Skip to content

export similarity matrix as scipy sparse matrix #7

@zheng-da

Description

@zheng-da

To integrate SLIM with other models (for example, use SLIM to construct the item similarity graph and run GCN on it to compute item embeddings for item-based recommendation), it'll be nice that SLIM exports the similarity matirx as a scipy sparse matrix directly.

Currently, SLIM exports the similarity matrix to a file first before being loaded as a scipy matrix. Here is an example code we have to do. This is slow and inconvenient.

from SLIM import SLIM, SLIMatrix
model = SLIM()
params = {'algo': 'cd', 'nthreads': 2, 'l1r': 1.0, 'l2r': 1.0}
trainmat = SLIMatrix(user_movie_spm.tocsr())
model.train(params, trainmat)

model.save_model(modelfname='slim_model.csr', mapfname='slim_map.csr')
def read_csr(filename):
    f = open(filename, 'r')
    all_rows = []
    all_cols = []
    all_vals = []
    for i, line in enumerate(f.readlines()):
        strs = line.split(' ')
        cols = [int(s) for s in strs[1::2]]
        vals = [float(s) for s in strs[2::2]]
        all_cols.extend(cols)
        all_vals.extend(vals)
        all_rows.extend([i for _ in cols])
    all_rows = np.array(all_rows, dtype=np.int64)
    all_cols = np.array(all_cols, dtype=np.int64)
    all_vals = np.array(all_vals, dtype=np.float32)
    mat = spsp.coo_matrix((all_vals, (all_rows, all_cols)))
    return mat

movie_spm = read_csr('slim_model.csr')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions