-
Notifications
You must be signed in to change notification settings - Fork 19
Open
Description
你好,在函数forward_net_octav中有如下mse准则下迭代求解最优scale的代码:
abs_x = np.abs(ort_inputs[i])
s_n = abs_x.sum() / abs_x[abs_x > 0].size
for _ in range(20):
s_n_plus_1 = abs_x[abs_x > s_n].sum() / \
(1 / (4 ** 8) / 3 / unsigned * abs_x[abs_x <= s_n].size + abs_x[abs_x > s_n].size)
if np.abs(s_n_plus_1 - s_n) < 1e-6:
break
s_n = s_n_plus_1
想请问下这里
s_n_plus_1 = abs_x[abs_x > s_n].sum() / \
(1 / (4 ** 8) / 3 / unsigned * abs_x[abs_x <= s_n].size + abs_x[abs_x > s_n].size)
迭代更新scale公式的物理含义是什么呢?是如何推导得到的呢?
Metadata
Metadata
Assignees
Labels
No labels