diff --git a/descqagen/app_mag_func_test/data/README.md b/descqagen/app_mag_func_test/data/README.md new file mode 100644 index 00000000..823a2f2c --- /dev/null +++ b/descqagen/app_mag_func_test/data/README.md @@ -0,0 +1 @@ +This directory stores downloaded data products \ No newline at end of file diff --git a/descqagen/app_mag_func_test/data/__init__.py b/descqagen/app_mag_func_test/data/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/descqagen/app_mag_func_test/data/download_data.py b/descqagen/app_mag_func_test/data/download_data.py new file mode 100644 index 00000000..fa5a40eb --- /dev/null +++ b/descqagen/app_mag_func_test/data/download_data.py @@ -0,0 +1,57 @@ +""" +run sql queries on HSC database +""" + +from __future__ import print_function, division +import sys +sys.path.append("..") +from defaults import PROJECT_DIRECTORY, DATA_DIRECTORY + + +def main(): + """ + run scripted SQL download. + + to download the HSC data for this project, in the temrinal window type: + $user python download_data.py data + + to download the HSC randoms for this project, in the temrinal window type: + $user python download_data.py randoms + + Before running this script, edit the hsc_credentials.txt file in the sql directory. + """ + + if sys.argv[1] == 'data': + sql_file = PROJECT_DIRECTORY + 'sql/hsc_data.sql' + savename = DATA_DIRECTORY + 'hsc_data.csv' + elif sys.argv[1] == 'randoms': + sql_file = PROJECT_DIRECTORY + 'sql/hsc_randoms.sql' + savename = DATA_DIRECTORY + 'hsc_randoms.csv' + else: + print("specify either 'data' or 'randoms' as a positional argument.") + sys.exit() + + # read in username and password for HSC account + user_info_file = PROJECT_DIRECTORY + 'sql/hsc_credentials.txt' + f = open(user_info_file, 'r') + username = f.readline().strip() + password = f.readline().strip() + f.close() + if (username == 'username') | (password == 'password'): + print("Please alter the file: {0}, to be your username and password".format(user_info_file)) + print("It is possible your username and password are 'username' and 'password'. Shame on you.") + + # open sql query string + f = open(sql_file, 'r') + sql = f.read() + f.close() + + # run query script + import subprocess + exec_script = PROJECT_DIRECTORY+'sql/hscReleaseQuery.py' + process = subprocess.call(['python', exec_script, '--user', username, '--password', password, sql_file]) + + + +if __name__ == "__main__": + main() diff --git a/descqagen/app_mag_func_test/data/hsc_data_types.py b/descqagen/app_mag_func_test/data/hsc_data_types.py new file mode 100644 index 00000000..ff897c36 --- /dev/null +++ b/descqagen/app_mag_func_test/data/hsc_data_types.py @@ -0,0 +1,39 @@ +cols = {'object_id':(0,'i8'), + 'parent_id':(1,'i8'), + 'ira':(2,'f4'), + 'idec':(3,'f4'), + 'imag_cmodel':(4,'f4'), + 'imag_cmodel_err':(5,'f4'), + 'iflux_cmodel_flags':(6,'bool_'), + 'iflux_cmodel':(7,'f4'), + 'iflux_cmodel_err':(8,'f4'), + 'merge_measurement_i':(9,'f4'), + 'a_g':(10,'f4'), + 'a_r':(11,'f4'), + 'a_i':(12,'f4'), + 'a_z':(13,'f4'), + 'a_y':(14,'f4'), + 'rmag_forced_cmodel':(15,'f4'), + 'rmag_forced_cmodel_err':(16,'f4'), + 'rflux_forced_cmodel':(17,'f4'), + 'rflux_forced_cmodel_err':(18,'f4'), + 'rflux_forced_cmodel_flags':(19,'bool_'), + 'imag_forced_cmodel':(20,'f4'), + 'imag_forced_cmodel_err':(21,'f4'), + 'iflux_forced_cmodel':(22,'f4'), + 'iflux_forced_cmodel_err':(23,'f4'), + 'iflux_forced_cmodel_flags':(24,'bool_'), + 'gmag_forced_cmodel':(25,'f4'), + 'zmag_forced_cmodel':(26,'f4'), + 'ymag_forced_cmodel':(27,'f4'), + 'tract':(28,'f4'), + 'patch':(29,'f4'), + 'gcountinputs':(30,'f4'), + 'rcountinputs':(31,'f4'), + 'icountinputs':(32,'f4'), + 'zcountinputs':(33,'f4'), + 'ycountinputs':(34,'f4'), + 'iflags_pixel_bright_object_center':(35,'bool_'), + 'iflags_pixel_bright_object_any':(36,'bool_'), + 'iblendedness_flags':(37,'bool_'), + 'iblendedness_abs_flux':(38,'f4')} \ No newline at end of file diff --git a/descqagen/app_mag_func_test/data/hsc_randoms_types.py b/descqagen/app_mag_func_test/data/hsc_randoms_types.py new file mode 100644 index 00000000..e8d6353c --- /dev/null +++ b/descqagen/app_mag_func_test/data/hsc_randoms_types.py @@ -0,0 +1,13 @@ +cols = {'object_id':(0,'i8'), + 'ra':(1,'f4'), + 'dec':(2,'f4'), + 'tract':(3,'f4'), + 'patch':(4,'f4'), + 'gcountinputs':(5,'f4'), + 'rcountinputs':(6,'f4'), + 'icountinputs':(7,'f4'), + 'zcountinputs':(8,'f4'), + 'ycountinputs':(9,'f4'), + 'iflags_pixel_bright_object_center':(10,'bool_'), + 'iflags_pixel_bright_object_any':(11,'bool_') + } \ No newline at end of file diff --git a/descqagen/app_mag_func_test/defaults.py b/descqagen/app_mag_func_test/defaults.py new file mode 100644 index 00000000..93dfcba0 --- /dev/null +++ b/descqagen/app_mag_func_test/defaults.py @@ -0,0 +1,4 @@ +import os + +PROJECT_DIRECTORY = os.path.dirname(os.path.abspath(__file__))+'/' +DATA_DIRECTORY = PROJECT_DIRECTORY + 'data/' diff --git a/descqagen/app_mag_func_test/notebooks/HSC_app_mag_func.ipynb b/descqagen/app_mag_func_test/notebooks/HSC_app_mag_func.ipynb new file mode 100644 index 00000000..5c206939 --- /dev/null +++ b/descqagen/app_mag_func_test/notebooks/HSC_app_mag_func.ipynb @@ -0,0 +1,1874 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from __future__ import print_function, division\n", + "#add project directory to python path\n", + "import sys\n", + "sys.path.append(\"..\")\n", + "from defaults import PROJECT_DIRECTORY, DATA_DIRECTORY\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load catalogs" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pandas import read_csv\n", + "from utils import get_ordered_list\n", + "\n", + "#set location of data files\n", + "deep_file = DATA_DIRECTORY + 'hsc_data.csv' # COSMOS, DEEP2-3, ELAIS-N1, and XMM-LSS fields\n", + "rand_file = DATA_DIRECTORY + 'hsc_randoms.csv'\n", + "\n", + "#get column info\n", + "from data.hsc_data_types import cols as data_cols\n", + "from data.hsc_randoms_types import cols as ran_cols\n", + "\n", + "#read in column info for the data file\n", + "data_dtypes = get_ordered_list(data_cols)\n", + "data_names = [x for x,y in data_dtypes]\n", + "\n", + "#read in column info for the randoms file\n", + "ran_dtypes = get_ordered_list(ran_cols)\n", + "ran_names = [x for x,y in ran_dtypes]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/anaconda2/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (19,24) have mixed types. Specify dtype option on import or set low_memory=False.\n", + " interactivity=interactivity, compiler=compiler, result=result)\n" + ] + } + ], + "source": [ + "#load data file\n", + "hsc_data = read_csv(deep_file, dtype=data_dtypes, engine='c', header=0, names=data_names) #note that there are some missing values and mixed types" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "object_id int64\n", + "parent_id int64\n", + "ira float32\n", + "idec float32\n", + "imag_cmodel float32\n", + "imag_cmodel_err float32\n", + "iflux_cmodel_flags bool\n", + "iflux_cmodel float32\n", + "iflux_cmodel_err float32\n", + "merge_measurement_i float32\n", + "a_g float32\n", + "a_r float32\n", + "a_i float32\n", + "a_z float32\n", + "a_y float32\n", + "rmag_forced_cmodel float32\n", + "rmag_forced_cmodel_err float32\n", + "rflux_forced_cmodel float32\n", + "rflux_forced_cmodel_err float32\n", + "rflux_forced_cmodel_flags object\n", + "imag_forced_cmodel float32\n", + "imag_forced_cmodel_err float32\n", + "iflux_forced_cmodel float32\n", + "iflux_forced_cmodel_err float32\n", + "iflux_forced_cmodel_flags object\n", + "gmag_forced_cmodel float32\n", + "zmag_forced_cmodel float32\n", + "ymag_forced_cmodel float32\n", + "tract float32\n", + "patch float32\n", + "gcountinputs float32\n", + "rcountinputs float32\n", + "icountinputs float32\n", + "zcountinputs float32\n", + "ycountinputs float32\n", + "iflags_pixel_bright_object_center bool\n", + "iflags_pixel_bright_object_any bool\n", + "iblendedness_flags bool\n", + "iblendedness_abs_flux float32\n", + "dtype: object" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hsc_data.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "#load random file\n", + "hsc_randoms = read_csv(rand_file, dtype=ran_dtypes, engine='c', header=0, names=ran_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "object_id int64\n", + "ra float32\n", + "dec float32\n", + "tract float32\n", + "patch float32\n", + "gcountinputs float32\n", + "rcountinputs float32\n", + "icountinputs float32\n", + "zcountinputs float32\n", + "ycountinputs float32\n", + "iflags_pixel_bright_object_center bool\n", + "iflags_pixel_bright_object_any bool\n", + "dtype: object" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hsc_randoms.dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of galaxies: 10294602\n", + "number of randoms: 10564959\n" + ] + } + ], + "source": [ + "#check the number of galaxies\n", + "print(\"number of galaxies: \", len(hsc_data))\n", + "print(\"number of randoms: \", len(hsc_randoms))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# make cuts on data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of galaxies: 9172467\n", + "number of randoms: 9385922\n" + ] + } + ], + "source": [ + "#make some further cuts on the data\n", + "bright_mask = (hsc_data['iflags_pixel_bright_object_center']==False)\n", + "ran_bright_bmask = (hsc_randoms['iflags_pixel_bright_object_center']==False)\n", + "nan_mask = (np.isnan(hsc_data['imag_forced_cmodel'])==False)\n", + "inf_mask = (np.isinf(hsc_data['imag_forced_cmodel'])==False)\n", + "\n", + "#note that in the SQL script, meas.iclassification_extendedness != 0\n", + "\n", + "#make uber masks\n", + "data_mask = (bright_mask & nan_mask & inf_mask)\n", + "randoms_mask = (ran_bright_bmask)\n", + "\n", + "#remove masked galaxies and randoms from tables\n", + "hsc_data = hsc_data[data_mask]\n", + "hsc_randoms = hsc_randoms[randoms_mask]\n", + "\n", + "#check number of galaxies in sample\n", + "print(\"number of galaxies: \", len(hsc_data))\n", + "print(\"number of randoms: \", len(hsc_randoms))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# define and plot fields" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "#define fields\n", + "Nfields=4\n", + "field_bounding_boxes = [[34,38,-6.5,-3], #min_ra, max_ra, min_dec, max_dec\n", + " [148,152,0,4],\n", + " [240,246,53,57],\n", + " [350,354,-2,1.5]]\n", + "\n", + "#define some masks for each field\n", + "\n", + "#convert to record arrays\n", + "fdata = hsc_data.to_records()\n", + "frdata = hsc_randoms.to_records()\n", + "\n", + "data_field_mask_1 = (fdata['ira'] > field_bounding_boxes[0][0]) &\\\n", + " (fdata['ira'] < field_bounding_boxes[0][1]) &\\\n", + " (fdata['idec'] > field_bounding_boxes[0][2]) &\\\n", + " (fdata['idec'] < field_bounding_boxes[0][3]) \n", + "data_field_mask_2 = (fdata['ira'] > field_bounding_boxes[1][0]) &\\\n", + " (fdata['ira'] < field_bounding_boxes[1][1]) &\\\n", + " (fdata['idec'] > field_bounding_boxes[1][2]) &\\\n", + " (fdata['idec'] < field_bounding_boxes[1][3]) \n", + "data_field_mask_3 = (fdata['ira'] > field_bounding_boxes[2][0]) &\\\n", + " (fdata['ira'] < field_bounding_boxes[2][1]) &\\\n", + " (fdata['idec'] > field_bounding_boxes[2][2]) &\\\n", + " (fdata['idec'] < field_bounding_boxes[2][3]) \n", + "data_field_mask_4 = (fdata['ira'] > field_bounding_boxes[3][0]) &\\\n", + " (fdata['ira'] < field_bounding_boxes[3][1]) &\\\n", + " (fdata['idec'] > field_bounding_boxes[3][2]) &\\\n", + " (fdata['idec'] < field_bounding_boxes[3][3]) \n", + "\n", + "ran_field_mask_1 = (frdata['ra'] > field_bounding_boxes[0][0]) &\\\n", + " (frdata['ra'] < field_bounding_boxes[0][1]) &\\\n", + " (frdata['dec'] > field_bounding_boxes[0][2]) &\\\n", + " (frdata['dec'] < field_bounding_boxes[0][3]) \n", + "ran_field_mask_2 = (frdata['ra'] > field_bounding_boxes[1][0]) &\\\n", + " (frdata['ra'] < field_bounding_boxes[1][1]) &\\\n", + " (frdata['dec'] > field_bounding_boxes[1][2]) &\\\n", + " (frdata['dec'] < field_bounding_boxes[1][3]) \n", + "ran_field_mask_3 = (frdata['ra'] > field_bounding_boxes[2][0]) &\\\n", + " (frdata['ra'] < field_bounding_boxes[2][1]) &\\\n", + " (frdata['dec'] > field_bounding_boxes[2][2]) &\\\n", + " (frdata['dec'] < field_bounding_boxes[2][3]) \n", + "ran_field_mask_4 = (frdata['ra'] > field_bounding_boxes[3][0]) &\\\n", + " (frdata['ra'] < field_bounding_boxes[3][1]) &\\\n", + " (frdata['dec'] > field_bounding_boxes[3][2]) &\\\n", + " (frdata['dec'] < field_bounding_boxes[3][3]) " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa4AAAMGCAYAAACqJWAwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXucXHWd5/0+depeXV1VfU93utNJhyQ2MYEmkCggMASU0TE+8wjMri7qszNRd9ZlHEcdXXfV1ZVRZ8dhfF4r5HEcYWdXBUbFUUG5BEiAJISWBBJy61s63elrVVfX/XqeP37nd+qcqmruIQmez+uVV7rrXOv073u+t8/3+1U0TcOGDRs2bNg4X+A42zdgw4YNGzZsvBrYisuGDRs2bJxXsBWXDRs2bNg4r2ArLhs2bNiwcV7BVlw2bNiwYeO8gq24bNiwcd5BUZQBRVGGFEW5U1GUsKIoWxVFiSmK8jl9++cURfmg/u9zVcfKbVv1f5+rf5XXfY/fPFPn/n2HrbjOUZwLgqkf+9CrPGaVoij3vpbr2bDxSqFp2iAwCNypadqCpmkPA8PADkVRtgKDmqbdp2nafUCfPE5RlDtN2x4GoubtbzB+cobO+3sPW3GdozgXBFM/fuFVHjMM/NlruZ4NG28QwsCA6fc7QRhVwCZ9XQOGnD17hu7jVcmOjVcOW3GdnzhXBLMG+j2serOuZ8NGNXRj7mZFUZ5VFOVzugyAkJnhOvvvMP+uRyvuNUczTNGN7frvWxVFeUhGNBRFGTAd/znduPxg1Xm365GUpc4hoyQyyjJgippsfSOf0fkOW3Gdh3gDBDMshUv/XwqSRTirUUd4P6iHL8O6oMuQ5DdNx8jrbLcF0cYZwFa5LhEGHQCapl0CfB64VI9CvGLo8jWgRy2+pSulVfrnH9f3eRho0v+/D7gZhHJCRDweBgwDUpeNYV1WhxVF2V7vHPrPzwKb5DlN0RYbOmzFde7jDRdMhFDI8OOlmqbtqCecZiwhvPchwoI3IUKa39JDhQv6Md+kIsR92IJo443Hw6aQuVx3q0CsM03TbqQSARikTjTA7C2ZII1BI2yvG1tR0z7RmqPgEuqv7UtNnw8D19U5x3DVZ7cB1ymK8iwm2bdhK67zAW+4YMpQoi6In9c/W0o4eantJkW2v869rwLC+vWHsAXRxpuDrYqimNfXMBj51/1mb79qv7rQvahVJrmRx9TLYT1L/VD5M6bPV+m/L3UO43tomvZ53Ui1IxQm2Irr/MTrEkxdkTysK75h/bOlhJOX2q5f688whQdNeIZKeOQebEG08QZBX8MDiJB5WF+Hq4DtCMNKRiq2o+eAATRN+zgwoIeutyJywoNV596q7yMNvmEqBtigfm7zPh/Ufw7rYfkBfftWhKEW1jTtW6bPB/QQZL1zrEJEJm4EVpmiLfe94Q/xPIZid4c/N6Ev5nsRC/Y2RHjvXv1ncyiiCdhvFj49nr5ARaE9TBV0r2dY/yfPP4CIy9+MrnT0a96oX6d6exNwo6Zp1+m0+UEEBfhe4DpN04b1e6mXgxuUStOGDRs2Xg1sxfV7CF2Z7NA0bUG38D6uadrnz/Z92bBhw8Yrga24fg+hhyjCCK8sTCWcZ8OGDRvnPM6a4jLlYa6rZ+3rcd0F9Hjwm3pzNmycA7BlxIaN+jgr5Aw9f3OdnnsxJ0HN243ODUvQVW3YeMvClhEbNpbGWVFcmqYNmizIVXXCVDdToYkOYzPQbPyewZYRGzaWhvNsXlwnCdQUuyLyLuZaouYljrcTdDbOaWiaprye420ZsfFWx2uRkbOquPRahnsVRdmvadprakhpk0tsnKtQlNelswBbRmy8tfFaZeSMKa4l+t0Na5r2sCk+P4gIc2wHzMnlBUSNEAjLcv5M3acNG2cLtozYsPHacMYUV3Vj1ypspVKUGkZvf6JXmC8gilg36dtXYWpWacPGWwW2jNiw8dpwtlo+7UBvZwJGvzuAR/TfB8GgAy/YNUY2fg9hy4gNG0vgvC5AVhRFO5/v38ZbG4qivG5yxhtwD7aM2Dhn8VplxG6ya8OGDRs2zivYisuGDRs2bJxXsBWXDRs2bNg4r2ArLhs2bNiwcV7BVlw2bNiwYeO8gq24bNiwYcPGeQVbcdmwYeMth2gqz3ceOsZ3HjpKNJUnmspz5+NDRFP5Jfd/qe02zi2c1V6FNl45oqk8dz01Aih85J29NAXcDM0m+at7nmMumedr29ZzdDrBjZu6aQq4LccOzSb5+i8P86X39dPX2nB2voANG28ChJyMsuv4DIMn4wDsGZ7H6XDw5NA8P9p3kstWNjG5kOGr29YD8OkfD3J0KkmupDERyxAJuAGNj7xzZY0s2Tg3YBcgnweIpvL8px8NsvuEaEd3zdpW/sdNF/GffvQ7dp+YAyDkcxLPFOmO+LhhfQefuHq1IXQf+6d97Dw6S8Tv4sZLllu2ma9x7/7xuorPxmuDXYD85mJoNsn2u/czNJuqu93pUCiWK8+irzVAc8DNvtGY8VnY52IhUwDgCzes4+NX9Z3Zm/49x2uVEdvjOg9w7/5xQ2m1BNzsPDrLXU+N0r8saCgul0P87cdjGXbsGiFbKHF0OkmhVKI7EsDrVIilC+zYNUJzg6dGIO/dP85tDxzh/+w9ybsv7OATV/fZCszGeYNoKs9Hf7CP8ViGjkYPDkVhMp41tjsdUCxreFSFXEnD6VAYmk0xn8oZ+/jdCguZAr3Nfq7v7+DGTd0117jjsRMcPp3gq9sutKMXZxF2jus8wI2buvG5xJ8qkRPW4E8HT5EtlNl+5UoGekLMpQqWY378zDh7R6IMnoxz/4FJskWN7oiP7VeurBFIgK397TQFXIxF0+zYNcy9+8fP/BezYeMNwr37xxmPZQBYSBeYjGfpjvgA8KhQLEPE7yLsE8aY9LwW0kXjHOs6QiwP+xidT+NzO2oMt3v3j7Nj1wi7T8zxxZ8+/2Z8LRtLwFZc5zhkbuv6/nYifhd/+8GN9Db7GY9luHvPGL96/jSTC2bLUnhe+ZIQTI+qsGF5CIDOsBefu76T/fDhaaKpAm5VocGjsrY9eIa/mQ0brx9Ds0luvvMpfnNoim0bl+F1KmSLZUI+JwVdBnIlse91b2unPeSpe54Gj8rgyQVOLWT0T2qjVzdu6qZVV2bRZNYmc5xF2KHCcxxf/cUh7j8wCcD2d61i14k5Ti+kje0TJqUFWGL4Mu910fIQp2Jp9o7E2Dsi4vmfvm6N5bi17UGcDoV8SSNfKvHpe57jvk++k4cPT9t5LxvnLL58/yFjTY/MpcgWNZoCLqKpAvFM0bLvg4emWMwW652GZK7E5pVNgMbG5RE+8s7euvvly2UATsay3PbAER49Ms3G7gjZQomhmST/7QPr7RDimwDb4zrH8ZtDp42fD03EuWf/KXIlUE0GofzZ73Swtj1AS8BF0KNy9ZpWbr32Ao5OJw1vCmDX8ZkaS/FrvzpsUXqxdIEv/vR5bnvgCHc8PgTYlGEb5x5WtQSMn2NpkZ9639uX0RX2WvZzgKG0PE4hB41eJy5dJlQFEpm8UIIKdclLn7nnOeKZIj6Xg1xRKLC9IzF2PDHM3U+P8eTQPJ+998CZ+qo2TDhriktRlK36v28usf2b+v/1psS+pSFqUI7yjV+/SE+TiNO3Btx85vq13LRpOWGfi/dt6DD21yMiqE6Fo9Mp5lIFErkS9x84zZ7heVY0+4FK+HDwZJw7HhviY/+0j6HZJEOzSUI+F+1BDxu6GrllywpuvXY1iYxQUL89NMXA137L3/z6MLc9cMTOf71JsGVkaURTeb7xq8M8/OK08VnQozI6n+buPSe5vK+FpoDL2NYUcDHQEybgcZAragQ8DhazRSOcWNLg8FQSgP2jUeO4odkkH/unfdzx+JDBzL2+v532YP2Q41TcDiG+GTgrdHh9LPnNmqZ9XlGUh4DPVw/CUxQlBkSBj2uaVne661uR6vvYkRk+8c/PktUtOoDeZj+j82md7dTOzZf18JN9J/nV86eNUKFbVQh5XczWEZjL+5p5cqgy2d2twvquMIMnF7hmbSsAO4/OcsXqFq68oMUIDb7ztkcszCyHAhd1h1nfGSIScBv1ZDbq4/XQ4W0ZWRrS+9l5dNbyuUtVDEW0eWWEvSMx/C6FdEFj28Zl9LYEuP2REzXnC3pVEtkSblWEyjtDXt63sROfy8GzYzF2n5hn88omjs8kiFaRoMxwO2B1W4DDUyk2r4zwvQ9vsuXjZfBaZeSs13EpijKkaVpNsYSiKFuXEkbTPjU3/+Uvf5mvfOUrb+AdvjmQdVR3PD5ELC2Ew+WAQhlaAi6SuZKhzKRQQiWPJeF1Ooz9Am4H793QSdjnJlss8fDhaUMRbehq5NRChq/+0YU8PxHn8OkEzQEX9x84zUBPmG/fuJG/uuc5fjceX/Keb732gppcmY0K3qg6LltGBCRRac9wlL0jUVoD7rqGWtCrEnA7mVqsUN27wl7aG70Mnlyg0eukye9iNJqhJeBkLlU0arxkfkxioCeMz6VyYWcjO3aNEPI6WdHs58jpRfJl63Xbgx6mE5VrynpLW3ktjfNScSmK8jlgsJ7wyW3AgKZp31ri+LeENRlN5fnkPz/L3pEo77mwnd8enqZc52t5nCK23tcasBRZdkd85IolZhJCiKUFCbCiyc9YNM3mlU1omsaykBDeUlljMp41zrX9Xau4+6kRskVxYfl50OMkkbMmtBt9KouZEpf3NfPdfztgC+YSeCMUly0jFXznoaMWj6naaKuGWQ6WgvSyQDBy17QFWMgULZGGgZ4wm1Y08czovGHI+V0O0oUyPpeDTEFosJaAm0yxSCpXNry/7e9axRf/8G2v+Tu/1XFeTkDWhe3jiqKE623ThbVZUZStb/7dvXn4+4eOsXdExNUPnoqzvrMREB4XgM+l4FIV/PoHo3PWzgDjsQwep2r83h32GT+PRdNE/C72jkTZNxrjsWOzjMcyTMazRPwuLukJc9Om5RalFfSqDM2muGJ1C6Wy1azsjvhYzJToaw3w5NC8ne86w7BlROCxIzPseGIYEGtw88oI8UzReIH5nZVXWcgnyNIXtFVKOirSYUW+pOFQwKUIRu7hqSST8SwbuhqN0pLBkwvs2DVsREIA0rqyyhTK6Lsxl8qTyonPZcjy0MTSEQsbrx1njA6/RMJ4WNO0h/X4PXrMfhjYDnzLdOwH9e33AfPAqjN1n+cCdh6dMX6ejGdZ0EkRhTKW0EVMty5Lmqg70TSN5RE/AY9Kd8TPQiZPIlvCW1WrFUsX6Ah5mYpnDQu1waMSSxe459kJfC4H2aKG1+mgNehhPJbhmrWtbFgeMjpzgAhZFkplBnrCfOydvfz9I8e5tLfpjD6btzJsGXlliKbyfPJ/P0umUMbpUBiPZbjh7cuYS+YZmk3R6FPxu1ykF7NsXhlhY3cENI2FTIED4wuUNDD7XV4VzI5YWcMo2/K7HLxvYye/OnDawrLtaPSQzpUIuB1EfC5OJ/KU9O1yN4cCq1v9OB0ODk8laW/w0NfawHceOmr3PXyDccYUl6ZpO15i81ZEiAMgDDwDoChKWNO0BYSgDuvb+4A7z9R9vtmQDW8/9QcX8PixGUBhoCfMeCxDW4MHp1ppVaMqCBq7A/Jl8DkVMkWNRq+TD1zUxd17xjg6LZhQsqEoQLFUpqPRY4nxJ7JCGTqAMqJupSvsxaGIF0HY56KnycfBiUV6m/186X39RPxuTsez/OK5CbJFzejOMbWYYz55jLFomr954EWufVu7Xev1GmDLSC2qe2bK/oOZQhkF+LMrenl+MsGeoTmhtLxOFjNFFjNiPR+ZSrB3JMZAjyAfmaEo8P4NHYR8bu7ecxIFkKpJKp90ocxsIkeqUNFsfa0BktkiM0khT6m8+L/Bo5LMVfYra3BsJk3AI7w/t8vB3XvGAPC7nXbfwzcQZ6sAeQdwU5XVCPAIcImmaYOKomxXFCUKDFWzqc4nVAvi1395mJ1HZ9kzPG/Exv1usdBXtgboaHRz/4EpXA6F3mYf04m8UX+S0UN5i9ki9x+YAETSeWIhy0BPmKl4lsl4loMTi+J3k+KSIQxz4E8yErsjPq5Z22YI2eh8mg99fy+KBsvCXrJFjZDPScTvYmIhywVtDazvDDEWTaMoCrc9cATAFsw3Fr83MgKyD+AQvzk0xVg0TTpfwu9W2XVcKCipZH7w1JhRQwVCFjpDXrqb/IxH00ZEYSqerbmGpsF8qsh4TGzTwJKjCnpU/mBdG6fjWa5d18qTJ+Z4Z18LqXyJBRMJRBqQHqfDorgkDFnTNG7ZsoJIwFW3zZqN146zzip8PTiXE89SYaXzJW5/5DhXrG7mkhVNXNwdNsIeZotPQiZ1Ax6VVB2hMCPkc7KqJcDvxuNsv3IV+8fmGTwZZ217A6cW0oYA1UPQq6KgGEqxnoVqvk51Enz7latobnCztj3If7n/BVqDbr5940V21wAT7O7wL49qOQFhjPU2ixzqZb0Rjs8kLfklEIzZgMfFjM7iG+gJUyxpHJyI0xnycmlvhPsPnMahVLypanm7YnUzf3ndWv7j/xlkMp6lM+RlecTHvtGYseZfjgBSjdaAm+5mH5MLWaYWcwz0hHn3hR12RGIJnJeswteLc00ozd7VXU+Ncvsjx7llywqe1MMaICiyO4/O0hRw8dF3rOC7O4colzWjiFjC71ZI5zX8LpW0KWwR8jmIZ2oJE51hr0GRVxVqzrcUJA046FFJ5Eo0+12oDoVErkimIEKOAY/K0GzactzmlU1878OX8Kn/M2jUiF2xupl//tMtr+aRvaVhK65aSBlZ2x7ka786zCU9Ee559hTLGr0sZvOk8pUwd3fEx3gsw4blIQ6eEqFws/KR0QYzpKLpDHmZjGfp7whwYjZtMAcl+lr95IsarUGPxWAzh88luiM+In4XBycWX/b7SSajZN7K+5CGnq3ArLAV11lGNJU3XuLmsJ30nDoaPbz/oi7e3tnI5/7lIJlC2RBMCVm3BfAHa1sYi2aIpwvMmcIUYjxD/XvYvDLCVDzHWNSqZIJelZXNgSUFz2yV1oPHqZArajUW6zVrW+mO+I0Q4/YrV/HF974y6u8rmf91vs8IsxVXBdFUnr9/6Cj3H5gknimiKgqlJe5LvuyXh32mpre1GOgJsbo1yH2Dp15y/UoEPSolrUw6r1mMu9aAm5JWIpoWBmK1XK5pF6UhpbKVYh/0qixr9DIWzVjCl2G/k4W0aA11fX8b9x+YMsap3Hrtaj593dol77F66KscjFlvsGU0leeOx4c4NBFfskfiSx1/LsCex3UWUT3AzmzByXDf1GKOXx88za8OThoxdbNwADQFKgWMz55cIJ4p1vSorqe0pKBtWdXMxd0Rbv3J70jlShTLgur73T8Z4Ht6v8G+Fj9DcxXFJrppa6gOhZBXxaEopPNl0oUSLQE3c6k8uaJWo9x6m/3sPDrL5X3N3LJlBUenE4BmtLq547ETHDgVN+rINi4PGQMszZ0PHj0iGJXm7RJyRhiIztxmJXa+K7XfN9y7f5y795w0fq9WWtIo8qhYlJbqgJJpzW/oamQumacj5OXbN27kC/9ykLImogwep+iSIXFxdwi3UyWTL3BwIkEiV2JDV4iDE3GLXM2m8gb1XbIWJbrCXo5NC7lWFVFqcngqiQNIZEsksqkaRbeQLuJQBFV+/9iCpSnAziMzvP+iLqN5tXw2ch1/8acH2TsS4+jUXt63sZNDE3EjopEplPniH77NKMTedXzOeNdc/3eP848fuZSr17UZ+cLDp+OsamkwDMtMvmx4fdXXPd9gK643AF//5WGGZlOE/U7ev6GLFyYXGDwZp63BzUyy4i1VW4+NXieL2SJBjxOfS2U6kSPgcRD2uY0QiFm8vU4HDkUjXRAWo+pQ+IN1bfQ0+fG5nXzknb1GI1CJsgbf3z1s1IldvrqVYnnW8Mr6Oxs5Pp0ikSsSTVtj+Ys6E1FapzIMM9ATojviZyqe5cmheTKFEoMnF9g7EiVbLBPxu9ixawTAuO7ekagxwPLe/eNGuNS83edW8budbO1v5+HD01za28QVq1uYiGX407ueYfDkAo8emeF7H77EUGrzqTwHxmOAwuffs45nRqPnrTC+VTE0m+TRIzOGPLQ1uFnIFIzwXZPfRVTPYcm0br4ofiiVK+vP63SQzIpZW80BFxG/mwldpkoapAsabQ0eUoUCKyIBFEVh70jUmMsFEEvnLSHGgEelUCiR162yYlkzmLcAIa+TCf3n5gaX0c9Qbm8LuhmPZSwMQ7M3Vx3KPDixaAy8/H93HqfRKwhPE7EMTxyfJZkVz2EynjXq1mQk5oe7h1nZ7Odbvzlak/MrafCX9z7H4H+5nrueGmHHLnHsiZmksc8vD04yGc9y99Oj5AtlZlN5JmIZ/uK6NeedErMV1xuAL72vn5NR4XF1RXzGQphP5o0FVA+tQQ/pfJFErmh0p0jlyqRyYgjeQE+YnUdnWcwW8TgVVjb7eHE6ZeSlSiWNp4fnefDQNJf3NfORd/byqT+4gBMzSVQHnI7nuGZti9FRAyBbKPGDj13Kl+8/xGImx+DJuFHoLKEq4HGJHBsIoWgKuLhydQv3HxDzv8z0+1lTm5ufDZ4i7BeLvzvi4x2rmhmLplnbHiSdLzI0mySdLxn9E9uCHuLpHO9Z3wEIhuKu47PsPjFPxO8ili5Yasn2jkQNIUvni/z8d5OGEv7sfQcYmk2Rzov83KGJOJ+5fq2tzM4yvnz/C4aBIr2TgZ4wB0/FKZY1vC6Vy/saOXhqgYT+8jcbfGvbGzg8lSRbLDM8LxTV4akkX/3FC4Zi8LkgUwCXUyGVLHN4KmEcPx7LsHllE0enFxmPZfC7hXfV1+Inmi6QypUMmQIr83ZIL/bvbfbzlT+6kE/9aNC4R8CwLGV5SVEfCxRLL03okN6Z8NhKeJ0OfvbcqSW7fMj0Qb4M//nnL9SQTRwKNPqc/N2NFwEYER2AaLIim7LMxqxMdx6dIRJwcfsjJ0jniy8ZxjyXYCuuNwDxdIF8sUz/skYeeXGarf3tfPyqPhE2U2D/6DzHppM11FkZWvSoCpGA20JfH49leEdfM6oewsgVNV7UQxbFsmZQcgu6Zfrk0LweHli0hC2Oz6Qs7aF+/twEYb+Lv7xuDR/74T6gIhgSJQ1DaYEQjGiqwGPHRFNTeZ9ep8L7L+riD9cvMwRa/MvQFHBx+59czOPHZlmmj5i4/ZETHDwVZ+fRWW699gLcTofRKHX3iXkeeGEan1PhyGnx0omlC4R8TvpaG2gLenji+AyK4mBoJkksnefZsRhj0bQxqn19ZyPLQj4yhbJhrb7ww33EM8XzSijfauhfFmL3CRHuag16WNHsZ/eJefpa/IxFM2xcHuKBQ9Ns6Gqsm4eV3n46X6p0cy9r/PL5KWOfjO6AVHs4qgIf2tzDbw5Ns5Au4nJU1vbIfJqyBl6Xg2yhbPHEpFLI6aUgTQEX//DocYvSCvtcFPXOMi619trw0vlj6Ulli2Wqx4RJr21Ne4BEpoRLVTgZy1jOFfG7iGcKXL2mlfXLQ2zoDhNN5S3d7fPlSv/S9qCHaCpnkfdcocRDh0WH/dhLNBA+12CTM14HZKz5h0+NWsJzm1c28ZOPv4Oh2SS3/ONeY0HL0KBkCsoakv4OYVHK/mcSdeny+mKXRckgQoalsmacH0TDz66Ij8GTCy9L6ZUMxleC3mY/77qglaHZJE8OzXPF6hZAq7yYGlwsZMS4CNlbUT6TjctDoCj4XA6uWtPGNx88wgun4pZiTzPM30cm7CXMTLOBnpDFA7xp03J+/fxpi6FwNnrG2eQMgWgqz0d/sJeDE4sEPA62rmvn/gOVOXMhn5N1HUEKJa1uSYZc62byUj1s6Grk6FSCnIlBuGVlhCNTSRYy1peyOXfWEnDR0+wHFAZPLhhy1xnyolblvCTkPlLBBNwqqbxYbx5V4cKuEC7VYXia9Zi+Mt/2UpCkjurjzbIhceu1q/G7nUZeGETeb217sMYgaAm4jIYCEvK99WbCZhWeBXzj1y8alj1UFvOGrhBb+pr5yTMnDYUR8bu4oK2BfaOxmvMEPI6amiu5UFWHQnfEy+h8rfC8HO1djkMBWN0aYHIhTaGkWYTf3ES32jo05x66Iz7+eKDLYCZVj5aoTlDXgwz9bX/XKu7dP27E6c3Ja4CAS+W9G5bx9PC8cU5JkZbP2Ky4B3rC+N0q6bzItUlCiBnbr1zFJ64W+TWZQzvT4UNbccnC4hP8+Jlx40VrXnPVxpm5ILgakljkViFfZet4nQpr9Be016nQ6HMxk8jXlREFWGGSDet5KmtxoEe0hzQr02a/i/l0fc9koEd4PH9300UMrIgIJuXDx3j86Cxfff+FfOVfD1muuTzs4w83LOPkfMrSWFvRn0O6znNoDbhZ1dbA6FzK0okeYNvGTvYMzzOTyNUYvF6nA79bJZouWMa/QOU9ctMlXSwL+8nki0bO/EyH123FdRbwof9vj2XOlYR57AiIYslVLQHe1hlidC5FMlfk8OkEAY+DoMdlCRFu6GrkZCzNgh4jr+cNBT0q/Z0h9o5Ea7wpmViWdVlSEOsJcMCtkFrC0/K5HPzRhk7uefYUvc1+/vGjl9bQbaOpPP/pR4PsPjHP9itXsWd43mBsaYhu9peuiPDMWJSc3vWjO+IjkSsY3w9qPSaoeFSCyt8AaHXDSOai0eVhH10RHx/e3MMXfvY8yVwJv9tBWq8NUh0KEwtZQ6Gf6bETtuKCOx8fsngAABGf0+i7KdHoU1ke9nP4dMLyuXndyjUNwuN4Z18zgycXmE/mKGkYf2uwjhhxIHJAC3XkRBprZkMIlu48ryBIGnNJobxkd/krVjfzD/9m6UkJkrq+Z2iOyYUM8UyBQhm2X7mS5gZPzTMCoYwdCigOBxcvD3NwcoHepoYlvTRJw5cIuB2k8mWjnOXVGLogFLFLVdjYHeETV/WdETk5L7vDn+/4bx9Yz4omMV046FX16cE9rO1oZKAnTJNfTGDNFMo8P5ngnv2nCHicXLFaDG9M5cqkTaZjo0/F51ZZSBcJelSCXtWitPwu8fdN5Epk8kUifhd//Z60tM8rAAAgAElEQVR1FmqvlL1ErkR3xMfV+qDIkgZtDW4avJU/+VJKy+kQ9/zL5wWf6l1rWuvWiDQF3PzDvxngCzes4xNX9xFLi4S6bKWTK5Z59mTMUFormvy0Bj0spIs0eFQ6GsXE5dWtQTZ0NdIZ8tLgEX28j0wK4UxkS4zH0halFfSq3HRJF9uvXEV3U6XTwamFDHtHovz0dxNGmFC+yKYWc0bIdnQ+zYomQee3u9ufWdy4qbtmWrBkE8q/tdfpYDFT4ti0UFotATeqvkxLGgZV3ZxfWswW2TsSZSYhlJZDqfytAYs3UgaL0nKriiEnZU3kquShIZ+TgZ6QobTagkKGZfN5DQylBaKE5fK+Zr66bf1Lvtjv3T/OjieGSeVLzKUKRtTjlwdP8+iRGfpa/TXHZIuCQZzKldg9NM9ipsTBiTgRv8uyX9DjZFmjl/949WoCbofRrV6SpNZ2NBL0qksqLZeq0N8RYHQ+jWp6mQimcIwdTwyfc3JiK67Xgb7WBn7255dzzdpWEtkSqXwJr0vl7qfHGDy5QFIPh8gQgEtVjNDaTZuWC4GV4ROvyj/cPEBBD7wncqUallG6oLGhK0Sj18nBiUVi6QLf3z3CqpbaRQ+C4GEeIe5xqdz/51fSGfJa9lOr7B25KKTSHDJRaqvRFHAbNVYXtAWM88lwj+zovW1jBz/788sNanJZ05hazHFwYpF7nj3FwYlFJuNZrl3XRlPAZbF+Y+kCjV4nHY3iBZjIlhiLZjh8etHwbMumsOEFbUHcL7Oye5p89LUG7O72bwIkwUhC5oLSuiLKFss6q09sX8zkjfyTqo8bkUpOoj3osVDCyxrG2B8JuV4kusJeBnpCrOsIWj7vDHnojvi4uFsoLJeq0ugT15NGV7EslJpZdlQFphZFScjDOsFhKWztb+eata38xbUX0B3x0d/RQHfEx2Q8y96RKHMmFuUfrG0l7HOxtr3WWOwKe9m8ssmQWbcDErkipxez/O1Dx0jly5Q1Ee2YWMiKd8WpOEs53U6Hwh+u7+Ck3r/RrNzk0wx5RYnKuQRbcb0OyKr0C9oa6Ax5GZpN8aN9JwnqQlYqabhUBae+yGRcefeJWX5xYNKS11nZ0sDR6YQlZDbQE6a9QQifS1+psXSl6a4C/MW1F9DcUBFQuaAbPCq3bOnhop6IsW08luF9/7CLhUzOuEeosLYk8mVjygNuVeEz1780G0/WVMkhe9WWXbGs8cKksKZlvkBaxxd3h9iwPGTsO3hygQ8OdHPLlh5L/c1itmgJqb4wuWDQ5INelUSuSHfEx/rOEDt2DdPocxHwqMYcppaAy/Lye2ponqHZFN999PhLfjcbrx0yDzpZp+GtgpV2bh4hki8LL6g74jPWUsQnvIdGr1iZzQ213o2iwLaNHcZaTuSEYvO7FFoCgoE3eDJeE3I+PJVkPJZBURTCfid7R6IsZkSYPZ4p0hRw4XUqfH3bev7Xn242zl/SRKh688rIy77YHz48zc6js3z2voOMxzJomkZZ02jyi3OZmw0cmUrwg49eylVr2tjQ1WhRyBMLWR48NE1JE1GN1e1CCTsdkDXlxCQpSr4rZAQi6K3IgKI/9/sPnK7bLHjdsiC9zX7i2SJf/OnzfPj7exiaXdqIfTNx1hWXPsW13ucfVBRl61LbzwXcu3+c2x85zo5dI6TyYoEkciV8Ll1xIZRVS6PVwzl8OkG2UMbpqFiJc4kcW/vbLRbdVDxLc1AI6Erdq/K5HAT0F7AG/P0jx/nrG95mvOSloCdzJcZjGW6+tJvNKyvKK1MQLW/KiNDdto3LuKw3Qpdp+CRA0CsEKl/SeMZEr63G0GyS3xyaojvi48+v7sOnf5/uiM8Y76AgqP93PTVqCXMM9ISJ+N0GO1BVhHLdsWuYSMDDHw8sZ/uVK9nQVVFsHl0zSzKLR1Vo1kMiQa/TmG02lypQKmnGHKZssUzZZHZuWhEh5HPS2uCxeKXnIs5XGbnrqVF2Hp21GCBNARdu1UrIqHLICPud/OCjl/K1beuNl/npRUHSWcyKI8eiKYvxBZDKl3nghWnimSKNXqexRtIFMZJHvpwDVe74QE+IjkbRs3AhXaSj0UPI5zQMy2iqQLao8be/PcbDh8X5PXrsUHhMsVfkcYm5d+KcL06nmFjIWor+5TOZjGf54+89xY5dwxycWKxL0lAUGc0QpKevbVvP5X3NBNxLjcwUSGRLhicqryfDsg5FPJv3XNhOd8TH4dMJLuttMhoF7D4xz7//4TPnhLycVcWlT229tM7ncojew8CC/P1cw42burn12gsY6AmLaay6lLU0uA1hbfCoNSMW+pcF8ah6+yZFLJ+wz8lHf7DPYp1OxrNGsnpOLyQ8NpMy2kh5nQ7Da7hmbZtxnEsVJI+dR2f5xXMTrG1vrLn3crnEWDTNeCzDvtGYJSne5HeyPOyh0etk28YO0vnSkov1y/cfYvDkAuOxDH/726NkCmWjhuv/vli0ltEQiiyWzlus3WKpzKN66BQqStejKuw8Ms3tjxznwKk4Y1FRh+ZzOSxUZ4BcSeO0/szmEjkLs9Hs0SZzJUsOZO9ojHimyD3PnuIz9zzH0GySOx8fOieE0ozzW0bE3+qG9R1s6BJrMJ4uWBiBblWxMFnb9Rzo3zzwIv/l/hfQEOt869vaLAoulSvj1wemmj+X+bNSWbN4F2Y0eITx1N/RwGW9EUCxePPFcrkuMSNTKDE0m6Qz5LX0JhzoCZPOF19y7fziOdHqzaUqr6p41mOa7OxygFsP32iamBN2cCJBLF3gW785yoWdjbx3wzKxryn+/3LMh1JZhAzLmlD+hyYrtaAPvHBazATUzzc6nz4n8l1n3eNaAjcDkoM6jBiqd07C71aNRSIF0OlUGY9laAm4LC643+Xg1msv4Lr+dqO1TTqv4XM5jHAFCMZUW1UoZCFVyYVt6BLhgVUtAYNkcI9pMRVKldDL6FyaH+8bM7a5VQWPUzEKNg+M19bNFEpweCrFYrbInuEYtz9ynE/+87M1gjk4FuPAqQp7MlsU3yWaKvDNB4/gdak06p7beCxjWKUyZDcyn7KcL+BWCftc5EqCQdgR8rJ3JEo8I4go1/e343XWimGjVyfBFF96DIxES8BlWJ3tQQ87j87yxZ8+z20PHOHGO546Z8IhL4NzXkauWtPGiia/yGHpZn11GFkqGvlXVfQf9o3GDHlY1eLnwUMzePWXeMQvwohr2kQO6Jo1IidkRipfotHrMjx0qdx8LgdbVjUDMBYVRlt17VgqV5/uPpPIcc/+UzWhz0OTcW5/5AR3PTVSc8zgWIyrv72TB1+YBEQERqpEKRsSXtUayvPr3o9EoQx5PecW9Kpcu66dW7asoNHrJJYusGPXCE8PzRP0qEZaIuRzWtvGuRyW6zZ6nfS1+o33hQNrD1VJiJF/p66wl0denD7rMnLWFJeiKAO6tVgPYcAcn2p+E27pVUFQwX/HbQ8coVDSLOGQaX1hz1cV+DV4XDw7FiWWKnDTpuW0Bd14VIVMoWxJYC9mi7yjr7mGLeh1OvjiDW9jUSdtHJ5KGPVK2aruu9KDevTotEF0UBALMKdPUfaoSs2LRNDVK9amZGftHYnyyX/eTzSVJ5rKc+fjQ9z6499ZCCS9zX7+aEMnAIVSmR27ho0Ye0ejxxD4VS0BIn5XbYsbRWPLqiY8TgfbNi4jnS8Y9+12OLj/wGmyRY2usJe2BjftQQ/9HUFmU3k6Gj0ksiWLpbkU5lIFphZzRPwu2vRQbKEkPMWh2RTb795/Tnhe57uMfPfR44xF09z9dMVwWuqvI5dhXCdc9LUGTLkqncyhh8wavS7GYxmeHBalKPtPxljIFPCoCgE9TB/yOZlYyJIrafQ2+/ngQBe9zX4yhbIRTk6ZXL++1oCxdho8FaNxTVughrwkMdATJuRzGgSOu58e41+fm+DD39/LN351mMGxGB/6/h5G59Mc1bveSCZte9DD8ojPYqBmS+K7SRLJv37qStobfXWvvbI5wI5dw/z8uQkyJnkdj2WM5xX0qjUpgGyhzGK2aBgBi9kiY6Ya0TIiXNgV9tawQd2qKCfZNxrjy/cfqv9Q3iScTY/rDaFzKYpi+feVr3zljTjty+Kup0YNcsDgyQVuWL/MoMZPJ3L0Nvstlo6qCGty94l57t4zxrNjMWYSeXIloURKpnhJd8THM6OxmiLCbLHM/3xsqIa2+lIwC4YR01bEgi1X9aLZvLLJyBuYE8LSy9k7EuPe/eMGGSOTt1KMI34Xf3JZD1+4YR2bVog/r2RnOR0O/VwOQKtpEqoqIvzz4KFpcsUyL0wu8t+3vR2fy4EGTOuh0paAm+URP70tAaYTOY7pjMd5XdEU6nB+5aPqXxa0kFBi6QJ+j4tr1rayaUWEaKpAxO8y8nHnAM5rGfnS+/rZvLKJDV2NnK7TNDqg9ww0L+WMboBNxNIGMeJr29YbnkjA42DzSpGflMvX61TpCnvJlTRShRLXrG1l20ZhQG1eGWHbRZ3c8+wE8UyB9gaPpeOEtBdHZlPG2skU9RpKl8JEPGORNbl+uiM+rryghXf3dxjbYukCf3XfQXafmGPHrhE+9aNBMoUyHlWhV383bF7ZxDXr2phO5Dh8OmHpyQiCfDGh9wL9d9/fyy8PThrbzEbZuo5GvC7BSi5ULfn+DkGqSGRLNXVxDkWkAqSh2xZ0s0VnKcrUn98llP67L2xnTXvAODZf0owcWnPg7HYLPGNXVxRle52PhzVNe/hlLEkQIRAptGGgtspXx9krrhTXXdbo5fRill8enOTS3iay+RJOp8LG5Y2MzqfxuRQyBTEocjoh2Hz5Ypmh2ZRR5Oh1OlgE3A6FfFljPJahf1mQyXgWt1MxwgO9TT5mEuIF4HJA6SUiY7IIOFu0Ph9zq5iCJn5v8DjZ+rY2vC7V6OquKKIIOJbK8x+u7uPOJ4a5bGUT88k82UKpplgxX9L43Xic7z56nP9x00Xc8diQ0U1D1ljJzhkHJxJGUaSE1Deyzc7QbIqf/m6Cf7dlBTt2jRjFk3OpPHMjUTYsD1kao8qXzoauRpyqg9G5pJH4lldZSBeMxHquWCbkc/KBizr51m+O0uhVufXaC4il8ty9Z4xMdWuGM4C3voyI3KzslVldACvrCOvdXbao4VYVoqkC3989bIwTSeXK3PPsBP0dATHXyyHkSr7SG30qH3lHL08NzbOhq5HRuTSZfMkIpwU94pUn5+Stbg0wPJe2hMqSWaFsxIiUyt35nHD1mhbGY1lmEzluf+QEt2zpsXwvv6vS5mxmUciq26kylxKG14OHplirMwFl8fJSkBEK2QrOpYowPghyimQRKgiFJE/ldTv4+v/1dv7mgRcpljXWd4bYPzrP4akk6zsbKZrmxMQzBXbrTRTk8Vk95D48lzZGugC0mAqvf3t4hqHZ5FmbeH5WOmcoivJB069fAP5M07RBRVHCmqbJRPMmTdN26IyphzVNG6xznrPWFUDOg5pP5S1tnyTML1UJc0sluT3id+FUFGZ1j2HzyiZA4/h0ombMiOxJCKL1S1Lvgl4PLge8bVkj65Y1cs/+U8bn/R1BTi1kWMwK9lS5rDGTzNMZ8rL1be3G7B6odB+Q3TeqlZVLwWLthXxObr/5Yr6/e9joXWhGf0cDpxayNT3WOkNe1nUEefzYLCUNbtmygn89OEksXdCr9x24HApPD8/T3eSj0edmZC5ZE2rsjvj44f9zmTES5eN37zeeq4T5O2zbuIzfHp42nuGt165m/2iMJ4fmubyvme/+26U7IbwSvJ7OGW8FGfnYP+1j59HZmi4Usn2XhGyjtKZNH9houl3z4EYz6nW2kMaaNCbNkCNVqufRVR9rOSboMbpymCHbUnmdCs0NHktzXdl3VOLlhrQuBfMzknPxQNRUxbNFbtq0nH0j0bptq6AyaR2E1/nJq1bzqR8PksiWaAk4mUvVkk/M9+pR4T3rO9k7Ms/UYo4NXY3E0gW9bECQQ96I3obnVecMTdPu0zTtPoTFGDZtekTfPggGo2qhnkCebTQF3Hz8qj4+cVWfQTfvCleo7NVKCyqLwqEXVQY9KrF0gdlUnu6Ij+1XrmTj8jB7R2IWpeXXffigR/x9ParCO1c31ygtpylPVigLBtATx2Yt+4zFUobiyBXLRqhiMp7lZ8+dsuyb1JPUskC0WkgKWqVuzONUiGeKfOrHg4bSGugJW6j4h6eSNUqrf1kQt9PB/rGY0SXhkSPTRihRzvnaPTRPSYPR+QynYum6L7POsI9fPDfJbQ8c4ZsPvshsKm8JQzV6nZbE9GPHZo0C6f6OBjKFMk8OzdPXGuDJofmzyp56K8jIH1/chc/l4K/fs45br12tG2VCDgIeB/0dDWy/cqVRizSbzNcoCUm8ET87ec+FgqATzxQN4gWIF5kMaVcrLTOkzFSH2jWs8tPoVY2uHD4TIUgQm8ooCK9wYiFLk9+l52U7CPoqhk7A7aCsVV6y/cuCNHhUfC7z+ayvYAVhUP3PD13CMr2MJlMQMuNRFVr0nOwvD0wyOp+uofaHfKIjzXwyZxCQ9o7ExPQGXWbMkY6AW6U96CHgUi0KNleC+w9MGspTMpCdDojoRJjxaJrvPHTsrOSD7V6FrxHmCbwgarou7W3iT+9+hmgVKaN6BLm07pwKyDV0xWrRNuYL/3LQ0ojX73IQ8rlrhLF6BIQcY37Ps6eM87cG3DUeBwjPxKEojEXTOIFa20tABarVQ/+yIKdiGbxOR018vhr9HQ2sXx7m6aF5BnrCBm3ebN3KMMvLeZAgXly9zX4OTixarMMGj8qFeu/Gmy5ZzsNHpmlp8HBsOknE72QxUyTsq98c1eyBXd7XzIVdIdC0N6TJ6O97r8Krv72T0fk0vc1+HvvsNURTeZ21WQk/XdYbIVsoMzIvPGizh+VWFQIeJ4uZAiVNvNBfmFxkaDZV04z3lXo2bUEXuaK25LSEepESCRl5cDpEKUulJ6cIe3udCn91/Vq+8esjog8ilSLr9qCHfKlck9sFcZ4rVjfzu/EFkrkS/cuC5PR0wiuFlCPz/ctehdWQpQnm90d1GNftVFjXHqRYKhsepFluzR7vF25Yx8ev6nvF92rGeeVxvRUgCQr37h83vK9nRqNEUwWcDqGUmvwuBnrCfP0D6wnrFfKqUvnjS6XldTrYfWKeW/5xr6G0XAq4HArpQpnTi2KwpLnzw9Bc0vLHOzad5MXTopBXnl9DM4qVJYJela9tW88HLu5kRZN/SaUFQmnJFRXyObllywoS2SKL2SIOh1KhMJuOMf98eCrJPftPMR7L8OiRmUqYwXwN/RfFodDgrnhD0hA1W8bXrG01PDbzuyWpDwK8ZcsKfnFggmiqwNicELZYuiim57pVbtq0nM0rI0aRt9flEKNWEMr8yaF5Hnj+NDt2jbBneI5YOn9O1nadL3jXBS2W/5sCbnbcsonVrSLh73M62Dca4+BE3FBWiWyJDV2NRPwu8iVB4pFr5Injc2LSuM9lUVpBb8VbeDnS0kyioOeV65VVOHGp4kT1KsAkoaGo1z1piLChGO0jPLBvPHCk0gfRdGw0lbcoLbOnpAH7xyrG6tBskqHZFL3Nfra/axU3bVqOp879mlHShEdWLGu0BV24HdRVWp0hLwcnFhnRB2SuaQ/UKC2PKmj3BycWLX0ZzXLb4HFyy5YerljdclbaQdmK6zXixk3dfOGGdYbHFU3lmU/mCfmcFMtCKUXTBQZPLvDFnz0vGst6HZYi220bl9Hb7DcEwhwrL2hQ0KXR61RoaXBbasJSubJFMJK5Es9PJuht9hvMn7lUgRURnyUckciW+N7jQ9z+yAmuWtNaE2qoFg8pnF/ftp4njs8aNR5Ti5XRCRFdKXudDsOTrIak6JqNf525TNAjwjJm71Cy+/0mxfvIkRlG59N0hrzcYKpvURUxSPOJ47NkixpOhwh1rGjyG0pqYiHL3uEoe0dibO1vJ+xzkS0IFqP4Di7LaJa9IzGjtuuOx4Zqv5CNl8VfXLeW7Veu5Oh0km/8+kWiqTx9rQ3M6gzRjKmEw2yUHZ1O8K4LWixr060qxNIFvE6HUcLQHhTU8lK5ch63Hu6TrNi17Q0M9IQtvSsbPGoNaSngFgw9Wd9Yj5rjUET+dUWTqHtSEKHHaCrPLVtW4HUqS3p9haoN7317pyVsnSmUSerTHD57/Vp6m/1cpvfR3DcipiuYxUq2igIM4/RCvcNMPFOy9Pr0mRjCi1nxBaU8JjKlyjvJKRib5u5P6ULFtO3vCBjpkImFLP968DS7T8y9bNeQMwFbcb1GSC8LxOiGOx4bYseuYcN9VhEeV6PXabCDHDiMF2mupDGfynN9fwcDPWFDGKuhKsKS+914nK6w16DjbuhqrLHC2oMeRufTlo7zJ2MZg+UkqfGykW8k4OJ//fsthpVq9gabAiKOLa3b//qLQ0smgt1Olcv7mnm3rky8VW1nzP0azY1PJUOqrGlU9UelKeAk5HOysSts5DK8TnHelgY33U1+WvQw3lVrWrlidQuNOmW6f5noND8WTbNheYiQz0l/RwPNDeI7PXFsli2rxEtBPpuDE9bJ0S0BN8/oQwAPn37pYX826qMp4Obw6QR7R6LseGKYOx4f4uY7nyaXl3RzkecCuHZdm7E2ckXRP681WMkZS/Zdtljm2IzwFqYTokmzeYJCRt9P1nxNLWYZPLlgeZFLDx0qea1UvmwohoBbNcJpZpQ16Ir4+MHHLiXidxmyMpPIARrZokZnyEubqf6pwaPWNP8d6AmzbzRqyffKOs5sscxdT48xOp/mnmdPseOJYUbn0zXkEXMOPJUTLN/VOsMvV1XTmSmUjfdGdU/CiC5DLlXh8r4mxqMZixEhOosIDM9lmFjIGu+wWLqAx+ngrqdGGRyrnTN4JmErrtcB2UT0tgeO8JtDYox4h/5HLSE8rsVsEZcirJnFbJHJeJa2oGin1BnysWPXMIMnF5hJCG/DrSq0NbgNIS6ZQiATC1mjD9vIfMqYsQOCASUtT/MCT+ZKxkJUZFsCNK5Y3cL7L+riwUNTxjUu7AwaIZR8UYwydzkUusJeI8xR7aGB8L5emIzztE6rlXOwAKOKXxq477qgxUjSb+hqxOsUcfhC2dpJIJsXbXd2D80bbZ6kcneqCjt2jRhMq1yxzO4TcxycSBDxu4xO8wCPHpkhnilyMpZh8GSckM/J6Hyap0xz1AZ6QhYSidMhaPdyXtNfXvfSTYZtLI1O3UJ3qQo/HzzF3pEoklezblkjQT3R/8xozMI0dCDIRf46601+4n6ZuKDToSyZyyqWNVQ9H9TodVqMtlS+VDOIFEQ+dGt/O32tDUahPQi5vG9QEJvmU3kGeiq9NZO5koV+DrC6rYHR+TQdjR5Dnsx1nOOxDJ0hL9L+M9/bUhidT3NiVtRs1etX+O4LO9i8MlJTVDyve7+FksajR+eYjGdJ5kqGEh+eS7P9XassvRtlSY7qELI3Gc/y7+96c3sY2orrdeDe/ePsPDpLb7OYuLuiyc+yqlEKIMJ+uWKZkP5inknkWMwWeeL4rCUmrzpEXcdMMs/UYo7mgAuXquB2WGPQi9kiiWzJUrsxk8jVjOKWkFbWdCKHQ4HBk3F2n5jjridH+a2ucJ0OODiRYNOKJtHAM1diYiHLbCrPxEKWDV3Cc6kXN3er4gVhJmvkdYvX61S56ZLlxkvmiRPzRl3RYrZo6fjR2+w3OpDUaywqlTuIMGuj18mGrkY+c/1avWdkyFCwUvFLS10+A4/qYEWTn416WKUt6OZL772QLauajYm3xbJgvXn0PnoP6s/IxqvHqJ5LKejrGsRwVEnW2TsSoyvsNQyNgEdFVSr5oXSd9VZGhL9CXlfNNglFqWX2OrCGwqWyWMwWrcQEtaLwzI18R+fT/OSZce58fAhvlRcl7zNXLPPwi1Ymb74MqlK58gMvnAbEFOZ68tQScDEZzxo9Hc2RFfP9mEOAqgIvTsocd+Wc3REft7xjBROxDHtHYmQKFY/L43QYnXHqsSxVB0YO2FyvJUW2VK7cTyxdeFNZuDar8HXAqOVK5tmxS9Rybdu4jN8cmjJi6OaprCCSo/XGPEg4FJErqn5xV4+3r0Y1O9CjKjUNaashww9mRlZ1olYyo8z3XT362++SxZqiSLPayL1idTOpXNEYewIYRcBSWYCwkM2MSqgUilajrzVgsK42r4zwvQ9v4k/vesboO7ehKwiKgxMzizUTpMFa/ClrXm7ZsoKHX5xmMSs6iUvm1OV9zfzvP9uy5HNcCr/vrEKAb/z6xbp1jmG/k56mAAdPxY21bV7j1WvMDFnIDtbaRhCEJqcKmep2Eq8CZnmonip8eV8zTw7N09vsx6/3GJVo8KjkiuWa+65XI9bkd4pOH/ralrVRUJFdl0N8v+p8XMjrJOBxvuR7pDvi44b1y7j5sm6+/svD7Dw6W/cd0hnykswJwtVSLESJte0NnIplSOVLxjO64cJ2nhqeZ0WTn+/8ycWvuiDZZhWeBRi1XFf3Gcyi58bjZIua0fQzrY/Olijq7S4GesK8vVPUr5j/CGVNeBudIS8tgYpFGfa7LQnZakjRcjmE0FcrLXkH5mtp+udlTRzTHvRYlJbLZPm2mFpHScE0Bk4WNKP3mVlpyRY1u0/MM7GQsdTdVOLwmqFs5CRjM1K50hKDLjXDi9s7EuMz9zxH1tSC6uBEgoOn4obSavColjCJVFqdIS9fel8/X7hhHUenF41QCYgZSR2NXgql8llvKnq+4hNXVWQDxEs54FFYSBdZzBToaw0YSsvcXqi0BMvBpWAorZDPWbNfoay9ZDcKr1Mx5r91hb1s6GqktarkwXxKs9Jq8jvpCntp9Ipwc9TEEhQKoERznfKJencTTRcrSouK0vI6KxMQFEUoLdXE4HUoENdTDv0dAePd0trgtniT47EM2UKJ//rzF9h5dGZ+2AYAACAASURBVJbOkNdQWnI/VRH1mzLXJicmL4VoMo9Lb5Ysn9FDL4oxLwcnFvny/YfetHChrbheJ6TX9dVtF/KFG9bxnZsv4pq1rfzgo5dy67Wr6W32Wwr+ZnR66frOEBf36AWZ+raWBpfROy2eLRg900Akmas7aVSbKR6nQqFs7dfXGnDTFfbydr2j/PqqpLPcs1DScFcVQ5qN1ou6I0YnagkzZd1syfn1Akszm1H2ZXQo4FUV2oJubrqki0mdSfn8KaG8ZIjGpSr06TPI5NC8vhaf8byGZtOWEfA7j85yfDpp3I+4D4eR30vmSkwnckY/SRDhxK1va+cn+06SzpdY2yGezUBPyEiwJ7L5c6Kp6PmKpoCbf/g3FxvKK1fSWNseoq81wN/ddBE7btlkdJAXrcCsL0aAtoaKASfXZHfEZ6yVsM+a0ymVKwQLGVlzKOh5Gg2fS2XzyiaaAyIf2t0s1lXI56S3yTo7z4xousg9z04YL3ozCeqK1S30tQaMPF2T32kQPwJulaBXpaqBvbFOzTWNWb0VWWfIaxnRoiGUWl+L32D2ed2VBr/JbN44j1zzTxyf5Uk9l2tu4i33q9bvZlZzPcyl8ixkCpb3TrFc+R67T8y9aT0+bcX1OiHrub7+y8PcuKmbgRUR/uljlzGwIsKnr1vLP3700rqMwX8ZHK/pVDGXLBjU1lSuRCq3tOUo60hAsAW9Lge5Yu2I89lUnpUtYm7PFaubuai7QkKoHsQ3HsvgVhXD06tm+g3NVjpfBD0q+bJQMNUC4NAb6iZzJbrCXgurqqxBtqQxk8jzm8PThqDLyKiUL6dDMVrzhHxOMoUys6aaEik8EX9ldIx8qcn7SesUY+lpXdwd4js3X2QoX4eicPeeMXbsGuH2R8Qk5N5mP+s7Q8Z9SM9wVUtF4dl4dWgKuPnTK1YS8omc5Ldv3Mgjn7magRUR+lob+MDFXca+ZkacZI2ubNUjE/rfpCvstdDLsyYLqzIB3Ml7N3TytzdeZOQq4xkxJXvvSJS9I1EOTggyw+RCzggLl15h1Er2/JRRhceOzjA0mzJeqPmSxndu2qjnhUsksiWaAkLhmIlXsnlw0KuKekO9K4j8em1Bl3G9poCb47OCNXzTJcstBcrmSMfKZj9XrG7hM9etEV0xPKpezF2R9+r6zpeCNCYq9aFWtJsG5Zobb59J2IrrdeLGTd1GjqRecrKvtcEYeAeVF24qXyaRLVHl5BgFmAG34yUHwDX5XfR3CIFO5otkC2XcqkKD3kR088omtm1cRtjnMsIXq1ob+O3hCtEg4KkNPeZLmkHyMKfZXpiMG9bbhuUhg8EovTuPKiy9jkYPPTrBotHrpDngMvJ1bocoOhXXdtQwvoIeUUiqgKFsQt5Khf5itki7zsiUubmQz2VhUdV7ZrJpaCxd4MEXpiqhEZ8I/bQG3GzoCvHoi6JO7O49J3HoyXT5Ho0Eakk3Nl45vvarw8QzRVL5Uk0e5CPv7LXkOqXyKZTLbL9yFZ+8qs+okfLoozXkcNausJer17YaRpas+5tN5rjtgSOcmE0ZtPrOkJd66b6pxayxxi7sDBqe/lKsRZeqsLpNhDXl+pfEEykyyVyJ//zzF4zzdkd8/PcPvJ0VTX42r2wySEiy8Hpls3gmUn6n9E45sVSBzpDXYCR7naKeTYbo/C4VtwNLndrzkwmen1jg6796kelEjlSuxNBc2ghNelSFrevaDHavGb5qaxWMicjVkGzcrf3tBivX535zusbb5Iw3AOb2T/VaBA2OxfjYD/cZizjgVimUyqxuDdDodbFnNIbHqbA84mcuKcJZsh1LNVlCtpuBpRuQ9jb7+bubLuJD399DplCmO+LjjweWc/9zE0YtlkOBnoiP0aioXTInkKuboIKVnFGdsAZRTPwfrl7NVWvauPXHv7PURIn7FtTjeo2GXw4e1UFOpxT3L2vk8OnFlzlCNG4VPfA09o7EjBZBXWEvEwtZGr3Oum2rGr1OypRJZst4XQ6yBfH/HR+6hKvXtdW/2BKwyRkVDI7F+Ox9B/j2BzcysCJSs/3D39/D7hPzNaSigZ4w0VS+poawmrwhPSbz+vI6HTQF3Ma6bQu6TcxUOeJDNLCVJKSgV6VQ1Iz+nLLQ2PwEt21cRnvIx44nhgm4HfhcKql8qW67sgaPSjJXYvuVK0FRLESVgEvF71ZZFvGhKljIS2a596gKTtVBKl9ibbvoih9P58kUtRpCxcsRLMy4rDfC8ZlkTRuqarnsCnv56/es49P3HDA+F4aGxmwiz3gsQ2+zn+v7O/jE1X2vqk3aa5URW3G9SZDsKjF7q0wqXybodZLI1rrWTgf43FaltKGrEZ/byd6RaM3+IBb3mvYGnp9McFlvBEVRjH3XtAXIFMqMxzK4dMVX76l1hb289+2dgMae4XlLLzN5D2NRMSdpKQGRzCXJ2msJuCiUl+4N1xHyksoVSGRLNHgUknp4NOhRjep+EB5Yb4ufFybjpHIvL5hSqXc0eomlci/JsPSootOG+WVR/dKS/fZeDWzF9coxNJvkiz99nsGxqMXTr2blBlwqqUKphp0r11m5XCbxCtbHy0Gy/Oox8WRf0S/ff8iYyfdSuGZtK196Xz8f/cG+GoPODGkwNnqdfOGGddz+yHFmFnO8mm8jFWX1z0thQ1eQo9NJckUNtwqaplCoMjBBdKEZi4o5gBd2hnCqikGqkgzha9a28k8fu+xV3K3NKjwnICcDS2ZNNJXnOw8d5Ru/fpH9oyLMtpgtGi98s9IyhwyLZRFCMLMR55J5Enq7lupKfIBtF3Xxjr4WusJe9o3GGJuvxL+PzaQMgSksobQATi9k+eFTI+zYNcJF3eGa8IBTrYT3ZBcLsLKUpJDLxPJcSvSGW6pWtK2hMgm5pUGEdJr8Lm5Yv4yBnrCRs8sWS+wdidUoreoOIjK8I+vcphazNUrLo2Iw2BTgs+9eJxhqpt2kZSk/kvUsNl4fqmXEjOMzCaqdFqm05JpPFUpsXhnhigta6Ax5jXyRXGc+18uHqoJe1Qizg2AqVkPq+mqlFfI52X1inl88N2GZ0A21xfkdjR62bVzG8ekkn66KQnhUxQhxyzUuFcVitsivnj/N9Rd2WJSWzPE1+Z046tyzqlTqFR36z7LLBQhjUObkAm4HjV4nBycS5HQWdL5UaU1VHQhJZkWXjJIGByfiHJuuDKhUHaIk5YK24O8Pq1CfJVTv82/q/9cbtndO4q6nRrntgSMGs+aup0a5/ZET/P/svWmYXFd1LvyeoerUPHb1PHdLLbfkltyWJdmWMbJssINBhCAB+bgyN+E6Tp5LFJIvBOeDXJM4ECAhAfIloMsNsZMw2OBgYsCAZ0m2JEstS5bamnqeh5rHU3VOnftjn73rnKpqSbYlS7Z6PU8/Gqr61Kmqvfbaa613ve/uF4YxME7KAEbKI7/Dwhb9+65tQJPPhoDDwurVRjTidDzH1ExdkmiCx+64vgnT8Sx27xlhyKDZhIwWv91EP3M+K6IUcI5PmymQjIseAMKZAix6X+uLv7kGLX57BUgDIL0sAAg6rXBJAixlHreYKqC3gWwi47qEeCRTwCOHJxFJ57F1VS18dgviWQUbO/zY2BEokeSKHNa1+CArGrtuqwE1WNRQlZxUVoGZOCmFagD+/+eGWN+lHNxCIfyHx2KXjWz3neQjFMy07R/34kP/tA9/8ZNX8cWfv4ZP/MtBRNKFJfu6xgBSUDU8cmgS0/EcZhOyCTFnKW8aL2mlxRr0mJGE5ffglHhc10J5ABU4JQHPnpxnPq2BUKT92+9uMh32VFXDfx2bwWQsW1G9kFUNqxs92Nxdgw9d1wygxGIBkBGS/xwwg7doMIlklKqciBR9a3yuz2FBW8CBWpcVSVll1GtFDazX2x504NaVBPW5FJdvOFMwAWdSssr6ipl8EafnUti9Z/gtG0K+rIFL1xK6YYmH7+U4bghA5fTiFWvluJvK1dUWdGBzdxAAAQtoIAGszkN6L05JRL5oyGJ0p6QBj6KQ6JWLGnSySzIEuGN9M/pbfYwwdj5ZcgZpibRH5Myy4AAwrvcUqCPctqoWa5t96GvyMFReQSULeCScMW0eQIl2pqeO8AbOp/JQVI2d6Oizp+M5nNZh7EWQ0sxtPSFIItH/evzoDGL6vM/aZj8OjERwd18DAk4LcoqGF84s4t5bOtgJdFhHWlHarK4aJ+NopCg1q8BBLZZKKHJBwfbrm9EVcuIfP9aPXVu7sXNTG27uCuLONUSafTKWxbeeO1v187uU9k7zke3rW9AedGAimsXAeAwP7x/H7heG2SHJCA03WlEv2+3c1GbSzTIOIIs8gXRTH6FmXJqSyCGZU3Fm3jCXp5VmAo1oXWppuYhrm33sOmlZNQUikSO/978ef5W9D69dxEI6vyTprtcu4uBoFAW1iJxCQFrlB7/kEmW+eo/NxCEIEPBHo9eGbKEIh4VjFZz5RA5jkQwiGXLoyuqHYdqPswrEz0Z0f6dn5fLPn0NJ70zkCMWc8b1FMwUEnJa3jCn+smdc57DtmqZ1nUe+/Iqye27qwK6tKwCADazuuL4ZtS4rnBYyV/Jnd16D3gYPG9gFALtFYDLcqqFExXOlfzf6KFLPUgEoyBaK4Dki9rbv7CIWkjImotmKxbdUn0fRyELc2OFn0H3KA5hlZKUydu8ZQTqv4v67VsFIh/aTAQL6MGZTXrsFGzsCGBiPIa1DZHNKES5JYJuDzcKj3iOZGsE7b2xHOq+ass16j4ShhTT2nJ6D32HBtU1e3H1tI/wOC0bDGfyffaPsvdEzIaXNGpxNsc9L1oe/86pmYtPIFDT8zZMnMbSQxotDYXz6jh406TInswYdtKOTVxzZ7tvORwJOK96zuv68zzMuVToXmFOKsFkFtAcd7BBmHECmCYGxNyzyHNbpZV6nhZBBAyXErCRymE3IrNKgFMlICb1+rVtCvUfCjw9PVgQhOk6iaGRO8dVpUhGxiTzW6wAUSeBL4yUCAYj01rtZqf3ASASPHJrEUqQ41bhB37WyBhaBZ4dZm8hhS08t6/llChq7Hi3tG69P9wWbWGKPWdQPuLRsWr5VaABj8CDvt6QM7bDwcNsERNIF/O6/vvyWDOtftsDFcVz/eRyun+O425cqk1yJFnBa4bAK+PrTZ/HgE4P4+tNnsZCSMZ/KI11QYbeKeP70PHbvGUFOKTIewul4Di+cWcDm7iCm4zn0t/oIuk1fGPUeCWfmiVMYhwSN9Wv63KlYDhO60OO5GJ9oiPHpTBVTsRwOjERRNHincXEUVBUtfjuGFtL4wn8NIq+WynDzrMRBT74cpuM5HJ8qDRVbaQ2C0xi6MFcoVoUnT5QRnOb1gPPaXBrRTAGf+fExPLx/DNEMKS0ZNy+3AeJvETj0NXkYtP6u1fXY2BFgyrJGo8wgjx6ewNBCCrf31mFzdxBZw5BpveeNi0q+EXsn+ghA2DToILjbVsmeXm4Zw5zW/qEFPHJ4ih1UHBYeIiph3H3NXrT47VCKGiuxpwsqDuuAArrptwXMfVzaG6LXn0/KmE3ISOcrs5/yjIjeQU4pYu8ZAtqo9UhYTBdgt/AoqCTAzSRyjCMQAFbWueC2CRWD1IBZU8slkaB9dj6FfUNhJjmSUzQMLaSwc1Mb+lt96K13sRJ9uZxKyGXFb/U3ob/VhyafHRae/B8NkC69muKw8GxvoLZUGTdTKLLDwmg4gwefGFzimRfPLmfGVTlEYDBN076iO21QL5dUNY7jTD8PPPDAxb7P12VUp4vSCH3qthWsdHF8OoY9Z0oopIKqMbmF0XAGjT47/A4LcnnFQMMiYjYhI5lTTQunr9mLvFKiQ3JKAhwWjp1Oqw3M9jV52CZBCTDUsshhpLGxWUuvODAeZ1kfvXaPLrlOS3EdNQTwQO8pnSfUVU0+G/KKBknkkcoV4XdYWKCtM/T8JJHDiel4BQdbJE0+Cxr7jDINxrt3WDjTBlZQNaTzhDFjS08In/2NXmzqDGImkUP5QXY2kWMceA8+MYinBuew96wZWXloLIa32N6RPhJwWvEv//0GtAcdSObUCl5Op5VnG2m9RzKxrY/qfVBaLswUilBQGlyma89jE7FFH194d08I9V4brHwpA2n02bFjfTO7XtBpgcgvracVcFQn9HVaeVZpkAxrr1kPiDd2BdEedJig8vTARS2lk2bHstVLgxaBQ6PXhs4QYZU/MRWHSxKQyJLD5IZ2P/YNhdHkt2N9ewCDsymk5WLVQJOSCfvHQlLG0GIGhSKwkMrjzAI5LDJWkEIRMf2zomXCpc7BdE/hQPaYz93du8QzL55dsmmxJRrGw5qmPXW+kyTHcR8GAE3TfgQgDKBzqedeaVBfo05X160ufPv5IXYaSctFDIzHyEbPaZhPloKE32HBL47PIJlT2VyFJHIIOqxsZkoDybK2r2/BYwOTJjZ4kecQ16HkN3cFsbrRwwhAG702tAQc0DSNbRItQSdOz6UJeEOT2enR6Lg2iwhFLSCvksX5yngE29Y24jeva8Jf/WwQf3xHD07NJRFOkTLibDKHHeubIRcUPHliDrKioSXgYLB8urlIIo/+Vh+6Qy4TnLinzo19Q2GIPIe2oKNCutzvsDKxSSrvIvIlbaJMQUOmkIdNJBxvbpuAoYU0Nnb40dfsw+hiGo/pDe98kfQFwikZmUIRabmI913fiMPjUdxzYzteHA5XzMkFnUuzkb8Ru1p9BCCD+dvWNTHGEqPRLMMm8njXihAADdMxGUk5zzbW8vm/og5MyBaK8NhEZPIKXtGzq+lYFtm8QnrHOsx9YDyGY5Nxdp1kToFS1EhvViPZGSXCdVlFGMjdIXKlXhC9V0nkWbkfAEYXiRacTRSq6tgZ775e989oRsZMPIeQ04rhcAkYVVA11LgkhhSWVY2VvSeiWfS3+uCWBHzjmdNoMlRhqn3rsn6Pxj6hwyKgp96F4cV01bEVWiY0zrPZRY71y+hnowFVB8wvhV2ywKVp2u5zPNzJcVyn4e/9mqYNcBzn0zQtBtJspg3nLgDfvlT3ealt+/oWZPIq/mP/KAs086m8zjdG/i3ygMhxiBo2STo/QmmPqBU1DYdGI1hR62KNYJck4N0rQ3j8KJFL4DjgIxtaAY7DL16dwUQ0i+l4Djs3tWE+KWM0nIHfYQWQxtBCdXFIAIgYAiMNeD97dQaHxiKYiuXw+ceP4/H/uRmji2n8y75RJLIqfnliFvGsgp03tsFmEfDKeJQNftLZqNkEKb8YNw46G3P3N/YgWyiagpbDwiHgtGEyZp6BoZsYnVdxSQJcksiGp2nQmYhkcWDkDP71xZGS0CcHrG70MAVkADirS6Z//vHjVedtNnWGlvys3ohd7T5yz03tiKZl/MeB8apl7ZxSxCOHJysfqGJWPSsZWszAYRUY4g+AKWvWNOjMKxobmah121gvU1GLrExID0RpWTWhga0iD6VQhFMSYNd19srFG1UNODYZNwUIoDToX+eWEHRZGVK1p86Nh/eTA57PTjIXcBymoxkspgs4O5dERinCwnNQNA2aVgrCz51eYAfPcn9u8tnQ7CeHR5HnsKkjgL1DYUzHSkQEPfUuHJmIY0O7H0pRg6IWMZeQTeVMOqsFkCw4YkBAOq0WpPNk/uyrH157IV/Xm7bLUirUNO1H+kkxAMBneOhp/fEBADv0U+WQ/u+3pQWcVnz6jpUVVChGFmmlCJZJ1LqJuFw1CROvnWzK+4bCeHmMLHKR57B1VS1zvLaAg82ZnJiKmzbgeDYPtaihK+TEq5NxUymhHMhhE8xorK6QQ79XjfXZJqJZfOK7B/Hb//slKEXCEF/QT4JPDc7hZ8emcXA0ysAZtPTIgQQb4xT+Nz7WD7/Divf01lWUONqDTkzGsuhr8lSlnqGzKylZreBga/HbWenROE+majCJSQLAlP5ZGZFhtAwqiTxDGL4VdjX4SMBpxV9+8Fo8et9NFaoArrIpDmkJmDtdo3lVY4c8j34tIzkvUEKVJvXSHEAyta6QEzs3taHFb18SwFTrllhJjG7gaVnFYrpwTjZ6Sk1Fl6XxmVOxLGYTMgbGY3jhDNHwEjiy/o5NJXBsMs4Ou4qeNReKGrw2ATxXmjWrcVmZyrjxVmrdEjSN9PH6W31QihpeHiX7hs1CrrGi1okjE3E4LLyuzkCIh41BCwBUgxjmbEI2KUrPpwjX47/qHK1vhV1w4OI47n9wHPf/6n/3chz3oTf74pqm7dZRUQP6v68ve+xHmqZ95c2+zpVgn3lvD3Myv8NSoYpK+2Cyoi5J2eK0igyQ0RF0oD3ogFIkMucHRqLY3F2DjZ0BtAUciKYLjFuQ2tMn5zERzWJoIY1MoWhyonLfy6nEqb12Ef2tPtzcVco2apwWBng4NklkXGwij7UtPobWm47nWIBLy6Qn5bSQjUQDwJetvGMTMWz522fx+NGZihIHrbWPhjNMHRYgU//lgcx44tzQ7jdx4NH3WZqB00xs93NJmcGiOZBA1xFywWsXIStFfPnJk3ir7Wrwkf42Pz5xUzuA0neTMu+baAuSzbc9aP6+q/Wk4nqmxPMl5F1fkwddOr+g8VdqXVbdTzS0Bc19Ybo2Gr02HJtKsKqDqpUCaflcIjU6DzgdzxGFCEP7SuDIWotnFQa4+JM7ViLgtEDVSodIem2eI4GZZm+xrIqiVhq2H1rIoKBqEPV/0/vO6+rEjxyewshiqcwIAPEcucapOfL/mUIRAacFH7quif0+vQ+vXUSZJBg4mEdo4lkF33ymsux7qez1ZFxDmqb9LQBomnbF4YKvdHvsyBSrw0czBdZ/CjmtaPHb0aJLFcSzCupcEuq9tgqZ7el4Dje0B2ATeXTUuPCe3lIG0OK3o9FnwyOHJjEWyWD/yCJsIlcVsWXU9fLaRNPmbTS7hce2dU0YGI/B77QyxJ4oCGgvA3/4HBb01LnQ3+pDf6uXKRQDgMcuIJ5VTKe4hKERPTAew6cfeYWV8eo9EkNFCRywSmc5MJLjtgcd+OM7VuFD/c0VQ8PUrKKAlw3ClDaRyJxQH4xlVSRyiun9U5JTWs7JFozS61der+idYvfc1IH771qFL/7mGtjEEoScwtJPz6UxMB5jYApq9ipLN6hnybQkDZBy4YGRKBuapV5BiWcf3j+OvWfD7HFJ5HGTDp3Pl1U/PDYRPXWkjyNV8a86t2SiWtrQETBVL8oPiaPhDP72V6cRSRdMaGAji4VN5FmFQjRkmQDYaEpO0eB3WPDBdU3YtXUF/mrbavgdFnTVOBDNFGAXl0YGChxpDXzll6eYn6ka2VeavKXDAn1tDaT3ZhE4BB0WNPls+NRtK5a4+sW3C+Yq5DjuTwHQYcdOADdomnb/Jby3C7mntwUPG0Dmuh58YhCfum0Fnj+9gD1nyOQ9HRQ2Wr1HwrtWhnB2PoXB6QQrG0oCB5tVYBu81y5CEgU2ZExBCfS59HTV4rdDVoqYT8po8tnwzY/143ceOmgiyi0nIKWDne1BB7ata8KtK0O457sHkMwRmZAmv50BTWS1yO6JMuUHnBZE0mRw+JObO/C5nxyv2segpMFdNXZMxmTIShEbOwImTkZKoFpuVAXZZRWQKoMr0x5hvdeG2XgOTolHWi6ir8mN49NJ00m9ziWB48lGZ+TAM75uwGnBo/fd9Loaz8tchW/cqL94bBY8fnQaFp6rgHZv7AigoBYZZx613noXTs2noFYvXCDgtOBr29fhO3tHKrgGa11WFIoaopkCky4xWpPPhjqPhO5aN144vWia86OgjXIez40dfhwYMSt7AyV1ceO1z6eJRa2/1Yczc0nW22ry2ZDIFVgJ1G0TYBMELKTzFSAjSeDg1VGSpPcMfPbOVfjui6OYi+dM2VWty2qaG632PVDbtXUFPn3Hygu6f2pvCckux3H/A0A/DNnX5bS3q1MChLPtoRdHMRPLEjShrFYQW1IrX+AWgYOialXP/x6biGsa3HBaRTxzagEhpxXf3rkev/vQywyteP9dq3BDe8DEWN/X7IXAATMJmdXl6ca9sSOAuUQOo+GMiTm6PeiAwypgcCaJWreEJp8NK+rc2HN6ETOJHJE4CTgwFs5gLilDEnmsbnSbGufljtHX5MFIOA1J4LGYJptHs89mkkgHSDD+q21r8J29I4ikcuxxGqDo/RkRXTTQVbNGrw0Cz+HGzgBkpYjnTy9iTaMHe4fCqHNL+N69m94yWfKLaW9nHwGAv/jJcTy8f4z9u9ZtRbPfDoCDReBxYCQCSeThlkRk8gVkCpop4DgsPCvx9Ta44XeQ0uCWnhBCLqkq+KPFb0fILWFsMY1wpgABgApS/vPYLOxgU85kv5QR+RDNFLysPEx9IpvIg+c008ya20Ze79omL14aDjNfXVnrxEIqz/yZ54CQS6roS1EzEllTkmLAfDDz2S2IZQtVfx+o3IOq2b23dOLP33fNeZ5ltjfqIxeMKtSDVheAwwAe5TjuNk3Tnnm9L7hsxAj1v2ZyHBq0rALQ6HVgNJJhp7eNHQGMhzOYSeRMcg59TR5s6qzBobEIBsZjkAsKDoxE0a7X6xfSeTz4s0FEMwVIIoc7V9djaD6F7x8cx3tX1+ORQ+T1j+msEDd3BVng6gq5MDAeY9kPnXOifzcGhfmkjPmkbJJmkJUiDo5GWSlOVooYGI/DwpeYC2pcEgtcjV4bTs+lkFOKSEJFwGnBLd0hPH50GoA5yH2ovwnPnJxnJ+a+Jg+imQImolls7PBjU2cNouk8RsNj7HG7VYDAc4xiippN5NhmNHF4isGqXx4jG41V5HUU5rK91Ta8aP6u0rJiOvhwIOtKVvJ630lDIqfAYeGQKWhwWkVkCnnc3BXEn7ynB19+8iSafXY8e2qBsdfQw1h70AG1qGEimjVVQWySgLSsIqX/AKTcTlGHdrEk5FjOJi9whB2D+gANduVtbOPv+B0iE75M+WxWeAAAIABJREFU5lRYdHJrikicTchI5BSmZlDUSM/MmFk5rDzaAw4kZRUT0Sw2dwex92yYBS2BJ4KVtS4L5lMFxLKFimBqVEtY0+TFTCyLWLZQom3TASL0efYqLB+Xyl5vj+uzAA4v97gulpGDBqWOqXVb4bYJyKvATJw4Di05DM7E4XeQ59GmqFsSsK7Fj6OTUXTXumATOcgq6U2NhjMMxHBEL6XIioZDY1E8cngSo+EMfnVijnGeNfls6G/1oslvZw3tqWiWkfTWeyQGhPDYREQzhaoIP2r1Xhs+894e+B0W3NQVxIZ2P7atbYTPIZoYwEWBY1Lk0/EcckoRksgRyG26gCePz7Dn1uhZHQ1Sjx0pBf2xSMaw2XC4dWWIIbUAwq5/YCSK0UVzxtXityOnaGxQmvK9kc+L/DkRzb5l5KHLZrYvbFtjGiovBy5pIJuYSxJMkHSauSyk82gLONAVcmHXD47gwEgEk7EsJIEj8jt60Gry2TAazmDLqlpsaPeb+p5pWUV70IGdm1pZzy1iKLOLgoBtaxv0tVRkoAbOsPHTDPC2VbUVnKGiAYQBkN5VPKswn6M9XnpcbQ860BVymkrvVoGDx1ZCUapqEaIowKeDq+j6phawk+fGDVkW/WhdkoD+Vh9WN3oAkMzv2FQc+WKRBS2R5xiqsafejZu7gvjAupKS9aW219vjOgwCzR0GcIemaV+9hPd2Iff0ti6DDC2kcO/Dh1j5qrwWXk0LqL/Vh4Ki4tXpJPqaPBWs0wARumuvceGxgckl9X/o6W3npjbsG1pcsoRmFNgz1sk3d9egt8GN3XtGAJBmtlUnMAV00Ifdwl7fIgDFInFkY7miv9VX0aOggalQ1Fj2dy4rF9sESmVCWn6lrxNyloaYAZLlKcUi6+/1NXkgCjymY1mkZAUpWYXPbsGP/+D19beA5VLhxbChhRQ+/YMBnJxJIV/UTNm6WxKRlMkG3+izmTIxasa+bzWja4eu752b2jC8mMLes2FWSrOJPD6wthGf/Y1r8De/eI1VKUzXMZD9UrutJ4ThxTRW1bux7+wikrKKWrdkIr6mZhzurXwPZB+ocVmRyOTRFXLirz+0Fp/6/gCmYjlIIo/eBjeOTMTR5LNhMXk+/TlziZNen5ZIB8Zj2LmpDSdnE0jJKiaiaSRzKnrqXDg1l6oQ8aR2/12rGPnChdol1+PSg9R7AHwUwO2XO2i9E+ypwTkMLaRZWa/eY4NbEhiz+jUNlXDv49NxvDqdxMaOQIVyKbWjk3FE00SZdKkvmC67k7MJDC2kTdmU0WjYTOZU9DV52fM0TcOdaxpwXYsX9V4bfHaiq1Wrz5TEc4opaBZUskHwHOAwMPSuafRi29pGdp/1HomV/HKF0qm2v9VrommqMczB2fQHNnb4WQZJWDU4hsha0+jBrq0r8O2d6xlPnsCRLM8ISrFZBHjtFswmZKRkFV67iFi2gKcGS4PKy/bW2YNPDOLYVBL5Ip1jIoeLzd1BfPNj16Er5NRnoeKs9GeUsskppAS488Y202iEw8IRnksd6UsPXN87MIa9Z8kYSVvAAbuFZ4PQ//Dr0xhdTKO3wV1BfkuDVm+9C806NZqsFPHYH9yMnnoPA1HQoOW08ibJIQ2oqrFF3gMZJ0lkCsgXCWfn9m+/xN5v0GnF79zcQQLaB69FwFldyoheXlY1CBwYMrI1aIdLEpDNK2yW8ZFD4zg4GsXwQgrJnAq/wwKvnqVd1+Jj+wT9FPpbvdi+vqX6G7gEtqyAfBktks7jW88N4dBYBLmCipMzSRYo6Cno3ls68cpEFAcNsO6ukBNOq4BjUwk4LDw0aMjqpRF6cjzXCc6IsLNbLTgwEsG97+rEmbkknj1Fyms9dS6MLKSQL4Kdclv8dmxZVYtn9XkwiogsB0FQCzmtaAk6MB5OYzFdqJoZ3XtLJ340MMFYOnwOEf+w4zo88F8nsKE9AJtFwKm5BNY2+zEeSZuYLqgFHRZsvaYOJ2cTWEzlUe+1VWRxALBrazcADjOxLH56dJqVdeg9uSSBaCNxwONHphDPEWDKbatqsX19y+uSJAeWM643a5F0Ht96fgjfPzhWxvhOkKg3dwXxlx9cg5++Ms1QujRLqnVLiGVk+OykL7q5O4hMXsXAeMxUyRB5ohxOiXiBygyePr/ZZ69gbyk3qmpOf6evyY2TsynkVZItFrXStVv8dqxudOOp1+ahFIHNXUG8PBY1lTybfDbwHHdO5WQADMVLUb0AKR/6HBbTwcxoFoFDvcdWcW2akUkCB6ckIJJRcOfqOkI4HM9hc3cNnjk5i8V06WC5uTuIf//kpnPeYzW7ZKhCjuO2AvgyCATeC2AAwJc0TXvsdd/lRba3q1NG0nk8emgC29e34E8eeYUttGq2uTuI3kYvdr8wzKC4axp9+PGRCZMacL3Hhvf01uHnr06zaftqwcsIv6ew8y09IfzdjnUAgE99bwD7hsIVJZZzoY7uXF2H504tEPi5Lj8OwAQtJ6ddDQCHFr+dAT5q3RKOTSVIn48jmd297+rEr07MYjScMQVFWu4rl20HYEI7SgKHnno3FLWIeE7B+jY/ZvT+2bElpEm8dhFdIScrN917SyfOzCfxubt73zD32nLgenP2978+ja8/fYaVpmpcFkRSBRO6jZanPv6d/dh7NgyPTYRLEjEdz8FjJ0S05WVuwLxeqplVKEl+bFvbwOb9KK3ahRgF+ZzLJIGHrOP2jeAnoIT629xdg3Ayi9fmKsv5TiuZ75L1zPJrO9bh+dPzeGxgivl5i98OuaBWyCFRK0f2lo/GAETupFDl46p1WbGizo2//OCaN+QnlwRVyHHcb4GI2G3XNG1E/z8viIDdJzVN+87rvtNlYyqwAHDPje04MhHFtY1evDgUZqcxp8TDZ7di79kwJiJZ3HtLJz6yoQUPPjFoggdTswgchhfTJuJdDaRk1hVyguM4DIzHcGNnENHjM0jJJP3f2BFAWlZwbCKGf37+LLL5kqMbIbC1HgmJLNk06twSRIGD127B4AzJ0ugpkQ48N/lsuLkriEcOTwEg1Dc02ETSeRbc6J8NPhvGFjMIOa3YP7TIgtVoOMNOwEcnYuhr8mBdi9/0GZATeIkEVFY1U+9vJj5Tdcygv9WH9W0BHJ0kyMmB8TghKG7ywm7h8Xc71r3uLGvZLo5F0nnsHyYlO9pPafQ6sJgiBwu7CARcBEzzkW+/iGy+yDZ6CoSgQ+7lQau8d1zvkVg/k5qRxun5MwuIZRRWJhc4MrNlODdCEnl4JJH1TwWeQ7ZQZEHXJnLwOaxQVc3UY6VBiwNhjW/y2aDqfJ6aRg6Xe88umoAVAPEzRdNMYJXRcAYvj0bw6Tt6EM0U8PBLY3BaeVNGJfBkyD6eVdi90c/CLQlw2yy4od1fEaALesnda7eYYPd3rmnAX35wDd5qOx8cPqAjCZnpiMKv6mCNZXsDdntvHfYPh3F7bx0efGIQsYyC49MJU3kiLReRlnMQeQ5jkQzOzCfxw4MTePbUAvpbfZhPyKxsIfIcPvPeHvz1z19jv99V48DQYgaJnAKryOPP7rwGf/erU9g3tMgc1Dgb8up/HK44HfocFkQyBYg8GIRc5Dm2cGld31jaGImQe6rz2DAWKTlMNF1a7AJPgoaiFiEKPBS1yALNQjoPzoCyMpZWVI0wIIgCb4LuSiIPJV+isKLBOpFTMLSQRlErZZ9uSUCzzwaPQ8IXP3QtukIufPFnr+HASAQtfjv+8oNr8NTgHL70i5M4NhlfDl6XyR56cZRl5fS7HgmXoPFZhWjI/dEPX2Hro9ZtJczwssKGaOnhyzgjmVOK6G3w4NQs8bnZRInqy2Hh4ZJEzKfy4ECg6ZGMAp8BaGSzmAeMJYH4wIKSZxUNtaiZMi6rKGA2ITNqN+N8GVCqjEzFiB5fPFvQA7CGLT0hzMYymDJ8PvR3aRmfAFSI2kEknWdEhsb75ACoxZK0Cz0Q0ECflFUkZZUdJt2SwHpzLhuRJMolZWzs8GNa1/3zX2TFhAu18wWu8DkeG7qYN3I12VODc3p5kDBpjCymWYZBs516D6EbimcV2C087rmxHZ9//DgAItNQ65aQyReQlFV0BO34yi9PsQUHlBSMAeDASBRffvKkiY0CIJmTJAqIpmVkC0XGsk4tW9AJPvW1L/DA7deEcGg0hsV0HvFMZemBVqVyeQUDs8aNphSVhxYy2NxtR29jALtfGK4AhNC6wVKVHCM60CGWNhGnlYffIeGmriAeOTzJmtfGkmlSVvWSSxq/892X8YUPrMYvdMj9RDSLP3/sGAqqhhY/mfV59NDE60ZKLdvFsNKXf11bAMlsvmIIHSCHGVrWM5a36IwR3bbL15JLEtDX7MWRibipLJgpFJEp5NkdxPVsLZYtsEyNrjcaFGW1lMVtWVWLU7NJTEYzDPEn8iQ4iHwJdUsDj1EixSUJKGolJhC7hcwPPnlizgRGCuoHSg0kaEkCx+it6O9Waz9o0BWO+eqoQICU7nvqXDgwEkFSVtHf6kM4lccXPrAaRyaimInl8OvX5hDNEFactxICb7Rz9rg4jvsSgB8u8fBHlimfXp9RtoxoOo/nTy9gLJIhE/xuCY8cmjT1bmj/iZ7azsX6QE3gYaK5kQTiVNe1eLGYyptKBuX1dICUJ51Wiwmuy3OAy0Z6BeVQ8momiTx66pwIpwvnpa8p71X11juxeWUd9p6eN21SNPAEHRa01TixkJSXbCgD5n6cyHP47J09eO70Ahq9drw0HDb9riRykPWdo5y5hPb+3mjGtdzjemM2MBbFrh8cgdsmwmYRsKbRg+8dnFiyJ0XHQihoo84tYVOnH8+dXjTRo8WzioktYsf1zZiKZbGQyuF0Wf+Ilqc9NgGJnIprG93oDLnx9Mk5FItFE8MFta6QE1tX1WL3nhG0BRwYMyh5L9XvsgpEoNFvt5j6TNSXq43EUCtns3BaBaTzKjZ311RSWVWB4S/F1LOxw49sXkU4nWdlSwpSevilUUzFcqxH+EYg8Ea7JOAMjuPOAvg1qnMzbtU07a1jVaxibzenpM1manRRGpFQ8WwesqJh29oG7Dm7iEi6wIIMnVsxGt14jaAIo23sCMAi8Nh7dhFeu4gal4SpaAY5RWP6O1PR7JJ0Mecz6tiA2RG2rW3AL47PIq9qphMtsDT3IGCmaaLUPcbZHRrQqzXcgdLp2zhXU4642tgRwGsziQoeOqM1++z46ac2v6ky4XLgemO29e+eY4c043qgBxj6p0sS8Nsb23B0IlqVC7C/1Yf17QH2OC3j0XVFN2Pabz6XVTvoGe+JbuQbOwIYWUxhPplHwCky9W6AciuqUMp6sNSq8ZYC5hmxeo+EZE5BOq9WBC6RB/qafVjT6MWvBucwm8ih3kv6gNVQttWs2h4DlIQjjYfXjR0B/PPHr78sPnK+Oa7tmqb9vqZp95X/ANjxxm71ajay+GiTl56k4lkFfgfJdOjp/5lT86agBYAtKCuVChd5yIqGzd01aPSV5r2Mg/nTsSz2nl1EwGlBPEt6PjmFBBOlqGF9mx9f/q0+pofUFXKcU6er3PIGWLHx9HZ0Ms6ClTFoBRzkPsrnYKiNhjNw2wSdNFRBwGlhQUsSgGSutHn0t/qw4/pmNjcDlFhF1CJhw/DaRRa0Pnd3L+6/axU2dQaQyCmwiRx6G9xs9otKPrX47Xjodzcs97beYouk8/j280P4/Pt60R50oL/Vx4JWe9DBiof0T0Ut4omj0zgwEiU9Hi9hVaE2MB7D0YkY6Lk75Cbfp1IkB556j4QXTi9ga8+5BUK9dsIUQxku3DYBXSEnbCKH/+83ViHgtEDRe1oHRiKsZJnOqczXN3YEsLbZhzVNPoQNVQvKmkN4FC1VlQ5o0LLoRNBpnVC6PA9TiuQ9P7x/jPnBUrIrRqPMJFaB7DG17so5MFrqbwk64NPVJUSeu2w+cs7ApWnakTfy2IUYx3Ff1v+sJl8OjuM+zHHc7RzHfebNvM6VYJF0Hn//69OYiRFtns+8t8c0WCzypWAm6N8IzSbe39eAdn1gln5Z+TJQxGQ0g1p3aQF11TqZXtBENAu/g2QcxiCUVzUMjMewe88IPvnwIcSzBDU1Fc2yjaHWZYWqkdNmuTn0wJNTNAScFnxn53o24FnrtmI0nGG9q+6Qs/RZ6EF4Kc0x+t4TuQLqPTbUuyX0NXtZ2fPUbBJOiQyMKqqGw+NRTMbITFm9R2LX7W/1oaPGiXhWQVfIiXtubMeDTwzi9t463LqyVh8s1TA4k0R7jRNeuwi/nXyGH+pvekvkx89nV5OPAMC3njuLL/3iJP7pubP4P5+4AbesCGHnplZs7AhgQ3sAGzsC6K0vfS85RWOl5tmEjOl4Dh01TtM6PzASwYGRCPpbfbAIJChQzbjnTi9g31AYT+v9oKU2wxs7gyw40T4VPQD++4Fx3L6qDj6HiGyhyIIAB4JupRnUazNx7N4zjIdfGjOV0Gn5cCpGxCONPeZyowc4q8AhpAcMu1jSj6MmiRy29NSyDC6XL3EqGq3WLaE96MBf3N0Lu4UHFVjI6M93SjwTUgXIofCr29fix79/M7b0hC4LmpDaZRtA5jguCiAC4Pc0TXuq7LF+AJ2apv1Id9pD1RRe3y5lkG8/P2QqR9Asqs4tIZ4tsMzLWCpo9Npw+zV1sFl4/O89I6Z5LKsAtshoLb7acC+AihJi+fOMwAW7wCFreJDeT1+ThwW2vbo4JS3f9TV58K+/sxFAaQasvFf3zx+/Hlv+9tmK8mCtm0iAGxl5bBYeubJeAIPnc1SbiMyY0f+n/QPje6MlRfpZ0/diZLp3Wnkdociz8kdXyIlH77vpopwk32yp8GrykYGxKP6f7+xnGzmV+CgvCdPe0VKl4qXoiGjJcWNHANOxEomucZ5L5AkLSypXNPkFLT8b+00hpxWpvGLqW9HeqrFveiFmfL5LEtBZ48Rrs0kiDskDdquARq8dC8mciSOx3Owij6xSZKS/RiqniWgWTp0smJrXLuK7n9iAbz5zBs+eWjhv26HeI2H/n99+we/rQuySUz5dAtuuK7s+VeWxjwCgRdlhAEt+WhzHmX4eeOCBS3Crb862r2/Brq0rmDw4Lf3NJWXsvLGdURAZM5vpeA6PH53C7rKgBRiCFs+ZoOLVLJ0viTPS5zkNlEvGwkR50Aq5rehv9eHYVAJjkQwSObK5izzHTn8j4TS+9dxZ/P6/H8a+oTAhAK0pZVgTkQyimTzevTJU0Sh1WIUKZdXyoAWYs09C2luDJp+Nnazp5mH8DNoCDmzuDhrY7MlxM5tXWPlJ4AnrNp2lafDYsHvn+iupRHjV+Mj//N6AKQjQrMSkIyWS0ZA6t4QGjw12sXL7okHLZljYkgBcU+9Gf6sPmqaxikdfkwfvu7aeVQaUIpDKFcFzJGgJHFlgtNSdU4rob/XhuhYvZLWIbIEM3NMyJa04nC9olZfijMoDKVnFsakEtq4iVYFbV4SQzKk4NZeC21Z6npGol/4toGdH9HyYU4qwiTz+atsabOkJoc1vLqnHswp2/ssBhFMExv+n7+mBTSQIRUqbRUmtAeA9vXXnfF9vpV2wrMklsH6OLIz+KtLjPpCTJrXgUhd5O5wmqfmdFtx1bQN2vzCMFr8dd13bgPtu7cJ97+7CQy+O4LEBMqlBJ/5phkIdgjZYKbihnNQTINnYqnoPVjV4sO/sItsALALPGqtpg+iiAujQegVqUUW2QEARalFjFDrUzs6ThrlS1JigXDKnMqJdgPSoxg1oqul4zkQkDAB2C+C1SxB4UuO3CjzCGSKr4LSJiJadKlfWOnHXtQ2IpguIZgp45hxMI/Sk/OOBSXTXlspKiqqhr8mLkzNx9hn/9bY1+Ienz+Dz7+vFqbnkG6J1usR21fhI8QLukQaEuaRsAhNRDTdjkPM4rMjpvSZZBX5hoAo7M59ifJjHphL6xszh2FRJcocOtZfbgv66FNgTzRRYyT5TJma6VPZHe1xuSUBHjQONPkcFldnwQgrZQhFHJgjopM4t4QsfWI1dPzyCeFYh1Gun5iErJV2+ratqcWouhYlIhlU8ckoR33jmDOwWAWuafQytK3BAATRQEp/46i9PMWQu/axv7gqiwefAllW1uOemjor3crnssmVcmqZ9RT9JBjmOu7j55xVmjx6awNefPoOvP30Wvzoxi75mr157VvHQiyP41vNDODwWxUQ0C7uFx5aVISZJAhAHoEGLBwFzlEsj1HttaPHbkVeBdF7F793ahQ5j5hPNIqNULzMQ5gAV71/bzAZ36cI3lveMA5PVVFDpydX4kMcmYmghDUnkGatGtkB6EkMLGSRlFdc0etEVciJfBAtatW6JnSTHI1nMxHL4ySvGEUwyt0Wb0BxIT46+tKoBpwy6W4OzKV2agfw7kVXx8mgUO9a3oK/Fh9+7tetKC1pXlY+8awUBSCxVM1pZR9ZytQ3r+HSCBS1aWfDZlx6MjWYKptc5NpXAps4gtvSEWCWhHIHusHBwSQLT6mry2eCUeMhKEQ4rD69dxO/c3AabQYIl5DJnVpLAwSaWEIJJWcWxqWRV/s0RvSpA/WE+KeM/j0wyf5xP5hjNE0Ag7H6nhD+7cxVaAnb0NrgZ0GNgPIZ9Q2G8NBRmh2AjnZuRfLfcnjwxpyOhLx8Qo5pdsoxriYbysKZpT3Ec92EA0DTtRyBDzp1lz4sBCOh/9+Hcg9BXvN3eW4c9ZxYxvJBiFEYA8J+vTJpOiXRS/fGjs9hxfROePDGHRE7B6GKGQXipP8mqZup1zcbJxH1KJsjBex8+hK9+eC32D7/ETo5tASemYlm2+OnA8Zxezx5dTOPR+27CQy+OYP9wGAdGolXr9QF9ANJh5ZHRI4HAkVMozQYbvTbUe21Y0+TFT49OIaY7YFvAgVxBZSdmt03AJzd34JlT8xgLZ6AUNfAcUOe2srkTys5NjbIOEIFNIgWjAegIufDuHjv+88gUCkUCIPHYCNM77X8ZexcvnFlgZcPLMWS87CPEhhZSODhKksdr9Zksp5WHJPKIZBQ4LDxOz6XZnBY1NmSsf6GUjYUCNYxGVIiBl0ciKKKSwzOWkRFO5+GwciioqMiUyNxWyVfrPDZWzSioGjJ5Bf/03LCuJ8dDFEi1wdgXk1UNXTUODC9moAHoa/IiminNV+64vhm/HJwl82Y2EYvpgglJ+bNXZ9nrKyph1LjnxnZ85cmTODRGIP+PvzJlIrx22wQ4rSJmE2T2sS3oqJgNK/8sCFqZPF4aGbmysvZLFrg0Tdt9joeH9R+AqCp/GwA4jvNpmhYDGXperz/eCaBajf9tY08NzmHv2UX0t/owHc9VSClQM1InjUWybNHMJWX0t/pwZi6JpKyiK+TEYkquCEA0K7OJPIYW0njyxCx8dpHxF65vC2BzN4/de0bQ7LOTgcL9YxB0yCzHAdFMHg6riD+78xp8+cmTeHWycj4mpUPSBQPUlvo5FcCbjufAceS0t2N9M547tYBYRsY1DW6cmU+xwJXMqfjGM2dKGSVHFV3zSw5t0rKS32HBxze24eRMEvGcggMjEcwlHCgUSSDN5IvI5GUTaMOmz6NYeQ5f27EOL49G3lI5BqMt+wixT//gCBmDkAQ88IE12PWDI5iIZpHOE8ANzfSNQcsicOgIOnB6Pm36fhf1Id6UrKK3wQ2bhWQdBVXFwHgcPXUunJ5LVWzD+4bCJrSfSxLAc5xp1q/WLSGZk5EtAJOGcnjB0AMDqCIz2P8Z729osfR7osAxlYW71jTgIxtaYLMIeOHMAjZ0BPDIoUnUe2zIKwriWcVUuiTgjQTOzqdY4OMAhiamlsypSOZUNHpt4Dhg79kweutdVVlIAAIK+9Rt3fjCfw0ipxTR5LPhfX2NV1SZELi8qMJ7QWr0nbR+z3HcYU3Trjc8Pqw/XtXB3y6IKcoGH07JrB+0bW0DBsZjS8oV7FjfjLPzKUzHsmj02fHV7Wvxw4Pj2L1npGKAl9LG9DV54LFbmJ5Q+fMoezRFERk5xyjqiqLwKCpvKTMGlXIhv/Lafn+rryrbBTUmVikJaPHbMDibNrFRl1gMRGjQTEhCOlwMEEDJjZ1BU3bGXkMPiPTeGr02vHj/1iXf38Wwi4AqvCp8ZO0XfsnWaXlGXm7lw7iyUsTGjkDVcttSSNudN7bhmdfm4bGLiGcJw8t1LYT+CSitx40dfoyFM1URdgBMg/FA6QBJqyOUjHopBhmjf7YHHXhPbz127xlmn0PQZb3gweHXY10hB6aiOdzcFcSh8WgF2tfI0rNrazc+fUfPRb8Ham87VKGmabs1TfuRselMHdLw+FPnOZVe8UZonkaQyav4yIZWVpM+MBKBWtTQ2+Cu4OoDgKloFgPjMcwmZLx3dT26Qi7YreR5VJWVGq3kiQKHb3ysH7u2rkCj18YWpMgT0MZoOINvPnMG99zYrg9LRlkwqfOQCXuKwps26A7ZLTx8BpAGnVmhq202IcMiCNixvhleu8iCFu0/DYzHUFArMyeasDGxSlnF4GyaXMOw4axu9KDFb0cip5QQhmsbsaUnhEi6wGZnJqJZjEXSpv6gSxLgtPIoanrg3r4WXSEn/vG3+6t8W1eWXS0+8tk7V4HnSMYwFslgLimberh60oT+Vi9WNxAZe4eFkNZGMwUcnaguVaNqJLhRgFFvgxteu4hDI2FMxrJw20Tc3F2DFr8drYHS4H0RJJs/MBJlQcslCeipcyHosLDnlRcDUrKKjR0BfPSGFmzursFcUl4yaIk8QfVR3x8NZzA4E8eurd1o8dsxFskwUUdqdF2X7/JWgUPQYUFPnYuR+BqNImqpDS1kkFOKeP4MocSiQ9A8B1xTR4LW5u4gdm3tvuIyLWqXE1V4VRgBZpxl/37XihrEszPMIXKKir/+4Bp87vHjEDkO4UwBksjDbROxscOPtc1+bF/fgkg6j5lYFl7SzMcNAAAgAElEQVS7iPVtfhwYDQMK+QLpeWk6lsPv//shrG32o94wS0VLLF67iBa/A3/4gyOmEhyd+Kd7hVMiUgj0xJotFNnzPTYRrX4HkrmkCdV4YCSCyWjGdHrb2B7AZCwLh1VgQn3GU2ZRM59ae+tdiOcUE5M8AL3nQZyL8rHZRAF/t2Md0zOjGSOl9qH3aiz1bFvXhPfrP8t25djPXp01AXrckgCbKLDZuoJK1o1F4DEwTkrXOaVUZvc7LQi5rSYaJZr9LCRlqBoBa4xHMkjJKuJZUiY7MFKiiiqvBkQzBTisHBtWTsmqCewDkIzOSOQLkPGPAyMRbGj3Mw5FHsBNXUEcmYghnVf1NU+InP0OC45NJeCxiejUh977Wwl4K54l759mgF6bgJYAqYTQPpXAkxmzcKYAVSOlQUZ7pvsvBXiU6/PR0mNvoxcHRiIoaoQh4/67Vl2JCFuTLSsgX2J77uQ8/uiRI7h1RQjhdJ6V8WpdVsSyBeRVDfUeG2YT1U9mm7trcH0bQQLRAFjOjwaYSWYBUmp8/tQCImm54mRoNLq4jddyWLiqJKLn4hisZk4rYW6n5Tn6++UBxW7h8f6+BrxwZpEFdKMgYDXz2kVsW9sIgMOpuSTqPVYMjMcRcpM/t/SE0BJw4OGXxtDoteHuvkbc9+63Fjm4zFV4Ybbr+4fx+FECPPDZBcR0HS23TUCxCNP4xubuGkxGMyYAQm+9C5OxHFtTNpHHyjo3g3mXW8hpRUfIyVTFlyopUrMIZLCroNOIla/Jpchqjf7itYvgODCQEkAqAGubvXj86Iyp73Su+zFSwJUHoqWUyMuNglr6W32wWwT8yXt68JMjU3jhzAK+tmMd+tv8573GxbJLpoB8JduV7pSRdB63f+05RNIFFhiqbf5OiTepGQNAnUvCinoXC3Sbu2uQyOYryDmNU+5G/Ryjg/U1efHqVJwtcqeVh1Mys8DXOK1IygUTgpCyFwBkjuR7927CDw9O4PsvEyl1GphooOsKObCYyoPnUDGLJXDAHb11pl5EyGlFQlYgK8UKEtNzqR2XqzMbrT3owLZ1pWYyVZq+HKfH5cB1YXbz3zzN1hnNFqrNQPEc0B1ywGYRMbyYZvRISzE9eGwikjmFrXuKRr1rdR0imQKG51NYSOfRFXJgMpqDrJBDlluXqyf3U0LuAtCpoziWqXEA7ntXB771wggjAPY5RNNYRzwjEzaMuTR4ELWFlKyiqJWqAkbfXcrKA1U1MxJIU8Lc/lYfpmNZ02fkd1iw/fpm7N4z8qYZ3t+Mve16XFeDPXpoApF0ATyHiqBlrOE3ee2sZ+W2CdjY4cc//7fr0Rlyod4jwS0J2Ht2ER67BTtvbENfkxv1Hgn9rV7wXIlwly58Cw/TZj8SNqOo0vkiHFYBOze1EUCHTcRimrDSe2wiVtY60eSzIW9I1d67uh5+hxV2K48VtaTP8L5rG3FzVxAuiczMzCUI0jFfpZ+lasCxyVLzGyDDxhRJGc0U0N/qY/2I9W0B3H/XKvzbJzdi19YVuPeWTkaGu2N9i2F+JcCgzn6HBaPhDBxWEQGnFQGn9Yqcz1q2kkXSeRQMcMH2oANbekLo0L9foxU14PR8BsemEtAMK7rWbTUNygPEjxI5BUaOWYpOfObkPA6MRFgpcmghw9ZhQdUQySgMnVe+pw6MxzAdy8Gvv54G4NHDEybYOg1abknAB9c1QlaBGzprEHBaUASQyKksQ0vkiN6eMWhV48Vt8dsrgpZV4LBtbSO2rW2A1y5ix/XN2NQZZJnnb17XhPvvWoXv3HMDPnKDGTkbzRRgt4qsLPh2s+WM6xJaJJ3HH35/gGVN5SW48pIZQJCBf//R6/DgE4MmMTjKg3b/XauY4wFk9uPJE7PIygqqVPdM4pC1LivqfXYML6SQktUlSwvVTnb9rT7MxnMsIDZ6bRB4ztQboBxpS1lfkxvHpkivi6ICCWu2F3ariHtuagewdJZE0ZnU0cr/fntvHZ4anLti6vPLGdf5rZzHc8f6Znz2rmtw61eeOW8GQm1zVxB7h8KmElt/qw+RdB6j4QwkkYPIc0sSO1t4wCrySz5O4eo5RcVPjkxV+OxSmVCNy4KA04rTc2mEXFZc3+bHL0/MsedaBA5BpxWzCbnqNYIOCwpFDYmcgl1buxHP5PGvL43jo+ub0BFyL+kjD704CkDDPTd1sMcj6Ty+9dxZHJ2Mo6fODb/Tintuar/sfrJcKrxC7e9/fcoEznDbBDgsIuaSctUyGFAiiK11WxFN51EoQu/TNOAjG1rxiX85iIloFlYeqHGXrlGt1t7b4GaQX+qAFHILlIh0l9ICAs7d26p1WRHPKezEWu+RwHMcuycKpgBIUJ6O55DI5nHbKlI2vLkriG/+dv9ld6BLYcuB6/wWSefxyYdeZrBvt01Ab4Onqr6W0Yy+Q9c9FUukpcNrG904u5BmwCK6xpt9dkzGqq/1anbvLR24793dDAhUzYxBs1xJvPrzOagX+L28WUHTK9mWS4VXqN1zUwejWQEI6mcuKaMr5MS0znZBIaxWvXxIoePzSRK0eI6U/v5t/xi+/fwQJqJZiDyHfLFUErQIRA+ryWdDb72LIQQHZ5LYuqoOXSEnJqJZHJ00z4X0t/qwpSeEv9q2Bhva/RUSJm5JxLtX1iz5/rKKClkxQ+On4zlGN0P52xq9NhybSmAxlUdeJSWXzd012DcUxqOHJt7AJ7ts7xSzW0oQ7mROxYGR6Dl1pLpCDtR7CZ0SBxK0Wvx2zCdltAcdeNfKENqDDrw6nTSNbYTcEnZt7cZDv7sBO9Y3MyJZpySAMjUJHDnsAeQAueP6ZjxxbAbv/+YePHtqAfUeifmWkXWNxiCBA+o8Jaonh4WHyJGszjimoWpahdZdrVuqKHn2NrjR1+w918d3VdoyHP4SGknPhzBjmOVo8dvxof5mfGBdI54anEMmr7DTJmWh7q51sTIHlfngOQJL/+UJgr4qJwCljeypWA6WoAOqZqBu4YCvfngtdv3gCEYXzRLlvzwxy4AOB0ejaA86TCCJpKzgwIg52LX47ZCVIuaTMmpdEgpKDjmlaEICdtY4cGwqycofFJ5PSyLzSRl3rqnHLStq3pY19mW7OPYPvz6NfUNhuCQBt3TX4Ph0Av2tPjx+dGbJ3xlaIOXtnjoXJJHDsakk/A4RbcEg9p4Ns/J3b70Tp+bSLBMaGI+hO+TCg08M4tRsErKiwWbhTVIfVCJoc3cNvrBtNe59+BA7HPrsFgZwMKJwAQJXF3hALZbuT+C5Er+nBsyUIYdVDWy8Ze+ZRdQ4LWgN+kwApsGZJAZnknBYxcsGoLgSbTnjuoT26KEJ7N4zzBas32HB1z96He65qR0/PDiOPWcWcevKWuy8sY0N6wLAwZEICVoijyadPJdKCry3tx67tq5Ak89meq2umlIzezScQa3LiqBeWjg+FccnH34ZE9Es5pIyIwIlsyAa2gIOfOq2FdjcHcSG9oBJdsEmwATVl0QOX//odVihM68PLWYY1U170IHpOBHL7KgpMbM7rTwK+tzNqroS8e+p2eQyeOIqtxfOkNJbSlbxwtkFTESzeObk/JLPd1hLfjK0kILdSisEPCb1UjfN9mNZlQUtutH99Og0nj21AKVI1mxbwFHhS69OJ7H37CJ++PIEbu4KsiHhzpCTSXxIFg699W7T79U4id+srHXAaxdNPgmUsjIATAE8nlXw/OlFyKqGwdkUnq3y3gNOy/LhrsyWM65LaNvXtyCcyuPoZBQFXXH4yROzODOXZLXywZk4VtS6WcbktgksaOWUoonbbEO7H7/37i74HVbsOTNvmsqfjOVg5cHYz+d1zjbqlJF0AVaBg81C0FbGOaeCWsSDPzvBKJt6G9wlglv9MGoVONS4CAfh86fnsbrRg/FIxgzO0IeER8MZk65WOl/Eq9NJ+OwW/MGWFfjSL05iOp5DXlERSeeXA9dVbA+8fzXu/bdDyKsaGwlJymSI1iLwuP2aWrw0HMa8LlGysaOG+c6mjiA+eUsn5hI5zMazmE/lTbDy6XiOAaDskgCvzcKyJ01fnuVDxUZ7ZTyKg6NRbOzwI5snXKA7rm/GeCSLWLaAU3MEaBRyWbGQykMH+KLW48Dp+dIwfjWiaq/dinSeVCCMmVs5Q7vAA1/b/s7sb70ZW864LqEFnFbc9+4u3LaqDuvbCGT76EQMz55aQF+TBzaRRyRdwKHRCLpCTkJ820PkHRQDpJwDmew/OBrFQ/tG8eihCRZk6BcoK0UYQVGU+YXnOKxpIjXyvEoQSi1+Oz53dy/+6PaVaPKREh69HgCc1h3SWIK/a009nvjDW7BrazcOj8Wwe88IWgMO9LeSa7f47fj4xjZWt4+mc+hr9uKaOic7scayBfzD02fY5nFkIr7c37rK7dRckpXI6YiIlSdrNZ1X8csTc/j07SvhsHKQBA7XtXgZxdfeoTC+8cxpjIYz7KBGe6peu4idm1qxpSdEEIWyygILAAaFLzdj34lC4g+MRHFcn5989uQ8NnUSX2bE0jrp9GyCkGEXVNXU16ZBi16aB3D/XavQFXKecy7LLQlQi2ABctlKtowqvMRG4b733tKJM/NJtPjteHj/OG7uCmLfUNggR08yrHJEUjlDep1bwrZ1jXji2AwLABva/cgpRSwmZSTkPFFxBam737m6Fi8NRypQgTuub8ZCSsark3Es6k5c4xQRzapQixqbrqfmtgn42A1tGJyJY+/ZMCO3NaIRy5GJRrh9b4MbAaeEP75jJb785EkcGImQebWPX1GKwxfVllGF57dIOo+/+flr+OnRaZPMPF2/gBmxV95b8ugZFh3+1UAGgD+wtgmHRiOMagz6/xuZK4wyKSVkopVld/QejGhdp1WAUtRMSg5AafjfbROQzJHAdXwqzoIyYPblRq8Nd69txKHRSAWRLn2/fU1uBF02fO7uXnSFXHgn2hv1keVS4SU2WpsemiflwW1rG3BzVxBdIRfWt/vRHXLhL356AgJHJBCMQavGacX/en8vPvf4cRZ4OA4mxeHeBg9m4jkUNY2hFF+bSSBbKKI96MCBkRL7c71HQlpWkJRVPHliFomcAtGwZBbTJaemex3dDIjSMYHR083FaxdNgcrvsCCdVxhb+9pmD2bjWeQUDZm8ip/v2ohIOg9RR4xt6gy+Y4PWsl2YBZxWLKRk1ieN6DyVRZQow4zVM6tgljdJGPylM+REJE1k6B9+aazitWKZ8pGO0vSUJHIIOCV4JAHzyTx4AD6niEhaMY2YGOmnal1WpAsK0nIRDquIpKwyEuiCopqCFgDTAXQ6nsPuF4bR3+pjOmICz+GGjiByeRUP7x9DNKPg2NQCNnXOoevWd2bgeqN22UqFHMd9Wf+zmpjeeR9/u1jAacXtvXX4qY6SevLEHPYNhfHw/jE4rCKa/A5wHJhmlvELWUzn8cNDJdVTt01gLANUTfjkbAIT0SymYjk0+Wz46va1+I9PbkJXyIl3rQghmimwQDGbkMHpL0AhyOXMSV0hJ7sHC0/cusVvN0F54zlyIjVmcTwHdNQ4EEkXGKR+NpFHTmfjcEsCvvjz1/DQiyPYNxQmInhXKPP0lWJXi4987u5eplxMh4Dr3FJVLbZMQYMkgJULqfEc8YlopsBIa8tNrIDYlxZ/tqBhKpbDa3MEdbuu1YdI2ry+jeaxiWjy21lfblNnEPe+q7PUU9aRubUu65KqzgBBOg6Mx3BsKkEYaTQNp+aS6G/1YSKaxebuZdRtNbucPa57OY4bQkks7/U+/raxP3/sVZPIHEBmRLavb8Gf/uioSZpjlY5Uslt41HskzCdIqa3eIyGZUxHWHYLCbI2nwUSugB8enMCXnzyJoYU0bBYem7trWGnFaxeRyKoIOC0EXShWfv3DC2lWormm0YvN3TVwSwIrS1p5DomsauoFCHop5dlTRCwzmikQnrgsuVe3TcSr00nsfmEYh8di2LW1+x07UHmR7arwka6Qi1GXAWSdWkW+KnEtAMgqyV6MPSsqPkotkSMq3BS9Vw6CEDhz5lbuCbPxHHZuamMHNuO9eO0iumtdTL8LAAbGozg6EWOAqalYDlt6Qvj+791omuuiZkQy0vfx+NEp7N4zggMjESYr1BlyLvtJFbucgWu7pmldmqYtpdx6vscBkBqp8eeBBx64+Hf6Jq16j4H83+ff14uA04K/uLsXW3pCWKMPG1pFHrMJGafnl2Z7pn7bFSKwW1rOo3RQdqvIhikBoMlrQ3+rD20BB1r8dpN8Nz3xaobr2i08rm/zmdRS80WSQdEqSL1HQsBBHCuRUzCiz4klcgoGZ0l/gTpuk8+GvWcXAXDLznhhdtX4CF0jVh747ic24Osfvc40IlLvkVDnllDrKg3IG8vZABgSlkLmp+M5JodT7oG/1d/M5G8kgYNHH/x1STz73eHFtGmYnlo8q5j6Uj67BRPRrEl4VRI4tPgd+Okr0yZyW4+dQvVl1DitRBxVvzkj8jCVJ4e+ofmlUY9Xs13OwNXPcdztHMd95g0+DoAEBePPleiUX/qtPkYKS+3ASBQPvTiCh14aRSRdwHf2juDZUws4qC/+eFYxsVgEdDE4yq4hcBxzRq+dBAF6OqR182dPzuGnR6fZNQZniaLykQki/0EdFwAUQz3+A2sbsKUnpNPucNi5qRVOg/MWDYF4NiFjIZ1He9CB61q8emmy9D69dhFrmnzYuamNOej+4TAiS6C6ls1kV42P/O2OdWgPOpAvAl/79Wl4Hf+XvTePjuM6D3x/1dV7ozfsIAiAJEhChmSQgihR1k6LiuUlViajZTLJSPY8D63kvES2M7af/ZzEyXjiJH6Oo8nMGVmTxCOO58UWHT/LlmLHEi1boiRSoiiRkiCRAgiQIHagG0Dva70/qm51VXcDpCiAAIT6nYMDoKuXW9X3q+/eb3Xo+YYSarTgRCzDZFydXw5ZolaTDwW1W7FoiOhzOvQKFJPxnOlzhC50O2zs0SJ4MwWFWc3sHddMfy67TZeneKaAs8qdsqc1wA1b6/mbe3bqnydMipmCwv7DZ3j27Um6W/x4nTY8dnDZZPwumURGYTqRZT6dp6c1YKqYUeO2EU+rPuo/+40r3sVVfe+y4lGFmp3+yYVWjYsdX+0RU0YiiSwP/WqAx4+P6kEUXqedQ/3TerSRsZbaR3pauG5LHfd/92XS+SK97SE+dHkzT5wY5cTIvN7kztguZPfmMNduqQcUU33Eatx91UYO9U9XrZW4qc7LV3/9cr76kze4aVs9n9Fad//BP76i7ZjQK3q0hT3INom/vnsnP3plhP2HS05xUUkA0KMQBW6HjYd++ypuuazxXV7Z1ctSRRWuFxkx1vUsb3MD1ftUifYnD9y6jbHZFI++fI7GGqceHm/EGB1obOJoJOCSmc8U6GkN4HHa9Qar1fpjtQTcjM2n9YjgxcZpRNTvFD30RK5ZeQPIfTdt4csfed8iV2zts+qiChdwGJ9WFOUpSZLuBFAU5QfADLCl7LWLHl+L1PqcoBhrC9o41D+NuyzcHeDcbIqfvzHO0aGILhCjsymu3lTLwTfVcjCiM2tBgecHZvTCvB21PvqnYnqPr/IGk6DWZvv5m+N6lJUx9NiGmkD82UdfJZrMMTRzlnS+yFQsw6du2Myrw1HimYKeYHwumkIBPrX/JZq1ihtep0Sdz10RJh/02PFoLdfTuSKfffRVXvnjX1vKy7ymsGTEzMd3tvLDYyMMR1MVSguqK4NcQaE15OaFgWnSOTWir77GwWQ8q6eW1Lhkalx2Ah47s4kciWye4WiqalHpvNYsEiCVzVd8rjEcf2w+jd2GSWlVSzYupznoYiaRZTaZR5bQq81nCwo2g9IrD0CxKLFsiktRlIcXOXyakkO5E/g2gCRJIUVRZhc6vtbpGys5c3MFc1uRDUH1Ri92X0MzSabipd3Q+HyGT+1/iUgip+92GnxOphJZCkqRmNbm+59eOVexyzEqJoB0tkBCKTXtMx4TIhdN5pBtEoWiwmOvjJApKLx8JlpR9fqaTSFOjMwTSeRIZFQBTGYVJEpVujeEPLTXenluYIa5VF5fEd/2vvfubutCsGTEzFN9Ewt2KICF24fMJrOmKjJurQzUR65o4cWhCNdsquX5gRlOTSTUYryG3Vj5eyZzRZKG9j3GyvPZQoGbt9Xr3ZpBDfCwAXVa9YxMXsEumaN1bZLq80ppD47NpvT2RuXKWOwIm4NuK+p2EVZEpSuKcgy4W1s1Dmj/Axw8z/E1zedu66It7KHR7+LY2TmGZpJ6ZfhCUaHGJZPKFfUvJZEp/e2yS0QSOWp9Dr3o7ud+bTtBj51EpshbWumaQlF1cG9v9OG2yzT6XRTLB6KgVpyuYkIKe0trmYImRWLHJlaGxojCtybipHJFZEl1LotDiWyR8Xk1cvHIYITLW4Nc31kHwG9cuZEvffgy/q+PdF/UdVwPrEcZuWtXm94UtKHGqVdsV5umhhasMpHIFtWSZD5VYV2xIci+GzfzzNtTDM0kefTlc3obE7GLEiiUUkuMuOw2HLKqSOw2NbBoNpnn2Nk5upvVajBdTWpuVRHIFop6tfnyDVdRQVdagKknX7Uq+LU+B//7U7utAKZFWHEf17thLdnvobJp3mKUrwRvv7yJ9lofh09P8dpoDEWrtuGy25hLV/bKEruthezt5T4nI3r7dJvE5nov8+k84/PqDqrR7yaRyXFuNk3Q49AjuYzvKUGFCVS0PN+xMcz9t6yPwrpW5Yx3zreePMWDB98GSn7UgNuO321nZDaN3yXjsst6tZdq9LYHmYplF929ic4JPa0B3bIQS+U5E0kS8tqJlCUrN/ldJLJ5k8WhvBFso99FJJGhUKzcGfrddjx2G4ms2l1ZvL/PaSPocXL1pjDD0SQOWebPf/P979lKGeWsOh+XRSV37WrjmVNTPDcwoz8mSsQAul8KKif+y2eiHBmMmGz/6XzRZF8XXLMpzO/dspUHvv9K1QaQ2xt97GwP81z/NLPJrKnzq0SpvUquqHBqUg1vF2ZNY2ivy27TH3fbJf701y/nm0+qteMcsqq4Am4150WEDztkeV0oLYuLQ+2CrfDymVk9cGk+ndcVRCxTwGbYpZSXgAJMdTerHVe7bod4+NnTesFcI0lNHhw2EGuvCcMCTZgP59N5Q+J03rSIE/icMn63nZagW8/7MspbIlskkU3zq7enmE3m6WzwVbyHRSWW9+8SUutz8rf/tpd9N5Yy7GPpAq0htXXJf/utq7j3Ax161r8wIwLMJbO60uptD5lC2QHawur7NQdc7GwL09MWWnDVNhHL8OjRczhkW4XSUoDyvGSXXSJQ1uxStkns6Wrg7z9xNZ0NPtJ5hb85+DbXaKYecaOZT+dxyJJ+vsa8MguLcmp9Tj57Wxd/esflWoi7KgtCVblkCadNnaCtITf5omI6JhBzuFAli/naLbXcc00bm+q8zKZypteBuiAMeuwYY6aM1sSiyX8lMT6fIZYu6LIh9KpNUktEyTaJV4bnaAt7uPcDHXpumZHZZJ6gx87AVIIv//C181wlC2vHdYmp9Tn58kffBxI8/Mxpgh677lg+OREj7HUyn86bAjf8LjstQRenJhN0N9cACh6HTTfpAaS0Gmrj8xkefvY0HqfMiGYqMZodw14HN22r47Hj4wzNJNm9OcyOjWGOn4vq7dIDbrOpJJNXODESo6c1wNhsmnS+wOZ6L/sPn+WZt6e5ZlOYbL7IwFSCrLYD7Gn1E03mqa9x6u+7p6uB+2/ZupyX1+I9wvdfHNbnDZTmryyXKrvnC4pu8pNtpehZv1smrZn0xOvcdol0XqHJ7+LKtjB3PfS8biovj7oFtdZgd4uf/skY2QKEPE79c4X5vbc9RDqbY1Tb4AlZFIpN/B7V5Hs4mmI4kqSj1k3fuGrJsAEfuryJtlofj58YZS6VX6BggYURS3GtECLUdS6V15VHMpvXuyVPzqf16CSfS9ZNdgNTiaqCZjR3qA5uRTdvbGnwMRXLaLsfm+mG0NUUwOO06f3AQDXngVoyx5jn1Tc2r5fJOTESI+ixMzSTZGgmScijOsaHoyn2dDWQK6jKbkPIww1b6+huCa4b35bFu8cYgQvosiDSQByyZDLfGXdWwvRujKZV3SgKs6kc/+f3XiaeLur5V6KPnXGBl8wpjM2lETV101ojVJFfFvTYGZ1NmUznAr2qvPZ+4j3tNkltaaRVxxE5aG+Ox9je7Gd0Lk1ng4+v/+uei7lk6wrLVLhC3HfdZj2C6s2xGIf6p3jwYD+/OqU2yUvminp0UnGRRnMCo6trx8YQH9/ZqpeqOT2V0E13k7GMSdieeVv9XGMJmw9doXZZ3vu+RnwuY60382e2avkuAY/MbCpHR62Xu3dt5OR4jLG5JEGPnY46L4f6Z6ircVpKy+KC+dM7rqDWV6ocUx6plysoejULn6Gsxe7NtbpZWpYlvA7VbpcplGqFxtNF/G6ZD12udhUX1vJyyYomc7QENJO+1rLkW3fvJOx1MJfK63JkLAnld8u6siwa3lPUSuxtD3FmJqGfA6h5k/tfOMO917Zz4P7r1k1gxrvBUlwrRK3PyQ5t5TWfzut9g6LJymip5qC5tXi9z1wKavfmWr2luOCPf/S6HgElhMcmqf2GBLJNYmgmaSpH1Rb2cN91m/A6ZfYfPksiU8SuVYl32yXe11RyHruddvZ0NfBf7ullT1cD//DJq3n5TJTRuTQDU2oH2BcHIzxw6zarwrXFO6KzoYYD919Hb3uIxhqH7j+Ckr9rc0MNYa8Dj0M1HLWG3HTUepjXGjvmCoop9NyIS7YxVqVqjKDe5+CGrfW0GIrhxtIF/uix1yuSo//tNR3csFVN9WgLeUxjFLyvWZWbU5PzzKXy+FyS7suWUJXkcwMz1uLuArEU1wricZYstcL5my0oeo02UBWJXV74a3LIMm29AbYAACAASURBVEcGI4zNpfG5bPRo3Y6NkYuCogIuu0xjjSochaLCxpCHm7Y16B1bh6MpPvEPL9I3OkdzwIXfJes7rXReYXBG9Zu1htw4ZBtPn5zi5ESMb969k6f6JvjMrduocduor3GwIehmaCaJ12lFElq8czobavjh713P5a0hvaoEgEcrojs4FSeazOmh8ZlcgUdfHiGWLuCwqYFEbnspYKLWUPtzJpHjxaEoC9Fe59PKmym6vIAqHz2tAT04Kui2k84X+NQNW0wRgaIdkMDtdNAachNPq8KUzKjdyN12Gwqq6+Abd+646Gu13rDyuFYQUb/w52+M64EYInelZ2OQMzMJWkMeUxdXI3YbbG/061XYBftu3MLRMzOcnIiT0HZdm2o9RJI53WTYGnKbqg2U/29E1E78xxfP6P6DjSEP52bVfkH/5beu5MDRYb7+07fY09XA0ydVc2dve4gbtzVw33Wb1qXisvK4loaBqTj79h9lYCpRcSzoUaurG/OpjL4tUbBWPLc8PaTe52BDyMObY/N6FKHPaaNYhJS2YhNpKsLPJnxixlB70V3Z+BkBt2qROHZ2dsGcska/i+1NNfzpHVesSxPhxcqIpbhWAZFElkeeH+TlM1EO9atNFudSWVM+iqA54GI+mSOpCZUx2dIpw4ev2MD4fMoUgAGVyZI9rQGu3VLP8XNqBfjylgwd9T5mk1kmY1nu/UAHn9m7nY88+Azj8xnTjeHuXRtpCXrUigSSBIrCT18f1wX1Sx++jE/f3Lmk12utYCmupSOSyPL7/+8xnhuYwSWrPblqXDLtYQ9943H8bhm7JBFN5fE6bXoulhoZGNcj/lx2G7KtlKtlpFpdTyPGKN5q5adE4EbI49CDpYzP87lkfSFpxJIRS3GtaSKJLAeODnPXrjZ+97sv68pERB0C/LyvtDsDtcp7S8jN4dMRjgxG9IK2AiE4jTVObr+ihR+9OsJ8Oo/fLdPdEuTIYITdm8Oc07ooGyttiNXjhqCbjWGPybQiion6HDIJrbip+GxRWXtHW4j7b16/kYSW4lpaIoksd/zXQwvuXkQFDFAT5p12G6cmSv2sjAnFgu7mGubSeUZm0/RsDJLPF3lzPGZSSk4bXLYhyIagm5+9MaE/HvTYKRYVYpoy6mkNMD6fqZqIfMPWeuZTWU6MzCNL0Nno49REgt2ba/nvv3OVJSPv9HVreVK/l4SynIGpOH/y2Bt0t/i555p2nuqbIJnN8+DBfnwuG9mcQq6o6KvE8tD1xhonmUKRznovx4bV1g27N4c5Mhg1tXcwmghFyaaQ147f5ai4QVzfWUcsk+fEuTk6G7wMTJUUaHlrh/W8ihRYimvpufuh53lxKEpLwM2v79jAT46PMjZvNnH7nGpivTDpVaPJ76Ip4KqIshWU76jsNombttXxi5PT+BwyXS1+rtgQYP/hsxVzv5wap8zXf/P9/NW/nDTJlDCzr1elBZbiek8jahzesLWOXEExmfWqUa2XEahmxnSuyGwqp9vnhfmiZ2OQnRtDnJyI0dVUQzpX5MfHR0nn1XyXu3dt5L7rN/PHP3qd5wZmTDs7t8PGN/51D989clbbwa3vVaTAUlxLz8BUnK893sdXPtZNZ0MNA1NxPZnYbpPYUu/Ru4Z7HTaS5VssqKjebsTntGGzScTSavcGr8OmdwA3LvhCHgfttV5OjKjm/Bu21rOl3suzp6YZjFR2LRcyaTRHPnDrVj6r9bpbr1iK6z1MJJHlDx99ladPTnF9Z51q5zf0/elurmF4NkUsXdBrH5b7tIyIathGoRY7tt72kCmnS9j1e9tDeBwyzw3MsKnOyzWbwpyJpMgVChw7O8e+G7fgccqAwn3XbV73SgssxXWp+MmrI/zB915VK71rDVYFbWEPH+is462xOV4bMZsAxc6sHDW0XeJQ/7RuLhdKqzXkZjqWMfnCqgVhCD9wd4sfv9tONJnl1ESCD1/eRCyTtxLyNdZckV1JknrRmt9pzfDKj98JzAK9iqL81SUe3qqi1ufkm3fv5JHnh4gmMkiSRJ3PwWPHx7TIvXq9c2xGS/UXSsvnklGKRZI5RVdC5avQDUG37hsYnTWbB4UzWigzUYpqaEZNMHbZ1eTL4+dmOTIY4UsfvmzdC+NSYcnIhfE3B9/WFVI6a1bSw9EUvxn08Fd37uAfj5zhS//f6/qxruaAaZHWGnKrEYqpHHlt3huVVndLgLDXoZvWgx6ZuVSB+XSex46PmT63iFri7Csf6+Zrj/fpwVLz6Tz/+z9cu8RXYP2xknlcn9aEcYsmoDrif60V+Wz58fVIrc9JKptn/+GzHOqfZlprhjcVy3ByPKb3AsoWwSmjVw+wSaX+P3aZioKiAG21Hr18jnFxbnxmY42T3ZvD3LStAVCTkedSpYrYOzYG+dKHL7MSjZcWS0YugG/cuQOHNq+LgN9lQwI2BNXK7dFEloGpON/4+Un9NfU+B0PTcWQtOWxTnZemgGp1ODEyb0oxEebBgcmYKT9yLlUZIQiqv/feazv03ManT06xe3OY6zvr+LPfuGIJz3z9siI7LtH8DmCBleI9wJPa36eBvcCab5T3bjl+TrWn+912ktk8rSF31Rbk2QKMzKYrcrOSWTWII5XLEU2qQidL0FHr01eEE7GM/jq7BKLwwGQ8q3eOfeDWrVzZFuaPHnudsNfJtVtquf+WrdZOawmxZOTC6e0I88nrN/PwM2pD6JjWGkj0gzs9HedPHnvd1H9u2vC3GnhRz/7DZxf9nJagm6HIwj2+xHul80XCPge1Pqe+kLtrV5slH0vISu24rgbqJEnqlSTpC1WOhwBjBELdQm8kSZLp56tf/eoSD3X1IEpExdJ5Xhmewyapq0VjZn/QU1qLRBPqbsgpqz24AEbn0noSMaih7/1TcfbduFkvQdMUcKuFcpVSMWBRBeDIYBSv084tlzXy7Bc/yI9//wa+/NFuSyiXHktG3gH339zJvdd20Bb2cPvlTXowRFvYQ66gUOMyr9Eb/S68DgmnrAYpvT46bzouyg8G3Ha9FuJsSl24ScCmulJVDFHoxuOwGXp/qbJZ63Py6XWcErJcrGR1+BlFUY5JkrRXkqQ7q9nwL4T3uuPZyP23bOXnfRN6NfYH/82VvDQUYW93Ez9+dRRQ+PjOVu79+yOMzKZ1E2G2AGGfi303NtE3NodTtvELrbqFoK7GpfvFrmgN8pm92zlwdFh/b7XluYTHKVvmwEuHJSMXSK3PqZvhPvmdF4kmc3oNziODEVyGJnN+t103cTcHXHTU+YhpSkkEVWQKpfQQt110cijV/jQmMDcG3Gyur+FQ/zStITXn8eM7NyzzGa9vlm3HJUnSvio/e7XDA6jmDbTfV5e9fBao1f4OAZWF99YhtT4nf/+Jq9nT1cA//d519HaE+fTNnYS9TlRxkgh7nXz0/S36a0Rx0my+gMcpc6h/hvdvDPLArdu4sk3dwe3qCLO3u4mOWlXQw16HvlLsbKjB65R5+NlB6mqcfPa27dbqcYmwZGR5+MrHutnT1cCvdTcxNJOk1ucgY8iz+vDlzYS1uoXj8xmODEb0JOIiqnWho9ZLJJHD41BztDwOmykiMZlTTY1uu43//Bvv56oOtdbnpjrV7P5U3wQWy8ey7bgURXl4kcNPAXdqf28BXgKQJCmkKMos8H1gl+H4U8s1zrVGZ0MN3/nkNabHDhwd1qMKvU5ZbdYoSbwxMkdnQw37D5/hleE5btreoAdQ1Pqc3HfdJr1Sx4Gjw5yJJNnT1cB91202vb/RTm+xdFgysjwIGYkkstTVuNjb3cT3XzzL8XNz7GgL4XHY9J5aaj+8Wr54+2X8xU/fRJIkdmwM8vCzg3Q2+BiYStDZ4OMbd+7gpaEIXU1+/tMTffzRR7t55IUhvcj0fddtxuu0s7e7iaf6JixZWWZWLI9LkqR9qDb6LcL5LEnSy4qiXGU4flo7XlXA10OOyoUgah2CVFHQVj02xPnyq4zlpqwd1dLwbvO4LBlZHsRcNyqZcplZ7Hj58yyZuXisBGQLi1WGlYBsYbE4FysjVj8uCwsLC4s1haW4LCwsLCzWFJbisrCwsLBYU1iKy8LCwsJiTWEpLgsLCwuLNYWluCwsLCws1hSW4rKwsLCwWFNYisvCwsLCYk1hKS4LCwsLizWFpbgsLCwsLNYUluKysLCwsFhTWIrrErBWGvdZ47RYKdbKd2qNc3VgFdm9BGiFJFd6GOfFGufSYhXZvXDW2He60sM4L2tsnGunyK7WkvxOSZLuXOD4X2q/913akVlYrA4sGbGwqM5Kmgo/rbUi3yJJUm+V4/skSTJ2gbWwWG9YMmJhUYVl64C8GNoKcgBANMirwl2KolhdXS3WJZaMWFgszIooLuBqUE0hwN4FBLNXkiSA3kUEF+05qx5rnEvLWhnnu8CSkVWKNc6VZ6UUF8CMoijHJEnaK0nSnZpJRMfQqvw2SZL2VltZrrTj28JimbFkxMKiCsumuBZwGJ/WhGsAiIjHUFeXPzC89k4ATVBngC3LNU4Li5XCkhELi4tj2RSXoigPL3L4KUBESm0BXgKQJCmkKMosqqAKh3Mn8O3lGqeFxUphyYiFxcWxIlGFiqKcBmbLVo0AB7X/jwF3Cwe19r+FxbrBkhELi4VZUwnIkiTt1f68TVGUL5Yd+8JiDmoLi/WAJSMW64E1U/JJi666TbP/9xrzWjRhvXrFBleG5kzfKxJEtcdWXbLoAuNcNOl1JSgfpzZGRZKkAe1nVZjJFried2qPLfv3bsnI0mPJyNKyVDKyZhSXoijHDCvILavVNLLIzWNVJYsuMs7zJb1eUhYYZ62iKJKiKJ3AXcBfLvoml4Bq49QeE8EWp5f7eloysrRYMrK0LKmMKIqypn6AL6DmtYj/e7XfB1Z6bFXGOmD4e+9KjeNCx4kaDPCFlR7PhVxPw2N3rvS4FrmevcCT2t/7LuHnWzKyfN+pJSNLez0vSkbWzI5LoKg2+k9LkhTSHqpdyfEshCRJXwA+bXioV9sOf2GlxlSNsnFeDdRpK6HVPE7x2F7U6LtVg3GcirrjOa3tIiKLvnAJsWRkabFkZGlZChlZM4rLsK0E1ZSwT5KkXmWVlrwpv3koivJX2ljrDA70FafKTW5Gm0x6rtBqoMo4QTU7zK7UmKphHKc21lnUUPX/IUnSsuZaWTKyPFgysrQshYysZOWMd8peQNjsQ6h5LVsMJ7pFE9IVteuLG4dYSaDePE5rj62aZNFq4+Q8Sa8rwQLjFJFxK+5fECwwToCvK4oyK0nSMVQz03JG9VkysoRYMrK0LKWMrJkdF/AwquDpeS3iB9UUElr01ZeOvZRMMyFKiaJi1dsJHF2BcZVTbZxPUbph6EmvK0y1caLdjFfTSrLqOAXaTmK5x2vJyNJiycjSsmQysqbyuNYC2tb3btRV2W2Konxae3yf9tgWZRXk0rwHxrkF+KL4f6VZZJxfQBXQWmXxShnrhvfA3Fsr43zPyoiluCwsLCws1hRryVRoYWFhYWFhKS4LCwsLi7WFpbgsLCwsLNYUluKysLCwsFhTWIprnaFVJhiQJOkvJUnaJ0nSF6rVB9OOr5bwaQuLS4IlH2uDtZSAbLEEKIrylCRJTwHfN2T/R4Fw2VPvRM1RWdHkSguLS4klH2sDa8e1zqlWYkVbYX4buOfSj8jCYvVgycfqxNpxrV92SZJUi1rs8tbyY4qi/JW20rSwWI9Y8rGKsXZc65ejWomVJ1m4zMrR1VTs1MLiEmLJxyrGUlwWEUBv8a45nDu1enenUZvQWVisVyz5WIVYpkKLWbSioZpQ7lW0Lrqak/rlFRybhcVKY8nHKsTaca0zNOHbheZYFhWZtcKhtwBfMoT/bgFqV1vDPAuL5cKSj7XBqi6yK0nSF1ZD9WULi9WKJSMW65FVu+PSnJ5Xr/Q4LCxWK5aMWKxXVq3isrCwsLCwqMaqVFxae/Gnzv9MC4v1iSUjFuuZ1RpVWHv+p4AkSavXQWdhASiKIi3TW1syYvGe4GJkZNUprne6klzNwSUW6xtJWh6dZcmIxXuFi5WRVae4gC2G+mBbNCE9tqIjsrBYXVgyYrGuWXU+LkVRfqAoyg9QTSFW2wALizIsGbFY76zqPK7zIUmSspbHb/HeRpKk5fRxXegYLBmxWLVcrIysuh2XhYWFhYXFYliKy8LCwsJiTWEpLgsLCwuLNcVqjCq0eI8RSWR55PlBUrkiHoeN+67bDMCBo8NcvamWv/3F23zlY92EvU4eeX6IaCLD6ekkf3rH5XQ21Cz63gNTcb72eB+//8FtvDQU4a5dbdT6nJfitCwsloxyGfn4zlae6ptgQ9DNn/zkDT7/a138vG+C3//gNn51ahKQuO+6TdT6nEQSWf7in9/kyTcn+LOPX07/VIJoIsPJiTg7Nga5/5atukyonzMEKNx33eY1KytWcIbFsvPtXw3w9Z++pf//wK1bAYkHD77NpjovQzNJ9nQ1cO2WOtPzbthaz3c/tbvqe0YSWR765QAHXh4mmszRFvYwHE2xe3Mt//13rgLgkecHMQr4pcYKzrA4HwNTcf7ksTdIZnMcOzunP37NpjAvDkVx2yXSeQWbBEUFXDJkCupzettDXNEa5Om3JhmOpgDwOGykckXTZ+zeXMuOjUE8Tjug8ODBfu3xMCDR1eQn7HNw8/ZGvvbEG0zFsjz4b66ktyO87Od/sTJiKa5LSCSR5cDRYe7a1Qagr3zE6upidwvG911NKyjjbuhzj77K0EwSgAdu3YYQoCa/C6fdxn+64wpeGZ7l2benOHZWbTh791UbmYpn9N3U3u4mfvzqCKlckaNDEf15dpvElnovpyYTAOzpaqBnY4gHD74NqALudcr86R1XnHcHt5RYimvpON8cjySyPPSrAY4ORQDY1VHL/bd0Vn3usTNRPv+D43zjzh2X5Oa8GL/zd4c51D9T8bhYiNX7HEwnchf0Xm6HjW/86x7+6l9O6oqsnJ7WAB6nndlkhpMTiYrXpzWlV+tz8NTnbln2+4mluFYxQuiS2TwPHuwn7HXQFvZwYmQeQN91PHDrNrxOmbt2tRFNZvnjH73O5a1B7r+5k2gyy9ce7+M3r2zlm0+e4ppNtYR8TjwOG9FEjv2Hz9DbHmJrYw0vDMywp6uB+67f/K4U4sUyMBXnyz88wVvjMeZSeTobfPzRR7v56k/e4KZtDXzmtu0A3PXQ8wxMqcLTGnIzMpumu8VP31iMoMdOZ0MNx87OYrdJ5IsKHbVezkSSps8Sx2SbRKGo0FjjZDKe5e6rWnnhdMQkwLU+Bwfuv+6SKS9LcS2Obh7LFvE4ZdPOWJ1Dr5ErFLhiQ4iTEzGODEboqPXyrXt2mszCkUSWT/zDEV2eBG1hDx9+fwv339wJoH+W2KWHPA7uvrrNZJq7lLJSbdw2CXxOO7FMnlqfg8gCSstlt3F1R5gXh2bIFqCn1c+ey5q5eXsDv/u/XmYinkECFMApS2QL5jlgt0G+WOV9ZQmXQ2Y+nedLH76MT2vXbrmwFNcqJZLI8rvffZkjgxF620P0T8aZT+crntfbHuLGbfU8eLCfB27dyg+Pjeg33X03beHgmxMMTCX0G7URSYJql0HcxO/Y0cKm+hqW065tXBH/4aOv8vTJKaBkuhDKed9NW6jzOXXl/OUfvsZINMW5WfVcnTbIagK1IehmJpElky/ikiUyhcqT3N7oo38qgbgkfpdMLFPAZbeR0SSzxiWTyRfIFVSzyfc//YElP/9qWIprccpNyL3tITwOmf9w4xY+d+DVBW/anQ0+BqYS3LC1ju6WAH1j81V3LYJ7P9DBM6em9B0/oJvgBEGPnblUngdu3cZntYXVcnDsTJQHvvcKYa8Dj9POkUF1h+iwSeSKCk1+FxOxjK5YbthaRzJb4NjZWWwSbGusIZrIMhnPmt63tz3EsbOzNPpdTMYypmONNU5mU1myBfO5liPMkc0BFx11Pv78N9+vL/KWy6pzsTJiBWcsA+JL3tvdxNce79Mn57Gzs/hdMlCaJMbXfHxnKyfOzTE2lzbtFI4PzzIwlcBtt5E2LJN6WoO8MTpHlfs5gD65f3x8DPGUE+fm+ObdO5dceR04OqzfhL7ysW6S2RPE0nkiiSxBD/pN4/Hjo4zOpUlm83z2ti4+eFkjX//pWzTWOIkkc2QNF2V0Lk3PxiAnzs0R9jkZnzcL5IagWzcPCmKaA0AoLZddIi6cAsBwJEkkka04/9Vqbn2vEklkGYkmTTdRYfp9+WyUdK6oL9LEzgHU73NoOkFng5dD/TO6wqrzOYgmczgkyBTB65BI5tRX/eLNSX1hBNDdXENL0MNBbXEF6GOIJs0KYSkZmIrz2393mFSuqMu33y0TSxfIafO+KaAqrnxRXfR97rYufvTKOY6dnaWowMmJOE658j7/+qjqH5suU1qg3gd6WgOcGJnH55D1czVeV4CAW2Y2VWB8PsP4fIbvvzjMlz/6PgAe+uUADz97mpl4Vn9sJbHC4ZeBR54f4us/fYsv//A1nj45RcCtrg9aQ279xlpUoMHnxGEDu6Ru57/0Tyd4+uQUT5wYBUpfTkedl7DXYVJaAMPRpK60fK7Kr1LWfovJuanOy9MnpzhwdHgpT5dIIksyq65W93Y38f0X1fcfmU3pQiAYnUsDMDaX5s+feJMnXhsj6LEzGc+SLyo4tUEL0RycjnP3ro3s3lxL0GM3Tdj5tHlFLktw++VNbAi69ccyeUW//uLzVRNl3PRaoXj/8NFXiSSW7+ZlofLI84PsP3yWuVQet92mL+gA0rkisgT5ooJDlkw310xeoaDAwJS6ELJpE2UmkaOoqEor6LFT4y4tPrL5AnU+h/7/wFSCX56aohr/dGy4Ym68WyKJLF84cJwPfesZUrkiEuB1qDO5xunQ52ej38XJ8Zj+ulSuyAPfe4Wfvj4OqOfa2eCtMPsBZPOqgi+3/skS3NBZp5vYs4XSIk4bAgG3nZ7WAMmM+dVPvDaqy0LfmKoYj5+b5du/GlhxGbFMhe8SEYDwlY9169vqbz15kgcP9rMh6NZv1JvqvHgdEn3j6g7B67Bhs5l3A0CFXTvgtlMoFklkS5PK57ThczmYjGUIuO3Mp/MLbv9BXblta/Sxs60Wt1MGRcHjtHPfdZt035lx/BdKue9uT1cD2xprePjZQf055fZ1G6pwiZWmwCFL5AoKm+o8DM1UdywDuGzqzWkhxHXobQ8xPpdmdC5Nb3uIN0bn9V0YqIuIO6/aqJtOI4msbuJcKtu+ZSo0Y9zVfv7Aqxx8q6Q8HBLYbKo5uNyyAOoirMDCeB0SuSLkCopJ7i4Et12iqKDP0011Xv767p16msa78YmqroKjHBmMVhwT5u+tDT5GZlNkc0X9HH0uG4kqE12YEGUbFIrV/VfC3FhOuZUHoDnoJpXNL3jvuGNHCzOJLBuCHkbnVB/0w88OrriMWIrrXfLJ77zI0yen2FTn5Y6drXx85wa+/9IwP31tTDcHLOSfAfN2XUy4hSae4PrOOmLpHCdG5mmscXL7FS088doIM4nqk8+ICLMFNSz9xLk5nj45xZ6uBr7zyWve0bkLBW30IRgVUlvYQzZfZCKWweeUscsSc6k8ssSC5k2PQyKVu/jvtLPey8B0kuaAy7TT297oqzArgmpubA662LWpjnuubltSB72luMz5SSIStC3sYSSa0ncHIrAGFpcVgJaAm7DPQd9YbMHnQMnXWY5dgu3NflAU+sbjprlo/FtE9fW2hwh6HO9YgYnzPnx6pqrSMo1pgUCJJr+LeCaHbLMRS+ep0yIM1ShaD6cmSz47n1MmkS3Q4HPSEvYwOB03LQw9Dhs3b2/gF29OYFgDV5gLxXUA9VoYr8merga+8rFuHnluiGfenuKv7975rqMyLcW1AogQXKOSEtFx5YhVpNhZVKNnY1ANZsgWmIxnGZ9L6ysq8dtll7ihs55fnZpC+JarrVDtkioQ6YK6u/M57UwlsqYb+r3XduB22Ogbi11Qsm/5uf/BP77Cof5p3TFsxO+S+VdXbuS5/ikGppN47LDAou6iubzZR/9UkkxBoWeDnxOjsYqVqvh/Q9DNfDpXscM1IlaR1XbRF8N6V1wDU3H27T+qR44aEcE6F0O1XKVyxK7LJYPNVvl8o4VC3PShFNBU73Myncjic8kkMgWCHjs//L3rL3g+fOvJU3o6RjnVdj7lVFMove0hhmYSFUErNS6ZeKZQYa1pDblx222cjaaw2xRSOdUvfmJkjsVoDrgoFmEyrt4n/C47mVyebFFNZXn8xCgDUwk2BN14nPK7SiuwiuxeQiKJLN/+1QCPPD/Ew8+cZkPIox8bmU3TGnJXvCadL9JR69WVVtULrxQ5MhjlxMg845qpI6uZPoQ5IJNXOHiypLTEe8u20nfvd9nJK6rSAkjmikxpNmnjLuTnfeM8/OwgV3WonTE++Z0XL9i+/8jzQ7rS6p+sfE0sU2D/4TMMajenhZSW/R3MwBqXeo7iTN8YT+ir8xOj6gq83LwS8jj1m1g8U0CmksYaJ7s3h9nb3UQkkWXf/qM8fXKKrz3ed+GDszBx7EyUj/2XZxmYSlB+V2r0uxibqzQHy5J5Pjgk1YQM6s0ZVLlJ5dQFYKPfgc9V7Rst+VIzBfX5dpt5FEbTWCKrRqGqf6uPT2vyktAWOnOpPF97vI9jZ6Lc+s1fcuzM4ruoaKLSYlLvc+C22/jMrVtpDrgWfX01vdbodxFJ5GisUa0BXqc65my+SFONq0KhzaVyDEwnyRVUpWV8Z4fhOqsL29ID4/MZmoNuNtV56W0PEcvk9V1aNJHhG3fuoLPBhySp/sLP/+D4oueyHFiK6yIQwRepbIF9N23hzIy6ohTRPrMLRCYFPXaCHtURWwRCXjvdLX5A9WXltZuwQ5ZoDrj0YzPxxR2hNgkKRXU3BlBQqu8qQl7ZdBMRSmxs3wiRzgAAIABJREFUNs2fPPYGT5+c4k8ee2PRz4oksnzryVM8+/YkoEY8zqfz+F0yQY+dWq85UPV8K8tqJpKFiGfUN7uQ/YOEunIcmU2bwoOrXRk1LDnKU30THDg6zMBUgs4GH1/5WPeFD85CJ5LI8sn/+aK+yzF+X16HRCKbJZOv/BYLijofRLBCTlF9VjUumRpXSW5AfXwyltMVy/koTyExYpdKUahGRShMZjYJ3HZ4/dwc933nyAXdrE9OqIs5j0PCKUs01jiZTuRI54t876VzuOylz5HKfi/EU2+qMjenaSGvQ5XnbEFhIl6pKOOZAo1+s4I8NaEu8HJFCHnUgJVkTvWhtwTc+gJhZ1uI37qmnT/44DaTkj16JspLQxEO3H8df/tbvXQ2+PjGnTvOM/KlxwqHvwhSWbFaU+gbjekKYGtjDaenEqZACqONWCQaNvpdZPIFvvihy/j2M6cBmE/niSTV980VFMbnM0S0VVumUP3u7rCpE1DIpLgZJLMlIb398iZ+3jdBUYHZZHUhf+H0DC1aJJ5QluUIs+i/vD5uSgJW7eASWxtreGV4jia/CzBvr3a1hzhaZkosx+e0IcsS86nSGIXtfyEfwELINom/v3cXPW0hbv3mL4kmq+cDtYU9FIoKZyJJdm+u1StzPHDrthUrE/Ve4JHnB007Gr9LJpMvki0oeoh6NZwyZAuQyamvFfM7nikQzxT0QCRBa8hNLl+syGkqRwQElSNMjkKHehw2JmOluVJQSgnu6Tyk8+rn+N0y13fWVaRVCL8WSIS1BVw6p6CghqQLX57ITRTXRvjizrcgE8pXWBni6Zz+GqP5UZyvBBU7TZG7FnDb+YdPXM3Xnujj2NlZU0DL7s1hwj4HX//pW2yq85qsNG+Oxegbe4tktsBnb9vOwT+85TyjXh6sHdc7YGAqzu/83RGOamYCj9NuutHPxLMmX5NQWhJw62UN9LarJrlMvsBcKs83fn6SoZkkAY9Mb3uIsjmmJwyCunvobq6h3uekxiVzx44W/tWVG3UTB6g7vp6NQUAV6t72EI1+Fx/qbqp4b1D9AG1hD3u6GnhxKMqergbuv2UrUDKHirDXA0eHefiZ05yJJGkLe0wh5wVF4ZXhOTwOmx5UUq+FH9e4ZF4+j9ICSGSLJqUFJWVVTW8vtjotFBVeGZ7lkecHdYUsEKYnj8PGnq4GXVjPzCT4xD+8yIMH+3n5PGYgi+qIOZPKmr+wWKZAtmBOSwA12RzUMkT3XtvBZc0BJFTznixB0FNSCjUuWbdoNNY46dkY1PwwJaXlkiXaQm59rns0e9hCax5R3mhD0M0NW+uq+s0++v5m2sIevI7SjKv1uth/+CyPPD9kkpFHnh/iwYP9PHjwbV44reZuGhVLQctJy+SLBD12zQxnnvMOWaowf5anbYmUEeEKEEpL3ArEWSioJlNH+RsAt1/eTNDr0Mf+sZ4W2sKqy+Ot8RhXtoXZ09XAZc3mhaw4n5fPRFY0JN7acV0gwvchHM0dtV7G5lK8NTavr5okw/wQmfnCyfqrU9P822vaOHZ2Vi+D9KkbNvNnj/cxnyrw5tg8qVxRX1XaJcgr6qpzW5NaBsm48vnZG+Nk8opWFUJ9LFtQGJpO6MESI7NpPWjCuFp1yRL3XN3GZ27r0kPBW8NePZpuYCrOJ/7hRYajKWbiWe6/pZNkNs+NW+s41D/DtkYfvzg5Dag7JUWBXL5oEvyUpnUWC4YAdeXkdthILuJsr7YSVYBGv5PZRJZslZd+94UhZqrstISPMZUr4nba2b05zJHBqOnaHuqf5m+ePEXY5ySVLeBx2tZ0Je1LhciFu2FrXdWAnduvaObJvgl9B5zVzFU728OcnoqbSh8VFHAaFmVi16W+rsiJc6UAA59LxiZBLF1gOpGlqKg381SuiNOm7sBTVUyT4pHmoJvuliAo8PzpGe69tp1fnprmpm31uoyIMmYg8cXbL+Nnb4xz4Ogwo3NpZhJZ7r+5Uzefq3lRQZ7tn2F7k49MTtGtFOIz51J5/ca/IegmXywyGcuSKyjkCmaZKY+tyZaJlNhp1fnUup/ldQpddlvFez7z9hQvnJ5hOJrCbpO4rrOedK6g59Z99SdvMDSTZFOd1/Q6t8NGNlfkUP8Md/zXQ3ygs46RaIr/cOMWHnlh6F0HNF0oVlThBSKihAJuOzUu+4J5Io1+J5OxLHfsaObY2TmGoyl9RdQW9rAh5KarKQAS/OT4KNFkTj/ucdhoC7tNYa5QChHe3uRjPpUnls6ZzJHlZaDOF7G178Yti2a//87fHeFQv6qY2sIeOurUKgVinLJN4revaef0dJwzM8lS2L+hzFKt104kmcdjV02ANhsVO6rz0dMaYGgmaTIPVYu2upBjRoQJqrc9yDfu2smXf/iaXt1EEPLamU2WPveBW7fy2du63tH411NUoWiXcfj0NEcGoxV5elAKMXfJEhtrPZyNpPSFxK1dDTw3MKNbLJoDLm7a3sCPXjmn36gdsjoBc4o5EhDUhaJdthHPFKrOg+4WP2cjyYqFVHmJsdG59KLftchFe+bUFM8NqFU7mvwuGv1OXhutDNHvbvbxt7+9i88fOM5b43MkswrbG71MxLLMpfK0htwoSimYZHujj9PTyQqfnJDxaiWdjAQ8Mm67zGTMvBtaLJoZwGmXuKwpoEccvn+Dnw++T619+NdPnuLtiRgTscyCEZEiSnOxjg7VsKIKlx3125pP5xmdS+NeIBzOblMfD3pcxLWt0NYGH3abxHA0xZHBKEfPRNj/whmiyRweh01XBqlc0aS0HLJEwG3XbdrnoinTzsBhU1ebYpLX+xxatXUJv7tkbmgOuOhpDdDdXENb2MPtVzQveqZb6tVVlt8tMxxNcah/htaQW5+whaLCwbcmONQ/w+UbAvq1CHsdhndR52KuWCSeKZDQbmJihrodtgXNfV6HxN27NmKXbSal5bbb+PiOlgqTk6Bcnjx28yeISCqxuTt2do6n+ia4dkut/pyuphrcdonZZJ6w18H2Rh/Agn4yC5UDR4d58ODbnNMWMeVKq8Yl6wucTEFhYCppupEe6p8mnVctDr3tIWq9Dh49es60u8gVVKUF6ErLbpOwSyXfze7NtdRrUXdGg9tINGVSWmJmGHfrQnn88NjIgtG1YleZLxbxawEjE7FMVaUFMDybYXgmyYlzc7rvuX8qqfsAR2bTpkXw4ExSrxjS5Hexe1MYu02ipzVAyGuvXpRUQ5bUxWGF0rKVlFa51VCYU7N5xRQm/9pojMOnp9lU7+O7n9rNHTtbgYWDrcT75gqFS2JCtBTXBXLfdZu599oONoY83H3VRrZpNzRQqzk4DE6ke6/t4OmTk0STOew2GI6mTCsokTxpA369ZwOAnoDZHHDR5HfRHHTzr3ZuYKMh1D6pSZnYbeWKmKKqphM5JmIZTk0kiKUL+mQan8/QPxmnbzzOcDTFf3q8euTgwFSce779PAffUk0ev3V1h+7LypWZWkSu2vPaKjnosZuU6px2oxd+KmFGFcojnSsuuDtK5hR+9vp4hamp1ufkseNjJDIXlhBmNA+FPA7KrZEuu8RINMXHd7ZyfWcdAEPTCdJ5BZcsEU3mGNNuKqen4hV+P4sSd+1qo7c9pM8Ln0s23Vy2N6m+EqO/xXg86FWVzXw6z7Gzs/SNq4pD+HD9ZX6f3vYQIY9DrWWoyV5TwM3bkzGm4lk8DpspgnQundd9OGJH5nPauHvXRtMiD1R5/eMfvV71PK/eVEutz8GRwSjJbGkedrf4Tf5mQZ3Xzr9/5CW95iKgmzK7m2vo2RjUAppUhILJFRQmYhmOnp0lX1Q4NjzHbDLPnLaQq/c5qNe6Q3gdNt6/wc/f3LMTt7ZYM44kZ7j3hL0Ok/IKeoyLTTWBXxw+MhjlL376Jr/zd0eYTWZNC0ZXmQaMJPPYbRJHBqP8wT++suwyYvm4LpBan5PhaJJzsymefFO10wsTnpo6pJaqGZ1L8+jRYd3kkS9Cvljdf1MEzkQS7LtpC7OJLC8ORfRs9PLK2QC9bUFePTdnWvUIs5fAaCYxWgaMPqS+sRgDU3GTLTqSyPJ//M+XdBNjW9jDbDLLTFy9EUkLbI/EjkisIF2yjUyhaLppGMvS1Ne4GJ3PnLeEj3hf4/kkMjn9vCTUgqTlhXeNiNe6ZLh2Sy0/e2PCdDyTV9h/+IxaBgvV1yHy5yRJRGiqyaefumGLqZDwcrd7WGvU+pxMzJd2Dl67rC+qalwybWFPRdmtIphM7+WJ9JIEHbUewj4XRwYj7N5cCyjs2Bjm/lvUVj///jsv6f6joekEBUXdmadyRWo1c694x5mEWv7rrbF5krki6VwRt92mL/I21XlJZNUis5e3Bque51/+7E09X0pUltgQ8rCrI1y1mkc0ldfl1bhQKyroynl7o4+JWIbGGidT8azpeYWyLU4mX6Q54GJaq+0pCHqddLcG2VLvVcvKaZNfklSzajxTwGWXTL29wl6HnoLT2eAjX1A4G02ZPv+JE6Mmt4TA77aTKcsbE+M51D/NgaPDyyoj1o7rAhiYivPb/+MwAbeDoMeum41kw9ULuO260KXzRSQJAm5b1Wg+Y2LlkcEos4kMT745wdBMkr9+8iQDU3GS2Tz3fqDDlCjYNxar2KqX7yKMhx3VPhx18ovkWpGXdf//Omryi6WyBR59+Zwa4bXA+/S0+tl30xZThGFng9e0qnbZMJmERjVFU1fjJOC20xauTNY2YrT2zRnMTwrgkBeevjapdC0yBTXkvxq97SEePz7KcwMzRGKlG69DVpVZQVGV8mcffZWRaIoHbt2mNwK1UBmYivPJ77yIW5us9T4H6XzJNBzPFHjs+JhJaQmE6d3nks1KC9Uqdmoywatno/S2h+hq8nNkMIrHKeuBMmJB5bbbKGh+Yr1NvUFpgZomcuzsLF5n6bv9ed+k/vfAdJLx+Qx7uhq4/fJmfvt/HObP//lNIokskUSWP//nNzkxbI44LSjqDu2Zt6e5ZlOpeoQsqXX+HrznSt0ctxBC7ibjWVNEoU1TOkZCHgfj85kKH9ih/hn+46Ov6rVQwx6H2mesp4V4pkBng487drSaXhNN5vRE66HpBGciyQo/WPl3JnaV02UVOuoNRYxdssTe7qZFz/ndYgVnLILaVvt1BqcTVcs4bW+qYWI+vWCBSoFDVpMQ3XZZj3S7vrNOd+6WB1eIIIcbttbrQRI2YLNWh88mwdZGH5F4aeLZJDVMtkqrL30XVNqBSPw/d+3gpaEoPzkxesH+G/F6UU+wOeDinx+4iYd+2W8qrHu+IAlRRuedsr3Rxy1dTaRzBU5PJ/jcbdv52RvjHB2KkC8UGZ1NLdottnxF75Il7rtuk2nsUHL8ix21yy7pOXLnC2wxsh6CMyKJLHf810OmIKQGn1Ov1FIxHtTFyIWUoyyvaSnKqfW2h9jVUcvP+8YZmklS63Pwezd38s0nT7Gp1sObE5UlphbC57TpO4par51N9T52ddRx+PS0HuXY2x5iKpapiNa7Y0cLAE+8Nka+qPrX3hqf1+8HYa+Dg394C9Fklt/4b88RqyacQK3XQSSZo8YpE88WKgJb7DaJoNvOTDJHb3uItrCbJ16bqFBe4nUeh43//alr6e0ImwobR5NZPvrgM6Y+ZAuxWD3R5oBLDxBbqNnlNZvCPPTvdp03EteqVbgMiAK6ghqXzEeuaOFQ/7ReB+32K1p47PiY/pzF6pB5nTZQFGSbjQdu3cbXf/rWgpMD1Ki6aDJnEhijkltscp0Po/IwRgO+U3pag8wkMqSyagJ1tegluwR2g1I1mjcvNBIQFlcaxtpw1cYgvpfyBoK7N9eSyuZ5fWReX52XFwre09XAY8dHtaipOr77qWsvaLzrQXFVM2k77RJZwzW+kO+4XYs4LH9eT2uAkxOxqpU2oLQYERGLULkQvBjOVw+xs8HL9Z0N/OjVEebTeZMMGe8BPa1BPE6ZaFL1PQsWuybdLX7ORVPMp/N60nJryI1DtjE0k9R96MPRFN6yVJLOBh8P37uraki6+K7K71ELRSqWF6oWGE3/5cndxoLJF9KU04oqXGIiiSxtYQ9tYQ89rQFANXm8PjrPx3pacNttZApU9PVREwElPthVX/GeyWyRZE4hlinwn/9ZVVrlVjhjW60TI/OEvXZT4zijQF6s0gJzUEcmX+SDXQ34XObBlI/NIVHhgD4xMsfIbNpU9aOcvGLeCRrvB8Znex02uptrqtZ6BPA4F5uu6ju1hT2E3I6Ko2rkJialJQFHBiOcMCgtUCPihJO7Jehm/+GzBNwOettDdLcErOAMjUgiy8hsisYaJz6XTTUT29QINaOF633NNVVvNH6XHZHXOzGfLiXrar9lCTbX+yqUVqPfqZunxQ56JiGCQmzkiwp26fwllCQwmfE2BN36+56viO/AVJL9h8/ovlijSa+olD77xMgcRwYjJqUF6mwNetQ+WOWBJ31jMea1YJJOLcI36JZ1k+Jjx9Xu6GGvQ1dajX4n+27cwoH7r1swj+quXW10Nvj01BxR3qlQLOJ3y6Z7j90mMZ+uPs+NbVQChhJvDpvZJ5cqTzhbQizFtQAHjg6z//BZhqMpru2s1ydi39g8Dz87yC1dDQQ9dlxV/Cz5olLVoSkw+l/EYli8f40hyqfGJXNiJKZPlOaAa8FQcCj5ohbySYnw8GpHf3VqmkRGYffmWr3gpnFV5pJV807AVfn51T7Oa7fhdUh6wzyHLOlFQQXNAZdeMBTUAJK+8bjJLOtzqFVF9t24mfuu21z1vAA+vrOVzgYfw9HUgmaqQtEcDixOrzng4sq2oF7ZJOixk9YaUMbTeT0tIJLI8vCzg0veiHOt8sjzQ+x/4QyT8SyJTJGh6aS+KCkU1XJjm+q8/LsPbNJ9UWKuBNx2Ypm8wQ+p6AuWK1r9aqUJRV0Y7rtxs2kxM5fMVeRRJrMKdhtkNLnLK6Xv1+soKQbjFFQoKSiHLDGq9W8rn8/Gf42yJRZxNgnmU2ZzmYK6GxSyZPxcmwRNNS5aQx5OjMzr1TPUFiol+WrwO/VWPHPpAo1+VVZEAYPbDH6kyVgWJBY1zdX6nHzjzh20hT2EvQ6c2r1rJpEjli7ofe4k1HuYsXTcQmwIqN+LjUp/+4XbUt45luKqQiSRZSae1VbYfr7/0tmKr+C5gWnmUnkm41l9dS4IuO3EUguvyo0KQSn7PWvwN8UzBVOpmUgiu2g1dbHaKY9EEojw8GpHC4rCnq4GOmq9VZWuT1NYU4lsRSiqqIdmFM5kXt1dihVhrqDo4fzCkTs+nzlvnblErsCxs7N4nPZFhfKpvgkGphKEPI5FK29X26WOz2d4ZXiOXR1hOmq9uo9iPp2nbzymmw29DskKzjBhvpjGa1tQ4BdvTTI0k+T//tHreiRoKcJO/cO4mdoY9rKnq4ETI6UgpNagi+Pn1F19c8CNS1aVnEM2zzfQInirfL/JXGnlv5CVQlgKRFNJW5UFzqY6Lwc+/QFuv7wJu03iaq2VR1Gp/FyfSzVhJrJqV4iH770asSbd2uDj3+xuN0UhXrMpzI3b6plL5fV8yCs2hNi9Oaz79kR+lkuG67fW610ZxFBfPbt4qbKBqTif/8FxhqMpTozMEynzbYtzbgqUFgkOm0SN28YHuxoAtdxWV1MNNS6ZntaAHpFbfZm+fFZyS3FV4cDRYR5+9rSaTzIWqxp8IW5mYnVuRL3hVSYw1nrNJizxtRp0U4VgJXMKjTVOvQp0JGkeS7WpYSysaZfQzQ1QmYAI6srw7qta+f0PbuPHx0eqvCOmzy2/GmJHmC2q/qFqrSaMgVUzZc7c8sip6iy+ertrV5sawp/K4XPJ+nkuFFlZTmONkydeG9NDqxsMSlIMvW88wctnojz0ywG+9eTJdW8y/PjO1gUT8aE0L4QSEt+J2y7pQQQbtEWGDTWYYWI+jdch0VCjmgP7xhN6VZPx+TSZgnqDzRWoWuoLFm+VY5QvhyxR73Poc7M54KKhxqWPud7n0JL3g+y7cTM//L3r6e0I8/zADPmiwotDEX2XXuOS8TpLc63W6+KGrWpu4Ewiw3/8wauktWl/ejrJ2GzJb+112Lis2c/N2xvpaQ2QzRX1xdeRwahJkYAaJbv/hTN6nqM4pblUbtF5+bXH+xiYSuBzVb9A4ntq9DvpblbNjbmiQjxdJJFVFepkPMvJiTjxTIETI/O0hX0E3XbTfUVEFadzy2cqtPK4qrC3u4lfvDXJ4FR80R1Bc8BFo9+lRx+dL1hiriyqSEENb51NLR7VJ8YgSZWJ8+Jf4exVS9gopTJSLpmrOsIMTCeRUHNOhBPb67RR47IzGcvyzNvT/EvfhEkJt4U9ZPKVmfjlGJ3h5RUTBNuaAvRPqmbP8ktkK5MjY6QXqDeqaCLLwFTc1KE4ksjy0C8HOHx6mmgyp+98B6eTuhAaky8Xc4gbv2e/SzblrYmRBDwyh/qn9UhP4B2XgXqvEElk+fyBV0nniwtWXy8nr5Rk5vR0gnimQCanOv+LYMqzS+bU76M8T1EEzlSTNRGUky+WmisuRq6gMJ3I6TuaRKZAzJDcLiJU77m6Da/TTjSpRugJE1u2oLCrI4zXKXOof4buZj994zEcNgm/S2ZDyIPbLpnqLIJqhvuXvnG9TFIyV2T/4bOcnCjVa0zkCjx9cpKejUHeGCkl4osGl1AZCHZyIs7JiX68Trsph0qts/ga0USaoMdOa8hTkXMmOiWMzqU5MTJvcknINuio8+mdnLtb/AxHk8TSBQ6+NUE8UzDtUMXu9UJ7+10MluKqwo9fHTHVrlsoUjCeyetRN8aaZwIR8SMK5hYMCgXUyL72Wg+zI9UVV73WqluwWHCYOCSEXHxGLF3gp29M6DdtY4RiMlskmTU3mDTeEO77QAd73tfEbz182BR1ZFQsNmnxXkchj532Wi9DkYS+AvfYS0VPZalS2dnKdklFBfYfPsvp6SSH+qf57uEz7LmskdNTcQ71l/KzxMsWjOos645spLu5hoEptTFlLFOoqNrt0lquGKPNzufAfy9z4Ogwx86qJYJkWaJYpkUWWiRMzmcYn8/oq3LjFRRpCAG3nYKikMgUKvwmPqedWLqgJv/azJ0DnHKpmKxRUQiZ62zwmboxi8dHZtO47DaT0hK47TbG5tI8evQcD/1qgGgyx/ZGn648jp6JsGuTWnx6YFq9UeeKCn3jcZPVpbw1z1wqT3PAhcMmMZfOkysovKrliDlliZDHyXA0VRGCny0U9cjY8kIEH3n/BpoCbpLZvN5yJZLI6gWzBbJU2cQzkyuYFm/GUmuFIjx+fBRQlZbfbddlVlxnEZAihmS3wdBMgmNnohfdHXkxVqWpUJKkvdrPX67QCPS/xOQuLwsD6pcW8KiPVzNbCP9OXildaONkq3HIporY5cym8nqtPCOLBddVM4zF0vkLdpMa7z9/8bOTPPLcUEVjzGs31+l/L6QkhI/Z7ZCZT+eZT5VKUKXyil7m5mM9LXokl1A8sXQBh01V/MLsU+OSmdf8hsPRFPtfOMOh/hndYV1tLMZrEXDb8djlqscDbjs3bGvUa0IKulv8+pgzBQW/204qV1RrxsF5E0uXk5WWka4mv25iK4+Kg5K5qDxQyNgI0vg8gAa/i6DHzu2XN3Pj1sqoXInSAmtD0E2wLHq00e8y3dCEua2oqN/xRMx8wzbOF2M6SI+hakY6X9Rv2tFkjrDXwbxBKR47OwcK1PocevSjt8q8MDaOrK8p+XgT2YJ+LTJ5haDHzvf2fQCX9h7dLX49YEO2Sbhkm951QtAW9pArwnA0yfdeOsuDB/t56Jf9fOvJU/zud1+uUH7l7gZQLQ4uWTLdW4yfIe5lI7Mpfeelnqt6Xl1NNVyxwa/LcL6oLgge+N4rFZ+1FKy6PC5JknqBexRF+aIkSU8CX1QU5dgCz12WHBXRNPGR5wfJ5BU9gReqmwMDbjsht4Ozs5UrGVCjj3xOW9UJUw2vluCroBXI1CTM75bZ1uivqOG3EM0BFx11XnxOO8+8PXVBzRiN59cWcjNsiPATJqFqlb+NiB2moNbrIJHJVyiG3vYQHodMLJ3lxEj1IqXnQ5iEFlrhVzOvCoy75J7WADvbwvzTK8MkMkUcNgh7naZVqARc2R7iig0Bwj7XeZtNLlce12qQkVu/+UvT7gUqrQ5hr4NoMmf6bpr8LoJeO6enEovOx8XMuuczTYrXlpucqyEDslxqFVLrtZPRgioWwmgJ2Rjy8MHLGtl/+IyesC4SsMvzCUWul0NLwDaeozinnlY/iWxRv7bXd9bRGnLz6Msl37MwzftddvxuO1dvCnNkMGLKuboQU6k4/3fiibr7qv+fvTePjuO87kR/tXVV9b5g30FwEyiBFEiJWkhZFKVEmjiWs4iOEz/KyeTRTmb0FDvjTOznN1YySexMYidOXo5jTWJbSk4mkfJ8LI1tydp3izJFiaQIcQMBEgQIoIFuNHrvruX98dX3dVV1NQBKgkjLvOfoQAS6q6qrv1v3fvf+7u/XifaoihdPJtmOG6jd6+aAD6lilQHEhjrDePSenQ2P94GZ4zJN86Bpmv/V+ueaRg652nbSNvTIcbVFTNFRdlssaZjMkKDlvqE+nmRzlITSy9z1Wo7nbKU/8n9ha3suCRwjCwVIFqbWjy0BAGIqkaR/+dTKghYHZ1DOV3QEZaFGDmr9XCpoASRoDdpmd1KFal3QAoCJVAEvj85jbK5egkUC2JxJI+NRK1XE/PVVbw5Ll1ftz6bDk4v4/pEpVkqs2kQK/RJHAiCAg2cX8OCrZ3H43MqSh9WwS8FH/uJXNzOoNzX7EhvuibJeEP0Kru2L4deu7caJmfqgpUqEiYZ+50uF2uWWMn1vvmK4FAuI2f1QBwla9FepguYZtGSBY+ALGrSCsoBzC0WctkqEdI3TcYyqXtsZJQISDIuztGqCrSf7Z/KckyZWAAAgAElEQVTxwJbuOEaTecT8EoY6Q3h5dB6PvDnFXieAlOYVkUO2TOiyHjl0vm5QuFHQop+TkuTSVzGg2BJgpo6Igk9ZQrP0HbQiQhHDyXzFgWq+bk0Cq2GXXOCixnHcHwD41Ape5/jvvvvue9fnfvjABJ49nkRQFhBWxLpAZQJ1yDndJAjDKzudiqEVA6zRSXtBbmZl9z7Mqw+zWNLg4wnKaCJdZBx+umHCju0I+AS2facO1ijxanLtFtwPi1ShilxZX7bM6LXUR5N5xwPGa/4sbTm4u58EAOGA6HC+llANfUaNypOTa7VIeV0wZi/1V2o8aiVNAEjlq3DHSh4E2UkD4HAPmfd69ngSf//caMNjvx92MX2krykAnnM+PmgwCikCpjMlpoYNAOtbA+A4Dul8hQ30261YBU7M5LDmXYgQKq4SnciTAfK4LakReQ5dURmKa10YpnO4nj7AZUtVvKyTuSbZNvpSqOjYs7ULg+1hiwCYmP041HeyxSrr11kEOnVWMYCn3p5BQOaJMsECuX/2pI96REkzWVlP8ljijda9YZKd8O1XtjnQl7ssuHsjMm0AyJar+LfXJvD1p0+xqk/UYvWnV2h/tvXG/UxR/b22SxacYZrm/+A47mGO4w6YptkwvV2NMsitg6345gujjIMrpoooapoDWOG1e1IlMjAckgUYMJEvGxjuieJUkpTBaBnOa/fRyOzlBHsi2IhubKA5wPpmOYtNPeDj0RlTcWImj/UtARQqBq7qDOOZY0629JagD9cPNOGxI1OOc3EAQqrQUAjS61LsnzEg89i1oQk/OkpQi34fh0LFRNRfQ0i5bT7vDOcUHEKDFT26/dxeIBqBAxphNg0A7kmH/7RrLf71J+fYgOvGthDyFR3b++Nojyq4+4Z+/F//i2xwRs5ncDHtYvrIA6+MO8AMuzc048VTc6joJrIlvW5XPp0hlEf7x1LYe10vFEnAa+OkV8IBWNcSwM0bW1k/yW1e361bTLLkQnJoBmGhoJ5KgUTjKW8R2KBPQEtIxq4NLfjo1Z34jw/8BOlCFWfmayXRsmaysp5hAo8cmkJZM9ASkhkA48aBBF4/kwbHm1goUNXm2rqtGPUth+agD5LAOwar6c6tEYUV9VE776PAc4ipYkPOTp4jvTpKUxdRRdy5uYNFrIpu1lHA0RJwtqTjwJmUgzZtzlVKv+8jmzA2l8fI+Sz+6M5Nq6YafsntuDiOG7Zq+ABwGsC+9/sanhqZQSpfZRmJZtbmUWhGnilqcPdg6XY9W9aRLxNRvGS2zNBo7ni11LwJQBaVifodTaM5DAA4dr4G9ihZKzpfMTCbLWPPti7EAjJuGIjj2ePJup3YXK6Cx986Xwc0EUAE6kKKgICNhUBcIjuzW75s4JFD0yhpJlSJZxP5HOob+0FZcAAu3OYTuIY7QDtak1ojQlGakbYGncPK33j+NBMiDCsiruyM4EyqgDOpPIpVA3//3Cg6Igr6En589iJB4S8FH3GnK29P1xhevHYAhllbbG9OpLGlJ4ahzjAk6/s8MZtHIuDDDg9QBnl//e8opZDPmseKqksLjA40+RkDh8CRNdAXr1EfzVu8oM+fSOJ7b0yi35p/zBQ1R3ne7h70AT+bLbMd58nZHDIlDYbhvBH0OoKygA+tb3JAyDPFCpqCZG5Mde2W3ImH2uDBEVFF/Ma1PXVBS+QBxXqLT3D6XG/cjwdfPcuGlwW+nhGePg9ifhFvnF1ASTMRlAW0hWXHDKYJ4ImRGXz65rXYua4JMf/qBC3g0gRn/AGAg6ZpPsVx3DcBPGma5r83eO2qgTMePjCBDa0h3Pe/j2JzVxgT6RKOT2cdGd5KTeQ53LSuCcems3VUNUBNMpwazwG9MT/GUgXHMW69ohmz2Qrbpi/VwPYyOjfyTiwgCcivcKDQ3Twf6gwjma2A5wnSKGrpJL0Tawn6lmXb8PFALCBjsVRlkHW/j0ehYiwJ1vC6n42IRoHlSURXEZxx0X1kNJnDL/3dyww2bc/C4wEJumE2XGthRWTvo8z7YYWgCV84mXTc79aQjFZLJ22hUGYgCvpdeX1nEVVEuarXJS3b+2PY3BXD/S+edpwbqO0q3MCjDa1BzGRLuK4/Uafn5nXugCygN+6vm5PiQYimV/L4oHNlS4FL7HNX9hEN+++XMvoeuvNrDcqYyTXWtnOblwJAU0BCR8yPuWwZU5kS7t29dtk5xw8MOAPA/QDWcBz3qwDQyCFX0+IBHz71oQHcvLEFH7+2B48cImq8XkGLZk12Hj4OlrqpBavVDBPPHE96LqbhnihuvaLFwcVmmMCZtBOwoBkmjk5lcXK25hAmSFCgtFBhhWc1eK+V4G68uifeqbWGZMYIQC1f1R26W42Mg7P3FPDxOD6dxfnFEiYXSpZApYauqOp5boA4RaRB9pzKVdCX8MPv4yELZAF32+6dyHOoGEROvWob8ilWDJLdryBoRf0i2w3b4df7blqDfTvX2HSXLlrSd9F95KmRGcesjz1IiByPsAVV5zlAEZ1rb7GkYagzQgKMZkLgOSyWNDz0+rm6JEE3DBw+l8FHr+7Ev+67ga0LE07OT7tlilpd0KLqvIfOLbBRDDt5L40PhgEHqfWp2RwWChqeGHEGLXoNbsuXdU9BSQP1QSsgC47dKf1sNw40YaA5gK/88pCDOxQgVY6QLOB3bx5genT2ecKJdHHZoBUPSChWDQcYqzWqYN/Ofgz3RB2sMW6jl1vQartdagtFDYfPZdj5V3PO8ZLbcV2IrbZkAwDGzvDDI+dxzgPuvr4lgBOzedy5uR3PHk9CFnjcsDaB+XwFHREVD71+jr3WS26DZnp7r+/Fo29OMRaNoDUsWxvo865zB3w8QorkcHgKQ/ayRjsn2ncCSNBdKGp1DkA/a0QV8Ye3b8QXLQ66Rtbomje0BnF8JocBS18MIA4hWfeiP+5HLCjh4NkMBpoDOJcqLNkXDMkCwqqEbb0xvHo6xUABIkeGmWkJi/DcNb5eL6MZacDH41eGu/F71g6LahxdDDj8hdhqViU++a39dXOIPIBmV/ZOYeICzyGiCEgVNLSHFZxfXPoBa7eOiIKumMr6YtToriSiitANAzkPYBNNSuw7LGrxgKWSbF54BeNCzd7Xojt/KscSslSiFZ8ITTdweHIRd25uxzPHZj3BS9S33om0kdc4QUgRcMuGFrw5kWG0Z17mtQsc6org+HSWlRgpxH7vdb34449eueS1XNbjeo+NznIdncxgU2cE979w2nOR7NvZD9Un4rsHzzGpARo07BpBS5nAkUHdfKU2jxSwApcscBAFDvmKwUqKduaJRjbYFsTpuYJDOJHaUGcEY/M5B3VOSBY8HaSRLaV51BaWka9oy8Lm/RKHgtWHi1v3zV3+oeVN++9oAuCmA7I3lb0eQi1BH9oiCnvY0ocHdbTNnSEcmSIErwEfD1Hg0RqSGUM3AHz+jo0rliT/IAcuAPjEP+xn9FdNAQnZUm1WT5V4BH1iXTmJBg8qBnnoXBpjc/llacXsZk8AZZHDlu6oYyiWWnPAh3SxytbpUGcY/U1BPHZkihHjuvXZVmpNAQlhRcTpeeLfOwcSeHHUW2X7ndqF6ORRcVe70T4uvVeNgpzbV+yBLaoKWCjqCPh48BzHnhGyAHzsmh4oPhGHJhYcTEPUtvfH8G+fumHJ6/4glQovCXv4wATuf+E0Xh6dx/cPTTFpcGpBmchtlKo6XjyZZAEqXahiuCeC3rgf168hEFlZWHo+QjfBypD0C4n7fRB5kqnSDEfgOdyyoZk5mhscYj/Dqdm8Z9ACANUnoDtKms0Upk4X5ErYIIQGQYuef3qx7AhaFGLrvgMFm6OlrKAFAFQ5pTOq1PVJJJ44oiLyjqDlEziHk3s9imZzFYxZCLGIKuLnLVkIeqWn5wnHYVSV8He/vhVXdUYd0Ob2sLLqkuQ/TfbZ29ajO6Yi4ScDuWXbA7JYNdCd8CNooQJoSaysmQgpZHfx2FvnsX8sjduvbMeNAwlPmDw1+ziFvWpR1kwcnapnn+E5YKFEgpbEk7W0pTuK507MomJjkS9pJnwCh5ZQ/byXgBp62O2+c/kqztqS0oBr3MNe6qbley8wU1AWHND1K1oDaLbAQbLEefqj/dj0vpQ9JKWruum4V/R/Q4qAvdf1snaAaR3zlg3NiKoSblxbm70ywTHFCHtiW9YBRRKhSoIjaNmBH5u73nuqJ2qXd1wNLJWv4CuPvY1H35ysBQor02ukjipwhMJoPl/BS6fmce/udfD7BAKvf27UUTa8UKPlFrvdubkdPzxynj3A7TsYt1E48VIKzXZz72Yu1Ciowa6I6nldcCmo2rJC+pntJR6aIa9vDWAhX61jtrCfKayIKFa0hp/DDRKh53ZLtXfHVHREVewfSy2pMOu2D/qOy0v9mK4vWeQhCt4ziW67c3M7BjsimM9VGHDCfcyIKiL9DgE99mpCTBWRbgAa6Y6pUCUeY/MFVHUTbRYoxMvc69a99u7c3IHnTsw2BKgoEo9S1ajjMFxOeRkAFAEo6SSwRgNi3egI4FQ4d9udm9sxvVjG6dkc2xFTja7Dk4usskP9Yd/ONRg5n3HwggIEkfih9U148NWz8Ps4hBUZAVnAaDKPoc4wvvNb25eFw1/ecb3HFg/4kMyWHWUEOoWv686FFZQFyAIH3SQM1y+dmsdwTxQf2dKB+VwZ//E7P6kLWutb/HUAiKXMSyrkkUPnHQ/lQtWEX6oxXfAgjVjAIsF0BS2aRdKsGKhJT/Q3OzkS+xJ+x/DlctZh7eh0w2QZYktQqltwbhfVrYcez9VmwUzDZGAJ+n1kClodGa/78bxYIkHLDgIhjA7k/93IRhowD55dcJR4J9JFbO6KMJLWP/n+yNIf/mfEbh1sxXBP1LHzpwrgZc1YUdACgMePTuPLjx3DyPlFz12XYcIRtDgOSHgwYgAkgFBXEfla0KK7/rTF/+leyQNNfkykizgxm2e7lOkMYVO3A698AgefwNWtW/fae+rY+YZVlpAssJkz+9B2QK4PWl6HoMUMHc55R/tsaWdEQUgWHQP29FM8ezyJ/WMpRxl3Il3ESUvfyyfyGGgOMH84dC6NNU1BDHWGQXVzRR44kyrg+Ax5T6FiYnqxxKiqMkVt1Wa47J/lsnnYFz88iL4EmeUIKyKrw7sT2FxZR0QlNW9arppZLOEL3z2M+18cw/h8oY4t48RsATvXNWHPtq4VXYtP9KY/cmtZFao1pgsDTk0c93VT5oxy1URAJtenW6WyDGWisF57dr6AsmZiCQFm2zXxbO4lrJAeFc8Bs7nqsnQ9HMgciT3AVgzUUQTNZMsNYer2Y4UVkV1LUBZwZUdkRZBkt6k+Effv3YZdG5rxxQ8PXvgBPoD21MgMDp5dQNUgPVlKLtsZ8Rby5EAG5Ic6QxjuibK5q7Jmojum4qVTc0yenroLJaQFag9x0yQzV80BH2SRw+2bWrFnaxcUkcyE0Y2GZtRK4HTtt4ZkFKsGQyVSG5v3BiRkihoKFYPsuiMKKrqJim4uycgCAPmy6ZinWt8aYPNi2bLuKPeJHNAVUSBy9Y/jkFU39xrdsl8BD4I8pjH2xGwe2bLmGLCnLrToklein0WzEvLzmSJGk3n0JfwY6gxj/1gaD756BocnF6Fbg9RRVcLe63qxodVZeWgO+NAdU/FXH9vS4M68N3Y5cC1hA81B/OMnr0Ffws++bIEjk+ruQDSbqyBiIw1cKFQcDWM6NsuBLOLhnijS+Qp+7GroChyYOF+zTdY+rIiOL8vHE3RexYUQdKsxF5cgC81XyGeq6ibyZZM1nBeKVYbMswdBWeBQWkG1Jl8x8NyJJADiJO6dnpcFfDxCsvCOUF08R8ofbgZ/0zo/ZefIlXXsHyP32+9bfunTjLkjoqBY0RHz+/Dt37x2RWXCnwW7a1s3ozq6siOCX91KlKGnPYAWtJTWE/djS3ccB88uOMpodIe7WNIg8rXdL73XgmsNNQUkJPMVlDUTB8+k8ePT847qCM8RwtyWkOygfJqxSsAhWcRam/ICPbYkcFjfWq/IAADX9NV6NuJS3EggQCC7ukBFM7G+ldDByQKH69ck2N80E3h7Js/0+iSeg8/yY81w7szsZvcV+mfZIghoDhAgUtxfG3lp1Gav6gQsQ59f7REFMb+E8fmCJ7jMBOnxvXAyiQNnaoQtssgjma/gE9f1roqUid0uB65l7NE3p1gWKPIcPrSecHrduaWjTiI+JIss6Lgho3R7b4LMelCyVvfC0E0wUMW8rX9zYtbJ/VcxiHCcvaXFoZ4pgsCAeXjt1/IVw1HmmctX67IxaqoIViZYiWWKGnw8h4AkeM5O2Q+liKhr/l6IGSYp7zVCMfbYWA/GLEJUcYmMmf6F8iNOZUq4/8XTePjAxDu6vg+qxQM+fOMTW7G9P479Y2n806tnAJAds5vdxQTp39xzyzq8cDLJfudlmjUIPNQZRlU3MdQZgW7Wvg+AUBPRHUwyV6nzI8Mk/JWz2bKnKkO2rOHETJ491OnPK9pCuGfXOoRsKtoACaw/sg0gF5dB+5kwUajorPQ9Pl9Ad8yPmF9CWTfx+NEZB9irJeRD3C/CJ3CQBBLogBp5LeDkEZQ4InkCkAS2K6piqDPMfMgn8ZjOlJAqaOw8PTEVYUVkc1p2f57OlNgOcXy+iHShavUVq54zlTxIT33ExtRT1gzsWJvAXdu6l7w374VdDlzLWm11aYaJk7M5bO+PY3y+AN5aSbLIoSuqYmQ6i5JmOFjNmwISWoI+NAV87PeTC0vPr4gcyfzsrrGhNYj2sPcAcMwamG30IKhqhkO6wC4xbi+pqx49LFr+uaorhpYQOf8SjFMOqxhm3cyYwJHdo/2zRVTv0pI7MaD9OvfxAED18Z4ZZXPA59CE6ksEcONAAotFnQWo7phzGJrex8lMiQ2Gb++Pvy8O+dNm8YCPURLR+xbzS/iV4dq98gmkilCsGnj+RBKbuxqjB2nRIlsi0vAHzy7gyBThhEznnUKH/+HKNoiWkoKvQSLCc8COASdDeUgWcPumVig2Gjb68/DkIv6fR44iW9bZ74IyZyWF3sEq4OMx1Bl29KyTuSrG5wuI+SWErXLfM8dn0O4xxC8LHESeyB5VdNMBsLL7NE0AZYHDzvXNODVDBp3HkjmcWyg6FIcnF0p1xNbjqSIWSxqS+QpifskhwunWTSPn4bFjbQJf/9jVdRpjBoCR6TziAec5tvbGV7W3Re1y4FrG7r6hn/VIFJHH9QMJ7B9L4bXxNIKyAJHncONAAucWiqxUxXFgD7w5C/k2l6/A7xPrHsaAs1btEzhoZg3yS4+ZL+sNBzbTBQ2aQcqH7vWnSnwd+um2K7wh3V6zYbpJSmWvjadx3kJYRfw+B9OH2+J+sa6Uaj+eKgmIqCL64qR/OJMtO0qcEgcMtgUcDtAUIMHfvXOkrPwZa4jUbcl8BUemakwGV7SHGZSfvnwiXWw4xEmTjOvWvD8O+dNoW3pqZSEeZCTkLUtuPqyIqOjkod8dU1GsaHjk0HTDY0VUGXuv62E+J/I1tpOq7QsOyQJ+NDLDvsu+hB/dMbWO9cEwgVddM0bZso6yZqBUNdi4AwU/DXWG0RJ2HiNXNllPrNW266MPz954AP1NQYwmcxhwgZrShSriVsk/W6qxaog8EWEM+HiU9RpFU3PA56mkMNQZxr6d/RhsD6GsEyYeuhmjP91Vnr5EgMn9uLFd6ULV0Tez71hpgj2bI+jo//t7R5iQpNtUqXatwz1R3H1Dn+fr3mu7HLiWsXjAh10bWwAQvaC3LB2moCwglSdzIvutaf4dA00QeQ7Zko58uQqBdyqKznoACuww2pAiMJYHgATKGwcI6ejW3ij2Xt/bkCYJIAvY/vDuiCj4xaF2x2tMANOLFU9lZcfntoJPWTMwlSkR0IR1bTdvaEFrg90fAPAch6jf2wFFngSqTFHDuG1Cv6SZhAKHJz3Ekem8gzpnLl/Bidm8p+hdpqgh6DqXW8uL3rfnTiQ9hyXZ9XG1nV5YEdkD4+4b+hu+52fdPv2hAdbroo+3Y9Z355dr3wtBmtYvYJ4D2qyAML1Yxgsn5zCRLuLGgQTWt9b3EyOKiGxZR6aose+Vytwn80TJN2wlfFS/igcBhrSHFey9vhdf/PAg7t29Flu6yS5JsKon8/kKTszk684JEN+ivV9ZrCWEI9NZPHJoCpmihpnFErb3xzHcE8GQJXF02kLrtYcVlvCZJgFSxQO1QCgJHJL5ChZLGms5UBOtut7x6ZULrh6ezLDyueFSdQfq+2ayyCHukhMClq4Q6YaJ4Z4I9u1cg3+4+5r3Lbm7HLhWYBQGf3hyESPTZBHmyjoKFUvvyvqinz5WywAXijp0w6xjWpd4gpSiGwx7ou/u0ZQ0A29OkED5o6PT+NFb0xdE7zKVKeFUMu/gGAwpIkbOZxxsEF6WKmjY0BZiwceNwpryoL+if5/LE3BHPODDvpvWODI7zQD8IufJpZgv6+94dmx60Xk9bsePqhIGmgN1czX0VfZGeW8igHhAwmJJw+HJRSSC8uXd1hJGe117r+9lIxM0Q5/OlHB1dwR9CT8+sb0H3z9cL1timMB8oVYGHJ8vYHt/DJs6I47kpSkoISDzaA3LNXFTyx/sMPKybmLR8iXqUQaAZLaM84slHJ8mfZnvvTGF/WMpiHwNabdcGT+iitizrathadInAPvHUti5rgW7NrYBqMmO6IaO1rCCgK9WoqzqBkuUaJVF5DmUNAM71jax8YCphSLuf3HM4f9eSENaufD7eAz3RNnzyD6I3AgoJfI8UjZ4fUQV0WQrz7eGfI5nAAeSaBw8m0Ei6HtffeRy4FqB3X1DP+7dvQ77dq5xII4CPvKl0q/aDrNWRW+i26oBzOWq7EumSD7AeyHOLpYhizxKmukQ5lupHTy7gKlMiZVesiVCxSRg+S//8OQiumzAhrgVwO0M3nb/NVxOdW1fDKWKXpfZFTTzgtCDAgcMdYSWfE2btQOk4wFuaYdWS4LB/Zm/8B82oi/hdzwQZhZLSOWraAvL2Lez/3JvawUWD/gwkSIjEwJHeqODbQHsu2kNblrfgvH5Av70h297EsCGFdGBoAWA07N5fO8gmX0cbAvi3t3rEJQl5MsGTszmPfXY7GbvydByIA1O2ZKGT37rNcbJpxlkvbqVxL1i083rm/HkyAyyZd3TX1XrmVCs6DjiUsmezVVx8OyCA3AxvUiqMPQZwAG49YoW7LtpDdY0BZjeFfU3kecYC4lXy61kA3VIAl8HrCDiqbayvO0z2EnEB9uC+PlNbcjYVGpncxVGYgCQe98dUy+Kj1wOXCuweMCHz9y2Hl/4hSvQHKztXnZd0cJ2Y27EXVEjD8tGRhkfKJJP4jmEFbGOFsYAqefT4UK31pE783Nr+QDEiUvWoqQPCB3AlV2RZRfASasBPNQZZmCUeVsAbfR+zQAeen2SIci8LKKKjt2g38d7BnHdBA5PLV0ioUKTEVWq679xAEamczg8uVg3R/bcibk60AdFkcqigC/8wuDl3dYK7YsfHiSSJibZcYVUmTBBVHTcu3sdcmVvxOpiSUPSJVWTzFeYjyyWdHzmtvX4/dvWQxF5B7wdqAUmO23TTeub0RVVMdgeQsL1/S0WNdbToRRFBMlI/HV9SwD37l6HDw91AHCuxZ+MpxkXaUSVHK2AgCwgEZAx0BzAP750Gs8c91779mBLvdVvJVwmCInByNQiHnz1DAv0bWEZAk/Knl7kOOtbAmgNyogHJEIxJ3BI5UqswqBKHFNusPey7RUOOwt9SPXhoQPnHH+nNHF0yBwAfnm486L4yOXAdYH2xx+9Etv749jeH0O5qiNdqBLWDIM4gf3L394fZw/RRqKRtBVTNUykCpqnsnGxquMf9m5Dd0zFxvaQo0FcsXj7qF3RSXgS7VaoGmxK3o6kO3wuU/cgH2gOOHnhrBeMzefZg8TuOF4zbQDJym7f1Ipr+2IsuANgjh7zS/j2J6/Fn/3SVSyDq1YNlhV7ZZNLTc5kSzpCsoipTKmu/0YzQ1qSkXgOfQk/grKAkakMDp6tKRkrIoe+hApF5PFffq6x1tZlq7eB5iAe/vQN6LIecBOpAr7+9Cnc/+JpvHp6Dh0NAD0hWYCwBC2VZhg4eCaNv376JEpabY1IVg+5yzruzetb2Vr78el5nFsoolDRMZUpMR/pjqn4m49fjX0712DH2gT+9uPD2N4fw/b+OLpi5DjFqoF0oYKnLYVw07YW7TvG+XzV0QqoVHUcnsxgNJmvK+kHGswN0pdNW5UVaiemFxlScbgniunFMlyEPbhlQzP2bO1CX8KPNc1BzOTKSOWrKOukNHgyWeshS8LyM5K/cV0fQ0a2hWVHUixwRLGCmmaQ585HtnQuc9TVscuB6wJtoDmIWza2YP9YGs9aGRUFLWTLugPZc/DsAquZ0wexyANrmwNsIfcm/EsCLgCCFnpldA69iQCOTGVRtCDmnVEF+3auwUc2k8yQB3DX1i589OqOOvgqNTu3X9yDNmdqoVh7MNgurNGMlCLynpIjhgk8OTKDh16fZBkqzwFf3bMFisgjXajiT34wgs889CYrMdoDopejm6gtWHetHQCKVXLdJ2eyjBUkohKQiSpxbA6oapjIFKvIlXWkrGuTBQ7b++PYe30fxueLKGkGvvvGpOdnvmyNbaA5iEfv2YEda5scD/n9Y+k60AP9irNlHSXqH7bvlQJsphfL2Put/RhNkrkrzWJvqFo9ZCqNE/X7sL0/Dg5gO42uqMJ6RoAd9m0C4PDMsVnsH0vjXLqAYllDWBExkS7iwR+fYSAF98r38WTAWHRBeKuGc12GFYEFo6puojUk16GKaXDoiCgOkujZXAWHJxcxs1jClPUMcSOG8xUdU5kixucLdSKXPAfQ9HOoK4Kq5tztyoIzERxoDuD2TfZ+CoQAACAASURBVG0MUv/ciaQDKKabpG8P1HyzpBl4ykOn7P2wyyS778CoQvL+0/OsHED1bJ45PovumB9BWXRoB/mEmi6UFwHmchIGfQk/NndF8Mih8+zf4/MF7LtpjUNWYCUknRTJ6EXca0c5ui3hl5AuVlmgWUrahJpdNmKoI4Tjs/m6z7kU8a9dwoJKvdjN6zMA5AGomd5kwd0xFetagnjmeBKKCMQDCv7fXx/GcG/M0l87hZHzWfzRnZveFUvGB51kdyn7qyeP4+tPn6r7fVtYhmmSMvq5dMFzOJial9SOW5E6KAuEck0RcfOGpjqovX1tSTyHqkvDyu6XF2r294YVEUFrx28/vlvaaN9Na/DqaBLHp3OOdeuz1JGpPp+XZpaXLMlwTxRvnF2oKz/a/22XWvLyb1nkcefmDpxJFeqY3rNlnfng3ut60RlTcU1fHF978jgG2yP49M0D76pMeFmP6yLYzX/xLOuHDHWGkCnqrOE73BPF7GLZIT5Jnci9ACOKyOheAMJgzfEcUi6AAX1/W1hGR1TFwbMLjgc3ZVG/EGd0B9GoKkI3TGTLOmOJDsoCwoqEppCMw+dIWc0etJYKdksZD6DFYuBudO0tQR/bJbYEfUjlK57lVKAWrOxGtcskrraju3NzO350dIZl4SuRGH8n9rMcuFL5Ch54ZRzpfBnPHieyP3Y2frcPUG00twVlAVXdsHgyOXzpFzfhB0emkQiIOHBmAcWKxoIf1W57N+aXeIaI5AAkAj5GGQY4EyW/xEMzDAbK2rOtC4+8Mcn+HpQF7FibwMGzGeQrVdy6sRWtYQUj57NMx8wr8aKfI+ATUKzoDfk97UkdzwH9CT+SOQKnD/h4wOQAjsgiUR+lgZGaIvLMDxINmOYBEpif+9yu97yXdZkd/iLY1/ZsYUSUhyezOJMqMBTPwbMLOLdQdPSLanxozuNkShpD/QEEak9RcvZvlL5/oVDBwbMEsUQXfVtYhmm9gAaUqF/Enq1dnpQtFOYasSTWaVVwoaixLLcrpmJ7fxy5srNPAAAfWtfEelvv9LFooLYAb9/UhogqOoJWwMcjbYNJz+YqDfnWgFrQsgNlipqJkCw4ypDPn0w6WBBWU2L8Z9UooKkzRljXB5oDWCjU1rlu8wVV5DyDlsQTXyhrplXuM/H1p0/ipVNzOHg2g8mFkmPH1hlRMNQZZnRTSz0N435CBjDUGcZQZ4T93j5oawLgXU/Ism6iL+FHWBFRqJKgRfWtjp1fdAShXFnH40dnMZstI182MJEu4P4Xx/DSqTn4rYeAO2jF/BJjvs+7ghYPZwm9qpvMfwyTlEyD1txcvmIgX621LuhZuhMBSAJBJgo22iiAMM3be8GD7SHmb8YltsG5HLjehQ33xvDc53axAWUA+Ni2HuywhNiiftGT+8/9K4kjA5TU0aqGiVPW0KIJOHjfBI5AXu19sfUtfkwvllkmRQNcoaQh6pfwsWt66ib6Kdv87CIZLqb+0xKSMdgWQEgRrFIn+UN3TMXGthD2bO1Cb9yPI5PESX08lmXKtpv7laqFpnrq2AzLlsOKiMH2EPIVo67MVzFI+XFDa02awt5rUEQClBnuibIAZi83hRURf73naseMzKrqtf+M213buvH5Ozbi/r3b8Pk7NuI7v3WtgxqpqtdQbm5WFPt3T5OxlLX70XQTQ51hxP01qZyR6RxUn4BfuKoDrSEZiqvPax9KTxU0TC+WkQjKuO8jm5gKhNvmXWjH4Z4ofm6wzYFEzZZ0HJ/J4oSFwCU8fvVSQaes2cmQIqBQre8ZyyKHdKGKc1ZPi4OzD22ABKSWkMyOT8dVYpb8ite4AbWYX8Joksi26CA+/8ZEDZikijwm0kVML5axvT+OdL7WFsiV9UuKq/NyqfA9MFIWGQPA4e4b+pAuVLDvwQMYtYZ/DdNEtlSto2Sh5RJV5FHUDHRFFbZo7X+XBWDHumYcOJPG1p4YXj+bdpREQjJRlD2ZzDsGDe1mL+eFFRF9CT+TsLebu4/kluyOBySk8tW63lFAEmDCYDxrK+l/uU0WapIUIUWoA4SIPOD3kWRgx9omVm4ZaPLjys4wfnCEDICHFBGVqs6y2YFmPybmC6gYRBTv9ivb8Ll/P4StPVE89Prk5VLh+2ypfAV///wovvPymHOH7dHD9DIqvtgZVZYdGAbIWlrXEsJdW7vw5cffhiwISOYqrK9MSIJTCCsiNENHoUKuia5x0RpVSRWqdeKjACm/NYfJtagSj7u2duHBV8+yv7cEfZAlgfW67OVIoKabR2cPA5KAimGgqpsWFZWJfNlgrQL75/Yqj3sZB2DXhmYcn8miYkMZu4325HasTTiEI3esbcLffPzqS6ZUeDlwrYJRZVgqPLgS60v4kcyVmOMOdUbQ3+RnYIwLNVkgu6qlGNfdisnL9apoY9xeF/cyWqP3ajCLPBBTfQ0dByBNb79PwIJHv4I24wfbgjg+m2fqyuycLqBHk61HIQkcycJNDtmyhr6EHx+/tgd3betelTmUy4GrsaXyFdzx1y84hupv39SKNycWML1YhsQBsaDM5vMAAiKQRCBXWjq4BXw8ChWiuRVSBHz82l7c/8JphBQRWY8KCCn1L7JzUPDQYFsQharB+tiNzO7n2/tj+LNfHsJn/vUNR2LoDgQUMNEWlpEtV5nfuxWRAaI6kS1rkASyQ7X3famtVNkcALsP9v42TTQ7IgputbhMn3p7BlOZErb3x/CNT2y7pHzkcqlwFcxeHgnZyhM85yS7tGtA6obp0Pg5PJnxFEoM+HgMNPs96/eqwKEpIEHkyc6lxQa9pa+3z2b4fZYycciHkELmPLxg6IyeynIMr6AV94sIKQL2bOvCd3/3RvQl/DCAOsiwZqAuaLl7fhXddAQte8WHQpRHpnMsaAFAVbc42VzOa2+sV3UT2ZKObFlDPCDha3u24FMfeneoqMv2zuzhAxN1TDBTC0W25qsmGW+g/RaBI7IZ7qA10OxHSBFY6YznSDnNtP4/W9JxYDyF3ri/LmiFZCKdMmPzs7JmsF7ueCqPZLbxjo6ubRq0Aj4e+8fSeODlcVYCB0gJMBHwsfnLzqiCf7z7Gty7ex1Kmu7YZd56RUsdx2exTHXzSGCjQcvuWoZZ/zAfbAs6eufUjxSrhk7/rYq16shUpoSXR+fY8POuDc2rFrTejV0OXKtg8YAPn/rQAAaag7jjSkJyy4MsLvsGiJa5OZAeV8YqjdGeUVtYRndMRVitOUG+YmA0WfDcGRV1orpK48q0rd5tgjiavTQzl6/CL/HgwKHdekDYy5nUL2gpIuKvB3lQSxUIldRTb88g5vfhpnVEt0wzTLSEZAbkcMsnxP0SqjrQYD4TLUEZMX+907j1ngoV0zEIbQek0F+vb/ETrrmtXXjqszevutjdZWtsd23rxr271zrAAW+fd5ausyWdBTLd9AZbjCYLyJZ0BGURMb+Etc21XhVNYg6eXcCZVAGD7SGHplW2TKRT7AGU9JAJCq9QMR3+IPFglG8+gUPYBXqiO7UnRqZxzEaGW9ZMPHLoPGayZexYm8Cvbu1GX1MAgFlXdjw1m6/r3dpfQX3ba4dFr1QRCVrw/7i+D72JWm+7apVX262BbTqXZWfS6Ev48Re/uhn37l6He3evxVf3bLnkghZwuVS46kbnWeg8E4V9U6MwYHuZrjUkYyZbZnD0RmaHFNsXMi3R0b+HFAEBn4jpxXLdXEkj8+pR2UsU7r/zAHzWZ+yOqShV9LqdVXdMRUjmMZutIpWvwEBtFmYlEH4K/7V/Blo6tFtfwo+v7dmCx49O4+hkBr//cxvwk/HUqpUEG9nlUuHylspX8JG/fckxNuK2CymD7dnahaeOzdSNkoRkAXdc2Y6HXj/n+L3Ac5AFOErmSxndDdlBV3bfjfklVDSC5hM4YENrAKIoAqYJUeAgCQL2j6Uw0BzA1t4YHjpwrv4kqC/bqyKHiN/nKCt6vcdng9fTkr4scuBgoqRhyWdKRBXx7H957yHvS9nlUuElah/Z0glVIiS58YDEZEoAsshVqQYppyWKmSwh3VwoOudHgBqJLFALWm1hGc1BsmMKyDW5Bd0kx8yWdCwUao5MUV10JyILHIPgUvMCVszbApH77wYstCPPMXkJ+zk6IgoEnsPIdB5zVtASeLBgRX/Skg9dyfYVfdPaJsQDEu6+vpfdq1xZR0AWWAlUlXj8/m3r8dUnjuPAeAovj87j+ROzl0uCl7B1xmpUUF4PJPdSFNEYyfrj0/NI5au4qoNQo9FXZcs6fjRSrwOmGyYEN+bdsoEmv4OGCSABiwYtkecgwpqPEoCrOkK47YoWtkvTTSLPk85XLFHMDPaPpRAPEHTf40cb96/d3heQJUwvltEWVtEdUzHQ7K+jkTNB4PX017SkX9ZMhmSez5UdjO8A8f/WkIxvf/LanxofuRy4VslS+Qr+6snj+NIjb6FYNRDzS9i5tgkvjxIknMiT8lwNwcSB5020WCS4iyWNsUgH5Bqtkp3BmVq2XK3pBLkcmpY2SOZlwV2tjIuKMJZ108EC3cjsGyJ7ac9+RnvfySdwGLB0v3JlDePzZM6NQokdCqzWQaJWWZAexe7ATx9PIpWv4iuPH3f02fJlHRWdzPoUqwbu/bc38fLoPJt1K1YNjCZz+M1vv+ZQib1sF98eeGUM+8fSbHSB9EWdr3GHKA1OmQ7V1t+iO3GO4zGTLbP1w3Ool7SxDiwJQFtEcXCAAkC2rLHyHwdgoEl1QOo1w3QoQxyZyuI5D2Jdek1xv4jOqILBtjAEDlgsNgZOUZMEDkOdYeQrJBEcS+YxkS5iNFnw5PME6gFRAJnbpPRsFL0oizzawjLKuolfu7b7p6p0/r6UCjmO+z8BREzT/EuO4yIAdpum+d334LiXVBmEUkHdta0bD7wyxihvBpoDuHGgCQ++egZAfekjJIvgeHPJhexFf7OcNQd8+NdPX48vfPcw9o+l0RwgaL71LQFUdBNhRayDxLtLFAGfAFUSkK9UQGObneXAPr1vNwejh4sdoFG5wl1GXcoCPh75iuFAYa1vDTA+PHsZ9UZLuv3l0Xns2tCMb//mtSs6x7u1y6VCb6PjI8WKgUPnanRlAs9BN0zcsqEZb0wsgONMpg/lHo+wM0CoIlFjsFtXVIVhmo515vfxCMmSpbjtjYy1r0G6xrzMXjaPByTkS4TcVuSJb6yURYr6D/W7poCExWK1Tscvqop1KFuRAzi+3v8G2wI4Np2vC2CDbUG8PZ2zWBqdfj7UGYYiCdjSE8On38fqxDv1kcbd9vfWRk3TfAYATNPMcNxF9eVVs4cPTODLjx1DoaLj9TOEp7AzqmA0mUfEEvvxmgOpaDr+064B/NVTp9hici+sbFlHQBKQ9xhcbGQLxSp+43++iu39CQz3GDiXJk48OpeHbtSLLcJ2TvqgyFd0xy6Pg5Oax+00fguKbA9UbnaAQqXKIL7UvHpVgDPoOWiCrLUeVcn8i0/gsGDra/zKcCfao368enoeL4/OY7gnih1rm/DFDw9636zLtupGaaBeP5NyQMMDMo+o6mOzSQfOpLFY0lj1ISjXz/TZH+zuoCUJRMkX4Jl6twmiUVWolNEb94PngLH5Qt26o0HLJ6Bh0BrqigBmDd1XKOv4+LU9+M6Pz7IkqlHP1j3/uHtjC54/kWTsLUFFREtYwcnZnMO3vCotmglHhNzeH8Pmrhgee+s8DNSg/SFFQH8i4EhS3VdG//baeBoJC1x2Kdv7Fbi2chwXBXAawBoA1wB41zuuS8VS+Qq+8tjb+OGR82gLy0gXKnjpFMnu82UNkwslnJzN4tq+GH735rX42lMncOx8hnGclXUTf/fsKExYTuf34bo1cZyczeHMfJ453VJBi3LxNQUkdERVHJ/JoqyZmF4s45FDTtVZWqKjGad73kzkOWRLOhSJR8lyKBo0lkskQ7KEqzoDyJYIACOVK9dljwu2nSUNTA3aDIj6ffj5Ta04PZd3POxUH498VQdvvbGim+xB0h1T8amb1yLm9+FFSw/s4NkFMutVqDp2xj8tNf2fZqP3u1DRWBWiK6piLl9GqWogXzYQUcjs4uHJDOsh0e8zV9bREpIwm60vZzP+TovzEiCsGocnCapvQ2sQqVwFyXwFqshBEDnGJ0qP7TY7MbSXnZnPQxFrJcOSZuCfbAPHAAm2XgTCbiaY08mcg3JsfL4epLIUcIn6ZUdEwTc+sQ0PH5hgpcmoImEmV0a2pOPoVD3ZAOAMpK0hGZ0xFfO5ClL5yiXtG+8bqtAqFw6D7L7+8j065iVRBvlv33uLlQEBsgBUn4Cv7dmCxWIVv/3gAQZmoKzu1JaafO+Oqfj6r12Nrzz2Nl4bT7PMkf7sjCowTeDWwVa8NZlhPZ1GFpQFbOmK4qXR+SVfN9Dkx3y+ioViFX0JPyqagalMCT6egwGzrraeCEjI5KvQAAeZLTX7UKcXmSpl46BDxO5B510bmvHVPVvwO//8OisrUeTk+pYATlhUOgGZlIKmF8vYd9MaqJKArz990vnZmgPYs60bX37sGO7dvQ5+n3B5AHmVjQ7kx/wStvfH8fLonKdMDkWLeu2+vRQVeA74049eiSdGZpApVhy6atSor9hLg0sFJlnk0RVTMJqsHzq+ZUMzDk6k6yomQI3dnRoNAofPLTTsRQFLM8zwADa2hzCXLWM2V6kjJqaBvjfux7d+8xoMNAdx8Ewan/z2ayz4D7YFcWI2x64hrDhp6AbbgphIF5Et64j5RaStz9aX8OMfP3kNYn7fqiZ5l3Sp0ApaAwBeB/Awx3G30NJhg9fvs/53wDTN//p+XOM7tVS+gkddOxoKlPidf34dmWLVsTDH5wuOvhD1n8H2EEZnnVIHE+ki7vlfBzG5UHKwUNBXEHE5E6eTeeTKy4MrcmUdB6wSJoeaA9Pj7VybwPh8gekb0cX7uYcPYSpTQsUOf7f16eZtJTp30CIIRhMHz2ZYn46WEwECDvmjX9yErz55ggX0m9Y1I5kjrOLxgIR7blkHANjcFUFVN/DmxAIMa4RgbK62U8yXDeTL5N4/+uYk43lTRUIumi/ruHEggWv64tixtgmvnp7D/jFyPy710ojbfhp85OCZND7374fwe7vXQbY02J58e6ZOEBEgPSO6U/DaBbmDFkDW332PHkVZN3H7plZE1DwyRc1RXqbLsWRRO5mmifaIgqePzbLz2HtZZc1wBC17yX7k/CIUSYRzsoqYwNVeKfAcruwM4+ljjdW/AcqS0TipMACMnK/Ng7nzj5AFze+KqWzW8WtPHncEplSBzHUGfDxCioSb1jXj5dE5TC6USDugrLPeedoWkMfnC/jCd49gaqGIiXQR//zqGXznt659VzI/76W9X+CMW0zTfIbjuKtN03xjqcDFcdytAE6bpnma47iHAXzTNM2nGrz2omeTtTktHj1xBSdmC/D7OIYWbGR0F8JzwC8OtaE1rOL+F8fqXkdnuhpZI3CE3airLTcr5W6Ar2/xo1g1VzT3Zb/W9S1+LJZ08ByHa/qidRpJddfnyjp3rE3gbz4+jN/55wPYP5bGnm1d2H865SjxXKh9/o6NAIAvP3YMuzY0MxHQ7f1xXLcmjrtv6L9keNhWcNxL3kcOnkljzzd/DM0w68BILUEf0sWqY926ATzL0Y+5zQ22sGtQNQd8UHwCvv5rV+Mn4yl8+bFj7/RjMXP3qmKqiLSt2bacr7nXfFgRUdV1FF2ZnwDA7wHM6kv48XOb2vDm2TReG09DFjjs2tjCKLOoqRJQrDr5EWlFw4s6CiB+PJcjisx2TsXVADZd6nNcWzmOuwVAP8dxWwBsXeK1awDcav0/7YldMkZh7n/15AmMJnN49tgsAJLRKRLJ8BsFLTp7Ylc7NUzgR0dn8fwJ8iAdbA9h73W9uLo7guGeKBKB2qZ4uCfiYNYG6sERdqNV+Bpkd+lHgeFKak/MFhxBKyQLiKpuDm+gL6HixoEEvvGJrbh391q0hAlb/VSmhEc9glZIFsAD6IsTlgO7A3MAbl7fjL9/fhRvW9nm429NO4KWe9Hy7p+c899rEio2tIbw4skk9u1cg3tuWedgA//606fwwCvjHnfkkrVL1kdS+Qr+7Acj+PX/+Sr7XikdEaUTkyWhbt3aNa6AWtAS+aXlSaiVNIOxpfglsrtjM4HWbOEnv/0a3jibqpsBC8g8NrTWdhKU4iyiONe6/W0xV5JT0WuwefLv2ueL+yXwHKAINTkhem/ovxdLGgtaHGprWAcsMcfauUQeCKsS7n/hNGPoKOsmHj86U0cTR5HA9gBEX+MVtABgLl+GbpL3UABXd0zFPbeswzefH2UM/RfT3s8e11dAHOy1lfa4OI57EsB/NU3zYIO/1138l770Jdx3333v5lIbWipfwaf/6QBTNnb3q2gGE1IE3LGpHU+MzGDBYz5qqDMM1UfYLJ49nnRklt0xFb0JvwOI4HyfiP1jKU8CW4AyWACiIGD3xhZPkt7moA/tEQWHJxchcMCH1jfj5GyOBSkqvkitEeKP2vb+GPaPpbFvZz9Ozubw7PEkwqqw7JyKLPIYaPJjZNo5W+XOnrtjCibSy7OAL2W0f7a9P465XBmjyTx2bWhGd8yPB189g73X96Izqr6ntfz3o8d1qfkI7Wd5Ge1h7b2+F88fTzqSEUXkIAgcZEFAqlBTH1jpiISXmgC1laBx2yIKssWqA72397pePDEyjenFMttBdcdUqBKP8fkCKrqJtrCM3kQA6XwZJ2bziPtFByhjOXFLyvTu7pEB5LP7LAIBhxK4T3Bcp18iMil0odnvFgdgnW1MJKqK+MjmTrw5kcbI1CI0E/CLPAoWwwa91wIHbGgL4U8+ehV+Mp7CNX1x/Od/OYipTAnDPVH8w93XvCd+ckn3uADANM0/vJDXcxw3DODJRg5pO+67uq4LsQdeGWdBCyB1YHt9vKiRxZQt6Tg2k60LWnSLTqGnUb/oWGQCB2zqCOPxozOO99GyIn3fUrRNhMECgKZjbC7Pmtr20ksyV2FMGroJvHByDutbapxmRdeDYvfGFhw8u8DOaQ+anVEFUxaM+YmRGYzPF6BKPIY6ojgwPo+yDgRlHlkPmpqyZmBioVQ3IhCUBXTFVJyykI5L0V55WV9CxdlU0VGeyhSJSF5VNzCazKMv4cdX92yx5GiAtyYzePDHZzCZLqIz9t4GsNWyS81HUvkK5vMVXNURwrGZXN2uKhbwoSOqQhF5fOs3r8Hef9zPIPAlzQQ0E3T6qGqQXYdX0BpsCyJVqDp2F6UlxEAD8vKBa9q1xrpjKj56dScePTwJAGiymGkm0kVHGXB6sYyB5iDrK9GES+CA2wZbMZsteYJGumMqdm1swQtWpYXGIZ4Dwirxh5jfh+39cfzgyPSS0PiwKqJQ1W271FoZ0gQwOlvrAy8WNTx+9Dxms7VdE+1ylzUTAR+P3kQAI+ez2NYbR8Qv4Zljs/i7506yRPTg2QU8fGDiovaFV3XHxXHcbgB/DrLTigA4CODLKxk+5jjuD0zT/B/LvOZ9rd/TfhbdgdgHaekgLM1avIYXaeACls4Q7UaDlH0xdkVVZEqVuverIgeOc/Ku2VF+wz1RHJ3M1M1V2c2OXPKJHCqa6Zk1RlQRvXE/0oWq4/q8ehOyyCMk85jLa3W7Obd5SZkDjXt5bqSVyANXtIVwPlN2MMMDJFH40LpmPHLoPPZsJXNe5zNF7D+dQsDHY2Q6h66oinMLRXz+jo3v2jFXe8d1qfnIn/3wbdz/wmnPv0VVyZHI7dnaiUcOTa144Nxuwz1RaLrhqSfnXn92ROtKrTko4Y4rO3BsepH0j1zHsJ9jqePTv7mRfBQN2CgB5QGEXD4nCxx4HlAlAdmSxvprLSGfIwgBhGS3pK1cq8ttNJHkAFzVFcHhcxl2XQZIKfYT1/Xh0ze/+0HlS67HxXHcrwC4DcBdpmnGTdMUQOryAxzH/fYy791HHdJqRF80S+Ur+ObzoxhN5pDOV9EZVWCYZNVkihUMtgURUUVoBinlVTRaq6/fzNozxGxJR8iqoS/1rYVkEYrIQzNIWSLml3BuoYiQLNW9tqiZdWSh9J8BHw+R53Dnlg7P8xBKGI4FAZEnQSvml5gD0R5FSBGQKWoQBUIhxXFwZHguAniUNQNzFgOCvsxD1DTNOtoqgPTyOiIK/D7yN946j26SoNYdVVnycGQqWxe0BI7DQkFjIwNnUkV8/emTeOjAOZxJFTBpJSC3XNGCz9+xEXdt617yOi+2XSo+Qv0jla/g6GT9zuKWDc2IByT8510DDsb+/+/gJMqaWbf2OaCmTN3onLkyjtmY5BWJQ1AWcOfmdmxsrVUOAr7GQcV9XjuVUzJXxYOvnmEq5DCcx6AjKQCWDIplBr/nLUFIYmPzOexYm3AELTuFmgFSIaD9r6BCqJqKVROpguYAhdg5SKnRGKmZBKbfFJTQGpIdVRVqiui8E3dubsd//8iVLDgfP59h0jKKxataqBq4/8XTuOdfDl60ftdqgjPipmn+oWmaDCpnmmbGNM2/ANCQFMtywj/nOG6U47h0o9e9H5bKV3DPvxzElx87xma1JhdKDHyRrxgYmc4hU9Qw0BzAqdksy8R2bWxhVENuo83hbElHRBWXRE+NTGdZ+SFuIaXiAclRPvMKfO7f5SsGXhtPYypTxkBzbQH7JR6DbSHM5asoaSaCsgBV4mFYgag56GPH6oypGGgO4I5NRKrlTSsImI4dD4c//eiViNokULb3xzHcEwFASiL089udmVrFII3mgEukqyXow1Smdu8N1JBqVd3E+cUSNKMGEXZbxAKVxPwSdqxNoNcGzlAkHpmihl0bmvF7t66/5Al5LyUfeeCVMXz5sWP4yN++hM6YiqGuCEtwhjojODGTQypfxV8+cdyxg6AJkt/n/J5NACFFquMNtNtEuuQYai9VTeTKOl4+NYe3RZCSoAAAIABJREFUZ2qyIEvtNE2QeUX62t0bWxzaVQCBkgOAFxm7+8iNSH8BAoKww/mzJR2DHRF2PkXksbG9PlhTlGJPLOjJcgMQEMhSiW9FB+ZyhMv0xGwefuu78fs4DLYFUbKqQ9R+Mp7GD46cZ5/P3tqmSTFlNHl5dB53/f0rF4X/czUD11JTrqON/mCa5lOmacZM0xywfnrCfN8Pe/jABF62hnUHmoMs82gJ+nDn5g50RVXs2dqFGwcSGE3mHVDWl07NIVuqoNPSvqH+2RFRELfpSy3VuKVZIF2YC0UNnVEFqXzVsVi93NPrdyFFwGB7CL+3ex3T+ilUDZxfJEEw5pewvjWIYtWAYZ33xGyeHevMXAGjyTxeOJmEwDnBIU0Bn7XzNPG9N6ewUNDQEVEw3BPFhtaQ/TIgW5mb12wOu1ZrBos+D3ieq1us9ntAd3y6oSNuBU3Z9oJUQWPcjC+dmseZeVL374goKFUNdMdUdMf9eOCVMYwmc5cMesrLLhUfSeUrePU08Y9zC0U8dOAcpheKCCvEP+ZyZSZXUtLMuu+vI6LU9WsiioiXR+eZbhbdvVP2/4gqImZLiuzs7ZQ8lq5X2oeyxxT7/08v1kh4nz42C5/YOASIPIffuam/ThiV2nIjKfRdVFvviaPT+IOf34CYX0JJMyAKPIY6w2gO+OC3kjbdIIoSIm8uqTh+IdVA2gssVEyctuY18xWDVTmmMiX8aIT02CWBQ8wv1SEVuyw0MA8iovmF7x65gCt4b2w1wRnXcBznXfD+KaF8umtbNwoVDcWqgaM2RWKfKKA1ouDcQhFTmRL++KNX4pPfeg0T6SIEDlB8hCON7ooo6iesiJjKlNAakhGSBbRHZCwUdSZPzgNoss1W5Mo6Q9hRJWXazPZarMvVtHXDxP0vjkG2So8Sz0E3TaQLVYQVEelCFVKqVr5QLPJSWeTBw2C9KftCpiUF1SdgLk2u+/Vxwm4RVUUcPLvgYPToiCj4s1+6Cl969ChDlQkcEPf7HPpdtFm+oTWIkemcpxq010ctVEwUKiQZ4GgtEYAqcazPwIOwbANAW0TGVKaEiXQRD/6YsJ8cPpfBs8eTKFT0VWXW+Gm3r/zwbTbATY2u3e8fnqojmqWPXooYHOqKIJWvOB7KksAhpAjs+24Jkb4wRfQ1h2QcPLtgsaT4YBhGQ1g3Paz9OiKqxHZS9qCZK+vIebBl1I5l4om3Z/Hf79yE+/73UZQ1c9l+Lf08Vd1EIiChO+7HVZ1RvHAyifH5Av766ZNs1uzg2QW0BH2oGAb+/FeuwqlkDq+fWcBLp+bQZxODtPfUeA64YU3CwYSzYyCB18ZTqOqmp3/QKgVFQFP/FQUOosgjX9ZZBUU3THZ9AOkf//q1vSCEAgu2xPX9nxNcNXAGx3GnADwJ70rWbtM0170H51i1xjPlV7umL47P/fshjCbzjmaqHVyxvT+OsbksZrNVthAo0zVQe7j7JR6SyC+5y+qIKPjw5g7ABB576zw7HwUthBQBIVlCUBEYxLWRSQIH0zDfUYMWILLoqXyVBbbFksY+S9AnwARxfupMdY1xO0EuTzgS17cG8MRnbkYqX8Env7Xf0WC/ujuCQ+cyzLlkgUNE9WE2V0ZbWMZN65rw0ql5RFUJZ9OFOoi+G1K8kub0nZvb8aOjMyhpBoa6IggrIj57GxGepNx67xSo8UGnfLrqvsdXBDBqZI1GOuxmZ/wH4ICb28FRwz1RrG0J4oUTSczlytAMOJQDqL3b0QovuihJ4MCZpqN8KfEcqkZtx2cPnvtuWoNDEwsolKso6wbGknlH30qVeLz8h7sBkFLsiyfncPDsAiSe7Pw4jmNzWcM9USSzZUykiwSpuKEZD7p4E6nZ/dMOFKNGB8UjqghNNzxJhvfdtAYjU4t46RSRZwrKAta3hrCtN/6OwBqXIhz+LtM03/D6A8dxV6/ied+1pfIV/P5Db+LZ40lGQKuIHGJ+H5pDPhw8m3E4LOXPA+qDFkAeoFVroI+uUIpMdKPlpjIlJAI+3DrYikcPTbLfly0ZksWSho9f0wsAODFTv6GlDuM1uU8HG3WzJgshcGShtoZkSJKIuWyZPQwo9Y1P4HDDQAKPH52Bidr8GgWX0AzQ/Xi0owMpzc+p2Tz+2yNvYXQ2h8/etgHfeP4UihUDisSjrymANyYyzMHKuonZHHGueMCH9qiKDw91YOT8Ikams3UPhIpOHDJbqhIFWh7QPJ6rTQEJ2bKO2ze14ifjaZbxzy6WcPhcGVt7k7j7hj488Mo49u1cg0JFu+RJRy+G9SeCODyZcTBjqBLPSGOXmjU0XH8LyQJkkUe+rKFq1PgwJ12oO/uMVLrg3Gn92jU9+PHoPHuvV3Xt3DJBa6DJj9G5AvtMbtRgSTNZFYQih2OqhNlcBQFZQKFMYOlVo/Y66m8b28PY0h2DKvGQBA5HprKOc0sCB54jmnIPvDJu9f84VrEgjw8TQM2/ZxZLrAozkS7izQknQIYD6WflK7UdGN25UkX04Z4oHjl0nn2HmaLm2G3YWUIeO3Ke8UlGVAmtYYVVVVQfj8/ctmHJ+/te2fs2gLwatlrZJB2i7Ev4cW1fHI8fnWZlpu39ccbfRbOWpaDt9CEsizx4zoB9tMs9wAyQDOov7tqMfQ8ecDC2A7UMc7gnClUSWP+NmhdkXBE46PCuwbsHGTsiCm4dbMWbZ9N1UOMNrUGcmS+gpBnojCpswb4bc8OBl5IVdw9B2yl9HJ/Jg4zVbtv74zg+s4iFggZJ4KB5lFT27VyDk7NZR+ISD0j4h73XXJDY3gd1x3XwTBqffehNbGwLYf9YCulCFb1xP35+Uxs+dm03Hn1zEq+fSeOlU/NLksjazU2hBNTr1lFrNJTsHttoNFrhrh7YrSUkY31rCL+9ox9/88xJTKaLqBoGUnnnWrOfqykgYi6vsfUbUUXIgsCSLrvR1+zZ2oXXxlPM/2kQ7Igo0AwTxYqGbFnHvp1r8G8Hzi5ZpbFr9bn9JCAToJW9/75naxeifgmHzmWwuSuCA2fSS/oyvWY3rB8AWoIySpqOxZKGe3evw2duW9/wOF72Tn3kcuDysNFkzhE4KAefLHK4c3MnHnr9nGOLPtQZxvlMCUlbrT3uF5Ep6eiLKxida8z1F/cLaIv4GZnmnq1djGBWEjgYugkdpGSSzlWRzFfY9bjpPgfbAhiZdgY76pz050Czn+2kOAAdUQXJRSdKyyugustw9gBBdz7u13gxbgz3RHFiJotcWUfCL0EzTeaUCb+E+UIV61sDmM2WPVm42U6VI3Q4K3gmMiPglAj2j6U8H6iU0aSqkxo+Dax0FzHQHMDTv3/zis/3QQ1cO//8GUfCQe/T9v4YNnfHLJgph5dOJR0ksRdiyzGvtIVl6Lrp6ItSC8oCfvnqLlzTF8M9//om+33cL6Ir5sd0ptSwL8ZeaykWAIAsEHRdI2HJuL/WN2vEUeguW1OgFy1r+nggFnDykoo8h1++mjxvAEIHN5EuLFuebRSw7eeeXiwzP/cKSDwI2rZQNRDwCQgpIrvfbWEZ+bLu0NMbaA7g/r3bLpiE93Lgeo+MQuBfHp1nmd1wTwSZoobRZB69cT/OpAos43LTEwkc2Q3M2TK0lpAPmUK14WKy15tpUHJnm+6yiz240KC0oTWIQkVHzC/h5GwWxapZ9z56XI4D4ioJFABZ7F0xFRXdxO/ePIA/+f7bDraBwfYQzswVkK/qns7pvg8DzQGcna/V7gWOXJ/iE+uyO/cuiWZ49HO5j90oExc5YH1baNmH5Y61Tfjsbevx6X868P+z9+ZRdlTnveivhnPqzFPPo3qSWrRES2qEBEIChBA2MUYsAiK83CvZyYtwcq+DhxvnOosbO7avHTvP4cp+69lWJsNKXgL2cy7ENtggMCBAAiEjIRpNPUitbnX36T5Dn3moqvfHrr1PVZ3TrQFJ3Y3qt5aWpNPnVO9Ttb/97e/bv+/3YTKZx7I6N+5eSSj+tF+UfhzLal0YiWbxnd/txSdXN815bT0+qo7rY4+/guMTyVIvrArnJQAM/dwqRTed1S5MJHJI52TGYlVBopnPbu7Cd359HKqioqCgoiBsvd+BZC6PZJb8Dn3E7neKELhSarHSeRcAuGwcXHYRU6kCXHYOty6txcvHw0wAm+dKn9ML1eoxl9B1tdu4FgCzR4x6x0jvbXkbktLmdLau6F6HAEWdnbXrlnikNI6/OXNxYefC9Tg5mUL/uQREnmSTUnmFdZO4GOdlOa7LBLPWmshzeHz7KvQ0+VkUdj79sdlAJ6N54dUbxFztwoGSA+upd2MkmkVCJ+ekd1I09VLlssFhF1genILukvWGQaMZqihNQVOKksAjJ1ee8GZcimIBRU+DF0NTKXZWsqzWjesafIxEARBHKwq8IdXZWePCuXiWtUwxg96THTctQdBtQ6ag4OBwBIfOxNDb7AdhVhMbos5V/z0vVh37o+q4zBGXHnS375Z49LUE8VoFzU2KudK6+rOyudDXGsDgVBKxdBG7NnXgTCRVJpl2MZhLTu18qOScWTZCO1Om0Zv+ZxTU/nqbfBieTpdFQQBxyB/rqcObgxE47TwjrtDsC1tjYNywmteV3mY/HCJvkLADSg5+rvtfKUKjuFo2crXU4RcN7uypQ19rgNWHFBUV3/nVcfzFz97DQDiFep/EnJbfKWJNCyms9WmFr3VeCW6p8m2lzsocLVCnJfKcYXLRp7muLYjeZlKwuLye7Gb6x1Nst0Uvp59mdM5NpwtI5oqo9ZK6KJvAwWXjWM2KJJTGSgUCzLrA1DnkdI2UKlXs65EzRUgUPoeIKle56ofAkSjNIwk4HUkZjObEZAq/eO8cskWF1YbV+kgNkH7GD4TTZU5L/3N6yWcOj2L33lPY8+ogTkyQ6OzI2TgOnSHNOG0Cjx03LUFTwMGcll3gUOORFmxt19XE7t9bw+qq9LALHESB1ugpczot8p7KTqsl6ESmoJy3sF7ggK4aD2JpUjz+mds7WZcFCv3cq3Q9l42DW1cEHXSdn4BDVef1CDhtzA71v4c6pkat2DgnkzQo6Q1mvAYtfxmLZZhjaNHqQOl145kiXjw2gZFoxsC2LEJzVnSNAZFu+viKOiwJubC+nYgh0FK14amUgWbPrqOQ36O3P3PpmtlpSQKHj6+oQ9Blw86b28queSVgOS4dIqk8vvHzfhw6E2P0boCE5JQ5OKGlRGyCxr7hONT7JPYwMwWZheGAydDmuNsOkZy5+HTKDyqIM/vvd1+HZ//rRrz253dg49Ia9nO9TI25cp/WZfIcGSdtey5wpAKennPpzwgadEZSCfo2Dxezh+/SpGbcdgEz2SJLT+ohq+T+J3Pk/lFjofeM+kGOAxP8FXnOMA69uAD9N/25wJWKT/WsqUqq9weGIhiJpg1Ral5W8fQ7Zxdb+5PLjkgqj1dOTKLKXa5skZfVObMFFLOpTIgc2fjd3BECYJRWotA/b1kFXjo2gbYqFz57x1KE3HbctqxkH501bo0ZyLHPmgUo0gWVbcxo09PzIWBybjwHxDKFspYselAhag7ATEbGxEy2onJMtqgYUosjsXKyUkSTT6Of1ur5DRtXvybUu1/rY/eGRuSSNCc9ky0ySrsZ5vFTZ+iRBMOaU++TNHV8J35zPIxouoCv/6L/qmzuLMelw08OjpCWHJrzYA+Q45gCBn3NoVW3HzpjbNxm3o0YDE2bWeYdTKPfge03tmLXpg58fEWdQQ2gqKj4zD+/g2/+8gM8/sJxbOisZhGdftE159jt2opfdhY0S9pI4ICoNuHo8Bx86WcAEL/Emh2PZMOuWzsg6OyUR2n3R79uNF1gi5qiEqdt7pZLO7cC5N5IIo+gpoFXVEpj7WnwYmNXNZMOklVjWsZ8FxwCBxtP0pLbVjXi5EQS21Y1sEN0KouTyV98ivijgoFwEg/+8A3s3nsK52ayZZqSVApIDw4wZCACLhFbltcCoDVApV1/USXdw4+OJSAJJJV4PjcylSpgeDqNnf94AJu+/RJ8DhLNb+yqxp4da7Gxq8pwnqTPXtO5Rkc3FsswNm3IbUNL0IltqxqwrM7NWvAApGRF/92pjVU6/wLomRN5E1VXGp5Oo6g1wHOU+68y1Hkl7Ly51fAatUZKGKSOs9ptQ1OARHixDLEpmmJP5WQEnOQeVWvPyymWq9JQ2HQ2mszJSOaITN22VQ1w2AQ0+Enz3GxRgchzGAin8JODI+f/Qh8S1hmXDvr6Lb2atZkdR1sW/OZ42EAa0Lekv1DoD7b1JAT9eZIe5txzrVdiyhtAeZ691mtHXlYQSxdnJTVQ6PPi5t9TiYU32/XMY+hrDSCSyjMGU65QxByMdQBz59EBIhw6laycrmyrcuFvt6/GKyfCOBfLYN+pKTjtPAan0ga/XelMAiidawVdNnyytxFP7j+NXk0le317CD/4TzdcUE3XR+2M69P/9BZePh42kC706GkgxBiPJCBbUNh8afQ70BJyAVBxYCjK1MfbqlwIue0Gsk6tV8JUIlc6q61AfKCvVXp+bkmAoqj4y3t6MJMtYjSawZP7T6O7zoNTk0nD5uXjK4gNu+y8oT4MKJ316M+G6JykZ3O0ZtJ8VqXHXD+r8dgRTubR2+TH4FRyzp53QKl3F0CUYPQUd5Hn8Inr6/HM4XPoaw3MSm+nQgAbu6rhkYTzngfqiRx6MGKO34F0roiZLOn8IAoCvv/wGtyubU7OB+uM6zIg5LbjsXt60FnjRixTYGrW5gklq8DzGlFAn/5L5xVD/pvu0Mygqs8AyHnKzUsg8jA4wZyswGlD2VmC3plUu+1M3ojCnF5RFOCGliBEHthxU+ucgpz66ZkpKEyJ3WUrd1o+h4gKmQ42BoBIRtV6ycI0PJ3WpJ1sCLgkLKvzGNKiIgcmrBt02dBsSluao9TpWZwWQKRq/u3tM0T9/Z2zGItnMRBOlwWb5vXExnOo80qo0Xai0XQBr54Ma9+FPNcDQ5GrsqNciNh5cxucszgtAEhki+hrDSCZk6FP4o7Fs7AJHP74ti7YBY5tooan02ULbF6WjWe1FYroFSrjReenyKGzxg2HJlmUKSj4i38/im89dwz7h0g6LJ0rMgdS75Ow4+YleH9sBtmiYnBarGu4Ngh96pNupNjZnDahZJXIujlF44LqsvGQVWIHFHrFhxoPWQeOjMZx/5pmVJ9nM1TU3YuMqQtEUVHxrNY09r0RIh9V7SmtM1qQxTIYM5k8XvpgdqflEDlIAlfRaXHQS0fZSE0cR7pTJHJF/I9njs75PS4HrIhLh0qKGeY+QnqwXdksHVZbgk4EXbayYl49nfzjK2oxmcjPukO6kALOCy3yNEdREl9Z+fp8OF80dCGgO1Ez1Z2yEXvqPawzMgfg+kYPjowlK0ruVAJ9NlTP7Y3BaQPbyrwT9kqioS6lJeiE1yGi/1yCFYU/++4oAA47N7RdkxHX7//d/rKid4DMB5/DhrYql0E3z3yP52Ki8hywstGLI6MJQyTV0+DFaCxTVnoiCURFnp4HXSwb8HysWIrZonIA2NgZwsHTsTIBXDOzr9I1PJKAjmqiPOKWBIRcdsTS+Yr0drq+9DR4MTyVQrpglFebzf77WgMY12mmXgrotfXPUk+Zr/dJSOQKBgdX47bjV1+47YraiBVx6UDPuIIuG25oDWL72ma47EJZuwMaBbH5qnVHFziwnjcCR943pKmQCxwQcJH9nL4G6vn3J3FsvFympdptg104v0OipI6NXdXYfkMzQi4RPEdkXnjOGH2Z6a1mpxVyl7P9KBr9DnYw21njxo6blxgOainsAoe2Kic7vzD3VqKfoLfg3tWNaKtyYfsNzdp5BBnUickka8GgAjgyRpxYpeLOSqDPRlGBfQPTBraV/vdTZAtGRzwSzWBQK0A/PBLDyHQaLrt4wU7ro4gVTYRB69RlFUSepLzimfycTgvQzjBnWXEUFRiaJo7HQLgReHTXebHr1g7cu6qBvW4XBQOJYS5ldzMcIs+c1vnOl1QQx1zvk+A0CeTtG4ggW1TgsnFwaodBNp7Dho4QRJ6DAnKvKs3YZE6GUyNKpHIyKXS3k957Hsn4XVIFGZ01pCsxPUdTQdh8bruAoqKy7hO/s6KWkVFOhRPMac3RdQX6W1DrsbNzLYBEcr3Nfnh0YWNRLZGmxmdyZVFZWNN5vZKwHJcOD65tQVsV6er79Dtn8ey7Y0w5XI87TPnbJSEXWoJOyCowncwTrUIVGJgiVe6cZsSxNNlNiTzJr9P0F+0xRaGCHDorOqcl8BzrKaVHtqiiKeBAR7UbAZcd6bwCRSXXVNS5OVJuUy+kVLbyDlQSeQRcNiRzMrySAFlRcHQ0XjEnn5dVbFvdjKN/9XHcvbKRRZsiz2FpjQvdGp3fZSNsTIco4Gd/cgseub0T6bzMSBBFBYbzQsqgvxClDB7l7DGKLctrKvZ6Mme/vJLAdtKyCvzpv/0W33ru2DXNKtzQUUVIC6HSRq6oaPO8Qjpd3+eJYq7SrESFKP7I2TjeGo7i8EgMv3N9I1uAaf0ixWSFAmg9bJqx8RxJydPPXgjf6OMr6zE+kwMt3TR/q3ShJKlUUFTsG4gw4lBXjdtAQKHz0mXjUe+TsL49iG2ryObt5o4QskUFyZxxkve1+rFnx1rWEoUiJ5cYkbSc8VcfhEkHdokoj7jsPPxOcdZzNgBw6jagk8k8TFlIDE+lEM8UDd+7wvE7Q6PfccUbsVqOS4eQ2467euoAEAotXbjsOguhjk2PcCKPuJZOnE4XDAK7AgfGeqOQbDzWtAYrLsL6nVFRSzdwIOc2s0ngjMayeHL/aex5bZCN2bzBMv/f5yzpFIZcpPvxjW3GxpchzVvkigpTo0jkZBwZTRhSmxyMtS2ZvIzHXziBNwfI+YIkkrqxk+E0+seTCLpsSBdUjM/k8OT+07jpWy/i4T37cehMDKm8wph8etBbPte+elmdG21VLiggC6rLxsHGc4bPvDc6w2R11rT4SeND0w63xm1nCzH9CV34zMKu1xK++h/vI5IqIJ4uznq+qYdT1wyUbtKW1brhss3+FGeLyA4MRfCHT7wNWS3ZiN58GvwOA83efDZMz9yoAMCFxO10zL96fxw9DV7GmtSv2frfQodOg79cUcF7Ywmc1smn0UxAuqDgmcPncGAoijqfhLt66vGb4+Q81ezvp5MFxNMFbF5WW3bWa4aqLSpZbf6m8wrimWKZTTX6Hah2G8/w/eaQEiQ63aA1xGUJJu3vWo+NXVe/Wbynt+GKZyUsx2XCQ+taCfOtqKLWK+GWzip06XZMw9NpLAk5DQ3lwqk8ZrLkwNnOE9ZTtbboyyrgsJEJ0ewnD3l9WwjpvIxldeXSKLJqrM9SUKrnqmRsIlf5IdL3UmM2f1bvBCNp0v2YFuO6bBy8koA6L5l8bolHtdvGFhyPJBgclYoSFbjOK+Hg6Qh27z3JqvJzRZVFT267UOb480WVMSO9DgG1s3S/FbR7MJvtnppM4ZFbOxjpg9NYX/rvHk1pv0cS8NuROJbXe/H769tZFOaWeEM929I6N5oCDmRlst0emLz63V4XCta1lQSGc7Kuyecs7+e50pOi6cXBqTTSBbVimhmYOyKjUUNnrQe9TX40+h3o1mzodCRtIHLoU8oCV6olBIjz8l6A56VOLp4pov9cwiA5JXJAT70HGvvewMjVH8H6nSKj43skgY1XEjh2rPDc0XHseW0Q8WwRAkcUNvTZkNORNB784RsGBffZHJhi+psikipFpF6HgDuvq8WUVg9W67Xj0S1d+Nmf3MKORagT+tiKujJ7pV9vMllAWLNbulnc2FUNp1244rVcV7KtyaLEE68PM+KByHO4dVkNRqMZpg/W6HfgVDhFDix5Y8isqADJ+qmY0h42B8Kqcog80yo8eDqGl45Ple2CPJKA1pAL08m8IQ3HA+ioduHEZGkM1R47plP5MiknKilDD2/n6sxKiRD0ADaiRROkRbeMDyZK8lb6PHYyJxt2tPrzjIlEziAUaka+AokFKPU5SmTlWc/1aOpU/9Oeei9OR1NI5UiK9FvPHdOxv8pXQb/TDo9DRCJTACDjl++dM9zrVE7BkdEZNAecCLmNxBqHyOOLd12dtg0LEQ0BwpKdSOQMQq76uyzy5Mj3hrYg3tI1mWzwOzE4RezGYePRUe0uIy0B5XqAgkbaODyaYM7hxERp89AIsskwa//pyQvVbjv6x1MGYk97tRvgOBw5azxf1sNMOddft6iCkYcAwOMQkMnLzPG6JR5LQm6EdSnMZE7GoNbmPierOKWdoY5EM4ywRe3I3BmaiFiXSF3U+VYic5gl6UTOKH6dyMp46u3SGdR0Mo/bltWis8aDvtYgRqIZFhkeOhNDUNuEVyKZ0PFKIofuOkIe2XdqCi67eEk97C4UVsSlQySVxzNaDyyeA25sCzLdQlr0Wu8v7cZlBQbihjnNwQG4pbMKfqeIbFFh6vF0YTULkyZzMuKZQtnCr4DIHq1vD6I54MRYPItouoAqLRznUUrVMaYuyK5trgesaF6XpjaLinFCeB1CmSYj3YnlZZLD723ywaHLpUpC6T5U2hQWVFRsf54tqswZzrZbq+TOzsYyBgclzSFPInDAlFZPZhMp8YNclRSbNrLnfDaWweC0MbrKFpUySaFrCTs3tGFjVzUAzCoYXVTIM353JG5waIPhFCsqzxbI5sDvFA2lIQCJ3PUbOlkFDo+STIAC8px2bepAbzMhiszGmOuqcbEShgnN7vRs1EJRZgX3AAxUdI8k4JbOqrIJR9P2lTCTlQ3RYipH0utm9fqCaaNL4TLlB82zWOAI85Wi3idVtKNtqxqxbVUjuus87BqVSLiGXnkq8J//gRRw/+q9McP7RqKkKLuvNQCnLvunz8RyIOf8R0ZncDaWQVuVyzrjupr4ycERtlAraklodSCcZK0EVjb6DRNyXSiLAAAgAElEQVRm8/Ja7Lq1AwGXyCYlxxFxWxWE0UbVkunCTB86PbzWZy3Csxwy13klDIVTOBsjRBE6oQBi0JWq9lN5UhPjlgRUSozQzaR+XuuvcktntYFNCJCFiS42lAGY0h0m5+SScVZa2mxzMCXpbjJRgSQy29mHud4r6Lax8ygz9GvtXSvq0VblQiqnMCr1dCpvaBlBVcfpuAkWb/nI5cANSwKG+VDjsRuYaNTxNwUdBtkxeieX1bqxJORCo9+BeKbI0lD64xW5glOkt98rCXju6Dmcm4P67hB5nAyny2jqepwMpw2kK0E3Z1x2Ea8PTJeVXSgoT8HxHGHZuiUebSFX2fmUHnTdqCR5FTOdX+t/j0Mk9WDT6QJLIY7P5BCtIPT96skwntx/Bm5JPG93aT1SecJszFb4ULXbjrFYBuk8WdsAoy057RzLBgHAXT111hnX1cSDa1uYHApAnENnjRtfvKsbuza1Y317CO+ORPHWcJTtkP790FnEUnnE0kUmA6OqQFKrCar3SVjZ6MOjW5biuw+uYpMQIMWNPofIev0AQF7X7ptCEjhMJHIsx85hbpKCGZm8jLnIU3Sx6an3oN4nsYXp2Dih0yZzMitGBmDIeR/XzsWcttKYXTZ+1olVkFV4HcKsZxwijzK9u2q3nYmfUgfmdQjYtqqhLFVyYjLFWqZXgttOdtP3rW5isjjxLLmvp6dT6Gkg9P16n2SIpq9v8uHLdy/Hzg3ts177o46fHBzB7r2nWCQDAOFkHlMpwkTjOWBdG9EZHAinWQSvqGS+OgRgaDqN05E0ept9cNhKtuB3lTYgMznjgmzngW/ct5JQwseTGIlmKvbhAkqswfPBvHmaSOTQWe2CwHOYSZPNI30H/b7VbrEsvb+6JQCARFhnomlDXzsz1Z7+TpFTy+SxOmtchvQ79aNOm7HOUZ9C9DlEtg7xHNlQUts8pZ3FUsKFPloDiPTWhWIqlcdMhtzv5oCjzDmn8yr7rtVuGx5a14orDctx6RBy2/G/HlrNdkYOkcdAOEVERT0SDgxFWJRDyQaJnIyf/ZakF6kyNs+VQnHCnDuDI2djeG80XmZU7DzGtFjrdzR/9rFug8GoMO77qVgnnfdmp0YXDj3oe+u8Eu7oJkzKgak0xmdyCLrs2LWpHevaQ2zip/MqRK68PidXVLXC5tLrNpGflXkFkBz7bPI29PbomfpTqTxz2jSaS2RlHB2bwUg0w4zcrrv/NW47euor9AXiVLw+MI1P//gtvD4wDb9TxEyGqHKPRDM4Nk6e75IqF378B+uwvj2E9e1BPPaJFRXHey3hwbUt+PLdyw2kCw7GrgdvaMKtdH7ReaCCUM9pLeHLx8NMgcNtFxDPlOqN6LkrRV4BfvHeOOlE7bJpCixkXvp19UUcgPZq1wURL/SgYx2LZyErqoEibxdKjnAqVYRNS0VzIItnwGnD0lq3QZmdIitXJoFkiijrLTY5k2MZB/09nau1yPJ6L9pC5NzRxnNoDJQ2WjPZIvxOEd/YthIbu6qY86U2UqlJqx4tQWMmI62lZyZncqikakfv2VSqgBf7L72tzIXCclwmHJ9IoKiohp3OuXgWo7GMIUrQs+pozQZ1PnTS0UJAjyTg5eNh7NcU5vW7H54rRVuceYXX8P2XT1Vs1Eevn6btTSqk/ij0r3Ewkil+eZTktWnqbySaQf+5GTx98CzimSJLbRRV8rlGv8PgSK9r8GLXpg5sv6EZksiVnYuxnavAEZUA3bnGslp3xeJIurGc7chKEnlIAtlR0vvdohmxohKmp7n+ziGWJGxY23UP+R4e7ZnQa61qDqKzxoOnHrkZTz2yAW8PR/Ct545ds3JPANnYPXJbJ6q9xk2UHhktvSarxvSbyBuzCJRMIQkkiqDiNJSEQMhP5AN1XomxOSPpAukkoLUy+adPr0NPg5dR3AfCafQ0+rC+PVTRaVRSZJdVoqTxxa3LyuaiRzKewRVkFY1+B+za5uyl42E8//6kYaO2vi0ISeQNZRUUZRtI7W/9+8z31OsQsOOmViyr88AuEDWR5fVevDUcRUybxzlZxbHxhKF2Lp4p4kv/3xHsOzXNItT1bSHYK/h1c93jSLR0dqhnOM7VWRkAepu8V/x8C7AcVxnu7KlDU8Bh2Ok8++4onnzztCFK2NpTZ0glSabaFLckIFdU4XeK7HPHx+LY2FWFJ/5gHfusogI8z6HR7zBo6d3SWYUdNy1BW5WrYtNKu1Dqoko/dqE5bfPUq0T0q3LbGa3czEys9zsMjvTQmTh+9f44jk0kythd+pRIVlaRysmsJTpAUnv08nSh4lCqfZut0DFXVNA/nkKT34GWoBM99R6MRNLsOnVeqWzRqCQVNR4nzm0qlUdfawB9rQGsbw/i4yvr8aNXBhBJ5RFJ5ZHOF/HolqVXxSgXOryO2dNMdN2scdsN9YxFhUp8Ge2kUuBNIw9Z2xBOJHI4N5M1LPp9rQF8d/tq9C0JIldU2IbDrmkiuuzljDuBA5yzVKZH0wX88ui4IZvQ1xqAXaTn0Bxagk6MzxAJJX2/uesbvaS7t8jhsd9ZjsNnSVukcCpf1rtLBQwanXSEepIKB2PxtiTweHckjnPxDPIyEHJL+Nbv9qKv1c+OJOh982sMCpvAwcaVR2wHhqfZppB2oSDqO+QMrkIpVxnDkaLWI5U54ps6aq6KsozluEx49t2xMop5VnNAANg51vhMFq2hkohu2nS4SjebeqeTU4B9p6bxty+cwObuGsZQTGRlhJMlRxBwifjiXd342n0r8Q+furFMcgoghdCVUImXMMc6MyuePzrO0pgurZA04BTgc4g4o5OxojgdSeP4uXJ6c3wWnUc9bAJR0ZB1dPdKB8+VIrORWIZEiONJw4Jnjl7NH6URo35HncyRsR4YiuLbzx/Dt547hm3/9z7c873XsHvvKQC4ZuWe9Pjm/b2szY8ePqfA0kgzuSK2r21GS9DJRIslkZ9VZ1ISOfTUe+C2CQaGnd5B0E96JQGPfaKHPYu/eWAVi8zzsoofvDKAl4+H0dcaMAjNkkitNB9ptoPWJ56cTBjG5LIL7AxrXVsIsqKi3ieVKa9wHE8iLK8Dzx45Z/iOZtKUjeeYXelJRJmCMeJK5RUW6UylCjgyGmfEoZlMDs++O4bxeI4I3Oqu79VtNs0KGAAQcJHxNwUc2KZJaGWLpLSnqKgwm53AE7WZ9e1BQ+q91mOHKFSoLb2Yw/cPActxlaH8aQdcInY/tAaPblmKh25sQW+zH++PzeD1gWm2e9I/76aAA3evqK94dQ7AvlNTeHL/GUNvrIKswiHyqPNKiKWL+NsXTiCSyuMrz7yPkWimjIkUSRUqspMq8RKyxdmb95nZej4HrxFGShdSVWIwsYyMmWyRacTJaqmwlEN5GsEjCbOmFvQb34KslqVCzaOltWy1XompyAs8Z2ABAqUd9fhMjjl8t8SzwuXOGlL0ub49hM4aN/5oU4lscWIipVMEUdFZ48ZINKOjXF/bjEKKzhoPqYPSobfJix9/aj1qNGeSKyp4/ug4RqIZUO2SXFFhGz+fg3Tnddp4jU7txMomP1IF2ST1Vb5EJXIyvvGLfjz+wnE8/sIJtFW7cc/1ZBEOOkX89nSk9F6TjJTePhSVOIh0QUXQZTPMJZEnm0xa5/XawDTG4lmMz+TwsZX1aAo4WJ+xI6NxHBmd0fQtSyUUZso4AANxSL/s02MGfZ+v2SKdI6MJ7N570hBtURyfSFbUHJVEktWZTOTgcYj4/sN9aAg4sb6dkGkqZTZ47fW3hiI4MBQ1tE+aTOYrliI4Z6P/XmZY6vAmRFJ5PPHGMKKpHN49G8fwdBIzGRkbu6qQzss4dCZmUBLvbfLh6NiMwSCCLhse374a//b2Gfzq/YlSS2+O+CqBI2G5flGnPb9ofy67wOHulXV45vD4ecfs0golS2dJc2uwVSoknK2YcS5IAofNy2vxwgeTkLUzCX16yC5w8DhERFKkO+zWnnr85sQki0LNavV6LKtz4+RE6oJchb5o1ecQ0dscQGPAgVOTCRRlYCCcYAsDVRinPaFCbpshddnXGoDTJuBr960EAHzqH9/CSDSD9e1B/OA/rb2oiOujpg6vx0A4ifv/n9cRzxThc4j49/9yC556awR7Xhsse6+NL1fE6GsNYO2SkOH9s80HSeTKUtBOESw6WN8exFisXFO0t8lXsciZzn+9qvqyWjeGp1Mw+4reJh+OjyeYrbZXuXAunmFRFR1bvU+CTeDhtPEGajhgVNWoBCoEQOF3irDzPMKpPBMU0MPrEOBz2DAay563M0S1m2xCE1kZuza149f9E5r6jwunI2k0+h1IZAsXZft0rXJLHNx2O3NoF9OrjsJSh79MCLnt2LmhDUG3HdFUHjMZGZLIY9+pabYbL2ryP3YeaAw4mdPa0l0Dv1NENF3A/3jmKN4ajkBFiU5L1w9ZNUYnXoeAz21ZCpHnWOSRl1X8/L3KTkt/6GzjCePHpXttNqdV5bLBIZLoQ59SdNkrK1gDpUhNP7PoLtjrEPH8+xPMWcmKipagk0nZ5GUVUc0ppAsKDp+NkSJfbaw53SKlH4/AAaubA+cRCC5N3a5aD/tcvU9CT4MXp6dTOHQmjiOjcQNjM1tUEHLbEEsX4bTxeOiGZtgFDiG3jbUv+f7/0Ydn3x3Fs++O4cd/sA5fvnv5RTutjzo6azzY/dAaSCKPmWwRT7w+jIO6SIcSmTiUnJY+Ajl0JoZfvV+a3wJPzmMq6eVRp6U/HtOntA4MRbXIzoiBKWMBuV3g2PwHjJT4E5Mlp8VzpcihqKiGM96h6bQhFZgrkmjtrp563N/XbOheTqF3WjRD09vkY//OFRW2EFPVC0qm2La6mWUOXDYBDpFkGehxxvm6R0yliiyS3D9YyhCtbvHD7xQxFs8anBZ9RrMxlAFAUUr1m/oo7KaO0FWzESviqoAfvTLAFDMqQd8VVN8jqN7vgKqomEjkYBMI6UESOXRWuxFJFyoyA+nuj0rozLY7o/2lAk4bCoqMVE4pi5woVT3gFBDLyIafV+qbQzvJ2nlUpLgCwHV1bnwwkcL1jV68N5Yok5MxY9uqBtT5HNjz2hB7jQcg6DrZ1nklpg5CexfpJYQAsnvL5IsYmk7hju46nItnmPahufPyjpta8frANAbCpZ0u7QKr7zANgEVYpT5DHGRVZbvepoADhaLC6Mpfvnv5JUvXfJQjLqDUERkgz9hh55DOk/OStioXBsLpss/QqIr2w/JIRCpJVomtiFrzQh4kFVxQVNb/jc5nc2Svh0Pk0RR0VPzd+m7GZth4YotzNTDX25NT5JHRGsnq02yVojz6OTsP3NfXjAa/A8NTaTxz2KhSQZRE7BiYKo19fXsIq5r9eE5LuwLGDAvtxv7iB5MGJ2bngbZqd1n0V7puEAd0klxm6OWlzofeJh82L6/Fzg3tF+24PnIRF8dxffP1u2l7E4p6n8SYQ7QraFPAgUa/w9AiYTyeZQsyPWvNFVX0jyeRylde7FkaUfuXc5bSe4Hj0BRwIJYhzsdmEt112QTIKlkwvA674doAkM7LZdp9BZksCnMaK8/jls4q/NW269FT75nTaQHAS8cm4bQbd82K7ncBMEhafbK3Xttl6yJQSUR3nQdHRmeQyMoYn8mirdoNr0MgfY50X0zggIOnoxgIpwyEgZagE5u7a/DX9/eyHavfIeLP7uqG08YzI5e1RZ2makZjWea0eA7orvPO+X3nE/NpIwDw2D09rC5IAan14zmykFdyHHaBQ6ZA7UWFJHBI5ojT4jliK3SOKiDnQUGXDUu0Nir0sYecNgP5Rm8x2aKCvI5qry/bSOWVsgjCIXKwa6nMvCbhtuvWDuza1IG+1oDhvXp7ytCWNwrZVNZ67OhrDRjOpejvsgkcvA5CXHn64FlkCgp+fsTotABC5KJOy2njIXBANJ3DnteGDN2P07pjAVkF3h2JsflMf+fyBl+Z46GthLbf0FxRw9Qp8mj0O9Db5L9gpwUATruIz2/tvqoZiQXpuDiOuxPA383X7w+57fiHT93InNf4TA7VXgeOTyRZVDAaK3UWne0R87pCyURWNhw086ZQnNdemG1HmJNVw2Esz5kmpV2AVxIwGiVSNkR7rwGNfgfqvFJZx2JKS67Uybi7zsPG1X8ugdcHpvH2cASDUyW6OV0QzJwPp03Azg1tWKszenqITXUEqW+WBA75oop4pmjI4ydyRThsInqbiNMYCifw9MGzFQV4ZRWs5Up3nZcVrj5/dBwvHw/js//6W7ZTjWeL2L331KznaoCWaqz3soLSr/+if9b3zifm20YAki68e6WRhKSos9cj0sVQBRBNF5kt2XggOIuSQzRdwHtjCdaE1SZwCKfyhtIR3rSKeSWBqLLLxHZnU2kBCKNOb3IrGr349fvjyBaKWLskWPZ++qv0lPaiQsgKh87EMDRVinDoEPOyysbbEnTi3TPRiv2x+loDuK7ODb9TBM8Twd0TEym0BJ04NzN7F2O9tidLg8oKhrV2Kl6HALvAsVZC/3FkrGLH9UxRwVg8a9g8V3qUZqLXKk038mpiQTouVVVfBBA57xuvIDprPPjZn9zCaql23tyGRn85BXguKCoplKSgZzEAUafW9wVy2St3H6Z5fUkghb1EySGEJSY6fCRF2n7TNbkx4ERbtRtjuihQD/3a7bJxqPVKqPdJ2HHTEgQ0nUWAnFU8uqULD65twX+7axl4DrhtaTVLv0mmupzbu2vxxBtDePdsyTBcIjFymrenC0VOVvHy8Un2PhtfYhsePB2BU7snk8nzU+oB4I2BaebY6KKYMDGv4pmc9p15LKt1wysJaAk42Eai1uvAxqU1eOCGJrRVufA3D6y6oN99tbEQbAQApitIL1ECEkUlR6b/eUEBplO0I0PpdYfu3xmt2WpBVhnzrsFH7NGs8NQ/njRkBmgdpciVbzLrfZLBrl8+NoXh6TSe3H8G+05OGRQ8bAKH9hoX+1y9T0Kt146eejeL9mc7ckrmZITcNoxEM1jdGiwrcan3SRiLZfDBBGnaeGsX6b0l8uW9xYBSDZbfKVaMjvRElURWZu+xaVHvXJhK5mZth8RzxrrOoMuGz9zeNef1rgQWpONaKAi57RiJpjE8ncbf7xtinV/NitY9DV5GwKi0Q2n0O7Dr1g5GIa73SRjQ1LIpplJ5FokIKB1u03PgnEyYSyORNA4MRXBiMm2gniowPswDQxHsH4xgfXsQ29c2s5oQOr5GXQrl+uYAnv/crXjoxhY47IKhWeL9a5pYGuD1gWkoKjAQTmHXrR1oq3IxKRji4JYi4LJj995TbDHhUHJYevtziKTnl1tLK7YEnfj0Le2GdgrddV5s7KrGjptaGW1XDxrJ0bWlKeAwLDQiV666TRfRdEHBickUfE4bRmJZ9iyOjMax57VBPP3OKB5e14q+CrtuCyX81baVZf3TfA7ScbevNUDIENq91T8JqlgCALp+kwYnpBd8zRUVpqmZk0k7+a09dYbI53yotFyPz+SwcWk1m5s57cDKLfHoH08YInyHjWcp0BOTKYzP5LCi0Y9ffu52/MdnN2FjV3kjVnpdSeQQSRWwJORCLJVHXvuitR47mgNOjM/k2GbQaeMxGstAUcn9GNIiJ1pvZhM45IoK+loD+KdPrcPGripsv6EZvU1+1HrscNtmZwjT5p4eSZh1Iz4QNvY20xdtmx3zJ3sb54W0tOgdF8dxhj9f/epXL+v1H7unB5u7a9DT4MWBoSjWt4dgF8nDpw5pa08dI2hU2nBxHHB4JIb9g2SDLMsqW3SpzTYFHCwSkUF2aGaG1fhMjqUnPZKATEFhzivgtEFByTlIAocDWv3Fqckky73T8U0myHVagk78+cevwxeffhe7957CnlcHcWKCpDv8ThGf21rqP/XYPT3orHHjdCSNvR9M4KufXMEYgm67iNuW1TCmWF9rAAGXaLgf+o1htqgikZMxnS6grcqFu1c2IFuQUes1GoFN4HDfmmasavazM0a6W10SLEk8AURrsagrPi6qMNQE+Rwi3DbjpsNcbG7nCcGERpkfBVxJG+ms8eBhTVR1fTtx8vetbsL69hAKRdnQ8oY+CQ6ArJSei9chaoXAPKpcpYalPIDO6lJmob2qVDt2YnwGT+4/jZlsEZLAlylyOEWeqa/QdD2dJ/rEYV9rAL94b4zNTSomncopZWKy+jEDpJXHY/f0kN/htuN7D/fh0S1dLPqKpAuo9zvgcfDIFckZ7+lIGk+/c5ZlQWwij7OxDNtYipraxYCuHoyOO10gQgjUqQxOJfH80XHsOzWNhoADm5fXYDKZR0pXzNzb5MWjW5Zi+w3NCDhtmMkWEXDakMzJmMkW2GbAxgNOkau48dZ/b303941d1fjc1mUVPnHlsWBZhRzHvaCq6tbzvOeKMabMiKTy+MnBEbx2Mox9p6bZ649u6cK9q5vwhz9+m+WUgVLtitsuMKfBGG1ceY+carcN8WyRTcqWoBM3d1Th6XfOVhyPy85BUThki4RCfPuyGjz//jhyRbWstsNl5w0LuB4bu6rQ0+jHnlcHSc3KRJIRFXbc1Iqv3Xd92X148IdvYCCcwsauauSLMmP70fYgHkmA30nqTKrdpOGlCnL2oKKUumkKOFDrlWAX+TKGk8vOI1dQIKul61JQ9mSt145wIl+RWQmQjUUiV0RC605Nb0lblQt39dTh2cNjbJfrdQiMNtxZ48beL95e8X5dDK40q3Ch2Ai1jTt76vBi/wSmk/mK9VxmmJmklaB/LjVuO8KpPGO81fsdyOSLFQlD+jmjvwYtzo2kClhW50aNx4HXB4g96+vNqA3V+xywCYTFqC+4XRJy4R8/fSNrWaTHXz5zFE++eZqxISvBLhA9zmq3HUVVYaK3ZhHr2dh9lFnZU+9F/3gCNR47OJSL997RXQMVRMfzyTdPY2NXNTpq3HjyzdNz/o6AU0QiU2Qd2AFgWa0LqbyC0Vj2kuoaK+EjxypcaKACo1/Y2m1QpP7ZoVF8/t8OYXg6bUghUgOo95OUiCRwyGjMQr3Tovn6qVSBOa22Khe+9LFuPK9FLw4bV/ag0nmVRXnxTBHPHD7H6l18DpFFdOS95U6L58g5z75T0/iX/cMAyEF4rqgg4LRh16YOQ7Slvw97dqzFxq5qzGRyeGs4ir5WPx7dshQ1WsoomSvVmXgcpagrkZNR55Pgc4io80oYjWUxOJXCgaEo+loD2HFTK2q1FFI6T5yWyHPImcQUqY1NmpxW0GVjP3MIRO2bKidQp8WBHCY77QJT0270O/Dwja3YvrZ5QZ9rLVRQ2+is8eCR2zqRLczNPKXYvLwWThuPlgryUQCJfvVBDk0508VyPJ5FPFOsKMTssguodtvAAQZFjEiqwArOJxM5bO6uYanmDs0J+Z0i2/gpioKRaAYBlw0NPrLRavA5cDqSnlUFnXYMvm91E/s3hdchoK81gLtXEqWPKa0lEl25zT5qeX2J1apX1aDlAKe1zXI4mTe0PaJ49eQUXj4exlNvnyHfsdqNoMuGHTctYWK7ZqclcEAyU4QMYwZpcCqD0VgWbVWuea9rvAQVuysPjuMeALCW47gHVFX96XyPR4+3hyOIa4uh3yliJJrBiBYsVOoDNKHt6HOyCluFzeXm5bV4+dgEY9V113lwfCKJP/vpEXa9bCXRsTlA9dh6m/yYmMkiV5SRzstYEnKC40jTN0Ut6ahRJuPm7lqMRNNaSrBCSxANnTUebFpazWrdwok87l3diEy+iImZLEZjWdR67cgVCbPJpdX3ACWa9Ey2CIdOSb5/LI6VjX5MJo1EEp9DKNtFAiXFAlrfBhDHS+uD9EXY+to4FcAzh88BALbf0AyXXUBBVrHntSF8+e7l+M4icVoL2UYGp8qp8Ho4bYBdFLHv1BQyBQVnY+WMOYEjJJ58XobPIcIu8JjSHJeiAH2tfozFcxiPZyvKFR2fSJa/qIHWVcXSRfz1c8dKqWYtPcdxYFkRRYtWE9migdm3ubtm1lTyzg3tcNlFPLi2BfetacL2H73JOk4kskR9h5IfaG1ZtceORLZgKG72SqR1yZHRGUPUCJQiQrckGlKDAMlWNAddOD6RRFFRWakBAPzst2eRzMnwSALqfCQqNWeASDZDMhQXC1yp2PlqNIo8HxZkxKWq6k9VVQ0uNIMEiHo8pclvW9VoqPdK5mRDkz2gJFAr8lyZ7A0AHB2dMVDBkznCHDxfMzz9rqol6MSalnJK6vB0ChOJHGKZIvKyipPh9KyLSq1Hwue2LsM/fXrdnE6L4sG1LVjXRs40RqIZfOWZo9jz2hDrV5QrKohniqjzSijqrELfXI8aKaf9+6m3z6BKF7V6JMHAyqTfWRJKfcDobar12tHod2B9ewhNAQd0/UDLDuVpXv9X/eMoyAoODEXmXIgWIhayjfzVthVlLUX0ZpEtkiwBTRnT4lz9J/SRSletG3mdd5pM5mATBIzrUnfmxozA7Hqv+m2gfsGmcymWLrLXMwUFt3RWYffvrUGzFqG3BJ347vbVsy7eNAINue14eziCoqIi5LbhB79/A3Zt6sD69iDLBLi1djrhZB47NrQb1pNErohjmgOmTsspksirqKiwCxwThtYjlVcwrjlZWvfocwqGThXJnMxSqUXVeK84kLM/fQ2crJJjhUe3LJ0XFqEZC9JxLWS8qGl9be6uwc5b2rFtdRN6m0jX3N4mH+5d1Yhar51RWCeTeYTcNkIa0K7BAazVeUFWDBMkmsrhbNToXKrdoqG41u8Ucb32OwWeOI6BcKrMeGeyRUbW8DlESMLsEjE8f3HK5yG3HT/8zyRlCAA9DX5s7q7B8HQaIbeNRVLJfNFQJ1NJjsqp3YycrGJGpyZPjYzeNxXkjCInlxQYWoJONAUcmEwQ0c/n35/AaCyLTKHEzNRvJkQe8Eo2uCUe8UwRByDfZzAAACAASURBVIai2NxdM+dCZOHioCdsUOKrPlWrquVdDDieM3TprvU54HeSlPKhM3HDWZFXEvDeWeOZ6H1rmgz/X9cWLBUsu2zwOgS0z9JRoRLo8FJ5UgDvd9nwxB+uw+buGvz4D9Zd8FyhzTdf/MLtuH15Lao8dhwYirLaw8lEHn6niN4mP6CquHVpDQBy/rtrUzuiJkZuplgq9cjLapn6vL4rBS20d9p4tIWIeICZWm/jiZ3oVwUVwPPvT7CGoWtayFHA9x7uw+e3LlsQdmI5rosEnYjf3b4aL/ZPYPfek/Bp23uf04an3zmLFY2k8jzgErHjpiX4q0+ugKhTulAB1nLAXGOVLqgYjWUNE8wuEjXndW2k/iOeKWJKS5/RjehMtojJZJ7Rg/U5c0nksSTkxJ99bHnZgkEXFn331AsFYVKtwZfvXo7P3N6J725fjc3dNYikCoz5l9KFk36nWHFnnC6UanNoPyG7bqD0vtX7JPz9jhvhd4rIFIh6yZIqVxkzkIKyC69r8DKmGlRy9iVw5IuvawtaTusK4DO3d2Fzdw3LMlDHRZ8lh1Ihq1frXUchaLm8eKaIiQRR+d9+QzPWt5P5n8jJrAwDIGe1lKQE7brn4ll015HMgcNG0mxnIpWzDQ6xPDqjV/c5RAyEU/jGz/vRWeO54IwEhT76Asj6oafNCxz5nqQMYwi/7ifn2tc3+bH32CQevKEJDpFHS9AJQVcQ55YExoDUQ1HJEYHPQWzEq/19ZJSo3Oe1shpqXgWlxGDuqfcg4BTYvRiLZ7G+PYR/+NS6BeOwKBYsq/BCcDVZhZVgZlPp/9715EEMhEnV+0y2gHimCEnksbm7Bm8OTLNzMqDEZtJroZlBtfd6GryIpPIVdQ8BwrxK5osViwzp+Y/XIUBRyG5y+w1NCCfz5z3Xuth7Mp3MGfQKQ24RskJSOifDafAAWqucSOdl8BwHh43H8HQG1W4bOmu9ODAUIb2cvBJGoxnm4HsavGy32uh3YCyeLdNPrHbbWOuVpoADo7Eseuo96B9PorPahYGpNHqbvNi8vB47N7RdMYP8qGsVng+k08IQzsWzeHNgGisaffjN8bAhDT6bujl9thT0mW5b1YDfHA8b7IdCryEKGFmLlK1HtUXN7L1KaKty4aufXIEn3hy+bPYBkPvyx/98kDFpK3VmoKxDs3apeY2g79NDRKnNklldXn8mTGHW/tTjls4q/Msf3XRhX+wScKk2YjmuK4TfHJvEH//LO2UOhDogMzXcDP2EdUs8oFaWg6p225HMFcoa9NHWA4BxsrdVuRht/0qmyCKpPP76uQ/wzLujyBVVwxjO14rBLZFdHx1/T4MP/bomlX2tAYzHsyhoXWYBoLfZj+Pn4sjJ5AyC0pfpAkjp0evbg3DZRbx8PPyhBHQvBNe64zKDile7JQ6qwqMoy8grhI5dVFS2eLrtPDprvawXlh5uiUd3nc+wmXHZOHA8b4juAeNcB8i866h2VRSepYLTFJTKfqXmSCSVx+b/62XEM0XUeiTkZQUxLU0uCRxU1ShFRWvKzEvAXA6Y2pzZMTUFHJjJnL+VidvO49nPbrpsDrviGC06/MJBJJXH13/Rj0xBgVs7Z6GFwme1dEUiJyOZkyu2DQGMu6xUTjE4raU1rlL7AZ4jHUy1NAKVglnR6GPvr3LbmfLEXT11eHRLFx7dsvSKpshCbju+88Aq/PLRWxHUSUgBpEZkLqS0e0NhcFotfoQTpBA7rJcbUlXk5BLTk3aXpq0sltZ6sLGrGt+8vxff3b4aX757+aIiY3wU8ODaFmzurkEqp6JvSYAtwnlZNcyJVF7BkbNx9Db5ynTxUjkFh87EmNNy2nikCypzWl6dIsRY3Nifq6io5b2yOEIKMYvO3rem6YrOkZDbjm2ryLmcTeQQyxR06h1GpyUJGsNSIYzMpoCDLdxzRY0qiCzW/7xvJQRd6j2ZKzKnpVeWcdsEbFvVgKaAA32tgSvutD4MrIjrCuDxF05g996TcIg8OE5BplCKoCitVb8Loik8gKREMgUFqbxsaJBo44F6vxN9rQG8enKKvZ+mwAQQxY0qlw3XNfrxf25sx6NP/Zal0B7d0sUoulczV21uEWNuFigAqPFJCLnt6D+XgNtOJILSBYWlfvRpI30bGQAVI6o7ltdhNJYxFFkCH65FyaXAirjKQVPJo9EMntxfej6SwGNFkw9noxlGw+Y5oMYjVdTaBErRBo0s9FH9bJHIsjo3hqdI7y1zGq2n3oNETsbm5bX43J1X/kyH3osb20L49I/fKiukpt/nju4avKS1jzFHhpXAc4T8lVMIq9ku8iyaM7eV0WN9ewhPPXLzZft+F4JLtZEFWce1+EEmln6BVVBSzgi5bVjdHGCTMZouoLfJj5lsAbcurWEGHXDZkY5nwYGI8p6YTGEqmUOmoLB0m9dpR2eNm/Wimk4XsO/UFPrPxRHPEHmXe1c3XlKvnMuBB9e2IJ0vIpoq4NWTYdZ9dX17CG8NRzA8ncZDN7Zi/yBRL9BHlr+7pgVBNzGwX78/Ttqmr6jDSDSD0WgGTUEHHvvECrw9HMGNbSF8+/ljKMgyRmMZHNOitJ56N0bjOXxsRb0VYS0AULLC4y+cMLyek0kkpRefVVQjecnc+6rKY8NkolBKQesWdbq26zdKvU0+RNMF5GWyWfzavSvw2DNHmXj1xXbv/bCg9wIghcb0zKvWY8dkkhTX97UG8MZASalHT67Sp9z1jlpRAeqS0gUZ6YIMtyQg5LKjr9WPkSjZBDrjpQ4XS0IufPN+o0rOQoaVKrwC2LmhHbs2dRiM8JbOKvz9jhuZ8zK3FXDaeZKP58A+d+d1teiscbOzsKDLxozwE9fXo63KhXqfBL9TRF9rgNHy/U6ROchYpoCmgHPeGEEhtx2f39qNr923Ej/7k1uwubsGpyNpdNYS9f0v370cgIoDQ0THsVnHbgy6bXDZRTz55mmMzxCVg6/cuxJ+pw0TiRwOnYnj7eEIHrmtE31LgnDZBRw6E8eTb57GW8OE5v7Pf7QBh7/yMXzngVULihV1rWPnhjb0tRprD8/XfaHGI7E6J5vA4fpG0jqHruUFWS1LuS+t9TB7iqQKrHYpmi5gLJ7Fy/9ts9bh+uo6LTO+eX8vbumswq5bO/Cvj9yMWzqrtDHnkS0qTDw6p+s19vQjN7PvZg7CQi67gb3odxBl+mcOjyOeIetPS8iFjV3V2LWpHf/+X25ZsGnBSrBShVcQhFU1DEDFzg3t+MnBEXzruWPMeenD9k+uasSTb55mDDlKnIim84yhCJAiwBuWBJHJKwY9uM3dNeht9mP33lPYcVMrRqIZfPaOpXh7OHLV04NzgaZH9GPS36d7Vzfh2XfHQO8ZAMM9DLntGAgn8ZVn3kdPgxefub2LXYe8fhQdNR4EXbZ5izIprFTh3Iik8vjTfz1k0P40gzLuzGlBAAi4RKbxB1Rm5e64aQkcdgF7Xh3EjpuWIOi2IZNX4LQLV5RR+mGhTyN+/6WT+OwdS/HKiUmci2VxYCiCxx9ajb4lQQyEk/jL/30UTUEnTk0mkC0oSGSL2P17a9BW7cYPfzOA/nNxfGFrN145EQag4rZltfj+SycvK1PyUmGxChcBzPT57jovvv6LfvzNA6vwyolJ7N57CgARef3JZzZUXNjpYvz4C8exe+8p9LUG4LQJ+Np9KxF02cucgoX5g+W4zg9Kmd8/GGFRN8X69hC+ef/1ho0bQM45exp9+NM7luLv9w0hns7hvbEE+zktgQDI2S7dNFp2sfBgOa5Fjkgqjx++MoD3R+P42n0rz7sTqhS5WFhYsBzXhcMcdb/YP8Hm9kA4ib/42XvI5GU47Ty+eX+vwT4iqTx++JsBHD4bw6pmPx5a12qI2i37WLiwHJcFCwsMluOyYGFuWHVcFixYsGDhmoDluCxYsGDBwqKC5bgsWLBgwcKiguW4LFiwYMHCooLluCxYsGDBwqKC5bgsWLBgwcKiguW4LFiwYMHCooLluCxYsGDBwqKC5bgsWLBgwcKiguW4LFiwYMHCooLluCxYsGDBwqKC5bgsWLBgwcKiguW4LFiwYMHCooLluCxYsGDBwqKC5bgsWLBgwcKiguW4LFiwYMHCooLluCxYsGDBwqKC5biuAr761a/O9xAuCNY4LcwXFssztca5MMAt5rbei6Utudaeer6HcV5Y47y8uNS25Jd5DJaNXEZY47y8uFQbEa/EYD4sOI57AEAMQJ+qqt+Z7/FYsLDQYNmIhWsZCy5VyHFcHwCoqvoigBj9vwULFggsG7FwrWPBOS4AD4HsJAFgEMCd8zgWCxYWIiwbsXBNYyGmCgMAIrr/V831Zo6b1yOEC4Y1zsuLxTLOKwTLRuYR1jjnHwvRcV0w5vvg24KFhQ7LRix8FLEQU4UxACHt3wEA0/M4FgsWFiIsG7FwTWMhOq6nAHRo/+4A8OI8jsWChYUIy0YsXNNYcI5LVdVDAMBx3J0AYvT/FixYILBsxMK1jkVdgGzBggULFq49LLiIazbMVqvCcdyXdP9+gOO4OzmO23X1RlY2ngsZ55e0sS6YcXIc923t71261+j9/JL581cDFzLGSu+72rjAe7lL+/PtqzUO3euWjVwkFoN9aGO4Jm1kUTguLSXyd7O8fqP27z4Ag1pR5uB8PKgLHOedAKCq6k8BdHIc12F+/5XGLOPcxXHcAEhd0LwXuV7IGOd431XDBd7LOwG8qKrqHgAddA5chXFYNnL5xrig7EMbwzVrI4vCcWmTI3LeNwLUU3fMR97/Ase5FaVJNYB5KB6dZZwPqqraqf0MmOci1wsc48XMjSuCCxxnB0r3bxAlYsWVHkclWDZyHiwG+wCubRtZFI6rEjiO6zM9nEMgu8gBzONDMsM8ThDqsp7K3Hn1R1URfaa0x0UVuV4lmMe4UGEYp6qqe7SdJAD0ATh4NQZh2chlxWKwD+AasZFF67hQmtgAAI7jAiA7oB8B+Lv5SMHNgpDp/z9FyRCrsEBqcFRV/Y62eFRdiVTW5cBiGCMw+zi1dNILVzHSsWzkMmGxz72Fhg9rI4tSOaPCDg0AdgH4lqqqMY7jDgF4AMC8qmZXGqeqqoMcxz2ly4kPVvjoVQVHlMbpmcI0SJi+oIpcZxnjgsN5xnnn1VJyt2zk8mEx2AdwbdnIonRcIId3Hbp/Gw5GVVV9cYHsJmcb51pVVfdwHPeI9vDmG4MoLQ6dIDvygwDWaq8thCLXSmNciKg4To7jdlGD5DjuzgpO5XLDspHLh8VgH8C1ZCOqqi74PyA7wyiAB0yv7wI5vO3T/v8l7b27Fvg4H9D+9C2UcWpjfADAl0yv3Tkf9/Mixljxni+kcWr3MKrNgSjIrnK+5p5lI5dv7s2bfVzkOD9yNmIVIFuwYMGChUWFxUzOsGDBggUL1yAsx2XBggULFhYVLMdlwYIFCxYWFSzHZcGCBQsWFhUsx3WNQatWH+A47tuaoOWXKumsaT8PzMcYLViYL1j2sTiwWOu4LFwiVFK/8yKAp9RSX6cogKDprQ8AeBtExcCChWsCln0sDlgR1zWOSkWo2g7zRyBCohYsXLOw7GNhwoq4rl2s5TguBOARAFvMP1NV9TvaTtOChWsRln0sYFgR17WLgyqRVHkBpfYMZe9ZyEKdFixcQVj2sYBhOS4LEQB/Tv+jHTh3akKYgwAenK+BWbCwAGDZxwKElSq0EIOmzqwZ5Z2qqv659v8XAbwzj2OzYGG+YdnHAoQVcV1j0IxvLbSDZbXUenwXgNsBfFlH/+0AEFoETeksWLgssOxjccAS2bVgwYIFC4sK8x5xcRz3be3vXdrffRzHqVoR4ADHcQu1p4wFC1cFlo1YsGDEQjjj2qUddD6i/T+kqioHsHqJ2Rg9FixcK7BsxIIFHeY9VThXp0uO4x5Q57/7qQUL8wrLRixYMGIhRFx9HMcBpNPpd+iLWn3EnO2wOY6zDugsLGjQyOhDwrIRCx9ZXIqNzLvjoobIcdxW085y62y7TNPnr+j4LFi4VGjO5kPDshELH1Vcqo3MKzmD47gHtNw9AExDq5fQUKbIbMHCtQbLRixYKMd8swoHUUp1dAI4CDBhS+vA2YIFy0YsWCjDvKYKVVU9pPW8iQAYoG0ENETma1wWLCwUWDZiwUI55p1V+GHAcZy6mMdv4aMNjuMuFznjw4zBshELCxaXaiPznSq0YMGCBQsWLgrzziq0MDsGwkl84+f9eOyeHnTWeBBJ5fGTgyO4s6cOL/ZPsL8fXNuCkNt+3uvsvLkNT7w5jM/esRRvD0fw4NoWRNN5fOWZ99HT4MVD61rx7LtjyORlAComZrJ49eQUHt++Grcvr71q39uChQsFtYlKNhBJ5fHEG8MAVOzc0A4A+F8vnMCrJ8P46idX4PhEAje2hfD9l05i581t+LvXBtFZ40HQbcO9q5vw1Fsj6D8Xxxe2dpvs5Sg6qj0Iuu1Y0xLA13/Rj//xiR78diQKgMPODW1z2qOFDw8rVbiA8dCP3sSBoQhagk4881834ok3hrB77ync0lmF1wem0VnjxkA4hS/fvRyP3NYJoGTI1CAfu6cH3/h5P14+HkbQZUM0XYBD5JEtKth1awf2fjCBgXAKALCxqxr7Tk2VjcNp47Hr1s4ygxwIJ/GX//soVjT58ZnbOi1jNcFKFV5ZRFJ5fPb/PYTXB6axsasKX9jajW/8oh9nplNI5WUUFRUFmXz3basa8ev+cWQKCgBA4DnIigqnjUemoCDktiGSKrBr+x0i4tkiAKAp4MBoLItHtyzFkbMxvHw8zN5HP0//BoBHtyzFzg1teOKNYWTyRTjtIu5d3XhBm8xrDZdqI1bEtYCRyRPDGYlm8JODIwDI8y0qKta3B3FgKIqWoBOj0TQef+EEM5bde08yJwWQiK0gH0UkmUM0XUC2SAzs3TNRDIRTqPc5wHPA5EwGAFDrlTCZyGFZrRsj0QwyBQW7957EkbMxfHf7agDATw6O4Ffvj+PQmRheH5iG0ybg81uXXfV7ZOHaA92cpfNFvD4wDQDYd2oaR0ffRixTqPiZZw6PGf4vK8ShUaf1tw+uxg9eOYWhqTQmEznmtACgqDm//YNT+POPX4eCrKCj2oPjEwkcGIpA4Mh13HYeqbyCTL6IH74ygD2vDrJrvHM6yjaFdJNp4dJhOa4FCGqYokAclSRwuLEthLZqNzMAh0h+NhLN4Mn9Z9hnqbOLpgsIumzYeXMbXuyfQE+DH3teKxmS1yEgW5DJZwpFxDMlQ42mcgCA6xp8uPv6BmTyCvrPxfHy8TD++J8PYiSSwVg8i1pPaef45gAxSitNYuFKg2Yedm3qwMauKuw7RZxXLFOAWxKQysngAMwVZ9b7JIRcNiRyMr6+bSV+OxKDyPOYTOTYezySgI5qN4qyiolEDgeGovj+SyfxvYf7EHLb8fgLJ3BgKALNryGVJxvCbFHBi/0Tht9XkGXs2tSBdL6ISCpv2ciHhJUqnEeYz6xoem9prQd7XhvC+vYgjo0nEM8UsbGrGt97eA1LjQBA0GXDgze04N2RKN4aJtFXjVfCoTOl8h5q2F6HgERWRp1XQqYgY0bbUZYiM8AuAHZRQDJHHJrfKSKeKWLXpnb0n0sgX5Tx1nCUXZte08YDWpYEj27pwue3dl+N27fgYaUKPzwiqTx++JsBHD4bQ3edBw6biMNnYzgwFMGjW5bi3tWNeOAHb7A5XOO2o7vBh32nprCxqxqnJhMYn8kZHJnAA/dc34BnDp8DUJrnAGGrKbrfL4k8clqGwucQMZMtoq/Vj01La7GmJYCv/sf7EHiOpdvN1wOIA0zmZLglHqmcYtmIDpdqI5bjmicMhJPY9eRBDIRT7KyK5tn9ThFuu4ixeBZrWvz47Ugcuza1o8oj4VvPHUOdV0K2KGP3Q2tw+/JaRFJ5PPjDN5jxBJw2xDIFbOyqRkeNG0++ebriGGrcdoRTecNrbjsPcBxSORk9DV5s7anD/sEIDgxF0NcawPujceRklS0EZiNtCjjQFHDiv999HZ4/Oo7DZ6NY1RzEZ26/9s7ALMd16aCEIrqJM6Mp4ICqAtUeO46MzrAzKwDYcVMrXj05hVuXVgMcx+Y/dRwAIPIcisqF3Re3JCDksiPgFPHeWIK93lblwvB0GpLIIVck16JOCgAcIo+OGjf6zyUM19t+QzMaAg52NrZzQ/s1ZxsU1hnXIgGNsl46RkgRAacNA+EUHCKHSKoADkA8U0rdnZpM4fpGL8BxuLOnDvsHp9nh8PGJBGP7bVleC0kIY3AqrTmtKvQ0+HDwdKlGVeSAolraVaoVkik03QEA/ecSkBUVQ+EkACCcyCEnqwajb/I74JVk+BwizsYyGI1lMRrL4s9+epg50gNDUfSfm8H3Hl5zzRqohYvDX/zsPRwYiuCDczMGZwAAbruA0VgWADAWJ3//bl8TXj81haKsYu+xSYzGshiePoMdNy9hZCbqtAByTkw3XedLK6ZyMlK5DBoDIbQEnRiJkrPg5fVeTMxkGSkD+P/Ze/Moucr7zvtzb93a9973Ra2NFrRESyAEEouBGGIbHMcIZyYR4ySjODNnTOIce8aZOLYTvyZjj0OI3zPBjCc2St5JLBzHIhBsFsuAAEkIIQmppZbU6lZv6u7q7qpeat/eP249T91bVS2WYINEf8/RUS/Vt25VPc/z276/7w88do3FZBZV0VOGJwtGy/gcr5ybkdcA+NHhMb7w4TX8z6dPc9OaWv7gttXL++RNsBxx/ZLxnecHeOCpU3ID7NjSzktnp02phqUgmFPferqfdc1+7r2mlWf7JomlMjz03FnJbPI7NYIuG0MzsYteT9QDSqEqUOqMKgrk80jv0ue0MB/Pcm1HkINDYZr8DnmIuGwKLUEX50JRMoa8y/23rvpAETiWI653jnu/8zIHBsOmn1ktimQJCjT7HUwuJLmus4oTF+ZlytCqKqRzeeq8NjprPIzMxuT6FNhxXTvnpqNlTNpKhkxkJ7ZvbOGZk5OEY2m5F4zR3up6NwNTUbIV3nKHppDI5NmxpZ2gy8oPXxuVBtjISuyqdfPIjk101Xrezlt2SWK5Afl9jtloiu88P8Bt3fXcsqaWkXCc1qCTUxfm+dJHutncWUWDzy4f393opafZS53Xjtuuf0z7zs7wud1HJIvv8SPjPPDUKR5+foDuRp80Wm6bxtBMjIDTCoDNolDl0nDbLIC+CVuDTtqDTvl8FsPSEUbLZvihOPuSmbye649n6ah28VvXtVPltpoOhVgqz+lJs9ECCv1hy1hGZQyEFvnN7+7nT/ccZ029l962AKvr3Dg0FRVw2sqPq7G5BJlcnn0DM9JoAWQLC3ZqIcWBwVkUBeo8+v5y21S2b2zBYVWZj+upckF2gqLR8tgt+Bx6UiqR1RfzniPjhGNpVAWZHswavLzTk7rR8jo0XFrxflUgUdg7ghR1w8qawv1YaPI7cNssaCoMhKL88Y/eeKdv4wcCy6nCXxIEPfanJybY1B4knc2z7+w0I+E41hfP8Te/uZGHf36WHxwaYS6eYSGRkcZtaiFHc8CBqigyitp/bpr1LQFA30B9F+YBZKTVVevmm59cz31/e4CFZJbZWLEOFYqmIKp7nMPhOIvJrPQQO6r1SDCbA7tVJZXVN5nTqhBP6w9KFJiLQzMx/uq5M8xG0zT5HSgKTM4lyBi8zdX1buKpHCPheMWDZxnLEPjaE33sOzsjWYLGKB5gPp7V60Y1LjSLhWNjc0teK5cHr92C1aIyG0szFknQWnDUoqkcT5+cIGLYEwnDorWpClUeG7UeG2+ML9AadBJL6o9NFgxYpfKY8X5z+RyxTE5mL4QPN5/IsPvQqHy8fj9ZBqbN2ZFUZtnJuxiWDdcvCScKm+zwcITDwxF2blvBfCLNsdE5joxE+OhfvygXvUNTWdfkYyQcl4ymbC7P2HxxEx8YDDM5n6TGbWW60DipKrox8Ts1buiqpqPGLVq/gCIrCnQ68KmJeVPtAPQNnM3pqYuFRJFWLIyW3QLJrF6YvntDMzetrpWNzj84OGKi3AOMRxIsJrP0tgUAhYHQYkGdQ2/MXKbPL0Pgv3xoFa8PR2QvVmlqz2HR60Z9E4syEqp120hmc3JdG7GQzAL6+rapyLqSTcVktATcNpWAy8ZYJMHEfJKJeZ0aH1pIyt5HI1w2lZihJlzjtbOQTLOQyNJV40GzqAxNR5mNmXvLgi6NcCxjen1eh4UPranjlXOzTC0kuTCX4PD5sFTsWN4jZizXuH6BMMrRDE1Huefhl2Vk0xJwksvnTYtX5MBh6fqTgKDp9rT4GQgtmArPAju3rSASS/HPR8ZIZ/OsrndzIZIobGgdLpsCeYVYIb/usirE0nnuWFfPgcFZU/oFYPumFs7PxEhnc1zZ5ANF4dDgLGNzcep9dk5PRtFUyObMdYIaj43pxVQZC9Go+nG5YbnG9dZhZNkuxfizW1SS2ZxUfgFoDTq5ZU0d/ZMLhGNJTk/qtWIjjb10zQH0NPsYmokxn8jgtVtYSGZpDTr587uv5A93HyEcS9MScDIa0Y2d166xqt7DQjzFwHTMFHGV1sSCLisf62nihTOhinVm8fjSWvIX71zLC6dDst1FsBaX90iFv7sUFvVSeL9vygefOc1Dz51h68oaupt8PPLCOXwOjRw5FhP6pqrz2Iims3hsGn9w2yq+/bOzzCfSZZFQKbobPPRNLJrSE167hRtW1vDi2WmiyaxUwBAb8+3AyJ4C3UtN5WDHlnaeODZukscRuBg7q/R3mzuDXLei5rKOuJYN15ujyLKd4sDgrOwrNJIVLArS4Qu6rNx+RR1HR+c4O7Uof765M8iaBh/9E/PEUzmZRuxp9rGhNciu/TolXjBqhVEAqPfamSw0HouWFGF8nnrjAqFoip5mHz6nzUTkcFlV6fAJGI1kd6OXM1OLklDSB0OwOgAAIABJREFU4LPLKM54L0Gnht1qoSng4J6NrXzlX06QzOTZcV0bzUHXZR1xLZMz3pfQF+y+s9M8UZCc6ah2sZjQc98ANR4r0WSWyYUkf/GTU4zPJd7UaOlQCLg0U8S2kMzy4plpGakJFQCt8GRum0ptYQO4C/UmkXIRxI3uRi8d1S5ptBp8dvxOjVROZzudujDPbDQtr1n6an0OjdV1bhPZQ/zOouokkd62AL9/00qOjUZ46UyIW7/1cw6fD5ddbxmXPx47NMIDT50iXagd3X5FPV+8cy07b9QHPTutqjROTqvK7VfUsfu1MaYWkmTzuqoM6KnzXa+c58BgmPlE0amaXkzRP6nXfzVVNxRXt/pJZXJ0N3ppKrASQU/XzUZ1Lc9wLM2u/edprdbrYppFJZo0O2ulRgt0Iyjuqe/CArWeIuGqymWVXysU617heIaJ+SSHh+f4xk/7SWbyVLmtfPzqFgCGpqN8+nsHGSi0pSxjOeL6heLw+TCf/YfXyZOXtNfSSMahqVR7bPL3Dk3FalFkhGT0NitBFKsHQlGSSzzQGHEJPTXxf6PPwcc2NBGJptj92ig9LX6Ojc5hsyhYLSrRVLGZMpHJseO6dkbCMebjKV4bnitTGqiEGo+V6UXzprdZFFLZIpW4ym3l2c/dfFl5lssR18Whq7cPAgrxVIZHXhxk57YVVHtsXNNRxed2H5FRkaC3Wy0KVzX7deHpoxdw2RRiqWJ63WPVuLLFx89OhcgDHVVOhmaL+81pVanx2BkJx99SE/LqOjepbF7eh4jUhAivXVNpCTgYjSRkahKKqcruBg9jcwnm4pmyvd8ccDAXN2dXuhu8jM3FmYtn5HOJ2nST38ETn922vEdYNlzvOsQohXgqw9N9k3LB9zT7cNo01tR7ZIOkSJ/1NPv07n+DkRIHeq3HxkIiTSKTLzNixhx5d4OnIIiblTR0FX0zv1masMHvIFooKpcyuUqxY0s7Ds1SRsIoRZ3HRsBt4/Tkm3uJoj+nty3Ad++75rLZmMuG6+IQqXSduJMHFKwWhQODYW5ZU2tSYS/F1pXVjIbjb9qraDRO4usd17Xz2GsjMhVZuuYrOYubO6tY3xIgkc5ybnqReze18qePnzDVgC2FDZnFnH4E3eCtbfCytz9EMpNj68pqvnr3lXz+saMcHo7gsqpoFrWMZGJMacLl1wu5rJzxPsFjh0Z46Lkz8ntBuPA6rKxr8vHIi4N0N3hQg068dgt9E4syBWDcLKI3JLSYMo1k8BZUBPLoRktETn0T5QYih54+fLOoaMKwabeurOFfj19YMl35+NGxMkaWXVNor3IxGolLltXUYsqUsrkY1EJK9fBwhMcOjVy2hehl6BDOnRBmNmprgp5u9jk0GaH4HBq1HhvD4TjpbB6P3cK+szM0+R2srvcwMZfg+q5qxucSnJ2cJ5bOYwHUgkMkNDX/3bWtOGwaJ8bm+FhPk55haPaV1WuN+1Cwdtc0eOm7MC9rXLFUtoy4JPasXVOl0TLqhwoDFHRZ+erdV/Js36R87bF0DtI5Gnx2FBQuFBjE13ZUsZhIS+bw3lMTl3Vd+K1iucb1LuOeTa1sXVktv79rfRNdtW7+47YVPHV8AoC+iUVGwnFpbIwyS0aI/sUn3xiXzcWtVS4TySFRIc9uLSkwKYVvxU8rfegWRY/8Ai5bRaO1bWU1XoeFSCyD06IYWfYkM3ni6RyaWrxyncdm6o1ZCg5NpSXoAvSU5jUdVW/6N8u4tPHwz8/y0HNnODgUpqPaxfZNLTT6HPL384kMe45eYCQcx6EpzCcyDEzHSGfzNAcccn2OzyU4F4oyn8jw/OkQ5PPECm0bWXT5JYCFRBa/U//60NAsLw3McDa0wI7r2jl1YZ7RSBxryaawFL63aXrtd++pKRMxY6IkQjP9rVI0YCPhOKcnddknUVcOx9J8/rGj/OzUJD0tfgD5/IvJjDRaAD/vnzKlII+NLfDw8wNv4V2+vLGcKnyXYKS+A3Lyajyd45EXztFe5eL8bDHkb/I7uKYjyEtnZ5iLpfC5rMxUYOoZUUkU992AkfEnGonHIgmZpy/Nzb8ZatxW4umsySALmj3oBfUqt920QUUNravWzWOfuf6y8CiXU4VmHD4f5nO7jxBLZphaTMmWj962AJs6qkzzq4wwpvtKmXmlvxcQ6b4ydmyhtqopoKr61wBOTSGeyaOp+n4w+oMiYjPius4g/ZOLpqjLmNlYimFrFPoF6G3z8+F1jfzk+AVeH9GZkA6rWuaQOjVIZPRrtgSc/PrGlssi8lpmFb7HePTlISm/9NihEe67voM/vH0NzoIrdX42Rke1q5DP173F58+EmI6mSOeRRqs54ODu9Y3YLeXP8YswWmDeYONzukiupirS09M937e+VKaj6bIosqXKhVXVI7VkNs+F+YRkX4HeWOp3agyEosse5WWK+//xdYZmYkwtinVcTBFHYik6ql3csa5eMl0BGn0Ok1GqcukHdYEES3PAgb1I1pORizBagq0IegpSGKpMHvk1QLyQHcjkzEYLKDNaoLMYw7E0/sK9eh0WUzpeXLm7wUNPsw97QVKqvN9SF8+2aRZ6mr20Bp0k0jnqvHZTJKda9IS6CoxG4jz03JnCcNkPJpYN17sGfan+4NVhHnjqFI++PMRswdDsvHEFN3RVMzQTQ1MVGgpSL5FYBrdNlVqEAJ/c2MJ8IkMyy9syFmLDuivIKqnozL43g6YWDwTjYeG0qiblAE0tNC6L65f4S6vrPaaF1VHtIp7Kkc4V9ehbg04TC7LOa5M1ghMXkfJZxqWJgdAis7FipNTbFsBtLRqox4+MMzQT48Uz0yaCwrZVNdLZA/A6rdyyppZUVm/PqPPaiSaL60gYnfYqF00Bhyk6a/Db8TosspWjkpuvLeH720t+kUevVd28ppYbuqr50Jrain8XS+e4ZW09yUyeoKt8D0aTGT7xv14qNPsXZd7smt4GIPZWNJnDYVWlcQy6rNzWXV/5Zj8AWDZc7xJuWl2HQ1MNHfr5AlHjLIlUlrFInN62AAeHwqb8eDSVY0NLkJ3bVnD/rau47/pO/uSj3dyyppa71jeVPY+tQv8U6Bu2o9pFNJVjc2cVN3RVc8c6fWHngBU1SytNa6qCTdW9zVIdXFWBLSuq2dwZlD/L5MBt0xA2sqvGJb1Dv1PjwlxcbrA6r531LX4SqSxOTcGi6D/bskKvZQn9uKmFFIvJLFVuK3/28SuXvNdlXJr42hN9MtrwOTTy+byMvPxOTTpG0ZIFeGBwVtZsA04rX//EVXxr+wa+eOdaHvvM9VzTqdeTjbvCY7fgd2rEU/pMOU8hfXF6MspCIkuwID7dEnRisygYAjzsBQ+wtiQFd8e6BilaDXr9KhxLs+foBV4amOHVITPBRGBoJsYrA/pQyy98eA32Eme0f3JRnhmzhcnjI+E4I+G4HsUVbLLLqsj0oegzK52y/EHCco3rXcBsNMXHvv2i7MVq8Nm5a30T917bxrN9k/yffYNMLST1ZspcXqYo3HYL6xp9HBwKV5R1efCZfh567iy9bQHOTi2aPFG7ptPlM7liPl8Mm5xZTPHIi+doDjgYiyRwaCoP/+ZGvrtvkH1npyuOLYEiLV3k54204N62AMMzUcluqoS3M5zP79ToqvXQGnSytz/EfCKD36nx3+5Yy3deOMeNq2r5g9sv7blEyzWuIgZCi/yHvz0o602bO6uwWlSaAg5+fmrKkD4sQtSWWgJOmoNOvv6Jq8pGfQyEFk0TkEshalxGRYvetkAZk7FUFkr0M4JOblpV5+b0ZFSyeI3QMyZKRYk2o/SUcd+Jvba63k00mWU+ni5rW6nz2snlcsxE02X1st62AC6bha/efeUlPf5kucb1HuKxQyPSaAFMzCd55MVBvvZEH/dsaiWa0jdVPJ0z5dW7atxsaA2wdWVNxbD/rg3NbO6sIrSQZD6RwW3XP1+P3UIyk6em0JX/0Z4GvnjnWj5z80qT8fM7dE8zkcnx50/20d3oBWBd4f9SpLN6I7C4Q6+jONbh8HCE6WhaV9yusGoU9PRi6QrsbvBSb1APsKn6pp2LZzg8HGHP0QvSIM/FMzzw1CmGZmLs2n9+udZ1GaGr1sOWFXp0ZLXo7RN//RtXE1pISqNlVXXlFjHe59eubqGr1s1oJI7LZql4QD/bN1nRaIl1mynst7l4hhu6qrn/1lV88571bN/YYnr8f7tjrYkNHE+m8Rb2Tz6P1ECMVWAAR5M5okl9mKqRHQmQKRgtu6aYnEXhTHjsGmMG/VBjQLaYSDFdYrTE3hsILbLv7Axf3nO87H4+CFg2XP9GzEZTjIVj1Hvt1Hpspsa4vf0h/mj3EW5bWzkXPVkwcPvOTvPoS0Nlv3+2b5IDg7OMhONUua0EnEUD0Bp0cuOqGu6/dRVfvusqfu+mrrLo5OREcTjlQCjK/sFZWoNOFLXyx+6yKmiKIudwReJZ8uSlHBTofWG1XofM+Yuamthcxk3mtWt4nRqTi0m6GzwEXbqMjdBuc1kthWtYaA3obMaYIapcrnVdHpiNpvj6kyd5vCB7ls7m2f3aKI8dGuG/fGiVNDLpHCwkMrRXuwGduj45n6DBZ+e+LR185/kBWTeejab4+r+e5Genpti+qYUbuqrpadYdMr9T4/ufvpatK6u5MJ/g2o4g99+6im//u17+8PbVdNV6eG3YLDH2jZ/2U+22ScdreDbBQiJb5qgZ13dzwMHqOpf83m3TuDCfMNWyRAzVEnSaasGiZDweSbBjS7sccWIUoRcsXCPShQxLUQ/RX/lNv8yxbLj+jXjs0Ai79g8zuZAkm89jbM11aCp7+0OMhGOSkNHgs0uPcnIhKZl1e/un5LDJ2WiK2WiKmcUkvW0BmvwOZqNp3DYVi6KwmMwyEo6z+7UxIF9msJwlxkTg2OgcI+E4x0bncFqVsugoltbrDiIqVNAZVaV1h/G5BF21HraurObvfuc6uhsqpyqS6YycYjs+lyQcS3NgcJaeZh8Auby4bp6RSIJ8Hvn+eeyW5VrXZYLHDunjbowEH5dNZWYxyfOnp0wp8JFwnAODs4Cu9beYzDIxn+T3/u4QDzx1it999FVu/uZevvr4cR554RwHBmd58o3xgqK6vu7n4hmePz3Fxna9jnpmapGbVtea9smXPtItSRqaqsh6ldgzyazOcl1IZstYhqAbrW//Ri9Jw4a/MJ/ArunXKmVGxlM5cnmwlZA8JuaTvHR2Wip3iJqvQKXshkjatAadfObmD2az/rLh+jfink2t7NzWydaVNXz1Y+vwOfUowm6BDxfIEYeH5yQhY2I+adpA/oJ3tmVFlRQcvefhl/WN+eIgh4cjzBXmE52eisnJriKl8L9fOMf1DzxnEqm9aXUdLqu+QaxLkDni6XzFPhMjLvb7vgsLxFJZ/sdPTjISKe/xUtDV5EEXF43E01gtCudnY1JBQJxX0VSOrloXCuBx6C9sdb2XoOvSrW8tQ4eekYibDnLQU26PvDhIOJqWxJ96r73SJQC9hUJTFalAIZr5oUgxT6SLVuS182Hu2tBElVtXm//8D48yG03x4DOn+fqTJ/nuvnNkcnlag07TgFNjqk5ENT3NPhp8drmnQO9z/NbT/ZyfjVHntcloSkxFNhpjzaLItP7aenOavt5rZyAUpafZx7UdQXrbArJZGoqkk0psYa/dYmIvf5CwTM54lzAbTfG7j77K4eGIFMVsCTiJxFNlShSiYGxsNNzcWcWaBi8/fn2M+URmSQLFUjCK1N77nVek17oULIre6GjVVCnhZJxz5ClIS1lVc1+LGCT5TlGpmbnOYyOfL+9T23njCv74V69450/2HmOZnAFf/9eTsrFYNP9CkajQ5Hdw2xX17Np/Xmp2BpwWIvHskk28AFUuzTTVG4pi0qJJeee2FVzfVc39P3idZr8Dr9Nm2hdBlxWbRTVpCoom4p5mL9d11UIe/vWNC3Iul4DHbuFXr2pk96HRMm1DQeCoddtI5XLSAG5dWc2KGg/Hx/UU+KaOKo6ORDhQSOEb94WmFtOGDk3lyx/r5sdHxhgMRcuILJeyfuEyOeM9gO7B9fPgM6d59OUhyVQShmc0Ei8zWu1VLh761NW0V7lIFLTJfE4LBwZn2fXKeempLWW03Ha1zHvV7yXN3f/vPv70x8cZfAvjD7J58DpsJePL9XEr9V47D/zaVQRd1rI0idehR0H13mLKcymUSuEANPrNxeugy8rUYspktESN7ehIZYrxMi4dHCnUkiyqoovQFiDW9/hcgqdP6rTuqQV9DWzf1CZJQgqY6Or1XjtNfgcWpXh0eQrRSKbQbBwt5O/+8dVh/tfPzzIXz9A3sciBwVl5DyI9aDJaSlH5YnAmzquDMxwdDZuMloh8FpNZfnpCj/qMRivg0ti2Su/pCkVTzMUz9LYFuKGrmu5GP7v2n+fwcIQPr2vgMzd10V7tIuDSWF2vp9vdBeq+sdaVyOT47r5BPrS2viL78uK5kcsT77nhUhTlfxT+32n4Wa+iKJ9UFOWT792dvTlEn9ZDz50hnsrS2+anOeAw9V9UuTREf3FXjYt//s830Nse5MNXNsjrzMffeggTTeZYWeepaLxGwnF27T9vWtxuq6VioyXAxHy5Cnwur9fePv/DYxXZWuGYfu3JBX20eW9bgKuaylmKPocmWYyge8M9zT7WNnhlHt+hKdy4qkbW/wSEV57P5z+QaZBSXMp7ZG2DXs/M5vJSjR3MKexiGj3BLWtq+czNK/nujmvQVIU8kC8cUw2F2VmKUozOVQWchUZmoX4hGHrziQwHh8K60G0hPS+a3I0MWE3V+7aMzuJCIsPrI3McGAzjsVukkxZN5WQ/11w8U7YPI7EMbxRIRaJ+fXQ0wksDMxw6P8vmzip2XNdOLJXh4Z8PsPvQKJFYhoNDeiQYLUxilu+TotfTvvnJ9dyzqdWURgSd+XvXhuY3+RQuP7znhgvYqSjKAGAUKvu9fD7/Q2CFoii979F9vSlu665nc2eQnmY/jx8d4/DwHB/paeLbn+qVhd/ZWIZkTqcA37CyRv7tZ27q4v5bV1FOkSjC+OH0tvkl1fZsaIFbCp369gphjcegFxVNZ1ld737br81YSDeidNzDYjLNfEESR2xur8PCHVc28Mb4Ar1tAQJOKwvJLMfG5tm1f5gtK6rpqnWTyOTZc/SCqSHbY7ewfVMLHdUuDg6FP9CyNgZcsnsk6NYP+dLBo+LbJr9DHv52TaW1Smfp9bYHeXD7eik91tsWIFZoKzG2nuQKKWZxjdIDzWO3MBKO47IXD/zVdW69CbrwfSZnTlOXZhIEQaQ16KQ16CQST9MScLK5s4qPG4yGeIXpTA6nVZXKMEJ16vCwnhY8MjLLQ8+d5ck3xuXf1nns0mAFXVZJykrnoaPajd9l5dGXh7h5dS1+p0ZN4X1dSGR5/EjxOh8UvB/GmtyTz+efFd8UPMgBgHw+/4337K7eAh4/MiZZcwK7Dw2TSGXLGnHT2Ty79g/THHTJIXlBl7XARNKbFEtz+nYrOG1WFhNpgi4bh4f1AY/z8Sx7jl6gwWfn/ltX8fWnTpr01ErTk0PTMVw2tawH5WI1hItBDPUDGAxFSef0CEtI7CwksjxxdAyAYyMRMnn9ULIounr3niNjrK73sH1jCz/tm2AunsGqAKrOmDw+NsfQTIzetoAULf6A45LdI3dtaGbXK+cJx9KyhirWe5PfgUVVZGo9mcmx65XzkIcXzoRIpPV9FHRZGZ6JMR/PVqz99rb5WVnrZfdrozLVJ0SdF5NZtq6soSngIBLXU3d3XtXEC6enpKitpujahQLuEqFQt92C32GVNaigy8poJM5vbWnnnk2tOGwWdh8aJhLL4NBUmfFYqk49OK2Tk4wGOBRN8vENLex65TzHxvSJzYKs8tLAjKl5G2BzZxBnJFH42XKq8L1Ar6IotymK8oXC99cA1YVUyBcu9oegF/eM/77yla/8Qm/WCGPqozngwOfUx368cMY8AE8wlbwOC01+B//+u/sZmonx+sgcXbVu2Vlfuvziab12lcrCz07p18wYQp6J+SR/9kSfNFp1HhstASelSGbz0mgFDamGSsvdVqkwVfoYq0JNIfUiXtt8IsPh4TnpNYoeFHEgJDM5+bNkNs8b4wv86PUx5uL6oZXOI/u7+i7oYyBmo6lLWjnjXcQlu0cePzImU86JjJ5mE+t9Lp5iJBzHaVXlAd/bFuCFMyGGZmJSZzAcSxOJ68ag1BA0+R18+vpOHi84Sl6HhTqPTa611qCTje0Bdh8aZS6eYevKGu7a0IRSmPWz47p2PtLTaLrmQMg8nDKazDI+l5BrOxxL01HtYmYxydB0lDOTC/z5XVfSGnSiqsUbbA6Ye7dcBW57Z00xA2JVFVT0csFzJ80STpMLSRmpGhVHtq6s5sBgmDuvatSl4ZZThb985PP5bxS8yWpFUW4r/Hgmn88fBuldXuzvTf9+mZuSAlvr2o4gu35nM5/a1M7mziA3rq5ldV1xcboNc4G+8E/HpMFzahCJpqjz2Ohp9rHzxhXcvb6x/HnQjYwoHhs/tHg6J8V47VYLo5E4dR5bmfCtgEjFQGVBUY/dHITXGJoyBaLJHIvJghpIxnw/yfTS9bo6r26EhPZcJpfHolb2SlUF/ugSZUq927iU90i4IBEmalqReFoextFUjiq3lW/8eg/NAT0NPjmf4I9uXy3bSgRaAvq67ap1m/bW+FyCz//wKImMTpdfSGRNNd47r2zkvus7pSrGxvYAP3h1RBKpHFYLL5wpztkSahmlGobtVS6ZnhdTiR95cZB//9397O0P8eV/OcFIOE4sVVzM45G4aW3HCjP11jb42LGlnYBLI53LyyjRGIEJZHJ5ub83d1axvjVAk99JR7WLRCrD3v7QB1Kz8D01XCXF5RlgBXoKROTyz6F7l+9LOG36yt7QFuRrT/QVxtkr7HrlPNOFnLlNLfaDaKo5SotnYCaWZmoxRTKT4+9eGeK6FdXs3LaCGnch72/4hHJ5nRqbQ59UvGNLOzd0VfPwb27kljW1PPSpq7llTS1Ti6m3RKWvNOdxPm4mZKhKeWRmVTENiTQmICuzngoo/MlVhQZkQI6FMEJBf60/WK5vXfJ75Ny0rt4iUsstAac0PBp6RuHvDwzTUohmxiIJvvHTfvwOc6Q9taAf6m6bRbIPBcRavHFVDR3VuoFzaCo7trTzmZt1RZm//o1evnjnWu67vlMqsjT47PzDq3oa021XaQ44WEjoQs8fWlsn+wyDLivnZ2M4bBpbV1ZzbUcVPc1+HJpKPK0zcWejaXqafab6srEeLJy/uXiG3a+NEnTZ2L6xld62AKvr3BUZuKBPZvjmJ3u4ZU0t61sCPPLCOXa/NsrQTIwfHxln57bOD2Q6/T3t4yoUlc/l8/mIoijfAb4DRIBP5vP5bxTSIOcKRehKf/+e9qiI4ZEzi7p0k0NT8dgtZUK0Pc0+Tk8ukMgUBWy7G7ycnlqglAOhKjplvJL3BcXBc/dsaq2YRpuNpnj4+QGeODrO+FzCNNxO/P14JFE2jO/N6l2iNw3Aa1dZMMwVcloV4hXkaUBnRZX+qjXolEKn8VRWGvk6r50pAz15x5Z2/uzuS1c9493o47rU94hRXNfv1PjwugZ2HxrF79CYMzTp7tjSzvGxCGenonKduW2WMtUW0SMl6lLGPkMhJv3oK0P8yUe7lxSfHQgt8rUn+jgzuSip7qIeJXrBLKouYu3QVP7TzSv4658N4HdozCwh5guYhsWW9nYZ0d3gYVNHFbv2D7N9Ywv/ckyfcG5RoNZrZ0OrvjcWkylaAi5mo2mmoym6G704rBaTQPDWlTX8/e9uvuhn8H7GJdnHVUh1bBfF5nw+fzifz58DIsLLXGpDvh9Q5bZxTUcVuw+NAnoOXxitrlq39LIuzCVIZPKm6GU2ni4zWqBvnlKjZQFcNn3Q3Dfv2VBRl9B4T3/8q1fwxGe30VXrNhktFQjNp5iYT8p8u8BSR5tF0bXfDHKFJqMFOh25OeCg3mtn+6YWumqK6UjVUtQ0DDh1av5IOF6QwopLowUQTZoPhUrziz5ouNT3SFeth4c+dTVBl5W5eIZXBmYA8JRE2ol0Fr/TZlKcEEZLMRxrQpldsATTuSKLVu93Osf3Pn3tRRXTu2o9fO/T1/LXv3G1TA2KDEUyk6U54JC0eb/TykPPnSWTyzMTS5tGmxjT8V6HhfOzMcnyNd5znceG267Kxy8ks/RP6r2WPzkxIaO2bF6vW5+ZWmRVnYdYKs/pqajcI6L2a8SKmrfPGL4c8H6ocT2Sz+d/aGRHVfrZ+xWf/+FRIvE0dgt4C5txc2cVH+1plMYgXFh4HrsFS+EdN1LAvYb0grXC5OMsehT2/d++7i2PMKhy23hkxyZTT0gOpDxTLJ1bkojvtqn0iN6svJ7emI5mlni0fuiMRRJMLiQ5NbEgDa9OZdZrD9FUriDaqyOTLa+FGcdFtFe5uO/6zrf0Wi93XOp75C+f6ZcEjZFwnKDLylhEF88VB/2eI+Ps7Q/JvSAo6RZFlpIl7JpqMnDrmnxS/3LF2xjx0dse5LdvWAEUU3mprN7DBXqaTtcg1X9X67bx53evk71UxnT8rxUIEoICL5xSt13FbrUQTebk44MuK/GU/hwNfru8VktAp9sPhKJkcvoUZNCbmn0OjTvW1XN6at70GkS7wQcN77nhutTxzU+u15lSWfA79EW0viVAOJqWb26ReZclmzMrSlgU3QMTUmReu1bCRFLkYn67PU1dtR7aDGSMUiwVZUVTOekRZkGqDYj7UhXoqnXJ1+e2aZLNeHx0TvaA3biqBr9TqzijK5bOY5RfMwaAdovCg/duWGYUXiYwDjH1OTRpxCbmkySzeUmFh2LzcKPfwS1rasnm9UZ1KBqXpCFV4XdqHBgMy2u+3Sj9vus7aA1NSC5SAAAgAElEQVQ65fw50BmyDk1lY1sQj91CjdtKT7OPO69q5Bs/7Zc1a9FLVeXS6J9cYMd17ezc1imJJgB+h40vfHgNfqdGd4OHzZ1Bjo3NS8r7aFhPLdosikxbbu4McmAwTDKjvxdWRaXKbWNqIcliQn/tzQEHO7et+MA6d8uG69+I3vYg2wvF0dFInK2FJuNd+88X03SGvEFp7lt8LYKN2VimhImU5xO9zXzxzrXvqAj7R7+yRn7ICrr3ZsRSUZfXoeHQVLpq3TJtIu4rl9cpwzn0qMptVxmNxLFbFFNq8uWBaRyWYghpUeHu9Y2yWdTYVvarVzXqAqMOjWQ2z6tDF9daXMalg6DBAcnm9A+9ty1AT7MPt12VmoV3r2+Uab+rWgJ8a/sGNndWSfJFGUnIMN5jJBznljW1b/sgr3LbpAxZNl80fIlMjn0DMywms0xH04Xm+fOSlu62Wvjyx9bRGnQyG9OnIOhtMIqMlEBnPf75kyel7NSaBp/JuAoWolCLGQnHiaeydNW65WsLRVMMzcQILSTlHhmLJKj22D6wzt2y4XoX4DQUgFbUuHi6r6hc7XNocuMpwJp6L71tAXZsaWfHdW30tPjLaOnGb70OC0PTi7x4ZlrKLb0dvDo0K41Jtdtq0iYE82Egoh4FmI6mSWRyjBaKzSKlY1N1tXeBTC7P0KyeGkyWVKMTmTyTi0mpjpDNwZ6jF8oo96BT+efiaeYSGW5ZU/uBZEpdrrjv+g7J9oumcnRUu7BaVI6NzUtl99YqFxfmErJ5/lwoytB0lP7JYmpMZC4E09bIim2vcvEnH+1+Rwf5A7/ew9WtflqDTj59fbuMvErrwMZ9GU1n+d8vnmOqIJtmsygFivw5Xh+Zo6fZKw9XI+HoHw8OE46lsVnMSvQuTaXOq++roZkYA6FomUr8f7q5i4m5BHOJDE1+xwd6jywbrrcJ48wsgfuu7+D+W1dx/60rOTetj+0QXtUVjT6p2ee0KfRNLHB4OEJzwMl9N3QyPBOTG1BT9HqX2I8qeu/XnqMT7Ds7zZf3nHhb9zoQWuRnp6boafbR2xYgnrm4JmI6h9SHE0hmdeWCe69pozXoJJWD2Yswq0rhtOjiqnesKw7TFGxHIw6cm2UgFKWr1s2ffLSbxw6NlOkUVnrvl/H+QOksudLP6dqOID6HRk+zjxtX1UiVdjEqJOiycmpCJx9YVNh3dprf/v6rRGIZvA4LzQGHrBuJSF2s0xqPTlf/4x8d48FnTr+j9RGOpRkJx/mrZ8/KLEisRGFaPJ/oQxwIRaWzJgymEOHtn1w0ZR9EbVtEVqmsWUg3C9y8ug7QU5UBlyYjLvHcX3n8hJzblcnleOzQCAOhxQ/knng/SD69LyEos6W0WjEza/+5Gb61vViHcdksXNNRxd5Tk/gcGps7g5wqKFLv3LaCZCbHQEjvaWnw2ekbn+PBZ/pN/VCZfDHHL+jnxtTiipql61WV7v+Tf/OyzP23Bp3Su60EMcaktB7l0FRuL4yd6G0LlI0kqUR3Bz2VEk1niWfzjITjhI5e4I51dTzdN0Uub6bo13vtfPWudfz1z04TWkjx6MtD7HrlPPvPzfAnH+3m2b5Jrumo4g9/cITzszFePBPiq3dfybN9k0u2BSzjl4fZaIo/2n2Evf0h9p+bYVWdl0dePMdMNIXTamH/uRlpqLwOK8fH9ShKUNtBH6QqZlllc/qYntkCQ7e70WeSVitdbjOL+uMODIb1elc09ZaGkM5GU/zFUyf50eExue4r7RCbBTprPIxGYkSTOWrcdi7MJ/A6NKKpLD6Hxo2ratj92hh+p41oKkEyk6feayeb05nG2ZwuHZVK64Mp3TaVdCYnjXAyk+Pnp0OyJSQSy7C5s4rxSFzuOWNGI5fL88BTp/jZqUkODIaJpTK4bBq3ddfz6MtDPN8f4qt3raN/cuGy3CPL87iWwKe/d5C9/SG6at089pnrGZqO8vkfHuVLH+nmu/vOse/sDB3VLv7Pf7iGZ/smeeCpU3TVuqVxEti6soaN7QEeeu4sTX6H9JiMMPZaeR0WfuPadg4Nzcp+DTHHqLfNz6aOapxWlfuu71yyj+vRlwfZc2RcDmwUMB4Upeht80vJJrFR7JrOCty6spqN7UGeOHah7PWVQgFW1Di5sjnInqNm8U9NVSoSNUCfKbTrlSE5PTbosnF+NiZVCsT/AnLm0o0rqHbb3peb83KfxzUQWuTLe06QymQ5OBSWxqY5oPch2lRzHbPBZ+euDc1yPtdSsCjwtY9fyZNvTNDd6OX6rhq+8i8nuLYjyFPHJ6RztxTcVgsb2gL82cevrMjCFf2XsVSWh547A7x5H6NxX2zf1EJoIcknrm7mTx8/QTiWxu/UuHtDM9e0B/mD3UfJ5vLUeW3MRNOyRlw6c6un2cf52ZgpsjJic2eQ379pJb+765DcN0KDsc5jY2oxRYPfQVeNm3XNfh554RxbV1az76zechB0WaU81a90N3Dvta384OAwfRcW+Ord694yQ/kXiXe6R5YNVwlmoyn+6pl+nj05RSaXZ2pBPxyfOznJQChKldvKJ3tbeOTFQUCnvl+3oopwNM3rw7OEFlMsJDKyB6Ul4OT6rmrG5+LMJzIcG52TBqESru0I8vBvbeLhn5+Vz1EJvW0BrBaF9mo345E4n7t9DT85McFTb1yQm8Pv1NMNpU3IDT47PofGWCSO02qhrdrNZz+0ir95/izxVJahmZikG6sK/Ep3HW3VnooHjtumksvl5UgJge5GL30XFsrIKFaLIjUJja/lyma/LrBqgNER6G70MhKOmcSEQTf0C4ms3tzaXU9jwMV913e8L4zY5Wy4BkKLfOJ/vSQPXSGgW2lQqEBHtYu/3L6BT3/voKn5GIqNvwLG683F08wnMrQGnXjtFvomivPmSgedGiGcToC/euY0e/unZOP7SDjOzm0riMRT/MtRvQHYaVVNyjagGxevw8pLhf4z0AdCfvXuK/md779qcqYcms7+q+ScioxGb1uAgdCifN/8To2eZj/7zs5IZqNxe4g9IAyrECiu89pMCiI7trTTP7HAyGxMPv/2jS28NhyWe0gYMoBb1tTyvU9fW/mN+yVi2XC9QwjvSxQ6RcoDil5YT7MPi6owEIrKDaSpCoMzMekBGRe9OLRLIaKaO9bV8fzpaeLpnOkgd2gKiUyends6OTE+z0BosUzhopKaAJgV20EvVm9o9bHn6ITpccYpx0YII7fU44SHJ2BRFbpqXEwsJOQ8MaMa9lIebKkRBX3T7TkyZnr+7kYvmqpwbjpapnZvtSjYVIXoEifWF+9cy+/d1FXxd79MXI6G6/D5MJ//4VF8Dk2qqxs/6962ABNzCcbnErhtFtqrHIDCbCxDrcfKbCzNWCRhWm8ien6nKKrOFx1CYSia/A5aq5xlUxyg6CQCfPYfXmff2WlpOFR0Bq7DqvHFO9fy/zx1iom5BC6rSiydk9OaAVw2qMSbavI7qPHYZP2sq9bNxrYgu18blVEpIFU6xP4R54B4DW9lioMGiN3jc2isrPOwqb2KO65s4P5/fF06EypwZYufB+/dsBxxvVf4t27K2WiKz/zdIQ4OhWnyO6j32Xl9ZI6rmrycDUWlIZIyMAZvyPi12Dhi3LZY3EZs7qxiTb1X1oqMsi1QTKMFnFasFoXQYgq/UyORzlLn0XPqpfamUvQCxfpYqTGC4sjzWreNuURaFosrod5rJxJLmXLrxucU19fHQORxappJCQPApiqkCtaskgyO06rid1rlweW2q0STuYqPFRtZwG5RypiMHdUuvvKxdSbZH6Nz8suMxC43wzUbTXHL/9zLXDxDg8+O1aKaoiu7pnLflnaZKTDKhJWm0TurXYxH4iSzeZr8DhSlssgsFFPcPc0+nDaNdDbL4WHdaIp1YtdUPv8rq/n2Xn3isdEwwNLGcee2Tpw2jVcGpjk4VG7coHzdQdEBE/vW+FqhKP8kUtwiEhX/N/kd5PL5ivfUGnQwEk5Ipxje+QiiG7qqqfFYTQ6spir8u2tb+fjVLfzlM6fpbvRy77Vt70nNeNlwvQ0UNQZTBWFcM7aurOF3t3bypT3HSWdzZYuro9rFzatr+P4rw3RUu/A5LBwbK4+wjLj/1pWAwkPPnZGLvKfZC6icDS0QS+XwOjTZtf9vQVeNi9FIwtSoudTjzk3Hiuwst414JkN7lVtqoon6mjggXJpKrOS6lVIsoDdJ3ruphQefPfuWN93VrX4Z2VaC8EZLjZZQWpiYT8pDqrctwKb2Kp46rqdP7791FX/4S1Scv1QNV2kW4rFDI9zWXc+X95xg31ldSb3GbaWrzsvh87MyVdfgs/MXn+jhv//4DWk0HJrKXRuaSKZzPNN3QR7EAsa6Z+lnWsx4+Dk2NifTwlfUuxmdS5SljY1Zgh3XtfHYa6PE0zl8DguKojAXz5SlNI21U+GICYKEWNfiPpbSH6xyW/n8r6zhy4+fIJXN47KqdNS4WUhkpGFvCTgZjcTZvqmFZ/omZcruYpqGpTCmU5ea9WVTocpjNtKVHFhx34IAc21HkINDYW5ZU2sinf2isWy43ga+8/wADzx1SkY+xjSb8JQqES1sFoWVtW48DisnJxZYSGTwOjQ6q12cGJ8nm9dpr1nDGe61W+hu8vNf71jLj18fZfehUbm5SiMvp6bQ217FWCTG0EzRky1NrzmsKiuqXfRNLL4lT0wBPryunlfOzSxZCC6tu1WKCuVjCwdMT7OP+USGoZmYNHClWGrTGNHgs3PX+mZOjM/x0sBM2et9s9dY6hGL70vrLfffupI/vH3NRe/l3cSlargefKafh547yxX1bgZnYiQy+TJyjEBp1F+JgGM8II0Qn7P4nEr3nHBA6r12Epnsm64j0NN72ze18Zmbutjy9WcwBkpSSNdhwW3TUBVFb80wGIGuWjcuq8ob4wt4HCoqRXmp1XVuTk+ZzwSxF4RRLUVHtYugy8rrI3MFkkR9We3a59DoqHbTNz5XcWLDUqiUIpX3VaiFAdy5rp69/SF57ijAVc1ejo0tyDSl226hymWTjdy/LON1SYrsvle4Z1MrX7xzrfw+bfD4PnPTCoIuKwOhaNmogXVNPvomFjk4FCaT0RdzLq+PpBd7t96rd+E3+PRR3L92dQsHBmf5Hz85xa79w6a6UabkoE9n87w0MMNMSbrNONXVbbeQSOeYLTQSV1rnNSULLg/85MQkc/EMdk2l1m3DbTOLIiYzeSnwYddUhgrjKErneqlKkZZ7bjrKH92+mq5aN0FX+SJvDjiwqeYlVjpdFqCpIBfVVevWhwoWfi4asyvNDQMMjaL6NasKqiAbWgJ0VLvobQvQVePCoip8qDBL6fD5ML/53f18/cmTH7jel7cO/Y09ORmV7RpDMzE5R6veoAxRmqoWRsup6Slzt01lNpqmwVeUQRIfZw49hV5buF68ULu1qdDT4peN7pMLySWNlnGPagpEYhl+fHiMv/jXk7gdxUZ5TVXI5XUjupDIMjGfLDNaQlpNkB4WEzlchn1idI7E84q9UMloNfkdDM3E5NDKoZmYPkyzRL3migadav/ZW1eaZNCqXVaTyoa3ZO9YCjdxy5o6mXEQDzFmW94YmyeRyclr54FwTG9iFozHaDIrU5l7+0M8+vLSxLD3Az6QEZdOGR/ixTNTHB6eM9HES3PVRm+/p9nPqYk5Ull9gWTzChvbAhwfnyeaysr6zNaVNaSzWQ4MhtncGWR9a1Cy/YypgdLUSMBpIY/yljzLi+HqVr8snAu4bSqZbJ5kNo/fqdHst9M3UU5tL41ujCNLKhEr7BaVZFYfM5FDPwScmkp8iTRlrdtGIpNlIZmlzmPDqqlL1jbE6AqXVSVdqCOoKISiKbx2jYWk/j51VDsZmonLyFl4kaZrFSIBoyf6iyZxXKoR12w0xe///WscGJzFblHYuqqGn/eHyOb1rEPAZTOpQbwViFSU36mxZUUVL56dIZrM4rJaiBWGj3Y3ejkXWjT1Ni75ukAqqgssVfMFnWB1y9o6GnwO/vs/Hy9bx/UeOzetqWX3a6PyZw5NZUWNy8Ri9DlU5hM5Oqpc3Li6ludOTcr1K2rbdR4bd1zZwNN9U0zMJ0xEjuaAg6ua/TzTNynvXaxNUSMXMGYrHJqK164RiqbQVFCVYoZDnClVbiupTI7FZBZNVehu9MrnNTIKL5aeFGxFn0Pj4xua+IPb1/xCI6/lVOHbgEgVgu7xNfjs/OT4hK4S4dQIxzPy0Oxu8DA2lzAZk0oHo8DWlTV0N/pMtbOtK2vYd3Z6yVpQJfidGjUeGwOh2FtKBxo9R7fdQleNm7UNPs6GFjkztVDRI2wNOlld7+Fnp0Jvq/Drd1qYiy/dS/NOC8mlzEgwp55E+rKj2sX6Fj97jl646PV02r+F4dlEGZPS79T40X+64RfKrLpUDRfA15/s45EXB+ltCzA5n6joXAhHppRxaqzFuKwq1R47f373lfRPLhBLZXjoubMXfW5RxwQKB2gze46OLenQiee/e30jz/VPkssWVS+MJI1b1tRyeDhcdh1hIIwpZ+MeN74HRuMoHiNSmsIRFVOORdN1vddOc9BZMfXutKo4rQqzsSw+h4X5RBanVR+BEk3lcNssZHP5ikxg494Q+7/BpxOqEpm8FOs1zgkzoqfZx/Gx+YpN1wLvV+fuA5sqFKO8QdfPK4b8+qJuDDipclv5rS0duG3F0N6hLW20AM6FFnn86Jj8vs5jJ5YqjLlPl6cJxHfGD6LJ72AuniFR2HwiLeGxl39cQk5N5O5BD/uPjc3z2OFRDg9HKhot0AU9T00skMesw1aSRcRmUaT4qUNTTTWMOq9Nqnfr96OUGS3bEqvMquqOgRhJ4XWUP1B4ogCnLuhR5NBMrCIbK+C0YFWKGnMT80lOT8VY3+pnc2cV2ze20NsWoCXgZC6e4QevjiynDStgNpqi74LuqR8ejsiDX+hVCpHkBr+D7ZtaaKlymib/pgpFXq/DQiydYyQc50t7jnNbdz3haIomv4OuWrdcFyp6LajJ72DHlnb+73/cIlNfd6xr4A9uX829m1rlCHvQo3FX4QI1XjtbV9Zg11SCTrvJaO36nc3s3LaC9ioXe/tD1Hv16EHcrUNT2LKiCjCnAsUQSYD+iXkiBb67MV2XlUZDoavWTTKrt8XMxTOMGAzF5EKSbatquKGrWr4vAvF0jtlYFoemMl/Yp/F0TmaAoqksiUxOngHGvbS6zi3T6H6HPhNvYj5JoJC2b692c8uaWr561zp62wLUe+3UefTf6f2nNdJoiZfV2+Zn+8ZmmgMOrm71s6bey6e/d5CBUDHqfD/gAxVxzUZTPPzzs/RdWOBzt6/mJycm2PP6GJMV0h5Fmm154dOY3hDw2i0k01lKhSlKiQPiuktFJTVuK23VLkn3NWIp5Q3BJJqPp8pYW0tBFHYt6DpplSCiTvm9wcPTVIXVdW42dVSza//5Ja6ge7MP3Xs1//rGBf7p8GjFFIUo/C9FWS59rywKdNW5OT1ZTHWW3qvwQI3plvtvXQWgz0JSFJ4+MSEJB7+IgvSlGHEdPh/m098/WKC8O5iYT3BVkxeX3UqDz87PT4dM0clS73vApbGmvhh1AAScViJxM0mjlB3X2+bHZbMSTaZ5fWSO+29dicumSTLVifE5uR9LI51SbO6s4m9+cyO/++irHB6OUO+1oyi6Q7O63s3IbJx4Omcinhjvp7vBw6kJs+ZgpT3Y3eChb2KRoMvK7VfUc342auobq3FbSWXzfPHOtTzdN8knrm7mv/zjEf3z4eLZiUqkmNagk6DLKtOAAsZ0oPH9Kb3n1qCTO69sBPKSKFLjtrKYzLKixsW3//1GqQYknj/g0vin33/3MxTLqcKLQOgOrqr3SvUHMX5E0HtBb+5NpLJlB/nFFtdSbKIat5XpaFrWz0TK0efQGAknqHHb+NWrGnDY9F6t/2//edOhflWTF6tmYXgmKqcqN/kdBFzWis3NbwU1br0BNJcvP+jfDox1QPH6S/PzxvTR/beu4qbVtez42wMsJrO4bCqxVA67RfdU+yYW2dwZLPS5DS/5vEt9Dg5NpTXo4EzIvMGr3FY+elUju/YP09sWILSQlCzDW9bUsrc/pKvW53NEk7l3nS5/qRmugdAiH3noBZmmE59Td6M+isOoHnGxehLoskgBl439AyGGZuJyvdgsusDsUjDWII0NwkIYwG3T0+25fNFgQNER8zostAZdOKwWVtZ5eGVgpqKShzjMgy4rX/jwGr7y+Alp/G7oqiaTy5uMLhR7DL0Fo2189UajYWTkGtm2wigKFqVDU/nyx7r5+lMn9T1EsYlYQMhmGQ3q9o0tPN03SSSe1tsN1jfyyrlZRsLxi7J4S53wJr+DVDZLPJUllsrJ11PrtmGxKKiKwjUdVVK6TSiRvB+cu8s+VTgQWuSeh19mb3+Inx6f4OpWPwDnZ6I0+YtMp5aAk2jBaBnHCViU4mFZyjL02C3cua6R7ZtaaPDZqfPa6W7w0NsWoM0wxqE16CyM7cgwEtY9n+loij1HxzkyHOZDa+roqnVjUXQ2FsBoJMHh4Yg0Wl67hfG5BOcKIXulSckCVotCwKmV3a9Ns8jF/2ZGq9LCUIA71tWzss5NXSHlIox2Jqd7ePZC7kKzFK/wDwfPS6MF4LRaCulHjdnCJjs1sUAinaWn2UedxybTURYDrTGPmdEm0N3k5er2qrKfpzI5rumokgxScYDpqdgUmzurmE9kDOLDl64T904wG03x4DOn+fqTfTz4zGk+/9hREzEiVkgf9F2Y56WBGZlmqvfalzRabpuF3jY/AaeVR144h89pYz6RkcMVKxktl00nEvgcmokNZ9MsVLn1mVPf2r6BoMtKNFWcJDwdTcnUXSKTw+fQWEhk6buwgMumsfvQaEWjFXBp9LTo50A4luYvfnJKGi2HpvAft62Qj63xWPHaLdR5bHKdLJQYLdDH8ogU4MDUIneuq8ehmVtEBKtR3NMVjV5+fGRc7qFcYakHncaxQbqhWtvglanan/ZNEImnsSj66w4tpuQ1717fzP23rqK3zS+v4bTq55swWs0BB61BJ+NzCaYX00QNRgv0+V+CdTkSjrG5s4qWwDsbZvuLwmUbcQlpGrfNwrGxeZlO2HFdO0+8Mc5sNM3mziDCj/+vd1zB157s4/BwpKizVyi+1nntxFIZohUWLJQzEUt/XikqM0YopSkU0fdibKisddsIFeowFxOrvRjuXt/IxHyCwVCMqUU9JWdkDTo1SGQufnyLe1qqKbOnxU84mqqYylgKRi8b9L6TfWdnJGtQ3Fs8o8tDvXpumpOTZkakaPCEci/3Yz2NPHtqkmgyJ71m0D3rhaSuH6kCD31qAx8rjGB/N/B+jbiKIrNmooTw1sVeEfJi4rOWjfMtfo6NFlPZ4v02RlO9bQFcNo0VNW527T/Pzm0rePKNcVkvE45e6RoRa7tUAQXgt757gPG5xJtGewA7rmtnb/9U+TSDwt9WIgIJGNNzO7a047BaZKbmYtmX1qCT+USauXi5ak13oxeH1UImm2NiPsHUQsoUmS3VUAzmSKlUiq2n2UdnjVuSy+6/dSX3Xd8pWaFGiCyQeF1Pn5hgJpqS72VHtT4TzbgXxT22Bp3csqaWoNv+rmqBLkdcBeheZD+//f1XGQhFJZumq07Pzf7g1WFmo2m6at2sbwlyYHCWA4NhvvV0P6FCrWs0ov+NKL5OLSRlakABfAXPyqHqh67RaIniqdtmkSPAK6USc4a0WiqTYWWtG6/Dwt3rG9nQ4kcteFMA3pLBixczWo4KkZhYFa8OhbluRTUBd9Gj+9j6ZnrbAvo9221LbsqNbX40VcFWiKjE40rPj2Ojc4yE4xwbmy/rATNCFJXrvDa0knv+yYlJk9ECUFWVzZ1VHB+LcHIyarq2RUEaLcC0qXJ5nXwjjNWKajegp3Y+dU0r52d0A5gDvvT48aVv+DLBbDTFZ//hdR546hTff3lIRlF2TW/D0NRivchu+KxVKK5zgyE0OgmprL4fQCd1iDT8LWtquffaVqoN625iPsmpAgHEXSAdeR0WMrk8FhXWt/j50p7j7O0P8cc/eoP/8LcHGZ9L0BJw8pf3rCfostJRpff/1RY+b7H3RHQ3Eo7LKEUsF3FIG41WrcdmiuRnoklqCvd6fGyOE2NFI73U/tBUpdBErZ8zNYX3dXW9m45qF30XFphZTHFsbF72iYUWknIieC6/9DTyZEG3EChjF56fjUlymUNTiaeyPPrykGGMjE5YguK06OaAA4emMjGfNDkAM4spabQafHZ2XNdGIlWcML23P8RDz515X/R4XXYRl5HqXuW28pf3bKB/coHnTk5KLTKfQ+Of//MNPPryEHtPTVHrtUvPR3h8mzurTErLF4Pw3ozeWCkpw+jtCJjkbgpeVaUCtvlvKNMsvJi3BmZ6cSlag07uvKoR8vB/D54v02QTqNQCIKIgAa/DQmeNx+SNg17vSmRyJgNf+v6I11AafdktsMQtlUEIqgZdNn5yYlL+vMZtxW61MBZJ0N3oZTySIBJPlxWz3VYLH1nfSKPf+a54le/HiMu4P6CysslSfT4NPjsWVSGVzsno36pC0G0jl8uTyubLMg/CY2+vchFNpZleLF/bIsNR49aYjl68h7Gn2U80lWEgFJVrZnNnkOnFlEl1Q4z3EHU60NdHDpgoRG3ZXL5s34hoU1D9uxs8XNkS4KcnJqj32Tk9GZVRm8ikiH2/ubOKeCrDsbF5ub7Ffr6hq5pwLCXr02KdL0VIctstqEoxFV/ntUM+L+vG4uz40Jpa9g/OyNcI5TW6gNNCJJ417dedN67gBweHTSr9XTUuBqaLdWJRBy79LN/NUULLERe6NxlLZdi5bQX337qKZz93MzevreP3burigV/vkR6kU7PwtSf62PXKeUbCcWajKXZuWw/M0YYAACAASURBVEFr0CkNychs7KK0d7fdQqEMI723PMXpqIvJrPwaYCFh3rB2TeG2K+rk91677uGVGi2vw2KqVRmVKMRXuXw5hd2IpYyW36kxEo7zyAvneOr4BRYLQsId1S7p/Yn/bZbya1g0Ve8Fq9OjGLtF5aTBi96+qYWeZh/RVEYfimkIkxaTWRO1V9x+wGnl2o6g/Lm98MJ8zuILNC5acUWvQ68BHhgMlxnOtmo3N3TpZJy+CwtE4mnsmiqNlqgvRtNZdh8a5aHnzrxvcvnvNm7rrmfrymruXt9IR7WLh+69mo5CPVa8r9klvP+J+SRjkYQ0WhZFHykytZBiOqqPHrGXFFatFkX2ERmNVnejV1KwBXXcaLRES0MpEukMPoeGQ1Nlzej3b1pJtdsm1Tk2d1bx1buv5JY1taYDfXwuwcRcgiq3lXRWLwEAUqEDoKNGX8vir0YjCXYfGi0wKa20Bp0ySrlzXQNOqyqdVU1VZOpzMZnFrqlE4rpqyPBsTBotj90inbPFQmbBXiIP47Fp/NqGFrmvI9GkqVdO3Pu56ah8jXZNobctwEsDM6QyWUnnjxR6LoXR2txZBXmYS+i6jB67he4GD6HC9f3O/5+9Nw2z46rOhd8aTlWdeep5bnVroCW15JYsyZY8IZvYGGxiY0G+G2QgQUASovDlkhvyABku1ySQEJx8NxjfkGDdkGAbjGUCNtjGk2xLsixrtoZudatb3er59JmnqlPfj117n6o6dbqFrcEoXs/jR+4z1bT3Xmuv9a73FbFlTQtOjCfZzvOq1iC+dHsPNnVHcXBkDl978vhlnSNXlON66JVB3P9sP9wSj8/fsgQRr8RkxOOZIrpqvFBEHle1hwyEEgEJDM1kcPDsHHzGSuoWCYfZRDKPKvMH2bwGJx5YxVUegOZteF4jO72moAKfwiOv6jg6lsC6jjB6W4JV0wTJnGaNfrnyHzV+GR4XBxdfWfSu80noafDBXe0CAORMX6K1AE0H0nm1LFPOk7x6tmidXDwIJY7Ac/jru1ehNezGdLrIrjmdL2HP6VkcGk2wnhStpFucsLl1oLOWLBj1ARlfu7sX2zcvxsauKBJZ0pD5hzctRq1Xgkvg0FnjZgsbPc86XznVU7BtSfcPz+HJo9ZmZfOubiqZZ/d4Sb0X2zcvZgSzV5o9c2wCu/pnkMipeOz3NuLGZXX441uWkN2L6XML5WGCbhFR457zHBA2UEVmWDrPkTmwfpEVOFPnk3BLTz3yGgkaaLOyCROFfJVG/aGZNN4YieM9jX60ht1E4+vpE9g7FEMyRxbeotFHtrjOx9KG9LhNQQXrOiJoDbsZRZg5qByLZ7F1Qzt6GkjKj6osAGRejMXLKemXB2bKUkYNXnTV+izBKh1j44kcRmLZcjBo/E9r2M0AYgHZxZwE/dyO3WdQ0IhDNM8VSQDu+82V+OJty/DNLatZz1te1RlF1RsjcVaLNptXIunE/3iNtLDEswWk8hqOjadY4NEcVPCzI+cIeCNdxPrOCL778XV46ug4dvUTNeuOqAczqcJl63+8YlKFA1MpJuxG4ddf+OFBrGkP45F9Zy06Vk4yBWZzSscBZHCC488Lju6UbvnS+5fh+ZNT8MkiXj09g/aIB4dGExUF14VSf+bfd9LXcnHA+bRzNQVljMVJmmJJvRfxjOrY0wY49+BQI5GtxlIT5vvXEJAxkchbgBwBRYSqaaznLOIR4ZXLaCvaZ/KRda345L++hjOzmYr7aX9GksAh7JGQLWpVmeUBsgNYXOfD4FSSRaBb1rbg50fHEc+qrPfnQsigvNNShbSP8ckj44yX7ppFEfzk0DkLo4sTw4vAc1jVEkSdX8Yvjk6U+SQdgEJ2AENvSxBnptMsLVXvl9FR40VB1dAQUPDLE5NVhVWByrnUFFQgGDUlwHkOhDwi5gw+T69LQLp4nvlmkMZeyo/YGnbjf965Av/zp8cwnsiaEKjEaKrViZTargBtPlcCXhGYWrH5t6pdN1C+39s3L8a913ZYVC4Ciohru6I4OpZggpt2oU0zsMX8nKqteQCZjzv/YBM+9+/78fLAjOU83y6zxn/5Pq67/ull7B+eQ3NIwU8+dx3ueeAVDEyl563vyAKHgOLCVLpgdO+7cXomyxB8PllAW9jNekU6oh5oJd2CVKJOhgeZ3Oair10TyGmSO006yr3HgURXZh/rxMJeDem0kIM2M9lX+w2Pi4PiEpHKqUxXy2xBt4g7VzUhni0yZNPKJj+u6a7Fa4MzjDORLoZO9DP0muwimX1tIXTX+fDIvrOYzzjOgheoanRyBhURRU1HpqiB5wCfTCb8U0cnWAPsrv7pyzYpL6TROTKbLuDj/7K7qvyO0/O3o2VvWlqLE+PJirrvQnVZc0+fJHAQOFQoZtPxYV5Y6WubuqI4ci7OHBGllPJKPASegKMaAjJSeRWpvOY4p3qbAwzN19Pgw6YldcgVVDx7fBKjc7kKRWFq76n3YixBnFiNz2VJd5rvD6VXMltH1ENKDjpJhdcGZKhaCdPpInMo9X4ZE8k8W6fs89vsgM3OhcgkAfc/24+tG9rw+IExy7MyNx3bFSucnnVQERA31evsn+mq9eLLt/fgn3edRqagYf/wHMIeF75779Xoaw/jrdp/6RrXwFQKR0dJtEMXsBVNAYg8GQy0tkJLLL3NAbRHPMhrOhYZaMMSgKHZLGSRw6dvWISbltZi5x9swi3LGwAY23ddR8pWqyrpKDOa227/OdsEd0ID5tQSY2qn6CjKDq+jEpjgJB1Sbc322dCIZuO5SqfF2c5f5IFMUcdspujotDgARVXDjt3DFtqsw2NJHBwpS4YLPMci+KJWYr1a1GjPVkG1Xuz+4Tn8/KhVwdnCBs5z8Cn8eTktoHy98ZwKjid/lHSSDnr62ASCbhH7h+PY1T+Nrlovbu6pP78f/jWwR/eNODotmmbSAVYT8SsCtm9ejI9e3cY+1xEllEkpG9qzq9aL/3HrUkcEKU2xZU3PtaDpzGkJHLB5aS1CHhFfv7sXm7qjzGn5ZIGNmT2Ds5jLqCwNR1OL6UIZ8DOXKTK1YKcU2fHxJHNMI7Esnjx8DuA4jM6RJmTO9g2R53BVaxBvTqTZ7sLstHwKz9KIWze04767ellvGKVAm06VU9AaSI2QArToLihlKKrnVB1dtV501JB6o4vn0NPgRVvEi762oFF/J9/pawshli7isf2EWu4nh85VZBnipnVKK5FdE60aOE0Xeq/pe7pxDwAyzwem0vjyziM4PZXG/uE5cCA9cN98+qTDr118u+COi+O4T3Ec99+N/w9yHHfXhT6G3b7y+BG2wF/dEcYf/scb2HnwHHMUFGRB6z2rW8P48e9vxBdvW4ZVxmDjQBaxvKrj754+ib/bQqStb1hSB9Hg3xuazSJmDGKaj19a70NrmMBy6aSjZa6Sjqo1MqDsSHNGGoPWeZI5jb1n5oAzm0fiKmQO2HtGd/J4Il/RhMyBpAu6a70MBr+yOYCgW7Q4ALeLr5o6oKYDjhRTHIA9gzE2mej950AK5IdGE5ZC83S6iKBbtKQ03CIHr8SzRSOgiKjxuqDpZFIDgOzikcqVSJOoIlTwQJpNEXncZEibCByQzutoMeRUAJKSocq+VN7iz3ceuWI4DG/uqWdOqqvGg+aQgr62EP7pv63B9s2LsX1zN+5Y1QQAWFznx73XduAzN3Zh++bF2LqhDfUB8vlEToVkDKrWsBsPbl2Lr//8RFkaJKRAFjjUeiX86a3LEHSTpmAKk6eyNhzIPd/VP425jIrDowmYI79UXmMBDc1iFLVyjVTky78VUERLbyFM/9KgkAZ8Is8haUh4PLpvBE1BBbFMsSJFrpZ0TCbzDIAV8bhYg7Ei8nj/cnKv4lkV/773DJ57cwLHxggwg86j5pDC6sJeiUdvcwC3LbcGQ+kiOZeGgGxkiAR2zaenszh0No79w3GEPS5T/UzHjt1nWN0slikioJCmaipplDZFvF5JwEgsC79J5oX+Fv33vctq4THV5zlQnlCy9vEccfh0F0fvb1OwkhDgUtjF2HEN6Lr+twCg63ol4d5FMDN/1kgsa6FxMhsFCTx7fAKf/bfXMZMu4CPr2vDF25bhYxvK0WW2WMJDrwxhNl3A9h+8wRxgW9jNdkU0FT2RzFWIy5nX8lKVxZ+HkWKktSoXj49taGdRL93JtYUVx+9nCjorjvc0EsdDOUgzRc1gseAJQsw02XWQBYCec1etF4dGEyziFDjCjnHPmlbmkJ3MDvqo80m4bXm9hWlEFjj45HIsO9/GKJ5VUeOVmKMu6eXn1RJy48e/vxGiaVIDQNFw+JmChmROYykVuy2t96HWL2PaaLqmUfCa9hBaw25ETaiyZL7IUsG7+mfw0CtD85z1r489c2wC44k8OqIE8uwSeOwfnsMLJ6dAk0PvX9mIiNeF/cNzeHTfCCJeCfde24EXT01jz+AsTk2SHVtBIw3CNy2txRMHxnD94hp2nNF4DnlNx1S6gH/eNcgCj7xagiLybEGlY4Hu0p8/MYFd/dOWnVsip6KvLche41F+dmqpvDhrOhkndmStLPIMMciBZFrUEknHcSDznJLnAgTgQ0e1JJDdGN3IzGaKDPqeU0s4M5thwAq1BHz1Z8cZIfTf3rMKm7qjyBRKrHaXLpRwaDRhgZebbSadx7brF1naM3KmnqpDowkWGI/H86j3lXfK9F5FvRKmGUkBeT3oFln6fTZTZM6X/hZFJ7ZFfdBMGTsdpBVgSZ2XITiBSvaglwdmLktwVz1Efeu2huO4EIDTABYBuBrAYxfhOMzCpsZG2jBHzRyFuXgg4BYxOkckCvYMzuKnh8ZQH5DRGvZY8sm7T8/gxZPWzvupVB4f29BhkSyptlhSc6ow0Ty+LPJoCSsYmMogVyzh6z8/wQarxJOJdWw87cgU0GCI1Mkij8lEFvGsioiHcBECsPSG0AjQLVkZPKjcichzmMsWWQ3OrJTcFFSQLWqWCQVUor4mUwW8cTbOFhaBI4vS+fZgAYTCp84nIZXX2ILmlwWcncvi4b3D0G3pSlr4pnBgtwiIooCr2yN4eWCaLRqnJghRql0PjdbkzGYvvu8+TSbmpZIyvxg2my5gJlXA+s4wipqOoZkMIU51u/D0sXEGNqJ6Ug1BBZmCynTrKIsEHTuKyBm/QXgl+9pC6Gnw4eRkmkXphIA5glxRY3VeswKvPYihaWX6iOv9Mu5c3YyDZ2Pste46oj6eyhUxGs9CEQXMpItI50uGwGn59wSeQ14tYdS0Qwi4XRWktZRJPuxxMTYZgOzMav1yhZwLPe89g7PYuqEdTx09h5lUgY2pnsYAepqDKO45w3ZSTSE3VE3HodF4Re2NzrmiBvziKAHNNIcURL0SBmfSSOY0tBvtCnROj8VzWN8ZwYRxvk1BhaS1dR09jX6MzmXxOxs78O0XTlf06CmCAG9AhKrpmE4XMDqXQ3NIwX8eHLMgbQGw5wmQ3W06r1WARUbncnh038hFlT5xsosCzuA47lMA+mDafV0M4zhOn0nl8dArg8gWSgAH/OC1M0hkKSdeJTpqIcRea9htaUi2m1cSoGrar7Qgn6+ZQSEUVBH2iMirGjIF60k7AS88Lg6Zog4XDwTdLvA8zwT/moIKol4XDo9Z6xx04tjvlRk5NJ/w3HzmEjjw+NWcVzVb3xlBe8SNR14fZU3JbpGrKPIDZSFN+wIp8kBjUMFILOeIolrXEca5eK6CJuitgjTeKeCMB57vtzQdt4bdmE3n2Y624jsg9+2mpbVYXOfDgy8NIqiIuKYriueOT5aDCgcqMxpk0cbarde045HXRtiC3dcWwvtXNOC+J49bonj7+NqytgWvn4lZmortRr9n/759LMsih6X1fvz9R6/Cw3uH8eBLg3C7AIonoWAOO5BLFjgIfGU6POIRIYkCeI5jqTMzGIKS6AJkl7dhURRPHByraDTe2BVFpqDijZG4RaS1zi+zeRtyu/Ctj6zG//jRIZbOFDjgqx9aga89eZyhc83HBMzilL8aPRzRsBMxOJOxBMsUIUnBJNQoCvetBnbvGHCG4bS6ALwO4P9wHPfeBT7/N8a/2+Z7rZo98Hy/wbemI+qVkMhqkEUO9X4ZX7+7tyLdZX+GXptYlFbSK3ZtZksXnJ0W3ULTWsx8Zm+u7GsLYV1HmDV2mh3SXEatcFounnNEC9IJViyRulHeKIrLAqFqOjyWZHUBampJR3NIwT1rWpguFkBSd7TGUK0hFSAOztY7ydIzRYcdV2fUw2okC5nHJTAqnrDHhV8cmwRAnJYi8hanZT4HOunt01UtAWcNkmOvLLLB75V4rOsI42t39+L+j15V1psKyNh2/aLL3tP1dufIPWtb2TVxIDtPs9Oi90E0Fe8VkcdzJ6aQK5bQVetFPKfihZNTlh1qMleuQ1Fj6SxjkX7iwBhuNGqLANn9Pf3mBEp6ec7Qn6SPsM4v4fE3RjEwlWZjpa8thG3XdeLOVU3wyQJ8slAGPujWWrAdKJJXdcQyRcQzRYDj0BCQmdMSeI451ZyqQ+TKNdS8plc4rY6oB7MZlZHQ0tS+ubl+JJZl9aITE0k8+NJghdMKKCK6an345MZOCDxxWvQXzOrSc9kivvn0CYuz0HTgf/3sTSRyKjs/6rRoTc3stMy9bADYPRUcVn8OHE5OpisyPAUDjfs3d/dayACyhSJimUufKrxYNa4/BfD6eda4tnEcNwCSWpzvNUejaY5j55K4uaeeoAVVHRPJPP71lSFHdmizRbyyhSV+LJ7D6WnnKE/ky47OZZscRLuLII2SNoSPHUKRse0CXQKH1W3OkNKAgQIReZNDMLxvNQfg4smiz+oLmo6hGXIfiFy69Xvj8Rx27B7GoHHdDUHFIAwtX0e1mE0W+Aqm+UTOGRot8oQlwQkZ6WTZosYm7PMnpwzGC3LudLGhk9J8DnV+GVs3tLP8vdnox+JZlUW46UIJe4diePi1EXzz6ZPsuscTeVZwv8z2tuZILFOAqllRY2aj98GnCFha7zN2HuTVxw+MYkUTkTWhu5iIR2QggPl65mgK+uhYAr3NAbiMZn+6i7IPA/rnZLJg4j8k/7aG3Th2LoHnT04ildcQ9crYvrmbsECABHthY36YgzPqUEZiWXzhhwfx4IunLU5EK+kWNK2qoyr5bkNAxqqWIJqCClNHyKklNIcUjMSyFieu6YZGn6qj3i+jwbTG+GTCY7pj9xn89VPHGdrVflRas6NsHLLIMaesaSQ9al/A86qOOp+E1rAb7zGaqHkbXLigkR2a5rDhPpeoTnEXz6n49gsDaAl52GuHRpP46n8eq/qdi2UXw3GtMXZZnRzHrQawZoHP36Prepeu688s8Jqj/eWdy4nK553L8cyxCUuP0JGzzuk+arSJ8eqOsAX6mVN19je1gCJCLQF+xYVt1y/CJ0zSB9RojtheN3HKlEkCx1BeewZj2D0w7eiIimpZNiRu6pXhALRGnMETxRIqhC7NxhBWnDXNQmHG40a6rK8txNBgAUW0SCVQah+KDvRKPEMoVUMjqqVfTQNMB7lPzSEFuWIJEa8Lf/vhVVjfGWFw+rXtYazvDLO/GwIy3hiJQ5EELK6rLnqniJwlYAGA7708WAHs2dU//U6gf3pbc+Sr/3msIlhysrmMhlOTKeRUHV6JN1R5Vew8eA6xTJE983hWZSAAl8Cht9nv+Hu3r6xHV60X1yyKWsAF08aYcQq7umq9loyE2whUKGsDJQLuqvXgpVPTiGXyCCgiehr9iGUI/+RkkswTxcUzRKtfEbCmLcQcndlotaSaUje18UQeOw8SRgmR5xncfypJFvuWsBu9zQEoImHGoUrQOVXD+o7ycRfVlBd+VdMZybDdCpp195hXdUbwXVQJz6LjUzUQgIfHklBEnjWb97WF0G0gl7NGVolC7c/XsgXVQsDglXgsrvNdcoDGxapx/TUIMGPvQjUujuP+BMB+AH26rn+92mtVvltx8u/9rd/Dxi2fxROHRi3ACdqkam5OjHhEzGbKaq70M3b1XDsZa0fUg/f1NOA/D405kvDW+2VEfdKCDBu0GXe+JumKa4aZ5og0dioC4EBAX2HVCD2dzCvz8Msu9vkta5qhuEQ8dXQcc+l8BSOAucm0q8aD6XQBhaKKrErOWXGoN3plAdD1qrUWswUUEbV+uWLHRoU6yfUp4Dmya97YFcXLAzOEWFUvp69oLYEyIvzRI28gpEgYMgU8Ik+g9uk8aZj+8e9vfEs5/AtV47rQcyS48bfQdvO9SOTUBRV4zbUXJ6FDgBDfDkwliWBqox+bumvhlnjcsboZzxybwMBkEo+8Pmr5DmV3CSgiPJKIcSPSt6sZm+to1eSD7Eb7wfYMziLoJik5WrPe2BVFtkgaaPvaQlC1koUUt5oF3SJuXFKLPYOzljlkb37fvnkx7ljdxFh8aLqOkmjTtePBl04j5BFxR29zhYK4TxbQGfXgmu5arGwK4E9+dKhi7lBjSu2m++aVOaTz5ZOqVq+mqt8AKbnsHpzF4HQKyZxmIQU3jxEqiEt/b11HGHuHYpe8DnwxUIUwUoXn+1k6EW/hOO5mXdefcXqt2vcpOOP1M0RGobE7CkUScEdvE05MpJDMFnFsPMkGl8ATEcaiBswajo0OWPoZhmwKyIBO+iT8skAYnbUShmYyePCl02zHZLeJZB4hT2Wdy+wQlzX4sWcw5gggMX+24n6Z/p+KNS7ktOjAUzUdAbeAOp+Cc3FbnYMrw/NLOkHXpfPlCdpvNB5Ws3SBMggQVv14VmXbeR1wvMa7+1rw4skppG3S5E6WyKmWRYsqOJuvgS5+Ea8Ln7puEUbnshYEGUWUBd0iav0SvrzzCOYyKlK2G6iWADc4rO+M4L67Vl52ROGFmiPZYgn7hmaxf3gONy2txfMnpyyoMw5kAcyZxQ9RBlyoIIHfknof8moJJyYIo8whk+wHSZPriKWL+Pi/7GXIOmpUZcDl4lEslNAR9WBZY4DQspm00gASXPzejV348yeOoqDpaAjKbAyYAyWzySKPqFdiJYJ4VsV1i2uxojmInQdG8fLADKuHtYbd2HeGsF2k8loF2ETkgdtXEg27PYMxTKcKFYGfPe4/F89i2459WNUSxNBMhgEj8ipJz71veQM+cnUr3JKAbEFFrlhiYAwaVKfyGg6PJSEKPI6NJfD9392AH7w2jMdeP8syFn1tIZyeTmEuo7I1hDqldF5Hjc+FWLoIxSWgxisRnTWT8kK9X8bn3rsYDzw/gH1nZuASBGzojOLQ2Tg2ddfg8Gh5rpsv8cRkClqJAGDe11OP+qAb13RFL3kd+II5Lo7jNgP4G5CdVhAkGvyarutVofAcx30YAHRd/yGAGQCLnF6b77gPvDDARN7CHhd29c8w/q/1nWGsaA7i2Hh555MulBy7/JuCCvyKyCYjAJw0iRUm8xrqAgoGptJsgIwn8owGxh650t+h0FZKN8MBWNkUZCnNbLFU4aScaJ3skHjScBhAPFe0NBvazRxh0fQOhzyWNgQsjqhkctp0t1XSdcY2YNYkIr9Bu+uNnhrDgZyaTCJhpDTpEmQWwTTbkdG4EZVWTy/aj0eNTmD6ulfmcX13LX55fBKz6SL+6fl+5rToPVjXGYHAcwi6XSzilkQev3V1K77xi5PIq+VnkcxrrG/pctqFmCMPvTKE+5/tx/rOCEvnjhs0RtRoxJ5zqD+aue1yagnpgsYae6kFFBF+xVAbeGnQ8TzMO6buWi8OjSZxaDQBt0SWoaX1ZEwGFBEfWt2Mezd24He+9xqbC/2mfkm/W0S2qLH0NrW8WsLOg2VCZb8i4KrWEP7iJ0fZ9dJA9aeHxy2Iu2ROg0fikSuUoBitAfuH51i6MVvUjHQ5h+5aH546Os52rS1hN+YyBfz4jVEUNZ31DNb5CX9mMqeh1i8TJYbD53DT0rqKnZYdjk7p0g6PzqE55GZjPugWsbY9gv3DcwYBtkFibXp0lOUjXdDYvM+rJTQFFaTzhJP0m0+ftKTGi1oJ2zcvxr6hWXav7FkarURql1nj3ozEzmHb9YsueXB3QWpcHMfdDeAWkLx7RNd1AcDNALo4jvvdeb56GgCNFLsA7KvyWlWjC6o9nQeQ2hF9MD5ZYMgzp51Mb0sQp0xOq84vIWRCz8gCh8V1XgTdomWAzBoDREdlc16dX8ZPPncdbu9tYg5AB7BrYAYjsSx4jjBgtBm1qohHRGvYbRGOrPfL2L55MX7TpMwb9riQyKl46ujkvE4LIDUgO8NGPKvOv3vKlzCeyKPZxCxhr9vRvwJGNz4dSLPpIlTSmQCJJzu4ZL78XESUaYbOGs57IadlPl5fWxB3rmqCQQ6CO1Y14Kaltfi/n9yAN8eT7DxPTCQZSlLTSRrx8f1nMTCVRjxLhES/dHsPHv3MtXj+5BRbNOh18By5lstReLbZ254jWaMBlYqm3rS0ljHGULBL0G3NEAhcZQ1KB+BXRAxMpdliVueTsL4zgkROxYfXtFgQbF21Xmzd0M5Y2Ne2h9Fq1IGWNQYtdckv3rYMK5rIOSVyKhRJwBMHRi07ZvO8HZjKWJwWndv2c07mNHx55xHL7wAkEDQ7LZdAap6ZQgklEACVTxYYW4TIc9g/PIf9w3HsH57DWDyLRE4FbzTcj8SySOY1FDVSHxcNQMRksoBkjkgcnRgnIIuRWBY/eG2YHTvkFisCM79SRtTGs9a60qIaL2PboWUPj0Svw3r9ssDhT29dhk3dUfS1hTAWzyFuUFUlstZg8sREAo/tP4uXB2awsSuK7ZsX4/uf2sDqgvQ5eiUiZxQ2/rYHtZfCLhQ4I6Lr+p/qus5CLV3X47qufwNAVQZGXdf3A9hiRJADuq7vd3ptvgP/1YdWYFN3FB/sbWIURg0BuaLw7pNFFrG4RQ51PgkeUzX2ueOTlkLnZLLAdGwAsnA/dXSSRSI+cgElGwAAIABJREFUWYAkWIujHaaiKwDE0nk8um8ES+v9jgXYkk4YMIZmsqjzS8gUCP1Lvencm8NuxNJ5/OwIiSIFDljeGIBfFlDjdaG71ksK6VX0uPYMxeA2Rce9zQEL7N3JqAOWRIEVoKt9hjY8232PDgKhLelWPTAVZaSkU6qHmtOuWBY47B+O46eHx1DUSLoi6JZR65fxie/tteyw4lkVR8+VEYGzqRyryw1PpzEwlcZTR8fxwAsDbIcui2WEJNV6+tx7F1c9x0thF2KO0CXRLwvobQ5AFnl8f88ZhnoDKp+FpoNR/ZiNImYZdDtVgMhz2HpNO3afnmGSIgAYSvXYOPn3FSNgOzSawCP7zrJjPnXkHEZjGZyYKC/OP379LH74eiW5ck+j39LCQoMg+twsqXTjJMNeCes6wgzmDgCLDZACu15Nr2iNoU32AleGl1ObSubR1xZC2OTw/bIAr8xDLemYsQXRRc1ayzVnVOayZRmhOr+MiEdEOq85KjVwIDsxO4enTyZr3vtXNFgC1bym4593DeL/vWUpU3gHyPygaEWAZE7S+RJr0o9lCohlCnjiwCiW1hOQE3328RxZpzYsqsVNS2vxVx9aUXGeF9suCDiD47i7qqUE53vvAhxX13WdqbqaUxG9zQGcnEwhVyw5qrwC5XoOlQMwq+ZWS1/JIs9g78D8zbkU/GFmiRdBUIb0K7RWw35f4CAKHNKFEjwij8z5bEdgbYBsCMiYyxSYw5AEglBqDbvxvU+uw73f3cuk7n2yAMXFVyjTEmmRBgzPZvDU0Yl5ASROBX5zUV/gCBAjYdQPzke2BSDPRdN1x11ltedjZj8hn6tswKQgA7s8xrbrFmEuk8dTRyfgdgmYSObfFkP8O6UB+Zu/OIH7nz3l+H5DQIZL4C1tIwJPdh+jsSx8Cg+AjHfzM11S78O5eBZuUSAAIQdGdqCcCaHvCzzQEfXCKwkYj+cqHKYdnAGY0sESj5BHQiyTR6ZAqJuWNfjZAtzT6MfwTAaZgsbOsyPqMWisrLuC3uYADo0mKhjfW8NuZE3pNWpO7DXUfAqPu1a3YmAqhZcHZiznDAARj4BkrmSB2Ts1b9uvF6hUGbcbZbRYyMwpv2rroVciaUf73LQ3N7sEDiHFhYDHhelUHvd/5CrcuKwOb8Uuq6wJx3FfA/Bwlbc/ouv6F9/2QZyPq8+k8njg+X48vG/EQshKHcv5do5v3dCOExNJnJ5MMZkT+zSstuDanQ9AFsUanwuHRpOM0cJuAUVES8htqcGZP0uP53Fx8CkSZpN5C6rLxQMrWyp1gOy0NgBZjGp9Et7X02DJrfe1hZDNF/HmhLV3bUmdFycn0xaHaDazBIn9+px0iOxmruN1RNwYms0yifH5jN6TJfVeVoMsL2zknNZ3RpDJFzEcy1omqNMzBcjCs3lpA8YTOSa9DhB02j/8Vt8lZwW4kGaeI//x2jCSOc0SbFE0HS3ws3tp0rAKuV1YUu/D3qFY1eNQ62nwMRJb6oToMZzmjzkgMiP0PBIHnyxZmnHns9awGyVdt1A09TR44XdLFXIjQKUjMjsLKpuykFGkIFAOmJwckt2p97WF8KXbe/B739/PAEVVjyHwuPfaduSKJfxo/wjbtVVDEldDidLnSQEam7qj6Gkkqdknj5xz7Hf1SgIEAYyJCHBGdka8Luz/8vvmvY5qdrkdVz+Ap+HcmrFZ1/WLkm9xorMByouu3ep8EloiHpycSFZAX7tqvVXpZejC3NPgY9pcQPVBApAJPJdVHRf9qtcDQvE0Ow//oTlaagjIuGNVMyYSOfzk4BhKKEesNEriQRZ76lgVkYdL5KpGe9ToxK7zl/tigLLjMMNlATKgRZ4gNWu8LvAch8lUYUG4dV9bEN+4ZzW++KNDCy6MZl0hJ8BHX1sQv7G8kQlAEq69QcTSRbx4aoo5cyfwiz2qBAjt0Nc/vGrec5rP3imOi+pxffbf9jku4k5GnTx9fubFl94/+m+9T4bOEcYHGuj8qlRDTmZ+Jk1BBT5ZwJnZrAXEYF5Iza0R9u9XM4EDot4yQtH8ez0NPsxmVYw7zGFF5HHj0lq8enoGiig4pvW6ajwYnMkwZ90YUHDdkhr0T6Zwbi43b7Ov2TZ2RbG8KYgHXzrN5sBC88pu5qCNwuBpQDYwlcKf7zyKdL7IACHmdcacmWoOyizI9bh4uET+suy4LhSq8B5d199weoPjuKsu0DGcD7y2FZmCiudOTOHQWXLT5zLOzA0dNd6qi+Npw2lRHjyzZYo6NnZFodqo3umE9ikCSzfQgUUdHE1pnQ9yTkcZok+j4qaggni2QFKHLh6qacEdT+Tx4EunIfLlQZnXdGzqrsGiGi++v/cMtJI1ys2pJeRUkqpoDXssRV9znw5vTAuz0+JQ/i2z0wKsEuf0PXPahwNh/pjJWBGYqgaEPRIkg/l9vjSiVirfFwq/F3kCGNBKwB++d4llAkW8Ej5/y1IAZHJ+4dEDODqWYFGy+ZnU+CS0R72YTeXYs9trKDpfCfbQK0PYMxiDXxah6ZXcl/bdKIHBk7YRgIwb6qhaw24MTGcQdkuYSOUxkcqz+hBxWqQmZH6WZqi7wAGtYQ9m0nkkDfmSlpBS4SSKJR1NQQUNQaUqmOjarigOj8YxnSxzLwYUET5ZtDgtnyQgVagM1sxjCQB0kzsYmEojr+mo80uIZ4qWFGZbxM1KC4pfsOy0fLKAgEIUven19zT4EPbKODKawLFzzmwsAUXErSsa0D+ZYgTYAGFgHzaATFGPhHiuiLxBksDpOoq6syBtT4MXSaNuVQLZ3X76hm7ce22HJYvQVevDv/3uesOBHUFTyI1dp6aZ4wp5XJhNF+GRBOa0BA748NpW/NHNSy5Lu8gFAWdUc1oLvXchjC5OZiReKl/puFrDbixr8LMucVngWFc+UE415TWCQLODO4ZnM2iPeNDT6GecbgCZ0BRZKAkctBKhTPJIVhYJ85hyAh54XLwFwKHpJM2pmYq6mWLJohBMjaL4AJLnL2ol7Nh9xpHShVoypyHssQ448z7PKVNCb7F90NBrjWdVy3MwT3QdwEymyFBYFNxxaDSODfc9g7OxNIJusUJ/jP5NYdz0JykThFoCYhnS4/XQq0NVr/fh10awfzjOnBZBlZH3FJHHyuYgepoC8BvF9pBHxDeN5swrwSiyMJkvc1/KpoFsHiqUJslMvkJ7D4FyW8VEKs9+g47R5pDC7quZkrNg2glpOjA0m8FtKxuxdUM7eJ4EemanpYg8xuM5jMVzWNEcNNC2lQikl05NYXSOSKkEFBHNIQWJXDnTQeeF4uIt3xf5MisH3cEJHJh0CVAev5PJAvt9+hMTyTwaAgr7/5CbzCW/QtKiY/GcZVcfz6l4eWAGb5qcFqWIolIjiZyKsbks9g/PMafV0+hHU1BhTngyVSAEvyDBQVEnz+barihxmG6enf9IjDDgUIa3O1Y34/O3VDqa2XQB33lhAE8cGMOu/hk88+aEJVM0my4rTtAARdOBHa+ewV8/+WbFM7kUdkUoIAPAp65bhKBbRL1fZvUWkSdw8t7mIMIeF3bsHrbk3u3M4nRyizyHD/Q2sdc5EAjrI6+PYnA6XbFzon/SgcoDFREtNZF33lFkiiWk8yUL7ZNa0pl0QTWTBA5emWdx4rFzSewxdgrz0bk0BGRMJXOW49X5JMematoWIBgNz3Z/+IGVzYwOStPLdS96vWaj127O1BUMLsV4Vq1I4dK/zfWIoFvEljXNlnPlQVnPrelDOin3DVl3T0Vb9Lxj9zAefPE09gzG0Bp240ef3fi2JMnfaeY2FpyGgMKeTUtIqSDJBQh/nyLyTHsOAD5+bQf+4o4ViHhdiGdVbOquwfbN3VhSR9B5PlnA1g3tiJq+Y36UDiVe7B2cxcsDREhSMQWRDQEFi2o8qPMTpNyB4RiDm7tsUZ85NeiTRWzsigIAc1L0sNPpIqtb8RwJeN5jwO/pfNZ0sMAKILtEykkIEMfilUUIPEe4LkvlZt6RWBY3La3FbSsaAVidtixwmElZBRh7Gnz40OombOquwT9+tA/tEYJI7mkMYtv1ixgUfjqZtzgR4lxVyxxsDir45YkppPIaEtkSOwa93qJO6nGKyDtSMz26bwRfe/I4Htt/Fg0BGbPpIpqCCrasbUFfW8hS//G4rOPlySPncDnsojBnXA576NUhxLMq4lBR75eRUzW0RzxGg6NgAStoDp6DA9BZ40FB03H/R69C0OPCTw+PYXQuBx2kQO2RBDaInAr9dLuezBexssmPExOpilqKWgIknkOhSj6M1gbOpzzAgSz69mNwAD51XSfckoj7nz1VAbDgQKInOwsAzfNTh0Dfl0URDUEXxuM5uHjAToLx4qkpRLzkO5mCbilunycokhkBo/AoqCUL4KXGK0EUOJRKOiZTBfz08DjoMkDrcTt2DyPslXDvtZ2GAKQOgMP9z55iaUweJMd/Lp7B8Yk0SjrRHZJEDgXjgCOxLJ45NoGuG6pzHf662b3XdgIAHn9jjAV2A9PlOWEGbAigKeUC2iMe3LC0FgCHp46MYzZdRGvYjUUGnPwv71yJL/zwIAam0jgxkbBArJ3GCjsez+EvPrgcyVwRf/KjQ/jjW5bgn3cRFvVUvugIWpgPiQeQNOXjBwi1VGtYwUxaRbpQGQyVdFI3+qsPrcATB8bw2P6zbEfj4ssOl7DH2AIhU/2Zzpd0QcW26xbhI+ta8cl/fQ0AIe+eSOaZLh01CoLpn07j2HgK2zcvxv956TTOzGawsSuKz9zYhUf3jbCamRl1We+X8aXb34Mv7TxiAR0N2+p4Lp6k31P5InvWeZXMj+PjSXAGQ/7Bs3F8c8tqXN0RgdtlRZaqWgl7B2ct66Zb5Crqyp1RawvQpbIrxnF96QM9KGpHUVA1Vsda3RpC1Eek2KnoXUvIzaDgZtNBJjJlmP6zxw4zhJIkcHhfTz2OjycwFs8xskrKv1bnl9FZ42EUTsmchuFYtsKh0OKxKAKFKi1MXklEplg4Lw0s89vmupEOIOqTcc/aVngkAc8aW3+RJ0zRBU2vQP4JHCCJRKNoPJG3pEonknkWwRZLlXDa8UQemWL576yRY6rzy4CuV0CeF9LpEgW+ghTWDk+mKVNF5BHylDkVH9s/iueOT7IFdF1HmEGym0MKeI5DLFtgvUXUCqrOFtp1HeHLLmVyoS3ileCRRJyZzaDWJ2EmXUBAKaM4zWONPhaeA87MZvDMMTJ+aP/fSCyLHa8SZGq2WEJj0I3Ny+oYfRK15nAZ3RpQRNy6vB5PHh1HMqdBK+n42ZFzeGz/KNSSjv/v+X7WxpDKa2gNu5EraphKFdDbErS0LQBkV7a6NYinj03Ydu/kX/p86/wSCmqpYi4ubw6iq9aHz9+yBHesbmL0VPYx2RAgTPDpvGoBWpgtldfwH3vPMHQeRTja7ytQTsMWjBrVS6cmGVS/q9aHh14ZQixTwFWtQUwk8raUXQH/8jJRlabzneeAppBiYfkplqwOr84voVTSkcgWK2r8n/jXvfDKIrLFEmSRg18WMZ0uku+nrOtQ2CsjGydZmoAiojXiwd9epnT6RSHZvVRGEVNmG5hKMYLLLWtb8OrADCSBw2SygNawjLWdNdg3OMMK8E47J6deErPduaoB+4fjyBU0Ivyo8GgLeXBsPIXeZj9iGdURzeRXBPQ0BtEQkLDzYLmB0Ox06nwyYCC06vwyVE3DbEa1DKA6r4TJdKEChk9hx3YY98BUCh/+9iuIZYpVezicrK8thMlEHmfnspZzrPVK0KFjOl2EInIQBaJn9erAtKXnJOAWLFBaeg13rmrEeCLPUppmo2SmOw+es6pXc8BvrmnBTw+NVZDyUsJW+q+TBd0iSrrOInYzWMB8HDvi6u3YOwlVCJCF71tPn8T395xhMjylUqliV+RXBGQLJUN0szyOaT8iRd71tYXQP5VEIquhKaiA44girhOhNUBIpVe3BvH8ySn8Rk8Dnjx6znEH5ZcFvHdZHaNuqkYO7cSWc762fXM3A+4AwN8/fbJqr5vT+SmiwOaA2QQOWN5EesTo9UsC0BBw42wsi3WdYewejFnWHSrOaM+MuF088sWSw/pU3hXyHMkGUSKA5pCCjd01eKV/BmvaQ8bOlXOca05mR2aS43EQRQ43L6vHwbNxFozctLQW//qJdef1u9XsssLhL5c5OS7ajHzT0loMTqcr+pkA646hWp8SUEa42R+mXxFZF7kTCtHccEyjeJoC7Kr1oqCWGFTdKZNiRnPNZzxHdjV0UtOU2fbNi/H5W5ZYPvuVnUdYlOx28agPyEyjCyCII1nkUSzp0HUd2aLOej7OBxFZcQ08V1XXaL5m5qX1Psgib0k5kXMGIt7yfe1tDuCMQeZrNnNvjZPZUYvma5MFDj/7o+vRVXthUoTvNMcFAJv/7nlL20dvcwCnp9MsnVatkVgSrFL2fW0hDEylKu4/HedBt4iv3rkCn3/kINSSXgHfDrpF5Apq1V23OVCr8bpQLOmIZ1XGjkNRhgLHQXNYw+zBJ50b6zvD2LCopgJZN5su4AP/8BLG4jlwAKK2dg+A7BpLKCGVs94fDkDY62IghoaAjJKuYzpZqJjf9LrMLOtmCD4lC3Ay89htCioYT+QsY9krCbi9txFnZtLYMxiz9HP2NHhxJpZDOq+VVSUWUKVQRHLPzDH8ljUtBs+qjvvu6n3bc+Udo4B8ue2eta3Yvnkxan0ycsUyGagscFhS5zXg5WXaprF4jnGmAYakhcgRp2I8MHvHvKqZmBlEwQJwcPGcpQmSRrO0p2VgKs2i2Loq7PKU/28hs/uFoqYj4nXhhiW1ltdn0wWcMJqcBY6kd4ZnrTvCnKojntOQKZSQZXnxEqFBMs0+8wgz/39XjQc1Xhd7jTotr508Dc56Z9ROTKQqnBZAUpj0vvplAYpJKNNskoOsqyxw7BmVdNKgvfWadoQ9LqglElwoIo+8puOZYxMV37+S7BsfXgUrOE9n6SsOYLyZdlNL1ubeqWS+qtOi1tMcxF19zcZRyuOF4wgCdb4eX00vL06JnIp4VkVLyI21HRHL2HFyWm4XqSvV+SSmsVXUiKTIZ2/oxs4Do/jW0ycZUGFgKoU/fuQAru4Is3OdThexvjMMt4EuqvG68NGr25DKlZjqMTUdhKC2t5mAPVJ5FZM2p+XiyX90KTk2Tpx+V63X0tBbzWkB5bG77bpOfKC3CSXdOgfTBQ2P7DvLevWGZjIMlatILjY3ZJeA7ZsX44HfXltxLebfy6l6Rarz1dMz+PZvr8HDn772ggV4b8WuOMdFo6hHXj+L8UQetX4ZNy2tRV7TcXIyzXZXHVEPizJbIm4WyaklUsg00xUx4UXjbmWLJJ3ilQjdijl/TsVG/YrgiNgCCNTaTD4KkIWT8g2qpTKDPUV2nW9IMpsu4ve+/zo+8p1X8ZXHD+Pvnz6Jv/7ZmyxVwFJExik7IIwtxtliRnqlFPlFbWA6g+l00ZLa62n0I+R1dsJqSa8gJeY4EolSyC192+PiLSrSyTypYzrxKCbzGppDigVNmTcBWKgK74nxJNZ3EgHRYomAETZ111xxtS279bWHsbqtLGp4aDTJHJAOAlTpbQ5gnbGI1/kkS/8e+522ECPo7ar1IuQRcfvKBgBkZxDPqvjznUfRGCTPQeS5cg3WGIO1Xgl3rmqqinwtgQSXZTXkEh588TT2DsUszsu+iFE/MJkqWOq4Y3MZ/O5DpIywY/cZPPDCAO776TF8+Nuv4LkTUzho9IHKIo+eBh+KWglZI2pL5lVMJLLG75cqeA1pylPg4KjrVSxVNgw3hxR8+faeqnygdqvxuXD9klrk1BJ+vJ/wONp/k9ai6bxuCrnhdvHIFTTEMkUGwsgWNTz06hAe+O016DABLHSQHSO9uwIHi1DoSCyLh14ZPK/zvZh2xTkuYuRxBt0irl9cgy99oAfbrl+EvrYgepsD6Gn0I18koncA4BJ4uBwidcBaXDXvPJI5jcmhUxM44A9u6kLE68I/frQP3/vEOnREPdiypoUVtptDCr615Sq8PDDNCsgiD7RF3YzCJZ7VGMnrDz5zDTZ111Ttkh9P5Ct6n2j9aMfuYdz/7CmGtKImmj4uVNn5UKOLgNtFFij6aZ4ro9IkB+dX1IHj55IYncvB7eJh5hj2SBz8smC5tzyAlqAbx8ZTSBdKkIXyQpcplpxVpHnyo6IRzXYYkOK5TAEjsSyW1HvZ4gqQXh66e94zOIunjk5adghr2kOXXXvrUth9d61k8GsnG5rJ4Gt392J9ZwSTqYJl7EmG4vHgdJqlZAen0pjLqKgPKIh4XczJLarxIlsgQAtzoBLyiMirJUylCxiJZRgxb40pyHEalmb6JzPpbQXBs22yNARkAkbSrDXhx98YxYMvDSKWKULkOdx1VZOhXlzCsfGUhd8wr+oGkpWYvQ4kcKQnkfZfdtlIfCkEHyj3Js5lC/izHx+et+ZsJgyfThWx49Uz2PHqmQp0H723FM2bN0ioE9kissUSknkVNy2txR/fsgRuF49dJyfx3IkpfHnnEUS8EmP139QdhUsot9doOiAKAvragibm/8ua/SZncKXVuACSGnt03whmUnk8+NIgNnZFsbYjUlF8pWCJPYOz6GsL4sREEul8CXV+qSI/3RCQkcwXkc6X4JG4qn1alGYm6BbhlUSMxXPYvnkxdp+ewZ7BWazvjMAjCXjuxBQaggombXlqarLA4TsfW4sbl9Xh758+gfuf7Qdgzf2bKW3mIwG1m7m25lSMPR+7dXk9Do/GLemjy212gl3FxSNXLCHkEbGohqjg+hUBm7pq8AsDjUaBBK1hN3b+waYL6rjeiTUuaoQC6nW2E3cb9QyzUCEF5lBrCCrgQWDn9tpwxOvCxzZ04P5nT0HkOdy+sgFBj8TqqtRofdmJ884sdEgpve5c1YjnT05BFngLUs78/dawG7V+mdW9aD/n8GyW1esaAsqCvIBmSjFzjcwjkbqpOU71SDyKqo6iqX5n5nd0suaQgttXNmIuW8Qj+6zM93YaMgq0ovPTZaS77XPVzO9Jn4lXIgw7eU2HV+Yg8gK+eucKvDYUw7/tOYOSTq5PkazpdiJVImE0lqlgt6d2IcFLwLs1LotFvBI+fUMXE6gjjM06tm/uxvrOclNpMqfhuKGRs384jq4akrMNuV1sYfcrPGSBR6mkMxRapqA7RoQAEM+RyRU38RR++7lTGIuR3ZWL53BsLEFoitSSMYhI2iRiijipHMFsuoDuWh8UkYfbxTGn1RRUsLwpwHLU1GnRDEa9T2b9WHbRvxLKEVq6ULI0fwLVtY3M9vSxCYvTomlRrySAA9ARUVi6wj7IFhqlYbeITV3Rqp/zGpIy1KIeF1GXfU89tm5oR29zAA0BGW1hN5pDCm5YXMueczKn4ZcnpljK9D2GZMNtKxr+S+y2qEW8EjYsKqcMs6pu2Y3sH57D2bkszBkxymQBAJsW1xhE0hKaggr+8oPLsW9oFgFFhFrS8fzJKfzCJr0BAAXDkSRyKtZ3RixpKDMH4VS6gI6oB+cMAENDULEwfSRyKlrDbqzvjOB7n1yHb9yzCn1tIbSE3LhmURQnJ9NYUu/Drcvrobh4/O6mDpaSjHhE0rhvmxdmx5TXdCI0KpAgVTPaQKhlCmW2d3rbaFrcngIv/76OW1c0WqjEKGtGQSuvKXU+CbJgZSShsigdUQ+2Xb+I7cKcgs50oYS8Rna46TwBtfzhDw5gx+4zLEjOazpzWnV+CX5De+zQaNzitOg9W9cRxvbNiy+o03o7dkXuuKgRktUhADprwHzghQHsOjmBgakMi6iaQwp0HYwTsBqyxycL0DSd5b0vlNFIyS+LSOZVC3qory2EY2MJC9LL46rsc6L23qU1OHA2jpuX1eMRBz0jwHl3dr5SI/NZyO3CXLY86Gl0TaPHqNeFdF5Fc8htSjNy6K714Nh42nIOdLfEzg/OCEzASKeEFOwfjmPrhjacns4wAVEnpnxqfW2EWf/tssBXs3fyjgsg8+Nz/76fSXEAwG3L6/HM8Uk2PtwibxnvLSE33t/bCLeLx/3P9uOLty3DzT31uOeBVzCbLi7YJAyUdzNbN7RBkUSmYA6UdxpmoIcs8Mjb0vJm9OOm7igS2SID9Zh3YxED7Uc/3xRUkCoUWZtGR9QDvyzg8JiJs5MHehoDiGWKlnaAbdcToel9QzMYj5MeKzrGafZjoeuniOQanwtul4hruqJ48ohzW4DdXAKHzqgbPkWCqpUcQUzmNg87ETZgVW6g99q8ezajP9d3hnHfXb145tgEI66+0PbujsvBCI/hEnz+lqWIeCU8um8ED754GsfGCXmmXxGwvjOC5pAbY/Eci17MTsslcIwiJ5XX2CSmtROar16oVuRkrQaI4OoOAgzxGAi8ki3ytcOT7RLfZnvh5DRm00X0T6Ww7bpFLGqkRiGuQDnasx/TbnbapmqWzBVZVNwaIuhNWeCwqbsGHVEPZtJF5FQdA9MZVmMpaDqOjachCxw7B4kHc1oU8fnBVY0IuV24c1UjtqxtsewSxxN5Vo/4xZuTFjnydR1hFjWar0MWOaxoInXHNe3hd0QUeakt4pXwj/9PH+5c1cR2tzm1hFpfGe1KiaVdAocta1vQHvXgI1e34o7VzVjfGcZPD43hN//3y5hNF8FxZEfbFFTQ1xbCljUtWN8ZYbVkAIh6RdQYdEYvnppmBSmJJ+ADOlYpSS+ACqcVdIvIqURnrzXsxq7+GcsiXtQ04/pErOuIWJzcWDyHRJak4NZ3RvDdj1+Nq0xgFXJs4NBogvD8GWPGK/GYSxewb2gG+4fjaAjK2NgVRTyrIuQR4TeQwGYHRMeuS+BYFoO20eSNlphH9p1lyEUAjmjbhoCMjqgHRU3HyckM9g/P4dBoogL8FXSLzGkBlUTYAKBIIpsPFEQSMnZwPpLJAAAgAElEQVSSHskK9ljVEkZXrQ+fvqHrHTc/rugdl93oDszcrb5982JkCyp+evicJfVlrh/R/6d6T7LI4Tu/vRYnJpK4uacezxybwNUdEfzjL0+hqJawa2AGrWEFIzHye/PVxADSiyXyHEIeF6ZTBUwm829bFqIpqODm99Qz7S2XwEHVCPd10C2iq9ZXNWpzsl91R2b//JJ6L05Nplk96XufXIcP/e9dFZGmPddP2cFpz1DQLcLtElm9oiPqxuhcjjljr8Sjq9aPQ6Nx9DT6Ec8WMTqXQ3NIQUvYgz2Ds4x2Z/vmxfBIwjsumrzA53Bec2RgKoWv/ucxfOkDPYhnivj8wwcQ9UmsbkT06hKMy/G2FQ148KX50WVUhHM2XcBd//QyhmYybAdMn8H6TgJvN+/6FrKOiBvjibypfiVjKpF3BPDYjQov0l7L9Z0RvHkugUSONPl31XmRyKqODc9262sLYXA6bWmC7m0O4MhoAiWQFFwypyLrkB3piLqRyKms98turWE3tJJOMjGKgNuWN6J/KoWxuSw7t97mAOJZFV6JZ4QK5kZwuwk8x+ju1ndGMDidwmSywOpodhkYp37QC23vNiD/CkZ1mujG+P5n+7F9czcAIJYuYmAqhU9dtwjffqEfAIel9X7s2H2G6XHV+2X8+7YN6Kr1MSDIzT31eOjlQTx+YAyJnIqtG9rx1JFzmEwVEPG4AOiYzagVOkd2c3IQdEJRWhfaNFtNTI7a+aRt7GlHs0DjfJ+naQa7SUYa8qrWIA6ejVf0gYg8h59//nqMzGTwie+9VhUtWeeTkC5oFjb8as2xdnMq/FNrDbtx/0evwmtDsxfNYVH7dXJcTmaeJ/de22EBc9CF305NFvGIkFwimoIyvnHPanTV+jAwlcIXf3QIHMfht9e34StPHLUs9o0BBbV+GWqphJlUAZmCSgh1TcGWk1hrNTOnFmu8EiSRr0iF3bmq0cICQQPFbdd14ti5BHb1zziOcQGocJB0vK3rCOOarigDUtX5ZEymrEHofA3GNIWviBy+8eFVODyWwCP7hhng6Iu3LcM9a1vxradP4qkj5xDLFlHU9AqgTJ1PQiqvIeMAFGkKKmiNeNAe9VgAIm4Xj698oAdf//kJxDLFi5Y+t9u7justGnU8dBGjCL6NXVG8PDCDm5bW4nPvXYx//OUpTMRzTK24NezGXX3NiKWL2LH7DOr8sgWuu74zjKQDJ57dFBePO3qbsKt/el7RyWqOYiEj/GOuCq4/J+uIuFHQ9HnPg3bdb93QjoGpFN4YjlWtt1HzSgJcAikad9d48L/uWoX/9s+7WSRqp4YCKpkPAoqIjqjnLe8QzYSvdCdwse3X3XHZbWAqhbu//TJbSBfi09y+eTEAHTsPjGFoJoOuWi+8ssh08+x8mTctrcVzJ6aw9Zp27DwwysADERMrhSxyuHV5A0ZiWaRyRYwn8mgJKRaBV6AyyLGPBzq/AetYW98ZwZ7BWbSG3YhlChVzzimwpLXSbdcvwmdu6MJt33oRE8k8ehp8qA+68dyJKcvnCYBFRcZhStLzptmdrloPcsUS6gMkEADAKO3s5+DEZFLN6HXwANwGGpIee1N3Df7ht666JOnBdx3XBbDZdAF/+B9vYFf/NNZ3huESBOzqn2bqyE7Ow+6wzGamfuqq8eD0dIZoUfFAa4g4iZvfU4d7N3bi4b0j2HdmBmoJ6J9IMFbn87Fqu7dqRqHG8/EWhtwC0oWSI8TeTLtjVoX2uASoJc0SUZrpsajRdM35mpkCq84vYTK5sBO+c1Ujnjo6weqBvc1++BUJy5uD+MwlytlfaY4LIM7r9vtfrEoV5JE4dNcFjFqNzlLydFfilAXgAWzsjqJ/Mo2w14Vkrsz16VcE3Pehlfj6z08g7HFhw6IoPnNjN5PiAIizWVrvxyP7hpFTdbRHPFjfGWHgJLuD9bg4fGBVM14dmKngFN26oQ1HxhIVwpXVaM/62kJY0RTEjt1nsHVDO5rDbjzy2jAGpjMIKgKWNQZR1ErYPzwHnyzAIwls/Ea8LvzlB5fjCz88hJxaWjAQ2NgVxdBM2jENSB1uUBERz6kWhYaFzM4FaedxvJj2ruO6AEaJNukk27qhHSOxDJ47MVWBmKM2X7puU1cUrw3NwquIyOZVZFXdsmjTvhUasQHAVa1BnJpM/cq7K0ngoLh4JOapGTUGFGy5uhU3LKnFN58+iajXhRdOTjtel93MztEcodb7ZcxmChYHZ/7sfPW9Op+E6XRh3tqZIvJYUu/FoVGy0zWjpuwmCxyWNwextj2Cz9zYhYdeGcT9z/ajI+rBdz9+9SWnqLkSHddsuoA/e+wQfnFsAi4eEITK52sez9RokOQWSarsmkVR9E+l2IJpr+maxxDtz6OkujRwOjOdxkymiJ4GLyI+Bbv6ZxDxuvCF9y3Fd148jWUNfrx5LomPbWjD3z190rHWRBdtWnPbsrYFL56cqlrjsp+nXxGwuM7P0Km7+mcqdnvNIQWpvOoYJFKCXbvZU/jzoWMBYMuaZjSG3IilizgxkUR7xI3j40kcHk04BrV2Ts91HWFwHIdVraFLFtgB7zquC2LmRl8ARhG6EQfPzp0Xu7LbxTGeP2D+mow5upIEQHFVr8tQW2hn5RSxmSGxfW1BrG2PVlxPQ0DGdDJ/3jUEgDiJsFeqmOA8B6xuCeKNkbjlXGkB2CsJqPPLGJzJVN2tmomLCZN8DtliqUJUDyDRM92d0ly/GRRgTgNfarsSHRclsTYbUSfmcXw8jRIAtwiU9HJwQ8eleXya5Wg4APde04b/u3vYMn6pMwHmb4egRucbDTJpSwUdZ05BJnVctPZkBkVQk0UONy2tw6unZwiK0CGINZcUNnZF8bWnjjsqkHskHhmH3itKSu2VeCxtCKC71osnDp5DTi1B5Dn8/ZZVeHjfCJqCbhwfT+DoWMJyrzZ112BRjQc7dg8vcJfI7uy+u1bi4b0jOHh2DqtagvjMjd2/VnPkXcdlstl0AQ88P4B9Z2YxlcyzNIK5+EkXYHOum7K0e2UBA1MZuF0cArKEFc0BvHBqqiqzuh1BJwscvLKAvKozUILEA8saq0ulsN8y6gXVnNt8gIW3auaFZSHzSjxCHgl/eusyfOGHB1mqSeaBKhsoQnWl63h5YAZhjwudNd6KSL4pqOCetS14/UwMu/pnLnhn/9uxK9FxzaYL+J3v7cUbI3HUeiUsqvNhVUsID750euEvz2N2Z+B28fj63b2MXR4gAZ4kCtjUXYNYpoihqbSjQrhXElDQnNPcdrOn/3saA/jsDYvw33940LIjMUuoLKnz4swM6QN1CRw6azwIuSWsbg3jwZdOs9ICQJze0voADo3GLce11/doJqYpqKAl7K7QzaJ1vq5aLzYvq6tAdPY0+DCbKZ4XGvJSpgIXsncd1wUyGlFu37wYOw+Msu25Xfunp9GP4dkMUnntvJ0CjRp9soAl9f6KRdjJaCphy5oW/PD1syiB9F2UdKCgahW1BjMFjNloT8lkqmBpQKbnbo6GmZyJgeRyC0Sx2WkdsO/y3C4Oi+t8EAUB+4fn5k0BAeUisbn20dPghd8tY1VLELeuaMTvPPQau/eUogkgz+S7916NvvbwZd9dOdmV6LgA4rz++JEDDHSw7fpFePIwEVFsDimIpfNsF0zBPEC5Hlzjc2E6VbTUjZbUeZEtlrC8KYDDo3HUB2QAHPYPz4E3njm9iqBbxIqmoIH8HcDewVn2nnl80M+aU3Q8R3b082EYqgGhFtKy88sC/IoLY/Gcpb4ddIuQRQGTyTwDXVBUo2Di/DSvIx4XB47jDGYbspOka1Br2I22iAcvD8xY5hPdPdobj81UaJcKLXi+9q7jukBmXgBjmQK+8vgRLG8O4tblDfi7X5xAtqgxh7N982IcOjtHamDG4FjfGcaqljDmsgU8dWScDcQ6P6Fgot345px1X1vIQqdjt03dNTg9lWLv0wnvBM19O0adDCXTfCs8hNSRbd3Qjkf2jSCnluDiyQC1q9BSo/eC9ge5JYGlbL942zLMpAsWdgV6nu+kyNHJrlTHBTi3lNDd7reeOYkdr55BX1sILoFnaWnaJ2TOYNhReuY5VU1AkhpVtHbi6wy5eejgmYbXkbNzFRkJmvEIe1yYyxTPC+Bkdl4igGpurK8thFSuiJOTzqhiOk/MIIqmoIKZdMGRYOCmpbVojXgY9yPtQRyYTOKR10eNvs067Ng9jPWdYSZtApD61d6h2DvOaQHvOq5LZvbeFgCsj4tSowBgDZd2kwUOsktAIqdiU3cUTSE3fnFsHHMZtWqkJwuAR3Ihdh4gCsCI1ni+KnLPXBeiZt8J0Ui5tzmAZQ0BvHp6BjU+CW+MWFMe1cy+6HREPTgzk7Ecg8qiT6cKbCGjvSp2qq6HXhnEuXgOewdn8RcfXI4TE8l31O7Kya5kx2U2+27XHvz92WOHAej4H7e+B68NzWJ0Lmsh3zWngTuiHvzFB5fj2y8M4MjYnEF6TbT1FspquF2AWrLSmVGWCHua3Z4JWCgz4JF4BBTXgqk4kQdkVyWAqFoKn2U1RB6CCNT7FAxMZ5gTbgoq+EBvE67tiuLLO48g7JEMZGVXxb0GymvRd14YwM+PjuM3ehrw6Ru7Lipt09uxdx3XO8QGplLYtmOfRWXWyfyygI6oBycn08irJXAcIYs1b/E9Eo9coVK629yT9KuaS+DgdnFI5Ob/ATqhtl23yNgBnUJfWwiHR+YwH1L/fJuE7U5aETksqvXBr7hw310rL6tI3YWy/yqO61e1gakUPvfv/z977x4ex10fen9m9r6rXe3qbsmyZcuXICe2UZw4F0MuNpAcUszbxua0h5PQt61p+xR8aB/aA09bUg6HS3kopO1LgwulyekpTUIppkACiUkgTmInjhM7seOLZMmSJeu2F2m198u8f8zMb2d2V77FtiRrPs/jx9Ls7OzMar7z/X3vB+kZmybocTA2nWXn5hWi3quj3kvAbROZpGvbAqLFUTXlNdOCr6XWTWutS6Tk63JjVApFRRHKqMZlI5MvVEwfL3eH22XV7a/HqMrjVTpdLTWcGJsmX4TWgIvhcyg9XXG67TJdrQFy+QKRpNr1Zcd7lvHka2eEu/xq1SFeDaxehXOEL/z4KL3jCdx2mWatJ9vatkDl4LlMgTeH48ItoChqbzFj37JkFaXltKmDD8uPd6HkCopJac10x+ihM49T5qw22uLgwLmVlt5DznjMoMdGU42TBp/DdM76g2ZVkw+7rE5bPXo2zv6+CF/48dFLuTSLecKP3hji6Nk42YLC4jovHfVeookc79Umd/eHk7xlaHrr1np4fnh9G7Vl/fnaQx6mMwW8hntLb/c3MpnmxOg0Dq3/ob7Y04ctDk+mGZnK0BJQXeNKkQqlBYgZW6AqsXzRrKiyRdVq3LpuEWvbamkJuOheEmRDR52I4RmVVsBtp1x81fliaq/I/nCCN4fjwlX/wzeGhNJqrXWzpat55i93gWAprsvMJ+5eqU4czRcZjWfobPRxXUvggmZeOWRMnbirTSfW40T68bxOGY9dzcI6H9X2ONdavMZlI5Ut8vzxMUAV2ia/SzQdLsdls1W4RKbTBTKFIhOJHEGvs2Lo5cmxhCnrMuC284m7V573WizmM+r9U+uxMzKZFhOJnzs2Jgau6l47r0NiUa2bTSvqufu6JjzaKBK9aW0qVyDgsZlSzIuaonHI6gJJdx02+V1VC6CXahOAy2dp6fKiKiu1FdNMCUrRZI5n3h7lraFJrelzrKJjhs5UOk/A4zB8EypdiwJ0NvqIJHJqz0Ft+1g8K2aMDU+m+Z1/fpXe8emK4y4kZl1xSZL0Fe3/HVVe+9Orf0bvjFf7I6RyRa16P0TveMLUrbzOaxfJD25tfDmoD+xGv1vsJ6PWMjX5XWLmVqPPaer0DqpVlspD95IQ3Utq1fdKpU7orbVu8XlieKRLpmtRQHy2EWNz6ulMgV0vnBJpygVFnUKbzClVu+GPTWcqFGFeUWeT2WWJoVja5NKp5vefSuf5nUdf5eDpKBYq15KMRBJZQGHjsjoxs06/vwejqYq4cDKnsPvQWfb2hPmL3W8Jt57uEZiYzjKVUpvm1nsduGwSDT51JliuiGnG1Vg8QzxdEHO0QI29/sEdnWxa0YDPZX4c6vKiKys9g7cl4DLtq79u9JB01HvPWb6ihwSM9//J0Sm1Q49brXFTUGXE41BlSC9U7g8n+csfvjXjsRcCs664gB2SJPUCpkIQSZK2ADfNzildOlu6mtm4rI76Gierm/3s3LySltrSmIhIMs+GpUFhlbm1FaQkYRJiXQCKRUXEjBLZvLC4yl2FE9MZrm+tZdOKBn530zLyRbX247oWf0V2YCJTpM7n4K7rmkzbbVX6sDX5XVWzAQtlO0qoRZTtQXfFvqCtWG3qPjrlR9WVbTSZ49PfP1T1OAuUa0ZGnjwwyMN7ejgdLsWA0/miVsMonzMBI5LI0ux30aS54D0OGacMy+s9LA552fyuJjIFhTrDWBb9Nk3lzdaUhNoGrD+c5H/95Ch7eyb44A2tYgikwyax/cbF7Hjvcna8Z7kYQBtw2xmZyojkC5dd5p41zXidpfu6q8XH32xfz+2d9WJbk99FV0uNGF7Z1VLD2rYATTVO4crUM+2n00VOR9TvRwGq5WStaaud8XtaCMwFxbVNUZRORVGene0TeSdEElm+9cteHn91kP19EQ4OxHhs3wBep42vblsvphED/OpkmFROVR6D0ZRIsXUZEhv0aavG5rjGNNly1+Px0Wke2zeAoiggSdzeWU8kkeP5E2Z3RcirHndvT5h/P2geNFmun2rdNsZn6MNYjgLkigqT6XzFylUnXUCsdr1VXJv5oirgAY+Nv/hg1wV97gLhmpARUBd2HfXeiuy8TEGdMK5nAer43TbhGUhkC4zGM3i1h38qVyRbhP5Iiv19EXYfOgsgphs0+11s37CYkNch3IMN2pRiBQgnctR67PSOJ2gJuNh7ckLIQK6gsCjood7n5CM3t3PL8gZu76yvUKwf2dDOdCYv2l6tbQtwdCTB02+dpS3oEQvRsXiGoyPTorFAXY2Lw0NTjE1nqxZKe+zqrMCt61poC7rF88Npk9T5ZoqiWa8Lk7mguLolSdpidHlIktQ934RUb/p5xFAhv3FZSKTJ6z5tr1Mmmszhd9uRUd0ONkldcemKyW2XmEzlxXhufS3nMgxPLHcZ6tte7A2z61en2NBRR0e9t8KCiiZLgmeUF1lS68KMTKYLM8bAGrSHiccOHrskznEqna9IBbZTid6HrdzjOBbPMJUq8Prg+YuzFxDXhIwAPP7qoMkdqN/G+gPe45RNcZ94usBEIkvQaxOLuf5wErddYvPqRtwOmaKiWl/l9U9tIQ8v9kyo8qbFVp12NZvXJkMmVxA1WSNTpXZiMmqDgVS2wJeeOsbndh/h4T0niSazJhkE+PnREfb2lGaJ2W3qdRw6M8kTr52pmmErATUuu0jeqibLE4kcuUKRV/tjDMXUJJK2oFsdvHo2zq4X+rSSkYXJrCsuRVH+WhPAes31AVB3rvcYkSTJ9O+hhx66Iud5PrZtaOcz917H771nOR31XrZvWMy6xSH+8odv8aWnjtGvBVOz2gM7ns4zkVBbtEQMHTkkVF96yOsQ2zxOCZetVHvltstaZwEzukuvLegmlS1w87IL/hqxS9WLmXVB9Za7JhNZ/G47qTyk8oqhqW5pP5dNoqXWTZ5KBQVqRf9MDXZTMw0tWoBcKzICiIWd/qwuKGo86Kv3ryXkdXBiNKFOUJBKbmUFiCULpq4V6bzCibFp/vV3b6Gj3sv7u5rwGRJ/ajSrTHeT+1x2ltZ5GdaSQQpFVTm47BJNfnOstwgcPRvnp2+epXtJkLEpNVZ19GycTF5Rz037KKPl6HfZRNJErlBgbVtAKNtaj52g5u1QgKePjIqYVbagsDjooXtJ0OSJODgQE8rU65CZiJc3BJhbZQ5Xk2qL4auGJEn3AyiK8n0gDCy/2JXkXKlRqfM5+fgdnfz2d18RK0r9/5s7QsSSWU6MJaj1OAgnczMWJCqoiimazBFF3c/YfVuW1JiAPl3ZiN6ocyiWZtcLp9h4AYpLLxTWPY96zcratgBT6bxpaq2OXuNVKFYqF2PSRqag4JClqq1yfE6ZWDJPwG3nnjUtHBuZMs3aSucub1/F+cq1JCO949Pkiwo3d4T477csFQMl+8NJMcBQ5761i9jXGxG9CG9ZFuL4SJyo4T6KJDJ8+am36Q8nTfenxw4hn9PUUi3ksXPT8gZT4TNAJq8gS5KpNVVrrdrN/UwsxZlYKcFCr7UqKFAomJOLbLJEEYV4qoBdlkTtWPeSIF6nDadN5hdalqHTJmGXJZK5Il6njMMmcyaWYmVzDYuCbnrH1WsxdnDXPRT6Z7bWukVx/kJkti2uU4AugJ3AAVTBvF8T2OWSJHXP2tldJJFElpVNfjatqOe9KxvF9nxREa1fEpkcTpvE0jqzL9+4gtDdCzapUrmdawRIruzFeCqLS3PBzFSvVed1iBoVKLkP/W4H/eEkdlkyxefAMIm27FxkCbpaArhspXTnwWiKdDZvWg1DKUY3lc6zt2eChz50vSm+cWpi5hEOC4xrRkY++4M32d8XQZIkfm19G9958CYCHvW+SJdZ2H0TSZoNSU1DsbRQWrrbL5Et8kp/1OSdADUbdzCaMi2i3h5N8MZgjJaAi5DHjtE7NzKVIajFvvR2VHosy2HYMV8mXwolj0ShqMboZMm838GBGHt7wjxniDW3hzxCEeXyRSZT6siW546PM2qw4DJ5RchtV4uP7iVBmrTEk/vWLppzXTCuJrOquBRFOQhs1wSwV1GUg4qifF9bXdYBwdk8v4uhd3yaX//mi+x64RRnoik+/O42kYmUzhpcHAXVNdAfSZke1NUcY0b3mlG56H+08vwGZ1mQ6ujIdKnA2bDdeKyxeJZ8Ualw5TXUOLFpK8x9fdVT08vbRhUV2N8fFeMstq5rw22XyRQgdY75YsOTaXb+2+sifbg95OGvtq6Zcf+FxLUkI6W7UE0s+PT3D4nJ1+NaooF+Gx4emuTw0JSIfYUMZSN6bz+/y0ZXSw2LAi5aa92savIBpcVdQeu76XergnH4jFpjFU3lKxKR9ISOoMdG95JasVgrajtqHj8ccinBQ21GrQh3oPGzdfREJaPRa7QO9aJol11m47IQzQFzVq7+tk0rm/E4bIxOZ8TnLeTkDKvl02Xio9/eZwrSBj0O3r+mmScOnKno26e3nNGbjpbjc8lk88o5xzK0hzx4nLIQOH3Oz8WOLzHOvroUmmqcNNQ46Z9IktS6ZiiobsvHP34rf/Avr1UdlFcN/fu4vbOev/utudUM9FKwWj6Z6R2f5gs/PirmVj13fJz2kIdwIlN1RpXeyqnGZSOgdV0/F2vbAkxMZ/E4ZcbiGW7vbOCNwRgjUxmaa1ymESguu0zIe/7eg9WoNkeuLegmV1AYi2fEEEjjwFUwT0CQgHqfg7uva+aV/sg5h0SCeeq4zrXQ+slq+TTLdC1S6yr0+qpYKsfTR9T03PLnhssu0+R3MRhNUed1mNx4TlmtsypXWuUW0WA0JZQWYMrqM51Xi7/C1QelMSeX0vPQ6JgZm87i9zi4oV0VLN2ayxUV/t9/frWq0pIM12K8rEW1brqXBHmxN8wjz/de/IlZzHlyBYUvP/U2zx0fp7PRx63L64XSKn8YBdzqnTadKTA8mcbjkNm6rsXkqTB2jDk8NMXwZJre8STxdIE9b48JxRTP5PG77HQ2esXYnlYtIaLB58RjlyhLGBT3Zvl5GZWWblENxdJiu56ubxyk6bRJ/N6mZUKOFdTkkM6mGr7zsZu4odVf8V0ZT+fgQIyDAzHaQx66FvlpD3m4qePCk6+uNSzFdZn4/TvV6ntjfdVUqkBHvVc8vPV403SmIG7yiGGcgtsuiyQJXR4bfE7cdomioqbJ68WX5XgcVfpDoQpstVXlPdcvMqXLV2vjZGzP5HHIdLX4CXhslNdD7u+LMhBOmtwyoCrv8kzfOq/dpMhFcFuCV/qjHD6jBrUPnbE6Z1xrfPrJQ+ztmeCV/igeh0zveILdh4bF6+9f0yzcYPU+BxPTadz2Uo/AVK7IW8NxBqMp4UI03l6OspvNGPNN5grEM3l6x5PCfe6wSbxnZQMTiSypvEJeUV2RoCZbKKgLsSKlLEh9Eah/0tI6X8V1Ghtlgxo3zhYU/vnl0xQVdRG6qsnHjvcuF+UycYPbw+OQRXzbKWPKTByMpjh6Vv0OHvrRwu2eYSmuy0gyW7phm/xO2kMekZLutElV5+zo2CREVT2UVptOu0w6r2idNhSWNaiC4nPKou7KLlUKC8DtnfXCxeDRJK+pxkn3kiDHR+PCPeG2S/zFfWuE0OrobhpQHxp1NU6mUgW8dvNtU+uxc3YqzVAsTcRQJyZRWdQ801egNzLVA9vr2kPVd7SYt4wYXH2pnDqS3igTS+q8LK1T+waGEzmyhVKbpYKiupKvbw3QUe/lNq0rRdbw/nIvhVNWlURno9e0vcnvIuC2s78vSipXZPuGxSKh6J41Ldy1upEvbF2Dw1a6H/VD630NFdRwwLniTHa5lNJvk9TsYn2xWON28PMjI2JwrdMm4bSVporrn+ew25hM5anzOSoyc09HFm4Ck6W4LhNPHhgUKbCgJj0MRlMMRVN0NvpEjVW5O6LGZcNhU5t3hg3pwPrPw5NpQl4HKeHTU4Rlp6/R9Cw//dB2We0a0NlUQ9+E6k5MaZ+fKRQ5OBBjf18Eh01SR6fkFb789DGm0nnh6tMVls9ZUmaR6QxBr52k4WHR7Hfxha3XVyg99Uwr8ThsrG3zC+sTVP/94qBHPCTWtgX4/Xnuu7eoZMu7zF3N80UFh03C55TZfmMbHqfdVBJRTq5QZPehs9d14TwAACAASURBVPSHk6L/Z14rPr5nTbOw9nXrKFtUkyUKRXjg1qWioH8snhEu9SNDk+w9OUGmUEqyeO74ON949mSFIlwc9PDRjUtpD3loCbiIpXImb0bQY6epxikWlPliyeorKPD0kTHqfE4CbjsHB2L0h5P85LBqcZ4YS5AtYJBzlUS2QEvAxdI6L2u1Nk9BTdY+cdeK83zj1y5WcsZlIpLI8sjzPRw4HRXTjENeB1/fvp7/eH2Q3YdGTPvrSkYp26b/Xj5+e+OyOuyy2hlj5+YV/ODgUJXheJUWjXGWkD7xdSb0fcuH6ukxAZ2WgItwotSqpjwhxOOQSJVlHPqcMkgSCc2Km84UcNkkPnLTEtwOmV0v9Il9H7h1KZ/fev2M5zlfsJIzzEQSWX7t716oOlk76LXzobVtpPMFfvzGsGlxdC70+W96IsRMs7k66r1c1+Ln6SOjYpCqzymTyJYSimqcNmRZYiqdxyZLpn6cXYv8HD0bFwlELQE3I1Pm62gLus85NbzaAFePXTZNhJBRC6CNCV0hr4NoMleRzNXZ6GPPn9x5Qd/TXMVKzphl6nxOPvvBLj6wpoXhyTR1PvVm+/bevgqlZTMEaE3bQdQ7xTS3gO5qyBWKdDbWsHFZiFS2yK2aq8TYbLearBv1lN917nrzgqIqT11p6Ucud3G6HTbTatRY89LocwqlZQybJbJFMZFZf7BkCgov9k6I7vM6vWMLe2TDtUqdz8ljv7OR7iVBU+xTBmLJPI/tO83pcEIoLQnVjW2X4Z41TWzfsFh4LHTPQDpfxCaXsveqTS0ANQX9l1otVTKnKjg9Hq13YZ/OqlOWJamUSq/LQM9onE0r6oUyi0yrCqpFS8UHmEpXuuuNZ1OutAByxZJs2aRSc+33rmpUEzFafCwKqL0KjXJY67Hz1fvXVb3WhcCsds64FtnS1cwTBwbpHU9w1+pGVjbVsLdnwmRNzWT05IG89lDXlYe+WtazikBNhtBjV0vrfRw9G688WBlr2wKm4kZQ/f/ldSeiqFLBlMoLqpLsbKyhNehhIJwUQqZbarmCIupxfC4bbbUuEtkiN7TVcmR4iu4lQVGQrCvm3vEE4UTpvGo9dj7/4flvbVlUJ+RVx80bvQA2Sq7sPq3wXJcXPcZ1+MwUQY9duMXdDlksgPwuG7FUHp/TRshTGQtq8Kk1ibVeO2ciSZI5pcIqW97oFR0rdAO1UFTEPZ4tYip30ZOoRqYyrG0LEElmiacLIkalX5vu4XDaIFtQF3f6+RYVdbGpl8cUFNWCXFLn4WdHRphM5WecKP6x25bRvXThxoEti+sy86M3hugdT3B7Zz1f276e379zBR31XqG0yiefts0wBkTfLa+oQlqOXZbYuXklAxcYoO0Zn65ITW/RMhSNq5cmv4tMXiFTUOio97K8vpR6nMgWOTw0xdNHRk2TmVc1+SqyEhOZAifGkgzF0hwbUbOgOhpquL61lqMj0wxPptm0ooGA204smWd1cw0d9V6++7Gb6WysuaBrsph/PHmg1GS3xmUjW1CE0oJSqrlUZjgNT6Y5OlKyxGtcpSnCsVSeloCLRLZAf6TkSlvbFmDjsjomEllG4xmtD2L1RtXpstjSooBbuOqqNcE1cnhoinRO7ZqRyhVF/NZhk0XvTr0xSK6gEPK5KCola6xWS8TS27mdGEswmcqL38tR2z11nPOcrnUsxXXZUW/HeCbP1r/fyzeeOc66xQHx6oom9aG8ts3PA7csJT+D+aUnGK5tC/C5+7pMLhCXTeK6Fj/9EwnTylF1LajHL58sotfK+Fyl7tthzTpa1VKqIQlrRZrtIQ/f+dhNFGdoFmVMMnl7NIFzhnR8r1NmWnOh/PjwMP9nX6lX3MunwsLN2D+RoD+c5NX+SNXjWFwbbNvQzs7NK9jx3uWsalbvu2oPoaKiuv1WlmUEgiphI1MZ7IYEn7h2H6mZfOo2u00WWYCgxor+8r4uOuq9dC+pJVtQG+aubq6piE1NZ0puv+vbaoWHQ3fN17hl4SLUP1f3XnQ2aBOVswWTS70l4KJ7SZAbl4RoD3nEYrao/WT0fsja77riq/M5xGe31LrnfXH+O8VSXJeZB2/r4K7VjRw+M8lgNMVj+wZM2YYbOurZtKKe9Uvq+NXJ8QorSF/c6dPF7TaZr/78uClQnCkoPLZvgB8fLtXA2CV1JITugstUiXe57RKJTFEIzNJ6Lzs3r8SlSbqMoVehy8aP3himP5ysqrryBiHrXhLklmX1VfZSFaaeZNI7njDF9QajKZG9mCmo2ZLbNrRXPY7FtUGdz8mn3reaeq0JbnvIY3I5d7X4xbiPQlHh5HhSFBw3+dV4Ur3WcsnYbaOo6C72UlH9wYEYu98YAkoJDt98vpeA20Y6q1pIBQVOajFV49wrva4q6LXzybtXiqJifWG6vMHP8GRaWFd6qMopl0abuO2SSXGNTGU4OBDjidfOmOQ5psmHz2ETsqZfWUq7xkgiR61HVVYbli7cwmMdS3FdZup8Tr62fT1b17Xiskl0tdRw63L1oX5zRwi3Q2ZvT5jHXj5NfzhpSq6ocdkoKKWEjLagm3yhSCSRw+eyVQxoLBjcDXlF7bc2PJmmPeQRw/c6G72iPiydV0xuj/XtIX74+hCvD6qK1ajrjo5M0z8xTWejr6IhcDmTqRxPHxkVv+u93Cq+G68dl13injXNbL9xMYuDHpYYuiB0LQos+JXkQkG1vFaathUUODoS55bldSK1vVXrpgKqK62hxlm1ZjGVo2JWFqiNakNeB+97VzNBjzq49fBQnKMjcWHhFBVVselzr4zEknk++x9vsrcnjMsuiUGQsURW7cOpufKMsTA9pT+dV7DLpa43RukdnkyLEpIiakq/12kTCzv9UpSy99y1upHfv9MqFbGSM64AdT4nU+kcmYLC0ZFpNq1sYtOKBnVyqVTqnD6ZygvfujGlXK/9iKfzokNAJlcQWYPlKbTl3Lq8nideU6cb900kTS6IbEERI0uOjcTPWcT4o0NnUTBnLuo4ZLU+pohqSYEaZO5eEiSeylU8XCQQxcnHRuIUiooYGaGn+XqqfI7FtYm6QFEYjKZorXXjc8qcmkhSUODA6ajo6Tc8mebpI2pW7shURiiWloCLJr86RVgvA1nd7MdukxidyuC2y/ROJLFJkM4VhDxUS0gCyBeKNPqcIrnIiN4jMWNwMwxU6TGq43fZqPc56Y+kTJm+egcO3QibSufxOiXyWv1WKlf6bP2jbBLU+5zceV0Ti2o9PHhbh7W4w7K4rhh/fl8XG5fViQ7xe3sm2PVCHx6HzF2rG5lMqcW++k3cYfDF66utqXSefk2xlAuATrUIWc/4NA/cslRNr9WsMqNOCCey9IeTpk4G1dCPnajSANWYuqvjsKkZjz2aIjOufxVUgbZJamryYDQlCj7vvX4Rn7n3ugU9X2hhot4hqVyBWzsbhSyUD0nN5BUCbjstARdeLZYqSxKUObHH4hkcNpvaN1CL1RaUUlGvXZaqKi2XXSaeKVRVWuXY5eojgjwGay+eMSeJQKmgv6BgKr5PZhWReVg+rNXjkCkoaj/QnrFpPvW+VZbS0rAU1xWis7GGu69rYn9fFI9TZufmlezcvIIHb1vG17av567VjeSLirCo8oWieJDnlZJ7oVBUU2S7WmrYuk7tL3jX6gbxOdUynqYzOZ59e1Q8CBRK6bsAsZQqoNHEzJ2xy4/qL5unlS6r8XTZJDHwMltQsGu93nS8Dol4pmAqBfhAVzN3rW7kIze38/E7Oi2hXGCo1oMae/rVyXF2bl7Bzs0r+eq29aJ5roRqXXXUexiZypDMlSyx3nG1DERf1I1MZXjtdITGGkfFBG2HDJ+8u7OidybAYi2zt5r7yahLXDaJfBHshoPo9WQOh8zq5hpRu9houJdba93s/qNN3K7VXuruRb2tp99tY+3iWlPMTkJVuFq4jPELnLCwULAU1xVk24Z2YUl86n2r+NT7VlPnc4o42GfuvY4Hbl0KqDGlyVReCFbR4CpI54skskWaaz30h5NMZ4psXbcIl12u2gnjrNa5oxp21O7zAMZ6yO4ltTxwy1LRNd4Y12oJuPh/3r2YretaZhxIqfeDa/a72LgsxAdvaDG9fp3WPd/I8GSG546P8+zR0YrXLK596nxOvv3ATbSHPNT5nHxofRufet8qQl4n7+9qFo1mR6YyHB6qrFXUPQHmYY8wPp2rKMbPFeHbe/ur1lDq1lke1WXf4HPgtks4ZGivLzXRvef6FjobfaxsLG1b1eTDJqkNtXvGpslpLag+fsdyIcsNNU4+t/stfu89y9m0ol5kDKcLquKLpwucGjcX3Yuaz6LaE/Hh//ru83+hCwir5dMsEElkefLAoMige+T5Xg6cjnB8ZKqqW06nPeTBJkv0h5OmQsdy6rx2plJ5U+afsQC6nLVtAda3hzg1MU1rrYcnXjsj5nsZKf9MvT0NwPYbF/PaQJS/+GAXx0fjDEVTPKalvnscMgG3w5RB2VHv5Tsfu4lnj46ybUP7NWltWS2fLozf/u4rPHd8nLtWN/K17ev55PcOmop9HbJUMd0b1NIOWZJEPKycjjo3/ZHqCzg91qVnGwIzFvvqbL9xMR+/s5NPP3mIwXCSTKFYMUZIbz2lH8sYUyu1c1LbRRnjXUZ0WbVLqvdl5+aVfOp9q2Y8r/nMpcqIlZxxFdEVVjJb4OE9J9l3Kswn7l7JnmOj9I4nqmZFger7LhSKok/Z+XqilXdoVygpraYaJ2PTZl/+6UhSZEI1ahaXrrSMCi+VK+KQS+nGuoj73TZOjsXpHU/wP//jTUYm0zTUlDIL1cCz2dXR5HcR8jrn/SA8i3fOn9/XBRzlz+/r4tGX+k1KC6iqtKDkOfC7bMQzhYrFmVEOHLI6RVkpqtOWi1qs6b0r6xmMphnVphuU0+R3EU/nSOWK/OTNswxPpk3DHPWkKr37hX6uLbVu+sNqYpTfZSeeyVNEtQ5HptJVZbjB5yCSzIkatnxRobPRt+CLjathuQqvIk8eGORLTx1j36kJltZ5ee74OJ/+/iF6xxPU+Rwia6k87T2ZLZIplGYFnT2H0tLpavHjd5XSa9e2Bdi5eQWL6yoLOidTeaE0J8qU2vIG8/660pJQa1xsEsTTauyqzudgKpXRjqOuYttDHrauW2SKxUmos7eePDB43uuwuPbpbKzhu7+tdkzR464X+mBy2yUWaYXACpjmwblsMmsXqy7qXFGd2JDMl6yzTL7I7kMjHByICSVinNjjdUiMxTNktJs+kS0wlcrQFnSzqslnqvvS3Ye6jo2ncrQE1PEpTf6SN0Gv6xqt4sqfSOTE+102iU0rGtj1wIZr0hvxTrEU11Vk24Z2Nq2oZ39flNORJHetbuSr969j04oG7rthETveu5zbO+tJZIp4nWbrqyXgEokc+sqtvBOUU1aTNe5Z08xkOmcaThdN5khlC1zfWhlrqvXYhdIsX9vONNpcQa1xKWiJJPl8nkgix+KgF49D5u7VjXQt8hNJZnj5VNgUi1NQO1tbxcYW5ZzSehUKa97QGFpvK6bXJbq0WXXGJs3LDNm544ksb54pFf8DotFzOXoSRr5YWiDqTXFthkXX4aE4Q7E0J8YS4n8Av8cp6s1AHUs0MqWOT6lWcqK78Ws9drZvWCwUroTanDqZK/KelQ1W+7MZsBTXVaTO5+RGrTHmphVqL8PupSHes7KBx/YNUO9z8ne/1c3OzStZ3ay2idJXdMlc3uTic9llcsVSVhOAJKvJGr88MW5yQ9hltUvFrhf6ONA/Ibbrf/zJVJ6Ny+qorTJTK1GWnWWXJfxlFmFRgYmE6pYZnkyTyhV5fTDG0bNxEpkiY3H1vDvqvfzzx27irtWN1krSoip/tXWNyK5tD3n44R/dzo73Lqc95CGZU9i0op7f6G4D1FZNgGm15XE62Lis1FlCf8nnlPFpqfR+t4171jSLHqAeh8y9NywS71ls6B8a8jpM3S+MvUX1TNugx8Ef3NHJ9a211LgrH6nGsJlxORpwq7WcL/eGRZxOQU2aumt1o7WwOwdWcsZVxpiYoT+4y7fpU1HV7vJ+dr1wCjAXL96zppkXTo6TyhYr6qmg5Pc/F3evbuTk2DSD0RQbl9XxB3d08onvHZzxfedK8DDOQTLO89ID0t1Lgnz7wZsWlLKykjMujd7xab7wYzXmpVscX3/mOA/v6RElJU8eGGR1s5//9ZOjuGwSR0emhXx0tfgZiCax2ySyuQLZglKRZajfo3qMqntJkPF4hsFoiuYaF5Ks1op95t7r+PLTx8RCsCXgolhUGJvO0ux3sbLZz96eCVOShx1QyuZ5NfkdjMVL7vN7r19EOlcQCUwAq5p9jE5l+EBXC//zv7xrQciKlZwxT6jzVSYklG/btqGdZLYAKHxofRtHz06xt2eCNa0BRqYyJDI53hiMnTMD0eu0CwXktoMx+UkfkpfI5kXCx/6+COsW15rcIjq6cJc//rwOSOZKmVkNPgfxTEHUqWxcFmLd4iC7XujjPSsbFoQgWrxz9JiXkQdvW4bXaTdZIf/wy156xxP4XDIuuyTc3UdHSqnzHfVe0Y1eR5ZKY4Oy2r16cCDG9g2LcZ6Oik4wAJ/8tzdM9/3IVEak34/GMwTcNjwOWSgtUNPqKSosDnpEd5iWgFsorkW1btK5Ak+9eRYoKbV7r2+9ZrMHLzeW4pqD1PmceJ02vvTUMQC6WgOcDic4PDRFrceuDmXMZnDbzIXA7SEPIa+Dw0NTjMYzYh6QTVbtnpaAC7sscyaW4vbOetOUY4AfvjFMLGlO7/W7bRUpv7oVpXsRM1rAO5LICetv47I6/uGjNwJQX+Oy3B4W7wjj4k73SOjNdxPVOkoDQa9NKCYoTRUvanOvgl4HI1MZ4Ul4sWeC5oCbG1r9vDUcN2XjgpphmM4VTPJwcrwyfqVPDM8Xi7TWuhmeTGO3qW7FphoHr/RHeaU/atjfzmfu7bRk5CKwFNccJJLIkswW2PGe5ew7FWZ/X+kmdxhiWkalpa8sW4OlwuEal41IMk9b0MOJsQQOm8xgNMWmFfXkCkX290VNLr6xKtX5uu9dT/cFeP+aZk6OTTOZzDKRyJk6Wuv1K7csrxMWlpXybnE52bahnV8cG2N/X4QmvwtZgjqv2kDX6OaOpwrEkgXhQrz7Xc0Mx1Ls7QmTzhdprHGSyBbESJShWCkl/u7VjfzyxDgFRc3yTWSKTCaz+LU4sB3NssLsQje66PXEJlXBqnsYh7PWuGyEvE4e/q/vXtBDIS8FKzljDvLkgUEe3nOSk2Nxk9ICNWU2UJZEEXDbubkjxKYVDaxuLs3W0utYYpobYzCa4q7VjXQtqhXHLZ8EOxPG/mpL6rzct7aVVi1QveVdzWL1u33DYqvvoMUVpc7nFElJY3G18e7RkWnimQLtIY9IP9d1hP5/z9g0yxtqxL385nAco01l9JJn8kV+/sd3sGlFPR+8vhVZUpXORCJHjctGV1tpxp6C+iDtWuRnZXMpC1DvkjYYTXFwYJJNK+p5+CPvpj3koXtJLbv/aBMv/NndltK6BCyLaw6iuwy2dDWzsmmAfX0RzkZTxNI5cgWFqXRedJe3SWoz3ideU+cO3bg0KHzruktPz0a0y/D+rmYe+eWpGT/b2A0D1C4cAY+T/rA6F2lRrRskiYf3nATU7MiOBh+7D53lrtWN/A+trZWFxZXk8x++nvv/4SURW+peEsTjsNHZWMNj+05T67GztM7L4aEp4S3IF4qmZIgal411bUH29qoFz7qCawu6iSbS/Po3X2Qyla/47OlMAY/T3LuzCDQH3Dx3fJy2oBtFgaDHxtGRUrzsxqV13HldEy9cd/dl/jYWHlZW4RxH9+cb0ceA6IS8Dn5t7SJCPhcP3tZB/0SC//btfaI9k9EdqLegcdsl0nkFr1Ntjqt3xGgJuBiZyoj9dAXpccgsq/dwdCTB2rYApyNJJlN5dm5eyYO3dVRkSlpYWYVXmt7xaT63+whdi/x4nDYe3tPDphX1ovNG0GtndXOA/X3qVO21bQFuWd7AU2+dFfJTrc2T1yGJGi6/24bP6WBkKq3tL7GyqYa/2noDX37qbV7pj+J327h3zSLcDhvPHR8zySao8d5bltdbI0mqYGUVXqPoGYZ6t2uPU+ZD69v4yx++xYu9YZHR1xbyiljSkwcGSeWKdNR7aQ64hFtQn1tk7Dl4XUstBwdi/ObGpbQFPQxFkzy2b4Ci1ixUV1qpXFGsHvX2UHo7mmqZkhYWV5rOxhr+5Xc3Ampc2Ou0s6WrmcdfGeDJ184QTeawy5Jh3pudz37wXfz+nZ088nwPPz86KjIOfQ4bCa3zfNLQfXplk9/U4kmSJN4cjvNqf4RH/vsGsWDTu+Lo6J+5aUUDf/ub77YU1mXGsrjmKXrt15au5opGteVNfB99qQ+QuGNVI3/3i5N84u6V/PLEGCDxofWtpvdHElke+WUvR4Ym+ZP3r+bV/girm/089J9HuLmjjqDXSTpfoHdsms9/+Hqrsv8cWBbX7GGsBQMq6sJAlZNHX+oHFO5Y1cQXfnKUoWiKep8Dt9PGho56PnJTO4+/MsjennGGYim+sPV6hifTFd4F/VipbEEsLq/lBtKXi0uVEUtxzWEeeughHnroodk+jSvGtX59luK68lzr99C1fn2W4roG0f6os30aV4wFcn2W4rqCLJB7aLZP44pxqTIy6+nwkiR9Rft/h2HbFu3fV2bvzCws5gaWjFhYmJl1xQXskCSpFzgFIElSN/A+RVGeBbq13y0sFjKWjFhYGJh1V6EkSVs0Aaz2Wq+iKDOmq1lukPnNArm+d+wqtGRkZhbIPTTbp3HFmM/p8N2SJAF0K4ry1/pGSZL+FPj4+d6svfeaxbo+CywZOSfW9S08Zt3i0tF89c8YV5aSJD0J/J6iKLGZ32lhsTCwZMTCQmVWY1ySJN0vSdL92q9hYLkkSUaf/SlgR/V3W1hc+1gyYmFRyWwnZ5wC9NVjJ3AA2ALoI0yD2j4WFgsVS0YsLMqY1RiXoigHJUnaIUlSBOjVfj8FbNdXmYqifH82z9HCYjaxZMTCopI5E+OysLCwsLC4EGbbVXhBaCvOHdWKLbXMKv3n+7WizD8t328ucxHXN+N+c5ULvbZzbZvLXMTfrrssXjVb52HJyBzDkhHx8wXLyJxXXJIkbQGeVRRlF2pgekvZazdpP3cDaBlXsflSlHkR1zfjfnOVC722c22by1zk9X1cc+ktv9z3piUjlozMVa6UjMx5xQUsRw1GgxqEXj7Dfh8BYob95vxNq3Gh13eh+80l5uM5XwwXdH3aCrIXQFGUv1YU5eBsnAeWjMxF5uM5XwxXREbmvOJSFGWXpq0BulGzqpAkqbusm0AQiBh+r79Kp/iOuNDrm2m/ucxF/O2qbpvrXMT13QTUa66Qy+7msWTk3PvNZSwZEVyUjMx5xaWjmY7PGDRx3bn2n29c6PVV2W/Oc4HXNm//nhd4fWH99SsY57JkpPp+cx5LRoCLkJF5o7iALXq7mxlWHjHMtS3hq3lyl4HzXV/FfvOIc17bfFxJlnG+v51okKv9f6ViFJaMlO03j7Bk5CJkZC70KjwvkiTtMFz0FiAoSZLuK9UDeY8DG/RtlIo25zwXcn16PY9xv/lwI1/g3255teudjfO9WC7w+p4F9BXkcuDVWToPS0bmIJaMXLyMzHmLS7vQr0iS1CtJUhTUgkst+6QOdeWIwcTcAsTm0R/1gq6v2n5znYv421Vsmw9cxPWdQs3iuyIFw5aMWDIyV7lSMmIVIFtYWFhYzCvmvMVlYWFhYWFhxFJcFhYWFhbzCktxWVhYWFjMKyzFZWFhYWExr7AU1wJDUhus9kqS9BVJbXz5p9X6gmmvz5vsJQuLy4ElH/ODeVHHZXH5UBTlWUmSngUeN6RHR4FQ2a73o9ZSWLOeLBYMlnzMDyyLa4FjKAQ0busGvoXalNXCYsFiycfcxLK4Fi4bJEmqAz4ObC5/TVGUv54vRZwWFlcASz7mMJbFtXA5oLXDeYbSqIuKfaR5MNPIwuIKYMnHHMZSXBYR4M/0X7SAc6fWeuUUsG22TszCYg5gycccxHIVWsTQhrtpQrlFUZQ/035/FnhtFs/NwmK2seRjDmJZXAsMTfg2oAWWDWPcdwB3Ap8xpP8uB+qkKzD80MJiLmLJx/xgVpvsnqs1vyRJX1EU5c+0lvi7qu1jYXEtY8mHhUV1Zs3i0oKa/3iOXXZIkmQcLmZhsWCw5MPCYmZmLcalFfpFzrHLtvkwBM7C4kpgyYeFxczM5eSMbkmSALrn4RhuC4srjSUfFguWOZucoSjKX2srynqrVsLCwowlHxYLmTlpcZWNbw6jpaNW2c8a32wxp1EURbrcx7xQ+dD2tWTEYk5zKTIypxSXJElBRVFiqAFnPejcidoXrCqzmRVpYXEuNFfe5TzeRcsHWDJiMXe5VBmZzazC+1H7gd1v2LwHQEsB3q691jtTSrCFxbWKJR8WFjMzq3Vc7xRJkpT5fP4W1zaSJF0RV+FFnoMlIxZzlkuVkTmbnGFhYWFhYVENS3FZWFhYWMwrLMVlYWFhYTGvsBSXhYWFhcW8wlJcFhYWFhbzCktxWVhYWFjMKyzFZWFhYWExr7AUl4WFhYXFvMJSXBYWFhYW8wpLcVlYWFhYzCssxWVhYWFhMa+wFJeFhYWFxbzCUlwWFhYWFvMKS3FZWFhYWMwrZlVxSZLUfY7X7pckaYskSX96Nc/JwmKuYMmHhUV1ZnOQ5BbgH2d4rRtAUZRngdi5BHihEUlk+dYve4kkslV/v1h6x6f57e++Qu/49GU53oVi/JxqP/eOT4tt5ed4oed5ta7lSmDJx8UTSWT5+jPH+eJP3+brzxynd3yarz9zgi/+5Chff+bEZZGZq3lPqddzQlzL+eTliz85yke/vZ/nj43xq0Y2LAAAIABJREFUkW+9zEe+9RK949NCfg6ejl7WZ8dsYp+tD1YU5VlJkiIzvPwR4Bnt51PAFmDBTXmNJLI88nwPR8/G+autawh5nXzyewfZ2xMmnMjicdjYdyrM/r4IL5wc529/s5s6n/OiPuNzu4+wt2eCvolXeejX1vDHT75BJJHjX/cP8IHrW/jITe386I0hQOLB2zou+vgz8eSBQb701DH2nQqzdnGQh/ecBCCZLfDwnpN875UB+sNJAF44OcHengleO/0iK5pq2LA0BJLErl+d4hfHRlndEuBAX5ihyTRf2Ho9bw5Nsq8vQu94nESmSO/4NOPxDH9+Xxchr5MnDwyybUP7ZbuWK4ElH+cnksjy5IFBVjf7eeg/jxDyOnh9cFK8/sjzvWQKpSGa+05N8A8f3SDuPYCP39F5QZ/z6Ev9gEL/RJLdh4b57kv9fPO3uvnliXFS2QIep8yDty27LPdUJJHlG8+eYPcbQ0ym8gC8djrG3p4JwoksPz8yQn84yS+OjZErFDk4EOMnh4c5PDQFwMunwhSK6nXveOwADTUu9vdFODgQZTKV52dHRnDYJFK5IofPTPL/PdfDh9/dxoO3dfD4KwMcOjPJ6uYaQj7XZZX5y8msKa7zEASMQls/Wycymzz6Uh+7XugD4L6/fYFtN7aztycMwKHBGPv7Sl/R3p6wEOKdj7/OkpCHb/xmN52NNTMeP5LIMpXKAdAfTvIH//c1UrkidlnidCTJrl+d4kB/hIMDMQC8TtsFCfq5Pk9XGts2tLPvVJjnjo+zdnEtOzevZCia5Lnj4+J82kMewtMZljf42NszwVQ6z8GBGAcHYrSHPADs74uyvy8qPuNP//0wqVzR9Lk/PzpCLJnn1PirNAdcvNIfJZnN8+Bty3j0pT5SuSIex+V78FwFLPmgtPjxOGRSuSL9Yaj12MXDPlNQsEmg6679fVEefamfD61vZd+pMFu6mi/4c/SFlc7IZJqd//Y6g9GU2PbYy6f5zoM30b009I6v67GXT5u2LW/w4rA1cmgwJhZ0Rvk/NZ4QPxeKCjLgcdroHU+QyKjfh/696PKsM5XO89jLpzk1nmBvz4Tp2M8dH2MinqGl1s1Xt6075/PkajLvkzMkSTL9e+ihh2b7lN4xugkfTeTEtlSuyL/sL93M8VQWv8sGQEvAxc7NK9i2oZ3/8fgbTKbyvDkc5zf+4UW++NO3K1wB+vEffamPw0OTps+o9djZ8q4mnDZ1mvZwTBXMjcvqSGbz78itoD9onjwwSJ3Pyde2r+cz917Hg7ctw+u08di+AQajKfxu9boGoyl2vdDH8dE4a9sC4lq7l9SaHhgAHod6vnesamT7jYuRtWHgDpvELcvqCXocnI4keaVfVXKvnY7yyPM9PLynh12/OsXDe3p49KW+S762ucy1KiPJbIHbO+vFQsXnkmkNuEz7GQwuAM7GUvzojWGeOz7O468OntNVprvqwtMZsVAyki87eDSZ42PffYWPfnu/ya19sWzb0M4Dty6lPeRh+42L2bl5BSGfi+eOj6MoChuX1fHALUt44NaldC8JcnNHiOWNPtMxikAiWwBgZCoDQLO/9N34nDI+pypnsgRNNS5aa93idU18OHxmkuHJNAcHYnz2B29e8jVdbuaqxRUD6rSfg0B4ph0VRZnppXmL/oDXhcXntJHIFigaLvXoSEkwWoMevE71T3nHqgZ2HzqLBMSSeXb96pTYb1/vBGeiSSZTeQoKdC3y43fZsMmQzBTIFiHgdvD0kVHxnkQ2zwO3LOX4aJyH9/QAEp9636pLuq5tG9pN/9f5nMKC27ahnfB0hkNnJumfSBBPF8T79vdFqNGUdGvQw4qmGg4OTJqO3VrroXciScDjYP+piPiucgVFXE/3kiD5QpH+cJK9PWF6xtTvsKXWzchkmpK4znkuWD7g2pWRh/ecZOfmlWzoqGP3G0P0h5O8PZrAbZdI59Vr9jpkkgYL/PkT43i1B/bP3hrhdES1XrZ0NfO53UdY3uAVLjKjpdVU4xTWW43LRo3LztmpNAG3ncVBF0dHEthlial0nr09E3xu91v8y+/ecknXVudz8vmt18PW0rZIIsvhMzGeOz7O7Z31hHwuQOHgQIy1i2vpnYgLy3Mm7DaJloCLkakMiay6nwwUFRibznBsZBIJULR/5fRPJIgksnPCKzGnLC5JkoLaj48Dy7WflwPPzs4ZXR3KExK2dDVz1+pGYVUksgWa/E5c2jJDovSHs0nqg+lLTx1j2yMviWMqgEuzmvb1TrDrV6c4PDRFJJkXq9CjZ+PEMwViKVVpgWrl1LhsNNQ4cEgQTxf411cGhOsgepEBXWMAWFdU1W78Op+T379zBV6njdF4puL16YyqyA4OxHjqzZGK1/s098mvToyLhxFAg88hfh6dSnN4aIqptOoy0VeirbVudm5eCShzOlC9UOUDzPdR7/g0T791lvaQh3e3B/E6bfzN9vViofeBNYuwaSa312mjo95LnVcVnsh0hv5wEpsEpyNJltZ56R2b5te/+SJ7eyZ4bN8AD+85yZ888QZbuprZtKIBgLHpLAVFlbfpTEHcO1PpPMmcKlD5olJaYNV6iCSyfPGnb/Pf/nFfVQssksjyl7vf4ub//Qw3PPQ0zx8bm/H6dQ/FphUNvNgb5uE9Jzl4OoqEahUlMopQWnZt/eVxSNgMa7GhWFqct45RzY3Fs0JhVVvCjcYzfPJ7B+eEjEiztRqTJOl+1Kyp31MU5fvattcURblR+3kHauB5uaIou2Y4hnItrCa//sxxHt7TQ0e9l/5wkrtWN/KJu1fyh//3NdON1h7yVLjIdNx2mXS+iF2GfBEcMuiLr7agm6FYWl1dGd5j9P+fD5ssUSgq4hy6Wnycncry+Q+tYXgyXTXZIZLIimSSnZtX8Kn3rT7nZ3zrl7186aljdNR7iSWzxDSf/ObVjezrD5PIlM6+tdaNJKnCaFxp+t02fvOmJRw4HeXgQAy/22ay3kBV6Mag/Q2tfrwuB/v7IuzcvPKSLcpyJElCUZRLMuMuh3xo+81rGYkksnzjmRP86PAQsWSenZtX8OPDZ+nVYjq6BdHkd2KXZYYn0+x4zzJ+8uZZhmJpWmvdDE+m2bgsZIqFQklmynHZZTL5oljMPHds3ORSB4Rl4rRJXLcogF1Wt+iegO4lQcbjGSGvHfVefvCHt5tkRL/fdep8Dg7+xfvP+X3oz4pz0R7y0Bp0s78vWmFx6njsEqm8+b5o8jsZi5eUku7pKaez0ceuBzZclkSnS5WR2cwq/D7w/bJtNxp+nlEYrz3Uv1t/OEmtx85zx8fpGZuuWB2FvHYKRTf5osKYwSoxPpx1OTTeq8vqfbgdNn530zK++Xwv0WSW6UzBpLR0xTQThaJCwG0Xgnh0RH1wfPr7h0jnFZLZPJ9632otA6sPXbT1ZBJjvG4mtm1o5xfHxtjfF8HnLDkDXuiZIFumYReHPExn8gzF0vicdhYH7QxE0+r3IEl4HOrK9941Lfzs6CiTqTyNPidOh0yt225ytb45HDccWbW6vvzU2/z86Ajf2P5u7ryu6bznfrmx5EPlked7eWyfGtt12iReODlB73iCGpeN6UxBJBfpD1yPQ2Z0KsNQTHXj3dQRYiCSJFdQqPc6CCdL92E1pQWQyRfpXhIEFLGgBFUZDUVTjMYzKIBdlgh6HBw+oyqrjcvUpIyA285kMmtaZPaHk2z9+73ce30LH7l5CT96Y4j+iaTpc/9m2/rzfh8P3raMfacipsQMnZaAi+lMnsFoiqKicHtnPS/2mr3IXqeM3+Wg3ucQMtDgczCRyInvUP9udaWlK2lQ/wa94wk++4PDOGwye3vCfO+VAb7zsZuuauLGrFlcl4P5vprU0R/2amp7aVVY45aZTheRgZBB6FY1eRmaTAsLpLPRR994giLQ2eDlVDiJUkUpGVdievaVXZbIFxWaapyMTZtdAAGPjQ+vW8xbwzHxMNCp89qJJPPiptctla8/c0LEBTatqKdvIsFQLM3GZXU8/vFbz/td/Po3X6zIeirHIUHuHH/2oNdOLJnnrtWNfG37eh75Za8p1gellbrDJpHTlKLLJrF1fSvDkxmRXeVxyOx4b+clpQW/E4vrcjGfZSSSyLL17/dW9TJ0L6nl4MAkDT4nE4ksPqcNWVZd2z6nLGI4RsotLFlCxELVZAW7kAG7LPHtBzbw6Mv9PHd8nO4lQXrHppnU3MzVzsdhswmFosuc8aGvc3NHSCQJ6TT5nXxvx60X9PA3fi/nWnCubQswMplibDqH1yHhdzuruuGb/C7TQtj4/hOjcdL5yusof081i/JCuFQZmVMxroVKnc/Jp963mtXNauaczynT7Hfx7sXqCq4IppXiibGkUFpuu8TZyaRwASayBcqfU/qNPRhNCcX4ga5mobRkCaJJVWBtEty9uoGOei//e+sNDEaTrGjyC6Wl+8zdDtVYn0jkaA95eLl3goOno+w7pT7wWwIu9vaEOau9r6Us22sm7HLpHva7bVXfF/SqwqHfvA5ZoqvFJ84vlszT2ejja9vXE01m+fGh4Ypj6DGQkMdBwK1eS6ag8MRrQ+ztmWB1cw02Sc20fHjPyWs243Au8+SBQZPS0u+NtqCb69vUcF+TX70XFoc81DjVeGZGczfYpFKsptZj53O/1kWtx45N22Z83ieyRcams8LSzxcVHvrPI6xdHGT7jYs5NBirUFp6Ft7atlrG41n290VoCbio9diFzHmdlY/YHi3eZbzXx+JZPrf7rfN+J3pN2ZpW1T1pVFoBt52uRX7x++GhKcam1edGMqeYlFZLwCWuNZFR99GzeUG1Liems6TzCk6bJJSWHjfXlVZTjfr994eTWq3b1WGuZhVe8/SOT2vppQpf/PW1dDbWiABuIlskkc1UXR0BplhVOq9oaa2qWS9L0oz76mxaUc/wZIa8dtMXFfWf2y6zqrmGXxyfoHtJkL/+2XEGoynxYAc1JlbrsTM8qSokt11iMJpiMJrij594Q9SYpHLq+eiffT4rClShvK4lQH84SSyRIZ4uEPQ4RczBLoNdlhnXgsP6sXNFBbf20CooaqzgLz7YxR/8y2u8PTLJVMrsp/e7bNzQVstQLM3YdBaXXeLu1Y3s74+Q0JJAJlM5Coq6bzxTOGe2lsXlR013z7N9w2J+fGiIZE7BhkIeNa55fGSKHe9dzk8PnwXg+KgqO0aryuhdvnNVI30TSVHLBIiFm8sus3VdK0OxlHCtuWwSKa0Y3u+ymY4lS9AScLNpRQNPvHaG4yNTImaqu/edMtTVuBmZSovPKV2bqijyZZbS8guwth59qd9UU2b0GEyl88SSqnWVPIdLwueUTWEI3TpdFHCBksHnsqMoipBx3U0vAbevqOfV01ERmvC77QZPzdWz7C2L6yrTOz7NR7+9j4/90yvs74uwvy/Kx/5JbWfU2ejDba/8k8hlhnT5I1T3RbcEXPz9b3Wbak6M+0qobsXWWjdjU6mKzKEal01U3x8ciInVbqO2qtJPTRd+r1MmnVdoC7ppD3lE7VeT38VkKo/HXvoENWZwbr7x7Ake23easXjGlOWY0d07RSpcPfoqUV+9dtR7+Ztt6/njJ99gf1+EqVTBFC9z2CTimYKISwBk8grPnxgXSgtKD6C4tu1Af2ROZFMtFB59qY+H9/TwsyMj4iFsyM1hf1+UA/1hzsRSpsy5meJWPz8yynf2mt3FuuLI5IucjiTobKoRVlRTwC0WjnHDfSGhLvKGJ9O8fCpMe8hjSvTRyRZhZEp98Hct8gtLBUpyVE7v2PR577FUVpW9Rs0l59RkzOuQkSX1vIxKS392eOwSnVqtV26GjKwTY0niWsakJEn4XWa7RgF+cXwCv6uUqduvZfDWeux8aH2baFF1pWXFUlxXmc/+4E329oQZjKbEg34wmuLTTx7isX0DpPNFkyC2Bd3CpWGTSq6RasTTOb781Nt4HNX/rArQO57gideGODGWqFgfTSRyatq9TRIBaSilmpc/E5JZNYhd73MyGE1xYkxN2IglVYH3u0s3eN9Egs1fe56Dp82+fZ1IIsu/v3ZmxmvzOGT8HrMguR0S8XQBt12mo97HA7cspc7n4JP/9jqRRA6bLHFDq59aT+k7yxUUupcEKZb5U03fsaaofa7S93hwIMaTBwZnPD+Ly8fB01H++cV+ALOFVLbS0q0sp82c9q3jMmiIVL5YNYNWf9v+viiPvXya4ck0tR47f3hnZ9VFpPEQg9FURXzJIZcUCajuxMNDU6xuUcMAjT5nRRzLbZfpXhLkxd7wOe+xSCLLoTOq50KS1OzBP/8vXXTUe5FlyeT61J8t+rZUXmFcU8TZgoLRMdPgc5gWx267zIrGGuKZynhes98lLDGXXaKgPRNuXV7Px/7pFR7ec5KH9/RccVmxFNdVJlcord5WNPoIedWHu+4mDHkdJgGr11ZWbrtEQcGUrgpqyqq+kkpki7zSHxUKpBotAXOFvBGvQ2IsniVTUBiKljKeRADbJYsOFjp9EwlhpYGa0FGeQetzyZyOJOkdT/DHT7xRtdHnN545UTX1FlQhTOWKRA0PMY9DZlFAtSzT+SJPvHaG/7PvNAcHJkWdVqGo0OB3i1ocnZHJynoWUFeN961dJFwfQYPCa611X3CLIItLI5LI8sWfvM1v/eM+EU9q9rtEh5iy7G1hIafyCgVFTdoxsnXdIpHpNxPVbI/JVJ4vP31MWG+uco2J6p3oqPeKh7hOrqjgccjUaNZKeDrD1nWLODmqysh4IisUrn7UJXUexuMZHrhlKds2tM/YSPuR53tEjHpsWs1a/PyPjxLyOkSdI8DqZh/vXlK6bv1z9MLr9pBHxMH9LhsTiVxp4SZLpPNFfnRoqOKaXXaZO1Y1it8zhj/IkeEp4aFprXWLJgNXCivGdZXQ+/StaPSLWo8at4PoyLSos2ryu2gLullUW+ToWTVFuz+cZMd7lxNLZHjitcqbaWmdh+FJzcLR4jFGnDaJbEHB77KzsrmGr25bB8Bv/MOLxJJ5U02T0cVgt8nkimYTy+e04dE6dKxtC3A6kiSaNKe537NmEafDSUAhns4zNp0l6HEyFEsT8joIeR186aljvHBynBuXhkhli+x64ZRpxVyetqz72HV/vk1WFVlvWTqxfvZ6ppXfZefo8BSFsutoqHHSXuepqOvZur6N57QiUAlMWZTDk2k++4M3scsSn//w9XOmZ9u1xCPP97LrBdWdZ5Oh3ucS7jo9C9Z4j+v3to5++7rtMh9Y00zQ5yLodbJucYh0riBqwXSqZfwB2CTJZOltXdfGK/0REb8Ftei/P5wU2ak6evPaVE5VOpmCws+OjIpOHkb0LfpC8wevn+H4aBxQ2N8XJZkt4HXaSGbzPLynR1iAeiavjJo89PrgJO0hjyhzSWaLHB+NsHFZHblCEVBExmPI6xALAVDdoHr9ljE2ls4reB0yNlkS33cmX2R4MiW+43S+iN9lw+u0m45pK49tXAGsdPirhF5sqBdE1rhsbL6uiXAiy8nRaUbjGZyy6hsvF8iOei/ZfNG0utOFbm1bgMNDU9gkqPM6ReKCEV3o20Medv/RJup8Tg6ejrLz314XN9zoVIZUXnW7eZx2FM2PXw2/y0ahWBQ3uVH5NftLDxv93LauW8RUOk97yMtj+06ztM4rulsE3HZhIdkk1Gwpm1w1maPOa6eoSMS02p06n4PJZM5koTpsEpuvayKazPHWcMxUtKyzti1AvqiIxYHxezY+nGySGiPIFUsp9qC6bzvqfedVYFY6/MXxob97wWS967SHPHQvCbL70FmxbVHAzdmpSnlw2iBbKNUigfp3ff+aFu5Z0yIa4wbcdm7rrOfwmUlGJ9MYl3urmnzceV0zPz18ljOxlJBZvajfmEZv/BxQvQuJTBGfU2ZpvY9IIku+UGRCS8gwKkubpL5/Ml3paVha5+WOVQ08tm+AjctCHBuJC2VaUjQ2vE4bk6msqW5zVbOPlObGf+74OFPpPAG3nUKxaCoT0BeCetOC8mJl/Tp1JdUScNEUcNM3Pk08U6goL+heUkskkaM/nGTTigZuXBo8b+PqS5URS3FdBXrHp/nLH75FKleo+kDWLa5qVe7V+o/pwmmXJQJuG5Fk9doSULObatx2sc/2G9s4HUnRNzFtKtos/4zyrho+p0xb0FPVDVnndRBN5ipWr/rKUFdgTX4HY/H/n703D5OrPO9Ef2erc2pfe1/UrW6poSVaohESGLFjB7xhkyDsPBPszNhKJndiHOcmd+xkbCaLPRlPHOPcO2Nzk+tYT2JiSByDjWHYZBsBkhBCu9SSWr3v3VVd+3aW+8d3vq++U1WtBdqAQe/z8KCuqlN1lu/93u33/t4y+lv8WMyU6vaOUBnsDGEynnP0lnlcInKc4nlVAdli/edfzTLiUQQE3CormFcL3XAGO0M4OZNEvqrAbVokZcSnR27oieKfPrsyH91lw3VxQiHef7/nnMMIUBloD2JoJuUAQXSE3bhrYwueODzFIp6AJqOsGw5GCLopA8AX77oC927pwGMHJrCULdX09lFp8qv4/s7r8INXJ/DjQ9MOA8n/vmlZLCrnmWooChYAQm6FOVqaLEBTRCxzKFdBQE37ChW+V4rvs+SdPX5Nht2yI52+GuJVJWSLBmJeGYtZ53c3eF1QZJE5uNu6I/h32zodExpoL+VKxutyH9c7WL74r0fw0vASpuyNlEbSzQEV27ojmFouoKfBy4wWXxP+8of7sfOmtQ6kYNRLalS6aZ3XaAkCieD4zzx7kjBTUKNFe5Wqi9s3r2+AKovw2IWDbMmsWxcCgDhntHxcyoB6mVM2w/x8mvx9YiZdY7SqswsL6SJTVPpWrmRWpRS1muNkkeTYqdFix5YttARVB/qRl2zRxLbuCJYyJYfRAiredVG3oHH1jp7Gy+nC1RBKZltttFRJIE7PZNJhtFSJtGCcmEk60lKpgu4wWqokQDdJxmFbdxh9TX7GQVgoraw3c+ki/uixQ3j4F+ccRosi+USBZB1u4GqnInce1Gh1hN3MaAEk/Ub7H6lYFqBKROFDHtmB9KU6IgpguqDJIlIFnX2OR/5RijRFRN01zu8rXMtW5f2qQ9pCGgp23Zl+Nw94WciWsL03xmrI+0bi+C+PH0e+bCLsUXB1RxC7hxbw7Z+dn6Lqjchlw/VLluGFDE7NkpQURbLRjXA2VcR1ayPYedNaRL0uBnzgQYHfsWdiTSTyGGgLYlt3BDOpAur0NdYI136FgbYA1kQ8+LOPbmBNvZJA0EBBt1yDuOpt9OParghyZQuN9jiEVEFneXb+512SwJB49Tzm5ao6GD2W15Pq5v+JRAWuz7/FG3BCbVN5z6tK0E2S4qSIQPp2W0jD6xNJm23A+WMad8PH4jlEvDIkAfC6yBnQDSugyY5axbGp5FsC/X23yx39TWxDFIXKiJqiYdXUUOnrYY+CPWeXbMqvyi68vskLRaoc3xX1oK/Jj30jCTz44+PYPbSAL/3wKJv7Vk9EAEMcJZhXlRDzKsiVyeZtWmQ6wy9Ok++gUY/GXQNAjEr1OJSb1jWgLaQh4lGgyQJEASja0LzlnO5Y63RV0jXOp+bo51pDbrZvWCA6VTZJXbg1qKG/xQ+3QtCOPCpYlJznCtSCX5oCKgyLZHY+d1svehq8uHODE6D00vAi+lsCbE8p6Tqagxref2UjFm1jW52SXw25bLh+iRLPlrBz1wEW1lc3BxNmCA27Xh7F/tEEe9A02pcEslnS9OKp2RTSefKZ7esaHF5V9YMkkRRZmOubvNjcEcZYPIe/enqIfcawgD3DS45CNECMQ0E3GO1RtkQ2D69LhGhv+t2xClzer8poj3gc36HKImJeBYok1BhFE0QZLJAi/G19DY5eK2DlwvlovJL+q35/Y2uQ/bu6thX1KhhoCyCgyeCcYHRFPfj+Z67D9t4o65FZthn0syWyGX35I/144PZ18NrAFNo7dnB8+V09x+utkHi2hC/98CiLUkwLjoj31r4GrKleW5LgMGglveIsLWfLrE9JFoGt3RHsH02gPeRmEPWyYbCInLLG80JnWVE0YbZoYDFbrqGRyth60dfkR8itoKCbrM8LAE7MpjHYGWKG1C0L2HN2EVPLBcRzZRR0y+l42TpA/ajq6mxBN9ERdmOgzY+2EMm6HJlKYXNHGAPtQTIpgvt8zOfCcq6MfJmgHXmhKfe2YMWwehTBgaDsCHvI77UH8bPTCxheyGIikWNIaHJvynj4xXMsG5MrW0hkS3j0tSlMJPJo9Kso6cabmk9WTy7XuH6JQgEZHWE3WoIaWoKao8AMOL0onyrhg1e14NjkMoYXc0yZ69Wg+ALxxchgZ+iC7BW00Lzzxm4cn04xFoGYT8Fipuzo0vcqIrLcOSkiMTYlk1zT9z97Hf72hTPMs6UMHpva/Dg+k3GwBlTXjlYSUQA2tgZwbjHriOwa/S40BzTMp4uOdGbQLaMtqDkIdWuvdS3cLqlmwm31ZyWxgjS7c0MTdg8tsOezvTeGb33y6po8/uUa14WF57bkxaMI6G0MYHNnCIWSgSePzTgaxPk6D3vNLUHXLUedmNaDeWkOqEhkSdtHNRDK8X11foMKXc9uRcQH+ptq9JpKNYiESrVjNtgZwlyqgKnlAgbaAvBrSk1NnD+ftpCGZL6MTNFg4JE3K5T3keo5DzyhAC+6j/C1Q4A4yqoiIFeq6muzeUW398bwj5/ZVnsfLte43nlC5/m0BDXsH03UJQv1uETWVZ8pGnju5BxOzGYqbBEASnXohi7FaAGwByWSBUhFFsG8Qfr7PQ1e3Le1E3/2sY2s32vR5jvjO+6p0aJHl00wtouAJuPpY7P41PVdLH1Cr2BoLlNDdSNfJHzWtIiHaVrk22iQNp8u4chUqqYGl8zriNdJNQHAPVe344t3XYHfvaUH+arWLV/QAAAgAElEQVSdTa1qPM0UDUdU+tLwIns+AoA9ZxffUp62d5NQjsxqyZUtHJlKYtcrY3j0tUlkiwYhibbXJN3A+5v9bE1XU3sBtUZLkwXMpoqsZraS0VIlgf2Gu7pBDGQ9Uzj608ec8+H4T2dXqKXxv7qtO4Ita0itmwCuFLw0vISTM8vwcjVjej5hj4Kp5QIzKtRoVfdLb+uOYLAziIuVZIHoistOI9LvV2XitK2JeKDbaU3drPCWUiBXrmTBr0m4e1ML29Po7S/pxqqm1N82wyUIwm8IgnCHIAh/vML7f2X/f+dbe2arJ08cIoSt+0cTdpNwrZLEczpTooAmI26j8HgDU78t99JkOlmAX5VQNgxE7eGKuuk0Rh6XiOGFLL7+9Cl85fHjK36XIgmskMtfEQVmzGdKePjFc/i7PSMsmoz5CJnt793S46C/AQjwo5qlQJWAG3ujdQfa5UoWZFFAyYSjf0SpU5CmxizikdHkV1k95J9fHcfr4wn8/vcPomDzKrYGNTQHVBR1k/EzBty1Vex0wcBgZwgqRz662jxt7wX9AAjNERW/Kjnqux1hN0uJ+VUJE4k8ppMFx/pJF3Uk8zp7XvVmT1FpDWqsRumSuI3X/k1JAGOU4MEgNBtQs7q4z1J9kO10nSoLLELqCLuZPlc3MwfdMtZEPNh7jmQmdNPCXpthPl8maUr+iMHOIP7GHppJa69+VUJ/sx+6WXG6BAFI50v40w9tqEu3Vk1CoHLZlGoigLs3t2FrFyk18O0KhkUop/jUYbpg4H8fn0PRsFhWSBYF7B9NrCqbxttiuARBGAQAy7KeA7BM/66SnYIgDIMMy/uVkni2hL95dgh7z5EFGHTLGF7IQjdQs2nzcqXN7JzME2Wk7Oh3bmhCV9SDv/3EZkexdwVmJ4eInFeULhrIlSwsrTAbi+a9nz4+hz1nFzGdJE3DTX4nQ3vZsFghlyp9o8/lSN+1BjWsjXnZv4tlE6mCjsdem0LRsFi9ASALm+8H8WkiPnXDWnTHfA5z0BbS0Ohzwa9JLGrjf7NsF6SrOdYAIFnQMZcuMiNVMiw8fXwOLw0v4YevT2KwM4TmoOqYbNsa1OCWZbYpUrTWnRua4FYktrmJAG5ev3ozu97t+kFleCGDsmGyTTRdNKBIxFFQJQG/d0sPg4rT+WpApcG1v9mH69dGAQB3bmh2sGT4VKmmbnrHlU3MuSoZZOMVAEZbZFi10HRVFll2o4Yz1Kq8RvVBt4i+F3ULqQKZUnB9T5TpM58SD2gk/fboa5M4MpW2f0/AzetiDieMP6XJRB4vnyOUcZrthKWLBs4tkjaVNRE3SUPaAJLf+6fXcHSytkSgVzXl84a6sUrfnz42i3Mr1KhKusWyETRzUuDqleS3CJhmNZln3q6I6z4A9G6eA3BHnc/ca1lWj628v1JC4L1nsW8kDpmrjRyZStYQctIIYLAzhHzJgE+VMBYnAyXTBUJ42dccwCe3dqK/LYh7BtuxrTsCgKTnePg5APREnSgm0yLGpV5G5HwZOlEg55TIlRHyKIyDrVqo0s9nSg5lm04WEPYquLWvAdPJAuu+d9ubSY4bPcGnDiUBaAt68PAvzuHfXq9wF6oSSXfOZ0pIFwwGTKFH0l8mv1WbnuE3p2rJFEktgTKaKKKAgTY/ppMFzKWL8Kky3IrI0Fq7hxbw0vASu14TwN++sHKN7A3Iu1o/qHz5R8ewfzQBSRQYKi1nOxZFw8LXnxliabCQnSXwuiq9jrIk4pVzpA6rKRIUqbKdZYoGfv2aDsS8lWjg1ZFFRsVEl+qF4mQ+ZU/XjioL6G/2IaDJMC1n+h0Aa0rvCLvxyWs78C82Byc1inTtUieqv8WPwc4gBjtD2NwRxvNDC45MCK/j8+kSdp8kqcmJRB5+VYJXrdTJM0XDcU2zqSLrL1MkgQGLqqnjeOGdXYA4cYtVzi7vf1PghyxaTA+rd4tErkxm7a3AVXqp8nYZrhAAfoRntM5nBs+XKqEiCILjvwcffHA1z/MNyb1bOnBDD7kkuinzo0F48WsybuiJQjdMHJlKsQhCEQV0hN3YcU079p5bwteeOoU7/vrneOj5M5iI5zDYGcJgZ7AGfj68VFtHM6qyJwKc4I6VIrdpu/9qaC5Tg0oCag0fr2xBt4yZ5QICmgK/JjG4/DRHo0R5GflUg2FVyFN5+qqi4TQ61bUJ+leVHa9LlHohKZsWxuJ53NYXgyaLCLklBziGbmb0eht9Lvzph/sv+XfOI6umH8A7U0cAYEMbqb9MJPLI2s5Gc0DFji3t2N4bxX/9yAaWCj4zRyIKi1vLiVyZ1Y13D81jz9klDLQF0BbSsL7Ri2eOzzrAFSfnsgi4ZTLHyl4w9eqrvD74VcnhkGmyiKJu4cRshn333ZvbWC2pya8ynZ9I5PGXPz0F047sqK6WDDvVbZ/EWDyDg+NJKJKIfSNxNPpdaA1quHtTCwY7Q1gb82B9k5cZgzMLFXaXdNFwIGibAqpDn3jpjnqQLhAwx2BnCDu2tDO9BCr6PJsqQuQICHgwNDXY9RzAgl7Rw3oOQTKv44/+5XDdc7tUecdyFVqW9d8BQBCE9wuCcMdKnuU7ETEV8brwt785iG8+O4TdQwu4vicKTRZxbDqFoZk0smXn+IzZVLGm32MxWwayZWROzjHoL73S6WQB08kCQu76CxSoQGvrTYK14EyJlE3nXB+AGLXZVBFelwRFgqPbn/9MPXErAkuBUPEHFWzrjrAJsW0hDX/5savwJz86inxJrwt/52mWqFQzevBSzZbR5Ffxpx+6Eg/88yEGDjnf8bwk8zpeGl6yN6lsDYrTp0rIFQ2YAFRFwnMn5hDe4rrkCbBvVC5WP+zPviXndKnyuzf34MR0CnvOLjInZTZVREvQjd+5uQf/4R9eZa/TK8jZToNHETG7nEfUq0ASRcdz5zkmq+X0XIX5xeuS4FbEmmjiqvYKApf+viQA13aFcXwmBVEgnH4UDTs0mwaNMebSlTl6dK0JAtAb86C/NYhXRxNoDmr44MZm/OVPT8ECkC2SfrMJmwaNRkPPnZxn9Sa/JmFtzIORpdyKetcaJL2KA20BSKKAxUwJ3VEPppfzKBoWc746Ih7sG4njxnUNWN/sx/xZErXS7+WRmJSxoyPsRgPXzwkQcFTYo2IuUwFF8XpcPRdMEoCv/8amFZ/NpcjbFXEtA4jY/w4BWOLftAvTv2H/uQRg7Vt4bqsiEa8Lf/axq/Di/3Ubehp82LV3HEG3gmzZQNAto9FfMTqtQQ0NftKAzL8OEK+yLaShx+6b4h/Ycr4Mb51cviTQYZTmeWtqvKw0oydbMuoarfNJQKvdvAtlHYfGK2mCq9qCeOAHr9s9LXpdD403WusbvVgT8axodBp9LjTYI19agxq2dUfwpx+6El/58XFHPwx/fHNAddzv6jvF1yP4zYJ6zyaIBx7zufC1p07hDx89tFrIqXe9fgBER771yauxtYvUpmhab2aZjPnheSOrJVc2UbaApWzZwcIyvFipxXjsuthK2Y5syagxWgCJwmg6nqqPYQH7R8kARTYfTLcQ0GTsG4nXbTWha82nSjizkMMzJ+YwnSzgxnUN+Md945Um4qCGD/Q31UDaeZBEumBgeJEYLZck1JQIBtr8LDIi3KXkjxvXNeCnn78J23tjuLWvAQ/cvg6b2kl0eGA0ji+8v6/GaeaxGZkiAZdcvzZqp9Mr11kygblMEc0BldXBefXMlS1HiSHsUfDAP7++KunCt8tw/QAVZVsL4DkAEASBwl/O0dcA9AA48Jae3SrLvVs68MW7rsCnru8ixLB5HR57Yq8mi9ANEwfHkzgzn2G0SH5VYnRLC6kCPC4JO29ai49sanF8d7ZoIFsy2aYb8VbGooioFF01WcRdG5rg08S6ta3BzhDu3NDk2LwFACG3fEmLREAl58/bUx49CQAvc43P9DfPl9XLFA3IkgAB9dM785kSDo4n2aiJfSNx/PG/HmHTZuuJV5XZ/QYuDhdYHRkGNAWvTyQRdMvYPbSwWsip94x+RLwufPu3tuCLd13BJg/sH42z2VGqJNSMJjmfM8anzRr8Kh64vRe9NjUXWTuVz/JpMioBTcb+0QRKNuG0YZHf8yhV867s76nu86p3bmRmHGGNj3gVzCznmFEeaAvgJ5+7Efdt7WQz8JoDqsMwRTwKQxACJNWYKRoO+rGh2Ywj0qRR36GJBJ44NA3LsrBr7ziOTC7jzo0t6Ai78dLwEn7vn15jtE71riNXNjGRyONfD5LsibvOiJfZVCXK5M9pXYMHHx9ss48jke1EIr8q6cK3xXBZlnUQAARBuAPAMv0bwPPc+ztsr3KYe/9XUiJeF37n5h783Z5ziGfLcCsiRpdycCukqEp5yPJlkz34dLHi2ZVM4Oh0Gk8dnVmRJNYCSZXd2Bur6byXBIL0Wd8cwLEH78JvDLbX/YZTs2nHpmyBcJTVAxhXL5yg7dVaqIxp4LOUqkQmKXtcZBIrHTUS0GT2m946aEAAcIkCppMFDC+Q4ZfVfWD0ewBgU3uQ9ftUN21Xy/BCLWGwSwS+9vGNNQV3VRbhVUUuDUKh/0Rhk3kdt/Y1rMocoveqfjz0iauxJuLB1u4ImRIgkqkDY0t5eF0S6FZeNKwL1i69LglL2SJ2n5rHwfFl9DR47bVDiG93bGlHtw2i4AeHfusTV+PWvga8PpFkgIeiYTlSXgBZ2xRQAhAYvE+tIE1dkuAAhqxt8EGTRcSzZTx7cp69nsiVMbqYxc5dBzC6lEPEq2A2VXTUruO5MhTuej2KyOjHKMJypXuylC3hoefP4KXhJYQ8xLn6T98/yFKrs6lizUQJr0skEH/u66jPma8iCvBrkgMhzGcpppeLgAXsvLHbsYd8Znt3zXleqlxmzngL5atPnmTzhnoavBheyCLkkdEa9ODETKpmTABQ6dDnhc4k8rpEmKbFFlP1bCAqdNTIA7f34g/e34d4toTPfO/VuukN2iFfT3j2+ka/Ct0wsJzXoQjOseoAl99HJUKh383Xi+6/fo1dI7Dwsc1t+JMfHWPF7Oonq4gCA4nwrNq04x9wjpmQRQG6SXpsPCopyq/UkEylwefC2gYfAAuDHSH8r1+MON6ndY3+Zh9j5FAEwK3K+NYnrsYtV1Rg8ZeZMy5dKNsMFfoMeeHZ16ulNajhw5ta8YNXx9k6Dmgybu1rwEQih7lUEVPLBbYWu6IeqLLIAEGUQf6bzw7h8cPTdXWBrk2eEZ4Krz/037xe0te8LpHVn+k4Hbq2qtf+Siw5PKOOSxbQG/M6WGICmgxNFjGfKcGvSUhXjU+pp2NhjwJVFjGbKjIdVkQg6FYcaVX+WJ5Fwy0LNcaNr20DZO97/g9vId9zmTnjnS+/e0sPHrh9He6/bg0kgSjlck5Hzu6uL+i1Nalq9XRJlcFufreLLRK/JjmMlscloL+Z9IXNpYvY1h3Bp95HPB0eQOB1iWgJkD6abd0RtIWc+W5eSrrJvLD5dBGGRRSq2mipHD+hj6Oh1mTybwohHuwMARZhld43ksDXnjpV12jRGl7ZtNi/+b2YrytRoyVyMPuWkBv/8Ntb0RXz1NQ7VElwkLRmimV2Pn+3Z5S97lclDLQFmEc5yaVlyhZJGf35kydWvHeX5eLk3i0djppLtdEiPVK1RouhVpMFFEqGg4MvVdDx+OEZHBxPsnQaNS6jSzlmtAgAI4KI1wVNkZDM6zWIW1WuRN3UaFGV9WkibllPmNJpjxYA5EoGO5byLpa5a9jUHkLAXenxqjYm9YwWZe3wKCIEAH6X7DBaokCum2ZzeKNFr8lCxQDQxuhErozNHSG4FZHp8G/fsBbPfOEWRyOz2x4yCTipn/K6hf4WP/yqxPaKkm6wDIYsCqsC0LhsuN5CiXhd+IP3r8e5xQxOz2ehmxYEgSjPtu4IHri9F3dfTXLCK7kgPAycEu66pMrCpD0iuZLl+JJ82cBjByYQz5YQz5YY1D1bMjGTIgjFsmGel8lZt5yLNJmvjFfgFxJ/7pRlwqdKmEsXEfO60BbSsCbiwcHxZTxzokKXQ+sFFogi0c2IR0bWQ0nSVzwuEW5bkVnTKAgs+d/9/Ss4OJ6ErptMcRWBpFj4IjhP8Mq3AKSLBmP5p+faFfVgx5Z2rG/yQpUEbGwNXGaKf5MS8bpwa5+zmdvrEpnDsSbidrCl0HInP1Zk99A8TtjPShFIFE3Tdh5Xfc0SQKIL2o93eJL09FVHVLzRlASShaDw80zBxJI9s4oCJXh+waJuYiyeg0+VHGn0/SPxGrqqlTKh9Ozp4bmyCQvAUq7saAXhm6MBksqnNTT+mtY1+RDxKrhzQzN77WdDCyySa/S78NSxGYwuZrFlDQ9YIVPG64mmkIxQi+08XNsdZb1tA+1BDK4J1z3uUuRyqvBtED5lSIWQvYqYSRbwv4/NIlkgY8o1WUJBN5AuGhAFoniZOsMTt/dGUTYsR0jOpxlpumFbdwSKJGDP2aWa7wBIM+SZubTDm6S20q9JMC04yE7PJ4oo4IpmH9wuUvBebaETo9+oyAAuNHavXqoWqKR8tvfGGIs+QNIgD9+/BT0NvsupwjcoKxHvni+N7ZYFxPwaJhN53NATxZ7h+uubSsxLSGwJ3ZiAr3xkA77zi3PY2h2BJot45sRcTdp9oC2A0aUcUgWdNPVXLQy3DHhcCjJFAkSqJo9WJdKPWO86LrZNg3xWgGFZLC0nC4CrDsEtTUfSEkS91GDEQ4bM3r2pGePxPE7OpGvKFQChPuuKeOtOqK6WgbYAsiUDwwtZG0bvQkfYg73n4hBEAR+4shGff38fIl7X5QnIv0oSz5bw7Z8PswmsAkiPSPXmTicHU9mxpR2fuLYT9z38ipNjUBHRHnZjOlkh3qR9Wfz4eV6qFzFlyeaZpmnuutGvYilDUoP9zT5MLhcgi6gZYulRgFzVyJDRpRx23rQWPzk8jelkAR5ZZL04KwmdRgzUTj0+73Fc3aBevfBixK9KMGGx3w+4JaTyBmShdl5R2KOgJaDixGwGbSENokAGHN7a14Dv/vbWy4brDcrwQgZ/9NhhzCYLiPlcTAcavC4GJPAqkqMfkhcBwL1bCADpqWMzLBvRHFARz5ZQMixHnSziUVAom4y1o54okoCQprDf72nwYCpRIOn989TcgMpaHGgLIFXQ8eBHNuAbz53GETuqqyfNAQ2NfgWn57Io6CYkQYBLtmAYtc4arXlTCWgyGvwuzC4X4dVkbGwN4OenFxyGsfqc+VrihYyoKotoDxMngRpmWRTQHtYwupRn+lvdV8nLF++6Ar9zc8/lGtevkkS8LvzuzT0M4mqB9IhQ2hcqlNGdMtk8dWwGv//IwZqeq1zZxOl556gPmiszLGBdUwBeVWToH2q0eHZ4+ht8L8n6Rh+6oh5kS2W2kCljQL3Jy6ZVWU5Bt4SxpRzu2tCE+67twL1bCFVVtdHyusQaBJ9bllitr3pFCwAjXq2WNREPq1eVVthIvKqERr/igOo3eF3s9ygTAU310BTO+iYfo8sByL1L5MqsrmBZwPU9UWzvja02i8Z7Tp44NI2D48uYThaQKugYsPuOePTbmphnpcNhAfjx4WmEPC5HbSdfNliqnd+047lyjdGqRrWXDcvx+8MLOTYfq9poNfhc6G/2oTmgYqAtgI9uakFX1IMjUyl8cmsnbrmiEYlsZbp3V6S2rjybKiDgVkmkJACGZSFfrp9h4I1WR9iNVEHH2FIO2bKB+XQRLwxVGy2BMftQ0U2LpWMNixjDaoLp1qCGgEZqjKOLORR1ixkQ3bSQsMEb1Okr6vWjY0kgM8zejFw2XG+TPHZgAgvZErqiHkTs/Hu2aODGdTE026SjmSJZCIZJFni6YNSwAlS3NPlUCR1hN3j07omZFLJFkyEC6Vs8Ozxf2/GqIgY7Qzgxm8HoUg6ycHEO0ZY1YayJeHD3phYk84Qz7dmT8/jyj47hoefP4tRsJXpURFLDypZMrI15HUZhMVtG0bAQdMsM0KHap7Cu0ctQYVTo2Z2YzbB6Fb0vLhEOZ0AUgPl0mW0AQbeMBXs2Ey+W3ehJe+lkSUS6YKDRr8IlOWt9ADH4jx6YxDVrwiyff1neqJBnEfLIGF3KIW4DDHiy58ll0gdVb0Q9QIALj+wfY4TLLklYMc1YLSLOH3Hw9Sda3+JPI+ZVcGI2g9lU0WaQmWJ17KVMEV/+0THWO9XoV7Gpo7I++atZSufRHNQYEKlePZmdk/3mrX2N2N4bq1mf/PcWdQs/P+2cAN3T4GX9bgAxhnzdrS1EMjGU65HeH/5nkgUdA20B1tJDeyT536Z0W28WyHTZcL0NMryQwQun5jDYGcJN6xuQsefgnJnL4KHnz7K/+d6RlfSIdtJTyRQJGIKPSi41Ds8WTZzjGAiSttda3a1fLWPxHMbiOTx5tAK4aA+pbCAlv3GUTYuNLH99Isk8Y74nJJnXsWTnHm/tb8L23ijr/4Jlseiq3r0J2RvKXVe1wK1IbLz5XRtaGGqtNaix4XiDnUGH8QQIECZXttDT4IVua+p8usiYBXoavGzD8ti7WfVsr8ty6fKp93Xji3ddgf/vU1txQ08UjXa/FH32ikgiYZ7vDyC9W/waTRcMpIs66b/jFgkderqS1IvVBVR6BXmjMGbTNNHWDwCYTFZqYzf3NbDoZiqRx8MvjmDX3jEWvc2li3jxTMWIWKiw35+cy7KsC31vpfOjDBVhr4L+ltpoxgJBXtKJz7xh7op68PD9W7BlTbimN42KbljY2hVmGZn1TV40B1RUqQzcLgkF3WIkAfxU5oG2AP7u/i3oafC+aWThZcP1Fks8W8K//+6r2DeSwMHxZex6ZQwlgzxguiB5SHe11FO4asLZnxyZcURm/Lv9zb4LDm7UZALTr14cHuX8huv6nijcikh6p+zfMOqkrwUQr7TaA1ZlwTFPiT/yF6cXsOfsEoYXSc48WTCQLRkOQ8fLYraMW/saMJsq4KXhJbhdEr541xX4zx+8kqHWFjLkHp1bJCSn6YIBWQRu72tgozYCmozP377OMXqcRqQ39ERZ0zQ1V08dm8FXnzxxGV34BiWeLeGxAxO4d0sHumJe6KaFg+PLaA6orI+ILhHdJM4LXc7ZklFDOg0QR4xHiJbNS5+eZsHJkiEKJFpK5vWaSQVUT1wSMJ8qIF82EPUomFx21nvo+q5Ouxt22i5UZxYcf5zj/ASSPTg6mcQj+8frHsen+FVJwN2bWnFDTxTf2LEZf/GTE3j4xRHIYkWf1thjiQBiYKe48y+WLdx3bQcKNbdbwAO39+IeGx3NG/TxRA4dUQ+e/8Nb3jSy8LLhegtleCGDe7/9MvPS+ABGq9qA1zd5a/o3Qm65rsLxdSKe1Rkg3pSDy1CoFGGrvSUqdNgeY96gvVuZElwrHNMc0PDUsRnkyyb8qgzdtNjwP74vh9bXaLRVncLg/+avdaUBgfVeVyUB91+3xq41kW+cShRwbVcE33t5BM+dnAMAlI1KL13QLcPrEqGbwJ7hJeZZpgo6vvRvRx2pxF+/ugMb24LYtXfcAXXWZEL2+vCLI6s6NO+9IvFsCZ975CC+9tQpfPPZIdz77ZcZSjZfVYNa3+hF0C0jWzJq9MTjEljNkkZJQbeM/uYLp3Cryq01UTiVmNfFnDOfKrP0WFtIw1y6CFUSUDLIbLuD48ssc7CSyKKTaSNV0B21K14sEJ3nI6KCPRfrhaGFmuM0iYBZeLBS0bDQ3xrAP332Ovzz/nHsHlpAc0B1GNe5KpYe6gwHNBlj8Rz2nos7BlIqkmA/LwH/+YNXYntvlJ2vAMI9unPXgVVx6i4brrdI4tkSdu46wNgyBtqCKBrgvEXnBkxZrBt9LqZ8+VKFCWDHlnasbyQeUVvIjbs3tWGwM4TeBq+D2DKRKzl6XPg+Ld5b6mnw1kxFpWKYRPGbA2rNKHT6zbOpAkv3ZewRFbwC0dQl3WPoZy0Q1FWjj6QotDpcaBcj/GFFw8LQXBpPHJrGvpE4JBGYXM7j09/dj4eeP+sAoHhso57M6xDsWl5RN9Ec1Jhy0OtotEl8nzkxi389WGuYCrqJoFvG/detWRXqp/eaPHZggrVp/Nvr0xheyCKgyRjsDOLX+psdKXCfVh8aLwmkh5E6Grf2NaAj7EYyr2NjWxDbuiOOdBjgdJ6CHvJePc5BfkCpX5PZOornyijohHIpagOu+MhlJeHtrW5aaLWvjQKmDLOSNqyWbMmsDHO9gMoUDKBUhd3XZBHXdkUQz5bwxOFpAEC6WHbcGxq98n1zIXel52vfSJzV44FKvXxmOY9EroSyYaG/2QuvS4IFUmoYXsjic4+8/qaN12XD9RbJ914exfBClnn4iRx5cNRbdMsCY3TmZT5Twg09UZu3jbyWKug4O59hTYKn57PYtXcM8WwJp+ezDlqkZF6voXoBatMN82kyKqW/2Q83F/11RT0YaAsgmdfr0kldZdeOeHHQ1YA0APNMAYoIFoUJIBt+e4QwulMmEFUSmWFe6Zx571i1z9nGUmAqkWeGnuosjY7470lx98ayLIY2nE0WWMQZ87kw2BlkM6NmU0UHmStQ8eyTeR1tYfdbNt7k3SDxbAnf+fkw7uhvYk2ydBhoqqBDNyw8+tokFElEU4Csk0IVd2DEI6PJr7JsA30ez52cZ5DsZ0/OY99IHLOpIlqDGgbaAg7+SZdIni3lSASIg9UV9WDnjd34+NVt2NYdxt2bWnCOY66nQVlBN6EbJmRRqIHq97f4GZPNSkNZ6WRyagDaQtqKTb688BmWlcAq1fP0CrqJ3/7ufnzme6+ySMwlinV1vNHvIgMrXRKW82WWMuyKetDbQHSUN/QvDS/iK48fw76ROE7MZhlCl6Iv95xdfNMZiXfsPK53g8SzJXz7Z2dxeDLJNlHdJLN3wh7F0eNQze/ldYkoGSbKBvDMibkalNPpuTTziN7e6XQAACAASURBVFqDGu7ob3KMDQHs6cIrrPvql6lxG4tnmUEMugmqi7G9S85i+NauMLpizqZE2vtF/1+dyJME4KZ1DXh+aMHRoHlwPMm8PcqrNh7Ps3vR4NcwuZRjDcM8IwFQiVjLFkF6TS7ncWAsAZ8mIlOonIUqCY60H50ZpIj1WTkAQBFFNh2ZXoNhkZpcV9SLobkMuqIeXNcTg1sRL0dblyjffPY0du0dw/BCBlc0+zERz8GyKmtnaC6Dbd1hR3N9NU6oPeyxOS9JhHDnxmY8emCSoUwlgbQv0J4qOtOOCt/3p5sE0doaUDGVLGJrVxhul4yHXyRN0bIoOMAehp0Ad8uEuJmnqaIN7Gfn09AUux5Kh8vaPYJUbuiNIeRxMZ7FxUwREa+MeFZHzOtCS5AY5uH5jE2CW0n7exQRLkXEn390I/7b06fqziTjuT4BggLk+UoTK6AuaV0ZIFRPHx5owdRyHqNLOZSNChExJTkIajL6W4IsetZkwh9aNiyoEnD31e1vWkcuNyD/EoQWmHMlHQ89f9bxHh3IdnB8GRGPgkSujIBbhmmS+Vkht1y3R6oe2ShQ6cLniSx58s1qkVABEnhcAn5jsBOaIuGRV8dqIjOXCFzRUmmCdstAXicNm15Vxp/fvRH/5fFjdZsM+Wbg/mY/RuMZ5EqEa1AUBaQLxornyR8b0GT8w29vRdCj4BPffoWhsShxcLWokoDbrmjEU8fnau5RR9gNlywyVvi2kMYUnDZNNvoVmKaAxWzJcR4DbQEsZkpoDmroCGt4/DBBTvLNml1RD/7+09cyOPzlBuSVZXghgy/98CjKhoEz8xmkC0bdwaFU6DNUJRFBj4L5dBEuSUDALcMlSTBMy7EetnaFcUVLAIfG41jKlnFDTwz7R+M1M74G2gJwu2T0Nfnw3Ml5TCcLEADcuaHJsYa2dYeRLugYmk07nEhZFKCIFlZC2lcT5NK/ZVHA2pgby3mDzRO7/7o1OLeYwZ6zSzXHUWIAumZVWURLUMVkogDdtJgDFvEq6Ip6mUFaiaC3urG/HqsGFcr4QaVegzKvy4OdIWzpiuDQeAKbO8M4MOqcV/YrTbJrD8NbcfT4hd5/J8tjBybwtadOIV82sbUrzNIWHWE3WkMae4jxXBkW7HRe0YRpEYRRvcnG9YyWLHJkoYuVER2G4YwweOFNU65kYffQPO7b2oG7OK4yuihKJjCyWFF0qpxxe2T6f3rk4Iqd8Xz0cm4xw+hosiUT6YIBVVrZuPLH+lQZr47G8Qf//DoWbGOyrTuC69ZG6h5bNCy24bgkATuuaUdAI/dzIpFHhovS6H7uVSVkiya8Lgnz6TJjms+WTFZTkezRKhtbg4yPjh8BDxDOyb/4yeoQ7b6b9QMAvvL4cXsAI0FzBt0yPnBlE27ra4AkwoGok4TKOi8aJgp2YythwJAwnSzUbLr7RxM4t5DBkak02sMePPraJCJeF7Z1R9DfXElBd8e8mEsVsGvvOBbTxImxABwcIzra4HOhJaBh30gCJ2aI0aIq1R5yo7/FX2O0+GCQEkrzf0sC0efT8zkkc5Vaz+6heRalVEoIInyayKJD6mgVdROjS3m2L/g1FyJeBfFsGRtbA2gNalBlYcVpydRoeV0imvwqq0HROm5/i59dZzVGhF/zikiAKvmyifVNXgQ0GZPxHB7+xTnsH03gySPT6G3wsfq5LAKzyTx+dmoeb0beFsMlCMIgANjjxpfp3xf7/jtd6OBItyJi/2gCn7i2E7f2NeCujc3YN0LSeQNtAUcjIzUvrUENy/kyY2vmzY5aBVzg+0l4b7OLg7FWN9ZWy0Qij//wD686p/1y7xuWc9V6XSIjqWX0Utx18Pn75oAKl1hBKfL5d5dS6fM4n/hUCV976hQjuM2WTNx2RSNGOEO90neUDAuPH57GRCLPQDBNARUdYbLhlHRy/pR7kaaVFO4LDdNCR9iNGXvjePzwFPacXURH2M1SSjTFGfYoq8Ka8W7XDwCIep1Viiua/Xj0tSkcGEvAMIHlvMGAM4ZF1oFPldDkU5HKGwzdSjdyfgpyW0jDzhu7GQDgtTGSiTg4vow1EQ+mkxVj8eTRWRaFUX8p6lHYnLWiTkioqQggdEUP3N6LxoBal7vPQKVJWbaNbkfYzcAdtKkeqOinRxGZE8ireV43kSmYjKSACl2iIki9J+pV8I17N+PWvgZoLgIcKerWBSegZ0smumwWkkzRwHy6hFv7GuDXlLpN2NXlubIJ5uiNLeYcjPQAeT6PvjaJLCuVkN/8wmOHznteF5K3K+K6D2Q8OUCmud5xie+/oyXidbEc7s6bCHkuhWZTUMJsqugwPBZIOuKrH78KYY+Cot3Ex6+dom6xTv16oojEuMk2fl29wLA9KqNLOfz8TK0HpEoV4k5qdLIlE2XTGck5AyeLHdvoV9lmIAo235tbJkMB7YptV8zDBuDxOkb/OWcXi2ltrdHnwpNHpnFqprJhUAWr1x9NC8LU882WdEwk8jgzl647tl0SAJPjbJtNFTGRyGM2VYQqi8zzp7n9ZF7HRze1YVt3BOubVo0x412tHwBweJI8v6Bbxs4bu0GfOF+3pFGBCBJ5Z4oGSqaJG3qiDN2qSAKq2wtv6Ikh6lMZgpbXsycOT2M5T2pdpP2BkOHe1tfA1mGmZFQAG7YuxbwKRLuZ9h/3jePIZJJlTnhdEKv+T/3BiUQeLUEVAU2Gt85C5VF/ulVh5PBrMlqDGtIcnL4j7HYwV+ggrDGff/R17B5awFNHZ7BjSzu2dYcRvgBIKOJVMMINVFVlEb9/2zpssmm2eHFxEZwsEgSwLAA9MQ+hvuIsHSEErxybzOvQZBG39TUg5CZG9s3I22W4QgDi3N/RS3yfiSAIjv8efPDB1TvLNyHffPY0Hnr+LA6MxvHQ82exc9cBPPziOUwk8vCrksNDpDKXKuJ//XwYCXuR6qbFNvP+Fj+CbhmJXJmF3VRh1zeSEL1sEuN2YiaNwc4QglzKUV3hSftUCXdvaqk7loQuxKBbrmlydlX1nWkSMW40LVc0LJydzzCEomkRo7ec15EtkQGUQIXzDXCmICyQvHmyQLzVHde0ozmgYT5TwpGpVF3OtguR1ifzOoYXiHdd5gwqL4ZVOY9fv6bdAQXmOelmU0U0B1S0hTQUbATZvpEEvvL48fOfxMXJqukH8M7UkW/s2IyOsBttQQ1PHZvFvpE4tvdGWVpdANBmr3MTZDq2aAMsYj61MqPNsEABfFRXXjg1jxdOzeOuDU01SFTaslDQTUg2ZJ3oTAoFnaSGW4IVSDiNJhazZTYqxOOSsHtoAR1hNwbagpA5w+WmXJnc+qSQ9tPzWRaRqLLoWFt+bk6cJJCNuS2kIV3QMZ0sQLaNqiwCv3dLD5oDKjwuAb0NXsS8ClRJYPXBiUQeL51dxL6RBGZTxfOyhMSzZUeEVNRN/NXTp3Df1k42O4w+kxKXldFNkknRLWB4MYe7NrZgW3eY8a+aFpArkazL+iYvZFFAwR7r8sL/eYtj4OobkV95OLxlWY7/3glKCZB8NUBg1dt7YxheyLJcd3WDoCIJaA1qGF3KYdFOUdAcP91Ep5bzzNu/48omhD0KyvaIhNPzWZhVBfiFdNFhHKmnVJ05yBQNPHl01gEI4R1CSQB+rb+J/b2tO4LtvVEG5KAbCOkVsbCUK7PfyJVNRx2rHuXhSswXqiSwYycSeZxdyGA2VYuUqhZFcKb6LiSanbJUqg6JeRUUywa7r5Sz0M3lcWbtabq79o6xCGxtzAnhfyfIO1FHBteEsSZKJvZOJPIExRd0Y03EjYBGGu2nONTfyEKWreGnj8/URYDSlbSYLWHfSBwnZ9N1AQc9NoQ7VaiwXlAY+NRyAQuZWqeSimmRXsjmoIaJRB4nZ1PsXEShNp0PEBLdjrAbd29qYU5nUTexrsnPiAeydqTp1yQYFpmvNbVcQJD2cJYp4hH4b0+fwmyqiFzJwkQ8x7g9/ZqEHVvacUNP1IF65O9BzKsgZNM+uZXalhMAeH0sjj967DDG4jkMdoagyWINzL6/xY8GrwteF6FTW86XsG8kgQ57Rh1/X0/PVWYPDi9k8b2XR1e8vxcrb5fhWgZAq+shANXDcy70/jteKK1QzK+yWkoyr7NNXRaBjjBZxCFNQbPt5U3arBp8n5DEgTB8qoRj00kWlUkCWZZsXD1taC6WEfEozNsqWxUwgQCCKuqKuB2TgqlQcCGdgjoWz2OwkzRvfvWeq/CtTw7igdvX4YHbe7GeY3luDqjYsaUdMZ/qqN95XSLaQhqqwW1tIQ1+O0KrXojVtbnXq1BJrUGNGRN6PwFAkQXWB7OCTayclyqyVGjZcqZ8FrNlPH6YbJCSCLjsugS1w7wad4Td2NhKUivaBWixLlLe9foBwMGpR8hoJ3F0Ol3DkqFIzrprUSeUSN2RCkO8Jov4s49tZBG+KBDnDQCb8K2IJNVc4LroS4bFUoRUskXT0ctYzw+K28aNn9RAwVUdYTd2bGlnZYHhxRwmEnk8c2IO08kCmnwqgm4ZHWEPCmXS91UySXPvbX0Njt9JFnS0hTQMdoYw0EbWWMxXycHxepIuGJhK5PG3vzmI//s3Bx2MNfz3tQY0tIU03LulA9etjdV8pmSSemBrUMNUIo/5TIllXCg/6KnZNBayJWRLBo5MpfDEIdLEfHB8Ga8MLzkyNIwSi7305lGub1cf1w8AbLH/vRbAcwAgCELIsqzlld7/VZJP3dCFl4YX2cydbd0RHJ5IMKCCblYaYxeyJQbzbo+4Mb1cgFsREM+R4ZGGWekzyRQNHBxfZpDUeM6p5DSarwepXxvzYHghC8Mi9YPReH1EoCwA9wy243du6cFf/OQEdg9VSEB/8OoEDk8sI10oI10gBLWvT5BrtCwykqKgm/CqInTb+GZLJrKlivdMzz1T1JlBphuTJotoDao4t5R3DHrkl/q6Rh+KuondQ+Q7BVTqGJSYOKDJeF9PFE9zkOZq4VMfLnFlIAsBC1T68Oj5qLKIviYf/uYTV+OJQ1MAALdrVXzBX0n9oG0gfU1+PPjj47ii2Yfj0yRtPZsqoK8pAE2R4HaJ+OjmNhTKBjRZYDpBpXpsT1vIg4l4zpFKThV0XNkSwIjt6BV0E08encFHBlrxxJFpFMomA9u0BlXMpAoom6Shn6bGKAS8oJvwqRJz/qIexWE8+d+l8PKSYcGnSiiWKzyItHfxro0t+NKHrsTwQgYf/39eYnW7fNmESxIwZxu9p47NAKisqeV8GT89StarIgkIuxXMZ0qYWi5garmA9pAbg50hnJ5L15wP1amXhpfwvZdH0NvgY4Ai/tzKhsVG8ex6ZYwZQ48iQBBFx5DY6WShplma3lPe16UkAgBxUnmkcWtQQ8yn4MhUGm0hDR+6qhWfel833qy8bX1cgiDsBCksr7Us62H7tdcsy7pmpffrfMdb2qMSz5bwvZdHAAi4eX0D/urpUyjpBq7tjuK+azvwg1cncGA0DkUS0NcUwK69Y2j0qyjqBn6tvwmPvjYFWRRw07oYGdoY0vDogUkMtAWQsCHmVBSRePcdYcJgHvEoWMgUYVqoCyOv11tBv+NC4pFFlC0TvKO7vTeGf/zMNgwvZHDP/3yJIaNaQ25HI6hflbGuyYfZqobOnpgHw4vOnpl6Qg3Mz09XxoXzzcX1BkLW2+yqJeiW0RbUmJIC9XtV+NfO18tSc9528+gDt6+DxyXhjv4mPHdiDvdu6WCsGW+mj2s19MP+3C9dR0ij/TCePDrNRs5caITISkMG6TPwukSEPK66jbRU+EGrdGgpFX5y9cU815hXwWK2DFUW4ZJFpDmQCG9EALK21kS9GFnMOHofSZN0AjtvXAvAwjMn5mr6xvghqRcjDT4XYAGpQrnGsVrputZEPJhNFVhNVhZJCltTRJyczaBsWPAopKk/WywzkBLtBbsYkQQBsmDhfJeiygLuu7YTu14Zc0wGd1zDL3sCsiAInwUQtCzrfwiCEARwu2VZP7zUH1xNeasMFzFYo9h7bolt2tWKsr03ynowgFqWia6oB2XDxNRyAU1+FZ/Y2olEroRdr4xhsDOEg+PL8GsSOsIe1hl/seISgduubGLRRUCT8bGr2/CcnZoAKh4Xb8xWGksPkAbOr/36gCPiGmjzAxDqQoB5jxVwKijfyFtP6m1055sqe+eGJjx3cr5ubxt/3+l3CCBwYaqg/c1+TCzn6lJhAZXUkMqNQ+fvFW2UvbWvAQPtQTz0/Fk20ZWX90oD8t88O+RotNdkoHB+u1UjXhdJSxfsxdnkV/Frdm/h08dmHAACKh6XAJcsIZ3XcfP6BiznS4yBhacu6opoMCwB6xp92D8ahyQISJ7nBN0KoBsCDNNiz9wlkhQa6flzrpvWoIY7rmxCoWxg/2gcN62LYddewtDOr22XSFpVUoX69GkXI9XOaHNAhWUBi/aE8sq9IeCIaqGN+5RRppqBBqg4i40+FclCCUXduuBU5Naghu3rYvjF6QXMpors811RD9rDHuw5u7iqOnIpeY1hy7L+BwBYlrXyzOl3oXzv5RE89PwZh9G6otk582ZsKYe7N7Wgya/WGK2AJmNrV4R5cXPpIh56/gyOTZHbqNs5w3TBwImZtMNoRTwyGv1qXdQfld6mADrtfH/QTRaipkjY3htliCZqAyJelTXV1jMLmiygOahh/2gC9//9PuweWmAM2Uem0g6j1RxQGeM2q7GB1OR4r5IaLZ5pm+9LSeZrR6icbxR6QFMcc5eooYl6FDYMTxQq33HvNe344EAr+/xUMo90wbD51yq/TO8rRRYqkoSdN61FR9gN0z7/bd0R/PlHN6KnwYvfv20dPrq5Dbf2NeAODsDyXpJ4toS954he0KwSvw/euaHCPxh0y9hxTTvuv24NtnVHHJN/Ldto0ecxly5i194xHJtOOowWv/ZzJQvLOR2GBbwwtIBpOzpbsD+vygKaAxpG4wW0htzYPxpHpmg4jJYiEVb2/hY/Gu3aUb5MuP34FUj9Lst0TjUIuknP1O6heTz62iRGl3L40aFp3L2pGc0BFW5FYki7kkmQhbzRopMXKGBiW3cY91+3BusbvXXRgNRXo5B6SRQwly46xocIIEbLXwd2P5cuIuiWkSkQBKXHJTlqxYOdQezY0oHtvTG0R9ysv5NvvGbnzv1975Z29DT42LUZFqmRjy7lcG6BUHatpo5ciuG6RhCEewRB2CwIwj0Arl21s3iHCSX9jGdLiGdLePHMIgAyGqA5oGJ0KYeXhhfZ5yWBIN92Dy1gLl2sgY4H3QoefW3S4dkENJkNiXO7ZGzrJvNpmgOqY9JrPKdjPl10eH4WnIvmxEwKTx2bRXNAZd7d3uFFPPraFONF62kgqYK5dBHtdtG2uhxDctUWOy+apqHMBvRaqXygvwlhr5NpW0eldgdUFthgZxA/+j+2M1YQ3bAcfWbVZqrR52KTiykii4InfnpshtWcBFQ8waVcmfXu8MHYMydnGY+jIlWALumi4YgEqx3KZF5H1OtiQJt0wcB1a6P4x31jGF7I4i+ePM4i0udOrFxLe7cJ1Y/hhQw+98hB5tCZHMClNahh541rMb6Uw+hSDv3NPnz6fV344FUtePzwFPaNxBkXJVAZT0P9FQqYODZJQDl02UVth8evSjXgG7Zp2g+/qFsMibpvJF53VlfZsLCYJetGrQLWeBSBAQvouqfnZ4Ho1Hc/vRXbe6OOtGeqoOPFs0uYTRUxmypiiQt9Yl4Fd29qZk6cYZK0/NoYcbg2dYQR9io4PZ+tmwY07B6vD21scVCWUSQmPTeArO96pLuUIi5tR35eVUHQLWOgLYAtXVHs2juGG9fF0FuV1jMsoK/JB5cENPhIg7IqCbiq1Y+Pbm7DvVs68MDtvdixpR0hj8xS/9PJAvaNJFZVRy4anGFZ1tftdOH7QaKvL67aWbxDhBaXpxJ57No7hqlEHsMLGdZomC0bjPWZTzPRjbM65HbLAvK6xeC+XpfsmPOUKuhwKyIxVgE38jZChxc+jx3zulhfiWERCHfZqjCw8zKylHX8PZXIoaATpod0nqTMeMWoTgVQoluAQNZVqcJiQAvCLw8vYSKRh0tCzbgTdg/sNOE5m+nio5tasWvvWM29qpb5TAl3bmzB6FIWE4k8siWdRaL8BkTvD01V9jX5kMiWkSmWoCoylnNlLOd0aDJFgTl/Z7AzCEWS2ObrVyWkiwYa/SqaAyoePzSF8ThHe1XSMWZvuEOzGWRLBrb3Rt8zxLrxbAl/+Ogh7B5awCP7x2tqODG/ivawB//x5h48+OPj7P0z8xmcmD3rSCFXOyukdklYIv7rRzbgKz8+jnjWuVYXs2WEbY7PgbYgjkw5kz8xL3mPruXmgIZsqczWsmSvXX7tB90yehq8DiJloAL0oTyhdOJy2KPg/f1N0GQR33j2NNbGfI4ygV+TEM+W0d/sxam5rMOJWsyWcWw6zc6nv8WP/hY/Hn5xBIAdpZynNqxKpJft0dcmHa+nCnrddF7JsFiZACAtKZYFjC1lmQ7myjqyRRNHplK4bm0MD9zei1zJwFjcuYcAwHQyj5IBLGTIcykaFo5Op/GlHx7BV+8ZgMclY3o5j+Wc7uBX7W/2raqOXHTEZRutHgCvAfh/BUG4bdXO4h0ilGOQ9mD96NAUGztPxeMiHsy27giLCKqF3lSe8T2Z1xFyy8wj9auEKihfNvH44Rk8/OI5HJ92Gi1NFh0Kxs+w8akSyhbxtPgNgKZr0gUydRUgi52CGZJ5nQEWyqYzPUbFr0qQuaarXNl0pGuoIp5dyKKomw6jxacDZZtxXbJHuXz4Wy+iM+K+IKOHVxVx/3WdGJpLI54tQ5UExLNlBxUO/acJOiyT+GBn5zOYzxSRK1solCsMCKJ9PXRYH+2T623047q1Edx//Rp0hN2sx24+XcSRqRROzFRY+DvCbhyeTLKIlCKsrlkTfs+MMfn2z4axe2gBXpfkMFrNARWNfgVTywWUDQPfe2XU8T59DiXbGHgUETuuabdh3n7SyG0zw8SzZfz1s6cRz5YRdBMCXCq0CR8ANneEsGNLu6ONIVc0HGs54pFqnExep9aENdy9qQ2KVL+NQeE2X90kJLb/8h/fh5aghl17x7Hn7CKeOTGLbd1hhtDzqwp2XNOOmVSpLlfgOY6pYmg2jb3nSPamI+xGvmTihaH6kYkqAd/5rWvZgEYqMa/iYNOolohHhU+VoMkVSDqNTjVZwI29FQg+QcUKeOj5M4h4XEzPRJsho8BlKPjZXftGEvjAN36Orz11ClF7yCZfg86WzFXVkUsBZ9xmWdYLgiBcbVnW6/TvVTuTNyCrVXim4ItEtoShuVTdyIdGFX5VQnfMy2iVeNZjXuqxMleDIaqLyNXSGtQQ86s4Mpl0jACJcUADyhpd79hru8I4MJbAcq7EUmIXg/g6n3gUCe1hjcHqq+X+6zrx06MzNXRKdCGvxFZNpafBi2vWhPHzoQUkC6WauUv8d3VFPbh7M6ld8eAAr0uES5aQyJUR8sjoDHtxZCqJwc4QxpdyWMyWGIKKeqlrIh42mbr6egXBgl9T2LPqCLthmBam7ebyb33y6rpK+W4CZ9BsxOOvTzqQmryXT59to0/FI79zHT74zV846rW85x/zuuDTyNgcSg5LpafByxj8gcoarx4DokoCvvNbWzDQEcLnHnkde85W0vdUmgMqNEWqiQypDHYGWaRFIzkeyerXJITcLsZ3aVrkmOGFbI0e8feCsqVLogDRssAv4ya/iqWsk/LNqd+VzAqNkKjc0BNFT6MPP3p9qiZr0RrUkC7qrJbOr9Pq8+Nle28Me84uwqdKrIH+yFSqhhWel4G2AGRJrLv/Ve8xQbeM7356KwbXhGs++1aAM66xo6xuQRA2A7jmUn/snSh0XPhDz5/Brr1j2DeSwJGpFPyahIG2IK7uIF5UySARULpIjNrB8WUcHF92eHs8YKDe5kzXKU2lN3K1rLaQ5jhekwkj9GKakn1arClyiVNyr0vEQHsQrUHN4ZlOJwt4/PAMppYLJOoRyGJ76L6r6zYmUulv8TsAC1RoJCeKpMBcTwFaAho0RWbNulRagxr+ZscmqLK4otGi9eF0voxHD0xiLl2sa7QA4ENXNePWvgY8+JENODKZRG+DD11RD4EOA9ANe/aSImI5pzM6nbPzGbYh0DSQYZECdz2jRT5H6mCzqSLCHgWDnSFMJPJY2+DDA7f3rmi03m1CsxFTVU5S2KugNaih0e9izzZX1pHMlWt48nSz0oy6mC1hdCkHtyKSqNqOwjvCbnz+9nWOBmCWXs8bjoi+aFj4wmOHEPG68IX3r3fMjaOymC5idCmH7b2xmuZeABi3DZpPlfBnH92AW/sa8P3PXkdqqrKI2/oa8ed3k8Zm014rB8eTBFBUhy6MCq3vGKbTaAEEIFGNPSrqloP5A7AzLtyxQU3GS8NL2PVKJdVOr1WVyfQCarS2dYdxz2A7tveSBuNGn4ul+ennAWLYW4Mq3IqIjL23Uae9aBAnsSviRltIw50bmhj901yquKLTnszrjqzKp9/XVddovRm5aMNlWdbXAXwAwCcA3GH//SstNF9P89O84UgXDByZSuLa7ii290Zx//Vr2EPjP9vXXDEW65t8zIisRLgqC6TO0hX1MJaFG3qi+PHv34jf3LoGAPEk39dD0gGUdQOoKAOvB2cWcjgymbQH49VvKAaIUh2ZSuFbL5zBP/z7rSumOc/OZ+pC1+mdqVfgBkjKciZVwMMvnkOxbFQURBLw1Y9fhR8cmGQov3pkulS5l84z0rvJr2KgPYjxeA4dEQ/+y+PHsHtoAX/w6GGMLuUgCgI0WUTRRocUyoSXri3kRlfUs2JdzTAtx7Nn18wpOU1RKZKIngYv9pxdhMclvyeMFkAmHuy8aS1iXsLGIoskQlnMlAmXHjeqPlM0sdlyIAAAIABJREFUsOM7r9RkEzrCbsZE7lFEDHaG2ARdujYmEnl88d+OkmZd+ysH2oPQ7I02XTDgVUW4FQEel4i2oIafnZrHp7+7n22YH9vcyjZOmq2/Zk0IMb8TSARUdCpTNPDdl0cx0B7C08dmsJQto6iTNP6f/OiowxBRuYjhxA7xa7LDqApw6gLVOlEgmR0+6gOAW/oaGEVUW0jDDT1R3LWx2b5/ThQzTfcdm7brdnaq3LTIsUGbsSZb1PHoa1N1e0M1mWQ2LAj4y49dhTPzGdxptyjw0yh8quTgWgSADa0BbO+NYueNa1el4bha3tODJL/65Ak8/OIIWoMaOiJuNnIEIIvniiY/0kXCJl6dvugIu3F9TxSvDC/h+rVRjMVz2DcSZ2mG5oCKXMlAc0CFLIk4NZOGCYKGcasyNFnEQraEbd1hXLc2yh7uPf/zJTZ1+FJTenTQI5+SrAec2NoVxng859hYRAD+FX7zQuk9wJm+rJbqPi5KOeVVlbpkw6shfFqKSnVa1aMIEEWxrjHuCLvxx7/Why8/cZzVVHoavLj9ikY8/OIIbu1rwF/v2Hxew/VuSBXSpvt82cRTR2ccICAeaHH3phb87PRCzfrpinqwlC0iXTBw//Vr8G+vT1aAEiJB1a2UwvKqEja2BjARz2M6WbA3fYutZ5aOq3N8g9fF2GhiXhf6mv0YWcxiOllw9AhGPQqW7OdbvU757+X18UKN/W477Uc/QnutWkMaHrh9PT676wBj21jf6MXp+VoQBEDW69oGL77w/j68OhrHC6fmsW8kDlkU0N/ix5GpVE3/aNAt45b1DXj8MGHloM36LglQ5PrNz/0tfsLraFWuubpRmr/+uzY0ocGv4tBkEolsCdevjTKwiCQAmzpC+Pq9m2qajevJG9WRC6IKBUG4HcBfgVDLBAEcBPC1t7v5eDVkr40km04WcO+WDpR0k9EXmRZwwp4BFdBkDC9kHXnoiUQeyWOzSBV0mMOLaA8TT7KgE54zahRSBR1rIh6YsKmJAJKHtvfr5VwZDz1/Fi+eWcTG1iBy9tyaZF5Hc0DFTesbsOfMYt06VrXQPcME4RTLl40ao+USyZC9ajEBXL82imeOz9WgvarpXYJumcHRVREomnBQ5FR39FdHcBYoDdSlGa3BziAmEwVm7DyKyGDU1aKbFefiF6cXYFlAzKc67mOubCGgVVImpmVhPl3CYGcIf/epaxHxunB2IYuHnj/DalkAEPWpDoaMd6NQg/XimcUVU0I9MR9GFnNIF3UcGEvUdXpGl3LYeeNauF0SHj805QRK2I/OsEhKKuxWmLEByJw03pl08t+RaInXSaDiZC1kSwwZqykSXhpeQqNPgVsR8eUP9+MnR2bw0vASM1pA7TqlP1ftlPEOkVsRkOdygfWYMeheMJcu4vM/OISwV8F8mlwnb7R4ijOAtIzsObuE/5+9N4+Tq7rORb8z1ql56rl6VLfUUktqidYIEgIx2BAwssGAr+Mn7IQn45vnyE6unZjr6yn+QeK8YPNIrjHBgxSeEwQhxkPAiBkhJKEBCdSoJfWkHtRjzXOdqnP/2GfvOqeqWkjEQhL2+v34ia7hnFPn7LXX3mt96/uS2V5IAodYKqufX8ORsSgUkcPVC6oxGkrBJvHonYhj07IGRhggcASUxXNk8Vqa2uwOuOBUJJycjLOUpFWm6FynCWWZM/zone9OYt//vJ6N/+/v7DPds5UtvrMKWv8VO2OqkOO420Dg77drmubTNE0A0f5p5zju7vN6ZR+ATesDSuKBl45NYsRQ5zBmjhy6ANzGzhrTw6daPZoGBqf22iT88I9X6Ggn8jm3VUSr31axL+PEJCl0HzwVxvY9w2xAA2TAD88mcfOyBlNu/2wskc2X7ZJkgasoB0LtjYFZ1LjK0ylG0wBYDDUsiyzCa5Pm7IcSOILgq7JL8BtIfwGY6hjGFZSlZDnlUHhsXtuCK+dXm3ZoldjmgWLef+PCGuwbDGIimsFkLIMjYxF0B1ws7QQUWxgmohmE9MlpPFzcVdx1RSu2XjsfK1pIatVnl/H5q9o/1EELIDWtB184aQpaxjEo86T/cL6eEh8LpyHqzkH/pTx3j+0ZwpMHRioCJESO/KcWNCRyxWm70mg3Pu5snqS88iWD3GfQq4ul82jyWuFzyGhwK5iK55DKFfBc7yQe+nQPtl7bwdjagXK18OJ5i6+LvHl8p0oKWMkKOxojiW84lcNULMvGPm1AtggcblpWb1JLpmKWB0+FiQLzhHlnllY1/P1v+zA0m8So3s/1/LtTbFec18DqyjQT1OS1sjJBKJnD6/2z4PTfzYGkTD1WCV+/aTG66l3F32VYIKoFMj6o3bI8wJ45APSePv/8FO9V4/JpmvbXmqYN0hc0TYvo9a3fbbXtAtiV80nhMlcg9R+6quJACpNNXivWtPnwJ+taYZV4HBgKmYKBwBNhyFWtXnTWOsCDDIZtbwyh3m1liJwjY1Esa/RgfUcVNi2rN00ABZhlOEolOfYOBvHIqwNo85NaQHu1DQ4LCQQ+W+UNcyX3k/jiipUD0OwpAjTaq22wCBwiKdKQ6DREDqpCa5d51gqgaRrTAKp1yiyVZjTWYKkRNduZRA6zyVyJ0xedocatMHjtpmWNJrG9eLqAF45NIpTIMji7xAMBTznIxCqS39nT7MHAdLxsspyKZVg/G2BehdL0zUQ0wxzTZ5dhkwU8+MJJk7N+2O26rlrTpA4ATV4bA+4U9MVaIpPD6lYvnBaRiTKqBQ0em8jEEJM5QnVWaVyqWrEOlTQsfhT9+Ru/47UTmDmtNY+F0yW7Hx5+BxlDTgthORkJpXBkNMIYZBrcCubr7Cpfvr6TQcuJzxdHJx3rAKDpo7bJa8WG+eUAD6PRI/hsIpq9VggcGGiImksR8Y2bu6CIPNt1ZvIanj58GpGUigbdF7oDLvQ0lws6Gq2gnzGaVlHjLGYU6MROU6JGvs+v39SFjZ3VxQCnFkwNzOFUDq8cn2b1NGuJVEuT14pkNs8IGr759FEGfa9xyvj2piVnvObfhZ2xxsVx3K1zpQTP9N4HZe83f0/TIHsGgibCWHJMsoNq8lpxa08Ad13RhuseeJnBdWucFmgFDel8wUTESY1Ctbde2wGAw09eH0AsnWe54/ZqO1Y0e00NhKU8f9TcigCrLGIimsGCWjsmoxlYJQET0cyc8O33stJ6VSk9lcABN3fXsxy5TebZhGJsSj6TGSG8pfUHuySwJu7iOTnkDc/xTDyFxuN1N7oZ+37p76JcknUuC2YT2TLG8Z5mN4KJXFlgcyoC1rVX4eh4FD3NbswmVPzF9Qvw5lDwnNODl2qNK5jI4u5tb7LdlvHedtY60DdZhMM7FQH/z8b5uP+ZY+xvOkZoyrhSDarGIWM6nq2YhfDZJAgcZ0obUjOS81aqqxrf33rtfIQSWbzUNwWvTcKRsShjm9hy5Tzce9Mi3PmjN0xzgMiRQEob0QGSRrZbSLnAY5UQTlWu5ZZaKZTdaKWtMfS+NXmtqNcp1wCSwVnT5sPu/tn3bNqnx6xETG1svaH12U3/uIvdK2P9t8GtoM6tsOdPeRprHDIW1DnRVe/GI68NYMuGeXju6ITJh7Ze24EvX995VvcHOH81rlUcxw3M9R6AS7LORdMgAGkkjqWyGAmlYJNFhpbJ5PJ48IWTsMkiHrh9Oe7evh9qQUM0lSsbFH67BA0Eyt1WZcXaeWRVdtcVrTgdThLqJY2sCPunE0hlzfUgAyCLBRKBAyLpPCL6JHB8kqQJqAR2LD03+q7UmrxWBJMZQAPWtPmxu38WabUAReTB86TYzYHs9rL6yo8aDVqywLEJiToIDbh1LguhpdKdlDqrUxHQ5LGa+n5KgxYAU9ACzsxTSCfAGoeM8RBxGA7EWWk6w2MT8a2PLca2N4ZMkixAcRI9eCqCTcvqEUpm2Sr35u4G3HN1O25/eDdGQinm1JLA4aefWz3nNX2YrH86ji3b95uASMYFAUWuUrLZG5fU4/aVTZhNZNkkRgMW/Zoo8MgbnikHVCTNpRZMFnsUZxMZZFQNdpmH2yojkSkGDass4o6FtfjVkXGkcgV4bRIub/djo8ijbzKOVLaoCEzZayhFUu/pCIKJLGhQp7UyuvurdyvQImmW5uufTkDkOYRTuYrEtPR3GUeycVj7bBKy+QI0TU/j66+zRYEGxgQyEkqhp9mDd09HEUrmsG8oWHY+47no/xdA/IIGVuN1+uwkcFlEHrdeFsAT+0ewsbMG2/cMo8GtwGOTWOAaNyg9cCjyNH68pxH3/tEiQoTAATv2n2KqywDpBzsfCMJK9l47rpMAdqJy9ulaTdPmn68LOxt7P6vJ/uk4vvn0O/DbZRw8FUa1UzYVIY2rS7oyCSWz+PK/HcKxiRiyeY0Fl7ka9CgC52s3LkQym8eDL5xAq9+G1a1e7DgwZmp6LDUBAD2kcXDaZR7gOKSz+YoIrDPJOJTuRihDtBF5BQCKwCFdsvuif54JCEFtrp1SJYRfpc8br9MqAh9b3oiXj02dcZIrNbpS3thZja/f3IWP/+MutnKmKDRq9DmubvXi4f9rJdtNHRwO4S92vIVljS7MJlR8e9Pi91VsvtR2XMFEFrc/vBv90wmW6qWLFbpT6ap3Mh222UQW3960hN2b/uk4Pvr9V1naiAO5x2ejdFDnVhgjicCRzIXbRkAMsgBoGsdSudCP+29bLsebQ0Hc/8wxk1pDV52DLZZKVRwAsEVKOpfH9j3DEHjCBE/Hu3Hcl2YkgMryH3THZGSMKPXDSibxxd9FG6CN98Mi8vjKRxbg/33ueNmCmVLKAcWxbdxt9TR7mNyQEQlJEdJbNsxD73gUiUyOgdKAol8a/bPVb8NT/30d85HP/XQfXuqbhtcm4WPLGuC1ybjritZzrv2erx3X7ZqmHZrjhJed68lKvv9JECXXHk3Tvlfh/b/TNO2vOI7bcia9oXO17/66F7tOzrIBNhJKsW1yKSJo/1AQR0bCeHTXgIlJgw7k9moHxiJpeK0ihoJFtBolsUxmVVzW5EXAoyCrFvBHSxvgsVvwxslp5iylVhq0nBYBGir3T3UHXFje5MWrJ6aZcxoHPzVTXY4r9mCUpmLSJQ5K0V5qQWNBq8YpmwAk1LrqnXhXJ7gVeQ6fXt2Ed8ZJo3aloFVJj8l4nSkVeOtU6JyCFkCIRa0Sj5f6pjE48yauWViD/cMh+O0S2qocRD7GwqN3IlGs+XGcyeF6Wrx4+Ssbz+m858M+aB/ZtnsQ/dMJKCLZXfc0u6HmNcwmsljZ4oUkRBiJMX123/11L75+cxcef3MEz7x9GqohAGggtZszSWKIPGCVRGzo8GPHASLGSb9HQQxksUEOQCdggdNwz7/sB89z2Ly2BelcnvnAMT2V6bAIeOCO5Xhg53EcHg2xINzks+GR1wYYaz31Q3qNxmstDVoAKmpW0WMb2WEUiUdB00yoR2r0MzRoua0ivvrRTvzjSycRTedYEM+oBfzk9SEWjKocpHcOKNK48RypF5Pfo2FoNgW3IpqANTRoyQKHL107H08dGsNkJFWRbSSjkmO5FBFHxqJwWARsmG9WSv76zV0AyLM/3wjCSnZB+rg4jusBEcB7UhfE269p2sGSz4QABAF8XtO0igqv72fHdXA4hD9+dA9bedc6LfDYJFPe3nQOAB9dXGtS0q13Kaj3FHPAdDVqMawuqcidcbve5LVCFnlTGoYOYFngoGkacgWCaFzXUY0XS9JcpSs9qm/z8rEpbH38EBRRwGSM1L/cVrGibpbRaKC2iTySc6Tn6IrQYRGwrNFTxt1YyTYtq0dXgxv9U3FWy/PZRCSyecYA8sM/XoH/9fQ7GAml2H2ziBzq3VY2Ac014c3VR2OTeDgVCZOxjGnlS/XO6D27fWUTvvDYfga13nJlG+69qes9f9e52n9RSPID9ZFgIosvPHagrOZbarRWQhrBE0yXzJiSXVBjx6lgsqLYp7EfyETCWu+CIvHon46z96vsMvIFUkt2KCKy+Ty0gpkDlB7TSGBNzWER8OpXCaXqD3b24RdvjSOaVtEdcMIqS2jxWfHisSkiIKm3dRi/++k1LdjTP40jYzHY5KI2G1DMcBhfp+O4NDthlwXGawmYd2J0jG9e24KX+oqIQOPYpyl5i8BBFLiKBAGl3IBn0tqjiwFjJsSliJB4DrPJHKO1OzIWNS0wz6Z38Vztg6B8+l3anSArSYCouF5X4TO3a5rWPpdDvh8LJrJ46MUT+paa3KvJWGbOoAWQAfZy3xSjSVJEHqejaZycKn6HSi1k8hrLib97mgQNY27aY9X7wQxY34Je+/LaZBK0RB6ZPLBviEwgLkVkrA6CUHxcRDaeaIJte2MIkZSKyRihJRoOJrF2nh9r2rxl6Dl6hCavle0u5wpaAOCg6MB8HgGPlSH/SntC2OctAiyigPufOWaSfgkmVbbyTOUKeOD548whaLDPGCRVgCIyscYhMw0xYO7mz2SuAIcikn45gxNP6zvMFp+NMVQva/IS7aPLW2CVBROB8UViH6iPbNs9xIJWJVS4rI/ZqWiG1DSjaYSTKtxWEU1eG+5Y2cjG2vGpBENu3rGyEY0eK1p1vbhISkVXnQN1bgUiV3xGw0GiwhBJqahxyOisdWAmkUUopULViB8ls1pZ0KLHpEHLqQhYUEsQuPFMHg+/TNCg2/ecYhp6R8Zi2DsYxI4DYywVRoMWB7IA+qOl9bhzVRPWzqvCmjYfOmtdpnMWQAA+SwNedAfIe5m8hjqXhWnCUTO2bXTVu2CzFP14ZSsBZ//yyJgpA2HUv4pnSAoyk9cYfVu7zjhCTS2QBeGmZXWMeNupo49LjQQtjlFwyTy5v7SnjdLaAWTOAkh69aW+6YsGWXuhApcHZKVIzV/hMz0cx13HcdxXz3QgjuNM/33rW9+q+DmjHIPXJs0p/U5YrosrCtrENxJKQeA5tmWPplUWUI5NxLBIdxbagFxpch2LpOFSRAa1Bwj/WCpXwGQsA4tQzCnHM3n47BKiaRXxTB5em2TSxcqoBdzz2AHc95t3cetlARaIQ8kcWnw27B8OYe9gCJuWEaHDT/YEAOjwex6YNNBDUd4yi8gzpwfISlbWWbNTKrDjwCimdGSS1cBnaJzo4pk8nnt3AgBpoAQI+ovSNVFRPYoGpEaDVFotwK7PkmGdUHUqnsW69ipTPwx9VkbtMtoorqEYWNe0+fDgpy7Dxs5q/ORzpKn4if0jeOTVAewdDGEkmLxYoe4fsI+QZ1Vpl9vkteLGJYTMuAAwnSmABI3te4ZxciqGSEo19SGpBQ2KJGA0nMJkrLggiWXymIikYQSoZgwOMxXPli0m52JuCXgUBtunAKJoSmWQ+V8fOY0xHewwpvfnOSwCE1mMGVLwssBBA1kA7dg/im8+/Q4eeW0QeweDODQSKevz6h0nAdDYW5hW84zRYrUelIxpfodFQHuVg2n7Xb+oloA+kqqJUg4gz4H0XbnZQkwWyOtjJWl2DiQgPaOTIgCAxybPyWazoIb4ea1LQbZQ7Kmkz29Nmw9br+2AzUICX5PPxrIVF4OdtR7XB200p89x3PUcx10316rybNMgNGiVMlGXQrw5cEgZGiFv7q7H4dEIktkcpmLmQUDPnc0DA7MpbFpWj1dOTONPrmjFP73Uj0xeM6UFjOe9vN2PhtkEBmeSTDI2ky+weluDW8F9n1iKR3cNYl6VHX2TUewdJOwE9JrTagGPvDaABrfCArFFIISxFCrfNxnFfbd2409/9iY7tzGoWoQi80B7ld0E9Q24rQiW6H8XQIJCwG1lXf90ovPZJCQyKsJJojNGa2lWWcRIKIXJWKZiI/UNi2uwZUMH/u7ZY9A0Db2niylOmvL4be8EWzTQdFWL34ZljR6mZXTDkjpkcnk81zuJb9zchWhaZRB2Iyrw9pVNSGbzADTcsjyAtfMmLxqHPBf7XfkI2W1yLKVKQUcUvDMSSqHBo5xRzeDkVAJbrpyHl/smWaovkcnjV4fHsXltC/YPBXEqlMS8Kjvaqmxl9U21UEyhVdtl2HXm+FIzAnjaq22ocijw6Yg4WqsyXuN4JI3te4bZ3yLPVawXG1tS7DKP23qa8NZIkbWDUiex60CxNyqcJOeziDw+sqgO9R4rblnegMffHMFoiNBVddU5MJvI4fBoBBkDu859zxwz/B47OI4z1aZuXFJvauhdEvAgksqZyg0A4NFr2zQj6VLEMv5Aaqtbvbj/tm483zuJVa0+PPTiCXzxmvl4cyiI67pq8XzvJPOb/uk4q2NeiFrWXHbealx6Xr7UBjRNe57juL8DsFP//0+C5PK/Z/juJwFAz+9/FUC4UvH5bPL3/dNx/MlP38RwMMnytUbl0Aa3goKmYSKaMeXf6UClsF8jIo2+BpgdidazKBLJCBePZ1STw1TZRcwkigHSInK4YXE9al0K9gzM4shYhB2Pyg70NHswHcuw3xBNE4G8ar0nxphbp/0oACHxfb1/tsz5ztYop1ypddY6MDSTmBM1VuO0IJTIIF8gwaeUnoeaxybirW98lP391ScOm/rcjEiprjo7nFYLS2ttvrwFr/RNYziYxLp2P77z8SUmx7uQ9l75+4vFR370Sj/uf+YYG2/dATfWzvNh2xvDJtSnVeKhqoUytnNqtK5LjfoBBQxRGZqdvZMM5AGYkXXUaJ+iwAEWifQS0sBGfY7WdSSBK+vTA4ifuhUJ6zuq8M5Y2NSW8V5m5AA0ouvOhBSkv9+IJqZ2WZObIfcqHcMYtCloisq2NPltuPept6FpGu6/rRtem8xqtPSZnUmCxLg4V0QeP/+/1/7O2drfr110NS5N0x6p8B9dET4Own0I/d/nAYDjOEpZPkBfAxGv3P9+r+O7v+5luw+6IqPS9V59pVbjtMBnl/DpVU2wCGRCXqTTndAAldYDgsQDDrkoY2/0N7pFL0Ui8RyH1a0+WESO1cNo0BJ4Ag74z60bMBFN4ZHXBtgKK5pW4bVJmKczagf11S9AWAMKBQLNp70t+YKBlsVwCe3VDmzsrMbDn1kJr/XMm2yJB7xWERJPAgo5Lpign2QYYhPRtA6qMNTe9HRKwKMgnMwgVygWiTOqZtpxUVaOq+bXmK7hU6ub0eixspQhTb8CwPEpQmZMa159EzEMB5PwWCW83j+Le586gvufOYZtuwfP+DsvBrsYfCSYyGIslILDIrDxOzATx6+PnC5rbUjlSNBSxMrzTCkYiC4cQkkiCDk0S9KyJyZjps+VBi2RB759y2JYJZ7JzgDFyZ5+nKbPSoMWTRMnMnmmmuBznJnKjJpNH+CnI+ky9gkAWN/uhyLyTIjUaNOxLLZcOQ9joZQp9dzgVnDaULvVQPxpQQ3xa1ngQDdHRqRvJq/hW786ivZqBx7//OXYcc8VaK92wGeXsXYeyRxH0yraq+3I5Ispe54jdTqApBo/sbyRHTOtFrD13w7hM4/uRf/02Qfyi80uSI2LoqM4jrsOZKVI0VIvGN6/Q19V9peiqc7FvnjNfEY9Mx5Jw2eX8IWrOrD12g5cv6gWLT4bJiJpBBM5/PDVQWTyRGb80EgEjR4rNi2rR6vfho8uJpNrrkAAHRzMtQCB47BpWT02r23Bglo7FJFjWjjjkTRe7JtGRtVMWloAcNtljbj3pi483zvJUG7G+SKUzOGtkTBWt3oxNEt2jZvXtjB+wGxeQzJH5LkzebD0AHXA7oATr56Yxkt903h016AJtGCTOJMmGP19oZSKXAGsudAu8zodVJqttkWeQ7O+AKCO7baK2HQZqaVJAm8i+JV5Uiwu6OcXeQ6tOo0Vlbqg9tCLJzAaTmFJwI01bT4EPApSuQJ4rjhZRfSUZmetE3UuhaU4KZvJnoHgxQi4OGv7oHyEABeGTdmAuD7hA6QnqpSGLK0WZWDm4vfz2SVTym5elZ35w1zgmla/TX/GwO7+WXhtJPDZZdFEfdQdcMOhFKcu4/X57BJ+ctcq07hOZvOYV+VgAVfRJVUqWUFf/PdPJwz6ecXjDwWT+PxV7fibTUvLQCyno2n8bPcgtu8ZNiEcQ4liTZDer0hKxbQOa691KYwgm/4qulCbiWdwcLicFPuW5QGs76jC5rUtWNHsIXp8dU5YBA4FrcgtuLGzpihtArLjGgkRGPx3f91b8R5cCnahwBl0tfm8Mb2hadqKkvefrNS/ci727NEJhJI5dAfccFtFBBM5bH38EPYMzGLHgVEMB5OIpiv3PY2GU3BbZQg8h6sW1LAdCEBWTbLAob1a7wXRNLwzHoXXLuP4JEFVxTMqK9BSM95wlyLi5HQMB4dDSGZV3LGi0VTcpnZkLApOhyaNhFI4NhHFmjaf6TNqgeTI6cSdzGlY1+6Hy2phgn27Ts6YitHJnIZQyeRuPDvdSFH4bSSlsk50taDh7fGYiVwzklIxoyMbh2aTqDNw3WULpBCeyBYDUO/pGNqr7bhleYB9LpjIotphgdcm4ePLGzAZTbO0bkErrqYpGagiCZiIFieJ0TDZXe8dDF6MgItzsg/CR6jOVm3JjqTGIaOn2Y1YJl8xDUfh2Zm8Vla3bPXb8OjmVah3FZ8/x3HoanBhy5Vt6NLRfdQ2LavHunY/hmaTKGhkAfT4/lO6zhepWaV1JBxAGMxvXV6sSdLrW9fuxxP3XIG+yRgS2aJPUwLreVVEcPTnd6/FkoZiIKQZA6tEUtKloZge36WQWu2DL5zA3z57jC1cjQGsUt8XRUIKHNlFLah1wGkRwEFDnVthAVXiORYsjTphX3nycNkxn++dxK6TMxgJEWae8UgavadjJhaa1a1eDMzETTWztFqAUxEQ8Cj44jUXlD/iv2Qfej0uykVWqeH1TI2RAHHAvN6kbMynq3lCu+myCuioduLgqTAEDuistUPVCD2T3SLgtssCuGtdG677h1eKfRsgTcalPRRRnY3g4KmwqabrgosMAAAgAElEQVRjETl01jqRyKrony4vVssCaZ79SFcdVrV68T+ePMzqSGvafPirGxZi678dKvvtZ2suRYRF4FkKw2MVGNrPeJ00R2/sJ7GKPFL6+zzMNECSQIjccgVynWvn+XBZkxdf3vEWa6A28sIZ63tG6w64oObzGAqmkFMLyBVIfWJFixd3XdF2QetclwJzRv90HPc+dQTDs8k5gRdWiUeTl4BxztQfRK292o58QcOiOieeOTppqimv7/Dj5FTcdK6t15IJNJTImprpjWPJ2A+5tMGJRfVuJjdPCWaXN3kZiMlYKzLWpMlY82PPwKypZ42IVfI4Oh419VxREzjgtp5GVns1cvtRHS8BhL7NqUiMtqqSzaW1N1fty2MV8bFlAXz8sgADUrxyfAqpXAHpXB7/fnCkTErFLgsQdeJs4/03nmPrtfPx5esXzHmdH4S9Xx/50Aeub/ziHWzfM4wanaF5Kp7VIe8KjozNTb9PgQwOhYemcWzgl1p3wIkjY7GK75H3XXj3dLQsPdJVZ8doOGPq8zKCKygY5EwCjUCxAF7nsmAmnjWlAgFSawolMqbGZbdVQCSVN9FLGU3iiorEpY2X9G+fXUIkmWOBn04U86ttOB3NzKmUfKbitlMRTcTFXXUOhPUenc1rm7F/KMgK7KVADzoZtPpt2DC/GgMzcRMd0YWwiz1wGSmeSo0u6ihRbINbgSzyGJpNsjFHG2vnIommPlTnsiCf15DJF8o492ocFogCkZ1v9dvwrY8txgM7+3B8MsaARI0eK1yKUBFcUYlQlhq9rkoUTaUkv0byAHbvYB6rlCptTZsXf3XDIrYgpGKQ9H2juRQRaqFgYr6/YXENnj06xf5eUGvHwHSyzHdLjQYg+u+ZUJ7GJv3Nl7fg0HAQw8EU0lmVcQ+ua/fjoU/3XJKLuwuWKvygzKuDIabiWUYf1OK3Y0bXuqHb/Aa3AruhMZAKsMXTBeQrQer071I9LZ9dYmk+41M4MlYetJwWASvbqhBNq6Y0g7HbnqYKZhI5BkSoVE6gqYmJaIYNfCMKdiycLnNaOsnQqaZUtt74cWPQMv4dShSDlkUgTN7t1XacmE4y0mCxwujSABhawEyaXPmCefLrnYijSW9c7ZuMmyYuuyyY+l5oD5HXJmH7nmHsOjl7SefwPwijFE/1rqKkTINbwR0rAuiocUDmSZ8hQOq0Q7NJuBSRjblqhwyBK44nOo68NgG83v8ocGRsTieyiKZVKBLPAEoA0ZyiO5eh2ST+7OcHcGQsirSqocZpQavfhmsW1rBnX9rrlDbUV409fU6LALeVnEfgedY3SXu+pkqY6SshY+kr1O1oUBrXdy8bF9agzmXBwAwJ/B6bxHoi7TI5ZzStQjIQB1TZJbzcZ6ZZOjWbIlRZPAeXVahIDAsQcFl7tZ31vNGgVeq/dklgc45TEZDO5vH2eAw+u8yClixweL1/Vl+4XHogjQ994LrrijZWZ+oOuLCmzQdN05iz0Ca/8UjatN3mUITc/o+PdLKBv6DGxuosea2Yv44lc4y53egC7dV2SAIHEYBLrwX4HRbsePMUO8Z7GUVDLm5wlb1nETh01Zl3Fe+hfoB8wVxUfz+bbuNXFtQ6sGXDPPjtMta0+RBN5aGIfEWOQgAmMUuXojc4eq24flGd6XOKyKFFD1yxVJYBTgDCxBFNqyZEYySl4tBIBF11TjR5rWjy2i5pgMb5N3I/22scrM44Hknjl4dPo28yjmwBTOma1rGMrBAj4bRJ2v6PlhAgUyhZFDGl71tFnjTz5wqIZ+YeoEY6o2SOyM68Mx5h/hdNq6x52GiRlIoZw7POFwrw22W4raJOulyDVr+NMUHMfTfM5rVJuGVZvem1kVAKW7bvx/Y3hvUFI3l9OpZmWYBEtoCRUAouxZwWnEkQdQlJ4CALHGx6XU3UuUuTmfycGQmfTUL/dILV5CWBQ3fAyRYOdEFIFRh4jnAo0vQmlfmh33UqAvqnE5fkAu9DH7h8dhn339aNnmYPQskc6lwy9g2F0F5lZTuYKkf5VpkOHrWg4Z9e7mfsC8enSAG5dPdDdylplciJ2wyooFxegwogrvdSDM0SHjeLSFZlm5Y1oLGCKCK1iWgGVQ4J71TgHszkNSjymSHuFpGDVTJfcLs+AQkcWE7fOBgMGyE4FYEFx/YqmynoCTzw6TUteGL/CPYNhZDKqjozCfHmUug0RWjVuSzoafaw1XcuXzDVrziQFftJfTXYOxFnO0cjbdWmZYTRwbhzi2VUjIRS2L5n+JIHaJxPu+uKVmzsrMaukzNIZwnYBUDF1Nsnljdiy4Z5ADQmcEhJamucMu5c2YQdB0YxNJtEjUNm45+awyKyIJZRzS0UABkXxp04B5LtAAi4YiSUYu/H5khDG0mrkzkqby9gfUcV3h4LY2g2yXZuNskc/HjOvBizSRwUkUcoSZqG71jZiDVtPqawXNqYDxSDPDVjXY4udgX2r6YjgvX+xHoCWCm99Ub/6Z2IwyrxbMeby2vo0+WO7JJQpm5eKfOY1zlBE9kC0/9KZNRLbtf1oQ9cAPD4vlNs8D/zDiHLHQtnmCM1++xwW0VGR9TkteKOlY0srRBK5vB3zx5DLl/A5rUt6Gn2lO2UrLojEtomDQWNwrZVNqkax5XIc1hQY8dIKIVXT0xjRYsHdS4L620qtZl4bs6iuFFq3mh2mcfqVi/uXNlcJjF+XO+lyesoLpvEm4+vf1zmyaptTN+huqwS42QDyO7ta//xDgNUDMwkTOz0pfWVnCG1efBUsSmU/i0benaavFacnDbXDx0WAQ9+ajnWd1RhY2cNFEnA+g4/660DCJBjTZsP3QEXXnh38pJzyg/KfHYZX7xmPlr9NjzXO4lwKsd654zW4FZw17pW/PKtMRw8FcGRsSgiKZXVxj6+PIA7VzeztpOpeNaU9l5Uawd0XkKeA7rqnGU9Yl6rhE+tbmZ/t/iLLRI0yBknZmPgM/JmlqanJ2MZ7Do5gxNT5jFwc3cdS+27FLFskhcFQd8JkYXmdCyDH35mBdIqGduVgkLpaz6byHaqBQ2mFhqe5xmHoUsR8RfXd2JNm5f5FTUjYYAsFEsI1XYZksCx+8gLxfvSHXCVHYfadCLLdoU9zR40+2zYNxS65HZdvxeBy9ilTwOKReTA62SVL+o0NYosMEnrZ9+ZwHgkDUUiK8G3R0PYdXIWAzNxln4y5tspei6Tp5o4hGR0TZsXqVwBTkvxsxyAm5bW4rJmH9xWEaFkDk8fPo2JaMZUxJ3LSqW0qSIyQIrVlFgzkS2A4zj0TZbv1EzzhqaVaW3ldOh5k79IjtpebYcs6sS3TktZvQEw87JxIL1lxonFIvLoaXabINFGJ8sWCFtJrdOCfEFDNJWHUxHYDjCeyePNoRCunF+F7XuGWT0raaDpmk1ksXcwiCNj0UvSKT8o65+O4+7tb2JoNmlqKSi1SCqL//bIHlZT4UD6nCjgKZ0r4JdvjSOUzKHJa2ULPmoDsymEk8UJ//hU+UJiKp6FIolsTEXTOSYdn1ELbKdS45TR6rfhR59Zgc1rm9Hqt+End61i51R1omqfjZBTUzJa47i0ywKGgymWwjMCRta0ebH12vm4YTFJW1+3qBatfhuqHYStonSjRdeZ9goLzuFQGrF0nvm+Ma61+mwsRR9Nq9j6+CHsHQyxe0wzEyIH+PUFQTZP5hybTGrKxjaFde1+eG0SMmoBR8aiCJdcaGlAl3ggncvDqYjw2ETcdXlr2fVfzPahDlzBRBY/eqUfd69vQ53LAkFvbrRKPCJpkofvn04wOpSeZg+6G906nRIZzOmchmyBpB58dgkNHiK70eBWcMPiOua8xmCyoJak1SIpFbG0CovAIZZRYRWKu4mnD09g+55hFnCclvJHUfoKdWqxAurBLgto8lqRVguYSeRYGmfvYBB7B0NsNVzpuJF05dQLuT8Emtzis+GRzStx361Lsb6jCqFkrqIKrF3mST+aIpYxHQBkEjp4KsJ2QbLAmUiNAcJ4MBkjRXuSdhVNAJenD49hNp41NZEmsgU0ea1Y3+HHX1zfyX6/VeIv6X6V82nffPoogomcibyYpY05gJJDJLIFE5EsfZwxvVa1fziEJw+QlOzGzmr8y91rIBvSyRm9TUERedhlnml2UaO7kt7TEbT6Sco8mMgxthqA7FS8Ngl1LuJ/h0bCCHiJSOTu/llT3SyjFpBRC4hn8hiZLUdMJrJ57B0Mwm6olfU0e7D12g788DMr8eXrF+BTq5vRXm2HSyE9iTsOjDGCAGocirtAt1XGlg3zsHltC7rqnQSRqJnvE7X1HVVY0mhugI6kVJaC51DMTKgaoOoHclkFxpJPjS4KDw6HTZmOMmq3kvVwrkAW9M8enUQ4qeLRXYNl9+litg9t4KLEuvc/cww/fKUfE1GSGvTZJXzvtm7UOi2wy7xp8M7Es3jwhZNlDcnUnrjnCgzrPSaJrErY0nWkojF1GEzkmNRB7+kYQyylSvKLdS4FM/r345nynRZ9hQNglYCVLV40ea1Y1eIlKy/JmP+OsRpRk9eK1a1eVtAmwIcathO7urOa5dQBks8vRSYZrdVvw08+twrt1Q60VzuwosWLkVAKishhWaMLHIqF7US2AEUSEPDOXbPjuSKKK5vXcGQsVlF+ASD1kFKIcSSl4pHXBkwpUh4ESbbr5CzeHArix59dhfZqO1K5At4cOrPG1O+r0TFwy/IGNlacFrK7LWhAyrCeMafjyB+UYqx/Ksr6hPYPh/HNp99Bh0F2I+BR0B1wYVmTmy3UjK7gUiQ0ea3YdXIWE9FsRfSsJHAIJXOsheWJ/SN4+q0xBDwKfvHWaFktKZEtEAFXA4puQY0dDotgmPQ01OlN0qdm49gzEMTQTAL3/eZdfPan+9A/ncATOrChq95ZlmFo8dsYEcB4JA2/XcZ3Pr4E/7l1A6OVIwszc9puYDqOV4+btfZkvugTGkgtzKsTHki6WGarj9xT4/2pMrT5ACSVfsPi2rL7VwkOU+O0wGcrypZcSvah7eOixKEbO6uRyKjYNxSCInK4ZVkAJ6fN3eQCB/hsMr7xsS78w87jFVmpAZJWrHcp2KWLKdImRHPDMCHkpCShZ2NzNSRaBA4CzyOZq7wjKmW2B8p7T4wFYnq9xn4TReTR3ejGX9+4CN/9Ta/pvvAg9DjJXIE1KwYTWdy9bR8OniITSCVpc6dFMBXQaY+MxHPgoJlqFbTfpMGtoMphgZrP41QoNWcfWKmV9vGs76jCtzctxvO9k2VM1x+0Xex9XJT5u9phMZEaV7Iah8wmR7ciwKFI+OsbFuIHL5xA/3SCjQOZL+5CapwWTMUyWFBrR0pH2dHequ6AG8ubPHiud/KMaUpqxjFbqeeqksk8qcnGMnlk1EKZn13TWY1Xjk+bgmglBXGAMMqUeqhdJqnIiWgGAsfhn/64Bz0tXgQTWfztf76Lpw+Pl9XyzmRr2nx4eyxU1oJCzsUzxKWx+Zn2eRp71UqFInuaPZiIpMlcJQA5jcP1i2pM4rhr2nx4/POXn/W1/q7sD31cJXZdVy02dlbji9fMx8J6F9Pg2nFg1DQ5A2T1N53I4gcvnJgzaAEkrbirggLwLcsaWGqKyl5//87l2LJhHta0+eYslFKzSkIZbU6N04JMXoOaN0/gNklAexWR1TYGLfogNYClfhSRZ0FLEjh49HQhXSlLAgdB0LBvKISHXjxhWiUDZMdHa197BmbQPx3HZ39SDFpAZYqbWAk8lwps5gokaK1r97MVXrVTQavfhvFIGkfGIuidiFeWnVAqD9VSip5kVsXjb47g/meO4fE3/4AoPJM93zuJl/qm8cvDYwDM/XVGq3HIuGFJsVUhomtevT0exYoWLwIehdVQsgXAIQvoafYweaDjkwmWDaDPdu08H77z8SUmHkDqJ6Ucvm6riC9dV+QcpUGLnnOuXEG2QODnGbVAGub1oOW2itiyYR5OTMXLQFaEHs5VBlKptGNJZIn21lQsg9PRNL7y5GEcHA7hlod2YceB0YpBi9ZqbTL5kTSluqbNi2WN7opBi5yLonR5rJ9fxe4VBWs4FbIwE7jiazRoWSUBX7ymg1Ba5Qn6MpjIYn1HFZY2kF33skZ36SkvavvQBq5fvjWOl/qm8cDO49j+xjBCyZwJuFDrJHDsrjoyWdtl0mdSCVVVKXWhCGCrnpPTMQzNJlnw2rS8AT0tXtxzVTtsskBWZCWSwfTGSwKHiWiGBSHqyLN6g3QpViOZy6N/JskCEk3x8KxILKDZR15LqwV2nlxeY6wUdEWZy2tIZDRIAjAbT+NXR04Xf3PJ7907GMIn/un1MrYRn60coEEnQMrI7VQEtiuqcsg4PBpGOpeH3cJjPJJGOpc3Qexp1pK+pog81rdXm1SQjWZ09YOnwjiqX+PhkbDOFD9U8Xu/73b7yia0+m16awYHj624K9XnVbgVETcsrYciiab0ciyj4pFXB7Bj/2hZk3s8m8fBU2GsavGRlJeO3utp9hjqkuQEGzurAQBVDgmJLBmfFkMEtUsCIikVf/9cH/NhOmnTuGBc5sgCh+6AC521xX6zBreCRzevYunzSEpF73iE9YN11TuxeW0zKxskMipyc5AOUKNpQ5kHA4L0TyfwJ9v2YXQOlC9QZLPoqCalBI9Vwpo2L+67tRulnWRyycRjEYmQ7Y79o8jnab8Y+fWTMQLQKg3EA9MJvN4/i2//6qgOEhOwutWL1io7dp2cAcfzWNfux50GROelYBc0cHEc13OG9z55Nuqucxt5gl31Tmy9tgMuRWTABYAolR48FUY4lYdLEZHIFnB8KlHGU8ZzwPIKqxFjhi6eVvG1Gxfix59dhTtWNOKnrw/hlodexQ92HsdLfdNwW0VTjwlQrF+VEpjSAZnXzMNYMhRuqSkih69+tJPoJOkHTGTzTOBxTZsPDsNObiSUAs8VZcGLQY3ImaeMxXCQzxgDWCUwRqVVZbZA6iAUIdXksbJgNhvPIp7JI5jMsYbviWjGtIp2KsWVNVGgLuDZo5MYC6dZv9tcA7fGYUEsncPqVq9h8rqk0+Hn0UeK0iMZVcNUPKsDICygC/9IWsX2N4bxyGsD6CuRIwl4lIrIUmp0RxPSdzpXzq/GlfNJoDo8GsJ9v3kX4Di0+m2YiRNtOQ4wEQEkcnkoEo9gIqezcRT01Fzlc5KaaZQt/ACyWHLbJFzeXoXL5/nhtorYdXKWtWKs76iG125htG79M8mKmQRqVqmYycgWSDN8PJMHj6KiAjD3DrbOpTBZkql4FnsHQ9j2+hAOj5ozQcZrEDjzXEF5GOl9cFgEE6m1InLorHUgnMqZdPhimTw4jsNuXWvsyGgEr/fP4vneYtrwUrALpoCsyzX8HYAVFd7rAQBdRG8ex3E95yrbcNcVbbDJIlO2ffLAqGnipSwXRvkBm8SjoGkmRE5BA/orIJOMNhnL4PNXtQMAdr47iWhaxZGxGAb071WqXxlJf0WeQ73bgpFQ2gT+afJacUr/jN8uQ5EElsqklDpf/fcjpoBDjfa5REtqYKWMBoBZvI4ah7Nj9UjMAd9XCxpcioiOGgcmImm2c6SHFECCN/2bigOqenqH/k37zDYtDxAWg+UBPN87ibFQEtv3nGK5f1pXm4pnMKVPWhzHYeu1Hbjrirb3/iEXoZ1vH/nBzuMsbb6gxo7peJZB2qnRiTGvmcVERZ5DrUvBWDjM6kKU39AhC2jwKjitAzZ6mj24cn4V7rqiFQBwZDSMl/qmTSg9+vwq1WfTuUJZLfO9xqZRPujIWBS3/e/dJnVvo705NIulgcqpMo4D/ueNC7Hz3SlGylvJ34DiYrS92o7h2QSyBVQk927xW3HDkjr8fF9RTub/3zts+k2lXIrG94zckLLIIZXTMK/agb2DQaxp80ESOHx70xL8yU+J6nkpwpD+DloPb/XbLjkF8AsWuHSHmwvudSeAnfr/DwC4DsA5OaXPLuP2lU14Yv8Iktk8I6ecihQ1pTw2s2ZQaS8TANgtPGocMuyyCL9dZmJ5FoFHJl+AwHP4aFctgoksfHYZlzW58aLORRZPE4i21yZjcDbO0oEWkcODn7oMrxyfxlMHRzESSpWRZbaVgDuM/R25vIa2KjvGwymTE5nY7gsFE/v1XOawCLhxaT2eODDCjiXyJIUxk8iZj6mbxHOQBM50vy5rcmNpwIMXjk0yhFk0reLIaIRxKFK0Wl4Dqt0KJvRFgyKYd7AATJukO1c2496bFrG/269yIJjIIuC14bE9w0hkU3AqEtxW2ZSm2TsYxDULay64EvL7tfPtIy8eKxK9Ds4mkctraPJa8TebluB/v3wSxyZiFXfZVJaGKhksrnfh9YFZNk7i2TyO64wOPruER+9axZ5BMJFFd6MHfRMx06IxlsmbxlpPswd/f/syPL5vBL2nIzgdTqF/RmeN50iQMCYxSkFJpXEtnMpB5DlsmF+F1/tnTATNh0YirD+x1P78mg5sXFSLne9OoTvgQv90wtQyUKkReWgmwbIal7f7caOV9rupGJhJ4tubFuO7v+411XKNPtbqt8FnL4JhjFbrtOCqBdUMTEOJBda2+XHT0noTEOn7dy7HV548bAKUBTwKal0KU1rw2SX8+LOrLjkfuWCB6z3MA8DosP73c5An9pMi/Zo2L9Z3VKGr3olHXiP9Ci5FxEQ0A5vMs6ZfitARORL4XFYJJ6cTOD5lVlA2IvUEaNhxYAzgOBwYDrE6kkUgNYORUKqMyiijanhzKIi7rmjFzqOkrlSaMpxJZioyZdDPjQYTyOTN0g9Gx6fZljqXBT6bjJFwElZJxFQsw5SbNQC1Lgu27xkGYN71uG0yZgxEuqZrKGhMtbY74MLGhTVMQuRLiQXYtnsIp8MpPHFg1MR4bVwXJDK54opa91+rxDFHpB9t8lpxz9XtZdfgs8v4/FXtWNXqw1eePIx17VXsd1Bb3+G/5FaS52D/ZR+5ZlENtr9B7hkdVyOhFP7zndNY3uTFaChVMXC1Vdngtsp4ZyyCtFowAZa6Ay6EkjmMhFKwSjweuH05Hn6lH4dHQljW6EU6l8f2PcPoqneaAhdAxi4dg8FEFl6bjHuubse23YN41ACoojHHOPZLh2kpglDQg20pitBuEdBZ60BKr6/ZLTwSmQK6Ay64rDKuWlCDLdv3lzHoCzyw9ZoO/Pj1IQTcFsQyRcoyevy8BuzYP4qv3biQZWSoff3mLkRShzEeTiGrqggmiRNU2SVsWh5AKJEtA5Gt7/Dj25uW4Bu/eMf0+po2L+65ur0s+PS0ePHCX16NYCKLP/3ZPhwaiWAsTPTt7lgRQLR3ElV2GV/79yO4/7buC6qkcK52QeHwHMft1DTt+gqv/wjAjzRNO6inS67XNO2vKnyu7OK/+c1v4lvf+hYAMvj//F8PYddJsgNq8lrhtBB5hK46B8YiadPgLh3spas4oy2otePkVIKtuCg0nX7HCN+VBZjUgF2KqOf1s2XO2+qzYiiYQoPLgnHDLozqIHXVOzEwHUda1UyOyz7HFQUXCUlwsYhtlTjk8phTPqGS/INd5qFBK0M7UVmR9R1+PHb32rJjfe6n+/BSH+lVsUs8ErkCHLIARRIQSWWRKxDqn76pGPIFUoguFDQYsxo+u4QndLny97L+6Tj+9GdvslSqReTwo8+sxNULa97zu+fLfhdw+PPpI8FEFh976DW2Q2bfQXHcN3qs8NklTMUyiKVzFVPDNomHyyqjxkkk5a9or8Lf/KYX/+umLmx7Y4iNA4DsJozI3VJ5GqDY4vC1GxdiNpHFI68OlJ1zLkkPh8Ljj5Y0wGOV8Yu3xjAVy8Bu4WEVRRMJL7Uah4WlloFiRoMuqui/dllAMmtOZRr9b8uGedg/FMSp2QRS2QLqPApS2TyuW1SLL12/oOKOhrbsVPrt6zv8yOU1ljXpqnchls6h2mnBwVNheGwiPtJVh3q3cla6c595dC92nZxBnVuBxHNI5/KYNuzoNnZW46efW33GY5wPe78+ct52XBzHbanw8oCmac+fxdfDAKjErwdAOQZdtzMFXp9dxooWDwtcI6EUIxIt1faxywITXVvX7scbA0GMhFIQdNbmUhuaSZrSBE0eG3onYkxM0dg0W6pLR2pgZhomHsCqNh9ieh5+vMQpCyCDOpZW5wxaQDF1Qf9VC8UgRnczcwloahXCdBGGyzHJdk5nnW6vtuPbm5aUHwhkRZnMvo3+qRjpM5F5xLN5xA03I5jMospOAnxpMbzBreBf7l5z1qvA53snMTSbhMcmolAo0ugsaXDjOx+/sLpcc9mF9hGfXcZNS+tZFoJ9Xv+3zmVBjctStvI3GseRFPvSRhuj2XpOfxb//NoAXu+fRU+zB+PhFAoFDbJQDIwWkcemZfV49cSMKSim1QJ6mj347dHTDBAiCQRERK0SSQAl5n3q4BjUgsZkihKZAhKZyioBlCqM9l/SnSfdadJ/K4lLqgUNTosIpyIinc3DJosM/EV3aIokzBlUbl/ZhNlEFtteH0QmrzHwCVErn4XbKrJ+t6cOjRImEF3UNpxUMR5O43ufXDbXozEZTU9ORlKmuY8HsKzJja/f3HVWx7lY7LyhCnVZ8dL/zuiQHMdRrOzjAObp/z8PwNk4ckW7ZXmAFZtlgUM4lWM9FEbLqmRgzsQyeGc8iozuJZ01dnQH3GU3yjjR2iQO83UEm8CTAd3ktWLLlW0m1BVFxNc6LYypgh63AFKTmZ1DhoMHGdQjoRRLe5Qa/VWlXIal6Ka8RnLdpZ+bo3YNgBR4FZFHPJNHLJ1HwKOccTfktcmwyQJz5EocjBPRDPwOi84+bzdRP7VV2c8p2FBodzip6jUC0rfzev/Fq8t1MfjIPVd3lLEm0HGayuUrBq0ap8y4+WhMpCwmii42CQC7B2axptWDY6ejmIhmMBXP4vhUkgVGhyxgx4ExTEQzLGjRsaF1i/wAACAASURBVHp4JIyDpyJlyr7UjONpfbsfVonAuqn/AWZ0ohGFSFte6lwWxDN5tPptjOkCIP5J/dYi8iadr1LLqnmMR9LYvmcYwXiqjIHm8Ghojm8CoWQWvz48zhC1C2sdaPJakcqR3sRISsWRsQj6JqOmehj9ffOq7JUOW9Haqx34hzuWYyRsLlsUANywpP6iXNidyS4YHJ7juE8CWKn/S+0FAKDoKD0FEj5XtJTRnu+dZLlnGmxo2qvJa0W3DnWn9ZdMXkPv6RgrjPZOxHFkLGKqN5WGvWROw94hMkAp8sprE2GVRXztxoWQBQ52mce9Ny5Ei88Gv11iA9FpLQ50ReRRO0ezsvH8cyGq6MupktRLOo+yPrKxcNr0OYvI4bImci8a3ErFpk7ekHWKpVVs2z04p97Vtt0kRWSVzjzEek9HEUvn0TuRQFgPck5FwF9+pPOM3ys1n13GBh1qPRPP4tHNq7Blwzysa/dfcqtJah+Ej/jsMq5bVEynWgQOBQ2mht1SE/kii0Ody4I1bT5W6Dci/zQN2DsULgM9UckTQSgPCrSVonSMz0EeA4EDDo+FkcqRWltp+xXt1TIqddPdUzKbx+a1Lah1WdgOiWZLomkVbkVERi2YCJyNZuGLLRsA0DuRYH5NOUxzeW1OH/nur3tNpYLeiTiq9fth/PkjwRTj/zSadw6atLls2+5BA0CM6AZu7Ky+JOvAFyxwaZr2pKZpXk3TnjS8tsLw/49omva8pmmP/FfOc/vKJmy9dj62XDkPd6wIIOBRsKDGztBTU7HK0tdGoz1UbJVZ4TOxlHlwHhmL4cEXTuBvnz2GbF5DIlvAtjeGMRxMmrbqEQMhXJ3bguVNZEHdVedEjUM2ccRVVUg5zPUAeQ6My7DRY4XPah7kTSVcghlVw+lIGt0BN0mPVjgm08PiSArlwRdO4i93vFXmmMFEFvt1fsCSeMmkJBrcRdVdukrN6ivJWDqPZ49OzPHL5jbqyOORNB7YeRx+u4yHPt1zya0mqX1QPqJIxQkxk9fQ4rPhiXuuwPoOgvcIeBQ2OVsEjgGQALKSv+/WpdjYWY0Hbl/OmvArGd1NUTHKqVimjIcSmLsGS804pPIaTAwyXXUOtnO3ywLaqsj1UBFiY2CNplW8eqIIy+f0c9MxSjXrSmnV6L2g6z5rBdICXh/4B0+F8YXHDlT0kSavlTU9U2KE0WCqrEdtPJLGb3sn0OIv+myr3/Y+2jzIgWla1K2I+OI18y85RCFw8aIKf2fms8v48vULAJBi6I4DY+y9rY8fMq0qLSKHKoelrFidyxNm+Fa/3ZQ6oWAGY1+FsX5UWoieeg9OtqHZFBq9CWxe24L/ODSKWCZvAkxUEq8roMhFVgAwEUnDa5OwYX4Vnj58GnUuC0bDKdy4uBav95O8+XQsi9tXBPDPuwZNTjkRzbCCNwWDAEXuM3ZOjQz+zloHXuqbxhce249lTV5A02DVdbFe7581/X67LGBJwIW/umERHth5nNUdAVS8d4dH5k6xVLJgIotUtoCeZjckQUBXvZMVvksRXX+wEiuZKDNqHiOzSSQyKhwWweQPPKcxtnNF5FHlkHHvU29j72AQ3Y1uPPXf1+ELjx3A3sEgbDrPJTWNo9Utrqwvy3gpSwNuHBmLsIUNRQBH0yobiwJv7iujddxoOo+pGPETQskUM43DercFsSkVAkiT/bJGNzQNGA4WU5iRlFoxANPvGFGDIs8hnskz/kAKGjECR/YOBvHwK/04OhaBUxGxu38WVkkwBe1qB0HxGoEiRiNpw5iu42fDQ3+88pwDzmVNHoh8UcMrklbxt8+8ix33XHFOx7kY7EMfuAAyqW3bPYhQImciqIykVAZ/Bciug+c4dAfcAApIZAsYnk3AIgp44PblaPLb8M2nj0IWOOzun0W9R0H/dJJNvMYJvrvRje/fuRybf7wXY+E0Y0SXBA5+uww1rzGUkyLy0LQCGn027Do5i8GZBOP7M6L8Ki1E17T5kMqqGI+k0R1w4ZZlDbBKPF47QQJDTC9iHxgOI5omMisagB+8cLLi8di59H9rHDK+98ll+OfXBjA4k2D3LqMWWOF672DI1Ey6ps2HrdfORyiZxZAOt05k80zMr6veZQpcAMrAJuPhNPqn42e9W9q2ewiPvEbQZxs7q3Hn6mb4HZZLMg3yQRtN59KFw0Q0g3seO1AxsOiocVZzffrwacO7HHx2GffduhSf/cm+ssbbnL6bK6UNM5oGohre3ejG0Gwc0VSejTXa6ExRul6riGQ2j0xe0xG0HHx2ifXy0WDmskoMMey1ywASLKPw8vFpRFJF9GC1XUYyp2JoNsmk7mkQot+ReA5em4RENs/SjrQ2nawA4mhwK/j14XFTWjCaVuG2irDLIsYjaZyYfm9CbrojHAtn8HzvJLwr5XMKXn/zm96y3SzHlRY+Lg370LLDG+2+/3y3IqQWKIfDAsWdkrFfa2NnNf7hjuUYmkngkw/vLpv03YqISFplzk/YAqrx0rFJHBmLlkHrTd3v1BF1x6S7HXosuyyUoZrqXBYUChrCqZwJKOK0iIhlVPhsEoLJHKwikFIrQ/tpoC1dGZea2yrio121UGQRzx2dwEQ0gxqHDK9dwqCBHsd4joBHYQ3bPc0eDOrKyK1+G2yyYBL3pPd8JJg01TbOhbH6+zv78OALJ1HjlDEVy+KOlY1njbg6X3axs8NToxJARtj6uVqLz4b/+LN18Nll9iyo0XFslXhcPs+PF8/hPEa2+fZq0kKSSKsolZviuCJQxOhbxv93W0VsWhYAALwzTjThjBmX9mp7Wb/WlivbkM4V8FLfFJIZFbMVmONLjfpTlV1CjUspG+tG62504+3RiL4PLfdRgSNpR2OfZ1e9E72nY1jf4cf/9996zjp4vXxsCp9/bD8yqgYOQLVTxsOfWYmeFu9Zff982B/Y4c9gRw0rPCM5plMRTUHLpfBo8loZUzLT+AHwUt80tu0ewud+to8FrfYqG0tnXN1ZjfZqO5t4T0ySGheFvROYPLBpWT1afDYTSsgYtESeY9D3vEZqUaVBy6WI4DkOU/EsCxqUkJOmcYK6g1G/JPBjzqThRWH+WcPK2llBlyuSUrHjwBi2vzEMSS8WSCKPvsmEKWganW4snGa/vaPaju/cshiywGEslKzoyKfDSdaASu3UbHLOwrbR+qfjODAcwpYr57E0yK8Oj5/Vd/9gJJ3+9Zu70NPsgaWUmn0OMyIRnRYR379zOQCygKC7fepr9LmmcgW8eqK4055Lg81oklQcj/3TSURS5UFLFjgYY3OpCje1SErF9j3DGJhJQNM0RFIqUx1Y1+7Hl641C47WuSy4or0KaTWPUDILjiuCLoCiLlmpcfrrM4kcjk8W69lSSfGK5whXIL10DUQVotoQiDrrXMjlNQQ8CgIeBZvXtmB9BwEh7To5e04E0odGwqxnTgMwFcvilePvf7FyIe33InB95+NLsL6jCqtbvSxPni0QZJwRvhpNF8qYLgCy+2mvtiOVzZtWaDStAgC/OnIa82scWNNGZB5imfKCrloAXjw2jWRGhVHFxCJyjLH9ukU1sEo8bHrBN5zKmiD1TV4rommVpR0Yy7w+4czhS4yxw5h6FAXy/8aJoN6jYE2bF0oFWKFLEdm9qbSIn2vKe2MgiB+8cALZvIZcofKgy+TJLu2TPY1M6vx0NI0f7DyOH73SXzEIUYXre586QkhTT0fw4J2XsZ3kE/v/IGtytvZ87yQOniITm9sqQpprIOnmsUkIeAjAJpZR8crxaTyxfwQPvnCS1YHr3Ba2sNMfKdSCxlKTOUPaQuQ5LKotwrutAoeAR2HEt5WMgihKewBdiogbFteixWfDuo4q83VbJew6OYNDI2Qx67VasGXDPAQ8Vmx9/C3TZyeiGfzZvx7Ejv2kh2omkTPVmecCkVBVA8kAza9xyGXsOLRWbLRsPo8bl9azv08FE1jf4WeMFyOhJO5c3cRqcE/sH8EdD+9miuKVrH86js88ugcvHatEpHtpZtx+L1KF1Pqn44y+xWMTEU6qWN3qxb4hMxDAWAcDyOC6YXEtTkfSuiAlj2a/FccnEyaBN2pLG5x4ezzGUoCV2AGo0U59gOy65tc4yq7HaA99ajm+99u+suB6rkZz98YUC1AEZVgEEkwA8/XLAqljELosjrUWGI9Dmedzet3Bb5cxGctA4shrfptUMeViFCukRmm4Nq9tQcBrZTUrwkFJkI1r2nzYOxhET7MHK1t9DCRy1xWtFxQxdamkCgGyCPjizw/idZ2+iT6LVr8N6VweyZyKWCo/5zS3ps2LL1zVgc/+7M2y92iqUBF53LKsAYrEY2AmibvXt+HRXQM4PBpGLJ2H2yrizpXNeK53goEpKIVULl9gi0SnIuATyxtx17pWfOWJwxV7zWgGo6fZg4OnwrBJAgQB2HrNfHzvt33I6sKmuYJW5u9zNeiXmk0iWZFKCgkBj2ICtRiJrGn6UhF5XN1ZhWePEs5IKpBpLFEAwJYr5yGt5vHCu5OodVmwstWPR14dMHElKhKPn9+9lglZPvxKP946FcLCOhdePTFdUWewp9lj4pG8EHbRMWdcjPZ87yT6pxPY2FmNr9/chV++NY5QIgO1oGE8kmakr+ORNJtkJZ4MTFqEpmioIZ3ws9KkYLNI+NqNCxmPnjFvznNm5nXNsGoLJXM4NhEz5eVLzRi0OJDBnq5QYzKCHejxjA5KIc2aZg6eBf27q1p92NU/i2q7jBWtXqaWms1rTF/MSAPltYpQJFJoXtzgwpGxKLtXk7GMCUW2qN6F/cMhJgJJj1KpUEwbmP/90CgSmTz6p+Pw2GQ88uoAepo92HptB65aUENE/E6F2ST2tRsXXpIw3wtlPr114OFX+vHc0WLgyBpkRM40l+8dDGEk+HbF9yj6Lq0WsG8oiKHZJL5240JcvbAGVy+swTd+8Q627xlGJKXiiQMjuKyJoGRpw30omUPAo7BxHEvnEdDJq6nPyjywsN6FBo+Cl/tmWAaDCrFKIodISsU/7DzOdmjUP6hP0LEoCYDXQmrEBb3G3OKz4eR03LS74zggU1IbpscobbOhQavBrcBjFdA7kUBaLWA8Qj7X0+yBJPDYOxhENK3CJglIq3kUNAK3t8oC23UB5WCmdK6AP//XQ5ivNzFv33MKANgiWBF5fHRxLU4Fk2y3eeX8qkvWR34vUoXUaE9Xd6MbXpuMVDaP7XtO4eCpcLFPRU+50YyaSzHn4dMqkVhgzcw5DTa9QaWrzoH1HVW479al+PxV7ehp8eKJe67Alg3zmPIpZUenVroRi6aJts+aNh+66hxwWgRTXn0qmkLAo6DBrUADWNACiMPYLTzcVhEb5hdTJOs7qtBebccXr+mAS294NtbN5JK6hlrQGDJrOpHFi++WpxhofYzeryqHBYWSIE4DFdXUorarfxZptQCR59hkWOu0wF0iSkmfiVXiWcro3w+MYk8/qZMcPEUaT/9ix1von06gO+BCk9eKzZe3/AFN+D7MZ5fht8smUVQ6qZ9pB0LrppR9hpqij40mrxULakga0KWI2Hpth+n5fOn6Bdh67Xx4bCJCyRxe7Jtm1Ee07jsWTrPFnMcmYlWrD1/8+UF2fdkCkS957cSMaazNxEkAi6RUpg5MywP0J9ktArZc2YaPLq4FAKTV/9PeuQfHVd53//vs/SatdldrSdbF0kq2jHwX8iXYYIzlFFJiKLVNZ96+UKaNwpuZjN+QFl54mebyZkhomgaamZSQtik0mcZAaaBlILWIYWIbY4wwxpavK8uydfdepL1fz/vHOc+z56x2bdlI2l3p+cx4vDp7tHrOnud3fs/zu4oLJqoXQvEUekcCCqWl1ygtLWUGNSx6NftMuVmwzJCR4aGJKC55M9aSEUkRDfoi+PCil/mYwwlJaWlVePi2RlYEeLHVgJEJcbFNAFSaNey7tpt1OHB2nDWElUt1VIrM/Ns9a7G52YGuO1wl2+4HWGCKS1xdCHj+3Qt4bv857Ds2wN6jK5m7V1TDZtKyzsjlxqkO5OwwYVp+ZseKavwyq76e3azDU1+6BbfIusfKSxvl2iOrACxxmDA4EZV6TGXMZ7GUONZANCG2W5E5r/VqglAsjYlIEmdGMgEQB86IO80fvHMGk7KEZxVEQZCXxjGoxdXfmjorC/iQW0Jryg3Y01GX6Vgsyee5sRAz5VwYCzJlDuR+6NEVI73+0UCMtcKgx+5dXQObSYsmWU5NShBD5QExuurU4ATbHUxEkqKP0hsu2ZVkodndUY+uO1xYVKZnHaezq67c1epU+F3LpbYd8h5Y4g5LgM2kRaVFx5LuTwxOwqTTKO4PzbV8bs865v8yaFSyFvSZeULr9D32ynFm1pQHPVBlQsc3NBFlSpjOQ1elRVH2LRRLoXc4gFNDyvqhua6dEkum2d+trTDgnpU1ea0kgWgKYVnpD7nCC8ZF2aY5XYFYStH5eOsyJ775ynFEpe9CrSJMWQsAroaSrIt1U6UJBslf3ugw4S6pu3SZXg2dimDIH8GT/34Ch9weOMw3FkpfbCwoU6GIOCne/HSIBVq01ZRhS4sTRp0Kw/4ofOEEtCqC1XVWnLiSP+eE2shNWoJ7pTBb2pcrm00uJ04MBqQRZCYmjTaU68I0xHYI+UYvQJzg2QEgMamf0mVfBAnZB8ZS4spNk2WKSwOot5sQTiRZ59ZoCjg/FshbWHV4Moozw5NorS7DicFJxFLClPFfK7Sekq8dBT3W6DChZ8APXzgBXzihqNxPc2b6xoN44U87AAAraq24e0U1fvK78yVb4qkYsJt1OD8awNF+H9bVWxGOp5jZjdIz4Me/PLIBP3j7NAa8EYxMZh6kFKpsxPsnyhANR8+3G/7ksg+RRJr5X8v0aqTSAsKJNARk0jcqTBqFz2ap04zTo0HmYy03aPD3f7IOh/s8ODU4gW2tTnz/nbPMSpCdR2bQqFheoXyeUZ8TANxSZcbQZEwRnEV3VZubK/Gfnw5d83vNp9TCcTEYZondyJ4P8ZQAtYqgdZEJ3lAcR/t9qLcZsdhqmOLbLjOoccdSJ/o9l/DOqVHmi+73hNn10ufEWSnCsVTLPMlZUDsuAHj4tkZsa3VKLa3Fyx/0R3D3ymqYdBo2gceCcYXSosE/WjVBVZkeq2utLCoqnBDw5vEhPP/uhbzhqQ9uqGdRUKOBGDY22VnZpRy+3Zxo1aJpbZFFN6UsDN3glOnVsBo0zKauUxNY9GpEEml4wgnQaPhFFh3qbUZ8eNGLnatrFRMhu8QNoJwoJwYncWJwkoUDq66TxNhoN7FoRwIws1E+lthN2NBoVwipmohCWiaZY2gH6H88eBG/+somPPWlW9C+xIZfPLKhZEs8FQtP39uGba1OrG9yKJQWLTnmjyTw66MDMOs1TGnRcmgmrYqFuWfnLU5ExBJLufCG4jggNbaclKo9B2IptgBTAai3GbCxyc4WWYssYsTiRDSpCDCajCZxWNpVHHJ78Lf7zyk6PBhkkXxGyfdaadZikUWHVFpAo1RaySqztkSSYvh8vc2o2G1ubLLhgz4PIok0VER0F1wLp2QylAcTTkSS2ORyYs+tdWxsqbSA3pEQTo9Mosqix2VfZEoLJECU1d+eGkGZVFdRzmVfBJUW8Rr0avHZsOfWOvxoz9qS3m0BC1Bx2c06/GjPWjx5z3LsWS+uOiYiSfz5Sx/h+2+fYW1P5Cyy6NF5i2j/TqQEqQinchWaMR/mdgZ0946y1VpthQF/urEBgiDu9nTZWgiiScSZNbnoCm8sGJ9ifqPWh96RICZkEUnxlKBY7VHf3Vgwjsu+CDY22WHQqpCGOLGdZh17IABApUWLcqMaT31pOWrKDdBLeVw2kxbJtNheZbFV9LndvaKKmXrKDYTZ68dDUeYvEKQx7d3ego1NmcRH6idpq7agqlyP97LyS7zhJAJRcZfZ7DRjV7u4w22rKWNh8Txva2Zodlrwi0c24NGtzdi7fSm7T7R2HwC88ekgDpwdx+racmxuduCP2+sAiLvtqzKTIS3jR5VAvyeMlw5fnPI3Xzp8keX9yddBdL6mAZwbC2PIH0F7g1jPk9amHPRH2QOfhpd/esWPcDyJvduX4jZXpscmDRKiiy76sPeFExgLxhGMpdDvERdMFSYtGh0mPLSpAd/+8go0O83Y1rqIVfEQISx9Iy0AGrUK9hz5aTXlBuzdvhQGybRv0KoVOXNvfjqIQ27RPydP0QlEU/BHcs9rWn9xNBBT1I/UqgnoR/ike5ESCAKxFMaDsZJXWsCCNBVmuud6Q3EYNGr89tQILnlF00OZcepXMhaMsZ2Y06yD2aDBN3csw/feOq2oN2bUqHCkz4OeSz581O9FZ1sVuntH0dlWBU8wzsx4g/4o9u47Lj7MZRY5DRGDNWhpl3HZg1heO5CiVxM8uL4BJ4fEFhBAJnS9vaECKxdbcXY0gNaqMkQTKbz56VDOMj69w+IDY029DQcvXGU7QTreJ+9ZjkNuD4Yno9CpxCTJSrMGyZRYt65fcja7nBbml5iMCiBIwaRTtpcwaAi+eocLb302gtaqcthMOnSfHmX5ZYFYakq/oLTs9dqGCnQsseHBDQ1oXlSG3R31rNM1wOsSziTU9+QNNeLVY5fR2VaFn73vxpvHM/Molkxj0h9Brc3IUhfkkaI0ub5jSQVSaT9GJqPovxrGI784iqfvbYPNpMML77nx1meiqa3coEFdhQG9I0FWBUXOZV8ECalIYf/VTLQuHc+2Vic+6PPAPRbAhxe9khku4yNdW2fFSCDGTI10bqUE0TohD8AYmhADQr7YpsE/HrwI93gI25dXYe/2FvhCCRw4O8YaPVI+G5wUg6Syqt04y7SIJFJob7DiajDGFpPUzC6vbeiqNKOp0oy3T44gnhKYuVIe/QuI5vSRyRhCsRRanGb4w3F4wwl2jryXYJ3NgDqbed6Y0RdUHlc+xFqG/QAE7Fxbi2+9cRIHL3gUeRIU2tk4u4CuHJoHQn1kW1ocOHhBdCTL7eYEosmLzsW2agt7aFNbu0WvxrKqMmbWC0STCMUznZa3tFTisR3L8PRvPoN7PIS/+uIyHHJ78PS9bQqTGe222ugw4Y5lTkAQ89pqKwx45eNB1NuMePwPWvH0GyfZznB1bRmMOi3W1FmxqtaaUbZ5rtduEit60DBiSplerfDHKfJPZGHy1eV62E1a9h3IH4BGrQpfXl3DiiR33eHCo1ub2QO1u3cUuzvqi2o1WUp5XNMlu2uvPMcv+8EK5O5UTLuF11YYQEBYBCugzKGkCycKXdjJyZbR7C7mgGjGDMfTOW0heg3Bw19ohFGnwdZlTnxj33G2iKXIx7G52YGORjuef/e84pzs3C+ay5mPSrMORp0aD39hCb7/9lmksu4RzUPLV4w4m+znUa5ctCfvWV50C7ublZGCKi5CSHu+PkKEkGcFQXiCENKVr23DTAslxRuKY/cLh6fULaNkC1SulvdAJol3dW05LnpCOX1HlLZqC65MRDAZSUGvJmh2mqd0ac6H3ayFVzIJ0NfZk9QbiuPVY5cVCbytVWWKYqq5arVRqq0GljMD5H5AUGgVbUq+hGMAMGjE8GPlMTEijaIiwP7HtgIAHvjpIUxEktjYZMMmVyWef/c89m5fyjoAFBMzobiKTUboIs8XiuHsaBA2kxYf9HlQazXknK+0ZqY8N7HZaYI7q6hsdtItXeBlJwcvthoQiCUUsmTRqZFIpdmCcDoJxG01ZRiaiOC5Petw5/JMPzJ5Qe5j/VfRdzXC5IMqk73bW/CbT4aYgjNoVOhYYsNBd6YJddcdLhi1ogVGXoA6m1ydzG0mLXbcUoVXPr6CtuoyGHQqnBkOKIKeqMJ2WnSAIM61SosOIGKOZntDBd74dBhmvQrNlRZscjnw6J0tRbWwA0qwVqHUAO/n1zilixDiBpC7Ou4sYjfr8OJDHQobtEGjQpXk+6mR1WlbbDWgwqRshqdRicITS4m/d2JwMtPATVYORs6Z0SBTWrGUwB4C5QYNa0EO0F2N/G8ReEMJ1NuMaHSY4A0lckYNUfOo3axjprW9+z5hQtneYMUPd61Be0MFynLUe/LIWrJsaXHg9a9tRpssxF8+87LV87UKk8qVlkmrwp5b61hnV+okTwvAQ//0If7sn48yZdlaXY7Mfqx0rQbXohhlhJoPv3v/Kty1fBHeOSX6brMjSel8oDUz5X7WK74IVi0uU5xfVyFGzdmlXD6qhOQdwettRlRadAhEU6g0a1GmV8OsVyEoVYhngQ3SdDDpCKqthikBE6try/HLv9iE43/9Bwqllbm+VtjMOpYkbDVq0OgwwRcWZWvn2lpsbLLDoldDpxYTq48NZJTTlhYHHt3ajG/saMUzD6zGIqk5pFGjwrJFZoV8UaW12GrAfWsWo9Fhwo/3rGUltXpHAugZmEAqLX6/NDeO6rrxYBzjoTjGgjH0jgRg0Kpx2RdhUcF/saUZb379djz1h21Fp7Q+DwXzcQmC0E0I8V7jlN3Xa2M+mzQ7LXiwox4vHxmAVpqcbXYjqqwGXPKEWUmcSouOOZUpdpP4nlqqFgBk7OdUIKmc11aIOxkqbNTUQs1rk9EknBYdNKq01BJC+beSaQHNTjNefKgDNpOO7aquNUk726pwpM+D0ckoJiKiOcMTTMBq0uL2pU70DPhRYVTDH5ka1NHeUMEqUm9pcaJ3OACTZIqh5DLpUHJVwKaEE2mMB2NMaa+pq4A/nIQ/kmB5dtR0YjNp8fBtTTDpNCUf2puPYpeR3R318ITirNJGe0MFxgMx2My6nGkkNH0klhSYQqP0juQ2q9HgCWrlGJ4QLR2+SDKTBK8GdBr1lPSQcFxAOB7FErtdcbzcqJ3GQ1z8bI2K4AsuB945NYotLZX40Z61eOlwP175OJOuolERRBNp6NUEK2qt+M59K9nnv3l8b/O64gAAD4JJREFUiFXRiCTTiKcEPHP/Kjz+7yeYP1irEv1peq3YAf3/vH5iinmVprQQ2dhy8YmksC77ItjW6sTDtzVe5zpLk2KOKmwnhHQSQh6/1kmEEMW/b3/72zM2gPvX1cFu1jJl0jPgx4nBCYwGYhgLxtHszIR1W/RqtDdY0XW7i5UukofgLq8uYwmdNPS2tsKA7csXKcwa9PEfiKVYdNF4MI6JSBIaNUGj5Gim0U57ty/Fq4/ehmanRbGruhbdvaM4cHYcHUvsaHSYsNhqwCVvGN/7r15E4rS1d2ZNY9QAdilDP5lKo/9qCA/89BB+dbQfABDJqtWo16lwz4oq1NuMsGUFuwjI7DqzaXaaEIolWdRYz4Af/khCsUKNJtOSQDZN+3rnMQWXkfOjAfR7wrCZtBiUClT7ZLskjQqsYLNGJbB575DdM5qQn/0wMsuShI1aFdSyfMFUWkxuLjOoEUtBaroqfgI1lNBptqbOir3bl+KhLyzB5mYHvnPfyute1861tbCbxchZ2u4lHE+g/2oIr/cocyzprimWEtAz4Mc3fn0cz7zVix/vPwdfVvPXfk8Yf/naCUVjVvryP3qu4MOLPoXSIrL/I4k0jNqp1hD5Efoo0WtUePre+bXLklO0UYWCIPwNABBCdhBCOvOtLGfTR/d3+8/BGxLrpKkIwWVfhPmztGoC93iIhd8GYyn0DExAo1IxhUVXmHqNCleDcWarl4cLRxNpZjvPxqRVIxJPMcVGIwcBMWLou/evuqnrojuUcFxsmNd1exN6hwOot5lw7JK4wK8q17OIyUgSiCRFE92JwUl8/d96FAVEBSh3UqFYGh/2e5nfTU62z0LuXL/ii8A9LpYb2rt9KXyhOF4+cglNDhMueSOsM+18yEOZCQotI68eu4wDZ8dZaSZKo93EfMDJNECtwZEkEJGqwGxursQlTxhV5XrmK0ojU1czu3j1uTGl71WtAr68ZjHWL7Hh//7mJBKpjLkyKWR8R3azVoxAvcHcvjePD8IbSogNYCVt2TMwgT9/6aOcsirnxOAES3KmJdbkRatjyXSmyaXMt0cVmDzIJdsYTs3u8t9LAVOeIbFkGt29o2jeOj9zGmdNcRFCunIc7puOaYMQsgsABEF4DYAHgGuGhzct2mrKcPDCVVSVG9Az4Ed7QwXOjwWARAqJlCC1CpGFemtVisruSxeZMDwZh4aQvNWn958ehS+sDCHWEMCk17BST9nBChVGLX74OZok0p2KezyIY/0+gBDcusSmiJRKptIspNekA+psZlaSaXxSmQjZ6DBhQ6MNr3w8CKdZB4NOjf9330r8/Pd9OOT2YLHVgGqrWNX6WL9XNIuoCRwWPYYmouzaY0nxQdPvCePEFT++ftdSHHJfZRUFqEl0viitUpeR3R31ONLnmdKA8nBfJkihwqRBg82E5dXlODnoR783hHKjHmdGJjARTbKcQzoHXJVmlBt1ig7ZZq0KoSwfWioNvPzBJez7aCBn5wWqtLyhxE0+wJW+JEA06VHlII8OzsaoIYhIY5qMpFgnCnm4fVoQ57NZp55i/v/SymrWmTkXKiImWddWGJBOAzvaqnD/ulo89spx9HvC2NhkxyaXfd6a0IFZVFz5opyuBSGkQhAEP0RnM3U4NwP42UyObbo8emcLHBY9PMEYegb88IbiCEQzoejyaWvUqvAP/+NW/PS9Czja78NiqwFJAVNWZ/LwdxrCmr1aSgqZJpZ6jQo/3LUa/3rkEo72+7Ch0YYX/ufMPLy7e0dxyO3BIbcHe7e3KML2qZ+Jji0ST+O+NTX47alRRJNp5tcyaVXo94Qln5dohqG+tm9+sRUDv/4El30RMalUEH0VPQN+xFICXE4LoskUvCEx7HdNvRVP3H0LfvK78+xh6B4PsRDkQrcpmWlKXUZoMv9Lh/vx66MDGA3EpkQH+sNJ+MOT6PME4aosY34nWurCbtIiFE8y5XNicBJ7bq3D6tpynB0NIJYUsLLOipNDkzl7c9HfM+tUMOs1qLToodeosL7JgQfX17M0iRvl4dsacaTvKj686GO7P7nujKUEFtYPKMu2RWSKtLpcLym/JGorjLjoCWNZlRn3rKzBzrW1+Novj0352z0DfoXSqjRroVIRjAfiEAA0OUyIpwS2q7WZdWhfYsPrX9s8LR/3fKBg4fDSivHnAL4irRpBCPlYEIRbpdddALwAXNQkkuMzZiUcPhsaSr6+0Y6f/O48HlhXK/b0kVp2NDpM+Kc/W49mp4WdS3tFybGZtPjuzhXYd+wy2mqseHCDKFieYAwv/v4izHoVQjGxVluD3cR2b9tanfjRnrUzPilp6C9AmBP3pcMXMTwRxcHzV1Ft1WPlYitrkUBrxQFTTX6UrttdcFh0rAqJP6JU3NTJbjNp8dr/ug0T4YTC/PLkPctZUnGx5mdNl88bDl9KMuIeD+J7/9WLr9+1FO+fG4cvFMeBs2OKtJFyo5oVeaZ9sijyfCV5ThLdNdH5VlWmx9ZWJw6evwp/ODYlDWVbqxMHzo7PSM4SleVBXxgvHxlgY2hvsMKk0yAcT6FnwD+lp5089J/KtJyacgMaHCYM+ac2raVkp5vQVBW7WYt7V9UwmQSAvdtb8I0drZ/rWgtFSeZxfV7mSijzIc+Nyn6wekNx/ODt0/jtqRHcucyJxkozCyjI9zlUMWYqClxA73AA37lvxZzW33vkF0dx4Ow4U5gvvHcBr358Bb5wAkvsJty/bjG2LlukSNak5k+669r9wmGFj4tWwLh7RRVODwewtdWJ/925DHazDs+8dRov/r4PG5vseOaBVSWtrOTMxwTkG8EbiuO5/efw370jUBGCZ/5oFT657ANAsHPtYrEfXjgO91gQX7ndhX94/wIAgifuXo53Tg6jdziAx3Ysw0f9XoVsUFlwjwfxrTdOwVVphkGrglGnwc61i2d8/lD5zF5IyRvTZpNtRaHyYdSqcEtNOVPa1A8OZJpNys2Qiyw63L+uFqtqrfjWf57C3+1ei9+dGcPLRy6hutyAnWtqijI/a7pwxcWZMejqOfshkX3MG4rjue5zeP/sOP7yi8vw+ieDePreNnT3jrIqHRua7Piwz8sUnHw1TVfFP95/Fs+/ewF7t7fApNPg+2+fKcos/xtloSuuhYA3FMcL713AkT4PPKE4NjdXYtAfwSG3B1taKuGqNLFuzy990M9KLj31+mcABIRjSVZho+sOF949PapQhI0OE977q22KxWQ8mcYhtwebmx341Vc2FeCqZw6uuDhFQ/ZOVBRuN3qHJ/DYjla8f24M1DxJ38+u6sF3XDM2Bi4jc8y1LDHZuMeD+OvfnMSKWise3doMXziOp17/DIFoAoFoEs//yTq0L7EpFo4ApiwiSxWuuDicIoMrLg7n2pRcyScOh8PhcG4Grrg4HA6HU1JwxcXhcDickoIrLg6Hw+GUFFxxcTgcDqek4IqLw+FwOCUFV1wcDofDKSm44uJwOBxOScEVF4fD4XBKCq645oCZ7Dg7m/BxcgpFqdxTPs7igJd8mgOksiaFHsZ14eOcWXjJp+lTYve00MO4LiU2zhuWkVlrJHk9ZN1fmwVBeCLH+7sA+AG05+s1xOHMZ7iMcDi5KYipkBDSCaBb6gDrkn6Wv98OAFILcz/9mcNZKHAZ4XDyUygflwsAFcQ+6Wc5D0JcSdL3O8HhLCy4jHA4eSiIqVBaRVLaAezLOqUCYktyiiPfZxFSUBfCtOHjnFlKZZw3C5eR4oWPs/AUzMcFMHPHfkEQem7m9wvt+OZwZhsuIxzOVGZNcckcy3L6JJs8pTOPU9kPwC69rgDgmenxcTiFhssIh3NzzJriyjJ1TIEQ0kUFkhDSKQhCNyGkQhAEP0SzSId0qgtAd77P4XBKFS4jHM7NUciowmcJIW5CiE/21rsAQM0i0nn+mzWTcDilCpcRDic/BVFcgiB0C4JgEwShWfq/Wzp+q+ycF6XzrrkqLSYIIZ3Sv2dlx56V/u/KOpeHL88DbuSeS8cen87nchnhMjJfmA0ZKYmST9O9cELILum8aT0cZniM7QB2SA+YdpnQdRFC3BBDlum5nQB+PtdjlP/9aX6fXdK/Z3N9TpGMccp5czjGad9zOlYA62dpLFxGZohSkI8bHOf8kxFBEIr6H8RQ4Gel1/shVgkAAB8AN0TnNT1vl/S6i55XoDG7Za8785yzv8i/z04ALun1q/muowju+ZTziviedwJ4tcDfF5eRmfkuCyYfN3HP552MFOQCZuPCATybNakeL9AYH5ePjf6cPZ5CKa4b+D67AHTJvtuuYhtjvvOK8Z7LHiwzrrhu4J5yGZm577Io5ON648x3XjHe8xuRkZIwFQLM7vlV2aH2LJPHtBMyZxNBjAL7KiGkgv4siNtkR3bZnkJyve9TEP0n1HfSDuBYsY3xGufNKdO85/a8HzBDcBmZOUpBPoCFKyMlo7iKfbITQuT22z6INtxdRCyECoh5NtllewrGdL9P8jkTYOdijNnnzRXTveeEkHZBmZs1K3AZmTlKQT5uZJzzTUaKXnHdwGQvdEJmZ9bf75P+0ZvRjAKtyuTcxMMjXwJswceY67y5HCemf89dsvG7yAxHy3EZmTlKQT4ALiNFr7gw/Qvfh8yEKkRCJq3ivQsABEF4TVqF7ZGOuYVM7s0uAB2ySTaXTPvhQbISYItwjLnOm0umdc+l469JY52NFS+XkZmjFOTjRsY5L2Wk6BtJSlvbPRBt8zsEQfiqdLxLOuaSTZ4uSJW0hRLKbZlLpvt9SoL4qnTMDmD3XJi7bnCMOc9baHAZmTlKQT5ucJzzUkaKXnFxOBwOhyOnFEyFHA6Hw+EwuOLicDgcTknBFReHw+FwSgquuDgcDodTUnDFtcCQsurdhJBniVgg9PFcORPS+3OarMjhFBouH6XBrDWS5BQngtiMsBvAPlnOjA+ALevUXQA+AvDaHA+RwykYXD5KA77jWuAQQqaU2JFWmD8D8ODcj4jDKR64fBQnfMe1cOkghNghFt7cnv2elLzoy/F7HM5CgMtHEcN3XAuXY1Km/36INexynlMMxVk5nALA5aOI4YqL4wXwBP1Bcjg3S3XE+gDsLtTAOJwigMtHEcJNhRw/pMKrklB2CoLwhPRzN4CPCzg2DqfQcPkoQviOa4EhCV8HJMeyZA7xS8U57wTwpCz81wXATrKa0nE48xUuH6UBL7LL4XA4nJKC77g4HA6HU1JwxcXhcDickoIrLg6Hw+GUFFxxcTgcDqek4IqLw+FwOCUFV1wcDofDKSm44uJwOBxOScEVF4fD4XBKiv8PO0tqax6YScYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot the spatial distribution of galaxies and randoms in fields as a sanity check\n", + "\n", + "#subsample to make plotting easier\n", + "subsamp = np.random.choice(len(fdata), 50000)\n", + "rsubsamp = np.random.choice(len(frdata), 50000)\n", + "\n", + "subsamp = np.in1d(np.arange(0,len(fdata)),subsamp)\n", + "rsubsamp = np.in1d(np.arange(0,len(frdata)),rsubsamp)\n", + "\n", + "#plot each field\n", + "fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(3.3*2,3.3*4))\n", + "for i in range(0,Nfields):\n", + " ax1,ax2 = (axes[i,0], axes[i,1])\n", + " if i==0:\n", + " ax1.set_title('HSC galaxies')\n", + " ax2.set_title('HSC randoms')\n", + " min_ra = field_bounding_boxes[i][0]\n", + " max_ra = field_bounding_boxes[i][1]\n", + " min_dec = field_bounding_boxes[i][2]\n", + " max_dec = field_bounding_boxes[i][3]\n", + " ax1.scatter(fdata['ira'][subsamp], fdata['idec'][subsamp], s=1)\n", + " ax1.set_xlabel('RA')\n", + " ax1.set_ylabel('Dec')\n", + " ax1.set_xlim([min_ra, max_ra])\n", + " ax1.set_ylim([min_dec, max_dec])\n", + " ax2.scatter(frdata['ra'][rsubsamp], frdata['dec'][rsubsamp], s=1)\n", + " ax2.set_xlabel('RA')\n", + " ax2.set_xlim([min_ra, max_ra])\n", + " ax2.set_ylim([min_dec, max_dec])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Caclulate area of survey" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total area in square arcmin, square degrees: 93859.22 26.0720055556\n", + "Area of deep field 1 in square arcmin, deg: 18314.15 5.08726388889\n", + "Area of deep field 2 in square arcmin, deg: 28104.28 7.80674444444\n", + "Area of deep field 3 in square arcmin, deg: 23422.92 6.50636666667\n", + "Area of deep field 4 in square arcmin, deg: 24017.87 6.67163055556\n" + ] + } + ], + "source": [ + "# Calculate the effective area of the survey\n", + "# There are 100 random points per square arcmin.\n", + "\n", + "full_area_sq_arcmin = float(len(hsc_randoms))/100.0\n", + "full_area_sq_deg = full_area_sq_arcmin/3600.0\n", + "\n", + "print('Total area in square arcmin, square degrees: ', full_area_sq_arcmin, full_area_sq_deg)\n", + "\n", + "# calculate area of individual fields\n", + "# from table 3 in Hiroaki + 2017, deep area=26 deg^2 for public release 1\n", + "\n", + "area_sq_arcmin = float(len(hsc_randoms[ran_field_mask_1]))/100.0\n", + "area_sq_deg = area_sq_arcmin/3600.0\n", + "print('Area of deep field 1 in square arcmin, deg: ', area_sq_arcmin, area_sq_deg)\n", + "area_sq_arcmin = float(len(hsc_randoms[ran_field_mask_2]))/100.0\n", + "area_sq_deg = area_sq_arcmin/3600.0\n", + "print('Area of deep field 2 in square arcmin, deg: ', area_sq_arcmin, area_sq_deg)\n", + "area_sq_arcmin = float(len(hsc_randoms[ran_field_mask_3]))/100.0\n", + "area_sq_deg = area_sq_arcmin/3600.0\n", + "print('Area of deep field 3 in square arcmin, deg: ', area_sq_arcmin, area_sq_deg)\n", + "area_sq_arcmin = float(len(hsc_randoms[ran_field_mask_4]))/100.0\n", + "area_sq_deg = area_sq_arcmin/3600.0\n", + "print('Area of deep field 4 in square arcmin, deg: ', area_sq_arcmin, area_sq_deg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# calculate apparent magnitude functions" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "mag_bins = np.arange(17.0,27.0,0.1) #for differential mag function\n", + "mag_bin_centers = (mag_bins[:-1]+mag_bins[1:])/2.0\n", + "\n", + "#g-band\n", + "g_mag = hsc_data['gmag_forced_cmodel'] - hsc_data['a_g'] #correct for dust\n", + "g_mag = g_mag[np.isfinite(g_mag)]\n", + "g_mag = np.sort(g_mag)\n", + "#cumulative number density\n", + "N_g = np.cumsum(np.ones(len(g_mag)))\n", + "n_g = N_g/full_area_sq_deg\n", + "#differential number density per mag\n", + "dn_g = np.histogram(g_mag, bins = mag_bins)[0]/full_area_sq_deg\n", + "dn_dmag_g = dn_g/np.diff(mag_bins)\n", + "\n", + "#r-band\n", + "r_mag = hsc_data['rmag_forced_cmodel'] - hsc_data['a_r'] #correct for dust\n", + "r_mag = r_mag[np.isfinite(r_mag)]\n", + "r_mag = np.sort(r_mag)\n", + "N_r = np.cumsum(np.ones(len(r_mag)))\n", + "#cumulative number density\n", + "n_r = N_r/full_area_sq_deg\n", + "#differential number density per mag\n", + "dn_r = np.histogram(r_mag, bins = mag_bins)[0]/full_area_sq_deg\n", + "dn_dmag_r = dn_r/np.diff(mag_bins)\n", + "\n", + "#i-band\n", + "i_mag = hsc_data['imag_forced_cmodel'] - hsc_data['a_i'] #correct for dust\n", + "i_mag = i_mag[np.isfinite(i_mag)]\n", + "i_mag = np.sort(i_mag)\n", + "#cumulative number density\n", + "N_i = np.cumsum(np.ones(len(i_mag)))\n", + "n_i = N_i/full_area_sq_deg\n", + "#differential number density per mag\n", + "dn_i = np.histogram(i_mag, bins = mag_bins)[0]/full_area_sq_deg\n", + "dn_dmag_i = dn_i/np.diff(mag_bins)\n", + "\n", + "#z-band\n", + "z_mag = hsc_data['zmag_forced_cmodel'] - hsc_data['a_z'] #correct for dust\n", + "z_mag = z_mag[np.isfinite(z_mag)]\n", + "z_mag = np.sort(z_mag)\n", + "#cumulative number density\n", + "N_z = np.cumsum(np.ones(len(z_mag)))\n", + "n_z = N_z/full_area_sq_deg\n", + "#differential number density per mag\n", + "dn_z = np.histogram(z_mag, bins = mag_bins)[0]/full_area_sq_deg\n", + "dn_dmag_z = dn_z/np.diff(mag_bins)\n", + "\n", + "#y-band\n", + "y_mag = hsc_data['ymag_forced_cmodel'] - hsc_data['a_y'] #correct for dust\n", + "y_mag = y_mag[np.isfinite(y_mag)]\n", + "y_mag = np.sort(y_mag)\n", + "#cumulative number density\n", + "N_y = np.cumsum(np.ones(len(y_mag)))\n", + "n_y = N_y/full_area_sq_deg\n", + "#differential number density per mag\n", + "dn_y = np.histogram(y_mag, bins = mag_bins)[0]/full_area_sq_deg\n", + "dn_dmag_y = dn_y/np.diff(mag_bins)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPEAAADfCAYAAAAnbTVPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXd8VFXeh5+bBJIAQiD0IjAIqKCGEERQCCWhgwKBUJSmhlV3FXcV3FUW275u0F3d4mrAQq+hSA1mQlMQhYQiJSIZegjpISF95rx/3JmYIWWGZCaTyZyHTz5z586955w7zPeec8/5FUUIgUQicV7cHN0AiURSPaSIJRInR4pYInFypIglEidHilgicXKkiCUSJ8fD0Q2wBkVR5DqYpE4jhFCqeq5TiLg0ixYt4u2333Z0MyS1jGXLlgEwa9Ysh7ajKihKlfULOJGIpVGKpDIGDhzo6CY4DMUZxKEoinCGdkokVUFRlGoNp+XElqROkJSURFJSkqOb4RCkiCV1gqioKKKiohzdDIcgRSyRODlOI2JFUVAURc5MSyR3IGenJRInx2l6YmcjMjKSSZMm2ay8BQsWsHjxYpuVJ6k7OFzEiqKEKYoSpCiKv6PbYktCQkJsWl5oaKhNy6trDB06lKFDhzq6GQ7BrsNpRVH8hRBxpd6HAJmAvxBisaIoYYBWCKGzZzvqAj4+Po5uQq2mQ4cOjm6Cw7CbiBVFCQLCgd7G9/4AQgitoiga4/veQLpxO66qYp43L4oTJ2y7Rujn15pPPhlR4eeZmZksWbIEf39/4uLi8PHxISwszOwYnU6HVqslMzMTHx8fgoKCAHWoDZCenk5YWBharZbw8HAWLFhAXFwcQUFB+PurA5PFixeX1CGpmKtXrwKuKWa7DaeFEFogvdSuUNReGEAHBAEJgBaIA2w7/rQzx44dKxHm0aNHywgYQKPREBQUREhICOHh4QDExcWh0+kICQkhIiICgKCgINLT00uOXb9+PUDJTSIoKKjkBiApn5iYGGJiYhzdDIdQk7PTPpiL2hf4AFXMAJFVLbiyHtNeBAUFsWTJkpJeFGDu3Lmkp6fTp08f5s+fb3a8j48POp0Of39/0tPT0Wq1NGvWrOTz0tsmYmNjpXglFnHoEpMQIpNqiNeRmIa9Go2mZJ+pZzWRmZlptq3RaFiyZAkAYWFhhIeHlwy1y3vm7d27NzqdzqwOieROanJ2OhMwdTc+QNrdnGwy9qgtRh/+/v5MmjSJSZMmsWDBAjPBlj4mLi6OyMhIFixYAKhD7MzMTOLi4vD390er1aLVaomLiys5Ni4ujszMTMLCwoiLiys5Jjo6utx6JK6NXb2YFEWJFkIEG7f9gQAhxBJFUeajzkpbNVtTG72YFi9eTFhYWMkwOSIiomRYLal5nN2fuDpeTHYTsXE5aSnwvBAi0rgvDHVSSyOEWHIXZZU0srYEBSg962waKptmlCU1j8mDqXXr1g5uyd1Ta0VsS2pjTyyR2AqX8SeuLc/CktqJTqdDp3NNmyGncYCQSCrj4MGDAC45k+80Inam4XRkZCTr169n48aNNilvwYIF+Pr6lll7lkjAiYbTzoR0fpDUJE4jYld+JpbOD5LKkMPpKmIaMoeGhqLT6coMdaXzg6TGEELU+j9AmP4WLVokagsajabCz0JCQkq2g4KChBBCxMbGivDwcCGEEP7+/iWfm7YTEhLE/PnzhRBCREREiOjo6DLnSconJSVFpKSkOLoZVUKVYdX1USd64nl7wMaeiPi1hk+GV35MaeMO6fzgWJo3b+7oJjgMpxFxbUc6PziWX375BYDu3bs7uCU1j9OI2JSvpjyzS0s9pj0o7bRQnrml6VlWp9OZOT+UPker1eLj41Oyz1SmyfnBFFMrLi6O6OjoElttSVl++OEHwDVFLM0uJXWCyhwg9OgpoIBCCiikkALju0IK0KMHQJT6d+d7YZySKb1153tL55bmzl/yEGWoa2VFlEjuRCAobFxIQfN8tHxLOulkkcUtssghB/QFeOfnU7+okPpFReprcRH1igrx0Ovx0Bfjbnz10OtxN+hx0xtwEwbchEAxGF+FQBGlt9U/N2FAMZTaLtlfzj5D2c+rixSxxCnRo0eHjjPiJMm3fqJhr0vcm5XOPQdX0TE7l4bZt/HOzcG7IAcvQ36V6igyuFFQ7E5RkRtFBneK9Ap6gxvFBjf0egW93o1i4YZBD8UGd4r1CgahqMfpFfQG9dVgKL3thsGgHmfQg6HqHXAJTiPiyp6JJa5DtiGD80nLyb+2gzaJFxiRkoRXYUHJ55lFjbiQ047TOe1Iz72HosL65N0ycCu1gOyb2eRn5kFeHkp+ARQXU08R1FMMuGPAXehxE8Uo+iIUQxEUFwEGx12slchnYkntRxjIub6TtPP/ooXuMEpGHjeuQ2JWKy4nNefCFchJzqb+rTTqF96uuBjFDbcG9+DZxIeGzX1p1KwJ9by98PDywsPTEw8vL9xLb3t64uHpibunJ+716uHm4YHi7o6bu7v66uHx23ap1zLHWTi+xQMPSH9iSR2lIIvis5+TdvCfJB5NRpfgxpUr9bmV+NvwON+zMXkt76N11874NPPhxNkcjp/LIVd4oenRkQHDejJ0zCM84K/Bs3FjFLfaZ2ksgwJI6h75aWTseItTq74iPraQpGvqbu8WvtR/ZAD7vfty2qcXHf0e4vWxbbgn+Rqvvrqdo0dTaNbMm7Awf55/vjcaTVPHXoeVSBFL6gz63Czi/xXG0WWbuHxeXfrx7tOWHiEzadN/CgsvP8SuBIUHW8CHQXC/ewavvx7N5s3naNzYjdGjm7B06e9o2LC+g6/k7nCZyB61DZ1OV27CNJlI7e4pys3lx4Wz+HcHXyL/soHUW240+EsfHru8jld/vIJu0P8x4LuHOXBF4Z/D4KdZeo5vOEiPHv9jz54LvPvuIBYvbsewYY2dTsC2wGlEXNtcETUaDUuXLi2zX/oSW4++qIij/3iHf7dvStT7y2nUwgPfrwfR4NpHzPzbdh5oEsrwle68HAUD74WzL8JgryT6P7aUt97ax5gx3YiP/z0LFwbi6ek0P2Wb4zRLTLVtOK3T6cjMzLR7hMu6amaZELWbqBdmkXopmQ73uaP5x0BOznycx90GMZghbDnrQdgOKDbA0jEw62EDH310mIUL99G8eQO++WYK48a5nolleTiNiGsjCxYsIDo6usx+6UtcMdk3bhD14hzObo2iWQsYs7AH++cHk9aoFTOYTNtiDX/YA5/HQt92sHo8NCzMYfjwzezde5FJkx7ks89G4+vbwNGXUmuoEyLexU6SuGHTMlvThlGMrvBzjUZTYS9pSqQGEBwcTFBQUIkzxPz58+nduzdhYWEEBQWxYMGCknQwERER+Pv7myVSa9asGVqt1qbX5giEEJxctoyoV16iOC+PQU96U//9OXzTozFdlK6EMJmUzIY8sRFib8Dr/eBvQ+CHQ5eZPHkjt24V8OWX45g926/E8Kc0kydPdsBV1Q4cKmJFUTSo6U+jxV0Ek69tSF/iysm5eZPtc2Zyftce7u0CI197jKhnxnCxYR6DGUwgg9l/0Y3Jkerw+ZtQGNtN8OmnR5k3L4ouXZqh1c6gZ8+WFdbRoIHr9swOTTJu3P28UBOrVZnKesyaQPoSV8yFqCi2PjON/MwMhk1057433+BLP08MioHpPEM3uvPZMfjDbujeHLZOhk6N9bzwwm4iImIZO7YbK1eOp0kTr0rrOXHiBAB+fn41cVm1CrtN6RmTjC8t9b4kyTiQaXyfDmgURQlRFMWpZnBMPsDlBSyXidTUmefo119n9ciRNKyfQdi7HWj82Vd82kuhodKYubxIF0N35u2BF3fBiPvghznQql4Bo0evISIiljfeeJytW6dYFDCoIjYJ2dWoyYRqpmGz1ihwfyDO+L4k2VoF5UhjDyfi1rVrRE6ayNUjP9H7CRj22nj2j5zC9/VP0o3uhDAZQ5EX0zfD1l9gXl/4KBiSb2YzcuRqzpxJISJiDHPm9LK6TldOqOboJOM6k4AB55+9kXBx714iQydRnJPBxDlu3P/yh6x72Jfzykn68TjDGUFmnhtj1sKRa/DvEfCHRyEhIZ3g4JUkJ99mx46pDB9+n6MvxWlwdJJx01i0bq2juCBCCA5/9BExbyzAtyWELvSlwaxVLG17gSR+ZSzj6ENfrt+CYavhQjpsnAQTH4CzZ1MIClpBQYGevXtn8uij7Rx9OU6FTDIuqTaFt2+zaUoo2vnzeeARwfOLA1BeieGztqdII5XpPEMf+pKQDo9/DVezYM90VcCnTt0kMHAZQsDBg7OkgKtATfbE61GHzQAa7nL4LJ+JayeZly+zbtxYbv78M0FPQv+Xn+VK4HzWuG/AHXfm8Bxtace5FBi6Egr1sHcGBLSFn3++yZAhy/Hy8mDfvpl07epb5XZMnz7dhlflXNhzdjoECDC+YlpqMk5qZZZeerKyPNkD1zIuf/cdSwP8ybxwhukvuPH4u/8hfvCrLHdfTQMa8DxzaUs7fr4JgcvVAHEHZqoCPns2haFDV+Dl5cH+/bOqJWCAevXqUa9ePdtcmJNht55YCBEJRN6xz2kNOiTmxH35JTtf+B1NmxmY8udGNJ+1hdj297CNtbSlHU8zg4Y05NRNtQf2dFd74G6+6iRWUNAK3N3d2LdvJvfdV9bg5W45evQoAH369Kl2Wc6G05hdOtNwui6nNjXo9US//jpHPv6YLg8ohMzrgufknRzwuU4MW7mPrkxhGvWpz6mbMGQFeHnA/plwXzNITMwmOHglhYV6Dhyofg9s4syZM4Brithp/LecaThdV90RC7KzWffkOI58/DGPBsK09wdRf+aP7PI5TwxaHsGP6TxDfepzJhmCVpoLODu7gJEjV5OSksvu3dPp0aNiM0qJ9cie2AmoDe6IWVeusGb0aFLOnmF0KATMDaN44Cdscd/Gz5yiP48zjBG44cYvqeoQ2sMN9s1QBazXG5g+fTNnziSza9d0+vSRs9C2wmlEXGnI2u/mQaqNTe6a+8GATyr8ePHixSW2zREREWVcEuuSO+L1o0dZN3YMRbfSmP6CoMuzH1Ho93vWKWu5wK8EM5wnGICCgi5DFbBAfQY2jZbfemsv27ef5z//GcmwYV0cej11DacRcW3riU2ugpMmTSrjAAF1xx0xfutWNk2bSqOGxcx43YMWMzeSqxnOapZxjas8yXh6G1cOr91Sh9B5xbB/BtxvTFS4cuVJ/v73Q8yd25uXXnK9Z1Z74zQirpRKekx7ERQUhFarRaPRoNFo6pw7ohCCIx9/zLevvUa7Tm5M+YMPjabt4lar7qxgKWmkEcpUHqQHADdzVAGn5qo98EOt1HKOHLnGc89tZ9CgTvznPyPL9QW2Bc5oM20r5MRWNQgPDyc8PJzIyEgiIiLYuHFjiYArckfU6XQl4jQdU5k7oiMw6PXsfvllvv3Tn3jAT2HmQg2N5vxEWisNX7CELLJ4hlklAk7PU00pr96CXdPUdWCAK1eyeOqpdbRv35jIyEnUq+fukOup6zhNT1zbhtMLFizA39+/ZDnpzhlpZ01tWnj7NpumTuX89u30GwLBL/RDGbONRK88VrIEgWA2z9IWdWLqVgGMWA3xqbBzKjxxr1rO7duFPPnkOvLyitm7d6bdw+kcPnwYgP79+9u1ntqIjDstKSEnKYm1Y8dwIy6OERMFjz4bCkOXofO4zlpW44U3M5lFc1oAkFsEI1fDoauweTKY4tYZDILJkzeyZUs8O3ZMZeTIrnZvuyu7IsrhtASAlLNn+eKxvqScPkHo84JH582HYWs443GBlSynCU14jrASAecXw1Pr4fursGr8bwIGePvt/WzadI4PPwyuEQG7OnI4LeHywYOse3Ic7uI2s18x0Obp/0HPF/iRI+xiB+3pwHSeoQHqkLhQD5MjIVoHX4+DKT1/K2v9+tO8995B5szx49VXH3PQFbkWTiNiiX04vX49W2c8Q1NfwfSXPPCZvgXRaTQxRHOQ/dzP/YQQSn3UzArFBpi+Gbafh/+NglmlQlodO5bIrFnf8MQT9/K//42220y0xBwpYhdFCMEP//wn0a+9xr1d3Zny+2Z4T9mFvmUvtrGZ48TRmwDGMA531FllvQFmbIXIc/CPYHgh4Lfyrl+/xZNPrqNVq4Zs2jQZT8+a/Wm5qgcToP5n1vY/VAMgAYhFixYJSfXQFxeLXX/4g3gbxIZeiij6upsQWRdFvsgXy8XXYqH4i4gR0cIgDCXnFOuFmLFFCN4R4oPvzMvLzS0UAQFLRKNG/ydOnUqq4atxflQZVkMf1Tm5pv6MF+lUbNy4UYSEhNisvPnz54vw8PBql1OYmyvWjR8v3gYRNQRhiBwgRF66yBbZ4jPxX7FIvCWOiZ/MzykWYuomVcDvHTAvz2AwiClTIoWivC2++Sa+2u1zRaorYqeZnXY2aqMnU25aGiuDhhK/dQvDJ8LwBVNRnoom1auYpXxOCilMZTq9+c00sqBYncRaexoWB8FbA83L/NvfvmPdutN88MFQh+ZGOnDgAAcOHHBY/Y5EPhM7CdU18sjQ6Vg9YgSZlxKYNAcefPYNeOxvXFausoaVuOHGHJ6jHe1LzsktgokbICoB/jMCfv+oeZmbN59j4cJ9PP30w8yf/3i12lddLl68CEBgYKBD2+EIZE9cRSIjI+nSpQuZmZkV5iQ2eTJFRkaaOTBERkYSGRlZkhVCq9USHByMVqtl8eLFZl5LixcvLimjqtyIi+PLfo9x+4aOGb838OAr/4V+H3BGOctyvjKG0vmdmYCzC2D0GtiTAF+OLSvg48dv8MwzW3jssfYsXTpWzkQ7kDrRE0fNm0eSjaP/t/bzY8QnFTtWhISEsH79enx8fNBoNOVG8agNnkwJ0dFsmDAeb88CZv7RjRYzNkCXCRzhMLvZRXs6MI2naUjDknMy81VLrKOJsHoCTO1pXmZSUg5PPrmOZs282bIlFC+vOvEzclqcpieujRZboaGhREZGkp6uxsSfO3cukyZNKrF5Lk1pTyaT3bQ1nkzVycd0atUq1owaRdOmBTz7RgNazNVi6PIUe9jNLnZyP/czizlmAk7NVUPqxN5Q40LfKeD8/GLGj19PWloe27ZNoXXrRlVun8Q2OM0tVFRisVVZj2lPQkJCCA4OLvEnrk2J1X745z/59k9/olN3D0L/4IvXlGiKfR9gK5Gc4iSP0pdRjMGt1H38RjYEr4KEDNg2Rc2PVBohBHPn7uDIkWtERk6iV682d90ueyGzIlaCoigTgWCgKWoaFgV1zTZaCLHZvs2r/QQHB1coMkd4Mgkh0L7xBocXL+ZBf3fGv9Qej4kxFDZpzzpWcYFfCWIYAxiIwm/PsVez1IgcidmwexoM6lS27A8/PMyKFSd5991BTJz4YJW/M3vgyvmJK1ub7QVMADpX8HlnYCLgV501Lmv+qIXrxLGxsUIIIaKjox3ckt/QFxWJrbNni7dB7BjoLvQr7xci+5q4LW6LCPGZ+Kt4s8wasBBCXEgTouMnQjT5uxCHr5Rf9ubNZ4WivC1CQzcKg8FQ/kGSKkE114krdEVUFKWJECLL0k1AUZTOQoiL1bmRKIoSIYSYW8nnoqJ2OgpTjC1brwdXleL8fDZNm0b8li0EjlIInNELZdwesrzrsYKvySCDSYTyAOY9aLwxqF1BMXz7NPiXM0KOjU1kwICveeSR1uzdOwNv79pn4mia9HPG5Ox2y4pYkYAVRekkhLhU6rgKBWxNknFjVkTnSr4LtSIGtImC7GzWjx/PxZgYRoRA36lPwOjtpHoWsZwl5JPHM8yiM53NzjuZpD4DuylqWNme5USQvXIlizFj1tKyZUO2bg2tlQIGuHbtmqOb4DCsmp1WFOV5RVE+UxRlgvH9BCvOsZhk3JhY3OkEXJvIS09nZXAwl/bvY/wM6DtjBIyNIskzly9ZQjFFzOG5MgL+6ToMXgGeHnBwVvkCvnVLTfidm1vEzp3TaNVKzkTXRqxdYtIBbwBZwO9QE6JVilGspfMRh/KbYHVAEGqCNR9AoyhK1ddSXJScpCSWBQaSFHeMyXMMPDw1BEZ9w5V6KXzFF7jjwbM8Txvamp134JIa1K6pN3w3S02tcidFRXpCQjYQH5/Kpk2TZaD3Woy1S0xpqA/fMUBMFesqk2RcCKE19saOj47uZGRducKKoUPJvn6Zab/To3lyJgz+ggtul1jLKhrTmJnMxoemZuftPA8hkdDZB6KfhnaNy5YtjEtJ0dE6vvpqHEFB8v5am7FWxMFAsKIoGcBRQCuEsImJlBAi01i+xEoydDqWDxlCfloSz7xQRIexcyHwf5xT4tnAOprTgpnMphHmw9+1p1V/4EdaqctILRqWX/677x7g669P8Ne/DmT27F41cEXVp3Hjcu5GroI1U9hAr9LbwEQrz4sutR0OBBm3Q4D51k6hU8qfGBf3K045d078o107Ed7YU1yfjxAHXxbCYBAnxQmxSLwlIsRn4ra4Xea8iGNCKO8IMfBrIbLyKy7/yy/jBLwtZs3aKpeSaghqwp8YGEIV1oPvELE/EGbcno86Q33XInZV8QohxM3Tp8WHLVuKD5t6i6Q/I8Sh14UwGMRR8ZP4q3hTfCmWinxRVqGLDwnBO0KMWi1EbmHF5W/f/otwd39HDBu2UhQUFNvxSiSlqa6IrR1O9wZ8FUX5C79Za31R2Qmlk4wLISKFEHGKogRUNcm4qGXrxDVN8pkzLB88GDdDDjNfyqP5qD/DY3/jB+UHdrOTrnRjCtOox29LQELAwn3wt+9h8oOwcjzUryB++w8/XGXy5I306tWGTZsmU7+iA2spUVFRAIwYMcLBLal5rBWxFlV4F0E18LB0grBxkvFKE6rVcVLOnmXFkCG46XOY9VIevqMXwqPvcFA5iJZveZAehDAZj1L/nQYB8/bAf36C53rB56PBvYK1iPj4VMaMWUu7do3ZuXMajRrVr6Ersx1JSUmOboLDsErEQojjd7yvloVWVXDVnjjl7FmWDx6MUpzNzJfy8B37LvRZyH72sRctD/MI45lYEswO1IiUz22H5Sfhj4/BR8FQkbtvYmI2w4evwsPDjT17nqZlywpmuyS1FumKWItJOXuW5UOGoOhVATcf9x70Wcg+9rLXmNR7AiFmAi4ohtBIVcDvBFYu4IyMPIYPX0V6eh67d09Ho2la/oGSWk2dcEWsi6ScO6cKuOiWKuCx70DAW+wlhv3sxY9ePMUEM1fC24UwYQN8q4NPhsMrfSsuPze3iDFj1nL+fBq7d0/HvzyjaYlTUGlPrCjKUEVRyizAKYrynP2aVGFbXKYnTjl3Th1CF91i5ot5NB+9ENFnIXvRsp+99MK/jIAz82HYKtBeVMPpVCbgoiI9kyZt5MiRa6xePYEhQyxOcdR6fH198fUtx/TMFbA0fQ28dsf7Tli5TmyrP2qhK6K9SDl3TnzYqpX4sKm3SHkLIX74izAY9EIrvhULxV/EFrFJ6IXe7JzkHCH8IoSo954QkWcrL1+vN4inn94s4G0REXHMjlcisRZqIGTtRUVROpV6HyKE2GTTO4kVuEJPnBofz/LBg6HI+Aw8cj6i73vEKFoOsJ/eBDCOp8x64KQcGLRCdSncNgUmPlBx+UIIXn01ilWrTvH++4MJC+tdA1clsTvWKB1jbwz4AUOrc9eoyh8u0BOnxMeLj1q3Fh82ayCS30SI7/8kDAa9+FZEiYXiL+IbsaVMD3z9lhDd/itEw/8TYt9Fy3UsWrRPwNvi1Vej6pw11rZt28S2bdsc3YwqQQ0ZexxXFMUP1WzyI3vcTFyZ1F9+YfngwYiCW8x8MZcWw19B9F9MtPIt3/MdfXiU0Yw164Gv31JdCW/kQNT035J7V8S//nWEd945wKxZfnz00bA6F2I2LS3N0U1wGFYtMQnVe+l3qEYfEhuSdv68KuD8LFXAw36PeOKffKvs4Xu+41H6MoZxZgK+kgUDl6tD6T1WCHj58hPMm7eHCRMeYOnSsbi51S0BuzpWrxMLIX4nbOS5VBXq4jNx2q+/snzwYAz5Wcx4MZcWwS8gBvyLPUoUh/ievjzGaMaaBbS7ZuyB03JVV8L+HSqvY+vWeJ59dhtDh3ZmzZoJeHg4jWmAxEoqHE4ritJYCHHLUgHWHlddRB1bJ0779VeWDxqEPk/tgVsOfR4G/pcYRcthDtGXfoxitJmAb2Sr8bBSbqsC7tu+kgqA/fsvMWVKJAEBbdm6dUqNpxuV1AyV/a/2MQao21vRAcZwthlAhcdIypJ+4QLLBw9Gn3+LmS/cpmXgdBj0OYeUwxzkAAH0KSPgmzkwZKX6LLxnumUBHz9+g3Hj1tKlSzOntYe+G1q3bu3oJjiMCqNdghrxEggDuqB6L8FvcadjgY3CioiY1W5kLYx2WVWyrlzhqyeeoDgnk5kvZNOy/1gYsYkT7qfZTCQ96MkkQs2egdNy1WWkhHTVmT+wU+V1XLiQzuOPf4WXlweHDs2hfXsXdph3Aqob7bJSEdcWFEUpaaQzezHdTknh6wEDyLlxjVkvFdA6oC+Mi+YXj8usZTWd6MzTzDDzRsophKEr4ORN2DkVhlqIlHPzZg79+39FVlY+hw7NoXv35na+Kkl1sVvI2koq9EN1S7xU1UqrgjPcbCqjIDubNaNGkXX5Ek//3o3WD3WHUdu44pHMBtbRmtZMZbqZgAuKYfx6NS/S5smWBZydXcDIkatJSsph794ZLiXgzZvVZCQTJlgMxFrnsErEiqK8DvRBDZgXDTQDKg0KIPkNQ3ExkZMnc+P4cUJ/34SOPbxhbBTJXkWsZiWNaczTzMQTz5Jz9AaYvkW1hV72JFjK311YqCckZCOnTt1k+/ap9LX00FzHuHXL7nOrtRZr1xu0QojJqGFrFaDG/YmdFSEE28PCuBAVxejZren+YBGM2UVmo0asYBkeeDCDWWZB7YSAF3bBpnPw8TCY+YjlOp59dhvffpvAkiVjGTmyq52vSlKbsHY43VRRFD/jOnGN2007M/sXLeLE118TOEVDb/8rMHIXt5t3YQVLKKSQOTxPU8zTmr65F5bGwZtPwLzHLNfx/vsHWbXqFO+9N5hy9EH7AAAYv0lEQVQ5c5wjOqXEdljbE/cGpiiKskFRlPXSFdE6Tq5cycH33sNvZDcCH9fBoCUUdghkNSvJJJNpPENrzJdG/v0jfHAIwvzhvcGW61i79mf++tf9zJjxCG++OcBOVyKpzdgtxpatcbaJrSvff8/2556jU0AXxgw/jxLwJoYHZrKJtVznGlOYRic6mZ2zJV6Ni/VUd/jfqIojcpg4fPgqs2d/w8CBHVmyZEyds4e+G9q3d605gNI4zRKTM7TTRIZOxxd9++LVqD7PvZCI98OTYPg6YpQYDrCfEYyiP4+bnfPTdRi0HB5qCftmQgMLect0ugz69v0CHx8vjhx5Fl9f102y7ezU+BKTpHLys7JYO3YshuIips3Jw7tjLxi6jNPKGQ6wH39604/+ZudcyoSx66B1I9Un2JKAMzPzGT16DQaDYOfOaVLALo5DreEVRfFRFCVIUZT5xpxMTo1Br2fT1KmknT/P5Jea4tvWC0ZtJbFeBlvYRAfuZQzjzMwpcwphzFoo1KvGHJYSD5oSnSUkpLN582S6lZcNzQXZsGEDGzZscHQzHIJdRWxKZ1rqfYhJtMZdAcAx1GyJTp+168C773Jh925GvuBH57ZXYNg6bt/jy1rW0ICGZYw5hIA52+BcKmwMgQdaVF6+EIIXX9xJTMxFli4dS6Al+0sXIjc3l9zcXEc3wyHYTcTW5Cc2bgP4iLvMCFHb+HX3bg6++y6PjOtL727HoO/7GDoMIZIN5JDNFKaWSXD2wfew8Sz8fShYk3jwo48O88UXx3nzzQHMnOlnpyuROBt2E7GwIj+xoihhQs2KGFeqd3Y6Mi5eZPP06bTq0ZXRQ2JROo0G/wXsYy8JXGA0Y2mH+ezpzvPw1j6Y1hNe62e5js2bz7FggZbQ0B68+64Va08Sl6Emn4nL5CcGtMYeW8MdKV+cheKCAjaGhIAwMHlmNvWadYCgFZxT4jnAPnrhT28CzM75NQ2mbQG/1rB0rOWlpBMnknj66c307duer79+UkbmkJjh0NlpIYQOtVd2WrQLFnAjLo4pCx+lWaPjMPwwaV6CLWyiLe3KTGTlFsHEjeDhBlsmW56JTk/PY+LEDTRr5s3WraF4e1s4wUXp3Nn5Y2dXlZrsiTOhxL7QB9WZwmpMFlu1yXLr/I4d/Pivf/HotEF0b/UT9AunuKUf61mLgkIoU8tkKXxxF5xOhjXjoaOF+XiDQfDMM1u4du0WkZGTaWVp6tqFCQwMJDAw0NHNcAg12ROvh5JxpYa7DLpX24w9shMT+Wb2bFr1vJ/gfkfg3hHwyDy07CaJG0zjaZpintto5Sk1R9KigTD8Pst1fPDBd+za9SuffjqKxx5zXYskSeXYc3a6JD8xgGn2uar5iWtTD2zQ69nyzDMU5eYSMhs8vBvCkC+5oCRwmEM8Sl/uxzyKe0I6vLQbBt4LCwdarmPfvov89a/7mTq1Jy+8EGD5BBdn9erVrF692tHNcAh264mFjfMT1yYOf/ghF/fuZdybY2nuuR0GbyWvYVO2sormtGA4I82OL9TDlM3qc/DK8RXnCTaRknKbqVM30a2bLxERrm0TbS1FRUWOboLDcBqzy9oynE48dox9Cxfy4Lgg/NrshO7PgOZJdhNJNrcI43dmz8EA7x6AY4mwaRLc26Ty8oUQhIXtICMjn2+/fYZ77vGs/ASJy+M0QYhrw3C6uKCAb2bPpmGrVowZm4jSoBUM+De/EM8JjjOQQWXWg49eV10LZz0CEyrJk2Ti669PsHVrPH/72xAefriVna5EUpeQPfFdcPC990g+fZppn8zAu2AFjNpGgac3O9hOS1oSyCCz4/OLYeY30KYRfDzccvkXL2bwyitRDBrUiT/+0QoLEIkEJxKxo7lx/DiHwsN5ZOp4unquh04h0Hks+9hFFpk8S5iZXTTAewdVu+ioaeDjVXn5xcUGpk3bjJubwrJl0qDjbunWrZujm+Aw5HDaCgx6Pduffx5vX1+Gj0wFdy8Y8G+uc40fOEwAfehIR7Nz4m5A+CGY7WfdctKHHx7iyJFrfP75aDpaWkCWlKF///7079/f8oF1EKfpiR05nD766afciI1l4j9ewPvWZxD4GfqGLdnKpzSiEcGYj5UL9TB7G7RsCP8Itlz+6dPJLFq0n0mTHmTKlJ52ugpJXUX2xBbITkxk71tv0SV4KD2abITW/aBHGMf4iZvcZAzj8Mbb7JzwQ3DqJnw+Gpp6V1CwEb3ewOzZ3+Dj48Wnn46Sy0lVZNmyZSxbtszRzXAIsie2wO6XX8ZQVMSoWa1RMvfBwE/JVwrZx146oylj1KHLgPe/g9AelmNFA0RExHLsWCJr1kygRYuGdroKSV3GaXpiR3AhKopzmzYxYN4smmWsgZ4vQYteHOQAeeQxgpFmzg0Ar0dDPTfrhtGJidm88YaWoCCNHEZLqozTiLimh9PFBQXs/sMf8O3Wjf5+J6FBK3jsfTLJ4AiHeQQ/2tDW7BytDjbHwxuPQzsrcpj98Y97KCzU8/nno+UwWlJl5HC6AmKXLCH9wgWeXv4uHql/hcDPoH5jYtgIwFCCzI4vNqjhZjVN4TUrJkm1Wh3r15/h7bcD6dKlmeUTJJIKcBoR1yRFeXl8/8EHdAwMpEv9TdC4CzzwLIlc5yQnGEAgTTBfBoqIhTMpqo+wl4VvVa838Npr39K5sw9vvPGEHa/EdejRo4ejm+AwpIjLIW7pUnJu3GBi+LOQ9j4Er0G4exDFbhrSkAGYuyHdKoBF+2FIJ3jSisms1at/5uTJm6xZMwFPT/lfYAv69Onj6CY4DPlMfAdFeXl8//e/0ykwkE6sBd9HoGsovxDPJS4ymCF4YW5+9fERSMuD8CDLoXby84tZuHAf/v5tCA2Vk1m2oqioyGU9mZymG6ipZ+KSXvi9SXDrAIzeiV4RfEsUzWlOb8zv+Gm58M8jMP5+CGhbQaGl+Oijw1y5kiVNK22MyZd41qxZjm2IA3CanrgmMD0LdwocSCe3jdB2IHQcSSzHSCWVYYzAHXezcz48DNkF8O4gy+XfuJHNBx98z4QJDzB4sOvGhJLYFiniUsQuWUJOUhKBM/0h9wY8+i4FSiH7iKEjnejO/WbHJ+XAv3+CqT2hZ0vL5S9cuI+iIj3h4UGWD5ZIrESK2EhRXh6H/v53Og0eRKd6O6BVX2g7kDhiuc1tghlexrDjg+9VO+l3Blku/9y5FL7++gQvvdSH++6TS0oS2yFFbCQ2IkLthcOGQdYFeORVDIrgCIe5l47cy71mx1/Ngs9jVS8lazS5cOE+Gjasx1/+InMIS2yL04jYnrPTRXl5HAoPp9PgwXTy0kLDdqCZwC/Ek0FGmSyGoA6j9QZ4ywpNnj6dzObN53jllb7SPtpO+Pn54efnmqlt5Ow0xhnppCRCPn8Hrs2F/h+Cez1+5AhNaFLGySG3CL46oc5IW+P6++abe2nc2JN58x6z0xVIXFXA4EQ9sb0QBgM//vvfdHj8cTo2jgWPBtAjjBRS0JFAAI+WmZFeeQrS8+DlRy2Xf/JkEtu2/cIf/9hP5hG2IzIrogtzaf9+MhISCHh+Fvy6BrqEQP3G/MSPuONeJo+SQcAnP0LvNvDEveWXWZr33/+OJk08efnlvva5AAkg8xM7DEVRNIqi+BuTjDskP3HskiV4NW3Kgz1uQ1EO9HyRIoo4yXEepEeZdKR7LkB8Krz6mGXrrPj4VDZtOstLL/XBx1KQLYmkijg6ybi/MROEFgixZ1vKIzc1lfgtW3j46afxSFgGzf2g1aOc5mfyySeAsva4H/8Ibe+BSQ9aLv9f/zqCp6eHfBaW2BVHJxk3ZYgIwgGpTU+uWIG+sJDeIQMg9QQ8+BwoCkf5iRa0oBPmVlXn0yBaBy8GQH33Cgo1kpmZz8qVp5gypaeckZbYFYcmGYcSsWuNaU5rDCEEsUuW0L5fP1oa9qoTWl2nkkwy17iKPwFljDu+PA7uCsyxYiI0IuIYt28X8cor8llYYl9qcompTJJxo4AXADpFUaJL9cx258r335P2yy+M+2IpJPwZOo8Dr2YcYyfuuPMI5kot0sOykzCmG7S5p/KyhRB8+eVxAgM74ufX2o5XITEREOC6SeccnWRcy12mOLUVcUuX4tm4MT2eaAXaVLhvcsmE1gM8WGZCa+9FSL6tpmOxxLFjifz6azoLFjxup9ZL7qRnT9d163TJJON5GRmc3biRh6ZPp37iNqjXCO4dwa+cJ488etG7zDlrz0BjTxhhRSD4//73KI0a1WeCNcmXJDYhKyuLrKwsRzfDIdSkiNejJheHKiQZN7Fo0SKEENUS8ZkNGyjOz8d/9ixI2AydxoGHN6f5mYY0RIP5aldeEWyNVy20LIXeyczMZ/3608yY8TBNLQWdltiMLVu2sGXLFkc3wyHYbThdOsm4ECJSCBGnKEpAVZOM29Ls8vy2bTTVaGjdMh0K0uG+yejRc4FfeZAeZSy0dv4KWQUw3YoR2+bN5ygo0DNzpuuaAUpqFnvOTkcKIZqWnqwSQiwRQmirkmzcVg4Qhbdvo4uJodvYsSgJG6F+Y7h3OFe5Qj75dKVsYq7Ic9C8AQyxwo9/7drTdOnSlD59rAjzIZHYAJdzgLgYE4O+oIBuo4ZDwhTo/BR4eKEjAQWFLpg/9OYVwfbzMONhcLdwy0tKymHv3ov8+c9PyDjSkhrDaWynbdUT/7J9O/XvuYeOnQqh8BZ0nQLABS7QlrZlguDtuqB6LYVYMUcVGXkWg0EwdarrzpRKah6X6omFwcD5bdvoOnIk7om7waMhtB/CLW5xjasMoWzYnKgL0MQTBnWyXP7atad56KGW9OhhRaweiU3p1891k7K7VE+cfPo0t5OTuW/kSLiyBzoEgbsnOhIAuP+OGFoAMRdhcCfLQ+nLlzM5fPiq7IUdRPfu3ene3Yqg33UQl+qJdTExAHQO6AIHLoHfn9T9JNCABrSklfnxGXAxE/5ohf/CunWnAWRiNAeRmpoKQPPmzR3ckprHaXpiW3AxJoZmXbvSRIlXd7QfikCQwAU0dMHtjq8j5qL6OtSKWelVq36mX7/2dO7c1MatlljDjh072LFjh6Ob4RCcRsTVHU7ri4q4fOAAnYcOhavR0LAtNL2fZG6STTZd6FLmnJiL0KYR3G/h5n72bAqnTyczffpDVWqbRFIdXGY4nXj0KIU5OWgGD4Zrv4POT4Ki8Au/ANAV8+cpg1DtpUfcZ9n5f+PGMygKTJxohZOxRGJjnKYnri4J0dEAdOrZFAoyoIOaBVxHAq1oRWPMEwr/fBNScq0bSkdGnmPAgI60bt3I8sESiY1xGhFXdzh9fvt22vfrR4Pco+qODsEUUcQVLqOpYCgNlkV84UI6p08n89RTrjkzKnE8LjGczk1L40ZcHIPeeQcS90OznuDdgkQuU0xxmQgeoIq4my+0b1zmIzM2bToLQEiIHEo7koEDB1o+qI7iND1xdbh88CAIQefAAXDjELQbDMAVLgNwLx3Njtcb4OAV64bSO3b8Sq9erenQoYnN2y2xHo1Gg0bjkFiLDsclRHxp3z7qNWhAu44KFOdCu0EAXERHC1rQEPMYWGdTIKcQ+rarvNz09DwOH77K6NFd7dRyibUkJSWRlJTk6GY4BKcRcXWeiS/t20eHxx/HPeWQuqPtQAwYuMqVcofSP1xTX5/oUHm5Wq0Og0EwapQUsaOJiooiKirK0c1wCHX+mfh2SgrJp0/Tc9o0uB5jfB5uThLXKaCAjnQqc86xG9DMGzQW7DZ27DiPr683ffpY6LIlEjviND1xVbm0bx8AnQcNhKQfSp6HL3EJoHwRJ0JAG8vrw8eOJdK/fwc8POr81yipxdT5X9+1I0fw8PKiTUdP9Xm4tWoIfYXLNKUpTTCfkMovhp+TIcCCT396eh7x8anS+V/icOq8iK//+CNtevfGPT1W3dGqLwLBZS6V2wufTIJig2URf/fdZYSAQdb4KEokdsRpnomrgkGvJ+nECfyffx5uHgGv5tBYQyqp3OZ2hc/DoA6nK0Or1eHt7SGfh2sJQ4cOdXQTHIbT9MRVmZ1OjY+nKDeXNr17Q+IBaN0fFIUbJALQnrLTz8cSoVVDy0YeBw9eYcCAjnhZCn8pqRE6dOhAhw4WlhPqKE7zC6zK7PSNWHUI3bZHZ/jhIvR8EYBUUlFQaFYSBvs3jiaqQ+nKJrWyswukqWUt4+rVqwAuKWSn6Ymrws1Tp3CvXx/fJsag4i3VVB8ZpHMP91CPembH5xTCuVTLQ+mffrqOwSDo39/1fjC1lZiYGGKMQR9cDYeL2JifuGxwKxtwIy6O1n5+uGWr7ob4PgxAItdpTVmlnkhSXRAtTTj/YLQG6du3vU3bK5FUBUfnJwY1W6KPPepPPn2alg89BFkJanxpz6YUUEAKKRU+DwP0tiDiw4ev0qNHC5k4XFIrcGh+YuNH6+1R/+3kZHJTUmjRowdknIVmPUBRuMlNAFpTNlvh0UR1Qqsyt+DiYgM//HCNfv2q1wtXN/SuLXB0Gxxdf21pQ3VxeH5ie5F85gwALXv2hIxfwEfN7JBKCgAtKBtW9tgNy8/DZ84kk5mZX+314Xfeeada59sCR7fB0fXXljZUF4fmJza+BgBdFEXRCiEyy55WNZJPq9EnW2rawPkb0EyNf5VKCsUFxfh4mo/gs/LhfBrMfLjyck+dUntyf38LapfUKCNGjHB0ExyGw5eYqpKXyRpSzpzBq2lTGnkb7wtN1ZjSaaSSkZCJ+4PmSdNiTUYeFp6HT526iaenO127+lZ+oKRGad3adZO5O01+4rsl+fRpWvbogZJpnJn2Udd0k0kmLb5s1Sb3w0ctGGAdP55Ez54tpdNDLUOn06HT6RzdDIeg2DJlaJnCFSVaCBFs3PYHAoQQS4yz01pr05sqimK/RkoktQAhRJUz8DlFfuLqXKBEUtexa08skUjsj3ywk0icnDor4tLWYkbTTqEoSoLxL6Kc48ONr2E12U6JpLrUSRHfaS0GNBNCKEKILsAkILyc08IURUlANUSxRRvCjH/hpfaVZ3aKtZ/bqA1l9t1xjk1vZhW0odI6bPk93Fm/I27oxmsJstdvoU6K+E5rMeN7ExohRHlCnSSE6HLHsVXCeBPRGtfANcb/jIrMTk3nVPq5jdpQZl85p9rsZlZJfRXWYcvvoYL6a/SGbmx/sPF6/I03EZv+FuqkiCvC9J9awcf+NuwFNfxmVqozvrdkdmprs9Ty2lDevjux2c2skvoqq8OW30OZ+mv6hi6EiBNCLChVXxw2/i043GKrhgmu6D9GCLEYQFGUYEVRgqrzH3iHFZo/qpNHb8o3OzVRkVmqzdpwx7KeqV134q+oERH8Td+JLdtgRR02+x4qqd+aG3pF7asSxs5hrvGtpWu8q+/ApXpi1P/IMhifP0KMb9Mov4e6a4zDoOi7WRO3NeW1obJ2CSEWG29gvrby876zPnvUcTf1GwmuyFbfHu0z3gzmKopic7dblxGxoigafhuimPaZvlAdv92VuwDHbFRtUKk7uSWzU3uZpQaV05uUt89uN7PS9VlRhz2+h/Kut0Zu6KWfgVF/Z2HY+LdQJ0Vc2lrsjo/S73gfA+pzCzDZeHyCLXpORVHCSv1wg1CHcqYfhAbjTaPUjaTcz23chor22e1mVk595dZhr++hguutyRt6EOaC1GHj30KdFLHRzLOpECKy1D6dEGLuHcf1LrW9xHhetZ+BjD+WcOMSRoax/LhSn5U2O42x8LnN2lDevnLaYLObWSXfQ3l12Px7qOR6oeZu6KaZ8RBj+ZG2/i1Is0uJxMmpkz2xROJKSBFLJE6OFLFE4uRIEUskTo4UsUTi5EgRS8pFURSNoigbq3F+uI3s0CUWkCKWlIvRMeB50/tyDGcsYZekAJKySBFLysVo1aQxbvsAwXdZhM1iiEsqR4rYSTG6TUab3CdLOZFHmMz3THbAJud2RVF8jMeazgkrp5zSNsUmX9sASpmxms4xbocr5s7u842WRiF37lNk1BS7IEXspBi9bJoZXyOBUON2LKrg/FH9VyP5zQUuANWMTwv0MZqalinHWL4OY29q/ExnMmO9w02zJDKGUaRxxs9N9sDhpfZ1scd34epIETs3pe1/daX3Ge1t44y9ommfSVhBwIIKyrGW8obLvSkbDUMD+BhvKglVqEdiASli56bC505jr6gpJVyTkLRCCO0dES2sfn4tJ1RMaVe9WMq67h1F7cXjgA3W1iOxHleL7FFnMPamJl9V07YpDFA6sLHU53GoPrWRiqLEKoqiQ+0xP0AdYt9Zjg+qGP0VRTGFsNEZn4lNQ+mjxjb4AEHG45YYn39B9dcNRo1jFaYoiskdzxZhfySlkF5MLoRx3XaJECLTKPi5peI/SZwUKWIXolTPmWl81VnyVZXUfqSIJRInR05sSSROjhSxROLkSBFLJE6OFLFE4uRIEUskTo4UsUTi5Pw/u+px/LLNrusAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot cumulative mag functions\n", + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "plt.figure(figsize=(3.3,3.3))\n", + "plt.plot([26.5, 26.5],[0,10**8], '--', color='grey')\n", + "l1, = plt.plot(g_mag, n_g, '-', color=colors[0])\n", + "l2, = plt.plot(r_mag, n_r, '-', color=colors[1])\n", + "l3, = plt.plot(i_mag, n_i, '-', color=colors[2])\n", + "l4, = plt.plot(z_mag, n_z, '-', color=colors[3])\n", + "l5, = plt.plot(y_mag, n_y, '-', color=colors[4])\n", + "plt.yscale('log')\n", + "plt.xlim([16,30])\n", + "plt.ylim([10,10**6.5])\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$n(" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# digitized i-band app mag func from HSC data release paper, fig. 16\n", + "x = np.array([19.246851,19.75063,20.254408,20.758186,21.24937,21.765743,22.244333,22.735516,23.264484,\\\n", + " 23.755667,24.246851,24.75063,25.254408,25.758186,26.24937,26.740555,27.231737,27.748112])\n", + "y = np.array([1363.0817,2016.9734,3156.3826,4670.549,7173.8726,11018.929,15417.234,23242.803,35700.496,\\\n", + " 53821.555,78168.32,117845.445,155908.11,187891.02,239471.84,253259.44,155908.11,63663.395])\n", + "\n", + "#plot differential mag functions\n", + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "plt.plot([26.5, 26.5],[0,10**8], '--', color='grey')\n", + "l1, = plt.plot(mag_bin_centers, dn_dmag_g, '-', color=colors[0])\n", + "l2, = plt.plot(mag_bin_centers, dn_dmag_r, '-', color=colors[1])\n", + "l3, = plt.plot(mag_bin_centers, dn_dmag_i, '-', color=colors[2])\n", + "l4, = plt.plot(mag_bin_centers, dn_dmag_z, '-', color=colors[3])\n", + "l5, = plt.plot(mag_bin_centers, dn_dmag_y, '-', color=colors[4])\n", + "p1, = plt.plot(x, y, '+', color=colors[2])\n", + "plt.yscale('log')\n", + "plt.xlim([16,28])\n", + "plt.ylim([10,10**6.5])\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$\\mathrm{d}n/\\mathrm{d}{\\rm mag}$')\n", + "plt.legend([l1, l2, l3, l4, l5],['g-band','r-band','i-band','z-band','y-band'],\n", + " frameon=False, fontsize=10, loc='upper left')\n", + "#plt.legend([l3, p1],['i-band','Hiroaki+ 2017'],\n", + "# frameon=False, fontsize=10, loc='lower right')\n", + "plt.show()\n", + "\n", + "fig.savefig('/Users/duncan/Desktop/diff_app_mag_func.png', dpi=250)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAN0AAADSCAYAAADOksXPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEI9JREFUeJzt3W2MHdddx/Hv3xv1RQvxZu21KFJBvS4SSAXhrVMheEHVXAtRHirAjQHjCqFmI15YsYrkRCIiAYHAQVSx/KZxEKpiAqQxoPJQBN5URTwINYlTQSUexG6BShTFyXodqX1Ryf7zYs6sZ+fOnfs4Z87c/X0sa++dM/fO2bv3P+fMOWfOMXdHROI50HYGRPYbBZ1IZAo6kcgUdCKRKehEIlPQiUR2T9sZmJWZqc9DkuTuVrW980EHkEpf4yUu8gY3cBzDOMwqZ3mk7WxJC8wq4w1YkKBr2zbbPM8VbvD67jbHeYMbLeZKUqVrujl4nisDAZaXdCJlCro5yKuURYdZ5TRnWsqRpExBNweHWcXI6vCGscoRzvIIK6y0nDNJkYJuDk5zZjfwVMLJKJZKy9+0zMy7/jvI4jGzxe4yaEveavkGN3ZLOFUpZRRVL2eQB1zePfA8V9rOknSAgm4GxVZL9cvJuBR0Myi3WqpfTsbRWtCZ2Ukz65vZ+RH71aa3Sa2WMo1WGlLMbA3A3TfMrGdma+5+vWK/PnB/9AyOaYUVja2UibVV0p0CdsLjLaDfUj5Eomury2AZ2C48P1TeIZR+G2b2cLxsySJLpYsn5YYUdXjJXKXSxdNW0O1wN6iWgTeLiXkpN+6bmdme/08++eT8cioLI5Uunraqly8Ax8PjHrABYGbL7r4D9Mysl6cPa2jJaRiYjOMwqwM3GbehlZIuD6DQOrlTCKiXQvpVd79KVhout5FHWTypdPFowLNIA+oGPKfckCKykBR0IpEp6EQiU9CJRKabWOcslVEPki61Xs6ZJpxNU+yToVovI0pl1IPslcoQMFDQzZ1ubE1TSidDBd2cpTLqQfZK6WSoazrZF1K6plPQyUJrqzVZQdeC8h/7R/kx/oI/V1dCZG21Jqv1sgXl1rLn+FQyrWf7xTbb3OD1ZBpQcuocb0i5tew2t3fTHOcGr3OJiyrx5qxYwzhQUaak0Jqskq4h5dayJZZ2n+dU4s1fvjhn+USXS6E1WUHXkGLXwX2s8E1888AadqlUdxbJsM8zX8IshVqFqpcNKc6JeYmL3Nwz+VlmWH+Rxm9O7zCre5ahLm5PoZQDtV42qmot8lyx87wcUPNocdtvgTvss25r/KuWympJ3VrkdV+CeQxZqhpruKgDr7fZ5hJP77mGW2KJO9xJqoTLKegaNO1a5MVZqwAOcIAneHysEqvqjL/o147Pc2Wg0eQOd/hVfr2lHNVTQ0qDpl2LvNgIk5+xx+3fqytdF1XVCSXl31clXYNOc2bgumocxUaYJ3h8oqrmqNJ1ka718t+l/PsusZRclbJIDSmJm7RRpbz/fSGgtvdOog1M38jQZuDWNU4BrHIkiROJxl4mapwv76Rf8PL+t7ldGXBlKxzio/z8yC9rudEidutg8aRSZlgy13EKukSVv0DlFrd5nK2L1dNR8mvOKqmUMHW/T13+Y0uyy8DMTpItJLLm7k9VpK+Hh0fd/dGomYukfMbOS49sXObTnOXc7pd42lJxWGfxsPwMU9VAU1SV5yaUW3ZzqV/HFbVS0oWVWHvufjUE1yvFBULCGgdb7r5lZi8CzwxbxWeRSrqyFQ6xxNLu4N1yP9RZzgHwHJ8aqEIWO9+L6Qc4gOMD7wfDS4pttnma3xn792qy1CuWuE3UDOYlueqlmV0AroVFH/uUSru8lHP3y2HfTXe/POS9Oht05RHxVQN0DRsalEssVb6m+Nph1zjbbFcGY9UX+BIXK0vLYcdv4jqva62uKd5PV7sSq7tfLgTZGvBKrIzFkDVGXOQinwDgET7OWc6xxNLuPnn/Xt312KiAq+urWmGFc3ycX+M3WOXIbl9gXk3cLvx5qqqV5/ilgTzn8vd5gse5xMU97zWtlGbzmlXSneOhGnqtbm26sF+nFoUsfoHyL/lFPsFBllnh0G7A5I+nMUm/YDmobnN7z5e6qpN/Jfw7yzlWOVL5vvMMkJRm85pVWw0ptSuxFvSrGlnKula9HNaAcpNtDrO6WyUcNuVDXcPIuE3/RVWNLTd4nV/hlznAAe5wZ+hYxrwjv2r8I8wvQFJZ0HEeUl2JFTNbzwPOzPqTLIecumEtcOUvaHFkSu4sjwxcY+WNKtNe45zmTGXAQDaGMf9Zd522wsruvkXzCJBttrnN7d3P6z5WOtNSWSXJlVjD9gtmtmlmN9vIY5PKYysnnY/xNGdY5UhhPOdszfSjqokwXolVrIYWX5d10E9/Xfc8V3bvR8w/s5QbUUZR53jLUmuVG9ZSOU6LZLk1Nm+cyU3blVDuEE9p5MkwyXUZzFPXgy41k3Ql1KkbOVJ3A285L+VRMF1ZlEVBJ9GN6vjP1ZV+Ve+RyoDmUVLsp5MFl1+3jlLVL5grB5xhY92PmDqVdNKoYV0Jw+RdHkCrdzPMStVLaVV5vOS4AVg0a7dIbAo6ScqkpR90o8WySNd0kpRx+gWLuj4CpUwlnbSq3EVRpSstlkWqXkonlANwmnGkqVDQiUSmazqRhCjoRCJT0IlEpqATiWysm1jN7CCwTnbD6SZw2d3fajJjIotq3DvHHyALtFshAPvAnzSXLZHFNW718pa73wIIP6ebLUdExuunC6XbQ8BRskmFnnH3/2o2a+NRP52kaKZp1c3s3cDDZLN2fdLdvzjn/InsK5VBZ2bHyGZVfgs45u6P5Y0pZrbi7p+LmkuRBTK0ehlKuB5ZCXcT2Hb3L5rZT7p7Mo0oql5KimYae2lmx9z9tfwxWUvmBkAKVU0FnaRo1qWydszsN8kmiIUsUFsPNpGumqT18kHA3f13G8/VBFTSSYomql6Ga7mDTZdmYywKWZte2E9BJ8mZ6NYed/9y9hp7yMw+Zmbf20CG1sKxNsiqr2uTpIt0WeWIFHd/zd2fDVXJW4UA/OCcjnuKrBQD2CIbVjZJukhnjWxICSXfs5BVPc3sIcDJuhCm7TqoXRRyjPSx/B6Dl5/v5b28n+/jG3yD3+e5gfRjrHGMNb7G13iBPxxIv5/38918D7fY4Y+5OpD+/fwA38l38QY3+DM+M5D+g3yAo7yHr/K//BWfHUjvc4Jv49v5H/6bDa4NpP8wH+KdfCub/Cd/y+cH0n+cD3OYVf6Nf+Uf+YeB9J/iJAdZ5l/4Z17mCwPpp/gZ3sE7eI3rvMbgsoA/x0d5G2/jC/wTX+JLA+m/wMcA+Hv+jv/g3/ek3cM9u3Nafp7PscXWnvS383Z+mp8F4Bp/zVf4yp70e7mXkzwIwGf5S/6Pr+5JP8QhPsxPAPAZ/pQ3S/OufAvv5EP8CABX+TRvsXfM/rt4Fyf4IQD+iD/g63x9T3qPHh9g9nJnolt73P3LhRLwpTmWfDPp2qKQsr+N00+XDwM7SDbmcuYGltKa4yeBXmnN8dr00nupIUWSM/EcKWZ2zMzuDU+PuftjwGPAiTmVbi+QjXaB0qKQdekii2BoQwpwyMweIGvJ/CDwbnf/bbLrrZmMWhSyJl2k8zQMTKQBGgYmkhANAxNpwNxmeA4tmefd/RfnlblZKegkRTMHXWjJfIpsZMh97j5VZ3UTFHSSoqmnVTeze83sk8CrwN+4+3vCYxGZ0tCgM7Pf4m6wfUdhyJeKFZEZ1LVeXgNeRh3TInM1NOjc/SUAM3sgtF5uaFZnkdmNc5dBMfiWoYMr9IkkZNxp1YvB11xuRPYBrcQq0gCtxCqSEAWdSGQKOpHIFHQikSnoRCJT0IlEpqATiUxBJxKZgk4kMgWdSGQKOpHIFHQikSnoRCJT0IlENvb9dPM2xkqs6+HhUXd/NGrmRBrUSkk3xkqsfbLpIS4DvfBcZCG0Vb0ctdJqr7Bti7sr+Ih0XlvVy9qVVkMJl1vj7joKIp2XdENKqHZeG7VUllZilS5prKQrNIQUbeXXcdydVWwZSotD39UftgJrkeZIkS5pLOhKVcSyF4Dj4fGelVjdfSc8Xs8Dzsz6IVhFOq+V6uWolVjD9gtmtmlmN9vIo0hTNAWfSAM0BZ9IQhR0IpEp6EQiU9CJRKagE4lMQScSmYJOJDIFnUhkCjqRyBR0IpEp6EQiU9CJRKagE4lMQScSmYJOJDIFnUhkCjqRyBR0IpEp6EQiU9CJRKagE4lMQScSmYJOJDIFnUhkrQWdmZ00s76ZnR+xX226SNckuShkYb8+cH/MvIk0LdVFIUUWVltBV7soJGSloVbqkUWUckPKyuhdMloUUrokyUUhJy3ltGqPdEmqi0L2zKyXp4cgrF0CWaQrklwU0t2vuvtVstJwuY08ijRFi0KKNECLQookREEnEpmCTiQyBZ1IZAo6kcgUdCKRKehEItu3QZfy+MxU85ZqviDtvJXt287x0HnZQI5ml2reUs0XpJc3dY6LJERBJxKZgk4ksoW4pms7DyJVhl3TdT7oRLpG1UuRyBR0IpEtdNAV59M0szUzczPbDP+fqdj/QvhZNb+LyFwsbNCFqSCeLWxacXdz96PAR4ALFS9bN7NNsrk4m8zbevh/obCtdsbrcWfEbiBfA9tKr4lyohqSt9pjx/jMprGwQRdmE9suPc/13L0qsD7i7kebnG8znAw2wsRNvfClqJ3xetwZsRvI18C2ipc2fqKqycfQY8f4zKa1sEE3TP4HHJK8FuHM2OPujNZb4fmoGa9jzIhdla+qbWWNn6hq8lF37GRnEW9sCr6EnRj2BXH3pwDM7ISZ9Zv4IpWmJlwjm47wfdTPeD1yRuwm8lWa9jDPa9mamQGs5Z9fjLyNcezGP7Np7buSjuyPNiDU/0+Gp29SfVafm1DduZbafJ5V+arLq7s/FU5Oh4ZUPxvLW8xjz9O+Crowge1OaVs+r+YWd6udR4FXGs5Ov3B2rp3xeoz0pvJVty36iaqYjzGOHfMzm8jCBl34gxwv/GFy26Xn+QS314EHw/6bTZZAZrZe+PL0yapLuzNaU5jxOmyrTI+Qr2Hbop+oKvJReezYn9lU3F3/I/4nu6C/CWyGn/2wfT2krRf2fbXweCC96XzV5LWcr5PA+ZY+sz3HjvmZTftfYy9FIlvY6qVIqhR0IpEp6EQiU9CJRKagE4lMQdcBZtYzsxe7dlwzu5DaCP8UKOg6wLM7Ih5q+7gVAw1GqRqrue8p6DogDF9reohV7XHDSI8TE77Fzuhd9h8FXXcM3EQabkO6lt+OVLhp85l8OFQ+RjG/0dPMlsO++WvWK95nreK4xykMq8tfEx5fKN1cej4M1dpTMhaOu6/vzFfQdUCo5g2UGp6NsF8JP68Cp8LjV8kCZI3sht2rwMPhZceBnbDf/e5+uep9yscNaVvhvfLnud2pL0JAXQ/pG4XtFwrbj878oXSYgq77igO4t4rbPBu0fT2UOvm2fDB1H3h0yPuMq6r6+D6q7yLvAcvhRLA5xbEWhoKu+4ZeN4VSp1cItPxLv+HuG753yoqxr78qpj4oXm++SvX158tkJeV14NPjHmsRKeg6IHzJ10LDRnF7P2xfI7t+yvc5RTb50hZ3S5frZKPzrwMvmtmL4Vpsecj7LFccdytc0+XB+nJ47TLQN7OeZ3d5r4XtfeCEmS17dltOPu/K8YY+qk7QXQb7TOg3u+zuOyGYHnb3R0e9TuZHQbfPFEqmnfAzr/JJJAo6kch0TScSmYJOJDIFnUhkCjqRyBR0IpEp6EQi+38kxRLMN4ANrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#examine difference between Aihara+ 2017 and our measurement\n", + "\n", + "from scipy.interpolate import interp1d\n", + "f = interp1d(x,np.log10(y),fill_value='extrapolate')\n", + "err = (10**f(mag_bin_centers) - dn_dmag_i)/(dn_dmag_i)\n", + "\n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "plt.plot(mag_bin_centers, err*0.0, '--', color=colors[2])\n", + "plt.plot(mag_bin_centers, err, 'o', color=colors[2], ms=4)\n", + "plt.ylim([-0.5,0.5])\n", + "plt.xlabel('i magnitude')\n", + "plt.ylabel('$\\Delta\\phi/\\phi_0$')\n", + "\n", + "fig.savefig('/Users/duncan/Desktop/err_plot.png', dpi=250)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# fit power law to faint end" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "#calculate number density at at fixed points\n", + "\n", + "m_bins = np.arange(17.0,30.0,0.2)\n", + "\n", + "inds = np.searchsorted(g_mag, m_bins)\n", + "n_sample_g = n_g[inds]\n", + "\n", + "inds = np.searchsorted(r_mag, m_bins)\n", + "n_sample_r = n_r[inds]\n", + "\n", + "inds = np.searchsorted(i_mag, m_bins)\n", + "n_sample_i = n_i[inds]\n", + "\n", + "inds = np.searchsorted(z_mag, m_bins)\n", + "n_sample_z = n_z[inds]\n", + "\n", + "inds = np.searchsorted(y_mag, m_bins)\n", + "n_sample_y = n_y[inds]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "#fit power law to faint end slope\n", + "\n", + "#define power-law model\n", + "def power_law(m, A=0.39, B=5.0, n0=0.01):\n", + " return n0*(10.0**(A*(m-B)))\n", + "\n", + "#fit power law to data points\n", + "from scipy.optimize import curve_fit\n", + "\n", + "#define range over which to fit power law for each band\n", + "g_mask = (m_bins>23) & (m_bins<25)\n", + "popt_g, pcov_g = curve_fit(power_law, m_bins[g_mask], n_sample_g[g_mask])\n", + "r_mask = (m_bins>23) & (m_bins<25)\n", + "popt_r, pcov_r = curve_fit(power_law, m_bins[r_mask], n_sample_r[r_mask])\n", + "i_mask = (m_bins>23) & (m_bins<25)\n", + "popt_i, pcov_i = curve_fit(power_law, m_bins[i_mask], n_sample_i[i_mask])\n", + "z_mask = (m_bins>23) & (m_bins<25)\n", + "popt_z, pcov_z = curve_fit(power_law, m_bins[z_mask], n_sample_z[z_mask])\n", + "y_mask = (m_bins>23) & (m_bins<25)\n", + "popt_y, pcov_y = curve_fit(power_law, m_bins[y_mask], n_sample_y[y_mask])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADVCAYAAADeiYUwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXdcFNf6h59ZOki3gArq2rtir1hAsZegxBY7ahKjuTFy9ZdEk2hy1dzExBhLYjc2sMUYG/besJdrWexIB+ltz++P3UVQQFDawjz5GLbMnJlh+e575pz3/R5JCIGMjEzBoyjqE5CRKS3IYpORKSRkscnIFBKy2GRkCgnDojy4JEk2gBKwAy4IIaKK8nxkZAqSAo1skiS5vPLcU5IkN0mSpmtfag54ATrRyciUWApMbJIkuQG/Z3juAiCE8AeiJEly0T52A+YBqoI6FxmZ4kCBiU0rpIgML3kBum6iCnCTJMlbCNEMGAR4F9S5yMgUBwpzgMSGzOKzB1TaCAjgV4jnIiNT6BTpAIk2+r0RSZLkNBeZYokQQsrttoUptig0o46giXLhb9PIrFmzmD17dn6dU6nj+vXrlClTpsDaj42NpUGDBgXWfnFCknKtM6BwxbYZzegjaEYecxXVdMg5nDL6TkGORnoCzbU/EUIEaF93A6J0z/PQHpIkyVFNRm8psMgmhPDjlUEPIcTygjqejExxp0gHSPKC3I2U0Xf0JjdS7kbK6DtyZJORKST0JrLJyOg7eiM2uRspo+/I3cgCws/Pj82bN+Pr65sv7fn4+GBvb8/06dPfvLFMsUSObAWEp6dnvrbn5eWVr+3JFD4lIrJNnbqXy5ef5+vxmjRxYOFCj3xt812wsbEp6lOQeUf0RmzFjaioKJYvX46LiwsBAQHY2Njg7Z25SkilUuHv709UVBQ2Nja4uWkKHPz8NHP9EREReHt74+/vz7x58/Dx8SEgIAA3NzdcXDR1t/Pnz08/hox+UyLEVhQR6MKFC+kCWrZsWZb3ZkqlMl1g7u7uuLm5ERAQgEqlYvr06TRr1gxvb2/c3Nzw8fHBzc0NpVLJsmXLcHFxSRezm5sbdnZ2+PvnKZ1Uppgh37O9JToR6aISwIQJExg0aBDz589/bXsbGxtUKhUuLi64uLjg7++PnZ1d+vsZH+u4ePEiSqXsFlFS0JvIVtxGI3XdvYxiWLZsWaZtoqKiMj1WKpUsX65JD/X29mbevHnpXcys7smaNWuGSqWSBVdC0BuxFTdcXFxo1qwZSqUSpVLJjBkzXhOM7l5LpVLh4+MDaLqWAQEBBAQEpEc4Gxub9Nf8/f0JCAggKioKb2/v9CgZEBDAgQMH8Pb2lgdL9BSpuEWMrJAkSRS385w/f376H75KpWLZsmXp3cnijFw8mn9IklRsK7VLFBmjUlRUlDwPVsoICYnL8z56IzZdCXpxsUXQDZDIlD5iY5Np125lnvfTG7EVt26kTOmlTBljJk1qzmef5W0/vRn6l5EpapKT03jy5AUA//pXmzzvX6Ri09qR+0qStCyDJbne4+fnx6BBg/KtPR8fnyzn7mQKlylT9tCq1R9ERye+1f5F7fUfIIQYBPgCJcafRE5CLpl8/HFLZs5sj7W16VvtX9Re/+n+/vIKNtkjz6sVLdevhwBQv355PvqoJQBxyXlvp0i9/iHd8i4CPUPXVfTz88uyi6dLQvbz88uU0+jn54efn196Jom/vz/u7u74+/szf/78TAnH8+fPT29DpmjYs+cuDRsu4a+//pf+2l//gxq/5r2twhyNzMrrH97CsPVVpu6DfK6woYkDLOye/fuenp74+PhkWxwqJyGXDLp2VTJvnhseHjXSX2tQHjo4a+598kKRj0YKIebnpgupS0QuTgnJujIYkJOQSxpXrwYTF5eMsbEB06e3w9jYgFOPNe8pbWG9Z977kSXC6z+nCFRYyEnIJYeYmCTc3Nbi7l6dP/8cCMDfd6DPJtg+GPrXgWii89yu7PX/lugShnUJxa8iJyHrL5aWJqxY0Zf69cunv9ajBizvDR1qRQE2lKNcntstsERk7cDH78B4rRU5kiR5oxkcUebFijzjklHFJV1LX5ETkbMnIiIBlSqS5s0rApCmhrnHYXJLsDWDBzxgDSsZzPvUpV7xSUSWvf5l9I0pU/aye/cdHjyYipWVCVeDYe4JqGQFY5tCZSrTmrZUpdpbtS/nRsrIaPnhB3eGD2+IpaUJAE0d4fKHCTywPUwybhhjTHfRDQLmgbFVntsv8tHI3FKcRiFlSg5CCLZuvYkQggoVytDatQbu62HfPc37RrZPOM9ZHqMdikRC/fQEBJ/L87HkyCZTqtm16w6enr5s3TqYgQPrIoAXSRCRFg+YU4OaTOUzrB6fg3I2nPj5D+7sjGDkke3A2jwdS45sMqWaPn1q8ddf79OuWx3S1GBjCivGXEdV+weeEwSAVVw87O4D57/FVqnEvk5d1KmpeT6WHNlkSiW7d9+haVNHKla0pKN7bZoshz614BcPqKaoSkMaYZtshDASXFy/EzOmU7/Nv6lvaEb9t6zo0JvIJiOTX8TEJDFy5A4+//wAANamMKFVHG3aHkUgKEMZ+j53xGRtbcSjQ1xZs4abh26Bodk7HVdvxFbcupEqlSrLmjW5lq34Y2lpwsGDHzD2q17c12brdmp1lbtWhwhFk+GvuhRCcnk3FLZKhv79N56bNr3zcfVGbEIIhBDFRmxKpZLff//9tdflWrbiy/37Efj53QSgXgMHxu4zYdK+JABa0ZpPIrpR/vCXRNy5zfre/Tl1qR5YVcPMzg5J8e5S0RuxFTdUKhUqlerNG74jcnpW/vHNN8f48MPdREcnYWQAP4w8g5vXL8QSi4SE6f0bELgDu3Lw/s6dtNem2eUXejNAkpO71j/sTh85yi8ccKQnvXLcxsfHhwMHDrz2urygRvFk6dJe/Ho0gU33TJjQDNpYO2GS7IhpxBVunwll+wfTGHN4DxVs61Crd518P77eRLbi2I3MLuroatk8PT3TjVt1Scmenp7pFQJubm5ERESkb7t582aATLVssmXeu5GUlMqcOcdITEzF1NSIM0mCwwmXSFNDRSrR+9BODP8ZgFPLJtT38sKyav6LTIfeRLaceFMEKmgmTJhAREQELVq0eG1l0Iy1bBEREbmuZZNFlj8cPBjIrFlHaNTEkb69a/JB72NclwJIFFV54OvP3e1p9PthGxYVq9I3i3vw/KREiK2okWvZii89e9Zk0pZp/BJlTLdU6Klwx2PPIkwsQ3nxWEl4YBBJFg15OwufvKE33cjihq4GLatBEt29lp+fX6ZatqioqEy1bBlr4vz8/DLVsunq2/z9/Tlw4EAmAcu8mV9+OculS5r7+BrtTtO8x0okRSpBpy8S/MQBbOrQeupURh8/jqm1daGck94srKF7LNezvRuloZ4tJiaJ+g2X0qZ3Yzb/2onr6ksYXpyPsqoPv3ccQhlHR0YeOvTOxyk29Wz5jT58KcgUDywtTei17H2OR8YQHAuVHqZgfdkfBXXx2rEDy4oVi+S85G6kTInh5MlHzJ17DCEETbvs4ZP2v6AI/h9LWnbmVNB4aPEVZWvXxsTSskjOr8gjWwarhAghhDypJPPWrN3yP3YEGjE5JpkhkdZY/r0IurWn09df02DIkKI+vYIVm9b1OCDDc080LlsuQoj5WqH5Z3RGlpF5GwSCyv9OpE1QNJeOnuPGv79g+MJvsVL2o+00k6I+PaCI7ceBZoCLdg0AeZxbJs+Eh8czbNg2QkPi6Rt/kZW3p1NPaYqJlRXJTp5gUDyEBkVvP34fjaVdAJC/GbwypYKdN+5zqGpVjuw8QcyqEOzMq1KuamXGnDpF2ToFlw3yNhTmAElW9uPL0YjOhVecuPQZucymcFCjRtRay396/0xKwH7OrdpJQkc/sHBMz6UtThTpAInWdrzEiExHxjzH/MDLy0v2+s+AWqgZ99E+eriY4mF4BQfpFuKHayTPmYlZFulvxQW9sR9/9Zsq0+T28akQdvmdTzATZZtAh4X52+ZbIpfZvCSVVNaErSPIzYbL3pOIrVOR0QcCwMwGQ4uiPruc0Rv7cR3FJYNk/vz56bmLy5Yte63URi6zKRhSY2IYuO//aG3gTMKaVShrO4FZ3q3Ai4ICE5t2mL+5JEmeQgg/IUSAJEnNtaOUUfk6p1YEEUhXAjNo0KDXEpFBXjIqvwkST1m08DaKL4fSf0Y/mo8bBxVaFvVp5Qm9sR8vbulabm5u+Pv7o1QqUSqVcplNAZKY+JT4/Z0wbuTJfYdW2LYboXdCAz1K1ypuhj8A8+bNY968efj5+bFs2TJ8fX3ThZZdmY1KpUoXkW6bnMpsSjvhd+/y17DJ2Eea0M2gOkuu76B6pw5FfVpvRZGna+WW4hbZfHx8cHFxwc/Pj82bN79m9CMvGfVuJKfFceP6x2w+2Qlp10Ec39tIh049i/q03gm5xKaUoQ8lNnGhoai2L6RhynfMcpjDH5s6cXhuHWrVsn/zzoWIXGIjo9eExAZw5svl3PjzT6pc2M+Eiu581V9gYFD8JqnzinzPJlMsSElIIOzoF1hvaMNJTxe2dVrKyj2WVLSkRAgN5MgmUwwQajWrO3bE3MYC12+G8ShoEOrKDyhfXm/+PHNFyboaGb1CCEHqreU8DNtOtUljKFdOSTmXrmwwNoQBNsUyv/Fd0Bux5WTSKqN/xIWEsHXoUJr3tcHC+S6/OTXnyukaVPjPWvbvG06ZMsbp2woEiSQSTxyJJJJEEskkk0YaqaSSRipppKHWpCZr///yP10bmscZX3l5hJf/z4Dg5V7i5ftWWNFG0SrP16w3YtO3bqRuSsDX1zdf2vPx8cHe3v61CXO9JOQCCUkRJMfEkGY/Coe+axl625z6zoEENjDnhkUAzwkinHBiU0IQCUEYJ8ZhnpSISVIiJsnJGKcmY5SailFKCoZpqdp/aRilpWGgTkOhVmOgTsNArUah+yfUSGqBQqhRqAWSUCMJgUIIpKz+8epzkITgoYUTDL6Z58t+o9gkSXoPcAds0ZTISGhEfkAIsS3PRywlyJn/r5P04gWnf1hA66qriC5rTOV92wiNakRa7A1sKhygZZszdK/5CKs9kVSLjsIqJgbTlIRMbQg1JCdp/qWkQEoyxCYZkZBiSEKyEfEpBiQnK0hOlUhJkUhJU5CaIpGWJpGaCmlqCXUapKlBqA1Qp2naVAsQaoFQS1r3bd1PQK2NbLoQZ29Kg8F5v/5sxSZJUlOgGhAghNiaxfvVtEK8L4TI55T7LM8HKL3dSL2fzE6K4sGRYxyb+x2VtyziSScL5mwx4l5QEKk/bGDL8A00t3xEaKgB96PtOBxmSXS0NclxaohLIi02HhEfh2FqUhaNp2j/JWTxXtZIBgYYGBmhMDREMjBAYWiIwsBA81j7U1IoUCgUmucKRfpr5Z3frig1p8imEkJcyu5NIUQgEChJUrW3OnIeyakbuXfqVJ5fzl+9OzRpgsfC7BOcdQasFy9exN/fP8suo5z5D2kpKYSc9afCvbEkNe3BqP1zMHq+hIozrjPlkQNXQiqzK7E6+34L5bhmDyAUYRJHsokN4XGGxKSZk2pUngpVHXCq6UiVmo5UqemAmbUVxhYWGJqZYWRmhqGpKQYmJhiamGBgYoKBkVH6T4WRUSZxFcXgS7ZiE0JEZ/W6JElVhRAPMmwXWADnVezRdRNtbGxQKpVZ3pvJmf+w79NPubJ2DcMWOHPKPpX7K85z8s4o2u/7EgtFCGqnctSoa8Q5h1k0blaD6nbm7NweyMGTIVgYGuM5vB5jRzSiY8cqGBkZFPXlvBO5GiCRJGk8GuuCA0CAJEkDi9P9Wk4RqCDx8vLCz88vvYsnZ/5rEEKgjgyEE1MxMYmkjFkcqybeRNgFEuA+hyetvPjjmgExzjUw7NObj1vAGKOnfP/FPn4+eZ3Kla348cfujBvngqVl8THseVdyOxqpAragKf6cCIQV2BnpEZ6enri7u6fXs8kLbGgmqDf26kl84HmGToji8UeeJN53wqxpDVzH+uAS586k3RBZqwnd3JV8PziWBV/uo/em6zg4lGHp0l6MGdNU76NYVuRWbOGAEEIcBA4W4PlkS3EdIHF3d89WDKUt8z8x+CmRqz7m/r7LqAX4+tvxrJ8Vj7/ayt4TLpw6Kth5JZ4GSgs2rnLlxp4LdG62gcTEVL76qiPTp7fDwsL4zQfSU3KV9S9J0udohv8jgfNojFULfAQyw/FFcZtnyygWferqFUTWf1J0NIfGjqJKmct4vAfrrdqSqrQjokN7+jGQv8/UZOYhSNq5G5sn9zmyfwifTd2Lv7+Krl2rsWRJL2rWLF4Z/bmhoLL+/YUQC7QHaApUBwpNbMURf3//9JVESzNBJ05wbuYnRD2OhIpwpHY77rl3pCa1cXnkxa83TfnlHNQvBzO+bsKBTSl0bLeC1FQ1S5f2wtu7WYlLy8qO3Ea2Lmi8+PNVYFoX5HloJsiztUwojpFNX8mvyJYYEcHRieNp7ByAkxIeGlTjyme9CLG1pZuBB/uPtmX2Uc22H1SOYOEgK76csZ/Fi8/TqlUl/vxzINWrF1/budxQUJGtGWAvSdJMXmaP/JGLk8nR61/78nitf6SMnvDkyBGOf/IRyTHxKG0gqrML+7u5Y5VqT7f77YmU2vDTGTAzhE9t7zDPexNn5tly504En33Whu++64qxcckbAHkTue5GonHECgRN9sibdtC6aM1DI9RMXv+SJCm1z1WAUhvh/GXRFW9SExI488UMbEN30qgpWDuV59G8sRyvJGGbZEuXx32ZeNCRM6HQxAG2DoKHl4342dSQp09j2L7di/79i5cleGGSK7G9mkmSm4lsrahe9frXmSvqvP4DtNsBDEZjRy5TDIm4eZP9w4aQFPWCiTPApG41Fr8/glQDQYfQ9ji/qM3Ig+U5G2pGR2f4ySWUk38/Y9y4XTg5WbFz5/vUr1++qC+jSCnMrP+svP5V2gjXnLc0bZUpWIQQ/G/tWp6s/QYjoaZWK2OC+n3GjhYSaimV7sE9MYl0YviR8lwINeWDGqEs7FEGJ6ffiYtLoX17Z3bs8MLe3ryoL6XIKWqvf51X2xsT/3K0H5cpEJKio9nz3kASn6mY/h9INHJkf/9ZbHN8RIXECrQMb83DJ5UZ7u+AWsBi1xA62AXz7bfPiItLoWfPmmzdOhhTU72p5CpQcvwtSJLUFTgvhHjxyuvjcjNA8grv5PUvj0YWLhE3b3J00jhePAqiojPEOnRlTY8OhFo+omZMLdqGt+dmuBnjD1cgRS0xu0UErS3D+fTTMxw8+IzJk1uycKEHCkXpGNbPDTmKTQhxUJKkacAPutckSaqKZnI7r7yT139xzSApaQghOOXjQ/z5rYwepyYmzoy0QT+xqkEc4cbhOCQ40ja8PfseWPL5ybLYmqrZ7PEUZZlkXF138+xZHP/+dzu++65rqZk/yy25cdcK1ApMh2dW9W2vktHrH0A3BVAgXv8y+UJaUhIn/vUp93x9SYpXY2FnTsjwuaxv8pxooxe4h3SnZ3Bvttyx4qNj5bAwUrO1RxDKMslMnXqcZ8/i6NfPme+/d5OFlgW5ndSeJoT4QZKkJoC9Nkey0JAntfOP7Ca1g06d4u7ir3GyusOLaHD9bBDX2ozD3/EYAL2f9aNcSjn+CrTg0+NlsTdL44/OIdS1TmD48P2cOxfCjBnNGDq06jubtOoLeZ3Uzq1v5CWt0NwKW2g6ZN/IguPqb7+xf9gwLJLu0LEHtP/mM050Go6/4zFsk23pHdSXcinl+P6CLVOOl6VlhUQO9X9KA7skPvjgAOfOheDpWQNv79Ihsrclt/NsByVJWgosLeDzyekciurQJZa01FTu/bmaR2sXYGYBrXraENLyP2x0eUGU8Vmc4p3pFNoFI2HE7zesWH7TmgpmqazsGoKpgZpvvjnPmTPB9OhRhfnz2xb15RR7cu2ILISYWJiZ/q8iR7b85fa6dfi2bInT47mM/AQm/NiQ5GF/s7uRRJRxFOUSy9ElxA0jYcTqW5Z8d9GOpmUT2dX7GWaGgmnTTrJ69S3Gjq3H4sWu8j1aLsjJ8Mfq1SH/d9nuXZEjW/4RHxzMrdUrSYqMJDoSqig7cK3jN5wpe4poo2hah7elXkx9ACYcLsf+xxZ0c4pjUcdQjA1g5cqbbNt2nypVLPm//2suCy2X5BTZWmiz/bNF667VPKdt8gs5sr07N/38uLXkV1jtSuOaD/Acq6DW5Nn8r/2P7Hc8SJRRFF1C3NKFtviqFfsfW1DRPJVfXTVC8/d/zNy5F2jatBy+vj1koeWBHEcjJUmyBrzR1K/pNtT5Rl4EfLMzBsrXk5RHI98ZIQRLGzUi5MYNvMYLKlYzJs5tJarKVThc/iCSWsI1rDOVE50QAhZfs+a/l23pVjmOhR1DMTOEffseMXnyUerWtWXDhu5YWBi9dpz8WDJKX8jXEhutkBa881nlA/Kk9tvx5MwZ7GpU59HSocQ+uI6TEhwaVCOy60p2VL9EuPFNbFNscQ/2oExaGYSAvrsduR5hQt+qsfy3fRiGCnj8OIZPPjlKWppg0SLXLIUmkzN5TlrTTgFEZbSzKwzkyJZ3Yp8/Z3WnTtg5lWX8h0/pMxQqdOhIVOtfOVfuBuEmYVglW9MrqC/Gwhgh4MfLNlyPMKG2TTL/bacRWnR0EqNHH8TU1IAFC9rj7GxZ1Jeml+TWyu5zoAWafMYDaHIc85obKVNIJL14gYmVFWnhd7EoX5bQ+0+5dQUaeftwqIIbdx1P8NT8CbVf1KFNRDsUKIhPkZhzwZaNd60YXCOG71qHY6CA2Nhk+vXbzdOnsaxb143WrR2K+vL0ljx5kGjv4dyAUmnMqg8EHj7M5gED6PXlUOobLcHBRqLfACOUH64gtHZ3jopfEAhah7ehbkx9JCTUAnr+XZGHMUYMqfGCOW0iUEia3oS39yEePozB27u+LLR3JLfzbLaSJDURQkQLIbYWRRaJPBqZOxybNqVs3brs+mIZF09BtyF2VJtxjCe1O7GalZqBkNDO1ItpgIREmhp8TtnzMMaIzpXimasVGsDixdc4fTqYoUNrMWNGoQw6l2gK1IMkP5Hv2bLn/oEDXFmzhn6zBxGzbSpB5x9QrSY07N4IadB2lpbZQzC7scYad5UHlYwqAfA4xoDJx8pxJdyUKY2imNI4Ct1Ivo/PSbZsuUe/fkrmzGldhFdXcigwDxKZwiPqwQOeXbzIof+7RINqD2jnDp0+fg+6rcbf6CRBPMMOO8YzkcCkQDCCuBQJr32OBMUbMrVxJFMav5zBOXbsKVu23KNcOTPmzWsrz6XlEwXmQSJTsARfvUp8eDjVmlamZgMFp9NSOLNVhd1g6DL7K1Qth3NG2sFtbtEUF/rQD0Ptxx2ZqGDsofI8jzfg08aRfJJBaA8fvuDTT49TubIFW7f2wMSk9LlgFRRyvboeIoTgr3HjUKekMGKKEeonF0l8LhjxiSFVJ63lUc3WrOZ3ADzoSRvaIqGJTkeCLPn3+cokp0n85hqKR5X49HaPHHnCZ5+dRAhYs8ad8uUtiuT6Siq5qmcraiRJSj/J0jyp/eLpU8zLlsVQkUrEvfvcO3iM099MxdpGTZ/RttiP/ocnDhXZwHoSSWQgnjSgYfr+10Og3YpUYlIMWNQxhF5VXy4emJiYSvv2WwkPT2T9enfatav4VucoZ5Bkj95ENn34UihI4kJCWNqoEc3Gj6VLo90kPjVmz/TLVK0lMXhaLcT7O1hqeYhgdmOFFaMYS3leWsftuQtDt4OJgWCd+zMalU1Jfy8tTc3UqccJD0/k++/bvLXQZHJGb8RWWhFCIEkSFuXL037mTGp4eHBtlT+X/rpEkzbQ+1NXFH234W9ynmc8xZ6yjMMbC152AWcchP+chKo2sKy1ilplX655FhmZyODBe7l3L5qvvmrB++/XKorLLBXkup6tIJEkadmbtyp9PL98mWVNmhBxMwD2D8Glf3P++XAS2/97CWUd6Dt7KM8HruQvkyMc5yj1qM+HfJxJaD+f1QitrDkcGgEVzVMyHWPu3AvcuxdN377VGD26XmFfYqmiQCNbbrz+tSatsu14FpjZ2SEZGJAYGYH6yXFOLjnCk1MhDBwFDb3/zb3Wo1kraaY7O+BKV9xQaL8/1QIG+8LW29C/Nvw5EMyN4PrTl+1v2nSHrVvv06NHFX76qUMRXGHposAim9ZF6/cMz9O9/oEoSZJcJEmyQRZaJiLu3eP499+DUGOddAbvCxeQzOz4+ctkLhwIZfhHahp+uoiYNjPYL+1DQqInvXCnW7rQElPBdbVGaN2rg98gjdB0CCEYM8afmTNP4+paiYULO8j+joVAgUW23Hr9o7EkV0qSpMzgkFxqubZxI2d+/JHGHeywujKR5xW/ZfUH/8HMNJkx/1JgOnot66qlEMwSEklkGCOoRe30/SMSoO8mOPkYhjSAtf3A4JWv1IMHH3PkyFMqVDDnt99cS+WKMkVBkXr9awVpo32v1BIfHk5cSAjl6talw2cf03TMGKwqViTw3n3WD55NOUcFwz42xnLoX5yvXIa77MQUU8YwjopUSm/nXgS0WgExSbD5PRhc//VjXb0awZQpx6le3ZrNm7tjbi7XpRUWRT5AIoSIEkK4vymq6RKRS1pCshCCDT174uflhbj0IwrfxljZm3J64ULWjl6Ac3UFo6ZbkzJ2DzcrV2APu7HDjkl8lElol4Kg9QpNZJvSKmuh/fDDKUaNOoq9vQnr13fDzs6sEK9UpjAj2zt5/esoKZPaqYmJGBgbIykUdPvxR4wtLJAqqRHRdzk0ey4n5v1EXRcDBk5y5NaQ3/Gz2IdAUBknhjEi04jj3rswaCvYmcGm98BN+frx7twJZ/bsI4Bg5Uo3KlSQV5UpbApTbO/k9V+SJrXjw8JY07kzLuPH06pnRZzNAqHJ56hTU9m1NonLq5bSrIOCnhPqIPXfR5DFNQSCGtTkfYZijHF6W4vPw8d7oKo1nBwDFbMoog4MjKRr17WYmxuxZk1HatQo1b32IqMgRyPz1eu/JHUfzeztqdSqFfa1asGDXRC4nZS4GLa89x5Rv5m+AAAY6klEQVSXV62iYw9o9++O7Pb6ip0WZznBcVxoxjBGpAtNCPj6qEZoNqbwTeeshXbixCPq1l1MdHQiBw6MoHZtWWhFRUGORvoBfq+8VmpXFn3x9Cn+06fj8fPPmCtC6PvTLLB0gpSOJMbGs6lnbx4eP06PQdByeDcCus3iouEe1KjpiCtdcU9PJk5Jgw92wKYb8EEjWN4bTLL4JIODYxk2bCvJyWmsXdufxo0duH49rJCvXEaH3qRr6Xs3Mj40lLt79tB4xBCqPxsLju2gxzZiI2L408ODkGtXGThSUPUDLxI6LiXAYAtq1PSiN61ok95ObDIM3AIHVNDUAVb3g6zKzUJC4nBzW0dYWAKHD4/E1bVq4V2sTJbIWf8FSFJMDCp/f+oOGABpSSTFJ2NiaQmPD4BdAyJDElnfrRsxTx4weEwqwZ9O5kj1slhKlkQSyXsMypS1HxIHvTZCQBAMrgeftwUXx9ePGxQUQ+3av5KQkMLevcPp2vXliEl2q9jkF3LWf/bIka0AOT53Lqd//JFPLh3COmAUJu3+C5b9wMmd0Js3WefuTkpMGCM+TMXpvc8xqD4RSfqTaKIZzgdUp0Z6W/cjwHUNhMXDTi/onU2+cHR0Ir16bSA2Nplp09pmEppM0VLk82y5RV8GSNJSUogP09wXdfziC0YdPYp1nRZg3xDMygIQFBDAaldXREI4/WeXIfDTWYS0+Rd+0hYkJEYzNpPQLgVB25UQFAt1y0KvmlkfOzo6EQ+P9Vy7FsKOHV7Mn+9e4Ncrk3vkyJaPCCHY2Ls3yXFxjN63FeNL3+PU5j9gYAI9twPw+NQp/uzRA1OTZD74JImAYV9yroKak/yBAQaMYTwVqJDe5tEH0GeTZsRxpxc0c8z6Hi0mJomGDZfw5MkLNmwYSN++dQrpqmVyi96IrTijqzmTJImmY8dqnoddghvLQDkAKrkCGk/HjX36UMZa4DVVYNdzGTUqdOMMazDHnJGMwR779HZ334EBW8DWFE6NgcpWWR8/NjaZnj038OTJCzp1qsrgwaXjnknfkLuR70jSixf4enpya9s2UKdSv3MNGnh5QRUPGKFKF9q9vXvZ0LMnNnaCaltbs/mTGdyt78p61lAGS8YwPpPQttyAfpuhjDHUtAeHbMY04uKS6dHjT06ffszmzZ4cOjRSzuAvpuhNZCuu3UhDU1Nig4OJDQ6GMzPh2mIYdgfKVAILzVDhnd272TJwIOUqGzNiQhzBld4n2cSGjWzABltGMQYrXoat1ZdhzF/Q3hm2DtIIzjCLr8X4+BQ6dFjFpUvPmTOnC4MGZZEQKVNs0BuxFSdSExM5/eOPtP70U4zMzBh1+BAKI2OIewb2jTVC0/K/XbvY8t572LpXotkkC8xrzQSn1txkLbbYMZqxlOFl2FpyAT78B6xNYNtgTYV1ViQmptK//yYuXXpO06YOTJjQrKAvW+YdkcX2Fjw5e5ZDX3yBfa1a1HM8iyLuKbj/CRYVofaw9O3u7N7Nlvfew6GqGeY/unCsWkOsjVuwibXYYPua0H45C1P2QXNHzfyZrWnWx09OTqN//00cOKBi1ap+jBrVpKAvWSYfkO/ZcolQq3l+5QoAVV1d+ejmTep5eoKJLZiVA5GWafv7+/ezeeBAyteyZMT4FwwUHngYD2aztuv4qtB+Oq0R2oA6moTiZb1fL/oESE1V4+m5hX377tOrV01ZaHqE3kS2or5nOzJ7NqcWLOCj27exSTxBWVvtZFezGa+NxT84coSN/fphuLE3po0NMY7vQFCdHmxnJZZYMYoxmYS26Bz86wAYSPBfd8iucFqtFowevZNdu+7g6lqF6dPbFdTlyhQAeiO2oiItJQUDIyOaT5qEdZUqWDuWhU3/B44dwH3da0J7eu4cG/v0wc7BjEbmgahN+hFc/T3WsgJzzBnFGCx5mZ6/9AJ8shc8qoNnPahmm/V5CCGYMOFv1q+/ypw5nfm//+tYkJctUwDIYsuBvydOJCEiAs/Nm7E0i8FlzGiQFND/CJSp/Nr2Idevs2bmB5h0dWJEi1tYWo0jrNKHrOB3jDBiFGOxxjp9+0Vn4ZN90LMGbPfKPqIJIfDx8eePPwKwtzdj6lR5VRl9RL5nywHb6tWxr1ULEXYdNjWCq4s0b1hVBUXm76moBw9Y270byT+7YvZrS8q0Hk10mxmskVYBMJIx2PIybG25oRGaBMzulL3QAObNO8mCBafo27cW06e3w8LCOPuNZYotehPZCuOeTZ2ayrE5c6jerRtObdvSbto0TTdRCGj5DdQckuV+saEhrOvRnbTYFwzbt4WKDVxJdFvHOmkliSQyhnGUo1z69nvvwfDt0N4JfvbIOnNfx/LlF5kx4yBDhzZk3boB8oS1HqM3YisMUuLjubJ2LalJSThVN4JjH0PPnWDhAC7Ts9wnIe4Fv9z6gpSxzowOfoCzc0NSO69lrWIz4YQzgpE48tI7f/MNGLoV6pSDv4eAdTbD+wDbt99i4sS/USgkRo9uLAtNzylSsWlt7JoDLsByIUShG7YKIbjz99/U7NkTEysrvC9cwMzODsJvQGo8JIZpxJbVvmo1f40YRVLnOFyqJOJcoRKi1052GO3lAYF4Mhgl1dO3vxcBE/7WDOn/2iNnoR079pAhQ7bi4uJIx45VaN++Sn5fukwhU9T2482BC2gMgJRoTFsLlcBDh9jUty8D1q2j0QA3zIL3gN1osK8P71/RDIhktR+B3PrxD25v306PMhVp3SEW3jvNUbPrXOUKXXGnEY3Tt78TBr03adKurkyAuuWybBaAmzdD6d17A1WqWLN373DKZpdGIqNXFKn9uPYxgE1eDYDelYTISACqdenC4G3baDh0KFz+r6brGBekPemsfz1JJPFn4irOOt2kqUdVWrUKgm6buWaXyiEO0oSmdMQ1ffuTj6DeEgiM0pTJ5CS0Z89i6NZtHbGxybRqVVkWWgmiwMSmFdKr9uO6bqIKcJMkyVvbdQyQJCnrm6IC4Owvv7C4Th1inz9HUqdSt3s7JIUCWn0Dgy6kJxC/iho1AOEXryO6raPK4hv08niA1HYBT6rUZztbcaYKfemfbs4jBCy+AGkCFnlAO+fszysmJonevTcQFZXIzJkd+PJLeS6tJFGk9uOAnzYCKnnFiasgUbq7E6lSYWJtDf/0g8RweO8UGJqBXd0s90kkkU1soG50dU71H46lOgmvyaEY1BvOiyZj2chSymDJEIalr1297x6cfgIbr8PXrjCxeZZNA5oFCQcP9uXy5efs3j2UHj2yKceW0VuKdIBEazleKItpnPn5Z2KfP8ft++8pV7cuHgsXat6oPwHUyaDIeXEJQwyR1HB20SLiw8MYM80QC6ULKZ0Xs0FaTxJJjGdUulPxnXDouVGzdNOwhvCmIDVjxkH27r2PjY0JnTpVzYcrliluFOak9jvZj7+r13/E3buE3bqFOikOjkyEu5s0byj7QY1B2e6nQkUyyRhiSIXPbxD55Vb6jnfE0ckAPPzYY3iIZzzFk8FUIPOopYmBxm7ujz5ZWxnoWLPmMgsWnGLo0AasXNkPMzN5sYuSiN7Yj+vIi5XdrW3bKN+gAfa1atH9p59QGBoiqVMh4jqY5zCTrCWKSNaxmra0o/K2OM7++CMtBjSkYa1r0HUH16xiuMB5OtCROtRNdyl2V4L3bs2aaNsHg2kOv+WLF58xfvwuunSpxurV/TEykpdvKqnojf14XkmMimLX+PGcXLAAhMDgwVak1HgwMIJ+h6HlrGz3FWiyVWyw5X2G0ui+MztHj6ZS45p063gNmnxGuLI9f7EDJ5zpghsA4Qmw8jJM2A23wzSLXFTJwe07IiIBD48/SUlRM3FiM1loJRy9sR/PbbpW+J072NeqhamNDSOPHKFsnToQcQP2D4W286HpNI3gsiGWWHzZTDe6U4nK1Eipzsoh7ZAMFHgODcPQsSlprb/Fj9UoUDAIL1AbICRNVbVPO43//mzXrFeT0aFWC0aM2E5UVAJffNEBT095PeuSTolKRH547BiL69Xjhq8vABVqVsbAyAjsG0D/w9D40zcfB4k4YokhBtDUsT07f54+E6phY5UA7us5YXCGpzyhN30xS7VhwBaYc1yTIfLvg9DBGb54wxLVH320m3/+ucvChR58+20XpJxu6mRKBHqTG5lTZBNqNZJCgVPbtnSaPZvq3bqBagf4fwADj0PZxukuV9nxkIc444wFFnzIZBQoeHD0KCe+/56mA9tTr/IJaPsLQXY2HGETDWhIQxqhNtBENFtTGLoNjBSwfkDWVdY6Dhy4z9KlF6la1YYPP2zxtr8SGT1D7yPbDV9fljdvTnJsLApDQzp+8QWm1taahStqekEZpze2/YiHrGA5AVwAQIGCpJgYdowciZ2yKh6ul6FSZ1IbTmAbWzHDjLYJfQmLB4UEK/pAcBycf6ZZUcbZOvtjvXiRxMSJuylf3gJ//xFyRCtF6H1ksyhfHjNbW5JjYzGOvgh3N4LrEo0vSOffs9znVZxwph8DaMxLPw9/Hx+iHz1izPzWGJsEQ+c/OCIdJZjnDBEjGPinOUYKODFaM3H93QkY2VhTbZ0dDx5EMWnSbh4+jOLYsdFUr26X/cYyJQ69EZsuAsyaNYsR7doR/fAhLuPGUdXVlSr+/pr3L2+Ep4chIRTMy+fYXhRR/M1f9KM/lljRjJfpHYGHDnFhyRJaj/LAyWwvtP6Zp9bGnOAYTWhKXakOs10182ixyTBihyaa/eKR8zV4eflx7txTfHza0rbtmyOuTMlCb8SWMbJtHjiQqMBAmowahSLxOVJ8MJRvBo2nQn1vMLLIoSUNiSQSxDPCCccyg0Fqclwcf40bh10NJV1anIMKbUltNJFtLCE21BlFVB+oCT212VT/2geBkXB0JFiZZH+8sLB4VKpIatWy55tvurz170FGf9EbsQVfu0aZChWwKF+evitWYGhigsLAAPYOguQoGHJDk6X/BqEF85wKOOCAA1P5DCMyTwMcmzOHqMBARv3cFyN2g+sSjksnCCWECwdm4BdqQo+PNCt9XnkOv5yD8S7QIZtys+TkNFauvMThw4FERydy6NAHGOfkgSBTYtEbsS1s1IjbQONZs5j95QyQDDU5UJ2WgaFptuUwGbnGVXzZzGjGUg3la0ILu32b0//9L40H96KKwS5oNIXoss6cYBv1acCU/mWITNQITS1g0j9gawbfd83+mH5+N5k0aTcAX3/diYYNK2S/sUyJRm/ENuqvv6jcqhUWNmawtS1U7avJAinbKNdt1KEu3emBM6+HISEE/3z0EcYWFri7PwGDCtDya+bfu8S+273Z16s69uZgry0vW3VZMzCyqi/YmWV/zIED6+DkZIWJiaHs81jK0Zuh/9p9+mBRvjwYW4JjeyibOyfgcMLYii8ppGCEEe1ojwGvd+Nu+voSeOgQXSb3xSLpCrT9gYfGEZx5nkjUs9oYJL10xopKhBkHoZ2TZgQyK1auvMTDh1H89NMZHj9+waJFPTDNKUlSpsSjN2JbNFiisq12nq3Dz5ps/VwQTDD3uEtEplK6zKQlJ3NwxgwqNGxIs2qHoVwzYqq+z1724NHuMhdHm2CTwS/k22Oa5XYXeWSdzR8WFs+0afv56qsjfPvtMQYMqIOHR43XN5QpVeiN2Ca7W/Hk1KpcZfwLRLq46lGfKfwr02qerxKwYgWRKhVdx7dEEf+Y5Xbrqb1Eza0XL+gqdcXa6KVP4//CNIMi41ygaTaFA2XLmnPmzDhiYpIA+Omn7rm/UJkSi96IjREqqDsqV5ue5AS/sYgIbcmcKdnbWCXHxXHsm29wbteGGqZbwbk7LRvWooryLk7mpjSmaabt/7VfUzozp/PrbZ0584Q1ay4D8PhxNNu332bmzA5UySn1X6bUoD83Eab2b95GS2Mak0YaNmRjnJ+Bs7/8Quzz53jO7s7xOCM6tpmHQdnruPfdjDuDM93fnXoM/9yD+W5QPosZhoULz3DxYhADBtRh8uQ9KJW2TJvWNtfnLVOy0R+xvYFggrnKFdxwxxIrXOn0xn2SYmI4tWABNXt0Z1+iLRNerOZ4QhoB/EJ5KtCAhpm2n3tck3T8YTZeImvXDiAkJI6VKy9z61YYu3YNkQdFZNLRm27km0psbnOTywQQqy2NyQ0Xly8nMTKSjkPrMdLgN1Z3uodN5VuEEUZnuqDI8OsJCNJEtU9bQUar/cjIBKZO3UtcXDLGxgZYW5swd+5x3N2V9O5d620vV6YEojdiE0IghMgkNoEgllgAOuDKh0zOlHqVE6lJSRz/+TcujFmHXeoeTCq2YGTHGpyWTmKHHXXJnFH83QnN0rsfvVIRc/ToQ5Yvv8jVq8EA/PTTGcLC4vnuuxxmumVKJXojtqzYyz8sZykJJKBAke5slRuurl/PDaNq7K0yhCOR1aDJNB7zmMc8ojVtM0W1m6Gw9RZMbvm6ZXj//nVQqabQpo0T4eHx/PDDKQYOrEvz5hWRkclIkYpNkiSlJEkukiRNlyQpBxOBrGlII5rTIsfRxqxIS03j1Pz5tLeJ5I5yAD3L34dqfTnNSUwxpSkumbZfeBbMDGFKK81zIQSff76fs2efAODgoFlFdN68k8TGJvPtt1kMVcqUegpUbDrL8QzPPSVJcsvgfqxbC8Af8MxNm095wgXOA1AZJzrimu4+nBuexUCzhdFcibOh3cRBVIveBQ0nEyW94CY3aEYLTHiZvh+RAOuvarwfdU7g4eEJbN9+mz177r3cLiKBxYvPM2xYI+rVy+wvXlTrgBcFv/32W1GfQrGlqL3+dYZAbuTSEfk0pzjOMVJIeetziwqNxNihMnWVKo0Lcu3hnOcsAK3JvKrnykuQkKrpQuooW9acCxe8mTXrpdXC779fJD4+hc8/f32o/+uvv37rc9U3lixZUtSnUGwpUq9/SBelv9YdOVuS0GRj9KU/3kx8LWP/TTx9ofHdN494yMgfauHZvSaK+xuhxmDUJlZc5hI1qIk1Lyeg09Qan/6OztCoAvj63mDmzIMIIbCxMU0vaE1JSePXX8/TpUs1GjWSs/plsqYw79le8/rXCs0HmKDzl8yOP1lHGmkYY5yngRCAR9HQeBl8fwIurViBQgiadraDlFio542K+8QQ89q92t934UHUy6h2/Pgjjh17SFJSWqbttm27xZMnL5g6tVWezkumdFHUXv/+5NIZuR71M40Q5gUnK82Q/aA6qex6fwU1PDywidwKtvXAoQ2X8cUUU2pTJ9N+Sy5AZSvor3355589SEhIfW2ieuHCs1SvbkuvXvK8mkz2SAW5VrUkSQeEEO7ax/OAA0IIf20UU2oXRMxNOwW/oLaMzFsghMj16JxeeP3n5YJkZIorJdbrX0amuFGg3UgZGZmX6HW6loyMPiGLTUamkJDFVgBIkuSt/Tcvw2uvpqqVCLK51nm694ruzPIf7efn9rafqyy2fCZDRsxyQKn9IF5LVSvSk8wnsrpW7VvekiTdp5DWSy8MtJ+Zu/YzdNEm0Ofpc5XFlv8o0aaiofljU5JNqloJIKtrBRgkhKiu/SMsEQghAoQQPtqnSu1oep4+V7lmP595ZXVVFzTzi814JVWtUE+qgMjmWkHzzQ+aqo5cJS7oC9ru4gTt09dSEHPaV45sBYS2S3GgNMwnvnqtQoj52qhmn6FrWSLQfnlMkCQpz5ZpstgKDrcM3+pRgG4xNhvQeuyVHNKvVTtgoEsqD+dl11KvyXiPhqbL6E0eP1dZbAWAJEneGf743NB0r3R/dHlKVSvuZHGtKl5eX3XQLueq/7iRWVgq8vi5ymLLZ7R/cPMkSbovSVIklNxUtRyudbA2ut0vKdcK6EZcdemHfnn9XOV0LRmZQkKObDIyhYQsNhmZQkIWm4xMISGLTUamkJDFJiNTSMhiK4Vonah932H/eSWteqEwkMVWCtF6dI7XPX+TjWAWbH7zJjKvIoutFKJdV0GpfWwDuOexiag3byLzKrLYiiHaGrgDuqLEDAWKy3QJsLocRF2BpiRJNtptdft4Z9FOxnorXQFkczIYM+n20T6e90qh5HRttoTnq6+VtELRgkAWWzFEmzFvp/3pB3hpH19EIwwXNDVVfrws92iOJmXIH2ghhFieVTva9lVoo5P2PZVu3YVXatCW6R5oxRSQ0VhXK0Tda9UL4ndRkpDFVnzJWCelyviaNgcvQBtldK/pBKCzdM+qndySVTexGa9XXisBG63477/FcUoVstiKL9neF2mjjDKDwHR/8P5CiFcXKcn1/VUWZf0Zy2Mu8nq5zHk0UTEA2JLb45RW5ErtYog2Ounqp3SPdfYKEYBvhvcD0NST+UmSdFGSJBWaCPQ9mq7lq+3YoBGNiyRJSq0wVdp7Nl0X8rz2HGwAN+12y7X3Z6CpynYHBqHxG9GVnpSY0qGCQM76LyFo572WCyGitMKckMEzQ6YYIIuthJAhEkVpf6reVF8lU7jIYpORKSTkARIZmUJCFpuMTCEhi01GppCQxSYjU0jIYpORKST+H3vm/7p/JtmGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot power law fits\n", + "m_sample = np.linspace(15,30,100)\n", + "\n", + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "\n", + "plt.fill_between([23,25],[0.1,0.1],[10**9,10**9],color='grey', alpha=0.25)\n", + "\n", + "#data\n", + "p1, = plt.plot(m_bins, n_sample_g, '-', color=colors[0])\n", + "p2, = plt.plot(m_bins, n_sample_r, '-', color=colors[1])\n", + "p3, = plt.plot(m_bins, n_sample_i, '-', color=colors[2])\n", + "p4, = plt.plot(m_bins, n_sample_z, '-', color=colors[3])\n", + "p5, = plt.plot(m_bins, n_sample_y, '-', color=colors[4])\n", + "#fits\n", + "plt.plot(m_sample, power_law(m_sample, *popt_g),':', color=colors[0])\n", + "plt.plot(m_sample, power_law(m_sample, *popt_r),':', color=colors[1])\n", + "plt.plot(m_sample, power_law(m_sample, *popt_i),':', color=colors[2])\n", + "plt.plot(m_sample, power_law(m_sample, *popt_z),':', color=colors[3])\n", + "plt.plot(m_sample, power_law(m_sample, *popt_y),':', color=colors[4])\n", + "\n", + "plt.yscale('log')\n", + "plt.xlim([16,30])\n", + "plt.ylim([10**2,10**8])\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$n(" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot implied completeness \n", + "\n", + "c_g = (n_sample_g)/(power_law(m_bins, *popt_g))\n", + "c_r = (n_sample_r)/(power_law(m_bins, *popt_r))\n", + "c_i = (n_sample_i)/(power_law(m_bins, *popt_i))\n", + "c_z = (n_sample_z)/(power_law(m_bins, *popt_z))\n", + "c_y = (n_sample_y)/(power_law(m_bins, *popt_y))\n", + "\n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "plt.fill_between([23,25],[0,0],[2,2],color='grey', alpha=0.25)\n", + "p1, = plt.plot(m_bins, c_g, color=colors[0])\n", + "p2, = plt.plot(m_bins, c_r, color=colors[1])\n", + "p3, = plt.plot(m_bins, c_i, color=colors[2])\n", + "p4, = plt.plot(m_bins, c_z, color=colors[3])\n", + "p5, = plt.plot(m_bins, c_y, color=colors[4])\n", + "plt.xlim([20,30])\n", + "plt.ylim([0.01,1.1])\n", + "plt.yscale('log')\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$C(" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot linear difference ratio\n", + "\n", + "c_g = (n_sample_g-power_law(m_bins, *popt_g))/(power_law(m_bins, *popt_g))\n", + "c_r = (n_sample_r-power_law(m_bins, *popt_r))/(power_law(m_bins, *popt_r))\n", + "c_i = (n_sample_i-power_law(m_bins, *popt_i))/(power_law(m_bins, *popt_i))\n", + "c_z = (n_sample_z-power_law(m_bins, *popt_z))/(power_law(m_bins, *popt_z))\n", + "c_y = (n_sample_y-power_law(m_bins, *popt_y))/(power_law(m_bins, *popt_y))\n", + "\n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "plt.fill_between([23,25],[-2,-2],[2,2],color='grey', alpha=0.25)\n", + "plt.plot([20,30],[0,0],'--', color='black')\n", + "p1, = plt.plot(m_bins, c_g, color=colors[0])\n", + "p2, = plt.plot(m_bins, c_r, color=colors[1])\n", + "p3, = plt.plot(m_bins, c_i, color=colors[2])\n", + "p4, = plt.plot(m_bins, c_z, color=colors[3])\n", + "p5, = plt.plot(m_bins, c_y, color=colors[4])\n", + "plt.xlim([20,30])\n", + "plt.ylim([-1,1])\n", + "#plt.yscale('log')\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$\\Delta N/N$')\n", + "plt.legend([p1, p2, p3, p4, p5],['g-band','r-band','i-band','z-band','y-band'], frameon=False,\n", + " fontsize=10, numpoints=1, loc='upper right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Define jackknife samples" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "#find ra and dec values that split fields into 4 equal parts\n", + "\n", + "class quad_split(object):\n", + " \"\"\"\n", + " splits a plane into 4 equal number quadrants\n", + " \"\"\"\n", + " def __init__(self,ra,dec,max_iter=100): \n", + " \n", + " self.ra = ra\n", + " self.dec = dec\n", + " \n", + " self.min_ra = np.min(ra)\n", + " self.max_ra = np.max(ra)\n", + " \n", + " self.min_dec = np.min(dec)\n", + " self.max_dec = np.max(dec)\n", + " \n", + " self.max_iter=max_iter\n", + " \n", + " self.find_ra_boundary()\n", + " self.find_dec_boundary()\n", + " \n", + " def find_ra_boundary(self):\n", + " \n", + " self.ra_split = (self.min_ra+self.max_ra)/2.0\n", + " da = (self.max_ra-self.min_ra)/2.0\n", + " \n", + " df = 0.5\n", + " f0 = 0.5\n", + " \n", + " i=0\n", + " while df>0.01:\n", + " i+=1\n", + " N_above = 1.0*np.sum(self.ra > self.ra_split)\n", + " N_below = 1.0*np.sum(self.ra <= self.ra_split)\n", + " \n", + " if N_above>N_below:\n", + " self.ra_split = self.ra_split+da\n", + " da = da/2.0\n", + " elif N_aboveself.max_iter:\n", + " break\n", + " \n", + " self.ra_iter=i \n", + " \n", + " def find_dec_boundary(self):\n", + " \n", + " self.dec_split = (self.min_dec+self.max_dec)/2.0\n", + " da = (self.max_dec-self.min_dec)/2.0\n", + " \n", + " df = 0.5\n", + " f0 = 0.5\n", + " i=0\n", + " while df>0.01:\n", + " i+=1\n", + " N_above = 1.0*np.sum(self.dec > self.dec_split)\n", + " N_below = 1.0*np.sum(self.dec <= self.dec_split)\n", + " \n", + " if N_above>N_below:\n", + " self.dec_split = self.dec_split+da\n", + " da = da/2.0\n", + " elif N_aboveself.max_iter:\n", + " break\n", + " \n", + " self.dec_iter=i " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "#use randoms to split each field into 4 equal area sub-samples\n", + "s1 = quad_split(frdata['ra'][ran_field_mask_1], frdata['dec'][ran_field_mask_1])\n", + "s2 = quad_split(frdata['ra'][ran_field_mask_2], frdata['dec'][ran_field_mask_2])\n", + "s3 = quad_split(frdata['ra'][ran_field_mask_3], frdata['dec'][ran_field_mask_3])\n", + "s4 = quad_split(frdata['ra'][ran_field_mask_4], frdata['dec'][ran_field_mask_4])" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "#store the results\n", + "ra_splits = [s1.ra_split,s2.ra_split,s3.ra_split,s4.ra_split]\n", + "dec_splits = [s1.dec_split,s2.dec_split,s3.dec_split,s4.dec_split]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "#define masks for each data jackknife sample\n", + "mask_11 = (fdata['ira']s1.ra_split) &\\\n", + " (fdata['idec']>=s1.dec_split)&\\\n", + " data_field_mask_1\n", + "\n", + "mask_13 = (fdata['ira']<=s1.ra_split) &\\\n", + " (fdata['idec']>s1.dec_split)&\\\n", + " data_field_mask_1\n", + "\n", + "mask_14 = (fdata['ira']>=s1.ra_split) &\\\n", + " (fdata['idec']s2.ra_split) &\\\n", + " (fdata['idec']>=s2.dec_split)&\\\n", + " data_field_mask_2\n", + "\n", + "mask_23 = (fdata['ira']<=s2.ra_split) &\\\n", + " (fdata['idec']>s2.dec_split)&\\\n", + " data_field_mask_2\n", + "\n", + "mask_24 = (fdata['ira']>=s2.ra_split) &\\\n", + " (fdata['idec']s3.ra_split) &\\\n", + " (fdata['idec']>=s3.dec_split)&\\\n", + " data_field_mask_3\n", + "\n", + "mask_33 = (fdata['ira']<=s3.ra_split) &\\\n", + " (fdata['idec']>s3.dec_split)&\\\n", + " data_field_mask_3\n", + "\n", + "mask_34 = (fdata['ira']>=s3.ra_split) &\\\n", + " (fdata['idec']s4.ra_split) &\\\n", + " (fdata['idec']>=s4.dec_split)&\\\n", + " data_field_mask_4\n", + "\n", + "mask_43 = (fdata['ira']<=s4.ra_split) &\\\n", + " (fdata['idec']>s4.dec_split)&\\\n", + " data_field_mask_4\n", + "\n", + "mask_44 = (fdata['ira']>=s4.ra_split) &\\\n", + " (fdata['idec']s1.ra_split) &\\\n", + " (frdata['dec']>=s1.dec_split)&\\\n", + " ran_field_mask_1\n", + "\n", + "ran_mask_13 = (frdata['ra']<=s1.ra_split) &\\\n", + " (frdata['dec']>s1.dec_split)&\\\n", + " ran_field_mask_1\n", + "\n", + "ran_mask_14 = (frdata['ra']>=s1.ra_split) &\\\n", + " (frdata['dec']s2.ra_split) &\\\n", + " (frdata['dec']>=s2.dec_split)&\\\n", + " ran_field_mask_2\n", + "\n", + "ran_mask_23 = (frdata['ra']<=s2.ra_split) &\\\n", + " (frdata['dec']>s2.dec_split)&\\\n", + " ran_field_mask_2\n", + "\n", + "ran_mask_24 = (frdata['ra']>=s2.ra_split) &\\\n", + " (frdata['dec']s3.ra_split) &\\\n", + " (frdata['dec']>=s3.dec_split)&\\\n", + " ran_field_mask_3\n", + "\n", + "ran_mask_33 = (frdata['ra']<=s3.ra_split) &\\\n", + " (frdata['dec']>s3.dec_split)&\\\n", + " ran_field_mask_3\n", + "\n", + "ran_mask_34 = (frdata['ra']>=s3.ra_split) &\\\n", + " (frdata['dec']s4.ra_split) &\\\n", + " (frdata['dec']>=s4.dec_split)&\\\n", + " ran_field_mask_4\n", + "\n", + "ran_mask_43 = (frdata['ra']<=s4.ra_split) &\\\n", + " (frdata['dec']>s4.dec_split)&\\\n", + " ran_field_mask_4\n", + "\n", + "ran_mask_44 = (frdata['ra']>=s4.ra_split) &\\\n", + " (frdata['dec']" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(3.3*2,3.3*2))\n", + "axes= axes.flatten()\n", + "\n", + "for i in range(0,Nfields):\n", + " ax1 = axes[i]\n", + " min_ra = field_bounding_boxes[i][0]\n", + " max_ra = field_bounding_boxes[i][1]\n", + " min_dec = field_bounding_boxes[i][2]\n", + " max_dec = field_bounding_boxes[i][3]\n", + " for j in range(0,4):\n", + " mask = j_masks[i*4+j]\n", + " ax1.scatter(fdata['ira'][subsamp & mask], fdata['idec'][subsamp & mask], s=1)\n", + " ax1.set_xlabel('RA')\n", + " ax1.set_ylabel('Dec')\n", + " ax1.set_xlim([min_ra, max_ra])\n", + " ax1.set_ylim([min_dec, max_dec])\n", + " #plot boundaries\n", + " ax1.plot([ra_splits[i],ra_splits[i]],[-90,90], '--', color='black')\n", + " ax1.plot([0,360],[dec_splits[i],dec_splits[i]], '--', color='black')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# calculate jackknife errors on magnitude functions" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 8803869\n", + "1 8771012\n", + "2 8770910\n", + "3 8786923\n", + "4 8500753\n", + "5 8451261\n", + "6 8514267\n", + "7 8538199\n", + "8 8553383\n", + "9 8517189\n", + "10 8576370\n", + "11 8524660\n", + "12 8463799\n", + "13 8410345\n", + "14 8695322\n", + "15 8708743\n" + ] + } + ], + "source": [ + "Nr = len(hsc_randoms)\n", + "Nj = len(j_masks)\n", + "m_bins = np.arange(12,30,0.1)\n", + "\n", + "#create arrays to store jackknife calcs\n", + "n_sample_gs = np.zeros((Nj,180))\n", + "n_sample_rs = np.zeros((Nj,180))\n", + "n_sample_is = np.zeros((Nj,180))\n", + "n_sample_zs = np.zeros((Nj,180))\n", + "n_sample_ys = np.zeros((Nj,180))\n", + "\n", + "popt_gs = np.zeros((Nj,3))\n", + "popt_rs = np.zeros((Nj,3))\n", + "popt_is = np.zeros((Nj,3))\n", + "popt_zs = np.zeros((Nj,3))\n", + "popt_ys = np.zeros((Nj,3))\n", + "\n", + "#loop through samples\n", + "for i in range(0,len(j_masks)):\n", + " \n", + " #remove only the sub-field\n", + " d_mask = ~j_masks[i]\n", + " r_mask = ~j_ran_masks[i]\n", + " \n", + " N = np.sum(d_mask)\n", + " print(i, N)\n", + " \n", + " #calculate the area of each jackknife sample\n", + " Nsub = np.sum(r_mask)\n", + " f = 1.0*Nsub/Nr \n", + " sub_area_sq_deg = f*full_area_sq_deg\n", + " \n", + " #calculate cumulative apparent magnitude function\n", + " \n", + " g_mag = hsc_data['gmag_forced_cmodel'][d_mask] - hsc_data['a_g'][d_mask] #correct for dust\n", + " g_mag = np.sort(g_mag)\n", + " N_g = np.cumsum(np.ones(len(g_mag)))\n", + " n_g = N_g/(sub_area_sq_deg) #cumulative number density\n", + " \n", + " r_mag = hsc_data['rmag_forced_cmodel'][d_mask] - hsc_data['a_r'][d_mask] #correct for dust\n", + " r_mag = np.sort(r_mag)\n", + " N_r = np.cumsum(np.ones(len(r_mag)))\n", + " n_r = N_r/(sub_area_sq_deg) #cumulative number density\n", + " \n", + " i_mag = hsc_data['imag_forced_cmodel'][d_mask] - hsc_data['a_i'][d_mask] #correct for dust\n", + " i_mag = np.sort(i_mag)\n", + " N_i = np.cumsum(np.ones(len(i_mag)))\n", + " n_i = N_i/(sub_area_sq_deg) #cumulative number density\n", + " \n", + " z_mag = hsc_data['zmag_forced_cmodel'][d_mask] - hsc_data['a_z'][d_mask] #correct for dust\n", + " z_mag = np.sort(z_mag)\n", + " N_z = np.cumsum(np.ones(len(z_mag)))\n", + " n_z = N_z/(sub_area_sq_deg) #cumulative number density\n", + "\n", + " y_mag = hsc_data['ymag_forced_cmodel'][d_mask] - hsc_data['a_r'][d_mask] #correct for dust\n", + " y_mag = np.sort(y_mag)\n", + " N_y = np.cumsum(np.ones(len(y_mag)))\n", + " n_y = N_y/(sub_area_sq_deg) #cumulative number density\n", + "\n", + " inds = np.searchsorted(g_mag, m_bins)\n", + " n_sample_g = n_g[inds]\n", + " \n", + " inds = np.searchsorted(r_mag, m_bins)\n", + " n_sample_r = n_r[inds]\n", + " \n", + " inds = np.searchsorted(i_mag, m_bins)\n", + " n_sample_i = n_i[inds]\n", + " \n", + " inds = np.searchsorted(z_mag, m_bins)\n", + " n_sample_z = n_z[inds]\n", + "\n", + " inds = np.searchsorted(y_mag, m_bins)\n", + " n_sample_y = n_y[inds]\n", + " \n", + " #define range over which to fit power law for each band\n", + " g_mask = (m_bins>23) & (m_bins<25)\n", + " popt_g, pcov_g = curve_fit(power_law, m_bins[g_mask], n_sample_g[g_mask])\n", + " r_mask = (m_bins>23) & (m_bins<25)\n", + " popt_r, pcov_r = curve_fit(power_law, m_bins[r_mask], n_sample_r[r_mask])\n", + " i_mask = (m_bins>23) & (m_bins<25)\n", + " popt_i, pcov_i = curve_fit(power_law, m_bins[i_mask], n_sample_i[i_mask])\n", + " z_mask = (m_bins>23) & (m_bins<25)\n", + " popt_z, pcov_z = curve_fit(power_law, m_bins[z_mask], n_sample_z[z_mask])\n", + " y_mask = (m_bins>23) & (m_bins<25)\n", + " popt_y, pcov_y = curve_fit(power_law, m_bins[y_mask], n_sample_y[y_mask])\n", + " \n", + " #store results\n", + " n_sample_gs[i,:] = n_sample_g\n", + " n_sample_rs[i,:] = n_sample_r\n", + " n_sample_is[i,:] = n_sample_i\n", + " n_sample_zs[i,:] = n_sample_z\n", + " n_sample_ys[i,:] = n_sample_y\n", + " \n", + " popt_gs[i,:] = popt_g\n", + " popt_rs[i,:] = popt_r\n", + " popt_is[i,:] = popt_i\n", + " popt_zs[i,:] = popt_z\n", + " popt_ys[i,:] = popt_y" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "m_sample = m_bins" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "#calculate errors\n", + "g_cov = np.matrix(np.cov(n_sample_gs.T, bias=True))*(16-1.0)\n", + "r_cov = np.matrix(np.cov(n_sample_rs.T, bias=True))*(16-1.0)\n", + "i_cov = np.matrix(np.cov(n_sample_is.T, bias=True))*(16-1.0)\n", + "z_cov = np.matrix(np.cov(n_sample_zs.T, bias=True))*(16-1.0)\n", + "y_cov = np.matrix(np.cov(n_sample_ys.T, bias=True))*(16-1.0)\n", + "\n", + "g_err = np.sqrt(np.diagonal(g_cov))\n", + "r_err = np.sqrt(np.diagonal(r_cov))\n", + "i_err = np.sqrt(np.diagonal(i_cov))\n", + "z_err = np.sqrt(np.diagonal(z_cov))\n", + "y_err = np.sqrt(np.diagonal(y_cov))\n", + "\n", + "n_sample_g = np.mean(n_sample_gs, axis=0)\n", + "n_sample_r = np.mean(n_sample_rs, axis=0)\n", + "n_sample_i = np.mean(n_sample_is, axis=0)\n", + "n_sample_z = np.mean(n_sample_zs, axis=0)\n", + "n_sample_y = np.mean(n_sample_ys, axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "#calculate poisson errors\n", + "g_err_p = (np.sqrt(n_sample_g*full_area_sq_deg))/(full_area_sq_deg)\n", + "r_err_p = (np.sqrt(n_sample_r*full_area_sq_deg))/(full_area_sq_deg)\n", + "i_err_p = (np.sqrt(n_sample_i*full_area_sq_deg))/(full_area_sq_deg)\n", + "z_err_p = (np.sqrt(n_sample_z*full_area_sq_deg))/(full_area_sq_deg)\n", + "y_err_p = (np.sqrt(n_sample_y*full_area_sq_deg))/(full_area_sq_deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANsAAADVCAYAAADeiYUwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXl8jFf7/993EkskiMQSWlqjVUsVCV2UoiYUbRWJWFtaEtWiVaSqz7f17fZLKH2Kpw0t1ce3paK7fbSllFqmqNqNfSeyI8uc3x/3PZNJZGX2nLdXXnPPPWfO3Mfkk+vc17mu6yhCCCQSiePxcfUFSCQVBSk2icRJSLFJJE5Cik0icRJ+rvxwRVGCAB0QDOwQQqS48nokEkfiUMumKEpYoeeRiqLoFUWZrJ1qB0QDFtFJJF6Lw8SmKIoemG/zPAxACGEAUhRFCdOO9UA8YHLUtUgk7oDDxKYJKdnmVDRgmSaaAL2iKDFCiHAgCohx1LVIJO6AMx0kQRQUXwhg0iwgQJITr0UicToudZBo1q9UFEWRYS4St0QIoZS1rTPFloLqdQTVyl25lU7eeust3n77bXtdU4Vj7969BAYGOqz/jIwM7r//fof1704oSpl1BjhXbEtRvY+geh7LZNUsyBhOiafjSG9kJNBOe0QIYdTO64EUy/Ny9IeiKNKqSTwWh1k2IUQShZweQoh5jvo8icTdcamDpDzIaaTE0/GY2Eg5jZR4OtKySSROwmMsm0Ti6XiM2OQ0UuLpeM00MjR0BhcuZNrt8+rVC+D8+Ym3/P6kpCSWLl3KsmXL7HI9cXFxhISEMHny5NIbS9wSr7Fs9hSaPfqLjIy005WoREdH27U/ifPxGsvm7QQFBbn6EiS3iceIzd1ISUlh3rx5hIWFYTQaCQoKIiamYJaQyWTCYDCQkpJCUFAQer2a4JCUpK71JycnExMTg8FgID4+nri4OIxGI3q9nrAwNe82ISHB+hkSz8ZjppHuxo4dO6wC2r59+01CA9DpdOj1eiIjI4mPjwfAaDRiMpmIjIwkMTERAL1eT3JysrXt0qVLAaxi1uv1VqFKPBePEZu7eSMtv/wWqwQQGxtLVFQUCQkJN7UPCgrCZDIRFhZGWFgYBoOB4OBg6+u2xxZ27tyJTierRXgLHjONdLd7Nst0z1YMFktlISUlpcCxTqdj3jw1PDQmJob4+HjrFLOoe7Lw8HBMJpMUnJfgMWIrjXr1Auzu+i+JsLAwwsPD0el06HQ6pkyZcpNgLPdaJpOJuLg4QJ1aGo1GjEaj1cIFBQVZzxkMBoxGIykpKcTExFitpNFoZN26dcTExEhniYeiuJvFKApFUYS7XWdCQoL1F99kMpGYmGidTrozMnnUfiiK4raZ2l6FrVVKSUmR62CSUvEYsVlS0N2lLIL0DkrKi8eIzd2mkRJJefEY179E4um4VGxaOfJliqIk2pQk93iSkpKIioqyW39xcXFFrt1JPAuHTiO1EuNGm+eRqCXtwoQQCYBRCJGkFQHacTufFfoh2DMWuV4AnH/t1t5rGwViD6KjozEYylWMTOKGuLrWv7W+/+3uYGPnoH+793c7yHU178Cltf7Bau2S8TAsU8WkpKQip3iWIOSkpKQCVikpKYmkpCRrJInBYCAiIgKDwUBCQkKBgOOEhARrHxLPx9W1/kEt2OpxO9hERkZiNBqJjIwsMqFTBiFLCuNyb6QQIqEsU0hLILI7BSRb0mBABiFLSkfW+rcTMghZUhqy1v8tYgkYtgQUF0YGIUsK47BAZM3xMR8YpZUiR1GUGNT7M115SpHbbhlVnGVzJ9e/OyMDke2H2wQiO7vWvzcKQ+JdyNhIicRJuNwbWVbcyQspkdwK0rJJJE5CWjaJxElIyyaROAmPsWwSiafjMZattLIICXxABhl2+7xAApnMlGJftyxWF944Q26oISkOj7FsQgiEEMXes9lTaGXpT6fTMX/+/JvOyw01JMXhMWJzN0wmEyaT45MVZHiW9+AxYnNHb6Ql5rEwMpdNUhQeI7bSppHORqfTFWt1ZC6bpCg8xkHizsTGxpKcnEz79u1vcmTY5rIlJyeXOZdNisz7kGKzAzKXTVIWPGYaWRqB2DdtpLT+LDloRTlJLLlsSUlJBXLZUlJSCuSy2ebEJSUlFchls+S3GQwG1q1bV0DAEs/EYzbWsBy7a6a2pyDz2eyH2+Sz2RtP+KMgkZSE10wjJRJ3x+WWzaZUQrJt9WSJxNtwaflxTWgG28rIEom34tLy40A4EKZtsCH93BKvxtXlx4+ilrQzAvaN4JVI3Axn3rMVVX78A7Sa/xSqxFVuFoTCtQu31UUB/OvB8+dv6a0yzUZSFC71RgohUoQQSdrP7d232VNot9mfTLORFIUzxXZb5cfdsda/s5BpNt6Bx5Qft+AuESQJCQnW2MXExETWrVtX4HVLmo0lBtISWGxJmUlOTiYmJgaDwUB8fDxxcXEYjUb0er21nHlCQoI19Evi+TjSGxkJtNMesSwBaF7KFE9fUwsLC7OmxRQORAaZZiO5GY8pP+5u4Vp6vR6DwYBOp0On08k0G0mpeEy4ljveq8XHxxMfH09SUhKJiYksW7bMKrTi0mxMJpNVRJY2JaXZSLwHl4drlZVSLZt/Pfu7/ksgLi6OsLAwq5u/sAdSbhklKYxMsalgyBQb+yFTbCQSN0Xes0kkTkJaNonESXiMZZNIPB2PEZucRkocibD5Zy7hX572z4y53J/hNdPIGaGhZF6wn+s/oF49Jp6/tah/kJH/t0seeVzlKslcIZVULnOZC5wnmWQySCeXXAB8zGb8cnPwy8vFLy8P37w8fM15+OaZ8THn4Ws242M24yMsjwIfsxlFqMeK2YwihHpc+Ifin5uV8tupUsWmKEp/IAKohZoiowACWCeE+Lbcn+gg7Ck0e/RnG3plD6KjowuUMvc2BILTnGKL2MTp9M2EpCRTKy2Fmhlp1LtyEV3yZYIy0vA1F29RzGbIzYG8XMjNhbw89dicpx6b89Q2ZnOhY+1HWB6FdiwKnRP5r92C1ooXm6IobYHGgFEIsbyI1xtrQjwqhNhV/o8uH6VtGeXteOtidlr2aXafnkmNI2tpffgfQrMhNRnSUiA9DTLT4FQ67EuFrEzIyPIl65ov2TcgJ1tgzhWQZ0aYzZR5wctFlGTZTEKIv4p7UQhxDDimKEpj+19WkZ/njI8pM5YCrDt37sRgMBQ5ZZSR/8WQnUHqwUSylk7i/HFByjHYdwpWX4br10p7c572UxAFUHx88KlUCR8/P3wrVbIeF3ju61vwUXvdck7x9VVfs5y3OWf76Fe1Kvz73+UadrFiE0KkFnVeUZS7hRDHbdodK9cnegmWaWJQUBA6na7IezNL5D9AREQEer3eGsI1efJkwsPDiYmJQa/XExcXh16vR6fTkZiYSFhYWIHI/+DgYI+fRqbv38iBj4ax/7eTHDtUdJscP38q16lHXqXq/HPSTBo1ySSApm0ao+/ditYP6qgVWpvKgYFUCgigckAAfv7++FWtio+vr3MHZC+x2aIoyiggDFgHGBVF6edO92uuIjo6mqSkJOsUT0b+30x2Zib/fD6dP6dP48Lpgq8FNm/N+uodOXtHe67UbcHXL+n4ftFO3vtwCwANG9Zg8eJ+dOzYCB8fd58klk5ZvZEm4BvU5M/RwGWHXZEHERkZSUREhDU3TW6wkU/qqVNsfucNts9fbD3nF1qVesOf5uHuY+m940FOXqsMwF+jBDtX/kWnB+YA0K1bYxYv7kdoqONiOF1BWcV2BRBCiPXAegdeT7GU5iAJqFfP7q7/shAREVGsGCpi5H/WuXN8+/67/P11vic2OLYpV159nFebzuSzbf60WqOe/6ofPFTtKk0afAzAvfcGs3nz89SpE+CKS3c4ZYr6VxRlEqr7/yqwHbWwqsM9kDafL9zNQWIrFk+a6jkq6j87LY1ds2ax/4svAAisAfWntODga08RWWkwoZkPUPdDtW3nu2DFQMGrY39m/nzV8WM0xtC2bX27X5cjcVTUv0EIMV37gLZAE8BpYnNHDAaDtcRBRUYIwdFvv2XzxIkA+FeDbuNCWfn2EA5V8ecN3mTZnio88L3a/o8RcCepBFb9CIBXX32YGTO6e8U9WWmU1bI9jlqL364C06ogx6MukBdbMsEdLZunYk/Llnb8OIYRI0g/fhyAPkNhy/ThnAttQE96E57XgUcWgPEctK4HW1+ALxfsJDb2ZwBMpnE0blzLLtfiChxl2cKBEEVR3iA/euSzMlxMibX+tdOjhBBypz8PQpjN7FuwgB3vvQdA+KPwwNjOfB71CMLHhwlMIj01iCqaZ3xxXxjYwky7dvPZtes83bvrWLlyCL6+HhOaaxfKPI1ErYh1DNTokdLeoFXRikcVaoFa/4qi6LTnJkCnWTiDFJ37k3HmDGsHDyb95El8feH5CbBl3Jt8dqeZ2jdq0+VwN36vFMTTmn/k1CtQLfcafn7q39Zly6KIjGzhwhG4jjKJrXAkSVkWsjVRFa71bymuaKn1b9TaAQwAbrn6lsTxHPv5ZzaOHQvAw12hw3Nt+XBod8y+Zh693In7Mprx5u5A/u8o6IJg/0uwf+95GrZRl0ROnHiFRo1qunIILsXVtf5NmoVrxy0WbZU4ntxr1/h9wgROrl4NwIhXIXfwTKa3U5db+52JIvBGEPofG3A0rTITH4HpEbB8+T4iI9XImmvXplK1qsckmTgEV9f6NwkhjEKIeaXV+q/I5cddScrhw3x1//2cXL2axk0hbjocm5DEF5rQnj0xgkpZtbh38d0cTavMRw+fYHoExMdvIjJyGQ8+2ACz+X8qvNCgFMumKEo3YLsQIq3Q+ZFlcZAU4rZq/UtvpPM5sny51aXfeyDcF9mLZRGRHK5hJPRafXpe6M3la748uKwRAKueOsOdldJ5+eWVzJ27ndjYcD799ElXDsGtKNGyaREjMbbnFEW5G3Vxu7wsRa3xD7dQ619aNOeRd+MGG8aNswpt9BS485X5zO3TgcM1jtA++UF6XXiS42mVrELbFnWKZrVymDBhK3Pnbuf99x+XQitEWWz7sUKR/pFCiBmlvcm21r+2JZRRUZR23lLr31vJOH2an3r3JjstjbvugUGxcPqpTSy6byUAT5zvRYPrd7D3SmWeWtEAgL8HnSCwkmDECAO//XaGxMQniYkJd+Uw3JKyLmpPFELMUBSlDRCiWTynIRe17UdJi9pnf/+ddc8+C4C+D4T3a86hLotJaqTmDkedHkj13OpsPV+VQWtDATgw5ARVfPOF9t577Xjjjd7OGYyLKe+idlkdJH9pQtM7W2gW5DTScQgh2D17tlVoz42H5mPfYGf3eVahDTsxnOq51fnltD+D1oZSvZKZw0OPU8VX8OKLv/Lbb2eYMaMjTz99lyuH4taUdZ1tvaIonwKfOvh6SroGV320V5OTmcn6kSO5sHUrAYEQ8zpk9P6BLY0U/gxeRUBuAFGnB+KDDytPVOOlDXVpGJjDb33P4KPA1KlbWL36JO+//wj9+zchIyPD1UNyW8rs+hdCjHZmpH9hpGWzP+knT7IkLIwLW7fSMgxeeQeuRhlZc88l/gzeii6jCdGnB+ODDz+YAnhpQ12a18pmgya02bN389VXh3j99XAGDWrq6uG4PSUV/KlR2OV/O+1uF2nZ7MvZTZtYN2wYAL2i4IGn7ufko8tZ1iiJTL9MHrryCC3T1Q0ylh8NYOLmOrSpfZ1ve55HUWD58iPMnLmL4cObERtbMTbSuF1KsmzttWj/YtGqa7UrqY29kJbNPggh+Oezz6xCG/4K3DNqAicfW84XukVk+mXS43xPq9CWHg5k4uY6tKuTL7QtW84xceJmOne+g7feesiVw/EoSvRGKopSE3WdrQlqtD/k143cCSwrrjCQXS9SeiPtQu6NGyx88knOGgxUrgJjpsK1nl9xuV4rvmn4NQD9T0dRM1fNBF98sDr/+jOEDqHXWBxxAUUBkymVbt2+p04df/78M8qaQW9BbhlVQntP+CWW+7PdPunnzjEvPJyMc+e4+14YNBou9NrC2ZoKK+r/CMCQk8OoYq4KwBf7qzNtewidGmSxqNtFFAWuXr1OWJgazn/kyLAiU2Sk2Iqn3AFr2hJAim05O2fgCX8U3JWzO3Ywv317ADr1gM7PBHA6YgcHah5nc+3f8TX7MvTkc/iiloJL3FuD/2cMptudWczvqgrtxo08q9D27at4uWj2oKyl7CYB7VHjGdehxjiWNzZS4gL2LlnC8kGDABgwCupH9OZku4/ZWHsjR6sfpsG1O+hxoSeKVk/44901mbW7Fr3uymRu50sAmM2CZs3UKlnbtg3A318GFd8K5apBot3D6YEKWZjVkxBmM4bXX+eP6dMBiH0dQp9dwG5zGKsafk2WXxbhV9vTOrWN9T3v76zF/H9q8kzjDGZ1yq9WOHCgmlrz449PUqeOv3MH4kWUdS5QS1GUNkKIVCHEcldEkUhvZNnJzshg0eOP88f06dQIgokfQOirO8hqHs3ylt+Q5ZdF9/NPFBBa3B8hzP+nJoObphUQWkLCTrZvv8jMmR1p1SrEFcPxGhxag8SeyHu2spFy4gSJbdpwPSWFpq0g6nnwi7nA+Wp5/Ae1Zkjk6QHUyFUzpoWAkb/W5ZfT1YhtmcLr4fmVKVauPM4nn+xl+PBm9O3bxCXj8SYcVoNE4nxObt7Mwo4dAejaGzpF3oky7Ai7ffezHDVj+pl9/alRTRVanhn6rKzPP8lVeD0smdj782MT9u1L5qWXNtCiRbBcS7MTDqtBInEuuxYu5IfnnwcgehQ0GzQS0SWR75Tv+Asj9WlADKPZb94PwI08eHR5Q65c9yWhw2Wi7smPabx06Rq9e/8EwI8/VowIfmcg3UoejjCbWTtxIltnzQI0R8jwL8m5byCziCeDDDrThW5EWN+Tlu1D6yVq0uf8rhfQN8zfpykrK4cHH/wGgL17B0sXvx3xmP9J6SC5mezMTBY9/jhbZ82iek147X3VEZJ+3zO8w9tkkMFQni0gtAvX/KxCW/bEuQJCy80107LlVwBs2RJJQEAl5w7Iy/EYyyYdJAVJO3OGeWFhZF68SJPm6tSxUswZzgYIPuX/ATCeCYSQ70Hcfwn0q5oBsPbpM9wblGN9TQhBRIRaI/znn58kNNQ7N7dwJR4jNkk+53ftIrFtWwA66EHfR0GJSWNv5WN8wxIApvAm/uSvif1+Ah5bpB5v7n+KBgEFd+8cM+Y3jh9P59NPu9CypXTxOwK3mEYqipJYeisJwOFVq6xC6zMEIkaFoYzJZm3lTXzDEkII4X+YVkBoX/2dL7Tfe++/SWgzZhhZvfokkya1pUcPmWntKBwqNkvJcZvnkYqi6BVFmVyojSw7XgZ2fPIJX/XqBcCz46DN889jjtrGQp9FbOJ32hLGOF7Fz2bC8tZvMOQ7aBAImVMgqEpBoS1Zcoi5c/+mXz8dY8Y84MzhVDgcNo0sR61/KbRSEGYz6yZPZsuH6gZnL06FupEzyWnzMgm8xw1u0IsneZhHrO/JM0PkMvj+IOgbw6oh4FfoT+svv5xmypQttG5dmxkzOjpzSBUSh4mtrLX+UUuS6xRF0ZVWFbkikpedzbKoKA7++CP+AWoNxxqDviVT15143gZgGMO5l3ut78nKgVafgCkFJjwMMyKgUNoZRuNFXnhhPbVqVWH58p435aVJ7I9La/1rggzSXpMU4kZaGou6duWc0UjonWrVq6pDNpFcvxkf8T4AYxhLKKHW91zKxLrD5/ynYGTbm/vdty+Z/v1XAbBlS5RcS3MSLv9fFkKkCCEiZK3/gmRcuMDcFi04ZzRyXysYORGqPv8Pp+o34iNmAvAakwsI7WhyvtDWDS1aaMeOpVujQ/bsGUSVKr4OH4tExZmW7bZq/VuoCJnayUeP8p+WLcm7cYPwjtB7ACjDT7CvejpLtGqChV37287AQ5+rx7tj4YF6N/d77NhVnn56LQA7dkRTvXplh49Fko8zxbaU/OJA5a71X1EWtW3X0Lr0gsd6gvLCJTb7H2ANqwggkAlMpBL50R0/HIRntM0HT4yHorZAO306DZ3uYwA2b44kJKSqw8ciKYjDppG2tf4BLLX9b7XWf0WYPh7fsMEqtN4DoXMvICaVn/w3s4ZV3MXdTCKugNBm/KEKrZIPXJlUtNDOn8+gYUM1dnLFih40aCCjQ1yBI72RSUBSoXNyZ9Fi2P/dd3zTrx8AUS9Ai0dCMD93ki/9lmDiKGGE04e+1vIFZgHDv4f//g3314VtL4B/EaGMly9nUb++eiP3998vAhedNSRJITwmXMubp5E7583j59hYAJ4dC40fbkFO9HY+9p1DKqk8jp4udLW2v54LHRfCznMwsCX8Xz/wKcJzn5x8jTp11LII27aN5P7767J3rxSbq3C5N7KseOM0UgjBxnfesQpt5CRorO9B1qA/ecf3PVJJpR+RBYSWfA3qfagKbVpn+Lp/0UK7evUaISHqpvEbNw6nffs7nDImSfFIy+YihBCsHj+ebbNnoyhqVEidzs+R3u3fTFc+AOBZRnAP91jfczIV7vq3evxlHxjWuui+U1KuExysCm3dumF06iTjHd0BadlcgDkvj2+HDmXb7NlU8fdl3DSo88RErupnMl1RRRLLiwWE9veFfKGtHVK80FJTr1unjj//PAi9Xld0Q4nTkZbNyeRlZ/NNZCSHfvqJGsF+jJqYS2DEe1xsN5I5qI6MlxlHXfIXyjadhE5fqMc7RkJ4g6L7Tk29Tmjoh+Tmmlm+fAC9e8udZdwJjxGbN5B7/TqLn3iCExs2EBLqx8gJuVTtMZtzD/TjE1Sz9QqvEWxd+4cVh+BJNUWNwy/DPcFF9QxpaTe4446ZXL+ey9df96dfv+aOHo6knMhppJPIycpiUdeunNiwgdBGqkWr+uQXnHqgD58wF1DDr2yF9tXf+UI7/UrxQktNvc4dd8wkMzOHL7/sy8CBFaPWvqfhMZbNk6eR2RkZLHzsMc7/9RcN7/Fj2JhcKvX+ipNNO/CZFn41idepTnXrexJ3wOiVUNkXzr4KIdWK7js9/QYNG84iIyObhQv7MGyYzElzVzxGbJ5KdkYGCx59lAt79nD3fZUYMjoHv15fc6Lpw3yOusYfxxsEkB/VMf0PmGyAYH8wjYWaxURWZWZm06TJx6SnZ7NgQR+GD29TdEOJWyDF5kCyMzNZ0LEjF/bsQdeyMoNHZePb0yK0+QC8zlSqkW+23tkI//ObGna170UIKCZWOCsrh+bN53LpUhZz5vRixAgpNHdH3rM5iJysLL547DEu7N6N7n5/VWhPLC6T0O4LgQNjihfajRu5tG37KadOpREfr+ell9o7YUSS28VjLJsn3bPl3rjBfyMiOGc0cnfL6gwemY6vfh6n73uMz7V7tDjeKCC0d22EtisWqhbzzeTk5NGhwwIOHUrm7bc7M3nyo04YkcQeeIxl8xTMubks6dOHU3/8QcPmtRgyMh3fTvGca9mbeTZCs71H+2AT/Os3aFaK0PLyzPTosRij8Rzjxz/EW291cfyAJHZDis2OCLOZb4cO5eiaNYTeE8KwUVfxazeBi2HPWd37E5lcQGgzt8Abv8C9wfBXCUIzmwX9+3/Dr78e57nnWjNrVg9nDEliRzxGbO5+zyaEYMVLL/HP0qXUujOY4aOvUKlFNFcfncoc1KTNCUykBvkJZ4k74LV10LCGml1dnNCEEMTE/MQPPxzkmWfuY8GCPrJAjwci79nsxIZp09j56adUq1WdUWOTqXL3o2R0n8csJR6AcbxKELWs7ZfsVdfRaleD/WOKzkWz8K9//crnn/9F5853kZQ0AJ+iwvwlbo/HWDZ3xvjZZ2yYNg3fypUY/Vo6/nXqk/3MGhI0ocXyIrWpbW2/5ggM+hZ8FTjycvFeR4DExB28997vNGtWm7Vrh8lKWB6MS785RVGCLBWStZJ2Hodp/Xp+GjUKgDFTcqgeBHlD9jPXV3WGDOM57uBOa/ttZ+AJdaMYzk4ofsEa4PvvDzB69Apq1qzCjh2jqFxZVsLyZFxdfrwdsAO18pbH5YJcOXSI/+r1AIyaDMF1QAw/zdLKP3GVZHrxJPeSH3l/7Gp+Baxj46BuCaVANm06Sd++ahWfI0fGEVCS+ZN4BI4s+KMHbfWWguXHgRRFUcK0Y4Cg8hYAcjXXrl61FueJHhNAg0bAgJ1sCjjCAfYTTrsC5cBTroNutnpsHAV3l2DHDxy4TKdOCwE4dmw8tWsXExgp8SgcJjZNSIXLj1vq+psAvaIoMUKIFMBou9mGu2POzeW/ERHkZGXReUgLmrXIBP1iDtepzjrWUpe6PEUfa/vsPGij7dPzQzS0rV983+fOpdO8ubpMYDTGcHdJqpR4FM68Z7up/Dhg0CygjkKVuNyZNa++yrmdO2nauRWdH94HzV/g4n16/ssXAIxiND7af60QELUMTqTCu13h6fuK7zczM5umTecAsHLlYNqWpEqJx+FS179WctyjNtPYu2QJ2+bMoXpoHSL7/I0S0IDMLjOZg+p5fJXXqEIVa/sPNsGPh6BfM3ijhI1izGZBt25fkpGRzdy5vejZ897iG0s8EmdattsqP+4Otf7P797N8kGDAHhhzCUqVQbzoN184vMJACMYSS2b5M+1R2Hqr1A/UK2CVdI69GuvreXPP88wcmRbxoyRgcXeiDPFtpR8j2O5y49beOuttxBCOF1sN9LS+OyhhwAYFlefmsFA1A5WV91KGmk8QS8a09ja/kQK9Pg/9fivGDUJtDiWLNnLRx9t5f776/Dpp086cBQSV+Ix5cddiRCCpIEDybtxgy6x3dA1PAePfoipbhBb2UIjGvEIHazts/OgteYQ2fYC1Assvu+9ey8yaNByADZuHCEXrb0Yjyk/7spwrZ2JiRxZtYo72z3AYy3XQ3BLslrH8oW2R9pQnrOWBQcYswJSb8BHPaCk2qgZGdm0aqVOQfftG0OtWv7FN5Z4PB7zZ9RV92qXDxxgxYsvAjAocg+KD4i+G1isfAnASGKpSn4YyMrD8Pku6HAnjHuw+H6FEERGfgPAkiX9ad68juMGIXELZCByCeTl5LC2ll64AAAJJ0lEQVSwUycARszsQbXKa+Cp1eypeorTnOYROtCIRtb2FzKg99fq8YrBJTtEFi7cxZo1R+nfvznR0bIaVkVAWrYS+O3tt8m6fJlHXx5Ko8proPEzpDd6hOUsA6A7T1jbCgH6xerxhucgqISYx337LvHCCz8C8OWXfR12/RL3Qlq2Yji/axeb3n+farVr0/VeVUUi4r/WilgvMRZf8l2MH2+DvRfh5fbwWAml9a9fzyU8XO1j165YqlUrIbdG4lVIy1YEednZLNCmj8PjO+HrCzxtYGulPSRzhcfoQj2bvaz3XYJX1oC/H3zYveS+x49fzfXrucya1YPWrUNLbizxKqRlK4KN775LTkYGXSbHUudaIjR6gqsNw1jFDKpQha48bm1rFtBlkXq8fWTJ62mbNp1k3rydtGpVl/HjH3LwKCTuhsdYNmdxaf9+Nr7zDlVq1qTjHdpiWcRXfKnFPcbwYoHp46LdcClLjXtsWbf4fq9dy7FG8q9ZM1SWNaiAeIzYnDGNFELw9VNPAfDsx4PU6WP3pRyqepErXKYjnahDvov+ShY8r/o5mNyhiA5tiItTA2a++KIP9etXL7mxxCuR00gb9i5ZwtWjR2kXM4IG6Z9CYENy7+nLYt4GoCvdCrQf/oP6uGk4VCph+rhnzwVmz95G8+a1efbZYjZWk3g9HmPZHE1OVhbfDh4MQER3bd/pp9eyWdkEwCCGUIl8z+Hmk/DzYXjyXni00U3dWRFC0LOn6s1csWKwnD5WYDxGbI6eRm6KV1NkohbMoPL5FdAkioxad7IeA4EE0oz8/c5yzdBZc4oseLrkfpcv38/ZsxlMndqJxo1rldxY4tXIaSSQeekSG//3f/EPCaG5ou2l2/k//Mj3gLq3tW3s4zwj5An4dw+oU0IdkYyMbKKi1AXwqVM7Oez6JZ6Bx1g2R7Ju0iQABi2YhpJ5CsKnctHfzAH205T7CLVZU0u9Di+tVI9LSzubMkV1iixZ0h//kgpDSioEFV5sKcePs3vRIhq0a0fDsxPVk+FT+A417eVpm1oiAP+7UX1cNRj8SvjfO3jwMnPmbOeee2oxYEBLR1y6xMOo8GJbM2ECAH0/HAt516HDh1yulMUZTtOWsALlwq9kwcytarnwHk1K7nfAADW76PvvB0qniATwILE5wkGSfu4cB777Dp1eT+0j6lSSVmNYyQoAuhFRoP27v6uPS0spcbB+vYk9ey4wfHhrWpa00i2pUFRoB8kvb74JQK93x8KOPhA+hXS/HI5wmHtpSg1qWNum3YCP/oS7asIjDYvv02wW9Omj7jo/Y0YpgZKSCoXHWDZ7c+3qVXYtWED98HBCzs5UT7Z5jd/ZAEBPehVoP3ub+rio4C3cTSQl7SMzM4d//esxQorbdV5SIXF1rX+doihhWq1/p5Yf/2P6dACenhMPZzeArj85VWuwlS3UIpjaNmFZ13PhzV/VjTBKSp/JzTUTHa3eq02aVEr8lqTC4epa/2Fa4R8DEOnIa7HFnJvLpg8+IDA0lNC8VerJRz5gN7sA6Eu/Au0X7VYfv3ym5Hu1b775B4B33+1K9er5tSPddU85R/Cf//zH1Zfgtri61r+lIJAeJ1ZEPvCDGtTYd9FC2PUhVKuPCLrHuoh9F3db25oFjFb9JUS1KL5PIQTDh6vvHz/+4QKvTZs2zX4X7+Z88sknrr4Et8Wltf7BKkqDVh3ZKSRFRwPQ+O5U9UTXeRznOABP0adAtIhBu6r3Hy852Hj16iPk5JiZMqUjgYFyxxnJzbi01r8mtDgg1lJf0tFcPngQkZdHxIwZKBtHqycb9WQlPwPQmjYF2k/9RX0cHV5yv6+9thaAV155uOSGkgqLq2v9G7jFysi3yvopUwAIH9ANfpwIbSaS6XOdC5ynFQ9QmXyrdDYddpyD7jooqaTjwYOX2b//MpGRLahb0qZrkgqN4sgAX0VR1gkhIrTjeGCdEMKgWTGdECKhjP2494bakgqLEKLM4UHOtGxLUXcahXLW+i/PgCQSd0XW+pdInIRDp5ESiSSfChuuJZE4Gyk2icRJSLE5AEVRYrSfeJtzhUPVvIJixhpvec11V2Z/tO9Pf6vfqxSbnbGJiJkH6LQv4qZQNZdepJ0oaqzaSzGKohzFw/ZLLwntO4vQvsMwLYC+XN+rFJv90aGFoqH+sukoJlTNCyhqrABRQogm2i+hVyCEMAoh4rSnOs2bXq7v1WOSRz2FQrurhqGuL4ZTKFTNqRflIIoZK6h/+UHN6ihT4IKnoE0XY7WnN4UglvReadkchDalWFcR1hMLj1UIkaBZtRCbqaVXoP3xiFUUJai875Vicxx6m7/qKUCwdhwEXHHNJTkM61g1h4ElqPwK+VNLj8b2Hg11yhhDOb9XKTYHoChKjM0vnx51emX5pStXqJq7U8RYTeSPrwmww1XXZmf0FBSWiXJ+r1Jsdkb7hYtXFOWooihXwXtD1UoY6wDNuh31lrECFo+rJfwwqbzfqwzXkkichLRsEomTkGKTSJyEFJtE4iSk2CQSJyHFJpE4CSm2CohWiXrZbbw/3tuyF5yBFFsFRKvROcry/BbKCC4tvYmkMFJsFRBtXwWddhwEhfbGKp2U0ptICiPF5oZoOXDrLEmJNgmKiZYAWEsMoiVBU1GUIK2t5T0xRfRjm29lSYBsh01hJst7tOP4QomSk7VoicjC57wtUdQRSLG5IVrEfLD2mAREa8c7UYURhppTlUR+ukc71JAhA9BeCDGvqH60/k1o1kl7zWTZd6FQDlqi5UATk9G2sK4mRMu5UvZilUixuS+2eVIm23NaDJ5RszKWcxYBWEq6F9VPWSlqmhjOzZnXOiBIE//RW/icCoUUm/tS7H2RZmV0NgKz/MIbhBCFNykp8/1VEWn9tukxO7k5XWY7qlU0At+U9XMqKjJT2w3RrJMlf8pybCmvkAwss3ndiJpPlqQoyk5FUUyoFugD1Kll4X6CUEUTpiiKThOmSbtns0wht2vXEATotXbztPszULOyI4Ao1HojltQTr0kdcgQy6t9L0Na95gkhUjRhxtrUzJC4AVJsXoKNJUrRHk2l5VdJnIsUm0TiJKSDRCJxElJsEomTkGKTSJyEFJtE4iSk2CQSJ/H/ATfqHK6tsGEiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot power law fits\n", + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "\n", + "plt.fill_between([23,25],[0.1,0.1],[10**9,10**9],color='grey', alpha=0.25)\n", + "\n", + "#data\n", + "p1 = plt.fill_between(m_bins, n_sample_g-g_err, n_sample_g+g_err, color=colors[0])\n", + "p2 = plt.fill_between(m_bins, n_sample_r-r_err, n_sample_r+r_err, color=colors[1])\n", + "p3 = plt.fill_between(m_bins, n_sample_i-i_err, n_sample_i+i_err, color=colors[2])\n", + "p4 = plt.fill_between(m_bins, n_sample_z-z_err, n_sample_z+z_err, color=colors[3])\n", + "p5 = plt.fill_between(m_bins, n_sample_y-y_err, n_sample_y+y_err, color=colors[4])\n", + "\n", + "plt.yscale('log')\n", + "plt.xlim([16,30])\n", + "plt.ylim([10**2,10**8])\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$n(" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "fig.subplots_adjust(left=0.2, right=0.9, bottom=0.2, top=0.9)\n", + "\n", + "plt.fill_between([23,25],[0.1,0.1],[10**9,10**9],color='grey', alpha=0.25)\n", + "\n", + "#data\n", + "p1 = plt.fill_between(m_sample, n_master_sample_g-g_master_err, n_master_sample_g+g_master_err, color=colors[0])\n", + "p2 = plt.fill_between(m_sample, n_master_sample_r-r_master_err, n_master_sample_r+r_master_err, color=colors[1])\n", + "p3 = plt.fill_between(m_sample, n_master_sample_i-i_master_err, n_master_sample_i+i_master_err, color=colors[2])\n", + "p4 = plt.fill_between(m_sample, n_master_sample_z-z_master_err, n_master_sample_z+z_master_err, color=colors[3])\n", + "p5 = plt.fill_between(m_sample, n_master_sample_y-y_master_err, n_master_sample_y+y_master_err, color=colors[4])\n", + "\n", + "plt.yscale('log')\n", + "plt.xlim([16,30])\n", + "plt.ylim([10**2,10**8])\n", + "plt.xlabel('magnitude')\n", + "plt.ylabel(r'$n(" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "colors = plt.cm.jet(np.linspace(0,1,5)) \n", + "fig = plt.figure(figsize=(3.3,3.3))\n", + "\n", + "#upper panel\n", + "rect = 0.2,0.4,0.7,0.55\n", + "ax = fig.add_axes(rect)\n", + "\n", + "#ax.fill_between([23,25],[0.1,0.1],[10**9,10**9],color='grey', alpha=0.25)\n", + "\n", + "#data\n", + "p1, = ax.plot(dat_g['mag'], dat_g['n(max_time: + print("job time maxed out.") + jobCancel(credential, job_id) + deleteJob(credential, job_id) + sys.exit() + + +def download(credential, job_id, out): + """ + download the reuslt of a job and save to output file + """ + url = api_url + 'download' + postData = {'credential': credential, 'id': job_id} + res = httpJsonPost(url, postData) + bufSize = 64 * 1<<10 # 64k + while True: + buf = res.read(bufSize) + out.write(buf) + if len(buf) < bufSize: + break + + +def deleteJob(credential, job_id): + """ + delete a jopb from the CAS server + """ + url = api_url + 'delete' + postData = {'credential': credential, 'id': job_id} + httpJsonPost(url, postData) + + + +if __name__ == '__main__': + main() diff --git a/descqagen/app_mag_func_test/sql/hsc_credentials.txt b/descqagen/app_mag_func_test/sql/hsc_credentials.txt new file mode 100644 index 00000000..e9919964 --- /dev/null +++ b/descqagen/app_mag_func_test/sql/hsc_credentials.txt @@ -0,0 +1,2 @@ +username +password \ No newline at end of file diff --git a/descqagen/app_mag_func_test/sql/hsc_data.sql b/descqagen/app_mag_func_test/sql/hsc_data.sql new file mode 100644 index 00000000..ad5c804d --- /dev/null +++ b/descqagen/app_mag_func_test/sql/hsc_data.sql @@ -0,0 +1,81 @@ +SELECT + meas.object_id +, meas.parent_id +, meas.ira +, meas.idec +, meas.icmodel_mag as imag_cmodel +, meas.icmodel_mag_err as imag_cmodel_err +, meas.icmodel_flux_flags as iflux_cmodel_flags +, meas.icmodel_flux as iflux_cmodel +, meas.icmodel_flux_err as iflux_cmodel_err +, forced.merge_measurement_i +, forced.a_g +, forced.a_r +, forced.a_i +, forced.a_z +, forced.a_y +, forced.rcmodel_mag as rmag_forced_cmodel +, forced.rcmodel_mag_err as rmag_forced_cmodel_err +, forced.rcmodel_flux as rflux_forced_cmodel +, forced.rcmodel_flux_err as rflux_forced_cmodel_err +, forced.rcmodel_flux_flags as rflux_forced_cmodel_flags +, forced.icmodel_mag as imag_forced_cmodel +, forced.icmodel_mag_err as imag_forced_cmodel_err +, forced.icmodel_flux as iflux_forced_cmodel +, forced.icmodel_flux_err as iflux_forced_cmodel_err +, forced.icmodel_flux_flags as iflux_forced_cmodel_flags +, forced.gcmodel_mag as gmag_forced_cmodel +, forced.zcmodel_mag as zmag_forced_cmodel +, forced.ycmodel_mag as ymag_forced_cmodel +, meas.tract +, meas.patch +, meas.gcountinputs +, meas.rcountinputs +, meas.icountinputs +, meas.zcountinputs +, meas.ycountinputs +, meas.iflags_pixel_bright_object_center +, meas.iflags_pixel_bright_object_any +, meas.iblendedness_flags +, meas.iblendedness_abs_flux + +FROM +pdr1_deep.meas as meas +LEFT JOIN pdr1_deep.forced as forced using (object_id) +WHERE +-- Please uncomment to get a field you want + +-- AEGIS +-- s16a_wide2.search_aegis(meas.patch_id) AND + +-- HECTOMAP +-- s16a_wide2.search_hectomap(meas.patch_id) AND + +-- GAMA09H +-- s16a_wide2.search_gama09h(meas.patch_id) AND + +-- WIDE12H +-- s16a_wide2.search_wide12h(meas.patch_id) AND + +-- GAMA15H +-- s16a_wide2.search_gama15h(meas.patch_id) AND + +-- VVDS +-- s16a_wide2.search_vvds(meas.patch_id) AND + +-- XMM +-- s16a_wide2.search_xmm(meas.patch_id) AND + + NOT meas.ideblend_skipped AND + NOT meas.iflags_badcentroid AND + NOT meas.iflags_pixel_edge AND + NOT meas.iflags_pixel_interpolated_center AND + NOT meas.iflags_pixel_saturated_center AND + NOT meas.iflags_pixel_cr_center AND + NOT meas.iflags_pixel_bad AND + NOT meas.iflags_pixel_suspect_center AND + NOT meas.iflags_pixel_clipped_any AND + meas.idetect_is_primary AND + meas.iclassification_extendedness != 0 + ORDER BY meas.object_id +; \ No newline at end of file diff --git a/descqagen/app_mag_func_test/sql/hsc_randoms.sql b/descqagen/app_mag_func_test/sql/hsc_randoms.sql new file mode 100644 index 00000000..44f7c779 --- /dev/null +++ b/descqagen/app_mag_func_test/sql/hsc_randoms.sql @@ -0,0 +1,26 @@ +SELECT + random.object_id +, random.ra +, random.dec +, random.tract +, random.patch +, random.gcountinputs +, random.rcountinputs +, random.icountinputs +, random.zcountinputs +, random.ycountinputs +, random.iflags_pixel_bright_object_center +, random.iflags_pixel_bright_object_any + +FROM +pdr1_deep.random as random +WHERE + NOT random.iflags_pixel_edge AND + NOT random.iflags_pixel_interpolated_center AND + NOT random.iflags_pixel_saturated_center AND + NOT random.iflags_pixel_cr_center AND + NOT random.iflags_pixel_bad AND + NOT random.iflags_pixel_suspect_center AND + random.idetect_is_primary + ORDER BY random.object_id +; \ No newline at end of file diff --git a/descqagen/app_mag_func_test/utils.py b/descqagen/app_mag_func_test/utils.py new file mode 100644 index 00000000..0e00c165 --- /dev/null +++ b/descqagen/app_mag_func_test/utils.py @@ -0,0 +1,24 @@ + +import numpy as np + +__all__ = ['get_ordered_list'] + +__author__=['Ducnan Campbell'] + +def get_ordered_list(data_cols): + """ + return an ordered list from column dtypes dict + """ + names = np.array(data_cols.keys()) + order = np.zeros(len(names)).astype('int') + column_types = [] + for i in range(0,len(names)): + order[i] = data_cols[names[i]][0] + column_types.append(data_cols[names[i]][1]) + sort_inds = np.argsort(order) + column_types = np.array(column_types) + names = names[sort_inds] + order = order[sort_inds] + column_types = column_types[sort_inds] + data_dtypes = [(x,np.dtype(y).type) for x, y in zip(names, column_types)] + return data_dtypes \ No newline at end of file