Skip to content

Error while training model with Categorical only data #13

@deepakchandra30

Description

@deepakchandra30

Hi guys,

I'm facing an issue while training the model with a dataset which doesn't have any numeric columns. Can you help me fixing this issue?

My info file

    "header": "infer",
    "column_names": null,
    "num_col_idx": [], 
    "cat_col_idx": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], 
    "target_col_idx": [3],  
    "file_type": "csv",

Error/Output

==============Starting Trainin Loop, total number of epoch = 8000==============
Epoch 1/8000: 100%|█| 8/8 [00:04<00:00,  1.66it/s, lr=0.0005, DLoss=2.52, CLoss=0, TotalLoss=2.52, closs_weight=1, dloss_weight=
Traceback (most recent call last):
  File "/home/dnallamothu/synthetic-data-generation/TabDiff-main/main.py", line 46, in <module>
    tabdiff_main(args)
  File "/home/dnallamothu/synthetic-data-generation/TabDiff-main/tabdiff/main.py", line 283, in main
    trainer.run_loop()
  File "/home/dnallamothu/synthetic-data-generation/TabDiff-main/tabdiff/trainer.py", line 198, in run_loop
    num_noise_dict = {"num_noise/rho": self.diffusion.num_schedule.rho().item()}
RuntimeError: a Tensor with 0 elements cannot be converted to Scalar

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions