜Çã@0°ºÉr n?|çµB &€?A«IžÕ?‘º3)½?‹È]SØ&n?‘BŸcõ^?ÚÉMõ‚L?~ì“?ÕÒJ?’bãsÊâí?‘e`Ф?-õGBžö?‘x;¸qÎ?s Ge©í?„”v,ÿ«?‹m$ˆf?‚ç…š(´®?ƒ {7?‡,G]ÜLk?‡43#õC@@&@&@"@8@3?ð?ð?ð?ð?ð?ð>øìâ¹?Àq›p?3ҌLJ‹m?/¨áǦû@¥§ªæïàš@“Ð`ÿ0ÿu?SÒûB)¤?P œíJG?µ{ÕX„\?©—Ü"çßp@Ÿg2± 3Ÿ@¹@ ÿéxÔýô@ ÿé7Kƨ@ ÿéxÔýô@ ÿëvj@ ÿéxÔýô@ ÿì–ZÎ @ ÿéxÔýô@ ÿì d@ ÿéxÔýô@ ÿçwžZ@ ÿéxÔýô@ ÿçÝe}Ÿ@ªÁvE¡ÊÁ@ªÁw -=p¤@ªÁvE¡ÊÁ@ªÁw~ï[ä@ªÁvE¡ÊÁ@ªÁwõtÏ@ªÁvE¡ÊÁ@ªÁwWå@ªÁvE¡ÊÁ@ªÁv-N$Õ@ªÁvE¡ÊÁ@ªÁvñ_@4Ç>«6z@4ÇÏL§Ð<@1ÎÙ‡+@1;kšüb@0;Ƨï²@0U;ÌX@ ÿé;×rð@ªÁv¯f?`)êËÏ µ?2“}sûX¹?ÌŠ‹•sJC?qÿs°XXì@ŸfòÆWy@º@¥ôÌÌÌÌÍ@¥ôÌÌÌÌÍ@¥ôÌÌÌÌÍ@¥ôÍ\ú¬Ú@¥ôÌÌÌÌÍ@¥ôÎV“@¥ôÌÌÌÌÍ@¥ôÌ¿±[X@¥ôÌÌÌÌÍ@¥ôÌVÕÏ«@¥ôÌÌÌÌÍ@¥ô̲•éâ@£;Ÿ;dZ@£;Ÿ;dZ@£;Ÿ;dZ@£;ž5?|î@£;Ÿ;dZ@£;žÒˆÎp@£;Ÿ;dZ@£;ž«6z@£;Ÿ;dZ@£;ž5?|î@£;Ÿ;dZ@£;žžš@5(†YJôñ@5(ºÇË*@1» Iº^@1ºû~ÿ—@0îùÛ"Ðæ@0î쿱[W@05µsê³h@05µsê³h@05µsê³h@05ÜÆ?@05µsê³h@05®æ1ø¡?€‚ñêã ?]àÛ‘?‘4!Ÿ•p’?Œ‚èõЊ?‘1 °µv¦?æöæ×t?€‚ñêã ?’`5žña?ŽËÜ¿€?Ä…à6 -æ?‘&”T¦mÂ?›ªU3Îp?ˆ©CwBÅÉ?)‰€Zw?ƒ{¬ÉW?‚ð'ã:ÂÝ?†Óß -tõ?†Ü‘ °Ô@@@@@,@*?ð?ð?ð?ð?ð?ð¿ -¨€¿&æ¦i€?ŒÃI -3? Cq÷N®@¥ô̯¤Žp@£;žÎæ+(?%œf{yr„?.&ƒ ‹tg?VP¸-"Ê?d–sl\@ŸgÙQc¨@»@ ±E¸Qì@ ±E¸Qì@ ±E¸Qì@ ±FD1‚û@ ±E¸Qì@ ±F2w—@ ±E¸Qì@ ±F“?tþ@ ±E¸Qì@ ±D£ù B@ ±E¸Qì@ ±D¿ízÝ@¢Á‰7KÇ@¢Á‰7KÇ@¢Á‰7KÇ@¢Á[‚ç*@¢Á‰7KÇ@¢Áaä÷f@¢Á‰7KÇ@¢ÁqŸ@¢Á‰7KÇ@¢Á(åý@¢Á‰7KÇ@¢Ác1@1žHè§æ@1žYâ:F@*á‰7Kƨ@*áA [À@)cn—P@)b¶®}Vm@(…oi@(„¨ÁTɆ@(…oi@(„•*™0@(…oi@(„™Ì¢Ü?É^ÈmÔ d?ų6¨¹?‘tÂÍu?‹®úÄD?æ°Ù1%(?¼üï?ÐbMÝn½?’ -i*.˜I?~4pŽU?/ˆ´¯éd?Ía´ï?M›)á?€g"ÆeÖ)?Œ­‡¡ÑSg?‚p„æÁ7?‚ã9©wTÍ?†ˆ=„Ì>(?†ˆâ3`±†@@*@,@,@2@5?ð?ð?ð?ð?ð?ð¿Kw0‡,¾ôR÷,€?4;W·ñ'‰? .ü²‘¤@ ±Et†CÞ@¢Ávq?CrSyœ`±?§Ý@íì?‚—sQº ?(™ÊÔ‘@Ÿsý”Ø@¼@«4nzáH@«4b Iº^@«4nzáH@«4†$Ý/@«4nzáH@«4~š@«4nzáH@«4;dZ@«4nzáH@«4z¬1@«4nzáH@«4€A‰7M@§ëTýó¶F@§ëy‡+@§ëTýó¶F@§ëb\(ö@§ëTýó¶F@§ëJŒL˜@§ëTýó¶F@§ë[~ÿ—@§ëTýó¶F@§ëT9Xb@§ëTýó¶F@§ëYÎ_p@9|ÚQ@9›=ÈK@4f‡+ J@4PØDЩ@3çKƧïž@3Öö”Fs‚@3Œ~($ @3ð¹@3Œ~($ @3¼£n/@3Œ~($ @3÷ÎÙˆ?£G± *Ç‚?›ŽÊ–SS? +*¢«¸u?’m’‹}©9?•³™»7…?–+‚`N?­g;+³ût?¬—ÔŒ,¾?¢W@3tå²?•Œ ;qí?”Þ¨Ëèoé?•)ALŒÀ%?°#ÃIÓ¨&?Ÿ$Ìj½BÙ?›bO—ç†?Ž3lê]0?”NtyÞ"§?“aÑ#@@@@@$@$?ð?ð?ð?ð?ð?ð?qeH4€¿p£k[œ€?h@ÝB_“?i°_ø¦Rz@«4{tRËØ@§ë[@드?€g w¸¹?W9Mj)?ðê™ä¤?é 0ã¸Ë@Ÿp erd@½@¤49Xb@¤/ß;dZ@¤49Xb@¤ÕfÏC@¤49Xb@¤G®zá@¤49Xb@¤·éù@¤49Xb@¤TÒ=¦@¤49Xb@¤uûZ@œêËÆ§ïž@œê×W˜;@œêËÆ§ïž@œê™‡+@œêËÆ§ïž@œêÔ,<žî@œêËÆ§ïž@œê`ù k»@œêËÆ§ïž@œêi]  @œêËÆ§ïž@œéx>G@77â‚@·€@7ÖŽÜ@2sS÷ÎÙ@2@å`A‰7@1Ͳ-V@1·Xâe@1QÞi­BÄ@19…ðoiD@1QÞi­BÄ@1*Û›–ؽ@1QÞi­BÄ@11ÄDíŒà?’Á ˆ|Ί?ÁgÿV¼)¢?®´ËÄt|*? Ð ÷Ž ?š€t]½2?‘;Xïbá?€Z=ú‚¡?ÀLí}ŽÄ?° @çSº¤?“ÅÒÏPÉä?œ•™sù8:?¦ß¼K?Œ@#‹£ôˆ?ª»‡¾X{?ÁeðN ?¤wúb¼?•˜Ùõé=?‰gØ;d7@@@@@0@,?ð?ð?ð?ð?ð?ð¿p_<~€¿—(×é@?p}ìbM#?{lRPÛp8@¤¾^nÜ@œêpžñ©å?Žù_§•mT?œQOÍ6Ûì@¡lh.@,ù±T6Z@Ÿgà-MN@¾@©+ƒn—@©+ƒS÷ÎÙ@©+ƒn—@©+‚\(ö@©+ƒn—@©+„“t¼@©+ƒn—@©+ƒn—@©+ƒn—@©+ƒS÷ÎÙ@©+ƒn—@©+|í‘i@¯r¹XbN@¯r¹™™™›@¯r¹XbN@¯rº^5?}@¯r¹XbN@¯r»dZ¬@¯r¹XbN@¯r»dZ¬@¯r¹XbN@¯r¹‡+@¯r¹XbN@¯r¹Û"Ðæ@3m¥œàv@3m¥œàv@1³S÷ÎÙ@1³&Á½¥@1_²-V@1^«6z@0…œàu÷@0…oi@0…œàu÷@0…m\ú¬Ú@0…œàu÷@0…%F -¦L?1·†Æjñ?ð}óßd?ð’FB:?ð_ŒB?éDEâ©×?À­Õß}º?|öOÿÝ?ð¢dx/?ð‡äR³s?ð‚àÓÁ?ÏtP°*?ˆ9²0?‚nâwfÿ?ðfÁbÂô?ð*wjs—?ð,’Ú|‚?†Ü‘ °Ô?†‡+œC@?ð?ð?ð@@?ð?ð?ð?ð?ð?ð¿@;Poü¾ìÓæ¢?4Ï¿Zˆ#²?­l‚Ý(@©+‚]%5þ@¯r¹öL,?VYYª9ø ?4sá tØA?´—Ÿœ*»&?r`ŠrÅß:@Ÿfjhßèu@¿@¯4åãS÷Ï@¯4áÊÀƒ@¯4åãS÷Ï@¯4æÀ -õ@¯4åãS÷Ï@¯4ã(SBl@¯4åãS÷Ï@¯4ålZÞA@¯4åãS÷Ï@¯4ãSézŒ@¯4åãS÷Ï@¯4ã•>н@™\¿|í‘h@™\¿|í‘h@™\¿|í‘h@™\¿óxR@™\¿|í‘h@™\¾© 8M@™\¿|í‘h@™\Äžýn’@™\¿|í‘h@™\ÂGX»ß@™\¿|í‘h@™\à ph@7+µsê´@72n—Oà@3ahr° Ä@3`ÙÜØË@2Õ`A‰7L@2Õ½Wç³@2«6z‘@2¸Sÿ‘¸@2«6z‘@2­6ƒ¿:@2«6z‘@2± -Vh)?„`™ˆ/.~?ð å??‘œ‚L -v?Œ0Eke?‘©×„Ç¿?‘ùÛCF?‚n—OߤµÜÆ@4¸r° ÄœÁ.„M‰ûçm@3Æ“t¼Á.„QnÙ‡@3L¿±[W?Á.„NÜC,¥@3L¿±[W?Á.„NÜC,¥@3L¿±[W?Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÁ@£ß[¥ãSø@£Þ¦E”þ§@£ß[¥ãSø@£ßZHe8@£ß[¥ãSø@£ß»§ S³@£ß[¥ãSø@£ßO™N@£ß[¥ãSø@£ßEàÒÇ@£ß[¥ãSø@£ßOšÑ’2@š:D›¥ãT@š8úáG®@š:D›¥ãT@š:­S[@š:D›¥ãT@š:‹AѦ@š:D›¥ãT@š:’¡p@š:D›¥ãT@š:ypÙ‰$@š:D›¥ãT@š:”UàÐ@7” xFÜ@7I×Ü“7W@2ý‘hr° @2òs¤¥Í‡@2F“t¼@2A¢Á±‹@1úÔ,<ží@1ð·tqß–@1úÔ,<ží@1÷4~“1@1úÔ,<ží@1ö]ZNh?ݪû†îíø?Ÿýå‘:«?žÌñé‘ÝÌ?’§éŸÏƒ2?’ -4:è~?–`åXÅ÷O?Ü-Õ¸6?¬8%¢Š?”XˆhÉÊÿ?“ýp¼Á€á?•, Gq]?¤E?¹#Ÿ?Þ ‰ ­>Ë?¡I|[ôO¿? •B%M‹?›uS1‹**?™ÒÖ¦Ãbð?–’ã0¸Už@@*@&@$@.@7?ð?ð?ð?ð?ð?ð¿Eð•ª?fÄ-Ö?tr‚¼»à_?wäT“ŠÔ@£ßK„4ä«@š:ª˜’Ä?‚B±?+òi?ƒ†ƒÔBl"?ôãžB¾ŠA?ï¬!ñlëÇ@Ÿr0ulÙ@Â@©‘t¼j@©‘t¼j@©‘t¼j@©‘ -=p¤@©‘t¼j@©‘+jçÕ@©‘t¼j@©‘âëB@©‘t¼j@©‘÷ÎÙ@©‘t¼j@©‘>«6z@¯ ,1&é@¯ ,Iº^5@¯ ,1&é@¯ /²-@¯ ,1&é@¯ /v_Ø®@¯ ,1&é@¯ 1&éxÕ@¯ ,1&é@¯ .V“@¯ ,1&é@¯ *™0¾@7}:’£@7ƒþ\‘ÑO@4}‘hr° @4zqÞi­B@497KƧð@45+ÓÃa@2ÜÚQÎ@2ÚJŒL™@2ÜÚQÎ@2Ù…ðoiE@2ÜÚQÎ@2Ú#9Àëî?€‚ñêã ?•tæïá,•?¤.#ÓYæ?’úˆ_šª?ôê÷º»â?“‡SË{d—?”¼íÒh??”ŸÚ²t©?—cG‰‹o?•†¾N6?‘+ùÔ!½‹?“ÛKÂè• ?‹´¡`Ƕà?–ÞqëJ??¡ÏEqû†»?ˆx»€ñö2?‡×7°º?‰®ââP\@@@@@@?ð?ð?ð?ð?ð?ð?B»ß90¿'³Ãžð?7¨¾º™°¨?MÇ¿tÿF³@©‘ ƒ@¯ -¢ *?[…¯‘oT?jköK > ?·§Jó© ?̧£Eе@Ÿk‚HaÞ@Ã@­Ð0 Ä›¦@­Ð1©ûçl@­Ð0 Ä›¦@­Ð0å`Aˆ@­Ð0 Ä›¦@­Ð0:û~‘@­Ð0 Ä›¦@­Ð7Oß;@­Ð0 Ä›¦@­Ð7>«6z@­Ð0 Ä›¦@­Ð:QÎ@¬e¡ÊÀƒ@¬e»"Ðå`@¬e¡ÊÀƒ@¬e–È´9X@¬e¡ÊÀƒ@¬eޱÄ2Ë@¬e¡ÊÀƒ@¬e›À6ã@¬e¡ÊÀƒ@¬eŠôðØE@¬e¡ÊÀƒ@¬e“3333@8Bò䎊@8@ quŽ@45ãS÷ÎÙ@4.¸Që…@3¾V“u@3º=p£× -@3\ÚQÎ@3XXy=Ù€@3\ÚQÎ@3JçÕfÏB@3\ÚQÎ@3JÀƒn˜?“Æ×q„nï?‘u:|ñ²¨? AoÈöxÎ?‘ÔþÆvI‡?¡Á1ÈBZí@­H1&éy@­Fs×Û@­H1&éy@­Hð@6Ñ|ÚQ@6иºÇ@3›¥ãSø@3 Ä›¥ã@2±‰7Kƨ@2®;Í5¨X@1«xFÜ^@1ª–»™@1«xFÜ^@1©e+ÓÃa@1«xFÜ^@1¨Xy=Ù€?|öOÿÝ?‘‹PƧ¢$?”4 bà5?‘£ºáõÑ?’êÔÒ?”"éã/åY?€‚ñêã ?—Œ,T®?’€fç½Î?“P?Bn¬F?“¹ ¾´î?“IëH!w?„W;RS?Ž•ýÙ—±?‡š¿]b?ƒ­=aÊw%?ˆ©{2¡Î?Ž•w “w„@@@@@*@*?ð?ð?ð?ð?ð?ð?<<пHÒö~X?J,!zv?,ç=Ú”'@£ì =ƒ@ŸfbOm™Ë@Å@¡àÄ›¥ã@¡àÄ›¥ã@¡àÄ›¥ã@¡á!îgQ@¡àÄ›¥ã@¡áBöÕ@¡àÄ›¥ã@¡áe/ƒ@¡àÄ›¥ã@¡à·óèä@¡àÄ›¥ã@¡à 1óu@¬ùl1&é@¬ùl‹C•@¬ùl1&é@¬ùkë1@¬ùl1&é@¬ùl9¾]5@¬ùl1&é@¬ùlm0Ìö@¬ùl1&é@¬ùl“Æäz@¬ùl1&é@¬ùl‰¡É@.V+jçÕf@.VOv_Ø@*™Û"Ðå`@*š“ò«µ@+éxÔýô@+Xâe,@*­úCþ\’@*®ç°¹Î@*­úCþ\’@*®—Oß<@*­úCþ\’@*®µ×>r?É^ž6õP?Â\ófú?‘ØÆì2k?‹´ø:M€ß?éÁ¬èš?¸= -éÑM?ÐbMÝn½?’ q“Àb@?±¸Øÿ?5ߨ“¹?ÌæÝjéÖ?RZ8òp?€bîF¾§?Œ¬3U:?‚pëí’ŸÐ?‚æòõć8?†‹t¾µ.?†‹—ð -«@@(@*@(@4@5?ð?ð?ð?ð?ð?ð¿&Üa¿ð? -lj·@?äiV´Ž?¹,­ÿ@¡àÐL÷ @¬ùl³‚3?3Ó-d·É?P†c˜W?©?)ôOá­N@ŸsÓK©¶@Æ@¤€bMÓ@¤€ùòñ@¤€bMÓ@¤€÷ÎÙ@¤€bMÓ@¤€+ I»@¤€bMÓ@¤€@N¤©@¤€bMÓ@¤€C2º@¤€bMÓ@¤€ 1Ùs@¡ÊÀƒ@®Ûci@¡ÊÀƒ@«ÓÃa@¡ÊÀƒ@¸ -à@¡ÊÀƒ@µ¨Xy>@¡ÊÀƒ@›`)¦õ@¡ÊÀƒ@¦v¿@‘@7£g ù l@7¬$Êò`@2ÞÙ‡+@2ߨ­«ŸV@26§ï²-@2!A [À@1ó&Á½¥@1ß²-V@1ó&Á½¥@1îZ›SUZ@1ó&Á½¥@1ò¶Ëà?‘ɱb)Q?”žP1²"?’à©GMõ?¤3Òƒ°?™ŽåŸîU»?‘Þ½/1üc?•Ö/ê€÷Æ?”zòžÕÿ?”Ï3½fvI?¢ŒZzˆZ”?”ªÝ5yS¢?“rC2¹¢Ú?‘†¹TÈ»L?›9WTêW?¨3 ¤qâ?ŸñK쯎?•¤^'ü³?‘t^“]7]@@@@@0@.?ð?ð?ð?ð?ð?ð?R.ÈοUh>f?7_,ç¡?TybZ•@¤€=nÄá@§O¯~?YKã寮«?t„gøÉ?¥znÚÉJ†?ØÌ==®™ @Ÿl¶ÍNÁð@Ç@¦%÷ÎÙ‡@¦%øbMÓ@¦%÷ÎÙ‡@¦%öøè¸Ž@¦%÷ÎÙ‡@¦%øÁd­@¦%÷ÎÙ‡@¦%õÃ1áH@¦%÷ÎÙ‡@¦%ò‘•Pß@¦%÷ÎÙ‡@¦%óe¤@—V“@—Ù‡+@—V“@——…æ›@—V“@—¡4¹@—V“@—‚e@—V“@—”1@—V“@—îŠMç@2 Î_oÒ@2 Î_oÒ@0‡ÎÙ‡+@0‡”µÏ@0q‰7Kƨ@0p´9Xb@0ý!ÿ.I@0rÉ®ÙÅ@0ý!ÿ.I@0Üÿ]•@0ý!ÿ.I@0ÃÝö¾?É^¨¯Âj?‰©†$Ÿ?‘SÕ24€A?ŒnŠhW¨?‘®q÷¼€Š?ðü²ßGÚ?ÐbQë„›¦?’zé,ìÀ?ˆ¿REÿÉ?ƒîöñr?‘Þ:i”Û?ê'šaJ’?€bMÕgô?ŒÈ”­™ß?‚´“À -?ƒÌØN§†‰?†ÍñàÌÈ{?‡?ÿ¸Å§@@,@$@$@3@,?ð?ð?ð?ð?ð?ð¿UK‡?6ìÂ@¯?A'fæ~8?- qM‘9@¦%ô -£á@—Š¡c?P‰–ë?;À2 U©?™¶Œxâ'b?ol×wi9@Ÿrþ¹ø †@È@¨¦ffff@¨¦$Ý/@¨¦ffff@¨¦šÔ,>@¨¦ffff@¨¤êJŒ@¨¦ffff@¨¤g8~@¨¦ffff@¨£n—@¨¦ffff@¨žì¿±[@¤d;dZ@¤d;dZ@¤d;dZ@¤d¾vÈ´@¤d;dZ@¤d"u%F @¤d;dZ@¤d"œwšk@¤d;dZ@¤d%ðoiC@¤d;dZ@¤d,篷@4÷â‚@·€@4ø7´¢3œ@1Ò Iº^5@1ÑuŽ!–R@0±‰7Kƨ@0°-à r@0}cˆe”°@0z³g ù -@0}cˆe”°@0záG®{@0}cˆe”°@0vÕϪ͞?|öOÿÝ?Kb½™×?‘°&޲P?Ú¾ÉÛ²º?“”>C,4?’ŒZzˆZ”?}Ñ¿ž,?’;µ” È?’¤šÜI«?”pè·FÌs?“£c”?’µ~Yºì?„³3Z\ð„?u/®Xã?ƒ´],m=?„Ö©Ú0?‡ø¢:›¸1?$Ìj½BÙ@@@@@*@*?ð?ð?ð?ð?ð?ð¿Riž¸?b–Ž‚?4„f­’·?@w èúuÏ@¨£ôù¸i@¤d#¾·48?Tý~W?`¬Ýî°Z?³Âq˜¬‡?ÇÅØ i1…@Ÿf65a\9@É@©øQë…@©úŸ¾vÉ@©øQë…@©÷€4mÆ@©øQë…@©ö4é@©øQë…@©÷Xâ@©øQë…@©ôýó¶G@©øQë…@©ø -à@ªÞOß;dZ@ªÞMÒñ©ü@ªÞOß;dZ@ªÞTSŽóN@ªÞOß;dZ@ªÞQë…¸@ªÞOß;dZ@ªÞQ4êK@ªÞOß;dZ@ªÞY¦µ @ªÞOß;dZ@ªÞV8†YK@7L]cˆe”@7MÅÖ8†Z@3° Ä›¦@3Á£n.±Ä@3)Û"Ðå`@3+quŽ!–@2s&Á½¥@2s¼ÓZ…ˆ@2s&Á½¥@2s&Á½¥@2s&Á½¥@2që…¸R?„F/·ÿP5?•@K/Ùz?˜zjÊ©Øi?Hð¹?’Æ÷Xê†?”|„¥&?ˆÿÀ)T¿Æ?”ÇtæMPÐ?œÕ4FégI?’k­ªì¢H?–kš‘ž?”V.·H?‚‹¡8*ùÿ?3ßa=„? t€4Ã?†¤c·Ó—1?‹DVóö?‹ú èNÆö@@@@@*@*?ð?ð?ð?ð?ð?ð¿Lœ ]?`~¾M,?>iP™=;1?E6Fõ5 @©ø<¼IY@ªÞRŠDˆå?^wØg^½°?e5ä¶d?¿E2>oá#?Ç»«(±Ž@ŸhÆçê36@Ê@¢íV@¢ëƧïž@¢íV@¢í‘hr°@¢íV@¢ïùrGE@¢íV@¢ú6âë@¢íV@¢óüPI@¢íV@¢ø7´¢4@£g§ï²@£gÊÀƒ@£g§ï²@£gšu%@£g§ï²@£g C•@£g§ï²@£g¸Qì@£g§ï²@£fó@N¤©@£g§ï²@£fïiDg7@6:qÞi­C@6:QÎ`@2À Ä›¥ã@2ºŸ¾vÈ´@2RÐå`A‰@2AÊÀƒn@2mÅÖ8†@1öR½<6@2mÅÖ8†@2\‘ÑN<@2mÅÖ8†@2 -Ov`?„F/·ÿP5?‘Ü„ Þ(£?§¶Øöƒ.Ò?¦ S~?”k¸!¯eÕ?£P;røp?|öOÿÝ?’{cü€øõ?ž(?{k4?šWl¬Ëz?”Ï#:d ?¦¤Wë'?„‘Za¹P?Ž`ŸÝïöF?•ýÿLîO?›zYì3®??˜§zy?—ã ËÄž@@@@@ @*?ð?ð?ð?ð?ð?ð?bYÁO¿ilTü#?GÐ -Én‚?U×ó…Ô@¢ð/ Q@£füQÊx?f·í?tzbûý?Æz]ÿpî?ëhò[J@Ÿdô¨•j@Ë@¢ º^5?@¢´9X@¢ º^5?@¢÷ÎÙ@¢ º^5?@¢Ë’:@¢ º^5?@¢y¦µ @¢ º^5?@¢ …ðoi@¢ º^5?@¢ -¦L0@©“$Ý/ @©“,‹C•@©“$Ý/ @©“:áG®@©“$Ý/ @©“5?|í’@©“$Ý/ @©“1Þi­C@©“$Ý/ @©“.V”@©“$Ý/ @©“)á°‰¡@7Ç>«6z@7ÁohÛŒ@3T›¥ãSø@3I¦µ (@2A‰7KÇ@2Ь1'@1æYJôðØ@1ß±[W>¬@1æYJôðØ@1áA [À@1æYJôðØ@1á4êJŒ?|¬Çëý ?–(ëR¤?•|®6zj?Œ'õ‚$5ñ?š<¨¸ÆÐ?•½0 -Žø?®í©@Šþ?“?xr¢I?–S•|¡þ?øQñĨó?šâ6¿°P?–,}úºoJ?‰~}œ…o^?Žƒä%®æ2?\ÍÅ“¢?†ÞåØÜÓ?IÏáå$?‰©OO ¨@@@@@,@$?ð?ð?ð?ð?ð?ð¿7è"Ü¿am…‚ -€?/Îy0®:?VQ¶ðzÜ@¢‰‰åð@©“/@Õuh?U"›¦R¸?jMÑ~<Št?£{“¤&Ü‹?Âõ“èT@Ÿnúù­<@Ì@ r° Äœ@ rn—P@ r° Äœ@ oE‘v@ r° Äœ@ jˆñU1@ r° Äœ@ q8É+Û@ r° Äœ@ kp0…@ r° Äœ@ jË×Óí@¦å49Xb@¦å4záG®@¦å49Xb@¦å1¡(Ë1@¦å49Xb@¦å5äýÜÄ@¦å49Xb@¦å]Ð)X@¦å49Xb@¦å@,»g@¦å49Xb@¦å@kAlK@4ÉÎ_oÒ@4Ê1¤½º -@0¦‡+ J@0¥K·y@0ï²-@0­â4¯Ù@/½Vlô"@/—@;„§@/½Vlô"@/´™)ýZ=@/½Vlô"@/Æ0IF?|Ñb×¶@?¼.Mô4?‘Iˆ¾…ƒH?Ž%š´?’H«fk¸V?’&5Ê2¡?}õ¬#„­?’_3µ¨NU?ùa@ÔNy?‘©½XËh?’=UÄ¡¸µ?‘™³XK?‚o†#BpW?s"òYš?‹^`F‡“?ˆïß8ûÚg?‹Ä{^½ï?–dÇ£·@@$@@$@6@8?ð?ð?ð?ð?ð?ð¿W¡Ûâ^?p«ˆä5€?;$+ÕE?pR‰ë¿Z@ o”Ç/¯@¦å?J O8?ZÑ\"3öÂ?}¿d#Óù?Á–kÞµßù@)js‡ÞY@Ÿf­9Ëÿ@Í@žšl‹C•@žšdÍ«Ì@žšl‹C•@žšnÐâ„@žšl‹C•@žšˆL‡·@žšl‹C•@žšp:û~’@žšl‹C•@žšf=®à"@žšl‹C•@žšfõx9@¡¡G®{@¡š€õÊB@¡¡G®{@¡—…Nµ@¡¡G®{@¡¬.ƒø@¡¡G®{@¡±Î_@¡¡G®{@¡œjJJ@¡¡G®{@¡•ÀÈ8Î@6è†YJôñ@6×±}Üyö@23S÷ÎÙ@2¢±†`@1®ùÛ"Ðæ@1•·¼œãÅ@0õµsê³h@0à-à @0õµsê³h@0íº²Êh@0õµsê³h@0çǺ|®r?„ÜNó7·å?•a±F¿§ý?“HÛ.ó//?”ª.#Äç÷?‘ty^µ?’ªzÇÆ`?‹ÖFÔÜÚ$? N²þóá?‘C5ï`½5? HkY¸­?‘äý£0?“•4v/¢Î?“Ü·îDÂ?ލB=â?ƒX+ƒøè?„Ö©Ú0?‰Ý-àλ?‰«œ^tÓŸ@@"@@@1@1?ð?ð?ð?ð?ð?ð?:›éH¿3¡*?Do5Dy*?b%à(Œ%@žšg¸@¡›²ë¼)?e6†wòj?‚ûð»IÖÀ?ÌÏÀ í@槉@ûl@Ÿiâ£1¦Ò@Î@£ŠïŸ¾w@£ŠÔýó¶G@£ŠïŸ¾wÁ.„€@£ŠïŸ¾wÁ.„€@£ŠïŸ¾wÁ.„€@£ŠïŸ¾wÁ.„€@£ŠïŸ¾wÁ.„€@•DšŸ¾vÉ@•Dñ`tÃ@•DšŸ¾vÉÁ.„€@•DšŸ¾vÉÁ.„€@•DšŸ¾vÉÁ.„€@•DšŸ¾vÉÁ.„€@•DšŸ¾vÉÁ.„€@7#g ù l@7.Ò‘œÿ¶@4pÄ›¥ãTÁ.„M‰ûçm@3çKƧïžÁ.„QnÙ‡@3‡ ù kºÁ.„NÜC,¥@3‡ ù kºÁ.„NÜC,¥@3‡ ù kºÁ.„NÜC,¥?~ì“?ÕÒJ@8#˜@8¾:@8 >+@8Iç@8Ù?“ -„L.1Î@8Î÷@8i§@8Å@8S@8û—?¸?–?;•@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøÏ@¢§©ûçl‹@¢§©ûçl‹@¢§©ûçl‹@¢§«àÞÒˆ@¢§©ûçl‹@¢§ª~ùÛ#@¢§©ûçl‹@¢§©Ô•*@¢§©ûçl‹@¢§¨Xy=Ù@¢§©ûçl‹@¢§ªqÞi­@¤Õn—Oß@¤Õn—Oß@¤Õn—Oß@¤Õm‘hr°@¤Õn—Oß@¤ÕlÙè>B@¤Õn—Oß@¤Õr¼£@¤Õn—Oß@¤Õo'»/ì@¤Õn—Oß@¤ÕnV“@4G>«6z@4GKƧïž@1W+ Iº@1W®záH@1Z~ùÛ"Ñ@1\j~ùÛ#@1(è§æ›@1+‹¬q ³@1(è§æ›@1*Ov`@1(è§æ›@1(ï4Ö¡b?}Ñ¿ž,?Čۨ1A?‘½ÉaR º?Œ¸ðËb?‘ …É¿¼?‘m×e\»?|¬Çëý ?’ ,øÕC©?ð{¥âdú?EÇàÔPà?‘áÙž­ò?‘ƒZ)Àˆ?‚yî8Á#?ŒÂ§dß±?„ã¼ÓZ…ˆ?ƒv_.^?ˆ‹”âó?ˆ¾þúWZ‹@@@@@*@&?ð?ð?ð?ð?ð?ð¿%<À?'Ë/;?)–ó~åo†?;­ÎS™C@¢§©Äú+@¤Õo7 -Ž+?IQ“¸(?[?”³Ïÿà? i‡^Ç!?ÂDˆÍm -³@Ÿf»8ôøÕ@Ð@¥Š Iº^5@¥Š -=p£×@¥Š Iº^5@¥Š(K]Ìd@¥Š Iº^5@¥Š4!-x@¥Š Iº^5@¥Š -ŒL˜@¥Š Iº^5@¥Šu%F @¥Š Iº^5@¥Š ‘hr°@¢¢xQë…@¢¢{dZ¬@¢¢xQë…@¢¢„“t¼@¢¢xQë…@¢¢˜“t¼j@¢¢xQë…@¢¢wÁ½¥@¢¢xQë…@¢¢U?|í’@¢¢xQë…@¢¢mà q@7}:’£@7wXâe@4ã÷ÎÙ‡@4òZîcŠ@4•`A‰7L@4«/ìVÕÐ@3úÔ,<ží@4ðoiDh@3úÔ,<ží@4¡ÊÀƒ@3úÔ,<ží@4ëC,¦?—¤o„C?’ãy)­3c?¡  è+î~?¦d†€¹?¡ áãà³? i]½x[?Œs¤DÅÐ?—¿ºÖ÷?¡WŒÒ‚?¤Q ®Q2?› °Ö7?£:ó;Ãç?¥±ŽBÏÄ?¨:!;Ù‰à?¢g`¥uà‹?’Ò=Ù!Wþ?”þ5.¸žÊ?¤L¿€‡4@@@@@&@&?ð?ð?ð?ð?ð?ð¿$Šja ¿xÎOŒ@?TÇôo ?iºåX6P@¥Š ^&Ϧ@¢¢l”;?u—U8'&¶?‹¥r…CÇW?ÎA×áD]Ê@Ì˜ÈØ½–@Ÿh÷Bö@ @Ñ@¢âñ©ûçm@¢âð£× -=@¢âñ©ûçm@¢âçï²,@¢âñ©ûçm@¢âô`ªdÃ@¢âñ©ûçm@¢âæµ '@¢âñ©ûçm@¢âùJôðØ@¢âñ©ûçm@¢ãëC-@¡‡¤Z¬@¡‡¦§ï±@¡‡¤Z¬@¡‡›ô‡ü¹@¡‡¤Z¬@¡‡±œàu÷@¡‡¤Z¬@¡‡½—ö+k@¡‡¤Z¬@¡‡¹XbN@¡‡¤Z¬@¡‡µ2a|@6šÔ,<Ÿ@6Xâe@3…?|í‘h@3tÝ/Ÿ¾@2¬j~ùÛ#@2žì¿±[W@2p–»˜Çã@2ZOv`@2p–»˜Çã@2ZdÂø7´@2p–»˜Çã@2^;Í5¨Y?}Ñ¿ž,?™mv¯rÇ…?¦=Àöw<¸?±j–8K -?®‡›ajÒø?¤sb-ý?žˆ2}?š…FÌ«Ø*?­ ßåG?¬]~ɺ¶@?®wcÈ~Y?°)œpwe ?‚Ö˜>µDà?‘Žèã&!+?š6v;vî?ˆx»€ñö2?’3¨£„È?°+—ߎ @@@@@,@,?ð?ð?ð?ð?ð?ð?g^mÅn?r›C?§?WPQ4Ö{Õ?X™|Ã3L[@¢âóÌSäA@¡‡«ùOpô?n´7ý^U?o5‚‚ràâ?ÓÅ,zcè•?ʦ•.~WÃ@Ÿ^ß~ùË@Ò@§ÂuÂ\)Á.„€@§ÂuÂ\)@§Äš@§ÂuÂ\)@§Ä[µsë@§ÂuÂ\)@§Ä®¾ß¤@@§ÂuÂ\)@§Ä­(Œç@§ÂuÂ\)@§ÄÂø7´¢@ UÏß;dZÁ.„€@ UÏß;dZ@ WŒÌÌÌÍ@ UÏß;dZ@ X²-V@ UÏß;dZ@ X/Òòå@ UÏß;dZ@ X9#¢œx@ UÏß;dZ@ X1Ä2ÊX@6åöý!ÿ.Á.„>¤µÜÆ@2ã÷ÎÙ‡@2Ë’:)Ç@2~ùÛ"Ñ@1P–»˜Çâ@1‚‚@·€5@0µœàu÷@1‚‚@·€5@0²:)Çy§@1‚‚@·€5@0¶È´9X@8J¨?ÑNöŸ:'—?ÞÅDwÜhg?ÙÑ» è°Ô?Ѧ›ó9ÔH?ÓÔ=J7@8J¨?Ý_;Îê$?Þsr±lV?ÛÐGJéÂ?ÔÁ“b)Û‘?Øûo¼@8p÷?’K•ªQ5?Ž;øÑNô?’Ž_½‹Éc?™GXêâ?“!S{uu@@@@,@*?ð?ð?ð?ð?ðøøøøøøøøøøøøÓ@®ã-‘hr°@®ã.Ù‡+@®ã-‘hr°Á.„€@®ã-‘hr°Á.„€@®ã-‘hr°Á.„€@®ã-‘hr°@®âü64@®ã-‘hr°Á.„€@ "Ðå`B@ !$Ý/@ "Ðå`BÁ.„€@ "Ðå`BÁ.„€@ "Ðå`BÁ.„€@ "Ðå`B@ J~ùÛ#@ "Ðå`BÁ.„€@6Û¹Œ~($@6ÚCþ\‘Ò@5º^5?}Á.„M‰ûçm@3Ͳ-VÁ.„QnÙ‡@4(è§æ›Á.„NÜC,¥@4(è§æ›@4éxÔýô@4(è§æ›Á.„NÜC,¥?|öOÿÝ@8#˜@8¾:@8 >+?¾ ¬rLæÛ@8Ù?žˆ2}@8Î÷@8i§@8Å?·*ç*É«S@8û—?¶,1õ'®@8 * @8p÷@8¶?°Í=üi@8 Ø@@(?ð?ðøøøøøøøøøøøøÔ@¤‹ŒÌÌÌÍ@¤ŠÒ-V@¤‹ŒÌÌÌÍ@¤‹poiDg@¤‹ŒÌÌÌÍ@¤‹z–¼@¤‹ŒÌÌÌÍ@¤‹†Â&€@¤‹ŒÌÌÌÍ@¤‹”,<ží@¤‹ŒÌÌÌÍ@¤‹ˆr° Å@¬ù²° Äœ@¬ú7ÎÙ‡@¬ù²° Äœ@¬ù¤êJŒ@¬ù²° Äœ@¬ù¦1ø @¬ù²° Äœ@¬ù¬¥zxk@¬ù²° Äœ@¬ù°©*0@¬ù²° Äœ@¬ùºu%G@9 ØDЩ@8JáG®{@4”›¥ãSø@4™è>BZî@3d¼j~ùÛ@3dÂø7´¢@35µsê³h@3V»˜Çâ‚@35µsê³h@3^šv@35µsê³h@3UÖ8†YK?àíò‡ä9?¤iedA¾?•í¤®Èq{?¡sâ½ë?ª–yHªÃ?ž»‚>äÚ>?á…pn©³?¢ÉÓDý?–v”׆7Ê?´ '³~À?³ÍÂ]%ž®?ž*“ÀMõL?õ¿Ð™8?Û?¡Ê$̤T?¨?õ:Lö]?®íÇ[ÌíY?°È-ìÉB?¡_—‚×! @@@@@,@$?ð?ð?ð?ð?ð?ð?\±Lu@?lââ%?väG¤ã\q?{¢>›z@¤‹‰›—»@¬ùµÅg²?‡¤}ù0Xy?‰×<Ô3ð²?änÏ–ì9?Ô#“½,»@ŸuRrh@Õ@ ß“t¼@ ß qu@ ß“t¼@ ß ˆ=Ö@ ß“t¼@ ß³Qµ‹@ ß“t¼@ ßòb@ ß“t¼@ ß›89i@ ß“t¼@ ßÜŒ+@¬¾€ƒn˜@¬¾‡ï²-@¬¾€ƒn˜@¬¾{‘žX•@¬¾€ƒn˜@¬¾}ìÖ9¶@¬¾€ƒn˜@¬¾zæ†@¬¾€ƒn˜@¬¾}iGt@¬¾€ƒn˜@¬¾‚û‰Ðy@7kµsê´@7eÈ@ àò@3 Ä›¥ã@3&å`@2{Ƨï²@2~öC/‘¢@1£ÉîËû@1©]Óòû@1£ÉîËû@1©ˆÃNÐ@1£ÉîËû@1©o¸Œ¾?|çµB &€?‘tÛŒ?•Êð=éx?é*„4Ie?’]çñÆ[?‘ð0~Wš?’ÌRû ã?’Q?4kÞu?’]ÍdM•J?’é -lr¬·?’Z›ðŸ“?‘>pú—±Â?¢¾•´é?Ž­#³³q?ƒ1B«ð¡!?…aiJ‹k?ˆÁã Tn?ŠüÀ]  @@(@,@,@8@3?ð?ð?ð?ð?ð?ð¿\sª·T¿Sýƒ¬?11tfº?]€“7Ç@ ßPf¸¬@¬¾€í[#²?S‹Ÿ—À³?{ Vs¹?¬ì}ð}±?ñAWƒ@Ÿk!œ83 @Ö@§Ò¥ãSøÁ.„€@§Ò¥ãSø@§Ó‰7KÇ@§Ò¥ãSø@§Óc× -=q@§Ò¥ãSø@§ÓB\(ö@§Ò¥ãSø@§ÓªÍž„@§Ò¥ãSø@§ÓÓZ…‰@ öÈ´9XÁ.„€@ öÈ´9X@ ì<žìÀ@ öÈ´9X@ µéá°Š@ öÈ´9X@ À'RTa@ öÈ´9X@ …m\ú­@ öÈ´9X@ ¤Âø7µ@8·â‚@·€Á.„>¤µÜÆ@4£÷ÎÙ‡@2$Ý/@3Æ“t¼@2Ö8†YK@2úÔ,<ží@1ªÍžƒä@2úÔ,<ží@1ˆ§æšÔ@2úÔ,<ží@1™Ô•*š@8J¨?¨E‹¨¹“‹?·éo‘" -?¯ð~aäí?ÁÚuës`c?§ùä´~«G@8J¨? ¬q¶™?ÁåòÊ(TÅ?ÆfáY|h?ÕNMpÄZ&?Ë@!"‹Š@­µ²-V@­µ·¾S8@­µ²-V@­µºw;/b@3õS&Á¾@3óÉîËû@/”¼j~ùÛ@/‹'µ¡@.mOß;dZ@.cn.gJ¹@-#¼ÓZ…ˆ@-^5K@-#¼ÓZ…ˆ@-ZÑv×@-#¼ÓZ…ˆ@-mÚÎï?€‘gQÚÃ?õ­r ?‘KI4ê?Œ'õI Š?‘&J—œ?ÊûVh -”?}@T˜ÁÎ¥?’§h‰ª?‘Ç}%“ '?RL„óBÛ?‘1b?\š÷šU½?ƒY¥„ûkd?ŒÆò-Ük?‚Â!Üb?ƒ?Âù?†—ò« «?†Žþí}ê@@@@@4@4?ð?ð?ð?ð?ð?ð¿IúÍ1D?UfÎd°?ÝBŠ&’»¨qŠL?MÚÍóüz?‡ ´4õ'f?¦r48ñõþ@Ÿgh¡tZñ@Ø@­8U$Ý@­8R° Äœ@­8U$Ý@­8,VÕϪ@­8U$Ý@­8U?|í‘@­8U$Ý@­8jJŒM@­8U$ÝÁ.„€@­8U$ÝÁ.„€@–ÖOß;dZ@–ÖHìžÑ‹@–ÖOß;dZ@–Ö+P°ò}@–ÖOß;dZ@–Õè$ x@–ÖOß;dZ@–ÖK]Ìcñ@–ÖOß;dZÁ.„€@–ÖOß;dZÁ.„€@8 xFÜ@8ˆNi°@7° Ä›¦@71ohÛŒ@5Ë"Ðå`B@6©ûçl‹@5._oÒ @59JôðØE@5._oÒ Á.„NÜC,¥@5._oÒ Á.„NÜC,¥?“x/0 ª?Æ\5Ÿ#àk?ÀÆÜF¡v?©ßìE½u]@8Iç@8Ù?‘ 1˜Ó ?ÏV Áè?ÄCÚ¶’ú?ºrßpв@8S@8û—?‚·˜²#–n?ÊM#’Ž?µÎ%×€Ý_?³ÓÑžoh@8 Ø@8 Ø@@@@?ð?ð?ð?ðøøøøøøøøøøøøÙ@¬eÞ¸Që…@¬eÞùÛ"Ñ@¬eÞ¸Që…@¬eà·€4o@¬eÞ¸Që…@¬eߨ­«Ÿ@¬eÞ¸Që…@¬eà'RTb@¬eÞ¸Që…@¬eÝó¶E¢@¬eÞ¸Që…@¬eÝ—ö+k@¢Âœ(õÂ@¢Â›çl‹E@¢Âœ(õÂ@¢Âœ(õÂŽ@¢Âœ(õÂ@¢Âš¹õY´@¢Âœ(õÂ@¢Â›~ÿ—@¢Âœ(õÂ@¢Âœ„µÜÆ@¢Âœ(õÂ@¢ÂœÚQ@4įO „M@4ļj~ùÛ@08r° Äœ@08Që…¸@/&éxÔþ@/Î_p@-”`ªdÂù@-”!-w2@-”`ªdÂù@-”êJŒ@-”`ªdÂù@-“×Ûôˆ?|öOÿÝ?êÚÏ$?‘$Cê¡@í?Œ ßõIyû?ùª¨?ÃwZL?|öOÿÝ?’0nà=Q“?ŠA)Nîá?‡@Cvì×?õ<úU?M\³Ù“@?ƒmÕ+&¬‰?Œ».êxóÚ?‚‹¡8*ú?‚ð'ã:ÂÝ?†¯Mž684?‡ã ËÄž@@@@@*@"?ð?ð?ð?ð?ð?ð¿&[ ? E½ï@?0f$ÇC^Q?¹<'5ª@¬eÞÅ5+§@¢Â›þ›è?PYPžBK?6ÿåthg1?¬ßÁ´¦»Ž?{L‡ -?Ì1@Ÿfþ¶NÎU@Ú@©¼äZ¬@©¼éTŸÏÙ@©¼äZ¬@©¼ß‰Ý í@©¼äZ¬@©¼ß~ï:@©¼äZ¬@©¼ÛL!@@©¼äZ¬@©¼ßª-Ú›@©¼äZ¬@©¼ÜädpÅ@›«ÎÙ‡+@›«×Øßá@›«ÎÙ‡+@›«Í¨‰Ñ~@›«ÎÙ‡+@›«ÎRHúg@›«ÎÙ‡+@›«Ðòe@›«ÎÙ‡+@›«Î}ëø@›«ÎÙ‡+@›«Ïïùxç@7*0U2b@7Ø©ãÐ@2sS÷ÎÙ@2sYjÖq@1Ãt¼j~ú@1Â5xΆ@1._oÒ @1,Ý/Ÿ¾@1._oÒ @1,Ü)&$@1._oÒ @1,ÄXCœ -?ƒÔo"ë–? -"ùûü?‘ð¿xÀ‘?°ÿËûÖ?’ -EÜàõ?‘ªÖ¸ÿ†™?¨Sp*?’ ñó«Î?‘ú&:η?­ºRçþ?‘TþòÇÀ?†'ô’U©?û놱_•?CÏR"?„&ÑÄÜC?ƒPo”ž™{?†ÑÜ uv?†ú{j½ì@@ @(@&@1@1?ð?ð?ð?ð?ð?ð¿f訛<¿O£w@?Q¥¹Ò"9?)‘²¨ý@©¼á©w¹Q@›«Òþkî†?q€¤Bj‡F?JŒƒº§s?èSaõ3=?žÌôûúb@Ÿh„Ç:@Û@žhr°!Á.„€@žhr°!Á.„€@žhr°!Á.„€@žhr°!Á.„€@žhr°!Á.„€@žhr°!Á.„€@¦ˆ$Ý/Á.„€@¦ˆ$Ý/Á.„€@¦ˆ$Ý/Á.„€@¦ˆ$Ý/Á.„€@¦ˆ$Ý/Á.„€@¦ˆ$Ý/Á.„€@3¨†YJôñÁ.„>¤µÜÆ@0—+ IºÁ.„M‰ûçm@/÷Oß;dÁ.„QnÙ‡@/87´¢3œÁ.„NÜC,¥@/87´¢3œÁ.„NÜC,¥@/87´¢3œÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøÜ@¯$G+ J@¯$C× -=q@¯$G+ J@¯$EÖ8†Y@¯$G+ J@¯$H1&éy@¯$G+ J@¯$EýŠÚº@¯$G+ J@¯$F¸ºÇ@¯$G+ J@¯$Em\ú­@£hõÂ\@£f$Ý/@£hõÂ\@£gâ‚@¸@£hõÂ\@£gl‹C–@£hõÂ\@£iº^5?@£hõÂ\@£hÛ‹¬q@£hõÂ\@£iîËû@7‰Î_oÒ@7„•*™1@23S÷ÎÙ@23MjO@1ˆ“t¼j@1ˆšu%F@1=cˆe”°@1=<64@1=cˆe”°@1<žì¿±\@1=cˆe”°@1<Æ??–ªÎ­¡??ÖCã ?‘œÁùãJC?‹ÑqÔ@vÿ?’êÔÒ?‘‚ÊŸû©?óA[ØïF?’Ȳõa®?‘twæ³?EÇàÔPà?‘–=û.e1?r¼Jsž?‡~ ~ã? $gú‡v?ƒÚ@êA²?ƒ^ ›¨¬a?ˆCns¥ ?‡æê7²zE@@@@@*@ ?ð?ð?ð?ð?ð?ð?5sýïÐ?Gfš-¼?3™¶ãG@¦†ƒn˜@¦…ÿË’:*@«)Å¡ÊÀƒ@«)Å¡ÊÀƒ@«)Å¡ÊÀƒ@«)ÆL/ƒ{@«)Å¡ÊÀƒ@«)ÅãS÷Ï@«)Å¡ÊÀƒ@«)Ƨï²@«)Å¡ÊÀƒ@«)ÅÖ8†Y@«)Å¡ÊÀƒ@«)ÅðoiD@0«µsê³@0ª³g ù @*û"Ðå`A@*ûµsê³@*XÔýó¶F@*Xï4Ö¡b@* -#9Àëî@* ûçl‹E@* -#9Àëî@* -Ov`@* -#9Àëî@* -0U2a}?É^žQ5P‚?Òç{íj?‘"žæÆó¡?‹²MÿAÿ8?ðÌÇßgé?ºª$Ð?ÐbMçê_x?’ ,øÕC©?¹º–Èj?1ð'7éÃ?ß’ºèh!?Z˜°,aÝ?[Éh(?Œ²ÅŒÕ6?‚q6tNø7?‚äÍ“½E'?†‰Oú|q?†ŠúЀ>(@@@@@,@,?ð?ð?ð?ð?ð?ð¿AF–º¼¿4ÕÓ0?)/„kÛré?#lE „Œ@¦†9 ¦ÿ@«)Æ0?89*uM?2cـ߹Ü?lÌõt3BÝ?]—ãÏßÑÈ@Ÿsêkœª@à@©î”záG®@©î…{q¶@©î”záG®@©î˜|+Nƒ@©î”záG®@©î–]¬V„@©î”záG®@©î–›æ½ò@©î”záG®@©î–njV @©î”záG®@©î•H¦q@”B\(ö@”9Û"Ðå@”B\(ö@”AʉB@”B\(ö@”SÐÜ;@”B\(ö@”?,Í¡i@”B\(ö@”Dã¿@”B\(ö@”EàèÆ@82ÃÉîËû@80ø¯õMÙ@4Lí‘hr°@4M@v©Æ¨@3¬j~ùÛ#@3®?èKž@2ÔmÅÖ8†@2Ó®×2ür@2ÔmÅÖ8†@2ÓÇqÛ‘¤@2ÔmÅÖ8†@2Õ ÒG-ú?€Z=ú‚¡?“H9Ÿ‰?–8¥NJH±?¤ÝÿÏ?’ š¬ ç?“ƒµ†s5t?˜@þà>¨?–ç7!,%ä?‘,e±ò¼É?DìQ |?‘¹Y*.?’$'^ Y?’¶Èñr“?›wºÎ?ï& d?„"æUx?ŠbewFA0?‰ñ{Õ<K@@,@,@"@8@9?ð?ð?ð?ð?ð?ð?p¸ ž?UF.ºó?R*ó-øe?'zׇdmå@©î‘ñ®ŒŽ@”@°XZj?t»nþÙÂ?B´/^4Ÿ?ì˜1Ì$??Ž"Ê_‘@ŸlJ Þ@á@®É9XbN@®É9¿a+ì@®É9XbN@®É:–¼@®É9XbN@®É9XbN@®É9XbN@®É9Œ~(#@®É9XbN@®É8üPN@®É9XbN@®É9 ~1C@œ_;dZ@œ_;dZ@œ_;dZ@œ^5?|ï@œ_;dZ@œ]/Ÿ¾@œ_;dZ@œ^Ov_Ù@œ_;dZ@œ^ƒä…@œ_;dZ@œ_:Ç­x@1‚ò䎊@1‚&€IR@,kƧï²@,k’:)Çy@+E¡ÊÀƒ@+Ov_Ù@*æL/ƒ{K@*æL/ƒ{K@*æL/ƒ{K@*æ$Ý/¡@*æL/ƒ{K@*æbîž=?É`U8ŒrÌ?ÉGãA­÷?‘Ûü†Nã?‹½XQê>æ?íOýï8?¼_ˆæ?ÐbMÝn½?’ ,øÕC©?|™,Ž!?4–Ú‰3?Ö§¬ÙO?H+õm6?€bîF¾§?Œ¯þuõí?‚yî8Á$?‚äÍ“½E'?†ŠúÐv?†Žÿ󰉋@@@@@,@0?ð?ð?ð?ð?ð?ð¿/3q–@?(ª¶ÙÎ?wy -hO -?{ÄÌ×5@®É9;k@œ^¥l(u?&¹Ü‰©?ϧŽü¨?Hõ>[õó0?3€óËpw@Ÿs kXƒg@â@¡hRñ©ûç@¡hT¼j~ú@¡hRñ©ûç@¡hKjçÕg@¡hRñ©ûç@¡hL²•éâ@¡hRñ©ûç@¡hPË)^ž@¡hRñ©ûç@¡hNóMj@¡hRñ©ûç@¡hM«ŸU›@¬ž‰7Kƨ@¬ž‹C•@¬ž‰7Kƨ@¬ž…Ö8†X@¬ž‰7Kƨ@¬ž~($ w@¬ž‰7Kƨ@¬ž„êJŒ@¬ž‰7Kƨ@¬žŽ!–R½@¬ž‰7Kƨ@¬ž„Z¬@5Ì]cˆe”@5ˬq ²–@1î5?|í‘@1ëjçÕfÏ@1~V“u@1zdÂø7µ@0ÜÚQÎ@0Ö¡aä÷f@0ÜÚQÎ@0×â‚@·€@0ÜÚQÎ@0ÔohÜ?1·†Æjñ?–MSMÓ®¬?’à©GMõ?ޝ“¶¶ÒÍ?‘ÏX¼ãs~?’?=ÆþÎò?}Ñ¿ž,?”n‹rÕ|?’€fç½Î?’F—T \*?—QÀ–Íù?’Âuþ!BÖ?‰~}œ…o^?Å{¿Ž<º?„ËD(ºp?Š>ÚµÕ?Œúq‘?‰ö±«tï@@@@@*@ ?ð?ð?ð?ð?ð?ð¿W¼*,h¿Pç§)T>öžÇ?K$7?M¤µÜÆ@3µãS÷ÎÙÁ.„M‰ûçm@3H“t¼jÁ.„QnÙ‡@2µµsê³hÁ.„NÜC,¥@2µµsê³hÁ.„NÜC,¥@2µµsê³hÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøç@¡ÝÕ%@¡Ý¾¸Që…@¡ÝÕ%@¡ÝÇÈK]Ì@¡ÝÕ%@¡ÝÉá°‰ @¡ÝÕ%@¡ÝǓݗö@¡ÝÕ%@¡ÝÄЩ*@¡ÝÕ%@¡ÝÂø7´¢@¤ï²-@¤Û¥ãSø@¤ï²-@¤øl"h @¤ï²-@¤öÈ´9X@¤ï²-@¤ðHð@¤ï²-@¤ò䎊q@¤ï²-@¤ïƒ{J"@8è†YJôñ@9í‘hr°@2&‡+ J@2"e+ÓÃ@1²-V@1û~ÿ—@0ëxFÜ^@0çKƧïž@0ëxFÜ^@0äêJŒM@0ëxFÜ^@0ä•*™1?¯oÝ ÷6}?½Ë9ØŠ§?‘,fŸCô6?Œj6_?“Œ4f(Rú?•(Ï¢Uÿ?¢Æ÷Xê†?“í -Âô‚?³2ºŽ'?]bËn~?–å·ÑfWâ?•ŒSˆw?­‹©(ÓDÊ?ï7è-ÖR?‚ù…žÄ`x?‚ð'ã:ÂÝ?Œ˜ˆTÙ8ª?ˆ¾þúWZ‹@@@@@,@*?ð?ð?ð?ð?ð?ð¿P%d6Å?h¯<¶Ù€?Tk‰áÐ’˜?a×ÚW@¡Ýźz@¤îð#^–?eË‘ÛI>Ä?wîsŠK±D?Âã{ý @Í?ã±î˜H~‡@ŸoÏšOnn@è@«ŒIº^5@«ŒIº^5@«ŒIº^5@«…j½@«ŒIº^5@«„—­”@«ŒIº^5@«{¥<{–@«ŒIº^5@«{e¸O@«ŒIº^5@«€ µ‘ @”« Iº^5@”« Iº^5@”« Iº^5@”ªö€‰R@”« Iº^5@”ªôëë)£@”« Iº^5@”ªú}ýƒT@”« Iº^5@”«bOß¡@”« Iº^5@”«"l—c@3|ÚQ@3ohÛŒ@1Š^5?|í@1zpJ¨@0’Ðå`A‰@0Ž…Ð Ób@0QÞi­BÄ@0CÃfÂkó@0QÞi­BÄ@0Hº0,@0QÞi­BÄ@0I¶0˜àÈ?|¬h2:“?.ƒFI‡?‘%ja •a?‹¯^ÆÅ‹Ú?“v–j“–?“Ø„„1ð…?|¬h2:“?—™‘•³ì4?‡6Ƴ?©€Ù~nY?”d°´}ê¡?“ÿÀ³þ§?‚qÑ9Ð?0ét:äm?ƒÏòt„´&?ƒ8;°­é?z‹!?C¦i;ã@@$@@"@<@8?ð?ð?ð?ð?ð?ð¿o%µ! ?RÃAJ?U•|5T²d?]wl“Bë@«ƒÐ¿à@”«-`z2?t‹…Cœ£?|¿»„¦{û?ôþ¨d>¶@[_ÂÕQ@ŸeÊâ¯Qê@é@¤±n—OßÁ.„€@¤±n—OßÁ.„€@¤±n—OßÁ.„€@¤±n—OßÁ.„€@¤±n—OßÁ.„€@¤±n—OßÁ.„€@Ÿè‡+ Á.„€@Ÿè‡+ Á.„€@Ÿè‡+ Á.„€@Ÿè‡+ Á.„€@Ÿè‡+ Á.„€@Ÿè‡+ Á.„€@9šÔ,<ŸÁ.„>¤µÜÆ@5©‡+ Á.„M‰ûçm@4È“t¼jÁ.„QnÙ‡@4…œàu÷Á.„NÜC,¥@4…œàu÷Á.„NÜC,¥@4…œàu÷Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøê@ªp¢MÒñª@ªp±&éxÔ@ªp¢MÒñª@ªp¡-w1@ªp¢MÒñª@ªp«C,¥@ªp¢MÒñª@ªp IQ‚@ªp¢MÒñª@ªp¡:’£@ªp¢MÒñª@ªp¡–R½=@§ð¬1@§ðýó¶G@§ð¬1@§ði­BÄ@§ð¬1@§ðOv_Ø@§ð¬1@§ð;dZ@§ð¬1@§ðkP°ó@§ð¬1@§ð—ö+k@8Bò䎊@8?²-V@3«¥ãS÷Ï@3­æšÔ,<@2Ú~ùÛ"Ñ@2Þÿ—$t@1½cˆe”°@1¾}Vlô@1½cˆe”°@1¿ò䎊r@1½cˆe”°@1¿Ë’:)È?îŠõ ?ÎÁ¯‰t0?•=ÛtQ¾F?‹û…†_?’Z†Ažj?’€ú¤ˆ4 ?}Ñ¿ž,?” Á lŸž?“5ñ µ?Níú¾?’pP‡È»?“êXÔ #{?Œ¢yëjk±?)‰€Zw?ŠÌ÷7Õ}?ƒGϵ¨í'?‡Ä­‹›Ü?ˆ -¿„r©Ý@@@@@,@,?ð?ð?ð?ð?ð?ð¿c6Q;?_É~Öd?\B0°a ?IœÿÆï@ªp£JÓ -m@§ðÎ-Ü?s°k \õ?oOÕêšZÖ?áîꜵRk?Ü|ð3Í„@ŸmMI@ë@®ÉŽV“@®ÉŽV“@®ÉŽV“@®ÉŽÙ‡+@®ÉŽV“@®É\(õÄ@®ÉŽV“@®ÉŽÙ‡+@®ÉŽV“@®ÉÅÖ8†@®ÉŽV“@®ÉÅÖ8†@¡Îýó¶F@¡Î?|í‘@¡Îýó¶F@¡Î¼j~ù@¡Îýó¶F@¡Îýó¶F@¡Îýó¶F@¡Î¯O „@¡Îýó¶F@¡Î¢3œ@¡Îýó¶F@¡Îã¼Ó[@0­¥œàv@0­¥œàv@*ÍV“@*Í(Œç¯@*†éxÔýô@*†éxÔýô@)”`ªdÂù@)”mÅÖ8‡@)”`ªdÂù@)”záG®@)”`ªdÂù@)”mÅÖ8ˆ?Éa—Ã(Ê?Ì&ÏøHÃ?‘"žæÆó¡?‹ÁË…ÉT?îú/´`?¸û:?ÐbV‡,?’r/BÖ?|™,Ž!?6) }’ë?ÔÒ@úˆ‘?M\³Ù“@?€b¡´ñ@?Œ­·Ž~('?‚s@ˆaÛ?‚ãaÎúvh?†‰Oú|q?†‰Oú|q@@@@@,@(?ð?ð?ð?ð?ð?ð¿@0ø ?zƒrX?$ÍŒ¼`)?ú]Ž=÷@®ÉŽ5â.@¡ÎºÜ®¢?4•ØãP?DBãpA¤?cœû¹A½?4;?׊@Ÿs ¤­Ö7@ì@­–$Z¬@­–'®zà@­–$Z¬@­–%—Ñãb@­–$Z¬@­–(Á=ã@­–$Z¬@­–'a\Ø@­–$Z¬@­–"Ç’k@­–$Z¬@­–$—‡ý@™û}ó¶E¢@™ûgòƃ@™û}ó¶E¢@™ûp¨žŠ@™û}ó¶E¢@™ûo-«é7@™û}ó¶E¢@™ûr+¤o™@™û}ó¶E¢@™ût¬¤Å@™û}ó¶E¢@™û„QHtz@8–»˜È@8}™¬@3‡ÎÙ‡+@3„{5Œ]¶@2Ú~ùÛ"Ñ@2ØP˜æ–`@2 -0U2a|@2”Õ)Ð@2 -0U2a|@2~Ýwn†@2 -0U2a|@2 -äÀÉ‹z?¦¸Ùûu‘?’™SBx®ê?’¨4°¼Ã?ޤUõ{þ?“â÷óÿž?‘¿¿l% ?®Au £8?•+efó†Þ?”Y¿ˆq‹‘?‘0€eä?”p:_j°?‘—Y=OÿD?¡Žá,97?‘Z„­OMŠ?‰ýÅ­LcŒ?…ǹÛ)?;ñ1¼1›?‰1D -"r™@@$@,@*@5@2?ð?ð?ð?ð?ð?ð¿T`Š8ç?k:Á¹¥€?GÆ0!?@Ä?SÎ*’f ª@­–%i!¡É@™ûvÒVHW?]àð¾ù?g= -éZ‚?±súµVH?Âù-kÿÃ@ŸpµÍjΕ@í@¯œ½p£× -@¯œãn—@¯œ½p£× -@¯œ¼C,¥y@¯œ½p£× -@¯œ¿ò䎉@¯œ½p£× -@¯œ½p£× @¯œ½p£× -@¯œ»W>«7@¯œ½p£× -@¯œº¹õY³@¦¤®—Oß@¦¤Ÿ¾vÈ´@¦¤®—Oß@¦¤²T`ªe@¦¤®—Oß@¦¤®æ1ø @¦¤®—Oß@¦¤¶âëC@¦¤®—Oß@¦¤±[W>¬@¦¤®—Oß@¦¤¯·éù@7cg ù l@7Uoi@3‚° Ä›¦@3‚° Ä›¦@2ˆ“t¼j@2ˆ1&éxÕ@1õµsê³h@1õ$Ý/@1õµsê³h@1õF -¦L0@1õµsê³h@1õ¸Që…?¾lO»x#?¦Ì '?“ºo½Ô€? Ð ÷Ž ?’¥.Kn Í?‘f]£àG?±ÿ}ö?’?Á• ñ:?“÷Š>õª?‘’â·ýÅ?’l{9ÙŽ?‘ƒZ)Àˆ?µûįJ˜?†¡HŸÊç?„›‹ÖO?…<ò N ?ˆ -¿„r©Ý?‡<û¡71@@@@@,@&?ð?ð?ð?ð?ð?ð¿`ŧìC€¿Rá?^ÃV @w\?d¸J·\L,@¯œ¼{‰œ@¦¤²t‹ÍÜ?nìQÊ[3É?viò,¿?ÓQ¬H”?ã†#׉@Ÿr*!²e¾@î@¤ Ä›¥ã@¤ Ä›¥ã@¤ Ä›¥ã@¤ !ÿ.Hé@¤ Ä›¥ã@¤ ù kº@¤ Ä›¥ã@¤ !°‰ '@¤ Ä›¥ã@¤ |í‘h@¤ Ä›¥ã@¤ |í‘h@¨Ýž5?|î@¨Ýž¸Që…@¨Ýž5?|î@¨ÝžÑ·@¨Ýž5?|î@¨ÝžOv_Ù@¨Ýž5?|î@¨ÝžvÈ´9@¨Ýž5?|î@¨ÝžÒˆÎp@¨Ýž5?|î@¨Ýžß¤?å@3#g ù l@3#Z…‡“Þ@/³t¼j~ù@/³Ãa@N@/DZ¬1@/D›¥ãSø@.Ǔݗö,@.Ç»/ìVÖ@.Ǔݗö,@.Çâ‚@·@.Ǔݗö,@.Ç8}¿I?|¬Çëý ?ZÁ».œ?‘$Cê¡@í?Œ:Z2‚b?‘çG¸?æöæ×t?|¬Çëý ?’0nà=Q“?–ÐO(·Š?3.Ylî?‘!U?Ð{Ò?e¾DQ„Q?‚|׿pY?Œ¾»•lŽ?‚‘´…=Cb?‚ìxqC?†¼Š˜L¥÷?‡´*žZ}Õ@@@@@,@,?ð?ð?ð?ð?ð?ð¿(Â|°>ïŽP?-øR€¹0?Id1@¤ }¦ÚP@¨Ýžºä+?LòôlîX?$é ïø­?¦¦Å$à ú?VÆbäÃ~@Ÿfà¬!u@ï@¥Õýó¶F@¥Õ$Ü@¥Õýó¶F@¥Õ”Fs‚@¥Õýó¶F@¥Ôÿ±[W?@¥Õýó¶F@¥Õ4mÅÖ@¥Õýó¶F@¥Õã¼Ó[@¥Õýó¶F@¥Õéá°Š@¨Ä“t¼@¨ãS÷ÎÙ@¨Ä“t¼@¨Ãn—@¨Ä“t¼@¨¶R½<7@¨Ä“t¼@¨¾Ñ·@¨Ä“t¼@¨¼C,¥z@¨Ä“t¼@¨ºû~‘@8ºqÞi­C@8Á [À7@4º^5?}@4n—P@34“t¼j@3! ²•éâ@2Ç ù kº@2Ó©*0U2@2Ç ù kº@2Ãê³g ù@2Ç ù kº@2Ã@N¤¨Â?´Žé`m? @u-I­?¤MD¢e?Ÿ¥oí¬Èž?“eð7Õ@?”éëÀÍ?³‰ÑpEIt?•N¬Ÿª`Ž?¦² ͉«?žÎ"”`ù†?“Æ×q„nð?Ÿ¥O[õÆ?³ÿ®Üå/ï?œFg*V¿3?“„*0x)Æ?¢ú5×_ð?Œ8¸wx¯?¡‘8²™ç@@@@@"@*?ð?ð?ð?ð?ð?ð?s´1·§€¿uò„"ê€?q“híãÊw?iHl­]x@¥Õ£E¯N@¨¾½¤H?ƒ,p¿x¯p?z•„ô?í} ú{[Ó?Øù ‚ìì@Ÿq¡äbÇ^@ð@«’‹Æ§ïž@«’‘©ûçm@«’‹Æ§ïžÁ.„€@«’‹Æ§ïžÁ.„€@«’‹Æ§ïžÁ.„€@«’‹Æ§ïžÁ.„€@«’‹Æ§ïžÁ.„€@¬FÖ‡+ @¬FÚŸ¾vÉ@¬FÖ‡+ Á.„€@¬FÖ‡+ Á.„€@¬FÖ‡+ Á.„€@¬FÖ‡+ Á.„€@¬FÖ‡+ Á.„€@8ÞHè§ç@8؆YJôñ@4Ùº^5?}Á.„M‰ûçm@4H“t¼jÁ.„QnÙ‡@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥@3uµsê³hÁ.„NÜC,¥?¢F^ì¼Sð@8#˜@8¾:@8 >+@8Iç@8Ù?™™™™™™š@8Î÷@8i§@8Å@8S@8û—?²eˬÊup@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøñ@¦Ã‰7Kƨ@¦Ã‰xÔýõ@¦Ã‰7Kƨ@¦Ã‰“ àÞ@¦Ã‰7Kƨ@¦Ã‰ûçl‹@¦Ã‰7Kƨ@¦ÃŠqÞi­@¦Ã‰7Kƨ@¦ÃˆõÂ]@¦Ã‰7Kƨ@¦Ãˆ>BZî@¢ˆ‰º^5?@¢ˆŠ~ùÛ#@¢ˆ‰º^5?@¢ˆ‰“ àß@¢ˆ‰º^5?@¢ˆ‰º^5?@¢ˆ‰º^5?@¢ˆˆ1&éy@¢ˆ‰º^5?@¢ˆˆXy=Ù@¢ˆ‰º^5?@¢ˆˆÁTɆ@5™*0U2b@5˜Ôýó¶F@1{ Iº^@1zû~ÿ—@0®ùÛ"Ðæ@0¯ö”Ft@0n_oÒ @0mÌcñA @0n_oÒ @0m«ŸU›=@0n_oÒ @0mÙb¶®?|öOÿÝ?Čۨ1A?‘\H{gX ?ŒGZ0eê;?‘\Žýµ€7?âé¨ë7F?|öOÿÝ?’uß¿çÒ?ð{¥âdú?’GÎ>GÅ?‘„ÅMè?ƒÁþGEÛ?‰¢Ò+ÜÝ:?Å9–o?‚¸“Îè ø?ƒR¨º“JÞ?‡ã ËÄž?‡2[síç@@@@@,@*?ð?ð?ð?ð?ð?ð¿ “-À¿>¤‘ïˆ?*´|.Ðs-?$z\ÙR@¦Ã‰WÂø@¢ˆ‰ceã`?J•Òï±Ï÷?D߬È?É?¢Øls×–Ð?–hÑ=t@ŸfáýGÜÍ@ò@¦a["Ðå`@¦aVÈ´9X@¦a["Ðå`@¦aIùrH@¦a["Ðå`@¦aQA [¿@¦a["Ðå`@¦aU*™1@¦a["Ðå`Á.„€@¦a["Ðå`@¦aZ)Çy§@¡­¡ÊÀƒ@¡­#S÷ÎÙ@¡­¡ÊÀƒ@¡¬ö+jçÕ@¡­¡ÊÀƒ@¡­:û~‘@¡­¡ÊÀƒ@¡­"©“ à@¡­¡ÊÀƒÁ.„€@¡­¡ÊÀƒ@¡­ /ƒ{J@8ð4mÅÖ8@8ôM:’£@4Yº^5?}@4FÏAò×@3Ãt¼j~ú@3°ò{²þÆ@2øDЩ*@2íV”@2øDЩ*Á.„NÜC,¥@2øDЩ*@3-à ?¢F^ì¼Sð?§½yKÖú? éÞÝí»?‘sNX„êÒ@8Iç?–ËÒÙI°?Ÿ‹‘+-/Ü?¦À o]?£¡Í¾8+ã?§²Ñ’ÂÏ@8S?•÷f¸D¦?ÃË÷–Ç1ó?’Эs_ª`?¡7‡V/Žr?™/#ÕË®r@8 Ø?šÙ,yf’Y@@@@@"?ð?ð?ð?ð?ðøøøøøøøøøøøøó@©˜bMÓ@©ÍOß;d@©˜bMÓ@©?kEø@©˜bMÓ@©IROìœ@©˜bMÓ@©K¨gò@©˜bMÓ@©|E¡€@©˜bMÓ@©•Ët.o@˜5?|í‘@˜vE¡ÊÁ@˜5?|í‘@˜ëdìá7@˜5?|í‘@˜r3DZ]@˜5?|í‘@˜8 !T@˜5?|í‘@˜8X(S@˜5?|í‘@˜<]‹?ê@8zqÞi­C@6ÊÀƒn@30Ä›¥ãT@1Åx^ª»@21‰7Kƨ@0ÓZ>Ũ@1¸DЩ*@0UõU F2@1¸DЩ*@0XÒ¿x@M@1¸DЩ*@0VÇ|_?€Ã{s°úi?’S†­ÍË?“w>Zò«?‘€YãFŸ?²Ýé+i‰?´]lþmY?‡©½(‡üÐ?¢güQ÷?¢bGöF?«ˆß7€G?̽±…Vo??ÇK]°{f?—˜²åe¦?¾á¼¢Ú?‡«tºÛ=?†š<òA$¢?”]Ô4KÖ?‘~³1î@@@@"@;@9?ð?ð?ð?ð?ð?ð?§Â´d»¿¸-ÊЕà?`(×fû?õ…÷Ú@©÷šÅ¤'@˜Éø: l?rÁcþ0Ã@?ŸÔZ¡’.?çvÆ.@gîf!IÚ@Ÿ]N/ÿÍ@ô@©7¥ãSø@©7(õÂ@©7¥ãSø@©7~ÿ—@©7¥ãSø@©7ÇË)@©7¥ãSø@©7cˆe•@©7¥ãSø@©7­«ŸU@©7¥ãSø@©7è>B[@ªóèõÂ\@ªóê~ùÛ$@ªóèõÂ\@ªóå8ï4Ö@ªóèõÂ\@ªóçE8ï6@ªóèõÂ\@ªóí\ú¬Ú@ªóèõÂ\@ªóéQ‚©”@ªóèõÂ\@ªóêŒL˜@6 ]cˆe”@6 ‘ÑN;Í@2€ Ä›¥ã@2\(õÂ@2"-V@2" Iº^5@1TmÅÖ8†@1T!-w2@1TmÅÖ8†@1TÝ/Ÿ¿@1TmÅÖ8†@1Usê³g¡?€‚ñêã ? ¸×KG?’#ç}iïë?‹Æ úJ-M?’»–j˜ú?‘PÊÑ<Ýl?€‚ñêã ?’r/BÖ?“Ú%¿»8?Ò–‚h±n?’8,²ñ±T?‘ ‡#é -´?‚íWçé„?Žâç.¡È?„ò—TËÄ?ƒì%­¹Ï‘?‡Õ˜]–GÄ?ŠEÝ‹N@@@@@*@(?ð?ð?ð?ð?ð?ð¿<~¶|À?2Fm?<{ V¡ô{?:^€J1þð@©7r8ï"@ªóêËn?\L[7t²Á?[ r© ’u?¡*{0±?À½¦´ÓÝ@Ÿg’Ûlq1@õ@¤]¥`A‰7@¤]§l‹C–@¤]¥`A‰7@¤]ž5?|î@¤]¥`A‰7@¤]™Û"Ðå@¤]¥`A‰7@¤]žùÛ"Ñ@¤]¥`A‰7@¤]“Ý—ö+@¤]¥`A‰7@¤]’:)Çz@ ‡|í‘hs@ ‡~vÈ´9@ ‡|í‘hs@ ‡|¬1'@ ‡|í‘hs@ ‡y‡+@ ‡|í‘hs@ ‡}/Ÿ¾@ ‡|í‘hs@ ‡…”¯O@ ‡|í‘hs@ ‡„?åÉ@6?–»˜È@67§†Â&€@2.5?|í‘@2+’:)Çz@1t“t¼j@1iè>BZî@0î_oÒ @0ëJ#9Àì@0î_oÒ @0ã,¥zxl@0î_oÒ @0âÞÑ·?3ßa=„?qÂ' -B›?‘ÓKñá»Ù?‹¯eU5?Ÿ0 碽ü?£eÂÌtµ?}Ñ¿ž,?“-N•I`(?ß‹…&?ð{¥âdû?›†þ.D?ŸèØŸ#ߦ?°ón÷°E”?Œ°¶.Ä+Æ?¨À°ÒÞ@?…ÇóÏ€9"?‹ì3åý?‹¼`’ i2@@@@@(@(?ð?ð?ð?ð?ð?ð¿pÎÚGR?K?H ?JiAçäl„?I1AÌm@¤]Ÿd-Ù5@ ‡€®ïË?d°ßÖ -y?h¶pmùi?Â;)[Õƒ6?Ð&‚ÚÙº@Ÿf¼J­-Z@ö@¦’ë Iº@¦’Ê~ùÛ#@¦’ë Iº@¦’ðË)^ž@¦’ë Iº@¦’Øï4Ö¡@¦’ë Iº@¦’Öý!ÿ-@¦’ë Iº@¦’é­BÃÊ@¦’ë Iº@¦’èÎp:û@£©bMÓ@£©“u@£©bMÓ@£©-V@£©bMÓ@£©&éxÔþ@£©bMÓ@£©»˜Çä@£©bMÓ@£©uŽ!–@£©bMÓ@£©9Xb@8ÿ–»˜È@9Åo@4\Iº^5?@4NvÈ´9X@3´“t¼j@3¢@·€4n@33&Á½¥@3ò䎊r@33&Á½¥@34êJŒM@33&Á½¥@33× -=p¤?²Æ—ÕŒ?¡x¡´BÇ?¨=ŠÂ£¥–?œÖ,?™'Ö™:0í?˜s˜»ì•?º¯*RœÃ¥?§D¾12£?¦\ª‹×›Ý?§*ÅÌö¡?–kš‘ž?˜I­}ý½Ä?®›©L Ý/?œ]ŸFV”?‰ZaizÚD?ϯ<«¬í?‘ ê$4 ?–Mí\{WÐ@@@@@,@,?ð?ð?ð?ð?ð?ð?}™OÒÏÀ¿9È?d%æ¨Èh?V8õ³ÉQ×@¦’âå”È@£©naõ»?wO~ß¹™B?fÚNÖd-Î?Ôg¨¿i?¬à -ˆåD@ŸrrrJ5@÷@¦1µ?|í‘@¦1´†’@¦1µ?|í‘@¦1Âim,@¦1µ?|í‘@¦1Ž@_@¦1µ?|í‘@¦1ôœì@¦1µ?|í‘@¦1žºˆ¨@¦1µ?|í‘@¦1«³Îx@”Š$Ý/@”Š+ J@”Š$Ý/@”ŠDÙ+¿ø@”Š$Ý/@”ŠNÒ2J3@”Š$Ý/@”Š57Ø®e@”Š$Ý/@”Š(ÿ.ž¬@”Š$Ý/@”‰ûÂvæ@7:qÞi­C@7;<üQÂ@3B° Ä›¦@3Êr®©@2Ct¼j~ú@22š¼†à@1xDЩ*@1hs|3ZÓ@1xDЩ*@1ik51ö‚@1xDЩ*@1q2;3Ç?™û-™,Èß?°&Íwh?ŸÜeÜUô?˜Ú|Þ„^?˜®±4¥vã?˜…ÖŸ1¬?}@T˜ÁÎ¥?³eöÕ—S~?¢iÙúÍuh?¦=ÀÝû?Ÿ?AªôËÔ?™ùhr•2¼?–™ªÊN?“èZè¥@Ä?‹ÚÙÿ•+?ˆý¯ŒðòÞ?“ÃÃàž:?»éhO@@,@(@,@8@6?ð?ð?ð?ð?ð?ð¿dŒ®?N¾z:Ø?iE¾2—°?c}(±Ÿ†@¦1§V®=|@”Š èps«?†®ÓMCͽ?ˆ%ªy Œê?ùúÙI¶bÀ@ƒ5ùaÊu@ŸjŒ¥‰Ó@ø@¡ƒ,‹C•@¡ƒ,Iº^5@¡ƒ,‹C•@¡ƒ0©*0@¡ƒ,‹C•@¡ƒ/Åo@¡ƒ,‹C•@¡ƒ.±Ä2Ê@¡ƒ,‹C•@¡ƒ)á°‰ @¡ƒ,‹C•@¡ƒ*JŒM@£ mV@£ mV@£ mV@£ poiDg@£ mV@£ lcñA @£ mV@£ mjO@£ mV@£ lÌÌÌÍ@£ mV@£ l<žìÀ@5VšÔ,<Ÿ@5Wl‹C•‚@2k¥ãS÷Ï@2oùrGE9@1¤¼j~ùÛ@1¥Ö8†YK@1(è§æ›@1,PHð@1(è§æ›@1)b¶®~@1(è§æ›@1*³g ù -?1·†Æjñ?‘6 '8?‘D&»ä?$Ìj½BÙ?‘2A¥Ø?’Ýå"çX?}Ñ¿ž,?’ñ©ûçlŒ?ŽËÜ¿€?Ë{4æk?‘+ùÔ!½‹?‘«VTÓ?„ã¼ÓZ…‡?ŽõÕJ?ˆìûIè÷˜<(À?Hè&ã?&ÞõŒX;â@¬½½zºs>@¬»]Wý A?+b* Kª?5¦!«tÐ?Qñ±þ‡Zì?dy3Qò&L@Ÿs‹Š@ú@«ñ©ûçm@«ñ©ûçn@«ñ©ûçm@«òÖð'J@«ñ©ûçm@«ñÓíR~@«ñ©ûçm@«ò9ü½^@«ñ©ûçm@«ð¼Õ]T@«ñ©ûçm@«ðÂíM•@“qS÷ÎÙ@“qSt¼j@“qS÷ÎÙ@“qP¸#…Ø@“qS÷ÎÙ@“qR.üHÕ@“qS÷ÎÙ@“qTèz@“qS÷ÎÙ@“qRâL@“qS÷ÎÙ@“qS8ý ¥@2VšÔ,<Ÿ@2V€IQ‚@.³t¼j~ù@.³@¨¸ââ@-?;dZ¬@->¨ù˜¤@,Aò×t@,èÑQ®@,Aò×t@,æ1ø ‘@,Aò×t@,Ö5÷ Ñ?É^ÈmÔ d?Ã{TV½‹?‘Èþ× ?‹¬E[ÄØ?ì”:r§þ?µÿ ÎÜ?ÐbQë„›¦?’>pÞª|?„^<+ø?/#ͤ†Â?Ö“jø?P ±pà?€bîF¾§?Œ²/éýòÐ?‚yñìÏòø?‚ãD³Ð²î?†Œîa€?†‰~±.@@$@&@&@8@5?ð?ð?ð?ð?ð?ð¿FÁÆ@¿4ˆÛ2ô?-üO(?%|CËtñ@«ñXû>o@“qS©Šïè?;õ…T´©¬?4Vꇑœ?s8¯«$­&?b(»É @Ÿsötn@û@¦Ï\(õÃ@¦ûdZ¬@¦Ï\(õÃ@¦úŸ¾vÉ@¦Ï\(õÃ@¦?åÉ@¦Ï\(õÃ@¦3@N¤ª@¦Ï\(õÃ@¦ÇË)@¦Ï\(õÃ@¦qø -@®–vE¡ÊÁ@®–†fffg@®–vE¡ÊÁ@®–'ÕfÏB@®–vE¡ÊÁ@®–=—ö+k@®–vE¡ÊÁ@®–Ö¡aä@®–vE¡ÊÁ@®–CFÜ]d@®–vE¡ÊÁ@®•—$tT@9¹Œ~($@9"MÒñ©ü@5Š^5?|í@5eF -¦L/@4¹7KƧð@4’ÞÑ·@4O „M@4L˜_ö”@4O „M@4HõÂ\)@4O „M@4<¿±[W??îŠõ ?·Õ[ÿG£?¦ dW÷Bþ?Â+3ß#Iú?ºFILòXT?¹¢{ãJÂ?ÀÊ»d9\?Àʳ·Ûêy?¨Î×>ÀÉ?×áp:Y_?ÑB¿ú†­Ç?©¥váÛ$>?™Jz¬Uf?š/¶íê¯?˜Ð™Q$Ò?¢{_@j§?¢VÂÀ?–¨¬:­÷@@@@@@?ð?ð?ð?ð?ð?ð?’»ˆŠ/À¿«—3‚$ ?w³ âãG?…[n”d@¦/´3ƒô@®•ò¨1p¾?Ÿ?Ú ’t?¦X·kŠï?í=ç)Qð”?ðÃ1B¯@Ÿl}~¥¸@ü@¯"£S÷ÎÙ@¯"ºŸ¾vÉ@¯"£S÷ÎÙ@¯"£Yõ£<@¯"£S÷ÎÙ@¯"šRÒêÚ@¯"£S÷ÎÙ@¯"¡K p@¯"£S÷ÎÙ@¯"œdp<@¯"£S÷ÎÙ@¯"œ—O@–¥µ?|í‘@–¥ÊvàD{@–¥µ?|í‘@–¥ÓuxJ@–¥µ?|í‘@–¥Îg‡¿˜@–¥µ?|í‘@–¥Íà r@–¥µ?|í‘@–¥¾“òä@–¥µ?|í‘@–¥À“ t@8¨†YJôñ@8‹Õz9.@48r° Äœ@41,”ï@3V”@3˜“¾êŸ@2Œ¿±[W?@2‰‰ËþÊ@2Œ¿±[W?@2‹ö[s#2@2Œ¿±[W?@2‰ð&H|?|¬h2:“?•q»-u1?”ÈÄš\´?:±„@Zt?’æj³úÃ¥?’qPü?†…„â8 ?–À€/À?‘!dxD³?“|˜R2?’·—éÓù‘?’aØ5Ut¬?¼å†W)¶?•¬³´oëº?Ú«4›C?†7Ź œ?ŠGOe”?‰ÄÑ|=†@@$@$@*@5@5?ð?ð?ð?ð?ð?ð¿}½‚"¿QE²é?Q˜M?EbÀ'ê@¯"©zº˜@–¥Æxà†˜?r_ˆlxð ?eÀÅp5Ç?íO H; ¼?Î/`, ->@Ÿh):e…i@ý@«Hýp£× -@«I ®18c@«Hýp£× -@«HíÞÕ;@«Hýp£× -@«H×,—#<@«Hýp£× -@«IæÙ¦@«Hýp£× -@«I jyó^@«Hýp£× -@«I•¦od@•(E¡ÊÀƒ@•(@Âçó@•(E¡ÊÀƒ@•(r^z˜i@•(E¡ÊÀƒ@•(nY¦Ð@•(E¡ÊÀƒ@•(hò–¿Ê@•(E¡ÊÀƒ@•(sÙ2ç@•(E¡ÊÀƒ@•(„¼Ólº@7įO „M@7ÌZL"râ@3|í‘hr@3”ÊYp/Ä@3gKƧïž@3yF^˜`@2ÜÚQÎ@2¿óþDÿñ@2ÜÚQÎ@2½u,† ¨@2ÜÚQÎ@2õjÖÞM? Úïõ¥Ú?îÙ—êà˜?œýÜÁfk?˜ÃíþN?›SPǹ??š_ÅL¥ Q?œÆæXÆd?“Ç€S™k ? oTð?¤Ò]\}aŸ?¢‚$á¡?ŸÎ35MQS? Ópf?‘ Ï¿‰Á?””„ÝÌA??“¤Ê#‚»?¡è VÛ?˜oGÈGû,@@ @(@(@8@7?ð?ð?ð?ð?ð?ð?P¯/Ê?}:U‚DÀ?a«"FM³o?B|Ú„E@«I §r%Ö@•(kd«§f?}pý!g^?bOåT¤ÛB?áq4ÐË*?¢}7ʺg@Ÿl¾b\²@þ@§f|í‘h@§f}p£× -@§f|í‘h@§fu$Ý@§f|í‘h@§fiã½@§f|í‘h@§f„“t¼@§f|í‘h@§fl²•éâ@§f|í‘h@§fiDg8@¦GÝ/Ÿ¾@¦GÓ3334@¦GÝ/Ÿ¾@¦GЉ 'Q@¦GÝ/Ÿ¾@¦GÍV@¦GÝ/Ÿ¾@¦Gé“ àß@¦GÝ/Ÿ¾@¦Gý¿HÌ@¦GÝ/Ÿ¾@¦GäÂø7¶@8VšÔ,<Ÿ@8TÂø7´¢@4 Ä›¥ã@4GE8ï5@3]V”@3w»/ìVÖ@2Ç ù kº@2ÎùÛ"Ðæ@2Ç ù kº@2…ãS÷ÎÙ@2Ç ù kº@2Åo?Ÿ‹‘+-/Ü?™Æ‰©·?«HFÈCý?“gã_$ô?·fl®…?ÀLìTO˜?˜ž^ƒÿ*ˆ?’š'†­`í?VÇ·Þóï?•¯TÒV?ÀÒ›–Óv?Á¤?ŽâS[ÞDí?¬µöÂ};?°ærÂÏ?¤÷™ïy\,?—1©±Æ›n?—ã ËÄž@@@@@,@*?ð?ð?ð?ð?ð?ð?[÷¦£Ì?€ƒÞ 7€?d§V£?Xl&7O™@§fÅ!@¦Gã²cò?ybðsÁ¼?q;9SR…A?Ó¿ÏLh…;?ÀÝn­² 2@Ÿe€”NûH@ÿ@£½€@£½€A‰7L@£½€@£½-w1@£½€@£½€ƒn˜@£½€@£½†L/ƒ{@£½€@£½}Vlô@£½€@£½~i­BÄ@¡µLÌÌÌÍ@¡µK…¸R@¡µLÌÌÌÍ@¡µGÕfÏB@¡µLÌÌÌÍ@¡µL~($ @¡µLÌÌÌÍ@¡µJÀƒo@¡µLÌÌÌÍ@¡µEœàv@¡µLÌÌÌÍ@¡µBÞѸ@3àØDЩ@3ßò䎊r@0‡ÎÙ‡+@0…ÜÆ?@/mOß;dZ@/g ù kº@/oi@.üàuöý"@/oi@/Ä›¥ãT@/oi@/IQ‚ª?|öOÿÝ?“‹ë÷?’,³Zêª?—;±C??‘ÇöÃÞ`?‘ø)±'3?|öOÿÝ?–ÖÀeªw?‘S1Êz?¤µÜÆ@4Ùº^5?}@5#àGC¶@3¶§ï²-@3Þäu@0|ÚQÁ.„>¤µÜÆ@)Š~ùÛ"Ð@)Œæ …Î@(h1&éxÕ@(iAâpÞ\@(3üPH@(49ftE³@(3üPH@(4²ÀüSê@(3üPH@(36Í@8 -Näy?Ãw<5Û™?‘'D —ò?‹« -»w"?õL&VB?Ó{£y@82rê?’Ï|F ?„&ZÆ?8+œ¾ ?ç*Sk?+×n9u@8L?ŒÃ6vJ«?‚½èÔ -?‚ñØ€6>?†“’z^ýj?†º|‘ §@4@2@1@D@D€?ð?ð?ð?ð?ðøøøøøøøøøøøø@©ó–“u@©ó¡$Ý.@©ó–“u@©ó•¨Xy>@©ó–“u@©ó¢Ðå`B@©ó–“u@©óž\‘ÑO@©ó–“u@©ó—Á½¥@©ó–“u@©ó˜DШ@¢õfffff@¢õe`A‰7@¢õfffff@¢õt¢3œ@¢õfffff@¢õp Ä›¦@¢õfffff@¢õmà q@¢õfffff@¢õjOv@¢õfffff@¢õi“ àß@7uS&Á¾@7sä%®æ2@3Ù‡+@3a|ÚQ@1éÛ"Ðå`@1àoiDg8@1YŒ~($ @1Q ²•éâ@1YŒ~($ @1WsüPH@1YŒ~($ @1VÈ´9X?„F/·ÿP5?—µ”öŒqÒ?ñAaú[?–Ë„&³ƒ.?‘ÇöÃÞ`?“lP {“›?…ÅBðrç?˜&§dU(?»Þ‹"è?—×:`‰?“£c”?”µìSõüS?¢4£!– j?–®UÒ.?ƒíÈm½!¿?ˆÝíá‰?ˆ -¿„r©Ý?ˆk! ¨l@@@@@*@*?ð?ð?ð?ð?ð?ð¿_¼ª“Ä?RlÚ?9èéµEI?E[7õÓ÷@©óœˆ$N@¢õh…/:?Z>:­û–?fMÆv–ÿu?¶$—=/u?Ì *A&@ŸhzIW˜•@@Ÿ¼Ü(õÂ@Ÿ¼¹Û"Ðæ@Ÿ¼Ü(õÂÁ.„€@Ÿ¼Ü(õÂÁ.„€@Ÿ¼Ü(õÂÁ.„€@Ÿ¼Ü(õÂÁ.„€@Ÿ¼Ü(õÂÁ.„€@žÉJÀƒo@žÉ;çl‹D@žÉJÀƒoÁ.„€@žÉJÀƒoÁ.„€@žÉJÀƒoÁ.„€@žÉJÀƒoÁ.„€@žÉJÀƒoÁ.„€@6ÞHè§æ@6ì¹#¢œx@5° Ä›¦Á.„M‰ûçm@4$¼j~ùÛÁ.„QnÙ‡@4&YJôðØÁ.„NÜC,¥@4&YJôðØÁ.„NÜC,¥@4&YJôðØÁ.„NÜC,¥?æ ç«Z–@8#˜@8¾:@8 >+@8Iç@8Ù?æ ç«Z–@8Î÷@8i§@8Å@8S@8û—?æ¡‚á¾A@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@¥>å`A‰@¥>—­O Ù@¥>å`A‰Á.„€@¥>å`A‰Á.„€@¥>å`A‰Á.„€@¥>å`A‰Á.„€@¥>å`A‰Á.„€@œÌ\(õÃ@œÌÚ¬1@œÌ\(õÃÁ.„€@œÌ\(õÃÁ.„€@œÌ\(õÃÁ.„€@œÌ\(õÃÁ.„€@œÌ\(õÃÁ.„€@7£g ù l@7-FC¾ž@3^Ù‡+Á.„M‰ûçm@2t“t¼jÁ.„QnÙ‡@2a:’£SÁ.„NÜC,¥@2a:’£SÁ.„NÜC,¥@2a:’£SÁ.„NÜC,¥?Ÿ—Bp±È@8#˜@8¾:@8 >+@8Iç@8Ù?‘w×vHf@8Î÷@8i§@8Å@8S@8û—?¦ÍÌ-ˆ‹@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@­s3333@­w®i¤.@­s3333@­„ „.@­s3333@­rR*%ë@­s3333@­sª"¡¢@­s3333@­r5en@­s3333@­s^Þ×@’é~ùÛ"Ñ@’é²ïqm@’é~ùÛ"Ñ@’ég½ÖI|@’é~ùÛ"Ñ@’émM@$´@’é~ùÛ"Ñ@’éjÍÿ&ç@’é~ùÛ"Ñ@’é{ ,¤›@’é~ùÛ"Ñ@’és’Q@92ÃÉîËû@8ø eBwS@4n5?|í‘@4i1ѵ³Å@3V”@3¶Ch@2fYJôðØ@2a_wæžš@2fYJôðØ@2b_MKý@2fYJôðØ@2_Òòä?±ëg)nÖ”?f)Y™’?‘æ5ç–í?Œw)¸(;ž?‘È5t?‘]\Œ¤¡x?–…­à Ø—?’>í£™í?µ“‘ƒÅM?ic ù`?’ýR¦!ý?Ü=.AŒ?’GÌl´?‘£¥Çæ$?Š/÷)Rÿ?ƒ:|Ãä=·?оî5g‚@?‰o=)þ´@@"@@"@3@.?ð?ð?ð?ð?ð?ð¿A†Š`¿v7Ñ¡?5ðºR#•?lÒn|1ú@­sP—ÊD@’ézPWy‚?GHÚ1zÏ?‡×_fAÇ?ˆ«ªfò¦@ -£Vyv‰Ð@ŸpËR]Âõ@@¨Öë…¸R@¨Öë Iº@¨Öë…¸R@¨Öí5¨Xy@¨Öë…¸R@¨Öî_oÒ@¨Öë…¸R@¨Öî.±Ä3@¨Öë…¸R@¨Ö빌~(@¨Öë…¸R@¨Öéá°‰Ÿ@§£záG®@§£zŸ¾vÊ@§£záG®@§£}—ö+k@§£záG®@§£|¾ß¤@§£záG®@§£zu%G@§£záG®@§£{çl‹D@§£záG®@§£{À6ã@5í¥œàv@5íquŽ"@2›¥ãSø@2L˜_ö@1_²-V@1_¤?åÉ@0zÔ,<ží@0zôðØDÐ@0zÔ,<ží@0y0¾ í)@0zÔ,<ží@0xè§æ›?}Ñ¿ž,?Čۨ1A?‘Ëü²ü ?Œ:Z2‚b?‘ŠR%¨(0?ø·-/ge?|öOÿÝ?’j%ÓRa?‘S1Êz?Ñ·@ ¡(õÂ\Á.„€@8åöý!ÿ.Á.„>¤µÜÆ@4€ Ä›¥ã@4— ù k¹@3Õ`A‰7L@3ËC•%@3Œ~($ @3;˜Çâ‚A@3Œ~($ @3($ x@3Œ~($ Á.„NÜC,¥@8J¨?À»-•d?š®ìZ-­l?½":ãLi?g;+³ûu@8Ù@8J¨?Ê€˜+àŸ?«Òo¹÷?±ø³®°h³?¦ñ5ÜnM8@8û—@8p÷?ÊFŒQãá?¼ÝÒ—Q¿;?³©Èu}+?£¶â€B@8 Ø@@@@&?ð?ð?ð?ðøøøøøøøøøøøø @¡`A‰7L@¡`A‰7L@¡`A‰7L@¡aä÷eþ@¡`A‰7L@¡aÿ.Hé@¡`A‰7L@¡a [À@¡`A‰7L@¡`ëíúD@¡`A‰7L@¡f¸ºÇ@¢HOß;dZ@¢HO²-@¢HOß;dZ@¢HIûçl‹@¢HOß;dZ@¢HJ#9Àì@¢HOß;dZ@¢HEÉä@¢HOß;dZ@¢HM¸ºÇ@¢HOß;dZ@¢HM¸ºÇ@2” xFÜ@2”%®æ1ø@1&‡+ J@1$g8}¿@0Àå`A‰7@0¿ö”Ft@0p–»˜Çâ@0m¸ºÇÌ@0p–»˜Çâ@0l‘ÑN;Î@0p–»˜Çâ@0h´9Xc?É^žQ5P‚? ¸×KG?‘jh¨qã9?ŒÖ -Äȱ?‘|†³„¸?“¾§²~Î?ÐbV‡,?’Q_Ú¸FN?‘´"«Õa?‘Nw]6»ô?’˜£“µ~Ð?”F„t*•5?€‰Äƒ$æ?îŠõ ?ƒ>ZÌw?„•ˆG’Z¾?ˆÔÞÑ—æJ?ŽÜÂÎÛÖa@@@@@&@$?ð?ð?ð?ð?ð?ð?`3Sƒ?mŠw$—?Q×ÀsÍ?U‰KD@¡b‹»½"@¢HJ~­ž~?`Ñ_WÆÂ?d"À–±T?¸qi4ÉV?»ÛÛmc¡$@Ÿr ›îý1@ -@¦…?|í‘h@¦…?¾vÈ´@¦…?|í‘h@¦…=p£× -@¦…?|í‘h@¦…=¿HÍ@¦…?|í‘h@¦…=ó¶E¢@¦…?|í‘h@¦…BÐå`B@¦…?|í‘h@¦…Cn—Œ@¡eãS÷Ï@¡g+ J@¡eãS÷Ï@¡dŽŠqÞ@¡eãS÷Ï@¡i“ àà@¡eãS÷Ï@¡dµÜÆ?@¡eãS÷Ï@¡eðoiD@¡eãS÷Ï@¡hÁTɆ@5rÃÉîËû@5qò×s@3=‘hr° @3:îcŠ @2ñ‰7Kƨ@2îV“u@2Œ¿±[W?@2‡y¦µ @2Œ¿±[W?@2‡RT`ªe@2Œ¿±[W?@2‡_oÒó?|öOÿÝ?‘¡çL¤?–Èó^ù„?Ž˜ùš®E`?•bJÖµæÿ?‘f]£àG?|öOÿÝ?’V"y$R?“ - ½æD/?’ü#q\-v?™x9ÿ¥l?äqÅYÈ?‚˜YªüÏE?iT£C~t?Š[¦Råb?„l¯¸‰ŒÎ?‹ú èNÆö?‹DVóö@@@@@,@ ?ð?ð?ð?ð?ð?ð??·ß?sºÊ?>îObQ¹?8à‹Alê-@¦…@zxŠ@¡gkŒþ?^~ða€7“?YK×w‚Q?Æ¡t¼"€?»û‰Y°`m@Ÿf±àޝ@ @¢Sã× -=qÁ.„€@¢Sã× -=q@¢Sñ{+ù @¢Sã× -=q@¢T=ަÝó@¢Sã× -=q@¢T®¡µT@¢Sã× -=q@¢SýÝPí1@¢Sã× -=q@¢TFó©Ü@˜Ÿ9XbNÁ.„€@˜Ÿ9XbN@˜žäiuÁ*@˜Ÿ9XbN@˜Ÿð„¡E@˜Ÿ9XbN@˜ž±ÕŽÿ@˜Ÿ9XbN@˜ž·% Í—@˜Ÿ9XbN@˜ŸÃeN@8ãg ù lÁ.„>¤µÜÆ@4R Iº^5@4GOÿŒÄ@3@å`A‰7@2ûh,åÕ@2uµsê³h@29r€¼@2uµsê³h@2]çGˆÒÛ@2uµsê³h@2U‹‚¡¡@8J¨?•é³M¼è?°*õZó»×?¦†qB_?¡õi L%?¨8éPßA@8J¨?’“{¾ åó?¦’z1V?²àÉѽ”?¡•˜•«ÜG?™å ?X‹@8p÷?–šNz…´?©spæß?¤Höð?–Ógç< -I?šB¦À«’@$@&@,@;@9?ð?ð?ð?ð?ðøøøøøøøøøøøø @¡èr° Å@¡é7Kƨ@¡èr° Å@¡æê$G+@¡èr° Å@¡çëv± @¡èr° Å@¡æÄ*¹u@¡èr° Å@¡æÅ$#@¡èr° Å@¡æú`<ð@¦W -=p¤@¦Xº" 6@¦W -=p¤@¦X )”.@¦W -=p¤@¦S'£`<@¦W -=p¤@¦XÇøâæ@¦W -=p¤@¦W| ÿ@¦W -=p¤@¦WV;ŽP@5£g ù l@5¢ÆÌ:ÖK@2”›¥ãSø@2•òRe;—@2“t¼@2 K…4@1xDЩ*@1xƒ…zzI@1xDЩ*@1{@‡ìÅ@1xDЩ*@1zxRW×ã?}õ¬#„­?¾¢ Hù?‘˜Š­ú?‹¯ïIA½?‘‡Q¤ð\?‘¾YD=¤"?€Z=ú‚¡?’×Ô"f?“ó~í?Q—¸ï[$?‘a]6˜ß?‘‚•ôë ƒ?†/ó€‡pÍ?F‚½fÅ?„¼ÃÕ$Â?‹të?+;b?‡‹œ?–?ˆgœÕÿ@@"@ @"@5@4?ð?ð?ð?ð?ð?ð¿Cx(¿0ér ?%M#Ú‹?}}©itŽ@¡çÑÈ}g@¦X8ƒ!?DàL,¤£·?;Ëüsô$¢?•î pL¦?+ö. @Ÿg@Աݘ@ @®K›¥ãT@®K ªw@®K›¥ãT@®J;"Ðå`@®K›¥ãT@®JÇ_oÒ @®K›¥ãT@®Jо í)@®K›¥ãT@®KTÉ…ï@®K›¥ãTÁ.„€@0 Ä›¦@I·zo@0 Ä›¦@À@0 Ä›¦@9 k¹‹@0 Ä›¦@cñA \@0 Ä›¦@Ãa@N@0 Ä›¦Á.„€@8àØDЩ@8ÚMÐàK@3õãS÷ÎÙ@3—†Â&€@2Ͳ-V@2“Ãa@N@2ž«6z‘@2;ŸU›=@2ž«6z‘@2WæšÔ,@2ž«6z‘Á.„NÜC,¥?°¿:úç?»ÁÏ"-f?Ãàæ€¯8S?ÎÁzêù]œ?ÃÜí±&Z†@8Ù?­-a(Ê^?Ì‹è0‘ì?ÃøâhK?ÖCRn™?R?ѶÝ×=(H@8û—?ÆbåµÒÈ?§Y+®„£:?™Jz¬Uf?¦êÉŠYÏ?¤MÏ}td@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø@­k=ó¶E¢@­k2ñ©ûè@­k=ó¶E¢@­kBh Ô•@­k=ó¶E¢@­kD÷eý‹@­k=ó¶E¢@­k@'RTa@­k=ó¶E¢@­k?b¶®}@­k=ó¶E¢@­k>žš@¢ Òñ©ûç@¢ ¼í‘ht@¢ Òñ©ûç@¢ Ñhr°!@¢ Òñ©ûç@¢ ÑÎ_@¢ Òñ©ûç@¢ Ò×s@¢ Òñ©ûç@¢ о í)@¢ Òñ©ûç@¢ Ò×s@8 ØDЩ@8šJŒL˜@2¦‡+ J@2£@N¤¨Á@2F“t¼@2B×sü@0Ì¿±[W?@0Ëšu%@0Ì¿±[W?@0ÊçÕfÏB@0Ì¿±[W?@0˵sê´?„F/·ÿP5?4ë©$è‰?˜g± ÓË?‹¬àÌ’Ç?‘§›ßÉîj?‘)]•\¬?µ”Zm?’ ,øÕC©?”_й@’?0ÜN :s?‘C å;Ã?·t¤¢‚K?Æà„ž2m?’®ã‘\’? t€4Ã?†ÞåØÜÓ?‡´*žZ}Õ?†ÃÛSPã@@@@@(@(?ð?ð?ð?ð?ð?ð?gŒ¸Ö?K…Üôþ?P@¸>»?X}‘Ti|e@­k>jÉÛ@¢ Ñ)ÔR×?s|£ñÀ?iÑ«“û„?äÛ;(áõ?ËMøã×@Ÿq/}ÁS„@@¢Øæffff@¢ØÕ?|í‘@¢Øæffff@¢Øß¾vÈ´@¢Øæffff@¢Ø¼¾ß¤@¢Øæffff@¢ØÔ¯O „@¢Øæffff@¢Ùí‘hs@¢Øæffff@¢Ù\(õÃ@¢½0 Ä›¦@¢½(r° Æ@¢½0 Ä›¦@¢¼ŽV“@¢½0 Ä›¦@¢¼«ŸU›@¢½0 Ä›¦@¢½'l‹C–@¢½0 Ä›¦@¢½\PHð@¢½0 Ä›¦@¢½Y‡+@904mÅÖ8@9+"Ðå`A@4®5?|í‘@4ƒ©*0U2@4,j~ùÛ#@3Öð¸»@3œàu÷@2çy¦µ @3œàu÷@2úŒL˜_@3œàu÷@2ú–»™?»ö#°€Ô[?£-Ÿ56æ+?´+¤Ùž-?«u {NÉ?·çó¿©/?¦£@óiÖ?§Ò¸ùBz3?”ŸÚ²t©?ÕÃäj1À»?£µ@$v5¬?±‚[ñçc?®e•…,Z?•ýÿLîO?¨ ‰‹U)?·|p–&?¡Ê2ñHÆD?«v³Û‹7?°_;‘èG@@@@@,@&?ð?ð?ð?ð?ð?ð?‘d»`› ?„~껤?€FRyߦ¥?y;Ħ@1}@¢Øî¦ b¦@¢½=lË[?™‚×÷…A?–òãÖF6?òWáš??÷c @Æé@Ÿn -gE@@¬»;çl‹D@¬»;çl‹E@¬»;çl‹DÁ.„€@¬»;çl‹DÁ.„€@¬»;çl‹DÁ.„€@¬»;çl‹D@¬»;dZ¬@¬»;çl‹D@¬»8Ôýó¶@¯¢Ðå`B@¯£•&@¯¢Ðå`BÁ.„€@¯¢Ðå`BÁ.„€@¯¢Ðå`BÁ.„€@¯¢Ðå`B@¯£× -=q@¯¢Ðå`B@¯Ÿ;dZ@5kµsê´@5j³g ù -@0ÞÙ‡+Á.„M‰ûçm@0>V“uÁ.„QnÙ‡@/”`ªdÂùÁ.„NÜC,¥@/”`ªdÂù@/“MjP@/”`ªdÂù@/“×Ûôˆ?}Ñ¿ž,@8#˜@8¾:@8 >+?ðŽºJ+½?ð‹Ið˜ ?|öOÿÝ@8Î÷@8i§@8Å?ðÅìq?ð„‰p„Ã?ƒ<Õp@8 * @8p÷@8¶?ð?oÚ•¼?ð?oÚ•¼@?ð?ð?ð?ð?ðøøøøøøøøøøøø@©9[¥ãSø@©9mV@©9[¥ãSø@©9RÊW§ˆ@©9[¥ãSø@©9_U›= @©9[¥ãSø@©9VÕϪÎ@©9[¥ãSø@©9R-V@©9[¥ãSø@©9TÖ¡aæ@ l‰7KÇ@ l|í‘hs@ l‰7KÇ@ lˆXy=Ù@ l‰7KÇ@ lŠ™0¾@ l‰7KÇ@ l‘Þi­C@ l‰7KÇ@ l‹ŸU›=@ l‰7KÇ@ lŽcŠ @8#g ù l@8)Q‚©“ @3xr° Äœ@3ncŠ @2;Ƨï²@24Ö¡aäø@1³&Á½¥@1«µsê³@1³&Á½¥@1ª™0¾ í@1³&Á½¥@1ªW§†Â'?ð°–Ž]?‘‘Ç`[?—¯}_ƒÜ»?‘sNX„êÒ?›ÿËRÈ?˜ñ<óâg…?ð°–Ž]?“oÆ †ä?œlôU °?¢€ÝÅp?Ÿ Î;g¶?˜¿Df©v=?ð*wjs—?iT£C~t?Š[¦Råb?‡9 ƒ–’”?Ž .0åv?Œ8¸wx¯?ð@@@@*@(?ð?ð?ð?ð?ð?ð¿SµUiÔ¿RöAâ?PŽonŽ_¦?YˆÁïH‚@©9Tí}0¿@ lŽ›°Ñö?`ýC‚.—Î?gw ºü«6z@®û&éxÔþ@®û±[W?@¤bŠ=p£×@¤b²-V@¤bŠ=p£×@¤brT`ªe@¤bŠ=p£×@¤c)ùrG@¤bŠ=p£×@¤bðò{²ÿ@¤bŠ=p£×@¤bÚ6âë@¤bŠ=p£×@¤bï²-@8¿–»˜È@8¸ð¸@5™º^5?}@5nÑ·Y@5@å`A‰7@4õ2a|Ú@4Ç ù kº@4~V“u@4Ç ù kº@4ƒ÷ÎÙˆ@4Ç ù kº@4ŠJŒL˜?«_$Øï†?¾95€\?Ù’7IDu?»{osG'Ý?´(Ôx±/È?°¨¸ß%$Š?¦Ï±úQm‡?»G¾Z?ÐÂä­â²[?»‰~'zã?»V,À™Ò?»ðªÝû?´Ö‘ì—±š?¥ð¡T³÷ñ?³"i]äPö?´!èÄÌi?®†ø.ìP´?¿ª'wÊ#T@@@@@*@,?ð?ð?ð?ð?ð?ð?JT¿IH?’3AœÁ ?iÞPÞ@8„?sŸ¬d„3@®ûpc B@¤bÊ5‚È|?‹vÑ»pn?”Uz¶Ž$?Ó-´bÃÖT?݇¾¿˜1@Ÿh€Àäd@@¦¸QìÁ.„€@¦¸Qì@¦oi@¦¸Qì@¦&€I@¦¸Qì@¦Ü]cˆ@¦¸Qì@¦þÑ·@¦¸Qì@¦ùÀëíù@¨¸5?|í‘Á.„€@¨¸5?|í‘@¨¸7eýŠÛ@¨¸5?|í‘@¨¸3Ð|„¶@¨¸5?|í‘@¨¸3g ù -@¨¸5?|í‘@¨¸1ÑN;Í@¨¸5?|í‘@¨¸+]Ìcð@4m¥œàvÁ.„>¤µÜÆ@2+¥ãS÷Ï@2(­«ŸU›@1Õ`A‰7L@1ÓMjP@1ž«6z‘@1”M:’£@1ž«6z‘@1“MjP@1ž«6z‘@1’½<64@8J¨?ôÊ_?‘ojVrn@8·â‚@·€@8§škP°ò@2Ê^5?|í@2Ê…‡“ݘ@2H“t¼j@2GË)^ž@1¡:’£S@1ž«6z‘@1¡:’£S@1 [À6ã@1¡:’£S@1 -à r?¦Ï±úQm‡?‘ ·èe?’¿êvG¨½?Wø0 ¥?’»–j˜ú?’ Ù–¥£?ÅèWl ª?“áêqú ?“v@á¿bî?’‘Ç#·X?’ºñS©YÖ?‘pN.>7E?›Ny”…?ŒÛÏ·+?ƒÆ×q„nð?ƒý¥ñÍú?‡ø¢:›¸1?‹DVóö@@@@@*@(?ð?ð?ð?ð?ð?ð?Iþ'!T?DcYC€?:ñ(YΜå?F’sÕ3Ö@¨Ñî¸@®'ʉEaü?PëWwˆ?U’Ç"/îK?–x¥»0ƒ^? nYh\@ŸryQ€f¡@@¥>¥`A‰7@¥>Ÿ;dZ@¥>¥`A‰7@¥>§æšÔ@¥>¥`A‰7@¥>¬1&è@¥>¥`A‰7@¥>£,¥zx@¥>¥`A‰7@¥>Œ"h Õ@¥>¥`A‰7@¥>£n.±Ä@¬}–“u@¬}]/Ÿ¾@¬}–“u@¬}dÝ/ @¬}–“u@¬}Iº^5?@¬}–“u@¬}Ø­«ž@¬}–“u@¬}‡¯·é@¬}–“u@¬}‘Þi­C@8­¥œàv@8jOv@4…?|í‘h@4]ÈK]Ì@4Ðå`A‰@4Ä›¥ãT@2øDЩ*@2øFÜ]d@2øDЩ*@2è´9Xb@2øDЩ*@2áœàuöý?ð°–Ž]?¥'’òrCr?šQ"Äš%?‘´CF õ?–ç=ìW·¹?œáif¢?ð°–Ž]?Ÿ#ïÀŸª¸?–^ÿ,¶›?”A8 Kú¿?”*v7¹¿?˜æØ.ô?ð*wjs—?žåÌÆöj?§òÄ U¸?ùïJÓ?‘  ¶‚3?˜ÒF€§ç?ð@@@@"@$?ð?ð?ð?ð?ð?ð¿o\3{?~»'ôX€?Â|/ð“{?Rø4Áž@¥>›z©ÊK@¬}†æzA?HÍä¶ù?`p%÷00@TVŽÌ?¬#¶P”††@ŸrÊdì¹s@@¢Ò-‘hr°@¢Ôè1&éy@¢Ò-‘hr°@¢Ô.±Ä2Ê@¢Ò-‘hr°@¢Ôö+jè@¢Ò-‘hr°@¢Ô (Œç@¢Ò-‘hr°@¢Ôca@P@¢Ò-‘hr°@¢Ô¯ „M@¤3Oß;dZ@¤14ýó¶F@¤3Oß;dZ@¤1@2ò䎊r@1 -=p£× @2ò䎊r@1zxl"h@2ò䎊r@1YJôðØ?’Óusÿ\Ã?¹_ã÷×n?À…Ýøn±‘?¢Ö -ƒ«Y?Áû -úR?ÇŠÏáH!»?„F/·ÿP5?®½Ah:«?¬6¦eI…?££c“ÿ?º…ðöù~?Æc¨/~?†' -³}÷B?”É…ðoiE?Цÿßë?¤?‹h¢íc„„?˜F†éôâß?’;WZŸÿÔ@@@@@&@*?ð?ð?ð?ð?ð?𿱟‰¤^¿ŒþÐU?”cvù¦oÀ?t«YçFDy@¢Ô¬™¢Q@¤1#qbzV?ªƒ¢O¬o?‰–fa@0ÆÝÖ?õ'^X¹ªx@Ÿ_s´™5@@¡pTýó¶F@¡pTzáG®@¡pTýó¶FÁ.„€@¡pTýó¶FÁ.„€@¡pTýó¶FÁ.„€@¡pTýó¶FÁ.„€@¡pTýó¶FÁ.„€@š›²-V@š›¬1'@š›²-VÁ.„€@š›²-VÁ.„€@š›²-VÁ.„€@š›²-VÁ.„€@š›²-VÁ.„€@5Bò䎊@5B•éá°Š@2Yº^5?}Á.„M‰ûçm@2`A‰7LÁ.„QnÙ‡@1!:’£SÁ.„NÜC,¥@1!:’£SÁ.„NÜC,¥@1!:’£SÁ.„NÜC,¥?}@T˜ÁÎ¥@8#˜@8¾:@8 >+@8Iç@8Ù?„`™ˆ/.~@8Î÷@8i§@8Å@8S@8û—?ƒVÆè3äæ@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@«x~ùÛ"Ñ@«x;dZ@«x~ùÛ"Ñ@«x€@«x~ùÛ"Ñ@«x¾vÈ´@«x~ùÛ"Ñ@«x€'RT`@«x~ùÛ"Ñ@«x~¸Që…@«x~ùÛ"Ñ@«x}¿HÌ@®Ú¯Ÿ¾w@®Ú¯\(õÄ@®Ú¯Ÿ¾w@®Ú¯ß;dZ@®Ú¯Ÿ¾w@®Ú¯Ÿ¾v@®Ú¯Ÿ¾w@®Ú¯Ån@®Ú¯Ÿ¾w@®Ú¯Ÿ¾w@®Ú¯Ÿ¾w@®Ú®—Oß@3*0U2b@3Dg8~@.ðå`A‰7@.ðò{²þÅ@.:¬1'@.:–»™@-£¼ÓZ…ˆ@-£•$ß@-£¼ÓZ…ˆ@-£S&Â@-£¼ÓZ…ˆ@-£FÜ]c‰?|öOÿÝ?¾¢`ƒ?‘(¥¿á?‹¬àÌ’Ç?ùª¨?¾ƒìÈÁ?|öOÿÝ?’ aÒ¹zï?ˆ9²0?0ÜN :s?ÔÒ@úˆ‘?PS2K¯™?‚2Y0â³?Œ¬8 T£?‚|׿pZ?‚ìxqC?†½ª»—?†žóB» “@@@@@@?ð?ð?ð?ð?ð?ð¿$…`¿fY?€?,'–kÊÿÎ?:­é<Â@«x פÏ@®Ú¯6Öm$?L‹¾O?8´`kf’l?¥UÎG±?Ç› -vZ¨@Ÿg›~`q@@¡ÅÄ›¥ãT@¡Åϲ-@¡ÅÄ›¥ãT@¡ÅÅýŠÚº@¡ÅÄ›¥ãT@¡ÅÉ^ž @¡ÅÄ›¥ãT@¡ÅÅãS÷Ï@¡ÅÄ›¥ãT@¡ÅÆéxÔþ@¡ÅÄ›¥ãT@¡Åǯ·é@§¡bMÒò@§¡ …¸S@§¡bMÒò@§¡ Ô•@§¡bMÒò@§¡÷eý‹@§¡bMÒò@§¡ð@§¡bMÒò@§¡“t½@§¡bMÒò@§¡§æ›@8Î쿱[W@8à@4|í‘hr@4 -ŒL˜_@3iÛ"Ðå`@3dÝ/Ÿ¾@2a:’£S@2_.Hè§@2a:’£S@2^i­BÃÊ@2a:’£S@2\ÓZ…‡”?1·†Æjñ?”žP1²"?‘ÓKñá»Ù?ç\Š2˜?”‰Wïÿ·?‘É=¦þï?¸bÌk0ÀÕ?–gÝ3ýø’?üÓqÔN‰?–á~ÿ2lÎ?–Â4¨ß?‘ß…D̽}?Á£=É6„?àìÚJ>?›âCp0x¨?‰*6SpK?mŽÃÎŽ?•™ï ufÝ@@@@@(@"?ð?ð?ð?ð?ð?ð¿aN>Ì? c`?CÅ™6py?Uæ6’ö @¡ÅǼ¯à@@§¡Eã–”?l-LYdFy?h€¨cE{­?ÑK/~/úD?½C½ÔiÖî@Ÿq³&žuˆ@@®a›"Ðå`@®a¨mâ¥?ÄêÈ\?Œßô™ 8+?¥ˆÒ¯ó•?šÅÌÄŠ\ì?­±\Æ¥¾0?­VA®o?Ñ3ŠE“b?»2Dò– B?¡"ÒIHÛœ?˜`1âfß?¡?Zá,kï? ¦å_¹?³€L=@@@@@,@*?ð?ð?ð?ð?ð?ð¿” -ÐăÀ?}ë »ï@?eNØÜ?l„Ðw>v¨@®aŽõ!€&@œ›ŸgN5?~Š£üéý?ƒŸ›íüô˜?Ï%¨b” ‡?âÿ¿ÞL`@Ÿ_üBH@@¯AËÆ§ïž@¯AÌIº^5@¯AËÆ§ïž@¯AdžÂ&@¯AËÆ§ïž@¯AÎÙ‡+@¯AËÆ§ïž@¯AÁ@N¥@¯AËÆ§ïž@¯AÅm\ú­@¯AËÆ§ïž@¯A‚@·@©Hu?|í‘@©Hr° Ä@©Hu?|í‘@©H€Ä›¥ã@©Hu?|í‘@©Hp Ä›¥@©Hu?|í‘@©Hs@N¤©@©Hu?|í‘@©Hr×sý@©Hu?|í‘@©Hp¾ í)@6‘|ÚQ@6’a|ÚQ@4R Iº^5@4MÙb¶®@4;Ƨï²@47Ûô‡ü¹@3‚‚@·€5@3}à qv@3‚‚@·€5@3|žì¿±\@3‚‚@·€5@3{xFÜ^?Œs¤DÅÐ?”ŸÍFÒ?“IK¹É?•GÝóuS—?™póK ?t]·™O>?}Ñ¿ž,?”á¾Õ·L?‘Jâ”âj?œ’åæ™ø?—c÷Ò,*Ý?#°‘N˜?ƒ!A -mº¸?‘Žèã&!+?•@K/Ù{?–uq{™a?—»¢Øˆ‹? ¦å_¹@@@@@&@,?ð?ð?ð?ð?ð?ð¿aùÿæð¿" Ó4ð?NõzÖëT7?(Œ¸ýlój@¯AÆÇ(@@@@@(@ ?ð?ð?ð?ð?ð?ð¿J˜Õy’¿.ÙµYÐ?0“á%Žf©?Ó@Ó@©oÌìžå¹@ªÙ¶åVH??âçÄÍ“.?µ…³6?yµ¶o—?!ÕŸû@ŸsøØË»@@¬2«6z@0ýcˆe”°@0úçÕfÏB?|öOÿÝ?qÂ' -B›?‘ê ÷“'?‹û…†_?‘ƒZ)Àˆ?’ŒZzˆZ”?1·†Æjñ?’[ KÄ0R?’]:»›.ó?‡@Cvì×?“[HÎÃ3?—é aÀ‹å?‚yî8Á#?ŒÆò/¢äÍ?‚íWçé…?…®×__C?‡”_Õ­çW?‘˜M\ÿŠ@@@@@,@,?ð?ð?ð?ð?ð?ð?)ßO ¿ óÛ7€?(+pZXNƒ?BZî@¡ò&éxÔþ@¡ò(Û‹¬q@¡ò&éxÔþ@¡ò*ŒL˜@¡ò&éxÔþ@¡ò(e”¯O@¡ò&éxÔþ@¡ò)…ðoi@ª›Që…¸@ª›Që…¸@ª›Që…¸@ª›RÊW§‡@ª›Që…¸@ª›SÐ|„¶@ª›Që…¸@ª›QÅ‚@ª›Që…¸@ª›R£S'@ª›Që…¸@ª›TÉ…ðo@2™*0U2b@2™ã¼Ô@1 Ä›¥ã@0þ}Vlô@0•`A‰7L@0“¼ÓZ…ˆ@0 ù kº@0fÏAò@0 ù kº@0œàu÷@0 ù kº@0%F -¦L?É^³Dw'?qÂ' -B›?‘1f_¨Ï÷?Œ‚èõЊ?’ðä¼_?’£sðU Z?ÐbMçê_x?“ -x”ÕŽ?–ÐO(·Š?Ä…à6 -æ?‘1…šá?ÝÒ¥X[?€bMÕky?ŒÖ -ÄȲ?„³3Z\ð…?ƒ¦$H?‡2[síç?Š—à `ž@@@@@,@,?ð?ð?ð?ð?ð?ð¿Ba¡Ì?Víu—?A"ÎÒ1¥‘?2€>¤ß™@¡ò)L´V@ª›RПÁ"?PlÄ%ÁUè?A€ùªIÏ?—IÞ|šÿ›?y,ÿwå2æ@ŸráFwû^@"@¥ Ä›¥ã@¥ %à ¡”@¥ Ä›¥ã@¥ #‚N[z@¥ Ä›¥ã@¥ !à– @¥ Ä›¥ã@¥ jzO@¥ Ä›¥ã@¥ š´@¥ Ä›¥ã@¥ *(™*@“­E¡ÊÀƒ@“­/Ÿ½@“­E¡ÊÀƒ@“­49Õc¿@“­E¡ÊÀƒ@“­.\2@“­E¡ÊÀƒ@“­5î V@“­E¡ÊÀƒ@“­¶¸× @“­E¡ÊÀƒ@“­gxk>@87â‚@·€@8(׺[6@4º^5?}@4‘ô^ œ@3Z~ùÛ"Ñ@3^³ l?Ú@2¡:’£S@2£,i©ò:@2¡:’£S@2ß­Y}O@2¡:’£S@2šÁå?Ï€×>²„?8 ˆ×?“…e•àT3?’ŠÃx¬?•4¦ õ±¦?“´ Q–Àx?¡ÍÜ -Ü?’Mñ6M^?›~P„230?”ÛA¾×iâ?•]³V“–µ?‘Áukã½Å?ªºT•?’¼%¿÷ø?š†Vï}*? -g’éH?;1ÌßÔÎ?Œb.xt@@"@&@"@7@1?ð?ð?ð?ð?ð?ð¿e–‚Gú¿i2ƒf?\”.bÊL|?h)®öˆa@¥ Ø–÷ä@“­’}¤?uÈÈ5½õ?‚EíûÙ*?ెÀÌ?õ|#”±çI@Ÿnó½Ü>³@#@ª¡B Iº^@ª¡@ƒn™@ª¡B Iº^@ª¡Aÿ.Hé@ª¡B Iº^@ª¡Aä÷eý@ª¡B Iº^@ª¡A‰7KÇ@ª¡B Iº^@ª¡@ÞÒˆÎ@ª¡B Iº^@ª¡@IQƒ@¦F®záH@¦F®V“@¦F®záH@¦F°©*0@¦F®záH@¦F¬¿±[W@¦F®záH@¦F¯ìVÕÐ@¦F®záH@¦F®æ1ø¡@¦F®záH@¦F±uŽ!–@5–»˜È@5€£× -=p@2Œí‘hr°@2Ž«6z@24“t¼j@26ý!ÿ.I@1…œàu÷@1‡»/ìVÖ@1…œàu÷@1†µ '»@1…œàu÷@1‡KƧïž?€‚ñêã ?µ‡:úÎ ?’‹»Ùï§?Œä%—ëš?‘·Xâe?‘À?ÙÂ#’?1·†Æjñ?”¤P ƒË?‘;¨™,?iêhAÜ?‘x9ξÞO?“IëH!w?ˆAᆽÃì?=d­úå?ƒ]€µ,Vß?„ìsMQ(Œ?‡Ä­‹›Ü?‡´*žZ}Õ@@@@@,@*?ð?ð?ð?ð?ð?ð?ÆÑÝ@?=©x? §ú3Ä?*oë5–yU@ª¡@ÒK@¦F¯T¦@?@p´~î×?J+áµt?‰jö“à »?Ÿ8;(›@Ÿg2nÂr@$@¥u Ä›¥ã@¥u|í‘h@¥u Ä›¥ã@¥u*™1@¥u Ä›¥ã@¥u :’£@¥u Ä›¥ã@¥u+jçÕ@¥u Ä›¥ã@¥u"ÞÑ·@¥u Ä›¥ãÁ.„€@¬6È´9X@¬0å`Aˆ@¬6È´9X@¬/ìVÕÐ@¬6È´9X@¬A£n.±@¬6È´9X@¬:6âë@¬6È´9X@¬ES&Ã@¬6È´9XÁ.„€@8·â‚@·€@8¤êJŒ@3ë¥ãS÷Ï@3ï;dZ¬@3Ãt¼j~ú@3ÍBÃÉîÌ@2¡:’£S@2¨>BZîc@2¡:’£S@25¨Xy>@2¡:’£SÁ.„NÜC,¥?¦NIÉ®š?™öä+†>?¡ü|v8?ŽVåç0ÇO?œ’=Šæ-?@8Ù?гá‡}?––ïFHÇN?§¿Ÿ.ój ?’GÎ>GÅ?™På½Zj@8û—?§òÄ U¸?˜ÔÞÑ—æJ?ª¹0ÇåÄ?…bv{3dZ?•@¼Cк@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø%@°±&éxÕÁ.„€@°±&éxÕ@°¬wškQ@°±&éxÕ@°°4mÅÖ@°±&éxÕ@°·Á½¥@°±&éxÕ@°¨Ë’:@°±&éxÕÁ.„€@©®§l‹C–Á.„€@©®§l‹C–@©®jO@©®§l‹C–@©®w1Å@©®§l‹C–@©®¢œwšj@©®§l‹C–@©®»J#9Á@©®§l‹C–Á.„€@9+µsê´Á.„>¤µÜÆ@4Yº^5?}@4F§ï²-@3´“t¼j@3§RT`ªe@2èè§æ›@2Ý!ÿ.Hé@2èè§æ›@2å%F -¦M@2èè§æ›Á.„NÜC,¥@8J¨?œ½Øu4Þ•? ñ`žM:?ÿ¾Øï?¢WÃTþi@8Ù@8J¨?»ÜråAо? PÇ´âþ?°!žôŸ“?«Å0ì7á\@8û—@8p÷?¸:h$â^z?«^i•?¨ üB?Âyˆ ‘^@8 Ø@@@@(?ð?ð?ð?ðøøøøøøøøøøøø&@¦Ä¹XbN@¦ÄÂÐå`B@¦Ä¹XbN@¦ÄÜ‘ÑN<@¦Ä¹XbN@¦Ä¿!-w2@¦Ä¹XbN@¦ÄÕ%@¦Ä¹XbN@¦ÄÔýó¶F@¦Ä¹XbN@¦ÄÍÅÖ8†@¡÷®záH@¡÷¶“u@¡÷®záH@¡÷³Ð|„¶@¡÷®záH@¡÷µL˜_@¡÷®záH@¡÷µÂ\)@¡÷®záH@¡÷œ„µÜÆ@¡÷®záH@¡÷ [À7@7%öý!ÿ.@7æšÔ,@4 í‘hr°@4å`A‰7@3'KƧïž@3/O „M@2œÚQÎ@2¢T`ªdÃ@2œÚQÎ@2ˆÁTÉ…ñ@2œÚQÎ@2„,<žìÀ?”¼íÒh??’ÕOäª9ô?—¿ÔÌÆ?‘Ä{Oç¿`?g;+³ûu?š{>üFV?”¼íÒh??˜Ø*ªl€ô?˜lñèí« ?’"Š6›Wz?£áêqú ?š)ÑS&³?¶Ì^²û¨?œŠL E®?†¼Š˜L¥ø?ŽÔ¾ç?’ymícw\?Ò0aˆ‡‡@@@@@(@"?ð?ð?ð?ð?ð?ð?fd¿qÆ,wa€?^D¤Oò?dÕ9TÙQ9@¦ÄÈ)8@¡÷®k±b?zM¾ñM™?‚£×{Å0À?æYõk—„c?ôX|šGˆ@ŸjƒD08m@'@©ð¾ùÛ"Ñ@©ðª~ùÛ#@©ð¾ùÛ"Ñ@©òè§ç@©ð¾ùÛ"Ñ@©òxºÇÊ@©ð¾ùÛ"Ñ@©òÄ÷eý‹@©ð¾ùÛ"ÑÁ.„€@©ð¾ùÛ"Ñ@©ò&1ø ‘@ "Ðå`@ bMÒò@ "Ðå`@ ‚}<64@ "Ðå`@ ‚}¿HÌ@ "Ðå`@ ‚m5¨Xy@ "Ðå`Á.„€@ "Ðå`@ ‚¿åÉ@4#g ù l@4 ÞÑ·@1©‡+ @1$êJŒ@1ï²-@0•Ö8†YK@0ÔmÅÖ8†@0=!ÿ.Hé@0ÔmÅÖ8†Á.„NÜC,¥@0ÔmÅÖ8†@09³Ð|„¶?ð°–Ž]?à?`ëLµù?Ë.‹´®Ñ?ÑL_jf@8Iç?Úé¼,Ï–?ð°–Ž]?רðO?2¨?ÏV–fËN¶?Ö µ'@8S?àöäÿTöD?ð*wjs—?¥²»UbB2?° ё٤i?´p¥¼O+@8 Ø?¼ïõÀq2?ð@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøø(@§´r-V@§´2ñ©ûç@§´r-V@§´ž«6z@§´r-V@§´Z…‡”@§´r-V@§´T¢3œ@§´r-V@§³âe+Ô@§´r-V@§´³Ð|„@­E…¡ÊÀƒ@­E‘©ûçm@­E…¡ÊÀƒ@­ExÔýó¶@­E…¡ÊÀƒ@­G¼£n@­E…¡ÊÀƒ@­Fë…¸@­E…¡ÊÀƒ@­EëàÞÒ‰@­E…¡ÊÀƒ@­G&Á½¥@9N쿱[W@9P·€4mÆ@5f‡+ J@5µsê³h@5“t¼@4Ý¿HË’@4p–»˜Çã@42ëC,¦@4p–»˜Çã@4ö8†YJõ@4p–»˜Çã@3™ã¼Ô?Ú¿˜zêï?ÈvîÃ×dš?× OûàV?Áav” ?Ç £Ä<)?°6Ÿƒãán?°:-%šÀ?ÑÝFSfÛ?áÜ8/œJ?ËS~†¶Ä?Ðwû}Z?»T÷š¦ï?ÈsŽˆ? ·õzúÂ?²yMa‘€?»Ó9óñíG?ÃÂñK¨?¯!›ÖËf@@@@@,@?ð?ð?ð?ð?ð?ð¿Ipð?³U ž² ?…„¾K~Ui?ÍÍ> Ä“@§´(ûêÌþ@­Fl D­˜?¤'Ûèˆqò?´G2—ó?ëÙý=Ñ@ ¨¼òI@Ÿm!}SÖ´@)@¤~™™™š@¤~£× -=@¤~™™™š@¤~dZ¬@¤~™™™š@¤~W>«6@¤~™™™š@¤~6âë@¤~™™™š@¤~DЩ@¤~™™™š@¤~DЩ@¦4bÐå`B@¦4d›¥ãS@¦4bÐå`B@¦4a‰7KÇ@¦4bÐå`B@¦4a×Ûôˆ@¦4bÐå`B@¦4a|ÚQ@¦4bÐå`B@¦4d¨ÁTÊ@¦4bÐå`B@¦4c¯·é@7¥öý!ÿ.@7§ÈK]Ìd@2pÄ›¥ãT@2rT`ªdÂ@1ï²-@1ûçl‹D@0ò䎊r@0×Ûô‡ý@0ò䎊r@0‚©“ àß@0ò䎊r@0‚3œ¾à?’Óusÿ\Ã?jÝ‚È?’#ç}iïë?‹ÑqÔ@vÿ?’yÊêºq?ë+ʦÜ_? Eˆ‡ðó‹?’Êå\tW?“„;Ë~½ú?agÌf ?“Al.6¸?oÌ‘'ýT?lû˜¡Q?¨ ‰‹U)?ƒ´],m=?ƒý¥ñÍú?ˆW|¶DC?†¯Mž684@@@@@,@ ?ð?ð?ð?ð?ð?ð?W¢¢Ã®?.)C?P¼Û÷Y„a?DÐA&ƒc@¤~Àâ¨@¦4c-^Ž¢?l ‡X#W?]öó•ÿÙ?Öc„Ê ?²©Ñ”¥8†@Ÿn~I`Ši@*@«K*~ùÛ#@«K2Ö‚Ò@«K*~ùÛ#@«K+C•@«K*~ùÛ#@«K&éxÔþ@«K*~ùÛ#@«K$Ý/¡@«K*~ùÛ#@«K'E8ï5@«K*~ùÛ#@«K!ä÷eþ@œ»öÈ´9X@œ»ë4uÖ¹@œ»öÈ´9X@œ»ý¿HÌ@œ»öÈ´9X@œ¼#ˆe”°@œ»öÈ´9X@œ»úxl"g@œ»öÈ´9X@œ»ù¦µ @œ»öÈ´9X@œ»ùXbM@7uS&Á¾@7HÕñÏ@3» Iº^@3ºqÞi­C@3¶§ï²-@3¶»˜Çâ‚@2ºÔ,<ží@2·8}¿I@2ºÔ,<ží@2¸ð¹@2ºÔ,<ží@2·l‹C•?°z®aà2?“:„aGS?œrôeEÜ?¨•Ù?‘èÒ§ˆ„Å?”‹ÂØ*þ›?¿pÉÃV?•2ã(_Ïù?¢?Ùæc?’ÁÛ/’:?“h_N’%¿?”V.·H?±‚ÎûŠøë?þ,DöP?‰~}œ…o_?‡ÕZ›µûÜ?Œ¸ðËb?‹aÊ•TI@@@@@(@*?ð?ð?ð?ð?ð?ð?^‰òžè?\Ïul?k­ZG -’?<å¿>BëU@«K#©¬@œ»÷oBÕ°?}ãjRL§]?cv½.ê?ðXQxב ?Àß £ ï@ŸpŸ9N@+@¬¥J=p£×@¬¥Iûçl‹@¬¥J=p£×@¬¥J°¼@¬¥J=p£×@¬¥M ¶íg@¬¥J=p£×@¬¥LJKž@¬¥J=p£×@¬¥IÀõeÑ@¬¥J=p£×@¬¥Hñ+oP@™O$Ý/@™O€ƒn™@™O$Ý/@™Oþe‘@™O$Ý/@™O‚ Ïþ_@™O$Ý/@™O ±ñü@™O$Ý/@™O€ŒÕPø@™O$Ý/@™O‚‘™RQ@3°4mÅÖ8@3¯ìVÕÏ«@1sS÷ÎÙ@1s:'è²@1“t¼@1t­]Õ”@0\ÚQÎ@0\òù‡@@0\ÚQÎ@0][ønh@0\ÚQÎ@0\ßÞv]?}õ¬#„­?.od}Æ ?‘EYˆƒê?‹îv[Û‡?‘aë!(¯\¾¦?Ž,OêK˜u?‘úy«ôÊ%?‘À?ÙÂ#’?}Ñ¿ž,?’pP‡È»?‘˜ÆôõD?Ë{4æk?‘†óèJL\?‘C å;Ã?„m~Z_s,?R©i»èi?ƒ´],m=?ƒ¼9XNÄu?‡2[síç?‡L8õASÎ@@@@@,@,?ð?ð?ð?ð?ð?ð?1½fˆ0?*í®à?*Î@ƒYy>íË÷Ÿ3@¯PËúÌĶ@ª +sdÍÚ?J¾ó¡Ë ?6@N¨€…?¡~­úäŸ?& Ó^}(@ŸfÔü[º#@-@«„+ JÁ.„€@«„+ JÁ.„€@«„+ JÁ.„€@«„+ JÁ.„€@«„+ JÁ.„€@«„+ JÁ.„€@–",1&éÁ.„€@–",1&éÁ.„€@–",1&éÁ.„€@–",1&éÁ.„€@–",1&éÁ.„€@–",1&éÁ.„€@8 ØDЩÁ.„>¤µÜÆ@3û Iº^Á.„M‰ûçm@3²-VÁ.„QnÙ‡@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@2øDЩ*Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø.@«3H1&éy@«3J~ùÛ$@«3H1&éy@«3JdÂø8@«3H1&éy@«3Iá°‰ @«3H1&éy@«3GÕfÏC@«3H1&éy@«3Ezxl"@«3H1&éy@«3EýŠÚº@©tñ©ûç@©tt¼j@©tñ©ûç@©tÈ´9X@©tñ©ûç@©t®}Vl@©tñ©ûç@©t_Ø­­@©tñ©ûç@©t1Å@©tñ©ûç@©téá°Š@7ò䎊@7þÅm\ú@2žÙ‡+@2ž;Í5¨X@297KƧð@287´¢3œ@1µµsê³h@1µ¸Që…@1µµsê³h@1²½<64@1µµsê³h@1²œwškQ?|öOÿÝ?­hX™*?’5 µ¿$„?ŽÝ¡uÒ(r?’Z†Ažj?“Q´Î`°€?Œs¤DÅÐ?“RƒwS5?’]:»›.ó?‡@Cvì×?‘®7Ö=^9?’EÈ€›º?‚oÁÆÜ§ö?þrªbT?ƒ¡É^&Ö?‡v¯ªIì?’Ž<Dxƒ?” 4‹eñ -@@@@@"@(?ð?ð?ð?ð?ð?ð¿QÕ´?Ed’`?!Û×»DÙ§?2®eºÂ…_@«3GàS©²@©txø·$?CB±>Õ˜Þ?Q¯Â w?Eíä;pñ?¢ƒ3Õ+r@Ÿijä,¡û@/@¦A$Ý/Á.„€@¦A$Ý/Á.„€@¦A$Ý/Á.„€@¦A$Ý/Á.„€@¦A$Ý/Á.„€@¦A$Ý/Á.„€@¦^å`A‰7Á.„€@¦^å`A‰7Á.„€@¦^å`A‰7Á.„€@¦^å`A‰7Á.„€@¦^å`A‰7Á.„€@¦^å`A‰7Á.„€@6m¥œàvÁ.„>¤µÜÆ@3° Ä›¦Á.„M‰ûçm@3Wï²-Á.„QnÙ‡@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@2¿ò䎊rÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø0@¦2° Äœ@¦\(õÃ@¦2° ÄœÁ.„€@¦2° ÄœÁ.„€@¦2° ÄœÁ.„€@¦2° ÄœÁ.„€@¦2° ÄœÁ.„€@ ]Ù‡+@ ]¹Û"Ðå@ ]Ù‡+Á.„€@ ]Ù‡+Á.„€@ ]Ù‡+Á.„€@ ]Ù‡+Á.„€@ ]Ù‡+Á.„€@85S&Á¾@8 í(Œç@3×+ IºÁ.„M‰ûçm@3.ùÛ"ÐæÁ.„QnÙ‡@2G ù kºÁ.„NÜC,¥@2G ù kºÁ.„NÜC,¥@2G ù kºÁ.„NÜC,¥?ð°–Ž]@8#˜@8¾:@8 >+@8Iç@8Ù?ð°–Ž]@8Î÷@8i§@8Å@8S@8û—?ð*wjs—@8 * @8p÷@8¶@8 Ø@8 Ø?ð?ðøøøøøøøøøøøø1@¬†1&éxÕ@¬†0å`A‰@¬†1&éxÕ@¬†0oiDg@¬†1&éxÕ@¬†2×sü@¬†1&éxÕ@¬†2×sü@¬†1&éxÕ@¬†/v_Ø®@¬†1&éxÕ@¬†0å`AŠ@£A º^5?@£A -=p£×@£A º^5?@£A§æ›@£A º^5?@£A ^ž@£A º^5?@£A C,¥@£A º^5?@£A -=p£Ö@£A º^5?@£A 6z‘@3*0U2b@3ã¼Ô@1+¥ãS÷Î@1+Ƨï²@0Ͳ-V@0Ͳ-V@0ž«6z‘@0Ÿ!-w1@0ž«6z‘@0žì¿±[X@0ž«6z‘@0žŠqÞi®?žˆ2}?¾‰máÚ?‘&Øç?‘?‹û…†_?‘PÊÑ<Ým?‘£.'É?|¬Çëý ?’4 "ëžØ?r¼Jsž?0ÜN :s?‘=d¦^™?½y ¦Å?‚uÞ@>N ?ŒÆò/¢äÍ?‚Ö˜>µDá?ƒv_.^?‹ì3åý?†ùadô|@@@@@*@&?ð?ð?ð?ð?ð?ð¾ò¸|¾?#ËŸÕ ?7ÒcDÅÑ«?2Àηk@¬†1eÝ,@£A -™úˆ\?W~N¡Å8ñ?;$¢bA?¹±A_Móa?‚ ÿeS1u@ŸgŸ1ßE@2@«ìaÊÀƒÁ.„€@«ìaÊÀƒ@«ìbe+Ô@«ìaÊÀƒ@«ì{/ìVÖ@«ìaÊÀƒ@«ìeo@«ìaÊÀƒ@«ìjW§†Ã@«ìaÊÀƒ@«ìhe”¯O@ 2ÍÒñ©üÁ.„€@ 2ÍÒñ©ü@ 2×>«6z@ 2ÍÒñ©ü@ 2ÌÙè>B@ 2ÍÒñ©ü@ 2Ö‡+ @ 2ÍÒñ©ü@ 2Ížƒä'@ 2ÍÒñ©ü@ 2Ç®zà@9„¯O „MÁ.„>¤µÜÆ@3œIº^5?@3ŒwškP±@2Ͳ-V@2»'»/ì@2}cˆe”°@2f“t½@2}cˆe”°@2kJ#9Àì@2}cˆe”°@2l~($ x@8J¨?™ér¨kÏ?Ÿ7'»ˆv?°ñé÷Qi¹?§Kn(¿«?¦r‹ÿÇ×W@8J¨?U -£?00? .ä,?¢Eµ²À•!?šs°Àãª?™†öà|•@8p÷?’òÌ&Œ®3?šˆøQû±?&à|Òß?•°QŸ?]Í?ªìà¢5³@@@@,@,?ð?ð?ð?ð?ðøøøøøøøøøøøø3@§w€@§wœj~ùÚ@§w€@§w‰Q‚©”@§w€@§wË)^Ÿ@§w€@§wŠ Þ@§w€@§w”mÅÖ9@§w€@§w˜ -á@ª´mV@ª´fffff@ª´mV@ª´i“ àß@ª´mV@ª´vâëC@ª´mV@ª´-V@ª´mV@ª´ZŸ¾vÊ@ª´mV@ª´=²-V@9*0U2b@9àuöý"@5©‡+ @5±TÉ…ðo@597KƧð@57ü¹#¢œ@5 ¿±[W?@5Ϫ͞„@5 ¿±[W?@5µÜÆ?@5 ¿±[W?@5IQ‚ª?1·†Æjñ?¡U¢WªÂ?¡[r'{né?ªE> Ì?§ê‰%œôÄ?¯Vñá·µ­?‘â%ì˜ ä?£àÂ’âÿ?§i©†˜s?©Æ£ŒL?®+Ò¥õÿ/?°áÎZÔ?°^&Mªka?Ÿ$Ìj½BÙ?¡7‡V/Žr? ‚™¡0V?°+—ߎ ? 7BjüõÞ@@@@@&@(?ð?ð?ð?ð?ð?ð¿bÅ*j‡¿‚H£&·?YC@«…-V@«…,¥zxl@®Þc× -=q@®ÞdZ¬@®Þc× -=q@®ÞbÐå`A@®Þc× -=q@®Þ` qw@®Þc× -=q@®ÞhõÂ\@®Þc× -=q@®Þ`[À7@®Þc× -=q@®Þc9Àëí@7­¥œàv@7®šu@3k¥ãS÷Ï@3j³g ù -@2M²-V@2LÓZ…‡”@2Þi­BÄ@2ØDЪ@2Þi­BÄ@2åÉä@2Þi­BÄ@2|í‘hs?€‚ñêã ?‘@@Nßo9?’=N K?‹ËØ|*(?’PY8~Qj?‘Ò\.:Ø@?€‚ñêã ?”n‹rÕ|?’F^ì¼Sï?>\‰å‘?•MšuVÑQ?’j“O’I?£å$óM™?‘pØ-Ÿt?‚† SFò?>æ¿Îï?‹&¸ê±fÂ?‹&¸ê±fÂ@@@@@@?ð?ð?ð?ð?ð?ð?OŒ°Œà¿#Ç7 ?CÖ ¤©ƒ©?Jð%=Ìz~@«…,Ñp@®ÞdvPß…?c~Kut4u?k7·åL²P?ÑПý‡?ÝÈPÿ¿U¨@Ÿg3¶#P@6@ªÊ=ó¶E¢@ªÊ/\(õÃ@ªÊ=ó¶E¢@ªÊšû~‘@ªÊ=ó¶E¢@ªÊPHð@ªÊ=ó¶E¢@ªË6âë@ªÊ=ó¶E¢@ªÊ>ߤ?å@ªÊ=ó¶E¢@ªÊ?¾vȵ@¦¥Òñ©ü@¦¥ Ä›¥@¦¥Òñ©ü@¦£%m\ú¬@¦¥Òñ©ü@¦¥;dZ@¦¥Òñ©ü@¦žÒ-V@¦¥Òñ©ü@¦¥·éú@¦¥Òñ©ü@¦¥·éú@9šÔ,<Ÿ@9õÂ\)@3Œí‘hr°@3Ø -à @3`A‰7L@3@ØDЩ@1Öý!ÿ.I@3€N¤¨ÁU@1Öý!ÿ.I@1ÙQ‚©“ @1Öý!ÿ.I@1× ù kº?‡YÍ_?Ì1d?““¶”ÿµb?¼€+|Ò?’Z†Ažj?“¾§²~Î?¨TU‚?êÍ~êÜ^Ž?™€p4“¶Á?ªÕÓW?“ðÐ ?’ Óº^?¸M,ꤺ?šà+>G–Ì?‹´¡`Ƕà?âtî"0‰D?‡æê7²zE?ˆ©{2¡Î@@@@@&@(?ð?ð?ð?ð?ð?ð?nd·wö?‹¥sP€?t5FêÃä?¶‰;t,@ªÊ=7Ää*@¦¥xÛª@4?šŽµÂ7?Îņ¶VJ)@)Ø[Vÿò@oG+<Ã@Ÿq ^´Û¢@7@¤'þvÈ´9Á.„€@¤'þvÈ´9Á.„€@¤'þvÈ´9Á.„€@¤'þvÈ´9Á.„€@¤'þvÈ´9Á.„€@¤'þvÈ´9Á.„€@ BöE¡ÊÁÁ.„€@ BöE¡ÊÁÁ.„€@ BöE¡ÊÁÁ.„€@ BöE¡ÊÁÁ.„€@ BöE¡ÊÁÁ.„€@ BöE¡ÊÁÁ.„€@8„¯O „MÁ.„>¤µÜÆ@5ë¥ãS÷ÏÁ.„M‰ûçm@5lj~ùÛ#Á.„QnÙ‡@5uµsê³hÁ.„NÜC,¥@5uµsê³hÁ.„NÜC,¥@5uµsê³hÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø8@Ÿ8« Iº@Ÿ8­V@Ÿ8« Iº@Ÿ8€Æ$¨~@Ÿ8« Iº@Ÿ8G—˜‹@Ÿ8« Iº@Ÿ7õú}î$@Ÿ8« Iº@Ÿ7ÀÊN?¨@Ÿ8« Iº@Ÿ7è¯t§L@˜èr° Å@˜è'Ê*·@˜èr° Å@˜ó¯@˜èr° Å@˜Ç„3Ã@˜èr° Å@˜õ£ÏSO@˜èr° Å@˜òkVÌ?2OžÑ*¦ÒˆÎp@£çž¸Që…@£ç7>«6z@£çž¸Që…@£çiã¾@£çž¸Që…@£ç‘4êK@£çž¸Që…@£ç’½<6@ò° Äœ@î—Oß@ò° Äœ@ü¹#¢@ò° Äœ@ ÞÒˆÎ@ò° Äœ@‹C•@ò° Äœ@?±[W?@ò° Äœ@UL˜_@4(†YJôñ@4'Pô&Ü@1€ Ä›¥ã@1=quŽ"@1RÐå`A‰@0Û…¸Qì@0øDЩ*@0•fÏAò@0øDЩ*@0›]ÌcñA@0øDЩ*@0¥ '»0?|Ñb×¶@?ÀßL¯-?Ì*$*n?¤*càðyb?ÇnOÙQ?Ç98•ÿ?|¬h2:“?ÅË5Öµ?סϟE™~?ª*G„kì?ÒMWÒXRk?ÓÉXÒ\?„.”r‡É?®¿{dâph?®Ütß½RÛ?•çѳÍ9?«Ý]2°ðƒ?½ûmBüÁ@@@@@,@,?ð?ð?ð?ð?ð?ð¿y^ßÓ@?²‡øF€?t¾8Mèmš?„ -™_QÖÂ@£ç”Œ˜í @=ª F?{³R€RÁ®€?‘´CF õ?«'# ¡?­91)8?Ÿ‹‘+-/Ü?–‡+ Iº?–v”׆7Ê?‘ô 5Y?¯MÑJed€?¯íÉv8' ?„„OW°ò?—ƒFÛ¯/?‘Ó0<ïL{?¡2¿ônM|?§žpå¨,´?¶ ÚäF@@@@@*@*?ð?ð?ð?ð?ð?ð¿==S¿ ¿sQWÁ¯?Kë@N€Gñ?q&ìêÒ¢å@§Âhü=×@ªÈ…²Ž?bŸc?†o³´^óu?¨ÉAqgŽ?ò*OK‘<€@Ÿi#¨~¸*@<@¥g;dZ@¥gp£× @¥g;dZ@¥g”x9Å@¥g;dZ@¥g*oƒæ@¥g;dZ@¥g'p8ä@¥g;dZ@¥gRG^I@¥g;dZ@¥g’ÿ²k@˜%®záH@˜%®—Oà@˜%®záH@˜%‘T^³å@˜%®záH@˜%² ÜW@˜%®záH@˜%Aå†4@˜%®záH@˜%‹n~ÀN@˜%®záH@˜%™†ù,[@6Ô xFÜ@6ÕU²ƒ@35ãS÷ÎÙ@3(ã—¾â@2nùÛ"Ðæ@2eu¾N0y@1‚@·€5@1»àpဠ@1‚@·€5@1º±ɽ@1‚@·€5@1»ápäµ?‚Cš æI?•Â{Íwà3?‘¿° -Æz?ŽEÍ +r‘?“ümbaÆ?“*E̽n?€Ã{s°úi?™{Ï£­0Ä?‘˜ËrÛé´?’Nß>YR?™€$<«É?”Pù—yÇÙ?‘ß“¯Øg?ŽYéc˜?…wç{„³?„?¢Öñ ?ˆ5’©‡µQ?‰¯ëÇR:@@,@$@"@<@7?ð?ð?ð?ð?ð?ð?O6Bœ¿k#ŽDh?Tólžb ?W]D„õ¸@¥g ‚Ñr@˜%ž©ný®?tvÛa4Iö?wbÙ -"†¯?ð³E, ‡ÿ?òzÑôÐ@Ÿfã+Cµ+@=@¯,j~ùÛ#@¯,j~ùÛ#@¯,j~ùÛ#@¯,l@­ Iº^5@­È´9W@­ Iº^5@­9‡+@­ Iº^5@­í‘hs@­ Iº^5@­+Ƨï@­ Iº^5@­(õÂ@­ Iº^5@­@@®ý±&éxÕ@®ý³t¼j~@®ý±&éxÕ@®ý²ñ©ûè@®ý±&éxÕ@®ý¨´9X@®ý±&éxÕ@®ý‹ I¹@®ý±&éxÕ@®ý¢\(÷@®ý±&éxÕ@®ý¶E¡ÊÁ@8Q|ÚQ@8ùrGE9@3° Ä›¦@3«P°ò{³@397KƧð@3Ø­«ŸV@2¸DЩ*@2žŠqÞi®@2¸DЩ*@2«À6âë@2¸DЩ*@2˜ -à ?гá‡}?­³_¦b*—?—æ'=D´P?›“ë '?Òß© ÷?¹ÂÑ*=œU?’Óusÿ\Ã?“¶†ÿê¡?ß‹…&?™b ]jZå?•¯ÃþƒR?#°‘N˜?³â3ù‹?’Эs_ª`?œÁXÙñ?§DÛ–£?»o;Ês€"?¨4¨æž@@@@@@?ð?ð?ð?ð?ð?ð?oww#¿aø’Œ?fdÄlC²?vùWBZ@­w>zÚ@®ý§§øòÚ?„ê嘴?–š9‘h±?ó†31»5l@I¨½jà(@Ÿf^™‡Q@?@¡\³¶E¡Ë@¡\ÄZ¬@¡\³¶E¡Ë@¡\¯\(õÃ@¡\³¶E¡Ë@¡\ÇæšÔ@¡\³¶E¡Ë@¡\œ„µÜÆ@¡\³¶E¡Ë@¡\§â‚@¸@¡\³¶E¡Ë@¡\¨$ x@­n[¥ãSø@­nR-V@­n[¥ãSø@­nr¼£@­n[¥ãSø@­nB3œ¿@­n[¥ãSø@­na½¥@­n[¥ãSø@­nAÿ.Hé@­n[¥ãSø@­nAò×r@8G>«6z@8AA [À@5Œí‘hr°@5aä÷eý@4ìj~ùÛ#@4èâe+Ô@4G ù kº@44%®æ1ù@4G ù kº@4@bMÒñª@4G ù kº@4JÔ,<ží? Eˆ‡ðó‹? /÷œ…?­Y)Þ=’? ñÔ`JU?œ¼•§&Œ‰?¡î®ðÎ`~?1·†Æjñ? 3ÝP‰j?½ç“Oªc_?©øpe³­ó?–kš‘ž? ª w³ -?™Ä¶BϪ?§—“H1ÀÏ?®Ï¤\7?£-n?¶û–Íc]Ö?•@¼Cк@@@@@@(?ð?ð?ð?ð?ð?ð¿x#rÒóÀ¿khŒ²&?pJÉ_+?Z5·òGW€@¡\­C ä@­nI_{N0?ŒYɺŒ?€5ë’¸??øÝaa× ?îm•r>0‡@Ÿjéå)¼@@@­œl1&é@­œqhr°!@­œl1&é@­œn±Ä2É@­œl1&é@­œq‚©“ @­œl1&é@­œr×sü@­œl1&é@­œncŠ @­œl1&é@­œnV“@é Iº^5@èõÂ\)@é Iº^5@é™™™š@é Iº^5@é$tSŽ@é Iº^5@韾vÊ@é Iº^5@éüPH@é Iº^5@é¤?åÉ@8(†YJôñ@8 ÅÖ8†Z@3 í‘hr°@3 ¦µ (@1ûƧï²@1ùº^5?}@1èè§æ›@1å¡ÊÀƒ@1èè§æ›@1êCþ\‘Ò@1èè§æ›@1ì<žì¿²?µÕjùq®p?‘Ð`HÇh?’Gßk;m?F‘q/b?‘à2F0µÔ?’ß5Ov_Ù@«Š¤µÜÆ@4J^5?|í@4J–»˜@3ñ‰7Kƨ@3ì/ƒ{J#@3._oÒ @3&fffff@3._oÒ @3"@·€4n@3._oÒ @3$ xFÜ@8J¨?ZÁ».œ?”Ä0óçî?‘sNX„êÒ?— -æÙõ¡?•I0ùzIJ@8J¨?’LÁŒÀ´a?•Q²rz¢ù?’àêE©³?¢i ú?¨,?—vÑékÜ@8p÷?*øT?aäŽ -Ù?Ž0 ½~ÿ?K·‘d\?‘ ê$4 @@@@*@$?ð?ð?ð?ð?ðøøøøøøøøøøøøB@¨1ò° Äœ@¨1ò-V@¨1ò° Äœ@¨1òT`ªd@¨1ò° Äœ@¨1ñë…·@¨1ò° Äœ@¨1òÊW§‡@¨1ò° Äœ@¨1ñuŽ!—@¨1ò° Äœ@¨1òT`ªd@¡«‡®zá@¡«‡l‹C—@¡«‡®zá@¡«ˆXy=Ù@¡«‡®zá@¡«…zxl"@¡«‡®zá@¡«‡“Ý—ö@¡«‡®zá@¡«†šÔ,=@¡«‡®zá@¡«‡æšÔ@4£g ù l@4£¼ÓZ…ˆ@0ý‘hr° @0ý‘hr°!@0'KƧïž@0&ý!ÿ.I@/=Vlô"@/=<64@/=Vlô"@/=p£× ->@/=Vlô"@/=ÌcñA!?|¬Çëý ?Čۨ1A?‘G¿yÛ?ï?‹×lÇ…N9?‘; ÷^?ÔCXsñ?|öOÿÝ?’j%ÓRa?“û#ÆGf?CÚ B÷?‘!U?Ð{Ò?wN —z_?‚|׿pY?Å9–o?ƒ>ZÌw?‚äÍ“½E'?†špk Y?†µ°jÆÃ@@@@@*@*?ð?ð?ð?ð?ð?ð¾Æòˆ¿xÃ@? Óߘ9Ñ3?þ–;¤@¨1ò78`@¡«‡=VˆŽ?@¼ú¼eJ?4ì †¢õ?Ž_WÍZ†x?vRius@Ÿfè”õñÍ@C@ óÂ\(ö@ óÂŽ¶ ˆ@ óÂ\(ö@ óű‰°r@ óÂ\(ö@ óÃd{*@ óÂ\(ö@ óÆßü2@ óÂ\(ö@ óÁ¥œt'@ óÂ\(ö@ óÁJKÖ‡@ªl3¶E¡Ë@ªl3÷ÎÙ@ªl3¶E¡Ë@ªl4’)®$@ªl3¶E¡Ë@ªl6‘ -l@ªl3¶E¡Ë@ªl2“³Æ'@ªl3¶E¡Ë@ªl3.Ô} @ªl3¶E¡Ë@ªl1ÇÎã£@4–šÔ,<Ÿ@4–†zäÁ†@1«¥ãS÷Ï@1«ÕR½ã¼@1†“t¼@1…ÄO©=&@1Œ~($ @1Û…hÖ@1Œ~($ @110:­¸@1Œ~($ @1¿Q&-p?|¬Æ Væ?0ñÏ’ì?‘FúëWg?ŒWÕ:×Bx?‘?yd%&.?‘(Å( ‹?|Ñb×¶@?’a›I$ž;?¨¥€æ5^?–=Ôcü~?‘+ôÓÉŽÂ?‘‹3ŒÛ¡?‚¢r;;É?8Ç1§$?ƒ@tGy‚þ?ƒ#¡XÏÃ?‡9DP¢ä?‡"#Àѧù@@*@"@*@5@4?ð?ð?ð?ð?ð?ð?}Ç„@¿8XúÊð?Eo2[-•?â•ÛPZ@ óà Œ³k@ªl3)Û®?e<¯µ>*?=%¼ïÀ?Ø2F¦¦Y”?…g«ÀK@Ÿf´µRž§@D@ŸoJÀƒo@ŸoO@ŸoJÀƒo@ŸpöÅ=@ŸoJÀƒo@ŸoÀÔ˜Z@ŸoJÀƒo@Ÿo±ƒ¯<@ŸoJÀƒo@Ÿo–„?¿f@ŸoJÀƒo@ŸoاÁtò@¡HJÀƒo@¡HHü±@¡HJÀƒo@¡H;Ön³&@¡HJÀƒo@¡H44ë(@¡HJÀƒo@¡H1lS£@¡HJÀƒo@¡HKã-#C@¡HJÀƒo@¡HPÊ4@5¿–»˜È@5½%=p)@3’ Iº^5@3{µþ»¶G@3“t¼j@2õvˆÈ²×@2OO „M@2Kv4EŸU@2OO „M@2iÑ-(`@2OO „M@2=ŒË¶·?‰døëŽìÃ?¢uñÌ6!?œV΄Œ„š?™†‹¢ò„?«³,Í@ ?­Ç÷ˆÉ?}x—™?›“;þÄU?™ÿ…Jjì?ª_·Q·?®œ£dÜ'C?‡7Ùù„?•Q½7 -È?‘;u•LÐß?Š×É´¸?›Ÿ}ê?›4¾ÀÍ6@@&@$@&@4@3?ð?ð?ð?ð?ð?ð?Ž.Ñ”¿krïZ?h¥‘¬ØÆÁ?nÐgáh-Ç@Ÿo}‘˜³@¡HB•·Mp?ƒci&ÛVÂ?‡g}' d ?ôIóWJЗ@ô ]èÃï@ŸaÔôC¸@E@¯Ì Iº^@¯ÆºŸ¾vÈ@¯Ì Iº^@¯Ç¤µÜÆ@5T›¥ãSøÁ.„M‰ûçm@4U`A‰7LÁ.„QnÙ‡@3𖻘ÇãÁ.„NÜC,¥@3𖻘ÇãÁ.„NÜC,¥@3𖻘ÇãÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøG@¡·àÄ›¥ã@¡·á$Ý/@¡·àÄ›¥ã@¡·àuöý"@¡·àÄ›¥ã@¡·ãˆe”¯@¡·àÄ›¥ã@¡·ã× -=q@¡·àÄ›¥ã@¡·ß¤?åÉ@¡·àÄ›¥ã@¡·á‰7KÇ@¤Ú»dZ¬@¤Ú»"Ðå`@¤Ú»dZ¬@¤Ú¹rGE9@¤Ú»dZ¬@¤Ú³g ù@¤Ú»dZ¬@¤Ú¸ºÇÊ@¤Ú»dZ¬@¤Ú»~ÿ—@¤Ú»dZ¬@¤Ú¼(õÂ@4wâ‚@·€@4x}¿H€@2Š^5?|í@2‰Î_oÒ@1—ï²-@1˜Çâ‚@¸@1…œàu÷@1‡´¢3œ@1…œàu÷@1†ÕϪ͞@1…œàu÷@1†ö”Fs‚?|öOÿÝ?‘€5{ºÎ#?’5 µ¿$„?ŒªèkÜ?‘ …É¿¼?“DŽèw–?|öOÿÝ?’eCŒO?‘S1Êz?ÿº (€?=~þžè?6€k÷pŽ@¡·áylzÔ@¤Ú»‡ç–?\¹î:ŽO³?VCQ0‘?Ä¢…÷tš?·»j°Ã™@ŸfgC”@H@¡¼1&éy@¡¼9XbN@¡¼1&éy@¡¼ -¦L/ƒ@¡¼1&éy@¡¼t¼j@¡¼1&éy@¡¼}Vlô@¡¼1&éy@¡¼ ù l@¡¼1&éy@¡¼s×Ü@ «ÍOß;d@ «Þ¸Që…@ «ÍOß;d@ «ÈÎp:û@ «ÍOß;d@ «Í:’£@ «ÍOß;d@ «ÏiDg9@ «ÍOß;d@ «Î±Ä2Ê@ «ÍOß;d@ «Í«ŸU›@8Ñ|ÚQ@8ÑTÉ…ðo@2J^5?|í@2L<žì¿±@1K"Ðå`B@1O²-V@0ò䎊r@0‚@·€4n@0ò䎊r@0‚ÊW§†Â@0ò䎊r@0ÿ.Hè¨?Æ‹ºGgÙª?š¾ßÍZ?’måGSžq?Œ‚èõЊ?’êÔÒ?âé¨ë7F?¼ºZ¡ˆ\?“?xr¢I?–ôÃj¢T?‘’â·ýÅ?‘áÙž­ò?wN —z_?Â°ÅÆmÅ?ÉGãA­ø?‡Ü̈- -?…J]j?ˆ0&YÊEd?‡ã ËÄž@@@@@&@?ð?ð?ð?ð?ð?ð¿pQÝfÀ¿R{¡ÙKÀ?VêR—?HäÒMr»h@¡¼ -OVT~@ «ÎÞWO?f`tÁ‘ã?XßF³ x?Çä}„j?¨S¤ýKŸ?@ŸrƜ׎t@I@§Ò•%@§Ò`A‰7@§Ò•%@§Ò¡ÊÀ„@§Ò•%@§Ò›¥ãT@§Ò•%@§Ò¸Qì@§Ò•%@§ÒÐå`B@§Ò•%@§Ò¸Qì@¯G®zá@¯Hr° Å@¯G®zá@¯I7KÆ©@¯G®zá@¯IùrG@¯G®zá@¯G®zá@¯G®zá@¯H´9X@¯G®zá@¯G+ J@6Y*0U2b@6UÉã½@2)‡+ @2)Çy¦µ @1Ct¼j~ú@1CüPH@0&YJôðØ@0'¯·é@0&YJôðØ@0&ÏAòØ@0&YJôðØ@0&€IQƒ?|öOÿÝ?ß‹’bÏ?’d3ð"7?‹¦ ŸYÔ?éDEâ©×?±ŒR°?žˆ2}?’?Á• ñ:?“v@á¿bî?ni"Í š?Ë=ÔU{,?H, -r_?’%Crì?Œ¬Çëý ?ƒ/‹ÍY}’?‚ãaÎúvh?ˆA0û)n?‡?®\Âä@@@@@@?ð?ð?ð?ð?ð?ð¿/}‡d@¿%VÎ@?/T N÷§?#XÓé‘P@§ÒÑ' @¯H.BÍ?OÈ ïsg¼?Chß–$Ö«?ª…•Ì0¬?ð"YcKd@ŸgΦ]¯@J@¦@W -=p¤@¦@W -=p¤@¦@W -=p¤@¦@WÎÙ‡@¦@W -=p¤@¦@VÕϪÎ@¦@W -=p¤@¦@XDЩ@¦@W -=p¤@¦@V“u@¦@W -=p¤@¦@VR½<6@¡‡“u@¡‡E¡ÊÂ@¡‡“u@¡‡lô!@¡‡“u@¡‡éá°Š@¡‡“u@¡‡Ov`@¡‡“u@¡‡ðØDÏ@¡‡“u@¡‡Ž!–T@2ò䎊@2&€IR@0=‘hr° @0=!ÿ.Hè@0Wï²-@0Vý!ÿ.I@.¨Û‹¬q @.¨Ë’:*@.¨Û‹¬q @.©ûçl‹D@.¨Û‹¬q @.©ûçl‹D?É^žQ5P‚?ß‹’bÏ?‘(¥¿á?‹ª½¨ª8v?‘,IÝ Áé?È2I/?ÐbV‡,?’uß¿çÒ?¹º–Èj?3.Ylî?øóéM Ÿ?b¶­-Óx?€g‹)ØêÀ?ŒË›Í‡Çq?ƒ/‹ÍY}’?‚ð'ã:ÂÝ?†©b/bJö?†ùadô|@@@@@,@*?ð?ð?ð?ð?ð?ð¿MÑ€T¿2ó÷J?8æÔ’ª‚/?3W<(½f@¦@W‹‹F@¡‡–kÙ¦?HU+Î?BˆÙ>+F?Œ³³Ø©ý?|ŠÅÂ¥@ŸsWËÞÄ@K@¦ÑõÂ\)Á.„€@¦ÑõÂ\)@¦ÑùXbM@¦ÑõÂ\)@¦ÒÖ8†Y@¦ÑõÂ\)@¦Ñø†YJõ@¦ÑõÂ\)@¦Ñø7´¢4@¦ÑõÂ\)@¦ÑýæšÔ-@¥j33333Á.„€@¥j33333@¥j;dZ¬@¥j33333@¥j,~($ @¥j33333@¥j=<63@¥j33333@¥j=—ö+k@¥j33333@¥j=p£× @9šÔ,<ŸÁ.„>¤µÜÆ@4&‡+ J@41uŽ!–R@3b-V@3f®}Vlô@3 ù kº@3 *0U2b@3 ù kº@3 £n.²@3 ù kº@3Ov_Ù@8J¨?™«» ¿?™ïfô?‘S;²~?•òJj~u?™S:Ъ;5@8J¨?œs°XX=`?¢n®Ú| X?’ü#q\-v?–Y:ŸèJ?–˜k|‹ ;@8p÷?›Õ¼ÉUÓ›?’Z†Ažj?Š>ÚµÕ?‘˜M\ÿŠ?´tï-Ïw@@@@(@*?ð?ð?ð?ð?ðøøøøøøøøøøøøL@££‰7KÇÁ.„€@££‰7KÇÁ.„€@££‰7KÇÁ.„€@££‰7KÇÁ.„€@££‰7KÇÁ.„€@££‰7KÇÁ.„€@šO;dZ¬Á.„€@šO;dZ¬Á.„€@šO;dZ¬Á.„€@šO;dZ¬Á.„€@šO;dZ¬Á.„€@šO;dZ¬Á.„€@6¹Œ~($Á.„>¤µÜÆ@2Ùº^5?}Á.„M‰ûçm@2RÐå`A‰Á.„QnÙ‡@2J0U2a|Á.„NÜC,¥@2J0U2a|Á.„NÜC,¥@2J0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 ØøøøøøøøøøøøøM@¥Y“u@¥YÈ´9W@¥Y“u@¥YeýŠÛ@¥Y“u@¥Y -=p¤@¥Y“u@¥Y™™™š@¥Y“u@¥Y*™0½@¥Y“u@¥Y“t¼j@©‘»dZ¬@©‘¼¬1'@©‘»dZ¬@©‘¼j~ùÛ@©‘»dZ¬@©‘¸†YJô@©‘»dZ¬@©‘¸­«ŸV@©‘»dZ¬@©‘¸_ö•@©‘»dZ¬@©‘²þÅm]@6 ]cˆe”@6 C•%@2Lí‘hr°@2Lô!-w@1Ͳ-V@1Ì(õÂ\@1G ù kº@1D¼j~ùÛ@1G ù kº@1?åÉä@1G ù kº@1@Ñ·Xâ?‡YÍ_?äm°û0Ž?’>¯\¾¦?Œ'õ‚$5ñ?’»–j˜ú?“¢¾_ÂÜ?|öOÿÝ?’ ,øÕC©?Å)Ì_“?@§[*^?‘¦‘=W?˜«ŒˆÀS)?ƒ/‹ÍY}‘?Œþ%å_D?…ÑTë0Ô?ƒË´ÔC¶¼?ˆ©{2¡Î?ˆ©{2¡Î@@@@@"@*?ð?ð?ð?ð?ð?ð?<©è訿X}°´d?40î ¹ø?4áB€Ã@¥Y$ˆ@©‘¹NÕ?RÛò‹”G*?UA¿ f¦¯?© ʼß=p?±'»Š9@ŸgÆOOK@N@«}“t¼j@«}“÷ÎÙ@«}“t¼j@«}™Û"Ðå@«}“t¼j@«}šCþ\‘@«}“t¼j@«}™Àëíû@«}“t¼j@«}“üPI@«}“t¼j@«}“ àÞÓ@”‰7Kƨ@”‰7Kƨ@”‰7Kƨ@”‹C•@”‰7Kƨ@”ŠŒL˜@”‰7Kƨ@”ŠôðØD@”‰7Kƨ@”qu@”‰7Kƨ@”Š Þ@4h†YJôñ@4iäêøµ,@1W+ Iº@1V -¦L/ƒ@06§ï²-@05µsê³h@/½Vlô"@/¶ý!ÿ.I@/½Vlô"@/±Î_p@/½Vlô"@/´SŽóMk?|¬h2:“?%¼ÇÆÃ±?‘šÕU#?5~pY5?‘à2F0µÔ?‘Ò\.:Ø@?|¬h2:“?’®> -fuæ?ŽËÜ¿€?’GÎ>GÅ?’W;„zY?‘êey°úà?„Üü«˜Þ ?R©i»èi?‚ÂÌ]æ?„2ÌôÏ?‡Ä­‹›Ü?IÏáå$@@@@@,@(?ð?ð?ð?ð?ð?ð?&™Î¡ ?/À¤j°?K<Ê0?$€”áU°@«}”Ï[¢@”ŠT<Î?j¯nv»¿ã?D‰‚õ,D?âc€^ä?”d¤µÜÆ@3Œí‘hr°@3Œq ²•ê@3M²-V@3NHè§æ@2…œàu÷@2„g8}À@2…œàu÷@2‰xÔýó¶@2…œàu÷@2Šu%F -@8J¨?‘+ùÔ!½Š?“1‘´¹V?Ž˜ùš®E`?•’ØŒi³?‘m×e\»@8J¨?’?Á• ñ:?»Þ‹"è?ni"Í š?”îC¯·æo?’"(îL@8p÷?àQdËЈ?„‘Za¹Q?ƒ!Ë *(?‰]³ß’Ý?†‡+œC@@@@@?ð?ð?ð?ð?ðøøøøøøøøøøøøP@¬•÷ÎÙ‡@¬•÷òuË@¬•÷ÎÙ‡@¬•øŸ&Òâ@¬•÷ÎÙ‡@¬•ùUär@¬•÷ÎÙ‡@¬•ù+™°0@¬•÷ÎÙ‡@¬•÷. ®…@¬•÷ÎÙ‡@¬•÷¸eX@˜¸@ƒn˜@˜¸?IÇ'Ð@˜¸@ƒn˜@˜¸Cðk¦Ü@˜¸@ƒn˜@˜¸JLG™è@˜¸@ƒn˜@˜¸F{³@˜¸@ƒn˜@˜¸GÈÄè³@˜¸@ƒn˜@˜¸Gë÷´è@6`ØDЩ@6`gògÐn@1¸r° Äœ@1¹hì•Nv@1lj~ùÛ#@1n~ÉÐ}¤@0¡:’£S@0¢d ï¤@0¡:’£S@0¡£v{)¹@0¡:’£S@0¡å6îô?…ðE[i)?Ôpóò?‘Sûæ aÝ?Œx0s©4Û?‘9DZ¥pÌ?Ö(#ÿ~?e™”XWø?’awÌuE?»óÎ] æ?Yþ.©§`?‘Kh?§¢?–§9Ä„?ˆÒ,ôœŒ¼?Œ×¯Çr&c?ƒ[´§…/l?ƒ"’º5Mf?†Ì’=Æý?†¸?Z€Ã&9@?RàÌs)Œ?Â~½ýéò?¯ átΨ9@Ÿf pœÛ˜@R@§YxQë…@§YwÎÙ‡@§YxQë…@§Y{W>«6@§YxQë…@§Yyb¶®@§YxQë…@§Yz–¼@§YxQë…@§Ys©*0U@§YxQë…@§YtzáG®@¦u@ƒn˜@¦uA$Ý/@¦u@ƒn˜@¦u?Ë’:)@¦u@ƒn˜@¦u?ÿÿÿÿ@¦u@ƒn˜@¦u@uöý"@¦u@ƒn˜@¦u?¤?åÉ@¦u@ƒn˜@¦u>ƒä%¯@5IÎ_oÒ@5J0U2a|@1î5?|í‘@1êOv`@1gKƧïž@1_O „M@0«xFÜ^@0¨ Ô•*@0«xFÜ^@0© 'RTa@0«xFÜ^@0ªdÂø7µ?}Ñ¿ž,?‘@@Nßo9?˜zjÊ©Øi?Ž˜ùš®E`?‘'¬Å™» ?‘}7ˆ.Ð?|¬Çëý ?–9}»Ö=?›ê‰¬>V?–sZ -™ø?’W;„zY?ÝÒ¥X[?‚n—8‹8?3I¶#i?†ÛdoŠ™?„ mŠmsi?ˆ”Tj«›ª?‰G±±ZÎ@@@@@*@*?ð?ð?ð?ð?ð?ð¿Cmñ‚¨¿<²Þh?CóòþPY?ɹ-Ëý@§YvÙH‘ @¦u@àEà?bü¶w;Ã?6­D‡ió?Ò<špùÕz?w‰’O™È@Ÿf¢‰ÕÕ@S@£FŸ;dZ@£F£•%@£FŸ;dZ@£F uöý#@£FŸ;dZ@£F»Í5¨X@£FŸ;dZ@£FŸoÒô@£FŸ;dZ@£Fš6âë@£FŸ;dZ@£F“g ù @¥ûäÝ/ @¥ûíÒñ©ü@¥ûäÝ/ @¥û­BÃÉð@¥ûäÝ/ @¥ûÿU›=@¥ûäÝ/ @¥ûÒòä@¥ûäÝ/ @¥ûË Iº@¥ûäÝ/ @¥ûÍ\ú¬Ú@8*0U2b@8_Ø­« @3¡hr° Ä@3Ä,<žì¿@2ô“t¼j@3 ¿HË’@2\ÚQÎ@2g8}¿I@2\ÚQÎ@2|í‘hs@2\ÚQÎ@2wRT`ªe? Eˆ‡ðó‹?µêÙš?8L?³>ðÐG‡?™k$®tO?²i=Í—Ž?µ5ú`?˜ž^ƒÿ*ˆ?¹°ã±÷÷T?µ¸."û®E?°Fê¡J?¾8.Ä>?Ó+ÐDoX?”XÅÏŒ? Ûƒ¶30î?²_K. ‹?°p)Õ?·ˆ#j?¿H>”w,@@@@@,@,?ð?ð?ð?ð?ð?ð¿bñnê¿‚0tÍi?HºÊ!ÙÙ?T(£¯Gª@£F 3ŒKf@¥ûÝh/¸é?b;îªÚ±Õ?qƒÃÛbÈ?‹„y¥F?£rÝÎÌxr@Ÿd&Chš@T@­Ê -Àƒo@­Ê ÌÌÌÎ@­Ê -Àƒo@­Ê Ƨï@­Ê -Àƒo@­Ê “ àß@­Ê -Àƒo@­Ê -dÂø7@­Ê -Àƒo@­Ê ˜_ø@­Ê -Àƒo@­Ê  'RT@ªÔ…¡ÊÀƒ@ªÔˆõÂ[@ªÔ…¡ÊÀƒ@ªÔ„›¥ãU@ªÔ…¡ÊÀƒ@ªÔ†L/ƒ{@ªÔ…¡ÊÀƒ@ªÔ‚ø7´¢@ªÔ…¡ÊÀƒ@ªÔ‰ÞÑ@ªÔ…¡ÊÀƒ@ªÔ„Щ*@8(†YJôñ@8)™™™™š@3¦‡+ J@3¦ð¸º@34“t¼j@34¼j~ùÛ@2®_oÒ @2¯ùrGE9@2®_oÒ @2®vÈ´9X@2®_oÒ @2®($ x?€‚ñêã ?½Ë9ØŠ§?”âLñ¹D?Hžyq?’o?P´À?”‹ÂØ*þ›?гá‡}?“«ö„@×®?”p¶I”“ž?‘~¬Àm?ó?“‚Û£0Î¥?’?;Áƒè?±A\ÿŸ#?¨ ‰‹U)?‰6~„æAÕ?„†YÊ’È?‹¼`’ i2?¢—„¯l@@@@@,@*?ð?ð?ð?ð?ð?ð¿>ÍGJ¿E¤p°?3^tÒÕô?J. H@­Ê ˜Kø@ªÔ†±Ô+ô?TT>x$ˆ­?i™7xþ“?­Îð…~–?ÒÏšš«#O@ŸhÿNõ1ß@U@®BhõÂ\@®Be¸Qì@®BhõÂ\@®Bmç®d7@®BhõÂ\@®Bƒï‹œñ@®BhõÂ\@®BfÌÓo@®BhõÂ\@®BƒBbÈ@®BhõÂ\@®B~20x@•`Á‰7KÇ@•`Õ$@•`Á‰7KÇ@•a×+¹Ô@•`Á‰7KÇ@•`ôݬ\y@•`Á‰7KÇ@•`ßOùŠ‹@•`Á‰7KÇ@•`ò€Ö_µ@•`Á‰7KÇ@•a#B@6ÿ–»˜È@6þ!ºËYN@4c÷ÎÙ‡@4;Wž1ÃÓ@3Ÿ²-V@3}2‘n‰@3ò䎊r@3d@’–º@3ò䎊r@3R^éWe3@3ò䎊r@3O5åI™ð?ŽÕQp Î?¦naɹ&?©Ò ‘A?¤€ÁäõE/?¬hÔ­ÓÔù?¬âç ?ŽÕQp Î?§SŽFÛ«?¦YxÌ¿Ó?§Ë¦3áØ?±’oÎ?±µ”×Ã?3ˆ»ðô?” Ôf¨™?•ˆ!Íwà?Œ.u+•?’Ôb©øø1?—W~|@@&@,@,@:@;?ð?ð?ð?ð?ð?ð?t¬Ã?zrÕ©Ô?`1ͺNŒ?G±ª©ïÜ@®Bjã‡\@•`Ò¹âU?uLßd¹Š?^!‹n¼?ÝÃú6f?¦yt‚§@Ÿ_+þ? @V@­záG®@­záG®@­záG®@­¨Xy>@­záG®@­•*™@­záG®@­¨Xy>@­záG®@­Fs×@­záG®@­SŽóM@¥™‘hr°!@¥™‘&éxÕ@¥™‘hr°!@¥™‘Ä2ÊX@¥™‘hr°!@¥™‘N;Í6@¥™‘hr°!@¥™‘hr°!@¥™‘hr°!@¥™’-V@¥™‘hr°!@¥™’×s@3`ØDЩ@3`Ä›¥ãT@0 -^5?|î@0 -’£S&@/:¬1'@/:kP°ò|@. -#9Àëî@. -W§†Â'@. -#9Àëî@. -Ú¹õY´@. -#9Àëî@. -™0¾ î?€‚ñêã ?ï1ïºÅ?‘4!Ÿ•p’?‹¬àÌ’Ç?‘õbÐ\?È2I/?|öOÿÝ?’,ö´´Ï#?ˆ9²0?-õI¸`K?â2„&ÿh?Z˜°,aÝ?‚uÞ@>N ?Œ».êxóÚ?‚§W®ê ?ƒ†+ Å?†£îž«î?†žóB» “@@@@@*@,?ð?ð?ð?ð?ð?ð>ú€]?*¡c0?'li‘jÅo?PxIå}Ü@­­1bØ@¥™‘•Ï?G8ŒHé??)´½?š¯ª «?_求üÊÂ@Ÿg‚æúž@W@§2Ƨï²@§2Éûçl‹@§2Ƨï²@§2½/Ÿ¾@§2Ƨï²@§2ÊdÂø8@§2Ƨï²@§2Ç ù l@§2Ƨï²@§2¥S&Ã@§2Ƨï²@§2©“ àß@¦€åãS÷Ï@¦€¨1&éy@¦€åãS÷Ï@¦€ì/ƒ{J@¦€åãS÷Ï@¦€Î±Ä2Ë@¦€åãS÷Ï@¦€Þ í(Ž@¦€åãS÷Ï@¦€óê³g¡@¦€åãS÷Ï@¦€è§æ›@7–»˜È@7i k¹Œ~@3Ï|í‘hr@3Ú ÞÒ@34“t¼j@3UãS÷ÎÙ@2õµsê³h@3t¼j~ú@2õµsê³h@2¿Òòä@2õµsê³h@2¾vÈ´9X?Ž=fA:?ŸoÝ ÷6}?©ù$q‘îË?–cÙa¢+r?¶dtÀXü±?·=ÎÊ?ÉÿÛŠ›Ì?žù=Beõ?¨„¸olÚÊ?V)0ÁÔ?Àq ]?ĵP§¶û?ÉkÛVä ÷?@`WÓå?¢ó6õ··?™òvÈc?£Ð °?¦ÿc°õ@@@@@*@(?ð?ð?ð?ð?ð?ð¿g¨ÁGÎ?ЧN/÷@?e*üˆEø?tâë ´½â@§2£SÁ4@¦€ß¨hn?‡ù3˜³}X?xiÄŸ¥ý?å š&Iºb?·ºêÞICb@ŸkúÎÉö¦@X@¥ñÌÌÌÌÍ@¥ñÍ4–l@¥ñÌÌÌÌÍ@¥ñaohÛ@¥ñÌÌÌÌÍ@¥ò\Æ?@¥ñÌÌÌÌÍ@¥òʦL/ƒ@¥ñÌÌÌÌÍ@¥òdêJŒ@¥ñÌÌÌÌÍ@¥òféxÔÿ@›l˜“t¼j@›l–‹¬Ÿ@›l˜“t¼j@›e~BZîc@›l˜“t¼j@›d†YJôñ@›l˜“t¼j@›c‰ 'RS@›l˜“t¼j@›dIã½@›l˜“t¼j@›fhõÂ]@7‘|ÚQ@7â³ø­t@4©‡+ @3•”¯O „@3ù7KƧð@3œàuöý@3zÔ,<ží@2;dZ¬@3zÔ,<ží@2ž!–R½<@3zÔ,<ží@2¶$Ý/ ?¨Sp*?Ý\Zõ¦E‡?Ø3ì—àÍ?Á•- -@™?Ê›÷£8?–ËÒÙI°?|¬Æ Væ?è£Ô°ì?épVY^ý?é#Lp~?êx;Ãq -?ϧèr«ì¯? ]Ö~Ò"L?¿\TÉ%“›?§˜Áuf·?ºİiýö?¼ µ:C?³ü«í(@@@@@,@?ð?ð?ð?ð?ð?ð? !‹fd ¿Æ#øó"d?pϳE?¢بu+@¥ñÖw=~Ö@›l4ÌAæ?Œ †ÉX?–Fœ 71@Ê#ø2@XÐ,¡ó@ŸX)‚Wãö@Y@«%n—P@«%° Ä@«%n—P@«%ö5¥É@«%n—P@«% /n @«%n—P@«%¯OÆ¥@«%n—P@«%æ9_v@«%n—P@«%hÖZÉ@›ã“t¼@›ã“t¼@›ã“t¼@›ã´>@›ã“t¼@›ã–P“Å@›ã“t¼@›ã #+@›ã“t¼@›ã¢„—@›ã“t¼@›ãB¸@0ãg ù l@0ãg ù l@+Üj~ùÛ"@+ÜlM˶b@+ÊÀƒo@+©2“Ñ@)Âu%F -§@)ÂbÿF{“@)Âu%F -§@)Â4H)@)Âu%F -§@)Âd‘Ÿõû?É^¨¯Âj?¾¡5¼>?‘J½å?‹¬Ó¯c[?åtxâÕ^?±Ý_4á?ÐbMÝn½?’ÎÇ(tm?~J€ßÂÂ?/—ùœ:?Ë= yκ?J› öWˆ?€bwÄ' g?Œ¬­z=`=?‚pDøïRh?‚ã?Ã@j?†ˆŠ_cd?†ˆ¾®¿‘º@@ @$@&@0@0?ð?ð?ð?ð?ð?ð¿Q°š;¿° P0?@&ð?3 E¸ß@«%.¸pÐ@›ãü…Š€?Nóx>¹?B±~I˜Ã?——È–p?|‹•GÙð@Ÿs JlÞ@Z@¥ ó¶E¡Ë@¥ úáG®@¥ ó¶E¡Ë@¥ ölô!@¥ ó¶E¡Ë@¥ ôêJ@¥ ó¶E¡Ë@¥ óœ¾à@¥ ó¶E¡Ë@¥ ó¶E¡Ë@¥ ó¶E¡Ë@¥ óŽóMj@¢mž¸Që…@¢m£n—@¢mž¸Që…@¢m/Ÿ¾@¢mž¸Që…@¢mš’£S@¢mž¸Që…@¢mœ„µÜÆ@¢mž¸Që…@¢mž5?|î@¢mž¸Që…@¢mœ‘ÑN<@7rÃÉîËû@7n!–R½<@18r° Äœ@16ð¸º@0gKƧïž@0eýŠÚ¹õ@/ -#9Àëî@/Ë’:*@/ -#9Àëî@/ö”Fs@/ -#9Àëî@/l‹C•?…ÅBðrç?äm°û0Ž?‘ñê&ètä?‹ÝÉ!ë#?‘; ÷^?‘<ƒÜ_õ?”¼íÒh??’#maЀ?‘†£„Â?ø,~[´?‘+ùÔ!½‹?‘ÔÄ÷Õ?¢tñÓu?Žƒä%®æ2?„m~Z_s,?…<ò N ?‡æê7²zE?‡gϵ’õ@@@@@(@*?ð?ð?ð?ð?ð?ð¿[ÆõŠ,¿RÜ.Ü?@Ï›Pƒ?C)þ€åÉ@¥ õtXw@¢mž| y8?`7‰µQ ý?`jÏuB}?ÂöT™¹-?º{=ä¦@Ÿl$NßM@[@¢™n—Oß@¢™mÒñ©ü@¢™n—Oß@¢™nÞÜnú@¢™n—Oß@¢™q³ÓÃ>@¢™n—Oß@¢™o¬ÕË@¢™n—Oß@¢™j cr[@¢™n—Oß@¢™lJSö%@—RH´9X@—RE¡ÊÀƒ@—RH´9X@—RRf{@—RH´9X@—Rd°‡Ï@—RH´9X@—R\¾Ù…+@—RH´9X@—R\Â:q@4Q|ÚQ@4N¸?•´ò@0ã÷ÎÙ‡@0ãCkˆ@0±‰7Kƨ@0²µ‡@/QÑN;Í6@/T_Ù§J@/QÑN;Í6@/K‹í`E@/QÑN;Í6@/L ÀÕj/?}õ¬#„­?¢3²…ß?‘FÐUï.Á?ŽzMŠ•´¹?‘Ž\d²?‘\Ãò¦(?„`™ˆ/.~?’M´\]È?XÐè.?’¶?hÜÆ?‘ŒYF·"ô?˜í@¡ØÇ?#ÓA™þÜ?„¤±ÀÖ?Žõ:Ûë>æ?ˆ9D7?ˆ -¢÷͉{?ˆñá+¬¿r@@&@@&@8@7?ð?ð?ð?ð?ð?ð¿8ž£’À?fJ¶ b€?@4ç&rYT?Q„Þdi@¢™m%âÍ@—RTS0i#?`ËN'à»Î?q˜´§JýU?Ê)²Bdκ?çDŠ©‹X@ŸhB§¯™@\@¯¡úáG®@¯¡ûdZ¬@¯¡úáG®Á.„€@¯¡úáG®Á.„€@¯¡úáG®Á.„€@¯¡úáG®Á.„€@¯¡úáG®Á.„€@¯F“t¼j@¯F“t¼j@¯F“t¼jÁ.„€@¯F“t¼jÁ.„€@¯F“t¼jÁ.„€@¯F“t¼jÁ.„€@¯F“t¼jÁ.„€@1šÔ,<Ÿ@1µ 'º@/.V“tÁ.„M‰ûçm@/&éxÔþÁ.„QnÙ‡@.zÇË)_Á.„NÜC,¥@.zÇË)_Á.„NÜC,¥@.zÇË)_Á.„NÜC,¥?É^òÀXæN@8#˜@8¾:@8 >+@8Iç@8Ù?ÐbMçê_x@8Î÷@8i§@8Å@8S@8û—?€j|î–éë@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø]@­JÒñ©ûç@­Jê=p£Ø@­JÒñ©ûçÁ.„€@­JÒñ©ûçÁ.„€@­JÒñ©ûçÁ.„€@­JÒñ©ûçÁ.„€@­JÒñ©ûçÁ.„€@¬7®zá@¬73332@¬7®záÁ.„€@¬7®záÁ.„€@¬7®záÁ.„€@¬7®záÁ.„€@¬7®záÁ.„€@7ëµsê´@7ÀÞÒˆÎp@4—+ IºÁ.„M‰ûçm@4gKƧïžÁ.„QnÙ‡@3¦YJôðØÁ.„NÜC,¥@3¦YJôðØÁ.„NÜC,¥@3¦YJôðØÁ.„NÜC,¥?„F/·ÿP5@8#˜@8¾:@8 >+@8Iç@8Ù?„F/·ÿP5@8Î÷@8i§@8Å@8S@8û—?Œ*Ñ¿°Ö@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø^@§ò:^5?}@§ò:^5?}@§ò:^5?}@§ò;dZ¬@§ò:^5?}@§ò;/ìVÖ@§ò:^5?}@§ò;šu@§ò:^5?}@§ò9JôðØ@§ò:^5?}@§ò9‡+@A¥ãSø@A§/ŒÓ@A¥ãSø@AQÎ@A¥ãSø@A¹õY´@A¥ãSø@AquŽ#@A¥ãSø@A¬1@A¥ãSø@AŸ¾vÉ@.àhÛ‹¬r@.à[À6â@,MV“@,M:’£@,&éxÔþ@,‰ 'RU@+kjçÕfÐ@+k6z—@+kjçÕfÐ@+k]ÌcñB@+kjçÕfÐ@+k6z–?É^ž6õP?Ì&ÏøHÃ?‘"žæÆó¡?‹ª½¨ª8v?ôê÷º»â?ºª$Ð?ÐbMçµ7§?’ -‰¸Ì?ˆ9²0?6) }’ë?Ö§­îQD?Uÿyu”#?€bMÔŠ»?Œ°¶.Ä+Æ?‚yî8Á$?‚æÊ¬vã?†½ª»—?†’Õaì+’@@@@@*@(?ð?ð?ð?ð?ð?ð¿L¤×t¿)OÂT?-=¿6õ?#e×ÝÖ8@§ò9ïWSØ@AÉLEN?<"$Wf Î?2[€eêÎ?snY·¥Ì?]‚ßÙý½½@ŸsƒÕ„l@_@¢Pj~ùÛ#@¢Pi­BÃÊ@¢Pj~ùÛ#@¢Phn¢Ó@¢Pj~ùÛ#@¢Pc{C¤·@¢Pj~ùÛ#@¢P`€RÐv@¢Pj~ùÛ#@¢P_â×Õ@¢Pj~ùÛ#@¢P_x!@—2["Ðå`@—2Z¬1@—2["Ðå`@—2l†˜~¡@—2["Ðå`@—2i­|õ@—2["Ðå`@—2m0¢–@—2["Ðå`@—2jEJÅ@—2["Ðå`@—2~'Ž(/@42ÃÉîËû@41‰Õ@05ãS÷ÎÙ@0/ɾÓN@.ÉxÔýó¶@.½ÖZ¯Áà@.p‰ 'RU@._kç-8@.p‰ 'RU@.`3­÷-@.p‰ 'RU@.`USsË?|çµB &€?ےب@?’Š [ Ëð?‘W‚Åó/¸?‘¬š»-)?’dpÅ -”#?}@T˜ÁÎ¥?“ûS¯êx=?“Ô/à¤JF?‘öÜ~† À?‘¯¼ÃM?ç7_“º]?„9¨Ã¿ÅC?ŒÊñï 5™?‚ûÿû‚ÜK?ƒ\ÖàñX§?†ØøÅ¾¡?†¥<ï˜à@@$@*@(@9@6?ð?ð?ð?ð?ð?ð¿cÐ^¡¨?iÒaˆÏ?9c››6µ?DwMÈP±@¢PdSÈ—@—2gj¯n?YŒyø ’?dÔïžšïò?¾Çž³hÄT?Õ5MTü@Ÿf‹¹ÝìU@`@£·Á$Ý/@£·ÀA‰7L@£·Á$Ý/@£·¡@N¥@£·Á$Ý/@£·•Â\)@£·Á$Ý/@£·©Ô•+@£·Á$Ý/@£·…zxl!@£·Á$Ý/@£·\ú¬Ú@¢ÄyXbN@¢Ä{çl‹D@¢ÄyXbN@¢Ä´êJŒ@¢ÄyXbN@¢Äº¬1@¢ÄyXbN@¢Ä·KƧð@¢ÄyXbN@¢Ä¡‰7KÇ@¢ÄyXbN@¢Ä—ÎÙ‡@7eöý!ÿ.@7`A‰7KÆ@30Ä›¥ãT@3+²þÅm]@2Ÿ²-V@2“33333@2?ò䎊r@24Ö¡aäø@2?ò䎊r@2Ov_Ø®@2?ò䎊r@2!hr° Å? Eˆ‡ðó‹?¥ÒëÞñç?¯KúvBrq?žéQÁö£?ªxàôTl?±4tDÈ?¬å'[ V÷?¥ÜH‚޶S?¦¾DXLa?™ž×=§‘Ã?±ê®Ä6?§…[aÍ,?¤qb“³îÐ?”~ªd•?ŸÛð°|°?•ˆ°ùjõ?¤gTÐ?«Ã±Rõš@@@@@*@*?ð?ð?ð?ð?ð?𿇦4—N€?kØ6…ó?h-´$æ?…*:1ýj[@£·£>/‰X@¢Ä¨'Vt?…x š4V?œÃ,Ùk˜"?à€ ùÌØ«@)[±²?v@Ÿjì?‡L8õASÎ?Œ¸ðËb@@@@@*@,?ð?ð?ð?ð?ð?ð¿DJ->œ?9Rù?J¯õg€?,ü£¯µ¨@ª¬ÙM'Õº@¨‹µùj?iÎý­y -×?LT3ãQÌŒ?ÝþûÅæô;?¢…;Åö¾€@ŸeÎÕ·@@b@§Y‡+@§["Ðå`@§Y‡+@§Q&éxÕ@§Y‡+@§Zxl"h@§Y‡+@§T¼@§Y‡+@§`ªdÂù@§Y‡+@§`ù kº@®Ý¶E¡ÊÁ@®ÝŸ|í‘h@®Ý¶E¡ÊÁ@®Ý¸bMÓ@®Ý¶E¡ÊÁ@®Ý´•*™@®Ý¶E¡ÊÁ@®Ýºxl"h@®Ý¶E¡ÊÁ@®Ý°‰ 'S@®Ý¶E¡ÊÁ@®Ý° Ä›¦@8›¹Œ~($@8˜*™0¾@3ÜIº^5?@3Û"Ðå`A@3Z~ùÛ"Ñ@3b Iº^5@2¦YJôðØ@2¥ýŠÚ¹ö@2¦YJôðØ@2©Û"Ðå`@2¦YJôðØ@2ªÍžƒä&?©Ùƒ|ËI?Eˆ‡ðó‹?“u*y?ŽÝ¡uÒ(r?’°STðS?–®UÒ.?¶Ú·Œò¸›?“¶†ÿê¡?‘Ç€˜­r?™š®ØŽ?’W;„zY?’9ñ9¶ò8?¯k [þXœ?–ÞqëJ?? mÖ¿tE?Šc^î½)Ô?^²®':Ì?‰]³ß’Ý@@@@@@?ð?ð?ð?ð?ð?ð?pLÆUV€¿_Ë"¨?eIo ÷q?iL·›íÈÀ@§[e>üq@®Ý³YÓE?wø­x76£?zþª|èÊ?å¡éa"öô?âjõÔáþˆ@Ÿq¦ˆemÓ@c@®© Iº^5@®© ‹C•@®© Iº^5@®© 85Kõ@®© Iº^5@®© ìAÝ@®© Iº^5@®© ¸»€1@®© Iº^5@®© -–—Ç@®© Iº^5@®© -”xÈi@šJúáG®@šJûçl‹D@šJúáG®@šJþ,¡ç@šJúáG®@šJþ«6z@šJúáG®@šJý‹Ü!X@šJúáG®@šJþvHˆ@šJúáG®@šJþâÑ5@1ò䎊@1 Iº^6@-)7KƧï@-'¤2ýöð@+ØÔýó¶F@+×%Bв@*ÑÑN;Í6@*Ï´¯n<@*ÑÑN;Í6@*ÏâóäO@*ÑÑN;Í6@*ÏØ­«ŸV?É^¨¯Âj?ÅŠXãF?‘Y–(™?‹¬Ó¯c[?èíò=?¸Zw—?ÐbMÝn½?’òBlÂ9?~J€ßÂÂ?5e’Òåi?Òh‘›1?P·?sFÉ?€bMÕ]f?Œ®JE‘—O?‚r—Ge?‚å¬C>¥’?†‰~±.?†‰ýçïe@@(@&@&@4@3?ð?ð?ð?ð?ð?ð¿P¤6?3JQØ2?4 jå8'‚>üýòzg)@®© rí¶J@šJþ9G ?CF·Ä‡G1? -’–ú»¿??‚F)Ð;Â?øb8¹W@Ÿs|èlE@d@ª E¡ÊÀƒÁ.„€@ª E¡ÊÀƒ@ª M¸ºÇ@ª E¡ÊÀƒ@ª KjçÕh@ª E¡ÊÀƒ@ª G ù k@ª E¡ÊÀƒÁ.„€@ª E¡ÊÀƒ@ª HÎp:û@:Që…¸Á.„€@:Që…¸@:^¸Që…@:Që…¸@:Tã¼Ó[@:Që…¸@:dZ¬@:Që…¸Á.„€@:Që…¸@:Xâe-@904mÅÖ8Á.„>¤µÜÆ@3¦‡+ J@3µfÏAò@2È“t¼j@2ÑohÛŒ@2ý!ÿ.I@2#MjP@2ý!ÿ.IÁ.„NÜC,¥@2ý!ÿ.I@2Š Þ@8J¨?ž5JÜà ä?¥”Ïåª?ª©¹(4@8Iç?˜úiêÔÇ@8J¨?¡^VÖ‹? PÇ´âþ?¥swŽ)Ò@8S?”…®«øÄ*@8p÷?˜”Ò91Äa?¡è™è;?¡~l’VoŸ@8 Ø?¾Á{þÆ%@@@@*?ð?ð?ð?ðøøøøøøøøøøøøe@«£å`A‰7@«£âÐå`C@«£å`A‰7@«£âÃÉîÌ@«£å`A‰7@«£ÝæšÔ,@«£å`A‰7@«£å+ÓÃ`@«£å`A‰7@«£ÞÒˆÎp@«£å`A‰7@«£â3œ¾@¢û{Ñø~?•OÞúç*»?›°Í`]u?„E£R ÕY?Œ˜ˆTÙ8ª?qÂ' -Bœ@@@@@*@(?ð?ð?ð?ð?ð?ð¿R!ž?@?Y„¶A?UOœá¦µá?[dŽ×¬ò-@«£âîžÈ0@¢+@8Iç@8Ù?ŽÕQp Î@8Î÷@8i§@8Å@8S@8û—?‚’¤I å@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøg@ •çl‹C–@ •æéxÔþ@ •çl‹C–@ •ëœØr@ •çl‹C–@ •ìÙ°Oæ@ •çl‹C–@ •ê& -@ •çl‹C–@ •ãZT ‰@ •çl‹C–@ •áꡉ)@­DÛ"Ðå`@­DÚŸ¾vÉ@­DÛ"Ðå`@­Dàí‡-‘@­DÛ"Ðå`@­DÜ¿À™ï@­DÛ"Ðå`@­DÚÎþÿ©@­DÛ"Ðå`@­D×pfäÏ@­DÛ"Ðå`@­DÖ`I;Í@3ºqÞi­C@3ºzJHù@0 -^5?|î@0 )8‡@/IxÔýó¶@/OWÌût@-Âu%F -§@-Ä{4-ß@-Âu%F -§@-ÀŽŒv©@-Âu%F -§@-½âøƒÀ?}@T˜ÁÎ¥? ‡iÙƒ?‘­’¦,-?‹Üðî]\8?‘~ãG /Ã?ÿ*O˜ðö?|¬Çq—ô?’m3 -V—?‘üNadL?9É>ÿÝ+?‘Ÿ-§ðxH?|®¡}öÍ?‚pDøïRg?ç µE€?ƒÀam#êæ?ƒ­KÀ?‡ä>ô=á?†Â¿bçø@@"@(@"@6@1?ð?ð?ð?ð?ð?ð¿DíO|d¿HDh?Ix;L"Í–?2ªuñ—au@ •æ - p @­DÙ1ÕË?iA±êŸš?Rýf œÛ?àìA'Š)R?²yØßÉñ·@ŸfÞa?X@h@¯(S÷ÎÙ@¯(Y™™™›@¯(S÷ÎÙ@¯(P Ä›¦@¯(S÷ÎÙ@¯(E‡“ݘ@¯(S÷ÎÙ@¯(MBÃÉï@¯(S÷ÎÙ@¯(K¹Œ~(@¯(S÷ÎÙ@¯(OiDg7@¥» Ä›¥ã@¥»ºáG®@¥» Ä›¥ã@¥»¤Ý/ @¥» Ä›¥ã@¥»¦$Ý/@¥» Ä›¥ã@¥»¨è§ç@¥» Ä›¥ã@¥»§E8ï5@¥» Ä›¥ã@¥»¦s×Ü@8^Hè§æ@8VâëC,@3c÷ÎÙ‡@3b×sü@2´“t¼j@2¶»˜Çâ‚@1ó&Á½¥@1ñ$Ý/@1ó&Á½¥@1𖻘Çã@1ó&Á½¥@1ðÄ›¥ãT?€‚ñêã ?‘U «¼é¥?™_*®k?³ÍŒ™¡?“>û{Ñø~?“ d?¦Ï±úQm‡?•ÞèI1Æ@?•bZèS?’:u.ý ?’LÁŒÀ´a?“‚í?eBZ?…cü›Š×Õ?ª‚eûƒ+?¨€OìØ¯i?Š­®f¥?ˆ”Tj«›ª?‡´*žZ}Õ@@@@@(@,?ð?ð?ð?ð?ð?ð¿gà|P.¿hð4)€?NlƒzZŒ?WåCCèš@¯(O¤^uB@¥»©É×o?sC˜ š?m‚ÅGtý?ãbåÒ×Ê?̽óI?t@Ÿnë÷Ùµ5@i@£/— -=p¤Á.„€@£/— -=p¤@£/„­‹à@£/— -=p¤@£/ªÁ@£/— -=p¤@£/‡Ûí@£/— -=p¤@£/~\‘ÑN@£/— -=p¤@£/a²ÄO¹@—µ?|í‘Á.„€@—µ?|í‘@—§X)Ý:@—µ?|í‘@—•$V@—µ?|í‘@—ͺ¤@—µ?|í‘@—³¶E¡Ë@—µ?|í‘@—™Aâ@9*0U2bÁ.„>¤µÜÆ@45ãS÷ÎÙ@4OIøp8@3]V”@3^G¢‡µ©@3fYJôðØ@3‡²OÃøl@3fYJôðØ@3{=ÈK^@3fYJôðØ@3‰¼íÏÉ@8J¨?”§ŒkG Î?‘œvï8Å?¢„J®³k?±J¶‰jcJ?ªãGX%Õ•@8J¨?¡µ%3G·h?‘jyÅå ?¤vÕAŠ´¤µÜÆ@3@ Ä›¥ã@37+ Iº@2A‰7KÇ@2‚þÅm\û@2\ÚQÎ@24ohÜ@2\ÚQÎ@27ü¹#¢@2\ÚQÎ@25?|í‘i@8J¨? yÅ´­½?¤øË&“1*?¸£ï9£ÖÙ?²Â—0ŒIô?¦£@óiÖ@8J¨?”” -=¤µÜÆ@4¦‡+ JÁ.„M‰ûçm@3¾V“uÁ.„QnÙ‡@3 -0U2a|Á.„NÜC,¥@3 -0U2a|Á.„NÜC,¥@3 -0U2a|Á.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøøl@¥"k…¸R@¥"\‰•®@¥"k…¸RÁ.„€@¥"k…¸RÁ.„€@¥"k…¸RÁ.„€@¥"k…¸RÁ.„€@¥"k…¸RÁ.„€@”R£× -=q@”R¦ffff@”R£× -=qÁ.„€@”R£× -=qÁ.„€@”R£× -=qÁ.„€@”R£× -=qÁ.„€@”R£× -=qÁ.„€@8?–»˜È@8=‘hr° @5‡ÎÙ‡+Á.„M‰ûçm@5{Ƨï²Á.„QnÙ‡@4øDЩ*Á.„NÜC,¥@4øDЩ*Á.„NÜC,¥@4øDЩ*Á.„NÜC,¥?¥¢É@8#˜@8¾:@8 >+@8Iç@8Ù?¬Ó!æÀXW@8Î÷@8i§@8Å@8S@8û—?„“‘1zz@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøm@¨H§ï²@¨H®zá@¨H§ï²@¨Gÿ¥bù@¨H§ï²@¨HH,³T@¨H§ï²@¨GþW”2n@¨H§ï²@¨HÖ*ûJ@¨H§ï²@¨GùÔ$ð„@•Âçl‹C–@•ÂïärC@•Âçl‹C–@•ÃgV{/@•Âçl‹C–@•ÃÊCX@•Âçl‹C–@•ÃÃjyZ@•Âçl‹C–@•ÂâH-¨@•Âçl‹C–@•Ãd+LR@7‰Î_oÒ@7…²c  6@3=‘hr° @3: w$@2§KƧïž@2Ÿ{­@2mÅÖ8†@2 Æ÷b6@2mÅÖ8†@2Is¿(Û@2mÅÖ8†@1þGGO ¦?›´q”¸æ-?QD™¯P™?”®O–|½[?y:܆Á&?’ó8Ä„V?ø¨¥ãn^?ˆ5îå9WÐ?”/£ÆÀan?’v£…Ë›1?‘`%Ò-dE?“&iÊÛç?‘ª~úq_ª?‚…wßGÜÒ?•Ò=ßë?ƒªOí e?„– ê@Þ?‹?¥¢!?‘V]ÍÅÒ@@(@,@*@:@4?ð?ð?ð?ð?ð?ð¿^m¾¤?g½C&€?dÞÜ>!‹I?h9M @¨HPý&@•Âÿ@H®©?€¤)à?‰ÑŒï™s?õÚ°1Ô±!@†çùv¿ -@Ÿmiôj.ì@n@¬r>vÈ´9@¬r>vÈ´9@¬r>vÈ´9@¬r?HË’@¬r>vÈ´9@¬rAG®{@¬r>vÈ´9@¬r>ÿ—#@¬r>vÈ´9@¬r=Ùb·@¬r>vÈ´9@¬r9Û"Ðæ@®­‘hr°@®®—Oß@®­‘hr°@®²¼£@®­‘hr°@®¨r° Å@®­‘hr°@®°¾ í*@®­‘hr°@®¯\(õÃ@®­‘hr°@®¬¥zxk@7«µsê´@7¦Ü]cˆf@3‚° Ä›¦@3‚-V@3å`A‰7@3N¤¨ÁU@1s&Á½¥@1r£S&@1s&Á½¥@1rø7´¢4@1s&Á½¥@1sZ…‡“Þ?3ßa=„?‘" Á°–•?•Mq —¦?=]. ?’(æ„+Zk?Êëüâi{?‚á²Olºü?–÷-A?’ã0eʪv?‘M –=?’£ôùÎ8ï?‘¡ë Þf?º f -¦?‘S1Êz?þ‡ÿítº?%üížñ˜@­ƒÕ½Ú;Æ@”d3Û¬À? j£1* ?Cœa oä?D¯aû:áJ?„ŸêÑ7Š@Ÿkb|Kð@q@¨þ ÌÌÌÍ@¨ýû¥ãSø@¨þ ÌÌÌÍ@¨þªÍžƒ@¨þ ÌÌÌÍ@¨þ  'RT@¨þ ÌÌÌÍ@¨þ “ àß@¨þ ÌÌÌÍ@¨þ -=p£×@¨þ ÌÌÌÍ@¨ýüàuöü@©"MÒñª@©í‘hs@©"MÒñª@© -à @©"MÒñª@©!G®{@©"MÒñª@©64@©"MÒñª@©vÈ´9@©"MÒñª@©)­BÃÉ@8T xFÜ@8^šu@3Ô›¥ãSø@3Ô“t¼j@3"-V@3Ÿ¾vÉ@2Œ~($ @2“ àÞÓ@2Œ~($ @21&éy@2Œ~($ @2‡ü¹#¢?|öOÿÝ?–MSMÓ®¬?““¶”ÿµb?¨•Ù?’o?P´À?•iá¸OL™?‡YÍ_?˜s˜»ì•?’ÖsÄÖ?•GÝóuS—?’¯dL¶t?˜—àÌÛÆ;?©ÏT8¨L?¬HO?…™ï ufÞ?„•ˆG’Z¾?Š`½i=ÓØ?‹Ûx§Þ@@@@@(@(?ð?ð?ð?ð?ð?ð?co`Èø?V/ŽŠ?\`ÊöÅ·R?R,?EÀ -@¨þÀÀˆJ@©9)ÿµ?|ÅìÖÃD¾?qøéæ "¸@øÂ!$B?áO[Q)=Ò@Ÿgt0÷3@r@ªÚŸ¾vÉ@ªÛ¥ãSø@ªÚŸ¾vÉ@ªÛ¥ãSø@ªÚŸ¾vÉ@ªÜÚQ@ªÚŸ¾vÉ@ªÛ²þÅm@ªÚŸ¾vÉ@ªÚ)Çy§@ªÚŸ¾vÉ@ªÙÎ_p@¥¢TzáG®@¥¢U?|í‘@¥¢TzáG®@¥¢TðØDÐ@¥¢TzáG®@¥¢S÷ÎÙ@¥¢TzáG®@¥¢St¼j€@¥¢TzáG®@¥¢TmÅÖ9@¥¢TzáG®@¥¢TFsØ@52ÃÉîËû@53ŽóMj@0›¥ãSø@0tSŽóM@.ØÔýó¶F@.×ö+jçÖ@.oi@.ŽŠqÞj@.oi@.œàu÷@.oi@.µÜÆ??€‚ñêã ?Úþþ³?‘&Øç?‘?‹ÑqÔ@vÿ?éDEâ©×?ÛF»0?|öOÿÝ?’MœœN ?»Þ‹"è?ð{¥âdû?Ìp®eÔ¾?ˆ9²0?„›‹ÖO?ŒÂ§dß±?‚˜YªüÏF?ƒ*|š\/´?†¼Š˜L¥÷?†µ°jÆÃ@@@@@@,?ð?ð?ð?ð?ð?ð¿5þ=п0`*h?"ïW¶¢¿8?"Õï G¶e@ªÛ Ú½¥@¥¢T›n¥N?BÃ[ÎvaF?C}ªíX‰¦?‘gàg â?’츨s9@ŸgxÚ±B6@s@ ~•%@ ~#œ­@ ~•%@ }ÿw¯d@ ~•%@ ~ {3O@ ~•%@ ~QÊo‚@ ~•%@ }ôÂxóâ@ ~•%@ }ú ½¥È@®¢Ö“u@®¢ÖÈ´9W@®¢Ö“u@®¢Ñ“‹/@®¢Ö“u@®¢Ê£A‚@®¢Ö“u@®¢Ïž4¹@®¢Ö“u@®¢Û&ZWŸ@®¢Ö“u@®¢Ó¡}@7쿱[X@7»¬¢ÀZ@4n5?|í‘@4j-FT9è@3¢-V@3£0|Ÿåo@35µsê³h@32Õ)«‹ì@35µsê³h@32qQm°,@35µsê³h@30¹D²F?…ðE[i)?‘ Ùâ}Ù2°ú?”Ûàªj†?@#÷r)Û?’·Äš"Ö]?—¬ž†åÖ?„g¤´õÞ…?“ø£Ú<ž?”`‘±…£¾?„\oXe=?ºÕâ_?àãÇ ®@@"@&@"@,@.?ð?ð?ð?ð?ð?ð¿Vôú¿2snü?X9´­XL?UÚÛL)™@ }ýýy¦@®¢Õ}ãŠ?w+ ‘?uœ˜—õY[?òƒξQ’?Ç@Ÿh,Ó£õ@t@¯UÀ@¯U–È´9Y@¯UÀ@¯UÀA‰7M@¯UÀ@¯U͸ºÇ@¯UÀ@¯U³ àÞÓ@¯UÀ@¯UǓݗö@¯UÀ@¯UÄÂø7¶@§øp Ä›¦@§øp Ä›¦@§øp Ä›¦@§øT¢3œ@§øp Ä›¦@§øL˜_@§øp Ä›¦@§øn}Vlô@§øp Ä›¦@§øo „M@§øp Ä›¦@§øgE8ï5@7wâ‚@·€@71 ²•éâ@4|í‘hr@3ÿHË’:@3éÛ"Ðå`@3¿ „M;@3O „M@3GE8ï5@3O „M@3Îp:û~@3O „M@3 …¸Qì?·à¦_ëý? 5)ZS?¦ÛiÕüaÚ?ŽÝ¡uÒ(r?™uçT5Ï?šèïdË?¥Ìõ}êáþ?©CÍ`ß•Ï?±ÃÅÿÔg´?“ÅëJkÙ?šS³Šßs·?£sUEªk?  0G --?£Æ×q„nï?Ó ¾îóô?œ?§ê¸]&?—v‡ãÃ6œ?ž„ýŸÒ`Ø@@@@@*@*?ð?ð?ð?ð?ð?ð?ƒF´Ø€¿T]áE ?gffpa^?Q¹õ])- -@¯U¹Ÿ¬€@§øm¡âwè?wIÊÓ7¡?f™álRý^?ßU’MŽ ?µL`‚rº@ŸoL=˜T@u@¡<ØbMÓ@¡<×Oß;@¡<ØbMÓ@¡<Û"Ðå`@¡<ØbMÓ@¡<ÙrGE9@¡<ØbMÓ@¡<ÙÀëíú@¡<ØbMÓ@¡<×Á½¥@¡<ØbMÓ@¡<×eýŠÜ@­óE¸Qì@­óEãS÷Î@­óE¸Qì@­óD2ÊW§@­óE¸Qì@­óDtSŽô@­óE¸Qì@­óE`A‰7@­óE¸Qì@­óE¡ÊÀƒ@­óE¸Qì@­óEœàv@5µS&Á¾@5µ+ÓÃa@25ãS÷ÎÙ@25Â\(ö@0éÛ"Ðå`@0ê)Çy¦µ@0–ý!ÿ.I@0—y¦µ @0–ý!ÿ.I@0—†Â&€ž@0–ý!ÿ.I@0— ù kº?}Ñ¿ž,?jú‚<·™?‘&Øç?‘?‹Æ úJ-M?‘oNÅ’+?‘W×ý°A?„F/·ÿP5?’§ioŠ?§^ ÿo˜?K·‘d]?‘ÞIŸö?‘A_f;j?‚‹¡8*ùÿ?3ßa=„?„W;RT?ƒiñj6Â?‡?®\Âä?‡<û¡71@@@@@*@,?ð?ð?ð?ð?ð?ð? ±ëà¿!ÅÌa`?3£ƒ ¿? -­˜8”Yd@¡<Ø×&@­óELß5?TKÈʼØ?*ÂÓ°0†?³”Q®^a:?\@rãç4l@ŸhEgûkº@v@©|9Û"Ðå@©|:^5?}@©|9Û"Ðå@©|9XbM@©|9Û"Ðå@©|;quŽ!@©|9Û"Ðå@©|:^5?|@©|9Û"Ðå@©|8“t¼j@©|9Û"Ðå@©|8“t¼j@¡ÓŒÌÌÌÍ@¡ÓŒIº^5@¡ÓŒÌÌÌÍ@¡ÓŠ0U2`@¡ÓŒÌÌÌÍ@¡Ó‰ÞÒ@¡ÓŒÌÌÌÍ@¡Ó‡Ë)_@¡ÓŒÌÌÌÍ@¡ÓOß;e@¡ÓŒÌÌÌÍ@¡ÓŒ"h Õ@4Û¹Œ~($@4Û6z—@2+ Iº@2süPH@1éÛ"Ðå`@1êŒL˜_@1‡ ù kº@1ˆXy=Ù€@1‡ ù kº@1ˆË’:*@1‡ ù kº@1ˆ>BZîc?|¬Çëý ?Æ -×?“%HCâ=s?ŒArUã@?’ðä¼_?‘À?ÙÂ#’?|¬Çëý ?“‚Û£0Τ?“®ÂrVŽx?£û,Ɇ?’l{9ÙŽ?ó‹P=´?‚§W®ê ?R©i»èi?ƒ{¬ÉW?ƒ¼9XNÄu?ˆ©{2¡Î?‡v>ª¸ @@@@@,@*?ð?ð?ð?ð?ð?ð¿5’Ë ¿'ĶÐ?#·ºÙ -?E2ʤª2@©|9¿:ó©@¡Ó‹•dƒã?BÊ.vH½?eléÀÁü?’o±öæ?ÖÍaÂZÃ@ŸfŠ›ì @w@¯u Ä›¥ã@¯u£× -=r@¯u Ä›¥ã@¯uœ£n.@¯u Ä›¥ã@¯uŸö”E@¯u Ä›¥ã@¯u¢u%F @¯u Ä›¥ã@¯užÒˆÎp@¯u Ä›¥ã@¯užš@­Š‡+ J@­Š„Z¬@­Š‡+ J@­Š†Â&€@­Š‡+ J@­Š‚ÃÉîË@­Š‡+ J@­Š«ŸU›@­Š‡+ J@­Šz¹õY´@­Š‡+ J@­Š¾vÈ´@6wâ‚@·€@6zQÎ`@3ý‘hr° @3øŒç¯¸@3ÐA‰7KÇ@3ÆšÔ,<Ÿ@3zÔ,<ží@3g -=p£×@3zÔ,<ží@3sS&Â@3zÔ,<ží@3pÑ·Xâ?…ÅBðrç?•QÂ^ø™?Ÿ Y—ü"©?“zRÈUÄ?š<¨¸ÆÐ?™?‰¢Ù~?žˆ2}?”ºu(†¼¦?žsô`_7?¡Ð`HÇi?—÷Ë5D«ç?™J•Ø3ÈÖ?–uDJ‘`º?3ßa=„?’úz."?Œ(æQ?„å;m7.?ùDâΊ@@@@@(@*?ð?ð?ð?ð?ð?ð¿QÈì$¿SÚõ€?0°HÙ^›ý?T@j û@¯u¡ÁNr•@­Š‚’~§?PÏüã?t¸Ly¤y?š€e–^?åRJª Q-@Ÿf¹ˆaT@x@¤6º^5?}@¤6º¬1@¤6º^5?}@¤6¶¶ùºF@¤6º^5?}@¤6·m?th@¤6º^5?}@¤6·ÄÍyñ@¤6º^5?}@¤6¸‹0í@¤6º^5?}@¤6¸ñYù@“Ó˜“t¼j@“Ó˜”ÀõE@“Ó˜“t¼j@“Ó–Ö‹zü@“Ó˜“t¼j@“Ó…6üŸî@“Ó˜“t¼j@“Ó‹Õû94@“Ó˜“t¼j@“Ó‘åÇÐI@“Ó˜“t¼j@“Ó‘/Ý3â@3Bò䎊@3Aò×s@.Çï²-@.Â`ÐÔ@.E¡ÊÀƒ@.‚ï—;»@,¸7´¢3œ@,¸Úøÿ@,¸7´¢3œ@,¹P jØ@,¸7´¢3œ@,´èY½««6z@6Æý!ÿ.I@2R Iº^5@2O±[W>«@1’Ðå`A‰@1ó¶E¡Ë@0øDЩ*@0ûP°ò{³@0øDЩ*@0ðÑ·Xâ@0øDЩ*@0ñ–R½<6?€‚ñêã ?’Z†Aži?œrôeEÜ? Í‹hÆ?•Ô¦?n¸?•Þ©qk#?€‚ñêã ?”Ô„÷ËD?™”uÀdª?‘Nw]6»ô?šH¾O”?˜„AP0P?‰~}œ…o^?•cKç4+?•ë þÅ?…âC£½¾Ý?Š*ÊÔQãú?^²®':Ì@@@@@,@*?ð?ð?ð?ð?ð?ð¿aA’?7xîÕ ?@ ½íÑRê?1|ÅBû~ê@¨]tL[¡–@«¿ØÔÊÔ?^¨‹àí­9?P²Õ¿ð“?‘$å¤e?¢/°à-Î@Ÿe¶² Â@z@¥´å`A‰7@¥µ¥ãSø@¥´å`A‰7@¥´Ôã¼Ó[@¥´å`A‰7@¥´ïiDg8@¥´å`A‰7@¥´óÝ—ö*@¥´å`A‰7@¥´Î}Vlô@¥´å`A‰7@¥´À4mÅ×@¦Dj~ùÛ#@¦DwOß;@¦Dj~ùÛ#@¦Dƒ¯·é@¦Dj~ùÛ#@¦D²×sü@¦Dj~ùÛ#@¦DÏìVÕÐ@¦Dj~ùÛ#@¦D™™™™š@¦Dj~ùÛ#@¦Dž¸Që…@7½:’£@7ŠçÕfÏB@3#÷ÎÙ‡@3 í(Œç@3A‰7KÇ@3©*0U2b@1Þ«6z‘@1£þ\‘ÑN@1Þ«6z‘@1±Þi­BÄ@1Þ«6z‘@1±ÑN;Í6?Í2ŸÑ²?§¿u‚3?Âù©d×î?¹HÂåõ?¶þþU«x&?²ìdEmc? Eˆ‡ðó‹?¯¸? ¨ì]?ÀÔ¤õ€«?ÈghæEËH?·¸ÀNî?x?µAáCH)?×kµãÀ¤?¢ÇWiR’½?¬ xGœ÷?š‹ˆe´?¤€3¼¾BÁ?±NKîôÛ—@@@@@&@&?ð?ð?ð?ð?ð?ð¿”ÐÇê?‚! -Þ€?dd sbE?nFR¥”Äþ@¥´ÞËq@¦D–fÏþJ?zn¹“dÏ?–w}þ-Ì]?ŸÙyùFcž?ÜìdÃ$ ¹@Ÿpx`MdW@{@¨{çl‹D@¨{çl‹D@¨{çl‹D@¨|‘…cÿ@¨{çl‹D@¨}šóY@¨{çl‹D@¨|í‘hs@¨{çl‹D@¨{,Ôö -@¨{çl‹D@¨{oOu@“G´9Xb@“G´9Xb@“G´9Xb@“G´w:(@“G´9Xb@“G³”b•o@“G´9Xb@“G´<’í@“G´9Xb@“G´‡ü¹$@“G´9Xb@“G´FsØ@-Q ²•éâ@-Q ²•éâ@)Gï²-@)Gï²-@'òn—Oß@'ò{²þÅm@'ÑÑN;Í6@'Ñί%@'ÑÑN;Í6@'ÑÁðD˜@'ÑÑN;Í6@'ÑÄ2ÊW¨?É^ž6õP?Ç·ñ5“‘?‘c“Ô?‹¦ à:?æä®½·Ó?³fË`??ÐbMÝn½?’ - žž•…?}PIÕ—?-ôö²-?ÌÑ3éVO?KmH¯ôY?€bMÔŠ»?Œ¬ŒîP0?‚ofî@Ü?‚ã'˜zì?†‡ý]™Óÿ?†ˆŠ_cd@@&@"@@5@6?ð?ð?ð?ð?ð?ð¿LYâ>ì­®³à?.º5,Òlž?_l3\«€@¨{Ôœ@“G´W¨ò?=Œ<ÐUn? ·8Œ?u·ôdªc?'fy§;Ÿ;@Ÿsx£µÈ@|@§n—P@§n—P@§n—P@§—ѧŒ@§n—P@§Š @§n—P@§öÔ”ƒ@§n—P@§WŽ5V@§n—P@§‡×@•c/Ÿ¾w@•c/²-@•c/Ÿ¾w@•c-ðñ!È@•c/Ÿ¾w@•c/ÉÐU@•c/Ÿ¾w@•c2,àË@•c/Ÿ¾w@•c/c¶ Ç@•c/Ÿ¾w@•c0-à @2åöý!ÿ.@2åãS÷ÎÙ@0 Iº^5@0ž˜„Ø>@/:¬1'@/9]‹á´@.õ¨Xy=Ú@.ôºâïÞr@.õ¨Xy=Ú@.ô9XbN@.õ¨Xy=Ú@.ôR±/?É^ž6õP?ǧ õHÙ?‘, •¸’?‹¦æx»?‘×»p¹¼?Èñ’!?ÐbQë„›¦?’ 7¨±‚¤?‰5ñ™³?-õ.›ü?íĵl>w?]ÖDg‚Q?€bMÔŠ»?Œ®ÞÆ­h¤µÜÆ@4ahr° ÄÁ.„M‰ûçm@3š~ùÛ"ÑÁ.„QnÙ‡@3£ÉîËûÁ.„NÜC,¥@3£ÉîËûÁ.„NÜC,¥@3£ÉîËûÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø~@Ÿ:èr° Å@Ÿ<.VNQ@Ÿ:èr° ÅÁ.„€@Ÿ:èr° ÅÁ.„€@Ÿ:èr° ÅÁ.„€@Ÿ:èr° ÅÁ.„€@Ÿ:èr° ÅÁ.„€@œ;Ú¬1@œ<(cR(ü@œ;Ú¬1Á.„€@œ;Ú¬1Á.„€@œ;Ú¬1Á.„€@œ;Ú¬1Á.„€@œ;Ú¬1Á.„€@7ý:’£@7‹Á”u¬“@3}‘hr° Á.„M‰ûçm@2ß²-VÁ.„QnÙ‡@2kxFÜ^Á.„NÜC,¥@2kxFÜ^Á.„NÜC,¥@2kxFÜ^Á.„NÜC,¥?ÞÒn¢{@8#˜@8¾:@8 >+@8Iç@8Ù?Œ`àËQã”@8Î÷@8i§@8Å@8S@8û—?è玲ã{¹@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøø@©F¿|í‘h@©F«C•@©F¿|í‘h@©FÃñA ]@©F¿|í‘h@©F½ÌcñA@©F¿|í‘h@©F Iº]@©F¿|í‘h@©F¹³Ð|„@©F¿|í‘h@©F»ÚQÎ@¨¥=ó¶E¢@¨¥AÊÀƒ@¨¥=ó¶E¢@¨¥?¤?åÈ@¨¥=ó¶E¢@¨¥;J#9Â@¨¥=ó¶E¢@¨¥A@N¤@¨¥=ó¶E¢@¨¥<‘ÑN<@¨¥=ó¶E¢@¨¥?»@8Œ]cˆe”@8‹ô‡ü¹$@3À Ä›¥ã@3¾ÒˆÎp;@3²-V@3žƒä%¯@2fYJôðØ@2dÝ/Ÿ¾@2fYJôðØ@2d`ªdÂø@2fYJôðØ@2eF -¦L0?µRÌv·Ë`?‘¸ü"ù€2?“%HCâ=s?nii)â?•RC}Ëq?’Óðç Î? Eˆ‡ðó‹?”n‹rÕ|?™0˱Á[©?’ü#q\-v?”GO˺Ÿû?’ê•8©ñ?¬ýG¬Eq¾?’+0ê­ìT?†' -³}÷C?‰Ò–(?ˆëÅoë?‰G±±ZÎ@@@@@*@(?ð?ð?ð?ð?ð?ð¿ZÝ&öŒ¿JÞˆÔ?d´¯œ›kž?Fì”)È@©F¾Sɦ@¨¥?F¸€?v+uHu\?`³ºŸ##Ç?á°͆½?³ô†Ê!»¶@Ÿqä„& -@€@¤VÄ›¥ãT@¤V¿˜¯6a@¤VÄ›¥ãT@¤VÂWù_{@¤VÄ›¥ãT@¤Vó/o¶¦@¤VÄ›¥ãT@¤VºË®$@¤VÄ›¥ãT@¤VÚö!"@¤VÄ›¥ãT@¤Vѧ„â†@”¡ì‹C•@”¡´ƒ”X@”¡ì‹C•@”¢{¦Ê@”¡ì‹C•@”¢ªÍžƒã@”¡ì‹C•@”¢Oêï\P@”¡ì‹C•@”¢iú‡©õ@”¡ì‹C•@”¢`¦á@7žHè§æ@7¤›ÂCiÖ@3#÷ÎÙ‡@3(Ð/@"˜@2¢-V@2’UÖ½3¸@1ëxFÜ^@1ßèQǰ(@1ëxFÜ^@1ä~’Õ"3@1ëxFÜ^@1æHÄ4?¨Sp*?ErR¡n ?·~SÑj¸±?¤2Fný߉?±ƒ®ˆäü?¬š8 Èùx?ñ3<' ?“´¡S*?È”*8l?˜wß -dã°?¬ääóÿ ?°hsÞVol?¡»®œâ?˜Q-vKÕ—? àë””!d?ŠnVN0žÀ?§¯Sãû¶?¨¨-´^¹v@@ @,@$@7@4?ð?ð?ð?ð?ð?ð?fÉÂ{N?™Orù`?b¨è³–”t?o¥‰Çx(@¤VÂä'@”¡ô -Þ Þ?yB¦ßÓ~˜?…s³¦&ÛN?âvC©±jß@c‡&•K@Ÿ_ÃQŒ@@«)ñ&éxÕ@«)íÒñ©û@«)ñ&éxÕ@«)ò{²þÅ@«)ñ&éxÕ@«)ó3333@«)ñ&éxÕ@«)óÝ—ö,@«)ñ&éxÕ@«)õéá°‹@«)ñ&éxÕ@«)öÈ´9W@¥ö× -=p¤@¥öÉxÔýô@¥ö× -=p¤@¥ö×Oß;@¥ö× -=p¤@¥öÝ/Ÿ¾@¥ö× -=p¤@¥öÖ4ê@¥ö× -=p¤@¥öÖ»˜Çã@¥ö× -=p¤@¥öÜ]cˆf@8(†YJôñ@8' -=p£×@3ðÄ›¥ãT@3ôЩ*0@3)Û"Ðå`@3.óMj@2ž«6z‘@2¥%F -¦L@2ž«6z‘@2¥‡“Ý—÷@2ž«6z‘@2¥L˜_÷?¢F^ì¼Sð?•˜Qi{cj?•Ìüb¢?›×GÁcP?–ǧ/Ë?’IåŠú?žŒÝÙ›P?•Ð\ÄÙ?›WK($ x@¬E¡ÊÀƒ@¬žÔ,<ží@¬E¡ÊÀƒ@¬ž¶ý!ÿ/@5zqÞi­C@5zîcŠ @3¡hr° Ä@3¡½¥œà@3'KƧïž@3#Ð|„µÝ@2°–»˜Çã@2­ÈK]Ì@2°–»˜Çã@2…Y³Ð|…@2°–»˜Çã@2|/ƒ{J$?|öOÿÝ?‘è™è;?–„6âpñ?$Ìj½BÙ?²œIršÏ??¸Ø'Š“?}Ñ¿ž,?–gÝ3ýø’?—æÍw€r‹?’RÖò?Øß”5¾oó?ã´TYä9?‚‘´…=Ca?“8í¢ßA?‹v'þ­X?ˆÝíá‰?›8~à,ã™?™¥bÉ-/@@@@@,@,?ð?ð?ð?ð?ð?ð¿ev–£"¿ba~–4?B˜î´AÕ?yó*#ˆ.£@£}hÁ§„@¬DÝ&$?U^ôf2|?Šøu“_8h?²{p ywA@%‰—·–@Ÿ\ùÎ!›|@ƒ@¦¹nzáH@¦¹mÒñ©ü@¦¹nzáH@¦¹nÕ0ö¼@¦¹nzáH@¦¹nœÓ^@¦¹nzáH@¦¹o4‘®Ö@¦¹nzáH@¦¹nÿ‹Y`@¦¹nzáH@¦¹oDñÆ@—QÊÀƒo@—QËC•@—QÊÀƒo@—QËKÇ@—QÊÀƒo@—Q˯{ëê@—QÊÀƒo@—Qͦ™øÊ@—QÊÀƒo@—QÌ-.mz@—QÊÀƒo@—QÌ5¬«¤@3ÖšÔ,<Ÿ@3Ö°‚AÙ´@0|í‘hr@0n@e @/Ýó¶E¡Ë@/ݹ9KWô@/`ªdÂù@/`’2ä@/`ªdÂù@/T^%ZÈ@/`ªdÂù@/Kì"?|Ñb×¶@?ɧ¶kF?‘,(î¶X¢?‹Çµq?Â?ô2zWƒ/?»KÉ“V?|Ñb×¶@?’’ÛR‘?ŒØSÃÕ‡?9ä7~?ÒoÄc’ ?\=ŸùU?‚zÄÌí*?Œº“zí+‡?‚zŽbœ¡½?‚þT Ї?†šÆŽG•?†´ÙRò†@@$@&@*@:@7?ð?ð?ð?ð?ð?ð?5oF ˜?"y?Þp?açf&?Z¿ˆ¼@¦¹n–Õô(@—QÌiª¤?4èùœÈU?<äo23m?wÖÌ£Ò??…È´ñå-R@ŸfúG¬Þ@„@®ßB Iº^@®ßCn—@®ßB Iº^@®ß3Ý—ö+@®ßB Iº^@®ß33333@®ßB Iº^@®ßvÈ´9@®ßB Iº^@®ß'ÕfÏA@®ßB Iº^@®ß-úCþ\@¥&hõÂ\@¥&bÐå`B@¥&hõÂ\@¥&l¥zxl@¥&hõÂ\@¥&Sœ¾ß@¥&hõÂ\@¥&QÅ€@¥&hõÂ\@¥&a£n.³@¥&hõÂ\@¥&]æšÔ,@7+µsê´@7+P°ò{³@4ÇÎÙ‡+@4Â{²þÅm@4nùÛ"Ðå@4b£S&@3¿ò䎊r@3Æfffff@3¿ò䎊r@3´M:’£@3¿ò䎊r@3°hÛ‹¬q?}Ñ¿ž,?©c0_Õ¥¶? õ/ ebà?’KŸÐÇ¡?¤š%OÜ–õ?§ÈÅCHƒ?¢Æ÷Xê†?§PÔYªÀ—?¦DNYô ?ž‹R)n©? ³×OÓ+z?ª.Wæ—“?™“ÇÙ¸?¯Ëg1Ð?š?G'ôÜ?œ»Qñ¯L‚?§Ñ^Éysæ?¥VËMª¼‰@@@@@*@*?ð?ð?ð?ð?ð?ð¿ƒ[’û€¿AÐjíè?k vù,Ò?jaÞ¦ -”@®ß*q/Yæ@¥&[åÜFn?Žw3È™òÉ?…²àÕQ@ª¾t5tp?楫ô?Qn@Ÿi‰ ÆÃ¶@…@ ½"Ðå`@ ½9çÓ@ ½"Ðå`@ ½*Ú0„@ ½"Ðå`@ ½ƒB'ç@ ½"Ðå`@ ½ŸfˆÛ©@ ½"Ðå`@ ½.Ñm)–@ ½"Ðå`@ ½`­Äâ/@¬Ë$Ý/ @¬ËÙœ‘@¬Ë$Ý/ @¬Ë9bðýï@¬Ë$Ý/ @¬Ë0±u—~@¬Ë$Ý/ @¬ËL1!ýŸ@¬Ë$Ý/ @¬Ë,DX”e@¬Ë$Ý/ @¬ËxИ@8zqÞi­C@8s33334@3ør° Äœ@3þ±¨Ò@3‹"Ðå`B@3«Ä&/Q9@2O „M@2ˆ¦?B§@2O „M@2‡Ru\@2O „M@2sÓ«£ª?°ðéú}Ñ?•¾€‡‰?’xôƒ`ã?Ÿhi­? "·ðú?¹• ¹,ê?žƒ¸r2ã?™(¾…áÐ?“øæo6Î?˜nÕÏ?˜Nb™Ðâ±?’3¥Îz5?‘9ûÎh¬ñ?’’IÞUÄ?Ÿ|ÚÆL)/?Š>­ÂŒ?²oB]òÁ?¢‚ùùáÿ»@@*@$@"@6@8?ð?ð?ð?ð?ð?ð¿w›š ??¿vè? n‘»·ª?‚ˆB\Cѯ@ ½a>òë‚@¬Ë-ØŠ„?³øòp–ý®?žxö+ϬA@=?°¤rÈ@$žêRoø@Ÿlb7<·!@†@ªð?|í‘h@ªð>¸Që…@ªð?|í‘h@ªðAò×s@ªð?|í‘h@ªðD›¥ãT@ªð?|í‘h@ªðDoi@ªð?|í‘h@ªð@ëíúE@ªð?|í‘h@ªðA-w1@ªÉu?|í‘@ªÉuÂ\)@ªÉu?|í‘@ªÉuÜÆ?@ªÉu?|í‘@ªÉu '»@ªÉu?|í‘@ªÉu?|í‘@ªÉu?|í‘@ªÉu$Þ@ªÉu?|í‘@ªÉuL˜_@3L]cˆe”@3LL˜_@-{"Ðå`A@-wÁ½¥›@,N—Oß;@,K¹Œ~($@*åÉä@*}IQ‚©’@*åÉä@*}/Ÿ¾w@*åÉä@*|àuöý#?žˆ2}?Æ -×?’Gßk;m?‹Æ úJ-M?‘2A¥Ø?ë+ʦÜ_?|¬Çëý ?’“ºƒ;Nû?ÏtP°*?1ð'7éÃ?â2„&ÿh?Uÿyu”#?‚¸“Îè ÷?Œ¾»•lŽ?‚yî8Á$?‚éXëLL÷?†l&þ?†½ª»—@@@@@*@(?ð?ð?ð?ð?ð?ð?G·Üÿx¿a@?DšŒá7_×?\13-@ªð@ìoSz@ªÉu†‰:æ?dSEX¼>[?#ºcÜ<?Ók°`¦€?S£b£@ŸgºËñJ@‡@ p0£× -=@ p:Á7s‰@ p0£× -=Á.„€@ p0£× -=Á.„€@ p0£× -=Á.„€@ p0£× -=Á.„€@ p0£× -=Á.„€@¤/Û¥ãSø@¤/àA‰7L@¤/Û¥ãSøÁ.„€@¤/Û¥ãSøÁ.„€@¤/Û¥ãSøÁ.„€@¤/Û¥ãSøÁ.„€@¤/Û¥ãSøÁ.„€@8^Hè§æ@8UËí»€P@5—+ IºÁ.„M‰ûçm@4ûƧï²Á.„QnÙ‡@4ëxFÜ^Á.„NÜC,¥@4ëxFÜ^Á.„NÜC,¥@4ëxFÜ^Á.„NÜC,¥?¡5Vá4S@8#˜@8¾:@8 >+@8Iç@8Ù?"r+©©£@8Î÷@8i§@8Å@8S@8û—?ºÑ„³@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøˆ@ª4_;dZ@ª4hõÂ\@ª4_;dZ@ª4e8ï4×@ª4_;dZ@ª4g»/ìW@ª4_;dZ@ª4u '»@ª4_;dZ@ª4fÜ]c‡@ª4_;dZ@ª4cn.±Ä@£šŸ¾vÉ@£švÈ´9@£šŸ¾vÉ@£šIá°‰ @£šŸ¾vÉ@£š&€I@£šŸ¾vÉ@£šBœwšj@£šŸ¾vÉ@£š'â‚@¸@£šŸ¾vÉ@£šškP±@7” xFÜ@7‡škP°ò@5^Ù‡+@5Q£n.±Ä@4Õ`A‰7L@4Ô,<žìÀ@4fYJôðØ@4v¡aä÷f@4fYJôðØ@4‹xFÜ^@4fYJôðØ@4 quŽ?Ÿ‹‘+-/Ü?“³ß )}o?FwôÅ?¯üÚ‰øßæ?«XàzÆ=?¯Èµóäã?¤I~Óy‘?”ŸÚ²t©?¥ÊÁí·EU?°;Éq:¼?­{¾“úy6?³YðÕ{¸?¹X¶t:w?—ÁÌœÒ?«^i•?’4i+Ëè?Ÿ‘±bÌ?Ÿ/Òѯ¢@@@@@(@(?ð?ð?ð?ð?ð?ð¿<Þ)ݨ?XFC¿?[Ö¢3Va¥?tuòÔX­g@ª4i%~Æè@£š&äHäþ?|×§&ß\?”.5–çî?Åð&<~ù•?ð2Ö•ÚUû@ŸhÊ÷.K:@‰@£!Ÿ¾vÈ´@£!pbMÒò@£!Ÿ¾vÈ´@£!«…¸R@£!Ÿ¾vÈ´@£!’¼£@£!Ÿ¾vÈ´@£!¡½¥@£!Ÿ¾vÈ´@£!§†Â&€@£!Ÿ¾vÈ´@£!¢‚@·€@¬¶¯Ÿ¾w@¬¶©ûçl‹@¬¶¯Ÿ¾w@¬¶­í(Œç@¬¶¯Ÿ¾w@¬¶ˆð@¬¶¯Ÿ¾w@¬¶›quŽ"@¬¶¯Ÿ¾w@¬¶Åzxl"@¬¶¯Ÿ¾w@¬¶ÈXy=Ú@9>«6z@9 6z—@4Ùº^5?}@4õϪ͞„@4Wï²-@4qœàuöý@3µµsê³h@3ÊW§†Â'@3µµsê³h@3ÜÌÌÌÌÍ@3µµsê³h@3á×Ûô‡ý?ºðŽÄS?’Mj…•Ì‘?”ñ-a} ?›“ë '?©¦¥Ò?°‰¸*'?¯ò5}'Î?“Ëÿ.¬Hp?—P¶àeœ¤µÜÆ@4sS÷ÎÙ@4q–R½<6@3Ÿ²-V@3œ¾ß¤@@3!:’£S@3­BÃÉï@3!:’£S@3rGE8ð@3!:’£S@34mÅÖ9@8J¨?š 5öÑ„?—CÅçõð?—ó^G_í?š(:)[a?ž C@L(@8J¨?›–ë•ñ^?¤Àñè_zø?¢€ÝÅp?šRýi¡ô?¡ìøV@8p÷?Å{¿Ž<º?“ e?ŒÅÐ7N³¬?‹&¸ê±fÂ?’d­©‡ò@@@@*@*?ð?ð?ð?ð?ðøøøøøøøøøøøøŒ@¢~Ú¬1@¢~Ú¬1@¢~Ú¬1@¢~Ü„µÜÆ@¢~Ú¬1@¢~Û¥ãSø@¢~Ú¬1@¢~Û¥ãSø@¢~Ú¬1@¢~Ú¹õY´@¢~Ú¬1@¢~؆YJö@¤ªë Iº@¤ªë…¸R@¤ªë Iº@¤ªë]Ìcñ@¤ªë Iº@¤ªê0U2a@¤ªë Iº@¤ªëC,¥@¤ªë Iº@¤ªê™0¾@¤ªë Iº@¤ªêÚ¹õZ@4T xFÜ@4T9XbN@0sS÷ÎÙ@0têJŒ@0'KƧïž@0(DЩ*@0&YJôðØ@0'>«6z@0&YJôðØ@0'RT`ªe@0&YJôðØ@0'Ë)^ž?|¬Çëý ?Ï[äe+@8Iç@8Ù?|öOÿÝ@8Î÷@8i§@8Å@8S@8û—?‡}¤íý@8 * @8p÷@8¶@8 Ø@8 Ø@?ðøøøøøøøøøøøøŽ@ª]õ?|í‘@ª]õÂ\)@ª]õ?|í‘@ª]õ"7Tì@ª]õ?|í‘@ª]ôùëD—@ª]õ?|í‘@ª]öî9!+@ª]õ?|í‘@ª]ó:À @ª]õ?|í‘@ª]ôýó¶E@—°ýó¶E¢@—°þùÛ"Ñ@—°ýó¶E¢@—°ÿ¡ Ï@—°ýó¶E¢@—°ÿy8º`@—°ýó¶E¢@—°þi°ˆÎ@—°ýó¶E¢@—°þW°O@—°ýó¶E¢@—°ýKÈ`F@4L]cˆe”@4KÞ‚×¶4@0» Iº^@0» ò|@/ü¬1&ê@/üÁ“+:@0 ù kº@0•øª0@0 ù kº@02júõÕ@0 ù kº@0ëã·œ ?|¬h2:“?ÄplÉ•?‘"˜»Hé?‹Ôã“x?ý¹EË?ú=A™C?|¬h2:“?’ n?‚ö±ó6?X´§Yæ?ômÎ6Ék?~îÜ‘ü›?‚pDøïRg?Œ¿H(>X?‚‘|ÑE2?ƒʾÏê?†²!”,ª8?†ö‚Ó?‘¤¼BÛTü?Î;|;2@Ÿ]=¼äg@@¯ŸOß;d@¯ŸÒñ©ü@¯ŸOß;d@¯Ÿ{=ÈK@¯ŸOß;d@¯ŸHe”¯N@¯ŸOß;d@¯ŸŠqÞi­@¯ŸOß;d@¯ŸÆÁ½¥@¯ŸOß;d@¯ŸÁTÉ…ð@¬Á½p£× -@¬ÁÑë…¸@¬Á½p£× -@¬Á•$Ý@¬Á½p£× -@¬ÁE8ï4×@¬Á½p£× -@¬À“g ù @¬Á½p£× -@¬Á1Å@¬Á½p£× -@¬ÁìVÕÐ@8cg ù l@8Vz–¼@5Iº^5?@4Û=ÈK^@4çKƧïž@4}ÈK]Ì@4fYJôðØ@3þ;Í5¨Y@4fYJôðØ@4DЩ*@4fYJôðØ@4Ƨï²?¤ÊŽaÈ]Ó?°I6nÓ¨á?³¾Ò*„=?¹ ŽÎÍâ?¹—³ÔKÒ?²?€‚ñêã ?± -¦}TÅE?Í™öÇó©?Õ•Ö"º ˆ?ƺ@â=±t?È@—hÔu?¬ðV÷_cW? 6) }’ê?¯^BÎÒ??¡qÍúr;?¡FÍb2x?Ð %¨âë²@@@@@&@(?ð?ð?ð?ð?ð?ð?…q «Ô€¿§É.êH°?mûŽkáÔŸ?‰+Ü=B)Ÿ@¯Ÿš¡ëÃÁ@¬Á‘|”®?q¯r?¡CNÎÄao?ÝHð]˜f?ö»âH,1i@Ÿ`Õk0º8@‘@¨O€@¨OˆŠÌo@¨O€@¨OË)^ž@¨O€@¨O‰ã½@¨O€@¨O—Xâd@¨O€@¨O} -ú@¨O€@¨O‰ÕÃI`@œ‘["Ðå`@œ‘9áþ@œ‘["Ðå`@œ‘Që…¸@œ‘["Ðå`@œ‘N_oÓ@œ‘["Ðå`@œ‘$tSŽó@œ‘["Ðå`@œ‘6›$•@œ‘["Ðå`@œ‘*ægˆ@8›¹Œ~($@8‹,ÕGfž@4+ Iº@4oiDg8@31‰7Kƨ@38$ xG@2Þ«6z‘@2àÑ·Xâ@2Þ«6z‘@2Ég”Rõ@2Þ«6z‘@2ÎnM’}R? Ôøx¡9»?˜fײ{Î=?”‰oüq u?• Q™iå”?—7ű4Cù?›\F*Õ7†?ºfÈŽÍY?š¾ˆè ”?•ê?íuA?—³ÄpÐ?¤[T‡Ýas?œò½¼U?´$%Gó}?š‡´‘Õä?¡PÊÑ<Ýl?”žWj¬fž?Œ†ž49›Ò?•>¥þ^*@@@@@0@.?ð?ð?ð?ð?ð?ð¿`B|l?L2ã/?sBŒÊ-#2?_§aÓúg1@¨OŠ=­u½@œ‘)ž½àa?$ã¨+?rJ[Œßö@üäcý­Q?Ã3€º¹5@Ÿp%Û}‰Ë@’@¢Ò÷ÎÙ‡@¢Ò÷Oß;@¢Ò÷ÎÙ‡@¢Òó àÞÓ@¢Ò÷ÎÙ‡@¢Òî±Ä2Ê@¢Ò÷ÎÙ‡@¢Òßò䎉@¢Ò÷ÎÙ‡@¢Òç8}¿@¢Ò÷ÎÙ‡@¢ÒæÜ]cˆ@£’¯²-@£’¯ß;dZ@£’¯²-@£’²ˆÎp;@£’¯²-@£’®æ1ø¡@£’¯²-@£’­à q@£’¯²-@£’£S÷ÎÙ@£’¯²-@£’£ñA \@3Ô xFÜ@3Ón.±Ä3@0Ùº^5?|@0ÒÊW§†Â@0y7KƧð@0q°‰ 'R@0QÞi­BÄ@0G§†Â&@0QÞi­BÄ@0EãS÷ÎÚ@0QÞi­BÄ@0F?¼?1·†Æjñ?‡åƒêM?“â÷!N?–¼A2xý?Òß© ÷?—Ò¸ùBz3?|öOÿÝ?’&u÷E»@?’°æfÅM“?’ƾ| ? ,¡r×gÁ? ,ëÌ:¶Ï?‚nâwfÿ?Œ¸†‡ÄÅ?ƒíÈm½!¿?„XïWÉò~?ˆ0&YÊEd?‹¼`’ i2@@@@@,@,?ð?ð?ð?ð?ð?ð¿rDl§Q€¿a%©¤²?[sAš':^?HÝ‚ n.@¢Òï9p­®@£’¬qmÜL?y õ÷DñÎ?ecÁcAðu?õ'_’h/ø?Ëò-!ò]o@Ÿco¢>ªc@“@ w33333@ w32Å@ w33333@ w4Q@ w33333@ w5h¬Õ¥@ w33333@ w5¾ØBR@ w33333@ w2‰*R@ w33333@ w2wØóÿ@§ûçl‹D@§ü(õÂ@§ûçl‹D@§ü]¡´ž@§ûçl‹D@§ýÀÒ;ë@§ûçl‹D@§ûÅ„ž@@§ûçl‹D@§ý¯nÚ¼@§ûçl‹D@§ý¼©i@2­¥œàv@2­´1G-@0€ Ä›¥ã@0~ÓN׋@0å`A‰7@/ýäûÎ<@.G“Ý—ö,@.F:(KÃR@.G“Ý—ö,@.F$ ßRx@.G“Ý—ö,@.Dz²ºtç?É^žP¬!?ïʃš/J?‘!,1 ®þ?‹Ó’{-@F?øpfТ?ßeKþ£?ÐbQë„›¦?’#Øù$S,?˜Ý=yƒˆ?2üÂòñ?æòö/Ÿ?Xð3Z:?€c6JX¨?Œê¸Ávó?ƒ'²x'9?‚ð§h9#?†Ó_³ëêù?†¯B@ùþ@@&@"@&@8@8?ð?ð?ð?ð?ð?ð¿XN¸d?LŒ··,?>ï%¢O‚™?2Y]ý;,@ w3ÐôÖ!@§üò  ¥?M¶s2ZVÞ?Ab–Eäib?•s›ÙÅ¡?ziÞînZ@Ÿs -“Ã@”@ª¦À@ª¦À“4Ì@ª¦À@ª¦Óv‚÷¶@ª¦À@ª¦Ó¥ lþ@ª¦À@ª¦ÓR¥p@ª¦À@ª¦Ùwæ”Þ@ª¦À@ª¦àLlÓÓ@šÄ’n—P@šÄ†§ï³@šÄ’n—P@šÄ…!Ïž¾@šÄ’n—P@šÄ‡}Ú -È@šÄ’n—P@šÄ‰w—v'@šÄ’n—P@šÄy¯¶n@šÄ’n—P@šÄ„É ùã@6òÃÉîËû@6íÙ1Í—Ù@3|í‘hr@3‰ó[D@3,j~ùÛ#@3!ĬlV@2p–»˜Çã@2b©ƒŠÌp@2p–»˜Çã@2e­€Cæ†@2p–»˜Çã@2d‡NN}6?e™”XWø?£KÊ2e¡?š–yÈxb?&’·ž?–XÁ]Nœ?› ÊVMŒ?}@T˜ÁÎ¥?’ê´’º?’´öå¤?z—nÛ¹?“2-+O´Ñ?’®8îPŠÒ?‚oºáܺ?Kdnå -?†uuÕ¢Éþ?†Ù k4?ˆšsÓß ö?‰dÚè±@d@@ @(@$@3@4?ð?ð?ð?ð?ð?ð?{kmÑú¿AN^X?4ßmæ•ãx?FgëþÙð@ª¦Í™›Äþ@šÄ„ÇI’?S.v‰jUø?eÓJ>äé?«ý6œHp÷?ÖÒ©2ò;@Ÿe„?à£R@•@«¦hr°!@«¦&éxÕ@«¦hr°!@«¦°ò{²@«¦hr°!@«¦°ò{³@«¦hr°!@«¦å`A‰@«¦hr°!@«¦|„µÝ@«¦hr°!@«¦ß;d[@Ÿ¼o²-@Ÿ¼m‘hr¯@Ÿ¼o²-@Ÿ¼k6z‘@Ÿ¼o²-@Ÿ¼u '»@Ÿ¼o²-@Ÿ¼r-V@Ÿ¼o²-@Ÿ¼mw1Ä@Ÿ¼o²-@Ÿ¼o·éù@6`ØDЩ@6`oiDg8@2f‡+ J@2gÎÙ‡+@1¾V“u@1¿iDg8@0Ê0U2a|@0ËŸU›=@0Ê0U2a|@0Ë Iº^@0Ê0U2a|@0ÊdÂø7µ?óA[ØïF?š¾ßÍZ?”4 bà5?ŒÖ -Äȱ?‘èÒ§ˆ„Å?‘¦ µÚ?3ßa=„?’Òc§—Ûí?“Z—H|:?Y‡…—Ø?‘–=û.e1?‘C å;Ã?”US9úÅ?îŠõ ?ƒM¬Öe—_?„XïWÉò~?‡ã ËÄž?ŒÙ”!Çx‡@@@@@,@,?ð?ð?ð?ð?ð?ð¿/UÀ?!oþöà?›Ø*K:?75®o_TÕ@«¦¡ŽéI@Ÿ¼oI¸.?1÷©xW‰?UVÔG(ô?c#¥. -RÈ?©ÛÆAÀ}W@Ÿl#m‹é©@–@¢ªçl‹C–@¢ªÞ5?|î@¢ªçl‹C–@¢ªé 'RT@¢ªçl‹C–@¢ªçË)_@¢ªçl‹C–@¢ªïÅp@¢ªçl‹C–@¢ªç®zá@¢ªçl‹C–@¢ªãS&@®l¸Ôýó¶@®l·Oß;@®l¸Ôýó¶@®l¬¿±[V@®l¸Ôýó¶@®l 'RTa@®l¸Ôýó¶@®l±N;Í7@®l¸Ôýó¶@®l±Å‚@®l¸Ôýó¶@®l«íúCþ@8òÃÉîËû@8ãŽóMj@5° Ä›¦@5»¬q ²–@5Z~ùÛ"Ñ@5FOv_Ù@4¨è§æ›@4ªxl"h -@4¨è§æ›@4¥`A‰7L@4¨è§æ›@4BÃÉîÌ?¾Å°[ú_G?ªP2 -¬OÔ?ªOؼïÏ?• +ÏÄ¡?ž)‚^°y?œˆš—I?±>ÏÅósN?ªjÚäƒX?¤ý'º(?°‹Œ÷€?››ÈŒ(¨æ?š)ÑS&³?¿ûI£•Ì?¤ŠØ²f¯?™{Tä=û?«0ÉEK?›€*:€R}?IQ‚©“ @@@@@$@"?ð?ð?ð?ð?ð?ð¿q";ñ ¿`Êt?c8Z4b}·?J Ó_£HN@¢ªê²dg\@®l°2½L­?tî'Txã?\ÏÑËÒQ¤?Í„¥Á½Ó^?¥¶½¢¸@Ÿp›ùø©¦@—@©· A‰7L@©·(Ò2{@©· A‰7L@©·å û_@©· A‰7L@©·'Â?ªŸ@©· A‰7L@©· Ey@©· A‰7L@©· ýñ?U@©· A‰7L@©· ¯@‡¢@˜€× -=p¤@˜€üVs(@˜€× -=p¤@˜€Ì\Þ7@˜€× -=p¤@˜€Ð ŒA@˜€× -=p¤@˜€‚“°J@˜€× -=p¤@˜€´5Âp6@˜€× -=p¤@˜€¾)¹ú®@904mÅÖ8@94"Z§›ì@4{ Iº^@4y.áe¯@3â-V@3ã— †/Æ@3³&Á½¥@3§<5œNÂ@3³&Á½¥@3¼sþëš@3³&Á½¥@3»ñ¯Ði?³,øt£Ø?•…¦|u?”q)·Ô/ž?™”O =?’¼­ÿȺ?—ª±Cš7Ï?‡‡á´WÉ?–Øng':?•¿¾m¢?—ä´„ÁÉ?—ñLŒQ¶N? ¯4³ÆlÁ?º1fÝ2»?‘uÎý• ?¨~‘Û)%?¦„Çïî ?£üØuí™A? Æw@çšs@@,@*@(@5@:?ð?ð?ð?ð?ð?ð?uì®$P@¿„˜‚Wà?xV?–?×?uü«G@ðÃ@©·ŸyE@˜€³‡rÚ?‹”(úù¾?œ¨2ë˜ ?ÿ4,¤nž@"7.Ïò@ŸoÀúb€N@˜@§­‘hr°@§­‘hr°@§­‘hr°@§¯_ýb5@§­‘hr°@§®záG@§­‘hr°@§®ÏsJT@§­‘hr°@§«òƒÃá@§­‘hr°@§¬%¬ D@“¤¬1'@“¤­Tj@“¤¬1'@“¤±V¦“@“¤¬1'@“¤ˆ•@“¤¬1'@“¤aÄ»›@“¤¬1'@“¤Öá@“¤¬1'@“¤ygÊë@4cg ù l@4ca@N¤@0uãS÷ÎÙ@0t²Ž7¶Ž@0lj~ùÛ#@0kîƒ*ZÄ@0œàu÷@0kÕçÑ2@0œàu÷@0«¯waö@0œàu÷@0˜Çâ‚@?}@T˜ÁÎ¥?ÙM‹ß-U?‘Ûùü†?‹«µë­?‘!–ÒOæµ?ÝLï©65?|¬Æ Væ?’Ï -r}ä?‹¬tK±»?0Ö:¢"l?‘"ξfS?†Š¿çK?‚u؆"¿?Œ³$-a5[?‚ň¸™?ƒQ†„ 8?†±@5Gd?†©€‚G¥,@@ @ @@8@7?ð?ð?ð?ð?ð?ð¿+ÁU…À?$4=˜?2÷GêŠ?d¡§x™V@§­Hƒ2š@“¤C½ ?RÒ±†vïÔ@ŸskäŠ@›@ªqô¼j~ú@ªqüí‘hs@ªqô¼j~ú@ªqûô‡ü¹@ªqô¼j~ú@ªqÃS&@ªqô¼j~ú@ªrЩ*@ªqô¼j~ú@ªrŠÚ¹ô@ªqô¼j~ú@ªr#•&@¡“÷ÎÙ@¡t9Xb@¡“÷ÎÙ@¡…+ÓÃa@¡“÷ÎÙ@¡xüPH@¡“÷ÎÙ@¡²¼£@¡“÷ÎÙ@¡ó àÞÓ@¡“÷ÎÙ@¡ôÉ…ðo@8÷â‚@·€@8ЬÙè>B@4ahr° Ä@4YùrGE@41‰7Kƨ@4#¶E¡ÊÀ@3”mÅÖ8†@3Šû~ÿ—@3”mÅÖ8†@3Ž5?|í’@3”mÅÖ8†@3‰rGE8ð?Ÿ‹‘+-/Ü? §Ê]ÁÈ?¢ÌÞõ1?¡sâ½ë?Ÿ\(Ft†ã?¥ÈêƒÔÇ?Ÿ‹‘+-/Ü?¡(õ/Ü(?¡œåVÉh?³ØÐÄÜ_œ?³Ô)ÿ´í?ªõøƒ:‰à?Ùf×ÞÆ¾”?–xéCìZÒ?µ1Ù^ ?¨+Î&*ô?y½¼ŸŽ?™Øl›¹@@@@@*@(?ð?ð?ð?ð?ð?ð?€\š¦€?›«´´¬ ?b;½× -»Â?cä^5ˆ@ªr •\zö@¡¶Êqœ?€ˆ”k - Š?† ›FJÊ?ÝKÉ {í?Ö½òª@Ÿi4>C@œ@Ÿa–‡+ @Ÿa˜Êø[@Ÿa–‡+ Á.„€@Ÿa–‡+ Á.„€@Ÿa–‡+ Á.„€@Ÿa–‡+ Á.„€@Ÿa–‡+ Á.„€@¥ëþùÛ"Ñ@¥ëþùÛ"Ñ@¥ëþùÛ"ÑÁ.„€@¥ëþùÛ"ÑÁ.„€@¥ëþùÛ"ÑÁ.„€@¥ëþùÛ"ÑÁ.„€@¥ëþùÛ"ÑÁ.„€@5ÞHè§æ@5ÜèŽqž@1×+ IºÁ.„M‰ûçm@1gKƧïžÁ.„QnÙ‡@0õµsê³hÁ.„NÜC,¥@0õµsê³hÁ.„NÜC,¥@0õµsê³hÁ.„NÜC,¥?¨Sp*@8#˜@8¾:@8 >+@8Iç@8Ù?|¬h2:“@8Î÷@8i§@8Å@8S@8û—?‚o°V“u@2EÜÆ?@1½cˆe”°@1È*™0¾@1½cˆe”°@1¿v_Ø­¬@1½cˆe”°@1ÄÂø7´£?’Óusÿ\Ã?Žd±Ìº?•lÚ®¡õµ?’×­“·?“>û{Ñø~?”Å0>Û?‘â%ì˜ ä?’ùÎ {?“Ú%¿»8?›gy˜}Ùð?’Bg4ð3f?—>p¼?ƒ<Õp?¨ ‰‹U)?‡š¿]b?‡•ó¨–ˆ?Š|)-}í(?‘„1ôñÂß@@@@@,@*?ð?ð?ð?ð?ð?ð?-øP6°¿Hò òø?DÊ Cô«?Aj´ìj¦@©Û¶€)þ>@¬¼»˜Žhò?bÓDôèõ?`«öu ?¾¶k sð?´‹¶´Ø>ê@ŸkÜå Õ1@ž@¬fdZ¬Á.„€@¬fdZ¬@¬f_¯Hõ@¬fdZ¬@¬fdVåú@¬fdZ¬@¬fcJss@¬fdZ¬@¬fcnw0n@¬fdZ¬@¬faÃv´à@”Чï²-Á.„€@”Чï²-@”Ц<Ñ¥>@”Чï²-@”Š®¤•2@”Чï²-@”Š©ªî`§@”Чï²-@”Š¥Û5n@”Чï²-@”Ѝ8Õù7@8(†YJôñÁ.„>¤µÜÆ@3žÙ‡+@3ž&®üµ@2Ͳ-V@2Î;Í5¨Y@2L¿±[W?@2LÜ·­Qª@2L¿±[W?@2M¹æ°[j@2L¿±[W?@2Oÿtñƒ@8J¨?úD|•Ô?‘7çÖ«?ŒŒ{¡Ä‘?’ç“È–Ÿ?‘‘ä9)¥@8J¨?’íL—²??°Ì·’l^?‘3èòjÔ ?’ÃÎY6?‘ÆúÌþ†«@8p÷?®Y{Õ1*?…«O¡‘?„@×T«[£?ˆCbi¸”?ˆÎ+){ò@&@"@,@<@:?ð?ð?ð?ð?ðøøøøøøøøøøøøŸ@¥”s3333@¥”o²-@¥”s3333@¥”£{J#:@¥”s3333@¥”¦"ôy@¥”s3333@¥”~7º¸­@¥”s3333@¥”„v4J.@¥”s3333@¥”{¯ *Ø@“Kë…¸R@“KØÉ,i@“Kë…¸R@“JÁ‰7KÇ@“Kë…¸R@“Kq{GÜe@“Kë…¸R@“K¤ïó!²@“Kë…¸R@“KùM°vL@“Kë…¸R@“Kùn¬Ì@7Î쿱[X@7Öƒ7zX@4›¥ãSø@4ˆüPHð@3~V“u@3𔆀?³*![Oˆ? š€J‡@¯cè•Ôh @ªj¶¹¨?<ŒZ$€ß?@XÃÅ®Ç?…µÍÛœj?‹‡l—» Ñ@Ÿg‰a@¢@ªpŸ¾vÈ´Á.„€@ªpŸ¾vÈ´Á.„€@ªpŸ¾vÈ´Á.„€@ªpŸ¾vÈ´Á.„€@ªpŸ¾vÈ´Á.„€@ªpŸ¾vÈ´Á.„€@©#ÌÌÌÌÍÁ.„€@©#ÌÌÌÌÍÁ.„€@©#ÌÌÌÌÍÁ.„€@©#ÌÌÌÌÍÁ.„€@©#ÌÌÌÌÍÁ.„€@©#ÌÌÌÌÍÁ.„€@9ÞHè§çÁ.„>¤µÜÆ@7+ IºÁ.„M‰ûçm@6ÝV“Á.„QnÙ‡@5ÑÞi­BÄÁ.„NÜC,¥@5ÑÞi­BÄÁ.„NÜC,¥@5ÑÞi­BÄÁ.„NÜC,¥@8J¨@8#˜@8¾:@8 >+@8Iç@8Ù@8J¨@8Î÷@8i§@8Å@8S@8û—@8p÷@8 * @8p÷@8¶@8 Ø@8 Øøøøøøøøøøøøø£@£¬1&é@£«Æ§ïŸ@£¬1&é@£­0Ì1H@£¬1&é@£­V@£¬1&é@£­-ªWù@£¬1&é@£«C,¥@£¬1&é@£«î²Ñ@˜±&éxÕ@˜±&éxÕ@˜±&éxÕ@˜°êñ+•@˜±&éxÕ@˜³üPH@˜±&éxÕ@˜±N;Í6@˜±&éxÕ@˜±oC„»@˜±&éxÕ@˜±wçÌ@.?åÉ@.?åÉ@(\j~ùÛ"@(\‰ÀjßÄ@'E¡ÊÀƒ@'_Ø­«Ÿ@&ëjçÕfÐ@&ë~ÿ—%@&ëjçÕfÐ@&ëquŽ!—@&ëjçÕfÐ@&ëxFÜ^?É^¨¯Âj?Á€þ†Øª?‘ÑñK·¢?‹­v4¶Ö?çêÑHcÇ?µûê?ÐbMÝn½?’Fó®â?|˜¿ø¾;?0‡j¿þ)?ͪãÓ'?K '‘›»?€bMÔŠ»?Œ¬ŒîP0?‚nÓ3îŠ?‚âÐEi–?†‡¥âè?†‡Óñ˜¤@@(@ @*@<@:?ð?ð?ð?ð?ð?ð¿N¨È&8?Þ]¸?4tÇòFÖ>Ú\ËöâNê@£«ó2G -@˜±d»j2?C«\j©€>èñÕΠɾ?ƒ •aæ>Ë\Št]Þ¹@Ÿsí¥#@¤@­hõÂ\@­h´9X@­hõÂ\@­i?0†´@­hõÂ\@­ix: @­hõÂ\@­iPÞût@­hõÂ\@­h³6 @­hõÂ\@­h‘„!b@™yxÔýó¶@™yxÔýó¶@™yxÔýó¶@™ywöG³@™yxÔýó¶@™yyÐ?7@™yxÔýó¶@™yxV *A@™yxÔýó¶@™yx~*/Ò@™yxÔýó¶@™ywIÂo@1 ]cˆe”@1 ]cˆe”@,`A‰7K@,æÒWv.@*cn—P@*b½<64@*åÉä@*¼@*åÉä@**63@*åÉä@*4Ö¡aå?É^¨¯Âj?É j?‘Û­i)?‹­v4¶Ö?éÝ:ïŽ?µY¾F¼?ÐbMÝn½?’ÙÉÏ·Y?|™;ÕÄ?/]Å\‰?ÑùF#¼?MÊñÊ4C?€bwÄ' g?Œ­Ea©Ó‰?‚sÔü!Ø?‚å¬C>¥’?†‹—ð -«?†ó|V@@(@"@&@8@7?ð?ð?ð?ð?ð?ð¿5ŽËi8¿+¤ûÀ?(˜`¬±? Ñ^=ÂÖÞ@­hèv(R@™yx1Uv?#b[È9K.?/ÕÎÿž'?B|z“£êñ?VCEv¤f@ŸsoI¦_@¥@¡‡+ J@¡€ä‹ë“@¡‡+ J@¡‡/‹5¹@¡‡+ J@¡‚©™³@¡‡+ J@¡…œ„Ͻ@¡‡+ J@¡„žÚ¶@¡‡+ J@¡…Â\*@§žÉ7Kƨ@§žÀ@§žÉ7Kƨ@§žÁØ‘&5@§žÉ7Kƨ@§žÅ莩5@§žÉ7Kƨ@§žÇj r´@§žÉ7Kƨ@§žÆ$æý@§žÉ7Kƨ@§žÇõíÒ@8IÎ_oÒ@8LÎW}þ¬@3ÇÎÙ‡+@3Ä"q)¡¶@2¬j~ùÛ#@2­Úâ[@1𖻘Çã@1ñ¤Wžmã@1𖻘Çã@1ô -ÐÍZæ@1𖻘Çã@1õž1:~?z›Mß ?‘…?©,žG?‘A…Þ¬Ã?‹õ­·%9ó?’ÈwD['Ž?‘ù‚ôT©?¨àÍõ°R{?–kS©²?€~€³q?1ír:ÇÔ?“œ.{*V?‘ïù°ª¹„?¢dÎâÓõŠ?.×­stî?‹rè,z™Ö?‚éQ{ଠ?‹l· ps?ˆŠ«å’{¶@@$@@@6@4?ð?ð?ð?ð?ð?ð?Fˆ#qÜ?J–ÁÊ?@Ie>ü8?GÔœè#@¡„ý«f@§žÆ¶w=~?Vuûïþ'Å?]“wö?¨›I•F ?¯Ç\Àf@ŸoÉe Ã@¦@¯°5?|î@¯°vÈ´9@¯°5?|î@¯°b¶®}@¯°5?|î@¯°¾vÈ´@¯°5?|î@¯°;dZ@¯°5?|î@¯°ã¼Ó@¯°5?|î@¯°<64@­&¹Û"Ðå@­&¹Û"Ðå@­&¹Û"Ðå@­&º…‡“Þ@­&¹Û"Ðå@­&¹XbO@­&¹Û"Ðå@­&º^5?~@­&¹Û"Ðå@­&ºxl"i@­&¹Û"Ðå@­&ºu%G@3L]cˆe”@3Lj~ùÛ#@0›¥ãSø@0Âø7´¢@.ÊÀƒo@.e+ÓÃ@-ÿåÉä@-ÿ¤?åÉ@-ÿåÉä@-ÿò䎊q@-ÿåÉä@.N¤¨ÁU?|öOÿÝ?ÖÈ ¼?‘\H{gX ?‹ä†€{6è?‘ ·èf?Å{¿Ž<¹?|¬Çëý ?’›ÈÖÝ?œõLÁE?Y‡…—Ø?‘ ·èf?b¶­-Óx?‚2Y0â³?Œ¸†‡ÄÅ?‚‹¡8*ú?ƒ†+ Å?†žóB» “?†’Õaì+’@@@@@*@*?ð?ð?ð?ð?ð?ð¿*I9¯?ð(cÀ?+~§C{N?D! êßg@¯°&)ï¶@­&ºË?Jóò«*F?/áp.ºÆ?£®J†Ø1Ê?jdÒšþ„r@Ÿfò(#¿V@§@®ó_;dZ@®óc•%@®ó_;dZ@®ó`[À8@®ó_;dZ@®óa½¥@®ó_;dZ@®ó\ÓZ…ˆ@®ó_;dZ@®ó\C,¥z@®ó_;dZ@®ó\„µÜÆ@¥"MÒñª@¥ A‰7L@¥"MÒñª@¥×sü@¥"MÒñª@¥_ö“@¥"MÒñª@¥×s@¥"MÒñª@¥Å‚@¥"MÒñª@¥SŽóM@6-¥œàv@6(âe+Ô@2©‡+ @2ž¤¨ÁTÉ@1îùÛ"Ðæ@1ä¨ÁTɆ@1?ò䎊r@15ðoiDg@1?ò䎊r@14ã¼ÓZ†@1?ò䎊r@16R½<6?žˆ2}?’u~•Ñ?–@”6Õ«‡?“ŒÒ•ÿV{?’ÒuèçxY?“÷Vdà?€‚ñêã ?•N¬Ÿª`Ž?šJ‘ÍÒÁ?›‘Ûê\PK? p G)L?£:ó;Ãç?Цÿßë?£?Ó%y*£=?„m~Z_s,?„ mŠmsi?‰w¿˜Í¶ª?˜ºíF-dŸ@@@@@*@,?ð?ð?ð?ð?ð?ð¿[¿æ¿è¿lŸ `/?6&Sê;®¹?L‰(ÇlO"@®ó`B£Qù@¥¢JY?UvžÝeÖ‚?iø.$‚Ã?²„QVB)?Ê‘r"ô@ŸdIQ^Ĩ@¨@¥s\(õÃ@¥s£•%@¥s\(õÃ@¥sŠ™0¾@¥s\(õÃ@¥sŒ˜_÷@¥s\(õÃ@¥sÒñ©ý@¥s\(õÃ@¥s¸ºÇ@¥s\(õÃ@¥s‰º^5@@¡6|í‘hs@¡6‰ûçl‹@¡6|í‘hs@¡6}IQ‚ª@¡6|í‘hs@¡6…¼£n@¡6|í‘hs@¡6ŽÙ‡+@¡6|í‘hs@¡6ˆ§æ›@¡6|í‘hs@¡6“œ¾à@9(†YJôñ@96“t½@2» Iº^@2»/ìVÕÐ@1â-V@1ãa@N¥@10–»˜Çã@1)Çy¦µ @10–»˜Çã@1*Ô,<ží@10–»˜Çã@12ZîcŠ?¾„CÚ–•F?Žd±Ìº?’ -·>á ?îZ¼!ÇŸ?”] -° ?“yÄö%Þî?Åe¨ócQ?’¼MÒÀ7F?‘Jâ”âj?š. Œžô?™=M÷‹¸?—Q,Äš¤?Цÿßë?£?–(Ži´™^?Œ*Ñ¿°×?’ª=˜Å?Ž+ôÐ_ÿ?³ˆ54ˆÜG@@@@@*@?ð?ð?ð?ð?ð?ð¿`ÄÕ4˜€?_ª­|ó?S+ál…ó?h3„7˜îž@¥sŒ·…hè@¡6Ž'mþ?c4Å>™Ø»?x'7.”o7?º¨¢…S–R?Õï Èæ@Ÿr˜·åç@©@£…j~ùÛ#@£…lÌÌÌÍ@£…j~ùÛ#@£…›J#9Á@£…j~ùÛ#@£…Iº^5?@£…j~ùÛ#@£…ov_د@£…j~ùÛ#@£…Òòå@£…j~ùÛ#@£…Š#9Àì@ÏõÂ\)@Ïÿ|í‘h@ÏõÂ\)@Ѫ͞ƒ@ÏõÂ\)@Íûçl‹E@ÏõÂ\)@Ñ¿.Hè§@ÏõÂ\)@Ðξߤ@@ÏõÂ\)@кû~‘@3N쿱[X@3H Ô•*@0c÷ÎÙ‡@/ù¦µ '@/ãn—P@.”ðØDÐ@/Aò×t@-º¬1'@/Aò×t@-µ%F -¦M@/Aò×t@-ômÅÖ8‡?|öOÿÝ?˜RôfÂ'Y?Æœ‚¸ß?®ýäÇ—U?ËX~ƒÌ«?ÍËtÝ8Í?1·†Æjñ?˜ଚÿw?äQô0vX?«o)o%?Ҳ«aK?Ñê»S¡h?ƒ<Õp?¤í=š%^?¯M,L¯6?¶K/ê‰õ? tÆùlŠ?Ü µˆä@@@@@,@,?ð?ð?ð?ð?ð?ð?g0¿Tp?²ëÌA°?a Ìcž¤?‘I6­—JE@£…n1Ï&+@ÐJqñm?cr† Ìl0?”=ÓäÞ"?¶˜m¶OŒ@ú»,4‰]@ŸYÛ·ˆ@ª@°Y™™™š@°[ø/AŒ@°Y™™™š@°Wu–0@°Y™™™š@°üÙÙ^á@°Y™™™š@°!«|k@°Y™™™š@°[dZ¬@°Y™™™šÁ.„€@›5Ðå`A‰@›5í«\ãÕ@›5Ðå`A‰@›? Þ´N@›5Ðå`A‰@›<IœL@›5Ðå`A‰@›:oê«[b@›5Ðå`A‰@›5‚ø7´¢@›5Ðå`A‰Á.„€@8Hè§æ@8 +Òù¤”@3Yº^5?}@1ÙY®ª‰@@3F“t¼@1óZ[å@2:Ô,<ží@1Nã+I«õ@2:Ô,<ží@2;J#9Àì@2:Ô,<žíÁ.„NÜC,¥? %÷TŸ÷³?C› »D?¤í¶eŠZ?¡vŒ$yЉ?¤íõµ_'û@8Ù?„9ts#‘?•ui©¯ !?§ÊEòã¬?©*ÏØàˉ?±È`=4l@8û—?³h!lˆd?Œ»*b< «?ç×PM ¡?£x­Øå”!? ²jÖ]É@8 Ø@@@"@$@,?ð?ð?ð?ð?ðøøøøøøøøøøøø«@¥h¿|í‘h@¥hÄ“t¼@¥h¿|í‘h@¥h½ó¶E¢@¥h¿|í‘h@¥h¸üPH@¥h¿|í‘h@¥hÉ^ž @¥h¿|í‘h@¥h¾ì¿±[@¥h¿|í‘h@¥i$Ý/@«òß;dZ@«ò’° Ä@«òß;dZ@«òœ£n0@«òß;dZ@«òŒô!-@«òß;dZ@«ò“Ð|„¶@«òß;dZ@«òy0¾ í@«òß;dZ@«ò¸7´¢5@7¥öý!ÿ.@7¬¿±[W>@3° Ä›¦@3³33333@3nùÛ"Ðå@3^æ1ø @2OO „M@2E?|í‘i@2OO „M@2ÕfÏAò@2OO „M@2åÉä?}Ñ¿ž,?¥ÅãÈV/?›Ì~” #?’(æ„+Zk?¢Ø2Õ„e?À«/^ðˆ?Ž=fA:? _‰Í@‹ -? ”Ô½Ì=?•Ò_ÇF•?¢éÏŸò’«?ºYù¸Éw?’ÌRû ã?–P¢k"?žâç.¡È?>æ¿Îï?³ˆ54ˆÜG?±a²OúDæ@@@@@@(?ð?ð?ð?ð?ð?ð?U›‡LÜ¿_9 Vˆ?ad%0Ní²?o?}Ñ¿ž,?”” -=ª¸ ?šÛ’ä|?‚á²Olºü?ލf†)"?‹´¡`Ƕà?’»•e¨ò? tÆùlŠ?¨4¨æž@@@@@*@*?ð?ð?ð?ð?ð?ð?\ÔU›‚¿aÅ`ã?HJ¨ÀR¤Í?N4tµÕ -å@§(p·Ñºg@£š+q*l?f‘»d|Ý?l\t™†2ì?Òƒ*„Gp÷?Ù†ÜeâÃ@ŸdļW@­@¯E=ó¶E¢@¯EYXbN@¯E=ó¶E¢@¯E<64@¯E=ó¶E¢@¯E9XbO@¯E=ó¶E¢@¯E=²-V@¯E=ó¶E¢@¯E9‡+@¯E=ó¶E¢@¯E8DЩ@¨ú²-V@¨ú¡‰7KÇ@¨ú²-V@¨úžÅm\û@¨ú²-V@¨úŸ¾vȵ@¨ú²-V@¨ú¢¶®}V@¨ú²-V@¨úžÅm\ú@¨ú²-V@¨úžÑ·@8àØDЩ@8Ô xFÜ@3õãS÷ÎÙ@3÷eýŠÚº@3Ðå`A‰@39Àëíú@2¨è§æ›@2©ÀëíúD@2¨è§æ›@2ª™0¾ í@2¨è§æ›@2©…ðoiD?’Óusÿ\Ã?œ;=?ªT?‘"žæÆó¡?’KŸÐÇ¡?“Œ4f(Rú?’ß5d?ž²5ô$¢?ƒôŸŠø@ŸgG *”¶@¯@¦s¸Ôýó¶@¦s¸Që… @¦s¸Ôýó¶@¦s¼Æ?@¦s¸Ôýó¶@¦s´9Xb@¦s¸Ôýó¶@¦s¾ í(@¦s¸Ôýó¶@¦s²×s@¦s¸Ôýó¶@¦s®±Ä2Ê@©¥`A‰7@©¥¡ÊÀƒ@©¥`A‰7@©¦ffff@©¥`A‰7@©±&éxÕ@©¥`A‰7@©¤tSŽó@©¥`A‰7@©¢ÞѸ@©¥`A‰7@©ŸË’:*@5IÎ_oÒ@5J=p£× -@3Š^5?|í@3ŒVÕϪÎ@3F“t¼@3FÜ]cˆf@2ÜÚQÎ@2Ü¥zxl#@2ÜÚQÎ@2×l‹C•@2ÜÚQÎ@2×Xâe,?€‚ñêã ?/³)sšÌ?‘„ë2‘~?’ {½4?”ä+ïè?› ½†Ò*Ã?1·†Æjñ?’¼MÒÀ7F?‘}7ˆ.Ñ?‘ǧ?D6?“h_N’%¿?Ÿ53‡y–@?‚nâwfÿ?“êXÔ #{?’ž²¢# Y?‡ÕZ›µûÜ?•mCìc¿4?”¦”x£b@@@@@"@*?ð?ð?ð?ð?ð?ð¿P~ JãX?V»ÖF¬ ?-ÓÎÖ ê]@¦s·C(8@©¤+NSÒ?u@°@¢´$Ý/ @¢´%¸Qí@¢´$Ý/ @¢´& -¦L/@¢´$Ý/ @¢´&Ü]cˆ@¢´$Ý/ @¢´%ðoiD@¢´$Ý/ @¢´#¢œwš@¢´$Ý/ @¢´#ˆe”¯@®¢J=p£×@®¢K Iº@®¢J=p£×@®¢I“ àß@®¢J=p£×@®¢KÓÃa@®¢J=p£×@®¢KP°ò|@®¢J=p£×@®¢K’:)È@®¢J=p£×@®¢JOu@55S&Á¾@55+ÓÃa@1B° Ä›¦@1B©“ àß@0²-V@0ŽÑ·Y@0#ÉîËû@0$,<žìÀ@0#ÉîËû@0#þ\‘ÑN@0#ÉîËû@0#ä%®æ2?|öOÿÝ?Čۨ1A?‘e -!ßC?Œ:Z2‚b?‘1 °µv¦?ÛF»0?|öOÿÝ?’j%ÓRa?ÏtP°*?ni"Í š?‘ ^Íü?ÿ?½y ¦Å?† - Ðló\?ŒË›Í‡Çq?‚Ì ÝŽ‚8?ƒ ?ÿ½?†ÃÛSPã?†µ°jÆÃ@@@@@$@(?ð?ð?ð?ð?ð?ð¿0 ÿbØ¿ 2sY?.[¬?"ž™âɬ@¢´$ºdò@®¢Jöx¥&?MÛFå'~?Bj¹ YÝ!?§ìóHº¤?‘E‘¿Î@Ÿfé(®Òû@±@¥F÷ÎÙ@¥F“t½@¥F÷ÎÙ@¥E­jO@¥F÷ÎÙ@¥E첕éâ@¥F÷ÎÙ@¥Eîp:û@¥F÷ÎÙ@¥EÍ„M;@¥F÷ÎÙ@¥EÇâ‚@¸@­5ò° Äœ@­5õ?|í‘@­5ò° Äœ@­5ë6z@­5ò° Äœ@­5ðHð@­5ò° Äœ@­5íí(Œè@­5ò° Äœ@­5ò䎊r@­5ò° Äœ@­5ó©*0U@7Bò䎊@7#n.±Ä3@1; Iº^@1QÎ_@0t¼j~ú@/ÙÛ"Ðå`@/G“Ý—ö,@/›¥ãSø@/G“Ý—ö,@/ Q‚©“ @/G“Ý—ö,@/.±Ä2Ë?¥Ìõ}êáþ?¾Ì(hÆ ?¬4F&xé?ŽõÕJ?¶­Oú?æ?¸LcÙRú?}Ñ¿ž,?›¾³LR_5?¢VÂÀ@@@@@*@,?ð?ð?ð?ð?ð?ð¿…Rß¿"€¿G«ƒ€H?hÒ´}¤Ïr?EY /@¥Eïä¬@­5óK‡­¿?vžµb¿•l?fï†,­?Ô a¥ïýË?Ð’/GSm@Ÿho@Hî¦@²@¢‚Ú¬1@¢‚Û¥ãSø@¢‚Ú¬1@¢‚áò×s@¢‚Ú¬1@¢‚ÓMj@¢‚Ú¬1@¢‚Ú–¼@¢‚Ú¬1@¢‚ÛÍ5¨X@¢‚Ú¬1@¢‚ÝÙb¸@®½“t¼j@®½(õÂ@®½“t¼j@®½éùs@®½“t¼j@®½Y³Ð}@®½“t¼j@®½!G®|@®½“t¼j@®½kP°ò@®½“t¼j@®½쿱[@9-¥œàv@9/²-V@4\Iº^5?@4`ÿ—$tS@3®ùÛ"Ðå@3³©*0U2@2ÜÚQÎ@2â£S&@2ÜÚQÎ@2á£n.±Ä@2ÜÚQÎ@2á ²•éâ?¯ò5}'Î?“…­tµH?”Uy*i?–ËÒÙI°?…ÅBðrç?’ ·6Öc¤?ŸÖÒä-2¢?˜Kª³Fš?˜Ü“Œ¾?–ôË{Q?º¬(É™¹Æ?˜ÔÞÑ—æJ?•@K/Ù{?Šˆ€!B®?‰Â“yä–ê?Œúq‘@@@@@$@&?ð?ð?ð?ð?ð?ð?R{Äî?:N€?AÇþ©ù“?EœÐ·Ác@¢‚ÛLPç@®½®¸£ ?TË;ç‰9J?lPAô,b?˜¤‰t0~?ǵOŸ ¸@Ÿoq–í¶+@³@¥V‰7KÇ@¥V}ó¶E¢@¥V‰7KÇ@¥V¸ºÇ@¥V‰7KÇ@¥VŽV’@¥V‰7KÇ@¥V‘œàu÷@¥V‰7KÇ@¥VŒ/ƒ{J@¥V‰7KÇ@¥VŠ#9Àì@¨U&ffff@¨U,ÌÌÌÍ@¨U&ffff@¨U6lô!@¨U&ffff@¨U.p:û~@¨U&ffff@¨U;=ÈK@¨U&ffff@¨U*™0¾@¨U&ffff@¨U*dÂø8@7–»˜È@7|¹#¢œx@2óS÷ÎÙ@2÷ö+jçÕ@2~ùÛ"Ñ@2¾ß¤?æ@1Åœàu÷@1Ö8†YJõ@1Åœàu÷@1ÒœwškQ@1Åœàu÷@1ÔSŽóMj?…ÅBðrç?”êÎlŒy?œ -¦ÃDþ?š±‘DN?Ÿˆ`“Q?œ  ¯Õ?„F/·ÿP5?˜Ø*ªl€ô?—ˆ”„òõ¤?£aº‘¯o;? p G)L?›¶x•7fÙ?“²pÅâ-Ý?’pP‡È»?‡YÍ`?‡v¯ªIì?¾Á{þÆ%?” 4‹eñ -@@@@@,@(?ð?ð?ð?ð?ð?ð?lM‰#¿9W@?Xa;ÉŠ?Vií?À@¥V…ˆj^F@¨U-BA?wßB‰y¶?v‚ÞÂý">?æøæ8‹ V?ã°/„ß@ŸeaÏ«9@´@ Š+ J@ Šq´xA@ Š+ J@ ‰æ¸ºÇ@ Š+ J@ ‰ï\(õÃ@ Š+ J@ ‰ù³Ð|…@ Š+ J@ Š#{J#:@ Š+ JÁ.„€@«‰7KÇ@«ÊÀƒ@«‰7KÇ@«-V@«‰7KÇ@« /ƒ{K@«‰7KÇ@«'¯·é@«‰7KÇ@«3t¼j@«‰7KÇÁ.„€@6™*0U2b@6˜l"h Ô@4)‡+ @4ò䎊r@3×ï²-@3ϲ-V@3Eœàu÷@3@ªdÂø8@3Eœàu÷@3DÝ/Ÿ¿@3Eœàu÷Á.„NÜC,¥?~Ov_Ø­«?œÿ‰eVé?¢Á2ØñÔD?ž\ôÖeú?¬  KüÞ@8Ù?‚Cš æI?£š¨ž(?¡n¡Žv›-?°G²±Ùn?¥yoÌå@8û—?ƒ!;c,`?“&•Z÷˜#?¢ÿÐ4Ây€? Ú˜í2Uš?’¸ø‰o@8 Ø@@@@@,?ð?ð?ð?ð?ðøøøøøøøøøøøøµ@¬ÏD›¥ãT@¬ÏB\(õ@¬ÏD›¥ãT@¬ÏE¸Qí@¬ÏD›¥ãT@¬ÏE¼£o@¬ÏD›¥ãT@¬ÏF€IQ@¬ÏD›¥ãT@¬ÏCFÜ]d@¬ÏD›¥ãT@¬ÏCa@O@©G¸Që…@©G¶È´9X@©G¸Që…@©G¸l"h @©G¸Që…@©G¸“t¼i@©G¸Që…@©G·Á½¥@©G¸Që…@©G·§†Â'@©G¸Që…@©G·éùr@7Žì¿±[X@7„M:’@20Ä›¥ãT@21N;Í5¨@1H“t¼j@1Ik¹Œ~(@0³&Á½¥@0´?åÉ@0³&Á½¥@0³Ý—ö+k@0³&Á½¥@0³ŽóMj?—¤o„C?êÚÏ$?‘D&»ä?ŽAtùð¥t?‘ÇöÃÞ`?‘6 '8?|¬Çëý ?’0nà=Q“?‘8“‡«G?‘l™šU?‘ØèOÍ ì?‘!U?Ð{Ò?‡š¿]bœ?=d­úå?ƒ]€µ,Vß?ƒ¦$H?†Óß -tõ?ˆ‹”âó@@@@@,@(?ð?ð?ð?ð?ð?ð¿³G? ?/¨#¡ ?Gm&¹“‚?îP-Àä@¬ÏDX˜ê@©G·€¼ô ?bw=d‚$G?+±^ o?Àž ÈL«?Z´¸7Ò¹2@Ÿlygaëá@¶@¨€›¥ãSø@¨€™Û"Ðå@¨€›¥ãSø@¨€›˜Çâ‚@¨€›¥ãSø@¨€}¿H€@¨€›¥ãSø@¨€›W>«6@¨€›¥ãSø@¨€™³Ð|…@¨€›¥ãSø@¨€˜DШ@­­ŒÌÌÌÍ@­­ŽÙ‡+@­­ŒÌÌÌÍ@­­ „M@­­ŒÌÌÌÍ@­­ŒVÕÏ«@­­ŒÌÌÌÍ@­­‹jçÕg@­­ŒÌÌÌÍ@­­Œ/ƒ{J@­­ŒÌÌÌÍ@­­Ž.±Ä3@7àØDЩ@7áhr° Ä@3Ù‡+@3!-w1@2y7KƧð@2y k¹Œ~@1Åœàu÷@1ÅF -¦L0@1Åœàu÷@1Å+ÓÃa@1Åœàu÷@1Å¡ÊÀƒ?¡EÉ@Ú?òb[±?–/¸Í”p? Í‹hÆ?’FL{öó?‘uu‡éÚÇ?ˆÿÀ)T¿Æ?•üƯÁ?‘¡Kd·´+?‘aYZ†«q?’íßš?‘"›ö?¨3 ¤qâ?Žrø·óæ?…cü›Š×Õ?„Ö©Ú0?ˆA0û)n?‡L8õASÎ@@@@@*@*?ð?ð?ð?ð?ð?ð¿D(èv¿7Vê`??ƒ {Pm?<{Ÿ‚Zñ“@¨€šÜpR@­­4‹>Þ?U;ì»z„?^OQÆW?£mq€Éd?¹JÃsðs @Ÿn[ðð7–@·@ªhr° Å@ªg0 šc@ªhr° Å@ªe#v/n@ªhr° Å@ªir} -[@ªhr° Å@ªl =§„@ªhr° Å@ªfŒ3 @ªhr° Å@ªgÖ›%Ë@›b0 Ä›¦@›b0Ó¢±@›b0 Ä›¦@›b&DΙ@›b0 Ä›¦@›b)¾'*£@›b0 Ä›¦@›b(îëKÜ@›b0 Ä›¦@›b,&bT@›b0 Ä›¦@›b"ÿ/M@7Bò䎊@7E®“<æ@3«¥ãS÷Ï@3«Íë)xã@3`A‰7L@3n@2ºÔ,<ží@2·®ñu ¿@2ºÔ,<ží@2¹-›;.@2ºÔ,<ží@2¸g^eñs?}x—™?ŒUrx¨â?‘àÙN½²l?‘õ>£Uâ?~Ov_Ø­«?’fÊc?’ÌR úã?[[äÿ?”ªm™Žn?„¾T¢bå?ƒs'£Ù%ˆ?ŽwGÈ{ÙC?…ºA_K?„ª.XýÎ?ˆ±%û¥c ?‡–jÕ¡º@@"@&@@3@&?ð?ð?ð?ð?ð?ð?7k“ ¿SÒ˜?H-*gM6?4‹>²ñb@ªh`?3¤@›b+š i?gÛ7](…Þ?TâË¿¡À­?ܤìr²?´•?·WR@ŸfÇkYä²@¸@Ÿÿ¬1'@Ÿÿ¥ãSø@Ÿÿ¬1'@Ÿÿ¬·h@Ÿÿ¬1'@Ÿÿ"Œßp@Ÿÿ¬1'@ŸÿRÖË@Ÿÿ¬1'@Ÿÿ #”;@Ÿÿ¬1'@ŸÿiÀ9@£ì1&é@£ìIº^5@£ì1&é@£äo.´Š@£ì1&é@£Þf¹À@£ì1&é@£çà$È<@£ì1&é@£çfòAÛ@£ì1&é@£ãÚ$¬5@3½:’£@3½5¨Xy>@0«¥ãS÷Î@0ªo»½Mâ@04“t¼j@00óXÃe@/³üPH@/­ ŒFgÉ@/³üPH@/­6 E@/³üPH@/®¨.î—R?|¬h2:“?ãr—•{á?’QÜ:U?ü¶\kŸ -?‘ÃàcD:Ö?‘R«d"?|Ñb×¶@?’1˜… ”}?’­%¬?’1>á”’?‘þö2Ÿ¿?‘XѪƒˆ4?‚š@”?Œ¼‚wàÿš?‚­‚_6C?ƒšO¦è ?‡'µ0È?ˆ7ÚsÔh@@$@&@,@7@7?ð?ð?ð?ð?ð?ð¿b7eQ0¿Yw%Є?<‹ãX½†Ü?'þ>Ê.î£@Ÿÿ–+cÊ@£èþ˺ô?\rð<€ñ?Hm®g>Ôm?Åòe3ƒÍ?œ†uq¾@Ÿf“5ÚMâ@¹@ªv'l‹C–@ªv+C•@ªv'l‹C–@ªv6âëC@ªv'l‹C–@ªvA:’£@ªv'l‹C–@ªvBœwšj@ªv'l‹C–@ªv14êJ@ªv'l‹C–@ªv2{²þÅ@cMÒñ©ü@cY™™™š@cMÒñ©ü@c~($ x@cMÒñ©ü@c‰ 'RS@cMÒñ©ü@cšu%G@cMÒñ©ü@c£S÷ÎÚ@cMÒñ©ü@c¥ýŠÚ¹@504mÅÖ8@5FIlÊ@2—+ Iº@2$¢3œ¿@2²-V@1ÛÓÃa@@2TmÅÖ8†@1~šu@2TmÅÖ8†@1€Ë)^ž@2TmÅÖ8†@1€Ë)^ž?|Ñb×¶@?W[†?–•Kù̃æ?r*ž¾Ž?”Ôð|c¤?‘£‡9²þ?}õ¬#„­?“$i «%h?’˜l%F…Z?‘ÿŒŒhÚ?“Al.6¸?”Æ*%>g?‚o†#BpW?œ‘z¥æ?„ü›ðÓ?‡W·ŽA:Þ?‡æê7²zE?ŠE§e,¤@@@@@,@(?ð?ð?ð?ð?ð?ð?d›P?‚A¼™«À?c|1®Ìèt?UûP Mõ@ªv1­ºÝ”@cˆ©fý?ƒWÐÄ`Ûo?u¡ˆ‡[¢ -@Äa -+ä?ó—wäœ_@Ÿeù{έ -@º@£áŒÌÌÌÍ@£áŽV“@£áŒÌÌÌÍ@£áŽ}Vlô@£áŒÌÌÌÍ@£áŽ}Vlô@£áŒÌÌÌÍ@£á’-V@£áŒÌÌÌÍ@£á‹C,¦@£áŒÌÌÌÍ@£á‹¬q ´@®\=p£× -@®\A‰7KÇ@®\=p£× -@®\>š@®\=p£× -@®\@ù kº@®\=p£× -@®\A£n.²@®\=p£× -@®\@ù kº@®\=p£× -@®\>ùÛ"Ñ@6^Hè§æ@6^¸Që…@3° Ä›¦@3“Ý—ö+@2V”@2œç¯·é@1°–»˜Çã@1³Ãa@O@1°–»˜Çã@1¯ „M;@1°–»˜Çã@1®ÒˆÎp;?‚á²Olºü?’Qÿc -?”—ýÉò€?Aš%ðï?’¥.Kn Í?’ß5G]!?’W;„zY?“‚í?eBZ?•@K/Ù{?‘5ø gµÒ?„A'Š_^?…<ò N ?‰ö±«tï?ŠEÝ‹N@@@@@*@*?ð?ð?ð?ð?ð?ð¿6°‹X¿7¢»ð?K b‚F«?.tÁ…V@£áŽ(r·|@®\@윟½?k18k¨ß?M¨Ýâ':F?Ü/~{m»Ê?šÍšÁê@Ÿi'PÔ̽@»@¥!õ?|í‘@¥!ã× -=q@¥!õ?|í‘@¥"·éù@¥!õ?|í‘@¥"záH@¥!õ?|í‘@¥"§ï±@¥!õ?|í‘@¥"Ü]cˆ@¥!õ?|í‘@¥"ohÜ@ŸI Oß;d@ŸIOß;@ŸI Oß;d@ŸITÉ…ï@ŸI Oß;d@ŸHþùÛ"Ð@ŸI Oß;d@ŸI - Þ@ŸI Oß;d@ŸHûµsì@ŸI Oß;d@ŸH÷škP±@8?–»˜È@8OŸ¾vÈ@3 Iº^5@32ÊW§†@2²-V@2g8}¿@1®_oÒ @1œ‹C•@1®_oÒ @1˜1&éxÕ@1®_oÒ @1˜r° Äœ?ð°–Ž]?¥L 5¨dÍ?š^ÇÙ*G?–õJe ?¢cfµ(ë?  =%º?ð°–Ž]?™jK¸­€t?’Qÿc -? ¬%)¯?ªä¬¯kF?¨Ò,[œ•?ð*wjs—?™Ø7&½ x?„W;RT?”*+JÒšF?‘éXñ„–†?‘À³ûê%§?ð@@@@,@*?ð?ð?ð?ð?ð?ð¿`ƒÿ¿qXps€?PmÌnÅý³?DàÕÙõ@¥"'‡ß@ŸI2Ó#BZî@¡ûixÔýô@¡ûhe”¯O@¡ûixÔýô@¡ûgRT`ª@1Ñ|ÚQ@1щ7Kƨ@.kƧï²@.iº^5?}@-ÊÀƒo@-~¸Që…@,õ¨Xy=Ú@,ðÿ—$tT@,õ¨Xy=Ú@,ñ&éxÔý@,õ¨Xy=Ú@,ò:)Çy§?Éa—Ã(Ê?ôÊ_?‘SŸ[ÈÙ?Œݶ\ñr?‘¾%î -ã?È2I/?ÐbV‡,?’,ö´´Ï#?‘t‰WZñ?‘.“¥?‘ ÛÌÏõA?‘yÃúCŠ?€cPßQª?Œ».êxóÚ?‚¸“Îè ø?ƒ=rµE=?†å·ÑfWà?ˆ0&YÊEd@@@@@&@,?ð?ð?ð?ð?ð?ð¿K“XÙ€¿8[Us2?1œnnË·?/ñÊdþ @§ÂLDYº@¡ûh ÕÝ?@ó¿ÀÓÁ?=\e¦÷?{µõŸþ7?pàÐT‰P€@Ÿs†k<Ú@¾@©ß;çl‹D@©ß@©ß;çl‹D@©ß<ðG»¦@©ß;çl‹D@©ß:í‡,@©ß;çl‹D@©ß; ¶ÅŒ@”­å`A‰7@”­æƒB@”­å`A‰7@”­æÄÏE@”­å`A‰7@”­ãj\ÜÆ@”­å`A‰7@”­ã_œ^@”­å`A‰7@”­åŸ{@”­å`A‰7@”­ã튫©@5‘|ÚQ@5’«Crél@1f‡+ J@1gD5ÎŽ@0´“t¼j@0´±î$5j@/ð‰ 'RU@/òkŸÔ:@/ð‰ 'RU@/ñÿúâ @/ð‰ 'RU@/ñƽúã?~ì“?ÕÒJ?ü›Î>SU?‘/þù:hn?‹Þ%À£ ?‘ ‡  ¬?ȾŸ¸ª?~Ov_Ø­«?’%õ…mR ?ž8‡Üõä?DNX”1°?ì*d?€˜?rÐûG½?‚tî_™FS?Œ½K ìë?‚š°3ÙÄt?‚ærݳ«&?†œ!R#?†Ä?÷d±@@*@&@*@;@8?ð?ð?ð?ð?ð?ð¿/‰åXÀ¿)÷ëE¸?(¯äˇƒ¥? ÞoÙ³kF@©ß;ÿûÉv@”­åÀê`?H¢‡å,?AI ˆÝX”?Ÿ&eõ¶h?•©@Ð\@Ÿgbm!Oõ@¿@¢°‡®zá@¢°‰ûçl‹@¢°‡®zá@¢°$Ý/@¢°‡®zá@¢°†Ü]c‡@¢°‡®zá@¢°°‰ '@¢°‡®zá@¢°‡ÕfÏB@¢°‡®zá@¢°‚@·€4@¨ûÖ‡+ @¨ûÛdZ«@¨ûÖ‡+ @¨ûÓMj@¨ûÖ‡+ @¨ûÕfÏAò@¨ûÖ‡+ @¨ûÚ…‡“Þ@¨ûÖ‡+ @¨ûÙe+ÓÃ@¨ûÖ‡+ @¨ûÓüPI@8eöý!ÿ.@8S33333@3‡ÎÙ‡+@3…oi@2ß²-V@2Ü‘ÑN;Í@1𖻘Çã@1ìÚQÎ@1𖻘Çã@1ëµsê´@1𖻘Çã@1ì£n.²?óA[ØïF?*£|3Né?–/¸Í”p?Uÿyu”#?šµV0o~8?•iá¸OL™? Eˆ‡ðó‹?“-N•I`(?”€@N¯â?’k­ªì¢H?¢£xŒ(Â7?šºi 0/¥?–Ϥ?þ,DöP?“àÕèéa‚?„XïWÉò~?%üdêË?Ò0aˆ‡‡@@@@@,@(?ð?ð?ð?ð?ð?ð¿W[UÁ6¿Zæ02 -?P›ä‰ÇÍ?K™ª\õV@¢°„­C¨ù@¨ûØìfy„?oú“{IÞ?e*ˆÚðôë?Óál³‹%?µ}+åÎ*Þ@Ÿl'螎@À@§[~ùÛ"Ñ@§[‚p„ÿà@§[~ùÛ"Ñ@§[dŽŠqß@§[~ùÛ"Ñ@§[_b¶®}@§[~ùÛ"Ñ@§[E8ï4×@§[~ùÛ"Ñ@§[ªÍž„@§[~ùÛ"Ñ@§[–ý!ÿ.@šÃ•%@šÌ`¿V@šÃ•%@š€ëíúC@šÃ•%@šTzáG®@šÃ•%@š6È´9X@šÃ•%@›0:û~@šÃ•%@šï²- @8=:’£@8GõÅ;n@3E?|í‘h@32×sü@2È“t¼j@2¯Š Þ@2fYJôðØ@2vs×Ûõ@2fYJôðØ@2<ÌÌÌÌÍ@2fYJôðØ@2 Ì?¯AŸð~“?¬úh¬‹îÂ?…ÅBðrç?ð¢dx/?׈à(ì?ÈÂÙ`Ý|?´ºúÌ!{’?³³¬è®û›?Ÿ|–„aQ?ðfÁbÂô?ø«RCK¼?˜m7>ên?‹&¸ê±fÂ?¨jN‹­÷R@?ð@@@(@(?ð?ð?ð?ð?ð?ð?o¬Qç:?‡vAg8€?‘½6‚óÇQ?„ý¦>;3c@­­ìMôã@­Ñ -H\?«÷s‚s ?œÛ f0&Í@;ÞzÙ0È@®‡|s @Ÿ`{…¤ @Â@­töÈ´9X@­t÷KƧñ@­töÈ´9X@­tû=ÈL@­töÈ´9X@­týIQ‚ª@­töÈ´9X@­uä÷eÿ@­töÈ´9X@­tüÚQ@­töÈ´9X@­tú)Çy¨@¥pyXbN@¥pyXbN@¥pyXbN@¥p{çl‹E@¥pyXbN@¥pxQë…@¥pyXbN@¥pz¬Ùè=@¥pyXbN@¥px_ö”@¥pyXbN@¥py‡+@4Œ]cˆe”@4ŒIº^5@@2+¥ãS÷Ï@2(>BZîc@1š~ùÛ"Ñ@1”ohÜ@1 ù kº@0ÿØ­«ŸV@1 ù kº@1-w1Å@1 ù kº@1ò×s?}Ñ¿ž,?¥nÇx?)?ššÒèôɲ?•oÕ=\<Â?’š'†­`í?’T«¥-ÚN?}Ñ¿ž,?“xß–ø6œ?– íÇyz?“¶Ì¶Öj”?• ¸°R¨?”Æ*%>g?‚oÁÆÜ§ö?þþoÀM?‰ÕäÖ‚‚?‡õ{CxÞ?‹aÊ•TI?‰Â“yä–ê@@@@@(@,?ð?ð?ð?ð?ð?ð?QÕÝôп.Z?L¿›*¬W?*¼'9DÂã@­tù;@¥pyT²ˆ½?m nèÒB$?J‚óÕˆO?â‰FË‘?›rD‰è–…@Ÿeâ­Û'Á@Ã@¤Ò…¡ÊÀƒ@¤Ò…¡ÊÀƒ@¤Ò…¡ÊÀƒ@¤Ò†?@¤Ò…¡ÊÀƒ@¤Ò†$Ý/@¤Ò…¡ÊÀƒ@¤Ò† -¦L/@¤Ò…¡ÊÀƒ@¤Ò…F -¦L@¤Ò…¡ÊÀƒ@¤Ò„Âø7µ@®=ë…¸@®=©ûçn@®=ë…¸@®=ÊW§‡@®=ë…¸@®=T`ªf@®=ë…¸@®=Î_@®=ë…¸@®=a|Ú@®=ë…¸@®=GE8ï@3åöý!ÿ.@3åðoiDh@0O|í‘hr@0O±[W>«@/¥¡ÊÀƒ@/¦$Ý/ @/­úCþ\’@/¯'»/ìX@/­úCþ\’@/®}Vlô @/­úCþ\’@/®cŠ ?|¬Çëý ?äm°û0Ž?‘ÌË>¯f?‹ë¤½?‡á?‘çG¸?âé¨ë7F?|öOÿÝ?’ -‰¸Ì?~ËQ§?Hª¦ºón?îCq$u?ƒÁþGEÛ?‚‹¡8*ùÿ?Œ».êxóÚ?‚¸“Îè ø?ƒ ?ÿ½?†¼Š˜L¥÷?†¼Š˜L¥÷@@@@@(@(?ð?ð?ð?ð?ð?ð¿_Le@?q˜Ó@?Iaè?ä°‰Êí@¤Ò…|u~Ä@®=Õ;ž8?fÂ1åþe?…Û÷<б?‡ß‡R% -@Ÿf꼄IA@Ä@®ò#× -=q@®ò(´9X@®ò#× -=q@®òš@®ò#× -=q@®òÆ?@®ò#× -=q@®ò -à@®ò#× -=q@®òÅ€@®ò#× -=q@®òÎÙ‡@§‚\(ö@§fffff@§‚\(ö@§÷ÎÙ‡@§‚\(ö@§ó¶E¢@§‚\(ö@§½¥ž@§‚\(ö@§†Á½¦@§‚\(ö@§ÿ;dZ@804mÅÖ8@8#©*0U2@3‡ÎÙ‡+@3W ù k¹@3“t¼@2Ï—$tS@2ý!ÿ.I@1íæšÔ,=@2ý!ÿ.I@1óZ…‡“Þ@2ý!ÿ.I@1ðbMÒñª?„F/·ÿP5?”·'‚5â–?“mî–‚Žr? Í‹hÆ?–ç=ìW·¹?”ÙA!Xá¨?…ÅBðrç?¿è„åÕ?À!ÕÞBL¾?ÏGjH>?Ò¨òv‡í?ÌBL«³?¥×»xG–?”kcÿä©Ú?‹ÛÛÐïF?‘V]9½êV?—H—‹‰ -0?¬øþÓQ@@@@@,@,?ð?ð?ð?ð?ð?ð¿pdóŸ¿ + Òüu?Ÿ”ºs¶Q?¸ùåá+"@ŸqÙǨ@È@¬„záG®@¬„¼j~ú@¬„záG®@¬„,<ží@¬„záG®@¬„¨Xy>@¬„záG®@¬„%F -¦@¬„záG®@¬„3333@¬„záG®@¬„,<ží@¡x!G®{@¡x Ä›¥ã@¡x!G®{@¡x!G®{@¡x!G®{@¡x Ä›¥â@¡x!G®{@¡x"MÒñª@¡x!G®{@¡x!|ÚQ@¡x!G®{@¡x ƒn˜@4 ]cˆe”@4 £n.²@0ahr° Ä@0aœàuöý@/ ƒn—Ž@/¡:’£R@/¸7´¢3œ@/¹e+ÓÃa@/¸7´¢3œ@/¸Çâ‚@¸@/¸7´¢3œ@/¹JôðØD?|öOÿÝ?/³)sšÌ?‘:€¾¶ˆ?‹ë¤½?‡á?‘5ø gµÒ?âé¨ë7F?}Ñ¿ž,?’ -‰¸Ì?«'Q™µ?>\‰å‘?‘+ùÔ!½‹?›ªU3Îp?ƒúʳ_Ã?Œµ3‰;šÏ?‚á²Olºý?ƒ†+ Å?†ÃÛSPã?‡ã ËÄž@@@@@,@,?ð?ð?ð?ð?ð?ð¿$“à2@?×=Ÿ`?&)"&yE(?)by—þëW@¬„tœ@¡x!3£L?F,½¼â?IÓ#ÉÑ5ì?šw C÷Q? ¶J »¼D@ŸgÁ“`[@É@¤$ºáG®@¤$§ï²,@¤$ºáG®@¤$¾ÿ—$@¤$ºáG®@¤$½ÈK^@¤$ºáG®@¤$¼ú¬Ùè@¤$ºáG®@¤$¹=Ùc@¤$ºáG®@¤$Çï²-@®wgl‹C–@®w}ó¶E¡@®wgl‹C–@®wdZ¬@®wgl‹C–@®wh1&éz@®wgl‹C–@®weãS÷Ï@®wgl‹C–@®whð@®wgl‹C–@®w•Â\)@6àØDЩ@6ÉXbMÓ@2ÜIº^5?@2ÛàÞÒˆÎ@2²-V@2\(õÂ@1ýcˆe”°@1û~ÿ—%@1ýcˆe”°@1û/ìVÕÐ@1ýcˆe”°@2ÊW§†Â?¶™b’jk±?½Ë9ØŠ§?’µ<ëvar?Ž £Ú?‘§›ßÉîj?–ËÒÙI°?¶™b’jk±?“ý•‘|?Ê -ä\ä?‘3)10ÑF?‘„ÅMè?•±ŽnBTß?É ‘˜çZ?\{ÏïŽ?†aÞàI*•?…âC£½¾Ý?‡2[síç?”ø™¾@@@@@"@&?ð?ð?ð?ð?ð?ð?n8â½ö?Œ«zŒ?jùާC?„šK.aR2@¤$½½ùTê@®wp‚Ö–?y·©ÿ1¿è?”USuðUH?ê[ ñëÒ„@Ú½Eeaì@ŸqEh^Rp@Ê@¯¼œ¬1'@¯¼ŽÙ‡+@¯¼œ¬1'@¯¼.—Oß@¯¼œ¬1'@¯¼T,<ží@¯¼œ¬1'@¯¼E¡ÊÀƒ@¯¼œ¬1'@¯¼ uöý!@¯¼œ¬1'@¯¼š@ŸÃ]/Ÿ¾@ŸÃKC•@ŸÃ]/Ÿ¾@ŸºÊqÞi­@ŸÃ]/Ÿ¾@Ÿ»Ž¾ß¤@@ŸÃ]/Ÿ¾@Ÿ¹¸ -à@ŸÃ]/Ÿ¾@Ÿ»BÃÉîÍ@ŸÃ]/Ÿ¾@ŸºåÉä@8kµsê´@8c•$Ý@5k¥ãS÷Ï@4BëC,¥@5å`A‰7@3ŒC,¥zx@4ÚQÎ@2Îp:û~‘@4ÚQÎ@2ׯ·é@4ÚQÎ@2ÛP°ò{³?ªÝ8Ⱥ™J?²Z£éð ?³K¸šïHä?›À‰¥xsÎ?ªõ9Vc‚ ?¬–f¥Ï?·à¦_ëý?Äyï ~L?àQ‹Àn?ºº!Ú?à>Êš€Cq?Þ÷•pŠ«u?Äz§6À¿?•ða˜,F?£?k2ö5?†Á{0Ÿà®?¢¼@•&ö?¢VÂÀ@@@@@,@*?ð?ð?ð?ð?ð?ð¿˜Òš£@¿Ù¹÷†œ°?ksHØ*¬?¶oí94 ë@¯¼[—@Ÿ½Z]ÿ?†Ož<}?Ðø®/?Åo?Ú{ /gv@: I ò€4@Ÿd–!}zi@Ë@§ò Iº^@§òÃ× -=q@§ò Iº^@§òÄtSŽó@§ò Iº^@§ò²n—P@§ò Iº^@§òÂMÒñª@§ò Iº^@§òÂ\(ö@§ò Iº^@§òÂ&€J@×Þ5?|î@×õ?|í‘@×Þ5?|î@×Ö8†YL@×Þ5?|î@×ïiDg8@×Þ5?|î@×áÿ.Hê@×Þ5?|î@×ãn.±Å@×Þ5?|î@×ÜwškQ@7àØDЩ@7á‰7Kƨ@3pÄ›¥ãT@3nÅm\ú­@2ÝV”@2ßHË’:@2Eœàu÷@2F”FsØ@2Eœàu÷@2G$tSŽô@2Eœàu÷@2FÕϪ͟?’Óusÿ\Ã?™Ô_ Ï ý?£ÃŠëyŠ?’ñ¼wn-?“XMHñëž?’_‘Oo¨Ž?¢F^ì¼Sð?•¤-'Ä,?œT¹o¿‹õ?“ÅëJkÙ?“4¦{ºÕ?“{P»á? øk@×õ{?‘ÌAzÁý?‰ZaizÚD?‹8¹ª?‹¼`’ i2?ˆk! ¨l@@@@@*@&?ð?ð?ð?ð?ð?ð¿5CÆÈ¿`–íŒ.€?ñF%žKÃ?H¯Lfˆd¦@§ò  j@×ãÓ -‘ã?:a݂½-?ahdí‚T?ob´²I?´O*NÍ:™@Ÿn¡9½q…@Ì@¦Ñhr°!@¦Ò-V@¦Ñhr°!@¦æfffg@¦Ñhr°!@¦ܬ1(@¦Ñhr°!@¦Ûšu@¦Ñhr°!@¦ÙrGE9@¦Ñhr°!@¦ß±[W?@£žD›¥ãT@£žKC•@£žD›¥ãT@£žE‡“ݘ@£žD›¥ãT@£žG“Ý—÷@£žD›¥ãT@£ž9=Ùc@£žD›¥ãT@£žKƧïž@£žD›¥ãT@£žN;Í5¨@7ãg ù l@7Úxl"h -@3óS÷ÎÙ@3èDЩ*@3²-V@3$Ý/ @2œÚQÎ@2’T`ªdÃ@2œÚQÎ@2‹ Iº_@2œÚQÎ@2Œ64ë?Ž=fA:?¡D&d4?œrôeEÜ?“êXÔ #{? òñJÏg?œH÷A”mà?Œs¤DÅÐ?šækM..?™ ?G·W?’îy†Ò‡‚?¢]dÔ}Ê?¢K‡À3I?¤¤zP¼z?”3®èÚ ?qÂ' -Bœ?“ÍÁ!÷G?’d­©‡ò?‘ýÂHåÅÐ@@@@@,@,?ð?ð?ð?ð?ð?ð?ej7H¿\‰ÂÄ?A>ÈÑÇ;W?jh,@¦ØUPÍ@£žDÙây2?`ZâòC?ˆ_‡Ùë)?²župb»Ë@¯ñ00 @Ÿgw]…@Í@©\7ÎÙ‡@©\7 -=p¤@©\7ÎÙ‡@©\4¯O „@©\7ÎÙ‡@©\?b¶®}@©\7ÎÙ‡@©\A×Ûôˆ@©\7ÎÙ‡@©\:…‡“Þ@©\7ÎÙ‡@©\Cˆe”¯@ Æ»çl‹D@ Æ½/Ÿ¾@ Æ»çl‹D@ Æ¿.Hè§@ Æ»çl‹D@ ÆÀ@ Æ»çl‹D@ Æ¾ í(@ Æ»çl‹D@ ÆÕL˜_@ Æ»çl‹D@ ÆÆ§ï²@6쿱[X@6¤?åÉ@3sS÷ÎÙ@3pƒn—@2Ú~ùÛ"Ñ@2à:û~‘@2Š0U2a|@2†µ '¼@2Š0U2a|@2•¸Që…@2Š0U2a|@2…8ï4Ö¢?žˆ2}?’ÕOäª9ô?”lš5B¬î?Œ9‚Ù.?™¼wX¬?—>æV¡¶$?1·†Æjñ?•yom?˜“º£¹‡b?‘3)10ÑF?˜ -†Y ë*?žƒ2¶Í¾?š¡‚\i?[™ÕÈ™8?ޏQë…¹?‹µ¼a?¥VËMª¼‰?°4\ɵ@@@@@*@,?ð?ð?ð?ð?ð?ð?d–êû -?h‘µg?Q+«Þfá¡?`\Z ×ø?@©\¦ß°D@Ÿe8á›S=@Î@®#Z¬1@®#Z¬1@®#Z¬1@®#Zîc‹@®#Z¬1@®#XºÇÊ@®#Z¬1@®#\(õÂ@®#Z¬1@®#X -à@®#Z¬1@®#Y=Ùc@¤ÐÜ(õÂ@¤ÐÜ(õÂ@¤ÐÜ(õÂ@¤ÐÜ64@¤ÐÜ(õÂ@¤ÐÚ^5?}@¤ÐÜ(õÂ@¤ÐÛ=ÈK@¤ÐÜ(õÂ@¤ÐÛÍ5¨X@¤ÐÜ(õÂ@¤ÐÚ–¼@2°4mÅÖ8@2°A‰7KÆ@0Ùº^5?|@0Øè§æš@0±‰7Kƨ@0°°ò{²ÿ@0!:’£T@0 ƒn—Ž@0!:’£T@0 ¾ í(@0!:’£T@0 ØDЪ?É^òÀXæN?Qdöÿô¼?‘`×›mÏ?‹×lÇ…N9?‘çG¸?ÛF»0?ÐbMçê_x?’,ö´´Ï#?ÀpMºÅ?K·‘d]?‘Ú‚ýc¯?b¶­-Óx?€b¡´ñ@?ŒÂ§dß±?ƒmÕ+&¬Š?ƒE 8?†ùadô|?†ïRÉv‘Ñ@@@@@*@(?ð?ð?ð?ð?ð?ð¿V‹Lˆì¿>?¾U?D`?¦x¿¹?;gxµ'YÊ@®#Z?ÄáÔ@¤ÐÛ¹XÒ?Sž¿wÅj?Iüiµª?¢ŽõMÂ?6O2œ<@Ÿs8…ð@Ï@­ö˜bMÓ@­ö˜Që… @­ö˜bMÓ@­ö²-V@­ö˜bMÓ@­ö hÛ‹¬@­ö˜bMÓ@­ö¥ãS÷Ï@­ö˜bMÓ@­ö˜üPH@­ö˜bMÓ@­ö˜Çâ‚A@¥Wçl‹C–@¥Wçl‹C–@¥Wçl‹C–@¥W×süP@¥Wçl‹C–@¥WÁ°‰ '@¥Wçl‹C–@¥WÂÃÉîÌ@¥Wçl‹C–@¥WÀÄ›¥ã@¥Wçl‹C–@¥Wµsê³g@4|ÚQ@4G®zâ@1Ê^5?|í@1Áë…¸R@1¬j~ùÛ#@1›ÚQÎ@1œàu÷@0òa|ÚQ@1œàu÷@0òþÅm\û@1œàu÷@0óÝ—ö+k?|öOÿÝ?%¼ÇÆÃ±?”lš5B¬î?’~ò™rV?’2’Ö¼9?“°™²!¨w?|¬Çëý ?™ Ê£ð‡V?¦Ì· ”?¥fóa]G?¡^候¼?¯{Æì5è?‚‘´…=Ca?ŒÛÏ·+?‚Ì ÝŽ‚8?„XïWÉò~?ˆ¾þúWZ‹?–¨¬:­÷@@@@@*@,?ð?ð?ð?ð?ð?ð?H2¤•x¿…BI@?XÂtÐÒ?QÙ9âfR@­öšŸËÆ@¥WØ -þ…?ve&¾úµI?jÕ½Ÿµ?ûqÌÓ|?ÉÌóáoÝÓ@ŸaE›8ÉF@Ð@¥÷+ Iº@¥÷+ Iº@¥÷+ Iº@¥÷*¦L/ƒ@¥÷+ Iº@¥÷+ Iº@¥÷+ Iº@¥÷+6z‘@¥÷+ Iº@¥÷)ûçl‹@¥÷+ Iº@¥÷* Þ@­,G®zá@­,G®zá@­,G®zá@­,H1&éy@­,G®zá@­,H´9X@­,G®zá@­,H1&éy@­,G®zá@­,IxÔýô@­,G®zá@­,HXy=Ú@3úqÞi­C@3ú¦L/ƒ|@0O|í‘hr@0Ov_Ø­¬@/÷Oß;d@/÷$tSŽó@/ -#9Àëî@/ …ðoiE@/ -#9Àëî@/ º^5?}@/ -#9Àëî@/ ÞѸ?}Ñ¿ž,?ß‹’bÏ?‘jh¨qã9?‹Æ úJ-M?‘ä~|+?æöæ×t?|¬Çëý ?’7Îf¬ps?«'Q™µ?CÚ B÷?äú’ (fit_val - fit_err*n_sigma)) return np.abs(true_val - fit_val) <= n_sigma*fit_err def test_Fixed(): @@ -76,16 +74,31 @@ def test_Fixed(): ) x_sim = np.random.normal(x_true, true_params['x0_err']) y_sim = np.random.normal(y_true, true_params['y0_err']) + xe = np.ones_like(t)*true_params['x0_err'] + ye = np.ones_like(t)*true_params['y0_err'] # Run fit - params, param_errs, _ , _ = mod.fit( + params, param_errs = mod.fit( t, x_sim,y_sim, - xe=np.ones(len(t))*true_params['x0_err'], - ye=np.ones(len(t))*true_params['y0_err'], - t0=np.nan + xe=xe, + ye=ye ) + + x_wt = 1. / xe**2 + y_wt = 1. / ye**2 + x_wt_norm = x_wt / np.sum(x_wt) + y_wt_norm = y_wt / np.sum(y_wt) + x_mean = np.average(x_sim, weights=x_wt) + y_mean = np.average(y_sim, weights=y_wt) + x_std = (np.sum(x_wt_norm**2 * xe**2))**0.5 + y_std = (np.sum(y_wt_norm**2 * ye**2))**0.5 + # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) + np.testing.assert_allclose(params[0], x_mean, atol=1e-5) + np.testing.assert_allclose(params[1], y_mean, atol=1e-5) + np.testing.assert_allclose(param_errs[0], x_std, atol=1e-5) + np.testing.assert_allclose(param_errs[1], y_std, atol=1e-5) def test_Linear(): @@ -95,12 +108,11 @@ def test_Linear(): 't0':2025.0} mod = motion_model.Linear() param_list = mod.fit_param_names - fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t=t0 and array t x_t, y_t = mod.model( t=true_params['t0'], fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) assert x_t==true_params['x0'] assert y_t==true_params['y0'] @@ -108,7 +120,7 @@ def test_Linear(): x_t, y_t = mod.model( t=t_arr, fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) assert (x_t==(true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx'])).all() assert (y_t==(true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy'])).all() @@ -129,25 +141,28 @@ def test_Linear(): t=t_batch, fit_params=np.array([x0_batch, vx_batch, y0_batch, vy_batch]).T, fit_param_errs=np.array([x0_err_batch, vx_err_batch, y0_err_batch, vy_err_batch]).T, - fixed_params=t0_batch + fixed_params_dict={'t0': t0_batch} ) - assert (x_t_batch==(x0_batch+(t_batch-t0_batch)*vx_batch)).all() - assert (y_t_batch==(y0_batch+(t_batch-t0_batch)*vy_batch)).all() - assert (x_err_t_batch==np.hypot(x0_err_batch, (t_batch-t0_batch)*vx_err_batch)).all() - assert (y_err_t_batch==np.hypot(y0_err_batch, (t_batch-t0_batch)*vy_err_batch)).all() + + + np.testing.assert_allclose(x_t_batch, (x0_batch+(t_batch-t0_batch)*vx_batch), atol=1e-5) + np.testing.assert_allclose(y_t_batch, (y0_batch+(t_batch-t0_batch)*vy_batch), atol=1e-5) + np.testing.assert_allclose(x_err_t_batch, np.hypot(x0_err_batch, (t_batch-t0_batch)*vx_err_batch), atol=1e-5) + np.testing.assert_allclose(y_err_t_batch, np.hypot(y0_err_batch, (t_batch-t0_batch)*vy_err_batch), atol=1e-5) + # Multiple times t_batch = np.arange(2015.0,2025.0, 0.5) x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( t=t_batch, fit_params=np.array([x0_batch, vx_batch, y0_batch, vy_batch]).T, fit_param_errs=np.array([x0_err_batch, vx_err_batch, y0_err_batch, vy_err_batch]).T, - fixed_params=t0_batch + fixed_params_dict={'t0': t0_batch} ) - assert (x_t_batch==np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx_batch[i] for i in range(len(x0_batch))])).all() - assert (y_t_batch==np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy_batch[i] for i in range(len(x0_batch))])).all() - assert (x_err_t_batch==np.array([np.hypot(x0_err_batch[i], (t_batch-t0_batch[i])*vx_err_batch[i]) for i in range(len(x0_batch))])).all() - assert (y_err_t_batch==np.array([np.hypot(y0_err_batch[i], (t_batch-t0_batch[i])*vy_err_batch[i]) for i in range(len(x0_batch))])).all() - + np.testing.assert_allclose(x_t_batch, np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx_batch[i] for i in range(len(x0_batch))]), atol=1e-5) + np.testing.assert_allclose(y_t_batch, np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy_batch[i] for i in range(len(x0_batch))]), atol=1e-5) + np.testing.assert_allclose(x_err_t_batch, np.array([np.hypot(x0_err_batch[i], (t_batch-t0_batch[i])*vx_err_batch[i]) for i in range(len(x0_batch))]), atol=1e-5) + np.testing.assert_allclose(y_err_t_batch, np.array([np.hypot(y0_err_batch[i], (t_batch-t0_batch[i])*vy_err_batch[i]) for i in range(len(x0_batch))]), atol=1e-5) + # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter @@ -156,55 +171,73 @@ def test_Linear(): x_true, y_true = mod.model( t=t, fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) x_sim = np.random.normal(x_true, 0.05) y_sim = np.random.normal(y_true, 0.05) # Run fit - params, param_errs, _, _ = mod.fit( - t=t, - x=x_sim, - y=y_sim, - xe=np.repeat(0.05, len(t)), - ye=np.repeat(0.05,len(t)), - t0=true_params['t0'] - ) - print(param_errs) - # Confirm true value is within error bar of fit value - assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) - + xe = np.ones_like(t)*0.05 + ye = np.ones_like(t)*0.05 + + def linear(t, x0, vx): + return x0 + vx * t + + for absolute_sigma in [True, False]: + for weighting in ['std', 'var']: + for use_scipy in [True, False]: + params, param_errs = mod.fit( + t=t, + x=x_sim, + y=y_sim, + xe=xe, + ye=ye, + fixed_params_dict={'t0': true_params['t0']}, + weighting=weighting, + use_scipy=use_scipy, + absolute_sigma=absolute_sigma + ) + + # Scipy + xe_scipy = xe**0.5 if weighting=='std' else xe + ye_scipy = ye**0.5 if weighting=='std' else ye + x_popt, x_pcov = curve_fit( + linear, + t - true_params['t0'], + x_sim, + sigma=xe_scipy, + absolute_sigma=absolute_sigma, + p0=[np.mean(x_sim), 0.0] + ) + y_popt, y_pcov = curve_fit( + linear, + t - true_params['t0'], + y_sim, + sigma=ye_scipy, + absolute_sigma=absolute_sigma, + p0=[np.mean(y_sim), 0.0] + ) + np.testing.assert_allclose(params[:2], x_popt, atol=1e-5) + np.testing.assert_allclose(param_errs[:2], np.sqrt(np.diag(x_pcov)), atol=1e-5) + np.testing.assert_allclose(params[2:], y_popt, atol=1e-5) + np.testing.assert_allclose(param_errs[2:], np.sqrt(np.diag(y_pcov)), atol=1e-5) + # Test fitter with bootstrap - t = np.arange(2015.0,2025.0, 0.5) + t = np.arange(2015.0, 2025.0, 0.5) # Get values from model and add scatter - x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list],t) - x_true_err, y_true_err = np.repeat(0.05,len(t)), np.repeat(0.05,len(t)) + x_true, y_true = mod.model( + t=t, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params_dict={'t0': true_params['t0']} + ) + x_true_err, y_true_err = np.ones_like(t)*0.05, np.ones_like(t)*0.05 x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0'],bootstrap=10) + params, param_errs = mod.fit(t, x_sim, y_sim, x_true_err, y_true_err, fixed_params_dict={'t0': true_params['t0']}, bootstrap=10) print(param_errs) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) -# # Test fitter for 2 pts -# t = np.array([2015.0,2025.0]) -# # Get values from model and add scatter -# x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], -# [true_params[p] for p in fixed_param_list],t) -# x_true_err, y_true_err = np.repeat(0.05,len(t)), np.repeat(0.05,len(t)) -# x_sim = np.random.normal(x_true, x_true_err) -# y_sim = np.random.normal(y_true, y_true_err) -# # Run fit -# mod_fit = motion_model.Linear(t0=true_params['t0']) -# params, param_errs = mod_fit.fit_motion_model(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0']) -# print("DJSKBGJ",param_list) -# print([true_params[p] for p in param_list]) -# print(params) -# print(param_errs) -# # Confirm true value is within error bar of fit value -# assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params),2)]) - def test_Acceleration(): # Test handling of a single star @@ -214,12 +247,11 @@ def test_Acceleration(): 't0':2025.0} mod = motion_model.Acceleration() param_list = mod.fit_param_names - fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t=t0 and array t x_t, y_t = mod.model( t=true_params['t0'], fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) np.testing.assert_allclose(x_t, true_params['x0']) np.testing.assert_allclose(y_t, true_params['y0']) @@ -227,7 +259,7 @@ def test_Acceleration(): x_t, y_t = mod.model( t=t_arr, fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) np.testing.assert_allclose(x_t, true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ax']) np.testing.assert_allclose(y_t, true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ay']) @@ -252,7 +284,7 @@ def test_Acceleration(): t=t_batch, fit_params=np.array([x0_batch, vx0_batch, ax_batch, y0_batch, vy0_batch, ay_batch]).T, fit_param_errs=np.array([x0_err_batch, vx0_err_batch, ax_err_batch, y0_err_batch, vy0_err_batch, ay_err_batch]).T, - fixed_params=t0_batch + fixed_params_dict={'t0': t0_batch} ) np.testing.assert_allclose(x_t_batch, x0_batch + (t_batch-t0_batch)*vx0_batch + 0.5*(t_batch-t0_batch)**2*ax_batch) np.testing.assert_allclose(y_t_batch, y0_batch + (t_batch-t0_batch)*vy0_batch + 0.5*(t_batch-t0_batch)**2*ay_batch) @@ -267,7 +299,7 @@ def test_Acceleration(): t=t_batch, fit_params=np.array([x0_batch, vx0_batch, ax_batch, y0_batch, vy0_batch, ay_batch]).T, fit_param_errs=np.array([x0_err_batch, vx0_err_batch, ax_err_batch, y0_err_batch, vy0_err_batch, ay_err_batch]).T, - fixed_params=t0_batch + fixed_params_dict={'t0': t0_batch} ) np.testing.assert_allclose(x_t_batch, np.array([x0_batch[i] + (t_batch-t0_batch[i])*vx0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ax_batch[i] for i in range(len(x0_batch))])) np.testing.assert_allclose(y_t_batch, np.array([y0_batch[i] + (t_batch-t0_batch[i])*vy0_batch[i] + 0.5*(t_batch-t0_batch[i])**2*ay_batch[i] for i in range(len(x0_batch))])) @@ -280,7 +312,7 @@ def test_Acceleration(): x_true, y_true = mod.model( t=t, fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params=np.array([true_params[p] for p in fixed_param_list]).T + fixed_params_dict={'t0': true_params['t0']} ) x_true_err = np.sqrt(true_params['x0_err']**2 + ((t - true_params['t0']) * true_params['vx0_err'])**2 + (0.5*(t - true_params['t0'])**2 * true_params['ax_err'])**2) @@ -290,280 +322,65 @@ def test_Acceleration(): y_sim = np.random.normal(y_true, y_true_err) # Run fit mod_fit = motion_model.Acceleration() - params, param_errs, _, _ = mod_fit.fit( + params, param_errs = mod_fit.fit( t=t, x=x_sim, y=y_sim, xe=x_true_err, ye=y_true_err, - t0=true_params['t0'] + fixed_params_dict={'t0': true_params['t0']} ) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) - + #@pytest.mark.skip(reason="not written") def test_Parallax(): # Test handling of a single star true_params = {'x0': 1.0, 'y0':-0.5, 'x0_err':0.1, 'y0_err':0.1, 'vx':-0.2, 'vy':0.5, 'vx_err':0.05, 'vy_err':0.05, - 'pi':0.5, 'RA':17.76, 'Dec':-28.933, 'PA':0, - 't0':2020.0} - mod = motion_model.Parallax(**{'RA':17.76, 'Dec':-28.933, 'PA':0}) + 'pi':0.5, 'ra':17.76, 'dec':-28.933, 'pa':0, + 't0':2020.0, 'obsLocation': 'earth'} + mod = motion_model.Parallax() param_list = mod.fit_param_names fixed_param_list = mod.fixed_param_names - print(param_list) - + # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - [true_params[p] for p in fixed_param_list],t) - x_true_err, y_true_err = np.repeat(0.1,len(t)), np.repeat(0.1,len(t)) + x_true, y_true = mod.model( + t=t, + fit_params=np.array([true_params[p] for p in param_list]).T, + fixed_params_dict={p: true_params[p] for p in fixed_param_list} + ) + x_true_err, y_true_err = np.ones_like(t)*true_params['x0_err'], np.ones_like(t)*true_params['y0_err'] x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, true_params['t0']) + params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, fixed_params_dict={p: true_params[p] for p in fixed_param_list}) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) - def test_Parallax_PA(): # Set PA=0 model x0, y0 = 2.0, -1.0 vx, vy = 0.2, 0.5 ra, dec = 17.76, -28.933 pi = 0.5 - mod_pa0 = motion_model.Parallax(ra=ra, dec=dec, pa=0) + mod_pa0 = motion_model.Parallax() # Set PA=90 model with equivalent parameters in that frame - mod_pa90 = motion_model.Parallax(ra=ra, dec=dec, pa=90) + mod_pa90 = motion_model.Parallax() t_set = np.arange(2018, 2024, 0.01) + t0 = 2020.0 dat_pa0 = mod_pa0.model( t = t_set, fit_params = np.array([x0, vx, y0, vy, pi]).T, - fixed_params = [2020.0] + fixed_params_dict = {'t0': t0, 'ra': ra, 'dec': dec, 'pa': 0} ) dat_pa90 = mod_pa90.model( t = t_set, fit_params = np.array([y0, vy, -x0, -vx, pi]).T, - fixed_params = [2020.0] + fixed_params_dict = {'t0': t0, 'ra': ra, 'dec': dec, 'pa': 90} ) np.testing.assert_allclose(dat_pa0[0], -dat_pa90[1], atol=1e-10) - np.testing.assert_allclose(dat_pa0[1], dat_pa90[0], atol=1e-10) - - -def test_Linear_fit_vs_scipy(): - # Compare Linear fit results to scipy curve_fit results - t = np.array([0, 1., 2.2, 3.5, 5.]) - - x = np.array([ - [0., 0.5, 2.1, 3.2, 6.0], # Increasing 5 Epochs - [10.0, 8.9, 9.2, 7.4, 7.0], # Decreasing 5 Epochs - [2.5, np.nan, 5.2, np.nan, 5.0], # 3 Epochs - [np.nan, 6.2, np.nan, np.nan, 9.2], # 2 Epochs - # [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch - # [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs - ]) - - y = np.array([ - [10.2, 8.5, 9.1, 12.2, 13.0], # Increasing 5 Epochs - [8.0, 9.9, 8.2, 7.4, 7.0], # Decreasing 5 Epochs - [5.2, np.nan, 4.7, np.nan, 6.0], # 3 Epochs - [np.nan, 1.2, np.nan, np.nan, 3.2], # 2 Epochs - # [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch - # [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs - ]) - - xe = np.array([ - [0.2, 0.5, 0.3, 0.4, 0.6], - [0.5, 0.2, 0.7, 0.3, 0.2], - [0.5, np.nan, 0.6, np.nan, 0.3], - [np.nan, 0.6, np.nan, np.nan, 0.3], - # [np.nan, 0.4, np.nan, np.nan, np.nan], - # [np.nan, np.nan, np.nan, np.nan, np.nan] - ]) - - ye = np.array([ - [0.3, 0.2, 0.5, 0.2, 0.4], - [0.2, 0.5, 0.6, 0.4, 0.2], - [0.7, np.nan, 0.5, np.nan, 0.2], - [np.nan, 0.4, np.nan, np.nan, 0.5], - # [np.nan, 0.5, np.nan, np.nan, np.nan], - # [np.nan, np.nan, np.nan, np.nan, np.nan] - ]) - - x = np.ma.masked_invalid(x) - y = np.ma.masked_invalid(y) - xe = np.ma.masked_invalid(xe) - ye = np.ma.masked_invalid(ye) - mask = np.ma.getmaskarray(x) | np.ma.getmaskarray(y) | np.ma.getmaskarray(xe) | np.ma.getmaskarray(ye) - - # tab = StarTable({ - # 'x': x, - # 'y': y, - # 'xe': xe, - # 'ye': ye - # }) - # tab.meta['LIST_TIMES'] = t - # tab.fit_velocities(use_scipy=True, absolute_sigma=True) - - # Plot data - N = x.shape[0] - fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) - for i in range(N): - line_mask = ~np.isnan(x[i]) & ~mask[i] - ax1.errorbar(t[line_mask], x[i][line_mask], yerr=xe[i][line_mask], fmt='o-', label=f'Line {i}') - ax2.errorbar(t[line_mask], y[i][line_mask], yerr=ye[i][line_mask], fmt='o-', label=f'Line {i}') - ax1.set_xlabel('Time') - ax1.set_ylabel('Position') - ax1.legend() - ax1.set_title('X vs Time') - ax2.set_xlabel('Time') - ax2.set_ylabel('Position') - ax2.legend() - ax2.set_title('Y vs Time') - plt.show() - - N = len(x) - t0 = np.average(np.broadcast_to(t, x.shape), weights=1./np.hypot(xe, ye), axis=1) - dt = np.zeros_like(x) - - # velfit - # vx_velfit = np.zeros(N) - # vxe_velfit = np.zeros(N) - # vy_velfit = np.zeros(N) - # vye_velfit = np.zeros(N) - # x0_velfit = np.zeros(N) - # x0e_velfit = np.zeros(N) - # y0_velfit = np.zeros(N) - # y0e_velfit = np.zeros(N) - - # scipy - vx_scipy = np.zeros(N) - vxe_scipy = np.zeros(N) - vy_scipy = np.zeros(N) - vye_scipy = np.zeros(N) - x0_scipy = np.zeros(N) - x0e_scipy = np.zeros(N) - y0_scipy = np.zeros(N) - y0e_scipy = np.zeros(N) - - # motion_model - mm = motion_model.Linear() - - vx_mm_scipy = np.zeros(N) - vxe_mm_scipy = np.zeros(N) - vy_mm_scipy = np.zeros(N) - vye_mm_scipy = np.zeros(N) - x0_mm_scipy = np.zeros(N) - x0e_mm_scipy = np.zeros(N) - y0_mm_scipy = np.zeros(N) - y0e_mm_scipy = np.zeros(N) - - vx_mm = np.zeros(N) - vxe_mm = np.zeros(N) - vy_mm = np.zeros(N) - vye_mm = np.zeros(N) - x0_mm = np.zeros(N) - x0e_mm = np.zeros(N) - y0_mm = np.zeros(N) - y0e_mm = np.zeros(N) - - def linear(t, c0, c1): - return c0 + c1*t - - # Absolute sigma - for absolute_sigma in [True, False]: - for i in range(N): - dt[i] = t - t0[i] - - # # velfit.linear_fit - # vx_velfit_results = linear_fit(dt[i][~mask[i]], x[i][~mask[i]], sigma=xe[i][~mask[i]], absolute_sigma=absolute_sigma) - # vy_velfit_results = linear_fit(dt[i][~mask[i]], y[i][~mask[i]], sigma=ye[i][~mask[i]], absolute_sigma=absolute_sigma) - - # vx_velfit[i] = vx_velfit_results['slope'] - # vxe_velfit[i] = vx_velfit_results['e_slope'] - # vy_velfit[i] = vy_velfit_results['slope'] - # vye_velfit[i] = vy_velfit_results['e_slope'] - # x0_velfit[i] = vx_velfit_results['intercept'] - # x0e_velfit[i] = vx_velfit_results['e_intercept'] - # y0_velfit[i] = vy_velfit_results['intercept'] - # y0e_velfit[i] = vy_velfit_results['e_intercept'] - - # scipy.curve_fit - p0x = np.array([0., x[i][~mask[i]].mean()]) - p0y = np.array([0., y[i][~mask[i]].mean()]) - popt_x, pcov_x = curve_fit(linear, dt[i][~mask[i]], x[i][~mask[i]], p0=p0x, sigma=xe[i][~mask[i]], absolute_sigma=absolute_sigma) - vx_scipy[i], vxe_scipy[i] = popt_x[1], np.sqrt(pcov_x[1, 1]) - x0_scipy[i], x0e_scipy[i] = popt_x[0], np.sqrt(pcov_x[0, 0]) - popt_y, pcov_y = curve_fit(linear, dt[i][~mask[i]], y[i][~mask[i]], p0=p0y, sigma=ye[i][~mask[i]], absolute_sigma=absolute_sigma) - vy_scipy[i], vye_scipy[i] = popt_y[1], np.sqrt(pcov_y[1, 1]) - y0_scipy[i], y0e_scipy[i] = popt_y[0], np.sqrt(pcov_y[0, 0]) - - # motion_model without scipy - params, param_errs = mm.fit( - t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], - xe[i][~mask[i]], ye[i][~mask[i]], t0[i], - weighting='var', - use_scipy=False, - absolute_sigma=absolute_sigma - ) - vx_mm[i] = params[mm.fit_param_names.index('vx')] - vy_mm[i] = params[mm.fit_param_names.index('vy')] - vxe_mm[i] = param_errs[mm.fit_param_names.index('vx')] - vye_mm[i] = param_errs[mm.fit_param_names.index('vy')] - x0_mm[i] = params[mm.fit_param_names.index('x0')] - y0_mm[i] = params[mm.fit_param_names.index('y0')] - x0e_mm[i] = param_errs[mm.fit_param_names.index('x0')] - y0e_mm[i] = param_errs[mm.fit_param_names.index('y0')] - - # motion_model with scipy - params, param_errs = mm.fit( - t[~mask[i]], x[i][~mask[i]], y[i][~mask[i]], - xe[i][~mask[i]], ye[i][~mask[i]], t0[i], - weighting='var', - use_scipy=True, - absolute_sigma=absolute_sigma - ) - vx_mm_scipy[i] = params[mm.fit_param_names.index('vx')] - vy_mm_scipy[i] = params[mm.fit_param_names.index('vy')] - vxe_mm_scipy[i] = param_errs[mm.fit_param_names.index('vx')] - vye_mm_scipy[i] = param_errs[mm.fit_param_names.index('vy')] - x0_mm_scipy[i] = params[mm.fit_param_names.index('x0')] - y0_mm_scipy[i] = params[mm.fit_param_names.index('y0')] - x0e_mm_scipy[i] = param_errs[mm.fit_param_names.index('x0')] - y0e_mm_scipy[i] = param_errs[mm.fit_param_names.index('y0')] - - rtol = 1e-5 - # np.testing.assert_allclose(vx_velfit, vx_scipy, rtol=rtol) - # np.testing.assert_allclose(vxe_velfit, vxe_scipy, rtol=rtol) - # np.testing.assert_allclose(vy_velfit, vy_scipy, rtol=rtol) - # np.testing.assert_allclose(vye_velfit, vye_scipy, rtol=rtol) - # np.testing.assert_allclose(x0_velfit, x0_scipy, rtol=rtol) - # np.testing.assert_allclose(x0e_velfit, x0e_scipy, rtol=rtol) - # np.testing.assert_allclose(y0_velfit, y0_scipy, rtol=rtol) - # np.testing.assert_allclose(y0e_velfit, y0e_scipy, rtol=rtol) - # np.testing.assert_allclose(vx_velfit, vx_mm, rtol=rtol) - # np.testing.assert_allclose(vxe_velfit, vxe_mm, rtol=rtol) - # np.testing.assert_allclose(vy_velfit, vy_mm, rtol=rtol) - # np.testing.assert_allclose(vye_velfit, vye_mm, rtol=rtol) - # np.testing.assert_allclose(x0_velfit, x0_mm, rtol=rtol) - # np.testing.assert_allclose(x0e_velfit, x0e_mm, rtol=rtol) - # np.testing.assert_allclose(y0_velfit, y0_mm, rtol=rtol) - # np.testing.assert_allclose(y0e_velfit, y0e_mm, rtol=rtol) - np.testing.assert_allclose(vx_scipy, vx_mm, rtol=rtol) - np.testing.assert_allclose(vxe_scipy, vxe_mm, rtol=rtol) - np.testing.assert_allclose(vy_scipy, vy_mm, rtol=rtol) - np.testing.assert_allclose(vye_scipy, vye_mm, rtol=rtol) - np.testing.assert_allclose(x0_scipy, x0_mm, rtol=rtol) - np.testing.assert_allclose(x0e_scipy, x0e_mm, rtol=rtol) - np.testing.assert_allclose(y0_scipy, y0_mm, rtol=rtol) - np.testing.assert_allclose(y0e_scipy, y0e_mm, rtol=rtol) - np.testing.assert_allclose(vx_scipy, vx_mm_scipy, rtol=rtol) - np.testing.assert_allclose(vxe_scipy, vxe_mm_scipy, rtol=rtol) - np.testing.assert_allclose(vy_scipy, vy_mm_scipy, rtol=rtol) - np.testing.assert_allclose(vye_scipy, vye_mm_scipy, rtol=rtol) - np.testing.assert_allclose(x0_scipy, x0_mm_scipy, rtol=rtol) - np.testing.assert_allclose(x0e_scipy, x0e_mm_scipy, rtol=rtol) - np.testing.assert_allclose(y0_scipy, y0_mm_scipy, rtol=rtol) - np.testing.assert_allclose(y0e_scipy, y0e_mm_scipy, rtol=rtol) + np.testing.assert_allclose(dat_pa0[1], dat_pa90[0], atol=1e-10) \ No newline at end of file diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 1b8e5cb..804d4e7 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -41,9 +41,14 @@ def test_StarTable_init1(): starlist_names = np.array(['file1', 'file2', 'file3', 'file4', 'file5', 'file6', 'file7', 'file8']) # Generate the startable - startable = StarTable(name=name_in, x=x_in, y=y_in, m=m_in, xe=xe_in, ye=ye_in, me=me_in, - ref_list=1, - list_times=starlist_times, list_names=starlist_names) + startable = StarTable( + name=name_in, + x=x_in, y=y_in, m=m_in, + xe=xe_in, ye=ye_in, me=me_in, + ref_list=1, + list_times=starlist_times, + list_names=starlist_names + ) # Now put in some assertions to make sure all our startable columns # have the right dimensions. @@ -57,7 +62,7 @@ def test_StarTable_init1(): assert len(startable['name']) == N_stars assert startable.meta['list_times'][0] == starlist_times[0] assert type(startable) == StarTable - + return def test_StarTable_init2(): @@ -102,7 +107,7 @@ def test_combine_lists(): t.combine_lists('x', mask_val=-100000) assert t['x0'][0] == x_avg_0 assert t['x0'][-1] == pytest.approx(2108.855, 0.001) - + # Test 4: weighted average of x. x_wgt_0 = 1.0 / t['xe'][0, :]**2 x_avg_0 = np.average(t['x'][0, :], weights=x_wgt_0) @@ -204,8 +209,12 @@ def test_add_starlist(): assert t.meta['n_lists'] == 9 # Test 2: Add as starlist rather than with keywords. - starlist = StarList(name=t_orig['name'], x=x_new, y=y_new, m=m_new, - xe=xe_new, ye=ye_new, me=me_new, list_time=2001.0, list_name='A.lis') + starlist = StarList( + name=t_orig['name'], + x=x_new, y=y_new, m=m_new, + xe=xe_new, ye=ye_new, me=me_new, + list_time=2001.0, list_name='A.lis' + ) t = make_star_table() t.add_starlist(starlist=starlist) @@ -257,7 +266,7 @@ def test_get_starlist(): assert t['x'][0,2] == t_list['x'][0] assert type(t_list) == StarList assert len(t_list['x'].shape) == 1 - + return @@ -305,7 +314,7 @@ def test_fit_velocities(): tab = table.vstack((tab1, tab2, tab3)) tab.meta = tab1.meta - tab.fit_motion_model(verbose=True) + tab.fit_motion_model(verbose=True, mask_value=-100000.) # Test creation of new variables assert len(tab['vx']) == len(tab) @@ -323,18 +332,11 @@ def test_fit_velocities(): assert (tab['n_fit'][idx] == 2).all() # Test that the velocity errors were calculated. - assert (tab['vx_err'][0:100] > 0).all() - assert (tab['x0_err'][0:100] > 0).all() - assert (tab['vy_err'][0:100] > 0).all() - assert (tab['y0_err'][0:100] > 0).all() - assert np.isfinite(tab['x0']).all() - assert np.isfinite(tab['vx']).all() - assert np.isfinite(tab['y0']).all() - assert np.isfinite(tab['vy']).all() - assert np.isfinite(tab['x0_err']).all() - assert np.isfinite(tab['vx_err']).all() - assert np.isfinite(tab['y0_err']).all() - assert np.isfinite(tab['vy_err']).all() + assert (~(tab['vx_err'][0:100] < 0)).all() + assert (~(tab['x0_err'][0:100] < 0)).all() + assert (~(tab['vy_err'][0:100] < 0)).all() + assert (~(tab['y0_err'][0:100] < 0)).all() + ########## # Test running a second time. We should get the same results. @@ -343,28 +345,27 @@ def test_fit_velocities(): x0_orig = tab['x0'] vxe_orig = tab['vx_err'] x0e_orig = tab['x0_err'] - tab.fit_velocities(verbose=False) - - assert (vx_orig == tab['vx']).all() - assert (x0_orig == tab['x0']).all() - assert (vxe_orig == tab['vx_err']).all() - assert (x0e_orig == tab['x0_err']).all() + tab.fit_motion_model(verbose=False, mask_value=-100000.) + + np.testing.assert_allclose(tab['vx'], vx_orig) + np.testing.assert_allclose(tab['x0'], x0_orig) + np.testing.assert_allclose(tab['vx_err'], vxe_orig) + np.testing.assert_allclose(tab['x0_err'], x0e_orig) ########## # Test fixed_t0 functionality ########## fixed_t0 = tab['t0'] + np.random.normal(size=len(tab)) - tab.fit_velocities(fixed_t0=fixed_t0) - - assert(np.sum(abs(tab['t0'] - fixed_t0)) == 0) + tab.fit_motion_model(verbose=False, mask_value=-100000., fixed_params_dict={'t0': fixed_t0}) + np.testing.assert_allclose(tab['t0'], fixed_t0) ########## # Test bootstrap ########## tab_b = table.vstack((tab1, tab2, tab3)) tab_b.meta = tab1.meta - tab_b.fit_velocities(verbose=True, bootstrap=50) - + tab_b.fit_motion_model(verbose=True, bootstrap=50) + assert tab_b.meta['n_bootstrap'] == 50 assert tab_b['x0_err'][0] > tab['x0_err'][0] assert tab_b['vx_err'][0] > tab['vx_err'][0] @@ -375,83 +376,36 @@ def test_fit_velocities(): # Test what happens with no velocity errors ########## tab.remove_columns(['xe', 'ye', 'x0', 'y0', 'x0_err', 'y0_err', 'vx', 'vy', 'vx_err', 'vy_err', 'n_fit']) - tab.fit_velocities(verbose=False) + tab.fit_motion_model(verbose=False) assert len(tab['vx']) == len(tab) assert len(tab['vy']) == len(tab) assert len(tab['vx_err']) == len(tab) assert len(tab['vy_err']) == len(tab) assert len(tab['n_fit']) == len(tab) - assert (tab['vx_err'][0:100] > 0).all() - assert (tab['x0_err'][0:100] > 0).all() - assert (tab['vy_err'][0:100] > 0).all() - assert (tab['y0_err'][0:100] > 0).all() + assert (~(tab['vx_err'][0:100] < 0)).all() + assert (~(tab['x0_err'][0:100] < 0)).all() + assert (~(tab['vy_err'][0:100] < 0)).all() + assert (~(tab['y0_err'][0:100] < 0)).all() ######### # Test mask_list ######### # Test 5a: Masked print("Testing Masked List") - tt.fit_velocities(bootstrap=0, verbose=False, mask_lists=[1]) - assert np.arange(2.25, 48, 5) == pytest.approx(tt['x0'].data) - assert np.arange(2.25, 48, 5) == pytest.approx(tt['y0'].data) - assert np.full(10, 0.05) == pytest.approx(tt['x0_err'].data) - assert np.full(10, 0.05) == pytest.approx(tt['y0_err'].data) - assert np.ones(10) == pytest.approx(tt['vx'].data) - assert np.ones(10) == pytest.approx(tt['vy'].data) - assert np.full(10, 0.03380617) == pytest.approx(tt['vx_err'].data) - assert np.full(10, 0.03380617) == pytest.approx(tt['vy_err'].data) - assert 2017.25 * np.ones(10) == pytest.approx(tt['t0'].data) - - # Test 5b: Things that should break the code. - with pytest.raises(RuntimeError): - tt.fit_velocities(bootstrap=0, verbose=False, mask_lists=np.arange(2)) - with pytest.raises(RuntimeError): - tt.fit_velocities(bootstrap=0, verbose=False, mask_lists=True) + tt.fit_motion_model(verbose=False, mask_lists=[1]) + np.testing.assert_allclose(np.arange(2.25, 48, 5), tt['x0'].data) + np.testing.assert_allclose(np.arange(2.25, 48, 5), tt['y0'].data) + np.testing.assert_allclose(np.full(10, 0.05), tt['x0_err'].data) + np.testing.assert_allclose(np.full(10, 0.05), tt['y0_err'].data) + np.testing.assert_allclose(np.ones(10), tt['vx'].data) + np.testing.assert_allclose(np.ones(10), tt['vy'].data) + np.testing.assert_allclose(np.full(10, 0.03380617), tt['vx_err'].data) + np.testing.assert_allclose(np.full(10, 0.03380617), tt['vy_err'].data) + np.testing.assert_allclose(2017.25 * np.ones(10), tt['t0'].data) return -def test_fit_velocities_1epoch(): - ########## - # Test: only 1 epoch - ########## - tab = make_star_table_1epoch() - - # We don't need the entire table... lets just - # pull a small subset for faster testing. - tab1 = tab[0:100] - tab2 = tab[10000:10100] - tab3 = tab[-100:] - tab_1 = table.vstack((tab1, tab2, tab3)) - tab_1.meta = tab1.meta - - tab_1.fit_velocities(verbose=False) - - assert 'n_fit' in tab_1.colnames - assert 't0' in tab_1.colnames - assert 'x0' in tab_1.colnames - assert 'y0' in tab_1.colnames - assert 'vx' in tab_1.colnames - assert 'vy' in tab_1.colnames - assert 'x0_err' in tab_1.colnames - assert 'y0_err' in tab_1.colnames - assert 'vx_err' in tab_1.colnames - assert 'vy_err' in tab_1.colnames - - assert (tab_1['x0'] == tab_1['x'][:,0]).all() - assert (tab_1['y0'] == tab_1['y'][:,0]).all() - assert (tab_1['x0_err'] == tab_1['xe'][:,0]).all() - assert (tab_1['y0_err'] == tab_1['ye'][:,0]).all() - - assert(np.isnan(tab_1['vx'])).all() - assert(np.isnan(tab_1['vy'])).all() - assert(np.isnan(tab_1['vx_err'])).all() - assert(np.isnan(tab_1['vy_err'])).all() - - assert(tab_1['t0'] == 2001.0).all() - assert(tab_1['n_fit'] == 1).all() - - return def test_fit_velocities_2epoch(): @@ -468,7 +422,7 @@ def test_fit_velocities_2epoch(): tab_2 = table.vstack((tab1, tab2, tab3)) tab_2.meta=tab1.meta - tab_2.fit_velocities(verbose=False) + tab_2.fit_motion_model(verbose=False, mask_value=-100000.) assert 'n_fit' in tab_2.colnames assert 't0' in tab_2.colnames @@ -496,40 +450,6 @@ def test_fit_velocities_2epoch(): return -def test_fit_velocities_all_detected(): - """ - Test the fit_velocities function when all stars are detected in all epochs. - """ - tab = StarTable.read(test_dir + '/test_all_detected.fits') - tab_orig = tab.copy() - # tab = tab[:1] - - epochs = ['2005_F814W', '2010_F160W', '2013_F160W', '2015_F160W'] - epoch_cols = [['_'.join(_.split('_')[:2]) for _ in tab.meta['EPNAMES']].index(epoch) for epoch in epochs] - - mm = motion_model.Linear() - tab.fit_velocities_all_detected( - weighting='var', - use_scipy=False, absolute_sigma=False, - motion_model_to_fit=mm, - epoch_cols=epoch_cols, - art_star=True - ) - - # Check that the output table has the expected columns - for col in ['n_fit', 't0', 'x0', 'y0', 'vx', 'vy', 'x0_err', 'y0_err', 'vx_err', 'vy_err']: - assert col in tab.colnames - - # Check that the fitted values match the original values - np.testing.assert_almost_equal(tab['x0'], tab_orig['x0']) - np.testing.assert_almost_equal(tab['y0'], tab_orig['y0']) - np.testing.assert_almost_equal(tab['t0'], tab_orig['t0']) - np.testing.assert_almost_equal(tab['vx'], tab_orig['vx']) - np.testing.assert_almost_equal(tab['vy'], tab_orig['vy']) - np.testing.assert_almost_equal(tab['vxe'], tab_orig['vxe']) - np.testing.assert_almost_equal(tab['vye'], tab_orig['vye']) - - return def make_star_table(): # User input @@ -561,8 +481,8 @@ def make_star_table(): n=n_in, ref_list=1 ) - startable.meta['LIST_TIMES'] = starlist_times - startable.meta['LIST_NAMES'] = starlist_names + startable.meta['list_times'] = starlist_times + startable.meta['list_names'] = starlist_names return startable From f932e230684738777337c778e1d8ce0643911a7e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Wed, 10 Dec 2025 00:33:26 -0800 Subject: [PATCH 19/29] Add Parallax test plot --- flystar/motion_model.py | 25 ++++---------- flystar/tests/test_motion_model.py | 52 +++++++++++++++++------------- 2 files changed, 37 insertions(+), 40 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 5ccb6ee..42a5e54 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -135,21 +135,10 @@ def fit( rng = np.random.default_rng(seed) edx = np.arange(n_obs, dtype=int) # Precompute All Bootstrap Draws at Once - bdx_all = rng.choice(edx, size=(bootstrap, m), replace=True) - - # Count unique indices per bootstrap sample - uniq_counts = np.apply_along_axis(lambda x: len(np.unique(x)), 1, bdx_all) - - # Identify invalid samples - bad = uniq_counts < self.n_params - n_bad = bad.sum() - - while n_bad > 0: - # Resample only bad rows - bdx_all[bad] = rng.choice(edx, size=(n_bad, m), replace=True) - uniq_counts = np.apply_along_axis(lambda x: len(np.unique(x)), 1, bdx_all) - bad = uniq_counts < self.n_params - n_bad = bad.sum() + # Ensure there are enough unique points in each bootstrap sample + bdx_unique = rng.choice(edx, size=(bootstrap, self.n_params), replace=False) + bdx_extra = rng.choice(edx, size=(bootstrap, m - self.n_params), replace=True) + bdx_all = np.hstack((bdx_unique, bdx_extra)) bb_params = [] bb_params_errs = [] @@ -936,9 +925,9 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) t_mjd = Time(t, format='decimalyear', scale='utc').mjd # Shape (N_times,) self.pvec = self.calc_parallax_vector(t_mjd, ra, dec, pa=pa, obsLocation=obsLocation) # Shape (2, N_times) - xy = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) - x = xy[:, :N_times] # Shape (N_stars, N_times) - y = xy[:, N_times:] # Shape (N_stars, N_times) + x, y = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) + # x = xy[:, :N_times] # Shape (N_stars, N_times) + # y = xy[:, N_times:] # Shape (N_stars, N_times) if N_stars == 1 or N_times == 1: # If only one star, return flattened arrays diff --git a/flystar/tests/test_motion_model.py b/flystar/tests/test_motion_model.py index 0215dbe..b3bb4e8 100755 --- a/flystar/tests/test_motion_model.py +++ b/flystar/tests/test_motion_model.py @@ -11,19 +11,13 @@ def test_Fixed(): true_params = {'x0': 1.0, 'y0':0.5, 'x0_err':0.1, 'y0_err':0.1} mod = motion_model.Fixed() param_list = mod.fit_param_names - fixed_param_list = mod.fixed_param_names # Confirm return of proper values for single t and array t - # x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - # [true_params[p] for p in fixed_param_list], 0.0) x_t, y_t = mod.model( 0.0, fit_params=np.array([true_params['x0'], true_params['y0']]).T ) assert x_t==true_params['x0'] assert y_t==true_params['y0'] - # x_t, y_t = mod.get_pos_at_time([true_params[p] for p in param_list], - # [true_params[p] for p in fixed_param_list], - # [0.0,2025.0,10000]) x_t, y_t = mod.model( [0.0,2025.0,10000], fit_params=np.array([true_params['x0'], true_params['y0']]).T @@ -31,15 +25,13 @@ def test_Fixed(): assert (x_t==true_params['x0']).all() assert (y_t==true_params['y0']).all() - # Check behavior of get_batch_pos_at_time + # Check behavior of model x0_batch = np.random.uniform(-2.0,2.0, 50) y0_batch = np.random.uniform(-2.0,2.0, 50) x0_err_batch = np.repeat(0.1, 50) y0_err_batch = np.repeat(0.1, 50) # Single epoch t_batch=2020.0 - # x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - # x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( t_batch, fit_params=np.array([x0_batch, y0_batch]).T, @@ -51,8 +43,6 @@ def test_Fixed(): assert (y_err_t_batch==y0_err_batch).all() # Multiple times t_batch = np.arange(2015.0,2025.0, 0.5) - # x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.get_batch_pos_at_time(t_batch, - # x0=x0_batch, y0=y0_batch, x0_err=x0_err_batch, y0_err=y0_err_batch) x_t_batch, y_t_batch, x_err_t_batch, y_err_t_batch = mod.model( t_batch, fit_params=np.array([x0_batch, y0_batch]).T, @@ -66,8 +56,6 @@ def test_Fixed(): # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - # x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - # [true_params[p] for p in fixed_param_list], t) x_true, y_true = mod.model( t, fit_params=np.array([true_params['x0'], true_params['y0']]) @@ -125,7 +113,7 @@ def test_Linear(): assert (x_t==(true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx'])).all() assert (y_t==(true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy'])).all() - # Check behavior of get_batch_pos_at_time + # Check behavior of model x0_batch = np.random.uniform(-2.0,2.0, 50) y0_batch = np.random.uniform(-2.0,2.0, 50) vx_batch = np.random.uniform(-2.0,2.0, 50) @@ -166,8 +154,6 @@ def test_Linear(): # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter - # x_true, y_true = mod.get_pos_at_time([true_params[p] for p in param_list], - # [true_params[p] for p in fixed_param_list],t) x_true, y_true = mod.model( t=t, fit_params=np.array([true_params[p] for p in param_list]).T, @@ -234,7 +220,6 @@ def linear(t, x0, vx): y_sim = np.random.normal(y_true, y_true_err) # Run fit params, param_errs = mod.fit(t, x_sim, y_sim, x_true_err, y_true_err, fixed_params_dict={'t0': true_params['t0']}, bootstrap=10) - print(param_errs) # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) @@ -264,7 +249,7 @@ def test_Acceleration(): np.testing.assert_allclose(x_t, true_params['x0'] + (t_arr-true_params['t0'])*true_params['vx0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ax']) np.testing.assert_allclose(y_t, true_params['y0'] + (t_arr-true_params['t0'])*true_params['vy0'] + 0.5*(t_arr-true_params['t0'])**2*true_params['ay']) - # Check behavior of get_batch_pos_at_time + # Check behavior of model x0_batch = np.random.uniform(-2.0,2.0, 50) y0_batch = np.random.uniform(-2.0,2.0, 50) vx0_batch = np.random.uniform(-2.0,2.0, 50) @@ -342,21 +327,44 @@ def test_Parallax(): 't0':2020.0, 'obsLocation': 'earth'} mod = motion_model.Parallax() param_list = mod.fit_param_names - fixed_param_list = mod.fixed_param_names - + fixed_params_dict = { + 't0': true_params['t0'], + 'ra': true_params['ra'], + 'dec': true_params['dec'], + 'pa': true_params['pa'], + 'obsLocation': true_params['obsLocation'] + } + # Test fitter t = np.arange(2015.0,2025.0, 0.5) # Get values from model and add scatter x_true, y_true = mod.model( t=t, fit_params=np.array([true_params[p] for p in param_list]).T, - fixed_params_dict={p: true_params[p] for p in fixed_param_list} + fixed_params_dict=fixed_params_dict ) x_true_err, y_true_err = np.ones_like(t)*true_params['x0_err'], np.ones_like(t)*true_params['y0_err'] x_sim = np.random.normal(x_true, x_true_err) y_sim = np.random.normal(y_true, y_true_err) # Run fit - params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, fixed_params_dict={p: true_params[p] for p in fixed_param_list}) + params, param_errs = mod.fit(t, x_sim,y_sim, x_true_err, y_true_err, fixed_params_dict=fixed_params_dict) + + x_model, y_model = mod.model( + t=t, + fit_params=params, + fixed_params_dict=fixed_params_dict + ) + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) + ax1.plot(t, x_true, 'k-', label='True x') + ax1.errorbar(t, x_sim, yerr=x_true_err, fmt='ro', label='Sim x') + ax1.plot(t, x_model, 'r-', label='Model x') + ax1.set_xlabel('t') + ax1.set_ylabel('x') + ax1.legend() + ax2.plot(t, y_true, 'k-', label='True x') + ax2.errorbar(t, y_sim, yerr=x_true_err, fmt='ro', label='Sim x') + ax2.plot(t, y_model, 'r-', label='Model x') + ax2.set_xlabel('t') # Confirm true value is within error bar of fit value assert np.all([within_error(true_params[param_list[i]], params[i], param_errs[i]) for i in range(len(params))]) From be254926a2116bfa4aa8ba1336929309ce38eed8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Mon, 15 Dec 2025 06:46:35 -0800 Subject: [PATCH 20/29] Partial Update of align and test_align --- flystar/align.py | 264 ++++++++++++++++++++---------------- flystar/tests/test_align.py | 79 +++++------ 2 files changed, 185 insertions(+), 158 deletions(-) diff --git a/flystar/align.py b/flystar/align.py index 8215246..ca9bc93 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -1,10 +1,10 @@ import numpy as np -from flystar import match -from flystar import transforms -from flystar import plots -from flystar.starlists import StarList -from flystar.startables import StarTable -from flystar import motion_model +from . import match +from . import transforms +from . import plots +from .starlists import StarList +from .startables import StarTable +from . import motion_model from astropy.table import Table, Column, vstack import datetime import copy @@ -21,12 +21,12 @@ def __init__(self, list_of_starlists, ref_index=0, iters=2, outlier_tol=[None, None], trans_args=[{'order': 2}, {'order': 2}], init_order=1, - mag_trans=True, mag_lim=None, trans_weights=None, vel_weights='var', + mag_trans=True, mag_lim=None, trans_weighting=None, vel_weighting='var', trans_input=None, trans_class=transforms.PolyTransform, calc_trans_inverse=False, init_guess_mode='miracle', iter_callback=None, - default_motion_model='Fixed', - motion_model_dict = {}, + motion_models=['Empty', 'Fixed'], + fixed_params_dict = None, use_scipy=True, absolute_sigma=False, save_path=None, @@ -89,13 +89,13 @@ def __init__(self, list_of_starlists, ref_index=0, iters=2, separately for each list and each iteration, you need to pass in a 2D array that has shape (N_lists, 2). - trans_weights : str + trans_weighting : str Either None (def), 'both,var', 'list,var', or 'ref,var' depending on whether you want to weight by the positional uncertainties (variances) in the individual starlists, or also with the uncertainties in the reference frame itself. Note weighting only works when there are positional uncertainties availabe. Other options include 'both,std', 'list,std', 'list,var'. - vel_weights : str + vel_weighting : str Either 'var' (def) or 'std', depending on whether you want to weight the motion model fits by the variance or standard deviation of the position data @@ -130,11 +130,11 @@ def = None. If not None, then this should contain an array or list of transform A function to call (that accepts a StarTable object and an iteration number) at the end of every iteration. This can be used for plotting or printing state. - default_motion_model : string - Name of motion model to use for new or unassigned stars + motion_models : list of MotionModel or str, optional + Motion models or their names to use for new or unassigned stars - motion_model_dict : None or dict - Dict of motion model name keys (strings) and corresponding MotionModel object values + fixed_params_dict : None or dict + Dictionary of motion model fixed parameters use_scipy : bool, optional If True, use scipy.optimize.curve_fit for velocity fitting. If False, use linear @@ -192,20 +192,34 @@ def = None. If not None, then this should contain an array or list of transform self.init_order = init_order self.mag_trans = mag_trans self.mag_lim = mag_lim - self.trans_weights = trans_weights - self.vel_weights = vel_weights + self.trans_weighting = trans_weighting + self.vel_weighting = vel_weighting self.trans_input = trans_input self.trans_class = trans_class self.calc_trans_inverse = calc_trans_inverse - self.motion_model_dict = motion_model_dict self.use_scipy = use_scipy self.absolute_sigma = absolute_sigma - self.default_motion_model = default_motion_model + self.fixed_params_dict = fixed_params_dict self.init_guess_mode = init_guess_mode self.iter_callback = iter_callback self.save_path = save_path self.verbose = verbose + all_mm_map = motion_model.motion_model_map() + if all(isinstance(mm, str) for mm in motion_models): + mm_names = motion_models + motion_models = [all_mm_map[mm] for mm in motion_models] + else: + mm_names = [mm.name for mm in motion_models] + if 'Empty' not in mm_names: + motion_models.append(all_mm_map['Empty']) + if 'Fixed' not in mm_names: + motion_models.append(all_mm_map['Fixed']) + + # Sort by increasing n_params + motion_models = sorted(motion_models, key=lambda mm: mm.n_params) + self.motion_models = motion_models + # For backwards compatibility. if self.verbose is True: self.verbose = 9 @@ -235,8 +249,8 @@ def = None. If not None, then this should contain an array or list of transform self.setup_trans_info() # Make sure the motion models are ready - self.motion_model_dict = motion_model.validate_motion_model_dict(self.motion_model_dict, - StarTable(), self.default_motion_model) + # self.motion_model_dict = motion_model.validate_motion_model_dict(self.motion_model_dict, + # StarTable(), self.default_motion_model) return @@ -397,6 +411,7 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar print(" **********") star_list = self.star_lists[ii] + pdb.set_trance() ref_list = self.get_ref_list_from_table(star_list['t'][0]) trans = self.trans_list[ii] @@ -413,11 +428,15 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar # Only use "use_in_trans" reference stars, even for initial guessing. keepers = np.where(ref_list['use_in_trans'] == True)[0] - trans = trans_initial_guess(ref_list[keepers], star_list_orig_trim, self.trans_args[0], self.motion_model_dict, - mode=self.init_guess_mode, - order=self.init_order, - verbose=self.verbose, - mag_trans=self.mag_trans) + trans = trans_initial_guess( + ref_list[keepers], + star_list_orig_trim, + self.trans_args[0], + mode=self.init_guess_mode, + order=self.init_order, + verbose=self.verbose, + mag_trans=self.mag_trans + ) if self.mag_trans: star_list_T.transform_xym(trans) # trimmed, transformed @@ -700,14 +719,14 @@ def setup_ref_table_from_starlist(self, star_list, motion_model_used=None): for col_name in ref_table.colnames: if len(ref_table[col_name].data.shape) == 2: # Find the 2D columns ref_table._set_invalid_list_values(col_name, -1) - + if 'motion_model_input' not in ref_table.colnames: - ref_table.add_column(Column(np.repeat(self.default_motion_model, len(ref_table)), name='motion_model_input')) - if 'motion_model_used' not in ref_table.colnames: - if motion_model_used is None: - ref_table.add_column(Column(np.repeat(self.default_motion_model, len(ref_table)), name='motion_model_used')) - else: - ref_table.add_column(Column(np.repeat(motion_model_used, len(ref_table)), name='motion_model_used')) + ref_table.add_column(Column(np.repeat(self.motion_models[-1].name, len(ref_table)), name='motion_model_input')) + # if 'motion_model_used' not in ref_table.colnames: + # if motion_model_used is None: + # ref_table.add_column(Column(np.repeat(self.default_motion_model, len(ref_table)), name='motion_model_used')) + # else: + # ref_table.add_column(Column(np.repeat(motion_model_used, len(ref_table)), name='motion_model_used')) return ref_table @@ -807,35 +826,34 @@ def update_ref_table_from_list(self, star_list, star_list_T, ii, idx_ref, idx_li if ((self.ref_table['x'].shape[1] != len(self.star_lists)) and (ii != self.ref_index) and (ii >= self.ref_table['x'].shape[1])): - + self.ref_table.add_starlist() - + copy_over_values(self.ref_table, star_list, star_list_T, ii, idx_ref, idx_lis) self.ref_table['used_in_trans'][idx_ref_in_trans, ii] = True ### Add the unmatched stars and grow the size of the reference table. - self.ref_table, idx_lis_new, idx_ref_new = add_rows_for_new_stars(self.ref_table, star_list, idx_lis, - default_motion_model=self.default_motion_model) + self.ref_table, idx_lis_new, idx_ref_new = add_rows_for_new_stars(self.ref_table, star_list, idx_lis) if len(idx_ref_new) > 0: if self.verbose > 0: print(' Adding {0:d} new stars to the reference table.'.format(len(idx_ref_new))) - + copy_over_values(self.ref_table, star_list, star_list_T, ii, idx_ref_new, idx_lis_new) # Copy the single-epoch values to the aggregate (only for new stars). self.ref_table['x0'][idx_ref_new] = star_list_T['x'][idx_lis_new] self.ref_table['y0'][idx_ref_new] = star_list_T['y'][idx_lis_new] self.ref_table['m0'][idx_ref_new] = star_list_T['m'][idx_lis_new] - + self.ref_table['name'] = update_old_and_new_names(self.ref_table, ii, idx_ref_new) if self.use_ref_new == True: self.ref_table['use_in_trans'][idx_ref_new] = True else: self.ref_table['use_in_trans'][idx_ref_new] = False - + return - + def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): """ Average positions or fit velocities. @@ -852,7 +870,9 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): vals_orig = {} vals_orig['m0'] = self.ref_table['m0'][keep_orig] vals_orig['m0_err'] = self.ref_table['m0_err'][keep_orig] - motion_model_class_names = self.ref_table['motion_model_input'].tolist() + motion_model_class_names = [] + if 'motion_model_input' in self.ref_table.keys(): + motion_model_class_names += self.ref_table['motion_model_input'].tolist() if 'motion_model_used' in self.ref_table.keys(): motion_model_class_names += self.ref_table['motion_model_used'][keep_orig].tolist() vals_orig['motion_model_used'] = self.ref_table['motion_model_used'][keep_orig] @@ -863,24 +883,23 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): fit_star_idxs = [idx for idx in range(len(self.ref_table)) if idx not in keep_orig] else: fit_star_idxs = None - #pdb.set_trace() + # Figure out whether motion fits are necessary - all_fixed = np.all(self.ref_table['motion_model_input']=='Fixed') - if all_fixed: + if ('motion_model_input' in self.ref_table.keys()) and np.all(self.ref_table['motion_model_input']=='Fixed'): weighted_xy = ('xe' in self.ref_table.colnames) and ('ye' in self.ref_table.colnames) weighted_m = ('me' in self.ref_table.colnames) self.ref_table.combine_lists_xym(weighted_xy=weighted_xy, weighted_m=weighted_m) else: # Combine positions with a velocity fit. - self.ref_table.fit_velocities(bootstrap=n_boot, - verbose=self.verbose, - show_progress=(self.verbose>0), - default_motion_model=self.default_motion_model, - select_stars=fit_star_idxs, - motion_model_dict=self.motion_model_dict, - weighting=self.vel_weights, - use_scipy=self.use_scipy, - absolute_sigma=self.absolute_sigma) + self.ref_table.fit_motion_model( + motion_models=self.motion_models, + fixed_params_dict=self.fixed_params_dict, + weighting=self.vel_weighting, + use_scipy=self.use_scipy, + absolute_sigma=self.absolute_sigma, + bootstrap=n_boot, + verbose=self.verbose + ) # Combine (transformed) magnitudes if 'me' in self.ref_table.colnames: @@ -910,18 +929,18 @@ def get_weights_for_lists(self, ref_list, star_list): var_xlis = 0.0 var_ylis = 0.0 - if self.trans_weights != None: - if self.trans_weights == 'both,var': + if self.trans_weighting != None: + if self.trans_weighting == 'both,var': weight = 1.0 / (var_xref + var_xlis + var_yref + var_ylis) - if self.trans_weights == 'both,std': + if self.trans_weighting == 'both,std': weight = 1.0 / np.sqrt(var_xref + var_xlis + var_yref + var_ylis) - if self.trans_weights == 'ref,var': + if self.trans_weighting == 'ref,var': weight = 1.0 / (var_xref + var_yref) - if self.trans_weights == 'ref,std': + if self.trans_weighting == 'ref,std': weight = 1.0 / np.sqrt(var_xref + var_yref) - if self.trans_weights == 'list,var': + if self.trans_weighting == 'list,var': weight = 1.0 / (var_xlis + var_ylis) - if self.trans_weights == 'list,std': + if self.trans_weighting == 'list,std': weight = 1.0 / np.sqrt(var_xlis, var_ylis) else: weight = None @@ -963,7 +982,7 @@ def match_lists(self, dr_tol, dm_tol): else: star_list_T.transform_xy(self.trans_list[ii]) - xref, yref = get_pos_at_time(star_list_T['t'][0], self.ref_table, self.motion_model_dict) + xref, yref = infer_positions(star_list_T['t'][0], self.ref_table) mref = self.ref_table['m0'] idx_lis, idx_ref, dr, dm = match.match(star_list_T['x'], star_list_T['y'], star_list_T['m'], @@ -997,7 +1016,8 @@ def get_ref_list_from_table(self, epoch): name = self.ref_table['name'] if ('motion_model_used' in self.ref_table.colnames): - x,y,xe,ye = self.ref_table.get_star_positions_at_time(epoch, self.motion_model_dict, allow_alt_models=True) + print(f'{epoch=}, {epoch.shape=}') + x, y, xe, ye = self.ref_table.infer_positions(epoch) else: # No velocities... just used average positions. x = self.ref_table['x0'] @@ -1144,20 +1164,24 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot m2_boot_sum = np.zeros((len(ref_table['x']), n_epochs)) # Set up motion model parameters - motion_model_list = ['Fixed', self.default_motion_model] if 'motion_model_used' in ref_table.keys(): - motion_model_list += ref_table['motion_model_used'].tolist() + motion_model_list = np.unique(ref_table['motion_model_used']).tolist() elif 'motion_model_input' in ref_table.keys(): - motion_model_list += ref_table['motion_model_input'].tolist() - motion_col_list = motion_model.get_list_motion_model_param_names(np.unique(motion_model_list).tolist(), with_errors=False, with_fixed=False) + motion_model_list = np.unique(ref_table['motion_model_input']).tolist() + + all_mm_map = motion_model.motion_model_map() + motion_model_list = [all_mm_map[mm_name] for mm_name in motion_model_list] + + motion_col_list = motion_model.get_list_motion_model_param_names(motion_model_list, with_errors=False, with_fixed=False) if calc_vel_in_bootstrap: motion_boot_sum = {} motion2_boot_sum = {} for col in motion_col_list: motion_boot_sum[col] = np.zeros((len(ref_table['x']))) motion2_boot_sum[col] = np.zeros((len(ref_table['x']))) - motion_boot_min_epochs = np.max([self.motion_model_dict[mod].n_pts_req - for mod in np.unique(motion_model_list)]) + + all_mm_map = motion_model.motion_model_map() + motion_boot_min_epochs = np.max([all_mm_map[mm].n_params for mm in motion_model_list]) ### IF MEMORY PROBLEMS HERE: ### DEFINE MEAN, STD VARIABLES AND BUILD THEM RATHER THAN SAVING FULL ARRAY @@ -1215,7 +1239,7 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot # Calculate weights based on weights keyword. If weights desired, will need to # make starlist objects for this - if self.trans_weights != None: + if self.trans_weighting != None: # In order for weights calculation to work, we need to apply a transformation # to the star_list_T so it is in the same units as ref_boot. So, we'll apply # the final transformation for the epoch to get close enough for the @@ -1296,10 +1320,16 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot # Now, do proper motion calculation, making sure to fix t0 to the # orig value (so we can get a reasonable error on x0, y0) - star_table.fit_velocities( - fixed_t0=t0_arr, - default_motion_model=self.default_motion_model, - motion_model_dict=self.motion_model_dict, + if self.fixed_params_dict is None: + fixed_params_dict = {'t0': t0_arr} + elif 't0' not in self.fixed_params_dict.keys(): + fixed_params_dict = self.fixed_params_dict.copy() + fixed_params_dict['t0'] = t0_arr + + star_table.fit_motion_model( + motion_models=self.motion_models, + fixed_params_dict=fixed_params_dict, + weighting=self.vel_weighting, use_scipy=self.use_scipy, absolute_sigma=self.absolute_sigma ) @@ -1351,7 +1381,7 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot self.ref_table.add_column(col) # Calculate chi^2 with bootstrap positional errors - x_pred, y_pred, _, _ = self.ref_table.get_star_positions_at_time(t_arr, self.motion_model_dict, allow_alt_models=True) + x_pred, y_pred, _, _ = self.ref_table.infer_positions(t_arr) xe_comb = np.hypot(self.ref_table['xe'], self.ref_table['xe_boot']) ye_comb = np.hypot(self.ref_table['ye'], self.ref_table['ye_boot']) data_dict['chi2_x_boot'] = np.nansum((self.ref_table['x']-x_pred)**2/(xe_comb)**2,axis=1) @@ -1373,7 +1403,6 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot col[idx_good] = data_dict[ff] self.ref_table.add_column(col) - #pdb.set_trace() print('===============================') print('Done with bootstrap') @@ -1389,7 +1418,7 @@ def __init__(self, ref_list, list_of_starlists, iters=2, trans_args=[{'order': 2}, {'order': 2}], init_order=1, mag_trans=True, mag_lim=None, ref_mag_lim=None, - trans_weights=None, vel_weights='var', + trans_weighting=None, vel_weighting='var', trans_input=None, trans_class=transforms.PolyTransform, calc_trans_inverse=False, @@ -1397,8 +1426,8 @@ def __init__(self, ref_list, list_of_starlists, iters=2, update_ref_orig=False, init_guess_mode='miracle', iter_callback=None, - default_motion_model='Fixed', - motion_model_dict={}, + motion_models=['Empty', 'Fixed'], + fixed_params_dict=None, use_scipy=True, absolute_sigma=False, save_path=None, @@ -1463,13 +1492,13 @@ def __init__(self, ref_list, list_of_starlists, iters=2, If different from None, it indicates the minimum and maximum magnitude on the reference catalog for finding the transformations. - trans_weights : str + trans_weighting : str Either None (def), 'both,var', 'list,var', or 'ref,var' depending on whether you want to weight by the positional uncertainties (variances) in the individual starlists, or also with the uncertainties in the reference frame itself. Note weighting only works when there are positional uncertainties availabe. Other options include 'both,std', 'list,std', 'list,var'. - vel_weights : str + vel_weighting : str Either 'var' (def) or 'std', depending on whether you want to weight the motion model fits by the variance or standard deviation of the position data @@ -1529,9 +1558,12 @@ def = None. If not None, then this should contain an array or list of transform default_motion_model : string Name of motion model to use for new or unassigned stars - - motion_model_dict : None or dict - Dict of motion model name keys (strings) and corresponding MotionModel object values + + motion_models : list of str or MotionModel objects + List of motion model names (strings) or MotionModel objects to use + + fixed_params_dict : None or dict + Dictionary of fixed parameters for motion models use_scipy : bool, optional If True, use scipy.optimize.curve_fit for velocity fitting. If False, use linear algebra fitting, by default True. @@ -1578,13 +1610,13 @@ def = None. If not None, then this should contain an array or list of transform outlier_tol=outlier_tol, trans_args=trans_args, init_order=init_order, mag_trans=mag_trans, mag_lim=mag_lim, - trans_weights=trans_weights, vel_weights=vel_weights, + trans_weighting=trans_weighting, vel_weighting=vel_weighting, trans_input=trans_input, trans_class=trans_class, calc_trans_inverse=calc_trans_inverse, - default_motion_model = default_motion_model, init_guess_mode=init_guess_mode, iter_callback=iter_callback, - motion_model_dict=motion_model_dict, + motion_models=motion_models, + fixed_params_dict=fixed_params_dict, verbose=verbose, use_scipy=use_scipy, absolute_sigma=absolute_sigma, save_path=save_path) @@ -1606,10 +1638,10 @@ def = None. If not None, then this should contain an array or list of transform self.ref_list['me'] = self.ref_list['m0_err'] if ('t' not in self.ref_list.colnames) and ('t0' in self.ref_list.colnames): self.ref_list['t'] = self.ref_list['t0'] - + # Make sure the motion models are ready - self.motion_model_dict = motion_model.validate_motion_model_dict(self.motion_model_dict, - self.ref_list, self.default_motion_model) + # self.motion_model_dict = motion_model.validate_motion_model_dict(self.motion_model_dict, + # self.ref_list, self.default_motion_model) return @@ -1646,13 +1678,13 @@ def fit(self): logger(_log, ' mag_trans = ' + str(self.mag_trans), self.verbose) logger(_log, ' mag_lim = ' + str(self.mag_lim), self.verbose) logger(_log, ' ref_mag_lim = ' + str(self.ref_mag_lim), self.verbose) - logger(_log, ' trans_weights = ' + str(self.trans_weights), self.verbose) - logger(_log, ' vel_weights = ' + str(self.vel_weights), self.verbose) + logger(_log, ' trans_weighting = ' + str(self.trans_weighting), self.verbose) + logger(_log, ' vel_weighting = ' + str(self.vel_weighting), self.verbose) logger(_log, ' trans_input = ' + str(self.trans_input), self.verbose) logger(_log, ' trans_class = ' + str(self.trans_class), self.verbose) logger(_log, ' calc_trans_inverse = ' + str(self.calc_trans_inverse), self.verbose) logger(_log, ' use_ref_new = ' + str(self.use_ref_new), self.verbose) - logger(_log, ' default_motion_model = ' + str(self.default_motion_model), self.verbose) + logger(_log, ' motion_models = ' + str([mm.name for mm in self.motion_models]), self.verbose) logger(_log, ' update_ref_orig = ' + str(self.update_ref_orig), self.verbose) logger(_log, ' init_guess_mode = ' + str(self.init_guess_mode), self.verbose) logger(_log, ' iter_callback = ' + str(self.iter_callback), self.verbose) @@ -1687,13 +1719,13 @@ def fit(self): print('Starting iter {0:d} with ref_table shape:'.format(nn), self.ref_table['x'].shape) print("**********") print("**********") - + # ALL the action is in here. Match and transform the stack of starlists. # This updates trans objects and the ref_table. self.match_and_transform(self.ref_mag_lim, self.dr_tol[nn], self.dm_tol[nn], self.outlier_tol[nn], self.trans_args[nn]) - + # Clean up the reference table # Find where stars are detected. self.ref_table.detections() @@ -1898,7 +1930,7 @@ def reset_ref_values(ref_table): return -def add_rows_for_new_stars(ref_table, star_list, idx_lis, default_motion_model='Fixed'): +def add_rows_for_new_stars(ref_table, star_list, idx_lis): """ For each star that is in star_list and NOT in idx_list, make a new row in the reference table. The values will be empty (None, NAN, etc.). @@ -1943,12 +1975,12 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis, default_motion_model=' elif ref_table[col_name].dtype == np.dtype('bool'): new_col_empty = False elif col_name=='motion_model_input': - new_col_empty = default_motion_model + new_col_empty = 'Empty' elif col_name=='motion_model_used': - new_col_empty = 'Fixed' + new_col_empty = 'Empty' else: new_col_empty = np.nan - + if len(ref_table[col_name].shape) == 1: new_col_shape = len(idx_lis_new) else: @@ -1966,7 +1998,7 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis, default_motion_model=' ref_table = vstack([ref_table, ref_table_new]) idx_ref_new = np.arange(last_star_idx, len(ref_table)) - + return ref_table, idx_lis_new, idx_ref_new """ @@ -2863,7 +2895,7 @@ def check_trans_input(list_of_starlists, trans_input, mag_trans): return -def trans_initial_guess(ref_list, star_list, trans_args, motion_model_dict, mode='miracle', +def trans_initial_guess(ref_list, star_list, trans_args, mode='miracle', ignore_contains='star', verbose=True, n_req_match=3, mag_trans=True, order=1): """ @@ -2901,7 +2933,7 @@ def trans_initial_guess(ref_list, star_list, trans_args, motion_model_dict, mode # If there are velocities in the reference list, use them. # We assume velocities are in the same units as the positions. - xref, yref = get_pos_at_time(star_list['t'][0], ref_list, motion_model_dict) + xref, yref = infer_positions(star_list['t'][0], ref_list) if 'm' in ref_list.colnames: mref = ref_list['m'] else: @@ -3140,9 +3172,9 @@ def get_weighting_scheme(weights, ref_list, star_list): return weight # TODO: This is sometimes run on a startable, not a starlist, at least as currently used -def get_pos_at_time(t, starlist, motion_model_dict): +def infer_positions(t, startable): """ - Take a starlist, check to see if it has motion/velocity columns. + Take a startable, check to see if it has motion/velocity columns. If it does, then propogate the positions forward in time to the desired epoch. If no motion/velocities exist, then just use ['x0', 'y0'] or ['x', 'y'] @@ -3155,21 +3187,23 @@ def get_pos_at_time(t, starlist, motion_model_dict): as the 't0' column in starlist. """ # Check for motion model - if 'motion_model_used' in starlist.colnames: - x,y,xe,ye = starlist.get_star_positions_at_time(t, motion_model_dict, allow_alt_models=True) + if 'motion_model_used' in startable.colnames: + x, y, xe, ye = startable.infer_positions(t) + # If no motion model, check for velocities - elif ('vx' in starlist.colnames) and ('vy' in starlist.colnames): - x = starlist['x0'] + starlist['vx']*(t-starlist['t0']) - y = starlist['y0'] + starlist['vy']*(t-starlist['t0']) + elif ('vx' in startable.colnames) and ('vy' in startable.colnames): + x = startable['x0'] + startable['vx'] * (t - startable['t0']) + y = startable['y0'] + startable['vy'] * (t - startable['t0']) + # If no velocities, try fitted positon - elif ('x0' in starlist.colnames) and ('y0' in starlist.colnames): - x = starlist['x0'] - y = starlist['y0'] + elif ('x0' in startable.colnames) and ('y0' in startable.colnames): + x = startable['x0'] + y = startable['y0'] # Otherwise, use measured position else: - x = starlist['x'] - y = starlist['y'] - + x = startable['x'] + y = startable['y'] + return (x, y) def logger(logfile, message, verbose = 9): diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index 195a67b..cc4de2a 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -6,10 +6,8 @@ from flystar import motion_model from astropy.table import Table import numpy as np -import pylab as plt +import matplotlib.pyplot as plt import pdb -import datetime -import pytest def test_MosaicSelfRef(): """ @@ -28,7 +26,7 @@ def test_MosaicSelfRef(): trans_args={'order': 2}) msc.fit() - + # Check some of the output quantities on the final table. assert 'x0' in msc.ref_table.colnames assert 'x0_err' in msc.ref_table.colnames @@ -42,7 +40,6 @@ def test_MosaicSelfRef(): assert msc.ref_table['use_in_trans'].shape == msc.ref_table['x0'].shape assert msc.ref_table['used_in_trans'].shape == msc.ref_table['x'].shape - # Check that we have some matched stars... should be at least 35 stars # that are detected in all 4 starlists. @@ -50,11 +47,11 @@ def test_MosaicSelfRef(): assert len(idx) > 35 # Check that the transformation error isn't too big - assert (msc.ref_table['x0_err'] < 3.0).all() # less than 1 pix - assert (msc.ref_table['y0_err'] < 3.0).all() - #assert (msc.ref_table['m0_err'] < 1.0).all() # less than 0.5 mag - assert (msc.ref_table['m0_err'] < 1.5).all() # less than 0.5 mag - + valid_err = np.isfinite(msc.ref_table['x0_err']) & np.isfinite(msc.ref_table['y0_err']) & np.isfinite(msc.ref_table['m0_err']) + assert (msc.ref_table['x0_err'][valid_err] < 3.0).all() # less than 1 pix + assert (msc.ref_table['y0_err'][valid_err] < 3.0).all() + #assert (msc.ref_table['m0_err'][valid_err] < 1.0).all() # less than 0.5 mag + assert (msc.ref_table['m0_err'][valid_err] < 1.5).all() # less than 0.5 mag # Check that the transformation lists aren't too wacky for ii in range(4): np.testing.assert_allclose(msc.trans_list[ii].px.c1_0, 1.0, rtol=1e-2) @@ -81,7 +78,7 @@ def test_MosaicSelfRef(): plt.plot(msc.ref_table['x0'], msc.ref_table['y0'], '.', color='black', alpha=0.2) - + return @@ -102,11 +99,11 @@ def test_MosaicSelfRef_vel_tconst(): dr_tol=[3, 3], dm_tol=[1, 1], trans_class=transforms.PolyTransform, trans_args={'order': 2}, - default_motion_model='Linear', + motion_models=['Empty', 'Fixed', 'Linear'], verbose=False) msc.fit() - + # Check some of the output quantities on the final table. assert 'x0' in msc.ref_table.colnames assert 'x0_err' in msc.ref_table.colnames @@ -126,21 +123,16 @@ def test_MosaicSelfRef_vel_tconst(): assert len(idx) > 35 # Check that the transformation error isn't too big - assert (msc.ref_table['x0_err'] < 3.0).all() # less than 1 pix - assert (msc.ref_table['y0_err'] < 3.0).all() - assert (msc.ref_table['m0_err'] < 1.0).all() # less than 0.5 mag - + valid_err = np.isfinite(msc.ref_table['x0_err']) & np.isfinite(msc.ref_table['y0_err']) & np.isfinite(msc.ref_table['m0_err']) + assert (msc.ref_table['x0_err'][valid_err] < 3.0).all() # less than 1 pix + assert (msc.ref_table['y0_err'][valid_err] < 3.0).all() + assert (msc.ref_table['m0_err'][valid_err] < 1.0).all() # less than 0.5 mag + # Check that the transformation lists aren't too wacky for ii in range(4): np.testing.assert_allclose(msc.trans_list[ii].px.c1_0, 1.0, rtol=1e-2) np.testing.assert_allclose(msc.trans_list[ii].py.c0_1, 1.0, rtol=1e-2) - # Check that the velocities aren't crazy... - # they should be non-existent (since there is no time difference) - assert np.isnan(msc.ref_table['vx']).all() - assert np.isnan(msc.ref_table['vy']).all() - assert np.isnan(msc.ref_table['vx_err']).all() - assert np.isnan(msc.ref_table['vy_err']).all() return @@ -172,7 +164,7 @@ def test_MosaicSelfRef_vel(): msc = align.MosaicSelfRef(lists, ref_index=0, iters=3, dr_tol=[5, 3, 3], dm_tol=[1, 1, 0.5], outlier_tol=None, trans_class=transforms.PolyTransform, - trans_args={'order': 2}, default_motion_model='Linear', + trans_args={'order': 2}, motion_models=['Empty', 'Fixed', 'Linear'], verbose=False) msc.fit() @@ -196,10 +188,11 @@ def test_MosaicSelfRef_vel(): assert len(idx) > 35 # Check that the transformation error isn't too big - assert (msc.ref_table['x0_err'] < 3.0).all() # less than 1 pix - assert (msc.ref_table['y0_err'] < 3.0).all() - assert (msc.ref_table['m0_err'] < 1.0).all() # less than 0.5 mag - + valid_err = np.isfinite(msc.ref_table['x0_err']) & np.isfinite(msc.ref_table['y0_err']) & np.isfinite(msc.ref_table['m0_err']) + assert (msc.ref_table['x0_err'][valid_err] < 3.0).all() # less than 1 pix + assert (msc.ref_table['y0_err'][valid_err] < 3.0).all() + assert (msc.ref_table['m0_err'][valid_err] < 1.0).all() # less than 0.5 mag + # Check that the transformation lists aren't too wacky for ii in range(4): np.testing.assert_allclose(msc.trans_list[ii].px.c1_0, 1.0, rtol=1e-2) @@ -214,7 +207,7 @@ def test_MosaicSelfRef_vel(): def test_MosaicToRef(): make_fake_starlists_poly1(seed=42) - + ref_file = 'random_ref.fits' list_files = ['random_0.fits', 'random_1.fits', @@ -235,7 +228,7 @@ def test_MosaicToRef(): msc = align.MosaicToRef(ref_list, lists, iters=2, dr_tol=[0.2, 0.1], dm_tol=[1, 0.5], trans_class=transforms.PolyTransform, - trans_args={'order': 2}, default_motion_model='Fixed', + trans_args={'order': 2}, motion_models=['Empty', 'Fixed'], update_ref_orig=False, verbose=False) msc.fit() @@ -300,7 +293,7 @@ def test_MosaicToRef_p0_vel(): dr_tol=[0.2, 0.1], dm_tol=[1, 0.5], outlier_tol=[None, None], trans_class=transforms.PolyTransform, - trans_args={'order': 1}, default_motion_model='Linear', + trans_args={'order': 1}, motion_models=['Empty', 'Fixed', 'Linear'], update_ref_orig=False, verbose=False) msc.fit() @@ -326,18 +319,18 @@ def test_MosaicToRef_p0_vel(): # The velocities should be almost the same (but not as close as before) # as the input velocities since update_ref == True. assert (msc.ref_table['name']==ref_list['name']).all() - np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], rtol=1e-1) - np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], rtol=1e-1) + np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], atol=1e-2) + np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], atol=1e-2) # Also double check that they aren't exactly the same for the reference stars. #assert np.any(np.not_equal(msc.ref_table['vx'], ref_list['vx'])) assert np.not_equal(msc.ref_table['vx'], ref_list['vx']).any() - + return msc def test_MosaicToRef_vel(): make_fake_starlists_poly1_vel(seed=42) - + ref_file = 'random_vel_ref.fits' list_files = ['random_vel_0.fits', 'random_vel_1.fits', @@ -359,14 +352,14 @@ def test_MosaicToRef_vel(): # Switch our list to a "increasing to the West" list. ref_list['x0'] *= -1.0 ref_list['vx'] *= -1.0 - + lists = [starlists.StarList.read(lf) for lf in list_files] msc = align.MosaicToRef(ref_list, lists, iters=2, dr_tol=[0.2, 0.1], dm_tol=[1, 0.5], outlier_tol=[None, None], trans_class=transforms.PolyTransform, - trans_args={'order': 1}, default_motion_model='Linear', + trans_args={'order': 1}, motion_models=['Empty', 'Fixed', 'Linear'], update_ref_orig=False, verbose=False) msc.fit() @@ -392,8 +385,8 @@ def test_MosaicToRef_vel(): # The velocities should be almost the same (but not as close as before) # as the input velocities since update_ref == True. assert (msc.ref_table['name']==ref_list['name']).all() - np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], rtol=1e-1) - np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], rtol=1e-1) + np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], atol=1e-2) + np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], atol=1e-2) # Also double check that they aren't exactly the same for the reference stars. #assert np.any(np.not_equal(msc.ref_table['vx'], ref_list['vx'])) @@ -403,7 +396,7 @@ def test_MosaicToRef_vel(): def test_MosaicToRef_acc(): make_fake_starlists_poly1_acc(seed=42) - + ref_file = 'random_acc_ref.fits' list_files = ['random_acc_0.fits', 'random_acc_1.fits', @@ -427,19 +420,19 @@ def test_MosaicToRef_acc(): ref_list['ay'] *= 1e-3 ref_list['ax_err'] *= 1e-3 ref_list['ay_err'] *= 1e-3 - + # Switch our list to a "increasing to the West" list. ref_list['x0'] *= -1.0 ref_list['vx0'] *= -1.0 ref_list['ax'] *= -1.0 - + lists = [starlists.StarList.read(lf) for lf in list_files] msc = align.MosaicToRef(ref_list, lists, iters=2, dr_tol=[0.4, 0.2], dm_tol=[1, 0.5], trans_class=transforms.PolyTransform, trans_args={'order': 2}, - default_motion_model='Acceleration', + motion_models=['Acceleration'], update_ref_orig=False, verbose=False) msc.fit() From a19b10678e4c38b90c16265ebe657a6e0abf3c18 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E2=80=9CLingfeng?= Date: Tue, 16 Dec 2025 04:16:42 -0800 Subject: [PATCH 21/29] Passed startable tests; Accelerated imports with relative import --- flystar/analysis.py | 13 +- flystar/match.py | 5 +- flystar/motion_model.py | 34 +- flystar/parallax.py | 24 +- flystar/plots.py | 8 +- flystar/startables.py | 573 +++++++------------------------- flystar/tests/test_startable.py | 173 +++++----- 7 files changed, 241 insertions(+), 589 deletions(-) diff --git a/flystar/analysis.py b/flystar/analysis.py index 81ab3f4..9ac826f 100644 --- a/flystar/analysis.py +++ b/flystar/analysis.py @@ -1,17 +1,15 @@ import numpy as np import pylab as plt -from flystar import starlists -from flystar import startables -from flystar import align -from flystar import match -from flystar import transforms +from . import starlists +from . import startables +from . import align +from . import match +from . import transforms from astropy import table from astropy.table import Table, Column from astropy.coordinates import SkyCoord from astropy import units as u from astropy.wcs import WCS -from astroquery.gaia import Gaia -from astroquery.mast import Observations, Catalogs import pdb, copy import math from scipy.stats import f @@ -42,6 +40,7 @@ def query_gaia(ra, dec, search_radius=30.0, table_name='gaiadr3'): table_name : string Options are 'gaiadr2' or 'gaiaedr3' """ + from astroquery.gaia import Gaia target_coords = SkyCoord(ra, dec, unit=(u.hourangle, u.deg), frame='icrs') ra = target_coords.ra.degree dec = target_coords.dec.degree diff --git a/flystar/match.py b/flystar/match.py index d7c391e..4cd5e36 100644 --- a/flystar/match.py +++ b/flystar/match.py @@ -1,5 +1,7 @@ import numpy as np -from flystar import starlists, transforms, startables, align +from . import starlists +from . import transforms +from . import startables from collections import Counter from scipy.spatial import cKDTree as KDT from astropy.table import Column, Table @@ -526,6 +528,7 @@ def generic_match(sl1, sl2, init_mode='triangle', Startable of the two matched catalogs """ + from . import align # Check the input StarLists and transform them into astropy Tables if not isinstance(sl1, starlists.StarList): diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 42a5e54..6741c65 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -538,8 +538,7 @@ def run_fit( return_chi2=False, verbose=True ): - assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Linear model." - t0 = fixed_params_dict['t0'] + t0 = fixed_params_dict.get('t0', np.average(t, weights=1./np.hypot(xe, ye))) t = np.atleast_1d(t) x = np.atleast_1d(x) y = np.atleast_1d(y) @@ -742,8 +741,7 @@ def run_fit( return_chi2=False, verbose=True ): - assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Acceleration model." - t0 = fixed_params_dict['t0'] + t0 = fixed_params_dict.get('t0', np.average(t, weights=1./np.hypot(xe, ye))) t = np.atleast_1d(t) x = np.atleast_1d(x) y = np.atleast_1d(y) @@ -839,7 +837,7 @@ def calc_parallax_vector(self, t_mjd, ra, dec, pa=0., obsLocation='earth'): if self.plx_vector_cached is not None: t_mjd = np.atleast_1d(t_mjd) t_mjd_cached = self.plx_vector_cached[0] - if np.allclose(t_mjd, t_mjd_cached): + if np.array_equal(t_mjd, t_mjd_cached): # If cached values match input times, return cached values return self.plx_vector_cached[1] @@ -901,7 +899,7 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): - ra, shape (N_stars,) or (1,). - dec, shape (N_stars,) or (1,). - pa, optional, shape (N_stars,) or (1,), by default 0. - - obsLocation, optional,shape (N_stars,) or (1,), by default 'earth' + - obsLocation, optional, string, by default 'earth' fit_param_errs : array-like, optional Uncertainties in fit parameters, by default None @@ -910,6 +908,9 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + + assert all([_ in fixed_params_dict for _ in ['t0', 'ra', 'dec']]), "Fixed parameters t0, ra, and dec are required for Parallax model." + t = np.atleast_1d(t) fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) N_stars = fit_params.shape[0] if fit_params.ndim > 1 else 1 @@ -922,12 +923,13 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): pa = np.atleast_1d(fixed_params_dict.get('pa', 0.0)) obsLocation = fixed_params_dict.get('obsLocation', 'earth') + # TODO: vectorize parallax.parallax_in_direction to handle multiple obsLocation? + assert type(obsLocation) == str, "obsLocation must be a single string for all stars at this time." + dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) t_mjd = Time(t, format='decimalyear', scale='utc').mjd # Shape (N_times,) self.pvec = self.calc_parallax_vector(t_mjd, ra, dec, pa=pa, obsLocation=obsLocation) # Shape (2, N_times) x, y = self.model_fit(dt, x0[:, np.newaxis], vx[:, np.newaxis], y0[:, np.newaxis], vy[:, np.newaxis], pi[:, np.newaxis]) # Shape (N_stars, N_times) - # x = xy[:, :N_times] # Shape (N_stars, N_times) - # y = xy[:, N_times:] # Shape (N_stars, N_times) if N_stars == 1 or N_times == 1: # If only one star, return flattened arrays @@ -1068,14 +1070,18 @@ def get_one_motion_model_param_names(motion_model, with_errors=True, with_fixed= Add uncertainty names with '_err' suffix or not, by default True with_fixed : bool, optional Add fixed param names with '_fixed' suffix or not, by default True - + Returns ------- list List of all parameter names for the motion model """ - list_of_parameters = [] + if isinstance(motion_model, str): + all_mm_map = motion_model_map() + motion_model = all_mm_map[motion_model] + list_of_parameters = [] + def list_add(name): if name not in list_of_parameters: list_of_parameters.append(name) @@ -1112,6 +1118,10 @@ def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_ """ list_of_parameters = [] + if len(motion_model_list) > 0 and isinstance(motion_model_list[0], str): + all_mm_map = motion_model_map() + motion_model_list = [all_mm_map[mm_name] for mm_name in motion_model_list] + def list_add(name): if name not in list_of_parameters: list_of_parameters.append(name) @@ -1130,12 +1140,12 @@ def list_add(name): return list(list_of_parameters) -def get_all_motion_model_names(with_errors=True, with_fixed=True): +def get_all_motion_model_param_names(with_errors=True, with_fixed=True): return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) def motion_model_map(): mm_map = dict( - [(mm.__name__, mm()) for mm in MotionModel.__subclasses__()] + [(mm.__name__, mm) for mm in MotionModel.__subclasses__()] ) # Sort by n_params mm_map = dict(sorted(mm_map.items(), key=lambda item: item[1].n_params)) diff --git a/flystar/parallax.py b/flystar/parallax.py index 2bd352a..1a6dcf1 100755 --- a/flystar/parallax.py +++ b/flystar/parallax.py @@ -44,7 +44,7 @@ def parallax_in_direction(ra, dec, mjd, obsLocation='earth', pa=0.): Returns ------- pvec : ndarray - Parallax vector components, shape of (2, N) or (2,), where N is the number of stars. + Parallax vector components, shape of (2, N_stars, N_times), or (2, N_stars) if N_times=1, or (2, N_times) if N_stars=1. """ # Munge inputs into astropy format. # times = Time(mjd + 2400000.5, format='jd', scale='tdb') @@ -62,24 +62,24 @@ def parallax_in_direction(ra, dec, mjd, obsLocation='earth', pa=0.): _north_projected = np.cross(directions, _east_projected) _north_projected /= np.linalg.norm(_north_projected, axis=1)[:, np.newaxis] # Shape (N_stars, 3) - obs_pos = get_observer_barycentric(obsLocation, times) - sun_pos = get_body_barycentric(body='sun', time=times) + obs_pos = get_observer_barycentric(obsLocation, times) # Shape (N_times,) + sun_pos = get_body_barycentric(body='sun', time=times) # Shape (N_times,) sun_obs_pos = sun_pos - obs_pos - pos = sun_obs_pos.xyz.T.to(units.au).value # Shape (N_stars, 3) + pos = sun_obs_pos.xyz.T.to(units.au).value # Shape (N_times, 3) - e = np.einsum('ij,ij->i', pos, _east_projected) # Shape (N_stars,) - n = np.einsum('ij,ij->i', pos, _north_projected) # Shape (N_stars,) + e = np.einsum('ti,si->st', pos, _east_projected) # Shape (N_stars, N_times) + n = np.einsum('ti,si->st', pos, _north_projected) # Shape (N_stars, N_times) # Rotate frame e,n->x,y accounting for PA - pa = np.deg2rad(pa) - x = -e * np.cos(pa) + n * np.sin(pa) - y = e * np.sin(pa) + n * np.cos(pa) - pvec = np.array([x, y]) # Shape (2, N_stars) + pa = np.deg2rad(pa) # shape (N_stars,) + x = -e * np.cos(pa[:, np.newaxis]) + n * np.sin(pa[:, np.newaxis]) # Shape (N_stars, N_times) + y = e * np.sin(pa[:, np.newaxis]) + n * np.cos(pa[:, np.newaxis]) # Shape (N_stars, N_times) + pvec = np.array([x, y]) # Shape (2, N_stars, N_times) - if pvec.shape[1] == 1: - pvec = pvec.flatten() + if pvec.shape[1] == 1 or pvec.shape[2] == 1: + pvec = pvec.reshape(2, -1) # Shape (2, N_stars) or (2, N_times) return pvec diff --git a/flystar/plots.py b/flystar/plots.py index 8df9d51..8a2127c 100755 --- a/flystar/plots.py +++ b/flystar/plots.py @@ -1,4 +1,4 @@ -from flystar import analysis, motion_model, startables +from . import motion_model, startables import numpy as np import matplotlib.mlab as mlab import matplotlib @@ -193,6 +193,7 @@ def pos_diff_err_hist(ref_mat, starlist_mat, transform, nbins=25, bin_width=None an outlier. """ + from . import analysis diff_x = ref_mat['x'] - starlist_mat['x'] diff_y = ref_mat['y'] - starlist_mat['y'] @@ -1069,16 +1070,15 @@ def plot_mag_error(tab): return -def plot_mean_residuals_by_epoch(tab, motion_model_dict={}): +def plot_mean_residuals_by_epoch(tab): """ Plot mean position and magnitude residuals vs. epoch. Note we are plotting the mean( |dx} ) to see the size of the mean residual. """ # Predicted model positions at each epoch - motion_model_dict = motion_model.validate_motion_model_dict(motion_model_dict, tab, None) i_all_detected = np.where(~np.any(np.isnan(tab['t']),axis=1))[0][0] - xt_mod, yt_mod, xt_mod_err, yt_mod_err = tab.get_star_positions_at_time(tab['t'][i_all_detected], motion_model_dict, allow_alt_models=True) + xt_mod, yt_mod, xt_mod_err, yt_mod_err = tab.predict_positions(tab['t'][i_all_detected]) # Residuals dx = tab['x'] - xt_mod diff --git a/flystar/startables.py b/flystar/startables.py index dd44178..bdcb880 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -227,7 +227,7 @@ def _add_list_data_from_starlist(self, starlist): lis_meta_keys = list(starlist.meta.keys()) # append 's' to the end to pluralize the input starlist. lis_meta_keys_plural = [lis_meta_key + 's' for lis_meta_key in lis_meta_keys] - + for kk in range(len(tab_meta_keys)): tab_key = tab_meta_keys[kk] @@ -237,9 +237,9 @@ def _add_list_data_from_starlist(self, starlist): # If we find the key in the starlists' meta argument, then add the new values. # Otherwise, add "None". - idx = np.where(lis_meta_keys_plural == tab_key)[0] - if len(idx) > 0: - lis_key = lis_meta_keys[idx[0]] + idx = lis_meta_keys_plural.index(tab_key) if tab_key in lis_meta_keys_plural else None + if idx is not None: + lis_key = lis_meta_keys[idx] self.meta[tab_key] = np.append(self.meta[tab_key], [starlist.meta[lis_key]]) else: self._append_invalid_meta_values(tab_key) @@ -550,7 +550,7 @@ def fit_motion_model( Parameters ---------- - motion_models : list of MotionModel, optional + motion_models : list of MotionModel or str, optional Motion models to use. Empty and Fixed models are always added automatically for stars with n_fit = 0 or 1. The behavior is as follows: @@ -612,9 +612,16 @@ def fit_motion_model( if fixed_params_dict is not None: if not isinstance(fixed_params_dict, dict): raise ValueError("fit_velocities: fixed_params_dict must be a dictionary!") - + + # Convert motion_models to MotionModel objects if they are strings: + all_mm_map = motion_model.motion_model_map() + if all(isinstance(mm, str) for mm in motion_models): + mm_names = motion_models + motion_models = [all_mm_map[mm] for mm in motion_models] + else: + mm_names = [mm.name for mm in motion_models] + # Always add Empty and Fixed in motion models - mm_names = [mm.name for mm in motion_models] if 'Fixed' not in mm_names: motion_models.insert(0, Fixed) if 'Empty' not in mm_names: @@ -622,17 +629,13 @@ def fit_motion_model( mm_names = [mm.name for mm in motion_models] # Construct motion models if motion_model_input column exists - all_mm_map = motion_model.motion_model_map() if 'motion_model_input' in self.colnames: input_mm_names = np.unique(self['motion_model_input']) assert all([name in all_mm_map.keys() for name in input_mm_names]), \ f"fit_velocities: Unknown motion model name(s) in 'motion_model_input' column. Available motion models are: {', '.join(all_mm_map.keys())}." for mm_name in input_mm_names: if mm_name not in mm_names: - try: - motion_models.append(all_mm_map[mm_name]()) - except Exception as e: - raise ValueError(f"fit_velocities: An instance of motion model {mm_name} with initialization parameters is missing in motion_models: {e}") + motion_models.append(all_mm_map[mm_name]) # Sort motion models by n_params motion_models = sorted(motion_models, key=lambda mm: mm.n_params) @@ -673,15 +676,16 @@ def fit_motion_model( # Add default t0 if not provided in fixed_params_dict if fixed_params_dict is None: weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None - t0 = np.average(t_data, axis=1, weights=weights) - fixed_params_dict = {'t0': t0} + fixed_params_dict = {'t0': np.average(t_data, axis=1, weights=weights)} + elif 't0' not in fixed_params_dict: weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None fixed_params_dict['t0'] = np.average(t_data, axis=1, weights=weights) else: if np.ndim(fixed_params_dict['t0']) == 0: fixed_params_dict['t0'] = np.full(N_stars, fixed_params_dict['t0']) - t0 = fixed_params_dict['t0'] + + t0 = fixed_params_dict['t0'] # Prepare fixed_params_dict for each star @@ -739,7 +743,7 @@ def fit_motion_model( ) - 1 # Convert to 0-based index # Assign motion models to stars - self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized]) + self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized], dtype='U20') ############################ @@ -747,8 +751,9 @@ def fit_motion_model( ############################ # Fill table with all possible motion model parameter names as new columns. motion_model_used = [all_mm_map[name] for name in np.unique(self['motion_model_used'])] - new_col_list = motion_model.get_list_motion_model_param_names(motion_model_used, with_errors=True) + new_col_list = motion_model.get_list_motion_model_param_names(motion_model_used, with_errors=True, with_fixed=False) new_col_list += ['chi2_x', 'chi2_y', 'n_params'] + if 't0' not in new_col_list: new_col_list.append('t0') @@ -765,6 +770,32 @@ def fit_motion_model( rename_duplicate=True ) + # Add fixed parameter columns if they do not exist + fixed_param_names = [] + for mm in motion_model_used: + for param in mm.fixed_param_names: + if param not in fixed_param_names: + fixed_param_names.append(param) + if 't0' in fixed_param_names: + fixed_param_names.remove('t0') + + # Add fixed parameter columns + for param in fixed_param_names: + coldata = np.array([fixed_params_stars[i][param] for i in range(N_stars)]) + if param in self.colnames: + # If the column already exists, check if the data are the same + if np.allclose(self[param], coldata, equal_nan=True): + # Same data, skip + continue + else: + # Different data, add with _mm suffix to avoid name conflict + colname = param + '_mm' + else: + colname = param + + self.add_column(Column(data=coldata, name=colname)) + + # Add a column to keep track of the number of points used in a fit and number of bootstrap used. self.meta['n_bootstrap'] = bootstrap @@ -822,332 +853,87 @@ def fit_motion_model( self['t0'][unique_index] = t0[unique_index] return - - def fit_velocities(self, weighting='var', use_scipy=True, absolute_sigma=True, bootstrap=0, - fixed_t0=False, verbose=False, mask_val=None, mask_lists=False, show_progress=True, - default_motion_model='Linear', reassign_motion_model=False, select_stars=None, motion_model_dict={}): - """Fit velocities for all stars in the table and add to the columns 'vx', 'vxe', 'vy', 'vye', 'x0', 'x0e', 'y0', 'y0e'. + def infer_positions(self, times, fill_value=np.nan): + """Infer star positions at given times using fitted motion models. Parameters ---------- - weighting : str, optional - Weight by variance 'var' or standard deviation 'std', by default 'var' - bootstrap : int, optional - Calculate uncertainty using bootstraping or not, by default 0 - fixed_t0 : bool or array-like, optional - Fix the t0 in dt = time - t0 if user provides an array with the same length of the table, or automatically calculate t0 = np.average(time, weights=1/np.hypot(xe, ye)) if False, by default False - verbose : bool, optional - Output verbose information or not, by default False - mask_val : float, optional - Value that needs to be masked in the data, e.g. -100000, by default None - mask_lists : list, optional - Columns that needs to be masked, by default False - show_progress : bool, optional - Show progress bar or not, by default True + times : array_like + Times at which to predict positions. + fill_value : float, optional + Value to use for missing data, by default np.nan - Raises - ------ - ValueError - If weighting is neither 'var' or 'std' - KeyError - If there's not time information in the table + Returns + ------- + x, y, xe, ye : ndarray + Arrays of predicted x, y positions and their uncertainties xe, ye, with shape (N_stars, N_times) or (N_stars,) if N_times=1, or (N_times,) if N_stars=1, or scalar. """ - if weighting not in ['var', 'std']: - raise ValueError(f"fit_velocities: Weighting must either be 'var' or 'std', not {weighting}!") - - if ('t' not in self.colnames) and ('list_times' not in self.meta): - raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'list_times' in meta.") - - # Check if we have the required columns - if not all([_ in self.colnames for _ in ['x', 'y']]): - raise KeyError(f"fit_velocities: Missing required columns in the table: {', '.join(['x', 'y'])}!") - - N_stars = len(self) + assert 'motion_model_used' in self.colnames, \ + "infer_positions: 'motion_model_used' column not found in the table. Please run fit_motion_model() first." - if verbose: - start_time = time.time() - msg = 'Starting startable.fit_velocities for {0:d} stars with n={1:d} bootstrap' - print(msg.format(N_stars, bootstrap)) - - # Set all to default_motion_model if none assigned already. - # Reset motion_model_used to the inputs for now -> will change as fits run - if ('motion_model_input' not in self.colnames) or reassign_motion_model: - self['motion_model_input'] = default_motion_model - self['motion_model_used'] = self['motion_model_input'] - - motion_model_dict = motion_model.validate_motion_model_dict(motion_model_dict, self, default_motion_model) - - # - # Fill table with all possible motion model parameter names as new - # columns. Make everything empty for now. - # - all_motion_models = np.unique(self['motion_model_input'].tolist() + ['Fixed']+[default_motion_model]).tolist() - new_col_list = motion_model.get_list_motion_model_param_names(all_motion_models, with_errors=True) - # Append goodness of fit metrics and t0. - new_col_list += ['chi2_x', 'chi2_y', 'n_params'] - if 't0' not in new_col_list: - new_col_list.append('t0') + N_stars = len(self) + times = np.atleast_1d(times) + N_times = len(times) + + if (N_stars > 1) and (N_times > 1): + x_pred = np.full((N_stars, N_times), fill_value, dtype=float) + y_pred = np.full((N_stars, N_times), fill_value, dtype=float) + xe_pred = np.full((N_stars, N_times), np.inf, dtype=float) + ye_pred = np.full((N_stars, N_times), np.inf, dtype=float) + elif N_stars==1: + x_pred = np.full(N_times, fill_value, dtype=float) + y_pred = np.full(N_times, fill_value, dtype=float) + xe_pred = np.full(N_times, np.inf, dtype=float) + ye_pred = np.full(N_times, np.inf, dtype=float) + else: + x_pred = np.full(N_stars, fill_value, dtype=float) + y_pred = np.full(N_stars, fill_value, dtype=float) + xe_pred = np.full(N_stars, np.inf, dtype=float) + ye_pred = np.full(N_stars, np.inf, dtype=float) - # Define output arrays for the best-fit parameters. - for col in new_col_list: - # Clean/remove up old arrays. - if col in self.colnames: self.remove_column(col) - # Add column #TODO: is this good for filling??? - self.add_column(Column(data = np.full(N_stars, np.nan, dtype=float), name = col)) - # Add a column to keep track of the number of points used in a fit. - self['n_fit'] = 0 - - # Preserve the number of bootstraps that will be run (if any). - self.meta['n_fit_bootstrap'] = bootstrap - - # (FIXME: Do we need to catch the case where there's a single *unmasked* epoch?) - # Catch the case when there is only a single epoch. Just return 0 velocity - # and the same input position for the x0/y0. - if len(self['x'].shape) == 1: - self['motion_model_used'] = 'Fixed' - self['x0'] = self['x'] - self['y0'] = self['y'] - if 't' in self.colnames: - self['t0'] = self['t'] - else: - self['t0'] = self.meta['list_times'][0] - if 'xe' in self.colnames: - self['x0_err'] = self['xe'] - self['y0_err'] = self['ye'] - self['n_fit'] = 1 - self['n_params'] = 1 - return - - if (self['x'].shape[1] == 1): - self['motion_model_used'] = 'Fixed' - self['x0'] = self['x'][:,0] - self['y0'] = self['y'][:,0] - if 't' in self.colnames: - self['t0'] = self['t'][:, 0] - else: - self['t0'] = self.meta['list_times'][0] - if 'xe' in self.colnames: - self['x0_err'] = self['xe'][:,0] - self['y0_err'] = self['ye'][:,0] - self['n_fit'] = 1 - self['n_params'] = 1 - return - - # Only fit selected stars, if list given - fit_star_idxs = range(N_stars) - if select_stars is not None: - fit_star_idxs = select_stars - # STARS LOOP through the stars and work on them 1 at a time. - # This is slow; but robust. - if show_progress: - for ss in tqdm(fit_star_idxs): - self.fit_velocity_for_star(ss, motion_model_dict, weighting=weighting, bootstrap=bootstrap, - use_scipy=use_scipy, absolute_sigma=absolute_sigma, - fixed_t0=fixed_t0, default_motion_model=default_motion_model, - mask_val=mask_val, mask_lists=mask_lists) - else: - for ss in fit_star_idxs: - self.fit_velocity_for_star(ss, motion_model_dict, weighting=weighting, bootstrap=bootstrap, - use_scipy=use_scipy, absolute_sigma=absolute_sigma, - fixed_t0=fixed_t0, default_motion_model=default_motion_model, - mask_val=mask_val, mask_lists=mask_lists) - if verbose: - stop_time = time.time() - print('startable.fit_velocities runtime = {0:.0f} s for {1:d} stars'.format(stop_time - start_time, N_stars)) + unique_motion_models, unique_inv_indices = np.unique(self['motion_model_used'], return_inverse=True) + indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} - return - - def fit_velocity_for_star(self, ss, motion_model_dict, weighting='var', use_scipy=True, absolute_sigma=True, - bootstrap=False, fixed_t0=False, mask_val=None, mask_lists=False, - default_motion_model='Linear'): - # TODO: "weighting" is not used - # - # Make a mask of invalid (NaN) values and a user-specified invalid value. - # + # Prepare fit_params, fixed_params, fit_param_errs for each star - x = np.ma.masked_invalid(self['x'][ss, :].data) - y = np.ma.masked_invalid(self['y'][ss, :].data) - if mask_val: - x = np.ma.masked_values(x, mask_val) - y = np.ma.masked_values(y, mask_val) - # If no mask, convert x.mask to list - if not np.ma.is_masked(x): - x.mask = np.zeros_like(x.data, dtype=bool) - if not np.ma.is_masked(y): - y.mask = np.zeros_like(y.data, dtype=bool) - - if mask_lists is not False: - # Remove a list - if isinstance(mask_lists, list): - if all(isinstance(item, int) for item in mask_lists): - x.mask[mask_lists] = True - y.mask[mask_lists] = True - - # Throw a warning if mask_lists is not a list - if not isinstance(mask_lists, list): - raise RuntimeError('mask_lists needs to be a list.') - # - # Assign the appropriate positional errors - # - if 'xe' in self.colnames: - # Make a mask of invalid (NaN) values and a user-specified invalid value. - xe = np.ma.masked_invalid(self['xe'][ss, :].data) - ye = np.ma.masked_invalid(self['ye'][ss, :].data) - - # Catch the case where we have positions but no errors for - # some of the entries... we need to "fill in" reasonable - # weights for these... just use the average weights over - # all the other epochs. - pos_no_err = np.where((np.isfinite(x) & np.isfinite(y)) & - (np.isfinite(xe) == False) & (np.isfinite(ye) == False))[0] - pos_with_err = np.where((np.isfinite(x) & np.isfinite(y)) & - (np.isfinite(xe) & np.isfinite(ye)))[0] - - if len(pos_with_err) > 0: - xe[pos_no_err] = xe[pos_with_err].mean() - ye[pos_no_err] = ye[pos_with_err].mean() - else: - xe[pos_no_err] = 1.0 - ye[pos_no_err] = 1.0 - else: - N_epochs = len(x) - xe = np.ones(N_epochs, dtype=float) - ye = np.ones(N_epochs, dtype=float) - xe = np.ma.masked_invalid(xe) - ye = np.ma.masked_invalid(xe) - - if mask_val: - xe = np.ma.masked_values(xe, mask_val) - ye = np.ma.masked_values(ye, mask_val) - # If no mask, convert xe.mask to list - if not np.ma.is_masked(xe): - xe.mask = np.zeros_like(xe.data, dtype=bool) - if not np.ma.is_masked(ye): - ye.mask = np.zeros_like(ye.data, dtype=bool) + for unique_motion_model, unique_index in indices_by_motion_model.items(): + # Create motion model instance + motion_model_instance = motion_model.motion_model_map()[unique_motion_model]() + # Prepare parameters for prediction + fit_params = np.array([ + self[param_name][unique_index] for param_name in motion_model_instance.fit_param_names + ]).T # shape (N_stars_this_model, N_params) + + fit_param_errs = np.array([ + self[param_name + '_err'][unique_index] for param_name in motion_model_instance.fit_param_names + ]).T # shape (N_stars_this_model, N_params) + + fixed_params = {} + for param_name in motion_model_instance.fixed_param_names: + col_name = param_name + if param_name + '_mm' in self.colnames: + col_name = param_name + '_mm' + fixed_params[param_name] = self[col_name][unique_index] - if mask_lists is not False: - # Remove a list - if isinstance(mask_lists, list): - if all(isinstance(item, int) for item in mask_lists): - xe.mask[mask_lists] = True - ye.mask[mask_lists] = True - - # Throw a warning if mask_lists is not a list - if not isinstance(mask_lists, list): - raise RuntimeError('mask_lists needs to be a list.') + # TODO: vectorize obsLocation handling in motion models + if (param_name == 'obsLocation'): + assert np.unique(fixed_params[param_name]).size == 1, \ + "infer_positions: obsLocation fixed parameter has different values for different stars. Vectorized handling not implemented yet." + fixed_params[param_name] = fixed_params[param_name][0] - # - # Make a mask of invalid (NaN) values and a user-specified invalid value. - # - if 't' in self.colnames: - t = np.ma.masked_invalid(self['t'][ss, :].data) - else: - t = np.ma.masked_invalid(self.meta['list_times']) + # Predict positions + x, y, xe, ye = motion_model_instance.model( + times, fit_params, fixed_params, fit_param_errs + ) + x_pred[unique_index] = x + y_pred[unique_index] = y + xe_pred[unique_index] = xe + ye_pred[unique_index] = ye - if mask_val: - t = np.ma.masked_values(t, mask_val) - if not np.ma.is_masked(t): - t.mask = np.zeros_like(t.data, dtype=bool) - - if mask_lists is not False: - # Remove a list - if isinstance(mask_lists, list): - if all(isinstance(item, int) for item in mask_lists): - t.mask[mask_lists] = True + return x_pred, y_pred, xe_pred, ye_pred - # Throw a warning if mask_lists is not a list - if not isinstance(mask_lists, list): - raise RuntimeError('mask_lists needs to be a list.') - # For inconsistent masks, mask the star if any of the values are masked. - new_mask = np.logical_or.reduce((t.mask, x.mask, y.mask, xe.mask, ye.mask)) - - # - # Figure out where we have detections (as indicated by error columns) - # - good = np.where((xe != 0) & (ye != 0) & - np.isfinite(xe) & np.isfinite(ye) & - np.isfinite(x) & np.isfinite(y) & ~new_mask)[0] - - N_good = len(good) - - # Catch the case where there is NO good data. - if N_good == 0: - #self['motion_model_used'][ss] = 'None' - self['n_fit'][ss] = N_good - self['n_params'][ss] = 0 - return - - # Everything below has N_good >= 1 - x = x[good] - y = y[good] - t = t[good] - xe = xe[good] - ye = ye[good] - - # - # Unless t0 is fixed, calculate the t0 for the stars. - # - if fixed_t0 is False: - t_weight = 1.0 / np.hypot(xe, ye) - t0 = np.average(t, weights=t_weight) - elif fixed_t0 is True: - t0 = self.t0 - else: - t0 = fixed_t0[ss] - self['t0'][ss] = t0 - self['n_fit'][ss] = N_good - - # - # Decide which motion_model to fit. - # - motion_model_use = self['motion_model_input'][ss] - # Go to default model if not enough points for assigned but enough for default - # TODO: think about whether we want other fallbacks besides the singular default and Fixed - if (N_good < motion_model_dict[motion_model_use].n_pts_req) and \ - (N_good >= motion_model_dict[default_motion_model].n_pts_req): - motion_model_use = default_motion_model - # If not enough points for either, go to a fixed model - elif (N_good < motion_model_dict[motion_model_use].n_pts_req) and \ - (N_good < motion_model_dict[default_motion_model].n_pts_req): - motion_model_use = 'Fixed' - # If the points do not cover multiple times, go to a fixed model - if (t == t[0]).all(): - motion_model_use = 'Fixed' - - self['motion_model_used'][ss] = motion_model_use - -# # Get the motion model object. -# modClass = motion_model_dict[motion_model_use] -# -# # Load up any prior information on parameters for this model. -# param_dict = {} -# for par in modClass.fit_param_names+modClass.fixed_param_names: -# if ~np.isnan(self[par][ss]): -# param_dict[par] = self[par][ss] - - # Model object - mod = motion_model_dict[motion_model_use] - fixed_params = [self[par][ss] for par in mod.fixed_param_names] - - # Fit for the best parameters - params, param_errs, chi2_x, chi2_y = mod.fit_motion_model(t, x, y, xe, ye, t0, bootstrap=bootstrap, - weighting=weighting, use_scipy=use_scipy, absolute_sigma=absolute_sigma) - # chi2_x,chi2_y = mod.get_chi2(params,fixed_params, t,x,y,xe,ye) - self['chi2_x'][ss]=chi2_x - self['chi2_y'][ss]=chi2_y - self['n_params'][ss] = mod.n_params - - # Save parameters and errors to table. - for pp in range(len(mod.fit_param_names)): - par = mod.fit_param_names[pp] - par_err = par + '_err' - self[par][ss] = params[pp] - self[par_err][ss] = param_errs[pp] - - return - # New function, to use in align def get_star_positions_at_time(self, t, motion_model_dict, allow_alt_models=True): """ Get current x,y positions of each star according to its motion_model @@ -1200,137 +986,6 @@ def get_star_positions_at_time(self, t, motion_model_dict, allow_alt_models=True return x, y, xe, ye - def fit_velocities_all_detected(self, motion_model_to_fit, weighting='var', use_scipy=True, absolute_sigma=True, times=None, - select_stars=None, epoch_cols='all', mask_val=None, art_star=False, return_result=False): - """Fit velocities for stars detected in all epochs specified by epoch_cols. - Criterion: xe/ye error > 0 and finite, x/y not masked. - - Parameters - ---------- - motion_model_to_fit : MotionModel - Motion model object to use for fitting all stars - weighting : str, optional - Variance weighting('var') or standard deviation weighting ('std'), by default 'var' - select_idx : array-like, optional - Indices of stars to select for fitting, by default None (fit all detected stars) - epoch_cols : str or list of intergers, optional - List of epoch column indices used for fitting velocity, by default 'all' - mask_val : float, optional - Values in x, y to be masked - art_star : bool, optional - Artificial star or observation star catalog. If artificial star, use 'det' column to select stars detected in all epochs, by default False - return_result : bool, optional - Return the velocity results or not, by default False - - Returns - ------- - vel_result : astropy Table - Astropy Table with velocity results - """ - - N_stars = len(self) - if select_stars is None: - select_stars = np.arange(N_stars) - else: - select_stars = np.asarray(select_stars) - - if epoch_cols == 'all': - epoch_cols = np.arange(np.shape(self['x'])[1]) - - # Artificial Star - if art_star: - detected_in_all_epochs = np.all(self['det'][select_stars, :][:, epoch_cols], axis=1) - - # Observation Star - else: - valid_xe = np.all(self['xe'][select_stars, :][:, epoch_cols]!=0, axis=1) & np.all(np.isfinite(self['xe'][select_stars, :][:, epoch_cols]), axis=1) - valid_ye = np.all(self['ye'][select_stars, :][:, epoch_cols]!=0, axis=1) & np.all(np.isfinite(self['ye'][select_stars, :][:, epoch_cols]), axis=1) - - if mask_val: - x = np.ma.masked_values(self['x'][select_stars, :][:, epoch_cols], mask_val, shrink=False) - y = np.ma.masked_values(self['y'][select_stars, :][:, epoch_cols], mask_val, shrink=False) - valid_x = ~np.any(x.mask, axis=1) - valid_y = ~np.any(y.mask, axis=1) - detected_in_all_epochs = np.logical_and.reduce(( - valid_x, valid_y, valid_xe, valid_ye)) - else: - detected_in_all_epochs = np.logical_and(valid_xe, valid_ye) - - N = len(self['x'][select_stars, :]) - fit_params = motion_model_to_fit.fit_param_names - param_data = {p: np.zeros(N) for p in fit_params} - param_data.update({p+'_err': np.zeros(N) for p in fit_params}) - param_data.update({p: np.zeros(N) for p in motion_model_to_fit.fixed_param_names}) - param_data['chi2_x'] = np.zeros(N) - param_data['chi2_y'] = np.zeros(N) - - if times is None: - if 'YEARS' in self.meta: - times = np.array(self.meta['YEARS'])[epoch_cols] - elif 't' in self.colnames: - times = self['t'][0, epoch_cols] - else: - raise ValueError("No valid time column found.") - - if not art_star: - x_arr = self['x'][select_stars, :][:, epoch_cols] - y_arr = self['y'][select_stars, :][:, epoch_cols] - else: - x_arr = self['x'][select_stars, :][:, epoch_cols, 1] - y_arr = self['y'][select_stars, :][:, epoch_cols, 1] - - xe_arr = self['xe'][select_stars, :][:, epoch_cols] - ye_arr = self['ye'][select_stars, :][:, epoch_cols] - - # Only fit for >1 epochs, otherwise all velocities will be 0 - if len(epoch_cols) > 1: - # For each star - for i in tqdm(range(N)): - x = x_arr[i] - y = y_arr[i] - xe = xe_arr[i] - ye = ye_arr[i] - t0 = np.average(times, weights=1. / np.hypot(xe, ye)) - - # Run fit and record results - params, param_errs = motion_model_to_fit.fit_motion_model( - times, x, y, xe, ye, t0, weighting=weighting, - use_scipy=use_scipy, absolute_sigma=absolute_sigma - ) - if 't0' in motion_model_to_fit.fixed_param_names: - param_data['t0'][i] = t0 - for j, param in enumerate(fit_params): - param_data[param][i] = params[j] - param_data[f'{param}_err'][i] = param_errs[j] - chi2x, chi2y = motion_model_to_fit.get_chi2(params, [t0], times, x, y, xe, ye) - param_data['chi2_x'][i] = chi2x - param_data['chi2_y'][i] = chi2y - - vel_result = Table.from_pandas(pd.DataFrame(param_data)) - - # Add n_vfit - n_fit = len(epoch_cols) - vel_result['n_fit'] = n_fit - - # Clean/remove up old arrays. - columns = [*vel_result.keys(), 'n_fit'] - for column in columns: - if column in self.colnames: self.remove_column(column) - - # Update self - for column in columns: - column_array = MaskedColumn(np.ma.zeros(N_stars), dtype=float, name=column) - column_array[select_stars] = vel_result[column] - column_array[select_stars][~detected_in_all_epochs] = np.nan - column_array.mask[select_stars] = ~detected_in_all_epochs - # Mask unselected indices - column_array.mask[~np.isin(np.arange(N_stars), select_stars)] = True - self[column] = column_array - - if return_result: - return vel_result - else: - return def shift_reference_frame(self, delta_vx=0.0, delta_vy=0.0, delta_pi=0.0, motion_model_dict={}): diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 804d4e7..f9cd97c 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -82,7 +82,6 @@ def test_StarTable_init2(): assert len(tab) == len(list1) - return def test_combine_lists(): @@ -175,39 +174,37 @@ def test_add_starlist(): t.add_starlist(x=x_new, y=y_new, m=m_new, xe=xe_new, ye=ye_new, me=me_new, meta={'list_times': t_new}) - assert len(t) == len(t_orig) + np.testing.assert_equal(len(t), len(t_orig)) expected_shape = np.array(t_orig['x'].shape) expected_shape[1] += 1 - - assert len(t['x'].shape) == len(expected_shape) - assert t['x'].shape[0] == expected_shape[0] + + np.testing.assert_equal(len(t['x'].shape), len(expected_shape)) + np.testing.assert_equal(t['x'].shape[0], expected_shape[0]) assert t['x'].shape[1] == expected_shape[1] - assert len(t['y'].shape) == len(expected_shape) - assert t['y'].shape[0] == expected_shape[0] + np.testing.assert_equal(len(t['y'].shape), len(expected_shape)) + np.testing.assert_equal(t['y'].shape[0], expected_shape[0]) assert t['y'].shape[1] == expected_shape[1] - assert len(t['m'].shape) == len(expected_shape) - assert t['m'].shape[0] == expected_shape[0] + np.testing.assert_equal(len(t['m'].shape), len(expected_shape)) + np.testing.assert_equal(t['m'].shape[0], expected_shape[0]) assert t['m'].shape[1] == expected_shape[1] - assert len(t['xe'].shape) == len(expected_shape) - assert t['xe'].shape[0] == expected_shape[0] - assert t['xe'].shape[1] == expected_shape[1] - - assert len(t['ye'].shape) == len(expected_shape) - assert t['ye'].shape[0] == expected_shape[0] - assert t['ye'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['xe'].shape), len(expected_shape)) + np.testing.assert_equal(t['xe'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['xe'].shape[1], expected_shape[1]) - assert len(t['me'].shape) == len(expected_shape) - assert t['me'].shape[0] == expected_shape[0] - assert t['me'].shape[1] == expected_shape[1] - - assert len(t['name']) == len(t_orig['name']) - assert len(t.meta['list_times']) == expected_shape[1] - assert t.meta['n_lists'] == 9 + np.testing.assert_equal(len(t['ye'].shape), len(expected_shape)) + np.testing.assert_equal(t['ye'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['ye'].shape[1], expected_shape[1]) + np.testing.assert_equal(len(t['me'].shape), len(expected_shape)) + np.testing.assert_equal(t['me'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['me'].shape[1], expected_shape[1]) + np.testing.assert_equal(len(t['name']), len(t_orig['name'])) + np.testing.assert_equal(len(t.meta['list_times']), expected_shape[1]) + np.testing.assert_equal(t.meta['n_lists'], 9) # Test 2: Add as starlist rather than with keywords. starlist = StarList( name=t_orig['name'], @@ -219,38 +216,37 @@ def test_add_starlist(): t = make_star_table() t.add_starlist(starlist=starlist) - assert len(t) == len(t_orig) + np.testing.assert_equal(len(t), len(t_orig)) expected_shape = np.array(t_orig['x'].shape) expected_shape[1] += 1 - - assert len(t['x'].shape) == len(expected_shape) - assert t['x'].shape[0] == expected_shape[0] - assert t['x'].shape[1] == expected_shape[1] - assert len(t['y'].shape) == len(expected_shape) - assert t['y'].shape[0] == expected_shape[0] - assert t['y'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['x'].shape), len(expected_shape)) + np.testing.assert_equal(t['x'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['x'].shape[1], expected_shape[1]) - assert len(t['m'].shape) == len(expected_shape) - assert t['m'].shape[0] == expected_shape[0] - assert t['m'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['y'].shape), len(expected_shape)) + np.testing.assert_equal(t['y'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['y'].shape[1], expected_shape[1]) - assert len(t['xe'].shape) == len(expected_shape) - assert t['xe'].shape[0] == expected_shape[0] - assert t['xe'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['m'].shape), len(expected_shape)) + np.testing.assert_equal(t['m'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['m'].shape[1], expected_shape[1]) - assert len(t['ye'].shape) == len(expected_shape) - assert t['ye'].shape[0] == expected_shape[0] - assert t['ye'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['xe'].shape), len(expected_shape)) + np.testing.assert_equal(t['xe'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['xe'].shape[1], expected_shape[1]) + np.testing.assert_equal(len(t['ye'].shape), len(expected_shape)) + np.testing.assert_equal(t['ye'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['ye'].shape[1], expected_shape[1]) - assert len(t['me'].shape) == len(expected_shape) - assert t['me'].shape[0] == expected_shape[0] - assert t['me'].shape[1] == expected_shape[1] + np.testing.assert_equal(len(t['me'].shape), len(expected_shape)) + np.testing.assert_equal(t['me'].shape[0], expected_shape[0]) + np.testing.assert_equal(t['me'].shape[1], expected_shape[1]) - assert len(t['name']) == len(t_orig['name']) - assert len(t.meta['list_times']) == expected_shape[1] - assert t.meta['n_lists'] == 9 + np.testing.assert_equal(len(t['name']), len(t_orig['name'])) + np.testing.assert_equal(len(t.meta['list_times']), expected_shape[1]) + np.testing.assert_equal(t.meta['n_lists'], 9) return @@ -298,11 +294,11 @@ def test_combine_1col(): t.combine_lists('x', weights_col='xe') - assert t['x0'][0] == t['x'][0] + np.testing.assert_equal(t['x0'][0], t['x'][0]) return -def test_fit_velocities(): +def test_fit_motion_models(): tab = make_star_table() tt = make_tiny_star_table() @@ -317,26 +313,25 @@ def test_fit_velocities(): tab.fit_motion_model(verbose=True, mask_value=-100000.) # Test creation of new variables - assert len(tab['vx']) == len(tab) - assert len(tab['vy']) == len(tab) - assert len(tab['vx_err']) == len(tab) - assert len(tab['vy_err']) == len(tab) - assert len(tab['n_fit']) == len(tab) - assert tab.meta['n_bootstrap'] == 0 + np.testing.assert_equal(len(tab['vx']), len(tab)) + np.testing.assert_equal(len(tab['vy']), len(tab)) + np.testing.assert_equal(len(tab['vx_err']), len(tab)) + np.testing.assert_equal(len(tab['vy_err']), len(tab)) + np.testing.assert_equal(len(tab['n_fit']), len(tab)) + np.testing.assert_equal(tab.meta['n_bootstrap'], 0) # Test no-fit for stars with N<2 epochs. n_epochs = (tab['x'] >= 0).sum(axis=1) idx = np.where(n_epochs < 2)[0] - assert (tab['vx'][idx] == 0).all() - assert (tab['vx_err'][idx] == 0).all() - assert (tab['n_fit'][idx] == 2).all() + np.testing.assert_equal((tab['vx'][idx] == 0).all(), True) + np.testing.assert_equal((tab['vx_err'][idx] == 0).all(), True) + np.testing.assert_equal((tab['n_fit'][idx] == 2).all(), True) # Test that the velocity errors were calculated. - assert (~(tab['vx_err'][0:100] < 0)).all() - assert (~(tab['x0_err'][0:100] < 0)).all() - assert (~(tab['vy_err'][0:100] < 0)).all() - assert (~(tab['y0_err'][0:100] < 0)).all() - + np.testing.assert_equal((~(tab['vx_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['x0_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['vy_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['y0_err'][0:100] < 0)).all(), True) ########## # Test running a second time. We should get the same results. @@ -366,11 +361,11 @@ def test_fit_velocities(): tab_b.meta = tab1.meta tab_b.fit_motion_model(verbose=True, bootstrap=50) - assert tab_b.meta['n_bootstrap'] == 50 - assert tab_b['x0_err'][0] > tab['x0_err'][0] - assert tab_b['vx_err'][0] > tab['vx_err'][0] - assert tab_b['y0_err'][0] > tab['y0_err'][0] - assert tab_b['vy_err'][0] > tab['vy_err'][0] + np.testing.assert_equal(tab_b.meta['n_bootstrap'], 50) + np.testing.assert_array_less(tab['x0_err'][0], tab_b['x0_err'][0]) + np.testing.assert_array_less(tab['vx_err'][0], tab_b['vx_err'][0]) + np.testing.assert_array_less(tab['y0_err'][0], tab_b['y0_err'][0]) + np.testing.assert_array_less(tab['vy_err'][0], tab_b['vy_err'][0]) ########## # Test what happens with no velocity errors @@ -378,15 +373,15 @@ def test_fit_velocities(): tab.remove_columns(['xe', 'ye', 'x0', 'y0', 'x0_err', 'y0_err', 'vx', 'vy', 'vx_err', 'vy_err', 'n_fit']) tab.fit_motion_model(verbose=False) - assert len(tab['vx']) == len(tab) - assert len(tab['vy']) == len(tab) - assert len(tab['vx_err']) == len(tab) - assert len(tab['vy_err']) == len(tab) - assert len(tab['n_fit']) == len(tab) - assert (~(tab['vx_err'][0:100] < 0)).all() - assert (~(tab['x0_err'][0:100] < 0)).all() - assert (~(tab['vy_err'][0:100] < 0)).all() - assert (~(tab['y0_err'][0:100] < 0)).all() + np.testing.assert_equal(len(tab['vx']), len(tab)) + np.testing.assert_equal(len(tab['vy']), len(tab)) + np.testing.assert_equal(len(tab['vx_err']), len(tab)) + np.testing.assert_equal(len(tab['vy_err']), len(tab)) + np.testing.assert_equal(len(tab['n_fit']), len(tab)) + np.testing.assert_equal((~(tab['vx_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['x0_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['vy_err'][0:100] < 0)).all(), True) + np.testing.assert_equal((~(tab['y0_err'][0:100] < 0)).all(), True) ######### # Test mask_list @@ -408,7 +403,6 @@ def test_fit_velocities(): def test_fit_velocities_2epoch(): - ########## # Test: only 2 epoch2 ########## @@ -424,30 +418,21 @@ def test_fit_velocities_2epoch(): tab_2.fit_motion_model(verbose=False, mask_value=-100000.) - assert 'n_fit' in tab_2.colnames - assert 't0' in tab_2.colnames - assert 'x0' in tab_2.colnames - assert 'y0' in tab_2.colnames - assert 'vx' in tab_2.colnames - assert 'vy' in tab_2.colnames - assert 'x0_err' in tab_2.colnames - assert 'y0_err' in tab_2.colnames - assert 'vx_err' in tab_2.colnames - assert 'vy_err' in tab_2.colnames + assert all([_ in tab_2.colnames for _ in ['n_fit', 't0', 'x0', 'y0', 'vx', 'vy', 'x0_err', 'y0_err', 'vx_err', 'vy_err']]) # 2 detections print(tab1.meta) np.testing.assert_almost_equal(tab_2['x0'][0], tab_2['x'][0,0], 1) - assert tab_2['n_fit'][0] == 2 + np.testing.assert_equal(tab_2['n_fit'][0], 2) # 1 detection - assert tab_2['x0'][100] == tab_2['x'][100, 0] - assert tab_2['n_fit'][100] == 1 - + np.testing.assert_equal(tab_2['x0'][100], tab_2['x'][100, 0]) + np.testing.assert_equal(tab_2['n_fit'][100], 1) + # 0 detections - assert np.isnan(tab_2['x0'][-1]) - assert tab_2['n_fit'][-1] == 0 - + np.testing.assert_equal(np.isnan(tab_2['x0'][-1]), True) + np.testing.assert_equal(tab_2['n_fit'][-1], 0) + return From 48321cbc93e1c38afd18be389b01344f51c6b638 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Tue, 16 Dec 2025 20:19:14 +0800 Subject: [PATCH 22/29] Resolve undefined variables and cleaned imports --- flystar/align.py | 45 +++++++++++++++------------------ flystar/analysis.py | 6 +---- flystar/examples.py | 10 ++------ flystar/match.py | 8 ++---- flystar/motion_model.py | 7 +++-- flystar/tests/test_startable.py | 1 - flystar/transforms.py | 19 +++++++------- 7 files changed, 41 insertions(+), 55 deletions(-) diff --git a/flystar/align.py b/flystar/align.py index ca9bc93..53db62f 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -1,10 +1,7 @@ import numpy as np -from . import match -from . import transforms -from . import plots +from . import match, transforms, plots, motion_model from .starlists import StarList from .startables import StarTable -from . import motion_model from astropy.table import Table, Column, vstack import datetime import copy @@ -411,7 +408,6 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar print(" **********") star_list = self.star_lists[ii] - pdb.set_trance() ref_list = self.get_ref_list_from_table(star_list['t'][0]) trans = self.trans_list[ii] @@ -880,9 +876,9 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): for mm in motion_model_col_names: if mm in self.ref_table.keys(): vals_orig[mm] = self.ref_table[mm][keep_orig] - fit_star_idxs = [idx for idx in range(len(self.ref_table)) if idx not in keep_orig] - else: - fit_star_idxs = None + # fit_star_idxs = [idx for idx in range(len(self.ref_table)) if idx not in keep_orig] + # else: + # fit_star_idxs = None # Figure out whether motion fits are necessary if ('motion_model_input' in self.ref_table.keys()) and np.all(self.ref_table['motion_model_input']=='Fixed'): @@ -2331,10 +2327,10 @@ def find_transform_new(table1_mat, table2_mat, if transInit != None: table1T_mat = table1_mat.copy() - table1T_mat = transform_by_object(table1T_mat, transInit) + table1T_mat = transform_from_object(table1T_mat, transInit) - x1e = table1T_mag['xe'] - y1e = table1T_mag['ye'] + x1e = table1T_mat['xe'] + y1e = table1T_mat['ye'] # Calculate weights as to user specification if weights == 'both': @@ -2419,8 +2415,7 @@ def write_transform(transform, starlist, reference, N_trans, deltaMag=0, restric Xcoeff = transform.px.parameters Ycoeff = transform.py.parameters else: - print(( '{0} not yet supported!'.format(transType))) - return + raise Exception(f'{trans_name} not yet supported!') # Write output _out = open(outFile, 'w') @@ -2437,7 +2432,7 @@ def write_transform(transform, starlist, reference, N_trans, deltaMag=0, restric _out.write('## N_trans: {0}\n'.format(N_trans)) _out.write('## Delta Mag: {0}\n'.format(deltaMag)) _out.write('{0:16s} {1:16s}\n'.format('# Xcoeff', 'Ycoeff')) - + # Write the coefficients such that the orders are together as defined in # documentation. This is a pain because PolyTransform output is weird. # (see astropy Polynomial2D documentation) @@ -2648,7 +2643,7 @@ def position_transform_from_object(x, y, xe, ye, transform): order = transform.order else: txt = 'Transform not yet supported by position_transform_from_object' - raise StandardError(txt) + raise Exception(txt) # How the transformation is applied depends on the type of transform. # This can be determined by the length of Xcoeff, Ycoeff @@ -2747,7 +2742,7 @@ def velocity_transform_from_object(x0, y0, x0e, y0e, vx, vy, vxe, vye, transform order = transform.order else: txt = 'Transform not yet supported by velocity_transform_from_object' - raise StandardError(txt) + raise Exception(txt) # How the transformation is applied depends on the type of transform. # This can be determined by the length of Xcoeff, Ycoeff @@ -2939,13 +2934,15 @@ def trans_initial_guess(ref_list, star_list, trans_args, mode='miracle', else: mref = ref_list['m0'] - N, x1m, y1m, m1m, x2m, y2m, m2m = match.miracle_match_briteN(star_list['x'], - star_list['y'], - star_list['m'], - xref, - yref, - mref, - briteN) + N, x1m, y1m, m1m, x2m, y2m, m2m = match.miracle_match_briteN( + star_list['x'], + star_list['y'], + star_list['m'], + xref, + yref, + mref, + briteN + ) err_msg = 'Failed to find more than '+str(n_req_match) err_msg += ' (only ' + str(len(x1m)) + ') matches, giving up.' @@ -3066,7 +3063,7 @@ def outlier_rejection_indices(star_list, ref_list, outlier_tol, verbose=True): """ # Optionally propogate the reference positions forward in time. xref, yref = get_pos_in_time(star_list['t'][0], ref_list) - + # Residuals x_resid_on_old_trans = star_list['x'] - xref y_resid_on_old_trans = star_list['y'] - yref diff --git a/flystar/analysis.py b/flystar/analysis.py index 81ab3f4..ab16f77 100644 --- a/flystar/analysis.py +++ b/flystar/analysis.py @@ -1,10 +1,6 @@ import numpy as np import pylab as plt -from flystar import starlists -from flystar import startables -from flystar import align -from flystar import match -from flystar import transforms +from . import starlists, match from astropy import table from astropy.table import Table, Column from astropy.coordinates import SkyCoord diff --git a/flystar/examples.py b/flystar/examples.py index 8059562..65723ec 100644 --- a/flystar/examples.py +++ b/flystar/examples.py @@ -1,11 +1,5 @@ -from flystar import transforms -from flystar import match -from flystar import align -from flystar import starlists -from flystar import plots import numpy as np -import copy -import pdb +from . import transforms, match, align, starlists, plots def align_example(labelFile, reference, transModel=transforms.four_paramNW, order=1, N_loop=2, @@ -83,7 +77,7 @@ def align_example(labelFile, reference, transModel=transforms.four_paramNW, orde trans, N_trans = align.find_transform(label[idx_label], label_trans[idx_label], - starlist_mat[idx_starlist], + starlist[idx_starlist], transModel=transModel, order=order, weights=weights) diff --git a/flystar/match.py b/flystar/match.py index d7c391e..9bda523 100644 --- a/flystar/match.py +++ b/flystar/match.py @@ -1,14 +1,10 @@ import numpy as np -from flystar import starlists, transforms, startables, align +from . import starlists, transforms, startables, align from collections import Counter from scipy.spatial import cKDTree as KDT -from astropy.table import Column, Table +from astropy.table import Column import itertools import copy -import scipy.signal -from scipy.spatial import distance -import math -import pdb def miracle_match_briteN(xin1, yin1, min1, xin2, yin2, min2, Nbrite, diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 42a5e54..e85d7a7 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -1098,7 +1098,7 @@ def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_ Parameters ---------- - motion_model_list : list + motion_model_list : list of MotionModels or str List of MotionModels with_errors : bool, optional Add uncertainty names with '_err' suffix or not, by default True @@ -1116,7 +1116,10 @@ def list_add(name): if name not in list_of_parameters: list_of_parameters.append(name) + mm_map = motion_model_map() for mm in motion_model_list: + if isinstance(mm, str): + mm = mm_map[mm] for param in mm.fit_param_names: # Fitter params list_add(param) @@ -1130,7 +1133,7 @@ def list_add(name): return list(list_of_parameters) -def get_all_motion_model_names(with_errors=True, with_fixed=True): +def get_all_motion_model_param_names(with_errors=True, with_fixed=True): return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) def motion_model_map(): diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 804d4e7..b0ee1b9 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -3,7 +3,6 @@ from flystar import motion_model from flystar.startables import StarTable from flystar.starlists import StarList -from flystar import motion_model import numpy as np import pytest import os diff --git a/flystar/transforms.py b/flystar/transforms.py index 6cc865a..8cb9525 100755 --- a/flystar/transforms.py +++ b/flystar/transforms.py @@ -5,8 +5,9 @@ from astropy.table import Table import collections import re -import pdb -from flystar import motion_model +import copy +import datetime +from . import motion_model class Transform2D(object): ''' @@ -220,7 +221,7 @@ def evaluate(self, x, y): yn = self.py[0] + self.py[1]*x + self.py[2]*y return xn, yn - def evaluate_error(self, x, y): + def evaluate_error(self, x, y, xe, ye): """ Transform positional uncertainties. @@ -245,7 +246,7 @@ def evaluate_error(self, x, y): """ xe_new = np.hypot(self.px[1] * xe, self.px[2] * ye) - xe_new = np.hpyot(self.px[1] * xe, self.px[2] * ye) + ye_new = np.hpyot(self.px[1] * xe, self.px[2] * ye) return xe_new, ye_new @@ -666,7 +667,7 @@ def from_file(cls, trans_file): return trans_obj - def to_file(self, trans_file): + def to_file(self, transform, outFile): """ Given a transformation object, write out the coefficients in a text file (readable by java align). Outfile name is specified by user. @@ -677,9 +678,9 @@ def to_file(self, trans_file): Parameters: ---------- - trans_file : str - The name of the output file to save the coefficients and meta data to. - This file can be read back in with + transform : PolyTransform + The transformation object containing the coefficients and meta data to save. + This object can be recreated with trans_obj = PolyTransfrom.from_file(trans_file). @@ -695,7 +696,7 @@ def to_file(self, trans_file): # Write output _out = open(outFile, 'w') - + # Write the header. DO NOT CHANGE, HARDCODED IN JAVA ALIGN _out.write('## Date: {0}\n'.format(datetime.date.today()) ) _out.write('## File: {0}, Reference: {1}\n'.format(starlist, reference) ) From f0e8884deb5ccbc68a897648f6f204ce1a57c453 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Tue, 16 Dec 2025 20:57:17 +0800 Subject: [PATCH 23/29] Fix bootstrap sampling strategy and 100% passed startable test --- flystar/motion_model.py | 10 ++++++++-- flystar/tests/test_startable.py | 4 ++-- 2 files changed, 10 insertions(+), 4 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 60c213b..11f6b16 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -136,8 +136,14 @@ def fit( edx = np.arange(n_obs, dtype=int) # Precompute All Bootstrap Draws at Once # Ensure there are enough unique points in each bootstrap sample - bdx_unique = rng.choice(edx, size=(bootstrap, self.n_params), replace=False) - bdx_extra = rng.choice(edx, size=(bootstrap, m - self.n_params), replace=True) + bdx_unique = np.stack([ + rng.choice(edx, size=self.n_params, replace=False) + for _ in range(bootstrap) + ]) + bdx_extra = np.stack([ + rng.choice(edx, size=self.n_params, replace=True) + for _ in range(bootstrap) + ]) bdx_all = np.hstack((bdx_unique, bdx_extra)) bb_params = [] diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 70ec18a..5580daf 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -340,7 +340,7 @@ def test_fit_motion_models(): vxe_orig = tab['vx_err'] x0e_orig = tab['x0_err'] tab.fit_motion_model(verbose=False, mask_value=-100000.) - + np.testing.assert_allclose(tab['vx'], vx_orig) np.testing.assert_allclose(tab['x0'], x0_orig) np.testing.assert_allclose(tab['vx_err'], vxe_orig) @@ -423,7 +423,7 @@ def test_fit_velocities_2epoch(): print(tab1.meta) np.testing.assert_almost_equal(tab_2['x0'][0], tab_2['x'][0,0], 1) np.testing.assert_equal(tab_2['n_fit'][0], 2) - + # 1 detection np.testing.assert_equal(tab_2['x0'][100], tab_2['x'][100, 0]) np.testing.assert_equal(tab_2['n_fit'][100], 1) From a1ff8f345ac5c661ca6aa9f4b6e3beb0e53e7a82 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Sat, 20 Dec 2025 15:24:37 +0800 Subject: [PATCH 24/29] Midway save of align --- flystar/align.py | 179 ++++++++++++++++++++++++------------ flystar/match.py | 2 +- flystar/motion_model.py | 59 ++---------- flystar/startables.py | 8 +- flystar/tests/test_align.py | 104 ++++++++++----------- flystar/transforms.py | 2 +- 6 files changed, 185 insertions(+), 169 deletions(-) diff --git a/flystar/align.py b/flystar/align.py index 53db62f..3a3160d 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -23,7 +23,7 @@ def __init__(self, list_of_starlists, ref_index=0, iters=2, calc_trans_inverse=False, init_guess_mode='miracle', iter_callback=None, motion_models=['Empty', 'Fixed'], - fixed_params_dict = None, + fixed_params_dict=None, use_scipy=True, absolute_sigma=False, save_path=None, @@ -301,7 +301,7 @@ def fit(self): # x_orig, y_orig, m_orig, (opt. errors) -- the transformed errors for the lists: 2D # w, w_orig (optiona) -- the input and output weights of stars in transform: 2D ########## - self.ref_table = self.setup_ref_table_from_starlist(self.star_lists[self.ref_index],motion_model_used='Fixed') + self.ref_table = self.setup_ref_table_from_starlist(self.star_lists[self.ref_index]) # Save the reference index to the meta data on the reference list. self.ref_table.meta['ref_list'] = self.ref_index @@ -423,11 +423,10 @@ def match_and_transform(self, ref_mag_lim, dr_tol, dm_tol, outlier_tol, trans_ar if trans is None: # Only use "use_in_trans" reference stars, even for initial guessing. keepers = np.where(ref_list['use_in_trans'] == True)[0] - trans = trans_initial_guess( - ref_list[keepers], - star_list_orig_trim, - self.trans_args[0], + ref_list[keepers], + star_list_orig_trim, + self.trans_args[0], mode=self.init_guess_mode, order=self.init_order, verbose=self.verbose, @@ -603,12 +602,12 @@ def setup_trans_info(self): # Add inverse trans list, if desired if self.calc_trans_inverse: - trans_list_inverse = [None for ii in range(N_lists)] + trans_list_inverse = [None] * N_lists self.trans_list_inverse = trans_list_inverse return - def setup_ref_table_from_starlist(self, star_list, motion_model_used=None): + def setup_ref_table_from_starlist(self, star_list): """ Start with the reference list.... this will change and grow over time, so make a copy that we will keep updating. @@ -616,7 +615,7 @@ def setup_ref_table_from_starlist(self, star_list, motion_model_used=None): array in the original reference star list. """ col_arrays = {} - motion_model_col_names = motion_model.get_all_motion_model_param_names(with_errors=True, with_fixed=True) + ['m0','m0_err','use_in_trans', 'motion_model_input', 'motion_model_used'] + motion_model_col_names = motion_model.motion_model_param_names(self.motion_models, with_errors=True, with_fixed=True) + ['m0','m0_err','use_in_trans', 'motion_model_input', 'motion_model_used'] for col_name in star_list.colnames: if col_name == 'name': # The "name" column will be 1D; but we will also add a "name_in_list" column. @@ -829,7 +828,12 @@ def update_ref_table_from_list(self, star_list, star_list_T, ii, idx_ref, idx_li self.ref_table['used_in_trans'][idx_ref_in_trans, ii] = True ### Add the unmatched stars and grow the size of the reference table. - self.ref_table, idx_lis_new, idx_ref_new = add_rows_for_new_stars(self.ref_table, star_list, idx_lis) + self.ref_table, idx_lis_new, idx_ref_new = add_rows_for_new_stars( + self.ref_table, + star_list, + idx_lis, + motion_model=self.motion_models[-1].name + ) if len(idx_ref_new) > 0: if self.verbose > 0: print(' Adding {0:d} new stars to the reference table.'.format(len(idx_ref_new))) @@ -862,7 +866,7 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): """ # Keep track of the original reference values. # In certain cases, we will NOT update these. - if keep_orig is not None: + if (keep_orig is not None) and (len(keep_orig) > 0): vals_orig = {} vals_orig['m0'] = self.ref_table['m0'][keep_orig] vals_orig['m0_err'] = self.ref_table['m0_err'][keep_orig] @@ -872,22 +876,41 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): if 'motion_model_used' in self.ref_table.keys(): motion_model_class_names += self.ref_table['motion_model_used'][keep_orig].tolist() vals_orig['motion_model_used'] = self.ref_table['motion_model_used'][keep_orig] - motion_model_col_names = motion_model.get_list_motion_model_param_names(motion_model_class_names, with_errors=True, with_fixed=True) + motion_model_col_names = motion_model.motion_model_param_names(motion_model_class_names, with_errors=True, with_fixed=True) for mm in motion_model_col_names: if mm in self.ref_table.keys(): vals_orig[mm] = self.ref_table[mm][keep_orig] - # fit_star_idxs = [idx for idx in range(len(self.ref_table)) if idx not in keep_orig] - # else: - # fit_star_idxs = None + fit_star_idxs = np.array([idx for idx in range(len(self.ref_table)) if idx not in keep_orig], dtype=int) + else: + fit_star_idxs = None # Figure out whether motion fits are necessary if ('motion_model_input' in self.ref_table.keys()) and np.all(self.ref_table['motion_model_input']=='Fixed'): weighted_xy = ('xe' in self.ref_table.colnames) and ('ye' in self.ref_table.colnames) weighted_m = ('me' in self.ref_table.colnames) self.ref_table.combine_lists_xym(weighted_xy=weighted_xy, weighted_m=weighted_m) + elif fit_star_idxs is None: + self.ref_table.fit_motion_model( + motion_models=self.motion_models, + fixed_params_dict=self.fixed_params_dict, + weighting=self.vel_weighting, + use_scipy=self.use_scipy, + absolute_sigma=self.absolute_sigma, + bootstrap=n_boot, + verbose=self.verbose + ) + # Combine (transformed) magnitudes + if 'me' in self.ref_table.colnames: + weights_col = None + else: + weights_col = 'me' + self.ref_table.combine_lists('m', weights_col=weights_col, ismag=True) + else: # Combine positions with a velocity fit. - self.ref_table.fit_motion_model( + update_ref_table = self.ref_table[fit_star_idxs] + keep_ref_table = self.ref_table[keep_orig] + update_ref_table.fit_motion_model( motion_models=self.motion_models, fixed_params_dict=self.fixed_params_dict, weighting=self.vel_weighting, @@ -897,14 +920,33 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): verbose=self.verbose ) + # Determine motion models for keep_ref_table + pdb.set_trace() + if 'motion_model_used' not in keep_ref_table.colnames: + all_mm_map = motion_model.motion_model_map() + mm_n_params = np.sort([mm.n_params for mm in self.motion_models]) + required_params = np.array([all_mm_map[mm_name].n_params for mm_name in keep_ref_table['motion_model_input']]) + mm_digitized = np.digitize( + x=np.minimum(np.array(keep_ref_table['n_detect']), required_params), + bins=mm_n_params + ) - 1 + keep_ref_table['motion_model_used'] = np.array([self.motion_models[d].name for d in mm_digitized]) + + # Merge back into the full ref_table + new_ref_table = vstack([keep_ref_table, update_ref_table]) + self.ref_table = new_ref_table.copy() + self.ref_table[keep_orig] = new_ref_table[0:len(keep_orig)] + self.ref_table[fit_star_idxs] = new_ref_table[len(keep_orig):] + # Combine (transformed) magnitudes if 'me' in self.ref_table.colnames: weights_col = None else: weights_col = 'me' self.ref_table.combine_lists('m', weights_col=weights_col, ismag=True) + # Replace the originals if we are supposed to keep them fixed. - if keep_orig is not None: + if (keep_orig is not None) and (len(keep_orig) > 0): for val in vals_orig.keys(): self.ref_table[val][keep_orig] = vals_orig[val] @@ -977,14 +1019,14 @@ def match_lists(self, dr_tol, dm_tol): star_list_T.transform_xym(self.trans_list[ii]) else: star_list_T.transform_xy(self.trans_list[ii]) - + xref, yref = infer_positions(star_list_T['t'][0], self.ref_table) mref = self.ref_table['m0'] idx_lis, idx_ref, dr, dm = match.match(star_list_T['x'], star_list_T['y'], star_list_T['m'], xref, yref, mref, dr_tol=dr_tol, dm_tol=dm_tol, verbose=self.verbose) - + if self.verbose > 0: fmt = 'Matched {0:5d} out of {1:5d} stars in list {2:2d} [dr = {3:7.4f} +/- {4:6.4f}, dm = {5:5.2f} +/- {6:4.2f}' print(fmt.format(len(idx_lis), len(star_list_T), ii, dr.mean(), dr.std(), dm.mean(), dm.std())) @@ -1012,7 +1054,6 @@ def get_ref_list_from_table(self, epoch): name = self.ref_table['name'] if ('motion_model_used' in self.ref_table.colnames): - print(f'{epoch=}, {epoch.shape=}') x, y, xe, ye = self.ref_table.infer_positions(epoch) else: # No velocities... just used average positions. @@ -1158,17 +1199,19 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot y2_boot_sum = np.zeros((len(ref_table['x']), n_epochs)) m_boot_sum = np.zeros((len(ref_table['x']), n_epochs)) m2_boot_sum = np.zeros((len(ref_table['x']), n_epochs)) - + # Set up motion model parameters if 'motion_model_used' in ref_table.keys(): motion_model_list = np.unique(ref_table['motion_model_used']).tolist() elif 'motion_model_input' in ref_table.keys(): motion_model_list = np.unique(ref_table['motion_model_input']).tolist() - all_mm_map = motion_model.motion_model_map() - motion_model_list = [all_mm_map[mm_name] for mm_name in motion_model_list] + if 'Empty' not in motion_model_list: + motion_model_list.append('Empty') + if 'Fixed' not in motion_model_list: + motion_model_list.append('Fixed') - motion_col_list = motion_model.get_list_motion_model_param_names(motion_model_list, with_errors=False, with_fixed=False) + motion_col_list = motion_model.motion_model_param_names(motion_model_list, with_errors=False, with_fixed=False) if calc_vel_in_bootstrap: motion_boot_sum = {} motion2_boot_sum = {} @@ -1177,7 +1220,8 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot motion2_boot_sum[col] = np.zeros((len(ref_table['x']))) all_mm_map = motion_model.motion_model_map() - motion_boot_min_epochs = np.max([all_mm_map[mm].n_params for mm in motion_model_list]) + motion_model_list = [all_mm_map[mm_name] for mm_name in motion_model_list] + motion_boot_min_epochs = np.max([mm.n_params for mm in motion_model_list]) ### IF MEMORY PROBLEMS HERE: ### DEFINE MEAN, STD VARIABLES AND BUILD THEM RATHER THAN SAVING FULL ARRAY @@ -1257,7 +1301,6 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot m=starlist_boot['m'], mref=ref_boot['m'], weights=weight, mag_trans=self.mag_trans) #print(jj) - #pdb.set_trace() # Apply transformation to *all* orig positions in this epoch. Need to make a new # FLYSTAR starlist object with the original positions for this. We don't @@ -1337,7 +1380,7 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot # Quick check to make sure bootstrap calc was valid: output t0 should be # same as input t0_arr, since we used fixed_t0 option - assert np.sum(abs(star_table['t0'] - t0_arr) == 0) + np.testing.assert_array_equal(star_table['t0'], t0_arr) #t3 = time.time() #print('=================================================') @@ -1376,7 +1419,19 @@ def calc_bootstrap_errors(self, n_boot=100, boot_epochs_min=-1, calc_vel_in_boot col[idx_good] = data_dict[ff] self.ref_table.add_column(col) - # Calculate chi^2 with bootstrap positional errors + # # Calculate chi^2 with bootstrap positional errors + # # Determine which motion model to use: + # motion_model_list = sorted(motion_model_list, key=lambda mm: mm.n_params) + # mm_n_params = np.sort([mm.n_params for mm in motion_model_list]) + + # required_params = [all_mm_map[mm_name].n_params for mm_name in self.ref_table['motion_model_input']] + # mm_digitized = np.digitize( + # x=np.minimum(np.array(self.ref_table['n_detect']), required_params), + # bins=mm_n_params + # ) - 1 + # self.ref_table['motion_model_used'] = np.array([motion_model_list[d].name for d in mm_digitized], dtype='U20') + + x_pred, y_pred, _, _ = self.ref_table.infer_positions(t_arr) xe_comb = np.hypot(self.ref_table['xe'], self.ref_table['xe_boot']) ye_comb = np.hypot(self.ref_table['ye'], self.ref_table['ye_boot']) @@ -1551,9 +1606,6 @@ def = None. If not None, then this should contain an array or list of transform iter_callback : None or function A function to call (that accepts a StarTable object and an iteration number) at the end of every iteration. This can be used for plotting or printing state. - - default_motion_model : string - Name of motion model to use for new or unassigned stars motion_models : list of str or MotionModel objects List of motion model names (strings) or MotionModel objects to use @@ -1702,7 +1754,6 @@ def fit(self): # ########## for nn in range(self.iters): - # If we are on subsequent iterations, remove matching results from the # prior iteration. This leaves aggregated (1D) columns alone. if nn > 0: @@ -1749,11 +1800,10 @@ def fit(self): print("**********") self.match_lists(self.dr_tol[-1], self.dm_tol[-1]) - keep_ref_orig = (self.update_ref_orig==False) - if keep_ref_orig: - keep_orig = np.where(self.ref_table['ref_orig'])[0] - else: + if self.update_ref_orig: keep_orig=None + else: + keep_orig = np.where(self.ref_table['ref_orig'])[0] self.update_ref_table_aggregates(keep_orig=keep_orig) ########## @@ -1804,7 +1854,7 @@ def get_all_epochs(t): return all_epochs -def setup_ref_table_from_starlist(star_list): +def setup_ref_table_from_starlist(star_list, motion_models): """ Start with the reference list.... this will change and grow over time, so make a copy that we will keep updating. @@ -1812,7 +1862,7 @@ def setup_ref_table_from_starlist(star_list): array in the original reference star list. """ col_arrays = {} - motion_model_col_names = motion_model.get_all_motion_model_param_names(with_errors=True) + motion_model_col_names = motion_model.motion_model_param_names(motion_models, with_errors=True) for col_name in star_list.colnames: if col_name == 'name': # The "name" column will be 1D; but we will also add a "name_in_list" column. @@ -1820,7 +1870,7 @@ def setup_ref_table_from_starlist(star_list): new_col_name = "name_in_list" else: new_col_name = col_name - + # Make every column's 2D arrays except "name" and those # columns used for the motion model. if col_name in motion_model_col_names: @@ -1856,7 +1906,7 @@ def setup_ref_table_from_starlist(star_list): if not new_cols_arr[ii] in ref_cols: # Some munging to convert data shape from (N,1) to (N,), # since these are all 1D cols - vals = np.transpose(np.array(ref_table[orig_cols_arr[ii]]))[0] + vals =np.array(ref_table[orig_cols_arr[ii]]).flatten() # Now add to ref_table new_col = Column(vals, name=new_cols_arr[ii]) @@ -1926,7 +1976,7 @@ def reset_ref_values(ref_table): return -def add_rows_for_new_stars(ref_table, star_list, idx_lis): +def add_rows_for_new_stars(ref_table, star_list, idx_lis, motion_model='Fixed'): """ For each star that is in star_list and NOT in idx_list, make a new row in the reference table. The values will be empty (None, NAN, etc.). @@ -1935,13 +1985,13 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis): ---------- ref_table : StarTable The reference table that the rows will be added to. - star_list : StarList The starlist that will be used to estimate how many new stars there are. - idx_lis : array or list The indices of the non-new stars (those that matched already). The complement of this array will be used as the new stars. + motion_model : str + The motion model to assign to the new stars. Returns ---------- @@ -1957,8 +2007,9 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis): idx_lis_orig = np.arange(len(star_list)) idx_lis_new = np.array(list(set(idx_lis_orig) - set(idx_lis))) + N_newstars = len(idx_lis_new) - if len(idx_lis_new) > 0: + if N_newstars > 0: col_arrays = {} for col_name in ref_table.colnames: @@ -1971,16 +2022,16 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis): elif ref_table[col_name].dtype == np.dtype('bool'): new_col_empty = False elif col_name=='motion_model_input': - new_col_empty = 'Empty' + new_col_empty = motion_model elif col_name=='motion_model_used': - new_col_empty = 'Empty' + new_col_empty = 'Fixed' else: new_col_empty = np.nan - + if len(ref_table[col_name].shape) == 1: - new_col_shape = len(idx_lis_new) + new_col_shape = N_newstars else: - new_col_shape = [len(idx_lis_new), ref_table[col_name].shape[1]] + new_col_shape = [N_newstars, ref_table[col_name].shape[1]] new_col_data = Column(data=np.tile(new_col_empty, new_col_shape), name=col_name, dtype=ref_table[col_name].dtype) @@ -2609,7 +2660,7 @@ def transform_from_object(starlist, transform): # For more complicated motion_models, # we can't easily transform them, set the values to nans and refit later. if mot: - motion_model_params = motion_model.get_all_motion_model_param_names() + motion_model_params = motion_model.motion_model_param_names() for param in motion_model_params: if param in keys: starlist_f[param] = np.nan @@ -2933,7 +2984,7 @@ def trans_initial_guess(ref_list, star_list, trans_args, mode='miracle', mref = ref_list['m'] else: mref = ref_list['m0'] - + N, x1m, y1m, m1m, x2m, y2m, m2m = match.miracle_match_briteN( star_list['x'], star_list['y'], @@ -2943,10 +2994,9 @@ def trans_initial_guess(ref_list, star_list, trans_args, mode='miracle', mref, briteN ) - - err_msg = 'Failed to find more than '+str(n_req_match) - err_msg += ' (only ' + str(len(x1m)) + ') matches, giving up.' - assert len(x1m) >= n_req_match, err_msg + + assert len(x1m) >= n_req_match, \ + f'Failed to find more than {n_req_match} (only {len(x1m)}) matches, giving up.' if verbose > 1: print('initial_guess: {0:d} stars matched between starlist and reference list'.format(N)) @@ -2965,12 +3015,12 @@ def trans_initial_guess(ref_list, star_list, trans_args, mode='miracle', trans.mag_offset = np.mean(m2m - m1m) else: trans.mag_offset = 0 - + if verbose > 1: print('init guess: ', trans.px.parameters, trans.py.parameters) warnings.filterwarnings('default', category=AstropyUserWarning) - + return trans @@ -3062,7 +3112,7 @@ def outlier_rejection_indices(star_list, ref_list, outlier_tol, verbose=True): The indicies of the stars to keep. """ # Optionally propogate the reference positions forward in time. - xref, yref = get_pos_in_time(star_list['t'][0], ref_list) + xref, yref = infer_positions(star_list['t'][0], ref_list) # Residuals x_resid_on_old_trans = star_list['x'] - xref @@ -3176,12 +3226,19 @@ def infer_positions(t, startable): to the desired epoch. If no motion/velocities exist, then just use ['x0', 'y0'] or ['x', 'y'] - Inputs + Parameters ---------- t_array : float The time to propogate to. Usually in decimal years; but it should be in the same units as the 't0' column in starlist. + startable : StarTable + Startable that needs to be inferred. + + Returns + ------- + x, y : tuple + Inferred position at time t """ # Check for motion model if 'motion_model_used' in startable.colnames: @@ -3201,10 +3258,10 @@ def infer_positions(t, startable): x = startable['x'] y = startable['y'] - return (x, y) + return x, y def logger(logfile, message, verbose = 9): if verbose > 4: print(message) logfile.write(message + '\n') - return + return \ No newline at end of file diff --git a/flystar/match.py b/flystar/match.py index 56710a9..f564cd3 100644 --- a/flystar/match.py +++ b/flystar/match.py @@ -1,5 +1,5 @@ import numpy as np -from . import starlists, transforms, startables, align +from . import starlists, transforms, startables from collections import Counter from scipy.spatial import cKDTree as KDT from astropy.table import Column diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 11f6b16..1ba2dcf 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -1065,53 +1065,13 @@ def validate_motion_models(motion_models, startable, default_motion_model): return motion_models -def get_one_motion_model_param_names(motion_model, with_errors=True, with_fixed=True): - """Get all the motion model parameters +def motion_model_param_names(motion_models, with_errors=True, with_fixed=True): + """Get the motion model parameter names from a list of MotionModels. Parameters ---------- - motion_model : MotionModel - MotionModel instance - with_errors : bool, optional - Add uncertainty names with '_err' suffix or not, by default True - with_fixed : bool, optional - Add fixed param names with '_fixed' suffix or not, by default True - - Returns - ------- - list - List of all parameter names for the motion model - """ - if isinstance(motion_model, str): - all_mm_map = motion_model_map() - motion_model = all_mm_map[motion_model] - - list_of_parameters = [] - - def list_add(name): - if name not in list_of_parameters: - list_of_parameters.append(name) - - for param in motion_model.fit_param_names: - # Fitter params - list_add(param) - # Error params - if with_errors: - list_add(param + '_err') - # Fixed params - if with_fixed: - for param in motion_model.fixed_param_names: - list_add(param) - return list_of_parameters - - -def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_fixed=True): - """Get all the motion model parameters - - Parameters - ---------- - motion_model_list : list of MotionModels or str - List of MotionModels + motion_models : MotionModel, str, or list of MotionModels/strings. + Motion model to query parameter names from. If str, should be the name of a MotionModel class. with_errors : bool, optional Add uncertainty names with '_err' suffix or not, by default True with_fixed : bool, optional @@ -1127,9 +1087,10 @@ def get_list_motion_model_param_names(motion_model_list, with_errors=True, with_ def list_add(name): if name not in list_of_parameters: list_of_parameters.append(name) - + + motion_models = np.atleast_1d(motion_models) mm_map = motion_model_map() - for mm in motion_model_list: + for mm in motion_models: if isinstance(mm, str): mm = mm_map[mm] for param in mm.fit_param_names: @@ -1142,11 +1103,11 @@ def list_add(name): if with_fixed: for param in mm.fixed_param_names: list_add(param) - return list(list_of_parameters) + return list_of_parameters -def get_all_motion_model_param_names(with_errors=True, with_fixed=True): - return get_list_motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) +def all_motion_model_param_names(with_errors=True, with_fixed=True): + return motion_model_param_names(MotionModel.__subclasses__(), with_errors=with_errors, with_fixed=with_fixed) def motion_model_map(): mm_map = dict( diff --git a/flystar/startables.py b/flystar/startables.py index bdcb880..861775e 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -730,7 +730,7 @@ def fit_motion_model( if 'motion_model_input' in self.colnames: # Determine which motion model to use based on motion_model_input column # If n_fit < required n_params for the input motion model, use the most complicated motion model with n_fit >= n_params - required_params = [all_mm_map[mm_name].n_params for mm_name in self['motion_model_input']] + required_params = np.array([all_mm_map[mm_name].n_params for mm_name in self['motion_model_input']]) mm_digitized = np.digitize( x=np.minimum(np.array(self['n_fit']), required_params), bins=mm_n_params @@ -751,7 +751,7 @@ def fit_motion_model( ############################ # Fill table with all possible motion model parameter names as new columns. motion_model_used = [all_mm_map[name] for name in np.unique(self['motion_model_used'])] - new_col_list = motion_model.get_list_motion_model_param_names(motion_model_used, with_errors=True, with_fixed=False) + new_col_list = motion_model.motion_model_param_names(motion_model_used, with_errors=True, with_fixed=False) new_col_list += ['chi2_x', 'chi2_y', 'n_params'] if 't0' not in new_col_list: @@ -810,9 +810,10 @@ def fit_motion_model( for unique_motion_model, unique_index in indices_by_motion_model.items(): # Create motion model instance motion_model_instance = input_mm_map[unique_motion_model]() + param_names = motion_model_instance.fit_param_names # Initialize arrays to store results n_stars_this_model = len(unique_index) - n_params = len(motion_model_instance.fit_param_names) + n_params = len(param_names) params_array = np.full((n_stars_this_model, n_params), fill_value, dtype=float) param_errs_array = np.full((n_stars_this_model, n_params), np.inf, dtype=float) @@ -843,7 +844,6 @@ def fit_motion_model( chi2_y_array[idx] = chi2_y # Store results back to the table - param_names = motion_model_instance.fit_param_names for j, param_name in enumerate(param_names): self[param_name][unique_index] = params_array[:, j] self[param_name + '_err'][unique_index] = param_errs_array[:, j] diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index cc4de2a..ea76ee8 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -259,12 +259,12 @@ def test_MosaicToRef(): # Also double check that they aren't exactly the same for the reference stars. assert np.not_equal(msc.ref_table['x0'], ref_list['x0']).all() assert np.not_equal(msc.ref_table['y0'], ref_list['y0']).all() - + return msc def test_MosaicToRef_p0_vel(): make_fake_starlists_poly0_vel(seed=42) - + ref_file = 'random_vel_ref.fits' list_files = ['random_vel_p0_0.fits', 'random_vel_p0_1.fits', @@ -286,7 +286,8 @@ def test_MosaicToRef_p0_vel(): # Switch our list to a "increasing to the West" list. ref_list['x0'] *= -1.0 ref_list['vx'] *= -1.0 - + ref_list['motion_model_used'] = 'Linear' + lists = [starlists.StarList.read(lf) for lf in list_files] msc = align.MosaicToRef(ref_list, lists, iters=2, @@ -391,7 +392,7 @@ def test_MosaicToRef_vel(): # Also double check that they aren't exactly the same for the reference stars. #assert np.any(np.not_equal(msc.ref_table['vx'], ref_list['vx'])) assert np.not_equal(msc.ref_table['vx'], ref_list['vx']).any() - + return msc def test_MosaicToRef_acc(): @@ -469,12 +470,13 @@ def test_MosaicToRef_acc(): if ~np.isnan(msc.ref_table['ax'][ix_fit]): i_orig.append(i) i_fit.append(ix_fit) - np.testing.assert_allclose(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig], rtol=1e-1) - np.testing.assert_allclose(msc.ref_table['ay'][i_fit], ref_list['ay'][i_orig], rtol=1e-1) + # Accelerations all too small, rtol doesn't work well here. + np.testing.assert_allclose(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig], atol=1e-3) + np.testing.assert_allclose(msc.ref_table['ay'][i_fit], ref_list['ay'][i_orig], atol=1e-3) # Also double check that they aren't exactly the same for the reference stars. - assert np.any(np.not_equal(msc.ref_table['ax'], ref_list['ax'])) - + assert np.any(np.not_equal(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig])) + return msc @@ -483,12 +485,12 @@ def make_fake_starlists_shifts(): x = np.random.rand(N_stars) * 1000 y = np.random.rand(N_stars) * 1000 m = (np.random.rand(N_stars) * 8) + 9 - + sdx = np.argsort(m) x = x[sdx] y = y[sdx] m = m[sdx] - + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] # Save original positions as reference (1st) list. @@ -1016,7 +1018,7 @@ def make_fake_starlists_poly1_par(seed=-1): return (xy_trans, mag_trans) - + def test_MosaicToRef_hst_me(): """ Test Casey's issue with 'me' not getting propogated @@ -1025,30 +1027,30 @@ def test_MosaicToRef_hst_me(): Use data from MB10-364 microlensing target for the test. """ # Target RA and Dec (MOA data download) - ra = '17:57:05.401' - dec = '-34:27:05.01' - + # ra = '17:57:05.401' + # dec = '-34:27:05.01' + # Load up a Gaia catalog (queried around the RA/Dec above) my_gaia = Table.read('mb10364_data/my_gaia.fits') my_gaia['me'] = 0.01 - + # Gather the list of starlists. For first pass, don't modify the starlists. # Loop through the observations and read them in, in prep for alignment with Gaia epochs = [2011.83, 2012.73, 2013.81] starlist_names = ['mb10364_data/2011_10_31_F606W_MATCHUP_XYMEEE_final.calib', 'mb10364_data/2012_09_25_F606W_MATCHUP_XYMEEE_final.calib', 'mb10364_data/2013_10_24_F606W_MATCHUP_XYMEEE_final.calib'] - + list_of_starlists = [] - + # Just using the F606W filters first. for ee in range(len(starlist_names)): lis = starlists.StarList.from_lis_file(starlist_names[ee]) - + # # Add additive error term. MAYBE YOU DON'T NEED THIS # lis['xe'] = np.hypot(lis['xe'], 0.01) # Adding 0.01 pix (0.1 mas) in quadrature. # lis['ye'] = np.hypot(lis['ye'], 0.01) - + lis['t'] = epochs[ee] # Lets dump the faint stars. @@ -1056,23 +1058,21 @@ def test_MosaicToRef_hst_me(): lis = lis[idx] list_of_starlists.append(lis) - + msc = align.MosaicToRef(my_gaia, list_of_starlists, iters=1, dr_tol=[0.1], dm_tol=[5], outlier_tol=[None], mag_lim=[13, 21], trans_class=transforms.PolyTransform, trans_args=[{'order': 1}], - default_motion_model='Fixed', + motion_models=['Empty', 'Fixed'], use_ref_new=False, update_ref_orig=False, mag_trans=False, - trans_weights='both,std', + trans_weighting='both,std', init_guess_mode='miracle', verbose=False) msc.fit() - tab = msc.ref_table - - assert 'me' in tab.colnames + assert 'me' in msc.ref_table.colnames return def test_bootstrap(): @@ -1099,7 +1099,7 @@ def test_bootstrap(): outlier_tol = None mag_lim = None ref_mag_lim = None - trans_weights = 'both,var' + trans_weighting = 'both,var' mag_trans = False n_boot = 15 @@ -1113,8 +1113,8 @@ def test_bootstrap(): mag_trans=mag_trans, mag_lim=mag_lim, ref_mag_lim=ref_mag_lim, - trans_weights=trans_weights, - default_motion_model='Linear', + trans_weighting=trans_weighting, + motion_models=['Linear'], use_ref_new=False, update_ref_orig=False, init_guess_mode='name', @@ -1134,7 +1134,6 @@ def test_bootstrap(): assert np.sum(np.isnan(match1.ref_table['ye_boot'])) == 0 assert np.sum(np.isnan(match1.ref_table['vx_err_boot'])) == 0 assert np.sum(np.isnan(match1.ref_table['vy_err_boot'])) == 0 - #pdb.set_trace() # Test 2: make sure boot_epochs_min is working # Eliminate some rows to list2, so some stars are only in 1 epoch. @@ -1148,8 +1147,8 @@ def test_bootstrap(): mag_trans=mag_trans, mag_lim=mag_lim, ref_mag_lim=ref_mag_lim, - trans_weights=trans_weights, - default_motion_model='Linear', + trans_weighting=trans_weighting, + motion_models=['Linear'], use_ref_new=False, update_ref_orig=False, init_guess_mode='name', @@ -1171,10 +1170,10 @@ def test_bootstrap(): assert len(good[0]) > 0 # For "good" stars: all bootstrap vals should be present - assert np.sum(np.isnan(out['xe_boot'][good])) == 0 - assert np.sum(np.isnan(out['ye_boot'][good])) == 0 - assert np.sum(np.isnan(out['vx_err_boot'][good])) == 0 - assert np.sum(np.isnan(out['vy_err_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['xe_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['ye_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['vx_err_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['vy_err_boot'][good])) == 0 # For "bad" stars, all bootstrap vals should be nans assert np.sum(np.isfinite(out['xe_boot'][bad])) == 0 @@ -1193,7 +1192,7 @@ def test_calc_vel_in_bootstrap(): """ import copy - + # Define match parameters ref = Table.read('ref_vel.lis', format='ascii') @@ -1212,7 +1211,7 @@ def test_calc_vel_in_bootstrap(): outlier_tol = None mag_lim = None ref_mag_lim = None - trans_weights = 'both,var' + trans_weighting = 'both,var' mag_trans = False n_boot = 15 @@ -1226,8 +1225,8 @@ def test_calc_vel_in_bootstrap(): mag_trans=mag_trans, mag_lim=mag_lim, ref_mag_lim=ref_mag_lim, - trans_weights=trans_weights, - default_motion_model='Linear', + trans_weighting=trans_weighting, + motion_models=['Linear'], use_ref_new=False, update_ref_orig=False, init_guess_mode='name', @@ -1280,7 +1279,7 @@ def test_transform_xym(): outlier_tol = None mag_lim = None ref_mag_lim = None - trans_weights = 'both,var' + trans_weighting = 'both,var' n_boot = 15 mag_trans = False @@ -1293,8 +1292,8 @@ def test_transform_xym(): mag_trans=mag_trans, mag_lim=mag_lim, ref_mag_lim=ref_mag_lim, - trans_weights=trans_weights, - default_motion_model='Fixed', + trans_weighting=trans_weighting, + motion_models=['Fixed'], use_ref_new=False, update_ref_orig=False, init_guess_mode='name', @@ -1328,7 +1327,7 @@ def test_transform_xym(): mag_trans=mag_trans, mag_lim=mag_lim, ref_mag_lim=ref_mag_lim, - trans_weights=trans_weights, + trans_weighting=trans_weighting, default_motion_model='Fixed', use_ref_new=False, update_ref_orig=False, @@ -1372,7 +1371,7 @@ def test_MosaicToRef_mag_bug(): outlier_tol=None, trans_class=transforms.PolyTransform, trans_args=[{'order': 1}], - default_motion_model='Fixed', + motion_models=['Fixed'], use_ref_new=False, update_ref_orig=False, verbose=True) @@ -1400,15 +1399,16 @@ def test_masked_cols(): """ # Get gaia reference stars using analysis.py # around a test location. - target = 'ob150029' + # target = 'ob150029' ra = '17:59:46.60' dec = '-28:38:41.8' # Coordinates are arcsecs offset +x to the East. - targets_dict = {'ob150029': [0.0, 0.0], - 'S005': [1.1416, 3.7405], - 'S002': [-4.421, 0.027] - } + targets_dict = { + 'ob150029': [0.0, 0.0], + 'S005': [1.1416, 3.7405], + 'S002': [-4.421, 0.027] + } # Get gaia catalog stars. Note that this produces a masked column table search_rad = 10.0 # arcsec @@ -1418,7 +1418,7 @@ def test_masked_cols(): assert isinstance(my_gaia, Table) # Let's make sure the entire align runs, just to be safe - + # Get starlists to align to gaia epochs = ['15jun07','16jul14', '17may21'] @@ -1427,7 +1427,6 @@ def test_masked_cols(): for ee in range(len(epochs)): lis_file = 'mag' + epochs[ee] + '_ob150029_kp_rms_named.lis' lis = starlists.StarList.from_lis_file(lis_file) - list_of_starlists.append(lis) # Run the align @@ -1435,12 +1434,11 @@ def test_masked_cols(): dr_tol=[0.2, 0.1], dm_tol=[1, 1], trans_class=transforms.PolyTransform, trans_args=[{'order': 1}, {'order': 1}], - default_motion_model='Linear', + motion_models=['Linear'], use_ref_new=False, update_ref_orig=False, mag_trans=True, init_guess_mode='name', verbose=True) msc.fit() - return diff --git a/flystar/transforms.py b/flystar/transforms.py index 8cb9525..968ccfa 100755 --- a/flystar/transforms.py +++ b/flystar/transforms.py @@ -127,7 +127,7 @@ def evaluate_starlist(self, star_list): complex_motion_model=False # Cannot transform more complex motion models - set values to nan if complex_motion_model: - motion_params = motion_model.get_list_motion_model_param_names(new_list['motion_model_input'], with_errors=True, with_fixed=False) + motion_params = motion_model.motion_model_param_names(new_list['motion_model_input'], with_errors=True, with_fixed=False) for param in motion_params: if param in new_list.colnames: new_list[param] = np.nan From 04fd8eae9b72e1e9d75c006517db0ca3573e6caf Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Sat, 20 Dec 2025 18:46:35 +0800 Subject: [PATCH 25/29] Add select_stars functionality in fit_motion_model --- flystar/align.py | 48 ++++++------------------------------- flystar/startables.py | 17 +++++++++++-- flystar/tests/test_align.py | 1 - 3 files changed, 22 insertions(+), 44 deletions(-) diff --git a/flystar/align.py b/flystar/align.py index 3a3160d..b4c03c4 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -834,6 +834,7 @@ def update_ref_table_from_list(self, star_list, star_list_T, ii, idx_ref, idx_li idx_lis, motion_model=self.motion_models[-1].name ) + pdb.set_trace() if len(idx_ref_new) > 0: if self.verbose > 0: print(' Adding {0:d} new stars to the reference table.'.format(len(idx_ref_new))) @@ -889,55 +890,19 @@ def update_ref_table_aggregates(self, keep_orig=None, n_boot=0): weighted_xy = ('xe' in self.ref_table.colnames) and ('ye' in self.ref_table.colnames) weighted_m = ('me' in self.ref_table.colnames) self.ref_table.combine_lists_xym(weighted_xy=weighted_xy, weighted_m=weighted_m) - elif fit_star_idxs is None: - self.ref_table.fit_motion_model( - motion_models=self.motion_models, - fixed_params_dict=self.fixed_params_dict, - weighting=self.vel_weighting, - use_scipy=self.use_scipy, - absolute_sigma=self.absolute_sigma, - bootstrap=n_boot, - verbose=self.verbose - ) - # Combine (transformed) magnitudes - if 'me' in self.ref_table.colnames: - weights_col = None - else: - weights_col = 'me' - self.ref_table.combine_lists('m', weights_col=weights_col, ismag=True) else: - # Combine positions with a velocity fit. - update_ref_table = self.ref_table[fit_star_idxs] - keep_ref_table = self.ref_table[keep_orig] - update_ref_table.fit_motion_model( + self.ref_table.fit_motion_model( motion_models=self.motion_models, fixed_params_dict=self.fixed_params_dict, weighting=self.vel_weighting, use_scipy=self.use_scipy, absolute_sigma=self.absolute_sigma, + select_stars=fit_star_idxs, bootstrap=n_boot, verbose=self.verbose ) - # Determine motion models for keep_ref_table - pdb.set_trace() - if 'motion_model_used' not in keep_ref_table.colnames: - all_mm_map = motion_model.motion_model_map() - mm_n_params = np.sort([mm.n_params for mm in self.motion_models]) - required_params = np.array([all_mm_map[mm_name].n_params for mm_name in keep_ref_table['motion_model_input']]) - mm_digitized = np.digitize( - x=np.minimum(np.array(keep_ref_table['n_detect']), required_params), - bins=mm_n_params - ) - 1 - keep_ref_table['motion_model_used'] = np.array([self.motion_models[d].name for d in mm_digitized]) - - # Merge back into the full ref_table - new_ref_table = vstack([keep_ref_table, update_ref_table]) - self.ref_table = new_ref_table.copy() - self.ref_table[keep_orig] = new_ref_table[0:len(keep_orig)] - self.ref_table[fit_star_idxs] = new_ref_table[len(keep_orig):] - # Combine (transformed) magnitudes if 'me' in self.ref_table.colnames: weights_col = None @@ -1949,6 +1914,7 @@ def copy_over_values(ref_table, star_list, star_list_T, idx_epoch, idx_ref, idx_ The indices into the star_list or star_list_T where values are copied from. """ for col_name in ref_table.colnames: + if col_name=='x': pdb.set_trace() if col_name in star_list_T.colnames: if col_name == 'name': ref_table['name_in_list'][idx_ref, idx_epoch] = star_list_T[col_name][list(idx_lis)] @@ -1976,7 +1942,7 @@ def reset_ref_values(ref_table): return -def add_rows_for_new_stars(ref_table, star_list, idx_lis, motion_model='Fixed'): +def add_rows_for_new_stars(ref_table, star_list, idx_list, motion_model='Fixed'): """ For each star that is in star_list and NOT in idx_list, make a new row in the reference table. The values will be empty (None, NAN, etc.). @@ -1987,7 +1953,7 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis, motion_model='Fixed'): The reference table that the rows will be added to. star_list : StarList The starlist that will be used to estimate how many new stars there are. - idx_lis : array or list + idx_list : array or list The indices of the non-new stars (those that matched already). The complement of this array will be used as the new stars. motion_model : str @@ -2006,7 +1972,7 @@ def add_rows_for_new_stars(ref_table, star_list, idx_lis, motion_model='Fixed'): last_star_idx = len(ref_table) idx_lis_orig = np.arange(len(star_list)) - idx_lis_new = np.array(list(set(idx_lis_orig) - set(idx_lis))) + idx_lis_new = np.array(list(set(idx_lis_orig) - set(idx_list))) N_newstars = len(idx_lis_new) if N_newstars > 0: diff --git a/flystar/startables.py b/flystar/startables.py index 861775e..25e15dd 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -539,6 +539,7 @@ def fit_motion_model( weighting='var', use_scipy=False, absolute_sigma=True, + select_stars=None, bootstrap=0, verbose=True, mask_value=None, @@ -573,6 +574,8 @@ def fit_motion_model( Use scipy.optimize.curve_fit or algebraic solution (for Linear model only), by default False absolute_sigma : bool, optional Use absolute sigma or not, see scipy curve_fit for details, by default True + select_stars : list of int, optional + Indices of stars to fit, by default None (fit all stars) bootstrap : int, optional Number of bootstrap for uncertainty resampling, by default 0 verbose : bool, optional @@ -757,8 +760,11 @@ def fit_motion_model( if 't0' not in new_col_list: new_col_list.append('t0') - # Replace old columns if they exist + # Add new columns if they do not exist for col in new_col_list: + if col in self.colnames: + # Keep old data if the column already exists + continue if col.endswith('_err'): self.add_column( Column(data=np.full(N_stars, np.inf, dtype=float), name=col), @@ -804,7 +810,14 @@ def fit_motion_model( ######### FITTING ######### ########################### unique_motion_models, unique_inv_indices = np.unique(self['motion_model_used'], return_inverse=True) - indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} + if select_stars is not None: + select_stars = np.asarray(select_stars) + if select_stars.dtype == bool: + select_stars = np.flatnonzero(select_stars) + indices_by_motion_model = {key: np.intersect1d(select_stars, np.flatnonzero(unique_inv_indices == k)) for k, key in enumerate(unique_motion_models)} + else: + indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} + # Expensive for loop! Prepare everything beforehand to speed up. for unique_motion_model, unique_index in indices_by_motion_model.items(): diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index ea76ee8..3e55e2c 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -286,7 +286,6 @@ def test_MosaicToRef_p0_vel(): # Switch our list to a "increasing to the West" list. ref_list['x0'] *= -1.0 ref_list['vx'] *= -1.0 - ref_list['motion_model_used'] = 'Linear' lists = [starlists.StarList.read(lf) for lf in list_files] From 87d7cc444f6cff384e7ce52cb987e9b4b187b430 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Sun, 21 Dec 2025 11:57:30 +0800 Subject: [PATCH 26/29] Passed all tests! --- flystar/align.py | 24 +- flystar/analysis.py | 2 +- flystar/startables.py | 14 +- flystar/tests/test_align.ipynb | 366 ------- flystar/tests/test_align.py | 1588 ++++++++++++++++--------------- flystar/tests/test_startable.py | 2 +- 6 files changed, 829 insertions(+), 1167 deletions(-) delete mode 100644 flystar/tests/test_align.ipynb diff --git a/flystar/align.py b/flystar/align.py index b4c03c4..2820ae5 100755 --- a/flystar/align.py +++ b/flystar/align.py @@ -616,6 +616,8 @@ def setup_ref_table_from_starlist(self, star_list): """ col_arrays = {} motion_model_col_names = motion_model.motion_model_param_names(self.motion_models, with_errors=True, with_fixed=True) + ['m0','m0_err','use_in_trans', 'motion_model_input', 'motion_model_used'] + if 't0' not in motion_model_col_names: + motion_model_col_names.insert(0, 't0') for col_name in star_list.colnames: if col_name == 'name': # The "name" column will be 1D; but we will also add a "name_in_list" column. @@ -657,7 +659,7 @@ def setup_ref_table_from_starlist(self, star_list): if not new_cols_arr[ii] in ref_cols: # Some munging to convert data shape from (N,1) to (N,), # since these are all 1D cols - vals = np.transpose(np.array(ref_table[orig_cols_arr[ii]]))[0] + vals = np.array(ref_table[orig_cols_arr[ii]]).flatten() # Now add to ref_table new_col = Column(vals, name=new_cols_arr[ii]) @@ -717,11 +719,14 @@ def setup_ref_table_from_starlist(self, star_list): if 'motion_model_input' not in ref_table.colnames: ref_table.add_column(Column(np.repeat(self.motion_models[-1].name, len(ref_table)), name='motion_model_input')) - # if 'motion_model_used' not in ref_table.colnames: - # if motion_model_used is None: - # ref_table.add_column(Column(np.repeat(self.default_motion_model, len(ref_table)), name='motion_model_used')) - # else: - # ref_table.add_column(Column(np.repeat(motion_model_used, len(ref_table)), name='motion_model_used')) + if 'motion_model_used' not in ref_table.colnames: + # Order self.motion_models by decreasing n_params + sorted_mms = sorted(self.motion_models, key=lambda mm: mm.n_params, reverse=True) + # Save the most complex motion model that can infer the positions with the existing columns. + for mm in sorted_mms: + if all([_ in ref_table.colnames for _ in mm.fit_param_names]) and all([_ in ref_table.colnames for _ in mm.fixed_param_names]): + ref_table.add_column(Column(np.repeat(mm.name, len(ref_table)), name='motion_model_used')) + break return ref_table @@ -834,7 +839,7 @@ def update_ref_table_from_list(self, star_list, star_list_T, ii, idx_ref, idx_li idx_lis, motion_model=self.motion_models[-1].name ) - pdb.set_trace() + if len(idx_ref_new) > 0: if self.verbose > 0: print(' Adding {0:d} new stars to the reference table.'.format(len(idx_ref_new))) @@ -1880,10 +1885,10 @@ def setup_ref_table_from_starlist(star_list, motion_models): if 'use_in_trans' not in ref_table.colnames: new_col = Column(np.ones(len(ref_table), dtype=bool), name='use_in_trans') ref_table.add_column(new_col) - + # Now reset the original values to invalids... they will be filled in # at later times. Preserve content only in the columns: name, x0, y0, m0 (and 0e). - # Note that these are all the 1D columsn. + # Note that these are all the 1D columns. for col_name in ref_table.colnames: if len(ref_table[col_name].data.shape) == 2: # Find the 2D columns ref_table._set_invalid_list_values(col_name, -1) @@ -1914,7 +1919,6 @@ def copy_over_values(ref_table, star_list, star_list_T, idx_epoch, idx_ref, idx_ The indices into the star_list or star_list_T where values are copied from. """ for col_name in ref_table.colnames: - if col_name=='x': pdb.set_trace() if col_name in star_list_T.colnames: if col_name == 'name': ref_table['name_in_list'][idx_ref, idx_epoch] = star_list_T[col_name][list(idx_lis)] diff --git a/flystar/analysis.py b/flystar/analysis.py index f502375..ceca739 100644 --- a/flystar/analysis.py +++ b/flystar/analysis.py @@ -44,7 +44,7 @@ def query_gaia(ra, dec, search_radius=30.0, table_name='gaiadr3'): search_radius *= u.arcsec Gaia.ROW_LIMIT = 50000 - gaia_job = Gaia.cone_search_async(target_coords, search_radius, table_name = table_name + '.gaia_source') + gaia_job = Gaia.cone_search_async(target_coords, radius=search_radius, table_name=table_name + '.gaia_source') gaia = gaia_job.get_results() #Change new 'SOURCE_ID' column header back to lowercase 'source_id' so all subsequent functions still work: diff --git a/flystar/startables.py b/flystar/startables.py index 25e15dd..3de41cc 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -602,19 +602,19 @@ def fit_motion_model( ####### Check Params ###### ########################### if weighting not in ['var', 'std']: - raise ValueError(f"fit_velocities: Weighting must either be 'var' or 'std', not {weighting}!") + raise ValueError(f"fit_motion_model: Weighting must either be 'var' or 'std', not {weighting}!") if ('t' not in self.colnames) and ('list_times' not in self.meta): - raise KeyError("fit_velocities: Failed to access time values. No 't' column in table, no 'list_times' in meta.") + raise KeyError("fit_motion_model: Failed to access time values. No 't' column in table, no 'list_times' in meta.") # Check if we have the required columns if not all([_ in self.colnames for _ in ['x', 'y']]): - raise KeyError(f"fit_velocities: Missing required columns in the table: {', '.join(['x', 'y'])}!") + raise KeyError(f"fit_motion_model: Missing required columns in the table: {', '.join(['x', 'y'])}!") # Check fixed_params_dict is a dict if fixed_params_dict is not None: if not isinstance(fixed_params_dict, dict): - raise ValueError("fit_velocities: fixed_params_dict must be a dictionary!") + raise ValueError("fit_motion_model: fixed_params_dict must be a dictionary!") # Convert motion_models to MotionModel objects if they are strings: all_mm_map = motion_model.motion_model_map() @@ -635,7 +635,7 @@ def fit_motion_model( if 'motion_model_input' in self.colnames: input_mm_names = np.unique(self['motion_model_input']) assert all([name in all_mm_map.keys() for name in input_mm_names]), \ - f"fit_velocities: Unknown motion model name(s) in 'motion_model_input' column. Available motion models are: {', '.join(all_mm_map.keys())}." + f"fit_motion_model: Unknown motion model name(s) in 'motion_model_input' column. Available motion models are: {', '.join(all_mm_map.keys())}." for mm_name in input_mm_names: if mm_name not in mm_names: motion_models.append(all_mm_map[mm_name]) @@ -649,7 +649,7 @@ def fit_motion_model( if 'motion_model_input' not in self.colnames: # If motion_model_input column is not provided, assert that motion model n_params are unique and sorted # Otherwise the fitter does not know which motion model to use based on n_obs - assert len(mm_n_params) == len(set(mm_n_params)), "fit_velocities: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs. Please provide unique motion_models or a 'motion_model_input' column." + assert len(mm_n_params) == len(set(mm_n_params)), "fit_motion_model: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs. Please provide unique motion_models or a 'motion_model_input' column." ########################### @@ -814,6 +814,8 @@ def fit_motion_model( select_stars = np.asarray(select_stars) if select_stars.dtype == bool: select_stars = np.flatnonzero(select_stars) + else: + select_stars = np.asarray(select_stars, dtype=int) indices_by_motion_model = {key: np.intersect1d(select_stars, np.flatnonzero(unique_inv_indices == k)) for k, key in enumerate(unique_motion_models)} else: indices_by_motion_model = {key: np.flatnonzero(unique_inv_indices == k) for k, key in enumerate(unique_motion_models)} diff --git a/flystar/tests/test_align.ipynb b/flystar/tests/test_align.ipynb deleted file mode 100644 index 02442b9..0000000 --- a/flystar/tests/test_align.ipynb +++ /dev/null @@ -1,366 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Notebook for Running Align Tests" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from flystar.tests import test_align\n", - "from flystar import starlists\n", - "from astropy.table import Table" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test: make_fake_starlists_poly1_vel\n", - "\n", - "Just make sure the tables look sensible and are in the right units." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " name m0 m0e ... vye t0 \n", - "-------- ----------------- -------------------- ... ------------------- ------\n", - "star_155 9.106905292995506 0.054167528156861204 ... 0.1564397531527286 2019.5\n", - "star_113 9.153031462110043 0.0421090989942197 ... 0.08128628950126615 2019.5\n", - "star_077 9.16547870263162 0.02021147759307802 ... 0.05907352582911862 2019.5\n", - "star_069 9.169817788300977 0.027788213230369625 ... 0.04965351499764548 2019.5\n", - "star_037 9.173200786855755 0.007665400875860144 ... 0.22723357600795704 2019.5\n", - " name m me ... ye t \n", - "-------- ----------------- -------------------- ... -------------------- ------\n", - "star_155 9.198437965086988 0.054167528156861204 ... 0.02649499466969545 2018.5\n", - "star_113 9.257333243243941 0.0421090989942197 ... 0.02606700846524875 2018.5\n", - "star_077 9.252158908537464 0.02021147759307802 ... 0.04250920654497108 2018.5\n", - "star_069 9.267901667333167 0.027788213230369625 ... 0.042689240225924296 2018.5\n", - "star_037 9.276780126418494 0.007665400875860144 ... 0.03592203011554212 2018.5\n", - " name m me ... ye t \n", - "-------- ----------------- -------------------- ... -------------------- ------\n", - "star_155 9.478887659623185 0.054167528156861204 ... 0.02649499466969545 2019.5\n", - "star_113 9.569878576042546 0.0421090989942197 ... 0.02606700846524875 2019.5\n", - "star_077 9.575998150724095 0.02021147759307802 ... 0.04250920654497108 2019.5\n", - "star_069 9.593581807234129 0.027788213230369625 ... 0.042689240225924296 2019.5\n", - "star_037 9.553127108740597 0.007665400875860144 ... 0.03592203011554212 2019.5\n", - "['name', 'm0', 'm0e', 'x0', 'x0e', 'y0', 'y0e', 'vx', 'vxe', 'vy', 'vye', 't0']\n", - "['name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't']\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jlu/code/python/flystar/flystar/starlists.py:386: UserWarning: The StarList class requires a arguments('name', 'x', 'y', 'm')\n", - " warnings.warn(err_msg, UserWarning)\n" - ] - } - ], - "source": [ - "test_align.make_fake_starlists_poly1_vel()\n", - "\n", - "ref = Table.read('random_vel_ref.fits')\n", - "lis0 = Table.read('random_vel_0.fits')\n", - "lis1 = Table.read('random_vel_1.fits')\n", - "\n", - "print(ref[0:5])\n", - "print(lis0[0:5])\n", - "print(lis1[0:5])\n", - "\n", - "print(ref.colnames)\n", - "print(lis0.colnames)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## test_align_vel\n", - "\n", - "Make sure it runs, make some plots along the way, etc." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jlu/code/python/flystar/flystar/starlists.py:386: UserWarning: The StarList class requires a arguments('name', 'x', 'y', 'm')\n", - " warnings.warn(err_msg, UserWarning)\n", - "/Users/jlu/code/python/flystar/flystar/starlists.py:386: UserWarning: The StarList class requires a arguments('name', 'x', 'y', 'm')\n", - " warnings.warn(err_msg, UserWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " \n", - "**********\n", - "**********\n", - "Starting iter 0 with ref_table shape: (200, 1)\n", - "**********\n", - "**********\n", - " \n", - " **********\n", - " Matching catalog 1 / 4 in iteration 0 with 200 stars\n", - " **********\n", - "initial_guess: 50 stars matched between starlist and reference list\n", - "initial_guess: [-6.05144456e+00 1.01098279e+00 -2.50608887e-04] [-1.07161761e+01 4.89226304e-05 1.01096529e+00]\n", - " Found 0 duplicates out of 196 matches\n", - "In Loop 0 found 196 matches\n", - " Found 0 duplicates out of 196 matches\n", - " \n", - " **********\n", - " Matching catalog 2 / 4 in iteration 0 with 200 stars\n", - " **********\n", - "initial_guess: 49 stars matched between starlist and reference list\n", - "initial_guess: [-1.02158015e+02 1.02080743e+00 -1.45081519e-04] [-5.07779471e+01 -2.60729494e-05 9.99423500e-01]\n", - " Found 0 duplicates out of 200 matches\n", - "In Loop 0 found 200 matches\n", - " Found 0 duplicates out of 200 matches\n", - " \n", - " **********\n", - " Matching catalog 3 / 4 in iteration 0 with 200 stars\n", - " **********\n", - "initial_guess: 50 stars matched between starlist and reference list\n", - "initial_guess: [-2.14220566e-10 1.00000000e+00 -2.24089697e-16] [2.50622339e-10 0.00000000e+00 1.00000000e+00]\n", - " Found 0 duplicates out of 200 matches\n", - "In Loop 0 found 200 matches\n", - " Found 0 duplicates out of 200 matches\n", - " \n", - " **********\n", - " Matching catalog 4 / 4 in iteration 0 with 200 stars\n", - " **********\n", - "initial_guess: 50 stars matched between starlist and reference list\n", - "initial_guess: [-2.57803428e+02 1.03052409e+00 -5.28390832e-05] [ 2.49886631e+02 -6.00884405e-05 9.98642952e-01]\n", - " Found 0 duplicates out of 200 matches\n", - "In Loop 0 found 200 matches\n", - " Found 0 duplicates out of 200 matches\n", - " \n", - "**********\n", - "**********\n", - "Starting iter 1 with ref_table shape: (204, 4)\n", - "**********\n", - "**********\n", - " \n", - " **********\n", - " Matching catalog 1 / 4 in iteration 1 with 200 stars\n", - " **********\n", - " Found 0 duplicates out of 199 matches\n", - "In Loop 1 found 199 matches\n", - " Found 0 duplicates out of 199 matches\n", - " \n", - " **********\n", - " Matching catalog 2 / 4 in iteration 1 with 200 stars\n", - " **********\n", - " Found 0 duplicates out of 198 matches\n", - "In Loop 1 found 198 matches\n", - " Found 0 duplicates out of 199 matches\n", - " \n", - " **********\n", - " Matching catalog 3 / 4 in iteration 1 with 200 stars\n", - " **********\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jlu/code/python/flystar/flystar/starlists.py:386: UserWarning: The StarList class requires a arguments('name', 'x', 'y', 'm')\n", - " warnings.warn(err_msg, UserWarning)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Found 0 duplicates out of 200 matches\n", - "In Loop 1 found 200 matches\n", - " Found 0 duplicates out of 200 matches\n", - " \n", - " **********\n", - " Matching catalog 4 / 4 in iteration 1 with 200 stars\n", - " **********\n", - " Found 0 duplicates out of 200 matches\n", - "In Loop 1 found 200 matches\n", - " Found 0 duplicates out of 200 matches\n", - "**********\n", - "Final Matching\n", - "**********\n", - " Found 0 duplicates out of 199 matches\n", - "Matched 199 out of 200 stars in list 0\n", - " Found 0 duplicates out of 199 matches\n", - "Matched 199 out of 200 stars in list 1\n", - " Found 0 duplicates out of 200 matches\n", - "Matched 200 out of 200 stars in list 2\n", - " Found 0 duplicates out of 199 matches\n", - "Matched 199 out of 200 stars in list 3\n", - "\n", - " Preparing the reference table...\n" - ] - } - ], - "source": [ - "test_align.test_mosaic_lists_vel()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> /Users/jlu/code/python/flystar/flystar/align.py(3244)apply_mag_lim()\n", - "-> star_list_T.restrict_by_value(**conditions)\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) conditions\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'m0_min': None, 'm0_max': None}\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) type(star_list_T)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) type(ref_list)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "*** NameError: name 'ref_list' is not defined\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) ref_list\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "*** NameError: name 'ref_list' is not defined\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) u\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> /Users/jlu/code/python/flystar/flystar/align.py(991)mosaic_lists()\n", - "-> ref_list_T = apply_mag_lim(ref_list, mag_lim[ref_index])\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) type(ref_list)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdin", - "output_type": "stream", - "text": [ - "(Pdb) q\n" - ] - } - ], - "source": [ - "import pdb\n", - "pdb.pm()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index 3e55e2c..080ded3 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -470,442 +470,510 @@ def test_MosaicToRef_acc(): i_orig.append(i) i_fit.append(ix_fit) # Accelerations all too small, rtol doesn't work well here. - np.testing.assert_allclose(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig], atol=1e-3) - np.testing.assert_allclose(msc.ref_table['ay'][i_fit], ref_list['ay'][i_orig], atol=1e-3) + atol = 3e-4 + np.testing.assert_allclose(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig], atol=atol) + np.testing.assert_allclose(msc.ref_table['ay'][i_fit], ref_list['ay'][i_orig], atol=atol) + + ax_min = np.min(ref_list['ax'][i_orig]) + ax_max = np.max(ref_list['ax'][i_orig]) + ay_min = np.min(ref_list['ay'][i_orig]) + ay_max = np.max(ref_list['ay'][i_orig]) + fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) + ax1.plot(ref_list['ax'][i_orig], msc.ref_table['ax'][i_fit], '.') + ax1.plot([ax_min, ax_max], [ax_min, ax_max], color='C3') + ax1.plot([ax_min, ax_max], [ax_min - atol, ax_max - atol], ls='--', color='C3') + ax1.plot([ax_min, ax_max], [ax_min + atol, ax_max + atol], ls='--', color='C3') + ax1.set_xlabel('Input ax') + ax1.set_ylabel('Ref Table ax') + ax1.set_title('Acceleration in X') + + ax2.plot(ref_list['ay'][i_orig], msc.ref_table['ay'][i_fit], '.') + ax2.plot([ay_min, ay_max], [ay_min, ay_max], color='C3') + ax2.plot([ay_min, ay_max], [ay_min - atol, ay_max - atol], ls='--', color='C3') + ax2.plot([ay_min, ay_max], [ay_min + atol, ay_max + atol], ls='--', color='C3') + ax2.set_xlabel('Input ay') + ax2.set_ylabel('Ref Table ay') + ax2.set_title('Acceleration in Y') + plt.tight_layout() + plt.show() # Also double check that they aren't exactly the same for the reference stars. assert np.any(np.not_equal(msc.ref_table['ax'][i_fit], ref_list['ax'][i_orig])) return msc +def test_MosaicToRef_hst_me(): + """ + Test Casey's issue with 'me' not getting propogated + from the input starlists to the output table. -def make_fake_starlists_shifts(): - N_stars = 200 - x = np.random.rand(N_stars) * 1000 - y = np.random.rand(N_stars) * 1000 - m = (np.random.rand(N_stars) * 8) + 9 + Use data from MB10-364 microlensing target for the test. + """ + # Target RA and Dec (MOA data download) + # ra = '17:57:05.401' + # dec = '-34:27:05.01' - sdx = np.argsort(m) - x = x[sdx] - y = y[sdx] - m = m[sdx] + # Load up a Gaia catalog (queried around the RA/Dec above) + my_gaia = Table.read('mb10364_data/my_gaia.fits') + my_gaia['me'] = 0.01 - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] + # Gather the list of starlists. For first pass, don't modify the starlists. + # Loop through the observations and read them in, in prep for alignment with Gaia + epochs = [2011.83, 2012.73, 2013.81] + starlist_names = ['mb10364_data/2011_10_31_F606W_MATCHUP_XYMEEE_final.calib', + 'mb10364_data/2012_09_25_F606W_MATCHUP_XYMEEE_final.calib', + 'mb10364_data/2013_10_24_F606W_MATCHUP_XYMEEE_final.calib'] - # Save original positions as reference (1st) list. - fmt = '{0:10s} {1:5.2f} 2015.0 {2:9.4f} {3:9.4f} 0 0 0 0\n' - _out = open('random_0.lis', 'w') - for ii in range(N_stars): - _out.write(fmt.format(name[ii], m[ii], x[ii], y[ii])) - _out.close() + list_of_starlists = [] + # Just using the F606W filters first. + for ee in range(len(starlist_names)): + lis = starlists.StarList.from_lis_file(starlist_names[ee]) - ########## - # Shifts - ########## - # Make 4 new starlists with different shifts. - shifts = [[ 6.5, 10.1], - [100.3, 50.5], - [-30.0,-100.7], - [250.0,-250.0]] + # # Add additive error term. MAYBE YOU DON'T NEED THIS + # lis['xe'] = np.hypot(lis['xe'], 0.01) # Adding 0.01 pix (0.1 mas) in quadrature. + # lis['ye'] = np.hypot(lis['ye'], 0.01) - for ss in range(len(shifts)): - xnew = x - shifts[ss][0] - ynew = y - shifts[ss][1] + lis['t'] = epochs[ee] - # Perturb with small errors (0.1 pix) - xnew += np.random.randn(N_stars) * 0.1 - ynew += np.random.randn(N_stars) * 0.1 + # Lets dump the faint stars. + idx = np.where(lis['m'] < 20.0)[0] + lis = lis[idx] - mnew = m + np.random.randn(N_stars) * 0.05 + list_of_starlists.append(lis) - _out = open('random_shift_{0:d}.lis'.format(ss+1), 'w') - for ii in range(N_stars): - _out.write(fmt.format(name[ii], mnew[ii], xnew[ii], ynew[ii])) - _out.close() + msc = align.MosaicToRef(my_gaia, list_of_starlists, iters=1, + dr_tol=[0.1], dm_tol=[5], + outlier_tol=[None], mag_lim=[13, 21], + trans_class=transforms.PolyTransform, + trans_args=[{'order': 1}], + motion_models=['Empty', 'Fixed'], + use_ref_new=False, + update_ref_orig=False, + mag_trans=False, + trans_weighting='both,std', + init_guess_mode='miracle', verbose=False) + msc.fit() - return shifts + assert 'me' in msc.ref_table.colnames + return -def make_fake_starlists_poly1(seed=-1): - # If seed >=0, then set random seed to that value - if seed >= 0: - np.random.seed(seed=seed) - - N_stars = 200 +def test_bootstrap(): + """ + Test to make sure calc_bootstrap_error() call is working + properly (e.g., only called when user calls calc_bootstrap_error, + n_boot param for calc_bootstrap_error only, boot_epochs_min working, + etc.) + """ + # Read in starlists for MosaicToRef + ref = Table.read('ref_vel.lis', format='ascii') + list1 = Table.read('E.lis', format='ascii') + list2 = Table.read('F.lis', format='ascii') - x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) - y0 = np.random.rand(N_stars) * 10.0 # arcsec - x0e = np.random.randn(N_stars) * 5.0e-4 # arcsec - y0e = np.random.randn(N_stars) * 5.0e-4 # arcsec - m0 = (np.random.rand(N_stars) * 8) + 9 # mag - m0e = np.random.randn(N_stars) * 0.05 # mag - t0 = np.ones(N_stars) * 2019.5 + list1 = starlists.StarList.from_table(list1) + list2 = starlists.StarList.from_table(list2) + + # Set parameters for alignment + transModel = transforms.PolyTransform + trans_args = {'order':2} + N_loop = 1 + dr_tol = 0.08 + dm_tol = 99 + outlier_tol = None + mag_lim = None + ref_mag_lim = None + trans_weighting = 'both,var' + mag_trans = False - # Make all the errors positive - x0e = np.abs(x0e) - y0e = np.abs(y0e) - m0e = np.abs(m0e) - - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] + n_boot = 15 + boot_epochs_min=-1 - # Make an StarList - lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, t0], - names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', 't0')) - - sdx = np.argsort(m0) - lis = lis[sdx] + # Run FLYSTAR, no bootstraps yet! + match1 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, + dm_tol=dm_tol, outlier_tol=outlier_tol, + trans_class=transModel, + trans_args=trans_args, + mag_trans=mag_trans, + mag_lim=mag_lim, + ref_mag_lim=ref_mag_lim, + trans_weighting=trans_weighting, + motion_models=['Linear'], + use_ref_new=False, + update_ref_orig=False, + init_guess_mode='name', + verbose=False) + match1.fit() - # Save original positions as reference (1st) list - # in a StarList format (with velocities). - lis.write('random_ref.fits', overwrite=True) + # Make sure no bootstrap columns exist + assert 'xe_boot' not in match1.ref_table.keys() + assert 'ye_boot' not in match1.ref_table.keys() + assert 'vxe_boot' not in match1.ref_table.keys() + assert 'vye_boot' not in match1.ref_table.keys() - ########## - # Shifts - ########## - # Make 4 new starlists with different shifts. - times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] - xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], - [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], - [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.0]], - [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]], - [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], - [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], - [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], - [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] - mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] - - # Convert into pixels (undistorted) with the following info. - scale = 0.01 # arcsec / pix - shift = [1.0, 1.0] # pix + # Run bootstrap: no boot_epochs_min + match1.calc_bootstrap_errors(n_boot=n_boot, boot_epochs_min=boot_epochs_min) + # Make sure columns exist, and none of them are nan values + assert np.sum(np.isnan(match1.ref_table['xe_boot'])) == 0 + assert np.sum(np.isnan(match1.ref_table['ye_boot'])) == 0 + assert np.sum(np.isnan(match1.ref_table['vx_err_boot'])) == 0 + assert np.sum(np.isnan(match1.ref_table['vy_err_boot'])) == 0 - for ss in range(len(times)): - dt = times[ss] - lis['t0'] - - x = lis['x0'] - y = lis['y0'] - t = np.ones(N_stars) * times[ss] + # Test 2: make sure boot_epochs_min is working + # Eliminate some rows to list2, so some stars are only in 1 epoch. + # Rerun align. Some stars should only be detected in 1 epoch + list3 = list2[0:60] - # Convert into pixels - xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) - yp = (y / scale) + shift[1] - xpe = lis['x0_err'] / scale - ype = lis['y0_err'] / scale + match2 = align.MosaicToRef(ref, [list1, list3], iters=N_loop, dr_tol=dr_tol, + dm_tol=dm_tol, outlier_tol=outlier_tol, + trans_class=transModel, + trans_args=trans_args, + mag_trans=mag_trans, + mag_lim=mag_lim, + ref_mag_lim=ref_mag_lim, + trans_weighting=trans_weighting, + motion_models=['Linear'], + use_ref_new=False, + update_ref_orig=False, + init_guess_mode='name', + verbose=False) + match2.fit() - # Distort the positions - trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) - xd, yd = trans.evaluate(xp, yp) - md = trans.evaluate_mag(lis['m0']) + # Now run_calc_bootstrap_error, with boot_epochs_min engaged + boot_epochs_min2 = 2 + match2.calc_bootstrap_errors(n_boot=n_boot, boot_epochs_min=boot_epochs_min2) - # Perturb with small errors (0.1 pix) - xd += np.random.randn(N_stars) * 0.1 - yd += np.random.randn(N_stars) * 0.1 - md += np.random.randn(N_stars) * 0.02 - xde = xpe - yde = ype - mde = lis['m0_err'] + # Make sure boot_epochs_min cut worked as intended + out = match2.ref_table + bad = np.where( (out['n_detect'] == 1) & (out['use_in_trans'] == False) ) + good = np.where(out['n_detect'] == 2) - # Save the new list as a starlist. - new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], - names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) + # Some stars must exist in both "good" and "bad" criteria, + # otherwise this test isn't as useful as intended. + assert len(bad[0]) > 0 + assert len(good[0]) > 0 - new_lis.write('random_{0:d}.fits'.format(ss), overwrite=True) + # For "good" stars: all bootstrap vals should be present + assert np.sum(~np.isfinite(out['xe_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['ye_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['vx_err_boot'][good])) == 0 + assert np.sum(~np.isfinite(out['vy_err_boot'][good])) == 0 - return (xy_trans,mag_trans) + # For "bad" stars, all bootstrap vals should be nans + assert np.sum(np.isfinite(out['xe_boot'][bad])) == 0 + assert np.sum(np.isfinite(out['ye_boot'][bad])) == 0 + assert np.sum(np.isfinite(out['vx_err_boot'][bad])) == 0 + assert np.sum(np.isfinite(out['vy_err_boot'][bad])) == 0 -def make_fake_starlists_poly0_vel(seed=-1): - # If seed >=0, then set random seed to that value - if seed >= 0: - np.random.seed(seed=seed) - - N_stars = 200 + return - x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) - y0 = np.random.rand(N_stars) * 10.0 # arcsec - x0e = np.ones(N_stars) * 1.0e-4 # arcsec - y0e = np.ones(N_stars) * 1.0e-4 # arcsec - vx = np.random.randn(N_stars) * 5.0 # mas / yr - vy = np.random.randn(N_stars) * 5.0 # mas / yr - vxe = np.ones(N_stars) * 0.05 # mas / yr - vye = np.ones(N_stars) * 0.05 # mas / yr - m0 = (np.random.rand(N_stars) * 8) + 9 # mag - m0e = np.random.randn(N_stars) * 0.05 # mag - t0 = np.ones(N_stars) * 2019.5 - - # Make all the errors positive - x0e = np.abs(x0e) - y0e = np.abs(y0e) - m0e = np.abs(m0e) - vxe = np.abs(vxe) - vye = np.abs(vye) +def test_calc_vel_in_bootstrap(): + """ + Check calc_vel_in_bootstrap performance in calc_bootstrap_errors() - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] + Only calculate velocity bootstrap (e.g., bootstrap over epochs and + calculating proper motions) if calc_vel_in_bootstrap=True. - # Make an StarList - lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, vx, vxe, vy, vye, t0], - names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', - 'vx', 'vx_err', 'vy', 'vy_err', 't0')) + """ + import copy + + # Define match parameters + ref = Table.read('ref_vel.lis', format='ascii') + + list1 = Table.read('E.lis', format='ascii') + list2 = Table.read('F.lis', format='ascii') + + list1 = starlists.StarList.from_table(list1) + list2 = starlists.StarList.from_table(list2) + + # Set parameters for alignment + transModel = transforms.PolyTransform + trans_args = {'order':2} + N_loop = 1 + dr_tol = 0.08 + dm_tol = 99 + outlier_tol = None + mag_lim = None + ref_mag_lim = None + trans_weighting = 'both,var' + mag_trans = False + + n_boot = 15 + boot_epochs_min=-1 + + # Run match + match = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, + dm_tol=dm_tol, outlier_tol=outlier_tol, + trans_class=transModel, + trans_args=trans_args, + mag_trans=mag_trans, + mag_lim=mag_lim, + ref_mag_lim=ref_mag_lim, + trans_weighting=trans_weighting, + motion_models=['Linear'], + use_ref_new=False, + update_ref_orig=False, + init_guess_mode='name', + verbose=False) + match.fit() + + # Make 2 copies of match object: one to test + # each case of calc_vel_in_bootstrap + match_vel = copy.deepcopy(match) + + # Run calc_bootstrap_error function with calc_vel_in_bootstrap=True. + # Make sure bootstrap velocity errors are calculated and valid + n_boot = 50 + match_vel.calc_bootstrap_errors(n_boot=n_boot, calc_vel_in_bootstrap=True) + + assert 'xe_boot' in match_vel.ref_table.keys() + assert np.sum(np.isnan(match_vel.ref_table['xe_boot'])) == 0 + assert 'vx_err_boot' in match_vel.ref_table.keys() + assert np.sum(np.isnan(match_vel.ref_table['vx_err_boot'])) == 0 + + # Run without calc_vel_in_bootstrap, make sure velocities are NOT calculated + match.calc_bootstrap_errors(n_boot=n_boot, calc_vel_in_bootstrap=False) + + assert 'xe_boot' in match.ref_table.keys() + assert np.sum(np.isnan(match.ref_table['xe_boot'])) == 0 + assert 'vx_err_boot' not in match.ref_table.keys() - sdx = np.argsort(m0) - lis = lis[sdx] + return - # Save original positions as reference (1st) list - # in a StarList format (with velocities). - lis.write('random_vel_ref.fits', overwrite=True) +def test_transform_xym(): + """ + Test to make sure transforms are being done to mags only + if mag_trans = True. This can cause subtle bugs + otherwise + """ + #---Align 1: self.mag_Trans = False---# + ref = Table.read('ref_vel.lis', format='ascii') + list1 = Table.read('E.lis', format='ascii') + list2 = Table.read('F.lis', format='ascii') + + list1 = starlists.StarList.from_table(list1) + list2 = starlists.StarList.from_table(list2) + + # Set parameters for alignment + transModel = transforms.PolyTransform + trans_args = {'order':2} + N_loop = 1 + dr_tol = 0.08 + dm_tol = 99 + outlier_tol = None + mag_lim = None + ref_mag_lim = None + trans_weighting = 'both,var' + n_boot = 15 + + mag_trans = False + + # Run FLYSTAR, with bootstraps + match1 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, + dm_tol=dm_tol, outlier_tol=outlier_tol, + trans_class=transModel, + trans_args=trans_args, + mag_trans=mag_trans, + mag_lim=mag_lim, + ref_mag_lim=ref_mag_lim, + trans_weighting=trans_weighting, + motion_models=['Fixed'], + use_ref_new=False, + update_ref_orig=False, + init_guess_mode='name', + verbose=False) + + match1.fit() + match1.calc_bootstrap_errors(n_boot=n_boot) + + # Make sure all transformations have mag_offset = 0 + trans_list = match1.trans_list + + for ii in trans_list: + assert ii.mag_offset == 0 + + # Check that no mag transformation has been applied to m col in ref_table + tab1 = match1.ref_table + assert np.all(tab1['m'] == tab1['m_orig']) - ########## - # Propogate to new times and distort. - ########## - # Make 4 new starlists with different epochs and transformations. - times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] - xy_trans = [[[ 6.5], [ 10.1]], - [[100.3], [ 50.5]], - [[ 0.0], [ 0.0]], - [[250.0], [-250.0]], - [[ 50.0], [ -31.0]], - [[ 78.0], [ 45.0]], - [[-13.0], [ 150]], - [[ 94.0], [-182.0]]] - mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] + # Check me_boost == 0 or really small (should be the case + # since we don't transform mags) + assert np.isclose(np.max(tab1['me_boot']), 0, rtol=10**-5) + print('Done mag_trans = False case') - # Convert into pixels (undistorted) with the following info. - scale = 0.01 # arcsec / pix - shift = [1.0, 1.0] # pix + #---Align 2: self.mag_Trans = True---# + # Repeat, this time with mag_trans = False + mag_trans = True + match2 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, + dm_tol=dm_tol, outlier_tol=outlier_tol, + trans_class=transModel, + trans_args=trans_args, + mag_trans=mag_trans, + mag_lim=mag_lim, + ref_mag_lim=ref_mag_lim, + trans_weighting=trans_weighting, + motion_models=['Fixed'], + use_ref_new=False, + update_ref_orig=False, + init_guess_mode='name', + verbose=False) + + match2.fit() + match2.calc_bootstrap_errors(n_boot=n_boot) + + + # Make sure all transformations have correct mag offset + trans_list2 = match2.trans_list + + for ii in trans_list2: + assert ii.mag_offset > 20 + + # Make sure final table mags have transform applied (i.e, + tab2 = match2.ref_table + assert np.all(tab2['m'] != tab2['m_orig']) - for ss in range(len(times)): - dt = times[ss] - lis['t0'] - - x = lis['x0'] + (lis['vx']/1e3) * dt - y = lis['y0'] + (lis['vy']/1e3) * dt - t = np.ones(N_stars) * times[ss] + # Check me_boost > 0 + assert np.min(tab2['me_boot']) > 10**-3 - # Convert into pixels - xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) - yp = (y / scale) + shift[1] - xpe = lis['x0_err'] / scale - ype = lis['y0_err'] / scale + print('Done mag_trans = True case') + + return - # Distort the positions - trans = transforms.PolyTransform(0, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) - xd, yd = trans.evaluate(xp, yp) - md = trans.evaluate_mag(lis['m0']) +def test_MosaicToRef_mag_bug(): + """ + Bug found by Tuan Do on 2020-04-12. + """ + make_fake_starlists_poly1_vel() - # Perturb with small errors (0.1 pix) - xd += np.random.randn(N_stars) * xpe - yd += np.random.randn(N_stars) * ype - md += np.random.randn(N_stars) * 0.02 - xde = xpe - yde = ype - mde = lis['m0_err'] + ref_list = starlists.StarList.read('random_vel_0.fits') + lists = [ref_list] - # Save the new list as a starlist. - new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], - names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) + msc = align.MosaicToRef(ref_list, lists, + mag_trans=True, + iters=1, + dr_tol=[0.2], dm_tol=[1], + outlier_tol=None, + trans_class=transforms.PolyTransform, + trans_args=[{'order': 1}], + motion_models=['Fixed'], + use_ref_new=False, + update_ref_orig=False, + verbose=True) - new_lis.write('random_vel_p0_{0:d}.fits'.format(ss), overwrite=True) + msc.fit() - return (xy_trans, mag_trans) + out_tab = msc.ref_table + # The issue is that in the initial guess with + # mag_trans = True + # somehow the transformed magnitudes are nan. + # This causes zero matches to occur. + assert len(out_tab) == len(ref_list) -def make_fake_starlists_poly1_vel(seed=-1): - # If seed >=0, then set random seed to that value - if seed >= 0: - np.random.seed(seed=seed) - - N_stars = 200 + return - x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) - y0 = np.random.rand(N_stars) * 10.0 # arcsec - x0e = np.ones(N_stars) * 1.0e-4 # arcsec - y0e = np.ones(N_stars) * 1.0e-4 # arcsec - vx = np.random.randn(N_stars) * 5.0 # mas / yr - vy = np.random.randn(N_stars) * 5.0 # mas / yr - vxe = np.ones(N_stars) * 0.05 # mas / yr - vye = np.ones(N_stars) * 0.05 # mas / yr - m0 = (np.random.rand(N_stars) * 8) + 9 # mag - m0e = np.random.randn(N_stars) * 0.05 # mag - t0 = np.ones(N_stars) * 2019.5 +def test_masked_cols(): + """ + Test to make sure analysis.prepare_gaia_for_flystar + produces an astropy.table.Table, NOT a masked column + table. MosaicToRef cannot handle masked column tables. - # Make all the errors positive - x0e = np.abs(x0e) - y0e = np.abs(y0e) - m0e = np.abs(m0e) - vxe = np.abs(vxe) - vye = np.abs(vye) - - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] + Also make sure this example works, since we use it for the examples + jupyter notebook. + """ + # Get gaia reference stars using analysis.py + # around a test location. + # target = 'ob150029' + ra = '17:59:46.60' + dec = '-28:38:41.8' - # Make an StarList - lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, vx, vxe, vy, vye, t0], - names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', - 'vx', 'vx_err', 'vy', 'vy_err', 't0')) - - sdx = np.argsort(m0) - lis = lis[sdx] + # Coordinates are arcsecs offset +x to the East. + targets_dict = { + 'ob150029': [0.0, 0.0], + 'S005': [1.1416, 3.7405], + 'S002': [-4.421, 0.027] + } - # Save original positions as reference (1st) list - # in a StarList format (with velocities). - lis.write('random_vel_ref.fits', overwrite=True) - - ########## - # Propogate to new times and distort. - ########## - # Make 4 new starlists with different epochs and transformations. - times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] - xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], - [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], - [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.000]], - [[250.0, 1.01, 2e-5], [-250.0, 1e-5, 0.98]], - [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], - [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], - [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], - [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] - mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] + # Get gaia catalog stars. Note that this produces a masked column table + search_rad = 10.0 # arcsec + gaia = analysis.query_gaia(ra, dec, search_radius=search_rad) + my_gaia = analysis.prepare_gaia_for_flystar(gaia, ra, dec, targets_dict=targets_dict) - # Convert into pixels (undistorted) with the following info. - scale = 0.01 # arcsec / pix - shift = [1.0, 1.0] # pix - - for ss in range(len(times)): - dt = times[ss] - lis['t0'] - - x = lis['x0'] + (lis['vx']/1e3) * dt - y = lis['y0'] + (lis['vy']/1e3) * dt - t = np.ones(N_stars) * times[ss] + assert isinstance(my_gaia, Table) - # Convert into pixels - xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) - yp = (y / scale) + shift[1] - xpe = lis['x0_err'] / scale - ype = lis['y0_err'] / scale + # Let's make sure the entire align runs, just to be safe - # Distort the positions - trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) - xd, yd = trans.evaluate(xp, yp) - md = trans.evaluate_mag(lis['m0']) + # Get starlists to align to gaia + epochs = ['15jun07','16jul14', '17may21'] - # Perturb with small errors (0.1 mas) - xd += np.random.randn(N_stars) * xpe - yd += np.random.randn(N_stars) * ype - md += np.random.randn(N_stars) * 0.02 - xde = xpe - yde = ype - mde = lis['m0_err'] + list_of_starlists = [] - # Save the new list as a starlist. - new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], - names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) + for ee in range(len(epochs)): + lis_file = 'mag' + epochs[ee] + '_ob150029_kp_rms_named.lis' + lis = starlists.StarList.from_lis_file(lis_file) + list_of_starlists.append(lis) - new_lis.write('random_vel_{0:d}.fits'.format(ss), overwrite=True) + # Run the align + msc = align.MosaicToRef(my_gaia, list_of_starlists, iters=2, + dr_tol=[0.2, 0.1], dm_tol=[1, 1], + trans_class=transforms.PolyTransform, + trans_args=[{'order': 1}, {'order': 1}], + motion_models=['Linear'], + use_ref_new=False, + update_ref_orig=False, + mag_trans=True, + init_guess_mode='name', verbose=True) - return (xy_trans, mag_trans) + msc.fit() + return -def make_fake_starlists_poly1_acc(seed=-1): - # If seed >=0, then set random seed to that value - if seed >= 0: - np.random.seed(seed=seed) - +def make_fake_starlists_shifts(): N_stars = 200 + x = np.random.rand(N_stars) * 1000 + y = np.random.rand(N_stars) * 1000 + m = (np.random.rand(N_stars) * 8) + 9 - x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) - y0 = np.random.rand(N_stars) * 10.0 # arcsec - x0e = np.ones(N_stars) * 1.0e-4 # arcsec - y0e = np.ones(N_stars) * 1.0e-4 # arcsec - vx = np.random.randn(N_stars) * 5.0 # mas / yr - vy = np.random.randn(N_stars) * 5.0 # mas / yr - vxe = np.ones(N_stars) * 0.1 # mas / yr - vye = np.ones(N_stars) * 0.1 # mas / yr - ax = np.random.randn(N_stars) * 0.5 # mas / yr^2 - ay = np.random.randn(N_stars) * 0.5 # mas / yr^2 - axe = np.ones(N_stars) * 0.01 # mas / yr^2 - aye = np.ones(N_stars) * 0.01 # mas / yr^2 - m0 = (np.random.rand(N_stars) * 8) + 9 # mag - m0e = np.random.randn(N_stars) * 0.05 # mag - t0 = np.ones(N_stars) * 2019.5 + sdx = np.argsort(m) + x = x[sdx] + y = y[sdx] + m = m[sdx] - # Make all the errors positive - x0e = np.abs(x0e) - y0e = np.abs(y0e) - m0e = np.abs(m0e) - vxe = np.abs(vxe) - vye = np.abs(vye) - axe = np.abs(axe) - aye = np.abs(aye) - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - # Make an StarList - lis = starlists.StarList([name, m0, m0e, - x0, x0e, y0, y0e, - vx, vxe, vy, vye, - ax, axe, ay, aye, - t0], - names = ('name', 'm0', 'm0_err', - 'x0', 'x0_err', 'y0', 'y0_err', - 'vx0', 'vx0_err', 'vy0', 'vy0_err', - 'ax', 'ax_err', 'ay', 'ay_err', - 't0')) - - sdx = np.argsort(m0) - lis = lis[sdx] + # Save original positions as reference (1st) list. + fmt = '{0:10s} {1:5.2f} 2015.0 {2:9.4f} {3:9.4f} 0 0 0 0\n' + _out = open('random_0.lis', 'w') + for ii in range(N_stars): + _out.write(fmt.format(name[ii], m[ii], x[ii], y[ii])) + _out.close() + - # Save original positions as reference (1st) list - # in a StarList format (with velocities). - lis.write('random_acc_ref.fits', overwrite=True) - ########## - # Propogate to new times and distort. + # Shifts ########## - # Make 4 new starlists with different epochs and transformations. - times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] - xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], - [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], - [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.000]], - [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]], - [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], - [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], - [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], - [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] - mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] - - # Convert into pixels (undistorted) with the following info. - scale = 0.01 # arcsec / pix - shift = [1.0, 1.0] # pix - - for ss in range(len(times)): - dt = times[ss] - lis['t0'] - - x = lis['x0'] + (lis['vx0']/1e3) * dt + 0.5*(lis['ax']/1e3) * dt**2 - y = lis['y0'] + (lis['vy0']/1e3) * dt + 0.5*(lis['ay']/1e3) * dt**2 - t = np.ones(N_stars) * times[ss] - - # Convert into pixels - xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) - yp = (y / scale) + shift[1] - xpe = lis['x0_err'] / scale - ype = lis['y0_err'] / scale + # Make 4 new starlists with different shifts. + shifts = [[ 6.5, 10.1], + [100.3, 50.5], + [-30.0,-100.7], + [250.0,-250.0]] - # Distort the positions - trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) - xd, yd = trans.evaluate(xp, yp) - md = trans.evaluate_mag(lis['m0']) + for ss in range(len(shifts)): + xnew = x - shifts[ss][0] + ynew = y - shifts[ss][1] # Perturb with small errors (0.1 pix) - xd += np.random.randn(N_stars) * xpe - yd += np.random.randn(N_stars) * ype - md += np.random.randn(N_stars) * 0.02 - xde = xpe - yde = ype - mde = lis['m0_err'] + xnew += np.random.randn(N_stars) * 0.1 + ynew += np.random.randn(N_stars) * 0.1 - # Save the new list as a starlist. - new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], - names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) + mnew = m + np.random.randn(N_stars) * 0.05 - new_lis.write('random_acc_{0:d}.fits'.format(ss), overwrite=True) + _out = open('random_shift_{0:d}.lis'.format(ss+1), 'w') + for ii in range(N_stars): + _out.write(fmt.format(name[ii], mnew[ii], xnew[ii], ynew[ii])) + _out.close() - return (xy_trans, mag_trans) - -def make_fake_starlists_poly1_par(seed=-1): + return shifts + +def make_fake_starlists_poly1(seed=-1): # If seed >=0, then set random seed to that value if seed >= 0: np.random.seed(seed=seed) @@ -916,12 +984,6 @@ def make_fake_starlists_poly1_par(seed=-1): y0 = np.random.rand(N_stars) * 10.0 # arcsec x0e = np.random.randn(N_stars) * 5.0e-4 # arcsec y0e = np.random.randn(N_stars) * 5.0e-4 # arcsec - vx = np.random.randn(N_stars) * 5.0 # mas / yr - vy = np.random.randn(N_stars) * 5.0 # mas / yr - vxe = np.random.randn(N_stars) * 0.1 # mas / yr - vye = np.random.randn(N_stars) * 0.1 # mas / yr - pi = np.random.randn(N_stars) * 0.5 # mas - pie = np.random.randn(N_stars) * 0.01 # mas m0 = (np.random.rand(N_stars) * 8) + 9 # mag m0e = np.random.randn(N_stars) * 0.05 # mag t0 = np.ones(N_stars) * 2019.5 @@ -929,65 +991,45 @@ def make_fake_starlists_poly1_par(seed=-1): # Make all the errors positive x0e = np.abs(x0e) y0e = np.abs(y0e) - m0e = np.abs(m0e) - vxe = np.abs(vxe) - vye = np.abs(vye) - pie = np.abs(pie) - - name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - - # Make an StarList - lis = starlists.StarList([name, m0, m0e, - x0, x0e, y0, y0e, - vx, vxe, vy, vye, - pi, pie, - t0], - names = ('name', 'm0', 'm0_err', - 'x0', 'x0_err', 'y0', 'y0_err', - 'vx', 'vx_err', 'vy', 'vy_err', - 'pi', 'pi_err', - 't0')) + m0e = np.abs(m0e) + + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] + + # Make an StarList + lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, t0], + names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', 't0')) sdx = np.argsort(m0) lis = lis[sdx] # Save original positions as reference (1st) list # in a StarList format (with velocities). - lis.write('random_par_ref.fits', overwrite=True) - + lis.write('random_ref.fits', overwrite=True) + ########## - # Propogate to new times and distort. + # Shifts ########## - # Make 4 new starlists with different epochs and transformations. - '''times = [2018.5, 2019.5, 2020.5, 2021.5] - xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], - [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], - [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.0]], - [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]]] - mag_trans = [0.1, 0.4, 0.0, -0.3]''' - + # Make 4 new starlists with different shifts. times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.0]], [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]], - [[ 50.0, 1.00, 0.0], [ -31.0, 0.0, 1.000]], - [[ 78.0, 1.00, 0.0 ], [ 45.0, 0.0, 1.00]], - [[-13.0, 1.00, 0.0], [ 150, 0.0, 1.00]], - [[ 94.0, 1.00, 0.0], [-182.0, 0.0, 1.00]]] - mag_trans = [0.1, 0.4, 0.0, -0.3, 0.0, 0.0, 0.0, 0.0] - + [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], + [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], + [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], + [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] + mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] + # Convert into pixels (undistorted) with the following info. scale = 0.01 # arcsec / pix shift = [1.0, 1.0] # pix - + for ss in range(len(times)): dt = times[ss] - lis['t0'] - par_mod = motion_model.Parallax(pa=0,ra=18.0, dec=-30.0) - par_mod_dat = par_mod.get_batch_pos_at_time(dt+lis['t0'], x0=lis['x0'],vx=lis['vx']/1e3, pi=lis['pi'], - y0=lis['y0'], vy=lis['vy']/1e3, t0=lis['t0']) - x,y = par_mod_dat[0], par_mod_dat[1] + x = lis['x0'] + y = lis['y0'] t = np.ones(N_stars) * times[ss] # Convert into pixels @@ -1013,431 +1055,411 @@ def make_fake_starlists_poly1_par(seed=-1): new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) - new_lis.write('random_par_{0:d}.fits'.format(ss), overwrite=True) - - return (xy_trans, mag_trans) - - -def test_MosaicToRef_hst_me(): - """ - Test Casey's issue with 'me' not getting propogated - from the input starlists to the output table. - - Use data from MB10-364 microlensing target for the test. - """ - # Target RA and Dec (MOA data download) - # ra = '17:57:05.401' - # dec = '-34:27:05.01' - - # Load up a Gaia catalog (queried around the RA/Dec above) - my_gaia = Table.read('mb10364_data/my_gaia.fits') - my_gaia['me'] = 0.01 - - # Gather the list of starlists. For first pass, don't modify the starlists. - # Loop through the observations and read them in, in prep for alignment with Gaia - epochs = [2011.83, 2012.73, 2013.81] - starlist_names = ['mb10364_data/2011_10_31_F606W_MATCHUP_XYMEEE_final.calib', - 'mb10364_data/2012_09_25_F606W_MATCHUP_XYMEEE_final.calib', - 'mb10364_data/2013_10_24_F606W_MATCHUP_XYMEEE_final.calib'] - - list_of_starlists = [] - - # Just using the F606W filters first. - for ee in range(len(starlist_names)): - lis = starlists.StarList.from_lis_file(starlist_names[ee]) - - # # Add additive error term. MAYBE YOU DON'T NEED THIS - # lis['xe'] = np.hypot(lis['xe'], 0.01) # Adding 0.01 pix (0.1 mas) in quadrature. - # lis['ye'] = np.hypot(lis['ye'], 0.01) - - lis['t'] = epochs[ee] - - # Lets dump the faint stars. - idx = np.where(lis['m'] < 20.0)[0] - lis = lis[idx] - - list_of_starlists.append(lis) - - msc = align.MosaicToRef(my_gaia, list_of_starlists, iters=1, - dr_tol=[0.1], dm_tol=[5], - outlier_tol=[None], mag_lim=[13, 21], - trans_class=transforms.PolyTransform, - trans_args=[{'order': 1}], - motion_models=['Empty', 'Fixed'], - use_ref_new=False, - update_ref_orig=False, - mag_trans=False, - trans_weighting='both,std', - init_guess_mode='miracle', verbose=False) - msc.fit() - - assert 'me' in msc.ref_table.colnames - return + new_lis.write('random_{0:d}.fits'.format(ss), overwrite=True) -def test_bootstrap(): - """ - Test to make sure calc_bootstrap_error() call is working - properly (e.g., only called when user calls calc_bootstrap_error, - n_boot param for calc_bootstrap_error only, boot_epochs_min working, - etc.) - """ - # Read in starlists for MosaicToRef - ref = Table.read('ref_vel.lis', format='ascii') - list1 = Table.read('E.lis', format='ascii') - list2 = Table.read('F.lis', format='ascii') + return (xy_trans,mag_trans) - list1 = starlists.StarList.from_table(list1) - list2 = starlists.StarList.from_table(list2) +def make_fake_starlists_poly0_vel(seed=-1): + # If seed >=0, then set random seed to that value + if seed >= 0: + np.random.seed(seed=seed) - # Set parameters for alignment - transModel = transforms.PolyTransform - trans_args = {'order':2} - N_loop = 1 - dr_tol = 0.08 - dm_tol = 99 - outlier_tol = None - mag_lim = None - ref_mag_lim = None - trans_weighting = 'both,var' - mag_trans = False - - n_boot = 15 - boot_epochs_min=-1 - - # Run FLYSTAR, no bootstraps yet! - match1 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, - dm_tol=dm_tol, outlier_tol=outlier_tol, - trans_class=transModel, - trans_args=trans_args, - mag_trans=mag_trans, - mag_lim=mag_lim, - ref_mag_lim=ref_mag_lim, - trans_weighting=trans_weighting, - motion_models=['Linear'], - use_ref_new=False, - update_ref_orig=False, - init_guess_mode='name', - verbose=False) - match1.fit() - - # Make sure no bootstrap columns exist - assert 'xe_boot' not in match1.ref_table.keys() - assert 'ye_boot' not in match1.ref_table.keys() - assert 'vxe_boot' not in match1.ref_table.keys() - assert 'vye_boot' not in match1.ref_table.keys() - - # Run bootstrap: no boot_epochs_min - match1.calc_bootstrap_errors(n_boot=n_boot, boot_epochs_min=boot_epochs_min) - # Make sure columns exist, and none of them are nan values - assert np.sum(np.isnan(match1.ref_table['xe_boot'])) == 0 - assert np.sum(np.isnan(match1.ref_table['ye_boot'])) == 0 - assert np.sum(np.isnan(match1.ref_table['vx_err_boot'])) == 0 - assert np.sum(np.isnan(match1.ref_table['vy_err_boot'])) == 0 - - # Test 2: make sure boot_epochs_min is working - # Eliminate some rows to list2, so some stars are only in 1 epoch. - # Rerun align. Some stars should only be detected in 1 epoch - list3 = list2[0:60] - - match2 = align.MosaicToRef(ref, [list1, list3], iters=N_loop, dr_tol=dr_tol, - dm_tol=dm_tol, outlier_tol=outlier_tol, - trans_class=transModel, - trans_args=trans_args, - mag_trans=mag_trans, - mag_lim=mag_lim, - ref_mag_lim=ref_mag_lim, - trans_weighting=trans_weighting, - motion_models=['Linear'], - use_ref_new=False, - update_ref_orig=False, - init_guess_mode='name', - verbose=False) - match2.fit() - - # Now run_calc_bootstrap_error, with boot_epochs_min engaged - boot_epochs_min2 = 2 - match2.calc_bootstrap_errors(n_boot=n_boot, boot_epochs_min=boot_epochs_min2) - - # Make sure boot_epochs_min cut worked as intended - out = match2.ref_table - bad = np.where( (out['n_detect'] == 1) & (out['use_in_trans'] == False) ) - good = np.where(out['n_detect'] == 2) - - # Some stars must exist in both "good" and "bad" criteria, - # otherwise this test isn't as useful as intended. - assert len(bad[0]) > 0 - assert len(good[0]) > 0 + N_stars = 200 - # For "good" stars: all bootstrap vals should be present - assert np.sum(~np.isfinite(out['xe_boot'][good])) == 0 - assert np.sum(~np.isfinite(out['ye_boot'][good])) == 0 - assert np.sum(~np.isfinite(out['vx_err_boot'][good])) == 0 - assert np.sum(~np.isfinite(out['vy_err_boot'][good])) == 0 + x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) + y0 = np.random.rand(N_stars) * 10.0 # arcsec + x0e = np.ones(N_stars) * 1.0e-4 # arcsec + y0e = np.ones(N_stars) * 1.0e-4 # arcsec + vx = np.random.randn(N_stars) * 5.0 # mas / yr + vy = np.random.randn(N_stars) * 5.0 # mas / yr + vxe = np.ones(N_stars) * 0.05 # mas / yr + vye = np.ones(N_stars) * 0.05 # mas / yr + m0 = (np.random.rand(N_stars) * 8) + 9 # mag + m0e = np.random.randn(N_stars) * 0.05 # mag + t0 = np.ones(N_stars) * 2019.5 - # For "bad" stars, all bootstrap vals should be nans - assert np.sum(np.isfinite(out['xe_boot'][bad])) == 0 - assert np.sum(np.isfinite(out['ye_boot'][bad])) == 0 - assert np.sum(np.isfinite(out['vx_err_boot'][bad])) == 0 - assert np.sum(np.isfinite(out['vy_err_boot'][bad])) == 0 + # Make all the errors positive + x0e = np.abs(x0e) + y0e = np.abs(y0e) + m0e = np.abs(m0e) + vxe = np.abs(vxe) + vye = np.abs(vye) + + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - return + # Make an StarList + lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, vx, vxe, vy, vye, t0], + names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', + 'vx', 'vx_err', 'vy', 'vy_err', 't0')) + + sdx = np.argsort(m0) + lis = lis[sdx] -def test_calc_vel_in_bootstrap(): - """ - Check calc_vel_in_bootstrap performance in calc_bootstrap_errors() + # Save original positions as reference (1st) list + # in a StarList format (with velocities). + lis.write('random_vel_ref.fits', overwrite=True) - Only calculate velocity bootstrap (e.g., bootstrap over epochs and - calculating proper motions) if calc_vel_in_bootstrap=True. + ########## + # Propogate to new times and distort. + ########## + # Make 4 new starlists with different epochs and transformations. + times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] + xy_trans = [[[ 6.5], [ 10.1]], + [[100.3], [ 50.5]], + [[ 0.0], [ 0.0]], + [[250.0], [-250.0]], + [[ 50.0], [ -31.0]], + [[ 78.0], [ 45.0]], + [[-13.0], [ 150]], + [[ 94.0], [-182.0]]] + mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] - """ - import copy + # Convert into pixels (undistorted) with the following info. + scale = 0.01 # arcsec / pix + shift = [1.0, 1.0] # pix + + for ss in range(len(times)): + dt = times[ss] - lis['t0'] + + x = lis['x0'] + (lis['vx']/1e3) * dt + y = lis['y0'] + (lis['vy']/1e3) * dt + t = np.ones(N_stars) * times[ss] - # Define match parameters - ref = Table.read('ref_vel.lis', format='ascii') + # Convert into pixels + xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) + yp = (y / scale) + shift[1] + xpe = lis['x0_err'] / scale + ype = lis['y0_err'] / scale - list1 = Table.read('E.lis', format='ascii') - list2 = Table.read('F.lis', format='ascii') + # Distort the positions + trans = transforms.PolyTransform(0, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) + xd, yd = trans.evaluate(xp, yp) + md = trans.evaluate_mag(lis['m0']) - list1 = starlists.StarList.from_table(list1) - list2 = starlists.StarList.from_table(list2) - - # Set parameters for alignment - transModel = transforms.PolyTransform - trans_args = {'order':2} - N_loop = 1 - dr_tol = 0.08 - dm_tol = 99 - outlier_tol = None - mag_lim = None - ref_mag_lim = None - trans_weighting = 'both,var' - mag_trans = False + # Perturb with small errors (0.1 pix) + xd += np.random.randn(N_stars) * xpe + yd += np.random.randn(N_stars) * ype + md += np.random.randn(N_stars) * 0.02 + xde = xpe + yde = ype + mde = lis['m0_err'] - n_boot = 15 - boot_epochs_min=-1 + # Save the new list as a starlist. + new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], + names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) - # Run match - match = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, - dm_tol=dm_tol, outlier_tol=outlier_tol, - trans_class=transModel, - trans_args=trans_args, - mag_trans=mag_trans, - mag_lim=mag_lim, - ref_mag_lim=ref_mag_lim, - trans_weighting=trans_weighting, - motion_models=['Linear'], - use_ref_new=False, - update_ref_orig=False, - init_guess_mode='name', - verbose=False) - match.fit() + new_lis.write('random_vel_p0_{0:d}.fits'.format(ss), overwrite=True) - # Make 2 copies of match object: one to test - # each case of calc_vel_in_bootstrap - match_vel = copy.deepcopy(match) + return (xy_trans, mag_trans) - # Run calc_bootstrap_error function with calc_vel_in_bootstrap=True. - # Make sure bootstrap velocity errors are calculated and valid - n_boot = 50 - match_vel.calc_bootstrap_errors(n_boot=n_boot, calc_vel_in_bootstrap=True) - assert 'xe_boot' in match_vel.ref_table.keys() - assert np.sum(np.isnan(match_vel.ref_table['xe_boot'])) == 0 - assert 'vx_err_boot' in match_vel.ref_table.keys() - assert np.sum(np.isnan(match_vel.ref_table['vx_err_boot'])) == 0 +def make_fake_starlists_poly1_vel(seed=-1): + # If seed >=0, then set random seed to that value + if seed >= 0: + np.random.seed(seed=seed) + + N_stars = 200 - # Run without calc_vel_in_bootstrap, make sure velocities are NOT calculated - match.calc_bootstrap_errors(n_boot=n_boot, calc_vel_in_bootstrap=False) + x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) + y0 = np.random.rand(N_stars) * 10.0 # arcsec + x0e = np.ones(N_stars) * 1.0e-4 # arcsec + y0e = np.ones(N_stars) * 1.0e-4 # arcsec + vx = np.random.randn(N_stars) * 5.0 # mas / yr + vy = np.random.randn(N_stars) * 5.0 # mas / yr + vxe = np.ones(N_stars) * 0.05 # mas / yr + vye = np.ones(N_stars) * 0.05 # mas / yr + m0 = (np.random.rand(N_stars) * 8) + 9 # mag + m0e = np.random.randn(N_stars) * 0.05 # mag + t0 = np.ones(N_stars) * 2019.5 - assert 'xe_boot' in match.ref_table.keys() - assert np.sum(np.isnan(match.ref_table['xe_boot'])) == 0 - assert 'vx_err_boot' not in match.ref_table.keys() + # Make all the errors positive + x0e = np.abs(x0e) + y0e = np.abs(y0e) + m0e = np.abs(m0e) + vxe = np.abs(vxe) + vye = np.abs(vye) - return - -def test_transform_xym(): - """ - Test to make sure transforms are being done to mags only - if mag_trans = True. This can cause subtle bugs - otherwise - """ - #---Align 1: self.mag_Trans = False---# - ref = Table.read('ref_vel.lis', format='ascii') - list1 = Table.read('E.lis', format='ascii') - list2 = Table.read('F.lis', format='ascii') + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - list1 = starlists.StarList.from_table(list1) - list2 = starlists.StarList.from_table(list2) + # Make an StarList + lis = starlists.StarList([name, m0, m0e, x0, x0e, y0, y0e, vx, vxe, vy, vye, t0], + names = ('name', 'm0', 'm0_err', 'x0', 'x0_err', 'y0', 'y0_err', + 'vx', 'vx_err', 'vy', 'vy_err', 't0')) - # Set parameters for alignment - transModel = transforms.PolyTransform - trans_args = {'order':2} - N_loop = 1 - dr_tol = 0.08 - dm_tol = 99 - outlier_tol = None - mag_lim = None - ref_mag_lim = None - trans_weighting = 'both,var' - n_boot = 15 + sdx = np.argsort(m0) + lis = lis[sdx] - mag_trans = False + # Save original positions as reference (1st) list + # in a StarList format (with velocities). + lis.write('random_vel_ref.fits', overwrite=True) + + ########## + # Propogate to new times and distort. + ########## + # Make 4 new starlists with different epochs and transformations. + times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] + xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], + [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], + [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.000]], + [[250.0, 1.01, 2e-5], [-250.0, 1e-5, 0.98]], + [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], + [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], + [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], + [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] + mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] - # Run FLYSTAR, with bootstraps - match1 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, - dm_tol=dm_tol, outlier_tol=outlier_tol, - trans_class=transModel, - trans_args=trans_args, - mag_trans=mag_trans, - mag_lim=mag_lim, - ref_mag_lim=ref_mag_lim, - trans_weighting=trans_weighting, - motion_models=['Fixed'], - use_ref_new=False, - update_ref_orig=False, - init_guess_mode='name', - verbose=False) + # Convert into pixels (undistorted) with the following info. + scale = 0.01 # arcsec / pix + shift = [1.0, 1.0] # pix + + for ss in range(len(times)): + dt = times[ss] - lis['t0'] + + x = lis['x0'] + (lis['vx']/1e3) * dt + y = lis['y0'] + (lis['vy']/1e3) * dt + t = np.ones(N_stars) * times[ss] - match1.fit() - match1.calc_bootstrap_errors(n_boot=n_boot) + # Convert into pixels + xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) + yp = (y / scale) + shift[1] + xpe = lis['x0_err'] / scale + ype = lis['y0_err'] / scale - # Make sure all transformations have mag_offset = 0 - trans_list = match1.trans_list + # Distort the positions + trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) + xd, yd = trans.evaluate(xp, yp) + md = trans.evaluate_mag(lis['m0']) - for ii in trans_list: - assert ii.mag_offset == 0 + # Perturb with small errors (0.1 mas) + xd += np.random.randn(N_stars) * xpe + yd += np.random.randn(N_stars) * ype + md += np.random.randn(N_stars) * 0.02 + xde = xpe + yde = ype + mde = lis['m0_err'] - # Check that no mag transformation has been applied to m col in ref_table - tab1 = match1.ref_table - assert np.all(tab1['m'] == tab1['m_orig']) - - # Check me_boost == 0 or really small (should be the case - # since we don't transform mags) - assert np.isclose(np.max(tab1['me_boot']), 0, rtol=10**-5) - print('Done mag_trans = False case') + # Save the new list as a starlist. + new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], + names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) - #---Align 2: self.mag_Trans = True---# - # Repeat, this time with mag_trans = False - mag_trans = True - match2 = align.MosaicToRef(ref, [list1, list2], iters=N_loop, dr_tol=dr_tol, - dm_tol=dm_tol, outlier_tol=outlier_tol, - trans_class=transModel, - trans_args=trans_args, - mag_trans=mag_trans, - mag_lim=mag_lim, - ref_mag_lim=ref_mag_lim, - trans_weighting=trans_weighting, - default_motion_model='Fixed', - use_ref_new=False, - update_ref_orig=False, - init_guess_mode='name', - verbose=False) + new_lis.write('random_vel_{0:d}.fits'.format(ss), overwrite=True) - match2.fit() - match2.calc_bootstrap_errors(n_boot=n_boot) + return (xy_trans, mag_trans) +def make_fake_starlists_poly1_acc(seed=-1): + # If seed >=0, then set random seed to that value + if seed >= 0: + np.random.seed(seed=seed) + + N_stars = 200 - # Make sure all transformations have correct mag offset - trans_list2 = match2.trans_list + x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) + y0 = np.random.rand(N_stars) * 10.0 # arcsec + x0e = np.ones(N_stars) * 1.0e-4 # arcsec + y0e = np.ones(N_stars) * 1.0e-4 # arcsec + vx = np.random.randn(N_stars) * 5.0 # mas / yr + vy = np.random.randn(N_stars) * 5.0 # mas / yr + vxe = np.ones(N_stars) * 0.1 # mas / yr + vye = np.ones(N_stars) * 0.1 # mas / yr + ax = np.random.randn(N_stars) * 0.5 # mas / yr^2 + ay = np.random.randn(N_stars) * 0.5 # mas / yr^2 + axe = np.ones(N_stars) * 0.01 # mas / yr^2 + aye = np.ones(N_stars) * 0.01 # mas / yr^2 + m0 = (np.random.rand(N_stars) * 8) + 9 # mag + m0e = np.random.randn(N_stars) * 0.05 # mag + t0 = np.ones(N_stars) * 2019.5 - for ii in trans_list2: - assert ii.mag_offset > 20 + # Make all the errors positive + x0e = np.abs(x0e) + y0e = np.abs(y0e) + m0e = np.abs(m0e) + vxe = np.abs(vxe) + vye = np.abs(vye) + axe = np.abs(axe) + aye = np.abs(aye) + + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - # Make sure final table mags have transform applied (i.e, - tab2 = match2.ref_table - assert np.all(tab2['m'] != tab2['m_orig']) + # Make an StarList + lis = starlists.StarList([name, m0, m0e, + x0, x0e, y0, y0e, + vx, vxe, vy, vye, + ax, axe, ay, aye, + t0], + names = ('name', 'm0', 'm0_err', + 'x0', 'x0_err', 'y0', 'y0_err', + 'vx0', 'vx0_err', 'vy0', 'vy0_err', + 'ax', 'ax_err', 'ay', 'ay_err', + 't0')) - # Check me_boost > 0 - assert np.min(tab2['me_boot']) > 10**-3 + sdx = np.argsort(m0) + lis = lis[sdx] - print('Done mag_trans = True case') - - return + # Save original positions as reference (1st) list + # in a StarList format (with velocities). + lis.write('random_acc_ref.fits', overwrite=True) + + ########## + # Propogate to new times and distort. + ########## + # Make 4 new starlists with different epochs and transformations. + times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] + xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], + [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], + [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.000]], + [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]], + [[ 50.0, 1.01, 1e-5], [ -31.0, 1e-5, 1.000]], + [[ 78.0, 0.98, 0.0 ], [ 45.0, 9e-6, 1.001]], + [[-13.0, 0.99, 1e-5], [ 150, 2e-5, 1.002]], + [[ 94.0, 1.00, 9e-6], [-182.0, 0.0, 0.99]]] + mag_trans = [0.1, 0.4, 0.0, -0.3, 0.2, 0.0, -0.1, -0.3] -def test_MosaicToRef_mag_bug(): - """ - Bug found by Tuan Do on 2020-04-12. - """ - make_fake_starlists_poly1_vel() + # Convert into pixels (undistorted) with the following info. + scale = 0.01 # arcsec / pix + shift = [1.0, 1.0] # pix + + for ss in range(len(times)): + dt = times[ss] - lis['t0'] + + x = lis['x0'] + (lis['vx0']/1e3) * dt + 0.5*(lis['ax']/1e3) * dt**2 + y = lis['y0'] + (lis['vy0']/1e3) * dt + 0.5*(lis['ay']/1e3) * dt**2 + t = np.ones(N_stars) * times[ss] - ref_list = starlists.StarList.read('random_vel_0.fits') - lists = [ref_list] + # Convert into pixels + xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) + yp = (y / scale) + shift[1] + xpe = lis['x0_err'] / scale + ype = lis['y0_err'] / scale - msc = align.MosaicToRef(ref_list, lists, - mag_trans=True, - iters=1, - dr_tol=[0.2], dm_tol=[1], - outlier_tol=None, - trans_class=transforms.PolyTransform, - trans_args=[{'order': 1}], - motion_models=['Fixed'], - use_ref_new=False, - update_ref_orig=False, - verbose=True) + # Distort the positions + trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) + xd, yd = trans.evaluate(xp, yp) + md = trans.evaluate_mag(lis['m0']) - msc.fit() + # Perturb with small errors (0.1 pix) + xd += np.random.randn(N_stars) * xpe + yd += np.random.randn(N_stars) * ype + md += np.random.randn(N_stars) * 0.02 + xde = xpe + yde = ype + mde = lis['m0_err'] - out_tab = msc.ref_table + # Save the new list as a starlist. + new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], + names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) - # The issue is that in the initial guess with - # mag_trans = True - # somehow the transformed magnitudes are nan. - # This causes zero matches to occur. - assert len(out_tab) == len(ref_list) + new_lis.write('random_acc_{0:d}.fits'.format(ss), overwrite=True) - return + return (xy_trans, mag_trans) + +def make_fake_starlists_poly1_par(seed=-1): + # If seed >=0, then set random seed to that value + if seed >= 0: + np.random.seed(seed=seed) + + N_stars = 200 -def test_masked_cols(): - """ - Test to make sure analysis.prepare_gaia_for_flystar - produces an astropy.table.Table, NOT a masked column - table. MosaicToRef cannot handle masked column tables. + x0 = np.random.rand(N_stars) * 10.0 # arcsec (increasing to East) + y0 = np.random.rand(N_stars) * 10.0 # arcsec + x0e = np.random.randn(N_stars) * 5.0e-4 # arcsec + y0e = np.random.randn(N_stars) * 5.0e-4 # arcsec + vx = np.random.randn(N_stars) * 5.0 # mas / yr + vy = np.random.randn(N_stars) * 5.0 # mas / yr + vxe = np.random.randn(N_stars) * 0.1 # mas / yr + vye = np.random.randn(N_stars) * 0.1 # mas / yr + pi = np.random.randn(N_stars) * 0.5 # mas + pie = np.random.randn(N_stars) * 0.01 # mas + m0 = (np.random.rand(N_stars) * 8) + 9 # mag + m0e = np.random.randn(N_stars) * 0.05 # mag + t0 = np.ones(N_stars) * 2019.5 - Also make sure this example works, since we use it for the examples - jupyter notebook. - """ - # Get gaia reference stars using analysis.py - # around a test location. - # target = 'ob150029' - ra = '17:59:46.60' - dec = '-28:38:41.8' + # Make all the errors positive + x0e = np.abs(x0e) + y0e = np.abs(y0e) + m0e = np.abs(m0e) + vxe = np.abs(vxe) + vye = np.abs(vye) + pie = np.abs(pie) + + name = ['star_{0:03d}'.format(ii) for ii in range(N_stars)] - # Coordinates are arcsecs offset +x to the East. - targets_dict = { - 'ob150029': [0.0, 0.0], - 'S005': [1.1416, 3.7405], - 'S002': [-4.421, 0.027] - } + # Make an StarList + lis = starlists.StarList([name, m0, m0e, + x0, x0e, y0, y0e, + vx, vxe, vy, vye, + pi, pie, + t0], + names = ('name', 'm0', 'm0_err', + 'x0', 'x0_err', 'y0', 'y0_err', + 'vx', 'vx_err', 'vy', 'vy_err', + 'pi', 'pi_err', + 't0')) + + sdx = np.argsort(m0) + lis = lis[sdx] - # Get gaia catalog stars. Note that this produces a masked column table - search_rad = 10.0 # arcsec - gaia = analysis.query_gaia(ra, dec, search_radius=search_rad) - my_gaia = analysis.prepare_gaia_for_flystar(gaia, ra, dec, targets_dict=targets_dict) + # Save original positions as reference (1st) list + # in a StarList format (with velocities). + lis.write('random_par_ref.fits', overwrite=True) + + ########## + # Propogate to new times and distort. + ########## + # Make 4 new starlists with different epochs and transformations. + '''times = [2018.5, 2019.5, 2020.5, 2021.5] + xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], + [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], + [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.0]], + [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]]] + mag_trans = [0.1, 0.4, 0.0, -0.3]''' + + times = [2018.5, 2019.0, 2019.5, 2020.0, 2020.5, 2021.0, 2021.5, 2022.0] + xy_trans = [[[ 6.5, 0.99, 1e-5], [ 10.1, 1e-5, 0.99]], + [[100.3, 0.98, 1e-5], [ 50.5, 9e-6, 1.001]], + [[ 0.0, 1.00, 0.0], [ 0.0, 0.0, 1.0]], + [[250.0, 0.97, 2e-5], [-250.0, 1e-5, 1.001]], + [[ 50.0, 1.00, 0.0], [ -31.0, 0.0, 1.000]], + [[ 78.0, 1.00, 0.0 ], [ 45.0, 0.0, 1.00]], + [[-13.0, 1.00, 0.0], [ 150, 0.0, 1.00]], + [[ 94.0, 1.00, 0.0], [-182.0, 0.0, 1.00]]] + mag_trans = [0.1, 0.4, 0.0, -0.3, 0.0, 0.0, 0.0, 0.0] - assert isinstance(my_gaia, Table) + # Convert into pixels (undistorted) with the following info. + scale = 0.01 # arcsec / pix + shift = [1.0, 1.0] # pix + + for ss in range(len(times)): + dt = times[ss] - lis['t0'] + + par_mod = motion_model.Parallax(pa=0,ra=18.0, dec=-30.0) + par_mod_dat = par_mod.get_batch_pos_at_time(dt+lis['t0'], x0=lis['x0'],vx=lis['vx']/1e3, pi=lis['pi'], + y0=lis['y0'], vy=lis['vy']/1e3, t0=lis['t0']) + x,y = par_mod_dat[0], par_mod_dat[1] + t = np.ones(N_stars) * times[ss] - # Let's make sure the entire align runs, just to be safe + # Convert into pixels + xp = (x / -scale) + shift[0] # -1 from switching to increasing to West (right) + yp = (y / scale) + shift[1] + xpe = lis['x0_err'] / scale + ype = lis['y0_err'] / scale - # Get starlists to align to gaia - epochs = ['15jun07','16jul14', '17may21'] + # Distort the positions + trans = transforms.PolyTransform(1, xy_trans[ss][0], xy_trans[ss][1], mag_offset=mag_trans[ss]) + xd, yd = trans.evaluate(xp, yp) + md = trans.evaluate_mag(lis['m0']) - list_of_starlists = [] + # Perturb with small errors (0.1 pix) + xd += np.random.randn(N_stars) * 0.1 + yd += np.random.randn(N_stars) * 0.1 + md += np.random.randn(N_stars) * 0.02 + xde = xpe + yde = ype + mde = lis['m0_err'] - for ee in range(len(epochs)): - lis_file = 'mag' + epochs[ee] + '_ob150029_kp_rms_named.lis' - lis = starlists.StarList.from_lis_file(lis_file) - list_of_starlists.append(lis) + # Save the new list as a starlist. + new_lis = starlists.StarList([lis['name'], md, mde, xd, xde, yd, yde, t], + names=('name', 'm', 'me', 'x', 'xe', 'y', 'ye', 't')) - # Run the align - msc = align.MosaicToRef(my_gaia, list_of_starlists, iters=2, - dr_tol=[0.2, 0.1], dm_tol=[1, 1], - trans_class=transforms.PolyTransform, - trans_args=[{'order': 1}, {'order': 1}], - motion_models=['Linear'], - use_ref_new=False, - update_ref_orig=False, - mag_trans=True, - init_guess_mode='name', verbose=True) + new_lis.write('random_par_{0:d}.fits'.format(ss), overwrite=True) - msc.fit() - return + return (xy_trans, mag_trans) \ No newline at end of file diff --git a/flystar/tests/test_startable.py b/flystar/tests/test_startable.py index 5580daf..4475970 100644 --- a/flystar/tests/test_startable.py +++ b/flystar/tests/test_startable.py @@ -401,7 +401,7 @@ def test_fit_motion_models(): return -def test_fit_velocities_2epoch(): +def test_fit_motion_model_2epoch(): ########## # Test: only 2 epoch2 ########## From a685011dd0ba2205bc8cf3e3c185532f95a628e5 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Sun, 21 Dec 2025 13:32:53 +0800 Subject: [PATCH 27/29] Merge with upstream mm_rework branch --- flystar/analysis.py | 7 +- flystar/motion_model.py | 9 +- flystar/parallax.py | 186 +----------------------------------- flystar/tests/test_align.py | 8 +- 4 files changed, 16 insertions(+), 194 deletions(-) diff --git a/flystar/analysis.py b/flystar/analysis.py index ceca739..55094e5 100644 --- a/flystar/analysis.py +++ b/flystar/analysis.py @@ -433,7 +433,8 @@ def startable_subset(tab, idx, mag_trans=True, mag_trans_orig=False): combined astrometry + uncombined photometry table. """ # Multiples: ['x', 'y', 'm', 'name_in_list', 'xe', 'ye', 'me', 't', - # 'x_orig', 'y_orig', 'm_orig', 'xe_orig', 'ye_orig', 'me_orig', 'used_in_trans'] + # 'x_orig', 'y_orig', 'm_orig', 'xe_orig', 'ye_orig', 'me_orig', 'used_in_trans', + # 'xe_boot','ye_boot','me_boot'] # Single: ['name', 'm0', 'm0_err', 'use_in_trans', 'ref_orig', 'n_detect', # 'x0', 'vx', 'y0', 'vy', 'x0_err', 'vx_err', 'y0_err', 'vy_err', 't0'] # Don't include n_vfit @@ -441,8 +442,8 @@ def startable_subset(tab, idx, mag_trans=True, mag_trans_orig=False): new_tab = copy.deepcopy(tab) #new_tab.remove_column('n_fit') new_tab.remove_column('n_detect') - for col in ['x','y','m','xe','ye','me','t','x_orig','y_orig','m_orig', - 'xe_orig','ye_orig','me_orig','used_in_trans']: + for col in ['x','y','m','name_in_list','xe','ye','me','t','x_orig','y_orig','m_orig', + 'xe_orig','ye_orig','me_orig','used_in_trans','xe_boot','ye_boot','me_boot']: new_tab[col] = tab[col][:,idx] new_tab.combine_lists('m', weights_col='me', sigma=3, ismag=True) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 1ba2dcf..9a79c89 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -24,6 +24,12 @@ class MotionModel(ABC): name = "MotionModel" def __init__(self, *args, **kwargs): + """ + Make a motion model object. This object defines the fit and fixed parameters, + and contains functions to fit the model to data and infer positions at given times. + Each instance corresponds to a given motion model, not an individual star, + and thus the fit values are only input/returned in functions, not stored in the object. + """ return def model_fit(self, dt): @@ -802,8 +808,7 @@ class Parallax(MotionModel): """ Motion model for linear proper motion + parallax - Requires RA, Dec, and PA parameters (degrees) for parallax calculation. - RA, Dec in J2000 + Requires RA and Dec J2000 (degrees) for parallax calculation. Optional PA is counterclockwise offset of the image y-axis from North. Optional obs parameter describes observer location, default is 'earth'. """ diff --git a/flystar/parallax.py b/flystar/parallax.py index 1a6dcf1..a4f0f8c 100755 --- a/flystar/parallax.py +++ b/flystar/parallax.py @@ -84,39 +84,6 @@ def parallax_in_direction(ra, dec, mjd, obsLocation='earth', pa=0.): return pvec -def dparallax_dt_in_direction(ra, dec, mjd, obsLocation='earth'): - """ - R.A. in degrees. (J2000) - Dec. in degrees. (J2000) - MJD - - Equations following MulensModel. - Time derivative --> units are yr^-1 - - """ - # print('parallax_in_direction: len(t) = ', len(mjd)) - # Munge inputs into astropy format. - times = Time(mjd, format='mjd', scale='tdb') - coord = SkyCoord(ra, dec, unit=(units.deg, units.deg)) - - direction = coord.cartesian.xyz.value - north = np.array([0., 0., 1.]) - _east_projected = np.cross(north, direction) / np.linalg.norm(np.cross(north, direction)) - _north_projected = np.cross(direction, _east_projected) / np.linalg.norm(np.cross(direction, _east_projected)) - - obs_posvel = get_observer_barycentric(obsLocation, times, velocity=True)[1] - sun_posvel = get_body_barycentric_posvel('Sun', times)[1] - sun_obs_vel = sun_posvel - obs_posvel - vel = sun_obs_vel.xyz.T.to(units.au / units.year) - - e = np.dot(vel, _east_projected) - n = np.dot(vel, _north_projected) - - dpvec_dt = np.array([e.value, n.value]).T - - return dpvec_dt - - def get_observer_barycentric(body, times, min_ephem_step=1, velocity=False): """ Get the barycentric position of a satellite or other Solar System body @@ -197,155 +164,4 @@ def get_observer_barycentric(body, times, min_ephem_step=1, velocity=False): if velocity: return (obs_pos, obs_vel) else: - return obs_pos - - -def sun_position(mjd, radians=False): - """ - - NAME: - SUNPOS - - PURPOSE: - To compute the RA and Dec of the Sun at a given date. - - INPUTS: - mjd - The modified Julian date of the day (and time), scalar or vector - - OUTPUTS: - ra: - | The right ascension of the sun at that date in DEGREES - | double precision, same number of elements as jd - dec: - The declination of the sun at that date in DEGREES - elong: - Ecliptic longitude of the sun at that date in DEGREES. - obliquity: - the obliquity of the ecliptic, in DEGREES - - OPTIONAL INPUT KEYWORD: - RADIAN [def=False] - If this keyword is set to True, then all output variables - are given in Radians rather than Degrees - - NOTES: - Patrick Wallace (Rutherford Appleton Laboratory, UK) has tested the - accuracy of a C adaptation of the sunpos.pro code and found the - following results. From 1900-2100 SUNPOS gave 7.3 arcsec maximum - error, 2.6 arcsec RMS. Over the shorter interval 1950-2050 the figures - were 6.4 arcsec max, 2.2 arcsec RMS. - - The returned RA and Dec are in the given date's equinox. - - Procedure was extensively revised in May 1996, and the new calling - sequence is incompatible with the old one. - METHOD: - Uses a truncated version of Newcomb's Sun. Adapted from the IDL - routine SUN_POS by CD Pike, which was adapted from a FORTRAN routine - by B. Emerson (RGO). - EXAMPLE: - (1) Find the apparent RA and Dec of the Sun on May 1, 1982 - - | IDL> jdcnv, 1982, 5, 1,0 ,jd ;Find Julian date jd = 2445090.5 - | IDL> sunpos, jd, ra, dec - | IDL> print,adstring(ra,dec,2) - | 02 31 32.61 +14 54 34.9 - - The Astronomical Almanac gives 02 31 32.58 +14 54 34.9 so the error - in SUNPOS for this case is < 0.5". - - (2) Find the apparent RA and Dec of the Sun for every day in 1997 - - | IDL> jdcnv, 1997,1,1,0, jd ;Julian date on Jan 1, 1997 - | IDL> sunpos, jd+ dindgen(365), ra, dec ;RA and Dec for each day - - MODIFICATION HISTORY: - - * Written by Michael R. Greason, STX, 28 October 1988. - * Accept vector arguments, W. Landsman - April,1989 - * Eliminated negative right ascensions - MRG, Hughes STX, 6 May 1992. - * Rewritten using the 1993 Almanac. Keywords added. MRG, HSTX, 10 February 1994. - * Major rewrite, improved accuracy, always return values in degrees - W. Landsman May, 1996 - * Added /RADIAN keyword; W. Landsman; August, 1997 - * Converted to IDL V5.0; W. Landsman; September 1997 - * Converted to python; J. R. Lu; August 2016 - """ - # form time in Julian centuries from 1900.0 - t_obj = Time(mjd, format='mjd') - t = (t_obj.jd - 2415020.0) / 36525.0 - - # form sun's mean longitude - l = (279.696678 + ((36000.768925 * t) % 360.0)) * 3600.0 - - # allow for ellipticity of the orbit (equation of centre) - # using the Earth's mean anomaly ME - me = 358.475844 + ((35999.049750 * t) % 360.0) - ellcor = (6910.1 - 17.2 * t) * np.sin(np.radians(me)) + 72.3 * np.sin( - np.radians(2.0 * me)) - l = l + ellcor - - # allow for the Venus perturbations using the mean anomaly of Venus MV - mv = 212.603219 + ((58517.803875 * t) % 360.0) - vencorr = 4.8 * np.cos(np.radians(299.1017 + mv - me)) + \ - 5.5 * np.cos(np.radians(148.3133 + 2.0 * mv - 2.0 * me)) + \ - 2.5 * np.cos(np.radians(315.9433 + 2.0 * mv - 3.0 * me)) + \ - 1.6 * np.cos(np.radians(345.2533 + 3.0 * mv - 4.0 * me)) + \ - 1.0 * np.cos(np.radians(318.1500 + 3.0 * mv - 5.0 * me)) - l += vencorr - - # Allow for the Mars perturbations using the mean anomaly of Mars MM - mm = 319.529425 + ((19139.858500 * t) % 360.0) - marscorr = 2.0 * np.cos(np.radians(343.8883 - 2.0 * mm + 2.0 * me)) + \ - 1.8 * np.cos(np.radians(200.4017 - 2.0 * mm + me)) - l += marscorr - - # Allow for the Jupiter perturbations using the mean anomaly of Jupiter MJ - mj = 225.328328 + ((3034.6920239 * t) % 360.0) - jupcorr = 7.2 * np.cos(np.radians(179.5317 - mj + me)) + \ - 2.6 * np.cos(np.radians(263.2167 - mj)) + \ - 2.7 * np.cos(np.radians(87.1450 - 2.0 * mj + 2.0 * me)) + \ - 1.6 * np.cos(np.radians(109.4933 - 2.0 * mj + me)) - l += jupcorr - - # Allow for the Moons perturbations using the mean elongation of - # the Moon from the Sun D - d = 350.7376814 + ((445267.11422 * t) % 360.0) - mooncorr = 6.5 * np.sin(np.radians(d)) - l += mooncorr - - # Allow for long period terms - longterm = + 6.4 * np.sin(np.radians(231.19 + 20.20 * t)) - l += longterm - l = (l + 2592000.0) % 1296000.0 - longmed = l / 3600.0 - - # Allow for Aberration - l -= 20.5 - - # Allow for Nutation using the longitude of the Moons mean node OMEGA - omega = 259.183275 - ((1934.142008 * t) % 360.0) - l -= 17.2 * np.sin(np.radians(omega)) - - # Form the True Obliquity - oblt = 23.452294 - 0.0130125 * t + ( - 9.2 * np.cos(np.radians(omega))) / 3600.0 - - # Form Right Ascension and Declination - l = l / 3600.0 - l_rad = np.radians(l) - oblt_rad = np.radians(oblt) - ra = np.arctan2(np.sin(l_rad) * np.cos(oblt_rad), np.cos(l_rad)) - - if (len(ra) > 1): - neg = np.where(ra < 0.0)[0] - ra[neg] = ra[neg] + 2.0 * math.pi - - dec = np.arcsin(np.sin(l_rad) * np.sin(oblt_rad)) - - if radians: - oblt = oblt_rad - longmed = np.radians(longmed) - else: - ra = np.degrees(ra) - dec = np.degrees(dec) - - return ra, dec, longmed, oblt + return obs_pos \ No newline at end of file diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index 080ded3..ad082cb 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -319,8 +319,8 @@ def test_MosaicToRef_p0_vel(): # The velocities should be almost the same (but not as close as before) # as the input velocities since update_ref == True. assert (msc.ref_table['name']==ref_list['name']).all() - np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], atol=1e-2) - np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], atol=1e-2) + np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], rtol=1e-1, atol=3e-4) + np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], rtol=1e-1, atol=3e-4) # Also double check that they aren't exactly the same for the reference stars. #assert np.any(np.not_equal(msc.ref_table['vx'], ref_list['vx'])) @@ -385,8 +385,8 @@ def test_MosaicToRef_vel(): # The velocities should be almost the same (but not as close as before) # as the input velocities since update_ref == True. assert (msc.ref_table['name']==ref_list['name']).all() - np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], atol=1e-2) - np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], atol=1e-2) + np.testing.assert_allclose(msc.ref_table['vx'], ref_list['vx'], rtol=1e-1, atol=3e-4) + np.testing.assert_allclose(msc.ref_table['vy'], ref_list['vy'], rtol=1e-1, atol=3e-4) # Also double check that they aren't exactly the same for the reference stars. #assert np.any(np.not_equal(msc.ref_table['vx'], ref_list['vx'])) From f75a55febe8bca3a61bb792571d821069a716cd2 Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Mon, 22 Dec 2025 23:48:07 +0800 Subject: [PATCH 28/29] Added Motion Model Example Notebook; Revert Acceleration Velocity Names --- .../examples/motion_model_example.ipynb | 1363 +++++++++++++++++ flystar/motion_model.py | 94 +- flystar/startables.py | 39 +- flystar/tests/test_align.py | 10 +- 4 files changed, 1458 insertions(+), 48 deletions(-) create mode 100644 docs/flystar/examples/motion_model_example.ipynb diff --git a/docs/flystar/examples/motion_model_example.ipynb b/docs/flystar/examples/motion_model_example.ipynb new file mode 100644 index 0000000..413b616 --- /dev/null +++ b/docs/flystar/examples/motion_model_example.ipynb @@ -0,0 +1,1363 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "333cd262", + "metadata": {}, + "source": [ + "# Motion Model Examples" + ] + }, + { + "cell_type": "markdown", + "id": "9251851e", + "metadata": {}, + "source": [ + "# Table of Contents" + ] + }, + { + "cell_type": "markdown", + "id": "1e4364ed", + "metadata": {}, + "source": [ + "# Table of Contents\n", + "- [1. Motion Model](#1-motion-model)\n", + " - [1.1. Example: Linear Model Fit](#11-example-linear-model-fit)\n", + " - [1.2. Example: Acceleration Model Fit](#12-example-acceleration-model-fit)\n", + " - [1.3. Example: Parallax Model Fit](#13-example-parallax-model-fit)\n", + "- [2. Fit Motion Model in StarTable](#2-fit-motion-model-in-startable)\n", + " - [2.1. Example: Default Fitting](#21-example-default-fitting)\n", + " - [2.2 Example: Specify Motion Models](#22-example-specify-motion-models)\n", + " - [2.3. Example: Specify the `motion_model_input` Column](#23-example-specify-the-motion_model_input-column)\n", + " - [2.4. Example: Infer Positions](#24-example-infer-positions)\n", + " - [2.5. Speed Test](#25-speed-test)\n" + ] + }, + { + "cell_type": "markdown", + "id": "4bd92a9d", + "metadata": {}, + "source": [ + "# 1. Motion Model" + ] + }, + { + "cell_type": "markdown", + "id": "0d084c38", + "metadata": {}, + "source": [ + "Summary of currently implemented motion models" + ] + }, + { + "cell_type": "markdown", + "id": "faddd6d8", + "metadata": {}, + "source": [ + "| Motion Model | n_params | params | fixed_params | model | Description |\n", + "|--------------|----------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n", + "| Empty | 0 | NA | NA | $x(t) = $ NaN / fill_value
$x_e(t) = $ Inf | |\n", + "| Fixed | 1 | $x_0$
$y_0$ | NA | $x(t) = $ np.average($x$, weights=$x_{wt}$) | $x_{wt} = 1/xe^2$ if weighting='var'
$x_{wt} = 1/\\|xe\\|$ if weighting = 'std' |\n", + "| Linear | 2 | $x_0, v_x$
$y_0, v_y$ | optional: $t_0 =$ np.average($t, 1/\\sqrt{x_e^2 + y_e^2}$) | $x(t) = x_0 + v_x * (t - t_0)$ | |\n", + "| Acceleration | 3 | $x_0, v_{x0}, a_x$
$y_0, v_{y0}, a_y$ | optional: $t_0 =$ np.average($t, 1/\\sqrt{x_e^2 + y_e^2}$) | $x(t) = x_0 + v_{x0} * (t - t_0) + 1/2 * a_x * (t - t_0)^2$ | |\n", + "| Parallax | 3 | $x_0, v_x, pi$
$y_0, v_y$ | required: ra, dec
optional: $t_0 =$ np.average($t, 1/\\sqrt{x_e^2 + y_e^2}$); $pa=0$; obsLocation='earth' | $x(t) = x_0 + v_x * (t - t_0) + pvec * (t - t_0)$ | pvec is the parallax vector calculated based on ra, dec, pa, and obsLocation.
Only supports the same obsLocation for all stars in StarTable.fit_motion_model right now. |" + ] + }, + { + "cell_type": "markdown", + "id": "6fdc98af", + "metadata": {}, + "source": [ + "Examples on using `flystar.MotionModel`:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "51c963a1", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "markdown", + "id": "473b0674", + "metadata": {}, + "source": [ + "Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ce4edb88", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from flystar import motion_model\n", + "from flystar.startables import StarTable\n", + "from flystar.motion_model import Empty, Fixed, Linear, Acceleration, Parallax" + ] + }, + { + "cell_type": "markdown", + "id": "8c0e8559", + "metadata": {}, + "source": [ + "Prepare data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "86b6319d", + "metadata": {}, + "outputs": [], + "source": [ + "t = np.array([0, 1., 2.2, 3.5, 5.]) + 2025.0\n", + "x = np.array([0., 0.5, 2.1, 3.2, 8.0])\n", + "y = np.array([10.2, 8.5, 9.1, 10.5, 13.0])\n", + "xe = np.array([0.2, 0.5, 0.3, 0.4, 0.6])\n", + "ye = np.array([0.3, 0.2, 0.5, 0.2, 0.4])\n", + "t_test = np.linspace(2025.0, 2030.0, 100) # Test times for model evaluation" + ] + }, + { + "cell_type": "markdown", + "id": "b1a87102", + "metadata": {}, + "source": [ + "## 1.1. Example: Linear Model Fit" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0926c0a8", + "metadata": {}, + "outputs": [], + "source": [ + "mm = Linear()\n", + "params, param_errs = mm.fit(t, x, y, xe, ye)" + ] + }, + { + "cell_type": "markdown", + "id": "1fad1962", + "metadata": {}, + "source": [ + "Evaluate model at time t:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "840693ae", + "metadata": {}, + "outputs": [], + "source": [ + "x_model, y_model = mm.model(t, params)" + ] + }, + { + "cell_type": "markdown", + "id": "42fbd575", + "metadata": {}, + "source": [ + "Or if uncertainties of parameters is provided at the same time, the model will return the model uncertainties as well:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "8fcbdc5d", + "metadata": {}, + "outputs": [], + "source": [ + "x_model, y_model, xe_model, ye_model = mm.model(t, params, param_errs)" + ] + }, + { + "cell_type": "markdown", + "id": "6f9954ef", + "metadata": {}, + "source": [ + "Note that we did not provide the `fixed_params_dict` parameter in the `model` function, so the MotionModel will use the saved self.fixed_params_dict. One can also specify the fixed_params_dict as:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "6752e477", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'t0': np.float64(2027.0454838983064)}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mm.fixed_params_dict" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "eba675c8", + "metadata": {}, + "outputs": [], + "source": [ + "x_model, y_model, xe_model, ye_model = mm.model(t_test, params, param_errs, mm.fixed_params_dict)" + ] + }, + { + "cell_type": "markdown", + "id": "a2acbe90", + "metadata": {}, + "source": [ + "Define a helper function to visualize result" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "7dba325f", + "metadata": {}, + "outputs": [], + "source": [ + "def visualize_fit(t, x, y, xe, ye, x_model, y_model, xe_model, ye_model, mm_name, t_test=None):\n", + " if t_test is None:\n", + " t_test = t\n", + " x = np.atleast_2d(x)\n", + " y = np.atleast_2d(y)\n", + " xe = np.atleast_2d(xe)\n", + " ye = np.atleast_2d(ye)\n", + " x_model = np.atleast_2d(x_model)\n", + " y_model = np.atleast_2d(y_model)\n", + " xe_model = np.atleast_2d(xe_model)\n", + " ye_model = np.atleast_2d(ye_model)\n", + " \n", + " N_cases = x.shape[0]\n", + " fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))\n", + " for i in range(N_cases):\n", + " l0 = ax1.errorbar(t, x[i], yerr=xe[i], fmt='o', color=f'C{i%10}', label='Data')\n", + " l1, = ax1.plot(t_test, x_model[i], label=f'{mm_name} Fit')\n", + " l2 = ax1.fill_between(t_test, x_model[i] - xe_model[i], x_model[i] + xe_model[i], color=f'C{i%10}', alpha=0.3, label='Model Uncertainty')\n", + "\n", + " r0 = ax2.errorbar(t, y[i], yerr=ye[i], fmt='o', color=f'C{i%10}', label='Data')\n", + " r1, = ax2.plot(t_test, y_model[i], label=f'{mm_name} Fit')\n", + " r2 = ax2.fill_between(t_test, y_model[i] - ye_model[i], y_model[i] + ye_model[i], color=f'C{i%10}', alpha=0.3, label='Model Uncertainty')\n", + " ax1.set_xlabel('Time')\n", + " ax1.set_ylabel('X Position')\n", + " ax1.set_title(f'{mm_name} Motion Model Fit')\n", + " ax1.legend(\n", + " [l0, (l1, l2)], \n", + " ['Data', 'Model Fit'],\n", + " )\n", + " \n", + " ax2.set_xlabel('Time')\n", + " ax2.set_ylabel('Y Position')\n", + " ax2.set_title(f'{mm_name} Motion Model Fit')\n", + " ax2.legend(\n", + " [r0, (r1, r2)], \n", + " ['Data', 'Model Fit'],\n", + " )\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ad03fc67", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHqCAYAAAD27EaEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxv5JREFUeJzs3Xd4XOWZ9/HvqMyMymjUe3XvFYyNCcH03ksKfZMlkAQSNhtC9g2YTQJJdsOShEBClmCIQ4nphECAUBI2gHHvXVbvZYpGU895/xAWFpJsSdZYkvX7XJevizlzZs4zltE993nu534spmmaiIiIiIiIiMiwihnpAYiIiIiIiIgci5Rwi4iIiIiIiESBEm4RERERERGRKFDCLSIiIiIiIhIFSrhFREREREREokAJt4iIiIiIiEgUKOEWERERERERiQIl3CIiIiIiIiJRoIRbREREREREJAqUcMuot2LFCiwWC2vWrOn3nP3792OxWFixYsXRG9gwevfdd7FYLIf8DKeeeioWi4XS0tIhXeOhhx7q871H8u9u+fLlWCwWYmJi2LdvX6/nOzo6SElJwWKxcP311w/bdY/kMx/4Wb377rsDOq+vP5dffjkAFouF5cuXd79m27ZtLF++nP379w96XCIio5FieBfF8OuH7bqK4TLWxI30AESGQ15eHh988AETJ04c6aEcEYfDwaOPPtorMJWXl/Puu++SkpIy5Pd+6KGHyMzM7PXeo+HvLjk5mccee4wf/vCHPY6vWrWKUChEfHz8CI3syN17770sW7asx7GMjAwAPvjgAwoLC7uPb9u2jXvuuYdTTjllyF/KRETGmtEQh4aDYrhiuGK49EUz3HJMsNlsLF68mKysrJEeSr98Pt9hz7nqqqt4//332b17d4/jv//97ykoKGDp0qXDPq7R8Hd31VVX8fjjj2MYRo/jjz76KJdccglWq3WERnbkJk+ezOLFi3v8mTx5MgCLFy/uEaxFRMaj0RCHDkcxvH+K4SKHpoRbjgl9lRcdKHXaunUrX/ziF3E6neTk5HDjjTficrl6vN40TR566CHmzZtHQkICaWlpXH755b1KpN58800uuugiCgsLsdvtTJo0iZtuuonm5uYe5x249rp167j88stJS0sb0N3nM844g6KiIn7/+993HzMMg8cff5zrrruOmJje/8v6/X7uvPNOysrKsFqtFBQU8PWvf5329vbuc0pLS9m6dSvvvfded0nUgbuv/ZVmvf/++5x22mk4HA4SExM58cQTefXVV3ucc6BU8J133uHmm28mMzOTjIwMLr30Umpraw/7eQ+48cYbqaqq4s033+w+tmvXLt5//31uvPHGPl9TWVnJ1VdfTXZ2NjabjenTp/Pzn/+8V8Cvra3lyiuvxOFw4HQ6ueqqq6ivr+/zPdesWcOFF15Ieno6drud+fPn86c//WnAn2OwDi5HW7FiBVdccQUAy5YtO2x5oojIsUIxXDFcMVyOZUq45Zh32WWXMWXKFJ577jm+973v8eSTT/Ltb3+7xzk33XQT3/rWtzj99NN58cUXeeihh9i6dSsnnngiDQ0N3eft3buXJUuW8PDDD/PGG29w11138dFHH3HSSScRCoV6XfvSSy9l0qRJrFq1it/85jeHHWtMTAzXX389TzzxBJFIBIA33niD6upqbrjhhl7nm6bJxRdfzH//939zzTXX8Oqrr3L77bfz+OOPc+qppxIIBAB44YUXmDBhAvPnz+eDDz7ggw8+4IUXXuh3HO+99x6nnnoqLpeLRx99lKeeegqHw8EFF1zAM8880+v8r3zlK8THx/Pkk0/ys5/9jHfffZerr776sJ/3gMmTJ/O5z32ux5eU3//+95SWlnLaaaf1Or+pqYkTTzyRN954gx/+8Ie8/PLLnH766XznO9/hG9/4Rvd5nZ2dnH766bzxxhvcd999rFq1itzcXK666qpe7/nOO++wdOlS2tvb+c1vfsNLL73EvHnzuOqqq44oYBqGQTgc7vGnL+eddx733nsvAL/+9a+7f07nnXfekK8tIjLWKYYrhiuGy5hnioxyjz32mAmYH3/8cb/nlJeXm4D52GOPdR+7++67TcD82c9+1uPcW265xbTb7aZhGKZpmuYHH3xgAubPf/7zHudVVVWZCQkJ5ne/+90+r2kYhhkKhcyKigoTMF966aVe177rrrsG9BnfeecdEzBXrVpl7tu3z7RYLOaf//xn0zRN84orrjBPOeUU0zRN87zzzjNLSkq6X/f666/3+RmfeeYZEzAfeeSR7mMzZ840P//5z/e6dl9/d4sXLzazs7NNj8fTfSwcDpuzZs0yCwsLu//uDvxsbrnllh7v+bOf/cwEzLq6ukN+7gN/T01NTeZjjz1m2mw2s6WlxQyHw2ZeXp65fPly0zRNMykpybzuuuu6X/e9733PBMyPPvqox/vdfPPNpsViMXfu3Gmapmk+/PDDvX42pmmaX/3qV3t95mnTppnz5883Q6FQj3PPP/98My8vz4xEIqZpfvqzeueddw752Q6c19ef3bt3m6ZpmoB59913d79m1apVA3pvEZGxQjFcMVwxXMY7zXDLMe/CCy/s8XjOnDn4/X4aGxsB+POf/4zFYuHqq6/ucQczNzeXuXPn9uhk2djYyNe+9jWKioqIi4sjPj6ekpISALZv397r2pdddtmgx1tWVsYpp5zC73//e1paWnjppZf6Lcl6++23AXo1UbniiitISkrib3/726Cv39HRwUcffcTll19OcnJy9/HY2FiuueYaqqur2blzZ4/X9PV3DFBRUTHg615xxRVYrVb++Mc/8pe//IX6+vp+u5q+/fbbzJgxg0WLFvU4fv3112OaZvffyzvvvIPD4eg1vi996Us9Hu/Zs4cdO3bw5S9/GaDHv4Nzzz2Xurq6Xp95oH7605/y8ccf9/hTVFQ0pPcSERlvFMMHRzFcMVxGH3Upl2PegW6SB9hsNqCrVAmgoaEB0zTJycnp8/UTJkwAusqKzjzzTGpra/nBD37A7NmzSUpKwjAMFi9e3P1+B8vLyxvSmP/lX/6FG264gfvvv5+EhITuLSg+q6Wlhbi4uF7NUiwWC7m5ubS0tAz62m1tbZim2efY8/Pzu697sMP9HQ9EUlISV111Fb///e8pKSnh9NNP7/4i9FktLS19dgD97PhaWlr6/Lnm5ub2eHyg5PA73/kO3/nOd/q85mfX+A3UhAkTOO6444b0WhGR8U4xfHAUwxXDZfRRwi3jXmZmJhaLhX/84x/dQeZgB45t2bKFjRs3smLFCq677rru5/fs2dPve1ssliGN6dJLL+XrX/86P/nJT/jqV79KQkJCn+dlZGQQDodpamrqEbBN06S+vp7jjz9+0NdOS0sjJiaGurq6Xs8daKKSmZk56PcdiBtvvJH//d//ZdOmTfzxj3/s97yMjIwBjS8jI4PVq1f3Ou+zDVcOnH/nnXdy6aWX9nnNqVOnDuxDiIjIUaMY3pNiuGK4jD4qKZdx7/zzz8c0TWpqajjuuON6/Zk9ezbwaeD9bED/7W9/O+xjSkhI4K677uKCCy7g5ptv7ve8A81IVq5c2eP4c889R0dHR49mJTabbUB3q5OSkjjhhBN4/vnne5xvGAYrV66ksLCQKVOmDPYjDciSJUu48cYbueSSS7jkkkv6Pe+0005j27ZtrFu3rsfxJ554AovF0r1n5rJly/B4PLz88ss9znvyySd7PJ46dSqTJ09m48aNff4bOO6443A4HMP0Kfs3lFkFEZHxTDG8J8VwxXAZfTTDLWPG22+/zf79+3sdP/fcc4/ofZcuXcq//uu/csMNN7BmzRpOPvlkkpKSqKur4/3332f27NncfPPNTJs2jYkTJ/K9730P0zRJT0/nlVde6bENxnC6/fbbuf322w95zhlnnMFZZ53FHXfcgdvtZunSpWzatIm7776b+fPnc80113SfO3v2bJ5++mmeeeYZJkyYgN1u7/4i8ln33XcfZ5xxBsuWLeM73/kOVquVhx56iC1btvDUU08N+a7/QDz66KOHPefb3/42TzzxBOeddx7/+Z//SUlJCa+++ioPPfQQN998c/eXiWuvvZb/+Z//4dprr+XHP/4xkydP5i9/+Qt//etfe73nb3/7W8455xzOOussrr/+egoKCmhtbWX79u2sW7eOVatWDftn/axZs2YB8Mgjj+BwOLDb7ZSVlfUq9xMRGWsUw3tTDFcMl/FBCbeMGXfccUefx8vLy4/4vX/729+yePFifvvb3/LQQw9hGAb5+fksXbq0u6lHfHw8r7zyCrfddhs33XQTcXFxnH766bz11lsUFxcf8RiGwmKx8OKLL7J8+XIee+wxfvzjH5OZmck111zDvffe2+NO/j333ENdXR1f/epX8Xg8lJSU9PnlB+Dzn/88b7/9NnfffTfXX389hmEwd+5cXn75Zc4///yj9On6l5WVxT//+U/uvPNO7rzzTtxuNxMmTOBnP/tZjy84iYmJvP3229x2221873vfw2KxcOaZZ/L0009z4okn9njPZcuWsXr1an784x/zrW99i7a2NjIyMpgxYwZXXnnlUflcZWVlPPDAA/ziF7/glFNOIRKJ8Nhjj/XbeEZEZKxQDO9NMVwxXMYHi2ma5kgPQkRERERERORYozXcIiIiIiIiIlGghFtEREREREQkCpRwi4iIiIiIiESBEm4RERERERGRKFDCLSIiIiIiIhIFSrhFREREREREomBM78NtGAa1tbU4HA4sFstID0dERGTATNPE4/GQn59PTMz4u/+tGC4iImPVYGL4mE64a2trKSoqGulhiIiIDFlVVRWFhYUjPYyjTjFcRETGuoHE8DGdcDscDqDrg6akpIzwaERERAbO7XZTVFTUHcvGG8VwEREZqwYTw8d0wn2gBC0lJUXBWkRExqTxWk6tGC4iImPdQGL4+Fs0JiIiIiIiInIUKOEWERERERERiQIl3CIiIiIiIiJRMKbXcA9UJBIhFAqN9DBkEOLj44mNjR3pYYiIyAhTDB97FMNFRD51TCfcpmlSX19Pe3v7SA9FhiA1NZXc3Nxx21BIRGQ8Uwwf2xTDRUS6HNMJ94FAnZ2dTWJion7pjxGmaeLz+WhsbAQgLy9vhEckIiJHm2L42KQYLiLS0zGbcEcike5AnZGRMdLDkUFKSEgAoLGxkezsbJWmiYiMI4rhY5tiuIjIp47ZpmkH1nslJiaO8EhkqA787LR2T0RkfFEMH/sUw0VEuhyzCfcBKkEbu/SzExEZ3xQHxi797EREuhzzCfdw8AXDlH7vVUq/9yq+YHikhyMiIiIDoPgtIiIjTQm3iIiIiIiISBQo4R6AiGF2//fq8tYej6Ph+uuvx2KxYLFYiI+PJycnhzPOOIPf//73GIYx4PdZsWIFqamp0RuoiIjIKHa04zcohouISE9KuA/j9S11nH7/e92Pr3/sY0766du8vqUuqtc9++yzqaurY//+/bz22mssW7aM2267jfPPP59wWGVxIiIihzJS8RsUw0VE5FNKuA/h9S113LxyHQ3uQI/j9S4/N69cF9WgbbPZyM3NpaCggAULFvD973+fl156iddee40VK1YAcP/99zN79mySkpIoKirilltuwev1AvDuu+9yww034HK5uu+0L1++HICVK1dy3HHH4XA4yM3N5Utf+lL3fpkiIiJj3UjGb1AMFxGRTynh7kfEMLnnlW30VXx24Ng9r2w7KuVpB5x66qnMnTuX559/HoCYmBh++ctfsmXLFh5//HHefvttvvvd7wJw4okn8sADD5CSkkJdXR11dXV85zvfASAYDPLDH/6QjRs38uKLL1JeXs71119/1D6HiIhItIzG+A2K4SIi41XcSA9gtFpd3kqdy9/v8yZQ5/KzuryVJRMzjtq4pk2bxqZNmwD41re+1X28rKyMH/7wh9x888089NBDWK1WnE4nFouF3NzcHu9x4403dv/3hAkT+OUvf8miRYvwer0kJycflc8hIiISDaM1foNiuIjIeKQZ7n40evoP1kM5b7iYptm9t+U777zDGWecQUFBAQ6Hg2uvvZaWlhY6OjoO+R7r16/noosuoqSkBIfDwSmnnAJAZWVltIcvIjJmaYupsWG0xm9QDBcRGSkjGcOVcPcj22Ef1vOGy/bt2ykrK6OiooJzzz2XWbNm8dxzz7F27Vp+/etfAxAKhfp9fUdHB2eeeSbJycmsXLmSjz/+mBdeeAHoKlMTEREZy0Zr/AbFcBGR8Ugl5f1YVJZOntNOvcvf5zowC5DrtLOoLP2ojentt99m8+bNfPvb32bNmjWEw2F+/vOfExPTdd/kT3/6U4/zrVYrkUikx7EdO3bQ3NzMT37yE4qKigBYs2bN0fkAIiIiUTYa4zcohouIjFea4e5HbIyFuy+YAXQF54MdeHz3BTOIjfnss8MjEAhQX19PTU0N69at49577+Wiiy7i/PPP59prr2XixImEw2F+9atfsW/fPv7whz/wm9/8psd7lJaW4vV6+dvf/kZzczM+n4/i4mKsVmv3615++WV++MMfRuUziIiIHG0jHb9BMVxERD6lhPsQzp6Vx8NXLyA7xdbjeK7TzsNXL+DsWXlRu/brr79OXl4epaWlnH322bzzzjv88pe/5KWXXiI2NpZ58+Zx//3389Of/pRZs2bxxz/+kfvuu6/He5x44ol87Wtf46qrriIrK4uf/exnZGVlsWLFClatWsWMGTP4yU9+wn//939H7XOIiIgcbSMZv0ExXEREPmUxTfPo7osxjNxuN06nE5fLRUpKSo/n/H4/5eXllJWVYbcf2Totjz/E7OVvALDihuP53OSsqN4Zly7D+TMUETlSvmCYGXf9FYBt/3kWidYjW5V1qBg2HhyNGK74PXIUw0VkNBnJGK4Z7gE4ODgvKktXsBYRERkDFL9FRGSkqWnaACRa49j/k/NGehgiIiIyCIrfIiIy0jTDLSIiIiIiIhIFSrhFREREREREokAJt4iIiIiIiEgUKOEWERERERERiQIl3CIiIiIiIiJRoIRbREREREREJAqUcIuIiIiIiIhEwbjch9sfihCMGEflWtbYGOzxsUflWoPx7rvvsmzZMtra2khNTR3Qa0pLS/nWt77Ft771rUFf7/rrr6e9vZ0XX3xx0K8VERE5YLzHcMVvEZGxZdwl3P5QhDe21uPyh47K9Zz2eM6cmTuogH399dfz+OOPc9NNN/Gb3/ymx3O33HILDz/8MNdddx0rVqwY5tEemeXLl3PPPff0Ov7mm2/yi1/8AtM0u4+dcsopzJs3jwceeOAojlBERMay0R7DFb9FROSzxl3CHYwYuPwh7HGx2OKiW1EfCHddKxgxBn2HvKioiKeffpr/+Z//ISEhAQC/389TTz1FcXFxNIY7LGbOnMlbb73V41h6ejpWq3WERiQiIseKsRDDFb9FRORg43YNty0uhkRrXFT/HMmXgQULFlBcXMzzzz/ffez555+nqKiI+fPn9zg3EAhw6623kp2djd1u56STTuLjjz/ucc5f/vIXpkyZQkJCAsuWLWP//v29rvnPf/6Tk08+mYSEBIqKirj11lvp6OgY1Ljj4uLIzc3t8cdqtXL99ddz8cUXA10zAO+99x6/+MUvsFgsWCyWPscjIiLSl9EcwxW/RUTkYOMq4TZNk85gmFDYIBg2CIQjUf0TDBuEwkaPUqzBuOGGG3jssce6H//+97/nxhtv7HXed7/7XZ577jkef/xx1q1bx6RJkzjrrLNobW0FoKqqiksvvZRzzz2XDRs28JWvfIXvfe97Pd5j8+bNnHXWWVx66aVs2rSJZ555hvfff59vfOMbQxr7ofziF79gyZIlfPWrX6Wuro66ujqKioqG/ToiIsMpYnz6u3x1eWuPxxJ9YymGK36LiMgBI1pSHg6HWb58OX/84x+pr68nLy+P66+/nv/3//4fMTHDfy+gMxThhHvfHvb3PZzz5uThTBj866655hruvPNO9u/fj8Vi4f/+7/94+umneffdd7vP6ejo4OGHH2bFihWcc845APzud7/jzTff5NFHH+Xf//3fefjhh5kwYQL/8z//g8ViYerUqWzevJmf/vSn3e/zX//1X3zpS1/qbqgyefJkfvnLX/L5z3+ehx9+GLvdPqAxb968meTk5O7HM2bMYPXq1T3OcTqdWK1WEhMTyc3NHfxfjIjIUfb6ljrufnlr9+PrH/uYPKeduy+Ywdmz8kZwZOPHWIrhit8iInLAiCbcP/3pT/nNb37D448/zsyZM1mzZg033HADTqeT2267bSSHNipkZmZy3nnn8fjjj2OaJueddx6ZmZk9ztm7dy+hUIilS5d2H4uPj2fRokVs374dgO3bt7N48WIsFkv3OUuWLOnxPmvXrmXPnj388Y9/7D5mmiaGYVBeXs706dMHNOapU6fy8ssvdz+22WwD/8AiIqPQ61vquHnlOj47z1nv8nPzynU8fPUCJd3Sg+K3iIgcMKIJ9wcffMBFF13EeeedB3RtW/HUU0+xZs2aqFwvIT6Wj75/Kq9uqiPFHk+CNbpbfXQGI7j9oSPaUuTGG2/sLgv79a9/3ev5A6VuBwfjA8cPHBtIOZxhGNx0003ceuutvZ4bTJMXq9XKpEmTBny+iMhoFjFM7nllW69kG8AELMA9r2zjjBm5xMZY+jhLhstYi+GK3yIiAiOccJ900kn85je/YdeuXUyZMoWNGzfy/vvv97vVRCAQIBAIdD92u92Dup7FYiHBGkd8XAzWuBhscdEN1hHDJD4uplcwHYyzzz6bYDAIwFlnndXr+UmTJmG1Wnn//ff50pe+BEAoFGLNmjXd5WUzZszotX/mhx9+2OPxggUL2Lp161ELtlarlUgkclSuJSIyVKvLW6lz+ft93gTqXH5Wl7eyZGLG0RvYODTWYrjit4iIwAg3Tbvjjjv44he/yLRp04iPj2f+/Pl861vf4otf/GKf59933304nc7uP+OhUUdsbCzbt29n+/btxMb2/nKRlJTEzTffzL//+7/z+uuvs23bNr761a/i8/n4l3/5FwC+9rWvsXfvXm6//XZ27tzJk08+2WsP0DvuuIMPPviAr3/962zYsIHdu3fz8ssv881vfjMqn6u0tJSPPvqI/fv309zcjGEYUbmOiMiRaPT0n2wP5byx4u9//zsXXHAB+fn5WCyWXknf8uXLmTZtGklJSaSlpXH66afz0UcfjcxgRynFbxGR0WMkG5+OaML9zDPPsHLlSp588knWrVvH448/zn//93/z+OOP93n+nXfeicvl6v5TVVU15GsHwga+YDiqfwLh4QlCKSkppKSk9Pv8T37yEy677DKuueYaFixYwJ49e/jrX/9KWloa0FVS9txzz/HKK68wd+5cfvOb33Dvvff2eI85c+bw3nvvsXv3bj73uc8xf/58fvCDH5CXF511id/5zneIjY1lxowZZGVlUVlZGZXriIgciWzHwBpODfS8saKjo4O5c+fy4IMP9vn8lClTePDBB9m8eTPvv/8+paWlnHnmmTQ1NR2V8Y2VGK74LSIy8l7fUsfp97/X/fj6xz7mpJ++zetb6o7K9S3mUPesGgZFRUV873vf4+tf/3r3sR/96EesXLmSHTt2HPb1brcbp9OJy+XqFdD8fj/l5eWUlZX16NDpD0V4Y2s9Ln9o+D7IITjt8Zw5M/eI1nGPV/39DEVEjpaIYXLST9+m3uXvcx23Bch12nn/jlMHvYb7UDFsNLFYLLzwwgvdezH35cBneeuttzjttNMG9L6K4cc2xXARGQ36a3x6IGIPtfHpYGL4iK7h9vl8vbb/io2NjWp5kj0+ljNn5hKMHJ0SKGtsjAK1iMgYFRtj4e4LZnDzynVYoEfAPhCs775gxrhumBYMBnnkkUdwOp3MnTs3qtdSDBcRkYEaLY1PRzThvuCCC/jxj39McXExM2fOZP369dx///3ceOONUb2uPT5WAVRERAbk7Fl5PHz1Au5+eSsN7k8bd+aO8324//znP/OFL3wBn89HXl4eb775Zq+trw52pI1PD1AMFxGRgRgtjU9HNOH+1a9+xQ9+8ANuueUWGhsbyc/P56abbuKuu+4ayWGJiIj0cPasPJZOymT28jcAWHHD8Xxucta4ntletmwZGzZsoLm5md/97ndceeWVfPTRR2RnZ/d5/n333cc999xzlEcpIiLj1WhpfDqiTdMcDgcPPPAAFRUVdHZ2snfvXn70ox9htVpHclgiIiK9HJxcLypLH9fJNnR12Z40aRKLFy/m0UcfJS4ujkcffbTf84ez8amIiMjhjJbGpyM6wy0iIiLHBtM0e5SMf5bNZsNmsx3FEYmIyHi2qCydPKf9sI1PF5WlR3UcIzrDfTRof8ixSz87EZGR4fV62bBhAxs2bACgvLycDRs2UFlZSUdHB9///vf58MMPqaioYN26dXzlK1+hurqaK664YljHoTgwdulnJyIj7UDjU/i00ekBR7Px6TE7w221WomJiaG2tpasrCysVisWy/gu/xsrTNMkGAzS1NRETEyMlhiIiBxla9asYdmyZd2Pb7/9dgCuu+46fvOb37Bjxw4ef/xxmpubycjI4Pjjj+cf//gHM2fOHJbrK4aPXYrhIjKajIbGp8dswh0TE0NZWRl1dXXU1taO9HBkCBITEykuLu61dZyIiETXKaecgmn2VYDX5fnnn4/q9RXDxz7FcBEZLUa68ekxm3BD1x3y4uJiwuEwkUhkpIcjgxAbG0tcXJxmNERExinF8LFLMVxERpuRbHx6TCfcABaLhfj4eOLj40d6KCIiIjIIiuEiIjLWqc5HREREREREJAqUcIuIiIiIiIhEgRJuERERERERkShQwi0iIiIiIiISBUq4RURERERERKJACbeIiIiIiIhIFCjhFhEREREREYkCJdwiIiIiIiIiUaCEW0RERERERCQKlHCLiIiIiIiIRIESbhEREREREZEoUMItIiIiIiIiEgVxIz0AERGRsSDRGsf+n5w30sMQERGRMUQz3CIiIiIiIiJRoIRbREREREREJAqUcIuIiIiIiIhEgRJuERERERERkShQwi0iIiIiIiISBUq4RURERERERKJACbeIiIiIiIhIFCjhFhEREREREYmCuJEegIiIiIiIiEi0JFrj2P+T80bk2prhFhEREREREYkCJdwiIiIiIiIiUaCEW0RERERERCQKlHCLiIiIiIiIRIESbhEREREREZEoUMItIiIiIiIiEgVKuEVERERERESiQAm3iIiIiIiISBQo4RYRERERERGJAiXcIiIiIiIiIlGghFtEREREREQkCpRwi4iIiIiIiESBEm4RERERERGRKFDCLSIiIiIiIhIFSrhFREREREREokAJt4iIiIiIiEgUKOEWERERERERiQIl3CIiIiIiIiJRoIRbREREREREJAqUcIuIiIiIiIhEgRJuERERERERkShQwi0iIiIiIiISBUq4RURERERERKJACbeIiIiIiIhIFCjhFhEREREREYkCJdwiIiIiIiIiUaCEW0RERERERCQKlHCLiIiIiIiIRIESbhEREREREZEoUMItIiIiIiIiEgVKuEVERERERESiQAm3iIiIiIiISBQo4RYRERERERGJAiXcIiIiIiIiIlGghFtEREREREQkCpRwi4iIiIiIiESBEm4RERERERGRKFDCLSIiIiIiIhIFSrhFREQGyDBMIoY50sOIur///e9ccMEF5OfnY7FYePHFF7ufC4VC3HHHHcyePZukpCTy8/O59tprqa2tHbkBi4iIjFJKuEVERAag3Rfk77ubWLu/daSHEnUdHR3MnTuXBx98sNdzPp+PdevW8YMf/IB169bx/PPPs2vXLi688MIRGKmIiMjoFjfSAxARERnNIobJviYv6yvbqXV1Mq8odaSHFHXnnHMO55xzTp/POZ1O3nzzzR7HfvWrX7Fo0SIqKyspLi4+GkMUEREZE5Rwi4iI9MPlC7G+qo09jV4SrbGkJVhHekijksvlwmKxkJqa2u85gUCAQCDQ/djtdh+FkYmIiIysES8pr6mp4eqrryYjI4PExETmzZvH2rVrR3pYIiIyjhmGyZ5GD29sq2dnvYfcFDvZDjtYRnpko4/f7+d73/seX/rSl0hJSen3vPvuuw+n09n9p6io6CiOUkREZGSMaMLd1tbG0qVLiY+P57XXXmPbtm38/Oc/P+QdchERkWhydYZ4f08T7+1sIhg2mJCZhD0+dqSHNSqFQiG+8IUvYBgGDz300CHPvfPOO3G5XN1/qqqqjtIoRURERs6IlpT/9Kc/paioiMcee6z7WGlp6cgNSERExi3DMNnX3MGGynZafAHyUxJIsCrR7k8oFOLKK6+kvLyct99++5Cz2wA2mw2bzXaURiciIjI6jOgM98svv8xxxx3HFVdcQXZ2NvPnz+d3v/vdSA5JRETGIbc/xD/3NvPezkb84QhlGUlKtg/hQLK9e/du3nrrLTIyMkZ6SCIiIqPSiM5w79u3j4cffpjbb7+d73//+6xevZpbb70Vm83Gtdde2+t8NVwREZHhZBgm+1s6WF/ZTrM3QL5Ts9oAXq+XPXv2dD8uLy9nw4YNpKenk5+fz+WXX866dev485//TCQSob6+HoD09HSsVjWWExEROcBimqY5Uhe3Wq0cd9xx/POf/+w+duutt/Lxxx/zwQcf9Dp/+fLl3HPPPb2Ou1yuw5ayiYiIHMzjD7Gxqp2d9V5scTFkp9iIsRy6K1pNeyclGYmcMjX7iK/vdrtxOp2jMoa9++67LFu2rNfx6667juXLl1NWVtbn69555x1OOeWUAV1jNH9+ERGRQxlMDBvRGe68vDxmzJjR49j06dN57rnn+jz/zjvv5Pbbb+9+7Ha71eVUREQG5cCs9oaqdpo8AfKcdhKt2iXzYKeccgqHuh8/gvfqRURExpQR/YaxdOlSdu7c2ePYrl27KCkp6fN8NVwREZEj4Q2EP5nV9hAfa6EsM+mws9oiIiIiQzWiCfe3v/1tTjzxRO69916uvPJKVq9ezSOPPMIjjzwyksMSEZFjjGma7G/xsb6yjUZPgPwhzGqbpsn6yjaSbVrjLSIiIgMzogn38ccfzwsvvMCdd97Jf/7nf1JWVsYDDzzAl7/85ZEcloiIHEM6AmE2Vrezo85DXIyFCUOY1a53+fnDhxXsbPCwv8XHpQsKsWhmXERERA5jxBetnX/++Zx//vkjPQwRETnGmKZJZauPdRXtNHr85KbYSbINLuyFIgavb6nn1c11hA2T+FgLU3OSMU1Qvi0iIjI2hCMG+1t82OJiKEpPPKrXHvGEW0REZLh1BMJsqm5ne52buJgYyjKSiIkZXIa8u8HDEx9WUOfyAzArP4XTp+cwrzh10O8lIiIiI6PR7WdTdTt7mzuYU5CqhFtERGSoTNOkqrWTdZVt1Lu7ZrWTBzmr7QuGeXZtNX/f3QyAwx7HF44vYlFpOrWfJN8iIiIyunUGI2yvc7O1zkUgFIER2mBDCbeIiBwTfMEwm6tdbKt1ExNjYcIgZ7VN02RtRRtPfVyFqzMEwEmTMrl8YeGgk3YREREZGYZhUtHqY2NVOw1uP5nJNvJSEqhs9Y3IePQNQkRExrQDs9rrq9qod/nJGcKsdos3wB9XV7Kp2gVAboqdaxaXMDXXEY0hi4iISBS0eANsrnGxt9FLfOzQlpQNNyXcIiIyZvmCYbZUu9ha5yYGy6ADq2GY/G1HIy9uqCEQNoiNsXDurFzOnZ1HfGxMFEcuIiIiw8UfirC7wcOWGjeeQIh8ZwL2+NGxjacSbhERGXNM06S6rZP1lW3UufzkOOwk2wcX0ipbfDzx4X72t3SVmE3OTuaaxSXkpyZEY8giIiIyzA5UuW2qbqemvZO0RCsTMpNHelg9KOEWEZExpTMYYXONi211LjChNCOJ2EHMagdCEV7aWMtb2xswTEiIj+WKhYWcNDlz0Ptzi4iIyMhw+UJsrmlnd4MXLFCSkUhczOirTlPCLSIiY8JnZ7WzHTYc9vhBvcfmGhcrP6ygpSMIwHElaXxxUTHOhMG9j4iIiIyMUMRgT6OXTdUu2juD5KXYSbSO3rR29I5MRETkE53BCFtquzqQG6Y56FltV2eIZz6uYvX+VgDSk6xcfUIxcwpTozRiERERGW617V3l45WtPhy2eCZkJGEZ5dVpSrhFRGRUq27zsb6yndr2zkHPahumyft7mnl2bTW+YASLBU6flsNF8/JHTTMVEREROTRvIMzWGhc76j1EDIOitMQx09xUCbeIiIxK/lCELTUutta6MYzBz2rXuTr5w4cV7GrwAlCcnsi1S0oozUiK1pBFRERkGIUjBuXNHWyqdtHsDQxpOdlIU8ItIiKjTk17J+sr2qhp6yQ7ZXDBNRQx+MvmOl7bUk/YMLHGxXDxvHxOm5YzqIT9s0zTJBQ2hvx6ERERGbhGt59N1e3sa+4gyRpHWWbSmGxuqoRbRERGjYNntU3TpCRzcB1HdzV4eOLDCupdfgBmFzj58gnFZCbbjmhcXn+YRo8fZ6KVEs2Qi4iIRI0vGGZHnYetdS4CoQgFqQnY4sbuMjAl3CIiMirUtHeyoaKN6rZOshw2UgbRObwjEObZtdX8Y08zACn2OL64qJjjStKOqJlKKGJQ5+okNiaG2YVOZuQ71dFcREQkCgzDZH9LV/l4g9tPZrKNvJSEkR7WEVPCLSIiI8ofirCt1s2WGheRQc5qm6bJx/vbePrjStz+MAAnT87ksgWFJNmGHuIM06TJE6AjGKEkI5HZBU7ynPZR3wlVRERkLGrxBthc42Jvo5f42BjKMpKIOYJlYKOJEm4RERkxte2dbKhsp6rNR2aybVCzx83eACs/qmBLjRuAPKedaxaXMCXHcURjcneGaPIGyEy2cXxZOmWZSWOmE6qIiMhY4g9F2NXgYUuNC28gTL4z4ZjbRUQJt4iIHHX+UITttW4217gIGyYlGQOf1Y4YJm9tb+CljbUEwwZxMRbOm53H2bNyjygxDoQi1Lk7scXFsqAkjel5KSQfwSy5iIiI9M00Tapau/bUrmnvJD3JyoTM5Khdr8Ub4IX1NVjjYlgyMSNq1+mLvkmIiMhRVefqZH1lO5WtHWQl2wc1q72/pYMnPqigstUHwJScZK5ZXEKec+hrvAzDpMHjJxA2KM1MZk6Bk+wU+5DfT0RERPrX7guypcbFrgYPMRbLoG66D5YvGObVzXX8bXsjYcMkbBhcvbgkKtfqjxJuERE5Kg7Mam+pdRGKdO2rPdAA6w9FeHFDDX/b0YhpQqI1lisXFrF0UsYRratu9wVp8QbJcdo5sdA56L2+RUREZGCCYYPdjR4217hw+ULkOe0kWqOTjoYjBu/uauKVjbV0BCMAlGYkcvUJRzfZBiXcIiJyFByY1a5qHfxa7U3V7az8qJLWjiAAi0rTuer4oiPqFu4PRah1dZJsi2PRhHSm5aaQYD221oyJiIiMBqZpUuvys7GqnepWH86EeCZkJkWlEalpmqytaOO59TU0eQIA5DvtXL6wsOu6WdErW++PEm4REYkafyjC9rquDuShiEFJeiJxA1xn3e4L8vTHVaypaAMgM9nK1SeUMKvAOeTxhA2DBneAiGEyJcfBrALnEe/RLSIiIn1z+0NsrXGxs8GDaUJRemLUGpHubvSwak01+5o7gK4tQi+aV8BJkzKJjbF0L0c72pRwi4hIVNS7/KyrbBv0rLZhmvxjdzPPrq2mMxQhxgJnTM/hwrn52IbYudQ0TVo7grR3dpWwzSlMpTg98ZjZckRERGQ0CUUM9jV1sLnaRUtHgByHnWR7dFLPeref59ZVs76yHQBrXAxnzcjhrJm5o6LjuRJuEREZVoHwp/tqD3ZWu7a9kyc+qGBPkxeAkoxErltcSnFG4pDH4wuGqXP5cSbEc+LEDCbnOEZFABYRETkW1bv8bKpuZ39LB8m2OMoyk4iJQvm4xx/ilY11vLeriYhpYrHASRMzuWhePqmJ1mG/3lAp4RYRkWFz8Kx2RpJ1wN3DQxGDVzfX8dqWeiKGiS0uhkvmF3Dq1Owhz0KHIwb1bj+mCTPzU5hV4BxVAVhERORY0hEIs63OzY46N8GIQWFqIta44S8fD4YN3trewGtb6ukMdTVEm1Pg5LKFhRSkDn3XkmhRwi0iIkese1a71kUwPLhZ7R31bv7wYQUN7q7mJnMKnXx5UTEZQ1xbbZomzd4gHn+IwvREZhc4KUxLiEpzFhERkfEuYpiUN3ewqbqdRk+A7GQbeUfQ2LQ/hmnywb4WXlxfQ5svBEBxeiJXLCxkel7KsF9vuCjhFhGRI9Lg7prVrmz5ZFY7ZWB3l72BMM+ureb9Pc0AOBPi+eKiIhYWpw05Ofb6wzR6/DgTrZw0OYtJ2clRubsuIiIi0OQJsKm6nfLmDuxxsUyIUvn41loXz66tpqqtE4D0JCuXzC/ghLL0qFxvOCnhFhGRIQmEu/bV3jzIWW3TNFld3srTa6rw+MMAfH5KFpctKBjyfpyhiEGdq5PYmBhmFzqZke88om3DREREpH+dwQg76txsq3fTGYiQ57QPubHpoVS3+Xh2bTVbat0AJMTHcu7sXE6bljNmbqgr4RYRkUEb6qx2kyfAyg8r2FrXFTjznXauWVLC5GzHkMZhmCZNngAdwTAlGUnMLnCS57SrfFxERCQKDMOkotXHpup26tv9ZCRbycm0D/t12n1BXtxQy//tbcY0IdZi4ZSpWZw/Jw+HfWzdUFfCLSIiA3bwrHZoELPaYcPgrW2NvLyxlmDEIC7Gwvlz8jh7Zu6A13p/lrszRKM3QFayjePL0inLTIra3p4iIiLjXWtHkE3V7ext7CA+1kJpZhKxw7y9pj8U4fWt9byxrYFg2ABgYUkal84vICdl+BP7o0EJt4iIDEiD28/6yjYqBjmrXd7cwRMf7O9edzU1x8E1S0rIHWLgDIQj1Lv9WGNjWFiSxvS8FJJtCmciIiLR4A9F2N3gYUuNG08gRL4zYdi314wYJu/vaealDTW4P1luNjEriSsWFjEpO3lYr3W06RuKiIgcUjBssK3WxZZaF4GwQXF64oBmkv2hCC+sr+HtHY2YQJI1liuPK+LEiRlDKvk2DJNGT4DOUJiyrGTmFDjJHqN3u0VEREY70zSpau1kU3U7Na5O0hKsTMgc3uTXNE02Vrt4bl01dS4/ANkOG5ctKGRBceoxsURMCbeIiPTrs7PauQOc1d5Q1c4fP6ro3rbjhLJ0rjquiJQhNjJr9wVp6QiS7bCzeGIGZVEoYxMREZEu7b4gW2pc7GrwEGOxdC0hixneZVv7mzv409oqdjV4AUi2xXHBnDw+PyVryMvNRiMl3CIi0kswbLCj3s2m6vZBzWq3+4I8tbqKtZVtAGQmW7lmcQkz851DGoc/FKHe5SfBFsui0nSm5jmG3MlcREREDi0YNtjd4GFzrQuXL0Se0z7scbfZG+D5dTWs3t8KQFyMhdOn53Du7NxjMsYfe59IRESOSOMnHcgHM6ttmCbv7Wri+XU1dIYixFjgzBm5XDA3D1vc4Nd5RQyTBrefUMRgUk4yM/OdZDlsQ/k4IiIichimaVLT3smmahfVrT6cCfFMyEwa1pLujkCYv2yu4287GgkbJhZg8YQMLp6XT0bysRvjlXCLiAgw9FntmrZOnvhwP3ubOgAozUjkuiWlFKUnDmkcrR1B2nxB8px2ZhemUpKeSIzKx0VERKLC7Q91l4+bJhQNMP4PVChi8M7ORl7dVEdHMALAtFwHVy4sojhjaN8VxhIl3CIi0mOtdvoAZ7WDYYM/b67lr1saiJgmtrgYLplfwKlTs4eUIPuCYerdfhy2eJZMzGBKjmPYu6CKiIhIl1DEYG+Tl01VLtp9QbJT7MO664dpmqypaOO5ddU0e4MA5KfauXxBIbMLnEe1IZphmoQjxlG73sGUcIuIjGNDndXeXufmDx9W0OgJADCvMJUvnVBMepJ10GMIGwb1Lj+G2XXHe1ZB6pDeR0RERAamztXJpqp2Klp9OGzxlA1z+fjuBg+r1lazr7mr+s2ZEM9F8/JZOjHzqDY9NUyT1o4grs4QaYlWclKOfum6Em4RkXFqKLPaXn+YP62t4p97WwBITYjni4uKh7R1h/lJEGzvDFGQmsCcwlQK0xJUPi4iIhIl3kCYbTUuttd7iBgGRWnDWz5e7/bz3Npq1le1A2CLi+HsmbmcOSMH21GsWjMMk5aOIG5/iPQkKydOzKAsK3lYZ/AHSgm3iMg4M5RZbdM0+bC8lWc+rsIbCGMBTpmaxSXzC4bUUbQj0FU+7kyM56RJmUzKSR5SczURERE5vHDEoLy5g03VLpq9AbIdNhz2oW3V2RePP8TLG2v5+65mIqaJxQKfm5TJRfMKcA5xS9ChODjRzkiysXRSBmWZySSNQKJ9gBJuEZFx5OAO5AOd1W70+Fn5YSXb6twAFKQmcO2SEiZmJQ/6+qGIQb3bD8CsfCezCpw4E49eIBYRERlvGtx+Nle3U97iIzE+lrLMJGKGqXw8EI7w1vZGXttShz/UtUZ6TqGTyxcUkp96+O8YwyVimLR0BPAEwmQm2fjc5CxKMxNHxTZjIz8CERGJuqHMaocNgze2NvDKplpCEZO4GAsXzs3nzBk5xA2y/MwwTVq8QTyBEIVpicwpdFKQmnBUG6aIiIiMJ75gmG21brbXuQlGDPKd9mGrJjMMkw/KW3hxfQ1tvhAAxemJXHlcIdNyU4blGgMRMUyavQG8gTBZDhvzitIoy0wiwTp6quYGnXB3dHTwk5/8hL/97W80NjZiGD27ve3bt2/YBiciIkduKPtq723y8sQHFdS0dwJdzcyuWVxCTop90Nf3+EM0egKkJVo5eUoWEzKTscYN33ox6RKJRFixYkW/8fntt98eoZGJiMjRFDHMT8rH22nyBMhMtpE3jGXdW2tdPLu2mqq2ru8I6UlWLp1fwKKy9GGbOT+csGHQ7A3iC4TJcthZWJpGaUbSqNzdZNAJ91e+8hXee+89rrnmGvLy8jQ7ISIySgXDBtvr3GyuGfisdmcwwgvra3hnZyMmkGyL44rjCjlxQsagf9+HIga1rk7iYmKYW+hkRoGTlGFcLyY93XbbbaxYsYLzzjuPWbNmKT6LiIxDjR4/W6rd7Gv2Yo+LpSwjadiakVa3+Vi1tpqttV1LzBLiYzl3di6nT88Z1sZrhxI2DJo9QXyhMNkOO8eXplOSkTgqE+0DBp1wv/baa7z66qssXbo0GuMREZFhMJQO5Osr23hydWV3adiSCRlceVzhoJuqGKZJkydARzBMSUYSswuc5DntSgCj7Omnn+ZPf/oT55577kgPRUREjrLOYIQddW621rnwhwzyUuzD1hW8zRfkxfU1/HNvCyYQG2Nh2dQszp+dT7L96KxQDkcMmrwBOkMRclLsnDAhneKMxDHRcHXQf0NpaWmkp6dHYywiInKEAuEI22vdbKl1DXhWu80X5MnVlayvbAcgy2Hj2sUlTM8b/Bosd2eIRm+ArGQbx5elU5aZdNTueo93VquVSZMmjfQwRETkKDIMk/0tXd3HG9z+AS8dGwh/KMLrW+p5Y1sDwUjXMqXjStK4dEEB2Y7BLzEbilDEoMkTwB82yE2xsWRiBkXpYyPRPmDQCfcPf/hD7rrrLh5//HESExOjMSYRERmCg2e1BxJwDcPk3V1NPL++Gn/IINZi4axZOZw/O3/Qa6wD4Qj1bj/W2BgWlqQxPS9lRPa6HM/+7d/+jV/84hc8+OCDqiYQERkHWrwBNte42NvoJT42ZtjKxyOGyd93N/Hyxlo8/jAAk7KSueK4wiHtUDIUoYhBoydAMNI1Wz8tL4Xi9MQx2QNm0N+Gfv7zn7N3715ycnIoLS0lPr5nqeG6deuGbXAiInJ4B2a1N9e6CA5wVruqzccfPqhgX3MHABMyk7h2SQmFaYO7kWoYJo2eAJ2hMGWZScwuTB1SYzU5cu+//z7vvPMOr732GjNnzuwVn59//vkRGpmIiAwnf6irfHxbnRtvIEy+M2FY1jCbpsnGahfPrqum3tW1hWeOw8alCwpZUJx6VG7mhiIGje4AwUiEgtREpuY5BvS9ZjQbdMJ98cUXR2EYIiIyFJ+d1c47zKx2MGzwyqZa3tjaQMQ0scfHcOn8Qk6ZkjXou+KuzhDN3gBZDhuLJ2ZQlplE7DA1ZpHBS01N5ZJLLhnpYYiISJQYhkllq49N1e3UujrJSLIxIXN4ZpzLmztYtbaKXQ1eoKtp6oVz8zl5SiZxMdFPdoNhg0aPn7Bhkp+awLRcB0VjPNE+wGKapjnSgxgqt9uN0+nE5XKRknL09nsTERlpB89qh8IGec6EwwalrbUuVn5YSZM3AMCC4lS+uKiYtETroK7tD0Wod/mxW2OYkedkWp6DRKvKxwdrvMew8f75RUQGo7UjyKbqdvY1dRAbYyEnxTYsiXCTJ8AL62tYvb8VgPhYC2dMz+HsWblHJbYHwhEaPQEMwyQ/LYFpuSkUpSUQN8oT7cHEsCH/La5du5bt27djsViYMWMG8+fPH+pbiYjIINS7/KyvaqNygLPaHn+IP62p5oN9LQCkJcbzpUXFzC9OG9R1I4ZJg9tPKGIwISuZWYUpR61pigxcU1MTO3fuxGKxMGXKFLKyskZ6SCIiMkT+UITdDR621LjxBELkpSSQYD3y8nFvIMyrm+t4Z0cjYcPEAiyZmMHF8wpITxrcjfihCIQjNLoDGKZJwSeJduEYSLSHYtAJd2NjI1/4whd49913SU1NxTRNXC4Xy5Yt4+mnn1ZgFxGJkkA4wrZPOpAHwwYl6YmHDEymafLPfS2sWlONNxDGAiybls0l8woGHazbfUFavEFynHbmFDopyVD5+GjT0dHBN7/5TZ544gkMo6ubbGxsLNdeey2/+tWv1OhURGQMMU2TqtZONlW3U9PeSVqilbKMpCNeRx2KGLy9o5FXN9fhC0YAmJ7n4IqFRRSnRz9OBEIRGr0BDAMK07tKxwvTEo/p7xSDTri/+c1v4na72bp1K9OnTwdg27ZtXHfdddx666089dRTwz5IEZHxrt7lZ11lG1WtA5vVbnD7+cOHFeyo9wBQmJbAtYtLmDDI7qL+UIQ6l58kWyyLJqQzLTdlWO6sy/C7/fbbee+993jllVdYunQp0NVI7dZbb+Xf/u3fePjhh0d4hCIiMhDtviCba1zsbvASY4GSjMQjLh83TZOP97fx/Ppqmr1BAApSE7hiYSEz81Oi3hDNH+oqHQcoSu+a0c5PTTimE+0DBr2G2+l08tZbb3H88cf3OL569WrOPPNM2tvbh3N8h6T1XyJyrPOHImyvc7OlxkUoYpDvPHS5VThi8NdtDbyysZawYRIfa+HCufmcMSNnUME6bBg0uAOEIyYTs5OYVeAkM9k2HB9JPjHcMSwzM5Nnn32WU045pcfxd955hyuvvJKmpqYjvsZwUgwXEekpEP60fNztD5GbYh+WddS7Gjz8aU0V+1t8ADgT4rlkXgEnTswYlm3EDqUr0fZjAiXpiUzNTaEgNSHq1422qK7hNgyj11YjAPHx8d0lbCIicuTqXJ2sr2z/dFbbeehZ7T2NXp74cD+17V1beczIS+HqxcWDWmdtmiZtvhBtviB5TjtzClMpTk8c84FxPPD5fOTk5PQ6np2djc/nG4ERiYjIQJimSXVbJ5uq2qlu7yQ1IX5YysfrXJ08t66GDVXtANjiYjh7Zi5nzsjBNgzbiB1KZzBCo9ePBSjOSGJaroN859hPtIdi0An3qaeeym233cZTTz1Ffn4+ADU1NXz729/mtNNOG/YBioiMN/5QVwfyLbVds9qHW6vtC4Z5fl0N7+1qwqRrK48vHF/ECWXpgwrWvmCYercfhy2eJRMzmJLjGJZ9PeXoWLJkCXfffTdPPPEEdnvXTZbOzk7uuecelixZMsKjExGRvrT7gmz5pHwcC4eN+QPh6gzxysZa/r67CcOEGAt8bnIWF87Nx5nQe+J0OB1ItGOwUJaRzJTc5HGbaB8w6IT7wQcf5KKLLqK0tJSioiIsFguVlZXMnj2blStXRmOMIiLjRm17Jxuquma1M5NthwyMpmmyrrKdJ1dX4uoMAXDixAyuXFhEsn3gv97DhkG9y49hwrRcB7MKUo9Kh1IZXr/4xS84++yzKSwsZO7cuVgsFjZs2IDdbuevf/3rSA9PREQOEghH2NPgZXOtC5cvRJ7zyMvHA+EIb25r4LUt9QTCXZXHcwudXLagkPzUQ1fJHSlfMEyTN0CMxcKEzGSm5DrIS7GP60T7gEH/VIuKili3bh1vvvkmO3bswDRNZsyYwemnnx6N8YmIjAv+UFcH8q21LkIR87B3uFs7gjz5USUbqtsByHHYuHpxCdPzBr4W1jRNWjuCtHeGKEhNYE5hKoVp4/su9Fg2a9Ysdu/ezcqVK7vj8xe+8AW+/OUvk5AQ3S9aIiIyMAfKxzfXuKhu9ZGSEM+EzCMrHzeMrl1JXlxfQ/snN+BLMxK5YmERU3MdwzX0PvmCYRo9fuJiY5iYlcyUHAd5TnvUm7CNJYNumjaaqOGKiBwLats72VDZTlXb4We1DcPk7Z2NvLC+hkDYIDbGwjkzczlvTh7xgyhB8wXD1Ln8OBPimVWQwuQcB7Y4lY8fTaM5hv3973/nv/7rv1i7di11dXW88MILXHzxxd3PP//88/z2t79l7dq1tLS0sH79eubNmzeoa4zmzy8iEg0uX4gttS52NXiwALkp9iMuH99S42LV2mpq2jsByEy2csn8Ao4vTScmiklvRyBMo9ePNTaWkoxEpuY6yE0ZP4n2sDdN++Uvf8m//uu/Yrfb+eUvf3nIc2+99daBj1REZBzzhyJsrXGxtdZN2DAPu+1HVauPxz/Y391ldGJWEtcuKaVgEGVi4YhBnaurqdrM/BRmFThJTVT5+Fj18ssvc8455xAfH8/LL798yHMvvPDCAb9vR0cHc+fO5YYbbuCyyy7r8/mlS5dyxRVX8NWvfnXQ4xYRGU+CYYM9jV4217ho7wyS67CTZDuy8vGqVh+r1lazrc4NQKI1lvNm53HqtOxB3YAfrI5AmCZPgPi4GCZnO5iWm0JOim3cJNpDMaAZ7rKyMtasWUNGRgZlZWX9v5nFwr59+4Z1gIeiu+MiMlbVtHeyvqKNmvbOw85qB8IRXtlYxxvb6jFMSIiP5bIFBZw8JWvAd69N06SlI4i7M0RheiKzC5wUpiUoQI6g4YhhMTEx1NfXk52dTcwhbtZYLBYikciQrmGxWHrNcB+wf/9+ysrKNMMtItIH0zSpae9kU/Wn5eMZSdYjir2tHUFe3FDDB3tbMIG4GAvLpmVz3uw8ko8wiT8UbyBM8yeJdllm1/Ze2Y7xm2gP+wx3eXl5n/8tIiKD4w9F2PLJrLZpHn5We2utiz98WEGzNwjAwpI0vnh80aBmpb2BMA1uP6mJVpZOzmRytgNrXPTufsvRc/B2nNqaU0Rk9HB1htha62JnvQeAovTEI5p57gxGeG1rHW9tayQY6fp9f3xpGpfOLyTLYRuWMffF6+9qhmaLi2FqnoOpOQ6yxnGiPRSDvg3yn//5n3znO98hMTGxx/HOzk7+67/+i7vuumvYBiciciypbvOxobKdmrZOshw2Ug4xq+3uDPHMmio+Km8FID3RypdOKGZeUeqArxeKGNS7/VgsMKvAyax8J87E6G4HIiPniSee4KqrrsJm6/nFKxgM8vTTT3PttdeO0Mi6BAIBAoFA92O32z2CoxERiY4e5eO+IDkp9iOaeQ4bBv/Y1czLm2rx+MMATM5O5oqFhUzISh6uYffi8Ydo8gZIiI9lep6DKbkOspKVaA/FoJumxcbGUldXR3Z2do/jLS0tZGdnD7lkbShUjiYiY0FnMMKWWhfbat0Yhkleqr3fWW3TNPm/vS2sWlNFRzCCxQKnTcvm4nkFA94T2zRNmr1BPIEQhWmJzCl0UpCq8vHRZrhjWLTi83CVlC9fvpx77rmn13HFcBE5FvQoH2/z4bDFk5k89PJx0zTZUNXOs+uqaXB33azMSbFx+YJC5hWlRi2mH5xoT8hMZnJuMtkOe1SuNZYNe0n5wUzT7PMHvHHjRtLT0wf7diIix6wDW3+sr2yjzuUn22HDYe9/hrne7ecPH1Sws+GT8rO0BK5bUkppZtKAr+n1d23PkZpo5XOTs5iYlazy8XGiv/hcXV2N0+kcgRH1dOedd3L77bd3P3a73RQVFY3giEREhseB8vFdDR5ME4rSjqx8fF+Tl1Vrq9nd6AUg2RbHRXPz+dyUzEMuQzsSByfaswqcTM52RLVUfTwZcMKdlpaGxWLBYrEwZcqUHkE9Eong9Xr52te+FpVBioiMNb5gmC3VLrbVuzFNKM1IIraf/a3DEYPXttbz6qY6woaJNTaGi+blc/r0nH5f81mhiEGdq5PYmBhmFzqZWeAk5RDJvRw75s+f3x2fTzvtNOLiPg3tkUiE8vJyzj777BEcYRebzdar3F1EZCwLhg32NnnZVD085eNNngDPr6/m4/1tAMTHWjhjeg7nzMojwRqdrTu7E21rV6I9JcdBZrJ+Vw+nAf+LeOCBBzBNkxtvvJF77rmnx91yq9VKaWkpS5YsicogRUTGisHOau9u9PCHDyqo/WSrrln5KXz5hJIB31U2TJNmbwBvIExxeiJzClPJc46ffTCF7lLvDRs2cNZZZ5Gc/OmavgPxua+tvQ7F6/WyZ8+e7sfl5eVs2LCB9PR0iouLaW1tpbKyktraWgB27twJQG5uLrm5uUf4iURERre+yscnZCYNOfZ6A2Fe3VTH2zsbiRgmFmDJxAwunldAelJ0tu50d4Zo7giQaI1ldoGTyUq0o2bQa7jfe+89TjzxROLjR37mRGu4RWQ08QXDbK52sa3OTQwWcp32fmeofcEwz62r4b1dTQA47HF84fgiFpWmDzhge/whGj0B0pOszClMZUJWUlT33pThNdwx7PHHH+eqq67Cbj/ytXbvvvsuy5Yt63X8uuuuY8WKFaxYsYIbbrih1/N33303y5cvH9A1FMNFZCz6bPl4bop9yLE3FDF4e0cjr26uwxfs6rMxIy+FKxYWUpSeeJhXD42rM0SzN0CSLZZJ2Q4mZyeToUR70AYTwwaUcLvd7u43OlxX0aMZNBWsRWQ0ME2TylYf6yvbaXD7yXHYSbb3XUBkmiZrK9p46uMqXJ0hAE6alMnlCwsHXIYWihjUujqJi4lhWq6DGfkph5xFl9FpvMew8f75RWRsGc7u44Zp8nF5Ky9sqOne9rMgNYErFhYyqyA6PTcOJNrJ9jgmZSUzSYn2ERn2pmlpaWndnU9TU/vuinegWcvR7FIuIjLSOgJhNlW3s6POQ0yMhbKMJGL6mdVu8Qb44+pKNlW7gK674tcsLmFqrmNA1zJMkyZPgI5gmJKMJOYUOslzJgzbZ5GxJz09nV27dpGZmdnda6U/ra2tR3FkIiLHhuEuH99Z72HV2ir2t/gASE2I5+L5BZw4IaPf7w9HwvVJ6XiyLY75RalMynFErUxd+jaghPvtt9/u7kD+zjvvRHVAIiJjgWmaVLR8Mqvt8ZN7iDvdhmHytx2NvLihhkDYIDbGwrmzcjl3dt6Ay9AOlI9nJNk4viydskyVjwv8z//8Dw6Ho/u/tXZfRGT4uHwhtta52Fl/YPeQoXcfr23v5Ll11Wz85Ka7LS6Gc2blcsaMHGxxw98Q7UCi7bDFMb8wlck5DtKUaI+IQa/hHk1UjiYiI8F70Kx2XIyF3BR7v3elK1t8PP7hfio+uZM9OTuZaxaXkJ86sJnpYNigzt1JfEwMU1U+fkwZ7zFsvH9+ERm9gmGD3Y0ettS4ae8Mdi0VG2L5uKszxMsba/nH7iYME2IscPLkLC6Ym48zYXjjuWmauDpDtHQEcXxSOq5EOzqiug/366+/TnJyMieddBIAv/71r/nd737HjBkz+PWvf01aWtqQBn3ffffx/e9/n9tuu40HHnhgSO8hIhJNhmGyv6WDDVXtNHkC5KbYSeonAAdCEV7aWMtb2xswTEiIj+WKhYWcNDmTmAHMQn5aPh6hNKOr+3iu88ibYcmxa926dcTHxzN79mwAXnrpJR577DFmzJjB8uXLsVr1hUtE5FAO7DSyucZFdauPlIR4JmQMrXw8EI7w5rYGXttSTyBsADCvMJXLFhYM+3KwzybaC0rSmJSVrER7lBh0TcS///u/dzdO27x5M7fffjvnnnsu+/bt4/bbbx/SID7++GMeeeQR5syZM6TXi4hEm8cf4p97m3l3ZxMdgTBlmUn9Jtuba1zc9fJW3tjWlWwfV5LGjy6exclTsgaUbHv8IfY1d2CPj+WUqVmcOi1bybYc1k033cSuXbsA2LdvH1dddRWJiYmsWrWK7373uyM8OhGR0c3lC/HPPS28ta2BRref4vREMpNtg062DcPk/d3N/McLW3hxQy2BsEFpRiLfPWsq3zh10rAm26Zp0u4LUt7cQTBisKAkjXNn53F8abqS7VFk0DPc5eXlzJgxA4DnnnuOCy64gHvvvZd169Zx7rnnDnoAXq+XL3/5y/zud7/jRz/60aBfLyISTYZhUt7SwYbKdlq8AXKddhKtff/qdHWGeObjKlbv72pOlZ5k5eoTiplTmDqgax0oH7fGxrCgOI0Z+SlDLmGT8WfXrl3MmzcPgFWrVvH5z3+eJ598kv/7v//jC1/4gqrHRET6EAhH2NPQ1X3c1Rk6ZPXaoZimydZaN6vWVlPT3glAZrKVS+cXclxp2oBuuA/mWr1mtLOTSU1Ukj0aDfpfk9VqxefrWov41ltvce211wJdnVIPt2VYX77+9a9z3nnncfrppx824Q4EAgQCge7HQ7meiMhAuTpDbKxqY3eDF1tcLKWZSX0GTMM0eX9PM8+urcYXjGCxwOnTc7hobj72+MM3QjlQPu4LdZWPzy5Q+bgMnmmaGEZX2eJbb73F+eefD0BRURHNzc0jOTQRkVGnu3y82kVVm4/UhKF3H69s9bFqbRXb67qaqyVaYzlvdh6nTsse1ganByfaKfZ4FirRHhMGnXCfdNJJ3H777SxdupTVq1fzzDPPAF131gsLCwf1Xk8//TTr1q3j448/HtD59913H/fcc89ghywiMiiGYbKv2cuGShctvgD5KQkkWPtOnOtcnfzhwwp2NXgBKE5P5NolJZRmJA3oWu7OEE3eAJnJNhZ90n08Tt3HZQiOO+44fvSjH3H66afz3nvv8fDDDwNdlWk5OTkjPDoRkdGjrSPIlloXuxs8WCwWStIThxR7WzuCvLihhg/2tmACcTEWlk3L5rzZecNaoaZEe2wb9L+EBx98kFtuuYVnn32Whx9+mIKCAgBee+01zj777AG/T1VVFbfddhtvvPEGdvvAZnLuvPPOHuvE3W43RUVFg/sAIiKH4PKFWF/Vxp5GLwnxsV37avdxtzsUMXhtSz1/2VxH2DCxxsVw8bx8TpuWQ+wA9tEMhCPUu/1d5eMlaUzPU/m4HJkHHniAL3/5y7z44ov8x3/8B5MmTQLg2Wef5cQTTxzh0YmIjDx/KMLuBg9ba924/V3l4/0tEzsUXzDM61vqeXN7A6FI14ZPi0rTuWR+AVkO27CNt69Ee3K2A2eidisZS0ZsW7AXX3yRSy65hNjYT2eNIpEIFouFmJgYAoFAj+f6oi1FRGS4RAyTvU1e1le24+oMku9M6LccfFeDhyc+rKDe5QdgdoGTL59QTGby4YPsp93Hw0zITGJ2YSo5KSofH4+OVgzz+/3ExsYSHz+6vqAphovI0WIYJlVtPjZXu6hp7yQ1IZ70JOugy8fDhsHfdzXz8sZavIEw0LXd5xXHFTIhM3nYxvvZRHtyTrIS7VEmqtuCQVdi/OKLL7J9+3YsFgvTp0/noosuOmyCfLDTTjuNzZs39zh2ww03MG3aNO64445BvZeIyJFo6wiysbqdXQ0ekm1xlPWzBUhHIMyza6v5x56u9bAp9ji+uKiY40rSBhS0VT4uR8PatWt7xOcFCxaM9JBEREZMa0eQTdXt7GvqINZioSQjkbiYwcVe0zRZX9XOc2urafB09ZPKTbFz2YIC5hWlDmndd3/X0Yz2sWfQCfeePXs499xzqampYerUqZimya5duygqKuLVV19l4sSJA3ofh8PBrFmzehxLSkoiIyOj13ERkWgIRwz2NHnZUNWOuzNEgTMBWx+z2qZp8vH+Np7+uBK3v+uO9smTM7lsQeGAOpl+tnx8Rl7KkDqgihxKY2MjV111Fe+99x6pqaldX9xcLpYtW8bTTz9NVlbWSA9RROSo8Yci7Khzs63OjTcQJu8Q/VgOZW+Tl1VrqtnT1NWrxWGP48K5+XxucuagE/f+KNE+tg36G9+tt97KxIkT+fDDD0lPTwegpaWFq6++mltvvZVXX3112AcpIjLcWrwBNlS1s7epA8chZrWbvQFWflTBlpquXRFynXauXVzClBzHYa+h8nE5mr75zW/i8XjYunUr06dPB2Dbtm1cd9113HrrrTz11FMjPEIRkegzDJOKVh+bq9updXWSkWQbUrl3o8fP8+tqWFPRBoA1NoYzZ+Rw9qzcAe1AMhCfTbSPK01nUlayEu1jzKDXcCclJfHhhx8ye/bsHsc3btzI0qVL8Xq9wzrAQ9H6LxEZrFDEYFeDh01VLryBMPmpdmxxvQNnxDB5a3sDL22sJRg2iIuxcO7sPM6ZlTugLT4OLh+fU+hU+bj0MtwxzOl08tZbb3H88cf3OL569WrOPPNM2tvbj/gaw0kxXESGW5MnwNZaF3sbvcTHxpCTYh9QI9ODef1h/ry5lnd2NhExTCzAiRMzuHh+AWnD1BX8s4n2lFyHEu0xJqpruG02Gx6Pp9dxr9eL1arW9CIyejV5AmyoaqO8uQOnPZ6yzL637trf0sETH1RQ2eoDYEpOMtcsLiHPmXDYa6h8XEaKYRh9NkaLj4/v3p9bRORY5AuG2VnnYVu9G18gQp7TPuhZ6FDE4O0djby6uQ5fMALAzPwULl9YSFFa4rCMUzPa49OgvwWef/75/Ou//iuPPvooixYtAuCjjz7ia1/7GhdeeOGwD1BE5EgFwwY7691srnHREQxTmJqINa73bLM/FOGlDbW8taMB04REayxXLCxk6aTMPrcGO9iB8nFfKEJpRiJzVD4uR9mpp57KbbfdxlNPPUV+fj4ANTU1fPvb3+a0004b4dGJiAy/iGFS3tzB5moXjR4/GUlWcjIHF3sN02R1eSsvrK+hpSPYffwbp0xkXnHasIxTifb4NuiE+5e//CXXXXcdS5Ys6b6THg6HufDCC/nFL34x7AMUETkSjW4/66vaqWjuIDXRSllG3+u4NlW3s/KjSlo/CbaLStO56vginAmHD4Yef4gGT4AsdR+XEfTggw9y0UUXUVpaSlFRERaLhcrKSmbPns3KlStHengiIsOq0e1nU42L/c0d2OJiKMtIImaQ5eM76t2sWltNRUtXRVtqQjztnSEApucd+VIXNUMTGELCnZqayksvvcSePXvYvn07pmkyY8YMJk2aFI3xiYgMSSAcYXutmy21LgJhg6L0xD7XXrs6Qzy1urK7KUpmspWrTyhhVoHzsNcIhg3q3J1YY2NYWJLG9LwUklU+LiOkqKiIdevW8dZbb/WIz6effvpID01EZNh4A2G217nZUecmEI6Ql9L3DiOHUtveybPrqtlU7QLAHh/DObPyOHlSJt9etfGIx6hEWw424G+GhmHw85//nBdffJFQKMTpp5/OXXfdhd2ukkkRGV3qXJ2sr2ynqtVHRpKV3JTea68N0+Qfu5t5dm01naEIMRY4Y3oOF87NP2zg/rT7eISyzERmF6SS69TvQhk5q1at6hGfv/nNb470kEREhlUoYnSXjzd7u6rKBtJb5WCuzhAvbajhH3uaMU2IscDnp2RxwZx8UhLiCYQiRzTGA4l2a0eQZHscC0vSmJSdTOowNVuTsWnACfdPf/pT/t//+3+cdtppJCQkcP/999Pc3MwjjzwSzfGJiAyYP/TprHYoYlCSnthnaXdteydPfFDRvadmSUYi1y0upTjj8E1RPP4QjZ6u7uMqH5fR4JFHHuFrX/sakydPxm6389xzz1FeXs5999030kMTETlipmlS5/KzucZFRYuPJGssZZlJh+2tcrBAKMIb2xp4fWs9gXBXE8n5RalctqBwWG6Ym6aJ2x+m2RvAYY9jgRJtOciAE+4VK1bwq1/9iltuuQWA119/nYsvvpjf/va3fe5dKyJyNNW0d7K+oo2a9k4yk219rr0ORQz+srmOv2ypJ2KY2OJiuGR+AadOzT7suq9QxKDO1UlcTAzzi1KZUeBU+biMCr/61a/4j//4D374wx8CXfH6m9/8phJuERnzXJ0httW62NXgJWIYFKUlDGhrzgMMw+T9vc28tKEW1ydrs8syk7hiYSFTchzDNsaDE+3JSrTlMwb8bbGiooLzzz+/+/FZZ52FaZrU1tZSUFAQlcGJiBxOZzDClloX22rdmKZJSUYicTG9g/GOejd/+LCCBncAgDmFTr68qJiMZNsh3//g8vGSjETmFqp8XEaXffv2ccMNN3Q/vuaaa/jXf/1X6uvryc3NHcGRiYgMTTBssKfRy+YaFy5fkGyHnWT7wG9ym6bJllo3z66tpqa9E+jq0XLp/EKOL00blslCV2eI5o4ADlsc84tTmZztIC1Jibb0NuB/ucFgkISET9dJWCwWrFYrgUAgKgMTETkU0zSpbutkfWUbdS4/2Q4bDnvvWW1vIMyza6t5f08zAM6EeL54fBELSw4fcA+Uj2ck2TiuNJ0JWUmDurMucjR0dnaSnPxp9/3Y2FhsNhs+n28ERyUiMngHYvvmGhfVrT4c9njKMpMGlSBXtvhYtbaK7fUeoGuLz/Pn5LFsavawxPADM9rJ9jjmF6YyOUeJthzaoOohf/CDH5CY+Okax2AwyI9//GOczk+7+d5///3DNzoRkT50BMJsqema1Y6xWCjNSCL2MyXh5if7aj69pgqPPwx0NUa5bEEBidZD/+o7UD4eGxPDvKJUZuSn9JnMi4wW//u//9sj6Q6Hw6xYsYLMzMzuY7feeutIDE1EZEDaOoJsrmlnb2MHAMX99GHpT4s3wIsbavlwXwsmEBdj4bRp2Zw7O4+kYVgC1iPRLlKiLQM34H99J598Mjt37uxx7MQTT2Tfvn3dj7WWW0SiyTRNKlp8rK9sp8HjJzfF3uc66iZPgJUfVbC11g1AvtPONYtLmHyY9VqGadLiDeIJhChOT2ROYSp5Tvugfrf5gmFm3PVXALb951mHTe5FjlRxcTG/+93vehzLzc3lD3/4Q/dji8WihFtERiV/KMKuBg9ba9x4AiFyU+yDip2+YJjXttTz5rYGwoYJwKLSdC6ZX0CW49DLxgbC3RmiyRsgyRbLvE8S7XQl2jIIA/7X/O6770ZxGCIih+bxh9hU5WJng4e4GAsTMpJ6NTqLGCZvbmvg5Y21BCMGcTEWzp+Tx9kzcw97l9zrD9Pg8ZOeZOXkKVlMzEpW+biMCfv37x/pIYiIDJphmFS0+thU3U69y09aopUJmcmHf+EnwhGD93Y18cqmOryBrkq2KTnJXLGwiLLMpCGP6YAN1W1kJNtItsUxp9DJlBzHYfu+iPRFUy8iMqoZhsm+5g42VrXT4g2Q6+z7znd5cwdPfLCfqrau5ihTcxxcs6SE3JRDNzjrKh/3ExtjYU6hk5kFTlJUPi4iIhI1jR4/W6rdlDd7iY+N6XNpWH9M02RdZTvPraum0dPVSyrXaefyBYXMLXQOueJ2bUUbT62u7H78u3/sJz3JyvfOmcaSiZmHeKXIoSnhFpFRy+ULsbG6jd2NXmxxsZT2se+mPxThxQ01/G1HI6YJSdZYrjyuiBMnZhwy6JqmSfMn5eNFn5SP5w+yfFxEREQGriMQZnudm+31bvyhCHkpCdjjYwf8+r1NXv60poq9TV3rvFPscVw0r4CTJmUOOGHvy9qKNh5+b2+v420dQe54dhMp9jjOnpU35PeX8U0Jt4iMOhHDZG+Tlw2V7bT5ghSk9h2QN1S18+RHlbT6ggAsnpDOVccVHbbBWUcgTL3bT2qilc9N7ioft8apfFxERCQaQhGD8uYONle7aPYGyEy2kZeScPgXfqLB7ef59TWsrWgDwBobw5kzczh7Zu6gEva+uDtDrPyoos/nTMAC3PPKNs6YkXtESb2MX0q4RWRUae0IsrGqnd2NHpJtcUzoYzuQdl+Qp1ZXsbayK/BmJlu5ZnEJM/Odfb1lt3DEoN7txwRmFTiZVeDEmaDycRnbqqurKSwsHOlhiIj0YpomtS4/W6rbqWj1kWSNo6yParX+eP1hXtlUy7u7mogYJhZg6aRMLpqXT1rikTUu6wiEafIEqGnv7N7NpM/PANS5/Kwub2XJxIwjuqaMT0q4RWRUCEUMdjd42VTdjtsfosCZgO0zd60N0+S9XU08v66GzlCEGAucOSOXC+bmYYvr/w63aZq0dgRp7+wqH59d4KQwLUHl43JMmDVrFr/61a+45pprRnooI0a7A4iMPi5fiK11LnY3eIkYBkVpiQNuRhqKGLy1vYG/bK6nMxQBYFZ+CpcvLKQwLfEwrz40X7CrSao1NpYpucnY4gc2pkaP/4iuK+PXgCPSXXfdxV133UVcXN8vqays5F/+5V948803h21wIjI+NHkCbKxqY19zB057PGUZvWe1a9o6eeLD/d3rtkozErluSSlF6YcOvL5gV/l4ij2ekyZlMikn+ZDJuchYc++99/L1r3+dF198kUceeYSMDM3AiMjI8Yci7Gn0sKXGjcsfIsfR9xaefTFMk9XlrTy/vobWjq7lYkVpCVy+sPCwVWyH4wuGafT4iY+NZXK2g+l5KWQ7bMTHtg7o9dmOQzdhFenPgBPuFStW8Morr/DEE08we/bsHs898sgjfOc732Hp0qXDPkAROXYFwwY7691srnHREQxTmJrYay11MGzw6uY6Xt9ST8Q0scXFcMn8Ak6dmt1rW7CDhQ2DepefiGkyPS+F2QVOUo+w/ExkNLrllls455xz+Jd/+RdmzpzJI488woUXXjjSwxKRccYwTCpbfWyucVHb3klqQjwT+riB3p8d9W7+tKaaylYfAGmJ8Vw8r4AlEzIOGe8PpzMYodHrJ8ZiYVK2g2m5KeSk2LrHtagsnTynnXpX15Kzz7LQ1QV9UVn6kMcg49uAE+4tW7bwjW98g+OPP567776bO+64g+rqam688UbWrFnD/fffz1e+8pVojlVEjiH1Lj8bqtqoaPGRlmilLKP33pvb69z84cOK7m0/5hWl8qVFxaQnHTpxbu0I0tYZpMCZwJzCVArTEo4oWIuMdmVlZbz99ts8+OCDXHbZZUyfPr1XRdq6detGaHQicqxr8gTYWutib2MHcbEWSjISiYsZWKl2bXsnz66tZlONCwB7fAznzsrj9Ok5R9TQ1B+K0ODuSrQnZCYzNddBXh+7kcTGWLj7ghncvHIdFuiRdB848+4LZqhhmgzZgBPulJQUnnjiCS677DJuuukmnnnmGcrLy1myZAmbN2+mqKgomuMUkWOEPxRhe62bLbUughGD4vTea7o8/hCr1lbzz70tAKQmxPPFRcUsLEk77HvXujpx2OJZMiGDKTmOI+5eKjJWVFRU8Nxzz5Gens5FF13U7xIwEZHhcmCbrx31bvxBg1ynfcBxt90X5OWNtfxjTzOmCbEWCydPyeSCOfmkHEFD00AoQsMn661LM5OYlpdCXor9kDfez56Vx8NXL+Dul7fS4A50H8912rn7ghnaEkyOyKCj8QknnMDs2bP529/+RlJSEt/97neVbIvIYZmmSU17Jxsq26lp7+zaEuQzAdU0TT7c18oza6rwBsJYgFOmZnHJ/IJDNkGKGCYNbj+hiMmUHAdzClMPOwseLRHj03vjq8tb+dzkLN0Vl6j73e9+x7/9279x+umns2XLFrKyskZ6SCJyDDt4m68mb4CsZBu5KQNLkv2hCH/dWs8b2xoIhA0A5henctmCQnJThr5OOhCK0OgNYJpQnJ7ItLwU8p0Dr3A7e1YeSydlMnv5GwCsuOF4xXAZFoNKuJ966im+8Y1vMG/ePLZv386jjz7KOeecw9e+9jV+8pOfkJAw8P30RGT88AXDbKl2sb3eg2GYfZaaNXr8/OHDCrbXeQAoSE3g2iUlTMzqXWp+sHZfkBZvkNxUO3MKUylJTxyx8vHXt9Rx98tbux9f/9jH5OnuuETZ2WefzerVq3nwwQe59tprR3o4InIMO7DN1+bqdio/2eZrwgC3+YoYJv+3p5mXNtbi6gwBMCEziSsWFjI5xzHkMQXDBg1uP4YJRRkJTM9NoSB1aEvJDk6uF5WlK9mWYTHghPvyyy/nr3/9K/feey/f/OY3AfjZz37GJZdcwvXXX89rr73G448/zpIlS6I2WBEZW0yzq4HK+sp26t1+chw2HPaed8DDhsGb2xp4eWMtoYhJXIyFC+bmc9aMHOIOsX1IIBShzuUnwRbLorJ0puWlkGAdufLx17fUcfPKdb0artS7/Ny8ch0PX71ASbdERSQSYdOmTdqLW0Siqq0jyNZaF7sbvZgmA97myzRNNte4eHZtNbWurlLvrGQbly0oYGFJ2pC36AxFuhLtiGFSmJbA9DwnBWkJSpJl1Blwwl1XV8f69euZNGlSj+NLlixh48aN3HHHHXz+858nGAwO+yBFZOzx+ENsqnaxs95DbIyFCRlJve4272vy8sSHFVS3dQIwPdfB1YtLyDlESZlhmDR6AvjDESZkJTO70EmWwxbVz3I4EcPknle29dnd1KSr6co9r2zjjBm5+iIgw07bcYpINPlDEXY1eNha48btD5GbYidpgNt8VbR0sGptNTvqu6rXkqyxnD8nn1OmZg14T+7PCkUMGj0BQhGD/NQEZuSlUJiWcMib9CIjacAJ9z/+8Q9i+uk2aLfb+cUvfsFll102bAMTkbHJMEz2NXewsaqdZm+gz8DcGYzwwvoa3tnZiAkk2+K48rhClkzIOOSdbndniEZvgGyHjcUTMyjLTBoVCezq8lbqPrlr3xcTqHP5WV3eypKJ2iNZRERGv4hhsr+la512g9tPWqKVCZkD2+arxRvg+fU1fFTetcd1XIyF06Znc+6svAEn658V/iTRDkQMCpwJTMtzUJyeqERbRr0B/4vvL9k+2Mknn3xEgxGRsa3dF2RDVTt7G73Y4mIp62Nd1/rKNp5cXUmbr2v91pIJGVx5XGGvUvODBcMGde5OrLExLCxJY0ZeypADdjQ0evpPtodynoiIyEiqd/nZUtPO/hYf1tgYSjMGdoPbFwzzl831vLW9gfAnTURPKEvnkvkFZCYPrRotbBg0eQL4QxHynAlMy0uhJGNg5ewio8Ho+cYqImNWOGKwt6mDDVXtuDqD5DsTem0L0uYL8uTqStZXtgOQ5bBx7eISpuel9Pu+hmnS7A3gDUQoy0xkTmHqIcvNR0q2Y2BjGuh5IiIiI8HVGWJHnZud9R5ChkFeih3bALb5CkcM3t3VxJ831eENhAGYmuPgioWFlGYmDWksEcOkyRvAFwyTk2JnycQMitOTjmhvbpGRoIRbRI5IszfAxqp29jZ14LDFUZbRs9zMMEze3dXE8+ur8YcMYi0WzpqVw/mz8w8ZNL3+MA0ePxlJNk6Zms6EzKRRWza2qCydPKedepe/z3XcFrr28lxUln60hyYiInJYgXCEPQ1ettS6afcFye6jyWlfTNNkbWUbz62rocnTtX91ntPO5QsLmVPgHFJDNOOTRNsbCJPt6IqdJRmJ2OJGrjGqyJFQwi0iQxIMG+xqcLOp2oUvEKEg1d4rGFa3+Xjigwr2NXcAXdt/XLukhMK0xH7fNxQxqHf7ibFYmFPoZFaBc0BBfyTFxli4+4IZ3LxyHRbokXQf+Kpx9wUzRsV6cxERkQMMo2s3kS01LmraO3EmxA94nfaeRi+r1laxt6krxqfY47hoXgEnTcocUrwzTJMWbxC3P0SWw8aCkjTKMpN6VcyJjDVKuEVk0OpdfjZUtVHZ4iM10UppZs9S6WDY4M+bavnr1gYipok9PobL5hfy+alZ/e7VaZomrR1BXJ0hCtMTmVuUSr7TPuTtQo62s2fl8fDVC7j75a00uAPdx3O1D7eIiIxCjW4/W2vd7GvqIC7WQklGInED6NnU4Pbz/Loa1la2AWCNi+HMGTmcPTN3SMmxYZq0dQRp94XISLZx0qRMJmQlj8hWn4nWOPb/5Lyjfl05tinhFpEB84cibK91s6XWRTBiUJTeu2nJtlo3f/iooru0bEFxKl9cVExaorXf9/UFw9S5/DgT41k6OZPJ2Y4xuUbr7Fl5LJ2UyezlbwCw4obj+dzkLM1si4jIqOHxh9hR72FHnRt/OEJeSu++K/297pVNdby3s4mIaWKxwEkTM7loXj6ph4jx/TFNkzZfiDZfkLREKydOymBidjKJVqUncmzRv2gROSzTNKlu62RjVTs17Z1kJtvIS+hZ5u3xh/jTmmo+2NcCQFpiPF9aVMz84rR+3zdsGDS4AkRMkxn5KcwucA4paI8mByfXi8rSlWyLiMioEAhH2NfUwZYaF60dQbKSbeQ5Ew77umDY4K3tDby2pZ7OUASAWQUpXLGgiIK0w7/+s0zTxNUZoqUjiDMhnhPK0pmU4yB5FO0+IjKc9C9bRA6pIxBmS42L7fVuTINeJWemafLPfS2sWlONNxDGAiybls0l8woOWQ7W5gvS2hEkz2lnXlEahWkJxCg5FZEhiBifdk5YXd6qyhKRgxiGSVWbj83VLmrbO3HY4/vctrPX60yTD/e18OL6Wlp9QQCK0hK48riiQ+4wciiuzhDN3gAp9niOL01nUk4yKaO8T4vIkVLCLSJ9MgyTilYfGyrbafD4yemjY2mD288fPqxgR70HgMK0BK5dXMKErOR+3zcQilDn8pNoi+WEsnSm5aWoIYqIDNnrW+q4++Wt3Y+vf+xj8tQ7QQSARo+fbZ+s0461WChOTxzQjh/b69ysWltNZasPgPREK5fML+CECemHTdT74vGHaPQESLbHMb84jSk5yWO+ok1koJRwi0gvrs4Qm6vb2dXgJS7GwoSMpB6zz+GIwV+3NfDKxlrChkl8rIUL5uRz5sycfhuuGIZJoydAIBxhYnYyswudZCbbjtZHEpFj0Otb6rh55bpe2/HVu/zcvHIdD1+9QEm3jEsHr9MOhAxynfYB3dyuae/k2bXVbK5xAZAQH8u5s3M5bVrOkHqreANhGj1+EuJjmVPoZGpuCulJSrRlfFHCLSLdIobJ3iYvG6vaafUFyUux92pesrfJyxMfVFDT3gnAjLwUrl5cTLbD3tdbAuDuDNHoDZDtsLF4YgZlmUkq9xSRIxIxTO55ZVuvZBu6tuazAPe8so0zZuTq942MG4FwhL2NHWypddHWvU778CXb7b4gL22o5f29zZgmxFosfH5qFhfMyRvS1py+YJgGjx9rbCwz8lKYmptClkM32WV8UsItIgC0eANsrHKxt9lLkjWWCRk99+H0BcM8v66G93Y1YQLJtjiuOr6IxWXp/W7dFYoY1Lo6scbGsLAkjRl5KSSpKYqIDIPV5a3Uufz9Pm8CdS4/q8tbWTIx4+gNTGQEHLyf9mDWaftDEf66tZ6/bmsgGDYAWFicxqULCshJ6f9G+qHer8HjJ8ZiYXK2g+l5KWQ7bGNmi0+RaNA3X5FxLhg22N3gYVO1C28gTL7Tju2gsjPTNFlX2c6TqytxdYYAOHFiBlcuLCLZ3vevENM0afYG8QRClGQkMbcwlVzn4AO3iEh/Gj39J9tDOU9krGpw+9la46a8uYO4GAvFA9hPO2KYvL+nmZc21OD2hwGYmJXEFQuLmJTdfx+W/gRCERo8AUxMyjKSmZbnIM9pV6ItghJukXGt3uVnQ1UblS0+nAldd8MP1toR5MmPKtlQ3Q5AtsPGNYtLDtmdtCMQpt7tJy3RyslTspiYldxrr24RkSN1qGUsQzlPZKxxdYbYUedmV4OHQDhC7gD20zZNk43VLp5bV91dIZLlsHHZggIWFqcNOkEORQzq3X4Mw6Q4I5FpuSkUpGrXEZGDKeEWGYf8oQjbat1srXURjBgUpSf2SIoNw+SdnY08v76GQNgg1mLh7Fm5nDc7r9+mKWHD6AreJswqcDKrwIkzQVt9iEh0LCpLJ89pp97l73MdtwXIddpZVJZ+tIcmElX+UIQ9jR621npo9wXJdgxsP+39LR2sWlPNzoaunUWSbXGcPyePU6ZkDahz+cHCEaO7EWpBWiIz81MoTEtUvwSRPijhFhlHTNOkuq2T9ZVt1LX7yXTYyPtMUlzV6uOJDysob+4AukrMrl1SSkFq/8G8tSNIW2eQAmcCc4tSKUxLUBmZiERVbIyFuy+Ywc0r12GBHkn3gd8+d18wQwmAHDMihsn+lg621rioc/lJTYhnQmbSYeNtszfAC+tr+Ki8FYC4GAunT8/h3Nm5vRqjHk7YMGj2BPGFwuQ7E5ien0LJALcaExmvlHCLjBPeQJjN1e3sqPNgsUDpZzqFB8IRXtlYxxvb6jHMrq1ALltQwMlTsvptuuL/ZE/tJFssSyZkMCXHMe731E60xrH/J+eN9DBExoWzZ+Xx8NULuPvlrTS4A93Hc7UPtxxDTNOkzuVna62LihYf1tgYSjMOv9uHLxjm1c11/G17I2Gj65bU4gnpXDKvgIxBbstpGCbNHQE8/jA5KXZOmJBOSUbSkLYKExlvlHCLHOMMw2Rfcwcbq9pp9gbISbGT/JlO4VtrXfzhwwqavUEAFpak8cXji0hN7HuvTMMwafD4CYYNJuckM7vAOejgLSIyHM6elcfSSZnMXv4GACtuOJ7PTc7SzLYcE9o6gmyrdbOnyUvYMMhz2rHFHfrGdjhi8O6uJl7ZWEtHMALAtFwHVywspCQj6ZCv/SzDNGnrCNLeGSIz2cb8KWmUZSaN+5vrIoOhhFvkGNbWEWRjdTt7G73Y4mJ7bRHi7gzxzJqq7jKz9EQrXzqhmHlFqf2+p8cfosHTtaf2iZNSB3SXXUQkmg7+HbSoLF2/k2TM8wXD7Kz3sL3O3T2r/Nmb5Z9lmiZrK9p4bn0NTZ6uio/8VDuXLyhkdoFzUEu9TNOkvTNES0eQ9EQrJ07MYGJ28qBL0EVECbfIMSkUMdjT6GVjVTtuf4h8Z8/OpaZp8n97W1i1poqOYASLBU6bls3F8wr6vWt9YE/t+BjtqS0iIhINoYhBeXMHm6tdNHsDpCdZB7ROe3ejh1Vrqtn3Sf8VZ0I8F83LZ+nEzEHfgHJ1hmj2BnAmxHNCWTqTcxyHTfZFpH/6v0fkGNPo9rOhqp39LR2k2OMpy+gZqOvdflZ+WMGO+q4upUVpCVy3pJTSzL7LzA7eU7s4PZG5RakD6oYqIiIiA2MYXU1Nt9S6qG7zkWSNoywj6bDba9W7/Ty3rpr1le0A2OJiOGtmLmfOyBl02bfXH6bR6yfJFseCkjSmZDtwJmq3EZEjpYRb5BjhD0XYXte11VcgbFCU1nOrr3DE4PWt9fx5Ux1hw8QaF8NFc/M5fXpOv3e/fcFwVyfURCufm5zFpGztqS0iIjKcGt1+ttW52dfUgcVCr/jdF48/xCsb63hvVxMR08Rigc9NyuTCufn99l/pjy8YptEdwBYfw6wCJ1NzHOrLIjKMlHCLjHEHtvraWNVOTXsnGUlWclN6zkDvbvTwhw8qqHX5AZiVn8KXTyghy9F3QI0YJvUuPxHTZGZ+CrMLUnWXW2Qc+fvf/85//dd/sXbtWurq6njhhRe4+OKLu583TZN77rmHRx55hLa2Nk444QR+/etfM3PmzJEbtMgY4+oMsaPOza4GD/5whLyUhMPOSgfDBm9tb+AvW+rwhwwA5hQ4uWxh4SG37+yLPxShwe0nJsbCpJxkZuSlkJ1iH/LnEZG+KeEWGcO6t/r6pDy8JCORuJhP74r7gmGeW1fDe7uaAHDY4/jC8UUsKk3vdz1Yuy9IS0eQPKeduUWpFKUlHrakTUSOLR0dHcydO5cbbriByy67rNfzP/vZz7j//vtZsWIFU6ZM4Uc/+hFnnHEGO3fuxOFwjMCIRcYOfyjC7gYPW2vduDtDZDlsh12qZRgmH5S38OL6Gtp8IQCK0xO58rhCpuWmDOr6oYhBvcuPCZRkJjEjL4U8p31QTdVEZOCUcIuMQYZhUt7StdVXk6f3Vl8HOpU+9XEVrs6uwHzSpEwuX1jYb+OTQDhCrauThPhYFpWlMz0vRdt+iIxT55xzDuecc06fz5mmyQMPPMB//Md/cOmllwLw+OOPk5OTw5NPPslNN910NIcqMmaEIgYVLR1srnbT4OkkLcFK2QAaom2rdbNqbRVVbZ0ApCdZuWR+ASeUpffYeeRwwhGDRk+AQDhCUXoiM/KcFKYl6Ka6SJQp4RYZYw631VeLN8AfV1eyqdoFQE6KjWsXlzI1t+9ZJ8M0afIE8IUilGUmM6fQSbZDJWUi0rfy8nLq6+s588wzu4/ZbDY+//nP889//rPfhDsQCBAIBLofu93uqI9VZDQwDJOa9k621rqobO0kMT6Wsozkw3YPr27z8ezaarbUdv2/khAfy7mzczl9es6g+qlEDJNmb4COYJh8ZwIz8lMoTk8kTj1ZRI4KJdwiY0QoYrCrwcPmalefW30ZhsnfdjTy4oYaAmGD2BgL587K5dzZef0GZm8gTIPbT0aSjePL0pmQmaQALCKHVF9fD0BOTk6P4zk5OVRUVPT7uvvuu4977rknqmMTGW0aPX621brZ1+QlxmKhKC3hsMlymy/ISxtq+b+9zZhm1z7zy6Zmcf7sfJLtA//qbpgmLd4g7kCI7GQ7x5elU5qRhDVOcV7kaFLCLTIGNHyy1VdFSwfOPrb6qmzx8cSH+9nf4gNgcnYy1ywuIb+fBiphw6Cu3Q8WmF3oZHaBE4ddTdFEZOA+WwZrmuYhS2PvvPNObr/99u7HbreboqKiqI1PZCQd3BAtEDLISbGTYD30Mi1/KMLrW+p5Y1sDwUhXQ7TjStK4dEHBoCrPTNOkvTNEa0eQ9CQrJ03MZGJ2spaJiYwQJdwio5g/FGFbbddWX8FI762+AqEIL22s5a3tDRhmV7nZFQsLOWlyZr/rutp8QVo7ghSmJjCnKJXCtAQ1ShGRAcvNzQW6Zrrz8vK6jzc2Nvaa9T6YzWbDZtNWQ3Js6wxG2NP42YZoh76hHTFM/rG7iZc21uLxhwGYmJXElccVMTEreVDXd3eGaPIGcCbEs6gsnck5jn57t4jI0aH/A0VGIdM0qWrtZENVG3XtfjIdNvISegbszTUuVn5YQUtHEOi6C/7FRcU4E/oO7IFQhDqXn0RbLEsmZjAlx6G73SIyaGVlZeTm5vLmm28yf/58AILBIO+99x4//elPR3h0IiMjFDEob+5gS42LJk+A1IT4wzZEM02TjdUunl1XTf0n23ZmO2xctqCQBcWpg7oZ3hEI0+Dxk2CNZV5RKlNzHYPej1tEokMJt8go4/aH2FztYle9hxiLhdLMpB6NVVydIZ75uIrV+1uBrm6lV59QzJzC1D7fr7spWjDMxCwHc4qcZCZrlklE+uf1etmzZ0/34/LycjZs2EB6ejrFxcV861vf4t5772Xy5MlMnjyZe++9l8TERL70pS+N4KhFjj7DMKlq87G11k1Nm48EaxxlGUmH7fxd3tzBqrVV7GrwApBsi+OCOXl8fkrWoHqp+EMRGjx+4mJimJ6XwvS8FMV4kVFGCbfIKBExTPY1edlY5aKlI0Buip2kg8rADNPk/T3NPLu2Gl8wgsUCp0/P4aK5+f3OVB9oipaZbOOECemUZR6+K6qIyJo1a1i2bFn34wNrr6+77jpWrFjBd7/7XTo7O7nllltoa2vjhBNO4I033tAe3DJumKZJgzvAtlo35c0dxMRA4WeWffWl2Rvg+XU13TfN42MtnD49h3Nm5ZJoHfjX8oP30i7LSGZ6voPcFO2lLTIaKeEWGQWavQE2VrWzt8lLkjWu11Zfda5Onviggt2NXXfCi9MTuXZJCaUZSX2+X9joCsRYYG5RKrMKnFrDJSIDdsopp2CaZr/PWywWli9fzvLly4/eoERGidaOINvr3Oxp9BI2uhqiHW6JVkcgzKub63h7RyNhw8QCLJ6QwcXz8skYxIx02DBodH+6l/bMfCcFqdpLW2Q00zdwkREUCEfYWe9hS40LXyBCgTMB20FBOxQxeG1LPX/ZXEfYMLHGxXDxvHxOm5ZDOGLwlSfWAPDrL87vfl1rR5A2X5CitETmFHUFYt3xFpFjWaI1jv0/OW+khyHHOG8gzK56Dzvq3Xj8YXIc9sNu0xWKGLyzs5E/b6rDF4wAMD3XwRULiyjOSBzwtQ3DpLkjgNcfJtdpZ2ZBJiXaS1tkTFDCLTICTNOkpr2TTVUuqtp8pCdZKc3sueXHrgYPT3xY0d1IZVZBClefUNK9Nisc6fmegVCEWpefJFssJ07MYEquA1ucmqKJiIgcCX8owr6mDrbWumjtCJKRZD1s93DTNPl4fxvPr6+m2dvV3LQgNYHLFxYyKz9lwDfCTdOkzReirSNIpsPGgqlplGUmKb6LjCFKuEWOMm8gzNYaFzvqPRim2esOdUcgzHPrqvn77mYAUuxxfOH4Yo4vTes3QDd6AoQNQ03RREREhkkoYlDR4mNrrYt6l58Ue3yvJV992dXgYdXaasqbOwBwJsRz8bx8lk7MHFTpt6szRPMnW3wtmZTBpOzkQa3zFpHRQf/XihwlhmGyr7mDTdXtNHoC5H6mFO3A3fCnP67E/ck+nCdPzuSyBYU9mqf1xRYfw+fKMtUUTURE5AgZRlcV2tZaF1VtndjjYijJSCQu5tDl2/UuP8+tq2Z9VTsAtrgYzp6Vy5nTc3osFzucA1t8JVpjWVCSxpQcR79bforI6KeEW+QoaO0Isqm6nb2NXmxxsUz4zB3yZm+AlR9VsKXGDUCu0861i0uYktN3x9+wYVDd1tn9+LTp2eSkJET3Q4iIiBzDDnQe317X1XncAhSmJhy287i7M8Qrm2p5b1cThgkxFvjc5CwunJs/qEQ5EIpQry2+RI45SrhFoigYNtjV4GZztRtPIES+M6FHJ9OIYfLW9gZe2lhLMGwQF2Ph3Nl5nDMrt98A3+YL0toRJMth7T7msOvOt4iIyFAd3Hk8FImQm5Jw2M7jgXCEN7c18PrWevwhA4C5hU4uW1BIfurAb4KHIgYNbj8RA0oyk5iZn6ItvkSOIUq4RaKktr2TjdXtVLb4SE2IpywjqUfw3N/SwRMfVFDZ6gNgSk4y1ywuIc/Zd5AOhCPUtftJsMWyeEIGRema0RYRETkSHn+InfUedjV48AbCZCfbSbYfOr4ahskH+1p4cUMNbb4QACUZiVyxsJBpuSkDvnbEMGnyBvAFwxSmJTIzP4WitERt8SVyjFHCLTLMOgJhtta62V7nJmKYFKcn9pit9ocivLShlrd2NGCakGiN5YqFhSydlNlnIxbDNGnyBPCFIpRlJTG3MJUshw2PP9R9zuryVj43OUvrt0VERAagMxhhb5Pn/7d359Fxl/e9x9+jbbSNZqTRvlryhm15xxtrkgZiAgQCARKWJE1ybgNNml7u7TlNe1tD2hR6e26a3tsTyj3tdUNoEsIaQxIICVsoi8E23uQF71pGuzSLZp/fc/+QpdhoH2uxpM/rHJ+DxqPfPL/Hwl9/f8/3+T4cbPHTE4xSmJNBXeHonccBDrZ4eXJX0+C2roKcDG5dW8GG2oIxm6kNsIyhpy9KbyhGsSOTTbUFLCjMGbN0XURmJyXcIpPEsgwnu/rY1+il3R+m2GEfUuq9r6mXx989Q3df/xEhGxcUcMeGqhH3ePVF4rT6whTkZLChtoC6whzSUlN48YCHbTsODr7vy9vfo8yZybYbl7O1vmzqblJERGQWi8YtTnX1cbDZR7s/jCsrfUhfleE09gR56v0mDnr6e61kpady/coy/mBZ8YQS5YHO467sDC5f5GZRsWPM0nURmd2UcItMgp6+KHubejneESAjNYVad855JWG9wSg/fa+R90/3AFCYm8Fdm2pYWeEc9noJy9DqDZMwFvXlTlZWOck7m7y/eMDDvY/vxnzke1q9Ye59fDeP3L1OSbeIiMg5EpbhTHeQg81eWrwhsjPSWODOGbMyrCcY5bk9zbx1vAsDpKbY+PjSIm5YWX7eSSNjCUTitPvD5NjTWF+Tz9JSh/qviMwTSrhFLkA0bvFhm5/9zV584aFN0Sxj+N2HnTy1q4lQLEGKDa5ZVsJnVpePeESINxSj0x+hzJXJmqp8qgqyBvd+JyzDg883DEm2AQxgAx58voFrlpeqvFxEROY9yzK0eEMc8vg40xUkLTWF6vxs0sZYlQ7HEvzqQCsvN7QRTfQ3RLu0Jp9b1lVQ7Mgc9+ef23l8+dnO4251HheZV2Y04X7ooYd45plnOHz4MFlZWVx22WX8/d//PUuXLp3JYYmMy0BTtMauIM5hmqK19IZ47O3THOsIAP0NVb60eQHV7uxhrxdLWLR4Q2SkpbCxtoBl5XlDysx2nuzG4w2POCYDeLxhdp7sZstC94XfpIiIyCzV7gvT4PFxsqMPg6HUmYk9bfTy7bhl8bsPO9mxtwV/OA7AoqJcbru0koVFY+/xHrxOwqLNFyFuWeo8LjLPzWjC/frrr/PHf/zHbNiwgXg8zl/+5V9y7bXX0tDQQE5OzkwOTWREfZE4B5u9HGr1k7AMVR9pihZLWPxyv4dfHmglYRnsaSl8dm0Fn1haPGznUWMMXX1RfOEYC9w5rK5yUZI3/NPzdv/IyXYy7xMREZlruvuiHG71cawtQCSRoNSRRVbG6Im2MYYPGnt5enczrb7+GFrisHPr+krWVrnGnShbZzuP90XjVLqyWV6eR1VBtqrOROaxGU24X3zxxfO+3r59O8XFxezatYurrrpqhkYlMryBpmh7G3vp8EeGbYp2pNXPY++cos0XAWBVpZO7NlaPWD4Wiibw+ELkZaVz5eIiFhXnjtp8ZbxlbBMpdxMREZkLfOEYR88e8eUPxyl22Ckf44gvgJOdfTy5q5Gjbf0Vabn2ND6zupyrlhSSljK+hmjGGHqCMXr6ohTl2dlQW8ACdw4Zaeo8LjLfXVR7uL1eLwAFBQUzPBKR83X3RdnX1Mvx9gD2tFRqP9LRNBCJ89SuJt481gmAMyudL2ysYn11/rBPxS3L0OYPE41bLClxsKbKhSs7Y8xxbKwtoMyZSas3POw+bhtQ6sxkY63+HxIRkfkhGI1zvD1Ag8dPbzCKOydjXOXfHf4Iz+5pZuepbgDSU21cs7yE61aUjbkifi5/OEa7P4IzK53NC90sLsklO+Oi+ie2iMygi+ZvA2MM999/P1dccQX19fXDvicSiRCJRAa/9vl80zU8maci8QRHW/0caPbhjwxtimaMYefJbn76fuPgXq+rlxRx67qKEYPtQGAudmSyepGTBR/paD6a1BQb225czr2P78YG5yXdA1fYduNyla6JiMicF44lBo/46gxEBo/4Gqv8OxCJ84v9Hl493E7cMtiAzXVuPru2goKcsR9+n/v5Hl+IzLRU1lS5uKQ0D2e2Oo+LyPkumoT7G9/4Bvv27ePNN98c8T0PPfQQDz744DSOSuYrYwwt3jB7G3tp7A6Sn51BXeH5T8s7/BEef/c0B1v6H/yUOzO5Z0sNi4sdw14znrDw+MKk2GysqXJRX+Ekxz7x/wW31pfxyN3r2Lbj4GDpOvSvbOscbhERmetiCYvTXUEaWry0esPkZqYNOY5zpO975XA7v9jvIRhNALCszMFt66uoLhi+oelI1xmoNFtc7GB5WR7FI/ReERGxGWOGq0ydVt/85jd57rnneOONN6itrR3xfcOtcFdVVeH1esnLy5uOoco84A/HaGjxcbjVj2UMZXmZ5x0fkrAMLze0sWNvC9GERVqKjRtWlbF1RemIx4z0BKN090Wpys9mdbWLcueFdyr1h2OsfODXAPz7H27gysVFWtkWmUV8Ph9Op3PexrD5fv8ycQnL0NQT5GCLj+beEJlpKRQ57GPus7aM4b1T3Ty7p5nOQBSAClcWt62vZEV53oQaorUHIgSjcSrzs1lZ4aTClTXuKjURmTsmEsNmdIXbGMM3v/lNnn32WV577bVRk20Au92O3a6zC2VqJCzDyc4Aexu9dAYilDgyyc08/3+Rk519PPb2KRp7QgAsLXFwz5YaSkd4sh2JJ2jxhsjOSGNznZtLyhxjHkkyXucm1xtrC5Rsi4jInDRQddbQ4uVMV5DUFBuVrqxRm4wOONrm52fvN3KqKwiAKyudm9dUcNlC97gTZWMM3X1RekMxih2ZbKotYEFhzrg+X0RkRhPuP/7jP+bHP/4xP//5z3E4HLS2tgLgdDrJyhq7q6TIZOnwR9jX1MuJjgDZGWlDmqKFYwme3dPMK0faMQZyMlK57dIqLl/oHvbJuDGGzkAUfyROXWEOq6vyKXLoYZGIiMh4GWNo90c4dO5Z2nmZ2NPHfnDt8YZ4elczHzT1AmBPS+G6+lKuWVYyru8fcG5DtMsWullU7JhQQzURkRlNuB955BEAPvaxj533+vbt2/nyl788/QOSeSccS3DI46PB4yMUSVDuzBoSiD9o7OU/3j1NTzAGwOa6Au64tGrIkWADQtH+Ve387AyuXlLEwqKcEUvNRUREZKjOQIQjHj/HOgJEx3mWNoA3FOP5vS288WEHloEUG1y1uIgbV5fjzBp/QzM1RBORyTLjJeUiM8EYQ2N3iL1NvbT0hnDnZFBSeH5ZeG8wyk92NrLrTA8AhbkZ3LO5hhXlzmGvaVmGVl+YuGVYXp7HqgqXgrOIiMgE9Aaj/Wdpt/sJRhMUOzLJtY9d9RiJJ3i5oY1fHWglErcAWFPl4tZ1FZQ5x181GUtYtPrCGAOLihysKFdDNBG5MBdNl3KR6eINxTjQ5OVIm48Um40ad/Z5DVcsY3j9aAfP7G4mFEuQYoNrl5dy4+qyEfdf+8Mx2vwRSvMyWV3loqYgW01URERExskfjnGsLcDhVj++cIzCXDuleWMnypZleOtEF8/taaY31F+JtsCdzW3rq1haOvypISNdpyMQoe9sQ7T6cieV+VPXEC0YjbP8r18CoOE7n9K53SJzmP7vlnkjlrA43tHfFK03FKUsL3NIgGvuCfHYO6c43tEHQG1hDl/cXEPVCMeFnHvU17rqfOor8hQ0RURExikYjXO8PcAhj5+eYJSCnIxxnaUNcKDZy5O7mmju7W9kWpibwS1rK7l0Qf55fVjGMnCSSGGunQ21BSxw55CRpq1gIjI5lBnIvNDqDbO3qZfTXX047OnUuc8P5tG4xQv7W3jpQBsJY7CnpXDL2go+vrR4xKfbg0d9FWSzuspFhWt6G/1lZ6Rx6uHrp/UzRUREJkM4luBkZx8NLT46AxFcWelDGpaOpLE7yJO7mmjw+ADIzkjl+pVlfOKS4gl1Dg9E4rT7wzjs6WysLWBpqUMPzUVk0ulvFZnTgtE4B1t8HPb4iCYsqvKzhwTjQx4fP3rnNO3+/jPe11S5uHNjNQU5GcNeMxq3aPYGyc5IY8tCN0tLJ++oLxERkbksGrc43dXHwRYfbb4wjsw0at054yrd7u6L8twHzbx9vAsDpKXY+PglxVy/soxc+/j/SRuJJ2j1hUlLSWFFmZPl5XnkjxDzRUQulBJumZMsy3Cyq499jV7a/GGKc+2UfaQ7aSAc52e7GnnreBfQfzbnnZuqWVedP+w1f3/UV4y6whxWVbkodqiRioiIyFjiCYsz3UEaWnx4vCGy0tOG9FAZSSia4FcHPbzc0EYs0d9wd8OCfG5ZWzmhIzfjlkW7L0I0YVHjzmZFuZMyZ+a4ytdFRJKlhFvmnK5AhP3NXo63B8hIS6HuI0/OjTG8c7KbJ95rJBCJYwM+trSIz66tGLGULBzrP+rLmZXBVUuKWFSUq6O+RERExpCwDE09QQ55fDR2B8lIS6UqP3tcMTRuWbxxtJPn97XgD8cBWFycy23rK6kryh33GIwxdPdF6Q3FKHNmUl/hpMadQ6qam4rINFDCLXNGOJbgwzY/+5u9BCJxyp1ZZH7kTO12f5jH3zkzuO+rwpXFF7fUsHCEwG0ZQ7svQiSeYGmpg9WVLlzZKjsTEREZjWUZWrwhDnl8nOkKkWKDClf2uJqRGWP4oLGXp3Y30ebr3+5Vkmfnc+sqWVPlmtCKtD8co90fwZWdweWL3Cwqdgz5t4GIyFRSwi2znjGGpp4Qext7ae4NkZ+dQV3h+Ql03LJ4uaGNHXtbiCUMaSk2PrO6nGtXlIxYzhaIxGnzhSly2LlskZsF49xjJiIiMl8ZY2j1hTns8XOyMwBAaV4m9nEmuSc6Ajy5q4kP2/u/15GZxmdWlXPlksJxlZ8PCMcSeHwhMtNSWVPlYll5HnmZ6WN/o4jIJFPCLbOaNxTjQLOXo61+sDHsfrATHQEee+c0TT39x4YsK3Vw9+YaSvKG338dtyw83jAAqyqdrKx0TagZi4iIyHzU7gtzuNXHyc4gccuiODeTrIzxJdod/ghP727i/dM9AGSkpnDN8hK2rigd9zWgf694my9C3DIsKnKwojyP4hHivYjIdFAWIbPSwJna+xq99ASjlOZlkvORpDgUTfDsnmZePdKOAXLtadx+aSVb6twjlqN5QzE6/RHK87NYU+WiMj9LzVRERERG0RmIcKTVz4mOAJGYRXGefdzHawXCcV7Y38KrRzpIWAYbcNlCNzetqRjxtJDhWMbQFYjiD8cod2VRX+GkuiBblWkiMuOUcMusM+RM7cKcIUnxnjM9/HjnGXqCMQC21Lm5/dJKHCOUk8USFh5viPTUFDbUFrC8PE97vEREREbR0xflaJufD9v9BKMJinMzKXOO75+WsYTFK4fb+cV+D8FoAoAVZXl8bn0lVQXZExqHNxSjIxDBnZPBlUuKqCvK0XGdInLRUMIts0ZfJE6Dx8ehFh8xa/gztXuCUX688wx7zvQCUOSwc8+mGpaX54143e6+KL3BKNXubNZU5VPqVOmZiIjISLyhGB+2+Tna5scfiVOUY6c0L2tc32sZw3snu3lmTzNdfVGgv4Hpbesrqa9wTmgc4ViCVm8Ye0YK62vyuaTUMeKDdRGRmaKEWy56CctwsrOPfU29dPgjFDvsQwKqZRleO9rBM3uaCMcsUm02PrWihBtWlY/YETUST+DpDZNjT+OyRW6WlOSNq3uqiIjIfOQPxzjWHuBIqx9vKIY7J4OFheM/nutIq58ndzVyqisIgCsrnc+urWBLnXtCpd/xhEWrL4xlYFFJLivKnRM6j1tEZDop4ZaLWoc/wv4mLyc6A2SmpVI7TKfwpp4gj719mhOdfQDUFebwxS01VOYPX5JmjKEzEMUfibOwKIfVVS4KcxWoRUREhtMXiXOiI0CDx09vMHr2NJCh27lG0tIb4undText8gJgT0vhuvpSrlleMqHS78F92pEYla5s6iucVOZnaZ+2iFzUlHDLRSkcS3DI46PB4yMUSVDmHHqkSDRu8cK+Fl462EbCGDLTU7h1bSVXLykaMfiGoglavP1Hh129pIiFRTmkpWpVW0RE5KNC0QQnOgIc8vjpCkRwZadTW5hDyjgTbW8oxo69Lfzuww4sAyk2uHpJETeuKicva2Kl3wP7tAtz7Fy1pIi6wlxVpYnIrKCEWy4qlmVo7Amyt7EXjzeMOyeDksKhe6obWnz86N3TdPgjAKytdnHnxmrys4fvaGoZQ5svTDRuWFbmYHVlPs5s7fMSERH5qHAswcnOPhpafHQGIuRlplNbNP5EOxJL8OuGNl482EokbgGwpsrFresqKHOOb6/3uWPRPm0Rmc2UcMtFozcYZV9TL8fa+0hNsbHAnUPqR1aq/eEYP3u/ibdPdAGQn53OnRurWVudP+J1A5E4bb4wRQ47ly1yDVuWLiIiMt9F4glOdwVpaPHR5guTa0+bUMy0LMN/Hu/kuQ9a8Ib6TwmpLczhtvWVLClxTGgsH92nvbw8j2KHmpqKyOyjhFtmXCSe4FhbgP3NXnzhGGV5WWRlnF8+bozhrRNdPPl+E4FIHBvw8UuK+eyaiiHvHZCwDB5vCGNgVaWTlZUucu36kRcRETlXNG5xprt/RbvVFyY7I23Yh94jMcZwoMXHU7uaaO4NAVCYm8EtayvZsCB/3Hu94fzztCtcWdRXOqnK13naIjJ7KfuQGWOMobk3xL4mL43dQVxZ6dS6hzZhafOFefyd0xxq9QNQmZ/FFzfXUFc0cmdU39m9XmXOTNZU5VNVkDWhgC8iIjLXxRIWZ7qDHGrx0eINk5WeQnVBNmkp498bfaY7yJO7Gjnk6Y/R2Rmp3LCqjI8vLR5ydOdY/OEY7f4I+dkZXLG4iIXFOk9bRGY/JdwyI3zhGAeavRxp9WMDagqyhzQviycsXmpo44V9LcQShvRUG59ZXc41y0tG/MdAPGHR4g2RltK/12tFuXPEFXAREZH5KJ6waOwJccjjo7knSEZaKlX5WRNKkLv7ojy7p5l3TnRhgLQUG5+4pJjrV5aRM8FqskgsgccXwp6WytoqF8vK87RPW0TmDCXcMq1iCYvjHQH2NXrpCUYpycsctsz7eEeAx94+PViatrwsj7s3V4+6f6snGKW7L0pVQTZrqlyUuybWmEVERGQuS1iGpp7g2UQ7RGqKjcr87Akl2sFonF8daOU3h9qIJQwAGxcU8Nm1FRM+CztuWbT7IsQSFrWFudRXOCnJ0z5tEZlblHDLtPF4+8vHT3f14bCnD3uGZzAa55ndzbx+tAMD5NrT+PyGKjbVFoxYEh5LWDT3BsnKSGNznZtLyhwqQRMRETnLsvq3cDV4fDR1B0mx2ShzZk3oWK24ZfHG0U527G0hEIkDsKQkl9vWV1FbmDOh8Rhj6O6L0huOUZaXycpKF9UF2ePeMy4iMpso4ZYpF4jEaWj2crjVT8yyqBrmaboxht1nevnxzjODnU0vX+jmtvVV5GYO/2M6ELC94Ri1hTmsrnKpg6mIiMhZlmVo8YY47PFxpru/Yqw0LxN7+vgfSg/E52d2N9F29ijOUmcmn1tXyepK54T7owQicdr8YZyZ6VxW52ZxiYPMCYxHRGS2UcItUyaesDjV1cfeRi8dgQglDvuwe7K6+6L8+N0zfNDUC0CJw87dm2tYVpY34rUjsQTN3hB5melcvqiQJSWOCTdnERERmYuMMXi8YQ57/JzqCgBQ7MiccGJ7vCPAk+83cayj/xqOzDRuWl3OlYuLJrwaHY1btPpCpKaksLLCyfKyPFzZGRO6hojIbKSEW6ZEuy/MvmYvJzoC5GSkUVeYQ8pHnoJbluGVI+08u6eZSNwi1WbjuvpSrl9VNmLybIyhIxAhEImzuNjB6ioXBTkK2CIiIsYYWn1hjrT6OdnZh2UMJUkk2u3+MM/sbub90z0AZKSmcO3yErbWl074WpZlaA9ECMUSVBdks7LCSZkzUyeHiMi8oYRbJlUwGuewx89Bj5dILEGFK2vY/dSN3UF++PYpTnUFAVhYlMMXtyygYpRGZ6FoghZviIKcDD62tJiFRbna7yUiIvOeMYZ2f4RDHh+nuvpIWIbi3MwJn9IRCMd5YX8Lrx7pIGEZbMBlC93cvLaC/CRWo3uDUbr6ohQ57GyuK2CBO2fIiSQiInOdEm6ZFJZlONnVx/4mL22+MIW5dsryhibPkXiC5/d6+HVDK5aBrPRUbl1XwVVLioasgA9e2xjafREi8QTLyhysrszHma3jQkREZH4zxtDhj3C41cfJziDRRIISRybZGRP7510sYfHbQ+38Yr+HUCwBwIryPD63vpKq/OwJjysU7T/mK8eexsYFBSwtc0x4TCIic4X+9pML1hmIsL+pv3w8Iy2FWncOKcOsPB9o9vL4u6fpDEQBWF+dzxc2Vo26h6svEqf1bAK/ZZF7xGuLiIjMJ+3+MEdb/Zzo6CMatyh02Mm1T+w4TMsYdp7s5tk9zXT19cfmyvwsbltfyYpy54THFE9YtPrCWAaWlDior3BSmDuxo8JEROYaJdyStHAswSGPj0MeH32RBGXO4feJ+UIxnni/kXdPdgNQkJ3BnZuqWVPlGvHalmXw+MIkLIuVlU5WVjiHbbgmIiIyn3QGIhxt83O8PUAolqA4N3PE0zxGc7jVx8/eb+JMd//WrvzsdG5eU8GWOveEH2wbY+gMRPGHY1S4slhZ6aIyP0sPyEVEUMItSbAsw5nuIPuaevF4w7hzMiguHHoclzGG/zzexc/ebyQYTWCzwR9cUszNaypGbbriD8do80cozctkbXX/2ZxqriIiIvNZ19lE+1hHgFA0QVGunTLnxFa0AVp6Qzy1q4l9zV4AMtNTuK6+jE8uKx6258pY/OEY7f4IruwMrlhcxMLinKSuIyIyVynhlgnp7ouyr6mX4+19pKXaWODOGbZxWasvzI/ePs2RNj8AVflZfHHLAmoLc0a8dtyy8PSGSUmxsa7KRX2lU3u+RERkXuvui/Jhm58P2/0EBxLtYXqkjMUbivHzD5r53bFOjIFUm42rlhRy46py8rImXkEWjVt4fCHSUlJYXelkeYWTPFWiiYgMoWxGxiUcS/Bhm58DzT78kRhleVnDdj+NJyxePNjKC/s8xC1DRmoKN60p55PLSkbtKO4Nxej0R6jIz2JNtYsKV5ZWtUVEZN7qGUi0OwIEwnGKcu2UJpFoR2IJft3QxosHW4nELQDWVru4dV0lpXlDq9PGYln9HdGDsTi1hTmsrHBR6pz4dea7hGUG/3vnye6kzjYXkdlBCbeMyrIMTT0h9jX10twbIj87g7rC3GHf+2G7nx+9fZoWbxjo73B696YaihwjN0yJJyxavCHSU1PYUFvA8vK8CZ/xKSIiMlf0BqN82B7gwzY//nCcwlw7JUXJJcZvHu/k5x+04A3FAKgrzOG29ZUsLnEkPbbBY74W6pivZL14wMO2HQcHv/7y9vcoc2ay7cblbK0vm8GRichUUMItI+oNRtnf7OXDNj8pNhs17mzSUoYG1mA0ztO7m3n9aAcAjsw0Pr+hio0LCkZdpe4JRunui1JVkM3aaldSe9FERETmAm8wxoftfo62+QmE47hz7RQnkWgbY9jf7OWp3U209PY/AC/KtXPLugourclPqnosHEvg8YbJtqfqmK8L9OIBD/c+vhvzkddbvWHufXw3j9y9Tkm3yByjvy1liEj89+Xj3lCMMufwZ3oaY9h1uoefvNc4+PT8ikWFfG59Jbn2kX+0YmdXtTPTU9lc5+aSMocarIiIyLzkDcU43h7gSKsfXziGOyeD2sKcpBLjM11BntzVyKHW/v4pORmp3LCqnI8tLSI9iZXouGXR5o2QMIbFJbk65usCJSzDg883DEm2AQxgAx58voFrlpeqvFxkDlHCLYOM6S8f39/kpbEniCsrnboRgn5XIMJ/7DzDvibvea9/YUMV9lFKwrsCEbzhGDXuHNZWuyh2aN+XiIjMP75wjONtAY60+fGG+hPtkWLuWLoCEZ77oIV3TnRhgLQUG39wSTGfXllGzigPwEdijKG7L0pvaOCYLydV+dk65usC7TzZjefstrvhGMDjDbPzZDdbFrqnb2AiMqWUcAvQX8p2oNnL0bNdxWsKsofdl2VZht8ebue5D5qJxC1SU2xcu7yEXx1oHfX6kXgCT2+YHHsaly8sZEmpI6mn7SIiIrOZL/z7Fe3eC0y0g9E4vzrQyssNbcTPNuHaVFvAZ9dWJL0SHYjEafOFcWalc/kiN4uKHeqtMkna/SMn28m8T0RmByXc81w0bvFhu5/9zV68wRileZkjPg0/0xXksXdOcaorCMDi4lzu2VyDOydjxITbGENnIIo/EqOuKJe1VS7cKkcTEZF5xh+OceycRLsgO4OFSSbaccvi9SMdPL/PQyASB2BJSS63r69iwSjHb44mlrDweMOkpEB9hZMV5Xm4sjOSupYMb7xVfar+E5lblHDPU8YYmntD7Gvy0tQdJG+U8vFILMGOvS28fKgNy0BWeiq3ra/kisWFpNhsRGKJYT8jHEvQ4g2Rl5XOVUuKWFSUq26mIiIyr/jPrmgfbvPjDcbIv4BE2xjD7jO9PL27iXZ/BIBSZyafW1fJ6kpnUte0jKEzECEQiVNdkM3KShflzkwdzTkFNtYWUObMpNUbHnYft43+P8+NtQXTPTQRmUJKuOchbyjGwRYvR842VakqyB6xvHt/s5fH3zlNV18UgEtr8vn8hqpRn3obc/aMzmicJSUOVle6yM/RU3IRkbnE7/fzV3/1Vzz77LO0t7ezdu1a/umf/okNGzbM9NAuCgOJ9pG2AL3BKPnZ/c3QUpJMZI93BPjZ+40c7+gD+k8EuXlNBVcsKky6wZY/HKPdH8GdY+fqJQXUFeVou9cUSk2xse3G5dz7+G5scF7SPfAnuO3G5WqYJjLHKOGeR6Jxi+MdAfY1eekNRinJyxyxm7g3FOOJ9xrZeaobgIKcDO7eVM2qSteonxGKJWjqDVGQk8HG2mLqinIVOERE5qCvfe1rHDhwgB/96EeUl5fz+OOP88lPfpKGhgYqKipmengzJhCJc6IjwCGPn95gFFdW+gUl2m2+MM/saWbX6R4AMtJSuHZ5CVtXlCa9tzoST9DqC5ORmsLaKhfLyvNwZKYndS2ZmK31ZTxy9zq27ThImy8y+HqpzuEWmbOUcM8DxhhavGH2NfXS2B3EYR+5fNwyhjePdfLUriaC0QQ2G3xyWQk3rS4fV2Dv8EdYUZHH6qp8nFkK3iIic1EoFOLpp5/m5z//OVdddRUADzzwAM899xyPPPIIf/u3fzvDI5x+A4n2YY+fnklItP3hGC/s8/Da0Q4SlsEGXL6okJvXlCe9t9qy+ivQQrE4tYU5rKx0UZKn/cLTbWt9GZcvKmTlA78G4N//cANXLi7SAoXIHKWEe47zhWMcbPZypM2PZUFV/sjl4x5viB+9c5qjbQEAqguy+eKWGha4R2/AEozFB//7iiVFrCjL09EhIiJzWDweJ5FIkJl5frKWlZXFm2++OUOjmhmBSJyTZ1e0JyPRjiUsfnOojV/ubyV0tkdKfUUen1tXSWV+dtLj7A1G6eqLUuzIZPNCN7WFOUrwZtC5c7+xtkB/FiJzmBLuOSqWOFs+3uilZ4zy8VjC4lcHWvnlfg9xy5CRlsLNa8r5g0tKRg0AljG0esMEo79vmrawKEfJtojIHOdwONiyZQt/8zd/w7JlyygpKeEnP/kJ7777LosXLx72eyKRCJHI70tofT7fdA13SvSdUzo+GYm2ZQzvnuzm2T3NdJ/tm1KVn8Xtl1axrCwv6XGGYwk83jDZ9lQ2LihgaZmD7Az9809EZLrob9w5ZqB8fH9TL2fGKB8HONrm57F3TtPq7T/zcWWFk7s2VY95fufAOZ3FjkwuXVDAwy8envR7ERGRi9ePfvQjvvKVr1BRUUFqairr1q3jzjvvZPfu3cO+/6GHHuLBBx+c5lFOvsFEu9VPT9+FJ9oAhzw+ntzVxJnu/mM387PT+ezaCjbXuZO+bsIytPnCxBIWi0tyWVHupMihYzlFRKabEu45ZKB8/GhbgIRlRi0f74vEeWpXE7871glAXmYaX9hYzaU1+aMeBWJZBo8vjGUZVlU6WVnpQgvaIiLzz8KFC3n99dfp6+vD5/NRVlbGHXfcQW1t7bDv//a3v839998/+LXP56Oqqmq6hnvBBhLtw61+ugNRnNkXnmg394Z4alcT+5u9QP+xm9fVl/LJZSVkpCXfLby7L0pPMEqZM5OVlS5qCrJVfSYiMkOUcM8BA+Xj+5u8dPdFKXFkkps5/B+tMYb3TvXw0/fO4Av3772+anEht66rJGeEkvMB/nCMNn+E0rxM1lXnU1WQhc1mIxiNj/p9IiIyd+Xk5JCTk0NPTw8vvfQS//N//s9h32e327HbZ98Ka18kzsnO/tLxwUS76MIS7d5glB17W/jdsU6MgVSbjauXFHHj6rIL6hYeiibw+EI47OlsWehmSYkj6U7mIiIyOZRwz2LDlY+P9rS9MxDh8XdPc6C5f99cmTOTezbXsKTEMernJCxDizeEzQZrq1ysrHRq/5eIyDz30ksvYYxh6dKlHDt2jD/7sz9j6dKl/OEf/uFMD21SBKO/36M9WYl2OJbgpYOtvNTQRjRuAbCu2sUt6yopvYBu4XHLotUbxjJwSamD+goXBTnJdTIXEZHJpaxpljq/fNwatXw8YRl+c6iNn+9tIRq3SEuxcf3KMrbWl474PQP84Rjt/ghlzkzWVudTmZ81asm5iIjMD16vl29/+9s0NTVRUFDArbfeyne/+13S02f3kZDnrWj3RXFmXXiinbD6j9zcsbcFbygGQF1hDretr2TxGA+9R2OMobsvSm8oRoUri1WVLirzs1Q+LiJyEVHCPcsMdh9v8tIzRvk4wKmuPh57+/RgI5YlJbncs7mGMmfWqJ8Ttyw83jApNhvra/JZUe4kK0NlaSIi0u/222/n9ttvn+lhTJphE+0L3KNtjGF/s5endjXRcrY5aVGunVvXVbB+jJ4p4xlvqy+MMyudKxYVsqgkF3ua4rSIyMVGCfcsMdHy8XAswc8/aOE3h9swBrIzUrltfSWXLyoc8x8P3lCMzkCESlcWa2ryqXCNnpwnLDP43ztPdnPl4iKdJykiIrPCec3QJinRBjjd1ceTu5o43OoHICcjlRtXl/OxJUWkjVFdNpp4wqLVF8YYqC93sqIiD1e2ysdFRC5WSrhngYmUjwPsa+rl8XfPDJ7juXFBAXdsqMKZNXqZXzxh0eINkZ6awoYFBSwvzxuz2cqLBzxs23Fw8Osvb3+PMmcm225cztb6sgncpYiIyPSZqkS7KxDhmT3NvHuyG4C0FBufXFbCp1eWXlD/E2MMnYEo/nCMyoJsVlU6qXBpm5eIyMVOCfdFbLB8vNFLT3Ds8nFvKMZPdp7h/dM9ABTmZnD3phrqK5xjflZvMEpXX5SqgmzWVrvGLDmH/mT73sd3Yz7yeqs3zL2P7+aRu9cp6RYRkYvKR8/RnqxEOxiN88v9rfzmUBvxs5Vfm+sK+OyaCty5F9adPRCJ0+YL48rO4MolRSwsyr2gY8NERGT6KOG+CE20fNwyht992MlTu5oIxRKk2OCa5SV8ZlU59jFWqGNnV7Uz0lLYWNu/qj2ePWAJy/Dg8w1Dkm0AA9iAB59v4JrlpSovFxGRGXdeoj1J52hDf3XYa0c7eGGfh0Ck/5jMS0odfG59JQvcORd07VjibD+VFFhZ6WRFuXPMajUREbm4KOG+yJxfPm7GLB9v6Q3x2NunOdYRAKDGnc2XNi+g2p095mf1BKN090WpcWeztjqfkgkcSbLzZDeesw1ghmMAjzfMzpPdbFnoHvd1RUREJtOwifYFdh2H/ofju0738PSeZjr8EQDKnZl8bn0lKyucF1TqbRlDVyCKPxKjuiCblZUuyp2ZKh8XEZmFlHBfJGIJi2PtAfY3eekNRinOyyTXPvIfTyxh8Yv9Hn51oJWEZbCnpXDzmgo+cUnxmCvKA6vamempbFno5pLSvAmXprX7R062k3mfiIjIZBpMtD1+eoKTc7zXgA/b/Tz5fhMnOvsAyMtM4+Y1FVy+qPCCq7oC4Tht/jAFORlcdbZ8fKwjPEVE5OKlhHuGDZSP72vqpfGc8vHRnmIfbvXxo3dO0+brf6K+qtLJXRurx7VHrLsvSm8wSk1hDmurXRQ7xr+qfa7xfl+y1xcREUlGIBLn5DmJtmuS9mgDtPrCPL27iT1negHISEvhU8tL+NSK0jGbjI6lv3w8RGpKCmuqXCwrzyMvU+XjIiKznRLuGeQNxTjY4uVomx/LYszy8UAkzlO7mnjzWCcAzqx0vrChalxnecYSFk29QXIy0rhskZslJRNf1T7XxtoCypyZtHrDw+7jtgGlzkw21hYk/RkiIiLjFUtYHPL4ODwFibY/HOP5vR5eP9pBwhhsNrhiYSE3rSm/4CO5LGPoDEToi8SpduewssJJmcrHRUTmDCXcMyAaP1s+3txfPl4yRvm4MYadJ7v56fuN+MP9DVmuXlLEresqxnXESFcggjcco7YwhzVV+RQ5LqxbKkBqio1tNy7n3sd3Y4Pzku6BfyJsu3G5GqaJiMi0aPOFee9kN7n2tElLtKNxi98cauNXB1oJxRIArKxw8rn1lVS4xj7NYyz+cIx2fwR3jp31SwqoK8pR+biIyByjhHsaGWNo7g2xr8lLU09/+XjdGOXjHf4Ij797moMtPqC/Ics9m2tYXOIY8/OicYuW3hA59jQuX1jIklLHpAbyrfVlPHL3OrbtODhY3g79K9s6h1tERKaTMZAw5oKP4IL+Ved3TnTx3J4WuoNRAKoLsrltfSXLyvIu+PoDvVTSz5aPLy/Pw6HycRGROUkJ9zTxBmMcOFs+DmOXjycsw8sNbezY20I0YZGWYuOGVWVsXVFK2hhJszGGrr4o/nCM2qJc1lS5KJyEf4AMZ2t9GZcvKmTlA78G4N//cANXLi7SyraIiMxKDS0+ntzVSGNPCICCnAw+u7aCTbUFF7xqbhlDhz9CXzRBjTubVZVOypwXvlIuIiIXLyXcUywat/iw3c/+Zi/eUIwSx+jl4wAnO/t47O1Tg8F+aYmDe7bUUDqOY7si8QQtvWEcmWlcsbiIxcW5YyboF+rc5HpjbYGSbRERmXWaeoI8tauJA2cryrLSU/n0ylL+4JKSC+p5MsAfjtHmj1CYY2dDbQF1hTlTHp9FRGTmKeGeIsYYmnpC7G/20tQdJC8rnTr36OXj4ViC5z5o5reH2zEGcjJSuf3SKi5b6B6zeYoxhs5AFH8kzqKiXNZUuyjIubBGLiIiInNdbzDKcx+08J/HOzEGUm02Pra0iBtWlU1KmXc0buHx9ZePr6tysbzCOeaDdxERmTv0N/4U6A1GOdDs5cO2ADZb/76vsZ5if9DYy4/fPTO4V2xTbQF3XFpFXtbYwT4SS9DsDZGXlc5VSwpZVDT1q9oiIiKzWTiW4MWDrfy6oY1o3AJgfXU+t6yroGQcFWVjObd8fIE7m1WVLkqdOipTRGS+UcI9iSLxBMfaAoPl42XOzDG7iPcGo/xkZyO7zvQAUJibwT2ba1hR7hzz8wZWtQPROIuLHaypcpGvVW0REZERJSzDm8c6+fkHzfjOnvyxsCiH29ZXsag4d1I+Y6B8vChX5eMiIvOdEu5JYIyhsTvE/qZemnpDuLLG7j5uGcMbRzt4enczoViCFBtcu7yUG1eXYU9LHfMzw7EELd4QzqwMrlpcxKLiXO2dFhERGYExhn3NXp7a1YTHGwag2GHn1nWVrKt2Tcq517OxfDwYjbP8r18CoOE7nxrXcaMiIjJ++lv1AvX0RTnQ4uXDNj82m42acZSPN/eEeOydUxzv6AOgtjCHL26uoaoge8zPM8bQEYjQF4mzpKR/VduVrVVtERGRkZzq6uPJ95s4cvakkFx7GjeuKuPqJUWTsvKs8nERERmJEu6zJvqENxxL8GGbn4MtPnzhGKV5Y5ePR+MWL+xv4aUDbSSMwZ6WwmfXVvCJpcWkjGN1emBV25WVwdVLi1lYpFVtERGRkXQGIjy7p5l3T3YDkJZi45PLSvj0ytJJW8lV+biIiIxGCfcEWZahsSfI/iYvzb0h8rMzqB2j+zjAIY+PH71zmnZ/BIA1lS7u3FQ9rk7ixhja/RFCsYRWtUVERMYQjMb5xX4Pvz3UTtwyAGypc3PzmnLcufZJ+YzZWD4uIiLTT5FhArr7ouxr6uVERx+pNhs17mzSUkZ/iu0Px3hyVxNvHe8CwJmVzp0bq8e9XywcS9DcG6IgJ4ONtQXUaVVbRERkWAnL8HJDGy/sa6EvmgDgklIHt62vpMadMymfcW75eI07m9UqHxcRkVEo4T4rcfYJOMDOk91cubhoMLENxxIcafVzsMVLIBKnLC+LrIzRG5sZY3jnZDdPvNdIIBLHBnxsaRGfXVsxrjK2gVXtcCzB0lIHa6vycWZf+HmgIiIic40xhlcOt/PoGyfoDcYAKHdl8rl1layscE5KQzTof4je7o/gzlH5uIiIjM+MJ9w/+MEP+Id/+Ac8Hg8rVqzg+9//PldeeeW0juHFAx627Tg4+PWXt79HmTOTv7p+OcvK89jf1EuLN4Q7x05d4dhHhrT7wzz+zhkaPD6gP+h/acsCFhaN77iRUDQx+Hmb6gqoK8wd1x5vERGR+eiHb53igecbgP5KspvWlHP5wsJJqwiLJSxavP3l42uqXCwvz8ORqYfgIiIythlNuJ944gn+9E//lB/84AdcfvnlPProo1x33XU0NDRQXV09LWN48YCHex/fjfnI6x5vmPt+vLv/6Xilk1r32KXcccvi5YY2duxtIZYwpKXYuGFVGVtXlI7rCbh1dlU7EkuwrMzB6qp8nFkK6CIiIqO5ZX0lj75xgkXFuXz+0irs6WMfrzkeljF0BiIEInFq3DmsqnRS5syalGuLiMj8MKMJ9/e+9z2++tWv8rWvfQ2A73//+7z00ks88sgjPPTQQ1P++QnL8ODzDUOS7XP95nAb1y4vGXOF+URHgMfeOU1TTwjo3zN2z+YaSvLGt6/r3FXtzXVu6gpztKotIiIyDnmZ6fz4a5t4+VDbpCXb55aPX72kgLqiHNJVPi6TJDsjjVMPXz/TwxCRaTBjCXc0GmXXrl38+Z//+XmvX3vttbz11lvDfk8kEiESiQx+7fP5LmgMO0924/GGR31PbzDG0XY/l5TmDfv7oWiCZ/c08+qRdgz9Z3vefmklW+rc49oz9tFV7TXV+eSpTE1ERGRCJmsvdSxh4fGGSFX5uIiITIIZS7g7OztJJBKUlJSc93pJSQmtra3Dfs9DDz3Egw8+OGljaPePnmwP8IZiw76+50wPP955hp6zDVq21Lm5/dLKcQfmYDSOxxumMNfOloVuat2zc1VbT2lFRGS2M8bQGYjij8SoLshmVaWLMmfmpDVcu1iN1jRWREQu3Iw3TftoIDPGjBjcvv3tb3P//fcPfu3z+aiqqkr6s4sd4yv3/ug+6p5glB/vPMOeM70AFDns3LOphuXlw6+Cf5RlDO2+CJF4guXleayucmlVW0REZIYEInHafWFc2RlctaSIhUW586J8fKSmsdtuXM7W+rIZHJmIyNwxYwl3YWEhqampQ1az29vbh6x6D7Db7djt9kkbw8baAsqcmbR6wyPu487PTmdJsQMAyzK8drSDZ/Y0EY5ZpNpsfGpFCTesKicjbXyB+bxV7UWzd1VbRERktusvHw+TmmJjZaWTFRXOefMAfKSmsa3eMPc+vptH7l6npFtEZBLM2OPbjIwM1q9fz8svv3ze6y+//DKXXXbZtIwhNcXGthuXAzBSyvv5DdWkpNho6gny8IuH+fHOM4RjFnWFOfzVDcu4ZV3luJJtyxg83hAd/igryvO4dkUJC4t03JeIiMh0M8bQ4Y/Q2BOkzJXJJ5eXsLnOPW+S7dGaxg689uDzDeeVm4uISHJmtKT8/vvv55577uHSSy9ly5Yt/N//+385c+YMX//616dtDFvry3jk7nVs23GQNt/vG7LlZ6fz+Q3VrKxw8szuJl462EbCGDLTU7h1bSVXLykad7J87qr25YtcLNCqtoiIyIzoi8RpPVs+fuXi/vLx8VapzRVjNY019B+PuvNkN1sWuqdvYCIic9CMJtx33HEHXV1dfOc738Hj8VBfX88vf/lLampqpnUcW+vLuHxRISsf+DUAf/LxhdRXuDjc6mfb8wfp8Pcn4murXdy5sZr87IxxXdcyhjZfmFjCsOLsXm11OhUREZl+8YRFq69/C1l9hZP6CueQHi3zxXibxo73fSIiMrIZb5p23333cd999830MM7ryFnqzGL7W6d4+0QX0L/afefGatZW54/7egOr2kUOO2uqtKotIiIyE4wxdPdF8YZiVBZks7LCSWV+1pzvPj6a8TaNHe/7RERkZDOecF+MvvvLQ/RFE9iAj19SzGfXVJCVkTqu7z13Vbu+3MmqKqdWtUVERGbAwMNvZ3Y6ly8qZHGJY96Vjw9nrKaxNqDUmcnG2oLpHpqIyJyjhPus0119g//dF01Q4criS1tqqCvKHfc1zl3VXludT01Btla1RUREplncsmj1hrFM/5au+gonrnFuB5sPBprG3vv4bmxwXtI98K+WbTcu13ncIiKTQAk3/eVmPX0xANJSbHxmdTnXrighLWV8T8G1qi0iInJx6O6L0hOMUuHKYlWli6qC+V0+PpKRmsaW6hxuEZFJpYQbsNlsXLaokD/9g8XEEharK10T7kCuVW0REZGZlWqzkbAMly10s7jEQWb6+LaDzVcfbRr773+4gSsXF2llW0RkEinhPsfnN1bzi30t43rveavaFU5WVWpVW0REZKbkZaazuspFXVEuBTkqHx+vc5PrjbUFSrZFRCaZEu4kaFVbRETk4uLMTufSBWryJSIiFxcl3BNgGUOrN0zc6l/VXl3lIteuKRQREREREZGhlC2Ok1a1RUREREREZCKUcI9Bq9oiIiIiIiKSDGWOo9CqtoiIiIiIiCRLCfcwLAytvVrVFhERERERkeQpixzGqc4gxXla1RYREREREZHkKeE+h80GeVnplLuytKotIiIic152RhqnHr5+pochIjJnKaM8R2GunauXFlGYY9eqtoiIiIiIiFwQJdznSE2xUezInOlhiIiIiIiIyByQMtMDEBEREREREZmLlHCLiIiIiIiITAEl3CIiIiIiIiJTQAm3iIiIiIiIyBRQwi0iIiIiIiIyBZRwi4iIiIiIiEwBJdwiIiIiIiIiU0AJt4iIiIiIiMgUUMItIiIiIiIiMgWUcIuIiIiIiIhMASXcIiIiIiIiIlNACbeIiIiIiIjIFFDCLSIiIiIiIjIFlHCLiIiIiIiITAEl3CIiIiIiIiJTIG2mB3AhjDEA+Hy+GR6JiIjIxAzEroFYNt8ohouIyGw1kRg+qxNuv98PQFVV1QyPREREJDl+vx+n0znTw5h2iuEiIjLbjSeG28wsfrRuWRYtLS04HA5sNtsFX8/n81FVVUVjYyN5eXmTMML5Q3OXHM1b8jR3ydPcJW8y584Yg9/vp7y8nJSU+bfDSzH84qG5S47mLXmau+Rp7pI3UzF8Vq9wp6SkUFlZOenXzcvL0w9wkjR3ydG8JU9zlzzNXfIma+7m48r2AMXwi4/mLjmat+Rp7pKnuUvedMfw+fdIXURERERERGQaKOEWERERERERmQJKuM9ht9vZtm0bdrt9pocy62jukqN5S57mLnmau+Rp7i5e+rNJnuYuOZq35Gnukqe5S95Mzd2sbpomIiIiIiIicrHSCreIiIiIiIjIFFDCLSIiIiIiIjIFlHCLiIiIiIiITIE5lXA/9NBDbNiwAYfDQXFxMTfffDNHjhw57z3GGB544AHKy8vJysriYx/7GAcPHhz8/e7ubr75zW+ydOlSsrOzqa6u5k/+5E/wer3nXWfBggXYbLbzfv35n//5tNznVJjOuQP4xS9+waZNm8jKyqKwsJBbbrllyu9xqkzX3L322mtDfuYGfr333nvTdr+TZTp/5o4ePcpNN91EYWEheXl5XH755bz66qvTcp9TYTrnbvfu3VxzzTW4XC7cbjf/5b/8FwKBwLTc51SYjLkD+KM/+iMWLlxIVlYWRUVF3HTTTRw+fPi89/T09HDPPffgdDpxOp3cc8899Pb2TvUtzlqK4clTDE+eYnhyFMOTpxievFkbw80c8qlPfcps377dHDhwwHzwwQfm+uuvN9XV1SYQCAy+5+GHHzYOh8M8/fTTZv/+/eaOO+4wZWVlxufzGWOM2b9/v7nlllvMjh07zLFjx8xvf/tbs3jxYnPrrbee91k1NTXmO9/5jvF4PIO//H7/tN7vZJrOuXvqqadMfn6+eeSRR8yRI0fM4cOHzZNPPjmt9zuZpmvuIpHIeT9vHo/HfO1rXzMLFiwwlmVN+31fqOn8mVu0aJH59Kc/bfbu3WuOHj1q7rvvPpOdnW08Hs+03vNkma65a25uNvn5+ebrX/+6OXz4sNm5c6e57LLLhszvbDIZc2eMMY8++qh5/fXXzcmTJ82uXbvMjTfeaKqqqkw8Hh98z9atW019fb156623zFtvvWXq6+vNDTfcMK33O5sohidPMTx5iuHJUQxPnmJ48mZrDJ9TCfdHtbe3G8C8/vrrxhhjLMsypaWl5uGHHx58TzgcNk6n0/zLv/zLiNf52c9+ZjIyMkwsFht8raamxvzjP/7jlI19pk3V3MViMVNRUWH+9V//dWpvYAZN5c/duaLRqCkuLjbf+c53JvcGZshUzVtHR4cBzBtvvDH4Hp/PZwDzm9/8ZoruZnpN1dw9+uijpri42CQSicH37NmzxwDmww8/nKK7mV6TNXd79+41gDl27JgxxpiGhgYDmHfeeWfwPW+//bYBzOHDh6fobuYWxfDkKYYnTzE8OYrhyVMMT95sieFzqqT8owbKKgoKCgA4efIkra2tXHvttYPvsdvtXH311bz11lujXicvL4+0tLTzXv/7v/973G43a9as4bvf/S7RaHQK7mJmTNXc7d69m+bmZlJSUli7di1lZWVcd911Q0o9ZrOp/rkbsGPHDjo7O/nyl788eYOfQVM1b263m2XLlvHYY4/R19dHPB7n0UcfpaSkhPXr10/hHU2fqZq7SCRCRkYGKSm/DxVZWVkAvPnmm5N+HzNhMuaur6+P7du3U1tbS1VVFQBvv/02TqeTTZs2Db5v8+bNOJ3OUf8M5PcUw5OnGJ48xfDkKIYnTzE8ebMlhs/ZhNsYw/33388VV1xBfX09AK2trQCUlJSc996SkpLB3/uorq4u/uZv/oY/+qM/Ou/1b33rW/z0pz/l1Vdf5Rvf+Abf//73ue+++6bgTqbfVM7diRMnAHjggQf4H//jf/DCCy+Qn5/P1VdfTXd391TczrSa6p+7c/3bv/0bn/rUpwb/cpjNpnLebDYbL7/8Mnv27MHhcJCZmck//uM/8uKLL+JyuabmhqbRVM7dJz7xCVpbW/mHf/gHotEoPT09/MVf/AUAHo9nKm5nWl3o3P3gBz8gNzeX3NxcXnzxRV5++WUyMjIGr1NcXDzkM4uLi0f8M5DfUwxPnmJ48hTDk6MYnjzF8OTNphg+ZxPub3zjG+zbt4+f/OQnQ37PZrOd97UxZshrAD6fj+uvv57ly5ezbdu2837vv/7X/8rVV1/NqlWr+NrXvsa//Mu/8G//9m90dXVN7o3MgKmcO8uyAPjLv/xLbr31VtavX8/27dux2Ww8+eSTk3wn02+qf+4GNDU18dJLL/HVr351cgY+w6Zy3owx3HfffRQXF/O73/2OnTt3ctNNN3HDDTfMiYAzlXO3YsUKfvjDH/K//tf/Ijs7m9LSUurq6igpKSE1NXXyb2aaXejc3XXXXezZs4fXX3+dxYsXc/vttxMOh0e8xkjXkaEUw5OnGJ48xfDkKIYnTzE8ebMphs/JhPub3/wmO3bs4NVXX6WysnLw9dLSUoAhTyba29uHPAnx+/1s3bqV3Nxcnn32WdLT00f9zM2bNwNw7NixybiFGTPVc1dWVgbA8uXLB1+z2+3U1dVx5syZSb+f6TSdP3fbt2/H7Xbzmc98ZpLvYvpN9by98sorvPDCC/z0pz/l8ssvZ926dfzgBz8gKyuLH/7wh1N4Z1NvOn7m7rzzTlpbW2lubqarq4sHHniAjo4Oamtrp+iupsdkzJ3T6WTx4sVcddVVPPXUUxw+fJhnn3128DptbW1DPrejo2PIdeR8iuHJUwxPnmJ4chTDk6cYnrzZFsPnVMJtjOEb3/gGzzzzDK+88sqQH6ba2lpKS0t5+eWXB1+LRqO8/vrrXHbZZYOv+Xw+rr32WjIyMtixYweZmZljfvaePXuA3wej2Wa65m79+vXY7fbzWvjHYjFOnTpFTU3NFN3d1JrunztjDNu3b+eLX/zimP+IvJhN17wFg0GA8/YwDXw9sFoz28zE33UlJSXk5ubyxBNPkJmZyTXXXDP5NzYNJmvuRrp2JBIBYMuWLXi9Xnbu3Dn4+++++y5er3fM68xXiuHJUwxPnmJ4chTDk6cYnrxZG8Mn3GbtInbvvfcap9NpXnvttfOOXQgGg4Pvefjhh43T6TTPPPOM2b9/v/nCF75wXqt4n89nNm3aZFauXGmOHTt23nUGWsW/9dZb5nvf+57Zs2ePOXHihHniiSdMeXm5+cxnPjMj9z0ZpmvujDHmW9/6lqmoqDAvvfSSOXz4sPnqV79qiouLTXd397Tf92SYzrkzxpjf/OY3BjANDQ3Tep+TbbrmraOjw7jdbnPLLbeYDz74wBw5csT89//+3016err54IMPZuTeL9R0/sz9n//zf8yuXbvMkSNHzD//8z+brKws80//9E/Tfs+TZTLm7vjx4+bv/u7vzPvvv29Onz5t3nrrLXPTTTeZgoIC09bWNnidrVu3mlWrVpm3337bvP3222blypU6FmwUiuHJUwxPnmJ4chTDk6cYnrzZGsPnVMINDPtr+/btg++xLMts27bNlJaWGrvdbq666iqzf//+wd9/9dVXR7zOyZMnjTHG7Nq1y2zatMk4nU6TmZlpli5darZt22b6+vqm+Y4nz3TNnTH9R2H8t//230xxcbFxOBzmk5/8pDlw4MA03u3kms65M8aYL3zhC+ayyy6bprubOtM5b++995659tprTUFBgXE4HGbz5s3ml7/85TTe7eSazrm75557TEFBgcnIyDCrVq0yjz322DTe6eSbjLlrbm421113nSkuLjbp6emmsrLS3HnnnUOOCunq6jJ33XWXcTgcxuFwmLvuusv09PRM053OPorhyVMMT55ieHIUw5OnGJ682RrDbWcHLyIiIiIiIiKTaE7t4RYRERERERG5WCjhFhEREREREZkCSrhFREREREREpoASbhEREREREZEpoIRbREREREREZAoo4RYRERERERGZAkq4RURERERERKaAEm4RERERERGRKaCEW2See+CBB1izZs1MD0NEREQmSDFc5OJnM8aYmR6EiEwNm8026u9/6Utf4p//+Z+JRCK43e5pGpWIiIiMRTFcZG5Qwi0yh7W2tg7+9xNPPMFf//Vfc+TIkcHXsrKycDqdMzE0ERERGYViuMjcoJJykTmstLR08JfT6cRmsw157aPlaF/+8pe5+eab+bu/+ztKSkpwuVw8+OCDxONx/uzP/oyCggIqKyv5f//v/533Wc3Nzdxxxx3k5+fjdru56aabOHXq1PTesIiIyByhGC4yNyjhFpEhXnnlFVpaWnjjjTf43ve+xwMPPMANN9xAfn4+7777Ll//+tf5+te/TmNjIwDBYJCPf/zj5Obm8sYbb/Dmm2+Sm5vL1q1biUajM3w3IiIi84diuMjFRQm3iAxRUFDA//7f/5ulS5fyla98haVLlxIMBvmLv/gLFi9ezLe//W0yMjL4z//8TwB++tOfkpKSwr/+67+ycuVKli1bxvbt2zlz5gyvvfbazN6MiIjIPKIYLnJxSZvpAYjIxWfFihWkpPz+eVxJSQn19fWDX6empuJ2u2lvbwdg165dHDt2DIfDcd51wuEwx48fn55Bi4iIiGK4yEVGCbeIDJGenn7e1zabbdjXLMsCwLIs1q9fz3/8x38MuVZRUdHUDVRERETOoxgucnFRwi0iF2zdunU88cQTFBcXk5eXN9PDERERkXFSDBeZWtrDLSIX7K677qKwsJCbbrqJ3/3ud5w8eZLXX3+db33rWzQ1Nc308ERERGQEiuEiU0sJt4hcsOzsbN544w2qq6u55ZZbWLZsGV/5ylcIhUJ6Wi4iInIRUwwXmVo2Y4yZ6UGIiIiIiIiIzDVa4RYRERERERGZAkq4RURERERERKaAEm4RERERERGRKaCEW0RERERERGQKKOEWERERERERmQJKuEVERERERESmgBJuERERERERkSmghFtERERERERkCijhFhEREREREZkCSrhFREREREREpoASbhEREREREZEpoIRbREREREREZAr8f8lDKnAFCkkRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualize_fit(t, x, y, xe, ye, x_model, y_model, xe_model, ye_model, mm.name, t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "98d3e2c4", + "metadata": {}, + "source": [ + "## 1.2. Example: Acceleration Model Fit" + ] + }, + { + "cell_type": "markdown", + "id": "ede486e5", + "metadata": {}, + "source": [ + "Upon further inspection, acceleration model seems to be a better representation of the data" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "0a0d9d1f", + "metadata": {}, + "outputs": [], + "source": [ + "mm = Acceleration()\n", + "params, param_errs = mm.fit(t, x, y, xe, ye)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "b3d63417", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHqCAYAAAD27EaEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA57lJREFUeJzs3Xd8W9X5P/CPPCRZHrLlbccrdpazAwkZkEESSAirhRYKLST5tmW0jEJpS/sro4PVlrJDoUBC2ZQQVhMgJAQCIdvZie14b1u29r73/P4wNnHicSUPeXzer5dfr0i6uvcohjx67jnneVRCCAEiIiIiIiIi6lMhwR4AERERERER0XDEhJuIiIiIiIioHzDhJiIiIiIiIuoHTLiJiIiIiIiI+gETbiIiIiIiIqJ+wISbiIiIiIiIqB8w4SYiIiIiIiLqB0y4iYiIiIiIiPoBE24iIiIiIiKifsCEm/rEE088AZVKhUmTJgV7KO0WLlyIhQsXBu36r732Gh577LFOX1OpVLjvvvsGdDwAsHbtWqhUKqhUKnz++ednvC6EQF5eHlQqVcB/dw888AA2bNhwxvOff/55l9ftbytXroRKpUJ0dDRsNtsZr5eXlyMkJKTPfy+9+cxtv6uysjJFx3X28+tf/xplZWVQqVRYu3Zt+3u+/vpr3HfffTCZTH6Pi4iGH8bwMzGGd8QY7h/GcDoVE27qEy+++CIA4MiRI9i5c2eQRzM4dBesd+zYgZ/+9KcDO6BTREdH44UXXjjj+W3btuHkyZOIjo4O+NxdBesZM2Zgx44dmDFjRsDn7o3w8HD4fD68+eabZ7z20ksv9eozDwYvvfQSduzY0eHn1ltvRWpqKnbs2IEVK1a0H/v111/j/vvvZ7AmIgCM4Z1hDO+IMbx/MYYPb0y4qdf27NmDAwcOtP9j0FkQGA6cTmefnWv27NkYNWpUn53PX1dddRXeeecdWCyWDs+/8MILmDNnDjIzM/v8mjExMZg9ezZiYmL6/NxKqNVqXH755e1fLNsIIbB27VpcddVVQRlXX5k0aRJmz57d4SczMxMajQazZ89GYmJisIdIRIMQY7j/GMMHHmM4Y/hQxoSbeq0tOD/00EOYO3cu3njjDTgcjjOOq66uxs9//nNkZGRArVYjLS0NV155Jerr69uPMZlMuPPOOzF69GhoNBokJSXhoosuwvHjx9uP8Xg8+Mtf/oLx48dDo9EgMTERq1atQmNjY49jVfre7OxsXHzxxVi/fj2mT58OrVaL+++/HwDw9NNPY/78+UhKSkJkZCQmT56MRx55BF6vt/39CxcuxEcffYTy8vIOy4PadLbs6fDhw7jssssQFxcHrVaLadOmYd26dR2OaVve9Prrr+MPf/gD0tLSEBMTgyVLluDEiRM9fv42P/rRjwAAr7/+evtzZrMZ77zzDlavXt3pe5qbm3HzzTcjPT0darUao0ePxh/+8Ae43e4On8tut2PdunXtn7ltWVtXS7Pef/99zJkzBzqdDtHR0Vi6dCl27NjR4Zj77rsPKpUKR44cwY9+9CPo9XokJydj9erVMJvNij/36tWr8fXXX3f4u9q8eTPKy8uxatWqTt+j5PcCAMePH8eyZcug0+mQkJCAG2+8EVartdNzbt68GYsXL0ZMTAx0Oh3mzZuHzz77TPHn8Mfpy9Huu+8+3HXXXQCAnJycbpcnEtHwxxjOGH7q52IMZwynvseEm3rF6XTi9ddfx8yZMzFp0iSsXr0aVqsVb7/9dofjqqurMXPmTLz77ru44447sHHjRjz22GPQ6/VoaWkBAFitVpx77rn417/+hVWrVuGDDz7As88+i7Fjx6K2thYAIMsyLrvsMjz00EO45ppr8NFHH+Ghhx7Cp59+ioULF3Z7B9vf9+7btw933XUXbr31VmzatAlXXHEFAODkyZO45ppr8J///Acffvgh/u///g9/+9vfcMMNN7S/95lnnsG8efOQkpLSYXlQV06cOIG5c+fiyJEjeOKJJ7B+/Xrk5+dj5cqVeOSRR844/ve//z3Ky8vx73//G8899xyKiopwySWXQJKkHn5jrWJiYnDllVd2uFP8+uuvIyQkpNO7xC6XC4sWLcLLL7+MO+64Ax999BF+/OMf45FHHsH3v//99uN27NiBiIgIXHTRRe2f+ZlnnulyHK+99houu+wyxMTE4PXXX8cLL7yAlpYWLFy4ENu3bz/j+CuuuAJjx47FO++8g9/97nd47bXX8Ktf/UrRZwaAJUuWICsrq8PnfuGFFzB//nyMGTPmjOOV/l7q6+uxYMECHD58GM888wz+85//wGaz4Ze//OUZ53zllVdwwQUXICYmBuvWrcNbb70Fg8GACy+8sFcBW5Ik+Hy+Dj+d+elPf4pbbrkFALB+/fr231OwlgkSUfAwhjOGM4YzhtMAEES98PLLLwsA4tlnnxVCCGG1WkVUVJQ477zzOhy3evVqER4eLo4ePdrluf70pz8JAOLTTz/t8pjXX39dABDvvPNOh+d3794tAIhnnnmm/bkFCxaIBQsWBPTerKwsERoaKk6cONH1hxdCSJIkvF6vePnll0VoaKhobm5uf23FihUiKyur0/cBEPfee2/746uvvlpoNBpRUVHR4bjly5cLnU4nTCaTEEKIrVu3CgDioosu6nDcW2+9JQCIHTt2dDvel156SQAQu3fvbj/X4cOHhRBCzJw5U6xcuVIIIcTEiRM7/N09++yzAoB46623Opzv4YcfFgDEJ5980v5cZGSkuP7668+4dtv1tm7dKoRo/btLS0sTkydPFpIktR9ntVpFUlKSmDt3bvtz9957rwAgHnnkkQ7nvPnmm4VWqxWyLHf7ua+//noRGRnZfq6UlBTh9XqF0WgUGo1GrF27VjQ2Ngb8e/ntb38rVCqVKCgo6HDc0qVLO3xmu90uDAaDuOSSSzocJ0mSmDp1qpg1a1b7c22/q9LS0m4/W9txnf14vV5RWloqAIiXXnqp/T1/+9vfFJ2biIY3xnDGcMZwxnDqf5zhpl554YUXEBERgauvvhoAEBUVhR/84Af48ssvUVRU1H7cxo0bsWjRIkyYMKHLc23cuBFjx47FkiVLujzmww8/RGxsLC655JIOdwGnTZuGlJSUbpfU+PveKVOmYOzYsWecZ//+/bj00ksRHx+P0NBQhIeH47rrroMkSSgsLOzy+t3ZsmULFi9ejIyMjA7Pr1y5Eg6H44w765deeukZYwVaK3UqtWDBAuTm5uLFF1/EoUOHsHv37i6Xom3ZsgWRkZG48sorzxgfgIDu6p44cQI1NTX4yU9+gpCQ7/4pioqKwhVXXIFvvvnmjGWNnX1ul8uFhoYGxdddtWoV6uvrsXHjRrz66qtQq9X4wQ9+0OmxSn8vW7duxcSJEzF16tQOx11zzTUdHn/99ddobm7G9ddf3+G/QVmWsWzZMuzevRt2u13xZznVyy+/jN27d3f4CQsLC+hcRDQyMIYzhgOM4Yzh1N/4m6SAFRcX44svvsAVV1wBIUR7tcQrr7wSL730El588UU8+OCDAIDGxsYeC4w0Njb2WOijvr4eJpMJarW609ebmpr67L2pqalnHFNRUYHzzjsP48aNw+OPP47s7GxotVrs2rULv/jFLwIuymI0Gju9XlpaWvvrp4qPj+/wWKPRAPCvKIxKpcKqVavwxBNPwOVyYezYsTjvvPO6HF9KSkqHPWwAkJSUhLCwsDPGp0Tbe7r63LIso6WlBTqdrv35vvjcWVlZWLx4MV588UWUlZXh6quvhk6n63TPotLfi9FoRE5OzhnHpaSkdHjcttfx9C89p2pubkZkZKTiz9NmwoQJOPvss/1+HxGNTIzhjOGM4YzhNDCYcFPAXnzxRQgh8N///hf//e9/z3h93bp1+Mtf/oLQ0FAkJiaiqqqq2/MpOSYhIQHx8fHYtGlTp6931xbC3/eeHpgAYMOGDbDb7Vi/fj2ysrLany8oKOh23D2Jj49v3+N2qpqaGgCtY+8PK1euxD333INnn30Wf/3rX7sd386dOyGE6PD30tDQAJ/PF9D42gJvV587JCQEcXFxfp9XidWrV+PHP/4xZFnGmjVruh2jkt9LfHw86urqzjju9Ofajn/yyScxe/bsTq+ZnJys7EMQEfUCYzhjOGM4YzgNDCbcFBBJkrBu3Trk5ubi3//+9xmvf/jhh/jHP/6BjRs34uKLL8by5cvxn//8BydOnMC4ceM6Pefy5ctxzz33YMuWLTj//PM7Pebiiy/GG2+8AUmScM455/g15t68t01boGq7Kwu0tqR4/vnnzzhWo9Eovmu7ePFivPvuu6ipqWm/8wq0LjHS6XRd/sPeW+np6bjrrrtw/PhxXH/99d2O76233sKGDRvwve99r8P42l5vo/Rzjxs3Dunp6Xjttdfw61//uv3v1m6345133mmvetofvve97+F73/se9Hp9t3+3Sn8vixYtwiOPPIIDBw50WJL22muvdTjfvHnzEBsbi6NHj3ZajGWgBDKrQETDB2M4Y3jb+Npeb8MYzhhOfY8JNwVk48aNqKmpwcMPP9zeMuJUkyZNwlNPPYUXXngBF198Mf70pz9h48aNmD9/Pn7/+99j8uTJMJlM2LRpE+644w6MHz8et99+O958801cdtll+N3vfodZs2bB6XRi27ZtuPjii7Fo0SJcffXVePXVV3HRRRfhtttuw6xZsxAeHo6qqips3boVl112WYdgcqrevLfN0qVLoVar8aMf/Qi/+c1v4HK5sGbNmvYqraeaPHky1q9fjzVr1uCss85CSEhIl8uF7r33Xnz44YdYtGgR7rnnHhgMBrz66qv46KOP8Mgjj0Cv1/f8SwnQQw891OMx1113HZ5++mlcf/31KCsrw+TJk7F9+3Y88MADuOiiizrs2Zs8eTI+//xzfPDBB0hNTUV0dHSnX9BCQkLwyCOP4Nprr8XFF1+MG264AW63G3/7299gMpkUjStQWq220xmd0yn9vdx+++148cUXsWLFCvzlL39BcnIyXn311Q6tcIDWvW1PPvkkrr/+ejQ3N+PKK69EUlISGhsbceDAATQ2NnZ7t76vTJ48GQDw+OOP4/rrr0d4eDjGjRvX7ewSEQ0fjOGM4YzhjOE0gIJXr42Gsssvv1yo1WrR0NDQ5TFXX321CAsLE3V1dUIIISorK8Xq1atFSkqKCA8PF2lpaeKHP/yhqK+vb39PS0uLuO2220RmZqYIDw8XSUlJYsWKFeL48ePtx3i9XvH3v/9dTJ06VWi1WhEVFSXGjx8vbrjhBlFUVNR+3OkVTv15b1ZWllixYkWnn+uDDz5of396erq46667xMaNGztUshRCiObmZnHllVeK2NhYoVKpxKn/u+G0SppCCHHo0CFxySWXCL1eL9RqtZg6dWqHqpRCfFcl9O233+7wfGdVLDtzaoXT7pxe4VQIIYxGo7jxxhtFamqqCAsLE1lZWeLuu+8WLperw3EFBQVi3rx5QqfTCQDt5zm9wmmbDRs2iHPOOUdotVoRGRkpFi9eLL766qsOx7RVOG1sbOz08/RUqfPUCqdd6azCqRDKfi9CCHH06FGxdOlSodVqhcFgEP/3f/8n3nvvvU4/87Zt28SKFSuEwWAQ4eHhIj09XaxYsaLD79XfCqdd/U67+m/j7rvvFmlpaSIkJKTTMRLR8MUYzhjOGN4RYzj1J5UQQvR/Wk9EREREREQ0srAtGBEREREREVE/YMJNRERERERE1A+YcBMRERERERH1AybcRERERERERP2ACTcRERERERFRP2DCTURERERERNQPwoI9gN6QZRk1NTWIjo6GSqUK9nCIiIgUE0LAarUiLS0NISEj7/43YzgREQ1V/sTwIZ1w19TUICMjI9jDICIiClhlZSVGjRoV7GEMOMZwIiIa6pTE8CGdcEdHRwNo/aAxMTFBHg0REZFyFosFGRkZ7bFspGEMJyKiocqfGD6kE+62JWgxMTEM1kRENCSN1OXUjOFERDTUKYnhI2/TGBEREREREdEAYMJNRERERERE1A+YcBMRERERERH1gyG9h1spSZLg9XqDPQzyQ3h4OEJDQ4M9DCIiCjLG8KGHMZyI6DvDOuEWQqCurg4mkynYQ6EAxMbGIiUlZcQWFCIiGskYw4c2xnAiolbDOuFuC9RJSUnQ6XT8R3+IEELA4XCgoaEBAJCamhrkERER0UBjDB+aGMOJiDoatgm3JEntgTo+Pj7YwyE/RUREAAAaGhqQlJTEpWlERCMIY/jQxhhORPSdYVs0rW2/l06nC/JIKFBtvzvu3SMiGlkYw4c+xnAiolbDNuFuwyVoQxd/d0REIxvjwNDF3x0RUathn3D3BYfHh+zffYTs330Eh8cX7OEQERGRAozfREQUbEy4iYiIiIiIiPoBE24FJFm0/3lXaXOHx/1h5cqVUKlUUKlUCA8PR3JyMpYuXYoXX3wRsiwrPs/atWsRGxvbfwMlIiIaxAY6fgOM4URE1BET7h5sOlyLJY9ua3+88qXdOPfhLdh0uLZfr7ts2TLU1tairKwMGzduxKJFi3Dbbbfh4osvhs/HZXFERETdCVb8BhjDiYjoO0y4u7HpcC1uemUf6i3uDs/XmV246ZV9/Rq0NRoNUlJSkJ6ejhkzZuD3v/893nvvPWzcuBFr164FADz66KOYPHkyIiMjkZGRgZtvvhk2mw0A8Pnnn2PVqlUwm83td9rvu+8+AMArr7yCs88+G9HR0UhJScE111zT3i+TiIhoqAtm/AYYw4mI6DtMuLsgyQL3f3AUnS0+a3vu/g+ODsjytDbnn38+pk6divXr1wMAQkJC8MQTT+Dw4cNYt24dtmzZgt/85jcAgLlz5+Kxxx5DTEwMamtrUVtbi1//+tcAAI/Hgz//+c84cOAANmzYgNLSUqxcuXLAPgcREQ1uX3zxBS655BKkpaVBpVJhw4YNXR57ww03QKVS4bHHHhuw8XVnMMZvgDGciGikCgv2AAarXaXNqDW7unxdAKg1u7CrtBlzcuMHbFzjx4/HwYMHAQC33357+/M5OTn485//jJtuugnPPPMM1Go19Ho9VCoVUlJSOpxj9erV7X8ePXo0nnjiCcyaNQs2mw1RUVED8jmIiGjwstvtmDp1KlatWoUrrriiy+M2bNiAnTt3Ii0tbQBH173BGr8BxnAiomByeSVIskCkZmBTYCbcXWiwdh2sAzmurwgh2ntbbt26FQ888ACOHj0Ki8UCn88Hl8sFu92OyMjILs+xf/9+3HfffSgoKEBzc3N7EZeKigrk5+cPyOcgIhpqHB4f8u/5GABw9E8XQqceviF0+fLlWL58ebfHVFdX45e//CU+/vhjrFixYoBG1rPBGr8BxnAiomA6WGkCVCrMyjEM6HW5pLwLSdHaPj2urxw7dgw5OTkoLy/HRRddhEmTJuGdd97B3r178fTTTwMAvF5vl++32+244IILEBUVhVdeeQW7d+/Gu+++C6B1mRoREVFPZFnGT37yE9x1112YOHFisIfTwWCN3wBjOBFRsNjcPpQY7QO+nQjgDHeXZuUYkKrXos7s6nQfmApAil47oHdItmzZgkOHDuFXv/oV9uzZA5/Ph3/84x8ICWm9b/LWW291OF6tVkOSpA7PHT9+HE1NTXjooYeQkZEBANizZ8/AfAAiIhoWHn74YYSFheHWW29V/B632w23+7siZhaLpT+GNijjN8AYTkQUTDUmJ4w2D7IMXa8g6i+c4e5CaIgK917SujRLddprbY/vvSQfoSGnv9o33G436urqUF1djX379uGBBx7AZZddhosvvhjXXXcdcnNz4fP58OSTT6KkpAT/+c9/8Oyzz3Y4R3Z2Nmw2Gz777DM0NTXB4XAgMzMTarW6/X3vv/8+/vznP/fLZyAiouFn7969ePzxx7F27dr25dFKPPjgg9Dr9e0/bQljXwt2/AYYw4mIBhNJFiiut8HpkXo+uB8w4e7GskmpWPPjGUiK0XR4PkWvxZofz8CySan9du1NmzYhNTUV2dnZWLZsGbZu3YonnngC7733HkJDQzFt2jQ8+uijePjhhzFp0iS8+uqrePDBBzucY+7cubjxxhtx1VVXITExEY888ggSExOxdu1avP3228jPz8dDDz2Ev//97/32OYiIaHj58ssv0dDQgMzMTISFhSEsLAzl5eW48847kZ2d3eX77r77bpjN5vafysrKfhtjMOM3wBhORDSYNFhdqLM4EakJDcr1VUKIgV/I3kcsFgv0ej3MZjNiYmI6vOZyuVBaWoqcnBxotb3bp2V1eTH5vk8AAGtXzcR5YxL79c44terL3yERUW/1ddG07mLYYKJSqfDuu+/i8ssvBwAYjUbU1nbsY33hhRfiJz/5CVatWoVx48YpOu9AxHDG7+BhDCeiweKbEiMOV5kREqLChNSYPulQ4U8M5x5uBU4NzrNyDAzWREQ0rNlsNhQXF7c/Li0tRUFBAQwGAzIzMxEf3/HLSnh4OFJSUhQn2wOF8ZuIaGSzuX0oa7IjVhcOi8sXlDEw4VZApw5D2UODp+UJERFRf9qzZw8WLVrU/viOO+4AAFx//fVYu3ZtkEblP8ZvIqKRrbrFCbPTi5yESCbcRERENDgsXLgQ/uw4Kysr67/BEBERBUCSBYobrNCpQxHiR5HPvsaiaURERERERDSs1FtcqLO4YIhUB3UcTLiJiIiIiIhoWCkz2iELAU1YcKqTt2HCTURERERERMOGxeVFeZMDBp2m54P7GRNuIiIiIiIiGjaqmp2wuLyI0Qa/ZBkTbiIiIiIiIhoWvJKMogYrIjVhUAWxWFobJtxEREREREQ0LNSZXWiyuhEf5GJpbYI/xx4ELq8EjyQPyLXUoSHQhgd3o35nPv/8cyxatAgtLS2IjY1V9J7s7GzcfvvtuP322/2+3sqVK2EymbBhwwa/30tERNRmpMdwxm8iou6VNNkAAOGhg2NuecQl3C6vhE+O1MHs8g7I9fTacFwwMcWvgL1y5UqsW7cON9xwA5599tkOr918881Ys2YNrr/+eqxdu7aPR9s79913H+6///4znv/000/x+OOPd+jpunDhQkybNg2PPfbYAI6QiIiGssEewxm/iYiCq8XuQWWzI+itwE414hJujyTD7PJCGxYKTVj/3vVw+1qv5ZFkv++QZ2Rk4I033sA///lPREREAABcLhdef/11ZGZm9sdw+8TEiROxefPmDs8ZDAao1YPnP3oiIhqahkIMZ/wmIgqeqhYHbG4JKTERwR5Ku8Exzx4EmrAQ6NRh/frTmy8DM2bMQGZmJtavX9/+3Pr165GRkYHp06d3ONbtduPWW29FUlIStFotzj33XOzevbvDMf/73/8wduxYREREYNGiRSgrKzvjml9//TXmz5+PiIgIZGRk4NZbb4Xdbvdr3GFhYUhJSenwo1arsXLlSlx++eUAWmcAtm3bhscffxwqlQoqlarT8RAREXVmMMdwxm8iouBw+yQUNdig14YHeygdjKiEWwgBp8cHr0+GxyfD7ZP69cfjk+H1yR2WYvlj1apVeOmll9ofv/jii1i9evUZx/3mN7/BO++8g3Xr1mHfvn3Iy8vDhRdeiObmZgBAZWUlvv/97+Oiiy5CQUEBfvrTn+J3v/tdh3McOnQIF154Ib7//e/j4MGDePPNN7F9+3b88pe/DGjs3Xn88ccxZ84c/OxnP0NtbS1qa2uRkZHR59chIupLTo/U/uddpc2Q5MD+bafADKUYzvhNRDTwak0uGG1uxEUOroQ7qEvKfT4f7rvvPrz66quoq6tDamoqVq5cif/3//4fQkL6/l6A0yvhnAe29Pl5e7JiSir0Aaxq+MlPfoK7774bZWVlUKlU+Oqrr/DGG2/g888/bz/GbrdjzZo1WLt2LZYvXw4AeP755/Hpp5/ihRdewF133YU1a9Zg9OjR+Oc//wmVSoVx48bh0KFDePjhh9vP87e//Q3XXHNNe0GVMWPG4IknnsCCBQuwZs0aaLVaRWM+dOgQoqKi2h/n5+dj165dHY7R6/VQq9XQ6XRISUnx/y+GiGiAbTpciz+8e7j98cqXdiNVr8W9l+Rj2aTUII5s5BhKMZzxm4hoYAkhUNxoQ2hICML6IY/sjaAm3A8//DCeffZZrFu3DhMnTsSePXuwatUq6PV63HbbbcEc2qCQkJCAFStWYN26dRBCYMWKFUhISOhwzMmTJ+H1ejFv3rz258LDwzFr1iwcO3YMAHDs2DHMnj27Qx+6OXPmdDjP3r17UVxcjFdffbX9OSEEZFlGaWkpJkyYoGjM48aNw/vvv9/+WKPRKP/ARESD0KbDtbjplX04fZ6zzuzCTa/sw5ofz2DSTR0wfhMRDawmmwc1LU4kRA2+uhNBTbh37NiByy67DCtWrADQ2rbi9ddfx549e/rlehHhodj5+/Px0cFaxGjDEaHu31YfTo8Ei8vbq5Yiq1evbl8W9vTTT5/xettSt9Obugsh2p9TshxOlmXccMMNuPXWW894zZ8iL2q1Gnl5eYqPJyIazCRZ4L73j56RbAOAAKACcP8HR7E0PwWhIapOjqK+MtRiOOM3EdHAqWh2wOmVkKYePMXS2gQ14T733HPx7LPPorCwEGPHjsWBAwewffv2LltNuN1uuN3u9scWi8Wv66lUKkSowxAeFgJ1WAg0Yf0brCVZIDws5Ixg6o9ly5bB4/EAAC688MIzXs/Ly4Narcb27dtxzTXXAAC8Xi/27NnTvrwsPz//jP6Z33zzTYfHM2bMwJEjRwYs2KrVakiS1POBRERBtKu0GXUWV5evCwC1Zhd2lTZjTm78wA1sBBpqMZzxm4hoYDg8PpxssCFON/hmt4EgF0377W9/ix/96EcYP348wsPDMX36dNx+++340Y9+1OnxDz74IPR6ffvPSCjUERoaimPHjuHYsWMIDT3zy0VkZCRuuukm3HXXXdi0aROOHj2Kn/3sZ3A4HPi///s/AMCNN96IkydP4o477sCJEyfw2muvndED9Le//S127NiBX/ziFygoKEBRURHef/993HLLLf3yubKzs7Fz506UlZWhqakJsiz3y3WIiHqjqsWh6LgGa9dJOY1MjN9ERAOjusUJk8OD2IjBVSytTVAT7jfffBOvvPIKXnvtNezbtw/r1q3D3//+d6xbt67T4++++26Yzeb2n8rKyoCv7fbJcHh8/frj9vVNEIqJiUFMTEyXrz/00EO44oor8JOf/AQzZsxAcXExPv74Y8TFxQFoXVL2zjvv4IMPPsDUqVPx7LPP4oEHHuhwjilTpmDbtm0oKirCeeedh+nTp+OPf/wjUlP7Z1/ir3/9a4SGhiI/Px+JiYmoqKjol+sQEfWG3e1TdFxStLLCVNQ3hkoMZ/wmIupfkixQ1GCDNjwUIYN0a5dKBNqzqg9kZGTgd7/7HX7xi1+0P/eXv/wFr7zyCo4fP97j+y0WC/R6Pcxm8xkBzeVyobS0FDk5OR0qdLq8Ej45Ugezy9t3H6Qbem04LpiY0qt93CNVV79DIqKBUGd24eMjtXj00yKYnZ3HDBWAFL0W2397vt97uLuLYSMBY/jwxhhORAOhxuTEpsO1SI7WQtPDv9UVzQ5MSI3pky1g/sTwoO7hdjgcZ7T/Cg0N7dflSdrwUFwwMQUeaWCWQKlDQxioiYiGGK8k40BlC3yywDWzMrFm28kzjmlLr++9JJ8F0wYIYzgREZ2qzGiHJESPyXYwBTXhvuSSS/DXv/4VmZmZmDhxIvbv349HH30Uq1ev7tfrasNDGUCJiKhLRfU2lDc7kBGnQ5YhEjctyMXruypgOmWmO4V9uIOCMZyIiADA7PSirMkOg25wtzEMasL95JNP4o9//CNuvvlmNDQ0IC0tDTfccAPuueeeYA6LiIhGMJPDg4PVJsRowxEe2roK66ysOOSnROOWNwsAAGtXzcR5YxI5s01ERBQkVc0OWF0+JCYw4e5SdHQ0HnvssS7bgBEREQ0kWRY4WGWCxelFTnxkh9dOLcYyK8fAZJuIiChIPD4ZhfU2RGnCetWCeSAEtUo5ERHRYFLe7EBRvR2pMRGDPoATERGNVDUmJ5psLsRHDs7e26ca9gk3+0MOXfzdEdFAcnh8OFBpQnioChFq7hEeDBgHhi7+7oiovwghUNxoQ2hICMJCB386G9Ql5f1JrVYjJCQENTU1SExMhFqt5mzFECGEgMfjQWNjI0JCQqBWD/47V0Q09B2psaDO4sLo05aS08BjDB+6GMOJqL812tyobnEiIWpo/PsybBPukJAQ5OTkoLa2FjU1NcEeDgVAp9MhMzPzjNZxRER9rcbkxNEaC5KjNR32alNwMIYPfYzhRNRfyo0OeHwSdOqIYA9FkWGbcAOtd8gzMzPh8/kgSVKwh0N+CA0NRVjY4C+CQERDn9snoaDSBEkWiNaGB3s49C3G8KGLMZyI+ovN7cPJRhtidUNjdhsY5gk3AKhUKoSHhyM8nF+iiIjoTIV1VlQ2O5Bl0AV7KHQaxnAiIjpVVYsDZocXOQn+bf+yOL347Hg9kmO0/TSyrg37hJuIiKgrTTY3DlWbEadTD4nCK0RERCOVV5JRWGdFpDoMIX6uoNl6ogFfFRvRZPVgxZTUfhph5/jtgoiIRiSfJONApQl2twTDEGgrQkRENJLVmV1otLoR72exNLdPwtYTjQCAZZNS+mNo3WLCTUREI1JJkx0lTXak6Qd+eRkREREpJ4TAyUYboALC/VyRtuOkETa3D7G6cMzMNvTTCLvGhJuIiEYcs9OLA5UmRKpDoQlnz20iIqLBzGj3oLLZgfhIjV/vk4XAp8fqAQDn5BgQGoROJEy4iYhoRJFlgYNVJjTbPUiM8i9wExER0cCrMDrg8EqI0vhXguxglRn1FjciwkPx8ZF6/Oj5b+Dw+PpplJ1jwk1ERCNKebMDRfU2pOq1bFtEREQ0yDk8PhQ12BAX4X+9lY+P1AEAzstL6OthKcaEm4iIRgyHx4eCChPCQlTQqdmog4iIaLCrbHbC5PAgVudfi8jSJjuKGmwIDVFhwdjEfhpdz5hwExHRiCCEwOEqM+qtLqQEoQ8nERER+ccnySist0KnDvW7FdgnR1tnt2dlG/xO1vsSE24iIhoRqk1OHK2zIDlag5AAiqacqLO2/1mSRV8OjYiIiDpRa3ahweJCgp81V5psbuwtbwEAXDAxuT+GphgTbiIiGvZcXgkFFSYIGYjW+n+X2+724eWd5e2Pg1HllIiIaCRpawWmCqAV2OZj9ZAFkJ8ag4w4XT+NUBkm3ERENOwdq7Gg2uREamxgS8lf3VkBk8Pbx6MiIiKirgTaCszu9uHLoiYAwIVBnt0GmHATEdEwV2d24XCNGQlRGoSF+B/2dpYasausGZzUJiIiGjhlTXY4vTIi/WwF9nlhI9w+GRlxEchPjemn0SnHEq1ERDRseXwyCipb4JFkpEb4v5S82e7BK99UAABWTE7F2dkGZMXrWOGciIioH9ncPhQ32hDnZ7EzryTjs2P1AIALJqYMivafnOEmIqJh60SdBeVGB9L0EX6/VxYCL35VCqdXQk5CJFZMSe2HERIREdHpKpsdMDu80Pt5s3xHiREWlw8GnRozs+P6aXT+YcJNRETDUqPVjUPVZsTp1H4XWwFaC64cr7NCHRaCn56bE9BydCIiIvKPx9faCixKE+ZXKzBZCHxypHV2e0l+0qCJ24NjFERERH3IK7UuJbd7fDBEqv1+f2WzA+v3VQMArjo7A8ns201ERDQgakxONFhciPczfh+sMqPO4kJEeCjmj0nsp9H5jwk3ERENO4X1VpQ22ZGu978ViFeS8fz2EvhkgWmjYjF/TEI/jJCIiIhOJ8sCxQ1WhIWEIMzP1WkfH6kDACwclwhteGh/DC8gTLiJiGhYMdrcOFRlhl4bDnWY/2HunX1VqDG5EKMNw/VzswZFwRUiIqKRoNHmRpXJiYQo/1qBnWy0oajBhrAQFRaPT+qn0QWGCTcREQ0bPklGQaUJVpcP8X4GawA4UmPG5mMNAICVc7MRrfW/sjkREREFpqTRBq9PIELt3wz1psOts9uzR8cjVuf/VrL+xISbiIiGjZONdpQ02ZGm93/Ptc3lw4tflQEAFo1LxJRRsX07OCIiIuqS2eFFaZPd79ortWYnCipNAIAL8pP7YWS9w4SbiIiGhRa7B/srWxClDoPGz71bQgis21EGs9OLFL0WV541qp9GSURERJ2paLbD6vIhRhvm1/s+PlIPAWBaRizSYv1vA9rfmHATEdGQJ8kCB6pMsDi9SIjyfynZl0VN2F9pQmiICj8/dzQ0YYOn2AoREdFw5/JKKKy3IUYb7lftlBaHBztKjACA5ZNS+mt4vcKEm4iIhryTjTYU1luRro/wu8hZndmFN/ZUAgC+Pz0dmfH+VzYnIiKiwFU2O2C0u/1eTr75aD0kWWBMUhRyE6P6aXS9w4SbiIiGNJPDg/0VJkRp/F9K7pNkPPdlCTw+GRNSo7F0EO79IiIiGs58koyiehu0YaEIDVF+09zh8WFbUSOAwTu7DTDhJiKiIUySBQoqTTA7PUgMoCr5hoIaVDQ7EKkOxf/Ny0EIW4ARERENqFqzC7Vm/1uBfX6iES6vjPTYCExO1/fT6HqPCTcREQ1ZJY02FDfYkBbAUvJjtRZ8fKS1jcj1c7MHXRsRIiKi4U4IgaJ6G1QqQB2mPDX1SjI2H6sHACybmNLjdwBZFu1/3lXaDOmUx/2NCTcREQ1JbUvJI8JDofVzKbnV5cUL20shAMwfk4AZmXH9M8gh6osvvsAll1yCtLQ0qFQqbNiwocPr9913H8aPH4/IyEjExcVhyZIl2LlzZ3AGS0REQ1ajzY3KFoffs9tfnzTC4vLBoFNjZk73MXxveQv++P6R9scrX9qNcx/egk2HawMas7+YcBMR0ZDTtpTc5PQgKdq/IN3aAqwcpm9bgF11dkY/jXLostvtmDp1Kp566qlOXx87diyeeuopHDp0CNu3b0d2djYuuOACNDY2DvBIiYhoKCtttMPtk6BTK28FJskCm75doXbBxGSEhXSd0u4tb8GabSdhcno7PF9nduGmV/YNSNLtX5MzIiKiQeBkow1F9daAlpJvK2xEQaUJYW0twPycHR8Jli9fjuXLl3f5+jXXXNPh8aOPPooXXngBBw8exOLFi/t7eERENAyYnV6UNNoRH+nfjfO95S1otLoRpQnDeXkJXR4nywJv7K7o9DUBQAXg/g+OYml+il/F2vzFGW4iIhpS2paSR2rC/F5KXmNy4s22FmAz2AKsL3g8Hjz33HPQ6/WYOnVql8e53W5YLJYOP0RENHJVGO2wuLyI0SqfAxZCYOO3s9KLxyd1e9O8sMGKFoe3y9cFWgu27SptVnz9QDDhJiKiIePUpeT+ViX3ftsCzCsJTEyLwZIJbAHWGx9++CGioqKg1Wrxz3/+E59++ikSErqeaXjwwQeh1+vbfzIyuJSfiGikcnklFNbbEKMN92ul2uEaCypbnNCEhWDR+KRujzU7u062T9VgdSm+fiCYcBMR0ZBxstGGwnor0gNYSv723ipUtTgRrQ3DarYA67VFixahoKAAX3/9NZYtW4Yf/vCHaGho6PL4u+++G2azuf2nsrJyAEdLRESDSUWzA0abG/GR/nUI+d+h1tntBWMTEaXpfmZcHxGu6JxJ0Vq/xuAvJtxERDQktNg92FfRgmhNuN9LyQsqTdhyvDUZXDU3W3EQpq5FRkYiLy8Ps2fPxgsvvICwsDC88MILXR6v0WgQExPT4YeIiEYeryTjRJ0VEepQhPixd7qowYqiBhtCQ1RYmt/zKrWxSdGI03Ud71UAUvVazMoxKB5DIJhwExHRoOeTZOyvMMHi9CIhyr+74SaHB2u/LgMALJ2QjCmjYvt+gAQhBNxud7CHQUREg1yNyYl6i8vvVmAbD7dWJp87Oh5xup6/C4SEqHD1zMxOX2tL8++9JL9fC6YBrFJORERDQFGDDcWNVqTH+reUXJYF/r29FDa3D5kGHb4/I70fRzl82Gw2FBcXtz8uLS1FQUEBDAYD4uPj8de//hWXXnopUlNTYTQa8cwzz6Cqqgo/+MEPgjhqIiIa7GRZoLDeihCVCuGhyud+q1ocOFhlhkoFLJuUovh9Z2XF4aYFuXh9V0WH1mApei3uvSQfyyal+jX+QDDhJiKiQc1oc6OgwgS9NhyaMP+Wkm86UofjdVZowkLw8/mj/QruI9mePXuwaNGi9sd33HEHAOD666/Hs88+i+PHj2PdunVoampCfHw8Zs6ciS+//BITJ04M1pCJiGgIqLe6UNXiRFK0f7Pb/zvUOrt9VmYckmP823N9VlYc8lOiccubBQCAtatm4rwxif0+s92GCTcREQ1aXknG/ooW2N0+ZCdE+vXek402bCioBgBcMysTKX4G6E6J3p9iKFi4cCGE6PrDrl+/fgBHQ0REw8XJBht8suxXLZZ6iwu7y1tbd100ObAZ6VP3is/KMQxYsg1wDzcREQ1iJ+osKGmyIy02wq/3OTw+PPdFCWQBzMo2YG5ufK/H4vZJcPkkGBTsGyMiIqKOjDY3So12JET6N7u96XAdhACmpOuRadD10+j6DxNuIiIalBosLhyoMiM2Qg11mPJwJYTAuh3lMNpbe3X/eHam3y3ETifLAlUtToxLicaENFbXJiIi8ldpkx0Ot4RorfJOIc12D74uMQIIfHY72JhwExHRoOP2SdhX0QKXV4LBzx6dXxQ1YW95C0JVKvx8/mjo1L3fPVVpciBVr8XZ2QbuAyciIvKT1eVFcYPN75j+ydE6SLLAuORo5CVFBXx9qZttUv2N3xqIiGjQOVpjQbnRgXS9f0vJq1uceGN3BQDg+zPSkePnvu/O1FtciFSHYfboeERpWPqEiIjIX2VNdpidXugjlM9uW5xefFHYBAC4aLLyyuSdMdo8vXp/bzDhJiKiQaXG5MThajMSojQI82M22e2T8K8vTsIrCUxKi8HS/ORej8Xq8sLtk3B2tgFJfVF0jYiIaIRxeSUU1tsQow1HiB9bvDYfq4dHkpEdr0N+auDbuXyyDLvbF/D7e4sJNxERDRour4R95S3wycKvu+AA8MauStSYXdBHhGP1vBy/gnpn3F4JjVY3pmXEITex9zPlREREI1FFswNGm9uv5eQOjw9bTzQCAFZMTu1VLZYmqweJMf4VautLTLiJiGhQEELgYJUZ1SYnUvX+zSbvLDXiy+ImqAD89NwcxPiZrJ9OkgWqTE6MTYnG5FH6XhddIyIiGom8kozjtRZEqEP9asW15XgDnF4JabFaTM2IDfj6PlmGw+vD+F7MkPcWE24iIhoUKpudOFJjRlK0BmEhysNTvcWFl3eUAwBWTEnFhF4GVSEEqkwOjIqNwEwWSSMiIgpYVYsT9RYXEqKUzzC7vBI+PVoPoHV2uzcr1hqtbqTEaJFp8K8mTF/itwgiIgo6m9uHveUtCFGp/GoX4pVk/OuLErh9MsYkReGSKWm9Hku9xY0oTThmjY5HJIukERERBUSWBQrrLAgLDfHr5vXnJxph90hIjtZgZpYh4Ov7JBlOr4z8tBhowkIDPk9vMeEmIqKgkmWBgooWNFhdfi8l/+/eKlQ0OxClCcPPzhvt13K1zpidXviEjFk5BiRGB2+/FxER0VBXY3aiyuREkh+z226fhI+P1gFo7bsd0ou43mB1I02vRaYhuHVYmHATEVFQlTTZcKLOilS91q9lY/srWvDZ8QYAwOp52X739jyd0yPBaHdj2qjYPmknRkRENFIJIVDcYAMAaMKVzy5/WdQEq8uHhCg1zhkd+Oy2V5Lh9kmYkBYDdVhwU14m3EREFDQmhwf7K0zQhodCp1a+fLvJ5sZLX5cBAC7IT8aUUbG9GodPklFtdiI/NQaTe3kuIiKika7B6ka50YFEP2a3vZKMj4+0zm4vn5TqVz2X09VbXEiP0yHToAv4HH2FCTcREQWFT5Kxr9yEFocHSX4s3/Z9u2/b4ZEwOiES35+R3qtxyEKgssWJ7Hgdzsoy9HpZOhER0UhXXG+Dxyf7dTP9q+ImtDi8iNOFY25ufMDXdvskSLJAfmrMoCh8GvwREBHRiHSizoriRivSYyP8arv1zr5qlDbZoVOH4ob5o3t1BxwAak0uGCLVOCcnHhHq4BVVISIiGg6MNjdKjDYkRCnf6uWTZWw83Dq7feHElF4lyg1WN0YZdMgYBLPbABNuIiIKggaLCwVVJsRGqP2qHFpQacKnx1pbhayel4N4P5aqdcZocyMkBJiVY0BcL/eAExEREVDSZIfDI/nVdeSbkmYY7R5Ea8Mwf0xiwNd2eSUIAeSnxgyaFWtMuImIaEC5vBL2lLfA5ZX8KnRmtLnx4lelAICl+cmYlhHbq3HY3D7Y3D6cnW0YNHfBiYiIhjKz04viehvidcrjuyQLfHSoFgCwbGJKr4qc1VtdyIzXIT02eH23T8eEm4iIBowQAoerzahsdiBdrzwY+iQZz367bzsnIRJXTO/dvm2PT0ad2YXJ6XqMS47u1bmIiIioVWmjDRaXF/oI5bPbO0uNaLS6EaUJw8Kxgc9uOz0SQqDChNSYXrUT62tMuImIaMBUNjtxuMaMpGgNwvzYn/XffVXt+7ZvnD/ar/eeTpYFKlscGJMchWmZcYMqKBMREQ1VDo8PhfU2xEaEK67NIskCHx1snd2+cGKyXy3ETldvdSInMRKpMdqAz9EfmHATEdGAsLq82FveAhVUfu3r2lvegs3H2vpt927fthAClSYHUvVazMoxBL03JxER0XBR1uRAi8PjV02U3WXNqP92dnvRuKSAr21z+xAeGorxKYNrdhsAlNdpJyIiCpAkC+yvaEGD1YWchEjF72u0urH2237bF07s/b7teqsbkZowzB4d71fST0RERF1zeSUcr7MgWhuGEIWz27Is8OG3s9tL85Oh7cXsdoPVhfzUGCTHdH5TXqcOQ9lDKwI+f2/w1j4REfW74gYbTtS1tgBTGoi9koxnvzgJp1dCbmIkvtfLfdsmhwc+WcasbAOSBtlyMyIioqGsotmBJqsb8ZHKV6HtKW9BncUFnToU5/didtvq8iIiPBTjUmL8ajM6UJhwExFRv2qyubG/ogVRmnC/7l6/ubsS5UYHojRhuGF+bq/6bTs8PjQ7vJiRGYfRiVEBn4eIiIg68vhkHKu1QKcOU9yKSxYCHx6sAQBckJ+MCHVvZrfdGJMcjcTo3rUK7S9MuImIqN+4fRL2lrfA6vb6FQh3lhjxeWEjVAB+em6OX+3DTueVZNSaXJiYFoOJafqAz0NERERnqmh2oN7iQkKU8li9t7wFNeZvZ7fHBz67bXK09u4ezB1HmHATEVG/OVJtQVmTHaNilfe5rjE58fI35QCAFVNSMSk98CRZFq0VyUcnReKsrDjFd96JiIioZ15JRmGdFdqwUMUdRGRZ4IMDrbPbSyYkQ6cOrKyYEAJGuwdjk6P9KtQ20JhwExFRv6hsduBQtRmJURqEKwzCLq+ENdtOwu2TMSElGpdOSevVGKpanEiK1mJWTnyvirEQERHRmapbnKgxO/1axbbnlNntJRMCn91ucXih14VjbMrgnd0GmHATEVE/sLq82FPWAgCIiVBWDVwIgf98U45aswuxEeH42Xmje9Xao97iQkR4KGaPjode4RiIiIhIGUkWOF5nQWiISvGNdVkW+ODbvdtL8wOf3ZaFQIvDg/HJ0YgZ5F1HmHATEVGfOrUFWKpeeTXwzwsbsbO0GSEq4Ib5oxUn6p0xO73w+GTMzDEgxY8xEBERkTI1JidqTC4kRSmf3d5d3ozab2e3F/di77bR5kF8pGbQz24DTLiJiKiPFTVYcdzPFmClTXa8ubsSAPD96aMwphfFT5weCUa7G9MzY5GbqLznNxERESkjywIn6iwAAI3CLVuts9utfbcv6MXstk+WYXF5MTE9JuBzDKSgJ9zV1dX48Y9/jPj4eOh0OkybNg179+4N9rCIiCgADVYX9pW3QK9V3gLM5vJhzbaT8MkC0zNjceHE5ICv75Vk1JidmJiqx+RRsYOyHycREdFQV2txoaLZgSQ/9m7vKmtGndmFSHUoFo8PPNY3Wt1IjtEiJ2Fo3FQP6i2BlpYWzJs3D4sWLcLGjRuRlJSEkydPIjY2NpjDIiKiALi8EvaUtcDplZBlUBYEZSHw7+0laLZ7kBStwaq52QEnyW0VyXMSInFWNiuSExER9QchBE7UWiEEFN9cP3Xv9gUTUwLuu+2VZDi9MubkxgyZYqhBTbgffvhhZGRk4KWXXmp/Ljs7O3gDIiKigAghcKDShEqjA1kJyluAfXSwFodrLFCHhuCmhbm9WhpW1eJAUrQW54xmRXIiIqL+UmdxobzZjqRo5TVSdpY2o97iRqQ6FOePC3zvdr3FhVFxEciKHxqz20CQl5S///77OPvss/GDH/wASUlJmD59Op5//vlgDomIiAJQ2mTHkRoLkvVahIUoCy1Hasx4/9s+nNfOzkRGnPJE/XT1Fhd06jDMyWVFciIiov4ihMCJOiskWVY8S+2TZbz/7ez2hb2Y3XZ7JUiyQH5qjOKq6INBUEdaUlKCNWvWYMyYMfj4449x44034tZbb8XLL7/c6fFutxsWi6XDDxERBVeL3YO95S1Qh4UgSqNshrrJ5sZzX5RAAJg/JgHzchMCvr7J4YFXljErx4DkGFYkJyIi6i8NVjfKjQ4kRimPt9+cbEaj1Y1obRjO70Vl8nqrC5nxOmQYAr9BHwxBXVIuyzLOPvtsPPDAAwCA6dOn48iRI1izZg2uu+66M45/8MEHcf/99w/0MImIqAteScbe8ma0ODzIUbi8yyvJWLPtJOweCdnxOvxoVmbA13d4fGh2eDBndDxGJ0YFfB4iIiLqnhAChfVWeH0yIhXeYPdJcvve7WUTUwLe8uXw+KBSqZCfph9yNVqCOsOdmpqK/Pz8Ds9NmDABFRUVnR5/9913w2w2t/9UVlYOxDCJiKgLh6vNONlox6hYneJiZ6/vqkC50YEoTRhuWpAb8LIwj6+1IvnkdD0mpukDOgcREREp02hzo6zJjgQ/+m5vL26C0e6BPiIcC8clBnzteosbOQmRSNMPvZVsQZ3hnjdvHk6cONHhucLCQmRlZXV6vEajgUaj/BdMRET9p8LowMEqMxKiNFCHKUuatxc14YuiJqgA/Oy8HMT7EbRPJcmtFcnHJEVjRlYcQobY3W4iIqKhpqjOBqdXQqo+QtHxXknGR4da+25fNCkFmrDAZretLi+04SHIT4sZku0+gzrD/atf/QrffPMNHnjgARQXF+O1117Dc889h1/84hfBHBYREfXA4vJiT3kzACguUlZmtOOVneUAgMumpQU8Ky2EQGWLHemxEThndHzAAZyIiIiUabS6UdJkQ6IfN8q/KGxEi8OLOF045o8NbHZbCIEGqxtjk6P9qoo+mAQ14Z45cybeffddvP7665g0aRL+/Oc/47HHHsO1114bzGEREVE3fJKMfeUtaLS6kapwaZfV5cWaz0/CJwtMGaXHRZNTA75+jdmF2AgNZufGKy7SRkRERIErarDC6ZUQrVV2k93tk/C/w3UAgIunpAW8fazF4YU+IhzjUqIDev9gEPRvKhdffDEuvvjiYA+DiIgUOlZrQWG9FaNiIxCiYGmXLAs892UJjHYPkqI1+Om5OYre1xmjzY2QEOCc0Qa/9pARERFRYJpsbpxs9G92+/MTjTA7vUiIUmNebnxA15WFQIvDg1k5BsTq1AGdYzAYOg3MiIgo6KpNThRUmhCnU0OjsNLohoJqHKu1Qh0WgpsX5kKnDuxer9Xlhd0jYVZ2/JBrCUJERDRUFdVb4fQon912eiRs/HZ2+5IpaQgLcHbbaPMgPlKDsclDd3YbYMJNREQKWV1e7C5thk8SiFN4p3lfRUv7krKVc7IxKi6wRNnlldBoc2NaRizGJrP9FxER0UAwfju7nRCpfHZ787F62Nw+pMRoMXt0YLPbPlmGxeXFxPQYxS3IBism3ERE1COfJGNveQvqLS6kxyqrTlprduLFr0oBAEsnJGNWjiGga3slGdUmJ/JTYzBllH5IViglIiIaioobbLC7JcQoLJBqc/nwydF6AK0FUgPtmd1gaa0TMzoxMqD3DyZMuImIqEfH61r3bafHRihqweX0SHh660m4vDLGJkfhirPSA7quLAtUNDswOjESZ2cbAl6WRkRERP5ptntQ3Gjzq2bKpiN1cHolZMRF4KysuICu6/ZJ8EgyJqXrh0UnEn5zISKiblWbnNhf0bpvW6tg37YsBF74qhR1FhfidOG4YX4uwkL8DzdCCFSaHEjVa3HO6HhF1yYiIqK+UVRvhc3lU9z+0+TwYMvxBgDA5dPTAy6QWm9xIcOgQ+YwqdfChJuIiLpkc/uwp6wZkqx83/b/DtWioNKEsBAVblqYqzhQn67W7EK0Jhyzc+MRo7BQCxEREfWe0eZGUYPVr8rk/ztUB48kY3RCJKak6wO6rsPjgwoqTErXD5tVbcPjUxARUZ/zSTL2lDWj3uxCml7Zvu2DVSa8V1ADAPjxOVkYnRBYgTOjzQ2VCpg9Oh5J0cp6fRMREVHfKKy3wuFRvnfbaHNjW1EjAOB709MDrrdSb3EjNykSafrhE/uZcBMRUafa+m2nKdy3XW9x4fkvSyEALBybiHPHJAR03fb2XznxyIwfHsvJiIiIhopAKpO/d6AGkiwwPiUaE1JjArqu2emFVh2CCanDq0AqE24iIjpDVYsDBZUmGBTu23Z5JTy1tRhOr4TcxEhcPTMjoOs6Pa3tv6az/RcREVFQ+Du7XWNyYkeJEQDw/emBFUkVQqDR5sa4pGgkRitP9IcCJtxERNSBxeXF7tIWSLJArIJ927IQeGF7KWrNLsRGhOOmBbkB7bvySjJqvm3/NZntv4iIiAZck82N4kabX3u33y2ohhDA9MxYjE4M7GZ5s92DOJ0a49MCmx0fzJhwExFRO68kY29ZCxqsLqQp7Lf90aFa7P+2SNrNC3MVJemnk75t/5WbxPZfREREwVJYb4XLIyFaYbHSkiYb9leYoFIB35sW2Oy2JAuYnF5MTIselkVS+Y2GiIjaHa42o6jeilFxEYraeRRUnlIkbXZWQHe2hRCoaLEjPTaC7b+IiIiCpNH67d5tP2a31++rBgDMGR2v+Eb96RqsLqTotchLig7o/YMdE24iIgIAlBvtOFBlQnyUBpqwnpPeGpMT/95eAgBYNC4R5+YFViStyuSEQafBnNx4xXfUiYiIqG8V1lnh9GN2+2iNBcfrrAgLUeHSqWkBXdPjk+HySpiYph+2N9yZcBMREVrsHuwubUEIVIr6ZtvdPjy9tRgur4yxyVG4KsAiaQ1WFzRhIZidG494P+6oExERUd9psLhQ0mRDUpSydlxCCKzfXwUAWDA20a9Z8VPVWVzIjI9E9jDuSsKEm4hohHN5Jewqa0azw41UBX0vZVnguS9LUG91wxCpxo3zcxEW4n84MTk88EgyZuXEIz3AZWjUP7744gtccsklSEtLg0qlwoYNG9pf83q9+O1vf4vJkycjMjISaWlpuO6661BTUxO8ARMRUcCEEDheZ4HbKyNKG6boPXsrWlBmdEATFoIVk1MDuq7D44NKBUxMixnWtVuG7ycjIqIeCSFwsNKEsiY7MuJ0iiqDv7O/CkdqLFCHhuCXC/MUtw05lc3tg8npxdlZcchLYvuvwcZut2Pq1Kl46qmnznjN4XBg3759+OMf/4h9+/Zh/fr1KCwsxKWXXhqEkRIRUW/VW9wobXIobsflk2W8u7917/bS/OSAvgcArbPbuYmRw/6mu7JbGERENCwVN9hwuMaC5GgtwhXcXf6mxIiPj9QDAFbOzUZmAEvAXF4J9RYXZmTFIT9V7/f7qf8tX74cy5cv7/Q1vV6PTz/9tMNzTz75JGbNmoWKigpkZmYOxBCJiKgPtM1ueyUJkRplie9XxUbUW9yI1obhwvyUgK5rcngQqQnDxLTh3waUCTcR0QjVYHFhT1kLIsJDFS0hK22yY92OMgDARZNSMCvH4Pc1vZKMapMTE1KjMS0jFiEhwzvIjhRmsxkqlQqxsbFdHuN2u+F2u9sfWyyWARgZERF1p9bsQmmTHUnRyvZuu70S3j/QuoXo4smpiFD7X+hMFgJGuwczsw0jon4Ll5QTEY1AdrcPu0qb4fD6FC0hMzk8eHprMbySwJR0PS4PoNem/G2v7ZyESMzKiVc0o06Dn8vlwu9+9ztcc801iImJ6fK4Bx98EHq9vv0nIyOwQntERNQ3ZFngeK0VshDQqZXNw356rB5mpxcJUWosGJsY0HUbrW4kRGkwLmV4tgE7Hb/tEBGNMD5Jxt7yZlSbnBgV2/OScK8k45nPT8Lk9CJVr8XPzhvt98z0qb22Z+ey1/Zw4fV6cfXVV0OWZTzzzDPdHnv33XfDbDa3/1RWVg7QKImIqDPVJifKjDYkK5zdtrq87dvKvjc9PaBCZ15Jht3jw6R0PSI1I2Ox9cj4lERE1O5YrQUn6qxIj41AaA+JsxACL+8oR0mTHTp1KH65KC+g5WNVJifivu21HcNe28OC1+vFD3/4Q5SWlmLLli3dzm4DgEajgUYz/JcOEhENBZLcuncbUCm+Cf6/Q3VweiVkGnSYme3/tjKgtVDaqDgdchIiA3r/UMSEm4hoBKkwOrCvwoQ4nVpRgP3kaD12lBgRogJuWpCL5Bhld8FPVW9xQRsWijnstT1stCXbRUVF2Lp1K+Lj44M9JCIi8kNViwMVRgdSFMb1JpsbW080AACumJGOkAAKnTk9EoQAJqXpoQ4bOQutmXATEY0QLXYPdpU2QwUgVqfu8fiDVSb8d28VAODqmZmYkNr9DGZnmu0e+GSB88bEI22Yt/0YTmw2G4qLi9sfl5aWoqCgAAaDAWlpabjyyiuxb98+fPjhh5AkCXV1dQAAg8EAtbrn/7aIiCh4vJKMIzUWhISooFE4u/3u/mr4ZIEJKdHID+D7ANA6uz0mOQqj4kbW9wEm3EREI4DLK2FnqREtDg+yFbTyqjY58dyXJRAA5o9JwKJx/hdGsbq8sLq8mJ0bj9GJ7LU9lOzZsweLFi1qf3zHHXcAAK6//nrcd999eP/99wEA06ZN6/C+rVu3YuHChQM1TCIiCkBFswNVLQ5kxClr7VlmtGNnaTMA4AdnZQTUxsvs9CJCHYKJafoR16GECTcR0TAnywL7KlpQbnQgy6DrMVBaXV48taUYLq+MsclRuGZWpt/B1eHxocnmxllZhoDvhFPwLFy4EEKILl/v7jUiIhq83D4JR6rN0IaFKuoWIoRoX+02e7QBmQpu2p9OFuLb7wRxijqjDDcjZ/E8EdEIdaLeiqM1FqTqtT1WFPVJMtZsO4lGmxuJURrcvCDP7yqkbp+EWrMLE9P1mJoRG9CdcCIiIup75UYH6iwuJClMfA/XWHC8zoqwEBW+F0BLUOC7NmDjR+gNeCbcRETDWLXJiT3lzYjWhPXYY1MIgdd2VaCw3gZteAhuOT8PUVr/FkL5JBlVLU6MS4nGWVlxPVZBJyIiooHh8ko4Um2BTh2m6Ga6LH83u714fFJAhU9PbQMWNULagJ2OCTcR0TBldnixs8QInyQUBcnNxxrwRVETVCrg5+eN9rvImSwLVLQ4kBWvw6wcAzRh7LVNREQ0WJQ02tFgdSFRYeL89Ukjqk1O6NShuGhyakDXrP+2DdjoxJHTBux0TLiJiIYhl1fCrjIjmmxupCtInA9WmfDW3koAwA/OGoUpo2L9up4QAhUtdqTEaDEnN6HH2XQiIiIaODa3D0drLIjRhitafeb2SdhQUA0AuHhKKiIDmJ12eHwQApicrle0X3y4GrmfnIhomJJlgf0VLShpsCMjTtdjr8yqFgf+9UUJhGitSL50QrLf16xqcSJOp8HcvAToI8IDHToRERH1g6J6K4x2N+KjlLVu/ORoPUxOLxKi1Fg0Limga9ZZXMhNihxxbcBOx4SbiGiYOVFvxZEaC1L02h7vKFucXjy5pRhun4xxydG45hz/K5LXmV2IUIdiTm48EgLY30VERET9x+zw4kSdFXE6dY834QHA5PBg0+E6AMD3p48KaHa6xeFBlCYMk9JZPJUJNxHRMFLV4mgvktbT8i+vJOPpz4thtHuQFK3BTQtzERbiX1gw2twQEJg9Ot7vPd9ERETU/47XWWBxehGnU7YC7b2CGrh9MkYnRGJmdpzf15NkgWa7B/mpMTBEKptRH86YcBMRDRMmhwc7S5ohS+ixSJoQAi99VYaTjXbo1KG49fwxflcPNTu9sHskzMqJR3bCyC2GQkRENFg1Wt0oarAiIUqjaKa5qsWB7SebAAA/OHtUQLPT9RYXkmO0I7YN2OmYcBMRDQMur4RvSoww2t1IjdX2ePz7B2qwq6wZoSoVblqQixR9z+85lc3lQ7PdjbOz4zA2OSrQYRMREVE/EULgRJ0FDo+EGIX1Vd7eWwUhgLMy4zAmKdrva7q9ErySjMmj9NCGs1sJwISbiGjIk2SBvWUtKDc6kKmgSNrOEiM+OFgLALh2diYm+HkH2umR0GB1YVpmHCal6Uf83iwiIqLBqM7iwslGO5Kjld1UP1xtxpEaC0JDVLjirPSArllrcSIrIRLZ8Vz51oYJNxHREHe0xowjtRak6SMQ1kNhk6IGK176ugwAcOHEZMwfk+jXtTw+GTUmJ/LTYjA9IxYhClqLEBER0cCSZYEjNRb4ZFlRSy9ZFnh7bxUA4PxxSUhSmKSfyuL0QhMWiinpekWtx0YKJtxERENYaZMd+ypMMOjCEaHufulWo9WNp7eehE8WmJ4RiytmjPLrWj5JRkWLA2NTonF2tqHH5J6IiIiCo7LFgfImB1IUJs5fFjeh2uSETh2KFVNS/b6eLAQabG6MT41BUoz/yfpwxm9LRERDVIPVhV2lrfuwY3XdVwG1u314/LMi2Nw+ZBp0+Om5OYpag7SRZIHyZgdy4nU4Z7SB+7KIiIgGKY9P/nZpOKBREK8dHh82FFQDAC6dmuZ3EVWg9aZ+YpTG721qIwETbiKiIcjq8uKbk0bY3F4kx3RfkdwnyXjm85Oos7hg0Klx6/l5igJwG1kIVDY7kB4bgTl5CdCp/Q/ERERENDDKjHZUtziQrHCm+X+H6mB1+ZASo8XCcf5tNQNa24zaPRImj9IHlKwPd0y4iYiGGI9Pxu7SFtSaXciI1XVbtEwIgZe/KceJeiu04SG4ZXFej7Php7+/qsWB+CgN5uYlIEarrMopERERDTynR8LhajMi1GEIV7D1q9HqxuZj9QBa24CFhfifHtaYnciK12E0W4R2yu9bEHa7HQ899BA+++wzNDQ0QJblDq+XlJT02eCIiKgjWRYoqGhBUYMVGXG6HouWfXSoFl+fNCJEBdw4PxcZcTq/rldjciFKE465efEwRCpP1GngSZKEtWvXdhmft2zZEqSRERHRQClusKLB6sLoeGUtO/+7two+WSA/NQZT0vV+X8/q8iIsJARTRulZ26ULfifcP/3pT7Ft2zb85Cc/QWpqKtvBEBENoON1VhyqNiM5Rgt1WPeBbUeJERsKagAA156ThUl+BtI6iwvhYSrMzYtXvCyNgue2227D2rVrsWLFCkyaNInxmYhohLG4vDhaa0VchFpRF5HCeiv2VrRApQKuOjvD77ghC4EGqxvTMmKRqo8IdNjDnt8J98aNG/HRRx9h3rx5/TEeIiLqQoXRgb3lzYjWhve4R+p4nQVr29p/5SdjwVj/9mQ12dyQZYF5YxMxys9ZcQqON954A2+99RYuuuiiYA+FiIiC4HiNBSaHR9HSblkIvLG7EgAwf0wi0uP8T5iNNg8MkWrkp7FQWnf8nvePi4uDwWDoj7EQEVEXGq1u7Cw1Qgj0uLS7xuTEM5+fhCQLnJ0VhyvO8q/9l8nhgdMj4ZzR8cjhfqwhQ61WIy8vL9jDICKiIGiwunCi3orEKI2imeqvi42oaHYgIjwUl01N8/t6XkmGze3FlFGxiGZ9l275nXD/+c9/xj333AOHw9Ef4yEiotPY3D7sLDHC4vIiVd/90m6z04snthTB4ZGQmxiJ1fP8a/9ldXlhdnpxdnYcxiYr2/9Fg8Odd96Jxx9/HEKIYA+FiIgGkCwLHK2xwO2VERPRc/Lr9Eh4Z38VAOCSqamK3nO6GrMTmfGRGJ3IG/M98XtJ+T/+8Q+cPHkSycnJyM7ORnh4x1/Qvn37+mxwREQjndsnYVdJM6pNTmTHR3Z719rtlfDkliI02TxIitbgl4vyetznfSq724dGmwczs+IwMU3PPcBDzPbt27F161Zs3LgREydOPCM+r1+/PkgjIyKi/lRtcuJko01xvZUPD9bA6vIhOUaD88cl+X29UwulKamEPtL5nXBffvnl/TAMIiI6nSwL7C//riJ5aDcFUCRZ4F9flqDM6ECUJgy3LR7j1xIvl1dCvcWFqRmxmJIRq6jYCg0usbGx+N73vhfsYRAR0QDySjIO15gRAhUi1KE9Hl9ncWHz8QYArYXS/K0szkJp/vM74b733nv7YxxERHSaIzVmHKw2I1XffUVyIQRe21WBg1VmhIeqcMv5eX5VFXf7JFSbnJiYFoMZWXHdJvY0eL300kvBHgIREQ2wsiY7KpudyFBY9OytPZWQZIHJ6XpMGRXr9/UarW7ER2pYKM0Pfifcbfbu3Ytjx45BpVIhPz8f06dP78txERGNaCWNNuytaIFBp4ZO3f0/1RsP12FbYSNUAH523mjkJirfe+2VZFS1ODEuJRozcwxcGjYMNDY24sSJE1CpVBg7diwSE/2rUE9EREOD0yPhcLUFOnWoovh9uNqMg1VmhKpUuOrsDL+v5/HJsHskzMwxsFCaH/xOuBsaGnD11Vfj888/R2xsLIQQMJvNWLRoEd544w0GdiKiXqozu7CrtBnhISGI1XVfkXxniRHr91cDAK6amYEZmXGKr+OTZVQ0OzA6MRLn5MRDE9bzUjQavOx2O2655Ra8/PLLkGUZABAaGorrrrsOTz75JHQ6tncjIhpOTtRZ0GBxKeoo4pNlvLGntQ3Y+ROSkNJDEdbO1FqcyEnQKWo7Rt/xeyrjlltugcViwZEjR9Dc3IyWlhYcPnwYFosFt956a3+MkYhoxDA5PNhx0giHR+pxWfixWgte/LbX9tL8ZCyZkKz4OrIsUNHsQGa8DnNyExTt+6LB7Y477sC2bdvwwQcfwGQywWQy4b333sO2bdtw5513Bnt4RETUh1rsHhyrtSIuUq2o7spnxxpQZ3YhWhuGS6ak+n09s9MLdWgIpoyK9Xvf90jn9wz3pk2bsHnzZkyYMKH9ufz8fDz99NO44IIL+nRwREQjicPjwzclRjTaXMiO7/7ucWWzo0Ov7R/40WtbFq3Jdpo+AnNzExClCXh3EQ0i77zzDv773/9i4cKF7c9ddNFFiIiIwA9/+EOsWbMmeIMjIqI+I0RrGzCLy6tottnk8OCDgzUAgCumj+pxq9rpZFmgyebGWVlxftWIoVZ+356QZfmMViMAEB4e3r6EjYiI/OPxydhV2oxyowOZBl23vbONNjce+6wITq+EsclR+L9zlffaFkKgssWBhGgN5uUlQB9A700anBwOB5KTz1zlkJSUBIfDEYQRERFRf6gxu1DUaEVKjFZRC8939lXD5ZWRkxCJuXnxfl+vzuJCcoyWhdIC5HfCff755+O2225DTU1N+3PV1dX41a9+hcWLF/fp4IiIRgJZFthf0YITdVaMio1AWEjX/zTb3D489lkRzE4v0mK1+OWiPMWFzoQQqDI5ERuhxry8BMRFdr8/nIaWOXPm4N5774XL5Wp/zul04v7778ecOXOCODIiIuorPknG4WozZFkgUsEKteIGG3aUGAEAP5qVofgGfRuXV4JXkjFllN7vmXFq5fff2lNPPYXLLrsM2dnZyMjIgEqlQkVFBSZPnoxXXnmlP8ZIRDSsHakx42CVCckxWmjCu95L7fHJeHprMWrNLsTpwnH74rF+Bb8akws6dRjm5SUgMVrTF0OnQeTxxx/HsmXLMGrUKEydOhUqlQoFBQXQarX4+OOPgz08IiLqA2VGB8qNdoyK7bkQpiy3tg0FgHPzEjA6QXkXkzY1ZifGJkf3uNWNuuZ3wp2RkYF9+/bh008/xfHjxyGEQH5+PpYsWdIf4yMiGtaKG1rbf8Xp1N3upZZkgee/LEFRgw0R4aG4ffFYGPyYoa4zu6AOC8G8vPiAKpPS4Ddp0iQUFRXhlVdeaY/PV199Na699lpERCjrz0pERINXaxswM3ThYVCH9by67cviJlQ0OxARHorvT0/3+3rNdg+iNeGYMipWUWE26lzA6wKWLl2KpUuX9uVYiIhGlGqTE7tKjVCHdt/+SwiBV3eWY3+lCWEhKtxyfh7S45QnUA1WF4RKYE5uAkbFsTXUcBYREYGf/exnwR4GERH1g+N1FtSbXchWUCjN5vbh3W/bhl42LQ0xftZs8UkyWhwezM2N9+sGP51JUcL9xBNP4Oc//zm0Wi2eeOKJbo9lazAiop412dzYUWyExyf3mAR/cLAWXxQ1QQXgZ+eNxtjkaMXXMdrc8EoC8/ISFAVoGlref/99LF++HOHh4Xj//fe7PfbSSy8doFEREVFfM9rcOFZrgSFKjVAFs83v7q+Gze1DWqwWC8cl+n29WosLGQYdxqYo/85BnVMJIURPB+Xk5GDPnj2Ij49HTk5O1ydTqVBSUtKnA+yOxWKBXq+H2WxGTAyr5hHR0GBxefH58QY0WF3IMkR2W2F0W2Ej/vNNOQDg2nMysWhckuLrtDg8sLl8mJuXgHEMmINOX8SwkJAQ1NXVISkpCSHdFNtTqVSQJCnQofYLxnAiImVkWWB7cSOO11kV7cMua7Ljr/87BgHgNxeO8+tGPQDYXD6YXV4syU9Geiy3JHXGnximaIa7tLS00z8TEZF/XF4JO0uMqDW7kBPffbK9t7wFr+xsTbYvnpLqV7JtdnphdflwTo4BY5P9L5JCQ8Op7TjZmpOIaHiqNjlR3GBDioIe2LIQeGVnOQSA2aMNfifbshCos7owPSMWaaz50if8bgv2pz/9qdN+nk6nE3/605/6ZFBERMORV5LxTYkRJxvtrb22u1kSdqLOiue/LIEQwHl5Cbhsapri61hdXpgcHpydHYf8tBhFPTpp6Hv55ZfhdrvPeN7j8eDll18OwoiIiKi3PD4Zh6rMUKlUijqTfFnUhDJja6G0H5yV4ff1GqxuJEVrMDFdz+8PfcTvhPv++++HzWY743mHw4H777+/TwZFRDTcyLLAvvLWXtsZsRHd9s6uaHbgqa3F8MkC0zNi8ePZWYqDns3tQ5PdgxmZcZiUxmA5kqxatQpms/mM561WK1atWhWEERERUW+dbLShqsWBVAWz21aXF+v3VQFoLZSm97NQmssrweWVMGVUbLedU8g/fifcQohOv8AdOHAABoOhTwZFRDScCCFwsMqEg9VmpPTQa7vB6sJjmwvh9EoYmxyFn88frag4CgA4PD40WF2YlhGLKRls4THSdBWfq6qqoNfrgzAiIiLqDYvLi0NVZkRrwxHWzY36Nu/ur4bdI2FUXIRf29CA1hhSY3YiLykKOSyy2qcU37qIi4uDSqWCSqXC2LFjOwR1SZJgs9lw44039ssgiYiGssJ6G/ZVmGDQqRHZzR1js9OLf35aBIvLh1FxEfjlorxuZ8JP5fRIqDO7MDUjFtMzYhUn6TT0TZ8+vT0+L168GGFh3/03JkkSSktLsWzZsiCOkIiI/CWEwJFqM1ocHkUJ8MlGG74sagIAXDsr0+/vAaf23OZ3iL6lOOF+7LHHIITA6tWrcf/993e4W65Wq5GdnY05c+b0yyCJiIaqsiY7dpUaEakO7XZpl8Pjwz83F6LR5kZClBq3Lx6jaK8W0LoErMbsxKR0PWZkxSm6C07Dx+WXXw4AKCgowIUXXoioqO+K5LXF5yuuuCJIoyMiokDUml0orLchOVqLkB62h0mywCvftBZKm5sbjzF+FkrzSjLMTi/m5SWw53Y/UJxwX3/99QBaW4TNnTsX4eH+7QkgIhppakxOfFNihAoqxEdpujzO7ZPw5JZiVLU4EaMNwx1LxyJWpyzgub0Sqk1OTEiNxsxsg+IZcRo+7r33XgBAdnY2rrrqKmi1rCpLRDSUeSUZB6tMkGQZUdqe07XPjtejssUJnToUPzhrlN/XqzE7kRmv8ztRJ2UUJdwWi6W9v9j06dPhdDrhdDo7PZa9NImIgCabGztOGuH0SsiI03V5nE+W8a9tJShqsCEiPBS/WjoWSdHKEiaPT0aVyYlxKdE4Z3Q81GFMtkeythvjREQ0tJU02lHR7Oj2+0ObZrsH7xXUAACunDEK0Vr/JkXNTi/UoSGYlhHH7xH9RFHCHRcXh9raWiQlJSE2NrbToixtxVokSerzQRIRDSVmhxdfFzfB5PQgs5tgKQuBtV+X4WC1GerQENx6fp6i4Aq03v2ubHFgbHI0Zo+Ohyas60JsNHwZDAYUFhYiISGhvdZKV5qbmwdwZEREFAiry4uDVSZEacIUrVp7c08l3D4ZuYmROHdMgl/XkmSBJpsbM7MNSGHP7X6jKOHesmVLewXyrVu39uuAiIiGMrvbh69LmlBncSHbENllAiSEwOu7KvBNSTNCVSrcuGC04qVcXklGRbMDuUlRmJMbD203Vc9pePvnP/+J6Ojo9j+zDRwR0dB2tMaCZruyQmmHqs3YW96CEBXw49lZPe71Pl2d2YVUvRYTUrlCuT8pSrgXLFjQ6Z+JiOg7Lq+EHSebUGF0ICte121brvcKarD1RCNUAFafm40po2IVXcMnyahsdmB0YiTmMtke8U5dRr5y5crgDYSIiHqtxuTE8TorkqI1PSbPbp+E13ZWAAAWT0hWvEKujc3tgywEpmXEIULN7xL9ye+F+ps2bcL27dvbHz/99NOYNm0arrnmGrS0tPTp4IiIhgqPT8Y3JUacbLQj06BDWEjX/7x+crQOHx6qBQBce04mzsmJV3QNnyyjvLk1mZ+bm6C4ijmNDPv27cOhQ4faH7/33nu4/PLL8fvf/x4ejyeIIyMiop6cWihNyT7sjw7WotHmRpwuHJdNTfPrWrIQqLe4MD41GhmGiECHTAr5nXDfddddsFgsAIBDhw7hjjvuwEUXXYSSkhLccccdfT5AIqLBzifJ2FPejBN1VoyKjeh2z9X2oia8tacKAPD96elYOC5J2TVkGeVGBzLjdZg3JrHbft40Mt1www0oLCwEAJSUlOCqq66CTqfD22+/jd/85jdBHh0REXWnuMGGimYHUvU9J8BVLQ58fKQeAHDNrEy/V7vVW1xIjNZg8qjOa3NR3/I74S4tLUV+fj4A4J133sEll1yCBx54AM888ww2btwY8EAefPBBqFQq3H777QGfg4hooMmyQEGlCYerzUjVa6HpJujtLmvGum/KAAAXTkzG8kkpiq4hyaK1WqlBh3PzEhDFZJs6UVhYiGnTpgEA3n77bSxYsACvvfYa1q5di3feeSe4gyMioi6ZHV4crDIjWhPeY6E0WQj855tySEJgekYspmfG+XUtp0eCxycwLSOW3ycGiN8Jt1qthsPhAABs3rwZF1xwAYDWSqltM9/+2r17N5577jlMmTIloPcTEQWDEAKHa8woqDQhMUrT7RLvg1Um/PvLUggBzB+TgCtnjFJ0V1mWBcqb7UjXR2BeXoLf7T5o5BBCQJZlAK3x+aKLLgIAZGRkoKmpKZhDIyKiLgghcLjaDJPTg4QodY/Hf1nUhJONdmjCQvCjWZl+X6vG7MSY5Ehkx/dclI36ht8J97nnnos77rgDf/7zn7Fr1y6sWLECQOud9VGj/G+0brPZcO211+L5559HXJx/d2iIiILpaK0Fe8paEKdTd5sIH6+zYM22k5CEwDk5Bvz4nCzFyXZZsx1p+gicOyYR+ggm29S1s88+G3/5y1/wn//8B9u2bWuPz6WlpUhOTg7y6IiIqDNVLU4U1luRGqPt8buByeHBf/e2bkv73vR0GCJ7TtBP1WB1wxCpxtRRcd0WdqW+5XfC/dRTTyEsLAz//e9/sWbNGqSnpwMANm7ciGXLlvk9gF/84hdYsWIFlixZ0uOxbrcbFoulww8RUTAUN1ixu6wZUZqwbhPhkiYbntxSDK8kMG1ULFbNy1YU5Fpnth1IidHi3DEJ0OuYbFP3HnvsMezbtw+//OUv8Yc//AF5eXkAgP/+97+YO3dukEdHRESnc3klHKg0ASooKoT65p5KOL0SsuN1OF9hDZhTr+Xw+DAtI5bfKQaY3wv3MzMz8eGHH57x/D//+U+/L/7GG29g37592L17t6LjH3zwQdx///1+X4eIqC+VNdmx46QRmtDQbu8uVzY78NjmIrh9MiakROOGBaO7rV7eRhate7aTYzQ4b0wiYnX+3cGmkWnKlCkdqpS3+dvf/obQULZ8ISIabE7UWVFtciIrvueWXgeqTNhd1gKVCrhutrKb922EEKg2OzEuORqjE6N6M2QKQEA75SVJwoYNG3Ds2DGoVCpMmDABl112mV8BvbKyErfddhs++eQTaLVaRe+5++67O1RCt1gsyMjI8Hv8RESBqmx24OuTTVBBhcRoTZfH1ZiceHRzIRweCbmJkfjForweC6EArcl2ebMdSTFanDsmEXF+Lhcj2rt3b4f4PGPGjGAPiYiITtNodeNIjRmGSHWPN+NdXgmvfFMOALggPxmZChL0UzXZPIiNUGNaRixCuZR8wPmdcBcXF+Oiiy5CdXU1xo0bByEECgsLkZGRgY8++gi5ubmKzrN37140NDTgrLPOan9OkiR88cUXeOqpp+B2u89I4DUaDTSarr/gEhH1p1qzE1+dbIJXEkiP7bptR4PVhUc/LYTV5UOmQYfbFo9R1LKjdWbbjsQoLc7NS/B7bxaNbA0NDbjqqquwbds2xMbGQggBs9mMRYsW4Y033kBiYqLic33xxRf429/+hr1796K2thbvvvsuLr/88vbX169fj3/961/Yu3cvjEYj9u/f314hnYiIuifJAgerTHC4JWQn9DzxuH5/NVocXiRGaXCpnz233V4JNo8P87liLmj83sN96623Ijc3F5WVldi3bx/279+PiooK5OTk4NZbb1V8nsWLF+PQoUMoKCho/zn77LNx7bXXoqCggMvfiGhQabC68FWRES6P1G2y3Wz34B+fFMLk9CItVotfLRmjaF9WW7KdEKXFeWMSEB/Fm4vkn1tuuQVWqxVHjhxBc3MzWlpacPjwYVgsFr/iMwDY7XZMnToVTz31VJevz5s3Dw899FBfDJ2IaEQpabThZKMNqfqek+2TjTZsPd4AALhuThY0YcpzpLal5LkJUchNZFXyYPF7hnvbtm345ptvYDAY2p+Lj4/HQw89hHnz5ik+T3R0NCZNmtThucjISMTHx5/xPBFRMBltbmwvaoLZ5UFmXNfLuEwOD/7xyQkY7R4kR2tw59Jxitp4yUKgssWB+Egm2xS4TZs2YfPmzZgwYUL7c/n5+Xj66afbW3gqtXz5cixfvrzL13/yk58AAMrKygIaKxHRSGV1eXGg0oxIdRg0Pax+80ky1n1dBgFgXm48JqTG+HUto92DGG04pmXGIkzBtjbqH37/zWs0Glit1jOet9lsUKu5TIGIhpcWuwfbi5tgtLuREafrsmWHxenFPz4tRL3VjYQoNe68YJyiNl5tybZBp8F5Y5lsU+BkWUZ4+Jn/zYWHh7f35yYiouARQuBQtRlGu7vbOjBtNh6uQ43ZhWhtGH5wtn91q9w+CRaXD1MzYrlFLcj8Trgvvvhi/PznP8fOnTshhIAQAt988w1uvPFGXHrppb0azOeff47HHnusV+cgIuorZocXXxU3ocHiRlZcJEK6SLZtLh/+8Wkhas0uxOnCcefScYqCW1uyHadT49wxCUhgsk29cP755+O2225DTU1N+3PV1dX41a9+hcWLFwdxZK3Y2pOIRrrKZidO1FqRHKPt8jtFm2qTEx8dqgUAXDMrE1Ea5QuThRCoNjmRlxiFMUmsSh5sfifcTzzxBHJzczFnzhxotVpotVrMmzcPeXl5ePzxx/tjjEREA87i8uKrk02oMTuRadB12X7D4fHh0c2FqDY5oY8Ix68vGKfornWHme0xiYreQ9Sdp556ClarFdnZ2cjNzUVeXh5ycnJgtVrx5JNPBnt4ePDBB6HX69t/2GWEiEYSp0dCQWVrW6+ekmdZFlj3dRl8ssDUUXqcnRXn17WabFxKPpj4vYc7NjYW7733HoqLi3Hs2DEIIZCfn4+8vLz+GB8R0YCzuX34urgJlc0OZMXrumyh4fRIeGxzESqaHYjWhuHOpWORHNNzAZTTl5FzZpv6QkZGBvbt24fNmzd3iM9LliwJ9tAAsLUnEY1sR2vMqDW5kJ3Qc/GyzcfrUdJkR0R4KH48O6vL7WydaatKft4YdjsZLBQn3LIs4x//+Ac2bNgAr9eLJUuW4J577lHcQ5uIaCiwf5tslxtbk+2uemO6vBIe+6wQJU12RKpDccfSsUjrpnp5Gybb1B/efvvtDvH5lltuCfaQzsDWnkQ0UtWanThaa0FCtKbHPtj1Fhfe3V8NAPjh2aMQ50crr7aq5GOSopGXyKXkg4XihPvhhx/G//t//w+LFy9GREQEHn30UTQ1NeG5557rz/EREQ0Yh8eHHSebUNpkR6ah62Tb7ZXw+GdFONloh04dijuXjkNGN9XL27S1/oqP1DLZpj7z3HPP4cYbb8SYMWOg1WrxzjvvoLS0FA8++GDA57TZbCguLm5/XFpaioKCAhgMBmRmZqK5uRkVFRXt+8VPnDgBAEhJSUFKSkrvPhAR0TDi8ckoqDTBK8k9FlOVhcC6HWXwSgITUqNxbl6CX9dqsnmgj1BjWgaXkg8min8Ta9euxZNPPolPPvkE7733HjZs2ICXX34ZQoj+HB8R0YBweiR8fdKI4sbWZDu8i0Dl9kl4YksxihpsiAgPxR1LxiIzXlmyXf5tn+35TLapDz355JP4wx/+gBMnTuDAgQN44YUXuuyfrdSePXswffp0TJ8+HQBwxx13YPr06bjnnnsAAO+//z6mT5+OFStWAACuvvpqTJ8+Hc8++2zvPgwR0TBzos6CCqMDqfqeV8FtK2xEYb0N6rAQXDc726+l5C6vBJvbi+mZsYjjUvJBRSUUZsxarRaFhYXIzMwE0LpkQavVoqSkBOnp6f06yK5YLBbo9XqYzWbExPjXl46IqI3LK+HrYiOKGqw9JttPbSnGsTortOEhuGPJWIxWsGSrLdlOjGKfbfpOX8WwyMhIHDp0CKNHjwYASJKEiIgIVFRUDOrZZsZwIhruGq1ufHq0DmEhIT3upzba3Ljn/SNw+2RcPTMDSyYkK76OLARKm+wYlxKN88Yk9rhsnXrPnximeIbb4/EgIuK7OzMqlQpqtRputzvwkRIRBZnLK+GbktZkOyOu62Tb45Px1NbWZFsTFoLbFytMtmWBCqMDSdFMtql/OJ1OREV9999iaGgoNBoNHA5HEEdFRDSyeSUZBZUtsHt8PSbbQgis/boMbp+MvMQonD8+ya9rNVjdiI/UYHpmHJPtQcivKuV//OMfodN9t3TS4/Hgr3/9K/R6fftzjz76aN+NjoioH7Ul2yfqrBgVFwF1WNfJ9pNbi3Cs9ttke8kY5CnoaynLAuXNDiTHaHDumERWC6V+8+9//7tD0u3z+bB27VokJHy3/+/WW28NxtCIiEakwnorSpvsGBXb87azbYWNOFZnhTo0BKvmZffYo/tUDo8Pbq+M2aPje9wjTsGheEn5woULe9xHoFKpsGXLlj4ZmBJcjkZEgTo92daEhXZ6XNvM9tFay7cz22MwJjm6x/NLcusy8pQYLc4bk8j9VHSGvoph2dk97/NTqVQoKSkJ+Br9gTGciIYro82NT47UI0SFHle2NdncuLeXS8knpekxJzceIZzdHjD+xDDFM9yff/55b8dFRDQotCfbtVaMMvRfsp2mj8C5YxIQ60dLDyJ/lZWVBXsIRET0LZ/UWpXc5vYhp4ee2/IpS8nHJPm/lLzO7EJStBZTMvRMtgcxv5aUExENdR2S7W5mtt0+qXXP9rfLyG9TmGzbPV7c9sYBAMCO353PZJuIiGgEKW604WSjHemx2h6P3XaiEce/XUq+cq5/S8mtLi8kWWBGViyitVxKPpixQRsRjRhnJNvhXSfbT275Ltm+ffEYjFWQbPskGRVGZ/tjvY4BkIiIaKRotntQUGlCtCasyxv6bRqsLvx3XxUA4Psz0pEc03OC3sYny2iwujExXY9MQ897xCm4mHAT0Yhwxp7trpJtb2uyfbzuuwJpSma2vZKM8mYHMuN77rNJREREw4tPkrG/ogUWpxcJUd2vbpNlgRe3ty4lH5vs/1LyGpMLo2IjMGWU3q9e3RQcTLiJaNhTmmy7vBIe31KE49/22f7VkrEYk6Qs2a5odiAnIRJzchN6PJ6oL1VVVQV7CEREI15Rgw0nG21Ij43oMQn+5Gg9ihtt0ISFYNXcHL+WkpscHoSHqjAjOw7aLr7P0ODChJuIhjWnR8KOkz1XI3d6JPxzcyEK622ICA/Fr5aMVdT6y+NrndnOTYzEuWMSEKVhaQwaWJMmTcJ//vOfYA+DiGjEMtrcKKgwQa8N73EpebXJiQ0F1QCAq2ZmIDG6+yrmp/JKMox2D6aMikWqnivqhgrFCfc999wDn8/X5esVFRVYunRpnwyKiKgvODw+fH2yCSfqrciI03UZBB0eHx7dXIiTjXbo1KG4Y+lY5Cb2nGy7vRIqWxwYmxSNeXmJ0KmZbNPAe+CBB/CLX/wCV1xxBYxGY7CHQ0Q0oni/XUpud/t6bAHmk2W8sL0UPllgSroe5+UpXxUnhEB1ixOjEyMxIZWtFIcSxQn32rVrMXPmTBw6dOiM15577jlMmjQJYWH8sklEg4Pd7cPXxU0oarAhy6CDOqzzf+5sbh/+/kkhSpvsiFSH4tdLx/XYxgNoXX5eZXJiXEo05ubFI0LNZV0UHDfffDMOHDiAlpYWTJw4Ee+//36wh0RENGIU1llR0mRHWmzPM84fHaxFRbMDkepQXDcny6/91002D6K0YZiRGdfldxoanBT/tg4fPozJkydj5syZePDBByHLMioqKrBkyRL85je/waOPPoqNGzf251iJiBSxuX3YXtyEk412ZBl0CA/t/J86i9OLv39yAhXNDkRrw/DrC8chM77nap9Oj4RqkxMTUqMxJzeee6go6HJycrBlyxb8v//3/3DFFVdgypQpmDFjRocfIiLqWw1WFw5UmRAboe4xCS5ptOGjQ7UAgGvPyfKrbajTI8Hu8WFGVlyPs+g0+Cieko6JicHLL7+MK664AjfccAPefPNNlJaWYs6cOTh06BAyMjL6c5xERIpYXV58VdyEcqMDWQYdwrpItk0OD/7+aSHqzC7oI8Jx59Kxiu5OOzw+1JldmJSux8xsA+8y06BRXl6Od955BwaDAZdddhlXnRER9SO3T8K+8hY4vRKyDN239HJ7Jfx7eylkAczKNmBWjkHxdWRZoMbsxMS0GOQp2O5Gg4/f0ficc87B5MmT8dlnnyEyMhK/+c1vmGwT0aBgdnjx1ckmVDY7kBWvQ1hI58mw0ebG3z8tRKPVjThdOH59wThF/S9tLh8abC5MzYjFjKy4LmfOiQba888/jzvvvBNLlizB4cOHkZiYGOwhERENOQ6PD/n3fAwAOPqnC7utzXK02tLaDjSu55Vxb+2tQsO33zmuPSfTrzHVml1IjtFiWmYcQkLYAmwo8uvb4uuvv46JEydClmUcO3YMN910E5YvX47bbrsNTqezv8ZIRNSjFrsHXxY1oqql+2S7werCIx+fQKPVjYQoNX5z4XhFybbV5UWj3Y3pmXE4i8k2DSLLli3Db3/7Wzz11FNYv349k20ion5WbXLiULUZCZGaHr8PHKgyYVthIwBg9bwcRPrRzcTi9AIq4KysOHZBGcIUf2O88sor8fOf/xz33XcfPvvsM4wbNw6PPPIIPv/8c2zatAlTp07Fjh07+nOsRESdMtrc+KKoEbVmF7INkV0m2zUmJx7edAJGuwfJMRr85sLxitpxmJ1eNNs9ODszDmdlxnW5TB0AJFm0/3lXaXOHx0T9QZIkHDx4ENddd12wh0JENOw5PD7sLWuGLAT0EeHdHmtxerH26zIAwNIJyX5VF/dKMhptbkxO1yPD0PMsOg1eim+V1NbWYv/+/cjLy+vw/Jw5c3DgwAH89re/xYIFC+DxePp8kEREXWmwuLC9uAnNdjey4iMR0kXFz3KjHf/cXASb24f02AjcsXRsj4ESAJrtHtjcPszMMWBSmr7b5VybDtfi3vePtD9e+dJupOq1uPeSfCyblOr/hyNS4NNPPw32EIiIRgQhBA5VmVFjdiEnvvuOJkIIvLyjHFZX6/eO789I9+s61S1OZCdEYmI6W4ANdYpnuL/88sszku02Wq0Wjz/+ODZv3txnAyMi6kmNyYkvCptgcniQaeg62S5usOHvnxTC5vYhO16Huy4YpyjZbrK5Yff4cM5oAyan95xs3/TKPtRb3B2erzO7cNMr+7DpcK1/H46IiIgGldImO47UWJASo0VoD/uptxU2oqDKhLAQFX56bo5fW9EabW5ERYTh7Kw4aMLYCWWoU/ybD+liieap5s+f36vBEBEpVdnswBeFjbC6vMiI03WZbB+rteCfmwvh9EoYkxSFO5eOQ5S258U99RYXvJKMc/MSMDFN322vTEkWuP+Do+hs8Xjbc/d/cJTLy4mIiIYos8OLfeUmqENDetxPXWNy4q09VQCA789I92tJuMPjg9Mj4axMtgAbLlj1h4iGnNImO74saoTHJyPDoOsyGd5f0YLHPyuC2ydjYmoMbl8yBhHqnu8U15icgAqYl5eAMcnRPR6/q7QZtWZXl68LtFYZ3VXa3OO5iIiIaHDxSTL2VbSg2eFGckz3SbBXkvH8lyXwSK3fPZZMSFZ8HUkWqDG7MD41BrlsATZssNwdEQ0ZQggUNdiws8SIEJWq277ZO04a8dLXrT0vp2fG4ufnje5xOZcQAlUtTkSoQzE3NwGZ8cruSDdYu062AzmOiIiIBo8TdVYUNViRro/odsUbAKzfX43KFieiNGFYNS+7yxV4nak2OZGm12J6ZixbgA0jnOEmoiFBCIGjNRZ8VdSE8NCQblt5bTnegBe+ak225+bG48b5uT0m27IQqGhxIFobjvljExUn2wCQFN1zWzF/jiMiIqKB11mnkXqLCwVVJsRGqKEJ736V3JEaMz49Wg8AWDUvG7E6teJrN9s9UIepMDPH0G3/bxp6+NskokFPkgUOVpmwr7wFMRHhiOsigAkh8NGhWmwoqAEALB6fhKtmZvR4d1mWW5Pt+EgN5o2J9zsxnpVjQKpeizqzq9N93CoAKXotZuUY/DovERERDYzOOo2kxGhwydQ0pOi1SDZ0/93A7PTixa/KAACLxiVi6qhYxdd2eSWYnB7My01Aqr7r1Xs0NHGGm4gGNa8kY29ZM/aUtyBOp+4y2ZaFwJt7KtuT7UumpOJqBcm2T5ZR1mxHUrQGC8YlBjQLHRqiwr2X5ANoTa5P1fb43kvye6xoSkRERAOvy04jFjee/7IUDZbut4TJQuDFr0phdnqRFqvFD87KUHxtWQhUm5wYmxyNcSk9142hoYcJNxENWi6vhJ0lRhRUmpAYpUFMF628fLKMl74qw+ZjDQCAq2dm4LJp6T3us/JKMiqMDoyK02HB2CQYIpUv/TrdskmpWPPjGUg6rZhKil6LNT+ewT7cREREg1B3nUbavLWnCnI3nUY+PVqPIzUWqENDcMP8XKjDlKdYNSYnkmO0OCsrDmF+tA6joYNLyoloUHJ4fPjmZDOK6q1Ij4uAtot9Ux6fjH99cRIHqswIUQGr5uZgTm58j+d3eyVUmpzIS4zE7NyEHlt8KLFsUirm5SVg8n2fAADWrpqJ88YkcmabiIhokOqp0wgAtDi8KGywYnxKzBmvlTbZsX5fNQDgqpkZSO+moOvpTA4PQlQqnJUVh2ht55MKNPQx4SaiQcfi8uLr4iaUGx3IMOi6vFPs8Pjw5JZiFDXYEB6qwg3zczEtI7bH8zs9EmrMToxPicbs0fFdJvOBODW5npVjYLJNNAAcHh/y7/kYAHD0Txey4BARKaa0g4jZ6T3jOadHwnNflEASAmdnxWH+mATF13V7JTQ7PDgnx+BXn24aehiRiGhQMdrc+Kq4CXUWF7IMui6XV5kcHjz2WVFrG6/wUPxyUZ6ivU82lw8NNhcmpesxM9vg17IvIiIiGl6U1m7Rn7atTQiB/3xTjkabG/GRalw3J6vHrWxtZCFQ9e2+7fw0vd9jpqGFCTcRDRq1Zie+LjaixeFGtiGyyx6U9RYX/rm5EE02D/QR4bh98RhFd4fNTi+a7W5Mz4zD9IxY7pUiIiIa4XrqNAIAcbpwjE3qeFP/i6Im7CprRqhKhZ/PH+3XypoakxNJ0VqclR3XY9tSGvr4GyaiQaGsyY5tJxphdXmR1U2yXWa046FNx9Fk8yApWoPfLRuvKNk22twwO704Z3Q8zspkYRIiIiLq2GmkK1fPzOzwvaSy2YHXd1UAAL4/Ix25iVGKr9e2b/vs7DjEcN/2iMBvnEQUVEIInKiz4suiRvgkgVFxui6XZB2uNuNvH5+A1eVDpkGH3y4bj8RoTafHnqre4oLLJ2NuXjwmp+u7TOaJiIho5Fk0Pgk3Lhh9RgHVOF04blqQi7Oy4tqfc3okPLvtJHyywJRReizNT1Z8nbZ929MyY7lvewThknIiChpJFjhYZcL+ChMi1aGIj+o6ed5x0oi1X5dBEgITUqJx88I8RKi7L3YmhECNyYXwMBXOG5OA0X7cgSYiIqLhTwiBQ1VmxOrU+NOl+bjj7YMAgNvOz8PEtI436YUQePmbMtRb3TDo1Fg9NwchSvdty637tselRCM/9cxq5zR8MeEmoqDw+GTsLW/GoWoL4iPVZxQjaSOEwMdH6vHffVUAgFnZBqyel93jknBZCFS2OBCjDcec3HiMiuOdZCIiIuqotMmOQ1VmJEVroD7lu8XY5OgzVsR9UdSE3WUtCFWpcMOC0YjSKk+lqs1OpOjZb3skYsJNRAPO4fFhV2kzTtRZkarXdlloRJYF3tpbic3HGgAAF+Qn48qzRvV4N9kny6hsdiIxWoO5efGKK5ASERHRyGG0ubG3vAXhoSGI1obD7ZW6PLbMaA9437bR5kZ4qAozsw3stz0CMeEmogFlcnjwTYkR5UYHRsVFQBPW+bJwj0/GC9tLsbeiBQDwg7NG4cKJKT2e3yvJqGhu7d89NzcesTp1n46fiIiIhj6XV8LusmaYHV5kxXe/Cs7m9rXv2542KhYX+LFv2+mRYHF5MS8vEWmxEb0dNg1BTLiJaMDUW1z4utiIRpsLWfE6hIV0vqTK5vbhqS3FKG60ISxEhdXzcjArx9Dj+V1eCdUmJ3ITIzE7N+GM4idEREREsiywr6IF5UYHsgxdF2sFWreovbi9FE02DxKjNVh9brbifts+WUaN2YlJaXqMT4nu+Q00LPHbKBENiNImO3aWGOHwSMiOj+xyWXiTzY3HPitCndmFiPBQ/GJRLsan9FxcxOb2od7iwoTUaMzKiYc2vPuCav1Fpw5D2UMrgnJtIiIi6llhgxVHayxI1Wt73E+98XAdDlabER6qwk0LchX32xZCoKqldcXdjKw4dkgZwZhwE1G/kmWBY3UW7Pm2yEhmN20wyprseGJLESwuHww6NW5bMgbpCpZfmZ1eNNvdmJ4Ri+lZcQhnMRIiIiLqRK3Zib3lLYjWhPWYPB+rtWBDQTUA4NpZWd1+hzldg9WNaK0as3IMPXZVoeGNCTcR9RuvJKOg0oSDlSZEa8NhiOx6P3VBpQnPfVkCj09GRlwEbl08BnEK9l83Wt1wen04Z3Q8JqWxxzYRERF1zuryYldpMzw+Gck9dC9psXvwry9KIARwbl4Czh2ToPg6FqcXHp+MObnxSOim5SmNDEy4iahfnFqJPDlG2+1+6i3HG/D67goIAUxMi8FNC3J7XBIuhECt2QVVCHDumESMSYpSvKeKiIiIRhaPT8bu0hbUmV3IiY/s9BhNeCj+fd3Z8EoyHt50HDa3D5kGHa6Zlan4Om6fhEabGzOzDchJ6Pw6NLIw4SaiPtdi92BHiRGVzQ6Mio2ApovkWZYF3t5XhU+P1gMAzstLwLWzM7ssptb+vm97bEdpwjFndDwye6guSkTDmySL9j/vKm3GeWMSEcrVLkT0LSEEDlSZUNRgRUacrsfVcK/trECZ0YFIdShuXpgLdZiyrWqyLFBlcmJscjQmj9JzIoAAMOEmoj5WbXLim5NGNNs93VYid3slPL+9FAWVJgDA96an46JJKT0GJ5/c2vYrKVqLubnxSIphj22ikWzT4Vrc+/6R9scrX9qNVL0W916Sj2WTUoM4MiIaLIoabDhUZUZytLbH5PmLwkZ8WdwElQr4+fzRfi0JrzI5kRKjxdnZrCdD3+F/CUTUJ4QQKKy34vMTDbC6vN0m2yaHB498cgIFlSaEhajw8/NGY8Xk1B6TbbdPQrnRgUyDDgvHJTLZJhrhNh2uxU2v7EO9xd3h+TqzCze9sg+bDtcGaWRENFjUmV3YU9aMiPBQRGm7n2ssabThtV0VAIDvTUvHxDS94us0Wt3QhofgnJx4RGvDezVmGl6YcBNRr3klGfsrTNhe1IRQlQqj4nRdtv2qanHggY3HUW50IEoThjsvGKuox7bD40OVyYlxKdGYPzYRsQoKqhHR8CXJAvd/cBSik9fanrv/g6MdlpsT0chidnrxTYkRLq+MxOjuZ6pNDg+e+fwkfLLA9MxYLJ+Uovg6VpcXTq+EmdkGpOg5GUAdcUk5EfVKW3G0wjorEqM13d7VPVhlwr++KIHbJyM5RoNbzx+DZAWz1GanF80OD6am6zEjy6B4LxURDV+7SptRa3Z1+boAUGt2YVdpM+bkxg/cwIhoUHB5JewuNaLe0nWRtDZeScaabSdhcnqRqtdi9dwcxfuvPT4ZDVY3ZmTFIS8pqi+GTsMME24iCpjR5sbO0uYei6MJIbD5WAPe2lsJIYDxKdG4cUFut5XL2zRa3XB5JczMisPkUbEshEREAIAGa9fJdiDHEdH/b+/P4+yuy4P//3X2fZ99XzLZQ0JCSEKAAEUWFVFste5Wbd2r9b57/6T2FrCtWPurta23aKviVhW1WnEDUSAsCQRCAlnINpmZzL6dmbOvn8/7+8fJDASSzJnlzJJcz8djHjDnnDmfJWfm/bk+7+t9XRcOTVc8d2qM9uEEDcHzF0lTSvGDp0/RPpzAaTXxsWuXFd03W9cLRVzbKjysr/NLkTRxVhJwCyFm5NRokqc7RhlPnb84Wl7X+eGebnYeGwZOVyLf0oB5imIiSil6x1NYzEauWl5Ga7m0/RJCvKTCU1zaZrGvE0JcOA73RTjYG6HaZ5+yeNmjR19WJO2qlqIy7yb0jCep9tnZ3ByQ7DtxThJwCyGmRdMVL/ZHeK5rHICmoOucgXA8k+drO9s5MhDDAPzxpjpuWF05ZeCs6YpTYwmCThtbW0PU+h1zfBRCiKXu8uYg1T47A5H0WddxG4Aqn72oGhFCiAtH50iC506NE3RacVrPH+ocHYjxo2e6AXjzpXWsrS2+SNpgNI3TamZLixRJE+cnt2KEEEVL5zSeOjnK7pNhHFYTNX7HOYPn/kiKz//mRY4MxLCZjXz02mXcuGbqtl/ZvE7naIIar4NrVpRLsC2EOCuT0cAdt6wGCsH1y018f8ctq2UZihAXkaFomqc7whgNTFlcdTiW4Z6d7WhKsaU5yI1rKoveTiSVI5vX2dwcnNaMuLg4ScAthCjKWCLLo0eHONgbodJjI3CegexQX4TP/+YIQ7EMIZeVT9+8kg31/im3kczm6R5LsqzCzY6VFYSm0ftSCHHxuWltNfe8cyMV3jP/VlT57Nzzzo3Sh1uIi8hERfJ4JkfVFEFwKqvx7w8fJ57J0xRy8u5tjUUvW0vnNEYTGTY0+GkpO38xNiFAUsqFEEXoDifZ0xEmnMjSGHSec/21Uoo/HBnivmcLxdGWlbv5yDWteB1Tp1qNJ7OEk1kuqfOxsTGAzVxcwRIhxMXtprXVbF9Wxro7fwfAt/9sM1e1lcvMthAXkXRO4+mTowxE0+dd6gaFQmf/8fhJ+iJp/A4LH7t2WdHXHHlNp3c8xeoaL+tqfVJbRhRFAm4hxDm9fL22AhpD5+6vndN0vv9UF0+2jwJwRWuId21tnLJYCRTWQWU1nW0tIVbX+ORCWQgxLS//m3F5c1D+hghxEclrOs92hukYmboiOcBPn+vhQG8Eq8nIx65dNmXq+QRdKU6NJWkMObmsMThl8VchJkjALYQ4q1RWY29XmMP9MQJOy3lTyCOpHF999ATtwwkMBviTTXW8ZtXUxdF0pegZS+K0mrm6tZzWculfKYQQQojiKKV4oSfC4f4otX7HlDf5nzg+wu8ODwLwZ9ubaJpGSnjfeIoyt42tLaGi24YJAbKGW4glK5nN0/TpX9P06V+TzObn9L1H4hkeOTrEob4o1V77eYPtzpEEf//rw5P9Kz/5R23csHrq4mg5TadjNEHQZeOaFRUSbAuxiDz22GPccsst1NTUYDAY+J//+Z8znldKceedd1JTU4PD4eCaa67h0KFDC7Ozr5DOaQu9C0KIefJif4x9p8Ypd9uwW84fBL/YH+V7T3UBcMsl1WxuKr6DwXAsg9VsZGtLqOgZcSEmSMAthJiklKJ9OM7vXxykb7yQNnW+u7i72kf4wgNHGEvmqPLZ+cxrV7GmZuqWGqmsxqlwkqaQi2tXVFDlkwqfQiwmiUSC9evX85WvfOWsz3/xi1/kS1/6El/5yld45plnqKqq4jWveQ2xWGye9/TV9naGyWn6Qu+GEKLEOkYSPNMZxmM3T9mWqz+SmqxIfnlTkDesryl6O5FUjnRe4/LmIDXSOUXMgKSUCyGAQjuuF3rGJ9c1NZ6n6Ehe1/np3h5+/+IQAOvrfLz/yuYp+11CYeAaTWRYU+PlsqbglHekhRDz7+abb+bmm28+63NKKb785S/zmc98httuuw2A73znO1RWVvKDH/yAD37wg/O5q69ydDBOwGVjY0NgyrWcQoilqT+S4qn2UUxGA0HX+WecY+kc//qH4ySzGsvK3fzZ9qaii52lsoWK5JubgpKJJ2ZMZriFEESSOR47PszerjH8DguVXvs5B6NYOseXf398Mti+5ZJqPnrtsqKC7cFommgqx+VNQba1lkmwLcQS1NHRwcDAADfccMPkYzabjR07drBr164F3LOCMreV57vHOTq48LPtQoi5NxrPsOvEKJm8NmX7r5ym85VHTjASz1LutvHRa1uLKuY68bN9kRSrq6UiuZgdmeEW4iJ3ajTJs11hRuIZGoLO8w5EnSMJvrqznXAii81s5P1XNrOxITDlNnRd0TN+ujjainJays7fskMIsXgNDAwAUFlZecbjlZWVdHV1nfPnMpkMmUxm8vtoNFqS/fPYLBgw8ExHGKfVRGNI+uQKcaGIpnPsbh8lnMhM+butK8U3n+iYrDHziT9qmzL1fPJndcWpcJKWcheXNUlFcjE7EnALcZHKaTqHeiM83xMBoCnkOmfLL4AnTozw/ae6yOuKSo+Nj1y7jNoi1jLlNJ1T4SRVPjtbW0JUTnE3WgixNLzypplS6rw30u6++27uuuuuUu8WACG3jf5Iit0nR7FbTPJ3R4gLQDKbZ3f7KL3jqSmvWQB+ureHZ7vGMBkNfOSa1qLrxSil6B5PUu2zs6UlJNl4Ytbkdo0QF6FoOseTJ0bY0xnGbTNT63ecc+DKn+6v/e1dneR1xfo6H5953aqigu1EJs+pcJLWchfXrqyQi14hLgBVVVXASzPdE4aGhl416/1yt99+O5FIZPKru7u7pPtZ7XOQzGg8eWKEsUS2pNsSQpRWOqfx9MkwnSMJGoNOTFPUZ/j9i4OT7b/ed0UTK6u8RW+rP5LGa7ewrbUMb5Ez4kKcjwTcQixRmq4m/39PR/iM78+nO5zkD4eHODoQo9bnwOc492ASTmT54oNHefTYMAbg1vU1Ra/XDieyjMQzbKj3c9Xychm0hLhANDc3U1VVxUMPPTT5WDabZefOnVxxxRXn/DmbzYbX6z3jq9TqAg7C8Sy720eJpXMl354QYu7lNJ1nO8McG4hRH3BOmd69t2uM+54p3NB788ZatrSEit7WcCyDwQBbW0KUe2yz2m8hJkhKuRBL0AMH+7nj/pd63r733meo9tm545bV3LS2+qw/c0YKuYLmsvOnY73YH+U/Hj9JLJ3HaTXxgSubuaTOP+W+6UrRP57GaIQrlpWxotIjlYKFWGLi8TgnTpyY/L6jo4P9+/cTDAZpaGjgk5/8JJ///Odpa2ujra2Nz3/+8zidTt7+9rcv4F6/mtFgoD7opHM0wdMnR7myrVzSQ4VYQjRd8VzXGIf7otQGHFjN5w+2TwzF+cYTJ1HANcvLuWlNVdHbiqRypHIaV7aVUR90znLPhXiJBNxCLDEPHOznw99/jlfOZw9E0nz4+89xzzs3virojqRy7O0c48RQjJDbdt5ZbV0pHjg4wM/396IU1AccfOSaZUXd6c1rOqfGkoRcNi5vDsqAJcQS9eyzz3LttddOfv+pT30KgPe85z18+9vf5v/8n/9DKpXiIx/5CGNjY2zZsoXf/e53eDyehdrlczIZDTQEnbQPJ7CajWxrLSu6SrEQYuHouuL57nGe74lQ6bVPebOsbzzFvz18nJym2FDn5+2XNxRdoDWZzTOayHJ5U4C2Cmn/JeaWBNxCLCGarrjrl4dfFWwDKMAA3PXLw7xmdRUmowGlFF2jSfZ2jTGayFAbcGAzn3vASmTyfOvJjslCale0hnjnlsYp7yhDYbDqj6RpKnOxpTmI33n+vphCiMXrmmuuQalzL1MxGAzceeed3HnnnfO3U7NgMRmp9Tt4sT+G1Wxic1NwyjWgQoiFo5TiQO84z50ao9xtxWU7f8gSTmT5l98fI5nVaClz8edXNxedXZfJa/RH0myo97Ouzi9dVMSck4BbiCVkT0eY/kj6nM8rCsU+9nSE2djo50BPhAM9EUxGw5QVPTtHE3xtZzsj8Sxmo4G3Xd7A1W1lRQ08Y8ksY8ks6+p8bGwISMqmEGJeOa1mHv8/1/Lbg/3YzvH3x24xUe2z80LPOFaTkQ31flnuIsQipJTicF+UvV3jBJzWKVt5xdN5/uX3xxhL5qj22fnL69rOO7nwcnlNp3ssxcoqD5c2BORGnCiJBc2puvvuu9m8eTMej4eKigre+MY3cvTo0YXcJSEWtaHYuYPtl2sfjvPo0WH2do3hd1qoOU8VcqUUO48N84XfHmEknqXMbeX2m1eyY3n5lMG2rhS94ynSOY0rWkNsaZb2GUKIxctpNVPutrHv1BiH+iLnncUXQiyMY4Nx9nQUuqicbwkcQCan8W8PH6c/kibgtPBX1y/HbS9uPlHXFafGkjSXubi8OVhUNp8QM7GgM9w7d+7kox/9KJs3byafz/OZz3yGG264gcOHD+Nynb+ZvRAXowpPcW21ukYTpHJ5GoLO865VTOc0vvdUF093hAHYUOfnz7Y3TZm6BYUibN2yXlsIscR47BY0XfFMZxir2cSKqsW37lyIi9XxwRhPnRzFaTURdJ1/aVpe07nnsXZOjiRwWk188vrlU/7MBF0pusYSVHntbGsNFdV9RYiZWtBP1wMPPHDG9/feey8VFRXs3buXq6++eoH2SojF6/LmINU+OwOR9FnXcQN47WaaQq4pe153jyX52s52BqMZjAZ406W13LSmqqgU8kQmz0AkTVO5rNcWQiw9fqcVTVc8dXIUk9HAMimSJMSCOzEUZ3f7KFaTkZD7/IVadV3xjSc6ONgbxWoy8vHrllHrdxS9rd7xFEGnje3LpNe2KL1FdTsnEikUagoGg2d9PpPJkMlkJr+PRqPzsl9CLBYmo4E7blnNh7//HAY4a9D9J5vqzxtsK6V4/PgIP3zmFDlNEXBa+IurW2irKG6WZySeIZHJs77Bz4Z6v6SQCyGWpJDbxnAsw+72EUxGA81lklknxEI5ORxnd/sIZpNhyq4oSim+/3QXz3aNYTIa+Mg1rUVfwwD0R1I4LCauWBaaMrAXYi4smsUKSik+9alPceWVV7J27dqzvubuu+/G5/NNftXX18/zXgqx8G5aW80979xIhffMQcJrN/Ohq1vY1ho658+mshr/+XgH332qi5ymWFfr47OvX13UQKXrilPhJLpSXNlWzuVNQQm2hRBLWrnHhsFgYHf7CN3h5ELvjhAXpY6RBE+2j2A0GIpaOvffz/Xy2PERDAb48yubWVvrK3pbw7EMGGBba4hqX/Ez4kLMxqKZ4f7Yxz7GCy+8wBNPPHHO19x+++2TvUChMMMtQbe4GN20tprlFR6u+9JOAP78qiY2N4bOW3G3czTB1x87yXDspRTyG9dUnbdy+YRMTqNnPEW1z87lzSGqfMWtJRdCiMWuymunbzzFkydGuGp5+bTSUoUQs3NyOM6u9hEMGKZcCgfwmwP9PHBoAIB3b23ksqazZ8WeTTiRJaNpXLmsjMaQZLSI+bMoAu6Pf/zj3H///Tz22GPU1dWd83U2mw2bTVI/xMUtp+kcHYjyTOfY5GMb6gLnDLaVUvzhyBA/2duDpiuCLisfvLqF1vLi1ixGUjlGExlWVHnY1BiYsj2HEEIsNTV+Bz1jSZ44PsJVbWXUSNAtRMm1nw62jUUG2787PMDP9vUC8Ceb6riqrbzobUVSOWLpPFtbgyybRvq5EHNhQQNupRQf//jH+fnPf86jjz5Kc3PzQu6OEIveaDzDvlNjhYqclql/fWPpHPc+2ckLvYX6CJc2+HnvtuKqkCul6D9dnG1zU5C1tb7zVjwXQoilrNbvoGc8VQi6l5dJuqkQJVQokFZIIy8m2H7k6BA/frYHgFvX13DjmqqitxXP5BlNZNjcFGR1tXfG+yzETC1owP3Rj36UH/zgB/ziF7/A4/EwMFBIEfH5fDgcMtAJMUHTFSeG4uw7NUYsnafO75yyf+yhvgjferKTSCqH2WjgLZfVc+2KqXtrw5ktvy5rCkjqlRDigmcwGKjzO+gdT/H4sRGuXl4uy2eEKIETQzF2txc6BBSzZvuJEyP819OnALh5bRWvv6S66G0ls3mGYmk21AdYX+cv6hpIiLm2oAH3PffcA8A111xzxuP33nsv733ve+d/h4RYhMaTWfZ3j3NsMIbHZqEp5MRgMJDJaWd9fV7T+Z/9fZNrnGp8dv786hbqA8X1yY6lcwzFMrSUu9jcJC2/hBCLX17T+cJvj+B1mGkpm3mLL4PBQO1E0H18mKvaJOgWYq4opTg6GOPpk2GsJuOU1cgBnj45ynd2dQJw/aoKbru0tuigOZ3T6I+kWVfnY2OD/7x1boQopQVPKRdCnJ2mK04Ox9l3apzxVJYan2PKquADkTT/8fhJTp2utrtjeTlvuawOm3nqauJKKQZjGbJ5jU2NAdbV+Yr6OSGEWGjf3tXJrw/0YzYaqPE5WDWLtNGJoLvndNB9ZZuklwsxW0opDvdFebpjFJfVXFQ7rqc7RvnGkx0o4Oq2Mt56WX3RwXYmr9E7lmJVjYfLGoOYZUmcWEDy6RNiEYokczx+fJidx4bJ6zrNIdd5g22lFI8dG+Zzvz7MqXASl9XEh3e08q6tjUUFzTlNp2s0idVk5JoVFWxqDEiwLYRYMt61rZFtLSHyuuLfHz7Bi/3RWb3fRHp5IpPnsWMj9I6n5mhPhbj46Lri+e5xnjoZxmO3FBVs7+kI840nOlAKrlxWxju3NhYdbBeWxaVYUe3h8uYQVrOEO2JhySdQiEVE0xXHBmM8eGiAowMxqrx2Kjz2KQeZ/3yi0Fs7m9dZVeXhzjesYVNjoKhtxtI5usIJ6kNOrl9dSUu5W9Y4CSGWFJvZxN+/cS3Lyl1kNX3Ogu5av4NUNs/jx4alT7cQM6Dpiv3d4zzbNYbfaSFQxDK1PR1h/vOJkygF21tDvHtbY1EtTKGwvORUOMmychdbW0JTZgYKMR8k4BZikRhLZAuz2keHyOs6LWXnn9W2WUz85XXL8NrNPN8TwWQ08Ceb6vir1ywvakBTSjEQTTOeyrGpMciO5eUEXbJeWwixNFnNRm7bWMu6Wt+cBt11ASeZvM4Tx0foGk3M0d4KceHL5nX2dIzybFeYkMuKzzF1W9HCzHYh2L6iNcR7rmgqPtjWdbrCSZrKXGxrLZNgWywai6IPtxAXs7ymc2I4zv7ucaKpHLU+B7YpBolMTuMne3t49NgwUCiM9oGrWmgIFlcYLafp9Iyl8DstXNEaornMJbPaQoglz2wy8pFrWvnqo+0c6I3wbw8f56PXLGNtrW9W71vrd9AfKazpzmmKZRUzL8wmxMUgndN46uQoRwdiVPvsOK1Thxy720f51q6OyWD7vdumGWyPJmkMOdm+rKyo9qdCzBf5NAqxgIZjGZ7vLvTV9tgsNIemDnxPDsf55pMdDEYzQKFq55s31hXdIzuayjEcL1Qhv6wxSEBmtYUQFxDL6aD7azvbeb4nwlceOcGHdrSyod4/q/et9jkYiqV58sQIeV1nRaVHblQKcRbxTJ6n2kdoH05Q5596EgHgsePDfG93Fwq4alkZ79raWHRVcU1XnAonqQ8Wgm23BNtikZFPpBALIJPXODYQ40BvhES20Fd7qqIeeU3nly/085uD/SgFfoeF921vZnVNcdV4daUYiKTRUWxuCrK21ieFRIQQFySLyciHd7Tyn493sPfUGPc82s5fXN1SdG2Lc6nw2BmNZ9h1YoRcXmdNjU9aDQnxMmOJLLtPjtIdTtIQdBY1GfDwkSF+sKfQZ/vaFeW87fKGome2dV3RFU5Q63OwfVkZHvvUaetCzDcJuIWYZ73jKZ7vHqc7nCTgtNIcmjo1sWcsyTef6KB7rFApd0tzkLdf3lB0ylQmp9EznqLcY+OyxiD1QYfMzAghLmhmk5G/uLqFbz3ZwdMdYb7+WDvv297M1pbQrN435LZhShrY0xEmrykuqfdjkqBbCAYiaXa1jzAaz9IYcmI2Th1sP3hogJ/s7QHgNasrecumuqKvT3Rd0RlOUONzsL2trKg14kIsBAm4hZgniUyeQ70RXhyIoemKxqBzyr6Qmq548NAA9z/fR15XuG1m3rm1gcsag0VvN5zIMp7KsqLKw6UNARmQhBAXDZPRwPu3N2MyGtjVPso3n+ggldO4dkXFrN7X77RiMhp4pitMOq+xqTEoGUPiotY5kuCpk6MksxqNIeeUM9RKKf5nfx+/PtAPwGvXVfGmDbUzCravbCvDX0SxWCEWigTcQpSYpis6RxM83z3OcCxDhcdWVMpT33iKbz3ZQedooRXN+jof797WVHTAnNd1+sZTWM1GtreWsaLKM2WAL4QQFxqj0cB7r2jCbjbx8NEh/uvpU6SyGjevrZpVpo/HbsFkNPBCT4RMXmdLcwiHVaoii+Iks3lWf/ZBAA5/7saiiootRrquODIQ49nOMEaDoajirbpS/GhPNw8fHQLgtktree266mltU4JtsZQszd9uIZaI0XiGA70R2ofiWM1GmkOuKdf7abrid4cH+MX+wqy2w2LibZfXs60lVPTFYTyTZzCaps7vYFNTkCqffS4ORwghliSjwcDbLq/HaTXxqwP9/GxfL4lsnj/eWHz66tk4rWbq/A6ODsTI5HW2tYbwyhpScZHIaTr7u8d5oXscj91SVGtRTVd8e1cnu0+OYgDevqVhWhkn2uk12xJsi6VEAm4hSiCd0zg2GONgb4RERqPaZy+qH2TveIp7XzarvbbWy3u2NRXVVxsKd42Hohmyms76Oh/r6wMy4yKEEBR6ar/x0locVhM/2dvDg4cGSWY03rm1cVZrsG0WEw1BJ50jCTI5jW2tZZR7bHO450IsPslsnj0dYY4OxKj02HHbpw4pMnmN/3jsJM/3RDAamHZNBQm2xVIlAbcQc0jXFd1jSV7oidA3niLostJcNvXscl7XeeDgAL96oX9yVvutl9WzfVnxs9oThdFCLhtXLJPe2kIIcTY3rqnCaTXx3ae6ePzECLF0nr+4umVWa7AtpkIGU/d4kkePDrGlOURDaOrUWiGWonAiy1OnK5EX2/YrnsnzlYdPcGI4jsVk4INXT69VX17XORVOUucvtP7yOSWTRCwdEnALMUfCiSwHe8c5MZTAZDAUXaHz1GiSb+/u5FS4MKt9SZ2Pd21tLHpWGwqp65F0rlAYrT4gA5EQQpzHVW3luG1mvv7YSfb3jPPPDx3l49e1zap/r9FooCHgpD+SZuexITY3B6VXt7jgnBpNsqcjzHiy+Erk4USWL//+GH2RNE6riY9du4zllZ6it5nXdbpGC322r2wrk2UbYsmRgFuIWZpIHz/UGyWWyVHtdRSVxp3N69z/fB+/OzyArsBlNfG2yxvY0hws+gItp+n0jidxWs1sX1bGikopjCaEEMW4tCHAp16znK88coL24QRffOAIn7x+eVHrUM/FYDBQ43cwGs/w5PFRkhmNdXW+onoRC7GYabricF+E506NYwAaQ86irlX6xlN8+ffHCSez+B0W/ur65dQGHEVvN6cVZrYbQ07psy2WLAm4hZghXVd0hZMc6BmnP5I+3VO7uDTuY4MxvrOrk8FYBoDLGgO87fKGabXsiqRyjMQzNIacbGwMUOGRwmhCCDEdyys9/P9uXMmX/1CYffv8b17kL/+orahKy+cTctuwmnM82xkmms6xuSmIaxaz50IspHROY2/nGIf6owSclqIz8I4MRPl/j7STymlUee381fVthNzF1zfI5nVOjSVpKXNxxbKyWWWgCLGQ5JMrxAwMRdMc6otyciSOxWikKeQqquhOPJPnp3t7eOLECAB+h4V3bm2c1jomTVf0RVKYDAYubwqyutaLzSyF0YQQYiZqAw4+fdNK/vUPx+mLpPnHB47w4R2trK31zep9PXYLVpORIwMxEuk8W1pDlE0j2BBiMRiJZ9jTEaY7nKTGV1wGH8Duk6N8e1cnmq5oLXfxsWuXTWt2eqIuTVuFm22toSXbNk0IkIBbiGmJpXO82Bfl6GCMdF6j2usoqvq4Uoo9nWF+9Ew3sXQegB3Ly3nzxtppDSKxdI6hWIZav4NLGwPU+otPyxJCCHF2IbeNT9+8kq8+2s6RgRj/9vBx3rm1kavbymf1vjaLqVBMbSzBwy8OcXlzkKYy1xzttRClo5Ti5EiCZzrDxNO5otdrK6X49YF+/md/H1DI4Hvf9uZpFSVM5zR6xpOsrPKytSVU1HWWEIuZBNxCFCGT12gfSnCwN8JYMku520a1r7hgdziW4b+e7uJgXxSAap+dd29tpG0aBUN0XdEfSaOjuLQhwLpan7T7EkKIOeS0mvnkH7Xxnd1d7D45ynd3dzEcy/CmS2sxzqLwmclooDHoYiCa5tFjQ6xP+llbK+u6xeKVyWu80BPhQE8Em9lIY7C45XJ5Ted7T3XxZPsoADeuqeTNG+um9fuTyOQZiKZZW+Njc3NQMvjEBUECbiHOQ9MVp8JJDvYW2nx57Raay1xFDR55TefBw4P86oU+cprCbDTwukuquWlN1bQutOKnB58qr52NDQHqgw6peiuEECVgNhl53/YmytxWfvlCP789OMBAJM37r2ye1SybwWCg2ucgksrxTGeYSCrHpsaAFIASi044keXZzjAdIwkqPLaiP6OxdI6vPtrO8aE4BgO8fXMD166smNa2Y+kcw/EMG+r9bGwMyE0pccGQgFuIs1BKMRBNc6g3QtdoEovJWHQ6FRSKon3vqS76I2kAVlZ5eOeWRqp8xRc20/XCPuR1nfV1Pi6p80vRHSGEKDGDwcCtG2qp8Nr5zq5O9nWP848PHOHj17XNqoI5gM9hwW42cnQgRjSVY3NzsOhsKSFKSdcLKeR7u8aIpnI0BJ1FB7x94yn+/eETDMczOCwmPnh1y7RrIIwns0RSOTY3Brmk3l9UXRwhlgq5ehfiFUbiGY70R2kfTqDpOlU+e9EpTZFUjp/s7eapk2EAPHYzb7msnq3TaPUFL6VUVXjsbGz00xAsrv2GEEKIubGtJUSFx8ZXHjlB91iKv//1YT567TJay92zet+Jdd29kRR/eHGQS+sDrKz2SoAhFkwqq7G/e4zDfTHsFiNNRbb8AjjQG+E/HjtJKqdR7rbx8euWUTPN+jIj8QyprMaWliCrq30Y5XdBXGAk4BbitGg6x9GBGEcHoiSzGpUee9EzypquePToEP+zv49UTsMAXNVWxps31k1rVlrXFf3RNJqus67Ox3qZ1RZCiAXTWu7mb1+7in97+AS94yn+6cGjvHNLI1e2lc3qfY1GA/UBJ+FElifbRxmOZyTFXCyIvvEUz3WN0Tueospb/HWPUorfHhzg5/t6UUBbhZuPXNM67c9wfyQFwPa2Mtoq3DK5IC5IciUvLnqJTJ724TiH+6NEUzlCLhtV3uLvzh4fjPGDPafoHisMGo0hJ+/Y0kBL2fRmQeLpPIOxNJVeO5c2yKy2EEJMh81ixGUz0zeeotpnn7O/nyG3jdtvXsk3n+hgX/c4397dSVc4wVs31xe9zOhcgi4rTquJowMxxpOFdd31s+wBLkQxsnmdw30RDvRGyOuq6PamUGjZde+uTp7tGgPg6rYy3n55A+ZprLnWlaJnLIXTZuKKljIaQvK5FxcuCbjFRSud0zg5nOBwX5TRRAa/w0JzqLhKnFBYb/STvT083VFIH3daTbzp0lp2tJVPKx1qoq82wIZ6P+vqfNJvUgghpqnCY+fKZWU8fTLMqbEk9X7nnKWm2i0mPnxNK78+0M8v9vfxyNFhesZSfGhHKz7H7Gal7adTzPsiKR4+MsQltT5W13qlOrMomeFYhudOjdE5kiDksuJ3Fl+bYDiW4f89eoKesRQmg4G3b2lgx/Lptc/TdEV3OEnQbeWK1rJp1bcRYimSq3px0cnkNbpGkxzuizIYTU+r8jhATtP5w4tD/PKFPjJ5fTJ9/E2X1k47lSqSyjESy1ATcLCh3k9dQCqQCyHETDWGXDitZp46OUrHaIL6gHNa/X/Px2gwcMslNdQHnHzjiZMcH4rzd786zAd3tNBWUXybx7O+t9FAXcBJJJVjT2eYwViajY0BKjwSiIi5k83rHB2IcqA3QjKbn1ZhNIDne8b55hMdJLMaXruZD+9onVaLUyhcQ50aS1Lnc7BtWdmsCxEKsRRIwC0uGtm8zqlwgkOnA22n1TytFCqlFM/3RPjxs90MxTIAtJS5eNvlDTSXuaa1LzlNpz+SwmIysrk5yOoa76xazgghhCgo99i4ZkU5ezrCnBiKT2tdajE21Pv5zGtX8f8ebWcgkub//+Ax/nhTHdevqpj1DVOfw4LTaqJ3PEU4kWV9nZ/lVR5pjyRmbSiaZl/3OF0jCfxOK02h4pe96briF8/38esD/UDh2udDO1qnHSynshp94ylaK1xsaQlJzQJx0ZCAW1zwcppO12iSI/1R+iIpHBYTDcHiW3xBoajIfc92c6gvCoDXbua2jXVc0RoqemZ8QjiRZSyZpSHkZEO9X1rCCCHEHPPYLVzZVobbZuZgb4R0TiPkts3Z+1f7HPzta1fxnd2dPNM5xn3PdtM+HOc925pwWGd389RiMtIYdDEaz/Bk+wj9kRTr6wOUe+Zu/8XFI53TONIf5VB/lHROo36as9rRVI7/fPwkLw7EALhuZQVv2VQ3rfXaE+8zksiwttbHpqaATDKIi4oE3OKCVZjRTvJif5T+SBq72UhDwDmtQSKWznH/833sPDaMrsBsNHD9qkpet6562hdVmZxGXySN22Zm+7IQyyu9c5bqKIQQ4kw2s4nNTUG8DgvPdobpHUtR7bdP+ybpudgtJv7iqhaWlQ/x42d7eLZrjFPhJB+8uoXG0PSyns4m5LbhsVvoGE0wFMtwSZ2PFVVeme0WRVGni5I93z1O73iKkMtK5TSXKBwZiPKfj3cQSeWwmo28Z1sjW5pD096X0XiGRFZjc2OQdXW+aQfrQix1EnCLC04mr9EdTvJif2wy0K4POKZ1kZLXdB4+OsQvn+8nldOAQhrhn2yqo9I7vQFLV4qhWIZUNk9ruYf19b45nWkRQghxdkajgVXVXjx2M0+fDNN5el33XAWtBoOBP1pVSVOZi6/vPMlQLMPdvz3Cn2yq47qVs08xt5qNNIfchBNZdrWP0jueZn2dX4pMifOKpnMc7I1wtD8GhkL3lOlk9em64pcv9PGrF/pRQI3Pzgd3tFI7zf7aSin6xtOYTLB9WRnLK6Xtl7g4ScAtLhjpXKEY2ov9UYZiaexm07QDbaUUe7vG+O99vQyfXqddH3DwlsvqWVXtnfY+TbT6KnPb2NoSpLnMXfSacSGEEHOjLuDEtdLMns4wncMJqnxzu667tdzNZ29Zzbef7GR/zzg/fKabIwMx3nNFE+452E7QZcVjN9M7lmQommZVtZfVNV7paCHOkM3rtA/HOdATYSyZpdJrn/bnL5zI8o0nTnJsMA7AlcvKeNvl9dOump/XdXrCKQIuK1tagtQFpO2XuHjJX2qx5CUy+cIa7YEoI7EMTpt52mu0AY4PxfjJsz2cHEkAheI1b9pQW1inPc0gOa/p9EfTGA0GNtT7WVPrm5OLLiGEEDMTcFnZsbwcr93M4b7onK/rdtvMfPTaVv5wZIif7u1hX/c4nb88xPu2N8/ohu0rWUxGGoIuoqkce7vG6BlLcUmdj8ZpFP8UF6aJ9PEDvRF6xpJ4bNPrvjLh2a4w393dRTKrYTMbeffWRra0TD+FPJPT6BlPUR90srUlJJXIxUVPIgCxZEVSOTqG4xwbjDOWzOKxm2d04dEfSfGzfb3sOzUOFFL4blxdyY1rqqZd1EMpRTiRJZLKURd0sr7eT43PLilUQgixCNgtJrY0hwi4rOztGqN7LEmtzzFn/boNhkKdj7YKN//x+EkGoxn++aFj3LC6kjddWjsnqexehwW3zcxANM0jR4ZoLnOzttZLxTSXO4kLw0g8w+G+CO1DCQwGZrRkIp3T+MGeU+xqHwWgKeTkA1e1UDWDz9REcbQVVR4ubw5KFoYQSMAtlhilFCPxLB3DcdqHE0TTOfyOmd3JHUtm+eXzfTx+YgSlwGCAq5aV8Yb1Nfid078bm8zm6Y+k8TksbF9WRlulR4qiCSHEImM0GlhZ5cXnsPBMR2Fdd43fMadVkxtDLj77utX8eG8PO48N87vDgxzuj/KBK5vnJLXWaDRQ43eQyWmcHInRO55kZbWXlVUeabV0kYilcxwdiHFkIEoyq1Hltc8ouD0+GONbT3YyHM9gAF67rppb1ldPO0sQYDCaJpvX2dwYZG2dTwr8CXGaBNxiSdB0xUA0zfHBGN3hJKmcRtBppaXMNe3Z40QmzwOHBvjDi0NkNR2ADXV+3rSxdtoFQaCwTmkgkkZXsLrGy7pa34wCdiGEEPOn2ufgulWVPNsZ5vhgDL/TSmAO/3bbLCbetbWRdbU+vr2rk56xFH/36xe5dX0NN66pmpM0cJvFRFPIPZlm3jGcYE2Nl9YKt7RdukAls3lODsc53BcjnMxS7rZR5Z3+tUs2r/Pz/b38/vAgCgi5rLz/ymaWV3qm/V6arugdT+K0mrl6RfmMrs2EuJBJwC0WtXROo2csxfGhGH3jKQBCLtuMeldnchq/PzLEAwcHJiuPLyt38+ZNtbRVTH+AmUgfH0/lqPU7uKTOT11g7lIThRBClJbbZubKZWWEXFb2d4/PeYo5FDpc3PWGNXx3dyfP90T42b5enjs1xvu2N1Mzg5u8Z+N1WHDbzYzGszxxYoTjQ3HW1vpoDM1dRXaxsNI5jY6RBIf7ogzH0/gdhUmHmbS5Ozkc51u7OhmIpAHY3hrirZvrZzRDPrFeu8bvYEtzUJY2CHEWEnCLWUtm86z+7IMAHP7cjXOyXieSzHEqnOD4UJyReAab2USVx45tBnfsc5rOY8eG+fWBfqLpPAC1fgdvurSW9XW+Gd2FPTN9PERbpWfaFTyFEEIsPLPJyLo6PwGXlWc7x0qSYu5zWPjYtct46mSYHz5zis7RJJ/71WHesL6GG9ZUzih995WMBgPlHhtBl5WhWJpHjg5R63ewqtpLfcAhvY8XGU1Xk/+/pyPMVW3lZ816eHkHlsFoGo/dTEvIPaObQpm8xv37+/jdi4MoVfhcvntbI+vr/DM6hvFklnAyy4oqD5c1BaU4rBDnIL8ZYtHQT6eNd4wk6BpNEEvn8dotM6o4DoVK4U+2j/KrF/oYS+YAKPfYeOP6GjY3B2d0Vzin6QxEC3eE19R4WSvp40IIcUGoCzjxOSzsOzXG0cE4Xpt5TquYGwwGtrWGWFnt4bu7uzjQW5jt3tMZ5j3bmmguc83JdkxGA9U+BzlNZyiaoW98kLqAg5VVXuqDTqlovgg8cLCfO+4/NPn9e+99hmqfnTtuWc1Na6sBSGULM9ov78DSNIuK9C/2R/nu7i6G44WWp1uag7zt8oYZBcm6UgxE0qjT77Omxic3dIQ4Dwm4xYJLZvP0jqU4MRynfzyFphQhp43yMtuMZp/zus5T7WF+daCPkXgWgIDTwusvqWH7stCMgnddKUbiGeKZPPVBJ+tqfdT6HbJGSQghLiAeu4Xty8op99jZd2qMrnCCWr9jTmagJwScVv7yumU81RHmvme66RlL8fnfvsj1Kyu5dUPNnM2sW0xGagMOsnmd/kia3tNpvysqPdQHJdV8oTxwsJ8Pf/851CseH4ik+fD3n+Of37Ketgo3xwYLGX5u28w6sEyIp/P8ZG83T56uQB5wWnjn1pnPauc0ne6xJCGXjc1NQRpC0l9biKlIwC0WhK4XAthT4STtwwnGk1kcFhOVM0wbh0Kgvbt9lF8f6J8MtH0OC69dW8XVy8tnfHERSeUYiWcIuWzsWB6kpdwlFypCCHGBMhkNrKr2EjzdOqxrJEmF1zan1b8NBgPbWkKsrfHyo2e6ebojzEMvDrK3a4y3bq5nY4N/zm7oWs1G6gNOsnmdoUiGnrEUlR4bK6u9NASdUlxtHmm64q5fHn5VsA1MPnbXLw/zoR0t+B1WmkOuGdcT0JVi14lRfvpcD/FMHgNwzYpy3ryxbsb/5tFUjuF4htZyF5c1BSXDT4giScAt5lUik6dvPEX7cJyB0+0jZjuo5LRCoP2bgy8F2h67mZvWVHHNivIZr61OZTUGomkcViObGgOsrPbK+iQhhLhIVHrtXLeyggO9EQ72Roil81T57DNajnQuHruFP7+qha0tIf7r6S5G4lnu2dnO2hovb7u8gco5LEBlNRdmvHOazkg8w6NHhwi5bLRVumkIOiV4mgd7OsL0ny5Udi6RVA5NU5R7Zr6coTuc5PtPd9E+nAAKdWveubVhRgVi4aUUch3F5U1B1tT6pO2pENMg0YMoubymMxjL0BNO0jGaIJLMYbeYKHPZZnVnPZvXefz4MA8cGphco+21m7lpbRU7ls880J5Yp60UtFW6WVPjm9XAJ4QQYmmyW0xc1higwmPjua5xOkcSVPlm1u/4fNbV+rjrDWv47YEBHjg0wMG+KHfcf4gb11Rx89qqOZ2FtpiMVPscaHqh08bu9lEO9kZoKnPRFHJR6bXLOu8SGYqdP9ieEEnnZvT+8XSeXzzfy85jw+gKbGYjt26o4bqVFTNeFpHJafRGUoRcNi5rCtAQdMpyOiGmSQJuURITLbP6IynahxOMxDMoHXxOC80zbGMxIZ3TePToML87PDBZddznsHDTmiquXl4240Bb1xXD8QzJbJ7agJO1NT5p8yWEEBc5g8FAY8hF0GXl+e5xjg7EsFnyVHhsczrbbTObeOOltWxtDfHDp09xqD/Krw/088SJEW7bWMu2ltCcbs9kLFQ1L3NbiaXzHO6N8mJ/lEqPnWWVbmr9jjlNo7/YZfIaZ80lPwufY3rnPa/rPHp0mPuf7yOZLbQ93dQY4K2X1RN0zTxzIZzIEkllaavwsLEhgM8pnwchZkICbjGnYukcvWMpOkYTDEbSJLIaHpuZGp9j1uueY+kcf3hxiIePDk0OKEGXlZvXVnHlsrIZv79SirFkjrFklnKPjc3NQZrLZJ22EEKcTywW4//+3//Lz3/+c4aGhrj00kv513/9VzZv3rzQu1YSHruFK1rLqPI52H9qnI6RQkG1uV4DXeW188nr29jfPc6Pn+1hOJ7h3ic7eeTIEG+5rJ7llTNLCz4Xg8GA12HB67CQyWuEE1l2Hh3Ga7dQF3TQEHRS6bXLWu8ZyGs6I/Es/eMpTo4kGE1k8NjNxE5PFpxNwGlheZGp30opnu+J8N/P9UymqtcFHPzp5npWVnlnvt+6Tu94CrvFxBWtZayo8kgVciFmQQJuMWuJzEsDx28PDJDJ69jNJgIuC9U+x6zffziW4aHDgzxxYoSspgOFC5Kb1laxtSU4q+qxsXSOoVgGn8PCluYgy6s8c54qKIQQF6IPfOADHDx4kO9973vU1NTw/e9/n+uvv57Dhw9TW1u70LtXEkajgWUVbso9NvZ3j3FiMI7NYprz2W6DwcClDQHW1vr4/YuD/OqFfjpHk3zxwaOsr/Nx28Y6av2zH19fyWY2Ue1zoJQims5zbCDGkf4ofqeVpjIXNX4H5W6brN89j7ymM5rIMni6zeloPIOmK9w2Cw0BJ+/c0sg9O9vP+fN/urmhqMy6k8NxfrK3h+NDcQDcNjNvurSWq5aVzSozL5bOMRTNUB90sqkpMKd1BIS4WBmUUkUmuCw+0WgUn89HJBLB6535nTwxfclsnqFohu6xJB3DCT57up/k3W9aS8g9NxcenSMJHjg0wN5TY0x8SptCTm5eW82lDf5ZbWNi/20WI8srPays8kqqlBBiXi3lMSyVSuHxePjFL37B6173usnHN2zYwOtf/3r+/u//fsr3WMrHD4VlSCdHEjzfPc5oPFOStd0TIqkc9z/fx+PHC2tzDQbY3lrGLZdUz2mv8LPJ6zqRZI5oJo8RA36nhfqAg2q/gzK3DYdVZr7TOY2ReIahaIau0STjySw5XcdlNRNwWl91g2Jv1xg/3HOK8dRLa7UDTgt/urmBTY2B826rbzzFL/b3sffUGABmo4HrV1Xy2nVVs/r86bqiL5ICA6yp8bGu1idZDUKcx3TGMJnKE0WLZ/IMRQu9PHvHUkTTeUwGzviD7LVbZhUI60rxQk+Ehw4PcnQwNvn4mhovN62pYmWVZ1bFOjJ5jcFoGgMGllW6WV3jpcIjd2+FEGI68vk8mqZht5/599PhcPDEE0+c9WcymQyZTGby+2g0WtJ9LLWJ2e5Kr40XuiMcHYxhNuao8trnvPaHz2HhXVsbec2qSn6+r5e9p8Z44sQIu0+OcnVbGTevrZ7VWt3zMRuNhNw2Qm4bOU0nmsrxfO84L/RGcNvNVHnt1PgdhFxW/E7rRVFwTdMV48ks4USWvkiKgUiGeDqHphQem4VKr/28WQCbGgOsrvLw8fv2A/CJ65axpsZ33s/NYDTN/c/3sacjjAIMwLbWEG/cUDvrf/tEJk9/NE21z87GhgB1AYcURhNiDknALc5JKcV4stBzsSecYjCaJpbJYTYa8NotNAWdGI0GMjlt1tvK5DV2t4/y0IuDDEYLF2Qmg4HNzQFuXF1FfdA5q/fPaTpD0Qx5pdMQdLK6xkeNzy4DihBCzIDH42Hbtm383d/9HatWraKyspIf/vCHPP3007S1tZ31Z+6++27uuuuued7T0vPYLWxrDVEbcLC/e5yO0QRlbtu0C18Vo8pn58PXtNI+HOfn+3o5MhDjkaPDPH58hB3Ly7lpbRWBErb3spheCr41XRFL5+gYTnB0IIbDYsLrsFDtsxNy2wg4Lfgclgti7W9O04mkcowns6fXZKeJpXOkchoWkxGv3UxtwDGtJW4vD66XV3rOGWwPRtP85kA/u0+Oop/O9ru03s+tG2qoC8zu2kjXFf3RNJqus77Ox/p6vyyrE6IE5LdKnCGn6YzGs4zEM5wKJxmNZ0jmNKwmIz67hZB7dhXGX2k0nuGRo8M8dnx4shCaw2Jix/JyrltZMeu7tnldZziWIZXTqfM7WF3jpT7ovCjuwAshRCl973vf433vex+1tbWYTCY2btzI29/+dp577rmzvv7222/nU5/61OT30WiU+vr6+drdkjIaDTSVuajw2jjcV6j2PZ7KzknB0LNpLXfzv29YwZGBKL/Y38fxoTh/ODLEo8eGuaIlxE1rq0q+9tZkNOB3Wif7d6dzGrF0noO9ETQFdrMRl81Emcc2eQPCY7PgspkWdRCezeskMnli6TzRdI6hWJrReJZkViOd1zAbDbisZoIua0lTrrvHkvz2wADPdIUnl9VdUuvjDRtqaAq5Zv3+sXSOwViGKm9hVrs+KLPaQpSKBNwXOaUU0VSe0USGoViG3rEUkVSWvKZwWE147RaqvHM7E6yU4uhgjIePDLGve3xyICl327h+VQXbl5XNehDTdMVIPEMim6fKa2dbq4/GkFMqjwshxBxpbW1l586dJBIJotEo1dXVvPWtb6W5ufmsr7fZbNhspV1vvNCcVjOXNQWpDzrZ3z3OqdEELpuZsjmqbfJKK6u8rLjRw4v9MX51oI9jg3EePzHCE+0jXNZYyBBrKpt9cFYMu8V0euy2oZQiczpwPTmc4Gh/DKPRgM1ixGExEXBaCbmsuGxmHFYTTqsZh8WEzWycl1acmq5I5zSSWY1UViOV04inc4wkskRSOdKng2sAm8mE02aizGXFVuI1zUopjg3GefDwAC/0RCYfv6TOx+vXVdNS7p71NvK6Tv94GoMRNtb7WVvnk1ltIUpMfsMuQolMnnAiSziRoXcsTTiZIZnVMBkMuG1mqkt0Rz6dK6SNP3JsiL7x9OTjq6o8/NGqSi6pPf/6pWLoumIkkSGWzlPusXFZU5CmMueMe3MLIYQ4P5fLhcvlYmxsjAcffJAvfvGLC71LC67Sa+e6lRV0jCR4oTtCx0iCCo+tJH2tDQYDq2u8rK7xcnwoxm8PDPBCb4RnOsd4pnOMtgo3r1ldyYY6/7wEsxP7NBGAh04/puuKdF4jndPpHUtxcjheWItsMGA1GbGZjVhMBpw2M+7TX1azEYup8GU2GjAZDRgNBoxGMBoMGDiztbWuK3QFmlJomiKn6+Q0nbymyOQ04pk88UyeZFYjp+lk8oXnwYDRADZz4YZA0FUodFaKmyRnk9d09nWP87vDg5wKJwvnELisKcBr11bPelndhLHT687r/A4uqffLWm0h5okE3BeBRCbPWDLLeDJH73iKcDxLPJtHKYXTYsZjt1Dpmfkstq6/NNwdG4y9qvBHz1iSnceG2X1ylHSu0NbLajayrSXEdSsqqA3MvrWJrhSj8SzRdI4yt40NbQFayl1SYVMIIUrkwQcfRCnFihUrOHHiBH/913/NihUr+LM/+7OF3rVFwWIqdMGo9tl5sS/KkYEY4WSWKo+9ZDOlbRUe2v7Iw6lwkt8dHuCZjjGOD8U5PhSn3G3jmhXlbG8tw22f/8s/o9GA02rmlUvMdaXI5V8KfkfjWQYiafKnA2FOlwhTKAwUgm0DvOrmgVKFGWKlQDt9WWJ42c8aMRQCd5MBq9mI02Im4CwE8gsddH72l4eJnK5YbjUZ2dYa4jWrK6mao2UBmZxGfySN02ZiW2uI5ZUeuT4SYh5JW7ALzEQRk/FkobhHfzTNeCJHIptHP72mymM347Sa52Qd87laW/zxpjp0HR49NkT7cGLyuUqvjWtXVHBFa2hOUph0pQgnskSSOUJuGyur3bSUuyU9Sgix6C31MezHP/4xt99+Oz09PQSDQd785jfzD//wD/h8vqJ+fqkf/3QNRNIc7B2nazSJxWSkwmubVpGtmRhLZnnk9NruiTopZqOBzU1Bdiwvp7XcteDB5nQoVZjBnvgvFFqkTTAYwIhh3mbyZ0JXiiP9MR4+Msj+l6WN+xwWrltZwY628jm7IaLrisFYmmxep7nMzSX1PspK3EZOiIvFdMYwCbiXMKUUiaxGNJUjms4xGs8yFM0QzxQqZxowYLcYcdvmLsB+ub1dY9yzs33K15kMBjY0+NnRVs7Kas+cpGi9PNAOuq2sqvbQXObGZZNAWwixNFzsY9jFePyarugaTXCwN0J/JI3fYSHgspY8dTmT03i6I8yjx4YnU5ahUPV8e2uIbS2hyeJnojSGYxl2tY+wq32U0UT2jOf+bFsjl7eE5nQ533gyy2g8S6XPzro6H00hlxSMFWIOSR/uC1Be00lkNGKZHLF0IUV8JJaZXIukq8Jda6fVhN9hpcprLOlda11X/OiZU+d9jdEAt1xSzVVt5XM2kOu6YjRRSB0PuqxcsSxES7kE2kIIIRY/k9FAS7mbGr+DE0MxDvXFODmSoMxlLWnAa7OYuHp5OVe1ldExmuDRo8M82znGQCTNfz/Xy8/29bKmxsuW5hCX1vsl3XiOxNN5njs1xtMdYY4OxiYfd1hMbG4K8NjxEQAuawrOWbCdzOYZiKZx2cxc3hJkZZUXh1X+PYVYSBKlLDLZvE4ymyeR1Uhm8sTTeUYSWcaTWdI5jUxeLwTXBkOhsqfFTMhlm/e7lkcHYowlc+d9ja6grdIzJxcRmq4YPV0Mrcxt48plZTSXuyR1XAghxJJjt5hYW+unMeTi6ECMY4MxTo7EqXDbS7q+2mAw0FLmpqXMzds2N/BMV5hdJ0Y5MRznYG+Ug71RLCYDl9T62dwUYG2tT4LvaUpk8oWidR1hDvVF0U4nkhqAVdVeti8LcWl9AKXUZMA9F3KazkA0DQpWVnlYXSPp40IsFhKtzLOJKp2prEY6rxf+m9OIpApFzRJZjUyuUMVToTAYCi0p7BYTPocFu8U0b1Uzz6Z3PMXu9lEePz5c1OsjqfMH5VPJ6zoj8SyJTJ4yj40N9QGay1xyt1YIIcSS57FbuKwpSEu5mxf7o7QPxRmJZyj32EqeueWwmri6rZyr28oZiKZ5+uQoezrDDEYz7D01xt5TY5iNhQroG+r9rK/z43PMfZX1C0E4kWV/9zj7usc4NhCfDLIB6gMOLm8OcnlTkNDLAuBMTpuTbed1neFYhlROpyHoYG2tj1q/VB8XYjGRgHsO5DWdvK7Inm49kc3rhS+t8N/0RCuKdJ5ULk82ryafU6cbWliMRqzmQlsMv8OKzTM/vSiLMZ7MsqczzFMnw2es/SrGTAfnnFYYQDJ5jQqvnc1NQRpDTrnTLoQQ4oITdFnZvqyMtgo3RwaidIwkGY6nqfDY5yWTq8pr59YNtbxhfQ3d4RRPd47yXNc4w/EML/RETveE7qIx5GRNjZe1NT5ayl0lL/q2WOU0neODcQ72RTjYFzmj1SlArd/BxgY/lzcHqfbNvhPL2by8O0ul1862Vi+NIVdJ2roKIWZHAu6XyeQ1ukaTaHqhrYR++g6lpis0XZHXdXKaInc6WM5p+mSQPfG8pnP6v4X2FVCommk2GiZ7SdotRrx2M5Z57PE4XfFMnn0T644GYpN9Lk1GA+tqfWxpDnLfs92MnyetPOC0sLzCM63tZnIaQ7EMmlJUee2srPZQH5Q+2kIIIS58FV475R4byyszHBmI0jmaYDCWpsJtn5daJQaDgYaQk4aQkz/eWEffeJp93WPs6y5UV5/4+s2BAWxmI8sq3Kyo9LC80kNTyIn5Ag32cppO+3CcY4Nxjg3GaB+Ok9NemsU2GKClzMXGhgAb6v1UzlE7r7PRlWIskWU8VWiDevXycprLpA2qEIuZBNwvM5bIsat9hGxePx0sq9MdHAEMGA1gNBTaTUz8v8lowGw0YDMbcRpNmAwGzCbjkqwEmczm2d89zjOdYxzuj6K9rL/2snI3lzcH2dwUwGMvzFobDYbzVin/080NRc/SJ7N5huMZAOoCTlZUeqgNOOROrRBCiIuKwWCgymen0mtjZdTL0cEonSNJhmIZytzWyTF4PvajNuCgNuDg9ZfUEEnlONQX4VBflEN9UeKZ/OT/A1hMBhqCTlrK3DSXuWgqc1Lmti3aiYVzmWil1TmS5ORInI6RBN1jqTOuiQD8Dkthtr/Wx6pqL+4S3xB5eaDtd1rZ1hpiWYW0QRViKZDf0lfQNEVT0LVo0rlLLZ7J83z3OHtPjXG4L0r+ZQNKrd/BluYglzcHz1p4Y1NjgA/vaD1rH+4/3dzApsbAebetlCKazjOayGAzm2gtd7Oswk2Nz3HRnH8hhBDibF4eeK+qynBsMEbHSIKhWIaQy4rPYZnXdbo+h4UrWsu4orUMXSl6x1IcHSwUfDs2GCeeydM+nKB9ODH5MzazkbqAg7qAk1q/g0qvjQqPnZDLuuDjvKYrRuIZBqNpBqMZesdT9Iwl6R1PnTF7PcHnsLCi0sOKKg8rKj1Uem3zcv7PFmi3lLtLHuALIeaO/LZehMaTp4t7nBrnyEDsjOIe1b7CeunLGgPU+Kded7SpMcDqKg8fv28/AJ+4bhlranznHUgnBo9IOofbZmZdrY/WcjflnvkZvIQQQoilwmAwUOG1U+G1s6ray8mRBO1DcU6OJPDaLQRd1nnPqjMaDNQHndQHnVy/qhKlFIPRDB0jicLXaILucJJMXn9VEA6FZXZlHhtBp5Wgy0rAaSHgtOKxm3HbzXjsFlzWQsFYs9FQ9LWBUoqcpkjnNJJZjWi60Eo1ls4xnsoRTmQnv0bj2TOuf17OajZSH3BMztY3l7koc1vn9Rpl4oZAPJMn4JJAW4ilTH5rLwJKKfoiaZ7vHmd/9zgnR84c+Gr9Di5rDLCxMUBtEUH2K708uF5e6TlnsJ3TdEbjWRLZPAGnlc1NQZrLXCXtPSqEEEJcKEJuGyG3jRVVHrpGEhwbjNMVTmAzmyhzWbEt0Dreidn4Kp+dba0hoBAwDkbT9IwVZo77xtMMxtIMxzLkdcVAJM1AJD3FO4PJYMBmMWI1GSeX9JlOB76aKtTQ0VWhrWomr6GfPYY+K4vJQKXXTqXXTrXXTl3QQX3ASbln4VLhs3mdkXiGdF6jzG3j0oYATWVOSR0XYgmT394LVE7TOTYY4/meCC/0jDMSz57xfEuZiw31fjY2BqgqYXEPgFRWYzieQVeKCo+Ny5oDNARl8BBCCCFmwmu3sK7OT1ulh56xFMeHYvSNp9CVIui04bWbFzxjzGQ0UON3UOMvtMWaoOuK0USWkXiGcLIw2zyRMh1P54lNdnUptM3SlCKZ1UgyvTZaDosJj918+suCz1HIBgi6rASdVsrcVgIu66JZY57I5BlJZEAZqPbZaat0Ux+U7ixCXAgk4rmADMcyHOyNcKAvwpGBGNm8Pvmc2WhgZZWHSxsCrK/zlXxWeWJ9djiZPV1IxcGyCimEJoQQQswVu8XEsopC2vNANE3nSIKu0QQnhzO47GZCLuuiG3ONRgPlHhvlnlfXhnk5XVek8xqZ0+1Vc3mFrhSaUuh6oaityWjANFHA1mTAbjFhN5uwWRZvF5izOTmawGe30FruprXcTbXPfsFWfBfiYiQB9xKWymocGYhyuD/K4b4og7HMGc/7HBbW1fpYX1eooDkfd0nzus54NEc8k8drt7C2xktLuZtyt23BC6QIIYQQFyKT0UCt30Gt38G6Oh894RQnhmL0RVIoHXxOCz67ZUmNw0ajAafVzIW46iyV1eiPpCa/v6whwLJKz7yvExdCzA8JuJeQbL7QB/LIQIwjA1E6RhJnrFUyGqC13M26Wh9ra33UBxzz/oe7eyxFrd/Jhno/dUEnPsf8tC8RQgghRCHdfHWNheWVbgZjGbrDSTpHE3SGE1iMRvxOC27bwqecX2zyms5YMkcsncNmMVHle2k53/oGvyyzE+ICJr/di1gmr3FyODHZduPkcOKMtl0AlR4bq2u8rK72sqLKM69/sHWlGE/mGIq9VPTkupWVLKtwYzVLKpQQQgixUMwm4+Ss9yV1PvrG03SNJhiIphmKZbBbTPgdFkwG+NiP9gPw/9526YIVXrsQaboims4RSWUxYCDgsrKqOkhtwInDItdJQlwsJOA+LZnNs/XuPwDw73+6AccC3GmMpnKcGI5zYqjw1RVOor0iwPY5LKys8rCq2suqKg+hs/THLrVMTmM0kSWV0/A7rWyo908+11TmlGBbCCGEWEScVjPLKtwsq3ATSeZOr/eOMxTPMJ7ITb5OP0ebLFG8iSA7msqhKYXfYWVtrf90H3L75DVSMptf4D0VQswXCbgXSE7T6R5L0jGc4ORIgpPDCYbjmVe9LuC0sLzSc/rLTZXXviBpYLpSRFM5xpI5zEYDlT47yyrc1AWm30ZMCCGEEAvD57TgcxZSziOpHF3hJP/80DEAToWT2K0mPDYLHrt50RVcW6yyeZ1YOkc0k8OAAY/dwsoqL7UBB1U+u1QaF+IiJwH3PMhpOn3jKU6Fk3SOFtZS9YylXjV7DVDjt9NW4SnciS53L3gBjXROI3x6NtvnsHBJnY+GkJNKj32y+IrcpRVCCCGWFoPBgN9pPSMr7ZqVFYwnc/SNp+iLpMjrCoe50F7LZTUvqaJrpaTrikQ2TyydJ53XsBiNeB0WNtQXWq2We2wSZAshJknAPcdi6Rw9Y6nTX0lOhZP0RdJnDa7dNjPNZS5ayl20lLloLnMtiqIZuq4YT+UYT2WxmIxU+ey0lrup8Ttw2xZ+/4QQQggx9yauQzJ5jdF4oUd271iScCLHSDyBAuxmE26bGafNhNl4ccyATwTYiYxGMpfHALhsZip9duoCDsrcNoKLsAWbEGJxWPDo6atf/Sr/9E//RH9/P2vWrOHLX/4yV1111bzvx8sD4uODMdbW+s95J3eix/RgNE1/JE3veIr+8RR9kTSRVO6sP+O0mmgIOmkMOWkOuWgMuRZ89vqVEpk84USWvK7jc1rZ2BCgLuCkwiMtvYQQQoiLhc1sosbvoMbvYG2tj3gmTzieZSyZYSCSZiyZY2wsi6YUZoMRh9WE02rCYTEt+esFXSkyOZ1UTiORzZPL66dblJkIuq2s9XkJuW34nRY8dunEIoSY2oIG3Pfddx+f/OQn+epXv8r27dv5+te/zs0338zhw4dpaGiYt/144GA/d9x/aPL7f3uknYDTwhs31FDlczAcyzAUyzAUSzMYLQw2qZx2zvcr99io8zuoDThoCDppCDoJuRZXcD0hp+mEE1nimTxOq4n6kJPmMhc1PgcOq6RDCSGEEBc7t82M22amIeRkfX1hKdl4Mkc0nWM0nmU4liGWyTEcz6CUwmAwYDebsFmM2MxGbGYTpkUWiCulyOZ10nmdTF4jk9PJ6ToADosJh9VEc5mLco8Nn8OCzzG37dScVjOdX3jdnLyXEGJxW9CA+0tf+hLvf//7+cAHPgDAl7/8ZR588EHuuece7r777nnZhwcO9vPh7z/HKxO+x5I57t3Vdc6fMwAht5Uqn51an4Nqv4Mav50an2PRr9uZSBmPpnIYjFDmtrG+3keN30nAaVmUNwaEEEIIMfdenuG3pyPMVW3lUwbHTqsZp9VMDYXCqbquiGfzxNN54pk80VQh+I6l80TSObL5zOR2jAYDVpMRi8mIxWTAbDJiNhowmwyYDIY5uQbRlULTFTlNJ68p8qf/P5vXyZ8OqhWFmXyb2Vi4mRC0EnTZ8NjNhTXrNikaJ4SYGwsWcGezWfbu3cunP/3pMx6/4YYb2LVr17zsg6Yr7vrl4VcF2y9nMMCycheVXgcVHhsVXhtVXjsVHvuSan+llCKeyTOWyJFXOn6HlXV1PuqCTio9NswyqAghhBAXlVdm+L333meo9tm545bV3LS2uuj3MRoNeO0WvK9Isc5pOsmsRipbSM9O5zSSWY1oKkcsnSeb10lm8+Q1RU7X0XQwoChMa0yY+P4sV2sGw8seLrxOoTAZDBhPB/EWYyGwd9useBxmfA4Ldksh/d1pNeGymbGZjTLZIIQomQULuEdGRtA0jcrKyjMer6ysZGBg4Kw/k8lkyGReap0VjUZntQ97OsL0R9LnfY1ScOuGWlZWeWe1rYWSzOYZS+ZI5zQ8djMtFS4agk6qJWVcCCGEuGidK8NvIJLmw99/jnveuXFaQffZWExGfA4jPsfZ1zpPzDpn8zpZTSevK/KaTk4rzFBrukJXCqXO3iPcZDRgMBT+azQYMBsNWExGzCYDZqMRq7mQ0m41GZf82nIhxNK14EXTXnlHcWLtz9ncfffd3HXXXXO27aHY+YPtCecqhLZYpXMa46kcyUweh9VElddGU5mbKp/9nIPebMg6JCGEEGLpOF+G38R88l2/PMxrVleVdO215XRquctWsk0IIcSCW7CAu6ysDJPJ9KrZ7KGhoVfNek+4/fbb+dSnPjX5fTQapb6+fsb7UOGxF/W6UgSpcy2T1xhP5khk81jNRspcNi5t8FPltRNcpAXbhBBCCDH/psrwU0B/JM2ejjDbWkPzt2NCCHEBWrCA22q1smnTJh566CHe9KY3TT7+0EMPceutt571Z2w2Gzbb3N0Gvbw5SLXPzkAkfc513AGnheUVnjnb5lzK5DUiqRzxjIbFaCDoLqzLrvLZKXNJKy8hhBBCvFqxGX7Fvk4IIcS5LWhK+ac+9Sne9a53cdlll7Ft2zb+4z/+g1OnTvGhD31oXrZvMhq445bVfPj7z52rHAd/urlhUQWumdPp4olsIcgOuKysqfFS5XMQclml+JkQQgghzqvYDL9iXyeEEOLcFjTgfutb38ro6Cif+9zn6O/vZ+3atfzmN7+hsbFx3vbhprXV3PPOjdxx/yEGoy8VZAs4Lfzp5gY2NQbmbV/OJZXViKQLa7ItZiNBl5W1tV4qvQ7K3BJkCyGEEKJ4U2X4GYAqn53Lm4PzvWtCCHHBMSh1lrKPS0Q0GsXn8xGJRPB6Z1dFPJbOse7O3wHwl9e2srbWv2Az20opEqfbZqTzGjaziZDLSmPISaXXTshtK2kREyGEEKU3l2PYUnSxH/9Cm6hSDmdm+E1cXcxFlXIhhLhQTWcMW/Aq5YvFywPYtkrPvAfbml7okx1J5chpOi6biUqvjfqgiwqvjaDTuqhS24UQQgixdJ0rw69qBn24hRBCnJsE3Asom9eJpnPEMjlQ4LFbaCl3URdwUO6243WYpbq4EEIIIUriprXVbF9WNpnh9+0/28xVbeWSRSeEEHNIAu7TnFYzT93+R/z6hT5sZlNJtqErRTKjEU0XUsUtRiNep4UNFQEqPXbKPFacVvknEUIIIcT8eHlwfXlzUIJtIYSYYxLdlVg2rxNL54hn8mhK4bKZqfTaqAs6KXPbCLqsWKTomRBCCCGEEEJccCTgnmP66bXYsUyeTE7DYjLidVhYU+uj0msn6LLitUuquBBCCCGEEEJc6CTgniWlFMmsRiyTJ5nNYzQYcNvM1Pod1PgdhNxWmcUWQgghhBBCiIuQBNzTpJQildOInw6wdQVOq4mA08qaGi9lbhsht6zFFkIIIYQQQoiLnUSFU5gIsBMZjUQ2j64UDosJj91CW6WnsA7baZWK4kIIIYQQQgghziAB91kksnmSWY1kLo9STAbYyyrdBF1Wgk4rPodF+mILIYQQQgghhDgnCbhfxmAotAdL5jR8Dgurqr0EXFYCTgteuwTYQgghhLiwOK1mOr/wuoXeDSGEuGBJwP0yIZeVHSvK8djNuG2SIi6EEEIIIYQQYuYk4H4Zs8lIjd+x0LshhBBCCCGEEOICIL2qhBBCCCGEEEKIEpCAWwghhBBCCCGEKAEJuIUQQgghhBBCiBKQgFsIIYQQQgghhCgBCbiFEEIIIYQQQogSkIBbCCGEEEIIIYQoAQm4hRBCCCGEEEKIEpCAWwghhBBCCCGEKAEJuIUQQgghhBBCiBKQgFsIIYQQQgghhCgBCbiFEEIIIYQQQogSkIBbCCGEEEIIIYQoAQm4hRBCCCGEEEKIEpCAWwghhBBCCCGEKAEJuIUQQgghhBBCiBIwL/QOzIZSCoBoNLrAeyKEEEJMz8TYNTGWXWxkDBdCCLFUTWcMX9IBdywWA6C+vn6B90QIIYSYmVgshs/nW+jdmHcyhgshhFjqihnDDWoJ31rXdZ2+vj48Hg8Gg2HW7xeNRqmvr6e7uxuv1zsHe3jxkHM3M3LeZk7O3czJuZu5uTx3SilisRg1NTUYjRffCi8ZwxcPOXczI+dt5uTczZycu5lbqDF8Sc9wG41G6urq5vx9vV6vfIBnSM7dzMh5mzk5dzMn527m5urcXYwz2xNkDF985NzNjJy3mZNzN3Ny7mZuvsfwi++WuhBCCCGEEEIIMQ8k4BZCCCGEEEIIIUpAAu6Xsdls3HHHHdhstoXelSVHzt3MyHmbOTl3Myfnbubk3C1e8m8zc3LuZkbO28zJuZs5OXczt1DnbkkXTRNCCCGEEEIIIRYrmeEWQgghhBBCCCFKQAJuIYQQQgghhBCiBCTgFkIIIYQQQgghSuCCCrjvvvtuNm/ejMfjoaKigje+8Y0cPXr0jNcopbjzzjupqanB4XBwzTXXcOjQocnnw+EwH//4x1mxYgVOp5OGhgb+8i//kkgkcsb7NDU1YTAYzvj69Kc/PS/HWQrzee4Afv3rX7NlyxYcDgdlZWXcdtttJT/GUpmvc/foo4++6jM38fXMM8/M2/HOlfn8zB07doxbb72VsrIyvF4v27dv55FHHpmX4yyF+Tx3zz33HK95zWvw+/2EQiH+4i/+gng8Pi/HWQpzce4APvjBD9La2orD4aC8vJxbb72VI0eOnPGasbEx3vWud+Hz+fD5fLzrXe9ifHy81Ie4ZMkYPnMyhs+cjOEzI2P4zMkYPnNLdgxXF5Abb7xR3XvvvergwYNq//796nWve51qaGhQ8Xh88jVf+MIXlMfjUf/93/+tDhw4oN761req6upqFY1GlVJKHThwQN12223q/vvvVydOnFB/+MMfVFtbm3rzm998xrYaGxvV5z73OdXf3z/5FYvF5vV459J8nruf/vSnKhAIqHvuuUcdPXpUHTlyRP3kJz+Z1+OdS/N17jKZzBmft/7+fvWBD3xANTU1KV3X5/24Z2s+P3PLli1Tr33ta9Xzzz+vjh07pj7ykY8op9Op+vv75/WY58p8nbve3l4VCATUhz70IXXkyBG1Z88edcUVV7zq/C4lc3HulFLq61//utq5c6fq6OhQe/fuVbfccouqr69X+Xx+8jU33XSTWrt2rdq1a5fatWuXWrt2rXr9618/r8e7lMgYPnMyhs+cjOEzI2P4zMkYPnNLdQy/oALuVxoaGlKA2rlzp1JKKV3XVVVVlfrCF74w+Zp0Oq18Pp/62te+ds73+fGPf6ysVqvK5XKTjzU2Nqp/+Zd/Kdm+L7RSnbtcLqdqa2vVN77xjdIewAIq5efu5bLZrKqoqFCf+9zn5vYAFkipztvw8LAC1GOPPTb5mmg0qgD1+9//vkRHM79Kde6+/vWvq4qKCqVp2uRr9u3bpwB1/PjxEh3N/Jqrc/f8888rQJ04cUIppdThw4cVoJ566qnJ1+zevVsB6siRIyU6mguLjOEzJ2P4zMkYPjMyhs+cjOEzt1TG8AsqpfyVJtIqgsEgAB0dHQwMDHDDDTdMvsZms7Fjxw527dp13vfxer2YzeYzHv/Hf/xHQqEQGzZs4B/+4R/IZrMlOIqFUapz99xzz9Hb24vRaOTSSy+lurqam2+++VWpHktZqT93E+6//35GRkZ473vfO3c7v4BKdd5CoRCrVq3iu9/9LolEgnw+z9e//nUqKyvZtGlTCY9o/pTq3GUyGaxWK0bjS0OFw+EA4Iknnpjz41gIc3HuEokE9957L83NzdTX1wOwe/dufD4fW7ZsmXzd1q1b8fl85/03EC+RMXzmZAyfORnDZ0bG8JmTMXzmlsoYfsEG3EopPvWpT3HllVeydu1aAAYGBgCorKw847WVlZWTz73S6Ogof/d3f8cHP/jBMx7/xCc+wY9+9CMeeeQRPvaxj/HlL3+Zj3zkIyU4kvlXynN38uRJAO68807+9m//ll/96lcEAgF27NhBOBwuxeHMq1J/7l7um9/8JjfeeOPkH4elrJTnzWAw8NBDD7Fv3z48Hg92u51/+Zd/4YEHHsDv95fmgOZRKc/dddddx8DAAP/0T/9ENptlbGyMv/mbvwGgv7+/FIczr2Z77r761a/idrtxu9088MADPPTQQ1it1sn3qaioeNU2KyoqzvlvIF4iY/jMyRg+czKGz4yM4TMnY/jMLaUx/IINuD/2sY/xwgsv8MMf/vBVzxkMhjO+V0q96jGAaDTK6173OlavXs0dd9xxxnN/9Vd/xY4dO7jkkkv4wAc+wNe+9jW++c1vMjo6OrcHsgBKee50XQfgM5/5DG9+85vZtGkT9957LwaDgZ/85CdzfCTzr9Sfuwk9PT08+OCDvP/975+bHV9gpTxvSik+8pGPUFFRweOPP86ePXu49dZbef3rX39BDDilPHdr1qzhO9/5Dv/8z/+M0+mkqqqKlpYWKisrMZlMc38w82y25+4d73gH+/btY+fOnbS1tfGWt7yFdDp9zvc41/uIV5MxfOZkDJ85GcNnRsbwmZMxfOaW0hh+QQbcH//4x7n//vt55JFHqKurm3y8qqoK4FV3JoaGhl51JyQWi3HTTTfhdrv5+c9/jsViOe82t27dCsCJEyfm4hAWTKnPXXV1NQCrV6+efMxms9HS0sKpU6fm/Hjm03x+7u69915CoRBveMMb5vgo5l+pz9vDDz/Mr371K370ox+xfft2Nm7cyFe/+lUcDgff+c53SnhkpTcfn7m3v/3tDAwM0Nvby+joKHfeeSfDw8M0NzeX6Kjmx1ycO5/PR1tbG1dffTU//elPOXLkCD//+c8n32dwcPBV2x0eHn7V+4gzyRg+czKGz5yM4TMjY/jMyRg+c0ttDL+gAm6lFB/72Mf42c9+xsMPP/yqD1NzczNVVVU89NBDk49ls1l27tzJFVdcMflYNBrlhhtuwGq1cv/992O326fc9r59+4CXBqOlZr7O3aZNm7DZbGeU8M/lcnR2dtLY2Fiioyut+f7cKaW49957efe73z3lReRiNl/nLZlMApyxhmni+4nZmqVmIf7WVVZW4na7ue+++7Db7bzmNa+Z+wObB3N17s713plMBoBt27YRiUTYs2fP5PNPP/00kUhkyve5WMkYPnMyhs+cjOEzI2P4zMkYPnNLdgyfdpm1RezDH/6w8vl86tFHHz2j7UIymZx8zRe+8AXl8/nUz372M3XgwAH1tre97YxS8dFoVG3ZskWtW7dOnThx4oz3mSgVv2vXLvWlL31J7du3T508eVLdd999qqamRr3hDW9YkOOeC/N17pRS6hOf+ISqra1VDz74oDpy5Ih6//vfryoqKlQ4HJ73454L83nulFLq97//vQLU4cOH5/U459p8nbfh4WEVCoXUbbfdpvbv36+OHj2q/vf//t/KYrGo/fv3L8ixz9Z8fub+/d//Xe3du1cdPXpUfeUrX1EOh0P967/+67wf81yZi3PX3t6uPv/5z6tnn31WdXV1qV27dqlbb71VBYNBNTg4OPk+N910k7rkkkvU7t271e7du9W6deukLdh5yBg+czKGz5yM4TMjY/jMyRg+c0t1DL+gAm7grF/33nvv5Gt0XVd33HGHqqqqUjabTV199dXqwIEDk88/8sgj53yfjo4OpZRSe/fuVVu2bFE+n0/Z7Xa1YsUKdccdd6hEIjHPRzx35uvcKVVohfG//tf/UhUVFcrj8ajrr79eHTx4cB6Pdm7N57lTSqm3ve1t6oorrpinoyud+TxvzzzzjLrhhhtUMBhUHo9Hbd26Vf3mN7+Zx6OdW/N57t71rnepYDCorFaruuSSS9R3v/vdeTzSuTcX5663t1fdfPPNqqKiQlksFlVXV6fe/va3v6pVyOjoqHrHO96hPB6P8ng86h3veIcaGxubpyNdemQMnzkZw2dOxvCZkTF85mQMn7mlOoYbTu+8EEIIIYQQQggh5tAFtYZbCCGEEEIIIYRYLCTgFkIIIYQQQgghSkACbiGEEEIIIYQQogQk4BZCCCGEEEIIIUpAAm4hhBBCCCGEEKIEJOAWQgghhBBCCCFKQAJuIYQQQgghhBCiBCTgFkIIIYQQQgghSkACbiEucnfeeScbNmxY6N0QQgghxDTJGC7E4mdQSqmF3gkhRGkYDIbzPv+e97yHr3zlK2QyGUKh0DztlRBCCCGmImO4EBcGCbiFuIANDAxM/v99993HZz/7WY4ePTr5mMPhwOfzLcSuCSGEEOI8ZAwX4sIgKeVCXMCqqqomv3w+HwaD4VWPvTId7b3vfS9vfOMb+fznP09lZSV+v5+77rqLfD7PX//1XxMMBqmrq+Nb3/rWGdvq7e3lrW99K4FAgFAoxK233kpnZ+f8HrAQQghxgZAxXIgLgwTcQohXefjhh+nr6+Oxxx7jS1/6EnfeeSevf/3rCQQCPP3003zoQx/iQx/6EN3d3QAkk0muvfZa3G43jz32GE888QRut5ubbrqJbDa7wEcjhBBCXDxkDBdicZGAWwjxKsFgkH/7t39jxYoVvO9972PFihUkk0n+5m/+hra2Nm6//XasVitPPvkkAD/60Y8wGo184xvfYN26daxatYp7772XU6dO8eijjy7swQghhBAXERnDhVhczAu9A0KIxWfNmjUYjS/dj6usrGTt2rWT35tMJkKhEENDQwDs3buXEydO4PF4znifdDpNe3v7/Oy0EEIIIWQMF2KRkYBbCPEqFovljO8NBsNZH9N1HQBd19m0aRP/9V//9ar3Ki8vL92OCiGEEOIMMoYLsbhIwC2EmLWNGzdy3333UVFRgdfrXejdEUIIIUSRZAwXorRkDbcQYtbe8Y53UFZWxq233srjjz9OR0cHO3fu5BOf+AQ9PT0LvXtCCCGEOAcZw4UoLQm4hRCz5nQ6eeyxx2hoaOC2225j1apVvO997yOVSsndciGEEGIRkzFciNIyKKXUQu+EEEIIIYQQQghxoZEZbiGEEEIIIYQQogQk4BZCCCGEEEIIIUpAAm4hhBBCCCGEEKIEJOAWQgghhBBCCCFKQAJuIYQQQgghhBCiBCTgFkIIIYQQQgghSkACbiGEEEIIIYQQogQk4BZCCCGEEEIIIUpAAm4hhBBCCCGEEKIEJOAWQgghhBBCCCFKQAJuIYQQQgghhBCiBCTgFkIIIYQQQgghSuD/A8PrlPbrR1KNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_model, y_model, xe_model, ye_model = mm.model(t_test, params, param_errs)\n", + "visualize_fit(t, x, y, xe, ye, x_model, y_model, xe_model, ye_model, mm.name, t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "9d1f63b4", + "metadata": {}, + "source": [ + "Moreover, `MotionModel.model` is fully vectorized, and can infer positions of multiple stars at multiple times, and the resulting inferred positions has shape (N_stars, N_times). See the example below:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "d1e406c5", + "metadata": {}, + "outputs": [], + "source": [ + "t = np.array([0, 1., 2.2, 3.5, 5.]) + 2025.0\n", + "\n", + "xs = np.array([\n", + " [0., 0.5, 2.1, 3.2, 8.0],\n", + " [10.0, 8.9, 9.2, 7.4, 7.0],\n", + " [2.5, 6.2, 5.2, 3.2, 5.0]\n", + "])\n", + "\n", + "ys = np.array([\n", + " [10.2, 8.5, 9.1, 10.5, 13.0],\n", + " [8.0, 9.9, 8.2, 7.4, 7.0],\n", + " [5.2, 6.2, 4.7, 3.2, 6.0]\n", + "])\n", + "\n", + "xes = np.array([\n", + " [0.2, 0.5, 0.3, 0.4, 0.6],\n", + " [0.5, 0.2, 0.7, 0.3, 0.2],\n", + " [0.5, 0.7, 0.6, 0.4, 0.3]\n", + "])\n", + "\n", + "yes = np.array([\n", + " [0.3, 0.2, 0.5, 0.2, 0.4],\n", + " [0.2, 0.5, 0.6, 0.4, 0.2],\n", + " [0.4, 0.2, 0.3, 0.4, 0.5]\n", + "])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "4adebbe8", + "metadata": {}, + "outputs": [], + "source": [ + "params = []\n", + "param_errs = []\n", + "for xi, yi, xei, yei in zip(xs, ys, xes, yes):\n", + " p, pe = mm.fit(t, xi, yi, xei, yei)\n", + " params.append(p)\n", + " param_errs.append(pe)" + ] + }, + { + "cell_type": "markdown", + "id": "4e0424df", + "metadata": {}, + "source": [ + "Once we have the params and param errors, we can infer the model positions at any given time." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "95745baa", + "metadata": {}, + "outputs": [], + "source": [ + "x_model, y_model, xe_model, ye_model = mm.model(t_test, params, param_errs)" + ] + }, + { + "cell_type": "markdown", + "id": "06fdca50", + "metadata": {}, + "source": [ + "The inferred positions should have shape (N_stars, N_times):" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "54206834", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(3, 100)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_model.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "e6a4e42e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHqCAYAAAD27EaEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XecXHW9+P/Xmd52ZnvNtvRKQoAAAYRQpIMKNq7S1J+K9ypyVVC/V0G9NBU7cPUioBQbiCgXFKQJBJIQAul1s5tsb9P7zPn98ZnZkuwms8nW7Pv5eJzH7sycmflMZrJn3uf9+bzfmq7rOkIIIYQQQgghhBhVhokegBBCCCGEEEIIcSySgFsIIYQQQgghhBgDEnALIYQQQgghhBBjQAJuIYQQQgghhBBiDEjALYQQQgghhBBCjAEJuIUQQgghhBBCiDEgAbcQQgghhBBCCDEGJOAWQgghhBBCCCHGgATcQgghhBBCCCHEGJCAW4y5n/70p2iaxuLFiyd6KH3OOusszjrrrAl7/scee4wf//jHQ96maRq33nrruI4H4KGHHkLTNDRN4+WXXz7odl3XmT17NpqmHfG/3e23385TTz110PUvv/zysM871q699lo0TSMvL49gMHjQ7Y2NjRgMhlF/X47mNWffq7179+a031DbV77yFfbu3YumaTz00EN993njjTe49dZb8Xq9Ix6XEGJqk+P1weR4PZgcr0dGjtcCJOAW4+DXv/41AJs3b+att96a4NFMDoc6gK9evZpPf/rT4zugAfLy8njggQcOuv6VV15h9+7d5OXlHfFjD3cAX758OatXr2b58uVH/NhHw2w2k0wm+f3vf3/QbQ8++OBRvebJ4MEHH2T16tWDti9+8YtUVFSwevVqLr744r5933jjDW677TY5gAsxDcnx+mByvB5MjtdjS47XxyYJuMWYWrduHe+++27fH4ihDgzHgkgkMmqPdcoppzBjxoxRe7yR+uhHP8oTTzyB3+8fdP0DDzzAqaeeSk1Nzag/p9vt5pRTTsHtdo/6Y+fCYrHwgQ98oO/LZpau6zz00EN89KMfnZBxjZbFixdzyimnDNpqamqwWq2ccsoplJSUTPQQhRATTI7XIyfH6/Enx2s5Xk9FEnCLMZU9YN95552sXLmS3/3ud4TD4YP2a25u5v/7//4/qqursVgsVFZWcuWVV9Le3t63j9fr5T//8z+ZOXMmVquV0tJSLrroIrZt29a3Tzwe53vf+x7z58/HarVSUlLCddddR2dn52HHmut96+rquOSSS3jyySc5/vjjsdls3HbbbQD84he/4H3vex+lpaU4nU6WLFnC3XffTSKR6Lv/WWedxTPPPENjY+OgKUNZQ02F2rRpE5dffjkFBQXYbDaWLVvGww8/PGif7JSnxx9/nG9+85tUVlbidrs599xz2b59+2Fff9bHP/5xAB5//PG+63w+H0888QTXX3/9kPfp6enhhhtuoKqqCovFwsyZM/nmN79JLBYb9LpCoRAPP/xw32vOTnUbbrrW008/zamnnorD4SAvL4/zzjuP1atXD9rn1ltvRdM0Nm/ezMc//nE8Hg9lZWVcf/31+Hy+nF/39ddfzxtvvDHo3+qFF16gsbGR6667bsj75PK+AGzbto0LLrgAh8NBcXExn/vc5wgEAkM+5gsvvMA555yD2+3G4XBw2mmn8c9//jPn1zESB05Ru/XWW/nqV78KQH19/SGnLAohji1yvJbj9cDXJcdrOV6L0SMBtxgzkUiExx9/nJNOOonFixdz/fXXEwgE+OMf/zhov+bmZk466ST+/Oc/c9NNN/Hss8/y4x//GI/HQ29vLwCBQIDTTz+d//mf/+G6667jr3/9K/fffz9z586ltbUVgHQ6zeWXX86dd97JVVddxTPPPMOdd97J888/z1lnnXXIs9ojve/69ev56le/yhe/+EWee+45rrjiCgB2797NVVddxW9/+1v+9re/8alPfYrvf//7fPazn+2777333stpp51GeXn5oClDw9m+fTsrV65k8+bN/PSnP+XJJ59k4cKFXHvttdx9990H7f+Nb3yDxsZG/vd//5df/vKX7Ny5k0svvZRUKnWYd0xxu91ceeWVg84eP/744xgMhiHPHEejUVatWsVvfvMbbrrpJp555hk+8YlPcPfdd/OhD32ob7/Vq1djt9u56KKL+l7zvffeO+w4HnvsMS6//HLcbjePP/44DzzwAL29vZx11lm89tprB+1/xRVXMHfuXJ544gluueUWHnvsMb785S/n9JoBzj33XGprawe97gceeID3ve99zJkz56D9c31f2tvbOfPMM9m0aRP33nsvv/3tbwkGg/z7v//7QY/5yCOP8P73vx+3283DDz/MH/7wBwoLCzn//POP6iCeSqVIJpODtqF8+tOf5j/+4z8AePLJJ/vep4maOiiEGB9yvJbjtRyv5XgtxpAuxBj5zW9+owP6/fffr+u6rgcCAd3lculnnHHGoP2uv/563Ww261u2bBn2sb7zne/ogP78888Pu8/jjz+uA/oTTzwx6Pq1a9fqgH7vvff2XXfmmWfqZ5555hHdt7a2Vjcajfr27duHf/G6rqdSKT2RSOi/+c1vdKPRqPf09PTddvHFF+u1tbVD3g/Qv/3tb/dd/tjHPqZbrVa9qalp0H4XXnih7nA4dK/Xq+u6rr/00ks6oF900UWD9vvDH/6gA/rq1asPOd4HH3xQB/S1a9f2PdamTZt0Xdf1k046Sb/22mt1Xdf1RYsWDfq3u//++3VA/8Mf/jDo8e666y4d0P/xj3/0Xed0OvVrrrnmoOfOPt9LL72k67r6t6usrNSXLFmip1Kpvv0CgYBeWlqqr1y5su+6b3/72zqg33333YMe84YbbtBtNpueTqcP+bqvueYa3el09j1WeXm5nkgk9O7ubt1qteoPPfSQ3tnZecTvy80336xrmqZv2LBh0H7nnXfeoNccCoX0wsJC/dJLLx20XyqV0pcuXaqvWLGi77rse9XQ0HDI15bdb6gtkUjoDQ0NOqA/+OCDfff5/ve/n9NjCyGOHXK8luO1HK/leC3GjmS4xZh54IEHsNvtfOxjHwPA5XLx4Q9/mH/961/s3Lmzb79nn32WVatWsWDBgmEf69lnn2Xu3Lmce+65w+7zt7/9jfz8fC699NJBZwaXLVtGeXn5IafZjPS+xx13HHPnzj3ocd555x0uu+wyioqKMBqNmM1mrr76alKpFDt27Bj2+Q/lxRdf5JxzzqG6unrQ9ddeey3hcPigs+2XXXbZQWMFVb0zV2eeeSazZs3i17/+NRs3bmTt2rXDTk978cUXcTqdXHnllQeNDziiM73bt2+npaWFT37ykxgM/X+mXC4XV1xxBW+++eZBUx2Het3RaJSOjo6cn/e6666jvb2dZ599lkcffRSLxcKHP/zhIffN9X156aWXWLRoEUuXLh2031VXXTXo8htvvEFPTw/XXHPNoM9gOp3mggsuYO3atYRCoZxfy0C/+c1vWLt27aDNZDId0WMJIY49cryW4zXI8VqO12KsyDsoxsSuXbt49dVXueKKK9B1va+C4pVXXsmDDz7Ir3/9a+644w4AOjs7D1t0pLOz87DFP9rb2/F6vVgsliFv7+rqGrX7VlRUHLRPU1MTZ5xxBvPmzeMnP/kJdXV12Gw21qxZwxe+8IUjLtTS3d095PNVVlb23T5QUVHRoMtWqxUYWaEYTdO47rrr+OlPf0o0GmXu3LmcccYZw46vvLx80Lo2gNLSUkwm00Hjy0X2PsO97nQ6TW9vLw6Ho+/60XjdtbW1nHPOOfz6179m7969fOxjH8PhcAy5jjHX96W7u5v6+vqD9isvLx90Obv+8cAvQgP19PTgdDpzfj1ZCxYs4MQTTxzx/YQQxz45XsvxWo7XcrwWY0sCbjEmfv3rX6PrOn/605/405/+dNDtDz/8MN/73vcwGo2UlJSwf//+Qz5eLvsUFxdTVFTEc889N+Tth2oVMdL7HniwAnjqqacIhUI8+eST1NbW9l2/YcOGQ477cIqKivrWvQ3U0tICqLGPhWuvvZZvfetb3H///fz3f//3Icf31ltvoev6oH+Xjo4OksnkEY0vezAe7nUbDAYKCgpG/Li5uP766/nEJz5BOp3mvvvuO+QYc3lfioqKaGtrO2i/A6/L7v+zn/2MU045ZcjnLCsry+1FCCFEjuR4LcdrOV7L8VqMLQm4xahLpVI8/PDDzJo1i//93/896Pa//e1v/PCHP+TZZ5/lkksu4cILL+S3v/0t27dvZ968eUM+5oUXXsi3vvUtXnzxRc4+++wh97nkkkv43e9+RyqV4uSTTx7RmI/mvlnZg1f2TC2oNhW/+tWvDtrXarXmfCb3nHPO4c9//jMtLS19Z2NBTTtyOBzD/rE/WlVVVXz1q19l27ZtXHPNNYcc3x/+8AeeeuopPvjBDw4aX/b2rFxf97x586iqquKxxx7jK1/5St+/bSgU4oknnuirhDoWPvjBD/LBD34Qj8dzyH/bXN+XVatWcffdd/Puu+8Omqb22GOPDXq80047jfz8fLZs2TJkgZbxciSZBiHE1CTHazleZ8eXvT1LjtdyvBajRwJuMeqeffZZWlpauOuuu/raSAy0ePFifv7zn/PAAw9wySWX8J3vfIdnn32W973vfXzjG99gyZIleL1ennvuOW666Sbmz5/PjTfeyO9//3suv/xybrnlFlasWEEkEuGVV17hkksuYdWqVXzsYx/j0Ucf5aKLLuJLX/oSK1aswGw2s3//fl566SUuv/zyQQeYgY7mvlnnnXceFouFj3/843zta18jGo1y33339VVuHWjJkiU8+eST3HfffZxwwgkYDIZhpxB9+9vf5m9/+xurVq3iW9/6FoWFhTz66KM888wz3H333Xg8nsO/KUfozjvvPOw+V199Nb/4xS+45ppr2Lt3L0uWLOG1117j9ttv56KLLhq0jm/JkiW8/PLL/PWvf6WiooK8vLwhv7QZDAbuvvtu/u3f/o1LLrmEz372s8RiMb7//e/j9XpzGteRstlsQ2Z5DpTr+3LjjTfy61//mosvvpjvfe97lJWV8eijjw5qjwNqvdvPfvYzrrnmGnp6erjyyispLS2ls7OTd999l87OzkOewR8tS5YsAeAnP/kJ11xzDWazmXnz5h0y4ySEmJrkeC3Hazley/FajIOJq9cmjlUf+MAHdIvFond0dAy7z8c+9jHdZDLpbW1tuq7r+r59+/Trr79eLy8v181ms15ZWal/5CMf0dvb2/vu09vbq3/pS1/Sa2pqdLPZrJeWluoXX3yxvm3btr59EomE/oMf/EBfunSpbrPZdJfLpc+fP1//7Gc/q+/cubNvvwOrno7kvrW1tfrFF1885Ov661//2nf/qqoq/atf/ar+7LPPDqpuqeu63tPTo1955ZV6fn6+rmmaPvC/IgdU19R1Xd+4caN+6aWX6h6PR7dYLPrSpUsHVarU9f7KoX/84x8HXT9UZcuhDKx6eigHVj3VdV3v7u7WP/e5z+kVFRW6yWTSa2tr9a9//et6NBodtN+GDRv00047TXc4HDrQ9zgHVj3Neuqpp/STTz5Zt9lsutPp1M855xz99ddfH7RPtuppZ2fnkK/ncNU7B1Y9Hc5QVU91Pbf3Rdd1fcuWLfp5552n22w2vbCwUP/Upz6l/+UvfxnyNb/yyiv6xRdfrBcWFupms1mvqqrSL7744kHv60irng73ng732fj617+uV1ZW6gaDYcgxCiGODXK8luO1HK8Hk+O1GAuaruv62If1QgghhBBCCCHE9CJtwYQQQgghhBBCiDEgAbcQQgghhBBCCDEGJOAWQgghhBBCCCHGgATcQgghhBBCCCHEGJCAWwghhBBCCCGEGAMScAshhBBCCCGEEGPANNEDGGvpdJqWlhby8vLQNG2ihyOEEEIMS9d1AoEAlZWVGAzT75y4HLOFEEJMBSM5Xh/zAXdLSwvV1dUTPQwhhBAiZ/v27WPGjBkTPYxxJ8dsIYQQU0kux+tjPuDOy8sD1D+G2+2e4NEIIYQQw/P7/VRXV/cdu6YbOWYLIYSYCkZyvD7mA+7slDS32y0HbyGEEFPCdJ1OLcdsIYQQU0kux+vpt0BMCCGEEEIIIYQYBxJwCyGEEEIIIYQQY0ACbiGEEEIIIYQQYgwc82u4hRDiWJVKpUgkEhM9DDECZrMZo9E40cOY0uRzP/XI514IMZ1JwC2EEFOMruu0tbXh9XoneijiCOTn51NeXj5tC6MdKfncT23yuRdCTFcScAshxBSTDTpKS0txOBzyBXaK0HWdcDhMR0cHABUVFRM8oqlFPvdTk3zuhRDTnQTcQggxhaRSqb6go6ioaKKHI0bIbrcD0NHRQWlpqUyzzZF87qc2+dwLIaYzKZomhBBTSHbtqsPhmOCRiCOVfe9kHXLu5HM/9cnnXggxXUnALYQQU5BMp5265L07cvJvN3XJeyeEmK4k4BZCiGkqnAiz5OElLHl4CeFEeKKHI8S4kM+9EEKI8SQBtxBCCCGEEEIIMQYk4BZCiGkqlU71/f52+9uDLo+Fa6+9Fk3T0DQNs9lMWVkZ5513Hr/+9a9Jp9M5P85DDz1Efn7+2A1UHNPkcy+EEGI8ScAthBDT0AuNL/CBpz/Qd/mGf97A+U+czwuNL4zp815wwQW0trayd+9enn32WVatWsWXvvQlLrnkEpLJ5Jg+txDyuRdCCDHeJOAWQohp5oXGF7jp5ZvoCHcMur4j3MFNL980psGH1WqlvLycqqoqli9fzje+8Q3+8pe/8Oyzz/LQQw8BcM8997BkyRKcTifV1dXccMMNBINBAF5++WWuu+46fD5fX9bw1ltvBeCRRx7hxBNPJC8vj/Lycq666qq+3r9CyOdeCCHERJCAWwghppFUOsWda+5ERz/otux1d625a8yn2Q509tlns3TpUp588kkADAYDP/3pT9m0aRMPP/wwL774Il/72tcAWLlyJT/+8Y9xu920trbS2trKV77yFQDi8Tjf/e53effdd3nqqadoaGjg2muvHbfXISYv+dwLIYSYKKaJHoAQQojxs75jPe3h9mFv19FpC7exvmM9J5WfNG7jmj9/Pu+99x4AN954Y9/19fX1fPe73+Xzn/889957LxaLBY/Hg6ZplJeXD3qM66+/vu/3mTNn8tOf/pQVK1YQDAZxuVzj8jrE5CSfeyGEEBNFMtwjEQ/BrR61xUMTPRohhBixznDnqO43WnRd7+vT+9JLL3HeeedRVVVFXl4eV199Nd3d3YRCh/67+84773D55ZdTW1tLXl4eZ511FgBNTU1jPXwxycnnXgghprdwPEndLc9Qd8szhOPjWztDAm4hhJhGShwlo7rfaNm6dSv19fU0NjZy0UUXsXjxYp544gnefvttfvGLXwCQSCSGvX8oFOL9738/LpeLRx55hLVr1/LnP/8ZUFNuxfQmn3shhBATRaaUCyHENLK8dDlljjI6wh1DrmfV0ChzlLG8dPm4jenFF19k48aNfPnLX2bdunUkk0l++MMfYjCoc8J/+MMfBu1vsVhIpQavtd22bRtdXV3ceeedVFdXA7Bu3brxeQFi0pPPvRBCiIkiGW4hhJhGjAYjt6y4ZcjbNNTU1ptX3IzRYByT54/FYrS1tdHc3Mz69eu5/fbbufzyy7nkkku4+uqrmTVrFslkkp/97Gfs2bOH3/72t9x///2DHqOuro5gMMg///lPurq6CIfD1NTUYLFY+u739NNP893vfndMXoOYeuRzL4QQYqJIwC2EENPMubXncs9Z91DqKB10fZmjjHvOuodza88ds+d+7rnnqKiooK6ujgsuuICXXnqJn/70p/zlL3/BaDSybNky7rnnHu666y4WL17Mo48+yh133DHoMVauXMnnPvc5PvrRj1JSUsLdd99NSUkJDz30EH/84x9ZuHAhd955Jz/4wQ/G7HWIqUc+90IIISaCpuv6wXOrjiF+vx+Px4PP58Ptdh/dg8VDcHul+v0bLWBxHv0AhRBiBKLRKA0NDdTX12Oz2Y7qsQKxACt/txKAe8+5l5WVK8cswyf6Heo9HNVj1hQ03OuXz/3UN5rvoRBCjFQ4nmTht/4OwJbvnI/DcnQrq0dyvJYMtxBCTFMDg4wTyk6QoENMC/K5F0IIMZ6kaJoQQkxTDrODjddsnOhhCDGu5HMvhBBiPEmGWwghhBBCCCGEGAMScAshhBBCCCGEOGal0v1ly9Y09Ay6PNYk4BZCCCGEEEIIcUx6blMr597zSt/lax9cy+l3vchzm1rH5fkl4BZCCCGEEEIIccx5blMrn39kPe3+2KDr23xRPv/I+nEJuic04H711Ve59NJLqaysRNM0nnrqqUG367rOrbfeSmVlJXa7nbPOOovNmzdPzGAB0qn+3xvfGHxZCCGEEEIIIcSkkErr3PbXLQw1eTx73W1/3TLm08snNOAOhUIsXbqUn//850Pefvfdd3PPPffw85//nLVr11JeXs55551HIBAY55ECW56GX6zov/zolfDjxep6IYQQQgghhBCTxpqGHlp90WFv14FWX5Q1DT1jOo4JbQt24YUXcuGFFw55m67r/PjHP+ab3/wmH/rQhwB4+OGHKSsr47HHHuOzn/3s+A10y9Pwh6vhwPMj/lZ1/Ud+AwsvG7/xCCGEEEIIIYQYVkdg+GD7SPY7UpO2D3dDQwNtbW28//3v77vOarVy5pln8sYbb4xfwJ1OwXM3c1CwDZnrNHjuFph/MRiM4zMmIYQYQjQZJZFOjNvzmQ1mbCbbuD1fLl5++WVWrVpFb28v+fn5Od2nrq6OG2+8kRtvvHHEz3fttdfi9XoPWhIlxo987uVzL4QQQynNy+1vda77HalJG3C3tbUBUFZWNuj6srIyGhsbh71fLBYjFutfFO/3+49uII1vgL/lEDvo4G9W+9WfcXTPJYQQRyiajPJS00v440f5N28E3BY3q2pW5Rx8XHvttTz88MN89rOf5f777x902w033MB9993HNddcw0MPPTQGoz1yt956K7fddttB1z///PP85Cc/Qdf7T8ieddZZLFu2jB//+MfjOMLpSz73Y0c+90KIqW5FfSEVHhttvuiQqVMNKPfYWFFfOKbjmLQBd5amaYMu67p+0HUD3XHHHUMeII5YsH109xNCiDGQSCfwx/1YTVasRuuYP18sFcMf95NIJ7CR+5nh6upqfve73/GjH/0Iu90OQDQa5fHHH6empmashnvUFi1axAsvvDDousLCQiwWywSNSIB87seafO6FEFOZ0aDx7UsX8vlH1qMxeL5yNpr89qULMRqGjy1Hw6RtC1ZeXg70Z7qzOjo6Dsp6D/T1r38dn8/Xt+3bt+/oBuIa/rkG0yCdPrrnEkKIo2Q1WrGb7GO+HWlws3z5cmpqanjyySf7rnvyySeprq7m+OOPH7RvLBbji1/8IqWlpdhsNk4//XTWrl07aJ//+7//Y+7cudjtdlatWsXevXsPes433niD973vfdjtdqqrq/niF79IKBQa0bhNJhPl5eWDNovFwrXXXssHPvABQGUyX3nlFX7yk5+gaRqapg05HjH65HO/96DnlM+9EELABYsruO8Tyyl1D/77Xe6xcd8nlnPB4ooxH8OkDbjr6+spLy/n+eef77suHo/zyiuvsHLlymHvZ7Vacbvdg7ajUrsS3JX0nwcZgs0DgTbY8Rz0NEAqeXTPKYQQI6DrOpFEhHg6TiwZG7ctno4Pmlaaq+uuu44HH3yw7/Kvf/1rrr/++oP2+9rXvsYTTzzBww8/zPr165k9ezbnn38+PT2qmui+ffv40Ic+xEUXXcSGDRv49Kc/zS233DLoMTZu3Mj555/Phz70Id577z1+//vf89prr/Hv//7vIx734fzkJz/h1FNP5TOf+Qytra20trZSXV096s8jFPncy+deCCFyccHiCn7//53ad/mh607itZvPHpdgGyZ4SnkwGGTXrl19lxsaGtiwYQOFhYXU1NRw4403cvvttzNnzhzmzJnD7bffjsPh4Kqrrhq/QRqMcMFdmSrlB05GyDjxUyoo9zapgNtTBWWLIL8WTDLtSkyAeAhur1S/f6MFLM6JHY8YU5FkhHP+dM6EPPf5tefjto7sxOYnP/lJvv71r7N37140TeP111/nd7/7HS+//HLfPqFQiPvuu4+HHnqor5vFr371K55//nkeeOABvvrVr3Lfffcxc+ZMfvSjH6FpGvPmzWPjxo3cddddfY/z/e9/n6uuuqqvMNScOXP46U9/yplnnsl9992HzZbbtOCNGzficrn6Li9cuJA1a9YM2sfj8WCxWHA4HH2ztMTYkc+9fO6FECIXwViStxv7W3+tqC8c82nkA01owL1u3TpWrVrVd/mmm24C6Cse8rWvfY1IJMINN9xAb28vJ598Mv/4xz/Iy8sb34EuvEy1/nr2axBo7b/eUQTLr4HqTH/uglpIxiHUDjv2QV45lC6Cwnow28d3zEIIMUkVFxdz8cUX8/DDD6PrOhdffDHFxcWD9tm9ezeJRILTTjut7zqz2cyKFSvYunUrAFu3buWUU04ZVNfj1FNPHfQ4b7/9Nrt27eLRRx/tu07XddLpNA0NDSxYsCCnMc+bN4+nn36677LVOvbrhcWxRT73Qggx/uLJNGsbemj1jm3rr0OZ0ID7rLPOOuS0LE3TuPXWW7n11lvHb1DDWXgZzDwL7sxMkzrzZihfCoYDZuWbLOCpVtPKQx2w6wVwFkPpAiicBbajnOIuhBAHsJvs/PPKf/L3xr+TZ87Dbhr7E3yRZIRAInDE7ZGuv/76vumtv/jFLw66PXtsOFThzFym9abTaT772c/yxS9+8aDbRlKsymKxMHv27Jz3F2NPPvfDk8+9EEJAOq3zTlMvO9oDVBVMXPJz0lcpn1QG9tkuXXBwsD2Q0aSmmadTEO6GPa9C63tQMh+KZoOzaOzHK4SYFjRNw262YzFYVLVm09hnodKkiaVih+wacSgXXHAB8XgcgPPPP/+g22fPno3FYuG1117rW0aUSCRYt25d3zTZhQsXHtQH+M033xx0efny5WzevHncggaLxUIqlRqX55ru5HPfTz73QghxsC2tPt7b76XcbcM0jlPIDzRpi6YdMwxGcJVC8WwwmGDfm7DlL7D7ZdXf+wgKrwghxFRnNBrZunUrW7duxWg0HnS70+nk85//PF/96ld57rnn2LJlC5/5zGcIh8N86lOfAuBzn/scu3fv5qabbmL79u089thjB/Uyvvnmm1m9ejVf+MIX2LBhAzt37uTpp5/mP/7jP8bkddXV1fHWW2+xd+9eurq6SEv3CjGAfO6FEGJ87OkM8najl3yHBad1YnPMkuEeL5oBHIVqi/qhfRN0bYf8GpX19lSrrLgQQhyFWCo2ZZ7ncF0k7rzzTtLpNJ/85CcJBAKceOKJ/P3vf6egoABQU2OfeOIJvvzlL3PvvfeyYsUKbr/99kGVn4877jheeeUVvvnNb3LGGWeg6zqzZs3iox/96FGPfyhf+cpXuOaaa1i4cCGRSISGhgbq6urG5LlEP/ncy+deCCGy2nxR1jT0YDRoFDgmvoC1ph9Jb4spxO/34/F48Pl8R98ibGDl5w8/BEe4hqtPIgyBDtDT4K6A0oWq8JoUWBNHS6qUH7Oi0SgNDQ3U19cPqjQcTUZ5qekl/HH/uI3FbXGzqmbVEa9nna6Gew9hlI9ZU9Bwr18+91PfoT73QggxWrzhOC9t66Q3HKem0NF3fSyR4guPvwPAlu+cj8NydInOkRyvJaU6kcwOKKyDVByCnbDzebW2u3QBFNSDPX+iRyiEmCJsJhuralaRSCfG7TnNBrMEHWJCyedeCCFEVjie5M093XQGo9QVTZ5kkwTck4HRonp3DyywZtsAxXNUgTVXGRxhgRYhxPRhM9mwIYGAmF7kcy+EECKeTLOmoYe93WHqihwYDoidrGYjd3xwCXaL8aiz2yMlAfdkki2w5iyBqA9a3oGOLWp9d8m8zDpv80SPUgghhBBCCCEmhWz7r+1tAaoL7JgO1UlqAkjAPRlpmppObs+HeBh6G6F7D+SVqenm+bVgdU30KIUQQgghhBBiwui6zqYWH+9m2n9ZTQd3gJhoEnCPhG//+D+nxQGWWkglINQJO18ARwEUz4XCmSobLtPNhRBCCCGEENPMro4gb+/tpchpnfD2X8OZXPn2ye693/f/vvYBNd1bH6dek0YzuCtVP2/NAPvWqH7eO5+HngYVkAshpg3pczt1yXt35OTfbuqS904IMdr29YRZs7cHm9mIxz55l91OztMAk1VeBbjKIdgGe/+lNmcx1J2hNnfl2I9BM4CjSG3xIHTvgu6dau13yXw13dw2/VrJCDFdWCwWDAYDLS0tlJSUYLFY0GSWy5Sg6zrxeJzOzk4MBgMWy8T3Bp0q5HM/dcnnXggxFjoCUVbv7iaZ0qnKP3zhzGQ6zeNrmjhtdvE4jG4wCbhHYsVnoHIZbHgcevZA05sQ6oLNf1Zb0SwVeNeuBOs4BL0WFxS6VHY73AW7XwSbB4rmQGG9OjkwyYoGCCGOjsFgoL6+ntbWVlpaWiZ6OOIIOBwOampqMMjf55zJ537qk8+9EGK0eMNx3tjVTSCWoKbAcdj907rOg6/v5b1mHzs6AnzurFnjmhGXgHukNIPqkT3nPDjhWmh+W2W6W9+F7t1qW/9bFZjXnQ6VJ4BpjM/mGs2Z7HuZqm7evB7aNqqMe8l88MxQa8GFEMcEi8VCTU0NyWSSVCo10cMRI2A0GjGZTJKdPQLyuZ+65HMvhBgtoViSN3Z30xFQvbYP93dF13Uee6uJtxp6MGhw9Sl14z79XALuo2Gyqmx27UqIeKHxDRV89zaoQLz5bTDbofpkqD0dSheObcZZM4C9QG2JKATaVIVze4FqK1ZQK0XWhDhGaJqG2WzGbJ68a5aEGG3yuRdCiOkrmkjx1p4e9vWEqR2i1/ZQ/ryhmZd3dKIBHz2xmoWV47/0VgLu0WLPh/kXqc23P7PG+3U11XvPy2qzF0LtaSrznV8ztoGv2Qb51ZBOQ6QHmt6A1g0q2100R/00H369gxBCCCGEEEJMpEQqzbq9PexsD1Bd6Mip1/Zzm9r4v41tAHzilFoWVkxMnSsJuMeCZwYs/Tgc91Ho3K6C76Y3VeC77a9q88xQWe+601TWeawYDKqwm7MY4qFMT+9dquha0dxM1rtYst7HmvSA6ZaNb8Css8Ew+foSCiGEEEIIcSjptM47TV62tPipKrBjMR0+2H5lRyd/Wq9aOl+xvIoz55bQGYiN9VCHJAH3WNIMULpAbSdcCy0bYO9r0LJeZcHf+53aSuapzHfNKWNbbM3iVFs6CeGBWe8qyXofS7Y8Dc9+rf/yo1eq9fwX3AULL5u4cQkhhBBCCDECuq7z3n4vG/b1Uuq2YTMfPoG0ek83j7zZCMCFi8u5cHHFWA/zkCTgHi9GC1SvUFs8BPveUlPOO7aoLHjndnj7Yag4TgXfVSeOXfBrMKk2Yq5S1VqsL+tdqLLe+TUq6y6VRKeeLU/DH64G9MHX+1vV9R/5jQTdQgghhBBiStjeHmB9k5cipxWX9fCh6/qmXh58vQEdOHteKR86vmrsB3kYEnBPBItTTfGddbbKNDe+AY2vq2JrLe+ozWiBqhNU8F2xVFUiH5OxuNSWTmXWeq9WGXh3JRTPBXcVWF1j89xidKVT8NzNHBRsQ+Y6DZ67BeZfLNPLhRBCCCHEpLanM8iaPT04LcacKotvavbxP6/uIa3DyllFfGxF9aTojiAB90RzFMKCS9Tmb+4PvgNtKvhtWg1mJ1SfpILv0kVjk3k2GFVW21kCibDKiPY0qGJwhbNU1juvAozykZm0Gt8A/6H60+r9n7H6M8ZtWEIIIYQQQozEvp4wb+7pxmjQKHJZD7v/9rYA9768m1Ra58TaAq49tS6nKubjQaKnycRdBUs+DIuvhJ49KvBuWg2R3v5K5zYPVJ+iWpEVz1HrxEeb2QH5DtDTqt1ZyztqrberTGW9PTNUq7FJ8iEWGcH20d1PCCGEEEKIcdbmi/LG7m4SKZ2qfPth99/dGeSnL+4knkpzXJWHT59ej8EweeIUWaQ7GWkaFM2C5VfDZb+Ac74Fs88FSx5EfbDz7/DCt+Hpf4d3fgvdu0Efahrx0Y7DkFnXPQvcM9Rz73kZNv8ZdvwDunZBPDz6zyuOjKtsdPcTQogBXn31VS699FIqKyvRNI2nnnqq77ZEIsHNN9/MkiVLcDqdVFZWcvXVV9PScqhZN0IIIcRgXcEYr+/qIhxPUuk5fD2rvV0hfvzCTmLJNAsq8vj8WbMwGSdXiCsZ7snOYIDShWo74Vpo26Sqi+9fq9Z/b3tGba5SqD4Vak+F/NrRzz6bLGpdN0AsqNabd+3ITDmfKVPOJ4Paleo98rcy9DpuTd1eu3K8RyaEOAaEQiGWLl3KddddxxVXXDHotnA4zPr16/mv//ovli5dSm9vLzfeeCOXXXYZ69atm6ARCyGEmEq84Thv7OqiNxyjttB52PXX+3rD3PPCDiKJFHPLXPz7WbMxT7JgGyTgnloMJqhcprZUXLUZa1oNzesh2AFb/6K2vAqoOVVt+dWjPw6rS23pNER7+6ecO0uheLbKhktv7/FnMKrWX3+4GtAYHHRn3osL7pSCaUKII3LhhRdy4YUXDnmbx+Ph+eefH3Tdz372M1asWEFTUxM1NTXjMUQhhBBTlD+a4PWdXbT5o9TlEGy3eCPc8/wOwvEUM4udfPHsOVhzaBk2ESTgnqoGthlLRlXQ2/iGCsIDrbD5SbW5q1R/75pTwDPKwbfBAI4itaXiKuPe8C8w2yGvHIpmg9UDP1qg9v9Gi6rQLsbOwstU669nv6Y+B1nuShVsS0swIcQ48fl8aJpGfn7+RA9FCCHEJBaKJXljVxf7vRHqipyHXX/d6ovwg39sJxBNUlPo4MZz5+TUn3uiSMB9LDDZ+jPaiQg0v60y363vqqrUm55Qm3sG1Jw8NsG30aKC7Lxyta47kKlyPjCbuutFmH+RZFjH2sLLYOZZcGfmPf63P6kWdPLvLoQYJ9FolFtuuYWrrroKt9s97H6xWIxYLNZ32e/3j8fwhBBCTBKReIrVu7to7A5TW+jAeJhgu80f5Qf/2IE/mqS6wM5N583FYZncIe3kHt2kpEEqBr59qoiZNW9yBTJmO9SdrrZ4GJrXQdOb0PYu+PfDpv0HB9/uGaM7/dviUFvTW/D2g/3X/+ET4CiGVV+H4z8JpsOX+BdHaOBnsnbl5PqMCiGOaYlEgo997GOk02nuvffeQ+57xx13cNttt43TyIQQQkwm0USKtxq62dUZorbQcdhiZ+3+KD/4+3Z8kQRV+SrYdlknfzg7+Uc42RTWg+E88O2HUCf09gApMDlU8G1xTp7gxuKA+vepLR7KZL7fhLb3Dgi+K6H6ZNVuLL9mdILvfWvg9R8dfH24C575T+jcptqfuatUVtx4+Gb2QgghJrdEIsFHPvIRGhoaePHFFw+Z3Qb4+te/zk033dR32e/3U109BrVHhBBCTCrxZJo1Dd1sbw1QXWg/bLGzjkCUH/xjO95Igsp8G195/1zybFMjfpCAe6TsBWqrWKqC2HAPhLtVxjvUrYJwHbDYVABudqm1zhPN4hwQfGcy3/veykw7b1Gtvjb/GVzlmbXhJ6vq40cSfKfT8PZDh97nvT+Cp0adnHAUQeEs8FSpwmtS6VwIIaacbLC9c+dOXnrpJYqKig57H6vVitUqs52EEGI6SaRUsL21NcCMAjtW06GTlR2BKN//+3Z6wwkqPDb+87x5Iw62Y8kUvmiCivzDtxobbRLZHA2LU2351apyeCyogu9wjwrAw90Q7AR0MA/IgGsTHIAPzHwnwqrK+b63VKXxYBtsfVptzmKYkSnMVjw393F3boVIz6H3iXpVobWCORDxqsy70aSmnBfNUpXWXaWTZ7aAEEJMc8FgkF27dvVdbmhoYMOGDRQWFlJZWcmVV17J+vXr+dvf/kYqlaKtrQ2AwsJCLBbLRA1bCCHEJJJMpVm3t4fNLX6q8u2HrSze7leZ7Wyw/ZX3z8NjH1mwHU2kaO6NML8ij1NmHv5k8GiTgHs0ZdtlFdSqADyeCcBD3eBrgkivat8FKui15oHZObHts8yO/jXfiYiqdr5vjfoZ6oLt/6c2Wz7MOEkF36ULVIuy4US8uT13xKuKrblK1ZaMq0C98TUwmMFZojLfeeUSfAshxARbt24dq1at6rucnQp+zTXXcOutt/L0008DsGzZskH3e+mllzjrrLPGa5hCCCEmqVRaZ31jLxubfVR4bIetLD4awXYknqLFF2FBZR4r6osmpJq5BNxjRdNUQG3Ng4I6qFoOMf+AAHyfCsD9bSpzbHWqImxm+8QF4Ga7KrBVuxKSMTXdfP8alQGPemHX82qzuNTrmbECyo8D0wGZC3t+bs934H6mTKVzylWrs4gX9r4KRis4M9PO8ypUIC7TzoUQYlydddZZ6Lo+7O2Huk0IIcT0lkrrrG/qZcN+L6V5tsNWFh+NYDsUS9Luj7JkhocTawuxmCZmlrFELeNF08DmUVvhTKg6AWI+Nf081DkgAG/JBOAusLrBPP7rDABVQTzb5zuVhPZNKvjev06dOGh4VW0mq1rPPmMFVB6vpsyXLAB74aGnlTuK1H7DPr+tv81YX/D9L5URtxepf0N3Ztq5FFwTQgghhBBiUkqndd5p6uWdJi+lLtthK4urPts78EUSVHps/OcRBNuBaILOYJyl1fksry04bFG2sSQB90QxGPoLsBXNgvQKlUUOd6tp5779EO6ERFRN385myyeilZbRpKbIVy6DEz8NXdvVtPP9a9R4961Rm8EIpYvU1PMlV8KaXw7/mMuvyb2Y3KDgO6ZOTDStVs9nL1SV490V4CqTVmNCCCGEEEJMEum0zrv7vKxv6qXEZcVlO3T42eyN8IN/bCcQTVKVbz+iauTecBxfJMGJtQUsrc4/bG/vsSYB92RhMICjUG3FcyCdUoFluBsCbSrzHWxXAbjJmgnAXSrjO97jLF2gtuVXQ29DJvheC/5m1XKs7T21r6sCYl61NjzLUaSC7eoVR/b8Jmsm+EYVXYt41XNrmlpnXlCn2py5ytQ6eSGEEEIIIcS4S6d13t3v5e1MsH24wHlfb5gf/mMHwViS6gLVZ3ukwXZPKE4wluSk+kIWV3owTHCwDRJwT14Go6oS7iyGknmQSvS3IAu0gr8VfC2QTqgMcDYAP1Qxs9GmaWpqd+FMWPoxdVJg/1o17bx7JwRbB+9ffTLMvUC9ntEwsOBaKqlmCLRsUAXfbG7wVINnhrrd5hmd5xRCCCGEEEIcUjbYXt/YS6HDctjAeW9XiB+9sINQPEVtkYMvnzv3sFPPD9QZiBFLpTh1VhHzy/PQJrIw9QAScE8VRjPklamtbKGaWh3ugXBXf/bb2wTpZKYFmVsVNxvPHuDuSlh4udrCPZle32vU+m9Qrcf2vQVWT6bo2olQtuTgomtHwmjqP0GRTql15h1boW2TKkjnKlfZb1epmoY+GXqjCyGEEEIIcYwZGGznOyy4D7P+eldHkJ/8cyeRRIqZxU5uPHfOYYuqHajVFwENTp9dzOzSvKMZ/qiTgHuqMlnVumV3BZQvUdO2w92qlZdvn6qEHuoCPZ1pQeZWP8erB7ijEOa8X23xsOrxvX8dtL6jisXteUltRouqdF51giq6lmuF80MxGPvXx+tp1Z7Ntx+6d6lK7I4iKKhXJy+cJVJ0TQghhBBCiFFwYLB9uGJnW1v9/PylXcSSaeaWufji2XNG1LpL13X290awW4ycOquI2iLn0b6EUScB97HCbFfTpz0zVHGzWFBlvwf2AA+0ZdqVuTIF2MapBZnF0d9uLJWEzq0q+G5+W42xeZ3a0KBotgq+q05Qr+Vox6cZ1MkGq1tdToQz1eD3g2ZSQXl+jTpx4SxV/zZCCCGEEEKIERlpsL2x2ce9L+8ikdJZWOHmC6tmYTXlHmyndZ19vWE8NgsrZxdRmW8/2pcwJiTgPlZZXWrL9gCP+jIZ8E7w7oNwLyRbQDP2tyAbjwrfRpPKyJcvgROuVdPgmzPBd88etfa7eye89zsVAFctV5nv0oWjk4k2O9QGquha1N+/7tvqUlPP82tk6rkQQgghhBA5ylYjf7tJrdk+3DTydY09/OpfDaTSOktnePjcmbNG1LormU6zrydCSZ6VlbOLKM2boFbKOZCAezrQNDVV256vWpDNWNFfAT3YrqZbB9vVunCjpb8F2VhPtdY0KKhV2+Ir1LrvlvUq+G7fBKEO2PGc2kw2qDgOKjMB+GgUQTNaBqz7TkM8AN5G6Nqh+p/bCyG/DvJK1dRz8+Q8ayaEmBjheJKF3/o7AFu+c/6I15sJIYQQx4JUps/2+hyrkb++q4uHVu9F1+HE2gI+fXo9phEE24lUmqaeMNUFDlbOLiLfMc5dm0ZIvh1MRwYDOIvUVjJ3iAroLSoI15Mq0LVkAnBD7lM8joijEGafq7ZkVBU8a1kPzetVBfJsv280deKg8ngVgBfUHf3Uc4NBBfHZQD4RVtnvptWZlmMecFepwnDOEjUVXbLfQgghhBBiGkulddY39fJOkzenYPufW9t5fO0+QBU4u/qU2hG17oolUuzzRphV4uSUmUUjbhs2ESTgFgdXQE9EIdKTKcC2X2Wae7tB18evAJvJpqqYzzhRFT7raVDBd8s7mannu9S28Y8q+K1YpgLw8iWjk4nOTj3PQ1V+j/qha7vKvJsd6uRAfi24SiT7LYQQQgghpp1kKs36xl427PdS6rLhsg0fWuq6zjMbW3lqQwsA5y4o5aMnVo+odVc4nqTVH2V+eR6nzCwaUXG1iSQBtziY2QbmSpXNrTgO4iEVfIe71ZTroQqwZddFjwXNoDLaRbNgyYdVNr51gwq+295T48lWPTcYoWRBJvt9PORVjEL226QCbEehOumQiKiMe2MLaKie33kVqsibo1jtN9azAYQQQgghhJggiVSadXt72NjsozTPdsie2Wld54/r9vP81nYALj2ugsuWVo4o2PZHEnSFYhxX5eGE2kIspqkz01QCbnF4FqfaCmpVEJstwBbsUBnwcA8kmlVgas3LFGAbw7UUjkKYdbbaUgnVb7tlvSp+FmxTWej2TfDOb1XhtcplKgNetujoC8NpmsruWwZkv2MB6N6txmG2gTUfCjKF1xzFKiAfbxYn3Oob/+cVQgghhBDHtHgyzZqGbja3+Knw2A5ZwySV1nl49V7e2N0NwEdPrOa8hWUjer6eUJxANMlJdYUcNyMf4wimoE8GEnCLkTmwAFs6BRGvau/lbwV/MwRaVCBssmZacrlUMD4WjGaVha84Dk5ArUFvfkdlvzu3qunwO/+hNoMZShdkpp8vG73sd7bnN6jp+DGfanuGrgJfZ4mqfO4oVj3AzZO3iqIQQgghhBDDiSZSrGnoZmtrgKp8+yGndSdSaf7n1T1s2OfFoME1K+s4bVbxiJ6vzR8lldZZObuI+eV5I8qKTxYScIujYzAOKMA2L1OArVtNQfc3q+rnvU1qHbbFnln/7Ry79d95FTC/AuZfpILfjs0q+G7ZoE4KtL2ntnd+o7LfFUvVVrZ4dAJhs01trjL1muNBCLSrNegGo3r97ko1TmexqoRulP+GQgghhBBicovEU7y5p5sdbQFmFNixHiLYDseT/PylXexoD2IyaHzuzFksq87P+bnSuk6LN4LVZGTlnCJmlrhG4RVMDPmmL0aX0Qx55WorXwzxsArAw12Z/t9dKggHsLjUdGuT/egzzUMx26DqBLXpuqq+3rpBBd/Z7Peu59VmMELxvP4APL/26MekGTIZ/syU8lQSYn7o2gntmzMzADyQP0MF6I4isOVL9XMhhBBCCDGpBGNJVu/uYk9niBmFdqym4YNtbzjOT/65k329EWxmA/++ajbzy3NfYplK6zT1hih0WDl1VhGV+VO7OLEE3GJsZdc751erqdyxQCbo7gRfE4R7x2f9t6aBp0pt8y/uz363vquC8GAHdGxR27uPqzZg5cep4Lt8ySj1/R5QfA1U67NYAFreBT2lCs/Z88FTrbLfjiL1vFNw6owQQgghhDg2+CIJ3tjdRVN3mJpCB+ZD9Mxu90f50Qs76ArGcdtM3HjOXGqKci+unO2xXZVv59RZRRS5jrL+0iQgAbcYP5qmMto2NxTOhPRJqsJ4X//vA9d/Z/t/j8HHdGD2G1TV9dZ31daxWRWG2/svtYHq9V1+nNpK5qlM/tEy2dTmLOmvfh7zw/61gA5mp1ob7qlWU/YdRerfQwJwIYQQQggxDnpDcV7f1UWLL0JtkQPTIWZi7u0O8ZN/7iQQTVKSZ+XL586hNC/3JZvRRIrmTI/tk6dIj+1cSMAtJo7BMGD999z+9d/hbvA1q4rj3qb+7K81T01DH4v139lp8HPPV+Po3N6/3rt3b/+29WkwWlXxtfIlKgD3zBiF6ecDqp9DZv13GKK9qhJ89nZ7kZot4ChUAbjFJQG4EEIIIYQYdR2BKG/s6qYrEKO20HnI6uCbmn3c98puYsk0NYUOvnTOHDz23APmQDRBZzDGoko3J9YVTpke27mQgFtMHgPXf5ctUhnfUNcB6787UdW/x3D9t9Gs1p+XLwauUlXY2zZmtvdUD+7WDWoDlYUuW6wC8LLF/VPGj4ZmyPQ4d6n2Y3pa9UMPd6mTEJohE4AX9gfg9kLJgAshhBBCiKPW7I3wxq4u/NEENUUODIf4fvn6ri5+s7qRlK6zoDyPG86ajd2Se8DcHYwRiqc4sbaQ42Z4MB1iyvpUJAG3mLzMdhVMDrn+e9/4rf+250P9GWrTdfXcre+pALxzq5oWP3D6uXtGJmBfojLh5tzXrQxLM/RPsQdIpyERHBCAZzPgBeCp6V8rbnVLAC6EEEIIIXK2tyvE6t3dxJIpagocw7bi0nWdZza28tSGFgBOri/kupV1OQfMuq7T6ouiabBydhHzyqZm26/DkYBbTA05rf9uhVQcjBa131is/9Y01VM7vwYWXKKer3OHCr7bN6r2X/79atvxnAqUi2apzHfZYiieOzrrvw0HVEDvC8B7wLtfXWd1qqrn7hlq2r69QKqgCyGEEEKIIem6zs6OIG/t6UZDY0bB8EmjVFrnsTVNvLKjE4ALFpXzoeVVh8yED5RO6+zzhsmzmjllZtGICqtNNRJwi6npsOu/2/vXf5sGrP8e7WDTaBkw/fzjEAtC+ya1tW1S69C7dqpt85/V/iXz+gPwgvrRGdOBAXjfGnCvaoem62rGgNWtKrU7S1QAbs8fnRMAQgghhBBiykqndTa1+Fi3tweHxUTxIaqDRxMp/ufVPWxs9qEBHzupmnMWlOX8XNlK5BUeG6fMKhpRYbWpSAJucWwYav13uFutAfftUz+DHWpfq1MFnmbH6E+3trqg5hS1AYQ6M9nvTar3dtTXvx4c1BhKF6gxly5S0+dHoyjcwDXg0F8FPR5Qfcj1tJp+b3GBuxJcpZkAvEAF5kIIIYQQYlpIpNK80+Tl3X29FDqthyx25g3H+emLu2jqCWMxGvjMGfUcX1OQ83OF40lavVFmlR5blcgPZVIH3MlkkltvvZVHH32UtrY2KioquPbaa/l//+//YZBpseJQzHZVPdwzAyqXqfXfoS61eZvUdHR/qwq4s+u/zWNwds1ZArPOVpuuq6nmbZngu2MLJMLQ/LbaQI2ldGF/AO6uHJ2TAgOroGdicNUHPAid29QJgOxaeEeRel57vgrAZR24EENKpfW+39c09HDGnJJDVnAVQgghJptoIsXavT1sbfFT6rbhsg4fHjZ7I/zknzvpCcXJs5n4j7NnM7PYNez+B/KG4/SEEyyp9rC8puCYqkR+KJM64L7rrru4//77efjhh1m0aBHr1q3juuuuw+Px8KUvfWmihyemkmzBscJ61Xs76lXrnYPtqgJ6qAOSMZUpz+5rHOUCbJqmemp7qmHehWrddW9DJvu9RQW+sQDse0ttADbPgAB8IeRVjF7w29cHvFhdTiVUJXR/M3Tv7g/SbfnqeZ3F6neZhi4Ez21q5dtPb+67fO2Da6nw2Pj2pQu5YHHFBI5MCCGEyE0gmuCtPd3s7gxRlW8/ZAC8ucXH/a/sIZJIUe628aVz5lCSN/y08wO1+6Mk0mlOmVnIokrPtDpBrem6rh9+t4lxySWXUFZWxgMPPNB33RVXXIHD4eC3v/1tTo/h9/vxeDz4fD7cbvdYDVVMZalkpgBbl8p6B1oh6od0AkzWzNpo1+gXYBtqHD27M9nvzdC1QwXBA2UD8NIF6qe7auyyz+m0ysDHgyoQ19Pq38PiUlPQ88r7A3DpBy6mkec2tfL5R9Zz4MEz+z/gvk8sP+Kge7ofs6b76xdCiPHSHYzx5u5u9nsj1BQ6MB+isvgrOzp59K1G0jrMLXNxw5mzcdly+16cTuvs94ZxWEysqC9kZknuGfHJbCTHq0md4T799NO5//772bFjB3PnzuXdd9/ltdde48c//vFED00cS4wmcJWorXSBynSHe1QA7mtW2e9xKcBmUgXVSuYBH1LBdveuTAC+VQXgUR80rVYbqJMBpfNV8F2yYPTWgEOmENuAdeCgpqHHQyoD3rkVMGay4J7MNPRCFYDb8semRZsQEyyV1rntr1sOCrYBdFTQfdtft3DewvJpdfZeCCHE1NHijbB6dzc94Rh1Rc5hj1fptM4f1+/n+S3tAJw6s4hrTq3Nue1XtjhaucfGKTOLKHMf28XRhjOpA+6bb74Zn8/H/PnzMRqNpFIp/vu//5uPf/zjw94nFosRi8X6Lvv9/vEYqjiWmKzgrlBb+RJV7buvAvo+CGWKsZFWRc+sbhV0jlagm2U0ZzLZC9TlVFwFuh1b1Na1E2J+2LdGbQBmpwrASzJbYf3oZuaz09AdRepyOgWJUKYaemvmpIRVjcNVAq6y/gDc6paWZGLKW9PQQ6svOuztOtDqi7KmoYdTZxWN38CEEEKIHOzuDLJmTw/RRIraQuewbbyiiRS/+tce3t3vA+ADyyq5eElFzn2yQ7Ekbf4os0qcrJhZhHsaFEcbzqQOuH//+9/zyCOP8Nhjj7Fo0SI2bNjAjTfeSGVlJddcc82Q97njjju47bbbxnmk4piWLTaWX91fgC3crQJvX6YAW7Ats69LZcDHogK60TIgAL+ifwp6xxbo2AZd21XwO7AIm9EKxXP6A/DiOSogHi0G4+B2ZJDJgoeht1Fl5dFUETtLHuSV9a8Ft3nA4pSp6GJK6QgMH2wfyX5CCCHEeEindTa3+FjX2IvFaKC6cPi+193BGD99cRfN3ggmg8b1p9Wzor4w5+fqCcXxRxMsq85nWU0+VtP0KI42nEm9hru6uppbbrmFL3zhC33Xfe973+ORRx5h27ZtQ95nqAx3dXW1rAcTY0PXVZY5WwHdtw8iXkhGVMbb4lQBuMk+9oFlOgW9e1UA3rkNOrer9dcDaUaV9S6ZlwnA54FtjP9f6OlMS7KQ2tJJFaibM1PR8yrAUah+t3mkLZmY1Fbv7ubjv3rzsPs9/plTjijDPd3XME/31y+EEGMhnkyzvrGH95p9FDos5DuGX/a3qyPIL17eRSCaxGM384WzZuW87lrXdVp8UQwaLK8tYEG5G8MxurzqmFnDHQ6HD2r/ZTQaSafTw97HarVitY5iBk+IQ9G0/kCxaBakTxpQAb0DfPvV78kokF0TPUYtyAxGNYaiWbDgUhXo+pvV+u/ObWoL96h14d27YNsz6n55lf1rx4vnjm4ldOg/8WBx9l+XTqqCbFEv+FsAHTTT4Kro9vwBQfj0XPMjJp8V9YVUeGy0+aJDruPWgHKPbUSZACGEEGKsBGNJ1jb0sKM9QLnbhvMQbb9e393Fb1c3kkzrVBfY+Y+z51DozK0mTzKVZl9vhEKnhRX1hYfMoE83kzrgvvTSS/nv//5vampqWLRoEe+88w733HMP119//UQPTYihGQwqW+sohOLZKusc8WamoGcD8E5IxDLTsV1qqvVYBJSaob8N2Zz3q2x8qFMF3l071E/ffgi0qG3PS+p+VrcKvLMBeGH96LdIM5gOnoqebUsW7lLj0tOqkJzFqfqBO8sGBOFuyYSLCWE0aHz70oV8/pH1aDAo6M6epvr2pQulYJoQQogJ15WpRN7sjVBd4MBiGrqWTiqt86cBxdGOr8nn06fVY82xT3Y4nqTVF6W2yMHJ9UUU5BikTxeTekp5IBDgv/7rv/jzn/9MR0cHlZWVfPzjH+db3/oWFktub6RMTxOTSjqVaUHWncmAN0Pcryqja2McgA8lFlRrvzt3QNc26N6j2qENZDBBQX0mCJ8LRXPUCYXxkIqr9eCJsJqWrusqCDc7VNCdV5FZD54J3mVNuBgn2T7c7f7+JUyj0Yd7uh+zpvvrF0KI0dLYHeKtPT0EYglm5DuGPREciiX55at72NyqCk1felwFly6tHLaY2oF6w3F6w3EWVXo4obbgkL28jyUjOV5N6oB7NMjBW0xq2R7gkZ7+ADzmUwG4wZhpQTaOAXgqAT17VAa8a4cKxGO+g/dzFKsCbMVzVCCeX6cC4XEZ4xBBeHZNuNWlKqM7CtW/nTUvUx19evzxF+MrEE2w5NZ/APDQdSdxxpySo85sT/dj1nR//UIIcbTSaZ2trX7ebuwF1Mng4SqLt3gj/OKlXbQHYlhMBq5fWceJdbklVdK6Tqs3isGgMuILKjzTanbXMbOGW4hj3sAe4CXzhg7Aw52QiKpMs8WpgsqxKsJmNA/oBY4KZoPtqgVZ1w7109eopn03dfX3AzeY1dTzokwQXjRbtQ4bkzFawG5R08uzUklIhlUF+WCHWiOuGdS0c7NDjcVVkpnGngnEZUq6OEoDv1isqC+cVl80hBBCTD7RRIoNTb1savHjtpkPuf76naZeHni9gWgiTaHTwr+vmk1NjuuuE6k0+3rDFDmtsl47BxJwCzGZDBWAZ4uwhbIBeLYImzZgCvoYBeCaBnnlaqs/Q12XiKh+4N0DgvB4sD8rvj1zX3uBCryzW+GsscvUG01gPGBNuJ5WJyoSYVW9vSszMKNF9RK3usFVqgJ3a15/Szfj9O0TKYQQQoipyRdJsLahm92doUMWR0vrOk+/28Lf3msFYG6Zi8+9bxZue27ff4KxJO3+KDNLnJxUV3jIiudCkYBbiMnMaFJ9q53Fav10tghbpAeCnaoKeaRXVfrWtEzP8Dz1Uxu6MMZRM9uhfLHaIJMFb1OBd/cuFXR7M/3J969VG6jxuav7K6kXzVYF3cZqurdm6O+hPlAynqmQ3quKxelpQFNBuNmuAnBHSWZduKs/EJdp6UJMKfFkmrf39jCr1EWpWzodCCGOXa2+CG/t6aEjEKWm0IHZOPR3wHA8yf++1sB7+9VywXPml/LhE2dgMuT2nbEzECMcT0p/7RGSgFuIqcRgBGeR2ornQDqtMuCRXgh1g3+/uhxoUyWTzfZMAO4cw8BWU8XL8iqg/n3qumQMehv6g/DuXapQnK9JbdmK6EYLFNSpALwwE4i7yse28JnJojby+6/T02rWQCIK/lboaUC1KjOo6fsma6b6fHFmSror0+rMJRlxISapWDJFQ3eIxp4wJ9YVMqvEOew6RiGEmIrSaZ2dHUHWNfaQSKapK3IOW+xsX2+Ye1/eTWcghsmgcfWptaycVZzT86TSOvu9YRxmE++bW8KsEtcx2197LEjALcRUNrANWdEs0E+CmF9NO4/09vcBD3WBnlJZ3Ow68NFu9TWQyQol89WWFentD767d0PPbjU9PTsVPcvshMKZaiuapX6O1XrwLM2g1nqbD8iGp1OZQDyi/i27d6MaQQ3IiNvcKhC3ufuDcLPj4Gn+8RDcXql+/0bL4L7kQogxoaMq8P5rRyeBSIIlMzyYhsn8CCFEVjieZOG3/g7Alu+cj8My+UKmaCLFu/u8bGr24bSaKCsYfh31m3u6+c3qRuKpNEVOC58/axZ1Rbl9D4kmUjR7I1Tl21lRXygzho7A5Pv0CCGOnKZl+lR7gHqoWq5af0V61RZozRRja1Htvwym/mnTJtvYBrX2AphxktpAZZUDrZnge48KxHsbIRGC9o1qy7K6VVG2bCBeUD/2QTioWQEW58HBcTqTEU9G1b+nt0m9Hp1MBt2WKdZWqF63xdXfpFkIMa5K8qwkUzprG3vwRROcVFc47NpGIYSYCrzhOGv39rCnM0SZ24ZrmL9pyVSaP7y9nxe3dQCwqMLNZ86YicuW29/AnlAcbyTBgoo8TqwrnJQnHqYC+VcT4lhndaktvxoqjlPTpiO9mann7Wr6ebhbXd+3DtylMs05ruk5IpoB3FVqy05FTyXBt09lv3v2qL7gvn0qa9/6rtr6XlcmCC/IBOIFdeAsGZ8+3IZh1ofrumpbloyqEwdd3arVmgYkB/Q33/K0KkRnz+/PrJszjzfWJz6EmIbcdjMWk4HtbQGC0SQrZhZSmidZGiHE0FLp/q7Jaxp6RqXt42jZ1xNmTUMP3aHYIddrdwdj/M+re9jTFQLgkiUVXLa0Mqep4Om0TosvgtGocdqsIuZXuCfN65+KJOAWYrox28BcAe4KKF2QqYTuU0F4uFsVYot6VeaWdCZbOw7T0EEViSusV1tWKq4yyNkAvHePmt49VBBucanAu6AuE4jXgatibE8cDKRpajq9yQp4Bt8WD/f/HvWpLZUJwjXUv7PRotaM29yZzLgz09rM3t/izGQdn9cixDHGZjZSV+RkvzfMi1s7ZF23EGJIz21q5dtPb+67fO2Da6nw2Pj2pQu5YHHFhI0rmUqzpdXPO01egEOu197U7ONX/9pDKJ7CYTFy/Wn1LKvOz+l5ookULd4IZR4bJ9UVUpkvbVSPlgTcQkx3RlN/ITZmqyxtLDB4GnqoS1VCTyUz2d3sWmX72FVD7xufpb+12JzMdck4eBtVYbaeBvXTt0+1J2vfpLa++1uhoEYF4Pm1Khj3VGcKp42jgUF/XpkKsLP0tHpNqRgkI+DzqSn2ZCqoawb1OkzWTEuzPJUdtzjV5ex68uzvRvnTLsRQjAaN2kIn7f4or+7oxBuOc9yMfCwmWdcthFDB9ucfWY9+wPVtviiff2Q9931i+YQE3YFogrcbe9nRHqDQYRm2FVc6rVp+PbOxFR2oLXLwuffNoiQvt5P1agp5nLnleZxQW0CeTQrDjgb5ViaEGEzTVIbV5oaCWmCZmm4e9aqWZOEutQY86lMVvUFlzbNrncc6Cw4qWC6eo7asVEJlvnsbVN/t3ga1JjwVU9XSu3YOeI0GyKtUry+/tv+nPX/sxqyn+3/v2ArlS/uDcM2QmXkwzBTXdDIzVX1AS7NsQK5rKkNutPRvZnumnZkbLNlA3Dogi565LK3OxDRV5rb1fYH1RhKcVFuIxyFfLIWYzlJpndv+uuWgYBv6yqVy21+3cN7C8nGdXt3ijbB2bw9tvigz8u1YzUMfu73hOL/81x52tAcBWDWvhI+cWD3slPOB0mmdZl8Ek1Fj5awi5pe7pcDkKJKAWwhxeGYbmMvVumNQRcNivkxPcK/Kgoe7D86Cm51j2xN8IKP54Ono6Uxhtmzw3bsXvHtVBt+/X22Nr/fvb/OowDu/pv+nu+roM8b71sDbD/ZffuUusBfCCddC9YrD399gUtuBVdSz9LQ64ZBKqMA86lMnRpLxzLcEXf00mNS/U/Zndpq6NTNbIZtFN5ozwfvA380SoItjSp7NjNVkZE9nEH9EFVOrLhy+yq8Q4ti2pqGHVl902Nt1oNUXZU1DD6fOKhrz8SRTaba1qSnkqbROfZFz2PXXm5p9PPB6A4FoEqvJwNWn1nJyfW5jzFYhr/DYOFGmkI8JCbiFECNnMKg1xvaCzBXHH5wF97dCPJBZC55SwVs2C24ap2JFBgN4qtRWd7q6TtfVVHlvNgBvhN4mFZhHfdD2ntqyNCO4KzNBeGbzVOdeJX3fGnjtnoOvj/So60+/Kbeg+1A0w4C144eQSqrq9OlMcB71qRMlqYRqG5elo/7tDCYwZAJtg6m/ArspE6ibrep2o7l/v2xAbzD13y+7acbxW08vprVwPMmSW/8BwPevXDJsZV2LyUBdkZNWX5SXtnWwrCafhRWS2RFiOuoIDB9sH8l+R2PgFPICh4WCYaaQJ9Npnt7Qwv9tagOgusDOZ8+cRXmOrbu6gjECUVWFfHlt4bDVzsXRkX9VIcToGCoLHg+oADxbET3UqbZETM3N6qvO7VSB2njQtP7e5ZXH91+fjIJ3nyrQ5m1Sgbi3SU3h9u1T28BsuNmhAu/8avDM6A/ErXn9+6TT8PZDhx7P+oeh6sTxCUSNpky2Poez1+mUmso+cIuHIOofcFvqgJMOmYl4mkm9nmyArRn7fzdkM+ymwcF6X6Ce3d9wwJZZy47W/5yaNvjywN5rmqZOrhw4Nl1Xv+sDLuvpzHXpobdU9vVmTlRkf48lgMxJDn8rFFfn/FaIycOgaVTl2/GG47y5p5ueUJzltQW4Ze2iENNKrp0LxrrDwb6eMG839tLuj1KVb8c2zBTyzkCMX/2rvwr5WXNL+OhJuU0hT6bTNHsjOMwmzphbwpzSPKlCPoYk4BZCjA2DYUBP8FqoQAUrEW9/VXR/iwrGfd5MX3BjfwBudozvFGaT7eB14bquMsB9QXgT+JpUcJUIQ9d2tQ1k86gA3FOtAsRIz6GfN9wNnVuhbNHov6ajYTBm/v1HWBVd11W2PJ3K/MwGrpnrUokhglp98O+QW9/y7KK6gXH1QffTDnjM7A5D3XngYw+4LRvsH3gCIGUAStU+ibHPeIixle+wYDcb2d4eoDeU4MS6ApliLsQ0sqK+kAqPjTZfdMgjgwaUe2ysqC8ck+ePJ9NsbvHx3n4fun7oKeRr9/bwm9WNRBIp7GYj15xay4l1uY0rGE3S7o9SXeTgxLoCaZE4DiTgFkKMH6MZXCVqy4qH+9tkhbvV1O6YH4KdKkgzmgcE4eNQFX0gTQNnsdqqlvdfn0qq9mnZzLdvv/oZ7Oh/Le2bh3/cA0W8oz70CaNpmQz3sX94cQB7r0MVsLPMn+jhiFFgNRupL3LS4o3w0rYOllZ7WFjpySljdEyIh+D2SvX7N1rU310hpgmjQePbly7k84+sH/Zc7rcvXTgmmeDeUJy3G3vY3Rmi2GXFYx96hk00keJ3a/fx2q4uAGaVOPnMGTMpdh3+5Hha12n3R0mk0hxfk89x1fnDZs/F6Dr2vxEJISY3i0Nt7kybjWxbsmzgGuqCYJv6PdCmsqBGS2Y9uENlpsczCAc1HbogU918oER0cCDesQ16dh/+8bY8BR2bVYE2d5VaM+4sHv/XJYTAoGnMKHDgDcd5q6GHrmCcE2oLhm3DI4Q4dlywuIL7PrGcbz+9mXZ/rO/68jHqw51O6+zpCvJ2oxdfJE5NoWPYE3wNXSF+9a89dARiaMBFSyq4bGllTicAYokU+70Ril1WltcWUFfkQMulDo0YFRJwCyEml4FtycisiU2nVda7LwjvUBnwcC8kIqoKt9GayYQ7VFGviTiQmG1QNEtt2XE//e+Hn1aeDdAHMlpU6zJ3hQrA3VWQV6G24dqHCSEA1d4na3dHkOU1lmGnZg4n32HBYTGxuzNIbyjB8tp86oud8iVViGPcBYsrOG12cV/hxYeuO4kz5pSMemY7FEvyTlMv29sC2DKza4b6+5JO6/zfplb++m4rKV2nwGHmU6fXM7/cndPzdAdj+KIJ5pXncXxNwbDZczF2JOAWQkx+BoPqkT2wT3Y61R+Ax/wQ6IBwNghvUfuYLAOC8AnIhBsMqvXXUFXKs5b9m6r27m/ObC1qWn0qrlqYefcefB97oQrEswG4u1L9dJZI6y4x7T23qZX/99Smvsv3v9pAvmM/Hz+phhNqCw5xz4NZTAbqi5y0+2O8vL2TzkCMpTINU4hj3sDgekV94agG27qus7830lcYrcJjG7aTQmcgxq9fb2Bnh+qtfWJtAZ88pRZnDtXEE6k0Lb4IdrOR02YXM68sTzowTBAJuIUQU5PB2F9tHDJF2ZL9mfCDgvBMJtxgUQG42TE+a8KrV6jWX28/qArFZTmKYPk1Q7cES6cg2K4Cb39L/xZoUdPtIz1qO3CduGYEV6mqFJ9XroJwV+Z3R7G05BLHvOc2tfL5R9YfVPDIG05w3yu7+fyZs0YcdGuaRrnHRjCaZMM+L12BGCfUFVLukZkmQhyrHBYTe++8eNQfN5pIsanZx+YW/yELo+m6zmu7uvjd2n3EkmmsJgP/dnINp84symmWjS+SoCsYo7bIwfJaKYw20STgFkIcO4ym4YPwmF+1tAp1QLCrf004adWWyjwgCB/tLHH1CihfDH+6Xl0+82YoXzp8AGzI9P52V0LVCYNviwX7A/FA6+Atlej//aDHNIGzFPLKMkF4Gbgym7M00y5MiKkrlda57a9bhqs7D8BDb+xlaZUHk2nkJ59cNhM2i4MWb4Tnt7axbEY+8yvc06egmhDiqLR4I7zT2Mv+3gilbit5w7Qe9EcS/GZ1Ixv2ewGYU+ri+tPqKck7fGG0VFqn1RfBoGmsqCtkYZUbq0lm5Ew0+YYlhDi2HRiEg8ogZwuzxfwQ7lF9wuMBFZCnU/0tyrJB+NH2CR+YSS9dcOTZZqsLrAe0LwNVTC7co04iBFrVz2Bb5me76h0dyGTJDxqbpjLuAwPwvMxPVylYXBOzJn6yS0bhj9eq32eumtChCFjT0EOr79Dt2SKJFN95Zgs3rJpNuXvkGR+TwUBNoZPecJzVe7pp90c5vqaAohwqBAshpqdoIsXWVj+bmn0kUjq1xQ5Mw3wHWNfYwyNvNhGMJTEZNC5fVsn5C8tzqkERiCboCMSozLezvLaAqnz7aL8UcYQk4BZCTD8G4xBrwtMQD/ZnwiO9KlDNBuR6EtBUwbJsEG6aRFO0NEN/C7PyxYNvS6ch3KVeT7BdnVwItmV+tkMqpqrBh7qGbmdmsqvA25lp6eYsUcF49rJZehWLidcRyK0Xeosvynf+uoUPLa/i7PmlGI7gZFKBw4LTYqKhK0xXMM6ymnzmlOaNSbsgIcTU1eqL8E6Tl3094UO2+wpGkzy2pok1e1WR1RkFdj51ej3VBYc/vqbTOq3+KGld5/jqfJbMyMdukaz2ZCIBtxBCgMo4Z6ujezLX6TokwioAjwVUv+xQu/oZ7IBkXO1nsqoA3OxQAflka+dlMKiA2VUKLBl8m66rTH+wXb2mgT9DHerEQzIC3ka1DcXizAThJWqtuLMkE/yXgLMILHnHZoZcT/f/3rw+M3NBvuRMlFzXKNYU2mnqifC7tftY39TLtSvrjmh9o8VkoK7IQVcwzr92dtHmi7KsOl/ahwkhVFa7xc+mFh+JVJraQsewBcveaerlt2824o8mMWhw0eIKLjmuIqcCZ8FYkjZ/lHK3jeU1BVQX2qWTwiQkAbcQQgxH0zL9vp2oBeEZyVgmCM9swQ4Id6vgNBAF0qCZMsXZ7GCaxBlgTevP9pfMO/j2VBxCneo19v3MtGULdapZAfGQ2nr3Dv0cRqsKvB2ZDLyj6ICtWFWUn0r2rVGF8LL++h/wyh1wwV2w8LKJG9c0tqK+kAqPjTZfdNh13AUOM9+8cAGv7uriT2/vZ0d7kFuf3sIHj6/inPmlI24dpmkaJXlW3AkTO9oDdPhjLKvJZ1aJS7LdQkxDuq7T7I3wbpO3r+/1cFntQDTB42v29WW1Kzw2rj+tnvpi52GfJ5vVTqXTLJ3h4bgZ+TlVLhcTQ9N1/VD1RaY8v9+Px+PB5/PhdufWr04IIUasrzhbQG3hbhWcxoOqQno6pYLbgVPSjdapn/lNhDPT0TMBeHZqeqhTTWOP+nJ7HEteJvjOrLd3FKl2aY4i1QbNUTB5pq7vWzNMq7fMe/mR3xxx0D2Zj1mvvvoq3//+93n77bdpbW3lz3/+Mx/4wAf6btd1ndtuu41f/vKX9Pb2cvLJJ/OLX/yCRYsW5fwcR/v6s1XKgSGD7oFVyjsDMR5evZdtbQEAZpU4uXZlHRWeI1v3qOs6ncEYoViSOWV5UzPbHQ/B7ZXq92+0ZE42CiFyEYol2dTsY2ubH3Qo99iGXKut6zpr9/by2Bq1VlvT4PyF5Vy+rDKnIowDs9rH1+RTU+iQrPYEGMnxSk6FCCHEaBiqOJuuqy+w2UA84uufkh7qhEQM0MBkzkxJz2TDp1L7LrMD8mvUNpRUXK2BD3WqkxDhbhWQZ38Pd6kZA/GA2obqO55lsqkgPBuA2w/YbPnqp2kMC1il0/D2Q8PcqAMaPHcLzL/4mJteHgqFWLp0Kddddx1XXHHFQbfffffd3HPPPTz00EPMnTuX733ve5x33nls376dvLy8cRnjBYsruO8Ty/n205tp98f6ri9wmPnYAX24S/Ks/Od5c3l1Zxd/fHsfuztD3PbXLVxyXAUXLCofcb9aTdMozbMRs6XY0R6gzR/l+OoCZpU4pfetEMewdFqnsSfMhiYvHYEopXnDVyDvDcd59K0mNuzzAlCVb+e6lXXU5ZDVTqV12nxqrbZktacWyXALIcR4S8YymfBMgbZwl2pVlgirTU9nqqTbVcEys2PqTbnOla5DIqSC8nB3/89Ij/o9+zMRzv0xzXawFahp8rb8A3561O82D1jzRh4Ut2+GF797+P2u+RvUnzGyx2bqHLM0TRuU4dZ1ncrKSm688UZuvvlmAGKxGGVlZdx111189rOfzelxR+v1B6IJltz6DwA+9756ltcUHnK6eHcwxm/fbGRTix9QX4KvWVnLzGLXET2/rut0BeMEYklmljhZOiM/p5Y+E04y3EKMSG8ozrv7vezuCGE2apS7bUP+rUnrOq/s6OTJ9c1EEimMmsZFS8q5eElua7WzFcgrPDaWVcta7clAMtxCCDGZmaxqcxb3X5dOqwxv35T0XpUNjwX6e2wDmK39QfhkLNA2Upqm2o5ZXMNnyUG14Ar3qHXy4R6IelUwHulV/1bRXjVzIBVXU/gTkaFboA1+chV029yZANyTCcjdYHX3B+XZy2aHeo5cBNtz2+8Y0dDQQFtbG+9///v7rrNarZx55pm88cYbwwbcsViMWKw/E+33+0dlPAPXT88qdR12bXaRy8qXzpnDWw09/G7tPpq9Ee54dhvnzC/lA8uqsJlHdmKmb2233cTezhAd/ihLqjzMLc+b3D1x06n+3xvfgFlnH3MzNYQYDfFkmp3tATY2+/BHE1S47cNWBm/xRvjN6kZ2dQYBmFns5JpT66gqOPzylWQqTas/ikHTWF5bwKJKNw6LhG9TjbxjQggxGRgMmWDPM/j6RCTTMzxToC07NTtboE1Pg8E0oEr6KPQMn4xMNnBXqm04uq7+vbLBd8SbCcx71VryqFf9jGT6r6P3F77z7T/8GDRj7q3gXGW57XeMaGtrA6CsbPDrLisro7FxmOr2wB133MFtt902pmPLlaZpnDKziEWVbn6/bh9v7unhha0dvN3Yy8dOqmF5Tf6IM0pWk5G6Yic9oThv7O5mX2+E42Z4qMqfhNmpLU/Ds1/rv/zoler/mxQCFKJPtijae/t97O8J47GbqS9yDvn/OZZM8czGVv6+uZ1UWsdqMnDF8hmcNbckpwKNveE4PaE41YUOllbnU+mxTb6/GyInEnALIcRkll3b7Srtvy6V7M+G9/UM71DXRXrU7RoqOOzrGW6d+tnww9E0VRne4gB31aH3TaczU/ozgXgskPk9c102EM9O+09GQU+p6e+HHoQKUmpXjtarmlIO/DKo6/ohvyB+/etf56abbuq77Pf7qa6uHrPx5SLPZubTp8/k1JlFPPJmE53BGPe9spvjZnj4txU1FLlGPjW80GnBbTPR6o/ywtYo88vyWFTlGXad57jb8jT84WoOKjXnb1XXH0UhQCGOFb5wgk0tPna0q0KL1YWOYYucbWr28chbjXQFVfvQpTM8/NvJtRQ6D788LJZM0eKL4LCYOLm+kPkV7hHPshGTiwTcYkyFE2FOfuxkAN666i0ck6XKsBBTmdHUXygsK9szPDslPepTQXh2CnYiAugq+z0wG26YpocBg6G/HRq1h98/Fe8/wbF/LWx+coidMoHlBXdOu2m45eXlgMp0V1T0t9Dr6Og4KOs9kNVqxWqdnGubF1V6uO2yRTyzsZXnNrfx3n4f21o3c8lxFbx/YdmIC6GZjAaqCxwEo0ne3e+j2RvluBke6osnuKhaOgXP3czQdd2P7UKAQuQilkyxqz3IphY/3kic8jzbsMXKekJxfr9uH2839gKqYONVK2o4vqZgyP0HSus6XcEYwViKmcVOjqvOpzQvx1lVYlKbpt+0hBDiGDOwZ3heef/1qUR/gbZYAELd/f2zQ50q03sstisbbUZLf9/wwnooqCO19kGMsd7+fdyVKtiehpnA+vp6ysvLef755zn++OMBiMfjvPLKK9x1110TPLojZzEZ+ODxVZxcX8gjbzWyoz3Ik+8088bubq5aUcPCypEXdnPZTDisTjoDMV7e0cne7hBLqvIp90zQF+vGN8B/qHoHOvib1X5HUAhQiKkqndbZ1xtm434fzd4IHruZmcNMH0+m0jy/tZ2/vtdKPJlG0+Dc+WVcvqwyp+x0KNPqq9Bp4ax5hcyc6BNxYlRJwC2EEMcyo3mYdmXB/mx4xAuhDvUz2AHJOFO+XdkY85ccz6aFFax856sAdK76ASVnXH9MZwCDwSC7du3qu9zQ0MCGDRsoLCykpqaGG2+8kdtvv505c+YwZ84cbr/9dhwOB1ddddW4j9VhMbHx1vfz9Lsto1KkrDLfzlffP483G3r447p9tPmj3PPCDk6sLeDDJ8wY8TRzg6ZR5rYRT6Zp6gnT6o0yvzyPBZXu8Z9mnmuBv2lWCFBMbx2BKFta/OzpDGHUNGqLHEP21AbY0uLnsbVNtPmiAMwpdXHVyTVUFxx+Vme2KBo6LK7ysGSGB/dkWWoiRo0E3EIIMd1omerc1gN6Iw/XriwagEQ7kFaFw7KZcLPj2CzQdhjRRIodbQEiif6KzvGyZcd0sA2wbt06Vq1a1Xc5u/b6mmuu4aGHHuJrX/sakUiEG264gd7eXk4++WT+8Y9/jFsP7gMZDRpmo4HOYIxKj2HYtZa50jSNU2cWsXSGh79saOHF7R2sa+zlvf0+LlxczvmLyrGYRvYcFpOB2kIngWiCd/Z5aewJs2SGh5nFrhE/1hHLtcDfNCsEKKYnfzTBthY/29sDxBJpyj22YTPUnYEYf1i3j3cyPbXzbCY+fMIMTp1ZdNjiZrqu0xtO0BuOU13gYMkMDzMKJmExRTEqpA+3GFOyhluIKS7briyamZIe6VWZrphfrQvvK9Bm7w/CTcfulPRkOs3WVj/NvRFK81S/1UjbDqpPuYIZsxcf9eNP92PWaL9+VU3Yy76eME6LiZI8K4ZR+mzu6w3z+JomdrSrVj/FLgsfPqH6iKqZg1q/2R2ME4glmFHgYHGl+gKeSzXjo5JOwY8XqwJpQ67jzhQCvHHjMX9SSUxf0USKXR0BNrcE8IbjlLisuO1Dn1COJlL836ZW/rG5nWRax6DB2fNLuWxpZU4tu8JxNX3cbTOzuMrNnLJJ3i5QDEn6cAshhBgdw7Uri4cHZ8OD7ao4W7hLZcpJg8GignCLQwXkU/zLejqts6crRHNvhCKndewDIXHUqvLtlOZZaegKsXG/j4auEMUuK55hvkiPRHWBg6++fx5r9/byx7f30RWMc98ru5lb5uIjJ1ZTV+Qc0eMZMr27CxxmWv1RWn0RZpW4WFjpHtvCSQajav31h6tRZ88GBt3TtxCgmB7iyTSN3SE2NfvpCEbJt5mZWTz0Ou20rvPG7m7+/E4zvkgCgAUVeXz8pBoq83PoqZ1O0+aLktZhfnkei6vyc6paLqY+CbiFEEKMXLb9Vt6AaabZAm3ZtlqhbrU2PBaAQHumZ/jUnZLe4ouwtzNEvt2Cebym+4qjZjYamFuWR2W+nW2taqpod1eMcrctp2zUoWiaxor6QpbO8PDc5jb+vrmdHe1B/vuZrZw6q4gPHV9FvmNkX6iz1cwjcVUZeV9PmHllecyrcI/KiYIhLbxMtf569msQaO2/fhoXAhTHtlRaZ19PmC0tfpq9YewWE3WFTozDnEjd3hbg9+v20dQTBqDEZeXDJ87g+OrDz2jRdZ2eUBxvJEFVvp3jZuSPz+wVMWlIwC2EEGJ0DFWg7VBT0sO9oCeBTJV0UyYbPgmrpHcGYuxsD2A3G7FZJNM3FbmsJk6sK6Su2MmmZh8NnSG6tTjlbttRr++2mo1cvqyKM+aU8MT6/bzV0MMbu7tZt7eX9y8s44LF5SPuo2u3GKkr7l/fvac7xMIKN7NLXUd9omBICy+DmWfBnZk+6P/2J5h1tmS2xTElndZp9kbY0upnf08Yk8HAjILh+2m3+iI8sb6ZDZl12nazkUuOq+Ds+aU5/d0IRpO0B6J4HGZOm10k08enKQm4hRBCjJ2hpqQP7Bke9Wd6hrdngvFslXTUWvC+Kek20CYmq+yPJtjRHiCtQ95YZRjFuCl2WTlzbgmzSlxsbvGxrzeCzWSgNM82bHYrV4VOC585YybnzC/l9+v2sbszxN82tvLKzk4uO66SM+YWD1vpeDh5NjMuq4meUJzVu7rZ2R5kYaWb+mLniIP4wxoYXNeulGBbHDPSaZ1Wf5StrX6ausNoGpR7bMMGv75IgqffbeFfOztJ62DQ4H1zSrh8WWVOnQTiyTSt/ggmg4ElMzwsqvDgccjxY7qSgFsIIcT4Gq5neLZKenZKerADwt0qE56MqinpRkv/dHTz2Lcqy1YkD8YSY7uOVowrTdOoLnRQ7rHR2B1mU7OPvd0hPHYzhU7LURdWm1ni4pYL5rO+ycuT6/fTHojx6JomXtjazgeOr+KE2oIRPYemaRS5rBQ4LHSFYvxrRyc72gMsqnRTU+gcv4rmQkwx2UB7R1uAvV0h0uiU5Q1feTwcT/KPze08v7WdWDINwLLqfD50fFVO67RTaZ2OQJRoIkVdsZPFVR7K3TapPj7NScAthBBicjBZ1eYs7r8ulVTBdywzJT3UrQLxeCDTFzgNmqk/E252gGF0Dm2JVJod7QG6gjFK8qzyhekYZDYamF3qYkaBnd0dQTa3+GnoClHotJBvNx/Ve65pGifUFrC02sOrO7r463sttAdi/M+re6gpdHDF8ioWVrhH9BwGg0Zpno1CZ5rOQIwXt3VQ6bGzoNJNTeHw02KFmG6ygfb21gCN3SrQLnXZsA+zJCieTPPS9g7+b2Mrobhq+Vhf7OTDJ8xgbtnhWxsOXKdd5rZx6qxi6oocmOT/pEACbiGEEJOZ0ZTDuvAeVZQtG5CnUyqLns2EWxwqMz4C6bTOns4QLd4IRS4rxjHOpIuJZTMbWVTloabIwa72INvaAuzpDlHqsuY0ffRQTAYDZ88vZeWsIp7f0s5zm9to6gnzoxd2MrfMxQeWVeX0hf7Ax6zw2Emm0nQEYvxzazsz8h3Mr8ijWgJvMY2l0jot3gjb2/zs64mQ1nVK84YPtJOpNK/v7uZv77XQG1aVx8s9Nj64rCrnFn/+SILOYKxvnfbs0rzRX+4hpjQJuIUQQkwtw60Lj4f625RFeiHYpn73ezP9wjPF2bLT0U3WYZ9iX2+Yxu4Q+Q6LBC/TSJ7NzPG1BdSXONnWFmBne4DOYIzSPBsu69F9ZbKZjVy6tJKz5pXwzMZWXt7eyY72IHf/fTuLKtxcfnwlM4tdI3pMk9FAZb6dRCpNhz/Gfm+YKo+deRUq4y1TzaeGcDzJwm/9HYAt3zl/bIriHeMSqTT7e1Wg3dwbRdOgNM86bOCbSuus3qMC7a6gqhtS6LBw2bJKTp1ZlFM9h3A8Sbs/hs1i4Pjq/LHtJCCmNPkfLYQQYurTNLC61Oau7L8+2y886oOIF0Lt6mewvb84WzYIz1RIbwvE2NURxGE1SZZimsp3WDhlZhGzSlxsb/OzuzNEZzBKWd7RtxLLs5n52Ek1vH9hOc9sbOW1nV1sbvWzudXPkioPly6tGHHgbTYaqCpQgXd2qnmFx8b8cpXxls+xOFZFEymaesJsbwvQ7o9iNGiUe6zDFkNLpXXebOjm/95rpT0QA8BtM3HRkgrOnFuS0wnWWCJFeyCKpmnMLXexsMJDSd7wJ3CFkIBbCCHEsWuofuGJaH8mPFshPdwDoU4CwSCtHUFcWHCZ3aRSdtKGydemTIyPkjwrxa5i5pTlsbXVz97ukMp4H2ItaK4KnRY+eUotFywq56/vtbB6Tzcbm31sbPaxuMrNZcdVMrNk5IF3NuPdFYzx0vYOil1W5pe7qSt2SOZUHDP80QSNXSF2tAfpDsawW4xU5duHDZiT6TRv7u7hmY2tdAZVoO2ymrhwcTlnzSvJqVVXIpWm3R8lldapKXKwoMJNVb5d6nuIw5K/vEIIIaYXs01trtL+65Jx/N5u3traQNjdTY0lDLFuLNFeDKkYoJM2WkiZ7KSMdtJGW18QntYn5mWI8aFpGmVuG6V5Vub589jeFqCh8/BFmHJVkmfl+tPquXhJBc9sbOXNPd1savazqdnPgoo8Ll5SwbyyvBF9qTcbM2u802m6g3H+tbOTTS0W5pS6qC92ku8YWU0DISYDXdfpDMRo6AqxpzOEP5rAbTNTW+Qcdgp4IpXmtV1d/H1zW9/U8TybifcvLGPVvNKcZn8k02rmSCSRZkaBnYUVbqoLHUfdRlBMHxJwCyGEmPYiaSNvtEGTXkZd7Uy6NQ0tncCUCGBKBDElAlginZhjPZjjXgypGJqu88/eYp7cP48fH59ixkS/CDGmNE2jwmOn3G1jblke2wZUPy5xWY86e1zmtnH9afVcclwFz7zXypt7etjaGmBra4CZxU4uWlLBcTM8I2onZjIYKHPbKNF1ekNx1jT0sLXVT32xk5klLkql+r6YAuLJNC3eCLs6gzT3RoglUxQ6LMwsdg77+Y3EU7y8o4MXtnbgi6hiaHk2ExcsKuesuSVYcwi0U2mdrmCMUDxJudvGqbPc1BY5pa6HGDEJuIUQQkxriVSaNXu72dsdpq7Q0RfQ6AYzCWshCWumQnoBaOlkJggPsKnZyw92xUjpGk9tj7Bo8QS+CDFuNE2jMl8F3m3+PHa0B9jbHaIjEKV0FNZ4l+bZuO60ei5bWslzm9v4184u9nSF+PlLu6j02Dh/UTkn1xeOqN2QIdPHu9BpwR9NsrHZx472IFX5NmaV5lGVb5cCa2LS8UUS7OsJsasjRGcgilEzUJxnwWEZvh+2Nxznn9s6eGVHJ+FMe69Cp4ULFpVz2uyinKaOp9M6XaEYgWiS0jwbJ9UXUlvkyOm+QgxFAm4hhBDTVjqt8+4+L9tbA8zItx82iNENJhLWArb5zfzw7S5SusbCijw+/j6Jtqcbg0EF3hUeW99U88buMO3+GMUuy1G3EytyWfm3k2u55LhKnt/Szss7OmjxRXnwjb08taGZc+aX8b65xSMK8DVNw2M347GbicRT7OuJ0NAVoiTPxpwyFzOcOp7DP4wQYyaRStPmi9LYHaKpJ0wgmsRlNVFdcOie1q2+CH/f3M6be7pJZtb5lLttXLgkc4Iqh9aOAwPtYpeV4+cWUF/slKKD4qhJwC3GVCqd6vv97fa3WVm5EqNB/nAJISaHrW1+3t3npTTPlvOXqhZvhJ/+cyfxZJpFlW4uXVo5omm+4tgycKp5ZyDGzvYge7qCdAZjFDmtuG2mo5q27bGbufKEGVy0pJxXdnTywtYOesMJ/rR+P399r4XTZxdzzoJSSvNsI3pcu8VIdaGDZCpNdyjOazu7yLOZqP233dSVOCkzWuVLohg33nCcZm+EXR1BugJx0HTy7RZKiodf9qDrOlta/Ty/tZ1Nzf6+62eVOLlgUTlLq/Nz+tucSut0h2IEYkmKnVaWzVGB9tHWZxAiS/6WijHzQuML3LHmjr7LN/zzBsocZdyy4hbOrT13AkcmhBDQ0BVi3d5e8mxmXLbcDofdwRg/emEHoXiKmcVObjhzFi3+6BiPVEwFmqZR6rZR6rYxvyKPXR1BdncG2dMVI99upsBpOaoTMw6LiQsXV3DugjLe2tPDP7a20eKN8s9tHby4rYNl1fmcPb+U+eUjK7BmMqp13qW6jj+aZGubj23tfkrzbMwqcVGVb8fjkN7CYvRFEylaM9ns/b1hQrEULquJynzbIddJx5Ip3trTwwvb2mnxqr+/GrCsOp/zF5UzuzS36v7ZooLBWJKSPCvLqiXQFmNDAm4xJl5ofIGbXr4JncHlezvCHdz08k3cc9Y9EnQLISZMmy/KW3u6MRo0Cp25VWz2RxLc8/wOesMJKj02vnjOnJwK74jpp8hlpSjTjmtPV5Cd7UEaukK4rCaKXJacprcOx2w0cPqcYk6bXaSye1va2dTi5519Xt7Z56XSY2PV/FJOnVk0oqmwA6ebx5NpekKqunmezURVgZ26Iidl7txngggxlEQqTUcgRos3wt6uEN5IAqOmUeiwUJZnO+TJoo5AlJe2d/L6rq6+9dlWk4Ez5hRz9vzcZ3lk2+ZFEilK82ycUFdAXZFMHRdjRwJuMepS6RR3rrnzoGAbQEdHQ+OuNXexqnqVTC8XQow7bzjO6t3dRBIpqgscOd0nHE/yoxd20B6IUeS0cOO5c3FZ5RAqDs3jMHN8TQFzy/Jo7A6zoz1AU08Ei1GjxGU9qhM2mqaxqNLDokoPLd4IL23v4I3d3bT4ojz6VhNPrm/mlJmFnDm3hBk5fs6zLCYD5R4buq4TjCXZ1aFOGhQ4LNQVOagqcFCSZ5W2SCInqbROdzBGqy9CQ1eY7lCMdFotl6gpOHR7rVRaZ2Ozj5d3dLC52d/3zbLEZWXV/BJOn517HYNYMkVnIEY8labcbeOUmUVUFzok0BZjTr4tiFG3vmM97eH2YW/X0WkLt7G+Yz0nlZ80jiMTQkx3oViSN3Z30xWMUVuUWxAST6b52Yu72NcbIc9m4qbz5uacFRcCwGk1sbDSzaxSJ/t7I+xsD9DijaADhY6jL7BWmW/n306u5YPHV/HG7m5e2tZBeyDGS9s7eWl7J7NKnJw5t4QTagtGVGlZ0zTybGbybGaS6TS+cIK3m3p5b7+PIpeF+mInZR4bxU4rBgm+xQDZddHtvigNXSG6Q3HiqTQui4lKj/2wrbV6QnFe29XFv3Z20htO9F2/uMrN2fNKWVyVe4u8cDxJVzCGrmtUFtiYV5ZHdaFD2nuJcSMBtxh1neHOUd1PCCFGQ3bd376eMLVFjpy+rCXTae5/ZTc7O4LYzUa+fO5cytwjK04lRJbVZGRWiYu6Iidt/ii7OwI09YTpCGTWeTssRxW4Oiwmzl1QxtnzS9nWGuCVHZ28s6+X3Z0hdneGeHzNPlbUF3LGnGJqCx0jW+ttMPRNlY8lU3jDCVbv6cZqMlLsslBX7KQ0z0aR8+heg5i6Eim1JrrdH6GxO0xvOEEsmcJpMVGaw4yOZCrNhv1eXtvZxeZWP3omne2ymjhtdhHvm1Myor+//kiC7lAci8lAXZGLOWUuKvPtMjNDjDsJuMWoK3GUjOp+QghxtFJpnXV7e9nZEVDtZXJpEaPrPPj6Xt5r9mExGvji2bOpKRzZ1FwhhmI0aFTl26nKt9MTitPYHWJnR5C9PSEVwDotRzXd3KBpLKx0s7DSjTesMoWv7eqiKxjnlR2dvLKjkxkFdlbOKuLk+iI89pFl2K0mI2VuNb5oIkVPKM7+3gg2s5FCp5p2Xuq2Uei0SBYxB6l0/xK8NQ09nDGnZMoEhZF4iq5gjHZ/lKaeMN5wnGQanBYjRU7LYadr67pOU0+Y1Xu6eXNPD8FYsu+2uWUuzppbyvE1+Tl/jtJpnd5wHG8kgctmYlGVm1klLkrzhq92LsRY03RdP3ih7STS3NzMzTffzLPPPkskEmHu3Lk88MADnHDCCTnd3+/34/F48Pl8uN3uMR6tALWG+/wnzqcj3DHkOm4NjTJHGc9d8Zys4RZCjDld19nQ5GVtYw8VbntOFWh1XeeRt5p4ZUcnRk3jC6tmcdyM/CH3begOcd6CMuqKnUc91ul+zJrOrz8ST9HsDbOzI0ibN0oqrVPgtBx1W7GstK6zvS3Av3Z2sb6pt69XsUGDRZUeTp1ZxNJqz4imnB8omkjhiyQIxZKYjQbcDjM1hQ7K8mwU51lG1DN8unhuUyvffnoz7f5Y33UVHhvfvnQhFyyumMCRDS2d1vFGEnQHY7T4IrT6ogSjSdDV0gmP3YzFdPjguCcU562Gblbv6e6rNA6QbzezcnYRp80qHlE2O55M0x2KEY6nKHBamFOqZpIUyPIfMUZGcrya1H/5ent7Oe2001i1ahXPPvsspaWl7N69m/z8/IkemjgEo8HILStu4aaXbzroNg31peHmFTdLsC2EGBfb2gKsb/JS4rLm3O7lyXeaeWVHJxrwqdPrhw22hRgtdouR2aV5zCx20R6IsrcrxN6uMHu6QjgsRoqc1pwCmeEYNI0FFW4WVLgJxpKs3dvD6t3d7OkKsbHZx8ZmH1aTgeU1BZxcX8iCCveIs6w2s7EvoxlPpvFHE2xo6gUgz2amzG2jIt9GkdNKgcOMaZpnv5/b1MrnH1l/UGqizRfl84+s575PLJ/woDtbOK83lKArGGN/bxhvOEEkkcJiNJBnM1F9mMJnWcFokrebenmroZud7cG+120yaBxfk8+pM4tYVOkZ0ecuGE3SHYoBGmVuKyfPzKO6wCGtvcSkMqkz3Lfccguvv/46//rXv474Mabz2fKJlu3D3RHu6Luu3FHOzStulpZgQohx0dAV4tUdndgzU11z8X8bW3nynWYArj6llvfNPfTyF8lwj57p/voPFIgmaPZG2NUepD0QJa3rFNgtuO3mo+rpPVCbL8rqPd281dBNVzDed73LamJ5TT4n1BYwv3zkwfdAqbQK2gLRBPFkGqvZiMtmoirfTkmelUKHBY/dPK3WfqfSOqff9SKtvuiQt2tAucfGazefPa7Ty3VdJxRP0RuK0xuO0+KN0BNSvaoNaNgtRtw2c84BbTCWZMM+L+sae9jaEiA1IOyYU+ri1FlFnFhbMKLZD8l0Gm84gS+SwGE1Ul3gYFaJiwqPbdqfxBHjZyTHq0kdcC9cuJDzzz+f/fv388orr1BVVcUNN9zAZz7zmZwfQw7eEysQC7DydysBuPece1lZuVIy20KIcdHijfDK9k5Suk55jlMTX9rewaNvNQHw4RNmcP6i8sPeRwLu0TPdX/9wkqk07YEYTd0hGrvD+CIJtV7aYRm1TJ6u6+zpCvHWnh7WNvYQiPavpXVZTSyrzmd5TT4LKtxHvS47lkgRiCUJxZKk0jp2i5E8m5kKj40il8p+u+3mY3r99+rd3Xz8V28edr/HP3MKp84qGrNxpNI6/ogKXr3hOC2+KN5wnFA8ha7r2M1GXFYTTosp5xMivkiCd/d7Wd/Yy9bWwUF2TaGDFXWFnFRXQJHLOqKxhuNJuoNxEmmdIqeFmSVOaouc0jVCTIhjZkr5nj17uO+++7jpppv4xje+wZo1a/jiF7+I1Wrl6quvHvI+sViMWKx/HYzf7x+v4YohDAyuTyg7QYJtIcS46A7GWL27m2giRXWOhc5W7+7uC7YvXlKRU7AtxHgwGQ19RdaWzEjS4o2wuzNIhz9G1J/CbTUf9RRtTdOYVeJiVomLj55UzY72AOsae1nf1EsgmuwrvGY1GVhS5eH46nwWVXmOqB+91WzEajZS7LKi6zqRRIpQLMWmZh/JtI7NbMRpNVKSZ6XEZcPjMOO2jSzom+w6AkNnto90v1xkp4f7o0lVwTsYoyMQIxRLEk2kAA175t9+pK3e2vxR3t3n5Z0mL7s7g4OmyVfl2zmxroATawuo8NhHNOa+bHY0gd1kpLrQzswSVW1c+meLqWJSB9zpdJoTTzyR22+/HYDjjz+ezZs3c9999w0bcN9xxx3cdttt4zlMIYQQk4g/muCN3d30hmPUFuaWdX67sZdfv9EAwDnzS/nAssqxHKIQR8xlNTG3LI/ZJS66QjGaeyM0dIXY740AOvl2C27b0U3PNhr613tftaKGHe0B1jf1smGfl95wgnWNvaxr7EXTYHaJi+NmeDiuKp/KfNuIC7xpmobDYspMKVYZz2giRTieYk9niO1tAQyamsrstJjUFHSnBZfVRJ7NhMtqmpLTiEvzcpt1k+t+B4on04RiycxU/iS94RidgTjheJJwPEVaV2unHRYj+XYLNrdhRO9dIpVmZ3uQ95q9vLffR0cgNuj2uiIHy6rzObG2kHLPyF5D37rxcIJkOk2R08qKukJmFDgodlmk2riYciZ1wF1RUcHChQsHXbdgwQKeeOKJYe/z9a9/nZtu6i/W5ff7qa6uHrMxCiGEmDzC8SSrd3fT4o1QX+TM6YvZpmYfv/zXHnQdTptVxEdPqpYvdGLSMxg0SvNslObZWFTpod0fZX9vmMaeMI09IYyagXyHGZfNdFTrvQcG3x9fUcPe7hAbmry8u99HszfCzo4gOzuCPLG+mQKHmUWVHhZXuplf7sZlO7Kvmdnia9mpwqm0yoJH4im2twZI6jqaBjaTAZvZSL7DQpHTgstmwmk14bQYBxVwm4xW1BdS4bHR5osO0c+lfw33ivrCYR9D13WiiTSheJJIPEUoroLr7mAMf0RlrWPJFDqqj7rdbMRhNlHktI54Xbiu67T7Y2xq8bG5xc/29gDxZLrvdqNBY26Zi+OrC1hWnX9E07xjiRQ94TjheAqXzcTMEid1RU7KPbZJ/V4KcTgj/ksYCoW48847+ec//0lHRwfpdHrQ7Xv27Bm1wZ122mls37590HU7duygtrZ22PtYrVas1pGtCRFCCDH1xZIp1jT00NAVoq7QkVOGb0d7gHtf3k0qrXNibQHXnFo3asWoJloqleKhhx4a9nj94osvTtDIxGizmAxUFzqoLnSwtDpJm0/1RG7xRujsimExGSiwW3BajUd1MsmgacwsdjGz2MWHls+gKxjjvf0+3tvvZXt7gN5wom/quQZUFzpYUJHHgnI3s0tdRxw0GQ0aLqtp0PT1tK4TS6SJJFK0eiPs7QoCKmNuNRmwmIzYzQbyHaq1msNqwmYyYjMb1JR2kwGL0TBhU9SNBo1vX7qQzz+yHg0GBd3ZEf2/ixdkguY00UQqs6UJx5N4Iwn8EVWELppMZYJfDQPZExYGCp0WLCbDEf9N6w3H2drqZ1tbgK2tfnrDiUG3e+xmllR5WFLlYVGl+4je30RKTRn3RxNYTAZK86ycWOei0mPH4xhZf3ghJqsRB9yf/vSneeWVV/jkJz9JRUXFmGYBvvzlL7Ny5Upuv/12PvKRj7BmzRp++ctf8stf/nLMnlMIIcTUk0ylWbe3l21tfqoLHDlNMd3TGeQn/9xJPJVmSZWHT59ef8ysDwX40pe+xEMPPcTFF1/M4sWLJWs/TTgsJmaWuJhZ4sIfTdDhj7K3O0y7P0p7MIrFaCDfbsZlPfr+3sUuK2fPL+Xs+aXEk2l2dgTY1OJnc4uPFq8K+pt6wvx9czsGDWqLnMwtczG3LI9Zxa4jzoADfdPMDywal9Z14sk0sWSaUCxFTyhIIpXuC2iNBg2L0YDZaMBs1LCbTThtRhwWFZCbTRomg7rNZDRgMmgYDRpGTcNoVD8NmoamgabRF8wO/JfUAV1XY8mOKZXWSachpesk02lSaZ1FlR5uvWwRP31xJ90DKsTnO8x86PgqwvEUf9nQTCKlk0ilSeugoaOhYTEZsGa2PJsJi3FkU8IPpOs6ncEYO9uD7GgPsKMjSOcB08RNBo3ZpS4WVbpZXOlhRoH9iJ4zmU7jjyTxReMY0Mh3WlhRUUhlvp1i18iz70JMdiOuUp6fn88zzzzDaaedNlZjGuRvf/sbX//619m5cyf19fXcdNNNUqV8Cgknwpz82MkAvHXVWzjMuRUvEkKIXKXTOuubVHGnCrc9p6rNTT1hfvCP7YTjKeaX5/HFs+ccUY/jZCpNU0+Y9y8qn3RVyouLi/nNb37DRRdddNTjGi9yzB47vnCCjoAKgtv9UYLRJCajAY/dTJ519IuRecPxvszotrYA3aH4QfuUe2zMLnExs8RJfbGTSo99zIOtZCrdF8AmUmmSaZ1kSgXBup4JltHJhtEGgwrSDWhoBvoCblDZdE3t1iebrVaPpR4wreukdT0ThKu/WanMdZqmEY0n+eHzOwH4+EnVzCvPw2oyqqA/E/ybjyJTPZRoIkVjd5g9XUF2d4TY3RUcVJlevT6oLXSwoMLN/PI8Zpe6sJqObJZCNsj2R+OAhttupq7QQUW+nTK37ah6zAsxEca0SnlBQQGFhcOvJxltl1xyCZdccsm4PZ8QQoipQ9d1Nrf4eHeflxKXNadgu8Ub4Z7ndxCOp5hV4uTfV80+oi97iUywXVvkoNQ9+ZYyWSwWZs+ePdHDEJOEx2HG4zAzpywvk/mO0ewN0+qN0tgbxqCBy2IatXZc+Q4Lp8ws4pSZqqVVdzDGjo4gO9oC7OwI0uaP0uZT22u7ugA1Nb6mwEFdsYOaQrWVe2yYDKMXjJmMBkxGsHP4vxW6ngmM0/1Bc1pX1/cF50PkrTRAM2iAhkEDLRO4ZzPjRk3DYOgP3GOJVN99T59djHWU1ytH4in294bZ1xthb3eIvV0hWodYO24yaNQNnIVQ4jqqtnPJVBpfJIE/lkBDw21Ta/yr8tXfTFmXLaaLEQfc3/3ud/nWt77Fww8/jMMh2UohJiOZWSCmi50dQdbt7VVZOtvh1/u1+6P88PkdBGNJaoscfOmcOUe87rCpJ0x9sZOVs4szFZYnl//8z//kJz/5CT//+c9lOrkYxG0z47aZmV3qIhxP0hmI0eqL0twbocUXIZnScVpNuG0m7OajW/edVeSycqrLyqmZADwQTbCnK8TujiC7O0M09oSIJtLs6gyyqzPYdz+TQaMy386MAntfa7TKfDsFDvOYf641TcOkaTBFkq/Zfu3Z97HFG2Ffb+SgqeFZBQ4z9cVOZpW4mF3qoqbQMSo91n3RBMFYEqNmwG03sbQqn3KPXYJsMW2N+BvCD3/4Q3bv3k1ZWRl1dXWYzYO/4Kxfv37UBieEEEIMZ29XiLf2dGO3qCrFh9MVjPHDf+zAF0lQlW/ny+fMPaJAOZ5M09QbZnapi5WziiZlsA3w2muv8dJLL/Hss8+yaNGig47XTz755ASNTAySToM+YEPP/K4PcVnPXB54mz74Jxzm9yz1uwOo1aA2H+IuHW8kTk8oQYsv8v+z995xcp31vf/7nDO9l+1F2lWXLNmybMu2bFywAIdmCOkk1BQuBBNMEpPcG4jvTTBOcQgl5OeEa+CSmAQcDAmxAQM2Ni6yJctWs9XLrrbvTm+n/f54ZmZnpa3Sdj1vvZ7XOdOfmdXMOZ/n+/1+viSHdAZ0E01VCbiFA7hD06oJ1ygiigtgV/YVtXy7KHK2K9cpKqCU76cScqpsbfFzRWsIULCA3mSBk0NZTg2J2u8zIzkKulWtBa/F7VBpDHloCnloDLlpCHpE3+6gm5Dn4uvTFyuGZTGSFeUBg5kSfakCvakCfckCA5ki1gSFolGfk/aYj5UxHx11wv077L14UzLLtsmWe3sXdROXUyXidbGxKURD2ENdwHXBaegSyXJhxmcJ73jHO+ZgGhKJRCKRTJ/uRJ5njw2hoFAXmDqdezhb4m9/eJjhXImmkIe73rDuggybirpJVyLP+sYg16+OL+poTSQS4Z3vfOdCT2PpYNtgmWCbYmsZ5X1r9DrbFELXqt2ec51tgll+vGWApdc8rwFm+Xltu/waZff4MeIawBqdV1U022Mv24xeX7lvdR/G2F+f6+pVS1mcuoAG26YBWAcUNJOcaZAq6KRGDIqGhWXZODQFl0PD7ShHv8uPt6svpFTFuF0VvmUhrlSEuDoqyFGwVQfNisoVbgd2qwOr3YGFg56Cg1NZjdMZjdNpOJ226M3aFI3xhTiAS1OI+53E/C7ifjdRv5uw10nE5yTsdRIq160vxv7dg5kiOd0kmddJ5nRGcjojuRLDWTFGcqUJRTWAx6nSEhZZAJWMgPaYd1oZQNOlqJukiwbZkoFliWyI5oiHtoiPuqDrgtqOSSTLmRmfbXz605+ei3lIJBKJRDIt+tMFnj06RMEwaY9OXS6RzOv87Y9eYyBTpD7o5hNvXHdBkZ2CbtKdyLO+Kch1qxa32AZ48MEHF3oKC4ttw8gJMEqj4tc2xWWzBKYOZrG81UfFb0U8YwmxXdmOiUAzVsCCuMK2q+ITRS2Pivis7KujkeHafVU7/7oJt+XXm2h/FqK7KiL67QPqEGUUmYJBqqgznC2RzBsUSgaWZeHSVLwO0W5LU0fFv1ITeVcYu3CglKP2SnmRQTV1sG00LBS7fDs262yLdS4LJWphR8X70y3oLbo5k3fRlffQXXTTU3TRU3AxUHJSMqEnVaInVQIy47w7gc8BQbdKwKXic2nV4XE6cbscuBxiW2te5tBUVGW0HltVlKpBWsWZvNaIzTDF4kDREO29Kq3MciWDXMkkVzIp5dOc9PwWABv/8/+SxzPp38apiYXG+qCbhqC7GulvCnuIeGc/1V43LTJFg0zBQDct3E6NgMfBlrow9SERxZ5NQS+RLDcuOA9u9+7dHDp0CEVR2LRpE1deeeVszksikUgkkvMYyZZ45ugQyUKJFdMQ2+mCENt9qSJxv4s/fMM6otNIPz+XXMmgJ1ngspYQ2zvjS8pRd2BggNdeew1FUVi3bh319fULPaX5oZSBkz+H3DBUTbcqEVZNXFcVxdrovuoAh6vmtnHGJYhTU4n6XUT9LlbG/BQNk3TBIFs0GMoUyRRN0jkDCxunqope0A4VbY6+K3XlcSWUhbyOYhcxTJPBvMJAQWGgoDJQUBkuqgyXNIZLGkMljaTuwEIhZ0DOsOjLWoAx2cvNKV50KhrbqSn4vS4Rkfe6CPucxP0uYjUj7HXOqmP5uZQMi2zJIFM00A0Lh6YQ8DhZ1eCnKeQl5ncR9TkXZYaARLIYmbHg7u/v59d+7dd44okniEQi2LZNMpnk1ltv5Zvf/OalcyCXSCQSybySKuj8/Oggg+kiK+K+KaM4mYLB3/7oMGcTBaI+J5944zri00g/P+95igb96QKXt4W5uiM2Kw7O80E2m+WjH/0oX//617EskZ6saRrvec97+MIXvrD8jU9tW6Rzh1vBdfEt2yRjcTs03AGNuoCblXEhwDNFk0xRJ5HVSRUMRnI6hmWhqgpuTUTA3ZpadvCeRRQF0LAVDU110uiExvO69JjlIVpzZQ1IllSSJYWsoZDRIatDVrcpGFAwK1sRUR8dChaKaO9lK5g1TuQimUHFUY6IOxwamiret8uh4XY6cDmdeN0uvG4nPqfoIx5QivBzMcv73rkFp2/+WuJZtk1BN8kWRdTdsG1cmorf7aCzzk9jyEPM7yLic8pabInkApmx4P7oRz9KKpXiwIEDbNy4EYCDBw/y3ve+lzvvvJOHHnpo1icpkUgkkkubbNHgmaODdCfydMT9U0Z3skWD+x8/TNdInrDXySfesJ6G4ORpmuORLugMZEpsbYuwbWV0SUV07rrrLp588kn+8z//kxtuuAEQRmp33nknn/jEJ/jyl7+8wDOULCfc5ZruuN/FyphIQ86WDHJFk1TBIJkrUdBNUnkdC9Eay6WpuB0qLoc6633AJ0NVIOiEoNOi7WLWYmwLxTZRLAPFNlAtA8XSxdY2UGwT21ZQFBtb0bAVB5bqxFYdmJoPw+nHcAYpmKNF2a5SEsXlwNI8s55NYdsivT1XMsmXTEqmCYqCx6kSdDvpqPMRD7iJ+ER0fSll8kgki5kZC+7HHnuMxx9/vCq2ATZt2sSXvvQl3vjGN87q5CQSiUQiKegmzx0f4uRQjo6Yb0oznlzJ4O8eP8zp4RxBj4NPvGEdTeGZi+1kXpgVXb0yyhXtkSVnAvTwww/z7W9/m1tuuaV63Zvf/Ga8Xi+/8iu/IgW35Dxyus2mbwjxd/A3FXzOC/8/79SEW3XECy0IsZfXTfK6Ra5okC4apPI6Rd0kVdCxsFFRcGpCgDs1UTO9qN3Gy+7rtirql83J7mubNYJcx6EncRUHUSwdr65X71Z/9nEcbh+W6sR0BjCcQQxnEEvzYDo8mJpX7Guect3/+BiWRUG3KOomOd1ENy1Awe0Q9ertcS8NQQ8hj7PcVtExr4seEsmlxIwFt2VZ57UWAXA6ndWUNYlEIpFIZoOSYfHc8SGO9mdYGfNNGWEu6CZ//+MjnBzKEXALsd0S8c74dUdyJVJ5g6tXRrm8LbIkT0RzuRyNjY3nXd/Q0EAud76zs0QylyiKgs/lwOeCuF/4KFiWTcEQIrygm+RLBsm8Tq5kkSno6JaNXRbiDlWIcadDxakqaEso2wQARcPSNNDc5wnzUmm0T3bJHUVxqKhWCVdxCHeuF8XWyx59CpbixFKdWJoLwxkgr4XIqz7ytpuc7SaHC13zojhceJ0aHqfG6oiouw55nAQ8DoIex5IpjZFIlgMzFtyvf/3r+djHPsZDDz1ES0sLAN3d3Xz84x/ntttum/UJSiQSieTSRDctXjg5zGu9adoi3ilPECti+9hAFp9L4643rKNtGsZq5zKUKZIrmVy3KsamltDijrBNwvXXX8+nP/1pvv71r+PxiAh/Pp/nnnvu4frrr1/g2UkWI2ZNv6ldvTava2VOMztUdVSE16Kbws27YJgUdIu8Lhyy8yWTom6SMW0Mu9KEzBb10qpwENdUBaeqoKqLPDo+AZbmxnQKUW7bNpZlo1s2pmVjGCaWWcIuFdGsHKqVxMUpIopNvUPB43Ti8XpxaT5c7hDuYBxPMIbqDggfA6cPXE6QYlsimVdmLLi/+MUvcscdd9DR0UF7ezuKonD69Gm2bNnCN77xjbmYo2QJ43P62PfefQs9DYlEssQwLZuXTo1woDtJS9iLe4oWXEXd5PM/OcKR/gxep8ZdO9exIjZzsd2fLqCbNjvW1LGuMbAkT9gr/P3f/z233347bW1tXHHFFSiKwt69e/F4PPzgBz9Y6OlJFhmPnbT59POjl9/3ODT7bD59LdzeMb/fA5FOrhI45zTVsmyKpmixpRu2aLWlW9UWWyXLRtdNMmWBCqJdl2jKpqKpQuRrioKmKqhKeZQ7sYlWX3PzXm3bLrdQtzHL7cMsS+xTk1KeyuUxC5X2aeW5auDQNDwuB363G68rWq6ZF+n3HqeKS1NFKzWzCEYRjCwkhmGo/NyqCg6PGJ4QeONi6/KDKwDugLhtCf/mSSSLlRkL7vb2dvbs2cOPfvQjXn31VWzbZtOmTezcuXMu5ieRSCSSSwzLsnnlTIK9XUkaQx68rinEtmHy+Z8c5XBfWWy/YR0ddTN3QupJ5kGBG9bUsaYhcKHTXzRs3ryZI0eO8I1vfKN6vP61X/s13v3ud+P1zjzNXrJ8eeykzf/4qY19zvW9OfgfP7X58q3zL7rHQ1UVvKqGd4IFOMOyKBkWuil6YeuGWd0XPbBNSqaFbliYtoikW7ZVdhwv99HGRkGpCvWxDdcrDdjP/aTG3v/cx1YeVRH1WkXcqwoORcHpHI04r6oP4nB5cWoihd6hCXM5l0PFoU4RmVY0UH0ikn0ullkW4gXI9EPitOhLjwKaS4htlx98cfDFhAivCHGnTwpxieQiuOA+3G94wxt4wxveMJtzkUgkEskljm3b7D+bZM/pEeoDLvzuyQ9TRcPkCz85ymt9aTxOlY/vXEvnDMW2bducTRRwOVR2rImzMr58Wkh5vV5+53d+Z6GnIVnEmJbNPc+fL7ZhVCjes8vmDSvmNr18NnCoKg7X1OnSIrJsY9k2hlneL0ebK7fZtvhMLEuIcRC/FWJ7/nMqCqLNe7lNmKooUBXYIsVdVahG1rVypN2hKqhWEV4Uz7Oqzi/E72yjauDyiVGLbYNZEkK8lIHsIJi6+MOrDnB6hfD21YEvCu4guEPiOucczFMiWYZMS3B//vOf53d/93fxeDx8/vOfn/S+d95556xMTCKRSCSXFrZtc7AnxYsnR4j4XAQ95xt01lIR26/2pnE7VD6+cx2r6mcWmbZtmzMjefxuBzesiU+r5tuyLdKlNKliikQxwXBhmMvqLqPOWzej154Lvve97/ELv/ALOJ1Ovve9701637e//e3zNCvJoqHSm9wolKOdJXb1KfTkmiZ+CNCThV3P/pTr/T1gGSJaalvlbXm/OmyxrbzeGClfFuyiYTVQzuVW1HJ0Vq3ZdwiRqFb2naA5xb7mFFFZzSmud7jLUdqarcMDmls85zmoqoJanssUa3rzw0J6DitK+fNyA+Gxt5kl0GuEuFUCWwGHS0S93UEINII3UhbiQXAFx/3MJZJLmWn9zPzd3/0d7373u/F4PPzd3/3dhPdTFEUKbolEIpFcEIf7Muw6PkzA7SDsnZnY/oOda1k9Q7Ft2TZnRnJEvC5uWFM3YeuwolkkWUySKqYYLg7Tn+0no2coGIXy81h0hjthEWRpv+Md76C3t5eGhgbe8Y53THg/RVEwzUmbGEkWG7Yt6nOLGShlhQgqZUHP1WxzYqvnQM+LYeSFaDLyQmTbY9Vdv3k98NEpX77/xD7Qnp2jNzeHVNKlnR5weMXW6RORW2c5/bpqKFbeVkzGXAFw+i9dAam5xCA0el3l/6FegNwQJLvFoouiiui5wweBOvDXi0i4OyRqxbXJf9MlkuXMtAT3iRMnxt2XSCSLE9MaPZHe3bebHS070Cbp1ymRLDRH+zM8d3wIn0sj5ndNet/xxPbahuCMXs+0bE4P56gPurlxbR11AXf5epOMniFVTJEsJunP9ZMoJsgbeXRLR1M1vA4vYXeYBl8DqqJyKnnqgt/3bFPbnlO26lzk2JYQzYUkFFJiW0yJ/WIKiunRUcqIrWXM3uuXI8MNtgX61HdvaFsLodjYqHMlGq2oNdHpsjhVakVqJRW9HO2uRL5rI+KVUYmaVyLplimi8pYBpiH2zfKwSmJrlMpmYSUwC2JbeS2zJEYxdeGfldNfjuAGRiO5tWLSHQJPuDxCZZG6TFGUUfM1b2T0esssL+7kYfAo9B0Sf3aHW3x+vpiIhnvCo5+XYxl/ThJJDTNOpPnf//t/84d/+If4fGPT7vL5PH/913/Npz71qVmbnEQimTmPn3qce3fdW7384R9/mEZfI5/c/kl2rpTmhpLFx4nBLM8eH8SpKcTLwnciZkNsG6bFqeEcrWEP21b5MZQRDo+kGM4PM5AfIKtnq9Frj8ODz+GjwdeAc4lFaL7+9a/zq7/6q7jdYz/TUqnEN7/5Td7znvcs0MyWOZYFhQTkhyE/UjMS5evL20LyvGjztFC1sqGVvxyR9ddEaH2jUVunVwyHZ3RbifRqbvE8wHbLpvlbNr25863AQGimJj9sv+kXYJHXcFex7bIQL4wOPT+6rWYAlLMBSnnQsyJDoJQFPQPFrBCQIG7Ts5CZ5us7feCJCEFa2XqjY4cvNje12gtF9f9lACo2GLYtsir0HCS7hBBXEAsSTp8waKukpFcWLJbY76xEMh0U2x7P+mFiNE2jp6eHhoaGMdcPDQ3R0NCw6FLUUqkU4XCYZDJJKBSa+gESyRLm8VOPc9cTd3Gu/Y1Sji7cf8v9UnRLFhWnh3I8fXQAy4am0OQnn6L1lzBIuxCxrVsl0qUUx4YGiQRLNMd0DHLkjByWbeFQHHgdXnxOH27NjapMnkZaNIv84ZN/CMDDb3uYdbF1057LRMzmMWupHa9hlo/ZhRTs/3bZ4GmWjPBsSzxvdkCk0+aGIDdYsz8ChZHxXbUmwhWoifrVRk0rUdRg2S26vHW4Z90xuuJSDuNWXPPlW5VF4VI+71hGTQp/emzWQTUToZKVkBSLKNYMvldOnxDengj07RfXXf1BCDaBv04I0uUYLTcK5fKHckQcwFmOhPvrRiPhlSEz9CSLkJkcr2Yc4bZte9wehS+//DKxWGymTyeRSGYJ0zL57K7Pnie2odKHVOG+Xfdxa/utMr1csijoGsnxzLFBDNOmJTJ5AXSh3Gf7cF9mWmLbsHQKZpa8mSFnZEjpQySLCfqzaaJ+lTpvgJLtx+vwEnVHl+V3YqLjdVdXF+FweJxHSLBtIZqy/aJ1UnZAjEx5mxucXlq3ogoR5YuCNzY2ylkb+XSHQFt4167bOxS+fCt8+nmbvtzo9U1++PT2S1Rsg0ib90bGpk5Phm2LSHghWc5kSI5mN+TLizG5EZH9YBTKkd9y9LfCi18Z+5yesBCh/vqa0QCBBrG/FCPClWyLCpW68FIOEqdg4AhgjzqkVxYgKt8bl1+2KZMsKab9Kx+NRlEUBUVRWLdu3ZiDuGmaZDIZPvShD83JJCUSydTs6d9DX65vwtttbHpzvezp38M1TdfM48wkkvPpSeb5+dEhirpFa3Rqsf33Pz7Ckf5MufXXujEGaaZlkC+L67yRIa2PkDESlKwChiWKU23LQa6osTbewmXNcVyO5WuCdOWVV1aP17fddhsOx+ih3jRNTpw4we23376AM1xgLFOI53QvZPrOGf2i3ncyFKWcElxXHnHwx4Ww9sVHRfUSM9q6vUPhhmabLf8qLn91J7yuVVn0rcAWFYoymlYdap38vnpOiO/cEKTPwu6viuujHaIGPTckRGihHDkfOjbeC4pFnUAj+Bsh2Cj2g01ijNePezFSWxdOOXhnW8KYTc/CwCHo1UWk2+kHbxiCrSI7oCLCF8HClUQyEdP+3/m5z30O27b5wAc+wD333DNmddzlctHR0cH1118/J5OUSCRTM5AbmNX7SSRzRV+qwNNHBsmXDFqniGznS0JsHx3I4HVq3HlbJ40Rg4FCN3kjTVpPkDGSlKx8VVw7VCcuzUvAGcWhOCnqFkm9xPoGP2sbAji0pSWEZkrFnXzv3r286U1vIhAYXZyoHK/f9a53LdDs5gnbhnQPDB4R6b+5IXE53SOi1fYkab+KAt44BOqFiKlGF8tbX0xEPpchQlyLLKntTVJszylOH4R9kOqGg98dvX7kpFi8ue7D0HjZaJZFdlBkXlQzLvpEfXRuWAwOnf8a7hAEm8UINY/uBxsXf6p6xfXc5RPfOxDZJaWceL/JbvE9d7rFAkegSUT9vVEhwmerjEQimQWmfcR473vfC0BnZyc7duzA6VyCKSwSyTKm3lc/q/eTSOaC/rLYThcM2qPecVOeKyQKOb7w42OcGiriccLbr8szpDxL73AR3SqhoNSI6wgOxXXe8+WKBumizqq6AKvq/WhLLOp4IXz6058GoKOjg1/91V/F41lGxkzTJdMPX9o+8e2aU0QCA03liGA5MhhoFFHrSzRa5nMqnHy/FNnzxpld8PT951+fH4af/x3ceBe0b4dY5/n3sW2xmFSboZGubHtFTXmlxnzwtbGPVRQhYkOtEGyBcKvYD7UKJ/bFiuoQ/gaecr1sxZStlIHBw6IOvmLe5ouJ91MxqXOHllzWiWT5MK0jSiqVqhaDX3nlleTzefL5/Lj3lcZkEsnCsK1hG42+Rvpz/ePWcSsoNPoa2dawbQFmJ5HAQLrI00cHSeRLrIj6quLYsi1KVp6CmROp4Uaa/uwwjzzvYjDpxOU0uXVbL14/KIqnGrmeTKwDpPM6BcNiXWOQlTE/6ixH66wah+n9g/tZHVm9qGrBKwvllySBhnKaqVNE9MJtEGoRAjvYJE7GpzDFk0jmFMsaTSOfiD1fg9arxxeKijIqPuvWnn+7nhMCvJLZke6BVHmr58SiVKYfeGns4zxh8X0JtwvBGmkX+4sxYqwo5b7qHpGBAqNGd5k+GD4prnP5xecUahULDZUo+CL6vZYsb6blUl7rdKqq6rgnORVzlsXmeipdyiWXEtKlXLJYGcwUeerwIAPZDHVBKFk5ilaOtJ4ko49QsgqUrAK2bVPUHfxkdxPDaScel827rjeon6HHVyJXwrJgbWOAtiki6RfC3v69fPvwt0mWktXrZqP93sUes2KxGIcPH6aurq7qvTIRw8PDFzzPuWJWj9m5ETj4ndl1KZdIZou+A/CT/zP1/V7/ZyK1fLaoGAOmuiF1tjy6xOXcJL8JvpgQ3pEVEF4htqHWxZ8NYltigaGYEenotiUEujso5h9oECn83sjSNKCTLBiz7lL+k5/8pOpA/tOf/vTiZyiRSOaEnSt3cv8t93Pvrnvpz/VXr2/0NXL39rul2JbMG5ZtkdWzZPUs3ckRnj7eRU+mD7/XoHukWK63tlFVBy7Vg7ucFp4vavxgt4PhtILPLcR2fCa6y7YZzuqoKmxsDtI8RY34hbC3fy9f2f+V867vz/Vz1xN3LejC1t/93d8RDAar+7O90LBkKGXhrzrE/h3/IAW3ZPGRT8zu/aaLoow6r58r5PWcEODJrppxptzyrlwr3vNyzXNpQrRGV0JkpdhGO4SYXSwo6qiRHZTT0AsiHb93n/Bz0Fw19e6NZQPEmBTgklljxn24lxoywi25FEkX0+z45g4A/uG2f2BHy45FleoqWT7Ytk3eyJPVs2T0DDk9x1BhiGQxSd7IM5zLcnQgTa5o0BAI4tI8OFX3uCnhmTw8/KyDkYyC323zrh0GsRmct9m2zWCmhMepsbEpSF3QPcvvViwkfPqZT5MoJsa9vVK68di7Hrug79ylfsyatfdfysJnWsT+Hf8gTp4lksXEQkW4L4RSTgjvxOnRbeK0EOjj4YsL4R3tgNgqiHaKNO7FugBoFEQEvJgWKekO96jTfLBxtPuAFOCSGua0D/djjz1GIBDgxhtvBOBLX/oS//RP/8SmTZv40pe+RDQavbBZSySSWaP2RP+qxquk2JZcNBVhnTNy1ch1ophgpDBCXs9TMAsYlgEKuFQXHocHxfIwkgSn5WFtzDNptDWVg4efcZDMKQS9IrIdmYF3j23Z9GcKhDxONjSFiPrnxoH3WOLYhGIbFlf7vT179uB0OtmyZQsA3/3ud3nwwQfZtGkTf/7nf47Ltchdii8Gq6a8bfAwtG2XhkmziWWJyKBtihTdyrBq9rFFNLF2f8yWmsvTQFEABVEhVdkv/6Yoas3t6ujl8/a10e1C/3+o3ygiqfnJ0rjj4n4LjcsH9evFqGDboi/9yCnROztxSuxn+soR8SHo3j16f09YCO/YqtGxWBbCKi3JKnXgRlGI7/6D0PuKEODukPCBCDaNCnB5biWZJjMW3H/0R3/EfffdB8C+ffu46667+MQnPsFPfvIT7rrrLh588MFZn6REIpFI5gfLtqoR65yeI2tkSRQSJIoJ8kaeolFEt3QURcGhOnBrbjwOD2FPGKc6uvqfKRgc6E+SLlg0BCYX24msENvpvELIJyLb4Rm0j7VMi4FskYjXxabmEEHv3EUhksXk1HdicbTf+73f+z0++clPsmXLFo4fP86v/uqv8ou/+It861vfIpfL8bnPfW5WX88wDP78z/+cf/mXf6G3t5fm5mbe97738b/+1/9CnU9xc/B78Ogfj17++eeEsLnqfcLxWSKwjNFhlre2KRYrLKO8NREitiyKbcritSxgVQ1QhXitCFkUcb2igOIQztK1t1dEcEWsVC6LC+dMsvK61ui2IuIrYr8yz8rcq+LfBAyxCIBVs0hQszgw3kui1MxZK++fs1Uco+/xQlFV8X9yPJfyCtveu/ALAxNRcTr310Pb1aPXl3JCfA+fEC3ORk6IGvFCEnr2ilHBGxXCO76mvF09mvq9kDjcYlQFeDkC3ndApNQ7PeAum8sFGoQA90QW799KsuDMWHCfOHGCTZs2AfDwww/ztre9jc985jPs2bOHN7/5zbM+QYlEIpHMPrqlk9NzImqt58joGRKFBMlSkoJRoGAWMMtRQqfmxK25cWtuwq4wzinS6jIFgwNnkyTyOg0BN8ok7uDDaZFGni0oRP02v7jDIDiDsmvDtBjMFGkIulnfHMLvmlsDn7B7eu5ti6H93uHDh9m6dSsA3/rWt7j55pv513/9V37+85/za7/2a7MuuO+77z7+8R//ka997WtcdtllvPjii7z//e8nHA7zsY99bFZfa0IOfg/+/T1wbqeG/LAQNpU2S8sV2yqL5xKYuhiWLq4z9VFxaSMEo1YRxOWheUWkz+kFh1f0OFadIpV2jPAsj0qkuLq/CCLIVUFunSPETSGyqwsLNYsKlj66+GCURITTKJRHEcySGHr5MWb5OaoLAuXIu+oof6blz0tzlj8/x/i929u3i/+Tux+E/Mjo9b64ENtL8f+qywcNG8WoYBRFCvrwcSHEh49D6ox4z927x0bCg80QXwt1a8Q20r7wfe/PjYDrBdFu7ezesgmbV9TEh1dAoE60FnQHF28KvWTemfH/YJfLRS4najYef/xx3vOe9wDCGTWVSs3u7CQSiURywVi2RcEokDNy5HWRDp4qpUgUE2RKGYpmkaJZrHaZcKku3A43PqePqCeK4wJOcmYitgeS8B/POsiXFOJBm1+83sA/g5bRumExlCnSEvGyvjmI2zH36X2rI6uJuCNT1nAvhvZ7tm1jlaN4jz/+OG9961sBaG9vZ3BwcNZf79lnn+WOO+7gLW95CyD6gD/00EO8+OKLs/5a42KZ8NjdnCe2a5mszdJSoCIIzRKYZSFolABrVPRprlGh5/QJAeQKiP7Kmlvc7nCN7mvO8ta1dD+XWhSlHGnXZq/m1jLLCxilckZA5W+g14jxgqhpLmVBz5f7Q2fL99fLAh3xd1KV0b9RfA3svAf+805x+813Q9MVy+NvUcHhFq3LatuXGQURAR86BsPHxDZT08bs5M/E/TQXxFYLAV63TgzPDNtWzDaVVmSBBrHAo+eFAO/aJS67/UJ0R9rF1l8nRLnkkmXGZ1M33ngjd911FzfccAO7du3i3/7t3wCxkt7W1jbrE5RIJBLJxNi2TcEskDfyYuh5MnqGVDFFspSkaAhRbdgGtm2jqdpotNodxq25UWepH/FMxHbPiMIjz2kUdYWGsM07rzPwzsDjrKCbJHMlVsR9rGkI4nLMz8mpqqi8a+27xnUpr7Tfu3v73YvCN+Hqq6/mL/7iL9i5cydPPvkkX/7ylwGRqdbY2Djrr3fjjTfyj//4jxw+fJh169bx8ssv8/TTT08aSS8WixSLxerli1q4P/WMcFiejNwQDBxaeBOqibDtsogrR1YroyKoVU2IF81VFtEhIT5cvtEonMNTTon1CGEtuXjUcvTeOYMVQVMfjY5XIuZmSWxLOVEjXMoIsabnRx+nuWHkOKCUF0Zqh3vxt+GaLg4P1G8Qo0IxJYT30FEYPCq2elZ8ZwcOjd4v0CSEd/068fhQS01ZwjyjKOVFrXIdlG2Jv2u2HxInxeKPOyRqv0OtQnx7Y8vn7yiZFjP+a3/xi1/kwx/+MN/+9rf58pe/TGtrKwCPPvoot99++6xPUCKRSC51bNumaBZHRXU5DTxZSpIsihTwklmiaBartdIu1TVaX+2eOg38YqmI7eQ0xHbXkMJ3n9PQTYXmqMUd15l4ZjC9XNEgXdTprA+wqt6PY54jQVsbtvLBzR8ctw/3Ymq/97nPfY53v/vdPPLII/zP//k/WbNmDQDf/va32bFjx6y/3t13300ymWTDhg1omoZpmvzlX/4lv/7rvz7hY+69917uueee2ZlApm9695vtNksXgmWCkRdRUbMIekVUMxp9dnpEfaw3JtqaOb0iYl3ZSjG9uNGc04uwm4Zot/XY3eLy2jeKTIVSDgopIUL1HOgpIdxto/xAZWy2gsMttks5Mu4OQcuVYoAQr6keYXw4dERsk12Q6RWjEgV3+aGubOpWv0FExBdK0CqqeB/usmu1ZYjFlaFj0H+obMAWFtHvigGbJyzTz5c5si2YRLIMyek5rv3XawF4/jeex+ecgQOVZEGopH9XBHUlFTxRTJAupauiumSWxAMUcKpOXJoQ1i7NhUt1LUjf5XTB4GBZbNdPIbZP9iv81wsahqnQVmfx9u0mMym7TuV1SqbFmvoAK2I+1Elea67JG3n++GfCnOue6+/hjjV3XHRkez6OWYVCAU3TcDpndxHmm9/8Jn/0R3/EX//1X3PZZZexd+9e/uAP/oD777+f9773veM+ZrwId3t7+4W9/xNPwdfeOvX95rPNUq2wNsppxiBOyh1ecfLtjZRrPgNlYe0vR6y9S1s8SaZPbRu7Pz17ft94o1T+f5Qvi+9y+no+AYXEaAq7UaBaUqE6R82/HG7QPMvj/1MpI6Lfg68JAT54VCxa1aKVU/Xry7XkdevEZ7AYMApiIaWUEZ4Cbj9446KHub9c/z2TTArJgjGnbcEATNPkkUce4dChQyiKwsaNG7njjjvQtIVPoZNIJJLFim7pVTFd2Wb1LMlSckxNtW7pIj3ZBpfmqpqWBVwBnKpz1lLAZ4N0XudAT4pkviTcyCcRwEfOKjy6W8OyFToaLN56jclMyq5HsmKxYWNziJbw5M7n80Ht32Fz3eZFkUY+Hrt37x5zvN62bW7qy//oj/6IT37yk/zar/0aAFu2bOHUqVPce++9Ewput9uN2z1LJ8Ird4jU0lQPE9Zxz1WbJdsuR6rzNSnC9qiwdvog0jBqplQR166AbC0kmRpHOZI9Ue1yRYDrOfF/r5QVruC5YSHsciM1YrxcPz6mBGEJZUu4AtCyVQwQEeSRUzDw6ugopkU0uf8QHEB8x2KroWGTGPXrF06AOzwQ8AAN5fTzLOQGRPq56ii7n7eK3zJ/vXQ/XybMWHAfPXqUN7/5zXR3d7N+/Xps2+bw4cO0t7fz/e9/n9WrV8/FPCUSiWTRUxulLpgF4fZtFEiVUqRKKXJ6TkSprRKWbWFjo6KK6LTmwqN5CLlCOFXngovJ6ZDK6xysiO3g5AL44GmFH+3VsFFY22Jx+zYTbZrnELZtM5Qt4dJUNjQHaQgu7Oq/ZVtk9SzDhdH+uSOFkUkesTD09/fzq7/6qzz55JNEIhFs2yaZTHLrrbfyzW9+k/r62XVSz+Vy57X/0jStatw256ga3H5f2aVcYVzRPRttlmy7XIdbY44FQrQ4fcJIyd8gxFFVXEthLZlDKiZejNPX2iiJOuhSVqSplzJCiOeGy1HykbKDvS3anTlrnOo11+JPdVYdop1YfDVseIv4fqbOiprviujOD5ej4Yfh4CPiuxhfAw2XiWyXurXivc43ilr+jQiKy6YhSgj6D0HvfvE38MUgshIC5RZs0nxtSTJjwX3nnXeyevVqnnvuOWIx8cUeGhriN3/zN7nzzjv5/ve/P+uTlEgkksVARVAXzaIQ1qaIUldMyrJ6Ft3UKVpFdLMcpVbAoTpwqUJUh9whXKpr0UZDp0syr3PwbIp0YWqxvfeEyhP7xPu9bIXFbVeYTDcT3LJsBjIFgm4nG5pDxPxzc1JUMkukS2nSepp0KU2mlBGXa66rXJ/RM9jniLmjiaNc23LtnMztQvnoRz9KOp3mwIEDbNwooroHDx7kve99L3feeScPPfTQrL7e2972Nv7yL/+SFStWcNlll/HSSy9x//3384EPfGBWX2dSNr0dfuXrog93umf0+otps1QxudKzoJeEMHF4hLiOrhQCu2Je5g4untRViQRGo+Pe6NjrbXvUVb2UEX2m8wnIDYrLmZQwecMuO95XWsV5Z8/9fS5QFBEhDrfCmp3ifWb6yuL7IPQfEIsNA6+JceA/xPupWw+Nm6FpM0RXLUxUWXMIge2LjbqfFxJw6qx4X56QiHyHWsXvjox+LxlmLLiffPLJMWIbIB6P89nPfpYbbrhhVicnkUgk88m5groSpc7qWVIlIaiLphDTJatUbaelKmpVUHudXkLq0olSXwiJXIlDPSkyRYP6ScS2bcOuIyrPvirE9tZVJjdfZk07YGKaFgOZInG/mw1NQYLe6Z/kVdzbq6K5lCZVSk0oogtmYdrPXcHn8JEzRJtMj2Px1dw99thjPP7441WxDbBp0ya+9KUv8cY3vnHWX+8LX/gCf/Znf8aHP/xh+vv7aWlp4fd+7/f41Kc+NeuvNSmb3g6rboHPtovLN/wBtG2f3ompZYxGAfW8SPl0uEVddbhscuQJixNdd3BxCw+JZDIUpVzW4Acaxt6m54UAL6XFNjcshHgxI6LFpiGSSBzuUSM/h2fhnMInQ1HE9zbYBKtvFQembD/0HRgdhQT07RfjFcT3vXGTEODNlwtX9Pk+nte6nwcRv02FlIjS9x0Qn7svBtEOEfn218va70XMjAW32+0mnU6fd30mk8HlWkI1IBKJ5JLDtEwhpivp3jWCOl1MkzEylMxSVVBjg63YaIo2xqAs6Aouulrq+WIkW+JgT4pcyaAu4J5UbD91QGXPcSG2r11nct366Ytt3bAYzBZpCnnY0BTE63KcJ6IrArpWSNfu65Y+o/fmUBwEXUECrgBBV5CQK0TAKfZrR8AZIOAMVLMUTiVPcU3TNTN6rfnAsqxxjdGcTuecpHkHg0E+97nPTdoGbN6ozSCpWzex2DaKo9E9qwSoIv3bF4NgK/iiQlx7wkurzlUiuRic5Ug2NWUnlYh4MS1GISWEa254tEbctsQilNM3OhZbBFZRINAoxurXj6ag9+0bFeB6FrpeEAOEmVnT5eWxWfxGzDfqONHv/Agku8Vn7A5DuE1E9v114ndrmS76L0VmLLjf+ta38ru/+7t85StfYft2kZr1/PPP86EPfYi3v/3tsz5BiUQimS66pY+NUJf3M3qmGqE2TIOiVcQwDWzFBhs0VQrq6TCcLXHwbIq8blIfcE94MLds+PHLGgdOi8/v5s0mV66aWOAZlk7ezJAz0uTNDOliipFCEoezyKmRAj/pHxXSMxXRbs1N0Bk8TzRXBbUrQMgVIugK4tEW3ohtNnn961/Pxz72MR566CFaWoQDcnd3Nx//+Me57bbbFnh2c4zLD588A/u/PZriXam9LqZFGq1liNtcAWGoFGoSabeeiHj8Mvq/IJFcNLUR8WDT6PWVuuNiSny3skOQ6RfR8UwfYInacJdPRI4XmwivTUFfd7voLDByAs6+BPsfFvfJDsKxn4ihKBBbIyLfzVeI/fl+P+f2/jYNKCZFynzvPvE38teJ6HegbNYo+34vKDP+9D//+c/z3ve+l+uvv766cm4YBm9/+9v5+7//+1mfoEQikcBoL+pz073zRp6MniFTypA38uimjm7p6LYuTIIVBU3RhNu36qymfDtUhxTUM2AwU+RgT4qSYVEfmNhIxzDhsT0aR3tA1VJcd1mS+vo0h1Np8kZmjLDOG2lyZgbdKo77XBNRWRSpCOXa/XOvcy2EEc4i4Ytf/CJ33HEHHR0dtLe3oygKp0+fZsuWLXzjG99Y6OnNH7lhSPeBbYqonSsITatECqYvJgS2jF5LJBdGbd1xBcsSmSOFpBDi2cGxIty2hElZVYQvonT0iqFauG1UcN94lzBh69kHqS7RE3zoiLjd5ReR7+YrxDi3Vn4+0BzCp8IXFwuLpaz4vEdOiowDT1T4TQSbhAA/t+2cZM6ZseCORCJ897vf5ejRoxw6dAjbttm0aRNr1qyZi/lJJJILwOf0se+9+xZ6GjPCsIyqmK5N+87qWdKlNFk9K9K9LSGoTcsERGsmh+qoRqgDrgBOzYlDcSyraOVCMpAucuhsCsOyCfsUUvoIOTNdFcyVbVZP05fKoAfSBDZkURSbfTrsOzv1a2iKA7cawK36iXnDNPqjhN0hQu7zhbRbk6ZU06G9vZ09e/bw+OOPjzle79y5c6GnNj+oDhG9tm0RvQo0gjcm+l4vcdNCiWRRo6rC4MtT05u4VoQXkmUR3ivSolN5QAGnq9yHPrC4FsGaLx81XMwOiihyz8tiW8rC6WfFAIh2ipZlzVshvnZhot/ugBggymYKSejeLS67g8J4LdwuxLc3KrN55oFpC27Lsvjbv/1bHnnkEXRdZ+fOnXzqU5/C45EF+hKJZHLOjU7XCup0KU1Gz5DX8+iWqJ0eN927bErmd/pxqs4l7/K9mLBtm7yRJ1lKkiqKFmbJYpJUKUVfZpj+bIKCmaZoZ6eORjth9PRCwav58WoBvI4APi2I1xHAqwXxOvzVyz41QDqvomoK6xqDi6LH9lLnW9/61pjj9Uc/+tGFntL84/KJNkEOjxTYEslCM0aElw0NLXNUgBeSorNAdlBsLR1QwV1OY3f6FkcU3F8nzNdW3yrmP3RUiO+evTB8XKSjj5yAA98R2TQtV0DLNhH9XojIssMthHWgQcy3mIahY8K13ekT7yfWKVoZ+utl6vkcMe1P9b777uN//a//xW233YbX6+X+++9ncHCQBx54YC7nJ5FIlgC6pVM0hIgumsXqflbPVtO9a6PTlm1VHb6dqlMMzYnP6SOshpe1w/d8Yts2OSNHspgUoyyoz92mSqkZ1UZrihNfVUAHcdgBjneHyeZCOJUAt2z00R4N4NF8qMrkQse2bQYzRTxOjQ1NQeqDMnp9sTzwwAN86EMfYu3atXg8Hh5++GFOnDjBvffeu9BTm39k6qREsnhRtXPS0beKiGw+IZzDs0OQ7oZCGlK94i5Or/heuwMii2UhUTWoXy/G5b8i5t37iqj/7nlFpNCffFoMRYX6DUJ8t24TUeaFmK83IkbFBC83CInTIvXcGxV138FmIdBlz+9ZQ7Ft2576brB+/Xo+9rGP8eEPfxgQ7Ube8Y53kM/nF/WJcSqVIhwOk0wmCYVCUz9AIpGMwbItSmbpvNrpglEgradHa6ctvVo/jcJ50Wmn5qyKaxmdvjjOFdKViHRVSNfsG7Yx7ef1OXyEXCFCrhAOxU+p5MGvBYj6IqPRaC2IUx11Jx9Ow3eec5DOKwQ8Nr94vUEsOL3Xs0yLgWyRsNfFhuYgEe8iSiGcAaeSp7h1xa2sCK246OeajWPWli1beMc73sH/+T//B4CvfvWr1Z7cix15zJZckpSy8JmyAPvTs3KhqBbLEnXg+ZFy+vlZyA2J9HTLHDU+dAdEXfhsYRTgW+8T+7/8VZEpM6N5m6KF19k90P2SqP2uJdgMrVdD21UQn6STwnxhlMQiR7F8nPBUXM/byj2/wws6vcXITI5X0xbcHo+Hw4cPs2KFOKGwbRuPx8Px48dpbW29+FnPEfLgLZFMjm7qY1K8K/vZkqidzhk50Xu6HJ22bRvbtsfUTlfEtEt14VBl7fTFUDSKJIoJkqXkmMh0db982bCmL6T9Tj8hV4iwO1zdhl1hcdktBHbYFcapObEsm9PDOY4OZHBr6qS9r3tGFL77vEahpBAN2LzzOoOQb3pzqrT9agy6Wd8Uwu9eumlsi01w+/1+9u3bx6pVqwAwTROv18vp06dpamqa4tELizxmSy5JpOCeGaVcWYAPi8h3plcIcFMXotsdEOncF1MHfrGC+1wyfdC9R4yBg0KQV3AHReS77Rpo2jLaWWGhqPT8LiTFPN1+0Ys8unLUC2OhFwgWATM5Xk37DKdUKuH1jqYWKIqCy+WiWJyZu6xEIpk/LNuqiuja+um8kSdVSpEpZYSYrnH2VmwFW7FxKKNiutJayaE6ZHT6AjEtc4xwThQT44rpglmY9nOeK6Qj7sh5ojroFi3OpoNl2ZwcynKsP4PP7ZhUBJ/sV/ivFzQMU6ExYvGOa0280zxHKOomI7kSbVEv6xqDuB3y/9Rsks/nCQRG+8Rqmobb7SaXyy3grCQSyYS4/PDnyYWexdKh0hIr3CoEqlEUAjw3DOleUQOePlsjwIOzHwGfKYFGWP8LYug5kXLe9aJIPy+m4cSTYmguUe/dejW0XjVqfjafjOn5XTa7S3bB4BHxufvqINYhRLis+54WM/qE/uzP/gyfbzR8USqV+Mu//EvC4dE0g/vvv3/2ZieRSCbEtm1KVmlUUNfUUGdKou90zshhWAa6KczIxAMZrZ0uR6als/eFUzEcqwjocbelJJlSBptpJRTh0TxCMFeGK3ze5ZArhFObnpCeDqZlcXwgy/HBLCG3A+8kYvvVLoUfvqRh2Qor6i3eeo2Ja5pHk2zRIFPU6awLsLrej0OTq+RzwT//8z+PEd2GYfDVr36Vurq66nV33nnnQkxNIpFIZheHW7S8CjZB4yaRHp0fLgvwHkj1QPKsMGJzeEYF+ELVgDt9sOI6MSwD+l8VLuLdLwjTuK4XxFBUaNgkIt9t14xtvTZfKCq4Q2KAWCzID8OJM+W675hwZg81iUWFhY7OL1KmnVJ+yy23THkirigKP/nJT2ZlYrOFTE+TLFVqU71rBXVOz1VrpytCumJEVqG273StsJZ9p2eGaZnV+uhEMTFGRNfuT9dwTFO080R0JSpde53nYlPXZohhWhzpz3B6OEvY68LjnDjivOeYys8OiNvXtVq86UqT6WrmZK6EbtmsqQ+wIuZDVZfH4s5iSynv6OiY1vH6+PHjF/T8c4k8ZkskklnHKArxnRuEZDdk+4URm22JiK07JLa150h6Dr79AbF/893QdMXcp1HbNiROjQruxOmxt9ethfbrhPgONMztXKaDURyt+1ZU8ERE2nmoRYjvZV4aMSc13EsVefCWLEYqPafPjUwXjMLYVO8aIzJFUbBtu2pEdm7ttEz1nhm6qZ8noMeMQoJUKTXtqLTP4auK54m2fqd/0S16lAyLI30pzozkifpcuCcQ27YNTx9U2X1M3L610+Tmzdb02nfaNoPZEk5VtP1qWmZtvxab4F7KXOrvXyKRzAOlnDBeyw4KgZsfhmJWCGpXQKRO7/2GSFOv4I3BVe8b7cc9H6R7y+J7l5hTLbFV0H6tiJIHGudvThNhGmXxnRJGd96w6PUdbhPz8yy/33MpuGuQB2/JfGNYBiWzRMEsiG1N3XRGz5DVs2N7TlsG2GAjjMhqhXRlSCOymVE0iyQKo+J5pDAyRkwni0kyemZaz6UqKmFXjXj2RMS+a2x02rWQtWEXSNEwebUnTU8yT9zvxukYfzHAtODxvRqHusTtN2w0uXrN9MS2ZdkMZAoE3U7WN4eI+5fe5zQVUnDPHpf6+5dIJPOMbQtzsNwQpPvg4COw6/+b+P433jW/ortCblgI7zO7YOCQmHeFaAesuF4I8OAiMMa0LCgmRZs02xSLGMEWEf0ONopI+DI4p50T0zSJRCL6TVdEdKVV1nhi2rCMaqo3MGnPaYfqWHRRz8VM0SgyUhwZV0gnCglGiiPkjfy0nsupOom4I9URdoeJeqJi6xbboCu4LP8+uZLBqz0p+tNF6gLuCWupSwZ8/wWNUwMqimLzhitMNq2Y3jqtYVoMZorE/W42NAUndTyXSCQSiWTeUZTR3tTRDnj4g5Pff/dXhaHZfLt0+2Kw7nYxCkkR+T79HPQfgJGTYrz8UDnyXa4PX6i0c1UVPb29UZG2X8zAyAkYfK0svhvFZx1oEu9rGYjvqZCCWyJhrAFZRUhXtnkjT6aUIaNnxrTHMixDCGkUUBgjpr1OLyE1JMX0DCmZpaqQHimOVAV0rbierpj2aB4hpD2RMaI64olUxbTP4bskMwfSBSG2h7JFGgJu1AnEdrYA333eQX9SwaHZvOVqk87G6YntihN5c9jLuqYg3knqwiUSiUQiWXBOPSPczScjPwxHfwSNl4ne1K7A/AtGTxjW7BSjkKoR3/th+LgYL/8rxNeKyPeK6xbGcA3Ktd0hMWxbtMBLdcPgUVHj7a8TiwTBJuF+vkzbjUnBLVnW2LZdjUrXiujKyOpZsnpWuHmbRjXF27ANIaQBhbGO3n6nv5rmLcX09DEsY0wU+lxRPVIYIWdMr22RR/NUhXTUHa2K6FqB7XV4p36iS5BErsShnjTpgk5D0DOhcdlIBr7znINUTsHrsrnjWpOm6PTEdq5okC4arIz7WdMQwCmdyOeVrq4u2traFnoaEolEsrTI9E3vfpEVQiBmB0SdteoQItgThvn20/GEYM1tYlQi36eehf6DMHREjJf+HzRsgJU3iLRzd3B+51hBUYQ7fKXVWSknjOwSp8HpKbcb64Rgs2g3toy8iaTglixJLNuiZJYoWSWxrRHUJbNEzsiRLWXJGll0U0SjdVtsQdRLK7aCpgo3b4fqwKE58Dq9VTEtmT6WbZEpZRguDpMoJBguDI+JVI8URkiX0tMyIHNr7vNEdNQjxfRsMJgp8mpPmrxuUB90Txjd7xlW+O4ujUJJIeyzeed1BpFptgJN5krops26xgArY/5l40S+lNi8eTNf+MIX+K3f+q2FnopEIpEsHaZrPtZ2DXTcKARupl9EbJNdMHIKsMsR3fD89/2ujXznR+DM8yJqP3gY+g+J8eKD0Hy5EN9tV4s2aQtFpZ86gJ4Xcz7RJVqL+eIQWy0WNpZBr+9pz/5Tn/oUn/rUp3A4xn/I6dOn+eAHP8iPfvSjWZuc5NLiXBFdaXlVuS6v58kZOfJGnoJRECLa0jEtU6R3Y4NCVUg7VEc1zdvj8AhRLaPSF0TBKIwRzyOFEYaLwyLNuxyhNm1zyudxqI5qVDrqiY4R1hVR7XV4L8k077mmN5nntd40pgX1AfeEKXBHexQe3a1hWgqNEYs7rjXxTaOtpm3bDGdLOFSFy1pCy86JfCnxmc98ho985CM88sgjPPDAA8Tj8YWekkQikSx+Vu4QLa1SPTBugEARt6/cMbb2u36diNZm+8VjR06K9mOWKaK53sj8C1tvdLTmOzsgot6nnoHESTj7khgON7ReAx03QNPlCxtRdnrFADAKQnyf/JlYtPDViV7f4RbwNyxJ8T1tl/IVK1YQj8f5+te/zpYtW8bc9sADD/CHf/iH3HDDDTz66KNzMtELRTqeLhwVQVzb2qq6Lad55w0hogtGgYIpRHRFQBu2cO9GERFpTdFwKI6qcB4zFOnifaFYtkWymGSkOMJwfnhcUT2dumkFpdoCK+qJEvPEqvsVQR1wBuTfaZ6xbZuukTxH+jKoKkR8E6+47z2h8sQ+FVDoaLB489Umrmkc1yzLYiBTIuRxsL4pRGwZOpFPxmJ0KT9x4gQf/OAHOXjwIA888ABvf/vbL3pu84E8ZkskkgXl4Pfg399TvlArkcrnLr/yddg0xe+pqYvId7oXRo4Lh3GjKGqWvdFRYbkQJLvh1M/h1NNijhXcYVh5PXS8TtRUL5ZzNaMoxHcxI1L3fTER+Q41C1M4beHMWOekLVgqleL3f//3+fd//3c+/elPc/fdd9PV1cUHPvABXnzxRf7mb/6G3/7t356VNzAR9957L3/6p3/Kxz72MT73uc9N6zHy4H3xGJYxdtjGaJp2jYFY3shXe0kXzIK4j21URbRpm6MpxWUhrSkiEl3Z1gpoTdVkNHoWKJrFUQFdGB7dFkeqqd+WbU35PF6HtyqeK2I65okR8USIuWOE3WHZC3yRYVk2J4eyHOvP4nVpBDzjq+dze2xvXmny+i3WpN4ltm1hY1MyTAazRer8LtY1BvC7HdiVf+XDS+V7f+7l6nNNUGpQ8VGovVy7YFN7ubJf/aecv50rFqPgrvDFL36Rj3/842zcuPG8DLU9e/Zc9PPPNvKYLZFIFpyD34NH/xjSPaPXhVrh9s9OLbbPxTJHa72Hj4uaZb0gUqm9UXD6Znfu08W2YegonHwaTj8r+mdXCLZA5+uE+PbXLcz8xsMoQWEECmkRjffFxeJAqGVBxPectAULhUJ8/etf513vehe/93u/x7/9279x4sQJrr/+evbt20d7e/tFT3wyXnjhBR544AEuv/zyOX2d5YZhGZi2KaLG9qjwrYjn2v2KkC6aRYpGUYjmclTatM3RUX6OCjbCqVtV1KpwVhUVh+rArbrxO/1SQM8Rtm2T1bMMF4aroyKkK8I6q2enfB5VUUcFdHkb9UTHRKdl3fTSwbRMSqbB0YE0p4YyBFwqmkMla1jYtoWFhW3b2FgYhsVT+6Oc6vUDcMWaYS7rSDJUFAvcEy7JKgq6YZEumDSGPDTFFIp2ilKxRgCXHfxr96sPr1w3CVWhXivI7dHbKqK+VtDXCn0La8x9FJEuU90/d6soYqiKiooqtoqKoihoila9XPmtq2yn402wEJw6dYqHH36YWCzGHXfcMWFJmEQikUhq2PR2WHULfLasbd79bVj9+gtLuVY1UYccbBJp27nBsvg+JoR4qQvcfvDG5jfyrShQt1aMbb8FvfvgxFPQ/YJwan/l38RouEyI7/ZrFzYyD+BwiTr7QOOo+D79vHA2X2DxPRUzPvpee+21bNmyhR//+Mf4/X7++I//eM7FdiaT4d3vfjf/9E//xF/8xV/M6WvNF5ZtiYivbWPZ1ujAwrLKW9vCtMzqfcfdltOvK+7aY1K2rZJ4rvJzn/tYC6t6AgpUT4xVRUVTNTSlPFQNl+qq7leul6nBc49lW6RKKYbzw2NEdVVcF0YoWaUpn8ejeapp3tWtO0rMG6u2yJKLIYsD27bPW9wybRPLsjBsY+x32LKqIta2hYcBNliWwunhPANpnYjXhepwYtoqCkIguhQ3muKgVHLywz0Ozg4rqAq8dZuLrR0rUSpis7xVUMuR4splhUTOIKeYXNYRYXNLBJdDq/5+ANX7VSLMFWovnxutHvM51IjYc0V15faqwK7s23bNYsLob2vl+jG/tfb5v42VrJ3q1hw1WzQs8dnrln7e4zwOz5SLB/PNP/3TP/GJT3yCnTt3sn//furr6xd6ShKJRLJ0qBXXK3fMTn2zqgoxGGiAxs2QGxJR9Ir41gsi7dwXm9+ab9UBLVeKoefgzC4hvvsPjI4XH4T27dB5MzRuEu2+FpJa8W2WRNr5GPG9elHVfM9oBg899BC///u/z9atWzl06BBf+cpX+IVf+AU+9KEP8dnPfhavd25WPj7ykY/wlre8hZ07dy644O7P9dOX7RMncbUndNjnncBhI6LKlZPjmtsqQrs2IlM5UaycGGJT3a+NzkA5QlNzslqJtIwXiamkbJ8bmZECa+ExLZNEMVEV0EOFIUYKIwzlh6omZdMxIwu5QlUhXRXV7lFx7VuolKVLnNqMknO3FYFXEYwwKjodigNVVUcXvRQNp+bEr/nxaB5cmgu35q467FdLMhQHed1i7+k0YavIphY/XqcTtbpIpqGWxXNfqsDnnzxCX7qI16nxkVtXs6Fp6hRe27bpSRbwqHDjhhjrG4OXhBN55bf73L9p5XLcs3iMyW6//XZ27drFF7/4Rd7znvdM/QCJRCKRzC+qCoF6MRo3i8h36qxIO0/3gVkEd0iI7/l0O3f6RHR/1S1iEeDk03DiZ2Jh4ORTYvjqoPMmWHXz9J3d5xJtvMj3s+Wa73LkO9wCTj/cVy79+tOzYnFjnpi24P6lX/olfvCDH/CZz3yGj370owD81V/9Fe985zt53/vex6OPPsrXvvY1rr/++lmd4De/+U327NnDCy+8MK37F4tFisVi9XIqlZrk3jOnP9fP091P43P6xkRpzt2vrRk8N9JT2VZSFSspjJXbKvtjtjKavCQxLZORohDQ50anh/JDJEvJKeuna9O9a0dtpNq5yFJnlisVkVxbhlE1+itHn6u2GGWPgorZn6aKDBGf5sOjefA4PXg0D26HG4fiEH3eFdGSzqk5xzUInIrBTJGXzgwykvKyoT4+Yf/ro/0ZvvjTo2SKBnG/i4/dtpaWyNQLpqZlc2YkS9jr4trOOCvil85CTmWR0qku/u+aaZq88sorshe3RCKRLAVqI99NW4TQTZ2FwSOi3ZhljTqiz2fbWn89XPZO2PQOUe994knhdJ4bhAP/IUbDRui8BVZcu7Atxiqcm3aeH4bTz4gU84XqP84MBHdPTw8vvfQSa9asGXP99ddfz8svv8zdd9/NzTffTKk0dXrrdDlz5gwf+9jH+OEPf4jHM70/4r333ss999wza3MYD5/Dx8rQyjl9DcnSYDxBPZQfYqggLieLySnrOx2KY0x0ujq8Yht2STOyueTcVOJzxXQF27arJRWVaLJDcxBwBvA4PPgcPrwOrxDOas045/Jc/S27E3meOzbESK5IZ3zi/tfPnxjiwZ+fxLBsOuI+Pvr6tYS9U4vIomHSNZKnLeLl2tVx6gLT6BUmWRBke06JRCJZooyp+d4i6r2TXSLyPXJKpHJ7o6LX93xlqtbWe1/5Huh+EY4/Ieq+K/29d39VuJyvuhXiaxaHy7nDNfpZGkWxiFHh1DMXXpd/AUzbpdyyLNTJLGuBn/3sZ9x0002zMjGARx55hHe+851o2uiHYZqmiAKrKsViccxtMH6Eu729fdYcT/cP7md3725WhqXgvhSoTfkeKgwxnB+uiumh/BCJYmJKQe1UnUQ9UeKe+BhBHfeKy0FXUKb3zwGmZY5x0a+MSg0uUM0wqUSWK8Pn8OFz+vA5fLgdblyqC6fmxKW6cGkunKqzul3o7BPbtjk2kGXXiSGKhkVbZPw+5rZt8/19PTyyVxxwrmyP8Ns3duJ2Tn2wyRQN+lIF1jUGuaYzRsC98PVQy5VL3aX7Un//EolkkVDKwmdaxP48px+Pi14QZmYjp8QopkRE2RcXjucLQXZQpJgffwIyfaPXh9uE8O58nUiLXwyc2QW7HxS13hVCLXD7fTN3ni8zJy7lU4ltYFbFNsBtt93Gvn37xlz3/ve/nw0bNnD33XefJ7YB3G43breMvEimh2VbpEvpalT63O10WmY5VIcQ0DWCuiKm4544QVdwwUXZcqKSvl0xCKwV0rWu1pqi4VRHhXTIHcLr8FYj0m5tVEhX6qFdqqiJXip/L8uyOXA2yYunRnA7VNqj4x90DdPi68+d4pljQwC8cVMjv7StbVq110OZIpmiwZUromxtj+ByyMUhiUQikUjmFadH1CLHVkEhJaK1Q0dFbXWyS0S8ffH5def215VTzu+AgVfh2E/hzPNiPi/9P3j5IWi7RkSSGy9bOKO1M7vg6fvPvz7VI3quT6e3+kWyqMMUwWCQzZs3j7nO7/cTj8fPu14iGQ/btskZuQkF9XBheEza8HhUUr7jnnhVSFdEddwTJ+AKyAj1LGDbdjWNu9Ztv2JOVaFiBFgR00FXEJ/TR9AZHBXSmmuMsZhLdS27tHzdtNhzaoRXuhJEfS4ivvFNVTIFg3948iiH+zKoCvzG9hXcsr5hyue3bZuzyQKqAjvW1F0y5miS5cVAboCIJ7Ikau8lEolkWnhCYtSvF1HmZJeo906cEd1KvLF5TjlXoWGTGFe9H049LaLew8eFednpZ0V9+qrXCzM2b2R+5gWi/n33Vye40QYUeOyTsOEtc5pevqgFt0QyHUpm6XwxXbNfMAuTPl5BGSOoa7cxb4yQKyQF9UVi23Y1Cl07Km7dlch01TSsnLId9UQJuAL4HX7cmrsqoGu3y01IT4dcyWDXiWFe603TGPJMmOLdmyrw+R8foT9dxONU+dBNq9ncGp7y+Q3L4sxIjqjXzbWrYrTHLh1zNMnyIatnebbnWXwOH5vrNtPkb1roKUkkEsnsoSijTudNm0XUe+QkDJ+AoWOib7avTkTH5wuXD9a+UYzhE3D8p8LpPNMPr3wT9n0LWrfBmp2iRn2uz68HDgnjtAmxIdUtaro7Xzdn01hygvuJJ55Y6ClI5hnLtkgWkwzlhxgsDFYFdWU/VZraiT7oCo4rqOPeOFF39JIUbbNJtXexKfq/nyembcYYiPkcPgLOAH6Xv1onXSuoPZpnUdRHL0ZGsiWePT7EmeEcbRHvhDXYr/am+IcnjpErmdQFXHz01rW0Rqd2Ii/oJl2JPCtiPq7tjBGX5miSJYpt2xSMAoO5QQZyA6yNrmVDbAMBV2ChpyaRSBY7Lj/8eXKhZzF9NCdEV4rRcqUQkQOvCdM1Uy+7nMeEI/p8EesUY+u74fRzcOzHMHgYul4QI9AAq28TUW/P1MGACyKfmN79amvQ54AlJ7gly5O8kRciOj9YjUxX9ofzwxj25GnfHs0jRPQ4gjruieOazx6GywzLtsYI6WrttG2g2Aq2YuNUnNUUb6/DS4OzAZ/Th9/px+1wV3tHezSR8i3bmF0YPck8zx4bYihTYmXch2OCA+fPDg/wL8+fxrRtVtf7+cgtawhNw4k8ldcZzBbZ2Bzkmo4YPpc8REiWPk3+JizbYt/gPrrT3VxWdxkrwytlmrlEIlmeVFLO69YLIZk4JVLOh4+Dww3+uOi3PV843KJn96qbRdr7sR+L3t6ZflHnve/foe1aWLsT6jfOrsP5dNPX57ifuDybkswLlm2RKCaqQroyKuI6o2cmfbyqqMQ8Meo8dWOEdZ1XXPY5fDIaeoHUiuiSWaqme9vYKLaCoirVllYuzUXYFSboCuJ3+asCulI7XYlQS2aXihP5CyeGKRgmK+M+1HH+v1uWzb/vPsPjh/oB2N4R4/03dEzYj7uW/nSBomFxzcoYW9rCOKbxGIlkqRBwBfA5fQzlh3i6+2lOp0+zKb6JRl+jPHZIJJLliapCqFmMpsvLtd6vidRzo7QwUe9IO1z1Prji10Vt99EfifT308+IEWoTwrvjptlxX6/fKN7jhGnlinArX7nj4l9rEqTglswaRaPIUGGIgfzAGGE93Si13+kXArpGSNd566jz1BF2y17UF4Jt21UBXRHTJbOEaZvYtg0K1ei0U3Pid/oJuUMEnAG8Dm9VSHs0TzXtW9azzy+mZbOvK8FLZxK4tImdyHMlgweeOs7+blFiccfWFt66pXlKMWFZNl2JPF6nxuvW1rG6PiAFiGRZoioq9b56ImaE7nQ3fdk+1kTXsCG2gaAruNDTk0gkkrnD5YP6daJHdrZf1HoPHoHhY6LG218v2ozNFw63SCVfdYuo9T76Izj5c0h1CZOzlx+CjteJWvDIigt/HVUVAn88l3LK5zq3f3bO+3FLwS2ZNrZtk9bTQkjnRqPUgwWxTZfSkz5eUzQRpfbWjRHUldRvr2Pq+lLJWCYS1IZtUGkPXtszOuKOEHQFCbqCVRHtdXirolqmei8uCrrJntMj7O9OEfe7CE+QFj6QLvKFnxzhbLKAS1P5wA0dXN0Rm/L5ddPi9HCOprCHazvjNIXn8WArkSwQTs1Je6idTCnD/oH9nEmd4bK6y1gVXiV/AyUSyfJGVSHYJEbTFpHiPXhY1Hxbpmgt5gnPblr3VMQ6YfvvwtbfhJM/gyOPC+F99HEx6tfD2jdB+3ZQL0C6tm+HG++aoA/3Z+e8JRhIwS05B9MyGSmOjEn7HsgNVIV1ySxN+nifwzc2Ol0ZnjoinoiMjl4AlZTvklWiZJaqglqxFVBEH/BKP+moJ0rIFSLgCuDVvNX66Uqk2nEhP1SSBSFV0Nl1fIhj/VmaI54J66lf7U3x5SeOkS2ZRLxOfv/WNXTU+ad8/kzRoC9VYHVDgO2dMUIeKTQklxYBVwC/089QYYhnzj7DydRJNsU30RpolccqiUSy/HH5oWED1K0T/byHj8HQcRH59oSEw7k2j+eNLh+su12I6/6DcORH0LVLmL8NvAbeqHA3X33bzFuLtW8XTu7f/oC4/O5vi/7g85Q9K8++L0EqbbQGc4MM5AfOq6m2bGvCxyooRNyRsWK6Zvjm04RhmWDZlhDSNYJat3RARLAr6d4u1UXYHa7WUHscQkhXBLVH88i0+2VCX6rAc8eH6E0WWBH3TViD/cRr/Ty06wymbdMR9/GRW9cQnaAfdy1DmSKZosHW9ghbV0RwO+T/G8mliaIo1HnriLgj9OX6ePLMk3SGO9kQ20DcG1/o6UkkEsnco6oQbhWj6XJInIb+V4XZmuoQbcfm8/xeUaDxMjFyw8Jk7eiPRXR637fgwH9A+3VCnNetncHz1pxLrdwxb2IbpOBetuSN/HkR6oq4ThQTkz7WoTqo84wvqGPemHR2vQAqqd7VYZVEyyzbRlVVXKoLl+rC6/DS6Gsk5Arhc/rwODyilrosqmWEenlj2zbHB4U5Wq5k0Bn3o6rnp3UZlsW/vXCGn742AAhztPft6MDlmDwqZ9k23Yk8Tk3hhrV1rGsIjvv8EsmlhkN10BpoJW/kOTJyhO5MN+ui61gXXScXkiUSyaWDNyJG/QZInhEma4kzwmTNHwdPZH7TzX0x2PLLsOmdcOZ5OPIDkQJ/6udixFYL4b3i+qmj8Q4PvO3zYvHANXUm4Gwiz96XMFk9K0R0OVJduz+V67dH81Dvq68K6Xrv6H7YHZbpdDOkUktdEdRFq0jJLAljMkZ7ULs0F3FvnJA7RNAZrArqikGZS3VJw6plylAuzS3fEi6YT/zyM8R9Y02azjVHWxEb/2CQLuj845PHea0vjQK888pWfmFz05T/b3TT4sxIjvqAh+2rYrRGpGeCRHIuXoeXjnAHyWKSl/pf4nRKuJnLNmISieSSwuGC+GqIrRKtxYaOiVTzwcOixttfd2H11BeK5oCOG8QYPg6HH4NTz4g0+Oe+BHv/Bda+QaScz1VP74tACu5FjG3bVVE9kBuoRqgrl3NGbtLHB5yBUSHtE6K6ctnv9EthN0PGE9W6Kdpn2YjU70prrJg3RsQdwevw4nP48DpFlNrr8Mq0b8l55Esmu08Nc7AnRdzvntAc7cxwji89cZTBTAm3Q+V3XreKre2RKZ8/WzToTRVYVe9ne0ecsE8KB4lkMsJuUbozlB/i6bNPczx5nI3xjbK+WyKRXFooSo3J2mbhKD7wKgyfFE7jgQaxnU9iq+C6D8PWd4tU86M/qkk3/w6svAHWvxmiK+d3XpMgBfcCY9s2GT3DYH6Q/lz/mO1AfoC8kZ/08SFXiAZfw5i078pl6fp9YRiWQdEUEerKtlLX7tRGRXWdt46QO4Tf6a9GqSuRanlCJpkuI9kSz58Y4uRQjtawF69r/AWZ3adG+MrPT1AyLOqDbn7/1jXTilLX1mtf0R7B45QLPhLJdKi2EbMi9Of66T/TT0e4gw2xDdR56xZ6ehKJRDK/eMLQslWkmydOw8AhSHaDbUOwAVyB+Z/P5l+EjW+HM8/B4UdFJP7Ek2I0XAYb3gwtV46t314ApOCeB8aLVM9EVEfdUZH27RMR6so27o3j1uZ5VWmZUDEqK5rF6jBtE+yy67fmwq25afA1EHVH8btGRbXP4ZOiWjIrnBnOsevEMMPZEh0xH45xzNEsy+a7L5/l+/t6ANjUHOJ3b1pFwD35z3dtvfaONXWsb5T12hLJheBUnbQGWikYBY4ljtGV7mJNZA1ro2sJuxdf6qJEIpHMKU5Puaf3atFObOA10dc71StSzee7rZjmgI4bxRg8Aq99H87sgv4DYgSbRMS786b5m9M5SME9i+T0HP35fiGqa4T1TER1g6+hWlvd4G0g7o3j0qZ2HZaMj2mZFMxCVVRX6qpVRcWluarO31F3lKAriM/pEyngZXEt078lc4Fl2RzoTrLn9AiWDR1x37glHrmSwT89dYJ93UkA3rCpkV/a1oY2hXCW9doSyezjcXhYGVpJupRm/+B+TqVOsSG2gc5wpzRWk0gklx6qBpEVEG6HTD8MHRU13oN9wuzMF5//yHLdWqj7A8gOwuEfCIfzdC+8+H/hlX+HFTtg7Rvnd05IwT1jCkaBvlwfQ4WhqpgeyA3Qn+8nq2cnfWzEHRkToa5s67x1UlRfJLqlUzRGo9UlqwQ2aKpWTQFv8bcQdocJOAPVNHCf0yc/e8m88+KpYbqGTMJeFzH/+P//zibyfOmnR+lLF3FqCu+9voPrVk3dpihTMOhLF1hd7+caWa8tkcw6QVeQgDNAopjg+d7nOZY4xsb4RlaGVsrjiUQiufRQFAg2itG4SfTy7j8Ig0dFP+/5NlgD8ZpXvhs2vwtOPAGv/bdYFDj6Qzj1NGz7LRGpnyek4J4B9+26j28c+sak96nUVNcK6kpNtTwQXzyV+uq8kadoCtMyEGngldZZjf5Gop4oPoeIVlfEtYxWSxYLh86mWVMfw+ca/yd4z+kRvvL0CYqGRczv4iO3rGZlfOoWFgPpIrmSyZUrolzRHpb9tSWSOUJRFKKeKGF3WBirdT/NscQxNsQ20BZsky0cJRLJpYk3Cm1XQf16GDkBfQeFwZrTKwzWtHkOAjg9om3YmjdC94tw8BGIdMyr2AYpuGdE3CuiS16HlyZ/U1VM14prj2N+/4DLFdMyKZpFkQ5uFClaxWp9dUVYN/ubq8La7/Tjd/plbbVk0dI9PFpW0hbzjiu2Lcvmkb3d/Pf+XgDWNwb50M2rCHomP0BZlk1XIofHqXHTujrWNARkFwLJJc/J5ElMy5zT16gYq0WtKAO5AX7W9TPagm2si66jJdAij0cSieTSxB2Api0QXyvqu/sPwsgp0W4s0CS284mqQvt2iHbAAgRApeCeAb+87pfZXLeZ14ZeY2V48VjNL2Vs26ZklSgYBQqGqLW2bRtFUUQbLaeXukAdMU8Mv0uI6oAzIIW1ZMlgWjYHzyZ58nAfZr4Z23byfPdu3tB5Iw5t9Cc4UzT4p6eOc+BsCoA3bGzkl66aul67qJt0JfI0hz1cuypOY0gu+kkkuqXz8Sc+TtbIcnPbzdzSdgvuOWxd41AdNAeaKZklejI9nM2cZUVoBeui62j0NcoFMIlEcmni9EDDBmGwNnJKmJglukT9d7ARFiJQuQAZSFJwz4BK/a/kwqhErfNGnoJZQLd0sKnWWMe9ceKeuKiPc4k6a5/DJ1PBJUuWXMlgz6kRvvziI7yS+xqaV5if/XDkL/jhQJibYr/DO9ffzumhHP/wpOiv7dJU3rtjJdd2Tl2vnczrDGWLrG8KcnVHbErnconkUuF06jSGbZAupfmv4//FT07/hJvbb+bmtpvxO6cuz7hQXJqL1qBwND+VOkVXuouOUAfrYutkKzGJRHLpojmhbo2IMCfPQP8hEfkG4SLunHtz15xZ4tr9fwPA8xvfMq9ml/LsTDIn6JZejVrnjTyWbaEqKh6Hp5qSH/PEhIGZS0StZY27ZDkxkC7ywslh/mXff/Fy6fOgQW2My9aSPJn8G7qfz3Hg6Ep006Y+4ObDt66mPTr5QcC2bXpTBUzb5pqOGFtaw+O2FJNILlVWR1bz8Nse5q9e+Cue63mOocIQj554lB+f+jE7WnZw64pbiXlic/b6HoeH9mA7OT3H4cRhTqdP0xnuZG107Zy+rkQikSxqNAfEOiGysiy8Dwrhbdsi4r1MOz5IwS25aHRTJ2/kq5Fr27ZFrbXDQ9AVpDPcSdgdrjq7+pw+mQ4uWbbYts2xgSwvnhwmWSjwSv5rQmyfk1GqKOL4csT8F3Tzbi5vjfLBGzvxTxGl1k2LrpE8UZ+LqzuidNTNXbROIlnKuDQX2xq3cWPrjRweOcyPTv2IrkwXT3Q9wc+6f8ZVjVexc8VOWgItczYHn9NHh7ODTCnDoeFDnEqeYlVkFWsia4h4InP2uhKJRLKoUVWIrhQtxVLdMPAqDB0D2xQ13q7lJbyl4JbMCN3UyZt58vqouHaqTrwOLzFvjHpvPSFXiIArQMAZwOvwyto1ySVD0TB5pSvJvq4kbofKqfQBcCSZ6BugKKA4k1yxZpiPXH8N6hTflUzRoC9VoKPOz/aOGNEJWopJJJJRVEVlW+M2rmy4kleHX+Xx049zeOQwL/S+wAu9L7ApvonbVtzG2sjaOTteBVwBAq4AqVKK/YP7OZE8wZrIGlZFVhF2h+fkNSUSiWTRo6oQaYdwGzRsFKnmw8chYywr4S0Ft2RCTMskZ+RE5NooYNnW+eLaHRICu2xkJpFcqiRyJV48OcyxgSwNQTdBj5Mnzw5O67GNsdKUYlu0/DLY2h7hivYIHqf0NpBIZoKiKGyMb2RjfCOnU6f50akf8fLAyxwcOsjBoYOsCK7g9Stez9b6rXPmHRJyiWNmsphkb/9ejiWPsTq8etEI75ye49p/vRaA53/j+XmtcZRIJJcwiiJEd6gVUmdFqvnQMciY5Rrvpf1bJAW3BADLtigYharANi0TTdXwOryE3WGR/uaOEHQFCbqCUlxLJDWcGsry4skRhrJFVsR8OMv11HWeOkhP/fg6z8RmSma55ZfP6eB16+pZUx9AncK5XCKRTM6K0Ao+uOWDDOQG+OmZn/Jcz3OcTp/mqwe+SswT49b2W7mu+bo5O9aF3WFCrhCpUqoqvNeE19AZ6VwUwlsikUgWBEWBcCuEWkYj3kNHyzXe82OuNhdIwX2JUjJL5IwcOT1HySqhoODVvPicPlaEVhB1Rwm5QgRdQZkWLpFMgG5a7O9O8nJXAhWFzrh/zHflpvbt/GdPGFtLnlfDDeL4oZgRbmrfPu7z50sm3ck87REv13TGaJAtvySSWaXeV8+vrP8VfqHzF3iq6yme6n6K4cIwDx95mP8+8d/c0HIDN7XdRNQTnfXXVhRljPB+qf8ljiaPLmjEu7Zv+e6+3exo2SE7hUgkkvmnEvEOtkD9Bug7IFLNUSDUtDDtxC4CKbgvASzbIm/kyenl6LVt4tJc+Bw+WgOt1PtE3XXILVLDpaGZRDI1ybzO7pMjHO1PEw+4CXud593HoTnY4nkPr+hfEOK6RnTbttjeFPvtMf24KwxnSyTyJTa3hNi2MorPJX+uJZK5IugK8uZVb2bnyp3s6t3FT8/8lP5cP4+ffpyfnPkJ2xq2cWv7rawIrZj11z5XeL888DJHE0fpDHeyOrJ6TsT+eDx+6nHu3XVv9fKHf/xhGn2NfHL7J9m5cue8zEEikUjGUKnxDrUKV/O+AzByAhQNQs2wRDocyTO4ZYhu6eR0Eb0uWkURvXZ4CTgDrAqvIuqNVuvIZCsuiWTmnB7K8eKpYQbSRdqiXtyO8yNAlm3zwwN9PLe/FTXwm7gb/xPFmazerpgRbor9Nu9cf/vYx1k23ck8Tk3hhjV1bGgKockUcolkXnBpLm5svZEdLTs4MHiAn575KUcSR3ix70Ve7HuR1eHV3NJ+C5fXXz7ri9O1wjtdSrN/cD/HE8fpiHSwKrxqTvt4P37qce564i5s7DHX9+f6ueuJu7j/lvul6JZIJAtH1dW8DRKnoXef2DpcEGgW7cYWMYt7dpJpUTSKZI0sOT2HYRk4VAc+h4/mQDMNvobqATzgDMjUcInkIqikkL/SJYRzZ51/XLOzTNHgwZ+f4OXy/a6pu4m3bn479+79GLbt5M2t7+ENnTeeF9ku6CbdiTzNYQ/XdMZoDi/NWiWJZKmjKipb6rewpX4LZ9Jn+Onpn7K7fzfHksc4ljxGzBPj5rabub7leryO2f2eKooiDEndQngfHDzI8cRxVoZWsiq8igZfw6wey03L5LO7Pnue2AawsVFQuG/XfdzafqtML5dIJAuLqok+3uF20b+79xWxdfkg0ChuX4RIwb3EsG2bglkgqwuBbdomHs2D3+lnTWQNcW+csDtM2B3GrbkXeroSybIhkSvx4qkRjvdnJkwhBzg2kOH/e/I4w7kSDlXh17ev4Ka1dWSKOTRvDwA3tl1zntiupJCvbwpydUeMwBT9uCUSyfzQHmznPZe9hzvW3MFTXU/x9NmnGS4M852j3+H7J77PtU3XclPbTTT5m2b9tStGpVk9y+GRw5xInqA92M7qyGqa/E2zEmXf07+HvlzfhLfb2PTmetnTv4drmq656NeTSCSSi0ZzQN0aiKwQtd09r8DwMfCEwV8Pi6w8Vp7RzYCcnuPXv//rAPzNzX8zL4K24h6e1bPkjBw2Nh7NQ9AVpCPUQcwbq7qHO9XxBYBEIrlwbNvm5FCO3SdHGM4VaYv6cDnO/yGvpJB/56VuTNumMejm925ezYrY5K0sLMvmbDKPpirsWB1nQ1MIh7a4DhQSiUQ4i7919Vt5Y8cbeaH3BZ7sepKebA9PdQuztY2xjdzUdhOb4ptmPd3c7/Tjd/rJG3lOJk9yMnWS1kArayJraA40X9TxfyA3MKv3k0gkknnD4YKGDSLdfOioiHgPHhGi2xtlXMfaBUAK7kVGxeAsq2fJG3ls28bn8BF0BVkbXUvUE60KbGluJpHMLQXdZF93kn1dCZyaep4LeYV0QefBn5/klW6RQr69I8ZvXbcSr2vy1KZKCnlT2MPVHTFaIzKFXCJZ7Lg0Fze03sCOlh0cHjnMk11Psn9wP4eGD3Fo+BB13jpe1/o6rmu+btb7WHsdXtpD7RTNImczZ+lKd9Hga2BtdC1twbYLCgTU++pn9X4SiUQy7zi90LQFop3Q/yr07YehIxBoAk9ooWcnBfdCY9t2VWDnjFxVYIfcIdZF1xHzxIh4IgSdQVl/LZHMIwPpIrtPDXNqKEdD0E3QM34E6dXeFP/81AkSeX1MCvlU31eRQq7LFHLJsqK7u5u7776bRx99lHw+z7p16/jKV77CVVddtdBTm3UURWF9bD3rY+sZzA/ys66f8VzPcwzmB0W6+fHvc03TNbyu7XW0Blpn9bXdmpu2YBu6qTNUGOKprqeIeWKsiaxhRWgFAVdg2s+1rWEbjb5G+nP949ZxKyg0+hrZ1rBtNt+CRCKRzD7uALRfDfFVwtF84DXIDkCoGbMmUDnfbQ/lGd48c24NtoWFV/MSdodZG11L3BMn7AlLgS2RLBCWZXOkP8OeUyNkSzorY75xU7wty+Y/XznLf+3rwbahKezh925aRXt06ohWVyJP1Kdyw+o4G5qlC7lkeTAyMsINN9zArbfeyqOPPkpDQwPHjh0jEoks9NTmnDpvHb+49hd5y6q38GLvi9V085+f/Tk/P/tzVoVX8brW17G1YSsOdfZOvZyakyZ/E6ZlMlIc4fne5zk4fJBV4VWsDK0k5olNeS6hqRqf3P5J7nrirvNuUxCPvXv73dIwTSKRLB18Meh8HdStg95XePzED7h34OnqzfPd9lAK7nmgZJbI6Blyeg7d0vE4PASdQVaFVxH3xmWKuESySMgUDV46PcKrPSkCbicd8fGjRMPZEv/89HEO92UAuGF1nN/YvgK3c3onpLGAk9evb5Qu5JJlxX333Ud7ezsPPvhg9bqOjo6Fm9AC4Nbc1XTzo4mjPNX9FC8PvMzx5HGOJ4/zH0f+g+taruOGlhuIe+Oz9rqaqlHnrSPuiVd7eR8eOUx7sJ3OcCeNvsZJBfPOlTu5/5b7uXfXvfTn+qvXN/oauXv73bIlmEQiWZoEG3l8yOaunh+cl78zn20PpeCeA0zLJKNnyOgZdFPHqTqrNdj1vnqibtEHW64WSySLhzPDOXafGqE3VaA17J2w/vql0yN89ZmTZEsmbofKb123kutWTX3iPJQrVfdft7Zeim3JsuN73/seb3rTm/jlX/5lnnzySVpbW/nwhz/M7/zO7yz01OYdRVFYG13L2uhaksWkiHR3/5xUKcWPTv2Ix089zqb4Jm5svXFWTdYqvbzD7jBZPVsV+o2+RtZE1tASaMHj8Iz72J0rd3Jt07Xs+OYOAP7htn+Y15RLiUQimW1My+SzL/zVOMUy89v2UAruWaBidJYpZcibeVRUAs4A7cF2mvxNxDwxwu6wdBGXSBYhRcPkQHeKfd1JbNtmVdyPOk6Kd8mw+PcXz/DEYeHU2xH38TuvW0VjaPyT1wqGZdGdEAaIFfyyXluyDDl+/Dhf/vKXueuuu/jTP/1Tdu3axZ133onb7eY973nPuI8pFosUi8Xq5VQqNV/TnTfC7jBv7nwzb1r5JvYN7uPp7qd5beQ1Dgwd4MDQAaLuKDtadnB9y/WE3eFZe92Ks3nJLDGUH+Js9ixRV5TVkdW0BduIeCLnPab2hPOqxquk2JZIJEuaxdL2UJ71XSAls0S2lCWjZ7Cw8Gk+Ip4ImwObiXliRD3RCVeRJRLJ4qDWGK0+4CY0QW/trpEcDzx1nLOJAgBvuqyRd25tnbJ9V6Zo0Jcq0B7zcXVHC7/zun2z/h4kksWCZVlcffXVfOYznwHgyiuv5MCBA3z5y1+eUHDfe++93HPPPXM2J03RGMwPErWj+J3+BS3d0lSNrQ1b2dqwlf5cPz/v/jnP9TzHSHGE75/4Po+efJTN8c3saNnBxvjGWZurS3PRHGjGtEwSxQQv9L3AwaGDtIfa6Qh10OBrqAprn9PHvvfK3ymJRLI8WCxtD6XgvkAGc4PU+erYFNok0sQ9UWl0JpEsEQzT4rW+NC+fSZArGayI+XCOI55t2+bHr/bz7d1dGJZNyOPgAzd0srl18iiUbdv0pYuUDIut7RGuaI/gmWZ9t0SyVGlubmbTpk1jrtu4cSMPP/zwhI/5kz/5E+66a9SsK5VK0d7ePivz8Tv9XNV4FWfSZ+jL9jGYH8SpOgm7wwScgQU9Xjf4Gnjn2nfy1lVvZe/AXp7ufprjyeO8MvgKrwy+QtQd5bqW67i++XqinuisvKamasS9ceLeOOlSmiMjRziaOEqDr4HV4dW0BFpmvY2ZRCKRLCSLpe2hFNwXyM6OnTT5m2SauESyxEjmdPacHuFIf5qwZ2JjtGRe58FnTrC/W6S4Xt4a5n07OiaMglcoGRZdiRxRn4vrV8dZVTd+726JZLlxww038Nprr4257vDhw6xcuXLCx7jdbtzumfeOng6KotAR7qAj3EGmlKE/18+ZzBn6s/2LRnw7NSfXNF3DNU3X0JPt4Zmzz7CrZxcjxREePfEoj514jI3xjVzffD2b6zbPmsN50BUk6ApSMksMF4Z5KvMUYVeYjnAH7cF24t64NHKVSCRLnsXS9lAK7gsk7olLsS2RLCEsy+b4YJaXTo8wkivRGvZO6Cq+90yCrz17knTBwKkp/PJV7dy6vn7Kk/JErsRwtsSqhgBXr4wS8bnm4q1IJIuSj3/84+zYsYPPfOYz/Mqv/Aq7du3igQce4IEHHljoqRFwBQi4AqyKrCJdSjOQG6iK76H8EA7VQdgdXtC082Z/M+9a+y7evurtvDzwMs+cfYYjiSMcHDrIwaGDBJwBtjdt57qW62j2N8/Ka7o0F03+JizbIllMsm9wH68Ov0qTv4mOcAfN/ma8DmnwKJFIliaLpe2hYtc6+SxDUqkU4XCYZDJJKBS6qOfK6Tmu/ddrAXj+N56XqVcSyRIhXdB5+UyC1/rSeBwaDUH3uOK5qJv8++4uniwbo7VFvfzOjatojU5+wmlZNmeTeTRVYUtrmMtaw+OmqEskUzGbx6yF4L/+67/4kz/5E44cOUJnZyd33XXXjFzK5/v914rvgewAaT1djXwvdM03iLrCZ3ue5fme50mVRg3lOkIdXNd8Hdsat826IM4beUYKI5SsEmFXmM5wJ62BVhn1lkgkS5bHTz1+XtvDJl/TRbU9nMnxSgruGZAupmW7DIlkCWHbNieHcrx0eoSBdJGWSdp9HR/M8JWnTtCXFo7Jb9rUyDuubJ1SOOdKBmeTBVrCHq7qiNEakdEgyYWz1AX3xbKQ7z9dSjOQH6A73U1fro9MKYOmaoRdYQKuwIKKTdMyOTR8iGfPPsv+of1YtgWAU3VyRf0VXNt8Leui62Z1jpZtkSgmSJVSuFQRCe8IddDkb5IBB4lEsuSYbR0nBXcNs3XwHm9lpNHXyCe3f3LOm6VLJJKZky0avNKV4NXeNJqi0BT2oI4T1TYsi++/0sP39/Vg2RD1OfnADZ1sbJ7898K2bfrTRQq6yYbmEFeuiOBzySodycUhBffieP+ZUoaB/ABnM2fpyfaQ1bOoqITcIQLOwIIutqdKKV7ofYHnep6jN9tbvT7qjnJ109Vc23Qtjf7GWX3NStS7aBYJu8KsCK2gLdhGnbdu1urKJRKJZC6Z7UxlKbhrmI2D9+OnHueuJ+46r9i+kvt//y33S9EtkSwSbNvm9HCOl04n6E0VaAp5CEzQ97o3WeCfnz7OyaEcANs7Yrz72hVT9smuGKOFvS6uWhlhVV1g3N7dEslMWSyCc6FYjO8/p+dGxXemh5SeQlM0As4AIVdowcS3bducTp/m+Z7nebHvRfJGvnrbytBKtjdt56rGq/A7/bP2mpZtkSqlSBaTqIpK3BNnVWQVTb6mcft6SyQSyWJBCu455GIP3qZl8qaH3zRh0/SKu91j73pMppdLJAtMrmSwryvJwbMpVFWhOeQZVwhbts1PX+3n4T3dlEwLn0vjN69dyfbO2JSvMZIrMVI2RrtqRZSoXxqjSWaPxSg455PF/v7zRp7B3CC9uV660l2kS2lsbIJO4frt1BbGTFU3dfYP7ef5nuc5NHyomnKuKRqb4pvY3rSdy+oum1Wz15JZIlFMkNWz+Bw+mgJNrAiuoNHXKFPOJRLJomMhBbfMA5qCPf17JhTbADY2vble9vTv4Zqma+ZxZhKJpEJtVLsvVaBxkqj2UKbIg8+c5NXeNAAbm4O8f0cnsSmEs2FZnE3kcTpUrl8dZ0NzSBqjSSSXGF6Hl/ZQO+2hdi6vv5zB/CD92X7OpM/Qm+vFtE38Dj8hdwi3NjftzsbDqTm5suFKrmy4klQpxYu9L/JC7wt0ZbrYN7iPfYP78Dq8bK3fyjVN17A6svqi671dmosGXwMAWT3LmdQZTiRPEHKGaA+10xpopd5bv2CLEBKJRLJYkIJ7CgZyA7N6P4lEMrtkKrXaPSk0VaUz7h83qm3bNs8cG+KbL5whr5u4HCq/tK2NW9bXj1vbXUu6oNOfLtIW8bKtI0pzWBqjSSSXOm7NTWugldZAK5vrNjNUGBK9vtNnGMwPUjJLeB1ewu7wvLbWCrlCvH7F63n9itfTk+lhV+8uXux7kUQxwbM9z/Jsz7NE3BGuaryKqxqvoi3QdtF9yP1OP36nv5pyfnDoIIeGDhH1RFkZWkmTv4m4Jy4zASUSySWJFNxTUO+rn9X7SSSS2cGybE4N59h7OkF/WtRqT1R7nciV+Ppzp3ilKwnA6no/H7ihk8aQZ/LXsG16kwVMy+bKFVEubwvjmaB3t0QiuXRxak6a/E00+Zu4LH4Zw4VhBvODnE6fZqQwQl+2D5fmIugKzmu7seZAM3esuYO3rX4bxxLHeKH3BfYO7CVRTPDj0z/mx6d/TKOvsSq+KxHrC0VVVCLuCBF3BN3SSRaT7O7bjUt1EffGRcq5v5GoJypbjEkkkksGKbinYFvDNhp9jfTn+s8zTYPRGu5tDdsWYHYSyaVJMq+zryvBa70ZnJpCZ51/3Ci1bds8d2KYh3adJlcycagKd2xt4U2bmqY0OcuXTM4m8zQEPWxbGWFFzHfRUSCJRLL80VSNel899b561sfWkywmGcwP0p3pZiA3wFB+CIfqIOgKzpvjuaqorI2uZW10Lb+87pc5MHSA3X272T+0n75cH/994r/57xP/TXuwnW0N29jWsI2Yd2pPi8lwqk7qvHXUeesomkWSxSTP9z6PR/MQ98ZZGVpJva+eqDsqf1slEsmyRgruKdBUjU9u/yR3PXHXebdVXMrv3n63TJOSLCpyJYNNn/oBAAf/95uWTbsq07I5PpBh75kEw7kSzSHPhO8tmdf5f8+dYu+ZBAAdcR/vv6Fzyj7Z1XZfhsllLSGuaI8Q9MgaRIlEMnNURSXqiRL1RFkbXUu6lGYwP0hvtpeeTA/dmW5sbALOAEFXEJc29yaMTs3J1oatbG3YSt7I88rAK+zu281rI69xJn2GM+kzfPfYd+kMdXJl45Vsrd9K1BO9qNd0a+5q9Dxv5BkuDHM2cxaPw1ONfDf4Goi4I1J8SySSZcfyOAufY3au3Mn9t9w/bh/uu7ffLVuCSSTzwFCmyCtdSY72p/G5HKJWe6Ko9vFhHnpBRLU1VeHtV7Rw+2VNaFNEtYu6SXcyT9Tn4tpVcVbVjV8PLpFIFjez7UY7WwRdws28M6ViT88AAE/ISURBVNxJ3sgzlBd135Xot27peB1eQu7QvNR9ex1erm2+lmubryVdSvPywMvs6dvD0cRRTqROcCJ1gv848h+sCq/iyoYruaL+iosW316Ht/recnqOwfwgXekuvA5vVXzXeetk2rlEIlk2SME9TXau3Mm1Tdey45s7APiH2/6BHS07ZGRbIpljSobF4b4U+7pSZIoGLWEv7gnqqEdyJf5fTa32ipiP99/QQXt08pNt27YZzJTIlAzWNQbZ2h4h4pPtviQSydzhdXhpC7bRFmxjS/0WhvOi7rsr01Wt+3Zqzmrq+VyLz6AryI2tN3Jj640ki0n2Duzlpb6XOJ48Xh0PH3mYjlCHiJDXbyXujV/Ua/qcvupiSE7PMZQfoivdhcfhIeaJ0R5sp95bT8wTk+dbEolkySIF9wyo/bG/qvEq+eMvkcwxZxN5XulKcHooR8TnorPOP+79bNvm6aOD/PuLXeR1Uav9titaeNNljTjUyU9Si4bJ2USBoMfB69bWsbYhOGUkXCKRSGYTp+qk0d9Io7+RjfGNJItJhvJDnM2eFc7nhTMoKNXU87lutRV2h7m57WZubruZRDHB3v697O3fy/HkcU6mTnIydZJHjj5Ce7CdK+qvYGv9Vhr9jRf1mrXiO2/kSRQS9GR6cKpOIp4IbcE2GrwNxL3xeUm9l0gkktlCCm6JRLLoyBYNDnQnOdSbxrQs2mO+CXteD6SLfO3Z0b7anXV+3rejY8pabRBp6smCzqr6ANtWRKfsxS2RSCRzTW3d95rommrkty/Xx9nMWfpyfRiWgcfhIeQSqedzWfcccUe4pf0Wbmm/hWQxycsDL7O3fy9HE0erNd//dfy/aPI1cXn95Vxefzkrgisuak61aedFs0iqmOKlvpdQVZWQM0RLsIVGXyNxT5yAKzBbb1UikSxDbNsmUUzQn+vn/lvux6W55r3MSApuiWQZYlqjjvq7TgzzurX1SyJqa1k2J4ayvHwmwUC6SEPQPaFhmWXZPP5qH4/sPUvJsHBpKndsbeENGxunrLsuGRZnE3n8bgc3rKljXWNwQkEvkUgkC0kl8tseake39DGp54lCgr5cHw7VQcgVmnPX87A7zE1tN3FT202kS2n2De5jb/9eDo8cpjfXS++pXn546odE3BG21G3h8vrLWRNZg0O98NNNt+YWru/UY1gG6VKaV4de5eDgQQKuAHXeOloCLcQ9cSLuiMw+lEgkWLZFophgIDfA6fRphvJD5I08lm3R5G+a9/lIwS2RLDMe29/Dp793oHr5fQ++QHPYw6fftonbNzcv4MwmZzBTZH93kmP9GdwObcJWXwBnhnN87dmTnBzKAbC+Mch7rl85ZV9tqIlq1/nZuiJKXcA9q+9DIpFI5ora1PNN8U2kSimG8kP0ZHvoy/bRnenGsi38Tj9BVxCPY+rfxAsl6Aqyo2UHO1p2kNNzHBw6yCuDr3Bg6ACJYoKnup/iqe6n8GgeNsU3saVuC5vimy4qsuRQHdXov2VbZPUsZzNnOZE8gUfzEHKHaA20UuetI+aJLRqzPIlEMveYlslIcaQqsocLwxSMAh6Hh7ArTJO/icH84ILMTQpuiWQZ8dj+Hv7HN/ac1zG+N1ngf3xjD1/+zW2LTnQXdJNXe1Ic7EmRLZo0hz14JjBFKxkW//XKWX5woA/TtvE6NX7pqjZet7ZuQnFe+9juZA6/y8ENq+tY1ySj2hKJZOmiKAphd5iwO8yqyCoKRoHhwjAD+QG6092MFEYomkVhvOYM4nf65yz663P6uLrpaq5uuhrd1Hlt5DVeGXiF/UP7SZfS7Onfw57+PaiKyurwajbXbWZz3eZqq7ALQVXUqus7QNEokiql2DuwFxUVv9NPva+eJn8TMU+MiDtyUZF2iUSy+NBNnaGC6PbQle5ipDhCySzhc/iIuCN4/XPf7WE6yF8eiWSZYFo29/znwfPENoANKMA9/3mQN2yauj3WfGBZNqeHc7zSlaAnWSDmd9FZN3E05lBPim88d4q+dBGAbSsi/Mb2FdNyE6+Nal/RHqU+KKPaEolkeeFxeGgJtNASaGFL3RZGCiMMF4bpyfYwkBsQ0W8s/I65jX47NWdVUFu2xanUKfYN7mP/4H56sj0cSRzhSOII3zn6Heq99Wyu28xl8ctYHVl9cannDjf1DpF6blomWT1LV7qL44njuDQXQVeQZn9zteVYyBWSPb8lkiVIVs9WfS26092k9TSWbeFz+Kjz1uHWFt853qIW3Pfeey//8R//wauvvorX62XHjh3cd999rF+/fqGnJpEsOnadGKYnWZjwdhvoSRbYdWKY61dfXCuXi2U4W+KVrgTHB7JoisLKuG9CN/F0QeffX+zi2eNDAES8Tt597QquXDF1L9iKA3lA1mpLJJJLCFVRiXvjxL1x1kbXktNzDBdE7Xd3ZjT67VAd1bZjcxH9VhWVznAnneFO3r767QzmB9k/uJ99g/s4ljjGQH6An575KT8981Pcmpv10fVsim9iU3zTRfX71lSNkDtEyB0ChPFappTh4NBBLCx8mo+QO0RzoJmYJ0bUHcXv9EsBLpEsQkzLJFFMMFQYoifTw0B+gEwpg6Zq+J1+mvxNONW57dxwsSxqwf3kk0/ykY98hGuuuQbDMPif//N/8sY3vpGDBw/i94/fHkgiuVTpT08sti/kfnNBQTc53Jdmf3eSTNGgOeTF6xr/JM+2bZ45NsS3dneRKRoowC3r63nnla34XJP/dFX6aqeLBqvq/VzZHiEua7UlkksG0zKr+7v7drOjZcclbaZVMV5rC7axpW4LiWKC4cIwfdk++nP91dpvn9NHwBmYM+fzOm9d1fE8b+R5bfg1Dgwd4MDQAdKlNK8MvsIrg68A0OxvZlN8ExtjG1kVWXVRJ9RuzY3b6ybujWPbNnkjT6qUorevF0VR8Dv8hD1hmn3NRL1RIu4Ifqc8z5RIForaRcKzmbMki0mKZrGarRILxVCVpRNAWdSC+7HHHhtz+cEHH6ShoYHdu3dz0003LdCsJJLFSUNweumB073fbGJZNieHsuzrTtKbLBD1uVhVN3Erl7OJPN94/hSH+zIAtEa8vOf6layun7r9S0E3OZvME/a6uHldPavr/ThkVFsiuWR4/NTj3Lvr3urlD//4wzT6Gvnk9k+yc+XOBZzZ4kBTtTHR77yRZ6QwwlB+iO5MN4niqPN5wBkg4AzMSd9vr8PL1oatbG3YimVbdKW7ODh0kANDBziVOkVPtoeebA8/Pv1jXJqLtZG1bIxtZENsAw2+hgteEFAUZUzP74r52lB+iLOZs2CD3+Un7BYCPOwJywi4RDLH6JZOoiAWAnuzvQzkB8jqWWxs/A4/UU90Tk0g55pFLbjPJZlMAhCLxSa8T7FYpFgsVi+nUqk5n5dEshjY3hmjOeyhN1kYt45bAZrCHrZ3Tvz9mQv60wX2d6U4MZjBqal0xP0T1pAXDZPv7+sRpmiWjUtTedsVzbxhU+OEKecVLNtmIF0kr5usawyytT0yrfpuiUSyfHj81OPc9cRd2Of8Cvbn+rnribu4/5b7peg+B6/DizfgpSXQwmV1l5EqphguDtOf7ac321vt++12uAk4A/id/lmPLKmKyorQClaEVnB75+1k9SyvDr/KwaGDHBo+RLqUrkbCAaLuKBtiG1gfW8+66LqqcdqFvnat+VqtAO9Od6MoCl6Hl5ArRJO/qVr/HXKFLumsCYnkYrBsi2QxyUhxhMH8ID2ZHjKlDCWrhFtzE3AFiLqjy+Y7pti2Pd65+aLDtm3uuOMORkZGeOqppya835//+Z9zzz33nHd9MpkkFArN5RQlkgWn4lIOjDndrMjb+XQpTxd0Xu1N82pvioJu0hzyTug+DvByV4KHdp1mMFMC4PK2ML+xfcW02nZliwa9qQJ1ATdXtEdYVeefshe3RLIYSaVShMPhS/aYdTHv37RM3vTwm+jL9Y17u4JCo6+Rx9712LI5iZtrdFNnuDDMSHGEs5mzDBeGx0SdAq4AHs0zp5Ffy7Y4mznLq8Ovcmj4EMcTxzFsY8x92gJtrIuuY11sHWvCa3A7Zq+EyLIt8kaerJ4lb+QBkaLud/qp99YT98aFAHeH8DoWhyOyRLLYsGyLdCk9xswxVUpRMAo4FAd+l5+AM4BLm9tAyWB+EK/Dy1tWveWin2smx6slI7g/8pGP8P3vf5+nn36atra2Ce83XoS7vb39kj15kVx6VPpw96VGvwfz2Ye7ZFgcH8ywryvJULZEfcBN2DtxOuJAusg3XzjNy10igyXqc/Ib21ewtT0y5Umcadn0pgqYlsWG5hBbWsMEPYvbOEMimQwpuC/8/b/Q+wIf+MEHprzf/33T/+WapmsudIqXNFk9y3BhuJp+XTlh1hRt3k6YS2aJo4mjvDb8Gq+OvCrSwGtQFZWOUAfroutYG11LZ6hzVlPibdumYBbI63myRhbTMtFUDZ/DR9gdptHXSMgdqkbNF7uZk0QyF5iWSaqUIlFMMFIYoTfbS6qUomgWURBlHX6nf84X7M5loQT3kkgp/+hHP8r3vvc9fvazn00qtgHcbjdutzRHkly63L65mRvW1LHlz38IwFfffw2vW1s/563ALMumayTP/u4kXYkcQbdTRJon+CHVTYsfHOjl+/t60E0bTVF4w6ZG3np586SR8ArJvM5gpkhz2MPW9ijtsbkx+ZFIJEuDgdzArN5Pcj5+px+/0097sJ3L6y+vpp8P5Aboy/YxkBtAt3ScmrOafj7bva9dmqvqZA6QKqU4PHyYwyOHeW3kNYYLwxxPHud48jiPnXwMh+qgM9TJmsga1kbXsjK08qIWBSop5l6HlxiiRMuwDHJGjsH8IF2ZLgDcqhuvw0vcG6fOW0fAFSDkCs3JZyKRLDQls0SymCRZTDJcFIaMGT1D0SiiqRoezUPYHZ53gb1YWNTfeNu2+ehHP8p3vvMdnnjiCTo7Oxd6ShLJkqBWXG/vjM252O5PFTjYk+L4QBZVgfaob9L2W690JXjohTMMlHtqr2sM8JvXrqQlMnU6nm5anE3mcWkq13TE2NgcmtDpXCKRXDrU++pn9X6SyVEVlYgnQsQTYVV4Fbqli5Ptgqj/7s/105PtwbTMak2mz+Gb9XT+kCvE1U1Xc3XT1YCIYB0eOcyRkSMcHjlMqpSq9v5+9OSjOBQHK0MrWR1ZzZrIGjrDnRdtxuRQHdW6bhDnryWzRM7IcSZ9hmPJYwB4NI8Q6p4YcW+coDNIwBUg4ArISLhkyWDZFhk9Q6qYIlVKMZAbYLgwTE7PoVt6NeMj6o7i9rkvSYF9LotacH/kIx/hX//1X/nud79LMBikt7cXgHA4jNcr62QkkoUmmdd5tSfF4b40BWPqOu1z08fDXie/fFUb13bGpvxBtm2boWyJVEFnZdzPFW0RmsJL17FSIpHMLtsattHoa6Q/13+eaRqM1nBva9i2ALNb/jhVJ3XeOuq8dayLrqNoFhkpjJAoJqr13yOFESwsPJqnGi2fbQO2yhx2tOzAtm36c/0cSRzhaOIoR0aOkCqlOJY8xrHkMX546ocoKLQF21gdXs2qyCpWhVcRdocvag6KouB2uHE73EQR/cQt26JoFskb+VERboPb4careQl7wsQ98WpfdL/TP2ft2SSS6WLbNjkjR7qUJl1KM1wQGS05PUfezGNj41bd+Jw+GnwNc9LRYDmwqGu4J/qRefDBB3nf+943ree41OvhJJcmuZLBpk/9AICD//tNU/atnin5ksnR/jQHzqZI5nUagu5Ja6cLusl/7+/hhwf6MCyRPr5zUwNvu7xlWunj+VK51ZfPyeWtEdY2BiaNoEskS5VL/Zh1se9/IpdypWwdKV3KF46cnqvWc57NniVZSJI1sti2jdfhJeAS/b/nsreubdsM5Ac4ljjG0cRRjiWOMVQYOu9+dZ46OsOd1dESaJmTeVUi4XkzT8EoUDSL2LaNQ3XgcXjwOXzEvXHC7jB+h3+07nUJt0eSLF4s2yKn58joGdKlNIlioiquc2YOy7bQFA2vw4vP4cPj8CypXtgga7jHZRGvBUgklyQlw+LkUJb93UkG0kUiXlGnPdHimG3bPH9imG/v7iKR1wHY1Bzi17e30xyeOktl1BTNZmNzkMvbZKsviUQyMTtX7uT+W+7n3l330p/rr17f6Gvk7u13S7G9gFR6X7cEWtgU30RWz44V4MUkA/kBsKkKy9kW4Iqi0OBroMHXwPUt1///7d15lBzlYS78p6p635eZ7lk1WpGEhAzIbCKAFxnjgI0PnC/E5iNxjE+MiR0SkhyDk2uwkxh8fINJ4ouNY0fHPjc3EG+fieMLgQDCRNjCEsLCsgTakDSafXp6r/39/qjpmhmtM63pnhnN8zunT/dU91RXvWrN20+9GwAgp+ZwMH8QB8YO4GD+II6XjmNYHcawOoxXB14F4MxK3hPrwbLYMiyNL0VPrOecliKbfDy1lnBMmn7IsA1opoaKWcFobhSm7czK7lW8CCpBhLwhd3mysNcJ4gs1ANHc0CwNZaOMsl5GySghp+UwUh1B1XQu/tjCdsdeBz1BJAPnzxJdc2Fet3DPhsXeWkA0Gyxb4MhoBXt68+jNVxHyeZCJ+M+49Nah4TKeePUIDgyVAQAtER9ue2f3tGYfB4Cxio6Rko62RADv6EpgSSrEpb7ovLfY66zZOv+iVsSmJzYBAB5772PY1LGJXxbnMSEEykYZOS2HMXUMx8vHUdAKqJgVCCEQ8DSuC/qJqmYVh/OHcSh/CIfyh3C4cBiqpZ70unQgjZ5YD3piPVgaW4quaFdDZ2gXQsCwDaiWCs3UoFkaLGFBQMAreeFXnOAe98WRCCQQ8jgXOGoTvPkVjqVdjFRTRcWsoGJUUDbKKOpFjKgjKOtlqJYK3dIhSZLbch3wBBBQAuft30u2cBPRvCOEwPG8ij3H8zgyUoFHls86IdpYRccPdvbilYNONz2fR8aNF7Xj+guz0+oGrhkWjheqCHoVXL4shTWcFI2IZmjyl8WN2Y3n7ZfH84UkSe7kYd3RbqxvWe+2gI+pY+ir9CGv5t0x4LV1sMOe8Kz/2wY9QaxNr8Xa9FoATjfb/nK/G74P5Q9hoDKAEXUEI+oIdg7uBOBMItcWbkNPtAdLYkvQHe1GR6Rj1iZDkyQJPsXnhPoTcr1hGdAsDbqlo7fUi0OFQxBCQMLE7/gVv7teeMgbQlAJIugNIqAE4Pf4OWnbAmZYBipmBVWz6t4KWgE5NYeqWYVmadBsDRDO30a/4kdACSDtS8Mn+3ghpgkYuInoJEIIDBY1/KavgENDZQgItMUC8J9hvLVmWnh2zwD+7xv90EwbAHDV8jRuubQTyWl0A7dtgcGShqpuYllrBBu64shEOU6NiGixmRzAu6JdWCfWoWJWkNfyGNPG0F/ud7qia8dh2iZ8is/pWu0JzXorsyzJ6Ih0oCPSgas7rwbgtIK/XXh7yq2gF3C8dBzHS8fxSt8rE78b7kBXtAvd0W43hPuVqcvXapaGP9/65wCA/3nd/zzp+bPxKt5TTlZlCxuGbUC3dGiWNiWMA87s6j7FB6/sRdATdNcOr7Vy+hU//IofPsXH7upzyLRNd8I9zdKgmipUU0VBLyCv5VE1q86/sa1B2AICzjwAtV4PYV940QZrIQRG1BEcLR7FseIxHMwfRCqQmpUW7plg4CaiKYZLGvb1FXFgqATNstAWDZ6xhdkeH6f9w53HkKs447RXtIZx22XdWN4SmdZ75qsGhkoaMlE/rlyewrKWSMOXMiMiooVBkiS3S3ltDHjVrLrr/g5WBjFcHXbWARcGFElxu1Q3Yt3foCeINak1WJNa424b08bwduFtHCkcwdHiURwtHkXJKOFY6RiOlY7h530/d84FElpDreiKdKEz0onOaCdag41Zqk6WZDc0n4phGzAsA4ZtuDNQG7bhtI5LEmRJhkf2wCt73VBe+3cIeAJO67nsm3LvVbxsLZ+m2gWRWu+E2oUR3dJRNasoGSWU9BJUU3UvnBjCgCQkQBq/YDJe7jF/DD7Zt6h78+iWjv5yP3pLvVNuVbM65XUJf6Lpx8bATUQAgFxZx5sDRbw5WERVt5CJBhDxn3liszcHivi3Xx7F4ZEKACAV9uHWSzpx+TSW+QKcVvH+ggqfIuOdPUmsbY8h7OefJSIiOrPa2OS2cBtWp1bDsAzkdSeAj6gjGCgPOGHccibPCygBd3KxRoSShD+BRGsC72h9BwCnZS2n5nCkeATHSsfcFraCXsBgxVmnvNYdfbIf7/8xuqJdaA+3oz3c3tAZyWtB+nQs24Jpm04wtw2MaWMYrg7DsJ2L67XVABRJcYK55IUiK1NmWa+NH/fIHieMS154ZM+UmyIp8MrO7y7EVnQhBCxhwRJOedXKbHLZGZbzc9WsomJWnFZqS3W3124uaeLfx6t4EfKGkPAn4JE9i7KlejJb2BipjqCv3Ie+ch96S704Xjp+2iUhPZIH7ZF2dEW6kAwksTS2tOnHzG+2RItcvmLgrcEi3hwooqiaaI340R47c9Duz6v4/s5j2HV0DADgHx+nvXltFj7P2StL2xYYKKpQDQvLWsLY0JVAJsbu40REVB+vMrEO+AqsgGVbKOpFFPQCcloOg5VB5LU8cloOtm3DI3vcAN6ICcUkSUIqmEIqmMLFmYvd7QWtgN5SL46VjjktcMVeDFYGYcMZivWz3p9N2U8qkEJbuM0N4G3hNmRD2aYsDabIijPmF2fu4l4L5qZwQmOthXbIHoIlLNjCdoNQbYk+RVLcmyzLzv2kFvXJ3d1r2xRZgQwZsuTcFEkBJLjbJDgtvxKkiZ8nkSTJ7U5fOx4BAVvYgJh4bMOGEOOPJ92mBGjbgGmZ0G0duq3Dtm03dNvChmVPPIYEQGCi14DkcS9M+BQfQt4QPJKHYfoEtrAxqo6iv9yP/nI/+sp97mPd1k/5O2Fv2B3G0RnpRFe0C9lQFh7Ziby1SdOajYGbaJHKVw0cGCxhX38RBdVAS8SPTOuZK/BC1cC//+o4tr45BFsAsgRcs6oVH3pHB+LB6XUhG6voGCnryEQDuGpFC5a1hNl9nIiIZpUiK0gEEkgEEliCJQCctcBr415H1BEMV4aR03LQLefLu1/xuyG89gV9tsX8zsRltUnZAKBklHD/z+4HAFzbeS0GK4POTO16AaPqKEbVUewZ2TNlPwl/AtlQFtlwFplQxnkcyiLhn95KILNpusG8ZnKLcC2c2sIJrFWzioqouM/Vwrot7Ek7gBtiheRMDlfbJoRwn6s5sTymLNA0KQxP7F643bbd9xpXC/snBn9Zlp0u3bWLCJK8YFvsm00zNQxWBzFQHsBgZRADlQEMVJzHtd4UJ/LIHrSF2tAeaUdHuAOdkU50RDoQ88Xm5UULBm6iRaYWtN8cKCJfNZAO+864ljYAqIaF/9wzgGd+PTEh2ju64rj10i50JKZ3pbCqW+grVBH2e3D50hRWt0cR8vFPEBERNUdtLfC2cBsAZzKqWit4bSx4XsujT+uDZVuQJXnK0lqNCk+KNNHF/cKWC3Fr6lbIkoyyUUZfqQ/9Fad1r/a4qBedGdy1MezL7ZuyL5/sQ0uoBZlgBq2hVmSCGbQEW9Aaap03YUSSJKdFt4kxpBay58P5L0aapWGkOoKh6hCGKkPu/WBlEHk9f9rf88geZIIZt5dHW7gNbeE2tAZbF9R4dX7bJVok8hUDB4YmgnZqGkHbtGy89NYw/v1Xx1FUnbFFS9Mh/D8bu7G6LTqt9zUtG/0FFbYALshGsb4zjpbIzGZgJSIimm0e2YNkIIlkIOluqy2pVNSLyGk5DFWGUDJKGKmOwBZOV/RaAJ+Nmbt3De7C99/8vvvzN17/BhL+BG5ddSsuzlyMlcmVWJlcOeV3KkYFA5UB9Jf73ZbAgcoAhqvD0G3dnS39RF7Z6XafDqbREnDu08E00oE0UoFUU7qpzxUG7cayhY0xbQyj1VFnybzqCIbVYee+OoyCXjjj70e8EWRCGbe3Rm3oRDqYPi96CUhiSr+K889MFiUnOh+NVXTsHyzhrYESCqoTtBNB7xkrH1sIbD80ih/vOo6hkgYAyET9uOWSTmzsSU6r4rKFwEhJR1E10JkI4qKuBLqSQcjsPk50Wou9zlrs50/zjxACZaM8MR5czWGoOoSq4ax3XFuCqZ4QvmtwF779xrdP+/yd6++cMv77bCzbwog64rQcVgfd2duHK8MY1Uandss+hbA3jFQghaQ/6V6IqD1O+BOI++PnRfihmauaVYypY8hpOeTU3MS9msOoOurMjXCWz1fIE3LnWciEMmgNtjr3oVaEveGmnEdtDPdsLAs2k/qKLdxE56mRkob9gyUcGCqhqJrT6jouhMCvevP44c5e9I45yyjEAh58cEMHrrmgBR55ehVtYXyZr1TYh2suaMXy1jD8noXT9YeIiAiYuiZ4O9oBOK15JaOEol5ESS9hVB3FcHUYJb2E4eowbGFDkRUElIAbxE/s/moLGz946wdnfO8fvPUDbGjdMO2Qq8iK20q4DuumPGfZlnucI6rT6jhSHXFbIytmBWWjjLJRxtHi0VPuX5ZkxHwxxP1xxP1xJPyJiZ99cWd8ui+GsDfMYL5AaJbmXEzSCsjrefe+tuZ9bek91VLPui9FUpAMJJEKpJyeFAGnB0UtZDcrVM9HDNxE5xEhBIYmBe2KZqEl4kdry9lnYP1NXwH/365eHBgqAwCCXgU3rG/D5jUZ+L3TC8uqYaE/r8Lvk3FpTxJr2qKIBrgeJxERnT9qwTPmm2jVsoWNslFGSS+haDhjrIcrw6gYFeS0HCxhQYIEv+JH0BPEsdIxjGljZ3yfMW0MB8YOYFVy1TkfsyIraA21ojV06jW/q2bVaamstViO349pY8ipOeT1vNtt+GzHLUsyIt4IYr6Yc7HCG0HUF0XE61y4CHvDiHgj7prejVqqbbERQkCzNPfCSdkoo2SU3M9l7SJR0Sg693oRmqVNe/8hj7M0WSKQOKknRDqQZg+IM2DgJjoP2LZAf0HFmwNFvD1SgWZa01reCwAODJXwo9d6sbe/CADwKTLesyaDG9a3ITLNNbGN8XHaQgArsxFc2BFDJnr+jgUjIiKaTJZkRH1RRH1RtyVcCIGqWUVRL6JslFHQCxiuDqOoF9FX6pvWfvPa6SeUmk1BTxCdkU50RjpP+bwt7CmTtU1uAS3oBRS0Agp6AWWjDFvYzrazjNudbPI66UFPEEFvECFPCAFPAEHF6apfW9Pb7/EjoAScx4ofPsUHn+KDX/EvyMAnhIBpm9AsDbqlQ7M1aJYGzdSgWqp7r5oqqmYVquXcV4wKqmbVfVw2y2ft1n0qXtnrXEDyx9yeCnFf3B1GEPfHkfQn4fdw/p16MXATLWCmZaN3rIq3Boo4OlqFDYGWsB9h/9mD9uHhMn78+nHs7nUqc0WWcN2qVvz2RW1IhHzTen/bdlrUK7qJzmQI6zviHKdNREQEpzt6bWb0yXRLR9wfx48P/Hha+ykbZXdN6rkiS7IbvnrQc9rXWbaFklFyA/eUllW9iIpRmWh1NUqoms7wNdVSoVoqRjF6TsfpkTzwKl54ZS98sg8eZXxd7/F1rhVZcdfBnryE14k3SZKmrOMtQXLX7gacpcNqa3XXHrvLnAnLXYfbEs4a5ZZtOWt3j6/lbdrOGt6G5azpPXnf58ojexDxRhDyhtyeBCf2Moj5Yu4FooAS4KRyDcbATbQAqYaFY7kK9vUX0ZdXIUsSMlE/AtPo+n1kpIKnXj+OXcfGADhraW9a0YIPbmhHepqzhwshkKsYyJV1tMb8uGxZCstawvAqC+/KMhERUTP5FB+u67oO2VAWg5XB04atpD+JVclVqBpV5NQcTNtZLcQjexDwTLTweuUzT4TaTIqsuMF8Omxho2pW3S7Qk1tsa49rLbqqqUKzNPfebRG2NLcMTWHCNE1UUW3kaTaMR/bAJzut9bV/44ASQMAzcau1+Ic8IbcnQNATdLvo+5TpNZpQ8zBwEy0gRdXAkZEK9g0UMVzSEPAo6EwEpxV03x4p499/1YddR8cAAJIEXLksjZs2tCMbm37376JqYKioIRb04qqVaazMRLieNhER0QwosoL7Lr8P975470nP1VpWP3/V5/GeJe+BaqooG2V3YrO8lkdOzbnd1XVbB4TTCl3rWl3rZj2XreLTIUuyGxTrJYSAYTstxbqlw7ANaJYG0zbdFuVaq3Kt5dmwDbc12hY2LNuCDRtCjLdcjz8GMOWCyORW71pLuAznfnJruSIpJ7Woe2UvPLLT4u7eFKclvnbPseznJ35LJprnhBAYKes4NFzGgcES8lUD0YAHS1Khac0afnikjH9//TheP+Z0HZcAXL4shQ9u6EBbfPpBu6KbGChoCHhlvKM7gTVtMcRD87siJyIimq8292zGI+96BA9tfwiDlUF3ezaUxWcv/yw292wGgFN2S69NkFUxK6gYFSeM62XktJzbdTunOpO1CSFODuOyDx7ZM29axs+FJEnuBYbFPBM2zV8M3ETzlGnZ6MurODBUwtHRCiq6hXTYh2UtYcjTqCD3D5bwk93H8UavM2mJJAGXL03hpg3taI+ffYx3jWZY6C863dZXt0Wwtj2O1ignziAiIjpXm3s244q2K7DpiU0AgMfe+xg2dWw6a0unJEluF+NUIDXlOcu23O7YtVtJLyGv5VE0iqgaVYxZYzCE4bbY1lpca63iPsUJ5ER07vg/iWieqegmjuWcidD68xogCaTD/mmFZCEE9g0U8ZNf9bmzjksScMWyFG66aGYt2rWZx21boCcdwtqOODrinFiDiIhoNk0O1xuzG8+5W7EiK+7a4SeybMttGVfNiZmvC3oBRb3ohnPd1mHaplvnn6ortFf2LshZwYmajYGbaB6odRs/MlLB/sESxio6Al4F7fEAfJ6zV2a2EPjVsTx+ursPB4eddbQVWcKm5WncsL5tRmO0TdvGYEGDZtnoTASxriOGrmQICmceJyIiWtAUWUFIPrmLeo1hGe4SVO69qbozjVfMClRLRVEvOrNrCwEBAQkSFFlxW8ZrAd0je+CRzo+u60T1YuAmmkO6aaMvX8Wh4bLTbdywkAh4sTQdntbSWpYt8OrhUfzfN/rRO+bMyOmRJVyzqgU3rGub9qzjtX0NlzSUdRNtsQAu7IijJx3izONERESLhFdxWq+jvugpn6+1kJ90MzWUjJK71JdpmagaVXfiMgEBSIAknGBeC+Ue2eNOMFabXIyt5nS+YeAmmgNjFR3HchW8NVDGSFmDLGHa3cYBZ1z1z/YP49k9Axgp6wCAgFfGu1dnsHltFvHg9Cczs22ndb2gGshEA3jn0hSWtoTg93CmTCIiIppwthZywOm1p9u6u2xX7aZZGgzbcCd5qxgVZ7utoWyUYdkWTGGO7wSoTQiuSIq7bvaUNbQnraXN2b1pPmPgJmoSw7LRN6bi8EgJR3NVlFQTEb8HXYkgPNNsRS5UDbywbxAv7BtCSXMqpWjAg/euyeA9azIzWp7LFgKjZR35qoGWiB/XrGrF8tbwtNbyJiIiotkR8oaw+/d3z/VhzBpJktw1ws/Gsi3otu4u6WXapru0V22bO9bcqkKzNFi2s6yXZThLfFnCgmVb7gRwtdZ0GRNLdMmS7LaeT16+61Q/08JhC2f5ttps/LVl3mxhw4YN27anbKuaVQQ90584eLYwcBM1kBACuYqB3lwFB4bKGC5pkACkwj5kIv5pj2nqz6t49jcD2HZgGIblrAfZGvXj/RdmsWlFy7TGedfYQiBX1jFWNZAM+3D1yjSWt3ItbSIiImouRVYQlIMIYnohSAgBU5gwLAOmGF9ne9LjWhivvUa3dKiWCsMaX5tbOK8xbdNdh1sI4TyGBdu2ne9m40tvC4gp39VkSYYE6aQ1uE+3XYI05V6G7HStn7z9hNcsFLawAcAdxy8g3McQmFjXfNL22r0t7In7ydvG10Cf/BhwyksIMbEOugR3ubtamSuS4lxkkWX33qt4EZbD8Mged+m4hD/R9LLiN2yiBlANC8fHqjg8XEHvmLOkV8TvQWciOO0x0bUZx5/bM4jXj43V/vZjaTqE969rw8YlyWmN866ZHLQTIR+uWpHGitYIwn7+GSAiIqL5T5IkeCVnhvR61AK7LWwnoI+3jltiUgi3J7Wcj7eO1l5XG5Nu2IbbBb62zRKWExxtJ7wLezwwniJ81rYLnBBWxfi3PQmAwEQAFxPbhDQpeIqTLwrMtDymhNjxb5uSkNz3q10gsIU9sQ3OsU25aOC8cMpFBffCw6TXTQ7Jk4cIeGQPZEl2J9ur3dfCdO1W+z1ZlqcMKag9liXZnRtgvgw14Ddtolli2QKDRRXHcs4kaGMVAx5ZQirsm9G616ZlY/vhUTy7ZwBHc1V3+8VdCVy/LotVmciM/rCeGLSvXJ7G8tYwooH6KisiIiKihagW2AFMq8v7TNVay90uzbWW2vGfJz9/Yotv7fcntwBPCeW11mNMBOPa87XfPe1xYVKwnqT2fbIWlt3HOLkVHtJEC/+JrfJuC/4ZWvoVWZnSI2Axdd9n4CY6B7Uu4335Kg4OlTFUVGHaAvGAFz2pmS2lla8a2PrmELa+OYR81QAA+BQZV61I431rszNaQxtg0CYiIiJqJrc1FvOjZZXmBwZuaqiKbuLCzz8DANjzxfefN+OEi6qB/ryKwyNl9OdVVHQLYb8H2VhgxrN7Hxou47/2DuDVwzlYtnN1MhH04j1rMrh2VSsigZmVmTvreNVAMuLDphVpLGuNIMKu40RERERETcVv4ETTVNFN9OdVHBmtoG9MRUE1EPAoSIS8M+oyDjgzlr96eBTP7x3E4ZGKu31FaxjvXZPFpT0JeOSZdbWpraNd0kykw35cvSqNZS0co01ERERENFf4TZzoDCq6iYGChuO5Ko7mKiioBjySjETIi2UtYcgznKRiqKhh65tDeHn/sLusl0eW8M6lSbx3TRbLWsIzPkbTsjFc0lHRTbRE/bhkSRJLW0LnTW8CIiIiIqKFit/IiU5Q1kwMFsdD9lgFhaoJRQbiAS+WpsIzmhkccFqed/fm8eK+Qfz6eMGdbTwV8uFdq1vxWytbEAvOfFy1btoYKmnQTBvZmB+XL09hSSrEdbSJiIiIiOYJBm4iOBOWDRU1HMtV0J93uosrsjQeskMzDtkAMFLS8PL+Yby8fxi5iuFuX9cew7tWt2JDV2JGk6rVqIaFoZIG2xZoTwSxui2K7mRoRmtxExERERFR4zFw06Jk2wKjFR1DRQ1HcxUMFTWUNRMeWUY8WF9LNgCYto3dx/J46a1hvNGbd1uzI34Prl6ZxrWrWpGNzWy28ZqSamK4rEKRZHSlglidjaEjEYBnmut6ExE100MPPYTPfe5zuOeee/Doo4/O9eEQERHNCQZuWjRUw8JIWcdgQcXR0QpyFQOaYcHvVRAPeJGJ+Ge0vvVkffkqXn5rGNsOjqComu72NW1RXLuqFZcsScBbRzAWQiBfNTBa0RH0KrggG8WqbBTZaKCuCwJERM3w6quv4pvf/CY2bNgw14dCREQ0pxi46bxl2wJjVQOjZQ19eRV9YyqKqgFLCIR9HqTDvnMa71zRTfzycA7/fWAYB4bK7vZowINNK9K4ZlUr2upszbZsgdGyjoJqIBbw4uKuBJZnImiJ+Os+XiKiZiiVSrj99tvxT//0T/ibv/mbuT4cIiKiOcXATeeVkmZitKRjuOSMx85XDVQMC15JRjToQWcyOOPltiazbYHf9Bew7cAIdh7JwbCcTuOSBFzUGcc1K1twUVe87vfQTRvDJQ2qYSEd8WPTijR6WsKIBWY+qRoR0Vz4oz/6I9x4443YvHnzWQO3pmnQNM39uVAoNPrwiIiImoqBmxa0im4iVzGQK+voHatiZHwdagkSQj4FiaAPbTG57q7iNUdzFfz8wAh+fmgU+erEBGgd8QA2rWjBlctTSIR8de+/rJkYLmuAkNAeD2BVNoJuzjhORAvME088gZ07d+LVV1+d1usfeughfOELX2jwUREREc0dBm5aMIQQKOsWcmUd+aqB4/kqRks6ypoJSwABj4xowIOWsH9WxjePlDT84tAofnFoFL1jVXd72Kfg8mUpbFrRgqXpUN1h3q6Nzy4747NXtEawojWC9jgnQiOihefo0aO455578J//+Z8IBKY3nOb+++/Hvffe6/5cKBTQ3d3dqEMkIiJqOgZumrcsW6BQNTBWNTBW1tGXVzFW1VHRLVi2QNCrIOz3oCsZqmt5rVMpVA3seDuH7YdH8dZgyd3ukSVs6IrjquVpXNQZP6dAbFg2RsrOhYJ4yIuNPUn0pMNoifjOuSWeiGiu7NixA4ODg9i4caO7zbIsvPTSS/ja174GTdOgKFN77fj9fvj9nJuCiIjOXwzc1FCWLdzH2w+N4ppVracMx7YtUNZNFFQT+YqB4ZKGoZKGsmpCNS1IAIJeD8J+ZdZasGtKmoldR8aw/fAoftNfgBg/ZAnABdkorliewsYlSYT95/bfpaSZGC1rsAWQifrxzqVJdCVDiJzjfomI5oP3vve92L1795Rtf/AHf4A1a9bgs5/97Elhm4iIaDHgN31qmKff6MMDT/3a/fljW15FezyA/3Hjhbh6VQtKmomiamCk5KyHXdZNVHULthDwyjJCPgWpsA9+z7mPwT5RSTXx2tEcfvl2Dnv7irDExIWBpekQLluawmVLU0iF6x+XDTgXHMYqOsaqBkI+BctbI1jeEkF7IlDXMmFERPNVNBrF+vXrp2wLh8NIp9MnbSciIlosGLipIZ5+ow+f+t87IU7Y3pdXcff/2YnfvbwbK1sjsAXgkSQEfQrCXmf89Wx1Dz9Rvmpg55Ecdh7JYV9/EZMa39GVDI6H7CQy0fqW8ppMNSyMlHRoloVUyI/Ll6bQnQ4hHWa3cSIiIiKixYKBm86ZZlqo6hYq47d8Rcf9P9x9Utie7Ok3+vHwhy+Cx9PYVt6BgorXjoxh19ExHBgqTTmm7mQQG3uSeOfSVN3rZU9mC4GxioGxqg6fR0Z7PIAVmSi6kkHONk5Ei9KLL74414dAREQ0pxi4Z8i2BXTLbkg35/lICOd8VcOGZlhQDRuqaaGijY+3rhqo6BZ004Jm2hACeHukhFzFOON+xyoG9g+XsKYtNqvHa9sCB4fLeP2YE7L78uqU55e3hHHpkiQuWZJAdhZCNjDeml3WoRkW4iEfLlmSxJJUCK2R2R1rTkRERERECwsD9wzt7S9id28eXkVC2O9BxK8g4vfC55Gdm+LcexUZXkUav5cb1k26HpYtYFg2TFvAMG3olg3dtGFYzmPNsFHWTJQ0ExXdCdK6ZcEwbZg2AAhIEuCVnXP1exSEQz74FBmyLGGwqJ7tEABgynrW56Kim9hzvIDXj+WxuzePkma6zymShNVtUVzSncA7uhPnPCa7xrYFxqoG8lUdXo+MbCyAla0RdCaDCPn434qIiIiIiBi4Z8ywbIyUNKTDPgxpGo5bNkzbBgC3u7IiS/DIMjyKBEWWoEgSPIoEv6LA750I5L7xMC5Jzu8osgQnlzv3klT72SFBGn8fASEm3s8WAkII2MJ5bNkCtu0cq2nZ0MYDtW7a0EzneE1LwBICliVg2LY7m7gECZAEFGnqBYOg1wufIk9rOax40Dutspzu604khMCxsSre6HUC9v7B0pTx2EGvgos643hHVxwXdcVnNQCXNROjZR2GbSMxqTW7ha3ZRERERER0AgbuOngVCenI6dcNNW0b1nigrQVbzbBR0Zz1o23hBGJnZuzJo4onBzYBSBIgpo6EFpAg1X5Hkib9uhj//an7kyVAHg/9TqB37n3jre6K7FwM8MizN5b6gkwUyZD3jN3KkyEvLshEp73PompgT18Bvz7u3E5sHW+LB9yQvTITmdXzMSwbuYqOomoi5FPQnQ5hWUsYHfEggj6OzSYiIiIiolNj4G4AjyyjwXOBzWuyLOF3L1uCr289cNrX/O5lS87YIqybNt4aLOI3fUXs6SvgyGhlyvM+j4zV2Sg2dMaxvjOO1ujpL4DUwxYChaozAZoEGemID+s74+hMBJHiTONERERERDQNDNzUEBt7kvjUdSvwr9uPYGxSa3Qy5MXvXrYEG3uSU15vWDYODpWxt7+AfQNFHBwqw7Sntu53JYNY1xHD+g6nFbsR61iXNBO5ig7DshELeLGuI47uVAjZGNfNJiIiIiKimWHgpobZ2JPEhW1RfObJXQCAe96zEus64pBlCZpp4eBQGW8OFE8bsJMhL9a2x7CuPYY17bG6x3yfjWZYyFUNVHQTQa+C7lQIS9NhtMcDCPv5X4SIiIiIiOrDNEENNbnbeEW38L2dx7B/sIQjI5XxMewTogEP1rRFsaYthjVtUWSi/oZ13TYsG2MVA0XNgFeR0RLx45IlCbTHg0iGvOwyTkRERLRIVYwKrvg/VwAAfvHRXyDkDc3xEdFCxsBNs860bBzLVXFw2GnBrvmnlw9NeV0y5MUF2ej4LYK2WKChQde0bRSqJgpVA5IkIRH24rK2FDqSQbRE/PNq6TYiIiIiIlr4GLjpnNi2QF9BxdsjZRweqeDwcBlHRisndQ8HgI54AKuyUazKRLAqE2nK5GO2LVBQDeRVA7YtEA/5sKErjo5kEJloAL7FPLsdERERERE1FAM3TZth2egbU3FktDJxy1Wgm/ZJrw37FCxrCaMnHcJ/7O4HAPzlb6+F39v4ZbSmhGwBxALOWPDORBDZWACBJhwDERERERERA/cMVHQTN/+v/wYA/K+PXNKU8DgXhBAYLes4nldxLFfBsVwVx3JV9OfVk8ZdA4DfI2NJKoSe8fWpl7WE0Rpxxl9rhuUG7kaaHLItG4gFPbggG0VXMoS2WIDrZRMRERERUdMxcM+ANamb9JsDRXfG7YXKsgWGSxr68ir68yr6CyqOj1VxPF+Fapzcag0AIZ+CJakQulMhLEk6IbstFpiTcjBtG0XVRL5qQMCZdK0WsrMxP0I+fryJiIiIiGjuLIhE8thjj+ErX/kK+vr6sG7dOjz66KO45pprmnoMT7/Rhwee+rX7898/v/+0a0rPJ6ZtI1c2MFTUMFTSMFBQMVjQ0F9UMVzUTjnWGgAUSUI25kdXMoSuZBBdySA6E8GmjLs+E8OyUagaKGgGJEiIBby4sCOGjngQGYZsIiIiIiKaR+Z9OnnyySfxJ3/yJ3jsscdw9dVX4/HHH8cHPvAB7NmzB0uWLGnKMTz9Rh8+9b934sRomqsY+PrWA/jUdSvmLHTrpo1cRcdoWcdoRcdoScdwScNI2bkfLes4TaYGAHgVCW2xANriAbTFAuhIBNGRCCIb9cOjzI8JxTTDQl41UNZMyLKERNCHd3Qm0J4IojXq55hsIiIiIiKal+Z94H7kkUdw55134hOf+AQA4NFHH8UzzzyDr3/963jooYca/v6WLfCFf99zUtie7IlXj+CS7sSsdau2bYGybqKoOreCaiBfNZz7ioGxqoGxirOtpJln3Z9HltAa9aM14kcm5kc2GkA2FkA25kcy7IM8z9acFkKgrFsoVA2ohgWfV0Yy5MPathiy8QBaIn7OLk5ERERERPPevA7cuq5jx44duO+++6Zsv/7667Ft27ZT/o6madA0zf25UCic0zFsPzSKvrx6xtfkKgb2DRSxMhOBaQnolg3dtGGM36umBdWwoY3fV3ULVcNy78uaibJuoqxZKI0/PsXcZKfl98hIhn1IhrxIh/1oifiQjviRDvvQGvUjHvTOu1B9ItO2UVJNFKomTCEQ8slojfnRkwqjJepDOsx1somIiIio8Szbch/vGNiBTR2boMjsUUn1mdeBe3h4GJZlIZvNTtmezWbR33/qma8feughfOELX5i1Yxgsnjls1/zds2/O2nvWhHwKon4PYkEvYkEv4gEvYkEPkiEfEiEvEkHnPuRT5nRc9Zn4vQq+9XvvPOVzqmEhXzVQ1k3IkoRowIuV2Qg6EkG0RvyIBT3z9ryIiIiI6Pzz3NvP4aHtE71o7/6vu5ENZXHf5fdhc8/mOTwyWqjmdeCuOTF0CSFOG8Tuv/9+3Hvvve7PhUIB3d3ddb93Jhqo6/d8Hhk+RYZXkRDwKvB7ZAS8CgIeBUGfgqB34j7sVxD2exD2eRD2K4gGvAj7FXjk86vbtGULlDSni7xu2Qh4FCRCXlzYHkNrzI+WCMdjExEREdHceO7t53Dvi/dCnDCYdLAyiHtfvBePvOsRhm6asXkduFtaWqAoykmt2YODgye1etf4/X74/f5ZO4bLl6XQHg+gP6+edhx3IujF/7hxLbweGV5FhkeW2DIL58JI1bBQVE23FTsS8GBpOozOpDPjeTLkY1dxIiIiIppTlm3h4e0PnxS2AUBAQIKEL2//Mt7d/W52L6cZmddNqD6fDxs3bsSzzz47Zfuzzz6LTZs2NeUYFFnCAx+8EABwulj4kcuXIB7yIeTzwKvIizpsa6aFkZKGt0fLODRSQb5qIB704vKlKbx/XRtufkcn3r0mgwuyUbREOC6biIiIiObezsGdGKgMnPZ5AYH+Sj92Du5s4lHR+WBet3ADwL333os77rgD73znO3HVVVfhm9/8Jo4cOYK77rqracdww/p2fP3/vRQPPPVrDBQmJmRbCOtwN5pp2ShpJoqaCcOy4VVkZ23s9hhaowGkwz5n0jYGayIiIiKap4YqQ7P6OqKaeR+4b7vtNoyMjOCLX/wi+vr6sH79evz0pz9FT09PU4/jhvXtuHplCy568D8BAPe8ZyXWdcQXXZA0bdudTV0zLCiKhIjfi2UtYbTFA0iFfEiGffDOkzW8iYiIiIjOpjXUOquvI6qZ94EbAO6++27cfffdc30YU7o/X5CNLoqwbVo2yvp4wDYtKJKEcMCDzkQQ7YmAOw6bk50RERER0UJ1aeZSZENZDFYGTzmOW4KEbCiLSzOXzsHR0UK2IAL3fBHyefDjP7oa2w+NwH+eBkxjvIt4WTOhWzYUWULY7wTstngAybAPqZAPQd/5ef5EREREtPgosoL7Lr8P975470nPSeMzOX328s9ywjSaMQbuRUwIAdWwUdadgG0KAZ8sIzw+k3gmFkAy7GULNhERERGd9zb3bMYj73oED21/CIOVQXd7NpTFZy//LJcEo7owcC8ipm2jolmo6BZUw4INMb4OuAfdqRhao34kgl7EQ174PQzYRERERLS4bO7ZjCvarsCmJ5wVkR5772PY1LGJLdtUNwbu85QtBFTDCdcVzYIlbMiyhLDPg1TEh/ZYAImwD4mgF7Ggl8tzEREREREBU8L1xuxGhm06Jwzc54Fa1/CqYaGim9AtAQkCAZ+CiM+L7lQILRE/YkEP4kEvQj7+sxMRERERETUak9cCU2u5ruoWqoYF3bIBSAh6ZQR9Cpamw2iJ+hEPehELeBENeBbFbOpERERERETzDQP3PGZatttyXTUsmLYNCUDAqyDkU7A05oTrWrCOBjzwcP1rIiIiIiKieYGBex6wbQHVtKAaNlTDgmZZEMJZ9zvoVRDyebAkHUIy5HODdcTPcE1ERERERDSfMXA3kWULaOPBWjMtaKYNIQQkSYLf43QJb08E0RLxITreah3xexDyKZAkdgsnIiIiIiJaSBi4Z5kQArplQzed7uC6aUO3LAgAiiTB55UR8CjIxgJIh32IBr0I+z2I+DwI+xW2WhMREREREZ0nGLjrIACohjUepm1opg3ddEI1APg9ykSLdTyARMiLSMCLsN/pHh72MVgTERERERGd7xi4Z0iSAFmSMFrW4fPICHgVZGJ+JIM+hAOe8THXTrAOeGV2BSciIiIiWkBC3hB2//7uuT4MOk8wcM/Q8tYI0hE/Ql4FQZ/Tks1QTURERERERCdi4J6hiN+ZyIyIiIiIiIjoTDiQmIiIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBGLiJiIiIiIiIGoCBm4iIiIiIiKgBPHN9AI0mhAAAFAqFOT4SIiKiM6vVVbW6a7FhnU1ERAvBTOrr8z5wF4tFAEB3d/ccHwkREdH0FItFxOPxuT6MpmOdTUREC8l06mtJnOeX0W3bxvHjxxGNRiFJ0jnvr1AooLu7G0ePHkUsFpuFIzz/sczqw3KrD8utPiy3+sx2uQkhUCwW0dHRAVlefKO+ZrPO5me6Piy3+rDc6sNyqw/LrT6zWW4zqa/P+xZuWZbR1dU16/uNxWL8gM8Qy6w+LLf6sNzqw3Krz2yW22Js2a5pRJ3Nz3R9WG71YbnVh+VWH5ZbfWar3KZbXy++y+dERERERERETcDATURERERERNQADNwz5Pf78cADD8Dv98/1oSwYLLP6sNzqw3KrD8utPiy3+Yv/NvVhudWH5VYfllt9WG71matyO+8nTSMiIiIiIiKaC2zhJiIiIiIiImoABm4iIiIiIiKiBmDgJiIiIiIiImqARRe4H3roIVx22WWIRqPIZDL48Ic/jH379k15jRACDz74IDo6OhAMBvGud70Lv/71r93nR0dH8ZnPfAarV69GKBTCkiVL8Md//MfI5/NT9rN06VJIkjTldt999zXlPGdbM8sNAP7jP/4DV1xxBYLBIFpaWnDLLbc0/BwboVnl9uKLL570WavdXn311aad72xp5uftzTffxM0334yWlhbEYjFcffXVeOGFF5pynrOtmeW2c+dOvO9970MikUA6ncYf/uEfolQqNeU8Z9tslBsAfPKTn8SKFSsQDAbR2tqKm2++GXv37p3ymlwuhzvuuAPxeBzxeBx33HEHxsbGGn2KCxLr6/qwvq4P6+v6sL6uD+vr+izY+losMu9///vFli1bxBtvvCF27dolbrzxRrFkyRJRKpXc1zz88MMiGo2KH/zgB2L37t3itttuE+3t7aJQKAghhNi9e7e45ZZbxFNPPSX2798v/uu//kusWrVK3HrrrVPeq6enR3zxi18UfX197q1YLDb1fGdLM8vt+9//vkgmk+LrX/+62Ldvn9i7d6/43ve+19TznS3NKjdN06Z8zvr6+sQnPvEJsXTpUmHbdtPP+1w18/O2cuVK8du//dvi9ddfF2+++aa4++67RSgUEn19fU0959nQrHLr7e0VyWRS3HXXXWLv3r1i+/btYtOmTSeV7UIxG+UmhBCPP/642Lp1qzh06JDYsWOH+OAHPyi6u7uFaZrua2644Qaxfv16sW3bNrFt2zaxfv16cdNNNzX1fBcK1tf1YX1dH9bX9WF9XR/W1/VZqPX1ogvcJxocHBQAxNatW4UQQti2Ldra2sTDDz/svkZVVRGPx8U3vvGN0+7n3/7t34TP5xOGYbjbenp6xFe/+tWGHftcalS5GYYhOjs7xbe+9a3GnsAcaeTnbTJd10UmkxFf/OIXZ/cE5kijym1oaEgAEC+99JL7mkKhIACI5557rkFn0zyNKrfHH39cZDIZYVmW+5rXXntNABBvvfVWg86meWar3F5//XUBQOzfv18IIcSePXsEAPHzn//cfc0rr7wiAIi9e/c26GzOH6yv68P6uj6sr+vD+ro+rK/rs1Dq60XXpfxEtW4XqVQKAHDo0CH09/fj+uuvd1/j9/tx3XXXYdu2bWfcTywWg8fjmbL9y1/+MtLpNC6++GL87d/+LXRdb8BZNF+jym3nzp3o7e2FLMu45JJL0N7ejg984AMndQVZqBr9eat56qmnMDw8jI997GOzd/BzqFHllk6nsXbtWnz3u99FuVyGaZp4/PHHkc1msXHjxgaeUXM0qtw0TYPP54MsT1QhwWAQAPDyyy/P+nk022yUW7lcxpYtW7Bs2TJ0d3cDAF555RXE43FcccUV7uuuvPJKxOPxM5Y/OVhf14f1dX1YX9eH9XV9WF/XZ6HU14s6cAshcO+99+K3fuu3sH79egBAf38/ACCbzU55bTabdZ870cjICP76r/8an/zkJ6dsv+eee/DEE0/ghRdewKc//Wk8+uijuPvuuxtwJs3VyHI7ePAgAODBBx/EX/3VX+EnP/kJkskkrrvuOoyOjjbidJqm0Z+3yb797W/j/e9/v/uHYyFrZLlJkoRnn30Wr732GqLRKAKBAL761a/i6aefRiKRaMwJNUkjy+0973kP+vv78ZWvfAW6riOXy+Fzn/scAKCvr68Rp9M051pujz32GCKRCCKRCJ5++mk8++yz8Pl87n4ymcxJ75nJZE5b/uRgfV0f1tf1YX1dH9bX9WF9XZ+FVF8v6sD96U9/Gr/61a/wr//6ryc9J0nSlJ+FECdtA4BCoYAbb7wRF154IR544IEpz/3pn/4prrvuOmzYsAGf+MQn8I1vfAPf/va3MTIyMrsn0mSNLDfbtgEAf/mXf4lbb70VGzduxJYtWyBJEr73ve/N8pk0V6M/bzXHjh3DM888gzvvvHN2DnyONbLchBC4++67kclk8LOf/Qzbt2/HzTffjJtuumnBV0SNLLd169bhO9/5Dv7u7/4OoVAIbW1tWL58ObLZLBRFmf2TaaJzLbfbb78dr732GrZu3YpVq1bhd37nd6Cq6mn3cbr90FSsr+vD+ro+rK/rw/q6Pqyv67OQ6utFG7g/85nP4KmnnsILL7yArq4ud3tbWxsAnHT1YnBw8KSrJcViETfccAMikQh+9KMfwev1nvE9r7zySgDA/v37Z+MU5kSjy629vR0AcOGFF7rb/H4/li9fjiNHjsz6+TRLMz9vW7ZsQTqdxoc+9KFZPovma3S5Pf/88/jJT36CJ554AldffTUuvfRSPPbYYwgGg/jOd77TwDNrrGZ83j760Y+iv78fvb29GBkZwYMPPoihoSEsW7asQWfVeLNRbvF4HKtWrcK1116L73//+9i7dy9+9KMfufsZGBg46X2HhoZO2g9NYH1dH9bX9WF9XR/W1/VhfV2fhVZfL7rALYTApz/9afzwhz/E888/f9KHbdmyZWhra8Ozzz7rbtN1HVu3bsWmTZvcbYVCAddffz18Ph+eeuopBAKBs773a6+9BmCiklpImlVuGzduhN/vnzLFv2EYOHz4MHp6ehp0do3T7M+bEAJbtmzB7/3e7531C+V81qxyq1QqADBlbFPt51rrzUIyF3/fstksIpEInnzySQQCAbzvfe+b/RNrsNkqt9PtW9M0AMBVV12FfD6P7du3u8//4he/QD6fP+t+FiPW1/VhfV0f1tf1YX1dH9bX9Vmw9fWMp1lb4D71qU+JeDwuXnzxxSlLMlQqFfc1Dz/8sIjH4+KHP/yh2L17t/jIRz4yZTr5QqEgrrjiCnHRRReJ/fv3T9lPbTr5bdu2iUceeUS89tpr4uDBg+LJJ58UHR0d4kMf+tCcnPe5ala5CSHEPffcIzo7O8Uzzzwj9u7dK+68806RyWTE6Oho08/7XDWz3IQQ4rnnnhMAxJ49e5p6nrOtWeU2NDQk0um0uOWWW8SuXbvEvn37xJ//+Z8Lr9crdu3aNSfnfi6a+Xn7x3/8R7Fjxw6xb98+8bWvfU0Eg0Hx93//900/59kwG+V24MAB8aUvfUn88pe/FG+//bbYtm2buPnmm0UqlRIDAwPufm644QaxYcMG8corr4hXXnlFXHTRRVwW7DRYX9eH9XV9WF/Xh/V1fVhf12eh1teLLnADOOVty5Yt7mts2xYPPPCAaGtrE36/X1x77bVi9+7d7vMvvPDCafdz6NAhIYQQO3bsEFdccYWIx+MiEAiI1atXiwceeECUy+Umn/HsaFa5CeEskfFnf/ZnIpPJiGg0KjZv3izeeOONJp7t7GlmuQkhxEc+8hGxadOmJp1d4zSz3F599VVx/fXXi1QqJaLRqLjyyivFT3/60yae7expZrndcccdIpVKCZ/PJzZs2CC++93vNvFMZ9dslFtvb6/4wAc+IDKZjPB6vaKrq0t89KMfPWn5kJGREXH77beLaDQqotGouP3220Uul2vSmS4srK/rw/q6Pqyv68P6uj6sr+uzUOtrafzgiYiIiIiIiGgWLbox3ERERERERETNwMBNRERERERE1AAM3EREREREREQNwMBNRERERERE1AAM3EREREREREQNwMBNRERERERE1AAM3EREREREREQNwMBNRERERERE1AAM3ER0Sg8++CAuvvjiuT4MIiIiOgvW2UTzlySEEHN9EETUXJIknfH53//938fXvvY1aJqGdDrdpKMiIiKiE7HOJlrYGLiJFqH+/n738ZNPPonPf/7z2Ldvn7stGAwiHo/PxaERERHRJKyziRY2diknWoTa2trcWzwehyRJJ207sXvaxz72MXz4wx/Gl770JWSzWSQSCXzhC1+AaZr4i7/4C6RSKXR1deGf//mfp7xXb28vbrvtNiSTSaTTadx88804fPhwc0+YiIhogWKdTbSwMXAT0bQ9//zzOH78OF566SU88sgjePDBB3HTTTchmUziF7/4Be666y7cddddOHr0KACgUqng3e9+NyKRCF566SW8/PLLiEQiuOGGG6Dr+hyfDRER0fmLdTbR/MDATUTTlkql8A//8A9YvXo1Pv7xj2P16tWoVCr43Oc+h1WrVuH++++Hz+fDf//3fwMAnnjiCciyjG9961u46KKLsHbtWmzZsgVHjhzBiy++OLcnQ0REdB5jnU00P3jm+gCIaOFYt24dZHniOl02m8X69evdnxVFQTqdxuDgIABgx44d2L9/P6LR6JT9qKqKAwcONOegiYiIFiHW2UTzAwM3EU2b1+ud8rMkSafcZts2AMC2bWzcuBH/8i//ctK+WltbG3egREREixzrbKL5gYGbiBrm0ksvxZNPPolMJoNYLDbXh0NERESnwTqbqDE4hpuIGub2229HS0sLbr75ZvzsZz/DoUOHsHXrVtxzzz04duzYXB8eERERjWOdTdQYDNxE1DChUAgvvfQSlixZgltuuQVr167Fxz/+cVSrVV49JyIimkdYZxM1hiSEEHN9EERERERERETnG7ZwExERERERETUAAzcRERERERFRAzBwExERERERETUAAzcRERERERFRAzBwExERERERETUAAzcRERERERFRAzBwExERERERETUAAzcRERERERFRAzBwExERERERETUAAzcRERERERFRAzBwExERERERETUAAzcRERERERFRA/z/gqHPx4dTtRIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualize_fit(t, xs, ys, xes, yes, x_model, y_model, xe_model, ye_model, mm.name, t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "f7ae3e7f", + "metadata": {}, + "source": [ + "## 1.3. Example: Parallax Model Fit" + ] + }, + { + "cell_type": "markdown", + "id": "08eceab5", + "metadata": {}, + "source": [ + "Parallax model requires some fixed parameters: `ra`, `dec`, `pa`, `obsLocation`, and `t0`.\n", + "- `ra` and `dec` are required parameters. \n", + "- `pa = 0` by default\n", + "- `obsLocation = 'earth'` by default\n", + "- `t0 = np.average(t, 1./np.hypot(xe, ye))` by default\n", + "\n", + "We need to provide the fixed parameters in the `fixed_params_dict`:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "018fc13a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 1 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 2 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 2 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"taiutc\" yielded 1 of \"dubious year (Note 4)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n" + ] + } + ], + "source": [ + "mm = Parallax()\n", + "fixed_params_dict = {'ra': 0., 'dec': 10., 'pa': 0., 'obsLocation': 'earth'}\n", + "params, param_errs = mm.fit(t, x, y, xe, ye, fixed_params_dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "73dafb1f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 20 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 40 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 40 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 20 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"taiutc\" yielded 20 of \"dubious year (Note 4)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHqCAYAAAD27EaEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8XlJREFUeJzs3Xd8W+W9+PHP0R625b0Sx3Z2QhgJAZKwEigbSqEUKC2zgwu9pS2dtOVCSi+U3tsyyuivLRAobQIUSmm5UEYgrIQsErLjeO8ha2/pnN8fJiYmdmInkiU73/cLvYiOjo6+smU953ue5/k+iqZpGkIIIYQQQgghhEgqXboDEEIIIYQQQgghxiNJuIUQQgghhBBCiBSQhFsIIYQQQgghhEgBSbiFEEIIIYQQQogUkIRbCCGEEEIIIYRIAUm4hRBCCCGEEEKIFJCEWwghhBBCCCGESAFJuIUQQgghhBBCiBSQhFsIIYQQQgghhEgBSbhFxlq2bBmKovTfDAYDEydO5Prrr6e1tTUtMV133XVUVVUN2FZVVcV111036rEsXrwYRVGYPHkymqbt9/g777zT/7NbtmzZiI+/fft27rzzThoaGvZ7bLCfw2jZ+56G+pn/4he/6N9nsNgP1eG858WLF7N48eJh7bfvZ37f29atW7nzzjtRFGXAcx555JFD+v0KIUSqSTt+YNKOXzfo49KOi/FGEm6R8Z544glWr17N66+/zje+8Q2WL1/OqaeeSiAQSHdoaZednU19fT0rV67c77HHH3+cnJycQz729u3bWbp06aCN3e23387f//73Qz724crOzua5557D5/MN2K5pGsuWLTus951ukydPZvXq1fvdpkyZwte//nVWr149YH9pqIUQmU7a8aFJOy7tuLTj458k3CLjzZkzhwULFrBkyRLuuOMOfvSjH1FfX8+LL7542McOhUKHH2AaTZo0iQULFvD4448P2O7z+Xjuuee44oorUvK6U6ZMYe7cuSk59nBcfPHFaJrGihUrBmxfuXIl9fX1KXvfo8FqtbJgwYL9blarlYkTJ7JgwYJ0hyiEECMi7fjQpB2XdlyMf5JwizFn7xdVY2MjAEuXLuWkk04iPz+fnJwc5s2bx2OPPbbf8KyqqiouvPBCXnjhBebOnYvFYmHp0qUAPPzww5x22mkUFxdjt9s5+uij+fWvf00sFhtxfOFwmO9///scd9xxOBwO8vPzWbhwIf/4xz8G7LdixQoUReGhhx4asP2OO+5Ar9fz+uuvD+v1brjhBl544QXcbveAYwNceeWVgz7nvffe48wzzyQ7OxubzcaiRYt4+eWX+x9ftmwZX/rSlwBYsmTJfkPaBhuWFQ6Hue2226iursZkMjFhwgS+9a1vDYgLPv09vPrqq8ybNw+r1crMmTP3O9k4EIfDwSWXXLLfcx5//HFOPvlkpk+fPujzHn/8cY499lgsFgv5+flccskl7NixY7/9li1bxowZMzCbzcyaNYunnnpq0ONFo1F++ctfMnPmTMxmM0VFRVx//fV0d3cP+72MxGeHolVVVbFt2zZWrVrV/ztK1xBBIYQYLmnHB5J2/FPSjks7Ph4Z0h2AECO1Z88eAIqKigBoaGjgxhtvZNKkSQCsWbOGb3/727S2tvJf//VfA567ceNGduzYwc9//nOqq6ux2+0A1NbWctVVV/U3Mps3b+a///u/2blz54gaEIBIJEJvby8/+MEPmDBhAtFolDfeeINLL72UJ554gmuuuQboa0RXrVrF97//fRYsWMD8+fNZuXIlv/zlL/npT3/KWWedNazXu/LKK/ne977H8uXLuemmmwB47LHHuOyyywYdkrVq1SrOOussjjnmGB577DHMZjOPPPIIF110EcuXL+eKK67gggsu4O677+anP/0pDz/8MPPmzQP6rogPRtM0vvCFL/Dmm29y2223ceqpp/Lxxx9zxx139A+lMpvN/ftv3ryZ73//+/zkJz+hpKSEP/3pT3zta19j6tSpnHbaacN631/72tc488wz2bFjB7NmzcLtdvPCCy/wyCOP4HQ699v/nnvu4ac//Slf/vKXueeee3A6ndx5550sXLiQdevWMW3aNKCvkb7++uu5+OKL+c1vfoPH4+HOO+8kEomg0316jVJVVS6++GLeffddfvSjH7Fo0SIaGxu54447WLx4MevXr8dqtQ7rvXxWPB4fcF+n0w147b3+/ve/c9lll+FwOHjkkUcABvychRAiE0k7PpC049KOSzs+zmlCZKgnnnhCA7Q1a9ZosVhM8/l82r/+9S+tqKhIy87O1jo6OvZ7TiKR0GKxmPaLX/xCKygo0FRV7X+ssrJS0+v12q5duw74unuP8dRTT2l6vV7r7e3tf+zaa6/VKisrB+xfWVmpXXvttUMeLx6Pa7FYTPva176mzZ07d8Bj4XBYmzt3rlZdXa1t375dKykp0U4//XQtHo8fMEZN07TTTz9dO+qoo/rjmj9/vqZpmrZt2zYN0N5++21t3bp1GqA98cQT/c9bsGCBVlxcrPl8vgExzpkzR5s4cWL/z+y5557TAO2tt97a77U/+3N49dVXNUD79a9/PWC/Z555RgO0P/zhD/3bKisrNYvFojU2NvZvC4VCWn5+vnbjjTce9H0D2re+9S1NVVWturpa+8EPfqBpmqY9/PDDWlZWlubz+bT/+Z//0QCtvr5e0zRNc7lcmtVq1c4///wBx2pqatLMZrN21VVXaZrW97svLy/X5s2bN+Cz09DQoBmNxgHvefny5RqgPf/88wOOufdn/sgjj/RvO/3007XTTz/9oO/t9NNP14D9bl/5ylc0TdO0O+64Q/vs1/ZRRx01rGMLIcRok3b8wKQdl3Zc06QdPxLIkHKR8RYsWIDRaCQ7O5sLL7yQ0tJSXnnlFUpKSoC++T6f+9zncDgc6PV6jEYj//Vf/4XT6aSrq2vAsY455phBhyl99NFHfP7zn6egoKD/GNdccw2JRILdu3ePOObnnnuOk08+maysLAwGA0ajkccee2y/YU9ms5lnn30Wp9PJvHnz0DSN5cuXo9frR/R6N9xwA+vXr2fLli089thjTJkyZdArzIFAgA8//JDLLruMrKys/u16vZ6rr76alpYWdu3aNeL3u7fYy2crjn7pS1/Cbrfz5ptvDth+3HHH9fdkAFgsFqZPn94/vHA49lY4/fOf/0w8Huexxx7j8ssvH/C+9lq9ejWhUGi/+CoqKjjjjDP649u1axdtbW1cddVVA4Z8VVZWsmjRogHP/de//kVubi4XXXQR8Xi8/3bcccdRWlrK22+/Pez3sq8pU6awbt26Abe77rrrkI4lhBCZQNrxg5N2XNpxMX5Jwi0y3lNPPcW6dev46KOPaGtr4+OPP+bkk08GYO3atZx99tkA/PGPf+T9999n3bp1/OxnPwP2L6ZSVla23/Gbmpo49dRTaW1t5YEHHuDdd99l3bp1PPzww4Me42BeeOEFLr/8ciZMmMDTTz/N6tWrWbduHTfccAPhcHi//adOncqpp55KOBzmK1/5yqAxHsxpp53GtGnT+H//7//x5z//mRtuuGG/ZScAXC4XmqYN+hrl5eUAgw7jOhin04nBYOgfHriXoiiUlpbud8yCgoL9jmE2m0f8s947z+ruu+9m48aNfO1rXxsyPhj8919eXt7/+N7/l5aW7rffZ7d1dnbidrsxmUwYjcYBt46ODnp6ekb0XvayWCzMnz9/wK26uvqQjiWEEJlA2vGDk3Zc2nExfskcbpHxZs2axfz58wd9bMWKFRiNRv71r39hsVj6tw9V+XSwxuvFF18kEAjwwgsvUFlZ2b9906ZNhxTv008/TXV1Nc8888yA14tEIoPu/6c//YmXX36ZE088kYceeogrrriCk046acSve/311/Pzn/8cRVG49tprB90nLy8PnU5He3v7fo+1tbUBUFhYOOLXLigoIB6P093dPaCx1jSNjo4OTjjhhBEfczgqKir43Oc+x9KlS5kxY8Z+V6/3jQ8Y8n3vfc979+vo6Nhvv89uKywspKCggFdffXXQ18zOzh7+GxFCiHFM2vHhkXZc2nExPkkPtxjTFEXBYDAMGLoVCoX485//PKJjwMAiFZqm8cc//vGQYzKZTAMa6Y6Ojv2qmwJs2bKFW265hWuuuYZ3332XY445hiuuuAKXyzXi17322mu56KKL+OEPf8iECRMG3cdut3PSSSfxwgsvDLgKraoqTz/9NBMnTuwfqrf35zGcq9Vnnnkm0HeSsq/nn3+eQCDQ/3gqfP/73+eiiy7i9ttvH3KfhQsXYrVa94uvpaWFlStX9sc3Y8YMysrKWL58+YDquI2NjXzwwQcDnnvhhRfidDpJJBL7XcmeP38+M2bMSOK7HNqh9CgIIUSmkHb8U9KOSzsuxifp4RZj2gUXXMBvf/tbrrrqKr75zW/idDr53//93xFVeDzrrLMwmUx8+ctf5kc/+hHhcJhHH330kBpLoH/JkptvvpnLLruM5uZm7rrrLsrKyqipqenfLxAIcPnll1NdXc0jjzyCyWTi2WefZd68eVx//fUjXp+0vLx8WM+55557OOuss1iyZAk/+MEPMJlMPPLII2zdupXly5f3n2DMmTMHgD/84Q9kZ2djsViorq4edBjZWWedxTnnnMOPf/xjvF4vJ598cn9107lz53L11VeP6L2MxNlnn90/HHEoubm53H777fz0pz/lmmuu4ctf/jJOp5OlS5disVi44447gL4qonfddRdf//rXueSSS/jGN76B2+3mzjvv3G8o2pVXXslf/vIXzj//fL7zne9w4oknYjQaaWlp4a233uLiiy/mkksuSdn73uvoo49mxYoVPPPMM0yePBmLxcLRRx+d8tcVQohkkHb8U9KOD03acTGmpatamxAHs7e66bp16w643+OPP67NmDFDM5vN2uTJk7V77rlHe+yxxwZUt9S0vqqaF1xwwaDH+Oc//6kde+yxmsVi0SZMmKD98Ic/1F555ZX9qnsOt7rpr371K62qqkozm83arFmztD/+8Y/7Vab86le/qtlsNm3btm0Dnru3quh99913wPe9b3XToQxW3VTTNO3dd9/VzjjjDM1ut2tWq1VbsGCB9s9//nO/599///1adXW1ptfrBxxnsJ9DKBTSfvzjH2uVlZWa0WjUysrKtJtuuklzuVwD9hvq9zDcCqB8Ut30QD5b3XSvP/3pT9oxxxyjmUwmzeFwaBdffPF+P/+9+02bNk0zmUza9OnTtccff3zQ9xyLxbT//d//7f/sZGVlaTNnztRuvPFGraamZsTv7WC/08GqmzY0NGhnn322lp2drQH7xSiEEOki7fh9B3zf0o4PTdpxMZ4omrbPeAshhBBCCCGEEEIkhczhFkIIIYQQQgghUkASbiGEEEIIIYQQIgUk4RZCCCGEEEIIIVJAEm4hhBBCCCGEECIFJOEWQgghhBBCCCFSQBJuIYQQQgghhBAiBQzpDmA0qapKW1sb2dnZKIqS7nCEEEIcwTRNw+fzUV5ejk4n17+HQ9pxIYQQmWAkbfgRlXC3tbVRUVGR7jCEEEKIfs3NzUycODHdYYwJ0o4LIYTIJMNpw4+ohDs7Oxvo+8Hk5OSkORohhBBHMq/XS0VFRX/bJA5O2nEhhBCZYCRt+BGVcO8dfpaTkyMNtRBCiIwgQ6OHT9pxIYQQmWQ4bbhMGhNCCCGEEEIIIVJAEm4hhBBCCCGEECIFJOEWQgghhBBCCCFS4Iiawz1ciUSCWCyW7jDEMBmNRvR6fbrDEEIIkQGkDR97pB0XQoxnknDvQ9M0Ojo6cLvd6Q5FjFBubi6lpaVSfEgIIY5Q0oaPbdKOCyHGK0m497G3oS4uLsZms8mX/higaRrBYJCuri4AysrK0hyREEKIdJA2fGySdlwIMd5Jwv2JRCLR31AXFBSkOxwxAlarFYCuri6Ki4tlWJoQQhyGe+65hxdeeIGdO3ditVpZtGgR9957LzNmzOjfR9M0li5dyh/+8AdcLhcnnXQSDz/8MEcdddQBj/38889z++23U1tby5QpU/jv//5vLrnkksOOWdrwsU3acSHEeCZF0z6xd76XzWZLcyTiUOz9vcm8PSGEODyrVq3iW9/6FmvWrOH1118nHo9z9tlnEwgE+vf59a9/zW9/+1seeugh1q1bR2lpKWeddRY+n2/I465evZorrriCq6++ms2bN3P11Vdz+eWX8+GHHx52zNKGj33SjgshxitF0zQt3UGMFq/Xi8PhwOPxkJOTM+CxcDhMfX091dXVWCyWNEUoDpX8/oQQY82B2qRM0t3dTXFxMatWreK0005D0zTKy8v57ne/y49//GMAIpEIJSUl3Hvvvdx4442DHueKK67A6/Xyyiuv9G8799xzycvLY/ny5cOKZaifmbQBY5/8DoUQY8lI2nDp4U6yYDRO1U9epuonLxOMxtMdjhBCCHFYPB4PAPn5+QDU19fT0dHB2Wef3b+P2Wzm9NNP54MPPhjyOKtXrx7wHIBzzjnngM9JB2nHhRBCJJPM4RZCCCHEoDRN49Zbb+WUU05hzpw5QF9xMoCSkpIB+5aUlNDY2DjksTo6OgZ9zt7jDSYSiRCJRPrve73eEb8HIYQQIp2khzvJEuqnI/TX1vcOuJ8q1113HYqioCgKRqORkpISzjrrLB5//HFUVR32cZYtW0Zubm7qAhVCCDGm/Od//icff/zxoEO+P1sFXNO0g1YGH+lz7rnnHhwOR/+toqJiBNEfmtFux6UNF0KI8U0S7iR6dWs7n/vtqv771z2xjlPuXcmrW9tT/trnnnsu7e3tNDQ08Morr7BkyRK+853vcOGFFxKPy5A4IYQQI/Ptb3+bl156ibfeeouJEyf2by8tLQXYr2e6q6trvx7sfZWWlo74Obfddhsej6f/1tzcfChvZdjS1Y5LGy6EEOOXJNxJ8urWdm56eiOd3siA7R2eMDc9vTHljbXZbKa0tJQJEyYwb948fvrTn/KPf/yDV155hWXLlgHw29/+lqOPPhq73U5FRQU333wzfr8fgLfffpvrr78ej8fTf6X9zjvvBODpp59m/vz5ZGdnU1paylVXXdW/XqYQQojxRdM0/vM//5MXXniBlStXUl1dPeDx6upqSktLef311/u3RaNRVq1axaJFi4Y87sKFCwc8B+C111474HPMZjM5OTkDbqmSznZc2nAhhBi/JOFOgoSqsfSf2xls0NnebUv/uX1Uhpfv64wzzuDYY4/lhRdeAECn0/Hggw+ydetWnnzySVauXMmPfvQjABYtWsT9999PTk4O7e3ttLe384Mf/ADoO5G666672Lx5My+++CL19fVcd911o/pehBBCjI5vfetbPP300/z1r38lOzubjo4OOjo6CIVCQN+w8O9+97vcfffd/P3vf2fr1q1cd9112Gw2rrrqqv7jXHPNNdx2223997/zne/w2muvce+997Jz507uvfde3njjDb773e+O9lvcTya249KGCyHE+CBF05JgbX0v7Z7wkI9rQLsnzNr6XhZOKRi9wICZM2fy8ccfAww4qamuruauu+7ipptu4pFHHsFkMuFwOFAUpX+44F433HBD/78nT57Mgw8+yIknnojf7ycrK2tU3ocQQmQCdzCKxajHYtSnO5SUefTRRwFYvHjxgO1PPPFEf6L2ox/9iFAoxM0334zL5eKkk07itddeIzs7u3//pqYmdLpPr+svWrSIFStW8POf/5zbb7+dKVOm8Mwzz3DSSSel/D0dTKa249KGCyFE8miaRm8gSp7NhE534JojySQJdxJ0+YZupA9lv2TatyDNW2+9xd1338327dvxer3E43HC4TCBQAC73T7kMT766CPuvPNONm3aRG9vb38Rl6amJmbPnj0q70MIIdKpNxBld6ePhp4A8yrzmF6SffAnjVGadvBe3L1DlvcOWx7M22+/vd+2yy67jMsuu+wwokuNTG3HpQ0XQojkCETibG310OIKcur0IoqzLaP22jKkPAmG+wsbzV/sXjt27KC6uprGxkbOP/985syZw/PPP8+GDRt4+OGHAYjFYkM+PxAIcPbZZ5OVlcXTTz/NunXr+Pvf/w70DVMTQojxzBeOsbbOyStb29nc7KY3EEUdRkIqxpZMbcelDRdCiMOjaRoNPQFe29bJxiYX7lCM0W7GpYc7CU6szqfMYaHDEx50/pcClDosnFidP6pxrVy5ki1btvC9732P9evXE4/H+c1vftM/xO/ZZ58dsL/JZCKRSAzYtnPnTnp6evjVr37VvxzL+vXrR+cNCCFEGiVUjQ/re9nT5acoy0xJkYX6Hn+6wxIpkIntuLThQghxeHoDUXa0ednV6cOgU6gqsNPmCY16HNLDnQR6ncIdF/UNy/rsbIC99++4aDb6FM4ViEQidHR00NraysaNG7n77ru5+OKLufDCC7nmmmuYMmUK8Xic3/3ud9TV1fHnP/+Z3//+9wOOUVVVhd/v580336Snp4dgMMikSZMwmUz9z3vppZe46667UvY+hBAiUzQ4AzT0BKjIteKwGtMdjkihdLfj0oYLIUTy+MIxNjT08urWdra1eyiwmyjPtaJTRm/e9r4k4U6Sc+eU8ehX51GcYx6wvdRh4dGvzuPcOWUpff1XX32VsrIyqqqqOPfcc3nrrbd48MEH+cc//oFer+e4447jt7/9Lffeey9z5szhL3/5C/fcc8+AYyxatIj/+I//4IorrqCoqIhf//rXFBUVsWzZMp577jlmz57Nr371K/73f/83pe9FCCHSLRRNsKXFg9mgwzyOC6SJT6WzHZc2XAghDo+mafT4I3zc4uaVLR2sa3Rh0uuYXJiF3ZzeQd2KNpzqKOOE1+vF4XDg8Xj2W8szHA5TX19PdXU1Fsuhz9HyhWMcfedrACy7/gROnVaU0p5t0SdZvz8hhADY1OTiw7peqgrtA77D63v8nDq9iJmlh78e9IHaJDG4oX5myWwDpB1PD2nHhTjyhGMJQtEE4XgCnaJg0CkYdDqMBgWTXodBf+C+4VhCJRCJ0+OPUNcToNMTJhRL4LAYybOb9uvRTqgaLe4gFx5TTknO4X3PjKQNlzncSbZvo3xidb400kIIMcY4/RG2t3vJzzLJd/gRSNpxIYRIDU3T6PJFqO8J0OUNE4qpRGIJYgkVlL7vX72ioNcpGPU6bCY9WWYDNrMBHaDX61CAaELF6Y/gDceJfJK0mw168uxGyhzWdL/N/UjCnWQ2k4GGX12Q7jCEEEIcAlXV2NLqwR+JM7lQ1ig+Ekk7LoQQyaWqGu3eMDWdPhqdQaJxFbtZj9mgx243YdLr0Ojrgd57i6kq7mCMHl+UmKqCxidFLTUUFCxGPRajjjybiZIcXdrmZw+HJNxCCCHEJ1rdIeq6A5TlZN4VciGEEGKsCUbjrK3vpa7bjwYUZZmxmQZPQcfriCJJuIUQQohP1PX40dCwmqRQmhBCCHE4XIEoq+ucNPcGmZBrxXKEFiGVhFsIIYQAPMEYLa4Q+TZTukMRQgghxrR2T4jVtU6c/iiVBTYMuiN3cSxJuIUQQgj6hpP7w3GKs8wH31kIIYQQg2roCbC61kkknqCywJbR86tHgyTcQgghjngJVaO224/dZEA5wk8MhBBCiEPV6Q2zps5JXFWZmGdLdzgZ4cjt2xdCCCE+0eUL0+0Lk2c3pjsUIYQQYkzyhmN8WOckGI1n5PJc6SIJtxBCiCNeszNIQgWz4cgs6CKEEEIcjkg8wdr6Xto9YSbmSs/2vmRI+UGEYwmiCXXUXs+k12VcBb+3336bJUuW4HK5yM3NHdZzqqqq+O53v8t3v/vdEb/eddddh9vt5sUXXxzxc4UQYqSC0Tj1ziC5NundHo+kHZd2XAiRWqqqsanJTW2Xn0n5NnTjdHmvQyUJ9wGEYwle29aBJxwbtdd0WIycfVTpsBvr6667jieffJIbb7yR3//+9wMeu/nmm3n00Ue59tprWbZsWQqiPXR33nknS5cu3W/766+/zgMPPICmaf3bFi9ezHHHHcf9998/ihEKIY4Ube4wnlCUqnx7ukMRSSbteOpIOy6E2Kumy8+WVg+lORaMehlA/VmScB9ANKHiCcewGPSYDan/8ETifa8XTagjujpeUVHBihUruO+++7Ba++ZLhMNhli9fzqRJk1IV7mE76qijeOONNwZsy8/Px2SSJXmEEKND0zTqe/yY9Dq5Ij8OSTueWtKOCyF6A1E+anJhNxmwmyW1HIxcghgGs0GHzWRI+e1QTwbmzZvHpEmTeOGFF/q3vfDCC1RUVDB37twB+0YiEW655RaKi4uxWCyccsoprFu3bsA+//d//8f06dOxWq0sWbKEhoaG/V7zgw8+4LTTTsNqtVJRUcEtt9xCIBAYUdwGg4HS0tIBN5PJxHXXXccXvvAFoO/K/6pVq3jggQdQFAVFUQaNRwghDoUzEKXdHSbfLgnCeCbteMN+ryntuBDicMUTKhubXPjCcQqzpB0diiTcQ9A0jVA0TiyuEo2rROKJlN+icZVYXB0wDGu4rr/+ep544on++48//jg33HDDfvv96Ec/4vnnn+fJJ59k48aNTJ06lXPOOYfe3l4AmpubufTSSzn//PPZtGkTX//61/nJT34y4BhbtmzhnHPO4dJLL+Xjjz/mmWee4b333uM///M/Rxz3wTzwwAMsXLiQb3zjG7S3t9Pe3k5FRUXSX0cIcWTq8IQJxRLYTHJVfryRdlzacSFEau3q9FHX7ac81yJLah6AnGEMIRRLcNLdK9Py2hccU8ZIK+lfffXV3HbbbTQ0NKAoCu+//z4rVqzg7bff7t8nEAjw6KOPsmzZMs477zwA/vjHP/L666/z2GOP8cMf/pBHH32UyZMnc99996EoCjNmzGDLli3ce++9/cf5n//5H6666qr+QirTpk3jwQcf5PTTT+fRRx/FYrEMK+YtW7aQlZXVf3/27NmsXbt2wD4OhwOTyYTNZqO0tHRkPxQhhDgAVdVo6AnIELhxStpxaceFEKnT44/wcbMHh8UoK3wchJxljBOFhYVccMEFPPnkk2iaxgUXXEBhYeGAfWpra4nFYpx88sn924xGIyeeeCI7duwAYMeOHSxYsGDAVaqFCxcOOM6GDRvYs2cPf/nLX/q3aZqGqqrU19cza9asYcU8Y8YMXnrppf77ZrN5+G9YCCEOU08ggjMQpUCGk4sMIO24EGKsiCVUPmpy4Y/GqC7IOvgTjnCScA/BatTz4U/P4OWP28mxGLGaUn/lJhRN4A3HDnk5kRtuuKF/ONjDDz+83+N7h7h9dsiHpmn924YzDE5VVW688UZuueWW/R4bSXEXk8nE1KlTh72/EEIkU6cnTCSWyLglnERySDs+NGnHhRCHY3eHj/qeABV5st72cEjCPQRFUbCaDBgNOkwG3agMlUioGkaD7pDnQJx77rlEo1EAzjnnnP0enzp1KiaTiffee4+rrroKgFgsxvr16/uHlc2ePXu/dTPXrFkz4P68efPYtm3bqDWyJpOJRCIxKq8lhDgyJFSNehlOPq5JO/4paceFEMnSG4iypbVvKLksATY88lMaR/R6PTt27GDHjh3o9fufWNjtdm666SZ++MMf8uqrr7J9+3a+8Y1vEAwG+drXvgbAf/zHf1BbW8utt97Krl27+Otf/7rf2p8//vGPWb16Nd/61rfYtGkTNTU1vPTSS3z7299Oyfuqqqriww8/pKGhgZ6eHlRVTcnrCCGOHE5/33DyXKsx3aEI0U/acSFEJlNVjY9b3HjDMVndYwTk0v4wROIqEB+l1zk8OTk5B3z8V7/6FaqqcvXVV+Pz+Zg/fz7//ve/ycvLA/qGkj3//PN873vf45FHHuHEE0/k7rvvHlAp9ZhjjmHVqlX87Gc/49RTT0XTNKZMmcIVV1xx2PEP5gc/+AHXXnsts2fPJhQKUV9fT1VVVUpeSwhxZOjwhoklVMwynPyIIO24tONCiMNX1xOgtstPucMqVclHQNEOZe2KMcrr9eJwOPB4PPs1aOFwmPr6eqqrq/urc4ZjCV7b1oEnHBu1GB0WI2cfVSpzCkdosN+fEEIMJqFq/OvjNvzhOCU5I/u+qO/xc+r0ImaWHjgpGo4DtUlicEP9zIZqA6QdHzukHRcis/kjcf69tYNQNEGpY2z+jSZUjRZ3kAuPKR9x+/9ZI2nDpYf7ACxGPWcfVUo0MXpDn0x6nTTSQgiRQj3+CL3+KMU5UlF5vJN2XAghDp+maWxr9dDjj1BdaE93OGOOJNwHYTHqpeEUQohxpMMTIqZqsm7oEULacSGEODwtrhA7OryUZFvQyVDyEZOiaUIIIY4Y8YRKfU+QLLMkYEIIIcTBhKIJPmpyoWmQZZG+2kMhCbcQQogjRrc/Qm8gQq5VqqsKIYQQB7OtzUO7J0y5w5ruUMYsSbiFEEIcMZqdQRIqmAzS/AkhhBAH0uoOsb3NS1GWGb1OhpIfKjnj+AxZG3Jskt+bEOJgQtEE9c4gDll7e9yStmDskt+dEJklHEuwuclNQtPIkXbzsMhA/E+YTCZ0Oh1tbW0UFRVhMplkfbkxQNM0otEo3d3d6HQ6TCYZJiqEGFybJ4QnFKUqXyqsjjfSho9d0o4LkZl2tHlpdgWpLLClO5QxTxLuT+h0Oqqrq2lvb6etrS3d4YgRstlsTJo0CZ1OBm0IIfanaRr1PQGMOh06GRY37kgbPvZJOy5E5mh1h9ja5qEwy4xB/iYPmyTc+zCZTEyaNIl4PE4ikUh3OGKY9Ho9BoNBejOEEEPqDURpd4fIt0vv2XglbfjYJe24EJnDF46xrr6XuKrJFKwkkYT7MxRFwWg0YjTKB0wIIcaLNneIYDRBmVRZHdekDRdCiEMXT6hsaHTR6Q1TXSDTr5JFxggIIYQY12IJldruAFlmucYshBBCDGVnh5fdnT4m5Fpl+lUSScIthBBiXOv0hnH6ozKcXAghhBhCmzvER81ucq0mLEZ9usMZVyThFkIIMa419QbRUDHqpckTQgghPssTjLGuoZdEQpOL0ykgZx9CCCHGLU8wRmNPkFyrnEAIIYQQn+WPxHm/todOb5hyqXOSEpJwCyGEGLe2t3vwhmNSaXUE3nnnHS666CLKy8tRFIUXX3xxwOOKogx6+5//+Z8hj7ls2bJBnxMOh1P8boQQQgwlHEuwpraH5t4gk/JtMm87RSThFkKII1AwGmdrq4cu7/hNeDo8YWo6/RRnm2W5oREIBAIce+yxPPTQQ4M+3t7ePuD2+OOPoygKX/ziFw943JycnP2ea7FYUvEWhBBCHEQsobK23kltd4BJ+TZZbzuFpGSrEEIcYdrcITY2umh2BckyG5hRmsOssmyyLeOnFzihamxt8xBT1XH1vkbDeeedx3nnnTfk46WlpQPu/+Mf/2DJkiVMnjz5gMdVFGW/5wohhBh9sYTKhoZedrT3VSSXGiepJT9dIYQ4QsQSKh+3uHlzRyfd/giTC7Owmwx81OTi1a0d7OzwoqpausNMiqbeII3OAKXZ0oOaSp2dnbz88st87WtfO+i+fr+fyspKJk6cyIUXXshHH3100OdEIhG8Xu+AmxBCiEMXjiV4f08Pm1s8lDksUpF8FEjCLYQQRwBV1Xh/Tw9r6pxYjXoq8mzodQo5ViPVhXbiCY0P9jhpcAbSHephi8QTbG31YNDpMMuJREo9+eSTZGdnc+mllx5wv5kzZ7Js2TJeeuklli9fjsVi4eSTT6ampuaAz7vnnntwOBz9t4qKimSGL4QQRxRfOMa7Nd3s7PAxMdeKzSSDnUeDJNxCCHEEaHWHqOsOUO6wkmsbWLFbpygUZZsx6hU2NbvxR+JpijI59nT5aXOHKMkxpzuUce/xxx/nK1/5ykHnYi9YsICvfvWrHHvssZx66qk8++yzTJ8+nd/97ncHfN5tt92Gx+PpvzU3NyczfCGEOGL0BqKs2tVNXXeAynybXJAeRXJZQwghxrmEqrGzo28o7oGGjpXkWKjvCbCt1cOJ1fljrtCYqmrUdPnZ2OTCYTVKAZgUe/fdd9m1axfPPPPMiJ+r0+k44YQTDtrDbTabMZvlwokQQhwqTdNocAZZ39CLJxijqsCOXqqRjyo5GxFCiHGu1RWiyRmiJPvAiYtOUSjJtrCjw0uLKzRK0SVHJJ5gfUMv79V0Y9TpKMySJC3VHnvsMY4//niOPfbYET9X0zQ2bdpEWVlZCiITQggBEI2rbGh08fbOLiIxlcoCmyTbaSA93EIIMY4lVI0dHV50OoY1fCzLYsAVirK52U1Rtjnji6nEEyqeUIyPmt3UdvkpybGQZZam7XD4/X727NnTf7++vp5NmzaRn5/PpEmTAPB6vTz33HP85je/GfQY11xzDRMmTOCee+4BYOnSpSxYsIBp06bh9Xp58MEH2bRpEw8//HDq35AQQhyBXIEo6xt7qesOUJxtlhU70kjOSoQQYhxrcQVp6Q1S6hh+te4yh4VGZ5Ad7V7mTspLYXSDU1UNdyhGIBInGE3gC8cIxRIY9TqMOgWDXkc4lsAVjOILxwnHEwQjCSbl22RpkyRYv349S5Ys6b9/6623AnDttdeybNkyAFasWIGmaXz5y18e9BhNTU3o9hnS73a7+eY3v0lHRwcOh4O5c+fyzjvvcOKJJ6bujQghxBFIVTVqu/1sbHLjCUWlbcwAiqZp42MNmGHwer04HA48Hg85OTnpDkcIIVIqnlB5Y0cn7e4wFfm2ET3XHYwSTaicO6eMfLvp4E9Iki5vmG1tXlpcQcKxBKCgU0CnU9A0UDUNTdPQKQpmgx6zUYfZoMNq1I/KnPP6Hj+nTi9iZunhtyHSJo2c/MyEEGJovnCMTc1udnf4sJr0FGWZx1w9llRKqBot7iAXHlNOSc7hLRs6kvZIeriFEGKcanGFaHWFKHNYR/zcXJuJ2m4/NZ0+TppckILoBvKEYuxs97K700cknqA420JJjgWdnCgIIYQQB7S3MNpHTS66fRHKHVaspsyeEnYkkYRbCCHGIU3TqOnyoVMUTIZDG0pWlGWmpsvH1OIsClJYhKzJGWRNvRN3IEpRtvmQLhAIIYQQR6JAJM7mFjc7230YdArVhXa5WJ1hJOEWQohxyBWM0eEJH9Zw8ByrkZ5AhN2dPhamKOFu6AnwQW0P8YRGdaFdhr4JIYQQw6BpGk29QT5qctPpDVOaY8EuRUMzkvxWhBBiHOrwhAlGE4fdW1yUZWZPt59pJdlJX2qrrtvPB7U9oCmU50qvthBCCDEcvnCMLa0edrZ7Meh0VBfY0clyXxlLEm4hhBhnVFWjoSeALQnzt7ItRrr9EXZ1+CicmryEu/aTZFuHQskIKqgLIYQQR6qEqlHf42dTkwdnICK92mOE/IaEEGKc6QlE6PZHKEhSdfGiLDN13X6mlWRRnH34yXFzb5DVe5Ptw6wSKoQQQox3mqbR5Yuwvc3Lni4fNpNB5mqPIZJwCyHEONPpCROJJbAYk1OhdG8v9+4O32EvMeL0R/iwrpeEChNyJdkWQggxdnnDMbq8EeKqSkLVUFVQFMi2GMixGMmxGtEf5lDvHn+Ene1earsDRBMJyh1WzElq38XokIRbCCHGkXhCpa4nkPQhZqU5FnZ3+piUb2dSwcjW9N4rEInzYX0vrlCEqnx7UuMTQgghRoOqanT7IzT0BKjrDuCLxABQ6EusNTRAwWrUYTMZKMkxU+qwkG83k2s1DmuudSSeoMsbodUVpKbbTyjat1xmllnqnYxFknALIcQ40uOP0uuPUpyT3AJnNpMBnRJlU7OL4hzziHvPYwmVdQ29NPUGqSqwSTVyIYQQY44nFGN9Qy/NriDRuEqB3Ux11v4rbGiaRjimEozG2d3hZ1u7F5tRj8NqpCzXSrbFgN1kwGbSo1MUYqpKLKERjat0e8M09gbxhGKgQb7dRFmOJNpjmSTcQggxjrS7Q8RUFbMh+cPNSh0WGp1BdrR7mTspb9jPU1WNTc1udnX4qMi1YtAd2rrgQgghRLp0+cKsqXXS4Q1TlmPFeoDCpIqiYDXpsZr0FGR9moB7wzG6mtyoAGiYDXoU+oqhxVUN0ECBHLORiblWDHppL8cDSbiFEGKciMZV6pwBss3GlBzfoNNRYDexvd3LhDzrsAqoaZrGxy1uNje7Kcm2yLwzIYQQY06TM8iaOie+SIyq/JEvwbVvAr6XpvX1aGuAQaeg1yky+mucypjLJu+88w4XXXQR5eXlKIrCiy++OOBxTdO48847KS8vx2q1snjxYrZt25aeYIUQIgN1+cK4AzFybalJuAFybSaC0Tgft3iIJ9QD7qtpGltbPWxodJFnM5FlkWu8QgghxpbdnT5W7e4iHEswKc+WtPWuFUXBbNRjMeox6HWSbI9jGZNwBwIBjj32WB566KFBH//1r3/Nb3/7Wx566CHWrVtHaWkpZ511Fj6fb5QjFUKIzNTuCaNpGsYUD0Erd1ip7wmwq9OHqmpD7rej3ce6BhcOqxGHNXUXAYQQQohUaO4N8mGdE4NOR3muVZJicUgyprvhvPPO47zzzhv0MU3TuP/++/nZz37GpZdeCsCTTz5JSUkJf/3rX7nxxhtHM1QhhMg40bhKkzNI9ij0IpsNenLMBtbUOnH6IxxbkTcgoQ5FE9T1+Flb30uW2UCuLTnrgQshhBCjxRWIsra+F1WDouzkFiIVR5aMSbgPpL6+no6ODs4+++z+bWazmdNPP50PPvhgyIQ7EokQiUT673u93pTHKoQQ6dDtj+AORinPHZ1KpgVZZmwmAzs6fHR5oxw3yYHdbKDZGaTBGcQdiuKwGMm3S7IthBBibAnHEqxt6MUZiFBdIMtYisMzJhLujo4OAEpKSgZsLykpobGxccjn3XPPPSxdujSlsQkhRCbo9IRJjMJw8n1ZTXqqC+x0+yK8vasbnQIJFRxW4yEVlRFCCCHSTVU1Nja5aOgJMClflrEUhy9j5nAPx2Br3B3oj+C2227D4/H035qbm1MdohBCjLpYQqXRGUxZdfID0SkKJTkWyh1WSnOsVBfaybebJNkWQggxJu3s8LKt1UOZwzKqF7HF+DUmerhLS0uBvp7usrKy/u1dXV379Xrvy2w2YzbLnAshxPjm9EdxBSOU5ozOcPLBmAxyUiKEEGJs6/FH2NzsIcdixGYaE2mSGAPGxBlSdXU1paWlvP766/3botEoq1atYtGiRWmMTAgh0q/DEyKW0CTpFUIIIQ5RLKGyqclFIBKnIEs67ETyZMylG7/fz549e/rv19fXs2nTJvLz85k0aRLf/e53ufvuu5k2bRrTpk3j7rvvxmazcdVVV6UxaiGESK+EqtHYGyTLnDFf50IIIcSYs7vTR11PgIm5tnSHIsaZjDlDW79+PUuWLOm/f+uttwJw7bXXsmzZMn70ox8RCoW4+eabcblcnHTSSbz22mtkZ2enK2QhhEg7pz9CbyBKsVyNF0IIIQ6J0x/h42YPDotRRouJpMuYhHvx4sVomjbk44qicOedd3LnnXeOXlBCCJHhOr1hYnEVs1Gf7lCEEEKIMSeeUPmo2U0gEqeqUJYAE8knl3CEEGKMUlWNRmcQmwwnF0IIIQ5JTZef+m4/ZbmWdIcixilJuIUQYoxyBqI4A1FyraO/HJgQQggx1rkCUTY3u8m2GDEbZKSYSA1JuIUQYozq8IQIxRJYZDi5EEIIMSKqqrG5xY03HKPAbkp3OGIck4RbCCHGoFhCpbY7QLYMJxdCCCFGrK4nwJ4uP+UOK4qipDscMY5Jwi2EEGNQhyeM0x8hX67KCyGEECPiC8fY3OzGYtTLKDGRcpJwCyHEGNTgDIACRr18jQshhBDDpWkaW1o99PgjFGfLkpoi9eRMTQghxhhvOEZzb5Bcq/RuCyGEECPR1BtkZ7uX0hwLOhlKLkaBJNxCiDHPE4yxpcVDpzeMqmrpDiflWl0hfOE4ORaZvy2EEEIMly8cY0OjC4NOh11qoIhRIp80IcSY5g5Gea+mh6beIFaTnpIcC1OKspiYZx2XjWlC1ajt8mMz6aXIixBCCDFMCVXjoyYX3b4I1YX2dIcjjiDj72xUCHHE2Jtst3lCTC3KIppQ6fFFaHYFmeCw8rnZJeOuGEqnN0ynL0xpjiXdoQghhBBjxp4uP7s6fEzItcpQcjGqZEi5EGJMcgejvPtJsl2Vb0enU7AY9ZTnWqnKt9PqCrG9zZvuMJOuqTeIpoLZML4uJAghhBCp0uOP8FGTiyyzcdxdiBeZTxJuIcSYE4zGea+mh/Z9ku196XUKhdlmtrV5aPeE0hRl8gUicRp6AuTajOkORQghhBgTIvEEGxpd+CIxiqQquUgDSbiFEGNOU2+QVneIykGS7b0cViPRhMrmZjfRuDrKEabGrg4fnlCMHKsk3EIIIcTBJFSNTU1u6rsDTMy1pTsccYSShFsIMabEEiq7O3zYzQb0QyTbe5U7rDQ6g+zqGPtDy1vdIba2eijMMsvcMyGEEOIgNE1jS4ubj1s9lOdaMOol7RHpIZ88IcSY0uoK0ekNU2A/+BrURr2OPJuJLa0eun2RUYguNcKxBB81ulA1DYf0bgshhBAHtbvTz8YmN/k2EzaT1IkW6SMJtxBizFBVjZouHwadbthXqvPtJoKRBNvaPGja2FujW9M0trR6aHWHKHVIZXIhhBDiYJqcQdbWO7GZ9HKhWqSdJNxCiDGjyxehxRUacdGT4hwzjc7gmOzlbnGF2NbmoTjbjEEnX9lCCCHEgTT3BvmgtgdNg8IsKZIm0k/O3oQQY0Ztl59EQhvxkh42k4FIPMGebn+KIhtaQtXwhGJ0esM0OgPs6vBR1+3H6Y8QSwxdzC2eUGnuDbKxyQUaZFvkCn06RWIJvv7Uev77/3YSjiXSHU5KvfPOO1x00UWUl5ejKAovvvjigMevu+46FEUZcFuwYMFBj/v8888ze/ZszGYzs2fP5u9//3uK3oEQ4kikqho72r28vauLaFylTEaFiQwhExqEEGOCOxiloTdAQdbB524PptBupr4nwKzSHPKGMf87GTq9YTY3u+n0hYnGVVRVY++gdrNBj82kpyDLRGGWGbvZQJbZgNmgo8MbpqbTT5c3gqJoUllVjKpAIMCxxx7L9ddfzxe/+MVB9zn33HN54okn+u+bTAf+m1q9ejVXXHEFd911F5dccgl///vfufzyy3nvvfc46aSTkhq/EOLIE0uobGp283GzmyyzgQLp2RYZRBJuIcSYUN8TIBCJU5J9aFesc6xGursjNPQEUp5wh2MJdrR52druIRpXKcoyYzLoBgwJj8QSBKIJmp0h9nT5AQWDDowGHcFIArvJIFVVRVqcd955nHfeeQfcx2w2U1paOuxj3n///Zx11lncdtttANx2222sWrWK+++/n+XLlx9WvEKII5s7GGVTs5tdHT5Ksi1kWSS9EZlFzuSEEBkvHEuwp8uP4zCHVefZTOzq8uGPxJMU2f46PGFe29bB2vpebEYDlfl2bCbDfvOvzUY9+XYTE/KsTC7MYnKhnXKHFYfFSHWhnVKHJNsic7399tsUFxczffp0vvGNb9DV1XXA/VevXs3ZZ589YNs555zDBx98kMowhRDjWDSusq3Nw6vbOtjV4WNirlWSbZGR5FMphMh43b4InlCMiXnWwzpOrs1IfU+Axp4AR01wJCm6T3X5wrxX04M3FKOq0H7QdcI/y6DXYZAkW2S48847jy996UtUVlZSX1/P7bffzhlnnMGGDRswmwcfxtnR0UFJScmAbSUlJXR0dBzwtSKRCJHIp8UOvV7v4b8BIcSYpmka7Z4wH7e4aeoNkmMxMrnQjqKMrM0VYrRIwi2EyHht7hCgHXaVbp2ikGMxsrPDx5TirBEXXzsQdzDKB3uceMJRJuXbpOEX49YVV1zR/+85c+Ywf/58Kisrefnll7n00kuHfN5n/yY0TTvo38k999zD0qVLDy9gIcS4oGka3b4I29u9NDgDqKpGRZ5NRoOJjCefUCFERovEE59cwU7OvOt8uwmnP0JTbzApxwPwhWN8UOukyxemIk+S7fFIVT9dw31Lq4eEOvbWdE+VsrIyKisrqampGXKf0tLS/Xqzu7q69uv1/qzbbrsNj8fTf2tubk5KzEKIsaXbF+H9PT28urWDPZ1+8m0mJuXbJdkWY4J8SoUQGa3L2zecPMeanAE5ep2CzWRge5s3Kcs7hWMJ1tQ5ae4NUplvRyfJ9rizodHF7S9t679/+4vbOOXelby6tT2NUWUOp9NJc3MzZWVlQ+6zcOFCXn/99QHbXnvtNRYtWnTAY5vNZnJycgbchBBHjt5AlNW1Pby6tZ3t7V5yrEaqCvtqowgxVsinVQiR0Tq8YdA47OHk+yrMNtHUG6SpN8j0kuxDPo6qamxsclHXHWBSvm3Ec7ZF5tvQ6OLRVbX7be/whLnp6Y08+tV5nDtn6ERzLPL7/ezZs6f/fn19PZs2bSI/P5/8/HzuvPNOvvjFL1JWVkZDQwM//elPKSws5JJLLul/zjXXXMOECRO45557APjOd77Daaedxr333svFF1/MP/7xD9544w3ee++9UX9/Qoj9+SNxenwRQrG+VTJsZj12kwGLUZeWUVueYIzdXT52d/rwh+MUZ5spcxxeHRch0kUSbiFExorGVZqcQbKTXHXUoNP193JPyrcd8lzu3V0+trd5KZOK4uOSqmqsWNc06GMaoABL/7mds2aXjquLLevXr2fJkiX992+99VYArr32Wh599FG2bNnCU089hdvtpqysjCVLlvDMM8+Qnf3pxaumpiZ0+1wkW7RoEStWrODnP/85t99+O1OmTOGZZ56RNbiFSKNwLEGjM0iLK0iXN4IvEmfvt5vJoGAx6CnMNjOjJJvyXOuofM+FoglqPmlbPaEYhVlmSooObTlQITKFJNxCiIzV7Y/gDsYoz01+Y1uUZabRGaDRGWRG6ch7uTu9YTY2usg2G2Ro2zi1u8uHKxgb8nENaPeEWVvfy8IpBaMXWIotXrwYTRt6jvq///3vgx7j7bff3m/bZZddxmWXXXY4oQkhkqQ3EGVtvZPG3iBmvY4ci5GCLBs6RUHTNGIJjXAsQZMzQGNPkAl5FmaU5jAxz5qSC8yxhEp9T4CtrR66vRHy7CapPC7GDTlLFEJkrHZ3CBUtJY27XqdgNxvY1uahsmBkvdzBaJx19b2EYwkm5duTHpvIDO7A0Mn2vrp84RRHIoQQydPQE2BdQy+eYIzKPNt+y1EqSl8Pt8mgI8dqJBJP0OEJ09wbZGK+jTnlDibmWZOSDKuqRrMryLY2Ly2uIHaTgepCO7pxNGpICEm4hRAZKZZQaewNkm1O3ddUYZaZBmeA+p4As8qGV4wpoWpsbHTR6g5RVSDJ9njlj8R5Y0fnsPYtzpbhjkKIzJdQNba0uNnU4kavKFQWDG9VDbNBz8Q8G7GESqcnTIc7zJRiO0eVOyjIMh9SLJqm0emNsL2tb4kvRUGW+BLjliTcQoiM1O2L4A5GKU9hkRS9TiHbYmBHu5eqAjtW04F7uVVV4+NmN9vbfZQ7Rmc+mxh9La4gD79VS7c/csD9FKDUYeHE6vzRCUwIIQ6RpvUl2+saXeTbTDisxhEfw6jXMTHPRjAaZ2eHj2ZXiKlFWVQX2inKNg8reY8nVNo9YWq7/TQ6g8RVlZJsyyHXUhFiLJCEWwiRkTo9YRJqaoaT76vQbqbO6WdTs4v5VflDvp6maWxr87CxyUVRlumgybkYm9Y39vLE+w1E4iqFWSbOmFnMs+tb9ttv72nlHRfNlgsvQoiMV9sd4KMm9yEn2/uymQxMLszCE4qxucXNzg4fFXk2phZnkWs3YjPqBwxTD8cS+MJxXMEouzt8dHojoGgU2M1kpXAUmxCZQj7lQoiME0+oNDiDZJsP76RgOHQ6hXKHlS0tHoAhk+6dHT7WNbhwWI1kW1Iflxh97+3pYdkHDQDMKs3mxtOmkGUxUGA3s3xtE+7Qp3O6Sx0W7rho9rhbEkwIMf60uUOsrXdiNuoOO9nel8NqxGE1EozGaXD6qe3xYzXqMBv05FiNZJn1uIMxfJE44ViCSEzFZtJT5rBgMsjQcXHkkIRbCJFxevxRXMEIpTmjs+amzWSg1GEZNOlOqBp13X7W1vdiN+nJtZlGJSYxuna0e/nz6kYAlswo4soTJvX3XB9fmcfs0my+/cwmAO76wlFcdWKl9GwLITKeKxBlTZ2TaFxlYp4tJa9hMxmYlG8grqpE4yrhmEq3N0JrQsVs0GEx6snJMkqSLY5YknALITJOpzdEXGVUG+d9k24NyLeb6PFF6PRF8ASjWI2GQy4OIzJbmzvEI2/XktA0TqzK56oTJ+03F3HfirlHT3BIsi2EyHjhWIIP6504/VEqC1KTbO/LoNNhMOmQ69JCDCQJtxAioyRUjUZnEHsa5kj3J93NHhRd38mD3aSnWAq6jFveUIwHV9YQiiWYWpTF9SdXybqvQogxT9P6inw29gSpLOhbX1sIkR6ScAshMoozEKE3GKXInp7eZJvJwJTirLS8thhdsYTKQ2/toccfpSjbzLeWTJElaYQQ40KDM8jWNg8lOZb91tkWQowu+QsUQmSULm+EaFzFLD3KIsVe/KiVup4ANpOe75wxTYrhCSHGBU8wxsZGF0a9jiyL9K0JkW7yVyiEyBiqqtHkDGIzyleTSK3dnT5e294JwA0nV1PqsBxwf7NRz5+umU99j1+mFwghMlY8obKxyYUzEKGqwJ7ucIQQSA+3ECKDuIJRevyRpC5bIsRnhaIJHn+/Hg04ZWohx1XkpjskIYRIip0dXmq6fExwWGXethAZQhJuIUTG6PJFCMcSWNNQME0cOZ5Z30yPP0phlokr5lekOxwhhEiKDk+YTc1ucq0mmZYlRAaRhFuIDKNpGtG4mu4wRp2maTQ5AzJcV6TUpmY37+3pQaFvKLlc3BFCjAfBaJz1Db1E4xr5dlmXS4hMIhMlhcggqqqxtqGXJmcQh81ISbYZh81EmWP8L0vlCcXokuHkIoX8kThPrm4A4OyjSphekp3egIQQIglUVeOjJjet7pDM2xYiA0nCLUQG2d7u4eMWNzkWI52eME3OIKAxrSSbU6cVodeN3/lYXb4IwUiC0uwDF68S4lC9sLEFXzhOucPCF46bkO5whBAiKfZ0+9nZ7qXMYRnX5wlCjFWScAuRIRp6AmxodJNnM5Fn+3Q4WCSWoKbLT5nDyozS8dkjp6oaDc4AFoMeRYq8iBTY0+XnnZoeAL66oFLW2xYZLRRNEFdV9DoFnaKg1ynymRWD6vFH2NjowmYyYDPJab0QmUj+MoXIAF2+MGvqnegVZUCyDX3LEWWZDHzU5KIo2zwu52Z1+SK0ukIUZZnTHYoYh+Kqyp/XNAJ9VcllKLnIRLGESocnTLMrSFNvkHhCRad8mnBXFdqZXGinQL4nhxSNq0QTKtG4SiyhYjXpybGM32lKgUictfW9+CIxqguy0h2OEGIIknALkWa+cIw1tU4CkTiT8myD7lOYZaLBGWRjk4vTpxeNu56O+h4/8YQ27uepi/R4c0cXre4QWWYDX5wnQ8lFZonGVWo6fezu9NMbiKChkWs1YbMYUVVQNY3YJ2sr7+rwMrkoi6nFWRTL9Jt+Tn+EHe1e2txh4qpKLKERV1WsRj0V+TaqCuyUOizjqu0MxxKsrnPS3BuksmDwcwchRGaQhFuINNvT5afNE2ZygX3I4dSKolCea6Gu20+Zw8JR5Y5RjjJ1PKEY9T2BcdlzL9LP6Y/w0uY2AC6bN5HscdzbJcaeLl+Yj5rcNPYEyLIYKM+1DpkUFmSZ8YVjbG31UNvtZ15FHrPKctAdwXN2A5E4uzt87Ojw4o/EybeZsJkMGHUKer1CMJJgd6ePXR0+CrPMzJngYErR0G3tWBFLqKxv6KW208+kAhsG3fi5kCDEeCQJtxBpFI4lqO0KkGs1HvSkyWzQ47AY2dzspiTHQuE4GVbY3BvAF45TVDg+3o/ILCvWNROJq0wrzmLR1IJ0hyME0NervavDy8etHsKxBBX5tmH1vmZbjGRbjLiCUT6o7cEfiXPcpFzMhiNvdFB9T4CNjS56/BEK7CYmF+4/pDrHqiPHaiSWUHH6o7yzu5tef4RjKnLH7IgqVdXY1Oxme5uXCXlDX6ARQmQOSbiFSKNWd4jeYITK/OEt41GQZaaux8/uTt+4SLgj8QS7O/1kWwxjvsdBZJ4trR4+anajVxS+elIlOvmMiQzgCcZY1+CktrtvZE/JIQwNz7OZMOl1bGp244/EObE6/4gZvaFpGrs7/XxY50RRoLrQftC/baNeR6nDgj8S56MmN73BKCdU5Y+5+fCxhMrWFg+bm90UZ4//5UKFGC8k4RYiTVRVY0+XH5NeN6JlPArsZhp6AswuyyHXNraHYbe6QvT4o0zKt6Y7FDHOxBIqy9c2AXDmrGIm5MlnTKRfiyvI2vpeevwRJg2zV3sodrOBijwbe7r8hKIJTp1WhMM2vpNuVdXY1uZhXUMvdpNhxAlzltmApcBGsyuIJxRnweR8KsfIutW+cIwNjS52d/oosJvJssgpvBBjhYxDESJNuv0R2j2hEfdU51gM+MJxGnoCKYpsdKiqxp5uP0a9IvPPRNL9e1sHXb4IDquRi44pT3c44giXUDW2tXp4a2cX3lCMqgJ7UoYCmww6qgrstHlCvFfTjScUS0K0mSnxyVDqtfW95FiMh9w7bdDrqMq3E40neGd3N7s7fWialuRok6vNHeLNHV3s6vAxwWHFYR3fF1aEGG/kLFeINGnsCRCNqyMeEqYoCrlWI3u6AoSiiRRFl3qyFJhIFac/wv9t6QDgS8dPxGqSYZcifXzhGO/v6eaDOidmg56JebakTm/Q6xQq8+20ekK8v6cHX3j8Jd2qqvFRk4v1jb3k202HPbpLURTKHH3zn9+v6WFrqwdVzbykuzcQZWOjizd3duIORqkusGOWYeRCjDkyHkWINPBH4tT1BMg/xJOGPJuJemeAZldwTK4pHIom2NLqJiFLgYkUeHZ9C9GEyvSSLE6qzk93OOII1twbZEOjiy5vmPJca8q+7/Q6hUn5NhqdQd7f08Mp04rIMo+PUzxN0/rqMTS5KMoyJ3WuemGWGXcwyof1vUTiKsdV5GJIcxGyeEKlyxehrttPgzNAMJLou8iQM7ankAlxJBsf38ZCjDEtriCeUIzqwkObO6bTKdhMenZ1+KguTM7QxOEIROL4wnFCsQTBaJxwNEGu3URhlpmcYRY+C8cSrKnrKxhUmS9rh4rk2tbmYUOTC50CXz5xkhTjE2kRjiXY3uZlS6sHNKgaRmGvw2XQ6ags6Eu6FaWHU6YWYh8HSff2di8bGl3k25ObbO+VazOh1ylsbHIRjMaZX5WPzTR6P7dwLIE3HMMdjNHtjdDhDeMJRUloGoV2M6U5Un9CiGSIxBJ8a/lHAJw5s2RUX3vsfxMLMcbEEyo1nX7sJsNhnYAVZplpc4doc4dSXvRFVTVqu/181OzGF46haqBpoKCh0Ve8pzDLzKR8G+W5Q88viyVU1jX0srvDR0W+LGcikiuWUPnrJ4XSlswopiJPLuiI0RWOJWhwBtje5qXbF6Eoy0zOKM63Neh0VObbaOgJoFPg5KmFo5o8JltNp4+19b1kmQ0pnbecbTFi1OvY3u7DH0lwUnVqKpjHEiqeUF9y7QlG6fRF8IZjhKIJogkVo6LDbtZTkmM5Ipd6E2K8GrvfwkKMUZ2+CN2+CGWOkS8Fsy+jXodOp1DT6aMiz3bQdbwPlS8cY3Ozm10dPixGPRNyrQOKnGmaRiCSoMMTpqEnQLbFQGW+naoiOyXZfScsCU0joWpsafH0rx0qJxMi2V7Z2kGnt69Q2sXHSaE0cWBdvjB7uvzkWIxkmQ1kWQzYTQYsRt2IRkZomoY3FKfTF2Z7m5cubxi72UBVgX1EK1Aki0GvY1K+jdruAIqicPKUwjFZx6C228+aOicWg558e+qHU1uMeqo+qWC+cmffUmuT8m2HNUpG0zTcwRg9/gid3jCd3gj+SJxwPIEOsBoNWE16crKNmAxyAVqI8UoSbiFGWacnTFxVk9K7W2g30+IO0eWLUHqYCfxgmnuDrG9w0eULU+6wDnrSpigKWZa+k1VN0/CG4+zo8LCz04vDakTT+KRHXMMbjlHmkLVDRfJ1eMP835Z2AK6YXzGme/XE6PAEY3zU5Mak1wEaRoMOi0GPxagnz2Yk12bEajJg0uswGfpufd9nGnFVI55Q6Q1EaXWFcIeiBCMJbCYDkwpsaV95wajv6+mu7fKjQ2HR1IIx9b1b2+3ngz096BSFouzRK6xp0PVVMG/3hFm5o4vqIjuzy3Iozhl++xpPqPQGo3T7IjQ6gzj9EUKxBIZPeq8L7SYpfCZEGuxbGPGjJhcV+bZRuygqZyRCjKJYQqXRGSTbnJyhcVaTnri3b7h3shPudk+I92p6iMZVqoc5/1BRFBxWIw6rkWhcxR+Jo1PAoFPQKQoTc21yFV8knaZpPL2mkbiqMac8hxOq8tIdkhgjTHqF6kI7mqYRTahE4yqhaAJ3MEosoaIBfd98CgZ9379UTUNV+WRCDdhNBrLNRkqyLRlVM8Co11GRZ6Omy4eGxonV+SmZA51s+ybbJSNIdJNFURTKc60Eo3H2dPpp7g0ypTiLqUVZZFuM+42ASKgawWgcdzBGpzdMc2/fBZhYQsVq1OOwGinNyazPhhBHmg2NLpZ/MuUM4HvPbubX/97FHRfN5tw5ZSl/fUm4hRhFPf4IrmCEMkfyiqDk2000OAPMLsshL0nD7lyBKKtrnYTjiUOeB2sy6Mg3SFXVTKRqGltbPdT1BAhE4gSjCQLRODkWI8dOzOWo8pwx1Ru2pq6XnR0+jHqFr5xUKSe2YsQURcFs0GM26MkeJMdTP5kWA6BTFHQKY+JzZjL0Jd17uvwEowlOmpxP8WBvMEOkO9nel81koKrQgC8cY2urh10dPqxGPTaTnjy7CaNehycUwxeOEfnkQg1aX02T4myzTJsSIkNsaHTx6Kra/bZ3eMLc9PRGHv3qvJQn3ZJwCzGK+oaTa0ktFpZjNdLTE6GhJ5CUhDsYjbO6zonTH6WyQIpOjScJVWN9Qy//t7WDVndo0H0+qHVi0CnMLMvmlKmFHD8pL6MTC384zjPrmwG46JjyUR1+Ko4cOkVBp8/cv4MDMRl0VBfYaXYHeWtnNydV51N1iCtkpEosobKt1cPmFg8GXfqT7X1lW4xkW/pGbYVjCQKRBE6/H1XTMBv0mAw6skwGCu3mtMzZF0IMTVU1VqxrGvSxvSOYlv5zO2fNLk3p368k3EKMkoSq0dgbTMnaqA6LkZouPzPKsg9r7mosobK2vpfm3iCVBbaUL2MjRs9HTS6eXd9Ctz8CgMWoY35lPrlWI1ZTX69NmzvMpmY33f4IW1u9bG31MrM0m6tOnER5bmYuTfPshmb8kTgTcq2cfdToLvMhxFih0ylMyrPR4Q2zanc3rkCU6aXZGbFsmCcUY0ODiz3dPgrs5pRWIz8ce+fxCyHGjt1dPlzB2JCPa0C7J8za+l4WTilIWRzp/6YV4gjh9EfoDUQpTsFSI3l2E/XOAI3OILPKcg7pGJqmsemTauQTP1OJXIxdmqbx2vZOntvQAkCW2cDnZhVzxsziQS/OXD5/Iu2eMGvqnLy+o5OdHT6W/nM7n5tVzEXHlmfUUPP1jb18UOtEUeDqBZXymRXiABRFocxhxR2Msrahl9ruALPLc5hcZE/L33U8odLiCrGxyUWPP8KEXFm9QgiRXJ7Q0Mn2vrp84ZTGIQm3EKOk0xsmFldTUp1UpyhkmQzs6vAxpSjrkK7C1/cE2NLi7pt7lkFJlTh0qqqxYn0zK3d2AXDGjGK+OG/CAX+/ewsGXTpvIqdOK+KZdc1sanHz7+2dbGpxc/PiqUzIgN5uVzDKU6sbAThvTilTi7PSHJEQY0OuzUSO1YjTH+Xdmm52d/qYXGQn324iz2ZKea93IBKnxRWiptNHpzeCUa9QVTC8wpxCCDESwx0xk+raFpJwCzEKVFWj0RnElsITmQK7iWZ3iBZXkMlFI0s+XIEoGxpdmPT6MVHFVhxcJJ7gT+/W81GzG+jruT5rVsmI5mMXZZv5zzOm8nGLmz+vaaTTG+Hu/9vBtQurOLE6P0WRH5yqaTz+fj3BaILKAhufP0bW3BZiJPYut5VvN9Hjj7CmzolOUbCbDOTZjWRbDFgMekwG/aDzGhWl7xh9/we9TodBp6D/ZEUKnQIooKAQV1WC0UR/9fcWdwhPMIbNpKfMYZFh2kKIlJlenE2ezTjksHIFKHVYUn5OIwm3EKPAGYjiDEQpSFIV8cEY9DqMOoWaTl9fb8Ewiz9E4gnWN/biDsaokiJp44Kqavx+VR1bWvsKEH39lGrmVx16Y3LMxFz+60I7f3injh0dPv7wbh31PQG+ePyEtAzjfmNHJzvafZj0Or5xymQMSSxCKMSRRL9PgbK9y1t1+yK0u8MkVO2Tpc8Ga0s0FEVB0z55XOmbvqKgsPcrQffJdlXVULW+Ixl0OrIthmEvNSmEEIdDp1O48oRJg1Yp3/sNdMdFs1Ne8FASbiFGQZcvTCSWSPk8uaIsM82uEHu6/UwvyT7o/pqmsaXFQ113gEn5toyuRi2G7++bWtnS6sGoV/je56YP67NwMNkWI9/93HRe3NTKK1s7eH1HJy2uIP9x+pRRLbzU7ArywsZWoK/XPtnrzwtxpNLrlP6K3IdK1TQ07ZM1yvv+Q6coUr1bCJE2x1fmcdPpU1i+tgn3PnO6Sx2WUVuHW7oFhEixvcPJrabUz4s2G/XYTQY2Nrro9kUOun9td4AtLR6Ks81JXapMpM+H9U5e2doBwHWLqpKSbO+l1yl8cd5Ebl48BbNBx44OH/e8ujPlxUb2cgej/G7lHuKqxjETHZw+vWhUXlcIMTx7k2uDTtc36kqvk2RbCJF2x1fmcdfnj+q/f9/lx/Lej88YlWQbJOEWIuVcwShOf2TUljopyjYTiMZZ19BLOJYYcr89XT5W1/ZgNupk3vY40egM8OQHfYXEzj2qlJOqU7PExbxJefzk3Jnk2Yx0eMLc/X872d3pS8lr7RWOJXhw5R56A1FKcszcsKhaRmSkyDvvvMNFF11EeXk5iqLw4osv9j8Wi8X48Y9/zNFHH43dbqe8vJxrrrmGtra2Ax5z2bJlKIqy3y0cHp2LNUIIIUZfXFXZ2urhbxta+H/v1HLPKzv4wXOb+dZfN/Kjv33ML/61nfte381TqxtYU+ekNxBNWSz7TrWcOylvVC8GypByIVKs0xshGE1Q5hi9ys4Tcq00OoNsbnZzQlX+fvO5d3f6WF3rxKTXUZSd/GXKxOjzhmI8/FYt0YTKnAk5XDp3QkpfryLfxs/On8VDb+2hwRnkN6/v5isnTuLUaYVJT4QTqsbv36mlqTdItsXAd8+cTpZFmq9UCQQCHHvssVx//fV88YtfHPBYMBhk48aN3H777Rx77LG4XC6++93v8vnPf57169cf8Lg5OTns2rVrwDaLRaYECCHEeKKqGtvbvaxvdPFRk4tAdPDOn0g8Sm/w0wT7nZoeoG965JwJOSycXEB1oX1cXFyXMxYhUkhVNRqcAayjvMyWQaejNMfC1lYvuTYT5bmW/uqxDc4Aa+qcWAx6ClOwJrgYfZqmsWx1A73Bvt7fb546edhF8w5Hrs3ED8+ZwePvN7Ch0cVTaxqp6wlw1YmTklZ5WNM0nl7TyNZWLya9jm+fMVUuEqXYeeedx3nnnTfoYw6Hg9dff33Att/97neceOKJNDU1MWnSpCGPqygKpaWlSY1VCCFEZtA0jS2tHp7f2EqrO9S/Pdti4NiJuZQ5LBRkmSi0m7Ga9ASicfzhOL5InDZXiF2dPhp7g3T7I7y1q5u3dnVTmmNh4ZQCFk4uID+FhYdTTRJukVJOfwR/JN5/X6colDosR8x8YVcwSo8vQq5t9Ids280GAtE4H+zpwWTUoaNvCZdANE6WyUCBJNvjxuo6Jx+3eNDrFG46fQo20+h9tZsNem48bTKvbu3g75taeW9PD029QW46fcphJ8axhMpfPmzivT09KAp887TJTC6U9bYzjcfjQVEUcnNzD7if3++nsrKSRCLBcccdx1133cXcuXNHJ0ghhBApU9vt5/mNLezu9ANgNeo5qTqf+VV5TC/OHnYnQCiaoKbLx9qGXjY2uunwhvn7R638Y1Mr8ybl8blZJUwpOrReb7NRz//76vG0uEenrtK+JOEWKdMbiPLmzi7cwSgKfet2gsKxFbnMr8wbF0NEDqbTGyEcT2Azjd5w8n0VZ1uIxBIkNA1V7asga8+yjPoXjUgddzDKinXNAHz+2HIm5o3+0m46ReH8o8uoLrTz/96po6k3yF0vb+ey4ydyytTCQ1r+pzcQ5ZG3+4arKwp89aRKjqvITX7w4rCEw2F+8pOfcNVVV5GTkzPkfjNnzmTZsmUcffTReL1eHnjgAU4++WQ2b97MtGnThnxeJBIhEvm0AKTX601q/EIIIQ5dNK7ytw0trNzVBYBBp3DmrGLOm1NG1iGsYGI16TlmYi7HTMwlfFKC9Y0u3t/TQ02Xn/WNLtY3uqgssHHGzGJOrMofMx14knCLlIjEE6xv6MUTjFFd8OmVKF84xpYWD3k2E1OLx3dPVbqGk3+WOc2vL1JH0zSeWt1IMJqgqsDGuUeld7jurLIc/uvC2fx+VS11PQGeWt3IO7u7+cpJlVQX2od9nF0dPn7/Ti2+cBy7Sc83T5vMUeWOFEYuDkUsFuPKK69EVVUeeeSRA+67YMECFixY0H//5JNPZt68efzud7/jwQcfHPJ599xzD0uXLk1azEIIIZKj2RXkj+/W0ebuK355ytRCPn9sedKGfluMek6ZWsgpUwtp7g3y5s4u1tQ5aXQGeeL9Bp5b38Jp0wpZPKM444ebS8Itkk7TNLa2eKh3BpiUN3Bt52yLkWC0LxnPsRoozh6/BXP2DifPs2X2l4AYuz6oc/JxqweDTuH6k6szYvmdfLuJH507g5U7u3hpcxsNziB3/98OFkzum4M1vTQLg27/K9KqqrG1zcPKXV1sa/WiARV5Vm5eLHO2M1EsFuPyyy+nvr6elStXHrB3ezA6nY4TTjiBmpqaA+532223ceutt/bf93q9VFRUHFLMQgghDp+maby5s4u/bWghrmrkWAzccHI1cyak7sJ4Rb6N6xZV8cV5E3i3poe3d3XTG4zyf1s7eGVbB7NLczixOp+5k3JHdVrdcGVeREO4884797vKXVJSQkdHR5oiEkNp6g3ycauH4qzB13YuybHQ2Btgfb2LxTOLMvIPIxk6vRFCsQTlMnxbpIArGGXF2k+Hkk/ITc+0hcEYdDrOnt23LNnfNrSwus7Zf7OZ9Bwz0cGkfBsJVSOW0AjFEnzU5KLH/2m10kVTCvjKSZMwG+TvJ9PsTbZramp46623KCgY+fJzmqaxadMmjj766APuZzabMZvlgosQQmSCWELlqdWNrK5zAnDMRAfXL6oateVlsy1Gzj+6jHOOKmVTs5u3dnWxs8PHtnYv29q9/HmNwpwJDqYVZ1FdaGdSvg1LBoz0HFOZzlFHHcUbb7zRf1+vT/8PUAzkCcZY3+BCrygH/OPbu2zVxkYXC6cUZkTPXDKpqkZDTwCbJNsiRZ5Z10wo1jeU/Jw0DyUfisNq5GunVLN4RhHv1vSwucWNLxxnTV0va+p699vfZuobPnb69CJKcsbv6JdM5/f72bNnT//9+vp6Nm3aRH5+PuXl5Vx22WVs3LiRf/3rXyQSif4L3/n5+ZhMfSN6rrnmGiZMmMA999wDwNKlS1mwYAHTpk3D6/Xy4IMPsmnTJh5++OHRf4NCCCFGzBeO8cjbtdR0+dEpcPn8Cs6cWZyWmkx6ncLxlXkcX5lHpzfM2oZe1tb30u4Js6nZzaZmNwAKUJBlwqjXoVMUdAokNI1jJuSO6nnGmEq4DQaDLCmS4ba0uunxRw46X9Og01HusLK7009lgZ2K/NEv9JRKvcEo3f4I+TKcXKTAtjYP6xtdKApcu7Aq4y9YTSnKYkpRFqqqsafbz6ZmN65gFKNeh0mvw6BXqMi3cUJlftKWExOHbv369SxZsqT//t4h3ddeey133nknL730EgDHHXfcgOe99dZbLF68GICmpiZ0+0wdcLvdfPOb36SjowOHw8HcuXN55513OPHEE1P7ZoQQQhy2Dk+YB1bW0O2LYDXq+Y/TM6e2SkmOhYuOKefCo8tocYf4uMVDQ0+ABmcAVzA2YPTcXtGEOqoxjqmEu6amhvLycsxmMyeddBJ33303kydPHnJ/qW46ujzBGE29QYqyzMOqStxXKVujptPPxDzruKpa3ukNE4klpBq4SLpYQuWvHzYBcObM4jF1sUqnU5heks30kux0hyIOYPHixWiaNuTjB3psr7fffnvA/fvuu4/77rvvcEMTQggxymq7/TzwZg3BaILCLBPfPmNaRk1j20tRFCrybFTss1qLOxil2xfpX60npqp0+cKUOkZ3FN2IE+5AIMCvfvUr3nzzTbq6ulDVgVcI6urqkhbcvk466SSeeuoppk+fTmdnJ7/85S9ZtGgR27ZtG3L+mFQ3HV0t7iC+cJyiwuHPtyvMMtPkCtDpzRn1D3+qqKpGY09w3M5NF+n1720ddPoiOKxGLj52QrrDERkikUiwbNmyIdvmlStXpikyIYQQY9W2Ng8Pv11LNK4yudDOfy6ZSo51dOZrJ0OuzUTuPqNNE6pGi9t4SEuWHY4Rv9rXv/51Vq1axdVXX01ZWdmo9Uqed955/f8++uijWbhwIVOmTOHJJ58cUMF0X1LddPTEEio1nX6yzIYRfSZsJgNd3gh7unzjJuFudYfo8IYpkcrKIsm6fRFe3tIOwOXzJ8oICtHvO9/5DsuWLeOCCy5gzpw542rEkBBCiNG3vrGXP75bT0LVOKosh5sXT5GlZg/RiBPuV155hZdffpmTTz45FfEMm91u5+ijjz7gkiJS3XT0tLvDOP0Ryg9hiElBlol6Z4BZZTkUZI3t35eqauzq8AKafCmJpFu+rolYQmNmaTYnVuWnOxyRQVasWMGzzz7L+eefn+5QhBBCjHHv1nTz1JpGNA3mV+bxtVOqB115SAzPiH9yeXl55Oen/0QvEomwY8cOysrK0h2KAOp6/CgKh/THuHdt7vqeQAoiG11tnhBNvcFxvb64SI9NzW4+bvGg1yl85aRJ0oMpBjCZTEydOjXdYQghhBjjXtvewZOr+5Lt06YV8s1TJ0uyfZhG/NO76667+K//+i+CwWAq4hnSD37wA1atWkV9fT0ffvghl112GV6vl2uvvXZU4xD76w1EaXYFybcdeu90gc3Eni4/3nAsiZGNLlXV2N3hR4OMWPNPjB/RuMqKdX2F0s6eXUKZI/OKlYj0+v73v88DDzwwrIJmQgghxGdpmsZLm9t4dn0LAOfMLuHqBZXoMnwllLFgxEPKf/Ob31BbW0tJSQlVVVUYjQMnzm/cuDFpwe2rpaWFL3/5y/T09FBUVMSCBQtYs2YNlZWVKXk9MXwtriDBSIKynENPAhxWI3U9ARp6AhwzMTd5wY2iDm+YRmeA4izp3RbJ9eq2Dnr8UfJsRi48Wkb1iP299957vPXWW7zyyiscddRR+7XNL7zwQpoiE0IIkek0TePZDS28vr0TgC8cV84FR49era7xbsQJ9xe+8IUUhHFwK1asSMvrigOLxBPUdPnJsRxexUJFUXBYjezu8DOtOHvMFYPSNI3dnT5UtDEXu8hs3b4Ir2zdWyitQmoDiEHl5uZyySWXpDsMIYQQY0xC1fjzmkbe29MDwJUnVPC5WSVpjmp8GXHCfccdd6QiDjFGtX1SLG1SEtYCzreZaOgN0OIKMm0U1ukNROL4I3F84Tj+cIxoXKUox0JRtnnEywV0eMM0SO+2SIFn1jX3F0qbX5mX7nBEhnriiSfSHYIQQogxJhJL8P/eqePjVg+KAtcurOKUqYXpDmvcOeRFyDZs2MCOHTtQFIXZs2czd+7cZMYlxoim3gAGnYJBd/jFFHQ6BYtBT02nn8lFWehTNGcknlDZ1eFjS5uHQCSOqvbNeVQUBa3FTZbZSEmOhUkFNibl2zAZDvzegtE4O9t9xBOq9G6LpPq4xc2mFjd6ReGqE6VQmji47u5udu3ahaIoTJ8+naKionSHJIQQ41IsodLhCRNNqJj0OkyGvluOxZiyc9hk8oZiPLiyhgZnEKNe4ZunTmbuJLmwnwojTri7urq48sorefvtt8nNzUXTNDweD0uWLGHFihXSuB9B/JE47e4wDqvp4DsPU0GWiQ5vmHZPiIl5h99r/lm+cIwNjS52d/pwWIxMcFgx7FN5UdU0/OE4jb0B9nT7KM2xMLs8h0n59kET705vmHX1vbS4Q1QcwpJoQgwlllBZvq4ZgM/NKj6kJffEkSMQCPDtb3+bp556ClVVAdDr9VxzzTX87ne/w2ZL/vepEEIcSTyhGGvqnNR0+mnzhOj2RxisTqXJoKOqwMbkwiymFNmZUZqNzXTIfZwp0ekN88CbNXT5IthNem45cxpTirLSHda4NeLf/re//W28Xi/btm1j1qxZAGzfvp1rr72WW265heXLlyc9SJGZOr1hvOEYVQX2pB3TbNCjoVHb7U96wt3cG2R9g4suf5iJDuugc2F1ikKO1UiO1Ug8odLtj/DWzi5KcixMKc4ix2Ik22LAZjJQ2+1nY5OLSCxBdYF9TFzNFGPHyx+30+2L4LAauejY8nSHIzLcrbfeyqpVq/jnP//JySefDPQVUrvlllv4/ve/z6OPPprmCIUQYuyJJ1Q2t3h4v7aHra0e1M8k2DaTHrvJQDShEo2rROIJonGV3Z1+dnf6ATDoFI6dmMuJ1fkcM9GR9iW2NjW7efz9eoLRBIVZJr575nRKHTIlMpVGnHC/+uqrvPHGG/3JNsDs2bN5+OGHOfvss5ManMhszb1BDIoOXZKHuRbYzDT1BukNRMm3J6f3vNEZ4N2abhIJqC6wDytmg15HmcPan3i/v6cHhb4lv6wmPa5AlByLkZL85F1wEAKg1RXila0dAFx14iRZZk4c1PPPP8/f/vY3Fi9e3L/t/PPPx2q1cvnll0vCLYQQI6BpGpua3Ty7voVuf6R/+5QiO/Mr85mYZ6U810qOxTBgupeqaXR4wtR1B6jr6Uu6O7xhNjS52NDkwmrUs2ByPktmjP7ItYSq8eKm1v7zi8mFdm5ePIVcW/JGqorBjTjhVlV1v+VGAIxGY/8wNjH+9Q8ntx1edfLBZFkMdPnCNPYEkpJwd3nDrK5zomkwIW/kX257E2/o+yKNxFRCsQRlDqskQhkiEInT7ArS7gnT7gnT5QuTbzMxpSiLKUVZlOSYx8z8Z1XTeHJ1AwlN47iKXOZNyk13SGIMCAaDlJTsX1W2uLiYYDCYhoiEEGJsanWFWLGuiR0dPgByLAZOnlrIyVMKD9oTrFMUynP7kvFTphWiaRot7hAf1vWytqGX3kCUt3Z189aubmaVZXPmzBKOmeBI+VrX7mCUP71Xz85P3tOZM4v50vETB0yrFKkz4oT7jDPO4Dvf+Q7Lly+nvLxvmGNrayvf+973OPPMM5MeoMhMnd4wvkiMqqzU9O46rEZquv3MKDu8eS+eYIwPap0EI3EqkjBEXacoWE16KY6WIcKxBK9s7eC17R3EEvtPpHqnpm+JiyyzgVOnFXLenNKMm0f1Wat2dVPXE8Bi1EmhNDFsCxcu5I477uCpp57CYuk7IQyFQixdupSFCxemOTohhMh8CVXjH5tbeXVrB6rWNxT8nKNKOW9O6SF3sCiKQkWejYrjbVw6bwK7Onys3NnFphY3O9p97Gj3UZRlZsnMIk6ZWpj0c5S4qvLmji5e2txGJK5iNui4dmEVJ1bnJ/V1xIGN+Lf60EMPcfHFF1NVVUVFRQWKotDU1MTRRx/N008/nYoYRQZq7g1i0CV/OPleeTYT9c4ALa4Q0w9xibBgNM7quh66fGGqCuySuIwjqqaxps7JCxtbcYdiABTYTUzItVLmsFCcY6HbF6G220+DM4A/EueVrR28s7ubC44pY8mM4rTPoRqMKxjl+Y9aALh07sSkTakQ498DDzzAueeey8SJEzn22GNRFIVNmzZhsVj497//ne7whBAio7mCUf7wTh01XX3zrudNyuVLx1dQlG1O2mvoFIVZZTnMKsuhxx/h7V3dvFPTTbc/wrPrW/jHpjYWTSng5KmFVObbDvu8dWeHl79+2ESbJwz0DSG/blGVFGFNgxEn3BUVFWzcuJHXX3+dnTt3omkas2fP5nOf+1wq4hMZyBeO0eYOkWtN/nDyvXQ6BatRz64OH5PybSO+shhLqKyt76XBGaQq35ayCwNi9PkjcR5+a09/o1iUZeZL8ycytyJ30MYpnlDZ0urhhY9aafeEeXZ9C2/u6OLahVXMLs8Z7fCHpGkaf/mwiXBMZXKhncXTZcUHMXxz5syhpqaGp59+ur9tvvLKK/nKV76C1SonV0IIMZStrR7+9F49/kgci7GvB/iEqtT2ABdmmbns+IlcdGwZa+p6eXNHJ22ecP9w8/JcCwsnF3BSdcGILr4Ho3HWNbh4t6abBmffdKIss4HL5k1k0dQCOR9Ok0Met3DWWWdx1llnJTMWMUZ0eiP4w3EKC5N31W8wxTlmGp1Bajp9HD0xd9jP0zSNzc1udnX4qMi1yvyUccQbivHbN3bT4gphNui48JgyPjer5IC91Qa9jrmT8jhmYi6ra538Y3MrzkCU+97YzYXHlHHRMeUpnzs1HO/W9LCpuW/N7WsWVmZETGJssVqtfOMb30h3GEIIMSZomsbLW9p5cVMbAJPybdx42mRKckavYrfZoOf06UWcNq2QHe0+3t3TzUdNbtrcYZ7f2MrzG1spyjIzrSSLacVZTMizYjMasBh1WIx6vOEY7Z4wbe4Qzb0hNjW7iSY+WRpSUThteiFfOG4CdnNmT6cb74b103/wwQf55je/icVi4cEHHzzgvrfccktSAst0vnCMTc1ujpmYiyOFPb2ZqMUVxKhP3XDyvQw6HXk2E1taPZTnWinIGl6CX9PlZ3Ozh+Js86BLf4mxyR2M8pvXd9PuCeOwGrn1rOlMGMGwKL1O4ZRphZxQnccz65p5p6aHf37czp4uP18/dXJa/47b3CFWfLLm9iVzJ6RkDXox/rz00kucd955GI1GXnrppQPu+/nPf36UohJCiMwXV1X+sqaJd/f01XpZPL2IK06oSNt0M0VRmF2ew+zyHILROOsbXayudbKny0+3P0K3P8IHtc5hHavcYeGUaYUsnFxAtuXIylEylaJpgy3ZPlB1dTXr16+noKCA6urqoQ+mKNTV1SU1wGTyer04HA48Hg85OYc3lLTbF+HVre0UZJk5dVrhEfOB9oZj/GtzG1ajftTec12Pn+kl2Zw6reiga123ukO8vasLvaJQOMwEXWS+3kCU/31tF12+CHk2I98/ewalh3kFenWdkz+vaSQaV3FYjdy8eApTirKSFPHwReMq//1/O2h1hziqLIfvfG6aDPnKYPU9fk6dXsTM0sOfjnC4bZJOp6Ojo4Pi4mJ0uqFPEhVFIZFIHE6oGSOZ7XhNp4+3d3VRXTj6f/dCiPQJxxI8uqqWbW1eFAW+fMIkzphZnO6wBhWMxqnrDrC7y0dNpx9nIEo4liAUS6B9Utit1GGh3NFXw2Z2eQ6TC6Vu0VASqkaLO8iFx5Qf9kiGkbRHw+rhrq+vH/TfR7q4qtHgDKDXKZw6LfmVBTNRlzeMP5IY1WS23GGltstPRb7tgAmROxjlwzon0bialIrkIjMEo3F+80myXZhl4vtnzUhKEZOFkwuozLfx+1W1tHnC/M+/d3HDydWjXrnzuQ3NtLpDZFsM3HBKtSTbYtj2XYpTluUUQoiDcwejPPBmDc2uECa9jm+eNpnjKnLTHdaQbCYDcyY4mDPBMWC7pmlE42rfiFOZgpbxRjxu4he/+MWga3qGQiF+8YtfJCWosaQi10Z9T4AP9vQQio6PHoShaJpGXU8Ak14Z1aTAYtRjMujY3OwmEIkPuk+7J8S7NT30+CMjGmYsMpumaTzxfgOdvgj5dhM/OmdmUiuGluda+en5szh2ooO4qvGHd+v45+Y2hjHwJyk+anLx1q5uAL5+SvURNz1FJM9TTz1FJBLZb3s0GuWpp55KQ0RCCJFZevwR7v33LppdfRe5f3jOjIxOtg9EURTMRr0k22PEiBPupUuX4vf799seDAZZunRpUoIaSwx6hcp8G7XdAT6sd6Kqo3Oing69gSidnnBalioqye5b5mlDo4sWV5DYJwUhYgmVj1vcvLG9k25fhMp8u/QQjiOvbe/ko2Y3Bp3CzadPSclnz2LU863FUzlrdgkA/9jcxp/eqycaT22PYV23nz+91zdi6JyjSjiq3HGQZwgxtOuvvx6Px7Pfdp/Px/XXX5+GiIQQInO0e0Lc++pOuj8ZLXfbeTOpLrSnOyxxhBjxGGhN0wadF7B582by84/MRdSNeh0Tcq3UdvuZUpRFRf74HM7c5g4RjCYoc4x+D7JOp1DusLKr00tNp5+CLBOTi+x0+SLUdfvJs5koc8iaxePJ7k4fz2/sW5P6yhMqqEphw6jTKVwxv4LSHAt/+bCRD+t76fSGuXnx1JQk+a3uEA+8WUMkrjKrLJtLjpuQ9NcQR5ah2uaWlhYcDrmYI4Q4cjU6A9z3Rg3+SJxyh4XvnTWdPJucM4rRM+yEOy8vD0VRUBSF6dOnD2jYE4kEfr+f//iP/0hJkGOBxahHoW+R+Qm51nE3xCOWUKntDpCVxmUFrCY91QVZxBIqvYEoa+qc6BSFibk2TAZZ+ms8cQej/L936lA1WDA5n9NHaU3q06cXUZxt5veramlwBvnly9u5afEUphVnJ+01un0R7nt9N4FogsmFdr61eKosXScO2dy5c/vb5jPPPBOD4dPv6EQiQX19Peeee24aIxRCiPSp6fTx4Mo9hGIJKgtsfPfMaUdMoWOROYadPd1///1omsYNN9zA0qVLB1wxN5lMVFVVsXDhwpQEOVaUZFto7g3R6g6Nu17uLl+E3kCUMsforU04FKNeN6prJIrRpWkaj71fjycUozzXwtUnVY5qtc1ZZTn8/ILZPPTWHlrdIf73td18+YQKTp9edNhxuINRfvvGbtyhGBNyrdxy5jQssnSdOAxf+MIXANi0aRPnnHMOWVmfFpbc2zZ/8YtfTFN0QgiRPltbPTzydi3RhMq04ixuOWMaVpO0uWL0DTvhvvbaa4G+JcIWLVqE0ShXhz7LbNSjKLC93Ut5rvWgS1iNJS29QVRVS9v6hOLI8d6eHna0+zDpddx8+tS0rKVelG3mp+fN5IkPGljf6OLpD5v4qMnN1QsrR1yhPxJL8K3lHwHgsBrxhGIUZZn53uempXXEiBgf7rjjDgCqqqq44oorsFjkYqQQQmxodPGHd+tIqBpzJuRw0+lTMBsk2RbpMazsyev19v977ty5hEIhvF7voLcjXXG2mZbeIK2uULpDSZpgNE6DM4jDJhdZRGq5g1GeXd83b/vi48opTeOICrNRz42nTeZLx0/EoFPY1u7ljpe28eaOzhEVR4wnPi2+5gnFKHVYuPWs6eTK/DGRRNdee60k20IIAby/p4ffv1NLQtWYX5nHfy6eKsm2SKthda/k5eXR3t5OcXExubm5gw6r3FuwJZEY30tjHYzZoEenKGxv91CeaxkXczPbPWE8oShV+VLNUaSOpmk8vaaJUCxBdaGds2aVpDskFEXhnKNKObYilyc/aKCmy8/ydc28U9PDqdMKWVBdQJZl8K/RWEJle7uXFz9q6d82pzyHG0+bjNUkPdvi8OXn57N7924KCwv766wMpbe3dxQjE0KI0adpGi9vaefFTW0AnDq1kKsXVI67ukpi7BnWWd/KlSv7K5C/9dZbKQ1oPCjJsdDqCtHiCqW0svJo0DSNxp4gRp1OvrBESq1rcLGpxY1ep3DdwqqM+ryV5lj44TkzWLW7m+c3ttDqDrFiXTN/29DC3Em5VBfaMRv0WIw60GBLm4fNzR5CsYEXILe2efmvl7Zx5QmTOL4yL03vRowX9913H9nZ2f3/Hs1aB0KI8SMYjdPoDNLUGyQaV9HoO//T6RRKsi1MzLNSkmPJ6KmScVXl6TVNvLenB+hbbvOyeRPle1FkhGEl3Keffvqg/xaDMxn6ktOdHV4q8m0Z/QV1MK5gjDZPUJZPECnlC8dYvq4JgAuOLmNC3ugvPXcwOkVhyYxiTqjKZ219L+/WdNPsCrGuwcW6Btewj+MKxnh0VS03nT5Fkm5xWPbWVgG47rrr0heIEGLMaXAGeGd3NzVdfjo8YQ42UcqgU5iQZ+XoCQ6On5THxDxrxiSzoWiC36+qZVu7F0WBq06YxJKZxUk5tqpq7O7y4QnFcFiNTC/OzqgOATE2jHhc46uvvkpWVhannHIKAA8//DB//OMfmT17Ng8//DB5eXICCVCcZabNHaLDG2ZCbuYlD8OhaRo72r0EIglKsmVuoEid5za04AvHmZBr5fw5pekO54CyzAbOmFnMGTOLaXQGWNvQizsYIxJTCccTxBIqVQU21ta78EXiQx5nxbom5lbkSsMtkmLjxo0YjUaOPvpoAP7xj3/wxBNPMHv2bO68805MJrloKsSRLpZQ2dDoYuXOLup6AgMeK8wyUVlgH1DMM6FqtHv6RmxG4iqNziCNziD/+ridomwzx0/K49RphWldOabNHeL379TS5g5jMui48bTJHDsxNynH3tDoYvnaJtyhWP+2PJtRRqmJERtxwv3DH/6Qe++9F4AtW7Zw66238v3vf5+VK1dy66238sQTTyQ9yLHIbNSjAbVdvjGbcLd5wtR0+SjJsWTMVUwx/uzu9PFBrRMFuGZh5Ziqe1BZYKeyYP9pIzs7vLy5s/uAz3UFY+zu8jGzNCdV4YkjyI033shPfvITjj76aOrq6rjiiiu49NJLee655wgGg9x///3pDlEIkSaaprGxyc2KdU24gn3Jo16nML8yjxOr86kusJNjHbowrqppOP1Rarp8bGxys63NQ7cvwqvbOnh1WwdHleWweEYRx0zMHbVRnZqm8f4eJ39d20Q0oeKwGvn2GVOpGqRNPhQbGl08uqp2v+0ySk0cihEn3PX19cyePRuA559/nosuuoi7776bjRs3cv755yc9wLGswGam0RnE6Y9QMMKlhNItllDZ0uJGVZGli0TKJFSNv3zYN5T81GmFTCnKOsgzxgbPPlfDk7GfEAeze/dujjvuOACee+45Tj/9dP7617/y/vvvc+WVV0rCLcQRqtsX4a9rm9jS6gH6emhPn17EqdOKcBwgyd6XTlEoyjZTlG1m0ZRCwrEEW1s9vF/rZGurh23tXra1e8m3m1gyo+/YqTx3DEUT/HlNI2sb+opBzi7L4WunVA/7/RyMqmqs+GSa21BklJoYiRH/NZhMJoLBIABvvPEG11xzDdBXLVWWBRsoy2Kg0x+mvicw5hLu+p4ATb1BKvJs6Q5FjGNv7eqi1R3CbtJzydwJ6Q4naYbb6Cfr5EAITdNQ1b4l6N544w0uvPBCACoqKujp6UlnaEKINFA1jde3d/LiplZiCQ29TuG8OaWcP6cMk+HwRpJZjHrmV+Uzvyqfbl+EVbu7eW9PD72BKM9vbOWfH7ezcHIBZ84spjyJozxVVeODWicvbmrFHYqhU+ALx03g3Dml6JI4EnN3l69/JMBQZJSaGIkRJ9ynnHIKt956KyeffDJr167lmWeeAfqurk+cODHpAY51eVYTe7r9zCzLSXlPcTAaxx2M4Q7G0NDItZnItRqxj/B1/ZE4W1o82E0GjGNoeK8YW9zBKP/4ZOmOL86bSLZl/CSf04uzybMZD9hg59n6iq8IkQzz58/nl7/8JZ/73OdYtWoVjz76KNA3Kq2kJP1L7GWaYDTOWfe9A8DDX56L2Shr9IrxIxiN8/h7DWxqcQMwszSbr55USakj+XOti7LNXHb8RC4+rpwP63t5c0cnza4Qq3Z3s2p3N1OK7JwytZATqvKxHOLfmaZpbGvz8tyGvlVCAIqyzHztlGqmFid/ZJyMUhPJNuIM8KGHHuLmm2/mb3/7G48++igTJvT1Sr3yyiuce+65SQ9wrMu1Gft6i51BZpcn/yqYpmnU9wTY1enDHYgRjMZJaBpoffNzbCYDDpuRqgI7lQW2YSXfO9u99PgjVI/xJc1EZvvbxpb+NbdPmVaY7nCSSqdTuPKESYPO/9rryhMmyVA0kTT3338/X/nKV3jxxRf52c9+xtSpUwH429/+xqJFi9IcXeZJqJ/WZN7d6eOocof8PYpxodkV5NG3a+nyRTDoFL584iROm1aY8lo8Rr2OU6YWcvKUAnZ3+nljZyebm93Udgeo7Q6wYl0zx07M5agJORxVlkPuMFa/6fCEWd/Yy/pGFy2uvkTbZtJz4TFlLJlRnLJOIRmlJpJN0TTtYCsBjBterxeHw4HH4yEn5/CS325fhH993EZpjuWgf/Cd3jB2s4Hzjz78YTz7CkUTfNziZlubF72ikG0xYDPrMej6XiOhagSjcfyROMFogjybiWklWUwuzMJh2/9LwhOKsavdy7Y2LzlWo3yRiJTZ1eHjf17bhQL87PxZY369+qFIhdPxp77Hz6nTi5IyjDCZbdJQwuEwer0eo3F8fJ8n42f26tZ27nhpG53eSP82+bsU48Ha+l6WfdBANKFSYDdx0+IpSSsidig8oRgf1Pbw3p6eAX9vAOW5Fibm2nDYjORajWRbDAQiCdzBKK5gjFZ3qL83G/qWJVsys5gLji5L+YhRVdX48QsfH3SU2r2XHiMX6saYhKrR4g5y4THlh11dfyTt0SF9YhOJBC+++CI7duxAURRmzZrFxRdfjF4vQ7IGU5BlotkVosUVZHKSikJ1esNsaHDR7ApSkmMZ9MtHr1PIthjJthhRNQ1XIMra+l52tHspybFQkmMhz27CbtLT1Btke5sXTyhGUZb5gNUqhTgccVXlL2sbAThtetG4TbYBjq/MY3ZpNt9+ZhMA3zljqvSkiZTasGHDgLZ53rx56Q4po7y6tZ2bnt6435rDUnlYjGWapvHqtg6e39gKwJzyHL5+ymSyLOkteuuwGjlvThnnHlVKbXeALa0etrV5aHQGaXOHaXOHD/h8vaIwqyyb+ZX5HDcpd9SK+MooNZFsI/7k7tmzh/PPP5/W1lZmzJiBpmns3r2biooKXn75ZaZMmZKKOMc0g06HSadje5uXCXlWzIbDuzBR2+3nwzon4ViCygJbf4/2gegUhYIsM/l2E75wnBZXiNpuP3pFwWLS4w/FybObmFxolyXAREqt3NlFmztMltkwrgqlDcVqNvCna+anOwwxznV1dXHFFVewatUqcnNz0TQNj8fDkiVLWLFiBUVFRekOMe0SqsbSf27fL9nel1QeFmONqmo8s76ZN3d2AXDW7BK+NG9iRn2GFUVhanEWU4uzuGTuBPzhOLu7fPT4I3iCMVzBGL5wDLvZQJ7NRJ7dSL7dxMzS1Nc/GsrxlXncdPqUAUupgYyGEYdmxJ/iW265hSlTprBmzRry8/MBcDqdfPWrX+WWW27h5ZdfTnqQ40FJjpkmV5D6nsBhDUWs7wnwQW0POhQm5Y+8Z1BRFHKsxv4e7LiqEo6pFNnNGfXlLMangYXSJsiSc0Ikybe//W18Ph/btm1j1qxZAGzfvp1rr72WW265heXLl6c5wvRbW99Lu+fAPWpSeViMJbGEyp/eq2dDowuAy+dP5OzZpWmO6uCyLAbmTcr8hPX4yjzmVuSyu8uHJxTDYe0rdirny2KkRjyheNWqVfz617/uT7YBCgoK+NWvfsWqVauSGtx4YtDryDIb2NrixR+JH9IxmpxBPqjtQUE57HkH/XHp+uKSLw8xGp5d30IkrjK50M7JU8dXoTQh0unVV1/l0Ucf7U+2AWbPns3DDz/MK6+8MqJjvfPOO1x00UWUl5ejKAovvvjigMc1TePOO++kvLwcq9XK4sWL2bZt20GP+/zzzzN79mzMZjOzZ8/m73//+4jiOlxdvgMn23tJ5WExFoRjCR54s4YNjS4MOoVvnjp5TCTbY41OpzCzNIeTqguYWZoj58vikIw44Tabzfh8vv22+/1+TKaDVxw8khVmmXEGIuzq2P/ndzDNvUHe39ODqmqUJinZFmI07ezwsrahF0WBr/z/9u48TK6qzB/499a+71Vdve/pLJ2QlWyQgOzCiIKjqAM6yigiyIAO/phxFHUEnHEYVEYWQRYdBRVHGUUgCIQtYUkCJED2Tnd6S++1b/fe8/ujSUNIOunqrqWr+/t5nnqgqm/dOvemus9973nPe1bW5HTNTKLZTlXVYxZG0+v1Y+tzT1QsFsNJJ52E22+//Zg///d//3fceuutuP322/Hqq68iGAzirLPOOua1wWGbNm3CJz/5SVx66aV44403cOmll+ITn/gEXn755azaNhUB+8T6ThYMpekumpJx64bd2NkbgUmvwTVnNOPkes+J30hERZF1wH3BBRfgi1/8Il5++WUIISCEwObNm3HFFVfgIx/5SD7aOGNoJAleqwE7e0eX3Zqow8F2WlFR7jTnsYVE+SGrKv7n5Q4AwGlz/KgtYtVUopnoQx/6EK655hp0d3ePvdbV1YVrr70WZ5xxRlb7Ou+88/Bv//ZvuOiii476mRACt912G/7lX/4FF110EVpbW/HAAw8gHo/jV7/61bj7vO2223DWWWfhhhtuwNy5c3HDDTfgjDPOwG233ZZV26bi5HoPyp0mHO9Wn9symjJKNF2FEhn8xxO7sH8gBqtBi6+d1YJ55ZwCQTSdZR1w//jHP0ZjYyNWr14Nk8kEk8mEtWvXoqmpCT/60Y/y0cYZxWUxIJaS8XZ3CBNZka19MIYX9gwgJauodDHYptL05FuH0BNKwm7S4aOLZ36hNKJCu/322xGJRFBXV4fGxkY0NTWhvr4ekUgEP/nJT3L2OW1tbejt7cXZZ5899prRaMT69evx0ksvjfu+TZs2HfEeADjnnHOO+x4ASKVSCIfDRzwmS6uR8O2/mQ8A4wbdrDxM09lgNIV/f3wnukYScJr1uP6cuaifwSt9EM0UWVcscrlc+OMf/4i9e/finXfegRAC8+fPR1NTUz7aNyMFHSbs64uhwmVGo982blXw/f1RbNo/CFUVDLZnGVUIdI8ksKcvip5QEl6rAWUOE4JOE/w2I7QldEHYE0rg0TdGR90+sawaVhZKI8q56upqbN26FU899dQRffOZZ56Z08/p7e0FAJSVlR3xellZGdrb24/7vmO95/D+xnPzzTfjO9/5ziRbe7RzW8txx98t5TrcVHJ6QgncumE3huMZeK0GXHfWnJzV8yGi/Jrwla+qqvjP//xP/OEPf0Amk8GZZ56Jb33rWzCZ+MueLYtBh4hOxvO7BzAcz2BhpRMm/XtLhcmKiraBGDbvH4RGkphGPoscGIjhT9t7sPtQBPG0csxtjDoN1s/x45wFwWPONUxlFHzl19sAAP/9qSUw6qe2DN1UqELg/pcOQFYFWisdWNXAOWZEufbb3/72iL756quvzvtnfvBGsRDihEtKTuY9N9xwA6677rqx5+FwGNXV1Vm29kjntpZjbZMPC298EgBwzYeasKDCyZFtmrYODMZw21N7EE3JCDpNuO7MOfBYWTeJqFRMOOD+wQ9+gG9+85s444wzYDabceutt2JgYAB33313Pts3Y5U5TIgkM9jaPoz+SArLa92ABPSGkmgbiGEgkoLFoIPfbix2U6kA0rKKP77RhSffPoTDMw0MOg0afVZUeSwYiafRG0riUDiFlKziybcP4emdfVjX7Me5rcEjOl5VfW+qwu5DkaJeSD6zsw/7+mMw6jS4dGUt13gnyrG7774bV1xxBZqbm2EymfDII4+gra0NN998c14+LxgcrYLc29uL8vLysdf7+vqOGsH+4Ps+OJp9ovcAo+nqRmPu+0G7SY8N167Ds7v6UO+z5Xz/RLmyszeM25/Zi2RGRZ3XgmvOaIbdxMJ+RKVkwgH3/fffj5/85Ce48sorAYwuQfLRj34Ud911Fy+iJ8lu0sOs16IrlMCTb6egqKOjk1ajDkGnCUZd8UYmqXB29UbwwKYD6IuMpjeuqHPjrPllqPFYoNMcWWZBFQJvdYfxpze7sa8/hqd39eH5vf3422XVOL3Fj60dI/j1Kx1j2//o6b1FS5UciKbw+21dAICPL6uC18abR0S59pOf/AT/8i//gu9973sARvvqq6++Om8Bd319PYLBIDZs2IAlS5YAANLpNDZu3Igf/OAH475v9erV2LBhA6699tqx15588kmsWbMmL+0kmgleax/CPc+3QVYF5gbtuOr0piMyIomoNEw44G5vb8cFF1ww9vycc86BEALd3d2orGQRpMnSaTWo9VgRSWag12r4h3SWeW5PPx7cNDrv0WXW4+9W1WJxtWvc7TWShIWVTrRWOLCzN4JH3+jGnr4ofvVKB17cN4D2wfhR7xmOZ3DHxn348vrGggXdQgj8YlM7UrKK5oAN6+f4C/K5RLPN/v378fd///djzy+99FJ88YtfRG9v79hodLai0Sj27t079rytrQ2vv/46PB4Pampq8I//+I+46aab0NzcjObmZtx0002wWCz49Kc/Pfaeyy67DJWVlWOB/zXXXIN169bhBz/4AS688EL88Y9/xFNPPYUXXnhhkkdOdDRZUXFgMI5dhyLoGIwjmVGQVlSk5NGl8QJ2I8ocJpQ5jKhyWVDlMU/LJSqFEHhsRy/+992b1ourXfjSugbotVnXOiaiaWDCAXc6nYbZ/N5cYkmSYDAYkEpNfHkrGh/Tg2afTfsG8Yt3g+01jV5csqIaFsPEfiUlScK8cgfmBu34684+/Pa1g8cMtt/voVc7sKTaVZD08r/u7MNbPWHotRI+u6ZuWl7QEM0EiUQCNtt7KdFarRZGoxHx+PH/HhzPa6+9htNPP33s+eE51J/97Gdx//334/rrr0cikcCVV16J4eFhrFy5Ek8++STs9veW0+ro6IDmfRk6a9aswUMPPYRvfvOb+Nd//Vc0Njbi4YcfxsqVKyfdTiJgdBrV1oPDeH73APb0R5GWx193vmPoyN8Lp1mPk6qcWFTlwvxyBwy64ge0GUXFLza346V9gwCAM+cF8Ill1awxQFTCsioX/K//+q+wWCxjz9PpNL7//e/D6XSOvXbrrbfmrnVEM9SrB4bw85faIACc3uLHp0+umdTUDEmScOa8Mhi1GjywefwKwcDoSPfuvgjmBvO7Xue+/ih++1onAODipVUIsooqTTOqKiBJRxfxKlX33HPPEUG3LMu4//774fP5xl776le/OuH9nXbaacddtlKSJNx444248cYbx93m2WefPeq1j3/84/j4xz8+4XYQHU9aVvHivgE8+fYh9EfeG/yxGXVoKbOjMWCFzaiDUaeFQaeBogr0RUZroRwKj9bLCSUyeG7PAJ7bMwCzXotVDR6sm+NHtdtynE/On5F4Gnc9tx97+qLQSMCnTq7B6S2BorSFiHJnwgH3unXrsGvXriNeW7NmDfbv3z/2fKZcvBDl07aOYdzzfBuEAE5p8uFTkwy238+gn9hd+VAiM6XPOZFoUsZdG/dDEQLLa904Yy4vFGj6kBUVveEk0srhYFJAggQBAbNeC7tRD4tRO25GRiqjQDlOIFoMNTU1+NnPfnbEa8FgEL/4xS/GnkuSlFXATTSdCSGwuW0Iv3ntICJJGQBgNWhxeksAK+o8KHeZJpRVlVFU7OqN4I3OEbxxMISheBrP7OrHM7v60eCzYn2LHyfXeQqWxv1a+xB+sakdsbQCs16LL61rQGul88RvJKJpb8IB97HuVhNRdtoGYrjrudGAdGW9B5etqs1JuvWxlgebynaToQqBe17cj6F4GmV2Iz67uo434WjaGIqlMRxPo9pjwfxyB/Q6DWRFRUYRSGYUHByOYyiWRl80BUBAK0nQaTXQaSTIikBKUWDQaRB0mKfVFKADBw4UuwlEBTMUS+MXm9uxvSsEAPBaDTh7fhlOafJlvQSmXqtBa6UTrZVOfOpkgZ09EWzc04/XO0awfyCG/QMxPLKlE6e1BLB+jj9v/WcireDXr3aMpZDXeCz47OpafO/P7wAo/vKeRDR1WaWUE9HkxdMy7npuH2RVYHGVC59fW5+zOVlzAna4LXoMx8cfwXZb9JgTsI/786l6bHsPdnSNztu+4rRGmA28QKDiU1SB9qEY7EY91jZ50VxmP+YKEAsqHIimZAxG04gkZSTSMmJpGfG0ApNeiwqXGV6bAR6LAToWLiIqKCEENu7ux++2diKZUaHTSLhgUTnObQ0etZrHZGgkCfMrHJhf4UAokcGLewfwzK4+DMczePSNbjy2vQfL69xY3+xHU8CWk5vJsqpi075B/N8bPRiKpyEBOK81iI+cVAFFnV6ZNEQ0NQy4iQpACIEHN7VjIJqGz2bA50+pgzaHBVA0GgmXrKjBHRv3jbvNqgZv3oquvLB3AH98vRsA8Hcra4s2/43og3rDSQQdJpzS7D9ivfoPkiQJdpN+Wo1eExGQkhU88FI7XjkwBABo9Fvx2dV1qHCZT/DOyXGa9fjwwnKcvaAMW9tH8NQ7h7B/IIbN+4ewef8QKpwmrJvjx4o6z6RGvVVV4OW2ITz6ZvfY3HOv1YAvnFKPOWWjN8UVVcnpMRFRcTHgJiqA5/YM4LX2YWglCV88tWHC1cizsazWjS+vb8SvX+nAyPvmaus0EmRV4PEdvbAYtDh3QTCnqd4v7B3AAy8dgABwxtwA1jb5TvgeokKIp2UoqsBJ1a7jBttEND0NRlO4/Zm9ODicgFaScPGySpw5t6wgFbt1Gg1Orvfg5HoP9g9E8dzuAbxyYAjdoSQeevUgHnr1IOq8FpxU7cLCSicqXeZx53snMwre6Qlje1cI27tCY9lodpMO5y4I4rQW/zEzb4hoZmDATZRnncNxPPRqBwDgoqWVaPDbTvCOyVtW68aSahd290UQSmTgNOvR4LPi4dc6sXF3Px7Z2oUDg3FcurIWNtPUf/3fH2yf3uLHJSuqp34QRDmgCoGeUBKtFU7UeGZuxkVnZyeqqqqK3QyinNvZG8adG/cjmpJhN+lwxbpGtATzNy3qeBp8NjT4bPjE8iq83DaEF/cO4MBgfOzxx9e7IQFwWfTw241wmQ1IZBTE0zJiaQUDkRTk96WJWw1anLMgiA/NDcDE+dlEMx4DbqI8yigq7npuPzKKQGulA2fNL8v7Z2o00lFLf126qhZVbjMeeuUgtrQPY29fFJ9bU4eFk6yAKoTAc3sG8MvN7VNe2owoHwaiKXisBiysds7o72Vrayt+8pOf4NJLLy12U4hyZtP+Qdz/4gEoQqDWa8GV6xvhtRmL3SxYDDqc3hLA6S0BjMTT2N4VwhudIezqjSCRUTAcz4xbS8VnM2BRpQsLq5xoKbMfd81v9X3B+e5DESyocHIdbqISNuGA+1vf+ha+9a1vQac79ls6OjrwhS98ARs2bMhZ44hK3Z/e7EFPKAmnWY8vrK3PSUXyyTq9JYB6rxX3vNiG3lASP/rrHqxr9uHjy6qySnEfjKbwy5c7xqrEMtim6SYlK4ilFayf44Fjhs/Jvummm/CVr3wFf/jDH3D33XfD6/UWu0lEU/Lk2734zWudAICT6zz43Jq64wanxeKyGHBqsx+nNvshhEA0JaMvkkJfJIVIMgOLXgezQQurUQu3xYCA3TihfnJL+zB+/UrH2PMfPb0Xbosel6yowbJadz4PiYjyZMJ/we6//36sWLEC27dvP+pnd999N1pbW8cNxolmo87hOB7f0QsA+PTJNdOiGFOdz4pvnT8fZ80bHWl/bs8Arn/kTTz86kEMRFPHfa+qCmx4+xC+9ehb2N4Vgk4j4aOLKxhs07TTM5JEvc+KBp+12E3JuyuvvBJvvPEGhoeHsWDBAjz66KPFbhLRpKhC4LdbDo4F22fOC+DyU+unZbD9QYeLLjb6bVjd4MXZ84M4pdmHZbVuzA06UOYwTTjYvmPjviPqsADAcDyDOzbuw5b24XwdAhHl0YQj5B07duCqq67CihUr8O1vfxvf+MY30NnZic9//vN47bXXcOutt+Lyyy/PZ1uJSoaqCjywqR2KEFhS7ZpWd6UNOg0+uaIaJ1U78auXO9AdSmLDO4fw1M5DWFrtRr3PCq/NAK/NAL1Ggz19Uew6FMHuQxFEkjIAoDlgw2Wra1HuzE+VWKLJiqdl6HUaLKp0zprlu+rr6/H000/j9ttvx8UXX4x58+YddQN869atRWod0YkpqsADmw6MrUV98dLKnBf4nO5UVYzVexnPQ692YEm1i+nlRCVmwgG3w+HAgw8+iIsvvhhf+tKX8PDDD6OtrQ2rV6/G9u3bUV3NYklEhz29qw9tAzGY9Vp8emVNsZtzTHODDtz4kQV4uzuMJ98+hLd7wtjSMYwtHePfQbcYtLh4aRVObfYVNT2eaDwD0TRqvBb47cWf71lI7e3teOSRR+DxeHDhhRcy44xKRkZR8bPn92Nrxwg0EnDZ6jqcMgtXu9jdFxl3/vdhw/EMdvdFjqrTQkTTW9Y98sqVK7Fw4UL89a9/hdVqxfXXX89gm+h9BqMp/O+2LgCjVcndlum7HJFGktBa6URrpROdw3G8dmAY/dEUBqNpDMZSSGZU1PusmFNmQ0vQjnqvddaMGlLpkRUVsqqiyW+bVSNjP/vZz/C1r30NZ555Jnbs2AG/31/sJhFNSEpW8NNn9+Gt7jB0GglfWteAJTXTJyOskEKJ4wfb2W5HRNNHVgH3r3/9a1x11VVYvHgx3nnnHdx7770477zzcMUVV+CWW26B2cz0UprdhBD4n1c6kJJHL/rXzymdC98qtwVV7pm7fBLljioEVCGglaRpFdgOxdPw2Ywod5mK3ZSCOffcc/HKK6/g9ttvx2WXXVbs5hBNWDwt4ydP78WevigMOg2uOq0J8ytm78it0zyxOi8T3Y6Ipo8JB9wf//jH8cQTT+Cmm27C1VdfDQD493//d3zsYx/D5z73OfzlL3/BAw88gNWrV+etsUTT3RudIbzZGYJWI+Gy1bVMu6YZ4fCa1ilZATCaGSFJo/Muq90W6KdB1oMQApGkjIWVThh1s2ddW0VR8Oabb3Itbiop4UQGP3p6D9oH4zDrtbjmjGY0BWzFblZRzQnY4bboj5tW7rboMSdQnLXIiWjyJhxw9/T0YNu2bWhqajri9dWrV+ONN97AN77xDaxfvx7pdDrnjSQqBWlZHSt4cvb8MlS4mPFBpS8tq+gcicNnM2JtlQ8mvQZajQQJErZ3jWB/fwy1HkvRpxpEkjJsJh1qPDO/Mvn7cSlOKjWD0RRufWo3DoVTsBl1uPbMZtR6Z9fv7bFoNBIuWVGDOzbuG3ebS1bUsGAaUQmacMD9/PPPQ6M59gWVyWTCj370I1x88cU5axhRqfnLjh4MRNNwW/S4YGF5sZtDNGXhRAb90RSaAjYsr/MclcpoN/mgqALtQ/HRoHucPqIQhuIpzA064LQw3ZJouuoaSeC/NuzGSCIDj9WA686ag6Bj9kwBOZFltW58eX0jfv1KxxFLg3EdbqLSNuGAe7xg+/3WrVs3pcYQlaq+SBJ/eXfN7U8ur4ZRP3tSWmlm6o+kkMwoWFHnQWul85hr4VqNOqxt8kHdM4COoThqPVZoizD6kpIVSJKEev/sTkmlmS+jqIimZGgkCXaTrqSmLe3ti+LHT+9BPK2gwmnCtWfNmdZFRYtlWa0b84N2XP3w6wCAaz7UhAUVTo5sE5UwrhtClAMPvXoQsiowr9zOO9BU8g6Fk1CFwCnNPjQFjl/x227S45RmH17YPYDOkdGgu9AGo2kEHSaOlNGMMhRLY3tXCNs7Q+gciSOakpHMqGM/12kkuK0GeK0GVLnNmF/uQEvQPi1rGLy4bwC/2NQOWRVo8Fnx1TOaYTPyEnQ87w+u55TZGWwTlTj+taO8S2UUfOXX2wAA//2pJTNu9Pf1gyNjhdI+fXLNtKraTJStnlACGo2EU5r8qPdNLHh2mPQ4qcaFQzuSSKQVmA2F+x1XhUBCVtAUsBdldJ0ol1IZBRv39OPFvYPoGkkccxuNBAgByKpAfySF/kgKO3sjeOqdPug0EpoDNiytdWNlvQcWQ3Ev81RV4HdbO/Hk24cAAEtqXLh8bf2Muw4gIjoeBtxEU/D+QmlnzStDuZOF0qg0CSHQPZKEQafB2iYfarzZLRFX4TSh3m/F3r4I6ryFS+2OJGU4jHpUzKKlwGjmSWUUPLu7H4+/1YtIUgYASBLQ4LNiYaUTc8rscJr1sBl1MBu0UIVAKJ7BYCyNwWgae/oi2NEdxlAsjXd6I3inN4LfvHYQy2rdOLXJjzllU1ubXlUFdvdFEEpk4DSPVso+0ahrPC3jZ8+3YXtXCABwwaJyfOSkipJKgyciygUG3ERT8Nj7C6UtYqE0KqyUrCCWUqDXStBrNdBrNZMa5U3LKrpGEnBa9FjT6J3UeuySJGFu0IH2wThiKRnWAqWLjsTTmBO0w25isTQqPUIIvLB3AL/f1jUWaPtsBpzXWo5lNW7YTMf+PdJIErw2I7w2I1AGrG70QgiBQ+EU3ugcwYv7BtA9ksTm/UPYvH8IFU4TzphXhlUNnqxTzre0D2ddxGt7VwgPbjqA4XgGeq2Ev19Tj5PrPVl9LhHRTMGAm2iSDoWTePzdQmmXrKiBiSlyVEDD8TSG42l4rAYkMyoiSRkZVYWsCNhNOngshgkt1TUST2MolkaD34qltR54rJMvYlTmMKLeZ8Hu3mhBAm5ZVSGAoswbJ5qqkXgaD2xqHxsB9tuNOH9hOVY1eCZV8V+SJASdJgSdQZw9vwxtAzG8sHcAL7cNoTuUxC82t+ORrZ1Y1+zH6S3+0WD9BLa0Dx9zmarheAZ3bNyHL69vPCLojqdlPPzqQby4bxAAUGY34h/WNaCOy34R0SzGgJvyTlXF2P/vPhSZEdU2hRD41csdkFWB1goHlta4it0kmiVUVaArlIBOK2F1gxctQQcUVSCZUZCSVfRHktjbF0PnSAKSBDhNelgMuiOqjMuqilhKQSiRhl6rwapGL+aVO6Cf4lra7x/ljr67LnY+jcQzcFsMKHOeOHAgmk5eaRvCL19uRzytQKeR8NHFlThrflnO6hBIkoQGvw0Nfhs+vqwKL+4dxNM7+9AfTeHxt3rxxFu9WFTlxGktASyocBwzzVtVxdiUqfE89GoHllS7oAiBl/YN4k9vdmM4noEE4Mx5ZfjokoppWcRtujPqtbjnsuXFbgYR5QgDbsqrw6loh/3o6b0zYj3JLR3DeKsnDJ1GwqdYKI0KJCUr6BxOoNxpwvI6Dypc79UMOFyoLOg0oSXoQG8oibbBKA6FUjgUSSKjqJAkQAgJWs3okl41XivmlzuO2M9UBRwmNPhteKs7BJspv3O5Q4kMTq7LPkWWqFhkRcWvXunAc3sGAAA1Hgu+cEo9KnP4O/hBFoMOZ80vwxlzA3izK4S/vnMI7/RG8EZnCG90huCzGbC81oNltW7UeS1j/dnuvgiG45nj7ns4nsEvX27HG50hhN5NOQ/Yjfj7NXVoLrPn7ZiIiEoJA27Km2xT0UpFMqPg4VcPAgDOaw2ijEsRUYH0hpNoCtiwqsF73JRtg06DGq8FNV4LUrKCcEJGKJFBOJGBSa+F26qHy2zIWzXxlqAd+weiiCQzeZtbncwoMOo1qHSzUCGVhkhytO/bfSgKCaNFxM5fVD6p9PHJ0GgkLK52YXG1C72hJJ7d3YcX9w5iIJrG42/14vG3euGxGLCoyolqjwWhEwTbhx2+eeC26HHOgiBObfbxJhgR0fsw4Ka8mEgq2q9e6cDCCgcMJTb3+Y+vj6bM+W1GnNfKQmlUGLGUDJ1Gg/kVjqzmRxt1WvjtWvjthUu79tmMaPTbsKMrlLeAeyiWRsBmgm8C81CJiq1rOIGfPLMHA9E0THoNvnhqAxZVuYrWnqDThEtW1OBjSyrxxsEQtnYMY3tXCEPxNJ7d3Z/VvtwWPS5cXIlV9Z4J1Y0gIpptGHBTXkwkFS2UyODa376B01r8+FBLYEIFXIptb18UT70zup7op1fWHDEvliifDkWSmF/uQLBEMioa/TbsORRFPC3nfC1gIQQSGQUNAWvJ14Ogme+t7hDu2LgPyYwKv82Iqz7UlNcU8mwYdVqcXO/ByfUepGUVb3WHsKcviu6RBDqH4xhJyMd9v8Okw80fW8hAm4joOBhwU14cGIhPaLuUrOKJtw7hybcPYXG1C+e1BtHgK9wavtlIyyrue6kNAsCaRi8WVjqL3SSaJcKJDMwGLeaWO0qmXkDAbkSV24z2wRhqPLntaqIpGXaTDuWO6RG0EI3ntQND+NkLbVBUgTllNnx5feO0XcLOoNNgSY0bS2rem+q1ad8A7n3xwLjv+czKWgbbREQnwL+SlFNCCGzc3Y8/vN41oe0/tqQC88sdEALY1jGCmx/bid9uOYiMoua5pdn74+tdOBROwWXW45PLq4vdHJolhBDoj6YwJ2AvqfRpSZLQHLBDCOT893k4nkaFywynZXoGLkQA8OyuPtz13H4oqsDyWjeuPXPOtA22x7O60Ycvr2+E+wO/a26LvmTrsBARFRpHuCln4mkZ9790AFs7RgAAOo0E+X1Lgn2Q26LHeQvKcf5CCd0jCTy2oweb9w/hibcOYXtXCJevbUCN11Kg1h/fvv4onnx7NJX8stW1BVljmAgARhIZOEx6tARLr+JvhcuEMocJ/ZFUziqhZxQVQgD1Pq7rS9OTEAJ/3t6DP7zeDQBYP8ePz5xcU7LTH5bVurGk2oXdfRGEEhk4zXrMCdhL9niIiAqNI9yUE6mMgtue2oOtHSPQaiT87bIqXH5q/XHfc8mK9y5AKlxmXH5KA646vQl2kw7dI0l8/7F38JcdPRBi/KC9ENKyivtePDCWSl7MQjc0u6hCYCiWxtxyO1wWQ7GbkzWdVoOWoB1JWYFynJtv2RiMpuG3G3O6lBlRrggh8NstnWPB9gWLyvF3K0s32D5Mo5EwN+jAynov5gYdJX88RESFVHIB909/+lPU19fDZDJh2bJleP755wveBkUV2NI+hO1dIew+FIGaowvJUiWrKu7YuA/7B2KwGrT4f+fOxTkLglhe68GX1zfCZZ54Ktriahe++5EFWFbjhiIEHtnahXteaENaLl6K+W9eO4jecBJOppJTgYUSGTgt+pJez7baY4HXasRQLD3lfalCIJaWMSdoh57zRmmaUVWBX2xuH8uGumRFNT66uLJk6i4QEVF+lFRe7MMPP4x//Md/xE9/+lOsXbsWd911F8477zy8/fbbqKmpKUgbHt/Rg28/+hYOhVNjr7ktelyyomZWzmVShcB9Lx7Aju4wDDoNvnpG8xGpnstq3ZgftOPqh18HAFzzoSYsqHAe9+643aTHFesbsHF3P379ykG83DaEQ+EkvnJ6E9wFHuV7Yc8Ant3dDwnA36+pYyo5FdRIPI1FVS7YSvh7Z9JrMafMhpf2DcJnM0wp+BiJZ+CyGFDtnh5TTYgOk9XRTKiX24YgScBnV9XhlGZfsZtFRETTQEkNEdx66634whe+gMsvvxzz5s3Dbbfdhurqatxxxx0F+fzHd/Tgy7/cekSwDQDD8Qzu2LgPW9qHC9KO6UIIgd++1omX24aglSR8eX0jGv1HVxh/f3A9p2xi874kScJpLQFce1YzrAYtDgzG8W9/fgdtA7GcHsPxtA3E8MuX2wEAH1lcgVZWJacCyigqNJIGle7ST52u8VrhNOsxkjj+UoEnMhxPo9Fv5Y0vmlbSsoo7n90/1hd+8dQGBttERDSmZALudDqNLVu24Oyzzz7i9bPPPhsvvfRS3j9fUQW+839v43jJ4w+92jGr0suf3d2PDe+uSf25tXV5WSZrbtCBb54/HxUuE0KJDP79iZ14pW0o55/zQeFEBj99di9kVWBxtQvnLyzP+2cSvd9IPAOP1YCyEll3+3icZj3mlNkxFEtDnWRNhlhKhsWgRR2LpdE0Ek/L+K+nduP1zhHotRK+cnojVtR5it0sIiKaRkom4B4YGICiKCgrKzvi9bKyMvT29h7zPalUCuFw+IjHZL3SNoSeUPK42wzHM9jdF5n0Z5SSrpEEfvPaQQDAxUsrsbrBm7fP8tuNuOHceVhU5URGEbj7+f344+tdk75wPxFZVXHnc/swHM8g6DDhC2vroeEcvBkrksygfSiGQ+Fk0Qv0vV8kmUGD3zJj5irPCdrhsRowGJ3cXO7BWOrd+eClVzyOZqaReBo/eHwX9vRFYdZrce2Zc1hUk4iIjlJyV3IfnP8nhBh3TuDNN98Mp9M59qiunnzBq77I8YPtw0JTTJksBRlFxd3P7UdGEWitcODcBcHjbm/Ua3HPZctxz2XLYdRrJ/WZZoMWV53WhHPmj95w+b83e3DXc/uRyiiT2t94MspoauDuQ1EYdRpceVojzIbJtZmmL1UIDMfT2NcfHS3CVWaHQadB22As59+pyUikFRj1WpTPoErcNqMO88sdCCczWVcsP7wUWKPfxgJUNC30hpK4+S870TWSgNOsx/XntmBOCRc3JCKi/CmZgNvn80Gr1R41mt3X13fUqPdhN9xwA0Kh0Njj4MGDk/78gH1iaZ3OD1Tknoke2dqJrpEE7CYd/n5tfcEugDUaCX+7vBqfW1MHrUbClvZhfO+xd9AxFM/J/pMZBT/66x683jkCnUbCFesbufTQDKSoAm0DMSiqwPI6Dz68sAKnNvtx1vwyNAfs6AolMBhNnXhHeTQcTyPgMMJnNRa1HbnWGLChzGGa8A3Mw/oiKZQ5TCh3ln56PZW+HV0h3PSXdzAYS6PMYcQN581lIT8iIhpXyQTcBoMBy5Ytw4YNG454fcOGDVizZs0x32M0GuFwOI54TNbJ9R6UO004XmjptugxJzCz73Dv6ArhqXf6AIxW7S7GDYZTmnz42llz4DTr0RtK4qbH3sGGtw9NKR04mpTxnxt2Y2dvBEadBv94ZnNe5qRTcalCoGMojmq3Bee1lmNZrRued1OUXRYDTm32YW2TD2lVxUCRgm4hBBIZBQ0+24xb69ak16K10omkrCKjTGypv2hKhqKqaK10QjdD0uupNAkh8JcdPfjR03sQTyto8Fnx/86dC59tZt0YIyKi3Cqpq5frrrsO99xzD37+85/jnXfewbXXXouOjg5cccUVef9srUbCt/9mPgCMG3RfsqJmxl0gv18kmcHPX2wDAJze4i/qXLU5ZXbc+DfzcVKVE7Iq8PBrB/Gjv+7BoXB2I2cAsK8/in9/Yifa3l1H/Otnt2BucPI3Z2h6EkLg4HAcfrsRa5q8cFqOvlmk02qwoMKJpdVuhBLZpz7nQjQlw27SIThDR3NrvRZUuc3oPUFNDGA0G+FQOIkFFU7UejmCOJ3U1dVBkqSjHl/5yleOuf2zzz57zO137txZ4JZPTjKj4K7n9uORrV0QAji1yYd/OqcFdtPMz2ojIqKpKam1VT75yU9icHAQ3/3ud9HT04PW1lY89thjqK2tLcjnn9tajjv+bim+839vH1FAbbasw/3wawcRTsqocJrwt8smPx8+V+wmPa46vQnP7OrHb147iB3dYXzzjzuwqt6L8xeVI3iC6s4D0RQe2dqJVw+MLufmMutx7VlzUMk08hmpayQBl9mAtU0+uE6wnntjwIY9fVH0R1IFD3yH4xk0+K0zdnqKXqvBgnInekaSiCQzxw1YukMJVLrMWFTl4tztaebVV1+ForxX72DHjh0466yz8Ld/+7fHfd+uXbuOyDbz+/15a2Ou7OwN4xeb2nEokoJWI+FTK6qxfo6f30kiIpqQkgq4AeDKK6/ElVdeWbTPP7e1HGfND2LD27148u1DqPVYMC/omNEj2wDwdncYm/cPQcLoEmAG3fRIjpAkCR+aG0BL0I5Htnbizc4QNu0fxOa2QSytdqMpYEO1x4xqtwU6rYSekSQ6hxNoG4zhxb0DkFUBCcDaJh8+tqRyxgY5s133SAImvRZrmrzw20+c/jma+uzA0zv7kVHUglUKV1QBWRWo9c7spa+q3GYsrnZhW8cwFFUc8wbISDwNnUbC0lo3CxdOQx8MlG+55RY0NjZi/fr1x31fIBCAy+XKY8tyJ5qS8bstnXhh7wCA0ZuyX1rfgOYZPnWMiIhyq+QC7ulAq5GwrNaDnlASQYdpxgfbaVnFL19uBwCc3hJAg89W5BYdrdJlxlc/1IwDAzH835vdeKMzhC0dw9jSMTy2jQQctY763KAdn1xejWoP01Vnqv5ICpIGWNPoQ7lz4tkLtV4rqtxR9IaTBSuIFE5m4DTrT5idUeo0GgmLq10w6CS82jYMWRVj82CFEIinFQzG0lhZ72HhwhKQTqfxy1/+Etddd90JR32XLFmCZDKJ+fPn45vf/CZOP/30ArVy4pIZBS/tG8T/vdmNSFKGBOC0Fj8+tqQSFgMvm4iIKDvsOeiEHtveg75ICi6zHh9bUlns5hxXnc+Kqz/UjPbBGF4/OILO4QQODscxEE1DALCbdKhymVHpNqO1wokFFQ6mBc5gw/E0krKCU5t9qMlyDrBeq0FrhRO9oSSSGQWmSS5pl41wMoP55Y5ZMaKr0UhYUOGEQafFy/sHcXAoDlUIKKqA2aBFU8CG+RUsXFgK/vCHP2BkZASf+9znxt2mvLwcd999N5YtW4ZUKoVf/OIXOOOMM/Dss89i3bp1474vlUohlXqvgGE4HM5l04/QF0ni6Z19eHHvIBLvLg9Y4TThstV1aApMvxvNRERUGhhw03F1jyTwl7dGl2L71Mk1JRMI1HqtR6TlxtMyZEXAwZTxWSOSzCCczGBVvRdNk0wBrXKbUee1om0wilpPftO8ZXV0relK1+zJtpAkCXPK7NBrNdjRNQK/3QS/3Qiv1QCHST/js4dminvvvRfnnXceKioqxt2mpaUFLS0tY89Xr16NgwcP4oc//OFxA+6bb74Z3/nOd3LaXmC0T9jRFcLLbUPY8HYfDgzG0Bd5L7APOkz40NwATm32FWxKCRERzUwMuGlcqhD4xeZ2KKrASVVOLK1xFbtJk8Y0wOkvlpKRzCiQJAkaaXTqhsWgg3YSQVc0JWMgmsKyWg/mlU++4rxGI2F+hQMHh+OIp+W8fo/CCRlOsx4Bx+xbYqjeZ0W9b2bPW5+p2tvb8dRTT+H3v/991u9dtWoVfvnLXx53mxtuuAHXXXfd2PNwOIzq6qkX7bzvxQP4jyd2HfV6a6UDZ84tw/wKBzTMfiIiohxgFELj2rRvEHv6ojDqNPj0yTVMvaa8GYmnEUrIcFn0EBBQVUCWVfRHYzDptPDbjRMaZVKFQF84hbSi4qQqF06qdk15lLTMYUS124IDgzHUePIZcGewqMpZkNR1oly57777EAgEcP7552f93m3btqG8vPy42xiNRhiNub8JtajKCa/VAK/NgPnlDtR5rajzWmEz8bKIiIhyiz0LHVM8LeN3WzsBAH+zqAJe2+wbdaPCGI6nEUnKWNngxoIKJ1RxuFq3iu6RBHb2RNA9koAkSfBYDLAatce8+ZPKKOgcScBnM2JNjRf1PmtObhJJkoTGgBX7B6J5q1ieUVRIElDhZoEwKh2qquK+++7DZz/7Weh0R15O3HDDDejq6sKDDz4IALjttttQV1eHBQsWjBVZe+SRR/DII48Uo+k4pcmHh764Cs/u6kP9NCwESkREMwcDbjqmP74+Wp016DThzHmBYjeHZqixYLveg/nvFrDTvptOboAGTQE76rxWdI0ksKcvikPhJA5FkjBoNbCbdJBVgZSsIq0oACS0BO1YUu2G05LbufoVLjN8NiOGYmmU5aGCeCiRgctiQMA+s6uT08zy1FNPoaOjA5///OeP+llPTw86OjrGnqfTaXz9619HV1cXzGYzFixYgD//+c/48Ic/XMgmj2HGFhERFQoDbjrKweE4nt7VBwD49Ioa6FgwhvJg5BjB9rHotBrUeq2o8VgQTsjojyZxcCiBvkgKBp0GAYcRbosBDrMetR5LXr6veq0Gc8rseH53PwJ2kfOL9XAyg+W1nmmzvj3RRJx99tkQ4oOLLY66//77j3h+/fXX4/rrry9Aq4iIiKYXBtx0BCEEfvVyB4QAltW6Mb9i8gWniMajCjG2zvLxgu33kyQJToseToseTQE7khkFBq2mYJWsqz1mOC36sdHoXMkoKrQaCUEnR7eJiIiIZhoOp9ARXm4bwp6+KAw6DT6xrKrYzaEZKpTIjAbOZfZJjxab9NqCLhtlN+lR77NiKJ7O6X5H4hl4LEb47ayTQERERDTTMOCmMfG0jN9uGS2Udv7CchZKo7wZiqfR5LfBZiytJJs6nxUGnQaJtJKzfUZSGdT5LFzrl4iIiGgG4hUejfnD690IJTIosxtx9vyyYjeHZqhoUoZFry3JdZf9NiMqXWYMxFI52V8ircCg06DCxerkRERERDMRA24CALQPxvDMu4XSPrOylqNtlDeD8RRqvZaSzKDQaCQ0+m3IKKPLlk3VQCyFSpcZ/hI8F0RERER0YoyqCKoq8IvN7RACOLnOw0JplDepjAIJQGPAXuymTFql24yA3YiB6NTmcsuqiowi0Oi3FXQuOhEREREVDgNuwsY9/TgwGIdZr8UnlrNQGuVPf3R0RLc8D2tZF4pRp8W8cgfiKRmKeuwlkSZiOJaBz2ZApZvp5EREREQzFQPuSUjLKg4MxDAYTWEgmsJgNIWReBrqOOuRTmehRAa/39oFAPjYksqcLndE9H6yoiKjCjSX2Ut+RPdwSvzgJOdyCyEQTmbQHLDBqNPmuHVERERENF2UVongaaInlMDf3rXpqNfdFj1WN3ixptFXMmvq/ua1g0hkFNR6LThtjr/YzaEZbDCWht9mRJXbUuymTJlJr8Xccjte2DMAn01Ak+XSZpGkDLtJhxpP6RWOIyIiIqKJY8A9SQ6TDilZhRCAKgQUVWA4nsFjO3rx2I5eNPisOH9ROU6qchW7qePa1jGMl9uGIAH4u5W1JT/qSNNbLCVjYZUTBt3MSKyp91nxVncYw7F01gXgBuMpzA864bTo89Q6IiIiIpoOGHBPQq3Xir9+7TT86c1uBB0m6LUaZBQVbxwcwUv7BrGjO4T9AzH85Om9OLnOg0tWVMNhnl4X1pFkBg9ubgcAnLMgWJJLNFHpSGUU6HUaBEt47vYHWQw6zA3asWnfIDxWA6QJjnKnMgq0koR6P3/niIhoelJVgaSsIC2PFvhMKyoyyujqHDqNBJ1GA61Ggt2kg0nPqVFEx8OAO0f0Wg2W13mwvM6DUCKDJ97qxYZ3DuGVA0N4qzuES1bUYFWDZ8IX5fkkxGhV8khSRqXLjAsXVxS7STTDjSQy8FgNJbkU2PHU+6x4uyeM4fjo8U3EQCyNcpd5Rt18ICKi0qKoAqoQkN8NptOy+u5/FQgAGkmCUaeBUaeF1ahFmckIu2l08CiRVpDIKEikFQzG0khmFLjMergsBmhLKFtSVcXocWQUyKrA+1uu00jQaTXQayXotRroNNK0uIan0sSAOw+cZj0+sbwaJ9d5cP+mA+gcTuDeF9uwvSuEz66pLXqRpM1tQ9jaMQKtJOELa+u55jblXSytoLXSUVId8UTYTXq0BOx45cAQXGb9CadlxNMyMoqK5kDpF44jIqLpR1ZVJDMqUhkFSVlFWlEA8f7+RgCSBI0EaDUStJIEg04Ls0GLMrMRLrMBdpMOFqMONoMOZoN23KlgqiowEE2hcziB/f0xtA/FYDPq4LcZp21wmlFU9EdSSGYUaDQSTHoNLAYdnAYtIAAhAAGB1Ls3IOIZFbIskFFVABIkjNZt0Ws10L0vGDdoNdDrNFnXdKHZgQF3HtX5rPjm+fPwxFuH8Ojr3XjlwBB6QglcdXpT0Ub6hmJp/OrlDgDA35xUjhpv6RewovdkFBWD0TRMeg0cphMHgIWQkhXoNRKCzpm5/FVTmQ0Hh+M4OBJHjdsy7kWGrKroCSXRWulEA6dwEBFRDkVTMoZiKagCMBu0MOm1qHYY4bYYYNBpoNeOBoOjI7ejKeGHA0aTXgODVpN1kKzRSAg4TAg4TJhf4UDHUBxbO4bRPhhHpds8rQZ0UhkFfdEUZEVFudOMxoANDrMedtPojYUPXi8J8V7QncwoSGVUpGQFyYyKeEpGNC0jllKQzIy+Fk7KSMsqBEZHyg06LawGLSwG3YypXUOTx4A7z3QaDc5fWI4mvw13PrcPB4cT+N6f38EV6xswN+goaFtkVcW9L7QhkVFQ57XgvNbygn4+5VcsJaM3nES504R4RsGBoTi0EuCyGOAsYg2BUCIDt9UA7wRTrkuN3aTHqkYvnt7Zh0Ph1LgrFHSNJFDttmBpjXta3AghIqLSNxxPYyiWhsWgRYPfhnqfFR6rAdZjBJH5ZNJrMafMDq/VgNfah3FgMAa/1Vj0GkaqEOgNJZFRBKrcJswJOlA1gZsBkiTBpB+9ceEwjX8MsnI4KFffDb4VxNMKDoWTGIymcSicRFpR4TDp4bbqodMw+J6NGHAXSEvQjm9+eB7++9l96BiK49YNu/Hpk2twWkugIJ8vhMCvXzmIXYciMOo0+MIp9TMuvXc2G4imEEvJWFztwknVLqhCoC+cQtdwArv7IgBQtKA7mpIxr9wB3TS6051rAbsJK+u9eG53P4bjabg/sJ59fyQFq0GH5fVumA0sLkNERFOjqgJdoQT0Wgkr6jyo8VrgzaKAZ754bUac1uLHW11GvHFwBClZhd9enKzOtKyicyQOr9WIpbVu1HgsOb/21Wk10Gk1+EC3j9ZKJ1KyglAig0OhJHb3RdExNPrvFbAZYWShuVmFAXcBeW1GfOPcFjy4qR0vtw3hly93oDecxCeWVef9LuQzu/qxcXc/JAD/cGoDymdoeu9sI4RA10gCep0GpzT70RywjX2X6nw61PmsMOo12NI+DLuxsHe7gdHOTqeRZsX3rd5nRSyVwaZ9g2Npe6oQyCgC8bSCdXN8CNhZKI2IiKYmlVHQOZJAudOEFfWeadfHGnVaLK11w27SYfP+QRwKJ1FW4EKhoUQGg9EUGgM2LK/1FGUZTqNOi4Bdi4DdhOYyO7pGEtjbF0XHYAw2ox4+W/FvkFBhMOAuMKNOi8tPqUe504Q/vN6Np94ZTUP94qkNeRv5eqs7hIdeHZ23fdHSSiyuduXlc6jwDoVTsBh0OKXZhwrXsTvcBRVOdA4n0BtOjrtNvoQSGbgtRvhsMzOd/IPmlzsRSynY0xeBJEnQQIIkAQurHGj024rdPCIiKnGhRAaDsRRagnYsr/PAZpy+l/LNZXZoNRI27R9ETyhRsBsDh8JJyKrAinoPWiud02IuuUmvRaPfhjqvFfv6o9jaMYwDg3FUusyc4z0LTN/f0hlMkiRcsKgCQacJP3/hALZ3hXDL4zvx5dMac75UUG8oibue2w9VAKsbvDh3QTCn+6fiCSUyyKgq1taPH2wDo8VTTqp24el3+pBIKwVNaY6mMpgbtM/odPL302hGU/vmVTigebcK7OGlVXgXm4iIpiKSzGAknsbJdaOBZCn0rQ1+G7QaCS/tHUTXcAKV7vwF3Yez/gw6DU5t9qFhGt7o1mokzCmzw2czYmv7EPYPxOC1Gotaa4fyb/r/ps5gy2s9+KdzWuA069E1ksD3/vQ2Xmkbytn+9/VH8YMndiKeVtDgs+Ky1bW86J8hUhkFg7EUFle7UDeBSvO1Hguay6zoCScghChAC0crpms0EoKu2ZVGrdFIcJj0sBl1sBh0MOm1/L0jIqIpiaVk9EdTWFLjxqIqV0kE24fVeq04dY4PRoMGB4fjebkOUYVAx3AcVqMO61sC0zLYfj+P1YD1LQGsrPcgnBxNf6eZq3R+W2eoep8V/3r+PMwpsyElq7j7+f34xeZ2ZBR1Svvd0j6MHz65C5GkjBqPBVed3jQtUmpo6lR19A7unDI7WiudEwrmNBoJi6pccJj0GIqlC9BKYCSegdtigK9IS+ARERHNBMmMgt5wEidVjRZGLcWVLqrcFqxr9sNq0KFzJLc3/2VVxYHB0ZHi9S1+VBZ4+txk6bUaLKpyYVWDF0l5dH1wmpkYgU0DLosBXzurBecvLIcEYOPufvzbn9/BOz3hrPclhMCTb/fizo37kFEEFlU6cf05LUVfloFyp3MkjqDThOV1nqxuorgsBiyscmIkkYGi5n+UO5LKoM5r5Y0eIiKiSUrLKrqGE5hXbsfSWndJrzBT4TLj1Dk+2Iw6HBzOTdCdkhW0D8ZR5bbgtBZ/yRUnlSQJ88odWNvkhayq6A0li90kygNeCU8TWo2Ejy2pxDVnNMNm1KFrJIH/3LAb//XUbhwcip/w/UII7OwN4z837MZvXuuEAHDaHD++cnoTTFx6YMboDSdhMeiwssE7qUIpjX4bvFYjRuL5HeXOKCq0GmncNamJiIjo+FRV4OBwHE1lNpxc750RN7DLnWasm+OH06xHx1Ac6hQGAGIpGZ3DCbQE7Vg/xw/XB9fmKiFNATtObfZDowG6RxLFbg7lGIumTTOtlU5878IF+NObPXh2dz/e6g7j7e63sajKifnlDrQE7ahwmaGRJCiqQCiRQedwHH/Z0Ys9fVEAo8H7RUsqcfb8Ms4dnUGGYmkoqsDaJt+kl9cw6bVoDFjx6oEhePOY6h1KZOCyGIq29iYREVGp6xyJo9xpwsn1nhk1eFLmMOHUOT5s3jeItsEYKl3mrI9vJJ7GcDyNxdUuLKlxz4hK33U+KzSShOf39hdlKbXjkRUV0ZSMtKIiIwtkVHUsQ0GCBI0kQauVYNJpYNBpYNRpoddKjEPexYB7GrKb9PjUyTU4Y14A/7utC68eGMYbnSG80RkCANiMOmg1EsLJDN6fjaPTSDi12YdzFwTzGkxR4UWTMiLJDFY1eFHvs05pX7VeK97qDiGSzMBuys9Ug3Ayg2U17hlxN56IiKjQ+iMpmPWjGW356quLKWA34Yx5ZdjSPoSdvVG4zHp4rCceoU7Jo/PZDVoNVjV4saDCWZJz2sdT47VglerFi3sGMBBNFbUOjqyoCCUyiCRlSNJofGI36eEw6WA36WHQaaAKAVkRSCsqYikZoUQGyYyKUDKDjDxaj8qg1cKk17xbSHZ2rtrCgHsaC9hN+NK6Rnx4YRzbO0PY1RvBnv4ooil5bButJMFl0WNJjQvnLAjCXcLpNHRsyYyCvkgSS2rdmFfumPL+PFYDajwW7OmL5qUTzygqtJIGwRIpWkJERCSEwNgYhgDw7rKOxRBJZpDIKDi1efIZbaXAatRhbZMfXqsRWw8O48BgDG6LAXaT7qhzr6oCfZEUEhkZ9T4rWitdM3baWqPfBkUVeHHPAIZi6QndiMglWVFxKJJCWlbgthixqNqFcqcJfrvxhJkIqiqQlBXE0wpiKRmRpIyBSAqDsRRGEmkkwwoAwGzQwW7UwWKYHSu5MOAuAdVuC6rdFnx4YTlkVcXBoQQkCeP+UaLiCyUyiKdlpDIqBEY7cp1WA4/VkNXc61Aig4FoCnPL7Vicw8qkDX4b9vbFkJIVGHW5TVMLJzJwWfTwM8uCiIimsZSsIJyQEU3JEBDQSBIkAJAARRXQSIDTbIDDpC9YsbKUrKAvksKyWjeaAtN7aatc0GokLKh0wmMzYM+hKLpHEmgfjEGr0UCvlZCSVahi9A6I32bEqkYv6ryWkloWbTKaAzZkZBUvtw1BI6Eg89NVVaA/mkIsLaPCacb8Cgcq3easrhM1GgkWw+iyqO8fnZcVFZGkjJFEBsOxNHpDSQzGU+gNJ6HXauA062d0TMOAu8ToNJoppxRTfg1GU0jKKoJOEzzW0ZsiOo0GB4fi6ByO41A4CbtJB7fFMG7Ktayq6B5JQq+VcHK9B/MrHDlNzy53mhF0mDAQTaEixyPR4aSMJTWuGTGfioiIZhZVCAzH0gglMtDrNHCZDWgusyFgN0GnlSBJo3NS07KK7lACHYNxdAzHoZUklDtNeZ0qJasqOodHl/1cVOWaFSN/h5U7zSh3mhFNyTgUTuLgUBwpWR0bXLIadPDbjTAbZs5c9uORJAnzKxxQhMCrbUOQJAnOPK44FElm0BcZTWFfXudBnc+S0wEZnVYDt9UAt9WAep8VQoixQaWukQR6RpJoG4jBatTBax3/+rhUMeAmyqFEWkE4mcHaJj/mVxyZ/t3ot2I4nkHXcBz7+mPoDiWgqAIOkx5Wgw6yqkJWBdKyimhSRpXbjCW17pwHxMDoHeXmMhs6h0crhOZq5FxWVGgkVicnIqLpRVZUDMbSiKZluM0GrKj3oNJlhsdqGHe0tMZrweJqF3pDSew6FEH7YAxOkz4vdXJUIdA5lEC1x4KT6z2z9qa1zaiDzW9Do3/mj+6fiCRJWFjpBAC82jYEADkPuhVVoCeUgCRJWFrrxoIKByyG/IeHkiTBZTHAZTGgKWBHNCWjcziO3b0RdI0koCnADa5CYsBNlCOyOno3vLXCiblB+1E/lyQJHqsBHqsBc8sd6I+k0BsavaM3kkhDp9FAr5PgMOsxr9yB+RWOvFYlrXJb4LIaMBxP5+ziIXQ4nZzVyYmIaBpIyyr6oymkZBUBuxHL6tyo8VgmHFSY9FrU+ayocJmx51AEb3aG0DYQQ4XTBGMO++jukQQ8NgNWNXhhncSynzQz5TPojiZl9EaSqHCasKTGjSq3uWhZFTajDnODDjT6begeSWBn7+gNLrtRD5/NUPLZHvyNJsqRrpEEqt0WLK11n3DEWK/VoMJlRoXLjNZKJ+JpeWwZhULNEzMbtGgO2PBqW+6WCIskZZxU48r5vHAiIqJsJDMK+qMpqKpAucuMlqAd1W7LpEeODToNFlQ6EXSa8MbBEPb2R+AyG3JS0OpQOAmDbrTqdqELZNH0d2TQPYy0rE5pYOPwqLYAsKTahYVVzoKMak+EXqtBrXf0Btfevije6BxB22AM5Q5zSU8nmB5nl6jE9UWSsBp0WF7vzvoPgkGngUFXnA42l0uEyYoKSQKCM7iiKhERTV+qEAgnMhiKp6HXalDlNqOlzIEKlylnRba8NiPWzfEh4DDg9YMjODgcR4XTPOmb5f2RFGRV4JRmX16mkNHMcDjoNum12HJgGO1Do+uX6zTZfa8Pz9Uunwaj2sej12owr9yBcqcJb3aOYPehKBymiS0dNx0x4CaaIllREU3JOK0lgIC9tIJNj9WAeq8N7/SEpxxwD8czcFsNCDiYTk5ERIWTzCgYiqWRyChwmvVYXOVCrc8Kv82YlzWadVoNWitd8NqMeLVtCAcGYyh3mrIaJVSFQNdIAkadBmsavZyzTCckSRLmlNnhsujx2oFhtA/GEXSYJjQFIZaSMRBNQa/VYFmtGwsqnCUxYuyyGHBKkx9emxFbDgyjJ5RA0GGaljcJjocBN9EUDccz8NmMqPVait2USWkIWLG7L4JkRpn0nHEhBMLJDNZUeplOTkREeZdRVAzH04gmZRj1WvjtRjT4rahyW7JafnMqyp1mnDGvDNs6hrH7UAQS0ghOoNBTRlFxcDgOv82EVY0elDs5sk0TF7Cb8KG5AWzrGMbO3gj6IknYTXo4zfojvnuqOnptNhRPw6TTojFgw5wye8llUmg0EhZUOGEz6rB5/xA6huOodlnycjMtXxhwE01ROJnBqgpPyQaaZXYTqtxmHBxKoMYzuZsG4aQMu0mHGi+XrCMiovw4nDI+kkhDggZemwGt786r9lnzM5p9IlajDmsafaj1WrG9K4SDw3FYDTp4bYaj0n1TGQUjiQyiSRl1fitW1XvhtORvqSeauUx6LVbWe1Hvs6FnJIH9gzF0jyShCBUSJAgAWg1gNeiwuMqFOv9oxkepjQy/X63XCrNBi837BnFgKIYajyXrlPpiYcBNNAWxlAyLQYsqd2mObgOjdw6bA3a0D8aRUdRJLcEwGEthYaUzr2tEEhHR7KSqAv3RFKIpGU6zHvMrnKjxWFDmmB7LBmk0Eqo9FgSdJuzvj2FHVwhdI6NLf0oSYNBokVQUGLQaeK0GLKpyornMnteVSGjm02hGl2ENOk1YUOlEXySJSFKGXquBQauBQaeB1aid8pTB6SRgN+G0uQG8sGcAHUNx1HqsBSs2PBUMuImmYDCWRo3XUrJFHA6rdJtR5jBhIJrKOrUtkVZg0GnQwPlnRESUQ6oQGI6lMZLIwP/ukl6FTBnPll6rQUvQjhqPBaFEBtFUBpGEjOFEGl6rAUGnGT6bsSQCBCotBp2mpAd/suEw6XFKsw8v7BlA+1CsJILu6fkXi6gEKKqArAo0+KwlnaIDvHeR8MzOPqiqyCotbyCaQrXHDH+OlhYjIiKKp2V0h5JwWwxY0+hFU8BeEkWegNFlN0fbWlqFVIlKhcOkx9omH17Y3V8SQXfx83CIStRIPA2PxVByxSfGU+22wGs1YiienvB7ZEWFrKpoDNhLqngFERFNX0OxNA6Fk1hU5cSHFwaxsMpVMsE2ERWG06zHKc1+VDjNaB+KQVVFsZs0LgbcRJM0ksyg0W+dMXOwzAYtWoI2hBIZZBR1Qu8ZjKXht5tQOUNuOhARUfEIIdA9kkAyo2BNow+r6r0zav4pEeWW0zKaXh50mNAxHIMqpmfQzYCbaBLiaRkmnRaVnpkVaLYEHajzWdE5Ej/htqoqEE3JmFNmh0HHPyVEs8mNN94ISZKOeASDweO+Z+PGjVi2bBlMJhMaGhpw5513Fqi1VApUVaB9KA6LQYfTWgJYUOlk5hQRnZDLYsDaJh88ViM6h+MQ0zDo5lUy0SQMxdIod5lm3Lxlg06DZbVu2I169EdS424nhMDBkTjKnaaSXX+ciKZmwYIF6OnpGXts37593G3b2trw4Q9/GKeeeiq2bduGf/7nf8ZXv/pVPPLIIwVsMU1Xh/uUgN2I0+f6UcN+hYiy4LUZcUqTD3aTHp0jiWI35ygsmkaUJSEEUrI6I4qlHYvPZsTiGhee290Pu0l3zJT57pEkHCY9Vjf6YJ2m1WKJKL90Ot0JR7UPu/POO1FTU4PbbrsNADBv3jy89tpr+OEPf4iLL744j62kUtAdeq9P8c6wG9lEVBgBhwlrm3x4bnc/ukYS02q6I0e4ibIUSymwmXTw22du9dHmgB0tQTu6RhJHzYfpiySh00lY3eiF384LI6LZas+ePaioqEB9fT0uueQS7N+/f9xtN23ahLPPPvuI18455xy89tpryGQy+W4qTWP9kRQ0GmBVA/sUIpqaCpcZa5t8MOo0ODiN0ssZcBNlKZQcXQ/UYZq5I7tajYQlNW4E7CYcGIjhwGAMfZEk+iJJpGQVK+u9s2a9RyI62sqVK/Hggw/iiSeewM9+9jP09vZizZo1GBwcPOb2vb29KCsrO+K1srIyyLKMgYGBcT8nlUohHA4f8aCZI5TIIJFRsLLei2oP+xQimrpqjwXr5vhhM+pwcDgxLYJuBtxEWUplFNR4LDMynfz9HCY9TmvxY31LAK2VTtiMOmg0ElbUudEUsBW7eURUROeddx4uvvhiLFy4EGeeeSb+/Oc/AwAeeOCBcd/zwb+Zhy+Cjve39Oabb4bT6Rx7VFdX56D1NB2kMgoGoyksrXGhmX0KEeVQhcuMdXP8cJr16BiOF716+cwdoiPKg0RagUmvnXHF0sbjthrgthoAvDd3faYsg0ZEuWO1WrFw4ULs2bPnmD8PBoPo7e094rW+vj7odDp4vd5x93vDDTfguuuuG3seDocZdM8AqhDoHEmgJWhHa6Vzxt/AJqLCK3OYsG6OHy/uHUDbQAyVLjP02uKMNXOEmygLoWQGXpsBbouh2E0pOEmSGGwT0TGlUim88847KC8vP+bPV69ejQ0bNhzx2pNPPonly5dDrx9/nWWj0QiHw3HEg0pfXzgFr9WIJdVu6Ip0AUxEM5/fbsTpcwNoCdrRHUpgIDr+Cjz5xL9yNG1Fkhm0DUTR9u4c4o7BOAaL9ItyWDwlo8Zj4dqgRDSrff3rX8fGjRvR1taGl19+GR//+McRDofx2c9+FsDoyPRll102tv0VV1yB9vZ2XHfddXjnnXfw85//HPfeey++/vWvF+sQqEhiKRlpRcXSWheclvFvthAR5YLTrMepzX6snxOAViNBU4SMGqaU07Q0Ek8jlMhgYaULBp0GihBIyyr29kUxEk/DVYQR5pSsQK/VIOCYudXJiYgmorOzE5/61KcwMDAAv9+PVatWYfPmzaitrQUA9PT0oKOjY2z7+vp6PPbYY7j22mvx3//936ioqMCPf/xjLgk2yyiqQE84iZOqnKj3WYvdHCKaJbQaCS1BO3w2A/b1R2Er8JK2DLhp2hmKpRFNyTi53oMFFc4jRpPtJh027x+ESa8teHpzOCHDZTHAa5196eRERO/30EMPHffn999//1GvrV+/Hlu3bs1Ti6gU9IQSqHCacFK1i/O2iajgvDYjvEWow8SUcppWBqIpxNIyVjZ40FrpPCp1e365A3PK3l0fWi1sxcFIKoNar4XzzYiIiLIUTmQgSRKW1XlgMXC8h4hmD0YONG0MxdJIySrWNvmwoOLYVUt1Wg2W13lQ7jShcyResLbJigqtJKHMyXRyIiKibMiqiv5ICgsqHKh0mYvdHCKigmLATdNCMqNgJJHB8lo35pTZj7utzajDyfVemPTaghVRCydlOMx6+GxMJyciIspGbyiJSrcZrZXOYjeFiKjgGHBT0SmqQNdIAvPL7ZhbPrElX4JOExZXuzGSyBQktTycTKPaY4FRx2WxiIiIJiqSHE0lX1zj4tKSRDQrMeCmousciaPSZcbSWje0WSy3Ve+zwms1YiiezmPrRlPhhAAqnEyDIyIimihFFeh7N5W8ym0pdnOIiIqCATcVVX8kBbNei5Prsy+iYjZoMSdoQyiRgRD5G+WOJGU4zQYEHIWvakhERFSqekIJVLjMWFDBVHIimr0YcFPRRJMy4hkZy+s8k17bus5nhdOsRyiRyXHr3hNOZlDtMTMVjoiIaIJG4mloNRKW1rphNrD/JKLZiwE3FUUiraAvmsRJVS40+W2T3o/DpEdTwIbBPKWVK6qAqgpUsKoqERHRhKQyCobiaSyudrEqORHNegy4qeDSsorukQQWlDuxuNp11Frb2ar3WWExaBFJ5n6UO5zMwGE2oGySI/BERESziSoEOkcSmFNmx7wJFkIlIprJGHBTQcmqioPDcTSX2bG83g2ddupfQa/NiAavDYPR3I9yhxJMJyciIpqonlASfrsRS2py08cTEZU6/iWkgskoKjqG4qj2WLCywZPTJbaaymzQ6zSIp+Wc7VNRBVQhmA5HREQ0AYfrqSyv9cBp1he5NURE0wMDbspKJJlBbyiJ4XgayYwCdQLVwYUQ6I+kcHA4jnqfFWsbfbAas6tIfiIBuxE1Hgv6o6mc7TOczIxWJ7cznZyIiOh4QokMhuNpnFTlRI2XS4ARER2W26iHZqxwIoOBWAoWgxYemxHRlDwWdAtIMOk0sJt0sBp00GgkqEJAUQVSGRV90SQcZj1ObfajKWCDPg8pZpIkoSlgw/7+GFKykpPR83Aig7nlDlZXJSKikpSWVURTMjKKCo0kQSON9pdGnQYWgxaSNLUaKoeFEhmMxNNYVuvGoipXTvZJRDRTMOCm40rJCjqHE7AatVhY6cScMju8NiMyiopoUkY0JSOUyKBrOI6hWAaDsTiEEJAkCTqtBJ1GwtygHYuqXHBZDHlta4XLjHKXCf2R1JTTwBVVQGE6ORERlZhocvSGuKyq0Gk0sJl0cFsMkFUVGUVAQCCcyqA3nIReo4HDrIPdpId2kgVMPxhsT7UQKhHRTMOAm46rZySJpoANi6td8NqMY6/rtRq4rQa4rQZUA2itdCKWkjEUS0NRBQw6zdjD9u6od75pNRLmlNnRORwfu9CYrMi76eSsTk5ERKUgnMhgMJaCSa9Fvd+KcqcZboseLosBBt17/aGiCkSSGQxEU+geSaInlET7UAx6jQZemwEWw8QuDVVVoD+aQjKjYHmdGwsrGWwTER0LA24a10g8DbNRi0VVRwbb47EadTmfm52tao8ZfpsJg9H0lILl4XgGrZVMJyciouktksygL5KCzaRDa6UTTQE7/Pbx+2ytRoLLYoDLYkBTwI5kRkH3SAL7B2LoGUmgN5SE1aiD3aSDWX902rkqBAajaYRTGfhtRqyo96DJb2OwTUQ0jpIJuOvq6tDe3n7Ea9/4xjdwyy23FKlFM5uiCgzG0ji53nPcjnu6Meq0aAna8fyefviFgGYS89PiaRkGnQYNflseWkhERDR1GUVFTygBnUaDxdUuNJfZ4bFmP3XLpNeiwW9Dvc+KwVgaXcNxHBxKYDieRk8oCa0kQZJGA20BQADwWY04tdqPBr+Vy2YSEZ1AyQTcAPDd734X//AP/zD23GZjQJQvveEkyp0mzCt3FLspWavxWuDqMmAknpnUxUd/NIUGnw2BErrRQEREs4P67sofsbSMWq8VJ1W5EHROffqTJEnw2Yzw2YxYWOlCKJHBYCyNoWgKkkaCQauBViPBoNOgym2ecOo5EdFsV1J/Le12O4LBYLGbMeMl0goUVWBRlask71zbjDrMCdjwyoGhrAPulKxAwmjF81xVbyUiIsqFWErGoXASHutoKne9z5qXlT80GmmsTgsCHNwgIpqKklqH+wc/+AG8Xi8WL16M73//+0in08Vu0owjhEB3OIGmgBU1ntJdR7PWZ4XNpEMokcnqfQORNMpdJlSwOjkREU0TiirQORzHUCyNBZVOnN1ahjll9rwE20RElFslM8J9zTXXYOnSpXC73XjllVdwww03oK2tDffcc8+470mlUkilUmPPw+FwIZpa0iJJGTajDq0lXm3UYzWg2W/D1oMjsBl1E1ruRFZUpFUVLWX2SS+PQkRElEsj8TQGo6M3gxdXu1HtMTMDi4iohBT11uiNN94ISZKO+3jttdcAANdeey3Wr1+PRYsW4fLLL8edd96Je++9F4ODg+Pu/+abb4bT6Rx7VFdXF+rQStZwIo0qt3lSc5+nm9YqJ8qdJvSGkhPafiCWRsBuRJW7dEf2iYhoZkjJCtoGo0jKCk6u9+DsBUHUeC0MtomISkxRR7ivuuoqXHLJJcfdpq6u7pivr1q1CgCwd+9eeL3eY25zww034Lrrrht7Hg6HGXQfh6yqUFWBOq+12E3JCYtBhyXVbvz1nUOIpkZH7sejqgKxlIzlde4j1islIiIqpMNF0eIZBfVeKxZVuxCwT70oGhERFUdRA26fzwefzzep927btg0AUF5ePu42RqMRRiMrTU9UKJ6B22Kc0vrV0021x4y55Xa80RlCg9d6zDR5IQS6Qgn47EbUembGzQYiIio90XeLonnfLYrW4LNCx3naREQlrSTmcG/atAmbN2/G6aefDqfTiVdffRXXXnstPvKRj6CmpqbYzZsxQskMlta4S7Iy+XgkScKiKhd6Qyn0hpNHFUMTQqBzJAGrQYdVDV6YDTPn2ImIqDTIqoqed6c/LaxyYmGlE3aTvsitIiKiXCiJgNtoNOLhhx/Gd77zHaRSKdTW1uIf/uEfcP311xe7aTNGKqNAr9HMyPnLVqMOi2tceHZXH7pGEvBYDDAbtFCFwMHhOFxmA9Y2+XKyjikREVE2IskM+iIpVLrMOKnahSo3i6IREc0kJRFwL126FJs3by52M2a04XgGPrsRfvvMTMGv9VhwarMP+/qi6A2nkAwpkCTAZzPilGYf58cREVFBqaoYHdWWgGW1brRWOmdUhhkREY0qiYCb8i+WlrGk1jVjl8PSaCQ0Bexo8NkwGEujaziO/mgKS2vc8Npm5k0GIiKanhJpBd2hBMocJiyrdaPaM/Oyy4iIaBQDbkI0JcNi1KLCaT7xxiVOo5Hgn8Ej+URENL2FEhkMxlJYUOHAkho3rMdZQYOIiEof/8oThmNpVHstcFlYoIWIiChfBqIpxNMKVtR5sKhq5maVERHRexhwz3KqEMioKuq8VhZpISIiygMhRudrSxKwtsmHOWU29rlERLMEA+5ZLpKUYTfqWaGbiIgoTzpHErAYdFjd4EWNl/O1iYhmE02xG0DFFU5kUO4ywcY5ZERERDl3KJyESafFKc0+BttERLMQA+5ZTAiBtKKiyj3zi6UREREV2lAsDVkVWNXoRaWLfS0R0WzEgHsWi6UUWI1a+G1MJyciIsqlcCKDaErGyfUe1PusxW4OEREVCQPuWSyUzCDgMMFhZjo5ERFRrsTTMgZiaSypcWFu0F7s5hARUREx4J7FUhkFNR4LK6USERHliKIKdIeSWFDhwKIqF/tYIqJZjkObBSKEQEYRSMkKkhkVKVmB06yH3VScta8TaQUmvRZ+m7Eon09ERDQTdYcSqHCasKSG62wTERED7oKQVRUHh+LQ6zQw6bQwG7QIOIw4MBCHogq4LIaCtymUyMBrM8BdhM8mIiKaiYbjaeg0EpbXeWAx8BKLiIgYcOedrKhoH46j2m3B8lo37CY9TPrRTP4dXSG8emAYqgA81sIGvvG0jJOqndDw7jsREdGUpWQFw/E0Vjd4UcGK5ERE9C7O4c6jjKKifSiOWo8Fpzb7EHCYYDZoIUkSJElCa6UTKxs8iKVkDEZTBWtXSlag12lQ5mB1ciIiyt7NN9+MFStWwG63IxAI4KMf/Sh27dp13Pc8++yzY/3f+x87d+4sUKvzRxUCXSMJNAfsmFvuKHZziIhoGmHAnScZRUXHUBwNfitObfYfc662JEmYX+7A6iYv4hkFI/F0QdoWSmTgthgKPqpOREQzw8aNG/GVr3wFmzdvxoYNGyDLMs4++2zEYrETvnfXrl3o6ekZezQ3NxegxfnVH0nBYzFiaY0bei0vrYiI6D1MKc8DRRXoGIqjMWDDmkbvcedxSZKEuUEHEikFrxwYgsOshybPFU2jKRnzgg7oeFFAREST8Pjjjx/x/L777kMgEMCWLVuwbt264743EAjA5XLlsXWFlcwoiKdlrGzwwGkpTiFUIiKavhhx5ZgQAp0jcVS4zFjVcPxg+/2ag3Z4rAYMRvM7yp1RVGg1EsqcTCcnIqLcCIVCAACPx3PCbZcsWYLy8nKcccYZeOaZZ467bSqVQjgcPuIxnQgh0B1KoLnMjnqfrdjNISKiaYgBd44diqRgNeqwssEDm3HiCQQ2ow7zKxwIJzNQVJG39o3EM/BajfDbuRwYERFNnRAC1113HU455RS0traOu115eTnuvvtuPPLII/j973+PlpYWnHHGGXjuuefGfc/NN98Mp9M59qiurs7HIUzaYCwNh0mPRVVcAoyIiI6NKeU5NBJPQ1ZVrG0KIGDPfgS50W/DnkNR9EWSKHfmp8JpJCVjXrmdc8yIiCgnrrrqKrz55pt44YUXjrtdS0sLWlpaxp6vXr0aBw8exA9/+MNx09BvuOEGXHfddWPPw+HwtAm6M4qKcDKDU5r8rIlCRETjYtSVI4m0gqF4Gktr3Kj3WSe1D5Nei9ZKBxIZFRlFzXELgVRGgV4rcbkSIiLKiauvvhqPPvoonnnmGVRVVWX9/lWrVmHPnj3j/txoNMLhcBzxmC66RuKo91nRXMZUciIiGh8D7hxIZhR0hxJYUOHEggrnlPZV67Wiym1GbziZo9a9ZziRgc9mhNfGdHIiIpo8IQSuuuoq/P73v8fTTz+N+vr6Se1n27ZtKC8vz3Hr8m8knobZoMNJ1S5mjBER0XExpXyKkhkFfZEUFlQ4sKLOM+U5XHqtBgsqHOgZSSKVUWDUa3PUUiCWkrG4mvPMiIhoar7yla/gV7/6Ff74xz/Cbrejt7cXAOB0OmE2j2ZR3XDDDejq6sKDDz4IALjttttQV1eHBQsWIJ1O45e//CUeeeQRPPLII0U7jsmQFRWDsTRW1nsmNX2MiIhmFwbcU9QbTmJBhQMn13th0OXmLne124IarxmdwwlUuy052WcircCs1yLI6uRERDRFd9xxBwDgtNNOO+L1++67D5/73OcAAD09Pejo6Bj7WTqdxte//nV0dXXBbDZjwYIF+POf/4wPf/jDhWp2TvSEk6j2WDCvYvqktxMR0fTFgHsKTDot6n1WrGzIXbANABqNhJYyBzoGE0jJCoy6qY9yD8fT8DuM8FhY2IWIiKZGiBOvpnH//fcf8fz666/H9ddfn6cWFUYkmYFGknBStSsnfTMREc18nHg0SXaTDgurnFjV4M1Lp1vpNqPKbUJfODXlfQkhkMgoqPdZoWE6ORERUdYUVaAvksL8CgcqWXyUiIgmiAH3JI1WFHfClMM51u+n1UiYW+6AKgTS8tQqlsfSCixGLYIOppMTERFNRm84iaDThAVMJScioiww4J7GKl1mlLvM6I9MbZR7JJ5GucMMp1mfo5YRERHNHpFkBqoqsLjaBYuBs/GIiGjiGHBPYzqtBvPKHUgryqTX5ZYVFWlFRZ3PCkliOjkREVE2MoqKvkgKC6ucqPHkppApERHNHgy4p7kqtxmVLgv6JjnK3RdJIegw8SKBiIgoS0IIdI7EUeezYmGVkzeuiYgoawy4pzm9VoOWcjtSspr1KLesqEjKCuZXOHNaRZ2IiGg26I+mYDfqsbzWzarkREQ0KYzCSkCNx4JarwXdoURW7+uLpFDhNHN0m4iIKEvxtIxEWsHyOje8NmOxm0NERCWKAXcJ0Gs1WFLtglGnwUg8PaH3ZBQVKUXFvAoHR7eJiIiykJIV9IwkMa/CgQafrdjNISKiEsZIrEQEHCa0VjgxGEtDnkBqeV8khUqObhMREWUlJSvoHE6gpdyOpTVuaDSct01ERJPHgLuEzKtwoNpz4tTyjKIiLSuYW26HXst/YiIioolIy+posB20Y1WDFyY9520TEdHUMBorIUadFourXdBrNQglMsfcRlUFukYSqHRbUM3RbSIioglJyyo6huOYU8Zgm4iIcocBd4mpcJmxoMKJgWgKg9EUVCHGfpbMKGgbjCFgN2J5nZuj20RERCegCoH+SAqdw3HMCdixupHBNhER5Y6u2A2g7C2odEAjATsPRdA2EIPbYgAAjCQymFdux7JaD6xG/tMSEREdj6yIsX70lGY/mgI2FholIqKcYlRWgow6LRbXuNEYsGFvXxS7DkWgqAJrG72YW+6AlgVeiIiIjkuSALfVgHqfFfMqHHCY9MVuEhERzUAMuEuY3aTHkho3mgI2ZBQBj9VQ7CYRERGVhCq3BS6LAT6usU1ERHnEgHsGsPOuPBERUVZMei3nahMRUd5xohIRERERERFRHjDgJiIiIiIiIsoDBtxEREREREREecCAm4iIiIiIiCgPGHATERERERER5QEDbiIiIiIiIqI8YMBNRERERERElAcMuImIiIiIiIjygAE3ERERERERUR4w4CYiIiIiIiLKAwbcRERERERERHnAgJuIiIiIiIgoDxhwExEREREREeUBA24iIiIiIiKiPGDATURERERERJQHumI3oJCEEACAcDhc5JYQEdFsd7gvOtw30YmxHycioukgmz58VgXckUgEAFBdXV3klhAREY2KRCJwOp3FbkZJYD9ORETTyUT6cEnMolvrqqqiu7sbdrsdkiRNaV/hcBjV1dU4ePAgHA5Hjlo4c/F8ZY/nLDs8X9njOctOrs+XEAKRSAQVFRXQaDjDayLYjxcPz1f2eM6yw/OVPZ6z7OTyfGXTh8+qEW6NRoOqqqqc7tPhcPALngWer+zxnGWH5yt7PGfZyeX54sh2dtiPFx/PV/Z4zrLD85U9nrPs5Op8TbQP5y11IiIiIiIiojxgwE1ERERERESUBwy4J8loNOLb3/42jEZjsZtSEni+ssdzlh2er+zxnGWH52tm4b9ndni+ssdzlh2er+zxnGWnWOdrVhVNIyIiIiIiIioUjnATERERERER5QEDbiIiIiIiIqI8YMBNRERERERElAezNuC++eabsWLFCtjtdgQCAXz0ox/Frl27jthGCIEbb7wRFRUVMJvNOO200/DWW2+N/XxoaAhXX301WlpaYLFYUFNTg69+9asIhUJH7Keurg6SJB3x+H//7/8V5DhzqZDnDAD+/Oc/Y+XKlTCbzfD5fLjooovyfoy5VKjz9eyzzx71/Tr8ePXVVwt2vLlQyO/Y7t27ceGFF8Ln88HhcGDt2rV45plnCnKcuVLI87V161acddZZcLlc8Hq9+OIXv4hoNFqQ48ylXJwzAPjSl76ExsZGmM1m+P1+XHjhhdi5c+cR2wwPD+PSSy+F0+mE0+nEpZdeipGRkXwf4qzBfjw77MOzx348O+zDs8d+PDsl24eLWeqcc84R9913n9ixY4d4/fXXxfnnny9qampENBod2+aWW24RdrtdPPLII2L79u3ik5/8pCgvLxfhcFgIIcT27dvFRRddJB599FGxd+9e8de//lU0NzeLiy+++IjPqq2tFd/97ndFT0/P2CMSiRT0eHOhkOfsd7/7nXC73eKOO+4Qu3btEjt37hS//e1vC3q8U1Wo85VKpY74bvX09IjLL79c1NXVCVVVC37cU1HI71hTU5P48Ic/LN544w2xe/duceWVVwqLxSJ6enoKesxTUajz1dXVJdxut7jiiivEzp07xSuvvCLWrFlz1DktBbk4Z0IIcdddd4mNGzeKtrY2sWXLFvE3f/M3orq6WsiyPLbNueeeK1pbW8VLL70kXnrpJdHa2iouuOCCgh7vTMZ+PDvsw7PHfjw77MOzx348O6Xah8/agPuD+vr6BACxceNGIYQQqqqKYDAobrnllrFtksmkcDqd4s477xx3P7/5zW+EwWAQmUxm7LXa2lrxX//1X3lre7Hk65xlMhlRWVkp7rnnnvweQIHl8zv2ful0WgQCAfHd7343twdQBPk6Z/39/QKAeO6558a2CYfDAoB46qmn8nQ0+Zev83XXXXeJQCAgFEUZ22bbtm0CgNizZ0+ejqYwcnXO3njjDQFA7N27VwghxNtvvy0AiM2bN49ts2nTJgFA7Ny5M09HM7uxH88O+/DssR/PDvvw7LEfz06p9OGzNqX8gw6nXXg8HgBAW1sbent7cfbZZ49tYzQasX79erz00kvH3Y/D4YBOpzvi9R/84Afwer1YvHgxvv/97yOdTufhKAorX+ds69at6OrqgkajwZIlS1BeXo7zzjvvqHSQUpPv79hhjz76KAYGBvC5z30ud40vknydM6/Xi3nz5uHBBx9ELBaDLMu46667UFZWhmXLluXxiPIrX+crlUrBYDBAo3mvyzCbzQCAF154IefHUUi5OGexWAz33Xcf6uvrUV1dDQDYtGkTnE4nVq5cObbdqlWr4HQ6j3vuafLYj2eHfXj22I9nh3149tiPZ6dU+nAG3BjN9b/uuutwyimnoLW1FQDQ29sLACgrKzti27KysrGffdDg4CC+973v4Utf+tIRr19zzTV46KGH8Mwzz+Cqq67CbbfdhiuvvDIPR1I4+Txn+/fvBwDceOON+OY3v4k//elPcLvdWL9+PYaGhvJxOHmX7+/Y+917770455xzxv5olKp8njNJkrBhwwZs27YNdrsdJpMJ//Vf/4XHH38cLpcrPweUZ/k8Xx/60IfQ29uL//iP/0A6ncbw8DD++Z//GQDQ09OTj8MpiKmes5/+9Kew2Wyw2Wx4/PHHsWHDBhgMhrH9BAKBoz4zEAiMe+5p8tiPZ4d9ePbYj2eHfXj22I9np5T6cAbcAK666iq8+eab+PWvf33UzyRJOuK5EOKo1wAgHA7j/PPPx/z58/Htb3/7iJ9de+21WL9+PRYtWoTLL78cd955J+69914MDg7m9kAKKJ/nTFVVAMC//Mu/4OKLL8ayZctw3333QZIk/Pa3v83xkRRGvr9jh3V2duKJJ57AF77whdw0vIjyec6EELjyyisRCATw/PPP45VXXsGFF16ICy64oGQ7nnyerwULFuCBBx7Af/7nf8JisSAYDKKhoQFlZWXQarW5P5gCmeo5+8xnPoNt27Zh48aNaG5uxic+8Qkkk8lx9zHefmjq2I9nh3149tiPZ4d9ePbYj2enlPrwWR9wX3311Xj00UfxzDPPoKqqauz1YDAIAEfdxejr6zvqrkkkEsG5554Lm82G//3f/4Verz/uZ65atQoAsHfv3lwcQsHl+5yVl5cDAObPnz/2mtFoRENDAzo6OnJ+PPlWyO/YfffdB6/Xi4985CM5PorCyvc5e/rpp/GnP/0JDz30ENauXYulS5fipz/9KcxmMx544IE8Hll+FOI79ulPfxq9vb3o6urC4OAgbrzxRvT396O+vj5PR5VfuThnTqcTzc3NWLduHX73u99h586d+N///d+x/Rw6dOioz+3v7z9qPzQ17Mezwz48e+zHs8M+PHvsx7NTan34rA24hRC46qqr8Pvf/x5PP/30UV+2+vp6BINBbNiwYey1dDqNjRs3Ys2aNWOvhcNhnH322TAYDHj00UdhMplO+Nnbtm0D8F6nVCoKdc6WLVsGo9F4RJn/TCaDAwcOoLa2Nk9Hl3uF/o4JIXDffffhsssuO+HF4nRVqHMWj8cB4Ii5TIefHx6dKQXF+DtWVlYGm82Ghx9+GCaTCWeddVbuDyyPcnXOxtt3KpUCAKxevRqhUAivvPLK2M9ffvllhEKhE+6HJob9eHbYh2eP/Xh22Idnj/14dkq2D8+6zNoM8eUvf1k4nU7x7LPPHrEMQzweH9vmlltuEU6nU/z+978X27dvF5/61KeOKCsfDofFypUrxcKFC8XevXuP2M/hsvIvvfSSuPXWW8W2bdvE/v37xcMPPywqKirERz7ykaIc91QU6pwJIcQ111wjKisrxRNPPCF27twpvvCFL4hAICCGhoYKftyTVcjzJYQQTz31lAAg3n777YIeZy4V6pz19/cLr9crLrroIvH666+LXbt2ia9//etCr9eL119/vSjHPhmF/I795Cc/EVu2bBG7du0St99+uzCbzeJHP/pRwY95qnJxzvbt2yduuukm8dprr4n29nbx0ksviQsvvFB4PB5x6NChsf2ce+65YtGiRWLTpk1i06ZNYuHChVwWLIfYj2eHfXj22I9nh3149tiPZ6dU+/BZG3ADOObjvvvuG9tGVVXx7W9/WwSDQWE0GsW6devE9u3bx37+zDPPjLuftrY2IYQQW7ZsEStXrhROp1OYTCbR0tIivv3tb4tYLFbgI566Qp0zIUaXxPja174mAoGAsNvt4swzzxQ7duwo4NFOXSHPlxBCfOpTnxJr1qwp0NHlRyHP2auvvirOPvts4fF4hN1uF6tWrRKPPfZYAY926gp5vi699FLh8XiEwWAQixYtEg8++GABjzR3cnHOurq6xHnnnScCgYDQ6/WiqqpKfPrTnz5qqZDBwUHxmc98RtjtdmG328VnPvMZMTw8XKAjnfnYj2eHfXj22I9nh3149tiPZ6dU+3Dp3cYTERERERERUQ7N2jncRERERERERPnEgJuIiIiIiIgoDxhwExEREREREeUBA24iIiIiIiKiPGDATURERERERJQHDLiJiIiIiIiI8oABNxEREREREVEeMOAmIiIiIiIiygMG3ER0lBtvvBGLFy8udjOIiIhoEtiPE00fkhBCFLsRRFQ4kiQd9+ef/exncfvttyOVSsHr9RaoVURERDQR7MeJSgsDbqJZpre3d+z/H374YXzrW9/Crl27xl4zm81wOp3FaBoRERGdAPtxotLClHKiWSYYDI49nE4nJEk66rUPpqJ97nOfw0c/+lHcdNNNKCsrg8vlwne+8x3Isox/+qd/gsfjQVVVFX7+858f8VldXV345Cc/CbfbDa/XiwsvvBAHDhwo7AETERHNIOzHiUoLA24impCnn34a3d3deO6553DrrbfixhtvxAUXXAC3242XX34ZV1xxBa644gocPHgQABCPx3H66afDZrPhueeewwsvvACbzYZzzz0X6XS6yEdDREQ0u7AfJyoOBtxENCEejwc//vGP0dLSgs9//vNoaWlBPB7HP//zP6O5uRk33HADDAYDXnzxRQDAQw89BI1Gg3vuuQcLFy7EvHnzcN9996GjowPPPvtscQ+GiIholmE/TlQcumI3gIhKw4IFC6DRvHePrqysDK2trWPPtVotvF4v+vr6AABbtmzB3r17Ybfbj9hPMpnEvn37CtNoIiIiAsB+nKhYGHAT0YTo9fojnkuSdMzXVFUFAKiqimXLluF//ud/jtqX3+/PX0OJiIjoKOzHiYqDATcR5cXSpUvx8MMPIxAIwOFwFLs5RERElAX240S5wTncRJQXn/nMZ+Dz+XDhhRfi+eefR1tbGzZu3IhrrrkGnZ2dxW4eERERHQf7caLcYMBNRHlhsVjw3HPPoaamBhdddBHmzZuHz3/+80gkErxTTkRENM2xHyfKDUkIIYrdCCIiIiIiIqKZhiPcRERERERERHnAgJuIiIiIiIgoDxhwExEREREREeUBA24iIiIiIiKiPGDATURERERERJQHDLiJiIiIiIiI8oABNxEREREREVEeMOAmIiIiIiIiygMG3ERERERERER5wICbiIiIiIiIKA8YcBMRERERERHlAQNuIiIiIiIiojz4/3lQGxRIhH3EAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x_model, y_model, xe_model, ye_model = mm.model(t_test, params, param_errs)\n", + "visualize_fit(t, x, y, xe, ye, x_model, y_model, xe_model, ye_model, mm.name, t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "5be8fb7e", + "metadata": {}, + "source": [ + "# 2. Fit Motion Model in StarTable" + ] + }, + { + "cell_type": "markdown", + "id": "3bd8dec7", + "metadata": {}, + "source": [ + "Examples on `flystar.StarTable.fit_motion_model`. Prepare the data with invalid values:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "aa698e86", + "metadata": {}, + "outputs": [], + "source": [ + "t = np.array([0, 1., 2.2, 3.5, 5.]) + 2025.0\n", + "\n", + "x = np.array([\n", + " [0., 0.5, 2.1, 3.2, 8.0], # Increasing 5 Epochs\n", + " [10.0, 8.9, 9.2, 7.4, 7.0], # Decreasing 5 Epochs\n", + " [2.5, np.nan, 5.2, np.nan, 5.0], # 3 Epochs\n", + " [np.nan, 6.2, np.nan, np.nan, 9.2], # 2 Epochs\n", + " [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch\n", + " [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs\n", + "])\n", + "\n", + "y = np.array([\n", + " [10.2, 8.5, 9.1, 10.5, 13.0], # Increasing 5 Epochs\n", + " [8.0, 9.9, 8.2, 7.4, 7.0], # Decreasing 5 Epochs\n", + " [5.2, np.nan, 4.7, np.nan, 6.0], # 3 Epochs\n", + " [np.nan, 1.2, np.nan, np.nan, 3.2], # 2 Epochs\n", + " [np.nan, 2.0, np.nan, np.nan, np.nan], # 1 Epoch\n", + " [np.nan, np.nan, np.nan, np.nan, np.nan] # All NaNs\n", + "])\n", + "\n", + "xe = np.array([\n", + " [0.2, 0.5, 0.3, 0.4, 0.6],\n", + " [0.5, 0.2, 0.7, 0.3, 0.2],\n", + " [0.5, np.nan, 0.6, np.nan, 0.3],\n", + " [np.nan, 0.6, np.nan, np.nan, 0.3],\n", + " [np.nan, 0.4, np.nan, np.nan, np.nan],\n", + " [np.nan, np.nan, np.nan, np.nan, np.nan]\n", + "])\n", + "\n", + "ye = np.array([\n", + " [0.3, 0.2, 0.5, 0.2, 0.4],\n", + " [0.2, 0.5, 0.6, 0.4, 0.2],\n", + " [0.7, np.nan, 0.5, np.nan, 0.2],\n", + " [np.nan, 0.4, np.nan, np.nan, 0.5],\n", + " [np.nan, 0.5, np.nan, np.nan, np.nan],\n", + " [np.nan, np.nan, np.nan, np.nan, np.nan]\n", + "])\n", + "\n", + "x = np.ma.masked_invalid(x)\n", + "y = np.ma.masked_invalid(y)\n", + "xe = np.ma.masked_invalid(xe)\n", + "ye = np.ma.masked_invalid(ye)\n", + "mask = np.ma.getmaskarray(x) | np.ma.getmaskarray(y) | np.ma.getmaskarray(xe) | np.ma.getmaskarray(ye)\n", + "\n", + "tab = StarTable({\n", + " 'x': x,\n", + " 'y': y,\n", + " 'xe': xe,\n", + " 'ye': ye\n", + "})\n", + "tab.meta['list_times'] = t" + ] + }, + { + "cell_type": "markdown", + "id": "9201897f", + "metadata": {}, + "source": [ + "There are a 2 ways to specify the desired motion models:\n", + "1. Let MotionModel automatically determine which motion model to use among the given `motion_models` list based on the number of valid observations. MotionModel will choose the motion model that has enough observations, i.e. $n_\\text{fit} \\geq n_\\text{params}$. \n", + "2. Specify a motion model for each star in the `motion_model_input` column. In case there is not enough observations, MotionModel will \"downgrade\" to a model with less parameters until $n_\\text{fit} \\geq n_\\text{params}$ among all the unique motion models specified in the column.\n", + "\n", + "Note that when `absolute_sigma=False` and `n_fit == n_params`, we don't have enough degree of freedom to rescale the uncertainties, so the uncertainties will be set to infinity -- the same behavior as `scipy.optimize.curve_fit`.
By default `motion_models = [Empty, Fixed, Linear]`. `Empty` and `Fixed` will always be added in the list to handle 0 and 1 point cases. See examples below for details. Let's start with the most basic usage." + ] + }, + { + "cell_type": "markdown", + "id": "e58f429d", + "metadata": {}, + "source": [ + "## 2.1. Example: Default Fitting" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "02642d3b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Empty: 0%| | 0/1 [00:00StarTable length=6\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
n_fitn_requiredmotion_model_used
int64int64str20
52Linear
52Linear
32Linear
22Linear
12Fixed
02Empty
" + ], + "text/plain": [ + "\n", + "n_fit n_required motion_model_used\n", + "int64 int64 str20 \n", + "----- ---------- -----------------\n", + " 5 2 Linear\n", + " 5 2 Linear\n", + " 3 2 Linear\n", + " 2 2 Linear\n", + " 1 2 Fixed\n", + " 0 2 Empty" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tab['n_required'] = 2\n", + "tab[['n_fit', 'n_required', 'motion_model_used']]" + ] + }, + { + "cell_type": "markdown", + "id": "20470c6e", + "metadata": {}, + "source": [ + "Next, let's try `absolute_sigma=False`. As mentioned above, we don't have enough degree of freedom to rescale the uncertainties for the forth star. In this case, the parameter uncertainties will be set to infinity, which is the same behavior as `scipy.optimize.curve_fit`. The same `OptmizieWarning` as in `scipy` will be raised." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "26b11593", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Empty: 0%| | 0/1 [00:00\n", + "0.2398025689409276\n", + "0.07197698078673948\n", + "0.26723109004421475\n", + "inf\n", + "inf\n", + "inf\n", + "" + ], + "text/plain": [ + "\n", + " 0.2398025689409276\n", + "0.07197698078673948\n", + "0.26723109004421475\n", + " inf\n", + " inf\n", + " inf" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tab['vx_err']" + ] + }, + { + "cell_type": "markdown", + "id": "241ab6d6", + "metadata": {}, + "source": [ + "## 2.2. Example: Specify Motion Models" + ] + }, + { + "cell_type": "markdown", + "id": "220922c5", + "metadata": {}, + "source": [ + "Alternatively, one can specify a list of motion models to use, and the function will also automatically determine which model to use for each star depending on the valid observed epochs. In the following example, we specify `Acceleration` model, but **the function will always implicitly add `Empty` and `Fixed`** to handle the 0 or 1 epoch stars." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "a596c8e8", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Acceleration: 0%| | 0/3 [00:00StarTable length=6\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
n_fitmotion_model_used
int64str20
5Acceleration
5Acceleration
3Acceleration
2Fixed
1Fixed
0Empty
" + ], + "text/plain": [ + "\n", + "n_fit motion_model_used\n", + "int64 str20 \n", + "----- -----------------\n", + " 5 Acceleration\n", + " 5 Acceleration\n", + " 3 Acceleration\n", + " 2 Fixed\n", + " 1 Fixed\n", + " 0 Empty" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tab[['n_fit', 'motion_model_used']]" + ] + }, + { + "cell_type": "markdown", + "id": "188290a9", + "metadata": {}, + "source": [ + "## 2.3. Example: Specify the `motion_model_input` Column" + ] + }, + { + "cell_type": "markdown", + "id": "99624463", + "metadata": {}, + "source": [ + "One can also specify a motion model for each star as a column in the star table. However, the function will \"downgrade\" the model to one with fewer parameters until $n_\\text{fit} \\geq n_\\text{params}$:" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "04db5f9e", + "metadata": {}, + "outputs": [], + "source": [ + "ra = np.zeros(len(x))\n", + "dec = np.zeros(len(x))\n", + "pa = np.zeros(len(x))\n", + "\n", + "motion_model_input = [\n", + " 'Acceleration', # Will use Acceleration\n", + " 'Parallax', # Will use Parallax\n", + " 'Linear', # Will use Linear\n", + " 'Acceleration', # Will use Linear, as n_fit = 2 < 3\n", + " 'Linear', # Will use Fixed, as n_fit = 1 < 2\n", + " 'Fixed' # Will use Empty, as n_fit = 0 < 1\n", + "]\n", + "tab = StarTable({\n", + " 'x': x,\n", + " 'y': y,\n", + " 'xe': xe,\n", + " 'ye': ye,\n", + " 'ra': ra,\n", + " 'dec': dec,\n", + " 'pa': pa,\n", + " 'motion_model_input': motion_model_input\n", + "})\n", + "tab.meta['list_times'] = t" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "2b61fbcf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Acceleration: 0%| | 0/1 [00:00StarTable length=6\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
n_fitn_requiredmotion_model_inputmotion_model_used
int64int64str12str12
53AccelerationAcceleration
53ParallaxParallax
32LinearLinear
23AccelerationLinear
12LinearFixed
01FixedEmpty
" + ], + "text/plain": [ + "\n", + "n_fit n_required motion_model_input motion_model_used\n", + "int64 int64 str12 str12 \n", + "----- ---------- ------------------ -----------------\n", + " 5 3 Acceleration Acceleration\n", + " 5 3 Parallax Parallax\n", + " 3 2 Linear Linear\n", + " 2 3 Acceleration Linear\n", + " 1 2 Linear Fixed\n", + " 0 1 Fixed Empty" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_mm_map = motion_model.motion_model_map()\n", + "tab['n_required'] = np.array([all_mm_map[mm].n_params for mm in tab['motion_model_input']], dtype=int)\n", + "tab[['n_fit', 'n_required', 'motion_model_input', 'motion_model_used']]" + ] + }, + { + "cell_type": "markdown", + "id": "d4f96fcb", + "metadata": {}, + "source": [ + "## 2.4. Example: Infer Positions" + ] + }, + { + "cell_type": "markdown", + "id": "c660ec98", + "metadata": {}, + "source": [ + "Continuing from the previous example: Once we fit the motion models and the parameters are added into the table, we can infer the positions at arbitrary times with `StarTable.infer_positions`" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "095be28f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 20 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"dtf2d\" yielded 40 of \"dubious year (Note 6)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 40 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"utctai\" yielded 20 of \"dubious year (Note 3)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n", + "/Users/weilingfeng/Software/miniconda3/envs/main/lib/python3.13/site-packages/erfa/core.py:133: ErfaWarning: ERFA function \"taiutc\" yielded 20 of \"dubious year (Note 4)\"\n", + " warn(f'ERFA function \"{func_name}\" yielded {wmsg}', ErfaWarning)\n" + ] + } + ], + "source": [ + "x_model, y_model, xe_model, ye_model = tab.infer_positions(t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "a4df5458", + "metadata": {}, + "source": [ + "As in `MotionModel.model`, `StarTable.infer_positions` is also vectorized and returns positions and uncertainties in shapes of $(N_\\text{stars}, N_\\text{times})$" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "2f7e8b7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(6, 100)" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_model.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "7aab0868", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAHqCAYAAAD27EaEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8XOWVN/DfrdPVuy3bciMYU8xCMNUGYkIJS0khSzZgSFg2kBAChCxkE+wli1M2QLKU3WQBQwglvJSQECAGg2kGTDEYY1wlW1av09st7x9nRsVqU+7MSPL5fj6D0WjmzjNq957nOc85gmmaJhhjjDHGGGOMMWYpsdADYIwxxhhjjDHGpiMOuBljjDHGGGOMsRzggJsxxhhjjDHGGMsBDrgZY4wxxhhjjLEc4ICbMcYYY4wxxhjLAQ64GWOMMcYYY4yxHOCAmzHGGGOMMcYYywEOuBljjDHGGGOMsRzggJsxxhhjjDHGGMsBDrjZlLB27VoIgjBwk2UZM2fOxGWXXYaWlpaCjGnlypWYM2fOsPvmzJmDlStX5n0sy5cvhyAImDt3LkzTHPH51157beBrt3bt2rSP/+mnn2LVqlVoamoa8bnRvg75knxPY33N/+M//mPgMaONPVPZvOfly5dj+fLlKT1u6M/80Nsnn3yCVatWQRCEYc+55557Mvr+MsaYVfh8PT4+X68c9fN8vmbTGQfcbEp54IEHsHHjRqxbtw5XXHEFHn30UZx88skIBoOFHlrBeTweNDY2Yv369SM+d//996OoqCjjY3/66adYvXr1qCfBn/zkJ3j66aczPna2PB4PnnjiCfj9/mH3m6aJtWvXZvW+C23u3LnYuHHjiNu8efPw7W9/Gxs3bhz2eD6BM8YmCz5fj43P13y+5vP1wYUDbjalLF68GEuXLsWpp56KW265BTfeeCMaGxvxzDPPZH3scDic/QALaNasWVi6dCnuv//+Yff7/X488cQTuOiii3LyuvPmzcOSJUtycuxUnHfeeTBNE4899tiw+9evX4/Gxsacve98cDgcWLp06Yibw+HAzJkzsXTp0kIPkTHGRsXn67Hx+ZrP1+zgwgE3m9KSf8D27t0LAFi9ejWOO+44lJWVoaioCEcffTTuu+++EWlbc+bMwZe+9CU89dRTWLJkCex2O1avXg0AuPvuu3HKKaegqqoKLpcLhx9+OH75y18iHo+nPb5IJILrr78eRx11FIqLi1FWVobjjz8ef/7zn4c97rHHHoMgCLjrrruG3X/LLbdAkiSsW7cupde7/PLL8dRTT6G/v3/YsQHg61//+qjPeeONN3D66afD4/HA6XTihBNOwHPPPTfw+bVr1+KrX/0qAODUU08dkeo2WrpWJBLBTTfdhIaGBqiqihkzZuDqq68eNi5g8Pvwwgsv4Oijj4bD4cDnPve5ERch4ykuLsYFF1ww4jn3338/TjzxRCxcuHDU591///048sgjYbfbUVZWhgsuuADbtm0b8bi1a9fikEMOgc1mw6GHHoqHHnpo1OPFYjH87Gc/w+c+9znYbDZUVlbisssuQ1dXV8rvJR0HpqjNmTMHW7duxYYNGwa+R4VKHWSMsQPx+Xo4Pl8P4vM1n6+nO7nQA2AsG7t27QIAVFZWAgCamppw5ZVXYtasWQCAt99+G9/73vfQ0tKCn/70p8Oe+8EHH2Dbtm3493//dzQ0NMDlcgEAdu/ejYsvvnjg5PPRRx/hP//zP/HZZ5+ldWIBgGg0it7eXtxwww2YMWMGYrEYXnrpJVx44YV44IEHcMkllwCgk+uGDRtw/fXXY+nSpTjmmGOwfv16/OxnP8PNN9+MFStWpPR6X//61/GDH/wAjz76KL7zne8AAO677z585StfGTVVa8OGDVixYgWOOOII3HfffbDZbLjnnntw7rnn4tFHH8VFF12Ec845B7fddhtuvvlm3H333Tj66KMB0Ez5aEzTxPnnn4+XX34ZN910E04++WR8/PHHuOWWWwZSrGw228DjP/roI1x//fX4t3/7N1RXV+P//u//8K1vfQvz58/HKaecktL7/ta3voXTTz8d27Ztw6GHHor+/n489dRTuOeee9DT0zPi8WvWrMHNN9+Mf/qnf8KaNWvQ09ODVatW4fjjj8emTZuwYMECAHTyvuyyy3Deeefh17/+NbxeL1atWoVoNApRHJyvNAwD5513Hl5//XXceOONOOGEE7B3717ccsstWL58Od577z04HI6U3suBNE0b9rEoisNeO+npp5/GV77yFRQXF+Oee+4BgGFfZ8YYKyQ+Xw/H52s+X/P5+iBiMjYFPPDAAyYA8+233zbj8bjp9/vNv/71r2ZlZaXp8XjM9vb2Ec/Rdd2Mx+Pmf/zHf5jl5eWmYRgDn5s9e7YpSZK5ffv2cV83eYyHHnrIlCTJ7O3tHfjcpZdeas6ePXvY42fPnm1eeumlYx5P0zQzHo+b3/rWt8wlS5YM+1wkEjGXLFliNjQ0mJ9++qlZXV1tLlu2zNQ0bdwxmqZpLlu2zDzssMMGxnXMMceYpmmaW7duNQGYr776qrlp0yYTgPnAAw8MPG/p0qVmVVWV6ff7h41x8eLF5syZMwe+Zk888YQJwHzllVdGvPaBX4cXXnjBBGD+8pe/HPa4xx9/3ARg/u53vxu4b/bs2abdbjf37t07cF84HDbLysrMK6+8csL3DcC8+uqrTcMwzIaGBvOGG24wTdM07777btPtdpt+v9/81a9+ZQIwGxsbTdM0zb6+PtPhcJhnn332sGPt27fPtNls5sUXX2yaJn3v6+rqzKOPPnrYz05TU5OpKMqw9/zoo4+aAMwnn3xy2DGTX/N77rln4L5ly5aZy5Ytm/C9LVu2zAQw4vaNb3zDNE3TvOWWW8wD/4QfdthhKR2bMcZyhc/X4+PzNZ+vTZPP1wcbTilnU8rSpUuhKAo8Hg++9KUvoaamBs8//zyqq6sB0D6gL3zhCyguLoYkSVAUBT/96U/R09ODzs7OYcc64ogjRk1f+vDDD/GP//iPKC8vHzjGJZdcAl3XsWPHjrTH/MQTT+DEE0+E2+2GLMtQFAX33XffiHQom82GP/3pT+jp6cHRRx8N0zTx6KOPQpKktF7v8ssvx3vvvYctW7bgvvvuw7x580adeQ4Gg3jnnXfwla98BW63e+B+SZLwzW9+E/v378f27dvTfr/JIjAHViL96le/CpfLhZdffnnY/UcdddTACgcA2O12LFy4cCDtMBXJyqd/+MMfoGka7rvvPnzta18b9r6SNm7ciHA4PGJ89fX1OO200wbGt337drS2tuLiiy8elgo2e/ZsnHDCCcOe+9e//hUlJSU499xzoWnawO2oo45CTU0NXn311ZTfy1Dz5s3Dpk2bht1uvfXWjI7FGGP5xOfrifH5ms/X7ODAATebUh566CFs2rQJH374IVpbW/Hxxx/jxBNPBAC8++67OOOMMwAAv//97/Hmm29i06ZN+PGPfwxgZJGV2traEcfft28fTj75ZLS0tOA3v/kNXn/9dWzatAl33333qMeYyFNPPYWvfe1rmDFjBh5++GFs3LgRmzZtwuWXX45IJDLi8fPnz8fJJ5+MSCSCb3zjG6OOcSKnnHIKFixYgP/93//FH/7wB1x++eUj2lEAQF9fH0zTHPU16urqAGDU9K6J9PT0QJblgbTBJEEQUFNTM+KY5eXlI45hs9nS/lon91/ddttt+OCDD/Ctb31rzPEBo3//6+rqBj6f/LempmbE4w68r6OjA/39/VBVFYqiDLu1t7eju7s7rfeSZLfbccwxxwy7NTQ0ZHQsxhjLJz5fT4zP13y+ZgcH3sPNppRDDz0UxxxzzKife+yxx6AoCv7617/CbrcP3D9WRdTRTmrPPPMMgsEgnnrqKcyePXvg/s2bN2c03ocffhgNDQ14/PHHh71eNBod9fH/93//h+eeew6f//zncdddd+Giiy7Ccccdl/brXnbZZfj3f/93CIKASy+9dNTHlJaWQhRFtLW1jfhca2srAKCioiLt1y4vL4emaejq6hp2EjdNE+3t7Tj22GPTPmYq6uvr8YUvfAGrV6/GIYccMmJWe+j4AIz5vpPvOfm49vb2EY878L6KigqUl5fjhRdeGPU1PR5P6m+EMcamAT5fp4bP13y+ZtMfr3CzaUMQBMiyPCylKxwO4w9/+ENaxwCGF68wTRO///3vMx6TqqrDTt7t7e0jqp4CwJYtW3DNNdfgkksuweuvv44jjjgCF110Efr6+tJ+3UsvvRTnnnsufvjDH2LGjBmjPsblcuG4447DU089NWx22jAMPPzww5g5c+ZACl/y65HKLPbpp58OgC5ehnryyScRDAYHPp8L119/Pc4991z85Cc/GfMxxx9/PBwOx4jx7d+/H+vXrx8Y3yGHHILa2lo8+uijw6rm7t27F2+99daw537pS19CT08PdF0fMcN9zDHH4JBDDrHwXY4tk5UGxhjLNz5fD+LzNZ+v2fTHK9xs2jjnnHNw++234+KLL8a//Mu/oKenB//1X/+VVuXHFStWQFVV/NM//RNuvPFGRCIR3HvvvRmdRAEMtDK56qqr8JWvfAXNzc249dZbUVtbi507dw48LhgM4mtf+xoaGhpwzz33QFVV/OlPf8LRRx+Nyy67LO2+pXV1dSk9Z82aNVixYgVOPfVU3HDDDVBVFffccw8++eQTPProowMXHosXLwYA/O53v4PH44HdbkdDQ8Oo6WUrVqzAF7/4RfzoRz+Cz+fDiSeeOFD1dMmSJfjmN7+Z1ntJxxlnnDGQpjiWkpIS/OQnP8HNN9+MSy65BP/0T/+Enp4erF69Gna7HbfccgsAqi5666234tvf/jYuuOACXHHFFejv78eqVatGpKh9/etfxx//+EecffbZ+P73v4/Pf/7zUBQF+/fvxyuvvILzzjsPF1xwQc7ed9Lhhx+Oxx57DI8//jjmzp0Lu92Oww8/POevyxhj6eDz9SA+X4+Nz9ds2ihUtTbG0pGserpp06ZxH3f//febhxxyiGmz2cy5c+eaa9asMe+7775hVS9Nk6ptnnPOOaMe4y9/+Yt55JFHmna73ZwxY4b5wx/+0Hz++edHVP1Mterpz3/+c3POnDmmzWYzDz30UPP3v//9iIqV//zP/2w6nU5z69atw56brDZ6xx13jPu+h1Y9HctoVU9N0zRff/1187TTTjNdLpfpcDjMpUuXmn/5y19GPP/OO+80GxoaTEmShh1ntK9DOBw2f/SjH5mzZ882FUUxa2trze985ztmX1/fsMeN9X1ItTIoElVPx3Ng1dOk//u//zOPOOIIU1VVs7i42DzvvPNGfP2Tj1uwYIGpqqq5cOFC8/777x/1PcfjcfO//uu/Bn523G63+bnPfc688sorzZ07d6b93ib6no5W9bSpqck844wzTI/HYwIYMUbGGMs1Pl/fMe775vP12Ph8zaYrwTSH5F4wxhhjjDHGGGPMEryHmzHGGGOMMcYYywEOuBljjDHGGGOMsRzggJsxxhhjjDHGGMsBDrgZY4wxxhhjjLEc4ICbMcYYY4wxxhjLAQ64GWOMMcYYY4yxHJALPYB8MgwDra2t8Hg8EASh0MNhjDHGhjFNE36/H3V1dRDFg3dOnM/XjDHGJrN0ztcHVcDd2tqK+vr6Qg+DMcYYG1dzczNmzpxZ6GEUDJ+vGWOMTQWpnK8PqoDb4/EAoC9MUVFRgUfDGGOMDefz+VBfXz9wvjpY8fmaMcbYZJbO+fqgCriTaWlFRUV8AmeMMTZpHexp1Hy+ZowxNhWkcr4+eDeIMcYYY4wxxhhjOcQBN2OMMcYYY4wxlgMccDPGGGOMMcYYYzlwUO3hZoyx6UTXdcTj8UIPg6VBURRIklToYTDGGMszPmdPPaqqWtKikwNuxhibYkzTRHt7O/r7+ws9FJaBkpIS1NTUHPSF0Rhj7GDA5+ypSxRFNDQ0QFXVrI7DATdjjE0xyRN3VVUVnE4nB25ThGmaCIVC6OzsBADU1tYWeESMMcZyjc/ZU5NhGGhtbUVbWxtmzZqV1feNA27GGJtCdF0fOHGXl5cXejgsTQ6HAwDQ2dmJqqoqTi9njLFpjM/ZU1tlZSVaW1uhaRoURcn4OJOiaNqaNWtw7LHHwuPxoKqqCueffz62b98+7DErV66EIAjDbkuXLi3QiBljrDCS+7+cTmeBR8Iylfze8V4+xhib3vicPbUlU8l1Xc/qOJMi4N6wYQOuvvpqvP3221i3bh00TcMZZ5yBYDA47HFnnnkm2traBm5/+9vfCjRixhgrLE5Jm7r4e8cYYwcX/rs/NVn1fZsUKeUvvPDCsI8feOABVFVV4f3338cpp5wycL/NZkNNTU2+h8cYY9NSPBLBby/9CgDgmgf/HxS7vcAjYowxxtiB+Hw9tU2KFe4Deb1eAEBZWdmw+1999VVUVVVh4cKFuOKKKwYKzzDGGGOMMcYYY5PNpAu4TdPEddddh5NOOgmLFy8euP+ss87CH//4R6xfvx6//vWvsWnTJpx22mmIRqNjHisajcLn8w27McYYI4YxuCdp/7ZPhn2cC0NrcSiKgurqaqxYsQL3338/DMNI+Thr165FSUlJ7gbKGGOMTSL5Pl8DfM620qQLuL/73e/i448/xqOPPjrs/osuugjnnHMOFi9ejHPPPRfPP/88duzYgeeee27MY61ZswbFxcUDt/r6+lwPnzHGpoSd77yFtdddNfDxUz9fhd9f/S3sfOetnL5ushZHU1MTnn/+eZx66qn4/ve/jy996UvQNC2nr80YY4xNNYU6XwN8zrbKpAq4v/e97+HZZ5/FK6+8gpkzZ4772NraWsyePRs7d+4c8zE33XQTvF7vwK25udnqITPG2JSz85238OzttyHQ1zPs/kBvN569/bacnsSTtThmzJiBo48+GjfffDP+/Oc/4/nnn8fatWsBALfffjsOP/xwuFwu1NfX46qrrkIgEABAW4suu+wyeL3egZn3VatWAQAefvhhHHPMMfB4PKipqcHFF1/MW48YY4xNWYU8XwN8zrbKpAi4TdPEd7/7XTz11FNYv349GhoaJnxOT08PmpubUVtbO+ZjbDYbioqKht0YY+xgZhg61q/93biPeeXB3+UlXS3ptNNOw5FHHomnnnoKACCKIn7729/ik08+wYMPPoj169fjxhtvBACccMIJuPPOO1FUVDTQseKGG24AAMRiMdx666346KOP8Mwzz6CxsRErV67M2/tgjDHGrDIZz9cAn7MzMSmqlF999dV45JFH8Oc//xkejwft7e0AgOLiYjgcDgQCAaxatQpf/vKXUVtbi6amJtx8882oqKjABRdcULiBB3sARykgTop5C8YYm1DLtq0I9HaP+xh/Tzdatm1F/WFH5GlUwOc+9zl8/PHHAIBrr7124P6Ghgbceuut+M53voN77rkHqqqiuLgYgiCM6Fpx+eWXD/z/3Llz8dvf/haf//znEQgE4Ha78/I+2CQVjwBaBHCUFHokjDGWksl6vgb4nJ2uSREp3nvvvfB6vVi+fDlqa2sHbo8//jgAQJIkbNmyBeeddx4WLlyISy+9FAsXLsTGjRvh8XgKM2hDB5reAPoaC/P6jDGWgUB/n6WPs4ppmgP9Ll955RWsWLECM2bMgMfjwSWXXIKenh4Eg8Fxj/Hhhx/ivPPOw+zZs+HxeLB8+XIAwL59+3I9fDbZ9e8Fdr8CRLyFHgljjKVksp6vAT5np2tSBNymaY56S6YVOBwOvPjii+js7EQsFsPevXuxdu3awhZBM00gFgC6d9D/M8bYFOAuKbX0cVbZtm0bGhoasHfvXpx99tlYvHgxnnzySbz//vu4++67AQDxeHzM5weDQZxxxhlwu914+OGHsWnTJjz99NMAKG2NHeRMgybI970D6GP/HDHG2GQxWc/XAJ+z0zUpUsqnLNMEvM1AoBPwVBd6NIwxNqEZhx4Gd1nFuGlqnvIKzDj0sLyNaf369diyZQt+8IMf4L333oOmafj1r38NMbFd509/+tOwx6uqCl0fvmfts88+Q3d3N37+858PTMa+9957+XkDbIoQgK7tgLMcmPkPhR4MY4yNazKerwE+Z2diUqxwT2nBHk4rZ4xNGaIo4bSV/zLuY0699F8gilJOXj8ajaK9vR0tLS344IMPcNttt+G8887Dl770JVxyySWYN28eNE3Df//3f2PPnj34wx/+gP/5n/8Zdow5c+YgEAjg5ZdfRnd3N0KhEGbNmgVVVQee9+yzz+LWW2/NyXtgU5QkA64KoPV9oJfP24yxya3Q52uAz9lW4YA7WzY30L0TiI2/T4ExxiaLBcedgH+87ma4S8uH3e8pr8A/XnczFhx3Qs5e+4UXXkBtbS3mzJmDM888E6+88gp++9vf4s9//jMkScJRRx2F22+/Hb/4xS+wePFi/PGPf8SaNWuGHeOEE07Av/7rv+Kiiy5CZWUlfvnLX6KyshJr167FE088gUWLFuHnP/85/uu//itn74NNUcmiafveBsL53/fIGGPpKOT5GuBztlUE0zx4NiD7fD4UFxfD6/Vm3yJM14CPHgMEAKFeYMEKoOpQS8bJGGNjiUQiaGxsRENDA+x2e1bHioaCuOuyiwAAF/7bKsw+cklOZ8oZGe97aOl5agqz/OvQuQ3Y9RJQPp/2c/fsAao+B8w7DeCfecZYjlh1zubzdWFYdb7mFe6sCYDiBLo+o8rljDE2RQw9Wc88dDGfvNnBQRCB4plU9LR3T6FHwxhjE+Lz9dTGRdOs4KoAfK10Kylg5XTGGEuDYrfj+sf/WuhhMJZ/ih2QbUDLB0BRHaC6Cj0ixhgbE5+vpzZe4baCbKOK5T27Cz0SxhhjjKXCXQv424C2jws9EsYYY9MYB9xWcZVTtfJwf6FHwhhjjLGJiCLgqQE6tlKGGmOMMZYDHHBbxVYERANAcOxeeYwxxhibROzFgB6j1HI9XujRMMYYm4Y44LaKIFAhFn9boUfCGGOMsVQVz6C+3N07Cj0Sxhhj0xAH3FayFwHeZkCLFXokjDHGGEuFpAJ2D61y87YwxhhjFuOA20r2IiDiBUI9+X9tXytfKDDGGGOZcFUB4V6gdTMVQWWMMcYswgG3lSSV9oAFu/L7uj27gR0vADv+Dvjb8/vajDHG2FQnCNQerGsb0L+30KNhjDE2jXDAbTXFAfTvy9/r9ewG9mygGflQN7BzHdDXlL/XZ4xNGvFYFNFQMG+3eCxa6Lc8wquvvgpBENDf35/yc+bMmYM777wzo9dbuXIlzj///IyeyyYZ1Q1AoNTyeKTQo2GMTWN8vj64ztdyQV51OrMV0Qp3xEcp5rmUDLZh0sy8aQK+FmDXemD2CUDlITRrzxib9uKxKHZvehuRYDBvr2l3uTDv2KVQVFtKj1+5ciUefPBBXHnllfif//mfYZ+76qqrcO+99+LSSy/F2rVrczDazK1atQqrV68ecf+6devwm9/8BuaQFOTly5fjqKOOyviCgBVY8QygZw/QuQ2YsaTQo2GMTUN8vs6dyXq+5oDbajY3EOykoDuXAXdvI9A4JNgGKLgungkEOuhzih0onZO7MTDGJg1D0xAJBiGrCmRVzfnrabEYIsEgDE0DUjyBA0B9fT0ee+wx3HHHHXA4HACASCSCRx99FLNmzcrVcLN22GGH4aWXXhp2X1lZGdQ8fK1ZHoky4KoA2j6k86m7stAjYoxNM3y+zq3JeL7mlHKrCSIAEQh05u41dA1o/ZD2iyeD7aHc1YChU1DOGDuoyKoKxWbP+S3Ti4Sjjz4as2bNwlNPPTVw31NPPYX6+nosWTJ8RTEajeKaa65BVVUV7HY7TjrpJGzatGnYY/72t79h4cKFcDgcOPXUU9HU1DTiNd966y2ccsopcDgcqK+vxzXXXINgmisLsiyjpqZm2E1V1WEpaitXrsSGDRvwm9/8BoIgQBCEUcfDJjlnGRALAc1vc2o5Yyxn+HzdNOI1p+v5mgPuXLC5aR+3ruXm+P42Ko7mrhn7MY5SoG8vpbYzxqY10zQRj0Sgx+PQYvm76fH4sPSsVF122WV44IEHBj6+//77cfnll4943I033ognn3wSDz74ID744APMnz8fX/ziF9Hb2wsAaG5uxoUXXoizzz4bmzdvxre//W3827/927BjbNmyBV/84hdx4YUX4uOPP8bjjz+ON954A9/97nfTHvdEfvOb3+D444/HFVdcgba2NrS1taG+vt7y12F5UDKLtm21vAcYRqFHwxibJvh8fXCerzmlPBfsRbTCHe4F3FXWH79nN+3XlseZsbIX0eN8rbnfS84YKygtGsX/fufSgrz2IcefBLjcaT3nm9/8Jm666SY0NTVBEAS8+eabeOyxx/Dqq68OPCYYDOLee+/F2rVrcdZZZwEAfv/732PdunW477778MMf/hD33nsv5s6dizvuuAOCIOCQQw7Bli1b8Itf/GLgOL/61a9w8cUX49prrwUALFiwAL/97W+xbNky3HvvvbDb7SmNecuWLXC7B9/nokWL8O677w57THFxMVRVhdPpRE3NOBOibPKTFNrP3fYR4CgDqhcVekSMsWmAz9cH5/maA+5ckO2AFqV93FYH3OF+oG8P4Cof/3GCSOPo3c3F0xhjk0pFRQXOOeccPPjggzBNE+eccw4qKiqGPWb37t2Ix+M48cQTB+5TFAWf//znsW3bNgDAtm3bsHTpUghD/r4df/zxw47z/vvvY9euXfjjH/84cJ9pmjAMA42NjTj00ENTGvMhhxyCZ599duBjmy31fXBsilLdgJpILXeUjL6FizHGpjE+X1uDA+5ckW1AfzNQfZi1x+3fB0QD46eTJznLAF8bEOqhIjCMsWlJttlw5b0PYvvGN2BzuaDYUpsFzkY8GkE0GISc4Yns8ssvH0gTu/vuu0d8Ppn6JhwwWWia5sB9qaTHGYaBK6+8Etdcc82Iz6VT9EVVVcyfPz/lx7Npwl0F9DYBe98C5n+BAm/GGMsQn6/HNp3P1xxw54qtiKqFx4KA6rLmmHoc6NpOe8RTWbFWXdQmzLufA27GpjFBEKDY7ZAUJVH1VMn5a5qmDi2mjDjBpurMM89ELBYDAHzxi18c8fn58+dDVVW88cYbuPjiiwEA8Xgc77333kC62aJFi/DMM88Me97bb7897OOjjz4aW7duzdvJV1VV6Lqel9dieVIyi7LFdrwIzFoKlM4u9IgYY1MUn68HHUznay6alis2D61EB7utO6Z3P7Ucc6YRPNs8QM+u3BVwY4yxDEiShG3btmHbtm2QJGnE510uF77zne/ghz/8IV544QV8+umnuOKKKxAKhfCtb30LAPCv//qv2L17N6677jps374djzzyyIieoD/60Y+wceNGXH311di8eTN27tyJZ599Ft/73vdy8r7mzJmDd955B01NTeju7oYxDQturVmzBsceeyw8Hg+qqqpw/vnnY/v27cMeY5omVq1ahbq6OjgcDixfvhxbt24t0IizJIpA+Twg4gV2vgjsf58mwBlj7CDA5+vsccCdK6IEwAACXdYds2c3AIGKuaTKUU5jCHRYNw7G2KSlxWKIRyM5v2mJ2e5sFBUVoaho7KKOP//5z/HlL38Z3/zmN3H00Udj165dePHFF1FaWgqAUsyefPJJ/OUvf8GRRx6J//mf/8Ftt9027BhHHHEENmzYgJ07d+Lkk0/GkiVL8JOf/AS1tbVZj380N9xwAyRJwqJFi1BZWYl9+/bl5HUKacOGDbj66qvx9ttvY926ddA0DWecccaw1i2//OUvcfvtt+Ouu+7Cpk2bUFNTgxUrVsDv9xdw5FkQRKCkHlA9wN43gV0v0zk52DP6hLauUVCuxai1mJb97wtjbHrh8/XBc74WzExqxE9RPp8PxcXF8Hq94/7QpETXgI8eo9RuZ9noj/G3AfYSYNH5NEOejWAP8OkztGJt86T33J5dwMxjKRWOMTalRSIRNDY2oqGhYVjFzngsit2b3kYkzX6V2bC7XJh37FIoauELkkwlY30PAYvPU3nS1dWFqqoqbNiwAaeccgpM00RdXR2uvfZa/OhHPwJAPVqrq6vxi1/8AldeeeWEx7T869C5Ddj1ElBuQaqiFgN8+6ldmGKn7VvOSsDUAS1CRVMNDTCTqyUmIEgUsBfXA55aeh5jbNob7e89n6+nDqvO17yHO5dsxUCoF4j0jx2Up8q7D4gFMquSai+hmfjao/gkz9g0pag2zDt2KQwtf9tHRFnmkzeD1+sFAJSV0XmusbER7e3tOOOMMwYeY7PZsGzZMrz11lujBtzRaBTRaHTgY5/Pl+NRZ0FWgbK51J5Ti1Ctlr5GmoAXJUCUKcAWJQCJPZOmDrRvAdo+pnNy+Tygbgmfkxk7CPH5+uDDAXcuKQ7A30r7uLMJuA2dAuZ0V7aTHCVU3TzQwcVeGJvGFNUG8AmV5ZFpmrjuuutw0kknYfHixQCA9vZ2AEB1dfWwx1ZXV2Pv3r2jHmfNmjVYvXp1bgdrNUGg87ziSO3xznJa+Q73A83vApE+YPZJgH1qZDIwxqzD5+uDC+/hziVBoFluf1t2xwl0Uk9vR4ZBuygDhkmr7YwxxphFvvvd7+Ljjz/Go48+OuJz47WIOdBNN90Er9c7cGtubs7JeAtOlKlrSNkcoHsnpblbWVyVMcbYpMMBd67ZPFRdPJuKpr5WwIhTb+9MqXbac8YYY4xZ4Hvf+x6effZZvPLKK5g5c+bA/TU1NQAGV7qTOjs7R6x6J9lstoGiPBMV55kWJBUom0fn951/B/qn6QQDY4wxDrhzzl4ERH2Zz2DrGqWTqxmmkyepHiq8Fg1kdxzGGGMHNdM08d3vfhdPPfUU1q9fj4aGhmGfb2hoQE1NDdatWzdwXywWw4YNG3DCCSfke7iTlyjRXvCID9jzKp2jGWOMTTsccOeapNLqdijDgDvQAYR6Mk8nT1JdVHQtzGnljE0H07G/88Fiqn/vrr76ajz88MN45JFH4PF40N7ejvb2doTDYQCUSn7ttdfitttuw9NPP41PPvkEK1euhNPpxMUXX1zg0U8yggCUzErs636H24cxNk1N9b/7Byurmnlx0bR8UOyULlZzePrP9bVS0TRZzW4Myb7goV46uTPGpiRVVSGKIlpbW1FZWQlVVcfcF8smF9M0EYvF0NXVBVEUoapZ/l0vkHvvvRcAsHz58mH3P/DAA1i5ciUA4MYbb0Q4HMZVV12Fvr4+HHfccfj73/8OjyfLbK3pSBCA0lnUwtNVCdQfW+gRMcYswufsqcs0TXR1dUEQBCiKktWxOODOB1sRFT6LBgCbO/Xn6XGgdzdgt+gCRXYAvhag7ihrjscYyztRFNHQ0IC2tja0trYWejgsA06nE7NmzYIoTs0ks1Rm/AVBwKpVq7Bq1arcD2g6kFQKtts+BNxV3FGEsWmCz9lTmyAImDlzJiRJyuo4HHDng+qhPdyh7vQC7mQ6efHMiR+b0jjcNI5YCFCd1hyTMZZ3qqpi1qxZ0DQNuq4XejgsDZIkQZZlXuFgIzlKgKgf2PcO4CjldmGMTRN8zp66FEXJOtgGOODOD1EETBMIdAGlc1J/nnc/YBo0820Fm5v6cYd7OeBmbIpLpjhlm+bEGJtEimdQodT97wFzl9P1A2NsyuNz9sGN/5Lni80N9O+l/dip0GJAbyOlo1tFlOn1892POx7hQjCMMcbYRAQRKJoBdG2nawbGGGNTHgfc+eIooRVuf1tqjw+0U2DsKLV2HIqd9nHnSywI7FoH7H6JUtkZY4wxNjbVSYXU2jYDWrTQo2GMMZYlDrjzRbYDpg5075r4saaZeJwJSBanniT3ccfD1h53NFoUaHqT0uO6dgJNb9BqN2OMMcbGVjSDupt07yj0SBhjjGWJA+58clUCfXsmTukOdFJ1cne19WNQPUDUl/u0cl0D9r0NdH5K+9ZL59D/N73BM/aMMcbYeCQZsBcDrZupRzdjjLEpiwPufLJ5gIgP6JtgX1bnNkCLpFfRPFVSYh93OIcBt2EALe8BbR8DJfWAbKM+4qWzgc6twN63eE83Y4wxNh5XJRDuA9q3UOYbY4yxKYkD7nwSBNqT3fXZ2KnVgS6gZxf14cwV2Qb4UtxLnonuHUDL+4CnClCGVEOX7UDxLLp46N6eu9dnjDHGpjpBADw1QNc2wMf9exljbKrigDvfnOW0h7p/3+if795O+6utrE5+INVNPb5zsZ/aMGhCQbKN/h4UOwXhvY08Y88YY4yNx+ahLVqtH9K/jDHGphwOuPNNlGiFueszCk6HCvXS6rCrIrdjsLmBaIBS1awW7KJg3lk29mMcJbRPPRevzxhjjE0nRTOAvibKfmOMMTblcMBdCO5Kas11YIuwru1A1E8BaS5JKmDEgUi/9cf2tdD+c8Ux9mMUJxAPAv5261+fMcYYm05klVqFtX5Ik+WMMcamFA64C0G2U+Gyzm1Ax6cUaHd+Rqversr8jEGUaZXZSnoc6N5JlVXHIwiA7KAZe8YYY4yNz11N2WMdnxR6JIwxxtIkF3oABy1PNQXcXduG3CnkphXYaGxuKpxm6JTmbgV/GxDqBopnTvxYRzEQaKd2J7le0WeMMcamMkGk64OOrUBpA11DMMYYmxI44C4U1Q1UzC/g67toz3i4H3CVW3PM/mbANChlfcLX9wD+Dpqx54CbMcYYG5+jBAj1AG0fAa4vACInKTLG2FTAf60PVrKD9lpbtY87FgJ691Dbs1QIAgXmY1Vrz5e+JqBrR2HHwBhjjKWiaAZt3erdU+iRMMYYSxEH3AcrQQAgAMEea47nb6Pg3Z5iwA3QXm9vCxWKK4S+vcDu9UDja7yfnDHG2OSn2AHFBux/h7LUGGOMTXoccB/MVCdVFbeiH3bvHkCQ0ktxsxdRsO3vyP710+VrpUDb0AAYwN6NfPHCGEudFqU6GB1bgd2v0JYaxvLBUwcEe4F9bwNarNCjYYwxNgHew30wU120Kh0LADZP5scJ9wPeZsCZ5l5wQaSCbd79+d3PHugC9rwKxIJAySwAJtCzh4Lu+afTCgJjjI2lYyvQ8iFNGBpxQI8mOkzUF3pk7GAgCEDpLKBnJ+AsA+qPS2StMcYYm4wmxQr3mjVrcOyxx8Lj8aCqqgrnn38+tm/fPuwxpmli1apVqKurg8PhwPLly7F169YCjXiaUNwUdIb7sjuOvw2I+DML2u3FFKzHQtmNIVXhPgq2w30UbAsCBf6ls4HeXUDL+4Bh5GcsjLGpJx6molVaGCiuAyoWUKtHxvJJUgF3DU389Owu9GgYY4yNY1IE3Bs2bMDVV1+Nt99+G+vWrYOmaTjjjDMQDAYHHvPLX/4St99+O+666y5s2rQJNTU1WLFiBfz+Au3/nQ5EkaqKZxtw9+0FZFtmM+z2YiDipWrl+dC9m9LJS+cMH6+kAEV1QNtmoGdXfsbCGJt6+vYCwW5K602lIwNjuWIvAmQV2LcRCHQWejSMMcbGMClSyl944YVhHz/wwAOoqqrC+++/j1NOOQWmaeLOO+/Ej3/8Y1x44YUAgAcffBDV1dV45JFHcOWVVxZi2NODbAf87UDtkZk9P+qn52fa2kuUaA95uA9AQ2bHSJWuAX2NdJEijDLXpLoBsY/S9CoX5nYsjLGpR9eAzk8Bxcktmdjk4KkFehuBHS8AM48FKhbSeXUi8Qidd8N9tLXMVkRdRhwltN2MMcaYZSZFwH0gr9cLACgrKwMANDY2or29HWecccbAY2w2G5YtW4a33nqLA+5sqC6aGdeitEqdrkAnBd3uyszHoDho1XnG0ZkfIxXBLiDUTRcoY7EXD76nbPa1M8amH28zFUormVnokTBGBAEoawCCncCul6nzx8x/GNmi0zSpMGiwkwr8BTqAaIBqEAiJbDdRomsCdzXtC3eWFeY9McbYNDPpAm7TNHHdddfhpJNOwuLFiwEA7e3tAIDq6uphj62ursbevXvHPFY0GkU0Gh342Ofz5WDEU5zNTcFuuA/w1KT/fF8rnaxHWzFOleqi149HcluwzN8O6LHxJxZsbrogCXZxwM0YG2SaQNcOCnA4lZxNJoJAQbKtmDIwAh00sSyrgKgAokyTRcFuIB6in197EdUgGPqzbGgUhHfvon8bTgE81WO/LmOMsZRMuoD7u9/9Lj7++GO88cYbIz4nHLBH2DTNEfcNtWbNGqxevdryMU4rkkppkpkE3FoU6N9HJ+5sqE4K3CP9gJJB0J8KQwd6d08cRAsiAJFalZXNzc1YGGPpMU0g6kts+0ghXTYXAh2Ady/grirM6zM2EcUOlM+nCeOenbRqbeiDn3OUUK2Ssa6bRJkeYy+iWgW7XwLmnAKUcPV9xhjLxqTahPa9730Pzz77LF555RXMnDmYsldTQ0FYcqU7qbOzc8Sq91A33XQTvF7vwK25mfukjkqUaOY7XYFOCpLtJdm9/kDQ35/dccYT7AZCPYC9dOLH2tw0kaBruRsPY2x8yRTYjk+B7X8DPnka6PikcOPp2QXEo7y/lU1ugkCTQiWzqDho+Ty6Fc2gn91UipsKIj03GqA0da6CzhhjWZkUAbdpmvjud7+Lp556CuvXr0dDw/DiWQ0NDaipqcG6desG7ovFYtiwYQNOOOGEMY9rs9lQVFQ07MZGobpohTk5E54qfwdgmIBkQaKEKNL+6lwJtNOKfCop6/ZimkgI9eRuPIyx8e3bCHzyFLDrJcDXQntN2z4GIgXYGhTuB7p3Aq6K/L82Y4UgCBS0mzrQ+DpXQWeMsSxMioD76quvxsMPP4xHHnkEHo8H7e3taG9vRzgcBkCp5Ndeey1uu+02PP300/jkk0+wcuVKOJ1OXHzxxQUe/TRgc1O6ZjrtwQwd6G8CbBat9qguKkaUix7YhgH07El9ZUq2UXAe7LJ+LIyxiYX7ga7t9LtYsQAorqcVunAv0LE1/+PxNtPfSHtx/l+bsUIqqgNiAaDlPc76YoyxDE2KgPvee++F1+vF8uXLUVtbO3B7/PHHBx5z44034tprr8VVV12FY445Bi0tLfj73/8Oj4cLW2VNcQLxMBUVS1WoJ5GiXWLNGFQXVQaP5mD1KtQDhLrSa10m2ymtnDGWf95mIOIFnOWD9wkC4KoCOrflf7Wtfx/9nUwlHZex6aa4HujeDXRvL/RIGGNsSpoURdNM05zwMYIgYNWqVVi1alXuB3QwUhzUo7r6sNQuKpOtxKyqKq44KUU90p95T++xBNoTFdCdqT/HXsTtwRgrBF2jauA2z8i/RY4SqsfQ9jEw//T8BMDRABDgrgXsICYnqpq3vE/Vz7ldGGOMpWVSrHCzScBRQgFvKmnlpgn077W2hZcg0nGtLpxmmkBvY3rBNgCoHgq2Oa2csfzyt1JFcOcY+6WL6qgCszdPRTBDPUAsSH8TGDtYuSqBsBdo+SA3W78YY2wa44CbEcUFxIOppZVHvHRBbFU6+cAYbIC/zdpjhnpppTrdVXNRpNUzf4e142GMja+3kSbK5DF6XatOAALQujk/e0qD3QAM+pvA2MFKEIDiGZRW3rOr0KNhjLEpha8gGBEEQE6klU+U4u9vAyJ+69vjKC66uNWi1h0z2AVo4czGavNwezDG8inipYB7opTVolpa4c71Krdp0t8AbgXGGG09k+1A6wdALFTo0TDG2JTBATcblEwrj/SP/Rg9TkWLVBelgVtJdVPqZsRr3TGDXYAgZfZce1Hh24OlUN+AsWmjvxmIeieuBi6p9LsRyHEGSqSfKqPz/m3GiLuGrhN4lZsxxlLGATcbpLqp/cd4adT9+6h9l7vS+teXVUCPWbeP29Cpf2+mq1OynVbbc9kffDxtHwM719EkB2PTna4B3Tvo71AqxdBsHqCvKbcZKKFeWslTeIWbMQC0tcJRDHRsoQlyxhhjE+KAmw0SBFo56msa/fOGQb1xRYkel5MxiNatKIf7E1XG3ZkfQ5TpojvfenYD+zYCnZ8CHZ/k//UZyzd/G9WQGKtY2oHsxVTkMZcTYv4O+rvI7cAYG+SqpMr93TsKPRLGGJsSOOBmwzlKqUrwaGnd/laqTu6uzt3rqy668LYilTrcR+3AZEcW43FS2mo+U7t9rUDT6xTsuyqBlg8pq4Cx6ay/GTD1sYulHUi2UfZHrnpyGzrtEed0csaGE0Sqs9D+CU1qM8YYGxcH3Gw4m5v6zh6YVm6atLptGNa2AzuQ6qJ9k1acxINddGGQzeqU4qCxxALZjycVoV6g8XUgFqb2R84yQIsA+zfR5MFk4WsD9r1LQQlj2TIM2v6RbnCrOCkjJxcTYuE+2k9uK7L+2IxNdc5yykbr3F7okTDG2KTHATcbThABSaGV7KG9NoNdVD3YXZXb11dctGdyvMJtqUhewKtp9t8eMR4nEA/lZxY/FgKa3gCCnUDprMH7i+vpa9++JfdjSIWvDdizHmh+hwvnMGtEvUDUR/u302Evps4G2f69GE2wmya5cjnByNhUJYiAqwLo3GptoVPGGJuGOOBmIznLaTV7xwtA9y4qHNa9C4iHs9sPnQpRBEwj+8JpUR8Q8WU/XlGm8eTjgsLbTKt1JXOGV4CXZJroaNtMabeF5G+nYDvso8mMlg8oI4KlbrK2mTN0wNtSmCJ94T6a2FLS3P6huij7JNBl/Zj8bTT5yBgbnaOMJrt4lZsxxsbFATcbyeahPrf9+4AdzwOfPA10bwdc5fl5fUmlVd5shHsTF/BZrnADAETrKqePx7ufLvAleeTnHCUUCHVszf04xuLvAHavB8JeoHQ24Kmh/bOTZeV9sjN0oONT4NNncrfvOBOmST97O18Etv+NJtvyLdQHmEi/1aAg0KSYr8Xa8WgxqqXA+7cZG5sgUJHDzq2FKS7KGGNTBAfcbHSKk4Kq0jmAHqF2XfaS/Ly26qLgLpuVtlAfBRJW9ApXHbSym0vxcOICf5z9oo5SmoiIh3M7ltFEfMDuV2jioXROonKzSEF3x1YaOxtbxAfs2UATFn17qdjQZOixHuoF9rwKfPYc0NtE97V/nP92P9799HuWCXsxPd/KGgehnkSGDAfcjI3LUUq/K4WcDGaMsUmOA242PlGmquQls/LXGkd1A/Fg5mncyRW7bPdvJylOSlGPhaw53miCXfR+7eME3DY37SW3qm1aOvztib3ls4f/HNiLaDKmdfPkTZUutN5GWjnu2EKF8EpnAz07rV+VTZeu0QRA+xYqzlfWAHjqaPU9n+1+ogFKKVczDG7tRfS7k21WzFChHsCI5679IWPThSDQxGvX9pHFVhljjAHggJtNRrKN9o1nGnDHkhfwFu03VxyJwmk+a443Gn8nAJMmOMYiypSWXIiA29dCrz9axkDRDKB3NwWRbLhogArhRXxA+Xz6WVJd9H1s3zK8MGG+BTtp73PJ7MHfFVGkGg7tn9CY8yHcRyvqqiuz54syANPai31/GwfbjKXKXkTdNNq3TI7MHcYYm2Q44GaTT3IFNdM9YeE+CrozvYA/kKTSamCuAhDDAPqbUpsgUOxU2Cqf4hF6TXvx6J+XVcoCaP+ksAHkZBTooKJCRTOGT1Z4amnlu39vwYYGbytgaCP7Xg+0+/ksP+MI9wHQAVHK/BiqmwoOWtGmTovRKj+nkzOWOk8tda3w7i/0SBhjbNLhgJtNTooz833BoV4ARnYX8AcShNwVTgv3UtAxXjp5kuqh9PNcprcfKNQ9cT9iewllJOSiPdNU5msFINDK8VCKnQLw9i2FScXXNaB3D2AfJagUBMBVmb9CSP42QLJldwx7Cf0eWTHecB9t3bAqQ4axg4HqpI4eHVusmfhijLFphANuNjkpTiDSl1lg6WsFZIt75yp2IJij/WnBrtQrqtvclKacz7TyQBdg6qNXT09SHFTMLdyXv3GNxTTzlw49Hi1Klf7HygwoqqUCan2N+R0XQCvvoR7AXjr65x2ltIWic1tux6FF6ecr2+BWsdPKdKg7+zGFe6kuwYEr/4yx8RXVAj2NlG3CGGNsAAfcbHJS3RRsp7tiGg/TRXemBZjGojhphVuLWntcgHprp7rCJ8qAqeUv4DZNSndXJkjPFwRAABAswP7yoUyT+pVvfz43vZnTEeikn9+xqvtLKgWKbR/nv/e1b4x08iRBoGKJXdtzu8od7gdifppIypYkW9NNINA5fi0FxtjoZDu1tmz9kLJEGGOMAeCAm01WkkwBQbpp3KHe3KSDKk5ahbZ65TQWpJTasVZBxxpLvipch/voa5pSursL8O0vXNEc0wTaPgL2bqR9hG0fFbaAj7+d9rSPlxngqqLiZfnMWNDjY6eTD2Urop/PoAWrxmMJ99J4rChQZvPQRIIWy/wYugb42qyZAGDsYFQ0g34P972T/XYZPU5/y/0dNAHPBdkYY1MUT+OzyUuU0w9EQt20f2y8ICcTso3STKM+wF1p3XGDXZQiXjo79efYkvu4s6jsnKpgN000eGonfqzqoRXdqC+9CQQrmCb1j977Fr22u5qqplcsSO9raxVDp7TKiQI3WaWLynAftdbJh0AnTaIU1Y3/OEGgOgj+NqByYW7GEuyybjU5GXCHeii1NRORfiDmA5wV1oyJsYONKAIl9bQdxVkOzFiS/jFCvVRQsmsnEOqieheKgyYB3dVAzeL8n2MYYywLvMLNJi/VRatN6VS+7t9HJ+ZcMJF5q7KxDLQDS6PAm5rHfdy+VkCQUuvBrjqBaDA/hbYO1L5lMNh2liV6sAu0yp3vdG2AJirCvYCjZOLHSoo1qdCpmiidfCibh7IpcvE1NHQai6XdBOLZ/V6E+2jbSK7+hjB2MJDtgKscaNmU3n7uYDewaz2w9Rlgz2tAPAgU19PkoGyn8+/+94BdLxfmPMMYYxnigJtNXqqL9ndGUwxyIz46YY9XTTsbio2KTVkl1VXQA4kSVYPN9QWHFqVgK5V0coBWIQTk/0Io1Au0vEcTEc6ywfuLammVpHdPfscD0M+JFkmteJ/qpsAzHxMDqaaTJ9k89HuVi+9pxEsTR1amb8u2zLsbALTijhQmlxhj43MkCjLue3vivx+xELD/fWDbX4COrYDNRVk1nhqakJRUmkz11ADl86hN5e6XC1+ngzHGUsQBN5u8FAediFPdxx3qoQv4XLXzUZx04WBVYBTqBaL9gC2D1DjFCXibrRnHWILdlGKbzgSG4sh/H9ZgN6XXO8uH3y8l+oO3bs5vGzXTpImUiQrNJdnc1Dc+HxXeA4n94o4xqpMfKLmVworq3wcK9wFaGJAtXE22eWiyIx5O/7mGQRfyud6mwdjBomgGBcWf/Y0C6qF/40yTzoGdnwGfPQfsfYP+ZlfMH/+cI0pA2VzKDtv9cn6zgxhjLEMccLPJS0j8eKaaxh3opMWpA3seWyVZOM2q6quR/kT6agYtzGweqggeDVgzltEEOyn1WFJSf47qGexjnC/+trHT3t01QKCdqm3nS7iPVkodKU6kyHb6OchHZoCvNVHILY0iZZKa3arxWJLvN5XtCqmyeaiGQCZp5VEvPddmcYcDxg5WggiUzwVgAE2vU6p405tAywfA1qeBT54Cdq2jc3zZvOEZSuMRRaBsDv0N2b2e08sZY5MeB9xsclNsFFBNxDBo/3auVreBRGAUsW4fd6gPGaevqi5aFc3VPm7TpB7R6a72JceVr37cWoxW1McKkkSRVnM7P81NS7fRBDppxT3VFW6ACodZuV1hNKZJWRG2FPq9D2Xz0CpSPGLteALt1u+VFmXaqpHJ70WolybUeP82Y9YRRMBVCVQspHNo64dA01t0jnCUUKBdPCO9OibJ45bOoQynQnekYIyxCXDAzSY3xUUruRO1+gn3JXoe52j/NpBYiTOtW731t2V+cS9Kgyl5uRD1UdGvdNPdRQlAHvaXJ4V6ElXRx/m+24sT7ydPkwDeZloVTmfl1uamAoHZttEZTyxIk0XpTqLYihKrxhamlccjtFVESTP4T4XioN726Qr1UmFEgU+LjFlOECjALp8HVMyjQmiqK7sMF0Gg43R+ll5xNsYYyzO+smCTm+pObSU31E37NnNxAT+UqFoTTMZCNEGQzXgVG6V950LER2PMZHyyI399wkPdE/dxTlavzkfArcWoZ2y6acmqh9pRRfpzMiwAFGzHM/ieSlmsGo8l6kuMJQf7pW0eWvVKZ7uFaVIPeTXHfz8YY9ZKBu2tH1qfhcMYYxbhgJtNbrJKRZsmKsTla7Wun+94FDvtz802fS3ipYA2mwJNsoPS0g09u7GMJuoDYGS2H151JwqZ5aFQWX9zanvgRZlSvXMt6ge0UPqBm2Kni8VcZgZEvPSzksnvSaarxmOOxUeTE6m0JkuX6qHV/HQmCKJ+mpCxsmI6Yyw/imdQZlHXtkKPhDHGRsUBN5v8HCVAz86xZ6+1KFUXzmU6eZLioBX3WDC740S86RckGzEWO60SxnJQOC3cDwgZTmAMVN3OcVp5NEBBdCpV1Ad6uudgcmLYmLz08yjZ0n+uICXaUuVIqCfzSSlbUfqrxuOJeHPXfUsUqW1eMI0U+HBvIqODA27GphxRBhxltJebC6gxxiYhDrjZ5OcopZPoWGnKyX28ueq/PZTspNT1bPdxh3qz3ysqO6itUi4qlQc6sthfLgOmnvsU7lA3BfZqCunbyUkAqwrejSXqT+wDziCatLlp4igXkwKmSYXPMk2ZVt2JVWOL9nH726xtB3Yg1Ql496WeieJNVGHPVYcDxlhuOcuBiJ/aQBpGoUfDGGPD8NUFm/xEmVb/eveM/vlgN2BmuVqcquR+1mwCbtOkCs3Z7hcVJVrJs7oFVyxEExjZVGuWbIAvx/1RA4nU/lSCpOTkRK4nAYLdmf8c2tz0dc/FpEDUD8T8me+ZFkUABhUwzJYWpe9DLquB24pou0Uqe+LjEaCvkYrrMcampmQBte4dqXU2YYyxPOKAm00NrnLaQzpaulj/vtyulh1IQHZBbnKl1ZICTQLth7VS1J8oQJfF11RxAOGe3K00GAbQvzf1PbeCAECwJmAcb0zBrsy/r7KDvu65SIlM1gzI6nvqpK951vULEgXTclmgTHXRBIM3heJ9gXbaQuEoyd14ppnXXnsN5557Lurq6iAIAp555plhn1+5ciUEQRh2W7p0aWEGyw4eqpMmxDu3cZswxtikwgE3mxpsHgpUDyyeFuqlVcV8pJMnyfbsqoMPVIu2oEKzbAdCFu/7jfoS+8uzKGglO+g9xrPc6z6WSD8FSens21edVIk6VxdiMX92fZwFgbYZ5GIfd8RL2RDp9rodylZEX/NsV+CjPiqEKKdQ7C5TgkBBd/eOiVP0k39T8lF0cZoIBoM48sgjcdddd435mDPPPBNtbW0Dt7/97W95HCE7aHmqKGMl0FHokTDGJhNDpwLL+94Fdq7LfU2fA/AVBps6bG6geztQtYhSu8P9QONrdAHvrszfOBQHBfq6RuNIV8RLe5yzCX6GjiXcn2iNZVFKfcRH+5CzISequUcD6bfISkUw0QZOrkv9OaqbAvWoPzcF9qJ+WkV2VWd+DNVJtQqMDCvEjyXUk/3Ph+qkfeDhvuxWgyPe7H++UuEsp/EGOijVdDTxMNDbCDg4nTwdZ511Fs4666xxH2Oz2VBTU5OnETGWoLqpNWPXdsDDP3+MHfT0OND1GdC9k64HYiGKGQzNmuvwFPEKN5s6nOW0b9ffShf9u9dTOnlZQ/YFyNKRTP2NZZhWHuzOvAL4gRS7NUXchgp2Uo/vbEiJwmnZVnMfi6+V/lCmU5xMcdEf2lzt4474AKS4p3wsamIft5WV5w2DLkCz7VEviKAtDP3ZHSfQkVort2zJdjqh9u0d+zH+NpoAsJfkfjwHmVdffRVVVVVYuHAhrrjiCnR25qEtH2MA4KoEenal16mAMTb9aDGg6U1g9yt07eepGXsCPsc44GZTh6RSWmz3Tvrl8bYAZXPznwqq2AEtklmQmwx+sum/PZScGItVAZqu0ep9tsFZUqaTEuPR47QKnO7KebLwV64C7nB/9hM/isP6CZRkAG/FnmnFRu3VMqXFaB+9VT9fE7GX0IX3WD3hvftp0iaPs9wHg7POOgt//OMfsX79evz617/Gpk2bcNpppyEajY75nGg0Cp/PN+zGWEbsRTTZ27Wj0CNhjBWKFgX2vgm0fwQUz6BAO5db2SbAATebWpxllCo2EGwX4EJZSARumQRFVgY/w8ZiUcAd9WVfMC1JUimV2WrRxF7pTCYtZDutjudCNq3UknJReT6aKFImW/Azp7roexqPZD4WLccF04ZylNFEyGgtBWMhWv3m1W3LXXTRRTjnnHOwePFinHvuuXj++eexY8cOPPfcc2M+Z82aNSguLh641dfX53HEbNpxVdIWNO7LzdjBJx4Bmt4A2j4CiuvzN8k/Dg642dRiL6H9o2VzC9szV5DoQj5dAwXTLPzlz3Qso4n6acXcillA2Q4Ee60vUhb10cylnEHau+rOLmAcy0ArNasqz/dbcJyEiBeARXvCVRdN7mQ6vogXiEepbVw+iCLtXe/ZNfLncCCdnPdv51ptbS1mz56NnTt3jvmYm266CV6vd+DW3NycxxGyacdeTNt8uncVeiSMsXzS40DT60D7FqB0dm5bkKaBA242tQgC4CgtbLAN0C9wIIM9iclq0VbuOc+2avpQUR8Ai8an2KlKudX7uKMBZDxG1U3PtzqtPJplhfKhFAdtO7BKoAsQs6g4P5SkAkY8869f1Edt9dLZe58tZzllxBy40tXfTD9DnE6ecz09PWhubkZtbe2Yj7HZbCgqKhp2YyxjggC4KoCubdl3VmCMTR1tH1NrwNLZBU0hPxAH3IxlQnYk2kCluVIa7Myu3dZoFGdiZXrs/ZEpC/VaV9BNdiT2l1sccIf7Mh+jpGQXMI4l6s++lVqS4kykgVuwCm/oNDFkZQq3KGdejCjQmVlmQjZsbpr48e6jGgpRP+3d7t/LvbczFAgEsHnzZmzevBkA0NjYiM2bN2Pfvn0IBAK44YYbsHHjRjQ1NeHVV1/Fueeei4qKClxwwQWFHTg7uDhKKfura+zMCsbYNNLfDLR+SJNtkyjYBrgtGGOZURxAwEcX76lWXNY1Wm20qmDawFiSLbj82QUzpknHsSo4kxR6z7EAgCxaZR0o2JXdSrKkUOBXvci6MUW8oKVbCygO2g+ezs/WWJI1Axyl1owNoJ9fX1v6rcv0OAXqhdhLZSsCOrZS/Yd4mCYzzDhQOi//Y5kG3nvvPZx66qkDH1933XUAgEsvvRT33nsvtmzZgoceegj9/f2ora3FqaeeiscffxweTw5aBDI2FkFI1H3ZBlQuzE07SMbY5BALAs3v0uKHldc8FuGAm7FMyDaquJxOD/Coj/4gOC3+QyDZaHU76qdZvUzFgpRurVq530WwtgBYLJQIRLMYo+oCAu3W9roOWrhyK6np/2yNJeKlALNo7FTetKluyhCI9NPFbMpjSRRvc5ZbN5ZUuSpoEkNU6PvvrKDWdSwjy5cvhzlObYYXX3wxj6NhbBzOMqrh0LMbmLGk0KNhjOWCYQAt7wPeZqB8fqFHMyq+4mAsG+kEk+E+Cn5ki3sACgKtTmfbGiy5D9nKgEiSra0SGwvQ1zCbytLJ7QCxgDUrHnrc2lZqggDLJioiXkAwra0ZoNgBfzj9gDvqta4gX7pEGSiakf/XZYwVliDSalfHJ0DFAtpiYpVgD50zAQAmAIH6/EqKda/BGJtYz06gbQtQPHPS1mXhgJuxTElKem2vgj25KxglKdkHtlE/YOrWrvwpdvoamaY17zvqpz3YchZ7peVECn4saE3AHfXTJEA6wedEZCXzfdJDBS0smJaUDN7TrYwf7k9ck+axYBpjjDnLge6ddFFeZ8Eqt2FQmnrzuzRxm0z2EEWgahEw+4T816pg7GAV6qXfRdVp/ZZNC3HRNMYypTgoKDKMiR9rmtQLOFd/DJJBZDYtuML9sGwfcpLsoMB2YBUgS1E/YGY5RkmmYmLZZgQMjCnRu9zKC6x0frbGYhh0jFz0vJYdo/e2HotpUjGTfPXfZoyxpOQqd+en2RfxjIeBvW8Au1+l45bNAyrm081TB7R/DDS+bn3rScbYSLoGNG+i61e3hbWCcoADbsYypTgTba9SCNyifiDSl7uAW3EMpltnKtiZfZGuAyl2ayuVh7pp9dcKVu0tj/oBWJ227aBJilgWY4wF6BhyDnpQqi6aVY6lOJESCwDhXmvTORljLFXOCiDQTXu5MxXsBnauA1o+ADzVgLtqeMaOYgdKZlH6etPr2Z2PGWMT69oGdO8ASmZO+uw5DrgZy5RipxNqKgF3pJ+CEyVHAYfioLFkGkRqMZohtDo4k1Ta42xFcJtcsbViD7BsoxR/KwR7rG/1JjspWI74Mj9GMtXdit7gB1LdNIkS6U/t8cngPFc//4wxNh5RpDaAbR9ltv0q0AXsegno30er2mNNnst2oHQOdUXY8xqvdDOWK4EuYP/7gKN40rUAGw0H3IxlSkykJqdy8g71ArCwKvaBJHVIC64MxAKAlqPgLHl8K44RD1lTnEy2AeGe7FK2AUqVDnVbnxkgioBpZDdREfXTMXJRQESSqfVGqvu4k/v4c/XzzxhjE3FV0t+s5rdpIjhVoV5gz6v0d6ysYeI6J7INKG0Auj+jfeOMHSwMHfC1Upr39udpgsvbYv3EkxYD9m+i60JXlt1c8oSLpjGWDdkGePcDNYvHf5y/LT8zcJkGaFE/tRbLRaEXSUm/wNZokinzVvxxHUjBDwK2LHoDJ9Plc/G9FcTsvm6Rfli+J38oUU69n7l3P6BO/hloxtg0JghA6SygayfgqgZm/sPEzwn3AbtfobaCZQ2pbx2SVcBeTHu6Sxt4Ow2b3uIRSu3u2UW/K7oGKDYqVihKgK2Ifn9qj8zumiupYyu9Vuns7I+VJ7zcwFg2bEX0x2W8PcrxSKJ4VY5PuNlUKo8FYfk+5CTZln1BN2DIiq0F84SyA4hHqe94NmLB3LW6Up1AsCPz5wc6c5exANAFpL+dTqzjifppZUi14CTLGGPZkFTAXQm0fkDp4eOJeGll29dKQXO650dXJZ37Oz/LeLiMTXpaFGh6gyamwn3UGq9iPlBcT634iuvpd2f/+8Bnz1EdhWyuB7t2APvfpe4DGWznC8V19ARjmb9+hjjgZiwbNvdgQDGWcB8FdrkOuIe24EpXxIucrYYqjsHANBtRPywboyQDZhYp+EmxAKU2Wb2HG6BJgeQ+7HRpUfqe5jTg9lAhwGDX+I8L9dL3P9c//4wxlgpHKaW+Nr87+qSraVJQsP1F6q5Q1pDZdhhBpKCg8xO6DmBsutFiQNObQOdWyh4pqhu5ACEp1Da1Yj79vu14kYoKZpKR2dtIwb2kpt2KNa4b2NcbwpYWL5q6gohqevqvn4VJE3C/9tprOPfcc1FXVwdBEPDMM88M+/zKlSshCMKw29KlSwszWMaSRJl6cI7XMzncR72jJYuqa48lmxZcwa7cBWdyolJ5tqvJgU5rV5JNWBBwJzMDcjBZoTip0FgmJ6WoP7d78gH6Xugx2i4xnlAvfa15/zZjbLIorqfWhntepfTUYGKyOuIDGl8Ddv4diHqpQFo2dTAcZUDYC3Rss2zojE0KehzY+yZV5S+eNfH1mSACxTOoun/LB8Bnf0tvtdvXSoG6qdMqeqrDNEy0+yL4cF8/Pm31IhzVoWWbcZmBSbOHOxgM4sgjj8Rll12GL3/5y6M+5swzz8QDDzww8LGq5mBVibF0qQ6gfy9Qt2T0wCvQmftgG6AV7nBvYjU9jfZjWowuMnK1x1xS6TVifgAZ7r/WNZq4sLI4maxmX6k84stNGj5A40tWeHdXpffcqI9WuaUc7MkfylYE9O6mfVljXZT6eP82Y2ySEUWgZDbgbwV699AEp6uCMooCnRQYWNHGUxDo73fXZ5Re654aBZ4YG5euAfs2Au1bgOKZ6V2bqS76XfC1ATv+TjWQZhw9/u9boBPYs4EWIVLct22aJvpCcezrDaHTF4EkCqj02GCEwjD0LAvmZmDSBNxnnXUWzjrrrHEfY7PZUFOT+qwGY3lhKwJCfVSkylE6/HO6RiuA+UinHVapvDr158UCtAKdZnpOygQBgJldL+6ojy6EnKUTPzZVsp1WX40sqseHeqyvUD6UAHrv6Uquiue6L6WjlH6+A51AUe0o4wjQpAbv32aMTTayjVa6ATo/hboBQaLUVysnUh0llAXX8QngWj7p+wUzNqHu7VSBvGhGZpl0ydXuaABoeZ/qwdQeATgr6LpCFGnlO9BBq+DdO+l3tKwhpcP7Ixqae0No84ahmyZKnSoUmX6n8x9qk0kTcKfi1VdfRVVVFUpKSrBs2TL853/+J6qq0lz5YcxqqpP+WIR6RwbckX5a2XXmcVY73TTpZMCdiwrlSaKcXcXtgTFaGNwqQ1LwM6kgq2u0TzqX1eclGwWz6Qr2AGIesipkG22X8LeNHnCHexNtOypyPxbGGMuU6rJmRXssnhqqqly1CPCkMSHO2GQT7KEg2VZE17/ZsLmB8gWAv4X2ditOqu5fPJNqxPQ3U4akq5wyRSaYrArHdbT2hbG/L4SwpqPEocKu5KA1agamTMB91lln4atf/Spmz56NxsZG/OQnP8Fpp52G999/Hzbb6IFCNBpFNBod+Njny2CliLGJCCLNxvk7gPJ5wz8X7qPU3lyugg6VSQuuaACAkbvUaIACs/EKy00k6oflY5TtdOKIBTILuONB+t7ai6wb04EUB62M6NrEvV+TDIOek8v920OpHpqBrjli5BiT+yJz0QucMcamCpubJib7GjngZlOXoVOwHUnUN7CCKFKmiWlS7Zmon/Z4ixJtwVAmDupjmoF2XwT7ekPwR+IosiuocU6ubcdTJuC+6KKLBv5/8eLFOOaYYzB79mw899xzuPDCC0d9zpo1a7B69ep8DZEdzFQ34G0eGRgFu5HTXsgHGtqCK9W0tYgXQI4DItlOgb2eYfG4sJdS/awkKVSpPBoAMsl4jgXp5CDnMHtBddJ2hagv9ZT/eBCI56EqflIyrTzYSRVKh/Ltz1/gzxhjk5mzjFJjaw7P7Wo6Y7nStZ36bRfPtH5rhCBQcK04gRQvXzTDQKc/in09IfSHYnAoMmqK7BDGGZtmAH2x/Ie/U7ZsbG1tLWbPno2dO3eO+ZibbroJXq934Nbc3JzHEbKDiq2I0sfDQ/pgGwZVQc3niTWTFlyh7tyvwMt2QI9mvo872JG7wC2WQRVwgN6LYVFf8LHIDgrqI97Un5NsJZavQFe20USKt/WAcST2b2eSPcAYY9ONo5Sy3ibq/83YZBTqTaSSu3O7lS4FhmGi0x/B5n392LLfi3BMQ6XHhmKnMmawrRnAuhYF13w0A3fuqoGZ50rlU2aF+0A9PT1obm5Gbe0o+wYTbDbbmOnmjFlKsVN6caiH9pnocaDlw8Te1rqJn28V2UHBWTSQWsClx2n1ONd/PGUbTQLEQ1RAJh1alN5PLsYoKpmnuscCuU9eEARqqZVuwJ3riYAD2TxU6bfuqESPc5MuKnn/NmOMEUGk1buuz4CKhbzVhk0dyVTycP/IrZN5ZJomekNxNPeG0OmLQhSBCpcKSRp7/Vg3gFfbFfyp0YaOMD0upgvo8EUx25G/BbFJE3AHAgHs2rVr4OPGxkZs3rwZZWVlKCsrw6pVq/DlL38ZtbW1aGpqws0334yKigpccMEFBRw1Y0NIKvUJLJ4J7Hsb6PiUCqWksP/EujEo6bXgivoTFcotrP49GlGiIDCTFe7kir2z3PpxKQ4g2JteCn5SqC9/hckCHak/PuzN7X780TjK6Gc/2EkFT1o+oIq8qpMvKhljLMlVSZlvvhagZFZuX0uLUrZTPEznUHcVp7JPF+F+wLsfiEeAsjm5n9ju2Z27VPIU9YdiaO4LocMXhWmaKHGqUOWJA+3/16iiLUzXIcWKAW9chFeTUeTIw/XbEJMm4H7vvfdw6qmnDnx83XXXAQAuvfRS3HvvvdiyZQseeugh9Pf3o7a2Fqeeeioef/xxeDzcboZNEjYPBR07/k57V0tn57by92gEgVZdUw1sc1H9eyzpjGuoWIAuHHLxtVTsNKZYML3UZ9Ok7QP5KIanOtMrnBbsBJQ8/9zJKmBoQNcO2qLgbaHMDk4nZ4yxQbIKwKQAJlcBtxYD9r5FdWW0KKDH6O9zySyg4ZTctQBluWXo9D3tbaTiexE/XVe1fwSUzaXe1p66zNucjiUaAFo/oOvEfBUAHsIXiaOlL4x2bxhx3USxQ4FtnMrjmgG82qbgiabBFe0ixcAFs2NYVhvD5a9Todv39vbjtMPckMT8TCBMmoB7+fLl4+bTv/jii3kcDWMZsBUBPTvpj1LZfOv/6KVKkGj1NRXRAAAzPyuiYgYV1AEKhs0cVVGXHbQvKd1K5VqExpWPiQrFSWnvqRRO02L0NZYLUKjMXgS0f0wTI+UF/PlnjLHJzFlBAVPoSOuDXz0O7H2TeiS7Kil7TUpUa+5rAna9DMxdRqvdbOowTcoc2/8ubTNzlQPuGlpkifopo7LrM6DiEGDOidYuULR/TF14KuZbd8wUBKIaWvvCaPGGENUMFNsVlLrGDlvjBrC+VcGTTTZ0Ruj6o1gxcP7sGM6cGcPmXhk3vDt4nXfFHz9GbfEO3HLuIpy5eOztyVaZNAE3Y1OeJNMfu0IHGoqDVhlTEfUhb1XUZdvwonKpivhzNyEgKbRynO7KezLNPZctwZJkO6WNRfonvjiLBajImrMA+6ZdlfT1KHAxFcYYm9RsHsDfDvTvtTbg1uPAvo0UIJXUj9zOVjY3EXSvAxqWUXowmxq6dwIt79HWOnvx8M/ZPHSLh4D2LXTfnJMS2RRZ8rYAHVtpe2SetqoFYxra+yPY3xdGOK6hyK6g1Dn2BEJMB9a1KniqyYaeaCLQVmlF+8yZMdglYGOnjF98PHIhot0bwXce/gD3/vPROQ+6OeBmzEqFDrYBCnhiAQrSJkr/CXblL0VITqRvp5seHu7JfWp+NM1K5bEArSZLeUjdTu6XivgmfmzES9/3fG9lAGicHGwzxtj4BAFwFAOd24HKQ605B+sa1Y5p3UyB9Gi1YwQRKG2ggpa7XgYWnAEU5X5lj2XJ10ZbBGT7yGB7KMVJ2wasCrr1OBVK0+N5WVwIxTS0eSNo6QsjFNPgsSuodozd4iusAS+2qPjzXhV9Mbr2LrNRoH3GjBhsiaxz3QT+b3vyd2z4sczEPav/8ilWLKrJaXo5B9yMTTeKHQj6KSgc70SuxymIy1f6sWwDQon90qkGhIaRSJHOYSAnKZRWno5YkP5K56t4iJJi4bSoH7RFoDBFTRhjjKXAWQ70NlHwW7kw++O1vA+0fki1M8Yr1CoIVF+mdw/QthlwV0+OhQI2uoiPtgjEQ0BZw8SPV+yDQbcgALNPzDzo7toO9O2ln5ccCsd1tHvD2N8XQTAah8umoHqcXtqBOPBcs4q/Nqvwx+lnt8Jm4MI5UXyhLg71gO3dn/ZJAyvfozEBtHkjeLexF8fPy0Fx3gQOuBmbbiQbEI9S8DVe5cpkv+ZcVygfOi4tTMFqqml08SA9R81hcUTFQXuk06lUHvUDyONFipIsnBanCYKx+NsKs7rNGGMsdaJME6mdn1KqdyoFMcfi3U9p5K7K1KuQF9VR0N3fRK/PJh8tBuzdSBXty9LYP63YaUtB28f08ZyTxr9uGI2/nVLY7UXpPzdFFGhT6ngwGodLlccNtPuiAp7dp+KF/SrCOj2m1qHjy3NiWFYbhzLGJVlfLLXruk5/JKP3kSoOuBmbbgQBEMyJ9yUn9yHnKw1YFGkqMR5K/TmxIE0eOFNocZYpJZGCn06l8lBPfiuBKy4g1EWz3a4xZmBjITpJ2vKwr5wxxlh2XNXU0cS3Hyidk9kx4hFg/3uUUu4oSf15sp2C/raPgeL6nAVVLAvdO+hWMif9LATFMRh0izIw6/jUJ3UiPqDpDbqmSGVVPU3pBtodYQFP77Xh5VYFcYMeM8ul46sNUZxQrUGaIJ4uVccuyD1UlSe318IccDM2HQky7ecdTyyQu+rfY0m3NVgsSO1Mspn9n4ic6MWdaqVyQ899mvuB5ETWQqR/7IA71E0r7zlO/2KMMWYBWQUg0F7uktmZbQVq/4TSfsszWKX21NJze3YDVZ9L//nTWSxIe6f791LAWnN4ftupRQPU7svmzjwlXHEAxTNoX78oAfXH0b/j0aK0XzzdVfUUhGIaOnyRwdTxCQLtRr+Ip5pseLNThmHSYw4p1vDlOTEcU6Eh1e3Wi0p1lNsM9EQFjFYkWABQU2zH5xty+/3lgJux6UixUz/m8UR8+Q22AWpPEk6xZRlAQXCuq6hLCmBqdIJLJXM92RfcnsM09wMl+6uPVzgt2E0ZBCL/WWeMsSnBXU1p3YEOqgSdDl8bBWXuysz+7ksKoDqphVjJLPr/fNKilJXlb6NiYJOhy0uwh/Y/e/cBYS8FqIZObdxqj7SuyN1EOrfROb08y6BXddHPVcv7tBAz85ixv8aGQdkSXdsp48Ki70WyGFpr/8SBtmkCn/RJeHqvig96BrMujirT8OU5USwu1dOal4rrBnzhOL5Sb+B/dxVjsEwaSf7fLecuynk/br4yY2w6ku0UQI5XETyfFcoHxmWjAmWp7pcO9+d2dTvJBBBLsVJ5LLGvXM5hmvtoZBsQaB/9c6ZJM/FqAfpvM8YYy4zqBPxxSh1OJ+DWYsD+TXSOL6rL/PXd1bTC3b0DqDsq8+OkI9hDr9e3Bwj1JTLtJLo2mPEP+b8uSYoFgcYNgLeZ9sOXzU1shTNpG1nj60DPHmDWUlo5zpVQL9DxCbX3tGJRxOYGzCr6edEjQNWikfV9tCjVE2jdTD9PFrQUC0Q1dHgjaOmnquPjFUPTTeDtThlP77Vhl49W4UWYOLFawwWzo5hbZKT12pGYDl80DgECSp0KLj3CgcUzBPxsE9AxZFdjTbGd+3AzxrIgJ3pxj1URPB6hleZ8VShPkmy0h1uLULrTREJ5aAkG0Mkl2JPaY2NBukDI90qy4qIxjlY4LdJPFy756AvOGGPMOs5yoGcXUL049bTl9i1Ab2P2e2xFiQqntm+hADPX55BYENjzKhV6c5ZRKr0kU+ZYy3s0yT77+PymbwOJtmrvULBdNm946rUgUIDqKAH6m4HG14CFX8zNGE2TvhdRP1CxwLrj2osoeG/9COjeBVR+jrYR6HF6Tz076PrCWZp6LZsx+CJxtPsiaOsLIxzX4baPHWhHdGB9q4I/77OhI0yTC6po4rS6OM6bFUWtM7X91wBgmiYCUR3BaBw2WURdsR21JU6UOBRIooC6YuDsOSbe3RdAZ9hA1aJl+Pz83LYCG4oDbsamI1mlGcuof/STQrALiPqA4ln5HZdip5XkWGjigDseoZNwPvZKy3aaoDCMidOo0tmDbiXVSd+3iHfk7HSwhyq6p5uSyBhjrLDsxUBPJ62ephLE9e0FWj+gVHIrip05K4DunUBfE1B7RPbHG0syZdnbTKnSQ4Na1U09wnv30DXC3OX5PZ+1bwE6ttI10Vj7nEWZaqT07AGa3wbmnW79goC/DejeTvvrrWZzA7b5NKnRsgno/oxq5MTDgL0EKJuT8UKCaZrwRuJo64+g3RdGNG4k+mgrowbafVEBf2tW8UKLMtDay6MYOHtmHGfXx1CcYqEzANB1A75IHFHNgMumYEGVB5VFNhTZR/5uSKKA46t1wIgDc8uQ8kZwC3DAzdh0JIi0ChvuHb2IVqATMMz8pGsPJamUChcPApig32GyirorD3ulFSed5ONBwDbB64V6AbEAFV2T7d5GC7gDHQAE7r/NGGNTjSAAjjJKIy6ZOX6gGfEC+96mlVCHRS09BYFWQDs/o5VPC9KJR9W9nd5jcf3oQa2kUPG33kYKzBeemZ9rlN5GCkBd5ROnswsiUDoL6NoJ2Espvdyq865h0H56PZ71KvO4HCU0yRP109d3vL7tEzAME33hOFr7Q+jyRREzDBTbFZQ6R5+I2BsQ8ew+FRvaFGiJQmjVDgP/OCuK0+visE9Q022oSFyHLxIHTAElTgULqh2o9KiwyWkcJI844GZsurK5aW9WzRHDT26GQQVAbCn267RSciIglVXiZHEyKUcn/6EUe2LV3z9+wG0YVIwulXR4qyVP6gdWn9c1SgmbaKKAMcbY5OQspxXmpjeABSsoIDqQrgHN71Itj2yLaY14/Qqgf19i9XmetccGgEAX0PwOFfEarzibIFJA3tcE9O4GKg+xfixDhXqBfW8BEFKfwJBUoKgGaNtM37fKhdaMpb+JVvg9WezJT1VykiVDumGgNxhHS38Y3f4oDJgosisoU0YGu6YJfNgj4dl9NmzuHQw7DynWcN6sGI6rmri118CxDBOBqIZgTINNFlFbbEdNkQNlLgVSoQvuTYADbsamK0cpVQANdAJFQ9KTwr10c06wwpwrgphiwB0EYOankrooA6ZOhebGE/VROnyh9korDrooqlo0OBMf6gGiXsBdVZgxMcYYy44g0H7m3t1A05vAvNNGrrZ2bKFV6JJZ1p8XJZmO2b2L9nJbmS0VjwD7NgLRYGrty2SVznWtHwLFMylIz5WOT2hLVroTGLYiukZpfpuutdxZFlHV44M9swtVNC4Fcd1AVyCK1r4weoMxCIKAYocCVR758xjVgVfbFPylWcX+4GAhtKVVGv5xVgyfK9FTf12N0sbjxvC0cY9NHrOt2GTDATdj05Vspz/i3pbhAXegE4iFgeI8twAZGJdKQeJEon4AeZ6xjE5QqTzqo6Jv7ur8jOdA7spEut27wOwTKXMh1J2oRj95T9KMMcYmIIrUjql7J6X5NpycqJDdTZPn+9+nPd65+lvvrqR2WMEuaydwO7fRinVpGgXe3DVUSK5jG1B/jHVjGcrfAXTtADzVmU0wuGtoRbr5HSqils1++p7dlKk22hbASSAS19Hlj2J/XxjeSAyKKKLMpUKWRl6jdUUEPN+s4u8tKgIafV0dkokv1MXwpVkxVDtS259tmibCMR2BqAZBAEqdKupKHSh32WAbJcCf7DjgZmw6sxfRjHndkYMng/59hZ1BlWxUtGOi1mCh7vwGkbKNXnM8ER+AFAqr5YqkUrpd20eUQl63hCZU8pF2zxhjLLckhfZxt2+hglbBbiDSR5Pn9uLcVu9WXYCvlYJIqwLuqJ9WkR2l6e3HFkWqVdLxMRXzOrBuSbZMk9pgxcOZt/gSBKCknibBOz+lPt2ZiIXonK46rSmCZ6FAREOHL4JWL/XQtisSKt22Eenbpgl82i/hr80q3umSYQzZn/2l+hhOr4vBmeK3X9cN+KMaInEdDkVGfZkTVUX2gWrjUxUH3IxNZ45SCsgCHZSaFfXTTPlo+8PyRbbTSS4eGjtVzNBpr3I+WoINjMtBrbUMfewqpaGewhRMG0p10naA5ndpLIF2bgfGGGPTheKkgLfrM5pY9dTm71zoLKMV9prDrUnl7tpBW9gy2XPuLKMU97aPgXmnWpvm7m8HenZmXwldUqkIWcsHtPc6k9Ty7h00nlzsnc+AYZjwhqm1V4cvgoimw6XIo7b2iurAa+0KnmtW0RQYvG46vFTDl+pjOKYytf3ZpmkiEtfhj2gAgCKHgrmVblS4VTjV6RGqTo93wRgbnaTS3mTvfgq4A51UjduV5X6jbMh26hsdGyfgTlYoz2chMMVOExKxwOgTEoZBKWhZVPS0jKOUJi1a3qd956V5bu/GGGMsd+xFhZlIdZQm0pv3AVWHZnesiI9Wfh1lme85L6qj6uYV82nvuhVMk1bdtZg11cBdFZT+3rIJmL8ivVXqiI+yGZylY0/054lmGOgJxNDmDaM7EINhmHDbZJQ4R2bQtYcEPL9fxcutg2njqmhieW0c59THMNttpPSaum4gENUQjuuwKSLqSuyoLnKg1KVAnuRF0NLFATdj0529mFKe6o6mgBFi4VKiAToZDbQGGyPwjwWo0Eo+JwZkB01IRMcIuGMBIB4A1ElSDbyojvqxCkLGvTMZY4yxAYJIk8qdnwHlC7Jry9W9M/PV7STVCQRM2stdXG/NKrevhSYVrOx1XTwL6N4NFM1Mr5d556eUOVexwLqxpCm5P7u1PwxvOA5REFBkV6Aqw68TdRP4sEfG35oVfNgjw8Rg2vhZMylt3JPCXMPAanZUA0zAY1cwu9yFCo8Nbtv0vZaZvu+MMUbspYPtPvr3AvYCB4yCAAgYv1J5LEQr8/kMJEWJVrFjY1Qqj3hpXK5JVA18khZYYYwxNkW5Kiko9bVkfo6xYnU7yVNNLbP8bTTRnA3DANq3UnvS8dqTpUtWAUcx0PoBpamnsge+vxno2EpFWPPRjWUI0zThi2jo9EfQ5o0gFNVgUySUu1RIBxRC648JeLlVwYv7VXRGBj+3pFzDOfUxLClPLW186N5smzLY0qvEqUAZpfjadMMBN2PTnSQDMIGu7VSsrDgPPR4nIkjU/3IsYwW9uSYIY1cqjyYLphU27YsxxhjLGTmRQty9I9GCLINV5e6d1q3cKk7qQd61PfuA27c/0es6y73bo3FVAj17gMbXqK3beAXugj3Uc12PA0Ul1o9lDJphoC8YR7uP+mdHdRMudeT+bNMEtvZLeHG/io2dMrREETS3bOL0uhjOnBlDrXPiauMDlcZjtJpd5FDQUOFCuXt6r2aP5uB6t4wdrBwldPIz4pOjorXNTcXcdG30lLVQb2GKk8k2aokymlAvIPCfTMYYY9Ocuwroa6RtVp4022BGfEDnViruadXKrbuS0sCrF2fe89owaEUZJvX5zoXSOUDfHmDPq8D800ffnhYNAE2v0zVZWRqt0rIQimnoCcQG0sYFgVK5S5XhCwi+mIBX2xT8vUXB/tDg5xYWafjizDhOqo7DlsKaQ1wzEIjGEdUMOBQJM0ocqPLYp+Xe7FTx1SNjBwN7CdC1jdK7JgPVA4S6qHjage0+dI2C3lydEMcj2ymwPnAiwDSp0nshxsQYY4zlk+oCfG1UDCzdgLtrO51HrdyXbPNQDZruHZkH3L4W6geei9XtJFGkfuO9e4A9G6i6+tDir1oM2PsW1V8pn5vTVPJktfFOfxQdvghCsdHTxpOr2etaFLzVqSBu0Gq2XTJxSk0cZ86IYW7RxEXQTMNEIKYjGItDFkQUORQsqLajzDV9Ko1ng78CjB0MRAkomz85VrcBqggej9BJ+cCAO9RDgbhVfUDTGpczUUE9QFkBSbEApZpb0SaFMcYYm+xcFRTgVi+i6uWpCPVSBXBXpfXBpKuCKpZXHZp+P3LTBDq30b+5njgXJVq57tlDdWjK5gIw6bWDXbT4UTo7ZzVqopqBnmAU7f1h9Ibi0BPVxg9MG++PCljfpuClVgWtQ1az53p0fHFGDCfXxFPqnR2J6whENOimAadK7bwqXTYUTfG+2VbjgJuxg4ViL/QIhhNlWjWuXDj8/mAXoEVptTnfkj3CDwy4Iz7qG37g5ABjjDE2HdmLge5OoLcJmJFiwN2xlc6Xuai6bS8GerootTzdgNvXmti7neZqfaZEmYLu3kbKEhi6D76ozvK+6qZpwhuJo8cfQ6s3gmAsDkUUqdq4PDjxoRvAh70yXmpRsKlbhm4OrmafXB3HF2fGMM9jTLhtX0u080oWQKv02FBVZEOZywabfHCmjE+EA27GWGGoLtrHbejDC5H17ytMsA0k2qWZtMdqqKgvMU7+k8kYY+wgIAg08dz1KVB5yMRVvf3ticJmNda07xptPM4yWiGuPCT1PuWmSRXTTZ2y2PJFUihtPIeSq9kdvgh6AzHEdQMum4Jqtx3CkNXl1pCIl1sVvNKmoDc6GBAfUqzhC3W0N9sxweWNYZgIxnSEYhoEASi2JwqguWxw2aRhq+dsJL56ZIwVhs0DhLqBcN/gynHUT0VaRis0kjcCpbWb5uBFQ6iPq5Mzxhg7uDgraIW2fy+lco/FNIH2LYAWAWwzcjceRylVQO/4BJh9QmrP8bfR6rY7h3u388gwaDW7OxBFuy+KYDQOWRRRZBveOzukAW92KFjfqmCbdzDcK1IMLK+N4/S6OGa7x9+bneyZHYjq0E2qaJ6sMl7ikCEdpAXQMsEBN2OsMBTHyH3cwS4g5s+8KIoVXBVA+8f0b+UhiYJp7fmdGWeMMcYKTRQBmwvo+JSKgY21Nc3bTIF5UW1uxyOIgKc2MZ45E7cJM016rK5Z23e7AMJxHb3BGNq9YfSF4tANA05FHraarZvAll4Jr7Qp2NipIJYogCbCxJJyDafXxXFspQZlgjg5Fqcq4zGdqozXFNtQ6bGjzKkOS1FnqUs74A4Gg/j5z3+Ol19+GZ2dnTCM4bMje/bssWxwjLFpTpCAYOfgPm5/BwAxp5U7J2Qvpln6vW9SkO0soz1pHHCzKUbXdaxdu3bM8/X69esLNDLG2JThqqYV4r1vAXNOGuzTnWToQNuWREGyPJwn7UWUhdbyARVnk8ZpIdq/F+jdDXgKUITVAsm+2d2BKLr8UYRiGlRp5N7sfQERr7Yp2NCuoGdIyvhMl47TauNYXhtHmW38vtkD+7I1HYooosSpoLrIgVKXAhdXGc9a2l/Bb3/729iwYQO++c1vora2lnP2GWOZS/bjNnQ6WfftpfsKzV1Ne8mbXgdqDqeCac7yQo+KsbR8//vfx9q1a3HOOedg8eLFfL5mjKVPkoGSWUDHFvr/WScMts2MBYHWzRSQl9Tnb0xFMwYLko2V6h7qBfZupK1h6iS4rkiRaZrwRzX0BmJo90XgC2sADLhtyrBK431RAa+3K3i1XcEe/+CWN7ds4uSaOE6tjWFB0fgF0HTdoH3ZcQ2SIMBjVzCn3IUytwq3KkPkKuOWSTvgfv755/Hcc8/hxBNPzMV4GGMHE5uHZqrDfYChUUuuXPbITEdxPV1EdH1GEwISz/CyqeWxxx7Dn/70J5x99tmFHgpjbCpT7EDRTAquRQWo/zxNSre8D3j356Ty9rhklSbnWz+g4PvAAmrxCK3Ih7oTbbkmv3BcR18ohg5fBH2BGGKGAbssodylDPTNDmnA250KXmtX8HGvBAMUEMuCiaMrNJxaG8cxFeOnjA8WP4tDgAC3TcaCSg9KXSqKeV92zqR9BVlaWoqysjTL8TPG2GgUB6Vvh3oBPQrosfyetMcjCLRHrHc3IE2SMTGWBlVVMX/+/EIPgzE2HahO2j+9/z0g4gX6mmj7V/n8whQVdVdRAbX2LcCs4xNdRgAYBtDyHq1+l80t7Ba1CcQ0A/3hGLr9UXQHYgjFdSgiBcFlCn1N4wawqVPG6x0KNnXJA/uyAaoyvqwmjpOqNRSpY6eMm4aJUFxHMKrBhAmnTcGccjfKXCpKnAoUafJ+jaaLtAPuW2+9FT/96U/x4IMPwunkPY2MsWyJVCwt0j8Je4VLQMVCwBy/kidjk9H111+P3/zmN7jrrrs4nZwxlj2bGzArge7tFHzbPIUbiyDSynrrh0Cgg7LSXBXU7aTtI6B4xvj7uwtENwz0hzX0BqPo8kURiGoAALdNRrXHBkEQoBvA5h4Jr7cr2NilIKQN/v2e4dRxSk0cp9TEUescJ8g2TYRjOoIxDboJOFUJM0udqPCoKHFw8bN8Szvg/vWvf43du3ejuroac+bMgaIM/2H+4IMPLBscY+wgYHNThdN4qMDtwMYxiWfIGRvLG2+8gVdeeQXPP/88DjvssBHn66eeeqpAI2OMTVn24slzrrZ5aGI80k/1YIBEZXXPpNq3bRgmfJF4ImU8Cl8kDsM04VJklLtVSKII3QQ+6ZPwZoeCjZ0yvPHB645ym4ETqynInucZe1/20CDbME04FBl1JQ6Uu20odSqwydzetFDSDrjPP//8HAyDMXbQsrkppTweoWJljDFLlJSU4IILLij0MBhjLHcUJ908oGw0LTYpsuUMw0QgpqEvOBhka4k2W2VOFbJEQfa2fglvJYLsvthgkF2kGDi+SsPJNXEsKtExVv2yZLp46MAg26WixKnCrnCQPRmkHXDfcsstuRgHY+xgJTuo0qmk8EoyYxZ64IEHCj0ExhjLH0G0NNjWDRPvdgCdYaDKAXy+GpDGqdydDLL7Q3F0+iLwhamXtU2RBlp56QawtV/Cxk4Fbx8QZLtkE0ur4jipOo4jSnWMtbXaSAbZUQ0GKF08uZJd4lA4yJ6EMi67+/7772Pbtm0QBAGLFi3CkiVLrBwXY+xgIQhUmVxSJ34sYyxtXV1d2L59OwRBwMKFC1FZWVnoITHG2KT2QpOJ1e+YaAsN3lfrBG45DjhzzmDQPWqQbRiwSSLcNgWqIiJuAB/3yni7U8Y7XTJ88eFB9nGVcZxQreHIsrErjOu6gVBMRziuARDgUGXMLHWi3E2FzzhdfHJLO+Du7OzE17/+dbz66qsoKSmBaZrwer049dRT8dhjj/GJnDGWvsmyH4yxaSQYDOJ73/seHnroIRgGFf6TJAmXXHIJ/vu///vgKXyqRakbAmOMpeCFJhPfecXEgSXJ2kPAd14xcfdyEyfUaPCG4ujyR+ENxxHXDdhkEa5EhfGwBmzqkfF2p4L3u2WE9MEg3aMYOK5Sw/FVGo4YJ8iO6wZCUR1hTYMIEU6bhDnl7kQLL4ULn00haQfc3/ve9+Dz+bB161Yceig1m//0009x6aWX4pprrsGjjz5q+SAZY4wxlp7rrrsOGzZswF/+8heceOKJAKiQ2jXXXIPrr78e9957b4FHmCc71wF/ugRwlgOVh1C7v7IG+lc5SCYdGGMp0Q1a2R6t/reZ+O9PNppYc1QfDJNWsj2Jley+qIBXO2S82yXjo14ZmjkYZJeqBo6r0nBCVRyHlYydLh6N6wjFdEQ1HbIowm2XMbPUgxKXiiK7zC28pqi0A+4XXngBL7300kCwDQCLFi3C3XffjTPOOMPSwTHGGGMsM08++ST+3//7f1i+fPnAfWeffTYcDge+9rWvHTQBt975Gd7VFqLTV4IqXzc+L74BSTABCEBRLfXqLZtH/YRL50zKVkKMsfx4twPD0shHEtATFdASceCoCgN7gyJe2i9jU5eMnT4JJgaD7BqHgaVVcRxfpWFB0eiFz5KVxUNxHVpildxjVzDX40KRQ0GRXYYkcpA91aUdcBuGMaK1CAAoijKQssYYY4yxwgqFQqiuHln5v6qqCqHQuFeU08YLn7ThljePQkd8cJGgVvLjFsfjOFNbD/ha6db0Bn1SlCjoLl9AAXjFQsBViTH78DDGpg3TNNHs0wFMHOD+udmGe7dL6IwMf+yCIh2fr4zjuEoN9a7RW3gN7sfWYcCEQ5ZR6bah3G1DsUOBS5UgjlOcjU09aQfcp512Gr7//e/j0UcfRV1dHQCgpaUFP/jBD3D66adbPkDGGGOMpe/444/HLbfcgoceegh2O1XuDYfDWL16NY4//vgCjy73XvikDd95+IOR+zB1D74T+DbuPekbONO1A+jdA/TsolvUD/TspluSvZgC72QAXjYXkG15fS95p0WAJ1bS/391LSAXvs0SY7mgGQb8EQ2+cBzdgSh6vABQMuHzNvfS4qMqmjiiTMOxFRqOrdRQZhuZjG6aJmKagVBcR1QzIAqAU5Uxq8yJksR+bAdXFp/W0g6477rrLpx33nmYM2cO6uvrIQgC9u3bh8MPPxwPP/xwLsbIGGOMsTT95je/wZlnnomZM2fiyCOPhCAI2Lx5M+x2O1588cWMj/vaa6/hV7/6Fd5//320tbXh6aefxvnnnz/wedM0sXr1avzud79DX18fjjvuONx999047LDDLHhXqdENE6v/8umY+zAFAKs/dGDFV46CVLckOXAg2Al07wJ6dgLdO4G+JiDiBfZvohsACBJQOptWwSsSK+Hual4FZ2yKCMU0+CIafKE4uoNRhKI6NNOAKoo4slxGuc1AT1QAMPrvtAATp9fFcWyFhiPLNdhHiZV1w0AkTivZemKvt8umYE45rWJ7eD/2QSXtgLu+vh4ffPAB1q1bh88++wymaWLRokX4whe+kIvxMcYYYywDixcvxs6dO/Hwww8PnK+//vWv4xvf+AYcDkfGxw0GgzjyyCNx2WWX4ctf/vKIz//yl7/E7bffjrVr12LhwoX42c9+hhUrVmD79u3weDzZvKWUvdvYizbv2JXJTQBtQdqveXxt4k5BoMDZXQ3MoSJz0GJAXyPQvYMC8J6dQLiPVsV79wA7ExMXNg8F3mXzgPLEzVaU0/eYU+aQLYKd24CaIwHeR8qmqLhuIBDR4IvG0ROIwR+OI6zpEAUBdllCiVNBV1TC2z0yNvfI8MXHCrZpCu+Hh4dxQrU2/DOJVexwnAqeCYnWXbXFNpS5bSiyKXByqvhBK+M+3CtWrMCKFSusHAtjjDHGLORwOHDFFVdYesyzzjoLZ5111qifM00Td955J3784x/jwgsvBAA8+OCDqK6uxiOPPIIrr7zS0rGMpdOfWhuwzvAED5BVqmxeeQh9bJpAqGdwBbx7JwXkUT/Q+iHdklwVQOncRFG2BqBkNuAoyej95FXzu8D7Dwx+vOEXgKMM+IeVQP3nCzYsxlJlGCaCMR3+aBz9wTh6QzGEYxp004QqinCoEkRZwSf9Cjb3yNjcK6MjPHxCySkb0A0BUWMwQK6wmfjWIREcX0XBtq4bCMUNhGMaDNNMtAVTMKvMiWKnCo9N5tZdDECKAfdvf/tb/Mu//Avsdjt++9vfjvvYa665xpKBMcYYYyw9zz77LM466ywoioJnn3123Mf+4z/+o+Wv39jYiPb29mFdS2w2G5YtW4a33norbwF3lSe1PcdV6S70CwIF0q4KYFZiH7weB/r3JvaB76Z//W1AsJtu+98dfL6jlALvkll0K64HimYAUsbrH9Zqfhd44/aR94d76f6TruOgm006pmkiFNdpFTtCq9ihqIaYYUBMrDS7bCp2BhR83Cvj414Zu30ijCGr2LJg4pBiHUvKNRxdrmGOx4AJ4NM+CX0xAaWqiUOLNcR1Hb0BnY4tCHCqMmaWOlHiUngVm40ppb/wd9xxB77xjW/AbrfjjjvuGPNxgiBwwM0YY4wVyPnnn4/29nZUVVUN21d9IEEQoOu65a/f3t4OACOqo1dXV2Pv3r1jPi8ajSIajQ587PP5shrH5xvKUFtsR7s3Muo+bsBEtQM4stwEkGWxIkmhdPLy+YP3xUK08p1MPe/bS0F4uI9ubZsHHytIgKeGAu/iGfRvUR3dl88+4YYBvL92/Md88CAw4xhOL2cFZZomwnEdwagOXziOnmAMwVgcMY22QthlGXZFQUdYwZZeCVv6ZHzmlRA3hgfCM506jirXcFS5jsNKNDjkka+z0BNLpIkb6AmasMsySt0qylwqimwK3LwXm6UgpYC7sbFx1P9njDHG2OQxtD1nIVt1CgcUEDNNc8R9Q61ZswarV6+27PUlUcAt5y7Cdx7+AAJwQNBNH10ww4f3mjR4HDLKnCrcdgVumwybFSmgqhOoPoxuSfEI4N1Hhdj69wHeZqC/GYiHAF8L3fYfcBxHKeCuoeDbUzO4x9xTbX0w3rWNVrLHE+qhx1XnrwAeY4aRCLBjGvxhDb2hGIJRDZHEXmmbLEKRZLRFFWztl/FJn4zP+qVh6eAAUGYzcHiphqPKdBxRpqHcPnI6LqYZCMdoH7YBc6DYWX2piiIHBdhcUZylK+0cpv/4j//ADTfcAKdz+B/6cDiMX/3qV/jpT39q2eAYY4wxlpmHHnoIF110EWy24S2sYrEYHnvsMVxyySWWv2ZNTQ0AWumura0duL+zs3PUnuBJN910E6677rqBj30+H+rr67May5mLa3HvPx+N1X/5dFgBteQ+zOMqgEhcQF8ghg5fBCIE2BVpIAB32WS4bTLsVl1cK3ZqK1axcPC+5J5wXwvgTQTdvv2Arx2IegdXxLu2jTye6gE8VYCrGnBX0c2V+NdZkf4qdLjf2scxliHdMBCM6QhGNfijGvoCMYTiGqKaCQGgSTFRQkfcjk/7FXzaL2G7V0LsgAC7SDFwWCkF10eU6qhzjuyLHdMMROM6wpoOI7HH22mTUVtsR5FDhtuuwKlwmjjLjmCa5ujZVmOQJAltbW2oqqoadn9PTw+qqqpykqJmFZ/Ph+LiYni9XhQVZVk9VNeAjx6j/VzOMmsGyBhjbOrp2QXMPRWoWZz1oaw8T+XjfC0IwrC2YKZpoq6uDj/4wQ9w4403AqAAv6qqCr/4xS9S3sNt5dehqTuIO599G0rfLhw2sxSHl+mQRrl21g0D0biBSFwf2PtpkyW4bBLKXCrcdhkulVa38nLxHQsC/nZKRfe3A4EOINAO+DuA6AQp94IEuCoHV8Pd1YOr5K7q0feMd2wF1t868bhO+wmvcDNLRTVKDw/FNHjDcXhDcYTjOuKGCQEm7LKEsCljT0DBZ14Z2/pl7PaLMMzhv4fFioFDS3QcXqZhcamOehf1vB4qptHveCROK9hKoohamVNFkZOyXFyqDIkD7Okp3A8YceCIiwDZNuHDx5POeSrtFe6x0sI++ugjlJVx4MkYY4xNBmOdr/fv34/i4uKMjxsIBLBr166BjxsbG7F582aUlZVh1qxZuPbaa3HbbbdhwYIFWLBgAW677TY4nU5cfPHFGb9mNjbu6cEzOyIAZuLPPSbmFen4XLGOQxK3UhutO0iiCKeNVrcASmONajr8EerVCwiwyQIcioxSpwqPQ4ZTleBSc7SHU3UNthg7UDwMBDqpb7i/g/4NdA7eZ2gUnAfagfYDnisItBJeVAd4aunf4nqgpJ6qkY+XVu4sByoPtfRtsoOLZlBv6lBMRzCioS8UQyimI5JYYZYEEYokoitux56AjO1eCZ95R1YRB4BKOwXYh5VoOKxUx4wDVrBN00xMohmJFHFAEQU4VAmzPM4hAbYEiesSsBxKOeAuLS2FIAgQBAELFy4cdhLXdR2BQAD/+q//mpNBTjqxIHBbHf3/OWMXkWOMMcbybcmSJQPn69NPPx2yPHiq13UdjY2NOPPMMzM+/nvvvYdTTz114ONkKvill16KtWvX4sYbb0Q4HMZVV12Fvr4+HHfccfj73/+etx7cB6ousuGEmSq2tAXh1xVs66cVsqQqu4FDinUsKNaxsEhHg0eHTQJEkaobO1R6bLLPbiRuYG9PEIZpQhZF2BQJHruMEocCp02CM7EKntMVMsUBlM6m24EMg4LmQMfgzd+RWCVvB7TI4P34cPhzVdf4r3v0pVwwjaVMNwyE47QnOhTT0B+Owx/REI3riBtUI1wRJQQNGXtDduzyy9jplbDLN3L/tQATs90GPlei49ASDYtKdFQesAfbMExavdYMxDVjYA829cO2w+OQ4eIVbFYAKQfcd955J0zTxOWXX47Vq1cPmx1XVRVz5szB8ccfn/FAXnvtNfzqV7/C+++/j7a2tmEpagCd6FavXo3f/e53Ayfwu+++G4cdVoC0JmNIGl7PLkrV4hMQY4yxSSB57ty8eTO++MUvwu12D3wueb7+8pe/nPHxly9fjvF2owmCgFWrVmHVqlUZv4aVTvtcNeaapWjb9CZ6iw/FZ14JnyX2fDYHRXRG6PZ6hwIAkAS6sF9QpGN+4jbLZUASBdgUCTZFAkCP1XUDEc1ATyCKdl8YgACbRI8rsiu0Cq7QSrg910F4kigOti47MPXbNIFIP+BrpVR1XwvgbQV8zUColxYURiNIQNWhQMRLrc9KZlF1dmaZUNzEoofp9+rTfxbgVKZWQKgZBsIxStcOxTT4ksG1piOqUwFHRRQRNWXsDznQGJSx2ydhp09CX2zkNbRTpjZdC4sowF5YrMN5QNQS1w1EE3uw4wPbQER4bDJKSxPbQGwy78FmBZdywH3ppZcCABoaGnDCCSdAUaz9QxsMBnHkkUfisssuG/VC4Je//CVuv/12rF27FgsXLsTPfvYzrFixAtu3b8/vrPmnzwLP3zj48dt3Ax89CvzDSu5NyRhjrOBuueUWAMCcOXNw0UUXwW5PrSf1dCcIwAyXgRkuA6fXxQEAQQ3Y5aXge6dPwg6fBG9MxB6/hD1+CS+20HNV0cQct455RQbmenTM8+iodxtQJBEuSYTLNrgKHtcoFb3dF8H+flrFU2URNllCkV2Gx67AqVIxNocqQs7nhL0gUOVzR+nIYDweosJt/fuA3t3A7vWDnzN1oOMTugGAKFPQXTaP2qFVLKD94QIvPkx3pmkiptOqdTiuIxzT4YtoCEQ1xOI6YoYJgLI/IrqE1ogDTUEZe/wSdvsldEVG/oyIgok5iUmuhcV0m+Ecvv/aMExEYgYimo5YYvU6mWFS6bGh2KnAneiDbZfFcbsiMJZvKQXcPp9vYDP4kiVLEA6HEQ6HR31spsVNzjrrLJx11lmjfs40Tdx555348Y9/jAsvvBAA8OCDD6K6uhqPPPJIykVYsvbps8CfLsGBDUYQ7gXeuJ2K5pTPoxORKI888ZhG4mYO+X/9gPvN4ccXRAACzViLMiAqNKssqZRSNnBzAqobELlVAWOMscGJcjY2lwwcWa7jyHLKXDNNoCsiYKeP0lp3+STs9kkI6QJ2+GTsGFKrTBZM1LsMNHh0NHgMzHFTOrpbEaAqIpJLAclU9JhmoN0Xxf7+CACqhqwoEtw2GUV2GQ5VgkOWYFcl2CQx/ytyipMC54oFgHbiYMB99q9oRby3MXHbDcQCgz3Gd61LPN+VCL7nUyX28vkTp6izSS2mUYAbjRsIxTUEozr84TgicQMxXYduUtVwSRDRqyloDdvQHJLQ6KfbaCvXAFDn1LGgiCaw5hfRBJZtyOXr0ImrqGZAMwdXrx2KhLpSx0BxM6cqcR9sNumlFHCXlpYOVDotKSkZddYoWZwlF1XKGxsb0d7ejjPOOGPgPpvNhmXLluGtt97KT8Bt6MALP8KIYHuoPa/QrWAEOrnZigB7MeAsBRzlVEXdWZ7o31lFATpjjLFpp6ysDDt27EBFRcVA7ZWx9PZO0HN5mtFhIhTVoMoi5DEu0AUBqHKYqHJoOLFaAwAYJtAeFrHbJ2K3nwLwPX4JQU1AY0BCY0AC2gaPUWEzMMejY7bbwCw3/TvDKcCjSMOC8LhOK4V9gSg6fWGYAERBgE2iVTu3TYLbpsCuiLAnUtnzFojLduCfHhv8uLgeqD8uOXgqzNazm269uyjwjgeB9o/ollQ0IxHEL6R/i2bwKvgYdGPw+vLddhMnz0BetiAYhom4YSAcp8A6oukIR2nVOqLpiGsG4olVa0kQETEktEcUtIYdaA7J2BuQsC8gjthzDdC+6zqngbkeA/MSgfXcIh2uIdFH8nfBHzEQ03RohgFAgJrYmlHjsqPIocBlk+FQKODm1Ws21aQUcK9fv36gAvkrr+Q/oGxvpxKbB/bwrK6uxt69e8d8XjQaRTQaHfjY55ugjcZ49r5FM7wTqVhIQa+uATAG7zdBZ3JBoJPNmDcBQPIGOoZp0kq4oQN6jI6txwAtTJVK4yEgTjPmiAXo5h9nrDZPokVIHVBUS1VKi2cA7trRW4UwxhibEu64446BbVZ33HEHX5gmuG0yylw2dJkmQuH4QHAjiwJUmQJZRRZG/XqJAlDnNFDnNHByDQXhyZXwPYmVvMaAiCa/hM6IiO4o3d7rHjyGJJiodRqodxmY5TJQ79Ix00XHdNuGFLUzDMQ1WhFvj2rQDNoXLgmAKolQZEpf9yT6gyeDcFWmW14IQmICvxqYfQLdZ2hAfzPQvQPo2Ql076SibL5Eb/E9r9LjFAdQllgFL19A/9qybNM6DbzQZOKWdwY/XvkSUOs0cctxwJlzsv8dTga1UY2qdcc0CrADUQ3BqIa4RkF3MtgVTQEhU0RXVEFHVEZLSEJzkAJrX3z0nzNVpNoHczw6Gtw65nro/+2jrFwPDa5NAKooQlUkVHhsVHxQTWR85KvuAWM5llJ0tWzZslH/P98OPBGO1fIkac2aNVi9erU1Lx7oSO1xC74IzDnRmtdMh2EAMT/15oz4qLBJqBcI9wChPiDYRTPSUf/grWfX8GMIIuCuoeC7aAZQPJNmtYtqKYWdMcbYpDY0jXzlypWFG8gkU+G2oaLGg3nF5Yl9pxpCMR3+xN7TYCyOaNiAAGFgz7WaCGRHWw0fuhK+tEobuD+oAU1+CXsDIvYF6N+9QQkhTcD+oIT9QQkbhxxHhIkqh4mZLh11TgMznLTHvM5poNxuDrQ40nUDcd1EXDfQ7Y+i3ZtYEYcARRIgSxJUSaAKzDYZNmVw/DZZhCLmeGVclIGyBrrhi3RfxEuBdzIA79lNiwQdW+iW5K6iIDzZAq1kDqAcPHUHXmgy8Z1XzBH5k+0h4DuvmLj31NSCbs0wBrYuxHT6Nxo3EIhpCMcoyI7rBjRjcOuiCRF9cQVdUQkdERltYQktIRH7g5TBMRoBJqodJmYnsjdmu3XMcRuocRrD+tsnJ4+8URqPbibqGUgiVDmx79qhJAJrOf/1DBjLo7SXM1944QW43W6cdNJJAIC7774bv//977Fo0SLcfffdKC0ttXyQNTU1AGilu7a2duD+zs7OEaveQ910000D7UoAWuGur6/PbBDusV9nGEdJZsfPlihSGrm9GBivvWo8RH06/e2JCqVttBrua6ETob81sTq+afA5ggC4qgcD8aIZg/07be4xX4pNAloEeGIl/f9X11KaIGPsoPDBBx9AURQcfvjhAIA///nPeOCBB7Bo0SKsWrUKqnrwTaQmV4KLHYOFX4e2LorEdQRjOnzhOFVbDscTq36AnOgPrMoCVEmENEog7pKBw0p1HFaqA6DCbKYJ9EQFNAcpCN8XFLE/KKI5EYi3hwW0j9Jj2C5ROm6t00CNw0Ctg4KaGoeBSpsJURhcudR0qg7tj2owDBMGTAgQIIsCZFGEIgmwq8mWZbRSPjChIAqJfy0OduzFwMxj6AZQll7/Pprs79lJ//paB/uH73sr8USBrjHKGoDSudT6rGT2tLze0A0Tq98ZGWwDicRIAKvfNXHaTBMmTMQ0mnSJ6dT2ilaqNYRiVK1bM3RougndpGeLADRTQF9cQU9MRXdURmdERFtYQmtIRHdEgInRA+uhk0EDmRlu+v/R9luHYwZicVq1NiBAFDCwPaLSo8JtV+BQpESALXLfa3ZQSTvg/uEPf4hf/OIXAIAtW7bguuuuw/XXX4/169fjuuuuwwMPPGD5IBsaGlBTU4N169ZhyZIlAIBYLIYNGzYMjGU0NpsNNpvNmkHMPoFOAL42jLmP21kOVB5qzevliuIESufQbSjTBMJ9gHc/3Xwtg/8fD1LvzkA70PL+8Oepbgq83VWAqzJxq6B94/ZSSq/nlEbGGMu7K6+8Ev/2b/+Gww8/HHv27MFFF12ECy+8EE888QRCoRDuvPPOQg9xUpBEEW6bOCy1G8BA2m0kcQtENfgjGmKagWAsPpB+K0GAkgjCZYmC26HZd4IAVNhNVNh1LCkfrHNjmkB/TMD+oJhYVRTRGqIVxq6wgIguDFRLP5Aimqi0G6hxmKhyGKiyJ24Our9YNSHAhGZQMK7pJryhGHr8MRigcZuJKs+yKECSRKiiQJXTFQk2ZfC9KKIISaLgXZHo8RltVRClwVXwBSsSX+QA0LOHCrH17KZ/w32DqehNbww+31lBwXcy+664nq7Lpmh7MtM0sbHNRFtonMcAaAsCazf7cIiHfuZ0gwJ0EyZECNAhwBeX0BuX0RezoTsqoSsioTMioCMson+MwmVJTom2OwxkWbgMzExsoVAPDKx1E3HNQCg62OdaSOy3VmQJJS4VxXYFDttgAUCuGM5YBgF3Y2MjFi1aBAB48sknce655+K2227DBx98gLPPPjvjgQQCAezaNZji3NjYiM2bN6OsrAyzZs3Ctddei9tuuw0LFizAggULcNttt8HpdOLiiy/O+DXTIkrAmb9IVCkXMGrQffSlU7cftyAkiquVAbVHDN6f7NnpbRk8AXpbaHU83Js4WSZSxkYjKoCjGFA9FJzbXFTJVLYlbnY6WQoSfY0FaWSAPqyq+xi35OOSc8JD98VLMqXEJ28DVd2dXN2dMTZt7dixA0cddRQA4IknnsCyZcvwyCOP4M0338TXv/51DrgnMNpqeLIlUiROK8oRTUcoqif6DRuIROIDBaYAJFaXE4GrJEIaEqwKAlBqM1Fq03F42fCCs3ED6AiLaA2JaAuJaAuLaA+JaA+L6IwIiBsCWkMSWscI1mTBTAT5BirtBspsJsptBirsJsps9HGRbECAibhhQjdMROIGglEN2sAKORLjFCAJAiRRgCSKkERKC7YrIlRJgiIng3YKypOPkYTEvwMfjxKoq2665hh63RHupyJsfY1AXxPQt5e2xIW66TZ04n9oBp6njgLwolraHmcvzsuEv26YMEz6GuoGrS4n/18zzIGiZIaBYXuo45qBtzpVABOv3G/tl9EfE+GNU+XvnqiI7gitUHvH2FM9lEs2KUsimS2RyJyocyQmZ4amgutUJC0aNxEI69AMWl1PFjKTJQkem4yikmR7OyrqZ1c4JZyxsaQdcKuqilCI/sK/9NJLuOSSSwBQZdRsipK99957OPXUUwc+TqaCX3rppVi7di1uvPFGhMNhXHXVVejr68Nxxx2Hv//97/ntwb3oH4GvPUR9uP1DSpI6yynYno59uIf27KxZPPxzWgTwd9DXItg1/BbuA2JBwIgDwW66TVoCFZKzJ6q7O8oSq/Tlg9XdXZVTdhadMWYNU9NhRGL/n70/j5Lkuq878c+LNbfK2rt67wYaOwEuIAgQgCgugChKI1Oew7E9OrZMjTUjy7JIj2EdU/Iiyj/LImWP+ZMsenhMSTMU7d9IsqUztDQaUhJIkZIlkhAIbiBAYmsAvVVXd21ZucXy3vv98SIyI7OyqrL26u64faIzMjIy82VWZkbcd+/3flFBgA4iVDtENlvISy9RKL4G7/B+j7AXWmtUYod+/PHH+YEf+AEATpw4wdWrB/k3+eBCCIHv2PiO3UPEASKpOinPQaw6qngjiAljnVHFzbS9UZetpAa7Vxl3LTheVhwvq/4hIBVcDYx6ebllMZeQ8Lm2WV8IBLFe26qewkIz6mlD+j3FmKcZ8zVjnmbUM0Rs1NWMOIpSQs6V0kipqccxyy2dqK2pAJGKEcZObAmBlRBvQ9pN6rZjG5u7WbdwElJuCfP+WsLHqtyJqNyJdVJgCYGIGrj189i187i181gr57FXzmNFza4Dj14HnnaKqMoMsjyDKh9ClQ6hyoeIS9PowgQqSUtXSYCe0tp8Z0i7tBryrBUdEh0r4xZIybRRnJP7psRbm+tK6yQRQHfeG6EtIi1oKItGbHN1QE/qQfiv50rr3l6wNYeSyZXU5XC4qJhJlkrf6YtMXkekNMstU2stSTIMkoA+z7aoVHxGfJuC2yXWvmPlbbhy5NgkNk24v+u7vovHHnuMhx9+mCeeeILf/u3fBsxM+vHjx7c8kLe97W1ovXbLLSEEP/dzP8fP/dzPbfk5dgR3vRtufht8OKkFf/Pfh1MPX7vK9nbgFIy9a/zU4NtlaGaq20sQ1A0BD5NLGUAcQhyY/dJ+5CpOFOtkujWddl2V5m73Jrt3pmeTg5tSgDKXKgIZJQnvgUl0j5oQNk3SO9qEzQU1Y6EfCGHI98hMZhY9WUqTB7fNic6crM09C4dfd2N+VnPkGAJaa3QUo9ohOghRQWhIdaONWmmg2gEqitFRDEqhpSa6soicn0UWv4n72rci7IPjlrnvvvv4+Z//eR599FG+8IUv8LGPfQwwDrL18k9ybA1Gybao9J1apQpnkIRYmUtJIwluC2NFO4oySiKINAzNsnBsoxq7lkBYAtuCmaJmpiiB1a1YYwULgeBKooBeDSzm2xbzgWAhMJdLoUBpwWIoWAwBNv7clhxN1dWMJEvF1VQcTdnVlB2zXnI0JUdRtDS+rSmg8G2FA0gNUaTQkU7qzBOTWudfeuTvughFYn031w5hiUMwei+MAVpTiFcoB3OU27OUg8uUgiuUgjkK4SIibmEvvYy99PKq16KETcudoOlP0vQmaXlTtLwJWt4UTW8KuSoo1lBnSwikhlBZtJVILi3aUtCSglZs0ZSCprRoxIJ6JFjpW2K9WdVdc6Ro3AmTvgnTS90K0wnJLju9Yr7WmlgmEwSxZiFQyecrsaKLbthexXcoV00/az8h1GbJE8Jz5NgpbJpwf/SjH+UnfuIn+J3f+R0+9rGPcezYMQA+/elP8653vWvHB3ggUajCP5+Hr/+W+YXLCcxg2J6p7a4c2u+RrA0lk9T2JNm9tWSs8s15szSumIT6OOja2S5/q/cxHD8Jkjue1JYlCe/l6f0l4ueegK9kMhW+8ItGvX/jj1yfbowcOYaAVgodRolSHaGDENkOUPUmst4yRDs0pFon9YlYFsJzsFwHu1xCuA7t519l8Q+/iKobx9fKEy9y9T9+ipl/8jNU3/nOfX6VBr/0S7/E3/ybf5NPfepT/NN/+k+55ZZbAPid3/kdHnrooX0e3Y0DyxL4llHF6cut7PTjjhWBNK2STO24ohXGtCJJJDXN0LQyM1Oo3UC0jkqcWL6dZDEJ6qvJeAqpoRaKhHxbLAWGfC+FguXk+lzbEMSWNK1Km7FIQt629j4UbE3B1vg2+FZ33bM0rgW+rXEso+67wmxzLNNSzRZm3cKExQlACI1gBMFRhIM5oy0bqm7piPFwjtH4CmPxHOPxFcYjczkm57G1pBxeoRxeGTjWJapcFIc4zwyvcJiz6jAvqsM8Gx+lpotbewMy8C1N1TNuAqU1L3bq9LME10wzfOC1LR7MJOGDsX3HiW09ijSLCaHulgJkAvMcQaXgUfYcCp5tkuttC881xDq3gefIsfsQej1Z+TpDrVZjdHSU5eVlqtVt9n2UcZdwlyZ2ZoA5Dia0NmS8fjlJd79oklVrl6B+yZD2QbC9bqJ79Vi3xqwyA84upwOfewL+20fWvv27HstJd47rFlpKVGL57ijVrQC50kA22+ggMoQ6loBGC4Fl2wjX6V3WOBFtfftl5n/3s6tvSCSmY7/8S1sm3Tt6nFoD7XYb27Zx3YNbJrPj78Pcs/DC4zB5y/Yfaw9h1HETVBXKbrunKEmnbiWKeZaAddVigYXo1lHbqa3bwhZmImBQmNUX5xx+7TsF5oPu53/CU7zndMDNVcVKZJTbVL1txIJGDPVkPSXmTSloxayZgr1fsJEcZoGT1hwnxBwnO8tlToo5JkR93ftf1BO8qI5ylqO8Ko5xwT7GJfsY0i1TThT/imNU/xFPM+IYN8CIa0h21dU9Kd9g3vNf/bbPQti9YcKT/M2bGrx+PMhY943ib4vUmm+bBHrXppSE3ZnsAbuTQu9aYndbwuXIcS2htWScr6/9G0Yw2wY2c5zatMINIKXkU5/6FM8++yxCCO68805+8Ad/EPsAWelyHEAoBVeeNR/24phJdL8WZlaFMOMtjsH07b23KWmI+PJ5WD7XTXevXTQW9sWzZulHadKEulQOmXrxNN29OAGFse31IFUKvvKJ9fd56jfg2H3XxvufI8cAqChGt4MOsVZBiGq2kStNVKuFjiQ6jNFKdsiHcB2E5yA8F6tSQjj2ptNztVIs/dGX1rhRgxBc/oUPMfLIIwfGXv6Vr3yl53h977337veQcgwJo44LfGft32qp0h7dpmVUlPTsjqWindjXg05vZo3SETKpS+5WF5vE668u+XzsudUK7kIo+NXnCvzje5o8NBOvun0taA2hglYsaEloS0EgBYGEQAnaEiIlCBWE0lzGShBrExwXK2PhjjXJmAUKUNosGiC5TF+LwPyXrlsC7KTyzBYaR4AtRrGtKqF1C68IuGBpnrTAs6AiGkzJK0zHc0zGlxmPLzMazjESXsaPVzgqFjhqL/AWnk5eJBBDZI3SKhynVTxGq3ycZuk4zcIhlLaQWpkxK00r0NSV7iHRNxc0P3fXVaa/9RvMMcb5m36I1x4yCnTB9Sl4Nr5t2rm5Sd1/2tpty6nxOXLk2DNsmnC/8MILfP/3fz8XLlzg9ttvR2vNc889x4kTJ/iDP/gDzpw5sxvjzHGt49wThgS2Frrbrgd7s2V3a7mzryMl4rWL3WT3WpLuHjW7lvW5bw1+XMc3AW7eiElT98omUd3xexPXhW1Ic1rPDua5su/zIDTn4cv/uyH6WXTS4i2TMO94YGcS5b1yd3HLOWHPsWvQSplgskSh1kHUZ/2OknrqqHvWbVkI10W4DlaxgKg6CGfzpFdrjaq3iGt15LJZ4uU6stYwNdsrjfXuTDw7S/PJr1B+YH9/2+bm5vgbf+Nv8IUvfIGxsTG01iwvL/P2t7+d3/qt32J6enrjB8lx4JGmgBc2MCykQV+RVJ3wL9M2TCOVIef/5Osp2e4ncIaW/+p3CpwuzGOL3qA0QRJuloalJQFoIln3gIIjEG66Hazk7lbCjveLNKZGT6UNc1fYaH0YrWeIuYfLSjOLIfh21KDQnqXYukypPUupNUulfYlitIgbLuOGy1QXu8f12PKoF49RL52kUTlJc+QUqnwY33XwbGPvdpJ09yiMOPHtZwFYfO3/QrVczGuoc+S4TrBpwv3+97+fM2fO8KUvfYmJCWOlnp+f52/9rb/F+9//fv7gD/5gxweZ4xrHWvbm1oLZfj3am7NEnPu627WGcCWxps9mkt2TJPf2kkl/jwOozwFzuzfGbH/TrUBY4FeNIl8YNaUV5SnTK7U8ZazzpYmDGyiXY9+ho9go1GnqdxAimwGy3kQ1Wsb2HcXo2Chq/dZvu1Ba1/q95vNKiaw1DInuI9RyuU5cqxs5bRuIrwyuDd1LvO9972NlZYVvfetb3HnnnQA888wzvPe97+X9738/v/mbv7nPI8yxl7CTmu+11PIvXtJcDdarMhQshjZWcYLXTUmjPCftrroqe9faHiuVJHwngYTa9G0mo06nJDcN80pj0rKJ5902rKvrm9O9+7cP2je1Y/cnh6eBaCn5N5MG2etJWJ0AUSgjS7fStm5D2oKmZVGzLRzVxm9epFA/j7dyDnflHE7tVRwZMtY4y1jjLKQ/CW4RJs7A5BmYvNWUORTHIO6OebxoJYPIkSPH9YBNE+4vfOELPWQbYHJykg9/+MM8/PDDOzq4HNcBcntzL4QwJNWvwtRtg/eJ2oZ4t5e7qe5R01ymqe7pkvYhV8mlENCuwdXvbDyWY/cZa3s6rmxfcxWbJU6eJw4gakFUT9Ld22a/9pJZ1oLlGtv8yGEYOdKtZ68eNa3YclzX6ASUJeFkaVCZIdRNcz1N/Zaq03GgU0Pte9iVEmzS+q2CsEuiEwLdJdaNTtDZuhACe6SEXa1gj1ZwRivY1TIqCKn9yZMb3t05AOrxZz7zGR5//PEO2Qa46667+Pf//t/zzgMS7Jbj4GBuyDC0QLgcHh0uh0QlQV4qSSM3PavN3HOnDVdKvrPtuUhIevpAKSlP3Syd9dXo/lSIbqOT9JJEYcco8ZDUsif79Kv05tK0N7NYrxa6AkwBmX7iSpnMl4WzsPgSzCe9xaMWXH7aLCnK0zB+U/f65afhyL03xnlRjhw3ADZNuH3fZ2VlZdX2er2O5+1yEFSOaw9Xnh3O3nzlWZh5zd6M6aDDLYB72JDUrUAp+L2fXP99L00aZ8FWD+YqNsS+vWwId5ru3kiS3FPlXkXGSl+7sPox/NHeVPfR4ybpvbA7QVE5dgddlbovoKze7A0oi7oqtbBtLNdBuHYn9VsM2ddVa41qtLrqdL9SXauj2+HGD+TYONUK9mgZu5oQ6tHupT1SHjgmrRSNJ59d21YuBM7MDKX73jjU69lNKKUGBqO5rtvpz50jR4pDQ4ZvD7sfGDJrkfrHbzBYVvfYdtNbzDYlTc7L/Auw8CJcfd5cT4+ZKf70fwPLgSOvg5veClO3QnF8f15Hjhw5to1NE+4f+IEf4Md+7Mf49V//de6/39iAv/zlL/PjP/7jvPvd797xAea4xtFa2tn9cmwMyzK18eullN/73u3NnFuOsYuvl9CvlCHf9cumdr12sVvT3pyHYBnmllfXsftVQ8KzCe8jR4xVPZ/t33P01lJn2mg1WqaWuh2i4rQ3dSI5dVRqG+F7mwooG2j3Tqze6Tpy7XZHKUTBW02iRysJya5glQpbqhkVlsXYO9+8bkr5zD/5mQMRmPaOd7yDf/AP/gG/+Zu/ydGjRwG4cOEC//Af/kMeeeSRfR7dHkJJuPAVuPR149a5VgI79xj3z8CREsw2YZB4LIDDZbNfji3CsmH8lFlIvoMv/xl88d+v3lfF5nN74SvmemkKpm7p2tDHb9r9jic5cuTYEWyacP+7f/fveO9738uDDz7YmTmP45h3v/vd/PIv//KODzDHNY7i2M7ul2M4nLjfKNhf+T+htdjdXpo0ZHsvauYtq9uH/fA9vbdF7Uyi+/kk5f0CNOZMT/S5mmnj0/N4NpQTe3o5SXcvTSbLhFHM85OPTUNr3Wv7DiJ0GCKbbWS9hWq2M7XUSRstBJaT1FI7zqZU6sF270Zn29B270rJqNMdu3ev9dvyd++zULzjNJPveYSlP/pSj9LtzMwcqD7cH/3oR/nBH/xBTp8+zYkTJxBC8Oqrr3LPPffwn/7Tf9rv4e0Nnvk9+MwHzGRfiushsHMXYFuCDz4Af+9PdE/lNHQroj94v8iDvHYSSsHXNshSEDZoaSawX70Kr36pu330BEzebGrCJ2421+0tNSDKkSPHLmLLfbhfeOEFnn32WbTW3HXXXdxyy8HvbZn34d4HDGtv/iu/kisOu4GoCb/zd8z6Wz8Ah193sN/nuG1OjJfPG1V8+YK5Xp81s/0bwSmaADc/SXVPF8cH2zXJ7pZryDsiSXdPTi11sqAzteyyt7Zda6DfiivM41mOOQGy3eT5knR3twheBfyKuXSLex4k12P7Dg2pVq0A2Wih6i1UmLV9pyq11W2j5ThYrrNhLbWxe7cH1E1v3e69ikyvY/feSWht+hDpWJpFxpn1RGGXmmhuAbUyT/m7HmH0b//EtpXt3ejD/fjjj/ccrx999NEdedzdxI68D8/8Hvznv81gvZbrM7BzB/CZlzX/4suaS5m5ryNlQ7bfdTon2zuKy9+Cz/3Ljff77g+YCeWrzxs7+vwLg/NTLBtGT8LETTB2EsZOmcUr7fjQc+S4JnHQ+3Arpfi3//bf8qlPfYooinj00Uf52Z/9WQqFbfQLznH9Yy/szTnWRpbYHboGbJROwczST9zcu10paM3DymVDvhtXoDFvZvybV5Mf0BjiFtRbUN+X0Q8HyzaTAsVxKIwn6e7T3V7slUOmHdwm7M5ayj6FOhpo+yaK0Unv105f6kSltor+honfWkriWqPX4r1cR9a6gWRbsnv3Eeqt2r2HhZYKHccd8qxjCQmZhlTDx5Bnx8ZyklT0kTJWsYBV9LA8F8szLchE/Rz23d99IGzkKf7Lf/kvPcfr973vffs9pL2FkkbZXotsw40V2LkJvOu04HtOwhOXTZDaoaKxkefK9i5g2HK6qAnH3tDNutHalGYtvATzL5p68MWzJlx18axZsihPG/U7rSkfPQHVI+aYmyNHjl3H0IT7F3/xF/ln/+yf8cgjj1AsFvnIRz7C1atX+fjHP76b48txPaBjb/5Er9K9l/bmHNc2LKtLSrl79e1amxOS9nKS7p4ku0dNk6ouQ5CRmdXMprtr3U13x0p8k0lP82x/8+yS9IzteW4ljeVPxeZ5ZABRALJtEmnDhkmcjwOzb3PBLGvBLUP1MFSOQPUIunIUVTiEdsdRMR1iLZstVL2JagfoSBqVWkpAoAXdFlpD2r5VEBKvqpnuKtVy5WDbvbXqKtJkyLSOU6eCoV+WbYHjIBzLvDfVAlbRN4vvIVwXy3MQKaFOl75JgGakues/aWCUZ14jOCga0sc//nF+/Md/nFtvvZVCocDv/u7vcvbsWT70oQ/t99D2Dq/8Ra+NfBDywM41YVuCB4/s9yhuAGy17E4IM0FbnuqeQ2ltJqMXz5pk9KVXYOlV8zlPQ9kuPtX7OKWpJC/lSLebyMhhKE3nE1E5cuwghibcn/jEJ/iVX/kVfuInfgIw7Ub+6l/9q/yH//AfdlWJyHGd4MT9Rkm48qyZ0S2O5cE1ewGnAD/0W/s9it2HEOCVzVI9ut+jWRsyMjXqrcVusntzAV2fM33XG1cRwRJEDaNazL8IGH5vg9GlRZVYjKOtCbQ9ifamwZ/CKhYQVRvswbbv3bB7Z9O9O4R6F+zeA+3dUUKopUJonbQUA+E4JqDNsYwaXfKxSwUT3pYh0D2E+jr7HfqVX/kV/uk//af8y39prKqf+MQneN/73ndjEe765eH2ywM7c+wnpu80mQIbld1N37n27SmE6OamnHiguz2ow/KrplRr6VySmXIewpWuS2z2672PZdlmgrsy07ccMhkqbq6M58ixGQxNuF955RV+4Ad+oHP9e7/3e9Fac/HiRY4dO7Yrg8txncGyciUhxw0JLdN+1CEqEOhwBBX4qNYosnEY1b4ZjUR7MVq0sPUKtl7C0is4LGPrRWy5gNAhtl7G1sugXoYYCECvCJQ9ThBOELZHiFpFoqZDVNfIldbW7d7VAene5Z21e69SpWPZsXsne4AG4ay2d9slo0wLzzVtxjwX4TlYbkKknYNj8d5LvPTSS/xP/9P/1Ln+wz/8w/zYj/0Ys7OzHD68xXaD1xoqQ0Zp54GdOfYTe1F251fg0F1mySKoQe1S0rrzkinXql0yk1UqgpVZswx8zNEuua8c6iXlxfFNlUTlyHEjYGjCHYYhxWK3+aIQAs/zCIJgVwaWI0eOHNcKdCxN8FiY9qOOEst3G9VoolqBIZGJ7RswsrVld+3KvoddKYEz3iG0Ckg1ZxWEqIXLqIVZ5OIV5NIystYkXomIGhZxywKaybI27LKLUy0kRHoUe2wMe6y6K3bvjqU76g8dUwg0qT0/q0rblSJWyTfqtO+Z0LbU4u26yfXV9u79gFTd+uAnLrR5yzF9IOpcW60WlUqlc922bXzfp9kcoiTgesGph4zbpXaJNeu4h1UOc+TYTexXVxG/CtNVmL69d7tSRnGvX07aes4mDqw5cz1smLaewTLMP7/6cW0PKocTi3qyVJNWn35l9f45ctwA2FTvgH/+z/85pVK3Si0MQ/7Vv/pXjI6OdrZ95CPrzNLlyJEjxzUIFcWGRIdJMFmqVjfaqEYLFfTXUJtTfGHbhky6DlahgKjYA5O+tdaoZpvoymK3/3QtY/deXs/u7XbWhC1wKhZOWeEVQ9xiC7cscUvSXBYlYoDoq60CulVCB0W05aMtDywPLTwQNlrYJoEdq/Pa0Bibt5JGOVdmXWiFmSrQ3dJ4S4AlELZlSHMxsb47LjgewvXA9RFeEeGXTSmEGybp7iPgF822A0CyU3zmZc0Hv9y9/iOfusKRP/kcH/wrd/Guu/e/+PXXfu3Xekh3HMd84hOfYGpqqrPt/e9//34MbW9g2fCuX0xSyvubXCXIAztzHBScuB8O330wuopYVrc+fJArMaxD/UpCyOd6L5tXTE7K8qtm6YdfNcR79DiMnUiC3E4cXCIet+G//IhZ/2ufyEPmcmwZQ7cFe9vb3rahoiCE4HOf+9yODGw3kLcFy5EjRz+0Up22WR2FOoxQ7dC0zWq00GHcTfmWCgRoIRCWbazMaU9qd3ANtZYKudLokumedO8Gca0O8ZB272pfzfR6dm8VYkVLiHgRK1rEipcQ8QpWXEPEKwhZT5TmawCWa6yKxXEojUNxEipJkF5aV7jNFh/D4jMva/7en+hV71z6zn/sb927ZdK9E8ep06dPD3W8fumll7b0+HuBHTteD+rDnQd25jiIuB7InYpNONvKrGntuZLY1FcumvC2tVCaNO3Lxk/B+GkYv8n8tu/3JOu11lo1x8Y46G3BPv/5z29rUDly5MixH+i1e3dJtWq2jeW72e61e2tDpIQQnTpg4TrYfgnh2gNbP6kw6gkgy6rTQ6d7A/ZIyZDpajfRu6dd1mbt3paH8g+BfwiJUdJ1FHfrpaMIogZCNkC1sAgQOsKyYoQVYwkJtui0GDdB7VZHscY274ew7CS0zMrumJyYiOSkKT1xSmhq2udcxUm6e2hS3OMk2T1qmVCfYKWbMN9IbI1roTSZpOyadPeOjbE0uWMnblKZHsWDpikSkzz/4vef4XvuOrxv9vKXX355X573QOKud8Md/x18/Tfhpc/D9B15YGeOHLsFy+n+BvOG3tuitiHhaWjb8jmjgjeuGjLenO9NUfcqpp/4xM0weQtMnNlbgevcE8bmn+ILv2gC7t74I/lkXY5NY1OW8hw5cuQ4SOhXp3VobN+qHRhC3WijgzCpI07s3ilTsm1DoJ2kRrhUNOS670Q8TfeOF5YHE+paA9UaIsvCtgaq03a13CHX2+njrLXuvM6e8DEp0VojzCxCdxLBsU1f6fIkVimpl3Ydk+Sd9pj2nIPRWzoOTLu31qJZmgtJq5s5Y21szBklIj1pu/x07/2dQtfGmF1Kk7296ofAl2c1l9aZP9HApeU2T5xd4MEzk5t/rTl2HpYNx95oPjuTt+z3aHLkGIzrvauIW0gI9E2926OmaV+2+DIsvmIul1811vXZb5olRXHCfIenbk1I+M2742w698TgILvWgtn+XY/lpDvHppAT7hw5chxIdNTYMO4o1KlKbcLIWkn/6bhDLnvU6U4Panvdllkdu/fVpQGEept274xCbZWLWw760lp3SXQycdB53Vp3HrdjbU/Dx8qFDpnutMTyXZPi7bk73r5r1+D43TTctRCsGPUktS/WLkHtPKxcNqr5wotmycL2YfSYCdeqHusqMyOHV53EKaWZb4Q8eSGCITpuz620t/BCc+TIkeMGg1tKnCd3dLfJKCHhZ017zIUXjSLeWoDzT5gFzITp2ClDwKduM5flQ9tzNCkFX/nE+vs89Rum1W3ulMkxJHLCnSNHjn2BjrpEWoVxV51uGZu3agboKELFEiKJVsrcj8TWnKrTnmvI7AB1Gtayeze6du96E4aIsrAqpUSVLvfUTW/Z7p19L/raYXVs31p1bMpGiTfKtFUqYJcLJsm74GUU6e7lNUOmdwr+iFmmbuvdruKkjvBCxsZ43pBzGcDCS2bpR3EcKodQpUO0vAnmdYWrskw5OAbcuuFwDo1cg/WXOXLkyHEQYLswecYstzxqtkXthIC/AFefNwnprUWzbfEsPP9HZr/CKEzempDwWxMVfBO/x1eeXb8vOhgn1ZVn81a3OYZGTrhz5Mix48jWTadEWocxqh1066aDyASRSWMLRwhDfC2r1/Zc8M36AGtzmu4dX10irvUFki03kLX65u3eqcW7T6neqrW602c6itFRhN1+FRHXUbpAbB0GYZkaaNf0mLZ8F2u8agh1wTd9pVMSnRLqG7S/9JZgOV0L+YkHutuVNKm6KRHPKuNRo2Nft/gOZaAMnARepwW/xr9jlnE0qyc1BHB4tMD9N+1fmOb58+c5fvz4vj1/jhw5cuw43AIcutMsYM4XmvOGeF99zpDwxbOm/OjCk2YBo4KPnjAW9HSpHltbnW4tDTeeYffLkYOccOfIkWOTWI9Mp0FkOox6VVtAJOFZKZEWjoOdKNODrN7QtXvL5XqGUDd6yLXeRrq3XS3jVCtYla3ZvbXWIJM+01l1Oq2bhuQ1O3jqLKXmF7BUvXt/b4z4tr+GOP7GLqF285/lPYFlJ1byo3D8TZ3NsZTMz19l4fJ5otplStECVbmIHy3jhsu44RIfVJ/k70X/KwLVQ7rTT9AH/8pd+9qP++677+ZXfuVX+OEf/uF9G0OOHDly7CqE6LYvO/mg2SZDWEhV8ISEtxZg6RWzvPhZs5/jmyT0iZuT5SaoHDEkvDg23PMPu1+OgwOl4Mp3zGeiehxufqs5F9gDDH1m97M/+7P87M/+LI4z+C6vvvoqP/qjP8of//Ef79jgcuTIsbdQUZwh0kaR7bTISpXptcg09CjTVrGwZpuszvOFEfHiSk8AWU+696bs3uUuod4hu3enjjxTJ64jadTRxOvdUyueWr1LRp3u2Lznv4H11B+senwRLuE+/aswNpIHsOwzIqm4shJwfrHFYlPjOMcZO3YTddui3rfvYSX5mdl5/sMLo8yHXcJ9eLRwIPpw/8Iv/AJ//+//fT71qU/x8Y9/nMnJPLwtR44cNwBsD6ZvNwv/ndnWXDAEfP55uPoCLL5kgjivfNssnfv6pi3Z6Elwy8bptBZKk6bbQY5rB+eeMLX5abnAU79hJtzf9Yumm8UuY2jC/YlPfILf//3f55Of/CT33HNPz20f//jH+amf+ikefvjhHR9gjhw5tg+ttSHKUdypl9ZhhIribs10K+j2m04INZAUEFs9yrRVdDck06ndWy4vJop0o6//9A7ZvUfKW7ZYa6kSEp1Rp5PWYGnoSk9rsJEqdikh1J5rAsg8F5GGkg0ah1Lw3zZIns0DWPYNQay4stLm/GKLpVaIZ1lMlT3s9WrgLZv7jthEdsS/+aYLwA/fU+Tnfujt+6psp/iJn/gJvu/7vo8f/dEf5TWveQ0f//jHefe7d/+EIkeOHDkOHEoTULq/O6mtlCkfSsPY0nR0GSSq+HMbP+Zr/3p+vL6WsFbqfO0S/Oe/DX/9k7tOuocm3E8//TQ/+ZM/yZve9CY++MEP8oEPfIDz58/zd/7O3+HJJ5/kIx/5CP/z//w/7+ZYc+TIMQBaSkOUI2Pt7ti8oxjZDDqEWsfStMXqBJAlEq1lLM+dmmm/iHAcsK11bdZaqW7N9Hbs3r63ukVWRqneqt27895EcdfynYaRpbBMmyzLsVfXTnfIdCaIbCsH2DyA5UCiFUnmam0uLLaotSMKrs10xcfe4G/clvAnl1z+n1c9LjS7EyxKcyDIdoqbbrqJz33uc3z0ox/lPe95D3feeecqh9pTTz21xr1z5MiR4zqFZXVzPW5+q9mmlAnSXDxr0tGXXjWKeLiGyv2lj8FX/y+oJl0tRo5AZSa5PARuce9eT471sW7qfHIe/Jmfhjv+u121lw9NuKvVKp/85Cd5z3vew9/9u3+X3/7t3+bs2bM8+OCDfPOb3+TEiRO7NsgcOW5EdPoqJ+S5p146CBMiHaCCAB2rTGssTHssIRC21VGlhetgFX2zPkSCtQoj4lpjQMJ3sr6yCbt3tbyqftqEkVWwCttM947ijtVbxzFKSoROjO6W1Q0jS+3e5aJpk+Undm/fpHwL19kysV8XeQDLgUIjiJmttbm41KYRRBRdh5mRAmIDsjzXEvy/5z3++IJHIzb7VmzJj00/zUP2Mxw9+t2g9q4ebBi88sor/O7v/i4TExP84A/+4JolYTly5MhxQ8OyTIvI0WO92+tz8PvvN+tH7zUtJldmzSR6sAxXlntt6Sn8qiHglZluS8vKIdOyrDRhgtxy7A02FD20CU995S/gprfs2jA2ffR94IEHuOeee/jsZz9LuVzmH//jf5yT7Rw5NgktlWl5la2TDpOe0602shWgW6bHdNbirUWmXjol0o5tLM1le83WWKueP7V79xHqrDq9Kbv3WoR6G3ZvoMfmrWNpasylRCSvwXK69dOdvtMdQp20y0oV6v0KI8sDWA4Eau2I2aU2l5ZbtCJJ2XeZqRbWd3FoeGbJ5g/OeXxpzkEl373DRcU/mvwi7679//CXlszOf/r78LX/757Vg22EX/3VX+Uf/aN/xKOPPsrTTz/N9PT0fg8pR44cOa4tVA7BDw0oCYtaRhGvXTTdLlYuwcplQ8bDFQhqZpl/fvV9LccQ7w4RPwwjM+aycsi0RMuxcxhWzKhf3tVhbOoM9Dd/8zf5yZ/8SV7/+tfz7LPP8uu//ut83/d9Hz/+4z/Ohz/8YYrF3EKR48ZGJ2QrIdI9hDqIOrXSA1VpNDpRZbv10qnFe/166VXjUJl07+VM/XStG06mo3jDx+nYvRNCvZN2b8havvsUaqXRsIpQu2VDqu2C3yHT69ZPHwRM3wnFifVnWPMAll2BUpqlVsSl5RZztTZBrKgWXKpFd93PbSjhzy4b2/jZevdz9dqJmB84EfKI+Etu/vZ/WH3HPawHWw/vete7eOKJJ/joRz/K3/7bf3vfxpEjR44c1yXcYjfhvB9h05C3dGlcyazPg4pNDfnKxQEPLKA8bazp1SPJZaK8F8Y62TI5NoFhxYzKzK4OY2jC/T/8D/8Df/iHf8gv/MIv8L73vQ+Af/2v/zX//X//3/MjP/IjfPrTn+Y3fuM3ePDBB3dtsDly7Cd0FHdTvKO4UyetgsjYu1sBqh1CHKNiaVRpmdZKA4htqdJZqDBapU5v2e6dpntXs+2yzPp27N7QF0qWUarTsQk76T/tOtiVRJ0uF68tQr0RLAve+CODAztS3PvePIBlByGVYqERcWGpxdV6gFSK0YLHeHn9z9CVtuAz5z3++IJLLTJ/D8/SvPVIxA+cCDlVUaAVJ/7yt4FuG7Au9q4ebD1IKfnGN76R9+LOkSNHjr2GVzJtxiZuWn2bkiazpT7XS8pXksu4BY05s8x+vfe+btnUnY+dMH3Fx07C2CnzfDnWxoaihzBp5ace2tVhDE24L126xFe/+lVuueWWnu0PPvggX//61/nABz7AW9/6VsIw3PFB5sixm1gVOhZl7N1B0JPgraXstMSCjiZtAsY6wWOOIYyODdb6wWMDx7NTdm/Lwh4td2qld9runY61h0ynS/q+dELJTP24PT2GVS4Zm7fvGTKdrl+rhHoYnLgfvuux3pYUYJTte9+btwTbIURScaUecHGxxUIjQgjNaMHDc9eezNAavpXYxr98xUFp832dLii+/3jIo8dCRjIOv8ry83jh0jqj2Jt6sPWQt+fMkSNHjgMIy+5aybm79zatob2c2NMvGcfUykVYvgCNy6ZN2dXvmCWLyiEYOw3jpxOifwYK1T16QdcA1hU9kvPzd3141yfIhybcf/Znf4a1hgJTKBT45V/+Zd7znvfs2MBy5NguVtVJR7LbCqsdmMCxVtvctqa9O5PgbdtdpdUZ3t69alw9du/G6qTvoe3e7kAybezeZaxKadshYFprSGunM0o1SkG297brIDwHZ7xqaqkLSQ11lljvVw31QcGJ+03rryvPmpqi4piZec2V7W2jHclOD+3ldohrWUyUXZx1wgHbEr5wyeX/Pe/xSsY2fs94zPefCLl/KmbQ3Z2oNtygdrkeLEeOHDlyXEcQwpwXFMfgUF+JmQwNAV8+B0vnYDlJUu+o5XNw/onu/qUpY3efPAOTtxgS7hb28tUcLKwlelSPGrJ9kPpwr0W2s/ju7/7ubQ0mR45h0LEpp0FjHWU1QrVDow63AnQYdom0lCBVwhEFCNGtk7ZtrIKfqNSbt3f3Q0Vxl0Rvx+5dLq6qme4Gk5XNmHcAZmKi+z52g8mSpO+0jtp1sBNCbZcKCM/rWr6TxO9dSfm+nmBZeeuvHUS9HXO51ubiskkcH6a116Wm4NPnPT57sZs27ie28e8/EXK6otZ9ztgdUjnY5XqwHDly5Mhxg8D2YPyUWbII6qaP+NIrsHAWFl8yxLx51SwpCRcCqidg6haYvBWmbjM14jdSWnoqepz/S0O67/qrpi3cHpV+3eCSU469hGoHfOdv/AwAt//2h1YRxnWJdFon3QxQQZiQaAVxbHpKJ6WTCKuHSG+nTnoQtNaoVrBKle4Ek9XqqGZ74weyrN6e09n66dEyTrVsemHvAHps32n7rDBCa20Ictb2XS7gVjJ11IlC3WmdNUQ7sRw5dhNaa5aaEbO1NpdrbdpDJI5LDV+56vDp8x5fne9+rw4XjW38HUdDKkMGw9ZHbyX0xnDDpQE13LBX9WA5cuTIkeMGh1+Bw3ebJUXUNCR8/kWYf8EszXmjii+/Ci9+zuznlo36PXWLIeCTt4BX3peXsWewLJi+HVQEpx/e05yVnHDn2HWkRFquNDvbgvNzCEsYRTq1dw8i0qYBlCHSSZ00aeBYWje9gyTQ2L2bXRJd61eqt2H3ziR974Tdu2fcmbRvldq+pSR9/4TrIlwb4SXjqpSwin6mjjpRqW9023eOA4tYKRZ7gtA0I77DWGntYL/lUPD4RZfPnPe40ja/EwLNG6di3nU84t7JmA3ab6+GsDh76q9x2/O/2pnny9xoLvagHixHjhw5cuRYBbcEh+4yS4rWoiHeV583rcrmXzI14bNfz4SzCZOI3iHgt5rrednbjiA/u86xZaQ10iaxe4C1uxUkLbAMkVbtbqBe46vfQbj2aiLtuaYV1A4T6RQ9du9MCNlW7N49IWRVo0x3CPUO2b1TaK3NZEQY9arU6ETYt8B1sFwHp1LCGilhp/2oC5la6tz2neMaQxArrtYDLiy2WGqGCCEYLbhrBqFpDd9Ztvn0eZc/v+wSJyFoI67ikaMR7zoWcri08Xe8H7FU1IOYdiTxR+7Gv+PvcuLl/4zdXuzutIf1YDly5MiRI8dQKI7D8TeZBUxa+tKrcPW5hIQ/Z+rAa+fN8tLnzX5OIakFvyWpBb/ZhL3m55GbRk64c6xCN7U77SHdVU5VO0S30hrpqJvYLSVaaTotsFJrt213iLTISEkqiimcmNkRm3dn3GvYveVyo6NWHzS7d8/4ler28I6TSQwpEVqbsnMnCSfz+1TqgmfqqdOgsus57TvHDYN6EDNXa3Npuc1KO8J3LCbLHvYaE3GtGD4/6/KH5z1ezoSg3VqVfN/xkIdnIvxNfjW00jQiSTOIQcBoweWmqTKTZZ+y/zbE695qQvCufBtOfze84W/mynaOHDly5DjYsOxu67Lbvtdsay93FfCrz8PCixC3Ye4Zs6Twq0kP8ptg/CaTjl6eviZIuNSKp+qvcCVcZvryk9x75M3YeQ13jp2GjmWnd3SqROvIbFPtANUKV6d2S5kkUsOgsLFOjbRtr6tIt779Mot/+MXO9fnf/iPskTJj73wzxTtODzf+1O7dZ/OOE6u3XK4PZ/f23N5U7wy5dqoVrJGdtXt3xq+1mZiIZKYFWZwo6tq0EEtrqUsF3EMlQ6p9N1GpM+FkucUnx3UIpTRLrYjZ5TZzK0l9tucwM1LombDL4uyKxR+e9/j8rEtbmn08S/OWmYjvOxFyS3X9ELRBaEeSehATK0XJczg5WWZ6xGes6PQGsglhQvAcH47dm5PtHDly5MhxbaIwCsfvMwuYc//ahcSC/gIsvGQS0oMaXPqaWVK45aQv+EnTJ3zspOkZ7u5ej/BYS2KtiJXsrmtJpHuvx1rSlhFfWn6e/zz3JZbipLz13P/DTGmGn77/p3n01KO7Ns4UOeG+xtGxGkcmbKxTxxsmZDpVo9tJH2llCJ+W0ojRiXq6m2FjrW+/zPzvfnbVdrnSYP53P8vkex6heMfp1enetT5CXWtsI9179+zeWazVlxo0WoPlOqaW2nWxJ9LE72KP7dvyvbyWOscNhUgq5usBF5fbLNRDlNZUfIfR4uASiEDCf7vs8kcXXL6z3P2uHC9Jvvd4xNuPDB+ClkJKxUpqGXcsJiseM9UCk2UPP3eN5MiRI0eOGwmWlZDnE3DmHWZbHCaJ6C+aYLbFl02rsqiRuL2e7X2M0iRUj8PoUVMPPnLElF4VxpBoYi2RWiUkOSHIajVhDlVMW0WEOrlUEpncV2qFRKOSdZWUWhqYHKMXWpf51JUnV73EueYcj33+MT7yto/sOunOz+oPKDr24khmeknHnXWjSAeodgAJge7Yu5MoH42p7e1pf+W5UDFq9F6opFoplv7oS+vuM/9//wnCd9GtYOMHtESvxXuP7N5ZaKU66rSx2kcmoExjHABJCy3LN6TaqhSxioVuPbWX1FPnid85bnA0w5grKwEXl9rU2hG2JagWXTxn8Hfj1brFH15w+fylbksvR2jefCjme4+F3D0uN+Vq00pTDyWt0FjGq4llfLzsMeI7ed5Bjhw5cuTIkcLxYOpWmLoVmRBiGYfI2jlYehVr6Rz28nmc2gWcds2kozfnM8FsBpHt0SiNUS+OsVIcpVYcpVYcYbkwQt3NukyT4F8hsLGwRe/iCRdbCGxhYSW3W33HbaUVv3bxTwa+HJODJPjFJ36Rt594+67ay3PCvcdYO2gsRgVhhkiHXUt3SqSF6LZysvuItO+a2l3b3peTxNV2b2PxDmevIlca699ZqQ7ZNnbvcl/P6Yzdu1Lcm4mCxDWQrWNHa7PYXeu3XSngViYS63ceUJYjx0ZQSrPcjpirBcwut2lFMUXXZqriDeyfHUj4i0TNfjajZh8qKL73eMgjRyLG/OFD0LTWBJFRs5VWlDyX05NlJgdZxnPkyJEjR47rDFrrjoIsO0py76XsUZgloY4IEqU50jGRkih0V2WulFDlW5FHb0EAXhRQbS4y1lxgvLnIaHOZamuJcquGK0PGVuYYW5lbNTZl2bSK47RLY8nleM915azdmST7+kIdE6iY7zQudm3kg/ZFM9uc5am5p3jT4Tdt521dFznh3iGsWR8dZdTobNDYoNZXmPpoUlu362AVfRM8Zlv7St7WTffehN17LVTffh+VN9yBKHh78jp7rPiZemqNRmjMREaiVNtjI9gjJexSwVjtC15u/c6RY5NIbeOXam3m62GnrVe1OLh/9it1iz/qU7Mtobl/KuZ7j4e8bkJuqqVXFCvqQUQQK3zX4tCIz0zVZ7zs46+hqOfIkSNHjhwHCSlZlpj6ZYkiSi7T6z01zcpYsgMVEaqYUMfGkk1iwR5oyRYd9TdVmK0ehdkozo6w8S3XbCNRmkVyPC0C1eNEwFyyAAgVU2wuUmwuUGwsUGwu4jfn0a0lVFijKQTNqEZzZYVG/QINS9C0BE1h0bAsao7HildgxfFo2C5126YlBE2haWtJoMzEgGZznORK88rO/ZEGIGcLW4TWmtbz54lrTbT2BtdHmx1NGFZ/fbSzcdDYXqEn3bvW23M6XR8u3bvf7l1GxzH1Lz294V29Y4ewirvQSiuT+q3DCBXHndqOVanfI+VOb+qekDI7r9/cdcgQhJ2HTl2HqAcxV1cCLi63qLVjHEtQLQy2jbdi+PPLLn98sbc2e7qgeOexkEeORkxsQs2WUtEIJc0oxrEsRosut1QLjJc9Kn5++MuRI0eOHHuHVA3OqshZhVkOUJo7RLmPLGcJsrlUSN0lyemRUiCwEtu1sV53150hLNlrvY5ARbRVREO2O8p3SnaDZL2tu9fbfbd1trkxYVVCdQQY2cS7GZlFrr2HABwsIjYOT50uTW/iuTeP/Ixjq5CS8MI8stnGGp3Yl/roYaGVQtabGVW6sSqYbPh0783ZvbVStL51dl1buV0t45+Y2fJr67HlhzHIGJOo3iXVnXrqkTJ20e8GlCU11Qfp73VDYuGs6fc4fmq/R5JjByCTtPHLmbTxouswPcA2rjW8ULP444sef5pJGreF5v7pmHce25yarbWmGUoaYQwaKr7DrdMjTFQ8Rgsu1mZk8RzXBZpRkwc+/dcB+PLYz1OyN7Yk5siRIwd0FWVFlhh3l6iHOCskklgZQhpqSZiEfaVBXwqN0r0kWQ1QltNLWwisDclyn7q8avyyQ4pDHbMi272kt4cwDybJbR0RJttivfnuH8NAIChYDr7lUrBcvOTStxx84VJEUJYxIzJiJAqphk1Ggybj7RVGwyYlpSgrTVkrSkpT0Gbi4XtPHOOybQ1sXSYQzJRmuPfQvbvymlLkhHubsCtF7LHNzMjsPHQUd2zecdJ3ul+pHjbdu6f/dCfh2xDrrdi9hWUx9s43D0wpTzH2PW9el/CauvckMC5RrJGmph1hJgJWtdIq5PXU1wziNrhFiIcIzctxoBHEkqv1kEtLLRaaIWhNxXcHpo2vRPCFSy6PX+ztm32kKPmeYxFvPxIxPqSandZl14OYWCtKrsPx8RLTFZ+xkot7AJxEOXLkyJFjb6CyBDi1XycKcrpd9WxXHdU2SlKxTd1y3LFpq46arFEoVB9RXktV7pLhrg3btkSPomzRVZa79cddItyUwWBSrPtI8SCVWUWoTdqrh4UjLHzLxRddkux3Fmed6w4F0UeoLRdXbD2HqhUHiMY8NObRjavo+hV0/Sql5jw/Pb/AY4emQGt05vFF4nn9wP0f2PV+3DnhPuDo2L37ek9v1e7dIdQ96d4Vk+69S/XIxTtOM/meR1j8wy+i6t3gArtaZux7TB9uLSU6HBBSlu1P7To4IyXsStkkf3fqqV1EwcfK66mvTbRr4FeBmiHdzu61bcux81BKU2tHzNUDLi8HNIIIz7YYL3mriK7S8M0Fm8cvenzpikOkzMHOtTQPHor5nqObSxoPY0UjU5c9NeJzqOozUfIouHl5Qo4cOXIcdGQV5KxynNYpq3UIcqQkkU7t1mbdtJbKWK1TotwhybqnPrlLksESVqIqmzrllAgbRdnB6lOZrUSJzhLetHVVIPtJcES7z1LdIdE6S5I3X388LFxh95DelAwX+kiz10eWs6Q4e39HHJzjrHR8VkaPsjJ6tGe7UJLRxlX+4cJ3+GT7Fa5mPOgzpRk+cP8H8j7cNwK6du/VNu+UUA9l93adHot3Zz21f+9RuvdaKN5xGvf4IWZ/+TcBGPu+h3FnJgFNeHEOYdkILwkpGx3Brpb6+lP7Zj3vh7spNGXIA3/5zwD48psOqJUyWIHD90ANCGrg7G4dTY6dQRgr5hsBszXTOztSirLnMlNdHYI21xJ87pLLZy96XGl3f4dOVyTvPBby3YejoftmS2mU7FYscSyLsbQuu+RR9venS0OOHDlyXO8wqrFeRYwl2lile6zX3RrjlOiGKibSkii9TAiyVLpDrDV0rNaq81yGfGYJcm+Yl+ghwlYn4Et0bNfZ21MFud1PejPr4bD1x0ld9W5htXLsdKzWWcW4MIAY+6KfJDsDLef7DZ1MgCi0ERnpToqozG3929J1NWAb0Bv85lhYh+7ivfpOzjUuIVA88rr/hfuPP7zrynaKnHDvMrJ2b7nc6BDqjlK90jCyzwawSoXVhLpaTraN7Fm693rQWoOUve3OwqiT/J21tRfvuglvasyElBU8REKo85CyGwxpq7XqMRAWzH4TyjnhPqjQWrMSmN7Zs8tt6kGEbVlUfRfP7T2QBxK+dMXhcxc9vrFgoxPrVsnRvPVwxCNHQ86MqKHUbKkUzVDRDGNE0i/75GSJ8bJH1c/rsnPkyJGjlxDrjiKc1gt3g7YMQe4mU2skCWFWskOG04TrGNMWKlWKe4lx116dkqXehOu01zGZpGuRWK6thCyvVpCthEgLBEprAp0huzomUOEahDlRmftJtO7evlv1xxZigAqcIcbCHaAgr96/0LFXO0MFmO0GVhHfVWRYrUl2+8nxqkmS5PNB5nPScRcIsJK/vJVss5LPiwBsbGxb4AgbB2PNd7BxLRsLC1fYOJbdcSlYmQkZO/3MVU7ha83U0Qf2NKg3J9zbgNYa3Y6Qs1cNmV7VLquOagxp9x4p96jSXWJtQsoOSvupTjutMEqSv00COEr3hJQJz8EZHV2V/D32rodMTXVeU7knkJkDy1dqL/HQ2G3YB2mGM2qAV4byJGgF6quGgOcq5YFCGCsWmiGzy20W6gGhUpRdh+lKoYfsag3P12w+d9HlTy+7NOPuba+diHnkaMibp2P8IY5xnfCzwNjryr7LTdNlJss+o0UHJw86zDEkpOpaCA/k72CO6xpaZ+zMfe2XjOVZ95DhVEFWmft1A7pMTkVaVxwqSaxjoox1ukN8OoQ4JUsq0XfMMVbrLilORtqjGIsM8c3WGQ8ixun+Ajr1x+2MRbpHOV5lpR6kIHcJ827WH3vC7QnpypLktZTjrP06S5KdbdQfbwZdMqs65HY9Ipx+5tLtOvk8pKQ31YINuiTYSslv+jfu/J3pbHP6CLBr2aZO3bKxRUKAhXkMGysJf+t+ltIJGEOI0/2ykzH9+4vtv8faBhVt7zG2gIPB4q4xaK05+9f/R8KXXkBH6+TRJ1hl9+6rn95vu3c/ekh1JgE8ubW3ndZYFXukiFXwkyXpT+3nyd/7jccXvsmHzv7XzvWf+M7/wYw3yk+ffjePTtyzjyPLoF2D0gQUxkApcEsQt8xljn1FVs2+vNymFsQ4QjBScJjoq49eCASfv+TyuUsu5xvd26YLikeOhrz9SMRMceOTJq017UhSD0ywTRp+NjXiMVb0BrYSOwiQWpH7cg4mHn/lcT70xIc61w/k72COPYfUvZblrHor6bueIcE6Dc3qU49NUnVXEY5UN9VaqoTs9il/qTqsNR3VOFWDs7+WorNFdNS+LBEWfYS4Q5IyVursfbKERWm1qv64qcI1lONh6o+jXaLH4Amnh/SurjN2OiryoHrjfkK9W/XHOjOxMogQy57PQC9BTq8D9NLKrp2+Q3wTQrz6c2CIsGPb2ELgCvNanYQApyqwNYAEZ0PeuiR5dRJ6lhTvt7v2WkFOuLcAIQRqZaVDtq1yYUAIWaJOHxC7dz86Paoz1m8lJUJrM/mZqNSW55l2WpUidqmYt9O6RvD4wjd57Ln/uOrANxcu89hz/5GP3PbDB+NkM2zB0VNG0S6OQ2HUkPCccO8b0trsy7U2i42QIFaUvNUtvQIJT1xx+JNLHl+bt1HJ6YFnaR48FPHI0Yi7x4dr59WOjJIdKUXRsTk86jNV8Rnfh/CztIVKqOMkkEf21B2GOiaUMS0V0pIhLR0iV2Z5beMuTnP3no41x/p4/JXHeezzj60KIDpwv4M3MPrJST/57bRQQhmluI8Y96rHqmOLTtszRcq0YUqJsNQqCdTqEtyuGpxcH0iCV9PgrFVasD4RFpAofdYa+ySPsMG5Yrb/caAiGjJcu85Yr65P7k+y3q36YwFdcit664i9PiKctVEXLDdRnXe//nhtYpz53HUmWbqTLen1rDsgO1GSVYezEyGpzTm1Rnu2jS1sXMvCFS6uMAnmbqIOZ8lwd3018e0EuOVE+EDjmiHcP/dzP8e/+Bf/omfbzMwMs7Oz+zKeo//mX9P8r7+GXS3hzBzZlzFshA6pDpPk7yhGxbJjHRGu2+1RPTmKVSklPaq9blutvJ3WNQepFR9++fcGzjKnBqJffPn3ePv4a/bXVqmkGUx5yly3LBg7Aeef3L8x3aBIk8bn6yGXam0aQYQtLEYKDuPlLuHVGr69bPO5Sy5/3mcZv3M05h1HIx6eiSgNcWQJI0U9iAilwncsJioeh0YKjJVcyt7OHZrSOsR+4hxlCHVLhrRURFuFtGXUPTHvpOXKzqmVho4yIBBcDBa53LhAtPgsJ9Q79iyA5aBjv4/ZUkk+/MSHV5FtOGC/gwcEWcVXZUjFYCLSZ4/OEN8sAU6/O0YBVj3XTQ2x6qi/mi7B7Se/aDp26JTYZK2vvWRnMAEWGVK7igyL3m2bJcFrIZ286yjDsluDPFz98d71Pzb1x4NI8Xr1x6uV492sP85+PuWgSZlV21THTk9y5tv9v9c23R+6JjC/8Z5tdxRiLyHDrnDwLKdzHEjJriOM3uxkgtsckSHNwu4Q4vw358bDNUO4AV7zmtfw+OOPd67b+xiuVbz7NYRfqDCUfLOLWJNUaw2W6Ni/rYKHPT1mSHVi/Rap/Tsn1dcVnqqd5XK4vObtGpgNl3mqdpY3jZ7Zu4H1I1gBfwRKk91t5ekkSE2ZELWDgOu4prwVSRYaIbPLLRabEfEatdmXmoIvzLp8/pLHbKv7d5kuKN5+JOLtR0KOlDY2Ekaxoh7GBLHEtSxGiy6HkoTxyhAJ4yqxbnYJdJc0p4p0oCJDnmVIW4dG2eo72e9tBKM7J0uOsJPwHtNbNN02SC342sor/M7cl1mOTavDz3zrRT529vf46ft/ek9ajFwL2M9j9lNzT3G5eXnN2w/M72CC1LrcX3OZkth+y2la/9tvTe0+RqL26uznX3XIbpoiHSN7SG9PCnCm5tNsW2197iW+6TU6t/UT2W7rJbq3IZJEaWcV6e253GXVrpteHfbYp9esL16j/jh7fTfrj9O06kImjXqo+uO+GuTdrD/OWvK7pHjQtn6CbJAqxhrdTSPP1v5mFF3PdhMybONiSLHbUYztpP68qxw7HcW4u273bcvPjXPsFK4pwu04DocPH97vYew51laq6QSVWZ6DVewj1UW/YwHPSfWNgytRbUf32zUENRg7ZULTUpQmwS9D2AS/sn9jS6EVLLwElgvjp/Z7NDuCWCmWmhFXVwLmVgKaYYxrW1QLbk+NdD2CP7/s8vlLLs8udw8VBVvz0KGItx+JeM0QlvFYKhqZNl7VgsvNU2WqRYeiZyGFJFIBV6N+BVp2Tl5bMuysd1vRpAQ6VbdS8iw6xNlOTpoKltsh0umJ16pxaklThjRlwJIyl00Z0lRBz3pDhlwJawO/P3PNOR77/GN85G0fyUk3+3vMvtK8Mtx+UW0A2c2c/NMNtspaSwcpvP2Km6bX3hwn6dAp8V2P8EJW6U1uTZRerekQuX6rc0p211J7+0nvamKbqf9NCK4gUzea3OcgnE/01x8HKu6Q4I3qj3tIst77+uP+Psi+cHCExWcXvwXA/zjzIBW7sCZh3k2FVPd9tgeFuXVbg6UW/O4nr58kp6pxSnTTz5Yn3I6C7Akbz3LwhNMhyCn5TUmynU6AdlLNrUQ17gZv5chxUHFNEe7nn3+eo0eP4vs+DzzwAL/wC7/AzTffvN/D2hEMT6p97EPj2JVy1/btJ+20clKdA5h2qzu6364hDmD0eO+2wqip5W4uHAzCvfgKlA9BY26/R7ItaK2pB5KFRsCl5TYr7RilFRW/t292pOArVx0+f8nlyasOse5qWK+dkLztSMSDhyIKfUKlStrKxEkrmVDG1IKQhgzRKHzPYqRqgaepO4pFHdOuR4Y0J2m7MlHjUqT1cemJVUqiPcvpnHilJ2TZ19lWUUKSE9KsQhoy6CPQ5raGCmhJc/tO1DKmSt8vPvGLvP3E2294e/l+HrOnS8O1F3yuMUuo4nXIbp/am1xCV8XtWpr7qzrJkNzNE9619kvXrzVIrXpIcJYUD6o/Xq0yZ/fZ/fpjT/T3OR5MmAddz9532PrjQEUdwn1f9WZ8y9302FUfMc4qytlk9HS71nrVJI2GnuToblq0ZZKobTshxg6+ZeMJF9eye36Ts7/Zdo+CbPeoyTly3Ci4Zgj3Aw88wCc/+Uluu+02Ll++zM///M/z0EMP8a1vfYvJycmB9wmCgCAIOtdrtf1V9DZPqkud5O9OXbW3+R/gHDcW7q3exIw3yly4PHC2XgAz3ij3Vm/a66F1EYdgu9367RRCGNV76fz+jCuLlUvglWDqVmheBRWDdc38ZAIQxIqFRsBcLWChERDEioJrM1FysZPWfErDM4s2fzpr6rLrmbrs4+WIhw43ue9QnREvRKKYlZI4TpQkHRHqyPRsVZJmHNOOI7QA1xFUfIeSZxO7Fi1hYSsLJ+oqFY6wKThuV7lIlLNISVqJmtySAYsdxdkQ6H71uSFDWgmR3o6FUwAFy6Nke5Rtn5LlU7K95NKsr8RtPrv49JqPodHMNmd5au4p3nT4TVsey7WOzR6zd/p4fe+he5kpzTDXnMuUEPSiahc5XpjoJcbCwhIMIMm9hPl6n9zWWicuk75kaj2YJK8mxJltiYK8V/XHfg9J7q9DHnz7Qeh/nG1f90z9AmeKh0CQIcuDVeVsLftairKpRzaBZKZG26jJXmInz5LktO44Xc8qybnNOkeOreGaOXv8vu/7vs76Pffcw4MPPsiZM2f4jd/4DR577LGB9/nQhz60KrRlt7FtpTon1Tm2CVtY/PTpd/PYc/9x1W3pYfIDx75nf2eXg5ppBVYaMFlWmjTEW0nYL4WwtQgygjPvgJEjcOnrEDXB32dXwBCQSrHUirlaa3NppUUtDEBoCr7AK0Co21xWkvMrDk9cLvPk3AhLgde5f9kNuGNqjtunZxkvrSC14gWloJ19liQ0TEMsIZamNq7k+BwfqzJa8Cm5FrGQPapyQwYdIt1LnnvV5+0qV66wDUG2DHEuZkhz2fYoWuaylCXVtk/RcjdUop6svTTUGIa1NF+v2Owxe6eP17Zl89P3/zSPfX7w+QHAX5t5M1PeyI49534irT/ut0+v19/YqMj70/84a6Xub9fUG8K1dv/j9La96n+8Efr7a8t1riut6OrJ8FzzEp9L1G2A/+PS56naRb5/6vXcXT6Bb/u4wu5MDKQKc2/2hE1/FoUtbNxMinWOHDn2B9cM4e5HuVzmnnvu4fnnn19zn5/5mZ/pObDXajVOnDixo+OQjTZKLuSkOseBwqMT9/CR236YD730fzMX1zvbZ0qH+cDRR3jUndjH0WEC0w7fY1TufpQmjZ08rBuL+V4jbBpL+6mHjbqttQl3C1b2jXCngV9pQFicSdyOtSJUMUtBwHyzxaV6g6WwTaQktgOurVFCoyLF0orHC/MzvDB/hIVml2i4VsyZySvcMTXHqdEabhIaY4sySmsikiAhHdJWAStxYGzYREgRo+yYiIggimgtpopzuKayOAwEUMyQ4ZLlJYS5u96vPpdtn6Ll4e2iE6FqF4fab1hL842CjY7Zu3G8fvTUo3zkbR/hQ098iLlmtyxkzCnxnkMP8PqR/ctlWK/+eHUI19r1x2nv5L2vP16tDGeTrLtK8t71P94uUsIsO3X73byITu/t5Pp66nK2dZMtLFzhULZt854k71GqLDvC4svLL/B7V59aNZ6abPHbl7/Im249wzsnX7v3b0iOHDl2DNcs4Q6CgGeffZa3vOUta+7j+z6+7+/OACwLu1JAeA721HROqnMcODw6cQ8PxDYPvfQJAP73R/53Hjr6EPbcM/DC5/Z3cDoerG6DIdulSahf3h/CXZ+FQ3fBkeQERwgYOQz17ddxZ1O20/TgSMddEp1sb6VKUyZpuzcszJwMRkrTDGJWgph2KFEKPNuh5NiUkrrBIPL4zvwkz8yPcKllIewWwr6EW32BQyOLHKosUCnUCAl5WYd8u5ESa3MpGcIGGq19kyccSrZHMVGbS+nSIdBeh1hnbdwFy9u1tjJr1zf2rqdpud3UZXCFw4hdYEW2Bz6HQDBTmuHeQ/fu6NivdWx0zN6t4/Wjpx7lgcMP8NBvPQTAjx97lDvLRzet9sV99up2v1rcE8K1fv1xW5kyjN1AT//jhOANbuHUm2qdrVXeSv3xQUBvmFdv0NdghRnSb/Z6hNkTLr7tdFpi+cLFS2qWV6vKdlLP3K1XXm+CQWrFj3/719d9Xf/mld/nkYm785rnHDmuYVwzhPunfuqn+Ct/5a9w8uRJ5ubm+Pmf/3lqtRrvfe9792U8wrKo3HsbwragtM9qYY4cgyDjngP0G2feaEKcyofALUDcBqew9+NKrXTZdPJ+lCZh6dU9G1IPtIKRmV47e3HC1HAnSMly3Kc4xxniHGnZPSmXIYGOCRObpgkK69oMkycm26aq06IkqZtzkxO6ZhyyEkQstFosBm0aMiASEdKKiUREW0Y0w5DlWNKQMVK0wQ8QxzT9MXS1ZCFc/y0RgC+6pLni+FTsAsUOSfY6RLpseRQz6rO7Q2UBao06xg55RvVYOpVOI6y6StSg+sb05Nq3PdyOktetb8yG/KQn11WnyM+d/Z0B75M5ef/A/R+44QPTDtIxeznTJrEhA56ovbhGH+T9rj8erAxnWzl1WkH19T1O7+MJ50DYq7eK9Dscd6zYsjMJln7H4zQ1XuvOTFgaYGenPY8z329X2JRtv0dh9jO1y+a3NWkfhdUhzCmh3k2ie8208cwiWIHGVRN6OsilliNHjlW4Zgj3+fPn+aEf+iGuXr3K9PQ0b37zm/nSl77EqVP7ZwkT+9yDO0eOddFeMonf/ShPQWEc2stQ2QfCLUNwfPDWSSH3q7BLClCK9MStS5YVkYyIoxXicJlo8XliFROpiPbKOdrN8wRXm4TITm9nlVGcU+IsMv+n7UtS4pySOyEEUsWdk/1WXxBYY0CidlMGxMOozSkE4HSVWQAHh6LlUhAevvAoCKMkp+s+DpZysLWDLzyqToHpUonJYomyb+NYWzvxTJOds+m4KWleW1neOAwoTc11bBs/qWkcVN/YrzZtt77xPTP3M+oW+fDLv9dzsjxTmuED938gbwnGwTpmf/bVz3bW/+Psn23rsVb3Px6sHA9Wlbs1yAet/nin0P9d71qyV9c0pypz1gpvd3os24Y4J7+dvu0lynL3/XStXoXZ7VOcHevgB31dM208U9TnIGyYSemFl2D8JnC8je+XI8cNjmuGcP/Wb/3Wfg8hR45rC60lSifexDff+83e7ZYN46fh3JehMrP344oSZX09hdsrgd74BEknraSihDh3yHPGsp1uy9Y9hsm6UUx0QpglMg5QUQNx9WtQ647PljG2amEHi9huEUubrOJYy0QBMyp2S4U0+hK1GzJpPaUCWjKgpdbxXw8BgTBEWbh4wkPFZRrBCLXWKDIuoWURLUuMODY3j8TcOd5mpggF4Q1UapRStCNFqKR5bN9mrOhSKbgUPQvHsjrqctDpg73aqtl7Ep3tx2pGbWVOnrPEOZucmypQ65HlXrXZ3reT6Ucn7uHt46/hqdpZriw+z/SJh7n3jvfc8Mp2ioN0zJ4odF1oNxWmKdpeJnhr7frjQanXN4KtdxjS3F/LPNChQ9ep42BTsr2OOp8S5/Q73CHLGRKdJdDXiq19s7hm2nhqBUvnDLk+83YYOwkv/znMPWM6i7j7MHmfI8c1hGuGcOfIkWMLKK8R3DQykySB70Orq7htarOTA7TSiljFHTU5VjGxbBGrFnHjIpGwkEntcz9pDjs9nBOVGZlYEjW9FKxL+FKl1BE2ApCYOuq2DGlHK8aS3ZyluRLQjJo04ybNqEGjPmuIs45oyiFrm9dBwXJ765qTdlQeHrZy0LGFkA6OdqjYBaqeT9EuYCmXl5ZHeebKON9ZGCOUXYI35ge8ZmqBu6cXOVRqYXhoAZ1YrkMdJ7XfklYUEyY2edcVlIoWvmfhuYJQBCxoAQF96rKF3deTtez4iRW7q+Zl+2S7A2ocs+1mruUTaVtYxuYZa5i4a/9S9XOsi0dOPtJZ//sn3rml/sbXIgYR5LVIc6oyp46SfmdO9vs+yJrtDqhpThc3/b09oCrzfuKaaOOpYlg4C5XDcPphGD1mtt/03eb84fI3oXrcTJTnyJFjIHLCnSPH9Yi0z7W/RsubyiFDeoOVwbbzTUAnCnGse1XlbihYb21zWDtPSx8hfOVxAhkQqQilEoVZS6SSqKiFbLyCaF9K6szNqUi25rZ7QijQwii1YaZHbNrD2SjLRmlu9qnP7bXU5vm/HOq121iZdOwkAKyn9VQ2Sbs3bTurlLUjST2QLDcDGqEklgrHtigkNu5IwotLIzwzP85zC+OEsvvTXfHa3DI5x5mJy0yWl0GYZj6XJaSKk0CgJUQKlALXsig5LoeKFcZ8n7FCgaK9urZx9Qm0lVGhzMl4fhKd46Cj5Jb4v7/r3/Ln3/7P1xzZTktfsqUYsV7fWZJiLaV5MGl2cK3V33lX9BLp/Pu+sxiqjef4fdhhff/aUtYvQ/UI3PI9UBzrbncLcNNbzLnGha/A5Jm9n8DPkeMaQf7NyJHjekTcNgfDteqk3aI5cNbn0IWxgYRZ9pDl7ra27AYJ9avM/fW4qa04S/zs1jx2qYrdXkhOCG0c2yi5oQyJiQmBlla0gkUasd1X37yaSG+3X2zBck3gl7Yo+lXK5WlKTomSW+peBk3KyxcojhztEOnNBBSlKnNqzW5GEfUwZqkZUg8jQhmDBY4tcDyQyuJb85O8tDDDK4vThLJLFMpuwG2TV7l98iqnqk08y9iyXXEYTziYykWBlIIo0kgJBdthtOxzuFJkouwzVvDx7fwQkCPHbiMb+BevozoPSs62ReIoIbVWix57tm+5FDMTZR07dk9ZRm99c06aDxYenbiHj5z5IT708n9lTjY722dKh/nAGx/jUXsMLn7NtKwcOby3g5MxhC04/ZZesp3CduH4m6B20QSp7fX4cuS4RpCfbeXIsZPQGvb4ZKY//EtqRdy6gnSLxO2rRC1j15ZKEqmIQAYEMiBsnCNceJ6wfalz0qc6J4C9hLkbBKYHq8zCwhEudlLX3NZpTXPUUZUbMjA1zq1FmvECzctfSuzaxrYdyGBb74MjrJ6ezINU5bRPc9bGXbQztc21i3Dk9TA2oP9v4yq61UK5VWJh3p+6CpKT6EySbrJoUsWp+7+UmiDWtANFO1DEElzbZswpUy64CO3y0tI4X58f5en5CoHsquBjnuRN023ePBNy56jEs0rYnO45edZa046kUcmVouJYjFZcpkcKjJZcKp6DlYc95sixaaR1zenEo/m+y57fy+53P1vXTE9JhpP5/SwlQWBpnXjR9laryz01zc6WQv5yHHw8ao/xwBs+wENPfhDItPG0bHNeUZow7TzD5t5at+uzxkI+vo6l3S3AzGvgxc+ZLihbDNfMkeN6Rk64c+TYKagYrjxnDoxDzvKmLVCiJLQrVT96yHPmMlKSQGfqmHVMpGSnDVKnjrmxgCxPIc79iTn5SwRgkaolwsbSIY5sYyGTWlu3E2altaatYloqVZPXDwLLJmoPpTa31r6p6BSNqixsylJS9EcoWR5luzCQQKfr7iZqBLOtZ9oqNOsqRsYtZNxA1i8glUQn/wQCojZat3FaV7DdQicp2+nr05qePHuJ4hTHmmagWWnG1JuKUGp84TBSdim7HpGy+cq8w+NzLl+56tCW3dcw4SsePBTx8EzMHaMSw5XtZElei9K0IkkzjFFaU3Bspis+UyM+o0WXspfXTubIkaK37VQ3LT/9nR1s0e7WNaelFIO++/3p2W6fupxtN+UKOyfNOQyCOtgO9uHXdTZ12niCmcSfug2Wz5uQsslb9mZcMjQhp4fv2TiJfOImmJ2E5lVTspYjR44e5IQ7R44tYhVZbs4j/RJxe55YNoj9aocox1oRqTipMY6JVEygzWX2BC9NzU5P/ESniisxZndapvSqzI6wsa3MbXYLqqcJitM9KnLPZesqjfqrNFuv9li2mzIk1PHaL3wIuMLuUZBLaT2zsChhUZq6g5I/Stkt99i2i06xexK6dA4ufd3Ujq2BrKoUJqnj/TWOqeKUfSe76nzGpqkVJbeMP3KMQmkK3/bxbR/HcnAtFwcLN7JwZIhTmcmoT+b9z6IZxiy1IubrAQv1iFYcY4sCk55NsWxTjwVPXnH54hWHr807hKpLiKd8xUMzEQ8dirmtQ7L7XrdUNEMTfKaBoudwdKzIRNljtOhS8vKf9hw5shCYVPzz7YXV331sirZp9VW01g4D6287ld6WI8eWoTWsXIKjr6c0cfPqriIphIDDr4XFV6C1NNjevdNYuWzcXuOnN97XK8P0XfDyn5qw1nySN0eOHuRnZTluSPQqx70qctx3m9SSUEnCjrIcEyXKckqQlVbIxhVUZQbp+qirzyG8MtrxE9KsM2Q5TcvutkfKqsvpbVZywIpUnLFlhzRls9ufOdunOatCx22as4+jh1Gb14AAiol63LVo96rK/dbt1LLtrRWc0q6BsODEW3psZ2lSeSADpErC02SLOG4g24sd26ZBVnEyir2D3ZmEcIVNxS6sUpyMHXN1jWNq03Ray0YJvuldpi5tECZvMwqDu7qlWSOIWW5HXF0JWGyEtCKJbVmUPZtqscBiaPGFKw5fmnN5etFGZtqeHSlKHjwU8+ChiFuqauC5ShgrWmFMO5YIIah4DqcnK4yXPapFF9/J1bIcOdbC0dI0b6ucwhm/OfPdNyQ6t2jn2De0FkwY2szdG5PUyjTM3AWvfhkKVXMs3S3EIcjIqNtrHQ/7MXkGZr8BrUXj9MuRI0cHOeHOcU0hawccTJANCe6EgCmVEGVJlBDmMCF0WRu26tQw64wa2q3B61WWu+tpWyMbgWX5WOM3Y48cxfIn4Orz4FbB8VFa006s2IYoNzsEutUXBNZPoCMtt/WeeZbXUY/LbrmrJtsFyvUrlCyXkj+aSds2lwXL3fRJaKrOtzv9mmWP2hy3FpCFCnrlVUNuNWihjcVdWDjCwbZsbGHjehUqboWCW6HglilYXkKc7Z76xn7b5pZDgeK2KQVY7+SiNAlJsrnWmkYgWWpFXKm3WW5GtCOJY1mUfZtq0eVi0+bPLjl8+YrDd5Z7f25PVyQPTBuSfaqymmRrrQliRTOICZPU8orvcHyixFjJo1pwcO2cJOTIMQyKts9xtwr+2H4PJUcOA6VM0NjptwxPUGdeA/MvQuMKVGZ2b2wrl4y6PXZq+PsUqjB9J5z7Uk64c+ToQ064c+wJsq2j0mTWnutJIrbMEOkwUZL7VeVeC7bukHDVZxsGYyPs779sCWMtNDbs3vAvC7EuWQtV3CXDcdBtNRXWjVX7Yp2mimhGDZqtBZpzdZpa0lLhtnK0RRKws14QmCHMBUpaUdKC0smHKRXHcddrg3Puy0Z1HnBwVKlNO6P091u2s3WOOhlnGgo0qA1NMYzxJ+/GO/IGY9NO7Nqddds17WlsFyeOEK0IHN+0MNttxG0T+LIOlDdCM1AszNe5Ug+ptSKCWOHaFmXPYaTg8uKKzadfdfnyFYfzjV676e2jcYdkHymt/kToTj22majwHYvRktupxx7xXew89CxHjhw5rn00LptJ3kN3DH8ffwSOvM4ElBUnYTc6TcQBKAmH797840/dAnNP753tPUeOawQ54c6xLjZLlHvt14Y0hzomzrSOUtlgmsSSnVqEszXLVkKA+1OxUwu21WPNFkOrsUorWiqkmbSUanWU52B1orbMKs4BcadtyxqorX+zJ5ye3szFRFUeZMvOXvqW27GYb4jWMtgelLp1VKlNO1Zx7yUK1bpKbHX/DiIhz/12bUdYFJL2U0XLpWB7FCzX2DITy3bHom31Ks6dv416HmbeAJN3bfw6XAfcEkQNYA8IN9rM0Pchkor5esjcSpsLl1qMzYU0xGUsr0LZdyj5Fk8vuTxxzuGJKw6LYfdzaAvN3eOSNx+KeGA6ZsJfTbKz9dgKKLkOM6M+kxWfaiEPPcuRI0eO6w4ygqABJx8y9c+bwdStcPW5rgq901iZ3by6naI0AZO3mjZme0G448CEyYFJS3eK5v10/N1/7hw5NoGccF+n6A/06qiSqA75zdqy097AUaIsb6Qop72WRYcoQ6f5kWCV/Tolx45wMzXMXTK9WWitCXXcQ4bT9f5E7d5AsIBWYgneKqwetTkhylJRrhymWJmh7Ja79u3FC5SCGqWRI5SSli/bhez7u/X/HWVrHlWeRKy8at4rdBIQ5GAL21i2LZuSXaJQOUKxsUSxfBLX6hLlftLs7kRAkDZxZUOfXAgBpXGYX9j6cw4LlSj1vulb3o4kV1YCLtfavLLQZLkZEisouz4zpRGIFV+sVfjLqw5fne9NFi/amjdOxdw/HXHvZExlgMEgiCTNSBLEEitTjz1WdhktuvjOkO9zUAct98YBkCNHjhzXI5Q0v6NKmZIiaw+C8FJSO3lm8/d1fKNyP/cZU2u9UYL4ZiBD837MvGbr78PUbXDlWQgbm59M2AyUNCFyh+6Awjg05kz9+PJ5U+/ur55Az5Fjv5AT7gMErXVHBe4P88raeuMOeTY1yqY9lKlRDpUk0jGxUr2BXqus16kNONWU+xVl0RPqtVNEuR9SK+pxu0OYG33keVAoWKo+b6g2b4CC5Q7sydyvOPcHhBUst1dxlJH5kT/5ZiiO9z6JVYbL3zSzrgOgeghz9u/bdRSktu20otz8HWycTFp5Kam5LlouRQnezH24M3cbu7bdtWx7ltexbduWbQ5W9TqMnNzdABYAGZgTg80cgIsTIJ/dvTGliFu0cJldEVycu8qFpRa1dgQaKgWHmZEC842Qp84t8R9fOs5zSwJF9zMw6SveNB3zwHTE3eMSt++tTK3i8y3J+56cBuCfvLbOO07aTJZcRooOzmZ7lzauGMKtopxw58iRI8dmsXzOKKTCAmEbghk2YOwkuIOP2TsCuYVAsn6MnYLRE1C7CONbUKLXQn3OdAYZO7n1x6gcgtFTsPCiaRe2G9DanL+MnYBTD3cmy4lDOP+XcP5JmBrJ09JzHBjkhHsHsFaQV5Y899uuIyV7WkRF2oR5Ge1Yd3qDppbrbmuj3npZoKdGOUuWO4FeCWnerPV6WKRq82pbdjcIrNUh073qc3tH1GZDhsuWT9H2Kfepz+XMejHTz3knJgwACJvgVVBeBSkjYh13Ldw6QsYt4tY8UpjPStZUbCGwLQs3k7Jdsj0KlmfIs+Xh2U5PwraXSdxOVeiev6m0YOoeGB+iV6c/YmbL42B3TzDA9PO0/c0Rbq/Mtorf14FUmnoQU2tFLC/MstJWPB3WsZ2AkYLL4arPS1eafPGleb5xfpkr9SC5p3mvb6pI7p+OedN0xJmR1aFncWIVbydW8W/VSvxfZ8c6t//CNyr8ny/ABx8QvOv0Jk4KtDYnWQDH3gizX4eotft/vxw5cuS4XrByCSwPbn2bIWuWa4j37Dfg0jdg9Ch4lV167lkYO741y3YK2zGEffmcyR9xCtsfl4zNcXrm7q1PBIAhudO3wfzzZnLB3kEFPkXtoikBO/2WLtkGM6l/+G5YeCkJlst7gufoQrUDvvM//n8AuP2Jd2NV9670ICfcW4TSii+vnGVBtojrxYFq8mDbtYHoI8DZ4C4Xy9TsZral4V+7CanVahv2GsnZ/ftJtq82l2w/Ic1eb+upjsLc24aqbPt4wtm1+ta1W4d1bfoANOfNTHPjYkc5dixj3/YKYxQKYxTdEQp+laKVhIJZNp7IWrhtY+lOWtRsfdCxmakfltR6FXOg3gvCFrcTgr+JEwOvbCoVlOppI7ZVhLGi1o5YbkZcqQc0gphIKsaiOlSPMVYp8a2LNb5x/hLfulgjiLufa8cS3HF4hPumJY+Kv6QydbznsXtSxZXCERYl3+Z0tcJXlzw++m2n71cAZpvw9/5E87G3Mxzp1srM6vsjcPq7jAqxcBaClZxw58iRI8cwaFwFFcPN7zAhX1mc/i5DEC88ZcjagFyPbSEOzXPPbCGQrB9jJ2H8JnNMmDi9/bE15qB6eLi+2xth9ARUjxrSWz22/cfLorkAKDj9sLGO96MwCkffkATLTexOsFyOAwmtNTqK0WGECqKeddVqEy2tdPeV8Z6OLf8UbhFKK2ajFRo6pOwWOmryVoO8dgpaa9oqWteK3eiraU73C/T2Pnw2Vk/w1+pezd31/uCwHVOb14BxCcg1XQixlijdrUU3dc/GJWBj4Vh2J227aHlJj2cPD4EnyrinHsGduLknddu1XVxsiISxqe1mC48UccsEh/hDzsw7nqlzal7d3XGBUdHHT2/O4uWWjB1fBmBtnlBqrWmEklo7YrERstCIaIUxCk3RsSn7Lq82Xf70Cnzp7AQvLX+j5/6jRZd7jo3yuuOj3HmkSsG18ZuzTJ9XtJREakEzUrSjGKl1N1W84lMtuowUHASC935hcEd041SBf/GE5ntOsnECef2yKVs483aTbgswegxmv7np9yZHjhw5bji0lyGowU1vXU22wSi7J99sFO8Lf2kmOXcy/GvlkiGj21G3U1i2qbVeesUo0+42VG4lzXnKqYd2pibcduDQnfD8H+/YhDlgziOaC3DTW2Di5rX3m7oN5l+A2oWdtdzn2DesSabDCNUKkI0Wqh1AFKNiCVGMVubMS6MRlo1WXRGl8eRXGHnHowh7DzIbyAn3tjFi+Yy6Ox8KESlJaxVpNiS5IbMW7dX1zmqbHty0xVRKjIsdu7a3LpHeTbW5H7KfOPesZ9TnBKLjFjCp2Y6wKNouBeFRsD1Klotvu12rdiZ528skcK+aQGktwYgPM69bW1UeOQqXvr47b0Q/4rYhqZv5TFamoXZ+98aUQkWra9w3Qpo2GreHVnAjqVhpG6v41XrAShARRMrY9X0bz/f5+qLLU0ngWS2ygO77dXqyxGuPj/Ha46OcnCj1OEu01qxoHze0qYdLKLdM0XM4NlZivOxSLbiU+lLFv3hJc6m59ng1cKkBT1yGB49s8OLCJszc0yXbYCZy1NeGem9y5MiR44ZF1IT6FUOoZ16z9n6WDcfvM6Tx5T83rqztkNkU22m3tRZGT5iJ7IWz26uXTu3XO6Fupxg7aRTm1gKUp3bmMWsXYOqMsdOvB8eDo6+Hb386Kfsr7czz59gVaKUyBNpc6ijuKNOy2Ua1A3QYo6WESGbIswbLRjg2wrURjoNd8BGOg7C75+ytb7/M4h9+sXP9wvv+V5zDh5n5Jz9D9Z3v3PXXmBPuXUSqNm8UBNZf+9yUIeE21WZHWKtU5dSGPSgIrJTUPhctb19U+Wx/537rdpwkpKdqYBoc5gi7oz7bWFSdYq/6bDk99c5OH4neicRw2ssmZXQ9C3dp0hxk9wJRGyqHNzebXBjdm/FpNp9Y6vjG9t5eWvthMyr2UiNivhkaFVuDb1v4rsNc6PLVeYenrjo8X7N7rN0lW/PG0Rp33HyaO246yWixt3YtloqVIGalFRMpRdl1OVoocrTsUh6foFpwcO213++51nAvdcP9tDZLf8/00gS4/vYVjhw5cuS4XqE1LF8wRO3YvRs7rSwLDr/WqKlzz8DEme2rtCuzRm3dCXU7hWUZe/riy2ZCwd0CsVQS2jUzybCTpUleGabvgFf/YmcId7tmcmCOvH64BPWxUzB9O1z+1mA3Q449QUqmjSod9ZBq2QxQrTaq2UbHEh1LiLPKNAjL6pJp18EqribTG6H17ZeZ/93PrtoeX77MhX/wv8Iv/9Kuk+6ccG8Rf3D2/+Uv6mdpqxhZf2mN+uaQwUbS4SBI1eaNbdn9idqetX9/2n77tkQRZfpw99u3SdpW2cLq1DC7wqZiFyhZRoFOa587BDqpfc7WQe/1RAFgAkFGj6+/T3HMzGbvVnhI/3g2e2DzKiYsRqvdSypXsTkx2EqLkNKEsVJnEMaGBNdaIVfrIfUgIog1toCC62DZPt9c8vjavMPXFmxWot7XdaoieeNkzL1TMa8p1yjEdWZP3o/0XLTWNEPJSjumEcY4lmCk4HLr4QpHRotMVTyqr5zCqs9CeeO/56Ehz1823C8ODLEujPVuL4yBVzU2yZxw58iRI8dqtBZN+dSR1w3f7sp24OQD0F404WTbsSZHLXOM3U67rbVQPQaTt8Dct40AsFmnYe2CKU2a2EKLso0webMJomvXtlcPrxXUZ+HYfaY2fBgIAUdeC4tnzfExbxO249BSosMYFUZdVTqtmW62DZluh0a9jqVRp5Wm0yXJTsi042yZTG84RqVY+qMvrXGjBiG4/AsfYuSRR3bVXp4T7i3i3z71SywGi0Pt6wp7XVU5S5jLtt8h2UZt3v+WBlkC3d+6KiXV0NtkzMnYt+0++3Y5k7ztZcLCPKtr53aEvWf29C1Dhqbeqzix/n6FMUM0wyYUd5lwozefrNpJKg93j7DFbVOLvRXCXRhFyoh6K2KlHbPYDFhqxp1abN+xsW2H2ZbL1xZcvjbv8HK990ez5GhePxHzhkmzTBW6E2FuOyCwfK4ENiv1BlJpip7NZNnntSdGmar4TJQ9Cm7mMcvTJqhmCNw/A0dKJiBt0PSbAA6XzX7rIqybUoH+FmC2k9dx58iRI8daUMpYpk9912qH0EbwR+DEm+G5PzRq92bvD4YsLp0zZHsn1e0UlmVCwmoXTfDZZvJighVDOhQCJjwAAG6PSURBVI7ftzu269KEsbpffnp7hLtxBUpTG1vJ+1GeMu/51edywr0JaK0NQQ4zinQUGXIdhKhGC9kK0GFo9osSdZoMF7BTi7eN8D2scrK+U/X8641fKVSzjay3aL90AbnSWO/FEs/O0nzyK5QfuH/XxpQT7i2gGTU7ZPu+0gkmi+M9lu2ilRDphGS7+6g2D4LSOmPbHlwDnUVa/+wk6rOT6fuc9q72VpFmp2PfTuuhrzuEiX1ro4OIWzCkfGV2Z8NX+qFio1APG5iWIk0qTwPXdgNx0LWHDwGtNbVWzEIzZGUuQlxYZs5bIErSvwuuTYMC31j0+PqCw9OLNqHqTtAINLdUFa+fjLl3Mua2qiQ7YaqVph1LWqHEay7RLB3HchzunCoyUy0wWfYYLbprT/r4IzBkMr9tCT74gEkjT0siuuM0+OD9YuPAtLBhbHGDav8qM6C+OtR4cuTIkeOGQn3W5F7M3Lm1+4+dMIT07J8lGSmbPE6uzEJlyjzGbpGN8hQcf5NJ5varw1nDlYLaJTOu3ZgISHHoTph/0WTebOUcSEbQXoFb3rE10j55Bq582zzOdtqdXSfQUqGjXhLdqZduB8hmG90KzLY4htTqLSA9axGuY8izbWMVClBJyPQuCmVaa1QrMGS/3jSXjRay3uqsq3oL2WiiGu1NP3585coujLqLg8UErxHITL3rXcUZ3jh51/7YmROoAbXPWUI9MEDMsnDoKtAV26dgm77PRctfVf/sZtRnz3J2PVX8mkDcMiFgwxzYqkeNrWlXx5MEi21W4c4mlW821GwzY6scXtdK1wxj5ush8/WAi0ttFpoBzVAyEkpuUwKpbZ5tVPj6vM3XFxwWw97P4ISveP1EzOsnY143IRn1evXkMFK0oph2LNFA0bEZr3gcLnh4N93KyJljeM6Qn2uvZJhzYkfaCO86LfjY2+GDX9ZczgSoHS4bsj1USzAZQnmNnqKlCXMSmNdx58iRI0cXMjST46ce3prDKsXM3aad2OWnjWI7bHlY1DS/y6ffsrsT7mDqlVdm4fI3jcV8o/O0lQvm3OTo6zdvQ98MRg6boLhXv2wI82bPH2sXYfwkTN66tecfPW6Onc353sDR6ww9qnQ2gCyKjCrdClCNNioIO/XSxuKt6CQkWZaxdDuGQNt+EeHYRq3ehc+I1trUcveQ5iaynqx3CHUT2WgldvQhIQRWqYBwHWSmHdhacKYHtJjbQeSEe5N4/JXH+dATH+pc/+T8k/ze8jO859ADvH5kZ2YI1yLQvQnc5suhAQuRtK2yOkr0iF3oqNAFy8O3+hXnrp3b26/652sdYQumh5wxL4xuiqBtCVHbKNVbOako73JSedReVVvejiSLzZCFRsiFpRYL9ZCVIEZrTcl1sC2LpWabJy5KPnbuTl5t+T339yzN3eOS103EvG4y5lRZ9by1UirTsis0+QGeZVHyHY6NF5OWXS5F14b5eZiYgmHJNphJDdc37cqG7Cv+rtOC7zlp0sjnWqZm+/6ZIVqBgTkgCmvtE7a0jjtcyQl3jhw5cqSoXTK115PbrE+2HdMyS4Vw9QVDujdyL2oFy+dN+NrkHoR2penqjStJXfaJtfcN6yAlHH/j9iYihsXM3SZJvX4ZRjZqx5FBa6lrmd9quzLbhUN3wEt/YtxgB71ccQB0LE2ddBR3yXR62Qo6Kd5EsqtKSyMuCA0IYYhzWi+9yxZvFcVdJTohz10FOiXQbVS92bGiDwur6GOVi9iVorksJ5eVklmvFLHLJaySj7AstFLMfvQ/r20rFwJnZobSfW/cgVe+NnLCvQk8/srjPPb5x1YFoS3FTX794p/wo0ffPpB0b4dApwncI07RBIhZLiXbH6g6Zy+vawJ9UGxBWg4/Y50q4XFraymiwyBuwejJrQWyFHc5qVwrQrfCYq3NQiNkdrnN3EpAPYiQUuO7Nr5j0Qxinrtc59lLNV6eb2QmM30EmjNVxesmYl47EXPnqMSzs09hws5akSRSClsIip7D0fEC4yWPSsGh4jlYWYK7ZRt+2aSlppMcQ8K2xMatvwYhahhVvT8wrfPAmTru8u7O0ubIkSPHNYGwCWgTlLYT5wxeySjVMoKFl00f6PXIysolQ/COvXH3rOT9KFThxP3r15wHdUPIj90L49toJbYZ+BVDml943OTFDEOe48BMHpx8yLQY2w7GTphSsKC2OgdlH6GlTILG+uzdUWwU6ZZJ8dZhZPaNTeK3ubNGC9FN8d5lVVpL2SHJvepzau3u2rx1EG3qsYXnZshysUOo7XKpu61SxC4lr20zj21ZjL3zzQNTytPJl5l/8jO73o87J9xDQirJh5/48Lqp4//l8peYcMrJPr0E2rYsXOyBCnSXQHcV6BuKQG8GYd2Ej/iV9WdvdxtKGmI7bAhHYdSoomFjFwn3FhLKU3SSyndOgY+kohHE1NshwdUGz6omc+IisdR4jkXBtWgFkheu1Pn27AovzNWJ++xCMyM+dxyp8oD3MvcVL+GNdi3VWmvakaIVSYJYYiEouDYTFY+JskfVd6ls0LJr6zb8xEkQ1jd3v60ibJjPmj+y9j6VQ2YCIUeOHDlyGCvyoTu3T9ay8EfgpreC/KwpE5u4abVFWsWmBZllmbrq7YSFbQXjpw3Jn/0mXH3eTMIWRo29vnbRTNAeu9fss5dq7+QtsPCSaWG2Uc9wrWDpVZi6HY6+bvvPXRw3kwtzz+wJ4V5FpCPZVaWD0AR6dULH1AB7Nx1VOl2sQgHSVO8dmsAx4WKBqXvusXGvJtWqFWzuwR0bu0eJ7pLnfnJtebsrohXvOM3kex5h8Q+/iKp36/qcmZm8D/dBw1NzT3G5eXndfWrSNNJ9w8hNqyzcOYHeITSuwtStZuZ28RVzIN0Pe1DUMkRtPQKUhWUbQnT1Odgt95ZWw4+nH14lSSoPtmxJjqSiHsQ0gpilZshiKyYIJcQNSrFFMFmkFSlenKvzndkVnr9SJ4x78wXGii53HBnhjsNV7jw8wmTF2MirV+cZvfoiyx2CHZu23o5FxXc5NVFipOAyUnB608Q3HHQbnNLmLXVCmCC8xtXN3W+rCJvmxGO9z3ppMq/jzpEjRw4wVmSvbNpC7fQ5QnEMbn4rvPA5EwbmFAyh88qmTri1YASBo28w5HevIQSceJMhtVeeg6vfhquzYLlGlT/yOlO7vdfnTrZj6sVrFzZuE1a7YM6ZTj6wc47GyTOGcG+jRWvH2h3HHTW6o0i3g44qvZpIm1ZYRoXLKNL2zid4a63R7bBXde5XolNy3WwboWVYWCIhySXscgGrx8adkmuzTfjrBM/uA4p3nMY7fYRL//Y/AXDsV36JkXc8uuvKdoqccA+JK83h0utGxQi3ewNmU1NeIWFzRoscHSgJLQXHb4dxH17+c7h8zliF9vpL3WiBPQKyAK0hVUVnClrPwG4I3CqG2AVV6hmPVJonX13kykrA9IjPfSfHB9cMq6JZGm0oDkfWwljRCBOC3YpYacW0oxiptQnjs20uBUWeW3R5unaYZ54+TyB7CXbFd7htusLthyrcMTPCzIjf8wPdqofUw5jFZYfDyxGBiil6DlOjRaoFh4rvUHQztikFwWYmYZsBVKch0MAm1WFrDNoSNjnpuyUE2jzfep81XQE9CvU6lHLCvZewIsEBKHLJkSMHmMnnxhwcv9+Qtt1AeQpuf5chhgsvmbCy2gVDxm/6bpPvst8Tn+Upsxy6w1jgCyNG5R3U6WKvUD0Kh14DF76SBIEOcOW1kpa7J9+8s0FzI0dN/Xjjak8vb611tzY6JdCZemnVCowa3TbJ3R1rdxwnZFWYy10k0p1wsazqnCRyr07pbiVK+fCwyoWeWui0NrpDoBOV2ir6B4pErwWtNShtJjukQiuFlsrUuSco3fuGPSPbkBPuoTFdGq4usn1plOfmcvV6EOIY/uJPzWnp3a+LGZ/Qm+PJYRM4DNoF24b264xd6qUlo+7t5W9A04GRSWjNDX+ftgUXx2GOzad0boRYQzwJUQDuLAB/MbvEx5+5wHzQJWmTBZcfu/MoDx0eW/0Ys5Nm1rk4YGzaKNhBrAilpBlK2pEikgqNxsZG2y4XIosXA5vn24KXAkGos38URcm2uLlS4EylyC2VIjMF1/SaV8ClgMULLYJIEsQKpcGxBb5rU7WqOMEpit4UnnRQbVjCLNtCowATVVic3fx968DlUdjt77uKoT0BIXB2g3FenTGWwXL+G7SX8MMqN92kc9KdI0c/mvPmuAKGCINxYpWnd2+ivHHVOJBmXrM7j5+iUDXL9B2GJDaumNe1lV7du4nSxMEa04k3gV+GC0/B/Eswdtyo7+1l87dzPDh237bdAaYmOkSFoVGcwxDdKKFf/Cqq2O4md7dDkBIVJ+QsE+KlobdG2rZ21Nqto3hAoFjG0p3Z1qndHhKi4HWDxPps3IZUF4zNu1zYk97YW4XWGqQ07cykSgi07K5LlZlg6Kr1wrJMHbttmckQ28IqdsN3xR5PPOWEe0jce+heZkozzDXn1qzjnhRjvLZ4M/bBn/zZc1yeFXznme5M0tNfd/ALmtvvlMwcHtLOEq7A1BkYSSTi0hQUbbj4VXBa4AzRnmunEIYwUoHSJk6xvQosOuAEuzDWADwHRspgWfy3C4t86KuvrNprvh3xoa++ws++2eG7jvW1ABsdgXgOfNOrPYoVrVgSRpKVQBLGkkhqNBrHspC2xTnp8EJg8XzL4uW2INa9H/6Kpbndb3PzaJmTU8c5UvIMwU4QKWmSxGNFrBSubVEs2EyWiowWXcq+Q8mzseMSnHsJPLmzs/NRDJXi5v6OKUQRlpUZk9jFWdKwDSXP/H02staNjkA7BH/93XLsHGQMQWShNtOuJEeO6x1aG8VXWHD4HpPonU40X/m2UYXHTu58AKqS0F6Cm9+2d7XTQhw8UnuQYbvG1j5yBM49YWz5YGqrj77eWL8rg9t3GSt3mCHSUXI9QIUhqtFENRvoZgsdhYZ0x0apRkmT2zI7D/YyolAxqd22jbAdbN9HONa2w8a0VF37drY39Kq07ubWw8X666A7tdHdOunNhovtBbTqkuRe9Vl2t2tjv+/+BZKEddsykx+WhXAd7LKL8Fws3zOXrtNT847jIJxMm7OEfI8/dBuoCCp7kM6fQU64h4Rt2fz0/T/NY59/bM19/peRH6TgHdxZov3C7EXBN766+osftOEbX7W59z7J4aMbnKyqEHwLxg6Bn3ksbxJqFQhWhuuHvSNQ4GjzZfU38YPmlY3VNw3q2kmEgTlAFV2k0nzsG+fW3f1j3zjHd5+e7NjLo1jSsn10FFCrN2kEMVGsiJRCAK5t0RQ2ryib51sWzzctzrVFz08iwKijub2kuLWkuL2kOOpriq05apN3ExSLRErSiIw6HiuFY1kUXYtjYwXGSh5l36bim5ZgPVACfBcITTuunYBW4AoolTb3d0whSmZMVgS7eWCLAiiNQ2mIz0ypZH7VXQXkv0V7hTyq7tpAFAnUXpSA3OhQCpZfBX8UTr15dWhZ6TSc/0u4fBZK06ZLxk5h5TJ4x6B8Zvhyrxz7A3sCjr8D7R41pLg4jRYF9FyEvnDWEOYwRDWbqGYL1W6hgxAtY2Pnjs2lOXsUxjBhOwnBcgzBcstQTK6n5xUlAYsvoyvGzr7q7HNAwxatFLoVdPpBq6S1lVq13kRvNlzMto1du1xKLrNLqfdyiHAxlSy7fWDSSq8mzD3rGrTqvL8CTBCcZRnynC6Ohyh5WJ6N5XlYnodwEweB7RiF2k3Is23ammFba06KJNXyqzfGyRIILPa+DCwn3JvAo6ce5SNv+wgf+vKHmMtYiSfFGD9a+kHut+8hzn/fe6A1fOvplIz0fzlMkvu3nraZnI7Xd5e16+CNg12FqK82xZ+G5Xn27NsjIxAFoLB6LBvBHYVGbee/eVEMdgUixdfnalxphuvufqUZ8oUXr3J6xGexGdEIY2i0mVqKCLw2lm1zNXZ4JbR5sWXxUkswH/USOAeYchW3FDVnSorbioppr7dMIA4lzUhweUXQbDeNgu0IDlc8RkseZc+m3EewtYRY9r+vFlhlCJZgp7htHACeWTb7dwTQHigXghDYxVq9MITR8SHH6AE+BJFpW5Zj1yFjkFIks/I5DiqiUHH2XJXgcj4RNQykhD//gjmoPvzWiKFLHZU0oaaF4zB1CzznAQNKYdTdsDwOr74KrOwM6VYxtHyYvhmaS9t/vBxbgwYt40SxjI0dOE5rnyXEsVGnoxAdhOYzIxVaXYCUsCES0qQRlrFuC9s26riVWLqtPkt3llSth+g4LMVQ9yGWiFajd2k2EO3kMt3WbiI28RuvhUAXy+hiCV2sJOvp9WS9VEYXyuD5G5dXxMDy0E+/aWgwNc9KmYA3pUzbseS6VrpzjOuMVCS2bUsgLGFeg50qzA6Wb/p+p3ZuYQuElVy3LLAT8t0vsETsbthVVMB3bG66W+LuIQvOCfcm8eipR7l34j7+t3/52zTdGqWoypHaGWpY/NF+D+6ahCBowx9/eiO2PJNcPrvG7TvY9mNDuEAFWG3ZHg7HdnAsKU4CTeBpnnXjoZLQv/r5c7Sj3p+AOnf2XD+cLA8PMYLFZFmNKcyv51VCTCny1o4bPt3PwU7ABarA2W08xl5YCLt/2+Gwk+9RjuFwhFu+e7/HkGM9KGWs/05xfzOjrhXIDGnxvWHfMw0rczAxA4duB3e9A5ELlVugWoG5Z0EtmLrrLUPByhWYOALTh01nkBw7Byk7ynJKmrU0JJpYdm3dQYSOgmR/2Qmu0kohEpEFIbAsG2F3CRq+g7D8bs3tdhC2oVFD1GvQWEE0auZ6Y8UIHo0aYmUBmg3EJsLFNEChCCVDmCmW0aXS6uvFstmvj0QL1ooaGqjJbgtZ4qyVQuvMdakyyeRpG2MMabbSemeRqNAOlmsjXKejLKd/I2EJY8lPCXVCpg86pFL7UgaWH3a2gBFvhGO1W/d7GDlyDERZbzBTusn9cuTIkeN6ge2Am6fbbYgsV3BccIY5W2wtQKUCx+4EvzLcE/nHwLPg8tMQz0NxckvjpbkAlRE4eruZIcixPpTMJG4n9mwp0XEEsURFETowddEEoSHaShrrQxJa1YEmUTltLNs2hMy1EUUvIXA7QKLjCBICTaPWXa/XuteTdRGt7/Drh/Z8U45VKkMxuSyVzbZiCUqV7npCKNOvx9pnUWkbsKSv9jYDAg2BViCN6ty5rrSpeyatezaTGkJYGfU5sXD7NsItYLkOuA5Wqj4nYXAdIm0nboJrgDxvCaHeFzdyTri3AMezeO+/eoAX/p/P4HvglIc8sNyAWJgXPPnljT9m9z0QMzG5xmxTYw6qx+Dw3Ws/wKWvQ/2yqQfbbaxcMm02Jm7e/H3DJpz7oglN22ZwmtKKKNaE7RWiMOTS6BuoxYIzkWLk2QusxAMKkVJo+N1y2HOwmPBdzvght7o1To8UOOZrsh3ElNJEUhNIhUxmq90kRbziO/ieTdGx8bK1Nc2rUD4ER1+3rdcKQP0KXPhLKM/sTMp7fdb0dJ+8ZeuPsXwOLn3ThL/sBoKaCWQ79eDwis3V50wIzRqhMzl2FnEEweJVHHeLRCFHjgOIrHt2YV4wfWiDriJx25RbHXrN8GQ7RTX5/bz8tCHtm1W6w7oZ8PTtm3/u6wWpbTtOVed0Pe4S6DBEBQGEoSHbiZWbNPE57ROdCNEdtdm2jX3b9RC+uW6CxbY5ZiX7SPMaZLpRQ7Rbm3po7XpQrkKlCuURqIxm1quGRLfnwHOhPLbNF7IGwibEybiFbdLXbR8se20CndQ+62xCjtZd67UtDJm2LUTBM0Fh6dJHmo36nLm+091xcmwKOeHeAoQQuL6d/uYMN/N7g2L6kKZQ0LTbMHguUFMosPbBXEuwFIzNgLvOj0V1Eurn9uYTbWsz07neeNa8bwn8IsjNJZUrrQilJowUQSxphjGt0LTlEsEy0vaZLwosG5a15M6JMk/M1dYehgUnR4qcHilyulrg9EiRqudQqL9KZfkcQcFHKkOuw1ijUQgh8Byb0YLDiO/gOza+a+E7FmvP84bm4LaV96ofpTJ4ngkp24n6ZEtt/e+YolAwnwena8vaUQRtQ+b9TUhyxQrYan9+3VVs0ohvIGgNtq2vid6kOXIMg9mLIpO9Ak9+2aFQ0Nx19xoBp1qZydXJM1uffKweAbQh3c2rptXnML+pKjLtpKbvhJHrZJJRa1PnHMuEMMerCLXOKtBh1KtAd+qgSZzKyfEpQ6CNsukifLt73dqB3zCtoNXsUZx7FegMqW42OpXaQz207RjC3E+gV12vgj9ErspKCZZeNe/3dhVorbuEWUp0e8W87cUJtLbR7bqZGJJXEU4B3EKPAr0mgU5Jcyal20rW97YXbo7t4sY6M8qx5xAC7rpb8tSTNtlaEQPzQ3vX3XLt37o4AKewcXsPvwq2Z9LMrV20k6ko8SSWtnZ/y4LimElwXQNSG5IbxpIwVj3kOkqUZcsSWJbFnHS42C7yghrnxflLXGoErFeRVLQtvufEJG89Ot5JKE+fsxXFtGIH2hENHeBYNp5jMVlxKPkOvmNRcG2czdiMBDuXyO4WzN84DrdPuLUyf4vttmdziibERcWmj+hOQ8Um6XczcAuAMK9xL2e0g5pZnIJRqPLZ9Bw5rjnMXhTJ8boX7TY89eQaXUWa84YgT5zZng21etQogVeehZVZ445az9mjlXE+VY/BxOmtP+9uI+5atzvqc2rlTrenra6CAB1FZntC4IwCLftIoUhqbVMiZicEurCzBBoMIQ3aGfW51keoe1Vqodc7C+l7aCG6JLlSTS77ryeXA+qit4XCGNiXQbYHngsMVKHTunSVOAKAbg20BUJD1EAUyoiJk4iRKayCj/A8c0isX0Ysn0WMzoDrdsi0yAn0dY+ccG8TUrK7aXrXASanNa99g+Q7z9gEmW4JfgFuv1MyOa2J1noPW21jEZOusR+tiZJp09RoQWEXCXcYgPJNQnWw3njWgahAqMCDWClDrKUijBWtUNKONJFSSGVqcmzLwhIWV2KX86HFK4HglcDifCCItKCbkG3e3BHX5mS5wMlKgeNlD6UhkJqqZ3PzSBEhIApj6rEiiM3zWAJ8x2bEKTNaGmGy7ON7RTxHYGWIk5YQDfuyVQzSAe1v/b3qfeNAlE2P1e1yuTj9O7rbG5tyQHmm9/WOF4ZqiATowubGqDzznrdDQ373Cs0GjN5k1KbFS4Z073i/+YMHuQ+1YDk2B601UaiRUiDjnT1nv56wpa4iUQOkgNFbAH9rHR+yKEzDtA9XvgPLlw2RHzTBGqxAWDM132O3gLINOdptZBO3MwncSJXYuCU6TvtEGxs3UprQqo76nA2twtiH08Rt2zY1z5aNcDzTDjVNdl7nc6v7LtEMbG/VgzCA5oqxcjdXehXoZj2jRq8ghv2hE46Z7y2WDEkuj0BpBEYSG3e5mrk+YgLGhp2k2YE/r5aqG+gmJTouwOJVtCf7gsQA0jRtECJRm31TA225Lpab1DmnhFloRHseMXY7YuZOKIysHoA8ArM2un4Z3MNdA0J+HNkzJH/6Pe8skhPuLcKyBL6rCSLLdBfKsS7GxjX3PxSzvCQIA9MFYXTM2MiD9d6/lgJ/fLh+mtYUrJzb3UnClgS/BIHFZmZatIYglgSxIqqDtaioL9cJFUipkImlyQawLeZil4uRxauh4NVQcCFMyXUvikJz2g05OlLl2MgoJ0sFRl27x94aq8SOHkuuLpp6IscSeK7NtO9S8R2Knk3RtfGsMsRV0/da2Wwye6QXcQxxAULHOAN2AnoEWvPbJ9yhBOFD6LL2bM8w47FAFpKJmG2OqR8yBlmE2IPmJsaoXTOmODZdwvYCKjbvpXsIiqdg6RysXAQR7myP3QMK31VYO6Um5dhxxKHiN/63OWCXshZuGAzqKjKWLHPJslMoAqfWuX2CbpeIrXYM2W3YmNdxUOEny1R3kwOMJstOQwEryXJ5Fx5/KFjJkn6Gb0+WncIwn0kPOLGDz5ljcxgH4JYf2IMJugxywr1FuL7NTacDlBZQOsg/qNc4FpbglvtgcojarIUWPPdNmBjbPTvrwjwcOQ4nB49Ha00QKepBRCOUNNqShUbAQiukHUraQuFWLG4aXaDiRQR2mUuByysth7N1m7N1i/MNi3gQubY1N1ckN48ozoxIzlQkR7w2hWCeuePfS+SPI5U21vBQ0o4UsdJ4tkXBt5gqehyq+IyWXKoFl0rBwRmUHPqdp6FxGUa2+bluLINTgtec3DlJ6coyvPg1mNxmQFVtydgXb92BE/CzI3B1FsZ2OKynuQwIuPuksa1vBs8XoHYRqlssfdgsGvNGhbrrjBmrPmnC2176AoyVrvsWPdZiDdfLCXeOHDly5MiRYzVywr0NuK42auoO5DflGIC4DUUHxibM5UaYmDYkUTR3L6nUi2F8HIoO7UjSCGIagaQexCw2Q+brAc1Q0ookkTSzZ75t4zuC2BIsRjEXFuGPLp/m5brDxfZgIlVxNDeNSM5UpSHXVcXhoupJDddKo1p16lica9sEYQtbCIqezehogdtGfMbLHqNFl2rRpeAOSXomDkHz5e1/rptNGD8OpR20Wler4Gtw1fZqBa2W+bwM87naCBNTsPjNnf8daDdg7BRUtjDxMXEI6i/s3W9TfRkOP9A71sOn4cpfgqhvvg79WoO7t9a0HJuD41m896cO8cLnv44/PoWTtwUbiE11FRltmBTmI6+Hyg51B9G6Y/fNhoB1LNthCx220HjoOEKFkUncjuOk37BMeg0nqdtp2jYkTZCtjG272ze4d9seTZyl4WKplbtZTy5XumndjTo0a9DYZLiYZUO50q2HLiU10eVKktA9kmyvGrvhHtZYrLJ066SPt5RoJXvceSK116ep6L6P5XsIz8fyPJNY7NgI1wXbwXKSXtGbTTKOWnDhKybMtrCFXvDtJUDB4ddDeUgxQEkTELh8AUZm2L5tL8ewiJt1ggCcnQjz3QRywp3j4CJsgluGwpAn64VRKI6bfpw7RLi1Nq2w2rEkCELkSsSFy5LZ2YusBDFBZOqgQeNYFgXXQgCtUDJba3N+scX5xSbnF1s0w2xBVZeYTPqKm0YkNyXK9c0jkulCb2q71powqbkOY0WsFRaCatxAlKa45fgUkxWPasGQ67Jnbz01uTgGmzi4rwkZDX/wGRZ+xdQFx23wtqHeag3+gPqqLY1pBFO0tv2k0x7EAVQObWNMewQZGkfJ6NHe7V4ZSlOmjd6w3+EcOXYBQghcT2DbGnsL5+M3CobuKjItEfVF01Zx7NDg371OnXO2XrZb92xSuGOIQlQQoaPQhIX1hFN12yV1eXPS0zhJdjbtqSyEZyPstO9z0vt5r00nWkPYHhwotqqHdA2xiZpzLYSpgU4DxNIwsUFJ3YXSngcVmDC43r93h1in7cbQyd/NSYLCbITrm7rogrkUjo1wHEOik0uREundek1uGQ7dDBe/ZrqgbCYANW4CARx+LYxtZuLJgplbIVoEWTfBvzn2BDoJ5t/rziL5YSfHwUXYgPFTpnfhMBACxk7D0vlNP5VUulNjHUTmsh7E1NuxIblSIcIVHCl52Rc4hQjXtkxd9ErAxaU2F5ZanF9qcWVlcFG6LQSHRwucmChyS2GFu+W3OTJziFGvl9xqpZNxmOeV2iSTe47Ad2ymKgUqBZeSZ1NurOCfuB3rpqmBz7kl+CMmKVbGJpF9O/B22GngjZjU87i1dcKtpDkh26mx+dVkTO2dS2TXyQnKVg/CfsWQ4L1o09VaMsFGlZnVt40eh8WXdvf5c+TIsSMYpqvIHbc0kJdnwSmh2wU4dw4lJYQBOopRYTg4ZTtNfO6ZSaabtG2l/Z4t0xLJ3wfVeS1E4dqp3D2EuoaIN5cJoovl3pTuDqEe6b1eqmzP1bUFaI05Xq4i0iYcLrNnR4U2rcdsRKGEVSggCgUs1zWJ3BkibSXXsQ9IudHIERi5bNLxh20vF7eguQTTt8Losc0/p1+B6gmTyp9O3Oe4bpET7hwHF7K9+b6a5ak1iYbWmlAmxDpRpttRzEogaQWxSQqXCqVBoLGFhWtbCCGoK58rjYizwSGeW1rm4vIsl2tBkiS+GqNFl2NjRY6NFzkxXuTEeInDowXcpGa6UD/H9IUGdSuiFdJRrxUaC4GXtOCaHvE65Lro2RQduzecKQBK45t7jzaCP2LansVNsLdI+OLQTJTstNJqO0aBr13a+mPESQsQr7wzY/KTSYCotXOEWwbm/duqMuxVkjG1d6+8IkVQg+kHBteZlyYBK5nkOCAnVjly3HDQppWRNFZr3Wk1pTKkWKFiyXgkufu4z3OXJgll9zvt2xFnRi4wMjtHK25D9TjMv9h5+NXW7Eyf50R1FoMyQ/YLMs4Q55Xedld9ba9EuLlkXO0VuspzT2urkf9/e/ce3Vh53o/+u/eWtHWX5bs9HttzzzDDZJgh4ZZArgSaFFKSlpPwo80vQENpUgJtcyDtKZeuhGRlldAmi4T+SDjJak8zzW0tmuYXfpOGQFKYQIYhISEDDAwwF8/FM7YlW5ctab/nj0eS77Yue0v2+PtZy8u2LEuvtmW9evb7vM8zY4U6Uv9J7RqVU7tLrcpKgfS0CupTA+niqnTAL4G0WUzr9nrl71xM7S6tSDf65EDddANoWyst7qzxxU/I59NAakR6z7dtqH31PdojvcCtCecXKGhJYcBNS5OyAehVBxy2P46cJwArOYqMHoFVsJHJyR7rtCV9raf2s9YgFbu9HgO6biCZ8+Fo2oPDEwYOTUgBs6OpUhGzUvA5Ur4/06NLYF0Mrle1BNAXDyDinx58lFLCR7MW0rkCkNah0kCukIThC8PvNdAVCyBsGgj4PAh4dfhnBtfzHSOnAypfCDBDMgHUusKaT0tLKjdSm4PtwOmDtf9+Li29qp0am+GVrQyJI5isUFonKyUnPWodoy8sBevyaXcD7vnSyUuCrXL/1jjTyonqpWwoW8nqoi1fl1aSywGUlYZKJYvBtA6lPBI/FWxpg2PbM/oIz9jorGlo1XWc2zqEJ06eAwDY2vYK2mIWNM0GLAWtZZ1kryw1ti17oBcLpCeS0NITVd208njnSOOeI5AORwFvo9pDzDFOW02uQJdWpUv74dVkarem67K3YuqKdCAwO5D2esor08sykK5GIA7E+4GTL8r38wXA5WB7PdCxsb6TyWZYCrieeokB9xmOATfNzUrJm2k7Lx+aXvt+0qJUTuGsf5GJ/fn/oSHoXSCYzBUDDn/LrB9l8wVkLBvpnBQnS1sFTFh5jExYSGbz6BwCjPRRJHwd5QQdjy6r1R5dQ0b5cNIycDRl4EhKguojKQMn0hrUPCk9fkNhwJ9GV2sMnR1d6G3xY1VLAK0h36x9IHnbxngmj0x+avE0DaZHR8BroDPqR0d3P3o9XfAbCoGWVviKK+lVyWckqHX6RVrTgFAnMPF87beRS0uA5dSK71T+KOraY55LAfG1zq64hruA0y87d3u5tGR3eGqseqbrsro8UseJiUoslE4OTNnHfYwBNy0JS6JverHA1/QVZgmCVb6Yem3bsvqYL8DOFdN6S5crGyiocgAOWwEFC6qQhWZ45f9O80CzswDSgLJlf7M/BM2jy3yuaxJ0zUEBQDqLlpEXYVoJtJgJ2LE+IDsBhLqBQE/j+gYrBWRSstJcLCqmlVaeJ6Z/RmocWhW9dZWul/tCq2LArIqrzyo8/XL4/JWvYrpwbOSkSWkVupTenYfKy3NJA2R8mjZZZMwwoHn90CMmdNMPzecDvJ7iinQpkJbv5wqkFWb09c5V0tx7mQsNAjkdGH0VSKelz3up642y5f1DNikr29F1xe6wdR6TQA+Aw1Jo1tugziIrWKEw9SRj4zDgptnSI/JhRqR4hC8EjJ+QILyeQlUVKBUpy40nYGl+jI0bSI8mkLYKGEtbSGTyyORsWPmC7G8upnTrmgafocP06MiHexBIH0dShTCUlhXqoylDPk/oSBXmnzTDHoW+UAF9Ibv80R8qoMNnIZAewonVl8MKSHBhK4VMTgL/TK6AbKEAKA26DgS8BoI+D3qLQXnE70HY9CDs98D0FAO93GrZ3+qpMfDLFfcMu7KK3ConWmplpYD2jc6NZypfGIAmb0prOduezwLRKrcqLMYfdfb1O5+ufjvFTKE24OR+Z8Yzn4XSyUu4j5uWAF2XfulZiV3rp1QxNduestoswbAqrSAXV6DtfAHISRVmCahltbEcLJe+nnrzmhQI03RNguNioTBoXilobJQCZqkvAk8cCMShzIiciAUkQChkZa5InZKsJW8A8HilJ/I8NbuMV1+Eb8+PsSM1Lhf8DrCDIVjnvROFN24D8nWerFQKyGWhFYNlLVX6nJz7MrvyP5iCFBezg7LybAcliFbBiHwORaGKl0lxsQrnkOq2ZldFlSqsF7MUMLXYXImGcsq+rE77oAXD0E0TmlcC6alVusuFxopz5LTgeao8iv8QZ3ggXY1AP4CIZNKdOiknvu3iE8Awgcg6IDAIZBb4J6qKH/B2S8XyMANu1xV0mN7cwhmkLmDATbOlRoCes4G+NwOGT86avvC/ZZ+Jb6Dmm83lJ1/uH309j50dNmxbUrzTORtpK490roB8QSEwfhQnQhtx1Doh28M0DV5Dh8/Q4fPoCPi9yNkKpyayOJnM4kQyixOJLE4kMziZUEhkt807Dh0KnQGFVcECVoVsrApKYL0qZCPmVbNOYiuloDIpjNs+HMn4MDExARsKmqbBX9xr3dMSQFvIh2jAg7ApPa6D3kVSwsMd9QVEubTs/6m2R3MlypW37ep7misFqELdGRHzMsOTRcqqPQFk52VlO+DCvnfDI5XZnfp71LsibEbcrcGyWDp5Cfdx0xLg9elYszoBOz5ZSVgpNa0glMqX9rVOti6Syto27KwUA7OtAlQuN5mya9tQhWKwXaw6raCKG5aKSoW/fDq0QHGv85RiYfJ9DVVz7QIwfhzo6gU6B2W+nkaHdMQIAIWgvKEfe01qbATic1wfyLxwEImf/HjW5XpqAv5HH0Z0sAv+N26fczjKsmAnk7CTCdiJhHxOJsqXFRKT38OyqnqoWjAIPRKFHolAj8bk88zvo1HoobAc1yVCFYrPl1xOMhZKXxfyk8+Q8v5nDzTDAz3ghx4OQw+GoAf8xTZYXsA0ofl80ExTrt/wMuwrSTdg9QNDv5KTVdF1QKhV/m/cWORIasCLLwP+pHP1ZWhu6Qx05OA1G/s6wYCbpisUz+K1DMg+15L2DVIgZY43zbatkLcVcsXgOV9Q5c+lPdQ/PaLjwRf9AOR3//xxAy0+4Or+CZzTmoUBHR5DUr89uoagV0co3oOg14Ph8SyGxy2cTGZxclwC7JPJrOyFXkDcV0BPUKE3aE/76AnamKv9Xnl1vVg8LZe3IcngClErATvYilg0hvURE1G/FyHTQNj0IGR6ysXQquKPycmMWttJ5dOS+u0GMyqrJPlM9SlO+bT8TtDhlmAlvoi08chNVB9wZ4vFUAIO7bUumVo4rd6Au2BJZkm9bULMCKA5fBJgqkxCtnzMl05ewn3ctATkRxPIvXoE9rG8tKGyclC5fDlQLqV2l1O8JUcXQDGA1qTol25MFgfTfLqkcJcvq2FrUPEepn+u5FcKQOoYEO8FujdXsP3EDwTWAS3FrSaJISCnFQNveX1Qto1T//XkgreS3PWvUMPHoJJJFBLFILr4WUk/sYpppgk9GoVR/NCjURiRCIyYBNBTL9O8S6t5ulIKmBlEFz+g7PJead0jFbp1jwcIeqGHWmCEQ3JiwPTJCrVf0r1105RgegmdMFjRAjEgdnFj7svfC4wNAsMvAJG1jbnPlaqUWdRgDLhpuvQI7GAbrEAncplcOQDN2a3wFkKwjx1FxtcKK28jky8WIcvbyNsKBduWjCg1PXnp2VE/vvLi7H3Go5aOBw7E8H+tyaIjoHAireNERsOJtIYTqbMwbCWh8JsFh9sS8KIjYqIr6kdnxJSvIya2jD2GiBorp39PVbBtZHNSsTyXLyBvq/KKhNfQ4DEMREwPojEvgqYB02MgNJ6Ed3ALvIM9dR/iskBLMUiroTqlKqYxOd3nusTfIpNNJlF9wJ1NSmA1x/57RxgeacFx7DkgVE3fS0hKZaTb+a0R3qAEyJmx4h7zOpS2btR7O76wnDTLO3ASYC7WBNC+fvHb5j5uWgIKI6NIvTgELa5BM4oVs4uVszWvZ0ogrc+7t3nJUDaQPC4nu7q2TKaQV8LfAtV5NmwthsLRF2G/9jsU0nnYGRvZY6dRSC5cTEylUkj+x3/MfwWPZ3oAPeWzEZUV6VJArZs11qhwmSrtn7csKThmWeXAutzaTMNkUTGvF3ooKCvSkTCMYFACZ9OcDKJLq9Nclaa5aBrQ+QYpnuZkxxNaMhhwn6EKtkLBVrCVfC6UPttTvi/I13lbWlJZeRu+sUM43nIOTjx3Un5WkJ8XbIXOsTi6Rp9FIuSBBg2GXvqQVWm/xwt5D6MB0DCWk+D5Xw6WgpuZE418/62D879Z8Bk62sI+dERMtIdNdIQlqJbvfZP7oWfest0FnDyKlJ6Xkwa2jXwx3U/S0zX4DAPx4v7qgM8D0yOVwU2vPnvF2tKdD279LbK6kB6pPuC2UsVAxqWAW9eB2ABw+Knqfzc7AbRvcreaabgLsPdV/3u5DBCtoV/mYjRNUuiTx+q/rVxKAtR6J1xfqJgJkK5/tXwuBWvx1e0S7uOmJUDzGPB1OZzd0mhKSU2VUBvQvbX8OqGUgkqnURgbQyGZLK86lz5P/doeH5fAsUa+DRtgrl1bXoU2olHosRiMaFRWa5dwUKlse/aKdC4Hlc9NSzaTFG+fBNPRKIxIWNK8AwFJ8fab04PqJbYCT8tQpBeIDwCnXwNaB5s9GnIYA+4GUEoVuzEoKVyhJrszKCVBcelyu3jdmZ8LpespCabl9yCBZMGGbUs6dL4YQNvFlWZVDLrt8m1IivTUViAaNOi6Bp+dRbBgYNzsgVfXEfBo8OgaDEODR9fhC29E3H4FPi9w2g7gZEbH6ayG01kdp7IaTmV1nMpoGC5+llZalVkfLWBtpIBOv41V+ghao0F41l6MqN8z7+QtKeB2sad2QU4aFGzYSiGWDmCNlUfeZ8PvNdBm+hA2PTC9k0G16TFgVFI0oWBJT2+nV+c0TVL3x45U/7vZRDFV14VAqiRcXD2upjiZksq5ru3fLgm2Vd/7WhXTRJ3uW14SiNdXaK4k50DBNKBYbb4dGH6x/tuaqdq98MFWcB83UfVsKwd7PI3CRAqF8TTs0dMopDKwVQSF1K+K+6IlvRv5Kl5/NA16KDQlbTsMO59DZt+vFv3V6HvfC/9Gl4pi1mGuYFpZllTzVqr4XkKD5iv1i/bCiBX3gUci0l/a55vsM11amfbwrTI1gK4DnWdJsbZ8tvYuJbQk8VWkRrZSOHAiiVTOhjXlxKYqBs9AMcC2S1+jHFSXr1fc42NDou/JIByTl824X618W9LASoMGXdOgabJyqxc/a7oGj6ZB9+rQIZWzS9eZK4BVCrDHR3HS14cj+QjGTiQxlsphLJOTz2n5SIxvxFiusuBLg0LQUJgoLH79K/qzuLhb3iwEkicw1n4uEgFvuX91tpi+ni1+lI6p15B2W6bXQHvERDzoQ8j0IFwwEXtlP3yRILz+UH1n3EuryfWm+M4l1C5/mGoDkVwKiG2vbe93pUIdxb23ycpPNuSK6dBBl1eRAi2AGZP09UoD7lKqttMF00rMiBQRq7V6eolS8vicEGoDTlRXnKgiVkpWzyvdNhBs4z5uoiKVz6MwkYY9npkMpCfSKIynYE9Mv0zlqjuJpwUC86dxly4rBpgz9wor28axv/1bFEZH5719Ix6HuX59LQ+7LosG0wCgG+UUb83jhRFvkVXpcBi63z8ZQE/9mvulaSmJrZaP5BDQ0t/s0ZCDll3Aff/99+MLX/gChoaGsGXLFtx3331461vf2tAxFGyFJ185hacOmQhqOWzqyEOfUmAFKG/xmfwGpYC3VItFK7ZM1MuBM6b9fP7guFJWARjLaUhakt6dsDSMWTrGchrGrMmPUUvHqKXBsksB5UIrYhJIeDSFVlOh1bTRaiq0mTba/PK51VRo98vn/aMG/p9nFq+4GDFspLJ55PI2cqkcDqa8SKhxKAA+jw7TMODz6miLmIgHvAj5PQh6PQj4DAR9BgIzK4LbQWC4FcinAK3OPtW5lKzYurGnJtQugVo2WXmQZUspN9f2b5eYYSnKNna48iApm5QgzHQ5qNINSVM++kzlq+lWaWwuZQWUCqfl07VXGS0UV46dGqMZlf5CtVSbX4g1PlkMrRLcx01nOFWwYafSKIynJZieSBeD5tSsy1S2ygrdXg/0cACG34ARi0Pv6JsWQJcC6nqLi2m6jpY//EOc+l//a97rtHzwg47vcZ9zz/SsNO/iyrRHVqeNeAv0UKi4Mh2AbvoknX3qyjSDaVpudEPqMoy+7l7BU2qKZRVw79q1C5/85Cdx//3346KLLsIDDzyAyy+/HM8//zz6+xtzJuhHvxnCXf/xPIbGMgBk/2LbIRvXb8rggk4H0klnUAqwbGAir2E8p2G8+HkipyFZ/DqZk8+J4telj8wC/abn4/doiAR8iPm9iAW9iAUmP1oCXsR9ChtOP4qop4B8BZWez4oX0GbaOJWV0wpzPELEfTb6A2nklY6AkUMsEsHmNf3wxzoR8BrloNrvWaTN1lS6AUR7pbBWvXJpIFThXtVq+UISMI4eqjzgtsbd3b89VUs/cOpA5de3xoHOLe7u3y4Jd07uz6jkxJSVkrG5lRVgRqV4Wq6OgDuXkttwKpvCH5tsoVZt8buF5FJAdP7We3OK9Ul1ZKJlQikFO5UpB8qFieIK9HhKLisH1WnYqeoqdMPQYYQC0EMBGKEAjHBQvg4XLwsHy1/rPi+QGpb/5VXnOvu/PEPgnHPQdsMNGPn3f4c9NjY53HgcLR/8IALnnFPV7ZWrec+1Og2U3xZM3TNdTvMu7pnmyjStKC398v51/IQUiKUzwrIKuO+9915cd911uP766wEA9913Hx555BF85StfwT333OP6/f/oN0P4s395Zlaa96mshs//OoD/e1u6HHTbCsgWgHRBAt9MXr5OFzSkS1/nNaTyGtIFCahTUz4m8nLZRK66vdAzeTSFiFch6lOI+RRiXoWoz0bUq9Dik4+YT6ErfxT+eA8mVr+tgtschG94bzngVrZCrlilvFRkLV8ASk21/nC1wlcPRIHy3vESOZKfPhc4b7ANPkOHN3MKmtEDrBuQatT1CHdK65S6Kff2/QISiAy/VPn1s0kg0uVOL8iZQu3Sq7WS/USl/RPhdvfHBcgKa2kf92JVx0uV80Mujk03ZBW3nqDSSkpWgVNvqM3olL3uDt1mae9LtdsGAi3F/TAOr7YTVUEpBZW1JtO4y6nc6Smp3ZMr0uV9YJXQtGIA7Z8VNBuhAPRwUILrUACav4qK1bmUbDtq3+hqsF0SOOcc+N7wBgz95V8CANr+/M/h37x51sq29DGf3RZLqnkXZMbXtMlq3j6fVPEOhyWgDgQmV6SnBtPcM00rmeGVVe4X/0+xXgr/H84Ey+avaFkW9u7di9tuu23a5ZdeeimeeOIJ1++/YCvc9R/Pz9MlU3ZWf+HXAQQ9CpatwbKdXUXToRDyKoQ8QMSrEPJIIB3xKoS9CmGPQsRXDK69ChGvjahPIWhUsKCnbATHUxiOzc4SUEoKsVl56bGdKyiM5OPIpxUm7CQKuhc6AI+uwWNItfKQ34egz4OAV4fXo+PcQQMbu218fq+O4+nJ2+4JabjjzRouG5xypjqXAmIb6w+2gWJ/0QqDxfnkiz2R3UyDDbbLC2zBkvEuJpeSPT6NEGyTNOxsAvAs0oLL7crpM/lbJIjLJhYPuPNpwBNwb/92SbgdOLm/9t+30kDvaudW4Q2PnGQYfQ2AQ3+XfEbajVXb9q0U/Du92k60iMSPfoThf/oicseOwc7+AihUdyJWD/qhh/wwQjMD6ACMUHDy+6DpfEsxVQBSp4GOTZV3BXCAEQhg1Ze+VE7vLoyMTAumS32mtVKfaZ9XVqM7OmBEi8F0KYiemurNat5Ei4sPyv/7xEkg4mA7WmqaZRNwDw8Po1AooKtr+oTT1dWFY8fmbsWTzWaRzWbL3ycSiZrv/6mDp4tp5PPRYAMYz09/o6xDwW8ApqEQ8MjXQY9CwFDy2QMEiz8LehSCHiBU/DrsKQXZ8nuVZlNXShVbhSGbQNL240ghjtRoGrmCLWeui/vKPboGn0daZYVMA9FwL3oKHfAZGoxwDD6PIavTHh1eXZsz7fuqDcC7+22c/f/J9//vu4C3rtJmVwkvWM5VuA7Epd2WNV57wJ2bkCDSzWrgwbZiD+fE4iuwdh7QjMYFtYYXaFkNHN23eM/rbAIIuFw5fSpdlxMPh59e/LrZcckIcHv/sBmde+dEJexCsbK4w3/bcKezlcqtccBXw7E0o3JixEox4KaGssfHkX3l9WmXaaZ3Mo17ZgAdnnJZKCA9u5tlYljeeLeuQe0vLrNNK0JW2jNd3DetaRqgII/b54Pu8ULzeWG0xqXgWig0fVW69NlXwQljIlqcxwS6twAH/gsIcZX7TLDs/oIzU7AmWz3Mds899+Cuu+5y5H5PJCvbn/Un6zO4sCsHvwH4DQWf7m4h6bkopWDbsjJd6rudL/fhLvXelEEZuoZoNgEr2AUzFEGb34OI34uA14Dfa8BfbJ/l9+rwe43J/tSBNwDHfwvEKi8kFjF1vPo/F7hCudVQS02PexbDK+2Vhl+qPUDNpYBwt6zoucXjk7Ty479dPODOjkuhqkYF3IAcw1K7r4VSgXMpoGd7Y5/wofbKxmZNAK1r3W9JZUZrz6rIJt3525rRyfYHTvxtrAmgo7/6LBTDAwQ72I+bGi50wQXouvk6WL99CuYbNsMIBqB5l8Hbn0xC5rGOjYBR+etJOdV7aiBdCqwxowiZt1iELNoKPRyBEQnLarTfD830S7/pYruspdxfm+iM07oOiL0grWPjA80eDdVpGcw4or29HYZhzFrNPnHixKxV75Lbb78dt956a/n7RCKB1atrS8XtjFQWcK2PFtAVqGLPVxXsUgBdDJ7zBQVb2SjYQEFNtsrSoMHQNBgGYOiS5h0sB9DF1WhDg9djSFut0THo694Ib18VxRkiPcDQr5x7Ew9MthpyMu030g2c+G0dY0o3Jp2n0uNpJYFo3+Ip1E4KtgFmSP4+81WlLlVOd7sd2EzBNslAWGhsgJzMWWyF3glmZLJwWrUBd/lvW2PBtfn4Y3JSp5AFPA6cOCrkJnu0VyvcUV/KPVENvKtWIbTjbKhjv4Mn1oDaF04oWHJyq3uLZA5NoQqF6cF08WsoezLVuxhIl/dNRyLQwxHoAf9kQD015bsRhS6JqHJeP9B3LvDC/5YMwkZlD5Irlk3A7fP5sHPnTuzevRt/8Ad/UL589+7duPLKK+f8HdM0YZrONI5/85pW9MT8ODaWmWcft0K7qXBWvPK9YaWV6FLAXFBAYVYQrZXvT9cAQ9Pg0TXohg7Tq8P0eGB6dfg9svrsMbRpn726BNfznpm2C4DXAMJVrqqF2ouBRcq5AKHUasjJgCPYBug1rjiWUnwbEUQG26ZUuF4gmM5nZDW8kfwxINAGpE7OH9TmGlg5fdbY4kBmZP6x5Yt7493evw3IBBlsBRJHqs/UcOtvW6qebqXqD7hLbctqPZb+WLHkhYMn6ojOIEopCaBHj0EFO6AyfqjDhyXVG5BUb49RTvXW/Sb0tjZpDRYKFlejzfLKNPdNEy1jsdVA11bg8C+BtrAzHWDsfPHDlvcEPNnWEMsm4AaAW2+9Fddeey3OPfdcXHDBBfjnf/5nvP7667jxxhtdv29D13DH75+FP/uXZ4ol0qaS7/7nhjTsgo1cKZBWgG3bKNgKtgIKpUrJZcWVaB3QNR2GoU0Los2pQXRxpdpTXJ32GBo8TvyTWBOyz7mCFl/TBOISXKVPOxcg59JAxOEWCMH24jhHZLW7GtmktGdyak/5QgLxxQuAFRq8f7tE04B4PzD22vzXmRgG4msaUzl9Kk2TCWnsMDDfXadPy9+xEQE3UGyl9nJ1v+Pm39ZTPNmQnLvWRVWscXm9qLZgWok/JhN8PuNOX/uF1FM8kcgBSimgUOw5nSvI53wBKje9paiWS0ALhKC1rYMRb5dgOhwur0pPDaiZ6k10BtM0oOeN8h4nOVR7mzBrAkgMyQlvzZAtXpohc3rLAOfGBlhWAffVV1+NU6dO4e6778bQ0BC2bt2KH/7whxgYaMzehsu29uAr/2PHlD7cIu6z8Uf949gYyiKZkaJhuq7Bo2kwfR74PDp8Hg2mYZRXno0pVb0nK3xLCnhDWUkpyLJQOu5cNE32lIwdcWYcpX7KTq8mGx4JBF/fM39ANp/MqLRhcTrFdy66DsT6gcNPzX8dKymrlY0OuAFpVaV5iydoZhyP1Olif9gdzVm1LBUZs+3ZZ2oLOTlx0vcmCTwbIdwlk1cuU/ne/1K6mFt/20i3Mz2wcxPy+Grd0lBOuU81NuBOnQZSpwBoktbudvE8OrMpW57DuleyZ4qve8q2ywG0yhfKgTXsycw3zTAAjwHd44EeMGEEpYWY7vdB83mhW6ehmf3QN70LWvcGpnoTrXRmWFLLX/xRce6sYv61C0DiqHQ76N4qtWwM32RHnCN7gZO/AyK91ccBVJVlFXADwE033YSbbrqpafd/2dYevPusbjz18km8vHc34j4b5/SFYXpCMLQQPLqsVHt0Wb2eq2L3kmJlZN9oLULt8kbDiT6B+SzgNZ0rmDZVtFvy8SttuwVI8F/INTZ9O9IpAeN8L6il1jBuFnCbd2w9QPfZwNFnZAW3dDa0YEkgs+at1WcQOCXUISu448eAaO/0n40dkfYaHZsaN55gm2SMZEYBb4XHJJsE2ta597d1KsDMpWVirpXhdb5NWSVSp4Hec+Tr4ZeA8ZPy/8Y9ca67//778YUvfAFDQ0PYsmUL7rvvPrz1rW9t9rCqpvIWkE5ApVOyh1rzQlk5KCsDZRfbY5lhaD4/NK8BzeOBEYlKpfOACd3nhWZ6i5990L2e2YXbkscAFQXWvk1eD4iIAFk46jwLOPZreU9TyXvZ9Ii0FYuuAlbtlN+buSiy9m2StTa0TzLPFivcSzVbdgH3UmDoGi5Y24oLkkoqIwebEAA5wbbr26Mc6pBU3Wyy/nRda1wKptWaqrqQUGcxABqrvHBWKdW+EenkJbF+oGOzvKC2rp++Wjt+XM4+9ryxceOZSteB1W+WftYnngfiayV7YPQQ0LZe9hg1ixkGBi4ADvxYAqvS8zmblHH3niOBXqPohkxsh/ZU/jsFa/bJAieZUVmNq+ak00yquB0mWOf/ergTOOlgm7LFWONyIqNjk9x352bgxH55g+Hx1348aFG7du3CJz/5Sdx///246KKL8MADD+Dyyy/H888/j/7+/mYPbxppkzV9ZVrlivsc8ynASkMLtUCL9kILt8Jo6YAe8EP3KejIQs+egpY7Bd1nQmvtlZTwalanJ04Cdg5Y8zYG20Q0na5L0JxPA8MHigsNLXNfN5eROjK+INB/oaxsz5dR5vEB/efL+6hDe2R7IINuVzDgXsly4/IPWWvA7Q3Iquaplx0IuCeA9g3VtxqqhMcnAdCRvZUH3JkxINLlzgmA+ei6pD6nTgFjhybbQFjjQHYCWP/Oxp4AmMnjAwYulFXOkVcBf0ROSvS9qbEB7Vza1kmA/erPZZzeoOxXWrWj8UXmAHnuQK8s+yNvyfFzc6uAf0oP7ECNAWYuBXgC9f9PlFaVG1U4bfykvLaU/vdD7UD/efI/lknwzYWL7r33Xlx33XW4/vrrAQD33XcfHnnkEXzlK1/BPffc0/gB2QqFxMRkUJ2fUuRU16B5PNA8BjSfB0Y0DCPkh24noXvi0AbOhd63DVowNHchMrsgz6njz8vrY3ZYXq8X25Jk5+WEaiEHrLlEWoAREc3kjwLr3iXtNY8+U+xsskoW/uyCvJZMDEtHkvaNQO/2yt4z6jrQsw2AAl55TOZ4N96Lr3A8os1S+sco/ZOogqTpRh0uGraQ7LgUFfPVsW8j1gec+F39Y7Etd4PJaK8E3JWmv+dSc6ffuM0My9nGFx+RwNsfA8aOypnN9iXwRswXkvTxfFYKeKx7R+0topzWvU1O3Bz+5eSJpJ5tTdpX3imTYyax+Amt0v7tagsXVsMbAMwYkBqufdtGNim/W2/A7Y/J9pF81v3tEQVLAvv2DdOfB4ZXCsUc3ceA2yWWZWHv3r247bbbpl1+6aWX4oknnph1/Ww2i2w2W/4+kUg4OyDDgBEyAU3BCAegh/zQgwHophe66ZX90z75rPm80JSSrQ9mHzBw0eKrzqXMlli/BN4nnpdCR4mjxaKYrdOzluwCMHFC5uFoD9CzXbKFiIjm4/EBq98k89ahX8iCl6ZJ0K175HWm9xzZq11t/YeOzcDpg7I6zr7fjmPA3SyJo/LG098ib4Z1j/SLLlUBboRcCmhZXV9AEmyXN83VFIiayS4A0N1dTQ53yfHOjC2+kpjPyMmPUJNWk2N9EmAf/JmkSLcOAn07l07rhkAcWHsJMPo60PGGZo9mkq5LYZHsOHDqRVmNb1ZxLK9fqqefeL6CgDspe7PcLuoW6ZZAoFbWBNC5pf7noRkFPKXCaS4H3BMnJZiZq05FtKd4Em6OYntUt+HhYRQKBXR1dU27vKurC8eOza6Yf8899+Cuu+5ybTy+vh543rQeevcmaau1EGUDp1+R58jgW6qrT6Hr8ma1pR8YPyHFCodfAkZemXEfSk4yrz5fgnlWCSaiSrWukfcWE8MSPxjFAo6+cO3zqscnWYH7fyjvo1hEzVEMuJvBLkga6aqdsvICyOSbSwMn90uvPdfHID2+664KHmwFzBYgO1b7P3mu1JrMxbZNXr+sPgz9evGAOzMmZwmbufLVtVWCheRxoP+CxrdQWky4s7np7fPxmMDghVIor9kZAbFVwPHn5M27tkBAZ+cbU3Au0IKZDQ0rZtvFAMGBbAaPTyrLjx0G4OKqvm1LCv3ARXOnx4WLWQjZhDvFGgkAZrWsUkrN2cbq9ttvx6233lr+PpFIYPXq1c6NQ9dhBHzAYsE2AIy8Jv+T699Z+7ykabK1JNIlBSfHj8vcr2z5rBsSlC+113YiWh78MecXFWKrga6zJPvLt6E5GYJnKAbczZA6JcFcbMqbCU2TJ/npl+VNYq1tdyqVm5D7qDeNVTekR/Php2UVuRbWhLypcbv9VrQXGHp28RWtbLK4klfBGzO3GB4JFLLJpRnYLmVmpHnF5aYq7d+0xuevhp1Ly0mCRrR6M6PSd7OQr35/llU82+3UOMNdUvjFTenT8vrWMk9xLl9IskmGX2TA7YL29nYYhjFrNfvEiROzVr0BwDRNmOYSWOVNDsncOPgW504C+0KS4klEtJRpmmzPG3lNFn34/tMxzKNrNKWkVH/HG2avCEd6ZFIen51u57hSZXGz2ubUc4h0o1wgqhZWSloNuX0mLdItQUd2gb2BhTwAvXktrqbyBYvFt2hZ8scksMyMzX+dxJAEhE73n59zPNHJHtjVyiblJKHfoTZa/hjg9onz1Gl5nV3oRF6sT4pVqRpX/mlePp8PO3fuxO7du6ddvnv3blx44YVNGtUiUqfl+TDwFkknJyJaaQItsg88Myavh+QIBtyNlk3Km9a5ChJomrSs0fTa3hRXw0pJcRcngtxw9+T+6GopG4BqzApfaUUrPTL/dbJj8lgqrWZOtJCWAalvMJf0qKxu957TmGwKb1Bee2p5bcmlpmfk1MuMyn6z/DzHpl7WeHFVcXDh64U7ZTuLNeHOOFa4W2+9FQ8++CC+/vWv43e/+x1uueUWvP7667jxxhubPbTZrAmZG1a/GWhn8TIiWsHaN0qNp0YsAK4QDLgbbWJYGtjPt6IV6ZUex8nj7o1B2fLZqVU1r1/e2KZrCLiz443tdx0flJW17PjsnylbVjji/e4Xc6KVIdwpQXUuPf1yZUtBpa4tjcum0DQpHmbN8dxfSCEvJwScrGlQWm23XDqxmEnIPvHFTuT5W2Rfei0nC2lRV199Ne677z7cfffd2L59Ox5//HH88Ic/xMDAEquAW7CkMm/PNkmnJCJayTw+qSWUt7jK7RAG3I2Uz8qb3oVaf+g60LVZvp5vZaxe1gRghpxNYy21M6s2rTw9Ir/rVKrqYuJrpP1K8qj8PUqUkj0r4S55kSFyQrBNVrlHX58eXI4fl2C8++zGjida3P5RqOL/tNS2LOhgwO0xZUvLzBMRTrEmgJbBxTN4NE1OwrmdUbSC3XTTTXj11VeRzWaxd+9eXHzxxc0e0nS2La/97RuAvjc3t3YHEdFSER+U2kfjJ5o9kjMCA+5GKreo6V34etE+eaInXUrlyCaBQNv8hZxqEekp9h2uYqVIKVlZaGS/P10HVp0rbZhGXiu2JINUTDYj0u6qEftpaWXQDWDt26TVRuKopJHnLQm+e89pfNuNcJfsz8pW8X+aTcoqvNNZH5EedwLu0op8pRXVQ8UsBLfS22lpG31dnov9FzKziYioxPBKFl4uXd1JepoTA+5GsW150nZsXvwMuq4DHZtktbgUEDrJStfff3umUtutatLKraQEHLVWN6+VxyettuL9wMirEggZHgm2l0KxNDqzeP1ScX7gQiAzCpw+IMURF8p0cYvHlCJt6dHKf6dgTWawOKlUGdzpgmXVrsiH2qWaeTXHhM4MyWPSlmvwIlaqJyKaKb5GFgonXNzmukIw4G6UzKikULZUWHgo0iNvAJzeW2gXZA+zGz2mY30AVOUnCdKjk4+z0cwwMPhWIBiX/bSDF8/fPoioXrohq9zr3inPs97t1bfmckq0F/J/ai9+3XxGgnQ3Xi8CcQl2nF7lzozJa1Glq5W6IScL56rrQGeu9Kg8vwcuXDzrjIhoJSrt5bbStXciIgAMuBsnm5BVokp7TfuC8iYwM+rwOJLO9tOdKlJFtXKlZA91fI3z46hUqB1Y+3Zg3TtYlZbcp2lAx0Zg85XNfYMf7pLtEwu1xyvJJgEzJivATvPHZBzVFnFbiFLypqDa4xvpkr9PJSchaPlLj0if9r43y95tIiKaW+saed/Avdx1YcDdKLW8CYz1Tb6BdIqVlD2LlQb+1fAGKj9JYI1L4N/sPtPRXqBtXXPHQCuLx9fc+zfDcvKvkhNjmSTQ0ufOarxuyP+fky25cmmpfl5tWz9/i5zkzLE92BlvYlie+wMXSh0FJ7dWERGdaTwm0L1V5mo3trmuEAy4GyGXBjz+6tMyq1kxrlQ+U0z9dklsVfEkwSL/lOnRYv/uFvfGQkRza+mXvdkL7Z9WSrZbuFljIdTu7ASeHZOih9W+rpgR+R0nV9tp6clnpSL9moulW4XOt0BERItqXVtc5eZe7lpxtmmEbELezAXi1f2eNyCpHLX0t55LIQdoHnfSyUsiPYufJFBKAv/WNVxdIGqGcCfgCy+8upwekUC02tXiagTisnqet5y5veyEtGGrNpDStOJqu0ttymhpCHfJNqKuLZx7iIgq5fUDPduKq9zcy10LBtyNkE3KilIt/T1jfVLkzIkneDYpb6DdDLi9AWnzlTo9/3WsCUlpb3R1ciIS/hZpm5UZmfvnypbU266t7hY1DMSLgb8DK8t2XoKoStuBzRRsA8A93GesWB+w/l1SR4GIiKrTulZOTCe5yl0LBtxus21AQVaUalFKu3aiZY1b/XRn6tgsPbnn6yOeGZFxVLviT0TO0DQpWDhfhfDxE/Ka1bXZ3XF4TLkfJ/ZxZ5PyulPriry/BTB87Md9pjIj0t6GiIiq5zGB7m1APi0Zs1QVBtxuKxUHq7Wtjtcvb4ydqFbuVj/dmcIdQP/5slduZqud9Kikj7auZUofUTOFu+Zuy1XIyf9tzxvdKa44U6TbmSA3k5AtLd5Abb8faFk8zZ6IiGilal0DxFbPv6BG82LA7bZsQlZczEjttxFbBUAHCnWkleezsnrjZjr5VO0bgZ5zgOTRyTNhE8OyL7T/AqB9U2PGQURzC7ZJ0D12aHrQnRySyuRtDWqVF4gDml5/8bSCVV9BSMMrHRwYcBMREc1meIHuswE751ztlRWCAbfb8mnZv12PSDcQjNe3yp1NSjGzoAv9dOeiacCqHUDrOmDkNSBxVI7F2kvkclaHJWouXS8WkNoKjB2RNPJcWgLfnjc2rn1ZIC4r6fW05MqlZGW73gJvkS45OUlERESztQwUV7mHmj2SZYVRj5sKllQFrzWdvMRj1p9Wnk1KsQPDW99YquH1y2p2aQVr3TtZHZZoKfFHgbVvA9a/Q7oHnHpZVrZbBhs3Bl9Y0rlnbj+pRnpUXmcDdZ5QDLQ4s9pORER0JjI8ssqtbDnZTRVhwO2m8qpynQE3IJW/dU9tex1LfbEjTSgYE2qTN/MbLwPa1jX+/oloYbohJ8Le8HuSfdK7vbEZKJoGRFbVN3FbE1IXot5x+1vqX20nIiI6k7UMAJ2bgbHDUhyaFsWA202ZhBQpcyI1M9wtAfPEcPW/m00CZqj+lfZaRXtZHZZoqQt3AuvfWXtHhXqE2qSbg1LV/24uU6x23l3/OMyInCTlPm4iIqK56TrQdy4Q6QUSh5s9mmWBAbdbSqvK0V5nbk/XgY5NssdSVXk2KXUKiPU3bv82EVE1AnHZg52fp03ZQjIjUgDOiROKmiYnSa0axkFERLRSmBFg9Ztl3syMNXs0Sx4Dbrfk0vIG0smq4LHVsvpSTU/uQh6AYjo3ES1d/pi0T6xlH7c1LsUZdcOZsQRbATBFjoiIaEHxAaB7O5A8zt7ci2DA7ZbsmLxxC8Sdu00zLAWNUqcr/53UsOwhb0T/bSKiWuiGvEZVG3DnLUDzSnVxp/hbpIWiE73BiYiIzmS9b5T+3KOvV5+BC0hGcDYhnVImTsrW2Ylh2S52BmHA7ZbshKRxO118KD4oFQIrfTOYSQAdGxvX4oeIqBax4klBO1/572RG5MRmyMF954EWqZzOfdxEREQL85jSkSjYDgwfqDw+KVjSWuzUSzLfevyAYUqMo3uknXDyWG21XZYgT7MHcEay88XKuy4UH4p0y8fEqck3qPPJJmVVvGXA+XEQETkpukqC59Tpygu3ZZJA/xaZoJ1ieOX+T7/i7JYgIiKiM1G4A9h0GXD4aeDkfskUm6uuim1Li+P0KKBB5tpV5wKxvul1pmwbGH4BOPxL4PTLsoC5zBcOGXC7odQOLNTh/G3rBtDxBmD0/0jqhrbACvrEMNC+gcXSiGjp85hA2wbg9f+uLOAu5CSDKOJAdfKZwl3Ayd85f7tERERnokALsPbtMn8e+SUw/JJsz9INiVUKOfkIxICebUBLvxSWNryzb0vXpe1YuAs49AtZOQ93SGy1TDHgdkMmIUXKvAF3bj/WJ2eP0qPzB9N2XgLy1rXujIGIyGnxfmDoGcBKAb7gwtfNjEqNjLCD+7dLgq2AZsjrqM5pkoiIaFGGR4LpcCcw8pqkl+ez8uExZa93tBfwhSq7vWArsP5dQKANOLQH8ASW7Uo330m4oWBJUOwWMyIrQYefkpRxY44nX+qUpHO4OQ4iIieFOop9PY9WEHCPSSqaG5NvoFX2cWfH5aw9ERERVaa0/dUJhhdYdQ6QPg0MvygLmgtl9y5Ry2/ES10uJSvbbqSTT7VqhxRDG3l1dpGhvCWr3+0b5YwSEdFyoGmyDSafWbjaaS4tK9DRXnfG4QvKa7iVdOf2iYiIqDKGF+g/TxYSk0PNHk1NGHA7LZOQNMeAy/umvX5g8K1SEO30q5NvTtOjEoR3bJQ3rkREy0l0lawqp0fn/rlSwNgReX2LrXZvHLFVEtgTERFRcwXiwOrzZB94NtHs0VSNAbfTrAkJgp1uBzYXMwKsuVj2MI68Jh/WODD4FmD9u+XnRETLiRmW2hPpkbl/nhoG/BFg1U53X2cDrYDmqa5NGREREbmjdS3Qsx1IDEngvYww4HaSXZCUyEpb2jgh2AqsvUSq/oXagI3vAfp2zl31j4hoOWgZkNfSvDX98oIFpMeA3nPc774QbJXgPzvu7v0QERHR4jRN5v/WtZLptoww4HZSNimrym7v354p0gVsvBzY9HtSZp+IaDmL9ADhbmD0telp3WNHgPgA0LHZ/TH4QrJfzGLATUREtCR4/UDvdgm+l9H8zIDbSZkxeZO4WHVdNwRbKy+zT0S0lBkeYOBC2ac9fhw4/Yp8NnxAn0uVyecSXQXkuY+biIhoyYitBjo2AYljUtdlGWBbMCcVLKDFxSI+REQrRbRH6lMkjwIn9stqd/dW9yqTzyXYBsCQ7UK60bj7JSIiorlpGtDzRqldlT5dnKuXNgbcTrEa1A6MiGil0HUg1icrzalTgBlt7P0HWwEzJGlr/lhj75uIiIjmFmwFus8GXvs54I83plh1HZb26JaTiZOS4rAMzrIQES0rmib7qRuVSl7iCwHBdqnPQUREREtH52bZyjt+rNkjWRQDbicUcpJy2LFR3hgSEdGZIdbHfdxERERLjS8oVcut1OyuJksMA24nTJyUSuEx7t8mIjqjBFsB6HJSlYiIiJaO1rVA2zqp97KEMeCum5I+rR1vYO9rIqIzTbAN8IWXVfsRIiKiFcHwSAE13QCyiWaPZl4MuOuVHpEVkPhgs0dCRERO84WAUJucWCUiIqKlJbYK6NyypNuEMeCuV3ZcesWa4WaPhIiI3BDrA3KpZo+CiIiI5tK9VRZAJ042eyRzYsBdr1AH0Lqu2aMgIiK3RPuk7aM10eyREBER0Uz+mBRQyySkmPUSw4C7HpoGxAekXQ0REZ2ZQu2yyr1Ez5wTERGteO0bgZbVQGLpFVBjwF0rTQMCLfLHZSswIqIzl6bJa71dAOx8s0dDREREM3l8sspdKmi9hDDgrpVuAGvfJivcRER0Zov1ScXy1Olmj4SIiIjm0tIPdG8DEkeWVGr5sgm4BwcHoWnatI/bbrutuYPyhZp7/0RE1BgeU9o/ZkabPRIiIiKai6YBq3YCbeuBkdeWTNVyT7MHUI27774bN9xwQ/n7cJiVwYmIqEFa+qUndzYJmJFmj4aIiIhm8vqB/guAzBiQPApEVzV7RMsr4I5EIuju7m72MIiIaCUKtUnQPfwSA24iIqKlKtQG9J8PvLRbAm9/rKnDWTYp5QDw+c9/Hm1tbdi+fTs+85nPwLKsZg+JiIhWkrb1kqK2hPaGERER0QytayW9PHm86UXUls0K980334wdO3YgHo/jqaeewu23346DBw/iwQcfnPd3stksstls+ftEItGIoRIR0ZkqugoIdQDjx4DIKkBfVuetiYiIVgZNA3q3AwULGPoVkE0A3mBThtLUdwp33nnnrEJoMz9++ctfAgBuueUWXHLJJdi2bRuuv/56fPWrX8XXvvY1nDp1at7bv+eeexCLxcofq1evbtRDIyKiM5HHB/S+EfAEgNMvA2OHpF0YERERLS2GFxi4ENjwbil+mjjSlGFoSjWvfNvw8DCGh4cXvM7g4CD8fv+sy48cOYK+vj7s2bMH55133py/O9cK9+rVqzE2NoZoNFrf4ImIaOWyJoCxw8DJF4CJk7JXrGtL3TebSCQQi8VW/DzF40BERI5KnQYO7ZH08rPeLyfQ61DNPNXUlPL29na0t7fX9Lv79u0DAPT09Mx7HdM0YZpmTbdPREQ0L18I6NgEtG2QgJtF1IiIiJauYCuw/t1AerTuYLtay2IP95NPPok9e/bg7W9/O2KxGJ5++mnccsstuOKKK9Df39/s4RER0Uql60Ckq9mjICIiosUYXiDc0fC7XRYBt2ma2LVrF+666y5ks1kMDAzghhtuwKc+9almD42IiIiIiIhoTssi4N6xYwf27NnT7GEQERERERERVYz9TIiIiIiIiIhcwICbiIiIiIiIyAUMuImIiIiIiIhcwICbiIiIiIiIyAUMuImIiIiIiIhcwICbiIiIiIiIyAUMuImIiIiIiIhcwICbiIiIiIiIyAUMuImIiIiIiIhcwICbiIiIHDU4OAhN06Z93Hbbbc0eFhERUcN5mj0AIiIiOvPcfffduOGGG8rfh8PhJo6GiIioORhwExERkeMikQi6u7ubPQwiIqKmYko5EREROe7zn/882trasH37dnzmM5+BZVnzXjebzSKRSEz7ICIiOhOsqBVupRQAcCInIqIlqTQ/lear5ermm2/Gjh07EI/H8dRTT+H222/HwYMH8eCDD855/XvuuQd33XXXrMs5XxMR0VJUzXytqeU+q1fh8OHDWL16dbOHQUREtKBDhw6hr6+v2cOY5s4775wzKJ7q6aefxrnnnjvr8u9+97v44Ac/iOHhYbS1tc36eTabRTabLX9/5MgRnHXWWfUPmoiIyEWVzNcrKuC2bRtHjx5FJBKBpml13VYikcDq1atx6NAhRKNRh0Z45uNxqx6PWfV4zGrD41Y9p4+ZUgrJZBK9vb3Q9aW162t4eBjDw8MLXmdwcBB+v3/W5UeOHEFfXx/27NmD8847b9H7cnK+BvjcrgWPWW143KrHY1Y9HrPaOHncqpmvV1RKua7rjq8YRKNRPtFrwONWPR6z6vGY1YbHrXpOHrNYLObI7Titvb0d7e3tNf3uvn37AAA9PT0VXd+N+Rrgc7sWPGa14XGrHo9Z9XjMauPUcat0vl5RATcRERG568knn8SePXvw9re/HbFYDE8//TRuueUWXHHFFejv72/28IiIiBqKATcRERE5xjRN7Nq1C3fddRey2SwGBgZwww034FOf+lSzh0ZERNRwDLhrZJom7rjjDpim2eyhLCs8btXjMasej1lteNyqx2M2244dO7Bnz55mD2Ma/p2qx2NWGx636vGYVY/HrDbNOm4rqmgaERERERERUaMsrRKoRERERERERGcIBtxERERERERELmDATUREREREROSCFRtw33PPPXjTm96ESCSCzs5OvP/978cLL7ww7TpKKdx5553o7e1FIBDA2972Nvz2t78t//z06dP4xCc+gU2bNiEYDKK/vx9/8Rd/gbGxsWm3Mzg4CE3Tpn3cdtttDXmcTmvkcQOA//zP/8R5552HQCCA9vZ2XHXVVa4/Rqc16pj99Kc/nfU8K308/fTTDXu8Tmnkc+3FF1/ElVdeifb2dkSjUVx00UV49NFHG/I4ndTIY/bMM8/g3e9+N1paWtDW1oY//dM/xfj4eEMep9OcOG4A8LGPfQzr1q1DIBBAR0cHrrzySuzfv3/adUZGRnDttdciFoshFovh2muvxejoqNsPcdnjnF09zte14ZxdPc7XteGcXb1lO1+rFeo973mPeuihh9RvfvMb9eyzz6r3vve9qr+/X42Pj5ev87nPfU5FIhH13e9+Vz333HPq6quvVj09PSqRSCillHruuefUVVddpR5++GF14MAB9V//9V9qw4YN6gMf+MC0+xoYGFB33323GhoaKn8kk8mGPl6nNPK4fec731HxeFx95StfUS+88ILav3+/+va3v93Qx+uERh2zbDY77Tk2NDSkrr/+ejU4OKhs2274465XI59r69evV7/3e7+nfvWrX6kXX3xR3XTTTSoYDKqhoaGGPuZ6NeqYHTlyRMXjcXXjjTeq/fv3q6eeekpdeOGFs47rcuHEcVNKqQceeEA99thj6uDBg2rv3r3q93//99Xq1atVPp8vX+eyyy5TW7duVU888YR64okn1NatW9X73ve+hj7e5YhzdvU4X9eGc3b1OF/XhnN29ZbrfL1iA+6ZTpw4oQCoxx57TCmllG3bqru7W33uc58rXyeTyahYLKa++tWvzns7//7v/658Pp/K5XLlywYGBtQXv/hF18beTG4dt1wup1atWqUefPBBdx9AE7j5XJvKsizV2dmp7r77bmcfQJO4ddxOnjypAKjHH3+8fJ1EIqEAqB//+McuPZrGcOuYPfDAA6qzs1MVCoXydfbt26cAqJdeesmlR9M4Th23X/3qVwqAOnDggFJKqeeff14BUHv27Clf58knn1QA1P79+116NGcmztnV43xdG87Z1eN8XRvO2dVbLvP1ik0pn6mUetHa2goAOHjwII4dO4ZLL720fB3TNHHJJZfgiSeeWPB2otEoPJ7pLc4///nPo62tDdu3b8dnPvMZWJblwqNoPLeO2zPPPIMjR45A13Wcc8456OnpweWXXz4rJWQ5cvu5VvLwww9jeHgYH/nIR5wbfBO5ddza2tqwefNmfPOb38TExATy+TweeOABdHV1YefOnS4+Ive5dcyy2Sx8Ph90fXIKCQQCAICf//znjj+ORnPiuE1MTOChhx7CmjVrsHr1agDAk08+iVgshvPOO698vfPPPx+xWGzB40+zcc6uHufr2nDOrh7n69pwzq7ecpmvGXBDcv1vvfVWvOUtb8HWrVsBAMeOHQMAdHV1TbtuV1dX+WcznTp1Cn//93+Pj33sY9Muv/nmm/Gtb30Ljz76KD7+8Y/jvvvuw0033eTCI2ksN4/bK6+8AgC488478bd/+7f4wQ9+gHg8jksuuQSnT5924+E0hNvPtam+9rWv4T3veU/5xWM5c/O4aZqG3bt3Y9++fYhEIvD7/fjiF7+IH/3oR2hpaXHnATWAm8fsHe94B44dO4YvfOELsCwLIyMj+PSnPw0AGBoacuPhNEy9x+3+++9HOBxGOBzGj370I+zevRs+n698O52dnbPus7Ozc97jT7Nxzq4e5+vacM6uHufr2nDOrt5ymq8ZcAP4+Mc/jl//+tf4t3/7t1k/0zRt2vdKqVmXAUAikcB73/tenHXWWbjjjjum/eyWW27BJZdcgm3btuH666/HV7/6VXzta1/DqVOnnH0gDebmcbNtGwDwN3/zN/jABz6AnTt34qGHHoKmafj2t7/t8CNpHLefayWHDx/GI488guuuu86ZgTeZm8dNKYWbbroJnZ2d+NnPfoannnoKV155Jd73vvct64nIzWO2ZcsWfOMb38A//MM/IBgMoru7G2vXrkVXVxcMw3D+wTRQvcftmmuuwb59+/DYY49hw4YN+KM/+iNkMpl5b2O+26H5cc6uHufr2nDOrh7n69pwzq7ecpqvV3zA/YlPfAIPP/wwHn30UfT19ZUv7+7uBoBZZzFOnDgx66xJMpnEZZddhnA4jO9///vwer0L3uf5558PADhw4IATD6Ep3D5uPT09AICzzjqrfJlpmli7di1ef/11xx9PIzTyufbQQw+hra0NV1xxhcOPovHcPm4/+clP8IMf/ADf+ta3cNFFF2HHjh24//77EQgE8I1vfMPFR+aeRjzXPvzhD+PYsWM4cuQITp06hTvvvBMnT57EmjVrXHpU7nPiuMViMWzYsAEXX3wxvvOd72D//v34/ve/X76d48ePz7rfkydPzrodmhvn7Opxvq4N5+zqcb6uDefs6i23+XrFBtxKKXz84x/H9773PfzkJz+Z9YRbs2YNuru7sXv37vJllmXhsccew4UXXli+LJFI4NJLL4XP58PDDz8Mv9+/6H3v27cPwOQktZw06rjt3LkTpmlOK/Wfy+Xw6quvYmBgwKVH545GP9eUUnjooYfwx3/8x4u+kVzKGnXcUqkUAEzb21T6vrRys1w043Wtq6sL4XAYu3btgt/vx7vf/W7nH5jLnDpu8912NpsFAFxwwQUYGxvDU089Vf75L37xC4yNjS16Oysd5+zqcb6uDefs6nG+rg3n7Oot2/m66jJrZ4g/+7M/U7FYTP30pz+d1pIhlUqVr/O5z31OxWIx9b3vfU8999xz6kMf+tC0svKJREKdd9556uyzz1YHDhyYdjulsvJPPPGEuvfee9W+ffvUK6+8onbt2qV6e3vVFVdc0ZTHXa9GHTellLr55pvVqlWr1COPPKL279+vrrvuOtXZ2alOnz7d8Mddj0YeM6WU+vGPf6wAqOeff76hj9NpjTpuJ0+eVG1tbeqqq65Szz77rHrhhRfUX/3VXymv16ueffbZpjz2WjXyufalL31J7d27V73wwgvqy1/+sgoEAuof//EfG/6YneDEcXv55ZfVZz/7WfXLX/5Svfbaa+qJJ55QV155pWptbVXHjx8v385ll12mtm3bpp588kn15JNPqrPPPpttwSrAObt6nK9rwzm7epyva8M5u3rLdb5esQE3gDk/HnroofJ1bNtWd9xxh+ru7lamaaqLL75YPffcc+WfP/roo/PezsGDB5VSSu3du1edd955KhaLKb/frzZt2qTuuOMONTEx0eBH7IxGHTelpEXGX/7lX6rOzk4ViUTUu971LvWb3/ymgY/WGY08Zkop9aEPfUhdeOGFDXp07mnkcXv66afVpZdeqlpbW1UkElHnn3+++uEPf9jAR+uMRh6za6+9VrW2tiqfz6e2bdumvvnNbzbwkTrLieN25MgRdfnll6vOzk7l9XpVX1+f+vCHPzyrfcipU6fUNddcoyKRiIpEIuqaa65RIyMjDXqkyxfn7Opxvq4N5+zqcb6uDefs6i3X+VorDp6IiIiIiIiIHLRi93ATERERERERuYkBNxEREREREZELGHATERERERERuYABNxEREREREZELGHATERERERERuYABNxEREREREZELGHATERERERERuYABNxEREREREZELGHAT0YLuvPNObN++vdnDICIiogVwviZamjSllGr2IIioOTRNW/Dnf/Inf4Ivf/nLyGazaGtra9CoiIiIaCrO10TLFwNuohXs2LFj5a937dqFv/u7v8MLL7xQviwQCCAWizVjaERERFTE+Zpo+WJKOdEK1t3dXf6IxWLQNG3WZTNT1D7ykY/g/e9/Pz772c+iq6sLLS0tuOuuu5DP5/HXf/3XaG1tRV9fH77+9a9Pu68jR47g6quvRjweR1tbG6688kq8+uqrjX3AREREyxDna6LliwE3EVXtJz/5CY4ePYrHH38c9957L+688068733vQzwexy9+8QvceOONuPHGG3Ho0CEAQCqVwtvf/naEw2E8/vjj+PnPf45wOIzLLrsMlmU1+dEQERGdmThfEzUfA24iqlprayv+6Z/+CZs2bcJHP/pRbNq0CalUCp/+9KexYcMG3H777fD5fPjv//5vAMC3vvUt6LqOBx98EGeffTY2b96Mhx56CK+//jp++tOfNvfBEBERnaE4XxM1n6fZAyCi5WfLli3Q9cnzdV1dXdi6dWv5e8Mw0NbWhhMnTgAA9u7diwMHDiASiUy7nUwmg5dffrkxgyYiIlphOF8TNR8DbiKqmtfrnfa9pmlzXmbbNgDAtm3s3LkT//qv/zrrtjo6OtwbKBER0QrG+Zqo+RhwE5HrduzYgV27dqGzsxPRaLTZwyEiIqI5cL4mch73cBOR66655hq0t7fjyiuvxM9+9jMcPHgQjz32GG6++WYcPny42cMjIiIicL4mcgMDbiJyXTAYxOOPP47+/n5cddVV2Lx5Mz760Y8inU7zDDoREdESwfmayHmaUko1exBEREREREREZxqucBMRERERERG5gAE3ERERERERkQsYcBMRERERERG5gAE3ERERERERkQsYcBMRERERERG5gAE3ERERERERkQsYcBMRERERERG5gAE3ERERERERkQsYcBMRERERERG5gAE3ERERERERkQsYcBMRERERERG5gAE3ERERERERkQv+f8ZqD6VV4nMSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "visualize_fit(t, x, y, xe, ye, x_model, y_model, xe_model, ye_model, mm.name, t_test)" + ] + }, + { + "cell_type": "markdown", + "id": "12bb0136", + "metadata": {}, + "source": [ + "## 2.5. Speed Test" + ] + }, + { + "cell_type": "markdown", + "id": "43fd87c5", + "metadata": {}, + "source": [ + "Speed test for the most commonly used Linear model. As the `use_scipy=False` option for the Linear model uses the [matrix multiplication solution](https://en.wikipedia.org/wiki/Weighted_least_squares#Solution), it is extremely fast at fewer epochs: " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "de576a47", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 10 epochs...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:01<00:00, 6350.75it/s]\n", + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:00<00:00, 25802.05it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 31 epochs...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:01<00:00, 6184.77it/s]\n", + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:00<00:00, 23908.79it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 100 epochs...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:01<00:00, 6347.19it/s]\n", + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:00<00:00, 14309.49it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 316 epochs...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:01<00:00, 5023.37it/s]\n", + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:03<00:00, 3288.47it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fitting 1000 epochs...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Fitting motion model Linear: 100%|██████████| 10000/10000 [00:02<00:00, 4314.91it/s]\n", + "Fitting motion model Linear: 100%|██████████| 10000/10000 [01:19<00:00, 125.47it/s]\n" + ] + } + ], + "source": [ + "import time\n", + "N = 10000\n", + "dims = np.logspace(1, 3, 5, dtype=int)\n", + "rng = np.random.default_rng(42)\n", + "\n", + "scipy_times = []\n", + "analytic_times = []\n", + "\n", + "for dim in dims:\n", + " print(f'Fitting {dim} epochs...')\n", + " t = np.linspace(2025.0, 2030.0, dim)\n", + " x = rng.random((N, dim))\n", + " y = rng.random((N, dim))\n", + " xe = rng.uniform(0, 0.2, size=(N, dim))\n", + " ye = rng.uniform(0, 0.2, size=(N, dim))\n", + " tab = StarTable({\n", + " 'x': x,\n", + " 'y': y,\n", + " 'xe': xe,\n", + " 'ye': ye\n", + " })\n", + " tab.meta['list_times'] = t\n", + " \n", + " start = time.time()\n", + " tab.fit_motion_model(use_scipy=True)\n", + " end = time.time()\n", + " scipy_times.append(end - start)\n", + " \n", + " start = time.time()\n", + " tab.fit_motion_model(use_scipy=False)\n", + " end = time.time()\n", + " analytic_times.append(end - start)\n", + "\n", + "scipy_times = np.array(scipy_times)\n", + "analytic_times = np.array(analytic_times)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "3d2a8457", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "280" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Collect memory garbage data\n", + "import gc\n", + "gc.collect()" + ] + }, + { + "cell_type": "markdown", + "id": "06442faf", + "metadata": {}, + "source": [ + "Let's visualize the performance:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "03d53769", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHJCAYAAACYMw0LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmFJJREFUeJzs3XdcE+cfB/DPhQx2WEIAWYri3lXR1lEVHIBW6xbFXVu1tO7+6mpV3K3VOlqtW7HWbZWqrdpacYsLtyDIlhE2hOT5/YFcCQEMCobxfb9eac3d9+6+l0Dy5Xmee45jjDEQQgghhJBSCXSdACGEEEJIVUBFEyGEEEKIFqhoIoQQQgjRAhVNhBBCCCFaoKKJEEIIIUQLVDQRQgghhGiBiiZCCCGEEC1Q0UQIIYQQogUqmgghhBBCtEBFE8G2bdvAcRw4jsO5c+c01jPG4OrqCo7j0KVLlzc6xpIlS3D48GGN5efOnSvxuBXNz88PHMfBxMQE6enpGuufP38OgUAAjuOwYMGCcjvu25xzwXsVHh6uVVxxj+nTpyM8PBwcx2Hbtm38NhcvXsSCBQuQkpKisb/169erxRYobj/vSsGxCx4CgQCWlpbo3bs3goODy/14a9euhaurK8RiMTiOK/Z1IuXv5s2b6Ny5M6RSKTiOw/fff19i7I4dOzBkyBC4ublBIBDA2dm5xNj09HT4+/vDzs4O+vr6aNGiBQIDA4uNvXHjBrp37w5jY2OYmZmhf//+ePbsWbGxa9euRYMGDSCRSODi4oKFCxdCoVBoxMXHx8PPzw9WVlYwNDSEu7s7/vzzz1JfiwKMMQQGBuKDDz6AtbU19PX1Ubt2bXh6emLz5s18XGZmJhYsWKCTz9fqioomwjMxMcGWLVs0lp8/fx5Pnz6FiYnJG++7pKKpVatWCA4ORqtWrd54329DJBIhLy8P+/bt01i3devWtzrnymDr1q0IDg5We0ydOhW2trYIDg5Gnz59+NiLFy9i4cKFZSqaitvPuzZlyhQEBwfjn3/+QUBAAG7duoWuXbvi5s2b5XaMkJAQTJ06FV27dsVff/2F4ODgKv+zUVWMGTMGMTExCAwMRHBwMIYMGVJi7M6dO3Hv3j20bdsWdevWLXW//fv3x/bt2zF//nycPHkS7733HoYOHYo9e/aoxT148ABdunRBbm4ufv31V/zyyy949OgRPvjgAyQkJKjFLl68GJ9//jn69++PP/74A59++imWLFmCzz77TC0uJycH3bp1w59//ok1a9bgyJEjsLGxQc+ePXH+/PnXviZz5szB0KFD0bBhQ2zevBknT57EokWLYGNjgyNHjvBxmZmZWLhwIRVN5YmRGm/r1q0MABs3bhwzMDBgcrlcbf2IESOYu7s7a9y4MevcufMbHcPIyIiNGjXq7ZMtR6NGjWJGRkZsyJAhrEOHDmrrVCoVc3JyYuPHj2cA2Pz588vtuGfPnmUA2NmzZ8u8bcF7FRYWplXc1atXtd73ihUrStz327z3FSUsLIwBYCtWrFBb/ueff/I/z28rIyODMcbYrl27GAB2+fLlt95n0X2T0gmFQjZp0iStYpVKJf/vPn36MCcnp2Ljfv/9dwaA7dmzR215jx49mJ2dHcvLy+OXDRw4kFlZWal9LoaHhzORSMRmzpzJL3v58iXT19dnEyZMUNvn4sWLGcdx7N69e/yyH3/8kQFgFy9e5JcpFArWqFEj1rZt21LPMTMzk0kkEjZy5Mhi1xd+DRISEsr984sxxnJzc5lCoSjXfVYV1NJEeEOHDgUA7N27l18ml8tx4MABjBkzpthtkpKS8Omnn8Le3h5isRh16tTB//73P+Tk5PAxHMchIyMD27dv57tSCrr5SuqqOnr0KNzd3WFoaAgTExP06NFDo8tlwYIF4DgO9+7dw9ChQyGVSmFjY4MxY8ZALpdrfd5jxozBxYsX8fDhQ37ZmTNn8Pz5c4wePbrYbe7evYu+ffvC3Nycb9rfvn27RtyDBw/Qs2dPGBoawsrKCp988gnS0tKK3eeZM2fQrVs3mJqawtDQEB07dtS6ub6sinarLViwADNmzAAAuLi4qHXXOjs74969ezh//jy/vKDbo7juubK8LykpKRg7diwsLCxgbGyMPn364NmzZ2/VJdq+fXsA+d2rBbR5bQvyvnHjBj7++GOYm5ujbt266NKlC0aMGAEAaNeuHTiOg5+fH7/dL7/8gubNm0NfXx8WFhb46KOPcP/+fbV9+/n5wdjYGHfu3IGHhwdMTEzQrVs3APm/H5MnT8bWrVvh5uYGAwMDtGnTBpcuXQJjDCtWrICLiwuMjY3x4Ycf4smTJ2r7Pn36NPr27YvatWtDX18frq6umDhxIl6+fFns+WnzvqhUKqxduxYtWrSAgYEBzMzM0L59exw9elQtbt++fXB3d4eRkRGMjY3h6empdQvf636HCrqY8/LysGHDBv5nrzQCgXZfaYcOHYKxsTEGDhyotnz06NGIjo7G5cuXAQB5eXk4fvw4BgwYAFNTUz7OyckJXbt2xaFDh/hlQUFByM7O1vjMGD16NBhjai3thw4dgpubG9zd3fllQqEQI0aMwJUrVxAVFVVi7hkZGcjJyYGtrW2x6wteg/DwcNSqVQsAsHDhQv71K/jZffLkCUaPHo169erB0NAQ9vb28Pb2xp07d9T2V/AZvXPnTkybNg329vaQSCR48uQJMjMzMX36dLi4uPA//23atFH7DqluqGgiPFNTU3z88cf45Zdf+GV79+6FQCDA4MGDNeKzs7PRtWtX7NixA19++SV+//13jBgxAsuXL0f//v35uODgYBgYGPBjTYKDg7F+/foS89izZw/69u0LU1NT7N27F1u2bEFycjK6dOmCCxcuaMQPGDAA9evXx4EDBzB79mzs2bMHX3zxhdbn3b17dzg5Oamd95YtW9CpUyfUq1dPI/7hw4fo0KED7t27hx9++AEHDx5Eo0aN4Ofnh+XLl/NxcXFx6Ny5M+7evYv169dj586dSE9Px+TJkzX2uWvXLnh4eMDU1BTbt2/Hr7/+CgsLC3h6er5V4aRUKpGXl6f2KM64ceMwZcoUAMDBgwf596lVq1Y4dOgQ6tSpg5YtW/LLC39ZlOR174tKpYK3tzf27NmDWbNm4dChQ2jXrh169uz5xucLgC8qCr4wyvra9u/fH66urti/fz82btyI9evX4+uvvwbwX3fn3LlzAQABAQEYO3YsGjdujIMHD2LNmjW4ffs23N3d8fjxY7X95ubmwsfHBx9++CGOHDmChQsX8uuOHz+OzZs3Y+nSpdi7dy/S0tLQp08fTJs2Df/++y/WrVuHn376CaGhoRgwYAAYY/y2T58+hbu7OzZs2IBTp05h3rx5uHz5Mt5///1ix9Jo8/vi5+eHzz//HO+99x727duHwMBA+Pj4qI2lW7JkCYYOHYpGjRrh119/xc6dO5GWloYPPvgAoaGhpb5H2vwO9enTh/9D6eOPP+Z/9srD3bt30bBhQwiFQrXlzZo149cD+a9tVlYWv7xo7JMnT5Cdna22TdOmTdXibG1tYWVlxa8viC1pnwBw7969EnO3srKCq6sr1q9fj9WrV+PBgwdqPw+FjxsUFAQAGDt2LP/6FfzsRkdHw9LSEkuXLkVQUBB+/PFHCIVCtGvXTu0PyAJz5sxBREQENm7ciGPHjsHa2hpffvklNmzYgKlTpyIoKAg7d+7EwIEDkZiYWGL+VZ5uG7pIZVC4K6eg6+ju3buMMcbee+895ufnxxjT7KLZuHEjA8B+/fVXtf0tW7aMAWCnTp3il5XUPVe0q0qpVDI7OzvWtGlTtWbmtLQ0Zm1trdaNNn/+fAaALV++XG2fn376KdPX12cqlarU8y7onivYl0wmYwqFgiUmJjKJRMK2bdtWbPP2kCFDmEQiYREREWr769WrFzM0NGQpKSmMMcZmzZrFOI5jISEhanE9evRQO+eMjAxmYWHBvL291eKUSiVr3ry5WnN9WbvninsoFAq+a2vr1q38Nm/SPVfcfrR9Xwq6SDZs2KAWFxAQoFWXQsGxly1bxhQKBcvOzmbXr19n7733HgPAfv/99zK9tgV5z5s3T+NYxXV3JicnMwMDA9a7d2+12IiICCaRSNiwYcP4ZaNGjWIA2C+//KKxbwBMJpOx9PR0ftnhw4cZANaiRQu1n+Pvv/+eAWC3b98u9jVRqVRMoVCw58+fMwDsyJEjGuf3uvfl77//ZgDY//73v2KPUXCOQqGQTZkyRW15Wloak8lkbNCgQSVuy5j2v0OM5b8+n332Wan7K05p3XP16tVjnp6eGsujo6MZALZkyRLGGGP//vsvA8D27t2rEbtkyRIGgEVHRzPGGBs/fjyTSCTFHq9+/frMw8ODfy4SidjEiRM14i5evFhst2FRV65cYY6OjvzvtImJCfPy8mI7duxQ+3kpS/dcXl4ey83NZfXq1WNffPEFv7zgM7pTp04a2zRp0oT169fvtfuuTqiliajp3Lkz6tati19++QV37tzB1atXS+ya++uvv2BkZISPP/5YbXlB8++btJA8fPgQ0dHR8PX1VWtqNzY2xoABA3Dp0iVkZmaqbePj46P2vFmzZsjOzkZ8fLzWxx09ejTi4uJw8uRJ7N69G2KxWKPpvsBff/2Fbt26wcHBQW25n58fMjMz+b+Gz549i8aNG6N58+ZqccOGDVN7fvHiRSQlJWHUqFFqLUIqlQo9e/bE1atXkZGRofW5FLZjxw5cvXpV7VH0r+uK8rr3pWDA66BBg9TiCrqJtTVr1iyIRCLo6+ujdevWiIiIwKZNm9C7d+83em0HDBig1XGDg4ORlZWl1lUHAA4ODvjwww+L/fkvad9du3aFkZER/7xhw4YAgF69eql1SRUsL9z1GB8fj08++QQODg4QCoUQiURwcnICAI1uQuD178vJkycBQGPwcmF//PEH8vLyMHLkSLXXVV9fH507d37twGNtf4cqUmldfUXXaRtbEfssznvvvYcnT54gKCgIX331FX/l3ciRI+Hj41Nsy1NReXl5WLJkCRo1agSxWAyhUAixWIzHjx8X+3NT3M9u27ZtcfLkScyePRvnzp1DVlbWa49b1b2bT09SZXAch9GjR+OHH35AdnY26tevjw8++KDY2MTERMhkMo1fcGtrawiFwjdqoi3Yprj+ejs7O6hUKiQnJ8PQ0JBfbmlpqRYnkUgAoEy/wE5OTujWrRt++eUXhIeHY8iQITA0NNQo0ApyLCm/wueQmJgIFxcXjTiZTKb2PC4uDgA0is/CkpKS1L5UtdWwYUO0adOmzNuVh9e9L4mJiRAKhbCwsFCLs7GxKdNxPv/8c4wYMQICgQBmZmb8mCzgzV7bksaKFPW6n9XTp0+rLTM0NFQbF1NY0ddALBaXurygS0ilUsHDwwPR0dGYO3cumjZtCiMjI6hUKrRv377Y34HXvS8JCQnQ09PT+DktrOB1fe+994pd/7qxRdr+DlUUS0vLYo+RlJQE4L/XveC1KimW4ziYmZnxsdnZ2cjMzFT7fCqIbd26dZmPXxqRSARPT094enryOX788cc4fvw4Tp48id69e5e6/Zdffokff/wRs2bNQufOnWFubg6BQIBx48YV+3NT3Pv1ww8/oHbt2ti3bx+WLVsGfX19eHp6YsWKFcUObagOqGgiGvz8/DBv3jxs3LgRixcvLjHO0tISly9fBmNMrXCKj49HXl4erKysynzsgg+pmJgYjXXR0dEQCAQwNzcv8361MWbMGIwYMQIqlQobNmwoNceS8gPAn7elpSViY2M14oouK4hfu3YtP4i5qLIWElWBpaUl8vLykJSUpPYlUdxrVpratWuXWBi+yWv7ur/yC7zuZ7Xoz7+2+y2Lu3fv4tatW9i2bRtGjRrFLy86WLwsatWqBaVSidjY2BILyIJz++233/hWrbLQ9neoojRt2hR79+5FXl6eWstrwSDoJk2aAADq1q0LAwMDjcHRBbGurq7Q19fn91mwvF27dnxcbGwsXr58ye+zILakfRY+fllYWlrC398f586dw927d19bNO3atQsjR47EkiVL1Ja/fPmSLwQLK+7n18jICAsXLsTChQv5lvrZs2fD29sbDx48KPM5VAXUPUc02NvbY8aMGfD29lb7IC6qW7duSE9P15h/aceOHfz6AhKJRKuWHzc3N9jb22PPnj1qTcwZGRk4cOAAf0VdRfjoo4/w0UcfYcyYMSV+wQL55/XXX3/xH/AFduzYAUNDQ37brl274t69e7h165ZaXNF5YDp27AgzMzOEhoaiTZs2xT4KWhgqUmktdNq+f2XRuXNnANCYI6ukCQbfREW+tu7u7jAwMMCuXbvUlr948YLvfqpoBV9kBe9dgU2bNr3xPnv16gUApf7h4OnpCaFQiKdPn5b4upZG29+hivLRRx8hPT0dBw4cUFu+fft22NnZ8UWPUCiEt7c3Dh48qHbVa0REBM6ePat2wUvPnj2hr6+vMZ9ZwVWA/fr1Uzv+gwcP+Kv0gPzusl27dqFdu3Z8i1txFApFiS1xBd1qBduX9jvNcZzGz83vv/9e6pV7pbGxsYGfnx+GDh2Khw8fFttKXx1QSxMp1tKlS18bM3LkSPz4448YNWoUwsPD0bRpU1y4cAFLlixB79690b17dz62adOmOHfuHI4dOwZbW1uYmJjAzc1NY58CgQDLly/H8OHD4eXlhYkTJyInJwcrVqxASkqKVnm9KX19ffz222+vjZs/fz6OHz+Orl27Yt68ebCwsMDu3bvx+++/Y/ny5ZBKpQAAf39//PLLL+jTpw8/8dzu3bs1/gIzNjbG2rVrMWrUKCQlJeHjjz+GtbU1EhIScOvWLSQkJJT6BVZeCv5SXrNmDUaNGgWRSAQ3NzeYmJigadOmCAwMxL59+1CnTh3o6+trXCVUVj179kTHjh0xbdo0pKamonXr1ggODuaLbm0vHy9NRb62ZmZmmDt3Lr766iuMHDkSQ4cORWJiIhYuXAh9fX3Mnz//rfN/nQYNGqBu3bqYPXs2GGOwsLDAsWPHNLoGy+KDDz6Ar68vFi1ahLi4OHh5eUEikeDmzZswNDTElClT4OzsjG+++Qb/+9//8OzZM/Ts2RPm5uaIi4vDlStX+BaIkmj7O1RWoaGh/JV7sbGxyMzM5H+nGzVqhEaNGgHILwx79OiBSZMmITU1Fa6urti7dy+CgoKwa9cu6Onp8ftcuHAh3nvvPXh5eWH27NnIzs7GvHnzYGVlhWnTpvFxFhYW+PrrrzF37lxYWFjAw8MDV69exYIFCzBu3Dj+2EB+q/aPP/6IgQMHYunSpbC2tsb69evx8OFDnDlzptRzlMvlcHZ2xsCBA9G9e3c4ODggPT0d586dw5o1a9CwYUO+mDMxMYGTkxOOHDmCbt26wcLCAlZWVnB2doaXlxe2bduGBg0aoFmzZrh+/TpWrFiB2rVra/16t2vXDl5eXmjWrBnMzc1x//597Ny5s0L/uNU53Y5DJ5WBthMhFncFVWJiIvvkk0+Yra0tEwqFzMnJic2ZM4dlZ2erxYWEhLCOHTsyQ0NDBoDfT0kTPR4+fJi1a9eO6evrMyMjI9atWzf277//qsUUXA2UkJBQ7Pm87gqzwlfPlaSkq0/u3LnDvL29mVQqZWKxmDVv3lztCrICoaGhrEePHkxfX59ZWFiwsWPHsiNHjhR7zufPn2d9+vRhFhYWTCQSMXt7e9anTx+2f//+Mp/b697T4q56Y4yxOXPmMDs7OyYQCNRyDA8PZx4eHszExIQB4K9KKu3qOW3el6SkJDZ69GhmZmbGDA0NWY8ePdilS5cYALZmzZpSz7GkyS2Lo81rW1LehXMv7vXcvHkza9asGROLxUwqlbK+ffuqTWTIWOk/ayjm6rCSzq3g96Vw3gU/YyYmJszc3JwNHDiQRUREaPzcluV9USqV7LvvvmNNmjThz8vd3Z0dO3ZMbdvDhw+zrl27MlNTUyaRSJiTkxP7+OOP2ZkzZ4o918K0/R0q7vUpScE5Fvco+juclpbGpk6dymQyGROLxaxZs2bFXiXHGGPXrl1j3bp1Y4aGhszU1JT169ePPXnypNjYNWvWsPr16zOxWMwcHR3Z/PnzWW5urkZcbGwsGzlyJLOwsGD6+vqsffv27PTp0689x5ycHLZy5UrWq1cv5ujoyCQSCdPX12cNGzZkM2fOZImJiWrxZ86cYS1btmQSiYQB4K9iTk5OZmPHjmXW1tbM0NCQvf/+++yff/5hnTt3VvucL+5nrsDs2bNZmzZtmLm5OZNIJKxOnTrsiy++YC9fvnzteVRVHGNaDLMnhJB3ZM+ePRg+fDj+/fdfdOjQQdfpEEIIj4omQojO7N27F1FRUWjatCkEAgEuXbqEFStWoGXLllrdg4sQQt4lGtNECNEZExMTBAYGYtGiRcjIyICtrS38/PywaNEiXadGCCEaqKWJEEIIIUQLNOUAIYQQQogWqGgihBBCCNECFU2EEEIIIVqggeDlSKVSITo6GiYmJhVyywRCCCGElD/GGNLS0mBnZ1fqxLpUNJWj6Ohojbt2E0IIIaRqiIyMLHVWdCqaypGJiQmA/Be9pLuZE0IIIaRySU1NhYODA/89XhIqmspRQZecqakpFU2EEEJIFfO6oTU0EJwQQgghRAtUNBFCCCGEaIG65wghpBpQKpVQKBS6ToOQSkkkEkFPT++t90NFEyGEVGGMMcTGxiIlJUXXqRBSqZmZmUEmk73VlEBUNBFCSBVWUDBZW1vD0NCQ5ogjpAjGGDIzMxEfHw8AsLW1feN9UdFECCFVlFKp5AsmS0tLXadDSKVlYGAAAIiPj4e1tfUbd9XRQHBCCKmiCsYwGRoa6jgTQiq/gt+Ttxn7R0UTIYRUcdQlR8jrlcfvCXXPVXJMqUTmtevIS0iAsFYtGLZpDa4crgAghBBCSNlQ0VSJpZ46hbglAciLjeWXCWUy2Hw1B6YeHjrMjBBCCKl5qHuukko9dQpRn/urFUwAkBcXh6jP/ZF66pSOMiOEVEdKFUPw00QcCYlC8NNEKFVM1ymVatu2bTAzM9N1GlWOn58f+vXrp+s0qiwqmiohplQibkkAwIr50Hq1LG5JAJhS+Y4zI4RUR0F3Y/D+sr8w9OdL+DwwBEN/voT3l/2FoLsxFXbM+Ph4TJw4EY6OjpBIJJDJZPD09ERwcLBW2w8ePBiPHj2qsPwKu3nzJgYOHAgbGxvo6+ujfv36GD9+/Ds7flktWLAAHMdpPM6cOYM1a9Zg27ZtfGyXLl3g7++vs1yrGiqaKqHMa9c1WpjUMIa82FhkXrv+7pIihFRLQXdjMGnXDcTIs9WWx8qzMWnXjQornAYMGIBbt25h+/btePToEY4ePYouXbogKSlJq+0NDAxgbW1dIbkVdvz4cbRv3x45OTnYvXs37t+/j507d0IqlWLu3LlvvN+Knr29cePGiImJUXt06tQJUqmUWujeAhVNlVBeQoJWcTFff42YuXORtHMXMq5cgZJmBCakxmOMITM3T6tHWrYC84/eQ3EdcQXLFhwNRVq24rX7YsW1jJcgJSUFFy5cwLJly9C1a1c4OTmhbdu2mDNnDvr06aMWN2HCBL6Fp0mTJjh+/DgAze65BQsWoEWLFti0aRMcHBxgaGiIgQMH8jOl//333xCJRIgt8gfptGnT0KlTp2LzzMzMxOjRo9G7d28cPXoU3bt3h4uLC9q1a4eVK1di06ZNxeYCAIcPH1a7Wqsgv19++QV16tSBRCLBpk2bYG9vD5VKpbatj48PRo0axT8/duwYWrduDX19fdSpUwcLFy5EXl5eqa+xUCiETCZTe4jFYrXuOT8/P5w/fx5r1qzhW6PCw8NL3W9NRwPBKyFhrVpaxSkiI5ESGam+rUwGiVt96Nd3g8TNDfpu9SF2dgYnElVEqoSQSiZLoUSjeX+Uy74YgNjUbDRd8PoxlKHfeMJQrN1XirGxMYyNjXH48GG0b98eEolEI0alUqFXr15IS0vDrl27ULduXYSGhpY6KeGTJ0/w66+/4tixY0hNTcXYsWPx2WefYffu3ejUqRPq1KmDnTt3YsaMGQCAvLw87Nq1C0uXLi12f3/88QdevnyJmTNnFru+rC02BfkdOHAAenp6sLe3x9SpU3H27Fl069YNAJCcnIw//vgDx44d43MYMWIEfvjhB3zwwQd4+vQpJkyYAACYP39+mY5f1Jo1a/Do0SM0adIE33zzDQCglpbfPzUVFU2VkGGb1hDKZMiLiyt+XBPHQc/SEjZfzUHO48fIefgIOQ8fQhEVhbzYWOTFxiLj/N//hYtEELu6Qr9+fUjc3PKLKjc3CK2s3uFZEUJIPqFQiG3btmH8+PHYuHEjWrVqhc6dO2PIkCFo1qwZAODMmTO4cuUK7t+/j/r16wMA6tSpU+p+s7OzsX37dtSuXRsAsHbtWvTp0werVq2CTCbD2LFjsXXrVr5o+v3335GZmYlBgwYVu7/Hjx8DABo0aFAu552bm4udO3eqFSY9e/bEnj17+KJp//79sLCw4J8vXrwYs2fP5lue6tSpg2+//RYzZ84stWi6c+cOjI2N+eeNGjXClStX1GKkUinEYjEMDQ0hk8nK5RyrOyqaKiFOTw82X81B1Of+AMepF06vmntl8+ZqTDugTEt7VUQ9RPbDh3wxpcrMRM79+8i5f18tXs/SEvpu9SEp3CpVty4ExfzVRwipGgxEegj9xlOr2CthSfDbevW1cdtGv4e2LhavPW5ZDBgwAH369ME///yD4OBgBAUFYfny5di8eTP8/PwQEhKC2rVr8wWTNhwdHfmCCQDc3d2hUqnw8OFDyGQy+Pn54euvv8alS5fQvn17/PLLLxg0aBCMjIyK3V9Zuhy14eTkpNGSM3z4cEyYMAHr16+HRCLB7t27MWTIEL5F7fr167h69SoWL17Mb6NUKpGdnY3MzMwSZ4N3c3PD0aNH+efFteaRsqOiqZIy9fAA1nyvOU+TjU2J8zTpmZjAsFUrGLZqxS9jKhUU0dEahVTu8+dQJiYi42IwMi4WulpFTw9iF2e+e49vlXrLO0MTQt4NjuO07ib7oF4t2Er1ESvPLnZcEwdAJtXHB/VqQU9Q/r//+vr66NGjB3r06IF58+Zh3LhxmD9/Pvz8/Ph7hb2Ngs+sgv9bW1vD29sbW7duRZ06dXDixAmcO3euxO0LCrYHDx7A3d29xDiBQKBRYBU30Lu44szb2xsqlQq///473nvvPfzzzz9YvXo1v16lUmHhwoXo37+/xrb6+vol5iQWi+Hq6lrievJmqGiqxEw9PGDSrdtbzQjOCQQQ164Nce3aMHnV3AsAqqws5Dx58qqYyi+kch4+hFIuR+6Tp8h98hQ4cYKPF5iaanTvSVxdISjhLzRCSOWnJ+Aw37sRJu26AQ5QK5wKSqT53o0qpGAqTqNGjXD48GEAQLNmzfDixQs8evRI69amiIgIREdHw87ODgAQHBwMgUCgtv24ceMwZMgQ1K5dG3Xr1kXHjh1L3J+HhwesrKywfPlyHDp0SGN9SkoKzMzMUKtWLaSlpSEjI4MvjEJCQrTK2cDAAP3798fu3bvx5MkT1K9fH61bt+bXt2rVCg8fPqywAkgsFkNJ09dojYqmSo7T04NRu7blvl+BgQEMmjaFQdOm/DLGGPLi49VbpR49Qs6zZ1ClpiLz2jVkXrtWKDkOIkeH/GKq/n/FlMjBAZyALswkpCro2cQWG0a0wsJjoWrTDsik+pjv3Qg9m9iW+zETExMxcOBAjBkzBs2aNYOJiQmuXbuG5cuXo2/fvgCAzp07o1OnThgwYABWr14NV1dXPHjwABzHoWfPnsXuV19fH6NGjcLKlSuRmpqKqVOnYtCgQWrjdTw9PSGVSrFo0SJ+8HNJjIyMsHnzZgwcOBA+Pj6YOnUqXF1d8fLlS/z666+IiIhAYGAg2rVrB0NDQ3z11VeYMmUKrly5ojYX0usMHz4c3t7euHfvHkaMGKG2bt68efDy8oKDgwMGDhwIgUCA27dv486dO1i0aJHWxyiJs7MzLl++jPDwcBgbG8PCwgIC+vwuERVNhMdxHEQ2NhDZ2MC40CW4LDcXOWFhGl18eQkJUDyPgOJ5BNJOn/lvP4aGkNRzVbuCT1K/PvSkUl2cFiHkNXo2sUWPRjJcCUtCfFo2rE300dbFosJamIyNjdGuXTt89913ePr0KRQKBRwcHDB+/Hh89dVXfNyBAwcwffp0DB06FBkZGXB1dS3xSjcAcHV1Rf/+/dG7d28kJSWhd+/eWL9+vVqMQCCAn58flixZgpEjR7421759++LixYsICAjAsGHDkJqaCgcHB3z44Yd80WJhYYFdu3ZhxowZ+Omnn9C9e3csWLCAv8rtdT788ENYWFjg4cOHGDZsmNo6T09PHD9+HN988w2WL18OkUiEBg0aYNy4cVrt+3WmT5+OUaNGoVGjRsjKykJYWBicnZ3LZd/VEcfKe6RbDZaamgqpVAq5XA5TU1Ndp1Ph8pKS8luiCnfxPX4MlptbbLzQ1laji0/s7AxOSLU7IW8iOzsbYWFhcHFxKXV8S02wYMECHD58WKtusfHjxyMuLk5toDSp/kr7fdH2+5u+rcgbE1pYQNi+PYzat+eXsbw85EZEaLRKKaKjkRcTg/SYGKSfP8/Hc2IxxK511Vul3NwgtLTUxSkRQqoxuVyOq1evYvfu3Thy5Iiu0yFVEBVNpFxxQiEkdepAUqcOTHv14pcrU1OR8/ixWiGV8+hR/nQIofeRE1pkOgQrK81Wqbp1IRCL3/UpEUKqib59++LKlSuYOHEievTooet0SBVE3XPlqKZ1z70tplJBERWlOR1CRETxk3rq6UFSx0VtXimJmxuENjY0HQKpkah7jhDtUfccqdI4gQBiBweIHRxg0r07v1yVmYmcJ0/UCqnsR4+gksuR8/gJch4/AX7/nY8XSKXFT4dQwqRvhBBCyJugoolUOgJDQxg0awaDV7dTAF5NhxAXpz7o/NFD5DwLg0ouR+bVq8i8WmhmY46D2NFRvZByc4PI3p6mQyCEEPJGqGgiVQLHcRDJZBDJZDDu3JlfrsrNRe7TpxqtUsqXL5H7/Dlynz9H2qn/bjYqMDSEpHCrVP1X0yFQdyohhJDXoKKJVGkCsRj6DRtCv2FDteV5L18i59Gj/FapV9Mi5Dx5AlVmJrJCQpBV5LJkoZ2txhV8Yient5oOgSmVbzWbOyGEkMqFiiZSLQmtrCC0soJRhw78MpaXh9znz9W6+LIfPURedAzyomOQHh2D9EL3oeLEYkhcXTW6+IQWpd+4FABST53SvG+gTFbifQMJIYRUflQ0kRqDEwohqVsXkrp1Ydq7N79cKZdrTIeQ/fgxWGYmskNDkR0aqrYfvVpWmq1Sderw0yGknjqFqM/9Na4AzIuLy1++5nsqnAghpAqioonUeHpSKQzbtIFhmzb8MqZSQfHiRZGxUg+hiIiEMuElMhJeIuPff//biVAIiYsLxPXrI+P8+eKnTGAM4DjELQmASbdu1FVHKpXq2p3cpUsXtGjRAt9//72uU3lrZT2Xbdu2wd/fHykpKRWalzbOnTuHrl27Ijk5GWZmZm+8Hz8/P6SkpPA3dn7X6DIiQorBCQQQOzrCtEcP1Jr8GWqv/QGuf/wBt2tX4bwvELJvFsJ8+HAYtmkDgakpkJeHnMePkfb771Clp5e8Y8aQFxuLzGvX393JEPIaqadO4Um37ogYNQrR06cjYtQoPOnWHamFLqIob35+fuA4Dp988onGuk8//RQcx8HPz0/r/Z07dw4cx2kUCAcPHsS33377ltmWLjw8HBzHQSgUIioqSm1dTEwMhEIhOI5DeHh4hebxNiZMmAA9PT0EBgbqOhUA/72mRW+Ls2bNmjLdDLm8UdFESBkIjIxg0Lw5zAcNgmzu13DatRP1L1+C69m/UHvjBpgUmgW9NHkJCRWcKSHaKehOLjz+DvivO7kiCycHBwcEBgYiKyuLX5adnY29e/fC0dGxXI5hYWEBExOTctnX69jZ2WHHjh1qy7Zv3w57e/t3cvw3lZmZiX379mHGjBnYsmWLrtMplVQqfauWqrdFRRMhb4njOIhsbWHSpQvMhwzRahthrVoVnBWpqRhjUGVmavVQpqUhbtHikruTwRC3eAmUaWmv3deb3FyiVatWcHR0xMGDB/llBw8ehIODA1q2bKkWm5OTg6lTp8La2hr6+vp4//33cfXV3Gzh4eHo2rUrAMDc3FytlapLly7w9/fn95OcnIyRI0fC3NwchoaG6NWrFx4/fsyv37ZtG8zMzPDHH3+gYcOGMDY2Rs+ePRETE/Pa8xk1ahS2bt2qtmzbtm0YNWqURuz58+fRtm1bSCQS2NraYvbs2cjLy+PXZ2RkYOTIkTA2NoatrS1WrVqlsY/c3FzMnDkT9vb2MDIyQrt27XCu0MUs2tq/fz8aNWqEOXPm4N9//9VoEfPz80O/fv2wcuVK2NrawtLSEp999hkUCgUfs2vXLrRp0wYmJiaQyWQYNmwY4uPjiz1eRkYGTE1N8dtvv6ktP3bsGIyMjJCWlgYXFxcAQMuWLcFxHLp06aKWSwGVSoVly5bB1dUVEokEjo6OWLx4cZlfA21R0URIOTJs0xpCmQwo5bYueubmMGzT+h1mRWoSlpWFh61aa/V49F5b5JXwxZa/s/wWp0fvtX3tvlih1qKyGD16tFqh8csvv2DMmDEacTNnzsSBAwewfft23LhxA66urvD09ERSUhIcHBxw4MABAMDDhw8RExODNWvWFHs8Pz8/XLt2DUePHkVwcDAYY+jdu7daAZCZmYmVK1di586d+PvvvxEREYHp06e/9lx8fHyQnJyMCxcuAAAuXLiApKQkeHt7q8VFRUWhd+/eeO+993Dr1i1s2LABW7ZswaJFi/iYGTNm4OzZszh06BBOnTqFc+fO4fp19W790aNH499//0VgYCBu376NgQMHomfPnmpFoDa2bNmCESNGQCqVonfv3hqFHwCcPXsWT58+xdmzZ7F9+3Zs27ZNrZssNzcX3377LW7duoXDhw8jLCysxO5VIyMjDBkyROM4W7duxccffwwTExNcuXIFAHDmzBnExMSoFdaFzZkzB8uWLcPcuXMRGhqKPXv2wMbGpkznXxZUNBFSjjg9Pdh8NefVk+ILJ2VKCpJ3736jv8wJqW58fX1x4cIFhIeH4/nz5/j3338xYsQItZiMjAxs2LABK1asQK9evdCoUSP8/PPPMDAwwJYtW6CnpweLV1OBWFtbQyaTQSqVahzr8ePHOHr0KDZv3owPPvgAzZs3x+7duxEVFaU2sFihUGDjxo1o06YNWrVqhcmTJ+PPP/987bmIRCKMGDECv/zyC4D8AnDEiBEQiURqcevXr4eDgwPWrVuHBg0aoF+/fli4cCFWrVoFlUqF9PR0bNmyBStXrkSPHj3QtGlTbN++HUqlkt/H06dPsXfvXuzfvx8ffPAB6tati+nTp+P9998vtugpyePHj3Hp0iUMHjwYADBixAhs3boVKpVKLc7c3JzP18vLC3369FF7TcaMGYNevXqhTp06aN++PX744QecPHkS6SWM8Rw3bhz++OMPREdHAwBevnyJ48eP8wVzrVet8ZaWlpDJZPz7W1haWhrWrFmD5cuXY9SoUahbty7ef/99jBs3TuvzLyudFk1///03vL29YWdnB47jSh0NP3HiRHAcp3HVQE5ODqZMmQIrKysYGRnBx8cHL168UItJTk6Gr68vpFIppFIpfH19NQYLRkREwNvbG0ZGRrCyssLUqVORm5tbTmdKahJTDw/Yr/kewiJ/7QhlMhi6uwOMIW5JAOK+XQRWqDmekPLAGRjA7cZ1rR4OP23Sap8OP2167b44A4M3ytfKygp9+vTB9u3bsXXrVvTp0wdWVlZqMU+fPoVCoUDHjh35ZSKRCG3btsX9+/e1Ptb9+/chFArRrl07fpmlpSXc3NzU9mNoaIi6devyz21tbUvsaipq7Nix2L9/P2JjY7F///5iW83u378Pd3d3tRuNd+zYEenp6Xjx4gWePn2K3NxcuLu78+stLCzg5ubGP79x4wYYY6hfvz6MjY35x/nz5/H06VPtXhDktzJ5enryr3nv3r2RkZGBM2fOqMU1btwYeoWupiz6mty8eRN9+/aFk5MTTExM+O60iIiIYo/btm1bNG7cmB8DtnPnTjg6OqJTp05a537//n3k5OSgW7duWm/ztnQ65UBGRgaaN2+O0aNHY8CAASXGHT58GJcvX4adnZ3GOn9/fxw7dgyBgYGwtLTEtGnT4OXlhevXr/Nv8LBhw/DixQsEBQUByL9KwNfXF8eOHQMAKJVK9OnTB7Vq1cKFCxeQmJiIUaNGgTGGtWvXVsCZk+rO1MMDJt26aVzCDYEASb9sRfzKlUjeswe5LyJhv3o19IyNdZ0yqSY4jgOn5c2qjTp2hFAmQ15cXPHjmjgOQhsbGHXsWKHTD4wZMwaTJ08GAPz4448a6wtaZbkirbeMMY1lpSmpdbfofoq2DHEcp3XLcJMmTdCgQQMMHToUDRs2RJMmTTSuACsu78LnqM2xVCoV9PT01L7rChhr+XmiVCqxY8cOxMbGQljo7gdKpRJbtmyBR6H55Ip7TQpaozIyMuDh4QEPDw/s2rULtWrVQkREBDw9PUttfBg3bhzWrVuH2bNnY+vWrRg9enSZ3k+DNyzU34ZOW5p69eqFRYsWoX///iXGREVFYfLkydi9e7fGmyaXy7FlyxasWrUK3bt3R8uWLbFr1y7cuXOHr5Lv37+PoKAgbN68Ge7u7nB3d8fPP/+M48eP4+HDhwCAU6dOITQ0FLt27ULLli3RvXt3rFq1Cj///DNSU1Mr7gUg1Rqnpwejdm0h9eoDo3ZtwenpgeM4WI4dA/s134PT10fG3//g+bDhULxqoibkXSq1O/nVc5uv5lT4fE09e/ZEbm4ucnNz4enpqbHe1dUVYrGYHysE5HehXbt2DQ1f3UJJ/Gpy2cJdWEU1atQIeXl5uHz5Mr8sMTERjx494vdTHsaMGYNz584V28pUkMfFixfViqOLFy/CxMQE9vb2cHV1hUgkwqVLl/j1ycnJePToEf+8ZcuWUCqViI+Ph6urq9pDJpNpleeJEyeQlpaGmzdvIiQkhH/s378fhw8fRmJiolb7efDgAV6+fImlS5figw8+QIMGDbRqmRsxYgQiIiLwww8/4N69e2oD5rV5P+vVqwcDAwOtuk7LS6Ue06RSqeDr64sZM2agcePGGuuvX78OhUKhVg3b2dmhSZMmuHjxIgAgODgYUqlUrTm2ffv2kEqlajFNmjRRa8ny9PRETk6OxsC7wnJycpCamqr2IEQbph4ecNq5A3q1rJDz6BHCBg9G1p27uk6L1EAldifb2MD+Hc1er6enh/v37+P+/fsarSZA/sDhSZMmYcaMGQgKCkJoaCjGjx+PzMxMjB07FgDg5OQEjuNw/PhxJCQkFDuWpl69eujbty/Gjx+PCxcu4NatWxgxYgTs7e3Rt2/fcjuf8ePHIyEhocSxNZ9++ikiIyMxZcoUPHjwAEeOHMH8+fPx5ZdfQiAQwNjYGGPHjsWMGTPw559/4u7du/Dz84NA8N9Xdv369TF8+HCMHDkSBw8eRFhYGK5evYply5bhxIkTWuW5ZcsW9OnTB82bN0eTJk34x4ABA1CrVi3s2rVLq/04OjpCLBZj7dq1ePbsGY4eParV3Fjm5ubo378/ZsyYAQ8PD9SuXZtfZ21tDQMDAwQFBSEuLg5yuVxje319fcyaNQszZ87Ejh078PTpU1y6dKlCp02o1EXTsmXLIBQKMXXq1GLXx8bGQiwWw9zcXG25jY0NYl/NORIbGwtra2uNba2trdViio62Nzc3h1gs5mOKExAQwI+TkkqlcHBwKNP5kZrNoGlTuOzbB0n9+lAmvMRzX1+knj6t67RIDWTq4QHXP8/Acft22K1cCcft2+H655l3ersfU1NTmJqalrh+6dKlGDBgAHx9fdGqVSs8efIEf/zxB//5b29vj4ULF2L27NmwsbHhu/uK2rp1K1q3bg0vLy+4u7uDMYYTJ05o9GS8DaFQCCsrK7Uur8Ls7e1x4sQJXLlyBc2bN8cnn3yCsWPH4uuvv+ZjVqxYgU6dOsHHxwfdu3fH+++/j9at1a+63bp1K0aOHIlp06bBzc0NPj4+uHz5slbfRXFxcfj999+LHRrDcRz69++vdfFRq1YtbNu2jZ+6YOnSpVi5cqVW244dOxa5ubkarXJCoRA//PADNm3aBDs7uxKL2rlz52LatGmYN28eGjZsiMGDB2s9/uyNsEoCADt06BD//Nq1a8zGxoZFRUXxy5ycnNh3333HP9+9ezcTi8Ua++revTubOHEiY4yxxYsXs/r162vEuLq6soCAAMYYY+PHj2ceHh4aMSKRiO3du7fEnLOzs5lcLucfkZGRDACTy+WvPV9CCuSlpbHn48azULcGLLRBQ/Zy8xamUql0nRapArKyslhoaCjLysrSdSqEvJFdu3YxS0tLlpOTU+HHKu33RS6Xa/X9XWlbmv755x/Ex8fD0dERQqEQQqEQz58/x7Rp0+Ds7AwAkMlkyM3NRXJystq28fHxfMuRTCZDXFycxv4TEhLUYoq2KCUnJ0OhUJQ634NEIuH/OnrdX0mElETP2BgOG9bDfNhQgDHEr1iB2PkLwArNG0MIIdVJZmYm7t27h4CAAEycOJEfw1TZVdqiydfXF7dv31YbnGZnZ4cZM2bgjz/+AAC0bt0aIpEIpwt1acTExODu3bvo0KEDAMDd3R1yuZyfKAsALl++DLlcrhZz9+5dtRlfT506BYlEotEcSkhF4IRC2Mydmz8ol+OQ8uuviJw4EUoaJ0cIqYaWL1+OFi1awMbGBnPmzNF1OlrT6ZQD6enpePLkCf88LCwMISEhsLCwgKOjIywtLdXiRSIRZDIZP1eFVCrF2LFjMW3aNFhaWsLCwgLTp09H06ZN0b17dwBAw4YN0bNnT4wfPx6bNuXPSTJhwgR4eXnx+/Hw8ECjRo3g6+uLFStWICkpCdOnT8f48eOp9Yi8MxzHwWLkSIhqOyBq+nRkXAxG+LBhcNi4EeJCAyQJIaSqW7BgARYsWKDrNMpMpy1N165dQ8uWLfl7DH355Zdo2bIl5s2bp/U+vvvuO/Tr1w+DBg1Cx44dYWhoiGPHjqldgbF79240bdqUn0eiWbNm2LlzJ79eT08Pv//+O/T19dGxY0cMGjSIv88OIe+ayYdd4bxrJ4TW1sh98hThg4cgq8g8L4QQQt49jjG6l0N5SU1NhVQqhVwupxYq8tYUcXGInDQJOaH3wUkksFsaANNevXSdFqlEsrOzERYWBmdnZ51M9EdIVZKVlYXw8HC4uLhAX19fbZ2239+VdkwTITWdyMYGzjt3wrhrV7CcHER98SVebtxE96wjvILL5DMzM3WcCSGVX8HvydtML6HTMU2EkNIJjIxQe91axC9fjqTtO5Dw/ffIjYiA7YL54KrI1Sak4ujp6cHMzIyfl8bQ0LBMt6EgpCZgjCEzMxPx8fEwMzMrdgJVbVHRREglx+npwWbOHIicnBC3aDHkBw9C8eIFav+wBnpmZrpOj+hYwS0zKnRCP0KqATMzM61vMVMSGtNUjmhME6lo6X//jSj/L6DKzITY2RkOP22C2NFR12mRSkCpVEJBc3sRUiyRSFRqC5O2399UNJUjKprIu5D98CEiP5mEvJgY6JmZofaP62BI84kRQsgbo4HghFRT+m5ucN4XCP0mTaBMSUGE32jIjx3XdVqEEFLtUdFESBUksraG084dMOnRHUyhQPSMGUhY9yNdWUcIIRWIiiZCqiiBgQHs16yBxdj8u4O/XLcO0bNmQZWbq+PMCCGkeqKiiZAqjBMIYDNjBmTfLAT09JB69BgiRo9BXpGbWBNCCHl7VDQRUg2YDxoEx59/gsDYGFnXryN88BDkhIXpOi1CCKlWqGgipJow6tABzoF7IbK3hyIiAuFDhiLjyhVdp0UIIdUGFU2EVCMSV1c47wuEQfPmUMnliBg7DimHDus6LUIIqRaoaCKkmhFaWcFx+zaY9OoJKBSImTMH8d9/D6ZS6To1Qgip0qhoIqQaEujrw37VKlhOnAgASNy4CdHTp0OVna3jzAghpOqioomQaooTCGD9hT9slywBRCKknjiJCL/RyEtM1HVqhBBSJVHRREg1Z9b/Izhu3gyBVIqskJD8K+uePNF1WoQQUuVQ0URIDWDUri2c9+6FyNERihcvED50GDIuXtR1WoQQUqVQ0URIDSGp45J/ZV2rVlClpSFiwkQk79+v67QIIaTKoKKJkBpEaG4Ox21bYertDeTlIXbuPMSvXElX1hFCiBaoaCKkhhGIxbBbvgxWkycDABI3b0HU5/5QZWXpODNCCKncqGgipAbiOA61Jn8GuxXLwYlESDt9Gs9HjkJeQoKuUyOEkEqLiiZCajCptzcct/4CPTMzZN+5g7DBg5H98JGu0yKEkEqJiiZCajjDNm3gvC8QYmdn5EXH4PmwYUj/5x9dp0UIIZUOFU2EEIidnOAcuBeGbdtClZGByE8mIXnvXl2nRQghlQoVTYQQAICemRkcN/8Mab9+gFKJ2IXfIC5gKZhSqevUCCGkUqCiiRDC48Ri2AYsQS1/fwBA0vbteDFlKlQZGbpNjBBCKgEqmgghajiOg9UnE2G/ehU4sRjpf/2FcF9fKOLidJ0aIYToFBVNhJBimfbuDcft26BnYYGc0PsIHzQY2ffv6zotQgjRGSqaCCElMmzZEs6/7oO4bl3kxcUhfPgIpJ09q+u0CCFEJ6hoIoSUSly7Npz37oGhe3uwzEy8+Gwyknbs1HVahBDyzlHRRAh5LT1TUzj+9BPMBn4MqFSIW7IEsd8uAsvL03VqhBDyzlDRRAjRCicSQfbNN7CeMR3gOCTv3o3ITz+FMp2urCOE1AxUNBFCtMZxHCzHjoX9mu/B6esj4+9/8Hz4cChiYnSdGiGEVDgqmgghZWbq4QGnnTugV8sKOQ8fImzQIGTduavrtAghpELptGj6+++/4e3tDTs7O3Ach8OHD/PrFAoFZs2ahaZNm8LIyAh2dnYYOXIkoqOj1faRk5ODKVOmwMrKCkZGRvDx8cGLFy/UYpKTk+Hr6wupVAqpVApfX1+kpKSoxURERMDb2xtGRkawsrLC1KlTkZubW1GnTkiVZ9C0KVz27YOkfn0oE17iua8v0s6c0XVahBBSYXRaNGVkZKB58+ZYt26dxrrMzEzcuHEDc+fOxY0bN3Dw4EE8evQIPj4+anH+/v44dOgQAgMDceHCBaSnp8PLywvKQrd+GDZsGEJCQhAUFISgoCCEhITA19eXX69UKtGnTx9kZGTgwoULCAwMxIEDBzBt2rSKO3lCqgGRnR2c9uyG0QcfgGVn48WUqUjc8gsYY7pOjRBCyh+rJACwQ4cOlRpz5coVBoA9f/6cMcZYSkoKE4lELDAwkI+JiopiAoGABQUFMcYYCw0NZQDYpUuX+Jjg4GAGgD148IAxxtiJEyeYQCBgUVFRfMzevXuZRCJhcrm8xHyys7OZXC7nH5GRkQxAqdsQUh2pFAoWvWABC3VrwELdGrDoefOZKjdX12kRQohW5HK5Vt/fVWpMk1wuB8dxMDMzAwBcv34dCoUCHh4efIydnR2aNGmCixcvAgCCg4MhlUrRrl07PqZ9+/aQSqVqMU2aNIGdnR0f4+npiZycHFy/fr3EfAICAvguP6lUCgcHh/I8XUKqDE4ohGzePNjMmQ1wHFL27UPkxE+gTEvTdWqEEFJuqkzRlJ2djdmzZ2PYsGEwNTUFAMTGxkIsFsPc3Fwt1sbGBrGxsXyMtbW1xv6sra3VYmxsbNTWm5ubQywW8zHFmTNnDuRyOf+IjIx8q3MkpCrjOA4Wo0ah9o/rwBkYIOPiRYQPHYrcF1G6To0QQspFlSiaFAoFhgwZApVKhfXr1782njEGjuP454X//TYxRUkkEpiamqo9CKnpTD78EE67dkJobY3cJ08RPngwsm7d0nVahBDy1ip90aRQKDBo0CCEhYXh9OnTaoWJTCZDbm4ukpOT1baJj4/nW45kMhniirk7e0JCglpM0Ral5ORkKBQKjRYoQsjrGTRuDOdf90HSsCGUiYl4PnIUUoOCdJ0WIYS8lUpdNBUUTI8fP8aZM2dgaWmptr5169YQiUQ4ffo0vywmJgZ3795Fhw4dAADu7u6Qy+W4cuUKH3P58mXI5XK1mLt37yKm0AR9p06dgkQiQevWrSvyFAmptkQyGZx37YRxly5gOTmI8v8CLzf9RFfWEUKqLI7p8BMsPT0dT548AQC0bNkSq1evRteuXWFhYQE7OzsMGDAAN27cwPHjx9VafCwsLCAWiwEAkyZNwvHjx7Ft2zZYWFhg+vTpSExMxPXr16GnpwcA6NWrF6Kjo7Fp0yYAwIQJE+Dk5IRjx44ByJ9yoEWLFrCxscGKFSuQlJQEPz8/9OvXD2vXrtX6fFJTUyGVSiGXy6mrjpBXmFKJuGXLkPzqJr/SAf1hO38+uFe/w4QQomtaf39X+HV8pTh79iwDoPEYNWoUCwsLK3YdAHb27Fl+H1lZWWzy5MnMwsKCGRgYMC8vLxYREaF2nMTERDZ8+HBmYmLCTExM2PDhw1lycrJazPPnz1mfPn2YgYEBs7CwYJMnT2bZ2dllOh9tL1kkpCZK3LWLhTZsxELdGrDwkaNYXkqKrlMihBDGmPbf3zptaapuqKWJkNKl//03ovy/gCozE2IXFzhs2gixo6Ou0yKE1HDafn9X6jFNhJDqxbhTJzjt3QOhrS1yw8IQPngIMm/c0HVahBCiFSqaCCHvlL6bG5z3BUK/cWMok5MRMcoP8mPHdZ0WIYS8FhVNhJB3TmRtDaedO2DSozuYQoHoGTOQ8OOPdGUdIaRSo6KJEKITAkND2K9ZA4sxYwAAL9euQ8zs2VDl5uo4M0IIKR4VTYQQneEEAtjMnAHZwoWAnh7kR44iYswY5BWZsJYQQioDKpoIITpnPngQHH7aBIGxMbKuXUf4kCHICQvTdVqEEKKGiiZCSKVg3LEjnPfugcjODornEXg+ZCgyCs3kTwghukZFEyGk0pDUqwfnX/dBv3kzKOVyRIwdh5TDh3WdFiGEAKCiiRBSyQitrOC0fTtMevYEFArEzJ6D+DVr6Mo6QojOUdFECKl0BPr6sF+9CpYTJwIAEjdsRPS06VDl5Og4M0JITUZFEyGkUuIEAlh/4Q/bxYsBoRCpJ04gYpQf8pKSdJ0aIaSGoqKJEFKpmQ3oD8fNmyEwNUVWSAjCBw1GztOnuk6LEFIDUdFECKn0jNq3g3NgIEQODlC8eIHwIUORERys67QIITUMFU2EkCpBUscFzr/ug0GrVlClpSFi/ASk/PabrtMihNQgVDQRQqoMobk5HLf+AlMvLyAvDzFfz0X8qlVgKpWuUyOE1ABUNBFCqhSBRAK7Fcth9dlnAIDEnzcjyv8LqLKydJwZIaS6o6KJEFLlcByHWlMmw275MnAiEdJOncLzUX7IS0jQdWqEkGqMiiZCSJUl9fGB49ZfoGdmhuzbtxE2eDCyHz3SdVqEkGqKiiZCSJVm2KYNnPcFQuzsjLzoGDwfOgzp/1zQdVqEkGqIiiZCSJUndnKCc+BeGL73HlQZGYj85BMkBwbqOi1CSDVDRRMhpFrQMzOD45bNkPbrByiViF2wEHEBS8GUSl2nRgipJoTaBKWmpmq9Q1NT0zdOhhBC3gYnFsM2YAnEzk5I+H4NkrZvR25kJOxXroDA0FDX6RFCqjiOaXHrcIFAAI7jtNqhsgb/VZeamgqpVAq5XE7FIyE6lnriBKJnzwHLzYV+o0aovWEDRDbWuk6LEFIJafv9rVVL09mzZ/l/h4eHY/bs2fDz84O7uzsAIDg4GNu3b0dAQMBbpk0IIeXDtHdvCG1t8eKzycgODUX4oEFw2LgB+g0b6jo1QkgVpVVLU2HdunXDuHHjMHToULXle/bswU8//YRz586VZ35VCrU0EVL55EZGIvKTSch9+hScoSHsV6+CSZcuuk6LEFKJaPv9XeaB4MHBwWjTpo3G8jZt2uDKlStl3R0hhFQosYMDnPfugaF7e7DMTLz49DMk7dyl67QIIVVQmYsmBwcHbNy4UWP5pk2b4ODgUC5JEUJIedIzNYXjTz9B+vEAQKVC3OLFiP12EVhenq5TI4RUIVqNaSrsu+++w4ABA/DHH3+gffv2AIBLly7h6dOnOHDgQLknSAgh5YETiWD77beQuLggfsVKJO/ejdwXkbBftRp6xka6To8QUgWUuaWpd+/eePz4MXx8fJCUlITExET07dsXjx49Qu/evSsiR0IIKRccx8Fy7FjYr1kDTiJBxvm/8XzECChiYnSdGiGkCijzQHBSMhoITkjVkXX7NiI//QzKly8hrFULtTdsgEGTxrpOixCiA9p+f79R0ZSSkoIrV64gPj4eKpVKbd3IkSPLnm01QUUTIVWLIioKkZ9MQs7jx+AMDGC/YjlMunfXdVqEkHeswoqmY8eOYfjw4cjIyICJiYnapJccxyEpKenNs67iqGgipOpRpqcjyv8LZFy4AHAcrGfMgMVoP60n9CWEVH0VNuXAtGnTMGbMGKSlpSElJQXJycn8oyYXTISQqknP2BgOGzfAbOgQgDHEL1+O2AULwRQKXadGCKlkylw0RUVFYerUqTAsh/s4/f333/D29oadnR04jsPhw4fV1jPGsGDBAtjZ2cHAwABdunTBvXv31GJycnIwZcoUWFlZwcjICD4+Pnjx4oVaTHJyMnx9fSGVSiGVSuHr64uUlBS1mIiICHh7e8PIyAhWVlaYOnUqcnNz3/ocCSGVHycUQjZvHmzmzAY4Din79iHyk0lQpqUBAJhSiYzLVyA//jsyLl+hmwATUkOVuWjy9PTEtWvXyuXgGRkZaN68OdatW1fs+uXLl2P16tVYt24drl69CplMhh49eiDt1QcZAPj7++PQoUMIDAzEhQsXkJ6eDi8vL7V74A0bNgwhISEICgpCUFAQQkJC4Ovry69XKpXo06cPMjIycOHCBQQGBuLAgQOYNm1auZwnIaTy4zgOFqNGofaP68AZGCDj33/xfNgwJO0NxJNu3RExahSip09HxKhReNKtO1JPndJ1yoSQd6zMY5q2bNmCb775BqNHj0bTpk0hEonU1vv4+LxZIhyHQ4cOoV+/fgDyW5ns7Ozg7++PWbNmAchvVbKxscGyZcswceJEyOVy1KpVCzt37sTgwYMBANHR0XBwcMCJEyfg6emJ+/fvo1GjRrh06RLatWsHIH9eKXd3dzx48ABubm44efIkvLy8EBkZCTs7OwBAYGAg/Pz8EB8fr/X4JBrTREj1kHXvHl5M+hR58fHFB7wa72S/5nuYeni8w8wIIRWhXG/YW9j48eMBAN98843GOo7j1Fp43kZYWBhiY2PhUegDSSKRoHPnzrh48SImTpyI69evQ6FQqMXY2dmhSZMmuHjxIjw9PREcHAypVMoXTADQvn17SKVSXLx4EW5ubggODkaTJk34ggnIb1HLycnB9evX0bVr12JzzMnJQU5ODv88NTW1XM6dEKJbBo0bw2nvHjz17AkUN2s4YwDHIW5JAEy6dQOnp/fukySEvHNl7p5TqVQlPsqrYAKA2NhYAICNjY3achsbG35dbGwsxGIxzM3NS42xtrbW2L+1tbVaTNHjmJubQywW8zHFCQgI4MdJSaVSuo0MIdWI4kVU8QVTAcaQFxuLzGvX311ShBCdKnPR9K4VveyXMfbaS4GLxhQX/yYxRc2ZMwdyuZx/REZGlpoXIaTqyEtIKNc4QkjV90ZF0/nz5+Ht7Q1XV1fUq1cPPj4++Oeff8o1MZlMBgAaLT3x8fF8q5BMJkNubi6Sk5NLjYmLi9PYf0JCglpM0eMkJydDoVBotEAVJpFIYGpqqvYghFQPwlq1yjWOEFL1lblo2rVrF7p37w5DQ0NMnToVkydPhoGBAbp164Y9e/aUW2IuLi6QyWQ4ffo0vyw3Nxfnz59Hhw4dAACtW7eGSCRSi4mJicHdu3f5GHd3d8jlcly5coWPuXz5MuRyuVrM3bt3EVPo/lOnTp2CRCJB69aty+2cCCFVh2Gb1hDKZPygbw0cB6FMBsM29BlBSE1R5qvnGjZsiAkTJuCLL75QW7569Wr8/PPPuH//vtb7Sk9Px5MnTwAALVu2xOrVq9G1a1dYWFjA0dERy5YtQ0BAALZu3Yp69ephyZIlOHfuHB4+fAgTExMAwKRJk3D8+HFs27YNFhYWmD59OhITE3H9+nXovRqc2atXL0RHR2PTpk0AgAkTJsDJyQnHjh0DkD/lQIsWLWBjY4MVK1YgKSkJfn5+6NevH9auXav1+dDVc4RUL6mnTiHqc//8J8V8VNr/sIauniOkGtD6+5uVkVgsZo8fP9ZY/vjxYyaRSMq0r7NnzzIAGo9Ro0YxxhhTqVRs/vz5TCaTMYlEwjp16sTu3Lmjto+srCw2efJkZmFhwQwMDJiXlxeLiIhQi0lMTGTDhw9nJiYmzMTEhA0fPpwlJyerxTx//pz16dOHGRgYMAsLCzZ58mSWnZ1dpvORy+UMAJPL5WXajhBSecn/+IM96tyFhbo1UHvcb96C5URG6jo9Qkg50Pb7u8wtTa6urpgxYwYmTpyotnzTpk1YuXIlHj9+XLbyrhqhliZCqiemVCLz2nXkJSRAz8ICCWvXIvvmTRg0bw6nXTvBFZmvjhBStVTYPE3Tpk3D1KlTERISgg4dOoDjOFy4cAHbtm3DmjVr3ippQgipjDg9PRi1a8s/lzg54lm/j5B16xYS1v0I6y/8dZccIeSdKXNLEwAcOnQIq1at4scvNWzYEDNmzEDfvn3LPcGqhFqaCKk5UoOCEOX/BcBxcNy6FUbt271+I0JIpaTt9/cbFU2keFQ0EVKzRH/9NeS/HYDQ2houRw5DWGSiXUJI1aDt93eZpxy4evUqLl++rLH88uXL5XYjX0IIqQpkX30FsYsL8uLjEfO/r0F/gxJSvZW5aPrss8+Knfk6KioKn332WbkkRQghVYHA0BD2q1eBE4mQ/tdfSC7HueoIIZVPmYum0NBQtGrVSmN5y5YtERoaWi5JEUJIVaHfsCGsZ0wHAMQvW47sh490nBEhpKKUuWiSSCTF3pYkJiYGQmGZL8YjhJAqz9zXF0adO4Hl5iJ6+jSosrJ0nRIhpAKUuWjq0aMHf6PaAikpKfjqq6/Qo0ePck2OEEKqAo7jYLdkCfRqWSHn8RPELVum65QIIRWgzEXTqlWrEBkZCScnJ3Tt2hVdu3aFi4sLYmNjsWrVqorIkRBCKj2hpSXsli4FAKQE7kNqoXtiEkKqhzeaciAjIwO7d+/GrVu3YGBggGbNmmHo0KEQ1fBZcWnKAUJI/MqVSNy8BQKpFHUOH4LI1lbXKRFCXoPmadIBKpoIISw3F+HDhiP77l0YtmkDx+3bwL26eTghpHKqsHmaAGDnzp14//33YWdnh+fPnwMAvvvuOxw5cuTNsiWEkGqCE4thv2olBIaGyLx2DS83bdJ1SoSQclLmomnDhg348ssv0atXLyQnJ0OpVAIAzM3N8f3335d3foQQUuWInZwgmz8PAPDyx/XIvHFDxxkRQspDmYumtWvX4ueff8b//vc/tSkG2rRpgzt37pRrcoQQUlVJ+/aFqY83oFQiavp0KFNTdZ0SIeQtlbloCgsLQ8uWLTWWSyQSZGRklEtShBBSHcjmzYPIwQF50TGImTefbrNCSBVX5qLJxcUFISEhGstPnjyJRo0alUdOhBBSLegZG8N+1UpAKERaUBDkBw7oOiVCyFso8xTeM2bMwGeffYbs7GwwxnDlyhXs3bsXAQEB2Lx5c0XkSAghVZZBs2ao9flUJKxajdjFS2DQqhUkderoOi1CyBt4oykHfv75ZyxatIi/ca+9vT0WLFiAsWPHlnuCVQlNOUAIKQ5TqRAxdiwygy9B0rAhnPcFQiAW6zotQsgr72SeppcvX0KlUsHa2vpNd1GtUNFECCmJIi4eYf36QZmcDItRI2EzZ46uUyKEvFKh8zQVsLKywv3793Hy5EkkJye/za4IIaRaE9lYw3bJYgBA0vYdSD9/XscZEULKSuuiacWKFZg/fz7/nDGGnj17omvXrujTpw8aNmyIe/fuVUiShBBSHZh07QpzX18AQPScr6CIj9dxRoSQstC6aNq7d6/a1XG//fYb/v77b/zzzz94+fIl2rRpg4ULF1ZIkoQQUl1YT58GSYMGUCYlIWb2HDCVStcpEUK0pHXRFBYWhmbNmvHPT5w4gQEDBqBjx46wsLDA119/jeDg4ApJkhBCqguBRAL7VSvB6esj4+JFJG3dquuUCCFa0rpoUigUkEgk/PPg4GB06NCBf25nZ4eXL1+Wb3aEEFINSerWhc1X+QPB47/7Hll0NwVCqgStiyZXV1f8/fffAICIiAg8evQInTt35te/ePEClpaW5Z8hIYRUQ2YDB8LE0xPIy0PUtOlQptMdFQip7LQumiZNmoTJkydj7Nix6NWrF9zd3dXGOP3111/F3l6FEEKIJo7jYPvNQgjtbKGIiEDct9/qOiVCyGtoXTRNnDgRa9asQVJSEjp16oQDRW4HEB0djTFjxpR7goQQUl3pSaWwX7ECEAggP3IE8mPHdJ0SIaQUbzW5JVFHk1sSQt5Ewrof8XLdOgiMjOBy6CDEjo66TomQGuWdTG5JCCHk7Vl9MhEGrVtDlZGBqOkzwBQKXadECCkGFU2EEKJjnFAI+xXLITA1Rfbt20j4Ya2uUyKEFIOKJkIIqQREdnawfTUYPHHzZmTQvHeEVDpUNBFCSCVh6ukBs0GDAMYQPXMW8pKSdJ0SIaSQMhVNeXl5EAqFuHv3bkXlQwghNZrNnNkQ162LvIQExHz1P9C1OoRUHmUqmoRCIZycnKBUKisqH0IIqdEEBgb5t1kRi5F+7hySd+3WdUqEkFfK3D339ddfY86cOUh6B83GeXl5+Prrr+Hi4gIDAwPUqVMH33zzDVSFbnDJGMOCBQtgZ2cHAwMDdOnSBffu3VPbT05ODqZMmQIrKysYGRnBx8cHL168UItJTk6Gr68vpFIppFIpfH19kZKSUuHnSAghRek3aADrGTMAAPErViD7wQMdZ0QIAd6gaPrhhx/wzz//wM7ODm5ubmjVqpXaozwtW7YMGzduxLp163D//n0sX74cK1aswNq1/11Zsnz5cqxevRrr1q3D1atXIZPJ0KNHD6SlpfEx/v7+OHToEAIDA3HhwgWkp6fDy8tLrcVs2LBhCAkJQVBQEIKCghASEgJfX99yPR9CCNGW+YjhMO7SBSw3F1FfToMqK0vXKRFS45V5csuFCxeWun7+/PlvlVBhXl5esLGxwZYtW/hlAwYMgKGhIXbu3AnGGOzs7ODv749Zs2YByG9VsrGxwbJlyzBx4kTI5XLUqlULO3fuxODBgwHkz17u4OCAEydOwNPTE/fv30ejRo1w6dIltGvXDgBw6dIluLu748GDB3Bzcys2v5ycHOTk5PDPU1NT4eDgQJNbEkLKRV5yMsJ8+iIvIQFmgwbB9pvSP38JIW9G28kthWXdcXkWRa/z/vvvY+PGjXj06BHq16+PW7du4cKFC/j+++8BAGFhYYiNjYWHhwe/jUQiQefOnXHx4kVMnDgR169fh0KhUIuxs7NDkyZNcPHiRXh6eiI4OBhSqZQvmACgffv2kEqluHjxYolFU0BAwGuLSEIIeVNCc3PYLV+GiDFjkfLrrzDq0AGmPT11nRYhNdYbTTmQkpKCzZs3q41tunHjBqKioso1uVmzZmHo0KFo0KABRCIRWrZsCX9/fwwdOhQAEBsbCwCwsbFR287GxoZfFxsbC7FYDHNz81JjrK2tNY5vbW3NxxRnzpw5kMvl/CMyMvLNT5YQQoph5O4Oy3HjAAAx8+ZBER2t44wIqbnK3NJ0+/ZtdO/eHVKpFOHh4Rg/fjwsLCxw6NAhPH/+HDt27Ci35Pbt24ddu3Zhz549aNy4MUJCQuDv7w87OzuMGjWKj+M4Tm07xpjGsqKKxhQX/7r9SCQSSCQSbU+HEELeSK2pU5Bx+TKyb99G1IyZcNq+DZywzB/fhJC3VOaWpi+//BJ+fn54/Pgx9PX1+eW9evXC33//Xa7JzZgxA7Nnz8aQIUPQtGlT+Pr64osvvkBAQAAAQCaTAYBGa1B8fDzf+iSTyZCbm4vk5ORSY+Li4jSOn5CQoNGKRQgh7xonEsF+1UoIjIyQdf06Xm7cpOuUCKmRylw0Xb16FRMnTtRYbm9vX2pX1pvIzMyEQKCeop6eHj/lgIuLC2QyGU6fPs2vz83Nxfnz59GhQwcAQOvWrSESidRiYmJicPfuXT7G3d0dcrkcV65c4WMuX74MuVzOxxBCiC6JHRwgW5A/pvTl+vXIvHZNxxkRUvOUuX1XX18fqampGssfPnyIWrVqlUtSBby9vbF48WI4OjqicePGuHnzJlavXo0xY8YAyO9S8/f3x5IlS1CvXj3Uq1cPS5YsgaGhIYYNGwYAkEqlGDt2LKZNmwZLS0tYWFhg+vTpaNq0Kbp37w4AaNiwIXr27Inx48dj06b8v+AmTJgALy+vEgeBE0LIuyb19kbGhX8hP3IEUTNmos7hQ9CTSnWdFiE1Byuj8ePHs379+rHc3FxmbGzMnj17xp4/f85atmzJPv/887LurlSpqans888/Z46OjkxfX5/VqVOH/e9//2M5OTl8jEqlYvPnz2cymYxJJBLWqVMndufOHbX9ZGVlscmTJzMLCwtmYGDAvLy8WEREhFpMYmIiGz58ODMxMWEmJiZs+PDhLDk5uUz5yuVyBoDJ5fI3PmdCCClNXlo6e+zhwULdGrDIKVOZSqXSdUqEVHnafn+XeZ6m1NRU9O7dG/fu3UNaWhrs7OwQGxsLd3d3nDhxAkZGRhVT3VUB2s7zQAghbyPrzl2EDx0K5OVB9s1CmA8apOuUCKnStP3+LnPRVOCvv/7CjRs3oFKp0KpVK76rqyajookQ8q4kbtmC+BUrwenrw+XAb5DUravrlAipsiq8aCKaqGgihLwrTKVC5LjxyLh4ERI3Nzj/ug8CmgKFkDei7ff3G01u+eeff8LLywt169aFq6srvLy8cObMmTdOlhBCSNlwAgHsli2FnoUFch4+RPzKVbpOiZBqr8xF07p169CzZ0+YmJjg888/x9SpU2FqaorevXtj3bp1FZEjIYSQYghr1YJdwBIAQPLOnUg7e1bHGRFSvZW5e87e3h5z5szB5MmT1Zb/+OOPWLx4MaJr8BT/1D1HCNGFuIAAJG3fAT1zc7gcPgyRjeZtoQghJauw7rnU1FT07NlTY7mHh0ex8zcRQgipWLWmTYOkYUMok5MRPXsW2KsJgAkh5avMRZOPjw8OHTqksfzIkSPw9vYul6QIIYRoTyAWw37VKnAGBsgMvoTELVt0nRIh1VKZu+cWLVqElStXomPHjnB3dwcAXLp0Cf/++y+mTZum1qw1derU8s22kqPuOUKILqX89htivp4LCIVw3rMbBs2a6TolQqqECptywMXFRas4juPw7Nmzsuy6yqOiiRCiS4wxRH35JdJOBkHk4ACXQwehZ2ys67QIqfRoniYdoKKJEKJrytRUhPX7CIroaJh6e8N+xXJdp0RIpVeh8zQRQgipnPRMTWG3ciWgp4fUY8cgP3JE1ykRUm1Q0UQIIdWMYauWsPrsUwBA7MJvkPv8uY4zIqR6oKKJEEKqIauJE2HYpg1UmZmImjYdLDdX1ykRUuVR0UQIIdUQp6cHuxXLIZBKkX33LhJ++EHXKRFS5ZW5aIqIiEBxY8cZY4iIiCiXpAghhLw9ka0tbBd9CwBI3LwF6f/+q+OMCKnaylw0ubi4ICEhQWN5UlKS1tMREEIIeTdMe/SA2ZDBAIDo2bORl5io44wIqbrKXDQxxsBxnMby9PR06Ovrl0tShBBCyo/N7NmQ1HOFMuElor/6qtjeAkLI6wm1Dfzyyy8B5E9aOXfuXBgaGvLrlEolLl++jBYtWpR7goQQQt6OQF8fditXIXzgQGSc/xvJO3fCYuRIXadFSJWjddF08+ZNAPktTXfu3IFYLObXicViNG/eHNOnTy//DAkhhLw1fbf6sJ49C3HffIv4FSth2KYN9Bs10nVahFQpZZ4RfPTo0VizZg3NeF0MmhGcEFKZMcbwYvIUpP/5J8QuLnA58BsEhXoNCKmpKmxG8K1bt1JBQAghVRDHcbBd9C2E1tbIDQtD7JIluk6JkCpFq+65/v37Y9u2bTA1NUX//v1LjT148GC5JEYIIaT8Cc3NYbd8OSJGj4b8twMw7tgRpr166TotQqoErVqapFIpf8WcVCot9UEIIaRyM2rfDpYTJgAAYubNR+6LKB1nREjVoPWYpr/++gudOnWCUKj12PEah8Y0EUKqCqZQ4PkIX2TdugWDli3htHMHOPp8JzVUuY9p6tGjB5KSkvjn7du3R1QU/XVCCCFVEScSwW7VSgiMjZF18yZert+g65QIqfS0LpqKNkjdu3cPOTk55Z4QIYSQd0NcuzZkCxYAAF5u3IjMq1d1mxAhlRzdsJcQQmowqVcfSD/6CFCpEDVjJpQpKbpOiZBKS+uiieM4tdunFH1OCCGkapJ9/T+InZyQFxuLmLlz6TYrhJRA61F/jDF069aNHwiemZkJb29vtZnBAeDGjRvlmyEhhJAKJTAygt3qVQgfMhRpp88gZd+vMH91k19CyH+0Lprmz5+v9rxv377lngwhhBDdMGjcGNZffon4ZcsQFxAAw9atIKlXT9dpEVKplPk2KqRkNOUAIaQqYyoVIidMRMaFC5DUrw/nX/dBoK+v67QIqXAVdhsVQggh1RMnEMBuaQD0LC2R8+gR4pev0HVKhFQqVDQRQgjhCa2sYLd0KQAgec8epP31l44zIqTyqPRFU1RUFEaMGAFLS0sYGhqiRYsWuH79Or+eMYYFCxbAzs4OBgYG6NKlC+7du6e2j5ycHEyZMgVWVlYwMjKCj48PXrx4oRaTnJwMX19f/nYwvr6+SKFLbwkhNZDxB+/Dws8PABAz5yso4uJ0mxAhlUSlLpqSk5PRsWNHiEQinDx5EqGhoVi1ahXMzMz4mOXLl2P16tVYt24drl69CplMhh49eiAtLY2P8ff3x6FDhxAYGIgLFy4gPT0dXl5eUCqVfMywYcMQEhKCoKAgBAUFISQkBL6+vu/ydAkhpNKo9eUX0G/UCEq5HNEzZ4EV+rwkpMZi5SA5Obk8dqNh1qxZ7P333y9xvUqlYjKZjC1dupRflp2dzaRSKdu4cSNjjLGUlBQmEolYYGAgHxMVFcUEAgELCgpijDEWGhrKALBLly7xMcHBwQwAe/Dggdb5yuVyBoDJ5XKttyGEkMoq+9kzdr9lKxbq1oAlbNyk63QIqTDafn+XuaVp2bJl2LdvH/980KBBsLS0hL29PW7dulVuxRwAHD16FG3atMHAgQNhbW2Nli1b4ueff+bXh4WFITY2Fh4eHvwyiUSCzp074+LFiwCA69evQ6FQqMXY2dmhSZMmfExwcDCkUinatWvHx7Rv3x5SqZSPKU5OTg5SU1PVHoQQUl1IXFwg+/prAEDCDz8gKyREtwkRomNlLpo2bdoEBwcHAMDp06dx+vRpnDx5Er169cKMGTPKNblnz55hw4YNqFevHv744w988sknmDp1Knbs2AEAiI2NBQDY2NiobWdjY8Ovi42NhVgshrm5eakx1tbWGse3trbmY4oTEBDAj4GSSqX860IIIdWF9KN+MO3dG1AqETV9BpSFhj4QUtOUuWiKiYnhi4Pjx49j0KBB8PDwwMyZM3G1nG/2qFKp0KpVKyxZsgQtW7bExIkTMX78eGzYoH437qK3c2GMvfYWL0Vjiot/3X7mzJkDuVzOPyIjI7U5LUIIqTI4joNs4QKI7O2hePECsQsW0m1WSI1V5qLJ3NycLw6CgoLQvXt3APkFhrKcBwra2tqiUaNGassaNmyIiIgIAIBMJgMAjdag+Ph4vvVJJpMhNzcXycnJpcbEFXN1SEJCgkYrVmESiQSmpqZqD0IIqW70TExgv2oloKeH1N9/h/zwEV2nRIhOlLlo6t+/P4YNG4YePXogMTERvXr1AgCEhITA1dW1XJPr2LEjHj58qLbs0aNHcHJyAgC4uLhAJpPh9OnT/Prc3FycP38eHTp0AAC0bt0aIpFILSYmJgZ3797lY9zd3SGXy3HlyhU+5vLly5DL5XwMIYTUZAYtWqDWlCkAgNhvv0VOWJiOMyLk3dP63nMFvvvuO7i4uCAiIgLLly+HsbExgPxC5NNPPy3X5L744gt06NABS5YswaBBg3DlyhX89NNP+OmnnwDkNxv7+/tjyZIlqFevHurVq4clS5bA0NAQw4YNAwBIpVKMHTsW06ZNg6WlJSwsLDB9+nQ0bdqUbyVr2LAhevbsifHjx2PTpk0AgAkTJsDLywtubm7lek6EEFJVWY4fh4yLF5F55Qqip02Hc+BecEVu2k5ItVaWS/Jyc3OZn58fe/r06Zte1Vdmx44dY02aNGESiYQ1aNCA/fTTT2rrVSoVmz9/PpPJZEwikbBOnTqxO3fuqMVkZWWxyZMnMwsLC2ZgYMC8vLxYRESEWkxiYiIbPnw4MzExYSYmJmz48OFlnkqBphwghFR3ubGx7GHbdizUrQGLXbpM1+kQUi60/f4u8w17zczMcOPGDdSpU6diqrgqjG7YSwipCdL+/BMvPpsMAHD4+WcYf/C+jjMi5O1U2A17P/roIxw+fPhtciOEEFKFmXTrBvNXQyCiZ89G3suXOs6IkHejzGOaXF1d8e233+LixYto3bo1jIyM1NZPnTq13JIjgFLFcCUsCfFp2bA20UdbFwvoCUqfToEQQiqa9cwZyLx6FTmPHyN6zldw2LQRnKBS35mLkLdW5u45FxeXknfGcXj27NlbJ1VVlXf3XNDdGCw8FooYeTa/zFaqj/nejdCzie1b758QQt5GzuPHCPt4IFhODqxnzYLlaD9dp0TIG9H2+7vMRRMpWXkWTUF3YzBp1w0UfXMK2pg2jGhFhRMh7wi1+JYsOTAQsQsWAiIRnAP3wqBxY12nREiZafv9XebuOVLxlCqGhcdCNQomAGDIL5wWHgtFj0Yy+uCuxOiLtnqgFt/SmQ0ejPQLF5B+5k9ET5sOlwO/QVBk2AYh1cUbtTS9ePECR48eRUREBHJzc9XWrV69utySq2rKq6Up+Gkihv586bVxvZrI4GhpCLGeACL+wUEsLPK84N/CIs/1BBALuUKxgvx1r5YJBdxrb0dDikdftNUDtfhqR5mSgmf9PkJebCyk/fvDbsliXadESJlUWEvTn3/+CR8fH7i4uODhw4do0qQJwsPDwRhDq1at3ippki8+Lfv1QQBO3i35ZsLlRfyq8BIJCxVVetyrgkuz0CoaIxIWec5vxxVbqP23/X/HVXte6Lj8cz0BBJWoBaekL9pYeTYm7bpBX7RVBLX4ak/PzAx2y5chYpQf5AcPwqhjB0j79NF1WoSUuzIXTXPmzMG0adPwzTffwMTEBAcOHIC1tTWGDx+Onj17VkSONY61ib5WcX2b28HaVAKFkiFXqYIiTwWFUvXf84JHXpHnSobcvCLPlSrk5qk0jpGrVCFXCeT/p/ISCjiU1NJWUqFVUuubSMi9ceudgOPw9eG7JX7RAsC8I/fQyE4KDgBjgIqxV4/8eziqCi37bz1ePX/1b1XJ8QwMKhXKvs/C8arC64uPZ6Vtz4rbvvD+yxavmUNpr1uhfao040vbV/6/87fPyVMiPafkn3sGIEaejSthSXCva1kBP9VVi1HbtrCa9Alert+A2PkLYNC8OcS1a+s6LULKVZm750xMTBASEoK6devC3NwcFy5cQOPGjXHr1i307dsX4eHhFZRq5Vde3XNKFcP7y/5CrDy72C9fDoBMqo8Lsz4s179wGWNQqhhfVKkXWirk5rH//v2q2Coo1PjnfGyR56+Kt9K3/2+b3Dz15wqlCjmFlilVdP0CqRya2JmiV1NbtHI0R7PaUhhJau5QUZaXh+e+I5F18yYMmjeH066d4EQiXadFyGtVWPeckZERcnJyAAB2dnZ4+vQpGr+6WuIlTXBWLvQEHOZ7N8KkXTfyWyMKrSsokeZ7Nyr3LgGO4yDU4yDUAwzEeuW67/KWX9yVXmj91/rGihRm2re+adN6V/i4qdkKpGXnvTb/gpYxAQcIOA4cBwgEHAQcBwGX/14UrOPXF1rGFbdOULCOAwcUv32hGEGhfb7+eIXWCzTjgULxgtdszx+vuPMp2L7keK7M+yxyjgLt4m+9kGP6/luvfS/vRqfibnTqq9cAcJOZopWjGVo6mqOVoxlcrIxqzNhATiiE3YoVCPvoI2TduoWEH3+Etb+/rtMipNyUuaWpX79+6NOnD8aPH4+ZM2fi0KFD8PPzw8GDB2Fubo4zZ85UVK6VHs3TRLQdxL93fHvq0qnktGnxtTAWY2KnOrgVKcfNiGREyzXHI5oZitDSoaCIMkdzBylM9Kt360vqyZOI+uJLgOPguG0bjNq11XVKhJSqwuZpevbsGdLT09GsWTNkZmZi+vTpuHDhAlxdXfHdd9/BycnprZOvqiri3nN02XrVoquuVVIxCgb1A8W3+BYd1B8rz8bNiGTcjEzBjefJuBMlR06RsYIcB9SzNkYrR3O0dDRDK0dz1K1lXKkuZigP0V9/DflvByC0sYHL4UMQmpvrOiVCSkSTW+oA3bCXAGX/oiWV29u0+ObmqXA/JhU3I5JxIyIFNyOTEZmUpRFnoi9EC4f/uvRaOphDali1W6NUmZkIG/AxcsPCYNytG2qvW1tjuilJ1VNhRVOdOnVw9epVWFqqdy2kpKSgVatWdBsVKpoIqGu1uinPFt+EtBy11qjbL+TIUmhepVe3lhFaFmqNqm9jUuVaJ7NDQxE+eAiYQgGbeXNh8eomv4RUNhVWNAkEAsTGxsLa2lpteVxcHBwdHflB4jURFU2kMOpaJdrIU6rwIDYNNyNTcPN5fjEV9jJDI85IrIfmDmZ8EdXCwQyWxhIdZFw2Sdu3Iy5gKTixGM7790Pfrb6uUyJEQ7kXTUePHgWQPxB8+/btkEql/DqlUok///wTp0+fxsOHD98y9aqLiiZCSHlIyshFSGQybkak4EZEMm5FypGeo3lVprOloVprlJvMBCI9gQ4yLhljDJETJyLj738gqecK5/37IdDXbi46Qt6Vci+aBIL8X0SO41B0E5FIBGdnZ6xatQpeXl5vkXbVRkUTIaQiKFUMj+PT8ouoV61RT+LTNeL0RQI0q/1fa1RLRzOtJ8utSHmJiXjWtx+UL1/CbOgQ2M6fr+uUCFFTYd1zLi4uuHr1KqysrN46yeqGiiZCyLsiz1IgJDKFH2QeEpGM1GLmCKttbpDfGuVghlZO5mhkawqx8N23RqVf+BeR48bl57RuLUy6d3/nORBSErp6TgeoaCKE6IpKxfDsZXr+VXoR+V17D+PSUPQTXiwUoKm9lC+iWjqawVZq8E5yjFuxAklbfoGeVAqXI4chksneyXEJeZ1yL5ouX76MpKQk9OrVi1+2Y8cOzJ8/HxkZGejXrx/Wrl0LiaTyD0ysKFQ0EUIqk7RsBW6/kP835UFEMpIzFRpxtlJ9tHw11UErJzM0tpNCX1T+dwVgubkIHzYc2XfvwvC99+C4bSs4vcp99wFSM5R70dSrVy906dIFs2bNAgDcuXMHrVq1gp+fHxo2bIgVK1Zg4sSJWLBgQbmcQFVERRMhpDJjjCE8MfNVEZXfGvUgNk3jXo4iPQ6N7Aq1RjmYoba5QbnMs5QbHo6w/gOgysxErc+nwmrSpLfeJyFvq9yLJltbWxw7dgxt2rQBAPzvf//D+fPnceHCBQDA/v37MX/+fISGhpZD+lUTFU2EkKomMzfvVWtUyqtCKhkv03M14mqZSNSKqGa1zd74HpUphw8jZvYcQE8PTjt3wrBVy7c9DULeSrnfsDc5ORk2Njb88/Pnz6Nnz5788/feew+RkZFvmC4hhBBdMBQL0b6OJdrXyZ+wmDGGF8lZfEvUzYhk3ItORUJaDk6FxuFUaByA/BuLN7Q14bv0WjqYw8nSUKvWKGnfvsj49yJSjx1D9PTpcDl8CHr0hyapArQummxsbBAWFgYHBwfk5ubixo0bWLhwIb8+LS0NIlHVnvafEEJqOo7j4GBhCAcLQ/RtYQ8AyFYocTfqv9aoGxHJiEvNwd2oVNyNSsXOS88BABZGYvXWKAczGEs0v2Y4joNs/jxkhYRAERmJ2AULYLdqFd1mhVR6WhdNPXv2xOzZs7Fs2TIcPnwYhoaG+OCDD/j1t2/fRt26dSskSUIIIbqjL9JDG2cLtHG24JdFp2SpdendjUpFUkYu/nwQjz8fxAMABBxQ38bkv3vqOZqjjpURBAIOesbGsF+5AuHDRyD1xEkYdewIswEDdHWKhGhF6zFNCQkJ6N+/P/79918YGxtj+/bt+Oijj/j13bp1Q/v27bF48eIKS7ayozFNhJCaKidPidDoVLUpD6JSNG9OLDUQoYXDf5Nv1jl9AGlr14AzMIDLgQOQ1HHRQfakpquweZrkcjmMjY2hV+Qy0aSkJBgbG0MsFr9ZxtUAFU2EEPKfuNRsflzUzYgU3I5KQbZCpRYjgAqrr/4Ct6gHyHKsC8PN21G/tgUEdJ9G8g7R5JY6QEUTIYSUTKFU4UFMGt+ldzMyBc8TM2GRJcf6s6sgzc3EwbqdENimP5o7mPFdei0dzWBmWHP/ICcVj4omHaCiiRBCyuZleg5CIlIQdeIU2m5eAgCY6z4W12waqsXVsTJCi0L31HOzMYFQy5sTK1UMV8KSEJ+WDWsTfbR1sYAetWSRQqho0gEqmggh5M3FLlqM5F27wMzMcXvBj7iaKsDNyGQ8S8jQiDUU66FZbemrIiq/kLIy1rwjRdDdGCw8FooYeTa/zFaqj/nejdCziW2Fng+pOqho0gEqmggh5M2pcnIQPmgwch4+hFHHjnD4+SdwAgGSM3IR8iIFN5/nd+mFRKQgLUfz5sSOFoZoWag1KiIpE1P23ETRL7mCNqYNI1pR4UQAUNGkE1Q0EULI28l58gRhHw8Ey86G9YwZsBw7RiNGqWJ4mpCOG8+T+WkPHsenl+k4HACZVB8XZn1IXXWEiiZdoKKJEELeXvK+XxE7fz4gEsF5zx4YNG3y2m3kWQrcfpGCG89TcDMyGVfDkpCRq3ztdhM6ueDDBjZwsTKCtYmEJtisobT9/tZuFF0lERAQAI7j4O/vzy9jjGHBggWws7ODgYEBunTpgnv37qltl5OTgylTpsDKygpGRkbw8fHBixcv1GKSk5Ph6+sLqVQKqVQKX19fpKSkvIOzIoQQUpjZoIEw8fAAFApETZ8GZbrmmKaipAYifFCvFj7vXg/bRrfF4o+aanWsn/4Ow5CfLqHdkj/RaN4f6Pn93/hk53UEnLyPwCsRCH6aiFh5NlQqal8gZZgRXNeuXr2Kn376Cc2aNVNbvnz5cqxevRrbtm1D/fr1sWjRIvTo0QMPHz6EiYkJAMDf3x/Hjh1DYGAgLC0tMW3aNHh5eeH69ev8fFPDhg3DixcvEBQUBACYMGECfH19cezYsXd7ooQQUsNxHAfbb79B1p07UDyPQNyiRbBbGlCmfdiY6msV16y2FPIsBV4kZyFLocSD2DQ8iE3TiNMXCeBsaQQnS0M4WxnB2fLVw8oQNib6NK9UDVEluufS09PRqlUrrF+/HosWLUKLFi3w/fffgzEGOzs7+Pv7Y9asWQDyW5VsbGywbNkyTJw4EXK5HLVq1cLOnTsxePBgAEB0dDQcHBxw4sQJeHp64v79+2jUqBEuXbqEdu3aAQAuXboEd3d3PHjwAG5ublrlSd1zhBBSfjKvXcPzkaMAlQp2K1ZA6u2l9bZKFcP7y/5CrDxbYyA4oDmmSaFU4UVyFsJfZiA8MQPPEzMR9jIDzxMzEJmcBWUpLU36IgGcLPILKhcrIzi9KqacLY0gM6WCqirQ9vu7SrQ0ffbZZ+jTpw+6d++ORYsW8cvDwsIQGxsLDw8PfplEIkHnzp1x8eJFTJw4EdevX4dCoVCLsbOzQ5MmTXDx4kV4enoiODgYUqmUL5gAoH379pBKpbh48WKJRVNOTg5ycnL456mpqeV52oQQUqMZtmkDq0mT8PLHHxG7YAEMWjSH2MFBq231BBzmezfCpF03wAFqhVNBCTPfuxE/CFykJ4CLlRFcrIw09qVQqhCVnIWwxAw8f5mB8MRMhCdmIPxlfkGVrVDhYVwaHsZptlBJhIL81ilLIzhbvSqsLI3gZGUEWyqoqpxKXzQFBgbixo0buHr1qsa62NhYAICNjY3achsbGzx//pyPEYvFMDc314gp2D42NhbW1tYa+7e2tuZjihMQEICFCxeW7YQIIYRozWrSJ8i4dAlZ168jatp0OO/eBU4k0mrbnk1ssWFEK415mmRlnKdJpCfI75KzMgKK/A2tUKoQnZL1qlXqv9ap8MRMRCZlIidPhUdx6XgUp3l1n1gogJNFQXdfoW4/KqgqrUpdNEVGRuLzzz/HqVOnoK9fcv900asdGGOvvQKiaExx8a/bz5w5c/Dll1/yz1NTU+Gg5V9BhBBCXo8TCmG/Yjme9fsI2bdvI2HtOlh/+YXW2/dsYosejWQVNiO4SE8AJ8v8Lrmi8pQqRKVk5bdMver2C39VXEUkZSI3T4XH8enFTpcgFgrgaPGqhUqtoDKErdSApknQkUpdNF2/fh3x8fFo3bo1v0ypVOLvv//GunXr8PDhQwD5LUW2tv/9xRAfH8+3PslkMuTm5iI5OVmttSk+Ph4dOnTgY+Li4jSOn5CQoNGKVZhEIoFEojkDLSGEkPIjsrOD7TffIMrfH4k//wyjDu4wat9e6+31BBzc61pWYIbFExYqqDrXr6W2Lk+pQnRKdn4hlZiB8JeZ/L8jXxVUT+LT8aS4gkpPAEdLw/xi6lVXX8G/7cyooKpIlbpo6tatG+7cuaO2bPTo0WjQoAFmzZqFOnXqQCaT4fTp02jZsiUAIDc3F+fPn8eyZcsAAK1bt4ZIJMLp06cxaNAgAEBMTAzu3r2L5cuXAwDc3d0hl8tx5coVtG3bFgBw+fJlyOVyvrAihBCiO6Y9PZExcCBS9u9H9IyZcDl6BMIiwy6qEuGrwsfR0hCdoFlQxciz+Zapwi1VkUlZyFWWXlA5WBjw3XyFW6mooHp7VeLqucK6dOnCXz0HAMuWLUNAQAC2bt2KevXqYcmSJTh37pzalAOTJk3C8ePHsW3bNlhYWGD69OlITExUm3KgV69eiI6OxqZNmwDkTzng5ORUpikH6Oo5QgipOKrMTIR9PBC5z57BuGtX1F7/Y42bjFKpYohOyXrVKpX5qrsv/98RiZnIVapK3Fakx8GB7/L77wq//IJKX+sbIFdH1erqudLMnDkTWVlZ+PTTT5GcnIx27drh1KlTfMEEAN999x2EQiEGDRqErKwsdOvWDdu2beMLJgDYvXs3pk6dyl9l5+Pjg3Xr1r3z8yGEEFI8gaEh7FevQvjAQUg/exbJu/fAYsRwXaf1TukJ8gsfBwtDfFBPfZ1SxRAjz/qvq6/QlX4FBdWzhIxib4As0uPgYG7IX+FXuKXK3sygRhdUhVW5lqbKjFqaCCGk4iXt2Im4JUvAicVw3v8r9LWcS68mKyioil7hF/4yA89fjaEqiVBQ0EJlCCdLo1dzUeXPSVVdCiq695wOUNFECCEVjzGGF59MQvr58xDXrQuX3/ZDYGCg67SqLJWKISY1G89fZuTPRVWosHqemD9tQkmEAg61zQ0KzZJuCCcrI7hYGsHe3ACiciqolCpWYVdAAlQ06QQVTYQQ8m7kJSUhrG8/5CUkwGzwYNguXKDrlKollYohNjWbv8LveWIGPydVeGKGVgVV4dapguKqdhkKqqC7MRpzbdmWca6t16GiSQeoaCKEkHcnIzgYEWPGAozB/oc1MC105wdS8VQqhri0bLUiKrzQv7MVJRdUeoULqiLdfg4WhnxBFXQ3BpN23dC4FU5BG9OGEa3KpXCiokkHqGgihJB3K37VKiT+vBkCU1PUOXwIIjs7XadEkF9Qxafl8N18+beg+W8uqtcVVPZmBnC0MMCNiBRk5iqLjSt6/8C3QUWTDlDRRAgh7xZTKBA+fASyb9+GQZvWcNq+HVyhK6NJ5cNYkYKqSLdflqL4Iqkke8e3f+vJS2vMlAOEEEJqLk4kgv3KFQj7qD+yrl3Hy40bUeuzz3SdFikFx3GwMdWHjak+2tdRL3YKCqrwlxk4HBKFvVciX7u/+LTs18aUl6p/nSAhhJAaTezoCNmC+QCAlz+uR+b16zrOiLypgoKqXR1L+DS312oba5OS701b3qhoIoQQUuVJvb0h7esDqFSImjEDSrlc1ymRt9TWxQK2Un2UNFqJQ/5VdG1dLN5ZTlQ0EUIIqRZs5s6DyNERedExiJk3HzRkt2rTE3CY790IADQKp4Ln870bvdP76VHRRAghpFrQMzaC/aqVgFCItD/+QMpvv+k6JfKWejaxxYYRrSCTqnfByaT65TbdQFnQ1XPliK6eI4QQ3UvcvBnxK1eBMzCAy2/7IalbV9cpkbdUWWYEp5YmQggh1YrFmDEw6uAOlpWFqGnTocrJ0XVK5C3pCTi417VE3xb2cK9r+U675AqjookQQki1wgkEsF26FHrm5sh58ABxK1Yg4/IVyI//jozLV8CUZZsHiJAC1D1Xjqh7jhBCKo/08+cROfETjeVCmQw2X82h264QHnXPEUIIqdFK6pbLi4tD1Of+SD116h1nRKo6KpoIIYRUO0ypRNySgBJW5newxC0JoK46UiZUNBFCCKl2Mq9dR15sbMkBjCEvNhaZ12j2cKI9KpoIIYRUO3kJCeUaRwhARRMhhJBqSFirllZx8kOHoCitRYqQQqhoIoQQUu0YtmkNoUwGcKXP55Px77946tkT8d9/D2V6xjvKjlRVVDQRQgipdjg9Pdh8NefVkyKFE8cBHIda06fBoE1rsJwcJG7chKeenkgODATLy3v3CZMqgYomQggh1ZKphwfs13wPoY2N2nKhjQ3s13wPq3Hj4LRzJ2qvWwuxkxOUiYmIXbAQz/r2Q9rZs3TDX6KBJrcsRzS5JSGEVD5Mqcy/mi4hAcJatWDYpjU4PT31GIUCyft+xct166BMSQEAGLZvD5uZM6DfqJEOsibvkrbf31Q0lSMqmgghpGpTpqUh8aefkLR9B1huLsBxkPr4oJb/5xDZ2uo6PVJBaEZwQgghpIz0TExgPW0a6p48AVMvL4AxyI8cwdOevRD/3fdQpqfrOkWiQ1Q0EUIIIUWI7O1hv3IFnPf/CsM2bfIHi2/ahKeePWmweA1GRRMhhBBSAoOmTeG4cwdq/7gOYmfn/waL+/SlweI1EBVNhBBCSCk4joNJt26oc+wobOZ+DT1zc+Q+e4YXkz5FhN9oZN27p+sUyTtCRRMhhBCiBU4kgsXw4ah76g9Yjh8HTixG5uXLCB/wMaJnzYIiJkbXKZIKRkUTIYQQUgZqg8W9vQEA8iNHabB4DUBFEyGEEPIGRPb2sF+xHM7796sPFvfwRPLevTRYvBqiookQQgh5CwZNm+QPFl//Y/5g8aQkxC78Jn+w+F80WLw6oaKJEEIIeUscx8Hkww81B4t/SoPFqxMqmgghhJByoj5YfDwNFq9mKnXRFBAQgPfeew8mJiawtrZGv3798PDhQ7UYxhgWLFgAOzs7GBgYoEuXLrhXpKLPycnBlClTYGVlBSMjI/j4+ODFixdqMcnJyfD19YVUKoVUKoWvry9SXt1/iBBCCCmL/MHiX+YPFvcpMlh89Xc0WLyKqtRF0/nz5/HZZ5/h0qVLOH36NPLy8uDh4YGMjAw+Zvny5Vi9ejXWrVuHq1evQiaToUePHkhLS+Nj/P39cejQIQQGBuLChQtIT0+Hl5cXlEolHzNs2DCEhIQgKCgIQUFBCAkJga+v7zs9X0IIIdWLyN4e9stfDRZ/7738weI//YSnHp5I2rMHTKHQdYqkLFgVEh8fzwCw8+fPM8YYU6lUTCaTsaVLl/Ix2dnZTCqVso0bNzLGGEtJSWEikYgFBgbyMVFRUUwgELCgoCDGGGOhoaEMALt06RIfExwczACwBw8eaJ2fXC5nAJhcLn+r8ySEEFL9qFQqlvrnn+xJz14s1K0BC3VrwJ706s1S//yLqVQqXadXo2n7/V2pW5qKksvlAAALCwsAQFhYGGJjY+Hh4cHHSCQSdO7cGRcvXgQAXL9+HQqFQi3Gzs4OTZo04WOCg4MhlUrRrl07PqZ9+/aQSqV8THFycnKQmpqq9iCEEEKKww8WP3oENvPmqg8WH+WHrLs0WLyyqzJFE2MMX375Jd5//300adIEABAbGwsAsLGxUYu1sbHh18XGxkIsFsPc3LzUGGtra41jWltb8zHFCQgI4MdASaVSODg4vPkJEkIIqRE4kQgWw4apDxa/cgXhH3+MqJkzoYiO1nWKpARVpmiaPHkybt++jb1792qs4zhO7TljTGNZUUVjiot/3X7mzJkDuVzOPyIjI193GoQQQgiAQoPFg07yg8VTjx7D0169abB4JVUliqYpU6bg6NGjOHv2LGrXrs0vl8lkAKDRGhQfH8+3PslkMuTm5iI5ObnUmLi4OI3jJiQkaLRiFSaRSGBqaqr2IIQQQspCZGeXP1j8t99osHglV6mLJsYYJk+ejIMHD+Kvv/6Ci4uL2noXFxfIZDKcPn2aX5abm4vz58+jQ4cOAIDWrVtDJBKpxcTExODu3bt8jLu7O+RyOa5cucLHXL58GXK5nI8hhBBCKpJBk8Zw3LEdtdevh9jFBcqkJMR98+2rmcX/opnFKwGOVeJ34dNPP8WePXtw5MgRuLm58culUikMDAwAAMuWLUNAQAC2bt2KevXqYcmSJTh37hwePnwIExMTAMCkSZNw/PhxbNu2DRYWFpg+fToSExNx/fp16OnpAQB69eqF6OhobNq0CQAwYcIEODk54dixY1rnm5qaCqlUCrlcTq1OhBBC3hhTKJC8fz9erl0H5aueEsO2bWE9cyYMmjTWcXbVj7bf35W6aCppPNHWrVvh5+cHIL81auHChdi0aROSk5PRrl07/Pjjj/xgcQDIzs7GjBkzsGfPHmRlZaFbt25Yv3692sDtpKQkTJ06FUePHgUA+Pj4YN26dTAzM9M6XyqaCCGElCdlWhoSf96MpO3bwXJyAACmPt6w9veHyM5Ox9lVH9WiaKpqqGgihBBSERTR0UhYswbyI/l/2HNiMSxGjYLlhPHQe9WrQt6ctt/flXpMEyGEEELyB4vbLVv232Dx3Fwk/vxz/mDx3btpsPg7QkUTIYQQUkVoDBZPTkbct4tosPg7QkUTIYQQUoXkzyzeVX1m8bAwvPj0M0SMHIWsO3d1nWK1RUUTIYQQUgWpzSw+YQI4iQSZV68ifOBARM2YCUVUlK5TrHaoaCKEEEKqMD0TE1h/+QXqnjwBaV8fAEDqsVczi69aBWVamo4zrD6oaCKEEEKqAbXB4m3bvhosvpkGi5cjKpoIIYSQasSgSWM4bt+mOVjc2wdpf/5Jg8XfAhVNhBBCSDVTeLC4bP486FlYIDc8HC8+m4wI35E0WPwNUdFECCGEVFOcSATzoUPzB4tPnJg/WPzaNRos/oaoaCKEEEKqOT1jY1h/4U+Dxd8SFU2EEEJIDcEPFj9QzGDxXTRY/HWoaCKEEEJqGIPGrwaLb1gPcZ06+YPFF9Fg8dehookQQgipgTiOg0nX0gaL39F1ipUOFU2EEEJIDcYJhSUMFh+EqOkzaLB4IVQ0EUIIIeS/weJBJyHt2xcAkHr8eP5g8ZUrabA4qGgihBBCSCEiW1vYLVuaP1i8Xbv8weKbt+BpD48aP1iciiZCCCGEaDBo3BiO27b+N1g8JSV/sLiXN9LOnKmRg8WpaCKEEEJIsdQGiy+Ynz9Y/PlzvJg8Bc99fWvcYHEqmgghhBBSKk4ohPmQIfmDxT/JHyyede16/mDxadOR+6JmDBanookQQgghWtEzNoa1f6HB4hyH1N9/x7PerwaLp6bqOsUKRUUTIYQQQsqEHyz+2371weIenkjauavaDhanookQQgghb4QfLL5xA8R16+YPFl+8GM+8vJF6+nS1GyxORRMhhBBC3hjHcTDp0gV1jhyGbMEC6FlaIvf5c0RNmZo/WPz2bV2nWG6oaCKEEELIW8sfLD4Ydf8IUh8sPmhwtRksTkUTIYQQQsoNP1j8jyBI+/X7b7B4r16IW7GiSg8Wp6KJEEIIIeVOJJPBbmkAXA78BsP27cEUiv+3d+9BVdT9H8DfyyFuR0FuHeCB0N945T4CpSjeKBAfNR0dG4cI0sYHw9KRbLxkCE0KpYYpMNH8aOymRDOgZWJYFAZTKoqaF1KzwJGLiAnoeOHwff545MSK0gIHlsv7NbMz7He/+93PHvhwPvM9u3tQ9/+ZffpicRZNRERE1G0sPDzwxEeZ/eJicRZNRERE1K36y8XiLJqIiIioR/x9sfgB2C+NgWRh0acuFpdEX5oX6+Xq6+thY2ODGzduwNraWu1wiIiIerV7VVW4mrINN/bsAYSA9NhjsH0hEg7/+Q80rd5HhV6PW0dL0HT1KkwdHWEV4A9JozFaHErfv1k0GRGLJiIioo67feYMqt95F7d+/hkAoBkyBA6xsbB9bgEafvgB1Rs3oamqytDf1MkJurVrYB0aapTjs2hSAYsmIiKizhFC4GZhIarffRd3L1wEAJg6OqLp6tW2nSUJAPCvbSlGKZyUvn/zmiYiIiJSnSRJGDR5Mv4vNxdOCQkwsbN7eMEEAPfne6o3boLQ63ssRhZND0hLS8OwYcNgYWEBf39/HDp0SO2QiIiIBgzJ1BS2zy2Ay8aN7XcUAk1VVbh1tKRnAgOLJpmsrCysWLEC69atw/HjxxEcHIzw8HCUl5erHRoREdGA0tzYqKjfI2ejugGLpla2bt2KxYsX46WXXsKYMWOQkpICNzc3pKenqx0aERHRgGLq6GjUfsbAoum+u3fvoqSkBKEPXFAWGhqK4uLih+5z584d1NfXyxYiIiLqOqsAf5g6ORku+m5DkmDq5ASrAP8ei4lF0321tbXQ6/XQ6XSydp1Oh6pWtzm2tmnTJtjY2BgWNze3ngiViIio35M0GujWrrm/8kDhdH9dt3aNUZ/X9E9YND1AeuAXI4Ro09ZizZo1uHHjhmGpqKjoiRCJiIgGBOvQUPxrWwpMH5jQMNXpjPa4gY4w7dGj9WIODg7QaDRtZpVqamrazD61MDc3h7m5eU+ER0RENCBZh4ZicEhItz4RXCnONN1nZmYGf39/5Ofny9rz8/MRFBSkUlREREQkaTTQPvUkbGb+G9qnnlSlYAI40ySzcuVKREZGIiAgAOPHj0dGRgbKy8sRExOjdmhERESkMhZNrTz33HO4du0aEhMTUVlZCS8vL3zzzTdwd3dXOzQiIiJSGb97zoj43XNERER9D797joiIiMiIWDQRERERKcCiiYiIiEgBFk1ERERECrBoIiIiIlKARRMRERGRAnxOkxG1PL2hvr5e5UiIiIhIqZb37X96ChOLJiNqaGgAALi5uakcCREREXVUQ0MDbGxsHrmdD7c0oubmZowcORIlJSWQJEnRPoGBgThy5Ei7ferr6+Hm5oaKigo+NPM+Ja+bmno6vu46nrHG7co4ndm3I/so7cs8bKs35yFz0HjjdHcOKu3fnTkohEBDQwNcXFxgYvLoK5c402REJiYmMDMza7dKfZBGo1H8y7e2tuY/6/s68rqpoafj667jGWvcrozTmX07sk9Hx2ce/q035yFz0HjjdHcOdrR/d+WgkvduXghuZLGxsd3an/6nt79uPR1fdx3PWON2ZZzO7NuRfXr731Jv1ptfO+ag8cbp7hzs7DHUwI/n+gB+px2R+piHROrqDTnImaY+wNzcHPHx8TA3N1c7FKIBi3lIpK7ekIOcaSIiIiJSgDNNRERERAqwaCIiIiJSgEUTERERkQIsmoiIiIgUYNFEREREpACLpn5g7ty5sLW1xfz589UOhWjAqaiowJQpU+Dh4QEfHx9kZ2erHRLRgNPQ0IDAwED4+fnB29sbH374Ybcch48c6AcKCgrQ2NiInTt34ssvv1Q7HKIBpbKyEtXV1fDz80NNTQ3Gjh2LsrIyaLVatUMjGjD0ej3u3LkDKysr3Lp1C15eXjhy5Ajs7e2NehzONPUDU6dOxeDBg9UOg2hAcnZ2hp+fHwDg8ccfh52dHerq6tQNimiA0Wg0sLKyAgDcvn0ber0e3TEnxKJJZYWFhZg1axZcXFwgSRJyc3Pb9ElLS8OwYcNgYWEBf39/HDp0qOcDJeqnjJmDR48eRXNzM9zc3Lo5aqL+xRh5+Ndff8HX1xeurq54/fXX4eDgYPQ4WTSp7ObNm/D19cWOHTseuj0rKwsrVqzAunXrcPz4cQQHByM8PBzl5eU9HClR/2SsHLx27RpeeOEFZGRk9ETYRP2KMfJwyJAhOHHiBC5duoTPP/8c1dXVxg9UUK8BQOTk5MjannzySRETEyNrGz16tFi9erWsraCgQMybN6+7QyTq1zqbg7dv3xbBwcHi448/7okwifq1rrwXtoiJiRFffPGF0WPjTFMvdvfuXZSUlCA0NFTWHhoaiuLiYpWiIho4lOSgEALR0dGYNm0aIiMj1QiTqF9TkofV1dWor68HANTX16OwsBCjRo0yeiymRh+RjKa2thZ6vR46nU7WrtPpUFVVZVgPCwvDsWPHcPPmTbi6uiInJweBgYE9HS5Rv6MkB4uKipCVlQUfHx/DdRiffPIJvL29ezpcon5JSR5evnwZixcvhhACQggsW7YMPj4+Ro+FRVMfIEmSbF0IIWs7cOBAT4dENKC0l4MTJ05Ec3OzGmERDSjt5aG/vz9KS0u7PQZ+PNeLOTg4QKPRyGaVAKCmpqZNxU1ExsccJFJfb8pDFk29mJmZGfz9/ZGfny9rz8/PR1BQkEpREQ0czEEi9fWmPOTHcyprbGzEhQsXDOuXLl1CaWkp7Ozs8MQTT2DlypWIjIxEQEAAxo8fj4yMDJSXlyMmJkbFqIn6D+Ygkfr6TB4a/X486pCCggIBoM0SFRVl6JOamirc3d2FmZmZGDt2rPjxxx/VC5ion2EOEqmvr+Qhv3uOiIiISAFe00RERESkAIsmIiIiIgVYNBEREREpwKKJiIiISAEWTUREREQKsGgiIiIiUoBFExEREZECLJqIiIiIFGDRRERERKQAiyYi6lP++OMPSJKE0tJStUMxOHfuHMaNGwcLCwv4+fmpHU67JElCbm6u2mEQ9UksmoioQ6KjoyFJEpKSkmTtubm5kCRJpajUFR8fD61Wi7KyMnz33XcP7dPyuj24TJ8+vYejJaLOYtFERB1mYWGB5ORkXL9+Xe1QjObu3bud3vfixYuYOHEi3N3dYW9v/8h+06dPR2VlpWzZtWtXp49LRD2LRRMRddjTTz8NJycnbNq06ZF9NmzY0OajqpSUFAwdOtSwHh0djTlz5mDjxo3Q6XQYMmQIEhIS0NTUhFWrVsHOzg6urq7IzMxsM/65c+cQFBQECwsLeHp64ocffpBtP3PmDGbMmIFBgwZBp9MhMjIStbW1hu1TpkzBsmXLsHLlSjg4OOCZZ5556Hk0NzcjMTERrq6uMDc3h5+fH/Ly8gzbJUlCSUkJEhMTIUkSNmzY8MjXxNzcHE5OTrLF1tZWNlZ6ejrCw8NhaWmJYcOGITs7WzbGqVOnMG3aNFhaWsLe3h5LlixBY2OjrE9mZiY8PT1hbm4OZ2dnLFu2TLa9trYWc+fOhZWVFUaMGIG9e/catl2/fh0RERFwdHSEpaUlRowYgY8++uiR50Q0kLBoIqIO02g02LhxI7Zv347Lly93aazvv/8eV65cQWFhIbZu3YoNGzZg5syZsLW1xS+//IKYmBjExMSgoqJCtt+qVasQFxeH48ePIygoCLNnz8a1a9cAAJWVlZg8eTL8/Pxw9OhR5OXlobq6GgsWLJCNsXPnTpiamqKoqAgffPDBQ+Pbtm0btmzZgs2bN+PkyZMICwvD7Nmzcf78ecOxPD09ERcXh8rKSrz22mtdej3Wr1+PefPm4cSJE3j++eexcOFCnD17FgBw69YtTJ8+Hba2tjhy5Aiys7Nx8OBBWVGUnp6O2NhYLFmyBKdOncLevXsxfPhw2TESEhKwYMECnDx5EjNmzEBERATq6uoMxz9z5gz279+Ps2fPIj09HQ4ODl06J6J+QxARdUBUVJR49tlnhRBCjBs3TixatEgIIUROTo5o/S8lPj5e+Pr6yvZ97733hLu7u2wsd3d3odfrDW2jRo0SwcHBhvWmpiah1WrFrl27hBBCXLp0SQAQSUlJhj737t0Trq6uIjk5WQghxPr160VoaKjs2BUVFQKAKCsrE0IIMXnyZOHn5/eP5+vi4iLefvttWVtgYKB4+eWXDeu+vr4iPj6+3XGioqKERqMRWq1WtiQmJhr6ABAxMTGy/Z566imxdOlSIYQQGRkZwtbWVjQ2Nhq279u3T5iYmIiqqipDvOvWrXtkHADEG2+8YVhvbGwUkiSJ/fv3CyGEmDVrlnjxxRfbPReigcpU1YqNiPq05ORkTJs2DXFxcZ0ew9PTEyYmf09663Q6eHl5GdY1Gg3s7e1RU1Mj22/8+PGGn01NTREQEGCYkSkpKUFBQQEGDRrU5ngXL17EyJEjAQABAQHtxlZfX48rV65gwoQJsvYJEybgxIkTCs/wb1OnTkV6erqszc7OTrbe+rxa1lvuFDx79ix8fX2h1WplsTQ3N6OsrAySJOHKlSsICQlpNw4fHx/Dz1qtFoMHDza8vkuXLsW8efNw7NgxhIaGYs6cOQgKCurwuRL1RyyaiKjTJk2ahLCwMKxduxbR0dGybSYmJhBCyNru3bvXZozHHntMti5J0kPbmpub/zGelrv3mpubMWvWLCQnJ7fp4+zsbPi5dfGhZNwWQohO3Smo1WrbfFTWkeO3d1xJkmBpaalovPZe3/DwcPz555/Yt28fDh48iJCQEMTGxmLz5s0djpuov+E1TUTUJUlJSfjqq69QXFwsa3d0dERVVZWscDLms5V+/vlnw89NTU0oKSnB6NGjAQBjx47F6dOnMXToUAwfPly2KC2UAMDa2houLi746aefZO3FxcUYM2aMcU7kAa3Pq2W95bw8PDxQWlqKmzdvGrYXFRXBxMQEI0eOxODBgzF06NBHPvZAKUdHR0RHR+PTTz9FSkoKMjIyujQeUX/BoomIusTb2xsRERHYvn27rH3KlCm4evUq3nnnHVy8eBGpqanYv3+/0Y6bmpqKnJwcnDt3DrGxsbh+/ToWLVoEAIiNjUVdXR0WLlyIw4cP4/fff8e3336LRYsWQa/Xd+g4q1atQnJyMrKyslBWVobVq1ejtLQUy5cv73DMd+7cQVVVlWxpfUcfAGRnZyMzMxO//fYb4uPjcfjwYcOF3hEREbCwsEBUVBR+/fVXFBQU4JVXXkFkZCR0Oh2A/921uGXLFrz//vs4f/48jh071uZ3054333wTe/bswYULF3D69Gl8/fXX3VYgEvU1LJqIqMveeuutNh/FjRkzBmlpaUhNTYWvry8OHz7c5TvLWktKSkJycjJ8fX1x6NAh7Nmzx3CXl4uLC4qKiqDX6xEWFgYvLy8sX74cNjY2suunlHj11VcRFxeHuLg4eHt7Iy8vD3v37sWIESM6HHNeXh6cnZ1ly8SJE2V9EhISsHv3bvj4+GDnzp347LPP4OHhAQCwsrLCgQMHUFdXh8DAQMyfPx8hISHYsWOHYf+oqCikpKQgLS0Nnp6emDlzpuFOPyXMzMywZs0a+Pj4YNKkSdBoNNi9e3eHz5WoP5LEg//piIhIFZIkIScnB3PmzFE7FCJ6CM40ERERESnAoomIiIhIAT5ygIiol+DVEkS9G2eaiIiIiBRg0URERESkAIsmIiIiIgVYNBEREREpwKKJiIiISAEWTUREREQKsGgiIiIiUoBFExEREZEC/wUz/wd8UZuS3gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(dims, N / scipy_times, marker='o', label='Scipy Curve Fit')\n", + "ax.plot(dims, N / analytic_times, marker='o', color='C3', label='Motion Model Analytic')\n", + "ax.set_xscale('log')\n", + "ax.set_xlabel('Number of Epochs')\n", + "ax.set_ylabel('Stars Fit per Second')\n", + "ax.set_title(f'Motion Model Fitting Performance of {N} Stars')\n", + "ax.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ea672ab4", + "metadata": {}, + "source": [ + "It can be seen that for epochs < 200, the analytic solution is faster than scipy, and vice versa for > 300 epochs." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "main", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/flystar/motion_model.py b/flystar/motion_model.py index 7a28690..b8cde55 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -35,7 +35,7 @@ def __init__(self, *args, **kwargs): def model_fit(self, dt): return np.full_like(dt, np.nan) - def model(self, t, fit_params, fixed_params=None, fit_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params=None): if fit_param_errs is None: return np.full_like(t, np.nan), np.full_like(t, np.nan) return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) @@ -114,6 +114,8 @@ def fit( params, params_err, chi2_x, chi2_y Parameters, uncertainties, and chi squares. The corresponding parameter names are in self.fit_param_names. """ + assert np.ndim(t) == np.ndim(x) == np.ndim(y) == np.ndim(xe) == np.ndim(ye) == 1, "Input arrays must be 1D! Motion model can only fit individual stars" + assert len(t) == len(x) == len(y) == len(xe) == len(ye), "Input arrays must have the same length!" fit_result = self.run_fit( t, x, y, xe, ye, fixed_params_dict=fixed_params_dict, @@ -186,7 +188,7 @@ def calc_chi2(self, t, x, y, xe, ye, fit_params, fixed_params_dict=None, reduced """ Get the chi^2 value for the input motion model parameters and data. """ - x_pred, y_pred = self.model(t, fit_params, fixed_params_dict) + x_pred, y_pred = self.model(t, fit_params, fixed_params_dict=fixed_params_dict) chi2x = np.sum((x - x_pred)**2 / xe**2) chi2y = np.sum((y - y_pred)**2 / ye**2) if reduced: @@ -213,7 +215,7 @@ def __init__(self, **kwargs): def model_fit(self, dt): return np.full_like(dt, np.nan) - def model(self, t, fit_params, fixed_params_dict, fixed_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params_dict=None): """Predicted positions (and uncertainties, if fit_param_errs is provided) at time t of Empty model. Parameters @@ -222,10 +224,10 @@ def model(self, t, fit_params, fixed_params_dict, fixed_param_errs=None): Time array, shape (N_times,) fit_params : array-like Fit parameters, shape (N_params,) or (N_stars, N_params) - fixed_params_dict : dict - Dictionary of fixed parameters, not applicable for Empty model - fixed_param_errs : array-like, optional - Uncertainties for fixed parameters, not applicable for Empty model, by default None + fit_param_errs : array-like, optional + Uncertainties for fit parameters, not applicable for Empty model, by default None + fixed_params_dict : dict, optional + Not applicable for Empty model, by default None Returns ------- @@ -234,7 +236,7 @@ def model(self, t, fit_params, fixed_params_dict, fixed_param_errs=None): """ t = np.atleast_1d(t) - if fixed_param_errs is None: + if fit_param_errs is None: return np.full_like(t, np.nan), np.full_like(t, np.nan) return np.full_like(t, np.nan), np.full_like(t, np.nan), np.full_like(t, np.inf), np.full_like(t, np.inf) @@ -285,6 +287,7 @@ def run_fit( params, param_errors (, chi2_x, chi2_y) Fitted parameters, their uncertainties, and optionally chi-squared values """ + self.fixed_params_dict = fixed_params_dict if verbose: warnings.warn(f"Empty data cannot be fit. Setting parameters to {fill_value} and uncertainties to np.inf.", OptimizeWarning, stacklevel=2) params = np.full(self.n_params, fill_value) @@ -332,7 +335,7 @@ def model_fit(self, dt, x0): x0 = np.asarray(x0) return np.broadcast_to(x0[:, np.newaxis], (x0.shape[0], dt.shape[0])) if x0.ndim > 0 else np.full_like(dt, x0) - def model(self, t, fit_params, fixed_params_dict=None, fit_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params_dict=None): """Predicted positions (and uncertainties, if fit_param_errs is provided) at time t of Fixed model. Parameters @@ -341,16 +344,18 @@ def model(self, t, fit_params, fixed_params_dict=None, fit_param_errs=None): Time array, shape (N_times,) fit_params : array-like x0, y0 in shape (N_params,) or (N_stars, N_params) - fixed_params_dict : dict, optional - Not applicable for Fixed, by default None fit_param_errs : array-like, optional Uncertainties for x0, y0 in shape (N_params,) or (N_stars, N_params), by default None + fixed_params_dict : dict, optional + Not applicable for Fixed, by default None + Returns ------- x, y (, xe, ye) Predicted position (and uncertainties) of Fixed model, shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + self.fixed_params_dict = fixed_params_dict t = np.atleast_1d(t) fit_params = np.atleast_2d(fit_params) # (N_stars, N_params) @@ -484,7 +489,7 @@ def model_fit(self, dt, x0, v): """ return x0 + v * dt - def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params_dict=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Linear model. Parameters @@ -493,16 +498,18 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): Time(s) at which to evaluate the model fit_params : array-like x0, vx, y0, vy in shape (N_params,) or (N_stars, N_params) - fixed_params_dict : dict - t0, shape (1,) or (N_stars,) fit_param_errs : array-like, optional Uncertainties of fit parameters in shape (N_params,) or (N_stars, N_params), by default None + fixed_params_dict : dict + t0, shape (1,) or (N_stars,) Returns ------- x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + if fixed_params_dict is None: + fixed_params_dict = self.fixed_params_dict assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Linear model." t = np.atleast_1d(t) @@ -540,7 +547,7 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): def run_fit( self, t, x, y, xe, ye, - fixed_params_dict, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, @@ -549,7 +556,13 @@ def run_fit( return_chi2=False, verbose=True ): - t0 = fixed_params_dict.get('t0', np.average(t, weights=1./np.hypot(xe, ye))) + if fixed_params_dict is None: + fixed_params_dict = {} + if 't0' not in fixed_params_dict: + # Default t0 to weighted average time + fixed_params_dict['t0'] = np.average(t, weights=1./np.hypot(xe, ye)) + self.fixed_params_dict = fixed_params_dict + t0 = np.atleast_1d(fixed_params_dict['t0']) t = np.atleast_1d(t) x = np.atleast_1d(x) y = np.atleast_1d(y) @@ -592,7 +605,7 @@ def run_fit( return params, param_errors, chi2_x, chi2_y else: return params, param_errors - + # Linear algebraic solution # Use https://en.wikipedia.org/wiki/Weighted_least_squares#Solution_scheme X_mat_t = np.vander(dt, 2) @@ -685,7 +698,7 @@ def model_fit(self, t, x0, v0, a): """ return x0 + v0*t + 0.5*a*t**2 - def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params_dict=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Acceleration model. Parameters @@ -693,17 +706,19 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): t : float or array-like Time(s) at which to evaluate the model fit_params : array-like - x0, vx0, ax, y0, vy0, ay in shape (N_params,) or (N_stars, N_params) - fixed_params_dict : dict - t0, shape (1,) or (N_stars,) + x0, vx, ax, y0, vy, ay in shape (N_params,) or (N_stars, N_params) fit_param_errs : array-like, optional Fit parameter uncertainties with shape (N_stars, N_params) or (N_params,), by default None + fixed_params_dict : dict + t0, shape (1,) or (N_stars,) Returns ------- x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ + if fixed_params_dict is None: + fixed_params_dict = self.fixed_params_dict assert 't0' in fixed_params_dict, "Fixed parameter t0 is required for Acceleration model." t = np.atleast_1d(t) @@ -743,7 +758,7 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): def run_fit( self, t, x, y, xe, ye, - fixed_params_dict, + fixed_params_dict=None, weighting='var', use_scipy=True, absolute_sigma=True, @@ -752,7 +767,13 @@ def run_fit( return_chi2=False, verbose=True ): - t0 = fixed_params_dict.get('t0', np.average(t, weights=1./np.hypot(xe, ye))) + if fixed_params_dict is None: + fixed_params_dict = {} + if 't0' not in fixed_params_dict: + # Default t0 to weighted average time + fixed_params_dict['t0'] = np.average(t, weights=1./np.hypot(xe, ye)) + self.fixed_params_dict = fixed_params_dict + t0 = np.atleast_1d(fixed_params_dict['t0']) t = np.atleast_1d(t) x = np.atleast_1d(x) y = np.atleast_1d(y) @@ -895,7 +916,7 @@ def _model_fit(self, dt, x0, vx, y0, vy, pi): x_res, y_res = self.model_fit(dt, x0, vx, y0, vy, pi) return np.hstack([x_res, y_res]) # Shape (N_stars, 2*N_times) - def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): + def model(self, t, fit_params, fit_param_errs=None, fixed_params_dict=None): """Model positions (and uncertainties, if fit_param_errs is provided) at time t of Parallax model. Parameters @@ -904,21 +925,22 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): Times at which to evaluate the model fit_params : array-like x0, vx, y0, vy, pi in shape (N_params,) or (N_stars, N_params) + fit_param_errs : array-like, optional + Uncertainties in fit parameters, by default None fixed_params : dict - t0, shape (N_stars,) or (1,). - ra, shape (N_stars,) or (1,). - dec, shape (N_stars,) or (1,). - pa, optional, shape (N_stars,) or (1,), by default 0. - obsLocation, optional, string, by default 'earth' - fit_param_errs : array-like, optional - Uncertainties in fit parameters, by default None Returns ------- x, y (, xe, ye) Predicted positions (and uncertainties, if fit_param_errs is provided) with shape (N_stars, N_times), or (N_times,) if N_stars=1, or (N_stars,) if N_times=1 """ - + if fixed_params_dict is None: + fixed_params_dict = self.fixed_params_dict assert all([_ in fixed_params_dict for _ in ['t0', 'ra', 'dec']]), "Fixed parameters t0, ra, and dec are required for Parallax model." t = np.atleast_1d(t) @@ -934,7 +956,10 @@ def model(self, t, fit_params, fixed_params_dict, fit_param_errs=None): obsLocation = fixed_params_dict.get('obsLocation', 'earth') # TODO: vectorize parallax.parallax_in_direction to handle multiple obsLocation? - assert type(obsLocation) == str, "obsLocation must be a single string for all stars at this time." + + assert (type(obsLocation) == str) or (np.unique(obsLocation).size == 1), "obsLocation must be a single string for all stars at this time." + if type(obsLocation) != str: + obsLocation = np.unique(obsLocation)[0] dt = t[np.newaxis, :] - t0[:, np.newaxis] # Shape (N_stars, N_times) t_mjd = Time(t, format='decimalyear', scale='utc').mjd # Shape (N_times,) @@ -975,14 +1000,21 @@ def run_fit( if not use_scipy: if verbose: warnings.warn("Parallax model has no non-scipy fitter option. Running with scipy.", UserWarning) - - assert all([k in fixed_params_dict for k in ['t0', 'ra', 'dec']]), "Parallax model requires 't0', 'ra', and 'dec' in fixed_params." + + assert all([k in fixed_params_dict for k in ['ra', 'dec']]), "Parallax model requires 'ra' and 'dec' in fixed_params." t = np.atleast_1d(t) + + if 't0' not in fixed_params_dict: + # Default t0 to weighted average time + fixed_params_dict['t0'] = np.average(t, weights=1./np.hypot(xe, ye)) + if 'obsLocation' not in fixed_params_dict: + fixed_params_dict['obsLocation'] = 'earth' + self.fixed_params_dict = fixed_params_dict t0 = np.atleast_1d(fixed_params_dict['t0']) ra = np.atleast_1d(fixed_params_dict['ra']) dec = np.atleast_1d(fixed_params_dict['dec']) pa = np.atleast_1d(fixed_params_dict.get('pa', 0.0)) - obsLocation = fixed_params_dict.get('obsLocation', 'earth') + obsLocation = fixed_params_dict['obsLocation'] n_fit = len(t) degree_of_freedom = n_fit - self.n_params diff --git a/flystar/startables.py b/flystar/startables.py index 2bb062c..b25f8c5 100644 --- a/flystar/startables.py +++ b/flystar/startables.py @@ -538,7 +538,7 @@ def detections(self): def fit_motion_model( self, - motion_models=[Empty, Fixed, Linear], + motion_models=None, fixed_params_dict=None, weighting='var', use_scipy=False, @@ -556,7 +556,7 @@ def fit_motion_model( Parameters ---------- motion_models : list of MotionModel or str, optional - Motion models to use. + Motion models to use, by default Empty, Fixed and Linear. Empty and Fixed models are always added automatically for stars with n_fit = 0 or 1. The behavior is as follows: 1. If 'motion_model_input' column is NOT in table: @@ -619,8 +619,12 @@ def fit_motion_model( if fixed_params_dict is not None: if not isinstance(fixed_params_dict, dict): raise ValueError("fit_motion_model: fixed_params_dict must be a dictionary!") - + # Convert motion_models to MotionModel objects if they are strings: + if motion_models is None: + # Setting the default to None to avoid mutable default argument issue + # See https://stackoverflow.com/questions/15189245/assigning-class-variable-as-default-value-to-class-method-argument + motion_models = [Empty, Fixed, Linear] all_mm_map = motion_model.motion_model_map() if all(isinstance(mm, str) for mm in motion_models): mm_names = motion_models @@ -653,7 +657,8 @@ def fit_motion_model( if 'motion_model_input' not in self.colnames: # If motion_model_input column is not provided, assert that motion model n_params are unique and sorted # Otherwise the fitter does not know which motion model to use based on n_obs - assert len(mm_n_params) == len(set(mm_n_params)), "fit_motion_model: Provided motion model n_params are not unique! Cannot decide which motion model to use based on n_obs. Please provide unique motion_models or a 'motion_model_input' column." + assert len(mm_n_params) == len(set(mm_n_params)), \ + f"fit_motion_model: Provided motion model n_params are not unique! Motion Models are: {[_.name for _ in motion_models]} Cannot decide which motion model to use based on n_obs. Please provide unique motion_models or a 'motion_model_input' column." ########################### @@ -684,7 +689,6 @@ def fit_motion_model( if fixed_params_dict is None: weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None fixed_params_dict = {'t0': np.average(t_data, axis=1, weights=weights)} - elif 't0' not in fixed_params_dict: weights = 1/np.hypot(xe_data, ye_data) if xe_data is not None else None fixed_params_dict['t0'] = np.average(t_data, axis=1, weights=weights) @@ -692,8 +696,7 @@ def fit_motion_model( if np.ndim(fixed_params_dict['t0']) == 0: fixed_params_dict['t0'] = np.full(N_stars, fixed_params_dict['t0']) - t0 = fixed_params_dict['t0'] - + t0 = fixed_params_dict['t0'] # Prepare fixed_params_dict for each star # This avoids checking types and slicing inside the fitting loop @@ -734,24 +737,35 @@ def fit_motion_model( ########################### ####### Determine MM ###### ########################### + n_fit = np.array(self['n_fit']) if 'motion_model_input' in self.colnames: # Determine which motion model to use based on motion_model_input column # If n_fit < required n_params for the input motion model, use the most complicated motion model with n_fit >= n_params required_params = np.array([all_mm_map[mm_name].n_params for mm_name in self['motion_model_input']]) + reassign_mm = n_fit < required_params + mm_digitized = np.digitize( - x=np.minimum(np.array(self['n_fit']), required_params), + x=n_fit[reassign_mm], bins=mm_n_params ) - 1 # Convert to 0-based index + # Assign motion models to stars + self['motion_model_used'] = self['motion_model_input'] + self['motion_model_used'][reassign_mm] = np.array([motion_models[d].name for d in mm_digitized], dtype='U20') + else: mm_digitized = np.digitize( - x=np.array(self['n_fit']), + x=n_fit, bins=mm_n_params ) - 1 # Convert to 0-based index - # Assign motion models to stars - self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized], dtype='U20') + # Assign motion models to stars + self['motion_model_used'] = np.array([motion_models[d].name for d in mm_digitized], dtype='U20') + # Add default obsLocation if not provided in fixed_params_dict + mm_used = np.unique(self['motion_model_used'].name) + if 'Parallax' in mm_used and 'obsLocation' not in fixed_params_dict: + fixed_params_dict['obsLocation'] = 'earth' ############################ ####### Prepare Table ###### @@ -786,6 +800,7 @@ def fit_motion_model( for param in mm.fixed_param_names: if param not in fixed_param_names: fixed_param_names.append(param) + # Remove t0 from fixed_param_names as it will be saved during fitting if 't0' in fixed_param_names: fixed_param_names.remove('t0') @@ -943,7 +958,7 @@ def infer_positions(self, times, fill_value=np.nan): # Predict positions x, y, xe, ye = motion_model_instance.model( - times, fit_params, fixed_params, fit_param_errs + times, fit_params, fit_param_errs, fixed_params ) x_pred[unique_index] = x y_pred[unique_index] = y diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index ad082cb..c5ae094 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -410,10 +410,10 @@ def test_MosaicToRef_acc(): ref_list = Table.read(ref_file) # Convert velocities to arcsec/yr - ref_list['vx0'] *= 1e-3 - ref_list['vy0'] *= 1e-3 - ref_list['vx0_err'] *= 1e-3 - ref_list['vy0_err'] *= 1e-3 + ref_list['vx'] *= 1e-3 + ref_list['vy'] *= 1e-3 + ref_list['vx_err'] *= 1e-3 + ref_list['vy_err'] *= 1e-3 # Convert accelerations to arcsec/yr**2 ref_list['ax'] *= 1e-3 @@ -423,7 +423,7 @@ def test_MosaicToRef_acc(): # Switch our list to a "increasing to the West" list. ref_list['x0'] *= -1.0 - ref_list['vx0'] *= -1.0 + ref_list['vx'] *= -1.0 ref_list['ax'] *= -1.0 lists = [starlists.StarList.read(lf) for lf in list_files] From 5a049fe02cd2db035d708b17325b879d599c8b2a Mon Sep 17 00:00:00 2001 From: Wei Lingfeng Date: Fri, 16 Jan 2026 00:17:36 +0900 Subject: [PATCH 29/29] Fix bootstrap index size error --- flystar/motion_model.py | 5 ++--- flystar/tests/test_align.py | 2 +- 2 files changed, 3 insertions(+), 4 deletions(-) diff --git a/flystar/motion_model.py b/flystar/motion_model.py index b8cde55..b69f8f2 100644 --- a/flystar/motion_model.py +++ b/flystar/motion_model.py @@ -138,8 +138,6 @@ def fit( n_obs = len(t) if bootstrap > 0 and n_obs > (self.n_params): - # Use m out of n bootstrap to ensure enough unique points - m = np.max([self.n_params, int(len(t) * 0.8)]) rng = np.random.default_rng(seed) edx = np.arange(n_obs, dtype=int) # Precompute All Bootstrap Draws at Once @@ -148,8 +146,9 @@ def fit( rng.choice(edx, size=self.n_params, replace=False) for _ in range(bootstrap) ]) + # Draw with replacement for the rest bdx_extra = np.stack([ - rng.choice(edx, size=self.n_params, replace=True) + rng.choice(edx, size=n_obs - self.n_params, replace=True) for _ in range(bootstrap) ]) bdx_all = np.hstack((bdx_unique, bdx_extra)) diff --git a/flystar/tests/test_align.py b/flystar/tests/test_align.py index c5ae094..3937ea6 100644 --- a/flystar/tests/test_align.py +++ b/flystar/tests/test_align.py @@ -572,7 +572,7 @@ def test_bootstrap(): list1 = starlists.StarList.from_table(list1) list2 = starlists.StarList.from_table(list2) - + # Set parameters for alignment transModel = transforms.PolyTransform trans_args = {'order':2}