Skip to content

Aligning logits with labels through two shifts? #6

@Xlun

Description

@Xlun

在 main.py中数据准备时:

def collate_fn(examples, device):
    token_ids = torch.tensor(
        [example['token_ids'] for example in examples], device=device)
    return **{'input_ids': token_ids[:, :-1], 'labels': token_ids[:, 1:]}**

def train_chunk(.......):
..........
batch = collate_fn(
            examples=examples[i:i+per_device_batch_size], device=fabric.device)
input_ids, labels = batch['input_ids'], batch['labels']

在 modeling_llama.py 中loss计算时:

class LlamaForCausalLM(LlamaPreTrainedModel):
....................
        if labels is not None:
            # Shift so that tokens < n predict n
            **shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()**

为什么在模型数据sample输入时进行了预测和真实值之间的位移对齐,在模型中loss计算时还进行了一次位移对齐?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions